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Abstract

Rust is a systems programming language that uses a strong static type
system to prevent memory safety issues (such “use-after-free” bugs and buffer
overflows) that are common in programs written in languages such as C and
C++. The RustBelt project (Jung et al. 2018a) has developed a machine-
checked proof of the safety guarantees provided by the Rust language, formally
showing that the Rust type system indeed prevents the issues that it claims to
prevent. However, RustBelt uses an operational semantics that is incompatible
with certain desirable compiler optimizations inspired by the guarantees that
the Rust type system provides. Recently, Jung et al. have introduced Stacked
Borrows (Jung et al. 2020), a new operational semantics for Rust that allows
such compiler optimizations to be performed. However, this new operational
semantics has not yet been integrated into the RustBelt safety proof, meaning
it has not been formally shown that the safety guarantees of the Rust type
system still hold for the new Stacked Borrows semantics.

This thesis takes the first step toward updating the RustBelt safety
proof to account for the new Stacked Borrows semantics. Specifically, we
develop a new program logic, which we call Stacked Borrows Separation Logic
(SBSL), for reasoning about the behavior of programs executed according to
the Stacked Borrows semantics. Building on RustBelt, we have developed a
machine-checked proof of the soundness of SBSL using the Coq proof assistant.
The key conceptual contribution in SBSL is the notion of ghost stacks, which
enables SBSL to abstract away irrelevant implementation details and allows
for better reasoning about concurrency compared to a naive approach.
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Chapter 1

Introduction

Systems programming languages like C and C++ provide a high degree of
control over memory management, making them suitable for applications that
are performance-sensitive or that require precise control over the underlying
hardware, such as web browsers and operating systems. However, programs
written in these languages are often plagued by memory safety issues (such as
“use-after-free” bugs and buffer overflows), a class of bugs that is a frequent
cause of security issues. For example, Microsoft estimates that around 70% of
the security issues that it fixes are caused by memory safety issues (Thomas
2019).

Rust (Matsakis et al. 2014; Rust team 2020) is a new systems program-
ming language that provides programmers with the control and performance
benefits of C and C++ while preventing memory safety issues using a strong
static type system. An important feature of Rust is the extensible nature
of its type system: Rust allows programmers to use clearly-marked unsafe
operations, to which the safety guarantees of the type system do not apply,
in order to implement additional libraries that cannot be implemented within
the constraints of the Rust type system.

The safety guarantees provided by the Rust type system have also been
the subject of academic research. The most prominent work in this direction
is the RustBelt project (Dang et al. 2020; Jung 2020; Jung et al. 2018a),
which provided a machine-checked proof of the safety guarantees (such as
type safety and memory safety) of the core Rust type system and parts of
the Rust standard library that rely on unsafe code.

However, the operational semantics used in RustBelt is incompatible
with certain desirable compiler optimizations, such as reordering of memory
accesses across function calls to unknown code. Recently, Jung et al. have
proposed Stacked Borrows (Jung et al. 2020), a new operational semantics
for Rust that allows these types of optimizations. The Stacked Borrows
semantics is directly inspired by the Rust type system, and this makes it at
least plausible that the safety guarantees claimed by Rust still hold for the new
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Stacked Borrows semantics. However, this claim has not yet been formally
established, since the Stacked Borrows semantics has not been integrated
into RustBelt.

This thesis takes a first step toward re-establishing the safety guarantees of
Rust for the new Stacked Borrows semantics. Before stating our contributions,
we briefly describe the setup of RustBelt. RustBelt established the safety
guarantees of Rust by means of a semantic type safety proof. Specifically,
RustBelt gives a model for the Rust type system that describes when a
program is type-safe based on the program’s behavior, instead of based on
a fixed set of typing rules. The main benefit of the semantic approach to
type safety is that it easily accounts for libraries that are implemented using
unsafe code: one can use the semantic notion of type safety to prove that
such programs behave in a type-safe manner, despite the fact that they
internally rely on unsafe operations that cannot be typed according to the
ordinary rules of the type system.

The RustBelt semantic model is built on top of a program logic that
provides high-level rules for reasoning about the behavior of Rust programs.
The program logic used for RustBelt is a variant of concurrent separation
logic (Brookes 2007; O’Hearn 2007; O’Hearn et al. 2001; Reynolds 2002),
which is a type of program logic that simplifies reasoning about programs
that use concurrency and mutable state. Specifically, the RustBelt program
logic is built on top of Iris (Jung et al. 2016, 2018b, 2015; Krebbers et al.
2017a), a modern higher-order concurrent separation logic that provides
general facilities for building program logics for programming languages with
a wide range of expressive features, such as concurrency, mutable state,
higher-order functions, and recursive types. Iris is implemented inside the
Coq proof assistant (Coq Development Team 2020) and it enjoys the support
of MoSeL (Krebbers et al. 2018) (formerly Iris Proof Mode (Krebbers et al.
2017b)), a proof mode that simplifies the process of writing separation logic
proofs inside of Coq.

The rules of the program logic used in RustBelt are not sound for the
new Stacked Borrows operational semantics, because the behavior of some
programs is different according to the new semantics. This means that the
RustBelt safety proof does not directly apply to the new Stacked Borrows
semantics. Therefore, a key requirement for integrating Stacked Borrows into
RustBelt is to develop a new program logic for Stacked Borrows. In this thesis,
we develop such a logic, which we call Stacked Borrows Separation Logic
(SBSL for short). The current version of SBSL only considers a simplified
version of Stacked Borrows, but this simplified version nevertheless contains
some of the key mechanisms present in the full version of Stacked Borrows.

We now briefly describe the key idea behind SBSL. Standard separation
logic, as used in RustBelt, provides the points-to assertion ` 7→ v, which
is a logical proposition that roughly speaking states that the location `
currently holds the value v in the current (implicit) program state. In the
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new Stacked Borrows semantics, each memory location ` has an additional
piece of information associated to it in addition to its current value v: namely,
a borrow stack S, which is used to determine what kind of memory accesses
are allowed to that memory location.

A naive approach to extending separation logic to account for Stacked
Borrows would be to introduce the equivalent of the points-to assertion for
borrow stacks, by introducing a logical proposition that tracks the current
borrow stack S for each memory location `. However, this naive approach
leads to a program logic that is sensitive to irrelevant details of a program’s
implementation and incapable of reasoning about simple forms of concurrency
allowed by the Rust type system.

Instead, SBSL takes a different approach: it introduces the notion of ghost
stacks 1, which do not precisely track the borrow stack for each location, but
instead track an approximation of it. This is the main conceptual contribution
of this thesis, and it enables SBSL to abstract away irrelevant implementation
details and additionally enables better reasoning about concurrency.

1.1 Contributions

This thesis makes the following contributions:

• We have developed a new program logic for Stacked Borrows, called
Stacked Borrows Separation Logic (SBSL), that introduces the notion
of ghost stacks.

• We demonstrate the usefulness of SBSL by applying it to several simple
Rust programs that contain patterns commonly used in Rust. We
also use examples to show that SBSL is better able to reason about
abstraction and concurrency compared to a naive approach.

• Building on top of the Iris logic, we provide a soundness proof for SBSL.

• We have fully mechanized the rules of SBSL and its soundness proof
inside of the Coq proof assistant. Our Coq development builds on the
existing RustBelt Coq development, and this provides a path forward
for further integrating SBSL into RustBelt.

1.2 Thesis outline

We now provide a brief outline of the chapters of this thesis.
Chapter 2 provides an introduction to the Rust programming language.

It first gives an informal introduction of the Rust language, introducing im-
portant concepts of the language such as ownership, borrowing, and undefined

1Ghost stacks are implemented using Iris’ ghost state mechanism, from which they
derive their name.
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behavior. Understanding these concepts is mainly important to understand
the motivation for the new Stacked Borrows operational semantics. At the
end of the chapter, we give a formal account of λRust, the simplified Rust-like
language that was used for the original RustBelt safety proof.

Chapter 3 introduces the simplified version of the Stacked Borrows oper-
ational semantics that is used in throughout this thesis. First, we provide
the motivation for Stacked Borrows based on one of the examples from the
original Stacked Borrows paper (Jung et al. 2020). The remainder of the
chapter gives a formal account of λSBRust, a variant of λRust that includes the
new Stacked Borrows semantics.

Chapter 4 is the core chapter of this thesis. It introduces Stacked Borrows
Separation Logic, the new program logic that we have developed. It begins
by introducing ordinary concurrent separation logic, as used in RustBelt.
Next, it describes a naive approach to extending separation logic to account
for Stacked Borrows. Although this approach is not the one adopted by
SBSL, it provides a useful intermediate step for understanding SBSL. We
describe the shortcomings of the naive approach using two examples based
on abstraction and concurrency. The remainder of the chapter is devoted
to describing SBSL. We apply SBSL to the two examples used for the naive
approach and show that SBSL is better able to reason about them. Finally,
we discuss the relation between SBSL and the Rust type system.

Chapter 5 describes the Iris model of SBSL. We describe how the assertions
of SBSL are expressed in terms of more primitive Iris notions and how they
are related to the operational semantics of the programming language. Finally,
we state the adequacy theorem for SBSL, which ensures that the rules of the
logic are sound with respect to the operational semantics.

1.3 Notation and conventions

Throughout this thesis, we frequently use the name of a (meta)variable to
indicate the kind of mathematical object that can be substituted for or is
referred to by the (meta)variable. For example, when we provide a new
definition such as v ∈ Val ::= . . . , then the (meta)variable v should be
subsequently understood to stand for mathematical objects inVal, where the
different syntactic forms forVal are listed in . . . .

We use the following notation for lists: [] is the empty list, and x :: xs
(where x is an element and xs is a list of elements) is the list xs with the single
element x added to the front of it. Lists of multiple elements are also written
as [x1, x2, . . . , xn], which is equivalent to writing x1 :: x2 :: . . . :: xn :: [].

The notation t[s/x] is used to denote substitution of the term s for
all occurrences of the variable x in the term t. Substitution of a term
for a variable is defined in the usual way (performing renaming of bound
variables to avoid variable capture where necessary), and we do not provide
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an explicit definition. Simultaneous substitution of several terms s1, . . . , sn
for the corresponding variables x1, . . . , xn is written t[s/x], where s and x
are abbreviations for the aforementioned sequences.

Propositions and functions that are applied to several arguments are
occasionally written without parentheses. For example, the notation P 1 2,
where P is a binary relation (applied to two arguments), is an alternative
notation for P(1, 2).
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Chapter 2

Rust

This chapter gives an introduction to the Rust programming language. We
do not discuss all details of the language, but merely focus on those aspects of
Rust which are most relevant to this thesis. This chapter entirely consists of
background material. The first sections of this chapter provides a fairly high-
level and informal introduction to important concepts in Rust. Section 2.1
describes how the notion of ownership allows the Rust type system to ensure
that memory is managed properly. Section 2.2 describes how borrowing works
in Rust. Borrowing is an extension of the notion of ownership that allows
one to create references to values. Section 2.4 discusses lifetimes, which allow
the Rust compiler to ensure that references are used properly. Section 2.5
discusses unsafe code and raw pointers, which can be used to provide more
flexibility when references are not sufficient. Improperly using raw pointers
can lead to undefined behavior, a type of undesirable program behavior that
is discussed in Section 2.6.

In Section 2.7, we give a formal description of the λRust programming
language, which is a programming language based on Rust that is easier to
reason about formally. The λRust language was developed for the RustBelt
project (Jung et al. 2018a) in order to formalize the safety guarantees of Rust.
We introduce only a simplified fragment of λRust, leaving out aspects of the
language which are orthogonal to the results in this thesis.

2.1 Ownership

An important aspect of the design of a programming language is how it deals
with memory management. Memory management refers to the allocation and
deallocation of memory while a program executes. Programs allocate (request)
regions of memory in order to store intermediate values, and they deallocate
(give up) regions of memory once those values will no longer be used, allowing
the deallocated part of memory to be re-used in later allocations. Memory
deallocation is important, since memory is a finite resource that would be
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exhausted if programs did not re-use memory by deallocating.
There are several ways of dealing with memory management in a program-

ming language. Some languages, like C, require manual memory management,
meaning the programmer has to explicitly allocate and deallocate memory.
Manual memory management is error-prone: improper memory management
can lead to memory leaks and use-after-free bugs. A memory leak occurs
when the programmer allocates memory to store values but forgets to deal-
locate the memory once those values no longer need to be stored. This can
cause the program to consume more memory than necessary. A use-after-free
bug occurs when the programmer deallocates memory too early, i.e. when
the value that is stored there is still in use by the program. Since deallocated
memory can be re-used by (other parts of) the program, this can cause the
memory holding the value to be overwritten with values produced by another
part of the program, leading the program to behave erratically. We will
discuss the effect of use-after-free bugs further in Section 2.6, when we discuss
the notion of undefined behavior.

To avoid the pitfalls of manual memory management, some languages,
like Java and Python, make use of a garbage collector, which is an auxiliary
program that runs alongside the program written by the programmer, and
ensures that memory is automatically deallocated once the garbage collector
has determined that the value stored there will no longer be used. Garbage
collection is convenient, because the programmer can simply allocate memory
and let the garbage collector take care of deallocation.

However, there are also downsides to using a garbage collector: the
garbage collector runs alongside the original program, and performs checks
to see whether memory can be deallocated. This can slow down the original
program, and make it more unpredictable when memory will be deallocated,
leading to latency characteristics that are hard to predict. For this reason,
garbage-collected languages are typically avoided for performance-sensitive
applications, such as operating systems and web browsers.

Rust takes a different approach to memory management, which does not
incur the runtime overhead of garbage collection, while still handling memory
management mostly automatically. The approach that Rust takes to memory
management is based on the notion of ownership. We illustrate the idea of
ownership using the following example:
1 fn print_vec() {
2 let mut vec = Vec::new();
3 vec.push(1);
4 vec.push(2);
5 vec.push(3);
6 println!("{:?}", vec); // Prints [1, 2, 3]
7 }

This code sample defines a function called print_vec, which does not take
any arguments (indicated by the empty parentheses after the function name).
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The body of the function, which is executed when the function is called, is
enclosed in curly brackets.

This function calls the Vec::new function in order to create an empty
vector. A vector stores a sequence of elements where the size of the sequence is
not determined in advance. We use the let construct to introduce a variable
vec and bind it to the vector we have created, allowing us to refer to the
vector in the following lines. In Rust, variables are immutable by default,
and therefore we use the mut modifier to indicate that we wish the variable
to be mutable, allowing us to later add elements to the vector.

Next, the function invokes the push function three times on the vector in
order to append the numbers 1, 2, and 3 to the back of the vector. Finally, it
prints the resulting vector to the screen using println!, which displays the
elements currently contained in the vector.

What is interesting about this example is that the vector is required to
allocate memory in order to store the elements it contains. This raises an
important question: when is the memory allocated by the vector deallocated?

In order to understand when memory is deallocated in Rust, it is necessary
to introduce the idea of variable scope. The scope of a variable is the portion
of the program in which we can refer to the variable by writing its name.
In Rust, the scope of a (let-bound) variable lasts from the point where it
is introduced using the let construct, until the end of the enclosing block
in which the let is contained. Generally speaking, a block is a sequence of
statements enclosed in curly brackets. In particular, the body of a function
is a block.

In the above example, the variable vec is introduced in line 2 using let,
and we can therefore refer to it until line 7, since that is where the enclosing
block ends. While we can still refer to the variable, the variable is said to be
in scope. At the end of the enclosing block, the variable is said to go out of
scope, and we can no longer refer to it.

Rust uses the scope of variables to determine when memory should be
deallocated. In Rust, every value is owned by some variable. Ownership is
exclusive, meaning that a value cannot be owned by multiple variables. When
the owning variable goes out of scope, the value is dropped, and the memory
associated to that value is deallocated. In general, dropping a value can also
cause different kinds of resource cleanup, but in this thesis we only focus on
memory deallocation.

If we bind a value to a variable using let, then that variable becomes
the exclusive owner of that value. Therefore, in the above example, the
variable vec becomes the exclusive owner for the vector. Since vec goes out
of scope at line 7, that is the point in which the memory used by the vector
is (implicitly) deallocated. In other words, the vector is deallocated at the
end of the function.

Ownership of a value can also be transferred by passing values as argu-
ments to functions or returning values from functions. Transferring ownership
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of a value is called moving. When moving a value, the original owner loses
ownership and ownership is transferred to a different owner. For example, the
following program transfers ownership of a vector into a separate function,
which adds some elements to the vector before returning ownership of it:
1 fn print_vec_move() {
2 let vec = Vec::new();
3 let vec2 = add_elems_to_vec_move(vec);
4 println!("{:?}", vec2); // Prints [1, 2, 3]
5 }
6
7 fn add_elems_to_vec_move(mut vec3: Vec<i32>) -> Vec<i32> {
8 vec3.push(1);
9 vec3.push(2);

10 vec3.push(3);
11 return vec3;
12 }

Here, the vector vec is passed as an argument to add_elems_to_vec_move
(which expects an argument of type Vec<i32> (a vector of integers), and
returns a value of the same type). This transfers ownership from the
variable vec into the function. At the end of add_elems_to_vec_move,
ownership is returned by returning the vector from the function. Since
add_elems_to_vec_move receives ownership of a vector (received as an ar-
gument) and subsequently gives up ownership of the vector (by returning it
from the function), the function add_elems_to_vec_move does not deallocate
the vector at the point where vec3 goes out of scope. Instead, the vector
is deallocated when vec2 goes out of scope, because that variable receives
(and keeps) ownership of the vector returned by add_elems_to_vec_move
(printing the vector does not take ownership of the vector for reasons we do
not explain here).

The ownership discipline in Rust ensures that memory is properly deallo-
cated, and prevents memory leaks (with some exceptions) and use-after-free
bugs. Moreover, by looking at the places where ownership transfers occur,
the Rust compiler is able to determine where memory should be deallo-
cated entirely at compile-time, meaning the overhead of garbage collection is
avoided.

2.2 Borrowing

The function add_elems_to_vec_move in the previous section does not keep
ownership of the vector. Instead, it receives the vector as an argument,
modifies the vector, and then gives back the vector by returning it. Effectively,
the function has only briefly “borrowed” the vector for the purpose of making
some modifications to it. It is quite tedious to have to explicitly return
ownership in such cases.
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In order to simplify code like this, Rust also allows one to borrow a value
by creating a reference to it. A reference to a value allows one to temporarily
use the value, without receiving ownership of the value. References are an
instance of a more general concept called pointers, which are values that refer
to (or point to) a location in memory holding a value. The way that pointers
are represented is made more precise in Section 2.7.

The following example demonstrates how references can be used to allow
a function to modify a vector without receiving ownership of it:
1 fn print_vec_borrow() {
2 let mut vec = Vec::new();
3 add_elems_to_vec_borrow(&mut vec);
4 println!("{:?}", vec);
5 }
6
7 fn add_elems_to_vec_borrow(vec2: &mut Vec<i32>) {
8 vec2.push(1);
9 vec2.push(2);

10 vec2.push(3);
11 }

In this example, a vector vec is created, but this vector is not moved into
the function by passing it as an argument directly. Instead, we create a
mutable reference to the vector using &mut vec, which we then pass to
add_elems_to_vec_borrow. A mutable reference provides temporary, muta-
ble (read-write) access to the value it refers to.

The function add_elems_to_vec_borrow expects an argument of type
&mut Vec<i32>, indicating that it expects a mutable reference to a vector of
integers. It uses the mutable reference to the vector to add three elements to
the vector referred to by the reference.

Crucially, creating a reference does not affect ownership: in the above
example, the variable vec remains the owner of the vector, and the vec-
tor will still be dropped when vec goes out of scope (i.e., at the end of
print_vec_borrow). Because a reference does not confer ownership, the
add_elems_to_vec_borrow does not have to explicitly “return” ownership of
the vector.

In fact, we have already seen code that uses mutable references before,
since the push function we have used to add elements to the vector expects a
mutable reference as well, which is created implicitly.

One of the most important operations on references is dereferencing,
written *r, where r is a reference. If r is a reference, then *r is used to
access the value referred to by the reference. The meaning of dereferencing is
dependent on the context in which it appears. For example, *r = ... is used
to write a value to a reference, and *r by itself is typically used to read the
value referred to by a reference. The dereferencing operation is not always
required to be written explicitly, which is why it does not appear in all of
the examples.
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2.3 Borrow checking

In order to prevent use-after-free bugs, it is important to ensure that a
reference is not used after the value it originally referred to has been destroyed.
The Rust compiler includes a component called the borrow checker, which
ensures this by enforcing restrictions on how references can be used: in
particular, it ensures that references are only used while they are still valid.
Moreover, it ensures that mutable references are exclusive, meaning that
there is at most one (usable) mutable reference to each value. Ensuring the
exclusivity of mutable references prevents use-after-free bugs, as illustrated
by the following example program (slightly modified from Section 2 of Jung
et al. (2020)), which is rejected by the borrow checker:
1 fn invalid_ref_use() {
2 let mut vec = Vec::new();
3 vec.push(1);
4
5 let vec_ref = &mut vec;
6 let first_item_ref = &mut vec_ref[0];
7 *vec_ref = Vec::new();
8 *first_item_ref = 5; // Use-after-free!
9 }

This program creates a vector holding a single element. Then it creates a
mutable reference vec_ref to the entire vector. It then obtains a mutable
reference first_item_ref to just the first element of the vector. Then, it
overwrites the vector with the empty vector using vec_ref. Doing this means
that first_item_ref is no longer valid, since it refers to the first element of
a vector that has been dropped (due to being replaced by an empty vector).
Hence, subsequently writing to first_item_ref constitutes a use-after-free
bug. The borrow checker prevents this error by imposing constraints that
ensure that the reference first_item_ref is no longer used after the write
to vec_ref. The key point is that if we are able to obtain two mutable
references to the same value, then we are sometimes able to use one of the
mutable references in order to make the other mutable reference invalid (e.g.,
by dropping the value it refers to).

The exclusivity of mutable references can also be re-stated in terms of
pointer aliasing. Two pointers or references are said to alias when they refer
to the same value. Hence, we can say that the Rust borrow checker prevents
undesirable aliasing of mutable references.

Rust also allows one to create shared references. In contrast to mutable
references, shared references are allowed to alias, but they only provide read-
only access (with some exceptions). Since shared references only provide
read-only access, it is not possible to reproduce the example invalid_ref_use
above with shared references, because that example relies on overwriting the
vector in order to invalidate a mutable reference.

The following is an example of a program that creates and uses multiple
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(aliased) shared references to the same value:
1 fn aliasing_shared_refs() {
2 let mut vec = Vec::new();
3 vec.push(1);
4
5 let vec_ref = &vec;
6 let first_item_ref_1 = &vec[0];
7 let first_item_ref_2 = &vec[0];
8 println!("{}", first_item_ref_1); // Prints 1
9 println!("{:?}", vec_ref); // Prints [1]

10 println!("{}", first_item_ref_2); // Prints 1
11 }

This example shows that the syntax &vec is used to create a shared reference
(of type &Vec<i32>) to the vector of integers. Additionally, two aliasing
references are created to the first element of the vector and all of the references
are subsequently used in a read-only manner.

2.4 Lifetimes

The borrow checker ensures that references are used properly using an analysis
based on lifetimes. Every reference in a Rust program has a lifetime associated
to it, which is the portion of the program where that reference can be used.
By imposing constraints on the lifetimes of references, the borrow checker
is able to ensure that references are only used while valid. In particular,
lifetimes are also used to prevent undesirable aliasing of mutable references.

References in Rust can generally be created in two ways: by creating
a reference to an owned value directly (borrowing), and by deriving a new
reference from an existing reference. The latter operation is called reborrowing,
and it is typically useful for creating a reference to a part of some value
from a reference to the entire value (say, for creating a reference to the first
element of the vector given a reference to the entire vector), although it is
also possible for the derived reference to have the same type as the original
reference. Consider the following program:
1 fn borrows() {
2 let mut x = 42;
3
4 // Borrowing, x is a variable holding an owned value
5 let x_ref1 = &mut x;
6 // Reborrowing, x_ref1 is an existing mutable reference
7 let x_ref2 = &mut *x_ref1;
8 }

Here, we have that the reference x_ref1 is created by borrowing x, whereas the
reference x_ref2 is derived from the another reference x_ref1 by reborrowing.
There is no special syntax for reborrowing: &mut *x_ref1 should just be read
as “create a mutable reference to the value referred to by x_ref1”. In this
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example, both x_ref1 and x_ref2 are mutable references of type &mut i32
(mutable reference to an integer), and they are aliasing, since they both refer
to the contents of the variable x. However, as we shall see, the constraints
imposed by the borrow checker prevent these aliasing mutable references from
being used “at the same time”.

