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Representable Forests and Diamond Systems



Abstract

We study the classical problem of representing partially ordered sets
as prime spectra. A poset is said to be Priestley (resp. Esakia) repre-
sentable if it is isomorphic to the prime spectrum of a bounded distribu-
tive lattice (resp. Heyting algebra). We study this problem by restricting
the attention to two classes of posets: forests, i.e., disjoint union of trees,
and diamond systems, a class that includes the order duals of forests. This
class has been introduced recently in order to characterize the varieties
of Heyting algebras whose profinite members are profinite completions.

We provide a characterization of Priestley and Esakia representable
diamond systems. As Priestley representable posets are closed under
order duals, this yields a new proof of Lewis’ description of Priestley
representable forests. While a classification of arbitrary Esakia repre-
sentable forests remains open, the main result of this thesis gives a full
description of the well-ordered ones. Moreover, we investigate the Esakia
representability of countable forests and provide two forbidden configu-
rations of Esakia representable countable forests. We also prove a number
of facts about Priestley and Esakia topologies on arbitrary posets. In par-
ticular, we identify some properties of Priestley (resp. Esakia) topologies
that revolve around infinite chains.
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CHAPTER 1
Introduction

This thesis studies the representability problem for partially ordered sets. The
problem asks which partially ordered sets are isomorphic to the prime spec-
trum (that is, the poset of prime filters) of a bounded distributive lattice or
of a Heyting algebra. Accordingly, a poset is said to be Priestley (resp. Esakia)
representable if it is isomorphic to the prime spectrum of a bounded distributive
lattice (resp. Heyting algebra).

Priestley duality (Priestley, 1970) establishes a dual equivalence between
the category of bounded distributive lattices and the category of Priestley
spaces. Analogously, Esakia duality (Esakia, 1974) establishes a dual equiv-
alence between the category of Heyting algebras and the category of Esakia
spaces. The idea underlying these dualities is that the poset of prime filters of
a bounded distributive lattice (resp. Heyting algebra) can be endowed with
a topology turning it into a Priestley (resp. Esakia) space. Therefore, the
problem of understanding which posets are Priestley (resp. Esakia) repre-
sentable reduces to the study of posets which can be turned into a Priestley
(resp. Esakia) space.

The Priestley representability for posets was first raised by Chen and
Grätzer in (Chen & Grätzer, 1969). In (Grätzer, 1971) we can find the following
question, which appears as Problem 34, on page 1561:

“Characterize the poset of prime ideals of a distributive lattice L under
the additional assumption that L has a minimum, a maximum, or both.
If L has a maximum, then every chain of prime ideals has a supremum; if
L has a minimum, then every chain of prime ideals has an infimum. Are
these the only additional conditions?”

1In this chapter most of the quotations are a faithful report from the original source. How-
ever, for the sake of readability, slight modifications have been made, in order to keep the
notation coherent with the rest of the thesis.
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A filter F of a lattice L is a said to be prime if it is proper and if x ∨ y ∈ F ,
then x ∈ F or y ∈ F . Equivalently, a filter F of L is prime when its complement
is an ideal. Similarly, an ideal I of L is said to be prime if its complement is a
filter. Because of this, the posets of prime filters and of prime ideals of L are
dually isomorphic. Therefore, Grätzer’s problem is essentially equivalent to
the one that we have introduced above.

Observe also that Grätzer already recognizes a necessary condition for a
poset to be Priestley representable: its nonempty chains must have infima and
suprema. From now on we will refer to this property by C1.

In (Kaplansky, 1970) Kaplansky formulated a problem that turned out to
be equivalent to the representability problem of Grätzer. More specifically,
Kaplansky asked to characterize the poset of prime ideals of a commutative
unital ring. We can find this question at the very beginning of (Kaplansky,
1970), on page 5.

“We conclude this section with some remarks on the set of prime ideals in
a ring R. It seems reasonable to think of the partial ordering on it as its
first, basic structure. Question: can an arbitrary partially ordered set be
the partially ordered set of prime ideals in a ring? There is a first negative
answer, which is fairly immediate: every chain [ed. of prime ideals] has a
least upper bound and a greatest lower bound.”

The spectrum of a commutative unital ring is the poset of its prime ideals.
The spectra of bounded distributive lattices and the spectra of commutative
rings with unit are the same, up to isomorphism (see, e.g, (Priestley, 1994)).
Actually, a stronger result holds. It follows from (Hochster, 1969) that spectral
spaces are topological spaces which are homeomorphic to the set of prime
ideals of a commutative unital ring endowed with the Zariski topology. In
(Stone, 1938) Stone proved a representation of distributive lattices in terms
of spectral spaces. As it happens, the categories of Priestley spaces and of
spectral spaces are isomorphic (Cornish, 1975). Because of this, Kaplansky’s
question turns out to be equivalent to the one of Grätzer. Returning back to
our problem, in (Kaplansky, 1970) we can find the following:

“We return to the partially ordered set of prime ideals. It does have another
(perhaps slightly unexpected) property: between any two elements we
can find a pair of “immediate neighbors”.

The property Kaplansky is referring to can be phrased as follows: given a
poset (P,6) and two elements x < y, there are x1 and y1 in P such that
x 6 x1 < y1 6 y, and no other z ∈ P is strictly between x1 and y1. We will
denote this condition by C2. A poset which satisfies C2 is said to have enough
gaps. Unfortunately, Kaplansky’s suggestions stop at this point, and he ends
the section by saying:
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“I do not know of any further conditions that the spectrum of a ring has
to satisfy. In other words, it is conceivable that if a partially ordered set
satisfies the conclusions of Theorems 9 and 11 2 then it is isomorphic to
the partially ordered set of prime ideals in some commutative ring.”

As a matter of fact, C1 and C2 are not sufficient for a poset to be Priestley
representable. This was already observed by Lewis in (Lewis, 1971), who
attributes the discovery to Hochster. Nevertheless, this is the case if we restrict
the attention to chains, i.e., linearly ordered posets. More precisely, it follows
from (Balbes, 1971) and (Lewis, 1971) that a chain is Priestley representable if
and only if it satisfies C1 and C2.

This positive result suggests to study posets which arise as simple “com-
binations” of chains. For example, in (Lewis, 1971) Lewis studied trees, i.e.
posets with a minimum whose principal downsets are chains. Lewis showed
that a tree is Priestley representable if and only if it satisfies C1 and C2. More-
over, since Priestley representable posets are closed under disjoint unions (see
Proposition 3.14), this result characterizes Priestley representable forests (i.e.,
disjoint unions of trees) as well. Positive results have been obtained also in
(Joyal, 1971), (Speed, 1972). Joyal and Speed proved that the class of Priestley
representable posets coincides with the class of profinite posets. However, this
result does not provide an internal characterization of Priestley representable
posets, as there is no internal characterization of profinite posets. Another
abstract characterization appears in (Davey, 1973) but, again, it does not give
an insight on the order-theoretic features that a representable poset has to
satisfy.

The problem of characterizing Esakia representable posets can be found
in the appendix of (Esakia, 2019), an English translation of the volume first
published in 1985. Reporting directly from Esakia’s book:

“We conclude the section by quoting (Grätzer, 1978): “Investigate further
the poset of prime ideals of a distributive lattice L” (Problem II.4) and
“Characterize the poset of prime ideals of a distributive lattice L under the
additional assumption that L has a unit and/or a zero” (Problem II.5).
It is tempting to replace L by H3 in those quotations and suggest this as a
new problem to the reader.”

Since every Heyting algebra is, in particular, a bounded distributive lattice,
Grätzer’s and Esakia’s questions are related. In particular, every Esakia rep-
resentable poset is Priestley representable. However, the converse does not
hold (see, e.g., Example 3.20). An important difference between the classes of

2The theorems that he his referring to imply the just-mentioned properties: i.e. Priestley
representable posets must have chains with infima and suprema and enough gaps.

3The notation H refers to a Heyting algebra, as opposed to an arbitrary bounded distributive
lattice.
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Priestley and Esakia representable posets is that the former is closed under
order duals, while the latter is not.

Spectra of Heyting algebras are interesting also from a logical point of view.
For example, Gödel algebras coincide with Heyting algebras whose spectrum
is a forest (Horn, 1969). The spectra of Gödel algebras have been recently
studied in (Aguzzoli, Gerla, & Marra, 2008) and (Bezhanishvili, Bezhanishvili,
Moraschini, & Stronkowski, 2021).

The aim of this thesis is to contribute to the representability problem. In
particular, we will focus on forests and on diamond systems, a generalization
of their order duals. We shall prove that both well-ordered forests (forests
whose chains are well-ordered) and diamond systems are Priestley and Esakia
representable if and only if they satisfy C1 and C2. Thus, we extend our
understanding of Priestley and Esakia representable posets to the class of
well-ordered forests and diamond systems.

In order to do so, we shall first prove some order-theoretic properties that a
Priestley (resp. Esakia) representable poset must satisfy. For example, we will
prove (Proposition 3.25) that the infima (resp. suprema) of infinite descending
(resp. ascending) chains cannot be isolated in any Priestley topology. We will
also strengthen this result (Proposition 3.26) by showing that if such infima
(resp. suprema) are minimal (resp. maximal), then any open set of a Priestley
topology must contain a nontrivial downset (resp. upset). Both results extend
to Esakia topologies as well. We will also show that there are posets of height
2 and width 2 which satisfy C1 and C2 but are not Priestley representable
(Example 3.23).

In (Lewis & Ohm, 1976) the authors attribute to Hochster the discovery that
there is a third condition – which they call H – that a Priestley representable
poset must satisfy: any family of principal upsets (resp. downsets) whose
intersection is empty admits a finite subfamily whose intersection is empty.
The paper provides an example of a poset which satisfies C1 and C2, but not
H. We will generalize H into a condition C3 in Proposition 3.21.

Next we will show some order-theoretic configurations which involve
infinite descending chains that are forbidden in an Esakia representable poset
(Theorems 3.30 and 3.32).

In view of these results, we will be able to study the Priestley (resp. Esakia)
representability of the above mentioned classes of forests and diamond systems.
The latter class was introduced in (Bezhanishvili et al., 2021), in order to solve
the problem of whether each profinite Heyting algebra is isomorphic to the
profinite completion of some Heyting algebra. A Heyting algebra is said to
be a profinite completion if it is isomorphic to the limit of the inverse system of
finite homomorphic images of some Heyting algebra. In (Bezhanishvili et al.,
2021) it is proved that there is a largest variety DHA of Heyting algebras whose
profinite members are profinite completions. The posets underlying the Esakia
duals of these Heyting algebras are of a special form: they all are diamond
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systems. Moreover, the Heyting algebra of upsets of a diamond system always
belongs to this variety. Intuitively, diamond systems are a generalization of
the order duals of forests, whose width is allowed to be 2.

As already announced above, this leads to one of the main result of the
thesis. We will prove (Theorem 4.9) that a diamond system is Esakia repre-
sentable if and only if it satisfies C1 and C2, and that it is Priestley representable
if and only if it is Esakia representable. Moreover, we will show (Theorem
4.32) how to use this result in order to simplify the proof of the main theorem
of (Bezhanishvili et al., 2021). Because every Heyting algebra H in DHA is
the dual of a diamond system, knowing which diamond systems are Esakia
representable will allow us to directly prove that if H is profinite then it is a
profinite completion of some Heyting algebra.

The Priestley representation of diamond systems implies the Priestley
representation of their order duals (Proposition 3.19) and, in particular, of
forests. However, in view of Theorems 3.30 and 3.32, the Esakia representability
of forests is much harder to tackle. The difficulty in understanding which
forests are Esakia representable lies in the fact that arbitrary forests might
have infinite descending chains. Accordingly, we will develop the machinery
necessary to address the problem of Esakia representable well-ordered forests,
that is, forests with no infinite descending chains. This is the main contribution
of the thesis: a well-ordered forest is Esakia representable if and only if it
satisfies C1 and C2 (Theorem 4.36).

Finally, we will show that the case of countable forests is quite peculiar
on its own, for every compact Hausdorff space which is countable must have
an isolated point (Theorem 2.35). This will allow us to provide two new
classes of non-Esakia representable countable forests (Theorems 4.53 and
4.55). Intuitively, these results show that in a countable Esakia representable
forest no point can be the infimum of two incomparable infinite descending
chains. Moreover, given an infinite descending chain, its points cannot be
infima of certain infinite descending chains.

In summary, the main contributions of this thesis are the following:

• The characterization of Priestley and Esakia representable well-ordered
forests and the description of two forbidden configurations of Esakia
representable countable forests.

• The characterization of Priestley and Esakia representable diamond
systems and a simplification of the main proof of (Bezhanishvili et al.,
2021) via this result.

• A number of results about possible Priestley (resp. Esakia) topologies
on a poset and the description of two order-theoretic forbidden configu-
rations of Esakia representable posets.
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• An example of a poset of height and width 2 which satisfies C1 and C2
but is not Priestley representable.

The remaining chapters are structured as follows. In chapter 2 we review
the necessary preliminaries on orders, lattices, topological spaces, and on
Priestley and Esakia dualities. Section 3.1 of chapter 3 collects the proofs of
some well-known facts about Priestley (resp. Esakia) representable posets.
Then, section 3.2 provides some new results on Priestley (resp. Esakia) rep-
resentable posets, along with two forbidden configurations of Esakia repre-
sentable posets, which will be used consequently.

In chapter 4 we will use the results obtained in the previous chapters
in order to characterize the classes of Priestley (resp. Esakia) representable
diamond systems (section 4.1) and well-ordered forests (section 4.3). In
section 4.2 we will apply the characterization of Esakia representable diamond
systems in order to simplify the main proof of (Bezhanishvili et al., 2021).
Section 4.4 will describe two classes of non-Esakia representable countable
forests. The thesis ends in chapter 5 with a summary of the results and a
discussion of possible directions with the representability problem.



CHAPTER 2
Preliminaries

In this chapter we review the basic facts that are relevant for the problems
considered in this exposition. We assume familiarity with the basic concepts
of category theory, such as categories, morphisms, functors and natural trans-
formations.

In section 2.1 we recall the notions of partially ordered sets, lattices, Heyting
algebras and topological spaces and discuss some of their properties. Section
2.2 considers Stone, Priestley and Esakia dualities. We will not provide proofs,
but will only discuss how to construct the functors establishing these dual
equivalences.

2.1 Orders, lattices and topological spaces
We refer to (Sankappanavar & Burris, 1981) and (Davey & Priestley, 2002) for
an introduction to orders and lattices. We start with the definition of poset.
Definition 2.1. Let P be a set and 6 ⊆P × P a binary relation on it. The pair
P = (P,6) is said to be a partially ordered set –from now only simply a poset–
whenever 6 satisfies the following:

- reflexivity: x 6 x, for every x ∈ P ;
- antisymmetry: If x 6 y and y 6 x, then x = y, for every x, y ∈ P ;
- transitivity: If x 6 y and y 6 z, then x 6 z, for every x, y, z ∈ P .
The elements x ∈ P will be also called the elements/points/nodes of the

poset P, and the relation 6 will be called the order/ordering of P.
Definition 2.2. Let P = (P,6P) and Q = (Q,6Q) be two posets. A map
f : P → Q is said to be order-preserving if, for every x, y ∈ P , x 6P y implies
f(x) 6Q f(y).

7
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Posets and order-preserving maps form a category, which we denote by
Pos. From now on, we will often avoid the subscripts of the form 6P if con-
fusion does not arise. For instance, the previous definition could have been
stated as follows: a map f : P → Q is order-preserving whenever x 6 y
implies f(x) 6 f(y) for every x, y ∈ P .

Given a poset (P,6) and two elements x, y ∈ P , we will often write x < y
as a shorthand for x 6 y and x 6= y. Moreover, we are going to use the
following notational conventions:

[x, y] = {z ∈ P | x 6 z 6 y} (x, y) = {z ∈ P | x < z < y}

(x, y] = {z ∈ P | x < z 6 y} [x, y) = {z ∈ P | x 6 z < y}.

Given a poset P and a subset X ⊆ P , the relation 6X×X , defined as the
restriction of 6 to X ×X , makes the pair (X,6X×X) a poset. We will refer to
6X×X as the induced ordering of P onto X , or simply the induced ordering on
X , when P is clear from the context. Moreover, for the sake of readability, we
will often make use of the simpler shorthand (X,6). We will say that the pair
(X,6) is a subposet of P.

Definition 2.3. Given a poset P, we will refer to P∂ = (P,>) as the order-dual
of P, where x > y if and only if x 6 y.

Definition 2.4. Let {(Pi,6i)}i∈I be a collection of posets and consider their
disjoint union P :=

⊔
i∈I Pi = {(x, i) | x ∈ Pi, i ∈ I}. We can equip P with the

ordering 6 defined as: ⋃
i∈I
{((x, i), (y, i)) | xi 6i yi}.

The pair (P,6) is a poset and it is called the sum of the Pi’s.

Definition 2.5. A poset P is said to be linearly ordered if x 6 y or y 6 x for every
x, y ∈ P . Linearly ordered posets are also called chains. On the other hand, a
poset P is said to be an antichain if x 66 y and y 66 x for every pair of elements
of P . Two such elements are said incomparable or parallel, in symbols x ‖ y.

Among the subsets of a poset P, some are of special interest.

Definition 2.6. Let P be a poset. A subset X ⊆ P is said to be:

1. Downward closed or a downset of P if for every x ∈ X and y ∈ P , if y 6 x
then y ∈ X , for every y ∈ P ;

2. The downward closure of a subset Y ⊆ P in P if

X = {x ∈ P | there is some y ∈ Y such that x 6 y}.
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Similarly, we say thatX is upward closed, or an upset, if it is a downset of P∂ and
we say thatX is the upward closure of a subset Y ⊆ P in P ifX is the downward
closure of Y in P∂ . The downward (resp. upward) closure of a singleton {x}
for some x ∈ P is simply denoted by ↓x (resp. ↑x); we refer to it as principal
downset (resp. upset).

Definition 2.7. A poset P is said to be image finite if ↑x is finite for every x ∈ X .

Definition 2.8. Let P be a poset and n ∈ N. The poset P is said to be of width at
most n if ↑x does not contain any antichain of n+ 1 elements, for every x ∈ P .

Definition 2.9. An element x ∈ P of a poset P is said to be a:

1. minimum of P if x 6 y for every y ∈ P ;

2. minimal element of P if y 6< x for any y ∈ P ;

3. lower bound of a subset X ⊆ P in P if x 6 y for every y ∈ X .

Similarly, we will say that x is a maximum ofP (resp. maximal element ofP, resp.
upper bound ofX ⊆ P in P) whenever x is the minimum of P∂ (resp. minimal
element of P∂ , resp. lower bound of X ⊆ P in P∂). The set of minimal (resp.
maximal) elements of a poset P will be denoted by min(P) (resp. max(P)).

It might be worth mentioning that a minimum and a maximum, whenever
they exist, are unique. However, this is not the case for minimal (resp. maxi-
mal) elements, nor it is for lower (resp. upper) bounds. Thus, one can safely
introduce the notation ⊥ for the minimum of P, and > for the maximum of P,
whenever they exist. When P has both a maximum and a minimum it is said
to be bounded.

Let X be a subset of a poset P, and consider the poset of the lower (resp.
upper) bounds of X . If it has a maximum (resp. a minimum), such maximum
(resp. minimum) is unique, and we refer to it as the infimum (resp. supremum)
of X in P, in symbols inf X (resp. supX).

Definition 2.10. A poset P is said to be complete if inf X and supX exist in P
for every X ⊆ P .

Definition 2.11. A poset L = (L,6) is said to be a lattice if both inf{x, y} and
sup{x, y} exist, for every {x, y} ⊆ L.

Given a lattice L, we shall often write x ∧ y or x ∨ y in place of inf{x, y}
or sup{x, y}. We should mention that a lattice can be presented either as a
poset whose binary infima and suprema exist, or purely by algebraic means,
as a tuple (L,∧,∨), where ∧,∨ : L2 → L are such that, for any x, y, z ∈ L, the
following holds:

x ∧ x = x x ∨ x = x
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x ∧ y = y ∧ x x ∨ y = y ∨ x

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x

The binary operations ∧ and ∨will also be called meet and join, respectively.
If the lattice is complete we usually use the symbols∧ and∨ in order to denote
arbitrary infima (meets) and suprema (joins). In the same fashion, a bounded
lattice can be introduced as a tuple (L,∧,∨,⊥,>) where (L,∧,∨) is a lattice
and ⊥ and > satisfy the following conditions: for every x ∈ L, x ∨ > = >
and x ∧ ⊥ = ⊥. Let us observe that if a lattice is defined using the algebraic
notation, one can recover the underlying partial order 6 defined as follows:
x 6 y if and only if x ∧ y = x or, equivalently, if and only if x ∨ y = y.

Definition 2.12. Let L and L′ be two lattices. A map f : L→ L′ is said to be a
lattice homomorphism if, for every x, y ∈ L, we have f(x ∨ y) = f(x) ∨ f(y) as
well as f(x ∧ y) = f(x) ∧ f(y). If the lattices L and L′ are bounded, we say
that a lattice homomorphism is bounded if it satisfies f(⊥) = ⊥ and f(>) = >.

Remark 2.13. Every chain is a lattice: given two elements x, y ∈ C, without loss
of generality we have x 6 y, which implies x ∧ y = x and x ∨ y = y.

In this thesis, we will deal with lattices which validate one of the following
equations:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A lattice validates one of those two equations if and only if it validates both
of them. This leads to the following definition.

