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Abstract—We study the topological µ-calculus, based on both
Cantor derivative and closure modalities, proving completeness,
decidability and FMP over general topological spaces, as well as
over T0 and TD spaces. We also investigate relational µ-calculus,
providing general completeness results for all natural fragments
of µ-calculus over many different classes of relational frames.
Unlike most other such proofs for µ-calculus, ours is model-
theoretic, making an innovative use of a known Modal Logic
method (–the ’final’ submodel of the canonical model), that has
the twin advantages of great generality and essential simplicity.

I. INTRODUCTION

The modal µ-calculus is one of the most powerful exten-
sions of modal logic, of great use in computer science appli-
cations. It is decidable, but very expressive, embedding many
modal/temporal logics, such as PDL, CTL and CTL∗, that are
widely applied in program specification and verification.

The completeness of the modal µ-calculus was a difficult
problem and remained open for many years. Even today, there
are very few completeness results for axiomatic systems for
µ-calculus with respect to standard classes of Kripke models
(e.g., [1], [2], [3], see also a more recent proof theoretic
approach [4]). Prior to our work, there seemed to be no general
model-theoretic method to establish completeness for various
natural fragments of µ-calculus over various classes of models.

An alternative interpretation of modal logic is based not on
Kripke frames, but on topological spaces. This semantics is in
fact older and can be traced back to McKinsey and Tarski [5].
When the modal ♦ is interpreted as topological closure and
the modal � as topological interior, one obtains a semantics
for the modal logic S4 and its extensions, generalizing Kripke
semantics over transitive, reflexive frames. The logic of all
topological spaces in this semantics is S4. We refer to [6] for
an overview of the rich landscape of results on topological
completeness of modal logics above S4.

McKinsey and Tarski also suggested a second topological
semantics, obtained by interpreting the modal ♦ as Cantor
derivative.1 Esakia [7], [8] showed that the derivative logic
of all topological spaces is the modal logic wK4 = K +
(♦♦p → ♦p ∨ p). This is also the modal logic of all weakly
transitive frames, i.e. those for which the reflexive closure of
the accessibility relation is transitive. It is well-known that

1Recall that the derivative d(A) of a set A consists of all limit points of
A.

the modal logic of transitive frames is K4 [9], [10], which
moreover corresponds to a natural class of topological spaces
denoted TD. Another natural class are T0 spaces, whose modal
logic is also finitely axiomatizable; we discuss T0 spaces and
TD spaces in the context of modal logic in Section III. Modal
logics axiomatizing well-known classes of spaces also include
the Gödel-Löb logic GL, which is complete with respect to
the class of scattered spaces [11], [12].

Topological structures are of great interest to Computer
Science. As noticed by Vickers [13] and Abramsky [14], the
notion of observability and its logic require a topological set-
ting. Abstract notions of computability also involve topological
structures, and a famous example is Scott topology. More
recently, developments in Formal Learning Theory [15], [16],
Distributed Computing [17] and Epistemic Logic in Multi-
Agent Systems [18], [19], [20], have taken a topological turn.
In particular, recent epistemic work [20], [19] on modelling
and reasoning about evidence and knowability uses topological
structures. Research on spatial reasoning, in both topological
and metric incarnations, is also of significant interest for AI.
The addition of fixed point operators allows us to reason about
non-trivial properties of topological spaces: for example, the
well-known Cantor-Bendixon theorem states that any topolog-
ical space has a perfect core, i.e. a maximal subset equal to its
own derivative. The perfect core is not modally definable (in
terms of derivative or closure modalities), but it is definable
in the µ-calculus with the derivational semantics. Parikh [21]
showed the relevance of Cantor derivative and the perfect core
for multi-agent epistemic puzzles and applications.2

Our main aim in this paper is to investigate the topological
µ-calculus based on the Cantor derivative modality, as well as
its weaker version based on the closure modality. As a sec-
ondary aim, we explore (various fragments of) the relational
µ-calculus, on (various classes of) weakly transitive frames.
As such, our contribution in this paper is two-fold. First, we
develop a new model-theoretic method of proving complete-
ness for systems of µ-calculus over weakly transitive frames.
This method applies to a wide range of logics, including many
well-known ones. Concretely, we show that if a modal logic Λ
is a canonical cofinal subframe logic, then its modal µ-variant,

2In on-going work, we show that the perfect core and its logic have deep
connections with the topic of learnability from observations, as well as with
epistemic paradoxes, such as the Surprise Examination.978-1-6654-4895-6/21/$31.00 ©2021 IEEE



obtained by adding the fixed-point axiom and induction rule,
is Kripke complete and enjoys the finite model property. This
implies that the modal µ-variants of the well known modal
logics wK4,wKT0,K4,K4D,K4.1,K4.2,K4.3,S4,S4.1,S4.2,
and S4.3 have the FMP3 and are decidable. Second, we show
that the derivational µ-calculus is completely axiomatized on
all topological spaces, all T0 spaces, and all TD spaces, by
the µ-variants of the logics wK4, wK4T0, and K4, respec-
tively. We also give a new proof of the known fact that the
weaker µ-calculus based on topological closure is completely
axiomatized by the µ-variant of the modal logic S4.

Our model-theoretic proof is based on restricting the canon-
ical model to the set of final theories, i.e. theories which satisfy
a natural maximality condition. A similar construction has
been employed by Fine [22] to prove FMP for subframe logics
over K4 (without fixed point operators). Zakharyaschev [23]
generalized this to show FMP for cofinal subframe logics over
K4, and [24] extended this result to cofinal subframe logics
over wK4. Our Kripke-completeness results apply to the µ-
variants of the same class of logics. The crucial new insight
is that the truth lemma extends to the full µ-calculus over the
set of final theories, despite not doing so for the full canonical
model. Topological completeness follows then from more or
less standard constructions and the observation that the logics
of the classes of all topological spaces, all T0 spaces, and all
TD spaces are all subframe logics.

These results are new, with one proviso concerning TD
spaces. First, note that the transitive closure of a binary
relation is definable in standard relational µ-calculus (on
arbitrary frames). Thus, FMP for µ-calculus over transitive
frames follows immediately from Kozen’s proof of FMP for
general µ-calculus [25]. Second, Goldblatt and Hodkinson
[26] have completely axiomatized a modal logic (with the so-
called tangled derivative modality), that is co-expressive with
derivational µ-calculus over TD spaces, by a result of Dawar
and Otto [27]. But, as explained in Section IX, even in the
TD case, our work has the added benefit of providing a direct
proof of completeness/decidability of full µ-calculus over
these spaces, without relying on the corresponding results for
standard µ-calculus. Moreover, dropping the TD assumptions
drastically changes the behavior of the µ-calculus in at least
two important ways. Weakly transitive closure does not seem
to be definable in µ-calculus, and so decidability over arbitrary
(as well as T0) spaces does not follow from any known results.
Finally, as shown in Section IV, the above-mentioned co-
expressivity result fails on arbitrary (or T0) spaces: µ-calculus
on such spaces does not collapse to its tangled fragment. For
this reason, we work here with the full language of µ-calculus.

The structure of this paper In Section II we introduce
derivative spaces, a general notion subsuming both topological
spaces and weakly-transitive frames. Section III defines µ-
calculus over such spaces and states our main completeness

3In fact, there are continuum-many such logics [10], so our results apply
to uncountably many classes of frames.

result. In Section IV, we show that the tangled fragment is
not expressively complete in this setting. Section V investi-
gates truth-preserving maps and relations between derivative
spaces. Section VI presents the stepping stones of the main
completeness proof. Section VII generalizes this to an infinite
class of fixed-point logics, while Section VIII extends it to T0

and TD spaces. We end in Section IX with some concluding
remarks and a comparison with related work. All the proof
details are in the Appendix.

II. DERIVATIVE SPACES

Although our primary focus in this paper is the derivational
µ-calculus on topological spaces, for technical reasons it is
useful to consider a slightly more general class of structures.

Definition II.1. A derivative space is a pair (X , d), where X
is a set of ‘points’, and d : P(X ) → P(X ) is an operator
on subsets of X , satisfying the following properties, for all
X,Y ⊆ X :
• d(∅) = ∅;
• d(X ∪ Y ) = d(X) ∪ d(Y );
• d(d(X)) ⊆ X ∪ d(X).

The conjunction of the first two conditions above is known
as normality, while the third condition is known as weak
idempotence.

The notion of derivative space is the concrete set-theoretic
instantiation of the more abstract concept of derivative alge-
bra, introduced by Esakia [8] (as a generalization of a notion
with the same name introduced by McKinsey and Tarski [5]).

Example II.2 (topological closure spaces). A special case of
derivative spaces is given by closure spaces: these are deriva-
tive spaces (X , c) that additionally satisfy X ⊆ c(X) (and,
a fortiori, c(c(X)) ⊆ c(X)). These strengthened conditions
are known as the Kuratowski axioms, that define topological
spaces in terms of their closure operator.4 When considered
as a special case of derivative spaces, with d(X) := c(X)
given by topological closure, topological spaces will be called
topological closure spaces.

Example II.3 (topological derivative spaces). Our main ex-
ample of derivative spaces in this paper are structures (X , d),
based on an underlying topological (closure) space (X , c)
(satisfying the Kuratowski axioms), but with the derivative
operator given by the so-called Cantor derivative, i.e. by taking
d(X) to be the set of limit points of X:

d(X) := {y ∈ X : y ∈ c(X − {y})}
= {y ∈ X : ∀U ∈ N (y)X ∩ (U − {y}) 6= ∅},

where N (y) is the family of (open) neighborhoods of y in
the space (X , c). It is easy to see that (X , d) is a derivative
space, which we’ll refer to as a topological derivative space.
The closure operator can be recovered as c(X) = X ∪ d(X).

4Given a closure space, let X ⊆ X be closed whenever X = c(X), and
open whenever its complement is closed. This gives us the more common
definition of topology as a family of open or closed sets. So closure spaces
are exactly the same notion as topological spaces.



So, every topological space gives rise to a derivative space
in at least two different ways (as a closure space, and as a
topological derivative space), though we are mostly interested
in the second one. The converse is also true:

Closure and interior in derivative spaces Given a derivative
space (X, d), we define the closure and interior operators c, i :
P(X )→ P(X ), by putting

c(X) := X ∪ d(X), i(X) := X − c(X −X).

It is easy to see that these satisfy all the Kuratowski axioms.
This means that every derivative space induces a topological

space. Moreover, in a topological derivative space (with Cantor
derivative over some topological space), the induced closure
operator (as defined above) coincides with the underlying
topological closure. But in general, this matching does not
work the other way around: given an arbitrary derivative space,
its derivative does not necessarily coincide with the Cantor
derivative in the induced topology (given by the above-defined
closure operator). It follows that not every derivative space is
a topological derivative space. A counterexample is given by
the next special case.

Example II.4 (weakly transitive Kripke frames). A weakly
transitive frame (or wK4 frame) is a Kripke structure (W,−→)
(also known as a ‘transition system’), consisting of a set
of ‘states’ (or ‘possible worlds’) W , together with a binary
relation −→ ⊆ W × W (known as an ‘accessibility’ or
‘transition’ relation), assumed to be weakly transitive: i.e.,
for all states w, s, t ∈W , if w −→ s −→ t then either w = t
or w −→ t. We denote by −→∗ the reflexive closure Id∪−→
of −→, which (due to weak transitivity) coincides with its
transitive-reflexive closure Id ∪

⋃
n≥1 −→n.

We also denote by −→6←− the strict part of −→, i.e. w −→6←− v
if w −→ v 6−→ w; and write w ←→ v if w −→ v −→ w and
w ←→∗ v if w ←→ v or w = v. For any state w ∈ W , we
put w↑ := {s ∈ W : w −→ s} for the set of its successors,
and also put w↑∗ := {s ∈ S : w −→∗ s} = {w} ∪ w↑;
more generally, for any set X ⊆ W , we put X↑ := {s ∈
W : x −→ s for some x ∈ X} =

⋃
x∈X x↑, and similarly

put X↑∗ := {s ∈ W : x −→∗ s for some x ∈ X} = X ∪
X↑. By applying the same definitions to the converse ←−, we
obtain the corresponding notions of down-closure w↓, w↓∗,
X↓, X↓∗.

It is easy to see that every weakly transitive frame gives rise
to a derivative space (X , d−→), obtained by taking X := W ,
and taking the derivative d−→ to be usual modal ‘Diamond’
operator:

d−→(X) := X↓ = {w ∈W : X ∩ w↑ 6= ∅}
= {w ∈W : ∃sw −→ s ∈ X}.

Moreover, the induced closure c−→(X) (as defined above in
arbitrary derivative spaces) is given by c−→(X) = X↓∗.

In general, weakly transitive frames are not topological
derivative spaces. But the intersection of the two classes is
of independent interest, as shown by the next two examples:

Example II.5 (Alexandroff closure spaces as S4 Kripke
frames). A topological space (X , c) is Alexandroff if its
closure operator distributes over arbitrary unions: c(

⋃
iXi) =⋃

i c(Xi). Given x, y ∈ X , define x −→ y if x ∈ c{y}.
Then, it is not hard to check that if X is Alexandroff, then
−→ is a reflexive-transitive relation, i.e. (X ,−→) is an S4
Kripke frame, and moreover the relational derivative coincides
in this case with the topological closure: d−→ = c. As
it is well-known, the converse also holds: every S4 frame
(X ,−→) gives rise to an Alexandroff closure space, by putting
c−→(X) := X ↓= X ↓∗ for the closure/derivative operator.
This time, the equivalence is complete: starting from either
side, and applying successively these two transformations,
we obtain the original structure. So Alexandroff topological
closure spaces are essentially the same as S4 Kripke frames.

Example II.6 (Alexandroff derivative spaces as irreflexive
wK4 frames). Another way to convert an Alexandroff space
(X , c) into a relational structure is to define x −→ y if
x ∈ d{y} = c{y} − {y}, for all x, y ∈ X . Then −→ is
weakly transitive and irreflexive, and the relational derivative
d−→ coincides in this case with the Cantor derivative induced
by c. Conversely, every irreflexive wK4 frame (X ,−→) gives
rise to an Alexandroff derivative space (X , d), by putting
c−→(X) := X ↓∗ for the topological closure, and taking
d to be induced Cantor derivative in the resulting topology
(for which one can check that d(X) = X↓). Once again,
the equivalence is complete: by applying successively these
transformations, we obtain the original structure. So Alexan-
droff topological derivative spaces are essentially the same as
irreflexive wK4 frames.

