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Abstract

In this paper we analyse some of the classical paradoxes in Social Choice Theory
(namely, the Condorcet paradox, the discursive dilemma, the Ostrogorski paradox
and the multiple election paradox) using a general framework for the study of aggre-
gation problems called binary aggregation with integrity constraints. We provide a
definition of paradox that is general enough to account for the four cases mentioned,
and identify a common structure in the syntactic properties of the rationality assump-
tions that lie behind such paradoxes. We generalise this observation by providing a
full characterisation of the set of rationality assumptions on which the majority rule
does not generate a paradox.

1 Introduction

Most work in Social Choice Theory (SCT) started with the observation of paradoxical situ-
ations. From the Marquis de Condorcet (1785) to more recent American court cases (Korn-
hauser and Sager, 1986), a wide collection of paradoxes have been analysed and studied in
the literature on Social Choice Theory (see, e.g., Nurmi, 1999). More recently, researchers
in Artificial Intelligence (AI) have become interested in the study of collective choice prob-
lems in which the set of alternatives has a combinatorial structure (Lang, 2007; Xia et al.,
2011). Novel paradoxical situations emerged from the study of these situations, and the
combinatorial structure of the domains gave rise to interesting computational challenges.

This paper concentrates on the use of the majority rule on binary combinatorial domains,
and investigates the question of what constitutes a paradox in such a setting. We identify
a common structure behind the most classical paradoxes in SCT, putting forward a general
definition of paradox in aggregation theory. By characterising paradoxical situations by
means of computationally recognisable properties, we aim at providing more domain-specific
research with new tools for the development of safe procedures for collective decision making.

We base the analysis on our previous work on binary aggregation with integrity con-
straints (Grandi and Endriss, 2011), which constitutes a general framework for the study
of aggregation problems. In this setting, a set of individuals needs to take a decision over
a set of binary issues, and these choices are then aggregated into a collective one. Given a
rationality assumption that binds the choices of the individuals, we define a paradox as a
situation in which all individuals are rational but the collective outcome is not. We present
some of the most well-known paradoxes that arise from the use of the majority rule in differ-
ent contexts, and we show how they can be expressed in binary aggregation as instances of
this general definition. Our analysis focuses on the Condorcet paradox (1785), the discursive
dilemma in judgment aggregation (List and Pettit, 2002), the Ostrogorski paradox (1902)
and the more recent work of Brams et al. (1998) on multiple election paradoxes.

Such a uniform representation of the most important paradoxes in SCT enables us to
make a crucial observation concerning the syntactic structure of the rationality assumptions
that lie behind these paradoxes. We represent rationality assumptions by means of proposi-
tional formulas, and we observe that all formulas formalising a number of classical paradoxes
feature a disjunction of literals of size at least 3. This observation can be generalised to a full
characterisation of the rationality assumptions on which the majority rule does not generate



a paradox, and in Theorem 4 we identify them as those formulas that are equivalent to a
conjunction of clauses of size at most 2.

The paper is organised as follows. In Section 2 we give the basic definitions of the frame-
work of binary aggregation with integrity constraints, and we provide a general definition of
paradox. In Section 3 we show how a number of paradoxical situations in SCT can be seen
as instances of our general definition of paradox, and we identify a syntactic property that
is common to all paradoxical rationality assumptions. Section 4 provides a characterisation
of the paradoxical situations for the majority rule and Section 5 concludes the paper.

2 Binary Aggregation with Integrity Constraints

In this section we provide the basic definitions of the framework of binary aggregation
with integrity constraints (Grandi and Endriss, 2011), based on work by Wilson (1975) and
Dokow and Holzman (2010). In this setting, a number individuals each need to make a
yes/no choice regarding a number of issues and these choices then need to be aggregated
into a collective choice. Paradoxical situations may occur when a set of individual choices
that is considered rational leads to a collective outcome which fails to satisfy the same
rationality assumption of the individuals.

2.1 Terminology and Notation

Let Z = {1,...,m} be a finite set of issues, and let D = Dy x --- x D,, be a boolean
combinatorial domain, i.e., |D;| = 2 for all i« € Z. Without loss of generality we assume
that D; = {0,1} for all j. Thus, given a set of issues Z, the domain associated with it is
D = {0,1}%. A ballot B is an element of D.