Definition 2.14. A lattice L is said to be distributive if, for every x, y, z ∈ L, the
equation:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

holds.

In the following chapters we will extensively work with bounded distribu-
tive lattices and bounded lattice homomorphism. They form a category which
we denote by BDL.

Definition 2.15. A bounded distributive lattice H is said to be a Heyting algebra
if and only if, for every x, y ∈ H , there is an element x→ y ∈ H such that for
all z ∈ H it holds:

z ∧ x 6 y if and only if z 6 x→ y.

For every x ∈ H , we shall write ¬x for the unique element x→ ⊥.
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Definition 2.16. Let H and H′ be two Heyting algebras and f a bounded
lattice homomorphism between them. The morphism f is said to be a Heyting
homomorphism if, for all x, y ∈ H , we have f(x→ y) = f(x)→ f(y).

Heyting algebras and Heyting homomorphisms form a category, which
we denote by HA.
Remark 2.17. Every linearly ordered bounded lattice L is a Heyting algebra. In
fact, for every x, y ∈ L we have:

x→ y =

{
1 if x 6 y

y if y 6 x
.

Remark 2.18. Let P be a poset and Up(P) the collection of upsets of P. The
poset (Up(P),⊆) is a distributive lattice and it can be endowed with a Heyting
algebra structure.

Definition 2.19. A Heting algebra B is said to be a Boolean algebra if, for every
x ∈ B, the equation x ∨ ¬x = 1 holds. Equivalently, a Boolean algebra is a
tuple (B,∧,∨,⊥,>,¬) where (B,∧,∨,⊥,>) is a bounded distributive lattice
and moreover it holds x ∨ ¬x = > for any x ∈ B.

Bounded lattice homomorphisms already preserve ¬ if the underlying
lattice is a Boolean algebra. Accordingly, a Boolean homomorphism between
Boolean algebras simply is a bounded lattice homomorphism. We call BA the
category of Boolean algebras and Boolean homomorphisms.

Heyting and Boolean algebras are specially noteworthy in logic. In order to
recall why, let IPC denote the intuitionistic propositional calculus, and CPC the
classical propositional calculus. The two following theorems are well-known.

Theorem 2.20. The propositional intuitionistic calculus IPC is sound and complete
with respect to the class of Heyting algebras.

Theorem 2.21. The propositional classical calculus CPC is sound and complete with
respect to the class of Boolean algebras.

We conclude the preliminaries on lattices, Heyting and Boolean algebras
by recalling the notions of filters and ideals of lattices.

Definition 2.22. Let L be a lattice. A filter F is a nonempty subset of L such
that, for all x, y ∈ L, the following conditions hold:

1. F us upward closed;

2. If x ∈ F and y ∈ F , then x ∧ y ∈ F .

Dually, an ideal I of L is a filter of L∂ . A filter F (resp. an ideal I) is said to be
proper if F 6= L (resp. I 6= L).
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Observe that if F is a filter on a lattice L, then ↑x is a filter of L and ↓x is an
ideal of L, for every x ∈ L. They are called principal filters and principal ideals
respectively. Moreover, ifF is a filter on a Boolean algebraB, then {¬x | x ∈ F}
is an ideal of B.

For a lattice L, let us denote by F the set of proper filters of L, ordered by
inclusion. A filter F of L is said to be maximal if it is maximal in F . Moreover,
F is said to be prime if its complement relative to L is an ideal or, equivalently,
if F is proper and for every x, y ∈ L, if x ∨ y ∈ F then x ∈ F or y ∈ F . In the
same way, we can introduce the notions of maximal and prime ideal. Maximal
and prime filters may very well differ in an arbitrary lattice L, but they actually
coincide if L is a Boolean algebra.

Let us mention an important property on prime filters, which we will be
used consequently.

Proposition 2.23. Let L be a bounded distributive lattice and {Fi | i ∈ I} a non
empty ⊆-chain of prime filters on it, i.e. Fi ⊆ Fj or Fj ⊆ Fi for every i, j ∈ I . Then,
both ⋂i∈I Fi and ⋃i∈I Fi are prime filters.

We can now introduce topological spaces. We refer to (Engelking et al.,
1977) for a wealth of information on general topology.

Definition 2.24. Let X be a set. A topology τX on X is a subset of P(X) closed
under binary intersections and arbitrary unions, and it contains the empty
set ∅ as well as the whole X . In this case, the pair (X, τ) is called a topological
space.

The elements of τ will be called open subsets of X , moreover we will refer
to their set-theoretical complements as closed subsets of X . An open set which
is also closed will be called clopen.

Definition 2.25. Let (X, τ) and (Y, σ) be two topological spaces. A map f :
X → Y is said to be continuous if f−1(U) ∈ τ whenever U ∈ σ.

If there is a continuous bijection between two topological spaces, whose
inverse is continuous as well, we say that those spaces are homeomorphic.

Definition 2.26. A subset B ⊆ τ is said to be a base of τ if the closure of B
under arbitrary unions is exactly τ . Equivalently, B is a base for τ if every open
of τ can be written as a union of elements of B.

Definition 2.27. Let (X, τ) be a topological space. A subset S ⊆ τ is said to
be a subbase of τ if the closure of S under finite intersections is a base for τ .
Equivalently, S is a subbase for τ if every open of τ can be written as a union
of finite intersections of elements of S .
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Given a set X , there might be more than one topology on it. If τ and σ are
two topologies on X , we will say that τ is coarser or smaller than σ when τ ⊆ σ;
vice versa we will say that τ is finer or bigger than σ if σ ⊆ τ . Observe that
there are a smallest and a largest topology on any set X , namely {∅, X} and
P(X), respectively. They are usually called the trivial and the discrete topology
on X , respectively. If x ∈ X is such that {x} ∈ τ , we say that x is isolated.

Definition 2.28. Let (X, τ) be a topological space and Y a subset of X . The
following collection of subsets of Y is a topology on Y , and it will be called
the induced topology of (X, τ) on Y :

τY := {U ∩ Y | U ∈ τ}.

When considering topological spaces, we will often consider two kinds of
properties: separation and connectedness properties. Let us summarize the
ones that we will be using frequently.

Definition 2.29 (Separation properties). A topological space (X, τ) is said to
be:

1. T0 or Kolmogorov if, for every distinct points x, y ∈ X there exists U ∈ τ
such that x ∈ U and y /∈ U , or viceversa;

2. T1 or Fréchet if, for every distinct points x, y ∈ X there are U, V ∈ τ such
that x ∈ U but y /∈ U and y ∈ V but y /∈ V ;

3. T2 or Hausdorff if, for every distinct points x, y ∈ X there are U, V ∈ τ
such that x ∈ U , y /∈ U , y ∈ V , y /∈ V and moreover U ∩ V = ∅.

These separation properties are listed in ascending order of inclusion of
classes of spaces satisfying them.

Definition 2.30 (Connectedness properties). A topological space (X, τ) is said
to be:

1. Connected if the only clopens of τ are ∅ and X ;

2. Disconnected if it is not connected;

3. Totally separated if every pair of distinct points can be separated by two
disjoint opens whose union is the whole X ;

4. Totally disconnected if the greatest subsets of X which cannot be written
as union of smaller disjoint opens are the singletons {x} ⊆ X .

We should mention one last property of topological spaces.
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Definition 2.31. A topological space (X, τ) is said to be compact if, for every
collection of opens (Ui)i∈I such that X =

⋃
i∈I Ui, there is some finite F ⊆ I

such that X =
⋃
i∈F Ui. In this case, we will also say that the topology τ is

compact.

A family of opens (Ui)i∈I such that X =
⋃
i∈I Ui will also be called a

covering of X . If a covering admits a finite subcovering we will also say that
such covering can be finitized.

We conclude this section by mentioning the following important facts,
which will be useful throughout this thesis.

Proposition 2.32. Let (X, τ) be a compact topological space. If C ⊆ X is a closed
subset of X , then (C, τC) is a compact topological space.

Theorem 2.33 (Alexander Subbase Theorem). Let (X, τ) be a topological space
and B a subbase of τ . Then, τ is compact if and only if every covering of X by means
of opens of B can be finitized.

Theorem 2.34 (Tychonoff’s Theorem). For every collection of compact spaces, their
product space equipped with the product topology is compact.

Theorem 2.35 ((Semadeni, 1971). Thm. 8.5.4). Let (X, τ) be a compact T2

topological space. If (X, τ) is countable, then it has an isolated point.

2.2 Duality theory
We will start our review of duality theory by recalling Stone’s celebrated
duality for Boolean algebras, which asserts that the category for Boolean
algebras is dually equivalent to the category of Stone spaces. Analogously,
bounded distributive lattices and Heyting algebras admit a categorical duality
via Priestley and Esakia spaces, respectively. The purpose of this section is
to overview these dualities. We assume some familiarity with the categorical
notions of functors and natural transformations; two standard references to
the subject are (Awodey, 2010) and (Mac Lane, 2013).

For every category C, we denote by IdC the identity functor IdC : C → C
which maps every object and every morphism into itself. Moreover, given
two functors F : C → D and G : D → E , we denote by GF their natural
composition.

Definition 2.36. We say that two categories C and D are equivalent, in symbols
C ∼= D, whenever there exist a functor F : C → D which is:

- fully faithful: for any pair of objects x, y ∈ ob(C), the assignment F :
homC(x, y)→ homD(F (x), F (y)) is bijective;
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- essentially surjective: for any object y ∈ ob(D) there is an object x ∈ ob(C)
such that F (x) and y are isomorphic in D.

Equivalently, C and D are equivalent if there are two functors F : C → D,
G : D → C and two natural isomorphisms ε : FG→ IdC and η : IdD → GF .

Definition 2.37. Two categories C and D are said to be dually equivalent if
C ∼= Dop or, equivalently, Cop ∼= D.

It follows from Stone’s seminal paper (Stone, 1936) that the category BA
is dually equivalent to the category of the now-called Stone spaces.

Definition 2.38. A (X, τ) topological space is called a Stone space provided
that it is compact, T0 and it has a base of clopens sets.

We denote by Stone the category of Stone spaces and continuous func-
tions. Stone spaces exhibit some properties which we shall summarize. As an
example, they are totally disconnected and totally separated. Two standard
references on the subject are (Stone, 1936) and (Davey & Priestley, 2002).

Proposition 2.39. Let (X, τ) be a topological space. The following are equivalent:

1. (X, τ) is a Stone space;

2. (X, τ) is compact, T2 and totally disconnected;

3. (X, τ) is compact and totally separated;

4. (X, τ) is compact, T2 and it is homeomorphic to the limit of an inverse system
of finite T1 spaces;

5. (X, τ) is homeomorphic to the limit of an inverse systems of finite discrete spaces.

Let us briefly review Stone representation theorem. Given a Stone space
(X, τ), the lattice

(Clop(X),∩,∪,r, ∅, X)1

induced by the poset (Clop(X),⊆) is a Boolean algebra. Moreover, a continuous
function f : X → Y between two topological spaces (X, τ) and (Y, σ) induces
an assignment f−1 betweenP(Y ) andP(X). Then, observe that f−1(V ) ∈ τ for
any V ∈ σ and furthermore, if V c ∈ τ we also deduce f−1(V c) = (f−1(V ))c ∈
τ . This proves that if V is clopen, then so it is f−1(V ). In other words, f−1

restricts to a map Clop(Y )→ Clop(X). One can also check that this restriction
is a Boolean algebra homomorphism.

In other words, we have a functorial assignment Clop from from Stone
into BAop. Stone representation theorem tells us something more: the functor
Clop is part of an equivalence of categories.

1Here the symbol r denotes the set-theoretical complement with respect to Clop(X).
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Let B be a Boolean algebra, and denote by Spec(B) its set of prime filters.
For any x ∈ B, we can consider the prime filters that contain x. Formally, there
is an assignment ϕ : B → Spec(B) defined by

ϕ(x) = {F ∈ Spec(B) | x ∈ F}.

It turns out that ϕ is an isomorphism of BA between B and Spec(B). Indeed,
the poset (Spec(B),⊆) is a Boolean algebra, and moreover the following hold
for every x, y ∈ B:

ϕ(⊥) = ∅;
ϕ(>) = Spec(B);

ϕ(x ∧ y) = ϕ(x) ∩ ϕ(y);
ϕ(x ∨ y) = ϕ(x) ∪ ϕ(y);
ϕ(¬x) = B r ϕ(x).

This implies that {ϕ(x) | x ∈ B} is closed under binary intersections and
complements, and moreover it contains ∅ and Spec(B). This means that we
may generate a topology τ on Spec(B). This topology makes (Spec(B), τ) a
Stone space. For instance, observe that we have already found a basis of
clopens, namely {ϕ(x) | x ∈ B}. Finally, for every homomorphism f : B→ B′,
the inverse image f−1 restricts to f−1 : Spec(B′)→ Spec(B) and moreover it is
continuous. Thus, there is a functorial assignment Spec from BA to Stone.

The functors Clop and Spec yield the following duality.

Theorem 2.40 (Stone duality). The categoriesBA andStone are dually equivalent.

The second duality we are going to revisit was discovered by Priestley, see
(Priestley, 1970) and (Priestley, 1984). This duality states that the category
BDL of bounded distributive lattices is dually equivalent to a category of
certain ordered Stone spaces. She called these spaces totally order disconnected
Stone spaces, but they now bring her name.

Definition 2.41. A topological ordered space X = (X, τ,6) is said to be a
Priestley space if τ is compact and, in addition, for every x, y ∈ X such that
x 66 y there is some clopen upset U containing x but not y. This separation
property is called the Priestley separation axiom.

Definition 2.42. Assume X and Y are two Priestely spaces and let f : X → Y
be a map between their underlying sets. The map f is said to be a Priestley
morphism if it is continuous and order-preserving.

Priestley spaces and Priestley morphisms form a category Pries. Let us
summarise some useful properties of Priestley spaces (they are well-known,
for a reference see, for instance, (Bezhanishvili, Bezhanishvili, Gabelaia, &
Kurz, 2010)).

Proposition 2.43. Let X = (X, τ,6) be a Priestley space. Then, the following hold:
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1. (X, τ) is a Stone space;

2. For every closed F ⊆ X , both ↓F and ↑F are closed. Moreover, both ↓F and
↑F are Priestley subspaces of X, when endowed with the induced order and the
induced topology of X.

Corollary 2.44. Let X = (X, τ,6) be a Priestley space. Then, for every x ∈ X , both
↑x and ↓x are closed as well as Priestley subspaces of X.

It is easy to see that (ClopUp(X),∩,∪, ∅, X) is a bounded distributive lattice.
Moreover, any continuous map f between Priestley spaces gives rise to a dual
homomorphism between their induced lattices, as in the case of Stone spaces.
That is, there is a functor ClopUp : Pries→ BDL.

Once again, the difficult part is to construct the functor inverse to ClopUp.
The complication lies in the fact that, if we look at the spectrum of a bounded
distributive lattice L, in symbols Spec(L), the set {ϕ(x) | x ∈ L} is no more
necessarily closed under complements. This is a problem because we are
looking for a basis of clopens which, by definition, must be closed under set-
theoretical complements.2 This problem can be solved by considering the
following set

{ϕ(x) | x ∈ L} ∪ {ϕ(x)c | x ∈ L}

which is closed under complement by construction. On the other hand, it is
not necessarily closed under finite intersections, but we can still take it as a
subbase for a topology τ on Spec(L). The triple (Spec(L), τ,⊆) is a Priestley
space, and the assignment Spec is a functor which is inverse of ClopUp.

Summing up, Priestley proved the following theorem.

Theorem 2.45 (Priestley duality). The categories BDL and Pries are dually
equivalent.

Finally, let us review Esakia duality for Heyting algebras. This duality was
discovered by Esakia, and was presented in (Esakia, 1974), see also (Esakia,
2019). It states that HA is dually equivalent to the category of what Esakia
called hybrids, and they are now known as Esakia spaces.

Definition 2.46. A Priestley space X is said to be an Esakia space if ↓U is open
whenever U is open. Sometimes we will just say that X is Esakia.

Definition 2.47. Assume X and Y are two Esakia spaces and let f : X → Y be
a map between their underlying sets. f is said to be an Esakia morphism if it
is a Priestley morphism and, in addition, for every x ∈ X , y ∈ Y , if f(x) 6 y
then there is some z ∈ X such that x 6 z and f(z) = y.

2It might be worth mentioning that the assignment ϕ actually gives rise to a duality, namely
the duality between bounded distributive lattices and spectral spaces. See, e.g., (Stone, 1938)
or (Johnstone, 1982).
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A map f between topological ordered spaces which satisfies the third
condition of an Esakia morphism is sometimes called a bounded morphism, or a
p-morphism, in analogy with the bounded (resp. p-morphisms) of modal logic
(see (Blackburn, de Rijke, & Venema, 2002)). Esakia spaces and bounded
morphisms form a category, which will be denoted by Esa.

The next proposition shows two useful characterizations of Esakia spaces.
A standard reference on the subject is (Esakia, 2019).

Proposition 2.48. Let X a Stone space. Then, the following are equivalent:

1. X is Esakia;

2. X is Priestley and ↓U is clopen whenever U is clopen;

3. ↑x is closed for each x ∈ X and ↓U is clopen whenever U is clopen.

Another important property of Esakia spaces is the next one.

Proposition 2.49. LetX = (X,6, τ) be an Esakia space. The set of maximal elements
max(X) is closed in τ .

It is not difficult to see that the topological ordered space (Spec(H), τ,⊆),
where τ is generated as in the Priestley case, is an Esakia space. On the other
hand, if we start with an Esakia space X = (X, τ,6) and we want to turn
(ClopUp(X),∩,∪, ∅, X) into a Heyting algebra, we should be able to find a
Heyting implication→ on it. In order to do this, let U and V be two clopen
upsets. It is possible to prove that (↓(U r V ))c satisfies the properties of
a Heyting implication. Moreover, since X is an Esakia space, we have that
↓(U r V ) is a clopen downset, and thus its complement is a clopen upset. This
now suffices to state the last theorem of this section.

Theorem 2.50 (Esakia duality). The categories HA and Esa are dually equivalent.

This concludes the review on preliminaries. We are now ready to start our
investigation of the Priestley and Esakia representability problems.
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The representability problem

This chapter collects some important facts about Priestley (resp. Esakia) rep-
resentable posets. We will employ them extensively throughout chapter 4.

The purpose of the first section is to review some standard techniques used
to study the representability problem. Therefore, we provide self-contained
proofs of some results that are already known.

In the second section we prove some technical facts on Priestley (resp.
Esakia) representable posets. In particular, we focus on points of a poset
which cannot be isolated for any Priestley (resp. Esakia) topology. Moreover,
we generalize Hochster’s condition H and we provide two forbidden configura-
tions of Esakia representable posets. To the best of our knowledge, the results
that we discuss in the second section have not appeared in the literature.

3.1 First properties
Before studying the spectra of bounded distributive lattices and of Heyting
algebras, one might first wonder which posets are isomorphic to the prime
spectrum of a Boolean algebra. This problem is easier to resolve, because the
prime filters of a Boolean algebra B are maximal with respect to the set of
proper filters of B. In particular, they are pairwise incomparable. Thus, a poset
isomorphic to the prime spectrum of a Boolean algebra must be an antichain.
In view of Stone representation (2.40), the converse reduces to the problem of
studying which sets could carry a Stone topology.

Theorem 3.1. Every set X can be endowed with a Stone topology.

Proof. We have two cases: either X is finite or not. In the former case, the
discrete topology P(X) is a Stone topology on X . In fact, it is compact, T0

(every singleton is open) and every open is clopen, thus it has a basis of

19
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clopens. If, on the other hand,X is infinite,X is in particular nonempty, hence
there exists some x0 ∈ X . Then, consider the topology τ generated by the base
FinCofin(x0) defined as:

{U ⊆ X | x0 /∈ U and |U | < ℵ0} ∪ {U ⊆ X | x0 ∈ U and |U c| < ℵ0}

That this defines a base is clear: the intersection of two cofinite (resp.
finite) subsets of X containing x0 (resp.
not containing x0) is again cofinite (resp. finite) and does not contain x0 (resp.
does contain x0). Moreover, observe that this base consists of clopens by
definition. We should mention that this topology is essentially the one-point
compactification of the discrete set X r {x0}.

Then, τ is T0: if x 6= y, we have two cases. Either x0 = x or not. In the
former case, both {y} and {y}c are opens. They are disjoint and they contain y
and x respectively. In the latter case, the same reasoning holds for the subsets
{x} and {x}c.

Finally, τ is compact. For, any open covering⋃i∈I Ui must include an open
set U which contains x0. By definition, this open set covers the whole X but
finitely many x1, . . . , xn. In fact, the open set U must be a union of basic opens,
thus x0 already belongs to one of such basic opens and, by definition, such
basic open must be cofinite. Then, for each xi there is an open set Uxi , and
hence U ∪⋃0<i6n Uxi is a finite subcovering of⋃i∈I Ui.

The cases of Priestley spaces and Esakia spaces are much harder to tackle
and, in fact, they are still open. However, there is an immediate result that we
should mention: every finite poset is Esakia representable, and hence Priestley
representable.

Proposition 3.2. Every finite poset (P,6) is uniquely Esakia representable.

Proof. Let P(P ) be the discrete topology on P and consider (P,6,P(P )). We
claim that it is an Esakia space: compactness holds because P is finite; the
Priestley separation axiom holds because if x 66 y then ↓y is a clopen downset
containing y but not x and the Esakia condition holds trivially because every
set is open.