D-neighborhoods For every point x ∈ X in a derivative space
(X , d), we can define the family of d-neighborhoods of x:

Nd(x) := {X ⊆ X : x 6∈ d(X −X)}

Note that, in general, d-neighborhoods are not neighborhoods
of x in the topology given by the closure c(X) induced by
d. In fact, in a topological derivative space (where derivative
means Cantor derivative), a d-neighborhood X ∈ Nd(x) is just
a ‘punctured neighborhood’ of x, i.e. a set with the property
that U − {x} ⊆ X for some open neighborhood U 3 x.
On the other hand, in a topological closure space (where the
‘derivative’ is just the topological closure), d-neighborhoods
coincide with standard topological neighborhoods. Finally, in
a weakly transitive frame (W,−→), a set X ⊆ W is a d-
neighborhood of a state x ∈W iff x↑ ⊆ X .

We can now characterize the derivative in terms of d-
neighborhoods, in a way that generalizes the definition of
Cantor derivative in topological spaces:

Lemma II.7. For every set X ⊆ X in a derivative space
(X , d), we have

d(X) = {y ∈ X : ∀U ∈ Nd(y) U ∩X 6= ∅}.

This leads to an equivalent presentation of derivative spaces
as a special case of monotonic neighborhood structures [28]: a



neighborhood derivative space is a pair (X ,N ), where X is a
set of points, and N : X → P(P(X )) is a map that assigns to
each point x ∈ X a family N (x) ⊆ P(X ) of ‘neighborhoods’
of x, satisfying the following conditions

1) X ∈ N (x);
2) if X ∈ N (x) and X ⊆ Y , then Y ∈ N (x);
3) if X,Y ∈ N (x), then X ∩ Y ∈ N (x);
4) if x ∈ X ∈ N (x), then {y ∈ X : X ∈ N (y)} ∈ N (x).
Each derivative space (X , d) gives rise to a neighborhood

derivative space by taking

N (x) := Nd(x) = {X ⊆ X : x 6∈ d(X −X)}

to be the set of all d-neighborhoods. Conversely, every neigh-
borhood derivative space (X ,N ) gives rise to a derivative
space, via the following generalization of Cantor derivative:

d(X) := {y ∈ X : ∀U ∈ N (y)U ∩X 6= ∅}.

This is a full equivalence between derivative spaces and
neighborhood derivative spaces: starting from either side, and
applying the above two transformations, we obtain the original
structure.

III. MU CALCULUS ON DERIVATIVE SPACES: MAIN
RESULTS

For reasons having to do with our intended applications, as
well as to simplify some proof details, in this paper we take
the greatest fixed point operator νx.ϕ as primitive, and define
the least fixed point µx.ϕ as an abbreviation.5

Syntax: Let P be a set of propositional variables. We re-
cursively define the set Lµ of formulas, together with a map
Free : Lµ → P(P), associating to each formula ϕ ∈ Lµ
its set of free variables Free(ϕ) ⊆ P. The definition is by
simultaneous recursion, with formulas ϕ ∈ Lµ given by

ϕ ::= > | x | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | νx.ϕ

where: x ∈ P; in the construct ϕ∧ϕ′, no variables occur free
in ϕ and bound in ϕ′, or vice versa; and in the construct νx.ϕ,
formula ϕ is positive in x (i.e. whenever x occurs in ϕ, we
have that x ∈ Free(ϕ) and x occurs only in the scope of an
even number of negations). The set Free(ϕ) of free variables
of a formula ϕ is simultaneously defined by recursion:

Free(>) := ∅, Free(x) := {x},
Free(ϕ ∧ ϕ′) := Free(ϕ) ∪ Free(ϕ′),

Free(¬ϕ) = Free(♦ϕ) := Free(ϕ),

Free(νx.ϕ) := Free(ϕ)− {x}.

A variable is bound in ϕ if it occurs in ϕ but is not in
Free(ϕ). For any set of variables P ⊆ P, we denote by LPµ
the set of all formulas ϕ ∈ Lµ having Free(ϕ) ⊆ P . Note in
particular that Lµ = LP

µ.
We use the notation x = (x1, . . . , xn) to denote finite strings

of variables x1, . . . , xn ∈ P, and denote by λ the empty string.

5This setting is of course equivalent to the more standard presentation, that
takes µx.ϕ as primitive.

When we want to make explicit some of the free variables, we
write ϕ(x) for a formula in which all variables in the string
x are free (if occurring at all).

Subformulas The subformula relation @ is the smallest tran-
sitive relation on formulas satisfying the following properties:
ϕ @ (¬ϕ), (♦ϕ), (νx.ϕ), and ϕ @ (ϕ ∧ ϕ′), (ϕ′ ∧ ϕ). The
set Sub(ϕ) of all (improper) subformulas of ϕ is defined as
Sub(ϕ) := {ϕ′ : ϕ′ @ ϕ} ∪ {ϕ}.

Semantics. An atomic valuation on a derivative space (X , d)
is a map ‖ · ‖ : P → P(X ) associating to each propositional
atom x ∈ P some set of states ‖x‖ ⊆ X . For each atomic
valuation ‖ · ‖ : P → P(X ), tuple x = (x1, . . . , xn) of
variables and corresponding tuple X = (X1, . . . Xn) of sets
of points Xi ⊆ X , we denote by ‖ · ‖x:=X the valuation that
assigns to each variable xi the set Xi and agrees with the
original valuation ‖ · ‖ on all the other atoms.

A derivative model M = (X , d, ‖ · ‖) consists of a
derivative space (X , d), together with an atomic valuation
‖ · ‖ : P → P(X ). The semantics is given by extending the
atomic valuation to a map ‖ · ‖ : Lµ → P(X ), which we call
extended valuation (and for which we use the same notation
‖ ·‖ as for the corresponding atomic valuation). The definition
of the extended valuation is by recursion on subformulas: for
propositional variables this is already given by the atomic
valuation map of the model M, while in the rest we put

‖>‖ = X , ‖¬ϕ‖ = X − ‖ϕ‖, ‖ϕ ∧ ϕ′‖ = ‖ϕ‖ ∩ ‖ϕ′‖,

‖♦ϕ‖ = d(‖ϕ‖), ‖νx.ϕ‖ =
⋃
{X ⊆ X : X ⊆ ‖ϕ‖x:=X}.

For formulas ϕ = ϕ(x) and corresponding tuples of sets X ,
we will sometimes write ‖ϕ(X)‖ instead of ‖ϕ‖x:=X , in order
to avoid subscript overload. With this notation, e.g., the clause
for νx becomes: ‖νx.ϕ‖ =

⋃
{X ⊆ X : X ⊆ ‖ϕ(X)‖}.

Whenever x ∈ ‖ϕ‖ for some point x ∈ X , we also write
x |=M ϕ, and say that ϕ is true (or satisfied) at point x in the
model M. As usual, when the model is understood, we skip
the subscript, writing x |= ϕ. Conversely, we may write ‖·‖M
instead of ‖ · ‖ when we wish to specify the relevant model.
We say that ϕ is valid on the model M if ‖ϕ‖M = X , i.e.
ϕ is true at all points of M; similarly, ϕ is satisfied on the
modelM if ‖ϕ‖M 6= ∅. By abstracting away from the specific
valuation, we say that ϕ is valid on the space (X , d) if for
every valuation ‖·‖ on X , ϕ is valid on the model (X , d, ‖·‖);
and ϕ is satisfied on the space (X , d) if there exists a valuation
‖ ·‖ on X , s.t. ϕ is satisfied on the model (X , d, ‖ ·‖). Finally,
ϕ is valid (on a class C of derivative models, or of derivative
spaces) if it is valid on all models/spaces (in the class C).

Note that in the special case of wK4 relational models
(W,−→), the above semantics of ♦ coincides with the stan-
dard Kripke semantics. As a consequence, on relational frames
our semantics for µ-calculus coincides with the standard one.

Abbreviations: We have the usual abbreviations ⊥, ϕ ∨ ψ,
ϕ⇒ ψ, ϕ⇔ ψ, �ϕ. The least fixed-point formula µx.ϕ(x, y)
can be defined as ¬νx¬ϕ(¬x, y). Finally, we define closure



and interior modalities, as well as tangled derivative ♦∞Γ and
tangled closure 〈∗〉∞Γ (for finite sets of formulas Γ), with the
perfect core modality ♦∞ϕ as a special case:

〈∗〉ϕ := ϕ ∨ ♦ϕ, [∗]ϕ := ϕ ∧�ϕ,

♦∞Γ := νx.
∧
γ∈Γ

♦(x∧ γ), 〈∗〉∞Γ := νx.
∧
γ∈Γ

〈∗〉(x∧ γ),

♦∞ϕ := ♦∞{ϕ}.

Note that the definitions of 〈∗〉ϕ and [∗]ϕ do not use any
fixed points. But, to justify these notations, one can easily
check that, in the special case of weakly transitive frames, [∗]
and 〈∗〉 are the standard Kripke modalities for the reflexive-
transitive closure −→∗ of the accessibility relation (which,
as already mentioned, coincides on these frames with its
reflexive closure). More generally, in derivative spaces, [∗]ϕ is
equivalent to νx.(ϕ∧�x), while 〈∗〉ϕ is equivalent to ¬[∗]¬ϕ
and thus to µx.(ϕ∨♦x). In fact, ‖[∗]ϕ‖ and ‖〈∗〉ϕ‖ coincide
with the interior i(‖ϕ‖) and respectively the closure c(‖ϕ‖),
as defined in derivative spaces. In particular, in the case of
topological derivative spaces (where d is Cantor derivative),
these coincide with the underlying topological interior and clo-
sure operators. As for ♦∞Γ and 〈∗〉∞Γ, they are variants of the
tangle modality introduced in a relational setting by Dawar and
Otto [27], who showed that µ-calculus over transitive frames
collapses to tangle logic based on ♦∞Γ. Their topological
interpretations were developed by Fernandez-Duque [29], who
distinguished between the tangled derivative ♦∞Γ and tangled
closure 〈∗〉∞Γ, and axiomatized the logic of tangled closure.
More recently, Goldblatt and Hodkinson [26] axiomatized the
logic of tangled derivative ♦∞Γ over transitive frames, and
showed that it is equivalent to the logic over TD spaces.
Finally, the perfect core modality ♦∞ϕ is a special case of
tangle, that captures Cantor’s perfect core: the largest subset
of the state space that is equal to its own Cantor derivative.

Substitution and natural sublanguages Given a formula ϕ =
ϕ(x) and a tuple of formulas θ = (θ1, . . . , θn), we denote
by ϕ(θ) the result of substituting every variable in x by the
corresponding formula in θ. Note that we have

‖ϕ(θ)‖ = ‖ϕ(‖θ‖)‖

(where on the right hand we used an instance of the above-
mentioned simplified notation ‖ϕ(X)‖ for ‖ϕ‖x:=X ). A nat-
ural sublanguage of Lµ is any set L ⊆ Lµ which contains
>, is closed under substitution, and such that if ϕ,ψ ∈ Lµ
then also ¬ϕ,ϕ ∧ ψ,♦ψ ∈ L. The basic modal language is a
natural sublanguage and will be denoted L♦.

The following characterization of ‖νy.ϕ‖ is also well-
known in the literature:

Proposition III.1. Let (X , d, ‖ · ‖) be any derivative model
and ϕ = ϕ(y, x) be a formula that is positive in y. Then we
have the following:

1) the unary operator Y 7→ ‖ϕ(Y,X)‖ is monotonic: if
Y ⊆ Y ′ then ‖ϕ(Y,X)‖ ⊆ ‖ϕ(Y ′, X)‖;

2) ‖νy.ϕ(y,X)‖ is the greatest fixed point of the operator
Y 7→ ‖ϕ(Y,X)‖, i.e. the largest set Y ⊆ X s.t. Y =
‖ϕ(Y,X)‖;

3) ‖νy.ϕ(y,X)‖ =
⋂
α∈On ϕ

α
y (X), where On is the

class of ordinals and the transfinite sequence of sets
ϕαy (X) ⊆ X is defined by ordinal recursion: ϕαy (X) =⋂
β<α ‖ϕ(ϕβy (X), X)‖ (and so in particular ϕ0

y(X) =
X ).

Proof. Well known (and easy to check).

Definition III.2 (µ-wK4). We define the logic µ-wK4 to be the
least set of formulas of Lµ containing the following axioms
and closed under the following rules (for all formulas ϕ,ψ,
and formulas θ = θ(x) that are positive in x):
• All the instances of the Axioms and Rules of Proposi-

tional Logic.
• Necessitation Rule: From ϕ, infer �ϕ.
• Distribution Axiom (=Kripke’s Axiom K):
�(ϕ⇒ ψ)⇒ (�ϕ⇒ �ψ).

• Weak Transitivity: ♦♦ϕ ⇒ (ϕ ∨ ♦ϕ).
• Fixed Point Axiom: νx.θ ⇒ θ(νx.θ).
• Induction Rule: From ϕ ⇒ θ(ϕ), infer ϕ ⇒ νx.θ.

We will also be interested in variants of µ-wK4. If Λ is any
normal modal logic over L♦ (in the sense of [9]) that extends
wK4, then µ-Λ is the extension of µ-wK4 with all axioms of
Λ, closed under uniform substitution with arbitrary formulas
in Lµ. If L is a natural sublanguage of Lµ, then µ-ΛL is the
restriction of µ-Λ to L, in the sense that all axioms and rules
may only be applied when all formulas belong to L.

Proposition III.3 (Soundness). The logic µ-wK4 is sound for
the class of derivative spaces, and so in particular for the class
of weakly transitive frames. If Λ is any extension of wK4, then
µ-Λ is sound for the class of Λ-spaces, i.e. the class of spaces
validating all theorems of Λ.

Proof. The Necessitation Rule and the Distribution Axiom are
sound because of the normality conditions imposed on the
derivative operator d, while Weak Transitivity is sound due to
the weak idempotence of d. The soundness of the Fixed Point
Axiom and of the Induction Rule follows in the usual way
from our (standard) semantics for fixed-point formulas. The
same argument applies to any extension of wK4 and its class
of derivative spaces.

Our goal is to show that this system is also (weakly)
complete, and that the logic is decidable. But for this, we need
first look at some theorems of the above axiomatic system.

Proposition III.4. The following schemas are provable in the
logic µ-wK4 (for all formulas ϕ,ψ, and formulas θ = θ(x)
that are positive in x):

1) νx.θ ⇔ θ(νx.θ)
2) ([∗]ϕ ∧ θ(ψ)) ⇒ θ([∗]ϕ ∧ ψ)
3) [∗](ϕ⇒ ψ) ⇒ (θ(ϕ)⇒ θ(ψ))
4) [∗](ϕ⇒ θ(ϕ)) ⇒ (ϕ⇒ νx.θ)



Proof. Claim 1) is an well-known, easy consequence of the
Fixed Point Axiom and the Induction Rule.

