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Abstract

The seminal paper “A partition calculus in set theory” by Paul Erdds and
Richard Rado is notoriously hard to read and contains many interesting results
hidden behind outdated notation. This thesis therefore aims at a modernisation of
the contents of the paper, in order to make the paper more accessible. This entails
rewriting theorems and their proofs using modern mathematical notation. Of partic-
ular interest is a key result from the paper, the Positive Stepping Up Lemma, and we
conjecture that one instance of the lemma, the partition relation 35 — (w+n+1)" ,
cannot be improved.

We also adjust the proof of the Negative Stepping Up Lemma in order to prove
the implication k /A (wW*)!, = 2% 4 (w*)"F, where & is an infinite cardinal, « is
an ordinal and r,m < w. We deduce the negative partition relations JF /4 (w?)5+?
for all n < w, providing a bound to the conjecture.
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Chapter 1

Introduction

In 1930, Frank Ramsey proved in the paper [Ram30| a theorem which is now known
as Ramsey’s Theorem: colouring r-tuples of an infinite set by finitely many colours
always yields an infinite subset such that its r-tuples receive the same colour. The
discovery of this theorem initiated the mathematical field of infinite Ramsey theory,
concerning itself with finding generalisations to Ramsey’s Theorem. In essence,
Ramsey theory shows that “complete disorder is impossible”.

The seminal paper “A partition calculus in set theory” [ER56] by Paul Erdés
and Richard Rado, published in 1956, was the first systematic study of the partition
calculus, a subfield of Ramsey theory. This field is concerned with proving partition
relations. In the paper, they proved a key result, called the “Positive Stepping
Up Lemma”, which is a direct generalisation of Ramsey’s theorem. The paper’s
success and impact on the mathematical community was also partly due to the
arrow notation invented by Erdds and Rado, which allows one to succinctly write
down partition relations. As Andrds Hajnal said in [HL10, p. 130]: “There are
cases in mathematical history when a well-chosen notation can enormously enhance
the development of a branch of mathematics and a case in point is the ordinary
partition symbol.”

In this thesis, we will modernise the paper |[ER56] by Erdés and Rado. The
paper contains many positive and negative results in the field of partition calculus.
However, it is hard to locate results in the paper as the mathematical notation is
outdated. We will therefore rewrite the theorems and their proofs using modern
mathematical language, in order to enhance the accessibility of the paper. We do
not treat the whole paper and we omit the final two sections, concerning canonical
partition relations and polarised partition relations. We also omit section 3 of the
paper, concerning Theorem 1 to Theorem 10, as these are results that were known
before the publication of [ER56]. In the Overview (Section [I.2), one can precisely
see which results of [ER56] will be presented in the thesis.

1.1 Structure of the thesis

In Chapter [2| we establish some basic properties regarding partition relations.
These properties will often be called upon in this thesis, in order to prove partition
relations. The material presented there corresponds to Theorem 11 to Theorem 20
of [ER5H6].

In Chapter [3 we treat the bulk of [ER56]: Theorem 23 to Theorem 45. Of
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Chapter 1.2

particular interest is the Positive Stepping Up Lemma, which states

£ (Blpem = (259" = (8o + 115

n<m-

Starting with Ramsey’s Theorem, Ry — (w)’ ., we obtain 35 — (w+n + 1) after
applying the Positive Stepping Up Lemma multiple times. We conjecture that this
relation is sharp, i.e., increasing the goal to w + n + 2 will result in a negative
partition relation. In [ER56|, this is shown for n = 0, and a corollary of a result by
Albin Jones combined with a theorem by Erdés-Rado shows this for n = 1.

In Chapter |4 we investigate some results of [Erd+84]. These results are all
cardinal-based partition relations, and we adjust the proofs to prove their order-type
variants. We investigate the proof of the Negative Stepping Up Lemma in [Erd+84]
and improve the result from cardinals to all additively indecomposable ordinals.
In other words, we prove the implication k 4 (w®)" = 2% A (w*)'H. As a

consequence we obtain the negative partition relations 37 4 (w?)5™ for all n < w.
This result provides a bound to the conjecture for all n > 2.

1.2 Overview

We will present an overview of the results in [ER56] according to the following
template.

Location in [ER56] Location in thesis

The modernised statement of the result.

We mention again that this overview is not an exhaustive list of the Erdés-Rado
paper. The final two sections of the original paper, concerning canonical partition
relations and polarised partition relations, are not presented here. These final two
sections entail Theorem 46 to Theorem 51, or alternatively, [ER56|, pp. 477-488].

At the beginning of the paper, Erdés and Rado list some classical results that
were known before the publication of [ER56], e.g., Ramsey’s Theorem. These are
Theorem 1 to Theorem 10, and we do not present these in this overview. These
results correspond to [ER56, pp. 431-433].

The remaining results of [ER56] are in this overview. These are Theorem 11 to
Theorem 45, or alternatively, [ER56, pp. 433-477].

Theorem 11 Lemma 2.27]

Given order-types L, M, and r < w and m any cardinal, then the
following statements are equivalent:

L— (M)

m?

L* — (M™);..




Chapter 1.2

Monotonicity of the partition relation: Given a relation & — (ft5,)} <1
and k < k', m' < m, u, < p, and p, > r for all n < m. Then

K = (:U’,n);<m’

Theorem 12 Observation 2.4] & Remark 2.13

Let r < w and let k£ be any cardinal. Let o be an ordinal and
suppose that 3, are initial ordinals for all n < k. Then the following
statements are equivalent:

a— <6n):1<k7
o] = (18 ])n ek

Theorems 13 & 14 Lemma [2.24]

Let L, M be order-types, r < w and k any cardinal. If L +1 —
(M +1);", then L — (M)y;.

Theorem 15 Lemma [2.22

Let r,m, k, < w for all n < m, let L, M,,, N,,, be order-types for all
n <m and i < k,. Suppose L — (M,);,,,, and also M,, — (Ny,)i_s.
for each n < m. Then L — (Np, )7, cnick, -

Theorem 16 Lemma 2.27]

Let r < w, let L, M be order-types and let m and k be sets. Suppose
|m| = |k|, then L — (M) if and only if L — (M);.

Theorem 17 Lemma [2.26]

Let m,r < w. Let L and M; be order-types for all ¢ < m. Suppose
L — (M,)i_,, and let f: [L]" — m be a partition. Then there are

sets I,J C m with |I| + |J| > m such that for all i € [ and j € J,
there is an j-homogeneous set for f of order-type M;.

Theorem 18 Lemma [2.28

Let L, M, N be order-types and let 6 be the initial ordinal of |L].
Suppose L — (M, N)2. Then at least one of the following four sit-
uations must be true: (i) M < w, (ii) N < w, (iii)) M,N < L and
M,N <6, or (iv) M,N < L and M, N < ¢§*.

Theorem 19 Lemma [2.29]
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Corollary of Theorems 18 & 19 Corollary

Theorem 20 Lemma .19

Let r < w and let m, k be cardinals.

(i) If k and p are cardinals such that 4 < k and p < r, then Kk — (p)7..
(ii) If ~ is a cardinal, p,, = r for all n < m, and v; are cardinals for
i < k. Then & = ((ftn)n<m, (Vi)ick)" is equivalent to kK — (14)]_.

Theorem 21 Observation .17

Suppose & — (fn)h<,, holds, then either (i) there is some n < m
with p, < r and p, <k, or (ii) p, < & for all n < m.

Theorem 22 Not in thesis

This theorem is a table which gives the value of certain trivial parti-
tion relations.

Theorem 23 Theorem [3.25]
Theorem [3.26

For all n < w and o < w - 2,
w-n— (n,a)?

w-nAn+ 1w+ 1)

Theorem 24 Not in thesis

An application of Theorem 25. If « < w - 4, then

047L> (370‘)'2)2’
w-4— (3,w-2)>%.
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Theorem 25 Theorem [3.29
Lemma [3.30
Theorem [3.27

Let 2 < m <wand 1 < n < w. Suppose that ¢y < w is the least
natural number that has property P,,,. Then

w- Ly = (m,w-n)?,
v A (m,w-n)? for all v < w - 4.

If ¢ < w is such that £ — (m,m,n)?, then £, < /.

Theorem 26 Theorem

If, additionally r > 2, then

AA(r+ 1)y,

Theorem 27 Theorem B.13
XA (w,w+2)°

Theorem 28 Theorem [B3.14
For r > 4,

AA(r+1Lw+2)
Theorem 29 Theorem [3.15
Let L be an order-type with |L| > 2% then

A (L),
Theorem 30 Theorem [3.47
2% £ (N)3
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Lemma 1 Proposition [3.17]

Let S be a linearly ordered set such that cf |[S| = N,, and w,,,w’ £
otp S. Then for every rational ¢ there is a set A, C S such that

1. |4, =|5], and

2. A, <Ay ie., for all rationals p < gand z € A,,y € A, it holds
that x < y.

Theorem 31 Theorem
Corollary

Lemma [3.18

Lemma

Theorem 32 Lemma [3.19
Lemma [3.21]

Let ¢ be a real order-type. Assume that & < w-2 and v < w;. Then

¢ — (a,yVw- ),
¢ — (w+w,y V)2

Theorem 33 Theorem [3.46]

Theorem 34 Proposition [3.52

Let «, 3,7 be ordinals and suppose o /4 (3,7)?. Then there exists a
sequence of ordinals (o, | 4 < 87), such that

a# (a,+1), 45, and
a# 7L> (7);1@7

where r, = [[,_, || for all p < 5.

v<p

10



Chapter 1.2

Corollary 1 of Theorem 34 Theorem [3.50

Let xk be an uncountable regular cardinal. Then

k= (w+1, k)%

Corollary 2 of Theorem 34 Corollary

k= (B, k)2

Let (T, <) be a well-ordered set and let f: [T]*> — 2 be a partition.
Then there exists a unique set H C T' such that H is 1-homogeneous
for f and for all x € T'\ H there is some h € H such that f({h <

z}) =0.

Theorem 35 Theorem B.71

Let L, M, N be order-types and let s,r < w. Assume M > r > 3 and
s> (r—1)2 Suppose M, M* £ L and |L| = |N|. Then

N 4 (s, M)".

Theorem 36 Theorem B.57
Corollary [3.58

Let v be an ordinal, and let Lg be order-types for all 3 < . Suppose
¢ is such that Lg < ¢ for all 8 < 7. Define L = > 5 Lg. Then

LA (v+1,0)%

Theorem 37 Theorem [3.55

Let x be an infinite cardinal, and let v be the least cardinal such that
k" > k. Let p be an ordinal such that x < cf 8, <V, < k", then

Ny, 7 (VT R,)%

Corollary of Theorem 37 Corollary [3.56]

If o is an ordinal with 8y < cf R, < R, < 2% then

Nwa 7L> (Nla Nwa)Q-

11



Chapter 1.2

Lemma 4 Lemma [3.1]

Let Ly, L1, My, M; be order-types. Suppose that » > 2 and My, My £
Ly and |Lo| = |L4|, then

Ll 7L> (Mn);<r!’

where M,, =r + 1 for all n > 2.

Theorem 38 Theorem B.60]

Let v be an ordinal and r < w. Let m be some cardinal and let ag be
ordinals for all 8 < m. If Ry 4 (|ag|)s,,, then wyp A (ag+1)5E

B<m:

Lemma 5 Lemma [3.36

Let a be an ordinal and k£ a cardinal. Suppose that [, are ordinals
for all n < k such that for all 5 < « it holds that 8 4 (8,); ;- Then

a4 (B, + 1)

Theorem 39: Positive Stepping Up Lemma Theorem [3.37]

Let x be an infinite cardinal, let 2 < m < k be a cardinal and let
r > 1 a natural number. Let 3, be ordinals for all n < m. Assume

K= (B! Then (2<%)* — (8, + 1)t}

n<m:* n<m:*

Corollaries of Positive Stepping Up Lemma Corollary

(29 5 (w+ 2,
Erdés-Rado Theorem Theorem [B.41]

For any infinite cardinal x and any n < w,

Ju(k)t = ()R

12
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Theorem 40 Not in thesis

Let r <w,let 2<m < w,and let 0 <r < k; < w for all 7 < m. Let
R(m,r, (k;)icm) denote the least natural number n such that

n— (ki)icm-
Then
R(m, 7+ 1, (ki + 1)icm) < mBmrEdicm)”,

Theorem 41 Proposition [3.43

Corollary
| Reallwew,
W1 7 (Wn + 2,0+ 1)3
and as a special case
wy A (w+2,w+1)3
Theorem 42 Theorem [3.4]

Let r > 3, and let Lg, Ly, My, M; be order-types such that |Lg| = | L]
and My, My £ Ly, and My, M; are additively indecomposable. Then

(T—3>+L17L>((T—3>+M0,(T—3)+M1)T

Theorem 43 Theorem B.5]

Let L, M, N be order-types. Let r < s < wand s < M. If L —
(M,N)* and N — (s)}, then

L— (M).
Theorem 44: Erdds-Dushnik-Miller Theorem Theorem [3.49
For all infinite cardinals k,

K — (w, k)%

13
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Theorem 45

n<m

Theorem 3.8

Let m > 0, and let M,, be order-types for all n < m. Then

11 M. — (M,)

1
n<m:

14




Chapter 2

Preliminaries

Throughout this thesis we will work in ZFC = ZF 4+ AC. That is, the usual Zermelo-
Fraenkel Axioms (ZF) with the Axiom of Choice (AC). We assume that the reader
has familiarity with basic set theory, e.g. ordinals, cardinals and cardinal arithmetic.
Most of these concepts can be found in a standard textbook, such as [Jec03].

2.1 Basic definitions

Definition 2.1 (Colourings). Let S be a set, let r < w and let m be a cardinal.

1. We define the set of r-element subsets of S as
[S]"={XCS||X]=r}

We call an element X € [S]" an r-tuple.

An analogous definition holds if < is an order on S and L is an order-type,

[S]" = {X C S |otp(X,<) = L}.

2. A function f: [S]" — m is said to be an r-partition of S with m colours.
Alternatively, f is said to be a m-colouring of [S]".

3. Given f: [S]" — m, a set H is homogeneous for f ift H C S and f is constant
on [H]|". Additionally, if H is homogeneous for f with colour i € m, i.e.
f T [H]" =i, then we say that H is i-homogeneous for f.

We will sometimes identify [S]' with S, keeping in mind that there is an implicit
bijection f: [S]' = S: {z} > .

Definition 2.2 (The partition relation). Let x and p be cardinals, let r < w and

m any cardinal. We write
,

K= (1),

if the following statements holds:

“For every set S such that |S| = k and every m-colouring of [S]", f: [S]" — m,
there exists a homogeneous set H C S for f with cardinality |H| = p.”

We will write x /4 (u)r, for the negation of kK — (u)”

m*

15



Chapter 2.1

T

Remark 2.3. An equivalent formulation of x — (u)!, is: “For all sets S with
S| = k and for any partition [S]" = J,_,, Si of pairwise disjoint sets, there are a
set H C S with |H| = p and some i < m such that [H]" C S;.” In fact, in [ER56]
this definition is used, although the sets did not need to be pairwise disjoint.

Borrowing terminology from J. Larson in [Larl2|, given a partition relation x —
(p)r , we will call k the resource, pu is the goal, r is referred to as the ezponent and,
finally, m is called the colour set or colour cardinal.

Observation 2.4. The notation of the partition relation is particularly useful
because it adheres to certain monotonicity principles. If the partition relation
k — ()l holds, then the relation still holds if the resource k is made larger, or
anything on the right side of the arrow (goal or colour set) is made smaller. Slightly
harder to observe is that in most cases the exponent can be decreased as well. In par-
ticular, the relation between the goal and exponent must be preserved. For a more
precise treatment of decreasing the exponent we refer the reader to Lemma [2.22]

Remark 2.5. In our definition of a partition relation we only used finite exponents
r < w. A natural question that arises would be what were to happen if we would
let » > w. In ZFC it turns out that partition relations with infinite exponents are
always negative. This is because (in ZF) the Axiom of Choice implies that all such
partition relations are negative, as can be seen in the following theorem.

Theorem 2.6. For every cardinal k, k / (w)¥.

Proof. Proof is from [Kan09, Proposition 7.1]. We may assume that « is an infinite
cardinal. As we assume AC, there is a well-order < on [k]“. Note that whenever
s € [k]Y and t € [s]¥, then t € [k]¥. Define f: [k]¥ — 2 as follows: for s € [k]* we
set f(s) = 0 if for every ¢ € [s]\ {s} we have s < ¢, and we set f(s) = 1 otherwise.

Let H C k such that |H| = Ny, then in particular H € [k]“. Let x be the
<-least element of [H]“. For every y € [z]“ \ {z} we have y € [H]¥, and hence by
assumption z < y, which gives f(z) = 0. However, let now zq C 1 C ... C H be
any infinite sequence. Assume that for every n € w we also have f(x,) = 0, then
this implies that ... < x1 < xg. This shows that < is not a well-order, which is a
contradiction. Therefore there is some n € w such that f(z,) = 1, showing that H
is not homogeneous for f. O

In this thesis we will often look at a slightly different kind of partition relation,
one where the resource and goal can be linear order-types instead of merely cardinals.
The definition of this partition relation generalises naturally, but first we give a
definition of order-types.

Definition 2.7 (Order-types). Two ordered sets (Wi, <) and (Wy, <5) are iso-
morphic if there exists an order isomorphism f: (Wy,<y) — (W5, <3). That is,
f is bijective, and both f and its inverse f~! are order preserving. We write
(Wl, Sl) = (WQ, Sg) if (Wl, Sl) and (WQ, Sg) are iSOHlOI‘phiC.

Two linearly ordered sets (Wi, <;) and (Wa, <5) have the same order-type if
(W1, <) and (Ws, <5) are isomorphic.

It is easily verified that having the same order-type defines an equivalence relation
on the class of linear orders. We say that (Wi, <y) has order-type L if L is the

16



Chapter 2.1

representative of the equivalence class of (Wy, <;). For equivalence classes of well-
orders, we take as representative the unique ordinal in that equivalence class.

We write otp(W, <) for the order-type of the ordered set (W, <) and simply write
otp W if the underlying order is obvious from context.

Definition 2.8 (Sum order). Given two linear orders (Wi, <;) and (W, <), we
define the sum (Wi, <;) + (W, <) to be the linear order (W3, <3), where W3 =
Wi WU W5 and <j is defined as follows: given x,y € W3, we have

x <gyif and only if z € W; and y € W, or
x,y € Wy and x < gy, or
x,y € Wy and x <5 v.

If L and M are order-types, then we write L + M for the order-type of the sum of
the linear orders L and M.

For order-types L and M, we will write L < M if L embeds into M and we write
L £ M for its negation. We write L < M if L < M and M £ L. We will denote
the order-type of the rationals by 7, i.e. otp(Q, <) = n. The order-type of the reals
will be denoted by A, i.e. otp(R, <) = A.

We will need to make use of the universality of Q. That is, any countable linear
order embeds into 7.

Theorem 2.9 (Cantor). Let L be a countable order-type. Then L < 1.

Proof. See |[Ros82, Theorem 2.5] for a proof. O

We will also need to make use of the Wy-categoricity of the theory of dense
linear orders without endpoints. That is, any countable dense linear order without
endpoints is isomorphic to 7.

Theorem 2.10 (Cantor). Let L be a countable dense order-type without endpoints.
Then L = 1.

