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Abstract

The seminal paper “A partition calculus in set theory” by Paul Erdős and
Richard Rado is notoriously hard to read and contains many interesting results
hidden behind outdated notation. This thesis therefore aims at a modernisation of
the contents of the paper, in order to make the paper more accessible. This entails
rewriting theorems and their proofs using modern mathematical notation. Of partic-
ular interest is a key result from the paper, the Positive Stepping Up Lemma, and we
conjecture that one instance of the lemma, the partition relation i+

n → (ω+n+1)rm,
cannot be improved.

We also adjust the proof of the Negative Stepping Up Lemma in order to prove
the implication κ 6→ (ωα)rm =⇒ 2κ 6→ (ωα)r+1

m , where κ is an infinite cardinal, α is
an ordinal and r,m < ω. We deduce the negative partition relations i+

n 6→ (ω2)n+3
2

for all n < ω, providing a bound to the conjecture.
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Chapter 1

Introduction

In 1930, Frank Ramsey proved in the paper [Ram30] a theorem which is now known
as Ramsey’s Theorem: colouring r-tuples of an infinite set by finitely many colours
always yields an infinite subset such that its r-tuples receive the same colour. The
discovery of this theorem initiated the mathematical field of infinite Ramsey theory,
concerning itself with finding generalisations to Ramsey’s Theorem. In essence,
Ramsey theory shows that “complete disorder is impossible”.

The seminal paper “A partition calculus in set theory” [ER56] by Paul Erdős
and Richard Rado, published in 1956, was the first systematic study of the partition
calculus, a subfield of Ramsey theory. This field is concerned with proving partition
relations. In the paper, they proved a key result, called the “Positive Stepping
Up Lemma”, which is a direct generalisation of Ramsey’s theorem. The paper’s
success and impact on the mathematical community was also partly due to the
arrow notation invented by Erdős and Rado, which allows one to succinctly write
down partition relations. As András Hajnal said in [HL10, p. 130]: “There are
cases in mathematical history when a well-chosen notation can enormously enhance
the development of a branch of mathematics and a case in point is the ordinary
partition symbol.”

In this thesis, we will modernise the paper [ER56] by Erdős and Rado. The
paper contains many positive and negative results in the field of partition calculus.
However, it is hard to locate results in the paper as the mathematical notation is
outdated. We will therefore rewrite the theorems and their proofs using modern
mathematical language, in order to enhance the accessibility of the paper. We do
not treat the whole paper and we omit the final two sections, concerning canonical
partition relations and polarised partition relations. We also omit section 3 of the
paper, concerning Theorem 1 to Theorem 10, as these are results that were known
before the publication of [ER56]. In the Overview (Section 1.2), one can precisely
see which results of [ER56] will be presented in the thesis.

1.1 Structure of the thesis

In Chapter 2, we establish some basic properties regarding partition relations.
These properties will often be called upon in this thesis, in order to prove partition
relations. The material presented there corresponds to Theorem 11 to Theorem 20
of [ER56].

In Chapter 3, we treat the bulk of [ER56]: Theorem 23 to Theorem 45. Of
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Chapter 1.2

particular interest is the Positive Stepping Up Lemma, which states

κ→ (βn)rn<m =⇒ (2<κ)+ → (βn + 1)r+1
n<m.

Starting with Ramsey’s Theorem, ℵ0 → (ω)rm, we obtain i+
n → (ω + n + 1)rm after

applying the Positive Stepping Up Lemma multiple times. We conjecture that this
relation is sharp, i.e., increasing the goal to ω + n + 2 will result in a negative
partition relation. In [ER56], this is shown for n = 0, and a corollary of a result by
Albin Jones combined with a theorem by Erdős-Rado shows this for n = 1.

In Chapter 4, we investigate some results of [Erd+84]. These results are all
cardinal-based partition relations, and we adjust the proofs to prove their order-type
variants. We investigate the proof of the Negative Stepping Up Lemma in [Erd+84]
and improve the result from cardinals to all additively indecomposable ordinals.
In other words, we prove the implication κ 6→ (ωα)rm =⇒ 2κ 6→ (ωα)r+1

m . As a
consequence we obtain the negative partition relations i+

n 6→ (ω2)n+3
2 for all n < ω.

This result provides a bound to the conjecture for all n ≥ 2.