Moreover, this topology is unique, because the only T1 topology on a finite
set is the discrete one.

Corollary 3.3. Every finite poset (P,6) is uniquely Priestley representable.

Proof. This follows immediately from the proof of the previous proposition.

We will now introduce an important concept for a poset.
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Definition 3.4. Given a poset (P,6), a pair (x, y) ∈ P × P is said to be a
gap of P if x < y and [x, y] = {x, y}. A poset (P,6) is said to have enough
gaps if, for every x, y ∈ P such that x < y, there is a gap (x1, y1) such that
x 6 x1 < y1 6 y.

Perhaps, the best-known facts about a Priestley representable poset P are
the following two:

C1 The nonempty chains of P have infima and suprema in P;
C2 P has enough gaps.

These conditions have already been introduced in (Grätzer, 1971) and
(Kaplansky, 1970). In order to prove that a Priestley representable poset
satisfies C1 and C2, we make use of Priestley duality, i.e., Theorem 2.45.
Proposition 3.5 (Condition C1). Let P be a Priestley representable poset. Then,
every nonempty chain C ⊆ P has infumum and supremum.
Proof. In view of Priestley duality we can assume P to be the poset of prime
filters of some bounded distributive lattice L, since P is Priestley representable;
in particular the ordering of P is the set theoretical inclusion ⊆ between prime
filters. Then, let C ⊆ P be a nonempty chain of P. In view of Proposition 2.23,
both⋂C and⋃C are prime filters of L, hence they belong to P . Clearly, these
are the infimum and the supremum of C in P, respectively.
Proposition 3.6 (Condition C2). Any Priestley representable poset P has enough
gaps.
Proof. Let P be a Priestley representable space. This means that P can be
thought as the poset of prime filters of a bounded distributive lattice ordered
by inclusion. Accordingly, let F ⊂ G two prime filters. Let us consider the
poset of chains of prime filters between F and G, ordered by inclusion. This
poset is non empty, because {F,G} belongs to it. Then, every chain of this
poset has an upper bound: the union of chain of chains between F and G
is still a chain of prime filters between F and G and clearly it extends every
other chain between F and G. Hence, Zorn’s lemma guarantees that there is
a maximal chain {Hi | i ∈ I} of prime filters between F and G. Now, F ⊂ G
means that there is some x ∈ Gr F . Define G1 :=

⋂
x∈Hi

Hi and F1 :=
⋂

x/∈Hi
Hi.

Due to Proposition 2.23, G1 and F1 are prime filters. Moreover, we have
F ⊆ F1 ⊂ G1 ⊆ G, because F1 does not contain x while G1 does. Finally,
the pair (F1, G1) is a gap, because any prime filter between F1 and G1 would
extend the chain {Hi | i ∈ I}, against its maximality.

Observe that, since every Esakia space is, in particular, a Priestley space
(Definition 2.46), an Esakia representable poset has to satisfy C1 and C2 as
well.
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The condition of having enough gaps is less straightforward than C1, and
it suggests that the problem of Priestley (resp. Esakia) representability is a
rather complex one. This is also manifested by the fact that C1 and C2 are not
the only conditions that a Priestley (resp. Esakia) representable poset must
satisfy. The following example appears in (Lewis & Ohm, 1976), where its
discovery is attributed to Hochster.
Example 3.7. Let P = (P,6) a poset whose universe P is equal to X ∪ Y ,
where X and Y are two denumerable disjoint sets, X = {xn | n ∈ N} and
Y = {yn | n ∈ N} and the ordering 6 is defined as follows: x 6 y if and only
if x = y or x = xn for some n ∈ N and y = ym for some m 6 n. See the picture
below.1

y0 y1 y2 y3 y4
. . .

x0 x1 x2 x3 x4

. . .

Clearly P has complete chains and it has enough gaps. However, we claim
that it is not Priestley representable. For the sake of contradiction, let us
suppose there is a Priestley topology on it. As we have already observed, it
must contain the complement of every principal downset. In particular, each
(↓yn)c is open, and moreover the equation

P =
⋃
n∈N

(↓yn)c

holds. For, ym /∈ ↓yn for every n 6= m. Moreover, for every n > m it holds
xm /∈ ↓yn. We thus have an infinite open covering of P . Observe that this
covering does not have any finite subcovers. In fact, for any finite union
↓yn1 ∪ · · · ∪ ↓ynm there is some k > max{yn1 , . . . , ynm} and thus yk /∈ ↓yni for
i 6 m.

This contradicts the fact that every Priestley topology is compact, thus
implying that the above poset is not Priestley representable.

The poset that we have just discussed is not representable because of the
following reason: there is a collection C of principal downsets whose intersec-
tion is empty but C does not have a finite subcollection whose intersection is
empty. We will see how to generalize this condition in the next section (see
Proposition 3.21). Notice also that such poset has height 2 but is not image
finite. We should mention that there are also image finite posets which are not
Priestley representable. More specifically, in Example 3.23 we will provide a
poset of height 2 and width 2 which satisfies C1 and C2 but is not Priestley
representable.

1As a convention, we will not draw reflexive nor transitive arrows.
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Nevertheless, there are classes of Priestley (resp. Esakia) representable
posets which are characterized by C1 and C2. For example, it follows from
(Balbes, 1971) that the class of nonempty Priestley representable chains is
the class of chains which satisfy C1 and C2. Even more is true: Priestley and
Esakia representable chains coincide. Recall also that the empty chain is also
Priestley (resp. Esakia) representable, because all finite posets are.

Theorem 3.8. A nonempty chain (C,6) is Priestley representable if and only if it
satisfies C1 and C2.

Proof. We already know that every Priestley representable chain must have
enough gaps. Moreover, it has to be complete, it must satisfy C1. As for the
other direction, consider the topology τ generated by the union of the two
following sets:

{↓g1 | ∃g2(g2 ∈ C and (g1, g2) is a gap)};

{↑g2 | ∃g1(g1 ∈ C and (g1, g2) is a gap)}.

Let us show that τ is a Priestley topology on C.
Compactness: In view of Alexander’s subbase theorem, it suffices to show

that the subbase we have defined is compact. As such, let (Ui)i∈I be a covering
of C by means of subbase opens. By assumption C is complete, therefore there
are inf C 6 supC. If inf C = supC there is nothing to prove, otherwise let
(g1, g2) be a gap between them, which exist since has C has enough gaps. Then,
there must be two open sets U1 and U2 containing g1 and g2 respectively. If
U1 = ↓g3 and U2 = ↑g4 or U1 = ↑g3 and U2 = ↓g4 then in both cases U1 ∪ U2

already covers the whole C, and we are done.
On the other hand, if U1 = ↓g3 and U2 = ↓g4 (respectively, U1 = ↑g3

and U2 = ↑g4) without loss of generality we may assume g3 6 g4. Now, if
g4 = supC (resp. g3 = inf C) there is nothing to prove, otherwise consider
a gap (g5, g6) between g4 and supC (resp. inf C and g3). The just described
reasoning applies to (g5, g6) as well. Either this sequence stops after finitely
many steps, or we end up with ω-many downsets (resp. upsets). In other
words, we obtain a chain whose supremum g must exist by completeness. Let
U be an open set containing g: observe that it cannot be U = ↑g because this
would mean that (h, g) is a gap for some h < g, but g comes as a limit of an
infinite ascending chain. Thus, either U = ↑h for some h < g or U = ↓h for
some g < h. In the former case, let gn a member of the sequence whose limit
is g such that h < gn. Then, ↓ gn ∪ ↑h covers the whole C. In the latter case,
every open set ↓gn is included in ↓h and we can consider a gap between h and
supC and proceed as before. The other limit cases are analogous to what we
have just described for ω. In conclusion, τ is compact.

Priestley separation: Suppose x 66 y for some x, y ∈ C. Notice that C
being a chain implies y < x. Thus, there is a gap (g1, g2) between them. Then,
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from C = ↓g1 ∪ ↑g2 and ↓g1 ∩ ↑g2 it follows ↑g1 = (↓g2)c. Whence, ↑g1 is a
clopen upset containing x but not y.

Corollary 3.9. A chain (C,6) is Priestley representable if and only if it is Esakia
representable.

Proof. Every Esakia space is, in particular, a Priestley space. Hence, it suffices
to show that, for chains, being Priestley representable implies being Esakia
representable. Accordingly, suppose (C,6) is a Priestley representable chain.
Let us show that the topology τ that we have defined in the proof of Proposition
3.8 is an Esakia topology. Let U be an open in τ . From the definition of τ used
in the previous proof it follows that U is the union of a finite intersection of
subbase opens. Recall that ↓ commutes with arbitrary unions, therefore it
suffices to show that the downset of any finite intersection of subbase open
sets is again an open set. In order to see this, consider the following set:

↓ (↓g1 ∩ · · · ∩ ↓gn ∩ ↑h1 ∩ · · · ∩ ↑hm)

where every gi is part of a gap (gi, g
′
i) and every hi is part of a gap (h′i, hi).

Because both n and m are finite, without loss of generality we might assume
g1 and h1 to be the maximum and the minimum among the gi’s and the hi’s,
respectively.

If g1 < h1, we deduce ↓g1 ∩ ↑h1 = ∅, and clearly ↓∅ = ∅.
Otherwise, since C is a chain, we deduce h1 6 g1 and thus ↓(↓g1 ∩ ↑h1) =

↓([h1, g1]) = ↓g1. This concludes the proof.
The characterization of Priestley (resp. Esakia) representable chains implies

that the class of Priestley (resp. Esakia) representable posets is not elementary.
Recall that a class C of similar structures (in our case, a class of posets) is said
to be elementary if there is a first order theory whose class of models coincide
with C.

Corollary 3.10. The class of Priestley (resp. Esakia) representable posets is not
elementary.

Proof. Elementary classes are closed under ultraproducts. In order to see this,
let C = Th(C) be an elementary class and Mi a collection of models of Th(C),
indexed by i ∈ I . Then, if U is an ultraproduct on I , it holds ∏U Mi |= ϕ
for every ϕ ∈ Th(C), because of Łoś Theorem. However, it is known that the
ultraproduct of complete chains need not be complete.

Before proceeding, we shall provide a method for constructing concrete
examples of complete chains with enough gaps.
Remark 3.11. Let (C,6) be a complete chain. Then, we build a complete chain
with enough gaps (C∗,�) by replacing every point x ∈ C with a gap (x1, x2),
in such a way that x1 ≺ x2 and whenever x 6 y then x1 ≺ x2 � y1 ≺ y2.
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The chain (C∗,�) will have enough gaps by construction and it is complete
because so is (C,6).

Since we have focused on chains, we shall mention a result on antichains.

Proposition 3.12. There are Priestley (resp. Esakia) representable posets of arbitrary
width.

Proof. Let κ be a cardinal and consider the set Xκ := κ t {⊥} ordered by
6κ:= {(⊥, λ) | λ ∈ κ}. This defines a poset of cardinality κ. Moreover, the
family of subsets of Xκ

{U ⊆ κ | 0 /∈ U and |U | < ℵ0} ∪ {U ⊆ κ | 0 ∈ U and |U c| < ℵ0}

induces an Esakia topology on it. Compactness and the Esakia condition
are immediate as well. Then, if x 66 y we have two cases: if x = 0 then
U = κr {⊥, y} is a clopen upset containing x but not y (because x 66 y implies
x 6= ⊥); otherwise so it is U = {x} for the same reason.

Priestley and Esakia representable chains coincide, but this is not true for
every class of posets. We will see at the end of this section that there are
Priestley representable posets which are not Esakia representable. However,
before showing the differences between the classes of Priestley and Esakia
representable spaces, we shall mention two similarities: they are both closed
under arbitrary disjoint unions and finite ordered sums.

That the class of Priestley spaces is closed under disjoint unions was already
noticed by Lewis and Ohm in (Lewis & Ohm, 1976). They did not gave a proof
but, for the sake of completeness, we shall provide one. First, we need an
observation.

Observation 3.13. Let P be a Priestley (resp. Esakia) representable poset. If P
is nonempty then the set of maximal elements of P is nonempty.

Proof. We can appeal to Zorn’s lemma: let C be a nonempty subchain of
P. Since P is Priestley representable we know that C has a supremum in P.
Therefore, Zorn’s lemma implies that the set of maximals of P is nonempty.

Proposition 3.14. Let (Pi,6i)i∈I a collection of posets. If each (Pi,6i) is Esakia
representable then so it is (

⊔
i∈I Pi,6).

Proof. Let τi be an Esakia topology on Pi, which exists by assumption, and
denote by P the disjoint union of the Pi’s.

Without loss of generality we may assume I 6= ∅, otherwise there is nothing
to prove. Moreover, we can assume Pi 6= ∅ for every i. Let us observe that for
all i ∈ I it holds maxPi 6= ∅, in view of the previous Observation. Then, since
I is nonempty, we can consider P0 and a maximal point x0 ∈ P0.

Declare that a subset U ⊆ P is open if and only if the two following hold:
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1. U =
⋃
i∈J Ui for some J ⊆ I and Ui ∈ τi;

2. If x0 ∈ U then there is some J ′ ⊆ J cofinite in I such that ⋃j∈J ′ Pj ⊆ U
and Uj 6= ∅ for every j ∈ J ′.

Call τ the family of subsets of P that we have just defined and let us prove
that it is an Esakia topology.

Compactness: Any open covering of P must contain an open set U such
that x0 ∈ U . Then, U covers already the entire P up to finitely many Pi’s,
because of the second condition that defines τ . However, a covering of Pi by
means of open sets of τ is, in particular, an open covering of Pi by means of
open sets in τi, thanks to the first condition defining τ . But each τi is compact,
therefore we can conclude.

Priestely separation: Assume x 66 y for some x, y ∈ P . Then, there are
i, j ∈ I such that x ∈ Pi and y ∈ Pj .

- If i = j, since (Pi,6i, τi) is an Esakia space there is a clopen upset Ui ∈ τi
such that x ∈ Ui but y /∈ Ui. If i = 0 and x0 ∈ U0 then set

U := U0 ∪
⋃

k∈Ir{0}

Pk.

Otherwise, consider U := Ui.
In both cases, both U and U c are opens. For, if i = 0 and x0 ∈ U0 then
U c = P0 r U0. Otherwise, U c = (P0 r U0) ∪

⋃
k 6=0 Pk. Moreover, in both

cases U is an upset because so is Ui.

- If i 6= j, then one among them is non-zero, we might assume without
loss of generality that i 6= 0. Thus, Pi is a clopen set both upward and
downward closed containing x but not y.

Esakia condition: Fix some U =
⋃
i∈J Ui for Ui ∈ τi and consider ↓U .

Recall that ↓ commutes with arbitrary unions, hence ↓U =
⋃
i∈J ↓Ui. Now,

each ↓Ui belongs to its respective τi, because each (Pi,6i, τi) is an Esakia space.
Moreover, if x0 ∈ ↓U then, since x0 was chosen to be maximal in P0, it

must be x0 ∈ U already, and hence J is cofinite in I because U is an open set
by assumption.

Corollary 3.15. Let (Pi,6i)i∈I a collection of posets. If each (Pi,6i) is Priestley
representable then so it is (

⊔
i∈I Pi,6).

Proof. This follows from the proof of the previous proposition.
Another well-known closure property is mentioned on page 85 of (Esakia,

2019)). There it is said that the class of Esakia representable posets is closed
under finite ordered sums. Let us explain what does this mean: let (P,6) a poset
and let (Px,6x) be a poset for every x ∈ P . The ordered sum of the (Px,6x) is
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the poset (P ∗,6∗) whose universe is ⊔x∈P Px and the relation 6∗ is defined
as follows:

a 6∗ b⇐⇒ (a, b ∈ Px and a 6x b) or (a ∈ Px, b ∈ Py and x < y)

for some x, y ∈ P .
Observe that we have used the first letters of the latin alphabet a, b, c, . . .

for the elements of P ∗ and of each Px, while we used the letters x, y, z, . . . for
the elements of P .

Proposition 3.16. Let (P,6) be a finite poset and {(Px,6x) | x ∈ P} a collection
of (possibly infinite) Esakia representable posets. Then, its ordered sum (P ∗,6∗) is
Esakia representable.

Proof. Because every (Px,6x) is Esakia representable there is a topology τx on
Px for every x ∈ P which makes (Px,6x, τx) an Esakia space. Then, consider
the topology τ∗ on P ∗ generated by

B =
⋃
x∈P

τx ∪ {∅}.

This defines a base because if U, V ∈ B we either have U, V ∈ τx or not. In the
former case, U ∩V ∈ τx and hence U ∩V ∈ B. In the latter case, U ∩V = ∅ ∈ B.

Compactness: let (U∗i )i∈I be an open covering of P ∗. As usual, we may
assume this covering to consists of open sets from the base. In other words,⋃
i∈I U

∗
i = P ∗. In particular, for every x ∈ P there is some Ix ⊆ I such that

Px ⊆
⋃
i∈Ix U

∗
i . Every such Ui must belong to τx by definition, and since τx is

a compact topology, without loss of generality, we may assume Ix to be finite
for every x ∈ P . But P is finite as well, hence our covering is made by a finite
unions of finite open sets, i.e. it is finite itself.

Priestley separation: Assume a 66 b. We have two cases: either a, b ∈ Px
for some x ∈ P or not.

1. In the former case, since (Px,6x, τx) is an Esakia space, there is a clopen
upset Ux ∈ τx containing a but not b. Then, the upset generated by Ux
within (P ∗,6∗) is a clopen upset of τ∗ containing a but not b. In fact,
↑Ux = Ux ∪

⋃
x<y Py and we have the following equalities:

(↑Ux)c = (Ux)c ∩
⋂
x<y

(Py)
c = (Px r Ux) ∪

⋃
z<x

Px.

2. In the latter case, it holds a ∈ Px and b ∈ Py for two distinct elements x
and y of P . By definition, we deduce x 66 y. Hence,⋃z6y Pz is an open
downset containing y but not x. It is also closed since its complement is⋃
z 66y Pz .
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Esakia condition: Let U be an open of τ∗. By definition, U is union of basic
open sets of the form Ux ∈ τx.

Recall that ↓ commutes with arbitrary unions. This means that in order to
show that ↓U is an open set, it suffices to show that each ↓Ux belongs to τ .

This is the case, since ↓Ux = (↓Ux ∩ Px) ∪
⋃
y<x Py and ↓Ux ∩ Px ∈ τx

because (Px,6x, τx) is an Esakia space.

Corollary 3.17. Let (P,6) be a finite poset and {(Px,6x) | x ∈ P} a collection of
(possibly infinite) Priestley representable posets. Then, its ordered sum (P ∗,6∗) is
Priestley representable.

Proof. This follows from the proof of the previous proposition.
We can notice that since (P,6) is finite it is, in particular, Esakia (whence

Priestley) representable. Accordingly, one could wonder whether the previous
proposition holds if we ask the poset (P,6) to be Esakia (resp. Priestley)
representable, rather than just finite. This is not the case, as the following
example shows.
Example 3.18. Consider the ordered structure of the ordinal ω + 1, i.e. P =
(ω+ 1,∈). We already know that P is Esakia (whence Priestley) representable,
because it is a complete chain with enough gaps. Moreover, for every n ∈ ω we
define (Pn,6n) to be a different copy of the one element poset ({n}, {(n, n)})
while we let (Pω,6ω) be the two elements antichain ({a, b}, {(a, a), (b, b)}).
Then, consider the poset (P ∗,6∗), whose universe P ∗ consists of the set ω ∪
{a, b} and a and b are above every natural number and moreover a ‖ b; see
picture below.

a b
...

2

1

0

We can observe that (P ∗,6∗) is not Priestley (hence not Esakia) representable.
For, the chain ω ⊆ P ∗ does not have a supremum, since its set of upper bounds
does not have a least element.

At this point, we shall mention the differences between Priestley and Esakia
representable posets. The underlying idea is that Priestley spaces are closed
under order duals, but this is not the case for Esakia spaces. For, the Esakia
condition is asymmetrical with respect to the ordering of the poset, due to the
requirement that the downset of an open set must be an open set as well.

Proposition 3.19. A poset P is Priestely representable if and only if so is its order-dual
P∂ .
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Proof. It suffices to prove that if (P, τ) is a Priestley space, then so is (P∂ , τ).
Accordingly, observe that a topology is compact on (P,6) if and only if it is
such on (P,>). Moreover, x 6> y if and only if x 66 y and an open is a 6-upset if
and only if U c is >-upset, and this implies that two points satisfy the Priestley
separation axiom on P if and only if they satisfy it in P∂ .

As we have mentioned, this is not the case for Esakia representable posets,
as the next example shows.
Example 3.20. Let P be the poset whose universe is N∪{ω, ω1} and the ordering
6 is defined to be the usual ordering of the natural numbers together with the
reflexive closure of {(n, ω) | n ∈ N} ∪ {(ω1, ω)}, see the picture below.

0

1

2

...

ω
ω1

Then, let τ be the topology generated by the basis FinCofin(ω), which is the set
of finite subsets not containing ω together with the cofinite ones containing it.
It is easy to see that (P, τ) is an Esakia (whence Priestley) space. For, any open
covering can, without loss of generality, be taken to contain only basic open
sets, one of which must contain ω and hence it is cofinite. This implies that τ is
a compact topology. Moreover, the Priestley separation axiom holds because
if x 66 y then y 6= ω and thus ↑x ∪ ↑n for n > m if y = m is a clopen upset
containing x but not y. Finally, for the Esakia condition, let U be a clopen. If
ω ∈ U then ↓U = P which is clopen. Otherwise, ↓U is finite and it does not
contain ω.

