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Dr. Katrin Schulz



Abstract

The aim of this work is to find an answer to the following questions: is
it possible to develop a truthmaker semantics for modal statements? And
how? The answer to the first question is assumed to be positive and we will
focus on seeking the answer to the second one. We believe that the truth-
maker semantic account originally developed by Johannes Korbmacher in
some unpublished work constitutes a satisfactory answer to the second
question. So, we will prove some results on the connections between Ko-
rbmacher’s account and already existing logics and we will also extend the
framework and the related results to the first-order case. Moreover, we will
engage in a philosophical discussion about the nature of truthmakers of
modal statements and the way we should conceive of it in the light of this
novel modal truthmaker approach. In the end, we will discuss the details
of a possible application of the new semantic framework analysed in the
thesis.
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Introduction

Truthmaker semantics is a novel formal semantic framework which has been
recently developed in a series of publications ((Fine, forthcoming), (Fine, 2017),
(Fine, 2016)) by Kit Fine starting from the work done by Van Fraassen’s in (Van
Fraassen, 1969); it is based upon the notion of truthmaking, that is, as Fine’s
points out,

“The idea of something on the side of the world - a fact, perhaps, a
state of affairs- verifying, or making true, something on the side of
the language or thought - a statement, perhaps, or a proposition”
(see (Fine, 2017)).

That something on the side of the world which is responsible for the truth of a
certain proposition A is called a truthmaker of A. Intuitively, there are different
ways a proposition can be made true by a fact in the world; for instance, assume
that now that it is raining and windy in the city of Amsterdam. We would say
that the proposition “it is raining in Amsterdam” (B, for short) is indeed true.
Furthermore, according to the above idea of truthmaking, we would say that B
is made true by the fact that it is raining in Amsterdam as well as it is verified by
the more complex fact that it is raining and windy in Amsterdam. The way the
former fact makes B true is different from the way the latter fact makes B true:
the fact that it is raining and windy in Amsterdam contains something, namely
the sub-fact that it is windy in Amsterdam, which is not relevant for the truth
of B.

From this intuitive observations, we can distinguish between (at least) two
ways of truthmaking, which we will indicate respectively “exact” and “inexact”
one. Fine’s truthmaker semantics aims to formally describe the former way of
truthmaking, namely, it is concerned with providing the conditions for a fact
(something on the side of the world) to be an exact truthmaker of a sentence.
Let us refer to these conditions as (exact) truthmaker conditions and let us call
the conditions for a fact to be an exact truthmaker of A “exact truthmaker
conditions for A”. Now, we can provide more explicitly the definition of an
exact truthmaker: an exact truthmaker of a sentence A is defined as that fact in
the world which is responsible and wholly relevant for the truth of A (see (Fine,
2017)). The key to understanding the primitive idea of exact truthmaking
is in the whole relevance: the fact that it is raining in Amsterdam is an exact
truthmaker of sentence B : “it is raining in Amsterdam” as it contains nothing
irrelevant for the truth of B. In terms of exact truthmaking, it is possible to
define the notion of inexact truthmaker: a fact is an inexact truthmaker of a
sentence A if and only if it contains, among its parts, an exact truthmaker of
A. In the light of this definition, we can see how the fact that it is raining and
windy in Amsterdam is an inexact truthmaker for the sentence B.

All these ideas have been formally worked out by Kit Fine to build the
framework of truthmaker semantics. However, a modal truthmaker semantics
to uniformly account for the truthmaker conditions of statements like “neces-
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sarily A” or “possibly A”, is still lacking in Fine’s framework.

The objective of this thesis is to provide a satisfactory answer to the following
two questions: is it possible to develop a truthmaker semantics to account for the
exact truthmaker conditions for modal statements? And how?

We assume the answer to the first question to be positive: yes, it is possible to
account for the (exact) truthmaker conditions for modal statements. Hence, the
focus of this work will be mostly on how to construct such semantic framework.

The structure of the present work is the following:

• In the first chapter, I will introduce a formal modal truthmaker seman-
tics based on the ideas of Van Fraassen and some unpublished work of
Johannes Korbmacher; and I will extend it to the first-order case.

• The second chapter is focused on developing some leading ideas for a
philosophical account of truthmakers of modal truths which is compatible
with the intuitions behind the semantics introduced in the first chapter.
The general question I will try to address is: what is a(n) (exact) truthmaker
of a modal statement (like “necessarily p” or “possibly p”)?

• In the third and last chapter I will try to analyze a possible application of
the semantic framework developed in the thesis.
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1 Formal Framework

1.1 Background

1.1.1 Fine’s Framework

In some recent papers ((Fine, forthcoming), (Fine, 2017), (Fine, 2016)), Kit Fine
has developed, starting from the work done by Van Fraassen in (Van Fraassen,
1969), a new formal semantic framework based on the idea of truthmaking
introduced above.

In the following presentation of Fine’s work, we use letters A,B,C... to
denote formulas and we stick to a language consisting of propositional variables
p, q, r..., logical constants “¬,∧,∨” and auxiliary symbols “(,)”; a well-formed
formula in this language is defined as:

A := p | ¬B | B ∨ C |B ∧ C

Moreover, we assume some familiarity of the reader with orders and basic
definitions such as those of greatest lower bound and least upper bound.

A state model is a tupleM = 〈S,v, |.|+, |.|−〉with:

• 〈S,v〉 a state space where

– S non-empty set of states/facts;

– v (parthood relation) over S such that:

∗ for any s ∈ S, s v s (reflexivity);
∗ for any s, t,u ∈ S, if s v t and t v u, then s v u (transitivity);
∗ for any s, t ∈ S, if s v t and t v s then t = s (anti-symmetry);
∗ S is complete, namely every T ⊆ S has a least upper bound⊔

T ∈ S (s t t denotes the fusion
⊔
{s, t} of s and t);

∗
⊔
∅ = 0 and

⊔
∅ ∈ S is the null element such that 0 v s for any

s ∈ S;

• |.|+, |.|− : Lprop → P(S) are valuation functions such that

– |p|+ ⊆ S is the set of exact truthmakers of p;

– |p|− ⊆ S is the set of exact falsemakers of p.

We define a relation of overlapping between states in a modelM: for all states
s, t ∈ S, we say that s overlaps with t (Ost) if and only if there is a non-null state
u inM such that u v s and u v t.

The set S has to be understood as the facts on the side of the world among
which we seek for truthmakers for propositions. The relation of composition
among facts (v) amount to the relation of parthood: for instance the fact that it
is raining in Amsterdam (s) will be part of the fact that it is raining and windy
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in Amsterdam; and this latter fact will be conceived as the fusion (s t t) of the
fact that it is raining in Amsterdam (s) and it is windy in Amsterdam (t).

The null fact “0” is understood as the fact which is part of every fact; in-
tuitively we can understand “0” in analogy with the empty set: 0 is the fact
that doesn’t require anything in order to obtain; it is the fact which stands for
nothing, in a suggestive slogan: it is the fact of no fact.

Given a state modelM = 〈S,v, |.|+, |.|−〉 we recursively define the conditions
for a formula to be exactly verified () or exactly falsified ( ) by a state s ∈ S:

s  p ⇔ s ∈ |p|+

s p ⇔ s ∈ |p|−

s  ¬A ⇔ s A
s ¬A ⇔ s  A
s  A ∧ B ⇔ for some t, u (t  A,u  B and s = t t u)
s A ∧ B ⇔ s A or s B
s  A ∨ B ⇔ s  A or s  B
s A ∨ B ⇔ for some t, u (t A, u B and s = t t u)

where s  A stands for “s is an exact truthmaker of A”. More informally, a state
is a(n) (exact) truthmaker of a disjunction A ∨ B if and only if it is a(n) (exact)
truthmaker of one of its disjuncts; and a state is a(n) (exact) truthmaker of a
conjunction A∧B if and only if it is the fusion of (exact) truthmakers of both its
conjuncts.

We are now ready to provide the following definitions:

Definition 1 Exact Consequence: for any formula A, B, A exactly entails B (A e B)
if and only if for any state modelM and any s inM,M, s  A impliesM, s  B.

Definition 2 Inexact Verification: Given a state modelM = 〈S,v, |.|+, |.|−〉, for any
s ∈ S, we say that s inexactly verifies a formula A if s contains and exact verifier of
A; more formally s � A iff for some t v s, t  A.

Definition 3 Inexact Consequence: for any formula A, B, A inexactly entails B
(A �i B) if and only if for any state model M and any s in M, M, s � A implies
M, s � B.

We refer to the above semantic framework as TS.

At this point a question arises: what kind of entailment are the above notions
modeling? How should we understand exact and inexact consequences?

The logic of exact consequence has been the subject of investigation of a
recent paper by Kit Fine and Mark Jago (Fine & Jago, 2017) but its applica-
tions still have to be fully explored. On the other hand, the notion of inexact
consequence can be understood in terms of already known notions of logical
consequence. In particular, it has been shown, originally by Van Fraassen in
(Van Fraassen, 1969) and more recently by Fine in (Fine, 2016), that the notion of
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inexact consequence can be characterized via first-degree entailment. Before mak-
ing explicit this characterization we need to briefly introduce the non-classical
logic of first-degree entailment (FDE).

The language of FDE consists of propositional variables p, q, r...; logical
connectives “¬,∧,∨”; a well-formed formula in the language is defined as

A := p | ¬B | B ∨ C |B ∧ C

and the classical implication and bi-conditional are standardly defined: A →
B := ¬A ∨ B; A↔ B := (A→ B) ∧ (B→ A).

The logic of FDE can be presented from a syntactical perspective as it is
originally done in (Anderson & Belnap, 1962) as the logic of a certain class of
entailments, called first-degree entailments. In (Anderson & Belnap, 1962) a an
entailment A⇒ B is said to be a valid first-degree entailment if and only if A⇒ B
is a tautological entailment; and an entailment A⇒ B is tautological if and only
if it can be put in a normal form A1 ∨ A2 ∨ ... ∨ Am ⇒ B1 ∧ B2 ∧ ... ∧ Bn where
each A j is in conjunction of atoms and each Bi is a conjunction of atoms and for
all A j ⇒ Bi, A j and Bi share an atom (in this context an atom is a propositional
variable p or its negated version ¬p).

More intuitively, the logic FDE can be characterized, from a semantic per-
spective, as it is done in (Belnap, 1977) and (Priest, 2008), as a four-valued logic
in which the notion of logical consequence amounts preservation of truth under
four-valued semantics.

The aim of FDE logic is to account for a non-classical notion of entailment
which does not validate the so-called “paradoxes” of strict implication, such as
(A ∧ ¬A) → B and A → (B ∨ ¬B); indeed (A ∧ ¬A) ⇒ B and A ⇒ (B ∨ ¬B) are
not valid first-degree entailments.

In the following, we will provide a more detailed and systematic presentation
of a four-valued semantics of FDE.

An FDE four-valued model is a tuple M = 〈SL, v〉where:

• SL = {V,D, f¬, f∨, f∧}, generally we indicate fc ∈ { f¬, f∨, f∧}, with

– V = {1, b,n, 0} is the set of the four values where 1 stands for only
true, b for both true and false, n for neither true nor false and 0 for only
false;

– D = {1, b} ⊆ V;

– f¬ : V → V;

– f∧ : V × V → V;

– f∨ : V × V → V;

– v : Lprop → V, namely it is an assignment mapping any propositional
letter to a truth value v(p) ∈ V.

The set of truth values V comes with a partial ordering, hence we would have
V = 〈V,≤〉 such that 0 is the bottom element, namely 1 = LubV, 1 is the top

8



element, namely 0 = GlbV (where LubX and GlbX stand rispectively for the least
upper bound and the greatest lower bound of a set X), b and n are incomparable to
each other and 0 ≤ b ≤ 1 and 0 ≤ n ≤ 1. In a picture,V is the lattice:

1

b n

0

where the arrow stands for the relation ≤.
We can now make explicit the role played by fc: f∧, f∨ are respectively the

meet and the join operation on the lattice V, namely f∧(x, y) and f∨(x, y) are
respectively the greatest lower bound (Glb) and the least upper bound (Lub) of
x and y, and f¬ maps 1 to 0, 0 to 1 and each of b and n to itself.
For any formula A, its truth value (v(A) ∈ V)1 is recursively defined in the
following way:

• v(¬A) = f¬(v(A));

• v(A ∧ B) = f∧(v(A), v(B));

• v(A ∨ B) = f∨(v(A), v(B));

We can now define the notion of logical consequence (or FDE entailment)
under this semantics:

Definition 4 Γ |=4
KFDE

B if and only if for every four-valued model 〈SL, v〉, if v(A) ∈ D
for any A ∈ Γ, then v(B) ∈ D.

Now, we can make explicit the characterization of inexact consequence in
terms of FDE entailment; we refer to the following theorem as Van Fraassen’s
theorem:

Theorem 1 A �i B if and only if A |=FDE B

Proof: see (Van Fraassen, 1969) or (Fine, 2016).

1v(A) is an abuse meant to simplify the notation.
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1.1.2 Van Fraassen-Korbmacher’s work

The original idea of a truthmaker semantics for modal statements can be found
in (Van Fraassen, 1969); at the end of his paper form 1969, Van Fraassen men-
tions some intuitions to expand its semantics of facts to more complex modal
statements. He claims:

“The facts that make Necessarily A true would then be the conjunc-
tions of facts that make A true in the various possible worlds; for
Necessarily A is true if and only if A is true in world α1, and in world
α2 and so forth”

In the light of this, it seems that the truthmaker conditions of statement of the
form “necessarily A” (�A, for short) must, in some sense, resemble those of a
conjunction: the conjunctive fact that it is raining in Amsterdam and it is windy
in Amsterdam is an exact truthmaker of the sentence “it is raining and windy in
Amsterdam”, analogously the conjunctive fact making A true in world α1 and
A true in world α2 and... should be an exact truthmaker of “necessarily A”. At
this point some questions arise: how do we formally account for modalities?
How should we understand the notion of making a sentence true in a world?

The answer to the first question is straightforward: modalities should be un-
derstood as quantification over possible accessible worlds and this presumably
is also what Van Fraassen had in mind.

The answer to the second question comes from an idea of Johanness Korb-
macher (see (Korbmacher, 2016)): the truthmaking relation must be relativized
to possible worlds. This move seems rather natural: just as we evaluate in
classical modal logic the truth of a sentence with respect to a world, we can
relativize the notion of (exact) truthmaking to possible worlds. A sentence
A, then, would be made true (or false) with respect to a possible world. For
instance, consider the actual world w@ where it is raining in Amsterdam and
a world w in which it is not raining in Amsterdam: clearly, the sentence “it is
raining in Amsterdam” is made true at w@ but not in w. What is left now it
to establish the truthmaker conditions for any sentence in the light of this new
notion.

For non-modal statements, it doesn’t seem very problematic, we just take
Fine’s truthmaker conditions and relativize them to possible worlds: for in-
stance, an exact truthmaker of A ∧ B at a world w would be the fusion of an
exact truthmaker of A at w and an exact truthmaker of B at w. For a modal
statement like �A, Korbmacher, in (Korbmacher, 2016), provides the following
truthmaker conditions in the light of what Van Fraassen claims in his 1969
paper: take w1, w2,... as the worlds accessible from w,

an exact truthmaker s of�A at w is the fusion of an exact truthmaker
s1 of A at w1 and an exact truthmaker s2 of A at w2 and...

namely s = s1 t s2 t .... The similarity of these truthmaker conditions with
Fine’s ones for conjunctions is evident. A statement like “possibly A” (♦A) can
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be understood, instead, as a long disjunction, in the sense that a fact that makes
“possibly A” true would then be the fact that makes A true at world w1 or A
true at world w2 or... The truthmaker conditions for ♦A would, then, intuitively
resemble Fine’s ones for disjunctions; thus Korbmacher provides the following
truthmaker conditions for ♦A: take w1, w2,... as the worlds accessible from w,

an exact truthmaker s of ♦A at w is an exact truthmaker of A at w1
or an exact truthmaker of A at w2 or...

In the next section we will present more systematically Korbmacher’s formal
framework arising from these ideas.
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1.2 Modal Truthmaker Semantics for Exact Verification

We will now formally introduce Korbmacher’s semantic framework. We start
with the language consisting of: propositional variables p, q, r...; logical con-
stants “¬,∨,∧”; modal operators �, ♦; and auxiliary symbols “(, )”. We use
letters A,B,C... to denote formulas; a (well-formed) formula in this language is
defined as

A ::= p | ¬B | B ∧ C | B ∨ C | ♦B | �B

An E-Kripke model is a tuple E = 〈G, v+, v−〉where:

• G = 〈F ,S〉with

– F = 〈W,R〉 is a Kripke frame;

– S = 〈S,v〉 is a state space;

• v+, v− : W × Lprop → P(S) are assignments such that

– v+
w(p) ⊆ S is the set of states making p true at w;

– v−w(p) ⊆ S is the set of states making p false at w.

Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉, we recursively define the con-
ditions for a formula to be verified or falsified at a world w by a state s:

s w p ⇔ s ∈ v+
w(p)

s w p ⇔ s ∈ v−w(p)
s w ¬A ⇔ s w A
s w ¬A ⇔ s w A
s w A ∧ B ⇔ for some t, u (t w A,u w B and s = t t u)
s w A ∧ B ⇔ s w A or s w B
s w A ∨ B ⇔ s w A or s w B
s w A ∨ B ⇔ for some t, u (t w A,u w B and s = t t u)
s w �A ⇔ there is a function f : W → S and for any v such that wRv, f (v) v A

and s =
⊔

(
⋃

wRv{ f (v)})
s w �A ⇔ for some v such that wRv, s v A
s w ♦A ⇔ for some v such that wRv, s v A
s w ♦A ⇔ there is a function f : W → S and for any v such that wRv, f (v) v A

and s =
⊔

(
⋃

wRv{ f (v)})

We can now see more formally that s is an exact truthmaker of �A at w if and
only if it is the fusion of an exact truthmaker of A at w1 and an exact truthmaker
of A at w2 and so forth for all the accessible worlds w1 and w1 and... form w;
dually, s is an exact truthmaker of ♦A at w if and only if s is an exact truthmaker
of A at w1 or an exact truthmaker of A at w2 and so forth.
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For any formula A, we define with respect to an E its the positive meaning at a
world w, [A]+

w, and its negative meaning at a world w [A]−w, as:

[A]+
w = {s ∈ S : s w A}

[A]−w = {s ∈ S : s w A}

We can now provide the conditions for a formula to be made true or false at a
world w ∈W:

w |= A ⇔ [A]+
w , ∅

w |=A ⇔ [A]−w , ∅

namely, w makes A true (false) if there is some possible state that makes A true
(false) with respect to w.

Definition 5 Modal Exact Verification: Given an E-Kripke Model E = 〈W,R,S,v
, v+, v−〉, for any s ∈ S and any w ∈ W, we say that s exactly verifies a formula A at
w if s w A.

Definition 6 Modal Exact Consequence: for any formula A, B, A Ki B iff for any
E-Kripke model E and any s and w in E, s w A, the impliesM, s w B.

Definition 7 Modal Inexact Verification: Given an E-Kripke ModelE = 〈W,R,S,v
, v+, v−〉, for any s ∈ S and any w ∈W, we say that s inexactly verifies (�) a formula
A at w if s contains and exact verifier of A at w; more formally s �w A iff for some
t v s, t w A.

Definition 8 Modal Inexact Consequence: for any formula A, B, A �Ki B iff for
any E-Kripke model E and any s and w in E, s �w A, the impliesM, s �w B.

We refer to the above semantic framework as TS�.

1.3 Modal First-Degree and Modal Truthmaker Semantics

In this section, we will explore the connection between a modal extension of
FDE (denoted by KFDE) developed by Priest in (Priest, 2008), and Korbmacher’s
TS�.

The language of the KFDE consists of the language of FDE plus modal op-
erators �, ♦. As before, we use A,B,C.. to refer to formulas. A (well-formed)
formula in the language of KFDE is defined as

A ::= p | ¬B | B ∧ C | B ∨ C | ♦B | �B

At first, we will introduce a possible worlds semantics for KFDE sketched in
(Omori, 2017). A KFDE-Kripke model is a tupleM = 〈W,R, a+, a−〉 such that

13



• W is a non-empy set of worlds;

• R : W ×W is an accessibility relation;

• a+, a− : Lprop → P(W) are valuation functions such that

- a+(p) ⊆W is the set of world where p is true;

- a−(p) ⊆W is the set of world where p is false.

Given a KFDE-Kripke modelM = 〈W,R, a+, a−〉 we recursively define the con-
ditions for a formula to be made true at a world w (|=) and false at a world w ( |=):

w |= p ⇔ w ∈ a+(p)
w |=p ⇔ w ∈ a−(p)
w |= ¬A ⇔ w |=A
w |=¬A ⇔ w |= A
w |= A ∧ B ⇔ w |= A and w |= B
w |=A ∧ B ⇔ w |=A or w |=B
w |= A ∨ B ⇔ w |= A or w |= B
w |=A ∨ B ⇔ w |=A and w |=B
w |= �A ⇔ for any v such that wRv v |= A
w |=�A ⇔ for some v such that wRv v |=A
w |= ♦A ⇔ for some v such that wRv v |= A
w |=♦A ⇔ for any v such that wRv v |=A

The following definition naturally follows:

Definition 9 KFDE Consequence: for any formula B and any set of formula Γ,
Γ |=KFDE B iff for any KFDE-Kripke modelM and any w inM, M,w |=

∧
Γ implies

M,w |= B.

For the sake of completeness, we will introduce Priest’s four-valued semantics
for KFDE (see (Priest, 2008)) and show that the above semantics for KFDE is
equivalent to Priest’s one.

A KFDE four-valued model is a tuple F = 〈W,R,SL, v〉where:

• W is a non-empty set of worlds;

• R ⊆W × X, is an accessibility relation on W;

• SL is defined as in the non-modal case

• vw : Lprop×W → V, namely it is an assignment mapping any propositional
letter and a world to a truth value vw(p) ∈ V.

For any formula A, its truth value at a world w (vw(A) ∈ V) is recursively defined
in the following way:

• vw(¬A) = f¬(vw(A));
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• vw(A ∧ B) = f∧(vw(A), vw(B));

• vw(A ∨ B) = f∨(vw(A), vw(B));

• vw(�A) = Glb{vt(A) : wRt};

• vw(♦A) = Lub{vt(A) : wRt}

Notice that by definition of Glb and Lub, Glb∅ = 1 and Lub∅ = 0 since the set
of lower bounds and upper bound of ∅ is the whole V. This guarantees that
when there is no accessible worlds from w, vw(�A) = 1 and vw(♦A) = 0.

We can now define KFDE entailment under this semantics:

Definition 10 Γ |=4
KFDE

B if and only if for every four-valued model 〈W,R,SL, v〉 and
any w ∈W, if vw(B) ∈ D for any B ∈ Γ, then vw(B) ∈ D.

Now, it is possible to prove that

Theorem 2 Γ |=4
KFDE

B if and only if Γ |=KFDE B.

Proof: see appendix A.1

1.3.1 Characterizations

In this section, we will go through Korbmacher’s proof of a modal extension of
Van Fraassen’s Theorem.

Johannes Korbmacher has defined new operations to transform each E-
Kripke model into an ordinary KFDE model and vice versa by preserving truth
with respect to possible worlds; in the following we will introduce such defini-
tions and explore their properties.