In many applications it is necessary to specify which elements of the domain are rational
and which should not be taken into consideration. Propositional logic provides a suitable
formal language to express possible restrictions of rationality on binary combinatorial do-
mains. If 7 is a set of m issues, let PS = {p1,...,pm} be a set of propositional symbols, one
for each issue, and let Lpg be the propositional language constructed by closing PS under
propositional connectives. For any formula ¢ € Lpg, let Mod(y) be the set of assignments
that satisfy . For example, Mod(p; A —p2) = {(1,0,0),(1,0,1)} when PS = {p1,p2,p3}.
An integrity constraint is any formula IC € Lpg.

Integrity constraints can be used to define what tuples in D we consider rational choices.
Any ballot B € D is an assignment to the variables p1, ..., p,,, and we call B a rational ballot
if it satisfies the integrity constraint IC, i.e., if B is an element of Mod(IC). In the sequel we
shall use the terms “integrity constraints” and “rationality assumptions” interchangeably.

Let N = {1,...,n} be a finite set of individuals. We make the assumption that there
are at least 2 individuals. Each individual submits a ballot B; € D to form a profile
B = (Bi,...,B,). We write b; for the jth element of a ballot B, and b; ; for the jth
element of ballot B; within a profile B = (By,..., By). Given a finite set of issues Z and a
finite set of individuals N, an aggregation procedure is a function F : DY — D, mapping each
profile of binary ballots to an element of D. Let F(B); denote the result of the aggregation
of profile B on issue j.

2.2 A General Definition of Paradox

Consider the following example: Let IC = p; A po — ps and suppose there are three
individuals, choosing ballots (0,1,0), (1,0,0) and (1,1,1). Their choices are rational (they
all satisfy IC). However, if we employ the majority rule, i.e., we accept an issue j if and only
if a majority of individuals do, we obtain the ballot (1,1,0) as collective outcome, which
fails to be rational. This kind of observation is often referred to as a paradox.

We now give a general definition of paradoxical behaviour of an aggregation procedure
in terms of the violation of certain rationality assumptions.



Definition 1. A paradoz is a triple (F, B,IC), where F is an aggregation procedure, B is
a profile in DV, IC is an integrity constraint in £pg, and B; € Mod(IC) for all i € N but
F(B) ¢ Mod(IC).

A closely related notion is that of collective rationality:

Definition 2. Given an integrity constraint IC € Lpg, an aggregation procedure F' is called
collectively rational (CR) with respect to IC, if for all rational profiles B € Mod(IC)N we
have that F(B) € Mod(IC).

Thus, F' is CR with respect to IC if it [ifts the rationality assumption given by IC from
the individual to the collective level, i.e., if F(B) € Mod(IC) whenever B; € Mod(IC) for
all i € M. An aggregation procedure that is CR with respect to IC cannot generate a
paradoxical situation with IC as integrity constraint. Given an aggregation procedure F,
let LF[F]={p € Lps| F is CR with respect to ¢} be the set of integrity constraints that
are lifted by F.

3 Unifying Paradoxes in Binary Aggregation

In this section we present a number of classical paradoxes from SCT, and we show how they
can be seen as instances of our Definition 1. In Section 3.1 we introduce the Condorcet
paradox, and we show how settings of preference aggregation can be seen as instances of
binary aggregation by devising a suitable integrity constraint. Section 3.2 repeats this
construction for the framework of judgment aggregation and for the discursive dilemma. In
Section 3.3 we then deal with the Ostrogorski paradox, in which a paradoxical feature of
representative majoritarian systems is analysed, and in Section 3.4 we focus on the paradox
of multiple elections. In Section 3.5 we conclude by identifying a common structure in the
integrity constraints that lie behind those paradoxes.