Let us now consider the order dual P∂ of P, i.e. the poset whose universe
is N ∪ {ω, ω1} and the ordering 6 is the reflexive closure of the following:
{(n,m) | m ∈ n} ∪ {(ω,m) | m ∈ N} ∪ {(ω, ω1)}, see the picture below.

0

1

2
...
ω

ω1

In view of Proposition 3.19, we know that P∂ is Priestley representable. How-
ever, we claim that it is not Esakia representable. In order to see this, let us
proceed by contradiction, assuming that there is an Esakia topology on it.
Clearly, ω1 66 0, therefore there is a clopen upset U containing ω1 but not 0. In
particular, U cannot contain ω nor any natural number, i.e. U = {ω1}. Now,
because we have supposed our topology to satisfy the Esakia condition, it must
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be that ↓U = {ω1, ω} is an open set as well. But then, consider ↓U ∪⋃(↓n)c.
It is an open covering of P, because every ↓n must be a closed set, and more-
over for every m there is some n such that m ∈ n and m ∈ (↓n)c. That is,
we have found an infinite covering of P. Clearly, it does not have any finite
subcovers. For, ω does not belong to any open of the covering apart from ↓ U ,
and for any finite union of the form (↓n1)c ∪ · · · ∪ (↓nm)c there is k such that
max{n1, . . . , nm} ∈ k and thus k /∈ (↓n1)c∪· · ·∪(↓nm)c. This is a contradiction,
because every Esakia space is, in particular, compact.

The non-Esakia representable poset of the above example will play an
important role in the following section, hence let us call it P0.

3.2 Necessary conditions
In the previous section we have reviewed some of the best known properties
of Priestley and Esakia representable posets. This section is devoted to the
presentation of some results which, to the best of our knowledge, do not appear
in the literature. Some of them are rather technical, but we will employ most
of them extensively in Chapter 4.

Recall that Example 3.7 shows that there is a poset which satisfies C1 and
C2 but is not Priestley representable. As observed by Lewis and Ohm in
(Lewis & Ohm, 1976), the poset described in this example is not Priestley
(resp. Esakia) representable because it has a collection C of principal downsets
whose intersection is empty, but C does not have a finite subcollection whose
intersection is empty.

This property can be generalized as follows.

Proposition 3.21 (Condition C3). Let P be a Priestley representable poset, and let
U ⊆ P(P ) be the least family of subsets of P that contains:

1. Every principal upset of P;

2. Every principal downset of P;

and it is closed under finite unions, arbitrary intersections, generated upsets and
generated downsets. Then, if {Ui | i ∈ I} is a family of elements of U whose
intersection is empty, there exists a finite subfamily whose intersection is also empty.

Proof. Let τ be a topology such that (P, τ) is a Priestley space.
Observe that the family U consists of closed subsets of (P, τ). For, in view

of Corollary 2.44 we know that the principal upsets and principal downsets of
P are closed. Then, the set of closed subsets of P is closed under finite unions
and arbitrary intersections. Moreover, in view of Proposition 2.43, generated
upsets and downsets of closed sets are closed sets as well.

Therefore, the above mentioned property is a reformulation of compactness
by means of closed subsets of P .
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Proposition 3.22 (Condition C3 for Esakia representable posets). Let P be an
Esakia representable poset, and let U ⊆ P(P ) be the least family of subsets of P that
contains

1. every principal upset of P;

2. every principal downset of P;

3. the set of maximals max(P) of P;

and it is closed under finite unions, arbitrary intersections, generated upsets, generated
downsets and complements of generated downsets of complements. Then, if {Ui |
i ∈ I} is a family of elements of U whose intersection is empty, there exists a finite
subfamily whose intersection is also empty.

Proof. The proof is analogous to that of the proof of Proposition 3.21. Just
recall that for every Esakia space, its set of maximals is closed (Proposition
2.49). Moreover, in any Esakia space the space the downset of every open set
is an open set as well, i.e. the complement of the downset of a complement of
a closedm set, is a closed set.

Let us provide an application of the previous proposition. We will use it
in order to show that there is a poset of height 2 and width 2 which satisfies
C1 and C2 but it is not Priestley (resp. Esakia) representable, because it does
not satisfy C3.
Example 3.23. Consider the poset P depicted below.

k k + 1 k + 2 k + 3k − 1k − 2k − 3
. . .. . .

⊥{k,k+2} ⊥{k,k+3}⊥{k,k−2}⊥{k,k−3}

. . .. . .

It is defined starting from the set of integers Z. Then, for every k ∈ Z and
n+ 1 < k, we consider a point ⊥{n,k}. We define:

P = Z ∪ {⊥{n,k} | k ∈ Z, n+ 1 < k}.

The ordering 6 on P is defined as follows:

x 6 y ⇐⇒ either x = y or (x = ⊥{n,k} and y ∈ {n, k}).

Observe that P has height two and width two. Moreover, it satisfies C1 and C2.
In (Bezhanishvili et al., 2021) it was shown that P is not Esakia representable.
Even more is true: we will prove that it does not satisfy C3, and hence it is not
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Priestley representable either. In order to see this, consider, for every k ∈ Z,
the upset ↑{↓k} of its principal downset ↓k. We claim that⋂k∈Z ↑{↓k} = ∅. In
order to see this, let us do some observations.

1. For every k ∈ Z, it holds ↓k = {k} ∪ {⊥{n,k} | n+ 1 < k}. This follows
immediately from the definition of 6.

2. For every k ∈ Z it holds ↑{↓k} = {⊥{n,k} | n+1 < k}∪(Z r {k − 1, k + 1}).
In view of the previous point, it suffices to prove the following:

↑{↓k} ∩ Z = Z r {k − 1, k + 1}.

(⊆) If h is above some ⊥{k,n}, for n + 1 < k, it must be either h = k
or h = n. In both cases we have h ∈ Z r {k − 1, k + 1} because
k /∈ {k − 1, k + 1} and n+ 1 < k implies n /∈ {k − 1, k + 1}.

(⊇) Let h ∈ Zr{k−1, k+1}. If h 6= kwe deduce⊥{h,k} 6 h. Otherwise,
if h = k, we have, for instance, ⊥{k,k+2} 6 k = h.

We then have:⋂
k∈Z
↑{↓k} =

⋂
k∈Z

(
{⊥{n,k} | n+ 1 < k} ∪ (Z r {k − 1, k + 1})

)
.

However, ⊥{n,k} does not belong to any Z r {k − 1, k + 1} and, viceversa, if
h ∈ Z r {k − 1, k + 1} then h 6= ⊥{n,k} for any n, k ∈ Z. In other words, the
following equation holds:

⋂
k∈Z
↑{↓k} =

[⋂
k∈Z
{⊥{n,k} | n+ 1 < k}

]
∪

[⋂
k∈Z

(Z r {k − 1, k + 1})

]
.

But then, we have:⋂
k∈Z
↑{↓k} ∩ Z =

⋂
k∈Z

Z r {k − 1, k + 1} = ∅.

as well as: ⋂
k∈Z
{⊥{n,k} | n+ 1 < k} = ∅.

However, there is no finite subfamily of the ↑{↓k}’s whose intersection is
empty, because no finite intersection of ↑{↓k} ∩ Z is empty. In other words, P
does not satisfy C3 and whence, in view of Proposition 3.21, it is not Priestley
representable.

Recall that a Priestley (resp. Esakia) space needs to be, in particular, a
compact topological space. This means that an infinite Priestley (resp. Esakia)
space must have a nonempty set of non-isolated points. For example, in the
proof of Proposition 3.12 we were dealing with an infinite poset. In order
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to turn it into an Esakia space, we have arbitrarily chosen a point x0 and we
constructed a topology in which x0 is non-isolated.

It is possible to show that there are posets whose ordered structure already
determines a set of non-isolated points. In other words, the set of isolated
points of a Priestley (resp. Esakia) representable poset cannot be chosen arbi-
trarily. These points are, for example, the suprema (resp. infima) of infinite
ascending (resp. descending) chains.

Assume we have a poset P which contains a chain C ⊆ P . If we want
P to be Priestley (or Esakia) representable, we know that C must have both
an infimum and a supremum in P. We have two cases: either sup(C) (resp.
inf(C)) has an immediate predecessor (resp. immediate successor) in C or not, in
the following sense.
Definition 3.24. Let sup(C) be the supremum of a chainC in a poset P. We say
that sup(C) is a successor of C in P if there is some x ∈ C such that x < sup(C)
and moreover for every y ∈ C if y < sup(C) then x 6 y. Otherwise, we will
say that sup(C) is a limit of C in P. Similarly, inf(C) is said to be a predecessor
of C in P if it is a successor of P∂ , limit otherwise.

Observe that if a point is a limit of a chain, such chain must be infinite. The
terminology “limit” reminds us about the limit points of a topology. This can
be made precise by the following.
Proposition 3.25. Let P be a Priestley space, C ⊆ P a nonempty chain and U an
open set of P such that sup(C) ∈ U . If sup(C) is a limit of C in P, then there is some
x ∈ C r {sup(C)} such that [x, sup(C)] ⊆ U .
Proof. Let C be as in the hypothesis. We claim that there is some x < sup(C)
such that x ∈ C ∩ U . Suppose not. Recall that (↑x)c is an open set for every
x ∈ C ∩ U , in view of Corollary 2.44.

Then, for every y /∈ ⋃x∈C(↑x)c ∪ U it holds sup(C) < y. Hence, there is a
clopen upset Uy containing y but not sup(C). Observe that this means that no
x ∈ C belongs to any Uy. In other words, the following union⋃

x∈C
(↑x)c ∪

⋃
x<y

Uy ∪ U

is an infinite covering of P – because sup(C) is a limit of C – with no finite
subcovers – because no x belongs to U ∪ ⋃x<y Uy. This contradicts the fact
that P is compact.

We can now prove the statement of the proposition. It follows from the
claim that we have just proved that there is some x ∈ U ∩ (C r {sup(C)}).
Suppose, towards contradiction, that there is no z ∈ C r {sup(C)} such that
[z, sup(C)] ⊆ U . Consider the chain {z ∈ C | z ∈ U and x < z}. The
supremum z̄ of this set must exist, and we have two cases: either z̄ < sup(C)
or z̄ = sup(C).
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1. In the former case, let Uz̄ be a clopen upset containing sup(C) but not z̄.
Consider now the open U ∩ Uz̄ : it contains sup(C) by construction, but
no z ∈ C r {sup(C)} belongs to it, in contradiction with what we have
showed at the beginning of this proof.

2. In the latter case, since there is no z ∈ Cr{sup(C)} such that [z, sup(C)] ⊆
U , there must be some x1 ∈ [x, sup(C)] which is not in U . Hence, in par-
ticular, x < x1.
Therefore, there is a clopen upset Ux1 containing x1 but not x.
Consider the open U ∩ Ux1 . It must hold [x1, sup(C)] 6⊆ U∩Ux1 . Thus,
there is some x2 ∈ [x1, sup(C)] not in U ∩ Ux1 . We can then proceed
recursively in the same way. In conclusion, we have found an infinite
covering of [x, sup(C)] with no finite subcovers, and this is a contradiction
because [x, sup(C)] = ↑x∩↓ sup(C) is a closed subset of a compact space,
whence compact.

Corollary 3.26. Let P be a Priestley space, C ⊆ P a nonempty chain and U and
open set of P. If inf(C) is a limit of C in P, then there is x ∈ C r {inf(C)} such that
[inf(C), x] ⊆ U .

Proof. The proof is analogous to the proof of the previous proposition.
In the case where sup(C) is maximal, Proposition 3.25 can be strengthened

as follows.

Proposition 3.27. Let P a Priestley space, C ⊆ P a nonempty chain and U an open
set of P. If sup(C) ∈ max(P ) and sup(C) is a limit of C in P, then there is some
x ∈ C r {sup(C)} such that ↑x ⊆ U .

Proof. In view of Priestley’s representation theorem, we may assume P to be
the poset of prime filters of a bounded distributive lattice L. Thus, inf(C) is a
prime filter of L, call it y. Since U is open, it is union of basic clopens which, in
turn, are intersections of subbase opens of the form ϕ(a) or ϕ(b)c for a, b ∈ L.
Therefore, there are a, b ∈ L such that y ∈ ϕ(a) ∩ ϕ(b)c or, in other words,
a ∈ y and b /∈ y. Now, since we have assumed y to be maximal, there is some
d ∈ y such that d ∧ b = ⊥. For, if not, we could generate a proper filter from
y ∪ {b} and then, since every proper filter can be extended to a maximal one,
we would have a a prime filter z such that y ∪ {b} ⊆ z, against the maximality
of y.

We can then observe that, because the ordering of P is given by ⊆ and y is
a limit of the chain C, it must be

y =
⋃
C.
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In order to see this, consider both inclusions. The inclusion from right to left
is clear, because if c ∈ z for some prime filter z ∈ C, then since z ⊆ y we
deduce c ∈ y. On the other hand, the union ⋃C is a prime filter, in view of
Proposition 2.23. But y is a limit of C, meaning that C is infinite ascending,
therefore z ⊂ ⋃C for every z ∈ C. But then, the minimality of y among the
upper bounds of C implies C ⊆ ⋃C.

Therefore, as d ∈ y, there is x1 ∈ C (thus x1 ⊂ y)such that d ∈ x1 and
moreover, because d ∧ b = ⊥, no filter above x1 can contain b, i.e. ↑x1 ⊆ ϕ(b)c.

Then, remember that a ∈ y and thus, for the same reason as before, we
deduce that there is some x2 ∈ C (thus x2 ⊂ y) such that a ∈ x2, and thus
every filter extending x2 contains a, i.e. ↑x2 ⊆ ϕ(a).

Finally, since C was a chain, we either have x1 ⊆ x2 or x2 ⊆ x1, i.e. either
↑x2 ⊆ ϕ(a) ∩ ϕ(b)c ⊆ U or ↑x1 ⊆ ϕ(a) ∩ ϕ(b)c ⊆ U , as desired.

Corollary 3.28. Let P a Priestley space, C ⊆ P a chain and U an open set of P. If
inf(C) ∈ min(P ) and inf(C) is a limit of C in P, then there is inf(C) < x such that
↓x ⊆ U .

Proof. The proof is analogous to the proof of the previous Proposition.
In the previous section we have proved that there is a Priestley repre-

sentable poset P0 which is Priestley representable but not Esakia representable,
as shown by Example 3.20. The universe of P0 was N ∪ {ω, ω1} and its or-
dering was given by the reversed ordering of the natural numbers, with ω
at the bottom of the poset and ω1 above ω but incomparable to every n ∈ N.
We conclude this chapter by proving that this example can be generalized.
Before proving this, we give an important definition, which will be useful in
the following chapters as well.

Definition 3.29. Let (P,6) be a poset and C a chain in P. A point x ∈ P is
said to be a ramifying point of C provided that there is some c ∈ C such that
c < x and moreover x ‖ c′ for every c′ ∈ (↑c ∩ C) r {c}. The upset ↑x is said
to be ramification of C in P. Moreover, the chain C is said to ramify if it has a
ramification. In the same way, if c ∈ C has a ramification point above it, c is
said to ramify.

Theorem 3.30. Let (P,6) be a poset such that there is an order embedding f : P0 → P.
If the three following conditions hold

1. f(ω) = inf{f(n) | n ∈ N};

2. (f(ω), f(0)) is a chain with no ramifications in P;

3. [f(0), f(ω)) is a chain with no ramifications in P∂ ;

then (P,6) is not Esakia representable.
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Proof. First, let us denote by xn the image of f(n), and remember that f being
an order embedding means xn < xm if and only if m < n. Moreover, we will
denote by xω the image of ω and similarly for xω1 . For the sake of contradiction,
suppose there is a topology τ which makes (P,6, τ) an Esakia space. We will
now find an infinite open covering with no finite subcovers, thus proving that
τ is not compact, which is a contradiction.

1. (↓ x0 ∪ ↑x0)c is open because we have assumed (P,6, τ) to be an Esakia
space, hence the principal downsets of P as well as its principal up-
sets are closed sets. Moreover, the Esakia condition implies that U :=
↓ ((↓ x0 ∪ ↑x0)c) is an open set.
Observe that (xω, x0)∪↑x0 = U c. For, y ∈ U if and only if y 6 z for some
z ‖ x0. Then, let us prove both inclusions.

(⊆) Consider a point y ∈ (xω, x0) and some z be such that y 6 z. Sup-
pose z ‖ x0. Since xω < y, we deduce xω < z. Then, because
z ‖ x0, it holds z /∈ (xω, x0). In other words, z is a ramifying point
of (xω, x0), which is a contradiction. This means that every z above
y is not parallel to x0, i.e. y ∈ U c.
If y ∈ ↑x0 then, for all z > y, we deduce z > y > x0, i.e. y ∈ U c.

(⊇) Suppose y ∈ U c, i.e. for all z, if y 6 z then z 6 x0 or x0 6 z. In
particular, x0 6 y or y < x0. The former case implies y ∈ ↑x0,
while in the latter case we claim that xω < y, i.e. y ∈ (xω, x0).
We have two possibilities: either y 6 xω or not. In the former
case, because xω < xω1 by hypothesis, we deduce y < xω1 for
xω1 ‖ x0, a contradiction with y ∈ U c. Therefore it must be y 66 xω.
Finally, since [x0, xω) does not have ramifications in P∂ , it cannot be
xω ‖ y < x0. In other words, it must be y ∈ (xω, x0).

2. Consider x0 66 x1. Because τ is an Esakia topology, in particular it
satisfies the Priestely separation axiom, meaning that there is an clopen
upset V0 containing x0 but not x1. As V0 is an upset, it can’t be a superset
of [xω, x1] but it is a superset of the whole ↑x0 and thus, thanks to the
previous point, we deduce (xω, x0)c ⊆ U ∪ V0.
Proceed recursively: xi 66 xi+1, therefore there is a clopen upset Vi such
that [xω, xi+1] 6⊆ Vi and (xω, xi+1)c ⊆ U ∪

⋃
i+16j Vj .

The points 1. and 2. together give us an infinite covering T with no finite
subcovers, hence proving the theorem.

The previous theorem proves that for every Esakia space, if the infimum
inf(C) of an infinite descending chainC ramifies, then there is no subchain ofC
whose infimum coincides with inf(C) but its elements do not ramify. In other
words, if P is an Esakia representable poset and C is an infinite descending
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chain of P, either inf(C) does not ramify, or C ramifies “very often”. As it
turns out, a stronger result holds. Let us introduce it with an example.
Example 3.31. Consider the tree depicted below.

x0

x1

x2

x

y0

y1

y2

z

z1 z2

Observe that it satisfies C1, C2 and it doesn’t satisfy the hypothesis of
Theorem 3.30. However, we claim that it is not Esakia representable. For the
sake of contradiction, suppose there is an Esakia topology τ on T and consider
z1 and z2. They are incomparable, therefore, because of the Priestley separation
axiom, there are two clopen downsets U1 and U2, containing z1 but not z2 and
z2 but not z1 respectively. Then, consider the following set:

V := U1 ∩ ↓(U2 r U1).

Observe that V is open: for, U1 is open and so it is U2 rU1, because U2 rU1 =
U2 ∩ U c1 and U1 is clopen. Then, because of the Esakia condition ↓(U2 r U1)
must be open and then the intersection of two opens is open as well. Observe
also that z ∈ V , because U1 is a downset containing z1 and z 6 z1, moreover
↓(U2 r U1) is a downset containing z2 and z 6 z2.

Finally, we claim that there is no maximal element v that belongs to V . This
is because if v is maximal and v ∈ U1 then v /∈ U2 r U1, and since every v is
maximal, it holds v ∈ ↓(U2 r U1) if and only if v ∈ U2 r U1. In particular, no
yi belongs to V .

Then, the downset ↓x0 must be closed, i.e. (↓x0)c is open. Whence, the set
V ′ := V ∩ (↓x0)c is open. Then, notice that z ∈ V ′ because we have observed
that x ∈ V and moreover x 66 x0, but no yi belongs to V ′ (because no yi belongs
to V ) and no xi belongs to V ′ (because no xi belongs to (↓x0)c). Therefore,
x ∈ ↓V ′ but xi /∈ ↓V ′ for every i ∈ N, contradicting Corollary 3.26.

The previous example can be generalized as follows.

Theorem 3.32. Let (P,6) be a poset and x, y ∈ P such that (x, y] is a chain whose
infimum is x. Suppose the following conditions hold:

1. The cardinality of every ramification from (x, y] is bounded by some n ∈ N;

2. There is a ramification from x whose width is strictly greater than n.
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Then, (P,6) is not Esakia representable.

Proof. By contradiction, suppose there is an Esakia topology τ on P . By hy-
pothesis, there is a ramifying point z > x and there are z0, . . . , zn such that
z < zi and zi ‖ zj for every i, j 6 n and j 6= i. If n = 0 we are under the hy-
pothesis of Theorem 3.30 and hence there is nothing else to prove. Otherwise,
assume n > 0.

The topology τ satisfies the Priestley separation axiom, therefore there is a
clopen downset V01 containing z0 but not z1. In the same way, there are clopen
downsets V0,i containing z0 but not zi, for 0 < i 6 n. Consider the following
set:

U0 :=
⋂

0<i6n

V0i.

Since it is a finite intersection of clopen downsets, it is a clopen downset itself.
Moreover, z0 ∈ U0 but no zi ∈ U0, for any 0 < i 6 n. In the same fashion, we
can consider Ui, defined analogously for every i 6 n.