We now describe the constraints imposed by the borrow checker in order
to ensure that references are used properly, preventing issues such as use-
after-free bugs. The following rules are used to determine the lifetime of each
reference (these rules are slightly rephrased from (Jung et al. 2020)):

• A reference (and any reference derived from it by reborrowing) can only
be used during its lifetime.

• Newly-created mutable references: The original value or reference (from
which the new reference is derived) cannot be used until the lifetime of
the newly-created reference has ended.

• Newly-created shared references: The original value or reference (from
which the new reference is derived) cannot be mutated (but can be
read) until the lifetime of the newly-created reference has ended.

The borrow checker applies these constraints to determine the lifetimes of
the references in the program: for each reference, it chooses the lifetime to
be the smallest portion of the program that contains all uses of a reference
(and uses of the references derived it), while ensuring that the latter two
constraints are also respected. If it is not possible to satisfy all constraints,
then the program is rejected by the borrow checker. Note that once a lifetime
has ended, it cannot “start” again at some later point in the program.

Apart from the lifetime constraints, we have that mutable references
can be used for reading and writing, whereas shared references can only be
used for reading (with an exception that we do not discuss here). Moreover,
creating a mutable reference counts as a write access, whereas creating a
shared reference counts as a read access. This means that it is not possible
to create a mutable reference from a shared reference.

Applying these rules to the program invalid_ref_use on page 14, the
borrow checker determines the following lifetimes:
1 fn invalid_ref_use() {
2 let mut vec = Vec::new();
3 vec.push(1);
4
5 let vec_ref = &mut vec; // ’a
6 let first_item_ref = &mut vec_ref[0]; // ’a, ’b
7 *vec_ref = Vec::new(); // ’a, ’b
8 *first_item_ref = 5; // ’a, ’b
9 }
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Lifetimes in this program are written ’a (single quote followed by alphabetic
character). The same convention is used in the Rust language to refer to
lifetimes. The references vec_ref and first_item_ref have lifetimes ’a
and ’b, respectively. The comments on the side show what portion of the
program each lifetime corresponds to. The borrow checker picks the smallest
lifetime that contains all uses of a reference (and references derived from it).
Hence, the lifetime ’a contains all uses of vec_ref and first_item_ref, since
first_item_ref is derived from vec_ref. The lifetime ’b simply contains
all uses of first_item_ref.

Now, we can see that this program does not satisfy all the constraints:
the program writes to vec_ref, while the lifetime ’b of first_item_ref
(derived from vec_ref) is has not yet ended. This is a violation of the lifetime
constraints, since the original reference cannot be used until the lifetime of
the derived reference has ended (for mutable references). Hence, the program
is rejected, which in this case prevents a use-after-free bug.

For shared references, the lifetime constraints are more lenient than for
mutable references, since they allow multiple aliasing shared references to co-
exist (with overlapping lifetimes) and be read from in an arbitrary interleaved
fashion until the point where the original value or reference is written to.

Just as with ownership, it is important to note that the lifetime analysis
does not involve runtime checks: lifetimes are determined entirely at compile-
time, and therefore borrow checking does not have a performance impact
while a program executes.

2.5 Unsafe code and raw pointers

Based on ownership and borrowing, the borrow checker is able to ensure the
absence of memory safety issues such as use-after-free bugs in the majority
of Rust code. However, sometimes the ownership and borrowing constraints
imposed by the borrow checker are too strict, rejecting programs that use
references properly (i.e., without causing issues such as use-after-free bugs
either directly or indirectly), but where the analysis is not powerful enough
to determine that. For example, the Rust standard library includes reference-
counted pointers, which provide a more flexible notion of ownership than that
allowed by the Rust type system. Reference-counted pointers allow a single
value to have multiple owners, by keeping track of the number of owners at
runtime, and destroying the value once the number of owners reaches 0.

Implementing reference-counted pointers is not possible within the con-
straints enforced by the Rust type system, which requires each value to have
a unique owner. However, Rust provides programmers with the ability to use
raw pointers, which are similar to references in the sense that they refer to
a value, but which are not subject to the lifetime checks performed by the
borrow checker. Using raw pointers improperly can lead to memory safety
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issues such as use-after-free bugs, and therefore Rust requires most operations
on raw pointers to appear inside unsafe blocks, signifying to the reader that
“unsafe” operations are being used.

Using raw pointers makes it possible to implement additional abstractions
like reference-counted pointers. An important point is that reference-counted
pointers are entirely safe to use, as long as the client code does not contain
any unsafe blocks itself. That is, despite the fact that the implementation
of reference-counted pointers relies on unsafe code, the interface is entirely
safe to use. This means it is possible to write libraries that use unsafe
code internally without compromising the safety guarantees of the Rust type
system, assuming that such libraries are implemented correctly.

2.6 Undefined behavior

Since the borrow checker does not provide guarantees about raw pointers,
it is possible to use raw pointers to cause use-after-free bugs. Consider the
following program:
1 fn use_evil_pointer() {
2 let evil_pointer = create_evil_pointer();
3 unsafe { *evil_pointer = 10 };
4 }
5
6 fn create_evil_pointer() -> *mut i32 {
7 let mut x = 42;
8 let x_ref = &mut x;
9 let evil_pointer = x_ref as *mut i32;

10 return evil_pointer;
11 }

The function create_evil_pointer creates a variable x holding the value
42, and creates a mutable reference x_ref to it. Then, it casts (converts)
the mutable reference to a mutable raw pointer (of type *mut i32) using
as *mut i32. While mutable references are checked using the lifetime anal-
ysis, raw pointers are not checked at all. Therefore, we are able to return
evil_pointer from the function, despite the fact that the variable x is deal-
located at the end of the function. This means that the pointer returned
by the function refers to a value that was already dropped, and hence a
use-after-free bug occurs when we write to it in use_evil_pointer.

Here, the borrow checker does not provide any help: the Rust compiler
compiles this program without complaining, and we can even run the program.
This raises an interesting question: how does a program containing a use-
after-free bug behave when it is executed?

The behavior of programs written in a programming language is specified
by the semantics of the programming language. The semantics can be
described in an informal manner in a document describing the programming
language (a language specification), or it can be made much more precise by
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giving a rigorous mathematical definition of program behavior. Typically,
the goal of a semantics is to describe the behavior of programs in a way that
is not dependent on specific hardware or a specific implementation of the
language. Rust does not yet have an full, official language specification, but
some aspects of the behavior of Rust programs are generally agreed upon
(and relied on by compiler implementers).

One way of dealing with programs that contain use-after-free bugs is to
stipulate that such programs should terminate with an error message. This
approach has the advantage that erroneous programs behave in a predictable
way. However, this approach can be costly in terms of performance, since it
requires programs to keep track of administrative information and perform
checks to determine when use-after-free bugs are occurring.

Instead of requiring the program to be aborted or to have some other fixed
behavior, the Rust language (similar to other performance-oriented languages,
like C and C++) stipulates that programs that contain use-after-free bugs
have undefined behavior. A program that has undefined behavior is allowed
to have any behavior whatsoever. Moreover, this behavior does not have to
be consistent between different runs of the same program, different machines,
or different compiler versions.

Why is it desirable to let certain programs have undefined behavior?
This means that the compiler implementer is given maximum freedom in
mapping the constructs of the language to the underlying hardware in the
most efficient way, i.e. without adding any checks to ensure that the program
is not performing “illegal” operations. Assuming that programs do not have
undefined behavior can also be tremendously useful for justifying compiler
optimizations, as we will see in Chapter 3.

However, this freedom comes at a significant cost: if the programmer
makes a mistake and writes a program that has undefined behavior, then they
no longer have any guarantee about how their program will behave. Perhaps
the program will work correctly most of the time (or even all of the time), but
be subtly broken when switching to different hardware, or when upgrading
to a new compiler version that performs additional compiler optimizations.

Since the behavior of programs with undefined behavior cannot be relied
upon, the Rust language goes to great lengths to avoid it. Hence, Rust requires
every piece of code that could cause undefined behavior if used incorrectly to
be enclosed in an unsafe block. Using the type system (mainly the borrow
checker), the Rust compiler is able to ensure the absence of undefined behavior
in the vast majority of Rust code, whereas the programmer is responsible
for manually auditing a small number of unsafe blocks in the code (auditing
an unsafe block might require looking at the surrounding code as well). For
this reason, code that does not contain any unsafe blocks is called safe Rust
code, whereas code that does contain unsafe blocks is called unsafe Rust
code.
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2.7 The λRust programming language

This section introduces the λRust programming language, which is a program-
ming language that is similar to Rust, but considerably simplified in order
to make it easier to reason about. The λRust language was created for the
RustBelt project (Jung et al. 2018a) in order to prove core properties of the
Rust type system. We present λRust as an untyped language here, even though
RustBelt defines a type system for λRust on top of the untyped language.

In contrast to Rust, λRust has a formal semantics, which specifies how
programs written in λRust behave. In particular, the semantics specifies when
a λRust program has undefined behavior. As mentioned in the beginning of
this chapter, we describe only a fragment of the language: in particular, we
leave out mostly orthogonal aspects of the language like non-atomic memory
accesses and the compare-and-set instruction, although we do take these
instructions into account in the Coq formalization developed for this thesis.
Moreover, we simplify memory allocation to single memory locations, instead
of blocks of memory locations. This simplification to single memory locations
is also applied in the Coq formalization for this thesis.

Section 2.7.1 gives a brief, informal introduction to the language. This
introduction is not fully precise about every detail of the language, but merely
meant to give an overview of the language constructs. In Section 2.7.2, we
give the formal semantics (specifically, a small-step operational semantics)
for the language. Section 2.7.3 discusses when a λRust program has undefined
behavior. Finally, Section 2.7.4 discusses how to translate Rust programs
into λRust.

2.7.1 Informal introduction

The syntax of λRust is shown in Fig. 2.1. Some language constructs that
are not relevant to this thesis have been omitted. The syntax is divided
into values v and expressions e. Values represent the results of terminated
programs, whereas expressions also include programs that have not (yet)
terminated. Expressions can be evaluated in order to obtain a final value.
For example, 2 + 3 is an expression that evaluates to the value 5.

The λRust language has four kinds of values: locations ` ∈ Loc (where Loc
is an unspecified, countably infinite set), integers z ∈ Z, recursive functions
rec f([x1, . . . , xn]) := e and the “poison” value h. The role of each of these
will be explained as we explain the operations of the language.

The addition operation e+e can be used to add two integers. For example,
(2 + 3) + 5 evaluates to 10.

Function application e([e1, . . . , en]) applies the function e to the arguments
e1, . . . , en. For example, (rec f([x, y]) := x+ y)([2, 3]) applies a function f
(which produces the sum of its two arguments) to the values 2 and 3, and
therefore evaluates to 5. A function can call itself recursively using its own
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` ∈ Loc
z ∈ Z
v ∈Val ::= h | ` | z | rec f([x1, . . . , xn]) := e

e ∈ Expr ::= v
| x
| e+ e | . . .
| e([e1, . . . , en])
| case e of [e1, . . . , en]
| fork { e }
| alloc()
| free(e)
| ∗e
| e := e
| . . .

λx.e := rec ([x]) := e
let x = e1 in e2 := (λx.e2) e1

e1; e2 := (let = e2 in e1)
true := 1

false := 0
if e1 then e2 else e3 := case e1 of [e3, e2]

Figure 2.1: The syntax of λRust.
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name. Functions are treated as ordinary values in λRust, just like in the
λ-calculus, from which it derives its name. We write for variables that are
not used anywhere.

The case expression case e of [e0, . . . , en−1] is used to choose between
evaluating different expressions. It evaluates e to an integer z, and subse-
quently evaluates ez (the z-th expression, counting from 0) from e0, . . . , en−1.
Hence, case 1 of [2, 3 + 3] evaluates to 6. Based on the case construct, it is
also possible to define the more familiar if expression if e1 then e2 else e3

using the constants true := 1 and false := 0.
Programs written in λRust can read from and write to memory locations

` ∈ Loc, where the set of locations Loc is an unspecified, countably infinite
set. The idea is that each location in the memory can hold a single value
v ∈Val. Allocation alloc() finds an unused memory location ` and marks
it for use, storing the value h at that location. The poison value h is an
ordinary value, that is used here to represent uninitialized memory (memory
to which we have not yet written an initial value). Programs that attempt
to perform certain operations (such as arithmetic) on poison values have
undefined behavior.

It is possible to read from a memory location using ∗`, which evaluates
to the value currently stored at `. Writing to a memory location is written
` := v, which updates the value stored at location ` in the memory to v.
Finally, deallocating a location is written free(`). After deallocation, the
memory location ` is marked as unused, allowing it to be re-used in future
allocations.

Based on functions and function application, it is possible to define the
let-binding construct let x = e1 in e2, which evaluates e1 to a value v that is
substituted for the variable x in e2. Hence, let x = 2 + 3 in x+ x evaluates
to 10. Similarly, we can implement sequencing e1; e2, which evaluates e1 and
e2 in sequence. These constructs are primarily useful in programs that access
memory locations. For example,

let x = alloc() in x := 10;x := 5; free(x)

is a program that allocates a memory location and performs two writes to it
before deallocating the location again.

In λRust, it is also possible to have multiple programs executing concur-
rently and communicating with each other by reading from and writing to
memory. The programs that are executed concurrently are referred to as
threads. The fork operation fork { e } creates an additional thread that starts
executing the program e concurrently.

2.7.2 Operational semantics

This section presents the formal semantics for λRust, which is a formal de-
scription of how programs written in λRust behave. The semantics that we
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describe here is a slimmed-down version of the full semantics developed for
RustBelt (Jung et al. 2018a), merely containing those aspects of the language
that we describe in this thesis.

The λRust semantics is given as a small-step operational semantics. In
a small-step operational semantics, the behavior of programs is specified
by defining an abstract machine that executes programs in a step-by-step
fashion. The behavior of this machine is given by a transition relation, that
describes how the state of the abstract machine changes as a program is
executed. States of the abstract machine are called configurations.

The λRust language supports concurrency and mutable state. Therefore,
a configuration of the λRust abstract machine consists of the contents of
the memory, as well as a list containing the threads that are executing
concurrently:

m ∈Mem , Loc fin−⇀Val

c ∈ Config ,Mem×List(Expr)

The memory keeps track of the value stored at each location, and therefore
it is represented as a finite partial function from locations ` ∈ Loc to values
v ∈Val. The set of locations is left unspecified, but is assumed to be countably
infinite. This means that a memory can hold an arbitrary (but finite) number
of values. Since memories are finite, they can be written as lists of (location,
value)-pairs. For example,

{`1 := 2, `2 := 3}

is a memory in which the location `1 holds the value 2 and the location
`2 holds the value 3. Locations which are not mapped represent unused
locations.

We will write machine configurations as

(m | 〈e1 || . . . || en〉)

where m is the current memory state and e1, . . . , en are the programs that
are being executed concurrently. Hence,

({`1 := 0} | 〈2 + 3 || 4 + 5〉)

represents a state where the programs 2 + 3 and 4 + 5 are being executed
concurrently and the memory has a single location `1 holding the value 0.

The behavior of the λRust abstract machine is given by a transition relation

· −→tp · ⊆ Config×Config

where c1 −→tp c2 can be read as “if the current configuration of the machine is
c1, then the machine can take a step to end up in the next configuration c2”.
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O-Add
z1 + z2 = z

(m | z1 + z2)→ (m | z)

O-App
(m | (rec f(x) := e)(v))→ (m | e[(rec f(x) := e)/f, v/x])

O-Case
(m | case z of [e0, . . . , ez, . . . , en−1])→ (m | ez)

O-Fork
(m | fork { e })→ (m | h, e)

O-ECtx
(m1 | e1)→ (m2 | e2, e

?
f )

(m1 | K[ e1 ])→ (m2 | K[ e2 ], e?
f )

O-Mem-Alloc
` /∈ dom(m)

(m | alloc())→ (m[`←h] | `)

O-Mem-Free
` ∈ dom(m)

(m | free(`))→ ((m \ `) | h)

O-Mem-Write
` ∈ dom(m)

(m | ` := v)→ (m[`← v] | h)

O-Mem-Read
` ∈ dom(m)

(m | ∗`)→ (m | m(`))

Figure 2.2: Operational semantics of λRust.

This relation is called the thread-pool reduction relation because it manages
the machine configuration, which contains a list (pool) of threads. When
executing the program e, the initial configuration of the machine is (∅ | 〈e〉),
i.e. e starts out as the only thread and the memory is initially empty.

The behavior of individual threads is given by a transition relation

(· | ·)→ (· | ·, ·) ⊆Mem×Expr×Mem×Expr×Expr?

where (m1 | e1)→ (m2 | e2, e
?
f ) can be read as “if the current memory is m1,

then the thread e1 can take a step to become e2, where the memory changes
to m2 and a new thread ef is created”. The set Expr? , Expr ] {⊥} is used
to indicate that creating a new thread is optional. This relation, which is
called the per-thread reduction relation, defines the actual behavior of the
language constructs. The rules for the relation are shown in Fig. 2.2. For
language constructs which do not create threads, ef is omitted.

The machine takes steps by having one of the threads ei (the choice i is

24



K ∈ ECtx ::= •
| K + e
| v +K
| K([e1, . . . , en])
| v([v1, . . . , vi,K, ej , . . . , en])
| caseK of [e1, . . . , en]
| free(K)
| ∗K
| K := e
| v := K

Figure 2.3: Evaluation contexts of λRust.

non-deterministic) in its thread-pool take a step:

Tp-Step
(m1 | ei)→ (m2 | e′i, e?

f )

(m1 | 〈e1 || . . . || ei || . . . || en〉) −→tp (m2 | 〈e1 || . . . || e′i || . . . || en || e?
f 〉)

If a new thread ef is created, then that thread is added to the thread pool.
We now briefly discuss each of the rules in Fig. 2.2. The rule O-Add

describes the behavior of addition. It allows us to derive transitions such
as (m | 2 + 3) → (m | 5). According to O-App, function applications are
evaluated by substituting the argument values v for the parameters x of the
function, and substituting the function itself for the name f of the function.
The rule O-Case states that case expressions are evaluated by evaluating the
chosen branch ez. The rule O-Fork states that the fork expression fork { e }
evaluates to h and creates a new thread executing e.

The rule O-ECtx describes the evaluation of expressions that contain
subexpressions that need to be evaluated before applying an operation. For
example, in (2 + 3) + 5, 2 + 3 needs to be evaluated before adding 5 to it.
The evaluation order of subexpressions in λRust is described using evaluation
contexts. An evaluation context is a program with a “hole” •, where the hole
describes where evaluation is taking place. The syntax of evaluation contexts
K is shown in Fig. 2.3. These evaluation contexts indicate a left-to-right,
call-by-value (strict) evaluation strategy. For example, •+ 5 is an evaluation
context of the form K + e. We can plug an expression into the hole of an
evaluation context by writing K[ e ] where K is an evaluation context and e
is an expression. For example, (•+ 5)[ 2 + 3 ] is the expression (2 + 3) + 5.
Based on O-ECtx and O-Add, we are able to derive steps such as

(m | (2 + 3) + 5)→ (m | 5 + 5)
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The rules O-Mem-Alloc, O-Mem-Read, O-Mem-Write and O-Mem-Free,
combined with a description of how the state of the memory is represented
(e.g., as a finite partial mapping from locations to values), constitute the
memory model of the λRust language. The memory model defines the behavior
of the memory-related operations. These rules rely on some additional
notation for describing changes to the memory: the notation m[`← v] is the
memory m where ` has been updated to hold v, m \ ` is the memory m with
the mapping for ` removed, m(`) is the value currently stored at ` in the
memory m, and dom(m) is the domain of the memory, or the set of locations
mapped to some value.

The rule O-Mem-Alloc states that alloc() non-deterministically picks
an unused location ` /∈ dom(m), stores h at that location and evaluates
to `. It is always possible to find a location ` /∈ dom(m), since the set of
locations is infinite whereas dom(m) is always finite. This means that memory
allocation always succeeds. The rule O-Mem-Read states that ∗` evaluates
to the value stored at location ` in the memory, if ` ∈ dom(m). The rule
O-Mem-Write states that ` := v (where ` ∈ dom(m)) updates the value
stored at location ` to v, and evaluates to h. Finally, the rule O-Mem-Free
states that free(`) removes the mapping for ` from the memory and evaluates
to h, if ` ∈ dom(m).

Using the rules of the operational semantics, we can derive machine
transitions such as

({`1 := 2} | 〈alloc() || 4 + 5〉) −→tp ({`1 := 2, `2 := h} | 〈`2 || 4 + 5〉)

By repeatedly performing machine transitions, we can keep evaluating a
thread until it has reduced to a value, at which point that thread has
terminated. For example, if we evaluate (2 + 3) + 5 by starting from an initial
configuration (∅ | 〈(2 + 3) + 5〉), then the machine executes the following
transitions:

(∅ | 〈(2 + 3) + 5〉)
−→tp(∅ | 〈5 + 5〉)
−→tp(∅ | 〈10〉)

In the last configuration, the initial (and only) thread has terminated with
the value 10. The machine can no longer make any transitions from the last
configuration, because none of the rules for making transitions apply in that
configuration. However, if there were additional threads, then it would be
possible for the machine to keep making transitions despite the fact that the
initial thread has terminated.

We can express that a machine configuration c2 is reachable from the
configuration c1 using a sequence of thread-pool reductions by taking the
reflexive, transitive closure −→∗tp of the thread-pool reduction relation. Hence,
we have that (∅ | 〈(2 + 3) + 5〉) −→∗tp (∅ | 〈10〉).
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2.7.3 Undefined behavior in λRust

In Section 2.7.2, we have presented the operational semantics of λRust (origi-
nating in the RustBelt work (Jung et al. 2018a)), which defines an abstract
machine that executes λRust programs. We have seen how the abstract ma-
chine evaluates programs by repeatedly making transitions. This section
gives a precise description of how undefined behavior is modeled in the λRust
operational semantics.

The per-thread reduction relation (m1 | e1) → (m2 | e2, e
?
f ) implicitly

specifies when a program has undefined behavior. For example, consider the
programh+5 (executing as one of the threads in some machine configuration).
This program is not a value, and therefore it has not terminated yet. Hence,
we would like to keep applying per-thread reduction steps to it in order to
reduce it to a value. However, none of the rules for per-thread reduction
steps apply to this program: the only rule for addition is O-Add, and O-Add
can only be applied when adding two integers. Moreover, applying O-ECtx
also does not work here, since there are no subexpressions that need to be
evaluated. Therefore, this program cannot take a per-thread reduction step.
Threads which are not values but nevertheless cannot take a per-thread
reduction step (in the current memory of the machine configuration) are
called stuck.

More formally, a combination (m1 | e1) of a program e1 and a memory
m1 is stuck if e1 /∈Val and there does not exist a memory m2, an expression
e2, and an (optional) thread e?

f such that (m1 | e1)→ (m2 | e2, e
?
f ).

Based on the notion of stuckness, we can give a formal definition of
undefined behavior: a λRust program e has undefined behavior if it is possible
to reach a machine configuration (m′ | 〈e1 || . . . || en〉) (using −→∗tp, starting
from the initial configuration (∅ | 〈e〉)) such that for some i, (m′ | ei) is stuck.
That is, if it is possible to end up in a machine configuration where one of
the threads is stuck, then the program has undefined behavior.

As mentioned before, programs that have undefined behavior are allowed
to have arbitrary behavior. This means that the program does not have to
stop running or crash (although it is allowed for it to do so) when implemented
on a real machine, despite the intuition that seems to be suggested by the
word “stuck”. The notion of stuckness is just a formal way of describing when
a program has undefined behavior. Moreover, if one of the threads is stuck in
some reachable configuration of a program, then the program in its entirety
has undefined behavior: undefined behavior is not local to the thread that
gets stuck.