Definition 11 Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 we define its ordi-
narification as O(E) = 〈W,R, a+, a−〉 where W and R are the same as in E and

• a+, a− : Lprop → P(W)

- a+(p) = {w ∈W : v+
w(p) , ∅}

- a−(p) = {w ∈W : v−w(p) , ∅}

Notice that, by construction, O(E) is an ordinary possible-worlds model of KFDE
and that truth at a world w of a formula is preserved under ordinarification:

Lemma 1 For any E-Kripke model E = 〈W,R,S,v, v+, v−〉, given its ordinarification
O(E), for any formula A and any w ∈W,
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[E,w |= A if and only if O(E),w |= A] and [E,w |=A if and only if O(E),w |=A]

Proof: see appendix A.2.

The dual operation to build an E-Kripke model out of a Kripke KFDE model is:

Definition 12 Given a Kripke modelM = 〈W,R, a+, a−〉 we define its exactification
as E(M) = 〈W,R,S,v, v+, v−〉 where W and R are the same as inM

• S = P(W × (Lprop ∪ Lprop)) where Lprop = {¬p : p ∈ Lprop}

• v is the relation of set inclusion (⊆) over S and, consequently,
⊔

amounts the
operation of union

⋃
over S;

• v+, v− : Lprop ×W → P(S)

- v+
w(p) = {{(w, p)} : w ∈ a+(p)}

- v−w(p) = {{(w,¬p)} : w ∈ a−(p)}

It is easy to show that E(M) is indeed an E-Kripke model. It is evident by
the fact the relation of set inclusion is reflexive, transitive and anti-symmetric,
hence it amounts to a parthood relation on S; moreover, for any X ⊆ S,

⊔
X

amounts to
⋃

X, as
⋃
∅ = ∅ and ∅ is such that ∅ v Y for any Y ∈ S; moreover⋃

X ∈ S, in fact for any x ∈ X, x ⊆ (W × (Lprop ∪ Lprop)) and, clearly, union of
subsets of W× (Lprop∪Lprop) returns a subset of W× (Lprop∪Lprop); furthermore⋃

X is the least upper bound of the elements in X, in fact consider Z ∈ S such
that for all x ∈ X, x v Z; since every element of X is a subset of Z, then

⋃
X ⊆ Z

and the union among sets is unique.
Analogously to the case of ordinarification, truth at a world w of a formula

is preserved under exactification:

Lemma 2 For any Kripke modelM = 〈W,R, a+, a−〉, given its exactification E(M) it
is the case that for any formula A, and any w ∈W,

[M,w |= A if and only if E(M),w |= A] and [M,w |=A if and only if E(M),w |=A]

Proof: see appendix A.3.

We will introduce a small and useful result.
Consider an arbitrary E-Kripke model 〈S,v,W,R, v+, v−〉; take an arbitrary

state s ∈ S; we define the restriction of E with respect to s that E-Kripke model
downward generated by s, namely E∗ = 〈S∗,v∗,W∗,R∗, v+

∗ , v−∗ 〉where

• S∗ = {t ∈ S : t v s}

• v
∗
⊆ (S∗ × S∗) namely v is the restriction of the parthood relation on S∗

• W∗ = W
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• R∗ = R

• v+
∗ , v−∗ : Lprop ×W → S∗, namely v+

∗ and v−∗ are the restriction of v+ and v−

on S:

– v+
∗,w(p) = {s ∈ (v+

w ∩ S∗)};
– v−∗,w(p) = {s ∈ (v−w ∩ S∗)}.

The following lemma is readily provable by induction:

Lemma 3 For any E-Kripke model E = 〈S,v,W,R, v+, v−〉; given the restriction
E
∗ = 〈S∗,v∗,W∗,R∗, v+

∗ , v−∗ 〉 of E with respect to s, it is the case that for any t ∈ S∗, any
w ∈W∗ and any formula A, E, t w A if and only if E∗, t w A.

We are now ready to introduce Korbmacher’s modal extension of Van Fraassen’s
theorem

Theorem 3 A �Ki B⇔ A |=KFDE B

Proof :

(⇒) By contrapositio; assume A 2KFDE B, so there is a KFDE-Kripke modelsM
and some w inM such thatM,w |= A andM,w 2 B. Now, let’s consider
E(M). By Lemma 2 we have that sinceM,w |= A andM,w 2 B it is also
the case that E(M),w |= A and E(M),w 2 B. This means that [A]+

w , ∅
and [B]+

w = ∅, so there is a s ∈ S such that E(M), s w A and no t ∈ S
such that E(M), t w B. Now, it is the case that s inexactly verifies A at w
(E(M), s �w A), since there is s v s and E(M), s w A. Now, consider an
arbitrary z v s; since [B]+

w = ∅, then it is cannot be the case that z w B.
Since z was taken arbitrarily among the parts of s, it is the case that for
any z v s, s 1w B, namely s does not inexactly verify B. And so, it is not
the case that A �Ki B

(⇐) By contrapositio; assume that it is not the case that A �Ki B, so there is
some model E and some state u and some world w such that E,u �w A
and it is not the case that E,u �w B, namely there is some s v u such
that E, s w A and for any z v u, E, z 1w B. Now consider the restriction
E
∗ = 〈W,S∗,R∗,v, v∗+, v∗−〉 of Ewith respect to u. By the Lemma 3, it follows

that E∗,u �w A and it is not the case that E∗,u �w B. Moreover, it is the
case that E∗,w |= A, in fact, since by construction all the states in S∗ makes
A true, [A]∗w , ∅. By construction, since all the states t in S∗ are such that
t 1w B, it is the case that [B]+

w = ∅, namley E∗,w |=B.
Let’s consider the ordinarification of E∗, namely O(E). Since, E∗,w |= A
andE∗,w 2 B, by Lemma 1, it is the case that O(E∗),w |= A and O(E∗),w 2 B.
So, we found a countermodel to A |=KFDE B

With the above theorem by Korbmacher, we have found a characterization
of the notion of modal inexact consequences in terms of preservation of truth
under four-valued semantics.
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1.4 Classical Modal Logic and Modal Truthmaker Semantics

In this chapter, we will investigate the relation between TS� and classical Modal
logic (K). In particular, our aim is to discuss whether it possible to characterize
classical modal logic consequence via modal inexact consequence, just as in the
case of KFDE.

So far, we have also admitted impossible worlds in E-Kripke models; im-
possible in the sense of logically impossible (an analogous characterization of
impossible worlds can be found in (Priest, 1997)). This means, more explicitly,
that the worlds in an E-Kripke model do not necessarily obey the laws of clas-
sical logic; in particular, they do not respect the principle of non-contradiction
and excluded middle, namely that no formula can be both made true and false
and that any formula is made either true or false. Indeed, consider the model
E = 〈S,v,W,R, v+, v−〉with

v+
w(p) = {s}

v−w(p) = {t}

v+
w(q) = v−w(q) = ∅

Consider the state s t t, we know that s t t must exist by the completeness of
S; by semantic conditions, it is the case that s t t w p ∧ ¬p, hence w |= p ∧ ¬p,
namely w |=¬(p∧¬p). At the same time, by construction, there is no truthmaker
or falsemaker of q at w, hence w 2 p ∨ ¬q, namely w 2 q and w 2 ¬q.

So, it would be reasonable to restrict the models so that they include only
logically possible worlds, namely worlds that make no formula both true and
false and any formula either true or false. In order to meet these classical
constraints, it would be plausible to impose some conditions on the valuations
of an E-Kripke model E = 〈S,v,W,R, v+, v−〉: for any propositional letter p and
any world w

(C) exactly one between

(i) v+
w(p) , ∅ and

(ii) v−w(p) , ∅

holds.

We can now introduce the following definition:

Definition 13 Given an E-Kripke Model E = 〈S,v,W,R, v+, v−〉 we say that v+ and
v− are classical if and only if they meet (C); E is called classical if and only if v+ and v−

are classical.

Now, it is readily provable by induction that

Lemma 4 For any classical E-Kripke model E = 〈S,v,W,R, v+, v−〉, any formula A
and any world w ∈W, w 2 A ∧ ¬A and it is the case that either w |= A or w |= ¬A.
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and that falsity of a formula at a world amounts to non-truth of that formula at
that world, more explicitly by an easy induction it is possible to prove:

Lemma 5 For any classical E-Kripke model E = 〈S,v,W,R, v+, v−〉, and any world
w ∈W and any formula A, w 2 A if and only if w |=A.

Now, in order to analyze the interaction between classical modal logic and
the modal truthmaker semantic account, it will be useful to look at the con-
nection between KFDE and K. Again, the worlds in a KFDE can be (logically)
impossible, in the sense that they do not necessarily obey the principle of non-
contradiction and the excluded middle; indeed consider a KFDE Kripke model
M = 〈W,R, a+, a−〉with

a+
w(p) = {w}

a−w(p) = {w}

a+
w(q) = a+

w(q) = ∅

The world w is such that it makes p both true and false, w |= p ∧ ¬p and q
neither true nor false, namely w 2 q and w 2 ¬q. Again, in order to meet the
classical principles, it would be reasonable to impose some constraints on the
valuations of a KFDE Kripke modelM = 〈W,R, a+, a−〉: for any world w ∈W and
any propositional letter p

(NC) a+
w(p) ∩ a−w(p) = ∅

(EM) a+
w(p) ∪ a−w(p) = W

(NC) corresponds to the conditions that no formula can be made both true and
false; (EM) corresponds to the constraint that every formula is made either true
or false. It is convenient to introduce the following definition:

Definition 14 Given a KFDE Kripke modelM = 〈W,R, a+, a−〉 we say that a+ and a−

are classical if and only if they meet (EM) and (NC); andM is called classical if and
only if a+ and a− are classical.

And by an easy induction we can prove

Lemma 6 For any classical KFDE Kripke model M = 〈W,R, a+, a−〉, any formula A
and any world w ∈W, w 2 A ∧ ¬A and it is the case that either w |= A or w |= ¬A.

So, possible worlds semantics for K can be regarded as a restriction of
the possible worlds semantics for KFDE, in particular, we can show that every
classical KFDE model can be transformed into a standard Kripke model for K.
Before illustrating this transformation, notice that in every classical KFDE model,
the falsity of a formula at a world amounts to non-truth of that formula at that
world, more explicitly the following result holds and can easily be proven by
induction:
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Lemma 7 For any classical KFDE Kripke model M = 〈W,R, a+, a−〉, and any world
w ∈W and any formula A, w 2 A if and only if w |=A.

Now, we are able to define a new operation of restriction over a classical
KFDE Kripke model in order to obtain a classical Kripke model:

Definition 15 Given a classical KFDE Kripke modelM = 〈W,R, a+, a−〉, we define its
restriction R(M) = 〈W∗,R∗, a〉 where

• W∗ = W

• R∗ = R

• a = a+.

It is clear that a : Lprop → W is a classical valuation mapping every proposi-
tional letter p to the set of worlds where p is true, hence R(M) = 〈W∗,R∗, a〉 is a
classical Kripke model for K. Now, by an easy induction we can establish:

Lemma 8 For any classical KFDE Kripke modelM and any formula A,M,w |= A if
and only if R(M),w |= A.

As we can expect, also the opposite holds, namely any classical Kripke
model for K can be transformed into a classical model for KFDE:

Definition 16 Given a classical Kripke model for K, M = 〈W,R, a〉, we define its
inflation I(M) = 〈W∗,R∗, a+, a−〉 where

• W∗ = W

• R∗ = R

• a+ = a

• a− : Lprop →W such that for any propositional letter p

– a−(p) = W/a+(p)

By definition, for any p, a+(p) ∪ a−(p) = W and a+(p) ∩ a−(p) = ∅, namely a+ and
a− are classical and so, I(M) is classical. Now, by easy induction, we can prove
that

Lemma 9 For any classical Kripke model for KM and any formula A,M,w |= A if
and only if I(M),w |= A.

Now, one could ask whether it is possible to recover a classical KFDE Kripke
model from a classical E-Kripke model and vice versa. The answer is positive
and it relies on the operation of the operations of exactification and ordinarifi-
cation, indeed we can easily prove the following two lemmas:
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Lemma 10 For any classical E-Kripke model E = 〈S,v,W,R, v+, v−〉 its ordinarifica-
tion O(E) is classical.

Proof:

Consider an arbitrary classical E-Kripke model E = 〈S,v,W,R, v+, v−〉
and its ordinarifiaction O(E) = 〈W,R, a+, a−〉. Now, take an arbitrary
propositional letter p and an arbitrary world w; since v+ and v− are classical
we have two cases to consider:

(i) v+
w(p) = ∅ and v−w(p) , ∅. This means, by definition of O(E), that

w ∈ a−(p) but w < a+(p);

(ii) v−w(p) = ∅ and v+
w(p) , ∅. Analogously to (i), we obtain w ∈ a+(p) but

w < a−(p).

In both (i) or (ii), we have that w < a+(p) ∩ a−(p). Since w was taken
arbitrarily, we have that for all w ∈ W, w < a+(p) ∩ a−(p), namely a+(p) ∩
a−(p) = ∅. So, since p was taken arbitrarily, a+ and a− meet (NC).

Moreover, notice that in both (i) and (ii), w is such that w ∈ a+(p) ∪ a−(p).
Since w was taken arbitrarily, we have that for all w ∈W, w ∈ a+(p)∪a−(p),
namely a+(p)∪a−(p) = W. So, since p was taken arbitrarily, a+ and a− meet
(EM).

Hence, it is the case that O(E) is classical.

Lemma 11 For any classical KFDE Kripke modelM = 〈W,R, a+, a−〉 its exactification
E(M) = 〈S,v,W, v+, v−〉 is classical.

Proof:

Consider an arbitrary classical KFDE Kripke model M = 〈W,R, a+, a−〉
and its exactification E(M) = 〈S,v,W,R, v+, v−〉. Now, take an arbitrary
propositional letter p and an arbitrary world w; since a+ and a− are classical
we have two cases to consider:

(i) w ∈ a+(p) and w < a−(p) (by (EM) and (NC));

(ii) w ∈ a−(p) and w < a+(p) (by (EM) and (NC)).

If (i) holds, then, by definition of E(M), {(p,w)} ∈ v+
w(p) but {(¬p,w)} <

v−w(p). This means that v+
w(p) , ∅ and v−w(p) = ∅. Analogously if (ii) holds,

we have that v−w(p) , ∅ and v+
w(p) = ∅. Hence, in both cases, only one

between v+
w(p) , ∅ and v−w(p) , ∅ holds.

So, since p and w were taken arbitrarily, we have that v+ and v− are clas-
sical. Hence, E(M) is classical.

21



It is predictable that the truth (and falsity) of any formula with respect to a
world is preserved under ordinarification and exactification of classical models,
in particular, the following two results hold:

Lemma 12 For any classical E-Kripke model E = 〈S,v,W,R, v+, v−〉, any world
w ∈W and any formula A, E,w |= A if and only if O(E),w |= A.

Proof: analogously to Lemma 1.

Lemma 13 For any classical KFDE Kripke model M = 〈W,R, a+, a−〉, any world
w ∈W and any formula A,M,w |= A if and only if E(M),w |= A.

Proof: analogously to Lemma 2.

By combining the results shown above, we obtain an effective procedure to
transform every classical E-Kripke model into a classical Kripke model for K
(by applying ordinarification and restriction) and vice versa (by applying in-
flation and exactification). So, at this point, one could ask whether classical
modal logic consequence (|=K) can be characterized in terms of exact or in-
exact consequence for classical E-Kripke models. It turns out, however, that
K consequence cannot be characterized in this way. Here some counterexample:

p∨¬p |= r∨¬r is a clear classical K-consequence, however, consider the E-Kripke
model E = 〈S,v,W,R, v+, v−〉with

• S = {0, s, t, s t t}

• v+ and v− classical such that v+
w(p) = {s}, v−w(p) = ∅, v+

w(q) = {t}, v−w(q) = ∅,
v+

w(r) = {s t t}, v−w(r) = ∅

in a picture

s t t w r

s w p t w q

0

Clearly, s w p∨¬p since s w p, however, it is not the case that s w r∨¬r since
s < v+

w(r) and s < v−w(r). This means that it is not the case that p ∨ ¬p  r ∨ ¬r.
Notice also that since 0 < v+

w(r) and 0 < v−w(r), it also holds that s �w p ∨ ¬p but
it is not the case that s �w r ∨ ¬r, so p ∨ ¬p �Ki r ∨ ¬r doesn’t hold as well.
The same goes for simply validities: clearly r ∨ ¬r is a validity in K, however,
it is not the case that r∨ ¬r is inexactly or exactly valid in all classical E-Kripke
model. Indeed, consider E above and s: it is not the case that s w r ∨ ¬r
nor s �w r ∨ ¬r. Hence, classical K validities are not expressible as validities
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in a classical E-Kripke models and classical K logical consequences are not
expressible as exact or inexact consequences under classical E-Kripke models.
Notice, however, that classical modal logical consequences in standard Kripke
semantics is expressible as preservation of truth at worlds in classical E-Kripke
models, namely:

Theorem 4 Γ |=K B if and only if for any classical E-Kripke model E and any world
w in E, E,w |=

∧
Γ implies E,w |= B.

Proof:

(⇐) Straightforward by inflation and exactification.

(⇒) Straightforward by ordinarification and restriction.

At this point, we have seen how models with impossible and possible
worlds behave separately. One might want to generalize the structure and
have models including both possible and impossible worlds. This can be done
by introducing a restriction of possible states over E-Kripke models. More
formally, we can define a new structure, call it general E-Kripke model:

Definition 17 A general E-Kripke model is a tupleE = 〈S,F,v,W,N,R, v+, v−〉where

• 〈S,v〉 is a state space;

• 〈W,R〉 is a Kripke frame;

• F ⊆ S is the set of possible states, such that for any X ⊆ S, X ⊆ F⇔
⊔

X ∈ F;

• N ⊆W is the set of possible worlds and W/N is set the of impossible worlds

• v+, v− : W × Lprop → P(S) are the evaluation function such that

– for any w ∈ N and any propositional letter p, only one between the following
holds:

(i) v+
w(p) ∩ F , ∅

(ii) v−w(p) ∩ F , ∅

where F behaves as the set of logically possible states.
A general E-Kripke model resembles very much a Fine’s modalized state

model (see (Fine, fortcoming)) which is a tuple S = 〈S,v,P, v+, v−〉 in which

• 〈S,v, v+, v−〉 is a state model

• v+, v− : Lprop → P(S) such that
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(i) for any propositional letter p, for any state s ∈ v+(P) and t ∈ v−(p),
their fusion s t t is not in P (s t t < P);

(ii) for any propositional letter p, for any state s ∈ P, there is a t ∈ v+(p)
such that s t t ∈ P or there is a u ∈ v−(p) such that s t u ∈ P

in which (i) is analogous of condition (NC) and (ii) analogous of condition (EM).
All the results we have obtained so far can be extended, mutatis mutandis,

to any general E-Kripke model; hence, this structure could serve as the unique
general tool to analyze the connection between modal truthmaker semantics,
KFDE and classical modal logic.

1.5 First-Order Modal Truthmaker Semantics

In this section we will propose a first-order extension of Korbmacher’s TS�;
our point of departure is the work done by Fine (2017). Fine’s idea for devel-
oping a semantics for quantified formulas is to reduce them to truth-functional
statements; hence, intuitively, an exact truth-maker of a universally quantified
formula ∀xFx corresponds to a truthmaker of the conjunction Fa1 ∧ Fa2... for
all the objects a1, a2,... (denoted respectively by a1, a2...) in the domain. Con-
versely, a truthmaker of an existential statement ∃xFx intuitively corresponds
to a truthmaker of the disjunction Fa1∨Fa2... for all the objects a1, a2,... (denoted
respectively by a1, a2...) in the domain. Hence, intuitively, exact truthmaker
conditions for ∀ and ∃ should respectively resemble the ones for ∧ and ∨.

The language we use for the following presentation consists of individual
variables x, y, ...; logical constants ¬,∨,∧; n-ary predicate variables Pn,Qn,Rn...;
quantifiers ∀, ∃; modal operators �, ♦; and auxiliary symbols (, ). Here we
use Greek letters ϕ,ψ... to refer to (well-formed) formulas in the language. A
(well-formed) formula is defined, as :

A := Fnx1, ..., xn | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ♦ϕ | �ϕ

plus ifϕ is a formula and x has some free occurrences inϕ, then∀xϕ is a formula
and analogously for ∃.

A first-order E-Kripke model is a tuple E = 〈G,D, v+, v−〉where G is standardly
defined and:

• D is a non-empty domain of individuals;

• v+, v− : W × (LPredn ×Dn)→ P(S) are assignments such that

– v+
w((Fn, (d1, ..., dn))) ⊆ S is the set of states verifying Fn of d1, ..., dn at

w;

– v−w((Fn, (d1, ..., dn))) ⊆ S is the set of states falsifying Fn of d1, ..., dn at
w.
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For any first-order E-Kripke model E = 〈G,D, I, v+, v−〉 we define an interpre-
tation I of the language such that I : LVar → D is an assignment mapping each
variable in the language to an individual in the domain D. Notice that I is not
relativized to worlds, hence variables behave as rigid designators, namely the
interpretation of every variable is fixed across the possible worlds.

We define the x-variant of an interpretation I:

Definition 18 for any variable x in the language, an x-variant assignment I∗ of I is
that assignment which differs, if at all, from I only in its assignment to x.

Given a first-order E-Kripke model E = 〈W,R,S,v,D, v+, v−〉, we recursively
define in the following the conditions for a formula to be verified or falsified at
a world w by a state s with respect to an assignment I; for the Boolean and
modal operators the truth conditions are analogous to the propositional case,
just relativized to I:

s I
w Fnx1, ..., xn ⇔ s ∈ v+

w((Fn, (I(a1), ..., I(an))))
s Iw Fnx1, ..., xn ⇔ s ∈ v−w((Fn, (I(a1), ..., I(an))))
s I

w ∀xϕ ⇔ there is a function f : D→ S such that for all x-variant I∗ of I
there is a f (d) (with d ∈ D) such that f (d) I∗

w ϕ and s =
⊔

(
⋃

(d∈D){ f (d)})
s Iw ∀xϕ ⇔ there is an x-variant I∗ of I such that s I∗w ϕ
s I

w ∃xϕ ⇔ there is an x-variant I∗ of I such that s I∗
w ϕ

s Iw ∃xϕ ⇔ there is a function f : D→ S such that for all x-variant I∗ of I
there is a f (d) (with d ∈ D) such that f (d) I

∗

w ϕ and s =
⊔

(
⋃

(d∈D){ f (d)})

Now, for any formula ϕ, we define, with respect to an E-Kripke model E, its
positive meaning at a world w with respect to an assignment I, [A]+

(I,w), and its
negative meaning at a world w with respect to an assignment I, [A]−(I,w), as:

- [A]+
(I,w) = {s ∈ S : s w A}

- [A]−(I,w) = {s ∈ S : s w A}

We define the conditions for a formula to be made true or false at a world w ∈W
with respect to an assignment I in the standard way:

w |=I A ⇔ [A]+
(I,w) , ∅

w |=I A ⇔ [A]−(I,w) , ∅

The notion of inexact verification and inexact consequence within first-order
modal truthmaker semantics are standardly defined with respect to an assign-
ment I:
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Definition 19 First-order Modal Inexact Verification: Given a first-order E-Kripke
ModelE = 〈W,R,S,D,v, v+, v−〉, for any s ∈ S and any w ∈W, we say that s inexactly
verifies (�) a formula ϕ at w with respect to I, if s contains and exact verifier of ϕ at
w; more formally s �I

w A iff for some t v s, t I
w A.

Definition 20 First-order Modal Inexact Consequence: for any formula ϕ, ψ,
ϕ �FOKi ψ iff for any E-Kripke model E, any s, any w in E and any I, E, s �I

w A implies
M, s �I

w B.

