
Complexity of Locally Fair Allocations on Graphs

MSc Thesis (Afstudeerscriptie)

written by

Giovanni Varricchione
(born September 17th, 1996 in Benevento, Italy)

under the supervision of Dr. Ronald de Haan and Drs. Simon Rey, and
submitted to the Examinations Board in partial fulfillment of the

requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
April 29th, 2021 Dr. Benno van den Berg (chair)

Prof. dr. Ulle Endriss
Dr. Davide Grossi
Dr. Ronald de Haan
Drs. Simon Rey

Abstract

We study a new model for fair division in which agents, aside from getting
allocated a bundle of items (that can include both goods and chores), have
also to be assigned a position on a social graph. Hence, natural fairness
criteria arise that are not global, as in the classical setting, but local. In
particular, we consider three fairness criteria in their local variants: local
envy-freeness, local envy-freeness up to one item and local proportionality.
For these, we study how complex the task of performing a position assign-
ment (and possibly also an item allocation) which respects a given criterion
is. Specifically, we focus on how different graph topologies influence the
complexity of these problems. With the exception of local envy-freeness up
to one item which, thanks to known facts from the literature, proves to be
easily tractable when the item allocation is not fixed, in many cases both
tasks prove to be intractable for the criteria we consider. We also provide
some parameterized complexity results when only the position assignment
has to be done. In particular, we prove tractability, for all criteria but local
proportionality, in case the social graph is either a tree or a forest and using
two parameters, one of which specifically tailored for these graphs.

Finally, we comment the experimental results we have obtained from ran-
domly generated instances, each with a fixed item allocation done using
one of various criteria. The experiments’ main objective is to measure how
different parameters influence the likelihood of instances for which there is
a position assignment that respects a given fairness criterion. In particular,
local envy-freeness up to one item proves to be the criterion more easily
satisfied when the item allocation is random, whereas, in most cases, local
proportionality is more likely to be satisfied than local envy-freeness.

2

Acknowledgments

First of all, I would like to thank Ronald and Simon for their help in coming
up with the thesis topic and, overall, for their constant support throughout
our work. Ronald, ever since we had our first meeting, you have always
given me very useful feedback and ideas on how to approach my studies.
Your profound knowledge in the topics I have studied with you has deeply
motivated me in these years. Simon, your intuitions and suggestions during
our meetings always gave me new insights on the problems we were facing,
and showed me new ways to tackle them. In particular, I wanted to thank
you both for your constant readiness in answering my questions and for all
the meetings we had (and the fun I had during them!), which have made
working on the thesis much more manageable. Aside from them, I also
thank Benno, Davide and Ulle for their availability in joining the Thesis
Committee.

I would like to thank my parents, without whom nothing of this would have
ever been possible. Your unrelenting support has and will always inspire
me in my life. To you I dedicate this thesis.

I think that, out of all the people with whom I have spent these two years,
Max deserves a special mention. Mainly thanks to you I made up my mind
and decided to move to Amsterdam, and I will never forget all the time we
have passed together before and after we have moved. You already know
what you mean to me, and I hope you will forgive me if I do not repeat
myself here.

Damiano, the conversations I had with you have been the most engaging
I had during the MoL, and in you I have found another companion with
whom to share achievements and failures without regrets. Not only that,
but you were also perseverant enough to convince me to start reading One
Piece, which you should now know grants you many points.

I also wanted to thank Adam, Koen, Matteo and Pietro for the countless
DnD nights, and Quinzia for all the times we have watched Propaganda Live
together. Without you quarantine would have been an awful period.

Finally, my last thanks go to Giulia, who has always been by my side since
many years and has always had enough time to comfort me or simply have
a lighthearted chat. I hope you never lose your cheerfulness and kindness.

To all those who I did not mention but hold a place dear in my heart: you
know who you are. Thanks for being there for me throughout these years.

3

Contents

1 Introduction 5
1.1 Our Contribution . 8
1.2 Thesis overview . 10
1.3 Related work . 10

2 Preliminaries 14
2.1 Fair Division . 14
2.2 Computational Complexity 20

2.2.1 Classical Complexity 20
2.2.2 Parameterized Complexity 22

3 Complexity of LEF Assignments 28
3.1 Lines and Stars . 29
3.2 Strongly Connected Graphs 31
3.3 Matchings . 34
3.4 Trees . 35
3.5 Forests . 44
3.6 (Definitely-Non-)Quasi-Trees 50
3.7 Summary . 53

4 Complexity of LEF1 Assignments 54
4.1 Lines, Stars and Strongly Connected Graphs 55
4.2 Matchings . 57
4.3 Trees . 58
4.4 Forests . 61
4.5 (Definitely-Non-)Quasi-Trees 63
4.6 Summary . 64

5 Complexity of LPROP Assignments 65
5.1 Lines and Stars . 65
5.2 Strongly Connected Graphs 68
5.3 Matchings . 69
5.4 Trees, Forests and (Definitely-Non-)Quasi-Trees 69

4

5.5 Summary . 73

6 Experiments 74
6.1 Setting of the experiments . 74
6.2 Likelihood of Positive Instances 78

6.2.1 LEF and LPROP . 80
6.2.2 Random item allocations 80
6.2.3 Regular graphs . 83
6.2.4 Curious phenomena 84
6.2.5 Last remarks . 86

6.3 Effects of EF Agent-Types . 87
6.4 Summary . 88

7 Conclusion 90
7.1 Future research . 91

References 95

5

CHAPTER 1

INTRODUCTION

Imagine a scenario in which a company manager has at her disposal a set
of assignments for the company’s employees and, by the company’s rules,
must assign each of them to some (unique) worker. To compensate for these
chores, the manager has also a set of rewards, which need not be financial
ones (Maqsood et al. [2015], Bredereck, Kaczmarczyk, and Niedermeier
[2018]). It should be noted that, regardless of the items’ nature, a natural
assumption is that two different employees might have different opinions
about each of the available items, considering each of them either a good or
a chore. For example, an employee might be extremely interested in being
assigned some task because of its importance, thus evaluating it positively,
while another might feel overwhelmed by it, thus evaluating it negatively.
Another important aspect to notice in the setting we have just given is that
all these items cannot be divided, i.e. they are so-called “indivisible items”.
At this point, a sensible idea would be to define some criteria which the
manager can use to define the assignment, so that in the end (hopefully)
each employee does not feel cheated.

In fair division, given a set of agents and a set of items, the goal is to
assign items to the agents in such a way that certain fairness criteria are
met. Assume that a survey has been held at the aforementioned company:
each employee (agent) has been asked what she thinks of each item in a
given set. The manager now has enough information to come up with an
item assignment which, hopefully, respects one (or more) given criterion
(criteria). An easy example one might come up with for such a criterion
is that we want all our employees not to envy anyone in the company,
as this can lead to rather unpleasant situations and unmotivated workers,
where with envying we mean that one thinks that somebody else received
a strictly better bundle of items. On the other hand, the manager might
also be satisfied with assigning the items in such a way that, if an employee
envies another one, then, if we were to remove some item from either the
bundle assigned to the first or to the second, this envy disappears: it might

6 1 Introduction

not be an optimal solution, but one which is adequate enough. As a final
example, granting to each agent a bundle of items so that each one feels
like they have received a “fair” share of the whole set of items, granting a
sort of egalitarian distribution (at least from the point of view of each single
agent), could also suffice. All these examples refer to criteria which have
been studied in fair division, respectively “envy-freeness”, “envy-freeness up
to one item” and “proportionality”. In the thesis, we will be concerned with
exactly these criteria.

At this point, a natural question might arise: in a natural setting, does some-
one care about everybody else? Usually not: a tangible example is the fact
that often company offices are distributed over different buildings/floors,
and each worker usually has limited information about what happens in the
company outside their workplace. Moreover, would a developer care about
the bundle given to a marketing agent? Social scientists, starting from the
seminal paper Festinger [1954], have since long time formulated a theory by
which people tend to mostly compare themselves (and their possessions) to
their peers. This theory has seen applications in many fields, including fair
division itself (Bredereck, Kaczmarczyk, and Niedermeier [2018]).

Therefore, it makes sense that we focus more on variants of the fairness
criteria previously defined which take into account this lack of knowledge
(or lack of interest) from the agents’ point of view. This last aspect can be
easily modeled with a graph, a structure where agents are represented as
vertices of the graph and two vertices are connected if say, for example, their
two corresponding agents sit at desks close to each other, meaning that both
“know” what bundle of items was assigned to the other. For the sake of the
example, we will now consider exclusively local envy-freeness. Given this
“local” setting, an agent can only be envious of those who she “sees” in the
graph, and not of any other arbitrary agent. Notice how this can lead to
situations in which we have a local envy-free assignment while a global one
is impossible:

Milk Wine Beer
Armin 1 0 0
Pieck 0 0 1

Reiner 0 0 1

Each row corresponds to an agent and each column to an item: a 1 signals
that the agent likes the item and a 0 the opposite. As one can see, there is
no item allocation which is envy-free: if we give Armin some milk, then
one between Pieck and Reiner will be bound to envy the other, as only wine
and beer are left to be given. On the other hand, if we were to give milk
to either Pieck or Reiner, then Armin will envy the one who received it.

7

However, imagine that we also have to place all of them on the following
graph, representing the way the office desks are placed and which desks
can be seen from some particular desk:

d1 d3d2

Now, recall the first way we could have assigned the available goods: Armin
gets the milk and, for the example’s sake, Pieck a beer and Reiner a glass
of wine. Again, from a global point of view we are doomed: Reiner will
necessarily envy Pieck. However, assume we assign Armin to desk d1, Pieck
to desk d2 and Reiner to desk d3: then Reiner will only be able to know what
his only deskmate has received, but knows nothing about who has received
the beer. One could argue that, in the end, Reiner does indeed know that
someone must have received a good which he prefers to his own (as by the
company’s rules), however there is no tangible person close to him to envy.
Thus, by combining this item allocation and the desk assignment, we have
obtained a locally envy-free assignment for the given instance.

In the thesis, we will focus on two different problems which are naturally
implied by the setting. In one, the task will be to answer whether there are an
item allocation and a position assignment which respect the given criterion.
In the other, aside from the usual instance, also the item allocation will be
fixed, and the task will be to check whether there is a position assignment
which, combined with the given item allocation, satisfies the criterion. When
computational complexity results will allow us, we will also briefly discuss
the “search” variants of these problems, i.e. where the task is to find the
position assignment or the item allocation and position assignment pair
which satisfies the criterion.

A big issue which emerges when working with fair division is the computa-
tional complexity of the task. As an example, in the “classic” fair division
setting, i.e. without an underlying social graph on which agents are placed,
with cardinal utilities, deciding whether there is an envy-free (Lipton et al.
[2004]) or proportional (Bouveret and Lemaı̂tre [2016]) item assignment
are both NP-hard problems. In particular, for envy-freeness, intractability
already arises when considering just two agents with additive and identical
utilities, which, intuitively, should be amongst the simplest settings for the
problem. On the other hand, envy-freeness up to one item represents a
nice case, as an assignment which respects it can always be computed in
polynomial time (Lipton et al. [2004], Aziz, Caragiannis, et al. [2019]).

Although the situation might seem grim to the reader, we do have a couple
of tricks up our sleeves which can mitigate these issues. In fact, though our
setting comes with an extra difficulty, i.e. the position assignment on the

8 1 Introduction

graph, the graph itself will also play a vital role in the complexity of the
task. Thus, different graph topologies might lead to a decrease in complexity.
Another direction we will explore will be that of considering different pa-
rameterizations of the problems, i.e. to observe how certain variables (which
will be called “parameters”) of the instances affect the computational com-
plexity of the problem. If we are lucky, it could turn out that the problems’
high complexity might be due to parameters which in real-life applications
can be neglected.

Based on all the observations done so far, we have also decided to carry out
some experiments to observe how different variables (e.g. the number of
agents, the graph topology, the number of items, etc.) affect the likelihood,
for each of the criteria we have defined, of positive instances, i.e. instances
in which it is possible to define a position assignment which, coupled with
the fixed item allocation, satisfy the given criterion.

1.1 Our Contribution

We explore a new setting for fair division which does not only account for
the distribution of items but also for positioning agents on a social network.
Though it was briefly discussed in the literature, we study it deeper and
come out with some interesting findings, which also open up new directions
of research. We consider two different problems in their existential and
search variants, one in which only the position assignment has to be done
and one in which both the position assignment and the item allocation
have to be performed. We focus on three different fairness criteria (in their
local variants to be precise): envy-freeness, envy-freeness up to one item
and proportionality. For all problems, we study how the social graph itself
affects the (parameterized) computational complexity of the problem itself.

For the first problem we have mentioned, there are both good and bad news.
Regardless of the fairness criterion we are considering, it turns out that
both stars and matchings prove to be graphs on which such a task is easy
to perform, as it can be done in polynomial time. On the other hand, on
lines (and subsequently strongly connected graphs) these problems are all
NP-complete, which is intuitively due to the difficulty of finding a valid
order for the agents. If we consider only local envy-freeness and local envy-
freeness up to one item, then it can also be shown that, for two parameters
which in some particular instances are reasonably low, these problems are
fixed parameter tractable (FPT) in case the social graph is either a tree or
a forest. Moreover, for graphs that have a constant treewidth (intuitively
graphs that look very similar to trees or forests), these same problems are
FPT as well when parameterized by the number of non-isolated vertices in
the graph. Notice that all these positive results (except the one for graphs

1.2 Our Contribution 9

with constant treewidth) hold also in case one has to find such a position
assignment. Instead, a negative result is the fact that in graphs with a non-
constant treewidth these problems are again intractable, so much as they
become para-NP-complete when using again the number of non-isolated
vertices as the parameter. Unfortunately, none of these results applies to
local proportionality.

On the other hand, if the item allocation is not fixed, the problem we in-
troduce turns out to be intractable already in its existential variant. If one
looks just at local envy-freeness, this could already be guessed from the fact
that it is known in the literature that, given a fixed position assignment,
finding an item allocation that is local envy-free is intractable. In fact, on all
graphs that are either lines, stars, matchings or strongly connected ones, this
problem is NP-complete. Moreover, these same results apply to the local
proportionality as well. As a consequence of these results, it follows that
the search problems are also at least NP-hard in all the cases we have just
mentioned, since the search variant of any problem is at least as difficult as
its existential variant. On the other hand, as it is always possible to find an
item allocation which is envy-free up to one item, the existential and search
problems can both be solved in polynomial time for this local criterion.

We have also performed some experiments to study how various parameters
influence the likelihood of positive instances in random ones. In this case,
instances come with a fixed set of agents, a set of items, a utility profile, an
item allocation, a social graph, and a fairness criterion (amongst the ones
we are interested in), and an instance is “positive” in case there is a position
assignment that satisfies the given criteria with the given item allocation.
The main factor which increases this likelihood is the number of items per
agent, though when items are given randomly it might happen the opposite.
This is most likely due to the fact that the number of item assignments is
much higher, hence it is, in general, more likely that there is a way to assign
the items that satisfies the global variant of the given criterion. We have
also noticed how the presence of hubs in graphs (vertices that are connected
to many other vertices) generally decreases this likelihood. As one might
expect, the probability that an instance is positive if the items are given
randomly is often very low. In this sense, the best results we had were when
we focused on local envy-freeness up to one item, in which case the highest
likelihood was approximately 70%. We have also studied how the number
of envy free agent-types, a notion which we will later introduce to obtain
our parameterized results, influences this likelihood, and have noted that
the higher this parameter is, the lower the likelihood is. The graphs on
which we have obtained the best results in these experiments were those
that are sparser (i.e. with few edges) and that did not contain hubs.

10 1 Introduction

1.2 Thesis overview

We will now give a quick outline of the thesis chapters.

Chapter 2 introduces the reader to needed notions in fair division and
computional complexity (both in the classical and in the parameterized case).
In particular, we introduce the fairness criteria which are analysed later:
envy-freeness, envy-freeness up to one item and proportionality, and their
local variants. We introduce basic concepts of classical and parameterized
computational complexity, delving a bit deeper in the latter. For both we
introduce their respective reductions and also give a list of the recurring
problems which we will use to define reductions in later proofs.

Following, from Chapter 3 to Chapter 5 we study the complexity of the prob-
lems we are interested in, where each chapter focuses on one of the fairness
criteria that we will introduce. Each chapter is divided in sections based on
the structure of the underlying social graph. For a detailed overview of the
results presented in these chapters we refer to the previous section.

Chapter 6 instead covers the experimental side of the thesis. In it, instead of
focusing just on the complexity of the problems, we try also to analyse how
often positive instances (i.e. instances in which there are an item allocation
and a position assignment which satisfy one of the criteria we are interested
in) arise in random ones. We also consider different classes of graphs, just
as in the previous chapters, different kinds of utility functions and different
ways of assigning items. For the latter, we consider, for example, assign-
ments which maximize utilitarian welfare or which assign items randomly.
Moreover, we will also comment on how the number of envy-free agent-
types, a notion which we will introduce later on in the theoretical results,
affects this ratio.

Conclusions, directions for future research and comments on what has been
achieved in the thesis are finally discussed in Chapter 7.

1.3 Related work

Fair division has its roots in economic theory, first theorized by Steinhaus
[1948] in collaboration with Knaster and Banach. The literature in fair di-
vision is florid: for the interested reader we refer to the books Brams and
Taylor [1996], Moulin [2003], Lindner [2016], Lang [2016] and to Robert-
son and Webb [1998] for a more algorithmic approach, and to the surveys
Thomson [2016], Procaccia [2013, 2016], Bouveret, Chevaleyre, and Maudet
[2016], Markakis [2017], Aziz [2020] and Walsh [2020] for a more computer
science-oriented point of view.

The fairness criteria we will analyse, envy-freeness, proportionality and

1.3 Related work 11

envy-freeness up to one item have been respectively introduced in Foley
[1967], Steinhaus [1948] and Budish [2011]. We refer also to Aziz and Rey
[2020] for a summary on the logical relationships of these criteria, including
others which we will not discuss in this thesis1.

Starting with Lipton et al. [2004], fair division saw also developments in
the field of computational complexity. Major results from Lipton et al.
include the already cited NP-completeness of checking whether there is an
envy-free item allocation, but also an approximation one which shows that
such problem cannot be approximated by a reasonably low factor. As cited
before, there have been developments in these years also about the other
fairness criteria. Checking the existence of a proportional assignment has
also been shown to be NP-hard, whereas envy-freeness up to one item has
seen more positive results. Adding on the one we have mentioned before,
Caragiannis et al. [2019] have also shown that finding an item allocation
which is envy-free up to one item and Pareto efficient can be done, under
the assumption that utilities are positive and additive, through a procedure
that maximizes the product of utilities (also called “Maximum Nash Welfare
algorithm”). Unfortunately, computing such an assignment has been shown
to be NP-hard in Nguyen et al. [2014]. It should be noted that starting
from the Caragiannis et al. paper, there has been an increasing interest in
combining fairness criteria with Pareto efficiency, sprouting various papers
like Plaut and Roughgarden [2020], which focuses on envy-freeness up to
any item, and Barman, Krishnamurthy, and Vaish [2018], which describes
a pseudo-polynomial algorithm to approximate an item allocation that
maximizes the utilities product.

A recent trend in fair division, on which we also embark, is that of consid-
ering an underlying social network on which agents are or can be placed.
This model was first introduced in Chevaleyre, Endriss, and Maudet [2007],
where also the local variant of envy-freeness was defined. However, their
model differed in the fact that it also included money and mainly revolved
around allowing the agents to exchange items. Years later, Abebe, Kleinberg,
and Parkes [2017] and Bei, Qiao, and Zhang [2017] almost simultaneously
reintroduced this graph-variant independently. It should be noted, however,
that their setting differs much from ours as they consider divisible resources,
whereas we are only concerned with indivisible ones.

Along this line of research, Beynier et al. [2019] stands out as the paper which
has mostly inspired us for this work. Their research was mainly concerned
with the house allocation problem, a particular case of fair division in which
each agent is to be assigned exactly a single item, but had also a social

1For the reader’s interest, it should be noted that the preprint which can be found on
arXiv.org (1907.09279 [cs.GT]) contains a more extensive taxonomy compared to the one
in the conference article.

https://arxiv.org/abs/1907.09279

12 1 Introduction

network, represented as an undirected graph. Like ours, their work linked
the computational complexity of performing an item assignment which
is locally envy-free with the topology of the underlying social network.
Main results include NP-hardness of such problem in graphs in which the
maximum degree (i.e. the maximum number of edges for each vertex in
the graph) is equal to some constant k ≥ 1, in graphs where the minimum
degree is n− k for a fixed constant k ≥ 3 (where n is the number of vertices
in the graph) and tractability in the case of graphs with a minimum degree
equal to n− 2. Unlike their work, our main focus will be on a variant of this
problem in which the agents also have to be placed on the network and on a
specular problem in which the item allocation is fixed and only the position
assignment must be computed. It should also be noted that one section of
their paper is devoted to the first problem we have just mentioned. From
this point of view, our work differs simply in the fact that we are not in
the special case of the house allocation problem. Thus, when compared to
the work from Beynier et al., we consider ours to be a different take on this
“local” variant of fair division, but also a continuation of it.

Bredereck, Kaczmarczyk, and Niedermeier [2018] also proposed a model
akin to ours, where however the social graph is a directed one instead of an
undirected one and agents have already been given a fixed position on the
network. Following the trend started by Caragiannis et al. [2019], they also
mix envy-freeness with efficiency criteria: notable ones include utilitarian
social welfare (where the objective is to maximise the sum of all utilities)
and the already mentioned Pareto efficiency. They present a plethora of
complexity results, both classical and parameterized, and consider also
different representations and constraints on the utility functions.

Eiben et al. [2020] is another work which has greatly inspired us, especially
for our results in parameterized complexity. A major difference in their
setting is the way envy-freeness is defined, as it is equivalent to the combina-
tion of a variant of (global) proportionality and our local envy-freeness, and
the fact that, again, agents are already fixed on the social network. In their
setting, they use (with other parameters) cliquewidth and treewidth, two val-
ues which intuitively measure how much a graph is similar to a clique and a
tree respectively, to prove that finding an envy-free or locally envy-free item
allocation is in XP, and strengthen the treewidth result by proving that the
problem cannot become FPT even with additional parameters. Finally, using
integer linear programming and a set of completely different parameters,
they provide an FPT result for both problems.

We conclude this section with two other directions in this variant of fair
division which share some similarities to our model, but are fundamentally
different. The first one involves the possibility of allowing agents on the
graph to exchange items, which are initially endowed to them. This dates

1.3 Related work 13

back to Chevaleyre, Endriss, Estivie, et al. [2007], where the model which
allowed agents to exchange items was defined, and Chevaleyre, Endriss,
and Maudet [2007], where such model was extended with an underlying
social graph, as mentioned before. After years this setting was partially
picked up again in Gourvès, Lesca, and Wilczynski [2017], who introduced
various problems in the house allocation case. One of these was concerned
with checking whether it is possible for an agent to obtain a certain item
through rational swaps, and it turned out that in case the graph is a star this
can be done in polynomial time, while for trees this problem is NP-hard.
Following, both Huang and Xiao [2019] and Bentert et al. [2019] proved the
tractability of checking whether an object can “reach” an agent via rational
swaps assuming the social graph is a line and obtained a positive result in
the house allocation problem in case preferences are strict, and while the
former also proved NP-hardness in case preferences are weak, the latter
showed NP-hardness results for a different class of graphs and also under
different constraints over the agents’ utilities.

The second direction takes a completely different take on the graph, which
is used to connect items instead of agents. This framework was first de-
fined in Bouveret, Cechlárová, et al. [2017], later followed by Igarashi and
Peters [2019], Lonc and Truszczynski [2018], Bei, Igarashi, et al. [2019] and
Goldberg, Hollender, and Suksompong [2020]. Notably enough, most of
this line of research focuses on answering whether there are item allocations
which satisfy certain fairness and/or efficiency criteria while also allocating
to each agent (usually) a connected set of items. Nevertheless, complexity-
related results have also been achieved in this setting (we particularly refer
to Igarashi and Peters [2019] and Goldberg, Hollender, and Suksompong
[2020] amongst the cited papers for this kind of results).

14

CHAPTER 2

PRELIMINARIES

In this chapter we give the required background and formalities required in
the thesis. We define our model of fair division with an underlying social
network, the fairness criteria and their local variants. We also introduce
notions from complexity theory and parameterized complexity theory which
will be used in the theoretical study of the framework.

2.1 Fair Division

A finite set of n agents N and a finite one of m items O are given. We
will denote with [k] the set {1, . . . , k}. Each agent i has her own utility
function ui : P(O) → R, which induce a utility profile u = (u1, . . . , un).
For convenience and readability, when considering a single item oj we will
write ui(oj) instead of ui({oj}) to denote the utility granted by such item
to agent i. An item allocation consists of a vector π = (π1, . . . , πn) of
subsets which partition O, where agent i has been assigned the bundle πi.
As any allocation π is a partition, for any pair of distinct agents i, j ∈ N
we have that πi ∩ πj 6= ∅ and

⋃n
k=1 πk = O. We will work with additive

utilities, meaning that if agent i is assigned the bundle of objects πi =
{πi1 , . . . , πi`}, then ui(πi) = ∑`

k=1 ui(πik). We differentiate objects in two
(subjective) categories, goods and chores, where the former give positive utility
and the latter negative. Obviously two different agents might have different
opinion on the same item o, even to the case where the first might consider
it a good (thus giving her a positive utility) and the second a chore (giving a
negative utility).