Proof. See [Ros82, Theorem 2.8] for a proof. ]

Definition 2.11 (Partition relations with order-types). Let L and M be order-
types, let r < w and m any cardinal. We say that
L — (M),
if the following statements holds:
“For every ordered set (S, <) such that otp(S,<) = L and every m-colouring

of [S]", f: [S]" — m, there exists a homogeneous set H C S for f of order-type
otp(H,<) =M.

So far, we have only introduced balanced partition relations, that is, relations
kK — (p)r in which there is only one goal p. In the paper by Erdés-Rado [ER56]
there are many interesting results in which there are multiple goals, which are called
unbalanced partition relations.

17



Chapter 2.2

Definition 2.12 (Unbalanced partition relation). Let r < w and m be any cardinal.
Let L and M,, be order-types for every n < m. We say that
L= (My)pem
if the following statement holds:
“For every ordered set (S, <) such that otp S = L and every colouring f: [S]" —

m, there exists some n < m and an n-homogeneous set H C S for f of order-type
otp(H, <) = M,.”

Remark 2.13. For a positive unbalanced partition relation L — (M,,);_,,, the
colour set may only be decreased (or, alternatively, goals may be removed) if those
goals are at least as large as the exponent, i.e. M, > r. For example, 4 — (1,3, 3)?

is trivially positive, but 4 /4 (3, 3)%.

Observation 2.14. It is irrelevant what the order is of the goals for an unbalanced
partition relation. In other words, if 7: m — m is some permutation of m, then
L= (Mp)pem <= L= (Mzi))pem-
Sometimes we will explicitly write out all the goals in a partition relation, and
then do not mention the colour set. We usually do this in the case of m = 2 and
m = 3, e.g., we write L — (M, N)" instead of L — (M, N)5.
Naturally, the definition of the cardinal-based unbalanced partition relation is
similar.

More notation and terminology

We say that a partition relation x — (u)! is positive, and its negation xk 4 (u)!, is
called negative. Given a relation k — (u)!  we say that s is the resource, u the goal,
r is the ezponent and m is the colour set. A positive partition relation x — (u)7, is
sharp or tight if decreasing the resource or increasing the goal, exponent or colour
set, results in a negative partition relation. A partition relation k — (u)" is balanced
if all the goals are equal. The relation kK — ()}, -, is unbalanced if some goals are
distinct. If some, but not all, of the goals are equal, then we will write, for example,
Kk = (i, p, (V)m—2)" for the relation kK — (1,5 <, Where p1g = p1, 11 = p and p; = v
for all 2 <4 < m. The relation k — (i, p V v)" means that for all f: [S]” — 2 with
|S| = K, there is either a 0-homogeneous set of cardinality u, or a 1-homogeneous
set of cardinality either p or of cardinality v. All these definitions have an analogous
definition for partition relations for order-types.

Given an ordered set (5,<) and an r-tuple X € [S]", we write X = {zp <
x1 < ... < x,_1} as shorthand for X = {zg,z1,..., 2. 1} Axg < 21 < ... < Tp_q.
Given a colouring f: [S]" — m, some i € m and {xg,z1,...,2,_1} € [S]", we write
f{zo < 21 < ... < x,_1}) =i as shorthand for f({zg,21,...,2,_1}) =i Azg <
1 < ...<x,_1. Given subsets A, B C S, we will write A < B as an abbreviation
of “for all a € A and b € B, we have that a < b”.

Given sets A and B and integers m, n, we define [A, B]™" = {X C AUB: | XN
Al =m and | X N B| =n}.

18



Chapter 2.2

2.2 Basic partition results

In this section we will prove many properties of partition relations. All of these
results have been known for decades and most can be found in the Erdés-Rado
paper [ER56]. To be more precise, Theorem 11 to Theorem 21 (See the Overview
in Section [1.2). Throughout the thesis these basic results will often be invoked,
and sometimes we will do so without explicitly mentioning. Also, these partition
relations will hold if we replace cardinals by order-types and vice versa.

First, we establish some trivial partition relations.

Lemma 2.15. Let r < w and m be any cardinal. If k and p are cardinals such that
w<kandp<r, then k — () .

Proof. Let |S| = k and let f: [S]" — m be a colouring. Take any set H C S with
|H| = p. Note that [H|" = @ and therefore the function f | [H]|" is the empty
function, which is vacuously constant. O]

Similarly, all partition relations where the goal does not embed into the resource
are trivially negative, unless the colour set m is empty.

Observation 2.16. Let r < w and k be any cardinal and m > 0. If u is a cardinal
such that p € k, then x A (u)7,.

Observation 2.17. Suppose K — (fi)ho,, holds, then either (i) there is some
n < m with p, <r and u, <k, or (ii) u, < k for all n < m.

We present some classical results of the partition calculus here, because they
are referenced in the thesis multiple times. The theorem below is the well-known
Ramsey’s theorem.

Theorem 2.18 (Ramsey’s Theorem, F. Ramsey (1930), [Ram30]). For every r, k <
w 1t holds that

NO — (NO)Z .

Proof. Proof is from [Jec03, Theorem 9.1]. We can assume r, k > 0, else the state-
ment is trivially true.

Base case r = 1. If f: w — k, then, as k < w, there is an infinite homogeneous
set for f by the Pigeonhole Principle.

Induction step r + 1. Assume the statement holds for r. Let f: [w]"™ — k be
a k-colouring of [w]|"™. We will show that there exists an infinite homogeneous set
H C w for f, so that the statement holds for r + 1.

For each a € w define the function f,: [w\ {a}]" = k: X — f(X U {a}). By
the induction hypothesis, for every a and every infinite S C w \ {a} there is an
infinite homogeneous set HS C S for f,. Note that by AC we can choose this set
H?. Construct an infinite sequence {(a; | i € w) as follows: let Sy = w and ay = 0,
and S;;1 = H, f and a;,q the least element of S;,; larger than a;. Note that the set
H as is infinite, so such a;; exist. For every ¢ < j we have that a; € H, aS, and hence
[{a; | 7 > i}]" is a homogeneous set for f,,, with value, say, ¢g(a;). This defines a
function ¢: {a; | ¢ < w} — k, and by the Pigeonhole Principle there is an infinite
set H C {a; | i < w} that is homogeneous for g.
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We show that H is homogeneous for f. Let {a;,,a;,,...,a; } € [H]"" and
assume a;, < a;; < ... < a;,, then

f{aig, @iy ai, ) = faio (aiy, - ai }) = glai,),
which is what we wanted to show. O

As a consequence of Ramsey’s theorem, we can also prove a finite version of
Ramsey’s theorem.

Theorem 2.19 (Finite Ramsey’s Theorem). For all n,m,r < w, there exists some
¢ < w such that

¢— (n) . (2.1)
Proof. Proof is from |[Mar02, Theorem 5.1.2]. Suppose that there are n,m,r < w
such that for all £ < w we have ¢ 4 (n)! . This means for all £ < w there exists a

colouring fy: [(]" — m such that there are no homogeneous sets for f; of size n.
Define for each ¢ < w,

Ty={f:[¢]" = m| there is no homogeneous set for f of size n}.

Define the tree T' = |J,_,, Ty, ordered by inclusion. By assumption, each T} is
non-empty and given h € T, there are only finitely many extensions of h in Tjp.
Therefore T' is an infinite finitely branching tree and hence by Konig’s lemma, there
is an C-increasing sequence (g | £ € w) with g, € T} for each ¢ < w.

Define g = (U, g¢, then g: [w]" — m. By Ramsey’s theorem, there exists
X ={z9 < ... <xp_1} such that X is homogeneous for g. Let s > x,,_1, then X is
homogeneous for g,, contradicting g5 ¢ Ts. This concludes the proof. m

Definition 2.20 (Dual order-type). For a given order-type L ordered by <, we
write L* as the dual order-type of L, ordered by <*. That is, for x,y € L we have

r<y < y<r

Lemma 2.21 (Theorem 11). Given order-types L, M, and r < w and m any cardi-
nal, then the following statements are equivalent:

L— (M)

m?

L*— (M*)r.

Proof. We only show — as the other implication follows analogously.

Given an ordered set (S, <) with otp(S, <) = L and a partition f: [S]" — k.
By there is a homogeneous set H C S for f with otp(H, <*) = M*. It follows
immediately that otp(H, <) = M, which shows (2.2). O

The following lemma shows why, in many cases, the exponent may be decreased
for a positive partition relation. Consequently, in many cases the exponent may be
increased for negative partition relations.

Lemma 2.22 (Theorem 15). Let L, M be order-types, r < w and k any cardinal. If
L+1— (M+1);* then L — (M),
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Proof. Let (S, <) be an ordered set such that otp(S, <) = L and let f: [S]” — k be a
colouring. Let z( be some set which is not an element of S and define Sy = SU{z}.
Extend the ordering < of S to an ordering <’ of Sy such that for every = € S,
r <" wg. Then otp(Sy, <’) = L + 1. Define the colouring g: [Sy]"™! — k such that
for {yo <’ ... < y,_1 <" y,} in [Sp]"*! it holds that

g<y0a ce 7yr—17yT) = f(yﬂ’ s 7y7’—1>‘

By assumption there is a homogeneous set Hy = {h,, | m € M +1} C Sy for g such
that otp(Hy, <') = M+1. Then it is easy to see that the set H := {h,,, |m e M} C S
is homogeneous for f with otp(H, <) = M. O

Remark 2.23. By applying Lemma 2.21] we can show Lemma [2.22] also holds if we
replace L+1and M +1by 1+ L and 1 + M.

Lemma is particularly useful if L = o and M = f are infinite ordinals,
because then it holds that 1 + a« = o and 1 + 8 = (. This means, if the resource
and goal are infinite ordinals, we can decrease the exponent of a positive partition
relation without altering the resource or the goal.

Lemma 2.24 (Theorem 14). Let r < w and let k be any cardinal. Let o be an
ordinal and suppose that B, are initial ordinals for all n < k. Then the following
statements are equivalent:

a = (Bn)pek: (2.4)
‘Oz| — (’Bn’):mkz (2'5)

Proof. = (2.5). Let S be a set with |S| = |a| and let f: [S]" — k be
a colouring. Let < be any order on S such that otp(S,<) = a. Then by
there is some n < k and some homogeneous set H C S for f with colour n and
otp(H, <) = B,. In particular, |H| = |3,|, which shows (2.5)).

= (2.4). Take some ordered set (S, <) such that otp(S, <) = «, and let
g: [S]" — k be an arbitrary colouring. Obviously, |S| = ||, and hence by there

is some n < k and a homogeneous set H C S for g with colour n and |H| = |3,].
As « is an ordinal, we have that otp(H, <) = v for some ordinal 7. Since 3, is an
initial ordinal, it follows that (5, < ~, which shows ([2.4)). ]

Lemma [2.24] shows that we can switch between cardinals and the initial ordinal
of that cardinal. We mention that the implication from to also holds if the
B, are not initial ordinals, and even if o and (,, are merely order-types. Interestingly,
Corollary shows that does not imply for all order-types.

One application of Lemma [2.24] together with Ramsey’s Theorem, gives the
following corollary. We will often refer to this corollary simply as “Ramsey’s Theo-

7

rem-.

Corollary 2.25 (Ramsey’s Theorem for ordinals). For all v,k < w it holds that
w— (W)}

In Remark [2.5 we argued that we only need to define partition relations for finite
exponents because AC implies that all partition relations with infinite exponents are
negative. Similarly, we only defined the partition k — (u)! for when the colour
set m is a cardinal. Naturally, one might wonder if it is interesting if we would let
m be an ordinal, or even an order-type. The following result shows that only the
cardinality of the colour set m matters.
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Lemma 2.26 (Theorem 17). Let r < w, let L, M be order-types and let m and k be
sets. Suppose |m| = |k|, then L — (M) if and only if L — (M)]..

m

Proof. Assume m, k # @, else both partition relations are vacuously true. Suppose
L — (M), we will show L — (M)}.. Let (S, <) be an ordered set with otp(S, <) =
L and let f: [S]" — k be an arbitrary colouring. As |m| = |k|, there is a bijection
g: k— m. Then go f: [S]” — m, so by assumption there exists a homogeneous set
H C S for go f with colour n € m and otp(H, <) = M. Then for any X € [H|" we
have go f(X) = n, and hence f(X) = g~'(n) € k. This gives that H is homogeneous
for f, thus we have shown L — (M)}. O

The lemma below is the Transitivity Rule. This lemma essentially shows that if
there are two partition relations agreeing on the exponent, and M is a goal in one
partition relation, while it is the resource of the other, then we can substitute the
goals of the latter partition relation in the former partition relation. The proof is
from |[Erd+84, Theorem 9.8].

Lemma 2.27 (Theorem 16). Let r,m, k, < w for alln < m, let L, M,,, N,,. be order-
types for alln < m and i < k,. Suppose L — (M,,) and also M, — (Ny,)ip
for each n <m. Then L — (N,

r
n<m

)7"
i/n<m,i<kp®

Proof. Let I = {(n,i) | n < mandi < k,}. Let (S,<) be an ordered set with
otp(S,<) = L and let f: [S]" — I be a colouring. This gives rise to the colouring
mo o f, where 7y is the projection onto the first coordinate. By assumption L —
(M) <pns SO there exists some n < m and a set X C S which is homogeneous
for my o f with colour n and otp(X, <) = M,. Similarly, since M, — (Ny,)i .
there exists a homogeneous H C X for m o f | [X]" with colour, say, i < k, and
otp(H, <) = N,,. It follows that H C S is homogeneous for f with colour (n,1),
showing L — (N,,) O

r
n<m,i<kn®

Lemma 2.28 (Theorem 18). Let m,r < w. Let L and M; be order-types for all
i < m. Suppose L — (M;)i_,, and let f: [L]" — m be a partition. Then there are
sets I,J C m with |I| + |J| > m such that for alli € I and j € J, there is an
j-homogeneous set for f of order-type M,;.

Proof. First, we may assume that M; > r for all « < m. For suppose otherwise, and
M; < r for some i < m. Then the sets I = {i} and J = m suffice.
For each 7 < m, define

P; = {i € m | there is an j-homogeneous set for f of order-type M;}.

Also define Q; =m \ P;.

We want to show that there exists some J C m such that [, P;| > m — |J],
because then the set I = (., P; suffices. Then, m —|(;c; P;| < |J|. Hence, it is
sufficient to show there is some J C m such that [|J;c; Q] <|J].

Suppose for the sake of contradiction such J does not exist. Then for all J C m,
it holds that ||J;c;@;| > |J|. Then we can pick pairwise distinct elements i; € Q;
for all j < mﬂ The relation L — (M;;)}.,, holds by Observation [2.14f Thus there
is some j < m such that there is an j-homogeneous set for f of order-type M;,
contradicting that ¢; € Q). m

I This result is known as Hall’s marriage theorem.

22



Chapter 2.2

Lemma 2.29 (Theorem 19). Let L, M, N be order-types and let & be the initial
ordinal of |L|. Suppose L — (M, N)?. Then at least one of the following four
situations must be true.

(i) M <w, or

(it) N <w, or
(i) M, N < L and M,N <§, or
(iv) M,N < L and M,N < §*.

Proof. Let S be a set and let < and < be orders on S such that otp(S, <) = L and
otp(S, <) = §. Define the partition f: [S]* — 2 by sending {z,y} + 0 if and only
ifr <y < x < y. Now, we apply Lemma [2.28 in the case where m = 2. This
gives one of the following four cases.

Case (i). There are a 0-homogeneous set and a 1-homogeneous set for f of order-
type M, which we call A and B, respectively. On the one hand, M = otp(4, <) =
otp(4, <) < otp(S,<) = 4§, and hence M is an ordinal. On the other hand,
M = otp(B, <) = otp(B,>) < otp(S,>>) = 0*. This implies M < w.

Case (ii). There are a 0-homogeneous set and a 1-homogeneous set for f of
order-type N. Analogous to case (i). Hence N < w.

Case (iii). There are 0-homogeneous sets A and B for f of order-type M and
N, respectively. Then M = otp(A4,<) < otp(S,<) = L and M = otp(4A, <) =
otp(A, <) < otp(S, <) = §. Similarly, N < L and N < 4.

Case (iv). There are 1-homogeneous sets A and B for f of order-type M and N,
respectively. Analogous to case (iii) and this gives M, N < L and M, N <¢§*. O

Corollary 2.30. For all order-types L,
LA (w,w)?. (2.6)

Proof. Suppose otherwise, i.e. L — (w,w*)?. Then we apply Lemma with
M = w and N = w*. Clearly, cases (i) and (ii) do not hold. Then (iii) or (iv) must
hold, hence M, N < § or M, N < ¢*, where 0 is the initial ordinal of |L|. But as ¢
is an ordinal, it must be that w £ §* and w* £ §, which gives a contradiction. [
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Modernisation

In this chapter we study a large portion of the Erdos-Rado paper. To be more precise,
Theorem 23 to Theorem 45 of [ER56| are presented here[] We have partitioned the
results into four sections, where in each section we will study partition relations with
a certain kind of resource.

In Section we study partition relations where the resource is an order-type.

In Section [3.2] we study the order-type of the reals R, denoted as A, as resource.

In Section [3.3] we study ordinals as resource.

In Section [3.4] we study cardinals as resource.

Of course, as ordinals, cardinals and A are all specific cases of an order-type,
Section is the most general of all the sections. Any theorem that is proven in
that section, can be used in the more specific cases. Similarly, as a cardinal is a
specific case of an ordinal (any cardinal is an initial ordinal), any theorem from
Section [3.3] can be used in Section [3.4

As the paper has been published over 65 years ago, many strengthenings of
results in [ER56] have been proven since then. We sometimes provide these newer
results, but as the literature on partition calculus is so vast, we are not able to show
all new results. In fact, if for some result in this thesis no additional improvements
are given, this does not imply that no such improvements exist. We refer the reader
to an historical exposition of partition calculus by J. Larson in [Larl2] for a more
complete overview.

3.1 Order-types

In the first section of this chapter we study partition relations based on order-types.
All order-types in this chapter will, in fact, be linear order-types. We remark that
partition relations based on order-types are the most general in this thesisf| and
hence any result in this section is also of relevance in subsequent sections.

We begin with an interesting result, with which we will be able to prove that
many partition relations are negative.

'With the exception of Theorem 40. This result is about finite Ramsey Theory and has no
further applications in the paper, hence we decided to omit this theorem in the thesis.

2There are partition relations for partial orders instead of linear orders, but these will not be
treated in this thesis. See [Gal75] for examples of such partition relations.
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Lemma 3.1 (Lemma 4). Let Ly, Ly, My, My be order-types. Suppose that r > 2 and
]\4(),]\4{|< f LO and |L()| = |L1|, then

Ll 7L> <M07 M17 (T + 1)1”!72)7--

Proof. Throughout we may assume |My|, |M;| > Ry. Let S be a set and let < be
an order on S such that otp(S, <) = Li. As |S| = |L1| = |Lo|, there is an ordering
< on S such that otp(S, <) = Ly. Given any X € [S]|", we can index the elements
in X such that X = {zy < x; < ... < z,_1}. There is a unique permutation
m:r — r such that 2, < T-(1) < ... K Tr,—1). Note that there are precisely 7!
permutations of r. Fix an enumeration (7, | n < r!) of permutations of r, where 7
is the identity, and m = 7.