The main type of undefined behavior that can be caused by memory
accesses is accessing (reading, writing, or deallocating) a memory location
` /∈ dom(m) that is not allocated in the current memory m. This type of
undefined behavior corresponds to use-after-free bugs. For example, the
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1 fn f(x: &mut i32) -> i32 {
2 let mut y = *x;
3
4 // Borrowing (mutable)
5 let y1 = &mut y;
6 // Reborrowing (mutable)
7 let y2 = &mut *y1;
8 // Reborrowing (shared)
9 let y3 = &*y2;

10 // Reading and writing
11 *x = *y3 + 1;
12 *y1 = 10;
13 // Cast to raw pointer
14 let yp = y1 as *mut i32;
15 // More writing
16 unsafe { *yp = 20 };
17 y = 30;
18
19 return y;
20 }

rec f([x]) :=
let y = alloc() in
y := ∗x;
let y1 = y in
let y2 = y1 in
let y3 = y2 in
x := ∗y3 + 1;
y1 := 10;
let yp = y1 in
yp := 20;
y := 30;
let r = ∗y in
free(y);
r

Figure 2.4: A Rust program (left) and its λRust counterpart (right).

program
let x = alloc() in x := 0; free(x); ∗x

has undefined behavior because of the following possible sequence of thread-
pool reductions:

(∅ | 〈let x = alloc() in x := 0; free(x); ∗x〉)
−→tp({`1 := h} | 〈let x = `1 in x := 0; free(x); ∗x〉)
−→tp({`1 := h} | 〈`1 := 0; free(`1); ∗`1〉)
−→tp({`1 := 0} | 〈h; free(`1); ∗`1〉)
−→tp({`1 := 0} | 〈free(`1); ∗`1〉)
−→tp(∅ | 〈h; ∗`1〉)
−→tp(∅ | 〈∗`1〉)

Here, the machine ends up in a state where one of the threads attempts to
execute ∗`1 in a memory m where `1 /∈ dom(m). Since the rule O-Mem-Read
can only be applied for locations ` ∈ dom(m), the thread is stuck, and
therefore the program has undefined behavior.

2.7.4 Translating programs from Rust to λRust

This section demonstrates how Rust programs can be translated to λRust
programs that are (roughly) equivalent. A side-by-side comparison of a Rust
program and a corresponding λRust program is shown in Fig. 2.4.
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The Rust program has function f taking a single argument of type
&mut i32. It declares a variable y, which is initialized with the value read
from the reference x. It then uses borrowing and reborrowing to create a few
references: the references y1, y2, y3, and the raw pointer yp all refer to the
same location: the memory location holding the contents of the variable y.
The mutable reference y1 is obtained by borrowing from the variable y, the
mutable reference y2 is reborrowed from y1, and similarly the shared reference
y3 is reborrowed from y2. Several reads and writes to these references and
the variable y are performed: for example, *x = *y3 + 1 updates the value
stored at the location referred to by x to the value read from y3, incremented
by one. The write using the raw pointer is required to be enclosed in an
unsafe block.

The λRust program is also a function that takes an argument x. This
function explicitly allocates a memory location for the variable y, which is
deallocated near the end of the function f . The λRust program performs the
initialization by writing ∗x (the value read from x) to the allocated location.
Note that in λRust, ∗x simply means reading from the location x in memory,
whereas in Rust, the * has a more complicated meaning that depends on the
context where it appears.

Whereas in the Rust program, the variable y holds an integer directly, in
λRust, the variable y holds a location, referring to a place in memory where
the actual integer is stored. This is because in λRust, variables are immutable,
and it is only possible to perform mutation by reading and writing to memory
locations.

In Rust, &mut y creates a (mutable) reference to a value stored in memory.
Because the variable y in λRust is already reference (it holds a location that
refers to a value stored in memory, as opposed to holding the value directly),
there is no need for a separate operation that “creates” references in λRust:
we can simply have the variable y1, y2, y3, and yp hold the same location
as y. This means that the constructs for creating references in Rust, such
as &mut and &, do not really show up in λRust. There also is not any real
difference between mutable references, shared references, and raw pointers
in λRust: values of type &mut i32, &i32, and *mut i32 are simply locations
` where m(`) is an integer z ∈ Z. The difference between those types of
pointers only matters to the type system, and is not manifested at runtime
in λRust.

The translation illustrated here is not fully general (in particular, the
original RustBelt paper (Jung et al. 2018a) uses a more involved translation
capable of dealing with more language constructs, such as indirect control
flow transfers in loops), but it works for all the example Rust programs in the
rest of this thesis. Moreover, this translation does not use non-atomic memory
accesses, which we left out of our description of λRust, even though those
types of accesses more accurately reflect memory accesses in Rust. The use of
non-atomic memory accesses is mostly not relevant for our purposes, since we
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only consider programs where non-atomic memory accesses behave exactly
the same as the memory accesses described in the operational semantics
in Section 2.7.2.
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Chapter 3

Stacked Borrows

The previous chapter discussed the Rust language, and introduced the λRust
language and its operational semantics. This chapter introduces the Stacked
Borrows aliasing model, a new operational semantics for memory accesses in
Rust developed by Jung et al. (2020). The motivation for Stacked Borrows is
to enable more compiler optimizations compared to an operational semantics
like the one discussed in Section 2.7.2.

The outline of this chapter is as follows: Section 3.1 gives the motivation
for Stacked Borrows by discussing a useful optimization that is not allowed
by an operational semantics like that of λRust, but which is allowed under
the Stacked Borrows semantics. The example that we discuss is one of the
motivating examples from (Jung et al. 2020). We reproduce the motivation
in order to provide the reader with a better understanding of the purpose of
Stacked Borrows.

Section 3.2 describes the simplified version of the Stacked Borrows aliasing
model that we consider in this thesis, which leaves out some aspects of the
full Stacked Borrows model described in (Jung et al. 2020).

Finally, Section 3.3 gives the operational semantics of λSBRust, which is
a variant of λRust that incorporates the Stacked Borrows aliasing model.
The operational semantics for λSBRust is based on the original Stacked Borrows
paper (Jung et al. 2020), although we use a somewhat different (but equivalent)
representation for some parts of the program state.

3.1 Optimizations for references

This section gives an example of a useful compiler optimization on references
that cannot be performed according to an operational semantics like the one
used for λRust. This example is taken directly from the original paper on
Stacked Borrows (Jung et al. 2020), where it is used as one of the motivating
examples for introducing the Stacked Borrows semantics. We reproduce it
here in order to make the motivation for Stacked Borrows more clear, and our
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discussion of the example follows the Stacked Borrows paper fairly closely.
In Section 2.7, we have described the λRust language and its operational

semantics. The semantics of a programming language is particularly important
when considering compiler optimizations. A compiler optimization is a
transformation applied to a program in order to improve its performance
characteristics. Generally, many compiler optimizations are performed to
a program during the process of transforming the source program written
by the programmer into a form suitable for efficient execution on the actual
hardware.

An important property of compiler optimizations is that they should be
behavior-preserving. The optimized version of program should behave the
same as the unoptimized version of a program, because the intent of compiler
optimizations is only to improve the performance of a program, and not to
change its observable behavior.

Optimizations are not required to be “behavior-preserving” on programs
with undefined behavior, since programs with undefined behavior are allowed
to have arbitrary behavior in the first place, and therefore compiler imple-
menters have no obligation toward those programs. This means that compiler
implementers are effectively allowed to assume that programs do not contain
undefined behavior while optimizing a program. Being able to make such
additional assumptions can allow for more powerful optimizations. It does
mean, however, that programs that violate those assumptions by causing
undefined behavior can be transformed in unexpected ways.

We now consider one of the motivating examples of optimizations from
the original paper on Stacked Borrows (Jung et al. 2020). Consider the
following two functions:
1 fn write_both(x: &mut i32, y: &mut i32) -> i32 {
2 *x = 3;
3 *y = 5;
4 return *x;
5 }
6
7 fn write_both_optimized(x: &mut i32, y: &mut i32) -> i32 {
8 *x = 3;
9 *y = 5;

10 return 3;
11 }

The function write_both takes two references, writes 3 to the first and 5 to
the second, and then reads the value stored in the first reference. Suppose
that we know that x and y do not alias, i.e. they do not point to the same
location. In that case, we know that the writes to x and y are writing to
different locations. Hence, the write to y does not affect the value stored
at x. This means that when we go to read x, the value stored there will
still be 3 (for simplicity, assume here that the program is single-threaded),
and therefore we can replace the read of x by the value 3, as we have done
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in write_both_optimized. This optimization removes an unnecessary read
operation from the program, replacing it by a constant.

The above optimization relies on the fact that x and y are known not to
alias. The borrow checker ensures that mutable references do not alias, and
hence the above optimization would seem to be justified. However, using
unsafe code, it is possible to effectively circumvent the borrow checker and
obtain two mutable references to the same location in memory:
1 fn duplicate_ref() -> i32 {
2 let mut x = 0;
3 let ptr = &mut x as *mut i32;
4
5 let ref1 = unsafe { &mut *ptr };
6 let ref2 = unsafe { &mut *ptr };
7
8 let result = write_both(ref1, ref2);
9 return result;

10 }

The function duplicate_ref obtains two mutable references to the same loca-
tion by first casting a mutable reference to a raw pointer using as *mut i32,
and then converting that back to a mutable reference twice using &mut *ptr.
Since the borrow checker does not track what happens to raw pointers, it
does not reject this program.

What is the behavior of duplicate_ref? According to a memory model
like the one used for λRust, duplicate_ref always returns the value 5. This
is because reads and writes just update locations in memory (according to
O-Mem-Read and O-Mem-Write), and the program does not have undefined
behavior because it does not access unallocated locations. Hence, if both x
and y in write_both point to the same location, then the read from x inside
write_both will read the value that was written using y, i.e. the value 5.

This means that replacing write_both by write_both_optimized is not
a valid optimization (according to a naive memory model like the one in
λRust), because it would change the behavior of duplicate_ref, making
duplicate_ref always return 3 instead of 5.

This example shows that it is not possible (when using an operational se-
mantics similar to λRust) to use the aliasing guarantees on mutable references
provided by the borrow checker to perform aliasing-related optimizations, be-
cause it is possible to circumvent those guarantees using unsafe code. The core
issue here is that the λRust operational semantics says that duplicate_ref
should always output 5, while we want to perform an optimization that would
make it output 3. This issue can be resolved by declaring programs like
duplicate_ref (that intuitively violate the aliasing restrictions on mutable
references in Rust) to have undefined behavior. In that case, it would be
allowed by the semantics for duplicate_ref to output 3, since it would be
allowed to have any behavior whatsoever.
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3.2 Stacked Borrows aliasing model

In Section 3.1, we have seen how certain optimizations are prevented by
the λRust operational semantics, because the operational semantics does
not enforce the aliasing restrictions imposed by the borrow checker. This
section describes a variant of the Stacked Borrows aliasing model, which
adds additional aliasing-related undefined behavior to Rust for the purpose
of enabling optimizations like the one described in Section 3.1. The Stacked
Borrows aliasing model was introduced in (Jung et al. 2020).

In this thesis, we consider a simplified variant of the full Stacked Borrows
model. In particular, we leave out protectors and support for interior muta-
bility. The original paper on Stacked Borrows describes Stacked Borrows in a
step-by-step version, and this simplified version almost exactly corresponds
to the version described in Section 3 of (Jung et al. 2020). The only difference
compared to the model described in Section 3 of that paper is that we also
apply a relaxation of the model described later in the paper, where the rule
for reading is relaxed by introducing Disabled items (although we implement
that rule without explicit Disabled items).

The basic idea behind Stacked Borrows is to extend the operational
semantics of Rust with additional “checks” to ensure that programs do not
violate certain restrictions on pointer aliasing, similar to the restrictions
enforced by the borrow checker. The Stacked Borrows checks are performed
by the abstract machine while the program executes on the abstract machine,
and cause programs that violate the aliasing restrictions to become stuck,
meaning those programs have undefined behavior. However, unlike the borrow
checker, these “checks” are applied to the runtime behavior of the program,
and therefore they are also capable of taking into account raw pointers and
unsafe code.

While performing program optimizations, it is allowed to assume that a
program does not have undefined behavior. Therefore, adding the Stacked
Borrows checks to the abstract machine allows the compiler to assume that
programs do not violate the aliasing restrictions, and this in turn enables
more powerful optimizations.

For example, the optimization of replacing write_both by write_both_optimized
is allowed according to the Stacked Borrows aliasing model, because programs
like duplicate_ref that violate the aliasing restrictions using unsafe code
get “caught” by the abstract machine and therefore have undefined behavior.

It is important to note that despite the fact that Stacked Borrows is
formulated as a “checker” on the runtime behavior of a program, there is no
need to execute those checks while a program executes on a real machine (as
opposed to an abstract machine), because programs with undefined behavior
are not required to crash or produce an error. Hence using the Stacked
Borrows semantics does not lead to runtime overhead. The purpose of the
Stacked Borrows is mostly to give a precise definition of what constitutes a
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“violation of the aliasing restrictions”, which can be used to justify compiler
optimizations.

However, as a debugging tool, it can still be useful to execute the Stacked
Borrows checks even when executing a program on a real machine. For this
reason, the Stacked Borrows aliasing model has been implemented in the
Miri interpreter (Jung et al. 2020), a program that executes Rust programs
and is capable of detecting some types of undefined behavior.

Stacked Borrows rules In order to enforce aliasing restrictions, Stacked
Borrows tags each pointer with a tag. In the λRust memory model, pointer
values are simply locations ` ∈ Loc. In contrast, in the Stacked Borrows
aliasing model, a pointer value consists of a pair 〈`, t〉 of a location ` ∈ Loc
and a tag t ∈ Tag. Pointers are either tagged with a “pointer ID” p (a natural
number), or with the special tag ⊥ (“untagged”).

p ∈ PtrId , N
t ∈ Tag ::= p | ⊥

By tagging pointers, Stacked Borrows is able to distinguish between
multiple pointers to the same location (i.e., aliasing pointers). Stacked
Borrows uses this tag to determine what kind of accesses the pointer is
allowed to perform. Stacked Borrows keeps track of the access permissions
of each pointer using some additional state: it associates a borrow stack
(stack, for short) to each allocated memory location, which tracks which
tags are currently allowed to access that memory location and what kind of
accesses those tags are allowed to perform. Similar to the way the memory is
represented, the stacks are stored in a finite, partial mapping from locations
to stacks:

ξ ∈ Stacks , Loc fin−⇀ Stack

Each stack consists of a list of items, where each item consists of a
permission and a tag:

S ∈ Stack , List(Item)

ι ∈ Item ::= Unique(t) | SharedRO(t) | SharedRW(⊥)

There are three kinds of items, and each item grants the permission to perform
certain types of memory access to the tag mentioned in the item:

• Unique(t), which stands for unique mutable access. This item grants
read and write access to the tag t.

• SharedRO(t), which stands for shared read-only access. This item
merely grants read access to the tag t.

• SharedRW(⊥), which stands for shared mutable (read-write) access.
This item grants read and write access to the special tag ⊥.
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For example, if the item Unique(5) appears in the stack for location `, then
it is allowed to perform reads and writes to that location using the tagged
pointer 〈`, 5〉. If Unique(5) does not appear in the stack for location `, then
it is not allowed to perform write accesses using 〈`, 5〉 (although it might be
allowed to perform read accesses if SharedRO(5) does appear in the stack).

The ordering of the items in the stack is used to keep track of the order
in which references were derived from each other. This means that new items
are added to the stack when additional references to a location ` are created
by reborrowing or casting a reference to a raw pointer. Stacked Borrows
uses this to ensure that derived references are invalidated when the original
reference is used again, similar to the lifetime restrictions enforced by the
borrow checker. Stacked Borrows invalidates pointers (disallowing them from
being used again) by removing items from the stack.

Items are mostly added to and removed from the stacks in a LIFO (last-in,
first-out) order, which is why borrow stacks are called stacks. That is, when
a new item is added, it is generally added to the front of the list (the front of
the list represents the top of the stack) and when items are removed they are
generally removed at the front of the list. Adding items to the front of the
list is called pushing, and removing items from the front is called popping.

For example, creating new mutable references to a location ` by rebor-
rowing causes additional Unique(t) items to be pushed onto the stack for
location `. Writing to the location ` using the tagged pointer 〈`, 5〉 while the
item Unique(5) appears in the stack for location ` causes all items above the
Unique(5) to be popped from the stack, effectively invalidating all references
derived from 〈`, 5〉.

Having explained the general outline of the Stacked Borrows rules, we
now present the Stacked Borrows semantics, describing precisely how the
stacks are affected when allocation, reading, writing, deallocation, and pointer
creation (by borrowing, reborrowing or casting a reference to a raw pointer)
occur. Pointer creation is called retagging, since it involves generating a new
tag and adding corresponding items to the stack. The location of a pointer
remains unchanged during retagging.

The Stacked Borrows semantics is closely inspired by the lifetime rules
in the Rust type system, as discussed in (Jung et al. 2020). Specifically,
the Rust type system only allows a reference to be used during its lifetime.
Similarly, Stacked Borrows only allows a pointer to be used while its tag
occurs in the stack with the right permission. The reader might find it useful
to keep this correspondence in mind while reading the semantics.

The rules of the semantics are as follows:

• Allocation: When allocating a new location `, initialize the stack for
location ` to [Unique(t)] for some freshly generated tag t, and return
the tagged pointer 〈`, t〉.

• Writing: When writing using the pointer 〈`, t〉, find the topmost item
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in the stack for location ` that grants write access to t. Pop all items
above the granting item from the stack. If there is no granting item,
the program has undefined behavior.

• Reading: When reading using the pointer 〈`, t〉, find the topmost item in
the stack for location ` that grants read access to t. Remove all Unique
items above the granting item (SharedRO and SharedRW items are not
removed). If there is no granting item, the program has undefined
behavior.

• Deallocation: When deallocating the location ` using the pointer 〈`, t〉,
find the topmost item in the stack for location ` that grants write access
to t. Then, remove the stack for location ` from the mapping holding
the stacks. If there is no granting item, the program has undefined
behavior.

• Retagging: When deriving a new pointer from the pointer 〈`, told〉:

– If the new pointer is a mutable reference, perform the effects of a
write access with tag told on the stack for location `. Next, push
a new item Unique(tnew) on top of the stack for location `, where
tnew is a freshly generated tag. Return the tagged pointer 〈`, tnew〉.

– If the new pointer is a shared reference, perform the effects of a
read access with tag told on the stack for location `. Next, push the
item SharedRO(tnew) on top of the stack, where tnew is a freshly
generated tag. Return the tagged pointer 〈`, tnew〉.

– If the new pointer is a raw pointer being created from a reference
using a cast (e.g., myref as *mut i32), then perform the effects
of a write access with tag told on the stack for location `. Next,
push a new item SharedRW(⊥) on top of the stack for location `.
Return the tagged pointer 〈`,⊥〉.

• Functions arguments of type &mut T for some type T are implicitly
retagged as mutable references at the start of the function, and function
arguments of type &T are implicitly retagged as shared references at the
start of the function. This ensures that references passed as arguments
to functions receive fresh tags and is necessary in general to justify
optimizations. In the full Stacked Borrows model, there are more cases
like this, but this case is the only one relevant to the examples in this
thesis.

Example (no undefined behavior) We now show an example of how
the stack for a location changes during execution of a typical Rust program.
We do this by showing the state of the stack for a particular location in a
comment between the lines, and we use a comment on the side to show the
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tag of each newly-created pointer (we also name the variables after the tags
to emphasize which tag each pointer has). Consider the following example:
1 fn sb_example_defined() {
2 let mut x0 = 42; // Tag: 0
3 // [Unique(0)]
4 let x1 = &mut x0; // Tag: 1
5 // [Unique(1), Unique(0)]
6 let x2 = &mut *x1; // Tag: 2
7 // [Unique(2), Unique(1), Unique(0)]
8 *x2 = 10;
9 // [Unique(2), Unique(1), Unique(0)]

10 *x1 = 5;
11 // [Unique(1), Unique(0)]
12 x0 = 3;
13 // [Unique(0)]
14 let x3 = &x0; // Tag: 3
15 // [SharedRO(3), Unique(0)]
16 let x4 = &x0; // Tag: 4
17 // [SharedRO(4), SharedRO(3), Unique(0)]
18 x0 = 5;
19 // [Unique(0)]
20 }

This program shows how additional Unique items are added to the stack
for the location holding the variable x0 as mutable references are created.
Writing to the location causes all items above the granting item to be
removed, invalidating the pointers corresponding to those items. The program
also shows that it is possible to create multiple shared references without
invalidating any of the existing shared references. The shared references are
only invalidated once a write occurs. This is very similar to the lifetime rules
in Rust.

Example (undefined behavior) The following is a simple example (based
on the motivating example in Section 3.1) of a program that has undefined
behavior according to Stacked Borrows:
1 fn sb_example_undefined() {
2 let mut x0 = 42; // Tag: 0
3 // [Unique(0)]
4 let x1 = &mut x0; // Tag: 1
5 // [Unique(1), Unique(0)]
6 let xraw = x1 as *mut i32; // Tag: _
7 // [SharedRW(_), Unique(1), Unique(0)]
8 let x2 = unsafe { &mut *xraw }; // Tag: 2
9 // [Unique(2), SharedRW(_), Unique(1), Unique(0)]

10 let x3 = unsafe { &mut *xraw }; // Tag: 3
11 // N.B.: Unique(2) gets popped!
12 // [Unique(3), SharedRW(_), Unique(1), Unique(0)]
13 *x2 = 10; // Undefined behavior! Tag 2 does not have write access
14 *x3 = 20;
15 }
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This program creates a mutable reference x1 to the variable x0, and casts
that mutable reference to a raw pointer xraw. Subsequently the program
derives two (aliasing) mutable references from the raw pointer: when deriving
a mutable reference from the raw pointer with tag ⊥, all items above the
granting item for ⊥ are removed. This means that when the second mutable
reference is created, the item Unique(2) is removed, which effectively means
that x2 can no longer be used after x3 has been created. Hence, the program
has undefined behavior because it violates the Stacked Borrows rules by
writing to x2 after x3 has been created. In this way, Stacked Borrows ensures
that programs like the above, which create aliasing mutable references using
raw pointers, do not have to be considered while optimizing.

3.3 λSB
Rust: extending λRust with Stacked Borrows

This section gives a formal operational semantics λSBRust (“lambda-Rust Stacked”),
which is a version of λRust that has been extended with the Stacked Borrows
aliasing model. We only describe the changes with respect to the operational
semantics for λRust given in Section 2.7.2. The general style of the operational
semantics given here is the same as in the original description of Stacked
Borrows (Jung et al. 2020), although there are some minor implementation
differences: in particular, we use recursively-defined functions on lists instead
of functions that explicitly manipulate list indices in order to describe changes
to borrow stacks. Using recursively-defined functions makes it simpler to
perform proofs by induction on lists.

Since, pointers in Stacked Borrows are tagged, the syntax of values v ∈Val
is different: instead of

v ∈Val ::= ` | . . .

we have
v ∈Val ::= 〈`, t〉 | . . .

Moreover, the language is extended with a retagging instruction:

r ∈ RetagKind ::= &mut | & | *mut
e ∈ Expr ::= retag[r](e) | . . .
K ∈ ECtx ::= • | retag[r](K) | . . .

The retagging instruction derives a new pointer 〈`, tnew〉 (for some tnew) from
another pointer 〈`, told〉: the derived pointer is assigned a new tag and the
stack for the location is updated accordingly. The retag kind r ∈ RetagKind
indicates what kind of pointer is being derived: a mutable reference (&mut),
a shared reference (&), a mutable raw pointer (*mut). Retagging corresponds
to reborrowing in Rust.