3.1 The Condorcet Paradox and Preference Aggregation

One of the earliest observation of paradoxical behaviour of the majority rule was made
by the Marquis de Condorcet in 1785. A simple version of the paradox he discovered is
explained in the following paragraphs:

Condorcet Paradox. Three individuals need to decide on the ranking of three
alternatives {A, O,d}. Each individual expresses her own ranking and the col-
lective outcome is aggregated by pairwise majority: an alternative is preferred to
a second one if and only if a majority of the individuals prefer the first alternative
to the second. Consider the following situation:

A<10<1D
D<2A<2©
O<3D<3A

A<O<O<A

When computing the outcome of the pairwise majority rule, we notice that there
is a majority of individuals preferring the circle to the triangle (A < O); that
there is a majority of individuals preferring the square to the circle (O < O);
and, finally, that there is a majority of individuals preferring the triangle to the
square (O < A). The resulting outcome fails to be a linear order, giving rise to
a circular collective preference between the alternatives.



3.1.1 Preference Aggregation

Condorcet’s paradox was rediscovered in the second half of the XXth century while a whole
theory of preference aggregation was being developed (see, e.g., Gaertner, 2006). This frame-
work considers a finite set of individuals A/ expressing preferences over a finite set of al-
ternatives X'. A preference relation is represented by a binary relation over X'. Preference
relations are traditionally assumed to be weak orders, i.e., reflexive, transitive and com-
plete binary relations. Another common assumption is representing preferences as linear
orders, i.e., irreflexive, transitive and complete binary relations. In the sequel we shall as-
sume that preferences are represented as linear orders, writing aPb for “alternative a is
strictly preferred to b”. Each individual in A/ submits a linear order P;, forming a profile
P = (P1,...,Py). Let L(X) denote the set of all linear orders on X. Given a finite set
of individuals N and a finite set of alternatives X, a social welfare function is a function
F: LX)V = L£(X).

3.1.2 Translation

Given a preference aggregation problem defined by a set of individuals A/ and a set of
alternatives X', let us consider the following setting for binary aggregation. Define a set of
issues Zy as the set of all pairs (a,b) in X. The domain Dy of aggregation is {0, 1}|X|2. In
this setting, a binary ballot B corresponds to a binary relation P over X: B, ;) = 1 if and
only if a is in relation to b (aPb). Given this representation, we can associate with every
SWF for X and N an aggregation procedure that is defined on a subdomain of ’D/;\([ . We
now characterise this domain as the set of models of a suitable integrity constraint.

Using the propositional language £ pg constructed over the set Zy, we can express prop-
erties of binary ballots in Dy. In this case £pg consists of |X'|? propositional symbols, which
we call pyp for every issue (a,b). The properties of linear orders can be enforced on binary
ballots using the following set of integrity constraints, which we shall call IC:!

Irreflexivity: —p,, for all a € X
Completeness: p,, V pp, for alla #be X
Transitivity: pep A ppe—Dac for a,b, c € X pairwise distinct

Note that the size of this set of integrity constraints is polynomial in the number of alter-
natives in X. In case preferences are expressed using weak orders rather than linear orders,
it is sufficient to replace the integrity constraints of irreflexivity in IC. with their negation
to obtain a similar correspondence between SWFs and aggregation procedures.

3.1.3 The Condorcet Paradox in Binary Aggregation

The translation presented in the previous section enables us to express the Condorcet para-
dox in terms of Definition 1. Let X = {A,0,0} and let N contain three individuals.
Consider the profile B for Zy in the following table, where we have omitted the values of
the reflexive issues (A, A) (always 0 by IC.), and specified the value of only one of (A, O)
and (O, A) (the other can be obtained by taking the opposite of the value of the first), and
accordingly for the other alternatives.

AO o0 AO
Agent 1 1 1 1
Agent 2 1 0 0
Agent3 0 1 0
Mayj 1 1 0

1We will use the notation IC both for a single integrity constraint and for a set of formulas—in the latter
case considering as the actual constraint the conjunction of all the formulas in IC.



Every individual ballot satisfies IC., but the outcome obtained using the majority rule Maj
(which corresponds to pairwise majority in preference aggregation) does not satisfy IC.:
the formula pao A pog — pan is falsified by the outcome. Therefore, (Maj, B,IC.) is a
paradox by Definition 1.