Define the rl-colouring f: [S]" — r!: {zg < 21 < ... < 2,1} — n where 7, is
such that z,, ) <K Tr,(1) K ... K T, (r—1). Suppose there is an n-homogeneous set
H for f with otp(H, <) = M,,, where M,, = r + 1 for n > 2. There are three cases
to consider.

Case n = 0. Then otp(H,<) = My and f [ [H]" = 0. As 7 is the identity and
r > 2, we have in particular for any x,y € H that r <y <= x < y. This means
My = otp(H, <) = otp(H, <) < otp(S, <) = Ly, which is a contradiction.

Casen = 1. Then otp(H, <) = M; and f [ [H]" = 1. In this case m = 7, which
means for any z,y € H we have x <y <= y < x. Therefore M; = otp(H, <*) =
otp(H, <) < otp(S, <) = Ly, again a contradiction.

Case n > 2. Then otp(H,<) =r+ 1 and f | [H]" = n. In particular m,, # g
and m, # m. Write H = {29 < 21 < ... < 2,1 < z,} and define y; = x41. Then

L7, (0) < T, (1) .. KL Trp(r—1),
Yrn(0) L Ym,(1) Koo K Yrpy (r—1)-

Suppose zy < 71, then To-1) < Tp=1(py and so yo < yi. This gives 1 < ,.
Repeating this argument gives that r( < 7 < ... < x,_1, and hence 7, = 7,
which is a contradiction. Similarly, if we assume z; < xg, then by an analogous
argument, we get r,_ < ... < 11 < ¥y, i.e., T, = m, which is also a contradiction.

We conclude that such a homogeneous set H cannot exist, and this concludes
the proof. n

The first application of Lemma [3.1| shows that increasing the resource in Ram-
sey’s Theorem to a larger countable ordinal, does not yield larger homogeneous
sets.

Corollary 3.2. For any o < wy,
a A (w4 1,w)? (3.1)

Proof. We may assume « is infinite. Clearly, w + 1,w* € w. As |a| = |w|, we obtain
the desired result by Lemma |3.1} O

As a side note, we mention another application of Lemma [3.1| which shows that
the partition relationﬂ n — (n,Ng)? cannot be improved to w. Recall that n denotes
the order-type of the rationals.

3Theorem 6 in [ER56], see [Jon99, p. 17] for a proof.
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Corollary 3.3. n /4 (n,w)>.

Proof. Obviously, w is scattered, i.e. n £ w, and w is well-ordered, which gives
w* £ w. Finally, |w| = |n|, which gives the desired result by Lemma O

The following result shows that the colour set r! in Lemma [3.1| can be reduced
to 2, given some extra assumptions. In particular, the goals M, and M; have to be
additively indecomposable. An order-type M is said to be additively indecomposable
if for any additive decomposition M = N + N’, it must be that M < N or M < N’.
Also, the resource and goal will be slightly increased.

Theorem 3.4 (Theorem 42). Let r > 3, and let Lo, L1, My, My be order-types such
that |Lo| = |L1| and My, M{ £ Lo, and My, My are additively indecomposable. Then

(r—=3)+Li A ((r—3)+ Moy, (r —3)+ M;)". (3.2)

Proof. In view of Lemma , we only need to prove for r = 3. Let (S,<)
be an ordered set with otp(S,<) = L;. As |Ly| = |L1], there is an order < on
S such that otp(S,<) = Lg. Given {zg < z; < zo} € [S]?, there is a unique
permutation 7: 3 — 3 such that ) < 2r1) < Tr@). A permutation is even if
it makes an even numbers of mversionsﬁ The three even permutations of 3 are
(0,1,2) = (0,1,2),(0,1,2) = (1,2,0) and (0,1,2) > (2,0,1).

Define f: [S]> — 2 by {z¢ < 21 < 23} + 0 if and only if the permutation 7 with
Tr(0) K Tr(1) K Tr(2) is even. We prove this partition shows . Suppose there is
a 0-homogeneous set H C S for f with otp(H, <) = My. Define B={x € H |Vy €
Hy<zx = y < x)}. Define C := H\ B. Let z,y, z denote elements of H. We
show a few facts.

1. Suppose x < y, y € B, x € C. Since x € C, there is some z € H such that
z < z and v < z. But then also, z < y and y < z, contradicting y € B.
Therefore v < y and y € B implies x € B and v < y. Also, z <y and x € C
implies y € C. This shows B < C and otp(B, <) < otp(B, <).

2. Suppose x € B, y € C'and x < y. Then x € B and z < y implies = < y. As
y € C, thereis z € H with z <yand y < z. Thenz < y < zand z <y
and z < y. If it were the case that z < z, then the permutation would be odd,
which contradicts {z,y,2} € [H]>. Therefore z < x, but now z < z shows
x ¢ B, also a contradiction. Hence x € B and y € C implies y < z. This
implies C' < B.

3. Suppose z,y € C'and x < y and y < x. As x € C, there is z € H such
that z < r and * < 2. But then 2z < z < y and y < = < 2z, showing the
permutation is odd and contradicting {z,y, 2z} € [H]>. Therefore z,y € C and
x < y implies < y. This shows otp(C, <) < otp(C, K).

Fact 1 shows that (B, <) is an initial segment of (H, <). Hence (H,<) = (B, <) +
(C, <). Define otp(B, <) = Ny and otp(C, <) = Ny, then My = Ny + N;i. Then the
three facts imply that otp(H, <) > N; + Np. Since M, is indecomposable, there is
some 1 € 2 with My < N,;. We obtain

My < N; < otp(H, <) < otp(S, <) = Ly,

4An inversion of a permutation 7 is a pair (4,5) such that i < j and (i) > 7 (j).
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for some i € 2. This contradicts that My £ Ly.

Suppose now that there is some 1-homogeneous H for f with otp(H, <) = M;.
The proof is nearly analogous to the previous case. If {zg < z; < w9} € [H]?, then
the permutation 7 such that 2, < (1) K ZTx(2) is odd. But this means 7 is an
even permutation with respect to >. Hence, we can replace M; by M; and we can
completely analogously show that M| < Ly, which gives a contradiction.

We conclude that Ly /4 (M, M;)3. O

Theorem 3.5 (Theorem 43). Let L, M, N be order-types. Let r < s < w and
s< M. IfL— (M,N)* and N — (s)}, then

L — (M) (3.3)

Proof. Let S be a set with otpS = L and let f: [S]” — k be a partition. Define
the partition g: [S]®* — 2 by ¢(X) = 0 if and only if X is homogeneous for f, where
X € [S)°.

We have assumed L — (M, N)®. Suppose there exists a 1-homogeneous H C S
for g with otp H = N. Since N — (s)}, there exists X € [H]® which is homogeneous
for f | [H]", and thus is also homogeneous for f. But this is a contradiction, because
g(X) = 1, meaning that X cannot be homogeneous for f.

Therefore there is a 0-homogeneous H C S for g with otp H = M. Fix X € [H]",
and let Y € [H]" be arbitrary such that X # Y. Such Y exists because M > r.
Write X = {xo,...,2,-1} and Y = {zp, ..., Zmir_1}, where 1 < m < r. Define
X, =Azn, ..., xpir_1} for all n < m. Again, s > r, so for all n < m there exists
Y, € [H]® such that X,, U X,,;1 C Y,. Note that since H is 0-homogeneous for g,
then Y, is .-homogeneous for f, for some 7 < k.

As Y, is i-homogeneous for f, it follows immediately that f(X,) = f(X,11) = 1.
But then it holds for all n < m that f(X,) = i. In particular, f(X) = f(Xo) =1
and f(Y) = f(X,,) = 4. Since Y was arbitrary, we conclude that H is homogeneous
for f, showing L — (M)j. O

Lemma 3.6 (Erdés-Szekeres Theorem, 1935). Let r < w and let s > (r — 1)?. Let
(S, <) be an ordered set and suppose that N = {ng,n1,...,ns_1} € [S]*. Then there
are indices 0 < ig < 11 < ... < 1,_1 < s such that such that n;, K n;;, < ... < n;
OT Mo 2> Ny > ... > Ny, -

Steele in his survey [Ste95, p. 114] on the Erdds-Szekeres Theoremﬂ credits
Seidenberg (1959) for “what is perhaps the slickest and most systematic proof [of
the Erdés-Szekeres Theorem|”. We present this proof here.

Proof. For every i < s, define the pair (a;, b;), where a; is the length of the longest
<-increasing subsequence ending with n;, and b; is the length of the longest <-
decreasing subsequence ending with n;. Given ¢ < j < s, one of two cases holds: if
n; < nj, then a; < a;, and if n; > n;, then b; < b;. In other words, given indices
i # j, we have that (a;, b;) # (a;,b;).

Now, suppose the statement of the theorem is false. Then there are no <-
increasing or <-decreasing sequences of length r. In particular, for all ¢ < s it holds
that 0 < a;, b; < r. This means there are at most (r — 1)? distinct pairs (a;, b;), but
this contradicts that there must be s > (r — 1)? distinct pairs. This concludes the
proof. ]

5This result is sometimes referred to as the Ordered Pigeonhole Principle.
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Theorem 3.7 (Theorem 35). Let L, M, N be order-types and let s,r < w. Assume
M >r>3ands> (r—1)% Suppose M, M* £ L and |L| = |N|. Then

N 4 (s, M)". (3.4)

Proof. Let S be a set and let < and < be orders on S such that otp(S, <) = N and
otp(S, <) = L. Define the partition f: [S]" = 2 by {zg <21 < ... <x,_1} — 1if
andonlyif g K 1 < ... <L X 0r o > 21> ... > T, 1.

Let H € [S])® be arbitrary. Since s > (r — 1)?, there is as a consequence of the
Erdés-Szekeres Theorem some A € [H|" such that f(A) = 1, which shows H is not
0-homogeneous for f.

Now assume there is a 1-homogeneous H C S with otp(H, <) = M. Define the
sets

A={{zo<m<... <z} €[H] |pp< 2 < ... < xr_1}, and (3.5)
B={{ro<mi <...<x,q}€H| |zo>01>...> 2,1} (3.6)

Since H is 1-homogeneous for f, it holds that [H|]" = AU B.
Claim. [H|" = A or [H]" = B.

Proof of claim. Suppose for the sake of contradiction that the claim is false. Then
there are sets X,Y € [H|" such that

X:{l‘0<l’1 < ... <£B7«_1}:{$0<<.%’1<<...<< iUr_l}, (37)
Y:{y0<y1<...<yr_1}={yo>>y1>>...>>yr_1}. (38)

We suppose that X and Y are chosen in such a way that n < r — 1 is maximal,
where x; = y; for all i <n, but =, # y,. Assume w.l.o.g. that z,, < y,.
First, suppose n < r — 1. Then define

Z={yo <1 <. Y1 <Tp <Yn<...<yr_2} € H".

By the maximality of n, it cannot be that Z € B, and thus Z € A. Therefore, as
also r > 3, it holds that yy < y,_2, which is a contradiction with . If, on the
other hand, n = r — 1, then immediately x¢y = yy > y; = x1, contradicting .
This concludes the proof of the claim. |

If now [H]" = A, then M = otp(H, <) = otp(H, <) < otp(S, <) = L, which
is a contradiction. Similarly, if [H]" = B, then M* = otp(H, <*) = otp(H, <) <
otp(S, <) = L, which also gives a contradiction. We conclude such H does not
exist, and therefore N /4 (s, M)5. O

Given order types M, for all n < m < w, we can define an order-type of the
product [],_,. M,, where we order the elements lexicographically according to the
orders on M, [

Theorem 3.8 (Theorem 45). Let m > 0, and let M, be order-types for all n < m.
Then

11 2. = (). (3.9)

n<m

6We treat the order-type of the Cartesian product with the lexicographical order in more depth

in Section
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Proof. Let B, be sets with otp B,, = M,,, and order S =[]
by <.

First, suppose that there is some n < m such that for all © < n there are x; € B;
such that for every z,, € B, there are some elements z;" € By, for n < k < m with

B,, lexicographically

n<m

f((zo, ... Tp1, Ty, 2, .., 25 ) = n. Then the set
H={(20,. .., Tn1,Tn, T30, ..., Tpr 1) | 2, € By},

has order-type M, and is n-homogeneous for f.

Suppose, on the other hand, that for all n < m and all elements x; € B; with
i < m, there is some element g,(zo,...,z,—1) € B, such that for all x; € By with
n < k < m it holds that

f((x(]v s >xnflagn($07 <. 7$n71>7$n+17 v axmfl)) 7é n.

Then we inductively define elements vy, = ¢.(vo,- -, yn—1) for all n < m. Clearly,
for some n < m, it must be that f(vo,- .-, Yn—1,Yn, Yniis--->Ym—_1) = n, but this
contradicts the definition of ,,.

This concludes the proof. O

3.1.1 Baumgartner-Hajnal theorem

Many results in the partition calculus have been proven after the publication of
[ER56]. We will give an overview of some results, but we will not go into detail.

The following result by Baumgartner-Hajnal (1973) answered many questions
posed by Erdés and Rado[]] The theorem provides a strengthening for many results
in this thesis, such as Theorem [3.46, Theorem and Lemma [3.18] The original
proof by Baumgartner and Hajnal used a meta-mathematical proof. First, they
proved the partition relation assuming Martin’s Axiom (MA) and then they used an
absoluteness argument to show that the result must be a theorem of ZFC after all.

Two years after the publication of [BH73|, Fred Galvin provided a more standard
proof, avoiding the use of a meta-mathematical argument. As he says in [Gal75,
p. 712]: “While this method [of Baumgartner and Hajnal] works, still one would
naturally like to see a direct ‘combinatorial’ proof”.

Theorem 3.9 (Baumgartner-Hajnal Theorem, [BH73|, Theorem 1). Let L be any
order-type such that L — (w)L. Then for any v < wy and any k < w,

L — (7)%. (3.10)

We will not present a proof in this thesis. The most important uses of the
Baumgartner-Hajnal theorem are for the resources w; and A\, where X is the order-
type of the reals.

Central to the partition calculus is to find a potential strengthening, if it ex-
ists. Ideally, we want to find proofs that a positive partition relation is sharp, i.e.
decreasing the resource or increasing the goal, exponent or colour set will give a neg-
ative partition relation. One instance of the Baumgartner-Hajnal Theorem is sharp:
wi — (7)3 for all v < w;. The exponent cannot be increased by Corollary , nor

"See |Lar12, p. 265] for an historical exposition.
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can the resource be decreased by Corollary [3.2] It is also not possible to increase
the goal, because as a corollary of Theorem we obtain

wi # (w1)3- (3.11)

And finally, the colour set can also not be increased because a /4 (2)1 for any
countable ordinal «;, and hence by Lemma [3.30],

wi 7 (3)5. (3.12)

Of course, for the sake of completeness, we could decrease the exponent yet
again. And as a consequence of N; being regular, the partition relation is positive
when the exponent is 1:

wy — (w1)l. (3.13)

3.2 The reals

In this section we study partition relations where the resource is the order-type of
the reals. We will denote the order-type of the reals as otpR = A. We alternate
between the usual real line R and the Cantor space 2, but this does not matter as
both A < otp2¥ and otp2¥ < A. Note that |\| = 2%.

3.2.1 Linear continuum

We give the following definition to make more precise what properties of A\ shall be
needed.

Definition 3.10 (Linear continuum). A non-empty linearly ordered set (S, <) is a
linear continuum if it is dense and has the least upper bound property (lL.u.b.), that
is

1. for all z,y € S if x < y there exists z € S such that v < z < y, and

2. every non-empty subset B C S that has an upper bound in S also has a least
upper bound in S.

Remark 3.11. In fact, for non-empty linearly ordered sets, having the l.u.b. is
equivalent to having the greatest lower bound property, hence every non-empty
linear order that has the l.u.b. is complete. We give a quick proof below.

Suppose (S, <) is a non-empty linearly ordered set and has the least upper bound
property. Let P C S be a non-empty subset which has a lower bound ¢ € S. Then
the set of lower bounds L == {z € S| Vp € P(xz < p)} is non-empty as ¢ € L. Since
(S, <) has the Lu.b. and any p € P is an upper bound of L, sup L exists. Finally,
it is easy to see that sup L = inf P, and hence (S, <) has the greatest lower bound
property.

Theorem 3.12 (Theorem 26). Ifr >0, k > 0, then
A (@) (3.14)
If, additionally r > 2, then
A (r+ 1)y, (3.15)
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Proof. follows from the fact that w; does not embed into R. For suppose
there is an order-preserving function h: w; — R. As Q is dense in R, for every
a < w there exists a rational g, such that h(a) < ¢ < h(a + 1). Define the
mapping g: w; — Q: a > q,, which is order-preserving and hence injective. We get
a contradiction because w; cannot be injected into a countable set.

In view of Lemma it suffices to show for r = 2. Fix an enumeration
(g; | 1 < w) of Q. Define the colouring f: [R]*> — Ry by

{z <y} — least i such that z < ¢; < v.

Suppose there exists a set {x < y < z} € [R]? that is i-homogeneous for f for some
1 € w. Then it holds that © < ¢; < y < ¢; < z, which is a contradiction. O

Theorem 3.13 (Theorem 27). A /4 (w,w + 2)3.

Proof. Let 2“ be the Cantor space with the usual linear ordering and topology. That
is, for y,z € 2 we have y < z if for the least n € w such that y(n) # z(n), then
y(n) < z(n). And the basic opens are Ny = {z € 2¥ | s C z} for all s € 2. As
A < otp2¥, it suffices to show otp 2% 4 (w,w + 2)3.

Define f: [29]* — 2 by f({x < y < z}) = 1 if and only if n < m, where n is
the least with z(n) < y(n) and m the least with y(m) < z(m). Clearly, there is no
0-homogeneous set for f of order-type w, else there would be an infinitely decreasing
sequence of natural numbers.

Let H = {z5 | B < w+ 2} be a set of order-type w + 2. As the Cantor space is
compact, the infinite sequence {z,, | n < w} has a converging subsequence with limit,
say, £ € 2¥. Suppose ¢ # x,. Then there are x;, z,, in the converging subsequence
such that z; is closer to z,,, than z,, is to x,,. In other words, z; and z,, differ later
than x,, and z,, i.e. f({z; < z,, < z,}) = 0. So, H is not 1-homogeneous for f.
An analogous result holds if =, # ¢. Hence there are no 1-homogeneous sets for
f of order-type w + 2. O

Theorem 3.14 (Theorem 28). Forr > 4,
AA(r+1w+2). (3.16)

Proof. Tt suffices to show the theorem for 7 = 4. Define the colouring f: [(0,1)]* — 2
by

{zg<m1 <29 <23} =0 <= 29— 11 <3 — 29 and x9 — 1 < T3 — Xo.

Suppose there is set {79 < 1 < x3 < x3 < 24} C (0,1) which is 0-homogeneous
for f. Then simultaneously f({z1,zs,x3,24}) = 0, so that z3 — x9 < z9 — 1, and
f({zo, x1, 22, 23}) = 0, and so x5 — x7 < x3 — To, which gives a contradiction.