For λRust, the machine configuration consisted of the memory m ∈Mem,
combined with the list of threads. Stacked Borrows keeps track of a borrow
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stack for each memory location, and therefore the machine configuration
now also keeps track of the borrow stacks ξ ∈ SBStacks, as well as a counter
p ∈ PtrId that can be incremented for generating new tags:

p ∈ PtrId , N
t ∈ Tag ::= p | ⊥
ι ∈ Item ::= Unique(t)

| SharedRO({t1, . . . , tn})
| SharedRW(⊥)

S ∈ Stack , List(Item)

ξ ∈ SBStacks , Loc fin−⇀ Stack
ς ∈ SBState , PtrId× SBStacks

σ ∈ ProgramState , Mem× SBState
c ∈ Config , ProgramState× List(Expr)

The formal operational semantics uses a slightly different representation
for SharedRO items than described in Section 3.2 (the representation in that
section is based on the original Stacked Borrows paper (Jung et al. 2020)): ad-
jacent SharedRO items are grouped into a set, which simplifies reasoning about
the semantics. That is, the stack [SharedRO(2), SharedRO(1),Unique(0)] is
written as [SharedRO({1, 2}),Unique(0)] instead. This representation also
corresponds to the intuitive “set-like” way in which adjacent SharedRO items
are treated: their relative ordering does not matter (this is easy to verify by
looking at each of the rules in the semantics).

Now we describe the changes to the per-thread reduction relation (m1 |
e1) → (m2 | e2, e

?
f ). The semantics of operations which do not access or

affect the memory are left essentially unchanged: the only change to the
rules O-Add, O-App, O-Case, O-Fork, and O-ECtx is that the state now
consists of a (m, ς) pair of a memory m ∈ Mem and the Stacked Borrows
state ς ∈ SBState, which is left unchanged by each of those operations. The
memory model, consisting of the rules O-Mem-Alloc, O-Mem-Read, O-Mem-
Write, and O-Mem-Free is replaced with new rules given in Fig. 3.1. These
rules have additional premises that are responsible for updating the borrow
stacks and “checking” that the Stacked Borrows rules are respected.

The additional premises related to Stacked Borrows are of the form ς
ε−→ ς ′,

which is a transition relation that describes how the Stacked Borrows state
changes from ς to ς ′ when the Stacked Borrows event ε occurs. The purpose
of the event is to indicate what kind of operation is being performed, and
this determines which of the Stacked Borrows rules should apply. The syntax
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O-Mem-SB-Alloc

` /∈ dom(m) ς
SBAlloc(〈`,t〉)−−−−−−−−→ ς ′

((m, ς) | alloc())→ ((m[`←h] , ς ′) | 〈`, t〉)

O-Mem-SB-Read

` ∈ dom(m) ς
SBRead(〈`,t〉)−−−−−−−−→ ς ′

((m, ς) | ∗〈`, t〉)→ ((m, ς ′) | m(`))

O-Mem-SB-Free

` ∈ dom(m) ς
SBFree(〈`,t〉)−−−−−−−−→ ς ′

((m, ς) | free(〈`, t〉))→ ((m \ `, ς ′) | h)

O-Mem-SB-Write

` ∈ dom(m) ς
SBWrite(〈`,t〉)−−−−−−−−→ ς ′

((m, ς) | 〈`, t〉 := v)→ ((m[`← v] , ς ′) | h)

O-Mem-SB-Retag

ς
SBRetag(r,〈`,told〉,tnew)−−−−−−−−−−−−−−→ ς ′

((m, ς) | retag[r](〈`, told〉))→ ((m, ς ′) | 〈`, tnew〉)

Figure 3.1: Operational semantics for memory-related operations under
Stacked Borrows.
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of events is as follows:

ε ∈ SBEvent ::= SBAlloc(〈`, t〉)
| SBFree(〈`, t〉)
| SBWrite(〈`, t〉)
| SBRead(〈`, t〉)
| SBRetag(r, 〈`, told〉, tnew)

The Stacked Borrows transition relation ς ε−→ ς ′ also has the notion of being
“stuck”, which describes the situation where it is not possible to derive the
premise ς ε−→ ς ′. In that case, the thread executing the operation that causes
the event also gets stuck, and hence the program has undefined behavior.

Each of the rules in Fig. 3.1 has a premise with an event corresponding
to the operation (allocation, reading, writing, deallocation, or retagging) that
the program is performing, and the parameters of the event are (partially)
determined by the operation: for example, writing to 〈`, t〉 “causes” an
SBWrite(〈`, t〉) event. However, for some events not all of the event parameters
are determined by the program: for example, when allocating, the tag is
not determined by the program, but it is determined based on the current
Stacked Borrows state. Hence, in an event such as SBAlloc(〈`, t〉), t is more
properly viewed as an “output” of Stacked Borrows. Similarly, the tag tnew
for SBRetag(r, 〈`, told〉, tnew) is also not determined by the program.

The effect of the events is determined by the rules in Fig. 3.2. The rule
E-SB-Alloc for allocation requires that the location does not already have
a stack (` /∈ dom(ξ)), and produces the tagged pointer 〈`, p〉 (shown in the
event), where the tag p is freshly generated by incrementing the counter in the
Stacked Borrows state. The stack for location ` is initialized to [Unique(p)].

The rules E-SB-Read, E-SB-Write, and E-SB-Free deal with read-
ing, writing, and deallocation events, respectively. The rules E-SB-Retag-
Mutable, E-SB-Retag-Shared, E-SB-Retag-Raw deal with the retagging
for mutable references, shared reference, and mutable raw pointers, respec-
tively. All of these rules have a similar shape: they each look up the stack
for the location ` under consideration using ξ(`) = S. Then they apply an
auxiliary function to that stack (the functions have names including the
word Single since they are applied to single stacks), which either produces
a new stack S′ or fails by producing the special value fail. The purpose of
that function is to add or remove items from the stack S in accordance with
the Stacked Borrows rules, and the function can produce fail to indicate a
Stacked Borrows violation.

If the function did not produce fail, the new stack S′ is stored in the
Stacked Borrows state using ξ[`←S′] (or the stack is removed, in the case of
deallocation). Furthermore, the rules for retagging always generate a fresh
tag by incrementing the counter, which is passed to the auxiliary function
for that rule if the function requires a fresh tag.
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E-SB-Alloc
` /∈ dom(ξ)

(p, ξ)
SBAlloc(〈`,p〉)−−−−−−−−→ (p+ 1, ξ[`← [Unique(p)]])

E-SB-Write
ξ(`) = S WriteSingle(t, S) = S′

(p, ξ)
SBWrite(〈`,t〉)−−−−−−−−→ (p, ξ

[
`←S′

]
)

E-SB-Read
ξ(`) = S ReadSingle(t, S) = S′

(p, ξ)
SBRead(〈`,t〉)−−−−−−−−→ (p, ξ

[
`←S′

]
)

E-SB-Free
ξ(`) = S WriteSingle(t, S) = S′

(p, ξ)
SBFree(〈`,t〉)−−−−−−−−→ (p, ξ \ `)

E-SB-Retag-Mutable
ξ(`) = S RetagUniqueSingle(told, p, S) = S′

(p, ξ)
SBRetag(&mut,〈`,told〉,p)−−−−−−−−−−−−−−−→ (p+ 1, ξ

[
`←S′

]
)

E-SB-Retag-Shared
ξ(`) = S RetagSharedROSingle(told, p, S) = S′

(p, ξ)
SBRetag(&,〈`,told〉,p)−−−−−−−−−−−−→ (p+ 1, ξ

[
`←S′

]
)

E-SB-Retag-Raw
ξ(`) = S RetagSharedRWSingle(told, S) = S′

(p, ξ)
SBRetag(*mut,〈`,told〉,⊥)−−−−−−−−−−−−−−−→ (p+ 1, ξ

[
`←S′

]
)

Figure 3.2: Operational semantics for Stacked Borrows events.
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WriteSingle : Tag× Stack→ Stack ] {fail}
WriteSingle(t, []) = fail

WriteSingle(t, ι :: ι) = ι :: ι (if ItemGrantsWrite ι t)
WriteSingle(t, ι :: ι) = WriteSingle(t, ι)

ReadSingle : Tag× Stack→ Stack ] {fail}
ReadSingle(t, []) = fail

ReadSingle(t, ι :: ι) = ι :: ι (if ItemGrantsRead ι t)
ReadSingle(t,Unique(t′) :: ι) = ReadSingle(t, ι)

ReadSingle(t, ι :: ι) = ι :: ReadSingle(t, ι)

RetagUniqueSingle : Tag×Tag× Stack→ Stack ] {fail}
RetagUniqueSingle(told, tnew, S) = Unique(tnew) :: WriteSingle(told, S)

RetagSharedRWSingle : Tag× Stack→ Stack ] {fail}
RetagSharedRWSingle(told, S) = SharedRW(⊥) :: WriteSingle(told, S)

PushSharedRO : Tag× Stack→ Stack
PushSharedRO(tnew, SharedRO({t1, . . . , tn}) :: ι) = SharedRO({tnew, t1, . . . , tn}) :: ι

PushSharedRO(tnew, ι) = SharedRO({tnew}) :: ι

RetagSharedROSingle : Tag×Tag× Stack→ Stack ] {fail}
RetagSharedROSingle(told, tnew, S) = PushSharedRO(tnew,ReadSingle(told, S))

Figure 3.3: Auxiliary functions describing how the stack for a location is
updated. The first case that matches from top to bottom determines the
output of the function, and failure propagates (see text).
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ItemGrantsWrite-Unique
ItemGrantsWrite Unique(t) t

ItemGrantsWrite-SharedRW
ItemGrantsWrite SharedRW(⊥) ⊥

ItemGrantsRead-Unique
ItemGrantsRead Unique(t) t

ItemGrantsRead-SharedRW
ItemGrantsRead SharedRW(⊥) ⊥

ItemGrantsRead-SharedRO
t ∈ {t1, . . . , tn}

ItemGrantsRead SharedRO({t1, . . . , tn}) t

Figure 3.4: Permissions assigned to tags by stack items.

The definitions for the auxiliary functions are shown in Fig. 3.3. We use
some convenient notation in order to make the definitions less verbose: the
equations should be read from top to bottom, where the first equation that
applies to the given inputs determines the output of the function. Furthermore,
we assume that failure propagates, meaning that if a occurrence of a function
on the right-hand side of an equation produces fail, then the entire right-hand
side should become fail. This notation helps to reduce the number of cases
that need to be explicitly written out, but it would also be possible to write
out all cases explicitly using more traditional mathematical notation.

Several functions are defined recursively on lists: they distinguish between
the empty list [] and a non-empty list ι :: ι consisting of a single item ι at the
front of the list followed by the rest of the list ι, and are applied recursively
to the rest of the list in some cases. It is easy to see that these recursive
definitions are well-founded, since the recursive occurrences of each function
are applied to structurally smaller lists.

The auxiliary functions use the ItemGrantsWrite (respectively ItemGrantsRead)
judgments shown in Fig. 3.4 to determine whether an item grants write (re-
spectively read) permissions to a tag.

The function WriteSingle specifies how the stack for a location changes
during a write access: it removes items from the top of the stack (by recursing
over the structure of the stack) until it encounters an item that grants write
access to the given tag t (as indicated by ItemGrantsWrite ι t). If it does not
encounter a write-granting item, then it produces fail, indicating that the
program has undefined behavior.

Similarly, the function ReadSingle specifies the effect of read accesses on
the stack: remove Unique items from the stack (SharedRO and SharedRW
items are left in the stack) until it encounters a read-granting item (according
to ItemGrantsRead ι t) for the tag t. Note that a Unique item can also be
a read-granting item, hence the case for ItemGrantsRead can also match a
Unique, which will then not be removed. If it does not find a read-granting
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1 fn f(x: &mut i32) -> i32 {
2 let mut y = *x;
3
4 // Borrowing (mutable)
5 let y1 = &mut y;
6 // Reborrowing (mutable)
7 let y2 = &mut *y1;
8 // Reborrowing (shared)
9 let y3 = &*y2;

10 // Reading and writing
11 *x = *y3 + 1;
12 *y1 = 10;
13 // Cast to raw pointer
14 let yp = y1 as *mut i32;
15 // More writing
16 unsafe { *yp = 20 };
17 y = 30;
18
19 return y;
20 }

rec f([x]) :=
let x = retag[&mut](x) in
let y = alloc() in
y := ∗x;
let y1 = retag[&mut](y) in
let y2 = retag[&mut](y1) in
let y3 = retag[&](y2) in
x := ∗y3 + 1;
y1 := 10;
let yp = retag[*mut](y1) in
yp := 20;
y := 30;
let r = ∗y in
free(y);
r

Figure 3.5: A Rust program (left) and its λSBRust counterpart (right).

item, it produces fail.
The functions RetagUniqueSingle and RetagSharedRWSingle specify the

effect of creating a mutable reference and casting to a raw pointer, respectively:
they apply the effects of a write access with told to the stack and push a new
item on top of the stack. Similarly, RetagSharedROSingle gives the effect of
creating a shared reference or a read-only raw pointer: it applies the effects of
a read access with told to the stack and pushes a new SharedRO item, which
is added into the existing set of SharedRO items where possible (using the
function PushSharedRO).

3.4 Translating programs from Rust to λSB
Rust

This section gives a short example of how to translate a simple Rust program
into a similar λSBRust program. The only addition to the translation illustrated
in Section 2.7.4 consists of the insertion of retagging instructions in the
proper places: when creating references by borrowing or reborrowing, when
casting references to raw pointers, and when receiving references as function
arguments. Again, we only illustrate the translation using an example, and
the translation as illustrated here is not meant to cover all Rust language
features.

Consider the two programs shown in Fig. 3.5. The program on the left is a
Rust program which has been translated into the λSBRust program on the right.
Retagging instructions have been inserted where borrowing, reborrowing, or
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casting to a raw pointer occurs. Furthermore, the arguments of type &mut T
or &T are retagged at the start of the function. Just as in Section 2.7.4, the
pointers y1, y2, y3, and yp all refer to the same location, but now they have
different tags, and therefore the difference between the types &mut i32, &i32,
and *mut i32 is now manifested at runtime as well: the types determine
which kind of retagging instructions are used, and this also determines what
kind of stack items are added to the borrow stacks.
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Chapter 4

Separation Logic for Stacked
Borrows

In Chapter 2, we have introduced the Rust language, describing how the Rust
type system applies the notions of ownership and borrowing to ensure the
absence of issues such as use-after-free bugs (leading to undefined behavior)
in the majority of Rust code. The RustBelt project formalized these safety
guarantees for the λRust language based on a simplified version of the Rust
type system that includes the core notions of ownership, borrowing, and
lifetimes. Specifically, the RustBelt project shows that well-typed λRust
programs (corresponding to safe Rust programs, i.e. programs that do not
contain unsafe blocks and only make use of safe-to-use libraries) do not cause
any undefined behavior according to the λRust operational semantics.

The RustBelt safety proof is built on top of a program logic for reasoning
about the behavior of λRust programs. However, this logic is not sound for
λSBRust, since λ

SB
Rust has a different semantics with more undefined behavior.

Therefore, we have developed a new, sound logic for reasoning about λSBRust
programs, which we call Stacked Borrows Separation Logic (SBSL). Part
of the motivation behind this logic is to provide a path for updating the
RustBelt safety proof to account for Stacked Borrows, although the program
logic is also useful in its own right for reasoning about the correctness (in
particular, the absence of undefined behavior) of programs written in λSBRust.

Just like the logic used for RustBelt, SBSL is based on concurrent separa-
tion logic (Brookes 2007; O’Hearn 2007; O’Hearn et al. 2001; Reynolds 2002),
a family of program logics that simplify reasoning about the behavior of
programs with concurrency and mutable state. Specifically, SBSL builds on
top of the Iris concurrent separation logic framework (Jung et al. 2016, 2018b,
2015; Krebbers et al. 2017a), a modern variant of concurrent separation logic.
We will explain the basic concepts of separation logic and Iris throughout
this chapter.

We build up to the SBSL logic in several steps. In Section 4.1, we discuss
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τ ::=Val | Expr | Tag | Loc | Z | . . .
s ::= x | v | e | t | ` | n | . . .

P,Q ::= P ∧Q
| P ∨Q
| P ⇒ Q
| ¬P
| True
| False
| s = s
| ∃x:τ.P
| ∀x:τ.P
| {P} e {v. Q}
| P ∗Q
| ` 7→ v
| P V Q
| . . .

Figure 4.1: The syntax of Iris types, terms and propositions.

the logic that is used in RustBelt (Jung et al. 2018a) for reasoning about
λRust programs. In Section 4.2, we describe the physical stack assertion,
which is a naive way of extending the λRust program logic to reason about
λSBRust programs. In Section 4.3, we discuss some shortcomings of the physical
stack assertion, showing that the naive logic is too sensitive to irrelevant
implementation details, which makes it unsuitable for reasoning about simple
forms of concurrency.

In Section 4.4, we start introducing the rules of Stacked Borrows Sep-
aration Logic, a separation logic for reasoning about λSBRust programs, and
which does not suffer from the shortcomings of the naive approach described
in Section 4.2. This logic is based on the notions of ghost stacks and ghost
forgetting, which allow for more abstract reasoning about λSBRust programs,
in turn enabling better reasoning about concurrency. These notions are the
main conceptual contribution of this thesis.

The rules of SBSL are introduced in a step-by-step fashion: Section 4.4
describes the rules for mutable references, Section 4.5 describes the rules for
raw pointers, and Section 4.6 describe the rules for shared references. In each
section, we illustrate the rules using simple examples.

Finally, we briefly discuss the connection between SBSL and the Rust
type system in Section 4.7.
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4.1 Concurrent separation logic

This section describes the concurrent separation logic used for reasoning about
λRust programs in the RustBelt project (Jung et al. 2018a). The logic is built
on top of the Iris concurrent separation logic (Jung et al. 2016, 2018b, 2015;
Krebbers et al. 2017a), which is a generic framework for building program
logics.

The syntax of Iris is shown in Fig. 4.1. Iris is an intuitionistic higher-order
logic, and therefore it includes all of the usual logical connectives, such as
conjunction, disjunction, negation, implication, equality, and universal and
existential quantification. It also includes some additional connectives, which
will be introduced as required. Some connectives shown in Fig. 4.1 are not
primitive notions in Iris, but are instead defined in terms of more basic logical
primitives.

The main connective used in Iris for reasoning about programs is the
Hoare triple. Hoare triples were first introduced in Hoare logic (Hoare 1969).
Hoare triples are written

{P} e {v. Q}

and consist of a precondition P , a program e, and a postcondition Q, where
P and Q are propositions. The meaning of such a Hoare triple is that when
the program e is executed in an initial state satisfying P , then the program e
executes safely (without undefined behavior) and if it terminates, it does so
with a value v such that Q is satisfied in the final state. Note that the variable
v may appear in Q in order to refer to the result of the computation and we
can omit v when it does not appear in Q. A Hoare triple gives a specification
of the behavior of a program, and proving that a Hoare triple holds shows
that a program behaves (operationally) according to its specification.

A simple example of a valid Hoare triple for λRust is the following:

{True} 2 + (3 + 5) {v. v = 10}

expressing that the program 2 + (3 + 5) does not cause undefined behavior
regardless of the initial state (indicated by the precondition True), and when
it terminates, it does so with the value 10. It is easy to see based on the
intuitive definitions of Hoare triples and the operational semantics of λRust
that this Hoare triple holds.

A Hoare triple {P} e {v. Q} does not imply termination of the program e:
therefore, these Hoare triples guarantee only partial correctness, meaning that
a state satisfying Q might never be reached, as opposed to total correctness,
where termination is also guaranteed.

Separation logic (O’Hearn et al. 2001; Reynolds 2002) is an extension
of Hoare logic that adds the points-to assertion ` 7→ v and the separating
conjunction P ∗ Q. Separation logic is intended to allow reasoning about
programs that use pointers to mutable memory locations. The intuitive
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reading of ` 7→ v is that in the current state, the memory location ` holds the
value v. The intuitive reading of the separating conjunction P ∗Q is that the
propositions P and Q hold for disjoint parts of the program state. Therefore,
P ∗Q is generally (but not always) stronger than P ∧Q, which has the usual
meaning that P and Q both hold (but not necessarily for disjoint parts of
the state).

When the program state simply consists of a memory m ∈Mem (as in
λRust), then disjoint parts of the program state are simply non-overlapping
parts of memory. That is, a memory is split into disjoint parts by splitting
its domain: for example, the memory m = {`1 := 2, `2 := 3} can be split into
m1 = {`1 := 2} and m2 = {`2 := 3}. This means that points-to assertions
on either sides of a separating conjunction cannot have the same location:

`1 7→ v1 ∗ `2 7→ v2 ⇒ `1 6= `2

because disjoint parts of memory cannot contain the same location. In
particular, this implies

` 7→ v ∗ ` 7→ v′ ⇒ False

and thus the following does not hold

` 7→ v ⇒ ` 7→ v ∗ ` 7→ v

That is, given a ` 7→ v, we cannot obtain two separate copies of it: the
` 7→ v proposition cannot be “duplicated”. This means that the proposition
` 7→ v is often viewed as expressing ownership of a resource, instead of
simply expressing a fact or knowledge. This gives rise to the ownership
reading (O’Hearn 2007) of ` 7→ v: the proposition ` 7→ v expresses exclusive
ownership (where ownership is the right to access) of the location `, which
holds the value v.

Iris has a general mechanism for defining resources, and resources do not
necessarily have to correspond to parts of the program state directly. We
will see further examples of resources later in this chapter. This means that
P ∗Q can be read more generally as: “P and Q hold for disjoint resources”.

Based on the points-to assertion, we can state Hoare triples about pro-
grams that use pointers to access memory. For instance, the following is a
valid Hoare triple:

{` 7→ 0} ` := 1 {` 7→ 1}

We can read this Hoare triple as: if we are given exclusive ownership of ` 7→ 0
(a location ` that holds the value 0 in the current state), then the write
` := 1 executes without undefined behavior and ends in a state where we
have exclusive ownership of ` 7→ 1 (a location ` that holds the value 1).

The notion of ownership in separation logic enables local reasoning about
programs in the presence of pointers and mutable state: parts of a program
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that operate on disjoint parts of the state do not affect each other indirectly,
and can thus be reasoned about in isolation. The local reasoning principles
of separation logic are captured by rules such as the frame rule:

{P} e {v. Q}
{P ∗R} e {v. Q ∗R}

This states that if we have proved a Hoare triple for the program e with
precondition P and postcondition Q, then the same Hoare triple will still
hold in the presence of additional disjoint resources R. This means that
program specifications only need to mention those parts of the program state
that are actually accessed or modified by the program e: using the frame
rule, it is possible to generalize a Hoare triple to a larger program state.

The use of the separating conjunction is crucial in the frame rule. If
we replace the separating conjunction by an ordinary conjunction, then the
frame rule is no longer sound, as we can derive conclusions such as

{` 7→ 2} ` := 3 {` 7→ 3}
{` 7→ 2 ∧ ` 7→ 2} ` := 3 {` 7→ 3 ∧ ` 7→ 2}

{` 7→ 2} ` := 3 {` 7→ 2}

which states that if ` holds 2 initially (` 7→ 2 ∧ ` 7→ 2 is implied by ` 7→ 2
since P ⇒ P ∧ P ), then after ` := 3, ` will still hold 2. For the separating
conjunction, we do not have ` 7→ 2 ⇒ ` 7→ 2 ∗ ` 7→ 2, preventing a similar
line of reasoning.

Separation logic rules for λRust Having introduced the basic notions of
separation logic, we show the separation logic rules for reasoning about λRust
programs in Fig. 4.2. Some additional derived rules are shown in Fig. 4.3.
These rules are part of the program logic developed for λRust in the RustBelt
project (Jung et al. 2018a).

The most interesting rules for our purposes are those related to memory
accesses: H-Mem-Alloc, H-Mem-Write, H-Mem-Read, and H-Mem-Free.
Allocation produces a location ` for which we obtain a points-to assertion
` 7→ h in the postcondition. Deallocation requires a points-to assertion
` 7→ v, which no longer appears in the postcondition. That is, we give up
ownership of ` 7→ v when deallocating, which prevents accessing the location
` after deallocation. Moreover, reading and writing both require a points-to
assertion (the superscript q in H-Mem-Read can be ignored for now), which
still appears in the postcondition (with an updated value in case of writing).