3.2 The Discursive Dilemma and Judgment Aggregation

The discursive dilemma emerged from the formal study of court cases that was carried
out in recent years in the literature on law and economics, generalising the observation of
a paradoxical situation known as the “doctrinal paradox” (Kornhauser and Sager, 1986).
Such a setting was first given mathematical treatment by List and Pettit (2002), giving rise
to an entirely new research area in SCT known as judgment aggregation.

Discursive Dilemma. A court of three judges has to decide on the liability
of a defendant under the charge of breach of contract. An individual is consid-
ered liable if there was a valid contract and her behaviour was such as to be
considered a breach of the contract. The court takes three majority decisions
on the following issues: there was a valid contract («), the individual broke the
contract (8), the defendant is liable (a A 8). Consider the following situation:

« B aAp
Judge 1 yes yes  yes
Judge 2 no yes no
Judge 3 yes no no

Majority yes yes no

All judges express consistent judgments: they accept the third proposition if
and only if the first two are accepted. However, even if there is a majority of
judges who believe that there was a valid contract, and even if there is a majority
of judges who believe that the individual broke the contract, the individual is
considered not liable by a majority of the individuals.

3.2.1 Judgment Aggregation

Judgement aggregation (JA) considers problems in which a finite set of individuals A/ has
to generate a collective judgment over a set of interconnected propositional formulas (see,
e.g., List and Puppe, 2009). Formally, given a propositional language £, an agenda is a
finite nonempty subset ® C £ that does not contain doubly-negated formulas and is closed
under complementation (i.e, & € ® whenever ~« € ®, and -« € ¢ for non-negated « € P).

Each individual in N expresses a judgment set J C ®, as the set of those formulas in
the agenda that she judges to be true. Every individual judgment set J is assumed to be
complete (i.e., for each o € ® either a or its complement are in J) and consistent (i.e.,
there exists an assignment that makes all formulas in J true). Denote by J(®) the set
of all complete and consistent subsets of ®. Given a finite agenda ® and a finite set of
individuals NV, a JA procedure for ® and N is a function F : J(®)V — 2%,

3.2.2 Translation

Given a JA framework defined by an agenda ® and a set of individuals A, let us now
construct a setting for binary aggregation with integrity constraints that interprets it. Let
the set of issues Zg be equal to the set of formulas in ®. The domain D¢ of aggregation is
therefore {0,1}®!. In this setting, a binary ballot B corresponds to a judgment set: B, = 1
if and only if a € J. Given this representation, we can associate with every JA procedure
for ® and A a binary aggregation procedure on a subdomain of D{{\f .



As we did for the case of preference aggregation, we now define a set of integrity con-
straints for Dg to enforce the properties of consistency and completeness of individual
judgment sets. Recall that the propositional language is constructed in this case on |P|
propositional symbols p,, one for every a € ®. Call an inconsistent set of formulas each
proper subset of which is consistent minimally inconsistent set (mi-set). Let ICq be the
following set of integrity constraints:

Completeness: p,Vp-, for all « € ¢
Consistency: =(A cgPa) for every mi-set S C @

While the interpretation of the first formula is straightforward, we provide some further
explanation for the second one. If a judgment set J is inconsistent, then it contains a
minimally inconsistent set, obtained by sequentially deleting one formula at the time from
J until it becomes consistent. This implies that the constraint previously introduced is
falsified by the binary ballot that represents J, as all issues associated with formulas in a
mi-set are accepted. Vice versa, if all formulas in a mi-set are accepted by a given binary
ballot, then clearly the judgment set associated with it is inconsistent.

Note that the size of ICs might be exponential in the size of the agenda. This is in agree-
ment with considerations of computational complexity: Since checking the consistency of a
judgment set is NP-hard, while model checking on binary ballots is polynomial, the trans-
lation from JA to binary aggregation must contain a superpolynomial step (unless P=NP).

3.2.3 The Discursive Dilemma in Binary Aggregation

The same procedure that we have used to show that the Condorcet paradox is an instance of
our general definition of paradox applies here for the case of the discursive dilemma. Let ®
be the agenda {«, 8, «A S}, in which we have omitted negated formulas, as for any J € J(®)
their acceptance can be inferred from the acceptance of their positive counterparts. Consider
the profile B for Z¢ described in the following profile:

a B aAp
Judgel 1 1 1
Judge2 0 1 0
Judge3 1 0 0
Maj 1 1 0

Every individual ballot satisfies ICg, while the outcome obtained by using the majority
rule contradicts one of the constraints of consistency, namely —(po A pg A p—(ang)). Hence,
(Maj, B,1Cs) constitutes a paradox by Definition 1.