For claim 2), it is useful to check first the following special
cases:

2a ([∗]ϕ ∧ ♦ψ) ⇒ ♦([∗]ϕ ∧ ψ)
2b ([∗]ϕ ∧�ψ) ⇒ �([∗]ϕ ∧ ψ)
2c ([∗]ϕ ∧ νx.θ) ⇒ νx.([∗]ϕ ∧ θ)
2d ([∗]ϕ ∧ µx.θ) ⇒ µx.([∗]ϕ ∧ θ)

Checking that these special instances of 2) follow from the
axioms is an easy verification. Given them, one can prove 2) by
induction on the complexity of θ(x), written in positive form
(i.e. with negations only in front of propositional variables,
other than x, and using in rest only conjunctions, disjunctions,
♦, � and the fixed-point operators νx and µx). The atomic
cases are immediate, and the inductive steps for conjunction
and disjunction follow trivially by propositional logic, while
the other inductive steps are taken care by the instance 2)a-2)d
above.

To prove claim 3), first note that ([∗](ϕ ⇒ ψ) ∧ ϕ) ⇒ ψ
is a theorem in our axiom system. By using the monotonicity
of the positive formula θ(x) (itself provable in the system),
we can derive the theorem θ([∗](ϕ ⇒ ψ) ∧ ϕ)) ⇒ θ(ψ).
Putting this together with ([∗](ϕ⇒ ψ) ∧ θ(ϕ))⇒ θ([∗](ϕ⇒
ψ) ∧ ϕ)) (which is just a special instance of claim 2)), we
obtain ([∗](ϕ⇒ ψ) ∧ θ(ϕ))⇒ θ(ψ), from which the desired
conclusion follows by propositional reasoning.

Finally, to prove claim 4), we start with the obvious
theorem [∗](ϕ ⇒ θ(ϕ)) ⇒ (ϕ ⇒ θ(ϕ), from which we
get ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒ θ(ϕ), and thus also ([∗](ϕ ⇒
θ(ϕ)) ∧ ϕ) ⇒ ([∗](ϕ ⇒ θ(ϕ)) ∧ θ(ϕ)). Putting this together
with [∗](ϕ ⇒ θ(ϕ)) ∧ θ(ϕ)) ⇒ θ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) (itself
an instance of claim 2)), we obtain ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒
θ([∗](ϕ⇒ θ(ϕ)) ∧ ϕ). Applying then the Induction Rule, we
derive ([∗](ϕ ⇒ θ(ϕ)) ∧ ϕ) ⇒ νx.θ, from which the desired
conclusion follows by propositional reasoning.

We are now ready to state the first of our main results.
Below, recall that Λ has the finite model property if for any
formula ϕ, ϕ is a theorem of Λ iff ϕ is valid over the class
of finite Λ-models. The logic Λ has the strong finite model
property if the size of a finite countermodel for ϕ can be
bounded by a function computable from the length of ϕ.

Theorem III.5 (Completeness, FMP and Decidability). Let L
be a natural sublanguage of Lµ. The logic µ-wK4L is (weakly)
complete for the class of all weakly transitive frames, as
well as for the class of Alexandroff spaces (irreflexive weakly
transitive frames). Hence, µ-wK4L is complete for the class
of all topological spaces, and thus also for the larger class
of all derivative spaces. The logic has the strong finite model
property (wrt all the above classes), and so its satisfiability
problem is decidable.

This will be proven in Section VI, while in Section VII
we generalize this result to many other classes of relational
structures and the corresponding logics.

We conclude this section by discussing two extensions of
wK4 that are of interest in the context of topological semantics.
Recall that a topological space (X , c) is T0 if given x, y ∈ X
with x 6= y, either x 6∈ c{y} or y 6∈ c{x} (i.e., the two do not
have the same set of neighborhoods). It is known (see [30])
that the derivational modal logic of T0 spaces is the system

wK4T0 := wK4 + p ∧ ♦(q ∧ ♦p)→ ♦p ∨ ♦(q ∧ ♦q).

Moreover, wK4T0 corresponds to the class of wK4 frames
(W,−→) so that w −→ v −→ w implies that w −→ w or
v −→ v. Frames satisfying this property are weakly reflexive
frames. If we define the cluster of w ∈ W to be the set of
points v so that v −→∗ w −→∗ v (equivalently: s.t. either
w ←→ v or w = v), then a weakly transitive frame (W,−→)
is weakly reflexive iff every cluster has at most one irreflexive
point.

The second extension we are interested in is K4, given by
wK4+♦♦p→ ♦p. It is well known (see, e.g., [10], [8], [30])
that this is the logic of all transitive frames, and that it is
also the logic of all TD spaces. These are topological spaces
(X , c) such that every point is isolated in its own closure; i.e.,
if x ∈ X , there is an open set U with {x} = U ∩ c{x}. These
results readily extend to the derivative µ-calculus.

Theorem III.6. 1) The logic µ-wK4T0, obtained by adding
to wK4T0 the above Fixed Point Axiom and Induction
Rule, is sound and (weakly) complete for the class of all
T0 topological spaces.

2) The logic µ-K4, obtained by adding to K4 the above Fixed
Point Axiom and Induction Rule, is sound and (weakly)
complete for the class of all TD topological spaces.

We will prove this result in Section VIII. A related com-
pleteness result for the TD case has already been proven in
[26]. But that result concerns only the (semantically equiva-
lent) tangled modal logic, while ours is about the full language
of µ-calculus.

Before proving Theorem III.5, we will make a detour to
discuss the tangled derivative in the context of wK4T0 models.
The results in the following section are not needed to establish
our main theorems, but they motivate our choice to work over
the full µ-calculus rather than focusing on tangled fragments.

IV. EXPRESSIVE INCOMPLETENESS OF TANGLE LOGIC

A natural question is whether topological µ-calculus col-
lapses to a simpler modal fragment; if so, then a complete
axiomatization of the simpler fragment would in principle suf-
fice, and might be easier to prove than for the full calculus. As
mentioned in the Introduction, this is exactly what happened
on TD spaces. Dawar and Otto [27] showed that the full µ-
calculus is expressively equivalent to the so-called tangled
derivative logic L♦∞ over the class of (finite) K4 frames, and



thus also over TD spaces; while Goldblatt and Hodkinson [26]
completely axiomatized L♦∞ over these classes.6

In this section, we show that the Dawar-Otto result does not
hold for general spaces, and in fact not even for T0 spaces: the
tangled derivative logic is no longer expressively equivalent to
the µ-calculus over the class of wK4T0 frames, and hence over
the class of all T0 spaces.

For each finite set of formulas Γ, consider the tangled
derivative ♦∞Γ and tangled closure 〈∗〉∞Γ of Γ, as defined in
Section III. Let L♦∞ and L〈∗〉∞ be the natural sublanguages
of the µ-calculus whose only fixed points are of the respective
forms above. To prove that L♦∞ is not expressively complete
for µ-calculus over wK4T0 frames, we will show that 〈∗〉∞ is
not definable in L♦∞ .

For this, we define a ‘spine’ model S based on the ordinal
ω+3. We briefly recall that ω denotes the first infinite ordinal,
and follow the set-theoretic convention that each ordinal is
identified with its set of predecessors. We moreover use
interval notation on the ordinals: (α, β) is the set of ordinals
ξ with α < ξ < β.

With this in mind, we set S = (ω + 3,−→, ‖ · ‖), where
1) α −→ β if one of the following occurs:

a) α > β;
b) α = β and α is odd (including ω + 1), or
c) α = ω + 1 and β = ω + 2.

2) α ∈ ‖p‖ iff α is odd, ‖q‖ = ∅ for all q 6= p.

Lemma IV.1. S is a wK4T0 model.

Proof. Weak transitivity is easily checked using a case distinc-
tion. The T0 condition is checked by noting that all clusters
are singletons, except for {ω + 1, ω + 2}. But only ω + 2 is
irreflexive, as needed.

The goal is to show that over S, no L♦∞ formula is
equivalent to 〈∗〉∞{p,¬p}. First, we evaluate the latter.

Lemma IV.2. Over S, ‖〈∗〉∞{p,¬p}‖ = {ω + 1, ω + 2}.

Proof. We have that α ∈ ‖〈∗〉∞{p,¬p}‖ if and only if there
is an infinite chain

α −→∗ β0 −→∗ β1 −→∗ β2 −→∗ . . .

such that βi 6∈ V (p) when i is even, βi ∈ V (p) when i is odd.
From the latter it follows that βi 6= βi+1. Since ω+3 with the
usual ordering is well-founded, such a chain can only occur
in the “ill-founded” part of our model, namely {ω+1, ω+2}.
However, the infinite chain

ω + 2 −→∗ ω + 1 −→∗ ω + 2 −→∗ . . .

witnesses that {ω + 1, ω + 2} ⊆ ‖〈∗〉∞{p,¬p}‖.

6On the other hand, Goldblatt and Hodkinson [26] showed that ♦∞ is not
definable in L〈∗〉∞ over the class of K4 frames, and hence over the class
of TD spaces. It follows that L〈∗〉∞ is not expressively complete, even over
the class of K4 frames.

Lemma IV.3. If ϕ is any formula of L♦∞ then there exists
nϕ < ω such that for every α, β ∈ (nϕ, ω + 3) which are
either both even or both odd, α ∈ ‖ϕ‖ iff β ∈ ‖ϕ‖.

Proof. By induction on the complexity of ϕ. The base case
follows from the definition of ‖ · ‖ and the cases for Booleans
are straightforward. Consider the case where ϕ = ♦ψ. By the
induction hypothesis, nψ is well-defined and finite, and we
can take nϕ = nψ + 2. Then, if α, β > nϕ and α ∈ ‖♦ψ‖,
there is α′ such that α −→ α′ and α′ ∈ ‖ψ‖. If α′ < nψ , set
β′ = α′; otherwise, take β′ ∈ {nψ + 1, nψ + 2} of the same
parity as α′. We then see that β −→ β′, so that β ∈ ‖♦ψ‖.

Finally, consider ϕ = ♦∞Γ. We may assume that Γ 6= ∅,
since ♦∞∅ is tautologically true. Let nϕ = maxγ∈Γ nγ + 2.
Suppose that α, β > nϕ, and that α ∈ ‖♦∞Γ‖. Let α∗ be
the least element of ‖♦∞Γ‖ with respect to the usual ordinal
ordering. First assume that α∗ < ω + 1. Then, for all γ ∈ Γ,
there is ξγ ∈ ‖γ ∧ ♦∞Γ‖ such that α∗ −→ ξγ . But then, by
the definition of −→ and the minimality of α∗ we must have
that ξγ = α∗, and thus α∗ satisfies every element of Γ. Note
also that α∗ is reflexive, so α∗ must be odd.

It follows that α∗ ≤ nϕ, since otherwise the odd element
of {nϕ − 1, nϕ} satisfies all formulas of Γ and hence ♦∞Γ,
contradicting the minimality of α∗. But then, from β > nϕ
we see that β −→ α∗, so β ∈ ‖♦∞Γ‖.

Finally, we consider the case where α∗ ≥ ω + 1. In fact,
we will show that this case is impossible. Note that in this
case ω + 2 ∈ ‖♦∞Γ‖. As before, for all γ ∈ Γ, there is
ξγ ∈ ‖γ ∧ ♦∞Γ‖ such that ω + 2 −→ ξγ . But by minimality
of α∗, the only option is to have ξγ = ω+ 1, so in fact ω+ 1
satisfies all elements of Γ. Reasoning as above, letting α′ ∈
{nϕ − 1, nϕ} be odd, we see that α′ satisfies all formulas of
Γ. But then α′ ∈ ‖♦∞Γ‖, contradicting the choice of α∗.

Remark IV.4. From the proof it can be estimated that it
suffices to take nϕ = 2|ϕ|.

Since n < ω, ω+ 2 for all n < ω and the two are even, we
obtain the following special case.

Corollary IV.5. In S, ω and ω+ 2 satisfy the same formulas
of L♦∞ .

However, we have seen that ω + 2 ∈ ‖〈∗〉∞{p,¬p}‖, but
ω 6∈ ‖〈∗〉∞{p,¬p}‖. We may thus conclude that 〈∗〉∞{p,¬p}
is not definable.

Theorem IV.6. The formula ϕ = 〈∗〉∞{p,¬p} is not definable
in L♦∞ , even by an infinite set of formulas.

Given that 〈∗〉∞{p,¬p} is definable in the µ-calculus but
not in L♦∞ , we obtain the following result.

Corollary IV.7. Not every formula of the µ-calculus is defin-
able in L♦∞ over the class of wK4T0 frames.

For this reason, in this paper we will work over the full
µ-calculus, rather than the tangled derivative fragment.



V. TRUTH-PRESERVING MAPS

In this section, we focus on the relational semantics, and re-
view and generalize some well-known properties of µ-calculus
[31]: locality and invariance under bounded morphisms.

Definition V.1 (D-morphisms and P -morphisms). A d-
morphism between derivative spaces (X , d) and (X ′, d′) is
a function π : X → X ′ such that π−1d′(X ′) = dπ−1(X ′) for
all sets X ′ ⊆ X ′.

If π is surjective, we say that the space X ′ is a d-morphic
image of the space X .

For any set P ⊆ P, a P -morphism between derivative
models M = (X , d, ‖ · ‖) and M′ = (X ′, d′, ‖ · ‖′) is a
d-morphism π : X → X ′ s.t. π−1‖x‖′ = ‖x‖ for all atoms
x ∈ P .

If π is surjective, we say that the modelM′ is a P -morphic
image of the model M.

Remark V.2. The notion of P -morphism is a generalization
to derivative spaces of the well-known concept of p-morphism
[9], albeit relativized to a set of variables P . The restriction
to such a set of variables (particularly, when P is finite) will
be essential in many of our proofs.

Lemma V.3. If π : X → X ′ is a P -morphism between
derivative modelsM = (X , d, ‖ · ‖) andM′ = (X ′, d′, ‖ · ‖′),
then for all µ-calculus formulas ϕ = ϕ(x) ∈ LPµ and tuples
of sets X,X ′ s.t. Xi = π−1X ′i for all i, we have:

‖ϕ(X)‖ = π−1‖ϕ(X ′)‖′.

Proof. Induction on the complexity of the formula ϕ = ϕ(x).
The atomic case ϕ = xi follows immediately from the
assumption that Xi = π−1X ′i , while the atomic case ϕ = y for
y ∈ P not occurring in x follows from atomic requirement on
P -morphisms. The Boolean cases follow from two well-known
properties of the inverse map: π−1(X ′ −X ′) = X − π−1X ′

and π−1(X ′∩Y ′) = π−1X ′∩π−1Y ′. The derivative case ♦ϕ
is an immediate consequence of the definition of d-morphism.

The case νy.ϕ(y, x). We assume the induction hypothesis
for ϕ, and we first prove the following

Claim: If ϕαy (X) is the transfinite sequence of sets in
Proposition III.1(3), then for all ordinals α we have

π−1ϕαy (X ′) = ϕαy (X).

