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Abstract. Quantitative linguistics is a large and rich field in the study of language that
has brought about or played an essential role in debates such as those around Zipf’s
law or the learnability of language. Using these two topics and their intersection as a
case study, we identify in this thesis a fundamental problem of statistical methodol-
ogy that seems pervasive in quantitative linguistic practice. In essence, the problem
can be summarised as a common negligence of the distinction between observed sam-
ples of language, that is corpora, and their source distribution, that is the underlying
language.

In the first part, we re-derive how upholding the sample-source distinction natu-
rally leads to the problem of statistical estimation and propose and show how to use
standard resampling methods to obtain representative and reliable estimates, partic-
ularly given the scarcity of resources in linguistics. We use this method to obtain the
most reliable estimates of Zipf’s law to date and highlight the importance and poten-
tial of proper estimation by analysing some of the estimates’ properties.

The second contribution consists of the Filtering method, an novel and general
adaptation of resampling methods grounded in information theory. This method
is intended to facilitate realistic large-scale learnability analyses of the distributional
properties of language, in our case of Zipf’s law. We derive the Filtering method itself
starting again from the sample-source distinction and instantiate it in two exemplary
implementations. Subsequently, we validate its usefulness by analysing the sampled
corpora in terms of the sampling objectives and the corpora’s naturalness and diver-
sity. Given that these objectives seek to weaken Zipf’s law, and that this is a difficult
objective to achieve, we find relatively high naturalness and diversity of the resulting
corpora.

Finally, and bringing the resampling and Filtering method together, we make a pro-
posal for empirically assessing recent advancements in the innateness debate, which
analyse the learnability of language via Kolmogorov complexity. The high degree of
abstraction makes it difficult to directly evaluate the proposed learning strategies but
with the help of resampling and Filtering, and the sample-source distinction more
generally, we make a concrete proposal at how this may in fact be achieved.
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1 Introduction

This thesis, being located at the intersection of quantitative linguistics and computa-
tional cognitive science, is not concerned with computational models or formal theo-
ries, unlike most work in these fields. It consists merely and entirely of methodology,
remarks about methodological practice and recommendations for the use of both new
and existing methods. Without being too humble, all of this methodology is basic,
fundamental even, and that is in fact the point of this thesis.

It is our explicit choice to not introduce further competing theories to fields in
which the sheer plethora of these seems to have lead to contentious and seemingly ir-
reconcilable debates (cf. for instance the debates around Zipf’s law, the debate about
the acquisition of language, the divide between formal and distributional semantics,
etc.). Instead, in our opinion, more work should be directed at disentangling and
resolving the existing debates rather than cluttering them even further.

Worse yet, as we elucidate in this thesis, there are serious issues in the empirical
practice of quantitative linguistics and in the design of analyses of statistical language
acquisition. These issues make the debates all the more difficult to resolve since they
skew and compromise conclusions drawn from observations and to us make it all the
more preferable to focus on methodology instead.

The common theme of the issues, we realise, is negligence or obliviousness to basic
statistical concepts, the most fundamental being what we will call the sample-source
distinction. Whereas the former, a corpus in the context of linguistics, is observable,
the latter, a language, is not and therefore a purely theoretical. Researchers across
the language-related fields generally seem to disregard this distinction in their empir-
ical practice and research design and instead seem to equate corpora and language,
directly drawing inferences from the former to the latter.

In this thesis, we show that much can be gained from taking the sample-source
distinction seriously. On the one hand, it immediately leads to the statistical field of
estimation which in turn helps eradicate erroneous and yield reliable empirical obser-
vations. These have the power to resolve parts of the very debates about them. On
the other hand, a rigorous sample-source distinction suggests and enables new and
highly interesting methods in the computational study of language. These can in par-
ticular be used for more realistic and detailed analyses of the learnability of language
and thus facilitate new conclusions in language acquisition research.
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(a) Different values ofα. (b) Different values ofβ.

Figure 1.1 Illustration of Zipf’s law across different values of the parameters α and β. The left plot shows
different values of α, with β fixed to 1.0; values were chosen to be in same range as the value we find in
natural languages, see Table 2.2. In the right plot, we see different values of β, also chosen to reflect the
values in human languages, whileα is fixed to 1.01. Notice the log-log scale in both plots.

1.1 Zipf’s law

In order to show these advantages of studying methodology, we focus on Zipf’s law,
the most prominent and well-studied law of quantitative linguistics. Its role in this
thesis is that it provides a case study, a prototype in terms of which we can describe
and develop our methodological inventions. These, together with the broader stance
we are arguing for, go however far beyond Zipf’s law and cover all of quantitative
linguistics.

Definition

A central element of Zipf’s law is the vocabulary of a language, the set of its unique
words, denoted Σ. We adopt standard terminology and refer to the elements of Σ as
(word) types and to the occurrences of types in corpora as tokens. Following empiri-
cal evidence of (Blevins, Milin, and Ramscar 2017), we make the important assump-
tion that Σ is unbounded, i.e. it does not have finite cardinality (formally, there does
not exist an integer n s.t. |Σ| ≤ n). We emphasise that this perhaps controversial as-
sumption (although others make it too, e.g. Corominas-Murtra and Solé 2010 or P. M.
Vitányi and Chater 2017) has important consequences for the discussions and statis-
tical methods later. Our main reason to assume an unbounded vocabulary is that it
leads to a higher degree of generality in our discussions and makes some of the results
below less trivial.

Zipf’s law describes the distribution over the vocabulary, that is the probability
P (w) for each w ∈ Σ. Since a word is only ever observed in a context, c, the dis-
tribution over the vocabulary can also be seen as the marginal distribution P (w) =
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∑
c P (c)P (w|c) and so Zipf’s law equivalently describes this marginal. Zipf’s law (see

Zipf 1949 and Piantadosi 2014) itself is the observation that P (w) is well-described by

Pα(w) =
r(w)−α

ζ(α)
.

Here, α is the law’s parameter, and typically found to be close to 1. r is the ranking
function, it assigns to each w its probability rank, i.e. is the most probable word has
rank 1, and so on. And finally, ζ(α) =

∑∞
i=1 i

−α is the Riemann zeta function.
Notice that because of the dependence on r, Zipf’s law describes the distribution

over words in terms of the relationship between ranks and probabilities of words, the
rank-probability relationship, which will be important throughout this thesis. Further,
the rank-probability relationship according to Zipf’s law is log-linear, i.e. logPα(w) =
−α log r(w) − log(ζ(α)). Both of these facts are important in understanding the com-
mon way of plotting of Zipf’s law such as in Figure 1.1: log Pα(w) is plotted against
log r(w), showing the predicted relationship between ranks and probabilities of the
words inΣ, and the relationship is linear in log-log space. In Figure 1.1a, we have plot-
ted Zipf’s law at different values of its parameter α and clearly, Zipf’s law increases in
steepness for larger α

Following (Piantadosi 2014), we use Mandelbrot’s generalisation of Zipf’s law
(Mandelbrot 1953). Although we will use the Mandelbrot generalisation throughout
this thesis but keep referring to it as Zipf’s law. Based on the observation that Zipf’s
law tends to overestimate the probabilities of the most common types, Mandelbrot
introduced a parameter β to correct for this:

Pα,β(w) =
(r(w) + β)−α

ζ(α, β)
,

where ζ(α, β) =
∑∞

i=1(i + β)−α is the Hurwitz zeta function. Notice, that the ad-
ditional parameter β simply shifts the ranks and thereby decreases the probability of
the types with the lowest ranks. Notice also that as the ranks of types grow, the in-
fluence of β vanishes. These effects can be seen in Figure 1.1b, where we have plotted
Pα,β(w) for some values of β: Only the head of the distribution, i.e. the lowest ranks,
is affected and there, probabilities are lower for higher values of β.

So much for the definition of Zipf’s law itself and its mathematical properties. The
real interest in Zipf’s law lies of course in connecting it to linguistic data, that is cor-
pora. Since this is full of subtleties, some of which are the central points of this thesis,
we introduce this properly and in great detail in Section 2.2.
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Learnability of Zipf’s Law

Situated at the intersection of quantitative linguistics and learnability of language, the
learnability of Zipf’s law is at the core of the topics in this thesis. Despite extensive
efforts to uncover the origins and precise nature of Zipf’s law in language, very little
attention has so far been directed at the law’s effect on language. Hence, research on
the effects of Zipf’s on language acquisition is a young and emerging field (Kurumada,
Meylan, and Frank 2013) and indeed there are to date only two studies which address
these effects directly.

The first, (Kurumada, Meylan, and Frank 2013), provides an experimental study
in conjunction with an artificial language learning paradigm to contrast human word
segmentation performance in contexts with uniform word distributions and contexts
with Zipfian word distributions. They find that performance is either the same or
higher across trials when the word distribution is Zipf’s law versus a uniform distri-
bution. Specifically, performance on unknown words is improved, which leads them
to hypothesise a ”scaffolding effect” of Zipf’s law: The very high-frequency words,
which Zipf’s law gives rise to, serve as anchors for segmentation by surrounding low-
frequency and unknown words.

The second study (Hendrickson and Perfors 2019) uses the same experimental
paradigm to investigate how Zipf’s law affects cross-situational learning of word-meaning
pairs. Again contrasting uniform with Zipfian word distributions, they find that hu-
man participants achieve higher performance in the context of Zipfian distributions.
As they note, this finding is in direct contrast to two computational studies on the
same subject, (Blythe, K. Smith, and A. D. Smith 2010) and (Vogt 2012). Both com-
putational experiments found that Zipf’s law leads to a degree of sparsity in the low-
frequency words which makes it difficult to disambiguate their meanings and thus
hampers learning. Without questioning this finding, (Hendrickson and Perfors 2019)
identify memory constraints as a potential reason why human performance is height-
ened, not lowered, by Zipf’s law.

Similar to the two computational studies, (Blevins, Milin, and Ramscar 2017) raise
the problem of sparsity induced by Zipf’s law for the acquisition of morphological
inflections classes. Substantiating the enormous degree of sparsity, the observe that,
as one increases corpus size, the number of low-frequency words grows at an, impor-
tantly, ever-growing rate. This implies that, increasing corpus size does not remedy
the problem of sparsity but only increases it, a result of Zipf’s law. From this growth-
behaviour, they extrapolate that a learner cannot exhaust inflectional classes which
therefore must provide a high degree of regularity to allow the learner to generalise.

Taken together, the initial research on the effects of Zipf’s law on language acquisi-
tion does not unambiguously point in either direction. At least on the two investigated
task domains, humans seem to benefit from a Zipfian word distribution, and espe-
cially in the case of (Hendrickson and Perfors 2019), this benefit seems to be specific
to human memory constraints. On the other hand, it is still unclear how the raised
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concerns of sparsity affects learnability of Zipfian word distributions on the whole.

Relevance and Proposed Explanations

As both (Kurumada, Meylan, and Frank 2013) and (Hendrickson and Perfors 2019)
have noted, their studies on learnability of Zipf’s law are not only the first to study its
effects on learnability but actually the first to study the law’s effects on language at
all. This is remarkable given the great relevance of Zipf’s law in linguistics and other
fields, which have attracted a multitude of attempts at explaining it.

Within linguistics, the relevance of Zipf’s law arguably stems from what it is about,
namely the distribution over the vocabulary, P (w). On the one hand, P (w) can be seen
as the distribution over the morphological system of a language (cf. Blevins, Milin,
and Ramscar 2017). On the other, P (w) is the distribution over unigrams, i.e. single-
word phrases. In this way, P (w) and by extension Zipf’s law is the connection between
morphology and syntax and a gateway to the combinatorial structure of language. It
seems uncontroversial that the combinatorial complexity of language is immense and
so it is deeply puzzling that P (w) should follow, if only approximately, a law as simple
as Zipf’s.

Even adding to this puzzle, Zipf’s law has been observed in other, sometimes sim-
ilarly complex systems, human and natural alike. It has been found in areas of eco-
nomics, such as income distributions and company sizes (Farmer and Geanakoplos
2008). As extensively discussed in human geography (Arshad, Hu, and Ashraf 2018),
Zipf’s law governs the distribution over city sizes in a given country and it is com-
monly encountered in social networks and other aspects of the internet (Adamic and
Huberman 2002). Even in biology, where it is observed in the number of species of
taxa (Willis and Yule 1922), in geology, for instance in earthquake size (Gutenberg
and Richter 1944), and in astrophysics, such as the distribution over solar flares (Lu
and Hamilton 1991), Zipf’s law is a familiar phenomenon. The extent of Zipf’s law
suggests that there may be shared properties underlying all these systems, including
language, which give rise to the law. This adds to the puzzle because it additionally
brings into question which characteristics might make language similar to other sys-
tems in the anthroposphere and in nature and if so why such connection should exist.

Since it seems so immediately clear that the existence of Zipf’s law in language
and its persistence across areas point towards deep characteristics of language, much
and in fact most research on Zipf’s law has been devoted to deriving it. The sheer
amount of the resulting theories has resulted in a long and yet unresolved debate. As
(Piantadosi 2014) this is because Zipf’s law can indeed be derived from a multitude
of different – and often mutually inconsistent – assumptions. We list here only a few
those theories in terms of language, see (Piantadosi 2014) for an extensive summary
and review.

Several studies have attempted to show that the existence of Zipf’s law is uninter-
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(a) Commonly used method (b) Piantadosi’s method

Figure 1.2 Rank-frequency relationship in Korean, obtained in (a) from the commonly used method and in
(b) from the method proposed by Piantadosi (Piantadosi 2014). Notice that these plots show the frequen-
cies rather than the probabilities of words; these are equivalent in empirical contexts, see Section 2.2 for a
detailed discussion.

esting because it even arises in randomly typed texts. This view has, however, been
challenged on the ground that texts of natural language are not the outcome of ran-
dom typing (a discussion can be found in (Ferrer-i-Cancho and Elvevåg 2010)). To a
similar conclusion that Zipf’s law in language is trivial, (Corominas-Murtra and Solé
2010) have provided a proof according to which Zipf’s law may be the only solution
for the distribution over the vocabulary of language. The condition for the proof is
that the vocabulary expands without bounds over time and the complexity of the lan-
guage itself stays finite and above 0.

Some accounts of Zipf’s law in language have connected it to semantics: For in-
stance, (Manin 2008) manages to reproduce the law by a trade-off between semantic
coverage and amount of synonymity in the vocabulary. (Lestrade 2017), on the other
hand, shows that Zipf’s law arises from an interaction between the sizes of part-of-
speech classes and the degrees of vagueness of the word in them. Finally, and fa-
mously the theory proposed by Zipf himself (Zipf 1949), is the principle of least ef-
fort. In is modern version (Ferrer i Cancho and Solé 2003), this theory predicts Zipf’s
law from a trade-off in effort between speakers and listeners. Loosely, listeners would
prefer a single word in the vocabulary, whereas speakers would prefer a maximally
rich vocabulary, and Zipf’s law optimises this trade-off.

A Methodological Problem and Piantadosi’s Remedy

In this thesis, we explicitly set all issues of explanation and extent of Zipf’s law aside
and focus on methodology instead. Our starting point is an excellent review of Zipf’s
law by Piantadosi (Piantadosi 2014), in which he noticed a fundamental problem in

14



how researchers commonly extract the empirical relationship between the rank and
probabilities of words from corpora: Given a corpus of n tokens, Cn, one counts the
tokens to establish P (w) for each word type w. Then, one orders all w according to
P (w) in descending order and assigns the rank r(w) = i if w is the i-th most probable
word. Piantadosi argues that this leads to ”spurious regularity” as r(w) is negatively
correlated to P (w) by force when obtained this way. Moreover, it does not allow r(w)
to vary with respect to P (w) because it is just a deterministic function of the latter. For
reference, we have plotted the rank-probability relationship as obtained from this, the
common method, in Figure 1.2a. Notice that it describes a single line which is precisely
the lack of variance we mean. Moreover, as Piantadosi has remarks, even though this
line has some deviation from a straight line, this deviation is uninterpretable because
it might just be an artefact of the extraction method.

Based on the request that r(w) and P (w) should be obtained independently, Pi-
antadosi proposes a simple fix: One splits the given corpus Cn in half by randomly
assigning its tokens to subcorpora Cn/2

1 and C
n/2
2 . After that, one computes r(w) and

P (w) as before, but now r(w) fromC
n/2
1 and (w) fromC

n/2
2 . (Notice that one still needs

to compute P (w) from C
n/2
1 in order to establish r(w) but this is simply discarded.)

According to Piantadosi, this allows for variance between r(w) and P (w) and the cor-
relation we find between the two is no longer prescribed by the method of obtaining
them. Instead, so Piantadosi, the correlation we do find will be genuine and amenable
to interpretation.

The relationship between ranks and probabilities as obtained by Piantadosi’s method
is plotted in Figure 1.2b. While the heads of the two plots in Figure 1.2 are very sim-
ilar, the clear difference lies in their tails. The improved method of Piantadosi allows
the relationship to deviate from a single line and this is most prominent in the low-
frequency word types for which there is high uncertainty about the precise values of
r(w) and P (w).

1.2 This Thesis

The Sample-Source Distinction and Subsampling

The first half of this thesis is in fact instigated by Piantadosi’s observation that the
common methodology to obtain the rank-probability relationship from data is seri-
ously flawed. However, in Chapter 3, we describe why and how even Piantadosi’s
solution falls short of providing an actual solution. We arrive at this conclusion by
first re-assessing the aim of quantitative linguistics in general. Subsequently, we re-
alise that the commonly used, erroneous methodology stems from being oblivious to
an essential dichotomy in statistics: the distinction between an observed sample and
the theoretical source the sample was drawn from, or the sample-source distinction
as we call it.
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By extension, the methodological problem in the literature also entails negligence
to the problem of estimation, namely that observations are subject to random fluctua-
tions so that inferences from them about the source cannot be made directly. Realising
this, we can simply draw from the established estimation methods from statistics and
concretely we re-derive and advocate the use of the Subsampling method.

The majority of Chapter 3 is spent on analysing the estimates obtained by the Sub-
sampling method, thereby setting examples of how they can enrich the empirical re-
search on Zipf’s law. We close the chapter by generalising the use of the Subsampling
method beyond Zipf’s law and to other laws of quantitative linguistics with the exam-
ple of Heap’s law. Moreover, since our estimates are arguably the most reliable to date,
we re-assess the degree to which language actually conforms to Zipf’s law, already in
the second half of Chapter 2.

The Filtering Method

Moving on to learnability analyses, the second main topic of this thesis, in Chapter 4
we begin again by clarifying methodological issues in the previous literature. We no-
tice once more that the sample-source distinction is disregarded which leads to invalid
alternatives to Zipf’s law in the comparative approach to learnability.

Based on the insight which distributions constitute relevant alternatives to Zipf’s
law in the context of human language, we develop the Filtering method, a novel method
for automatically generating data based on the information-theoretic concept of typi-
cality of a corpus with respect to a given distribution. For the particular case of Zipf’s
law, we describe implementations of two sampling algorithms which instantiate the
Filtering method. These special sampling algorithms are required, as we discuss, be-
cause of the so-called asymptotic equipartition property, a version of the law of large
numbers from information theory.

Because these sampling algorithms have unknown and complex sampling behaviours,
we devote the remainder of Chapter to analysing the samples generated by the two
filtering algorithms. With these analyses we assess the usefulness of the Filtering
method for future research and argue for its success.

Subsampling and Filtering for Learnability Assessments

We briefly return to the original goal of the Filtering method at the end of Chapter 4
and describe how it can be used to facilitate computational learnability studies more
realistic and more detailed than those in the previous literature. To generalise this use
even further, in the conclusions (Chapter 4) we make our final contribution by de-
tailing how the Subsampling method in connection with the Filtering method can be
applied to the debate on general language acquisition. In order to to so, we introduce
the innateness debate and summarise recent exciting theoretical work which provides
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formal proofs that innate constraint a not a priori necessary for language acquisition.
Since they rely on the theoretical concept of Kolmogorov complexity, these proofs are
not easily connected to empirical evaluation but, with the help of the Subsampling
and Filtering methods, we propose a way to do so. Owing to the weight of the un-
derlying debate and the level of abstraction of the used formal tools, the design the
of computational experiments we devise is an apt example of the full potential of the
Subsampling and of the Filtering method.

We begin now begin by describing the prerequisite of any empirical study, namely
the data we use throughout this thesis.
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2 Data & Basic Statistics

The most essential ingredient to empirical research is data. In this Chapter, we lay
out and justify our choice of data and describe the pre-processing from raw material
into a corpus of language which can be analysed by computational methods. We then
ease into the empirical parts of this thesis by showing how to go from the empirical
data to Zipf’s law and how Zipf’s law manifests itself in our specific data set. In the
same manner, we describe vocabulary growth as another empirical observation of in-
terest and introduce Heap’s law which predicts it. In this way, the current chapter sets
the stage for Chapters 3 and 4 in which we develop new methodology and conduct
original empirical analyses on Zipf’s law.

2.1 Wikipedia as Corpus

Our experiments require collections of text which are both large and available in many
different languages. This is a notoriously ambitious requirement but one that Wikipedia
can fulfil. Even though Wikipedia is not a perfectly representative linguistic corpus
due to its specialised language and partly widespread use of templates and bots for
text generation, there are three factors which make it highly convenient for use in
our case: (1) Wikipedia is open-source and so are the tools for processing it, (2)
Wikipedia authors use mostly the standardised variant of their respective language
which makes it comparable cross-linguistically and easy to process computationally
and (3) its structure, being a set of independent articles made up of continuous text.

We stress that corpora which are more representative for the language that a learner
receives do exist, such as CHILDES (MacWhinney 2014), but are not viable options to
our investigations because they are neither multilingual nor large enough.

Languages

We use Wikipedia in seven languages (language codes in parentheses): Esperanto
(EO), Finnish (FI), Indonesian (ID), Korean (KO), Norwegian (NO, the Bokmål vari-
ant), Turkish (TR) and Vietnamese (VI). The first consideration in choosing this set
of languages is that all seven are of similar size and large enough. This is the main
reason for excluding English which is too large to be handled straightforwardly.

The second is that our analyses are supposed to hold cross-linguistically, so we
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want to cover as much as possible of the variety in the world’s human languages. So
firstly, none of these seven languages are (closely) genetically related according to
scientific consensus – although Esperanto, a constructed language, could be argued
to belong to the Indo-European languages together with Norwegian. Esperanto was
indeed chosen specifically because it is a constructed language and not the outcome
of an evolutionary process. Thus, Esperanto is expected to have high morphological
regularity which will have an impact on both Zipf’s law and its learnability (cf. Gobbo
2017).

For the other languages, our main focus is morphological variety: Norwegian and
Finnish possess fusional morphological characteristics, Korean and Turkish (and to
some degree Finnish) have agglutinative morphology and Vietnamese is a language
with isolating morphology. Our set of languages thus covers all three of the most
general morphological systems. The differences in morphological structure in these
systems lead to different conceptions of what constitutes a word and this obviously
affects the distributions over words in them. Moreover, the learnability of a language
is related to its morphological complexity (Blevins, Milin, and Ramscar 2017), so the
learnability of Zipf’s law may also differ across morphological systems.

Finally, we choose Indonesian for its status as primarily a lingua franca, i.e. most of
its speaker have a different native language). (Ferrer i Cancho and Solé 2001) found
that the word distributions of creole languages are much better described by two sep-
arate exponents for Zipf’s law than just a single one. They explained this finding with
the existence of a small and highly productive core vocabulary and a large, mainly
unproductive extended vocabulary. Although Indonesian is not a creole, we suspect
a similar phenomenon in lingua franca and therefore differences in our findings for
Indonesian with respect to the other languages.

The genealogical and typological information we presented here can be found in
the World Atlas of Language Structures (WALS, Dryer and Haspelmath 2013).

From Wikipedia to Corpus

A raw Wikipedia is of course not yet suited for computational linguistic analyses, since
it contains large numbers of non-linguistic items. For each language, our pipeline from
the on-line Wikipedia to a corpus is the following:

1. Download the latest Wikipedia dump from dumps.wikimedia.org/eowiki/latest

(example for Esperanto (EO)). Such a dump is an XML representation of the en-
tire Wikipedia without media such as images and videos.

2. For each article in the Wikipedia, we extract the main text and remove all XML
and list, table and link annotations. For this, we rely on the open-source Python
library WikiExtractor (Attardi and Fuschetto 2012).

3. Being left with only linguistic data, we clean it by removing all special and meta-
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linguistic characters contained in the Unicode blocks BASIC LATIN, LATIN-1, ARABIC
and CJK (Chinese, Japanese, Korean). We keep essential punctuation characters,
such as commas and full stops. This important for sentence and token segmen-
tation to work well, which we perform in the next step.

4. For a set of languages as diverse as ours, there is no unified algorithm for de-
tecting sentence and word boundaries, so monolingual segmenters yield unsat-
isfactory results and implementations for truly multilingual segmentation are
sparse. Fortunately, the multilingual natural language processing library for
Python polyglot (Al-Rfou, Perozzi, and Skiena 2013) exposes an interface to the
Unicode Text Segmentation algorithm (Davis and Iancu 2012) and hence sup-
ports sentence and word segmentation. For this algorithm, the Unicode consor-
tium has developed sets of language-specific rules which characters can indicate
sentence and word boundaries in which contexts. Thus, while not necessarily
state-of-the-art on any particular language, this algorithm outperforms others
cross-linguistically.

5. A standard procedure in natural language processing, we lower-case all charac-
ters to avoid orthographic variation between tokens of the same type, for exam-
ple because a token occurred at the beginning of a sentence. Note that this is not
unproblematic because it removes orthographic differences between tokens of
different types – consider the distinct English words ’polish’ and ’Polish’.

The result of this procedure constitutes a corpus for our purposes and this is what we
use in the analyses throughout this thesis. Note that although we segment at all levels,
we do keep words grouped into sentences and sentences grouped into the original
articles of Wikipedia. Therefore, each corpus is a set of articles each of which is in
turn a sequence of sentences, each of which is itself a sequence of words. Keeping this
structure is important for the methodology we develop and evaluate below.

Basic Quantities

Table 2.1 gives the sizes of the seven Wikipedia corpora after pre-processing in terms
of articles, sentences and words (tokens). Notice that, with the exception of Esperanto
which has fewer, we length-matched all corpora to have the same number of 50·106 to-
kens in order to increase comparability of cross-linguistic findings. Length-matching
was done by simply randomly sampling articles from the original set until the desired
number of tokens was reached.

While the average length of articles is rather short, standard deviation is massive,
reflecting the typical large amount of stubs and small amount of excellent articles in
Wikipedia. Optimally, for our empirical research below, article lengths would be much
more uniform but, again, there is not much choice of large multi-lingual corpora be-
sides Wikipedia. The variation in both number of articles and article length across
languages is an indicator of varying quality between the Wikipedias, fewer and longer
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EO FI ID KO NO TR VI

articles 2.45·105 2.94·105 3.31·105 3.4·105 2.81·105 2.82·105 5.02·105

(µ len,
σ len) (9.34, 404) (14, 669) (9.1, 535) (9.83, 686) (10.8, 566) (12.7, 780) (4.7, 288)

sentences 2.29·106 4.1·106 3.02·106 3.35·106 3.04·106 3.58·106 2.36·106

(µ len,
σ len) (16.7, 11.9) (12.2, 6.53) (16.6, 10.3) (14.9, 9.45) (16.4, 8.94) (14, 10.2) (21.2, 15.3)

tokens 38.3·106 50·106 50·106 50·106 50·106 50·106 50·106

types 1.17·106 2.39·106 0.76·106 3.33·106 1.23·106 1.25·106 0.56·106

TTR 0.030 0.047 0.015 0.066 0.024 0.024 0.011

Table 2.1 The basic quantitative characteristics of our Wikipedia corpora. The means and standard devia-
tions in rows 2 and 4 (denotedµ and σ) are of the length distributions in the articles and sentences respec-
tively. TTR is the common abbreviation for the type-token ratio (number of types divided by number of to-
kens).

articles generally indicating higher quality.
Sentence length, on the other hand, is likely to vary across languages not only be-

cause of quality but also because of linguistic differences. Vietnamese, an isolating lan-
guage, has a much lower morpheme-per-word ratio compared to the other languages,
leading to a higher number of words per sentence. The effect of isolating morphology
can also be seen in the type-token ratio (TTR). Vietnamese displays an extremely low
TTR which is owed to its lack of inflectional or derivational morphology. On the op-
posite, languages with high degrees of inflection like Finnish and Korean have high
TTRs because of large numbers of types. In sum, the variation across languages is
likely both due to differences in quality and due to differences in linguistic structure
but it is difficult to disentangle the contribution of both to that variation. Even though
we have made efforts to mitigate this variation by linguistic pre-processing and nor-
malisation, it may influence some of the empirical observations we make in this thesis
and something to be kept in mind.

2.2 The Rank-Frequency Relationship & Zipf’s Law

Before delving into the main experiments of this thesis, it is useful to first get familiar
with the empirical side of Zipf’s law. Especially because this thesis is about quanti-
tative linguistic methodology, we go into great detail in introducing how the empiri-
cal rank-probability relationship is connected in practice to the theoretical Zipf’s law.
We show and explain how the empirical rank-probability relationship is represented
graphically and then describe maximum likelihood estimation of the parameters of
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Zipf’s law from that relationship.

2.2.1 The Empirical Rank-Frequency Relationship

In Figure 2.1, we show Zipf’s law obtained from the 50·106 tokens of three of the
Wikipedia corpora, namely Korean, Norwegian and Vietnamese. We have selected
these three language because they are representatives of agglutinative, fusional and
isolating morphology, respectively, and therefore cover the spectrum of variation in
the word distribution. We will use this subset for the remainder of the chapter for
comparability, the plots for the remaining languages can be found at
github.com/valevo/Thesis/figures.