In our model, we assume also the existence of a graph G = (V, E), where
V = {1, . . . , k} is the finite set of vertices and E ⊆ (V

2) is the edge relation,
where with (V

2) we denote the set of all unordered pairs of V, hence G is
an undirected graph. For directed graphs, the edge relation is a subset of
V ×V, hence E is a set of ordered pairs of vertices. We assume that graphs
are undirected, unless we explicitly state otherwise. The following concept

2.1 Fair Division 15

is one which will be mostly used in Chapter 6, in which we will discuss the
experiments we have performed.

Definition 1 (Degree of a vertex). Let G = (V, E) be an undirected graph
and let v ∈ V be a vertex in such graph. The degree of vertex v in the graph
G, denoted with degG(v), is the number of vertices to which it is connected,
i.e. the cardinality of the set {w | {v, w} ∈ E}.

In particular, we will be interested in the so-called regular graphs, i.e. those
graphs in which all vertices have the same degree.

The objective of the central authority is to assign to each agent her place
(vertex) on the network (graph). We denote with µ the assignment, referred
from now on as position assignment, of agents to the graph’s vertices, i.e.
µ is a map from N to V where no two distinct agents i, j ∈ N are such
that µ(i) = µ(j). For simplicity, we assume that |N | = |V|, therefore any
position assignment µ is a bijection between N and V. Given a vertex v,
we denote with N(v) = {w | {v, w} ∈ E} the neighborhood of v, i.e. the
set of vertices that are connected with v through E in the graph G. We also
define the augmented neighborhood of v, defined as N+(v) = N(v) ∪ {v},
i.e. the set containing the neighborhood of v and v itself. Given a position
assignment µ in which agent i ∈ N has been assigned vertex v ∈ V, we
denote with Nµ(i) the neighborhood of i, that is, the set of agents j ∈ N
who have been assigned a vertex connected to v, i.e.:

Nµ(i) = {j | ∃w.µ(j) = w ∧ w ∈ N(v)}

With N+
µ (i) we denote the augmented neighborhood of i, which, similarly to

before, consists of the union between the singleton containing i and her own
neighborhood: N+

µ (i) = Nµ(i) ∪ {i}. When µ is clear from the context, we
will drop it for convenience.

We will study two different cases depending on whether the item allocation
π is fixed or not. However, we will always have that the central authority
must give a position assignment µ. In the first case, instances of our prob-
lems are tuples I = 〈N ,O, u, π, G〉, while in the second I = 〈N ,O, u, G〉,
where N is the finite set of agents, O the finite set of items, u the item
allocation and G the social graph.

Following we give a rundown of fairness notions in item allocations. Let N
be a set of n agents, O a set of m items and π an item allocation (regardless
of whether π is fixed or not).

Definition 2 (Envy-freeness (EF)). An allocation π is envy-free if, for any
pair of agents i, j ∈ N , it holds that ui(πi) ≥ ui(πj).

16 2 Preliminaries

Definition 3 (Envy-freeness up to one item (EF1)). An allocation π is envy-
free up to one item if, for any pair of agents i, j ∈ N , either i does not envy j
or there is an item o ∈ πi ∪ πj such that ui(πi \ {o}) ≥ ui(πj \ {o}).

Definition 4 (Proportionality (PROP)). An allocation π is proportional if, for
any agent i ∈ N , it holds that ui(πi) ≥ ui(O)

n .

The following implications are a known fact in the literature about fair
division (Aziz, Bouveret, et al. [2018], Aziz and Rey [2020]).

Fact 1. If π is EF, then it is also EF1 and PROP.

Regarding envy-freeness, we also define the so-called “envy-free graph”. This
is an undirected graph in which the unordered pair {i, j} is in the set of
edges E if and only if i does not envy j and vice versa.

Definition 5 (Envy-free graph). Given a set of agents N , a set of items O, a
profile of utility functions u and an item allocation π, the envy-free graph
G = (V, E) is defined as follows:

• V := N , i.e. each agent is a vertex in the graph;

• E := {{i, j} | ui(πi) ≥ ui(πj) ∧ uj(πj) ≥ uj(πi)}, i.e. two agents are
connected if and only if they both do not envy each other.

We will also use a directed version of the graph, where the ordered pair (i, j)
is in the edge relation E if and only if i does not envy j. However, unless
stated otherwise, we will always consider the undirected version of the
graph when we refer to it.

It is also possible to define an analogous graph for envy-freeness up to one
item, the “envy-freeness up to one item graph”.

Definition 6 (Envy-free up to one item graph). Given a set of agents N , a
set of items O, a profile of utility functions u and an item allocation π, the
envy-free graph G = (V, E) is defined as follows:

• V := N , i.e. each agent is a vertex in the graph;

• E := {{i, j} | ∃o, o′ ⊆ πi ∪ πj. |o| ≤ 1 ∧ |o′| ≤ 1 ∧ ui(πi \ o) ≥
ui(πj \ o) ∧ uj(πj \ o′) ≥ uj(πi \ o′)}, i.e. two agents are connected if
and only if they both do not envy each other up to one item.

Similarly to the envy-free graph, we will also use a directed version of the
envy-free up to one item graph; though, unless specifically stated otherwise,
we will refer to the undirected version. It is clear that both these graphs can
be built in polynomial time, to be more precise in O(|N |2) time for the first
and O(|N |2|O|) for the second.

We now define local variants of the previous fairness notions. The intuition is

2.1 Fair Division 17

that, given the position of an agent on the social graph, she will only be able
to know the bundles of her neighbors, and not the ones of every other agent.
Obviously, in this case we also must have that the position assignment µ
has already been decided.

Definition 7 (Local envy-freeness (LEF)). An item allocation π and a posi-
tion assignment µ are local envy-free if, for any agent i ∈ N and any agent
j ∈ Nµ(i), it holds that ui(πi) ≥ ui(πj).

Definition 8 (Local envy-freeness up to one item (LEF1)). An item allocation
π and a position assignment µ are local envy-free up to one item if, for any
agent i ∈ N and any agent j ∈ N(i), either ui(πi) ≥ ui(πj) or there is an
item o ∈ πi ∪ πj such that ui(πi \ {o}) ≥ ui(πj \ {o}).

Definition 9 (Local proportionality (LPROP)). An item allocation π and a
position assignment µ are local proportional if, for any agent i ∈ N , it holds

that ui(πi) ≥
∑j∈N+

µ (i) ui(πj)

|N+
µ (i)| .

From which it is trivial to verify the following fact:

Fact 2. If π is EF (EF1), then it is also LEF (LEF1) with any µ. Moreover, similarly
to the global case, if π is LEF with some µ, then it is also LEF1 and LPROP with
the same µ.

However, interestingly enough, PROP does not necessarily imply LPROP.
Consider the following example, with the following utilities:

o1 o2 o3

1 1 2 0
2 0 1 2
3 2 0 1

As for the item allocation π, agent i gets just object oi for each i ∈ [3]. Hence,
it is clear that the item allocation is a proportional one, as for each agent
the average utility across all items is 1, exactly the utility of their bundle.
Instead, consider the graph G = (V, E) that consists of a connected pair
and an isolated vertex, i.e. V = {v1, v2, v3} and E = {{v1, v2}}. As one can
quickly verify, it is indeed the case that there is no position assignment µ
which is local proportional with π.

Figure 2.1 summarizes the taxonomy just described.

Before moving on, we would like to discuss one of the criteria we have just
defined, envy-freeness up to one item. First of all, it is a known fact that
an EF1 allocation always exists, and that it can be computed in polynomial
time (Lipton et al. [2004], Caragiannis et al. [2019]). However, if the set of

18 2 Preliminaries

PROP

EF LEF LPROP

EF1 LEF1

Figure 2.1: Logical relation between defined fairness criteria.

items to assign contains a mix of goods and chores, both algorithms fail to
find an EF1 allocation. In a follow-up paper, Aziz, Caragiannis, et al. [2019]
have proven that it is possible to find an EF1 item allocation in polynomial
time even when the items are a mix of goods and chores, in case utilities are
additive. This is achieved by performing a double round-robin2 assignment,
where intuitively the first round is executed to assign chores in a clockwise
order and the second to assign goods in an anticlockwise order. Thus, the
following proposition is a corollary of these observations and Fact 2:

Proposition 1. There always exists an item allocation which is local envy-free up
to one item for any position assignment when utilities are additive. Moreover, this
item allocation can be computed in polynomial time.

This, however, does not make LEF1 an uninteresting criterion: what happens
if the item allocation π is fixed? In this case Proposition 1 tells us nothing,
hence there are still open questions left to answer.

We conclude this section about fair division by introducing the problems
and the recurring graph topologies which will be studied in the following
chapters. We denote with F any fairness criteria we have just introduced.
In all the following problems we assume that any item must be assigned to
some agent. First, we introduce the two decision problems. The first one
will be called EXISTS-F -POSITION-ASSIGNMENT:

Instance: a tuple 〈N ,O, u, π, G〉, whereN is a set of agents,O a
set of items, u = (u1, . . . , u|N |) a utility profile, π = (π1, . . . , π|N |)
an item allocation and G a graph.

Question: is there a position assignment µ such that π and µ
satisfy F?

And the second EXISTS-F -DISTRIBUTION:

Instance: a tuple 〈N ,O, u, G〉, where N is a set of agents, O a

2In the round-robin algorithm agents are ordered in a circular order and the item alloca-
tion is performed by following such order and assigning one item to an agent each time it is
her turn.

2.1 Fair Division 19

set of items, u = (u1, . . . , u|N |) a utility profile and G a graph.

Question: is there a pair 〈π, µ〉, where π = (π1, . . . , π|N |) is an
item allocation and µ is a position assignment, such that π and
µ satisfy F?

The other problems which we will analyse are the “search” variants of the
ones we have just defined. This means that we do not want an answer to a
question, but an object in output. The first problem is FIND-F -POSITION-
ASSIGNMENT:

Instance: a tuple 〈N ,O, u, π, G〉, whereN is a set of agents,O a
set of items, u = (u1, . . . , u|N |) a utility profile, π = (π1, . . . , π|N |)
an item allocation and G a graph.

Output: a position assignment µ such that π and µ satisfy F , if
there is one.

And the second FIND-F -DISTRIBUTION:

Instance: a tuple 〈N ,O, u, G〉, where N is a set of agents, O a
set of items, u = (u1, . . . , u|N |) a utility profile and G a graph.

Output: a pair (π, µ), where π = (π1, . . . , π|N |) is an item allo-
cation and µ is a position assignment, such that π and µ satisfy
F , if there is one.

Notice that, by Proposition 1, we know that for LEF1 we will not have to
consider the problems where we have to find both an item allocation and a
position assignment.

We will consider three specific topologies for graphs. The first one is the
line, as for example:

v1 v2 · · · vn

The line of n vertices is defined formally as a graph G = (V, E), where
V = {v1, . . . , vn} and E = {{vi, vi+1} | 1 ≤ i < n}.

Secondly, the star. Following is a star with 6 vertices:

v1

v2

v3

v4v5

v6

20 2 Preliminaries

The star of n vertices is defined formally as a graph G = (V, E), where
V = {v1, . . . , vn} and E = {{v1, vi} | 1 < i ≤ n} (v1 is the central vertex).

Finally, the so-called “matching graph”, which we will call “matching” from
now on:

v1
1 · · · vn

1

v1
2 · · · vn

2

A matching of size 2n is defined formally as a graph G = (V, E), where
V = {v1

1, v1
2 . . . , vn

1 , vn
2} and E = {{vi

1, vi
2} | 1 ≤ i ≤ n}.

2.2 Computational Complexity

We now introduce notions from computational complexity which will be
used in the theoretical results. We expect the reader to be familiar with basic
concepts from classical complexity, such as asymptotic notation and the
complexity classes P and NP. On the other hand, we will cover much more
notions in parameterized complexity, such as FPT reductions and various
complexity classes.

For the interested reader, we refer to textbooks such as Arora and Barak
[2009] and Flum and Grohe [2006] for more complete introductions in,
respectively, classical and parameterized complexity.

We will divide this section in two subsections, one for classical and the other
for parameterized complexity. Aside from theoretical concepts, we will
also list problems (and their complexity) that will appear in the following
chapters.

2.2.1 Classical Complexity

We remind the reader of two concepts, as they will both play a central role
in the coming chapters. In order to be as precise as possible, we introduce
decision problems as subsets of a language of some alphabet. Given an
alphabet Σ, i.e. a finite set of symbols, we denote with Σ? the set containing
all finite strings composed of symbols from Σ. Hence, a decision problem
Q is a subset of Σ?, and therefore it can also be seen as a “language” (i.e. a
set of strings made exclusively of symbols from Σ) where its alphabet is Σ.
An algorithm decides Q correctly in case it answers positively if the input
instance is a member of Q and negatively otherwise.

2.2 Computational Complexity 21

Definition 10 (Polynomial-time reduction). Let Q and Q′ be two decision
problems over some alphabets Σ and Σ′. A function f : Σ? 7→ (Σ′)? is a
polynomial-time reduction from Q to Q′ if, for any input instance x ∈ Σ?:

• It can be computed in polynomial time, i.e. in time |x|O(1);

• x ∈ Q if and only if f (x) ∈ Q′.

Definition 11 (NP-completeness). A problem Q ⊆ Σ? is NP-complete if:

• Q is in NP;

• For any problem Q′ in NP there is a polynomial-time reduction f from
Q′ to Q (Q is “NP-hard”).

A standard technique to prove the NP-completeness of some problem Q
is to, once one has established its membership in NP, give a polynomial-
time reduction from an NP-hard problem Q′ to Q. As this will be the
main technique which we will use to prove the NP-completeness of various
problems, we will now give a list of recurring (NP-complete) problems that
we will use to give polynomial-time reductions from.

• HAM-PATH

Instance: a graph G = (V, E).

Question: is there an Hamiltonian path (i.e. a path which
visits each vertex exactly once) in G?

• 3-PARTITION

Instance: a multiset of positive integers S of size 3m such
that the sum of all integers is mT and each integer is in the
open interval

(T
4 , T

2

)
.

Question: is there a partition of S into m subsets T1, . . . , Tm
such that for each subset Ti = {ti

1, . . . , ti
ni
} we have that

∑ni
j=1 ti

j = T?

• PARTITION

Instance: a multiset of positive integers S.

Question: is there a partition of S into two subsets S1, S2
such that the sum of their elements is equal?

• EXACT COVER BY 3-SETS

Instance: a set X such that |X| = 3q for some integer q and
S ⊆ {T ⊆ X | |T| = 3} a collection of triplets of elements of
X.

22 2 Preliminaries

Question: is there a subset S′ ⊆ S such that each element of
X occurs exactly in one triplet of S′?

It should be noted that we use a non-standard version of the 3-PARTITION

problem, as the subsets T1, . . . , Tn which partition S need not be triplets,
unlike the name of the problem might suggest.

We quickly justify the use of this variant by giving a reduction from an
arbitrary instance 〈S, mT〉 for the standard 3-PARTITION to one for our
variant. Define the new set of elements S′ = {s + 2T | s ∈ S}: notice that
the sum of all elements in S′ must be 7mT, because in the original instance
it was mT and the size of S (hence also of S′) is 3m. The question now is
whether there is a partition of S′ into subsets which sum up to 7T. Clearly
the reduction can be done in polynomial time. It is also easy to see that it is
a correct one: if there is a partition of S in triplets for the original instance,
then the partition which has the corresponding triplets is a solution for the
built instance, since originally each triplet summed up to T and now, as we
have added 2T to each of element of S, the new triplets must sum up to 7T.
For the other direction, it suffices to notice that a partition of S′ into subsets
of elements which sum to 7T can only contain triplets, as now each element
of S′ is in the open interval (7 T

4 , 7 T
2) and therefore the sums of any subsets

of two elements or of four elements are respectively strictly smaller and
larger than 7T. Thus, the corresponding partition in triplets of elements of S
is a solution to the original instance. Therefore, the variant of 3-PARTITION

which we use is also NP-complete (membership in NP holds by an argument
identical to the one for the standard version).

2.2.2 Parameterized Complexity

In the classical setting, we have already seen how a decision problem Q can
be defined as a language of a given alphabet Σ. A “parameterized problem”
can be seen as language in which every string is paired up with a natural
number.

Definition 12 (Parameterized problem). Given an alphabet Σ, a parameter-
ized problem is a pair (Q, κ), where Q is a decision problem (i.e. a subset, or
language, of Σ?) and κ : Σ? 7→N is a polynomial-time computable mapping
from words of the alphabet Σ to natural numbers.

The function κ is a function which outputs the parameter of an input instance.
Given an input instance x ∈ Σ? for Q and an integer k, we say that (x, k) ∈
(Q, κ) if and only if x ∈ Q and κ(x) = k.

As a first example that might be useful for the reader, consider the problem
CLIQUE, where an input instance consists of a pair 〈G, k〉, where G is a graph
and k an integer, and the question is whether G contains a clique of size

2.2 Computational Complexity 23

k3. A natural parameterization for CLIQUE is κ(〈G, k〉) := k, i.e. using the
integer k as a parameter.

The reader might find this definition to be quite restraining in the sense that
we allow problems to be parameterized only with a single integer parameter.
We relax this constraint by allowing problems to be parameterized by any
number of integers. This relaxation can be justified by considering the single
parameter of the definition as a code for the tuple of parameters which we
are effectively using.

We are now ready to encounter our first parameterized class.

Definition 13 (FPT). A parameterized problem (Q, κ) ⊆ Σ?×N is in FPT if
there is a computable function f : N→N such that there is a deterministic
algorithm which, given an input instance (x, k) ∈ Σ? ×N, decides whether
(x, k) ∈ (Q, κ) in f (k)|(x, k)|O(1) time.

The FPT class can be seen as “parameterized P”, as it identifies the problems
that we consider tractable for reasonably low values of the parameters.
Notice that we call these problems “tractable” mainly because the chosen
parameterizations are such that for the majority of the input instance in
which we are interested the parameters are relatively low, allowing us
to consider negligible the f (k) factor in the time it takes to compute the
algorithm.

As we have defined the parameterized counterpart of the P class, we will
also define now the counterpart of polynomial-time reductions.

Definition 14 (FPT reduction). Let (Q, κ) and (Q′, κ′) be two parameterized
problems over some alphabets Σ and Σ′. A function f : Σ? 7→ (Σ′)? is an
FPT reduction from (Q, κ) to (Q′, κ′) if:

• x ∈ Q if and only if f (x) ∈ Q′;

• There is some computable function g : N→N such that there is a de-
terministic algorithm which runs in time g(k)|(x, k)|O(1) and computes
f (x) for any input instance (x, k) for (Q, κ);

• There is a computable function g : N → N such that κ′(f (x)) ≤
g(κ(x)) for any x ∈ Σ?.

While the first two conditions might seem natural, the last one stands out as
it seems to be a rather artificial condition on the size of the output instance’s
parameter. Nevertheless, it is crucial as otherwise the FPT class would not
be closed under the resulting reductions. We will show membership in FPT
by giving an FPT reduction to the Integer Linear Program (ILP) problem,

3A clique of size k is a graph G = (V, E) such that V = [k] and E = {{i, j} | i, j ∈ [k]}, i.e.
a graph of k vertices all connected.

24 2 Preliminaries

which is in FPT when parameterized by the number of variables in the set
of constraints.

We now introduce parameterized classes that contain problems which are
considered intractable. These classes are also closed under FPT reductions,
thus a way to prove the membership of a problem in either one of them is
to define an FPT reduction from some problem in such class to the one in
which we are interested in.

Definition 15 (W[t]). A parameterized problem (Q, κ) is in W[t], for t ≥ 0,
if there is an FPT reduction which reduces an instance (x, k) to a logical
circuit with weft smaller than or equal to t such that there is an assignment
which assigns k variables true and makes the whole circuit true if and only
if (x, k) ∈ (Q, κ).

A logical circuit is a DAG-like structure (Directed Acyclic Graph) in which
the roots (all the vertices which no edge points towards to) are literals (i.e.
occurrences of, possibly negated, propositional variables), the inner vertices
are logical gates (which represent the logical operations of conjunction,
disjunction and negation) and there is one final logical gate at the end of the
DAG which returns the truth value of the formula under a given assignment.
The “weft” of a logical circuit is the largest number of logical gates with
more than two inputs across all paths from one of the roots to the end of the
DAG4. Consider the following as an example:

x1 x2 x3 x4 x5

∨ ∨

∧

The circuit represents the formula (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5). The weft
of the formula is exactly 1, because on any path the first logical gate which
is encountered has more than two inputs, while the last gate has exactly two
inputs.

As the reader might have guessed, all these complexity classes generate a
hierarchy, which is known as the “W hierarchy”. It should be noted that it
is still not known whether the hierarchy collapses somewhere (though it
is trivially true that W[i] ⊆W[j] for any i ≤ j) or whether it is equal to the
FPT class, which coincides with W[0]. To see why this last equality holds, it
suffices to observe that given an input instance (x, k) for some FPT problem,
we can decide it in FPT time (trivially), and then output, in polynomial time,

4Clearly, these logical gates with more than two inputs can only be conjunction and
disjunction ones.

2.2 Computational Complexity 25

a logical circuit which is either always true or false, regardless of the values
assigned to the variables, depending on the answer of the FPT algorithm for
the original problem. To conclude the argument it suffices to notice that, by
how the circuit is built, its truth value will be the same for any assignment
which assigns k variables true (thus the correct one based on the decision on
input (x, k)), and that it can be built trivially with a weft of 0; therefore, it
follows that such problem is indeed in W[0] by the definition we have given
previously for the generic class W[t].

Akin to what happens in classical complexity, we will assume that the
answer to whether the hierarchy collapses or whether is equal to the FPT
class are both negative, hence problems which are proven to be W[t]-hard
will be considered effectively intractable, for any t ≥ 1. Though we have
introduced the whole hierarchy, we will only be interested in the class W[1].

The final class we will consider is the parameterized version of NP.

Definition 16 (Para-NP). A parameterized problem (Q, κ) ⊆ Σ? ×N is in
para-NP if there is a computable function f : N → N such that there is a
non-deterministic algorithm which, given an input instance (x, k) ∈ Σ?×N,
decides whether (x, k) ∈ (Q, κ) in f (k)|(x, k)|O(1) time.

Notice the nice parallelism between P vs. NP and FPT vs. para-NP. Indeed,
the following is a known fact about these four complexity classes.

Fact 3 (Corollary 2.13, Flum and Grohe [2006]). P = NP if and only if FPT =
para-NP.

This class also has its own “hard” problems.

Definition 17 (Para-NP-hardness). A parameterized problem (Q, κ) is para-
NP-hard if and only if there exists an FPT reduction from any parameterized
problem (Q′, κ′) in para-NP to it.

The following is a fact which is well known about para-NP-hard problems.
In the thesis, we will use this result to show para-NP-hardness.

Fact 4 (Corollary 2.16, Flum and Grohe [2006]). A parameterized problem
(Q, κ) is para-NP-hard if it is NP-hard for at least one constant value of the
parameterization κ.

A classic example of a para-NP-hard problem is the GRAPH COLORING

problem parameterized by the number of colors, as it is already NP-hard
when the number of colors is fixed to 3.

It is also known that all the classes we have seen so far are closed under FPT
reductions.

Fact 5. FPT, the W hierarchy and para-NP are all closed under FPT reductions.

26 2 Preliminaries

Thus, to prove membership in any of these classes it suffices to give FPT
reductions from problems which we already know are in them.

Before listing the problems that we will use to perform the FPT reductions,
we have to define a graph parameter which is often used in parameterized
complexity.

Definition 18 (Tree decomposition). Given a graph G = (V, E), the tree
decomposition of G is a pair T = 〈T = (V ′, E′), χ〉 where T is a tree and
χ : V ′ → P(V) maps vertices of the tree T to subsets of vertices of the graph
G (which are called “bags”) so that the following two conditions hold:

1. For every edge {v, w} ∈ E, there is a tree vertex t ∈ V ′ such that
{v, w} ⊆ χ(t);

2. For every graph vertex w ∈ V, the set of tree vertices t ∈ V ′ such that
v ∈ χ(t) induces a non-empty subtree.

Notice that there are various ways to define the tree decomposition; the
one we have chosen is the one as it was defined in Eiben et al. [2020]. It
should be noted that for each graph there might be more than one tree
decomposition. Hence, we can now define the treewidth of a graph, which
intuitively indicates how similar is a given graph to a tree or a forest.

Definition 19 (Treewidth). Given a graph G, the width of a tree decomposi-
tion T of G is the size of its largest bag minus one. The treewidth of the graph
G, denoted with tw(G), is the minimal width across all tree decompositions
of G.