We prove this Claim by subinduction on α:
π−1ϕαy (X ′) = π−1(

⋂
β<α ‖ϕ(ϕβy (X ′), X ′)‖′) =⋂

β<α π
−1‖ϕ(ϕβy (X ′), X ′)‖′ =

⋂
β<α ‖ϕ(ϕβy (X), X)‖ =

ϕαy (X) (where at the third step we used both the induction
hypothesis for ϕ and the subinduction hypothesis for β, as
well as the background assumption about X,X ′).

Given the Claim, we can now prove the inductive case for
νy.ϕ(y, x):
π−1‖νy.ϕ(y,X ′)‖′ = π−1(

⋂
α ϕ

α
y (X ′)) =

⋂
α π
−1ϕαy (X) =

‖νy.ϕ(y,X)‖.

It is useful to keep in mind the special case where the tuple
of substitution variables is empty.

Corollary V.4 (Invariance under P -morphisms). If π : X →
X ′ is a P -morphism between derivative modelsM = (X , d, ‖·
‖) and M′ = (X ′, d′, ‖ · ‖′), then for all ϕ ∈ LPµ we have:

‖ϕ‖ = π−1‖ϕ‖′.

Proof. Apply Lemma V.3 to the empty tuple of variables, and
corresponding empty tuples of sets. (Alternatively: let x =
(x1, . . . , xn) be a tuple enumerating all the free variables in
ϕ. Then apply Lemma V.3 to this tuple, and to tuples of sets
X := (‖x1‖, . . . , ‖xn‖) and X ′ := (‖x1‖′, . . . , ‖xn‖′).)

In practice, P -morphisms are most useful when they are
surjective, as they then preserve validity of formulas.

Corollary V.5.
1) If a derivative modelM′ = (X ′, d′, ‖·‖′) is a P -morphic

image of a modelM = (X , d, ‖ · ‖), then the two models
validate (satisfy) the same formulas of LPµ .

2) If a derivative space (X ′, d′) is a d-morphic image of
space (X , d), then every formula that is satisfiable on
(X ′, d′) is also satisfiable on (X , d); equivalently: every
formula that is valid on (X , d) is also valid on (X ′, d′).

Proof. To check part 1, we prove the satisfiability version.
Let ϕ ∈ LPµ and let π : X → X ′ be a surjective P -morphism.
By Corollary V.4, we have ‖ϕ‖ = π−1‖ϕ‖′. Combining this
with the functionality and surjectivity of π, we obtain the
equivalence: ‖ϕ‖ 6= ∅ iff ‖ϕ‖′ 6= ∅.

For part 2: we again check the satisfiability version. Let π :
X → X ′ be a surjective d-morphism, and let ϕ be satisfiable
on (X ′, d′), i.e. there exists some valuation ‖ · ‖′ satisfying ϕ
at some point of X ′. Take the map ‖ · ‖ := π−1‖ · ‖′ defined
on X . Then ‖ ·‖ is a valuation on X that makes π a surjective
P-morphism, hence by part 1, ‖ · ‖ satisfies ϕ at some point
of X .

It is useful to have a more ‘bisimulation-like’ charac-
terization of d-morphisms. Using the equivalence between
derivative spaces and neighborhood derivative spaces, we can
characterize d-morphisms in terms of d-neighborhoods:

Lemma V.6. Let π : X → X ′ be a map between derivative
spaces (X , d) and (X ′, d′). Then the following are equivalent:

1) π is a d-morphism;
2) the conjunction of the following back-and-forth condi-

tions holds for all points x ∈ X and all sets X ⊆ X and
X ′ ⊆ X ′:
• (back) X ′ ∈ Nd′(π(x)) implies π−1(X ′) ∈ Nd(x),

and
• (forth) X ∈ Nd(x) implies π(X) ∈ Nd′(π(x));

3) π−1(X ′) ∈ Nd(x) iff X ′ ∈ Nd′(π(x)), for all x ∈ X
and X ′ ⊆ X ′.

This follows from the general theory of bounded mor-
phisms in monotonic neighborhood models [32], [28]: indeed,
the third equivalent statement is exactly the definition of a



bounded morphism in monotonic neighborhood semantics.
When both spaces are topological derivative spaces, the back-
and-forth conditions refer to punctured neighborhoods. When
both are topological closure spaces, we obtain the usual notion
of interior map. The case where X is a topological space and
X ′ a Kripke frame is of a special interest:

Corollary V.7. Let π : X → X ′ be a map between a
topological derivative space (X , d) and a weakly transitive
frame (X ′,−→). Then the following are equivalent:

1) π is a d-morphism;
2) the conjunction of the following back-and-forth condi-

tions holds for all points x ∈ X :
• π(U −{x}) ⊆ π(x)↑, for some open neighborhood U

of x, and
• π(x)↑ ⊆ π(U − {x}), for all open neighborhoods U

of x.

Finally, when both spaces are weakly transitive frames, we
recover the standard notion of bounded frame morphism:

P -morphisms and P -bisimulations between relational
models. When both X and X ′ are weakly transitive frames,
it is easy to see that our notion of P -morphism matches
the standard modal notion of p-morphisms (also known as
“bounded P -morphisms”), i.e. functional P -bisimulations.

Definition V.8. Let M1 = (W1,−→1, ‖ · ‖1) and M2 =
(W2,−→2, ‖ · ‖2) be relational models. A relation B ⊆W1×
W2 is a P -bisimulation if, for all states w1 ∈ W1, w2 ∈ W2,
(w1, w2) ∈ B implies three conditions: (a) w1 ∈ ‖p‖1 iff
w2 ∈ ‖p‖2 (Atomic Preservation); (b) if w1 −→1 s1 then
there exists some s2 ∈W2 with w2 −→2 s2 and (s1, s2) ∈ B
(Forth Condition); (c) if w2 −→2 s2 then there exists some
s1 ∈W1 with w1 −→1 s1 and (s1, s2) ∈ B (Back Condition).

Then, a bounded P -morphism is just a functional P -
bisimulation. It is well known that relational P -bisimulations
between weakly transitive relational models M1 = (X1,−→1

, ‖·‖1) andM2 = (X2,−→2, ‖·‖2) are exactly the relations of
the form π−1

1 ;π2, where π1 :M→M1 and π2 :M→M2

are P -morphisms from some other weakly transitive model
M into the two models, and ; is relational composition.7

Invariance under bisimilarity The relation of P -bisimilarity
'P on a given model M = (W,−→, ‖ · ‖) is the largest
P -bisimulation relation 'P ⊆ W × W . When P = P, we
drop the subscript, writing e.g. s ' w and talking simply
of ‘bisimulation’ and ‘bisimilarity’. It is easy to see that P -
bisimilarity is an equivalence relation on W . The following
fact is a widely known feature of µ-calculus:

Proposition V.9 (Invariance under Bisimilarity). The valu-
ation ‖ϕ‖ of every formula ϕ ∈ LPµ is closed under P -
bisimilarity: for all s, w ∈ W , if s 'P w and s ∈ ‖ϕ‖,
then w ∈ ‖ϕ‖.

7This relationship between P -bisimulations and spans of bounded P -
morphisms is well-known in modal logic, and has lead to the general definition
of coalgebraic bisimulation, as a span of coalgebraic morphisms.

Proof. This is well-known (and easy to verify directly).

Locality Another known fact is that µ-calculus is “local”:
the truth value of a formula ϕ at a state depends only on
the accessible part of the model (i.e., the so-called generated
submodel). This can be generalized as follows:

Lemma V.10. Let ϕ = ϕ(x, y) be a formula. Then we have
the following:

1) ‖ϕ(X,Y )‖ ∩ w↑∗ = ‖ϕ(X,Y ∩ w↑∗)‖ ∩ w↑∗, for all
states w ∈W and tuples of sets of states X,Y ;

2) If y = (z, y) and ϕ = ϕ(x, y) = ϕ(x, z, y) is positive in
y, then

ϕαy (X,Z) ∩ w↑∗ = ϕαy (X,Z ∩ w↑∗) ∩ w↑∗

for all states w ∈W , ordinals α ∈ On and tuples of sets
of states X,Z. (Here, ϕαy is the sequence introduced in
Proposition III.1(3).)

Proof. We show the two claims by simultaneous induction on
the subformula-complexity of ϕ. For claim (1), the base case
ϕ = x, as well as the inductive case for Boolean operators,
are trivial.

The case of ♦ϕ for (1): ‖♦ϕ(X,Y )‖ ∩ w↑∗ = {w ∈
W : ∃s ∈ w↑ s.t. s ∈ ‖ϕ(X,Y )‖} ∩ w↑∗. By the induction
hypothesis (for ϕ and s ∈ w↑ ⊆ w↑∗), this is equal to
{w ∈ W : ∃s ∈ w↑ s.t. s ∈ ‖ϕ(X,Y ∩ w↑∗)‖} ∩ w↑∗, i.e. to
‖♦ϕ(X,Y ∩ w↑∗)‖ ∩ w↑∗, as desired.

The case of νz.ϕ for (1): Using Proposition III.1(3) and
the inductive hypothesis (2) for ϕ, we have: ‖νz.ϕ(X,Y )‖ ∩
w↑∗ =

⋂
α∈On ϕ

α
z (X,Y )∩w↑∗ =

⋂
α∈On ϕ

α
z (X,Y ∩ w↑∗)∩

w↑∗ = ‖νz.ϕ(X,Y ∩ w↑∗)‖ ∩ w↑∗.
To prove claim (2) for ϕ, assume claim (1) for ϕ =

ϕ(x, z, y) (for all set tuples), and prove (2) by subinduction
on the ordinal α:

ϕαy (X,Z) ∩ w↑∗ =
⋂
β<α

‖ϕ(X,Z, ϕβy (X,Z))‖ ∩ w↑∗

=
⋂
β<α

‖ϕ(X,Z ∩ w↑∗, ϕβy (X,Z))‖ ∩ w↑∗

=
⋂
β<α

‖ϕ(X,Z ∩ w↑∗, ϕβy (X,Z ∩ w↑∗))‖ ∩ w↑∗

= ϕαy (X,Z ∩ w↑∗) ∩ w↑∗,

where we used first the induction hypothesis for ϕ, then the
subinduction hypothesis for β < α.

Asserting properties locally above a point Given a point
w ∈ W , and given a property P (X1, . . . , Xn) involving sets
X1, . . . , Xn ⊆ W , we say that P (X1, . . . , Xn) holds above
w if we have P (X1 ∩ w↑∗, . . . , Xn ∩ w↑∗). In particular, for
two sets X,Y ⊆ W , we say that X = Y holds above w iff
X ∩ w↑∗ = Y ∩ w↑∗.

Depth of a point in a model Recall that −→6←− is the strict
preorder induced by −→. Given a weakly transitive model



M = (W,−→, ‖ · ‖), and a point w ∈ W , a strict (finite) w-
chain is a finite sequence of points of the form w = w0

−→6←−
w1
−→6←− . . . −→6←− wn. The number n is called the length of

our finite chain. The depth dpt(w) of the point w ∈ W is
the supremum of the lengths of all strict w-chains. In general,
we have dpt(w) ≥ 0, with dpt(w) = 0 iff for every s ∈ W ,
w −→ s implies s −→ w; and dpt(w) = ω iff there exist
w-chains of every length n ∈ N. The depth dpt(M) of the
model M is the supremum of the depths of all points of the
model:

dpt(M) := sup{dpt(w) : w ∈W}.

Lemma V.11. LetM = (W,−→, ‖ · ‖) be a weakly transitive
model, and w, s ∈ W be two points. Then we have the
following:

1) if w −→∗ s, then dpt(w) ≥ dpt(s);
2) if w ←→ s, then dpt(w) = dpt(s);
3) if w −→ s and dpt(w) = dpt(s) < ω, then w ←→ s;
4) if w −→6←− s and dpt(s) is finite, then dpt(w) > dpt(s).

Proof. Easy verification.

Our goal in the next section is to prove Proposition III.5, in
particular the completeness of our axiomatization with respect
to irreflexive, weakly transitive frames. But for this, recall first
that modal logic cannot express irreflexivity. The following
result allows us to drop the irreflexivity condition:

Lemma V.12. For every weakly-transitive model M, there
exists some irreflexive weakly-transitive model M̃ that vali-
dates/satisfies the same µ-calculus formulas asM. Moreover,
if M is finite, then M̃ can be taken to be finite as well.

Proof. Given any weakly transitive model M = (W,−→, ‖ ·
‖), we associate to it an irreflexive and weakly transitive model
M̃ = (W̃ , −̃→, ‖̃ · ‖), by first taking

W̃ :={x ∈W : x is irreflexive}
∪ {(x, i) ∈W × {0, 1} : x −→ x}.

It is useful to consider a map π : W̃ →W , given by π(x, i) :=
x (for reflexive points x ∈ W ) and π(x) := x (for irreflexive
points x ∈ W ). Using this, we can define the accessibility
relation on W̃ by putting

x̃−̃→ỹ if π(x̃) −→ π(ỹ) and x̃ 6= ỹ,

for all x̃, ỹ ∈ W̃ ; and we define the valuation on W̃ by

‖̃p‖ := {x̃ ∈ W̃ : π(x̃) ∈ ‖p‖}.

It is easy to see that M̃ is an irreflexive and weakly transitive
relational model, and that the map π : W̃ → W is a P-
morphism. Since by Proposition V.9, all formulas of µ-calculus
are invariant under bisimulation, the two models are equivalent
with respect to our syntax.

So, to prove Proposition III.5, it is enough to show com-
pleteness and FMP for weakly transitive frames. This is topic
of the next section.

VI. PROOF OF THE MAIN COMPLETENESS/FMP RESULT

In this section, we prove our main completeness result
(Theorem III.5). Throughout the section, we fix a consistent
formula ϕ0, and let P0 = Free(ϕ0). We also fix some finite set
Σ ⊆ Lµ, with the following properties: ϕ0 ∈ Σ; Σ is closed
under subformulas; Σ is closed up to logical equivalence (in
our axiomatic system) under negation ¬ϕ and under 〈∗〉ϕ
operators. The existence of such a finite set Σ (for every
formula ϕ0) follows from the fact that 〈∗〉 is provably an S4-
type modality, together with the well-known fact that there
are only finitely many non-equivalent modalities in the modal
system S4 [10, Ch. 3]. Note that ϕ0 ∈ Σ, and P0 ⊆ Σ is finite.

Plan of the Proof We start with the canonical model Ω
(comprising all maximally consistent theories), a standard
construction in modal logic. But we should stress that the
canonical model is not our intended model. Indeed, the usual
Truth Lemma fails for the µ-calculus in the canonical model:
consistent µ-calculus formulas are not necessarily satisfied in
the canonical model by the theories that contain them.8 In fact,
the notion of truth in the canonical model will play no role in
this paper: we never evaluate our formulas in Ω. Instead, we
only use a few basic syntactic properties of this model.