Then, we define the following:

U :=
⋂

06i6n

↓

Ui r
⋃
j 6=i

Uj


Observe that U is a clopen downset. For, every ⋃j 6=i Uj is a clopen set,

because it is a finite union of clopen sets. Therefore,

Ui r

⋃
j 6=i

Uj

 = Ui ∩

⋃
j 6=i

Uj

c

is a clopen set as well. Then, since τ is an Esakia topology, the following is a
clopen downset:

↓

Ui r
⋃
j 6=i

Uj


Finally, the intersection of finitely many clopen downsets is a clopen downset
as well.

Let us prove the following facts: z ∈ U and no point of any ramification
of (x, y] belongs to U . The first observation is clear: for every i 6 n, it holds
zi ∈ Ui and zi /∈ Uj for any j 6= i, therefore zi ∈ Ui r

(⋃
j 6=i Uj

)
. Then, since

z < zi, and we can reason in the same way for every i 6 n, we deduce z ∈ U .
Then, in order to prove that w /∈ U , for every w that belongs to some

ramification of (x, y], suppose there is some w ∈ U . This can happen if and
only if there are w0, . . . , wn such that wi ∈ Ui r

(⋃
j 6=i Uj

)
, for every i 6 n. In
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particular, the wi’s are all distinct, but this is impossible since the cardinality
of every ramification of (x, y] is bounded by n.

Summing up, z ∈ U and no point of any ramification of (x, y] belongs to U .
In order to conclude, intersect U with (↓y)c and consider the following set:

U∗ := ↓ (U ∩ (↓y ∪ ↑y)c) .

The set U∗ is an open set, because (a) U is an open set; (b) (↓y ∪ ↑y)c the
complement of a closed set, whence an open set; (c) in an Esakia space the
downset of every open set is an open set.

Observe also that x ∈ U∗, because z ∈ U , z 66 y and x 6 z. However, we
claim (x, y] ∩ U∗ = ∅. For, take some v ∈ (x, y] and some w such that v 6 w. If
w is either below or above y then v ∈ ↓y∪↑y, thus implying v /∈ U∗. Otherwise,
if w ‖ y, since v 6 w and w ∈ (x, y], we have that w is a ramifying point of
(x, y], and we have just proved that it cannot belong to U . In conclusion, no
point w above v can be both in U and in (↓y ∪ ↑y)c.

Hence, we have shown that there is an open U∗ which contains the limit
point of the chain (x, y] but it does not contain any point of the chain, thus
contradicting Proposition 3.26. This concludes the proof.

Theorems 3.30 and 3.32 will be particularly relevant for the next chapter,
where we are going to study the Esakia representability of forests.



CHAPTER 4
Forests and diamond systems

This chapter is devoted to the study of Priestley and Esakia representability of
two classes of posets: forests and diamond systems.

In the first section we characterize the Priestley (resp. Esakia) representable
diamond systems by proving that a diamond system is Priestley (resp. Esakia)
representable if and only if it satisfies C1 and C2. In the second section
we will see how to apply this result in order to simplify the main proof of
(Bezhanishvili et al., 2021). In particular, we will study which profinite Heyt-
ing algebras are profinite completions of some Heyting algebra.

In the third section we move to the study of forests. In view of Theorems
3.30 and 3.32, the Esakia representability of forests which have infinite de-
scending chains is highly non-trivial. Accordingly, in the third section we
characterize the Esakia representable well-ordered forests, i.e., forests which
do not have infinite descending chains. We prove that a well-ordered forest is
Esakia representable if and only if it satisfies C1 and C2. This is the main result
of this thesis. In the fourth section we suggest how to proceed in the case of
countable forests. In particular, we provide two new forbidden configurations
of Esakia representable countable forests.

4.1 Diamond systems
In section 3.1 we showed that the class of Priestley (resp. Esakia) representable
nonempty chains can be characterized as the class of complete chains with
enough gaps. We summarized the properties that a representable poset must
satisfy in section 3.2. Motivated by the positive results on chains, it is natural
to study posets which arise as simple “combinations” of chains. For example,
Lewis investigated in (Lewis & Ohm, 1976) the Priestley representability of
forests, i.e., posets whose principal downsets are chains.

40
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Definition 4.1. A poset P = (P,6) is said to be a forest if ↓x is a chain for every
x ∈ P .

Lewis proved that a forest is Priestley representable if and only it satisfies
C1 and C2. In this section, we will be dealing with a generalization of the class
of the order duals of forests, as we shall explain below.
Definition 4.2. A poset P is said to be a root system if its order dual P∂ is a
forest.

In view of Proposition 3.19, Lewis’ characterization of Priestley repre-
sentable forests solves the problem of Priestley representable root systems
as well. We will generalize the work of Lewis by characterizing the class of
Priestley representable diamond systems, an extension of the class of root
systems. Diamond systems have been introduced in (Bezhanishvili et al.,
2021), in order to answer the question of which profinite Heyting algebras are
profinite completions. We will delve into this problem in Section 4.2.
Definition 4.3. A poset P is said to satisfy the three point rule if whenever
x, y, z ∈ P are distinct elements of P such that x ‖ y, then x 6 z implies y 6 z.
Definition 4.4. A poset P is said to be upward directed (resp. downward directed)
if whenever x, y ∈ P , there is z ∈ P such that x, y 6 z (resp. z 6 x, y).
Definition 4.5 ((Bezhanishvili et al., 2021), Definition 4.1). A poset P is called
a diamond system if it satisfies the following conditions:

1. Each principal upset ↑x satisfies the three point rule;
2. P has width at most two;
3. Each principal upset ↑x is upward directed;
4. For every ⊥, x, y, z, v,> ∈ P , if ⊥ 6 x, y 6 z, v 6 >, there is a w ∈ P

such that x, y 6 w 6 z, v.
Intuitively, diamond systems are a generalization of root systems whose

width is allowed to be two. In order to see this, let us explain what the con-
ditions 1, 3 and 4 of a diamond system imply, with the help of some figures.
In the following pictures, the left hand side depicts how a diamond system
cannot look like, while the image at the right hand side shows how it should.

The first condition says that every ↑xmust satisfy the three point rule. That
is, whenever two incomparable points y and z are above some x, the points y
and z must share every successor.

x

y z

w

=⇒

x

y z

w
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The third condition may already be more familiar than the others. In fact,
upward (resp. downward) directed posets are well-known. However, here
we do not require the whole P to be upward directed, but just every principal
upset ↑x; see the picture below.

x

y z =⇒

x

y z

w

Finally, the fourth condition expresses that whenever there might be a
diamond-like shape in our poset, there must be one. Formally, whenever we
have two pairs of points {x, y}, {z, v} such that these two pairs are bounded
from below and from above by some ⊥ and >, and both z and v are above
both x and y, then there is some w in between the pairs; see the picture below.

⊥
x y

z v

>

=⇒

⊥

x y
w

z v

>

Observe that the notation ⊥ and > does not mean to imply that P is
bounded. This is just a convenient notation that suggests that the subposet
{x, y, z, v} is bounded by ⊥ and >within P. On the other hand, examples of
diamond systems are depicted below.

. . .

. . .

As a matter of fact, in the picture above we can view three examples of
diamond systems: the one depicted at the left, the one drawn at the right,
and their disjoint union. In fact, every diamond system is a disjoint union of
simpler diamond systems, as we explain below.
Definition 4.6. A path in a poset (P,6) is a finite tuple (x1, . . . , xn) of elements
of P such that for all i < j 6 n, either xi 6 xj or xj < xi). We call x1 the
starting point of the path and xn the final point of the path, and we say that
there is a path from x1 to xn. A poset (P,6) is said to be connected if, for every
x, y ∈ P , there is a path from x to y.
Observation 4.7. Every diamond system is a disjoint union of connected
diamond systems.
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We have already mentioned that every root system is a diamond system.
We will now prove this fact.

Proposition 4.8. A root system is a diamond system whose width is at most one.

Proof. Let P be a root system. Since ↑x is a chain for every x ∈ P , we know
that P has width one, thus, in particular, at most two. Moreover, every ↑x
satisfies the three point rule vacuously and it is upward directed, since every
two elements above x are comparable. Finally, if ⊥ 6 x, y 6 z, v 6 >, it means
that x, y ∈ ↑⊥, thus x 6 y or y 6 x. Without loss of generality assume the
former. Then, x, y 6 y 6 z, v.

In (Bezhanishvili et al., 2021) it was shown that every image finite diamond
system can be extended to an Esakia representable diamond system. The
principal aim of this section is to characterize the class of all Priestley (resp.
Esakia) representable diamond systems. More explicitly, we are going to prove
the following result.

Theorem 4.9. A diamond system P is Esakia representable if and only if it satisfies
C1 and C2.

Recall that a Priestley representable poset must satisfy C1 and C2, and
that an Esakia representable poset is, in particular, Priestley representable.
Whence, we get, as a corollary of Theorem 4.9, that a diamond system is
Priestley representable if and only if it satisfies C1 and C2.

In order to prove Theorem 4.9 we need some technical lemmas, which will
help us define Esakia topologies on diamond systems.

Definition 4.10. Let P be a poset and x, y ∈ P . The element x is said to be an
immediate predecessor of x if y if the pair (x, y) is a gap. In this case, y is called
an immediate successor of y.

Recall from Definition 2.5 that we use x ‖ y as a shorthand for x 66 y and
x 66 y. In this case, we say that x and y are incomparable, or parallel.

Lemma 4.11. Let P be a diamond system which satisfies C1. For every x, y ∈ P , if
x ‖ y and there is some z ∈ P such that z 6 x, y, then there is m 6 x, y which is an
immediate predecessor both of x and of y.

Proof. We will proceed by appealing to Zorn’s lemma. Consider the subset of P
with universe X = {z ∈ P | z 6 x, y} and the partial order on it induced by 6.
By assumption X is nonempty. Let C ⊆ X a chain of X . By assumption, there
exists supC ∈ P . Observe that by definition of sup, we deduce supC 6 x, y.
Therefore, sup(C) ∈ X . Hence, we can use Zorn’s lemma to deduce that there
is some m 6 x, y maximal of X .

We shall prove that m is the desired immediate predecessor of x and y.
First, observe that since m 6 x, y and x ‖ y, we have m < x, y. Then, suppose
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m < x′ 6 x. We claim that x′ ‖ y. For, since x′ 6 x ‖ y, we deduce y 66 x′,
otherwise we would have y 6 x. Moreover, x′ 6 y would imply x′ 6 x, y.
Since m < x′, this contradicts the maximality of m in X . This establishes the
claim.

Hence, the elements x′, x and y are all different, and such that x′ ‖ y and
x′ 6 x. If x′ < x, i.e. x′ 6= x, the three point rule would imply x 6 y, a
contradiction. Thus, we can conclude that x′ = x and, therefore, that m is an
immediate predecessor of x.

A similar argument shows that m is also an immediate predecessor of
y.

Definition 4.12. Let P be a diamond system. An element x ∈ P is called a
predecessor if it is maximal or it has an immediate successor. We denote by P
the set of predecessors of P.

Lemma 4.13. Let P be a diamond system which satisfies C1 and C2. If x ∈ P is a
non maximal predecessor, then one of the following conditions hold:

1. ↑x = {x} ∪ ↑y for some y immediate successor of x;

2. ↑x = {x} ∪ ↑{y, z} for y ‖ z immediate successors of x.

Proof. Let x be as in the hypothesis. Since x is a non maximal predecessor of P,
there is an immediate successor y of x. Then, assume that the first condition
does not hold, i.e., there is some z ∈ P such that x < z and y 66 z. Observe that
y ‖ z. For, it cannot be z < y because x 6= z 6= y and since y is an immediate
predecessor of x it holds [x, y] = {x, y}. We have two cases: either z is an
immediate successor of x or not. We want to show that the latter is impossible.
If z is not an immediate successor of x, there is some w such that x < w < z.
We claim that w ‖ y. For, if y 6 w then y 6 w < z, a contradiction. Moreover,
it cannot be w < y because, in this case, x < w < y, against the assumption
that y is an immediate successor of x. This establishes the claim.

Therefore, we have x < w, y and y ‖ w. Because ↑x satisfies the three point
rule and w < z we deduce y < z, which is a contradiction. Therefore, z is
an immediate successor of x. The fact that ↑x has width at most two yields
↑x = {x} ∪ ↑{y, z}, thus meaning that the second condition holds.

Lemma 4.14. Let P be a connected diamond systems which satisfies C1. P has a
maximum.

Proof. Let max(P) be the set of maximal elements of P. We claim that it is
nonempty. Let C be a nonempty subchain of P. Since P is satisfies C1 C has a
supremum in P. Therefore, Zorn’s lemma implies that the set of maximals of
P is nonempty.

Then, let m1 and m2 be two maximals of P. We have two cases: either m1

and m2 have a common predecessor or not.
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In the former case, let it be x. Then, ↑x is upward directed, and thus there
is a point m3 such that m1,m2 6 m3. But m1 and m2 belong to max(P), hence
m1 = m2 = m3.

Since P is connected, it is easy to see by induction on the (finite) path
connecting m1 and m2 that the latter case can be reduced to the former.

We are now ready to start with the proof of Theorem 4.9. Fix a diamond
system P. We already know that satisfying C1 and C2 is a necessary condition
for P to be Esakia representable. Let us show that it is sufficient as well. It is
easy to see that every diamond system which satisfies C1 and C2 is a disjoint
union of connected diamond systems which satisfy C1 and C2. Thus, in view
of Proposition 3.14, it suffices to prove that every connected component of
a diamond system is Esakia representable. Accordingly, we can suppose P
to be nonempty and connected. Moreover, we assume P to satisfy C1 and
C2. We will define an Esakia topology on it. Denote by ⊥{y,z} an immediate
predecessor (guaranteed to exist by the Lemma 4.11) of any two y, z ∈ P such
that y ‖ z and ↓y ∩ ↓z 6= ∅. Then, consider the topology τ generated by the
union of the two following sets:

{↓x | x ∈ P and ∀y, z ∈ P (x 6= ⊥{y,z})}

{(↓x)c | x ∈ P and ∀y, z ∈ P (x 6= ⊥{y,z})}

We will prove that τ is a compact topology which satisfies the Priestley separa-
tion axiom as well as the Esakia condition.

Proposition 4.15. The topology τ on P is compact.

Proof. For the sake of contradiction, let us assume that (P,6, τ) is not a compact
topological space. That is, there exists a covering C with no finite subcovers.
In view of Alexander’s subbase theorem (Theorem 2.33), we might assume
the opens of C to belong to the subbase of τ . That is, they are of the form ↓x or
(↓x)c for some x ∈ P and x 6= ⊥{x1,x2} for any x1, x2 ∈ P .

We claim that we can construct a sequence (xα)α∈Ord which satisfies the
two following conditions:

1. For every α ∈ β it holds xβ < xα;

2. For every α it holds (↓xα)c ∈ C.

This would be a contradiction, because it would imply that P does not
inject in any ordinal number. Let us construct this sequence recursively.

In view of Lemma 4.14, P must contain a greatest element, say x0. Such x0

must belong to an open set of the covering. If the open set is of the form ↓x1,
then x1 = x0 (because x0 is maximal). Hence, ↓x0 = P in contradiction with
the assumption that C has no finite subcovers. Whence, the open set containing
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x0 it is of the form (↓x1)c. Observe that x1 < x0, because x0 is the maximum
of P and x1 6= x0. Without loss of generality we may assume (↓x0)c = ∅ ∈ C,
and thus we have found the first two elements of the sequence.

Suppose to have found α+ 1 elements of the sequence. That is, we have
(xβ)β<α+1 which satisfy conditions 1 and 2. Consider the element xα. As in
the previous case, there must be an open set from the covering which contains
xα. If this open is of the form ↓y then xα 6 y and hence (↓xα)c ∪ ↓y = P , a
contradiction. Thus, the open set containing xα is of the form (↓y)c for some
y ∈ P . Consider ↓xα ∩↓y. If it is empty, then P = (↓xα ∩↓y)c = (↓xα)c ∪ (↓y)c

and we reach, once again, a contradiction. Otherwise, there exists some z 6
xα, y. We have two subcases: either xα ‖ y or not.

- In the former case, without loss of generality, we may assume z to be
the immediate predecessor of both xα and y, thanks to Lemma 4.11.
Moreover, we can assume it to be of the form ⊥{xα,y}. Then, z belongs to
an open set from C as well.
If this open set is equal to ↓w for some w ∈ P then, because z = ⊥{xα,y}
we deduce z 6= w.
Observe that either xα 6 w or y 6 w. In order to see this, remember that
(a) z 6 w, (b) z is an immediate predecessor of xα and y, (c) xα ‖ y and
(d) P has width at most two.
Then, in either case, ↓xα ∩ ↓y ⊆ ↓z, and thus (↓xα)c ∪ (↓y)c ∪ ↓w = P , a
contradiction.
If, on the other hand, the open set containing z is of the form (↓w)c for
some w, we have two subcases: z ‖ w or not. We shall prove that in both
cases either we reach a contradiction, or we can assume that w < xα, y.
If the latter case holds, we set xα+1 := w.

. If z ‖ w, we want to prove that w < xα, y. Consider ↓xα ∩ ↓y ∩ ↓w.
If this intersection is empty, we deduce that the following holds:

(↓xα)c ∪ (↓y)c ∪ (↓w)c = P.

Whence, we have a contradiction. Otherwise, let a be below xα, y
and w. Because P has width at most two, we have w 6 ‖ xα or w 6 ‖ xα.
Suppose, without loss of generality, w 6 ‖ xα. This implies xα > w,
because w ‖ z.
Then, look at y and w. Since w ‖ z we have y 66 w. If w 66 y, by
the three point rule we obtain xα 6 ‖ y, a contradiction. Therefore,
w 6 y.
In other words, we are left to find a finite subcover of ↓w, since we
have just proved that w < xα, y and thus ↓xα ∩ ↓y ⊆ ↓w. Thus, we
can set xα+1 := w.
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. If z 6 ‖ w, it follows from z 66 w that w < z 6 xα, y. Accordingly, we
can set xα+1 := w.

- If xα 6 ‖ y, it follows from xα /∈ ↓y that y < xα and therefore we can set
xα+1 := y.

At limit steps, suppose we have built a sequence of the form (xα)α<γ for
some limit ordinal γ. By assumption, such sequence satisfies conditions 1 and
2.

Because P satisfies C1, it exists x := inf{xα | α < γ}. As in the previous
cases, there must be an open set of C that contains x.

- If this open set is of the form ↓y it must be x < y, since x is not a
predecessor (it is a limit of an infinite sequence). In this case, we claim
that there is some α < γ such that xα 6 y. In order to see this, suppose
that xα 66 y for every α < γ. It cannot be y 6 xα for every α < γ, because
otherwise we would deduce xα 6 x = inf{xα | α < γ}, in contradiction
with x < y. Whence, there is some xα such that y 66 xα. Without loss of
generality, we may assume y 66 xβ for every α 6 β < γ. Since we have
assumed also xα 66 y we obtain xα ‖ y.
Then, we claim y ‖ xβ for every xβ ∈ {xβ | α 6 β < γ}. We already
know that it is not the case that xβ 6 y, for any α 6 β < γ. For the other
direction, if y 6 xβ for some xβ . This yields y 6 xα, a contradiction.
Finally, let xβ ∈ {xβ | α 6 β < γ}. Then, we have (a) x 6 y, xα, (b)
y ‖ xβ and (c) xβ 6 xα. Thus, the three point rule implies y 6 xα, a
contradiction. This establishes the claim.
Whence, there is some α < γ such that xα 6 y. Therefore, we have
↓(xα)c ∪ ↓y = P , against the fact that (P, τ) was supposed not to be
compact.

- If, on the other hand, the open set containing x is of the form (↓y)c, we
have two cases: either y < x or y ‖ x.

. If y < x we have y < xα for every α < γ. For, if m(n) = n then
xω+1 < xω < x′n. Therefore, we can set xγ := y.

. If y ‖ x then we can reason as in the successor case. That is, consider
↓y ∩ ↓x. It cannot be empty, because otherwise we would have
P = (↓x)c ∪ (↓y)c, in contradiction with the fact that (P, τ) is not
compact. Thus, we can consider a common predecessor of x and y
of the form ⊥{x,y}. This predecessor must belong to an open from
the covering. Since the reasoning is exactly analogous to the one
that we have considered in the successor case, we shall not repeat it.
Just remember that in any case we will en up finding some z such
that z < x, y and ↓z ∈ C. Therefore, we can set xγ := z.
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Therefore, the limit case is tackled as well. In conclusion, we have proved that
P contains an infinite decreasing chain indexed by the class of all ordinals,
which is impossible. This proves that the topological space (P,6, τ) is compact.

Before proving that (P,6, τ) satisfies the Priestley separation axiom, we
need two preliminary lemmas.

Lemma 4.16. LetP be a connected diamond system which satisfies C1. Ifx = ⊥{x1,x2}
for some x1 and x2, then there are no x3 and x4 such that xi = ⊥{x3,x4} for i ∈ {1, 2}.

Proof. Assume, by contradiction, that x1 = ⊥{x3,x4} for some x3 and x4 (the
case for x2 is analogous). First, it follows from Lemma 4.14 that P has a
maximum x0, since P is connected and it satisfies C1.