3.3 The Ostrogorski Paradox

A less well-known paradox concerning the use of the majority rule on multiple issues is the
Ostrogorski paradox (Ostrogorski, 1902).

Ostrogorski Paradox. Consider the following situation: there is a two party
contest between the Mountain Party (MP) and the Plain Party (PP); three
individuals (or, equivalently, three equally big groups in an electorate) will vote
for one of the two parties if their view agrees with that party on a majority of
the three following issues: economic policy (E), social policy (S), and foreign
affairs policy (F'). Consider the situation described in Table 1. The result of the
two party contest, assuming that the party that has the support of a majority
of the voters wins, declares the Plain Party the winner. However, a majority of
individuals support the Mountain Party both on the economic policy E and on



E S F Party supported

Voter1 MP PP PP PP
Voter 2 PP PP MP PP
Voter 3 MP PP MP MP

Maj MP PP MP PP

Table 1: The Ostrogorski paradox.

the foreign policy F. Thus, the elected party (the PP) is in disagreement with a
majority of the individuals on a majority of the issues.

3.3.1 The Ostrogorski Paradox in Binary Aggregation

In this section, we provide a binary aggregation setting that represents the Ostrogorski
paradox as a failure of collective rationality with respect to a suitable integrity constraint.

Let {E,S, F} be the set of issues at stake, and let the set of issues Zp = {FE, S, F, A}
consist of the same issues plus an extra issue A to encode the support for the first party
(MP). A binary ballot over these issues represents the individual view on the three issues
E, S and F: if, for instance, by = 1, then the individual supports the first party MP on the
first issue E. Moreover, it also represents the overall support for party MP (in case issue A is
accepted) or PP (in case A is rejected). In the Ostrogorski paradox, an individual votes for
a party if and only if she agrees with that party on a majority of the issues. This rule can be
represented as a rationality assumption by means of the following integrity constraint ICgo:

pa < [(pe Aps)V (pe Apr) V (ps A pr)]

An instance of the Ostrogorski paradox can therefore be represented in the following profile:

EFE S F A

Voter1 1 0 0 O
Voter2 0 O 1 O
Voter3 1 0 1 1
Maj 1 0 1 0

Each individual accepts issue A if and only if she accepts a majority of the other issues.
However, the outcome of the majority rule is a rejection of issue A, even if a majority of
the issues gets accepted by the same rule. Therefore, the triple (Maj, B,1Co) constitutes
a paradox by Definition 1.

3.4 The Paradox of Multiple Elections

Whilst the Ostrogorski paradox was devised to stage an attack against representative sys-
tems of collective choice based on parties, the paradox of multiple elections (MEP) is based
on the observation that when voting directly on multiple issues, a combination that was not
supported nor liked by any of the voters can be the winner of the election (Brams et al.,
1998; Lacy and Niou, 2000). While the original model takes into account the full prefer-
ences of individuals over combinations of issues, if we focus on only those ballots that are
submitted by the individuals, then an instance of the MEP can be represented as a paradox
of collective rationality. Let us consider the following simple example:

Multiple election paradox. Suppose three voters need to take a decision over
three binary issues A, B and C. Their ballots are described as follows.



A B C

Voterl 1 0 1
Voter2 0 1 1
Voter3 1 1 O
Maj 1 1 1

The outcome of the majority rule is the acceptance of all three issues, even if
this combination was not voted for by any of the individuals.

While there seems to be no integrity constraint directly causing this paradox, we may
represent the profile in the example above as a situation in which the three individual
ballots are bound by a constraint, e.g., =(pa A pp A pc). Even if each individual accepts at
most two issues, the result of the aggregation is the unfeasible acceptance of all three issues.