In order to construct these graphs, chapterwe have extracted the three relevant ob-
servable variables: (1) the set of types (vocabulary), and for each type in that vocabu-
lary and (2) its frequency and (3) its frequency-rank. The rank is a simple transforma-
tion of the observed frequency: if a type is the i-th most frequently observed word, its
frequency-rank is i. Notice with regard to this transformation that some, and indeed
many, types will have the same observed frequency and would be assigned the same
rank – we break ties by assigning ranks randomly among these types.

Thus, to be more accurate, Figure 2.1 shows the extracted rank-frequency relation-
ship in the three Wikipedia corpora, rather than Zipf’s law which makes a prediction
about this relationship – Zipf’s law itself is shown as the red dashed line. Although
it may seem pedantic, we emphasise this distinction because it is often neglected and
a source of confusion between empirical observations and theoretical model of these
observations. We will return to and elaborate on the distinction between observation
and model in Chapter 4. A second point about accurate methodology we emphasise
and strongly insist on is that this relationship is not extracted but estimated since both
rank and frequency for each word are in fact estimated. This important statistical dis-
tinction concerns one of the main contributions of this thesis and is the central topic
of Chapter 3 and we elaborate in great detail there. Notice, importantly, that the rela-
tionships in Figure 2.1 are properly estimated which is why they look different from
the plots in Figure 1.2 of the Introduction and what readers may have seen in other
papers.

In any case, we obtain one two-dimensional data point for each observed type: its
rank on the x-axis and its frequency on the y-axis. Rather than plotting every individ-
ual data point in Figure 2.1, we follow (Piantadosi 2014) in using a two-dimensional
histogram. Each hexagon in the graphs indicates by its shade how many points fall
into its area. This technique is aimed at making the plot more robust against visual
artefacts and makes areas of high point density visible.

Finally, notice that the y-axis of the graphs shows the log-frequency rather than the
log-probability, even though we defined Zipf’s law in terms of probability. This is be-
cause the probability of a type is not directly observable, only its frequency is. Given
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(a) Korean (b) Norwegian

(c) Vietnamese

Figure 2.1 The rank-frequency relationships in (a) Korean, (b) Norwegian, and (c) Vietnamese. Both scales
are log-transformed. The blue hexagons represent two-dimensional bins, the shading (see colour bars on
the right of each plot) indicates the number of words which fall into each bin; notice that this shading is also
on a log-scale. The dashed red lines correspond to the predictions of Zipf’s law with the MLE parameters (see
Table 2.2). The predictions are scaled from probabilities to frequencies by multiplying them with the overall
number of tokens.
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the observed frequency and no prior assumptions, our best estimate of the probability
would simply be a scaled version of that frequency. This would only result in a differ-
ent scaling on the y-axis and therefore not affect the graphs themselves. Because of this
direct correspondence between estimated frequency and estimated probability, we use
them interchangeably throughout this thesis and so the rank-frequency relationship
of words is to be understood as completely equivalent to their rank-probability rela-
tionship.

Now, Zipf’s law predicts a negative log-linear relationship between the ranks and
frequencies of words. And indeed, at first glance, the rank-frequency relationships
in Figure 2.1 are highly linear, closely following a relatively straight, downward line.
This is especially so considering that many shapes, including pure noise, would have
been possible in principle. The high degree of linearity in these graphs is in fact one
of the most widely used criteria for positing Zipf’s law in empirical observations.

Furthermore, we see that the length of the x-axes and y-axes of the plots are both
on the same order of 10·106. This fits the more specific prediction of Zipf’s law that
the parameter α is close to 1. As is predicted by Mandelbrot’s extension of Zipf’s law
(the addition of the parameter β), we see in all languages that the head of the graph
curves off slightly. This means that the highest-frequency types are less frequent than
would have been predicted by a straight line, i.e. the original Zipf’s law.

Looking at the variance, by which we mean deviation from a single line, we observe
that while the head of the graph has little variance, the variance increases consider-
ably in the tail. This is not surprising since on the one hand, the tail is inhabited by far
more types, allowing for more variance, and on the other hand, low frequencies carry
more inherent uncertainty. Although the theoretical Zipf’s law predicts a straight line,
this variance does not per se invalidate Zipf’s law. The reason is once more the men-
tioned distinction between the observed sample, created by a process which involves
randomness, and the theoretical model, or distribution, from which the sample was
generated. The distribution itself does not contain any randomness and therefore can-
not account for the randomness in the sample which is the source of the variance we
observe in the plots. Again, randomness and the sample-distribution distinction is a
core topic of Chapter 4.

In summary, from a broad, informal inspection, the rank-frequency relationships
look like they may be explainable by Zipf’s law. It is already clear, however, that this
can only be approximate: Even when disregarding the variance, there are no single
straight lines which exactly fit the empirical rank-frequency relationships, especially
in the upper third (half). For a more formal and quantifiable analysis we now turn to
maximum likelihood estimation.
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2.2.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a simple and commonly used method for
estimating the parameters of a distribution from data. In our case, the parameters
of Zipf’s law are α and β and the data is a corpus Cn = (w1, ..., wn) (the superscript
indicates the number of tokens n). MLE works (see e.g. Deluca and Corral 2013) by
finding values α̂ and β̂ which satisfy

arg max
α,β

Pα,β(Cn) = arg max
α,β

n∏
i=1

Pα,β(r(wi)),

where r(wi) is our estimate of the rank of the word at position i. The equality holds
because under Zipf’s law, the tokens in a corpus are independent of each other. For
numerical stability, one typically minimises − logPα,β(Cn) which leads to the same
result. Moreover, since the search for the optimal parameters values is usually in-
tractable, stochastic optimisation is used which implies that the returned parameters
are random variables with generally positive variances.

It is worth noting that the MLE is a consistent estimator, i.e. in the limit of sam-
ple size α̂ converges to α∗, the true parameter value (and similarly for β). That is to
say, while the MLE is usually not the most efficient estimator, it is in principle capa-
ble of finding the true parameters (see e.g. Moreno-Sánchez, Font-Clos, and Á. Corral
2016). Moreover, MLE also works straightforwardly even for probability distributions
with problematic properties such as Zipf’s law which has not even a finite mean for
α < 2.0 (Goldstein, Morris, and Yen 2004). Also, since we do not have any educated
guesses on the parameters’ prior distributions, the generally more reliable Bayesian
maximum a posteriori estimation would simply collapse to MLE. In spite of its sim-
plicity, the MLE is therefore arguably one of the best practical choice in estimating the
parameters Zipf’s law.

Of course, we do not have to take the parameters returned by the MLE at face value.
Instead, we can measure their confidence and quality for which we use the following
metrics:

• As mentioned, the optimisation is stochastic and therefore is re-run a number
of times. The relative standard error (rel. SE) is the variance of the returned
parameters across these runs, normalised to be a percentage. The relative SE
we report is given by the statsmodels Python package (Seabold and Perktold
2010) which we use to perform the stochastic optimisation. A high SE indicates
that highly different optimal parameter values result in high likelihood for the
data. This can point towards problematic properties in the likelihood function
and will generally lower our confidence in any particular value returned by the
MLE.

• McFadden’s R2
McF (McFadden 1973) is a pseudo-R2 measure with an interpre-
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α 1.19 1.14 1.19 1.13 1.19 1.15 1.22

β 1.46 7.44 6.35 9.36 3.48 8.64 6.75

(rel. SE α,
rel. SE β)

(6·10−5,
2·10−3)

(4·10−5,
10−3)

(5·10−5,
10−3)

(3·10−5,
7·10−4)

(5·10−5,
10−3)

(5·10−5,
7·10−3)

(7·10−5,
6·10−3)

R2
McF 0.71 0.66 0.71 0.65 0.71 0.67 0.74

rel. BIC 3.44 2.95 3.42 2.81 3.44 3.07 3.78

Table 2.2 Maximum likelihood estimates of the parametersαandβ of Zipf’s law for our 7 languages. See the
main text for the definitions and interpretation of the relative standard error (rel. SE), R2

McF and relative
Bayesian information criterion (rel.BIC).

tation similar to the R2 coefficient of determination: How well does the fitted
model, in our case P(α̂,β̂), fit the data in comparison to a null model PNULL? For-

mally, this is calculated as R2
McF = 1 −

logP(α̂,β̂)(C
n)

logPNULL(Cn)
. Since the likelihood of the

corpus Cn under the fitted model is at least as high as under the null model,
R2
McF is guaranteed to be in the interval [0, 1] and may hence be interpreted as

the percentage to which P(α̂,β̂) provides improved fit over PNULL. The practical
range of values of R2

McF is, however, highly dependent on both the model itself
and the null model, so much so that there are no general rules for interpretation
of specific values of R2

McF .
Choosing an appropriate null model is intricate and for simplicity we set α = 1
and β = 0 to obtain PNULL. Looking at the definition of Zipf’s law, this leads to
PNULL = P1,0(W = w) = (r(w)+0)−1

ζ(1,0)
∝ 1

r(w)
, i.e. Zipf’s law in which the parameters

α and β have cancelled out. Note that P(1,0) corresponds to the flattest and most
straight possible Zipf’s law. In the actual implementation, an infinite vocabulary
requires α > 1 and β > 0, so we set α = 1 + ε and β = 0 + ε, with ε a negligible
value. See Section 4.1 for a detailed discussion about the restrictions on the val-
ues of α and β and alternatives to Zipf’s law in the rank-probability relationship
of language.

• The Bayesian information criterion BIC(Pα,β) = 2 log(n) − 2 log
[
P(α,β)(C

n)
]

(Schwarz 1978) has been devised for selection among competing models. In-
stead of a classical significance test for the MLE parameter values α̂ and β̂, we use
theBIC to judge whether whether the data justifies a non-null model (i.e. Zipf’s
law with the MLE parameters). We do so by calculating BIC(Pα̂,β̂)/BIC(P1,0),
the relative BIC, where we use the null model PNULL = P(1,0) from above. The
higher the relative BIC, the more do the optimal parameters provide a better
model than the null model and hence the greater our acceptance for it.

The MLE parameter values α̂ and β̂ for all languages together with their respective
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relative SE, R2
McF and relative BIC are given in Table 2.2. The observations about

these values we make now hold across languages, language-specific differences are
discussed in the next section.

The relative SE is negligible for all languages and both α and β and we therefore
regard the MLE as having terminated successfully, i.e. as having found definitive val-
ues which maximise the likelihood of the data. The relative SE is higher for β̂ which
hints at the fact that its importance in modelling the data is lower than that of α̂, i.e.
different values of β lead to relatively similar values of the likelihood of the data.

As is evident from their definitions, R2
McF and the BIC measure similar aspects

of the goodness of fit of a model. Their interpretations, however, are quite different.
Even without reference values, we find a relatively low R2

McF which indicates that
even when the MLE parameters are used, there is substantial variance in the data
which Zipf’s law cannot model. This is not surprising since, as mentioned, the actual
rank-frequency relationship is far more complex than the simple Zipf’s law. There-
fore, neither the null model nor the MLE parameter model fit the data particularly
well, leading to similarly low likelihoods and thus R2

McF to be rather low. At the same
time, the relative BIC is well above 2 for all languages, implying that the null model
has a BIC at least twice as low as the model with MLE parameter values. As we use
the relative BIC in place of a significance test, we regard the fitted model as provid-
ing significant fit to the data and therefore as a model of the data that can be termed
appropriate. Taking R2

McF and the BIC together, we find that although even a fitted
Zipf’s law cannot provide very close fit to the data, it is still preferable over the null
model, a Zipf’s law without parameters. As the result, we retain the MLE parameters
as preferable over any other parameter values for Zipf’s law and under the premise
that Zipf’s law altogether may strictly speaking have to be dismissed as the true model
of the empirical rank-frequency relationship in language.

In this way, we arrive at a qualitatively similar conclusion as has been argued pre-
viously by (Piantadosi 2014) and (E. G. Altmann and Gerlach 2016). Zipf’s law cannot
precisely fit the rank-frequency relationship of language, as the plots in the previous
section make clear as they show systematic deviations and substantial variance. As
both previous papers have also argued, this is to be expected, since Zipf’s law is merely
a statistical model of and not the true underlying source for word use in language.
Hence, there are necessarily aspects of the observed word distribution that Zipf’s law
fails to capture. The use of MLE reveals, however, that the law does fit language well
enough to warrant application and interpretation of statistical methods. Specifically,
different parameter values lead to differences in fit that can be detected by common
goodness-of-fit measures and thus indicate that Zipf’s law does capture a significant
aspect of the empirical data. Moreover, in an argument related to Occam’s Razor, (Pi-
antadosi 2014) comments that the fit of Zipf’s law to language is in fact remarkable
given the simplicity of the law on the hand and the complexity of language on the
other. Given these arguments, we conclude that natural language is what (Piantadosi
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2014) calls ”Zipfian”. That is, the empirical rank-frequency relationship of the words
of language is described to a significant extent by Zipf’s law but only approximately
so. As mentioned in the introduction, this conclusion is in contrast to much of the ear-
lier statistical work on Zipf’s law which has sought to unambiguously prove or reject
Zipf’s law (e.g. Baayen 2002 or Moreno-Sánchez, Font-Clos, and Á. Corral 2016).

In addition to providing a formal tool for assessing the empirical Zipfianness of
language, MLE and specifically the MLE parameters of Zipf’s law will have a pivotal
role in the methodology we develop in Chapter 4. In a way that we will make precise,
Zipf’s law together with its MLE parameter values can also be used as a stochastic
source distribution, one which can be manipulated in data and of which we can mea-
sure how closely that data follows it. Both of these uses of the MLE parameter values
are only justified if Zipf’s law in general manages to provide a reasonably good de-
scription of the data. As we have reported and argued, Zipf’s law indeed does capture
much of the structure in the rank-frequency relationship and therefore can be used as
a practical approximate source distribution for it.

2.2.3 Differences Across Languages

So far, we have discussed the empirical rank-frequency relationship as if it was the
same in all languages. The reason that we have, and can, is that indeed this rela-
tionship is highly similar across languages and to a degree that the entire discussion
above holds for all seven languages we have analysed. Great similarity can be clearly
seen in Figure 2.1, as well as in the MLE results in Table 2.2, where parameters have
similar values and lead to similar fit. This high degree of similarity seems to uni-
versally expand to all languages and is a core reason why Zipf’s law has received so
much attention, see (Piantadosi 2014) for a general review. But, of course, there is also
variation in the rank-frequency relationships of different languages and given strong
morphological differences between them, this is to be expected. In this section, we
give a brief overview of the variation across languages in terms of gradient, curva-
ture and Zipfianness of the rank-frequency relationships. We refer the reader again to
github.com/valevo/Thesis/figures for the plots of the rank-frequency relationships of
the languages we could not show and discuss here.

A simple and evident example of how the rank-frequency relationships differ are
their respective gradients: The relationship is vastly flatter in Korean than in Norwe-
gian and Vietnamese, with the latter being steepest. In all languages, the maximum
frequency of a word (the range of the y-axis in the plot of Figure 2.1) is similar, so
the difference in gradient is due to different sizes of the relationships’ support. This
is indeed evidenced by the number of types and TTRs reported in Table 2.1 which
show that Korean has by far the largest number of types. Containing a higher num-
ber of types makes the rank-frequency relationship flatter because frequency mass
needs to be distributed over more items and is not surprising for an agglutinative lan-
guage such as Korean. We see this also reflected in the MLE values of the parameter
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α of Zipf’s law (Table 2.2): Korean, together with the other agglutinative languages
Finnish, Indonesian and Turkish, corresponds to the lowest values of α, whereas Viet-
namese with its isolating morphology leads to a high value of α due to a steep rank-
frequency relationship.

Perhaps even more evident but not as easily explained is the fact that the rank-
frequency relationships of different languages exhibit different degrees of curvature
and in different areas. Generally, curvature seems to occur in one of two areas: Firstly,
in the head of the relationship, as strongly exhibited by Norwegian and Vietnamese.
It is this curvature which prompted Mandelbrot’s inclusion of the parameter β, at-
tempting to correct Zipf’s law for it. Secondly, in the middle range, which is the case
for Vietnamese. As mentioned, (Ferrer i Cancho and Solé 2001) have characterised
curvature in the middle range as a broken power law, i.e. as actually two Zipf’s laws
with distinct parameters α. They connected this phenomenon to the morphological
productivity in language, specifically that of creole languages. The strong curvature
of the rank-frequency relationship of Vietnamese could point towards such a broken
power law and to a possible connection in morphology between creole and isolating
languages such as Vietnamese. On the other extreme, Korean does not show much
curvature in either of the two areas and although one may be inclined to conjecture
morphology again as the reason, the other agglutinative languages’ rank-frequency
relationships are not as straight, exhibiting curvature in one of the two areas.

The Zipfianness of the rank-frequency relationships, that is the fit of Zipf’s law,
turns out to differ along with the relationships’ gradient and curvature, as can be seen
in the goodness-of-fit measures R2

McF and relative BIC of Table 2.2. Lower gradients
lead to lower descriptive power according to the measures because of our choice of the
null-model. As mentioned, this null-model corresponds to the flattest and straight-
est possible rank-frequency relationship, that is the lowest possible values of α and
β. Therefore languages with flat relationships, such as the agglutinative ones, lend
comparatively low support to their MLE parameter values. Similarly and somewhat
counter-intuitively, relationships with low degrees of curvature, such as that of Ko-
rean, do not lead to better fit of Zipf’s law. Mandelbrot’s correction in fact implies that
some curvature is expected and if curvature is absent, the correction leads to lower fit.

Generally, deeper investigation is required for more conclusive observations and
hypotheses about cross-linguistic differences. Based on the preliminary observations
we have made here, such investigation will most likely be fruitful and contribute in-
sight into the nature of the morphological systems which underlie the rank-frequency
relationships and hence the different incarnations of Zipf’s law in the different lan-
guages. For the remained of this thesis, specifically Chapters 3 and 4, we will how-
ever ignore language-specific phenomena in the interest of conciseness and keep the
discussion general enough to be valid cross-linguistically. The generally high degree
of similarity and subtlety of the differences between the rank-relationships of the dif-
ferent languages justify this.
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2.3 Vocabulary Growth & Heap’s Law

While Zipf’s law is arguably the most well-known and deeply studied quantitative
law, a number of other phenomena have been observed to also hold across languages
and across corpora. One such phenomenon is Heap’s law (see e.g. Petersen et al. 2012
or Gerlach and E. G. Altmann 2014). Zipf’s law remains the focus of this thesis but
Heap’s law will serve as an example of how the methodological remarks we make in
Chapter 3 are not only applicable to Zipf’s law but generalise across quantitative laws.
Additionally, in Chapter 4, we will use Heap’s law as a control in our experiments.
For this reason, we briefly introduce the law itself here and show how well our data
is described by it with the help of maximum likelihood estimation (MLE), much akin
to the previous section.

Heap’s law describes the vocabulary growth across corpus sizes, i.e. the number
of types, V (n), in a corpus Cn. Heap’s law is the observation that V (n) is sublinear
which is formally stated as:

V (n) = φ ∗ nτ ,

where τ < 1 and φ > 1. It is in fact trivial that V (n) is sublinear, and therefore τ < 1,
because the number of types in a corpus can of course not exceed the number of to-
kens. What makes Heap’s law a meaningful observation is that V (n) behaves precisely
like a function of the form φ∗nτ and not, for instance, like a more complex polynomial
or no particular function at all. As is the case with any sublinear function, an impor-
tant consequence of Heap’s law is that the discrepancy between n and V (n) grows
with n, even though V (n) does grow to infinity in the limit of n according to Heap’s
law.

As Figure 2.2 indeed shows, the empirical vocabulary growth shows very little de-
viation from the simple function given by Heap’s law across Korean, Norwegian and
Vietnamese. (See github.com/valevo/Thesis/figures for the plots for the remaining
languages.) In constructing the graphs in this figure, we stress the same distinction as
we did for the rank-frequency relationship (Section 2.2.1): at each n, V (n) is the result
of estimation, not calculation. That is, rather than computing V (i) for each i = 1, ..., n
from a single corpus Cn, we take a series of independent corpora C1, ..., Cn and com-
pute each V (i) from corpus Ci. See Section 3.4 for the details of this process.

Just like we did for Zipf’s law, we use MLE to determine the optimal parameters
φ̂ and τ̂ given our data. There is one caveat with using MLE for Heap’s law however:
As opposed to Zipf’s law, Heap’s does not define a probability distribution. Instead, it
defines a function and therefore does not inherently assign likelihood to a set of obser-
vations. We can still perform MLE but need to make additional assumptions, linking
the data to Heap’s law by a probability distribution and leading to a generalised linear
model (GLM, Nelder and Wedderburn 1972). Specifically, since each individual V (n)
is a discrete count, we assume that it is the outcome of a binomial distribution Pbinom
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(a) Korean (b) Norwegian

(c) Vietnamese

Figure 2.2 Heap’s law in (a) Korean, (b) Norwegian, and (c) Vietnamese. The dashed red lines correspond to
the predictions of Heap’s law with the MLE parameters.
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EO FI ID KO NO TR VI

φ 29.3 43.3 35.8 35.9 34.3 62.0 10.7

τ 0.61 0.62 0.56 0.65 0.59 0.56 0.61

(rel. SE φ,
rel. SE τ)

(0.01,
2·10−5)

(6·10−3,
9·10−6)

(5·10−3,
9·10−6)

(6·10−3,
10−5)

(5·10−3,
9·10−6)

(0.01,
10−5)

(2·10−3,
10−5)

R2
McF 0.99 0.99 1.0 0.99 0.99 1.0 1.0

rel. BIC 1530.0 805.0 3670.0 739.0 1600.0 2380.0 3600.0

Table 2.3 Maximum likelihood estimates of the parameters of Heap’s law, φ and τ , for our 7 languages to-
gether with relative standard error (rel. SE), pseudo-errorR2

McF and relative Bayesian information crite-
rion (rel.BIC). See the main text for the null model used in computingR2

McF andBIC .

with mean φ ∗ nτ . MLE then operates by finding φ̂ and τ̂ which satisfy:

arg max
φ,τ

P ((C1, ..., Cn)|φ, τ) = arg max
φ,τ

P ((V (1), ..., V (n))|φ, τ)

= arg max
φ,τ

n∏
i=1

Pbinom(V (i)|φ, τ) = arg max
φ,τ

n∏
i=1

Pbinom(V (i);
1

p
∗ (φ ∗ iτ ), p),

where we use p = 0.5, the binomial distribution’s second parameter, because it
leads to maximal variance and therefore to greater numerical stability. Notice that for
the second identity we have made use of the fact that under our formulations as out-
comes of binomial distributions, the vocabulary sizes V (1), ..., V (n) are independent
from each other.

The MLE parameters values are given in Table 2.3 together with their relative stan-
dard error, R2

McF and BIC. To calculate R2
McF and the BIC, we again need a null

model. We could construct the null model by stripping Heap’s law off its parameters,
setting φ = τ = 1 which leads to V (n) = 1 ∗ n1 = n, like we did for the null model for
Zipf’s law (see Section 2.2.2). But, as it is a linear function, this null model is clearly
condemned to grossly overestimate the empirical vocabulary growth at all points. For
this reason, we take a different approach to the null model: We simply take the median
m = (V (1), ..., V (n)) and let this constant be the null model which is then equivalent
to Heap’s law with parameters τ = 0 and φ = m. This null model is essentially the
standard approach in regression modelling and referred to as the intercept.

Partly because the null model is very weak, it is easy for Heap’s law with the MLE
parameters to be far superior over the null model, leading to exceedingly high R2

McF

and the BIC. Even so, as the plots in Figure 2.2 reveal, the prediction by Heap’s law
(drawn as dashed red lines) indeed fits the empirical vocabulary growth extraordinar-
ily well. In particular, unlike the empirical rank-frequency relationship, the empirical
vocabulary growth exhibits almost no variance and is therefore well modelled by a
straight line such as that defined by Heap’s law. Strong statistical support for Heap’s
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law as measured by R2
McF and BIC is thus warranted, even if this may be artificially

heightened due to the weak null model.
Even comparing the empirical vocabulary growth across languages, it is remark-

able how little deviation the graphs show from the simple functional. That is, all lan-
guages seem equally well described by Heap’s law. At the same time, the vocabulary
growths differ significantly in range, visible from both the MLE values of the param-
eter τ and the y-axes (notices the respective ranges) of the graphs in Figure 2.2 . In
particular, Korean displays comparatively very fast vocabulary growth while the same
is very slow for Vietnamese. Considering the morphology of both languages, this is
not surprising: Korean as an agglutinative language has a high morpheme-per-word
ratio which leads to a combinatorially vast space of possible words. The situation is
reversed for Vietnamese which, as an isolating language, mainly consists of words of
a single morpheme. The chance for a word to recur is thus much higher in Vietnamese
than it is in Korean, leading to slower vocabulary growth.

Similarly to the conclusion of the previous section that the languages we have anal-
ysed are ”Zipfian”, the observations in this section lead us to conclude that these lan-
guages are also ”Heapian”. In the sense that their empirical vocabulary growth is
approximately but well described by Heap’s law. But while there had to be strong
emphasis that Zipf’s law holds only approximately for language, Heap’s law seems to
be able to provide almost exact fit.

Chapter Conclusions

In this chapter, we have laid the groundwork for Chapters 3 and 4, in which we present
our original empirical work, by introducing and describing the basic quantitative as-
pects of our data. To these aspects we count the observations about Zipf’s and Heap’s
law which we have described and which our investigations will build upon.

We have motivated and described our corpora, the data we use for our empirical
analyses: Extracted and pre-processed text from Wikipedia in seven languages. As
the most important features for our work, this is a typologically diverse and large,
with 50·106 tokens each, set of linguistic data. These corpora are made available for
use at github.com/valevo/Thesis/data.

While Zipf’s law itself, the theoretical model, has been introduced in Chapter 1,
we have described in detail in the current chapter how it is connected to empirical
observations. For this, we have presented and shown the rank-frequency relationship
– empirically equivalent to the theoretical rank-probability relationship – and detailed
how it is used to estimate Zipf’s law via Maximum Likelihood Estimation (MLE).
These concepts have allowed us to establish that our seven languages, or rather their
Wikipedias, are indeed Zipfian, i.e. approximately but to a usable extent described by
Zipf’s law. Establishing this is essential for the remainder of this thesis but in fact also
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constitutes a contribution of this thesis. As mentioned, the rank-frequency estimates
plotted in Figure 2.1 are arguably the most accurate to date as they are the result of
the improved estimation method which is the core of the next chapter. Hence, a re-
analysis of the shape of the rank-frequency relationship and the extent of Zipf’s law
was indeed needed and still is since ours is only preliminary.
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3 The Sample-Source Distinction and
Subsampling

In the previous chapter, we have familiarised ourselves with the linguistic data used in
this thesis, as well as Zipf’s law and Heap’s law in their empirical incarnations. Specif-
ically, we have described how observed ranks and frequencies (or probabilities, recall
that these are equivalent in our context) and their relationship relate to the theoretical
Zipf’s law. With the concepts and tools of the previous chapter at hand, we are now
ready to introduce the first major contribution of this theses.

This contribution concerns the remark made when describing how the empirical
ranks and frequencies are extracted from linguistic data (Section 2.2.1). It explains as
well the dispersion in the plots of the rank-frequency relationship (Figure 2.1) which
may be unusual to readers already familiar with Zipf’s law. Finally, and most im-
portantly, the contribution of this chapter justifies why we deemed it necessary to re-
assess the Zipfianness of language when there is of course already an existing body
of work on this very question (e.g. E. G. Altmann and Gerlach 2016, Baayen 2002 and
notably (Piantadosi 2014); we selected these examples in fact because they constitute
otherwise excellent work on the statistics of Zipf’s law).

The reason lies in the realisation made by Piantadosi (Piantadosi 2014, summarised
in Section 1.1) that essentially the entire body of previous work on Zipf’s law has the
flaw of committing an error when extracting the empirical rank-frequency relation-
ship from linguistic data. As a result, so the opinion of Piantadosi and indeed also
our own, the reported rank-frequency relationships report in previous work are mis-
leading about the precise shape and degree of regularity of the rank-frequency rela-
tionship. Therefore, we agree with Piantadosi that a large part of the body of work on
Zipf’s law is in need of verification, in particular that concerned with assessing Zipfi-
anness. The re-assessment of the previous chapter, while preliminary, is a first step in
this direction.

Our contribution in this chapter is to improve upon and significantly generalise
the methodological correction Piantadosi proposed. The shortcoming in the way that
Piantadosi approaches the problem in the previous literature seems to be that he sees
it as a problem of ”data visualization” (Piantadosi 2014) but as we strongly object,
the problem in the literature goes far beyond that. As we explain in detail in the next
section, the problem is one of statistical practice, in particular estimation, and it seems
to be rooted in an obliviousness to the distinction between the theoretical and the
observed. This, in contrast to Piantadosi whose solution is rather ad hoc and does
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not generally solve the problem, allows us to provide an estimation method which is
rooted in established statistical theory. As a result, estimates are arguably the most
reliable and detailed the can be in practice and the method is versatile enough to be
applied to quantitative linguistic laws other than Zipf’s law.

Concretely, in the following section, we re-derive the Subsampling method, an in-
stance of the relatively well-known resampling estimation techniques, in the context
of quantitative linguistics. Once introduced, we show and analyse the Subsampling
method and its properties when applied to the rank-frequency relationship and ex-
tend its use to estimating vocabulary growth.