1.2 Overview

We will present an overview of the results in [ER56] according to the following
template.

Location in [ER56] Location in thesis

The modernised statement of the result.

We mention again that this overview is not an exhaustive list of the Erdős-Rado
paper. The final two sections of the original paper, concerning canonical partition
relations and polarised partition relations, are not presented here. These final two
sections entail Theorem 46 to Theorem 51, or alternatively, [ER56, pp. 477-488].

At the beginning of the paper, Erdős and Rado list some classical results that
were known before the publication of [ER56], e.g., Ramsey’s Theorem. These are
Theorem 1 to Theorem 10, and we do not present these in this overview. These
results correspond to [ER56, pp. 431-433].

The remaining results of [ER56] are in this overview. These are Theorem 11 to
Theorem 45, or alternatively, [ER56, pp. 433-477].

Theorem 11 Lemma 2.21

Given order-types L,M , and r < ω and m any cardinal, then the
following statements are equivalent:

L→ (M)rm,

L∗ → (M∗)rm.
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Chapter 1.2

Theorem 12 Observation 2.4 & Remark 2.13

Monotonicity of the partition relation: Given a relation κ→ (µn)rn<m,
and κ ≤ κ′, m′ ≤ m, µ′n ≤ µn and µn ≥ r for all n < m. Then
κ′ → (µ′n)rn<m′ .

Theorems 13 & 14 Lemma 2.24

Let r < ω and let k be any cardinal. Let α be an ordinal and
suppose that βn are initial ordinals for all n < k. Then the following
statements are equivalent:

α→ (βn)rn<k,

|α| → (|βn|)rn<k.

Theorem 15 Lemma 2.22

Let L,M be order-types, r < ω and k any cardinal. If L + 1 →
(M + 1)r+1

k , then L→ (M)rk.

Theorem 16 Lemma 2.27

Let r,m, kn < ω for all n < m, let L,Mn, Nni be order-types for all
n < m and i < kn. Suppose L→ (Mn)rn<m and also Mn → (Nni)

r
i<kn

for each n < m. Then L→ (Nni)
r
n<m,i<kn

.

Theorem 17 Lemma 2.26

Let r < ω, let L,M be order-types and let m and k be sets. Suppose
|m| = |k|, then L→ (M)rm if and only if L→ (M)rk.

Theorem 18 Lemma 2.28

Let m, r < ω. Let L and Mi be order-types for all i < m. Suppose
L → (Mn)ri<m and let f : [L]r → m be a partition. Then there are
sets I, J ⊆ m with |I| + |J | > m such that for all i ∈ I and j ∈ J ,
there is an j-homogeneous set for f of order-type Mi.

Theorem 19 Lemma 2.29

Let L,M,N be order-types and let δ be the initial ordinal of |L|.
Suppose L → (M,N)2. Then at least one of the following four sit-
uations must be true: (i) M < ω, (ii) N < ω, (iii) M,N ≤ L and
M,N ≤ δ, or (iv) M,N ≤ L and M,N ≤ δ∗.
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Chapter 1.2

Corollary of Theorems 18 & 19 Corollary 2.30

For all order-types L,

L 6→ (ω, ω∗)2.

Theorem 20 Lemma 2.15

Let r < ω and let m, k be cardinals.
(i) If κ and µ are cardinals such that µ ≤ κ and µ < r, then κ→ (µ)rm.
(ii) If κ is a cardinal, µn = r for all n < m, and νi are cardinals for
i < k. Then κ→ ((µn)n<m, (νi)i<k)

r is equivalent to κ→ (νi)
r
i<k.

Theorem 21 Observation 2.17

Suppose κ → (µn)rn<m holds, then either (i) there is some n < m
with µn < r and µn ≤ κ, or (ii) µn ≤ κ for all n < m.

Theorem 22 Not in thesis

This theorem is a table which gives the value of certain trivial parti-
tion relations.

Theorem 23 Theorem 3.25
Theorem 3.26

For all n < ω and α < ω · 2,

ω · n→ (n, α)2,

ω · n 6→ (n+ 1, ω + 1)2.