The rule H-Value is a fairly trivial rule that can be applied when the
program is already a value. The rule H-Add can be used to reason about
addition of two numbers. The rule H-If allows proving a Hoare triple for an
if-expression by proving the Hoare triple for each of the branches separately
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H-Mem-Alloc
{True} alloc() {`. ` 7→ h}

H-Mem-Write
{` 7→ v} ` := v′

{
w. (w = h) ∗ ` 7→ v′

}
H-Mem-Read
{` q7−→ v} ∗` {w. (w = v) ∗ ` q7−→ v}

H-Mem-Free
{` 7→ v} free(`) {w. w = h}

PointsTo-Split
`
q1+q27−−−→ v ⇐⇒ `

q17−→ v ∗ ` q27−→ v

H-Frame
{P} e {v. Q}

{P ∗R} e {v. Q ∗R}

H-Value
{True}w {v. v = w}

H-Add
{True} z1 + z2 {z. z = z1 + z2}

H-If
{P ∗ (b = true)} e1 {v. Q} {P ∗ (b = false)} e2 {v. Q}
{P ∗ (b ∈ {true, false})} if b then e1 else e2 {v. Q}

H-App
{P} e[v/x] {w. Q}

{P} (rec (x) := e)(v) {w. Q}

H-ECtx
{P} e {u.Q} ∀v. {Q[v/u]}K[ v ] {w. R}

{P}K[ e ] {w. R}

H-Fork
{P} e {True}

{P} fork { e } {v. v = h}

H-Conseq
P ⇒ P ′

{
P ′
}
e
{
v. Q′

}
∀v. Q′ ⇒ Q

(P ⇒ P ′ persistent) (∀v.Q′ ⇒ Q persistent)
{P} e {v. Q}

H-Exists
(x not free in e and Q) ∀x.{P} e {v. Q}

{∃x. P} e {v. Q}

H-Eq
{P [s/r]} e[s/r] {v.Q[s/r]}
{r = s ∗ P} e {v.Q}

Figure 4.2: Separation logic rules for reasoning about λRust programs.
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H-Seq
{P} e1 {Q} {Q} e2 {v. R}

{P} e1; e2 {v. R}

H-Let
{P} e1 {v. Q} ∀v.{Q} e2[v/x] {w. R}

{P} let x = e1 in e2 {w. R}

H-Par
{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

Figure 4.3: Derived rules for reasoning about λRust programs.

(the rule for case is a straightforward generalization of this rule). The rule
H-App allows reasoning about a (non-recursive) function applied to some
argument values by reasoning about the body of the function, where the
argument values have been substituted for the parameters. For simplicity,
we do not present the rule for recursive functions here.

The rule H-ECtx can be used when an expression K[ e ] contains a
subexpression e that is evaluated first. According to the operational semantics,
in an expression of the form K[ e ], the subexpression e is first evaluated to
a value v before proceeding with the evaluation of K[ v ]. The rule H-ECtx
captures this by allowing us to prove an intermediate postcondition Q for
the subexpression e, and then letting us reason about K[ v ] where v is the
value resulting from e.

We can reason about a sequence e1; e2 of expressions using the H-Seq
rule. This rule requires the postcondition of e1 and the precondition of
e2 to be the same, and therefore we typically have to apply the rule of
consequence H-Conseq, which allows replacing the precondition P ′ by a
stronger precondition P (P ⇒ P ′) and the postcondition Q′ by a weaker
postcondition Q (∀v. Q′ ⇒ Q). This also allows performing reasoning inside
preconditions and postconditions. The rule of consequence has a technical
side-condition, requiring the propositions P ⇒ P ′ and ∀v. Q′ ⇒ Q to be
persistent. This side condition can mostly be ignored due to our particular
presentation of the rules of the program logic. 1

The rules H-Exists and H-Eq, when read from bottom to top, allow us
1Requiring the implications to be persistent rules out implications that express ownership

of resources, like the proposition True ⇒ ` 7→ v that “contains” a ` 7→ v resource that we can
get by applying modus ponens with True. The side condition is necessary to avoid resources
like ` 7→ v from being duplicated. Due to our presentation of the rules, implications like
True ⇒ ` 7→ v cannot appear outside the pre- or postconditions of Hoare triples, which
also ensures that we cannot violate the side condition.
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to eliminate equalities and existentials occurring in preconditions of a Hoare
triple while proving a Hoare triple. These rules are necessary in order to
use equalities r = s and existentials ∃x:τ. P occurring in the precondition.
Equalities appear in the postconditions of rules such as H-Mem-Read, and
rewriting using an equality also replaces occurrences in the program e. We
will also see rules that have existentials in their postcondition.

Based on the rules discussed so far, we can derive Hoare triples about
more complicated λRust programs. We will generally not be focusing on
programs that contain loops (indeed, we did not show the rule for recursive
functions) or branches, since we are mainly interested in reasoning about
memory accesses. For example, we can derive the following Hoare triple:

{True} let x = alloc() in (x := 0); (x := ∗x+ 1); free(x) {True}

The program in this Hoare triple allocates a memory location `, writes 0 to
it, increments the value stored in the location by 1 (by reading and then
writing), and finally frees the location. Proving this Hoare triple shows that
the program does not have undefined behavior, regardless of the initial state.
The postcondition is trivial, meaning that we do not show any interesting
fact about the behavior of this program aside from the fact that it does not
have undefined behavior.

Since derivations are generally quite large, we generally show derivations by
merely annotating the program with the intermediate pre- and postconditions
Q for rules like H-Seq and H-Let, and being implicit about applications of
rules such as H-Frame, H-Conseq, etc. Based on this, it is generally easy to
see how to derive the Hoare triple. For example, the derivation of the above
Hoare triple can be shown as follows:

{True}
let x = alloc() in
{`x 7→ h}
x := 0;
{`x 7→ 0}
x := ∗x+ 1;
{`x 7→ 1}
free(x)
{True}

Here, we have applied the convention of writing `x for the location produced
by the allocation and bound to the variable x. Note that by annotating
programs in this way, we can see that the separation logic rules are essentially
“symbolically” or “logically” executing the program.

Concurrency The local reasoning principles enabled by the separating
conjunction, as enshrined in rules like the frame rule, also lead to powerful
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principles for reasoning about concurrent programs. This is because threads
that operate on disjoint parts of the program state do not affect each other
indirectly, and means that we can reason about each thread in isolation. This
is the main idea behind concurrent separation logic (Brookes 2007; O’Hearn
2007), which applies the ownership reading of the points-to assertion to give
rules for reasoning about concurrent programs. For example, we have the
rule H-Par for reasoning about the parallel composition of two programs e1

and e2:
{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

The parallel composition construct e1 || e2 executes e1 and e2 concurrently,
waiting for both expressions to terminate, and discards their results. Parallel
composition is not a primitive operation in λRust, but instead it is implemented
in terms of fork and the “compare-and-set” instruction which allows threads
to communicate. We do not discuss the implementation here, merely showing
the rule for reasoning about it. The H-Par rule can be derived from H-Fork
(discussed below), but doing so requires more advanced Iris techniques that
we do not discuss here.

The parallel composition rule allows reasoning about e1 and e2 indepen-
dently, as long as they operate on disjoint resources P1 and P2. We obtain
the resources Q1 and Q2 produced by both threads in the postcondition. An
example application of this rule is as follows:

{`1 7→ 2} `1 := 3 {`1 7→ 3} {`2 7→ 3} `2 := 4 {`2 7→ 4}
{`1 7→ 2 ∗ `2 7→ 3} `1 := 3 || `2 := 4 {`1 7→ 3 ∗ `2 7→ 4}

Here, we have one thread which writes to the location `1 and another that
writes to the location `2. The separating conjunction implicitly encodes
that these locations are not the same, and therefore we can reason about
the behavior of each thread in isolation. Effectively, the rule forces us to
decide which of the threads receives ownership of which points-to assertions.
This means that ` 7→ v can also be read as “the current thread has exclusive
ownership of the location ` (holding the value v).”

We also have the more primitive rule H-Fork. This rule lets us (logically)
pass resources P to the newly-created thread, but it has a trivial postcondition
because the fork operation does not wait for the thread to terminate, and
therefore we cannot get resources “back” from the forked-off thread.

Just as for sequential programs, we can show derivations by annotating
a program with intermediate pre- and postconditions, as in the following
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example:
{True}
let x = alloc() in
{`x 7→ h}
let y = alloc() in
{`x 7→ h ∗ `y 7→ h}
x := 0;
{`x 7→ 0 ∗ `y 7→ h}
y := 0;
{`x 7→ 0 ∗ `y 7→ 0}
{`x 7→ 0}
x := ∗x+ 1
{`x 7→ 1}

{`y 7→ 0}
y := ∗y + 1
{`y 7→ 1}

{`x 7→ 1 ∗ `y 7→ 1}
free(y);
{`x 7→ 1}
free(x)
{True}

Here, we put programs side-by-side separated by vertical lines to indicate
parallel composition. We can also see how the resources P1 ∗ P2 are divided
across threads: the thread on the left gets the `x 7→ 0 and the thread on the
right gets the `y 7→ 0. After the parallel composition, the postconditions of
both threads are combined.

Fractional permissions The rules as we have presented them thus far do
not allow two threads to access the same memory location. This is because
` 7→ v expresses exclusive ownership: it is not possible to duplicate the ` 7→ v
resource into ` 7→ v ∗ ` 7→ v. In general, allowing this duplication is not sound,
as we saw for the frame rule.

However, the rules can be slightly relaxed in order to allow different
threads to concurrently access the same location, as long as all threads only
read from that location, and do not perform writes. As long as threads only
read from shared locations, we can still reason about threads in isolation.
This is because threads cannot “interfere” with each other merely by reading
from memory.

The notion of fractional permissions (Bornat et al. 2005; Boyland 2003)
allows for this. The idea of fractional permissions is to allow a points-to
assertion ` 7→ v to be split into fractional points-to assertions ` q7−→ v, where
q ∈ (Q ∩ (0, 1]) is a fraction between 0 (exclusive) and 1 inclusive. This is
done using the rule PointsTo-Split:

`
q1+q27−−−→ v ⇐⇒ `

q17−→ v ∗ ` q27−→ v

where we ` 7→ v is simply an abbreviation for ` 17−→ v.
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The fraction q in ` q7−→ v indicates the degree of ownership. When q = 1,
the points-to assertion indicates exclusive ownership, meaning there are no
other threads with access to the location `. When q < 1, the points-to
assertion indicates fractional ownership, meaning that there might be other
threads with access to the same location. The rules of the logic do not allow
writing or deallocation using a fractional points-to assertion. Only reading
(using H-Mem-Read) is allowed, because that merely requires a fractional
points-to assertion. The fractions can also be thought of as percentages: q = 1
means 100% ownership, whereas q < 1 means less than 100% ownership. The
specific fraction q < 1 does not matter for the H-Mem-Read rule.

The fractional points-to assertion allows reasoning about λRust programs
that have two threads concurrently reading the same location:

{True}
let x = alloc() in
{`x 7→ h}
x := 0;
{`x 7→ 0}
(rule of consequence)
{`x 1/47−−→ 0 ∗ `x 3/47−−→ 0}
{`x 1/47−−→ 0}
∗x
{`x 1/47−−→ 0}

{`x 3/47−−→ 0}
∗x
{`x 3/47−−→ 0}

{`x 1/47−−→ 0 ∗ `x 3/47−−→ 0}
(rule of consequence)
{`x 7→ 0}
free(x)
{True}

Here we split the points-to assertion `x 7→ 0 into fractions `x
1/47−−→ 0 and

`x
3/47−−→ 0, which are passed to the two different threads using H-Par. Again,

the postconditions for both threads are combined according to H-Par.

4.2 Physical stack assertion

The separation logic presented in Section 4.1 allows reasoning about λRust
programs, and in particular we can show that a λRust program e does not
have undefined behavior by deriving a Hoare triple {True} e {True}.

However, λSBRust has a different operational semantics from λRust. Pointers
in λSBRust are tagged, and this tag is used to determine whether a particular
memory access constitutes undefined behavior according to the borrow stack
for that location. In addition, in λSBRust, there is an additional retagging
operation that is not in λRust. The separation logic for λRust does not account
for these stacks and tags at all, and it does not have a rule for the retagging
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operation. Therefore, it obviously cannot be used to reason about λSBRust
programs.

Hence, in order to reason about λSBRust programs, and in particular to show
the absence of undefined behavior, the separation logic of Section 4.1 needs
to be extended to account for Stacked Borrows.

In this section, we describe a naive extension of the logic in Section 4.1
that accounts for Stacked Borrows. This serves as an intermediate step
toward Stacked Borrows Separation Logic, which is discussed in Section 4.4,
because as we will see the naive extension is too weak to reason about certain
programs.

As a first attempt to give separation logic rules for λSBRust, we introduce
an assertion that is similar to the points-to assertion. For λRust, the program
state merely consists of a memory m ∈Mem, which is a finite, partial map
from locations to values. In λSBRust, the program state additionally keeps track
of a borrow stack for each location. These stacks are stored in a finite, partial
map ξ ∈ SBStacks from locations to borrow stacks. Hence, the map holding
the borrow stacks can be viewed as a special kind of memory that holds
borrow stacks instead of ordinary values.

For the ordinary values, we have the fractional points-to assertion ` q7−→ v
that keeps track of the value for each location. Hence, for the borrow stacks,
we introduce a similar assertion called the physical stack assertion `

q7−→p S,
which simply keeps track of the current borrow stack S ∈ Stack of each
location. The idea is that if we know what the current stack of the location
` is in the logic, then we can easily determine whether an access is allowed
and what happens to the stack after the access. The reason why it is called
the physical stack assertion is that the term “physical state” is often used
to refer to the actual program state appearing in the operational semantics,
and hence we refer to the borrow stacks in the operational semantics as
physical (borrow) stacks. The reason for this distinction will become clearer
in Section 4.4, where we introduce “ghost stacks”.

The physical stack assertion inherits all the properties of the points-to
assertion: q = 1 means the stack can be modified, while q < 1 merely provides
read-only access. Moreover, the physical stack assertion can also be split:

`
q1+q27−−−→p S ⇐⇒ `

q17−→p S ∗ ` q27−→p S

Based on the idea that ` q7−→p S keeps track of the stack S for each location
`, we can formulate separation logic rules for the operations of allocation,
deallocation, reading, writing, and retagging. These rules are shown in Fig. 4.4.
These rules can be viewed as replacements for the memory-related rules for
λRust presented in Section 4.1: the rules of the λRust separation logic which are
not related to the memory (e.g., addition, if-expressions, function application)
are left unchanged, since the operational semantics for those operations is
the same in λSBRust and λRust.

59



H-SBP-Alloc
{True} alloc() {v. ∃`, t. (v = 〈`, t〉) ∗ ` 7→ h ∗ ` 7−→p [Unique(t)]}

H-SBP-Write{
` 7→ v ∗ ` 7−→p S ∗WriteSingle(t, S) = S′

}
〈`, t〉 := v′{
w. (w = h) ∗ ` 7→ v′ ∗ ` 7−→p S

′}
H-SBP-Read{
` 7→ v ∗ ` 7−→p S ∗ ReadSingle(t, S) = S′

}
∗〈`, t〉{
w. (w = v) ∗ ` 7→ v ∗ ` 7−→p S

′}
H-SBP-Read-Fract
{` q7−→ v ∗ ` q7−→p S ∗ ReadSingle(t, S) = S}
∗〈`, t〉

{w. (w = v) ∗ ` q7−→ v ∗ ` q7−→p S}

H-SBP-Free{
` 7→ v ∗ ` 7−→p S ∗WriteSingle(t, S) = S′

}
free(〈`, t〉)

{w. w = h}

H-SBP-Retag-Mutable{
` 7−→p S ∗WriteSingle(told, S) = S′

}
retag[&mut](〈`, told〉){
w. ∃tnew. (w = 〈`, tnew〉) ∗ ` 7−→p (Unique(tnew) :: S′)

}
H-SBP-Retag-Raw{
` 7−→p S ∗WriteSingle(told, S) = S′

}
retag[*mut](〈`, told〉){
w. (w = 〈`,⊥〉) ∗ ` 7−→p (SharedRW(⊥) :: S′)

}
H-SBP-Retag-Shared{
` 7−→p S ∗ ReadSingle(told, S) = S′

}
retag[&](〈`, told〉){
w. ∃tnew. (w = 〈`, tnew〉) ∗ ` 7−→p PushSharedRO(tnew, S

′)
}

Figure 4.4: Rules for deriving Hoare triples based on the physical stack
assertion.
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The rules in Fig. 4.4 are based directly on the operational semantics for
λSBRust, and in particular on the semantics for Stacked Borrows. In describing
these rules, we mainly focus on the physical stack assertions, since the
points-to assertions in the rules are the same as in the logic for λRust.

According to the semantics for allocation, if we allocate a new memory
location `, then the stack for that location is initialized to [Unique(t)] for some
tag t. This is reflected in H-SBP-Alloc, because we receive a physical stack
assertion ` 7−→p [Unique(t)] in the postcondition, where t is an existentially
quantified tag.

The rule H-SBP-Write indicates that when writing to the location `
using a tagged pointer 〈`, t〉, exclusive ownership of the points-to assertion
` 7→ v and the physical stack assertion ` 7−→p S for that location is re-
quired. This is because writing potentially changes the value and stack
associated to a location. Moreover, we have to show in the precondition
that WriteSingle(t, S) = S′ for some stack S′. Recall that WriteSingle is the
function used in the semantics to determine whether an access is allowed and
what effect the access has on the stack. For example,

WriteSingle(1, [Unique(2),Unique(1),Unique(0)]) = [Unique(1),Unique(0)]

indicates that when the current stack is [Unique(2),Unique(1),Unique(0)], a
write access using tag 1 is allowed and the stack is updated to [Unique(1),Unique(0)].
In contrast,

WriteSingle(1, [Unique(0)]) = fail

indicates that writing using tag 1 is not allowed when the stack is [Unique(0)],
because the tag 1 does not appear in the stack. Requiring that WriteSingle(t, S) =
S′ therefore ensures that the access is allowed (does not cause undefined
behavior), and simultaneously gives us the new stack S′ for the location `.
Hence, in the postcondition, the physical stack assertion in the postcondition
is ` 7−→p S

′, reflecting the updated stack.
An example instance of H-SBP-Write is as follows:

{` 7→ 0 ∗ ` 7−→p [Unique(t2),Unique(t1),Unique(t0)]}
〈`, t1〉 := 1

{w. (w = h) ∗ ` 7→ 1 ∗ ` 7−→p [Unique(t1),Unique(t0)]}

where the WriteSingle precondition is not shown because it can be derived
from the precondition using the rule of consequence.

The other rules are similar to H-SBP-Write: they each use the semantics
to determine whether an access is allowed and what effect the access has on
the stack for location `. One rule deserves special attention: H-SBP-Read-
Fract. This rule can be applied to reason about programs that perform
concurrent reads, since it only requires fractional assertions. However, it has
the fairly strict requirement ReadSingle(t, S) = S, meaning that the stack is
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not allowed to be changed by a concurrent read. This restriction is applied
because the physical stack assertion, like the points-to assertion, does not
allow for changes to the stack with only fractional ownership. However, as
we shall see in Section 4.3, this makes the rules for reading rather weak and
encourages us to abandon the physical stack assertion to enable more relaxed
rules for reading.

To make the rules more concrete, we apply them to show the absence of
undefined behavior in the following fragment of Rust code, translated into
λSBRust:
1 let mut x0 = 42; // Tag: 0
2 // [Unique(0)]
3 let x1 = &mut x0; // Tag: 1
4 // [Unique(1), Unique(0)]
5 let xraw = x1 as *mut i32; // Tag: _
6 // [SharedRW(_), Unique(1), Unique(0)]
7 unsafe { *xraw = 10 };
8 // [SharedRW(_), Unique(1), Unique(0)]
9 x0 = 20;

10 // [Unique(0)]

The comments indicate how the stack for the location holding the contents of
x0 changes during execution. In fact, this already constitutes a proof sketch
that the program is free from undefined behavior, since we can easily verify
using the operational semantics that the annotated stacks are correct (up to
different generated tags) and provide the right access permissions to each
tag. Indeed, the derivation we now give closely mirrors it. This is the λSBRust
equivalent of the program, annotated with preconditions and postconditions
based on the rules in Fig. 4.4:

{True}
let x0 = alloc() in
{`x 7→ h ∗ ` 7−→p [Unique(t0)]}
x0 := 42;
{`x 7→ 42 ∗ ` 7−→p [Unique(t0)]}
let x1 = retag[&mut](x0) in
{`x 7→ 42 ∗ ` 7−→p [Unique(t1),Unique(t0)]}
let x⊥ = retag[*mut](x1) in
{`x 7→ 42 ∗ ` 7−→p [SharedRW(⊥),Unique(t1),Unique(t0)]}
x⊥ := 10;
{`x 7→ 10 ∗ ` 7−→p [SharedRW(⊥),Unique(t1),Unique(t0)]}
x0 := 20;
{`x 7→ 20 ∗ ` 7−→p [Unique(t0)]}
free(x0)
{True}

Here, we can see that the physical stack assertion simply tracks the stack
precisely (aside from the tags, which are existentially quantified and therefore
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we do not know what the precise tags are), and it is easy to verify that each
step in this proof can be derived using the rules in Fig. 4.4. The names of
the variables have been chosen to reflect the tags: for example, the variable
x0 is replaced by the pointer 〈`x, t0〉, x1 is replaced by 〈`x, t1〉, etc. Variables
are replaced by their values during the proof of the Hoare triple based on the
H-Let rule, and the tag of each location appears existentially quantified in
rules such as H-SBP-Retag-Mutable and H-SBP-Alloc.

Just like the program logic for λRust in Section 4.1, these proof rules allow
programs to be “symbolically” executed by simply keeping track of the stacks.
Note that the WriteSingle(t, S) = S′ preconditions are not shown in the pre-
and postconditions here: this is because those preconditions can easily be
derived using the rule of consequence if the specific stacks are known.

4.3 Abstraction and concurrency

The separation logic for Stacked Borrows based on the physical stack assertion
`
q7−→p S works for reasoning about some simple λSBRust programs: it ensures

the absence of undefined behavior by requiring in the precondition that an
access is allowed according to the current stack for the location. However,
the physical stack assertion has a major shortcoming: it leads to Hoare triple
specifications that are too concrete, in the sense that they contain too many
irrelevant details about how functions are implemented. Instead, we would
like Hoare triples to be sufficiently abstract, describing mainly the externally
visible behavior of a function, and not too many details about how the
function works internally. By keeping Hoare triples sufficiently abstract, we
can give the same specification to functions with a different implementation,
allowing those functions to be interchanged without affecting the correctness
proof of a larger program that uses those functions.

We will now demonstrate the lack of abstraction in the program logic
rules based on the physical stack connective. The lack of abstraction also
makes the rules weak for reasoning about concurrency, for which we also give
an example.

Abstraction As an example, consider the following two Rust functions:
1 fn f1(x0: &mut i32) {
2 *x0 = 10;
3 }
4
5 fn f2(x0: &mut i32) {
6 let x1 = &mut *x0;
7 *x1 = 10;
8 }
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Their λSBRust counterparts are as follows:

rec f1([x0]) :=
let x1 = retag[&mut](x0) in
x1 := 10

rec f2([x0]) :=
let x1 = retag[&mut](x0) in
let x2 = retag[&mut](x1) in
x2 := 10

Note the presence of the additional initial retagging operation on the argument
x0 in both functions: these are inserted implicitly for reference arguments
(mutable references or shared references) passed to a function, as described
in Section 3.2.

The behavior of f1 and f2 is essentially the same: they both write the
value 10 to the mutable reference x0. However, f1 reborrows x0 once before
doing so, whereas f2 reborrows x0 twice. We would like to be able to use
these functions interchangeably: intuitively, exactly how many reborrows a
function performs in this case is an implementation detail, since all of the
additional references (x1, x2) created inside the functions do not escape the
function: they are not returned from the function or stored in external data
structures. The additional references are merely used inside the function, and
after the function returns those internally-created references will never be
used again.

