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Abstract

In the seminal work by Awodey and Warren it was shown that the intensional identity types
of Martin-Löf dependent type theory can be modelled categorically using weak factorisation
systems. In this interpretation the dependent types are modelled by fibrations, i.e. the
right maps of a weak factorisation system. This work inspired a lot of further research
into such categorical models of identity types. Recently it was adapted by Gambino and
Larrea to the setting of algebraic weak factorisation systems who added interpretations of
the dependent sum and product types of said type theory. In their work the dependent
types are interpreted using the algebras of the pointed endofunctor of the system, and in
the present work we show that the same approach also works when we instead use the
algebras for the monad of the system.
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Chapter 1

Introduction

In a series of papers published in the 70s and 80s Martin-Löf developed a version of dependent
type theory with the aim of developing a foundation for constructive mathematics. It
includes several types such as the dependent sum, product, and intensional identity types,
and is now often referred to as Martin-Löf dependent type theory.

Arguably the most novel of these types are the intensional identity types, of which the
inhabitants are witnesses of equality between terms. Considerations on how to interpret
these identity types led to the development of what is called homotopy type theory, in which
a type is viewed as a topological space, terms of a type as points in that space, and the
equalities between terms as paths between them in the topological space.

Finding models of type theory that are true to this view has been an ongoing effort.
In the work by Awodey and Warren in [10] it was shown that a homotopy theoretic
model of the identity types can be obtained using weak factorisation systems (wfs). In this
interpretation the dependent types are modelled by fibrations, i.e. the right maps of the weak
factorisation system. There were however some coherence issues with this interpretation
regarding substitution. This is because substitution is modelled using pullbacks, and while
substitution commutes strictly with operations like type formation, pullbacks generally
only commute up to natural isomorphism. This was later remedied in a continuation
of this work by van den Berg en Garner in [8] by using a more structured variant of
weak factorisation systems called cloven weak factorisation systems, in combination with a
splitting construction first introduced by Hoffman in [14].

More recently Gambino and Larrea further adapted this approach to algebraic weak
factorisation systems (awfs) in [3], interpreting the dependent types using the algebras for
the pointed endofunctor of the awfs or in other words as the right maps of the underlying
wfs of the awfs, and adding interpretations of the dependent sum and product types.

In the present work we build on those results by Gambino and Larrea in [3], making use
of algebraic weak factorisation systems to model dependent type theory. The key difference
is that we will now use the algebras of the monad of the awfs rather than for the underlying
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pointed endofunctor in order to interpret the dependent types. Since these are a subset of
the algebras for the pointed endofunctors many of the same underlying ideas used in [3]
still apply, and as such the structure of this work will closely mimic that in [3, Sections 1,
2, and 3].

Specifically the approach in those sections is as follows. For any awfs there is a
comprehension category induced by the algebras for the pointed endofunctor of the awfs.
It is shown that if this category is equipped with choices of structure for the sum, product,
and identity types of Martin-Löf type theory in a suitably functorial way, then applying a
splitting construction to this category yields a proper interpretation of the theory. Then,
conditions are identified for awfs which guarantee that such choices can be made. For the
interpretation of sum types no additional assumptions need to be made as we can simply
use the fact that the algebras are closed under composition. For the product types we need
that the awfs satisfies a Frobenius condition, which ensures that algebras are also closed
under pushforward. For the identity types we need the notion of a stable functorial choice
of path objects introduced by van den Berg and Garner in [8]. After proving that these
conditions are indeed sufficient, an example of such an awfs was exhibited on the category
of groupoids.

In the present work we reproduce these steps just listed but instead using the compre-
hension category induced by the algebras for the monad of the awfs. The interpretation
of the sum and identity types will be almost exactly as in [3], most of the work is in
formulating a suitable Frobenius condition. We do so in general terms and this will be the
main contribution of this work. We then conclude by showing that the aforementioned
awfs on groupoids satisfies the additional properties that we have formulated.

The contents of this work are structured as follows. First we consider the specific
fragment of Martin-Löf type theory that we wish to model in Chapter 2. In Chapter 3 we
look at the notion of comprehension categories which are commonly used for interpreting
type theory, it is one of the several equivalent ways of doing so which are pervasive in the
literature. In the last section of this chapter, Section 3.3, we look at how the π-clans defined
by Joyal in [7] give rise to such a category and along with it an interpretation of the sum
and product types. Since weak factorisation systems are a strengthening of these clans we
can this method as the basis for the rest of our work, exactly as was done in [1]. The several
different notions of factorisation systems are then reviewed in Chapter 4, culminating in
the definition of algebraic weak factorisation systems. In order to interpret product types
we need to place an additional demand on the algebraic weak factorisation systems which is
called a Frobenius condition. In Chapter 5 we look at this condition in the general setting
of classes, categories, and double categories of maps and prove that at each level there is an
equivalent phrasing of this condition in terms of pushforward rather than pullback functors.
We then put everything together in Chapter 6 to phrase sufficient conditions for algebraic
weak factorisation systems so they can used to obtain a model for the type theory outline
in Chapter 2. We then exhibit such an factorisation system in Chapter 7, and finish with
some concluding remarks in Chapter 8.
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Chapter 2

Martin-Löf dependent type theory

The purpose of this chapter is to describe the variant of type theory we aim to model in the
coming chapters, i.e. the fragment of Martin-Löf dependent type theory with sum, product,
and intensional identity types. We will describe what a type theory is in general, what
distinguishes the dependent variant, and then list the axioms we are interested in. The
content of this chapter summarises some of the material from [12] and [13, Chapter 10]
which is relevant for the rest of the present work.

2.1 Type theory

A type theory is a logical framework within which there are three primary notions; types
which are akin to sets; terms which must have a certain type and may be thought of as
the elements of the types; and contexts which are lists of (unique) variables declared to be
of some type. Then there are generally four kinds of judgements, made with respect to a
context Γ, as listed in the table below.

Judgement Notation

A is a type Γ ` A type
Types A and B are equal Γ ` A = B type
The term t is of type A Γ ` t : A
Terms t and s are equal Γ ` t = s : A

As an example we might have a type N representing the natural numbers with some
axioms Γ ` N type, Γ ` 0 : N, and whenever Γ ` n : N also Γ ` s(n) : N, along with further
rules describing induction and recursion.

Most type theories then have a few well known type constructors, i.e. ways to create
new types from old. For instance when Γ ` A type and Γ ` B type we have a type
Γ ` A → B type the terms of which correspond to functions from A to B. Likewise we
might have a type Γ ` A×B type corresponding to the cartesian product of A and B.
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Specification of new types follows a general format, and the axioms of the type in
question are often named after this format. For instance the three axioms listed above
for the natural numbers are respectively called the formation and introduction rules. The
general scheme is as follows (as listed in [12, Appendix A.2.4]):

• A formation rule which describes the contexts in which the type can be formed.

• The introduction rules stating how new elements of this type can be formed, or in
other words what the canonical inhabitants of the type are.

• The elimination rules that state how elements of the type can be used, or how one
can obtain a mapping out of the type.

• The computation rules that states how the introduction and elimination rules interact.

• Optionally a uniqueness principle.

Other than rules pertaining to specific kinds of types there are a number of general
structural rules of a type theory. We will just list one such rule as an example, see for
instance [12, Appendix A.2.2] for a more complete overview.

Γ ` A type Γ,∆ ` b : B

Γ, x:A,∆ ` b : B
(Weakening)

2.2 Dependent types

A dependent type theory is one in which the types are additionally allowed to depend on
the variables in the context. For instance given some variable x : A we might have a type
B(x) that makes reference to x, written as a judgement x : A ` B(x) type. A commonly
used example is the dependent type x : N ` Nat(x) type of natural numbers up to x, i.e. for
any particular natural number n : N we get a type Nat(x) of which the terms are natural
numbers less than or equal to n.

In set theory such dependent types correspond to indexed families of sets (B)x∈A.
Equivalently such a family is given by a function f : B → A where Bx is given by
f−1(x) := {b ∈ B | f(b) = x}. This provides the intuition for interpreting a dependent type
in category theory as a morphism B → A.

2.3 Sum, product, and identity types

We are interested in modelling the dependent sum, product, and identity types which we
will now describe. First we look at the sum types Σ, which behaves like the cartesian
product of sets but where the second component of the pairs in it may depend on the first.
For any type B(x) depending on some x : A we have a type Σx:AB(x). We may construct
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(or, introduce) terms of this type by pairing up terms a : A and b : B(a) with a pairing
operation explicitly denoted by p, i.e. p(a, b) : Σx:AB(x). We then have an induction
principle that says that in order to define a map out of Σx:AB(x) it suffices to define it on
the canonical pairs, along with a computation principle that says that the resulting maps
acts on the canonical pairs as we defined it. This results in the following rules.

Γ, x:A ` B(x) type

Γ ` Σx:AB(x) type
(Σ-Form.)

Γ, x:A, y:B(x) ` p(x, y) : Σx:AB(x) (Σ-Intro.)

Γ, z:Σx:AB(x) ` T (z) type Γ, x:A, y:B(x) ` t : T (p(x, y))

Γ, z:Σx:AB(x) ` ind(T, t, z) : T (z)
(Σ-Elim.)

Γ, z:Σx:AB(x) ` T (z) type Γ, x:A, y:B(x) ` t : T (p(x, y))

Γ, x:A, y:B(x) ` ind(T, t,p(x, y)) = t : T (p(x, y))
(Σ-Comp.)

Next are the product, or function, types Π which behave like sets of functions. The
difference is that the domain of the function depends on its input. Set theoretically this
corresponds to the situation where we have a set A indexing a family of sets (B)x∈A, a
function f for which f(x) ∈ Bx is then an element of Πx∈ABx. So when we have a type B(x)
that depends on x : A we have a type Πx:AB(x) of dependent functions. To construct an
element of this type we use lambda abstraction; if for every x : A we can construct a term
t : B(x) then we get a function λx:A.t : Πx:AB(x). Functions can be applied to elements
in their domain so for this we have an application operation app, i.e. when f : Πx:AB(x)
and x : A then app(f, x) : B(x). Lastly there is a uniqueness principle stating the so called
η-conversion rule that λx.app(f, x) = f . As follows the rules which formally express this.

Γ, x:A ` B(x) type

Γ ` Πx:AB(x) type
(Π-Form.)

Γ, x:A ` t : B(x)

Γ ` λx:A.t : Πx:AB(x)
(Π-Intro.)

Γ, x:A, f :Πx:AB(x) ` app(f, x) : B(x) (Π-Elim.)

Γ, x:A ` t : B(x)

Γ, x:A ` app(λx:A.t, x) = t : B(x)
(Π-Comp.)

Γ, f :Πx:AB(x) ` λx:A.app(f, x) = f : Πx:AB(x) (Π-Uniq.)
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Lastly we look at the rules for Id-types. Unlike the previous two these have no
clear counterpart in set theory. They were introduced to complete the propositions-as-
types paradigm which is closely related to the well known Brouwer-Heyting-Kolmogorov
interpretation. According to this paradigm types correspond to propositions and their
inhabitants to proofs of those propositions. For example the type A×B may be understood
as the proposition ”A and B”, and a term of this type as a pair of proofs of A and B
respectively. The identity types then correspond to the notion of equality.

The idea is that for any type A and any two of its inhabitants x, y : A we have a type
IdA(x, y), sometimes written as x =A y or just x = y. An inhabitant p : IdA(x, y) can be
thought of as a proof that x and y are equal. Since equality is reflexive we have for any
x : A an inhabitant r(x) : IdA(x, x). The induction principle says that in order to define
a map out of IdA(x, y) it suffices to define it on these canonical inhabitants r(x), and the
computation rule states how this resulting map acts on those canonical inhabitants.

Γ, x:A, y:A ` IdA(x, y) type (Id-Form.)

Γ, x:A ` r(x) : IdA(x, x) (Id-Intro.)

Γ, x:A, y:A, p: IdA(x, y) ` T (x, y, p) type Γ, x:A ` t : T (x, x, r(x))

Γ, x:A, y:A, p: IdA(x, y) ` jA(T, t, x, y, p) : T (x, y, p)
(Id-Elim.)

Γ, x:A, y:A, p: IdA(x, y) ` T (x, y, p) type Γ, x:A ` t : T (x, x, r(x))

Γ, x:A ` jA(T, t, x, x, r(x)) = t : T (x, x, r(x))
(Id-Comp.)