Assume that there is a 1-homogeneous set H C (0, 1) for f of order-type otp H =
w+ 2. As (0,1) is complete and H is bounded by h,1, there is some subsequence
of {h, | n < w} converging to some limit, say, ¢ € (0,1). Similar to the proof of
Theorem , we assume that ¢ # hy,. Let ¢ :== min{h; — hg, h, — £}. There exist
m,n < w with m > n such that h,,—h, < /2, and hence h,,,—h,, < hy—ho < h,—hg
and h,,—h, < h,—{ < h,—h,, and therefore f({ho, hy, hm, ho}) = 0, contradicting
our assumption. An analogous argument holds if ¢ # h,,;, and this concludes the
proof. O]
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Theorem 3.15 (Theorem 29). Let L be an order-type with |L| > 2% then

A+ (D). (3.17)

Proof. Suppose that L < A, i.e. L embeds into A, else the result follows trivially
because there would be no subset H C R with otp H = L. Note that this also
implies |L| = 2%.

Fix some A C (0,1) such that otp A = L. Let B C (0,1) with otp B = L be
arbitrary. As A and B have the same order-type, there is an order-isomorphism
fe: A — B. We extend fp to a total function fB on (0, 1) as follows: for all strict
lower bounds ¢ of A, we set fp(¢) = 0, and furthermore for all other = € (0,1) \ A,

x> sup{fp(y) |y <z Aye A}

Note that fB is non-decreasing and that fB and A uniquely determine B.

As fp is non-decreasing on (0, 1), its set of discontinuous points D(B) is count-
able. This is because for every b € D(B) we have that fz(b~) < fg(b'), where
fe(b™) = lim,_,,- fz(z) and fg(bt) = lim, ,,+ f(x) are the left-sided and right-
sided limits, respectively. Hence there exists some rational ¢, such that fB(b_) <
@ < fp(b"). Thus we can construct an injection from D(B) into Q and so D(B) is
countable.

As the rationals are dense in (0, 1), we can approximate functions values of fz on
continuous points arbitrarily well using the function values on the rationals. Hence,
the function fp is completely determined by the set D(B), its function values on
D(B), and its function values on Q. Therefore there are at most

L3%0] = |(2%0)] = 2%

such functions. As every B was completely determined by fp and A, we conclude
that are at most 2% subsets of (0, 1) of order-type L.

Let k < 2% be the amount of subsets of (0,1) of order-type L. Fix an enu-
meration (B, | 7 < k) of subsets of (0,1) of order-type L. Define inductively for
V<K,

Ty, Yy € By \{zs,ys5 | 6 <~} with ., # y,.

This is possible because for every v < k we have
{5,y | 6 <} < 2% =|L| = |B,].

Now define f: (0,1) — 2 by sending for all v < &, z, — 0 and y,, — 1, and all other
elements to 1 as well.

Take any H C (0,1) with otp H = L. Then there is some v < & such that
H = B,. Then by construction z.,,y, € H and f(z,) = 0 and f(y,) = 1, which
shows H is not homogeneous for f. ]

3.2.2 Real order-types

While proving certain partition results where the resource was A, the order-type of
the continuum, Erdds and Rado noted that only a few properties of A were needed
to prove these theorems. Hence they defined a more general order-type, which we
will denote as ¢ throughout this subsection, and proved the partition results with ¢
as resource. Obviously, it follows that all relations in this subsection hold when the
resource is A.
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Definition 3.16 (Real order-types). An order-type ¢ is a real order-type if || > Wy
and neither w; nor wj embed into ¢.

We prove an important proposition, which essentially shows that any set S with
real order-type ¢ contains Q-many uncountable sets, where these sets are themselves
ordered by the rationals. We prove a slightly stronger result than what we need.

Proposition 3.17 (Lemma 1). Let S be a linearly ordered set such that cf |S| =R,
and wy,w; L otpS. Then for every rational q there is a set A, C S such that

1. |4, =|5], and
2. A, < A, for all rationals p < q, (i.e. x <y forallz € A, and y € A,).

Proof. Case 1. There is some A C S with |A| = |S] such that for all z € A the
initial segment of A with respect to = has cardinality strictly less than |A|. In other

words, for all x € A,
{y € Aly <z} <|A]L

Define z, inductively for v < w,,, where

xVEA\U{yEA\ygmu}.

pu<v

Note that since v < w, = cf|A] such z, exist for all v < w,. In particular, we
have found a strictly <-increasing sequence (z, | ¥ < w,) in S. This means that
w, < otp S, which is a contradiction. Hence such A cannot exist.

Case 2. There is some A C S with |A| = |S| such that for all x € A the final
segments are sufficiently small, i.e.,

{y e Aly >} <]A]

Analogous to Case 1, we can show w} < otp S, which is a contradiction.

Case 3. There is some A C S with |A| = |S| such that for all z € A, either the
initial segment or the final segment with respect to x has cardinality strictly less
than |A|. Define Ay, ={x € A| {ye Ay <z} <|A|} and Agr = {z € A |
Hye Aly >z} <|Al}. As |A| = |AL| + |Agl, we have |AL| = |A| or |Ag| = |A].
If |A] = |ALl|, then we follow Case 1, and if |A| = |Ag|, we follow Case 2. As both
cases give a contradiction we conclude such A does not exist.

So far, we have shown that whenever A C S is such that |A| = | S|, there is some
x € A such that the initial and final segment with respect to « both have cardinality
|Al. In other words,

HyeAly<a}|=[S|=H{yeAly >z}

Since |{y € A |y < x}| = |95, there is 2’ € A such that [{y € A |y < 2'}| =S| =
{y € A| 2’ <y < x}|. Define

Ay={yeAly<ad},Ai={yeA|r' <y<z}and Ay ={ye Alx <y}

Note that AQ < A1 < AQ.
We “fix” A;, but we continue this operation for Ay and A, to obtain the sets
Aogo, Aor, Age and Agg, Aoy, Ags. Generally, for every finite ternary sequence of the
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form (ig, ..., %m—1,1) with i,..., 0,1 € {0,2} we obtain the set A;, ;  ,1. The
(finite) sequences of this form define the set

Q:{<i07"'77f-m7171>|Z.07"'7Z‘m71 € {072}7m€w}7

which when ordered lexicographically is a dense countable linear order without end-
points, and hence is isomorphic to the rationals, see Theorem [2.10]

By construction, for all p € @) we have |A4,| = |S| and for any ¢ € @ with p < ¢
it holds that A, < A,, which is what we wanted to show. n

We remark that all the following results in this subsection, with the exception of
Lemma|3.21] are strengthened by the Baumgartner-Hajnal theorem. This is because
¢ — ()L, and hence by Theorem [3.9 we obtain ¢ — (), for all v < w; and k < w.

The main theorem in this section is Theorem[3.22] This theorem heavily depends
on Proposition (3.17. First, we prove a lemma which we will need later.

Lemma 3.18 (Theorem 3liii). Let ¢ be a real order-type and let v < wy. Then
¢ — (w, 7). (3.18)

Proof. Assume w.l.o.g. that |¢| = W;. Let S be a set with otpS = ¢ and let
f:[S]?* — 2 be a colouring. Assume there does not exist a set B C S with |B| = ¥,
such that for all x € B it holds that

{y e Bl f{z <y}) =0} <R,

Then we can inductively define an increasing w-sequence which will be 0-homogeneous
for f. Let By = S and xy € By such that

Hy € By | f({zo <y}) =0} =Ny

For n < w let x,, € B,, be such that

B ={y € B, | f({z, <y}) =0}

is uncountable. Then {x,, | n < w} constitutes the 0-homogeneous set of order-type
w.

Assume now that such B does exist. As |B| = N; and wy,w; € B, by Proposi-
tion for all rationals g there are B, C B such that

1. |B,| =Ny, and
2. B, < B, for all rationals ¢ < p.

As (v, <) is a countable linear order, there is an order-preserving injection g: (7, <) —
(Q, <), see Theorem Inductively define x5 for § < 7, where

25 € Bysy) \ | J{y € Bys) | fF({ms < y}) =0},
B<s

Note that this is possible because |B,s)| = ®; and for every § < 6,

{y € By | f({2s <y}) = 0} <Ry,

and N; is regular. Finally, X = {x5 | 06 <~} is 1-homogeneous for f of order-type
- O
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Recall that the relation L — (My, My V M;)? means:
“For all sets S with otp .S = L and every colouring f: [S]? — 2, there is either a

0-homogeneous set for f of order-type My, or a 1-homogeneous set for f of order-type
either My or M,.”

Lemma 3.19 (Theorem 32i). Let ¢ be a real order-type. Assume that o < w-2 and
v < wi, then

¢ — (,yVw-v*)>2 (3.19)

Proof. Let S be a set with otp S = ¢ and assume w.l.o.g. that |S| =R;. Asa < w-2,
we can assume w.l.o.g. that a = w+m for some m < w. We make a case distinction.
Assume that whenever A C S is such that |A| = Ny, then there is some z € A with

H{ye Al f({y <z}) =0} =Ry

Let Ag = S and zg € Ap such that A, .= {y € Ao | f({y < xo}) = 0} is uncountable.
We can continue this construction to obtain the set {z,,—1 < ... < xo} and the
uncountable set A, = {y € A1 | f{y < xm-1}) = 0}. Note that |A4,,| = N; and
wy,w; £ otp Ay, and hence by Lemma , otp Ay, — (w,7y)?. If there were a 0-
homogeneous set H C A,, for f of order-type w, then the set HU{z,, 1 < ... < zo}
would be 0-homogeneous for f of order-type a. If, on the other hand, there were a
1-homogeneous set for f of order-type ~, we would be done as well.
Now we assume that there is some uncountable A C S such that for all x € A,

{y e Al f{y <=z}) = 0} <Ry

Again, as |A| = N; and wy,w] £ otp A, we have by Proposition that for all
rationals ¢ there exist A, C A such that

1. |Aq| = Nl, and
2. A, < A, for all rationals ¢ < p.

As (7, <) is a countable linear order and (Q,>) is a countable dense linear order
without endpoints, there is an order-preserving injection g: (v,<) — (Q,>), see
Theorem 2.9) We inductively define sets P, for v < . For u < v assume that
P, C Ay with otp P, = w have already been defined. Note that by assumption

{y € Ay | Fu < vie € P, f({y < a}) = 0}

is countable, and hence the set
B, ={y €Ay |Vu<wWe e P, f{y <z}) =1}

is uncountable. By Lemma we have otp B, — (a,w)?. If there exists a 0-
homogeneous set H C B, of order-type otp H = «, we halt the process because we
have showed . Otherwise there is a homogeneous set P, C B, with colour 1
and otp P, = w. This completes the construction of the P,. Now, define the set
H=J,. B, which is homogeneous for f with colour 1 and otp H = w-~*, showing
(13-19).

We have exhausted all cases and this concludes the proof. O]
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Corollary 3.20 (Theorem 31ii). Let ¢ be a real order-type. Let @ < w -2 and
B < w?, then
¢ — (a, ).

Proof. As 8 < w? there is some m < w such that 8 < w-m. Let S be a set with
otpS = ¢ and let f: [S]> — 2 be a colouring. By Lemma , ¢ — (o, BVw- B2
Thus there exists some set H C S such that either H is 0-homogeneous for f of
order-type otp H = a, or H is 1-homogeneous for f of either order-type otp H = w-m
or of order-type otp H = w - (w-m)*. As (§ embeds into w - m, § also embeds into
w- (w-m)* =w-w*m, we conclude ¢ — (a, 3)2. O

Lemma 3.21 (Theorem 32ii). Let ¢ be a real order-type. Assume v < wy. Then
¢ — (w+w*,y V) (3.20)

Proof. Let S be a set with otp S = ¢ and assume w.l.o.g. that |S| = N;. First we
suppose that there exists a set A C S with |A| = ¥ such that for all z € A,

{y e Al f({z <y}) = 0} <R
By Proposition [3.17, for all rationals ¢ there exists a set A; C A such that
1. |A,] =¥y, and
2. A, < A, whenever ¢ < p.

There exists an order-preserving injection g: (v, <) — (Q, <). We inductively define
elements z, for v <« by picking

v, € Ao\ | J{y € A| f{z, <y}) =0}

p<v

Note that this is possible because A,(,) is uncountable, and {y € A | f({z, <y}) =0}
is countable for all u < v. The set H = {z, | v < 7} is 1-homogeneous for f of
order-type otp H = . This would show .

Assume now that there is a set A C .S with |A| = Xy such that for all z € A,

{y e Al f({y < 2}) = 0} < Ro.

As there is an order-preserving injection from (v, <) to (Q,>), we can find, by an
analogous argument, a 1-homogeneous set for f of order-type v*. This would also
show ([3.20)).

Finally, suppose that for all sets A C S with |A| = Ny there are x,z € A such
that

Hye A| f({x <y}) =0} =%y, and (3.21)
{ye Al f({y <z}) =0} =Ry, (3.22)

We inductively define x,,, 2z, for n < w as follows: let Ag = S and let x5 € S such
that By == {y € Ao | f({xo < y}) = 0} is uncountable. Then let zy € By such that
Ay ={y € By | f({y < 20}) = 0} is uncountable. We then pick z; € A; such that
By is uncountable, etc. After that, we can define the set H = {xg < 71 < 23 <
o PU{ e < 29 < 21 < 20}, which has order-type w + w*. By construction, H is
0-homogeneous for f, hence we have showed .

We have exhausted all cases and this concludes the proof. O
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The following theorem is a key result in this section. Of course, we mention again,
that the Baumgartner-Hajnal theorem implies a stronger partition relation. The
proof of the following theorem is rather long and complex, using many combinatorial
tricks. We advise the reader that, unless they are particularly interested, they can
safely skip reading this proof.

Theorem 3.22 (Theorem 31i). Let ¢ a real order-type. Assume that @ < w - 2.
Then

¢ — (). (3.23)

Proof. Assume w.l.o.g. that |¢p| = Ny. Let S be a set with otpS = ¢ and let
f:[S]?> — 3 be a colouring. Assume for the sake of contradiction that there is no
homogeneous set for f of order-type a. As a < w-2, we can assume that « = w+m,
for some m < w. The only properties of S that we will use are that .S is uncountable
and wy,w] £ otpS. Therefore whenever an uncountable subset A C S has a certain
property, we shall assume without loss of generality that S has this property.

By Proposition there are uncountable subsets Ay, Ay C S such that 4y <
A;. Fix sp € Ay, then in particular, there must be some colour k € 3 such that
{z € Ay | f({z < so}) = k} is uncountable. Continuing with Ay and repeating this
argument 3m times, we obtain a set {s;,, , < ... < s;,} which is homogeneous for f
with, say, colour 0, and {z € S| (Yn < m)f({z < s;,}) = 0} is uncountable. Note
that we can assume without loss of generality that the colour is k = 0, because we
could reshuffle the colours if necessary.

Suppose that {x € S | (Vn < m)f({zx < s;,}) = 0} has a subset H of order-
type w which is 0-homogeneous for f. Then the set H U {s;, , < ... < s;,} is
homogeneous for f with order-type «, which is a contradiction. Therefore we can
assume without loss of generality that

S has no infinite subset which is 0-homogeneous for f. (3.24)

Suppose now that for all uncountable A C S there is some = € A such that

{y e Al f({z <y}) = 0} =Ry

Then we can inductively define sets Ag = S and 4,41 ={y € A, | f{h, <y}) =0}
and elements h,, € A, such that {h, | n < w} is 0-homogeneous for f of order-type
w, contradicting (3.24]). Therefore we may assume without loss of generality that
forall z € S,

{y eS|z <y}) =0} <N (3.25)

Using Proposition [3.17] again, we obtain uncountable subsets A, B C S such that
A < B. As a < wy, we have the partition relation otp A — (w, a)? by Lemma [3.18
By Ramsey’s Theorem, w — (w,w)?, and hence otp A — (w, w, a)? by Lemma [2.27
By and the fact that A has no subset homogeneous for f of order-type «, it

must be the case that

A C S has a subset P which is 1-homogeneous for f of order-type w. (3.26)

Since P is countable, we have by (3.25)) that [{y € S| 3z € P)(f({z <y}) =0)}| <
No. In particular, B\ {y € S| (3z € P)(f({z < y}) = 0)} is uncountable, and
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of course, P < B. Therefore we may assume without loss of generality that P is
1-homogeneous for f of order-type w and

fHz<yh) e{1,2} forallz € Pandy e S\ P. (3.27)

Assume that whenever @) C P is of order-type w and A C S is such that |A| = ¥y,
there is some x € A such that

{ye Q| f({y <z}) =1} =R (3.28)

We will show that this assumption gives a contradiction. Note that A = S\ P is
uncountable, and hence by Proposition for all rationals ¢ there are A, C A
such that |4, = ¥y and A, < A, for all rationals ¢ < p. There is an order-
preserving injection g: (w-m,<) — (Q,<). Let my € Ay such that P, =
{y € P| f({y < xo}) = 1} is infinite. We define inductively z, and P, for v < w-m
as follows. Suppose for all ; < v that

Loz, € Ag),
2. |P,\ Py| <N forall p<p<v,and
3. P,CP.

Fix an enumeration (4, | n < w) of v. Inductively pick elements for n < w,

n—1
Yn € m P(;j\{yoa'-'?ynfl}-
=0

Set Y = {y, | n < w}, and note that since Y C P it holds that Y is 1-homogeneous
for f and is of order-type w. By the set Ago) \{y € A | Fp < v)(f{z, <
y)} = 0} is uncountable. Therefore, by (3.28)), there exists some z, € Ay, \ {y €
A| (Fp <v)(f{z, <y)} =0} such that

{yeY | f({y <z}) =1} =N

Let P, ={y €Y | f({y < x,}) = 1}. We check that P, satisfies the properties
listed above. Obviously, P, C Y C P. Also, for 4 < v there is some n < w such
that u = 9,. Then

[P\ Pul = [P\ Bs, | < YA\ P, | < {yo, -5 yn}| < Ro.

This completes the definition of the z, and P,.

Note that X = {z, | # < w-m} has order-type w-m. By construction of the x,,
we have that for all any ¢ < v < w-m that f({z, < z,}) € {1,2}, and therefore
f 1 [X]? is a 2-colouring. By Theorem we have w - m — (m,a)? So, there
exists a set H C X such that either H is 1-homogeneous for f and otp H = m,
or H is 2-homogeneous for f and otp H = «a. In the latter case we immediately
get a contradiction, because we supposed f does not have a homogeneous set of
order-type .

Thus, assume otp H = m and H is 1-homogeneous for f. We can write H =
{z,, <...<uwz, .} Forevery n < m we have

1P Ny e Al f({y <@ }) = 1} <P, \ P < Ro.
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Therefore Q@ = {y € P, _, | (Yn < m)(f({y < z;,}) = 1)} has order-type w. As
Q@ C P, we have that QU {z;, < ... <z; _,} is homogeneous for f of order-type a,
which is a contradiction. So, our assumption in (3.28)) was false. Therefore we can
assume that there are P’ C P of order-type w and uncountable A C S such that for

allz € A

{y € P f({y <a}) =1} <. (3.29)

As P’ is countable, there are only countably many finite subsets of P’. As A is un-
countable, there is an uncountable subset A" C A such that {y € P" | f({y < z}) = 1}
is constant for all z € A’. Set P”" = {y € P'| f({y < x}) = 2} for some z € A,
which we note by is then also constant for x € A’. Note that otp P" = w.
The argument from ({3.24]) onwards remains valid if we replace S by any uncount-
able subset A C S. Therefore we have shown that whenever A C S is uncountable

there exists P, A" C A such that (3.30)
1. A’ is uncountable,
2. P is 1-homogeneous for f of order-type w, and
3. forallz € P and y € A’, we have f({z <y}) =2.