To give some examples, the treewidth of a tree or a forest is 1, whereas the
treewidth of a clique of size k is k− 1. As we have already mentioned, the
treewidth is a parameter which proves to be quite useful in parameterized
complexity proofs and, more in general, in complexity theory as a whole.
For a survey on treewidth and correlated results we refer to Bodlaender
[2006].

Finally, we will now list the problems which we will employ in our proofs
using parameterized complexity.

• INTEGER LINEAR PROGRAM PROBLEM5

Instance: a set of linear constraints.

Parameter: the number of variables that appear in the con-
straints.

5Notice that we use a variant of the problem in which there is no objective function to
maximize/minimize, as in our case integer linear programs with only constraints will suffice.

2.2 Computational Complexity 27

Question: is there an assignment of the variables which
makes all the constraints true?

Parameterized complexity: FPT (Lenstra [1983]).

• SUBGRAPH ISOMORPHISM

Instance: two graphs G = (VG, EG) and H = (VH, GH).

Parameter: the number of vertices of H.

Question: is there an isomorphism from H to a (not neces-
sarily induced) subgraph of G?

Parameterized complexity: FPT (Alon, Yuster, and Zwick
[1995]).

• CLIQUE

Instance: a graph G = (V, E) and an integer k.

Parameter: the integer k.

Question: does G contain a clique of size k?

Parameterized complexity: W[1]-hard (Downey and Fel-
lows [1995]).

28

CHAPTER 3

COMPLEXITY OF LOCAL ENVY-FREE
ASSIGNMENTS

The first fairness criterion we consider is local envy-freeness, which in its
definition is amongst the simplest criteria for fair division but it it also one
of the most difficult to satisfy. Its global variant is amongst the most studied
criteria in the literature.

This chapter will give the general guideline for the rest of the theoretical
part of thesis (that includes also Chapters 4 and 5), since the results which
we will prove in this one will also be adapted to the other fairness criteria,
when possible.

We have decided to divide each chapter into sections based on the corre-
sponding graph families which we will consider in them. As we move on,
the families will become more and more general and include more graphs.
We first start with lines and stars, both classes that belong to the one of
strongly connected graphs, which follow up immediately after the two.
Then, we will move to the matchings, which can be seen as the “simplest”
collection of non-connected strongly connected graphs. At this point, the
reader will have seen that amongst these, only the stars and the matchings
prove to be graphs on which it is easy to find a way to arrange agents so
that they do not envy each other, showing again the intractability of envy-
freeness complexity-wise even in its local variant. Afterwards, we shift
our attention to trees and forests (notice how matchings fall in the latter
family) and we will work with parameterized complexity instead of classic
complexity. Finally, we conclude the chapter by considering graphs that
have a constant treewidth and those that do not have a constant treewidth.
As any graph has a well-defined treewidth, its family will fall in either one
of the two families we have just mentioned.

3.1 Lines and Stars 29

3.1 Lines and Stars

As the first families of graphs, we consider two that are relatively simple
and strongly connected, lines and stars. Regardless of their similarities,
as we will see shortly, the two families differ quite a lot in complexity
terms with respect to our problems: the fact that in stars there is a “central”
vertex makes finding a way to assign agents to their positions, so that the
assignment is LEF, much easier.

Proposition 2. Given an instance I = 〈N ,O, u, π, G〉 in which G is a star,
EXISTS-LEF-POSITION-ASSIGNMENT is decidable in polynomial time.

Proof. We prove the claim by giving a polynomial-time algorithm which de-
cides the problem. The algorithm exploits a simple observation which holds
in case G is a star and we want to obtain an LEF position assignment given
an item allocation: to check whether there is an LEF position assignment it
suffices to check whether there is an agent i such that ui(πi) ≥ ui(πj) and
uj(πj) ≥ uj(πi) for any other agent j ∈ N \ {i}. Thus, the algorithm will
simply loop over the agents and check the following two conditions:

1. That the current agent i is such that for any other agent j ∈ N \ {i} it
holds that ui(πi) ≥ ui(πj);

2. That any other agent j ∈ N \ {i} is such that uj(πj) ≥ uj(πi).

If there is such an agent i then the algorithm halts and outputs “Yes”, other-
wise if the loop ends and no such agent has been found it outputs “No”. It
is clear that the complexity of the algorithm is polynomial in the input size,
quadratic in the number of agents to be precise.

We quickly check that the algorithm is correct. If there is an LEF position
assignment µ, then there must be some agent who is placed at the central
vertex of the star and satisfies both conditions checked in the loop. Hence,
the algorithm will halt and output “Yes”.

On the other hand, if the algorithm outputs “Yes” then this can happen just
in case there is some agent i who satisfies both conditions checked in the
loop. Hence, by simply taking the position assignment µ which places such
agent i at the central vertex and all the other agents on the outer vertices, it
is clear, by the definition of LEF, that µ must be an LEF position assignment.
Thus, the claim is proven.

It is also easy to observe that, if the underlying graph G is a star, the cor-
responding search problem, FIND-LEF-POSITION-ASSIGNMENT, can also
be solved in polynomial time: instead of returning a binary answer, the
algorithm will simply output a position assignment µ that places at the
central vertex the agent i who satisfies both conditions in the loop (if there

30 3 Complexity of LEF Assignments

is any) and the remaining agents will be placed in an arbitrary order on the
outer vertices.

We will now show that EXISTS-LEF-POSITION-ASSIGNMENT cannot be
solved in polynomial time (unless P = NP) if the social graph is a line. In
order to prove the claim we will use the HAM-PATH problem.

Proposition 3. Given an instance I = 〈N ,O, u, π, G〉 in which G is a line,
EXISTS-LEF-POSITION-ASSIGNMENT is NP-complete even when there are as
many items as agents.

Proof. We first show that a solution to EXISTS-LEF-POSITION-ASSIGNMENT

can be verified in polynomial time. This can be done trivially using as a
certificate a position assignment µ (which is obviously polynomial in the
size of the input): it suffices then to check that no agent is envious of any of
her neighbors to verify whether the certificate is a correct one or not. This
can be done in polynomial time, more precisely in quadratic time in the
number of agents. Hence, EXISTS-LEF-POSITION-ASSIGNMENT ∈ NP, thus
is also in NP in case the underlying graph is a line.

To show NP-hardness, we provide a polynomial-time reduction from HAM-
PATH to EXISTS-LEF-POSITION-ASSIGNMENT, such that the graph G is
a line and |N | = |O|. Let G = (V, E), with n = |V|, be an instance for
HAM-PATH. The polynomial time reduction f gives in output the following
instance for EXISTS-LEF-POSITION-ASSIGNMENT:

• N = [n], i.e. there is a corresponding agent i for each vertex vi ∈ V;

• O = {o1, . . . , on}, i.e. there is a corresponding item oi for each agent i;

• u = (u1, . . . , un) where ui is defined as follows: let N(vi) = V \N+(vi)
be the set of vertices which are not the vertex vi, which corresponds
to agent i, nor neighbors of it. Then, let oi1 , . . . , oim be the items
that correspond to the vertices in N(vi), let o′i1 , . . . , o′im′

be those that
correspond to the vertices in N(vi) and let oi be item that corre-
sponds to the vertex vi. The utility function ui is defined so that
ui(oi1) > · · · > ui(oim) > ui(oi) > ui(o′i1) > · · · > ui(o′im′

). For any
agent i, define ui(π) for a bundle of items π ⊆ O simply as the sum
of the utilities of its items;

• π = (π1, . . . , πn) where πi = {oi} for any i ∈ N ;

• G′ = (V ′, E′), where V ′ = {w1, . . . , wn} and E = {{wi, wi+1} | 1 ≤
i < n}. Clearly G′ is a line.

It is easy to see that the given reduction is polynomial in the input size and
satisfies the two conditions we have previously mentioned. We proceed to

3.2 Strongly Connected Graphs 31

show that G has an Hamiltonian path if and only if 〈N ,O, u, π, G′〉 has a
position assignment µ which is LEF with π.

Suppose that there is an LEF position assignment µ for 〈N ,O, u, π, G′〉. This
means that µ assigns to each agent i a vertex on the line G′ so that i is not
envious of her neighbor(s). Let j be any agent who is assigned a position
connected to i’s one. Since µ is LEF we must have that ui(πi) ≥ ui(πj) and
uj(πj) ≥ uj(πi): by definition of u, this can only happen just in case vi and vj,
the vertices in G that correspond to agents i and j, are such that {vi, vj} ∈ E.
As both i and j were chosen arbitrarily, it follows that, for each i, j ∈ N for
which {µ(i), µ(j)} ∈ E′, the pair of corresponding vertices vi, vj in G are
such that {vi, vj} ∈ E holds as well. Therefore, as each agent is assigned
exactly one position on G′, it follows that the path which corresponds to the
position assignment µ (i.e. the path vi1 , . . . , vin such that agent ik is assigned
the vertex wk in G′ by µ) is an Hamiltonian path in G.

Now assume that G has an Hamiltonian path P = vp1 , . . . , vpn . Obviously,
every pair of consecutive vertices vpi , vpi+1 in P (for 1 ≤ i < n) must be such
that {vpi , vpi+1} ∈ E, otherwise P is not a valid path. Consider the position
assignment µ that corresponds to P, i.e. such that the i-th agent on the
line is pi. We quickly show that µ is LEF: as all pairs vpi , vpi+1 in P must be
such that {vpi , vpi+1} ∈ E it follows that, for their respective agents pi, pi+1,
upi(πpi) > upi(πpi+1) and upi+1(πpi+1) > upi+1(πpi) both hold by definition
of u and π. As this holds for any pair of agents on the line, we have that no
agent is envious of her neighbor(s), thus µ is indeed LEF.

3.2 Strongly Connected Graphs

We now shift our attention to EXISTS-LEF-DISTRIBUTION in the context of
strongly connected graphs, i.e. graphs in which there is a path (a sequence of
vertices connected through the edge relation) from any vertex to any other
vertex. For our purposes, it will suffice to consider agents with identical
utilities. Hence, instances of the problem will be tuples 〈N ,O, u, G〉, where
ui(π) = uj(π) for any pair of agents i, j ∈ N and any bundle of items
π ⊆ O, and G is strongly connected.

There are two observations to make. The first is that already Beynier et al.
[2019] proved NP-completeness for such problem: we extend such result
by showing that the same problem is already NP-complete even assuming
that all agents have identical utilities and the underlying graph is strongly
connected, thus in a setting which might be considered “simpler” (in par-
ticular for the property that agents have identical utilities). The second is
that we skip EXISTS-LEF-POSITION-ASSIGNMENT in this section as its NP-
completeness, in case the social graph is a strongly connected one, follows
from the fact that we have shown that it is NP-complete already for lines,

32 3 Complexity of LEF Assignments

which are trivially strongly connected graphs (proving membership in NP
can be done by the same argument).

Before proving our claim, we first show a lemma that applies to instances
in which the social graph is a strongly connected one and all agents have
identical utilities. This lemma will prove to be quite useful in the proof of
the upcoming result.

Lemma 1. Given an instance I = 〈N ,O, u, π, G〉 in which agents have identical
utilities and G is strongly connected, π and a position assignment µ are LEF if and
only if every agent has the same utility under π.

Proof. We prove both directions. The right-to-left direction is trivial: if every
agent has the same utility, then no agent will be envious of her neighbor(s)
because their utility functions are identical by assumption.

For the left-to-right, suppose by contraposition that there are two agents
i, j such that their utilities under π are different: we show that there is no
position assignment µ which is LEF with π. Without loss of generality,
assume that u(πi) < u(πj) (recall all agents have the same utility function
u). Let µ be an arbitrary position assignment: as G is strongly connected,
there must be a path P = µ(j), µ(k1), . . . , µ(km), µ(i) from j to i. Either
u(πk1) = u(πj) or not: in the latter, we already have that µ and π are not
LEF. Instead, if u(πk1) = u(πj), we can repeat the same two arguments for
the next agent on the path k2, and so on for the following agents. Thus,
either some agent k` on the path is such that u(πk`) 6= u(πj), meaning that
µ and π are not LEF, or all agents, from k1 to km, have a utility equal to
u(πj). However, by assumption we know that u(πi) < u(πj), therefore
u(πi) < u(πkm) = u(πj), proving that in any case no µ can be LEF with the
given π.

To prove our result, we will use the unrestricted version of 3-PARTITION, as
it was defined in Chapter 2.

Theorem 1. Given an instance I = 〈N ,O, u, G〉 in which G is a strongly con-
nected graph, EXISTS-LEF-DISTRIBUTION is NP-complete, even when agents
have identical utilities.

Proof. We first show that EXISTS-LEF-DISTRIBUTION is in NP. To do so, we
show that, given a polynomial-size certificate, the problem can be verified
in polynomial time. For any instance 〈N ,O, u, G〉, a certificate will be a pair
π, µ, i.e. an item allocation and a position assignment (both polynomial in
the size of the instance). We can easily check in quadratic time in the number
of agents whether, under the assignment µ, every pair of neighboring agents
is envy-free under the allocation π. Therefore, EXISTS-LEF-DISTRIBUTION

∈ NP, thus it is also in NP in this particular setting.

3.3 Strongly Connected Graphs 33

We now show NP-hardness. Consider an arbitrary instance for 3-PARTITION

made of a multiset of positive integers S = {x1, . . . , x3m} and an integer
mT. We provide the following polynomial-time reduction to an instance for
EXISTS-LEF-DISTRIBUTION where agents have identical utilities and G is
strongly connected:

• N = [m], i.e. there is an agent for each of the subsets in a possible
solution for the 3-PARTITION input instance;

• O = {o1, . . . , o3m}, i.e. there is a corresponding item oi for each posi-
tive integer xi ∈ S;

• u = (u, . . . , u) where u({oi}) = xi and, for any bundle π ⊆ O, we
have that u(π) = ∑o∈π u(o). Clearly all agents have identical utilities;

• G is the line with m vertices. Clearly G is strongly connected.

Observe that the reduction is trivially a polynomial-time one. We now show
that S can be partitioned in m subsets such that the sum of the elements
of each subset is T if and only if there is an item allocation and a position
assignment that are LEF for 〈N ,O, u, G〉.

Assume that there is a partition of S in subsets T1, . . . , Tm so that for each
1 ≤ i ≤ m we have that Ti = {xi1 , . . . , xin} is such that ∑n

j=1 xij = T. Then, by
simply taking the item allocation which assigns to agent i the corresponding
subset of items {oi1 , . . . , oin} and the position assignment which assigns to
agent i the i-th position on the line, we have an item allocation and a position
assignment that are LEF for the instance. In fact, as every agent will have a
utility of T by definition of u, no agent will be envious of her neighbor(s).

On the other hand, assume that there is an item allocation π and a position
assignment µ that are LEF for the EXISTS-LEF-DISTRIBUTION instance. By
Lemma 1 it follows that every agent must have the same utility: as u(O) =
mT, |N | = m and every item is assigned by definition of the problem, it
follows that each bundle gives to its agent a utility of T. Therefore, by taking
the corresponding partition of elements of S (i.e. if πi = {oi1 , . . . , oin} then
Ti = {xi1 , . . . , xin}) we obtain a partition T1, . . . , Tm of S such that for every
Ti the sum of its elements is equal to T.

Observe that the graph which was built in the reduction is a line, and at the
same time one can also redo the same proof where the built graph is a star
instead of a line. These two observations imply the following corollary.

Corollary 1. Given an instance I = 〈N ,O, u, π, G〉 in which G is a star or a
line, EXISTS-LEF-DISTRIBUTION is NP-complete.

34 3 Complexity of LEF Assignments

3.3 Matchings

We now consider the same problem but when the social graph is a matching
(observe that in this case we assume that the number of agents is even). As
for the stars, we can obtain a positive result both for the decision problem
and the search one if the item allocation is given.

Proposition 4. Given an instance I = 〈N ,O, u, π, G〉 in which G is a matching,
EXISTS-LEF-POSITION-ASSIGNMENT is decidable in polynomial time.

Proof. We give a polynomial-time algorithm which can solve the problem
given an arbitrary instance. The algorithm first builds the envy-free graph
GEF = (VEF, EEF), which can be built in polynomial time as we have already
noted in Chapter 2.

Recall that a matching can be defined as a set of pairs of vertices such that
any vertex appears in exactly one pair and each pair of vertices in the set
is connected in the graph. Hence, if GEF admits a matching which contains
all vertices (a “perfect” matching), then we know that it is possible to assign
to each agent a position in the matching, by trivially pairing up agents
who are paired in the perfect matching. On the other hand, if there is an
LEF position assignment on the matching, then there must also be a perfect
matching in GEF, by definition of the envy-free graph itself. Now, the key
observation to make is that finding the maximum size matching of any
graph can be done in polynomial time (Micali and Vazirani [1980]), thus
deciding whether a graph has a perfect matching can be done in polynomial
time (simply check whether the size of the matching is equal to half the
number of vertices). Therefore, EXISTS-LEF-POSITION-ASSIGNMENT can be
decided in polynomial time.

Like before, it is also possible to compute FIND-LEF-POSITION-
ASSIGNMENT in polynomial time, by simply giving in output the perfect
matching of GEF, if there is one.

We now show that EXISTS-LEF-DISTRIBUTION is NP-complete under the
assumption that agents have identical utilities and that the underlying social
graph is a matching. To do this, we give a reduction from PARTITION, an
NP-complete problem.

As we will see, the reduction is really a trivial one, since by Lemma 1 we
know that two connected agents with identical utilities can be envy-free if
and only if they have the same utility under an item allocation π.

Proposition 5. Given an instance I = 〈N ,O, u, G〉 in which G is a matching,
EXISTS-LEF-DISTRIBUTION is NP-complete, even when agents have identical
utilities.

3.4 Trees 35

Proof. By the same argument we have made before, we know that EXISTS-
LEF-DISTRIBUTION ∈ NP holds also in this case.

To show NP-hardness, let S = {x1, . . . , xm} be any input instance for PARTI-
TION, and consider the following polynomial-time reduction:

• N = [2];

• O = {o1, . . . , om}, i.e. there is a corresponding item oi for each positive
integer xi ∈ S;

• u = (u, u) where u({oi}) = xi and, for any bundle π ⊆ O, we have
that u(π) = ∑o∈π u(o). Clearly both agents have the same utility
function;

• G is the matching with 2 vertices.

Clearly the output instance is also an instance for our problem. Then, it is
trivial to observe that there is an item allocation π (which allocates each
item) and a (forced) position assignment µ that are LEF for the instance
〈N ,O, u, G〉 if and only if S can be partitioned into two sets such that the
sums of their elements are equal.

3.4 Trees

We now move to results which involve mainly parameterized complexity.
For now, we will consider the family of trees for which, if we use a proper
parameterization tailored for them, we can prove that FIND-LEF-POSITION-
ASSIGNMENT is in FPT.

We now introduce the first of the two parameters which we will use.

Definition 20 (Vertex-type). Let G = (V, E) be a tree. Given v, w ∈ V two
arbitrary vertices of G, we say that v and w have the same vertex-type tv if
and only if the two subtrees rooted respectively in v and w are identical (up
to a bijective mapping between the vertices, i.e. an isomorphism).

Notice that here we implicitly assume that the tree is rooted, meaning that
there is some vertex in it labelled as the root. This is because otherwise the
subtree rooted in some vertex cannot be defined properly.

It is easy to observe that, given two vertices, one can check whether they
have the same vertex-type in linear time. Hence, vertex-types for all the
graph’s vertices can be computed in polynomial time.

Fact 6. Given the relation

Tv = {(v, w) | v, w ∈ V, the subtrees rooted in v and w are isomorphic}

each vertex-type denotes an equivalence class for Tv.

36 3 Complexity of LEF Assignments

It is easy to see that Tv is indeed an equivalence relation, since it is reflexive,
symmetric and transitive. By its own definition, it then follows that each
vertex-type is indeed an equivalence class of Tv.

Thus, Tv partitions V into equivalence classes [v]Tv , each corresponding to
some vertex-type, where v ∈ V is the “representative” of its class. We will
denote with TV the set of vertex-types of G, with vtv the representative of
type tv ∈ TV and with Vtv the set of vertices of type tv ∈ TV .

Observation 1. There are some very important observations to make about vertex-
types:

• If two vertices have the same vertex-type, then for each vertex-type they will
have the same number of children of that type. Here, with “children” of some
vertex v we intend the vertices connected to it which are also in the subtree
rooted in v itself;

• A certain vertex-type tv can only be found at a specific depth in a single tree.
This follows clearly from the fact that vertex-types are defined by the rooted
subtrees of such tree;

• The relation Tv can be computed in O(|V|3) time.

Considering the first item of Observation 1, for an arbitrary pair of vertex-
types tv, t′v ∈ TV , we will denote with etv,t′v the number of children of type t′v
of any vertex of type tv.

We now introduce the concept of “agent-type” (with respect to envy-freeness).
The idea behind the agent-type is that two agents who are equivalent with
respect to envy for any arbitrary agent (i.e. either they both envy/do not
envy the same agents and the same agents envy/do not envy both of them)
can be swapped in a position assignment µ without changing whether µ
is LEF or not. Thus, let I = 〈N ,O, u, π, G〉 be an arbitrary instance and
GEF = (VEF, EEF) the directed envy-free graph induced by it.

Definition 21 (EF Agent-type). Two agents i, j ∈ N have the same EF agent-
type ta if and only if, for any agent k ∈ N , it holds that:

• (i, k) ∈ EEF ⇐⇒ (j, k) ∈ EEF: either both i and j do not envy k or
they both do;

• (k, i) ∈ EEF ⇐⇒ (k, j) ∈ EEF: either k does not envy both i and j or
she does.

Fact 7. Given the relation

Tn = {(i, j) | i, j ∈ N , ∀k ∈ N .[((i, k) ∈ EEF ⇐⇒ (j, k) ∈ EEF)

∧ ((k, i) ∈ EEF ⇐⇒ (k, j) ∈ EEF)]}

each agent-type denotes an equivalence class for Tn.

3.4 Trees 37

Again, we briefly comment on why the previous claim holds. First we
show that Tn is reflexive, symmetric and transitive. The first two properties
are trivial. It remains to prove transitivity: let i, j, r ∈ N be such that
(i, j), (j, r) ∈ Tn, we show that also (i, r) ∈ Tn. As (i, j) ∈ Tn we have that
(i, k) ∈ EEF ⇐⇒ (j, k) ∈ EEF and (k, i) ∈ EEF ⇐⇒ (k, j) ∈ EEF both
hold for any k ∈ N , similarly as (j, r) ∈ Tn we have that (j, k) ∈ EEF ⇐⇒
(r, k) ∈ EEF and (k, j) ∈ EEF ⇐⇒ (k, r) ∈ EEF both hold for any k ∈ N .
Therefore, for any k ∈ N it holds that (i, k) ∈ EEF ⇐⇒ (j, k) ∈ EEF ⇐⇒
(r, k) ∈ EEF and (k, i) ∈ EEF ⇐⇒ (k, j) ∈ EEF ⇐⇒ (k, r) ∈ EEF, i.e.
(i, r) ∈ Tn. Hence, we have that Tn is also transitive, as desired. Thus, by
definition, it follows clearly that each agent-type is indeed an equivalence
class for Tn.

We now know that Tn partitions N , and that each agent-type corresponds
to some equivalence class [i]Tn , where i ∈ N will be regarded as the “rep-
resentative” of such class. We will denote with TN the set of agent-types of
N and, with ita the representative of type ta ∈ TN and with Nta the set of
agents of type ta ∈ TN .

Observation 2. Again, there are a couple of observations to make about agent-
types:

• When doing the position assignment, placing two different agents but which
have the same agent-type makes no difference if the goal is to satisfy LEF, as
they both envy (do not envy) the same agents and any agent envies (does not
envy) both of them;

• Computing the relation Tn (and thus its classes) can be done in polynomial
time in the size of the instance, as computing the envy-free graph can be done
in polynomial time.

Before proving that, if the social graph is a tree, FIND-LEF-POSITION-
ASSIGNMENT is in FPT under the parameters we have just defined, we
will first briefly comment on the two parameters themselves. Although one
might argue that they are both parameters which will not be reasonably
low in many cases, there are some considerations to make. For starters, the
number of vertex-types is not high in n-ary trees and, more in general, trees
which show some repeating patterns inside them. Although our running
example pictured the graph as a representation of the distribution of desks
inside an office, the social graph might also represent some sort of hierar-
chy in the company. At that point, it is not difficult to imagine that such
hierarchy might be in fact a tree and, most importantly, one which does
indeed show some repeating patterns. When we will move to forests, this
observation will be even more impactful, as it might happen, for example,
that one tree is a subtree of another one in the forest.

Though not through an immediate consideration, the (EF) agent-types can

38 3 Complexity of LEF Assignments

also be justified as well. In real applications, instead of the agent-types
as they were was defined, it might even be more common to have agents
with identical utilities being assigned bundles that grant them the same
utility. A way of thinking why this situation might occur is that it might
happen that the central authority does not have perfect information from
every agent about the assigned bundles: at this point, it might be sensible to
group agents by their job and/or known skills. Thus, agents will be divided
in a coarser way with respect to their true utility functions. Moreover, in
particular in the case of chores, it is not difficult to imagine that agents who
have similar skills or even the same job inside the company will be assigned
similar tasks, hence why they will probably have the same agent-type.