Theorem 24 Not in thesis

An application of Theorem 25. If α < ω · 4, then

α 6→ (3, ω · 2)2,

ω · 4→ (3, ω · 2)2.
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Chapter 1.2

Theorem 25 Theorem 3.29
Lemma 3.30

Theorem 3.27

Let 2 ≤ m < ω and 1 ≤ n < ω. Suppose that `0 < ω is the least
natural number that has property Pm,n. Then

ω · `0 → (m,ω · n)2,

γ 6→ (m,ω · n)2 for all γ < ω · `0.

If ` < ω is such that `→ (m,m, n)2, then `0 ≤ `.

Theorem 26 Theorem 3.12

If r ≥ 0, k > 0, then

λ 6→ (ω1)
r
k.

If, additionally r ≥ 2, then

λ 6→ (r + 1)rℵ0 .

Theorem 27 Theorem 3.13

λ 6→ (ω, ω + 2)3.

Theorem 28 Theorem 3.14

For r ≥ 4,

λ 6→ (r + 1, ω + 2)r.

Theorem 29 Theorem 3.15

Let L be an order-type with |L| ≥ 2ℵ0 , then

λ 6→ (L)12.

Theorem 30 Theorem 3.47

2ℵ0 6→ (ℵ1)22.
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Chapter 1.2

Lemma 1 Proposition 3.17

Let S be a linearly ordered set such that cf |S| = ℵn and ωn, ω
∗
n 6≤

otpS. Then for every rational q there is a set Aq ⊂ S such that

1. |Aq| = |S|, and

2. Ap < Aq, i.e., for all rationals p < q and x ∈ Ap, y ∈ Aq it holds
that x < y.

Theorem 31 Theorem 3.22
Corollary 3.20

Lemma 3.18
Lemma 3.24

Let φ be a real order-type. Let α < ω · 2, β < ω2 and γ < ω1. Then

φ→ (α)23,

φ→ (α, β)2,

φ→ (ω, γ)2,

φ→ (4, α)3.

Theorem 32 Lemma 3.19
Lemma 3.21

Let φ be a real order-type. Assume that α < ω · 2 and γ < ω1. Then

φ→ (α, γ ∨ ω · γ∗)2,
φ→ (ω + ω∗, γ ∨ γ∗)2.

Theorem 33 Theorem 3.46

Let α < ω · 2. Then

ω1 → (α)22.

Theorem 34 Proposition 3.52

Let α, β, γ be ordinals and suppose α 6→ (β, γ)2. Then there exists a
sequence of ordinals 〈αµ | µ < β−〉, such that

α 6→ (αµ + 1)1µ<β− , and

αµ 6→ (γ)1κµ ,

where κµ =
∏

ν<µ |αν | for all µ < β−.
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Chapter 1.2

Corollary 1 of Theorem 34 Theorem 3.50

Let κ be an uncountable regular cardinal. Then

κ→ (ω + 1, κ)2.

Corollary 2 of Theorem 34 Corollary 3.54

Let κ be a (strongly) inaccessible cardinal. Then for all β < κ,

κ→ (β, κ)2.

Lemma 2 Lemma 3.51

Let (T,<) be a well-ordered set and let f : [T ]2 → 2 be a partition.
Then there exists a unique set H ⊆ T such that H is 1-homogeneous
for f and for all x ∈ T \ H there is some h ∈ H such that f({h <
x}) = 0.

Theorem 35 Theorem 3.7

Let L,M,N be order-types and let s, r < ω. Assume M ≥ r ≥ 3 and
s > (r − 1)2. Suppose M,M∗ 6≤ L and |L| = |N |. Then

N 6→ (s,M)r.

Theorem 36 Theorem 3.57
Corollary 3.58

Let γ be an ordinal, and let Lβ be order-types for all β < γ. Suppose
δ is such that Lβ < δ for all β < γ. Define L =

∑
β<γ Lβ. Then

L 6→ (γ + 1, δ)2.

Theorem 37 Theorem 3.55

Let κ be an infinite cardinal, and let ν be the least cardinal such that
κν > κ. Let µ be an ordinal such that κ < cf ℵµ ≤ ℵµ ≤ κν , then

ℵωµ 6→ (ν+,ℵωµ)2.

Corollary of Theorem 37 Corollary 3.56

If α is an ordinal with ℵ0 < cf ℵα ≤ ℵα ≤ 2ℵ0 , then

ℵωα 6→ (ℵ1,ℵωα)2.
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Lemma 4 Lemma 3.1

Let L0, L1,M0,M1 be order-types. Suppose that r ≥ 2 and M0,M
∗
1 6≤

L0 and |L0| = |L1|, then

L1 6→ (Mn)rn<r!,

where Mn = r + 1 for all n ≥ 2.