Types like products, disjoint unions, functions, etc., were introduced to type theory as
mathematical notions and then later seen to correspond to logical notions. For the identity
types it was the other way around, they were first introduced as a logical notion and then
seen to correspond to a mathematical notion, namely that of path spaces in topology. This
view led to the development of what is known as homotopy type theory, in which types are
viewed as topological spaces with their inhabitants representing points in the space and the
inhabitants of their identity types as paths in the space between those two points. Finding
models of type theory that are true to this view is what led to the work on using weak
factorisation systems to interpret type theory and as such the present work.
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Chapter 3

Comprehension categories

There are several ways of interpreting dependent types in category theory which can
be shown to be equivalent to one another. Of these various options we will work with
comprehension categories, a notion which is closely related to that of Grothendieck fibrations.
We will assume familiarity with Grothendieck fibrations, although a definition may be
found in Appendix A.1. For an extensive treatment on the relation between type theory,
fibrations, and comprehension categories the reader is referred to [13].

Definition 1. Consider a category C with a functor χ : E → C2 and let ρ denote the
composition cod ·χ. The pair (C, χ) is called a comprehension category if ρ is a fibration
and χ sends cartesian arrows to pullback squares in C:

E C2

C .

ρ

χ

cod

When the category C in question is clear we may omit reference to it and just speak of
the comprehension category χ. We will denote dom ·χ by τ , and sometimes simply write f
instead of τf for arrows in E . We say (C, χ) is cloven, normal, or split whenever ρ is.

Remark 2. If C has pullbacks then cod is a fibration and χ : ρ→ cod a fibered functor,
but this need not be the case.

The elements Γ of C are interpreted as contexts and the objects A in its fibre ρ(Γ) as
dependent types derivable in context Γ. The functor τ models context extension of Γ with
a fresh variable of type A so we denote τ(A) by Γ.A. The comprehension functor maps
dependent types to the projection χA : Γ.A→ Γ that drops this variable.

To soundly model substitution we will need ρ : E → C to be a split fibration. Not every
fibration can be made split, but every fibration is equivalent to some split fibration, which
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is obtained by applying the right adjoint of the inclusion SpFib(C)→ Fib(C) to ρ, see for
instance [5]. This splitting can be extended to operate on comprehension categories so that
for any comprehension category there is a split one that is equivalent to it, see [1, Chapter
2]. This result is an adaptation of the of the result by Hoffman in [14] for locally cartesian
closed categories.

Aside from modelling the structural rules of type theory we want to model additional
logical structure, namely the dependent sum, product, and identity types. In [1] Larrea
distinguishes for each of these type formers three types of definitions.

1. A choice of the logical structure specifies the structure needed for interpreting the
formation, introduction, elimination, and computation rules of the type, but leaves
out conditions relating to substitution. This definition applies to any comprehension
category.

2. A strictly stable choice expands on the first and is only interpretable in split com-
prehension categories because it requires the choices to cohere strictly with the split
cleavage, i.e. with substitution. A split comprehension category satisfying this
condition therefore properly models the type in question.

3. A pseudo-stable choice applies to any comprehension category and expands on the
first point by adding conditions which ensure that the split comprehension category
obtained by applying the right adjoint splitting satisfies the second point.

The pseudo-stability conditions for sum and product types are due to Hofmann in [14],
and those for intensional identity types to Warren in [19]. It was shown by Gambino and
Larrea in [3] that awfs satisfying suitable conditions give rise to a comprehension category
with such pseudo-stable choices.

These definitions of pseudo-stable choices underlie the approach taken in this work: we
find pseudo-stable choices for each of the kinds of logical structure that we want so that we
have a proper interpretation after applying the right adjoint splitting. For this reason we
only give the definition of pseudo-stability and leave out point 2 above, more details and
proofs of these statements can be found in [1, Chapter 1 and 2]. Before proceeding we first
consider a useful tool for describing the pseudo-stability conditions.

3.1 Dependent tuples

In [1] a method is described of constructing a category of dependent tuples of a given
comprehension category.

Definition 3. Given a comprehension category χ : E → C2 we can form for each positive
number n a category of dependent tuples DTn(χ). Objects are given by n-tuples (A)i of
objects in E with ρ(Ai+1) = τ(Ai), and arrows (B)i → (A)i by n-tuples of arrows (f)i with
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fi : Bi → Ai and ρ(fi+1) = τ(fi). Composition is defined component-wise. As an example
we visualise a morphism (f, g) : (C,D)→ (A,B) in DT2(χ) over σ : ∆→ Γ:

D B

C A

∆.C.D Γ.A.B

∆.C Γ.A

∆ Γ .

g

f

g

χD

χB

f

χC

χA

σ

The projection functors ρn+1 : DTn+1(χ)→ DTn(χ) which drop the last component are all
fibrations, so composing these with ρ gives a fibration ρ̂ : DTn(χ)→ C where the ρ̂-cartesian
arrows are those tuples (f)i consisting of ρ-cartesian fi.

The category of dependent pairs DT2(χ) is of particular interest for modelling the sum
and product types.

3.2 Modelling additional logical structure

The definitions of pseudostability that we list in this section are there in their entirety for
the sake of completeness, for our purposes we will primarily be interested in the aspects
that are needed for modelling the type formation rules. Of secondary importance are the
aspects related to modelling the introduction, elimination, and computation rules. This is
because the choices we will make for these data in our comprehension category in Chapter
4 will be as those in [1, Section 2.7] for π-clans, thus inheriting all the other properties
stated by these pseudo-stability definitions from the proofs given there. Of least importance
are the coherence/naturality conditions which are there to ensure that the comprehension
category obtained from the right adjoint splitting has the necessary properties to properly
interpret the type theory. Since we will not be looking into this method the reader may
safely ignore these, the interested reader is referred to [1, Chapter 2] for more details.

All these definitions are given with respect to some comprehension category χ : E → C2.
For convenience we use the abbreviations Γ := ρ(A) and ∆ := ρ(B) if A,B ∈ E , and
σ := ρ(f) when f : B → A.

3.2.1 Σ-types

Definition 4. A pseudo-stable choice of Σ-types (Σ, p, ind) on χ consists of the following.
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1. A fibered functor Σ : ρ̂→ ρ modelling the type formation rule (A,B) 7→ ΣAB:

DT2(χ)c Ec

C .

Σ

ρ̂ ρ

Here we let Ec denote the wide subcategory of E spanned by its cartesian arrows, and
likewise for DT2(χ)c.

2. For each (A,B) ∈ DT2(χ) a pairing morphism as in the lower left commuting diagram:

Γ.A.B Γ.ΣAB

Γ

pA,B

χAχB χΣAB

∆.C.D ∆.ΣCD

Γ.A.B Γ.ΣAB .

pC,D

g Σfg

pA,B

Together these should constitute a natural transformation p in the sense that for each
(f, g) : (C,D)→ (A,B) the upper right naturality square commutes.

3. For each (A,B) ∈ DT2(χ) an operation that sends a dependent type T ∈ ρ(Γ.ΣAB)
and t : Γ.A.B → Γ.ΣAB.T satisfying χT t = pA,B to a section indA,B(T, t) of T making
both triangles commute, as depicted on the left below:

Γ.A.B Γ.ΣAB.T

Γ.ΣAB Γ.ΣAB

pA,B

t

χT

1

indA,B(T,t)

∆.ΣCD ∆.ΣCD.T
′

Γ.ΣAB Γ.ΣAB.T .

indC,D(T ′,t′)

Σfg h

indA,B(T,t)

Again we also demand these morphisms satisfy a coherence condition. Consider
(f, g) : (C,D)→ (A,B) and let h : T ′ → T be cartesian over Σfg, then the universal
property of the pullback underlying h gives us a section t′ : ∆.C.D → ∆.ΣCD.T

′

over the pairing morphism. Now the induced square as on the right above should
commute.

3.2.2 Π-types

Next we consider Π-types, for which the definition is similar to that of the Σ-types.

Definition 5. A pseudo-stable choice of Π-types (Π, λ, app) on χ consists of the following.
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1. A fibered functor Π : ρ̂→ ρ modelling the type formation rule (A,B) 7→ ΠAB:

DT2(χ)c Ec

C .

Π

ρ̂ ρ

2. For each (A,B) ∈ DT2(χ) an operation λA,B that sends a section t : Γ.A→ Γ.A.B to
a section λA,Bt : Γ→ Γ.ΠAB as on the lower left in:

Γ Γ.ΠAB

Γ

λA,Bt

1 χΠAB

∆ ∆.ΠCD

Γ Γ.ΠAB .

λC,Dt
′

σ Πfg

λA,Bt

These morphisms should together satisfy a coherence condition. Consider (f, g) :
(C,D)→ (A,B) with g cartesian, then any section t : Γ.A→ Γ.A.B induces a section
t′ : ∆.C → ∆.C.D by the universal property of the pullback square underlying g.
Now the resulting square on the right above should commute.

3. An arrow appA,B : Γ.A.ΠAB → Γ.A.B satisfying χB ·appA,B = χΠAB where Γ.A.ΠAB
is obtained by choosing any lifting χA,ΠAB : ΠAB → ΠAB of ΠAB along χA. Note
that we are abusing notation by writing ΠAB for the domain of this arrow. For any
section t : Γ.A→ Γ.A.B the pullback underlying χA,ΠAB induces a section that we
abusively denote by λA,Bt : Γ.A → Γ.A.ΠAB. We require that appA,B · λA,Bt = t,
which expresses the computation rule of Π-types:

Γ.A Γ.A.ΠAB

Γ.A.B

λA,Bt

t appA,B

∆.C.ΠCD ∆.C.D

Γ.A.ΠAB Γ.A.B .

Πfg

appC,D

g

appA,B

Together these application morphisms should satisfy a coherence condition in the
following sense. If (f, g) : (C,D)→ (A,B) then the universal property of the pullback
underlying χA,ΠAB induces an arrow which we abusively denote by Πfg : ∆.C.ΠCD →
Γ.A.ΠAB. Now we want that the resulting square on the right above commutes.

Remark 6. Since having pseudo-stable choices of sum and product types means having
two (fibered) functors Σ,Π : DT2(χ)c → Ec we might expect to find a functor in the other
direction forming left and right (fibered) adjoints with them but there does not seem to
exist such a functor.
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3.2.3 Id-types

Lastly we consider the Id-types, for which the definition is more cumbersome than that of the
Σ and Π types. To describe these we will assume a choice of cartesian lifts of χA along A for
each A ∈ E , as this enables us to model the context morphism (Γ, x : A)→ (Γ, x : A, y : A)
that puts y := x. Again we abuse notation and denote the domain of this cartesian lift by
A, so that we can refer to the context Γ.A.A. The idea is that we now have for each A ∈ E
a diagonal morphism δA induced by the pullback square underlying the cartesian lift of χA:

Γ.A

Γ.A.A Γ.A

Γ.A Γ .

1

1

δA

y
χA

χA

This δA models the aforementioned context morphism. It is so named because in Set such
a map is given by x 7→ (x, x).

Definition 7. A pseudo-stable choice of Id-types (Id, r, j) on χ consists of the following.

1. An endofunctor Id on Ec that models the type formation rule A 7→ IdA. This
assignment should be such that IdA is over Γ.A.A and Idf over f ×ρ(f) f .

2. For each A ∈ E a section rA of IdA over the diagonal morphism δA, depicted on the
left below, modelling the introduction rule:

Γ.A Γ.A.A. IdA

Γ.A.A

rA

δA χIdA

∆.B ∆.B.B. IdB

Γ.A Γ.A.A. IdA .

f

rB

Idf

rA

These should satisfy a naturality condition in that for any cartesian f : B → A the
diagram on the right above should commute.

3. An operation jA which assigns to each pair (T, t) consisting of an object T in the fibre
over Γ.A.A. IdA and a section t of T over rA a section jA(T, t) of T as in the lower
left diagram. Both these triangles should commute, of which the upper left states the
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computation rule.

Γ.A Γ.A.A. IdA .T

Γ.A.A. IdA Γ.A.A. IdA

rA

t

χT

1

jA(T,t)

∆.B.B. IdB ∆.B.B. IdB .T
′

Γ.A.A. IdA Γ.A.A. IdA .T .

Idf

jB(T ′,t′)

g

jA(T,t)

These diagonal fillers should satisfy a coherence condition in the following sense. If
in addition to the situation above we have cartesian f : B → A and g : T ′ → T such
that g is over Idf then the pullback square underlying g and the naturality condition
of r induce a section t′ of T ′. The induced square as on the upper right above should
commute.

Remark 8. Unlike the dependent sum and function types it seems difficult to phrase the
formation rule of the Id-types as the existence of a fibered functor.