We will now move to the (positive) result. We will be able to show that, if the
social graph is a tree, FIND-LEF-POSITION-ASSIGNMENT is in FPT when
parameterized by the two parameters just defined, by reducing an arbitrary
input instance for it to an instance for the INTEGER LINEAR PROGRAM

PROBLEM, i.e. an Integer Linear Program (shortened as “ILP”).

If we can define a correct FPT reduction from our problem to an ILP, this
would imply the claim by simply observing how a solution to the ILP
induces a position assignment µ (which will be trivially computable in
polynomial time).

Before moving on to the proof, we first need to define the depth of a vertex
in a tree G = (V, E). In a tree, given a vertex v, we define its depth dG(v) in
the classical way, i.e. the length of the unique path (meaning the number
of traversed vertices) from the root to v. We denote with D(G) the depth
of the tree G itself, i.e. the maximal depth amongst its vertices. When clear
from the context, we will drop the G in all these notations. Analogously, we
define the depth of a vertex in a forest as the length of the unique path from
the root (of the vertex’s tree) to the vertex itself.

Theorem 2. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is
a tree, FIND-LEF-POSITION-ASSIGNMENT is in FPT if parameterized by the
number of EF agent-types |TN | and the number of vertex-types |TV |.

Proof. We will prove the claim by reducing the instance I to an ILP which
number of variables can be bounded by a (computable) function of |TN | and
|TV |. The ILP will have the following variables:

• For ta, t′a ∈ TN and tv, t′v ∈ TV a variable xta,t′a,tv,t′v which will encode
how many times an agent of type ta and one of type t′a are assigned
respectively to a vertex of type tv and one of type t′v that are connected
by an edge. In this case, the vertex of type tv is the parent and the one
of type t′v is the child. Often in the rest of the proof we will call these
respectively “parent vertex” and “child vertex”;

3.4 Trees 39

• For ta ∈ TN and tv ∈ TV a variable rta,tv which value will be 1 if the
tree’s root is of type tv and an agent of type ta is assigned to it and 0
otherwise.

Hence, the number of variables is exactly |TN |2|TV |2 + |TN ||TV |, which is
clearly a computable function of our parameters.

We will now introduce the constraints of the ILP, with a quick description of
why they are needed. Afterwards, we will prove the claim by proving that a
solution to the built ILP induces the existence of an LEF position assignment
(which can be also defined in polynomial time) and vice versa.

Integrity constraints:

– For ta, t′a ∈ TN and tv, t′v ∈ TV :

xta,t′a,tv,t′v ∈N0

– For ta ∈ TN and tv ∈ TV :

rta,tv ≥ 0

– For ta ∈ TN and tv ∈ TV :

rta,tv ≤ 1

Root constraints:

– For tv ∈ TV with tv equal to the root’s vertex-type:

∑
ta∈TN

rta,tv = |Vtv |

Ensures that there is only one pair agent-type, vertex-type such
that the corresponding root variable is equal to 1, and that the
vertex-type is indeed the correct one;

– For ta ∈ TN and tv, t′v ∈ TV with tv equal to the root’s vertex-type:

∑
t′a∈TN

xta,t′a,tv,t′v − rta,tv etv,t′v = 0

Ensures that there is the correct number of edges from the root
towards vertices of type t′v, checking that ∑t′a∈TN xta,t′a,tv,t′v is dif-
ferent from 0 just in case rta,tv is different from 0 and that, in such
case, ∑t′a∈TN xta,t′a,tv,t′v is exactly equal to etv,t′v ;

40 3 Complexity of LEF Assignments

Network conformity constraints:

– For ta ∈ TN and tv, t′v ∈ TV with tv not equal to the root’s vertex-
type: (

∑
t′a∈TN

xta,t′a,tv,t′v

)
− etv,t′v ∑

t′a∈TN
∑

t′′v∈TV

xt′a,ta,t′′v ,tv = 0

Ensures that the number of edges in which a vertex of type tv,
to which an agent of type ta is assigned, is the parent vertex of
some child vertex of type t′v, to which an agent of an arbitrary
agent-type has been assigned, is equal to the number of times an
agent of type ta is assigned to a child vertex of type tv times the
number of children of type t′v for any vertex of type tv;

Agent conformity constraints:

– For ta ∈ TN :

∑
t′a∈TN

∑
tv,t′v∈TV

xt′a,ta,tv,t′v + ∑
tv∈TV

rta,tv = |Nta |

Ensures that the number of agents of type ta assigned over all G
is exactly the number of agents of such type in N ;

LEF constraints:

– For ta, t′a ∈ TN and tv, t′v ∈ TV :

xta,t′a,tv,t′v

(
uita

(πita
)− uita

(πit′a
)
)
≥ 0

– For ta, t′a ∈ TN and tv, t′v ∈ TV :

xta,t′a,tv,t′v

(
uit′a

(πit′a
)− uit′a

(πita
)
)
≥ 0

We now show that there is a position assignment µ which is LEF when
paired up with π for I if and only if there is a solution to the corresponding
ILP we have just defined. This implies our claim because the ILP defined
through the FPT reduction can be solved in FPT time (when parameterized
by the number of variables), hence we can also find a position assignment µ
in FPT time (with the given parameters).

We first show the left-to-right direction. Assume that there is indeed such a
position assignment µ. We first describe how to obtain an assignment for
the ILP variables from µ. This assignment will be the natural one induced
by µ: for the variables rta,tv , we assign 1 if the root is a vertex of type tv and
an agent of type ta is assigned to it and 0 otherwise. For any other variable

3.4 Trees 41

xta,t′a,tv,t′v , we assign to it the number of times an agent of type ta is assigned
to a vertex of type tv, an agent of type t′a is assigned to a vertex of type t′v
and there is an edge connecting a parent vertex of type tv to a child vertex of
type t′v. Hence, it follows clearly that the integrity constraints are satisfied.
We show that the remaining constraints are satisfied as well:

Root constraints:

– We have two cases, either tv is the root’s vertex-type or not. In
the former, as the agent-type of the agent at the root is unique,
observe that it will follow that ∑ta∈TN rta,tv = 1; similarly, in the
latter, by how we have defined the assignment it will follow that
∑ta∈TN rta,tv = 0. In any case, the constraint is satisfied;

– For the remaining root constraints, we have three different cases.
If ta and tv are such that rta,tv = 0, then it also implies that
xta,t′a,tv,t′v = 0 for any other pair t′a, t′v since the root is the only
vertex of type tv, hence the constraint is satisfied. If tv and t′v are
such that etv,t′v = 0, then xta,t′a,tv,t′v = 0 since there are no edges
connecting a parent vertex of type tv to a child of type t′v, hence
the constraint again is satisfied. Finally, assume that ta, tv and t′v
are such that rta,tv = 1 and etv,t′v > 0: then it is also clear that if we
sum xta,t′a,tv,t′v over all agent-types t′a, we obtain exactly etv,t′v , since
for each vertex of type t′v which is a child of the root there will be
exactly one agent (of some type t′a) assigned to it;

Network conformity constraints:

– As before with the second type of root constraints, also here we
have three different cases. If ta and tv are such that no agent of
type ta was assigned to a vertex of type tv, then it must also be
the case that there is no edge connecting a parent vertex (of any
arbitrary type t′′v to which an agent of any arbitrary type t′a was
assigned) to a child vertex of such type where such an agent was
assigned, hence the constraint is satisfied. On the other hand,
if etv,t′v = 0, then no edge can connect a parent vertex of type tv
to a child vertex of type t′v, and again the constraint is satisfied.
Finally, if etv,t′v 6= 0 and ∑t′′v∈TV

xt′a,ta,t′′v ,tv 6= 0, then observe that
the number of child vertices of type t′v to which an agent of an
arbitrary type has been assigned, for each vertex of type tv to
which an agent of type ta has been assigned, is exactly equal to
etv,t′v simply by definition of vertex-type. Observe that the vertex-
type tv is not the root’s vertex-type, as in that case we would
always have that xt′a,ta,t′′v ,tv = 0 (for arbitrary t′a, ta and t′′v), which
would make the constraint false in case xta,t′a,tv,t′v 6= 0. As this
holds for any vertex of type tv to which an agent of type ta has

42 3 Complexity of LEF Assignments

been assigned, the constraint is satisfied;

Agent conformity constraints:

– Let ta be an arbitrary agent-type: observe that µ must assign all
agents of type ta to a (distinct) position in G as it is a position
assignment. Let (t1

a, . . . , tD
a) be the number of agents which are

of type ta and are assigned to a vertex at depth i, where i ranges
from 1 (the depth of the root) to D (the height of the tree). Then,
by the previous observation, it follows that ∑D

i=1 ti
a = |Nta |. To

conclude that the constraint is satisfied, we have to make a cou-
ple of observations. First, ∑tv∈TV

rta,tv = 1 just in case the agent
placed at the root is of type ta (in which case also t1

a = 1), other-
wise it is equal to 0 (as t1

a in such case). Secondly, if ti
v1

, . . . , ti
vm

are
all the vertex-types at some depth i (recall that each vertex-type
can only be at a certain depth), then ∑t′a∈TN ∑m

j=1 ∑t′v∈TV
xt′a,ta,t′v,ti

vj

is indeed equal to the number of vertices at depth i to which an
agent of type ta has been positioned, by the way we have defined
the variable assignment, thus equal to ti

a. Hence, we can conclude
that the constraint is indeed satisfied;

LEF constraints:

– First of all, observe that for any pair of agent-types ta, t′a and for
any pair of vertex-types tv, t′v, we have that xta,t′a,tv,t′v 6= 0 if and
only if there is, somewhere in the tree, a parent vertex of type
tv, to which an agent of type ta has been assigned, which has
a child vertex of type t′v, to which an agent of type t′a has been
assigned. Hence, as π and µ are LEF, it follows that an agent of
type ta cannot envy one of type t′a as they are connected, meaning
that uita

(πita
)− uita

(πit′a
) ≥ 0. Thus, it is easy to see that this last

inequality implies that the constraint is satisfied;

– By a proof symmetric to the previous one, it also follows that the
second kind of LEF constraints are satisfied under the variable
assignment induced by µ.

Hence, as all constraints are satisfied, it follows that the ILP has indeed a
solution, as by our claim.

For the other direction, assume that there is a solution to the ILP, i.e. a
variable assignment that satisfies all constraints. We prove that any position
assignment µ which is naturally induced by a solution to the ILP is LEF
when paired up with π for I. First, setN0 := N : at each step i we will assign
some agent ai ∈ Ni to some position in the tree (according to the agent-type
we are considering) and we will then setNi+1 := Ni \ {ai}. Observe that, as

3.4 Trees 43

for each agent-types ta exactly |Nta | agents are assigned in total considering
both the root and the child vertices in the tree (by the agent-conformity
constraints), in the end we will have assigned exactly all the agents in N .

We obtain such an assignment µ by starting from the root r of the tree. Since
the variable assignment satisfies the constraints, observe that there is only
one pair of agent-type ta and vertex-type tv such that rta,tv = 1, and that
tv is indeed the vertex-type of the root. Hence, to the root we assign an
(arbitrary) agent a of type ta and set N1 := N0 \ {a}.

Consider now an arbitrary child w, of some type t′v, of the root r. As
r, which is of type tv, has a child vertex of type t′v, observe that this im-
plies that etv,t′v > 0; hence, as the root constraints are satisfied, this means
that ∑t′a∈TN xta,t′a,tv,t′v > 0. Thus, take an arbitrary agent-type t′a such that
xta,t′a,tv,t′v > 0 and we still have not assigned xta,t′a,tv,t′v agents of such type to a
vertex of type t′v which is a child of the root6: assign to w an agent a′ ∈ N1 of
type t′a and set N2 accordingly. Notice that, as xta,t′a,tv,t′v > 0, we also get that
the LEF constraints are satisfied for ta and t′a, meaning that both the agent
placed at the root cannot envy the one placed at the child vertex and vice
versa. We can then iterate this procedure for all remaining child vertices
of the root, as any of these will have some vertex-type t′′v , implying that
etv,t′′v > 0 which allows us to repeat the same argument.

Now, let w be an arbitrary child vertex of type t′v of the root to which we
have assigned some agent of type t′a. Consider one of its children w′: this
vertex must be of some vertex-type t′′v . Hence, it must be the case that
et′v,t′′v > 0. By construction, as an agent of type t′a was assigned to w, this
means that xta,t′a,tv,t′v > 0 (where ta and tv are, as before, the agent-type of the
agent assigned to the root and the vertex-type of the root). Thus, this implies
that ∑t′′a∈TN xt′a,t′′a ,t′v,t′′v > 0. In particular, such value is equal to the number of
vertices of type t′′v which are child of vertices of type t′v times the number
of t′v-vertices, i.e. each vertex of type t′′v which is the child of one of type t′v
will have some agent allocated to it. Thus, as we did previously, take an
agent of any type t′′a such that xt′a,t′′a ,t′v,t′′v > 0 and we still have not assigned all
t′′a -agents to an edge of such type, and assign it to the child vertex w′. Again,
as xt′a,t′′a ,t′v,t′′v > 0, by the LEF constraints it follows that the agent placed at w
cannot envy the one placed at w′ and vice versa. Finally, observe that this
same argument can be repeated for all the remaining children of vertices at
depth 1, and for the children of these and so on.

As observed before, since all agents for each agent-type are assigned, it
follows that each agent is assigned to some position in the tree. Also, the

6In truth, for the first child of the root to which we have to assign an agent, it is clear that
this will not be the case. On the other hand, this observation is needed in the remaining
children of the root, as it could be the case that we will have already filled in all the “free”
spots for agents of such type in these kind of edges.

44 3 Complexity of LEF Assignments

fact that for any edge the two agents placed at its extremes do not envy
each other (as ensured by the LEF constraints during the construction of µ)
implies that µ and π are LEF for 〈N ,O, u, π, G〉, thus proving the claim as
by our previous observation.

3.5 Forests

Nicely enough, it is possible to slightly alter the ILP we have previously
defined so that it can be shown that the same claim holds also if the graph is
a forest (i.e. a collection of trees).

Theorem 3. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
forest, FIND-LEF-POSITION-ASSIGNMENT is in FPT if parameterized by the
number of agent-types |TN | and the number of vertex-types |TV |.

Proof. The approach is essentially the same, though with some minor ad-
justments to fit the differences concerning the social graph, which now is a
forest instead of a tree. Intuitively, the problem in which one incurs when
dealing with forests instead of trees is that it might happen that a tree in the
forest is also a proper subtree of another tree in the forest. So, consider tv to
be the type of the root of such (sub)tree: what we have to be careful about
is to differentiate the two vertices, so that we are able to recognize which
one is the root and which one is the inner vertex (and to do the same when
considering their respective edges). Thus, we will now have the following
variables in the ILP:

• For ta, t′a ∈ TN and tv, t′v ∈ TV a variable xta,t′a,tv,t′v which has the same
objective as the one in the proof of Theorem 2;

• For ta ∈ TN and tv ∈ TV a variable rta,tv which has the same objective
as the one in the proof of Theorem 2;

• For ta, t′a ∈ TN and tv, t′v ∈ TV such that tv is a vertex-type of one of
the forest’s roots, a variable xr

ta,t′a,tv,t′v
which has the same objective as

its respective “non-root” variable, but has the extra condition that the
parent vertex is a root of some tree in the forest.

Thus, the number of variables of the ILP can be upper bounded by
2|TN |2|TV |2 + |TN ||TV |, which is still clearly a computable function of the
parameters, thus if the reduction is correct then it is an FPT one, proving
the claim as in the analogous result for trees.

The constraints of the ILP also vary:

Integrity constraints. We remove the constraints which regarded
the root variables, and introduce a new set of constraints for such
variables:

3.5 Forests 45

– For ta ∈ TN and tv ∈ TV :

rta,tv ∈N0

This ensures that the number of times an arbitrary agent-type is
assigned to a vertex-type for a root is a non-negative integer;

Root constraints. We modify the constraints which verify that the
edges starting from the roots are correct using the new variables:

– For ta ∈ TN and tv, t′v ∈ TV :

∑
t′a∈TN

xr
ta,t′a,tv,t′v

− rta,tv etv,t′v = 0

Network conformity constraints. As we have introduced a new set
of variables, we want to “link” these ones with the standard ones
we also had before. Thus, we substitute the previous set of network
conformity constraints with the following, which goal is to have that,
for any ta, t′a ∈ TN and tv, t′v ∈ TV , xta,t′a,tv,t′v considers both cases in
which the vertex of type tv is a root or not in the total count of the
outgoing edges from vertices of such type:

– For ta ∈ TN and tv, t′v ∈ TV (now we also include the vertex-types
tv that are the types of roots in the forest):

∑
t′a∈TN

(
xta,t′a,tv,t′v − xr

ta,t′a,tv,t′v

)
− etv,t′v ∑

t′a∈TN
∑

t′′v∈TV

xt′a,ta,t′′v ,tv = 0

Observe that we know that xr
ta,t′a,tv,t′v

is the correct number (i.e. the
number of roots of type tv to which an agent of type ta has been
assigned times etv,t′v) by the new root constraints.

As before, we show that there is an LEF position assignment µ if and only if
there is a solution to the ILP defined in the reduction.

For the left-to-right direction, assume again that there is such a position
assignment µ. We yet consider the variable assignment which is naturally
induced by µ. We will omit constraints that were not changed, as we have
already shown that they are satisfied by the variable assignment we are
considering: while for some the proof is identical for others some slight
adjustments are needed, mainly to adapt the proof to the fact that now we
are considering a forest (hence there might be multiple roots) instead of
a tree. Hence, it remains to check that newly introduced constraints are
satisfied as well:

Integrity constraints: the new constraints are trivially satisfied as, for
an arbitrary agent-type ta and arbitrary vertex-type tv, the number of

46 3 Complexity of LEF Assignments

times an agent of type ta is placed at a root of type tv is obviously an
integer greater than or equal to 0;

Root constraints: as in the proof for the analogous constraints, there
are various cases. If ta, tv and t′v are such that either rta,tv = 0 or
etv,t′v = 0, then it must follow that xr

ta,t′a,tv,t′v
= 0 (for arbitrary t′a, t′v in

the first case and for arbitrary ta, t′a in the second one). Instead, if for
some ta, tv and t′v both rta,tv and etv,t′v are greater than 0, then this means
that there are exactly rta,tv roots of type tv where an agent of type ta
has been placed. By how the variable assignment was defined, this
means that the sum across all agent-types t′a of the variables xr

ta,t′a,tv,t′v
is exactly etv,t′v for each such root. Hence, the constraint is satisfied;

Network conformity constraints: again, we have two different cases.
Let ta and tv be respectively an arbitrary agent-type and an arbitrary
vertex-type. If no agent of type ta has been assigned to a vertex of type
tv, then it follows that there is no edge connecting a root of type tv
to which an agent of type ta has been assigned, and for another pair
consisting of an arbitrary agent-type t′a and an arbitrary vertex-type
t′v, there is no edge connecting a parent vertex of type t′v, to which an
agent of type t′a has been assigned, to a child vertex of type tv, to which
an agent of type ta has been assigned; hence, in this case the constraint
is satisfied. On the other hand, assume that there is at least an agent
of type ta which has been assigned to a vertex of type tv and fix an
arbitrary vertex-type t′v. If etv,t′v = 0, then the constraint is yet satisfied.
Finally, if etv,t′v 6= 0, then the number of times a parent vertex of type
tv, to which an agent of type ta has been assigned, is connected to a
vertex of type t′v, to which an agent of an arbitrary type t′a has been
assigned, is indeed equal to the number of times such a parent vertex
is a child of some other vertex times etv,t′v (this holds by definition of
vertex-type itself) plus the number of edges in which it is the root of
some tree in the forest and it is connected to a vertex of type t′v, again
to which an agent of some arbitrary type t′a has been assigned. Thus,
in any case the constraint is satisfied.

For the right-to-left direction, assume now that there is a solution to the
ILP. As in the previous proof, we will build a position assignment µ which
will also be an LEF one for the original input instance I. The construction
is essentially the same, though in the initial case we account also for the
fact that there are multiple roots. This can be easily handled using the root
variables rta,tv in the same way they were used previously, as now for a
single vertex-type the root variables sum up to the number of roots of such
type over all agent-types. Once agents have been assigned to the roots, the
rest of the position assignment is defined in the same way as it was done
before, using the edge variables xta,t′a,tv,t′v . Hence, the claim follows.

3.5 Forests 47

We will now show a similar result, however instead of using the two param-
eters we have defined in the previous section, we will use only the number
of vertex-types. To prove this new result, we will use the EXACT COVER BY

3-SETS problem, which is a known NP-complete problem in the literature
(Garey and Johnson [1979]). Notice that we will not use the classical version
of the problem, but a restricted one in which each element appears in exactly
three triplets. This variant is due to Gonzalez [1985], in which it is also
shown to be NP-complete.

We will show that EXISTS-LEF-POSITION-ASSIGNMENT is NP-complete
even when the number of vertex-types is a constant value which does not
depend on the size of the instance.

Theorem 4. Let G be the class of graphs such that each graph G ∈ G has exactly 3
vertex-types. EXISTS-LEF-POSITION-ASSIGNMENT, restricted to graphs in G, is
NP-complete.

Proof. Membership in NP follows by the fact that it is possible to check if a
position assignment µ (the polynomial certificate in our case) is a solution
for a given input instance I by simply checking in polynomial time whether
all agents connected by µ do not envy each other under the current item
allocation π. Observe that this holds for any arbitrary instance, thus also
for any instance such that the social graph has only 3 different vertex-types.

To show NP-hardness, we give a polynomial-time reduction from EXACT

COVER BY 3-SETS. Let I = 〈X, S〉 be an instance for EXACT COVER BY

3-SETS, where X = {x1, . . . , x3q} and S = {S1, . . . , Sn}. The reduction is
given as follows:

• N := NX ∪NS ∪ND, where:

– NX := {a1, . . . , a3q}, i.e. one agent per element of X. We will call
these “element-agents”;

– NS := {aS1 , . . . , aSn}, i.e. one agent per triplet of S. We will call
these “triplet-agents”;

– ND := {ad1 , . . . , adn}, i.e. one dummy agent for each triplet of S;

• O := {o1, . . . , o3q, oS1 , . . . , oSn , od1 , . . . , odn}: there is a corresponding
item in O for each agent in N ;

• u = (u1, . . . , u3q, uS1 , . . . , uSn , ud1 , . . . , udn), where:

– For an arbitrary ui, i.e. the utility of the element-agent ai:

* ui(oi) = 1;

48 3 Complexity of LEF Assignments

* ui(oSj) = 0 for all j such that xi ∈ Sj: agent ai does not
care about any item which corresponds to any of the triplets
which contain her corresponding element;

* ui(o) = 2 for any other o ∈ O;

– For an arbitrary uSi , i.e. the utility of the triplet-agent aSi :

* uSi(oSi) = 1;

* uSi(oj) = 0 for all j such that xj ∈ Si: agent aSi does not care
about the item which corresponds to any of the elements in
her corresponding triplet;

* uSi(odi) = 0: agent aSi does not care about the item which
corresponds to the dummy agent of her triplet;

* uSi(o) = 2 for any other o ∈ O;

– For an arbitrary udi , i.e. the utility of the dummy-agent adi :

* udi(odi) = 1;

* udi(oSi) = 0: agent adi does not care about the item which
corresponds to her associated triplet Si;

* udi(o) = 2 for any other o ∈ O;

• π = (π1, . . . , π3q, πS1 , . . . , πSn , πd1 , . . . , πdn) where πi = {oi}, πSi =
{oSi} and πdi = {odi};

• G = (V, E) is a graph which consists of q stars with 5 vertices and
n− q matchings of two vertices.

As we will shortly see, in position assignments that are LEF, central vertices
of the stars will be occupied by triplet-agents, while the outer vertices by
the corresponding element-agents and dummy agents. The matchings will
be occupied by triplet-agents and their corresponding dummy agents. The
graph G built by the reduction is illustrated below.

v1

v2 v3 v4 v5

w1

w2

q copies n− q copies

Clearly G has exactly 3 vertex-types, one for the roots of the stars with 5

3.5 Forests 49

vertices, one for the “roots” of the matchings and one for the leafs. Moreover,
it is easy to see that the reduction is a polynomial-time one.

Hence, it remains to show that the reduction is correct. Assume that there
is a subset S′ = {S′1, . . . , S′q} of S such that each element of X appears in
exactly one triplet of S′. Then consider the position assignment µ which is
defined as follows:

• For the q stars with 5 vertices, it assigns to the roots the triplet-agents
aS′1

, . . . , aS′q and to the leafs the dummy agents and the 3 element-
agents associated to the corresponding triplet of the star. Observe that
for each of these stars exactly 5 agents have been assigned, and that
no agent envies each other;

• For the n− q matchings, it assigns to the “roots” the triplet-agents in
S \ S′ (which are exactly n − q) and to the leafs the dummy agents
associated to the corresponding triplet of the matching. Again, observe
that exactly 2 agents are assigned in each of these matchings and that
no one envies each other.

Hence, there is indeed a position assignment µ which is LEF when paired
up with π for 〈N ,O, u, π, G〉.