As can be deduced from our previous discussion, every instance of the MEP gives rise to
several instances of a binary aggregation paradox for Definition 1. To see this, it is sufficient
to find an integrity constraint that is satisfied by all individuals and not by the outcome of
the aggregation.? On the other hand, every instance of Definition 1 in binary aggregation
may represent an instance of the MEP, as the irrational outcome cannot have been voted
for by any of the individuals.

3.5 The Common Structure of Paradoxical Integrity Constraints

We can now make a crucial observation concerning the syntactic structure of the integrity
constraints that formalise the paradoxes we have presented so far.

First, for the case of the Condorcet paradox, we observe that the formula encoding the
transitivity of a preference relation is the implication pgp A ppe — Dge- This formula is
equivalent to —pgp V —Ppe V Pac, Which is a clause of size 3, i.e., it is a disjunction of three
different literals. Second, the formula which appears in the translation of the discursive
dilemma is also equivalent to a clause of size 3, namely —pa V =pg V =p-(anp)- Third, the
formula which formalises the majoritarian constraint underlying the Ostrogorski paradox,
is equivalent to the following conjunction of clauses of size 3:

(paV —pEV —pr) A (PaV -peV -ps)A(paV -psV -pr)A
AN=paVpeVpr) A(=paVpeVps)A(—paVpsVpr)

Finally, the formula which exemplifies the MEP is equivalent to a negative clause of size 3.
Thus, we observe that the integrity constraints formalising the most classical
paradoxes in aggregation theory all feature a clause of size at least 3.3

4 The Majority Rule: Characterisation of Paradoxes

In this section we generalise the observation made in the previous section, and we provide a
full characterisation of the class of integrity constraints that are lifted by the majority rule
as those formulas that can be expressed as a conjunction of clauses of maximal size 2.
Under the majority rule, an issue is accepted if and only if a majority of the individuals
accept it. Let N jB be the set of individuals that accept issue j in profile B. In case the
number of individuals is odd, the majority rule (Maj) has a unique definition by accepting
issue j if and only if |NJB| > %‘H The case of an even number of individuals is more
problematic, to account for profiles in which exactly half of the individuals accept an issue

2Such a formula always exists: consider the disjunction of the formulas specifying the individual ballots.

3This observation is strongly related to a result proven by Nehring and Puppe (2007) in the framework
of judgment aggregation, which characterises the set of paradoxical agendas for the majority rule as those
agendas containing a minimal inconsistent subset of size at least 3.



and exactly half reject it. We give two different definitions. The weak majority rule (W-
Maj) accepts an issue if and only if |NJB| > %, favouring acceptance. The strict magority

rule (S-Mayj) accepts an issue if and only if \NJ-B| > ”T"’Q, favouring rejection.
4.1 Odd Number of Individuals: The Majority Rule

We begin with a base-line result that proves collective rationality of the majority rule in
case the integrity constraint is equivalent to a conjunction of 2-clauses. Let 2-clauses denote
the set of propositional formulas in £pg that are equivalent to a conjunction of clauses of
maximal size 2.4

Proposition 1. The majority rule is collectively rational with respect to 2-clauses.

Proof. Let us first consider the case of a single 2-clause IC = ¢,V {},, where {; and ¢}, are two
literals, i.e., atoms or negated atoms. A paradoxical profile for the majority rule with respect
to this integrity constraint features a first majority of individuals not satisfying literal ¢;,
and a second majority of individuals not satisfying literal £;. By the pigeonhole principle
these two majorities must have a non-empty intersection, i.e., there exists one individual
that does not satisfy both literals ¢; and £, but this is incompatible with the requirement
that all individual ballots satisfy IC. To conclude the proof, it is sufficient to observe that
if IC is equivalent to a conjunction of two clauses, then all individuals satisfy each of these
clauses, and by the previous discussion all these clauses will also be satisfied by the outcome
of the majority rule. O

An easy corollary of this proposition covers the case of just 2 issues:

Corollary 2. If |Z| < 2, then the majority rule is collectively rational with respect to all
integrity constraints 1C € Lpg.