Theorem 38 Theorem 3.60

Let γ be an ordinal and r < ω. Let m be some cardinal and let αβ be
ordinals for all β < m. If ℵγ 6→ (|αβ|)rβ<m, then ωγ+1 6→ (αβ + 1)r+1

β<m.

Lemma 5 Lemma 3.36

Let α be an ordinal and k a cardinal. Suppose that βn are ordinals
for all n < k such that for all β < α it holds that β 6→ (βn)rn<k. Then
α 6→ (βn + 1)r+1

n<k.

Theorem 39: Positive Stepping Up Lemma Theorem 3.37

Let κ be an infinite cardinal, let 2 ≤ m < κ be a cardinal and let
r ≥ 1 a natural number. Let βn be ordinals for all n < m. Assume
κ→ (βn)rn<m. Then (2<κ)+ → (βn + 1)r+1

n<m.

Corollaries of Positive Stepping Up Lemma Corollary 3.40

For any r,m < ω,

ω1 → (ω + 1)rm,

(2ℵ0)+ → (ω + 2)rm.

Erdős-Rado Theorem Theorem 3.41

For any infinite cardinal κ and any n < ω,

in(κ)+ → (κ+)n+1
κ .
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Theorem 40 Not in thesis

Let r < ω, let 2 ≤ m < ω, and let 0 < r ≤ ki < ω for all i < m. Let
R(m, r, (ki)i<m) denote the least natural number n such that

n→ (ki)
r
i<m.

Then

R(m, r + 1, (ki + 1)i<m) ≤ mR(m,r,(ki)i<m)r .

Theorem 41 Proposition 3.43
Corollary 3.44

For all n ∈ ω,

ωn+1 6→ (ωn + 2, ω + 1)3,

and as a special case

ω1 6→ (ω + 2, ω + 1)3.

Theorem 42 Theorem 3.4

Let r ≥ 3, and let L0, L1,M0,M1 be order-types such that |L0| = |L1|
and M0,M

∗
1 6≤ L0, and M0,M1 are additively indecomposable. Then

(r − 3) + L1 6→ ((r − 3) +M0, (r − 3) +M1)
r.

Theorem 43 Theorem 3.5

Let L,M,N be order-types. Let r < s < ω and s ≤ M . If L →
(M,N)s and N → (s)rk, then

L→ (M)rk.

Theorem 44: Erdős-Dushnik-Miller Theorem Theorem 3.49

For all infinite cardinals κ,

κ→ (ω, κ)2.
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Theorem 45 Theorem 3.8

Let m > 0, and let Mn be order-types for all n < m. Then∏
n<m

Mn → (Mn)1n<m.
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Chapter 2

Preliminaries

Throughout this thesis we will work in ZFC = ZF+AC. That is, the usual Zermelo-
Fraenkel Axioms (ZF) with the Axiom of Choice (AC). We assume that the reader
has familiarity with basic set theory, e.g. ordinals, cardinals and cardinal arithmetic.
Most of these concepts can be found in a standard textbook, such as [Jec03].

2.1 Basic definitions

Definition 2.1 (Colourings). Let S be a set, let r < ω and let m be a cardinal.

1. We define the set of r-element subsets of S as

[S]r := {X ⊆ S | |X| = r}.

We call an element X ∈ [S]r an r-tuple.

An analogous definition holds if < is an order on S and L is an order-type,

[S]L := {X ⊆ S | otp(X,<) = L}.

2. A function f : [S]r → m is said to be an r-partition of S with m colours.
Alternatively, f is said to be a m-colouring of [S]r.

3. Given f : [S]r → m, a set H is homogeneous for f if H ⊆ S and f is constant
on [H]r. Additionally, if H is homogeneous for f with colour i ∈ m, i.e.
f � [H]r ≡ i, then we say that H is i-homogeneous for f .

We will sometimes identify [S]1 with S, keeping in mind that there is an implicit
bijection f : [S]1 → S : {x} 7→ x.