For the other direction, assume that there is an LEF position assignment µ.
To prove that there is a subset of triplets that covers X, we will prove two
different claims:

1. Agents placed at the roots of the q stars can only be triplet-agents;

2. Agents placed at the n− q matchings can only be pairs composed of a
triplet-agent and her corresponding dummy agent.

To prove the first, assume by way of contradiction that µ places at the root of
one of the q stars an agent that is not a triplet-agent. Then this agent is either
a dummy agent or an element-agent: in the former case, observe that each
dummy agent does not envy only her corresponding triplet-agent under π,
and since she is connected to four other agents, she will necessarily envy
someone. For the former we make the same argument, except the fact that
we have to consider that as each element appears in exactly three triplets,
the element-agent will necessarily envy the fourth agent to which she is
connected (as it might happen that the other three are the corresponding
triplet-agents). Thus, the claim is shown as we know by assumption that µ
is LEF.

For the second claim, assume again by way of contradiction that µ places at
some matching a pair which is not composed of a triplet-agent and her cor-
responding dummy agent. If the dummy agent is not the one corresponding
to the triplet-agent, then trivially µ cannot be LEF as they will both envy

50 3 Complexity of LEF Assignments

each other. To conclude, there are two remaining cases: either this pair is
made of an element-agent and a dummy agent or an element-agent and a
triplet-agent. In the former case µ is trivially non-LEF, as the agents envy
each other, in the latter case either the element-agent corresponds to an
element which is in the corresponding triplet of the triplet-agent or not. If
the element does not belong to the triplet, then µ is not LEF by the same
argument as in the previous case, if instead the element is in the triplet,
then recall that the dummy agent who is associated to the triplet-agent will
necessarily envy the agent(s) to whom she is connected to, as the only one
not envied by her is her corresponding triplet-agent.

By Definition 17, this will imply that the same problem, when parameterized
only by the number of vertex-types, is para-NP-hard.

Corollary 2. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
forest, EXISTS-LEF-POSITION-ASSIGNMENT is para-NP-hard if parameterized
by the number of vertex-types |TV |.

3.6 (Definitely-Non-)Quasi-Trees

For the final section of this chapter, we will divide graphs using their
treewidth. We will consider graphs G that have a constant treewidth, i.e.
such that tw(G) = O(1), which intuitively are all those that look very simi-
lar to trees or forests, and, on the opposite side, graphs with a non-constant
treewidth, i.e. such that tw(G) 6= O(1). To give an example, graphs that
have a constant treewidth but which we did not mention so far are (collec-
tions of) cycles, which treewidth is equal to 2. On the other hand, graphs
with non-constant treewidths are all cliques (as already mentioned in Chap-
ter 2), as their treewidth is equal to the number of vertices in the clique
minus one.

The parameter we will use is the number of non-isolated vertices in the
social graph G, where a vertex is “isolated” in a graph if and only if it is
not connected to any other vertex. In most cases, this parameter is equal
to the number of vertices of the social graph and, thus, the number of
agents. Notice that, if we were to use the number of agents |N | as the
parameter, EXISTS-LEF-POSITION-ASSIGNMENT would trivially be in FPT
because it suffices to simply loop over all possible position assignment and
check whether there is one that is LEF. Since there are |N |! possible position
assignments and checking whether an assignment is LEF takes O(|N |2), the
claim trivially follows.

However, our main interest in this parameter is not in using it for a posi-
tive result, but for a negative one. As we will see, EXISTS-LEF-POSITION-
ASSIGNMENT is in FPT when using such parameter and if the input instance

3.6 (Definitely-Non-)Quasi-Trees 51

has a constant treewidth, however, when the treewidth is non-constant, the
problem becomes W[1]-hard, which should give the reader a good feeling
for how difficult the problem is, considering the parameter we will use.

Proposition 6. Let G be a class of graphs such that each graph G ∈ G has a
constant treewidth, i.e. tw(G) = O(1). EXISTS-LEF-POSITION-ASSIGNMENT,
restricted to graphs in G, is in FPT if parameterized by the number of non-isolated
vertices in G.

Proof. The proof consists in reducing an instance for EXISTS-LEF-POSITION-
ASSIGNMENT to one for SUBGRAPH ISOMORPHISM, such that tw(H) = O(1),
through an FPT reduction and by observing a property of the EXISTS-LEF-
POSITION-ASSIGNMENT problem.

We first give the reduction, which is quite simple. For an arbitrary instance
I = 〈N ,O, u, π, G〉, the graph H is a copy of G but without the isolated
vertices, while the graph G′ is the envy-free graph induced by the instance
I. Notice that tw(H) = O(1), since by assumption tw(G) = O(1), and the
number of vertices of H is exactly the number of non-isolated vertices in
G. Thus, as the reduction takes polynomial time in the size of the input
instance, it remains to check that the reduction is a correct one for it to be an
FPT one.

The correctness of the reduction follows from observing that an arbitrary
instance I has a solution if and only if the non-isolated subgraph of the
social graph G is isomorphic to some subgraph of the envy-free graph GEF
induced by I (as the agents placed at the isolated vertices trivially cannot
envy and be envied by no one). If there is an LEF position assignment µ,
then it means that we can map vertices of the non-isolated subgraph of G
to a subgraph of the envy-free graph (by considering the mapping induced
by the position assignment µ): as µ is LEF this implies that if two agents
are connected in G then they will also be connected in the envy-free graph,
and trivially the mapping is injective as no agent can be assigned to two
different positions, meaning that there is indeed such an isomorphism.

On the other hand, if the non-isolated subgraph of G and some subgraph
of the envy-free graph GEF are isomorphic, then there must be an injective
mapping from the former to the latter such that if there is an edge between
two vertices in the first graph then there is one between the images of these
two vertices in the second one. The position assignment µ induced by the
isomorphism (where the remaining agents are assigned in an arbitrary way
to the isolated vertices) must be an LEF one, as agents who are connected in
G are also connected in the envy-free graph GEF.

Hence, as the FPT reduction is correct, SUBGRAPH ISOMORPHISM is in
FPT when parameterized by |V(H)| and H has a constant treewidth (i.e.

52 3 Complexity of LEF Assignments

tw(H) = O(1)), the claim follows.

We now prove our last hardness result about LEF. To prove it, we will use
the CLIQUE problem parameterized by the size k of the clique.

Theorem 5. Let G be a class of graphs containing all graphs G consisting of a clique
together with some isolated vertices—and thus G contains graphs of unbounded
treewidth. EXISTS-LEF-POSITION-ASSIGNMENT, restricted to graphs in G, is
W[1]-hard if parameterized by the number of non-isolated vertices in G.

Proof. We prove the claim by giving an FPT reduction from the CLIQUE

problem parameterized by the integer k, which is a W[1]-hard problem,
to our problem. Given an input instance 〈G = (V, E), k〉, where V =
{v1, . . . , vn}, for the CLIQUE problem, the built instance 〈N ,O, u, π, G′ =
(V ′, E′)〉 is defined as follows:

• N = {1, . . . , n}, i.e. there is a corresponding agent i for each vertex
v ∈ V;

• O = {o1, . . . , on}, i.e. there is a corresponding item oi for each agent i;

• u = (u1, . . . , un) where for any 1 ≤ i ≤ n:

– ui(oi) = 0;

– ui(oj) = 0 for i, j such that {vi, vj} ∈ E: for any pair of connected
vertices of G their two agents do not envy each other;

– ui(oj) = 1 for j 6= i such that {vi, vj} /∈ E: for any pair of non-
connected vertices of G their two agents envy each other;

• π = (π1, . . . , πn) where πi = {oi} for any 1 ≤ i ≤ n.

• G′ is defined as follows:

– V ′ = {v′1, . . . , v′n};

– E = {{v′i, v′j} | i, j ≤ k}.

The construction we have just defined has two key ideas:

1. By how u and π are defined, it is clear that the envy-free graph induced
by the built instance is a copy of G;

2. The social graph G′ is a clique of size k with a set of isolated vertices
so that it has the same number of vertices as G.

Observe that the number of non-isolated vertices in G′ is indeed bounded
by a computable function of k, as it is exactly equal to it. Also, as we
have mentioned in the preliminaries, the treewidth of G′ is k − 1 (as G′

is a clique of k vertices), thus it is not constant. Since the reduction can

3.7 Summary 53

be trivially performed in polynomial time with respect to the size of the
CLIQUE instance, it remains just to check that it is a correct one.

Thus, we show that that there is a clique of size k in G if and only if there is
a position assignment µ which is a LEF for 〈N ,O, u, π, G′〉. By how G′ was
built, there is a position assignment µ which is LEF with π if and only if
there is a clique of size k in the envy-free graph induced by the instance we
have built for EXISTS-LEF-POSITION-ASSIGNMENT. In fact, if there is such
a clique, then the position assignment that maps agents involved in such
clique to the vertices in the clique of G′ (and the remaining agents to the
isolated vertices) is an LEF one: the agents who are assigned to a vertex in
the clique do not envy each other since they are connected in the envy-free
graph, while the remaining ones have no one to envy or be envied by.

On the other hand, if there is a position assignment µ which is LEF, then
observe that this implies that the envy-free graph does indeed contain a
clique of size k, as no pair of agents assigned to connected vertices in G′

envies each other. This concludes the proof because the envy-free graph is a
copy of G, thus G itself must contain a clique of size k as well.

3.7 Summary

This concludes the first chapter with theoretical results in the thesis. As
we have seen, in most of the cases deciding whether there is, and thus also
finding, a position assignment µ which is LEF is an intractable problem. The
only exceptions to this intractability are matchings and stars. On the other
hand, we were able to obtain much more positive results in parameterized
complexity. We think that, at least for this topic of research, it is definitely
more profitable to pursue results in this direction.

In the following chapter we will consider local envy-freeness up to one
item, the second criterion we have introduced, which is strictly tied to local
envy-freeness. Compared to LEF, we will see more positive results for LEF1,
in particular when the item allocation π is not fixed.

54

CHAPTER 4

COMPLEXITY OF LOCAL ENVY-FREE
UP TO ONE ITEM ASSIGNMENTS

We now consider the second fairness criterion which we have established
in the introduction, local envy-freeness up to one item. The strategy that
we will use to prove the results of this chapter is essentially to adapt proofs
which we have done in Chapter 3 for local envy-freeness to local envy-
freeness up to one item. In most cases this will boil down to defining in a
slightly more precise way the utility functions and the item allocations, so
that envy-freeness up to one item is taken into account.

Before moving on, we would like to point out a mistake in which one might
fall if not too careful, and which extends to local proportionality as well.
Looking back at Figure 2.1 and considering the positive results which were
achieved in the previous chapter, one might be tempted to declare that
such results also hold for local envy-freeness up to one item. However, the
pitfall here is the fact that, although position assignments which are LEF are
also LEF1, it might happen that for some instances there is no LEF position
assignment but there is an LEF1 one. Therefore, proofs of tractability of local
envy-freeness do not necessarily follow also for local envy-freeness up to
one item (and local proportionality). However, unlike what we will see in
the following chapter about local proportionality, luckily in the case of local
envy-freeness up to one item all positive results for local envy-freeness do
indeed carry over.

Moreover, we will also be able to obtain positive results for FIND-LEF1-
DISTRIBUTION, because by Proposition 1 we know that it is possible to
always find an LEF1 item assignment in polynomial time, hence by giv-
ing also an arbitrary position assignment we obtain a distribution which
satisfies such criterion. This also implies that the answer to EXISTS-LEF1-
DISTRIBUTION is always “Yes”, regardless of the input instance.

4.1 Lines, Stars and Strongly Connected Graphs 55

Corollary 3. EXISTS-LEF1-DISTRIBUTION and FIND-LEF1-DISTRIBUTION

can be computed respectively in constant and polynomial time for any instance.

As a general rule of thumb, proofs of negative results for local envy-freeness
will be changed to take into account the following observation:

Observation 3. If π is such that each agent is assigned exactly one item and has
a positive utility under u, then it is (local when paired up with an arbitrary µ)
envy-free up to one item.

To circumvent this property of local envy-freeness up to one item, we will
simply assign to each agent more than one item.

4.1 Lines, Stars and Strongly Connected Graphs

As in Chapter 3, we first focus on lines and stars, which have the same
behaviour they had in the previous chapter. We also add a small discussion
about the more general family of strongly connected graphs in this section
because it turns out that, thanks to Corollary 3, all problems which were
mentioned in the previous chapter for these graphs are now tractable.

Proposition 7. Given an instance I = 〈N ,O, u, π, G〉 in which G is a star,
EXISTS-LEF1-POSITION-ASSIGNMENT is decidable in polynomial time.

Proof. To prove the claim, we give a simple polynomial-time algorithm
which answers the question. Similarly to before, it suffices to simply loop
over all agents and check that the following conditions hold:

1. That the current agent i is such that for any other agent j ∈ N \ {i}
either ui(πi) ≥ ui(πj) or there is one item o ∈ πi ∪ πj such that
ui(πi \ {o}) ≥ ui(πj \ {o});

2. That any other agent j ∈ N \ {i} is such that either uj(πj) ≥ uj(πi) or
there is one item o ∈ πi ∪ πj such that uj(πj \ {o}) ≥ uj(πi \ {o}).

Again, if there is such an agent i, the algorithm outputs immediately “Yes”,
otherwise, if after the loop no such agent has been found, it outputs “No”.
We quickly discuss the complexity of the algorithm as in this case it is not
just quadratic in the number of agents, but involves the number of items as
well. In fact, the algorithm runs in a time of O(|N |2|O|), as when we have
to check envy-freeness up to one item we will loop over the set of items as
well. Nevertheless, the algorithm is still clearly polynomial in the input size.

At this point, we omit the proof as it is exactly the same as the one for local
envy-freeness, albeit using local envy-freeness up to one item in its place. It
is in fact clear that the conditions which we check for each agent enforce the
position assignment to be LEF1 given the fixed item allocation π.

56 4 Complexity of LEF1 Assignments

In the same manner of the previous chapter, this result implies the tractability
of FIND-LEF1-POSITION-ASSIGNMENT when the underlying social graph
is a star.

Regarding lines, we will use again the HAM-PATH problem to show its
NP-completeness.

Proposition 8. Given an instance I = 〈N ,O, u, π, G〉 in which G is a line,
EXISTS-LEF1-POSITION-ASSIGNMENT is NP-complete.

Proof. Membership in NP is proved in the usual way: we can check in poly-
nomial time whether a position assignment µ (the polynomial certificate)
is LEF1 for the given input instance because we just need to loop over all
the agents and check that they do not envy their neighbors up to one item,
which can trivially be done in O(|N |2|O|) time.

The reduction we give from an arbitrary input instance G = (V, E) for
HAM-PATH differs from the one for local envy-freeness in the set of items,
the item allocation and the utility functions in the following way:

• O = {o1
1, o2

1, . . . , o1
n, o2

n}, i.e. there are two items o1
i , o2

i for each vertex
vi ∈ V;

• For each agent i let o1
i1 , o2

i1 , . . . , o1
im

, o2
im

and o1
i′1

, o2
i′1

, . . . , o1
i′m′

, o2
i′m′

be the

items which correspond respectively to the m agents in N(vi) (as
defined in the proof of Proposition 3) and the m′ agents in N(vi). The
utility function ui is defined in the following way:

– ui(o1
i) = ui(o2

i) = ui(o
j
i′k
) = 0 for any k ∈ [m′] and j ∈ [2];

– ui(o
j
ik
) = 1 for any k ∈ [m] and j ∈ [2];

• π = (π1, . . . , πn) where πi = {o1
i , o2

i } for any i ∈ N .

Trivially the reduction is still polynomial-time. We now show that it is a
correct one.

Assume that there is an LEF1 position assignment µ for 〈N ,O, a, π, G′〉. To
prove that there is a Hamiltonian path, it suffices to notice that two agents
who are connected by µ do not envy each other up to one item if and only if
their respective vertices are connected by an edge in G, similarly to what
happened with local envy-freeness. In fact, suppose that two agents i, j such
that {vi, vj} 6∈ E are connected under µ: then ui(πj) = 2 and, regardless
of the item we remove from πj to obtain a new bundle π′j, we have that
ui(π

′
j) = 1, whereas ui(πi) = 0, i.e. i does envy j up to one item (and the

same holds vice versa). On the other hand, if i, j are such that {vi, vj} ∈ E,
then they both do not envy each other up to one item because they simply

4.2 Matchings 57

do not envy each other. Hence, by the same argument we made in the proof
of Proposition 3, it follows that G must contain a Hamiltonian path.

For the other direction, assume that there is a Hamiltonian path P =
vp1 , . . . , vpn in G. Consider the corresponding position assignment µ such
that the i-th agent on the line is pi: it is easy to see that it is LEF1 because two
agents are connected if and only if they correspond to two vertices which
are consecutive in the path, meaning that the two vertices are also connected
in the original graph. As the vertices are connected, it follows that the two
agents do not envy each other up to one item (in fact they do not envy each
other at all), thus proving the claim.

As anticipated before, we conclude the section by briefly discussing the
general class of strongly connected graphs. At this point, we would mention
that because of the result we have just proven, it follows that EXISTS-LEF1-
POSITION-ASSIGNMENT is NP-complete when the underlying social graph is
strongly connected. Naturally, we would then move on to see what happens
with EXISTS-LEF1-DISTRIBUTION, as we have not treated it when consider-
ing the previous families of graphs. This discussion however already ends
when we recall Corollary 3, which grants us the following result:

Theorem 6. Given an instance I = 〈N ,O, u, G〉 where G is a strongly connected
graph, EXISTS-LEF1-DISTRIBUTION is computable in constant time and FIND-
LEF1-DISTRIBUTION in polynomial time.

At the end of this section we are finally able to observe for the first time the
extreme difference between local envy-freeness up to one item and the other
two criteria, local envy-freeness and local proportionality (which we will see
in the next chapter). Counter-intuitively, because here the item allocation
is not fixed, a problem which should be more difficult than its counterpart,
where the item allocation is instead fixed, becomes tractable.

4.2 Matchings

To prove the tractability of EXISTS-LEF1-POSITION-ASSIGNMENT (and sub-
sequently FIND-LEF1-POSITION-ASSIGNMENT) when the underlying graph
is a matching, it suffices to make the following observation.

Observation 4. Given an instance I = 〈N ,O, u, π, G〉 where G is a matching,
there is a position assignment µ which is LEF1 for I if and only if the envy-free up
to one item graph GEF1 = (VEF1, EEF1) admits a perfect matching.

The proof of this is identical to the proof of the fact that an instance I where
the social graph is a matching admits an LEF position assignment if and
only if there is a perfect matching in the envy-free graph GEF induced by it,
which was showed in the proof of Proposition 4.

58 4 Complexity of LEF1 Assignments

Then, by simply noticing that the envy-free up to one item graph can be
computed as well in polynomial time in the size of I as the envy-free graph
from Proposition 4, the claim follows by using again the same algorithm
from Micali and Vazirani [1980] to decide whether there is a perfect matching
in polynomial time. Hence, we get the following result.

Proposition 9. Given an instance I = 〈N ,O, u, π, G〉 in which G is a matching,
EXISTS-LEF1-POSITION-ASSIGNMENT is decidable in polynomial time.

Which implies tractability for FIND-LEF1-POSITION-ASSIGNMENT as well,
since the algorithm from Micali and Vazirani [1980] outputs a perfect match-
ing if there is any.

To conclude, from Corollary 3 we can obtain the tractability of EXISTS-LEF1-
DISTRIBUTION and FIND-LEF1-DISTRIBUTION.

Theorem 7. Given an instance I = 〈N ,O, u, G〉 where G is a matching,
EXISTS-LEF1-DISTRIBUTION is decidable in constant time and FIND-LEF1-
DISTRIBUTION is computable in polynomial time.

4.3 Trees

We will now move on to results which are concerned with parameterized
complexity, as we did in Chapter 3.

The first concept we define is one which the reader will find familiar, as it is
the counterpart for local envy-freeness up to one item of one we have already
introduced for local envy-freeness in Chapter 3. Consider an instance I =
〈N ,O, u, π, G〉 and the directed envy-free up to one item graph GEF1 =
(VEF1, EEF1) induced by it.

Definition 22 (EF1 Agent-type). Two agents i, j ∈ N have the same EF1
agent-type ta if and only if, for any agent k ∈ N , it holds that:

• (i, k) ∈ EEF1 ⇐⇒ (j, k) ∈ EEF1: either both i and j do not envy k up
to one item or they both do;

• (k, i) ∈ EEF1 ⇐⇒ (k, j) ∈ EEF1: either k does not envy both i and j up
to one item or she does.

As before, the following fact holds by an argument similar to the one we
provided for the EF agent-types.

Fact 8. Given the relation

Tn = {(i, j) | i, j ∈ N , ∀k ∈ N .[((i, k) ∈ EEF1 ⇐⇒ (j, k) ∈ EEF1)

∧ ((k, i) ∈ EEF1 ⇐⇒ (k, j) ∈ EEF1)]}

each agent-type denotes an equivalence class for Tn.

4.3 Trees 59

Before moving to the first result of this section, we will introduce another
key object which will prove to be quite useful in the following proof. Again,
consider an instance I = 〈N ,O, u, π, G〉 and the directed envy-free up to
one item graph GEF1 = (VEF1, EEF1) induced by it. To define the ILP as we
did in the proof of the analogous results for local envy-freeness, we will use
a (slightly modified) characteristic function of the set of edges of GEF1, which
we will denote with 1EEF1 and is defined as follows:

1EEF1((i, j)) =

{
1 if (i, j) ∈ EEF1

−1 otherwise

Clearly given in input the instance I, this function can be computed in
polynomial time since the directed envy-free up to one item graph can be
computed in polynomial time as well.

Fact 9. Given an arbitrary instance I = 〈N ,O, u, π, G〉, the characteristic func-
tion 1EEF1 can be computed in polynomial time.

Moreover, by taking a representative ita for each agent-type ta ∈ TN , we can
also define an analogous function for EF1 agent-types, which will be denoted
with 1T, such that 1T(ta, t′a) := 1EEF1((ita , it′a)). It is clear that this function
can be computed in polynomial time given the characteristic function 1EEF1 .

Lemma 2. Let i, j ∈ N be agents of, respectively, EF1 agent-types ta, t′a, then i
does not envy j up to one item if and only if 1T(ta, t′a) = 1.

The lemma follows from the simple observation that, if we consider the
representatives ita , it′a of EF1 agent-types ta, t′a, then we know, by definition
of EF1 agent-type itself, that (i, j) ∈ EEF1 ⇐⇒ (ita , it′a) ∈ EEF1 and, by
how 1T was built, that (ita , it′a) ∈ EEF1 ⇐⇒ 1T(ta, t′a) = 1. Thus, (i, j) ∈
EEF1 ⇐⇒ 1T(ta, t′a) = 1, as stated by the claim.

We are now ready to prove the result analogous to Theorem 2 but for envy-
freeness up to one item.

Theorem 8. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
tree, FIND-LEF1-POSITION-ASSIGNMENT is in FPT if parameterized by the
number of EF1 agent-types |TN | and the number of vertex-types |TV |.

Proof. The proof consists of another reduction to the INTEGER LINEAR PRO-
GRAM PROBLEM, so that the number of variables is polynomial in the num-
ber of agent-types and vertex-types.

In fact, the built ILP will have the same set of variables, and will only change
in what we previously called “LEF constraints” which will be replaced by
the, rather unimaginatively named, “LEF1 constraints”. In order to define
such constraints, we first must compute the function 1T. Due to Fact 9 we

60 4 Complexity of LEF1 Assignments

know that such construction can be done in polynomial time in the size of I,
hence the reduction is still FPT.

The new constraints are defined in the following way:

LEF1 constraints:

– For ta, t′a ∈ TN and tv, t′v ∈ TV :

xta,t′a,tv,t′v1T(ta, t′a) ≥ 0

– For ta, t′a ∈ TN and tv, t′v ∈ TV :

xta,t′a,tv,t′v1T(t′a, ta) ≥ 0

We now prove that the reduction is again a correct one, i.e. that there is an
LEF1 position assignment µ for the instance I if and only if the built ILP has
a solution.

For the left-to-right direction, assume that there is some LEF1 position
assignment µ. The assignment of variables which we will consider is the
natural one induced by µ, as it was defined in the proof of Theorem 2. Since
all the constraints except for the LEF1 ones are the same, we omit the proof
that the induced variable assignment satisfies them, as it is identical to the
proof of the just mentioned theorem. Thus, it remains to show that the
LEF1 constraints are satisfied. Recall that for arbitrary agent-types ta, t′a and
arbitrary vertex-types tv, t′v we have that xta,t′a,tv,t′v > 0 if and only if there is
at least an agent of type ta placed at a vertex of type tv which is the parent
of a vertex of type t′v where an agent of type t′a has been placed. Hence, as µ
is LEF1, it must be the case that both the agent of type ta does not envy the
agent of type t′a up to one item and vice versa: then, by Lemma 2, it follows
that 1T(ta, t′a) = 1T(t′a, ta) = 1, therefore both constraints for these types are
satisfied since in both cases the product is larger than 0.