Analogously to before we will now explore the connection between this frame-
work and first-order KFDE trying to extend Van Fraassen’s Theorem.

1.6 Quantified Modal First-Degree and First-Order Modal Truth-
maker Semantics

In this section, we will show that the relations between modal truthmaker
semantics and KFDE carry over to the first-order case. In particular, I will try to
extend Korbmacher’s framework and related results to the modal case. At first,
we will present a natural first-order extension of the possible worlds semantics
for KFDE introduced in the previous sections. The language of first-order KFDE
(FOKFDE) is made of individual variables x, y, ...; logical constants ¬,∨,∧; n-
ary predicate variables P,Q,R...; quantifiers ∀, ∃; modal operators �, ♦; and
auxiliary symbols (, ). As before, we use Greek letters ϕ,ψ... to refer to (well-
formed) formulas in the language; a well-formed formula is defined as in the
case of the language for first-order TS�.

A FOKFDE Kripke model is a tupleM = 〈W,R,D, a+, a−〉 where W and R are
standardly defined, the interpretation of the language I is defined as above and:

• D is a non-empty domain of quantification;

• a+, a− : W × LPredn → P(Dn) such that

– a+
w(Fn) ⊆ Dn is the positive extension of Fn, namely the n-tuple of

objects of which Fn is true;

– a−w(Fn) ⊆ Dn is the negative extension of Fn, namely the n-tuple of
objects of which Fn is false.

Given a modelM = 〈W,R,D, a+, a−〉 and an assignment I, we are now ready to
define the conditions for a formula to be true at a world w inM with respect
to I; for the Boolean and modal operators the truth conditions are analogous to
the propositional case, just relativized to I:
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w |=I Fnx1, ..., xn
⇔ 〈I(a1), ..., I(an)〉,∈ a+

w(Fn)
w |=I Fnx1, ..., xn

⇔ 〈I(a1), ..., I(an)〉,∈ a−w(Fn)
w |=I

∀xϕ ⇔ for any x-variant I∗ w |=I∗ ϕ
w |=I ∀xϕ ⇔ there is some x-variant I∗ such that w |=I

∗

ϕ
w |=I

∃xϕ ⇔ there is some x-variant I∗ such that w |=I∗ ϕ
w |=I ∃xϕ ⇔ for any x-variant I∗ w |=I

∗

ϕ

The next definition naturally follows:

Definition 21 FOKFDE Consequence: for any formula B and any set of formula Γ,
Γ |=FOKFDE B iff for any ordinary FOKFDE-Kripke model M, any w in M and any I,
M,w |=I ∧Γ impliesM,w |=I B.

As before, we will show that the above semantics is equivalent to a natural
modal extension of the four-valued semantics for first-order FDE developed in
(Priest, 2008).

A FOKFDE four-valued model is a tuple F = 〈W,R,SL,D, vE, vA〉 where, W
and R are standardly defined, I is the interpretation standardly defined and:

• SL = {V,A, f¬, f∨, f∧, f∀, f∃}, generally we indicate fc ∈ { f¬, f∨, f∧} and fq ∈
{ f∀, f∃}, with

– V = {1, b,n, 0} is the set of the four values;

– A = {1, b} ⊆ V;

– f¬, f∧, f∨ are defined as in the propositional case;

– f∀(X) = Glb(X)

– f∃(X) = Lub(X)

– vE, vA : W × LPredn → Dn, namely

∗ vEw(Fn) ⊆ Dn is the positive extension of Fn;
∗ vEw(Fn) ⊆ Dn is the negative extension of Fn.

Given a four-valued assignmentµ : W×{I : I is an assignment of the language of FOKFDE}×

For → V (where For is the set of formulas of FOKFDE) we are ready to define
for any formula ϕ, its truth value at a world w with respect to an assignment I
(µI

w(ϕ) ∈ V); for the Boolean and modal operators, the assignment is defined as
in the propositional case, just relativized to I:

• µI
w(∀xϕ) = Glb{µI∗

w(ϕ) : I∗is an x-variant of I};

• µI
w(∃xϕ) = Lub{µI∗

w(ϕ) : I∗is an x-variant of I}.

We can now define FOKFDE entailment under this semantics:

Definition 22 Γ |=4
KFDE

ψ if and only if for every four-valued model 〈W,R,SL,D, I, vE, vA〉,
any w ∈W and any I, if µI

w(ϕ) ∈ A for any ϕ ∈ Γ, then µI
w(ψ) ∈ A.
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Like in the propositional case, we define operations to translate each four-
valued FOKFDE into a Kripke FOKFDE model and vice versa and prove that
four-valued FOKFDE consequence is equivalent to FOKFDE consequence under
possible worlds semantics.

Theorem 5 A |=4
FOKFDE

B if and only if A |=FOKFDE B

Proof: see appendix A.4.

1.6.1 First-order Characterizations

Like in the propositional case, in this section we will try to extend Van Fraassen’s
Theorem to the first-order modal case by following the same strategy.

We will define new operations to transform each first-order E-Kripke model
into an ordinary FOKFDE model and vice versa:

Definition 23 Given a first-order E-Kripke model E = 〈W,R,S,D, I,v, v+, v−〉 we
define its ordinarification as O(E) = 〈W,R,D, I, a+, a−〉 where W and R are the same
as in E and

• a+, a− : Lprop → P(W)

- a+
w(Fn) = {〈d1, d2, ..., dn〉 ∈ Dn : v+

w((Fn, (d1, d2, ..., dn)) , ∅}

- a−w(Fn) = {〈d1, d2, ..., dn〉 ∈ Dn : v+
w((Fn, (d1, d2, ..., dn)) , ∅}

We will now prove the following useful lemma:

Lemma 14 for any first-order E-Kripke model E = 〈W,R,S,D, I,v, v+, v−〉, given its
ordinarification O(E), for any formula ϕ and any w ∈W,

[E,w |=I ϕ if and only if O(E),w |=I ϕ] and [E,w |=I ϕ if and only if O(E),w |=I ϕ]

Proof: see appendix A.5.

And analogously we define an operation of exactification:

Definition 24 Given a Kripke modelM = 〈W,R,D, I, a+, a−〉 we define its exactifi-
cation as E(M) = 〈W,R,S,D, I,v, v+, v−〉 where W and R are the same as inM

• S = P(W × ((LPredn ∪ LPredn ) ×Dn)) where LPredn = {¬Fn : Fn
∈ LPred}

• v is the relation of set inclusion (⊆) over S and, consequently,
⊔

amounts the
operation of union

⋃
over S;

• v+, v− : W × (LPredn ×Dn)→ P(S) such that

- v+
w((Fn, (d1, ..., dn))) = {{(w, (Fn, (d1, ..., dn)))} : 〈d1, ..., dn〉 ∈ a+

w(Fn)}
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- v−w((Fn, (d1, ..., dn))) = {{(w, (¬Fn, (d1, ..., dn)))} : 〈d1, ..., dn〉 ∈ a−w(Fn)}

As expected the following lemma holds:

Lemma 15 For any first-order ordinary Kripke modelM = 〈W,R,D, I, a+, a−〉, given
its exactification E(M) it is the case that for any formula ϕ, and any w ∈W,

[M,w |=I ϕ if and only if E(M),w |=I ϕ] and [M,w |=I ϕ if and only if E(M),w
|=I ϕ]

Proof: see appendix A.6.

Now, we are ready to prove the following theorem

Theorem 6 ϕ �FOKi ψ⇔ ϕ |=FOKFDE ψ

Proof : the proof proceeds analogously to the proof of Theorem 3.

By proving the above result, we have been able to extend Van Fraassen’s
original result to the first-order modal case: the characterization of modal inex-
act consequence in terms of preservation of truth under four-valued semantics
is preserved in the first-order extension of TS�.

1.6.2 First-Order Modal Truthmaker Semantics and Classical First-Order
Modal Logic

In this section, we will outline the connection between our first-order modal
truthmaker semantics and classical first-order modal logic (FOK). It is pre-
dictable that by imposing on the valuations constraints analogous to the propo-
sitional case, we can preserve the same results as the propositional cases.

Given a FOKFDE Kripke model 〈W,R,D, a+, a−〉, we say that a+ and a− are
classical if and only if they meet the following constraint:

(NCq) for any world w ∈W, any predicate Fn, a+
w(Fn) ∩ a−w(Fn) = ∅

(EMq) for any world w ∈W, any predicate Fn a+
w(Fn) ∪ a−w(Fn) = D

Hence we obtain:

Definition 25 A FOKFDE Kripke model 〈W,R,D, a+, a−〉 is said to be classical if and
only if a+ and a− are classical

Analogously, given a first-order E-Kripke model 〈S,v,W,R,D, v+, v−〉we say
that v+ and v− are classical if and only if they meet the following constraint:
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(Cq) for any world w, any predicate Fn and tuple of individuals 〈d1, ...dn〉,
exactly one between the following holds:

(i) v+
w((Fn, (d1, ...dn)) ∩ S , ∅

(ii) v−w((Fn, (d1, ...dn)) ∩ S , ∅

So, we have:

Definition 26 A first-order E-Kripke model 〈S,v,W,R,D, v+, v−〉 is said to be classi-
cal if and only if v+ and v− are classical.

As one would expect, the results we proved for the propositional case are
extendable to the first-order case following the same strategy without any
problem; from those, we will obtain that classical first-order modal logical
consequence cannot be characterized via classical first-order modal inexact (or
exact) consequence, while truth at a world is preserved from classical first-order
E-Kripke models to classical first-order modal logic and vice versa.

1.6.3 Identity

In this section we will try to briefly analyze the behavior of the identity predicate
in our semantics.

Within the framework outlined above, identity is intuitively treated as a
dyadic predicate and, in principle, it could be the case that there are truthmakers
for the identity of two distinct objects, as well as there could be falsemakers
for the identity of the same object with itself. It is not our intention to engage
with a metaphysical discussion about the plausibility of these situations: our
aim is to investigate which semantic constraints make sense to impose on our
framework in order to validate, in the object language, standard commonly
accepted laws about identity, namely reflexivity (R), indiscernibility of identicals
(II) and necessity of identity (NI).

(R) (R) stands for the principle that for any object d in the domain of indi-
viduals, is identical with itself. For (R) to be validated we mean that
the identity of every individual with itself must be true at every world,
namely, it must have a truthmaker at any worlds.

(II) We take (II) to stand for the principle that if two individuals are identi-
cal then they share all the properties. First of all, we need to clarify the
meaning of the conditional “if..then...” in the formulation of II. What do
we want to express when we say that if two individuals are identical they
share the same properties? Do we mean that every (exact) truthmaker
of the identity of x and y is also a(n) (exact) truthmaker of the propo-
sition that they share the same properties? (exact consequence) Or, do
we mean that every (inexact) truthmaker of their identity contains a(n)
(exact) truthmaker of their sharing the same properties? (inexact conse-
quences). It seems that the interpretation of the meaning of a conditional
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sentence within truthmaker semantic is very controversial. It is not our
aim to provide truthmaker conditions for conditional sentences, however
we need to stick to some interpretation of the “if...then” involved in the
formulation of (II). Let’s try to be the most general as possible in interpret-
ing (II): we should want that if x = y is true at a world w, then it must also
be true at w that x and y share all the properties. More explicitly, if there
is a truthmaker for the identity of x and y at w, then, for any property
F, Fx having a truthmaker at w implies Fy having a truthmaker at w and
vice versa (Fy having a truthmaker at w implies Fx having a truthmaker
at w). This means, more formally, that (II) amounts to say that if |x = y|+(w,I)
is non-empty, then, for any property F, |Fx|+(w,I) is non-empty if and only if
|Fy|+(w,I) is non-empty.

(NI) We take (NI) to be the principle that if two individuals are identical, then
they are necessarily identical. Again, the same problem arises: how do we
interpret the “if...then...” involved in the formulation of (NI)? Analogously
to the case of (II), we stick to the interpretation of (NI) as the principle
that if x = y has a(n) (exact) truthmaker at a world w, then �x = y also has
a(n) (exact) truthmaker at w, more formally, for any world w, if |x = y|+(w,I)
is non-empty, |�x = y|+(w,I) is non-empty as well.

The validity of (R), (NI) and (II), so formulated, fails in the semantic account
presented above; for instance, consider a first-order E-Kripke model E = 〈S,v
,W,R,D, v+, v−〉with

• S = {0, s, t, s t t}

• W = {w, v}

• R = {(w, v)}

• v+
w((=, (I(x), I(y)))) = {s},

• v+
w((F, I(y))) = ∅

• v+
w((F, I(x))) = {t}

• v+
v ((=, (I(x), I(x)))) = ∅

in a picture

s t t

s w x = y t w Fx

∅
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Clearly, it is the case that |x = y|+(w,I) , ∅ since s I
w x = y, that |Fx|+(w,I) since

t I
w Fx, but |Fy|+(w,I) = ∅; hence (II) fails in E; moreover |x = y|+(v,I) = ∅, hence

|�x = y|+(w,I) = ∅, namely (NI), (R) and (II) fail. So, what constraint should we
introduce in our semantic account in order to validate (R), (II) and (NI)? In the
following we will consider some options:

(i) The first straightforward option to validate all the three principles would
be to introduce = in the language as a logical constant and the exact
truthmaker conditions of x = y would be:

s I
w x = y ⇔ I(x) = I(y)

However, this solution implies an over-generation of exact truthmakers of
identity statements: given that we fix I(x) = I(y), then we would have that
every state in every model, every fact is an exact truthmaker of x = y with
respect to any world w. We would lose the relevance and the responsibility
constraints that an exact truthmaker should meet. How can the fact, say,
that it is raining in Amsterdam be responsible and relevant for the truth of
Hesperus is equal to Phosphorus?

(ii) Another solution for the validity of all (R), (NI), (II) is to impose that the
(positive) valuation of every tuple of predicate and individuals in the do-
main must be non empty, namely for any Fn and 〈d1, ...dn〉, and any world
w, v+

w((Fn, 〈d1, ...dn〉)) , ∅. However, this constraint is counterintuitive:
every statement would have a truthmaker at every world.

(iii) There are at least two ways (R) could be validated: (1) for any d ∈ D, we
impose on every E-Kripke model that for any world w, v+

w((=, (d, d))) = {0};
(2) for any d ∈ D, we impose on every E-Kripke model that for any world
w, v+

w((=, (d, d))) , ∅. (1) corresponds to the intuition that (R) is an a
priori principle, namely, nothing is required for its truth, and so its only
truthmaker would intuitively be the null fact: (R) is made true by nothing
substantially. (2) on the other hand corresponds to the intuition that the
identity of every object with itself is indeed a necessary and universally
valid principle, and so it would be anyway made true by something in
any world. Establishing what this something is depends on one’s favourite
view about truthmakers of identity (for instance, the identity of d with
itself could be made true by the existence of d itself). Notice that both the
constraints in (1) and (2) would imply that the identity of an individual
with itself is also necessary: under (1) |�x = x|+w = {0} for any world w,
hence �x = x is made vacuously true; and under (2) |�x = x|+w , ∅ for any
world w.

(iv) Notice that the failure of (II) depends upon the possibility of having
truthmakers of statements like x = y where I(x) and I(x) are different.
Indeed, we can have a model with v+

(w,I)((=, (d1, d2))) non-empty where
d1 and d2 are two distinct individuals. Indeed, being d1 and d2 different
allows us to play with the valuation and make v+

w((F, d1)) empty and
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v+
w((F, d2)) non-empty for some property F. If d1 and d2 were the same

individuals, the consequent of (II) would never fail. It seems, then, that a
plausible condition to impose is that the valuation of the identity predicate
having as argument a pair of distinct individuals must be empty. Indeed,
what can make the identity between two distinct individuals d1 and d2
true at w? Under this condition (II) is safe since we are ruling out the
possibility of truthmakers for the identity of distinct individuals. This
constraint, from a philosophical point of view, seems to amount to the
move of banning some metaphysically impossible worlds from our model,
namely those worlds where two distinct individuals can be identical.

(v) The failure of (NI) depends, instead, on the fact that some valuations for
the tuple ((=, (d, d)) could be non-empty at some world w while being
empty at some other world v accessible from w; the emptiness of v−v ((=
, (d, d))) implies that we cannot find a truthmaker at w for �x = y where
I(x) = d = I(y). The easiest and most plausible way to solve this issue is to
impose the non-emptiness of the truthmaker sets of identity statements
over accessible worlds, namely, for any world w and v, if wRv then for any
individual d in the domain, v+

v ((=, (d, d, ))) , ∅. But now, think of a model
in which w is not accessible to itself but access to some other possible
world v different from itself with an evaluation v+

w((=, (d, d))) = ∅ and
v+

v ((=, (d, d))) , ∅. Clearly (NI) holds in this model but a question arises:
what reason do we have to impose the truth of identity statement at v
while not at w? This seems a very arbitrary and not justified assumption.

(vi) Maybe one wants to impose that every identity statement must have
a truthmaker at any world, and this would validate (NI), but this move
would need further philosophical justification. Or one can directly impose
(NI) as a constraint on our semantics by saying that for any world w and v,
and any individual d, if wRv and v+

w((=, (d, d))) , ∅ then v+
v ((=, (d, d))) , ∅.

It was not our aim to choose one of the constraints we mentioned above,
however, it is important to highlight that some constraints are more meta-
physically heavier than others: (iv) seems to me a quite innocent constraint to
impose on our semantics in order to have (II) valid. (iv) does not commit us
to any more (things) in particular, unlike (i) and (ii), actually, it just rules out
metaphysically impossible worlds. On the other hand, the constraints aimed at
validating (NI) seem metaphysically much more loaded: (v), in addition to be-
ing implausible, commits us to a big realm of truthmakers; as well as (vi) seems
to hide a philosophical assumption behind the identity of individuals which
commits us to truthmakers of identity statements in every possible worlds.
Hence, the philosophical intuitions behind the plausibility of the constraints
discussed above require further metaphysical discussion, which is beyond the
scope of this thesis.

However, in the next chapter, we will outline a philosophical idea of truth-
makers for modal truths which could serve as a background theory to develop
a more general and systematic conception of truthmakers.
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2 Philosophical Foundations

So far, the account presented above seems to require no extra foundation or
explanation: if Van Fraassen’s aim was to show that “facts can be represented
within the framework of standard metalogic” and that they can “provide us
with a semantic explanation of tautological entailment” (see (Van Fraassen,
1969, p. 477)) then, Korbmacher’s account can be simply be conceived as ac-
complishing this task for the modal case in the spirit of Van Fraassen, indeed the
framework also preserves the nice characterization of (modal) inexact conse-
quence in terms of (modal) first-degree entailment in the first-order case. How-
ever, one may still wonder about the metaphysical implications of this semantic
account. I believe that no matter how hard one tries to escape the metaphysical
discourse related to truthmaker semantics, he is still forced at some point to
answer the metaphysical question of what a(n) (exact) truthmaker of a certain
proposition is. Indeed, when we posit truthmakers of propositions, we are ac-
tually speaking of facts which belong to the objective world and which the truth
of certain propositions depends on. Hence, this talk about facts of reality is,
then, fundamental in the philosophy of truthmaking. It is not possible, I believe,
to be ontologically or metaphysically neutral in doing truthmaker semantics:
Van Fraassen’s himself has to stick to some leading metaphysical principles in
order to build his semantics account, namely, he accepts to be committed to
negative fact and conjunctive facts of the forms e.e′ that obtains if and only if
its components e and e′ obtain (see (Van Fraassen, 1969)).

We could, of course, ignore the metaphysical talk behind truthmaker se-
mantics, as Kit Fine would do: building a systematic philosophical theory
supporting the semantic account is, actually, beyond the scope of this thesis;
however, I believe, the interaction in the framework of modal truthmaker se-
mantics between possible worlds, individuals and facts requires, at least, some
metaphysical leading principles that could inspire and promote further philo-
sophical discussion on the topic.

In light of that, in this section, we will try to answer to the philosophical
question of what is a(n) (exact) truthmaker of modal sentences like �A and ♦A
and how it must be conceived within the framework. The answer we will try
to seek must be compatible with the philosophical intuitions behind the formal
framework.

In our analysis, we will rely upon some assumptions: (i) the principle that a
truth (even a modal truth) is made true by something on the side of the world;
(ii) the relativization of the (exact) truthmaking relation to worlds, namely
an exact truthmaker of something is always a truthmaker at a certain world;
(iii) the reduction of modalities to quantification over worlds, in the sense
that we understand necessity and possibility as quantification over possible
worlds. Hence a truthmaker for a modal truth must be an exact truthmaker at
a certain world; so, very presumably, possible worlds must play a key role in
this characterization.

Notice that principle (ii) and (iii) are the original ideas which the semantic
framework developed in chapter 1 relies on. Principle (i) seems to be a novel
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assumption for our work: (i) is usually identified with the position of truthmaker
maximalism, namely the view that every truth is made true by something in the
world (a supporter of this view is, for instance, Armstrong (see Armstrong,
2004)). It is not the aim of this manuscript to argue explicitly for the validity
of this assumption, however, for the sake of completeness, it is worth mention
that there exist alternative views, incompatible with our assumptions, and
according to those there is no such a thing as a truthmaker for necessary truths.
In the following, we will precisely show where this incompatibility comes from.

The supporters of this view (see (Beebee & Dodd, 2005)) maintain that
necessary truths do not need truthmakers: if they are necessarily true, namely,
true however the world is, it cannot be the case that there is something in the world
that makes them true. In replying to this view, we follow Merrick’s argument
(see (Merricks, 2007)). First of all, it is important to distinguish between two
readings of the above claim: (i) a more moderate reading according to which
necessary true are not made true by anything substantial in the sense that they
are trivially made true without requiring anything in particular, they are made
true by anything; (ii) a radical reading according to which there isn’t anything
in the world making necessary truths true, in the sense that all necessary truth
are trivially true and nothing makes them true.

• The first reading is incompatible with our assumption about exactness:
take, say, the necessary truth “I am identical with myself” (A, for short).
Consider the actual world w in which it is raining in Amsterdam. If
A is trivially made true by anything in any world, then A should be
made (exactly) true in the actual world by the fact that it is raining in
Amsterdam. But, clearly, the rain in Amsterdam is not responsible and
wholly relevant for the truth of �A.

• The incompatibility of the second radical reading depends on the inter-
pretation of “nothing”. If nothing is understood as the trivial null fact,
in the sense that no substantial truthmaker is required for a necessary
truth, then the opponent view can be, in principle, compatible with our
assumptions: for instance, consider an exact truthmaker of a necessary
truth at w, with w having no successor. Any necessary truth of he form
of �A requires nothing in order to be made true at w, as it would be vacu-
ously true in virtue of w having no successor. TS� expresses the triviality
of a truth of the form �A at w by the fact that the only truthmaker of �A
at w is indeed the null state, the fact which stands for nothing/no fact, as
nothing is required for �A to be true at w. However, not all the necessary
truths are made true by the null fact. For example, as Merricks (2007) and
Jago (2018) argue, consider truths of the form ϕ :“x exists”. ϕ is made
true by the existence of x. If x is some necessary existent, like God or
platonic objects, then “necessarily x exists” is true and must depend upon
x’s existence as well. And x’s existence cannot be a null fact.

Instead, under a more radical reading of “nothing”, we would have that
there is no truthmaker of necessary truths. But this is clearly incompatible
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with our assumption that a truth (even a modal one) is made true by
something on the side of the world.