3.1 Estimating Linguistic Quantities

We begin by taking a step back to reflect on the aim of quantitative linguistics in gen-
eral because, as we shall see, the problems of the common practice in quantitative lin-
guistics stem from neglect of basic statistical insights. Moreover, going to the basics of
statistics will lead automatically through solutions to the methodological corrections
we propose and analyse in the current chapter. At least for our purposes, quantita-
tive linguistics seeks to extract mathematical quantities from language with the aim
to obtain insights into the systematic structure of language (cf. for instance Köhler
and G. Altmann 2005, McEnery and Hardie 2011, Fenk-Oczlon and Fenk 1999). Laws
in quantitative linguistics, or quantitative laws, are then formal observations about
regularities in such quantities and they are usually special because they persist across
languages (cf. (E. G. Altmann and Gerlach 2016)). For instance, Heap’s law (see Sec-
tion 2.3) predicts the single quantity vocabulary size, V (n), of a corpus of n tokens.
Meanwhile, Zipf’s law (see Sections 1.1 and 2.2) predicts the relationship between the
two quantities rank, r(w), and probability, P (w), of a word w. What makes them laws
is that they hold for most or all corpus sizes n and words w, respectively (although
this part of ongoing debates).

Such an understanding of quantitative linguistics leads us to see that its quantities
and laws pertain to languages as a whole. This is an important realisation because
a language as such is not actually observable. As is common knowledge in and the
essential struggle of quantitative (and more generally computational) linguistics, a
language is per se a theoretical concept. The only way to observe it is through small
and necessarily incomplete windows, namely samples, also called corpora in compu-
tational linguistics. This has a profound implication for linguistic quantities: As func-
tions of the language itself, their values are not directly observable either and can also
only be observed through necessarily imprecise samples. Thus, just like the language
it describes, a quantity such as the rank of a word r(w), is theoretical.

At the same time, a corpus C which we observe leads to an observed value, rC(w).
Henceforth, we let r(w) denote exclusively the theoretical quantity and use the nota-
tion rC(w) to indicate the observed value in corpus C (and similarly for other quanti-
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ties). Now, of course, we can expect rC(w) to vary across corpora C because C itself
will vary due to what we shall treat here as randomness. (Whether or not this is
the case is certainly debatable (see for instance Kilgarriff 2005) but can be ignored
for our discussion.) In either case, this (random) variation in C and hence rC(w) in-
duces a distribution over the observed values, P (rC(w) = r). The importance of this
distribution lies in the fact that it gives us a connection between the observed quan-
tity rC(w) and its theoretical counterpart r(w): Namely the distribution’s expected
value, r(w) = E[rC(w)] =

∑
r P (rC(w) = r) ∗ r. According to the law of the un-

conscious statistician (DeGroot and Schervish 2012), the expected value is equal to∑
C PL(C) ∗ rC(w) where the sum is over corpora C and PL(C) is the probability of C

being generated by the theoretical language L.
This sum, albeit the direct connection between the observed and theoretical, is

however infeasible, so r(w) stays inaccessible in principle. On the one hand, the sum
over all corpora C is infinite and therefore uncomputable and on the other hand,
PL is unknown since the language L itself is, as just described. But this is a well-
known problem in statistics and for instance Monte Carlo methods (MC, originally
described in Metropolis and Ulam 1949, extensive modern introduction in Rubin-
stein and Kroese 2016) have been devised exactly for the purpose of approximat-
ing sums and expected values. MC approximates the expected value E[rC(w)] by
randomly sampling a set of corpora S = {C1, ..., Cm} and then calculates the mean
r(w) = 1

m

∑n
i=1 rCi(w). Since the relative frequency of each corpus Ci in S approaches

PL(Ci) (according to the law of large numbers, see e.g. Wen 1991), r(w) converges to
E[rC(w)] as m grows to infinity. Hence, for large but finite m, the mean approximates
the expected value and the former is in fact an estimate of the latter. With modern
computing power, MC can usually provide good estimates and has the added advan-
tage that it essentially only requires that random sampling of corpora can be done
efficiently.

Here is precisely the problem for our context: At least currently, we have no effec-
tive reliable source for randomly sampled corpora and on the contrary, corpora are a
notoriously sparse resource. The sparsity of resources renders genuine solutions (to
which we do count MC) to estimating the expected value E[rC(w)] and hence the the-
oretical quantity r(w) an impossibility. So from this point, any method can only be
an approximation to a true solution at best and it is good to keep this in mind for the
remainder of this thesis and in general. Having said that, we now describe a method
for approximating the MC approximation using just a single (large) corpus (notice
the double approximation). This method is called Subsampling (first extensively de-
scribed in (Politis, Romano, and Wolf 1999)) and is a member of the broader class of
resampling methods, together with the more commonly-known Bootstrap and Jack-
knife methods (see e.g. (Simon and Bruce 1991), (Efron and Tibshirani 1986) and
(Efron and Stein 1981)).

The only practical difference of Subsampling from MC is the way samples are ob-
tained but this has the important consequence that while MC approximates the true
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underlying distribution, the Subsampling method cannot provide the same guaran-
tee. Hence there is no true guarantee that the estimated quantity will converge to the
theoretical one and neither are there guaranteed rates at which convergence might
happen. At the same time, the Subsampling method can provide estimates of preci-
sion of the estimated quantity, such as estimates of variance and confidence intervals
(we will discuss variance estimates further in Section 3.3.1). These can, at least, serve
as indicators of how much certainty we are to place in the estimated quantity and how
well it reflects its theoretical value.

Compared to MC, the essential idea of the Subsampling method is to let a single
corpus fulfil the purpose of the sample generating source – a probability distribution
– that is used in MC. Under relatively mild conditions (see the following section), and
also due to the law of large numbers (Wen 1991), any individual corpus converges to
the probability distribution it was generated from (in terms of the relative frequen-
cies of its elements). Therefore, if the corpus used for the Subsampling method is
large enough, then it provides a reasonable approximation of the same source that
MC would have used to generate samples. Otherwise, the Subsampling method is
works in the same way as MC. Formally (Politis, Romano, and Wolf 1999), given an
original corpus Cn, one takes a set of random subsamples S ′ = {Ck

1 , ..., C
k
m} with n

much larger than k (for simplicity, we fix the subsample size but this is not strictly
necessary). Each Ck

i is a proper subset of Cn, that is sampled without replacement. S ′
then has the same function as S from MC and so the estimate for the theoretical quan-
tity r(w) is formed in the same way: r(w) = 1

m

∑m
i=1 rCki (w). The mentioned caveat is in

formal terms that the quality of approximation of r(w) depends on the initial corpus
Cn. Although it is worth mentioning that n → ∞ implies that Subsampling becomes
equivalent to sampling directly from PL and therefore to the MC method. Hence,
there are large enough n such that the estimates from the Subsampling method are
essentially indistinguishable from those of the MC method.

As it becomes important in the methodology we propose in Chapter 4, we empha-
sise that the Subsampling method samples each Ck

i uniformly from Cn. That is, each
element in Cn (see the next section for a discussion about these elements) has equal
probability of being drawn. The validity of the Subsampling method hinges on this
in order for the sampling distribution to approximate PL (i.e. for the probability of
drawing a subsample Ck

i to approximate PL(Ck
i )) and for the resulting estimates to be

unbiased.
Given the Subsampling method for estimating linguistic quantities, we now esti-

mate the rank-probability relationship, i.e. r(w) and P (w) for each word w, in the fol-
lowing way: We take an initial corpus (in our case Wikipedia) Cn and construct two
sets of subsamples, S1 = {Ck

1 , ..., C
k
m} and S2 = {Ck

m+1, ..., C
k
2m}. Computing rCki (w)

from each Ck
i in S1 and PCkj (w) from each Ck

j in S2, we obtain the averages r(w) and
P (w). These mean values are our estimates for the rank and probability, respectively,
of the word w and these are what we relate for the estimate of the rank-probability
relationship. Thus, if we speak of the empirical rank-probability relationship, in this
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thesis we refer to the relationship between the mean ranks and the mean probabilities
of words, since these are the proper estimates according to the Subsampling method.
It is this empirical rank-probability relationship we use to assess the Zipfianness of
language, and indeed it is what we have used already throughout Chapter 2; the rank-
frequency plots in Figure 2.1 shows actually the mean ranks versus the mean frequen-
cies of words. In Chapter 2, and also in this and the next chapter, we use k = 1·106 and
m = 10 for the parameters of the Subsampling method. We keep them constant across
chapters in order to ensure comparability of the results and because these parameters
have proven to work well.

Finally, we address the difference between the method Piantadosi proposes in (Pi-
antadosi 2014) and the Subsampling method, which is most easily understood in
terms of m, the number of subsamples taken to calculate the average. Piantadosi’s
method is essentially (not entirely) equivalent to the Subsampling method with m =
1, that is just a single subsample is taken for estimating r(w) and a single one for esti-
mating P (w). Of course, then the averages r(w) and P (w) that are computed for the
estimate of the Subsampling method are only over a single value and of course equiv-
alent to that value. An estimate from just a single sample is known as a point estimate
(Lehmann and Casella 2006) and it should be clear that its value is heavily influenced
by the randomness in drawing the particular subsample (cf. (Bloem et al. 2016)). Be-
cause of this randomness, the point is likely to be unreliable, depending on how large
the parameters n and k are. In contrast, the Subsampling method, which generally
uses m > 1, actually approximates the mean of the distribution over values of rC(w)
and PC(w) and the estimates it produces are therefore less prone to being influenced
by randomness.

In order to see how the difference between the point estimate and the estimate
by the Subsampling method manifests itself in the estimated rank-frequency relation-
ship, compare Figure 1.2b (point estimate) to Figure 2.1a (Subsampling estimate). The
point estimate leads to much higher dispersion in the relationship across words, espe-
cially in the relationship’s tail, than the Subsampling estimates. This is not surprising
because the mentioned randomness inherent in the subsample leads to randomness,
that is dispersion, in the estimate. In the Subsampling method, that randomness is
marginalised out by taking multiple subsamples, i.e. multiple point estimates, and
subsequently their mean value. This is important because the randomness is not ac-
tually part of the theoretical value of the quantity we are trying to estimate. Piantadosi
claims that his proposed method make the precise structure in the rank-probability re-
lationship and its deviation from Zipf’s law interpretable but this is strictly speaking
not true. Because his estimates are merely point estimates, any specific shape of the
resulting rank-probability relationship could have been caused by the randomness in
the subsamples.

As discussed above, even the Subsampling method cannot completely remove the
dependence on the observed data (the original corpus Cn) either and with only a sin-
gle source corpus at hand, generally no method can. However, and herein lies the full
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advantage of the Subsampling method over point estimation methods, the set of val-
ues from which the average r(w) (or P (w)) is computed approximates and converges
to the distribution over values itself (in terms of relative frequencies). Thus, in addi-
tion to the estimated value, we can also examine the certainty attached to that value,
for instance by examining variance of the distribution and convergence behaviour of
estimates. These can reveal the quality of the used data (the corpus Cn) as a repre-
sentative of the underlying theoretical language. In order to show this potential and
to analyse the rank-frequency relationship itself, we devote Sections 3.3.1 and 3.3.2 re-
spectively to analysing the variance and convergence behaviour of the rank-frequency
relationship. We begin our empirical investigation, however, by addressing yet an-
other methodological issue and evaluating a proposed remedy in the next section.

A note on the data used in this chapter: To provide comparability of the plots and
results, we investigate the Korean Wikipedia in all of the sections of this chapter. While
cross-linguistic comparisons of the results of the Subsampling method applied to the
rank-frequency relationship would certainly be instructive about its nature, it is be-
yond the scope of this thesis. Using seven different (and typologically diverse, see
Section 2.1) languages was done mainly done for development purposes, namely to
ensure that the Subsampling method produces valid results in all tested languages.
The plots and results we report on Korean below can be found for the remaining set
of six languages at github.com/valevo/Thesis/figures. Indeed, as these show, the
results and arguments we provide below are qualitatively the same in all the six lan-
guages we used next to Korean. There are, of course, cross-linguistic differences in the
details but they are subtle enough for the discussion below to hold across languages.

3.2 Elements Used for Subsampling

Before we can analyse the Subsampling method itself, we need to address one more
problem, which pertains to the structure of language. This problem also affects the
method proposed in (Piantadosi 2014) but is not addressed there. Although the prob-
lem has no general solution, in this section we propose a remedy and analyse how
much of the problem it alleviates.

While re-sampling methods, including the Subsampling method, work under quite
broad conditions, they break down if there is sequential dependency in the data. This
is clearly the case for language, as the words and sentences in a corpus Cn are not in-
dependent from each other but exhibit long-range and complex patterns of sequential
dependence. It is easy to see why this makes naive subsampling invalid: If we sample
subcopora Ck by randomly drawing individual words from Cn, Ck will be syntacti-
cally invalid gibberish and not represent the language which generated the original
corpus Cn.

In particular, when using Subsampling for estimating the rank-frequency relation-
ship, we expect a strong effect on the low-frequency types: These are characterised by
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(a) Text vs Word Rank-Frequency Relationships (b) Text-Word Correlation of Frequencies

Figure 3.1 (a) Estimates of the mean rank-frequency relationship, between r(w) and f(w), of Korean. The
red bins represent the estimates obtained from sampling on the word level and are superimposed on the
estimates from sampling on the text level (i.e. articles in Wikipedia) in blue. (b) The per-word correlation
of the estimates of the mean frequency f(w) from text-level sampling (x-location) and the same estimates
from word-level sampling (y-location). If the estimates were the same for every word, this plot would show
as a single diagonal line.

highly clustered and non-uniform occurrence across a given corpus (see (A. Corral
et al. 2009) for an investigation into the recurrence statistics of words). Consider for
example the word ’Turing’ which generally does not occur often but once it does, will
have high recurrence in the immediate context, due to its high topicality. Performing
Subsampling by sampling individual words destroys such phenomena and we expect
it to severely underestimate the variance in the rank-frequency relationship of low-
frequency types.

A possible remedy lies in the hierarchical structure of language itself, namely that
words are organised into sentences which are in turn organised into texts inside a
corpus (in Wikipedia, texts are called articles). As we move up this hierarchy, the se-
quential dependency of language becomes weaker, since words have the strongest in-
fluence on each other’s occurrence probabilities in immediate context. In the extreme,
it is relatively safe to assume that words in two separate corpora do not influence each
other’s occurrence probability at all. Hence, rather than sampling subcorpora on the
word level, we can sample larger elements, such as sentences or entire texts.

In order to analyse the effects of sequential dependence in language on estimation
by Subsampling, we compare the outcomes of random sampling at three different
levels in the hierarchy: words, sentences and texts. Concretely, for each of these levels,
we randomly sample subcorpora by sampling at that level and then estimate the rank-
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frequency relationship from these subsamples as described above. Thus, we obtain
three estimates of both r(w) and P (w), one for each level.

Two of these estimates, namely from the word and from the text level, are plotted
in Figure 3.1a, where the word-level estimates are simply superimposed on the text-
level ones. The sentence-level estimates are omitted since they would obfuscate the
plot and show an intermediate effect between the word- and text-level estimates in
any case. As the plot shows, and as we expected, word-level subsamples underesti-
mate the variance in the low-frequency types, as the resulting tail is thinner than that
of the estimates from text-level subsamples. Notice that the tail from the text-level
subsamples additionally exhibits what could be called outliers, points with very high
deviation from the centre of mass. In contrast to the tail, the estimates are virtually
the same in the head of the graphs. The reason is likely that high-frequency types are
characterised by dense and uniform occurrence patterns. Sampling at the word level
evidently reproduces these patterns for the high-frequency words and the estimates
from word and text level therefore converge.

Regardless of the fact that sampling at the word level underestimates variance, the
two estimates of the rank-frequency relationship apparently still have the same mode
across sampling levels, since both histograms of Figure 3.1a have their mass concen-
trated along approximately the same line. To emphasise this, and to provide a more
detailed view, Figure 3.1b shows the word-level estimate of f(w) plotted against the
text-level estimate of f(w). Indeed, this graph is centred around a straight diagonal
line, indicating high correlation, which is only weakened by the high variance in the
region of low frequencies (lower left corner). Even within this region the mode of
values is heavily concentrated on this diagonal as the shading of the bins indicates.
Moreover, so the points which do not lie on the diagonal are roughly symmetrically
distributed around the diagonal. This plot adds further evidence that sampling on
the word-level does not introduce significant bias into the rank-frequency estimates,
as compared to text-level sampling, and that the only difference really is underesti-
mated variance.

This observation has an important implication for Zipf’s law: As described in Sec-
tion 2.2.1, Zipf’s law predicts a single line, i.e. it cannot predict any of the variance
of the rank-frequency relationship. The MLE therefore inherently tries to find the pa-
rameters which best fit the mode of the relationship and ignore the variance. This
implies that if two relationships have the same mode and only differ in variance, as
is the case with the word-level and text-level estimates, MLE will return the same pa-
rameters for Zipf’s law. In order to confirm this explicitly, we fitted Zipf’s law to the
rank-frequency estimates obtain from the three sampling levels. Indeed, the MLE pa-
rameter values are virtually same, only differing beyond the third decimal place. We
even find essentially the same goodness of fit attached to these parameters, as mea-
sured by R2

McF and the relative BIC. This is surprising since higher variance leads
to reduced significance of the relationship’s mode and in turn to lower significance of
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(a) Mean vs Full Rank-Frequency Relationship (b) Fano Factor plot

Figure 3.2 (a) Mean rank-frequency relationship of Korean in red, superimposed on the full set of values from
which that mean was obtained in blue. (b) For each word, its mean rank r(w)plotted against its Fano factor,
D(w) = covC(rC(w), fC(w))/r(w).

Zipf’s law. The text-level estimates would have therefore been expected to lend lower
support to Zipf’s law than the word-level estimates. The fact that they do not empha-
sises that the mode of the rank-frequency relationship occupies the large majority of
mass.

In sum, even though Subsampling is theoretically invalid given the sequential de-
pendency of language, the results of Subsampling at the different levels of the hier-
archy of language show that it only underestimates variance but does not introduce
bias into the estimates. Instead, the modes of the estimated relationships coincide to
a degree where the results of MLE are indistinguishable. For practical reasons, sam-
pling at the level of texts may not always be possible, as is the case for the method we
develop in the next chapter. Therefore and given these observations we conclude that
sampling at lower levels, such as the level of sentences, can be a reliable proxy for text-
level sampling. Especially if the variance in the tail of the rank-frequency relationship
is not of interest. For comparability with the next chapter, all estimates of the rank-
frequency relationship in the remainder of this thesis are obtained from sentence-level
sampling.
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3.3 Estimating Ranks and Frequencies

3.3.1 Variance

Previously – specifically in the previous section and Section 2.2.1 – when speaking
of variance in the rank-frequency relationship, we have been referring to the vari-
ance of r(w) and f(w) with respect to each other across words w. As a variance be-
tween two random variables, this variance is actually a covariance which we write
covw(r(w), f(w)) and use the subscript to emphasise that it is across words w. The
covariance is the generalisation of the variance to two dimensions and a measure of
linear dependence, specifically it is the un-normalised version of the Pearson correla-
tion coefficient.

Since Zipf’s law predicts a log-linear dependence, i.e. a single straight line, for
the relationship between r(w) and f(w) across w, the validity of the law depends on
covw(r(w), f(w)). Briefly put, deviation from a perfect correlation in the logarithmic
rank-frequency relationship is deviation from Zipf’s law. Since r(w) and f(w) are our
best estimates for and converge to r(w) and f(w), we empirically judge the validity of
Zipf’s law by covw(r(w), f(w)).

The plots in Figure 2.1 indicate that the covariance is indeed rather high, as dis-
persion is low and confined to the tail. Notice also that our m and k, the number
and sizes of the subsamples, are rather low at respectively 10 and 106. The covariance
likely further increases with higher values of these parameters of the Subsampling
method; we will inspect the behaviour across values of k in the following section. It is
worth noting that the covariance in the estimates from Subsampling is especially low
in comparison to the point estimates of Piantadosi’s method (see Figure 2.1). Pianta-
dosi specifically emphasised the high degree of dispersion and used it as evidence
against the validity of Zipf’s law. But as we see now, with the more representative
estimates for the theoretical rank-frequency relationship, the relationship does show
rather high conformity to a single line, that is high covariance, and therefore to Zipf’s
law. For more definitive conclusion, it should be evaluated in future work whether the
rank-frequency relationship assumes perfect correlation in the limits of the Subsam-
pling parameters m and k and equivalently whether covw(r(w), f(w)) can invalidate
Zipf’s law.

At the same time, there is a second type of variance which, as we will see, en-
tails that the high covariance in the observed mean rank-frequency relationship needs
to be taken with a grain of salt. The variance in question is the variance attached
to this mean, namely the variance in point estimates across corpora. Again, as we
are relating two random variables, this variance is also in fact a covariance, namely
covC(rC(w), fC(w)). In contrast to the covariance across words, the subscript C now
indicates that the covariance is across corpora C. Notice that when taking the mean
during the Subsamling estimation procedure, it is this covariance across corpora that
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we are marginalising over.
Similar to the covariance across words, the covariance across corpora has impli-

cations for the validity of Zipf’s law, but in a different way. As described in Section
3.1, the mean is taken as the representative of the distribution and as the estimate
of the rank-frequency relationship because it converges to the expected value which
is in turn equivalent to the theoretical value. But as for any distribution in general,
the meaningfulness of the mean as a representative is tied to the variance of that dis-
tribution. Simply put, the greater the variance, the less representative the mean is
for the distribution, since large variance implies that values other than the mean also
have high probability mass. In the extreme case, namely the uniform distribution,
the mean has as much probability mass as all other values and hence the mean is not
particularly representative of the distribution. So even though we may above have
observed high conformity of the mean rank-frequency relationship with Zipf’s law,
large variance would mean that we assign low significance to that conformity. This
is what we assess in the remainder of the current section by analysing the covariance
covC(rC(w), fC(w)).

First, we plot the mean rank-frequency relationship together with the distribution
it is computed from in Figure 3.2a. Specifically, we plot (r(w), f(w)) in red; this is the
same graph as in Figure 2.1a (except for different values of k). The blue graph which
lies beneath it is the full set of ranks {rCk1 (w), ..., rCkm(m)} obtained from m subsam-
ples plotted against the full set of frequencies {fCkm+1

(w), ..., rCk2m(m)} obtained from
anotherm subsamples. This blue graph represents a sample from the full distribution
over rank-frequency relationship across subcorpora Ck and can equivalently be seen
as the union of m point estimates of the rank-frequency relationship. Thus, Figure
3.2a can be seen as the two-dimensional version of the common one-dimensional his-
togram with the mean; notice that in the two-dimensional case, the frequency mass is
indicated by the shading of the bins (see the colour bar). Notice also that the graph
of the full distribution has horizontal gaps in the low-frequency region, whereas the
graph of the mean does not. This is simply because only natural-numbered values are
possible for actual ranks and frequencies in a given corpus, while their means can be
real-valued.

Figure 3.2a shows that the high covariance across words in the mean rank-frequency
relationship we have observed above is somewhat deceptive: There is substantial dis-
persion in full distribution which starts from its upper tail and increases substantially
in its lower tail. This indicates that for low-frequency words, the precise value of the
rank-frequency relationship is essentially due to chance across corpora and decreases
the meaningfulness of the mean as a representative of the distribution. Positive vari-
ance, although small, can be found even in the high-frequency words which indicates
that even there some uncertainty about the precise location of the rank-frequency re-
lationship exists. At first glance and judging from Figure 3.2a, it thus seems that there
is high dispersion in the rank-frequency relationship of words across corpora. This is
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equivalent to low covariance covC(rC(w), fC(w)) and, as described, would imply low
significance for the precise mean rank-frequency relationship, that is our estimates
returned by Subsampling. We now test this conclusion from two further perspectives.

As mentioned, the sample of the full distribution in Figure 3.2a (blue graph) can
also been seen as consisting of m point estimates of the rank-frequency relationship.
We would like to assess the variability in these individual point estimates but doing
so is complicated by the fact that each such point estimate is over the entire vocabu-
lary, i.e. over all words w. Here, Zipf’s law can be of help rather than just the object of
analysis: As a statistical model, it provides a low-dimensional description of a point
estimate, namely in terms of the parameters α and β. Hence, we estimate the parame-
ters separately from each of them point estimate, obtainingm estimates of Zipf’s law.
The variability in the estimates of Zipf’s law is an efficient, albeit only approximate,
indication of the variability in the point estimates and specifically of the variability of
the point estimates’ modes. Despite the high dispersion we observed above, the MLE
parameters show essentially no variation across point estimates, with differences only
in the second decimal place (which is also why do not report the MLE results). The
same is true for the goodness-of-fit measures, as bothR2

McF and relative BIC are virtu-
ally the same across all point estimates. This relativises the dispersion we have found
above as it implies that the m point estimates of the rank-frequency relationship have
similar modes. It also implies, as indicated by the goodness-of-fit measures, that the
highly dispersed points in Figure 3.2a carry only very little mass.

Moreover, we would like a more detailed view of covC(rC(w), fC(w)) in individ-
ual words, rather than in the entire vocabulary. In order to achieve this, we treat
the words as a sequence of data, akin to a time series, and order them according
to r(w). Then, we compute the Fano factor (Cox and Lewis 1966) for each word:
D(w) = covC(rC(w), fC(w))/r(w), i.e. the covariance divided by the mean. For each
time step in a given time series, the Fano factor measures the signal (the mean) to
noise (the covariance) ratio of that time step. That is, it indicates whether that time
step provided a reliable signal, which is the case if D(w) < 1, or not, i.e. D(w) ≥ 1.
For our purpose, the use of the Fano factor stems from the realisation that for words
with high r(w) the rank-frequency relationship is inherently highly dispersed. These
words only have few observations which leads to high uncertainty about the precise
value of the rank-frequency relationship. For this reason, in order to investigate the
covC(rC(w), fC(w)) in individual words, we normalise it by the mean r(w), as pre-
scribed by the Fano factor.

Figure 3.2b plots for each word its mean rank against its Fano factor, i.e. r(w)
against D(w). Note that the plots contains negative values because covariance can
be negative, the only difference between positive and negative covariance values is
the direction of correlation. First, notice that the graph is roughly symmetric along
the constant at 0, reflecting that the distribution of values around the mean in Fig-
ure 3.2a is also relatively symmetrically distributed. The most important insight from
this graph is that by far the most words have a Fano factor of less than or equal to one.
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This is a striking observation as it implies that for most words, even the low-frequency
ones, the signal provided by the mean rank r(w) exceeds the noise that is the covari-
ance across corpora. Hence, even if the low-frequency words exhibit high uncertainty,
when accounting for how much is inherent due to low numbers of observation, one
finds relatively high reliability. Notice an opposite effect in the middle range of the
plot, roughly between mean ranks 102 and 5·104: Compared to their relatively low
dispersion in Figure 3.2a, the Fano factors for these words are relatively high. This
reveals that compared to their low inherent uncertainty due to higher numbers of
observations, they do not provide very reliable signals. Taken together, Figure 3.2b
contributes the important insight that the variance across corpora of low-frequency
words is not as high as it seems and in particular that this variance in not excessively
high compared to that of more frequent words.

The use of Zipf’s law and the Fano factor shed a somewhat different light on the
covariance covC(rC(w), fC(w)) than one would be inclined to conclude from only look-
ing at Figure 3.2a: Neither is the covariance particularly excessive, as the Fano factors
revealed, nor is there significant variation in the modes of the point estimates across
corpora, as indicated by the coinciding MLEs of Zipf’s law. Even though there cer-
tainly is a significant amount of dispersion in the full distribution over rank-frequency
relationships and this needs to be remembered when analysing the mean relationship,
dispersion is not as high as may have been expected. We therefore conclude that the
mean be seen as a reasonably good representative of the full distribution since it seems
to carry the majority of the distribution’s mass. Similarly, it may be concluded that
Zipf’s law, as estimated by the mean, has reasonable significance in the context of the
full distribution.

The covariance we have described and analysed in the current section is an impor-
tant aspect of the Subsampling method: It allows to gauge how dependent the precise
values of observations, i.e. estimates, are on the specific data. In light of the random-
ness that is inherent to any sample, this variance is also to be seen as an inherent, nec-
essary component of any estimated quantity and not to be neglected. But whereas it
may seem as a nuisance to deal with at first glance, the covariance across data can also
provide arguments to strengthen phenomena in empirical observations. In this vein,
we have observed in this section that the rank-frequency relationship across corpora,
while displaying some dispersion, is in fact remarkably stable and this strengthens the
significance of Zipf’s law as an observation about the relationship.

3.3.2 Convergence

In this section we analyse the convergence behaviour the mean rank-frequency rela-
tionship across the subsample sizes k and we do so for two reasons. First, we continue
the previous sections by adding further insight into how stable and reliable the esti-
mates yielded by the Subsampling method are. And second, we use it as an example
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(a) Rank-Frequency Relationships (b) Rank-Probability Relationships

Figure 3.3 (a) Mean rank-frequency relationships of Korean as estimated on subcorpus sizes k = 0.5·106
through k = 2.5·106. (b) Same plot as (a) but plotting the relationship between mean rank and mean
probability rather than mean frequency.

of how properties of the estimated quantities become interpretable and thus mean-
ingfully analysable when estimated properly. In the current section, the property of
interest of the rank-frequency relationship is its convergence behaviour, i.e. whether
the relationship continues to change in shape until the limit of corpus size or whether
such change stagnates beyond a certain size.

As mentioned previously and indeed an important aspect, the Subsampling method
alleviates the dependence of the estimates on the specific corpus. The reason is that
taking the mean over the rank-frequency relationships of repeatedly sampled corpora
effectively marginalises the individual random characteristics of these corpora. In
consequence, the precise shape of the estimated rank-frequency relationship is in-
terpretable in the sense of being comparable across corpora and only depends on
properties such as corpus size. This is in emphasised contrast to the erroneous, com-
monly used method of constructing the rank-frequency relationship from a corpus.
This method leads to a strong dependence of the relationship’s shape on the specific
corpus and importantly implies that relationships obtained from different corpora are
incomparable.