3.3 The comprehension category of π-clans

As the conclusion to this chapter we will examine an example of a comprehension category
equipped with pseudo-stable choices of dependent sum and function types, given by the
π-clans1 as defined in [7]. The material in section is an abridged version of the contents of
[1, Section 2.7] with some details added from [7]. We repeat it here not just to serve as
an example but more importantly because it will form the basis of our work in Chapter 6.
The strategy there will be the same as the one employed by Larrea in [1, Chapter 4].

Definition 9. A map f : A→ B in a category C is carrable if the postcomposition functor
f! : C/A→ C/B has a right adjoint f∗. If g is a map with codomain B then f∗g is called
the base change of g along f . A set of morphisms R ⊆ C1 is closed under base change if
every map in R is carrable and the base change of an R map along any other map is again
in R.

Here the functor f∗ is just the usual pullback functor, so f being carrable means being
able to pull back along f .

Definition 10. A clan is a category C with a set of morphisms R ⊆ C1 which contains the
isomorphisms in C, and is closed under base change and composition. A morphism in R is
called a fibration.

Given an object A in a clan C we let R(A) denote the full subcategory of C/A whose
objects are fibrations with codomain A. This is called the local clan at A.

1It seems that in an earlier version of [7] these clans were instead called tribes, so what we define here as
a clan is what is called a tribe in [1].
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Proposition 11. Let C be a clan and consider R as a full subcategory of C2. The inclusion
of R → C2 is a comprehension category:

R C2

C .

ρ cod

The cartesian morphisms of ρ are the pullback squares between fibrations, and its fibers are
the local clans.

Any morphism f : A→ B induces a functor f∗ : R(B)→ R(A) since R is closed under
base change, and likewise if f is also a fibration then f! : R(A)→ R(B).

Proposition 12. The comprehension category of Proposition 11 admits a pseudo-stable
choice of Σ-types.

Proof. A dependent tuple in this comprehension category is given by two composable
fibrations f, g so we can define Σ : (f, g) 7→ f!g. Given two composable pairs of fibrations
and pullback squares between them we have that the outer square is a pullback square
between their compositions and we take this as the definition of Σ on arrows:

g

u

y
i

v

f

y
h

w

Σ7−→

.

f!g

u

y
h!i

w

Writing Γ := ρ(f) we have that Γ.Σfg = Γ.f.g, so for the pairing morphism we can
just put pf,g := 1Γ.f.g. Given a fibration h with codomain Γ.Σfg and some morphism
t : Γ.f.g → Γ.Σfg.h with ht = 1Γ.f.g we define indf,g(h, t) := t. The coherence conditions
are now easily verified.

The choice of Π-types takes considerably more work. First we need an additional
assumption on our clan.

Definition 13. A clan C is a π-clan if for every fibration f : A→ B the pullback functor
f∗ has a right adjoint f∗ : R(A)→ R(B) called the pushforward functor.

These right adjoints will be used for constructing the functor Π. In order to define its
action on morphisms we also need the notion of a Beck-Chevalley condition.
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Definition 14. Consider a square of functors that commutes up to a natural isomorphism
f∗v∗ ∼= u∗g∗, and right adjoints f∗ a f∗ and g∗ a g∗:

⊥

⊥ .

g∗

v∗ u∗
g∗

f∗

f∗

This square of functors is said to satisfy the Beck-Chevalley condition if the mate v∗g∗ → f∗u
∗

of f∗v∗ → u∗g∗ is also an isomorphism.

Any square (u, v) : f → g in C between fibrations f and g induces such a situation as in
this definition, and it is a well known fact that if the underlying square (u, v) is a pullback
then the Beck-Chevalley condition is satisfied.

Lemma 15. If (u, v) : f → g is a pullback square between fibrations f, g then the mate
v∗g∗ → f∗u

∗ of the canonical isomorphism f∗v∗ → u∗g∗ is an isomorphism.

Proposition 16. If C is a π-clan with pullbacks then its associated comprehension category
of Proposition 11 admits a pseudo-stable choice of Π-types.

Proof. Given a pair of composable fibrations f, g we now use the pushforward functor along
f to define Π : (f, g) 7→ f∗g. To define its action on morphisms we consider two pairs
of composable fibrations f, g and h, i along with two pullback squares (u, v) : g → i and
(v, w) : f → h. Now Lemma 15 tells us there is a natural transformation bc : f∗v

∗ → w∗h∗.
Using this we can define Π on arrows as the composition of the squares on the right below:

g

u

y
i

v

f

y
h

w

Π7−→

.

f∗α

f∗g

bci

f∗v∗i

w+

w∗h∗i h∗i

1 1 w

Here α is the cone morphism induced by v∗i. Some calculations then show that this
composition is a pullback square and that this assignment is functorial, the reader is referred
to [1, Lemma 2.7.8] for the details.

To define λ we consider a section t : Γ.f → Γ.f.g. We want an arrow λt : 1→ f∗g, so if
we assume for convenience that our choice of pullbacks preserves identities we can simply take
the transpose λf,gt := t̄ : 1→ g. Similarly we define appf,g := εg : Γ.f.Πfg → Γ.f.g. Now
checking that these data satisfy the coherence conditions requires some lengthy calculations
and again the reader is referred to [1, Lemma 2.7.8] for the details.
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Unlike for the sum and product types a π-clan does not readily admit a pseudo-stable
choice of Id-types. It is for this reason that we will use strengthened versions of clans in the
coming chapters so we conclude this chapter by looking at the difficulties with interpreting
Id-types in more detail.

Since a type Γ ` A type is modelled by a fibration f : Γ.A→ Γ we need a fibration with
codomain Γ.A.A := Γ.A×Γ Γ.A to interpret the type IdA. The idea of Awodey and Warren
in [10] is to use a weak factorisation system (L,R) on C to obtain such a fibration. We will
define this notion in the next chapter so for now we will just mention that L and R are
classes of maps where R is a clan, every morphism f in C has a factorisation f = r · l with
l ∈ L and r ∈ R, and every morphism in R has a right lifting property for every map in L.
This lifting property states that if l ∈ L, r ∈ R, and (u, v) : l→ r then there is a diagonal
filler as drawn below:

.

l

u

r

v

This definition is very similar to that of a tribe in [7].
Now the factorisation property allows us to obtain the desired fibration because the

diagonal morphism δA : Γ.A→ Γ.A.A factorises as r · l, and so we can take r to interpret
IdA and l to interpret the reflexivity term rA, as depicted on the left diagram below:

Γ.A Γ.A.A

Γ.A.A. IdA

δA

rA IdA

Γ.A Γ.A.A. IdA .T

Γ.A.A. IdA Γ.A.A. IdA .

rA

t

χT

1

jA(T,t)

Lastly we can interpret the elimination terms jA(T, t) by applying the lifting property of
right maps to the square (t, 1) as depicted on the right above.

So we see that in a weak factorisation system or a tribe we can interpret the structure of
the types, but the problem is that in general these will not satisfy the additional coherence
properties required by the pseudo-stability definition. To obtain these properties we will
instead use algebraic weak factorisation systems, which we look at in the next chapter.
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Chapter 4

Algebraic weak factorisation
systems

In order to obtain a comprehension category with pseudo-stable choices of dependent sum,
product, and identity types we will work with what are called algebraic weak factorisation
systems (awfs), a more structured variant of weak factorization systems (wfs) which in
turn is a more structured variant of the clans we saw in Section 3.3. Any awfs induces a
comprehension category which is similar to those of clans and it is the overarching goal of
this work to formulate conditions on an awfs that ensure this comprehension category can
be equipped with pseudo-stable choices of the Σ-, Π-, and Id-types.

This chapter will not contain any new results but rather provides an exposition of the
three types of factorisation systems that are relevant to the coming chapters, each expanding
on the last, namely: weak factorisation systems, functorial weak factorisation systems, and
algebraic weak factorisation systems. Like with clans each of these factorisation systems has
a distinguished class of maps R of some category C which are commonly called fibrations
or right maps, but for the functorial wfs and awfs these respectively have categorical and
double categorical structure.

Further distinguishing these three kinds of factorisation systems from clans is that for
each the class (or category, or double category) of right maps has a right lifting property
against another class of maps in C. This notion of lifting will play a central role in the next
chapter and so we will consider for each of the three kinds of factorisation systems their
associated notion of lifting at respectively the functional, categorical, or double categorical
level.

This chapter is made up of three sections, each of which is devoted to explaining one of
these factorisation systems and its associated notion of lifting. Many of these definitions
and results can be found there [2] and [11] and the reader is referred there for a far more
detailed exposition.
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4.1 Weak factorisation systems

Central to the notion of factorisation systems is the idea of lifting properties of maps.

Definition 17. Given morphisms f, g in a category C we write f t g and say f has the
left lifting property for g or equivalently that g has the right lifting property for f if every
commuting square (u, v) : f → g has a diagonal filler ϕ making both triangles commute:

.

u

f g

v

ϕ

In such cases we say that ϕ is lift of (u, v) or a solution to the lifting problem (u, v).

Now the lifting relation t, like any relation, induces two operations on the powerset
P (C1) given by (−)t : J ⊆ C1 7→ {g ∈ C1 | f t g for all f ∈ J} and t(−) defined dually.
Moreover, letting P(C1) denote the category corresponding to the partial order (P (C1),⊆)
we have that these induce an adjunction:

P(C1) ⊥ P(C1)op .

t(−)

(−)t
(4.1.1)

An adjunction between posets is known as a Galois connection and the one described above
is sometimes referred to as the Galois connection between orthogonal classes of maps. It is
an instance of a general result regarding relations, see e.g. [18, Proposition 7].

With these notions in place we can define what a weak factorisation system is, of which
an awfs is an algebraisized version.

Definition 18. A weak factorisation system (L,R) on a category C consists of two classes
of maps, one class L of left maps and one R of right maps, which satisfy the following
conditions.

1. Every morphism f in C factors as f = r · l with r ∈ R and l ∈ L.

2. We have l t r for any l ∈ L and r ∈ R.

3. Both L and R are retract closed. This means for instance that if l ∈ L and we have

u

m l

w

m

v x

such that the top and bottom arrows compose to identities, then m ∈ L.

20



It is well known that conditions 2 and 3 above are equivalent to the statement that
L = tR and R = Lt. This provides a very useful way of proving membership for either
class and it can be used to show that R is closed under composition and pullbacks, and
contains all the isomorphisms. We given an example of this which we will use later.

Lemma 19. If J,K ⊆ C1 and K = Jt then K is closed under pullbacks.

Proof. Let (u, v) : g → f be a pullback square with f ∈ K = Jt. To show g ∈ Jt we
consider h ∈ J and (w, x) : h→ g:

.

h

w u

y
g f

x

ϕ

ψ

v

The rectangle (uw, vx) has a solution ϕ so that the pullback square induces an arrow ψ
which can easily be seen to solve (w, x).

4.2 Functorial weak factorisation systems

Next we expand on this definition using the notion of functorial factorisation.

Definition 20. Briefly put a functorial factorisation on a category C is a section C2 → C3

of the composition functor. Such a functor is equivalently defined as a pair of endofunctors
L and R on C2 satisfying codL = domR, domL = dom, codR = cod, and f = Rf · Lf for
all morphisms f . This pair also induces a functor E := codL = domR : C2 → C. These
components are best understood by looking at how they factor squares of C:

f

u

g

v

(L,R)7−→ Ef Eg

.

Lf

u

Lg

Rf

E(u,v)

Rg

v

Definition 21. A functorial weak factorisation system on a category C is a wfs (L,R)
with a functorial factorisation satisfying Lf ∈ L and Rf ∈ R for any morphism f in C.

The functors L and R of such a factorisation provide a pointing and copointing for
each other, meaning that there are natural transformations η : 1 → R and ε : L → 1, of
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which the components at some f are given by (Lf, 1) and (1, Rf) respectively. Now we can
interpret the meaning of a (R, η)-algebra by taking the definition of an algebra for a monad
but dropping the multiplication condition, see Definition 67. Spelling we this out we see
that a morphism f is given (R, η)-algebra structure by a solution s to (Lf, 1) and dually
(L, ε)-coalgebra structure by a solution s to (1, Rf):

f

Lf

Rf

1

s

.

Lf

1

f

Rf

s

Let us call these algebras and coalgebras R-maps and L-maps. Now as shown in [11, Lemma
2.8] we have the following.

Lemma 22. For a functorial wfs the set of L-maps coincides with L and the set of R-maps
with R.

Proof. First we note that if f ∈ L, then because Rf ∈ R by assumption there is a lift
s of (Lf, 1). We argue similarly that every right map is an R-map. Now for the other
direction we consider an L-map (f, s), an R-map (g, t) and a square (u, v) : f → g. An easy
calculation shows that t · E(u, v) · s is a solution to (u, v):

Eg

Ef

.

f

u

g

t

E(u,v)

s

v

The argument for R-maps is the same.