So, after having clarified our philosophical assumptions, in the following,
we will first try to establish what an exact truthmaker for a modal truth is
not, coherently with the intuitions behind the framework; then we will provide
some leading ideas that could shed some new light on the notion of a modal
truthmaker.

2.1 Truthmakers for Modal Truths

In our philosophical investigation, we start with the assumption that there are
such things as exact truthmakers for modal truths.

We assume that an exact truthmaker of a proposition is a fact, something
on the side of the world, which is directly responsible and wholly relevant for
the truth of that proposition (see (Fine, 2017)). What is the fact that makes
“it is necessary that A” (“it is possible that A”) true? We will assume that the
truthmaker of the sentence “Socrates is a philosopher” (Ok) would simply be the
fact that Socrates has the property of being a philosopher) and the truthmaker of
the sentence “Socrates is a philosopher and Eva is not a philosopher” (Ok∧¬Oe)
is the complex fact that Socrates has the property of being a philosopher and
Eva doesn’t.

Now, when does the modality come in? What is the (exact) truthmaker
of, for instance, the sentence that it is possible that Eva is a philosopher (♦Oe)?
Let’s take [Oe] to stand for the fact that Eva is a philosopher; at first, one
could conceive of modalities as primitive notions: properties of facts (de dicto)
or relations between objects and properties (de re); so what that makes ♦Oe
true could be the fact that Eva being a philosopher is possible (or, in a different
formulation, that the fact that Eva is a philosopher has the property of being
possible) or that Eva is possibly a philosopher, and analogously for necessitated
statements. However, following Linsky’s argument (see (Linsky, 1994)), this
predicate approach to modalities and truthmaking is problematic. At first, a
dilemma concerning the reading of the modality arises: how can we distinguish
between de re and de dicto modalities? Is that e being O is possible equivalent
to the fact that e is possibly O? In the former case we are attributing a property
to a fact, namely [Oe], while in the latter we are taking necessity/possibility
to be a two-places relation between an object and its property, namely e is O
possibly. However, no matter the status of the de re and de dicto distinctions,
I believe, the troubles of taking modalities as primitive notions still occur,
indeed, the following argument can be applied to both the de dicto and de re
reading. Consider a(n) (exact) truthmaker s of the statement �(Ok∨¬Oe); what
is a(n) (exact) truthmaker of �(Ok ∨ Oe)? It cannot be any (exact) truthmaker
of Ok ∨ Oe which is necessary (in a de dicto or de re reading), otherwise we
would have strange consequences. Indeed, if we accept the intuitive principle
that a truthmaker of a sentence of the form A ∨ B is a truthmaker of A or a
truthmaker of A, then �(Ok ∨Oe) and �Ok ∨ �Oe have the same truthmakers,
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while it is intuitive to accept that not all the truthmakers of �(Ok ∨ Oe) are
also truthmakers of �Ok ∨ �Oe. Indeed, any state would be a truthmaker of
�(Ok ∨Oe) if and only if it is a truthmaker of Ok or Oe and it is necessary; and
so, it would also make true �Ok or �Oe, namely �Ok ∨ �Oe. Then, it seems
that in order to avoid this weird consequences, we should accept a primitive
truthmaker of Ok ∨Oe, namely the disjunctive facts [Ok ∨Oe] which, if having
the property of being necessary, would count as a truthmaker of �(Ok ∨ Ye)
without being a truthmaker of�Ok∨�Oe. But accepting disjunctive facts seems
incompatible with the intuitive principle underlying the truthmaker conditions
of disjunctions: a fact is a truthmaker of a disjunction A ∨ B if and only if it
is an exact truthmaker of one of its disjuncts, indeed it is not clear how the
fact [Ok ∨ Oe] can be responsible and wholly relevant for the truth of Ok or
Oe. Hence, from a philosophical point of view, taking modalities as primitives
seems inconsistent with our assumption. Furthermore, from a more technical
perspective, we understand modalities in terms of quantification over possible
worlds: our treatment of modalities is in principle incompatible with a predicate
approach to them.

Then, how should we make sense of truthmakers of modal proposition? At
first, I believe, a closer look at the relation among facts and possible worlds is
needed. A truthmaker, by assumption, is a fact; the (exact) truthmaking relation
is relativized to possible worlds, namely every formula A is made true by a state
s with respect to a world w. The most intuitive interpretation of s being a(n)
(exact) truthmaker of A at w is to take s as the fact at w which is responsible for
the truth of A. But, what does this “at” stand for? Following Lewis (see (Lewis,
1986)), we could regard the “at” as a mereological relation: s being a truth
maker of A at w means that s is a part of w which is responsible for the truth of
A. Then, according to this view, worlds would count as maximal mereological
sum of facts/individuals; similar views connecting the idea of world to that of
maximality can be also found in Plantinga (Plantinga, 1978) who regards worlds
as maximal state of affairs. This kind of bottom-up view about possible worlds
can be also found in (Restall, 1996): in the version of truthmaker semantics that
Restall develops, worlds are maximal sets of states/facts and truthmakers are
just the elements of those sets. The leading idea of Restall’s framework is that

“Instead of taking possible worlds as atomic, we look inside possible
worlds to see their fine structure of truthmakers”.

However, this kind of view holding that regarding truthmakers of a proposi-
tion at a world are something inside that world seems incompatible with the
account of modal truthmaker semantics when it comes to the truthmakers of
modal statements. In the following, I will consider some examples of this view
and discuss how, in my opinion, they happen to be inconsistent with the ac-
count presented in the previous chapters.
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2.1.1 Mereological sums

I take David Lewis’s stance as the example of the view that a possible world is
the maximal mereological sum of its parts and truthmakers of modal proposi-
tions are to be found among these parts. More specifically, according to Lewis,
a world is

M1: “the mereological sum of all the possible individuals that are
parts of it. [...] It is a maximal sum: anything that is a world-
mate of any part of it it is itself a part” and “every part of
a world bears some such relation to every other part, but no
part of one world ever bears any such relation to any part of
another” (see (Lewis, 1986, ch. 1.6))

where two individuals are said to be worldmates whenever they are both parts
of the same world.

Now, consider a(n) (exact) truthmaker s of �A at w (s w �A); intuitively,
such s must stand for something on the side of the world w which makes
�A true. According to Lewis’s view about truthmakers, I believe, we are
legitimated to regard s as in individual in w which makes �A true, where �A
is a predication about the individual s. For instance, in a paper from 2003
(Lewis, 2003), Lewis holds that the truthmaker of the proposition “the cat Long
is black” is Long qua black, where “Long qua black is none other than Long
himself” (see (Lewis, 2003, p.31))2. According to M1, s, being an individual at
w, must be a part (in the mereological sense) of w; hence, we are advocating a
mereological understanding of the at relation between s and w. However, by
semantic conditions, s being a truthmaker of �A at w corresponds to the fusion
(in the broader sense) of all the truthmaker of A at the accessible worlds from
w, namely s contains some parts of other worlds responsible for the truth of
A; in Lewis terminology, then, s will count as a trans-world individual, namely
and impossible individual (see (Lewis, 1986, ch. 4.3)). Now, it seems that
we are committed to inconsistency. By assumption, s would count as a part
of w (something on the side of w) and s is made of parts of other worlds;
this means that w share some parts with all its accessible worlds. But this
is in contradiction in general with Lewis’s account of possible worlds and,
specifically, with M1, which implies that worlds are disjoint and cannot overlap
(see also (Lewis, 2003, ch. 4.2)). A similar inconsistency arises from truthmaker
of possible statements. For instance, consider ♦A: a(n) (exact) truthmaker s
of ♦A at w would be the same truthmaker s of A at some world w1 accessible
from w (s w ♦A ⇔ for some v such that wRv, s v A). Under a mereological
understanding of the at relation, we would have that such truthmaker s of ♦A
at w is a part of w, and, by semantic conditions, s is also the truthmaker of A at
w1, namely s is a part of both w and w1 and so w and w1 would overlap; hence,
this situation would generate the same inconsistency as before. However, the

2Likewise, for all the other predications, Lewis claims “the truthmaker of a true predication is
identical with the subject of that predication”, (see (Lewis, 2003, p. 35))
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overlapping among worlds is not the only problem with possibility statements
like ♦A. Indeed, given S5 as the intended system for modalities (where every
world is accessible from each other and the necessity of A and possibility of A
respectively amount to A holding in all and some possible worlds), every fact in
every world would be possible with respect to any world; hence, every world
would collapse to (be part of) one world and maximality and the concept of
different possible worlds itself wouldn’t make sense. For instance, without loss
of generality, consider two worlds w and w1 accessible to each other. Consider A
true in w; this means that, by the accessibility of w from w1, there is a truthmaker
t of ♦A in w1 such that t is a part of w1; but t, by semantic conditions, must
also be a truthmaker of A at w, namely it is a part of w which is responsible
for the truth of A at w. Analogously from w1 in w. But then, any part of w is
also a part of w1 and vice versa, so w and w1 would amount to the same world.
This implies that, in S5, all the worlds will collapse to just one possible world
(accessible to itself) and so, every truth (in such world), even a contingent one,
is also a necessary truth.

Of course, one could overcome these problems by employing, in a very
Lewisian spirit, a counterpart relations among parts of different worlds; hence
a certain part s of w would be a truthmaker of♦A whenever s has a counterpart s1
in some w1 (namely s1 is a part of w) accessible from w such that s1 is a truthmaker
of A at w1. This strategy could also be used for necessitated statements like
�A: a truthmaker of �A at w is such if and only if its counterparts s1, s2, ... in
all the worlds w1,w2... accessible form w are truthmakers of A at each w1,w2...
However, this move doesn’t seem compatible with the philosophical intuition
behind the semantic machinery: indeed notice that a truthmaker t of �A at w is
taken to be the fusion of other truthmakers of A in all the accessible worlds from
w. But this idea of fusion doesn’t seem to play any role in the counterparts-based
view mentioned above.

The argument above, I believe, is not oriented at showing specifically the in-
consistency of Lewisian account of possible worlds with modal truthmaker se-
mantics; more in general, I think, it can serve as an argument against those views
according to which worlds are maximal and disjoint sums of facts/individuals and
truthmaker at worlds have to be understood as parts of those worlds; and we
take Lewis’s account as an example of this kind of view. Indeed, notice that
the argument discussed for truthmakers of possibility statements of the form
♦A can be easily extended to any view based on the principle that truthmakers
which make propositions true at a world are parts of that world.

2.1.2 States of affairs

The relation between truthmakers/facts and worlds could be understood as a
non-mereological relation: a fact s at w could, for instance, be understood as a
fact included in w and w as a maximal inclusive entity. The champion of this
view can be found in Plantinga; he claims that
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M2: “A possible world is simply a possible state of affairs that is
maximal”

where possible is understood in a broadly logical sense as consistency (see
(Plantinga, 1978, p.45); for instance, the conjunctive state of affairs that John
is tall and John is not tall is an impossible state of affairs) and maximality is un-
derstood as a relation among states of affairs: a state of affair w is maximal if
and only if for any state of affair S, w includes S of S precludes S (see ibidem),
where w is said to includes S if it is not possible that w obtains (or is actual),
and S fails to obtain and w is said to precludes S if it is not possible that both w
and S obtain. In this sense, we understand a fact s at w as s being included in w.

This view, I believe, can handle without big difficulties the truthmakers of
necessity statements: s is a truthmaker of �A at w whenever s is a state of affair
(or fact) which includes all the truthmakers of�A at the different possible worlds
accessible from w. For this view, overlapping among worlds is not problematic:
a state of affair can be included in different possible worlds. However, M2 is
subject to the same modal collapse when it comes to possibility statements of
the form ♦A; as in the case of M1, take, without loss of generality, two worlds w1
and w2 accessible from each other. Consider A true in w2, this means that there
is a truthmaker t of ♦A included in w1; but, by semantic conditions, such t is
also included in w1. But then, every state of affair included in w2 is included in
w1; analogously we can reason from w2 to w1 and show that w1 and w2 include
the same states of affairs. Hence w1 and w2 amount to the same possible world;
this means that in a S5 system, all the worlds collapse in just one world w and
every truth, even contingent in w, becomes a necessary truth.

The same counterargument could be repeated for a combinatorialist account
of possible worlds too; according to the combinatorialist Armstrong:

M3: “[...]possible atomic states of affairs may then be combined in
all ways to yield possible molecular states of affairs. If such a
possible molecular state of affairs is thought of as the totality
of being, then it is a possible world.” (see (Armstrong, 1986, p.
579)

where possible states of affairs are obtained from actual objects and proper-
ties. Again, if we regard truthmaker as states of affairs and possible worlds as
maximal re-combinations of states of affairs, then we would be committed to a
modal collapse.

2.2 Truthmakers and Possible Worlds

Given the failure of some of the traditional accounts of possible worlds, a
different idea is needed. I think that the philosophical key is to consider facts
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relativized to possible worlds as truthmakers as a whole; we can find a similar
idea in (Linsky, 1994): a truthmaker of a true proposition A at w would be the
relational fact that [A] holds at w, namely the fact [At([A],w)]. Analogously, a
truthmaker of ♦A at w would be the fact [At([♦A],w)]; more explicitly, according
to Lisnky, we can reduce the modal operator to quantification over possible
worlds and hence obtain that the truthmaker of ♦A at w amounts to the more
complex relational fact [At([At(A,w1)],w)] where w1 is an accessible worlds from
w. In this way, possibility and necessity become a matter of quantification over
worlds and iteration of relational properties between facts and worlds. Indeed,
within Lisnky’s account, the key for making possibilities true is the iteration
of the relation At: “possibly A” at w is made true by the fact that there occurs
an At relation between [At([A],w1]) (with w1 accessible from w) and w itself.
However, this iteration is not clearly expressible within the semantic account:
a truthmaker of ♦p at w is such if and only if it is also the truthmaker of p at
w1 accessible from w. Actually, I believe, we have no clear need of iterating the
At relation in order to construct truthmakers for modal proposition: we could
simply take, according to the semantic clauses, the truthmaker of ♦p at w to be
the relational fact [At([p],w1)] with w1 accessible from w, namely the truthmaker
of p at w1 is identical with the truthmaker of ♦p at w (with w1 accessible from
w). However, our idea still shares the conceptual core with Lisnky’s account,
namely that

“Being possible would not be a primitive property of non actual-
facts, but rather a relational property of belonging to a certain max-
imal fact.” (see (Lisnky, 1984, p. 203)).

Following the semantic clauses we would have that the truthmaker of an atomic
sentence p at w is simply the fact At([p],w) and the truthmaker of a conjunction
p ∧ q is simply the fusion [At([p],w)] t [At([q],w)]. It seems, at this point,
acceptable to impose some constraints on the t operation among At facts, for
instance it is plausible to impose the constraint that [At([p],w)] t [At([q],w)]
returns the fact [At([p] t [q],w)].

So, the semantic account seems more compatible with such a view according
to which a truthmaker amounts to a relation between facts and worlds, without
requiring any iteration of such relations. Notice, however, that we have no
problem in accepting in our ontology facts of the form [At([At(A,w1)],w)]: they
are simply more complex facts encoding a relation between two other facts.

At this point, it remains unclear what the At relation stands for and what
conception of possible worlds is more compatible with the semantic account.
At could be taken as a primitive unique relation as Linsky seems to suggests:
his “account relies upon a primitive modal notion of truth at a world for which
we need an account.” (see (Linsky, 1994, p. 203)). What should be the features
of such a relation? In the following we will analyze some possible answers:

• At, for instance, could be taken intuitively as the relation of parthood be-
tween facts and worlds: for instance, we would have that At([p],w) stands
for the fact that [p] is a part of w and, by iterating At, At([At([p],w)],w)
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means that [At([p],w)] is a part of w. Under this conception, it would be
legitimated to ask what’s the nature of the possible worlds and, the most
intuitive answer, would be that a world is the mereological sum of all the
facts that are parts of it. But this view cannot be reduced to Lewis’s notion
of possible worlds. Consider, as before, two possible worlds w1 and w2
which access to themselves and to each other and consider a fact [p] such
that [p]Atw1 (where [p]Atw1 := At([p],w1)). By accessibility relations, we
have that [[p]Atw1] is a part of both w1 and w2, as [[p]Atw1] is the truth-
maker of ♦p at w1 as well as it is the truthmaker of ♦p at w2. Hence, we are
committed to w1 and w2 sharing the part [[p]Atw1], which is inconsistent
with the non-overlapping constraint of Lewis’s account. Hence, under-
standing At as a mereological relation needs a new notion of possible
world, different from the Lewisian idea of worlds as mereological sums
of their parts.

• More appealing is an understanding of At as an inclusion relation à la
Plantinga: At holds between a fact [p] and a world w if and only if it
is not possible that w obtains without [p] obtaining. However, this idea
is not consistent with Plantinga’s notion of possible worlds as maximal
states of affairs, more specifically it seems that under this understanding
of At, possible worlds turn out not to be maximal. Indeed, consider two
inaccessible worlds w1 and w2 and the fact that [p] included in w2, namely
[[p]Atw2]. By non-accessibility, it’s not necessary that♦p is made true at w1,
hence it’s not necessary that w1 obtains without [[p]Atw2] obtaining; on the
other hand, there is no clear reason why it shouldn’t be possible that both
w1 and [[p]Atw2] obtain, indeed, why should the fact that [p] is included
in w1 logically incompatible with w1? Under this understanding of At, the
possible worlds would lose their status of maximal states of affairs, hence,
a new notion of possible worlds different from the Plantinga’s would be
needed.

• Alternatively, we can simply regard At as a primitive relation between
facts and world; however this idea would be inconsistent with the classical
combinatorialist notion of possible worlds: by accepting a truthmaker in
the actual world of some possible fact [p], namely the fact that [p]Atw1,
where w1 is a possible world accessible from the actual one, we would
be committed to the actuality of the possible world w1, namely to the
actuality of all the combinations of object and properties in w1. But,
some of those combinations could be incompatible with some other actual
combinations, for instance the weather in Amsterdam may be raining in
the actual world and not raining in w1. This would exclude the possibility
of w1 being actual.

• Otherwise, one could go for a very peculiar view of possible worlds as
atomic entities which are not maximal nor molecular, nor inclusive, nor
total. In this peculiar view, facts and worlds would be connected by a
primitive relation At which cannot be understood in terms of parthood nor
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inclusion. Besides the implausibility of this account of possible worlds,
such view stresses the facts that possibility and necessity are merely re-
lational properties and truthmakers of modal statements are just facts
instantiating these relations.

But now, some problems arises with merely possible facts and individuals:
given our commitment to truthmakers of the form [p]Atw what kind of com-
mitment do we have to merely possible facts and individuals? For instance,
consider the merely possible fact that Wittgenstein might have had a child in
the actual world w@ ( with ♦Ftc being the sentence expressing that Wittgenstein
(t) is the father of c). Presumably, the truthmaker at w@ of ♦Ftc would be the
fact [[Ftc]Atw1] with w1 accessible from w. At a first glance, being ♦Ftc true and
made true by the fact [[Ftc]Atw1] simply commits us to the fact that a certain
relation holds between the fact that Wittgenstein had a child and a possible
world, without forcing us to accept the obtaining of [Ftc] or the existence of c.
However, whether [[Ftc]Atw1] carries over the commitment to the obtaining of
[Ftc], requires the answer to the more general question of whether facts (com-
plex or atomic) carry over the commitment to their constituents (such answer
is, I think, independent of [[Ftc]Atw1] being conceived as atomic or complex,
the commitment to Ftc or c would be in any case problematic). All this implies
a deeper discussion on the metaphysics of facts which is behind the scope of
this thesis.

2.3 Conclusions

In the previous sections, I tried to argue for the incompatibility of certain views
of truthmakers for modal truths with the traditional conceptions of possible
world. However, developing a precise metaphysical view on possible worlds
and At relation falls outside the scope of this thesis. In principle, the semantic
account would be neutral with respect to the different understandings of At
relation: we just confined ourselves with showing that some understandings of
the At relation are incompatible with some conceptions of possible worlds. What
is essential for our aim is to have shown that the formal treatment of modal
truthmaker semantics requires the conceptual move of relativizing truthmaking
at worlds as well as truthmakers at worlds. Formally, we have a semantic
account of how a state makes true a sentence with respect to a world, for instance
a state s is a truthmaker of ♦p at w if and only if s is the truthmaker of p at some
accessible world w1. What is such truthmaker at w is a matter of philosophical
discussion. We argued that the key idea is to relativize facts at worlds, for
instance s truthmaker of ♦p at w would be the fact (wider scope) that the fact
(narrow scope) [p] is in a certain relation At with w. What such At amounts to
is a matter of philosophical discussion as well.

This view, I believe, open the doors to an understanding of the possibility
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as a merely relational property, within the truthmaker framework, in the sense
that a truthmaker of a possible facts with respect to w is simply the relation
(no matter how we understand it) which occurs between that fact and the
corresponding possible world. For instance, the truthmaker of “Wittgenstein
might have had a child” in the actual world w@ is the fact that [Wittgensteing had
a child] is part of/included in/obtaining at a possible world w1 accessible from
w@. Notice, however, that the notion of accessibility relation is still fundamental
to understand how possibility works: a world is possible relative to another (see
(Kripke, 1963)), and accessibility relations among worlds allow us to model
this concept of being possible relative to. One could think of promoting an
understanding of the accessibility relations in terms of the iteration of the At
relation, for instance, a worlds w2 is said to be accessible from w1 if and only if
every facts of the form [x]Atw2 is also a fact at w1, namely the At relation holds
between [x]Atw2 and w1 (At([x]Atw2,w1). This conceptual move would be of a
very Lewisian flavour: it would simplify in ideology our account: a relation of a
certain kind (accessibility relation) would be understood in terms of a relation
of another kind (At relation) already present in our account.

2.4 Comparisons

In the literature about truthmaker semantics, it seems that a uniform formal
treatment of modalities, especially alethic modalities (necessities and possibilities)
is still lacking. Kit Fine in one of his paper (Fine, 2016) mentions some ideas
concerning how modalities are supposed to be treated within the framework
of truthmaker semantics; given a state space 〈S,v〉, he distinguishes a subset
P of S of possible states such that P is downward closed, namely for any state
s ∈ P and for any other state t ∈ S, if t v s then t ∈ P. This corresponds to the
intuition that if a fact is possible, then also its parts must be possible. Moreover,
two states re said to be compatible if their fusion is a possible state. Notice that
compatibility implies possibility, in facts, if two states s, t are compatible, then
their fusion must be possible, namely s t t ∈ P, and, by downward closure of
P, it is also the case that s and t are in P, namely they are possible. Kit Fine, in
the same paper, also provides us with a definition of a necessary state: a state s
is said to be necessary if it is compatible with all the possible states. Finally, a
state w is said to be a possible world when it is maximal, in the sense that for
any state t is S, if t is compatible with w, then t v w. These ideas, however, lack
a precise and faithful formal treatment in the sense that no (exact) truthmaker
semantics for modal statements has been developed starting from them.

In the following we will try to compare Korbmacher’s framework with that
of Fine; we will try to argue for the fact that Korbmacher’s semantic framework
has several formal and philosophical advantages over Fine’s semantics.

• Modalities. At first, it is not clear what Fine precisely mean by possible
states. One could think that a possible state is defined in terms of com-
patibility, namely s is said to be possible if and only if it is compatible
with itself, indeed s ∈ P if and only if s t s ∈ P (notice that the fusion of
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every state with itself returns the same state). But this definition is cir-
cular: compatibility can be defined in terms of possibility and vice versa,
namely x is compatible with y if and only if x t y is possible. So, what
is prior to what? It doesn’t matter anyway: what is crucial is that both
compatibility and possibility are modal notions and if one takes one of them
as a primitive, she lacks explanatory power. Notice, instead, that in our
account we can define possible states in purely extensional terms accord-
ing to our favourite view of possible worlds, for instance, we can define
a possible state as a part of a certain world and two compatible states as
part of the same world. So, it seems that where Fine postulates primitives
to account for some phenomena, we have a familiar explanation of them.
In this sense his account lacks explanatory power: he has to postulate
primitives modal notions while we can provide a definition of them.