Next, we select a special submodel of the canonical model
ΩΣ (called the Σ-final model). Essentially, this consists of the
theories whose cluster is locally definable by some formula in
Σ. Our goal will be to show that the Truth Lemma does hold
in ΩΣ for Σ-formulas. It is easy to show that ΩΣ satisfies the
usual ♦-Witness Lemma for formulas in Σ, but extending this
to fixed points requires some work.

An important role will be played by the notion of Σ-
bisimilarity, a strengthening of the standard notion of bisimi-
larity, in which the Atomic Permanence clause is replaced by
the requirement that Σ-bisimilar theories agree on Σ-formulas.
Since it is stronger than usual P0-bisimilarity, Σ-bisimilarity
still preserves the truth values of µ-calculus formulas, as long
as their free variables belong to Σ.

Another key ingredient in our proof is the fact that ΩΣ is
“essentially” a finite object: though possibly infinite in size, it
has finite ‘depth’, and moreover it contains only finitely many
Σ-bisimilarity classes. As a consequence, all relevant fixed
points are attained at some fixed finite stage of the iterative
process from Proposition III.1(3).

We will then use these ingredients to prove our Truth
Lemma for the final model ΩΣ. The inductive step for the
fixed-point formulas uses the fact that the valuation of these
formulas is locally definable by some Σ-formula.

Once completeness is obtained in this way, we will prove
the finite model property by taking the quotient of the final
model ΩΣ modulo Σ-bisimilarity.

8To see this, consider atoms (pn)n<ω and check that for every n, the set
Φn := {pn,¬♦∞>} ∪ {[∗](pi ⇒ ♦pi+1) : i < ω} is consistent (since
all finite subsets are satisfiable). Use the Canonical Truth Lemma for Basic
Modal Logic (and the fact that [∗] is definable in it) to construct (Tn)n<ω

with Φn ⊆ Tn and T0 → T1 → . . . → Tn → . . .. Thus, T0 |= ♦∞>
although (¬♦∞>) ∈ T0.



Canonical Model The standard ‘canonical model’ construc-
tion provides an (infinite) weakly transitive model. A theory is
a maximally consistent set of formulas in Lµ (i.e. a set T ⊆ Lµ
that is consistent and has no proper consistent extension).
We denote by Ω the family of all theories. The canonical
accessibility relation −→ between two such theories T, T ′ ∈ Ω
is given as usual by putting

T −→ T ′ iff ∀ϕ ( if �ϕ ∈ T then ϕ ∈ T ′) ,

and the canonical valuation is given by

‖x‖ := {T ∈ Ω : x ∈ T}.

The canonical model is the structure (Ω,−→, ‖ · ‖). Since
the weak-transitivity condition is Sahlqvist, it immediately
follows that the canonical model is weakly transitive (though
not irreflexive); see [9], [10] for details on Sahlqvist formulas
and their properties. As a consequence, the reflexive closure,
which we denote −→∗, of the canonical relation coincides
with its reflexive-transitive closure.

We will make use of a few well-known properties of the
canonical model, given by the next four results (see, e.g., [9]).

Lemma VI.1 (Lindenbaum Lemma). Every consistent set Φ
of formulas can be extended to a maximal consistent set T ∈ Ω
s.t. Φ ⊆ T .

Lemma VI.2 (Canonical ♦-Witness Lemma). For every the-
ory T ∈ Ω and formula ϕ ∈ Lµ, we have that ♦ϕ ∈ T iff
there exists some theory T ′ ∈ Ω s.t. T −→ T ′ 3 ϕ.

We also have an equivalent statement in �-form:

�ϕ ∈ T iff ∀T ′ ∈ Ω ( if T −→ T ′ then ϕ ∈ T ′) .

The left-to-right implication in the first statement above is
known as the (Canonical) ♦-Existence Lemma. The proofs are
well-known (see, e.g., [9, Ch. 4]), and these results imply that
the so-called Truth Lemma holds in the canonical model for
the ♦-fragment of our logic.

In fact, we can extend this to a Canonical 〈∗〉-Witness
Lemma, using the following result

Lemma VI.3. For theories T, T ′ ∈ Ω, we have:

T −→∗ T ′ iff ∀ϕ( if [∗]ϕ ∈ T then ϕ ∈ T ′).

Proof. The left-to-right implication: Assume that T −→∗ T ′.
If T = T ′, then [∗]ϕ ∈ T implies by definition that ϕ ∈ T =
T ′, as desired. If T 6= T ′, then we must have T −→ T ′,
and then [∗]ϕ ∈ T implies by definition that �ϕ ∈ T , which
implies that ϕ ∈ T ′ (by the Canonical ♦-Witness Lemma), as
desired.

The right-to-left implication: Assume that we have
∀ϕ([∗]ϕ ∈ T =⇒ ϕ ∈ T ′). To show that T −→∗ T ′, we
assume that T 6= T ′, and we need to prove that T −→ T ′.
Since T 6= T ′, there exists some formula θ ∈ T with θ 6∈ T ′.
To show the desired conclusion, let φ be any arbitrary formula
s.t. �ϕ ∈ T , and we need to prove that ϕ ∈ T ′. From θ ∈ T ,
we infer (ϕ ∨ θ) ∈ T ; similarly, from �ϕ ∈ T , we infer
�(ϕ∨θ) ∈ T . Putting these together, we obtain [∗](ϕ∨θ) ∈ T .

By our assumption, this implies that (ϕ ∨ θ) ∈ T ′, and since
θ 6∈ T ′, we conclude that ϕ ∈ T ′, as desired.

As a consequence of Lemma VI.3, we immediately get:

Lemma VI.4 (Canonical 〈∗〉-Witness Lemma). For every
formula ϕ and theory T ∈ Ω, we have that 〈∗〉ϕ ∈ T iff
there exists some theory T ′ ∈ Ω s.t. T −→∗ T ′ 3 ϕ.

Final Theories Given a formula θ, a theory T ∈ Ω is θ-final
if we have: θ ∈ T , and for all theories S ∈ Ω, if T −→ S
and θ ∈ S then S −→ T (hence T ←→ S). Given a set Σ of
formulas, a theory T ∈ Ω is Σ-final (or ‘final’, for short) if it
is θ-final for some formula θ ∈ Σ.

Final Model Let Σ be any set of formulas. The final model is
the canonical submodel9 determined by the set ΩΣ := {T ∈
Ω : T is Σ-final} of all final theories.

The final model may be infinite, but we can show that it
has finite depth:

Lemma VI.5 (Finite Depth Lemma). The final model ΩΣ has
depth bounded by |Σ|−1. In other words: for every chain of Σ-
final theories T0

−→6←− T1
−→6←− . . . Tn, we have that n ≤ |Σ|−1.

Proof. Suppose, towards a contradiction, that T0 −→ T1 −→
. . . Tn is a strict chain of Σ-final theories of length n ≥ |Σ|.
Since all Ti are Σ-final, there exist formulas θ0, . . . , θn ∈ Σ
s.t. Ti is θi-final (and hence θi ∈ T ) for all i ≤ n. But this
is a sequence of n + 1 ≥ |Σ| + 1 > |Σ| formulas in Σ, so
some formula θ must be repeated. Let θ be such a repeating
formula in the enumeration, and let i and j be indices such
that i < j and θi = θj = θ.

So we have Ti −→ Ti+1 −→∗ Tj , with both Ti and Tj being
θ-final, and so also Ti −→∗ Tj . We have two cases: either
Ti −→ Tj or Ti = Tj . We claim that in both cases we have
Ti+1 −→∗ Ti. To show this, consider first the case Ti −→ Tj .
By θ-finality we get Ti ←→ Tj , hence Ti −→ Ti+1 −→∗
Tj ←→ Ti, and thus Ti −→ Ti+1 −→∗ Ti, as desired. In the
second case, we assume Ti = Tj , so we immediately obtain
Ti+1 −→∗ Tj = Ti, as desired.

So we showed that we have Ti −→ Ti+1 −→∗ Ti. There
are again two cases: either Ti −→ Ti+1 −→ Ti, or Ti −→
Ti+1 = Ti. In the first case, we immediately conclude that
Ti ←→ Ti+1, which contradicts the ‘strictness’ of our chain.
In the second case, we have Ti −→ Ti+1 = Ti −→ Ti+1 = Ti,
so we again conclude that Ti ←→ Ti+1, in contradiction with
our ‘strictness’ assumption.

In order to prove completeness with respect to the final
model, we first need to show that every consistent formula
belongs to some final theory. This is achieved by combining
the Lindenbaum Lemma with the following.

9Any subset X′ ⊆ X of the set of worlds of a relational model M =
(X,−→, ‖ • ‖) determines a unique submodel, obtained by taking: X′ as its
set of worlds; the restriction of −→ to X′ as its accessibility relation; and
the valuation given by ‖p‖ ∩X′.



Lemma VI.6 (Final Lemma). If ϕ ∈ T ∈ Ω, then there
exists some ϕ-final theory T ∗ ∈ Ω such that T −→∗ T ∗ (and
obviously, ϕ ∈ T ∗, by finality).

Proof. We will use a well-known variant of Zorn’s Lemma,
stated for preorders: a preordered set (S,≤) has a maximal
element if every chain has an upper bound. (Here, being
maximal in a preordered set means that there is no strictly
larger element.)

Let ϕ ∈ T ∈ Ω. Take S := {T ′ ∈ Ω : T −→∗ T ′ 3 ϕ},
with the relation −→∗ as its preorder. Let S ′ ⊆ S be a chain
of theories in S . To show that it has an upper bound, take the
set

Φ := {ϕ} ∪ {[∗]θ : [∗]θ ∈ T ′ for some T ′ ∈ S ′}

We show that Φ is consistent: suppose this is not the case.
Then there exists some finite such inconsistent subset Φ′ =
{ϕ} ∪ {[∗]θ1, . . . , [∗]θn}, with [∗]θ1 ∈ T1, . . . , [∗]θn ∈ Tn
for some theories T1, T2, . . . , Tn ∈ S ′. Since S ′ is a chain,
we can assume that T1, T2, . . . Tn−1 −→∗ Tn, and thus
[∗]θ1, . . . , [∗]θn ∈ Tn. Since Tn ∈ S , we also have ϕ ∈ Tn,
so Φ′ ⊆ Tn, which contradicts the consistency of Tn.

Applying now Lindenbaum’s Lemma, there exists some
maximally consistent extension S ∈ Ω with Φ ⊆ S. By
construction (and using Lemma VI.3), we have T ′ −→∗ S for
all T ′ ∈ S ′, so S is an upper bound for the chain S. Applying
Zorn’s lemma, we obtain a −→∗-maximal element T ∗ ∈ S. In
particular, this means that ϕ ∈ T ∗ and T −→∗ T ∗, as desired.
To prove that T ∗ is ϕ-final, suppose that T ∗ −→ S 3 ϕ;
we have to show that S −→ T ∗. By the −→∗-maximality
of T ∗, we must have S −→∗ T ∗, i.e. either S −→ T ∗ or
S = T ∗. If S −→ T ∗, then we are done. If S = T ∗, then
S = T ∗ −→ S = T ∗, so we get again S −→ T ∗, as
desired.

Using similar reasoning, we may establish an analogue of
the ♦-Witness Lemma for final theories:

Lemma VI.7 (Final ♦-Witness Lemma). For any theory T ∈
Ω and formula ϕ, we have that ♦ϕ ∈ T iff there exists some
ϕ-final theory T ′ such that T −→ T ′. (Obviously, we have
ϕ ∈ T ′ in this case, by finality.)

Proof. The left-to-right implication: by the Canonical ♦-
Witness Lemma VI.2, ♦ϕ ∈ T implies the existence of some
theory S with T −→ S and ϕ ∈ S. By the Final Lemma
VI.6, there exists some ϕ-final theory S∗ with S −→ S∗ and
ϕ ∈ S∗. If T −→ S∗, then we can take T ′ := S∗ and we
are done (since S∗ is ϕ-final and T −→ S 3 ϕ, as desired).
If T 6−→ S∗, then from this and T −→ S −→ S∗ we get by
weak transitivity that T = S∗, and so T −→ S −→ S∗ = T .
In this case, we can take T ′ := S. Indeed, since we already
know that T −→ S 3 ϕ, to finish the proof we only need
to check that S is ϕ-final. For this, let U ∈ Ω be any theory
with S −→ U 3 ϕ; we need to show that U −→ S. From
S∗ = T −→ S −→ U , we obtain by weak transitivity
that either U = S∗ = T −→ S (and we are done), or
S∗ −→ U 3 ϕ. In the second case, by the ϕ-finality of S∗, we

have U −→ S∗ = T −→ S; by weak transitivity, we obtain
either U −→ S (and we are done) or U = S −→ U = S. So,
in all cases, we concluded that U −→ S, as desired.

The converse follows directly from the Canonical ♦-Witness
Lemma VI.2, as a special case.

It will be useful to observe that θ-final theories are closely
related to 〈∗〉θ-final theories.

Lemma VI.8. Let T ∈ Ω be a θ-final theory. Then:
1) T is also 〈∗〉θ-final.
2) For every S ∈ Ω s.t. T −→∗ S, we have 〈∗〉θ ∈ S iff

either T = S or T ←→ S.
3) All theories S ∈ Ω satisfying T ←→ S are 〈∗〉θ-final.

Proof. Assume T is θ-final. To show that it is also 〈∗〉θ-final,
observe that we have 〈∗〉θ ∈ T (since θ =⇒ 〈∗〉θ is a theorem
in our logic). Second, let S ∈ Ω be s.t. T −→ S and 〈∗〉θ ∈ S,
and we need to prove that S −→ T . Since 〈∗〉θ ∈ S, we have
either θ ∈ S or ♦θ ∈ S. In the first case, from T −→ S 3 θ
and the fact that T is θ-final, we conclude that S −→ T , as
desired. In the second case, from ♦θ ∈ S we infer (by the
Canonical ♦-Witness Lemma) that there exists S′ ∈ Ω, with
S −→ S′ 3 θ. Since T −→ S −→ S′, by weak transitivity
we have either T = S′ or T −→ S′. If T = S′, then we
conclude S −→ S′ = T , and we are done. If T −→ S′, then
since T is θ-final and θ ∈ S′, we get S′ −→ T . Thus we
have S −→ S′ −→ T , hence by weak transitivity we get that
either S −→ T (and we are done) or S = T (in which case
S = T −→ S = T , so we again obtain S −→ T , as desired).

For the second claim of the Lemma: assuming S ∈ Ω s.t.
T −→∗ S (i.e. T = S or T −→ S), we need to show that
〈∗〉θ ∈ S holds iff either T = S or T ←→ S. The case T = S
is obvious. In the case T −→ S, the left-to-right implication
follows from the fact that T is 〈∗〉θ-final. As for the converse:
assuming T ←→ S, and using the fact that ♦θ ∈ T , we obtain
♦〈∗〉θ ∈ S (by the Diamond Existence Lemma and S −→ T ),
and so 〈∗〉θ ∈ S (because ♦〈∗〉θ ⇒ 〈∗〉θ is a theorem in our
axiomatic system).