This result shows in what sense a functorial wfs is more structured than a regular one;
the factorisation of morphisms in f as a left map followed by a right map, as well as the
lifts between left and right maps, are given explicitly rather than merely postulated to
exist. Moreover as mentioned in the introduction to this chapter we now have categorical
structure on the classes of left and right maps due to the notions of algebra and coalgebra
morphisms of Definition 67. Given two R-maps (f, s), (g, t) a morphism between them is
a morphism between the underlying arrows (u, v) : f → g that also commutes with the
algebra structure, meaning that u · s = t · E(u, v). The definition of morphisms between
L-maps is similar. This yields categories which we denote by L-Map and R-Map.

Now it is natural to ask whether we have L-Map ∼= tR-Map and R-Map ∼= L-Mapt

for a categorical version of the adjunction 4.1.1. We will see that this is not the case and
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this is one reason why one might want to further strengthen the notion of functorial wfs.
Before we proceed we consider the categorical version of 4.1.1.

Definition 23. Let C be a category and U : J → C2 a functor. We define a category tJ
with as objects pairs (f, ϕf−) where f is a morphism in C and ϕf− a left J lifting operation.
Such an operation assigns for each g ∈ J and (u, v) : f → Ug a diagonal filler ϕf,g(u, v):

.

f

u

Ug

v

ϕf,g(u,v)

This assignment should be natural in the sense that when α : g → h in J is over a square
(w, x) : Ug → Uh in C2 and (u, v) : f → g then w · ϕf,g(u, v) = ϕf,h(wu, xv):

.

f

u

Ug

w

Uh

v

ϕ(u,v) ϕ(wu,xv)

x

The arrows between (f, ϕf−) and (g, ϕg−) in tJ are given by arrows between the underlying
morphisms (u, v) : f → g which cohere with the lifting operations in the sense that if h ∈ J
and (w, x) : g → Uh then ϕg,h(w, x) · v = ϕf,h(wu, xv):

.

f

u

g

w

Uh

v

ϕ(wu,xv)

x

ϕ(w,x)

There is a dual notion of a right J lifting operation and a category J t.

This construction comes with a functor tU : tJ → C2 that forgets the lifting operation,
and if F : J → K over C then we have tF : tK → tJ given by (f, ϕf−) 7→ (f, ϕf(F−)).

This means we get a functor t(−) : Cat/C2 → (Cat/C2)op and similarly one (−)t in the
other direction, together constituting an adjunction [2, Proposition 15]:

Cat/C2 ⊥ (Cat/C2)op .

t(−)

(−)t
(4.2.1)

These functors are sometimes called the orthogonality functors.
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Now it is not hard to verify the lifts of L-maps against R-maps are natural in maps
between R-maps, so that we get a functor L-Map→ tR-Map. There is a functor in the
other direction as well but as mentioned these are in general not inverse to one another,
and the same goes for R-Map and L-Mapt.

4.3 Algebraic weak factorisation systems

We have now developed the necessary vocabulary to define awfs. This notion was introduced
by Grandis and Tholen in [16] under the name natural weak factorisation system for the
purpose of defining a variant of functorial wfs of which the classes L and R are closed
under all colimits and limits (taken in C2) respectively. The problem with functorial wfs
in this regard, as they identified, is that the lifts between the left and right maps are not
chosen naturally. The solution is to extend the pointed and copointed endofunctors (R, η)
and (L, ε) to a monad (R, η, µ) and comonad (L, ε, δ) respectively, which is achieved by the
following definition.

Definition 24. An algebraic weak factorisation system (L,R) on a category C consists of
the following data.

1. A functorial factorisation (L,R) on C.

2. Natural transformations µ : RR→ R and δ : L→ LL which extend (R, η) to a monad
R := (R, η, µ) and (L, ε) to a comonad L := (L, ε, δ).

3. The pair (L,R) satisfies a distributive law.

The last point was added by Garner in his work on awfs in [17]. Since this condition
will not directly play a role in our work we may safely ignore it.

Note that unlike in the definition of functorial wfs we do not require that the functorial
factorisation is part of a wfs. A functorial factorisation almost constitutes a wfs (as we
saw in Lemma 22) except that in general we do not have Lf ∈ L-Map and Rf ∈ R-Map.
However as we will see the multiplication and comultiplication give us these properties,
which makes it redundant to require that this functorial factorisation is part of a wfs.

Let us consider what this definition constitutes and in what sense it can be considered a
factorisation system. It follows from the unit condition of the monad R that for a morphism
f in C the second component of µf is the identity. Therefore µ is really just a natural
transformation µ : ER→ E, and similarly δ : E → EL. Now as with a functorial wfs we
get the following categories.

Definition 25. An R-map is an algebra for (R, η) and an R-algebra is an algebra for (R, η, µ),
i.e. an R-map (f, s) that in addition satisfies s · E(s, 1) = s · µf . Morphisms between R-
algebras are the same as the morphisms between R-maps, so that we have categories R-Map
and R-Alg along with a fully faithful inclusion R-Alg → R-Map. Dually we have the
notion of L-maps, L-coalgebras, and an inclusion of categories L-Coalg→ L-Map.
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The monad axiom stating associativity of multiplication expresses that for any mor-
phism f its R image has an R-algebra structure (Rf, µf ) and similarly the axiom for the
comultiplication of L states that each Lf has L-coalgebra structure. Furthermore it is
easy to verify that the sets of L-maps and R-maps are retract closed, and as we have seen
in Lemma 22 that f t g for every L-map (f, s) and R-map (g, t). This means that the
L-maps and R-maps are the left and right classes of a (functorial) wfs, which is often
called the underlying wfs of the awfs. We can now also verify that L-Map ∼= tR-Alg
and R-Map ∼= L-Coalgt. In this sense there is somewhat of a mismatch; for wfs we have
R = Lt and L = tR so we might have expected to find an isomorphisms between L-Map
and tR-Map, and likewise for R-Map and L-Mapt. While we do have functors between
these categories they do not form an isomorphism in general.

Now since Lf and Rf have L-coalgebra and R-algebra structure respectively, and since
we have lifts of coalgebras against algebras exactly as in Lemma 22, we might wonder
whether L-Coalg and R-Alg also form the classes of a wfs. This is not the case because
these classes are not retract closed (in fact their retract closures are the classes of L-maps
and R-maps respectively) so in this sense the notion of awfs is weaker than that of a wfs.
What we do get is an analog of R = Lt and L = tR, but then on a double categorical level.
To see how this works we need to consider the double categorical structure of the algebras
and coalgebras.

Given two R-algebras f : A→ B and g : B → C there is a canonical R-algebra structure
g ·f on the composition g ·f . Additionally there is for each object A ∈ C a unique R-algebra
structure 1A on 1A. These operations satisfy all the further requirements needed to make
R-Alg the arrow category of a double category R-Alg, i.e. an internal category in Cat.
The reader unfamiliar with double categories may find some more information on them in
Appendix A.3. We now also have a forgetful double functor UR : R-Alg→ Sq(C):

R-Alg ×C R-Alg C2 ×C C2

R-Alg C2

C C .

dom cod

UR

dom cod1

1

1

Dually we have a double category L-Coalg of L-coalgebras. These statements are not easily
verified but they are proven in [2, Lemma 1 and Section 2.8]. In the same work a double
categorical version of the adjunction 4.2.1 is constructed which we will now consider.

First we note if U : J → C2 we can construct a double category J tt with object category
C and arrow category J t. Its identity functor associates to A ∈ C a right J lifting operation
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ϕ−1A defined by ϕf,1A(u, v) = v. Given (f, ϕ−f ), (g, ϕ−g) for composable f and g we can
define a lifting operation ϕ−fg on their composition by ϕh,fg = ϕh,g(u, ϕh,f (gu, v)), as on
the left of:

Uh

u

g

f

v .

Uh

u

f

Ug

v

Now if we have instead a double functor U : J → Sq(C) then we can define a double

category Jtt as a double subcategory of J tt1 where the arrow category J t1 is defined as
the subcategory of J t1 whose objects satisfy the additional property that they respect
composition in J in the following sense. If g, h ∈ J1 are vertically composable maps and
(u, v) : U(gh)→ f then we should have ϕgh,f (u, v) = ϕg,f (ϕh,f (u, vg), v).

Of course we have dual constructions for the left lifting operations, together yielding a
double categorical version of the adjunction 4.2.1:

Dbl/Sq(C) ⊥ (Dbl/Sq(C))op .

tt(−)

(−)tt
(4.3.1)

It is shown in [2, Proposition 20] that there are double isomorphisms L-Coalg ∼= ttR-Alg
and R-Alg ∼= L-Coalgtt.
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Chapter 5

The Frobenius condition

We saw in Section 3.3 that in order to interpret product types using clans, we needed that
the pushforward of a fibration along a fibration is again a fibration. In Chapter 6 we will
see that the forgetful functor UR : R-Alg → C2 is a comprehension category that can be
used to interpret type theory in a similar way as with clans. The fibrations are then given
by R-algebras, so in order to interpret product types we will need that the pushforward
of an R-algebra along an R-algebra is again an R-algebra. In practice this condition can
be difficult to verify but luckily it admits an equivalent phrasing in terms of the pullback
functors which is easier to verify. This phrasing says that the pullback of an L-coalgebra
along an R-algebra is again an L-coalgebra and is often called a Frobenius property or
Frobenius condition. The phrasing and proof of this equivalence for wfs is well known but
the analog for awfs which we give here is new.

The work in this chapter draws inspiration from the results and methods of Gambino
and Sattler in [4] where it is shown that this statement holds when phrased for the L- and
R-maps of an awfs.

We begin in Section 5.1 by reviewing the statement for wfs as it commonly appears in
the literature. We then propose a slightly different perspective which we argue simplifies the
statement and proof and allows for easier generalisations to categories and double categories
of maps. Then in Section 5.2 we precisely state and prove this equivalence. Next in Section
5.3 we show that the components of this proof have analogs in the cases of categories and
double categories of maps, and then use these for double categories to give a proof for
that case in Section 5.4. Lastly we look at what is needed for lifting the Beck-Chevalley
morphism in Section 5.5, since this is needed for interpreting the product types as we saw
in Section 3.3.
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5.1 The Frobenius condition for weak factorisation systems

The Frobenius condition for wfs states that the the pullback of a left map along a right
map is again a left map. In other words, when we have a pullback square (i, f) : h → g
then if f ∈ R and g ∈ L, then h ∈ L:

.

i

h

y
g

f

(5.1.1)

A choice of pullbacks induces for every morphisms a pullback functor, and if these in
addition have right adjoint pushforward functors then the Frobenius condition admits an
equivalent rephrasing in terms of these pushforward functors.

Lemma 26. For a wfs (L,R) the following are equivalent.

1. The pullback of an L map along an R map is an L map.

2. The pushforward of an R map along an R map is an R map.

The square 5.1.1 suggests that in the context of a choice of pullbacks the Frobenius
condition states that for any cospan formed by f ∈ R and g ∈ L we should have f∗g ∈ L, in
other words: the object components of the pullback functors induced by R maps preserve L
maps. This perspective is also present in the definition of the functorial Frobenius condition
used in [8], [4, Definition 6.1], and [3, Definition 2.8], which is stated as the existence of a
lift P̃ of the pullback functor P that maps a cospan (f, g) to f∗g:

R-Map×C L-Map L-Map

C2 ×C C2 C2 .

P̃

P

In the present work we will shift the focus from the object component of the pullback
functors to the arrow component, in the sense that we phrase the Frobenius condition as
saying that if f : A→ B is an R map, u : C → B an arbitrary map, and g : D → C an L
map, then f∗g is an L map. The reason for making this shift is that it seems to clarify the
statement and proof of Lemma 26 and considerably eases the task of finding an analogous
condition for awfs.

Before stating and proving the rephrasing formally we consider how this shift affects
Lemma 26. Suppose we phrase the Frobenius condition not on the level of a wfs but
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on the level of a fixed arbitrary morphism f in the underlying category C, i.e. we say f
satisfies the object (resp. arrow) Frobenius property if the object (resp. arrow) component
of f∗ preserves L maps. Similarly we say f satisfies the object (resp. arrow) pushforward
property if f∗ preserves R maps. Now we can ask ourselves whether the equivalence of
Lemma 26 still holds on the level of a fixed map f for both the arrow and object variants.
In other words, is it the case that a map f satisfies the object (resp. arrow) Frobenius
property if and only if it satisfies the object (resp. arrow) pushforward property? It seems
that this is only the case for the arrow variant of the conditions, even though the proof of
this fact is largely the same as the proof for Lemma 26. Note also that this equivalence
holds for an arbitrary f , rather than for an R map.