Since x 6 x2, x3, x4, the width of P is at most two and x3 ‖ x4, we deduce
x2 6 ‖ x3 and x2 6 ‖ x4. However, it cannot be x3 6 x2 or x4 6 x2, because
otherwise we would deduce x1 6 x2, in contradiction with x1 ‖ x2. Therefore,
it holds x2 < x3, x4. Now, recall that x 6 x1, x2, and thus we have x 6 x1, x2 6
x3, x4 6 x0 (where x0 is the maximum of P). Hence, it follows from the
definition of diamond system that there is some z such that x1, x2 < z < x3, x4,
in contradiction with the fact that x1 is an immediate predecessor of x3 and x4.

Since we can use a similar argument for x2, this establishes the claim.

Lemma 4.17. Let P be a connected diamond system which satisfies C1. If x ∈ P is
part of a gap (x, y) then there is no chain C ⊆ P such that x = inf(C) and x /∈ C.

Proof. Recall from Lemma 4.14 that P has a maximum x0, since P is connected
and it satisfies C1.

By contradiction, assume x = inf(C) /∈ C for some x ∈ P and some infinite
descending chain C ⊆ P . Moreover, assume that x is part of a gap (x, y).
Observe that c 66 y for any c ∈ C. Otherwise, since C is infinite descending,
the pair (x, y) would not be a gap. It cannot be y 6 c for allC either. Otherwise
we would have y 6 sup(C) = x, which is a contradiction. Whence, there is
some c̄ ∈ C such that y ‖ c̄. Then, we claim y ‖ c for every c ∈ C ∩ ↓c̄. We
already know that it cannot be c 6 y. For the other direction, if y 6 cwe would
deduce y 6 c̄, a contradiction.

Finally, let c ∈ C ∩ ↓c̄ be such that c < c̄. Such c exists because C is infinite
descending. Then, we have (a) x 6 y, c̄, (b) y ‖ c and (c) c 6 c̄. Thus, the
three point rule implies y 6 c̄, a contradiction. This concludes the proof.

Proposition 4.18. The topological ordered space (P,6, τ) satisfies the Priestley
separation axiom.

Proof. Assume x 66 y for some x and y in P . If y ∈ P and y 6= ⊥{z1,z2} for any
z1, z2 ∈ P , then (↓y)c is a clopen upset containing x but not y by construction.
Otherwise, we have two cases: either y /∈ P or y = ⊥{z1,z2} for some z1, z2 ∈ P .
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- In the former case, y must be the limit of a descending sequence (yα)α.
Then, there is some yα such that x 66 yα. In fact, y cannot be below every
yα, because in this case y would be a lower bound of the yα’s and thus
x 6 y, since of y = infα yα.
We have two subcases: either yα 6 x or yα ‖ x.

. Assume yα 6 x. Without loss of generality we may assume yα < x,
otherwise just consider yα+1 and x. Then, because P satisfies C2,
there is a gap (g1, g2) between yα and x. In view of Lemma 4.17, g1

is not the limit of an infinite descending sequence, since it is part of
the gap (g1, g2). That is, g1 ∈ P .
If g1 6= ⊥{z1,z2} for any z1 and z2, then ↓g1 is a clopen downset
containing y but not x.
Assume, on the other hand, there are some z1 and z2 such that
⊥{z1,z2} = g1. It follows from Lemma 4.16 that both z1 and z2 are
not of the form ⊥{z3,z4}, for any z3 and z4. Moreover, at least one of
z1 and z2 is not equal to x, because z1 ‖ z2 and hence z1 6= z2.
Without loss of generality, z1 6= x. Clearly, it cannot hold x 6 z1,
because g1 6 z1 and g1 6 x. Similarly to the proof of Lemma 4.17,
we can show, using the three point rule, that z1 cannot be the limit
of an infinite descending chain, since we have z1 ‖ z2, g1 6 z1, z2.
This proves, together with the fact that z1 6= ⊥{z3,z4}, that z1 ∈ P .
Therefore, ↓z1 is a clopen downset containing y but not x.

. Assume yα ‖ x. If there is some β > α such that yβ < α we can
proceed as in the previous case. Otherwise, since x cannot be below
every yβ , without loss of generality we may assume yα be such that
for every yβ 6 yα it holds yβ ‖ x.
Therefore, consider yα+1 and a gap (g1, g2) between yα+1 and yα.
Because (yα)α is infinite descending, without loss of generality we
may assume g1 and g2 to be part of the chain, otherwise just extend
it. In view of our previous observation, it holds g1, g2 ‖ x.
If g1 6= ⊥{z1,z2} for any z1 and z2, it holds g1 ∈ P , since g1 is part
of a gap and thus we can use Lemma 4.17. Hence, ↓g1 is a clopen
downset containing y but not x.
On the other hand, assume g1 = ⊥{z1,z2} for some z1 and z2. Thanks
to Lemma 4.16, not z1 nor z2 is of the form ⊥{z3,z4} for any z3 and
z4. Moreover, we can reason as above in order to deduce that not z1

nor z2 is the limit of an infinite descending chain. In other words,
z2 ∈ P .
Notice that it must be g2 6 z1 or g2 6 z2, because the width of P
is at most two, and g1 is an immediate predecessor of g2. Without
loss of generality assume g2 6 z2.
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We claim g2 = z2. For the sake of contradiction, assume g2 < z2.
Consider g2 and z1. It cannot be z1 6 g2 because this would imply
z1 6 z2, in contradiction with z1 ‖ z2. On the other hand, it cannot
be g2 6 z1 because g1 < g2 and g1 is an immediate predecessor of
z1 and z2. In other words, g2 ‖ z1.
But then, we have g1 6 g2, z1, z1 ‖ z2 and g2 < z2. Thus, the three
point rule implies z1 6 z2, a contradiction.
Thus, we have proved z2 = g2.
Recall that z2 = g2 ∈ P and that z2 is not the limit of an infinite
descending chain. As before, since g2 6 yα, we may assume g2 to
be part of the chain (yα)α. Thus, in particular, x ‖ g2. Whence, ↓g2

is a clopen downset containing y but not x.

- In the latter case, assume y = ⊥{z1,z2}.
It follows from Lemma 4.16 that z1, z2 6= ⊥{z3,z4} for any z3, z4 ∈ P . If
x 66 zi, for i ∈ {1, 2}, we have two cases: either zi ∈ P or not. In the
former case, (↓zi)c is a clopen upset containing x but not y; in the latter
case, we can proceed as in the previous case in order to separate x and y.
If, on the other hand, x 6 z1, z2, we claim that there is a maximal lower
bound x̄ of z1 and z2 such that x 6 x̄ and x̄ ‖ y. This follows from the
fact that y = ⊥{z1,z2} and x 66 y, together with the proof of Lemma 4.11.
Notice that ↓x̄ ∩ ↓y. For, if ⊥ 6 x̄, y 6 z1, z2 6 x0, we deduce that there
is some w such that x̄, y 6 w 6 z1, z2, against the maximality of y.
Therefore, consider the clopen (↓x̄)c ∩ ↓y. It contains y but not x, and we
claim that it is a downset. In order to see this, assume w 6 v ∈ (↓x̄)c∩↓y.
Then, w 6 y and thus it cannot be w 6 x̄. This concludes the proof.

Proposition 4.19. The topological ordered space (P,6, τ) satisfies the Esakia condi-
tion.

Proof. We want to show that ↓U is open wheneverU is open. In order to do this,
it suffices to show that the downset of every basic open is open, because every
open is union of basic opens and ↓ commutes with arbitrary unions. In turn,
every basic open is a finite intersection of subbase opens. Accordingly, suppose
U = ↓x1∩· · ·∩↓xn∩(↓y1)c∩· · ·∩(↓ym)c. IfU = ∅ then ↓U = ∅which is an open,
and there is nothing else to show. Therefore, we may assume U 6= ∅. Then,
because and the width of P is at most two, it holds ↓x1 ∩ · · · ∩ ↓xn = ↓xi ∩ ↓xj
for some i, j ∈ {1, . . . , n}. There are two cases: either xi 6 xj or not. Consider
first the former case. The latter case will be analogous. Since we have assumed
U 6= ∅ it holds, in particular, ↓xi ∩↓xj 6= ∅, i.e. xi and xj have a common lower
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bound and thus a maximal such of the form ⊥{xi,xj}. Moreover, observe that
(↓y1)c ∩ · · · ∩ (↓ym)c = (↓y1 ∪ · · · ∪ ↓ym)c = (↓{y1, . . . , ym})c. We then claim:

↓ (↓x1 ∩ ↓x2 ∩ (↓{y1, . . . , ym})c) = ↓x1 ∩ ↓x2

(⊆) Assume z 6 x̄ for some x̄ ∈ ↓x1 ∩ ↓x2 ∩ (↓{y1, . . . , ym})c. In particular
z 6 x̄ 6 x1, x2, i.e. z ∈ ↓x1 ∩ ↓x2.

(⊇) If z 6 x1, x2, we want to show that z is below something which is in
↓x1 ∩ ↓x2 ∩ (↓{y1, . . . , ym})c.
The point ⊥{xi,xj} does the job: ⊥{xi,xj} ∈ ↓x1 ∩ ↓x2 and we claim
⊥{xi,xj} /∈ ↓{y1, . . . , ym}.
In order to see this suppose, by contradiction, that ⊥{xi,xj} 6 y for some
y ∈ {y1, . . . , ym}. Because P has width at most two, it must be xi 6 ‖ y or
xj 6 ‖ y. Without loss of generality we may assume the former case.
If y > xi we claim: U = ↓x1∩↓x2∩(↓{y1, . . . , yn})c = ∅. For, ifw 6 x1, x2

then w 6 y and thus w /∈ (↓{y1, . . . , yn})c.
On the other hand, suppose y < xi. Then, it cannot be y > xj . Hence we
have two subcases:

– If y 6 xj we then have y 6 xi, xj , and since ⊥{xi,xj} is a maximal
lower bound of xi and xj and ⊥{xi,xj} 6 y we deduce ⊥{xi,xj} = y.
But this is a contradiction with the definition of the subbase of the
topology.

– If y ‖ xj , consider ⊥{xi,xj}. We have ⊥{xi,xj} 6 y, xj , y ‖ xj and
y < xi. The three point rule implies xj 6 xi, in contradiction with
xi ‖ xj .

This concludes the proof of the case xi ‖ xj , since we have shown that ↓U =
↓xi ∩ ↓xj , that is, ↓U can be written as a finite intersection of open sets.

If xi 6 ‖ xj , without loss of generality we may assume xi 6 xj . Then, the
open set U is of the form: U = ↓xi ∩ (↓{y1, . . . , ym})c. We can reason as in the
previous case in order to show that:

↓(↓xi ∩ (↓{y1, . . . , ym})c) = ↓xi.

As before, the inclusion from left to right is clear. As for the inclusion from
right to left, let z be such that z 6 xi. We claim that there is some x̄ ∈
↓xi ∩ (↓{y1, . . . , ym})c) such that z 6 x̄. We claim that xi already does the job.
For, xi 6 xi and if xi 6 y for some y ∈ {y1, . . . , ym} thenU = ∅, a contradiction.

In conclusion, we have shown that ↓U is an open set if so is U .
The three propositions that we have just proved together complete the

proof of Theorem 4.9. In addition, we obtain the following corollaries.
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Corollary 4.20. A diamond system is Priestley representable if and only if it satisfies
C1 and C2.

Proof. Priestley representable diamond systems have nonempty complete
chains and enough gaps. Moreover, we have just proved that diamond systems
with complete chains and enough gaps are Esakia representable, thus Priestley
representable.

Corollary 4.21. A root system is Esakia representable if and only if it satisfies C1
and C2.

Proof. Esakia representable diamond systems satisfy C1 and C2. Moreover,
since every root system is a diamond system, we know that satisfying C1 and
C2 implies being Esakia representable.

Corollary 4.22. A root system is Priestley representable if and only if it satisfies C1
and C2.

Proof. Priestley representable root systems satisfy C1 and C2. Moreover, we
have just noticed that root systems which satisfy C1 and C2. are Esakia repre-
sentable, thus Priestley representable.

Corollary 4.23. A forest is Priestley representable if and only if it satisfies C1 and
C2.

Proof. The previous corollary establishes that Priestley representable root
systems coincide with root systems which it satisfy C1 and C2. Then, forests
are the order duals of root systems, thus we can use Proposition 3.19 in order
to conclude.

4.2 Profiniteness
In this section we present an application of the Esakia representability of
diamond systems to a problem of profinite Heyting algebras. In (Bezhanishvili
& Morandi, 2009) it was left as an open question whether every profinite
Heyting algebra is a profinite completion. Let us recall what a profinite Heyting
algebra is.

Definition 4.24. A Heyting algebra is said to be profinite if it is isomorphic to
the limit of an inverse system of finite Heyting algebras.

Given a Heyting algebra H, one could look at the inverse system of its finite
homomorphic images. The limit of this inverse system is denote by Ĥ.

Definition 4.25. A Heyting algebra is said to be a profinite completion if it is
isomorphic to Ĥ, for some Heyting algebra H.
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By definition, every profinite completion of a Heyting algebra is, in par-
ticular, a profinite Heyting algebra. The converse is not true, as it has been
recently established in (Bezhanishvili et al., 2021). The paper shows that there
are profinite Heyting algebras that are not isomorphic to the profinite com-
pletion of any Heyting algebra. More generally, the authors proved that there
is a largest variety, DHA, whose profinite members are profinite completions.
Recall that a class of similar algebras is said to be a variety if it is closed under
homomorphic images, subalgebras and products or, equivalently, if it can be
axiomatized by a set of equations (Birkhoff, 1935). We should now clarify
what the variety DHA is.

Definition 4.26. A Heyting algebra H is said to be a diamond Heyting algebra
if its dual poset Spec(H) is a diamond system. The class of diamond Heyting
algebras forms a variety, which is denoted by DHA.

As announced, the main result of (Bezhanishvili et al., 2021) is the follow-
ing theorem.

Theorem 4.27 ((Bezhanishvili et al., 2021), Thm. 6.1). Let V be a variety of
Heyting algebras. The profinite members of V are profinite completions if and only if V
is a subvariety of DHA.

The characterization of Esakia representable diamond systems that we
have provided in Theorem 4.9 implies a simpler proof of Theorem 4.27. The
aim of this section is to show this proof. In order to do this, we first need to
mention two results. Let P be a poset and let us denote by Up(P) the collection
of upsets of P ordered by inclusion.

Theorem 4.28 ((Bezhanishvili & Bezhanishvili, 2008), Thm. 3.6). A Heyting
algebra H is profinite if and only if it is isomorphic to Up(P) for some image finite
poset P.

Recall Definition 2.7: a poset P is said to be image finite if ↑x is finite for
every x ∈ P . Then, given a poset P, we denote by Pfin the image finite part of P,
that is the subposet of P whose universe is Pfin = {x ∈ P | ↑x is finite}.

Theorem 4.29 ((Bezhanishvili & Bezhanishvili, 2008), Thm. 4.7). A Heyting
algebra H is isomorphic to a profinite completion Ĝ of some Heyting algebra G if and
only if it is isomorphic to Up(Pfin) for some Esakia representable poset P.

This shows why the problem of Esakia representability is connected to
the study of profiniteness. Before proceeding, let us introduce the notion of
diamond sequence.

Definition 4.30. A diamond system is said to be a diamond sequence if it is
downward directed.
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As in the case of diamond systems, diamond sequences have been introduce
in (Bezhanishvili et al., 2021). Typical examples of diamond sequences are
depicted below.

Theorem 4.27 consists of two implications, both addressed in (Bezhanishvili
et al., 2021). We are going to focus on the direction from right to left, i.e., we
are going to show that a profinite diamond Heyting algebra is a profinite com-
pletion of some diamond Heyting algebra. Our proof relies on Theorem 4.9,
and it is much simpler than the original one. This is to suggest that the study
of representability is not just interesting per se, but it can also be instructive,
in the sense that knowing the structure of Esakia topologies can be beneficial
for other problems. Before proving the announced theorem, let us state the
following.
Proposition 4.31 ((Bezhanishvili et al., 2021), Corollary 4.8). Let P be an image
finite poset. If Up(P) is a diamond algebra, then P is a diamond system.

We can now prove the following theorem.
Theorem 4.32. Every profinite diamond Heyting algebra is a profinite completion.
Proof. Let H be a profinite diamond Heyting algebra. In view of Theorem 4.28,
we know that H is a profinite Heyting algebra if and only if H ∼= Up(P) for
some image finite poset P. In view of Theorem 4.29, it is sufficient to prove
that P = Xfin for an Esakia representable poset X. This is what we are going to
do, and Theorem 4.9 will play a crucial role. First, observe that Proposition
4.31 implies that P is a image finite diamond system. Then, we will explicitly
define the poset X as follows.

Let D∞ be the set of infinite diamond sequences in P which are maximal
with respect to inclusion. For every diamond sequence D ∈ D∞ we consider a
new point ⊥D. Then, we define the universe X of X to be the following union:

P ∪ {⊥D | D ∈ D∞}.
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The ordering 6X on X is defined as follows:

x 6X y ⇐⇒ (x = y) or (x 6P y) or (y ∈ D for some D ∈ D∞ and x = ⊥D).

Observe that X has width at most two. We claim that P = Xfin and that X is a
diamond system which satisfies C1 and C2. This would imply by 4.29 that P is
the image finite part of a diamond system X which is Esakia representable, as
established by Theorem 4.9, thus allowing us to conclude.

First, we prove P = Xfin. The inclusion from left to right is clear: we have
P ⊆ X and moreover P is image finite. As for the other direction, assume ↑x is
image finite and x ∈ X . It cannot be x = ⊥D for someD ∈ D∞. For, ifD ∈ D∞
then D is infinite, and therefore ↑ ⊥D cannot be finite. Whence, x ∈ P .

In order to see that X is a diamond system, it suffices to observe that every
⊥D is a minimal element of X, since D is a maximal diamond sequence. Thus,
it follows ↑⊥D = {⊥D}∪D for everyD ∈ D. Therefore, it is easy to verify that
all the properties of a diamond system are satisfied by X.

Finally, we show that X satisfies C1 and C2.

1. Let C ⊆ X be a nonempty chain of X. If C ∩ P = ∅, it must be C =
{⊥D} for some D ∈ D. In this case we have sup({⊥D}) = inf({⊥D}) =
⊥D ∈ X . On the other hand, suppose we have C ∩ P 6= ∅. Since the
⊥D’s are minimal elements of X (thus pairwise incomparable) we have
C ⊆ C∗ ∪ {⊥D} for at most one D ∈ D, and C∗ a nonempty chain of P .
Because P is image finite, we deduce that it exists sup(C∗) and that it
belongs to C∗ ⊆ P ⊆ X . Clearly, we have sup(C) = sup(C∗). As for the
infimum of C, either it exists in P (and thus in X) or not. In the latter
case, C is a maximal infinite chain of P, and thus it can be extended to
a maximal diamond sequence D ∈ D. Then, by construction, ⊥D is the
infimum of C in X.

2. The fact that P is image finite means that ↑x is finite for every x ∈ P ,
in particular P has enough gaps. We claim that this implies that so it
is X. For, if x < y for some x, y ∈ X , either x, y ∈ P , and thus there is
a gap in between them, or x = ⊥D < y, but this means that x is limit
of an infinite diamond sequence of P. Therefore, there is some x1 ∈ P
such that ⊥D 6 x1 < y, and thus there is a gap between x1 and y and so
between x and y.

We can now appeal to Theorem 4.9 in order to deduce that X is Esakia rep-
resentable. In conclusion, we have H ∼= Up(P) = Up(Xfin) where X is an Esakia
representable poset. Therefore, in view of Theorem 4.29, H is isomorphic to a
profinite completion of some Heyting algebra.

This concludes our discussion on diamond systems. We now move to the
study of representable well-ordered forests.
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4.3 Well-ordered forests
In section 4.1 we have seen that it is possible to characterize the class of root
systems which are Esakia representable. This result, in view of Proposition
3.19, gives a characterization of the Priestley representable forests, i.e., disjoint
union of trees. However, we know that we cannot infer that the same class is
Esakia representable, as established by Example 3.20. The main issue that arises
when considering an arbitrary forest is that it may contain infinite descending
chains, which are problematic, as established by Theorems 3.30 and 3.32.

Accordingly, we proceed in two ways: first, we study the Esakia repre-
sentability of forests which do not admit infinite descending chains; secondly
we consider forests whose infinite descending chains are “well-behaved”, in
the sense that they do not satisfy the hypothesis of Theorems 3.30 or 3.32. The
first direction is the one that we are going to explore in this section, while the
latter will be discussed in section 4.4.

Recall that, given an ordinal α and a chain (C,6), we say that (C,6) has
order type α is (C,6) is order isomorphic to (α,∈).

Definition 4.33. A forest P is said to be well-ordered if the order type of the chain
↓x is an ordinal number, for every x ∈ P . Equivalently, a forest is well-ordered
if it does not have infinite descending chains.

As in the case of diamond systems, we can appeal to Proposition 3.14
in order to reduce the problem to the study of well-ordered trees, i.e., the
connected components of a forest.

Definition 4.34. A forest T = (T,6) is said to be a tree if it is connected.

Let us introduce some terminology.

Definition 4.35. Let T = (T,6) be a well-ordered tree.

- We denote by o(x) the order type of ↓x, for every x ∈ T ;

- A subset Tβ ⊆ T is said to be the βth level of T if Tβ = {x ∈ T | o(x) = β};

- We define the subtree T6β of T as the subposet of T whose universe is
T6β =

⋃
γ6β Tγ ;

- We define the height h(T) of T as h(T) = sup{o(x) + 1 | x ∈ T}.