For this reason, we re-evaluate and in fact challenge previous reports about the
changes in the rank-frequency relationship across corpus sizes. We suspect that most
of the observed phenomena are artefacts of the misleading estimates and, using proper
estimates, resolve the contrary findings that have been made. Using two different
books, (Powers 1998) took a number of increasing length prefixes (up to 2·104 tokens)
of these books. The rank-frequency relationships constructed from each of the prefixes
were found to increase in steepness with prefix size. Using the same method of pre-
fixes and similar sizes, (Baayen 2002) replicated this finding in terms of the parameter
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α of Zipf’s law which was reported to increase with prefix size. Based on this and other
observations, (Baayen 2002) in fact questioned the usefulness of the rank-frequency
relationship and Zipf’s law because it would render comparison across different-sized
corpora impossible. Again using the same prefix method but more corpora and larger
sizes, (Font-Clos, Boleda, and A. Corral 2013) took a closer look at the behaviour of
the rank-frequency relationship across sizes and could not find significant changes.
Instead, they reported the relationship to stay quite stable and attributed the previous
findings to insufficient corpus sizes. Contrary to this finding, (Moreno-Sánchez, Font-
Clos, and Á. Corral 2016) did find changes in the parameter α but this time that αwas
in negative correlation with corpus size, indicating flatter, not steeper, rank-frequency
relationships. (Moreno-Sánchez, Font-Clos, and Á. Corral 2016) is the only study to
date that uses a large collection of different-sized texts. Together, the previous studies
provide a clearly inconsistent and therefore inconclusive picture of the converge be-
haviour of the rank-frequency relationship and we suspect that this is caused by the
erroneous method of estimating it.

In order to re-evaluate the relationship’s convergence behaviour, we inspect both
the differences in the mean rank-frequency relationships which emerge across sub-
sample sizes k and the differences in the MLEs of Zipf’s law obtained from these mean
relationships. We begin with Figure 3.3, in which we have plotted the mean rank-
frequency relationships obtained from subcopora of five different sizes, ranging from
0.5·106 and 2.5·106 tokens. We specifically choose a range of subcorpus sizes around
1·106 because the subcorpora in Chapter 4 all have this size. For the same reason, we
have used the same size in Sections 3.2 and 3.3.1.

Note that the only difference between Figure 3.3a and 3.3b is the scale of the y-axis.
In the latter, frequencies were transformed into probabilities, simply by dividing by
the total number of tokens. The relationships in Figure 3.3a move to the upper right
corner with increasing corpus sizes for the simple reason that greater corpus sizes lead
to higher frequencies. Greater corpus size also leads to higher numbers of observed
word types (cf. Heap’s law, Section 2.3) and this causes the tails of the rank-probability
relationships in Figure 3.3b to increase in length as size increases. Simultaneously, the
tails also stretch further down on the y-axis as corpus size increases, since greater
vocabulary size implies lower probability mass for the low-frequency types.

Besides these trends, which are inherent to increasing sample sizes, however, the
relationships across all sizes exhibit strikingly high similarity. Disregarding minor
individual fluctuations, the relationships are centred on virtually the same line and
seem to really only grow in the number of types they are defined on. Not even co-
variance of the relationships across words seems to be substantially higher in smaller
samples, as the relationships’ tails do not vary greatly in dispersion. Judging from Fig-
ure 3.3 it thus seems that the rank-frequency (and equivalently the rank-probability)
relationship has converged beyond corpus sizes of 0.5·106 and that no major differ-
ences in the relationship will arise from further increasing the subcorpus size. Also
compare Figure 3.3a to Figure 2.1a, where the rank-frequency relationship is estimated
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0.5·106 1·106 1.5·106 2·106 2.5·106 10·106

α 1.13 1.13 1.13 1.12 1.12 1.13

β 4.57 5.23 5.64 5.93 6.17 9.36

R2
McF 0.63 0.63 0.63 0.63 0.63 0.65

rel. BIC 2.76 2.76 2.76 2.76 2.76 2.81

Table 3.1 Results of performing MLE of Zipf’s law, i.e. its parameters τ andφ, on the mean rank-frequency re-
lationships obtained from subcorpus sizes 0.5·106 through 2.5·106. See Section 2.2.2 for the interpretation
ofR2

McF and relative BIC.

from 10·106 tokens, i.e. five times the size of the largest subcorpus used in Figure 3.3a.
Even at 10·106 tokens, the rank-frequency relationship has essentially the same shape,
which strengthens the conclusion that the relationship has converged.

In order to verify this more formally, we turn to MLE of Zipf’s law which we per-
form on the mean rank-frequency relationship for each subcorpus size; the results
can be found in Table 3.1. The results of MLE clearly indicate that the mean rank-
frequency relationship does not change across subcorpus sizes we use, since the pa-
rameter α stays the same across all sizes. The slight decrease in α in corpus sizes 2·106

and 2.5·106 from 1.13 to 1.12 seems accidental, since the value of α obtained from
10·106 tokens is again 1.13. The same holds for the goodness-of-fit measures R2

McF

and relative BIC which stay the same across subcorpus sizes and are only slightly
higher at 10·106 tokens. This indicates that the mean rank-frequency relationship has
the same of conformity to Zipf’s law across subcorpus sizes. Glaringly, however, β
does not converge across corpus sizes but exhibits steady increase. Looking at the
rank-frequency relationships themselves in Figure 3.3 it is not clear why β, which con-
trols how strongly the head of the predicted relationship curves off, should increase,
since the head of the relationship itself does not increase. This phenomenon will likely
require deeper investigation and so we leave it unexplained for now. On the whole,
the MLEs of Zipf’s law across subcorpus sizes reinforce the finding that there is a high
degree of convergence in the rank-frequency relationship at the corpus sizes we use
here.

In summary, using much larger corpus sizes than the previous studies and, in con-
trast to them, proper estimates obtained with the Subsampling method, we find rather
strong convergence of the rank-frequency relationship and a remarkable degree of sta-
bility of the relationship itself and the resulting MLE of Zipf’s law across corpus sizes.
In particular, since the rank-frequency relationship converges, so does the correspond-
ing Zipf’s law and this indicates that Zipf’s law in the underlying theoretical language
is well-defined. We emphasise this because it has been questioned in some of the cited
previous works (such as Baayen 2002). We also emphasise that our observations re-

52



produce those of (Font-Clos, Boleda, and A. Corral 2013) and, because of the fact
that ours are the most reliable and largely corpus-independent estimates of the rank-
frequency relationship, there is high likelihood that the convergence behaviour we
report here is the closest to the true one. In the spirit of the methodological concerns
we are raising in this chapter, by the true convergence behaviour we mean the way in
which the rank-frequency relationship changes across corpus sizes independent from
any specific corpus. As explained in the introduction, this is done by averaging over
the changes in the rank-frequency relationship across all individual corpora. Here,
we have approximated this average by virtue of the Subsampling method.

Besides further emphasising the importance of accurate and reliable estimates and
thus providing a further argument for using the Subsampling method, we have inves-
tigated the convergence of the rank-frequency relationship because other observations
and methods of this thesis depend on it. On the one hand, the strong degree conver-
gence already among corpus sizes of 1·106 tokens ensures that our discussion of the
precise shape of the rank-frequency relationship in Section 2.2.2 is representative ir-
respective of the size of the number of tokens used there (namely 50·106). The same
argument holds true for our discussion of the variance in the previous section. On the
other hand, rather high degrees of convergence, as the ones we have observed here,
are in fact necessary for the methodology we develop and evaluate in the next chapter.
Both for the theoretical discussion of that methodology, which becomes meaningless
in the absence of convergence, and for its evaluation, since without convergence the
results become difficult to interpret (see in particular Sections 4.3.1 and 4.4.1).

3.4 Estimating Vocabulary Growth

The methodology for estimating quantities from linguistic data which we developed
in the current chapter is not confined to the rank-frequency relationship but gener-
alises to all quantities of interest in quantitative linguistics. This is because, as argued
in this chapter’s first section, any quantity that pertains to the underlying language,
rather than the observable samples from it, is subject to the concerns of correct estima-
tion. As far as we are aware, the problem (Piantadosi 2014) originally noticed in the
estimation of the rank-frequency relationship is pervasive in the entire field of quan-
titative linguistics. In particular, to best of our knowledge, the problem also exists in
the estimation of vocabulary size in language which is described by Heap’s law (see
Section 2.3). In order to show how the entire field, not just research around Zipf’s law,
can benefit from the methodological improvements we are proposing with this chap-
ter, we close the chapter by showing and briefly analysing the Subsampling method
applied to estimating vocabulary size.

Recall that for a given number of tokens of a corpus n, Heap’s law predicts the
number of types, or vocabulary size, V (n) in that corpus. Notice that, unlike Zipf’s law
which predicts the relationship between two quantities, Heap’s law is about the single

53



Figure 3.4 Mean vocabulary growth of Korean in red, plotted on top of the full set of values (in blue) from
which that mean was computed. Notice that the blue graph is almost entirely hidden by the red, indicating
that the mean graph and the graph of all values almost completely coincide.

quantity V (n). At the same time, the actual interest lies in the vocabulary growth,
i.e. the sequence of vocabulary sizes (V (1), ..., V (n)). The common way (as done for
instance by Petersen et al. 2012 and Gerlach and E. G. Altmann 2014) to construct this
sequence empirically is to use a corpus Cn and take from it the sequence of all of its
prefixes (C1, ..., Cn−1, Cn). Then, one counts the vocabulary size of each such prefixCi,
obtaining VCi(i) and hence the sequence (VC1(1), ..., VCn(n)) (notice the use of indices
to the function V as described in Section 3.1). Finally, this sequence is used as the
estimate of V (1), ..., V (n).

With the discussion of Section 3.1 in mind, it should be clear that this method leads
to erroneous and misleading estimates: First, each VCi(i) is merely a point estimate
of V (i) due to the dependence on Ci. As previously, one should use a set of corpora
{Ci

1, C
i
m}, compute {VCi1(i), ..., VCim(i)} and take the mean V (i) of this set. Again, as the

influence of the specific corpus is marginalised out by taking the mean, the resulting
estimate is a more reliable representative of the theoretical quantity V (i). Second, and
yet more problematically, the commonly used method leads to correlation between the
estimates of the different vocabulary sizes. Specifically, it forces them to be monotone
increasing and the reason is simply that for each i,Ci, used to estimate V (i), is a proper
prefix of Ci+1, used to estimate V (i+ 1). The vocabulary size of the prefix Ci must be
smaller or equal to that of Ci+1 and therefore the estimate of V (i) necessarily smaller
or equal than the estimate of V (i+ 1).

Clearly, independent corpora Ci and Ci+1 should be used to ensure that the esti-
mates of V (i) and V (i+ 1) are independent. But, as previously, independent corpora
are generally not available (in this case, we would require n corpora), and so we again
turn to the Subsampling method. That is, we substitute independent corpora with in-
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dependently sampled subcorpora of an original single corpus. More formally, given
a corpus Cn and k < n, we take random subsamples of sizes 1, ..., k to construct the
sequence of subcorpora (C1, ..., Ck). Notice that the subcorpora in this sequence, al-
though not independent from Cn, are indeed independent from each other. Given
this sequence, we compute the sequence (VC1(1), ..., VCk(k)) as the point estimate for
(V (1), ..., V (k)). Of course, the concern from the previous paragraph applies, so we
repeat this procedurem times and take the means for the final Subsampling estimates
of vocabulary growth.

In fact (and as mentioned there), in Figure 2.2 the estimates of vocabulary growth
were already obtained by Subsampling, so V (n) in this plot actually refers to V (n).
In order to estimate the complete vocabulary growth, we would need to take m sub-
samples for each number of tokens i ≤ n, i.e n ∗m subsamples in total. Even though
sampling a subcorpus itself is not too expensive, this number of samples grows too
fast. Therefore, we do not estimate V (i) for every i ≤ n but instead, leave a constant
distance between the i for which we estimate V (i). In Figure 2.2, this distance is 2·103.
This still provides enough data points for estimating Heap’s law but does entail that
we miss some of the potential variance of vocabulary growth. Finally, in applying the
Subsampling method to the estimation vocabulary growth, the concern of Section 3.2
also holds here, namely that subsampling at the word level is invalid given the se-
quential structure of language. Therefore, as before, we use sentences as the elements
for subsampling rather than individual words.

Because Heap’s law is not our main focus, we do not reproduce the full analysis
we provided for Zipf’s law. In Figure 3.4 we do, however, show the variance of VC(n)
across subcorpora C akin to Figure 3.2a of Section 3.3.1. That is, we plot the mean
vocabulary growth V (n) together with the set of m values {VCi1(i), ..., VCim(i)} it was
computed from. The resulting graph shows that the variance, or dispersion, from the
distribution over values is remarkably low and one might even say that there is essen-
tially no variance. Not even is the variance higher for lower number of tokens, i.e. in
the left half of the plot, as one might have expected. The absence of variance there-
fore does not seem to be related to the fact that our numbers of tokens (up to 2·106)
are quite large, where a high degree of convergence and therefore low dispersion is
expected. It may, however, be related to the gaps we have to leave in estimating vo-
cabulary sizes, mentioned in the previous paragraph (the distance of 2·103). Future
work should test this but for now, since do not observe any significant variance, there
is no detailed analysis of that variance to be conducted.

Similarly to Section 3.3.1, where we have argued that the relatively low variance
(i.e. high stability across point estimates) of the rank-frequency relationship, we also
conclude here that Heap’s law as a description of vocabulary growth is strengthened
by the apparent high stability of vocabulary growth across point estimates. This is
especially remarkable given that the point estimates of vocabulary size are obtained
from independently subsampled corpora; even at large corpus sizes, one might expect
individual corpora to exhibit variation in their vocabulary sizes. Thus, and adding to
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the observations of 2.3 that the estimated mean vocabulary growth closely follows the
predictions of Heap’s law, we reaffirm that Heap’s law seems to be a rather unambigu-
ously valid description of the vocabulary growth in natural language.

Verifying the validity of quantitative linguistic laws such as Heap’s law with proper
estimates by means of the Subsampling method is arguably useful in itself and will
moreover come in handy in Section 4.4.2, where the strong Heapianness of language
will serve to control for the effects of the methods we develop in that chapter (Chapter
4). The actual point of this section has, however, been to exemplify that the concerns of
this chapter and the Subsampling method as the proposed way to address them apply
not only to ranks and frequencies as linguistic quantities. Instead, they generalise to
all of quantitative linguistics, such as vocabulary growth as shown in this section. Not
only the discussion on Zipf’s law can hence benefit from taking estimation seriously
but also that on Heap’s and all the other laws in quantitative linguistics.

Furthermore, the example of estimating vocabulary growth shows that the Sub-
sampling method, in addition to being straightforward to apply, is versatile enough
to be easily adapted to estimate generally any linguistic quantity of interest. First and
foremost, we see this as a reflection of the fact that it is a general and theoretically
grounded estimation method, as opposed ad hoc methods such as the one proposed
by (Piantadosi 2014) to estimate the rank-frequency relationship. Second, the Sub-
sampling method, and generally the entire family of resampling methods it belongs
to, has been devised precisely with the aim of being applicable to large classes of es-
timation problems without requiring much adaptation (other members of the family
of resampling methods are thus aptly called ”bootstrapping” and ”jackknifing”).

Chapter Conclusions

This brings us back to the beginning of the current chapter. We have started with the
realisation of (Piantadosi 2014), whose role as the original motivation of this chap-
ter we emphasise, that the rank-frequency relationship is commonly estimated in an
erroneous way in the context of Zipf’s law. But, as we have argued in Section 3.1
and demonstrated in the previous section, this problem is not specific to the rank-
frequency relationship and instead pervades the field of quantitative linguistics. For
this reason, and precisely by noticing that the actual issue is deeper than (Piantadosi
2014) asserts, we have presented the Subsampling method – a general and established
estimation method – for use in quantitative linguistics. The Subsampling method is
able to provide reliable and detailed estimates from just a single corpus. In order to
show this aspect and hopefully convince other practitioners of using of the Subsam-
pling method, we have analysed in terms of the variance and convergence behaviour
of the rank-frequency relationship in Sections 3.3.1 and 3.3.2. While these are merely
preliminary, we hope that they have laid groundwork for similar and more extensive
future analyses of linguistic quantities such as the rank-frequency relationship.
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In this chapter, we have advocated the use of the Subsampling method for proper
and reliable estimation of theoretical quantities from observed corpora. The reasons
have done so lie in its simplicity, adaptability and most importantly the scarcity of
linguistic resources. However, as mentioned, the Subsampling method is itself only
an approximation to true solutions to estimation, such as Monte Carlo methods. Such
methods should be reconsidered in future work, because the Subsampling methods
has its drawbacks.

First, its ability to provide reliable estimates does hinge on a relative large source
corpus, since the size of subsamples should be much lower. However, in some fields
of empirical linguistics, such as clinical linguistics, even obtaining corpora of 1·103 to-
kens can be difficult (cf. for instance (Egmond 2018) who studied Zipf’s law corpora
of aphasic speech of 350 tokens). Although estimation of quantities of the theoretical
language is generally difficult with such small numbers of observations, extensions or
adaptations to the Subsampling method might help accommodate such cases. Here,
for instance Bayesian extensions (such as A. F. Smith and Gelfand 1992 could improve
reliability of estimates even at small corpus size by informing them with prior proba-
bilities on estimated values obtained from larger samples.

In part precisely because of its considerable size, and also its availability in many
languages, we have used Wikipedia as the corpus for this thesis. Wikipedia, however,
is in fact a good example for the second caveat of the Subsampling method. Linguis-
tically, that is in terms of topic and style, Wikipedia is a very homogeneous corpus
since it consists entirely of scientific and encyclopedic texts. Recall that the Subsam-
pling method treats the source corpus, i.e. Wikipedia in our case, as an approximation
to the underlying language (in the sense of a distribution over corpora). However, it
should be clear that Wikipedia is not a good representation of language as a whole
which is linguistically far more diverse. Therefore, future work should repeat the
analyses we have conducted in this chapter on more diverse corpora. Potential ex-
amples are WebCorp (Renouf, Kehoe, and Banerjee 2007) and (Hart 1992) which are
similarly large but more diverse.

Altogether, regardless of the advantages and limitations of the Subsampling method
itself, the central point of this chapter is not to suggest that the Subsampling method
is the only or the superior estimation method. Rather, our aim has been to show that
with relatively simple and ready to use techniques, it is possible to overcome erro-
neous, correlated point estimates in favour of reliable estimates of the full underlying
distribution; the Subsampling method is an example of such a technique. Thus, yet
more important is the strict distinction between sample and source from which we
have started our discussion. Especially in the debate on Zipf’s law, where not even its
status as a law is clear, proper statistical methodology is in our opinion vital and the
sample-source distinction and the issue of estimation are essential basic ingredients
thereof.
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4 The Filtering Method

In the previous Chapter, we described the Subsampling method for use in quantita-
tive linguistics. It provides a convenient and, given the scarcity of linguistic resources,
likely the best way to properly estimate theoretical linguistic quantities from samples
of the languages they pertain to. The general strategy of the Subsampling method is
to use a single large corpus and to repeatedly sample random subcorpora, or subsam-
ples, from within it. The source corpus thus approximately simulates the stochastic
source, that is, the underlying theoretical language from which the subsamples are
generated.

As mentioned in Section 3.1, for this strategy to be statistically valid, it is impor-
tant that subsamples are drawn with uniform probabilities. Specifically, this means
that all elements of the source corpus have equal probability of being drawn into a
subsample. It ensures that the probability of an element to occur in a subsample is
entirely governed by its frequency in the source corpus and therefore approximately
its probability in the underlying language. Only in this case is it possible for subsam-
ples to preserve the statistical properties of the source corpus and to converge to the
underlying language in the limit of their size. That is, only in this case do subsamples
have a high likelihood of being credible and reliable representatives of their source
corpus.

Otherwise, that is in the case of non-uniform biased sampling, the statistical prop-
erties of subsamples generally become altered with respect to those of the source cor-
pus. As a result, they will with high likelihood not be representative of the source
corpus and not converge to the original underlying language, but to a different one
which will in general possess different distributional properties. Thus and according
to the theory of Subsampling, in the same way that uniform subsamples are repre-
sentatives the original source corpus and its underlying language, biased subsamples
represent a different, hypothetical source corpus with a different underlying language.

In this chapter, we realise the chance that lies in biased subsampling and adopt
the the Subsampling method to obtain samples from varying hypothetical sources in
which properties of human languages are altered. The sampling biases we use are
derived from information theory and we construct two biased sampling algorithms
as instantiating examples. The subsamples we obtain from these algorithms enable
a comparative approach to studying the effects of the properties that are altered by
biased subsampling.

Concretely, we use Zipf’s law again as the case study, so the sampling algorithms
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we devise are aimed at weakening the Zipfianness of the sampled subcorpora. These
will enable a comparative approach to studying learnability, our other topic of interest,
and specifically the effect of Zipf’s law on the learnability of language. We begin this
chapter by reviewing how comparative approaches have been achieved in the previous
work on the learnability of Zipf’s law and explain why these approaches are problem-
atic. As we shall see, removing the problems of these approaches lead naturally to the
information-theoretic approach we take.

4.1 Non-Zipfian Languages

In studying the effects of any quantitative property of language on any aspect of cog-
nitive processing, a convenient strategy is to take a comparative approach. That is,
we determine empirically how processing changes when the quantitative property in
question is changed. This is in fact a common strategy in cognitive science and has
also been employed by the learnability studies (Kurumada, Meylan, and Frank 2013
and Hendrickson and Perfors 2019) summarised in the introductory chapter of this
thesis (see Section 1.1).

Concretely, to gauge the effect of Zipf’s law on learnability, and as both these stud-
ies have done, the approach is to measure learnability in both Zipfian and non-Zipfian
languages. If the Zipfian languages turn out to be more learnable, then Zipf’s law is
concluded to have a positive effect on learnability, and vice versa. Such a compara-
tive approach requires at least two languages, a Zipfian one and a non-Zipfian one,
and it should be clear that the choice of both is a key ingredient. As is commonly
observed, and as we have re-confirmed in the previous chapters of this thesis, hu-
man languages are arguably Zipfian. So human languages are an obvious and the
most relevant choice for a Zipfian language in the comparative approach. But herein
lies also the problem, namely that all known human-like languages are Zipfian, even
when restricted to specific domains (see Piantadosi 2014). Searching for or explicitly
constructing a non-Zipfian language is therefore not straightforward and we therefore
devote the current section to explore the set of non-Zipfian languages from a theoret-
ical perspective.

One might expect this set to be immensely vast but is not quite as unrestricted as
one might think. Recall that Zipf’s law describes the relationship between the rank and
probability of the words in the vocabulary of a given language. Recall further that a
word’s rank is actually defined in terms of its probability, i.e. the most probable word
has rank 1, the second most probable word has rank 2, and so on. This implies that the
relationship between rank and probability is by definition monotonically decreasing
(although not strictly). Thus, all languages, including the non-Zipfian ones, trivially
have a decreasing rank-probability relationship over their vocabulary.

Being restricted to the set of decreasing functions, the possible rank-probability
relationships hence range from uniform (a flat non-decreasing relationship) to one
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where the word at rank 1 has probability 1 and all other ranks have probability 0 (the
steepest relationship). Zipfian languages lie relatively at the centre between these two
extremes, namely where the word at rank 1 has roughly twice as much probability
mass as rank 2, roughly three times as much mass as rank 3, and so on. Any other type
of rank-probability relationship, both more gradual and steeper, can be termed non-
Zipfian. However, usually, and both by (Kurumada, Meylan, and Frank 2013) and
by (Hendrickson and Perfors 2019), only more gradual relationships are considered
for non-Zipfian languages. In fact, both studies only use non-Zipfian languages with
uniform rank-probability relationships, the extreme of the spectrum of relationships
more gradual that Zipfian.

Having established the set of possible non-Zipfian rank-probability relationships,
it is still underspecified what the set of corresponding languages is. The vocabulary
is merely one aspect of a language and languages with vastly different grammatical
structure, for instance, can have the same rank-probability relationship. And for any
given shape of the relationship, most of the corresponding languages are in fact not
relevant for comparison with human languages since their structures and complexities
are not comparable to that of human languages. The precise structure and complex-
ity of human languages, however, is unknown and it is therefore not directly possible
to construct or even identify non-Zipfian languages that are apt for comparative ap-
proaches.

Presumably, this is a reason why both (Kurumada, Meylan, and Frank 2013) and
(Hendrickson and Perfors 2019) choose to sidestep the structural complexity of hu-
man language and construct their own, artificial languages, both Zipfian and non-
Zipfian. This allows them to keep all properties besides the rank-probability relation-
ship equal in the Zipfian and non-Zipfian languages and guarantees comparability.
The problem with such artificial languages for our specific context is, however, that
they are toy languages with very small vocabularies. Specifically, the vocabularies of
the languages in both studies consist of respectively maximally 36 and 28 types. Even
though the effects reported by both studies are likely to become even stronger with
larger numbers of types, such small vocabularies are clearly far from realistic for nat-
ural language. In learning tasks other than the highly specialised ones investigated by
these two studies, and especially in holistic language learning, small vocabularies are
likely to lead to misleading results.

To be more concrete, our objection mainly stems from the excessively long tail in
the rank-probability relationship of natural language, which is in fact also one of a core
property of Zipf’s law. And this long tail, which consists of the vast amount of (low-
probability) words in language, can of course only properly show when vocabulary
sizes are also vast. Equivalently, since the long tail is a core property of Zipf’s law, it is
even questionable to call languages with small vocabularies Zipfian. Simultaneously
and importantly, it has been found by (Blevins, Milin, and Ramscar 2017) that the tail’s
excessive length in natural language has immediate consequences on learnability. As
they argue and empirically illustrate, a long tail in the probability distribution over the
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vocabulary entails that most word types in any corpus will have an exceedingly low
frequency in that corpus. For a learner, this creates a problem of sparsity because most
observed word types will provide few or even just a single examples of themselves and
their usage. As (Blevins, Milin, and Ramscar 2017) further show, this sparsity prob-
lem is not simply countered by increasing corpus size but on the contrary becomes
even worse, since the tail is ever-growing. Yet even worse, the authors verify empir-
ically that the ever-growing tail implies that human language should be assumed to
have an unbounded vocabulary (cf. Section 1.1). This implies equivalently that the
morphological productivity of language has no bounds in the sense that new words
can always be created via the language’s morphological system. As an immediate
consequence, the tail in the rank-probability relationship of the language itself is in-
finitely long and the learner is not only faced with sparsity issues but even with the
impossibility to exhaust the language’s vocabulary in its entirety. It is this situation
which leads us to the conviction that comparative learnability assessments generally
need to respect the vastness and sparsity in the vocabularies natural language. Espe-
cially for studying general language learning, the non-Zipfian alternatives hence need
to have unbounded vocabularies and therefore unbounded morphology, just like their
human and Zipfian counterparts.

The assumption that the vocabulary is, at least in the theoretical language, un-
bounded leads to a further constraint on the set of possible rank-probability relation-
ships and further restricts the set of monotonically decreasing functions. Notably, this
constraint was neglected by (Hendrickson and Perfors 2019) in their discussion of
languages with unbounded vocabularies. The constraint stems from the axiom that
the probability distributions over the vocabulary must sum to one, 1 =

∑
w∈W P (w).

Clearly, if the vocabulary is unbounded, then this sum has an infinite number of terms.
But such an infinite sum does not converge unless P (w) decreases faster than 1

r(w)
in

relationship to r(w) (viz. the harmonic series, which does not converge). Hence, for
instance the uniform distribution, which is the alternative discussed by (Hendrick-
son and Perfors 2019), is not a valid probability distribution if the vocabulary is un-
bounded. In fact, given this constraint it turns out that Zipf’s law (with α close to 1)
is the most uniform possible distribution over an infinite vocabulary, i.e. it maximises
the entropy over the vocabulary (see the following section). This is a fact which is
often overlooked and on the contrary, Zipf’s law is seen as a particularly steep dis-
tribution for languages’ vocabularies (see e.g. (Kurumada, Meylan, and Frank 2013)
and (Hendrickson and Perfors 2019)). Thus, in the presence of an unbounded vocab-
ulary, the set of non-Zipfian languages is confined to those with a rank-probability
relationship steeper than Zipf’s law. As opposed to what was done in previous stud-
ies, non-Zipfian languages with relationships less steep than Zipf are an impossibility,
at least from a theoretical perspective.

On the other end, in the set of rank-probability relationships steeper than Zipf’s
law, the vast majority is too steep: Most of these relationships correspond to distribu-
tions which assign (effectively) positive probability to only a finite set of words and by
our assumption of an unbounded vocabulary these are excluded. A similar and even
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stronger conclusion was reached in a mathematical approach by (Corominas-Murtra
and Solé 2010) who argue that it may indeed be the case that Zipf’s law (withα close to
1) is the only theoretical possibility for the rank-frequency relationship of languages
with an unbounded vocabulary. Roughly speaking, they prove that all other, non-
Zipfian rank-probability relationships fall in one of two classes: If the relationship is
less steep, it leads to an unusable language because the Kolmogorov complexity of its
vocabulary becomes infinite. Otherwise, if the relationship is steeper, the vocabulary
is effectively bounded and this is again by assumption excluded.

To summarise, this high-level exploration of the set of rank-probability relationship
reveals that the theoretical and mathematical perspective leaves rather little room for
languages to be non-Zipfian. Instead, given that human languages have unbounded
vocabularies, the set of relationships is constrained to monotonically decreasing func-
tions with slope greater but not much greater than 1

r(w)
. Only then can the correspond-

ing probability distribution over the vocabulary be valid and effectively support a po-
tentially infinite set of words. Given the proof of (Corominas-Murtra and Solé 2010), it
is moreover possible that the rank-probability relationship is forced to be around 1

r(w)

and that truly non-Zipfian human-like languages are impossible. Indeed, we have
lead the discussion in such detail because this is a problem for the comparative ap-
proach and none of the previous learnability studies seem to have realised it. That
is, if there are no truly non-Zipfian languages, at least in the theoretical perspective,
then the comparative approach to assessing the learnability of Zipfian languages is
invalid.