However, these functions do have a different effect on the physical stacks,
and this is reflected in their Hoare triple specifications if we naively apply
the rules of Fig. 4.4. For example, suppose that f1 is applied to a mutable
reference 〈`x, t0〉 and the location `x currently has a stack [Unique(t0)] and a
value 42. We can give the following Hoare triple specification describing the
behavior of f1 in that situation:

{`x 7→ 42 ∗ `x 7−→p [Unique(t0)]}
f1([〈`x, t0〉])
{`x 7→ 10 ∗ `x 7−→p [Unique(t1),Unique(t0)]}

Here, the specification shows that the value stored at `x changes to 10
after the function f1 has been applied to 〈`x, t0〉, and the stack changes
from [Unique(t0)] to [Unique(t1),Unique(t0)], since the function retags the
mutable reference once, creating an additional reference x1 with tag t1. The
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intermediate steps of the derivation for f1([〈`x, t0〉]) are as follows:

rec f1([x0]) :=
{`x 7→ 42 ∗ ` 7−→p [Unique(t0)]}
let x1 = retag[&mut](x0) in
{`x 7→ 42 ∗ ` 7−→p [Unique(t1),Unique(t0)]}
x1 := 10
{`x 7→ 10 ∗ ` 7−→p [Unique(t1),Unique(t0)]}

Here, the application of H-App to reason about a function applied to an
argument is left implicit.

We can obtain a similar Hoare triple for f2, where the fact that it creates
two mutable references is also reflected in the physical stack assertion:

{`x 7→ 42 ∗ `x 7−→p [Unique(t0)]}
f2([〈`x, t0〉])
{`x 7→ 10 ∗ `x 7−→p [Unique(t2),Unique(t1),Unique(t0)]}

Hence, the functions f1 and f2 end up with a specification that shows
exactly how many reborrows they have performed internally, despite the fact
that intuitively it does not matter for the externally visible behavior of the
function. This is because the additional stack items Unique(t2) and Unique(t1)
correspond to references 〈`x, t2〉 and 〈`x, t1〉 created inside the function that
can never be used again after the function returns, because those references
do not escape the function. Ideally, those references meant for “internal use”
would not show up in the specification at all, allowing us to assign the same
specification to f1 and f2.

Concurrency The lack of sufficient abstraction in Hoare triples based
on the physical stack assertion also shows up when attempting to verify
concurrent programs. For example, consider the following λSBRust program:

rec f([]) :=
let x0 = alloc() in
x0 := 42;
let x1 = retag[&mut](x0)
let x2 = retag[&mut](x1)
x2 := 10;
(∗x1

∗x1);
free(x0)

This program allocate a location `x and initializes that location with the
value 42 before reborrowing twice to obtain mutable references x1 and x2 to
the location, where x2 is derived from x1 and x1 is derived from x0. Then, it
uses x2 to write the value 10 to `x. Finally, it performs a concurrent read
using x1 by reading using that pointer in two threads concurrently.
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This program never causes undefined behavior, although we cannot prove
this based on the physical stack assertion, as we will demonstrate using the
following incomplete (!) Hoare derivation:

{True}
let x0 = alloc() in
{`x 7→ h ∗ `x 7−→p [t0]}
x0 := 42;
{`x 7→ 42 ∗ `x 7−→p [t0]}
let x1 = retag[&mut](x0)
{`x 7→ 42 ∗ `x 7−→p [t1, t0]}
let x2 = retag[&mut](x1)
{`x 7→ 42 ∗ `x 7−→p [t2, t1, t0]}
x2 := 10;
{`x 7→ 10 ∗ `x 7−→p [t2, t1, t0]}
{`x 1/27−−→ 10 ∗ `x 1/27−−→ 10 ∗ `x 1/27−−→p [t2, t1, t0] ∗ `x 1/27−−→p [t2, t1, t0]}
{`x 1/27−−→ 10 ∗ `x 1/27−−→p [t2, t1, t0]}
∗x1

{???}

{`x 1/27−−→ 10 ∗ `x 1/27−−→p [t2, t1, t0]}
∗x1

{???}
{???}
free(x0)
{???}

For brevity, we write [t1, t0] instead of [Unique(t1),Unique(t0)] in the above
partial derivation. The pre- and postconditions show how the stack for
location `x changes until we get to the concurrent read. At the point where
the program reaches the concurrent read, the stack for `x is

[Unique(t2),Unique(t1),Unique(t0)]

as shown in the derivation.
Before the concurrent read, we split the points-to assertion and the

physical stack assertion into fractions, and divide those fractions across the
two threads using H-Par, because both threads access the location `x and
therefore both threads need to have those assertions.

However, when attempting to prove a Hoare triple about ∗x1 in each
thread, we run into a problem: we only have a fraction of the assertions
in each thread, and therefore the only rule we could possibly use to reason
about ∗x1 is H-SBP-Read-Fract. Unfortunately, this rule does not apply:
it requires that ReadSingle(t, S) = S, i.e. the stack must remain unchanged
if we only have a fraction of the physical stack assertion. Hence, we cannot
proceed with the proof, because reading using x1 removes the item Unique(t2)
from the stack.

The mere fact that we cannot continue with a derivation is not a problem
per se: it might be that we cannot derive a Hoare triple because the program
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has undefined behavior. However, this program does not have undefined
behavior, as we argue now. The concurrent reads using x1 (holding the
tagged pointer 〈`x, t1〉) do not cause undefined behavior directly, because
Unique(t1) appears in the stack, granting read access to t1, and neither of
them removes that item. However, one of the two reads (depending on which
is executed first) does end up removing Unique(t2). Removing that item is
not a problem, however, because the reference x2 is never used again after
the concurrent read.

This shows that the separation logic based on the physical stack assertion
is not powerful enough to show the absence of undefined behavior in programs
with concurrent reads that modify the stack. This is especially problematic,
because the Rust equivalent of this program is accepted by the borrow checker,
meaning that even the borrow checker with its relatively weak analysis is able
to determine that this program does not have undefined behavior. This means
that the separation logic based on the physical stack assertion is essentially
weaker than the borrow checker for some programs.

How does the borrow checker determine that the program does not have
undefined behavior? Intuitively, the borrow checker “knows” that the item
Unique(t2) (corresponding to x2) can be safely removed during the concurrent
read, because the lifetime of x2 has ended by that point, meaning x2 is
never used again. Specifically, the lifetime of x2 ends after x2 := 10, since
the borrow checker picks the shortest lifetime that contains all uses of x2.
Hence, the safety of the concurrent read is ensured by the constraint that a
reference can only be used once the lifetimes of all derived references have
ended. Since the lifetime of x2 (derived from x1) has ended by the point of
the concurrent read, the concurrent read is accepted. This explanation is
somewhat backwards, the borrow checker does not reason about stacks and
instead Stacked Borrows was designed based on the borrow checker analysis,
but it still serves as a useful intuition.

Again, the fact that the physical stack assertion is too concrete shows up
here: the physical stack sometimes contains items which are no longer relevant
and can be safely removed, because they will never be used again. Ideally,
those irrelevant items would not appear in the specifications, just like specifi-
cations ideally would not describe references that are merely implementation
details of functions.

4.4 Ghost stack assertion

In Section 4.3, we have argued that a separation logic based on the physical
stack assertion is not sufficiently abstract, because Hoare triples reveal too
many implementation details, which makes it unsuitable for reasoning about
simple concurrent programs that can still be verified by the borrow checker.
Specifically, the rule H-SBP-Read-Fract can only be used to reason about
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concurrent reads that do not modify the stack for a location.
This section presents Stacked Borrows Separation Logic, a separation logic

that allows for more abstract Hoare triples and is abstract enough to reason
about some programs that perform concurrent reads that modify the stack.
This logic is the main contribution of this thesis. We introduce SBSL in a step-
by-step fashion: in this section, we introduce the rules for reasoning about
programs that merely use mutable references (Unique items). In Section 4.5,
we extend the logic with rules for reasoning about raw pointers (SharedRW
items), which is a relatively simple extension. Finally, in Section 4.6, we add
rules for reasoning about shared references (SharedRO items).

The main assertion of the logic is the ghost stack assertion `
q7−→g G.

Whereas the physical stack assertion keeps track of the exact physical stack
for each location, the ghost stack assertion keeps track of a ghost stack for each
location. The main idea is that the ghost stack does not have to contain all of
the items appearing in the physical stack: irrelevant items (corresponding to
references that will never be used again) can be omitted in order to indicate
that those items can be safely removed.

The name “ghost stack” derives from the ghost state mechanism of
Iris (Jung et al. 2016, 2018b, 2015; Krebbers et al. 2017a), which allows one
to define more abstract notions of resources on top of the physical state. This
mechanism is used to implement ghost stacks.

The ghost stack assertion ` q7−→g G should be read as “the ghost stack G is
a subsequence of the physical stack for `.” The fraction q indicates whether
the ghost stack can be modified, just as for the points-to assertion, and also
allows splitting and combining into fractions:

`
q1+q27−−−→g G ⇐⇒ `

q17−→g G ∗ ` q27−→g G

The syntax for ghost stacks G is as follows:

g ∈GItem ::= GUnique(t) | . . .
G ∈GStack ::= List(GItem)

Note that the syntax of ghost stack is very similar to that of physical stacks.
For example, the ghost item GUnique(t) corresponds to a physical item
Unique(t). The reason for having a separate syntax is that SharedRO will
have a different representation in ghost stacks compared to in physical stacks.
The grammar will be extended in in Section 4.5 and Section 4.6, when we
introduce the rules for raw pointers and shared references.

The idea is that the ghost stack merely contains those items from the
physical stack which are still relevant, and should not be removed. For
example,

` 7−→g [GUnique(t2),GUnique(t0)]

means that the location ` has a physical stack that contains

[Unique(t2),Unique(t0)]
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SB-Forget
G′ is a subsequence of G
` 7−→g GV ` 7−→g G

′

H-Vs
P V P ′

{
P ′
}
e
{
v. Q′

}
∀v. Q′ V Q

{P} e {v. Q}

Vs-Frame
P V Q

P ∗RV Q ∗R

Vs-Seq
P V Q QV R

P V R

Figure 4.5: Stacked Borrows Separation Logic rules for ghost forgetting.

as a subsequence, but it might also include other items. For example, the
physical stack for that location might be

[Unique(t3),Unique(t2),Unique(t1),Unique(t0)]

In this example, the items Unique(t3) and Unique(t1) do not appear in the
ghost stack, despite the fact that they are still part of the physical stack for
location `. Those items have been “forgotten” in the program logic in order
to indicate that they are no longer relevant and can be safely removed.

Ghost forgetting Stacked Borrows Separation logic includes a rule that
allows one to forget about items in the physical stack by removing them
from the ghost stack. This is called ghost forgetting, and the rules for it are
shown in Fig. 4.5. The ghost forgetting rule SB-Forget allows removing an
arbitrary subsequence of items from a ghost stack in the pre- or postcondition
of Hoare triple. Ghost forgetting is essentially a logical operation: it changes
a ghost stack that appears in a Hoare triple, while the corresponding physical
stack does not change. This is unlike Hoare triples, which are used to reason
about changes to the physical state caused by a program e. Hence, the ghost
forgetting operation is not a Hoare triple, but a view shift P V Q. A view
shift P V Q should be read as: “the proposition P can be updated to become
Q.” View shifts are a general Iris mechanism used to describe changes to
logical resources that are not necessarily accompanied by changes to physical
resources. In some sense, a view shift can be seen as a Hoare triple without a
program.

For example, consider the following instance of SB-Forget:

` 7−→g [GUnique(t1),GUnique(t0)] V ` 7−→g [GUnique(t0)]

This rule states that if we have exclusive ownership of the ghost stack assertion
` 7−→g [GUnique(t1),GUnique(t0)], then we can update the ghost stack assertion
to become ` 7−→g [GUnique(t0)], effectively forgetting about the GUnique(t1)
item. We can apply this view shift while deriving a Hoare triple using H-Vs,
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Vs-Seq, and Vs-Frame. For example, this allows the following reasoning
step:

{` 7→ 0 ∗ ` 7−→g [GUnique(t0)]} e {v. Q}
{` 7→ 0 ∗ ` 7−→g [GUnique(t1),GUnique(t0)]} e {v. Q}

Read from bottom to top, here we are updating the ghost stack for ` in
the precondition by forgetting an item before proving the Hoare triple for
the program e. Similarly, we can also forget items from ghost stacks in the
postconditions of Hoare triples.

Why is it useful to forget items from ghost stacks appearing in Hoare
triples? This is because it allows hiding the fact that new references have
been created from Hoare triples, leading to more abstract specifications, and
enabling better reasoning about concurrency, as we shall see.

Rules for reasoning about λSBRust programs The SBSL rules for mutable
references are shown in Fig. 4.6.

The rule for allocation, H-SB-Alloc, is essentially exactly the same as
for the physical stack assertion. After allocation, we obtain the ghost stack
assertion ` 7−→g [GUnique(t)] and a points-to assertion for the tagged pointer
〈`, t〉 produced by the allocation. Hence, in this case the ghost stack is exactly
the same as the physical stack.

The rule for writing, H-SB-Write, is more interesting. Recall that the
intuition behind the ghost stack ` q7−→g G is that G contains the items from
the physical stack that are still relevant and should not be removed, where
irrelevant items can be forgotten using SB-Forget. Hence, a write should
not be allowed to remove any items from the physical stack that still appears
in the ghost stack. Moreover, in order to avoid undefined behavior, writing
should only be done using tags t that have write permissions according to
the physical stack. These two constraints are captured by the SBGrantsWrite
requirement in the precondition: SBGrantsWriteG t should be read as: “for a
location with ghost stack G, the tag t can used for writing without causing
undefined behavior, and doing so preserves G as a subsequence of the physical
stack.” Because a write is required to preserve G as a subsequence of the
physical stack, the same ghost stack appears in the precondition and the
postcondition.

So far, there is only a single rule SB-Grants-Write-Unique for deriving
SBGrantsWriteG t: it allows us to write using a tag t if the ghost stack has
GUnique(t) on top. Why is this allowed? First of all, if GUnique(t) appears
in the ghost stack, then Unique(t) appears in the physical stack (because
the ghost stack is a subsequence of the physical stack), meaning the access
does not cause undefined behavior. Moreover, according to the operational
semantics, writing removes all items above the topmost granting item. Hence,
none of the items in the ghost stack are removed since those are all below a
granting item GUnique(t).
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H-SB-Alloc
{True}

alloc()

{w. ∃`, t. (w = 〈`, t〉) ∗ ` 7→ h ∗ ` 7−→g [GUnique(t)]}

H-SB-Write
{` 7→ v ∗ ` 7−→g G ∗ SBGrantsWriteG t}

〈`, t〉 := v′{
w. (w = h) ∗ ` 7→ v′ ∗ ` 7−→g G

}
H-SB-Read
{` q7−→ v ∗ ` q7−→g G ∗ SBGrantsReadG t}
∗〈`, t〉

{w. (w = v) ∗ ` q7−→ v ∗ ` q7−→g G}

H-SB-Free
{` 7→ v ∗ ` 7−→g G ∗ SBGrantsWriteG t}

free(〈`, t〉)

{w. w = h}

H-SB-Retag-Mutable
{` 7−→g G ∗ SBGrantsWriteG told}

retag[&mut](〈`, told〉)

{w. ∃tnew. (w = 〈`, tnew〉) ∗ ` 7−→g (GUnique(tnew) :: G)}

SB-Grants-Write-Unique
SBGrantsWrite (GUnique(t) :: G) t

SB-Grants-Read-Unique
SBGrantsRead (GUnique(t) :: G) t

Figure 4.6: Stacked Borrows Separation Logic rules for reasoning about
pointer-related operations.
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For example, the following is an instance of H-SB-Write:

{` 7→ 0 ∗ ` 7−→g [GUnique(t1),GUnique(t0)]}
〈`, t1〉 := 1

{` 7→ 1 ∗ ` 7−→g [GUnique(t1),GUnique(t0)]}

This instance can be derived using H-SB-Write, SB-Grants-Write-Unique,
and the rule of consequence.

Similarly, the rule for reading, H-SB-Read, allows reading with a tag t if
GUnique(t) appears on top of the ghost stack (SB-Grants-Read-Unique), and
again the same ghost stack appears in the precondition and the postcondition.
Contrary to H-SB-Write, only fractional ownership of the points-to assertion
and the ghost stack assertion is required, since neither are modified. The
intuition behind SBGrantsRead is similar to that behind SBGrantsWrite: it
means that t can be used for reading without causing undefined behavior
while preserving G as a subsequence.

The rule for deallocation, H-SB-Free, is almost the same as H-SB-Write,
since deallocation counts as a write to Stacked Borrows. The only difference is
that the points-to assertion and ghost stack assertion no longer appear in the
postcondition, disallowing the location from being accessed after deallocation.

Finally, the rule H-SB-Retag-Mutable allows reasoning about mutable
references derived using retagging. It requires that told be allowed to write,
and extends the ghost stack with an additional GUnique(tnew) item, reflecting
the new item that gets added to the physical stack when retagging.

In order to demonstrate the usefulness of the logic, we now apply it to
the two examples from Section 4.3, for which we could not obtain satisfactory
specifications using the physical stack assertion.

Example (abstraction) We again consider the following two functions:

rec f1([x0]) :=
let x1 = retag[&mut](x0) in
x1 := 10

rec f2([x0]) :=
let x1 = retag[&mut](x0) in
let x2 = retag[&mut](x1) in
x2 := 10

When naively applying the rules based on the physical stack assertion, we
ended up with two different specifications, and the specification reflected the
number of references created inside the function, even though those references
did not escape the function.

Now, based on the ghost forgetting rule SB-Forget, we can assign the
same specification to both of these functions by forgetting about the references
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created inside the function. Specifically, we show the following Hoare triple
for both functions f ∈ {f1, f2}:

{`x 7→ 42 ∗ `x 7−→g [GUnique(t0)]}
f([〈`, t0〉])
{`x 7→ 10 ∗ `x 7−→g [GUnique(t0)]}

The outlines of the derivations are as follows:

rec f1([x0]) :=
{`x 7→ 42 ∗ `x 7−→g [GUnique(t0)]}
let x1 = retag[&mut](x0) in
{`x 7→ 42 ∗ `x 7−→g [GUnique(t1),GUnique(t0)]}
x1 := 10
{`x 7→ 10 ∗ `x 7−→g [GUnique(t1),GUnique(t0)]}
(ghost forgetting)
{`x 7→ 10 ∗ `x 7−→g [GUnique(t0)]}

rec f2([x0]) :=
{`x 7→ 42 ∗ `x 7−→g [GUnique(t0)]}
let x1 = retag[&mut](x0) in
{`x 7→ 42 ∗ `x 7−→g [GUnique(t1),GUnique(t0)]}
let x2 = retag[&mut](x1) in
{`x 7→ 42 ∗ `x 7−→g [GUnique(t2),GUnique(t1),GUnique(t0)]}
x2 := 10
{`x 7→ 10 ∗ `x 7−→g [GUnique(t2),GUnique(t1),GUnique(t0)]}
(ghost forgetting)
{`x 7→ 10 ∗ `x 7−→g [GUnique(t0)]}

Note that at every step, we only write or retag using the tag t that appears
in a GUnique(t) item on top of the ghost stack, in accordance with the rules
H-SB-Write and H-SB-Retag-Mutable. The derivations are quite similar
to those based on the physical stack assertion, except we apply SB-Forget
to forget about the items with tags t1 and t2, because those correspond to
references created inside the function.

This shows how the notion of ghost forgetting can be used to obtain
more abstract specifications for functions, in which implementation details
are hidden. This makes it easier to maintain a proof of program correctness,
because it means that changing minor implementation details of a function
appearing in a larger program does not require reproving the correctness of
the whole program.

Example (concurrency) Now we show that SBSL is also able to verify
the absence of undefined behavior in a program that performs a concurrent
read that modifies the physical stack, which was not possible using the
physical stack assertion.
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We again consider the concurrency example from Section 4.3. The fol-
lowing shows the concurrent read example annotated with preconditions and
postconditions according to Stacked Borrows Separation Logic:

{True}
let x0 = alloc() in
{`x 7→ h ∗ `x 7−→g [t0]}
x0 := 42;
{`x 7→ 42 ∗ `x 7−→g [t0]}
let x1 = retag[&mut](x0)
{`x 7→ 42 ∗ `x 7−→g [t1, t0]}
let x2 = retag[&mut](x1)
{`x 7→ 42 ∗ `x 7−→g [t2, t1, t0]}
x2 := 10;
{`x 7→ 10 ∗ `x 7−→g [t2, t1, t0]}
(ghost forgetting)
{`x 7→ 10 ∗ `x 7−→g [t1, t0]}
{`x 1/27−−→ 10 ∗ `x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0] ∗ `x 1/27−−→g [t1, t0]}
{`x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0]}
∗x1

{`x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0]}

{`x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0]}
∗x1

{`x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0]}
{`x 1/27−−→ 10 ∗ `x 1/27−−→ 10 ∗ `x 1/27−−→g [t1, t0] ∗ `x 1/27−−→g [t1, t0]}
{`x 7→ 10 ∗ `x 7−→g [t1, t0]}
(ghost forgetting)
{`x 7→ 10 ∗ `x 7−→g [t0]}
free(x0)
{True}

Here, we have again shortened the ghost stacks by writing [t1, t0] instead
of [GUnique(t1),GUnique(t0)]. Again, it is easy to verify that all writes,
reads, and retags at each point in the program are performed using the tag t
appearing in the GUnique(t) item on top of the ghost stack, as required by rules
such as H-SB-Write, H-SB-Read, and H-SB-Retag-Mutable. Moreover, we
can see that retagging adds additional tags to the stack.

This time, we are able to show the absence of undefined behavior in
the program, despite the fact that it performs a concurrent read where one
of the two reads ends up removing an item from the physical stack. The
crucial point that makes the proof work is that we are able to apply the ghost
forgetting rule (SB-Forget) before splitting the assertions into fractions,
allowing the GUnique(t2) item to be forgotten before it is actually removed
from the physical stack by one of the two threads. Hence, in the proof each
thread ends up with the ghost stack [GUnique(t1),GUnique(t0)], which has
t1 on top and therefore we are able to apply H-SB-Read to show that the
concurrent reads do not cause undefined behavior.
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H-SB-Retag-Raw
{` 7−→g G ∗ SBGrantsWrite S told}

retag[*mut](〈`, told〉)

{w. w = 〈`,⊥〉 ∗ ` 7−→g (GSharedRW(⊥) :: G)}

SB-Grants-Write-SharedRW
SBGrantsWrite (GSharedRW(⊥) :: G)⊥

SB-Grants-Read-SharedRW
SBGrantsRead (GSharedRW(⊥) :: G)⊥

SB-Grants-Read-Skip-SharedRW
SBGrantsReadG t⇒ SBGrantsRead (GSharedRW(⊥) :: G) t

Figure 4.7: Stacked Borrows Separation Logic rules for raw pointers.

After the concurrent part, the postconditions of both threads are combined
according to H-Par, and subsequently we apply SB-Forget once more to
bring t0 to the top of the ghost stack, which allows applying the H-SB-Free
rule.

This shows that the logic is more suited for reasoning about concurrent
programs due to the fact that it decouples the point in the program where a
stack item becomes irrelevant (because it will never be used again) from the
point where it might actually be removed.

4.5 Raw pointers

In this section, we extend the logic with rules for reasoning about raw pointers.
Having program logic rules that account for raw pointers is essential, because
raw pointers are typically used for situations where the borrow checker cannot
guarantee the absence of undefined behavior. Hence, by having reasoning
rules for raw pointers we can allow such code to be manually shown to be
free from undefined behavior using the program logic.

Fortunately, extending the logic to support raw pointers is a relatively
straightforward extension of the ideas in Section 4.4. First, we extend the
syntax of ghost stacks to account for SharedRW(⊥) items:

g ∈GItem ::= GUnique(t) | GSharedRW(⊥) | . . .

The additional rules for raw pointers are shown in Fig. 4.7. We have
additional rules for the SBGrantsRead and SBGrantsWrite predicates, indi-
cating that when GSharedRW(⊥) appears on top of the ghost stack, we are
allowed to read and write using the tag ⊥ (SB-Grants-Write-SharedRW
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and SB-Grants-Read-SharedRW). The idea here is much the same as for
GUnique(t) items: if GSharedRW(⊥) appears on top of the ghost stack, then
reading and writing using ⊥ does not cause undefined behavior (since it
also appears in the physical stack) and also preserves the ghost stack as a
subsequence of the physical stack (because none of the items occurring below
SharedRW(⊥) are removed by reading and writing using ⊥).