Using Proposition there are Ag, By C S such that |Ag] = N; = |By| and
Ay < By. There are Py, A C Ap as in (3.30). Noting that Ay is uncountable, we
can use a repeated application of (3.30)), to obtain the sets P,11, A;, C Aj,, for all

n < w.
Define

By =By\{y€ By |3z e [JPf({z <y}) =0)},

nw

where we note that (J,_, P, is countable, and hence it follows from (3.25)) that
|B1| = 8. Also, the sets P, have the following properties

1. f{x <y}) =2when z € P,y € P, for k <n < w, (3.31)
2. f{z <y}) =1when z,y € P, for all n < w, (3.32)
3. f{zr <y}) € {1,2} when x € P,,y € B for all n < w. (3.33)

Note that follows from the fact that P, C A for k <n, holds because
the P, are homogeneous for f with colour 1.

Fix n < w for now. Suppose that there are uncountable B, C B; and infinite
P’ C P, such that for all x € By,

(yeP'| f({y <z}) =2} <N, (3.34)

Then, using the same argument as before, there are only countably many finite
subsets of P’ and hence there is an uncountable set B; C By such that {y € P’ |
f({y < x}) = 2} is constant for all x € Bs. This means in particular that D = {y €
P | f{y < x}) = 1} is fixed for all z € Bs, and has order-type w. Using we
know there is () C Bs which is 1-homogeneous for f of order-type w. Then the set
DU is homogeneous for f and has order-type w -2, which is a contradiction. Thus
our assumption in was false.
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Therefore it is the case for every n < w that if P’ C P, is infinite, then
Hre By: [{ye P': f({y < x}) =2} < No} < Ro. (3.35)

The idea is to repeat the whole argument from , but now to the set B; and
we “invert” the colors. This entails that instead of using , we use the relation
otp By — (w, @,w)? to obtain an infinite homogeneous set @ with colour 2, instead
of colour 1. Therefore, we will obtain sets ),,, Bo C By for n < w, such that (),, has
order-type w, By is uncountable, and

I. f({x <y}) =1when z € Qy,y € Q, for k <n < w, (3.36)
2. f{zr <y}) =2 when z,y € Q, for all n < w, (3.37)
3. f{x <y}) €{1,2} when z € Q,,y € B, for all n < w. (3.38)

And it also holds for any n < w and any infinite ' C @,, that

{z € Bo: Hy e @ f({y <x}) =1} < Ro}[ < Ny. (3.39)

Using Proposition [3.17] we obtain uncountable C,, C B, for all n < w, such that
Cr < C, for all k < n < w. For any n < w and any infinite P, C P, and @/, C Q
we have by (3.35) and (3.39) that there at most R, elements x € By such that

{ye P f({y <a}) =2} <Ro and {y e @,: f({y <a}) =1} <. (3.40)

Therefore we can inductively define x,, € C,, such that for all 1 < w

{y € P: (VE <n)(f({y <ax}) =2)} =N, and (3.41)
Hy € Qi: (VkE <n)(f({y <xx}) =1} = No. (3.42)

Set X = {z, | n < w}. By Ramsey’s Theorem, w — (w)3, and hence there
is some infinite X’ C X which is k-homogeneous for f, where k& € 3. Write X’ =
{z;, | n <w}. If X’ were 0-homogeneous, we'd have a contradiction by (3.24)). Hence
k =1,2. Choose for all i < w,

yi € {y € Pi: (Vn <im1)(f({y <za}) = 2)}, and (3.43)
z€{2€Qi: (Vn<in1)(f{z<z,}) =1} (3.44)

Set Y ={y, | n <w}and Z = {z, | n < w}.

If k =1, then Z U {x;,,x,...,7;, .} has order-type w + m = a. By (3.44)),
(3-36), and since X’ is 1-homogeneous for f, the set Z U {z;y, xiy, ..., 2, ,} is 1-
homogeneous for f. Which gives a contradiction.

Hence k£ = 2, but then the set Y U {z;,,zsy,...,x;,_,} is 2-homogeneous for f
and has order-type «, hence a contradiction.

We conclude that our assumption of f having no homogeneous set of order-type
« is false, and hence ¢ — (a)3. O

The final result of this section also appeared in [ER56|, again with a rather com-
plicated proof. Albin Jones has provided a much simpler proof in [Jon00, Theorem
1], although it relies on an additional assumption.

Theorem 3.23 (Baumgartner-Hajnal, 1973). ¢ — ((w+m),,w)? for all n,m < w.
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We omit the proof of this theorem, but we mention that it follows from the
Baumgartner-Hajnal Theoremﬁ Also, Fred Galvin gives a combinatorial proof of
the result in [Gal75, Theorem 9.

Lemma 3.24 (Theorem 31iv). Let ¢ be a real order-type and let « < w - 2. Then
¢ — (a, 4)°. (3.45)

Proof. Proof is from [Jon00, Theorem 1].
Let S be a set with otp S = ¢ and let f: [S]®> — 2 be a partition. We can write
a = w + m for some m < w. We will show either

(a) There is A € [S]*"™ which is 0-homogeneous for f, or
(b) There is B € [S]* which is 1-homogeneous for f.

We will make use of the following claim.

Claim. Suppose there are x € S and A € [S\ {x}|“T™ such that f | [{x}, A]** =1,
then either (a) or (b) holds.

Proof of claim. If A € [S\ {x}]“"™ is such that f | [A]®> = 0, then (a) holds. If
I 1 [A]P? # 0, then there is a triple {ag, a1,as} € [AJ® such that f({ag,a1,as}) = 1.
Setting B = {x,ao, a1, as} then gives f | [B]*> = 1, showing (b). |

We may assume throughout that |S| = N;. Now, by Proposition there
are R, P C S such that otpR = ¢, otpP = w? and R < P (i.e., r < p for all
r € Rand p € P). We will focus on the set R U P. Note that [RU P]® =
[RPU[R, P|*' U [R, P]Y2 U [P]3.

By the Finite Ramsey’s Theorem, there exists some n < w such that n — (m, 4)3.

Define for each r € R the partition f.: [P]> — 2: {p,p'} — f({r,p,p'}). Using
Corollary the relation w? — (n,w + m)? holds. If there is some r € R such
that there is A, € [P]*™™ with f, [ [A,]? = 1, then we are done by the claim.

Therefore suppose for all 7 € R there is D, € [P]" with f,. | [D,]> = 0. In other
words, for all 7 € R there is D, € [P]" such that f | [{r}, D,|"* = 0. As |R| =¥,
and |[P]"| = o, there is some 7' C R such that for all ¢ € T" we have D, = D,
for some fixed D = {do,...,d,—1} € [P]", and also otpT is a real order-type. In
particular, f | [T, D]'? = 0.

Define the partition fp: [T]* — n+ 1 by

p i if 1 < n is the least such that f{t,t',d;} =1, and
fol{t,t}) = { n  otherwise. A }
Theorem [3.23| gives otp T — ((w + m),, w)?. If there is some i < n and A € [T]**™
such that A is i-homogeneous for fp, then we are done by the claim.

Therefore we may assume there is C' € [T]* such that f [ [C, D]*! = 0. Consider
the partition f [ [C]*: [C]* — 2. By Ramsey’s theorem, w — (w,4)?. If there is
B € [C]* such that f | [B]*> =1, we have shown (b) and are done.

Thus we can assume without loss of generality that there is £ € [C]¥ which
is 0-homogeneous for f. Recall that we chose n < w such that n — (m,4)3. If

8See [BH73, Theorem 1].
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there is B € [D]* such that B is 1-homogeneous for f, we are done. Therefore we
assume there is F € [D]|™ such that f | [F]* = 0. Define A = E U F. Note that
E < F and hence otp A = w+m. Finally, we have already shown that f | [E]> =0,
FTIEFP?* =0, f[E,F]**=0,and f | [F]?> = 0. Hence we have shown A is
0-homogeneous for f and this concludes the proof. m

3.3 Ordinals

In this section we study ordinal-based partition relations. As an ordinal has a well-
ordered order-type, we remark that every ordinal-based partition relation is a special
case of a partition relation based on an order-type.

3.3.1 Countable ordinals
Theorem 3.25 (Theorem 23i). Forn < w and a < w -2 it holds that

w-n— (n,a) (3.46)

Proof. Let S be a set with otp.S = w - n and let [S]* = AU B be a partition. We
can write S as S = J,_,, Si, where otp S; = w for all i < n, and 7 < j < n implies
S; < Sj. Assume for the sake of contradiction that there exists no set H C S such
that either otp H = n and [H]*> C A or otp H = « and [H]|* C B.

Note that for every i < n we have essentially a colouring f;: [S;]* — 2. As
|S;| = Ng, we have by Ramsey’s Theorem that there exists an infinite homogeneous
set K; C S; for f;. By assumption it cannot be that [K;]> C A, and hence it must
be that [K;]* C B.

Fix some i < j < n. We define an operator O;; as follows. We look at sets
K C K; U K; such that |K N K;| = Xy and [K]* C B. Note that K = K; works, so
there is at least one such set. As by assumption it must be that otp K < a < w - 2,
there is in fact such a set K such that otp K is maximal. Choose such a set K and
set

Oi,j(KOa K17 e 7Kn—1) - (Lo, Ll, ey Ln—l)a

where L; = KNK;, L; = K;\ K and L,, = K,, for m # i, j.

We have otp L; = w, because if otp L; < w, then otp KNK; = w. Asotp KNK; =
w this would imply that otp K > w -2, a contradiction because [K]*> C B. It is even
the case that for all ¢ < n we have otp L; = w.

We also have for every y € L; that the set X = {z € L; | {z,y} € B} has
cardinality |X| < Ny. For suppose otherwise, then define the set K/ = X U (K N
K;)U{y}. Then K’ C K; U K, and |K' N K;] = R,. Also [K']*> C B, because
[K'\ {y}]* C [K]*> C B, and for every x € X we have by definition {z,y} € B. Also,
[(KNK;)U{y}? C [K;]* C B. Finally, we have otp K’ = otp K + 1, contradicting
the maximality of K.

We now apply the operators O; ; iteratively on the system (Ky,..., K, 1) for
all pairs ¢ < 7 < n. There are (g) such pairs, so we only apply finitely many
operators. We denote the end result as (Do, ..., D,_1). Note we have for all i < n
that otp D; = w. Importantly, for every ¢ < n we have for all y € Ui<j<n D; that
{z € D;: {z,y} € B}| < Ny. Assuming the elements z,_1,...,x;1; have been
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chosen, in this order, then we have
{z € D;: {x,y} € B for some y € {x;11,...,xn1}} < o,

hence we can choose an element x; € D; such that for all j with « < j < n we have
{x;,2;} € A. Finally, the set D = {x,...,x,_1} has otpD = n and [D]* C A,
which is a contradiction with our assumption that such a set did not exist. O

The following theorem shows that we cannot strengthen Theorem by in-
creasing the goal to n + 1, because the partition relation is already negative for
w+ 1.

Theorem 3.26 (Theorem 23ii). For n < w it holds that
wen A 41w+ 1)2 (3.47)

Proof. Define S = {(m,{) € w X w | m <n Al <w} and order S lexicographically
by <. That is, (m,¢) < (m/,¢') if and only if m < m’ or m = m' and ¢ < /.
Note that otp(S, <) = w - n. Let [S]> = AU B be a partition such that B contains
precisely the pairs {(m,£), (m, ")} for all m < n and ¢, < w. Suppose there is a
set H = {(mog,lo) < ... < (my,0,)} €S, sootp(H, <) =n+1, such that [H]? C A.
Then in particular we would get my < ... < m, < n, which is a contradiction.
Similarly, suppose G C S is such that [G]*> C B with otp(G, <) = w + 1. Then G
must be of the form G = {(m,{) | ¢ < w}, which does not have order-type w + 1.
We conclude w-n 4 (n+ 1,w + 1)% O

Often we will need to make an assumption before we can prove a partition
relation, as is the case in the next theorem.

Theorem 3.27 (Theorem 25). Let 2 < m,n < w be natural numbers. Assume that
{ < w is such that

0 — (m,m,n)> (3.48)
Then
w -l — (m,w-n) (3.49)

In fact, we will prove an even stronger result. For this stronger result, we will
need to introduce a certain property that natural numbers can have. This property
is similar to the ordinary partition relation, but now we want to account for ordered
pairs instead of only unordered pairs.

Definition 3.28 (P, ,, property). A natural number / is said to have property P, ,,
if the following holds: for every h: ¢ x £\ A — 2, where ¢ x ¢ denotes the ordered
pairs of £ and A = {(d,d) | d < ¢} is the diagonal, there is

1. either a set {ag,...,am_1} € [¢]™ such that ¢ < j < m implies h(a;,a;) =0,

2. or a set {ag,...,an—1} € [{]" such that for all i,7 < n with ¢ # j that
h(ai,aj) =1.
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Theorem 3.29 (Theorem 25i). Let 2 <m < w and 1 < n < w. Suppose that { < w
has property Py, ,,. Then

w-l— (m,w-n)? (3.50)
Proof. Let f: [w-{]* = 2 be a colouring. Note that we can write
w0 ={{w-a+rw-b+s}|ab<landr s <wand (a,7) # (b,s)}.

Fix an enumeration (p; | i < %) of the ordered pairs ¢ x ¢. We assume that the
diagonal A appears last, i.e. pye_1)+; is the pair (j,7). Define g: [w]* — 2 by
{r<spe (@)
where z; = f({w-a+ r,w b+ s}) and where (a,b) = p; is the i-th pair of the
enumeration. By Ramsey’s Theorem there is a homogeneous set H C w for g with
otp H = w.
Let {r < s} € [H]?. We can now define h: £ x £\ A — 2 by

(a7 b) = (g({T < 8}))1 = f({w-a—i—r,w ) b+5})7

where p; = (a,b). Note that by the homogeneity of H it is irrelevant which element
{r < s} € [H]? is chosen. By assumption ¢ has property P,,,, which means the
following: either there is some set X,, = {co,...,¢m-1} C £ such that i < j < m
implies h(c;,¢;) = 0, or there is a set X,, = {dy < ... < d,—1} C { such that
h(d;,d;) = 1 for all 4,5 < n with ¢ # j. In the first case, define the set H,, =
{w-e¢+r | i < m}, where {ro < ... < r, 1} C H. Tt follows that H,, is
0-homogeneous for f and otp H,,, = m.

Suppose that there is no 0-homogeneous set for f of order-type m. Then in
particular the second case of property P, , must hold. There is another consequence,
namely it holds for all i < n that for {r,s} € [H]? that f({w -d;+r,w-d;+s}) =1,
else the set {w-d; +r | r € H} would constitute a 0-homogeneous set for f of
order-type w. We create a partition of H = ;.,H' in n pairwise disjoint sets
such that for every i < n we have otp H" = w. Define H, = {w-d; +s | i <
n and s € H'}. Finally, H, is 1-homogeneous for f of order-type otp H, = w - n.
To see this, take {w - d; + r,w-d; + s} € [H,|*. If i = j we already saw above that
fHw-di+r,w-d; s}) = 1. If i # j, then r # s and suppose s < r (the case for r < s
follows analogously). Let k be the index of the pair (d;,d;) in the enumeration. It
follows that 1 = h(d;,d;) = (9({s < r})r = f{w-dj + s,w - d; + r}), which is what
we wanted to show. O

We are now ready to prove Theorem [3.27]
Proof of Theorem [3.27 In view of Theorem [3.29] it suffices to show that if
0 — (m,m,n)?

holds, then ¢ has property P, .
Hence, take an arbitrary function h: £x £\ A — 2. Define the partition f: [(]* —
3 by

0 if h(a,b) =0,
{a <b}— ¢ 1 ifh(a,b) > h(b,a), and
2 if h(a,b) = h(b,a) = 1.
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If there is a 0-homogeneous set for f of order-type m, or there is 2-homogeneous set
for f of order-type n, then we are done.

Therefore we may assume we find a 1-homogeneous set H = {ag < ... < @yp—1}
for f. Define b; = a,,_1_; for all i < m, then the set {by, ..., b,_1} has the property
that ¢ < j implies h(b;, b;) = 0. We conclude that ¢ has the property P,,, and this
concludes the proof. O

The positive partition result from Theorem [3.29|is actually tight, in the sense
that if the assumption of ¢ having property F,, ,, were dropped, the partition relation
would be negative.

Lemma 3.30 (Theorem 25ii). Let 2 < m,n < w. Let {y denote the least natural
number which has property P,,,,. Then

v A (myw-n)*  where y < w - £y, (3.51)

Proof. Let v < w - {y. Then there is some ¢ < ¢y such that w- ¢ <y <w- (£ +1).
By assumption ¢ does not have property P,,,, and hence there exists a function
g: £ x ¢\ A — 2 such that for all {ag < ... < a—1} C ¢ there are i < j < m with
g(a;,a;) =1 and for all {by < ... < b,_1} C ¢ there are i, j < n where i # j with
Define f: [y]*> = 2 by f{w-a+rw-b+ s}) =0 if and only if r < s < w and
a,b < {, a# band g(a,b) = 0. Suppose that there is a set H C v with otp H = m
such that f [ [H]* = 0. We can write H = {w-ag+79 < ... < W-dy_1+7m_1} Where
we have for all ¢ < m that a; < £. It follows immediately that for all + < 7 < m we
have g(a;,a;) =0 and ag < ... < ay,—1, which contradicts our assumption.
Suppose, on the other hand, that there is a 1-homogeneous set H C v for f of
order-type otp H = w - n. Then we can write H = {w-b; + s;- | b; <l <n,j<w},
where 5% < w for all i <n and j < w. It must be that b; < £ because v < w- (£+1).
There are some indices ko, ..., k,_1 and rg,...,r,_1 such that 320 <... < s’,zn__ll < w
and w > s0 > ... > s’ Then for all i,j < n with i # j, if i < j, then it

T0 1 .
is the case that g(b;,b;) = f({w - b + s} ,w - b; + sij}) = 1, and if j < 4, then
9(bj,bi) = f({w - bj + s}, w-bi +s;.}) = 1, which gives a contradiction.

We conclude v 4 (m,w - n)% O

Theorem [3.27| gives us an interesting corollary, which we will need to use in this
thesis.

Corollary 3.31. For all n,m < w it holds that

w? = (m,w - n)?

Proof. Suppose w.l.o.g. that m < n (the case for n < m is analogous). By Finite
Ramsey’s Theoremﬂ there exists a natural number ¢ such that £ — (n)3. Obviously,
then ¢ — (m,m,n)? is true as well. Using Theorem we have w - £ — (m,w -n)?
and as w - £ < w?, we obtain the desired result. O

9See Theorem
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At the end of this section, we present some results that were proven after the
publication of [ER56], but we will not give the proofs or go into much detail.

In a paper by Ernst Specker, [Speb7], we find a strengthening of Corollary ,
and the same paper demonstrates that the result cannot be generalised for all finite
powers of w][']

Theorem 3.32 (E. Specker, [Speb7]). For allm < w and n > 3,

w? = (m,w?)?, and (3.52)
W' A (3w (3.53)

The next interesting partition relations concerns w® as resource, and C.C. Chang
showed that this relation is positive.