Taking modal concept as primitives also generates other problems con-
cerning the formulation of exact truthmaking conditions for modal state-
ment: what is a truthmaker of a modal sentence like �A or ♦A? More
likely, a truthmaker of �A must be a state which is necessary and makes A
true. We have already encountered this problematic situation: defining
truthmaking conditions in this way generates a problematic commitment
to disjunctive facts (see chapter 2). So, if one wants to maintain modalities
as primitives, then he should also define suitable exact truthmaking con-
ditions for modal statements; but such a semantic account is still lacking
in Fine’s framework.

• Exact Truthmaking Conditions. It is also possible, in principle, to define
possibility within Fine’s framework in terms of logical compatibility, in
the sense that two states x t y are said to be compatible if and only if for
any formula A it is not the case that x  A and y  ¬A. Notice, actually
that Fine imposes an exclusivity constraint over the possible states in his
models, namely for any formula A, no possible truthmaker of A is com-
patible with a possible falsemaker of A (and this follows by imposing an
exclusivity constraint on the valuation, namely, for any propositional let-
ter p, no possible truthmakers of p is compatible with a possible falsemaker
of p). Consequently, Fine could go further and take possible worlds to
be maximal sum of compatible states and this definition would resem-
ble very much Plantinga’s view on possible worlds. This would solve the
problem of having modalities as primitives but leaves open the problem of
how to define truthmaking conditions for modal statements. For instance,
what would be a truthmaker for ♦p? More likely it would be a possi-
ble truthmaker of p, and so a state compatible with itself which makes
p true. But what happens if p is a mere possible fact, namely something
which is not actual but it might have been such? For instance consider the
statement “Wittgenstein might have had a child” (♦Ftc). Clearly, it is not
the case that Wittgenstein had a child, but it might have been so. Hence,
there must be a(n) (exact) truthmaker s for the sentence ♦Ftc, namely a
state which is possible and makes Ftc true. But now, what prevents s to
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make also true the simple sentence Ftc? In which sense s is a(n) (exact)
truthmaker of Ftc? This shouldn’t be ambiguous: s make also Ftc true,
which is clearly counterintuitive, indeed it is not true that Wittgenstein
had a child and so, there can be nothing which makes it true.

It seems that, in principle, Korbmacher’s framework is more expressive than
Fine’s one since we have been able to provide an exact truthmakers semantics
for modal statements while this is lacking in Fine’s account. For all these
reasons, the framework presented and developed in the previous chapter seems
to be a more satisfactory answer to the question “how to construct a truthmaker
semantics for modal statements?”.
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3 Applications

In this section, we will focus on one possible application of the semantic frame-
work developed in the previous sections. We will try to analyze how and
whether it can furnish a good semantic characterization of the modal extension
of the logic of analytic containment. Kit Fine, in (Fine, 2016) has shown that
the propositional version of the logic of analytic containment (AC), originally
presented in (Angell, 1989), is sound and complete with respect to (an inclusive
version of) truthmaker semantics; our goal is to expand the work done in (Fine,
2016) to the modal case by employing TS�. More specifically we will proceed
by:

(i) introducing the propositional logic of analytic containment and present-
ing a natural modal extension of it (we will denote this extension by
“AC�”);

(ii) developing a modal truthmaker semantics for AC� by expanding the
semantics presented in (Fine, 2016) with TS�;

(iii) proving soundness of AC� and extending some results demonstrated in
(Fine, 2016) to AC�.

3.1 Analytic Containment

Richard B. Angell in 1989 introduced the first original formulation of the propo-
sitional logic of analytic containment (AC). Angell’s aim was to formalize a
notion of entailment understood in terms of containment of meanings:

“The concept of entailment [...] has also been connected to the
concept of containment in Kant’s sense of analytic containment: A
entails B only if the meaning of B is contained in the meaning of A”
(Angell, 1989, p.1).

Angell claims that this concept of analytic entailment is also connected to the
concept of synonymity:

“S1 is synonymous with S2 if and only if S1 entails S2 and S2 entails
S1” (ibidem)

In the original formalization and axiomatization of AC (see (Angell, 1989)),
Angell takes synonymity as the a primitive symbol in the language “<>”, so
A <> B stands for “A is analytically equivalent to B”, i.e. “A is synonymous
with B” . By means of <>, the concept of analytic entailment, i.e. containment
of meaning, (>) can be defined as A > B := A∧ B <> A, where A > B stands for
“A analytically entails B”; alternatively, taking > as primitive, one can define
<> as A <> B := (A > B) ∧ B > A. For instance, an alternative axiomatization
of AC in terms of > as the primitive in the language can be found in (Correia,
2004).
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A well-formed formulas in the language of AC has the form of A <> B
where A and B are classical well-formed formulas; here we stick to the following
definition of well-formed formulas:

A ::= p | ¬B | B ∧ C | B ∨ C

where implication and equivalence are defined in the standard way: A→ B :=
¬A ∨ B and A ↔ B := (A → B) ∧ (B → C). Notice that, by the definition, <>
cannot be iterated, namely <> cannot be flanked by formulas containing <>:
on both sides of <> a classical formula must occur which, by definition, cannot
contain <>.

Angell syntactically defines theoremhood in his system by introducing some
intuitive constraints on the relation of analytic containment/equivalence; we
will mention some among the most relevant:

• if A <> B is a theorem, then they share the same propositional letters.
This constraint is meant to rule out the “paradoxes of strict implication”,
like (i) A > B ∨ ¬B (ii) and A ∧ ¬A > B from the theorems of AC. Indeed,
consider some instances of (i) and (ii), namely p > (q∨¬q) and (p∧¬p) > q:
intuitively, it is not clear at all how the meaning of q∨¬q can be contained
in p or the meaning of q can be contained in p∧¬p. For example, take p to
stand for “it is raining in Amsterdam” and q for “Socrates if philosopher”:
intuitively the proposition that it is raining in Amsterdam has nothing to
do with Socrates being a philosopher, hence “it is raining in Amsterdam”
cannot contain analytically entail that either Socrates is a philosopher or
not (and analogously for (p∧¬p) > q. Moreover, this constraint, rules out
the law of addition (iii) A > A ∨ B and absorption (iv) A <> A ∧ (A ∨ B);
form the same reason as before, (iii) and (iv) shouldn’t count intuitively
as theorems of AC.

• if A <> B is a theorem then every variable occurs positively (negatively)
in A if and only if it occurs positively (negatively) in B. This rules out
from the theorems of AC formulas like (A ∧ ¬A) ∧ B <> A ∧ (B ∧ ¬B)

Angell ends up with the following axiomatization

(Ax.1) A <> ¬¬A

(Ax.2) A <> (A ∧ A)

(Ax.3) (A ∧ B) <> (B ∧ A)

(Ax.4) A ∧ (B ∧ C) <> (A ∧ B) ∧ C

(Ax.5) A ∨ (B ∧ C) <> (A ∨ B) ∧ (A ∨ C)

(R.1) From ` A <> B and ` X infer ` X(A/B)
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where X(A/B) is the formula obtained by replacing come occurrences of A in
X with B. Notice that any theorem of AC has the form of A <> C3. Correia
in (Correia, 2016) takes a specific fragment of AC to stand for a faithful for-
malization of his notion of factual equivalence which relies upon the intuition
that two formulas are factually equivalent “when they describe the same facts
or situations understood as worldly items, i.e. as bits of reality rather than as
representations of reality” (see (Correia, 2016)).

We will proceed in our analysis of the modal extension of AC trying to
be as neutral as possible about the philosophical interpretations of AC: our
aim is not to provide a formalization of the modal version of the notion of
factual equivalence or partial content, we are rather concerned with investigating
whether, when we expand the language of AC with modal operators, TS� can
provide the obtained system with a good semantic structure.

3.1.1 Modal Analytic Containment

In the following, we will try to develop a natural modal extension of AC (AC�).
The most intuitive expansion is to augment the language of AC by adding

modal operators: we would now define classical modal formulas as

A := p | ¬B | B ∧ C | B ∨ C | �B

where the possibility operator ♦ is defined in the standard way as ♦A := ¬�¬A.
A formula in the language of AC� (LAC� ) would be recursively defined as:

if A and B are classical modal formulas, then A <> B is a well-formed
formula of LAC� .

Notice that by definition, in LAC� , <> cannot fall into the range of a modal
operator and it cannot be iterated, as for the non-modal case.

We want to preserve the intuitive demand that theoremhood (i.e. validity)
in AC� amounts to modal analytic containment, namely that A <> B is a
theorem (i. e. valid) in AC� if and only if the meaning of B is contained in
the meaning of A and vice versa. Now, our attempt now will be to determine
how the relationship of modal analytic containment between two formula A
and B holds or fails in virtue of semantic properties of A and B. Notice that
this is analogous but, in some sense, reverse with respect to Angell’s attempt:
he originally defined the relationship of analytic containment between two
formulas A and B by appealing to the syntactic properties of A and B. The
points of departure of our plan are Fine’s semantic for AC developed in (Fine,
2016) and TS�. We will now introduce some new definitions which corresponds
to a modal extension of the notions we find in (Fine, 2016):

Definition 27 An inclusive E-Kripke model is a tuple E = 〈S,v,W,R, v+, v−〉 where
〈S,v,W,R〉 is an E-Kripke frame and v+, v− : LAC�

prop → P(S), where LAC�
prop consists of

3Fine proposes an alternative axiomatization of his system which is equivalent to the original
AC.
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the propositional letters in the language of AC�, such that for any propositional letter
p and any w ∈W:

X ⊆ v+
w(p) ⇒

⊔
X ∈ v+

w(p)
X ⊆ v−w(p) ⇒

⊔
X ∈ v−w(p)

and

v+
w(p) , ∅

v−w(p) , ∅

namely the set of exact truthmakers (falsemakers) of an atomic sentence is
non-empty and closed under

⊔
operation. This constraints correspond to the

intuition that the fusion of two exact truthmakers s and t of the same proposition
p should still be wholly relevant for the truth of p. Indeed, if both p and t doesn’t
contain anything irrelevant for the truth of p, then their fusion also should not
have any irrelevant parts for the truth of p. This conditions would be essential
for proving Lemma 16 and Lemma 19.

In the following, we will define different notions of content of a sentence
which has been originally formulated in (Fine, 2016). The main and only dif-
ference with respect to Fine’s system is that our notions of content will be
relativized to worlds. The long definition which will follow are essential in
order to construct a semantics for the modal extension of the system AC.

Definition 28 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, the pos-
itive (negative) exact content of a formula A at E, with respect to a world w ∈ W,
|A|+w (|A|−w), is the set of its exact truthmakers (falsemakers), namely |A|+w = {s : s w A}
(|A|−w = {s : s w A}).

Definition 29 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, the pos-
itive (negative) complete content of a formula A at E, with respect to a world
w ∈ W, |A|

+

w (|A|
−

w), is the
⊔

-complete closure set of its positive (negative) ex-
act content at E, namely |A|

+

w = {s : s =
⊔

T, with T , ∅ and T ⊆ |A|+w}
(|A|

−

w = {s : s =
⊔

T, with T , ∅ andT ⊆ |A|−w}).

Definition 30 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, the posi-
tive (negative) replete content of a formula A at E, with respect to a world w ∈ W,
[A]+

w ([A]−w), is the convex-closure of its positive (negative) complete content at E,
namely [A]+

w = {s : s1 v s v s2, for some s1, s2 ∈ |A|
+

w} ([A]−w = {s : s1 v s v
s2, for some s1, s2 ∈ |A|

−

w}).

We will now define three relations between sets of states:
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Definition 31 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, for any
two subset T, Z of S, we say that T subsumes Z at E, T w Z, if and only if for any
t ∈ T there is a z ∈ Z such that t w z.

Definition 32 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, for any
two subset T, Z of S, we say that T subserves Z at E, T v Z, if and only if for any
t ∈ T there is a z ∈ Z such that t v z.

Definition 33 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, for any
two subset T, Z of S, we say that T analytically contains Z, at E, T > Z, if and only
if T w Z and Z v T4.

We have now all the ingredients to introduce a semantics for AC� which is a co-
herent modal expansion of the one in (Fine, 2016): given an inclusive E-Kripke
model E, we say that a formula A > B is positively true at E with respect to a
world w in E if and only if the positive replete content of A at w analytically
contains the positive replete content of B at w. More formally

E,w |= A > B ⇔ [A]+
w > [B]+

w

We say that A > B is valid in an inclusive E-Kripke models E if and only if
A > B is true at all the world w in E. More formally

E |= A > B ⇔ for any w ∈W, [A]+
w > [B]+

w

Now, we will introduce new truthmaker conditions which should corre-
spond to an inclusive intuition about the relation of truthmaking. We have seen
above that the inclusive constraint on E-Kripke models was intended to model
the principle that the fusion of two exact truthmakers of a sentence A is also an
exact truthmaker of A. The same argument can be applied to the truthmakers
of all formulas. An interesting case for this argument is the one of disjunctions:
assume s and t are truthmakers of a disjunction A ∨ B, then they both cannot
contain anything irrelevant for the truth of A ∨ B. This seems to intuitively
implies that also their fusion shouldn’t contain anything irrelevant for the truth
of A. Notice that from this principle, it follows that it can be the case that if
s w A and t w B then st t w A∨B since both s and t are exact truthmakers of
A ∨ B. Namely, truthmaker of a conjunction A ∧ B are also truthmakers of the
disjunction A∨ B (the same reasoning, with same consequence, can be applied
to the truthmaker conditions of ♦A, and falsemaker condition of �A and A∧B).
Hence, we will introduce new truth conditions for ∧, ∨, � and ♦ to simplify
the semantics for AC�; let us call the resulting semantics inclusive semantics for
AC�.

Given an inclusive E-Kripke model E, we inductively define the inclusive
semantic conditions for a classical formula A to be verified or falsified by a state

4Notice that T > Z is an abuse meant to simplify the notation as the relation > by definition
holds between two formulas.
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s with respect to a world w:

s w A ∧ B ⇔ s w A or s wB or s w A ∨ B
s w A ∨ B ⇔ s w A or s w B or s w A ∧ B
s w �A ⇔ s v A for some v : wRv or

there is a function f : W → S such that for a non-empty Y ⊆ R[w],
for any v ∈ R[w], f (v) v A and s =

⊔
(
⋃

v∈R[w]{ f (v)})
s w ♦A ⇔ s v A for some v : wRv or

there is a function f : W → S such that for a non-empty Y ⊆ R[w],
for any v ∈ R[w], f (v) v A and s =

⊔
(
⋃

v∈R[w]{ f (v)})

where R[w] is the set of worlds accessible from w. The remaining case are anal-
ogous to the ones introduced for TS�. Notice that the non-emptiness constraint
is justified by the intuition that the null-state cannot make ♦A true at w when
w has no successor. Indeed, consider an E-Kripke model E in which a world
w has no successor; clearly �A would be vacuously true at w and the vacuous
true of �A at w is also expressed by the fact that, by semantic conditions, the
only truthmaker of �A at w is the null state. Indeed, nothing (no positive fact)
is required for the truth of �A at w. Now, consider ♦A at w; intuitively, the
possibility of A requires substantial conditions in order for it to obtain: there
must be some world in which A is true (analogously we can reason for the falsity
of necessity). If we had formulated the inclusive semantic conditions dropping
the non-emptiness conditions of Y ⊆ R[w] it would have happened that in the
model Ewe have considered, ♦A would have been made true at w by the null-
state (since

⋃
v:wRv{ f (v)} would have been empty and

⊔
∅ = 0) although w had

no successor. From now on, we will stick to this inclusive version of the seman-
tics: whenever we usew and w we will refer to the above semantic conditions.

Analogously to (Fine, 2016), we can the following three results are provable:

Lemma 16 For any formula A, any inclusive E-Kripke model E, any world w in E
and any state s, t in E,

[if E, s w A and E, t w A, then E, s t t w A] and [if E, s w A and E, t w A, then
E, s t t wA]

Proof: see appendix A.6.

The inclusive condition we imposed on any E-Kripke model was essential to
prove the above lemma which is essential to prove soundness of AC: it will
allow us, as we will see further, to prove the validity of the principle that
any proposition A is synonymous with A ∧ A, which is Ax.2 in Angell’s AC.
Moreover, Lemma 16 correspond also to to the inclusive intuition on the notion
of truthmaking.

Lemma 17 Given an inclusive E-Kripke model E, for any classical formula A, the
positive complete content of A at E is equal to the positive exact content of A at E under
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the inclusive semantics, more formally

|A|
+

w = {s : s verifies A under the inclusive semantics }

Proof: analogously to (Fine, 2016).

Lemma 18 Given an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉, for any two
subsets T, Z, of S, their convex closure, T∗, Z∗. does not affect analytic containment,
more formally

T > Z if and only if T∗ > Z∗

Proof: analogously to (Fine, 2016).

Now, from the above two lemmas, we can easily prove a simpler characteri-
zation of the truth conditions of a formula A > B with respect to a world w
in an inclusive E-Kripke model E. By Lemma 18, [A]+

w > [B]+
w if and only if

|A|
+

w > |B|
+

w, in fact, by definition, [A]+
w and [B]+

w are respectively the convex
closures of |A|

+

w and |B|
+

w. Moreover, by Lemma 17, we have that |A|
+

w and |B|
+

w
amount respectively to the positive exact content of A and B under the inclusive
semantics, hence, we have that

E,w |= A > B ⇔ (i) |A|
+

w w |B|
+

w and (ii) |B|
+

w v |B|
+

w

Inclusive semantics allows us to give a semantics for AC� in a more natural
way, namely, by Lemma 17,

A > B is true with respect to a world w if and only if (i) every verifier of A at w under
the inclusive semantics contains a verifier of B at w under the inclusive semantics and
(ii) every verifier of B at w under the inclusive semantics is contained in a verifier of B
at w under the inclusive semantics.

In a very natural way, we can now provide semantic conditions for analytic
equivalence (<>):

E,w |= A <> B ⇔ (i) E,w |= A > B and (ii) E,w |= B > A

3.1.2 Axiomatization

Johannes Korbmacher in (Johannes, 2016) has proposed an axiomatization of
AC� which consists of all the axioms and rules of AC plus the following axioms:
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(Dis) �(A ∧ B) <> �A ∧ �B

(Dual) ¬�¬A <> ♦B

He also conjectured that this system is sound and complete with respect to the
semantics for AC� we presented above. However, in the following, we will
show that his conjectured is not true. First, we will start with some considera-
tions on the semantics for AC�.

Angell, in his paper from 1989, points out that the principle of simplification,
namely (A ∧ B) > B is left as “a sort of paradigm” (see (Angell, 1989, p. 121))
of analytic entailment. Indeed, it is quite natural to think that the meaning of
B is contained in the meaning of A ∧ B; notice, in fact, that this principle is
very similar to the intuition behind Fine’s notion of partial content. So, all the
formulas of the form of (A ∧ B) > B should be validated within the semantics
for AC�, as it is in the case of AC. However, consider the formula (♦p ∧ q) > q
and an inclusive E-Kripke modelE = 〈S,v,W,R, v+, v−〉 in which a world w ∈W
has no successor. It is evident that |♦p|+w in E is empty since w has no successor,
namely, by semantic conditions, there is no state in E making ♦p true. This
clearly implies that also |♦p ∧ q|

+

w is empty; moreover notice that, by definition

of the valuation in the inclusive models, |q|
+

w is non-empty. Hence, it turns

out that it is not the case that E,w |= (♦p ∧ q) > q since |q|
+

w does not subserve

|♦p ∧ q|
+

w (see Definition 28). Consequently, (♦p∧ q) > q cannot be valid in AC�.
This is an undesired result: being the principle of simplification the paradigm
of analytic entailment, which should be preserved for AC�, how can it happen
that the meaning of q is not contained in the meaning of ♦p ∧ q?

One way to overcome this problem would be to impose a seriality constraint
over the inclusive E-Kripke models of E, namely, every world in every model
must have (at least) one successor. The results also implies that Korbmacher’s
axiomatization is not complete, indeed, under the seriality constraint there
must be, at least, another validity (which will show later in the paper) which
should be encountered among the axioms, namely �A > ♦A, which amounts
to �A ∧ ♦A <> �A.

We now propose a new conjecture: the system ACD made of all the axioms
and rules of AC plus

(Dis) �(A ∧ B) <> �A ∧ �B

(Dual) ¬�¬A <> ♦B

(D) (�A ∧ ♦B) <> �A

is sound and complete with respect to the inclusive and serial version of the
semantic for AC�.

Now, given the seriality constraint, it is possible to prove the following re-
sult, which is crucial also in order to validate the simplification paradigm:
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Lemma 19 Given a inclusive and serial E-Kripke model E = 〈S,v,W,R, v+, v−〉, for
any formula A and any w ∈W, |A|+w , ∅ and |A|−w , ∅.

Proof: see appendix A.7.

Notice that, by definition, for any formula A and any inclusive and serial E-
Kripke model E and any world w in A, it is the case that |A|+w ⊆ |A|

+

w ⊆ [A]+
w

and |A|−w ⊆ |A|
−

w ⊆ [A]−w. Hence, by Lemma 19 the following corollary is readily
provable:

Corollary 1 |A|
+

w, [A]+
w, |A|

−

w and [A]−w are non-empty for any formula A and any
inclusive E-Kripke model.

Given the results above, we can prove the semantic characterization of analytic
containment (>) in terms of analytic equivalence (i. e. synonymity, <>), in
particular:

Lemma 20 For any inclusive E-Kripke model E and any world w in E, E,w |= A > B
if and only if E,w |= (A ∧ B) <> A.

Proof :

(⇒) Consider an arbitrary inclusive and serial E-Kripke model E and an arbi-
trary w in E and assume E,w |= A > B.

Since by Lemma 19 |A ∧ B|
+

w , ∅, consider an arbitrary s ∈ |A ∧ B|
+

w; since
s w A ∧ B, it is the case that s = u t t such that u w A and t  B, namely
u ∈ |A|

+

w Clearly, since by definition u v s and s was taken arbitrarily in
|A ∧ B|

+

w, it holds that |A ∧ B|
+

w w |A|
+

w.

Since by Lemma 19 |A|
+

w , ∅, consider an arbitrary s ∈ |A|
+

w, it is the case
that s w A; now consider the formula B. By Corollary 1, it is the case
that |B|

+

w , ∅; hence, take a t ∈ |B|
+

w, it is such that t w B. By completeness
of S, consider u = s t t; since t w B and s w A, we have that u w A ∧ B,
namely u ∈ |A ∧ B|

+

w and, by definition, s v u. Since s was taken arbitrarily
in |A|

+

w, we have that |A|
+

w v |A ∧ B|
+

w.

Since by Lemma 19 |A|
+

w , ∅, consider an arbitrary s ∈ |A|
+

w; it is such
that s w A. Since by assumption E,w |= A > B, we have that there is a
t ∈ |B|

+

w such that s w t. Given that t w B, s w A and t v s we have that
s = t t s and so s w A ∧ B, namely s ∈ |A ∧ B|

+

w. Since s v s and s was
taken arbitrarily in |A|

+

w, we have that |A|
+

w w |A ∧ B|
+

w.