5.2 The Frobenius equivalence for classes of maps

We will now carefully formalize and prove our rephrasing so that we may then generalize
the result to awfs.

For f a g : D → C there is a relation between t on C and D which is expressed by the
following two lemmas1.

Lemma 27. For morphisms a in C and b in D we have fa t b if and only if a t gb.

Proof. For left to right we note that (u, v) : a → gb induces a square (ū, v̄) : fa → b by
transposing, so by assumption there is a lift ϕ : fB → C. Transposing this back gives us a
solution ϕ̄ : B → gC to (u, v):

A gC

B gD

u

a gb

v

ϕ̄

fA C

fB D .

ū

fa b

v̄

ϕ

The other direction is dual.

From this we obtain a kind of change of base lemma for t, which is the analog of [2,
Proposition 21].

Lemma 28. Let J ⊆ C1 and K ⊆ D1, then f(J) ⊆ tK if and only if g(K) ⊆ Jt.

Proof. From the previous lemma we get tg(K) = f−1(tK) and so

f(J) ⊆ tK iff J ⊆ f−1(tK)

iff J ⊆ tg(K)

iff g(K) ⊆ Jt.
1These also appear on Joyal’s CatLab site at https://ncatlab.org/joyalscatlab/published/Weak+

factorisation+systems as Lemma 4.1 and Proposition 4.2, the latter of which is phrased for wfs.
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Next we need a result regarding commutativity of our slicing operation defined earlier and
the lifting operations. Let J ⊆ C1 and A ∈ C0, we define J/A := {(f, u) ∈ (C/A)1 | f ∈ J}
i.e. the set of arrows in C/A whose underlying morphism is a member of J .

Lemma 29. Let J ⊆ C1 and A ∈ C0, then (Jt)/A = (J/A)t and (tJ)/A ⊆ t(J/A).

Proof. Let us first consider when for some (f, u), (g, v) ∈ (C/A)1 it holds that (f, u) t (g, v).
A commuting square between (f, u) and (g, v) in C/A consists of a pair of maps w : uf → vg
and x : u→ v such that gw = xf and looks as on the left of:

uf vg

u v

w

f g

x

ϕ

A .

f

w

g

u

x

ϕ

v

This situation paints a picture in C as on the right above. Composition in C/A is just
composition in C so a solution ϕ to the square on the left is a solution to (w, x) : f → g and
vice versa (but note that (f, u) t (g, v) does not imply f t g). With that in mind it is easy
to verify our claims. Consider for instance (g, v) ∈ (Jt)/A, then if we have a square (w, x)
as on the left above for some (f, u) with f ∈ J then we simply take the lift of (w, x) : f → g
as our solution to (w, x) : (f, u)→ (g, v). Conversely if (g, v) ∈ (J/A)t and (w, x) : f → g
for some f ∈ J then lifting (w, x) : (f, vx)→ (g, v) provides us with our solution. Lastly if
(f , u) ∈ (tJ)/A we can again just solve (w, x) : f → g to obtain a solution.

One inclusion is missing from the previous lemma. For this we need that the ambient
category C has pullbacks of J maps and that the pullback of a J map is again in J . It is
well known that sets in the image of (−)t satisfy this property, as we also saw in Lemma 19.

Lemma 30. Let C be a category with pullbacks, J ⊆ C1 be closed under these pullbacks,
and A ∈ C0; then t(J/A) ⊆ (tJ)/A.

Proof. Let (f, u) ∈ t(J/A) and (w, x) : f → g for some g ∈ J . By assumption there is a
pullback square (x+, x) : h→ g with h underlying some h ∈ J . This means (h, u) ∈ J/A,
and so we can obtain a solution ϕ to (α, 1) : (f, u)→ (h, u) as depicted on the right below:

α

f

w

g

x+

h

1

ϕ

x

uf uh

u u .

f

α

h

1

ϕ
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Now x+ϕ is a solution to (w, x) because x+ϕf = x+α = w and gx+ϕ = xhϕ = x.

In summary we have the following corollary.

Corollary 31. If C has pullbacks and J,K ⊆ C1 are classes of maps with J = tK and
K = Jt then (J/A)t = (Jt)/A and t(K/A) = (tK)/A for any A ∈ C.

We are now ready to give the proof of our rephrasing of Lemma 26. Let C be a category
with a choice of pullbacks and J,K ⊆ C1 such that J = tK and K = Jt.

Definition 32. A map f : A → B in C satisfies the Frobenius property with respect to
(J,K) if f∗(J/B) ⊆ (J/A), i.e. if the arrow component of f∗ preserves J maps. Likewise
we say it satisfies the pushforward property if f∗(K/A) ⊆ (K/B).

Proposition 33 (Frobenius equivalence). The Frobenius and pushforward properties are
equivalent.

Proof. Let f : A→ B, then we have:

f∗(J/B) ⊆ (J/A) iff f∗(J/B) ⊆ t(K/A) (by J = tK and Corollary 31)

iff f∗(K/A) ⊆ (J/B)t (by Lemma 28)

iff f∗(K/A) ⊆ (K/B). (by Jt = K and Corollary 31)

5.3 Analogs for categories and double categories of maps

The Frobenius equivalence of Proposition 33 is stated at the level of functions J → C1

and we will now phrase and prove analogs at the level of functors J → C2 and double
functors J→ Sq(C). Generalizing set theoretic constructions like this is a common practice
in category theory and the recipe is simple: rephrase everything in terms of existence of
arrows and commutativity of diagrams.

For instance our construction of J/A can be seen as the pullback of the inclusion J → C1

along the arrow component of the domain functor dom : C/A→ C which sends arrows with
codomain A to their domain, and acts as the inclusion on arrows between them. This
evidently has analogs at the categorical and double categorical levels as illustrated below:

J/A J

(C/A)1 C1

y

dom1

J /A J

(C/A)2 C2

y

dom2

J/A J

Sq(C/A) Sq(C) .

y

Sq(dom)

The definition given by the the middle square coincides with the definition of slicing used
in [4, Sections 5 and 6] although it is not explicitly formulated as a pullback there.

31



Likewise we can consider f∗(J/B) ⊆ (J/A) to say that f∗�(J/B) : J/B → J/A which
in turn is to say there exists a function f∗ : J/B → J/A which fits into a diagram over
f∗ : (C/A)1 → (C/B)1 as in the bottom left square below. Again we easily find analogs as
shown in the middle and right squares:

J/B J/A

(C/B)1 (C/A)1

f∗

f∗1

J /B J /A

(C/B)2 (C/A)2

f∗

f∗2

J/B J/A

Sq(C/B) Sq(C/A) .

f∗

Sq(f∗)

Likewise we can phrase our change of base lemma 28 as saying that given an adjunction
f a g : D → C and inclusions J → C1 and K → D1 there is a bijection between inclusions
J → tK over f1 : C1 → D1 and K → Jt over g1 : D1 → C1:

J tK

C1 D1
f1

K Jt

D1 C1 .
g1

We have already encountered the analogs of the Galois connection of the lifting operations,
and in [2, Proposition 21] Bourke and Garner extend the adjunction 4.3.1 to account for
change of base. In particular it states that given an adjunction f a g and double functors
J→ Sq(C), K→ Sq(D), there is a bijection between double functors J→ ttK over Sq(f)
and K→ Jtt over Sq(g) as in the diagrams below:

J ttK

Sq(C) Sq(D)
Sq(f)

K Jtt

Sq(D) Sq(C) .
Sq(g)

This also implies such a result for the categorical level, which is stated explicitly in [4,
Proposition 5.7].

Now what remains is phrasing analogs of the property that a class of maps J → C1 is
closed under pullbacks, and that the classes in the image of (−)t satisfy this property. In [4,
Proposition 5.4] a clever way of phrasing that a functor U : J → C2 is closed under pullbacks
is given: we require that U is a comprehension category, i.e. that codU is a Grothendieck
fibration. It is then shown that this implies there is an isomorphism t(J /A) ∼= (tJ )/A for
any A ∈ C. In the next section we look at this result in more detail and give an analog for
double categories of maps J→ Sq(C).

32



5.3.1 Commutativity of slicing and the orthogonality functors

We consider a category of maps U : J → C2. Much like in the case of Lemma 29 we get 3
of the 4 required functors without further pullback related requirements on J or C.

Lemma 34. For J → C2 and A ∈ C there is an isomorphism (J /A)t ∼= (J t)/A and a
functor (tJ )/A→ t(J /A).

Proof. In each case we use the corresponding construction in Lemma 29 to define a lifting
operation for which the required properties are then easily proven.

For the last one, as shown in [4, Proposition 5.4], we need that codU is a Grothendieck
fibration.

Lemma 35. If codU is a Grothendieck fibration then (tJ )/A→ t(J /A) has an inverse.

Proof. The proof is as that of Lemma 30; we use the construction of the lift given there
to define a lifting operation, only now we take a cartesian lift rather than just a pullback.
Naturality of the resulting lifting operation is then proven using the universal property of
that lift.

Lastly we need that the functors in the essential image of (−)t satisfy this additional
property, which is shown by the following lemma. We note that C need not necessarily have
all pullbacks, but at least for the morphisms in J t under consideration.

Lemma 36. Let U : J → C2, then codUt is a Grothendieck fibration.

Proof. Let f ∈ J t be over f in C2. Given a cospan (v, f) we take the pullback of v∗f :

.

v∗f

y
v+

f

v

Now we can use the lift constructed in Lemma 19 to define a right J lifting operation for
v∗g, which is unique with respect to the property that it makes (v+, v) a morphism in J t.
It is then easily verified that this lifting operation satisfies the naturality condition, and
that (v+, v) is cartesian.

In summary we have the following corollary.

Corollary 37. Let J → C2 and K → C2 satisfy J ∼= tK and K ∼= J t, then for any A ∈ C
there are isomorphisms (J /A)t ∼= (J t)/A and t(K/A) ∼= (tK)/A.
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The case for a double category U : J→ Sq(C) is now very similar. With no additional
assumptions on C we obtain a double isomorphism (J/A)tt ∼= (Jtt)/A and a double functor
(ttJ)/A→ tt(J/A).

Lemma 38. For J→ Sq(C) there is a double isomorphism (J/A)tt ∼= (Jtt)/A and a double
functor (ttJ)/A→ tt(J/A).

Proof. The strategy is to take the lifting operations of Lemma 34 and show they satisfy all
the additional requirements by making use of the additional assumptions. This requires
some straightforward verifications which we omit.

In order to obtain the missing functor we should again demand that C has (enough)
pullbacks and that codU1 is a Grothendieck fibration, only now we also need that it respects
vertical composition in J in the following sense. Let f , g ∈ J1 be vertically composable
morphisms of J, and consider a cospan (v, fg). Now we could either first take the cartesian
lift with respect to f , and then lift the result along g, or we could lift directly along the
vertical composition fg; we want these lifts to coincide.

Lemma 39. If codU1 is a Grothendieck fibration which respects vertical composition in J
then (ttJ)/A→ tt(J/A) has an inverse.

Proof. The argument is entirely analogous to that of Lemma 35 and Lemma 30. Again the
verification requires some lengthy but straightforward calculations which we omit.

Lemma 40. Let U : J→ Sq(C), then cod ·(Utt)1 is a Grothendieck fibration which respects
vertical composition of Jtt.

Proof. The argument is largely the same as in Lemma 36; we consider f ∈ J t1 over f and
a cospan (v, f), then there is a unique lifting operation on v∗f defined as before, unique

w.r.t. the property that square (v, v+) underlies a morphism in J t1 . To check the condition

regarding composition we consider vertically composable f , g ∈ J t1 and a cospan (v, fg):

.

v∗g

y
v++

g

v∗f

y
v+

f

v

Since both of these are squares of Jtt we can vertically compose them, which means (v++, v)
is a square of Jtt from v∗f · v∗g → fg. Therefore since v∗(fg) is unique with respect to this
property it follows that it is equal to the vertical composition of v∗f and v∗g.
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In summary we have the following corollary.

Corollary 41. Let J→ Sq(C) and K→ Sq(C) satisfy J ∼= ttK and K ∼= Jtt, then for any
A ∈ C there are isomorphisms (J/A)tt ∼= (Jtt)/A ∼= K/A and tt(K/A) ∼= (ttK)/A ∼= J/A.