Proof. This follows immediately from Proposition 1 and from the observation that every
formula built with two propositional symbols is equivalent to a conjunction of clauses of size
at most 2 (e.g., its conjunctive normal form). O

As we have remarked in Section 3.5, all classical paradoxes involving the majority rule can
be formalised in our framework by means of an integrity constraint that consists of (or
is equivalent to) one or more clauses with size bigger than two. We now generalise this
observation to a theorem that completes the characterisation of the integrity constraints
lifted by the majority rule. We need some preliminary definitions and a lemma.

Call a minimally falsifying partial assignment (mifap-assignment) for an integrity con-
straint IC an assignment to some of the propositional variables that cannot be extended
to a satisfying assignment, although each of its proper subsets can. We first prove a a cru-
cial lemma about mifap-assignments. Given a propositional formula ¢, associate with each
mifap-assignment p for ¢ a conjunction C, = 1 A --- A £y, where £; = p; if p(p;) = 1 and
¢; = —p; if p(p;) = 0 for all propositional symbols p; on which p is defined. The conjunction
C), represents the mifap-assignment p and it is clearly inconsistent with ¢.

Lemma 3. FEvery non-tautological formula ¢ is equivalent to (/\p —C),) with p ranging over
all mifap-assignments of .%

Proof. Let A be a total assignment for ¢. Suppose A [~ @, i.e., A is a falsifying assignment
for ¢. Since @ is not a tautology there exists at least one such A. By sequentially deleting
propositional symbols from the domain of A we eventually find a mifap-assignment p 4 for

4The set of 2-clauses can be equivalently defined by closing the set of 2-CNF under logical equivalence.
5Formulas —C) associated to mifap-assignments p for IC are also known as the prime implicates of I1C.
Lemma 3 is a reformulation of the fact that a formula is equivalent to the conjunction of its prime implicates.



@ included in A. Hence, A falsifies the conjunct associated with pa, and thus the whole
formula (A, =C)). Assume now A |= ¢ but A = (A, ~C,). Then there exists a p such that
A |= C,. This implies that p C A, as C, is a conjunction. Since p is a mifap-assignment for
®, 1.e., it is a falsifying assignment for ¢, this contradicts the assumption that A = . O

We are now able to provide a full characterisation of the set of integrity constraints that are
lifted by the majority rule in case the set of individuals is odd. Recall from Section 2 that
LF[F] is the set of integrity constraints that are lifted by F.

Theorem 4. LF[Maj) = 2-clauses.®

Proof. One direction is entailed by Proposition 1: the majority rule is CR with respect to
formulas in 2-clauses. For the opposite direction assume that IC & 2-clauses, i.e., IC is
not equivalent to a conjunction of 2-clauses. We now build a paradoxical profile for the
majority rule. By Lemma 3 we know that IC is equivalent to the conjunction /\p —C, of all
mifap-assignments p for IC. We can therefore infer that at least one mifap-assignment p*
has size > 2, for otherwise IC would be equivalent to a conjunction of 2-clauses.

Consider the following profile. Let y1,ys,y3 be three propositional variables that are
fixed by p*. Let the first individual i; accept the issue associated with y; if p(y1) = 0,
and reject it otherwise, i.e., let by 1 = 1 — p*(y1). Furthermore, let i; agree with p* on
the remaining propositional variables. By minimality of p*, this partial assignment can be
extended to a satisfying assignment for IC, and let B;, be such an assignment. Repeat the
same construction for individual is, this time changing the value of p* on ys and extending
it to a satisfying assignment to obtain B;,. The same construction for i3, changing the value
of p* on issue y; and extending it to a satisfying assignment B;,. Recall that there are at
least 3 individuals in A/. If there are other individuals, let individuals i3,11 have the same
ballot B;,, individuals 3542 ballot B;, and individuals iszs43 ballot B;,. The basic profile
for 3 issues and 3 individuals is shown in the following table:

Y Y2 Y3
i1 Lp*(y1) p*(y2)  p*(y3)
i p*(y1)  1-p*(y2)  p*(y3)
i3 P (y1)  p*(y2)  1-p*(ys)
Maj  p*(y1) p*(y2) p*(y3)

As can be seen in the previous table, and easily generalised to the case of more than 3
individuals, there is a majority supporting p* on every variable on which p* is defined. Since

p* is a mifap-assignment and therefore cannot be extended to an assignment satisfying 1C,
the majority rule in this profile is not collectively rational with respect to IC. O

4.2 Even Number of Individuals: Weak and Strict Majority

While a result analogous to Theorem 4 for the case of an even number of individuals cannot
be proven, we provide the following result (proof is omitted for lack of space).