Theorem 3.33 (C.C. Chang, [Cha72|, Theorem 1).
W — (W, 3)%. (3.54)

E.C. Milner was able to generalise Chang’s result to all finite n, although he did
not publish this resultE-] Larson provided a short proof in her PhDF_Z]

Theorem 3.34 (E.C. Milner, 1972). For alln < w,
w* — (W, n)?. (3.55)

In his PhD thesis (1999), Rene Schipperus studied partition relations where the
resource was of the form w*”. The results can be found in [Sch10].

E.C. Milner showed in his PhD thesis an ordinal-variant of the Positive Stepping
Up Lemma.

Theorem 3.35 (E.C. Milner, [EM72], p. 501). Let v and § be countable ordinals
and let k < w. If w¥ — (W' k)2, then w0 — (w'*0 2k)2.

3.3.2 General ordinals

Lemma 3.36 (Lemma 5). Let o be an ordinal and k a cardinal. Suppose that [,
are ordinals for all n < k such that for all B < o it holds that B /4 (Bn)n - Then

a (B, +1)08

Proof. Let S be a set such that otp(S, <) = a. For every x € S, define I, = {y €
S |y < z}, then otp(I,,<) = 8 < a, for some B. By assumption there is some
colouring f,: [I.]” — k such that for all n < k there is no set H of order-type 3,

which is n-homogeneous for f,.
Define f: [S]"™ — k by

{ro<m <...<zy <z} = fo,{ro <z <...<zp1}).

If there is a homogeneous set H = {h; | i < 5, + 1} C S for f with colour n and
otp(H, <) = B, + 1, then the set {h; | i < 3,} is homogeneous for f, of order-type
B, and colour n. This is a contradiction and hence the proof is concluded. ]

10Cited after |Lar12, p. 219].
HTarson credits Milner with this unpublished result in [Lar73, p. 129].
12See |Lar73, Theorem 3.1].

46



Chapter 3.4

3.4 Cardinals

In this section we study partition relations where the resource is a cardinal. If
we view a cardinal as its initial ordinal with the ordinal ordering, we observe that
every cardinal-based partition relation is a special case of an ordinal-based partition
relation. Hence, given a cardinal x and an ordinal «, we often look at partition
relations of the form k — («)!,. This relation means that our resource is the ordinal
x with the ordinal ordering < on x, and there is a homogeneous subset 4 C « such
that otp(H, <) = a.

3.4.1 Positive Stepping Up Lemma

Here we prove a key result of the Erdos-Rado paper: the “Positive Stepping Up
Lemma” [P| and we investigate some of its corollaries. Given some positive partition
relation, this result allows one to increase the exponent and goal, at the cost of
increasing the resource as well. Interestingly, the well-known Erdés-Rado theorem
follows from the Positive Stepping Up Lemma. We mention that the proof below is
a modernisation by [Low19).

Theorem 3.37 (Positive Stepping Up Lemma, |[ER56|, Theorem 39). Let x be an
infinite cardinal, let 2 < m < Kk be a cardinal and let r > 1 be a natural number. Let
B be ordinals for all n < m. Assume k — ()" Then (2<%)* — (B, + 1)7t!

n<m:* n<m*

Proof. Take some m-colouring f: [(2<%)T]"™' — m and fix some arbitrary ordinal
a < (2<%)T. Define a sequence of ordinals below a as follows: 7§ = 0,~f =
1,...,7%, =1r—1. For d < k, assume that v§,...,vs5 are already defined. Let
v > 7§ be the least ordinal such that for all indices 79 < --- < 4,1 < ¢ it holds that

f(7%7"'77i0;_1?a) = f(’YiO:)a--w’YiO;_la’Y)'

If v = @ we terminate the recursive definition, 7§, is undefined and we set o(a) ==
0 + 1; otherwise v < «, then set ~§,, = ~. If 7§ is defined for all § < , we set
o(@) = k.

Define for every a < (2<%)" the set A, = {78 | 0 < o(«)}. There are two
possible cases: in the first case there is some a < (2<%)* such that |A,| = &, and
in the second case, |A,| < & for all & < (2<%)". We shall show that in the first
case that for some n < m we can find an n-homogeneous set H for f of order-type
Bn + 1, and that the second case will give a contradiction.

Case 1. There is some a < (2<%)% such that |A,| = k. Define the function
f:[k]" = m by

~

flos . yir1) = f(vf, i Q).

By the assumption £ — (5,,)},-,,, there is some n-homogeneous set H for fAOf order-
type [3,, for some n < m. Then H U{a} has order-type 3, + 1 and we claim that it
is n-homogeneous for f. Every (r + 1)-tuple of H U {a} that contains « clearly has

~

colour n, since f(v5,...,7_,, @) = f(io,...,ir—1) = n. Also, for every (r+1)-tuple
not containing «, we have for 1o < ... < 1,1 < iy,

~

f(’Y%,---a'Yf:_la’Yi) = f(ﬁ)/ioéa"w’}/io:«_laa) = (iOw"aZ‘Tfl) =n,

13This result is [ER56, Theorem 39)].
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where the first equality follows by definition of ~;*.

Case 2. |Ay| < K for every av < (2<%)". For any two ordinals «, 5 < (2<%)" we
say that o and 3 are equivalent, if o(c«r) = o(5) and for all indices iy < ... < i1 <
o(a),

fOa i) = Fis 10 B).
Note that the equivalence class of some ordinal @ < (2<%)% is completely determined
by the value o(«) < k and by the function

folo(@)]” = m: (ig, ... ir1) = f(Vis -5 i ).

Note that there are at most \m[@(a)]r] < 2<% guch functions. Therefore there are at
most | >, . mll| = 2<% equivalence classes and so there must be an equivalence
class of size (2<7)*.

We show that any two equivalent ordinals must be the same. For the sake of
contradiction suppose that a and [ are equivalent and @ < . By an inductive
argument we can show that for every § < o(a) = o(5), 75 = vf . Now, for all indices
o < ... <1i,_1 < o(f), we have by definition of the equivalence

FOR ol B =8, e ) = (e ),

which shows that o could have taken the role of 75 3) and gives us a contradiction. [

There are some incredibly interesting applications of the Positive Stepping Up
Lemma, which we will demonstrate here. It will be useful to define notation for
iterated exponentiation.

Definition 3.38 (Beth function). Let x be any cardinal. By recursion on the
ordinals, we define the beth function as

Jo(k) = R, Josi1(k) = 270, (k) =sup{3s(k) | B < a} for o limit.
In the case where k = Vg, we simply write 3, = 3,(No).
Theorem 3.39. For any r,m,n < w,
3> (w+n+1). (3.56)

Proof. Start with the relation Ry — (w)!,, which is true by Ramsey’s Theorem.
Then iteratively apply the Positive Stepping Up Lemma n 4 1 times. Note that for
all n < w, (253t = (23 =2, . O

In particular, we obtain the following two relations.

Corollary 3.40. For all r,m < w,

wy — (w+ 1), and (3.57)
(2%)F = (w+2)n. (3.58)

As promised, the well-known Erdés-Rado Theorem also follows from the Positive
Stepping Up Lemma.
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Theorem 3.41 (Erdés-Rado Theorem). For any infinite cardinal k and anyn < w,
J.(k)T — (k)2

Proof. Proof by induction on n.
Base case n = 0. kT — (kT)! is true because k < cf(kT).
Assume for n > 1 that 3, (k)T — (k)" is true. As

9<Tn-1(K)F _ 9In-1(x)

= (k)
the result follows from the Positive Stepping Up Lemma. O
Remark 3.42. We actually obtain a slightly stronger partition relation for the

Erdés-Rado Theorem, namely the relation

(k)T = (k1 4 n)"

K .

One reason why some applications of the Positive Stepping Up Lemma are so
interesting, is because they seem to be sharp. We are able to show that the relations
of Corollary cannot be improved, i.e. increasing the goal will change the parity
of the partition relation. In Chapter [ we will conjecture that Theorem [3.39) is
sharp. Unfortunately, we have not been able to prove nor disprove this. However,
we have been successful in establishing a bound: there are no homogeneous sets of
order-type w?. For these results, see Chapter

For now, we want to show the relation w; — (w+1)! is sharp. We have already
seen a different result where there are no homogeneous sets of order-type w + 2,
namely Theorem [3.13] This theorem gave us otp2* 4 (w + 2)3, where 2¢ is the
Cantor space.@ Even though the Cantor space has the cardinality of the continuum,
Theorem does not imply 2% 4 (w + 2)3, nor even the weaker w; /4 (w + 2)3,
because w; does not embed into Cantor space. However, [ER56, Theorem 41] implies
this negative partition relation.

Proposition 3.43 (Theorem 41). For all n < w,
Wntt 7 (Wn + 2,0 + 1)° (3.59)

Proof. Clearly w, + 1,w* £ w,. For any 8 < w,; it holds that |5| < |w,| and
hence by Lemma we have 3 /4 (w, + 1,w)? Then immediately by Lemma m
it follows that wy, 11 4 (w, +2,w + 1)3. O

Corollary 3.44. w; 4 (w+2,w + 1)3.

In fact, Theorem provides the strengthening w; /4 (w + 2,w)?. Obviously,
Corollary implies w; 4 (w+2)3. It is not clear whether we can strengthen this
relation to the resource 2%, i.e. whether 2% -4 (w + 2)3 is true. It turns out that
this relation is indeed negative, as we shall show in Corollary

The partition relation from Corollary is negative when r = 3. Changing
the exponent in the partition relations gives interesting results. If we increase the
exponent, then one of the goals can be reduced to a natural number and the partition
relation will remain negative. Curiously, if we reduce the exponent to r = 2, then
the partition relation is positive, as we prove in Theorem |3.46|

14Recall that otp2¥ = )\, i.e. otp2¥ < X and otp2¥ > .
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Lemma 3.45. There is a natural numbeff”] ¢ < w such that for all 4 <r < w,
w A (w+2,0+r—4). (3.60)

Proof. In view of Lemma [2.22] it suffices to show (3.60)) for » = 4. First, by Corol-
lary we have w; /4 (w+2)3. Then, by Finite Ramsey’s Theorem, there is some
¢ < wsuch that ¢ — (4)3. Finally, using Theorem[3.5] we obtain w; 4 (w+2,¢)*. O

Theorem 3.46 (Theorem 33). Let a < w -2, then wy — (a)3.

Proof. Let S be a set such that otp S = w; and let f: [wi]? = 2. Asa < w -2, we
can assume w.l.o.g. that there is some k£ < w such that & = w + k. Assume for the
sake of contradiction that there is no homogeneous set for f which has order-type
@ = w + k. By the Dushnik-Miller Theorem, w; — (w,w;)?. As f cannot have an
uncountable homogeneous set, there must be a 0-homogeneous set P C S for f with
otp P = w.

Suppose first, that whenever P’ C P is infinite, there is an uncountable set
A C S such that for every z € A,

{ye P'| f{y <a}) = 0} = Ny, (3.61)

Let ¢ € S such that |[{y € P | f({y < zo}) = 0}| = Rg. Call this set Py. Let v < w;
and assume that x,, P, are defined for all u < v, such that

1. |P,\ P,| <R, forall p<p <v,and
2. P, C{ye P| f({y <z,}) =0} has order-type w, for all p < v.

Note that v < w; is countable, so fix an enumeration (4, | n < w) of v. Inductively
choose elements y,, such that for every n < w,

yne mpdi\{yow-wyn—l}-

i<n

Set P' = {y, | n < w}, which is then infinite and contained in P. Note that,
since otp S = wy, it must be that for every 2 € S, {y € S | y < z}| < N,. By
assumption there is an uncountable set A such that for every x € A, holds.
Therefore, we can pick

w,,EA\U{yES]ygycu}.

p<v

Set P, ={y € P'| f{y < x,}) = 0}, and since z, € A, otp P, = w. Also, note
that for any p < v, there is n < w such that p = ¢,, and then

[P\ Pul = [P\ Ps, | < [P\ s, | < Hyo, - g1} < Ro.

This concludes our definition of z, and P, for all v < w;.

Set X :={xs | § < wy}, which we note has order-type w; by construction. Again,
by the Dushnik-Miller Theorem, w; — (w,w;)?. There cannot be a homogeneous
set of order-type wi, therefore there are indices 79 < ... < 4,1 < w; such that

15Erdés and Rado calculate on [ER56, p. 474] that £ = 226 suffices.
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f 1 Hziy < ... <,_,}]* = 0. Note that for any j < m, |P,,_, \ P;,| < N, and
hence
Q={yeh, | (Vism-1)f({y <z;}) =0}

has order-type w. Then the set Q U {z;, < ... < z;,_,} is homogeneous for f and
has order-type w + m = «. This is a contradiction.

Therefore we now assume that there is P’ C P such that
{zeS: {ye P': f({y <a}) =0} =Ro}| < No. (3.62)

This means there is uncountable A C S such that for all x € A,

{y € P f({y <x}) = 0} <R (3.63)

As there are only countably many finite subsets of P’, there is an uncountable set
A" C Asuch that E = {y € P'| f({y < x}) = 0} is constant for all z € A". Set
P” = P\ E, which has order-type w. Again, there is uncountable A” C A’ such
that P” < A”. Note that so far we have proven that,

1.Vye Pliaec A, f{y<a}) =1,
2. P" is 0-homogeneous for f of order-type w,
3. A” is uncountable.

Since A” is uncountable, we can repeat the construction above, this time on A”
instead of S. This will give us sets P, such that for every n € w,

1. P, is homogeneous for f with colour 0 and order-type w,
2. Vye Pj,x € P,, f{y <z}) =1, whenever j <n < w.

By , there is for every n < w a countable set @),,, such that for every = €
S\ Qn, theset {y € P, | f({y < x}) = 0} is finite. Note that (J,_,, @n is countable,
and hence there is an uncountable set B € S\, ., @n such that |J,,_, P, < B. By
Dushnik-Miller, w; — (w;,w)?, and as we cannot have a homogeneous set of order-
type wy, there is a set D € [B]* homogeneous for f with colour 1. Since D C B, it
follows that for every n < w that the set

{ye P, | (3x € D)f({y < x}) =0} is finite.

Therefore we can pick y, € {y € P, | (Vz € D)f({y < «}) = 1}. Put Y = {y, |
n < w}, then Y U D is homogeneous for f and has order-type w + k. This gives a
contradiction with our assumption, and therefore w; — (w + k)3. O

Returning to the Erdds-Rado theorem, we obtain in particular the relation 3/ —
(w1)3. The classical result by Sierpirisky shows that reducing the resource to 3; will
produce a negative partition relation. Remarkably, this result shows that a direct
generalisation of Ramsey’s Theorem already fails at the first uncountable cardinal.

Theorem 3.47 (Sierpinsky, 1933).
280 £y ()3, (3.64)
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Proof. Fix a well-order <* on R and let < be the usual ordering. Define the colouring
f:[R?> = 2 by
{r<"yt—0 = z<uv.

Suppose there is a set H C R homogeneous for f with colour, say, 1. Then > is a
well-order on H, and for every h € H there is a rational g, between h and its >-
successor h'. This gives an injection of H into Q, and hence H is at most countable.
Therefore there is no uncountable homogeneous set for f. O]

The technique employed in Theorem where one considers distinct orders
on a set, is also used in Lemma As a consequence, Sierpinsky’s result can
be improved to all ordinals of cardinality J;. In particular, this shows that the
first instance of the Erdés-Rado Theorem cannot be strengthened by reducing the
resource.

Lemma 3.48. For all § < ()", 84 (w1)3.
Proof. Since wy,w} £ A and || = 2%, the result follows by Lemma [3.1] O

3.4.2 Erdos-Dushnik-Miller theorem

In 1941, one of the first partition relations concerning uncountable cardinals was
proven by Dushnik and Miller. They creditF_G] Paul Erdos for help with the proof,
and in particular for proving the case for when k is a singular cardinal. And thus,
the result is now known as the Erdés-Dushnik-Miller Theorem. In [ER56, Theorem
44], Erdés and Rado present a proof of this theorem, which we will omit. See [Jec03,
Theorem 9.7] for a proof.

Theorem 3.49 (Erdés-Dushnik-Miller Theorem, [DM41]). For all infinite cardinals
/{/7

K — (Rg, k)% (3.65)

Erdés and Rado proved a strengthening of the Erdds-Dushnik-Miller theorem
and were able to increase the order-type of the homogeneous sets from w to w + 1.
However, they were only able to prove this for uncountable regular cardinals.

Theorem 3.50 (Theorem 34). Let k be an uncountable reqular cardinal. Then
k— (w+1,k)% (3.66)

In Corollary We show that fails for all infinite cardinals with countable
cofinality. In [SS00|, Saharon Shelah and Lee J. Stanley show that it is consistent
for singular cardinals s with uncountable cofinality that £ — (w+1, )?. They claim
on [SS00, p. 259] that it is consistent for to fail for singular cardinals with
uncountable cofinality.

To prove Theorem we will need to establish some other results first.

Lemma 3.51 (Lemma 2). Let (T, <) be a well-ordered set and let f: [T]? — 2 be a
partition. Then there exists a unique set H C T such that H is 1-homogeneous for
f and for all x € T'\ H there is some h € H such that f({h < z})=0.

16See the footnote on [DM41, p. 606].
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Proof. We can assume T # (). Let x be a cardinal such that x > |T|. We define the
set H by induction on x. Suppose (hg | 8 < «) is already defined for some o < k.

Case 1. If there is x € T'\ {hg | < a} such that for all § < «, f({z,hs}) =1,
then set h, to be the <-least such z in T'\ {hg | § < a}.

Case 2. If for all x € T'\ {hs | B < a} there is f < « such that f({z,hs}) =0,
we set h, = hyg.

As |T| < k there is a least @ < k such that a > 0 and h, = hy. Define
H = {hs | B < a}. By construction, H is 1-homogeneous for f. Also, if v € T'\ H,
then by definition there is a least 8 < « such that f({hg,z}) = 0. Then, for all
v < 8, we have f({h,,z}) =1, and by definition of hg it must be that hg < .

To see that H is unique, let H" C T be a set that also satisfies the properties.
Assume z € T is the least element in the symmetric difference HAH’. Suppose
w.l.o.g. that x € H' (the case for ¢ H is analogous). Then by assumption there
exists y € H' such that f({y < x}) = 0. As z was the <-least, it must be that
y € H. But as H is 1-homogeneous for f, it follows that € H, contradicting that
x € HAH'. Therefore HAH' = (), showing H = H' and thus H is unique. ]

The following proposition will be pivotal to prove Theorem [3.50, although the
proof is rather technical. Recall that 8~ denotes the predecessor of 3, i.e. it is the
ordinal v where v+ 1 = [ if 8 is a successor ordinal, and = = § if § is a limit
ordinal.

Proposition 3.52 (Theorem 34). Let o, 8,7 be ordinals and suppose o + (3,7)2.
Then there ezists a sequence of ordinals (o, | p < B7), such that

a s (a,+1), 45, and (3.67)
ay # (7);7 (3'68)
for all p < =, where k, = HKM ||

Proof. Let (S,<) be an ordered set with otp(S,<) = « and let f: [S]> — 2 be a
colouring witnessing o 4 (8,7)?. Note that « is an ordinal, hence (S, <) is well-
ordered. Let p be an ordinal such that |p| > |a|. Fix 2 € S, we define a sequence
(’yfj | u < p) by transfinite recursion on p. Let u < p and suppose the sequence
(v | v < ) is already defined such that

1. v2 e S for all v < p, and

2. f({E <z})=0if v < pand v* # x.