5.4 The Frobenius equivalence for double categories of maps

We now have the necessary results to establish categorical and double categorical versions
of Proposition 33. We only state the one for double categories explicitly.

Definition 42. A morphism f : A → B satisfies the Frobenius property with respect to
(J,K) if there exists a lift f∗ : J/B → J/A over Sq(f∗), and similarly the pushforward
property if there is a lift f∗ : K/A→ K/B over Sq(f∗).

The analog of Lemma 28 is given by [2, Proposition 21] which is phrased by first
extending the adjunction 4.3.1 using the categories Dbl/Sq(−ladj) and Dbl/Sq(−radj). An
object in Dbl/Sq(−ladj) is a category C together with a double functor J→ Sq(C), and an
arrow between two objects J→ Sq(C) and K→ Sq(D) is an adjunction f a g : D → C with
a lift f : J→ K over Sq(f). The category Dbl/Sq(−radj) is defined dually.

Proposition 43. Let J and K be double categories over Sq(C) for some C with pullbacks
satisfying J ∼= ttK and K ∼= Jtt, then the Frobenius and pushforward properties w.r.t. (J,K)
are equivalent.

Proof. Consider a map f : A→ B. Using Corollary 41 and [2, Proposition 21] we have

Dbl/Sq(−ladj)(J/B, J/A) ∼= Dbl/Sq(−ladj)(J/B, (K/A)tt)

∼= Dbl/Sq(−radj)(K/A, tt(J/B))
∼= Dbl/Sq(−radj)(K/A,K/B),

where we consider morphisms in Dbl/Sq(−ladj) and Dbl/Sq(−radj) with respect to the
adjunction f∗ a f∗.

This proposition demonstrates the benefit of having rephrased the Frobenius property
for classes of maps as in Definition 32. It made it clear what the analogous statement for
categories and double categories of maps should be and how we should prove it. While the
original statement of Lemma 26 may just as easily be proven directly this is certainly not
the case for Proposition 43.

5.5 Lifting the Beck-Chevalley isomorphism

In the preceding sections we have considered lifts of functors to categories of maps, i.e.
when f : C → D is a functor and there are categories of maps J → C2 and K → D2 then
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there may be a lift f of f2. Given two such lifts we can also consider lifts of natural
transformations. By this we mean the following. Consider functors f, g : C → D, a natural
transformation α : f → g, categories of maps J → C and K → D, and lifts f , g of f, g, then
there may be a natural transformation α : f → g of which the components are over those
of α:

J ⇓ α K

C2 ⇓ α2 D2 .

f

g

f2

g2

We conclude this chapter by looking at how we can lift the natural transformation
bc defined in Section 3.3 in this way, so that we can mimic the approach used there for
interpreting Π-types in the next chapter using awfs. A method for doing so was outlined
in [4, Section 6], and we will see that the exact same core ideas apply to our situation.
However since in loc. cit. the focus is on categories rather than double categories we do
have to make some small adaptations to account for that.

Roughly speaking the strategy is to additionally assume that a class of maps satisfies
the Frobenius property functorially, which requires that maps between them are preserved
by the Frobenius construction. This can then be used to lift a mate of bc which in turn
implies bc lifts as well. To begin we explicitly note a consequence of [2, Proposition 21].

Lemma 44. For an adjunction f a g : D → C and J → Sq(C), K → Sq(D), there is a
bijection between lifts f and g as in the diagrams:

J ttK

Sq(C) Sq(D)

f

Sq(f)

K Jtt

Sq(D) Sq(C) .

g

Sq(g)

A complete proof can be found in [2, Proposition 21] but the argument is essentially as
in Lemma 27. For instance if we have such a lift f then g can be defined by transposing
the lifts provided by f .

If we have two adjunctions between C and D with lifts that correspond under the
bijection of the previous lemma then there is also a bijection between lifts of natural
transformations between them, as stated by the next lemma. This is the same statement
as [3, Proposition 5.8] but then phrased for t instead of t or in other words for classes
of maps with lifting operations that respect the vertical composition operation of their
respective double category. As we will see the proof is virtually the same.
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Lemma 45. Consider J → Sq(C) and K → Sq(D) and functors f, h : C → D and
g, i : D → C such that f a g and h a i. Suppose that f and g have lifts which correspond
to each other according to the bijection in Lemma 44, and likewise for h and i. Then if
α : f → h and β : i→ g are mates there is a lift α : f1 → h1 of α2 : f2 → h2 if and only if
there is a lift β : i1 → g1, as in the following diagrams where J and K denote the arrow
categories of J and K:

J ⇓α tK

C2 ⇓α2 D2

f1

h1

f2

h2

K ⇓β J t

D2 ⇓β2 C2 .

i1

g1

i2

g2

Proof. We show left to right, the other direction is dual. Consider k ∈ K over k : A→ B.
We want to show (βC , βD) underlies a morphism in J t, so we consider j ∈ J over j : C → D
and a square (u, v) : j → ik. Now we should show that βA · ϕi = ϕg as in

C iA gA

D iB gB ,

j

u

ik

βA

gk

v

ϕi

ϕg

βB

where ϕi and ϕg denote the evident lifts. Transposing yields the following picture in D:

fC hC A

fB hB B .

fj

αC

hj

ū

k

αD

ϕf

v̄

ϕh

Our assumption that α lifts means ϕh · αD = ϕf . Since we assumed f and g correspond
to each other according to the bijection in Lemma 44 we have ϕf = ϕ̄g, and similarly
ϕh = ϕ̄i. Using these equations, the fact that α and β are mates, and the usual properties
of adjunctions, we can now compute that βA · ϕi = ϕg as desired.

Now let us reconsider our goal. Given a pullback square (u, v) : f → g where the
pullback functors along f and g have right adjoints, the canonical isomorphism f∗v∗ → u∗g∗

has a mate bc : v∗g∗ → f∗u
∗ which by the Beck-Chevalley condition is an isomorphism.

What we want is to lift bc when f and g satisfy the Frobenius property with respect to
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some double categories (J,K) as in Definition 42, in order to be able to reproduce the
argument in 16 for awfs in the next chapter. The strategy is to first instantiate Lemma 45
to conclude that we can lift bc by lifting one of its mates. Then in order to lift this mate
we need to functorialize the Frobenius property.

Consider J→ Sq(C) and K→ Sq(D) satisfying J ∼= ttK and K ∼= Jtt. Note that for any
morphism u : A → B in C there is a lift u! : J/A → J/B of u! and as such, by applying
the same reasoning as in Proposition 43, a lift u∗ : K/B → K/A of u∗. Now for a pullback
square

A C

B D

y
f

u

g

v

where f and g satisfy the Frobenius property w.r.t. (J,K) we get two adjunctions u!f
∗ a f∗u∗

and g∗v! a v∗g∗ between C/B and C/C according to which the canonical transformation
α : u!f

∗ → g∗v! and bc : v∗g∗ → f∗u
∗ form mates.

Since f satisfies the Frobenius property and u! lifts regardless we get a double functor
u!f

∗ : J/B → J/C, and similarly a lift f∗u
∗ in the other direction. Moreover these

correspond to each other via the bijection in Lemma 44 by construction. Analogously
we have corresponding lifts g∗v! and v∗g∗. Hence we may now instantiate Lemma 45 to
this situation. We let J and K denote the arrow categories of J and K respectively and
abusively write f instead of f1 for the arrow component of a double functor f . Now we
have that α lifts if and only if bc lifts as below:

J /B ⇓ α J /C

(C/B)2 ⇓ α2 (C/C)2

u!f
∗

g∗v!

(u!f
∗)2

(g∗v!)
2

K/C ⇓ BC K/B

(C/C)2 ⇓ bc2 (C/B)2

v∗g∗

f∗u∗

(v∗g∗)2

(f∗u∗)2

Now the last step is to see how we can lift α. For this we first functorialize the Frobenius
property.

Definition 46. Let J → Sq(C) and K → Sq(C) satisfy J ∼= ttK and K ∼= Jtt, we say a
category I → C2 satisfies the functorial Frobenius property w.r.t. (J,K) if for every f ∈ I
the underlying morphism f satisfies the Frobenius property in a way that is functorial in
morphisms of I. Consider the situation drawn below for f , g ∈ I. The dotted arrows are
induced by the universal property of the pullback. The functoriality of the condition states
that if the morphism h→ i underlies a morphism of J maps, and f → g one of I maps,
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then the induced square f∗h→ g∗i also underlies a morphism of J maps:

.

f∗h f h

g∗i g i

Proposition 47. If I → C2 satisfies the functorial Frobenius property with respect to
(J,K) and (u, v) : f → g is a pullback square underlying a morphism f → g in I, then
bc : v∗g∗ → f∗u

∗ lifts to bc : v∗g∗ → f∗u
∗.

Proof. By the preceding discussion it suffices to show that the canonical transformation
u!f
∗ → g∗v! lifts. Spelling out the definition of this transformation, we see that the

statement that it lifts in this way is just a particular instance of the functoriality property
in Definition 46.

This concludes our work on the Beck-Chevalley condition. We finish this chapter with
a short digression on a variant of the Frobenius condition that is sometimes used in the
literature, and is called the strong Frobenius condition in [1, Definition B.6.2].

5.6 The strong Frobenius condition

A strengthening of the Frobenius condition used in [1, Definition B.6.2] and similarly in [9,
Proposition 5.5] is that in addition to the pullback of an L-map along an R-map yielding an
L-map the pullback square in question should be a morphism of L-maps:

.

f∗g

εg

y
g

f

(5.6.1)

Since the top arrow of this square is the component at g of the counit ε : f!f
∗ → 1 of the

adjunction f! a f∗ we can understand this condition as saying that this transformation lifts
to f!f

∗ → 1 in the sense described in the previous section:

.

f∗g

εvg

y
g

f∗v

εv

y
v

f
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To see why this is, consider when v is the identity. Writing subscript 0 and 1 to differentiate
explicitly between the object and arrow components of f∗ we have that f∗0 g gets L-map
structure from the isomorphism (1, f∗0 1) : f∗1 g

∼= f∗0 g. This makes (1, f∗0 1) and its inverse
morphisms of L-maps. Therefore by assumption (εg, ε1) is also a morphism of L-maps, and
hence so is their composition (εg, ε1) · (1, (f∗0 1)−1) = (εg, f):

.

f∗0 g

1

f∗1 g

εg

g

(f∗0 1)−1 ε1

This means that we can indeed interpret the strong Frobenius condition of [1, Definition
B.6.2], which states that the square in 5.6.1 is a morphism of L-maps, as a special case of
the demand that the counit of f! a f∗ lifts in this way.

The statement of [1, Proposition 4.2.3] it that the strong Frobenius condition implies
the adjunction f∗ a f∗ for some R-Map f : A → B lifts to R-Map(A) → R-Map(B),
where R-Map(A) denotes the fiber of cod ·UR over A. The argument is that we can use
the variant of Lemma 45 for regular categories of maps to lift both the unit and counit of
f∗ a f∗ by lifting the counit and unit of f! a f∗, since they are mates. It is then argued
that we can use the strong Frobenius condition to lift the unit and counit of f! a f∗. In
light of the observation that the strong Frobenius condition states that the counit of f! a f∗
lifts we would expect that for this result the strong Frobenius condition [1, Definition B.6.2]
would need to be further strengthened to demand that the unit of f! a f∗ also lifts. A close
inspection of the proof of [1, Proposition 4.2.3] reveals a small oversight that suggests that
this is indeed the case; in the calculation that serves to show that the unit lifts the equality
ηgεfg = 1 is used for some g with codomain A whereas it is only εfgηg = 1 that holds in
general.
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Chapter 6

Interpreting type theory in awfs

In this chapter we mimic the constructions of the pseudo-stable choices made for π-clans
in Section 3.3 for the R-algebras of an awfs. The choices of the dependent sum and
product types will be exactly as for clans, except that now because the forgetful functor
UR : R-Alg → C2 is not full we need to make sure that the morphisms used in those
constructions are morphisms of R-algebras. Having done this we make use of the additional
structure that an awfs offers compared to a clan in order to also construct a pseudo-stable
choice of Id-types. The strategy for doing this will exactly mimic the approach taken in [1,
Section 4.3], but then phrased for R-algebras instead of R-maps.

6.1 The comprehension category induced by an awfs

The category of R-algebras for an awfs is similar to a clan in that it contains all isomorphisms
and that the pullback of an R-algebra along any map is again an R-algebra. It also similarly
induces a comprehension category. The following definitions and propositions are as in [2,
Section 3.4].

Definition 48. A functor p : J → C2 is a discrete pullback fibration if for every f ∈ J
and every pullback square (u, v) : g → f there is a unique arrow ϕ : g → f in J over (u, v)
which in addition is cartesian.