Since by Lemma 19 |A ∧ B|
+

w , ∅, consider an arbitrary s ∈ |A ∧ B|
+

w; it is
such that s = t t u for some t w A and u w B. Since by assumption
E,w |= A > B, we have that there is a z ∈ |A|

+

w, namely z w A, such that
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u v z. Now, by completeness of S, consider t t z; by Lemma 16 it is the
case that t t z w A, namely t t z ∈ |A|

+

w. Notice that t v t t u, u v z and
u v t t z; hence, by definition of least upper bound, it must be the case
that t t u v t t z, namely s v t t z. So, since s was taken arbitrarily in
|A ∧ B|

+

w, we have that |A ∧ B|
+

w v |A|
+

w.

(⇐) Consider an arbitrary inclusive E-Kripke model E and an arbitrary w in
E and assume E,w |= (A ∧ B) <> A.

By assumption, E,w |= A > (A ∧ B), namely |A|
+

w w |A ∧ B|
+

w; hence, since
|A|

+

w , ∅ by Lemma 19, consider an arbitrary s ∈ |A|
+

w. It is the case that
there is a t ∈ |A ∧ B|

+

w, namely t w A∧B, such that s w t. Since t w A∧B,
it is the case that t = u t z for some u w A and z w B, namely z ∈ |B|

+

w.
Being the case that z v t, then, since s was taken arbitrarily in |A|

+

w, we
have that |A|

+

w w |B|
+

w.

Now, since |B|
+

w , ∅ by Lemma 19, consider an arbitrary s ∈ |B|
+

w, namely
s w B; since |A|

+

w , ∅ for Lemma 19, take an arbitrary t ∈ |A|
+

w, namely
t w A. Consider st t, it is such that st t w A∧B, namely st t ∈ |A ∧ B|

+

w.
By assumption it is the case thatE,w |= A > (A∧B), namely |A ∧ B|

+

w v |A|
+

w.
Hence there is a u ∈ |A|

+

w such that s t t v u, but then, it also holds that
s v u. Since s was taken arbitrarily in |B|

+

w, we have that |B|
+

w v |A|
+

w.

So far have provided a modal extension of the logic analytic containment
from a semantic point of view; we have shown how to conveniently characterize
this semantics in terms of inclusive modal truthmaker semantics; we have
shown the importance of imposing the seriality constraint over inclusive E-
Kripke models and we have proposed a new axiomatization ACD of the system
of modal analytic containment. In the following, we will discuss the properties
of such system.

3.1.3 Properties of Modal Analytic Containment

Johannes Korbmacher in (Korbmacher, 2016) has conjectured that his system
AC� corresponds to a fragment of the logic of KFDE, more specifically, that the
validities of AC� correspond to a certain class of valid entailments of KFDE. In
order to understand the formulation of his conjecture, we first have to introduce
some notions.

For every formula A, B we recursively define the positive, and negative,
occurrences of atomic sentences in A: for any p

• p occurs positively in p;

• if p occurs positively (negatively) in A then it occurs negatively (positively)
in ¬A;
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• if p occurs positively (negatively) in A then it occurs positively (negatively)
in A ∧ B;

• if p occurs positively (negatively) in A then it occurs positively (negatively)
in A ∨ B;

For any formula A, we define the set of its positive literals as

• t+(A) = {p : p occurs positively in A},

and the set of its negative literals as

• t−(A) = {¬p : p occurs negatively in A}

For convenience, we write t(A) ⊆ t(B) for (t+(A) ⊆ t+(B)) ∧ (t−(A) ⊆ t−(B)).

Definition 34 We say that A preserves the valence of B if and only if t(B) ⊆ t(A).

Preservation of valence has a direct and more intuitive semantic characteriza-
tion: Fine has shown that for any formula A, B, A preserves the valence of B if
and only if A preserves the partial truth of B (see (Fine, 2016)).

Partial truth has been first introduced by Humberstone in (Humberstone,
2003) and further developed in (Fine, forthcoming). The intuition behind the
notion of partial truth is that a proposition, although not true, can be partially
true when some parts of it are true, namely it is true with respect to some of
its parts. For instance, assume that it is raining and foggy in Amsterdam. The
sentence A :“it is raining but not foggy in Amsterdam” is, of course, false, but
can be regarded as true with respect to some of its part. In particular, it is true
that the weather outside Amsterdam is raining, hence A can be intuitively said
to be partially true. Kit Fine goes further in analyzing this notion and claims
that

“One reasonable way to explain the concept [...] is to say that a
proposition is partially true if the actual worlds goes some way
towards making it true.” (Fine, forthcoming)

Taking this as his leading idea, Fine has developed a truthmaker semantic
characterization of the notion of partial truth. The question he tries to answer
precisely is: what is a partial-truth-maker of a proposition A? Intuitively,
following the leading principle mentioned above, it would be something, in
the actual world, which partially contributes to the truth of A. Translated into
the truthmaker framework, a partial-truth-maker would be something which
contributes a non-null part to an exact truthmaker of A. More precisely, this
intuition can be formulated as: a partial-truth-maker s of A should have a part
s1 shared with an exact truthmaker of A. Hence, that part would be responsible
for the truth of a part A and s would indeed be responsible in part for the truth
of A.

This intuition can be easily formalized within the truthmaker framework
and, in fact, Fine ended up with the following characterization of partial-truth-
maker: for any formula A,
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a state s in a model makes A partially true if and only if s overlaps with
an exact truthmaker of A.

Analogously we could reason for the partial falsity of a formula and end up with
the following characterization:

a state s in a model makes A partially false if and only if s overlaps with
an exact falsemaker of A.

(alternatively we say that A is partially true (false) at (with respect to) s if and
only if s overlaps with an exact truthmaker (falsemaker) of A). By imposing an
overlapping constraint on the state models, Kit Fine succeeded in providing a
recursive characterization of the partial-truthmaker conditions for any formula.
The overlapping constraint on a state model S = 〈S,v, v+, v−〉 amounts to:

• for any state s ∈ S, is s overlaps with
⊔

T (Os
⊔

T) for some t ⊆ S, then s
overlaps with come member of T (recall the definition of overlapping in
section 1.1.1)

For any state modelS = 〈S,v, v+, v−〉meeting this constraint, for any state s ∈ S,
Fine in (Fine, 2016) has shown that.

• ¬A is partially true (false) at s if and only if A is partially false (true) at s;

• A ∧ B is partially true (false) at s if and only if A is partially true (false) at
s or B is partially true (false) at s.

• A ∨ B is partially true (false) at s if and only if A is partially true (false) at
s or B is partially true (false) at s.

From this, the following definition naturally follows:

Definition 35 A preserves the partial truth of B if and only if for any state s in any
state model, if B is partially true at s, then A is partially true at s.

Kit Fine, in (Fine, 2016), has shown that this semantic notion of preservation
of partial truth can be characterized in terms of preservation of valence, namely

Theorem 7 A preserves the valence of B if and only if A preserves the partial truth of
B

Form this result, in the same paper, Fine has been able to characterize the notion
of analytic entailment in terms of partial truth and KFDE entailment:

Theorem 8 |=AC A > B⇔ [A |=FDE B and A preserves the partial truth of B]
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where |=AC A > B indicates that A > B is a validity in AC�.
The need of finding an alternative semantic characterization of analytic

entailment comes from the fact that one might want to better understand the
novel semantic notion of analytic containment, maybe by appealing to already
existing notions of entailment. And, indeed, Fine has been able to show that an
analytic entailment amounts to preservation of truth in FDE and preservation of
partial truth, more specifically: A analytically entails B if and only if B preserves
the truth of A under four-valued semantics and A preserves the partial truth of
B.

The syntactic characterization of partial truth, has been employed by Rohan
French in (French, 2017) to show that the system AC corresponds to a specific
fragment of the system of FDE. Johannes Korbmacher has conjecture in (Ko-
rbmacher, 2016) that this characterization can be easily extended to his system
AC�, namely he holds that the following is true

Conjecture 1 |=AC� A > C⇔ [A |=KFDE and A preserves the partial truth of B]

or alternatively, by Conjecture 1:

Conjecture 2 |=AC� A > C⇔ [A |=KFDE and t(B) ⊆ t(A)]

where t(B) ⊆ t(A) is preservation of valence standardly defined (without taking
into consideration the occurrences of atomic letter under modal operators).

This conjecture (if true) would tell us, along the line of French’s result for
non-modal AC, that the system AC� corresponds to a certain fragment of KFDE,
more specifically that the analytic entailments correspond to some class of KFDE
entailments, namely those KFDE preserving the valence of the formulas.

However,is possible to find a counterexample to the above conjecture: con-
sider the formula (p∧q) > (�p∨q). It is the case that (p∧q) |=KFDE (�p∨q); indeed,
take a KFDE modelM and a world w inM and assume w |= (p ∧ q). By seman-
tic conditions it is the case that w |= p and w |= q, hence w |= �p ∨ q , namely
(p∧q) |=KFDE (�p∨q). Moreover, by definition, it also holds that t(�p∨q) ⊆ t(p∧q).
But now consider an inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉 for AC�
such that:

• W = {w, v}

• R = {(w, v), (w,w)}

• S = {s, t,u, z}

• v+
v (p) = {t}

• v+
w(q) = {u}

• v+
v (q) = {t}

• v+
w(p) = {u}
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with

z

t u

s

Notice that z w �p as u t t = z and u w p and t v p, but, clearly, it is not
the case that z is part of any truthmaker of p ∧ q at w. Hence, it doesn’t hold
that (p ∧ q) > (�p ∨ q) is valid in AC�.

So, modal analytic containment cannot be characterize via KFDE entailment
and preservation of valence.

However, it seems evident that the failure of the conjecture arises from the
characterization of the notion of preservation of valence for the modal case.
So, in the following we will try to overcome this problem by finding a suitable
modal expansion of the notion of preservation of valence to the modal case, we
will do this via a modal extension of the notion of partial truth.

3.1.4 Modal Partial Truth

Our goal now is to find a good characterization of the notion partial truth for
the modal case. Given the inclusive and serial TS�, it seems natural to extend
the semantic characterization of partial truth of a formula by relativizing it to a
possible world; we would then have

a state s in a model makes A partially true (false) with respect to a world
w if and only if s overlaps with an exact truthmaker (falsemaker) of A at
w.

By imposing the overlapping constraint on the E-Kripke models, it is possible
to show that for any E-Kripke model E = 〈S,v,W,R, v+, v−〉, any states s ∈ S,
any world w ∈ W, we will obtain the following recursive characterization of
the partial-truthmaker conditions for any formula:

• ¬A is partially true (false) at s w.r.t. w if and only if A is partially false
(true) at s w.r.t. w;

• A ∧ B is partially true (false) at s w.r.t. w if and only if A is partially true
(false) at s w.r.t. w or B is partially true (false) at s w.r.t. w.

• A ∨ B is partially true (false) at s w.r.t. w if and only if A is partially true
(false) at s w.r.t. w or B is partially true (false) at s w.r.t. w.
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• �A is partially true (false) at s w.r.t. w if and only if A is partially true
(false) at s w.r.t. some v such that wRv;

• ♦A is partially true (false) at s w.r.t. w if and only if A is partially true
(false) at s w.r.t. some v such that wRv.

Proof: by induction

Base Case. Straightforward by definition of modal partial truth.

Inductive Case. ¬ (Analogously to the proof in (Fine, 2016).

Inductive Case. ∨ (Analogously to the proof in (Fine, 2016).

Inductive Case. ∧ (Analogously to the proof in (Fine, 2016).

Inductive Case. �

(|=) Consider an arbitrary inclusive and serial E-Kripke model E =
〈W,R,S,v, v+, v−〉 and an arbitrary world w. (⇒) Assume �A is par-
tially true at a state s with respect to w. Then s overlaps with an exact
verifier t of �A at w, namely t w �A. Since, by semantic conditions,
t =
⊔⋃

(v:wRv)({ f (v)}) such that f (v) v A, for some function f , we
have that, by the overlapping condition of E, s also overlaps some
f (v) ∈

⋃
(v:wRv)({ f (v)}). Hence, we have that s overlaps some exact

verifier of A at v for some v : wRv. This means that A is partially true
at s w.r.t. v for some v : wRv. (⇐) Assume Ost for some t such that
t v A for some v : wRv. Now, take a function g such that for any
u ∈ R[w]/{v}, g(u) u A ((we know that such verifier g(u) of A ex-
ists by Lemma 19) and consider the set T =

⋃
(u∈R[w]/{v})({g(u)}). Now,

consider the set T∪{ f (v)} and its least upper bound z =
⊔

(T∪{ f (v)});
consider the function h which is just like g with the only difference
that h(v) = f (v); notice that T ∪ { f (v)} =

⋃
v:wRv{h(v)}, hence, by se-

mantic conditions, we have that z w �. Since t v z and Ost, it also
holds that Osz, namely �A is partially true at s w.r.t. w.

( |=) Consider an arbitrary inclusive and serial E-Kripke model E =
〈W,R,S,v, v+, v−〉 and a world w (⇒) Assume �A is partially false
at a state s with respect to w. Then s overlaps with an exact falsifier
t of �A at w, namely t w �A. Now we have two cases to consider:
(i) there is some v such that wRv and t v A; (ii) for a non-empty
Y ⊆ R[w], there is a function f such that for any v ∈ Y, f (v) v A and
s =
⊔⋃

(v∈Y)({ f (v)}). If (i) holds, then, since Ost, it is also the case
that s partially verifies A w.r.t. some v such that wRv, since t v A
for some v : wRv. If (ii) holds, then we can reason analogously to
the (|=) case, and show that s overlaps with some exact falsifier of A
w.r.t. some v : wRv. (⇐) Assume Ost for some t such that t v A for
some v : wRv. We can reason analogously to the (|=) case.

Inductive Case. ♦
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(|=) We can reason analogously to the |=case of �.

( |=) We can reason analogously to the |= case of �.

We can now define a relation of preservation of modal partial truth:

Definition 36 For all formulas A,B we say that B preserves the partial truth of A if
and only if [for any inclusive and serial E-Kripke model meeting the overlap constraint
E, any state s and any world w in E, if A is partially true at s w.r.t. w, then B is
partially true at s w.r.t. w.]

It is interesting to notice that for the � case we have a characterization of
partial truth in terms of existential quantification over accessible worlds. This
is not surprising. We could think of �A within the truthmaker framework as a
sort of long conjunction, indeed, recall the original intuition by van Fraassen’s:
“Necessarily A is true if and only if A is true in world α1 and in world α2 and so
forth.” Not surprisingly, the truthmaker conditions of�A resembles the one for
conjunctions. From this perspective, given that a conjunction is partially true
only if one of its conjunct is partially true, it seems natural to think that some
worlds suffice for making �A partial true, namely some parts of the conjunction
that �A is intended to represent are true

However, given this characterization of the partial truth of �A, some coun-
terintutive situations arise. Suppose we have an E-Kripke model E (meeting
the overlapping constraint) in which a world w has no successor. Clearly, by
semantic conditions, a formula �A would be true at the null state 0 with respect
to w, but there is no state s , 0 in E such that �A is true at s with respect to
w. Moreover notice that 0 technically doesn’t overlap with any state since the
definition of the overlap relation requires the sharing of a non-null part (see
section 1.1.1). Hence, since no state overlaps with 0, �A is not partially true
at any state with respect to w. Namely, �A, although being true (at 0), is not
partially true. This seems a counterintuitive result.

At first glance, it seems intuitively to accept the principle that every formula
which is true is also partially true (let us denote this principle as “truth implies
partial truth”). In the light of this, the example given above would count as an
undesired consequence of our characterization of the notion of partial truth.
Instead, in the following, will argue for the fact that �A being not partially true
although true shouldn’t be worrying as the intuitive principle that truth implies
partial truth is not universally acceptable. In order to show this, we will follow
the argument exposed by Kite in (Fine, forthcoming): holding the principle that
every true formula is also partially true commits us to the weird consequence
that every formula is partially true. In fact:

(1) assume the principle of truth implies partial truth;

(2) consider a world w with no successor and in which it is not the case that
it is raining in Amsterdam;
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(3) consider a sentence A which is identical (has the same truthmakers as) to
ϕ ∧ >;

(4) since > is vacuously true in any world, then, by (1) > would be partially
true at w.

(5) by (4) and definition of modal partial truth A∧>will be partially true in
w as well;

(6) by (3) A is partially true.

Now, repeat the argument above by considering the case in which A is the
proposition “it is raining in Amsterdam”. It follows that A is partially true at w
although in w. However, in w it is not the case that it is raining in Amsterdam:
how can A be partially true at w? It seems there is no way w goes to make A
true, hence no way that A can be partially true at w.

Along the same line as Fine, we believe that the argument above shows
the universal validity of the intuitive principle that truth implies partial truth
commits us to weird consequence. In order to avoid this kind of consequences,
we should reject the validity of the principle so that the argument above is not
triggered anymore (in particular, step (4) would not follow).

We believe that the the principle is not valid for a certain class of truths,
more specifically, for the class of truths of the form of >. Truths like > has the
feature of being vacuously true, in the sense that nothing is required to make
them true: there is no specific way the world goes towards to make them true,
since they do not require such way. The example of �A being true at w, with w
having no successor, falls into the same class: �A is vacuously true at w as there
is no accessible world from w. The vacuous feature is also reflected in the fact
that the only truthmaker of �A at w is the null state 0 which requires nothing
in order for it to obtain. Indeed, nothing substantially is required for the truth
of �A at w. There is no particular way the world w goes that is responsible for
the truth of �A.

On the other hand, it seems that the notion of partial truth requires some-
thing substantial: there must be some way the world goes towards making a
proposition partially true. But vacuous truths like> or �A at w require no such
way. This implies that trivially verified truths cannot be partially true. Hence,
under this substantial (and correct) understanding of the notion of partial truth,
it seems that the principle of truth implies partial truth is not valid and so, cases
like �A being true but not partially true at w do not represent anymore an
undesired consequence of our semantic characterization of partial truth.

3.1.5 Characterizations

In this section we will discuss whether it is possible to extend Theorem 8 to
ACD and our new notion of modal partial truth. In order to do this some
new characterization result is needed; in particular, we will try to prove van
Fraassen’s theorem for the inclusive and serial version of the semantics. Notice,
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in fact that it is not straightforward to extend the proof strategy of Theorem 3 to
the new inclusive and serial version of the semantics; indeed the problems will
arise from the fact that the operation of exactification (see Definition 11) over
ordinary KFDE Kripke model does not return necessarily an inclusive and serial
Kripke model meeting the overlapping constraint. For instance consider an
ordinary KFDE Kripke modelM = 〈W,R, a+, a−〉 in which a certain world w ∈W
is such that for some propositional letter p, w < a+(p) and w < a−(p). This would
imply that E(M) = 〈S,v,W,R, v+, v−〉 is not inclusive since v+

w(p) = ∅ = v−w(p)
(recall Definition 11).

However, in A.9 we outline a proof strategy used by Korbmacher to show
that:

Theorem 9 A �Di B if and only if A |=DFDE B

where A �Di B means that for any inclusive and serial E-Kripke model meeting
the overlapping constraint E and any state s ad world w in E, E, s �w A implies
E, E, s �w B; and A |=DFDE means that for any serial KFDE Kripke modelM and
any world w inM,M,w |= A impliesM,w |= B.

Proof: see appendix A.9.

We will now prove the following result, which correspond to a modal ex-
tension of Theorem 8:

Theorem 10 |=ACD A > B if and only if [A |=DFDE B and A preserves modal partial
truth of B]

Proof:

(⇒) Assume |=AC� A > B, then we have for any inclusive and serial E-Kripke
model E meeting the overlap constraint and any s,w in the model: (i)
|A|

+

w w |B|
+

w and (ii) |B|
+

w v |A|
+

w. Consider an arbitrary inclusive and
serial model E meeting the overlap constraint and arbitrary w in E, by
assumption, it is the case that:

(i) |A|
+

w w |B|
+

w. Consider an arbitrary s such that s inexactly verifies A,
s �w A (under the inclusive semantics); then there is a t such that t v s
and t w A, namely t ∈ |A|

+

w. Hence, since |A|
+

w w |B|
+

w by assumption,
it must be the case that there is a u such that u w B and u v t; by
transitivity it also holds that u v s, namely, s inexactly verifies B.
Since E, s and w were taken arbitrarily, we have that A �Di B. Hence,
by Theorem 9, we have that A |=DFDE B.

(ii) |B|
+

w v |A|
+

w. Consider an arbitrary s such that s partially verifies B,
namely there is a t such that t w B and Ost. This implies that t ∈ |B|

+

w;
hence, since by assumption |B|

+

w v |A|
+

w, there is a u such that u w A
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and t v u. Since Ost, and t v u, it is also the case that Osu, namely A
is partially true at s w.r.t. w. Since E, s and w were taken arbitrarily,
we have that A preserves the partial truth of B.

(⇐) Assume (a) A |=DFDE B and that (b) A preserves the modal partial truth
of A. Since (a) then, by Theorem 9, A �D B. By contraposition, assume
that there is an inclusive and serial E-Kripke model E = 〈S,v,W,R, v+, v−〉
satisfying the overlapping constraint and a s and a w in E such that
s w B but for no t such that s v t, t w A. Now consider the model
E
∗ = 〈S∗,v∗,W,R, v+, v−〉where W, R, v+ and v− are the same as in E and

– S∗ = S ∪ {z} (where for any s ∈ S, z , s)

– v∗=v ∪{(0, z)} ∪ {(z, t) : s v t} (v∗ is a partial order).

where 0 is the null state. We can show that for s ∈ S and w ∈W, E, s w B
iff E∗, s w B. Now, notice that in E∗, z overlaps only with states having s
among their parts and by assumption there is no state t such that s v t and
t w A. Hence, z doesn’t overlap with any truthmaker of A, namely A is
not partially true at z w.r.t. w. Moreover notice that s w B by assumption,
and so B is partially true at z w.r.t. w. So, A doesn’t preserve the modal
partial truth of B.

3.1.6 Soundness

In the following, we will prove soundness of modal ACD with respect to the
semantics presented above, namely we will prove the validity of the following
axioms:

(Dis) �(A ∧ B) <> (�A ∧ �B)

(Dual) ¬♦¬A <> �A

(D) (�A ∧ ♦A) <> �A (or equivalently, by Lemma 20, (�A > ♦A))

The rest of the proof is analogous to the soundness proof in (Fine, 2016).

(Dis) For any E-Kripke model E, E |= �(A ∧ B) <> (�A ∧ �B)

Proof:

Consider an arbitrary inclusive and serial E-Kripke model (meeting the
overlapping constraint) E = 〈S,v,W,R, v+, v−〉, consider a world w ∈W

(>) (i) take an s ∈ S such that s ∈ |�(A ∧ B)|
+

w. It must be the case that
s w �(A ∧ B); by inclusive semantic conditions s =

⊔
(
⋃

wRv{ f (v)})
with, for any v such that wRv, f (v) = t t u and t v A and u v B;
8Consider the set

⋃
wRv{ f (v)} and call it X; now, consider the function
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g : X → S which maps every element f (v) in X with its component
u such that u v A. Take the set

⋃
f (v)∈X{g( f (v))}; notice that f ◦ g is a

function from W to S and, by construction, for any v such that wRv,
g( f (v)) v A. Hence,

⊔
(
⋃

f (v)∈X{g( f (v))}) w �A; for convenience,
call Y the set

⋃
f (v)∈X{g( f (v))}. We can reason analogously with B and

construct a function h analogous to g such that
⊔

(
⋃

f (v)∈X{h( f (v))}) w
�B; for convenience, call Z the set

⊔
(
⋃

f (v)∈X{h( f (v))}). Notice that,
by semantic conditions,

⊔
Yt
⊔

Z w �A∧�B, namely
⊔

Yt
⊔

Z ∈
|�A ∧ �B|

+

w. Moreover, notice that for any v such that wRv, g( f (v)) v
f (v) and h( f (v)) v f (v), hence

⊔
Y v s and

⊔
Z v s. This means that

(
⊔

Y t
⊔

Z) v s. Since s was taken arbitrarily, we have that it holds
in E that |�(A ∧ B)|

+

w w |(�A ∧ �B)|
+

w.