4.2 Information-Theoretic Typicality

The conclusion of the previous section leaves us in a seemingly dire situation: We
would like to both take a comparative approach to the learnability of Zipfian lan-
guages and respect the vastness and sparsity that is typical to the vocabularies of
human languages. But at the same time, we have little to nothing to compare hu-
man languages with because the set of non-Zipfian human-like languages is difficult
to impossible to enumerate and moreover heavily restricted to the extent that it may
even be non-existent.

But all is not lost because two more points need clarification which have also been
neglected in the previous work of (Kurumada, Meylan, and Frank 2013) and (Hen-
drickson and Perfors 2019). First, notice that we spoke of languages being Zipfian or
non-Zipfian in the previous section. But of course, and this is closely connected to the
topic of Chapter 3 (cf. specifically Section 3.1), a language is merely a theoretical con-
cept and not itself observable; in particular not by a learner who will only ever receive
a finite sample from the language. So while it makes sense to speak of the learnabil-
ity of languages in a theoretical sense, we (and generally any learnability study) are
really assessing how learnable finite samples from these languages are. Both because
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our assessments can only be carried out on such finite samples and because they are
in fact what is relevant because they are what learners observe. Unlike the theoretical
languages, of which we have assumed that they are unbounded, samples could very
well be non-Zipfian, even uniform. The constraints discussed in the previous section
do not hold for them precisely because they are finite. Second, for both languages
and the samples from them, being Zipfian or non-Zipfian is not a binary quality. As
we have presented in the previous section, the set of rank-probability relationships is
the entire set of monotonically decreasing functions over the vocabulary (with further
restrictions in the unbounded case). Even though, as discussed, this set is heavily re-
stricted, it is still uncountably infinite. As for an uncountable set, one may hence speak
of a distance between rank-probability relationships in the sense that one relationship
may be more Zipfian than another. Equivalently, one can then speak of the degree of
Zipfianness of a relationship. We make this explicit here because the previous learn-
ability studies have indeed implicitly assumed that a language or sample can only
either be Zipfian or non-Zipfian. As we will see, and with the mathematical tools we
describe in the following, treating Zipfianness as a matter of degree instead, we can
overcome the problem that truly non-Zipfian languages are theoretically questionable
alternatives to human languages in the comparative approach.

Amazingly, and in fact the reason for the discussion above, the field of information
theory has a concept which formalises exactly this: the degree to which a sample is
similar to a given distribution, that is in our case, the Zipfianness of a sample. This
concept is known as typicality, itself derived from the typical set, a basic but not of-
ten used concept of information theory. In this section, we describe typicality and
how it can be applied to searching samples with reduced Zipfianness from human-
like languages. As a prerequisite we begin by defining entropy, the core concept of
information theory, and deriving the entropy of Zipf’s law.

Entropy

The information-theoretic entropy (see Cover and Thomas 2012, the standard refer-
ence of information theory) of a distributionP over a vocabularyW , denoted asH(P ),
is defined as

H(P ) =
∑
w∈W

P (w) log2

1

P (w)
= −

∑
w∈W

P (w) log2 P (w).

In words, H(P ) is the expected value of the length in bits that it takes to encode the
surprisal about encountering a word w ∈ W , where the surprisal is measured by 1

P (w)
.

As is intuitive, the surprisal is high if w has low probability according to P and vice
versa. Therefore, H(P ) = 0 if and only if there is a single w ∈ W which has P (w) = 1,
as in this case there is no surprisal and P is called deterministic. Conversely, H(P )
takes on its maximal value of log2 |W | if and only if P is the uniform distribution over
W . Hence, 0 ≤ H(P ) ≤ log2 |W |.
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For us, of course, the distribution over the vocabulary of interest is Zipf’s law. Re-
call from the introduction (Section 1.1) that its definition is

Pα,β(w) =
(r(w) + β)−α

ζ(α, β)
,

with α and β the law’s parameters and ζ(α, β) =
∑∞

i=1(i + β)−α the Hurwitz zeta
function. The derivation of the entropy of Zipf’s law on an unbounded vocabularyW
has, to the best of our knowledge, not been published before. Hence, we derive it here
ourselves:

H(Pα,β) = −
∑
w∈W

Pα,β(w) log2 Pα,β(w)

= −
∑
w∈W

(r(w) + β)−α

ζ(α, β)
log2

((r(w) + β)−α

ζ(α, β)

)
= −

∑
w∈W

[
(r(w) + β)−α

ζ(α, β)
log2((r(w) + β)−α)− (r(w) + β)−α

ζ(α, β)
log2(ζ(α, β))

]

= −
( ∑
w∈W

−α log2(r(w) + β)

(r(w) + β)αζ(α, β)

)
+
∑
w∈W

(r(w) + β)−α

ζ(α, β)
log2(ζ(α, β))

=
α

ζ(α, β)

( ∑
w∈W

log2(r(w) + β)

(r(w) + β)α

)
+ log2(ζ(α, β))

∑
w∈W (r(w) + β)−α

ζ(α, β)

=
α

ζ(α, β)

( ∑
w∈W

log2(r(w) + β)

(r(w) + β)α

)
+ log2(ζ(α, β)).

In the computational experiments we describe later in this chapter, we need to ac-
tually computeH(Pα,β) for given values ofα and β. For this, the term

∑
w∈W

log2(r(w)+β)
(r(w)+β)α

in the final line of the derivation is problematic since it has an infinite number of terms
and can therefore not be explicitly computed. Fortunately, an equivalent closed-form
expression exists, namely − ∂

∂α
ζ(α, β)), the negative partial derivative of the Hurwitz

zeta function. Therefore, taking the last line from above:

H(Pα,β) =
α

ζ(α, β)

( ∑
w∈W

log2(r(w) + β)

(r(w) + β)α

)
+ log2(ζ(α, β))

=
−α · ( ∂

∂α
ζ(α, β))

ζ(α, β)
+ log(ζ(α, β)).

This final form of the entropy of Zipf’s law has no direct intuitive interpretation
other than that it increases as a function of α and decreases as a function of β. The
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important aspect of deriving this form lies in that it allows for efficient computation
ofH(Pα,β), since it contains no sums and both the Hurwitz zeta function and its partial
derivative can be efficiently approximated with modern techniques.

Typicality

Having defined the entropy H(P ) and derived an explicit closed-form expression for
H(Pα,β), the entropy of Zipf’s law, we can now define typicality (see again Cover and
Thomas 2012): Given a source distributionP , the typicality function, a, maps a sample
S to a real number; this number indicates – in an intuitive sense – how typical it is to
obtain S when sampling from P . We hence speak of the typicality of S with respect
to P , measured by the typicality function. In our case, a sample is of course a corpus,
Cn = (w1, ..., wn), i.e. a sequence of n tokens. The formal definition of the typicality of
Cn with respect to some source distribution P is

a(Cn;P ) = H(P )− 1

n
log2

1

P (Cn)
= H(P ) +

1

n
log2 P (Cn).

The shape of a(Cn;P ) over allCn is similar to that of a quantile function (the inverse
sigmoid function), so most of the values of a are around 0. Its extremes are −∞ and
H(P ) since 1

n
log2

1
P (Cn)

takes on values between 0 and∞. Specifically, a(Cn;P ) = −∞
if and only if P (Cn) = 0, that is if Cn is impossible according to P . On the other hand,
a(Cn;P ) attains is maximal value of H(P ) if and only if P (Cn) = 1. Notice, however,
that for practically all sources P and corpora Cn, P (Cn) < 1, since all but the degener-
ate probability distributions assign positive probability to more than one element in
their domain. A notable exception is the empty corpus, C0 which has P (C0) = 1 for
all sources P and is therefore typical with respect to all P .

Another, and in fact the most interesting case is a(Cn;P ) = 0 which implies that
H(P ) = − 1

n
log2 P (Cn). In this case 0 < P (Cn) < 1 is ”just right” and we say that Cn

is typical for P . Typical because in this case, P is the most likely among all probability
distributions to have generated Cn by random sampling (although that P need not
be unique in being the most likely). This aspects becomes clearer by turning to our
specific source of interest, Zipf’s law i.e. Pα,β , and looking at a special property of it.
Namely, the fact that the words in a corpus are independent from each other under
Zipf’s law. This is formally stated as Pα,β(Cn) =

∏n
i=1 Pα,β(wi) (cf. Section 2.2.2 where

we have also made use of this property). The independence property allows us to
rewrite the definition the typicality function a as follows:
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a(Cn;Pα,β) = H(Pα,β) +
1

n
log2 Pα,β(Cn) = H(Pα,β) +

1

n
log2

n∏
i=1

Pα,β(wi)

= H(Pα,β) +
1

n

n∑
i=1

log2 Pα,β(wi) = H(Pα,β)− 1

n

n∑
i=1

log2

1

Pα,β(wi)
.

Notice that in the final identity, the second term is in fact an average: The average
negative log-probability of the words wi in the corpus Cn under Pα,β . Notice further
that the negative log-probability of the words in the vocabulary is actually also used
in the definition of the entropy, H(Pα,β except only that there, the expectation is taken
rather than the average. The fact that this is the only difference between the two terms
of the final identity makes it particularly clear why the typicality function a captures
typicality in the intuitive sense: The average negative log-probability of the word types
in Cn is close to H(Pα,β) (and a(Cn;Pα,β) close to 0) if the types’ normalised frequen-
cies are on average close to the respective probabilities assigned by Pα,β . That is, at
least on average, the empirical distribution over the vocabulary that arises from Cn

(by taking normalised frequencies) mirrors the theoretical distribution Pα,β and in
this case, it is intuitive to speak of Cn to be typical with respect to Pα,β .

A core theorem of statistics and already made use of in Section 3.1, the difference
between an average and the corresponding theoretical expectation vanishes in the
limit of the size of the sample (known as the weak law of large numbers, see e.g. Gne-
denko 2018). Hence, the average negative log-probability converges to the expected
negative log-probability and the latter is exactly the definition of entropy. This implies
that the typicality function a converges to 0 and importantly means that in the limit
of sample size any sample is typical. Convergence here happens because the law of
large numbers asserts that the normalised frequencies of the elements in a sample con-
verge to their theoretical probabilities as the sample grows to infinity in size (know as
Borel’s strong law of large numbers, see e.g. Wen 1991). For this type of convergence
to hold, the independence property we have used to rewrite the typicality function a
(and which Zipf’s law possesses) is crucial. Independence is however not necessary
for typicality to converge to 0, and indeed convergence theorems also exist for classes
of non-independent sources (see e.g. Algoet and Cover 1988). In general, the fact that
typicality converges to 0, regardless of the precise mode of convergence, is known as
the Asymptotic Equipartition Property (AEP, (Cover and Thomas 2012)).

Importantly, however, the typicality a(Cn;P ) only converges to 0 if P is the true
underlying source of Cn, that is only if Cn is really sampled from P . Otherwise, if
Cn is sampled from a different source Q, then a(Cn;P ) converges in absolute value
to DKL(P || Q) (Cover and Thomas 2012). DKL is the Kullback-Leibler divergence
between P andQ and its interpretation is that of a measure of distance between prob-
ability distributions. Thus, as sample size grows, typicality reveals whether a consid-
ered source is the true source of that sample or not by converging to non-zero values.
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Stronger yet, since it converges to the Kullback-Leibler divergence, typicality even re-
veals how different from the true source the considered source is.

If it is not in the limit of their size, however, and even if the considered source is the
true one, virtually no samples will have typicality exactly 0. This is because of random
fluctuations which are almost guaranteed in finite samples and imply that we will in
practice never encounter any samples which we would call typical, even if we know
their true source. For this reason, we relax which samples we call typical by introduc-
ing a tolerance parameter ε. This leads to definition of the typical set, historically the
original concept and in fact already an important ingredient of the original theorems
which founded information theory (namely Shannon’s source-coding theorem, Shan-
non 2001). The typical set Anε (P ) of a source P is simply the set of all samples which
have typicality close to zero, or formally:

Anε (P ) = {Cn : |a(Cn;P )| ≤ ε}.

Clearly, by increasing ε, more samples Cn become part of the typical set Anε but
how much ε needs to be increased for a proportional increase of Anε depends on the
source P . Hence, it is not an easy task to find a εwhich reflects in an intuitive or useful
way the set of typical samples for a given source P . In the following section, where
we need to establish a usable ε for Pα,β , i.e. Zip’s law, we will do so by a heuristic
which empirically turns out to be workable. We emphasise here, however, that the
dependence on a subjectively chosen ε implies that the typical set does not provide a
truly objective notion typicality. For this reason, the typical set cannot, for instance,
fully replace statistical tests of whether a given distribution is an appropriate source
for an observed data set. In the following sections, we will therefore complement the
typical set with the statistical tests we have already used in the previous chapters,
namely the R2

McF and the BIC (see Section 2.2.2).

Applying Typicality

So how do typicality and the typical set, i.e. the function a(Cn;Pα,β) and the set
Anε (Pα,β), help overcome the problems we have identified for the comparative ap-
proach to the learnability of Zipf’s law? Recall that the eventual goal is to determine
whether the presence of Zipf’s law in corpora of natural language leads to increased or
to reduced learnability in comparison to corpora that are non-Zipfian. In the discus-
sion of the previous section, we have established two issues of the previous learnability
studies that we are convinced need to be respected: First, the compared Zipfian and
non-Zipfian corpora need to both preserve the properties of natural language, specifi-
cally the immensely large and sparse vocabularies typical of natural language, for the
effects of Zipf’s law to properly show. And second, that for a language and its cor-
responding corpora to be considered non-Zipfian they need not, and in fact cannot,
be at an extreme of the distributions over the vocabulary (such as the uniform dis-
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tribution as used in the previous studies). Information-theoretic typicality addresses
both of these issues by providing an objective and nuanced notion of Zipfianness of a
corpus. Importantly, it allows to assess the Zipfianness of any corpus, however large
and complex, and with typicality we are not restricted to using corpora of which we
by construction know that they are non-Zipfian.

Specifically, and regardless of the issue with determining ε, Anε (Pα,β) provides a
theoretically well-founded and practical formalisation of whether a given corpus Cn

is to be considered Zipfian. Given a value of ε, we simply call Cn Zipfian if Cn is a
member ofAnε (Pα,β) and non-Zipfian otherwise. Importantly, and to be explicit, a cor-
pus may be non-Zipfian according to Anε (Pα,β) even if it superficially still resembles
Zipf’s law. This is in fact the decided advantage of the information-theoretic formali-
sation over other statistical tests (cf. Section 4.4.1).

Actually, to gauge the effect of Zipfianness on learnability of corpora we need not
even use Anε (Pα,β) to separate corpora into Zipfian and non-Zipfian ones. Instead,
we can directly establish the correlation between the Zipfianness of a corpus Cn, as
measured by a(Cn;Pα,β), and the learnability ofCn. Finding that learnability is higher
with in corpora of higher Zipfianness (i.e. typicality closer to 0), we would conclude
a positive correlation between Zipfianness and learnability and hence that Zipf’s law
aids learnability. Using the typicality function a directly instead of the typical set Anε
removes the dependence on ε and moreover yields a more fine-grained perspective.
As we see it, using typicality as the correlate with learnability yields the most reliable
and detailed representation of the effect of Zipf’s law on the learnability of corpora. It
is also the most versatile approach, since again, typicality and hence Zipfianness can
be measured on any corpus.

4.3 Implementations

At least from a theoretical perspective, actually establishing the correlation between
Zipfianness and learnability of corpora is simple: for any size n and any possible cor-
pus Cn of natural language, measure both a(Cn;Pα,β), its typicality, and its learnabil-
ity (we ignore for now that measuring learnability may not at all be straightforward
and discuss this issue in the conclusion of the current chapter, Section 4.4.3). But of
course, practically enumerating all corpora of natural language is an impossible task,
both because this set has infinite size and because we do not know the underlying
language, so we cannot definitely decide whether a given corpus is the outcome of
natural language. Even randomly sampling corpora to form Monte Carlo estimates of
the correlation is impractical for the same reason that we have no way to (randomly)
construct entire corpora.

Now we have arrived at essentially the same situation as the one we described in
the first section of the previous chapter (Section 3.1): We require multiple corpora
to construct, or rather estimate, the distribution over values of quantitative measures
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from these corpora – previously, these measure were ranks and frequencies, now they
are typicality and learnability. But, as before, corpora are a scarce resource, so we
resorted in the previous chapter to the Subsampling method, which was indeed also
the core of that chapter. Thus, since the situation is the same here as it was before, we
can re-use the Subsampling method for estimating the correlation between typicality
and learnability. That is, given an original large corpus Cn, we take m subsamples of
size k, {Ck

1 , ..., C
k
m}. Then, for each Ck

i we measure both its typicality a(Ck
i ;Pα,β) and

its learnability and the k pairs of values we obtain in this way are our estimate of the
correlation.

While in principle a valid approach, the straightforward Subsampling method will
unfortunately not work for this case. In order to estimate the full correlation between
typicality and learnability we need set of subsamples {Ck

1 , ..., C
k
m} to cover a large

range of typicality values, i.e. the values of a(Ck
i ;Pα,β) must be sufficiently different for

different i. However, according to the AEP (see previous section), for large subsample
sizes k, this will precisely not happen. Instead, as described, the AEP implies that all
corpora converge in typicality in the limit of their size and therefore, as k grows, the
set of typicality values of them subsamples will converge to a single value. This single
value is the Zipfianness of the underlying corpus Cn and if, as discussed in Chapter 2,
Cn is large enough, then it will be highly Zipfian and hence have typicality close to 0.
Since the typicality of the randomly sampled subcorpora converges to this value, they
converge to being Zipfian as their size grows. Differently put, if n and k are large, then
sufficiently non-Zipfian subcorpora (i.e. corpora with typicality significantly different
from 0) will practically not occur, rendering the Subsampling method of little use for
this case.

As explicitly mentioned in the introduction of the Subsampling method (Section
3.1) and the beginning of the current chapter, the original Subsampling method hinges
on uniform sampling to lead to statistically valid estimates. Here, and indeed the cen-
tral contribution of the current chapter, we develop a way to avoid the AEP by remov-
ing uniform sampling and adopting biased sampling schemes. These are intended to
actively destroy the AEP and stop subsamples from converging in typicality. With the
help of biased sampling, we can overcome the problem of convergence and can then
actually still use the Subsampling method to estimate the correlation between Zipfi-
anness and learnability as described above. Thus, the method we propose here could
be seen as a special case of the general Subsampling method with the only change in
the sampling procedure.

In our case, a biased sampling scheme which avoids the AEP is simultaneously
one that favours subcorpora which are atypical with respect to Zipf’s law, i.e. less
Zipfian subcorpora receive higher probability of being sampled. At the same time,
a sampling scheme which achieves this should not beyond necessity disrupt other
statistical properties of language besides Zipf’s law. That is, a good sampling scheme
should yield subcorpora that are less Zipfian but otherwise as natural, i.e. actually
typical with respect to the language as a whole, as possible. This is not straightforward
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since there are many competing theories of how Zipf’s law arises and its interaction
with other properties of language is complex (see e.g. Piantadosi 2014 or A. Corral
et al. 2009 and cf. Section 1.1). In this section, we propose and describe just two of the
many possible biased sampling schemes with the potential to achieve this two-fold
goal. In the following section, we evaluate the outcomes of biased sampling, that is
we investigate the properties of the sampled subcorpora.

A note on terminology: Even though the algorithms we describe are indeed bi-
ased sampling schemes which produce random subcorpora by successively adding
sampled elements to an initially empty set. Differently put, these algorithms are con-
structive sampling schemes. Nonetheless, we will call them ”filtering” algorithms and
the class of algorithms ”Filtering method”. We do so for conciseness and because the
sampling schemes work by imposing restrictions on which element may be sampled
next at a given point in the sampling procedure. We do not mean to imply a connection
to statistical algorithms such as particle filters or rejection samplers (both part of the
field of Monte Carlo methods, Rubinstein and Kroese 2016 gives a broad overview),
although such connections are likely to be worth investigating.

4.3.1 Typicality Filter

The first filtering algorithm we describe is arguably the most general of any potential
sampling scheme, since it works in direct reference to the typicality of subcorpora and
it is hence that we call it Typicality Filter (TF). In brief, the TF successively samples
sentences and keeps track of the typicality of the resulting subcorpus, thus ensuring
that the typicality value does not surpass an initially specified value. Before fully
describing the algorithm that is the TF, we specify its preliminaries, that is its inputs
and parameters.

First, and these inputs are the same as in the general Subsampling method of Chap-
ter 3, we require an initial large corpusCn from which we will sample subcorpora. For
this, we use the same corpora of 50·106 tokens as before in Chapters 2 and 3. More-
over, we need to set the size k of these subcorpora. Since we are sampling under a
restriction, it is not guaranteed that a subset of Cn which satisfies that restriction ac-
tually exists for a given size k. We simply determined k via trial-and-error and found
k = 1·106 to be both large enough and to work for all languages that we use. Notice
that this is also the size of subsamples we have been using throughout Chapter 3 and
indeed we have done so to keep the results there comparable to the results here.

The second set of parameters pertains to typicality and consists of a reference distri-
bution P and a tolerance parameter ε. While the reference distribution P is estimated
via MLE, ε needs to be determined experimentally, much like k. In the case of ε, this
is however more involved than simple trial-and-error.

As the reference distribution, with respect to which we measure typicality during
the sampling procedure, we use of course Zipf’s law, Pα,β ; what needs to be deter-

71



mined are the law’s parameters α and β. From the theoretical perspective, here is
actually the greatest caveat: The point of biased subsampling is to produce samples
which do not share some of the same distributional properties of the language they
were generated from, in particular we are trying to generate non-Zipfian samples from
a Zipfian language. But, to reiterate what we have emphasised above, the distribu-
tional properties of the underlying language are not observable and in particular the
shape and extent of Zipf’s law, together with the closest-fitting parameters α and β,
are not observable. These are, however, precisely what we would need for the refer-
ence distribution as input to the TF. Although there is, once more, no true solution to
this problem, for practicality’s sake we can still form a reasonable guess at the values
of α and β. Namely, we estimate them via MLE from the corpus Cn, the same corpus
from which we will also draw subsamples. These MLE parameter values α̂ and β̂ are
the ones we reported in Chapter 2, Table 2.2 and they are indeed the parameter val-
ues we use for the reference distribution for the TF. For comparison, and indication of
the quality of the MLE parameters as proxies for the parameter values in the theoret-
ical underlying language, refer to Section 3.3.2 (specifically Table 3.1), where we have
analysed the convergence behaviour of the rank-frequency relationship.

The TF’s parameter ε has the same interpretation and use as in the definition of
the typical set: it determines which subsamples are considered Zipfian. That is, given
a ε and the reference distribution Pα̂,β̂ , a subsample Ck is considered non-Zipfian if
it has |a(Ck;Pα̂,β̂)| > ε (which is equivalent to Ck 6∈ Akε(Pα̂,β̂)). And indeed, given a
value of ε, the TF returns only randomly sampled subcorpora which are non-Zipfian,
i.e. satisfy this condition. Similar to the issue with setting the TF’s parameter k, we
do however not have a guarantee that subcorpora exist which are non-Zipfian, i.e. are
outside of the typical set for a given ε (the lower the value of ε, the lower the likelihood
that this is the case). As the consequence, we cannot simply choose any value for ε by
must determine it experimentally; here, we take a more principled approach for which
we actively exploit the AEP: According to the AEP, and as detailed at the outset of the
current section, if a subcorpus is the outcome of uniform subsampling, then it will
with high likelihood typical. So if we take any set of uniformly sampled subcorpora
{Ck

1 , ..., C
k
m} then we can assume the vast majority of them to in fact be typical due to

the AEP. If we now measure the typicality of each of these subcorpora, a(Ck
i ;Pα̂,β̂), then

we obtain an estimate of the distribution over typicality values of subcorpora which
are actually typical to Pα̂,β̂ . This distribution has a mean µ and a standard deviation
σ and we choose the value of ε in terms of µ and σ. Specifically, by using ε = µ ± σ
we can be relatively certain that the TF does not return any subsamples which should
have been considered Zipfian and vice versa. Further, by using ε = µ ± 2 ∗ σ, we
can increase the reduce the set of subcorpora which can be returned by the TF, that is
increase the threshold of typicality which subsamples need to surpass to be considered
non-Zipfian. In general, we introduce a factor f and use ε = µ± f ∗ σ as the input to
the TF; in the following section, we hence speak of f as the TF’s parameter, not of ε.

With the parameter values specified, we are ready to describe the Typicality Fil-
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1: procedure TypicalityFilter(Cn, k, Pα,β, ε)
2: ntokens← 0
3: i← 1
4: while ntokens < k do
5: candidate s ∼ Cn . ∼ indicates sampling (without replacement)
6: candidate C← (s1, ..., si, candidate s)
7: if a(candidate C;Pα,β) < −ε then . use > ε for the other direction
8: si+1 ← candidate s . candidate s is the next sample
9: ntokens← ntokens + |si| . || is the length in words

10: i← i + 1
11: end if
12: end while
13: return Ck = (s1, .., si) . result is a subcorpus with k tokens and i sentences
14: end procedure

Algorithm 1 A pseudo-code implementation of the Typicality Filter. See the main text for a detailed high-
level description. Notice that the resulting subcorpusCk has at least k tokens (rather than exactly k), since
whole sentences are being added during sampling.

ter itself, its pseudo-code is given in Algorithm 1. To reiterate, the output of the TF
is a random subcorpus Ck of the original corpus Cn such that |a(Ck;Pα̂,β̂)| > ε, i.e.
Ck 6∈ Anε . The TF samples Ck by starting with an empty set of sentences and succes-
sively adding (randomly drawn) sentences until the desired number of tokens k is
reached. At each step, after having successfully sampled i sentences, the algorithm
first samples a new candidate sentence s uniformly without replacement from Cn.
It then tentatively adds s to the already sampled subcorpus of i sentences, forming
the new subcorpus C = (s1, ..., si, s), and measures the typicality of that subcorpus,
a(C;Pα̂,β̂). Only if a(C;Pα̂,β̂) < −ε is s accepted as the next sample i + 1, otherwise, s
and C are discarded. In both cases the algorithm re-starts the procedure by sampling
a new sentence s from Cn.

Notice that rather than comparing the absolute value of a(C;Pα̂,β̂) to ε (as in the
definition of Akn(Pα̂,β̂)), the TF compares its raw value to −ε. This is because, as men-
tioned in Section 4.1 and together with the definition of typicality in the previous
section, a subcorpus can be atypical in two directions: it can either have too low prob-
ability under Zipf’s law, leading to a negative typicality value, or too high probability,
leading to positive typicality. The definition of the typical set removes this distinction
but we make it explicit for the TF. In the given implementation, checking if typicality is
lower than−ε, the TF will only return subcorpora which are atypical, i.e. non-Zpfian,
because their probability is too low under Pα̂,β̂ .

Finally, a note on the efficiency of the TF which evidently does not need to make
involved computations besides a(C;Pα̂,β̂) in each iteration. At the same time, having
to compute the typicality from scratch in every iteration would lead to unacceptable
complexity because computing a(C;Pα̂,β̂) requires iterating over all tokens in the sub-
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corpus C. This would lead at least to quadratic complexity of the TF in its parameter
k. Fortunately, typicality is additive, or more precisely, the log-probability of a corpus
under Zipf’s law is, due to the law’s independence property. Hence, as a new sentence
s is added to a subcorpus C, the typicality of the resulting subcorpus a(C ∪ s;Pα̂,β̂)
can be efficiently updated by adding the log-probability of s to the already calculated
log-probability of C. Re-calculating the typicality of the grown subcorpus hence only
requires iteration over the added sentence and this makes the individual iterations of
the TF very efficient. Even if each iteration has low time complexity, the overall time
complexity of the TF can still be prohibitive for very large k (at least larger than 1·106).
The reason is that sampling a subcorpus Ck from Cn with the TF is essentially equiva-
lent to performing a randomised search over all subcorpora of size k in Cn. Worse yet,
because of the AEP, in fact most of the sentences which are drawn during the sampling
procedure will have to be discarded. Hence, the number of iterations will most often
by far exceed k, but is at least bounded by n.

4.3.2 Speaker Restriction Filter

Note that the Typicality Filter we just described also works for distributions other than
Zipf’s law because the reference distribution can simply be exchanged for a different
one. That is, the Typicality Filter works directly on the abstract concept of typicality
and does not make reference to any of the specific properties of Zipf’s law. A filtering
algorithm can, however, do exactly this in order to sample non-Zipfian subcorpora.
The Speaker Restriction Filter (SRF) which we describe in this Section is an example
of such a filtering algorithm.

The motivation for the SRF is the following: As (A. Corral et al. 2009) have already
noticed, the presence of Zipf’s law is connected to the patterns of inter-appearance
distance of words in language. While some words have consistently very short inter-
appearance distances, that is they usually recur almost immediately after having been
uttered, others have thousands of words in between two of their occurrences. It should
be clear, that the words with low inter-appearance distances are the high-probability
ones and that there can only be few of them. Vice versa, the vast majority of words
has high inter-appearance distances, as they are the low-probability words. This ex-
actly mirrors Zipf’s law in which there are few high-probability words and many low-
probability ones, and in fact, these patterns in inter-appearance distance is clearly one
of the reasons that Zipf’s law arises.