Proposition 5. W-Maj and S-Maj are CR with respect to 2-clauses in which one literal is
negative and one is positive. W-Maj is CR with respect to positive 2-clauses, in which all
literals occur positively. S-Maj is CR with respect to negative 2-clauses, in which all literals
occur negatively.

6This result may be considered a “syntactic counterpart” of a result by Nehring and Puppe (2007) in the
framework of judgment aggregation, characterising profiles on which the majority rule outputs a consistent
outcome. In the interest of space, we refer to our previous work (Grandi and Endriss, 2011) for a more
detailed discussion of the relation between the two results.



5 Conclusions

The first conclusion that can be drawn from this paper dedicated to paradoxes of aggre-
gation is that the majority rule is to be avoided when dealing with collective choices over
multiple issues. This fact stands out as a counterpart to May’s Theorem (1952), which
proves that the majority rule is the only aggregation rule for a single binary issue that
satisfies a set of highly desirable conditions. The sequence of paradoxes we have analysed
in this paper shows that this is not the case when multiple issues are involved. While this
fact may not add anything substantially new to the existing literature, the wide variety of
paradoxical situations encountered in this paper stresses even further the negative features
of the majority rule on multi-issue domains.

A second conclusion is that most paradoxes of SCT share a common structure, and that
this structure is formalised by our Definition 1, which stands out as a truly general definition
of paradox in aggregation theory. Moreover, by analysing the integrity constraints that
underlie some of the most classical paradoxes, we were able to identify a common syntactic
feature of paradoxical constraints. Starting from this observation, we have provided a full
characterisation of the integrity constraints that are lifted by the majority rule, as those
formulas that are equivalent to a conjunction of clauses of size at most 2.

The paradoxical situations presented in this paper constitute a fragment of the problems
that can be encountered in the formalisation of collective choice problems. For instance,
paradoxical situations concerning voting procedures (Nurmi, 1999), which take as input a
set of preferences and output a set of winning candidates, are not included in our analysis.

Recent work on paradoxes of aggregation also pointed at similarities within different
frameworks, e.g., comparing the Ostrogorski paradox with the discursive dilemma (Pigozzi,
2005), or proposing a geometric approach for the study of paradoxical situations (Eckert
and Klamler, 2009). The MEP gives rise to a different problem than that of collective
rationality, not being directly linked to an integrity constraint established in advance. The
problem formalised by the MEP is rather the compatibility of the outcome of aggregation
with the individual ballots. Individuals in such a situation may be forced to adhere to
a collective choice which, despite it being rational, they do not perceive as representing
their views (Grandi and Pigozzi, 2012). Some answers to the problem raised by the multiple
election paradox have already been proposed in the literature on Al, by for instance devising
a suitable sequence of local elections (Xia et al., 2011), or by approximating the collective
outcome (Conitzer and Xia, 2012).

Elections over multi-issue domains cannot be escaped: not only do they represent a
model for the aggregation of more complex objects like preferences and judgments, but they
also stand out as one of the biggest challenges to the design of more complex automated
systems for collective decision making. A crucial problem in the modelling of real-world
situations of collective choice is that of identifying the set of issues that best represent a
given domain of aggregation, and devising an integrity constraint that models correctly the
correlations between those issues. This problem obviously represents a serious obstacle to
a mechanism designer, and is moreover open to manipulation. However, a promising direc-
tion for future work consists in structuring collective decision problems with more detailed
models before the aggregation takes place, e.g., by discovering a shared order of preferen-
tial dependencies between issues (Lang and Xia, 2009; Airiau et al., 2011), facilitating the
definition of collective choice procedures on complex domains without having to elicit the
full preferences of individuals. Such models can be employed in the design and the imple-
mentation of automated decision systems, in which a safe aggregation, i.e., one that avoids
paradoxical situations, is of the utmost necessity.
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