The rule SB-Grants-Read-Skip-SharedRW is more interesting: it says
that if we are allowed to read with the tag t according to the ghost stack G,
then we are also allowed to read with that tag according to GSharedRW(⊥) ::
G. Effectively, we are allowed to “skip” over GSharedRW(⊥) items on top of
the ghost stack when considering whether reading using t is allowed. For
example, according to the ghost stack [GSharedRW(⊥),GUnique(t0)], it is
allowed to read using t0. It is no longer necessarily the case that the tag t we
are using has to appear in the topmost item of the ghost stack.

What is the justification for being allowed to skip over GSharedRW(⊥)
items? The reason is that in the operational semantics, reading never
removes any SharedRW(⊥) items, since it only removes Unique items above
the granting item. Hence, even if we read using an item that appears below
several SharedRW(⊥) items, we can still be sure that none of the items
appearing in the ghost stack will be removed (i.e., none of the still-relevant
items are removed).

Finally, we also have a rule for casting references to raw pointers: H-SB-
Retag-Raw. This rule is very similar to H-SB-Retag-Mutable, which is used
to reason about deriving new mutable references by retagging. The H-SB-
Retag-Raw requires that told be allowed write access according to the current
ghost stack for `, since casting to a raw pointer counts as write. The ghost
stack in the postcondition is extended with an additional GSharedRW(⊥)
item, reflecting the new SharedRW(⊥) item added to the physical stack.

Example using raw pointers We now apply the new rules to a λSBRust
program that uses raw pointers. Consider the following program:

let x0 = alloc() in
x0 := 42;
let x1 = retag[&mut](x0) in
let x⊥ = retag[*mut](x1) in
∗x⊥;
∗x1;
∗x⊥;
∗x0;
∗x⊥;
free(x0)

This roughly corresponds to the following Rust program:
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1 let mut x0 = 42;
2 let x1 = &mut x0;
3 let xraw = x1 as *mut i32;
4 println!("{}", unsafe { *xraw });
5 println!("{}", *x1);
6 println!("{}", unsafe { *xraw });
7 println!("{}", x0);
8 println!("{}", unsafe { *xraw });

The prints are added to the Rust program such that the program does
not contain a sequence of reads whose result is unused. Interestingly, note
that the raw pointers remains usable (i.e., can be accessed without causing
undefined behavior) even after reading from x0 and x1. In contrast, for
mutable references, Stacked Borrows only allows x1 to be used from the
point where it is created to the point where x0 is read. Similarly, the borrow
checker enforces that x0 can only be used once the lifetime of x1 has ended,
leading to a similar constraint.

This program does not have undefined behavior, which we show using the
following outline of a Hoare triple derivation:

{True}
let x0 = alloc() in
{`x 7→ h ∗ `x 7−→g [GUnique(t0)]}
x0 := 42;
{`x 7→ 42 ∗ `x 7−→g [GUnique(t0)]}
let x1 = retag[&mut](x0) in
{`x 7→ 42 ∗ `x 7−→g [GUnique(t1),GUnique(t0)]}
let x⊥ = retag[*mut](x1) in
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t1),GUnique(t0)]}
∗x⊥;
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t1),GUnique(t0)]}
∗x1;
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t1),GUnique(t0)]}
∗x⊥;
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t1),GUnique(t0)]}
(ghost forgetting)
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t0)]}
∗x0;
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t0)]}
∗x⊥;
{`x 7→ 42 ∗ `x 7−→g [GSharedRW(⊥),GUnique(t0)]}
(ghost forgetting)
{`x 7→ 42 ∗ `x 7−→g [GUnique(t0)]}
free(x0)

It is easy to verify that at each point the preconditions SBGrantsWrite and
SBGrantsRead for the applicable rule are satisfied, which in practice means
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that we only perform writing and retagging (deriving mutable references
or raw pointers) using the tag appearing in the topmost item of the ghost
stack. In the case of reading, we are also able to read using t1 while it
appears below GSharedRW(⊥) in the ghost stack: this is allowed by the
SB-Grants-Read-Skip-SharedRW rule.

Moreover, using ghost forgetting, we can take arbitrary subsequences of
the ghost stack: this allows us to forget about the GUnique(t1) item while
leaving the GSharedRW(⊥) item on top of it. After that point, we are allowed
to read using t0, since it only appears below GSharedRW(⊥) in the ghost
stack, and afterwards we are still able to read using ⊥ because we did not
forget about that item.

4.6 Shared references

In this section, we make the final extension to Stacked Borrows Separation
Logic, adding rules for reasoning about shared references. This extension is
not entirely trivial, because it is possible to derive additional shared references
concurrently from multiple threads in safe Rust (i.e., the borrow checker allows
this without requiring unsafe operations). The ghost forgetting rule enables
reasoning about programs that remove items from the stack in a concurrent
setting. Now, we need rules that allow items (specifically, SharedRO items
corresponding to shared references) to be added to the stack concurrently.

Consider the following λSBRust program, which demonstrates concurrent
retagging:

let x0 = alloc() in
x0 := 42

let x1 = retag[&](x0) in
∗x1

let x2 = retag[&](x0) in
let x3 = retag[&](x2) in
∗x3

free(x0)

Here, the physical stack for the allocated location starts out as [Unique(t0)].
Then, we have two threads that concurrently derive additional shared refer-
ences and use the shared references to read the value stored in the location.
This means that both threads concurrently add SharedRO(t) items to the
stack, and then use the tags t of their respective items to read from the loca-
tion. One possible ordering in which this might happen is that the left-most
thread executes to completion, followed by the rightmost thread executing to
completion. In that case, the physical stack would change in the following
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way:

[Unique(t0)] (initial)
[SharedRO({t1}),Unique(t0)] (after leftmost thread)
[SharedRO({t3, t2, t1}),Unique(t0)] (after rightmost thread)

There are other possible orderings as well: the rightmost thread might execute
in its entirety first, or the threads might execute in an interleaved fashion.

The above program is in fact free from undefined behavior: intuitively,
this is because all of the threads only create shared references from Unique(t0)
and from other shared references and perform reads. None of these operations
removes the Unique(t0) item or any SharedRO items from the stack (reading
or deriving shared references only ever removes Unique items), and therefore
we can be sure that regardless of the order in which instructions from threads
execute, the required granting items will still be present in the stack.

The borrow checker is also able to determine that this program does not
have undefined behavior: in short, this is because the lifetimes of shared
references are only required to end once a write access to the original reference
occurs. Since the program does not perform any writes, the shared references
created in multiple threads can peacefully coexist.

Note in particular that the precise ordering in which threads are executed
does not really matter: the leftmost thread adds a SharedRO(t1) item to
the stack and reads using t1, but in reasoning about that thread it does not
matter whether the rightmost thread has already added its SharedRO(t2)
item or not. Hence, in the separation logic spirit, we would like to be able to
reason about the threads independently: the reasoning in each thread should
be independent of SharedRO(t) items added by other threads concurrently.

We now introduce the rules of Stacked Borrows Separation Logic for rea-
soning about shared references, which allow independent reasoning about the
SharedRO items added by each thread. Whereas Unique items and SharedRW
items are represented in essentially the same way in the physical stacks and
the ghost stacks (i.e., GUnique(t) corresponds to Unique(t) and GSharedRW(⊥)
corresponds to SharedRW(⊥)), we do not use the same representation for
SharedRO items. Hence, whereas the physical stack might contain items like
SharedRO({t1, t2, t3}) (a group of three consecutive SharedRO items grouped
into a set), there are no corresponding GSharedRO({t1, t2, t3}) items. The
reason for this is that we are generally not interested in knowing the whole
set of tags in a SharedRO item (some of which might have been added by dif-
ferent threads concurrently) in the program logic: we are mainly interested in
membership of individual SharedRO items, and particularly those SharedRO
items that are known to exist in the current thread (e.g., because the current
thread has added them).
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Set membership assertion To enable local reasoning about the individual
tags in a group of SharedRO items, we use the following representation for
GSharedRO items:

γ ∈ SetName
g ∈GItem ::= GUnique(t) | GSharedRW(⊥) | GSharedRO(γ)

This represents the final addition to the syntax of ghost stacks. Here, the
GSharedRO item does not contain a set of tags directly. Instead, it contains
a set name γ. The idea is that this set name refers to a (potentially empty)
set of SharedRO items (or rather, the tags of those SharedRO items). Then,
we add a new assertion SBSetContains γ t, the set membership assertion, that
can be read as “the set named γ contains the tag t.” This assertion is used
to keep track of membership of individual SharedRO(t) items in a group of
SharedRO items.

The set membership assertion is defined in terms of standard built-in Iris
constructions. Hence, the general idea of representing sets indirectly in this
way is not a novel contribution. However, what is interesting is how the set
membership assertion and the ghost stack assertion interact in the proof rules
for shared references.

Based on the set membership assertion, we can describe the situation
where the physical stack has a group of SharedRO items on top that contains
the tag t1 as follows:

` 7−→g [GSharedRO(γ),GUnique(t0)] ∗ SBSetContains γ t1

Here, the ghost stack indicates that there is a group of SharedRO items named
γ in the physical stack, and the set membership assertion indicates that the
tag t1 is part of that group. For example, the corresponding physical stack
might look like this:

[SharedRO({t1, t2, t3}),Unique(t0)]

We are only able to conclude that a certain tag appears in the physical
stack based on the set membership assertion if the set names in the ghost
stack and the set membership assertion match. Hence,

` 7−→g [GSharedRO(γ′),GUnique(t0)] ∗ SBSetContains γ t1

does not tell us anything about whether there is a SharedRO(t1) item in the
stack, unless γ = γ′.

The set membership assertion SBSetContains γ t represents the knowledge
that the set named γ contains the tag t. For this reason, the SBSetContains γ t
proposition is duplicable 2:

SBSetContains γ t ⇐⇒ SBSetContains γ t ∗ SBSetContains γ t
2In fact, the set membership assertion is persistent, an even stronger notion than

duplicability in Iris.
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H-SB-Retag-Shared{
`
q7−→g G ∗ SBGrantsReadG told ∗ (G = GSharedRO(γ) :: G′)

}
retag[&](〈`, told〉)

{w. ∃tnew. (w = 〈`, tnew〉) ∗ ` q7−→g G ∗ SBSetContains γ tnew}

SB-Share
G is not of the form GSharedRO(γ) :: G′

` 7−→g GV ∃γ. ` 7−→g (GSharedRO(γ) :: G)

SB-Grants-Read-SharedRO
SBSetContains γ t⇒ SBGrantsRead (GSharedRO(γ) :: G) t

SB-Grants-Read-Skip-SharedRO
SBGrantsReadG t⇒ SBGrantsRead (GSharedRO(γ) :: G) t

SBSetContains-Dup
SBSetContains γ t ⇐⇒ SBSetContains γ t ∗ SBSetContains γ t

Figure 4.8: Stacked Borrows Separation Logic rules for shared references.

This means that the knowledge that t belongs to the set named γ can be
freely distributed to multiple threads using the H-Par rule. This is unlike the
points-to assertion or the ghost stack assertion, which cannot be duplicated
freely (although they can be split into fractions for read-only access).

The proposition SBSetContains γ t should not be confused with a proposi-
tion like t ∈ γ, because γ is not a set: it is just a name that refers to a set,
and as we will see, the set that this name refers to can grow to contain more
elements during a Hoare triple derivation.

Rules for shared references We can use the set membership assertion
to give rules for shared references. The SBSL rules for shared references are
shown in Fig. 4.8.

First of all, we have additional rules for SBGrantsRead. The rule SB-
Grants-Read-SharedRO states that if we have a SBSetContains γ t token
(indicating that t belongs to the set named γ), and GSharedRO(γ) appears
on top of the ghost stack, then we are allowed to read using the tag t. This is
because this combination of resources means that a SharedRO(t) item appears
in the physical stack, meaning reading does not cause undefined behavior,
and moreover reading using a SharedRO(t) item does not remove any items
from the physical stack at all (because SharedRO items always sit on top of
the stack), meaning the ghost stack is preserved as a subsequence.
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For example, the assertions

` 7−→g [GSharedRO(γ),GUnique(t0)] ∗ SBSetContains γ t1

imply that we are allowed to read using 〈`, t1〉 according to the logic. We are
able to derive the following Hoare triple, based on H-Conseq, H-SB-Read,
and SB-Grants-Read-SharedRO:

{` 7→ 0 ∗ ` 7−→g [GSharedRO(γ),GUnique(t0)] ∗ SBSetContains γ t1}
∗〈`, t1〉
{w. (w = 0) ∗ ` 7→ 0 ∗ ` 7−→g [GSharedRO(γ),GUnique(t0)] ∗ SBSetContains γ t1}

Moreover, if we are allowed to read using the tag t according to the ghost
stack G, then we are also allowed to do so using GSharedRO(γ) :: G, as
indicated by SB-Grants-Read-Skip-SharedRO. The idea behind this is the
same as for SB-Grants-Read-Skip-SharedRW: reading never removes any
SharedRO items from the physical stack, and hence reading using a tag that
appears below several GSharedRO(γ) and GSharedRW(⊥) still preserves the
ghost stack as a subsequence of the physical stack.

For example, this means that according to the ghost stack

[GSharedRO(γ),GUnique(t0)]

it is allowed to read using t0, because doing so does not remove the SharedRO
items represented by GSharedRO(γ).

We also have the H-SB-Retag-Shared rule, which is used for reasoning
about new shared references derived using retagging, potentially concurrently.
Note that this rule only requires a fraction of the ghost stack assertion,
which is what allows it to be applied in a proof about a concurrent program.
This rule requires that told has read access according to the ghost stack for
location ` (since retagging for shared references counts as a read access), and
it requires the ghost stack to be of the form GSharedRO(γ) :: G′. Retagging
for shared references produces a new tagged pointer 〈`, tnew〉, and we obtain a
new set membership assertion SBSetContains γ tnew, which tells us that tnew
is now in the set called γ. Hence, this rule is where set membership assertions
are “created.”

The rule SB-Share, called the ghost sharing rule, allows us to add a
GSharedRO(γ) item on top of a ghost stack that does not already have
one. This is a view shift, just like the SB-Forget rule, which means it is
not accompanied by a change in the physical state. Hence, there are not
necessarily any SharedRO items in the physical stack yet when there is a
GSharedRO(γ) in the ghost stack. It is only when we apply the H-SB-Retag-
Shared rule that we learn that there are actually some tags in the set referred
to by γ.

The SB-Share rule can be applied in a proof to indicate the intent to
add SharedRO items to the stack, potentially in a concurrent fashion. After
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applying this rule, it is no longer possible to write to the location according
to the proof rules (because SBGrantsWrite cannot be shown for a ghost stack
with a GSharedRO on top), until the SB-Forget rule is applied to remove
the GSharedRO item.

After applying SB-Forget to remove a GSharedRO(γ) item from the
ghost stack, all of the SBSetContains γ t set membership assertions no longer
tell us anything about the physical stack: they essentially become worthless
pieces of information. The intuitive reason for this is that applying SB-
Forget means that the group of SharedRO items currently on top of the
physical stack is no longer relevant, and can be safely removed (say, by
writing to the location). Hence, after applying SB-Forget, the items might
not even be in the physical stack anymore. The next time SB-Share is
applied, a new GSharedRO(γ′) item is added to the ghost stack. However, the
SBSetContains γ t tokens remain useless, because we cannot conclude that
γ = γ′ since γ′ is existentially quantified in SB-Share.

Example We now apply the rules for shared references to the λSBRust program
that creates shared references concurrently, which was shown in the beginning
of this section.

The following is an outline of the Hoare triple derivation:

{True}
let x0 = alloc() in
{`x 7→ h ∗ `x 7−→g [t0]}
x0 := 42
{`x 7→ 42 ∗ `x 7−→g [t0]}
(ghost sharing)
{`x 7→ 42 ∗ `x 7−→g [γ, t0]}
{`x 1/27−−→ 42 ∗ `x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ `x 1/27−−→g [γ, t0]}

{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0]}
let x1 = retag[&](x0) in
{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t1}
∗x1

{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t1}

{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0]}
let x2 = retag[&](x0) in
{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t2}
let x3 = retag[&](x2) in
{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t2 ∗ SC γ t3}
∗x3

{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t2 ∗ SC γ t3}
{`x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t1 ∗ `x 1/27−−→ 42 ∗ `x 1/27−−→g [γ, t0] ∗ SC γ t2 ∗ SC γ t3}
{`x 7→ 42 ∗ `x 7−→g [γ, t0] ∗ SC γ t1 ∗ SC γ t2 ∗ SC γ t3}
(ghost forgetting)
{`x 7→ 42 ∗ `x 7−→g [t0] ∗ SC γ t1 ∗ SC γ t2 ∗ SC γ t3}
free(x0)
{SC γ t1 ∗ SC γ t2 ∗ SC γ t3}
(rule of consequence using P ∗Q⇒ P on the postcondition)
{True}
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Here, we have abbreviated [GSharedRO(γ),GUnique(t0)] to [γ, t0], and abbre-
viated SBSetContains γ t as SC γ t. This proof uses the ghost sharing rule
SB-Share to add the GSharedRO(γ) item before splitting the points-to asser-
tion and the ghost stack assertion into fractions for the concurrent part. In
each concurrent thread, we apply the H-SB-Read and H-SB-Retag-Shared
rules to reason about reading and retagging. Note that by retagging to derive
new shared references, we obtain SBSetContains γ t tokens.

As usual, after the concurrent part, the postconditions of both threads are
combined, and hence we receive all of the SBSetContains γ t tokens created
by individual threads. We recombine the fractions before applying ghost
forgetting to get rid of the GSharedRO(γ) item, which brings GUnique(t0) to
the top of the ghost stack and allows us to deallocate.

Note that after deallocation, we still have the SBSetContains γ t tokens.
However, these are not worth anything without a ghost stack that contains
the set name γ. Hence, we use the rule of consequence to remove them from
the postcondition.

Importantly, while reasoning about each thread, we only have resources
corresponding to SharedRO items that that thread itself has added, because
each thread does not “know” about items added by other threads concurrently.

4.7 Relation between SBSL and the Rust type sys-
tem

We have now introduced all of the rules of SBSL, and applied them to several
simple examples to show how the rules can be used to show the absence of
undefined behavior related to Stacked Borrows. Moreover, we have shown
that the SBSL rules can be used to give more abstract Hoare triples using
the ghost forgetting rule. Finally, the rules of SBSL allow reasoning about
simple forms of concurrency, where items are added or removed from the
stack in a concurrent fashion.

How do we know that the rules of SBSL are in some sense “abstract
enough”? We now briefly discuss the correspondence between SBSL and the
Rust type system, providing a rough sketch for how the ghost forgetting
rule and the ghost sharing rule can be used to model aspects of the Rust
type system as formalized in RustBelt (Jung et al. 2018a). This provides an
argument for why the rules of SBSL could serve as a foundation for porting
the RustBelt safety proof to Stacked Borrows.

As discussed before, in the Rust type system, every reference has a lifetime:
the lifetime of a reference starts when it is created, and the lifetime ends
once the reference will never be used again. Similarly, in Stacked Borrows, a
reference can be used while its tag appears in the stack, and can no longer
be used after its tag has been removed from the stack. This similarity is
no coincidence, since Stacked Borrows was designed based on the Rust type
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system.
However, there is a difference between the Rust type system and Stacked

Borrows: in the Rust type system, the lifetime of a reference typically ends
before the item for that reference has been removed from the stack. This
distinction can also be seen in the ghost forgetting rule: the ghost forgetting
rule removes an item from the ghost stack before that item has been removed
from the physical stack. Hence, the ghost forgetting rule in SBSL is closely
related to the ending of a lifetime in the Rust type system.

A similar correspondence can be seen for the ghost sharing rule. In the
Rust type system (as formalized in RustBelt), there is also a typing rule
for converting mutable references into shared references. This conversion
can be applied at any point in the typing derivation: there is no explicit
program operation to perform the conversion. Similarly, the ghost sharing
rule is a logical operation that can be performed at any point in a Hoare
triple derivation, regardless of the program under consideration. Hence, ghost
sharing in SBSL is closely related to converting a mutable reference to a
shared reference in the Rust type system.

Based on these intuitions, we have performed some initial experiments
integrating SBSL with the parts of the RustBelt model responsible for mod-
eling references. In these experiments, we have proved some Hoare triples
relating reborrowing (deriving a new reference with a shorter lifetime, which
is tracked by the RustBelt type system) to retagging (a runtime operation in
Stacked Borrows) for mutable references, shared references, and raw pointers.
These Hoare triples make use of the lifetime logic (Jung et al. 2018a), which is
used in RustBelt to model lifetimes and references. We do not describe these
experiments in detail here, since understanding the lifetime logic requires
explaining more advanced concepts in Iris that we consider out of scope.
Further integration into RustBelt is left as future work.
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Chapter 5

Model

In Chapter 4, we have presented SBSL and demonstrated how it can be
used to reason about the behavior of some example λSBRust programs. In
this chapter, we give the Iris model of SBSL, describing how the rules of
SBSL are implemented using Iris. Section 5.1 presents the substack relation,
which is a slightly modified subsequence relation that is the main component
in relating physical stacks and ghost stacks. Section 5.2 sketches how the
rules of SBSL are shown to hold with respect to the operational semantics.
Section 5.3 presents in more detail how the Iris ghost state mechanism is used
to implement the ghost stack assertion and the set membership assertion.
Section 5.4 describes the Iris state interpretation for SBSL, which makes
the relation between the physical stacks and the ghost stacks fully precise.
Finally, in Section 5.5, we state the adequacy theorem for SBSL, which
implies that SBSL is sound, guaranteeing that programs verified using the
rules of SBSL (e.g., by deriving a Hoare triple {True} e {True}) do not have
undefined behavior.

5.1 Substack relation

In this section, we give a more precise account of how a ghost stack relates
to its corresponding physical stack. The intuitive definition that we gave for
ghost stacks is that they represent a subsequence of the corresponding physical
stack. However, this intuitive definition is not entirely precise, because it is
possible for the ghost stack to contain a GSharedRO item even if there are no
SharedRO items in the physical stack at all.

This discrepancy can be dealt with by considering a physical stack that
does not have any SharedRO items on top to have an empty set of SharedRO
items on top. That is, if the physical stack for a location is

[Unique(1),Unique(0)]
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then we can equivalently view this physical stack as

[SharedRO(∅),Unique(1),Unique(0)]

If we use the alternative representation where the physical stack always has
a group of SharedRO items on top, then we can properly view

[SharedRO(∅),Unique(0)]

as a “subsequence” of the physical stack

[Unique(1),Unique(0)]

despite the fact that that physical stack does not strictly speaking have any
SharedRO items. This explains why the ghost stack can have a GSharedRO
item despite the fact that the physical stack does not appear to have one. We
account for this discrepancy in the relation between physical stacks and ghost
stacks, although it could also be dealt with by always having an SharedRO
item (potentially empty) on top of the stack in the operational semantics. In
that case, there would be no need for a special subsequence relation.

Moreover, in the relation that relates physical stacks and ghost stacks we
also ensure that physical stacks are well-formed: they should consists of at
most one group of SharedRO items, followed by any number of Unique and
SharedRW items. It is easy to see that this property always holds for physical
stacks in Stacked Borrows: it is an invariant of the semantics. This fact is
also mentioned in the original paper on Stacked Borrows (Jung et al. 2020).
By building this invariant into the relation between physical stacks and ghost
stacks, we get stronger assumptions about what physical stacks look like,
which is useful in proving the SBSL rules. This well-formedness constraint
also affects the rules of SBSL: the ghost sharing rule SB-Share only allows
adding a GSharedRO item when the ghost stack does not already have one
on top. This constraint derives from the well-formedness constraint that a
physical stack can have at most one group of SharedRO items on top.