For the third claim of the Lemma: assume that S ∈ Ω is
s.t. T ←→ S. Since this implies that T −→∗ S, we are in
the conditions of the second claim, and hence we can apply it
to derive from T ←→ S that 〈∗〉θ ∈ S. To show finality, let
S′ ∈ Ω be s.t. S −→ S′ and 〈∗〉θ ∈ S′; we need to prove that
S′ −→ S. From T −→∗ S and S −→ S′, we get T −→∗ S′.
From this and 〈∗〉θ ∈ S′, we obtain by the second claim that
we have either S′ ←→ T or S′ = T . Both cases, combined
with the fact that T −→∗ S, give us S′ −→∗ S. This means
that we either have S′ −→ S (as desired) or else S′ = S (in
which case we have S′ = S −→ S′ = S, hence we again get
S′ −→ S, as desired).

Locality in the final model For the rest of this section,
whenever we talk about ‘locality’, we refer to the final
model ΩΣ. In particular, for T ∈ ΩΣ, we use the notations
T ↑:= {S ∈ ΩΣ : T −→ S}, T↑∗ := {S ∈ ΩΣ : T −→∗ S},
and whenever we write that a property holds locally “above
T ”, we mean that it holds above T in ΩΣ.



Notation. It is useful to introduce the notation

ϕ̂ := {T ∈ ΩΣ : ϕ ∈ T}

for all formulas ϕ ∈ Lµ. From the definition of the canonical
valuation on (the canonical model, and hence on) the final
submodel, it is obvious that we have ‖x‖ΩΣ = x̂, for all atoms
p ∈ P . Our goal is to extend this observation to all sentences
in Σ.

Σ-Bisimilarity in the Final Model We can apply the concept
P -bisimilarity 'P to the final model ΩΣ (for any set of vari-
ables P ⊆ P), and in fact the special case of P0-bisimilarity
'P0

will be relevant for our proof. But it is convenient to
introduce a stronger notion: a relation B ⊆ ΩΣ × ΩΣ is a Σ-
bisimulation if it satisfies the same back-and-forth clauses as
a usual P -bisimulation, but the Atomic Preservation clause
is replaced by the requirement that: (T, T ′) ∈ B implies
T ∩Σ = T ′∩Σ. The relation 'Σ ⊆ ΩΣ×ΩΣ of Σ-bisimilarity
is defined as the largest Σ-bisimulation relation on ΩΣ.

It is easy to see that 'Σ is an equivalence relation on ΩΣ,
and that it is stronger than P0-bisimilarity: if T 'Σ T ′ then
T 'P0 T

′. Using this and the above-mentioned well-known
fact about invariance of µ-calculus under standard bisimilarity,
we immediately obtain the following:

Lemma VI.9. All the formulas ϕ ∈ LP0
µ are invariant under

Σ-bisimilarity, i.e. if T, T ′ ∈ ΩΣ satisfy T 'Σ T ′, then for all
ϕ ∈ LP0

µ we have T ∈ ‖ϕ‖ iff T ′ ∈ ‖ϕ‖.

It is useful to introduce a more “local” version of closure
under bisimilarity.
Closure under Σ bisimilarity above a point This is just
a special case of the general notion of asserting a property
locally: a set X ⊆ ΩΣ is closed under Σ-bisimilarity above a
theory T ∈ ΩΣ if X ∩ T↑∗ is closed under Σ-bisimilarity.

Of course, global closure implies local closure: if a set X ⊆
ΩΣ is closed under Σ-bisimilarity, then it is also closed under
Σ-bisimilarity above every T ∈ ΩΣ. Note also that: X is
closed under Σ-bisimilarity above T iff X ∩ T↑∗ is.

Convention on global/local versions Sometimes we want to
assert that both the global and the local version of a statement
hold in the final model ΩΣ: e.g. if a certain premise holds,
either globally or locally, then a certain conclusion holds,
either globally or locally. To do this in a compact manner,
we will state the global version, but adding in brackets the
words “above T ”, to include the local version as well. An
example is the following result:

Proposition VI.10. If X = (X1, . . . , Xn) is a tuple of sets
Xi ⊆ ΩΣ that are closed under Σ-bisimilarity (above some
T ∈ ΩΣ), and ϕ = ϕ(x) ∈ Σ is a Σ-formula, then ‖ϕ(X)‖ is
also closed under Σ-bisimilarity (above T ).

Proof. We prove only the local version (since the proof of the
global statement is just a simplification the local proof, ob-
tained by omitting every mention of T ). Let Q = {q1, . . . , qn}
be a set of n ‘fresh’ propositional atoms (with P∩Q = ∅). We

extend the valuation of the final model ΩΣ to all the atoms in
P∪Q, by putting ‖qi‖ = Xi∩T↑∗, for all i ≤ n. Then, using
the fact that all Xi are invariant under Σ-bisimilarity above T
(together with the fact that P0 ⊆ Σ), it is easy to see that Σ-
bisimilarity above T implies P0∪Q-bisimilarity above T , i.e.:
if T ′, T ′′ ∈ T↑∗ are s.t. T ′ 'Σ T ′′, then T ′ 'P0∪Q T ′′. Putting
this together with the fact that ϕ(q) ∈ LP0∪Q

µ is closed under
P0 ∪Q-bisimilarity and using Lemma V.10, we conclude that
‖ϕ(X)‖∩T↑∗ = ‖ϕ(X ∩ T↑∗)‖∩T↑∗ = ‖ϕ(‖q‖)‖ = ‖ϕ(q)‖
is closed under Σ-bisimilarity above T , and hence ‖ϕ(X)‖ is
also closed under Σ-bisimilarity above T .

Next, we will use the following easy observation:

Lemma VI.11. If T, T ′ ∈ ΩΣ are such that T ←→ T ′ and
T ∩ Σ = T ′ ∩ Σ, then T 'Σ T ′.

Proof. Take

B := {(T, T ′) ∈ ΩΣ×ΩΣ : T∩Σ = T ′∩Σ, and T ←→∗ T ′}

Clearly, to prove our lemma it is enough to show that B is a
Σ-bisimulation.

For this, assume (T, T ′) ∈ B, and we have to check that
(T, T ′) satisfy the three clauses in the definition of a P -
bisimulation:

“Atomic” preservation is automatically ensured by the fact
that T ∩ Σ = T ′ ∩ Σ.

For the forth condition, let S ∈ ΩΣ such that T −→ S. We
need to show that this, together with (T, T ′) ∈ B, implies the
existence of some S′ ∈ ΩΣ with T ′ −→ S′ and (S, S′) ∈ B:

If T = T ′, we can take S′ := S, and we are done, since
(S, S′) = (S, S) ∈ B. Otherwise, we have T ←→ T ′ and
T −→ S. From these, we infer that we have either T ′ −→ S
or T ′ = S. In the first case, we can take again S′ := S, and we
are done. In the second case, T ′ = S yields T ←→ T ′ = S,
hence we can take S′ := T : we then have T ′ −→ T = S′ and
(S, S′) = (T ′, T ) ∈ B (by the symmetry of B and the fact
that (T, T ′) ∈ B), as desired.

The back condition follows from the satisfaction of the forth
condition and the symmetry of B.

Notations: (sets of) Σ-bisimilarity classes. It is convenient
to introduce a notation for Σ-bisimilarity classes over the final
model: for every final theory T ∈ ΩΣ, we put

TΣ := {S ∈ ΩΣ : T 'Σ S}

for the Σ-bisimilarity class of T . For every set S ⊆ ΩΣ of
final theories, we put

SΣ := {SΣ : S ∈ S}

for the set of Σ-bisimilarity classes of theories in S. In
particular, for the case of the set ΩΣ of all final theories, we
simplify the notation, writing

ΩΣ := (ΩΣ)Σ = {SΣ : S ∈ ΩΣ}



for the set of Σ-bisimilarity classes of all Σ-final theories.
Similarly, for each number n, we put

ΩnΣ := {T ∈ ΩΣ : dpt(T ) ≤ n}Σ
= {TΣ : T ∈ ΩΣ with dpt(T ) ≤ n}

for the set of all Σ-bisimilarity classes of theories of depth
no larger than n. By the Finite Depth Lemma VI.5, we have
ΩΣ = ΩNΣ for some natural number N .

Proposition VI.12. There are only finitely many distinct
bisimilarity classes in the final model ΩΣ.

Proof. It is enough to show that, for each natural number n,
the set ΩnΣ is finite (since the desired conclusion will obviously
follow from the above observation that the set of all final Σ-
bisimilarity classes ΩΣ coincides with ΩNΣ for some number
N ).

The finiteness of |ΩnΣ| for all n follows immediately by
induction from the following two claims:

1) |Ω0
Σ| ≤ 2|Σ| · 22|Σ| ;

2) |ΩnΣ| ≤ 2|Σ| · 22|Σ| · 2|Ω
n−1
Σ | for all n > 0.

To prove these two claims, note first that, for every final the-
ory T ∈ ΩΣ, its bisimilarity class TΣ is uniquely determined
by the pair (T ∩ Σ, T↑Σ), where T↑Σ = {SΣ : T −→ S}
is the set of Σ-bisimilarity classes of T ’s successors. We can
split further this second component into two parts, depending
on whether these bisimilarity classes are of the same depth as
T or of lower depth. In other words: for a final theory T of
depth n, its Σ-bisimilarity class TΣ is uniquely determined by
the triplet

(T ∩ Σ, T↑Σ − Ωn−1
Σ , T↑Σ ∩ Ωn−1

Σ ),

where the third component is empty when n = 0.
To count these triplets, note that the number of distinct

possibilities for the first component of the triple T∩Σ ⊆ Σ is at
most 2|Σ|. Further, since T −→ S and dpt(S) ≥ n = dpt(T )
implies T ←→ S, we have that T↑Σ −Ωn−1

Σ ⊆ {SΣ : T ←→
S}. But, by Lemma VI.11 (and the fact that T ←→ S, S′

implies by weak transitivity that we have either S = S′ or
S ←→ S′), distinct elements SΣ 6= S′Σ of this last set must
have S ∩Σ 6= S′ ∩Σ. So the set {SΣ : T ←→ S} has at most
2|Σ| elements, and thus the number of distinct possibilities for
the second component of the triple is at most 22|Σ| . Finally, for
the third component, we have T↑Σ∩Ωn−1

Σ ⊆ Ωn−1
Σ for n > 0

(and is empty for n = 0), so the number of distinct possibilities
for the third component is at most 2|Ω

n−1
Σ | for n > 0 (and is

= 0 for n = 0). The above two claims immediately follow.

Corollary VI.13. For every fixed-point formula νy.ϕ(y, x)
where the values of x are closed under Σ-bisimilarity, the
iterative process in Proposition III.1(3) reaches its fixed point
on the final model (above some T ∈ ΩΣ) at some finite stage.
More precisely: for all tuples X of subsets of ΩΣ that are
closed under Σ-bisimilarity (above some T ∈ ΩΣ), there exists
some N s.t. we have that

‖νy.ϕ(y,X)‖ =
⋂
n

ϕny (X) = ϕNy (X) holds (above T ),

where ϕ0
y(X) := ΩΣ, ϕn+1

y (X) = ‖ϕ(ϕny (X), X)‖ (and all
the formulas are interpreted in the final model ΩΣ).

Proof. It is obvious that the sequence

ϕ0
y(X) ⊇ ϕ1

y(X) ⊇ . . . ϕny (X) ⊇ . . .

stabilizes, reaching the fixed point (above T ) at the first
stage N s.t. ϕNy (X) = ϕN+1

y (X) holds (above T ), provided
that such a finite number N exists. To show that such an
N exists, suppose towards a contradiction that all the sets
ϕny (X) \ ϕn+1

y (X) are non-empty (above T ). For every n,
let Tn ∈ ϕny (X) \ ϕn+1

y (X). From the definition of the
sequence ϕny (X) and Proposition VI.10, it follows (by an
easy induction) that all the sets ϕny (X) are closed under Σ-
bisimilarity (above T ). So, when Tn (in T↑∗) is eliminated in
the move from stage n to stage n+1, the whole Σ-bisimilarity
class of Tn (above T ) is also eliminated. But since there are
only finitely many Σ-bisimilarity classes (above T ) in ΩΣ,
this elimination process cannot go forever. In fact, an upper
bound for the stabilizing stage N is given by the number of
bisimilarity classes.

Lemma VI.14 (Functional Truth Lemma). For every formula
ϕ = ϕ(y) ∈ Σ in which the variables in the string y =
(y1, . . . , yn) are free (or do not occur), every Σ-final theory
T ∈ ΩΣ, and every tuple θ = (θ1, . . . , θn) of formulas θi ∈
LP0
µ s.t. θ̂i is closed under Σ-bisimilarity above T , we have:

(1) T ∈ ‖ϕ(θ̂)‖ iff T ∈ ϕ̂(θ);
(2) if ϕ = ϕ(y) = ϕ(z, y) is positive in z, then for all natural

numbers n ∈ N , we have:

• ϕnz (θ̂) = ϕ̂nz (θ) holds above T ;

• moreover, ϕ̂nz (θ) is closed under Σ-bisimilarity above
T ;

where: ‖ϕ‖ is the interpretation of ϕ in the final model ΩΣ;
ϕnz (θ̂) is an instance of the sequence of sets in Corollary
VI.13 (i.e. it is recursively defined by putting ϕ0

z(θ̂) := ΩΣ,
ϕn+1
z (θ̂) := ‖ϕ(ϕnz (θ̂), θ̂)‖); and ϕnz (θ) is a sequence of for-

mulas, recursively defined by putting ϕ0
z(θ) := >, ϕn+1

z (θ) :=
ϕ(ϕnz (θ), θ).

Proof. We prove both assertions (1) and (2) by double induc-
tion on the depth dpt(T ) of T ∈ ΩΣ and on the subformula-
complexity of ϕ.

Proof of assertion (1):
The base cases ϕ := yi and ϕ := x ∈ P0, as well as the

Boolean cases ¬ϕ and ϕ ∧ ϕ′, are trivial.

Case ♦ϕ. We have the sequence of equivalencies: T ∈
‖♦ϕ(θ̂)‖ iff ∃S ∈ ‖ϕ(θ̂)‖ s.t. T −→ S (by the semantic
clause for ♦ in the final model) iff ∃S ∈ ϕ̂(θ) s.t. T −→ S

(by the induction hypothesis for ϕ) iff T ∈ ♦̂ϕ(θ) (by the
Final ♦-Witness Lemma VI.7).