Lemma 49. The forgetful functor UR : R-Alg→ C2 is a discrete pullback fibration.

Corollary 50. Given an awfs (L,R) on a category C with pullbacks we have a comprehen-
sion category:

R-Alg C2

C .

ρ

UR

cod
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Its cartesian arrows are given by pullback squares underlying R-algebra morphisms.

Let us denote the fiber of an object A ∈ C by R-Alg(A), i.e. the subcategory of C/A
whose objects are R-algebras and whose morphisms are R-algebra morphisms over the
identity on A.

6.2 Σ-types

The composition operation that gives R-algebras their double categorical structure provides
us with a way of interpreting dependent sums just as in the example of clans in Section 3.3.

Proposition 51. There exists a pseudo-stable choice of Σ-types for the comprehension
category induced by (L,R).

Proof. Consider an R-algebra f : A→ B, then vertical composition with f gives a functor
f! : R-Alg(A)→ R-Alg(B). We use this to define the action of Σ on objects: (f , g) 7→ f!g.
For its action on morphisms we proceed as in the case of clans:

g

u

y
i

v

f

y
h

w

Σ7−→

.

f!g

u

y
h!i

w

The square on the right is an R-algebra morphism because it is the vertical composition of
two squares in R-Alg. The rest of the choices are made as for clans in Proposition 12.

6.3 Π-types

Like with clans, the interpretation of Π-types is not so straightforward and requires us to
place more demands on the awfs underlying the comprehension category in order to obtain
pushforward functors along the R-algebras. This is achieved by the following definition of
an awfs satisfying the Frobenius condition, which by Proposition 43 compares to regular
awfs like π-clans compare to regular clans. However rather than directly assuming the
existence of right adjoint pushforward functors as done in the definition of π-clans we use a
Frobenius condition. This is because the Frobenius property is easier to verify in practice.
Since R-Alg is not a full subcategory of C2 we are additionally tasked with showing that
the Beck-Chevalley isomorphism lifts to a morphism of R-algebras. We saw in Section 5.5
that this follows from the functorial Frobenius condition of Definition 46.

42



Definition 52. An awfs (L,R) satisfies the functorial Frobenius condition if R-Alg→ C2

satisfies the functorial Frobenius property with respect to (L-Coalg,R-Alg).

Remark 53. The Frobenius property of f : A → B for some wfs (C,L,R) now states
that f∗(L/B) ⊆ (L/A). Since L/A and R/A are the classes of maps of the slice wfs
(C/A,L/A,R/A), this property for f might then be understood as saying that f∗ consti-
tutes a morphism of wfs between the slice wfs on C/B and C/A in some suitable sense.
Considering instead an awfs we have that the double category R-Alg/A is formed as:

R-Alg/A R-Alg

Sq(C/A) Sq(C) .

y
UR

Sq(dom)

This situation is discussed more generally in [2, Section 4.5], and it is shown there that the
pullback square above yields a slice awfs (L/A,R/A) on C/A with (R/A)-Alg ∼= R-Alg/A.
In light of this interpretation we might expect the Frobenius property of a map f : A→ B
to state that f∗ underlies a morphism of slice awfs (C/B, L/B,R/B)→ (C/A, L/A,R/A),
but this is not immediately apparent as the definition of morphism between awfs (see for
instance [2, Section 2.9]) is somewhat involved.

Since R-algebras are stable under pullback we know that any morphism f : A→ B gives
rise to a functor f∗ : R-Alg(B)→ R-Alg(A). If f underlies an R-algebra f then we can also
define a pushforward functor f∗ : R-Alg(A)→ R-Alg(B) as follows. Let g be an R-algebra
with codomain A, then (g, 1) ∈ R-Alg/A so since f satisfies the Frobenius property there
is an R-algebra structure on f∗1g and hence by the isomorphism (1, f∗1) : f∗1g ∼= f∗0g we
obtain one on f∗0g; this determines the action of f∗ on objects. Similarly we can show that
if u : g → h in R-Alg(A) then f∗u : f∗g → f∗h in R-Alg(B).

Proposition 54. If (L,R) satisfies the functorial Frobenius condition then there exists a
pseudo-stable choice of Π-types for the comprehension category it induces.

Proof. We define Π on objects by (f , g) 7→ f∗g. For its action on morphisms we should
show that the composition of the squares on the right below is a morphism of R-algebras:

g

u

y
i

v

f

y
h

w

Π7−→

.

f∗α

f∗g

bci

f∗v∗i

w+

w∗h∗i h∗i

1 1 w
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It is easily checked that the square (α, 1) : g → v∗i is an algebra morphism and therefore
so is (f∗α, 1); the square in the middle is because (L,R) satisfies the functorial Frobenius
condition and we saw in Section 5.5 that this suffices to lift the bc transformation; and the
square on the right is because it is a pullback square. This means the outer rectangle is an
algebra morphism too. The rest of the proof proceeds as the choice of Π-types for π-clans
in Proposition 16.

6.4 Id-types

The method we will use for interpreting Id-types originates from [10] and was further
developed in [8]. The idea is that dependent types are interpreted as the right maps of a
wfs (L,R). Then given an R map f : A→ Γ we factorise the diagonal δf as

A I(f) A×Γ A ,
rf ρf

where rf ∈ L and ρf ∈ R. This means ρf can interpret the identity type IdA, i.e. the
formation rule; and rf the reflexivity term, i.e. the introduction rule; and lastly the lifts of
left maps against right maps the elimination terms jA(T, t):

Γ.A Γ.A.A. IdA .T

Γ.A.A. IdA Γ.A.A. IdA .

rA

t

χT

1

jA(T,t)

In order to realise the coherence conditions of the elimination terms we need these lifts
to be structured instead of merely postulated to exist, which is why more structured versions
of wfs were introduced in the context of modelling identity types. In [8] the notion of
cloven wfs was used, for which the left and right classes of maps have categorical structure
denoted by L-Map and R-Map, and the factorisation above should be given by a functor
(r, ρ) : R-Map→ L-Map×C R-Map for which the right leg ρ preserves pullback squares.
This same approach is used in [3, Lemma 2.9] but then based on the underlying wfs of an
awfs so the signature of the functor is accordingly changed to R-Map→ L-Map×CR-Map.
In the present work we will also use the same approach so since we are working with awfs
and our left and right classes are given by L-Coalg and R-Alg we instead use a functor
with the signature R-Alg→ L-Coalg ×C R-Alg.

Definition 55. A functorial factorisation of the diagonal on a category C is a functor
P = (r, ρ) : C2 → C2 ×C C2 such that for each morphism f : A → B we have ρf · rf = δf
where δf is the diagonal morphism A→ A×B A. The action of P should be specified as
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follows:

A C

B D

f

u

g

v

P7−→

A C

If Ig

A×B A C ×D C .

rf

u

rg

ρf

I(u,v)

ρg

u×vu

Definition 56. A functorial factorisation of the diagonal P = (r, ρ) is called stable when
its right leg ρ preserves pullback squares, i.e. when (u, v) : f → g is a pullback square then
so is (I(u, v), u×v u) : ρf → ρg.

Definition 57. An awfs (L,R) on a category C has a stable functorial choice of path objects
(sfpo) if it has a stable functorial factorisation of the diagonal P which lifts to a functor
P : R-Alg→ L-Coalg ×C R-Alg:

R-Alg L-Coalg ×C R-Alg

C2 C2 ×C C2 .

P

P

Remark 58. One might wonder what causes the need for an sfpo when the functorial
factorisation accompanying the awfs already provides us with such a functorial assignment
f 7→ (Lδf , Rδf ). The problem with this, as pointed out in [8, Remark 3.3.4], is that this
choice will rarely be stable.

Proposition 59. The comprehension category induced by an awfs with an spfo (I, r, ρ)
has a pseudo-stable choice of Id-types.

Proof. The functor Id is given by f 7→ ρf , so that functoriality follows from functoriality of
ρ, and preservation of cartesian morphisms from the stability condition. The reflexivity
morphism is given by rf and the j terms as the lifts given by the awfs. The proofs of
pseudo-stability are now exactly as in [3, Lemma 2.9].

6.5 Modelling type theory

Putting the results of the previous sections together we obtain the following.
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Theorem 60. The right adjoint splitting of the comprehension category induced by an
awfs (L,R) that satisfies the functorial Frobenius condition and is equipped with an sfpo
yields a model of Martin-Löf type theory with sum, product, and identity types.

This is the version of [3, Theorem 2.12] phrased for the algebras of the monad of an
awfs rather than for the algebras for the pointed endofunctor, and accomplishes the main
objective of this work. In the next chapter we will look at an example of such an awfs on
the category Grpd of groupoids.

46



Chapter 7

The groupoid model

In [3, Section 3] Gambino and Larrea revisit the Hofmann-Streicher model [15] of type
theory on the category Grpd of Groupoids. They do so by equipping Grpd with an awfs
satisfying the appropriate conditions for interpreting type theory, i.e. one satisfying the
functorial Frobenius condition and equipped with a stable functorial choice of path object
for the R-maps of the awfs. In this chapter we describe this construction and show that
it additionally satisfies these conditions phrased for the R-algebras, thereby obtaining an
example of an awfs mentioned in Theorem 60.

We start with the definition of a comma category.

Definition 61. Given functors f : C → E , g : D → E we can define their comma category
f ↓ g with objects given by triples (α, c, d) where c ∈ C, d ∈ D and α : fc → gd in E ,
and arrows by (β, γ) : (α, c, d) → (α′, c′, d′) where β : c → c′, γ : d → d′ are morphisms
satisfying α′ · fβ = gγ ·α. Each such category comes equipped with two projection functors
πC : f ↓ g → C and πD : f ↓ g → D.

For our purposes we will consider the case where the first component is an identity, i.e.
we consider just one functor f : C → D and denote 1D ↓ f as just ↓f . The objects of ↓f
can now be thought of as the situations in D which should have a cartesian lift in C for f
to be a fibration:

c

d fc .α

(7.0.1)

The assignment f 7→ ↓f is functorial and can be expanded to a functorial factorization
(Ct, F ) on Cat. The left leg sends f to the functor Ctf : c 7→ (1fc, fc, c) and the right leg
to the projection functor Ff := πD, so that f factorizes as

C ↓f D.Ctf Ff
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Now f is an F -map if it has has a lift for the square as depicted on the lower left below:

C C

↓f D ,

Ctf

1

f

Ff

s

c s(α, d, c) c

d fc d fc .

(α,1)

s

α α

So there is a functor s which given a situation as in 7.0.1 finds an object in the preimage
of d and a lift of the arrow α because (α, 1) : (α, d, c)→ (1fc, fc, c). A calculation shows
s(α, 1) is f -cartesian over α, so that this assignment provides a normal cleavage for f . The
morphisms between F -maps are given by cleavage preserving maps.

To complete the definition of the monad we need a multiplication µf : ↓Ff → ↓f . The
objects of the category ↓Ff look as follows:

c

e d fc .
β α

The functor µf simply composes α and β, and the statement that f is an F -algebra
translates to the statement that f is a split fibration.

Next let us consider the Ct-maps, i.e. maps f equipped with a lift s of the lower left
square:

C ↓f

D D ,

f

Ctf

Ff

1

s

f̃d

d

d ff̃d .

s

nd

Such an s associates to each d ∈ D an object f̃d ∈ C along with an arrow nd : d → ff̃d.
This notation is suggestive: s constitutes a pair (f̃ , n) with f̃ : D → C a retraction of f
and n : 1 → ff̃ a natural transformation satisfying nf = 1. The morphisms in Ct-Map
between (f, f̃ , n) and (g, g̃,m) are given by (u, v) : f → g satisfying uf̃ = g̃v and vn = mv.

To see what the comultiplication δf : ↓f → ↓Ctf looks like we first note that spelling
out the definition of ↓Ctf reveals that ↓Ctf ∼= ↓(f · dom), so its objects look like:

c c′

d fc .

β

α
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This means we can just put δf := ↓(id, 1) where id : C → C2, i.e. a tuple (α, d, c) is send to
(α, d, 1c). Triples of the form (nd, d, f̃d) can be mapped into ↓Ctf in a second canonical way
given by the endomorphism f̃nd on f̃d. The property of being a Ct-coalgebra states these
choices coincide, i.e. that f̃n = 1. Together with nf = 1 this tells us f̃ a f with unit n and
counit 1. Such a pair (f, f̃) is sometimes called a lali, short for left adjoint left inverse, and
are also discussed in [2, Section 4.2].