The SRF works by disrupting exactly this property of language, namely by pre-
venting words from having too short inter-appearance distance. The rationale is that,
by obliterating in the sampled subcorpora those phenomena which give rise to Zipf’s
law, the Zipfianness of these subcorpora will also be affected. Specifically, the SRF
imposes a minimum inter-appearance distance on the sampled subcorpus and the
words in it are not allow to recur below this distance. This will according to our ex-
pectation prevent the high-probability words from accumulating too high frequencies
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of occurrence, and in particular from accumulating the excessively high frequencies
characteristic for the high-probability words in Zipf’s law. Low-probability words, on
the other hand, will likely not be affected by the SRF’s sampling scheme. These words
are characterised by high inter-appearance distances, so enforcing a minimum dis-
tance will not affect their frequencies in a subsample returned by the SRF. Thus, we
predict that the SRF reduces Zipfianness mainly by lowering the frequencies of the
high-probability words but leaving the rest of the distribution over words relatively
untouched. Otherwise, however, we cannot make precise predictions about how Zip-
fian the subcorpora returned by the SRF will be, in particular not terms of their typ-
icality with respect to Zipf’s law; this has to be determined empirically and we do so
in the next section.

The way the SRF achieves restricted minimal inter-appearance distances is simple:
While successively sampling sentences, much alike the Typicality Filter, the SRF blocks
a sentence from being sampled next if it contains any of the words which occurred
in the previously sampled sentences. This way of working suggests an analogy in
terms of speakers which is the reason why we call the SRF so. Namely, we imagine
a speaker who utters sentence after sentence. But, in contrast to a typical speaker,
this speaker tries to avoid repeating words too often. Thus, if she uses a certain word
in the current utterance she will wait a few utterances before using the word again.
Since the Speaker Restriction Filter is genuinely equivalent to such speaker behaviour,
it describes a cognitively possible, albeit unrealistic, generative process of language.
We emphasise that this is in opposition to the Typicality Filter which does produce
non-Zipfian subcorpora but has nothing to say about what makes them non-Zipfian.

The speaker’s waiting time in the analogy above, we will call history length h and is
the SRF’s only parameter besidesCn and k (both of which it shares with the Typicality
Filter and the general Subsampling method). For a concrete example of the meaning
of h, consider the case h = 1: A subcorpus Ck, i.e. a sequence of sentences (s1, ..., si),
returned by the SRF will satisfy sj ∩ sj+1 = ∅ for all j < i. (We abuse notation to
let the intersection of two sentences denote the intersection of the words in them.) If
h = 2, then for all j < i − 1 it will be that case that sj ∩ sj+1 ∩ sj+2 = ∅, i.e. all triples
of successive sentences in Ck will have no words in common. And so on for higher h.
Once again, the usable values for h need to be determined empirically, since there is
once more no guarantee that a subcorpus Ck of the original corpus Cn actually exists
which satisfies the constraint for a given h. Just like with the parameter k, we do so by
simple trial-and-error.

Notice in these examples that the order of sentences is important, so different re-
orderings of the sentence of a subcorpus returned by the SRF may not be valid outputs
anymore. This is in emphasised contrast to the Typicality Filter which may return any
ordering of the same set of sentences. Yet more importantly this is also in contrast
to Zipf’s law which, due to its independence property, cannot distinguish between
different orderings of a corpus. For this reason, there exist subcorpora with the same
distribution over their words (and therefore the same typicality with respect to Zipf’s
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1: procedure SpeakerRestrictionFilter(Cn, k, h)
2: s1 ∼ Cn . ∼ indicates sampling without replacement
3: ntokens← |s1| . | | signifies length (here, number of words)
4: i← 2
5: hist←Queue(s1)
6: forbidden← ∅ ∪ s1 . the union of sentences is the union of their words
7: while ntokens < k do
8: candidate s ∼ Cn

9: if candidate s ∩ forbidden = ∅ then
10: si ← candidate s . candidate s is the next sample
11: ntokens← ntokens+ |si|
12: i← i+ 1
13: hist.push(si)
14: if |hist| > h then
15: hist.pop()
16: end if
17: forbidden←

⋃
s∈hist s

18: end if
19: end while
20: return Ck = (s1, .., si) . result is a subcorpus with k tokens and i sentences
21: end procedure

Algorithm 2 The pseudo-code implementation of the Speaker Restriction Filter.

law) of which one is a valid output of the SRF while the other is not.
The practical implementation of the SRF is not as simple as that of the Typicality

Filter, since the SRF needs to keep track of unions and intersections of words while
sampling, see Algorithm 2. Its implementation does, however, admit a simple high-
level description: Given a corpus Cn to randomly draw sentences from, a target sub-
corpus size k and a history length h, the SRF starts by sampling a single sentence s1
uniformly from Cn. After having already successfully sampled i sentences, a newly
sampled sentence is accepted as sample i+1 only if none of the words in it occur in any
of the h previously sampled sentences. This is repeated until the sampled sentences
amount to at least k tokens.

In closing the description of the SRF, we outline how it can be adapted into the
opposite effect, namely into working on the low-probability words of the vocabulary.
The analogous realisation is that there are so many low-probability words, and the
rank-frequency relationship’s tail correspondingly as heavy because speakers intro-
duce new words at a very high rate during discourse. By disallowing such behaviour,
that is by putting a bound on this rate, the relationship’s tail can be reduced. To be
more precise, one may restrict the number of sentences which introduce new words,
that is introduce a parameter v which controls how many sentences need to be sam-
pled before a new word may be introduced into discourse. Setting v = 1 would imply
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that every next sentence to be sampled can introduce new words, v = 2 that only ev-
ery second sentence can introduce new words, and so on. Already at v = 2, half of
the sentences in the resulting subsample would not have introduced any new words
and the size of its vocabulary heavily reduced due to lower numbers words with low
frequencies. At the same time, the frequencies of high-probability words would be
left largely unchanged, as these could continue to recur across sentences at their orig-
inal high rates. Thus, adapting the SRF in this way would affect the Zipfianness of
resulting subcorpora in a similar, albeit opposite, way.

4.4 Results

The algorithms of the Typicality Filter (TF) and the Speaker Restriction Filter (SRF),
Algorithms 1 and 2, can be quite directly practically implemented as such, except for
minor efficiency improvements. So we have done and created large numbers of sub-
samples, for each filtering algorithm, from our Wikipedia corpora. The current sec-
tion is devoted to analysing those subsamples and empirically validating the filtering
methodology.

Rather than putting filtering to use for learnability analyses straight away, we anal-
yse here the subsamples themselves because we need to ensure that they have the
properties we expect, as laid out in the first part of the current Chapter. The analysis
carried out in this section is hence mainly one about the usefulness of the filtering
methodology for learnability and other assessments. Regardless of the soundness of
the derivation of the filtering algorithms, the usefulness of filtered subsamples is by
no means given: The sampling biases of both the TF and the SRF are too complex to
be easily derived analytically. This entails that, besides the explicit restrictions we im-
pose during sampling in these filtering algorithms, we cannot make precise informed
predictions about the properties of filtered subsamples. The effects of the sampling
biases of the TF and the SRF therefore need be analysed by empirical means. We focus
here on three of the core aspects of the subsamples’ properties but emphasise that an
empirical investigation is necessarily non-exhaustive.

As mentioned in the algorithms’ descriptions, the values of some of their param-
eters need to be determined by experimentation, that is, whether subsamples with
those values can indeed be found by the sampling algorithms. These parameters are
the subsample size k, for both algorithms, the factor f to compute ε = µ + f ∗ σ for
the TF and the history length h for the SRF. In order to ensure comparability, we used
the same value of k for both algorithms and all seven languages. While slightly higher
values could have been possible, k = 1·106, or 2% of the original corpus Cn that was
sampled from, is large enough for our purposes and leads to reasonable run-times of
the filtering algorithms. Notice that the same sample size k = 1·106 was also used in
Sections 3.2, 3.3.1 and 3.3.2 of the previous Chapter. This was indeed done so that the
findings about uniformly sampled, typical subcorpora from the previous Chapter can
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f 2 6 10 14 18 22 26

EO • • • • • • •

FI • • • • • •

ID • • • • •

KO • • • •

NO • • • • • • •

TR •

VI • • • • •

h 2 4 8 16 32 64 81

EO • • • • •

FI • • • • • • •

ID • • • • • • •

KO • • • • • • •

NO • • • • •

TR • • • • • • •

VI • • • • •

Table 4.1 Per-language indication of the values of the parameter f of the Typicality Filter (left table) and
the parameter h of the Speaker Restriction Filter (right table) used. See Section 2.1 for the meanings of the
language codes. A bullet point (•) indicates that the respective filtering algorithm managed to find a set of
m = 10 subcorpora for the corresponding combination of language and parameter value.

be compared to those about filtered subcorpora in the current Chapter.
For the respective parameters f and h of the TF and SRF we used a range of values

rather than just a single one. Both for a more detailed perspective on the effects of the
filtering algorithms and because we are eventually interested in subsamples from the
entire spectrum of typicality, as explained at the outset of Section 4.3. The used ranges
of f and h can be found in Table 4.1; the specific values were, rather arbitrarily, chosen
to create an evenly spaced spectrum. The respective maximum values are the high-
est values of these ranges for which subsamples could be found after a fixed amount
of run-time of the filtering algorithms. Notice the partly strong differences between
languages: Whereas Esperanto and Norwegian allow for factors f of up to 26, for Ko-
rean the TF could not find subsamples for factors beyond 14; we consider the case of
Turkish an outlier which we will not investigate for now. The pattern is reversed for
the history length h of the SRF, where Esperanto, Norwegian and Vietnamese are the
only languages which did not permit history lengths of up to 81.

It is conceivable that some patterns in the maximum parameter values are tied
to language-specific properties, such as the morphological differences discussed in
2.1. However, as also discussed there, it is not clear to what extent these patterns
are tied to Wikipedia rather than the languages themselves which is why we refrain
from interpretation of the patterns for now. Either way, it is promising to see that all
languages collectively allow relatively high parameter values and that each language
allows a high value for at least one of the filtering algorithms.

In the same vein as Chapter 3, we take multiple subsamples for each type of sub-
sampling (uniform, TF and SRF) and each value of the parameters f and h in order to
obtain an estimate of the sampling distribution rather than just a point estimate. Like
in Chapter 3 we usem = 10, i.e. take 10 subsamples per sampling type and parameter
value. Thus, to be explicit, three sampling types, seven values for each parameter and
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10 subsamples each yields 150 subcorpora for each language.
As Table 4.1 shows, Finnish admitted the highest parameter values for both the TF

and the SRF. For this reason, all properties of the subcorpora resulting from the two
filtering algorithms are investigated using Finnish. Just like in the previous chapter
(see the final paragraph of Section 3.1), it would be highly interesting, and most likely
be instructive about the nature of both the filtering algorithms and the rank-frequency
relationships across languages, to analyse all languages and carry out cross-linguistic
comparisons. But again, such analyses would go beyond the scope of this thesis,
and so we focus on verifying the general properties of the filtering algorithms. We
do, however, provide all results given below (plots, graphs and numerical values) at
github.com/valevo/Thesis/figures. As these results show, the results we present
in terms of Finnish generally also hold for the other languages, although some trends
are more or less extreme.

4.4.1 Assessing Zipfianness

The first and most obvious assessment to be done on the outcomes of the TF and the
SRF is how Zipfian they are. Here, we assess the Zipfianness of the resulting subcor-
pora in two ways: First, their typicality because this the formal measure of conformity
of a sample to a theoretical distribution of our choice and arguably one of the most ob-
jective. Bear in mind, as described in Section 4.3.1, that typicality of the subcorpora is
measured with respect to the parameters of Zipf’s law found in the source corpus Cn,
Pα̂,β̂ . Hence, if a subcorpus is atypical with respect to Pα̂,β̂ , this could also imply that
the subcorpus conforms to Zipf’s law with different parameters α and β. Second, we
assess the shapes of the rank-frequency relationship in the filtered subcorpora, as we
have already done in Section 2.2. Although such an assessment will be less rigorous
than in terms of typicality, it is likely closer to the intuitive notion of Zipfianness be-
cause it is difficult to anticipate the shape of rank-frequency relationships of atypical
subcorpora.

These two ways of assessment also correspond closely to the dichotomy between
the TF and the SRF: We know how typical the outcomes of the TF will be with respect
to Pα̂,β̂ because it is an explicit ingredient of the TF’s definition. What we can however
not predict precisely is what shapes of the rank-frequency relationship we will find
in these outcomes. The situation is reversed for the SRF, whose sampling restriction
directly affects the shape of the relationship in the sampled subcorpora. But here we
do not know in advance how typical these subcorpora will be with respect to Zipf’s
law.

We analyse the typicality of the subcorpora in reference to Table 4.2 which is con-
structed by first computing the typicality a(Ck

i ;Pα̂,β̂) for each subcorpus of the set of
subcorpora {Ck

1 , ..., C
k
m} obtained from each sampling type and each parameter value,

leading to the sets {a(Ck
1 ;Pα̂,β̂), ..., a(Ck

m;Pα̂,β̂)}. From each such set, we then compute
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UNIF TF SRF

2 6 10 14 18 22 26 2 4 8 16 32 64 81

µ 6.55 6.54 6.41 6.20 5.97 5.70 5.40 – 6.48 6.44 6.37 6.29 6.19 6.08 6.04

σ .002 .002 .0 .0 .0 .001 .0 – .001 .001 .001 .001 .001 .001 .001

Table 4.2 Meanµand corresponding standard deviationσ of the distributions over typicalitya(Cki ;Pα̂,β̂)of
individual subsamplesCki . For each sampling type, one of uniform (UNIF), Typicality Filter (TF) and Speaker
Restriction Filter (SRF), and each value of the filtering parametersf andh, respectively, the distribution over
typicality values is constructed fromm subsamples. Values for the TF with f are not available, see Table 4.1.

its mean µ and standard deviation σ which correspond to the two rows of Table 4.2.
Notice that σ is negligible for all sampling types and parameters value which is why
we did not additionally plot the histograms. In the case of uniform subsamples, σ
is this low because the asymptotic equipartition property (see Section 4.2) has lead
the typicality of uniformly sampled subcorpora to largely converge to the mean µ.
The same is most likely also true for the filtered subsamples which have converged to
their respective means. Even though these are the outcome of biased subsampling,
their typicality will also converge in the limit and the low collectively low values of σ
indicate a high degree of convergence at our subsample size of k = 1·106. Thus, while
a low standard deviation σ is per se not surprising, it makes it all the more remarkable
that filtered subcorpora with filtering parameter values as high as f = 22 and h = 81,
respectively, exist.

As expected, higher values of the parameter f of the TF indeed lead to lower mean
typicality of the resulting subcorpora. Even though this was clear from the algorithm’s
design, empirically verification is still necessary due to caveats in estimation. The low-
est achieved typicality value is 5.4, which corresponds to 80% of the typicality of uni-
form subsamples, and which is not a drastic reduction in typicality in absolute terms.
In relative terms, however, the high degree of convergence of due to the asymptotic
equipartition property implies that corpora with typicality value 5.4 have essentially
0 probability under uniform sampling, which leads to typicality values strongly con-
centrated around 6.55. Since it is this probability which determines the significance of
the reduction in typicality, at for our purposes, already the reduction of typicality at
f = 6 can be termed significant. Additionally, notice that increases of the parameter f
lead to steady, linear decreases in typicality which underlines the significance of the
reductions.

This is in contrast to the decrease typicality values across parameter values of the
SRF: Even though there is steady decrease, the parameter values need to increase
quadratically, the reason for which lies in the interpretation of the parameter h as the
history length. Generally, the SRF leads to a less pronounced reduction in typicality
as compared to the TF. Seeing as it was not given that the SRF would result would
even result in noticeable reductions of typicality, it does however achieve remarkable
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Figure 4.1 Mean rank-frequency relationships,r(w)andf(w), obtained from uniform subsampling (”UNIF”,
green), the Typicality Filter with parameter f = 22 (”TF 22”, blue) and the Speaker Restriction Filter with
parameterh = 81 (”SRF 81”, orange).

effects. With the same reasoning as above, the reductions can be deemed significant,
even at h = 2.

Thus, Table 4.2 confirms that the primary goal of filtering has been achieved, namely
a way to sample subcorpora of lowered typicality. Again, since sampling subcorpora
with typicality values as low as those of the filtered subcopora with uniform sam-
pling is practically impossible, the reductions by both filtering algorithms have signif-
icance. Specifically, their significance should suffice to convince a hypothetical learner
that the filtered subcorpora are not outcomes of the original Zipfian language, since
that assigns probability close to 0 to them. In addition, the steady and roughly linear
decrease in typicality across the values of the parameters of the filtering algorithms
shows that typicality can be quite precisely controlled. This enables the original mo-
tivation for filtering, namely mapping out the spectrum corpora in terms of their typ-
icality, as the filtering algorithms allow to sample subcorpora of arbitrary typicality
within the achievable bounds.

Even though typicality provides an exact and objective measure, the values of Ta-
ble 4.2 are too abstract for an intuitive understanding of how the filtering algorithms
affect Zipfianness. For this it will be more revealing to analyse the resulting rank-
frequency relationships themselves and we begin with a direct comparison between
the three types of sampling: uniform, TF and SRF. The mean rank-frequency relation-
ships resulting from each sampling type are shown in Figure 4.1. The relationship
obtained from uniform sampling has the shape familiar from Chapters 2 and 3 and
can informally be termed Zipfian. Notice that the shape resulting from the TF could
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(a) Typicality Filter (b) Speaker Restriction Filter

Figure 4.2 (a) Mean rank-frequency relationships obtained from the Typicality Filter with parameter values
f = {14, 18, 22} (see the legend of the plot). (b) Mean rank-frequency relationships resulting from the
Speaker Restriction Filter with parameter values h = {32, 64, 81}. Mean relationship from uniform sub-
sampling (labelled UNIF) also plotted in both (a) and (b) for comparison.

also be characterised as Zipfian, albeit less so because of the downward curvature in
the graph’s upper body. Indeed, the two graphs are mainly distinguished by their
steepness, with the TF leading to a more uniform relationship.

Presumably, this is also the reason why the TF achieves subcorpora with lower
typicality than the SRF. It leads to more uniform word frequencies in the entire graph,
not just the head as is the case with the SRF. The body of the relationship contains
more words and more probability mass, leading to a genuinely more uniform word
distribution. Thus, although the effect of the SRF is visually more salient, it is confined
to the head and affects less of the overall probability mass. At the same time, one could
argue from a graphical point of view that the SRF leads to less Zipfian subcorpora
because of its strong deviation from the straight line predicted by Zipf’s law. Notice,
finally, that the tails which result from the three types of sampling are virtually the
same. This confirms our theoretical images of the TF and the SRF, since neither was
designed to affect the relationship’s tail and indeed neither empirically does.

Notice that we used the highest values of the respective parameters f and h of
the TF and SRF in Figure 4.1. In order to contextualise these, and to see how the
rank-frequency relationship evolves across different parameter values, we constructed
Figures 4.2a and 4.2b. With the mean relationship from uniform subsamples as the
reference in both plots, we plot the mean rank-frequency relationships extracted from
the outcomes of filtering with the three highest parameter values.

Similar to the mean typicality values in Table 4.2, while a linear increase in f leads
to a linear increase of the effect of the TF on the relationship, h needs to increase
quadratically for the SRF’s effect on the relationship to increase linearly. This is vis-
ible in the relative difference between the shapes at h = 64 and h = 81 which is not
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UNIF TF SRF

2 6 10 14 18 22 26 2 4 8 16 32 64 81

α 1.15 1.15 1.14 1.13 1.12 1.12 1.11 – 1.14 1.14 1.14 1.13 1.13 1.13 1.12

β 4.55 4.55 4.63 4.73 4.82 4.98 5.2 – 5.0 5.2 5.4 5.59 5.76 5.85 5.89

R2
McF .66 .66 .65 .64 .63 .62 .60 – .66 .65 .65 .65 .64 .64 .63

rel. BIC 2.99 2.98 2.92 2.83 2.74 2.64 2.56 – 2.95 2.93 2.9 2.87 2.82 2.78 2.76

Table 4.3 Results of performing MLE of Zipf’s law, i.e. its parameters α and β, on the mean rank-frequency
relationship obtained from each sampling type and parameter value of the filtering algorithm. UNIF stands
for uniform subsampling, TF for the Typicality Filter and SRF for the Speaker Restriction Filter. The values
below TF and SRF are the values of parameters f and h of the Typicality Filter and the Speaker Restriction
Filter, respectively. See Section 2.2.2 for the interpretation ofR2

McF and relative BIC.

as strong as the difference between h = 32 and h = 64. Besides this, we observe clear
trends in both plots: Across values of f , the TF successively leads to more uniform
distributions over words and hence to a more flat rank-frequency relationship. The
downward curvature in the relationships’ body becomes more pronounced while its
tail stays the same across all of f ’s values. The same is case for the SRF where growing
parameter values apparently only affect the head of the relationships. The head curves
off more and more until the point where the most frequent words have approximately
equal mean frequency with h = 81.

Finally, for a more formal assessment of the Zipfianness of the rank-frequency re-
lationships resulting from the TF and the SRF, we perform MLE of the parameters α
and β of Zipf’s law. Specifically, we perform MLE on each mean rank-frequency re-
lationship obtained from each sampling type and each parameter value the results of
which are given in Table 4.3. With regards to the parameters α and β themselves, we
find that neither of them seems to converge across values of the parameters f and h of
the filtering algorithms. The steepness parameter α steadily decreases and although
the decrease is slight, α is an exponent which implies that even small changes lead to
large differences. The decrease is slightly stronger in the case of the TF which mir-
rors the stronger decrease in typicality values. β, on the other hand, steadily increases
which was strongly expected for the SRF because β controls the curvature in the head
of the distribution. It is not clear, however, why β increases across the values of the
parameter of the TF, since the curvature does not increase.

More importantly for an assessment of the fit of Zipf’s law to these rank-frequency
relationships, the goodness-of-fit measures R2

McF and relative BIC (see Section 2.2.2)
show a steady decrease, indicating that both the fit of and statistical support for Zipf’s
law weakens as the parameter values of the filtering algorithms increase. We empha-
sise that these goodness-of-fit measures are relative to the each of the respective MLE
parameters and not to Pα̂,β̂ obtained from Cn. This is an important to notice since if
even the best-fitting parameters lead to a worse fit, then this implies that the rank-
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frequency relationships really are less Zipfian. Hence, even though the outcomes of
the TF visually still appear quite Zipfian in the sense of conforming to a straight line,
the decreasing values of the measures R2

McF and relative BIC reveal that the TF really
does decrease Zipfianness and not only typicality with respect to Pα̂,β̂ .

On the other hand, the decrease in goodness-of-fit is not quite as strong as ex-
pected and the R2

McF and relative BIC in fact still lend support to Zipf’s law, even for
the highest values of f and h. This implies that the filtering algorithms do not com-
pletely eliminate Zipf’s law from the subsamples’ rank-frequency relationships which
is an unattainable goal in any case. It further points towards the dichotomy between
goodness-of-fit measures and typicality. Whereas the former will not be drastically
lower as long as there are traces of Zipf’s law in the rank-frequency relationships of
filtered subsamples, the latter can still be strongly reduced. With reduced values, typ-
icality will indicate that a distribution other than Zipf’s law should be favoured as the
hypothesised source, even if Zipf’s law is still a reasonably good source.

Whether or not typicality is sufficiently reduced in the outcomes of the TF and the
SRF will depend on the specific application. However, as argued, the reductions we
reported in Table 4.2 are significant enough to convince a hypothetical learner that
the filtered subcorpora are not the outcome of the Zipf’s law found in the source cor-
pus Cn. This conjecture is strengthened by the fact that we used the mean ranks and
frequencies r(w) and f(w) for our analysis of the rank-frequency relationships in the
filtered subcorpora, akin to the methodology described in Chapter 3. Just like the
means from uniformly sampled subcorpora, these means also approximate their the-
oretical values. The degree of deviation of the filtered mean rank-frequency relation-
ships from the original ones we observed in Figures 4.1 and 4.2 and verified by MLE
(Table ??) indicate that the underlying theoretical languages really are less Zipfian.

4.4.2 Assessing Normality

As mentioned in Section 4.1, besides being less Zipfian, the samples used for learn-
ability analyses of Zipf’s law should also preserve as many of the statistical properties
of the original language as possible. This is important, since differences in learnability
may otherwise arise trivially and it would be difficult to isolate the influence of Zipf’s
on learnability.

At the same time, we have kept these statistical properties vague and the simple
reason is that they are complex and largely unknown. For if they were known, then
language could be explicitly and precisely statistically modelled, but the current state
of the field of language modelling shows clearly that this is not the case. Hence, there
can as of now be no definitive statements as to the degree to which a corpus represents
the statistical properties of the entire underlying language it was sampled from. No-
tice, however, that if we knew the underlying language, then we could measure this
degree precisely, namely by the core tool of this Chapter: typicality. As described in
Section 4.2, a corpus is typical with respect to a distribution precisely if it mirrors that
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UNIF TF SRF

2 6 10 14 18 22 26 2 4 8 16 32 64 81

φ 9.62 – 9.75 – 9.19 – 7.83 – – 10.0 – 10.6 – 11.5 –

τ 0.72 – 0.73 – 0.75 – 0.786 – – 0.72 – 0.72 – 0.72 –

R2
McF 0.99 – 0.99 – 0.99 – 0.99 – – 0.99 – 0.99 – 0.99 –

rel. BIC 1600 – 1420 – 727 – 278 – – 1610 – 1560 – 1480 –

Table 4.4 Results of performing MLE of Heap’s law, i.e. its parameters τ and φ, on the mean vocabulary
growth obtained from each sampling type and parameter value of the filtering algorithm. See Section 2.2.2
for the interpretation ofR2

McF and relative BIC. Missing values are omitted because estimation of vocabu-
lary growth is expensive.

distribution or equivalently has the same statistical properties.
That said, we still make a non-exhaustive attempt at judging the typicality of the

filtered subcorpora with respect to language as a whole, not just Zipf’s law, and thus
how ”normal” they are. Specifically, we investigate some of the known and empirically
testable statistical properties of language in the filtered subcopora in comparison to
those same properties in uniformly sampled subcorpora of the same size. The higher
the degree of similarity between the filtered and the uniformly subsampled in terms
of these specific properties, the higher the likelihood that the properties are similar
in the underlying languages. At the same time, some differences are to be expected,
as changing the rank-frequency relationship of words will likely lead to changes in
properties of language that are entangled with the word distribution. In a way that
will become precise below, we need to therefore distinguish between such differences
and those differences which, if found, would arise from the filtering algorithms them-
selves and would be seen as undesirable.

Vocabulary Growth

In deciding which statistical properties to compare, a convenient avenue is to look
at the other known quantitative regularities of language, such as Heap’s law which
we have introduced in Chapter 2 for this purpose. The advantage here is that we
know what shape the growth of the vocabulary size V (n) should have in samples of
language, namely one which can be described by V (n) ≈ τ ∗ nφ for some parameters
τ and φ. This was confirmed in Section 2.3, where the MLEs of Heap’s law showed
near-perfect fit, as indicated by the goodness-of-fit measures R2

McF and relative BIC.
As Table 4.4, which was constructed in the same way as Table 2.3, shows the filtered
subcorpora have the same near-perfect fit, that is their respective vocabulary growths
are as well described by the equation of Heap’s law. Hence, the filtered subcorpora,
or rather their underlying theoretical languages, are as Heapian with respect to their
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Figure 4.3 Mean vocabulary growth obtained from uniform sampling (UNIF), Typicality Filter (TF) with pa-
rameter values f = {18, 22} and Speaker Restriction Filter (SRF) with parameter valuesh = {64, 81} (see
label in plot).

MLE parameters as the original language they were sampled from.
At the same time, looking at the actual vocabulary growth, we find some differ-

ences. This is reflected in the MLE parameters τ and φ in Table 4.4 as well as Figure
4.3, which displays the mean vocabulary growths themselves. Most strikingly, the
TF leads to increased vocabulary growth and two about twice the vocabulary size at
1·106 tokens in comparison to uniform subsamples. As for the SRF, it looks as though
it leads to increased vocabulary growth but the MLE parameters reveal that this in-
crease is negligible. In fact, even the increase in vocabulary growth due to the TF is not
as substantial as it may seem, and specifically it is still on the same order as that of the
other sampling types. Using the MLE parameters, we can derive that one would need
to increase sample size to about 1·1018 for the order of vocabulary size to be different
between the TF and uniform sampling.

Finding exactly the same rates of vocabulary growth in the different types of sam-
pling would have been surprising in any case: The distribution over words, which is
changed as the outcome of the filtering algorithms, is surely connected to vocabulary
growth since the latter governs the probability that a word is sampled. The TF and
Speaker Restriction force more uniform word distributions which implies that low-
probability words gain probability mass and therefore occurrence probability which
implies that the vocabulary grows faster. In this way, it can even be argued that
changes in vocabulary growth are a direct outcome of reducing Zipfianness, not just

86



a side-effect. Thus, even if increased vocabulary growth would rather trivially imply
reduced learnability of the filtered subsamples, this increase is itself a direct conse-
quence of reduced Zipfianness and sill pertains to the learnability of Zipf’s law.

Length Distributions

A second statistical property of corpora and their underlying languages we turn are
the distributions over the lengths of their constituents and we will consider both word
and sentence length. On the one hand, these distributions provide controls for the nor-
mality of the filtered corpora that are easy to compute and to examine. On the other
hand, we have also chosen them for their interpretations and applications in the lit-
erature: Treating letters and words as symbols in sequences and without assigning
them any prescribed meaning, we enter again the realm of information theory and
speak of the amount of information a word carries. According to information theory,
the information content of a word depends on its probability of occurrence as well as
the degree to which it is tied to specific contexts (Piantadosi, Tily, and Gibson 2011).
Words with high probability and low specificity carry low information content and
vice-versa. Importantly for our context, taking the information contents of all words
in corpus together is then an indicator of how much information the corpus as a whole
carries. Since the information content of a word is costly to compute, and can only be
approximated in any case, we turn to a surrogate: its length. Word length has tradi-
tionally been viewed as correlating negatively with frequency (originally put forward
by Zipf, Zipf 1932, and known as Zipf’s law of Abbreviation, see also Bentz and Ferrer
Cancho 2016). But recently evidence and arguments have been put forward that the
length of a word correlates more closely with its information content (Mahowald et
al. 2013). We therefore stipulate that a difference in word length distribution between
corpora points towards a difference in their information content and emphasise the
importance this gives to the word length distribution as a simple control.