For the right-to-left direction the proof is identical to the one of the same
direction in the proof of Theorem 2. The position assignment µ is built
in the same way, hence it only remains to prove that it is LEF1 for the
input instance. Observe that because of Lemma 2 we know that each time
xta,t′a,tv,t′v > 0 it must be the case that both 1T(ta, t′a) and 1T(t′a, ta) are both
equal to 1 as the variable assignment satisfies the constraints of the ILP.
Hence, by the lemma it follows that each pair of agents of such types do
not envy each other up to one item, meaning that the resulting position
assignment must be LEF1 since, if two agents of types ta, t′a are connected,
then the vertex types tv, t′v of the vertices on which they are placed are such
that xta,t′a,tv,t′v > 0.

4.4 Forests 61

Thus, as we know that the INTEGER LINEAR PROGRAM PROBLEM is in FPT
when parameterized by the number of variables in the ILP, the result follows
in the like it did in the proof of Theorem 2.

4.4 Forests

In the same fashion of Chapter 3, we can prove that, by slightly modifying
the built ILP, FIND-LEF1-POSITION-ASSIGNMENT is in FPT for the same
parameterization even if the social graph is a forest.

Theorem 9. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
forest, FIND-LEF1-POSITION-ASSIGNMENT is in FPT if parameterized by the
number of agent-types |TN | and the number of vertex-types |TV |.

We omit the proof because it is identical to the one of the analogous theorem
for local envy-freeness. The set of constraints is changed in the same way,
and the only difference is that now we have LEF1 constraints instead of
LEF constraints. However, due to the proof of Theorem 8, we already
know that an LEF1 position assignment induces an assignment of variables
which satisfies these constraints, and that an assignment of variables which
satisfies these constraints induces as well an LEF1 position assignment, thus
the result follows.

Next, we prove the intractability of EXISTS-LEF1-POSITION-ASSIGNMENT

even when the number of vertex-types is constant. This, similarly to what
has happened before, leads to the para-NP-hardness of the same problem
when parameterized solely by the number of vertex-types.

Theorem 10. Let G be the class of graphs such that each graph G ∈ G has exactly
3 vertex-types. EXISTS-LEF1-POSITION-ASSIGNMENT, restricted to graphs in
G, is NP-complete.

Proof. We provide yet again a reduction from EXACT COVER BY 3-SETS, in
the variant where each instance I = 〈X, S〉 is such that each element x ∈ X
appears in exactly three triplets of S.

The polynomial-time reduction we provide is the same, albeit for some small
details which we must take into account due to Observation 3. Following
are the changes we make to the reduction:

• O := {o1
1, o2

1, . . . , o1
3q, o2

3q, o1
S1

, o2
S1

, . . . , o1
Sn

, o2
Sn

, o1
d1

, o2
d1

, . . . , o1
dn

, o2
dn
}:

there are two corresponding items in O for each agent in N ;

• For each utility function u, we define u(o) = 3 for all the items which
are not related to the agent whose utility is u, while for all the new
“duplicated” items the utility which they grant to the agent is the same

62 4 Complexity of LEF1 Assignments

as the utility which their analogous item granted in the proof for local
envy-freeness;

• π = (π1, . . . , π3q, πS1 , . . . , πSn , πd1 , . . . , πdn) where πi = {o1
i , o2

i },
πSi = {o1

Si
, o2

Si
} and πdi = {o1

di
, o2

di
}.

It is clear that the new reduction is still a polynomial-time one and, since
we did not change the output graph, it still has exactly three vertex-types.
Therefore it remains just to prove its correctness, i.e. that there is an exact
cover of X from the triplets of S if and only if there is an LEF1 position
assignment µ for the built instance.

For the first direction, assume that there is a subset S′ = {S′1, . . . , S′q} of
triplets of S which covers exactly X. Notice that by taking the same position
assignment µ as the one we provided in the proof of Theorem 4, we obtain
yet again a position assignment which is LEF. Since a position assignment
that is LEF is also LEF1, the claim follows.

For the other direction, assume that there is an LEF1 position assignment µ
for the built instance. We prove the claim for local envy-freeness up to one
item corresponding to the same claim we have proven in the proof of the
corresponding theorem for local envy-freeness, i.e. that the central vertices
of the stars can only be occupied by triplet-agents and that the matchings
can only be occupied by a triplet-agent and her corresponding dummy
agent.

Assume by way of contradiction that for some star the central vertex is not
occupied by a triplet-agent, then it must be occupied either by an element-
agent or by a dummy agent. In the former case µ cannot be LEF1, because
there are exactly three agents which she does not envy up to one item, the
triplet-agents who correspond to the triplets which contain her correspond-
ing element, therefore the remaining vertex of the star will be occupied by
an agent which she does envy up to one item (notice how, by removing
either one of the two items, the remaining utility of that agent’s bundle will
be 3 for the element-agent). For the latter case, this same argument holds
as well because each dummy agent does not envy up to one item only one
other agent, her corresponding triplet-agent, hence in the remaining vertices
of the star all the agents will be envied up to one item by the dummy agent.

On the other hand, assume that there is a matching which is not occupied
by a pair consisting of a triplet-agent and a dummy agent: clearly it cannot
be the case that the assigned pair consists of an element-agent and a dummy
agent, or an element-agent and a triplet-agent such that the corresponding
element is not in the corresponding triplet or a triplet-agent and a dummy
agent who is not the one of the former agent, since in any case the two agents
will necessarily envy each other up to one item. Therefore, the only possible
case is that the assigned pair consists of an element-agent and a triplet-agent

4.5 (Definitely-Non-)Quasi-Trees 63

such that the corresponding element is in the corresponding triplet: but then
the triplet-agent’s dummy agent will necessarily be connected to an agent
that she envies up to one item, hence this also cannot happen. Thus, by the
same argument which we have used previously it follows that there must
be a subset of S which covers exactly X, proving the claim.

Hence, by Definition 17, we also get the following result.

Corollary 4. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
forest, EXISTS-LEF1-POSITION-ASSIGNMENT is para-NP-hard if parameterized
by the number of vertex-types |TV |.

4.5 (Definitely-Non-)Quasi-Trees

We conclude this chapter in the same way we ended Chapter 3, i.e. by
treating graphs based on their treewidth.

Proposition 10. Let G be a class of graphs such that each graph G ∈ G has a con-
stant treewidth, i.e. tw(G) = O(1). EXISTS-LEF1-POSITION-ASSIGNMENT,
restricted to graphs in G, is in FPT if parameterized by the number of non-isolated
vertices in G.

Like before, we also omit the proof of this proposition because it is identical
to the proof of Proposition 6. The crucial observation to make is that, simi-
larly to what happens for the envy-free graph, there is a position assignment
µ which is LEF1 for the instance if and only if there is a subgraph isomor-
phism from the non-isolated subgraph of G to a subgraph of the envy-free
up to one item graph GEF1 induced by the input instance itself. Knowing
this, the proof follows exactly as it did before given the fact that SUBGRAPH

ISOMORPHISM is in FPT when parameterized by |V(H)|, if H has a constant
treewidth.

We will now prove the final result of the chapter.

Theorem 11. Let G be a class of graphs containing all graphs G consisting of a
clique together with some isolated vertices—and thus G contains graphs of un-
bounded treewidth. EXISTS-LEF1-POSITION-ASSIGNMENT, restricted to graphs
in G, is W[1]-hard if parameterized by the number of non-isolated vertices in G.

Proof. As in the analogous proof in the Chapter 3, to prove the claim we give
an FPT reduction from the CLIQUE problem, which implies the claim as we
know that the latter problem is W[1]-hard when parameterized by the size of
the clique. Given an input instance 〈G = (V, E), k〉, where V = {v1, . . . , vn},
for the CLIQUE problem, the built instance 〈N ,O, u, π, G′ = (V ′, E′)〉 is
defined as follows:

64 4 Complexity of LEF1 Assignments

• N = {1, . . . , n}, i.e. there is a corresponding agent i for each vertex
vi ∈ V;

• O = {o1
1, o2

1, . . . , o1
n, o2

n}, i.e. there are two corresponding items o1
i , o2

i
for each agent i;

• u = (u1, . . . , un) where for any k ∈ [2] and 1 ≤ i ≤ n:

– ui(ok
i) = 0;

– ui(ok
j) = 0 for i, j such that {vi, vj} ∈ E;

– ui(ok
j) = 1 for j 6= i such that {vi, vj} /∈ E;

• π = (π1, . . . , πn) where πi = {o1
i , o2

i } for any 1 ≤ i ≤ n.

• G′ is as it was defined in the proof of Theorem 5.

We now observe that two agents do not envy each other up to one item if
and only if their corresponding vertices are connected in the original graph
G. If the vertices are connected, then the claim holds simply because the
two agents do not envy each other, hence they also do not envy each other
up to one item. On the other hand, assume that agents i and j are such that
{vi, vj} 6∈ E: then ui(πi) = 0 and ui(πj) = 2. Moreover, it is easy to verify
that there is no item which can be removed from πi ∪ πj so that, given the
new bundles without the removed item, i’s new bundle gives to her a utility
larger than or equal to the one which j’s new bundle grants to i. Therefore, i
does indeed envy j up to one item.

Similarly to what happened before, there is an LEF1 position assignment
for the built instance if and only if there is a clique of size k in the original
input graph G by the same argument we have made in the analogous proof
of Theorem 5.

4.6 Summary

As anticipated in Section 3.7, in this section there have been more positive
results, all due to the fact that it is always possible to find an item allocation
that is EF1 (which always exists) in polynomial time. This obviously means
that, in case the central authority has the task to perform the item allocation
as well, the problems become trivial for LEF1. Aside from this, there were
no differences between LEF and LEF1 complexity-wise.

In the next chapter we will examine the last criterion we defined, local pro-
portionality. Unlike these first two criteria we have seen, we will not be able
to obtain some parameterized complexity results for local proportionality,
but all the other ones will follow via adaptations of proofs we have seen in
Chapter 3, similarly to what has happened in this chapter.

65

CHAPTER 5

COMPLEXITY OF LOCAL
PROPORTIONAL ASSIGNMENTS

We conclude the theoretical section of the thesis by considering the last fair-
ness criterion we defined in the introduction, local proportionality. Amongst
the three criteria we are interested in this surely stands out as the most dif-
ferent one, as local envy-freeness and local envy-freeness up to one item
are clearly connected by their definitions. However, as the reader will
also see, this uniqueness will not be visible up until we reach the realm of
parameterized complexity.

As hinted by the previous paragraph, results in classical complexity will
be the same as in Chapter 3, whereas in parameterized complexity most of
the results will not carry over. Similarly to what happened with local envy-
freeness up to one item, the proofs in this chapter will mainly be adaptations
of the respective proofs from Chapter 3.

5.1 Lines and Stars

As usual, we will first consider again graphs that are lines or stars. Like
before, stars prove to be amongst the simplest graphs to treat with respect
to local proportionality, whereas lines again are intractable.

Proposition 11. Given an instance I = 〈N ,O, u, π, G〉 in which G is a star,
EXISTS-LPROP-POSITION-ASSIGNMENT is decidable in polynomial time.

Proof. To prove the claim, we give a simple polynomial-time algorithm that
answers the question. Similarly to before, it suffices to simply loop over all
agents and check two conditions:

1. That the current agent i is such that ui(πi) ≥ ui(O)
|N | ;

2. That any other agent j ∈ N \ {i} is such that uj(πj) ≥ uj(πi).

66 5 Complexity of LPROP Assignments

If there is such an agent i, then the algorithm immediately outputs “Yes”
and halts. Instead, if after the loop no agent satisfies the two conditions, the
algorithm outputs “No”. It is clear that the algorithm is a polynomial one,
quadratic in the number of agents to be precise. We now show that there is
an LPROP position assignment if and only if the algorithm outputs “Yes”.

If there is such a position assignment µ, then obviously there must be some
agent i who is assigned to the central vertex. Notice that for µ to be LPROP,
i must satisfy the two conditions of the algorithm, hence the algorithm will
output “Yes” once the loop reaches i.

On the other hand, assume that the algorithm answers positively. This can
happen only if, when looping over the agents, there is some agent i that
satisfies the two conditions. Consider a position assignment µ which places i
at the central vertex and all the remaining agents randomly at the remaining
vertices. We show that µ must be LPROP:

1. µ is LPROP for i: since N+(i) = N it is clear that ∑j∈N+(i) πj = O,
and by the way the algorithm is defined it must be the case that
ui(πi) ≥ ui(O)

|N | , thus the claim holds;

2. µ is LPROP for any j ∈ N \ {i}: to prove this claim it suffices to
notice that when an agent is connected to only one other agent, local
proportionality is equivalent to local envy-freeness. Thus, by simply
observing that the only neighbor of j under µ is i, and that by the
algorithm it is ensured that j does not envy i, the claim follows.

Hence, a positive answer from the algorithm implies the existence of a
position assignment which is LPROP, thus proving the proposition.

Notice that by using this algorithm it is also possible to define another
polynomial-time one for FIND-LPROP-POSITION-ASSIGNMENT, where the
output position assignment µ is defined as in the proof of the right-to-left
direction.

Let us move now to the lines. Again, we will use the HAM-PATH problem
to prove the NP-completeness of EXISTS-LPROP-POSITION-ASSIGNMENT.

Proposition 12. Given an instance I = 〈N ,O, u, π, G〉 in which G is a line,
EXISTS-LPROP-POSITION-ASSIGNMENT is NP-complete.

Proof. Membership in NP can be proven exactly in the same way as it was
proven for local envy-freeness: a (polynomial) certificate is a position assign-
ment µ and the task of the verifier is to check that each agent has a bundle
which grants her at least the average utility in her augmented neighborhood
with respect to µ. Trivially this can be done in quadratic time.

5.2 Lines and Stars 67

To prove NP-hardness, we give a reduction from HAM-PATH. The reduction
is almost the same as the one for local envy-freeness, as the only difference
is in the utility functions. Let i be any agent and let vi be her corresponding
vertex in G. As before, we denote with o′i1 , . . . , o′im′

the objects which cor-
respond to agents whose corresponding vertices are all and only those in
N(vi): we define ui({o′ij

}) = ui({oi}) for any such ij.

Thus, we proceed to show that there is an LPROP position assignment for
the derived instance 〈N ,O, u, π, G′〉 if and only if there is a Hamiltonian
path in the input graph G for HAM-PATH.

Assume that there is an LPROP position assignment µ for 〈N ,O, u, π, G′〉.
This means that µ assigns to each agent i a vertex on the line G′ so that
i has a utility proportional to that of her neighbor(s). Observe that, for
any agent i, local proportionality in this case is satisfied just in case all of
her neighbors j are such that ui(πi) = ui(πj). In fact, suppose by way of
contradiction that there is some agent i for which one of her neighbors
j is such that ui(πi) 6= ui(πj). Then, by construction of the reduction, it
follows that ui(πj) > ui(πi). Thus, observe that the average utility from
i’s point of view, in her augmented neighborhood N+(i), is strictly larger
than ui(πi), because there are at most two agents (including i herself) such
that the bundles assigned to them have a utility equal to ui(πi) (from i’s
perspective) and at least one with a utility strictly larger than ui(πi). Hence,
π and µ do not satisfy local proportionality for i, meaning that µ is not
LPROP. Therefore, for any agent i, we have that her two neighbors j1, j2 are
such that ui(πi) = ui(πj1) = ui(πj2), which can happen, by construction,
if and only if the vertex to which they correspond, vi, vj1 , vj2 , are such that
{vj1 , vj2} ⊆ N(vi) (and the same holds for those agents who have only
one other neighbor). Thus, it follows that the path P which “follows” the
position assignment µ is indeed a Hamiltonian path of G, as all vertices are
visited exactly once since each agent can only be placed at one vertex in G′.

Now suppose that G has an Hamiltonian path P = vp1 , . . . , vpn . Obvi-
ously, every pair of consecutive vertices vpi , vpi+1 in P must be such that
{vpi , vpi+1} ∈ E, otherwise P is not a valid path. Consider the position as-
signment which corresponds to P, i.e. such that the µ(pi) = wi. We quickly
show that µ is LPROP: let 1 < i < n be arbitrary (for i = 1 or i = n the argu-
ment is the same but there are less agents to consider, thus we omit the two
cases). Since P is a path it must be the case that {vpi , vpi−1} and {vpi , vpi+1}
are both in E, meaning that, for the respective agents pi−1, pi, pi+1, it holds
that upi(πpi−1) = upi(πpi) = upi(πpi+1). As pi−1 and pi+1 are the only neigh-
bors of pi, by definition it follows that µ is LPROP for pi. Therefore, µ must
be LPROP for the built instance as pi was chosen arbitrarily.

68 5 Complexity of LPROP Assignments

5.2 Strongly Connected Graphs

We generalise lines and stars and consider now strongly connected graphs.
In the same way as in Chapter 3, due to Proposition 12, we know that
EXISTS-LPROP-POSITION-ASSIGNMENT is NP-complete for this class.

Therefore, we shift our focus again to EXISTS-LPROP-DISTRIBUTION. The
proof of the following theorem is a direct consequence of the corresponding
Theorem 1 and of the following lemma.

Lemma 3. Given an instance I = 〈N ,O, u, π, G〉 in which agents have identical
utilities and G is strongly connected, π and a position assignment µ are LPROP if
and only if every agent has the same utility under π.

Proof. For the right-to-left direction, we trivially have that if all connected
agents have the same utility, then the item allocation π and the position
assignment µ are LPROP by definition.

For the other direction, assume by contraposition that there are two con-
nected agents i, j who do not have the same utility under π. Without loss of
generality, assume that u(πi) < u(πj). Also, assume that all other agents
connected to i have at least the same utility as i: if there is some other agent
who has a lower utility than i, then consider her in place of i and take i in
place of j and, if the same happens for this new agent, repeat the process.
Notice that, as the set of agents is finite and all agents have the same utility
function u, there must be some agent i′ with minimal utility and which can
be reached from i (but not necessarily connected to i herself). Thus, this
process of choosing “new” agents i and j will, at some point, stop. Then,

u(πi) <
∑k∈N+(i) u(πk)

|N+(i)| , because all agents surrounding i, except for j, have at
least the same utility as i, but j has a strictly larger utility than i. Hence, π
and µ cannot be LPROP, which proves the claim.

From this lemma, it follows also that all proofs which exploited identical
utilities for local envy-freeness hold as well for local proportionality. Hence,
we get the following result.

Theorem 12. Given an instance I = 〈N ,O, u, G〉 in which G is strongly con-
nected, EXISTS-LPROP-DISTRIBUTION is NP-complete, even when agents have
identical utilities.

From which we can derive the corresponding corollary by making the same
observation, as we have made in Chapter 3, about how we can replace the
line used in the construction with a star.

Corollary 5. Given an instance I = 〈N ,O, u, G〉 in which G is a star or a line,
EXISTS-LPROP-DISTRIBUTION is NP-complete.

5.4 Matchings 69

5.3 Matchings

Graphs which are matchings are a very particular case with respect to local
proportionality. It is rather easy to verify the following fact:

Lemma 4. For all instances I with a fixed item allocation and such that G is a
matching, a position assignment µ is LPROP if and only if it is LEF.

This holds due to the simple observation that in matchings each agent will
be paired with another agent, hence the utility of a given agent will be
higher than or equal to the average utility (from her point of view) of her
augmented neighborhood if and only if her utility is higher than or equal
to the utility which the bundle assigned to her only neighbor would have
granted her. Hence, all results we were able to prove with respect to local
envy-freeness also hold for local proportionality.

Proposition 13. Given an instance I = 〈N ,O, u, π, G〉 in which G is a matching,
EXISTS-LPROP-POSITION-ASSIGNMENT is decidable in polynomial time.

Proposition 14. Given an instance I = 〈N ,O, u, G〉 in which G is a matching,
EXISTS-LPROP-DISTRIBUTION is NP-complete, even when agents have identical
utilities.

5.4 Trees, Forests and (Definitely-Non-)Quasi-Trees

We conclude this chapter by merging all these graph families into a single
section. As the reader might recall, in the previous chapters these sections
were mainly devoted to parameterized complexity results.

In those proofs, we exploited two different but very useful concepts: the
“vertex-type” and the “envy-free graph” or “envy-free up to one item graph”. The
first allowed us to avoid using as a parameter the total number of vertices,
which is a trivial parameterization of the problem as it is exactly equal to
the number of agents: at that point, a simple brute force search would have
done the job. The second were instead crucial in proving the correctness of
reductions we have used.

As a first bad news, a “proportional graph” cannot be defined in the same
way as the envy-free (up to one item) graph. Proportionality, and its local
variant as well, is a criterion which cannot be defined on a single pair of
agents, but must take into account the whole “neighborhood” of a given
agent to determine whether the instance is fair or not. Thus, a simple graph
where each vertex corresponds to an agent will not be of much use in this
context, as it will never be able to consider the multiple ways in which the
neighborhood of an agent can be formed. We propose two different ways
to tackle this issue, both which try to address this lack of expressive power.

70 5 Complexity of LPROP Assignments

The first one is to use, instead of a graph, a hypergraph. Hypergraphs are
graphs in which single edges can connect more than two vertices: it is then
clear how this feature can be used to define the proportional hypergraph. The
second way we propose is to define a graph in which vertices are divided
into two subsets, one in which each vertex represents an agent and the
other in which every vertex represents a subset of agents. Hence, each
edge connects an agent to a subset of agents such that the item allocation
is proportional from the point of view of the first agent. Essentially this
is a way to disguise the hypergraph we have previously mentioned into a
normal graph. One advantage this has is the simple fact that we are still
using graphs instead of a different structure, hence all interesting properties
and complexity results still apply.

We believe that finding a sensible (better if also efficient) way to define such
a concept with respect to proportionality will prove to be extremely useful,
especially after seeing how it can be employed when we are considering the
other two fairness criteria we are interested in instead of proportionality. An
easy example to observe the potential this has is to consider the fact that the
CLIQUE problem can be easily used to perform (parameterized) reductions
if a hypothetical proportionality graph is defined, as we have already seen
with the envy-free graph and the envy-free up to one item graph.

On the other hand, as one might guess, the main issue with vertex-types
when one wants to determine whether an item allocation and a position
assignment satisfy local proportionality for some agent, is the fact that it
is not possible to determine who are the neighboring agents of the given
one using only vertex-types, as the vertices connected to the one at which
the agent is placed will be confused with all the other vertices of the same
type, hence it will not be possible to understand which agents have been
assigned to those vertices. Note also how this issue is particularly severe
when one tries to devise an ILP to try to solve the EXISTS-LPROP-POSITION-
ASSIGNMENT and FIND-LPROP-POSITION-ASSIGNMENT, as we did for
example in Theorems 2 and 8. In those proofs, we were able to overlook the
ambiguous nature of vertex-types, and in fact we exploited it, to ensure that
the assignments were LEF or LEF1, because of the fact that these criteria,
unlike local proportionality, are only interested in pairs of adjacent agents.
The main problem in taking this same approach with local proportionality is
the inherent difficulty in reconstructing the unique neighborhood of a fixed
agent assigned to some vertex, because given the vertex-type of the latter,
we effectively are not able to determine the correct agents who are in the
neighborhood of the fixed agent. One way in which this might be fixed is by
changing the way variables are defined in the ILP: an idea which naturally
comes to mind is to define variables in such a way that they talk about
neighborhoods of a fixed vertex and not of a single edge. Nevertheless, one
should always remember that the number of variables should be polynomial

5.4 Trees, Forests and (Definitely-Non-)Quasi-Trees 71

in the parameters of the problem for the algorithm to have a chance to be
an FPT one, hence we tend to believe that in order to fix this issue the
parameters will also have to be changed in some way.

The reader might also recall that the only negative result in parameterized
complexity about forests was about vertex-types, where we used a variant
of EXACT COVER BY 3-SETS to prove the NP-completeness of EXISTS-LEF-
POSITION-ASSIGNMENT and EXISTS-LEF1-POSITION-ASSIGNMENT even
when the number of vertex-types of the social graph is equal to a fixed
constant, thus implying the para-NP-hardness of the same problem when
parameterized by the number of vertex-types. (Un)Fortunately, that same
result holds also when we consider local proportionality, as we will see now.

Theorem 13. Let G be the class of graphs such that each graph G ∈ G has exactly
3 vertex-types. EXISTS-LPROP-POSITION-ASSIGNMENT, restricted to graphs
in G, is NP-complete.

Proof. Akin to previous proofs in this chapter, the approach we will take on
this one is that of adapting the proof of the corresponding theorem from
Chapter 3 so that it takes into account local proportionality instead of local
envy-freeness.

First of all, the problem is in NP by the usual argument, as one can simply
check in polynomial time whether a position assignment µ (i.e. the poly-
nomial certificate) is LPROP for a given instance by checking that for each
agent the average utility of her augmented from her point of view is smaller
than or equal to her own utility under π.

To prove NP-hardness, we reduce again from the variant of EXACT COVER

BY 3-SETS. Hence, let I = 〈X, S〉 be an arbitrary instance of EXACT COVER

BY 3-SETS such that each element of X appears in exactly three triplets of S.