Case νx.ϕ with ϕ = ϕ(x, y). Since T is Σ-final, there
exists some ρ ∈ Σ s.t. T is ρ-final, and so (by Lemma VI.8)



T is also 〈∗〉ρ-final, and moreover 〈∗〉ρ locally defines T ’s
cluster above T . Also by Lemma VI.8, all theories S ∈ Ω
s.t. T ←→ S are also 〈∗〉ρ-final, hence they all belong to ΩΣ

(since 〈∗〉ρ is provably equivalent to some Σ-formula)10. For
each theory S in the cluster of T (i.e. s.t. either T ←→ S or
T = S), we put

χS :=
∧
{ψ : ψ ∈ S ∩ Σ}.

Note that, for any theory T ′ ∈ Ω, we have χS ∈ T ′ iff T ′∩Σ =
S ∩ Σ. Put

χ :=
∨
{χS : S ∈ ‖νx.ϕ(θ̂)‖, and T ←→∗ S}.

Take now the sentence

η := (〈∗〉ρ ∧ χ) ∨ ([∗]¬ρ ∧ νx.ϕ(x, θ))

Claim 1: ‖νx.ϕ(θ̂)‖ = η̂ holds above T .
Proof of Claim 1: Let S ∈ T↑∗, i.e. s.t. T −→ S. We

need to show that: S ∈ ‖νx.ϕ(θ̂)‖ iff η ∈ S. For this, we
distinguish two cases.

Case 1: T ←→ S or T = S. By Lemma VI.8, we have
〈∗〉ρ ∈ S. Then the desired conclusion follows from the
following sequence of equivalencies: η ∈ S iff χ ∈ S iff
∃S′ ∈ ‖νx.ϕ(θ̂)‖ s.t. (S′ ←→ T or S′ = T ) &S′∩Σ = S∩Σ

iff S ∈ ‖νx.ϕ(θ̂)‖ (by Lemma VI.11, Proposition VI.10 and
the assumption that all θi are closed under Σ-bisimilarity
above T ).

Case 2: T 6←→ S and T 6= S, hence T −→6←− S, and thus
dpt(S) < dpt(T ). By Lemma VI.8, we have 〈∗〉ρ 6∈ S, so
[∗]¬ρ ∈ S. Once again, the desired conclusion follows from
the sequence of equivalencies: η ∈ S iff νx.ϕ(θ̄) ∈ S iff
S ∈ ̂νx.ϕ(θ̄) iff S ∈ ‖νx.ϕ(θ̂)‖ (by the induction hypothesis
for theories S ∈ ΩΣ with dpt(S) < dpt(T )).

Given Claim 1, we can now prove:
Claim 2. η̂ is closed under Σ-bisimilarity above T .
Proof of Claim 2: By Claim 1, we have η̂ ∩ T↑∗ =

‖νx.ϕ(θ̂)‖ ∩ T↑∗, and the right-hand side can be easily seen
to be closed under Σ-bisimilarity above T (using Proposition
VI.10 and the assumption that all θ̂i are closed under Σ-
bisimilarity above T ). Hence, η̂ is also closed under Σ-
bisimilarity above T .

Claim 3. (η ⇒ νx.ϕ(x, θ)) ∈ T .
Proof of Claim 3: Suppose not. Then by Proposition III.4(4),

we must have [∗](η ⇒ ϕ(η, θ)) 6∈ T . By the Canonical 〈∗〉-
Witness Lemma VI.4, there exists T ′ ∈ Ω (not necessarily
final!) such that T −→∗ T ′, η ∈ T ′ and ϕ(η, θ) 6∈ T ′. Once
again, we distinguish two cases.

Case 1: 〈∗〉ρ ∈ T ′. From T −→∗ T ′ and the 〈∗〉ρ-finality
of T , we obtain that T ′ is also 〈∗〉ρ-final, hence T ′ ∈ ΩΣ and
thus T ′ ∈ η̂ ∩ T↑∗ (since η ∈ T ′ ∈ ΩΣ and T −→∗ T ′). We
have the following sequence of equalities:

10This follows from ρ ∈ Σ, together with the fact that Σ is closed under
the 〈∗〉 operator up to logical equivalence.

η̂∩T↑∗ = ‖νx.ϕ(θ̂)‖∩T↑∗ = ‖ϕ(‖νx.ϕ(θ̂)‖, θ̂)‖∩T↑∗ =

‖ϕ(‖νx.ϕ(θ̂)‖ ∩ T↑∗, θ̂)‖ ∩ T↑∗ = ‖ϕ(η̂ ∩ T↑∗, θ̂)‖ ∩ T↑∗ =

‖ϕ(η̂, θ̂)‖ ∩ T↑∗ = ϕ̂(η, θ) ∩ T↑∗
(where we used repeatedly Claim 1, Lemma V.10, the fact

that ‖νx.ϕ(θ̂)‖ is a fixed point of X 7→ ‖ϕ(X, θ̂)‖, as well as
the induction hypothesis for ϕ, combined with the fact that all
θ̂i’s and η̂ are closed under Σ-bisimilarity above T ). Using the
above equalities, we get from T ′ ∈ η̂ ∩ T↑∗ to T ′ ∈ ϕ̂(η, θ),
which contradicts the above assumption that ϕ(η, θ) 6∈ T ′.

Case 2: [∗]¬ρ ∈ T ′. From this, together with η ∈ T ′,
we obtain (using reasoning in the axiomatic system) that
([∗]¬ρ ∧ νx.ϕ(x, θ)) ∈ T ′. Using the Fixed Point Axiom,
we get ([∗]¬ρ∧ϕ(νx.ϕ(x, θ), θ)) ∈ T ′. Applying Proposition
III.4(2) (and the fact that ϕ is positive in x), we infer
that ϕ([∗]¬ρ ∧ νx.ϕ(x, θ)) ∈ T ′, then applying Proposition
III.4(3) (as well as the fact that ([∗]¬ρ ∧ νx.ϕ(x, θ)) ⇒ η
is provable in propositional logic, hence by Necessitation
[∗](([∗]¬ρ∧νx.ϕ(x, θ))⇒ η) is a theorem in our system), we
obtain that ϕ(η, θ) ∈ T ′, which again contradicts the above
assumption that ϕ(η, θ) 6∈ T ′.

Given the above three Claims, let us prove the case νx.ϕ.
For the left-to-right direction: assume that T ∈ ‖νx.ϕ(θ̂)‖.
Then by Claim 1, we have T ∈ η̂, hence η ∈ T , and thus by
Claim 3, we also have νx.ϕ(x, θ) ∈ T , i.e. T ∈ ̂νx.ϕ(x, θ),
as desired.

For the converse: assume that T ∈ ̂νx.ϕ(x, θ). Using
reasoning in the axiomatic system (making essential use of
the Fixed Point Axiom), we see that νx.ϕ(x, θ)⇒ ϕnx(θ) for

all n, so we get T ∈ ϕ̂nx(θ) for all n. By the inductive assertion
(2) of our Lemma (for ϕ), we obtain that T ∈ ϕnx(θ̂) for all n.
So T ∈

⋂
n ϕ

n
x(θ̂). But, by Corollary VI.13 (and the fact that

all θ̂i are closed under Σ-bisimilarity above T ), this last set
is equal above T with the greatest fixed point of the operator
X 7→ ‖ϕ(X, θ̂)‖, i.e. with ‖νx.ϕ(θ̂)‖, and so we obtain the
desired conclusion.

Proof of assertion (2): We prove assertion (2) of our Lemma
for ϕ, using the fact that we proved assertion (1) of the Lemma
for ϕ. The proof is by induction on n. For n = 0: ϕ0

z(θ̂) =

W = ϕ̂0
z(θ), and W is obviously closed under Σ-bisimilarity.

For the inductive step n+ 1, assume the assertion is true for
n. Then, for all theories S ∈ T↑∗, we have the following
sequence of equivalencies:
S ∈ ϕn+1

z (θ̂) iff S ∈ ‖ϕ(ϕnz (θ̂), θ̂)‖ iff S ∈ ‖ϕ(ϕ̂nz (θ), θ̂)‖
(by the inductive hypothesis (2) for n) iff S ∈ ̂ϕ(ϕnz (θ), θ)
(by the induction hypothesis (1) for ϕ and S, and using the
closure of θ̂ and of ϕ̂nz (θ) under Σ-bisimilarity above T , by
the inductive hypothesis (2) for n, and as a consequence their
closure under Σ-bisimilarity above S ∈ T↑∗) iff S ∈ ̂ϕn+1

z (θ).
That takes care of the first item in assertion (2) of our

Lemma. As for the second item of this assertion (closure of
ϕ̂nz (θ) under Σ-bisimilarity above T ): first, using Proposition



VI.10 and the recursive definition of ϕnz (θ̂), an easy induction
on n shows that all ϕnz (θ̂) are closed under Σ-bisimilarity
above T ; from this, together with the already proven first item
of assertion (2), we conclude that all ϕ̂nz (θ) are also closed
under Σ-bisimilarity above T .

Lemma VI.15 (Truth Lemma). For every formula ϕ ∈ Σ, we
have:

‖ϕ‖ΩΣ = ϕ̂.

Proof. For ϕ = ϕ(y1, . . . , yn) ∈ Σ, apply the Functional
Truth Lemma VI.14 to formula θi := yi.

Weak completeness for wK4 frames follows immediately
from Lemma VI.15 (cf. Appendix). By Lemma V.12, this
also applies to irreflexive wK4 frames, hence to topological
derivative spaces, and thus to arbitrary derivative spaces.

Proof of Completeness for wK4 frames, topological deriva-
tive spaces, and general derivative spaces:

Recall that we started with a consistent formula ϕ0, and a
set Σ s.t. ϕ0 ∈ Σ and Σ is closed under negations and 〈∗〉 up to
logical equivalence. Take some Σ-final theory T0 ∈ ΩΣ with
ϕ0 ∈ T0 (-such a theory exists by the Lindenbaum Lemma
combined with the Final Lemma VI.6). Since ϕ0 ∈ T0 ∈ ΩΣ,
the above Truth Lemma VI.15 shows that T0 |= ϕ0 holds in
ΩΣ. Hence, our axiomatic system is complete for the class
of weakly transitive relational models. By Lemma V.12, we
can add irreflexivity: the logic is the same, so the system is
also complete for the class of irreflexive and weakly transitive
models. But, as already mentioned in Example II.6, this class
coincides with the class of Alexandroff topological derivative
models. So the system is also complete for topological deriva-
tive models (and thus also for general derivative models).

As for finite model property, this can be shown by taking
the quotient of ΩΣ modulo Σ-bisimilarity:

Final Quotient The final quotient (ΩΣ,−→Σ, ‖·‖Σ) is defined
as the “strongly extensional Σ-quotient” of the final model ΩΣ;
i.e. the set of worlds ΩΣ consists of all equivalence classes
TΣ = {S ∈ ΩΣ : T 'Σ S}, the accessibility relation is
given by putting TΣ −→Σ SΣ if there are T ′ ∈ TΣ, S′ ∈ SΣ

s.t. T −→ S, and the valuation is given by putting, for each
p ∈ P, TΣ ∈ ‖p‖Σ iff there is T ′ ∈ TΣ s.t. T ′ ∈ ‖p‖.

Proposition VI.16 (Finite Model Property).
1) The final quotient ΩΣ is finite (with an upper bound given

by a computable function of |Σ|);
2) for every formula ϕ ∈ LP0

µ , we have that: ϕ is true in
the final model at some final theory T ∈ ΩΣ iff ϕ is true
in the final quotient at the Σ-bisimilarity class TΣ;

3) µ-calculus has FMP (wrt relational, topological and
derivative-space semantics).

Proof. The finite bound follows immediately from Proposition
VI.12.

The second part follows from the easily checked fact that
the map T 7→ TΣ is a functional P0-bisimulation between the
two models, and that all µ-calculus sentences ϕ ∈ LP0

µ are
invariant under P0-bisimulations.

To check part 3 (FMP) for weakly transitive models, it is
enough to check that the relation −→Σ is weakly transitive in
the final quotient ΩΣ. For this, suppose that TΣ, SΣ, UΣ ∈ ΩΣ

are s.t. TΣ −→Σ SΣ −→Σ UΣ. By the definition of −→Σ,
this means that we can assume T −→ S and S′ −→ U , for
some theory S′ 'Σ S. Since Σ-bisimilarity is a bisimulation
relation, this implies that there exists some U ′ 'Σ U s.t.
S −→ U ′. But from T −→ S −→ U ′, we obtained (by
weak transitivity) that we have either T = U ′, in which
case TΣ = U ′Σ = UΣ, or else T −→ U ′, in which case
TΣ −→Σ U ′Σ = UΣ, as desired.

Using again Lemma V.12 (and the fact that the copying
construction in its proof preserves a model’s finiteness), we
get FMP for irreflexive and weakly transitive models, i.e. (by
the equivalence in Example II.6) for Alexandroff topological
derivative models (and hence for arbitrary topological deriva-
tive models, as well as general derivative models).

Axiomatization of natural sublanguages The proofs in this
section can all be carried out within any natural sublanguage
L of Lµ. In particular, natural sublanguages are closed under
all operations used to define Σ, and moreover the formulas
considered in the proof are all built from elements of Σ
using substitution, Booleans or applications of modalities. This
finishes the proof of Theorem III.5, establishing completeness
and FMP for all logics µ-wK4L.

Next, we get similar results for many logics above µ-wK4.

VII. GENERALIZATION TO COFINAL SUBFRAME LOGICS

Our completeness and finite model property uses only a
handful of properties of the logic wK4, and can readily be
extended to a wide class of related logics. To be precise,
we will now show that FMP holds for any canonical cofinal
subframe logic above wK4 enriched with fixed-points.

Definition VII.1. ([10, Ch. 9]) Let (W,−→) be a weakly
transitive frame. A subset X ⊆ W is called cofinal if X↑ ⊆
X↓∗. That is, for every x ∈ W , if there is y ∈ X such that
y −→ x, then there is z ∈ X with x −→∗ z.

Let Λ be any normal modal logic over L♦ that extends wK4.
Recall that a Kripke frame (W,−→) is called a Λ-frame if it
validates all the formulas in Λ, and that a modal logic Λ is
canonical if the underlying frame of the canonical model for Λ
is a Λ-frame. Every logic axiomatized by Sahlqvist formulas
is canonical [9]. Recall also that a canonical logic Λ is cofinal
subframe if and only if for every Λ-frame F = (W,−→) and
every cofinal U ⊆ X , the restriction of F to U is also a
Λ-frame [10].

Examples of canonical cofinal subframe logics above wK4
are wKT0, K4, K4D = K4+♦>, K4.1 = K4+�♦p→ ♦�p,
K4.2 = K4 + ♦�p → �♦p, K4.3 = K4 + �(�+p → q) ∨



�(�+q → p), S4 = K4+�p→ p, S4.1 = S4+�♦p→ ♦�p,
S4.2 = S4+♦�p→ �♦p, S4.3 = S4+�(�p→ q)∨�(�q →
p), S5 = S4 + p→ �♦p, etc. (see [10, Chapter 9]).