We compare the distributions by a simple inspection and for this purpose we have
plotted them in Figure 4.4a. In order to construct the distribution for each sampling
type and filtering parameter value, we have pooled the individual distribution in each
of the m subsamples which correspond to that type and parameter value. That is, the
length distributions in Figure 4.4a display estimates of the word length distributions
the underlying languages rather than of particular subsamples. Upon visual inspec-
tion, all distributions are highly similar, having the majority of their similarly spread
out mainly between word lengths 5 to 11. Even though a Kruskal-Wallis test for equal
means and a Levene’s test for equal variance are below significance level, this is un-
surprising given our large data size and that the processes which generated the length
distributions really are different. As we are only interested in verifying similar distri-
butions, we are inclined from Figure 4.4a to conclude that high similarity is indeed the
case. To the extent that the collective information content of the words in a corpus ad-
equately represents the information content of the corpus itself, this finding indicates
that filtering leads to subcorpora with comparable amounts of information content.
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(a) Word Length Distribution (b) Sentence Length Distribution

Figure 4.4 (a) Distribution over word lengths obtained from uniform sampling (UNIF), Typicality Filter (TF)
with parameter values f = {18, 22} and Speaker Restriction Filter (SRF) with parameter values h =
{64, 81} (see labels). Each distribution is formed by pooling the individual distributions from the m sub-
samples into one. (b) Same as (a), but taking the distributions over sentence lengths.

A rationale similar to that of word lengths can and has been applied to sentence
length, although here more pandering to the intuition that if a sentence contains more
words, then it is also more likely to convey a higher amount of information. The dis-
tribution over sentence lengths has found common application in stylometry and es-
pecially in authorship attribution, since it has proven sensitive enough across corpora
to even reveal the author of a given corpus. Hence, again besides as a simple control,
differences in sentence length distribution can point towards deeper differences such
as information content. Figure 4.4b, which shows the sentence length distributions,
was constructed in exactly the same way as Figure 4.4a. Unlike the word distribution,
it is obvious that both filtering algorithms alter the distribution over sentence lengths.
Whereas the distribution that arises from uniform subsampling has high variance and
has significant mass up to sentence lengths of 20, the distributions from the filtering
algorithms show strong biases for sentence lengths below 10.

At least for SRF, this observation has a simple possible explanation: The restriction
during sampling is that a newly sampled must not contain any words of the h previ-
ously sampled sentences and shorter sentences have a higher chance of satisfying this
restriction. This would lead to a bias for short sentences of the form we observe in
Figure 4.4b. Since the TF shows essentially the same bias, there could, however, also
be a reason connected to Zipfianness itself. We leave this unexplored for now but note
that it has consequences for the filtered subcorpora. According to the given rationale,
shorter sentences contain less information and the substantially decreased sentence
lengths in filtered subcorpora indicate that they have lowered information contents.
This may have considerable implications for learnability analyses, since it is a basic
result form information theory that one way for data to be highly learnable is if it has
low information content. Yet more concretely, short sentences are likely to be easier to
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learn to any learner because they are less likely to be syntactically complex than their
long counterparts.

Even though a bias for short sentences can be explained by the filtering algorithms’
design, it is somewhat curious to find such great differences in sentence length distri-
bution between filtering and uniform sampling, especially given no such bias in the
word length distribution. Figure 4.4b reveals another factor which may have enabled
such strong biases for shortness: Notice that the filtering algorithms’ distributions
have relatively large mass on sentence length 1 and generally a considerable mass on
sentence lengths below 4. But, of course depending on the language, sentences of
lengths below 4 should be rare because at such short lengths, they can barely convey
any information. Finding this is likely an artefact of Wikipedia which, as an encyclo-
pedia, contains a high number of lists, tables and enumerations, the elements of which
are often parsed into separate sentences. Using a corpus other than Wikipedia or re-
moving the shortest sentences before subsampling could hence remedy the filtering
algorithms’ biases.

Lexical Diversity

Besides information theoretic information content, it is of course the semantics of lan-
guage which has a large influence on its communicative value. In verifying that the
filtering algorithms do not impair the communicative value of the sampled subcor-
pora, we would like to also verify that the semantics of the subcorpora are similar.
While semantics is not necessarily inherently a statistical property of language, the
two are intricately connected and this has been formalised by distributional semantics
(which dates back much further but is extensively discussed in Sahlgren 2006). In this
framework, semantic similarity is based on statistical patterns of co-occurrence and
measured in high-dimensional so-called semantic spaces into which the elements of
language are projected. What we mean by similar semantics can therefore be stated in
terms of the semantic space which indeed captures statistical properties of language:
If the semantic spaces which arise from different corpora are, in rather vague terms
for now, similar in their granularity and dimensionality, then corresponding corpora
could be characterised as having similar degrees of semantic expressivity.

Unfortunately, constructing and dealing with semantic space is an involved task
and beyond the scope of this thesis. So we once more turn to surrogates, which we
find in measures of lexical diversity which have seen a wide range of applications
across linguistic fields (for instance in clinical linguistics, e.g. Watkins et al. 1995, in
analysing language learning, e.g. Malvern et al. 2004 and Foster and Tavakoli 2009,
in sociolinguistics, e.g. Bradac and Wisegarver 1984, or in computational linguistics,
e.g. Cybulska and Vossen 2014). Lexical diversity is commonly meant to capture the
richness and variability of word usage in a given corpus and generally the converse
of repetition and redundancy. Although it is a very crude and oversimplifying surro-
gate for the semantic expressivity of a corpus, frequent use of varied and specialised
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words in that corpus would generally lead to the corresponding semantic space being
densely populated and hence highly expressive.

Among the most commonly used measures for lexical diversity is the type-token
ratio (TTR) of a corpus, simply dividing the size of its vocabulary by the number of
its tokens. Besides being overly simple, the problem with the TTR is that it would not
add anything to our discussion because of its close relation to vocabulary growth and
Heap’s law; notice that Heap’s law describes how the TTR evolves across number of
tokens. Hence, the similarities between the filtered and the uniformly subsampled
corpora we have seen analysing vocabulary growth would be exactly the same when
looking at their TTR. Requiring measures of lexical diversity which are not equivalent
to the TTR, we choose the more sophisticated MTLD and HD-D. (P. M. McCarthy and
Jarvis 2010)

HD-D, itself an analogue of voc-D but more efficient to compute, measures lexical
diversity in terms how evenly frequency mass is distributed and among the words in a
given corpus Ck. Formally, for each word w in Ck, it computes the probability pw that
w occurs in a randomly drawn set of words of a fixed size. This probability is given
by the hypergeometric distribution and depends on fCk(w), the frequency of w in Ck.
HD-D is then simply the sum

∑
w pw, i.e. the total probability that any of the word

types in Ck occur in the randomly drawn fixed-size set of words. Thus it captures the
intuition that lexical diversity should be high if the corpus Ck contains many words
with high frequency and low if only few words occur frequently.

MTLD takes a different approach and measures lexical diversity by the mean length
of subsequences ofCk which are above a certain fixed TTR. That is, MTLD attests high
lexical diversity forCk if there are many long sequences inCk that have high TTR. No-
tice that, even though it is defined in terms of TTR, MTLD is relatively independent
of the overall TRR of Ck since MTLD also depends on how evenly word types are
spread across Ck. Because both HD-D and MTLD contain parameters in their defini-
tions whose values are arbitrarily chosen and which influence their magnitude, their
absolute values on given corpora are not meaningful and are therefore only to be in-
terpreted comparatively.

Just as we have done previously we compute HD-D and MTLD for allm individual
subcorpora for each sampling type and filtering parameter value and compare the
resulting distributions. The means and variance of these distributions, respectively
for HD-D and MTLD, are given in Table 4.5 and since the variances turned out to
be negligible compared to their corresponding means, we refrain from plotting the
distributions.

Generally, both HD-D and MTLD clearly indicate that filtered subsampling leads
to more lexically diverse corpora and the values of both measures increase with the
filtering algorithms’ parameter values. Where HD-D and MTLD differ is in the order-
ing between filtering algorithms: Both the TF and the SRF show the same increase in
HD-D across their respective parameter values and in both cases the increase is very
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UNIF TF SRF

2 6 10 14 18 22 26 2 4 8 16 32 64 81

µ HD-D 0.82 – 0.84 – 0.89 – 0.93 – – 0.85 – 0.88 – 0.93 –

σ HD-D 0.0 – 0.01 – 0.01 – 0.0 – – 0.01 – 0.01 – 0.01 –

µ MTLD 3090 – 4540 – 12757 – 39827 – – 4239 – 6024 – 9944 –

σ MTLD 101 – 30 – 696 – 264 – – 66 – 120 – 170 –

Table 4.5 Means µ and standard deviations σ of the respective distributions over HD-D and MTLD values.
For each sampling type, uniform (UNIF), Typicality Filter (TF) and Speaker Restriction Filter (SRF), and each
respective filtering parameter value, numbers below, the distribution over lexical diversity values is con-
structed from m subsamples. Missing values were omitted because calculation of both HD-D and MTLD
is expensive.

moderate. As measured by MTLD, the Speaker Restriction leads to similarly moderate
increase of lexical diversity but the situation is quite different for the TF. In terms of
MTLD, the lexical diversity of the outcomes of the TF explodes, showing higher than
linear growth across values of the parameter f .

Being defined in terms of the frequencies of the individual word types in a given
corpus, HD-D in fact assigns lexical diversity in relation to the rank-frequency rela-
tionship of that corpus. The more evenly frequency mass is distributed among word
types, i.e. the flatter the relationship, the higher HD-D. Due to the use of the hyper-
geometric distribution, HD-D is however a non-linear function of the flatness of the
rank-frequency relationship and can therefore not be directly predicted from the re-
lationship’s shape. Apparently, the changes in the rank-frequency relationship that
the TF and the SRF lead to (see Figure 4.1) have similar consequences for the value
assigned by HD-D.

The fact that this is different when measured by MTLD is likely to be understood
in connection to the differences in vocabulary growth we have observed above, see
Figure 4.3. There, as well as here, does the TF lead to much more marked increase.
Even though MTLD is not a direct function of the vocabulary size ((P. M. McCarthy
and Jarvis 2010) report a correlation of 0.3), the increases in MTLD values are con-
sistent with the vocabulary growths. Hence, although it is curious that the TF leads
to such an explosion in MTLD values, we can find a likely explanation in terms of
vocabulary size. Seeing as the MTLD is a function of the lengths of token sequences
which surpass a certain fixed TTR, it is apparent that most of the sentences in the
subcorpora sampled by the TF surpass that TTR individually. This entails that the
individual sentences have uncommonly high lexical diversity and are likely highly
complex sentences.

Once again, it is reasonable to expect that increased lexical diversity is generally
also an inherent outcome of the reduced Zipfianness, i.e. more uniform rank-frequency

91



relationships, in the filtered subcorpora. HD-D measures lexical diversity in terms of
how uniformly frequency is distributed across word types in a given corpus which
is indeed how the filtering algorithms achieve lowered Zipfianness. As for MTLD,
and as we have observed above, the filtering algorithms lead to increased vocabulary
growth which implies higher TTR which in turn increases the chance for long token
sequences with individually high TTR. Increase of MTLD in the filtered subsamples
is therefore an outcome just as expected as increased vocabulary growth.

In sum, moderate increase in lexical diversity due to filtered subsampling is an ex-
pectable side-effect of lowered Zipfianness. The SRF indeed exhibits such moderate
increase with respect to both HD-D and MTLD. On the other hand, the explosion in
MTLD by the TF shows that it increases lexical diversity beyond what lowered Zipfian-
ness predicts. Apparently, for the TF to sample subcorpora with more uniform word
distributions, requires it to sample lexically highly diverse sentences. As it seems,
only such sentences are sufficiently atypical under Zipf’s law. As sentences with ex-
treme lexical diversity are individually also atypical under language as a whole, this
dampens the typicality of the resulting subcorpora. Of course, it is impossible for the
TF to sample less Zipfian subcorpora without affecting the individual sentences in
them. But optimally, it would do so by sampling sentences in which lexical diversity
is uniformly moderately increased.

Summarising our investigation into the normality of filtered subcorpora, we have
looked at their vocabulary growth, length distributions and lexical diversity and com-
pared them to those found in uniformly sampled corpora. Returning to the rationale
at the outset of this section, we argued that high similarity between filtered and uni-
formly sampled subcorpora in terms of these properties can be seen as evidence that
filtered subcorpora retain a high degree of typicality under the language they were
sampled from.

We have observed that filtering leads to evident changes in all studied properties,
except the distribution over word lengths, and in all cases, except the sentence length
distributions, there is a clear trend of the filtering algorithms leading to more extreme
values of these properties. That is, higher values of the algorithms’ parameters f and
h lead to increased vocabulary growth and lexical diversity. Because of the observed
differences and, even stronger, such trends, it seems necessary to conclude that the
filtered corpora are not ”normal”, typical samples from the original language.

It is worth noting that the observed trends are consistent with decreasing Zipfi-
anness across parameter values of the filtering algorithms and particular decreasing
typicality under Zipf’s law (see 4.2). This elucidates that fact that the objective of fil-
tering is a min-max problem, namely that, as mentioned, typicality under Zipf’s law
is to be minimised while typicality under the original language is to be maximised,
that is left unchanged with respect to uniform sampling. As mentioned throughout
this Section, however, samples with minimal Zipfianness and maximal typicality un-
der the source language are impossible to attain. The simple reason being that the
distribution over words in the original language is both highly Zipfian and integral
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component. As mentioned at the outset, we therefore need to shift from requiring
no or little difference in statistical properties between uniformly sampled and filtered
subcorpora to requiring that the magnitude of the difference is low enough and that
these differences do not distort the statistical properties’ basic shape.

With this relaxed requirement for normality of the filtered subcorpora, the ob-
servations of this section become more positive: We find that although vocabulary
growth rates increase as a result of filtering, they stay on the same order and more
importantly, Heapianness, i.e. the adequacy of Heap’s law as a description of vocab-
ulary growth, does not decrease. Similarly, we find clear but moderate increase in
lexical diversity as measured by HD-D. As both vocabulary growth and lexical di-
versity can be expected to grow with more uniform word distributions, we are thus
inclined that the observed changes are effects of the changed rank-frequency relation-
ship itself. This, together with the fact that the distribution over word lengths, which
is not obviously tied to the relationship’s shape, remained largely unchanged leads us
to attest relatively high normality, that is typicality, to the filtered subcorpora.

Additionally, the way in which we construct atypical samples, namely by filtered
subsampling, has the pronounced, albeit trivial advantage that a high degree of nor-
mality is guaranteed: Since the filtered subcorpora are actual subsets of the original
source corpus, that is they consist entirely of real sentences, it is given that they are
internally valid and therefore typical. For instance, all filtered subcorpora contain
only syntactically valid sentences and these are obviously more normal than syntacti-
cally invalid ones. This is also the first reason why the measures of normality we have
probed in this Section are principally about information content rather than informa-
tion structure; the second reason being that from a theoretical perspective, it is mainly
information content which determines learnability.

At the same time, as the sentence length distributions and the use of MTLD have
revealed, those sentences which do end up in filtered subcopora are largely excep-
tionally short and complex in terms of their lexical constituents. It is not clear why
reduced Zipfianness should result in shortened sentences and similarly, the observed
increase in MTLD, equivalent to an explosion, is beyond the expected effects of the
changed rank-frequency relationship. These outcomes are thus created by the filter-
ing algorithms themselves and hamper the typicality of the filtered subcorpora. As
it seems, both filtering algorithms only manage to find corpora which satisfy the re-
spective constraints by sampling excessively short and complex sentences. But, and
this is the essential reason why such a bias is undesirable and hampers normality, it
is certainly conceivable that corpora exist which consist of sentences with lengths and
lexical complexities typical for the original language while still having reduced Zipfi-
anness. Whether subcorpora of Wikipedia can fulfil this requirement, or whether it is
made impossible by the sampling restrictions of the TF and the SRF will remain open
for now.
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4.4.3 Assessing Sample Diversity

As mentioned in the descriptions of the TF and SRF (see Section 4.3.1), both algo-
rithms are equivalent to a randomised search or subcorpora which fulfil the given
constraints. We have also mentioned that the constraints are too complex to predict
whether such subcorpora even exist but as we have seen, they do, at least for our
source corpora and the parameter values given in Table 4.1. But even knowing that
such subcorpora exist, we cannot trust that they are sufficiently dissimilar, that is have
low enough overlap in terms of the sentences they consist of. Besides being an indica-
tor of the success of the filtering methodology as a whole, sufficiently low overlap of
the subsamples is an important prerequisite for the Subsampling method, since oth-
erwise variance estimates are likely to be misleading. Hence, this is what we ensure
in the current Section.

Specifically, we treat each subcorpus as a multi-set of sentences and define overlap
between subcorpora as multi-set similarity. To measure multi-set similarity we use
the multi-set generalisation of the standard Jaccard similarity index J . The Jaccard
similarity index of two sets A and B is simply defined as the size of their intersection
divided by the size of their union, J(A,B) = |A∩B|

|A∪B| (originally studied in Jaccard 1901).
A basic inequality in set theory, |A ∩ B| ≤ |A ∪ B| and therefore J takes on values
between 0 and 1 and can be regarded as a percentage. As a measure of similarity,
J(A,B) = 0 is equivalent to A and B being disjoint, whereas J(A,B) = 1 if and only
if A = B. The multi-set generalisation we use is defined as (see e.g. Kosub 2019)

J(A,B) =

∑
x∈X min(fA(x), fB(x))∑
x∈X max(fA(x), fB(x))

,

where fA(x) denotes the frequency of x in A and X is the universe that the elements
in A and B are drawn from, in our case the set of sentences in the source corpus Cn.
Although the multi-set generalisation may seem quite different, it reduces to the orig-
inal definition of the Jaccard similarity index ifA andB are sets rather than multi-sets,
and importantly, the generalised definition still has the same properties.

Recall that for each sampling type and each parameter value of the filtering algo-
rithms, we havem subsamples, {Ck

1 , ..., C
k
m}. We measure the Jaccard similarity index

on all pairs in this set of subsamples of which there are
(
m
2

)
and since we use m = 10

this results in 45 pairs. The similarity values of all these pairs taken together induce a
distribution, one for each sampling type and each filtering parameter and we compare
these distributions across them. Since, as has been the case before, the distributions
have negligible standard deviations, we give their mean values in Table 4.6 rather than
plotting them.

As expected, uniform subsampling leads to subcorpora whose average Jaccard
similarity indices are close to 0. That this is to be highly expected can be seen in the
number of different subcorpora there are: If the source corpusCn contains ` sentences
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UNIF TF SRF

2 6 10 14 18 22 26 2 4 8 16 32 64 81

sentence µ .01 .01 .02 .02 .04 .09 .27 – .02 .03 .03 .05 .07 .1 .12

sentence σ .0 .0 .0 .0 .0 .01 .01 – .0 .0 .0 .0 .01 .01 .0

token µ .63 0.63 .61 .57 .54 .52 .51 – .63 .63 .63 .62 .62 .62 .63

token σ .01 .01 .01 .0 .01 .01 .0 – .01 .01 .01 .0 .01 .0 .0

Table 4.6 Jaccard similarity J(Cki , C
k
j ) of all pairsCki andCkj of every set of subsamples of each sampling

algorithm and each algorithm parameter value: uniform (UNIF), Typicality Filter (TF) and Speaker Restriction
Filter (SRF). Reported values are means (µ) and standard deviation σ of all pairwise similarities in a set of
subsamples. Similarities computed on two linguistic levels, namely sentences and tokens.

from which the subcorpora are drawn and each subcorpus contains on average l sen-
tences, then there are approximately

(
`
l

)
possible distinct subcorpora. On our case, see

Table 2.1,
(
`
l

)
is on the order of at least 10100 000 and each individual subcorpus has a

probability on the order of 1/10100 000 of being drawn. Even if many of this large set
of subcorpora have rather high similarity, the probability of drawing high-similarity
subcorpora is minuscule.

Overall, it can be positively stated that also the filtered corpora have rather low
overlap with generally under 10% overlap of sentences. So apparently the filtering
algorithms do manage to find genuinely different subcorpora in their randomised
search. Even though these are much higher than the similarities among uniformly
sampled subcorpora, keep in mind that there are far fewer subcorpora which fulfil
the constraints imposed by the filtering algorithms and hence their a priori chance of
having high similarity is increased.

This can be seen in the clear trend of subcorpora showing higher similarities as
the filtering algorithms’ parameter values increase. In the extreme case of the TF with
f = 22, the similarity is as high as 0.27, that is the resulting subcorpora share 27%
of their sentences on average. Although one could still speak of different subcorpora
at such high overlap, this does reflect the fact that the amount of atypical material,
that is sentences, in the source corpus is naturally limited. As the filtering restriction
becomes more rigid, such material will hence included across subcorpora by the TF.

Increased overlap of the subcorpora, however much, is potentially problematic be-
cause for any quantity, such as rank or frequency, whose mean value we compute from
a set of subcorpora, that mean will likely be skewed and its variance underestimated.
At the same time, increased overlap on the sentence level does not imply increased
overlap on all levels, as the mean token-level similarities, also given in Table 4.6, re-
veal. These were constructed in the same way as the sentence-level similiarities, except
only that subcorpora were treated as multi-sets of tokens (rather than sentences). The
fact that token level similarity is lower, if affected at all, due to filtered subsampling
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can remedy the problems which come with high sentence-level overlap.
In fact, the TF with f = 22 leads to the lowest token-level similarity, which evi-

dently generally is an effect of the TF but not of the SRF, a contrast which is seemingly
rooted in the SRF only affecting the head of the word distribution. Meanwhile, for
the TF, increased sentence-level overlap together with decreased token-level overlap
can only mean that those sentences which are not shared between two subcorpora are
highly dissimilar in terms of the tokens they contain.

This perhaps odd-seeming behaviour of the TF could actually be revealing a fea-
ture of Zipfian language: Samples from Zipfian language will generally have the high
word-level similarity that we found in uniform subsamples from Wikipedia, about
63% or nearly two thirds. Zipf’s law is itself the source for this phenomenon, since in
any sample, the frequent word types will take up most of the token mass and across
samples it is always the same types which are frequent. Lowered Zipfianness, as for
instance due to the TF, implies reduced frequency of the frequent word types and
mass shifted towards the low-frequency ones. The low-frequency types, however, are
largely not shared across samples, leading to lowered overlap on the token level.

Thus, similarly to the properties we analysed in Section 4.4.2, the changes in over-
lap between subcorpora which arise from filtered sampling are not necessarily specific
biases of the TF and SRF but can be argued to be intrinsic to lowered Zipfianness. In-
deed, both (Kurumada, Meylan, and Frank 2013) and (Hendrickson and Perfors 2019)
have argued that high degrees of token-level overlap between samples could be one of
the most essential effects of Zipfianness on learnability of language. For any hypothet-
ical learner, high overlap implies that upon being given a new sample the learner has
already encountered the majority of that sample’s lexical material in previous sam-
ples. This alleviates the sparsity issue mentioned in Section 4.1, despite not solving it,
by situating new, previously unencountered lexical items in a sample in a context of
majorly known items.

Chapter Conclusions

The starting point of the current chapter has been the re-evaluation of the previous
studies of the learnability of Zipf’s law (Kurumada, Meylan, and Frank 2013 and Hen-
drickson and Perfors 2019), specifically the data these studies used. Their approach,
like ours, is a comparative one, that is it attempts to uncover the effect of Zipf’s law
by comparing Zipfian to non-Zipfian corpora. We have argued that the corpora used
for comparison must preserve the defining properties of language and especially Zip-
fian language, most importantly the heavy and infinite tail of the word distribution.
Respecting this requirement leads automatically also to respecting the distinction be-
tween source and sample, since the requirement is on the former but a learner observes
the latter; the source-sample is also the most basic aspect that connects the current
to the previous chapter. The source-sample distinction together with the need for a
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formalisation of Zipfianness then leads quite naturally to the information-theoretic
concept of typicality. In this formal framework, Zipfianness is importantly not per se
a binary (i.e. Zipfian vs. non-Zipfian) but a continuous notion (i.e. more vs. less Zip-
fian). In sum, as we are convinced and in contrast to the previous studies, the data for
the comparative approach to the effects of Zipf’s law should be a set corpora which are
as natural as possible and which represent varying degrees of Zipfianness. From the
variation in this set, learnability trends may be estimated and these reveal the effect
of Zipf’s law on learnability.

With this revised request for data in mind, we have developed and evaluated two
sampling algorithms (the Typicality Filter (TF) and the Speaker Restriction Filter (SRF))
which yield subsamples of an original natural corpus that are reduced in typical-
ity with respect to Zipf’s law. These algorithms correspond to non-uniform sam-
pling schemes and explicitly introduce biases in the produced subsamples. Biases are
needed because of the asymptotic equipartition property (AEP) which ensures that
large subsamples of a Zipfian corpus are with high likelihood Zipfian themselves.
Because the sampling algorithms’ biases are too complex to be investigated analyti-
cally, we then devoted the remainder of this chapter to an empirical investigation of
the properties of the produced subsamples. Because they are the most important as-
pects for our use in learnability analysis, we focused on analysing their Zipfianness,
their naturalness (or normality) in terms of distributional properties other than the
rank-frequency relationship and finally their diversity among each other.

Generally, we find that the filtered subsamples both produced by the TF and the
SRF meet our requirements of relatively natural and less Zipfian corpora. The subsam-
ples of both algorithms are by all used measures significantly less Zipfian than their
uniformly subsampled counterparts. In particular, the filtered subsamples would con-
vince a learner of not having been generated by a Zipfian language, since they are not
in the typical set for Zipf’s law. Just as importantly, the TF and the SRF do not seem
to disrupt the naturalness of generated subsamples beyond what can be argued to
be tied to Zipfianness, at least in terms of distributional properties such as lengths
distributions of words or lexical diversity. This conclusion is emphatically only pre-
liminary since we studied a few individual distributional aspects and more extensive
and holistic tests are required to properly determine to what extent the naturalness
of filtered subsamples is impaired. Finally, we have successfully verified that the fil-
tered subsamples are sufficiently diverse subsets of the the original source corpus,
that is their pairwise overlap is not too high. Significantly reduced Zipfianness, rela-
tively high degrees of naturalness and low overlap in the sets of filtered subsamples
lead us to conclude that the filtering algorithms we have devised, the TF and the SRF,
and the general methodology of filtering indeed has the potential to produce valuable
resources for the comparative approach to the effects of Zipf’s law.

As the only caveat of the filtering algorithms, our empirical assessments have re-
vealed a rather strong trade-off between Zipfianness of the filtered subsamples on one
side and naturalness and diversity on the other: The more rigid the sampling bias (i.e.
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the less Zipfian the outcomes), the the less natural and less diverse the set of filtered
subsamples. This is a rather unsurprising trade-off and the theoretical perspective of
the initial section of this chapter suggests that subsamples of extremely reduced Zip-
fianness should not even exist. However, it does limit how much we can practically
reduce the Zipfianness of subsamples without negatively affecting naturalness and
diversity too much. This trade-off also complicates the use of the filtering algorithms,
as will probably need to be balanced experimentally for each individual use case.

Like the Subsampling itself, and even more so, the filtering methodology (which is
derived from the Subsampling method) hinges on the availability of very large source
corpora to sample from. Simply put, the larger the source corpus, the higher the
chance that it contains large numbers of large and atypical subsamples. This could
be seen as a limitation of the filtering methodology but we choose to take a different
perspective: We see the availability of massive amounts of linguistic data nowadays
a fundamental enabling factor of the filtering methodology. In fact, high effective-
ness with which we are able to diminish Zipf’s law, let alone that this is at all possible
in practice, is a remarkable and even somewhat surprising feat. At the same time,
to achieve this we have not required heavy statistical or computational machinery but
merely a large enough corpus. We hope that, with this example, others will be encour-
aged to make similarly daring attempts at exploiting the power of massive corpora.

Analysing the Learnability of Zipf’s Law

In closing the current chapter, we sketch in detail how the filtering method is used
for the goal we started from: assessing the effect of Zipf’s law on learnability. As
should be clear by now, this assessment will be in terms of a correlation, namely the
correlation between the typicality of a subcorpus with respect to Zipf’s law and the
measured learnability of that subcorpus. The contribution of the filtering method in
constructing this correlation is to provide us with subcorpora of varying degrees of
typicality.

Concretely, as we have seen in Section 4.4.1, for any typicality value t (within
certain bounds), the filtering algorithms allow us to sample a subcorpus Ck with
a(Ck;Pα,β) ≈ t. Given Ck, we measure its learnability, to obtain learnability value
l, and we then form the correlation with t and l. By repeating this procedure with
every typicality value t, i.e. by drawing multiple subsamples of the same typicality,
we obtain the Subsampling estimate over the entire distribution over the correlation
between typicality and learnability. (Note that taking only one subsample per value
of t would lead to a point estimate of the correlation, cf. Section 3.1.) In this way, we
can not only assess the directionality and strength of the correlation but additionally
also the certainty we should place in it. In the same way, in comparison to the previ-
ous studies (Kurumada, Meylan, and Frank 2013 and Hendrickson and Perfors 2019)
we obtain a far more detailed perspective on the learnability of Zipf’s law.