Now we show that this awfs restricted to the category Grpd satisfies the condition of
Definition 52. The argument is mostly the same as in [1, Proposition 4.5.4] but expanded
to work with lalis and split fibrations.

Lemma 62. The awfs (Ct, F ) on Grpd satisfies the functorial Frobenius condition.

Proof. We consider a split fibration p : A → B, a functor u : C → B, and a lali (g, g̃) : C → D
with unit n:

A×B D D

A×B C C

A B

h g

f

h̃

u

g̃

p

First we construct a functor f : A×BC → A. Let (a, c) ∈ A×BC, then unc : uc = pa→ ugg̃c
has a cocartesian lift along a of which we take the codomain as the definition of f(a, c).
This induces a functor h̃ : A ×B C → A ×B D given by (a, c) 7→ (f(a, c), g̃c), and it is
straightforward to verify that (h̃, h) is a lali. In fact to construct this h̃ it suffices for p to
be a normal fibration rather than a split fibration. We need the additional assumption that
it is split precisely to show that this construction preserves composition of lalis. This is
again a straightforward but somewhat tedious verification which we omit.

It remains be shown that this construction is functorial in morphisms between split
fibrations, so we consider the following situation:

A B C D

E F G H ,

p

w x

u
g̃

y

g

z

q v

j̃

j

with (w, x) : p→ q a morphism of split fibrations and (y, z) : (g̃, g)→ (j̃, j) a morphism of
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lalis. This induces the following square between the constructed lalis:

A×B D E ×F H

A×B C E ×F G .

h

(wu′h)×(zp++)

kh̃

(wu′)×(yp+)

k̃

Here u′ denotes the first projection A ×B E → A, and likewise p+ and p++ the second
projections of A×B E and A×B F respectively. Now a short calculation using the fact that
(w, x) is a morphism of split fibrations and that (y, z) is a morphism of lalis we can show
that (wu′h)× (zp++) · h̃ = k̃ · (wu′)× (yp+), which suffices (as noted in [2, Section 4.2]) to
show that ((wu′h)× (zp++), (wu′)× (yp+)) is a morphism of lalis.

Next we consider the stable functorial choice of path objects of Definition 57. We
construct a functorial factorization P = (r, ρ) : C2 → C2 ×C C2 satisfying ρf · rf = δf , and
then show it can be lifted to a functor R-Alg→ R-Alg×C L-Coalg. The construction of P
follows a general procedure called the interval path-object factorisation which is described
in [1, Appendix C.3].

Lemma 63. The awfs (Ct, F ) on Grpd has a stable functorial choice of path objects.

Proof. For each functor f : C → D we may define the category Pf ⊆ C2 as the full
subcategory of arrows α in C that satisfy fα = 1. Doing so we get functors rf := id : C → Pf
and ρf := dom× cod : Pf → C ×D C which together form a functorial factorization
C2 → C2 ×C C2 of the diagonal δf .

To see that the left leg r produces lalis we note that cod is left inverse to id, and that
there is a natural transformation n : 1→ id · cod with components nα := (α, 1). It follows
easily from the definition of n that codn = 1 and n id = 1 so that (cod, id) is indeed a lali.

Next we consider whether ρ produces split fibration. For this we need that C is a groupoid,
and that f maps arrows in Pf to identities. Let α : c→ d in Pf and (u, v) : (a, b)→ (c, d)
in C ×D C:

a c

b d .

u

v−1αu α

v

We obtain an arrow v−1αu : a→ b which is mapped to the identity by f so that it is in Pf
above (a, b), as well as a cartesian arrow (u, v) : v−1αu→ α above (u, v). This gives us a
cleavage which, since it is just a kind of inclusion, is easily seen to be split.

That the functor P preserves pullbacks is most easily seen in the general construction
so the reader is reffered to [1, Appendix C.3] for further details.
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Chapter 8

Conclusions

In [3] and [1] Gambino and Larrea identified conditions for awfs that ensure that the
comprehension category R-Map→ C2 of its R-maps can be equipped with pseudo-stable
choices of the sum, product, and identity types of Martin-Löf dependent type theory. These
conditions are that the awfs satisfies a Frobenius condition and has a stable functorial
choice of path objects.

In the preceding chapters we saw that this same approach can be used when we
instead use the comprehension category R-Alg→ C2. In particular we found that for the
interpretation of the sum and identity types the same ideas applied as used in [3] and
elsewhere in the literature: the sum types are modelled by composition and the identity
types by using a stable functorial choice of path objects, only now phrased for R-algebras
rather than R-maps. Most of the work was in finding an analog of the Frobenius condition
in Chapter 5. We formulated this condition at a general level for double categories of
maps and proved it is equivalent to a pushforward condition. In the context of awfs this
condition says that the R-algebras are closed under pushforward, and from there we could
use the same strategy as in [3] to model the Π-types. Having established this we then
showed that the awfs on groupoids described in [3] satisfies the stronger conditions that
we phrased, thus serving as an example of a model of the fragment of Martin-Löf dependent
type theory arising from our results.

A clear objective for future work is to find more examples of awfs satisfying the
conditions we identified in Chapter 6, i.e. those satisfying the functorial Frobenius condition
and having a stable functorial choice of path objects. Ideally these examples would have
L-coalgebras and R-algebras which are not retract closed, thus making full use of the results
of the present work.

Perhaps a good way of finding such examples would be to use the Beck theorem for awfs
proven by Bourke and Garner in [2, Theorem 6]. This result characterises the essential
image of (−)-Alg : AWFSlax → Dbl2 and the authors of [2] argue that this theorem is
essential for a smooth handling of awfs, as it allows one to specify an awfs by constructing
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a double functor of the correct form which is easier in practice. As such the best way to find
awfs satisfying the functorial Frobenius condition might be to translate the condition along
the equivalence given by the Beck theorem. If the observation we made in Remark 53 is
correct then it might provide a way for doing this translation, as it expresses the Frobenius
condition as the existence of certain arrows in the category of awfs. Seeing which arrows
these correspond to in Dbl2 might then help to find the desired characterisation.
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Appendix A

Category theory background

For the self-containedness of this work we list some oft-used notions and results.

A.1 Fibrations

These definitions as well as much more information on fibrations are found in [5].

Definition 64. Let ρ : E → B be a functor, and ϕ : B → C an arrow in E . We say ϕ is
ρ-cartesian over ρ(ϕ) = f : I → J if for every g : H → I and ψ : A→ C with ρ(ψ) = fg,
there exists θ : A→ B unique with respect to the property that ρ(θ) = g and ϕ · θ = ψ:

A

H B C

I J .

θ
ψ

g
fg

ϕ

f

We use dashed lines to visualize the image of ρ. Reversing the direction of all the arrows
we get the dual notion of cocartesian arrows in E .

Definition 65. A Grothendieck fibration, often just called a fibration, is a functor p : E → B
such that for every C ∈ E and f : I → ρ(C) there is a cartesian arrow ϕ over f , called the
cartesian lift of f along C. If pop : Eop → Bop is a fibration then p is called an opfibration,
meaning it has cocartesian lifts, and if it is both a fibration and opfibration then it is said
to be a bifibration.
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A choice function associating each f : I → ρ(C) to a cartesian lift of f along C is called
a cleavage for ρ. A fibration together with a cleavage is called a cloven fibration. If a
cleavage preserves identities we say it is normal, and if in addition it preserves composition
we say it is split. A fibration is normal or split if it has a normal or split cleavage.

The quintessential example is the codomain functor cod : C2 → C which is a fibration if
and only if C has pullbacks. The cartesian arrows of cod are exactly the pullback squares
in C. Cleavages for cod correspond to choices of pullbacks, and a split cleavage means this
choice is strictly associative.

Given two fibrations over the same base π : D → B, ρ : E → B we say a functor
f : D → E is a fibered functor f : π → ρ if ρ · f = π and f preserves cartesian arrows in the
sense that if ϕ is π-cartesian then fϕ is ρ-cartesian. Fibrations over B together with fibered
functors between them constitute a category Fib(B). Similarly we can define morphisms
between split fibrations as fibered functors preserving the cleavage, and this yields a
category SpFib(B) of split fibrations over B. The functor SpFib(B)→ Fib(B) that forgets
cleavages has both a left and right adjoint. In [1] this right adjoint is extended to operate on
comprehension categories, thus providing a way of obtaining a split comprehension category
from a non-split one, called its right adjoint splitting.

A.2 Monads

Definition 66. A monad T on a category C is a triple (T, η, µ) consistsing of an endofunctor
T : C → C and natural transformations η : 1 → T , µ : TT → T called the unit and
multiplication of the monad respectively, for which all of the following diagrams commute:

T TT T TTT TT

T TT T .

Tη

1
µ

ηT

1
Tµ

µT

µ

µ

Dualizing this definition we get the concept of a comonad (T, ε, δ) on C with counit ε : T → 1
and comultiplication δ : T → TT .

Definition 67. Let T be a monad on a category C, then a T-algebra is a pair (X, f)
consisting of an object X ∈ C and an arrow f : TX → X such that the following diagrams
commute:

X TX TTX TX

X TX X .

ηX

1
f

Tf

µX f

f
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By dropping the condition for the multiplication we get a notion of algebras for the pointed
endofunctor (T, η), which we refer to as T -maps.

A morphism of T -algebras (X, f), (Y, g) is an arrow h : X → Y such that the following
diagram commutes:

TX TY

X Y .

Th

f g

h

The algebras and morphisms between them induce a category T-Alg named the Eilenberg-
Moore category of T . We can use the same definition of morphisms between T -maps, and
we call the induced category T-Map. Since the definition of morphisms between T -algebras
or T -maps is the same, we have a full and faithful inclusion T-Alg→ T-Map.

For a comonad T we have dual definitions of T -coalgebras, morphisms between them,
and a resulting co-Eilenberg-Moore category T-Coalg. The category of coalgebras for the
copointed endofunctor (T, ε) is (perhaps somewhat confusingly) also called T-Map.

A.3 Double categories

In any category C with pullbacks one has the notion of categories internal to C. This
definition is obtained by expressing the category axioms in terms of the existence of certain
objects, arrows, and commuting squares in C.

Definition 68. An internal category in C is made up of the following parts:

A1 ×A0 A1 A1 A0 .◦ s

t
id

The object A0 represents the objects of the internal category and A1 the morphisms, the
operations of source-, target-, and identity arrow assignment are modelled by the morphisms
s, t, and id respectively. The composition of arrows is given by ◦, where the pullback is taken
with respect to s and t. All the usual axioms are now expressed by certain compositions of
arrows being equal, and they should of course all be true in C.

If we have two internal categories (A0, A1) and (B0, B1) then an internal functor consists
of f0 : A0 → B0, which represents its action on objects, and f1 : B0 → B1, which represents
its action on arrows. The obvious diagrams expressing things like preservation of composition
should all commute. Together these notions give us the category of internal categories in C.

Given two internal functors f, g : (A0, A1) → (B0, B1) we have a notion of internal
natural transformation α : f → g. This is given by an arrow α : A0 → B1 in C making the
related diagrams commute.
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Now since Cat has pullbacks we can look at what constitutes an internal category in
Cat, which are called double categories.

Definition 69. A double category A is an internal category in Cat. The objects in its
object category A0 are called the objects of A and the arrows between them its horizontal
arrows. The objects of its arrow category A1 are called its vertical arrows, and the arrows
between them its squares. This terminology can be explained by visualizing an arrow
α : f → g in A1 as yielding the following ‘square’ in A0:

sf sg

α
=⇒

tf tg .

f

sα

g

tα

To distinguish f and g from the morphisms in A0 we denote them with double arrowheads.
Such squares can be horizontally composed using the composition of A1 and vertically using
the composition functor A1 ×A0 A1 → A1. Together with the notion of a double functor
and double natural transformation this yields the 2-category Dbl of double categories.

A useful way to think about double categories is as ordinary categories that have been
extended with a second set of morphisms between any two of its objects, one of them being
the horizontal set and the other the vertical, along with a notion of composition for this
second set. Viewed this way it is easy to see that any ordinary category C has a trivial
double categorical structure in which this second set is equal to the first. In other words for
any category C there is a double category Sq(C) with object category C and arrow category
C2. This gives us the object part of a 2-functor Sq : Cat→ Dbl. Lastly we mention that
since Cat has limits so does Dbl. In particular we will use pullbacks of double categories.

Definition 70. Let f : C → E and g : D → E, then their double pullback C ×E D with
object category C0 ×E0 D0 and arrow category C1 ×E1 D1. All of its operations are also
defined componentwise, for instance its identity functor is given by idC×ED := idC ×idE idD.
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