We are ready to state Theorem III.5 in full generality.

Theorem VII.2. Let Λ be a canonical cofinal subframe logic
over wK4, and L be a natural sublanguage of Lµ. Then, µ-ΛL

is sound for the class of Λ-frames, and complete for the class
of finite Λ-frames.

Proof. We just follow the proof of the previous section. First,
we note that by canonicity, the Kripke frame underlying the
canonical model of µ-Λ is a Λ-frame. This does require some
checking, as canonicity only tells us that the canonical model
for Λ is a Λ-frame, but this can be done by observing that
the canonical model of µ-Λ is a generated submodel of the
canonical model of Λ. We proceed as in the proof of weak
completeness in the previous section with a small modification
that if > does not belong to Σ, then we add it to Σ. The fact
that > ∈ Σ ensures that the final model ΩΣ contains all final
point of the canonical frame. Therefore, ΩΣ is based on a
cofinal subframe of the canonical frame. Hence, the underlying
frame of ΩΣ is a Λ-frame. Finally, as p-morphic images
preserve the validity of modal µ-formulas, the finite p-morphic
image of ΩΣ is a finite Λ-frame. Thus, every consistent Lµ-
formula is satisfied in a model based on a Λ-frame, and hence,
on a µ-Λ-frame, implying the FMP of µ-Λ.

There exist continuum many canonical cofinal subframe
logics above K4 ([10, Theorem 11.28 and Exercise 11.14]).
Hence the above theorem covers continuum many logics.11

Of course, only countable many of them have a recursively
enumerable set of axioms: for those logics, decidability fol-
lows from Theorem VII.2. Next, we single out some important
ones.12

Corollary VII.3. The logics µ-wKT0, µ-K4, µ-K4D, µ-K4.1,
µ-K4.2, µ-K4.3, µ-S4, µ-S4.1, µ-S4.2, µ-S4.3 have the FMP
and are decidable.

VIII. COMPLETENESS FOR T0 AND TD SPACES

The simple world-duplication construction underlying the
last step of the topological completeness proof in Section III.5
does not work in the case of T0 and TD spaces. So we will
use d-morphisms to prove topological completeness for these
cases. In the process we give an alternative to the above-
mentioned proof of completeness for arbitrary spaces, although
this new proof has the disadvantage that it does not yield the
finite model property in this setting.

For this it suffices, given a wK4 frame F = (W,−→),
to construct a topological space (X, τ) and a d-morphism
π : X → W as characterized by Lemma V.7, in such a way

11As far as we are aware, this is a first non-trivial example of a completeness
result for modal fixed-point logics that covers so many logical systems.

12Topological completeness of wK4, wKT0 and K4 has already been
discussed in Section 3. We also recall that S4.1 is the logic of spaces whose
dense sets form a filter, that S4.2 is the logic of extremally disconnected
spaces [6, Sec. 2.6] and that S4.3 is the logic of hereditarily extremally
disconnected spaces [33].

that if F is a wK4T0 frame then X will be T0, and if F is a
K4 frame, then X will be TD.

Definition VIII.1. Let F = (W,−→) be a wK4 frame. We
build a topological space (X, τ) = (XF , τF ) and a map
π : X → W as follows. Let W r be the set of reflexive points
of W and W i be the set of irreflexive points. Then, set

X = (W r × N) ∪ (W i × {ω}),

and say that U ⊆ X is open if whenever (w,α) ∈ U , the
following two properties are satisfied:

1) There is n ∈ N such that for all (v, β) ∈ X , v ←→ w
and β ≥ n implies that (v, β) ∈ U .

2) If (v, β) ∈ X and w −→6←− v then (v, β) ∈ U .
Finally, set π(w,α) = w.

In other words, if an open set contains (w,α) then it
contains all copies of v whenever w −→∗ v, except possibly
for cofinitely many in the case that v ←→ w.

Lemma VIII.2. If F = (W,−→) is any wK4 frame then τF
is a topology on XF and π : XF →W is a d-morphism.

Proof. Let (X, τ) = (XF , τF ). We omit the proof that τ is a
topology, which proceeds by routine verification. To see that
π is a d-morphism, we appeal to Lemma V.7. Let (w,α) ∈ X
and note that w = π(w,α). Define

O = {(v, β) : w −→∗ v and β ≥ 0}.

It should be clear that O is a neighborhood of (w,α). More-
over, if (v, β) ∈ O \ {(w,α)}, then w −→∗ v. It follows that
w −→ v, except in the case where w = v and w is irreflexive.
But then α = β = ω, so that (v, β) = (w,α), contradicting
(v, β) ∈ O \ {(w,α)}. Hence O \ {(w,α)} ⊆ π−1(w↑), as
needed.

Now let U be any neighborhood of (w,α) and v ∈ w↑; we
must show that v ∈ π(U \ {(w,α)}). Then, there is n ∈ N
such that β > n and (v, β) ∈ X implies that (v, β) ∈ U .
If v is reflexive, choose any β 6= α such that n < β < ω.
Then, (v, β) ∈ U \ {(w,α)} and π(v, β) = v, as required. If
v is irreflexive, then from w −→ v we obtain v 6= w. Thus
(v, ω) ∈ U \ {(w,α)} and π(v, ω) = v.

Finally, π is surjective since π(w, 0) = w if w is reflexive
and π(w,ω) = w if w is irreflexive.

Lemma VIII.3. If F = (W,−→) is any wK4 frame then:
1) If F is a wK4T0 frame then XF is T0.
2) If F is a K4 frame then XF is TD.

Proof. Let X = XF . First assume that F is a wK4T0

frame and let (w,α) 6= (v, β) ∈ X . If w 6−→∗ v then
{(u, γ) ∈ X : w −→∗ u} is a neighborhood of (w,α) which
is not a neighborhood of (v, β). The case where v 6−→∗ w is
symmetric, so we may assume w ←→∗ v. If β < ω then

U = {(u, γ) ∈ X : w −→∗ u} \ {(v, β)}

is a neighborhood of (w,α) not containing (v, β). The case
where α < ω is symmetric. So we are left with the case where



α = β = ω. Since (w,α) 6= (v, β), it follows that w 6= v.
Since w ←→ v and F is a wK4T0 frame, we cannot have
that both w, v are irreflexive; but if w is reflexive then α < ω,
contrary to our assumption, and similarly if v is reflexive then
β < ω. We conclude that the case α = β = ω is impossible.

Now assume that F is a K4 frame and let (w,α) ∈ X; we
must find open U and closed F such that U ∩ F = {(w,α)}.
Let

U = {(v, β) ∈ X : w −→∗ v}
F = {(v, β) ∈ X : v −→ w} ∪ {(w,α)}.

It should be clear that U∩F = {(w,α)} and that U is open, so
we check only that F is closed; that is, that the complement of
F is open. So, define O := X \F . Let (v, β) ∈ O. If (u, γ) ∈
X is such that v −→ u, then we cannot have u −→∗ w by
transitivity, since this would lead to v −→ w and (v, β) ∈ F .
Thus u 6−→ w and u 6= w, yielding (u, γ) 6∈ F regardless of
γ. Next we check that there is n so that if γ > n, u ←→∗ v
and (u, γ) ∈ X , it follows that (u, γ) ∈ O. If v 6←→ ∗w,
then we may set n = 0. For then, u ←→∗ v and v 6−→ w
yield u 6−→ w and u 6= w, so that (u, γ) ∈ O regardless of
γ. If v ←→∗ w, we claim that w is reflexive. If not, then
v ←→∗ w yields v = w since F is a K4 frame, and the
definition of X yields α = β = ω, so that (v, β) = (w,α)
and (v, β) ∈ O is impossible. Thus w is reflexive, so that
α < ω. But then, u ←→∗ v and γ > α yield (u, γ) ∈ O, so
we may set n = α.

We can now proceed to prove topological completeness for
T0 and TD spaces. In fact, the proof also works for the wK4
case of arbitrary spaces (but unlike the proof in the previous
section it does not give us finite model property)13:

Theorem VIII.4. 1) µ-wK4 is sound and complete for the
class of all topological spaces.

2) µ-wK4T0 is sound and complete for the class of all T0

topological spaces.
3) µ-K4 is sound and complete for the class of all TD

topological spaces.

Proof. Let Λ be any of the logics µ-wK4, µ-wK4T0 or µ-K4.
Soundness of Λ for its class of spaces follows from Lemma
III.3 and the fact that each fixed point-free fragment is sound
for the respective class of spaces (see Section III). Since Λ is a
canonical subframe logic, by Kripke completeness, if ϕ is not
derivable then it is falsifiable on some Λ-frame F = (W,−→).
Then, by Lemma VIII.3, (XF , τF ) is a Λ-space and F is a
d-morphic image of XF , so ϕ is also falsifiable on (XF , τF ),
as needed.

13On the other hand, neither wK4T0 nor K4 have the finite topological
model property, so the next result cannot be improved upon.

IX. CONCLUSION AND COMPARISON WITH OTHER WORK

In this paper, we have studied the µ-calculus over arbitrary
topological spaces, as well as some natural subclasses, and
obtained a general soundness and completeness result for the
standard axiomatization.

Our results are novel for several reasons. First, in the setting
of Kripke semantics, neither completeness nor the FMP for
weakly transitive frames were known, nor do they follow
immediately from known results. Moreover, our completeness
proof appears to be the first such result for a variant of µ-
calculus that simultaneously applies to infinitely many logics
and their respective classes of frames.

From the topological perspective, neither completeness nor
decidability for non-TD spaces were known, nor they fol-
low from known results. Unlike the transitive/TD case, our
logics do not embed into standard µ-calculus, or any of its
known decidable extensions. This is in sharp contrast to the
TD/transitive case, where FMP and decidability follow via
a simple encoding into standard µ-calculus.14 Moreover, we
showed that the tangled derivative is not expressively complete
over the class of all topological (or even T0) spaces, so we had
to give a completeness proof that applies to the full language
of µ-calculus.

But note that even on TD spaces, our proof is the first
to directly establish completeness over such spaces of a
Kozen-type axiomatization for full µ-calculus (rather than for
some semantically equivalent modal logic). Prior work on
TD spaces, mainly by Goldblatt and Hodkinson [26], had
focused only on the tangled fragment. Though this fragment
is known to be co-expressive with µ-calculus over TD spaces
(and transitive frames), completeness for the full µ-calculus
over these spaces only follows if we combine the results in
[26] with Walukiewicz’s proof of Kripke completeness for
µ-calculus. In contrast, our proof of completeness is self-
contained (for both the TD and the non-TD case), taking
advantage of the weak transitivity to give a streamlined proof
tailored for the topological setting.

Furthermore, our results are based on an innovative use of
the proof techniques using final submodels (due to Fine and
Zakharyaschev). This method has not been applied previously
in a setting with fixed points, and provides a novel, general and
relatively simple approach to dealing with fixed point logics
over wK4 frames (for which the filtration method, used in [26]
and elsewhere in the study of fixed point logics, does not seem
to work). In fact, even for the much easier case of topological
closure spaces, our method provides a simpler and more
uniform way to reprove existing results: while Goldblatt and

14As already mentioned, the transitive closure of a relation can be encoded
in µ-calculus (and thus the decidability of µ-calculus over transitive frames
follows immediately from Kozen’s result on the decidability of µ-calculus
over arbitrary frames). In contrast, the weakly-transitive closure of a relation
does not seem to be definable in µ-calculus, and not even in its recent hybrid
extension [34]. Weakly-transitive closure is definable only if one adds the
binding operator from hybrid logic. But this increases the complexity of hybrid
µ-calculus, and the resulting logic is no longer known to have FMP (or to
even be decidable).



Hodkinson [35] had to do a lot of work to show the FMP for
S4-tangle logic (and thus also for the semantically equivalent
µ-S4), in Corollary VII.3 we get this result essentially for free
from our general methods.

There are many open questions left within the context of
topological fixed point logics. The problem of finding a simple
but expressively complete fragment of the µ-calculus over
wK4, in analogy to the tangled fragment for logics over K4,
remains open. But we conjecture that topological µ-calculus
does indeed collapse to a simpler natural fragment, possibly
the alternation-free fragment, with a proof along the lines of
the similar argument for transitive frames in [36]. Anticipating
such a development, we have set up our main completeness
result in a modular fashion so that, if such a fragment L is ever
found, the completeness for its natural axiomatization µ-wK4L

will follow immediately from Theorem III.5.
Another line of inquiry that we leave open here is the

problem of extending our methods to classes of spaces which
enjoy topologically natural properties that do not correspond
to any cofinal subframe logic. The prime example here is that
of connected spaces, whose modal logic is well understood in
presence of the universal modality [37]. We believe that our
methods can be extended to such settings, but some non-trivial
modifications would be required.
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de Queiroz, Eds., vol. 9803. Springer, 2016, pp. 83–103.

[21] R. Parikh, “Finite and infinite dialogues,” in Logic from Computer
Science. Springer, 1992, pp. 481–497.

[22] K. Fine, “Logics containing K4. II,” J. Symb. Log., vol. 50, no. 3, pp.
619–651, 1985.

[23] M. Zakharyaschev, “Canonical formulas for K4. II. Cofinal subframe
logics,” J. Symb. Log., vol. 61, no. 2, pp. 421–449, 1996.

[24] G. Bezhanishvili, S. Ghilardi, and M. Jibladze, “An algebraic approach
to subframe logics. Modal case,” Notre Dame J. Formal Log., vol. 52,
no. 2, pp. 187–202, 2011.

[25] D. Kozen, “A finite model theorem for the propositional mu-calculus,”
Studia Logica, vol. 47, pp. 233–241, 1988.

[26] R. Goldblatt and I. Hodkinson, “The finite model property for logics
with the tangle modality,” Stud Logica, vol. 106, no. 1, pp. 131–166,
2018.

[27] A. Dawar and M. Otto, “Modal characterisation theorems over special
classes of frames,” Ann. Pure Appl. Log., vol. 161, no. 1, pp. 1–42,
2009.

[28] E. Pacuit, Neighborhood semantics for modal logic. Springer, 2017.
[29] D. Fernández-Duque, “Tangled modal logic for spatial reasoning,” in

IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
T. Walsh, Ed. IJCAI/AAAI, 2011, pp. 857–862.

[30] G. Bezhanishvili, L. Esakia, and D. Gabelaia, “Spectral and T0-spaces
in d-semantics,” in 8th International Tbilisi Symposium on Logic,
Language, and Computation. Selected papers., ser. Lecture Notes in
Artificial Intelligence, N. Bezhanishvili, S. Löbner, K. Schwabe, and
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