We define v;; as follows. If v,; = x for some v < p, then we let 7;; = x. Otherwise,
v2 # x for all v < p, and in this case we define the set T' consisting precisely of the
elements y € S such that f({7* < y}) =0 for all ¥ < u. Note that by assumption
x € T, so T is non-empty. There exists a unique set H C T satisfying the properties
of Lemma [3.51] Then H C T is 1-homogeneous for f | [T]?, and hence also 1-
homogeneous for f. Since f witnesses a /4 (8,7)?, it holds that otp(H, <) < 7.
If x € H, then we set v, = x. If z ¢ H, then there exists some z € H such that
f({z < x}) = 0 and we set v to be the <-least such z € H. This completes the
definition of (v§ | 1 < p).

For every x € S, there is a <-least o(x) < p such that Vo) = T Otherwise,
the sequence (v;; | u < p) would be strictly increasing sequence in (S, <), where
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otp(S, <) = a < p, giving a contradiction. Therefore, for fixed x € S, we obtain a
set A= {7y} | u < o(z)}, which has order-type o(x)+1. The set A is 0-homogeneous
for f by construction, and since f witnesses @ 4 (3,7)?, we have o(z) +1 < 3. In
other words, o(z) < ™.

Define for every u < 7, M, = {7 | z € Sand o(x) > p}. Clearly, S =
Uu<p-M,, and we can define a partition g: S — 8~ by sending x € S to the least
p < B~ such that © € M,. Define v, = otp(M,,, <) for all u < 7, then g witnesses

a 7 (o + 1)) 5 . Hence we have shown (3.67).

Using Lemma we obtain a unique set H(S) which is 1-homogeneous for f
and for all x € S\ H(S) there is h € H(S) with f({h < z}) = 0. By construction
and the uniqueness of H(S), we obtain My C H(S). Therefore ay = otp My < ~
and since rg = 1 by definition, we obtain ag /4 (7)., -

Fix 0 < p < 7. We want to write M, as a union of “sufficiently small” sets. We
know z € M, if and only if there is x € S with o(z) > p and 7;; = z. In particular,
if z € M, there are y, € M, for all v < p such that v, = y,. This gives us

M, = U {vi |z € Sand o(z) > pand Vv < u(y, =y}
(yolv<well, <, My

Now, given some (y, | v < u) € [],., My, we will show that the set {v;; | o(z) >
pand Vv < pu(y* = v,)} has order-type strictly less than . To see this, consider
the set

T={yeS|f{y, <y})=0foralv<pu}

Let H C T be the set we obtain from Lemma If x € S is now such that
o(z) > pand v, =y, for all v < p, then v, € H, by definition of the v;;. Therefore

{7 |z € Sand o(x) > pand Vv < pu(y, =y,)} C H.

Finally, H is 1-homogeneous for f and therefore otp(H,<) < 7. Define x, =
[I,-, low|. Also, define the colouring h: M, — r, by sending y € M, to the <*-
least element (y, | v < p) € [[,., M, such that there are x € S with o(x) > p with
e =1y, for all v < p (here <* is some fixed well-order on &,). Then h witnesses
o, # (7)r . showing (3.68). This concludes the proof. O

K

We are now ready to prove Theorem |[3.50L

Proof of Theorem [3.50] Suppose # 4 (w + 1,x)2. Then by Proposition there

exists a sequence of ordinals («, | n < w) satisfying

k4 (o, + 1)L, and (3.69)

n<w?

O 7L> ("i)flim (370)

for all n < w, where k, = [],,_,, [am]-

We show a,, < k for all n < w. By definition ko = 1 is the cardinality of the
empty product. Thus immediately, oy < x by ag /4 (k)1. Let n > 1 and suppose
now that «,, < & for all m < n. Then

Kn = H || = max{|a;,|: m < n} < k.

m<n
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Then by (3.70) we have a,, # (k). , which immediately gives o, < r, because
kn < cf(K) = K.
Now, by (3.69)), there is a partition x = J,,_,, An, such that otp A, < a, for all

n < w. In particular,
K<Y ol <k,

n<w

because |a,| < k for all n < w and cf(k) > Rg. This is a contradiction and hence
we conclude k — (w+ 1, k). O

A straightforward modification of the proof above gives us the following result.

Theorem 3.53. Let k and v be infinite cardinals such that k* < k for all p < v.
Then Kt — (v +1,k7)%

Theorem should be compared to the result by Todorc¢evi¢ [Tod86, Theorem
2], in which he showed that for any cardinal x of uncountable cofinality, there is a
c.c.c. forcing which adds a witness to £ 4 (w + 2, k)2

We find another corollary of Proposition [3.52

Corollary 3.54. Let k be a (strongly) inaccessible cardinal.lﬂ Then for all f < K,
K — (B, k)% (3.71)

Proof. Suppose for the sake of contradiction that there is some ordinal f < x such
that k 4 (B, k)% Using Proposition we obtain a sequence of ordinals (o, |
p < B7) such that

K (o + 1), 5, and (3.72)
7> (K, (3.73)
for all p < 87, where x, =[], _, |-

We prove by induction that |a,| < x for all 4 < 8~. Suppose for some p < 5~
it holds for all v < p that |o,| < k. Define v = 3 _ |a,|, then v < k by the
regularity of 5. Then |r,| < v < 2vIH <k since k is a strong limit. By (B-73), we
can write |ay,| =3, |py| for ordinals p, <k for all v < k,,. Then, again by the
regularity of s, |ay,| < k. This concludes the proof by induction. Hence, |o,| < &
for all u < g—.

Now, by and the regularity of x, we obtain k =3 5 [a,| < k. This is
a contradiction. We therefore conclude that k — (3, k). O

Theorem 3.55 (Theorem 37). Let K be an infinite cardinal, and let v be the least
cardinal such that K > k. Let p be an ordinal such that k < cf X, <N, < K, then

N, 72 (T, R,)% (3.74)

Proof. As k" > k, we have by minimality of v that v < k. Define F' to be the set
of functions form v to k, then |F| = k”. Let < be the lexicographic ordering on x”.
Then kT, (v7)* £ otp(F, <) by [ER53, Lemma 2].

1"This means that x > Ng, & is regular, and for all cardinals ¥ < it holds that 2" < k. Of
course, if K = Ny, the result holds by Ramsey’s Theorem.
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Fix some X C F with |[X| = R,. Let f: X — w, be an injection, then f[X]
is unbounded in w,. Define S = {(z,a) | * € X and o < wy(y)}, and write
otp(S, <) = L, where < is the lexicographic ordering on S (w.r.t. the lexico-
graphic ordering < on X, and the usual ordering < on wy(;)). Then, on the one
hand,

1S = Ry <) N, S IX|-R,, =N,
reX reX
On the other hand, for all p < 8,,, there is some 7 < w, such that p < X.. As f[X]
is unbounded in w,, there is some x € X with f(z) > 7. Therefore p < Ny, <|S|.
Hence |L| = |S| = N,,.

Claim. w,,, (v")" £ L.

Proof of claim. First we show w,, &£ L. Let S; C S be arbitrary such that
otp(S1, <) is well-ordered. Define the projection X; = 7(S;) = {z € X | Ja <
wy(z, ) € 51}, then otp(Xy, <) is well-ordered. As k* £ otp(F, <), it holds that
otp(X1, <) < k7 and hence [X;| < k < cfR,. Therefore, > . |f(z)] < R, and
thus 8 = Ugex, f(x) < w,. Then

[S11 <) Ry € ) Re = X[ Ry <Ry,

zeX1 reXq

Since 57 was an arbitrary well-ordered subset of S, we conclude that w,,, £ L. Note
that L = otp(95, ).

It remains to show (v*)* £ L. For this, let Sy C S be an arbitrary subset such
that otp(Sy, <*) is well-ordered. Define Xy = 7(52) = {z € X | Ja < w,(z,a) €
Ss}, then otp(Xy, <*) is well-ordered. As (v7)* £ otp(F, <) and otp(Xz, <) <
otp(F, <), we obtain otp(Xs, <) < (v*)* and hence otp(Xs,, <*) < v*. In particular,
| Xs| <wv. For z € X, define N, = { < w,, | (z,5) € Sa}, then otp(N,, <) is well-
ordered. But, since otp(Ssz, <*) is well-ordered, it follows that otp(V,, >) is also
well-ordered. This can only happen if |N,| < Rg. Therefore

o] = Y INa| <[ Xa| - Ro < v

reXo

This gives otp(Ss, <) < (v1)*, and since Sy was arbitrary, we get (v*)* £ L. This
concludes the proof of the claim. [ |

Now we can apply Lemma since |L| = N, and using the claim we obtain
the result X, A (R,,,v1)2 O
Corollary 3.56. If o is an ordinal with Ry < cf Ry, < R, < 2% then

N, A (N, N, )2 (3.75)

Theorem 3.57 (Theorem 36). Let v be an ordinal, and let Lg be order-types for
all B <. Suppose ¢ is such that Lg < ¢ for all § <. Define L = ZB@ Lg. Then
L4 (v+1,0)%

Proof. Define f: [L]*> — 2 by {x,y} — 1if and only if {z,y} € [Lg]? for some 3 < ~.
If there is some H C L that is 0-homogeneous for f, then for all § < ~, it holds
that |[H N Lg| < 1 and hence otp H < 7+ 1. Suppose, on the other hand, H is
1-homogeneous for f. Then there is a unique 8 < 7 such that [H]* C [Lg]?, which
implies otp H < ¢. m

56



Chapter 3.4

Corollary 3.58. Let k be an infinite cardinal, then k /4 (cf k + 1, k)%

Proof. By definition of cofinality, there is a sequence (kg | f < cf k) of ordinals
below & and k=3 ;_ . 3. Then apply Theorem w O

As cf R, = w, this immediately yields the following partition relation.
Corollary 3.59. N, /4 (w+ 1,8,)2.

Theorem 3.60 (Theorem 38). Let v be an ordinal and r < w. Let m be some
cardinal and let ag be ordinals for all B < m. If R, & (lagl) ey, then wyp1 #

(as+ )55,

Proof. Let § < w41, then |[§] <N,. Then by the assumption [§| / (Jagsl|)j.,,, and
hence 0 / (ap)j,,- Then using Lemma we obtain the desired result. O
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Sharpness of Positive Stepping Up
Lemma

In this chapter, we investigate some results from [Erd+84]. This compendium writ-
ten by Erdds, Hajnal, Maté, and Rado, is about cardinal-based partition relations.
Of course, as remarked before, cardinals are very specific order-types, and we want
to generalise these results by placing them in the context of order-types.

Of particular importance is the “Negative Stepping Up Lemma” in [Erd+84,
Theorem 24.1]. We will adjust its proof and prove the implication £ /4 (w*)! =
2% A (w*)rFl. This in turn will provide us with the relation 3} 4 (w?)57.
We relate this result to an instance of the Positive Stepping Up Lemma, 3t —
(w—+n+1)r,, and conjecture that this partition relation is sharp.

4.1 Some results in the context of order-types

We will study some results from |[Erd+84), Chapter 5], and we place these results in
the context of order-types.

Definition 4.1 (Discrepancy). Let a be an ordinal and let f and g be distinct
functions from a to m, where m is some arbitrary set. Then the discrepancy §(f, g)
is defined to be

6(f,9) =min{¢ € o | f(£) # 9(&)}-

Observation 4.2. If f g, h are pairwise distinct functions from o to m, then

6(f,g) < (g, h) implies 6(f,g) = 6(f, h).

Definition 4.3 (Cartesian product). Let a be an ordinal and assume that we have a
linearly ordered set (A,, <) for every v < a. Define the lexicographical ordering <
on HKQ A, with respect to the orderings <,. That is, for distinct f,g € HKQ A,
we let f < ¢ if and only if f(£) <¢ g(§), where £ = 6(f, g).

Similarly, given order-types L, = otp(A,,<,) for all v < a, we can define
L =][,., Ly as the order-type of ([], ., 4,, <)
Observation 4.4. Let (A,,<,) be ordered sets and let < be the lexicographic
ordering on the Cartesian product A = H7 <o Ay. Suppose f,g,h € A are such that

f=<g=<h Iti(f,g) <d(g,h), then 6(f,g) = d(f,h).
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Theorem 4.5 (Theorem 19.3, [Erd+84)). Given an ordinal o > 0 and order-types
L., for every v < a.. Let < be the lexicographical ordering of the Cartesian product
L= Hv<a L. Suppose that k is a reqular cardinal, and suppose that there exists a
subset B C L such that |B| = k and < well-orders B.

Then there exists a strictly <-increasing sequence (fg | f < k) in B, and there
exists a non-decreasing sequence ({5 | f < K) of ordinals less than o with the addi-
tional property that

0(fus f0) = &4 (4.1)

whenever p < v < K.
An analogous result holds if we replace < by the reverse lexicographic ordering >.

Proof. We may assume that otp(B, <) = k. We construct by transfinite recursion
on kK a sequence (B, | ¥ < k) of non-empty final segments of B. Define By = B.
Suppose for some 0 < v < kK we have defined non-empty final segments B,, of B for
all < v such that for n < p <wv, we have B 2 B, 2 B,,. Then let B, =(,_, B,.
Then B/ is a final segment of B, and by the regularity of |B|, we have that B/ is
non-empty. Now, let f, = min_{f € B | f € B/} and define £, = min{é(f,, f) |
feB,\{f,}}. Then define B, ={f € B,\{f.} | 0(f, f,) =&} Note B, C B,,.

Clearly, B, is non-empty. To see that B, is a final segment of B, let f € B, and
let g € B be such that f < g. Then as f € B], and B, is a final segment of B, we
have g € B!/,. Then f, < f < g. If it were the case that §(f,g) <&, = §(f,, f), then
by Observation[d.2] we have 8(g, f,) < &,. As g € B.,, this gives a contradiction with
the minimality of &,. Therefore 0(f,, f) < §(f,g), and hence by Observation we
obtain §(f,,g) = &,. This gives g € B,, and hence B, is a final segment of B. This
concludes the definition of (B, | v < k).

By construction, we see that (f, | v < k) is a strictly <-increasing sequence.
Also, given yi < v < k, we have f, € B, and hence 6(f,, f,) = &,, showing (4.1).
Finally, to see (§, | ¥ < k) is non-decreasing, let n < p < v < k. Then ¢, =

5(f77>f#):6(fflafu) S(S(fwfl/>:§u- ]

Definition 4.6. Given order-types L, M, N, R, we say that L establishes the relation

M # (N,R)? if [L| = |[M| and N,R* £ L. Note that Lemma [3.1] shows that this
definition is well-defined.

Theorem 4.7 (Theorem 19.6, [Exd+84]). Let o > 0 be an ordinal and let L., M.,, N,
and R, be order-types for all v < « such that L. establishes the relation M, #
(N,, R,)?. Put M =1],., M, as in Definition . Let p and o reqular cardinals
and assume

<o

p— (), and (4.2)

y<ar
o — (R’Y)'ly<o¢'

Then there is an order-type establishing the relation

M (p,0)" (4.4)

Proof. Let L = (Hw <a Ly, <), where < is the lexicographical ordering. Then, as
|L,| = |M,| for all v < «, clearly |L| = |M|. We will show that L is the order-type
establishing the relation (4.4]).

29



Chapter 4.2

Suppose for the sake of contradiction that p = (B, <) where (B, <) C L is a
subordering. As |B| = p is regular and < well-orders B, we have by Theorem a
strictly <-increasing sequence (fz | 8 < p) in B, and there exists a non-decreasing
sequence (€5 | f < p) of ordinals less than « such that holds.

Define the partition g: p — a by g(v) = ¢ if and only if &, = ¢. By (4.2)), there
exists some set x, C p such that x, = N, and ¢ | x, is constant. This means for
all n, A € x4 that §(f,, fn) = (, for some fixed (. As the sequence (f, | n € x,) is
strictly increasing in the lexicographical ordering, the sequence (f,, () | n € x,) is
strictly increasing in L.. However, we assumed that x, = N, £ L., which gives us
a contradiction. Hence p £ L.

The case for ¢ £ L is analogous. Hence we conclude that the order-type L
establishes the relation M 4 (p, o). O

Theorem 4.8 (Theorem 21.1, [Erd+84]). Let v be a cardinal and let ag, e, T, py
be ordinals for all € < 7 and all v < 7. Assume

ag 7 (Bew)ie,, and (4.5)
T4 (p)ies 46

For all v <, put

o, = sup{ otp (ZQ) +1|Y CTAotpY < p, AVE<T[Ce < Ben]}.  (4.7)
gey

Then

Y oac A (o) (4.8)

&<t

(Note that T is an ordinal, and hence any subset Y C 7 is isomorphic to an ordinal.
Using that all B¢, are also ordinals, we have for any sequence ((¢ | £ € Y) with
Ce < fBey that (dey Ce) + 1 is isomorphic to an ordinal and hence there ezists a
supremum, i.e., o, is well-defined.)

Proof. For every £ < 7 there is a partition f¢: [og]? — v witnessing (4.5)). Similarly,
there is a partition f: [7]> — 7 witnessing (4.6). We can assume without loss of
generality that all a¢ are pairwise disjoint. Define the partition f': [}, _, e = v
by f'({z,y}) = fe({z,y}) if x,y € a¢ for some unique £ < 7 and let f'({z,y}) =

F({& n}) if © € ag and y € a,, where § # 1.
Suppose that H C > . ag is v-homogeneous for f* for some v < 5. Then, by

definition of f’, we have for every ¢ < 7 that the set H N« is homogeneous for f;.
As fe witnesses (4.5)), it must be that otp H N < f¢,. Similarly, the set

Y ={¢<7|HnNae#0}

is homogeneous for f. Therefore Y < p, by (4.6). By definition of o, it follows that
o, £ otp H. As H was an arbitrary homogeneous set for f’, we conclude that are
no homogeneous sets for f’ into which o, embeds, and this concludes the proof. [
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4.2 A curious pattern emerges

In this section we return to the question whether one corollary of the Positive Step-
ping Up Lemma, namely Theorem [3.39] is sharp. In Corollary we had already
shown that 33 4 (w+2)3. After investigating the consequences of a result by Albin
Jones, and combining it with an earlier result of Erdés-Rado, we observe that the
pattern continues for at least one more relation, i.e. 37 /4 (w + 3)4.

Theorem 4.9 (Albin L. Jones (2000), [Jon00|, Theorem 2). Let L be an order-type
and let k be an infinite cardinal. If L / (w)ix, then L 4 (k + 2,w)?.

Proof. Let e: L — 2" be a witness of L /4 (w)3.. As w is regular, it follows for every
B € [L]” there is C' € [B]* such that e | C' is injective.

We view 2% as the set of functions from x to 2. Recall that, given s,t € 2%,
we define the discrepancy 0(s,t) as the least £ < k such that s(§) # t(§), if it
exists, and let 6(s,t) = x otherwise. Define the partition f: [L]> — x + 1 by

{z,y} = d(e(x),e(y))-

Define the partition of triples g: [L]*> — 2 by

[ 0 if eis injective on {z,y, 2z} and f({z,y}) < f({y, 2}), and
gz <y <z} = { 1 if e is not injective on {z,y, z} or f({z,y}) > f({y, z}).

We show that g is the partition which proves L /4 (k + 2,w)?.