The well-formedness constraint on physical stacks and the handling of
SharedRO items are captured in the substack relation Ssub ≤ Sphys, which
is a slightly modified version of the subsequence relation. It states that
Ssub is a substack of Sphys, meaning it is a subsequence of the normalized
version of the physical stack Sphys. Normalizing the stack means adding a
SharedRO(∅) item if the stack does not already have one on top and verifying
that the stack is well-formed. This normalization step is expressed by the
StackNormalize Sphys Snorm relation, which relates physical stacks Sphys to
their normalized equivalents Snorm, adding a SharedRO(∅) item if necessary.
This relation uses StackIsTail to ensure that the tail of the stack consists
only of Unique and SharedRW items, thereby enforcing the well-formedness
constraint.
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Stack-Sub
StackNormalize Sphys Snorm Ssub is a subsequence of Snorm

Ssub ≤ Sphys

StackNormalize-Shared
StackIsTail ι

StackNormalize (SharedRO(T ) :: ι) (SharedRO(T ) :: ι)

StackNormalize-NoShared
StackIsTail ι

StackNormalize ι (SharedRO(∅) :: ι)

StackIsTail-Empty
StackIsTail []

StackIsTail-Cons
StackIsTailItem ι StackIsTail ι

StackIsTail (ι :: ι)

StackIsTailItem-Unique
StackIsTailItem (Unique(t))

StackIsTailItem-SharedRW
StackIsTailItem (SharedRW(⊥))

Figure 5.1: Rules for the substack relation.

This relation is the main component of the relation between physical
stacks and ghost stacks, although there is also an additional step to relate
SharedRO({t1, t2, . . . , tn}) items to the indirect representation GSharedRO(γ)
using set names. Also note that the substack relation is just an ordinary
mathematical relation: there are no Iris notions (such as propositions that
express resource ownership) involved.

5.2 Proving the SBSL rules

This section discusses how the rules for deriving Hoare triples such as H-SB-
Write are shown to be correct with respect to the operational semantics. We
rely on the intuitive definitions for the assertions here, although the model
behind the assertions is made more precise in Section 5.3 and Section 5.4.
For example, consider the following instance of the H-SB-Write rule:

{` 7→ 5 ∗ ` 7−→g [GUnique(1),GUnique(0)]}
〈`, 1〉 := 10

{v. (v = h) ∗ ` 7→ 10 ∗ ` 7−→g [GUnique(1),GUnique(0)]}

According to the intuitive definitions of Hoare triples and the various asser-
tions, this means that when ` holds the value 5 and has a physical stack that
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has [Unique(1),Unique(0)] as a substack, then 〈`, 1〉 := 10 does not cause unde-
fined behavior and (if it terminates) produces the value h, where afterwards
` holds the value 10 and the physical stack still has [Unique(1),Unique(0)] as
a substack.

The majority of the reasoning involved in proving such a Hoare triple
consists of ordinary mathematical reasoning about lists, subsequences, etc.,
with relatively little Iris-specific reasoning involved. The Iris-specific reasoning
only shows up in the Iris model for the ghost stack assertion and the set
membership assertion, for which we use the intuitive definitions for now.

For example, in order to show the above Hoare triple, the main part
of the proof (about the parts related to Stacked Borrows) has the follow-
ing structure: assuming that the precondition holds, i.e., assuming that
[Unique(1),Unique(0)] is a substack of the current physical stack Sphys for
location `, we have to show the following two parts:

• No undefined behavior occurs: Since the above Hoare triple is for a write
access, this boils down to showing that WriteSingle(t1, Sphys) = S′phys
for some S′phys (i.e., WriteSingle does not produce fail).

• Postcondition holds afterwards: We show that for all S′phys such that
WriteSingle(t1, Sphys) = S′phys, we have that [Unique(1),Unique(0)] is
still a substack of S′phys.

While proving this, we can assume that the current physical stack Sphys is
well-formed (given by the substack relation), and we have to show that the
next physical stack S′phys is still well-formed (by re-establishing the substack
relation).

In this case, we get that there is no undefined behavior from the fact that
any item that occurs in the substack also occurs in the physical stack (and
hence there is a write-granting item for tag 1 in the physical stack). The
postcondition follows from the fact that [Unique(1),Unique(0)] is preserved
as a substack when writing using tag 1.

Hoare triples involving GSharedRO(γ) items are proved in a similar way.
For example, if the precondition contains

` 7−→g [GSharedRO(γ),GUnique(0)] ∗ SBSetContains γ 1

then according to the intuitive definitions of the assertions we know that
the location ` has a physical stack that has [SharedRO(T ),Unique(0)] as a
substack, where T is some set of tags that contains the tag 1. Then, in order
to prove a Hoare triple such as

{` 7−→g [GSharedRO(γ),GUnique(0)] ∗ SBSetContains γ 1}
∗〈`, 1〉
{v. (v = h) ∗ ` 7−→g [GSharedRO(γ),GUnique(0)] ∗ SBSetContains γ 1}
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We show that since the tag 1 occurs in the ghost stack inside a GSharedRO,
there is a SharedRO(1) item in the physical stack, meaning read access is
allowed with tag 1. Moreover, the substack [SharedRO(T ),Unique(0)] is
preserved, since reading with a SharedRO item never alters the physical stack.

The view shifts for ghost forgetting and ghost sharing are also proved in
a way similar to Hoare triples, except there we have that the physical state
does not change. For example, for ghost forgetting, we have to show that
when Ssub is a substack of the physical stack Sphys, and S′sub is a subsequence
of Ssub, then S′sub is still a substack of Sphys. This follows directly from
transitivity of the subsequence relation.

5.3 Ghost resources

We now explain how the new assertions in SBSL, the ghost stack assertion
and the set membership assertion, are implemented in Iris. The techniques
described in this section are standard in Iris, and do not represent a novel
contribution.

We have seen that the ghost stack assertion ` 7−→g G keeps track of a ghost
stack G for each location `, and we have given the intuitive definition that
this ghost stack corresponds to a substack of the physical stack for location
`. Just like the points-to assertion, the ghost stack assertion behaves like a
resource, in the sense that it cannot be duplicated (we do not have P ⇒ P ∗P
for the ghost stack assertion), although it can be split into fractional parts.
Moreover, ghost stack assertions are “created” in the SBSL rule for allocation,
where they appear in the postcondition without appearing in the precondition,
and “destroyed” in the SBSL rule for deallocation. Moreover, ghost stacks
can also be “updated” or “changed” using the ghost forgetting rule and the
various SBSL rules for retagging.

Similarly, the set membership assertion SBSetContains γ t is another type
of resource. Unlike the ghost stack assertion, it can be freely duplicated.
Set membership assertions are “created” inside the SBSL retagging rule for
shared references, where they are used to indicate that a new element has
been added to a SharedRO group. There are no rules for “destroying” set
membership assertions, although it is possible to “forget” about them using
P ∗Q⇒ P .

Both of these assertions are implemented using Iris’ ghost state mechanism,
which allows defining custom types of logical resources with customizable
notions of ownership and sharing. In Iris, such custom types of resources are
defined by giving a resource algebra, which specifies how resources are owned
(e.g., whether they can be freely duplicated or split into fractions) and how
the resources can be changed. Iris provides several built-in constructions for
constructing resource algebras.

Since we have used only the standard resource algebra constructions of
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Iris for this thesis, we will simply give an axiomatic description (a “ghost
theory”) of the ghost resources involved in the ghost stack assertion and the
set membership assertion, and not describe in great detail how these “axioms”
are derived from the underlying resource algebras.

For the reader who is familiar with Iris, the resource algebra used for
the ghost stack assertion is Auth(Loc fin−⇀ Frac× Ag(GStack)) (essentially the
same resource algebra as used for the fractional points-to assertion). The
resource algebra for the set membership connective is Auth(℘fin(Tag)) where
℘fin(Tag) is the resource algebra of finite sets of tags with non-disjoint union.

Ghost stack assertions The ghost theory for ghost stack assertions is
shown in Fig. 5.2. Most of the rules are view shifts, which are the basic
mechanism used in Iris to describe changes (creation, destruction, updat-
ing) to ghost resources. Moreover, there is also an additional proposition
GStacksAuth Γ, that we have not introduced before. This is an authoritative
resource, whose purpose is to keep track of a (finite) mapping Γ that maps
each location ` to its current ghost stack G. Essentially, this makes it an
authority that has a global view of all of the ghost stacks, whereas each
individual ghost stack assertion only tracks the ghost stack of a single location.
The role of this authoritative resource will become more clear in Section 5.4,
where it is used for relating ghost stacks to physical stacks. None of the
resources in this section have any inherent relation to physical program states.

We have the rule GStacks-Exclusive, which states that there is only a
single authoritative resource: the authoritative resource cannot be duplicated.

Ghost stack assertions are created using GStacks-Alloc, which requires
the authoritative resource, and produces a ghost stack assertion ` 7−→g G,
as well as updating the mapping in the authoritative with the new ghost
stack for location `. Conversely, ghost stack assertions are destroyed using
GStacks-Free, which consumes the ghost stack assertion and removes the
ghost stack for location ` from the mapping Γ.

Ghost stacks are updated using GStacks-Set, which changes the ghost
stack in the assertion and also reflects the updated ghost stack in the mapping
Γ. Finally, we have a rule that says that the authoritative resource really
has authoritative knowledge of all of the ghost stack assertions: the rule
GStacks-Lookup says that if we have a ghost stack assertion for a location `,
then the ghost stack stored in the mapping Γ for that location matches the
one in the ghost stack assertion. Also note that looking up the current ghost
stack in the authoritative requires only fractional ownership of the ghost stack
connective, whereas changing the ghost stack requires exclusive ownership.
This is where the restrictions on modifying ghost stacks ultimately come
from.
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GStacks-Alloc
` /∈ dom(Γ)

GStacksAuth Γ V GStacksAuth (Γ[`←G]) ∗ ` 7−→g G

GStacks-Lookup
GStacksAuth Γ ∗ ` q7−→g G⇒ Γ(`) = G

GStacks-Set
GStacksAuth Γ ∗ ` 7−→g GV GStacksAuth (Γ

[
`←G′

]
) ∗ ` 7−→g G

′

GStacks-Free
GStacksAuth Γ ∗ ` 7−→g GV GStacksAuth (Γ \ `)

GStacks-Exclusive
GStacksAuth Γ ∗ GStacksAuth Γ′ ⇒ False

Figure 5.2: Ghost theory for ghost stacks assertions.

Set-Create
True V ∃γ. SetAuthγ T

Set-Extend
SetAuthγ T V SetAuthγ (T ∪ {t}) ∗ SBSetContains γ t

Set-Elem
SetAuthγ T ∗ SBSetContains γ t⇒ t ∈ T

Set-Exclusive
SetAuthγ T ∗ SetAuthγ T ⇒ False

SetContains-Dup
SBSetContains γ t⇒ SBSetContains γ t ∗ SBSetContains γ t

Figure 5.3: Ghost theory for set membership assertions.
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Set membership assertion Similarly, we now present the ghost theory
for the set membership assertion in Fig. 5.3. Recall the intuition for the
set membership connective SBSetContains γ t as meaning that t belongs to
the set named γ. But where is this underlying set with the name γ actually
“stored”? It is stored in another authoritative resource: SetAuthγ T with T a
set of tags. The purpose of this resource is to keep track of all of the elements
contained in the set named γ.

We can create new sets using Set-Create, which produces a new au-
thoritative set (with existentially-quantified name γ) initially holding the
chosen set T . We can extend this set using Set-Extend, which extends the
authoritative set and produces a SBSetContains γ t token for the newly-added
element t. Given a SBSetContains γ t assertion, we can conclude that it
actually belongs to the authoritative set for γ using Set-Elem. Finally, the
authoritative set itself is exclusive (cannot be duplicated) (Set-Exclusive),
and the SBSetContains γ t tokens are duplicable (SetContains-Dup).

Importantly, this set resource describes a set that can only accumulate
more elements: it can be extended with additional tags, which provides a
SBSetContains γ t token indicating the presence of the new element. There
are no rules for removing elements from a set resource. This corresponds
to the intuition that while a GSharedRO(γ) item occurs in the ghost stack,
threads should be restricted to merely adding more SharedRO items without
removing SharedRO items potentially added by other threads.

5.4 Linking physical stacks and ghost stacks

Now that we have described the ghost resources for ghost stack assertions and
set membership assertions, we have all the tools needed to describe precisely
how the physical stacks and the ghost stacks are related.

Iris provides a generic definition for Hoare triples (more precisely, it defines
weakest preconditions, which can be used to implement Hoare triples), that
is not specific to any particular programming language. In order to use this
generic definition for a particular programming language, one must provide a
state interpretation, which is an Iris predicate on physical program states that
must hold at every (reachable) program state. Recall that Iris propositions
do not just represent “knowledge” or “facts”, but can also describe ownership
of resources. Hence, the state interpretation can also own resources. The
state interpretation is typically used in Iris to describe how the physical state
of the program is related to the ghost state. We use it to relate each ghost
stack to its corresponding physical stack.

We only describe the part of the state interpretation that relates to
Stacked Borrows, leaving out the parts of the state interpretation used for
the points-to assertion. We build up to the state interpretation in several
steps.
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First, we have the Iris predicate that relates physical items like Unique(0)
to ghost items like GUnique(0):

SBRelItem(ι, g) =


ι = Unique(t) if g = GUnique(t)
ι = SharedRW(⊥) if g = GSharedRW(⊥)
∃T.ι = SharedRO(T ) ∗ SetAuthγ T if g = GSharedRO(γ)

This makes use of the higher-order nature of Iris, since it is a function
that produces an Iris proposition. We have that Unique and SharedRW
have to match exactly (up to different syntax), whereas for GSharedRO(γ)
items there should be an authoritative set with name γ holding the tags T
that appear in the physical SharedRO item. This relation is what links the
indirect representation using set names to the sets in the physical stacks: it
is ultimately what allows us to conclude from a set membership connective
SBSetContains γ t that the tag t actually appears in the physical stack in a
SharedRO item (using the Set-Elem rule from Section 5.3).

This relation on individual items can be lifted pointwise to become a
relation on stacks (lists of items):

SBRelItems(S,G) = ∗
1≤i≤|S|=|G|

SBRelItem(Si, Gi)

where Ai denotes the i-th element of the list A and |A| denotes the length of
the list A.

Based on this, we can now give the relation between a physical stack
and its corresponding ghost stack, which makes use of the substack relation
defined in Section 5.1:

SBRelStack(Sphys, G) = ∃Ssub. (Ssub ≤ Sphys) ∗ SBRelItems(Ssub, G)

which simply says that Sphys has a substack Ssub, which is related pointwise
using SBRelItems to G.

Again, we can lift this relation (between physical stacks and ghost stacks)
pointwise to become a relation between mappings from locations to physical
stacks and mappings from locations to ghost stacks:

SBRelStacks(ξ,Γ) = ∗
`∈dom(ξ)=dom(Γ)

SBRelStack(ξ(`),Γ(`))

Finally, we use this to give the state interpretation for the part of the
state that relates to Stacked Borrows:

SBInterp(ξ) = ∃Γ. GStacksAuth Γ ∗ SBRelStacks(ξ,Γ)

This is an Iris predicate on a part of the physical program state, which we use
as part of the state interpretation in the generic definition of weakest precon-
ditions (which can be used to define Hoare triples). This Iris predicate should
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hold at every reachable program state, and it contains the GStacksAuth Γ
authoritative resource that stores the mapping Γ that maps each location to
its current ghost stack. The SBRelStacks predicate ensures that each ghost
stack is indeed a substack of its corresponding physical stack.

While proving a Hoare triple, we are assumed to allow that the state
interpretation holds in the initial state (and hence, we can also use any re-
sources occurring in the state interpretation, such as the various authoritative
resources, to conclude what the physical stacks look like based on ghost
stacks), and we have to re-establish that the state interpretation still holds
after taking steps (and we are allowed to apply the view shifts in Section 5.3
to manipulate ghost resources to prove this).

There is an additional technical detail that we mention for readers familiar
with Iris. For technical reasons, it is normally only possible to access the
ghost resources inside the state interpretation while proving a Hoare triple,
and not while proving a view shift such as the ghost forgetting rule or the
ghost sharing rule (which also involve changing ghost stacks, and therefore
requires the authoritative resource that holds the mapping with all of the
ghost stacks). Hence, we have wrapped the “state interpretation” in an Iris
invariant and linked this invariant to the physical program state in the actual
state interpretation using another authoritative resource, a standard pattern
in Iris.

5.5 Adequacy

In this section, we state the adequacy theorem for SBSL, which implies that
SBSL guarantees the absence of undefined behavior.

Theorem (Adequacy of SBSL). Suppose ϕ is a first-order predicate on
values (i.e., not an Iris predicate, but an ordinary mathematical statement)
and suppose that {True} e {v. ϕ(v)} is derivable in SBSL. Then we have the
following:

• No undefined behavior: for any machine configuration reachable in the
execution of e, neither e itself nor any of the threads ei created by it are
stuck (i.e., if they are not values, they can take a step).

• Postcondition: in any machine state reachable in the execution of e
where e has reduced to a value v, ϕ(v) holds.

The adequacy theorem follows directly from the Iris adequacy theorem,
which is stated in terms of the generic definition of Hoare triples (defined in
terms of weakest preconditions) in Iris.

Adequacy implies soundness of the logic: if we derive a Hoare triple
{True} e {True}, then e is safe to execute: it does not cause undefined
behavior.
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Chapter 6

Related work

RustBelt Relaxed The RustBelt Relaxed work (Dang et al. 2020) develops
another extension of RustBelt to consider a different operational semantics
compared to that used in the original RustBelt work (Jung et al. 2018a).
Specifically, RustBelt Relaxed considers an operational semantics with a
more relaxed memory model, in which certain memory operations provide
weaker (relaxed) guarantees about the order in which different threads observe
changes to the memory. Such operations are typically cheaper to implement on
modern multicore processors compared to sequentially consistent operations,
which require that changes to the memory are instantaneously visible to all
threads in a single, global order.

The general approach of RustBelt Relaxed is similar to that of SBSL, in the
sense that RustBelt Relaxed also replaces the program logic on top of which
RustBelt is built. RustBelt Relaxed also introduces some important changes
to the parts of RustBelt built on top of the program logic. The program logic
used by RustBelt Relaxed is an extended version of iGPS (Kaiser et al. 2017).
RustBelt Relaxed goes beyond this thesis by re-establishing the RustBelt
safety proof with respect to a relaxed memory model.

Logical abstractions on top of physical state The general idea of hav-
ing ghost state or “logical state” that is more abstract than the underlying
physical state is not new. Dinsdale-Young et al. (2010a) extend separation
logic with the notion of concurrent abstract predicates, which allows reasoning
about a shared, concurrent data structure using an abstract specification
that provides the illusion of a data structure consisting of disjoint resources,
despite the fact that the actual, concrete implementation of the data struc-
ture might not be represented in a disjoint way in memory. This illusion
of disjoint resources also referred to as fiction of disjointness or fictional
separation (Dinsdale-Young et al. 2010a,b).

In a somewhat similar way, our notion of ghost stacks in SBSL provides the
illusion that operations such as reading, writing, and creating shared references
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do not change any state (because ghost stacks remains unchanged), despite
the fact that those operations might modify the physical state. SBSL achieves
this by decomposing the changes to physical stacks into separate, orthogonal
operations, implemented by the ghost forgetting and ghost sharing rules.
This means that SBSL essentially provides a fiction of separate operations
for Stacked Borrows, because SBSL decomposes certain physical operations
into several logical operations. The main novelty in SBSL is not the concept
of logical operations itself, but the particular way in which the operations of
Stacked Borrows are decomposed.

The notion of abstract “logical state” (of which SBSL ghost stacks are a par-
ticular example) appears in a general form in the Views Framework (Dinsdale-
Young et al. 2013), which describes a general framework for defining logical
resources and relating those to the physical state. The general Iris (Jung et al.
2016, 2018b, 2015; Krebbers et al. 2017a) strategy for defining a program
logic for a new language by means of a state interpretation (the strategy
followed for SBSL) is heavily inspired by this. Various more expressive forms
of logical state have also been introduced in the HOCAP (Svendsen et al.
2013) and iCAP (Svendsen et al. 2014) logics, of which Iris is a modern
descendant. SBSL itself does not make use of these more expressive forms of
logical state, but RustBelt (Jung et al. 2018a) does rely on them.

Program logics for undefined behavior Various program logics have
been developed for programming languages that have more sophisticated
forms of undefined behavior. The λRust language developed for RustBelt (Jung
et al. 2018a) has a form of undefined behavior that occurs when a program
contains a data race, which describes the situation where two threads attempt
to access the same location and at least one threads writes to the location.
Data races are only undefined behavior when they occur using non-atomic
accesses, which we have not included in the λRust fragment described in this
thesis. The operational semantics for λRust includes a “data race detector”
that detects when a data race occurs and causes the program to become stuck
(i.e., the program has undefined behavior) when this occurs. The program
logic for RustBelt (Jung et al. 2018a) accounts for this form of undefined
behavior using the rules of its program logic (and SBSL inherits this from
the λRust program logic).

In the context of undefined behavior related to pointer aliasing, Krebbers
(2015) has developed a separation logic that accounts for aliasing-related
undefined behavior in the C programming language. In C, it is considered
undefined behavior to access, say, a variable of type int (integer) through a
pointer of type float (floating-point number). This type-based restriction
on pointer aliasing is called the strict aliasing rule. This restriction allows C
compilers to make stronger assumptions about pointer aliasing and in turn
enables better optimizations. This makes the goal of the strict aliasing rule
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similar to that of Stacked Borrows, although Stacked Borrows is based on
Rust’s borrowing and lifetimes, which do not exist in C. The logic developed
by Krebbers accounts for strict aliasing, although it does not have a concept
similar to ghost stacks, and instead the “logical state” is very similar to the
underlying physical state.
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Chapter 7

Conclusion

We have presented SBSL, a separation logic for Stacked Borrows. We have
presented several examples, showing how this logic can be applied to reason
about patterns commonly appearing in Rust code. Moreover, we show that the
logic is better able to abstract away implementation details and reason about
concurrency compared to a naive approach. We have fully formalized SBSL
using Iris inside the Coq proof assistant, and we have provided a machine-
checked proof of its soundness with respect to the operational semantics.

7.1 Future work

Scaling up to the full Stacked Borrows semantics The current version
of SBSL only considers a simplified version of the full Stacked Borrows
semantics presented in (Jung et al. 2020). The full Stacked Borrows semantics
also considers locations with interior mutability. For such locations, it is
allowed to perform writes through a shared references &T, which normally
provide only immutable access. Interior mutability is important to implement
libraries such as Mutex, which provides multiple threads with the ability to
access the same location for reading and writing by using a lock to ensure
that only one thread at a time has access to the location. Stacked Borrows
supports interior mutability using an additional type of stack item that we
have not considered. The basic principles of adding and removing items on
the stack remain the same. We have developed a prototype implementation
in Coq of a version of SBSL that supports interior mutability. Supporting
the original formulation of the semantics interior mutability turned out to
be difficult, and therefore we considered a slightly altered version of the
semantics. Due to lack of space, we do not describe this here. As future
work, this prototype implementation could be extended and also be used to
guide potential changes to the Stacked Borrows semantics to make it easier
to reason about.

Moreover, the full Stacked Borrows version also contains protectors, which
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are special markers that can be added to stack items to indicate that they
should not be removed while a certain function call is still ongoing. The
motivation for protectors is to provide additional optimization potential.
Protectors are a mostly orthogonal extension to the Stacked Borrows semantics
in this thesis. An interesting future direction would therefore be to add
support for protectors to the program logic.

Integrating SBSL further into RustBelt (Relaxed) The other main
direction for future work is to integrate SBSL further into RustBelt (Jung et
al. 2018a) (and potentially RustBelt Relaxed (Dang et al. 2020)). Ultimately,
this could be used to demonstrate that Rust’s safety guarantees still hold
in the presence of the additional type of undefined behavior that Stacked
Borrows introduces into the language. We have already carried out some
initial experiments in updating some of the core parts of RustBelt, namely
those related to modeling references and lifetimes. Those experiments, which
are part of the Coq development for SBSL, seem to suggest that SBSL might
provide a suitable basis for an updated version of RustBelt, although further
research is required to perform a full evaluation of its suitability.
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