Our goal is to characterize Esakia representable well-ordered forest. More
precisely, the rest of the section is devoted to the proof of the following theorem,
which is the main result of this thesis.

Theorem 4.36. A well-ordered tree T is Esakia representable if and only it satisfies
C1.
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Observe that in the assumptions of Theorem 4.36 does not appear the
request that T has enough gaps. We will see in Corollary 4.39 why this is the
case. Notice also that we do not need to require the the chains of T to have
infima, because T is well-ordered. Thus, every nonempty chain of T already
has an infumum in T.

We will prove Theorem 4.36 by defining a topology τ on T by transifinite
recursion. More specifically, for every T6β we will define a topology τβ turning
(T6β, τβ) into an Esakia space. In order to do this, we first need some useful
lemmas on well-ordered trees as well as some definitions.

Lemma 4.37. Every nonempty well-ordered tree T has a least element.

Proof. Let x ∈ T and consider ↓x. Since T is a tree, ↓x is a chain. Moreover,
because T is well ordered ↓x has a least element, say x0. Now, let x and y be
two distinct points of T and consider ↓x ∩ ↓y. We claim that the least element
x0 of ↓x and the least element y0 of ↓y coincide. In order to see this, first
observe that ↓x∩↓y 6= ∅. For, suppose ↓x∩↓y = ∅. This implies x ‖ y, because
otherwise we would have either x ∈ ↓x ∩ ↓y or y ∈ ↓x ∩ ↓y. But from the
fact that T is a tree and x ‖ y we deduce that x and y cannot have common
successors, thus implying that T is not connected, which is a contradiction.
Therefore, it holds ↓x ∩ ↓y 6= ∅. In particular, ↓x ∩ ↓y is a chain of T, since T
is a tree, and it has a least element, which must coincide with x0 and y0, i.e.
x0 = y0. That is, x0 is the least element of every ↓y for every y ∈ P , i.e. x0 is
the least element of T.

Lemma 4.38. Let T be a well-ordered tree and x, y ∈ T . If x < y then there exists an
immediate successor of x.

Proof. For the sake of contradiction, suppose not. That is, there is no z ∈ T such
that [x, z] = {x, z}. This means that [x, y] is not well-ordered, and consequently
neither is ↓y, a contradiction.

Corollary 4.39. Every well-ordered tree T has enough gaps.

Proof. Suppose x < y for some x, y ∈ T . Because x < y, the point x cannot be
maximal, hence it has an immediate successor x1 6 y. Then, (x, x1) is a gap
between x and y.

This corollary tells us that one of the necessary conditions for the Esakia
representability is always satisfied by any well-ordered tree. Therefore, as
the Theorem 4.36 states, we are going to prove that a well-ordered tree is
Esakia representable if and only if its nonempty chains have suprema (we
don’t need to ask the infima to exist, as we are considering well-ordered trees).
Before starting with the proof of Theorem 4.36, it might be worth providing
an intuitive idea of the construction we are going to do.
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Example 4.40. Recall Proposition 3.12, which states that there are Esakia rep-
resentable posets of arbitrary large width. As an example of this, we have
topologized every tree of height one, by choosing an immediate successor x0

of the root x. Then, we have considered the topology FinCofin(x0) on it. If we
want to topologize a tree T of height two, the idea is to topologize its first level
as explained in the proof of Proposition 3.12, and then lift up the opens of the
first level to the second level. The following depicts T61.

x

x0 x1 x2
. . .

We have coloured x0 in red in order to remember that there is an Esakia
topology τ1 on T61 such that x0 is a limit point in τ1. In particular, every open
set of T61 such that x0 belongs to it, contains the whole upset ↑x but finitely
many points of T61.

Inspired by this, one can try to mimic the definition of τ1 to obtain a topol-
ogy τ2 on T62: for every xi choose some xi0 among its immediate successors.
Then, say that a subset U ⊆ T62 is an open set if whenever some xi0 belongs
to it, then U contains the whole upset ↑xi but finitely many points in ↑xi.

This defines a topology which, however, is not compact. This is because⋃
i ↑xi ∪ {x} is an open covering of T62 with no finite subcovers. What we can

do is to choose some special point among the xi0 ’s, in the same way that we
have chosen a special successor of each xi. Then, we can impose that an open
containing this special point contains all but finitely many xi0 ’s. The most
natural choice is to make x00 special. See the picture below.

x

x0

x00
. . .

x1

x10
. . .

x2

x20
. . .

. . .

Summarizing, we say that U ∈ τ2 if and only if the two following conditions
are satisfied.

1. If xi0 ∈ U then U contains all but finitely many immediate successors of
xi;

2. If x00 ∈ U then there are at most finitely many i ∈ N such that ↑xir{xi} 6⊆
U .
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As it turns out, this construction gives rise to an Esakia topology for every
tree of finite height (as the proof of Theorem 4.36 will show), but it does not
tell what happens in the case of height ω or higher. This is more difficult to
explain at an intuitive level, and the remaining part of this section is aimed at
answering this question in a precise way.

Let us start the proof of Theorem 4.36. We shall use the following notational
convention. Let T be a well-ordered tree such that h(T) = α. Then, for each
β 6 α and X ⊆ T6β , we will denote by ↑βX the set ↑X ∩ T6β , that is:

↑β X := {x ∈ T6β | there is y ∈ X such that y 6 x}.

Let us reckon that the same notational distinction is not needed for ↓X if
X ⊆ T6β . In fact, ↓X = ↓X ∩ T6β . Keeping this in mind, let us recursively
define a topology τβ on T6β for each β 6 α. It will turn out that each (T6β, τβ)
is an Esakia space, thus proving the theorem.

- τ0 := P(T0);

- If β = γ + 1 and τγ is defined, without loss of generality we may assume
Tγ+1 to be nonempty, otherwise we would be done already. Let us denote
by Pγ the following subset of Tγ :

{x ∈ Tγ | there is y ∈ Tβ such that x < y)}.

Observe that we can well-order the successors in Tγ+1 of each x ∈ Pγ ; we
will denote the least successor of x ∈ Pγ (with respect to this well-order)
by x0. Because T6γ+1 is a tree, if x0 = x′0 then x = x′, so the notation
x0 is unambiguous. Also, let us denote by Sγ+1 the set of “non-first”
successors in Tγ+1, i.e.

Sγ+1 = {y ∈ Tγ+1 | for all x it holds y 6= x0}.

Then, τβ will be the topology generated by the base defined as follows:
U ⊆ T6γ+1 is in the base if and only if U satisfies one of the following:

1. U = {y} for some y ∈ Sγ+1;
2. or U = ↓x for some x ∈ Pγ ;
3. or U =

(
V ∪ ↑β (V ∩ Tγ)

)
r (↓Z) for V ∈ τγ and Z ⊆ Pγ ∪ Sγ+1 is

finite.

From now on, we will refer to opens of the first (resp. second, resp. third)
kind according to this definition.
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- If β =
⋃
γ<β γ and each τγ is defined, we let τβ be the topology generated

by the base defined to contain the opens of the form

V ∪ ↑β (V ∩ Tγ),

for some γ < β and V ∈ τγ .

First, we should prove why our definition gives rise to bases, as opposed to
subbases only. However, before answering this question, it is worth lingering
one moment on a lemma. It guarantees that the open sets of the third kind
remain open sets when restricted to lower levels. This lemma will play an
important role when proving that we actually have defined bases for topologies.
Moreover, it will be useful when proving the compactness of each τβ .
Lemma 4.41. For every γ < β 6 α and δ ∈ [γ + 1, β], if V ∈ τγ , then it holds(
V ∪ ↑β (V ∩ Tγ)

)
∩ T6δ ∈ τδ.

Proof. In order to prove this, it suffices to notice that for every δ ∈ [γ + 1, β]
the following holds:

(V ∪ ↑β(V ∩ Tγ)) ∩ T6δ = V ∪ ↑δ(V ∩ Tγ))

and V ∪ ↑δ(V ∩ Tγ)) is an open set from the base of τδ for every δ.

We are now ready to see why the bases defined for the successor and the
limit cases are closed under binary (whence finite) intersections.

In both cases the empty set is in the base: if τγ is defined for γ < β, then
∅ ∈ τγ and thus ∅ ∪ ↑(∅ ∩ Tγ) = ∅ ∈ τβ . Then, for the successor case it is clear
that intersecting an open of the first (resp. second) kind with any other open in
the base will return either the empty set or an open of the first (resp. second)
kind. As for the third case, observe the following:[(

V ∪ ↑β (V ∩ Tγ)
)
r (↓Z)

]
∩
[(
V ′ ∪ ↑β (V ′ ∩ Tγ)

)
r (↓Z ′)

]
=

=
[[(

V ∪ ↑β (V ∩ Tγ)
)]
∩
[(
V ′ ∪ ↑β (V ′ ∩ Tγ)

)]]
r (↓Z ∪ ↓Z ′).

Notice that, ↓Z∪↓Z ′ = ↓ (Z∪Z ′) and moreoverZ∪Z ′ is finite. In addition,
we have: [(

V ∪ ↑β (V ∩ Tγ)
)]
∩
[(
V ′ ∪ ↑β (V ′ ∩ Tγ)

)]
=

= (V ∩ V ′) ∪ (V ∩ ↑β (V ′ ∩ Tγ)) ∪ (V ′ ∩ ↑β (V ∩ Tγ)) ∪ (↑β (V ∩ V ′ ∩ Tγ))

= (V ∩ V ′) ∪ ↑β (V ∩ V ′ ∩ Tγ).

and since V ∩ V ′ ∈ τγ we are done.
For the limit case, let V ∪ ↑β (V ∩ Tγ) and V ′ ∪ ↑β (V ′ ∩ Tδ) be such that

V ∈ τγ and V ′ ∈ τδ. We may assume γ 6 δ < β and, in view of Lemma 4.41,
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we know that U := (V ∪ ↑β(V ∩ Tγ)) ∩ T6δ = [V ∪ ↑δ(V ∩ Tγ)] ∈ τδ as well
as U ′ := [V ′ ∪ ↑δ(V ′ ∩ Tδ)] ∈ τδ. Because U ∩ U ′ ∈ τδ, in order to conclude it
suffices to show that following holds:

[V ∪ ↑β (V ∩ Tγ)] ∩ [V ′ ∪ ↑β (V ′ ∩ Tδ)] = U ∩ U ′ ∪ [↑β(U ∩ U ′ ∩ Tδ)].

This is actually the case because [↑β(U ∩ U ′ ∩ Tδ)] = ↑β(V ∩ V ′ ∩ Tδ).

We shall now give more insights on the structure of the basic opens. In
particular, we should stress that at each successor case we have chosen some
“special” successor point x0 of each x ∈ Pγ . Of course, whenever possible, we
can proceed and choose some x00. If this process continues we will obtain
a chain whose supremum must exist, because we have assumed that the
nonempty chains of T have suprema. Likewise, whenever possible, we must
choose a special successor of this limit and proceed again in this fashion. This
sequence of choices must stop at some point, either because we have reached
a point with no successors or because we have reached the top of the tree.
We could then call the last chosen node x0̄. We will now formally define this
procedure, while Lemma 4.42 will show what makes x0̄ even more “special”.

Take γ 6 β 6 α and suppose x ∈ Tγ . Consider the assignment fx : [γ, β]→
T6β , defined by recursion as follows:

fx(γ) := x

fx(ε+ 1) :=

{
(fx(ε))0 if f(ε) ∈ Pε
fx(ε) otherwise

fx(
⋃
ε<δ ε) := sup

ε<δ
fx(ε).

Denote by x0̄ the element fx(β); notice also that fx(β) ∈ maxT6β .
Lemma 4.42. For every γ 6 β 6 α, if x ∈ Tγ and U is a basic open set of τβ such
that x0̄ ∈ U , then there are at most finitely incomparable y1, . . . , yn such thatx < yi
for all i 6 n and ↑β (y1, . . . , yn) 6⊆ U .
Proof. We proceed by induction on the unique δ such that β = γ + δ.

If δ = 0 it means that γ = β, i.e., x = x0̄ ∈ maxT6β . For, from the definition
of x0 it follows that x0 6 x. Thus, there are no yi’s strictly above it.

If δ = ε+ 1, then β = γ + ε+ 1 is a successor ordinal as well and thus, by
definition of τβ , the open U must be of the form (

V ∪ ↑γ+ε+1(V ∩ Tγ+ε)
)
r ↓Z

for some V ∈ τγ+ε and some finite Z ⊆ Pγ+ε∪Sγ+ε+1. Consider fx(γ+ε) ∈ V .
Since x0̄ belongs to U but not to T6γ+ε, the element fx(γ+ ε) ∈ V must belong
to V ∩ Tγ . Therefore, since the ordinal difference between γ + ε and γ is ε, i.e.,
strictly smaller than δ = ε+1, we can use appeal to the inductive hypothesis. By
inductive hypothesis there are at most finitely many incomparable y1, . . . , yn
all strictly above x such that ↑γ+ε(y1, . . . , yn) 6⊆ V . Then, as Z is finite as well,
we can deduce that the same holds for fx(β) = x0̄ and (V ∪↑β(V ∩Tγ+ε))r ↓ Z.
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Finally, if δ =
⋃
ε<δ ε, we deduce that β = γ + δ =

⋃
ε<δ(γ + ε), i.e., β is a

limit as well. Therefore, the open U must be of the form V ∩ ↑β(V ∩ Tη) for
some η < β and V ∈ τη. If η > γ, by definition we have fx(η) 6 fx(β) and
thus it must be fx(η) ∈ V . We can then use the inductive hypothesis in order
to conclude as in the successor case. Otherwise, pick any ζ ∈ [γ + 1, β]. By
definition fx(ζ) 6 fx(β) and thus, since η < ζ, it holds fx(ζ) ∈ ↑β(V ∩ Tη).
Now, due to Lemma 4.41, we know that U ∩ T6ζ ∈ τζ . We can then use the
inductive hypothesis in order to conclude.

The previous lemmas put into light some strong properties of the topologies
we are working with; we are going to rely on them in order to finally move
to the most difficult part of the proof: showing compactness of each τβ . The
cornerstone for this will be the next proposition, which tells us that if we cover
the whole set of maximals of T6β with some opens, then we can cover it with
just finitely many such and, moreover, these finitely many opens are already
covering the whole T6β up to finitely many downsets.
Proposition 4.43. For each β 6 α, whenever there is a collection of opens (Ui)i∈I
of τβ such that maxT6β ⊆

⋃
i∈I Ui, then there exists a finite F ⊆ I s.t. maxT6β ⊆⋃

i∈F Ui and for each Z ⊆ T6β , if ↓Z 6⊆ ⋃i∈F Ui, then Z is finite.
Proof. By induction on β.

- If β = 0 there is nothing to do;
- If β = γ + 1, let (Ui)i∈I be a covering of maxT6β by means of open sets

of τβ . Without loss of generality, we may assume that these open sets all
belong to the basis of τβ , thus implying that they all must be open sets
of the first or of the third kind. However, since, Tβ 6= ∅, not all the open
sets can be of the first kind, because we have to cover the x0’s for x ∈ Pγ
as well. Thus, some of the Ui’s are of the form (V ∪ ↑ (V ∩ Tγ)) r (↓Z)
for V ∈ τγ and Z ⊆ Pγ ∪ Sγ+1 at most finite. Moreover, every point in
maxT6β \Tβ must belong to an open that already is in τγ , because of the
definition of τβ .
In other words, for every x0 we have an open V such that x ∈ V and
the same holds for every y ∈ maxT6β \ Tβ . That is, there is a collection
(Vj)j∈J of open sets of τγ that covers the whole maxT6γ and thus, by
inductive hypothesis, we may assume J to be finite and the collection
(Vj)j∈J to already cover T6γ \ ↓Z ′, for some Z ′ at most finite. Now, for
each Ui that comes as a superset of some Vj∩Tγ , because of the finiteness
of J we can extract a finite subset F ⊆ I such that (Ui)i∈F covers all the
x0 ∈ Tβ . Moreover, each suchUi contains all but finitely many successors
of every x ∈ Tγ , meaning that we need no more than finitely many opens
of the first kind. Finally, as F is finite and so is each Z, the covering
(Ui)i∈F leaves out at most finitely many downsets, as Z ′ was finite as
well.
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- If β =
⋃
γ<β γ, let (Ui)i∈I be a covering of maxT6β by means of opens τβ .

As in the successor case, we may assume the Ui to be basic opens. We
claim that there is already some γ < β such that ↑β(maxT6γ) ⊆

⋃
i∈I Ui.

If not, for each γ < β there is xγ ∈ ↑β maxT6γ such that for all i ∈ I it
holds xγ /∈ Ui. Consider the following two cases: either the sequence
(xγ)γ<β has a <-subchain of height |β| or not. In the former case, called
(a) below, for the sake of notational readability, we may assume the
subchain to be the original chain itself.

(a) If the sequence (xγ)γ<β is a <-chain, i.e., xδ < xγ whenever δ < γ,
then, by assumption it has a supremum x := sup{xγ | γ < β} ∈ Tβ .
Therefore, x ∈ Ui for some i ∈ I , and it follows from the definition
of τβ that Ui must be of the form V ∪↑ (V ∩Tγ̃) for some γ̃ < β. But
T6β is a tree, thus implying that xγ ∈ Ui for all γ > γ̃, contradiction.

(b) If (xγ)γ<β has no subchains of height |β|, then it must contain a
subsequence of cardinality |β| of incomparable elements. As be-
fore, for the sake of notational readability we may assume the
sequence (xγ)γ<β to be made of incomparable elements already.
Let us consider the chain ⋂γ<β ↓xγ . By assumption, there exists
sup

(⋂
γ<β ↓xγ

)
, call it x. Observe that x < xγ for each γ < δ, as

xγ ‖ xγ′ for all γ, γ′ < β. Moreover, as x is the greatest element
below all of the xγ ’s, we deduce that for each x′ > x there exists
some γ such that xγ ∈ ↑x r ↑x′. This allows us to reach the de-
sired contradiction: for, consider x0 ∈ maxT6β and some i ∈ I s.t.
x ∈ Ui. Then, because of Lemma 4.42, there are at most finitely
many upsets above x not contained in Ui. But β is a limit ordinal
(whence not finite), and thus there must be some γ < β such that
xγ ∈ Ui, contradicting our hypothesis.

We have thus proved that the there is some γ < β such that max(T6γ) are
entirely covered by the collection (Ui)i∈I . Moreover, because of Lemma
4.41, each Ui, when intersected with T6γ , belongs to τγ , thus implying
that we can use the inductive hypothesis on T6γ and conclude.

As announced, we can now prove that each τβ is a compact topology. As
a matter of fact, we are almost done: every open covering of T6β must cover
maxT6β in the first place and thus, as highlighted by the previous proposition,
we can extract a finite subcovering which leaves out at most finitely many
principal downsets. The next lemma will show how to conclude the proof of
compactness.
Lemma 4.44. For every β 6 α, ↓x ⊆ T6β and U ∈ τβ , if the order type of ↓x is a
limit ordinal and x ∈ U , then there is some z < x such that [z, x] ⊆ U .
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Proof. By induction on β.
If β = 0 there is nothing to prove.
If β = γ + 1, let x ∈ U . By definition of τβ , U is a union of some opens of

the first/second/third kind and thus x ∈ U means that x already belongs to
a basic open. The order type of ↓x is a limit ordinal, therefore x ∈ T6γ and
hence U cannot be an open of the first kind. If U = ↓z for some z ∈ Sγ+1 we
are done, so let us consider U = (V ∪ ↑β(V ∩ Tγ))r (↓Z) for some V ∈ τγ and
Z ⊆ Pγ ∪Sγ+1 at most finite. Because x ∈ T6γ it must be x ∈ V ∈ τγ and since
the order type of ↓x is the same in T6γ and in T6γ+1 we can use the inductive
hypothesis and deduce that [z, x] ⊆ V for some z < x. Because of the presence
of ↓Z in U , it might be that z /∈ U , but as Z is finite and x is a limit ordinal
(hence ↓x is infinite) there must be some z′ < x such that [z′, x] ⊆ U .

If β =
⋃
γ<β γ we might assumeU to be a basic open of the form V ∪↑β(V ∩

Tγ) for V ∈ τγ and γ < β. If x ∈ V we can use the inductive hypothesis as in
the successor case, if x ∈ ↑β(V ∩ Tγ) r V then, because V ⊆ T6γ , we deduce
h(x) > γ and since ↑β(V ∩ Tγ) is an upset there must be some z < x such that
[z, x] ⊆ U .

Proposition 4.45. For every β 6 α, the topology τβ is compact.

Proof. We proceed as described above: let (Ui)i∈I an open covering of T6β , ex-
tract from it a covering of maxT6β which, thanks to Proposition 4.43, might be
assumed to be finite and to leave out at most finitely many principal downsets
↓z. Each such downset can then be finitely covered by appealing to Lemma
4.44.

This concludes the proof of the compactness of each τβ . The two following
propositions will show that these topologies are, in fact, Esakia topologies as
desired. First, let us show that every τβ satisfies the Priestley separation axiom.

Proposition 4.46. For every β 6 α and x, y ∈ T6β , if x 66 y then there is clopen
upset U ∈ τβ such that x ∈ U and y ∈ U c.

Proof. We proceed by induction on β.
If β = 0 there is nothing to prove.
If β = γ + 1 then either y ∈ T6γ or not.