At the same time, in contrast to (Kurumada, Meylan, and Frank 2013) and (Hen-
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drickson and Perfors 2019), our methodology does not allow for human experiments
to measure learnability, for many reasons including that humans cannot realistically
be exposed to corpora of the sizes we propose to use. Hence, learnability must be
measured with computational methods and these can of course only approximate
human performance. Recent advancements in natural language processing and cog-
nitive modelling have, however, shown that close approximations are possible. The
learnability of a corpus as a whole can be captured by (neural) language models and
it has been shown in a recent study (Gulordava et al. 2018) that these have evolved
beyond only modelling conditional probabilities of short n-grams. Instead, neural
models of the long short-term memory (LSTM) family seem to capable of capturing
long-distance syntactic phenomena which resemble human processing performance.
Moreover, the specific task of word segmentation learning investigated by (Kuru-
mada, Meylan, and Frank 2013) has been thoroughly analysed in the field of cognitive
modelling. Here, Bayesian models (Frank et al. 2010) have managed to very closely
match human learning performance. With this state of the art, which keeps devel-
oping fast, computational learning models can probably provide proxies for human
learning which are good enough to assess the correlation with Zipfianness and hence
the effect of Zipf’s law on learnability.
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5 Conclusions

We begin our conclusions by summarising the contributions we have made in this
thesis to quantitative linguistics and analyses into the learnability of Zipf’s law. Sub-
sequently, we actually make another final contribution: we show how the filtering
methodology can be applied beyond the learnability of Zipf’s law to the learnability
of language in general. Here, we focus specifically on recent advances which use Kol-
mogorov complexity to challenge the negative perspective on learnability of language
in the tradition of the work by Chomsky. Finally, we close by sketching the bigger
picture and broader uses of the Subsampling and Filtering methods: First, we name
some of the most immediate and salient contexts besides learnability to which both
methods have the potential to contribute insights. Then, we

5.1 Contributions

Data

As the first contribution (see Section 2.1) we have published a cleaned and segmented
version of Wikipedia as a corpus in seven languages. The corpora of the individual
languages are both massive (50·106 tokens each, except Esperanto which has around
38·106) and linguistically highly diverse: covering 6 of the world’s language fami-
lies – only Esperanto and Norwegian could be argued to both belong to the Indo-
European family – and all types of morphological systems observable in human lan-
guages. Although numerous corpora based on Wikipedia have been published before
(e.g. Schenkel, Suchanek, and Kasneci 2007 and Singh et al. 2012), our is, to the best
of our knowledge, the first open-source one with these characteristics.

The Sample-Source Distinction and Subsampling

The second contribution of this thesis consists of the use of the Subsampling method
and more generally the sample-source distinction as a methodological issue in quan-
titative linguistics. In Section 3.1, based on the work of (Piantadosi 2014), we have
identified a fundamental problem in statistical practice in quantitative linguistics and
provided a solution. Namely, researchers seem to be trying to use values of quan-
tities in observed corpora to draw inference about the values of the same quantities
in the underlying, theoretical languages. This is invalid and can be characterised as
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neglecting of the distinction between sample and source, i.e. the distinction between
observed corpus and underlying language. The problem it leads to in practice is that
researchers simply compute the values of quantities from corpora rather than properly
estimating them.

To address proper estimation, we have proposed to use the Subsampling method, a
well-founded and established estimation method from statistics, to estimate linguistic
quantities. The Subsampling method is straightforward to apply and is especially
apt in the face of scarce of linguistic resources. Because the Subsampling method is
invalid in the presence of sequential dependencies (as is the case in natural language),
we have proposed in Section 3.2 to simply sample elements higher in the syntactic
hierarchy of language, namely sentences rather than tokens. As we have empirically
verified in the same section, this remedy seems to work well.

In Section 2.2, using estimates from the Subsampling method, we have preformed
an assessment of the Zipfianness of the seven languages in our corpus. Although
preliminary, this assessment is based on the most reliable and detailed estimates of
the rank-frequency relationship to date. Even though such assessments have been
carried out before with great detail and using sophisticated statistical machinery (e.g.
Baayen 2002 or Moreno-Sánchez, Font-Clos, and Á. Corral 2016), ours is the first based
on properly estimated rank-frequency relationships.

To further exemplify the use and advantages of the Subsampling method and pro-
vide first analyses of the properties of the properly estimated rank-frequency relation-
ship, we have dedicated Sections 3.3.1 and 3.3.2 to investigations into the variance and
convergence behaviour of the rank-frequency across corpora.

Concluding Chapter 3, in Section 3.4, we have generalised the methodological issue
of estimation and our solution, namely the Subsampling method, to another area of
quantitative linguistics: vocabulary growth and Heap’s law which describes it.

The Filtering Method

Moving on to the study of the learnability of Zipf’s law in Chapter 4, we have begun
our work (Section 4.1) by clarifying a theoretical issue in the methodology of the pre-
vious studies of (Kurumada, Meylan, and Frank 2013) and (Hendrickson and Perfors
2019): We have elucidated that uniform distributions are irrelevant alternatives for
comparison to Zipfian languages and argued that, due to the unbounded vocabular-
ies of human languages, not many distributions over the vocabulary other than Zipf’s
law are in fact valid alternatives. In this way and in the vein of the sample-source
distinction, we have provided a theoretical discussion of the possible alternatives to
Zipf’s law which are required for a comparative approach to studying the effects of
the law.

Further (see Section 4.2), based on the insight that investigated alternatives should
be less Zipfian languages (rather than non-Zipfian ones) and that sample-source dis-
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tinction must again be respected, we have presented information-theoretic typicality
as an objective formalisation of the Zipfianness of a sample. The concept of the typi-
cal set, from which typicality is derived, is mainly a tool for proofs within information
theory, so a part of this contribution also consists of bringing the typical set to practical
use.

As a way to avoid the asymptotic equipartition property and to be able to study
corpora that are atypical under Zipf’s law, in Section 4.3 we have developed two bi-
ased sampling algorithms for producing subsamples and have thereby initiated what
we call the Filtering method and what can be seen as an extension to the Subsampling
method. One of these algorithms, the Typicality Filter, has its sampling bias defined
directly in terms of typicality and is therefore applicable to any probability distribu-
tion, not only Zipf’s law. In order to verify the practical usability of the filtering algo-
rithms, we have generated a large set of subsamples from the seven Wikipedias that
cover a range of parameter values of both algorithms. As we have found in Section
4.4.1, the range of parameter values indeed leads to stark reduction in typicality with
respect to Zipf’s law and Zipfianness of the filtered subsamples. Additionally (Sec-
tion 4.4.2), the normality of the resulting subsamples, at least in terms of the measured
distributional characteristics, is relatively high. Diversity among the subsamples, i.e.
pairwise overlap of sentences and tokens, has also been found to be low in Section
4.4.3 These two findings, together with the reduced Zipfianness of the filtered sub-
samples, have lead us to conclude that the Filtering method is generally successful in
achieve its goal and the Filtering method is thus a useful contribution for application
in learnability studies.

The final contribution of this thesis will be presented now; due to time-constraints
it is merely speculative but we are convinced that, if carried out, the investigations we
propose will be fruitful. Below, we will discuss how the methodological remarks and
contributions of this thesis, namely the Subsampling and the Filtering methods, can
be applied to the prominent debate of the general learnability of language.

5.2 Complexity and the General Learnability of Language

Unlike the learnability of Zipf’s law, the learnability of language in general has been
a prominent and long-standing puzzle of cognitive science, in particular the ques-
tion how children could acquire their native language. Originating with Chomsky
(Chomsky 2014), a major stance on this question has been that children must possess
an innate, biologically evolved language faculty (e.g. Baker and J. J. McCarthy 1981
and Hornstein and Lightfoot 1985). Within this stance, a major theory is Universal
Grammar (Chomsky 1980) which describes the language faculty to a considerable
degree of specificity. The stance itself has mainly been based on poverty of the stim-
ulus arguments (first mentioned also by Chomsky 1980) which hold that children’s
linguistic experiences do not provide sufficient information to precisely demarcate the
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language they are trying to learn (Fodor and Crowther 2002 or Pinker 2013 among the
many more). The claims of innateness have lead to a long and contentious debate in
which its critics have questioned the high degree of specificity of innateness that is
derived from poverty of the stimulus (Zuidema 2003, Christiansen and Chater 2008
or Clark and Lappin 2010 to name just a few).

An important formal basis for poverty of the stimulus have been seminal proofs by
Gold (Gold 1967). In these, he showed that the class of context-free formal languages
is not learnable based on finite samples. Both the theoretical learning framework intro-
duced by Gold, identification in the limit, and the hypothesis that human languages
are at least context-free (Pullum and Gazdar 1982) are widely accepted. Therefore,
Gold’s proof have been interpreted to imply that entirely cognition general learning,
i.e. with no innate knowledge, of their native language by children is impossible.

Cognition-General Language Learning is Possible

In recent work, Chater and Vitányi (P. M. Vitányi and Chater 2017) have succeeded in
providing a proof with the same framework of identification in the limit that cognition-
general learning can indeed be possible. Concretely, they prove that a learner can in
the limit precisely identify the language which generated the stream of observed lin-
guistic material and require essentially only the assumption that the language is com-
putable. In the interest of brevity, we need to omit the details of the proof but give at
least an intuition how this result is possible, despite being in opposition to Gold’s and
hence perhaps surprising.

The key innovation of Chater and Vitányi’s proof (and in contrast to Gold’s) is a
shift in the formal representation of language: Rather than turning to formal language
theory and characterising a language by a formal grammar, Chater and Vitányi char-
acterise it by a probability distribution over all possible utterances in the language (de-
tails of the definition and argument in Chater and P. Vitányi 2007 and P. M. Vitányi and
Chater 2017). Notice that the different representation implies that the grammaticality
of an utterance is no longer a binary but a graded concept, namely the probability the
language assigns to the utterance.

Even though this property arguably makes probability distributions more general
than formal grammars and might hence be expected to complicate learning even fur-
ther, have a crucial property: the unity axiom, that is that all valid distribution func-
tions have the same total mass. This allows the learner to make inferences about un-
observed utterances, namely that the systematic absence of an utterance can serve as
evidence that it has low grammaticality in the language to be learned. Formal gram-
mars, in contrast, allow no such inferences since an actually grammatical utterance
could have simply been absent by chance and this is indeed the basis for Gold’s proof.

The formal tool Chater and Vitányi use in their proof to formalise this notion and
to make such inferences possible is the theory of Kolmogorov complexity (Li and P.
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Vitányi 2008 is the standard reference). Briefly put, by approximating the Kolmogorov
complexity of the observed utterances, the learner can assess how typical they are with
respect to a considered probability distribution. (The Kolmogorov complexity notion
of typicality is indeed a generalisation of the information-theoretic typicality used in
Chapter 4, see P. D. Grünwald and P. M. Vitányi 2003.) If a considered distribution is
not the true source of the observed stream of utterances, this will eventually reveal it-
self via typicality until only the true source remains. Importantly, this happens within
finite time and therefore a finite number of observed utterance and hence identifica-
tion in the limit is possible.

This proof only requires that the considered probability distribution are computable
and elements of a recursively enumerable set. To the extent that these assumptions are
valid, the proof shows that innate knowledge about the target language is not strictly
necessary and even that entirely cognition-general learning can succeed on language.
However, as Chater and Vitányi emphasise themselves, the proof gives not indication
about how realistic such learning is in practice, where children are faced with very
precise constraints on time and computational resources. Moreover, the learning al-
gorithm given in the proof bears no relevance for human cognitive learning. Hence,
even though it remarkably opens up the possibility of cognition-general learning, the
proof yields nothing more than the possibility.

Language Learning by Simplicity

In their earlier work (Chater and P. Vitányi 2007), Chater and Vitányi have in fact also
addressed realistic and practically relevant cognition-general learning. This is based
on the simplicity principle, which has been applied successfully across domains in
cognitive science, and which results in a learner whose only learning bias is simplicity.
Being the intuitive opposite of complexity, the simplicity is in terms of Kolmogorov
complexity, namely as it inverse which is a probability distribution called the universal
distribution. The simplicity-based learner is thus also defined in terms of Kolmogorov
complexity, like the learner in the proof above.

Unlike that learner, however, the simplicity-based learner makes no attempt at
identifying the true source of the observed utterances and instead has a fixed strategy
for predicting them: Given a sequence of utterances s1, ..., sn, the learner predicts the
continuation sn+1 such that the Kolmogorov complexity of s1, ..., sn, sn+1 is minimised.
Accordingly, learning performance is not measured in terms of successful identifica-
tion but in terms of prediction error on sn+1. As Solomonoff (Solomonoff 1964a and
Solomonoff 1964b), the original inventor of the universal distribution, proved, the pre-
diction error decreases faster than 1/n in the length n of the sequence. Moreover, the
total error on the entire sequence is upper bounded by the Kolmogorov complexity of
the true source which generated the sequence. In formal learning theory, these per-
formance guarantees are seen as sufficient for learning to be in principle successful
(for instance in the PAC learning framework Valiant 1984).
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Notice that the performance of the simplicity-based learner depends only on the
Kolmogorov complexity of the language which produces the sequence of utterances.
Considering the simplicity-based learner, the learnability of a language is therefore
entirely equivalent to its inverse Kolmogorov complexity – languages of higher com-
plexity are less learnable by leading to higher prediction error. To be explicit, this
constitutes the link between Kolmogorov complexity and the learnability of language
and shows why it is insightful to investigate both complexity and learnability.

Now, the different view on the possible learning strategies for language acquisition
put forward by Chater and Vitányi also implies a different perspective on language it-
self: In order to reduce the load on the learner, innateness in the form of Universal
Grammar puts hard and specific restrictions on which of the vast set of all languages
are potential human languages. When considering a cognition-general learner, on the
other hand, there are in principle no such constraints. Instead, a language establishes
itself as a potential human language by being learnable enough, that is by possessing
an inherent degree of learnability high enough for the time and resource constraints
faced by children. Thus, in order to assess the possibility of cognition-general learning
for humans, one must investigate the general learnability of their languages. By gen-
eral learnability, we mean objective and learner-independent quantifications of learn-
ability, such as based on Kolmogorov complexity. If the Kolmogorov complexity of
human languages should be revealed to be low enough, then simplicity-based learn-
ing becomes a real alternative to hypotheses based on innateness such as Universal
Grammar.

But then problem remains how low is low enough and, as far as we aware, there
is no direct solution to this problem. At the same time, we argue here (Christiansen
and Chater 2008 provide a similar argument) that the language of simplicity-based
learners, i.e. with no innate constraints such as Universal Grammar, should be partic-
ularly learnable. That is, due to the inverse relationship between learnability and Kol-
mogorov complexity, such language should have lower complexity than other hypo-
thetical languages. The reasoning is that simplicity-based learners have no constraints
or biases for choosing their own language other than favouring languages which are
simple (and, of course, fulfil the communicative functions that is required from them.
According to this reasoning, finding that human language has lower Kolmogorov
complexity than its alternatives constitutes evidence that humans are simplicity-based
learners. Notice that this approach is in its essence a comparative approach just like
the one taken by the learnability studies of (Kurumada, Meylan, and Frank 2013) and
(Hendrickson and Perfors 2019) and what we have discussed in Section 4.1.

Practical Learnability Assessments

That said, there are difficult practical problems in studying the Kolmogorov complex-
ity, or learnability, of human language: Kolmogorov complexity is uncomputable (Li
and P. Vitányi 2008), making precise measurements impossible and the absolute val-
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ues of its approximations useless due to error constants of unknown magnitudes. At
the same time, multiple practical approximations have been developed and are well-
studied. An exceedingly simple and widely used example is the compression rate
achieved by common compression algorithms (e.g. Cilibrasi and P. M. Vitányi 2005).
Simplicity-based learning is in practice directly instantiated by Minimum-Description
Length (MDL, see Rissanen 1983 and P. M. Vitányi and Li 2000) and has seen ap-
plication in machine learning (e.g. P. Grünwald 1995) but is rather complicated to
implement. Common to all practical methods is that they are bound to overestimate
complexity, i.e. underestimate learnability.

In a first investigation into the possibility of simplicity-based learning, Chater and
Vitányi (together with Hsu, Hsu, Chater, and P. M. Vitányi 2011) scaled the issues
of measuring Kolmogorov complexity down by using MDL. To further simplify the
problem, they focused on specific syntactic constraints of English, such as ”I enjoy go-
ing to Italy” vs. *”I enjoy to go to Italy” (the latter is ungrammatical). The relevance of
constraints such as this is that they have been used to explicitly support poverty of the
stimulus arguments. It was found that the learnability of the constraints, as measured
by MDL, is correlated with the confidence of adult speakers in their respective gram-
maticality. Such correlation would not be expected if grammaticality was governed
by Universal Grammar. On the opposite, grammaticality seems corresponds mainly
to probability of occurrence, and therefore learnability in MDL, as evidenced by the
found correlation. This is evidence that there are no additional learning biases and
that humans are simplicity-based learners.

In close connection to the argument of Section 4.1, namely that learnability studies
should consider linguistic observations or corpora which show the full morphologi-
cal unboundedness of human language, we argue here that approaches such as that of
(Hsu, Chater, and P. M. Vitányi 2011) can only be preliminary. We believe that it is the
learnability of language as whole, rather than individual aspects of it, because of the
morphological and syntactic unboundedness of language. Following (Blevins, Milin,
and Ramscar 2017), we are convinced that the sparsity that the unboundedness of lan-
guage leads to has a significant effect on the learnability and complexity of language.
An effect that will be missed by only studying individual linguistic phenomena.

Learnability Assessments via Subsampling and Filtering

But measuring the Kolmogorov complexity, or learnability, of language is inherently
impossible because language itself cannot be observed. This problem brings us back
to the core discussion of Chapter 3 (see Section 3.1), where we have already noted
the same problem in the context of accessing the rank-frequency relationship of lan-
guage, a theoretical concept. So just as before, we can use the Subsampling method to
overcome this problem. Concretely, we may take any preferred way of approximating
Kolmogorov complexity or learnability, for our example we will assume approximat-
ing Kolmogorov complexity by the compression method (Cilibrasi and P. M. Vitányi
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2005). We then estimate the compression rate of the underlying language (n.b. not of
individual corpora) by the Subsampling method, that is we takem subsamples from a
large corpus, such as Wikipedia, and measuring the compression rate of each subsam-
ple. As before, the final estimate of the compression rate of the language as a whole
is then simply the average of the m measured compression rates.

As stated above, the Kolmogorov complexity (or learnability) of language should
be assessed in a comparative approach. Such an approach, just like before in Section
4.1, of course requires hypothetical alternatives to human language. But in the vast
space of all possible human-like languages, which alternatives should we choose? For
simplicity, we can actually simply use the same alternatives that we have created in
the course of Chapter 4, namely languages that are less Zipfian than human language.
That is, to generate such alternatives we can simply return to the Filtering method
and we produce a set of filtered subcorpora that have reduced typicality with respect
to Zipf’s law. Just like uniformly sampled represent the human language, this set
of filtered subcorpora will represent a non-human language, namely one that is less
Zipfian than human language. We repeat this with different parameters of the fil-
tering algorithms in order to obtain different degrees of typicality and thus a set of
subcorpora which represent multiple non-human languages, each with a reduced but
different degree of Zipfianness.

With a set of subcorpora S representing human language (i.e. uniformly subsam-
pled) and a number of sets of subcorpora {T1, ..., Tn} each representing a different
non-human language (i.e. sampled with a filtering algorithm), we are ready for the
comparative assessment of the learnability of human language. Concretely and simi-
lar to Chapter 4, Section 4.4.3, we will correlate estimated ”humanness” to estimated
Kolmogorov complexity for this assessment. Humanness will be defined in terms of
the typicality under Zipf’s law and relative to the mean typicality of the set S (i.e. the
Zipfianness of human language). So for each set Ti of non-human subcorpora, we let
the humanness of the language represented by Ti be the mean typicality of S minus
the mean typicality of Ti. Formally,

µ({a(C;Pα,β) | C ∈ S})− µ({a(C;Pα,β) | C ∈ Ti}).

As desired, the set S, which represents human language, has humanness 0. The hu-
manness of Ti is further from 0 than the humanness of Tj if Ti has lower mean typi-
cality under Zipf’s law than Tj . In this way, we can quantify the distance between the
hypothetical languages, represented by filtered subcorpora, and human language.

As already described, the Kolmogorov complexity of language is estimated by the
Subsampling method, so the estimated Kolmogorov complexity is the average com-
pression rate of the subcorpora in S. In the same way, the mean compression rates
of the subcorpora in a set Ti of non-human subcorpora constitutes the estimate of the
Kolmogorov complexity of the underlying hypothetical non-human language. So fi-
nally, we construct the correlation between the humanness and the Kolmogorov com-
plexity of languages by, for each set of subcorpora computing its humanness and its
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Kolmogorov complexity estimate.
This correlation, as we have argued above, will provide evidence of whether or not

humans are simplicity-based learners: If humans are indeed simplicity-based learn-
ers, then we expect a humanness of 0 (i.e. no distance from human language) to
correspond to the lowest Kolmogorov complexity and Kolmogorov complexity to in-
crease as humanness moves further away from 0. Finding no such correlation would
be evidence against the hypothesis. Note, however, that some non-human languages
might have lower Kolmogorov complexity than human language without this being
evidence against the hypothesis: For any language to fulfil the communicative func-
tions that human language does, a certain amount of complexity is required. There-
fore, even a simplicity-based learner would not choose a language with too low Kol-
mogorov complexity since that language would simply not serve the purpose of com-
munication.

5.3 Final Remarks

The focus on Zipf’s law and learnability we have taken in this thesis have been because
both topics provide highly relevant case studies. At the same time, the methodological
concerns of this thesis go beyond them and carry over to most of quantitative and
cognitive linguistics. Correspondingly, the Subsampling and Filtering methods are
general and versatile enough to be applied to other domains and problems. Therefore,
before closing remarks, we sketch the some of the most immediate strands of possible
future work.

Other Uses of the Subsampling and Filtering Methods

One of the most immediate uses of the proper estimates obtained by the Subsampling
method is to weed out the plethora of models and explanations of Zipf’s law. As
remarked by (Piantadosi 2014), Zipf’s law can be derived from many (even mutually
inconsistent) assumptions, so the ability of a proposed model to reproduce Zipf’s law
is weak evidence for its adequacy and this makes it difficult to decide between them.
At the same time, the relatively high dispersion from the straight line predicted by
Zipf’s law that we have observed in the proper estimates (see Sections 2.2 and 3.3.1)
will be difficult for some models to reproduce. The degree to which a model is able
to reproduce that dispersion is then an indicator for its adequacy and conversely, if
a model fails to predict any dispersion then it can be ruled out as an explanation for
Zipf’s law in language.

Going into more detail, and as already noticed by (Piantadosi 2014), the covari-
ance of the rank-frequency relationship across words, covw(r(w), f(w)) (see Section
3.2), exhibits significant structure. This structure deserves extensive investigation in
itself, as it can provide a gateway into the morphological processes of language. It
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can, moreover, also inform the debate about the origin and correct model of Zipf’s
law. Presumably, many of the proposed models are again not capable of predicting
this structure and their failure to do so automatically eliminates them as correct mod-
els of why human language is Zipfian. In this way, and without even entering the
debate itself, the proper estimates from the Subsampling method could help resolve
the long and contentious debate about the origins of Zipf’s law.

Both the Subsampling method and the Filtering method can also be used to inves-
tigate the effects of Zipf’s law beyond learnability. For instance, an interesting avenue
would be the interaction between Zipf’s law and the semantics of language, in par-
ticular the semantic space of language. At least two accounts of the origin of Zipf’s
law in language have linked the law to semantic properties of language: (Manin 2008)
has proposed that the law may arise as the solution to a trade-off between maximising
semantic coverage of the vocabulary and minimising the combined amount of syn-
onymity of the words in the vocabulary. (Lestrade 2017) has reproduced Zipf’s law
from an interaction between the sizes of part-of-speech classes in the vocabulary and
the vagueness of the words in it, emphasising that neither alone is enough to result in
Zipf’s law.

First, by use of the Subsampling method, one could again test the validity of these
accounts related to semantics, namely their ability to reproduce the structured disper-
sion of the rank-frequency relationship in language. Second, and yet more interest-
ingly, the outcomes of the Filtering method, namely subcorpora atypical with respect
to Zipf’s law, could be investigated in terms of their semantic space: Measuring the
degree synonymity of the words in them, one could directly test whether avoidance of
synonymity is a necessary condition for Zipf’s law and thereby evaluate the proposal
of (Manin 2008). The same approach, measuring sizes of part-of-speech classes and
vagueness instead, could similarly test the proposal of (Lestrade 2017). More gen-
erally yet, measuring the semantic properties of filtered subcorpora would indicate
to which degree they are tied to the Zipfianness of language in the same way as the
comparative approach to learnability.

Another, and perhaps the most obvious, area of future work consists of applying
the Subsampling and the Filtering methods to other laws of quantitative linguistics.
We have already initiated this line of work in this thesis with the example of Heap’s
law, see Section 3.4, which should additionally be subjected to the Filtering method.
Other notable laws which come to mind include: The law of abbreviation (e.g. Bentz
and Ferrer Cancho 2016) which states that frequency (or information content) of a
word is in an inverse relationship to its length. Or the recently discovered law that
the mutual information of characters in a text decreases as a power-law function of
their distance (Lin and Tegmark 2016). In both cases, researchers have been oblivious
to proper estimation and because both laws arguably have relations to learnability,
applying our methods to them will likely lead to new insights.

Notice that none of the laws we have listed now are actually defined in terms of
probability distributions, unlike Zipf’s law. They are, however, still amenable to the
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Typicality Filter, the most general filtering algorithm: As we have showed in Section
2.3, Heap’s law can be turned in a distribution (in that Section we assumed a binomial
distribution) that assigns probabilities to corpora and can hence be submitted to the
Typicality Filter. By using similar assumptions, other laws can also be forced to assign
probabilities to corpora. This highlights the generality of the Filtering method as a
method to research any of the observations in quantitative linguistics.

The Big Picture

The common theme of this thesis, and in our opinion its most important point, is that
the sample-source distinction must be given more attention in quantitative linguistics
and neighbouring fields. Although it might be considered common sense knowledge
that linguistic quantities are subject to the same random fluctuations as the corpora
they are observed in, the field of quantitative linguistics generally seems to be unaware
of the consequences this has for statistical practice. Especially researchers who work
at the (very exciting) boundaries of empirical and theoretical science, constantly veri-
fying theoretical models with observed data, must not be oblivious to this distinction.
In contrast, one of the crucial effects of being aware of the sample-source distinction is
that the problem of estimation, i.e. of approximating the values of theoretical quanti-
ties with their observed counterparts, is an unavoidable problem. As we have shown
in this thesis, methods for reliable estimation such as the Subsampling method have
long existed, are straightforward to apply and computationally efficient.

The Subsampling method in turn is the precursor for the Filtering method which
we have introduced in this thesis. In fact, proper estimation has made the Filtering
method at all possible: the random fluctuations in the observed quantities are the
key to the filtering algorithms which exploit these to find atypical subsamples. Er-
roneous estimation, which is pervasive in the literature, hides these fluctuations and
hence renders the Filtering method impossible, and even unlikely to conceive of in
the first place. The example of the Filtering methodology thus further strengthens the
importance of proper estimation, as the latter can even give rise to new and useful
methodology that would otherwise not be considered.

In closing, we emphasise that all of the work provided in this thesis is the result of
basic but also easy-to-understand considerations and insights, all of which are more-
over well-known in statistics. That is, to develop the new perspective and the new find-
ings about Zipf’s law we have presented in this thesis, we have not required any heavy
formal or statistical machinery and have instead relied exclusively on basic techniques
from statistics and information theory. Yet at the same time, we see the outcome of
this thesis as a radically different perspective on Zipf’s law (and quantitative linguis-
tics in general) and as one that can profoundly influence discussions of its origins in
and effects on language. This shows how much can be gained by simply reconsider-
ing the methodological basis of empirical practice. We hope that these considerations
find the attention they deserve and that they inspire future research of similar kinds.
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Vitányi, Paul MB and Ming Li (2000). “Minimum description length induction, Bayesian-
ism, and Kolmogorov complexity”. In: IEEE Transactions on information theory 46.2,
pp. 446–464.

Vogt, Paul (2012). “Exploring the robustness of cross-situational learning under Zip-
fian distributions”. In: Cognitive Science 36.4, pp. 726–739.

Watkins, Ruth V et al. (1995). “Measuring children’s lexical diversity: Differentiating
typical and impaired language learners”. In: Journal of Speech, Language, and Hearing
Research 38.6, pp. 1349–1355.

Wen, Liu (1991). “An analytic technique to prove Borel’s strong law of large numbers”.
In: The American mathematical monthly 98.2, pp. 146–148.

Willis, John C and G Udny Yule (1922). Some statistics of evolution and geographical dis-
tribution in plants and animals, and their significance.

Zipf, George Kingsley (1932). “Selected studies of the principle of relative frequency
in language”. In:

— (1949). “Human behavior and the principle of least effort.” In:
Zuidema, Willem H (2003). “How the poverty of the stimulus solves the poverty of

the stimulus”. In: Advances in neural information processing systems, pp. 51–58.

118


	Introduction
	Zipf's law
	This Thesis

	Data & Basic Statistics
	Wikipedia as Corpus
	The Rank-Frequency Relationship & Zipf's Law
	The Empirical Rank-Frequency Relationship
	Maximum Likelihood Estimation
	Differences Across Languages

	Vocabulary Growth & Heap's Law

	The Sample-Source Distinction and Subsampling
	Estimating Linguistic Quantities
	Elements Used for Subsampling
	Estimating Ranks and Frequencies
	Variance
	Convergence

	Estimating Vocabulary Growth

	The Filtering Method
	Non-Zipfian Languages
	Information-Theoretic Typicality
	Implementations
	Typicality Filter
	Speaker Restriction Filter

	Results
	Assessing Zipfianness
	Assessing Normality
	Assessing Sample Diversity


	Conclusions
	Contributions
	Complexity and the General Learnability of Language
	Final Remarks