(ii) Consider a s ∈ S such that s ∈ |�A ∧ �B)|
+

w. It must be the case
that s w �A ∧ �B, namely, by semantic conditions, s = t t u with
t w �A and u w �B. By semantic conditions, t =

⊔
(
⋃

wRv{ f (v)})
with, for any v such that wRv, f (v) v A and u =

⊔
(
⋃

wRv{g(v)}) with,
for any v such that wRv, g(v) = t v B. Consider the sets

⋃
wRv{ f (v)}

and
⋃

wRv{g(v)} and call them respectively X and Y. Now, consider
the set Z = {g(v) t f (v) : g(v) ∈ Y and f (v) ∈ X and wRv}; notice
that, by semantic conditions, for any v such that wRv, g(v) t f (v) v
A ∧ B. Consider the function h : W → S such that h(v) = g(v) t f (v).
Notice that it is the case that for any wRv, h(v) v A ∧ B. Take the
set
⋃

wRv{h(v)}; notice that by semantic conditions
⊔

(
⋃

wRv{h(v)}) w

�(A ∧ B), namely
⊔

(
⋃

wRv{h(v)}) ∈ |�(A ∧ B)|
+

w. Moreover, since for
any v such that wRv, g(v) v g(v) t f (v) and f (v) v g(v) t f (v),
hence t v

⊔
(
⋃

wRv{h(v)}) and u v
⊔

(
⋃

wRv{h(v)}). This means that
s v

⊔
(
⋃

wRv{h(v)}). Since s was taken arbitrarily, we have that it
holds in E that |(�A ∧ �B)|

+

w v |�(A ∧ B)|
+

w.

Since w was taken arbitrarily, we have that |(�A ∧ �B)|
+

w v |�(A ∧ B)|
+

w

and |�(A ∧ B)|
+

w w |(�A ∧ �B)|
+

w for any w.

(<) The proof proceeds analogously to the> case. Just notice that in case
(ii) for any v such that wRv, g(v)t f (v) v s since f (v) v s and g(v) v s
by definition of s; and so s w

⊔
(
⋃

wRv{h(v)}).
And in case
(i) for any v such that wRv, f (v) v

⊔
Y t
⊔

Z, since f (v) = g( f (v)) t
h( f (v)) and g( f (v)) v Y and h( f (v)) v Z. And so s v

⊔
Y t
⊔

Z.

Since Ewas taken arbitrarily, we have that Dis is a validity of ACD.

(Dual) For any E-Kripke model E, E |= ¬♦¬A <> �A

Consider an arbitrary inclusive and serial E-Kripke model (meeting the
overlapping constraint) E = 〈S,v,W,R, v+, v−〉, consider a world w ∈W
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(>) take an s ∈ S such that s ∈ |¬♦¬A|
+

w. It must be the case that s w
¬♦¬A, namely, by semantic conditions, s w ♦A that means s =⊔

(
⋃

wRv{ f (v)}) with, for any v such that wRv, f (v) w ¬A, namely
f (v) w A. Hence, by semantic conditions, it is also the case that
s w �A and since by reflexivity s v s, we have that |¬♦¬A|

+

w w |�A|
+

w.

Now, consider an s ∈ S such that s ∈ |�A|
+

w; by semantic conditions
it is the case that s =

⊔
(
⋃

wRv{ f (v)}) with, for any v such that wRv,
f (v) w A, namely f (v) w ¬A. Hence, by semantic conditions, it is
also the case that s w ¬♦¬A and, since by reflexivity s v s, we have
that |�A|

+

w v |¬♦¬A|
+

w.

(<) This direction proceeds analogously to >.

Since w was taken arbitrarily, we have that |�A|
+

w v |¬♦¬A|
+

w and
|¬♦¬A|

+

w w |�A|
+

w for any w.

Since Ewas taken arbitrarily, we have that Dual is valid in ACD

(D) For any E-Kripke model E, E |= �A > ♦A

Consider an arbitrary inclusive E-Kripke model E = 〈S,v,W,R, v+, v−〉,
consider a world w ∈W

(>) take an s ∈ S such that s ∈ |�A|
+

w. It must be the case that s w �A
under inclusive semantics, that means s =

⊔
(
⋃

wRv{ f (v)}) with, for
any v such that wRv, f (v) v A. Consider an arbitrary v such that wRv;
we know that such v exists by the seriality of R. Hence by semantic
conditions, f (v) v A under inclusive semantics; this implies that
the state f (v) is such that f (v) w ♦A (it exists by Lemma 19) under
inclusive semantics, since wRv. Notice that s =

⊔
(
⋃

wRv{ f (v)}), and
so f (v) v s. Namely |�A|

+

w w |♦A|
+

w.

Now, consider an s ∈ S such that s ∈ |♦A|
+

w; by semantic conditions, it
is the case that s w ♦A under inclusive semantics, namely (i) s v A
or (ii) for a non-empty Y ⊆ R[w], for any v ∈ R[w], f (v) v A and
s =
⊔

(
⋃

v∈R[w]{ f (v)}). Assume (i) holds; by Lemma 19, we can infer
that for any u such that u , v and wRu, it is the case that |A|+u , ∅.
So, consider a function from the set of worlds to S such that f (v) = s
and for any u , v such that wRv, f (u) u A (by Lemma 19 such f (u)
must exists). Consider the set ({ f (u) : u , v ∧ wRu}) ∪ {s}. Clearly
t =
⊔

(({ f (u) : u , v ∧ wRu}) ∪ {s}) exists and by semantic conditions
t w �A. Notice also that by construction s v t. Assume (ii) holds,
we can reason analogously to (i) construct f in such a way that
f (v) v A for all v ∈ Y and obtain that t =

⊔
(((
⋃
{ f (u) : (∀v ∈ Y(u ,

v ∧ wRu)}) ∪ {s}); so s v t. Since s was taken arbitrarily, we have that
|♦A|

+

w v |�A|
+

w.
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Since w was taken arbitrarily we have that |�A|
+

w w |♦A|
+

w and |♦A|
+

w v

|�A|
+

w for any w.

Since Ewas taken arbitrarily, we have that Dual is valid in ACD.
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4 Conclusions and Further Work

We believe that this thesis could serve as a programmatic work for the devel-
opment of a modal truthmaker semantics. We think that Johannes Korbmacher
has provided us with a very intuitive framework to analyse the truthmaker con-
ditions of modal statements; moreover, it is also coherent with the original Van
Fraasen’s idea of a truthmaker of a sentence of the form “necessarily A”. Indeed,
we have proved how some nice results about Korbmacher’s semantics, such as
the characterization of inexact consequence in terms of first-degree entailment,
are preserved under a natural first-order extension of the semantics. Moreover,
we hope that the philosophical intuitions we worked out in the second section
could serve as leading ideas to develop a more uniform and systematic concep-
tion of truthmakers for modal truths: it is of a great importance to go deeper in
the analysis of the at relation in order to have a clearer picture on the nature of
truthmakers of modal truths. We believe that the relation that a fact entertains
with the world in which it obtains (in a very broadly sense) plays a key role
in the truthmaking relation and must be taken into consideration in the defini-
tion of a truthmaker for a modal sentence. Finally, we hope that the extension
of the logic of analytic containment by means of modal truthmaker semantics
can find a more systematic treatment; we have shown some key results in this
direction, like the importance of a seriality constraint on the models and the
characterization of the notion of modal partial truth, and we have discussed
some characterization results about the logic of modal analytic containment;
we also have proposed an axiomatization of such system and proved that it is
sound with respect to the semantics we developed.

Hence, points for further work in this direction could be: (i) proving, if
possible, completeness of ACD; (ii) developing a modal extension of the logic
of exact entailment in (Fine & Jago, 2017).
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A Formal Appendix

A.1 Theorem 2

In the following, we will define new operations to transform each four-valued
model into an ordinary KFDE model and viceversa:

Definition 37 Given a four-valued model F = 〈W,R,SL, v〉, we define its standard-
ification S(F ) = 〈W′,R′, a+, a−〉 where

• W′ = W

• R′ = R

• a+(p) = {w : vw(p) ∈ D}

• a−(p) = {w : vw(p) ∈ {b, 0}}.

Where D is a subset of the set of the four values {1, b,n, 0}, D = {1, b}.

Definition 38 Given an ordinary KFDE model, M = 〈W,R, a+, a−〉, we define its
generalization G(M) = 〈W′,R′,SL, v〉 where

• W′ = W;

• R′ = R;

• SL is defined in the standard way (see section 1.3);

• vw(p) =


1 if [w ∈ a+(p) and w < a−(p)]
b if [w ∈ a+(p) and w ∈ a−(p)]
n if [w < a+(p) and w < a−(p)]
0 if [w < a+(p) and w ∈ a−(p)]

We will now prove the following lemmas:

Lemma 21 Given a four-valued model F = 〈W,R,SL, v〉, for any formula A and any
world w in F ,

[F , vw(A) ∈ D if and only if S(F ),w |= A] and [F , vw(A) ∈ {b, 0} if and only if
S(F ),w |=A ].

Proof: by induction

Base Case.
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(|=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an arbitrary w (⇒) assume F , vw(p) ∈ D; by definition
of S(F ) = 〈W,R, a+, a−〉, since vw(p) ∈ D, then w ∈ a+(p), hence
S(F ),w |= p. (⇐) Assume S(F ),w |= p, then by semantic conditions
w ∈ a+(p). By definition of S(F ) = 〈W,R, a+, a−〉, since w ∈ a+(p), then
F , vw(p) ∈ D.

( |=) Analogously we reason for F , vw(p) ∈ {b, 0} and w |=p.

Inductive Case ¬.

(|=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an abitrary w, (⇒) assume F , vw(¬A) ∈ D for an arbitrary
w; by definition of vw and f¬, since vw(¬A) ∈ D, then vw(A) ∈ {0, b}.
Then by IH, it is the case that S(F ),w |=A, and so, by semantic con-
ditions, S(F ),w |= ¬A (⇐) assume S(F ),w |= ¬A, then by semantic
conditions w |=A. So, by IH vw(A) ∈ {b, 0} and by definition of vw(¬A)
and f¬, it is the case that vw(¬A) ∈ D.

( |=) Analogously we reason for F , vw(¬A) ∈ {b, 0} and w |=¬A.

Inductive Case ∧.

(|=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an arbitrary w (⇒) AssumeF , vw(A∧B) ∈ D for an arbitrary
w; by definition of vw and f∧, since vw(A∧B) ∈ D, then it must be the
case that vw(A) ∈ D and vw(A) ∈ D, otherwise if one between A or B
is such that its value at w is n or 0, then the Glb({vw(A), vw(B)}, namely
vw(A∧B) is not in D. So, by IH, S(F ),w |= A, and S(F ),w |= B and by
semantic conditions, S(F ),w |= A∧B. (⇐) Assume S(F ),w |= A∧B,
then by semantic conditions w |= A and w |= B. So, by IH vw(A) ∈ D
and vw(B) ∈ D. By definition of vw(A ∧ B) and f∧, it is the case that
vw(A ∧ B) ∈ D.

( |=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an arbitrary w (⇒) assume F , vw(A ∧ B) ∈ {b, 0} for an
arbitrary w; by definition of vw and f∧, since vw(A ∧ B) ∈ {b, 0}, then
(i) vw(A) ∈ {b, 0} or (ii) vw(A) ∈ {b, 0}, otherwise if this is not the case,
then the Glb({vw(A), vw(B)}), namely vw(A ∧ B), is not in {b, 0}. If (i)
holds then by IH S(F ),w |=A, hence w |=A ∧ B; analogously if (ii)
holds. (⇐) Assume S(F ),w |=A ∧ B, then by semantic conditions,
w |=A or w |=B. If the former holds, then by IH vw(A) ∈ {b, 0}; hence,
the Glb between vw(A) and any other value must be in {b, 0} and so
vw(A ∧ B) ∈ {b, 0}; analogously if the latter holds.

Inductive Case ∨.

(|=) For |= and D, we reason analogously to the case of |=and {b, 0} for ∧.

( |=) For |=and {b, 0}we reason analogously to the case of |= and D of ∧
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Inductive Case �.

(|=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an arbitrary w (⇒) assume F , vw(�A) ∈ D; by definition
of vw(�A) and Glb, since vw(�A) ∈ D, then it must be the case that
vt(A) ∈ D for any t such that wRt. Take, if any, an arbitrary t such
that wRt; by IH it must be the case that t |= A, hence, by semantic
conditions, since t was taken arbitrarily, we have that w |= �A. (⇐)
Assume S(F ),w |= �A, then by semantic conditions, for any t such
that wRt, t |= A. Take, if any, an arbitrary world t such that wRt; then
by IH vt(A) ∈ D; hence, since t was taken arbitrarily, we have that
vt(A) ∈ D for any t such that wRt; hence, by definition of Glb it must
be the case that vw(�A) ∈ D.

( |=) Consider an arbitrary four-valued modelF and its standardification
S(F ). For an arbitrary w (⇒) AssumeF , vw(�A) ∈ {b, 0}; by definition
of vw(�A) and Glb, since vw(�A) ∈ {b, 0}, then it must be the case that
there is a t such that wRt and vt(A) ∈ {b, 0}. Take such t: by IH it
must be the case that t |=A, hence, by semantic conditions, since wRt,
we have that w |=�A. (⇐) Assume S(F ),w |=�A, then by semantic
conditions, there is a t such that wRt and t |=A. Take such t: by IH
vt(A) ∈ {b, 0}; hence, since t : wRt and vt(A) ∈ {b, 0}, by definition of
Glb, it is the case that vw(�A) ∈ {b, 0}.

Inductive Case ♦.

(|=) For |= and D we reason analogously to the case of |=and {b, 0} for �.

( |=) For |=and {b, 0}we reason analogously to the case of |= and D for �.

Lemma 22 Given an ordinary KFDE model M = 〈W,R, a+, a−〉, for any formula A
and any world w inM,

[M,w |= A if and only if G(M), vw(A) ∈ D] and [M,w |=A if and only if
G(M), vw(A) ∈ {b, 0}]

Proof: by induction

Base Case.

(|=) Consider an arbitrary ordinary KFDE modelM and its generalization
G(M). For an arbitrary w (⇒) Assume M,w |= p; by definition of
G(M) = 〈W,R, a+, a−〉, since w |= p, then it is the case that vw(p) = 1
or vw(p) = b, hence G(M), vw(p) ∈ D. (⇐) Assume G(M), vw(p) ∈ D;
hence either vw(p) = 1 or vw(p) = b. Then by definition of G(M), in
both cases it holds thatM,w |= p.

( |=) Analogously for w |=A and vw(A) ∈ {b, 0}.
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The rest of the proof proceeds analogously to the proof of the previous
lemma.

We are now ready to prove Theorem 2:

Γ |=4
KFDE

B if and only if Γ |=KFDE B.

Proof:

(⇒) By contrapositio: assume it is not the case that Γ |=KFDE ∆, hence there
must be some some ordinary KFDE model M = 〈W,R, a+, a−〉 and some
w ∈ W such that M,w |=

∧
Γ and M,w 2 B. So, for any A ∈ Γ, w |= A.

Now, let’s consider G(M) = 〈W,R,SL, v〉. By Lemma 24, sinceM,w |= A
for any A ∈ Γ andM,w 2 B for any B ∈ ∆, it follows that G(M), vw(A) ∈ D
for any A ∈ Γ and G(M), vw(B) < D. So it is not the case that Γ |=4

KFDE
∆.

(⇐) By contrapositio: assume it is not the case that Γ |=4
KFDE

∆, hence there
must be some some four-valued model F = 〈W,R,SL, v〉 and some w ∈W
such that for all A ∈ Γ,F , vw(A) ∈ D andF , vw(B) < D. Now, let’s consider
S(F ) = 〈W,R, a+, a−〉. By Lemma 23, since F , vw(A) ∈ D for any A ∈ Γ and
F , vw(B) < D, it follows that S(F ),w |= A for any A ∈ Γ and S(F ),w 2 B for
any B ∈ ∆. So we found a model such that S(F ),w |=

∧
Γ but S(F ),w 2 B,

namely it is not the case that Γ |=4
KFDE

B.

A.2 Lemma 1

Proof by induction:

Base Case.

(|=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-
tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |= p, then [p]+

w , ∅, namely there is a s ∈ S such that s w p, so,
s ∈ v+

w(p); this means that v+
w(p) , ∅; it follows that w ∈ a+(p) and,

by semantic conditions, O(E),w |= p. (⇐) Assume O(E),w |= p, then
w ∈ a+(p), namely, by definition of a+

w(p), v+
w(p) , ∅. This means that

there is a s ∈ S such that s w p; so, s ∈ [p]+
w. It follows that [p]+

w , ∅
and, by semantic condition E,w |= p.

( |=) Analogously we can reason for |=.

Inductive Case ¬.

(|=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-
tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |= ¬A, then [¬A]+

w , ∅. Consider a s ∈ [¬A]+
w, it is the case that
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s w ¬A, namely s w A. This means that s ∈ [A]−w and soE,w |=A. By
IH, it follows that O(E),w |=A, namely O(E),w |= ¬A. (⇐) Assume
O(E),w |= ¬A, then by semantic conditions, O(E),w |=A. By IH, it
follows that E,w |=A, namely [A]−w , ∅. Consider a s ∈ [A]−w: it is
the case that s w A, and so, by semantic conditions, s w ¬A. This
means that s ∈ [¬A]+

w , ∅, namely E,w |= ¬A.

( |=) Analogously we can reason for |=.

Inductive Case ∧.

(|=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-
tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |= A∧ B, then, by semantic conditions, [A∧ B]+

w , ∅. Consider a
s ∈ [A∧B]+

w; this means that s w A∧B, namely s = utt for t w A and
u w B. But then, t ∈ [A]+

w and u ∈ [B]+
w, hence [A]+

w , ∅ and [B]+
w , ∅.

It follows that E,w |= A and E,w |= B; so, by IH, O(E),w |= A and
O(E),w |= B, namely O(E),w |= A ∧ B (⇐) Assume O(E),w |= A ∧ B,
then, by semantic conditions, O(E),w |= A and O(E),w |= B. By IH
it follows that E,w |= A and E,w |= B. This means that [A]+

w , ∅ and
[A]+

w , ∅. Now, consider a t ∈ [A]+
w and u ∈ [B]+

w; by completeness of
S, s = t t u exists and s w A ∧ B since t w A and u w B, namely
s ∈ [A ∧ B]+

w. Hence, [A ∧ B]+
w , ∅. So, E,w |= A ∧ B.

( |=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-
tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |=A ∧ B, then, by semantic conditions, [A ∧ B]−w , ∅. Consider
a s ∈ [A ∧ B]−w; it is such that s w A ∧ B, namely s w A or s w B. If
the former holds, then s ∈ [A]−w and so [A]−w , ∅; this means that E,w
|=A and by IH O(E),w |=A, namely O(E),w |=A ∧ B. Analogously

if the latter holds. (⇐) Assume O(E),w |=A ∧ B, then, by semantic
conditions, (i) O(E),w |=A or (ii) O(E),w |=B. If (i) holds, then by
IH it follows that E,w |=A, namely [A]−w , ∅; consider a s ∈ [A]−w,
it is the case that s w A and, by semantic conditions, s w A ∧ B.
Hence s ∈ [A∧B]−w; this means that [A∧B]−w , ∅ and so E,w |=A∧B.
Analogously if (ii) holds.

Inductive Case ∨.

(|=) For |=, we reason analogously to the case of |=for ∧.

( |=) For |=we reason analogously to the case of |= for ∧.

Inductive case �.

(|=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-
tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |= �A; we have two cases to consider: (i) there is no v such
that wRv and (ii) there is some v such that wRv. If (i) holds then,
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by semantic conditions, [�A]+
w , ∅ as 0 ∈ [�A]+

w. Now, vacuously,
it is also the case that O(E),w |= �A. If (ii) holds, by semantic con-
ditions, it is the case that [�A]+

w , ∅; consider a s ∈ [�A]+
w; it is

such that s w �A, namely there is a f such that for any v such that
wRv, f (v) w A and s =

⊔
(
⋃

(v:wRv){ f (v)}). Consider an arbitrary
f (v) ∈ { f (v) : f (v) w A ∧ wRv}; since f (v) w A, [A]+

v , ∅, namely
E, v |= A and by IH O(E), v |= A. Since v was taken arbitrarily among
the successors of w, we have that for all v such that wRv, O(E), v |= A,
and so O(E),w |= �A. (⇐) Assume O(E),w |= �A, then we have
two cases to consider: (i) there is no v such that wRv and (ii) there is
some v such that wRv. If (i) holds, then vacuously E,w |= �A since
[A]+

w = {0}; if (ii) holds then consider an arbitrary v such that wRv.
It is the case that O(E), v |= A and by IH E, v |= A. This means that
[A]+

v , ∅. Since v was taken arbitrarily, we have that for all v such
that wRv, it is the case that [A]+

v , ∅, namely there is a f such that for
any v such that wRv, f (v) ∈ [A]+

v ; by completeness of S, there exists a
s such that s =

⊔
(
⋃

(v:wRv){ f (v)}), namely s w �A. Hence [�A]+
w , ∅,

and so E,w |= �A.
( |=) Given an E-Kripke model E = 〈W,R,S,v, v+, v−〉 and its ordinarifica-

tion O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈W. (⇒) Assume
E,w |=�A; then by semantic conditions [�A]−w , ∅. Now, consider
a s ∈ [�A]−w; since s w �A, there is a v such that wRv and s v A.
Hence, [A]−v , ∅, namely E, v |=A. By IH, O(E), v |=A and since wRv,
it is the case that O(E),w |=�A. (⇐) Assume O(E),w |=�A, then
there is some v such that wRv and O(E), v |=A. By IH, E, v |=A, hence
[A]−v , ∅. Consider a s ∈ [A]−v : it is the case that s v A and so, since
wRv, s w �. Hence [�A]−w , ∅, namely E,w |=�A

Inductive case ♦.

(|=) For |= we reason analogously to |=for �.
( |=) For |=we reason analogously to |= for �.

A.3 Lemma 2

Proof by induction :

Base case.

(|=) Given a Kripke modelM = 〈W,R, a+, a−〉and its exactification E(M) =
〈W,R,S,v, v+, v−〉, consider an arbitrary w ∈W. (⇒) AssumeM,w |=
p, then w ∈ a+(p). Hence, by definition of v+

w, {(w, p)} ∈ v+
w(p) and

clearly {(w, p)} w p, namely {(w, p)} ∈ [p]+
w. So, it is the case that

[p]+
w , ∅. Then, by semantic conditions, E(M),w |= p. (⇐) Assume

E(M),w |= p, then [p]+
w , ∅. This means that there is some s such

that s w p; so s ∈ v+
w(p), namely s = {(w, p)} with w ∈ a+(p). Then, it

follows thatM,w |= p since w ∈ a+(p).
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( |=) analogously we can reason for |=.

The rest of the the proof proceeds analogously to the proof of Lemma 3..