- In the former case, choose some x′ ∈ T6γ ∩ ↓x ∩ (↓y)c. Such x′ exists: if
x ∈ T6γ take x′ = x; if x ∈ Tγ+1 then, since h(x) > h(y), there is some x′
in T6γ below x not below y. By the inductive hypothesis there is a clopen
upset V ∈ τγ such that x′ ∈ V and y /∈ V . Then, set U := V ∪ ↑β(V ∩ Tγ)
and observe thatU and (T6γrV )∪↑β((T6γrV )∩Tγ) are the complement
of each other in T6γ+1 -because T6γ+1 is a tree. Moreover, they are open
by definition and U is an upset by construction. Finally, as U is an upset
containing x′ and x′ 6 x, U contains x as well.
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- If, on the other hand, y ∈ Tγ+1, we have two more cases that need to be
considered.
If y ∈ Sγ+1 then ↓y is an open downset non containing x. This holds
because ↓y = {y} ∪ ↓z, where z is the immediate predecessor of y,
and moreover y ∈ Sγ+1 as well as z ∈ Pγ . In order to conclude it
suffices to show that ↓y is closed. In order to see this, notice that (↓y)c =
(T6γ ∪ ↑β(T6γ ∩ Tγ)) r ↓y, i.e. (↓y)c is a basic open of the third kind.
Finally, if y = z0 for some z ∈ Pγ , either x > z or not. In the former
case, {x} is a clopen upset: it is open by definition, moreover it is closed
because its complement can be written as [(T6γ ∪ (T6γ ∩Tγ))r (↓x)]∪↓z,
i.e. union of two basic opens, whence open. Otherwise, if x 6> z, it must
hold x 66 z, because x 66 y. Hence, we can use the same argument that
we have detailed in the case y ∈ T6γ , by choosing x′ ∈ T6γ ∩ ↓x ∩ (↓z)c.

If β =
⋃
γ<β γ let γ1 and γ2 be the unique ordinals such that x ∈ Tγ1 and

y ∈ Tγ2 . Let γ be defined as γ := max{γ1, γ2} and consider the tree T6γ . By
inductive hypothesis, there is a clopen upset V ∈ τγ such that x ∈ V but y /∈ V .
Then, consider U := V ∪ ↑β(V ∩ Tγ). By definition of τβ , we have U ∈ τβ .
Observe also that U is an upset. In order to conclude, we will show that U is
a closed set, i.e., U c is an open set of τβ . In order to see that U c ∈ τβ , observe
that U c = (V ∪ ↑β(V ∩ Tγ))c = V c ∩ (↑β(V ∩ Tγ))c. Then we claim that the
following equality holds:

V c ∩ (↑β(V ∩ Tγ))c = (T6γ r V ) ∪ ↑β(T6γ r V ∩ Tγ).

(⊆) Let x /∈ V . Let δ be the unique ordinal such that x ∈ Tδ. We have
two cases: either δ 6 γ or δ > γ. In the former case, we can conclude
that T6γ r V . In the latter case, there is some y ∈ Tγ such that be such
that y 6 x. Since x /∈ (↑β(V ∩ Tγ))c we deduce that either y /∈ V or
y /∈ Tγ . But we have assumed y ∈ Tγ , whence y /∈ V . In other words,
y ∈ (T6γ r V ) ∩ Tγ , whence x ∈ ↑β((T6γ r V ) ∩ Tγ).

(⊇) First, assume x ∈ T6γrV . Because V ⊆ T6γ we deduce x /∈ V . Moreover,
let y be such that y 6 x. We want to show that either y /∈ V or y /∈ Tγ . In
order to see this, assume y ∈ Tγ ∩ V . But V is an upset and y 6 x. This
implies x ∈ V , in contradiction with x ∈ T6γ r V .
On the other hand, suppose x ∈ ↑β((T6γ r V ) ∩ Tγ). That is, there is
some y 6 x such that y ∈ (T6γ r V ) ∩ Tγ . We have two cases: either
x = y or y < x. In the former case, we deduce x /∈ V and x /∈ ↑β(V ∩Tγ),
since V ⊆ T6γ . In the latter, we have x /∈ V becase V ⊆ T6γ and x ∈ Tδ
for some δ > γ. In order to see that x /∈ ↑β(V ∩ Tγ) assume there is
some z be such that z 6 x and z ∈ V ∩ Tγ . Because T is a tree, y is the
unique element below y which belongs to Tγ . But, by assumption, we
have y /∈ V , a contradiction. This establishes the claim.
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It is left to prove that every τβ satisfies the Esakia condition.
Proposition 4.47. For every β 6 α, if U ∈ τβ then ↓U ∈ τβ .
Proof. By induction on β.

If β = 0 there is nothing to do.
Assume β = γ + 1 and U ∈ τβ . Recall that U can be written as union of

opens from the basis and that ↓ commutes with arbitrary unions. Thus, it
suffices to show that the downset of every basic open is an open as well.

The downset of {y} for any y ∈ Sγ+1 is equal to {y}∪↓x, where x ∈ Pγ is the
immediate predecessor of y. This is an union of two basic opens, whence open.
Then, the downset of an open of the second kind already is open by definition.
As for the downset of a basic open of the form (V ∪ ↑β(V ∩ Tγ))r (↓Z), notice
that:

↓((V ∪ ↑β(V ∩ Tγ))) = ↓V ∪ ↓(↑β(V ∩ Tγ)) = ↓V ∪ ↑β(↓V ∩ Tγ).

where the first equality follows from the fact that ↓ commutes with unions.
As for the second equality, the inclusion from right to left is clear. As for the
other, assume x 6 y for some y ∈ T6β such that y > z for some z ∈ V ∩ Tγ . If
x = y then x ∈ ↑β(↓V ∩Tγ) and we are done. If x < y then, as T6β is a tree, we
either have x 6 z or z 6 x. In the former case, x ∈ ↑β(V ∩ Tγ) = ↑β(↓V ∩ Tγ).
In the latter case, x ∈ ↓V , and hence we are done as well.

This allows us to conclude because ↓ V ∈ τβ by inductive hypothesis, and
thus we have proved that the downset of a basic open of the third kind is an
open of the third kind itself (taking the downset of (V ∪ ↑β(V ∩ Tγ)) r (↓Z)
will leave out at most finitely many downsets from ↓Z).

In the case where β is a limit ordinal, we can repeat the observations that
we have done in the case of open sets of the third kind, since the basic open
sets of τβ for β ordinal are of the same form of the open sets of the third kind.
This concludes the proof.

This concludes our discussion on the proof of Theorem 4.36. In fact, we
have proved that for every well-ordered tree (T,6) whose nonempty chains
have suprema, we can define a topology τ making (T,6, τ) a compact space,
which satisfies the Priestley separation axiom and such that τ is closed under
generated downsets. In view of Proposition 3.14, this implies that a well-
ordered forest is Esakia representable if and only if its nonempty chains have
suprema.

4.4 Countable forests
In the previous sections we have characterized the class of Priestley repre-
sentable forests and we have acknowledged that, in view of Proposition 3.30,
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the Esakia representability of the same class is much more difficult to tackle.
Accordingly, we have studied the Esakia representability of the class of well-
ordered forests and we have discovered that it coincides with the class of
well-ordered forests whose nonempty chains have suprema. The Esakia rep-
resentability of arbitrary forests is still an open problem. In this section we
suggest how to proceed in the case of countable forests. For, in the countable
case we can make use of Theorem 2.35 in order to find some more forbidden
configurations. Moreover, restricting our attention to countable forests might
be convenient because they cannot ramify “too much”, as we shall explain soon.
As usual, let us appeal to Proposition 3.14 in order to restrict our attention to
trees.

Definition 4.48. The infinite binary tree is the poset T2 whose universe consists
of finite sequences of 0’s and 1’s and it is ordered by end-extension.

Observation 4.49. Let T be a countable Esakia representable tree. Then, there
is no order embedding of T2 into T.

Proof. Suppose there is such an embedding. Then, there are 2ℵ0 infinite distinct
chains in T, whose suprema must exist, because T is Esakia representable.
Hence, there are at least 2ℵ0 distinct points in T, a contradiction.

This observation tells us that an Esakia representable tree T which is count-
able does not ramifies too much, in the sense that there is no point x ∈ T such
that every successor of x has a two incomparable successors. In other words,
we have a condition on the principal upsets of T. Likewise, let us consider the
principal downsets of T, i.e., the chains of T.

Observation 4.50. Let T be an Esakia representable countable tree. Then, there
is no order embedding from the poset Q of rational numbers into T.

Proof. Suppose there is such an embedding f : Q → T. Because T is Esakia
representable, it must satisfy C1. In particular, for every subset X ⊆ Q both
sup(f [X]) and inf(f [X]) must exist in T. Whence, there are at least 2ℵ0 distinct
points in T, a contradiction.

The previous observation tells us that there is no order embedding from Q
into the chains of T. The linear orders in which Q does not embed are called
scattered. There following theorem, due to Hausdorff, characterizes the class
of scattered orders of cardinality less than ℵα, for a regular cardinal ℵα.

Theorem 4.51 ((Hausdorff, 1908), Thm. 12). Let ℵα be a regular cardinal. The
scattered linear orders of cardinality strictly less than ℵα form a ring whose basis
consists of all ordinals strictly smaller than ωα and their order duals.
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This theorems tells us that the chains of a countable Esakia representable
poset are obtained as linear combinations of ordinals of cardinality ℵ0 and of
their duals. This is useful for our purposes because, given a countable tree
T, a first test to see whether it is not Esakia representable is too look at its
chains. Moreover, since we still do not know which countable trees are Esakia
representable, knowing how their chains should look like might help us define
a topology on them.

Let us proceed in the study of Esakia representable countable trees. Theo-
rem 3.30 states that a forest with an infinite descending non-ramifying chain
whose infimum ramifies is not Esakia representable, albeit being Priestley
representable, in view of Theorem 4.9. Consequently, a non-well-ordered tree
T might be Esakia representable in the two following scenarios: either the
infimum of every infinite descending chain does not ramify, or every infinite
descending chain ramifies “very often”, whenever its infimum ramifies. By
“very often” we mean that, if the infimum of an infinite descending chain C of
T ramifies, then the following must hold:

inf(C) = inf{x ∈ C | x ramifies }.
For, if inf(C) < inf{x ∈ C | x ramifies } then, the chain [inf(C), inf{x ∈

C | x ramifies }] is (a) infinite descending (because so it is C), (b) it does
not have ramifications by assumption, and (c) its infimum ramifies, again by
assumption. Therefore, T is not Esakia representable.

In other words, the problem of Esakia representable forests reduces to
the study of trees with infinite descending chains whose infimum does not
ramifies or, if it does, the set of ramifying points of the chain converges to it.
The latter case already is non trivial, as the following example shows.
Example 4.52. Consider the tree-like poset T depicted below. It does have two
infinite descending chains whose infima ramify, but we are not under the hy-
pothesis of Proposition 3.30 because the infimum of the set of ramifying points
of both chains coincides with the infimum of the chain itself. Nonetheless, we
claim that such poset is not Esakia representable. In order to show this, we will
make use of Theorem 2.35, which says that every compact, T2 and countable
topological space has an isolated point.

ω

x4 y4

x3 y3

x2 y2

x1 y1

x′4 y′4x′3 y′3x′2 y′2
. . . . . .

· · · ···
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By construction, the universe of T is defined as follows:

T = {xn | n ∈ N} ∪ {x′n | n ∈ N}︸ ︷︷ ︸
X

∪{yn | n ∈ N} ∪ {y′n | n ∈ N}︸ ︷︷ ︸
Y

∪{ω}.

Suppose there is an Esakia topology τ on T. The topology induced by τ
on max(T) is compact and T2: for, the former holds because max(T) is closed,
see item 2 of Proposition 2.43, and thanks to Proposition 2.32 we know that a
closed subset of a compact space is compact as well; moreover max(T) is T2

because so it is τ . Since max(T) is countable we can apply Proposition 2.35 in
order to deduce that there is an isolated point in max(T), i.e. an open U ∈ τ
such that, without loss of generality, U ∩ max(T) = {x′n} for some n ∈ N.
Because τ is Esakia it must hold ↓U ∈ τ . Observe that ↓U ∩ Y = ∅ and ω ∈ ↓U .
Therefore, we have:

T = ↓U ∪
⋃
n∈N

(↓yn)c

because no x ∈ X is below any yn, ω ∈ ↓U and for every yn and y′n there ism >
n such that not yn nor y′n belong to (↓ym)c. As usual, this defines a covering of
T , because every ↓yn must be closed. However, this covering does not have
any finite subcover: for, for every {yn1 , . . . , ynm} there is k > max{n1, . . . , nm}
and thus yk 6 yn1 , . . . , ynm . Moreover, yk /∈ ↓U because ↓U ∩ Y = ∅. This is in
contradiction with the supposed compactness of τ , thus implying that T is not
Esakia representable.

In the previous example Theorem 2.35 played a crucial role. One can ob-
serve that we were able to use that theorem in virtue of the denumerability of
the poset we have considered. This fact suggests that the Esakia representabil-
ity of countable forests might differ from the Esakia representability of the
uncountable ones. Moreover, it proves that the countable case already exhibits
some peculiar features, which we should investigate. Accordingly, let T be an
Esakia representable countable tree. So far we have proved two conditions:
one on principal upsets and one on principal downsets, respectively. Moreover,
we have seen an example of a non-trivial countable forests which is not Esakia
representable, although it does not fall under the forbidden configurations
that we have encountered so far. The peculiar feature of that example is that
it has a point which is an infimum of two incomparable infinite descending
chains. This example can be generalized. Once again, our result relies on
Theorem 2.35.

Theorem 4.53. Let T be a countable tree such that there is a point x ∈ T and two
nonempty chains C,D of T such that:

1. x /∈ C ∪D;

2. x = inf(C) = inf(D);
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3. there are no c ∈ C, d ∈ D such that ↓c ∪ ↓d is a chain.

Then, T is not Esakia representable.

Proof. We proceed by contraposition: we will show that if T is Esakia repre-
sentable then, for every x ∈ T and nonempty chains C and D which satisfy
items 1 and 2 above, there are c ∈ C and d ∈ D such that ↓c∪ ↓d is a chain. Ac-
cordingly, let τ be an Esakia topology on T and x as in the hypothesis. In view
of Corollary 2.44, we know that ↑x is a Priestley subspace of T. Analogously
to what we have done in Example 4.52, the set max(↑x) = max(T) ∩ ↑x is a
compact T2 and countable subspace of T. Therefore, we can apply Theorem
2.35, in order to deduce that max(↑x) as an isolated point y, i.e. there is a
clopen U ∈ τ such that U ∩max(↑x) = {y}. Then, consider the following set.

V := ↓((↓(U c))c).

The set V is clopen because so it is U and moreover τ is an Esakia topology.
We then claim that the following holds:

V ∩ ↑x = ↓y ∩ ↑x.

In order to see this, suppose z ∈ V and x 6 z. This means that z 6 w for
some w not in ↓(U c), i.e. w 6 v implies v ∈ U . But U ∩max(↑x) = {y}, hence
x 6 z 6 w 6 y. For the other direction, assume z to be such that x 6 z 6 y.
Clearly, we have y /∈ ↓(U c), because y is maximal and hence the only element
above it, i.e. y itself, is inU . Observe that, since x /∈ C∪D, x = inf(C) = inf(D)
and U is open, we can use Corollary 3.26 in order to deduce that there are
c ∈ C, d ∈ D, such that c, d ∈ U . Moreover, since x 6 c, d, from the above
display it follows c, d 6 y. In other words, ↓c ∪ ↓d ⊆ ↓y, and because ↓y is a
chain so it is ↓c ∪ ↓d.

The previous theorem exhibits another configuration that countable Esakia
representable forests must avoid. There is at least one other class of countable
forests whose members are not Esakia representable. Let us introduce it by
means of an example.
Example 4.54. Consider the tree depicted in the figure below.
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x0

x1

x2

x

C0

C1

C2

Observe that it does not satisfy the hypothesis of Theorems 3.30 and 3.32,
nor of Theorem 4.53. However, we claim that it is not Esakia representable.
The next theorems implies this claim.

Theorem 4.55. Let T a countable tree. Assume there is an infinite descending chain
of distinct elements (xn)n∈N, and infinitely many chains Cn such that the following
conditions hold:

1. For every n ∈ N it holds xn /∈ Cn and xn = inf(Cn);

2. If n 6= m there are no comparable y ∈ Cn and z ∈ Cm.

Then, T is not Esakia representable.

Proof. Assume T to be as in the hypothesis, and suppose that there is an
Esakia topology τ on it. Then, there must exits x = inf({xn | n ∈ N}). As in
Proposition 4.53, we know that max(↑x) is a compact Hausdorff and countable
subspace of T, hence it has an isolated point y, and there is a clopen U ∈ τ such
that U ∩ ↑x = ↓y ∩ ↑x. Observe that xn 6 y for some n ∈ N. For, if not, since
U ∩ ↑x = ↓y ∩ ↑x we deduce that no xn belongs to U , contradicting Corollary
3.26, because U is open. Wherefore, let xn be such that xn 6 y. Once, again,
since U ∩ ↑x = ↓y ∩ ↑x, we deduce that xn+1 ∈ U , because x 6 xn+1 6 xn 6 y.
Our goal is to prove U ∩ Cn+1 = ∅, which is in contradiction with Corollary
3.26. In order to do so, let c ∈ Cn+1. We claim c ‖ xn.

1. First, observe that c 66 xn = inf(Cn), otherwise every element in Cn
would be comparable with c, against the second hypothesis of the theo-
rem.

2. Secondly, assume xn < c. This means xn ∈ ↓Cn+1. But then, because
xn+1 /∈ Cn+1 and x = inf(Cn+1), we deduce that there is c′ ∈ Cn+1 such
that xn+1 < c′ < xn. But this implies that c′ is comparable with every
element in Cn, which is a contradiction.
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We then claim U ∩ Cn+1 = ∅. In order to see this, suppose c ∈ Cn+1 ∩ U .
Then, we have x < c ∈ U , and thus x < c 6 y, because U ∩ ↑x = ↓y ∩ ↑x. But
this implies c 6 ‖ xn, because xn 6 y and ↓y is a chain. This is in contradiction
with what we have just shown, thereforeU ∩Cn+1 = ∅, contradicting Corollary
3.26. This concludes the proof.

Theorems 4.53 and 4.55 show that the Esakia representability of countable
forests exhibits some peculiar features. It is still to fully understand how this
problem differs from the Esakia representability of uncountable forests. This
concludes our discussion on the representability problem.



CHAPTER 5
Conclusion

In this thesis we studied the Priestley and Esakia representability of partially
ordered sets by restricting the attention to some special classes of posets. In
particular, our main result is the characterization of Priestley and Esakia rep-
resentable well-ordered forests and diamond systems. We showed that a
well-ordered forest is Esakia representable if and only if its nonemtpy chains
have suprema. Moreover, we proved that a diamond system is Esakia repre-
sentable if and only if its nonempty chains have suprema and infima and it has
enough gaps. We referred to these properties by C1 and C2, respectively. From
this it follows that a well-ordered forest (resp. diamond system) is Priestley
representable if and only if it is Esakia representable.

We also identified some properties of Priestley (resp. Esakia) topologies
that revolve around infinite chains. For example, if the infimum of an infinite
descending chain is minimal, then any open set of a Priestley (resp. Esakia)
topology containing it must contain a nontrivial downset. The order dual
version of this proposition is also true. We also showed that, for every Esakia
space, the cardinalities of the ramifications of an infinite descending chainC are
bounded by the cardinality of the ramifications of inf(C). This proves that there
are some forbidden order-theoretic configurations for the Esakia representable
posets. Finally, we discussed how to address the case of countable forests. In
particular, we proved that an Esakia representable countable forests cannot
have points which are limits of two incomparable infinite descending chains.
Moreover, if an Esakia representable forest is countable, its infinite descending
chains cannot consist of infima of certain infinite descending chains.

Below we discuss some directions for future work on the representability
problem. In particular, we propose some classes of posets for which it is natural
to study this problem, especially in view of the results of this thesis.
• Example 3.23 shows that there are posets of height 2 and width 2 which

satisfy C1 and C2 but are not Priestley representable. It is still unknown
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if there are posets of finite height (resp. finite height and finite width)
which satisfy C1, C2 and C3 but are not Priestley representable. The
condition C3 was introduced in Proposition 3.21, and it generalizes
Hochster’s condition H, as it appears in (Lewis & Ohm, 1976). More
generally, we propose to study the representability problem for the class
of posets with finite height (resp. finite height and finite width).

• Diamond systems are a generalization of root systems with width at
most 2. Priestley (resp. Esakia) representable systems are characterized
in Section 4.1. We suggest to find an extension C of the class of diamond
systems whose poset are allowed to have width at most n, for 2 < n, and
study the representability problem for the class C.

• In Section 4.4 we studied the Esakia representability of countable forests.
Because of Theorems 2.35, 4.53 and 4.55, it seems that the Esakia repre-
sentability of countable forests might differ from the representability of
arbitrary forests. The characterization of Priestley (resp. Esakia) repre-
sentable countable and arbitrary forests is still an open question and we
suggest it as future work.

• We know that the class of Priestley representable posets is closed under
disjoint unions, finite ordered sums and order duals. On the other hand,
the class of Esakia representable posets is not closed under order duals,
and none of these classes is closed under arbitrary ordered sums. We
leave it as an open problem to find other closure properties for these
classes.
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