Claim. There is no 0-homogeneous H C L for g with otp H = k + 2.

Proof of claim. Suppose for the sake of contradiction that such H = {h, | v <
Kk + 2} exists. We observe immediately that e [ H is injective. In particular,
e(hy) # e(hyt1) and hence d(e(hy), e(hey1)) = € < k. For any p < v < k we have

f{Pu, h}) < f({hw, hi}), and by Observation .2 f({h,, he}) = f({hu, h}) <
f({hv,hy}). Note that f({hy, he}) < f({h, het1}) = § < k. Hence, the sequence
(f({hu, he}) | 1 < k) is a strictly increasing sequence of ordinals below ¢ which has
length k, which gives a contradiction. ]

Claim. There is no 1-homogeneous H C L for g with otp H = w.

Proof of claim. Again, for the sake of contradiction assume such H € [L]¥ exists.
By the remark above there is B € [H]¥ such that e | B is injective. Consider the
colouring h: [B]® — 2 by

[0 it f{my)) > f({y. 2}, and
Mz <y <z} = { 1 f({z.w)) = F({y 2)).

By definition of g and since B is 1-homogeneous for g, the colouring h is well-defined.
Now, by Ramsey’s Theorem, w — (w, 4)®. Hence, either

(a) there is C' € [B]* such that h | [C]> =0, or
(b) there is D € [B]* such that h | [D]* = 1.
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If (a) holds, then (f({cn,cni1}) | n € w), where C' = {cy < ¢; < ...}, is a strictly
decreasing sequence of ordinals of length w, which is a contradiction. Alternatively,
if (b) holds and such D = {z < y < z < w} exists, then f({z,y}) = f{y,2}) =
f({x, z}). This gives us three pairwise distinct functions e(x),e(y),e(z) € 2 such
that they are pairwise different at some point & < k, which is not possible since
these functions map to 2. Hence we reach a contradiction. [ |

This shows that there cannot be homogeneous set for g of the appropriate order-
type, and this concludes the proof. O]

Corollary 4.10. Let o be an ordinal such that o < (28%0)T, then
a A (w+2,w) (4.9)

Proof. As a < (2%)T we have |a| < 2% and we can define the colouring f: [a]' —
a: {8} — [, which witnesses o 4 (w)!. Then o /4 (w)l,, , hence the result follows

2N07

by Theorem 4.9 O

This result gives, in particular, the negative partition relation 2% 4 (w+2,w)3,
which improves Corollary [3.44]

Theorem 4.11.
I A (w+3,w+1)% (4.10)

Proof. By Corollary we have for every ordinal o < (2%)* the negative relation
a # (w+ 2,w)?. Then Lemma [3.36] gives us the desired result. O

The theorem above demonstrates that the goal of the relation (2%0)" — (w +2)7
from Corollary cannot be increased.

A pattern of partition relations seems to emerge, showing the sharpness of the
positive partition relations of Theorem |3.39] Here r and k are natural numbers.

L35 = (w+ 1)
2. 35 A (w+2)3
3.3 = (w+2).
4. 3F A (w+3);
5 35 — (w+3)

Of course, the Positive Stepping Up Lemma guarantees that the pattern continues
for the positive partition relations. In general, the relation 3% — (w +n + 1)} is
true by Theorem [3.39] However, it is not clear whether all such positive partition
relations are sharp, i.e., whether increasing the goal results in a negative partition
relation.

It is natural to conjecture that this pattern continues, and hence we propose that
the following partition relation is negative.

Conjecture 4.12. For alln < w,

35 A (w+n+2)57. (4.11)
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Note that we have already shown that this conjecture holds for both n = 0 and
n=1.

Before we move on to the next section and provide a bound for the conjec-
ture, we want to make a few notes about the exponent of the partition relation in
Conjecture If we compare to the Erdos-Rado Theorem, which gives
3" — (N)™L we see that the partition relation is positive with exponent n + 1,
even with Ny as goal. However, what happens if we decrease the exponent in ({4.11))
to n + 2? In other words, why don’t we conjecture 3+ 4 (w + n + 2)572? In this
case we also have a conclusive answer. Starting with a corollary of the Baumgartner
Hajnal Theorem, we have the positive partition relation 35 — ()3, where v < wj.
Applying the Positive Stepping Up Lemma iteratively, we obtain for all n < w,
JF — (y)5*% This result shows that the exponent in Conjecture cannot be
decreased, unless the partition relation becomes positive.

As a final side note, the goal in the relation 37 — ()3 cannot be increased to
wy + 1: immediate from Lemma and Lemma the following result is true.

(Alternatively, it follows from Theorem and Theorem [3.60])

Lemma 4.13.

35 A (w +1)° (4.12)

4.3 Negative Stepping Up Results
Our main goal in this section is studying the implication

kAN = 2" A () (4.13)
In the case that x and A\ are infinite cardinals and r > 4, this implication is true
and the result is known as the “Negative Stepping Up Lemma” E]

Ideally, we would be able to prove k 4 (a)i! = 25 4 (a+ 1), in the
case where k is a cardinal and « is any infinite ordinal. This would immediately
solve Conjecture [£.12] Unfortunately, we have not been successful in proving this
implication for arbitrary infinite ordinals. We have, however, been able to adjust
the proof of the Negative Stepping Up Lemma and prove the implication in the case
that « is an additively indecomposable ordinal. This novel result provides a bound

to Conjecture [4.12 We thank Luke Gardiner for his help with this result.

Throughout we will fix a well-order <* on 2%, where 2" is viewed as the set
of functions from s to 2. We will denote by < the lexicographic order on 2% ]
The main idea is that if there are <*-increasing sequences in 2", then we can find
sufficiently large <-increasing sequences of their discrepancies. If that is the case,
then if (I, | n < m) is a partition of [k]"~! witnessing x 4 (A)"!, there exists a

partition (J, | n < m) of [2¥]" such that if A < otp J,,, then A < otp I,,. Hence this
partition of [27]" witnesses 2" A ()"

m*

1See [Erd+84, Section 24].
2Recall that the lexicographical order on 2% is defined as f < g if and only if f(&) < g(¢&), where

§=min{n <k | f(n) #gn)}
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Now, we will need a bunch of definitions. As said before, the goal is to find
subsets of 2% on which the well-order <* and lexicographic order < agree. Given a
sequence xg <" x; <* ... <* x,_q1 of 2% put

n(zo <" a1 <" oo < o) = (o, 1), (@1, 2),s - - (T2, Ty ), (4.14)

where n(z,y) = 0if x <*y <= x <y, and n(x,y) = 1 otherwise.
Let 1 <s<r—1and kg, ki,...,ke_1 € 2, define
K(ko, ki, ... ks—1) ={u € [27]" | n(u) | s = (ko, k1, ..., ks—1)}. (4.15)

In particular, if s = r — 1, then we put for i = 0, 1,
K, = K(i,i,...,i), (4.16)
and also
K=KyUKj. (4.17)
We also want to extend Definition 4.1}, so we define
Mzo, @1,y ..oy Tpo1) = (0(mo, 1), 0(21, 22), ..., 0(Tp_g, Tr_1)). (4.18)

For distinct ordinals dg, 01, define ((dg, 1) = 0 if dg < 07 and let ((dp, 1) = 1 if
do > 01. Similarly, for a tuple of distinct ordinals such that §; # 0,1 we define

¢(80, 01, -, 6r—2) = (C(00, 1), C(01,82), - - -, {(Jr—3, 0r—2)). (4.19)
Finally, for 1 < s <r —2, and ko, ky,...,ks_1 € 2, we define
P(ko, k1, ... ks—1) ={ue K|((d(u) [ s=(ko, ki, ., ks—1)} (4.20)
and also for s =r —2 and i = 0,1 we put
P, = P(i,i,...,1), (4.21)
and
P=PFUP. (4.22)

Lemma 4.14 (Lemma 23.12, [Erd+84]). Let r > 3, let k be a cardinal and let o be
an ordinal. Let I C [k]"™' and put

I"={ue Py du) eI} (4.23)

Assume that [H]" C I* for some ) ## H C 2" where by assumption otp(H, <*) = «.
Then there is X C k with otp(X, <) = a~ such that [X]"* C I.
Here a™ is the ordinal B such that 5+ 1 = «, if it exists, and is o otherwise.

Proof. We may assume that |[H| > r and write H = {h, | v < a} where a =
otp(H, <*). (Recall that <* is a fixed well-order on 2%). For ordinals 7 such that
v+ 1< awelet

0y = 0(hy, hyta),
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where the function ¢ is defined in Definition 1.1l Set
X={d[v+1<al.

First we show that otp(X, <) = a~. It obviously suffices to show for all v <
7 < «a~ that §, < d,. By the assumption [H|" C I* C P, it follows that

C((S({hw By, hv’}» = C((S(h'w hvﬂ)v 5(h'y+1> h'y/)) = 0.

Also

C(é({hw—h hv’v h'y’+1}>> = C(é(hfw—l: hw’)a 5(h7’7 hw’+1)) =0.

In other words, d, < 0(hy41,h,) < 0,. Note that we assumed v+ 1 < «/, because
if v+ 1 =14/, we could just leave out the term §(h.+1, h,). In particular, we obtain
d, < 0./, showing that otp(X, <) = a™.

It remains to show that [X]"™! C I. Given & < ... < &9 < a~, we want to
show {0g, < ... < ,} € I. Let 0 < ¢ < r — 2 and suppose that § + 1 < &41.
As [H]" C Py, we have d(he,, he;41) < 0(hei41, he,,,) and hence by Observation
5(h5“ hfi—&-l) = (S(hgi, h§i+l)’ If 51—1—1 = £i+17 then (5(}1&, h&—i—l) = 5(h5“ th_l) obviously
holds as well. Now, writing &,_1 = &,_o + 1, we obtain

{6&' | L <r—= 1} = {6(h§i7hfi+1> | <= 1}
= {(S(hfz? h§i+1) | 1 <r— 1}

— 3({he, |§ < 1})
As {he, | i <7} € [H]" C I*, we have by definition of I* that {0, | i <7 —1} € I.
This gives us [X]|"~! C I, which is what we wanted to show. O

Lemma 4.15. Let o be any ordinal, and suppose (X, <) is an ordered set such that
otp(X, <) = w®. Then for any non-empty final segment (Y, <) of (X, <) , it holds
that otp(Y, <) = w*.

Proof. First, we prove by transfinite induction on « that every power of w is addi-
tively indecomposable. That is, if 8,7 < w®, then 8+ v < w®.

If &« =0, then w* = w® = 1. Clearly, 0 +0 < 1.

If « =6+ 1, then w® = Wt = w®-w. For 3,7 < w®, there is some n < w such
that 3,7y < w’-n. Then B+y<w’ n+w’ - n=w’ - (n+n)<w w=uw"

If o is a limit ordinal, then for £,y < w® there is some o/ < « such that
B,7 < w®. In that case, S+ v < w® +w® =w® -2 < w® - w=w*t" < w* This
concludes the proof by induction.

Now, we let (Y, <) be a non-empty final segment of (X, <). Suppose it were the
case that otp(Y, <) < w®. Then there are 3,7 < w® with otp(X \ Y, <) = § and
otp(Y,<) = =, but f+ v = w® This is a contradiction, because w® is additively
indecomposable. Therefore we conclude that otp(Y, <) = w®. O

Lemma 4.16 (Lemma 23.5, [Erd+84]). Let x be an infinite cardinal, let X C
2% and assume otp(X, <*) = w®, where a > 0 is any ordinal. Assume that (i)
(X]"NK(0,1) = @ or (i) [X]" N K(1,0) = &. Then there is a set Y C X with
otp(Y, <*) = w* such that [Y]" C Ky or [Y]" C K;.
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Proof. Assume for the sake of contradiction that no such Y exists. We first prove a
claim

Claim. There are elements vy <* x1 <* xo <* x3 such that xqg < 11 = T9 < 3.

Proof of claim. For every x € X there are y, z € X and ¢/, 2’ € X such that

r<'y<*zandy < z, (4.24)
<"y < Zandy = 2. (4.25)

Suppose not and let € X be a counterexample, then define the set Y = {2’ €
X | ¢ <* 2’} Clearly, (Y,<*) is a non-empty final segment of (X, <*) and by
Lemma we obtain otp(Y, <*) = w®. As Y is contained in either Ky or K, we
obtain a contradiction.

Now let xp,21 € X with ¢ <* 2z; and 2y < 2;. Then let y;, 2o € X with
21 <y <* zo with y; = z5. Define x; = max_-{y1, 21}, then zo <* x; and z¢ < z;.
Also, 21 > 23.

Pick yo, x5 € X with 2o <* yo <* 23 and yo < x3. Let x9 = min{ys, 20}. Then
r1 <* 19 and x1 > x2. Also, x9 < x3. This proves the claim [ |

Finally, {zo,z1,22,...} € [X]"NK(0,1) and {z1,29,23,...} € [X]" N K(1,0),
contradicting (i) or (ii), respectively. Hence such Y exists. O

Lemma 4.17 (Lemma 23.9, [Erd+84]). Let r > 4, let k be an infinite cardinal, let
X C 2% and let o« > 0 be any ordinal such that otp(X, <*) = w®. Suppose [X|" C K,
or [X|" C Ky. Assume (i) [X|"NP(0,1) = & or (i) [X|"NP(1,0) = &. Then there
exists Y C X with otp(Y, <*) = w® such that [Y]" C F.

Proof. We first prove a claim.

Claim. Suppose xo <* x1 <* ... <* x4_1 are such that

€0, 051) # C(Gi1, Giv2), (4.26)
foralli <s—4. Then s < 4.

Proof of claim. Suppose s > 5 and xy <* x; <" xy <* w3 <* x4 constitutes a
counterexample. If ((dg,d1) < ((01,02) > ((d2,03), then 6y < 07 > do < d3. Then
{xg, T1, 22, 73,...} € [X]"NP(0,1) or {x1, 29,23, 24,...} € [X]"N P(1,0), giving a
contradiction with (i) or (ii), respectively.

Similarly, if C(50,51) > C(51,52) < C((SQ,(SQ,), we get 50 > (51 < 52 > 53. In this
case {zg, 1, %2, 23,...} € [X]"N P(1,0) or {z1,x9,x3,24,...} € [X]"N P(0,1), also
giving a contradiction with (ii) or (i), respectively. [ |

Now let such s < 4 be maximal (note s > 3 always holds) and define = = z,_3,
Yy =xs o and z = z,_1. Note that since [X]|" C Ky or [X]" C K;, we havez <y < z
or z >y > z. This gives 6(z,y) # 0(y, z), hence either (a) o(z,y) > d(y, z) or (b)
d(z,y) < d(y, z). Then by maximality of s, for all z <* z; <* 21, either

(a) not 0(z,y) > 0(y, z0) < 0(20,21), Or (4.27)
(b) not d(x,y) < d(y, 20) > (20, 21)- (4.28)
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We show case (a) is impossible. For suppose otherwise, then for all zg € X with
z <* zp we have

Iy, z) > 0(z, 20) = 0(y, 20)-
Therefore, §(z,y) > d(y, 20). Continuing, we obtain by (a) for all z; € X with
2o <* z that 0(y, z0) > (20, 21) = 0(y, 21)-
Picking an <*-increasing sequence (z, | n < w) gives us

0(y,20) > 6y, 21) > 6(y,22) > ...,

which is an infinitely decreasing sequence of ordinals, and hence gives us a contra-
diction.

So, assume (b) holds. Let zg,21,22 € X be arbitrary such that z <* z, <*
21 <* z5. Then firstly, 6(z,y) < d(y, 2) < d(2, 20), hence d(z,y) < I(y, 20) = I(y, 2).
As §(z,y) < d(y, 20), it must be by (b) that d(x,y) < 0(y,20) < 0(20,21). Then
d(z,20) = d(z,y) and so §(z, z9) < 6(z0,21). Therefore, in view of the maximality
of s,

(5(20, Zl) < 5(21, Zg).

Define Y = {2/ € X | z <* 2’}, then we showed that [Y]" C F. Also, (Y, <*)
is a non-empty final segment of (X, <*), and hence by Lemma it holds that
otp(Y, <*) = w®. This concludes the proof. O

We are now ready to prove the Negative Stepping Up Lemma where the goal is
an additively indecomposable ordinal.

Theorem 4.18 (Negative Stepping Up Lemma, [Erd+84]). Suppose r > 3 and m
1s any cardinal. Let o > 0 be any ordinal and suppose thatl k is an infinite cardinal.
Assume k4 (w*)". Then 2F 4 (w®)" 1,

Proof. Let [k]" =, <, In be the partition witnessing [x]" /4 (w®);,.
Define a partition [2°]"** = J,_,. Jn as follows. For n > 2, we let J, = I},
where I is defined as in Lemma [4.14] and

Jy = K(0,1)U P(0,1) U I},

and
<]0 — [2/{]7"4-1 \ Jl‘

Note that J, N Py = I for all n < m.

Suppose there is X C 2% is such that otp(X, <*) = w* and [X]|™! C Jy. Then
(XN K(0,1) = @, hence by Lemma [4.16] there is some Y C X with otp(Y, <*) =
w* and [Y]*! C K, or [Y]"*' C K;. By Lemma [4.17 there is Z C Y with
otp(Z, <*) = w® and [Z]"*! C Fy. But this means [Z]"*! C I3. Using Lemma [4.14]
we find a homogeneous set of order-type w® in Iy, which is a contradiction.

Similarly, suppose X C 2 such that otp(X, <*) = w® and [X]"*! C J;. Then
[(X]*1 € KU K(0,1), and thus [X]™*' N K(1,0) = @. This gives by Lemma [4.16]
some Y C X with [Y]"*' C Ky or [Y]"™ C K; and otp(Y,<*) = w® Then
[Y]+' C P(0,1) U Py, hence [Y]"*' N P(1,0) = @. Thus by Lemma there is
Z CY with [Z]"*! C Py and otp(Z, <*) = w®. Therefore [Z]"*! C I} and so we find
a homogeneous set of order-type w® in I, a contradiction.

If there is some X C 2" with otp(X, <*) = w® and [X]|"™! C J, = [ for n > 2,
then immediately by Lemma there is a homogeneous set of order-type w® in I,,,
which is a contradiction. We conclude 2% 4 (w®)7 1. O
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Finally, we are able to establish a limitative result for Conjecture

Corollary 4.19. For alln < w,
Tu A (W)™ (4.29)

Proof. We prove this by induction on n, we can skip n = 0 as this case is trivially
negative. For n = 1 we obtain by Corollary [4.10]the negative relation J; /4 (w-+2)3.
Hence J; /4 (w?)3.

For the inductive step, supposing we have 3,, /4 (w?)52, we apply Theorem m
to obtain 3,1 /4 (w?)5H>*1 O

In particular, from Corollary we can deduce the following theorem.

Theorem 4.20. For alln < w,

A W (4.30)

This gives a bound to Conjecture [4.12

Future work could be directed towards investigating Conjecture which
states that increasing the goal in the relation 3" — (w + n + 1) results in a
negative partition relation. It is unknown where the threshold is, but we know that
if v, is the least ordinal such that 3% 4 ()™, then w +n + 2 < «,, < w?.

We suspect that the bound w? can be decreased. In particular, if the conjecture

were proven to be true, then we would have a uniform bound of w - 2, i.e., for all
n<w, 3 A (w-2)"F3.
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