The reduction is identical to the one in the proof of Theorem 4, except for
the utilities of each agent which are now defined so that, for an arbitrary
utility function u, u(o) = 5 for any item o ∈ O that was such that previously
u(o) = 2, i.e. all those items that have no correlation to the agent. Trivially,
the built instance I′ = 〈N ,O, u, π, G〉 is indeed an instance of EXISTS-
LPROP-POSITION-ASSIGNMENT where the social graph G has exactly three
vertex-types and the reduction takes polynomial time to be performed.

We now show that the reduction is correct. For the first direction, assume
that there is a subset S′ = {S′1, . . . , S′q} of S such that each item of X appears
in exactly one triplet of S′. Consider the same position assignment µ which
was defined in the analogous proof for local envy-freeness, we now show
that it is also LPROP for I′:

• For the q stars with 5 vertices, the utilities of the central agents are

72 5 Complexity of LPROP Assignments

indeed greater than or equal to the average utilities of their respective
augmented neighborhoods, since for each of them it is exactly equal to
1
5 , which is clearly smaller than their own utilities that are exactly equal
to 1. Moreover, µ is also LPROP for the agents on the outer vertices
of these stars, since in that case local proportionality corresponds to
local envy-freeness as they have only one neighbor, the central vertex
in the star, and in the previous proof we had already seen how the
assignment was LEF;

• For the remaining n− q matchings, µ is LPROP by the same argument
we have just made for the agents on the outer vertices of the stars: as
these agents are paired with only one other agent, the assignment is
LPROP because we already know that it is LEF.

Thus, we have proven that the existence of a solution to the instance I
implies the existence of an LPROP position assignment for I′.

For the other direction, assume that there is a position assignment µ which
is LPROP for I′. We prove, yet again, the same claim we have proven in the
proofs of the two corresponding theorems in the previous two chapters, i.e.
that the central vertices of the stars can only be occupied by triplet-agents,
and the same applies to the matchings (for these, pick arbitrarily one of the
two vertices as the “central” vertex). For suppose that in the stars the central
vertex is either a dummy agent or an element-agent. In the former case µ
is trivially not LPROP for the dummy agent, as amongst the four agents to
which she is connected, there are at least three whose utility of their bundles
for her is equal to 5, meaning that the average utility in the augmented
neighborhood is at least 16

5 , which is clearly larger than or equal to 1. In the
latter case, the same must apply because by the definition of the variant of
EXACT COVER BY 3-SETS we know that there are only three other agents for
the element-agent whose bundle give a utility of 0 to her, thus the fourth
agent in the star will have a bundle which gives a utility of 5 to her, hence
making µ not LPROP. For the matchings, we can also prove that the agents
placed there can only be a triplet-agent and her corresponding dummy
agent. If the dummy agent is not the corresponding one, then she will envy
the triplet-agent (and so will the triplet-agent envy her), thus making the
position assignment not LPROP. Instead, if there is an element-agent, then
in any case the position assignment will not be LPROP for the dummy agent
corresponding to the triplet-agent, as she will be connected to at least one
other agent, which necessarily will not be the correct triplet-agent, meaning
that the utility of her bundle for the dummy agent will be equal to 5. Hence,
by the same argument we have made in the analogous proofs for local
envy-freeness and local envy-freeness up to one item, it follows that this
implies the existence of a subset S′ which exactly covers X, thus proving the
theorem.

5.5 Summary 73

Thus, as in Chapters 3 and 4, by Definition 17 this implies that the same
problem, when parameterized only by the number of vertex-types, is para-
NP-hard if the social graph is a forest.

Corollary 6. Given an instance I = 〈N ,O, u, π, G〉 in which G = (V, E) is a
forest, EXISTS-LPROP-POSITION-ASSIGNMENT is para-NP-hard if parameter-
ized by the number of vertex-types |TV |.

5.5 Summary

This chapter marks the end of the theoretical part of the thesis. In it we
have seen mostly negative results, apart from some classes of graphs, the
results for LEF1 concerning the problems in which the central authority
has to compute the item allocation as well and some parameterized results.
For what concerns local proportionality, we have seen that most of the
parameterized results we were able to obtain for the other two criteria
were not reproducible for it. We think that finding parameters which fit
this criterion is surely an interesting direction of research, because of how
different it is compared to local envy-freeness and local envy-freeness up to
one item.

Following is the final chapter of the thesis, in which we will discuss the
experiments we have performed. These will highlight how various parame-
ters affect the likelihood that a given random instance I = 〈N ,O, u, π, G〉,
paired with some fairness criterion F amongst the three that we have stud-
ied, is a positive one, i.e. one for which there is a position assignment µ that
satisfies F .

74

CHAPTER 6

EXPERIMENTS

In the final chapter of the thesis we will present some experimental results
we have obtained during our work7. Section 6 from Beynier et al. [2019] has
been our main inspiration for these experiments.

Similarly to their work, we will also mainly focus on the occurrence of
positive instances (for any of the three fairness criteria we have defined)
amongst randomly generated ones. In this case, instances will be of the form
〈N ,O, u, π, G〉 (it should be noted that a parameter of our experiments will
be the way the item allocation π is performed) paired with some fairness
conditionF amongst the three we have discussed in the thesis, i.e. LEF, LEF1
and LPROP, and it will be considered “positive” if there is some position
assignment µ that satisfies F with π for the given instance.

The main question we want to answer is “how much do some parameters influ-
ence the likelihood of positive instances?” We think this question is particularly
interesting because answering it allows us to know which kind of instances
(based on the parameters we will use) are the most promising ones when the
central authority has the only task of performing the position assignment.

We briefly outline the chapter. In Section 6.1 we will present to the reader
the setting of our experiments. We will specify how we have generated
the random instances, the set of parameters and which libraries we have
used. Following, in Section 6.2 we will discuss the experiments without
considering the agent-types as parameters, on which we will instead focus
in Section 6.3.

6.1 Setting of the experiments

First, we explain how the random instance is built. Recall that an instance in
these experiments will be a tuple 〈N ,O, u, π, G〉, where N is the finite set

7All code is available at: https://github.com/giovannivarr/Complexity-of-

Locally-Fair-Allocations-on-Graphs.

https://github.com/giovannivarr/Complexity-of-Locally-Fair-Allocations-on-Graphs
https://github.com/giovannivarr/Complexity-of-Locally-Fair-Allocations-on-Graphs

6.1 Setting of the experiments 75

of n agents, O the finite set of m items, u = (u1, . . . , un) the utility profile,
π = (π1, . . . , πn) the item allocation and G = (V, E) the social graph.

Utility profile The first random component of the instances we discuss
is how we generate the agents’ utilities. For each agent, the utility that
an arbitrary item generates for her is drawn either from a normal or a
(continuous) uniform distribution. For the first, the mean and the standard
deviations are respectively equal to 0 and 1, while for the latter the minimum
and maximum possible utilities are respectively −1 and 1. Due to the fact
that the final results were very similar regardless of the distribution from
which the agents’ utilities were drawn, we will only present those which
we have obtained with the uniform distribution. We have also performed
experiments in which the items are either all goods or all chores for every
agent: in these cases utilities are drawn from a uniform distribution where
the minimum and maximum possible values are respectively 0 and 1 for the
only goods experiments and −1 and 0 for the only chores experiments.

Item allocation Instances can also be (possibly) randomized with respect
to the item allocation, assigning the items randomly to the agents but in
such a way that every agent gets at least one item. The other ways in which
the item allocation can be performed are instead deterministic and they
revolve around either maximizing the utilitarian welfare (i.e. the sum of the
utilities of each agent under the given assignment) or minimizing enviness
or uproportionality. To perform these three last item allocations, we have
decided to use the Python-MIP library, through which we were able to define
and solve ILPs. The objective functions to minimize enviness (leftmost) and
unproportionality (rightmost) are the following.

min ∑
i∈N

∑
j∈N

E(i, j)(ui(πj)− ui(πi)) min ∑
i∈N

U(i)
(

ui(O)
|N | − ui(πi)

)

Where in the objective functions for the item allocations which minimize
enviness or unproportionality, E and U are the following functions8.

E(i, j) =

{
1 if ui(πj)− ui(πi) > 0
0 otherwise

U(i) =

{
1 if ui(O)

|N | − ui(πi) > 0

0 otherwise

We specify that for experiments involving envy-freeness up to one item, we
have decided to consider only random item allocations. This is because

8It should be noted that the two functions we have defined would make the objective
functions for the ILPs non-linear, hence not usable in an ILP. Thus, the ILPs which we have
defined use dummy variables to circumvent this issue.

76 6 Experiments

in this way we can simulate the fact that the central authority is given a
fixed item allocation, as otherwise it would simply have to find an EF1 item
allocation which, as we already know, always exists and can be found in
polynomial time.

Social graph Finally, we (randomly) generate graphs using the NetworkX
library (Hagberg, Schult, and Swart [2008]). Graphs can be of different type:
aside from lines, stars, matchings and trees which we have already seen, we
also include binomial, regular and Barabási-Albert graphs.

Binomial graphs fall into the broader class of Erdős–Rényi graphs, which
were first introduced in Erdős and Rényi [1959]. To be more precise, the
ones generated by NetworkX follow the model which was defined in Gilbert
[1959] where, given in input an integer n and a probability p, the output
graph G has n vertices and there is an edge between any two (distinct)
vertices with probability p, independently of all the other edges. In our
experiments, we have fixed p to always be 1

2 .

A regular graph is defined as a graph where each vertex has the same
constant degree k. For regular graphs we have fixed the number of vertices
to be 8 and, since regular graphs with k = 1 are matchings, the degree will
vary between 2 and 7.

Finally, the Barabási-Albert graphs, first introduced in Barabási and Albert
[1999], that belong to the so-called class of scale-free graphs. These are graphs
in which the degree distribution follows asymptotically a power law, i.e.
the fraction of vertices in the graph with a degree of k is proportional to the
value k−γ for some constant γ. Barabási-Albert graphs fall in this category
because their degree distribution is proportional to k−3. We quickly explain
how these graphs are generated: at first the network consists of m0 isolated
vertices9. It should be noted that in our experiments we have chosen to
fix m0 to be equal to 3 (so that graphs can be generated for any number
of agents). At step i, given the current graph Gi = (Vi, Ei), a new vertex
is added to Vi and it is connected to m vertices, where the probability that

it is connected to some older vertex v ∈ Vi is equal to
degGi

(v)

∑v′∈Vi
degGi

(v′) , where

degGi
(v) is the degree of v in the current graph Gi (see Definition 1). Notice

that this implies that the Barabási-Albert graphs which are generated are
always strongly connected graphs: each new vertex is connected to m0
vertices amongst the ones already in the graph, which are all connected,
except in the beginning where, however, the first new vertex that is added
will be connected to all the m0 isolated vertices. As the reader can notice,
this way of generating the graph will lead to a graph in which, when a new

9In NetworkX m0 is equal to another variable which we will shortly see, m, as by the
source code of the method which we have used.

6.1 Setting of the experiments 77

vertex is added, it will probably be connected to those vertices that have
a large number of connections and thus, in the final graph, there will be a
set of vertices which have high degree (usually the first m0 vertices). This
characteristic of the Barabási-Albert graphs mimics one of natural social
networks, in which there is generally a group of individuals who are very
popular in the community (Barabási and Albert [1999]). While the typical
example of the desks-in-the-office does not apply in this case, we deem these
networks interesting for their inherent property of being “natural” ones.

Experiments using EF agent-types In the experiments in which we use
also the number of EF agent-types as a parameter, we have fixed the number
of agents to 8 and varied the number of agent-types from 2 to 8. For each
instance, we randomize the number of agents of a given agent-type and the
relations between them, i.e. which agent-types are envied or not by another.

We now give a list of the different parameters we have used and their
possible values:

• The number of agents, which varies from 4 to 8;

• The number of items per agent, which varies from 1 to 4;

• The way the social graph is generated;

• The way the agents’ utilities are generated;

• The way the item allocation is performed;

• The degree of the regular graphs, which varies from 2 to 7;

• For what concerns the experiments using agent-types, the number of
agent-types, which varies from 2 to 8;

• The fairness criterion to be satisfied, which can either be local envy-
freeness (LEF), local envy-freeness up to one item (LEF1) or local
proportionality (LPROP).

For each combination of the parameters we have generated 1000 random
instances and computed the likelihood of positive ones. To do this, we
divide the number of instances for which there is a position assignment
that satisfies the fairness criterion with the item allocation by 1000, the
total number of instances we have generated for that particular parameter
combination. We represent the results as a heatmap, which we draw using
the seaborn library (Waskom and team [2020]).

Heatmap description We conclude the section by briefly describing how
the heatmaps are composed. The values on the x-axis are either the degree
of the graph (for regular graphs) or the number of agents (for all other graph

78 6 Experiments

classes) and those on the y-axis the number of items per agent. For each of
the figures in the next section, in their caption we will specify all the other
parameters, the way the utilities are generated (e.g. “uniform utilities” in
case each agent’s utility was generated by drawing values from the uniform
distribution), the way the items are assigned, the class of the social graph,
the fairness criterion to satisfy and, eventually, other notes if necessary.
When we present two heatmaps paired (e.g. Figure 6.2), we will specify
the parameters which differentiate the two in a smaller caption beneath
each heatmap. The parameters’ values will be presented in the captions
separated by a dash “-”. The value in each cell is the likelihood of positive
instances for the specific combination of parameters given by those in the
caption and those of the cell’s coordinates. As an example, take Figure
6.2 and consider the value in the leftmost cell on the first row of the first
heatmap from the left, which is 0.76. This means that, if the agents are 4,
there is only one item per agent (hence 4 items in total), utilities are drawn
from the uniform distribution, items are assigned to maximize utilitarian
welfare, the underlying social graph is a tree and the fairness criterion to
satisfy is local envy-freeness, then the probability that a random instance is
a positive one (i.e. there is a position assignment that satisfies LEF with the
item allocation) is 0.76. In other words, during the experiments, out of all
the 1000 randomly generated instances, approximately 760 were positive.

The heatmaps in Section 6.3 differ a bit as there are only two, one for regular
graphs and another for all the remaining graph classes. On both heatmaps,
the values on the y-axis are the number of EF agent-types. As before, for
the regular graphs’ heatmap, the values on the x-axis are the graph degree,
instead, for the other heatmap, the values on the x-axis are the graph classes.
Hence, a cell at coordinates (G, j) will express the likelihood of positive
instances in case the social graph belongs to the graph class G and there are
j different EF agent-types.

6.2 Likelihood of Positive Instances

In this section we will present the results we have obtained for our first
kind of experiments. In these, we have randomly generated 1000 instances
for each possible combination of the parameters and evaluated how fre-
quent were positive instances, i.e. instances for which there is a position
assignment that satisfies the fairness criterion when paired up with the item
allocation of that same instance.

As we have already mentioned in Section 6.1, we will only present plots
that have been generated from random instances in which the utilities were
drawn from the uniform distribution.

Figure 6.1 is a line plot which shows the trend, for each of the graph classes

6.2 Likelihood of Positive Instances 79

Figure 6.1: Each line represents the average likelihood of positive instances
(averaged over the number of items per agent) for that particular graph
class as the number of agents increases. Utilities are drawn from uniform
distributions and the item allocation maximizes utilitarian welfare.

we have considered (except regular graphs), of the average ratio of positive
instances (averaged over the number of items per agent) as the number of
agents increases. The fairness criterion is local envy-freeness and the items
are assigned to maximize utilitarian welfare.

From the plot, graph classes can be divided in approximately three groups.
In the upper one there are lines, matchings and trees, in the middle one only
binomial graphs, and in the lower one Barabási-Albert graphs and stars. We
will choose a representative from each of these classes in order to present the
experiments we have performed: for the upper one trees, for the middle one
binomial graphs (obviously) and for the lower one Barabási-Albert graphs.

Before moving one, we will just quickly comment about the similarity
between Barabási-Albert graphs and stars. Both classes show lower prob-
abilities of positive instances compared to all other graphs. We think it is
the case that this occurs because of the fact that in both graphs there tend
to be vertices that are hubs, i.e. vertices that are connected to many other
vertices. This is clear in the stars, where there is always exactly one vertex
that is connected to all the other ones. For Barabási-Albert graphs, we have
indirectly discussed the presence of these so-called hubs back when we
defined them in the previous section. We would also like to point out that in
Barabási-Albert graphs the likelihood of positive instances is slightly higher
compared to stars: we believe that this is the case mainly because in Barabási-

80 6 Experiments

Albert graphs there can be multiple hubs, not necessarily connected to all
the other vertices of the graph, unlike what happens in stars.

6.2.1 LEF and LPROP

The first outcomes on which we want to comment is the difference in terms
of likelihood between LEF and LPROP. In Figures 6.2, 6.3 and 6.4, on the left
there are plots for local envy-freeness and on the right for local proportion-
ality for the corresponding graphs (we will keep this layout also in the next
figures). The item allocation is the one that maximizes utilitarian welfare.

Observation 5. When item allocations maximize welfare or are generated ran-
domly, LPROP can be satisfied more easily than LEF.

As one can observe, results for local proportionality are, in general, better
than those for local envy-freeness. This can be particularly observed in
binomial graphs and Barabási-Albert graphs. This is most likely due to the
fact that position assignments that are LEF are also LPROP. Moreover, it
might also happen that a position assignment which is not LEF is instead
LPROP, because, though an agent might envy one of her neighbors under the
given assignment, the other agents who are connected to her can “balance”
the enviness so that the average utility of the agents in the augmented
neighborhood for the envious agent is small enough.

(a) LEF (b) LPROP

Figure 6.2: Uniform utilities - max utilitarian welfare - trees

6.2.2 Random item allocations

The same pattern between LEF and LPROP can be noticed also when items
are given to the agents randomly. In Figure 6.5 we show the results we have

6.2 Likelihood of Positive Instances 81

(a) LEF (b) LPROP

Figure 6.3: Uniform utilities - max utilitarian welfare - binomial graphs

(a) LEF (b) LPROP

Figure 6.4: Uniform utilities - max utilitarian welfare - Barabási-Albert
graphs

82 6 Experiments

obtained for random item allocations on trees, both for local envy-freeness
and local proportionality.

(a) LEF (b) LPROP

Figure 6.5: Uniform utilities - random - trees

With respect to random allocations, local envy-freeness up to one item has
proven to be the criterion satisfied most often. It should be noted that for
the LEF1 experiments the number of items per agent varied from 2 to 4.

Observation 6. Under random item allocations, LEF1 is the criterion that can be
satisfied more easily.

Figure 6.6: Uniform utilities - random - trees - LEF1

Aside from the same previous remark we have made on how the set of

6.2 Likelihood of Positive Instances 83

LEF allocations is a subset of the set of LEF1 ones, another factor which
might influence this result is the fact that, whenever an agent (with a non-
negative utility) is connected to one with a single item, the assignment
is automatically LEF1. Though this situation does not always occur, it
contributes positively to the occurrence of instances with an LEF1 position
assignment. Figure 6.6 shows the results for random allocations when the
fairness criterion to satisfy is LEF1. As it can be seen, the peak is reached
with 8 agents and 2 items per agent, with a likelihood of 0.69. This is a much
higher probability when compared to the maximum likelihoods for LEF and
LPROP in the same setting, which are, respectively, 0.14 and 0.27.

6.2.3 Regular graphs

Akin to what has happened for the graph classes we have seen so far with re-
spect to the comparison between LEF and LPROP, we have obtained similar
results also for regular graphs. Moreover, like what was reported in Beynier
et al. [2019], the higher the degree is and the lower the chance that the
random instance is positive. The same also holds for local proportionality,
however in that case the probabilities are much higher, hence the issue is
not as severe.

Observation 7. As the degree of a regular graph increases, the probability of the
instances being positive decreases.

This can clearly be seen in Figure 6.7, where in both heatmaps the likelihood
of positive instances decreases when moving from left to right on the x-axis:
on the first row of the heatmap for LEF, the likelihood if there is a single
item per agent is 0.98 if the graph degree is 2 (leftmost cell) and 0.002 if the
graph degree is 7 (rightmost cell). This decrease is in turn mitigated by the
number of items per agent, as by increasing it the likelihood increases too.

(a) LEF (b) LPROP

Figure 6.7: Uniform utilities - max utilitarian welfare - regular graphs

84 6 Experiments

6.2.4 Curious phenomena

We conclude the section with some rather peculiar results. We have per-
formed some experiments also in the case in which the available items are
either exclusively goods or exclusively chores. Though it makes sense to
expect slightly worse results when compared to having both goods and
chores (intuitively because by having both of them the item allocation can be
balanced better with respect to the utilities), one would expect also to have
approximately the same results for these two kinds of experiments. Indeed,
if one considers experiments in which the item allocation either minimizes
enviness or is generated randomly, this is true. On the other hand, for those
in which the allocation maximizes utilitarian welfare, this intuitive fact is
false when there are two or more items per agent, as the results for the only
goods case are far worse than those for the only chores case. Figure 6.8
presents the results for the case in which the underlying graph is a tree.

(a) Only goods (b) Only chores

Figure 6.8: Uniform utilities - max utilitarian welfare - trees - LEF

To get an intuition on why this happens, we first have to observe that, given
an instance with only goods, for what concerns our case, by subtracting 1
to the utilities of each item for each agent we obtain an “equivalent”, with
respect to the objective of maximizing utilitarian welfare, instance with only
chores. Here, with “equivalent”, we intend that the item allocation which
maximizes utilitarian welfare is the same. This is because the utility of
each item is shifted by −1 for each agent, hence the item allocation which
maximizes utilitarian welfare in the only goods case will also maximize the
utilitarian welfare in the only chores case.

Let us focus for now on the only goods case: what happens when there

6.2 Likelihood of Positive Instances 85

are two or more items per agent is that when allocating items to maximize
utilitarian welfare, once each agent has at least an item, the remaining ones
will be assigned to the agent to which the items grant the largest utilities.
Because of this, agents who have received a single item might envy those
who have received more than one, hence a position assignment which
connects these two agents cannot be LEF. Assume that i is an agent who
envies some other agent j, and assume that i has received a bundle with a
single item while j one with k items. Now, if we consider the equivalent
instance with only chores, observe that the enviness of i towards j has
decreased by k − 1: this follows from the fact that the utility granted by
each item to i has decreased by 1, and as she had only received one item
her utility has decreased only by 1, whereas the utility for i of the bundle
assigned to j has decreased by k. Thus, if the enviness of i towards j was
lower than or equal k, in the equivalent instance with only chores i will not
envy j. On the contrary, if the difference between the utility of j’s bundle and
that of the single item granted to i, from the point of view of j, was smaller
than k, in the new instance j will now envy i. However, this will happen less
often than the previous kind of change in enviness, because of the fact that
the item allocation was performed in order to maximize utilitarian welfare:
intuitively, the bundle granted to j should give her a rather large utility.

Instead, consider the case in which we have an instance with only chores,
let i and j be agents to which a single item and a bundle of k items were
respectively assigned and assume that i does not envy j. Perform the inverse
transformation on the instance now, i.e. the utility granted by each item to
each agent increases by 1, so that we obtain an equivalent (for the goal of
maximizing utilitarian welfare) instance with only goods. Now, observe that
analogously to what has happened before, this transformation has increased
the enviness of i towards j by k− 1: this might, in turn, lead i to envy j.

We give two simple examples to show how the change in enviness occurs.
For the only goods to only chores example, assume that i is such that |πi| = 1
and ui(πi) = 0.5 and that j is such that |πj| = 3 and ui(o) = 0.5 for each
item in o ∈ πj. In this case, i envies j because ui(πi) = 0.5 < 1.5 = ui(πj).
However, if we move to the corresponding only chores instance, i will no
longer envy j because now ui(πi) = −0.5 ≥ −1.5 = ui(πj). This is because
the difference between ui(πj) and ui(πi) in the only goods case is smaller
than the difference between the sizes of πj and πi, hence subtracting 1 to the
utilities granted by the items in πj to i counterbalances the enviness. On the
other hand, if we consider the same example but reversed, i.e. from the only
chores to the only goods instance, we can observe how the enviness can be
created. As before, this increase in enviness is due to the difference in sizes
of the two bundles.

Thus, our intuition is that an instance with only chores will, in general,

86 6 Experiments

(a) LEF - min enviness item allocation (b) LPROP - min unproportional item allocation

Figure 6.9: Uniform utilities - trees

have more agents that do not envy other agents under an allocation which
maximizes utilitarian welfare, therefore the difference in the likelihood of
positive instances.

Another interesting phenomenon is the fact that assigning items in order to
minimize the unproportionality, i.e. the sum, for each agent, of the difference
between the utility granted by her allocated bundle and the average utility
of the whole set of items (averaged over the number of agents) for that same
agent, leads in general to worse results for local proportionality if compared
to those we obtained when minimizing enviness for local envy-freeness.
This is a direct consequence of the fact that if an item allocation is (global)
proportional, then it might happen that there is no position assignment
which is local proportional (recall Figure 2.1). Figure 6.9 shows this differ-
ence between LEF and LPROP, in particular in the first two columns (from
the left), where for LPROP no combination of values reaches a likelihood
of 1, unlike what happens in LEF where in the first two columns as soon as
there two or more items per agent the likelihood is 1.