A.4 Theorem 5

Definition 39 Given a four-valued model F = 〈W,R,SL,D, v〉, we define its stan-
dardification S(F ) = 〈W′,R′,D, a+, a−〉 where

• W′ = W

• R′ = R

• a+
w(Fn) = vEw(Fn)

• a−w(Fn) = vAw (Fn).

Definition 40 Given an ordinary KFDE model, M = 〈W,R,D, a+, a−〉, we define its
generalization G(M) = 〈W′,R′,D,SL, v〉 where

• W′ = W;

• R′ = R;

• SL is defined in the standard way:

• vEw(Fn) = a+
w(Fn)

• vAw (Fn) = a−w(Fn)

We are now ready to prove the following results :

Lemma 23 Given a four-valued model F = 〈W,R,D,SL, v〉, for any formula ϕ and
any world w in F ,

[F , µI
w(ϕ) ∈ A if and only if S(F ),w |=I ϕ] and [F , µI

w(ϕ) ∈ {b, 0} if and only if
S(F ),w |=I ϕ ].

Proof: by induction on ϕ

Base Case. Straightforward by definition of vEw and vAw in G(M).

Inductive case ∀.

(|=) Consider an arbitrary four-valued FOKFDE model F and its stan-
dardification S(F ). For an arbitrary w (⇒) Assume F , µI

w(∀xϕ) ∈ A
; by definition of µI

w(∀xϕ) and Glb, since µI
w(∀xϕ) ∈ A, then it must

be the case that µI∗
w(ϕ) ∈ A for any x-variant I∗ of I. Take an arbitrary

x-variant I∗ of I, by IH it must be the case that w |=I∗ ϕ, hence, by se-
mantic conditions, since I∗was taken arbitrarily, we have that w |=I∗ ϕ

76



for any x-variant I∗ of I, so w |=I
∀xϕ. (⇐) Assume S(F ),w |=I

∀xϕ,
then by semantic conditions, for any x-variant I∗ of I, w |=I∗ ϕ. Take,
an arbitrary x-variant I∗ of I; then by IH µI∗

w(ϕ) ∈ A; hence, since I∗

was taken arbitrarily, we have that µI∗
w(ϕ) ∈ A for any x-variant I∗ of

I; and by definition of Glb it must be the case that µI
w(∀xϕ) ∈ A.

( |=) Consider an arbitrary four-valued FOKFDE modelF and its standard-
ification S(F ). For an arbitrary w (⇒) Assume F , µI

w(∀xϕ) ∈ {b, 0};
by definition of µI

w(∀xϕ) and Glb, since µI
w(∀xϕ) ∈ {b, 0}, then it must

be the case that µI∗
w(ϕ) ∈ {b, 0} for some x-variant I∗ of I. By IH it must

be the case that w |=I
∗

ϕ, hence, by semantic conditions, we have
that w |=I∗ ϕ for some x-variant I∗ of I, so w |=I ∀xϕ. (⇐) Assume
S(F ),w |=I ∀xϕ, then by semantic conditions, for some x-variant I∗

of I, w |=I∗ ϕ. By IH µI∗
w(ϕ) ∈ {b, 0}; hence we have that µI∗

w(ϕ) ∈ A for
some x-variant I∗ of I; and by definition of Glb it must be the case
that µI

w(∀xϕ) ∈ {b, 0}.

Inductive case ∃.

(|=) Analogously to the ( |=) case of ∀.

( |=) Analogously to the (|=) case of ∀.

The rest of the proof is analogous to the propositional case.

Lemma 24 Given an ordinary FOKFDE modelM = 〈W,R,D, a+, a−〉, for any formula
ϕ and any world w inM,

[M,w |=I ϕ if and only if G(M), µI
w(ϕ) ∈ A] and [M,w |=I ϕ if and only if

G(M), µI
w(ϕ) ∈ {b, 0}]

Proof: by induction

Base Case. Straightforward by definition of vEw and vAw in G(M).

The rest of the proof proceeds analogously to the one of the previous
lemma.

A.5 Lemma 13

Proof: by induction

Base Case.
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(|=) Given a first-order E-Kripke model E = 〈W,R,S,D,v, v+, v−〉 and its
ordinarification O(E) = 〈W,R,D, a+, a−〉, consider an arbitrary w ∈W.
(⇒) Assume E,w |=I Fnx1, ..., xn, then [Fnx1, ..., xn]I

(w,+) , ∅, namely
there is a s ∈ S such that s I

w Fnx1, ..., xn, so, s ∈ v+
w(Fn, I(x1), ..., I(xn));

this means that v+
w(FnI(x1), ..., I(xn)) , ∅. It follows, by definition of a+

w,
that 〈I(x1), ..., I(xn)〉 ∈ a+

w(Fn) and, by semantic conditions, O(E),w |=I

Fnx1, ..., xn. (⇐) Assume O(E),w |=I Fnx1, ..., xn, then 〈x1, ..., xn〉 ∈

a+
w(Fn), namely, by definition of a+

w(Fn), v+
w((Fn, (I(x1), .., I(xn))) , ∅.

This means that there is a s ∈ S such that s I
w Fnx1, ..., xn; so, s ∈

[Fnx1, ..., xn]I
(w,+). It follows that [Fnx1, ..., xn]+

w , ∅ and by semantic
conditions E,w |=I Fnx1, ..., xn.

( |=) Analogously to |= case

Inductive Case ∀.

(|=) Given a first-order E-Kripke model E = 〈W,R,S,D,v, v+, v−〉 and its
ordinarification O(E) = 〈W,R,D, a+, a−〉, consider an arbitrary w ∈W.
(⇒) Assume E,w |=I

∀xϕ; by semantic conditions, it is the case that
[∀xϕ]I

(w,+) , ∅; consider a s ∈ [∀xϕ]I
(w,+); it is such that s I

w ∀xϕ,
namely for any x-variant I∗ of I, s I∗

w ϕ. Consider an arbitrary x-
variant I∗ of I; it is the case that s I∗

w ϕ and by IH O(E),w |=I∗ ϕ.
Since I∗ was taken arbitrarily we have that for all the x-variant I∗ of
I, O(E),w |=I∗ ϕ, and so O(E),w |=I

∀xϕ. (⇐) Analogously to the (⇒)
case.

( |=) Given a first-order E-Kripke model E = 〈W,R,S,D,v, v+, v−〉 and its
ordinarification O(E) = 〈W,R,D, a+, a−〉, consider an arbitrary w ∈W.
(⇒) Assume E,w |=I ∀xϕ; by semantic conditions, it is the case that
[∀xϕ]I

(w,) , ∅; consider a s ∈ [∀xϕ]I
(w,−); it is such that s Iw ∀xϕ, namely

for some x-variant I∗ of I, s I∗w ϕ. Consider such I∗; it is the case that s
I
∗

w ϕ and by IH O(E),w |=I
∗

ϕ. Hence we have that for some x-variant
I∗ of I, O(E),w |=I

∗

ϕ, and so O(E),w |=I ∀xϕ. (⇐) Analogously to the
(⇒) case.

Inductive Case ∃.

(|=) Analogously to the |=case of ∀.

( |=) Analogously to the |= case of ∀.

The rest of the proof proceeds analogously to the propositional case.

A.6 Lemma 14

Proof: by induction

Base Case.
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(|=) Given an ordinary first-order Kripke modelM = 〈W,R,D, a+, a−〉 and
its exactification E(M) = 〈W,R,S,v,D, v+, v−〉, consider an arbitrary
w ∈ W. (⇒) Assume M,w |=I Fnx1, ..., xn, then 〈I(x1), ..., I(xn)〉 ∈
a+

w(Fn); this means that, by definition of v+, {(w, (Fn, (I(x1), ..., I(xn)))} ∈
v+

w((Fn, (I(x1), ..., I(xn))). Call s the state {(w, (Fn, (I(x1), ..., I(xn))}. Since
s ∈ v+

w((Fn, (I(x1), ..., I(xn))), it is the case that s I
w Fnx1, ..., xn; it follows

that [Fnx1, ..., xn]I+
w , ∅, hence E(M),w |=I Fnx1, ..., xn. (⇐) Assume

E(M),w |=I Fnx1, ..., xn, then [Fnx1, ..., xn] , ∅, hence there is some
s ∈ S such that s I

w Fnx1, ..., xn, and so s ∈ v+
w(Fnx1, ..., xn). This means

that s = {w, (Fn, (I(x1), ..., I(xn))} with 〈I(x1), ..., I(xn)〉 ∈ a+
w(Fn). Hence,

by semantic conditions,M,w |=I Fnx1, ..., xn.

( |=) Analogously to |= case

The rest of the proof proceeds analogously to the one of the previous
lemma.

A.7 Lemma 19

Proof: by induction

Base Case.

(|=) Consider an arbitrary inclusive E-Kripke model E and arbitrary
world w and states s, t in E. Assume E, s w p and E, t w p; it is
the case that s ∈ v+

w(p) and t ∈ v+
p (p). Hence, by definition of v+

w(p), it
is also the case that s t t ∈ v+

w(p).

( |=) Analogously to the (|=) case

Inductive Case ¬

(|=) Consider an arbitrary inclusive E-Kripke model E and arbitrary
world w and states s, t in E. Assume E, s w ¬A and E, t w ¬A;
by semantic conditions it is the case that s w A and t wA. By IH, it
holds that s t t w A, namely, by semantic conditions, s t t w ¬A.

( |=) Analogously to the (|=) case

Inductive Case ∧

(|=) Analogously to the proof of lemma 3.1 for ∧ in (Fine & Jago, 2016)

( |=) Analogously to the proof of lemma 3.1 for ∨ in (Fine & Jago, 2016)

Inductive Case ∨

(|=) Analogously to the proof of lemma 3.1 for ∨ in (Fine & Jago, 2016)

( |=) Analogously to the proof of lemma 3.1 for ∧ in (Fine & Jago, 2016)
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Inductive Case �

(|=) Consider an arbitrary inclusive E-Kripke model E and arbitrary
world w and states s, t in E. Assume E, s w �A and E, t w �A;
by semantic conditions, it is the case that there is a f such that
for any v such that wRv there is a state f (v) such that f (v) v A
and s =

⊔
(
⋃

(v:wRv){ f (v)}, call X such
⋃

(v:wRv){ f (v)}; and analogously
for t =

⊔
(
⋃

(v:wRv){g(v)}, call Y such
⋃

(v:wRv){g(v)}. Consider a suc-
cessor v of w for an arbitrary v, consider f (v) ∈

⋃
(v:wRv){ f (v)} and

g(v) ∈
⋃

(v:wRv){g(v)}. Now consider the set Z = { f (v) t g(v) : f (v) ∈⋃
(v:wRv){ f (v)} ∧ g(v) ∈

⋃
(v:wRv){g(v)}} and its least upper bound

⊔
Z.

By IH, we have that f (v) t g(v) v A, since f (v) v A and g(v) v A.
Consider a function h from the set of worlds to S such that for any
v such that wRv, h(v) = f (v) t g(v). Notice that

⋃
v:wRv{h(v)} = Z

and since for any v, f (v) t (v) v A, by semantic conditions, it is
the case that

⊔
Z w �A. Moreover, it is readily provable that⊔

X t
⊔

Y =
⊔

Z and since s =
⊔

X and t =
⊔

Y, we have that
s t t =

⊔
Z and so s t t w �A.

( |=) Consider an arbitrary inclusive E-Kripke model E and arbitrary
world w and states s, t in E. Assume E, s w �A and E, t w �A;
by semantic conditions we have two case to consider for each t and
s: (i) there is some v such that wRv and s v A; (ii) there is a non-empty
set of successors of w, Y, such that there is an f such that for any
v ∈ Y, f (v) v A and s =

⊔⋃
(v∈Y){ f (v)}, call X such

⋃
(v∈Y){ f (v)}; (iii)

there is some v such that wRv and t v A; (iv) there is a non-empty set
of successors of w, Y, there is a g such that for any v ∈ Y there is a g(v)
such that g(v) v A and t =

⊔⋃
(v∈Y){g(v)}, call Z such

⋃
(v∈Y){g(v)}.

If (i) and (iii) hold, then consider the set {s, t}; assumptions s v A, for
some v such that wRv and t u A, for some u such that wRu. Consider
a function h from the set of worlds to S such that h(v) = s and h(u) = t.
By inclusive semantic conditions, we have that s t t w�A.
If (i) and (iv) hold, then t =

⊔
Z and s v A for some v such that wRv.

Consider two scenarios: (1) for such v there is a g(v) ∈ Z; (2) it is not
the case that (1). If (1) holds, then take the set T = Z/{g(v)}∪{st g(v)}.
Now, consider a function h from the set of worlds to S just like g with
the only difference that h(v) = st g(v) notice that since g(v) v A and
s v A we have that, by IH, st g(v) vA. Hence any u ∈ T is such that
there is some v such that wRv, h(v) = u and u v A. Moreover, it is
readily provable that st t =

⊔
T, hence st t w �A. If (2) holds, take

the set U = Z ∪ {s}; then analogously s t t =
⊔

U and so s t t w�A.
If (ii) and (iii) hold, then we can reason analogously to the case of (i)
& (iv).
If (ii) and (iv) hold, then s =

⊔
X and t =

⊔
Z. Consider two

scenarios: (1) there is a non-empty set Y∗ of successors of w such
that there are functions f , g such hat for any v ∈ Y∗ there are some
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f (v) ∈ X and g(v) ∈ Z such that f (v) v A and g(v) v A and take
V =

⋃
(v∈Y∗)({ f (v) t g(v)}); (2) it is not the case that (1). If (1) holds,

then take the set U = (X /
⋃

(v∈Y∗){ f (v)}) ∪ (Z /
⋃

(v∈Y∗){g(v)}) ∪ V;
notice that, by assumption, for any v ∈ Y∗, f (v) v A and g(v) vA.
Hence, by IH, for any u ∈ V, it is the case that u vA, for any v ∈ Y∗.
Consider the function h from the set of worlds to S such that for any
v ∈ Y∗, h(v) = f (v)tg(v) and for any other successor z of w, if f (z) ∈ X
then h(z) = f (v) and if g(z) ∈ Z, then h(z) = g(z). This means that
U =

⋃
u:wRv{g(u)} and any state in the set U falsifies A at v for some

successor v of W; so,
⊔

U w �A by inclusive semantic conditions;
moreover, it is readily provable that s t t =

⊔
U, and so, s t t w�A.

If (2) holds, then we reason analogously to (1) without consider the
restriction V but just the union of X and Z.

Inductive Case ♦

(|=) Analogously to the ( |=) case of �.
( |=) Analogously to the |= case of �.

A.8 Lemma

Proof: by induction

Base Case.

(|= Consider an atomic letter p and an arbitrary world w ∈ W; by defi-
nition of inclusive v+ and v− it is the case that v+

w(p) , ∅ Hence there
are some s such that s w p. Hence, |p|+ , ∅.

( |=) Analogously to the (|=) case.

Inductive Case ¬.

(|=) Consider |¬A|+w for an arbitrary w ∈ W. By IH, it is the case that
|A|−w , ∅; take a s ∈ |A|−w, it is such that s w A and, by semantic
conditions, s w ¬A.

( |=) Analogously to (|=).

Inductive Case ∧.

(|=) Consider |A ∧ B|+w for an arbitrary w ∈ W; by IH it is the case that
|A|+w , ∅ and |B|+w , ∅. Now, take a t ∈ |A|+w and a u ∈ |B|+w, they are
such that t w A and u w B. By completeness of S, s = t t u exists
and, by semantic conditions, s w A∧B. This means that s ∈ |A∧B|+w,
namely |A ∧ B|+w , ∅.

( |=) Consider |A ∧ B|−w for an arbitrary w ∈ W; by IH it is the case that
|A|−w , ∅ and |B|−w , ∅. Now, take a t ∈ |A|−w, it is such that t wA and,
by semantic conditions, t wA∧B. Analogously if we take a u ∈ |B|−w.
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Inductive Case ∨.

(|=) Analogously to the ( |=) case of ∧.

( |=) Analogously to the |= case of ∧

Inductive case �.

(|=) Consider |�A|+w for an arbitrary w ∈ W. By IH, it is the case that
|A|+v , ∅ for a v ∈ W. Consider the set {t : t v AandwRv}; clearly
this set is non-empty since w has at least one successor, by seriality,
and by IH |A|+v , ∅ for any v ∈ W. Now, by completeness of S and
non-emptiness of {t : t v AandwRv}, u =

⊔
{t : t v AandwRv} exists

and it is non-null. Consider the function f such that for any v such
that wRv, f (v) v A. Notice that {t : t v AandwRv} =

⋃
v:wRV{ f (v)}.

Hence, u w �A, namely |�A|+w , ∅.
( |=) Consider |�A|−w for an arbitrary w. By IH, it is the case that |A|−v , ∅ for

an v ∈W. Since w has at least one successor v , by seriality, consider
the exact content of A with respect to such v. By IH, |A|−v , ∅; now,
take a s ∈ |A|−v , it is the case that s v A and, since wRv, it also holds
that s w �A, namely s ∈ |�A|−w and so |�A|−w , ∅.

Inductive Case ♦.

(|=) Analogously to the ( |=) case of �

( |=) Analogously to the (|=) case of �

A.9 Modal Van Fraassen’s Theorem for inclusive E-Kripke mod-
els

Consider any inclusive and serial E-Kripke model E = 〈S,F,v,W,R, v+, v−〉
putting in evidence a new element F ⊆ S. F it is such that it closed under parts
and
⊔

operation, namely

X ⊆ F⇔
⊔

X ∈ F

Moreover, we define new semantic conditions for a formula A to be true or false
at a world w in an inclusive and serial E-Kripke model:

w |= A ⇔ [A]+
w ∩ F , ∅

w |=A ⇔ [A]−w ∩ F , ∅

Now, given an inclusive and serial E-Kripke model, we define the ordinarifica-
tion O(E) in the standard way with the only difference that:

• a+, a− : Lprop → P(W)

- a+(p) = {w ∈W : v+
w(p) ∩ F , ∅}
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- a−(p) = {w ∈W : v−w(p) ∩ F , ∅}

Now, it is possible to prove the following result:

Lemma 25 For any E-Kripke model E = 〈W,R,S,v,F, v+, v−〉, given its ordinarifica-
tion O(E), for any formula A and any w ∈W,

[E,w |= A if and only if O(E),w |= A] and [E,w |=A if and only if O(E),w |=A]

Proof: by induction :

Base Case.

(|=) Given an E-Kripke model E = 〈W,R,S,v,F, v+, v−〉 and its ordinari-
fication O(E) = 〈W,R, a+, a−〉, consider an arbitrary w ∈ W. (⇒) As-
sume E,w |= p, then [p]+

w , ∅, namely there is a s ∈ F such that s w p,
so, s ∈ v+

w(p); this means that v+
w(p) ∩ F , ∅; it follows that w ∈ a+(p)

and, by semantic conditions, O(E),w |= p. (⇐) Assume O(E),w |= p,
then w ∈ a+(p), namely, by definition of a+

w(p), v+
w(p) ∩ F , ∅. This

means that there is a s ∈ S such that s w p; so, s ∈ [p]+
w. It follows

that [p]+
w ∩ F , ∅ and, by semantic condition E,w |= p.

( |=) Analogously we can reason for |=.

The rest of the the proof proceeds analogously to the proof of Lemma 3.
by employing the fact that F is closed under parts and

⊔
operation.

Given an ordinary DFDE modelM (namely a model of KFDE whose accessibility
relation is serial), we define its exactification E(M) in the standard way with
the only difference that:

• F = P({(w, p) : w ∈ a+(p)} ∪ {(w,¬p) : w ∈ a−(p)})

• v+, v− : Lprop ×W → P(S)

- v+
w(p) = {{(w, p)}}

- v−w(p) = {{(w,¬p)}}

It is easily provable that E(M) is indeed inclusive, since, by definition v+
w(p) and

v−w(p) are non-empty and closed under
⊔

(as they contain only one element)
and serial, as the startingM was serial. Moreover, by definition of S in E(M),
it is easy to prove that E(M) conforms to the overlap constraint.

Now, it is possible to prove the following lemma for DFDE models:
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Lemma 26 For any DFDE modelM = 〈W,R, a+, a−〉, given its exactification E(M) it
is the case that for any formula A, and any w ∈W,

[M,w |= A if and only if E(M),w |= A] and [M,w |=A if and only if E(M),w |=A]

Proof by induction :

Base case.

(|=) Given a DFDE modelM = 〈W,R, a+, a−〉 and its exactification E(M) =
〈W,R,S,v,F, v+, v−〉, consider an arbitrary w ∈ W. (⇒) Assume
M,w |= p, then w ∈ a+(p). Hence, {(w, p)} ∈ F and by definition
of v+

w, {(w, p)} ∈ v+
w(p); so, clearly, {(w, p)} w p, namely {(w, p)} ∈ [p]+

w.
So, it is the case that [p]+

w ∩ F , ∅. Then, by semantic conditions,
E(M),w |= p. (⇐) Assume E(M),w |= p, then [p]+

w ∩ F , ∅. This
means that there is some s ∈ F such that s w p; so s ∈ v+

w(p), namely
s = {(w, p)} with w ∈ a+(p). Then, it follows that M,w |= p since
w ∈ a+(p).

( |=) analogously we can reason for |=.

The rest of the the proof proceeds analogously to the proof in A.3 by
employing the fact that F is closed under parts and

⊔
operation.

Now, it is possible to prove an analogous of Van Fraassen’s theorem for inclu-
sive semantics under inclusive serial E-Kripke models, namely

Theorem 11 (A �Di B) if and only if [A |=DFDE B] (where DFDE is the serial extension
of KFDE).

Proof:

(⇒) By contrapositio; assume A 2DFDE B, so there is a DFDE-Kripke modelM
and some w inM such thatM,w |= A andM,w 2 B. Now, let’s consider
E(M). By Lemma 28. we have that sinceM,w |= A andM,w 2 B it is also
the case that E(M),w |= A and E(M),w 2 B. This means that [A]+

w ∩ F , ∅
and [B]+

w ∩ F = ∅, so there is a s ∈ F such that E(M), s w A and no t ∈ F
(indeed by Lemma 19 [B]+

w , ∅) such that E(M), t w B. Now, it is the case
that s inexactly verifies A at w since there is s v s and E(M), s w A. Now,
consider an arbitrary z v s; since F is closed under parts, z ∈ F, but, by
assumption there is no t ∈ F such that E(M), t w B. Then, it cannot be
the case that z w B. Since z was taken arbitrarily among the parts of s, it
is the case that for any z v s, s 1w B, namely s does not inexactly verify B.
And so, it is not the case that A �Ki B

(⇐) By contrapositio; assume that it is not the case that A �Ki B, so there is
some inclusive and serial E-Kripke model E and some state u and some
world w such that E,u �w A and it is not the case that E,u �w B, namely
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there is some s v u such that E, s w A and for any z v u, E, z 1w B. Now
consider a modification of E in which F is the down-set of such u, namely
E
∗ = 〈W,S,R,v,F∗, v∗+, v∗−〉 where F∗ is the set of all the states t such that

t v u so that u is the top element of F∗; it is readily provable that F∗ is
closed under parts and

⊔
. By construction, since all the states t in F∗ are

such that t 1w B, it is the case that [B]+
w ∩ F = ∅. and [A]+

w ∩ F , ∅ since
E,u �w A and F is closed under parts.

Let’s consider the ordinarification of E∗ with, namely O(E∗). Since,
E
∗,w |= A and E∗,w 2 B, by Lemma 27, it is the case that O(E∗),w |= A and

O(E∗),w 2 B. So, we found a countermodel for A |=DFDE B.
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