6.2.5 Last remarks

Excluding random allocations, throughout most of the experiments we have
always seen a sharp increase when the number of items per agent was
larger than or equal to 2. In many cases the likelihood even increased up
to 1. An easy explanation for this phenomenon is the fact that as there are
more items, there are many more different ways of allocating them. Let
n be the number of agents: if there is only one item per agent then the
number of possible allocations is n!, while if there are two then they are

6.3 Effects of EF Agent-Types 87

n2n + ∑n−1
i=1 (−1)i(n

i)(n − i)2n. To give the reader a feeling for how much
these two values differ, if n = 4 then the number of possible assignments if
there is one item per agent is 24, whereas if there are two it is 40824. More
in general, if we have n agents and k items to assign (with k ≥ n obviously),
then the number of ways to assign the items (so that each agent gets assigned
at least one item) is:

nk +
n−1

∑
i=1

(−1)i
(

n
i

)
(n− i)k

Another parameter which also seems to be linked to an increase in the
likelihood of positive instances is the number of agents itself. The intuition
is essentially the same behind the items’ one. Moreover, a larger number of
agents allows for more diversified utilities.

6.3 Effects of EF Agent-Types

In this final section, we will explore how the number of EF agent-types
influences the likelihood of positive instances, amongst random ones, for
LEF. Clearly, if there is only one agent-type, every random instance will also
be a positive one, because every pair of agents will not envy each other as
they all have the same agent-type.

Another simple observation one can make is that, if there are only two
agent-types and the graph is strongly connected, then no (random) instance
can be a positive one, simply because somewhere two agents of different
type must be connected and at least one of the two types must envy the
other. This effect can clearly be seen in Figure 6.10.

As one can also observe the graphs with the highest likelihood are the
matchings. This can be explained by the fact that, as each vertex is connected
to only another one, the probability that a position assignment which is LEF
exists are higher because in these graphs each each agent will be connected
to only another one. Because of this, it is easier (compared to other families
of graphs) to arrange agents in such a way that they do not envy each other,
even if they are of not of the same type. Moreover, if each agent-type is such
that there is an even number of agents of that type, it follows that there is a
position assignment which is LEF, namely any of the ones such that agents
of the same type are connected.

Trees and lines follow immediately after in the classes with highest likeli-
hood, probably because of the fact that also in their case the number each
vertex is not connected to many other vertices (though not as few as in a
matching).

88 6 Experiments

Figure 6.10: EF agent-types experiments for all graph classes except regular
graphs.

On the other side of the spectrum, we have the Barabási-Albert graphs, in
which each vertex is connected to three other vertices (by how we have
generated the graphs). An interesting result one might notice is the fact that
binomials graph have a higher probability of generating a positive instance
compared to Barabási-Albert graphs, although in any graph we generate
there is an edge between two vertices with a probability of 1

2 , hence one can
expect each vertex to be connected to three or four other vertices on average.
We believe that in this case the presence of hubs (which we discussed in the
previous section) in Barabási-Albert graphs is amongst the main culprits of
this difference, together with the fact that it is also possible that binomial
graphs which are generated can be sparse, i.e. with few edges.

On the other hand, as one might expect, results for regular graphs are
extremely negative.

Like before, as soon as we consider only strongly connected graphs (degrees
larger than or equal to 4), if there are only two agent-types then no random
instance can be a positive one. One can notice that regular graphs which
degree is equal to 2 are those with the better results: this can be justified, yet
again, by the fact that they are those with fewer edges.

6.4 Summary

We have presented the results of our experiments, where we were able
to observe which parameters mostly influenced the likelihood of positive

6.4 Summary 89

Figure 6.11: EF agent-type results for regular graphs.

instances amongst random ones. The number of items per agent is probably
the one that mostly impacts the probability for each fairness criterion. If
we compare local envy-freeness and local proportionality, the latter is the
most probable one. On the other hand, local envy-freeness up to one item
has proved to be the criterion that is most probable to be satisfied when the
allocation is performed randomly.

Trees, lines and matchings are the graphs that have shown a higher likeli-
hood, whereas Barabási-Albert graphs and stars lie on the opposite side of
the spectrum. Regular graphs deserve a special mention as they were also
studied in Beynier et al. [2019]: we can confirm that for local envy-freeness
the higher the degree is and the lower the likelihood is. This also happens
for local proportionality, however the probability of positive instances is
much higher in this case and is always almost 1. Finally, for any of the
fairness criteria and graph class, the likelihood is not very high in case the
item allocation is done randomly.

We have also studied how the number of EF agent-types in the instance
affects this probability (for local envy-freeness). In general, an increase in
such number decreases the likelihood in stars, binomial graphs and Barabási-
Albert graphs, whereas in trees, lines and matchings the trend is not so clear
and the likelihood might increase or decrease as the number of agent-types
grows. Finally, regular graphs generally have a very low likelihood. This
is mainly due to the fact that all vertices in the graph will be connected to
many other ones, hence having more than one agent-type will, in most of
the cases, lead to worse results due to agent-types envying other types.

90

CHAPTER 7

CONCLUSION

We have presented a new direction in fair division in which the main task
to perform is to place agents on a social network in such a way that certain
fairness criteria are satisfied. Aside from placing the agents, we have also
considered the case in which the item allocation has to be done as well. Our
main goal was to study the (parameterized) computational complexity of
these problems and to try to understand how it changed based on two main
factors: the fairness criterion which was to be satisfied and the structure of
the underlying social graph.

In Chapters 3 through 5 we have given various results in complexity theory,
divided on the fairness criterion to satisfy. With respect to classical com-
plexity, local envy-freeness and local proportionality share the exact same
results in terms of tractability and intractability for each combination of the
problems and graph classes we have considered. On the other hand, local
envy-freeness up to one item differs, in classical complexity, from the other
two criteria just in case the item allocation has to be performed. This is be-
cause of Proposition 1, thanks to which it is always possible to find an LEF1
item allocation in polynomial time. In terms of parameterized complexity,
local envy-freeness and local envy-freeness up to one item behave in the
same way, while for local proportionality we were not able to prove all of
the results. In particular, we have been able to find some parameterizations
which grant positive results (e.g. Theorems 2 and 8) in case the underlying
social graph is a tree or a forest.

Tables 7.1, 7.2 and 7.3 present all the complexity results we have obtained
for, respectively, local envy-freeness, local envy-freeness up to one item and
local proportionality.

We have also performed some experiments which main objective was to
study how often positive instances arise in random ones. Here with “pos-
itive” instances we refer to those instances for which there is a position
assignment that satisfies the criterion we are interested in with the given

7.1 Future research 91

item allocation. For these experiments, we have used a variety of parame-
ters: the structure of the graph, the number of agents, the number of items
per agent, the fairness criterion to satisfy, the distribution from which the
agents’ utilities are drawn and the way the item allocation is performed. It
turns out that the parameter which contributes mostly to the increase in such
likelihood is the number of items per agent, except in case the item alloca-
tion is performed randomly. We have also studied how EF agent-types (see
Definition 21) affect this probability, and observed that in most of the cases
having more than one agent-type leads to a sharp decrease of the likelihood
that the instance is positive for local envy-freeness. Notice that, by how
we have performed this last kind of experiments, we can substitute local
envy-freeness with local envy-freeness up to one item, as the EF agent-types
can be substituted by the EF1 agent-types without changing nothing in the
experiments. This is because we generate randomly the relations between
agent-types in these experiments, and not the utilities.

7.1 Future research

We conclude the thesis by giving some directions for future research which
we think are promising or noteworthy to be mentioned.

We believe that parameterized complexity offers many directions to explore
in this field. For starters, we think that finding new (non-trivial) parameteri-
zations which treat also graphs that are not trees nor forests is definitely a
natural direction in which one can move. We feel optimistic with respect
to parameterized complexity because of the positive results which we were
able to achieve in our work and also of those that can be found in other
works (e.g. Eiben et al. [2020]).

Still with respect to parameterized complexity, a possible direction could be
to study how local proportionality affects the complexity of the problems we
have studied. As the reader might recall, we were not able to replicate most
of the parameterized results we achieved with respect to local envy-freeness
and local envy-freeness up to one item for local proportionality. In Section
5.4 we have proposed some ways to slightly modify notions we have used
in order to try to tackle this problem; another different way to address it
might be to define some different parameters specifically designed to be
used with local proportionality.

Another direction which we think would be interesting to explore is to
consider social graphs that are directed instead of undirected. If we see the
social graph as some kind of hierarchy in the company, using a directed
graph would reflect the fact that perhaps some employee high up in the
hierarchy has knowledge of employees below her, but those underneath her
do not have information about her. In this case it might also make sense

92 7 Conclusion

to start again from classical complexity and see if there are any differences
compared to undirected graphs. As an example of this kind of setting we
refer, as we did in Section 1.3, to Bredereck, Kaczmarczyk, and Niedermeier
[2018]. Out of the three criteria we have studied, in their work they have only
considered local envy-freeness (which they call “weak graph-envy-freeness”).
Thus, both local envy-freeness up to one item and local proportionality have
yet to be studied in this case.

Another natural continuation would be that of considering other fairness
criteria, like envy-freeness up to any item, a variant of envy-freeness up to
one item in which an agent does not envy up to any item another one if and
only if, by removing any item in the union of their bundles, she does not
envy her given the new bundles. Inspired by works like Aziz, Caragiannis,
et al. [2019] and Plaut and Roughgarden [2020], it could also be interesting
to study combinations of fairness and efficiency criteria, where an example
of an efficiency criteria is Pareto efficiency. Finally, one could also consider
group criteria, where the intuition behind this is that this can model the
interaction between groups inside a company.

93

E-LEF-P F-LEF-P E-LEF-D F-LEF-D Parameters

Stars
Prop. 2

P
Prop. 2

P
Cor. 1

NP-c
Cor. 1

≥ NP-h
-

Lines
Prop. 3

NP-c
Prop. 3

≥ NP-h
Cor. 1

NP-c
Cor. 1

≥ NP-h
-

Strongly conn.
Prop. 3

NP-c
Prop. 3

≥ NP-h
Thm. 1

NP-c
Thm. 1

≥ NP-h
-

Matchings
Prop. 4

P
Prop. 4

P
Prop. 5

NP-c
Prop. 5

≥ NP-h
-

Trees
Thm. 2

FPT
Thm. 2

FPT - -
and EF agent-types

Number of vertex-types

Forests
Thm. 3

FPT
Thm. 3

FPT - -
and EF agent-types

Number of vertex-types

Cor. 2

para-NP-h
Cor. 2

≥ para-NP-h - - Number of vertex-types

tw = O(1)
Prop. 6

FPT
Prop. 6

≥ FPT - -
vertices

Number of non-isolated

tw 6= O(1)
Thm. 5

W[1]-h
Thm. 5

≥W[1]-h - -
vertices

Number of non-isolated

Table 7.1: Summary of results for local envy-freeness. “E”, “F”, “P” and “D” respectively stand for “EXISTS”,
“FIND”, “POSITION-ASSIGNMENT” and “DISTRIBUTION”, while “h” and “c” respectively abbreviate “hard” and
“complete”. With tw = O(1) (6= O(1)) we denote the class of graphs with a constant (non-constant) treewidth (see
Definition 19). A ≥ indicates that there is no exact result, but that the problem’s complexity is at least the one after
the ≥.

E-LEF1-P F-LEF1-P E-LEF1-D F-LEF1-D Parameters

Stars
Prop. 7

P
Prop. 7

P
Cor. 3

P
Cor. 3

P
-

Lines
Prop. 8

NP-c
Prop. 8

≥ NP-h
Cor. 3

P
Cor. 3

P
-

Strongly conn.
Prop. 8

NP-c
Prop. 8

≥ NP-h
Cor. 3

P
Cor. 3

P
-

Matchings
Prop. 9

P
Prop. 9

P
Cor. 3

P
Cor. 3

P
-

Trees
Thm. 8

FPT
Thm. 8

FPT
Cor. 3

P
Cor. 3

P
and EF1 agent-types

Number of vertex-types

Forests
Thm. 9

FPT
Thm. 9

FPT
Cor. 3

P
Cor. 3

P
and EF1 agent-types

Number of vertex-types

Cor. 4

para-NP-h
Cor. 4

≥ para-NP-h - - Number of vertex-types

tw = O(1)
Prop. 10

FPT
Prop. 10

≥ FPT
Cor. 3

P
Cor. 3

P
vertices

Number of non-isolated

tw 6= O(1)
Thm. 11

W[1]-h
Thm. 11

≥W[1]-h
Cor. 3

P
Cor. 3

P
vertices

Number of non-isolated

Table 7.2: Summary of results for local envy-freeness up to one item. We use the same notation as in Table 7.1.

94 7 Conclusion

E-LPROP-P F-LPROP-P E-LPROP-D F-LPROP-D Parameters

Stars
Prop. 11

P
Prop. 11

P
Cor. 5

NP-c
Cor. 5

≥ NP-h
-

Lines
Prop. 12

NP-c
Prop. 12

≥ NP-h
Cor. 5

NP-c
Cor. 5

≥ NP-h
-

Strongly conn.
Prop. 12

NP-c
Prop. 12

≥ NP-h
Thm. 12

NP-c
Thm. 12

≥ NP-h
-

Matchings
Prop. 13

P
Prop. 13

P
Prop. 14

NP-c
Prop. 14

≥ NP-h
-

Trees - - - - -

Forests
Cor. 6

para-NP-h
Cor. 6

≥ para-NP-h - - Number of vertex-types

tw = O(1) - - - - -
tw 6= O(1) - - - - -

Table 7.3: Summary of results for local proportionality. We use the same notation as in Table 7.1.

95

References

[1] Rediet Abebe, Jon Kleinberg, and David C. Parkes. “Fair Division
via Social Comparison”. In: Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS 2017). 2017, pp. 281–
289.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. “Color-Coding”. In:
Journal of the ACM 42.4 (1995), pp. 844–856.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[4] Haris Aziz. “Developments in Multi-Agent Fair Allocation”. In:
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI
2020). 2020, pp. 13563–13568.

[5] Haris Aziz, Sylvain Bouveret, Ioannis Caragiannis, Ira Giagkousi, and
Jérôme Lang. “Knowledge, Fairness, and Social Constraints”. In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI
2018). 2018, pp. 4638–4645.

[6] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh.
“Fair Allocation of Indivisible Goods and Chores”. In: Proceedings
of the 28th International Joint Conference on Artificial Intelligence (IJCAI
2019). 2019, pp. 53–59.

[7] Haris Aziz and Simon Rey. “Almost Group Envy-free Allocation of
Indivisible Goods and Chores”. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI 2020). 2020, pp. 39–45.

[8] Albert-László Barabási and Réka Albert. “Emergence of Scaling in
Random Networks”. In: Science 286.5439 (1999), pp. 509–512.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish.
“Finding Fair and Efficient Allocations”. In: Proceedings of the 2018
ACM Conference on Economics and Computation (EC 2018). 2018, pp. 557–
574.

[10] Xiaohui Bei, Ayumi Igarashi, Xinhang Lu, and Warut Suksompong.
The Price of Connectivity in Fair Division. 2019. arXiv: 1908.05433

[cs.GT].
[11] Xiaohui Bei, Youming Qiao, and Shengyu Zhang. “Networked Fair-

ness in Cake Cutting”. In: Proceedings of the 26th International Joint

https://arxiv.org/abs/1908.05433
https://arxiv.org/abs/1908.05433

96 References

Conference on Artificial Intelligence (IJCAI 2017). 2017, pp. 3632–3638.
[12] Matthias Bentert, Jiehua Chen, Vincent Froese, and Gerhard J. Woegin-

ger. Good Things Come to Those Who Swap Objects on Paths. 2019. arXiv:
1905.04219 [cs.DS].

[13] Aurélie Beynier, Yann Chevaleyre, Laurent Gourvès, Ararat Harutyun-
yan, Julien Lesca, Nicolas Maudet, and Anaëlle Wilczynski. “Local
Envy-Freeness in House Allocation Problems”. In: Autonomous Agents
and Multi-Agent Systems 33.5 (2019), pp. 591–627.

[14] Hans L. Bodlaender. “Treewidth: Characterizations, Applications,
and Computations”. In: Graph-Theoretic Concepts in Computer Science.
Ed. by Fedor V. Fomin. Springer-Verlag Berlin Heidelberg, 2006, pp. 1–
14.

[15] Sylvain Bouveret, Katarı́na Cechlárová, Edith Elkind, Ayumi Igarashi,
and Dominik Peters. “Fair Division of a Graph”. In: Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI 2017).
2017, pp. 135–141.

[16] Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet. “Fair Alloca-
tion of Indivisible Goods”. In: Handbook of Computational Social Choice.
Ed. by Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang,
and Ariel D. Procaccia. Cambridge University Press, 2016. Chap. 12,
pp. 284–310.

[17] Sylvain Bouveret and Michel Lemaı̂tre. “Characterizing conflicts
in fair division of indivisible goods using a scale of criteria”. In:
Autonomous Agents and Multi-Agent Systems 30.2 (2016), pp. 259–290.

[18] Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting
to Dispute Resolution. Cambridge University Press, 1996.

[19] Robert Bredereck, Andrzej Kaczmarczyk, and Rolf Niedermeier.
“Envy-Free Allocations Respecting Social Networks”. In: Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2018). 2018, pp. 283–291.

[20] Eric Budish. “The Combinatorial Assignment Problem: Approximate
Competitive Equilibrium from Equal Incomes”. In: Journal of Political
Economy 119.6 (2011), pp. 1061–1103.

[21] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Pro-
caccia, Nisarg Shah, and Junxing Wang. “The Unreasonable Fairness
of Maximum Nash Welfare”. In: ACM Transactions on Economics and
Computations 7.3 (2019).

[22] Yann Chevaleyre, Ulle Endriss, Sylvia Estivie, and Nicolas Maudet.
“Reaching Envy-Free States in Distributed Negotiation Settings”. In:
Proceedings of the 20th International Joint Conference on Artifical Intelli-
gence (IJCAI 2007). 2007, pp. 1239–1244.

[23] Yann Chevaleyre, Ulle Endriss, and Nicolas Maudet. “Allocating
Goods on a Graph to Eliminate Envy”. In: Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2007). 2007, pp. 700–

https://arxiv.org/abs/1905.04219

References 97

705.
[24] Rod G. Downey and Michael R. Fellows. “Fixed-parameter tractabil-

ity and completeness II: On completeness for W[1]”. In: Theoretical
Computer Science 141.1-2 (1995), pp. 109–131.

[25] Eduard Eiben, Robert Ganian, Thekla Hamm, and Sebastian Ordyniak.
“Parameterized Complexity of Envy-Free Resource Allocation in Social
Networks”. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI 2020). 2020, pp. 7135–7142.

[26] Paul Erdős and Alfred Rényi. “On random graphs I.”. In: Publicationes
Mathematicae 6 (1959), pp. 290–297.

[27] Leon Festinger. “A Theory of Social Comparison Processes”. In:
Human Relations 7.2 (1954), pp. 117–140.

[28] Jörg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer-Verlag Berlin Heidelberg, 2006.

[29] Duncan K. Foley. “Resource allocation and the public sector”. In: Yale
economic essays 7.1 (1967), pp. 45–98.

[30] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[31] Edgar N. Gilbert. “Random Graphs”. In: The Annals of Mathematical
Statistics 30.4 (1959), pp. 1141–1144.

[32] Paul W. Goldberg, Alexandros Hollender, and Warut Suksompong.
“Contiguous Cake Cutting: Hardness Results and Approximation
Algorithms”. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI 2020). 2020, pp. 1990–1997.

[33] Teofilo F. Gonzalez. “Clustering to minimize the maximum interclus-
ter distance”. In: Theoretical Computer Science (1985), pp. 293–306.

[34] Laurent Gourvès, Julien Lesca, and Anaëlle Wilczynski. “Object Al-
location via Swaps along a Social Network”. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI
2017). 2017, pp. 213–219.

[35] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring
Network Structure, Dynamics, and Function using NetworkX”. in:
Proceedings of the 7th Python in Science Conference (SciPy 2008). 2008,
pp. 11–15.

[36] Sen Huang and Mingyu Xiao. “Object Reachability via Swaps along a
Line”. In: Proceedings of the 33rd AAAI Conference on Artificial Intelli-
gence (AAAI 2019). 2019, pp. 2037–2044.

[37] Ayumi Igarashi and Dominik Peters. “Pareto-Optimal Allocation of
Indivisible Goods with Connectivity Constraints”. In: Proceedings of
the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019). 2019,
pp. 2045–2052.

[38] Jérôme Lang. “Fair Division of Indivisible Goods”. In: Economics and
Computation: An Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division. Ed. by Jörg Rothe. Springer-Verlag

98 References

Berlin Heidelberg, 2016. Chap. 8, pp. 493–550.
[39] Hendrik W. Lenstra. “Integer Programming with a Fixed Number of

Variables”. In: Mathematics of Operations Research 8.4 (1983), pp. 538–
548.

[40] Claudia Lindner. “Cake-Cutting: Fair Division of Divisible Goods”.
In: Economics and Computation: An Introduction to Algorithmic Game
Theory, Computational Social Choice, and Fair Division. Ed. by Jörg Rothe.
Springer-Verlag Berlin Heidelberg, 2016. Chap. 7, pp. 395–491.

[41] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin
Saberi. “On Approximately Fair Allocations of Indivisible Goods”. In:
Proceedings of the 5th ACM Conference on Electronic Commerce (EC 2004).
2004, pp. 125–131.

[42] Zbigniew Lonc and Miroslaw Truszczynski. “Maximin Share Alloca-
tions on Cycles”. In: Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI 2018). 2018, pp. 410–416.

[43] Haider Maqsood, Aamir Alamzeb, Abdul H. Abu-Bakr, and Hashim
Muhammad. “A literature Analysis on the Importance of Non-
Financial Rewards for Employees’ Job Satisfaction”. In: Abasyn Uni-
versity Journal of Social Sciences 8 (2015), pp. 341–354.

[44] Evangelos Markakis. “Approximation algorithms and hardness re-
sults for fair division with indivisible goods.” In: Trends in Computa-
tional Social Choice. Ed. by Ulle Endriss. AI Access, 2017. Chap. 12,
pp. 231–247.

[45] Silvio Micali and Vijay V. Vazirani. “An O(
√
|V||E|) algorithm for

finding maximum matching in general graphs”. In: Proceedings of the
21st Annual Symposium on Foundations of Computer Science (SFCS 1980).
1980, pp. 17–27.

[46] Hervé Moulin. Fair Division and Collective Welfare. MIT Press, 2003.
[47] Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg

Rothe. “Computational complexity and approximability of social wel-
fare optimization in multiagent resource allocation”. In: Autonomous
Agents and Multi-Agent Systems 28.2 (2014), pp. 256–289.

[48] Benjamin Plaut and Tim Roughgarden. “Almost Envy-Freeness with
General Valuations”. In: SIAM Journal on Discrete Mathematics 34.2
(2020), pp. 1039–1068.

[49] Ariel D. Procaccia. “Cake Cutting: Not Just Child’s Play”. In: Commu-
nications of the ACM 56.7 (2013), pp. 78–87.

[50] Ariel D. Procaccia. “Cake Cutting Algorithms”. In: Handbook of
Computational Social Choice. Ed. by Felix Brandt, Vincent Conitzer, Ulle
Endriss, Jérôme Lang, and Ariel D. Procaccia. Cambridge University
Press, 2016. Chap. 13, pp. 311–330.

[51] Jack M. Robertson and William Webb. Cake-cutting algorithms - be fair
if you can. Taylor & Francis, 1998.

[52] Hugo Steinhaus. “The problem of fair division”. In: Econometrica 16.1

References 99

(1948), pp. 101–104.
[53] William Thomson. “Introduction to the Theory of Fair Allocation”. In:

Handbook of Computational Social Choice. Ed. by Felix Brandt, Vincent
Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia. Cam-
bridge University Press, 2016. Chap. 11, pp. 261–283.

[54] Toby Walsh. “Fair Division: The Computer Scientist’s Perspective”.
In: Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI 2020). 2020, pp. 4966–4972.

[55] Michael Waskom and the seaborn development team.
mwaskom/seaborn. Sept. 2020. URL: https://doi.org/10.5281/

zenodo.592845.

https://doi.org/10.5281/zenodo.592845
https://doi.org/10.5281/zenodo.592845

	Introduction
	Our Contribution
	Thesis overview
	Related work

	Preliminaries
	Fair Division
	Computational Complexity
	Classical Complexity
	Parameterized Complexity

	Complexity of LEF Assignments
	Lines and Stars
	Strongly Connected Graphs
	Matchings
	Trees
	Forests
	(Definitely-Non-)Quasi-Trees
	Summary

	Complexity of LEF1 Assignments
	Lines, Stars and Strongly Connected Graphs
	Matchings
	Trees
	Forests
	(Definitely-Non-)Quasi-Trees
	Summary

	Complexity of LPROP Assignments
	Lines and Stars
	Strongly Connected Graphs
	Matchings
	Trees, Forests and (Definitely-Non-)Quasi-Trees
	Summary

	Experiments
	Setting of the experiments
	Likelihood of Positive Instances
	LEF and LPROP
	Random item allocations
	Regular graphs
	Curious phenomena
	Last remarks

	Effects of EF Agent-Types
	Summary

	Conclusion
	Future research

	References