Definition 2.2 (The partition relation). Let κ and µ be cardinals, let r < ω and
m any cardinal. We write

κ→ (µ)rm

if the following statements holds:
“For every set S such that |S| = κ and every m-colouring of [S]r, f : [S]r → m,

there exists a homogeneous set H ⊆ S for f with cardinality |H| = µ.”
We will write κ 6→ (µ)rm for the negation of κ→ (µ)rm.
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Chapter 2.1

Remark 2.3. An equivalent formulation of κ → (µ)rm is: “For all sets S with
|S| = κ and for any partition [S]r =

⋃
i<m Si of pairwise disjoint sets, there are a

set H ⊆ S with |H| = µ and some i < m such that [H]r ⊆ Si.” In fact, in [ER56]
this definition is used, although the sets did not need to be pairwise disjoint.

Borrowing terminology from J. Larson in [Lar12], given a partition relation κ→
(µ)rm, we will call κ the resource, µ is the goal, r is referred to as the exponent and,
finally, m is called the colour set or colour cardinal.

Observation 2.4. The notation of the partition relation is particularly useful
because it adheres to certain monotonicity principles. If the partition relation
κ → (µ)rm holds, then the relation still holds if the resource κ is made larger, or
anything on the right side of the arrow (goal or colour set) is made smaller. Slightly
harder to observe is that in most cases the exponent can be decreased as well. In par-
ticular, the relation between the goal and exponent must be preserved. For a more
precise treatment of decreasing the exponent we refer the reader to Lemma 2.22.

Remark 2.5. In our definition of a partition relation we only used finite exponents
r < ω. A natural question that arises would be what were to happen if we would
let r ≥ ω. In ZFC it turns out that partition relations with infinite exponents are
always negative. This is because (in ZF) the Axiom of Choice implies that all such
partition relations are negative, as can be seen in the following theorem.

Theorem 2.6. For every cardinal κ, κ 6→ (ω)ω2 .

Proof. Proof is from [Kan09, Proposition 7.1]. We may assume that κ is an infinite
cardinal. As we assume AC, there is a well-order ≺ on [κ]ω. Note that whenever
s ∈ [κ]ω and t ∈ [s]ω, then t ∈ [κ]ω. Define f : [κ]ω → 2 as follows: for s ∈ [κ]ω we
set f(s) = 0 if for every t ∈ [s]ω \ {s} we have s ≺ t, and we set f(s) = 1 otherwise.

Let H ⊆ κ such that |H| = ℵ0, then in particular H ∈ [κ]ω. Let x be the
≺-least element of [H]ω. For every y ∈ [x]ω \ {x} we have y ∈ [H]ω, and hence by
assumption x ≺ y, which gives f(x) = 0. However, let now x0 ⊂ x1 ⊂ ... ⊂ H be
any infinite sequence. Assume that for every n ∈ ω we also have f(xn) = 0, then
this implies that ... ≺ x1 ≺ x0. This shows that ≺ is not a well-order, which is a
contradiction. Therefore there is some n ∈ ω such that f(xn) = 1, showing that H
is not homogeneous for f .

In this thesis we will often look at a slightly different kind of partition relation,
one where the resource and goal can be linear order-types instead of merely cardinals.
The definition of this partition relation generalises naturally, but first we give a
definition of order-types.

Definition 2.7 (Order-types). Two ordered sets (W1,≤1) and (W2,≤2) are iso-
morphic if there exists an order isomorphism f : (W1,≤1) → (W2,≤2). That is,
f is bijective, and both f and its inverse f−1 are order preserving. We write
(W1,≤1) ∼= (W2,≤2) if (W1,≤1) and (W2,≤2) are isomorphic.

Two linearly ordered sets (W1,≤1) and (W2,≤2) have the same order-type if
(W1,≤1) and (W2,≤2) are isomorphic.

It is easily verified that having the same order-type defines an equivalence relation
on the class of linear orders. We say that (W1,≤1) has order-type L if L is the
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Chapter 2.1

representative of the equivalence class of (W1,≤1). For equivalence classes of well-
orders, we take as representative the unique ordinal in that equivalence class.

We write otp(W,≤) for the order-type of the ordered set (W,≤) and simply write
otpW if the underlying order is obvious from context.

Definition 2.8 (Sum order). Given two linear orders (W1,≤1) and (W2,≤2), we
define the sum (W1,≤1) + (W2,≤2) to be the linear order (W3,≤3), where W3 =
W1 ·∪W2 and ≤3 is defined as follows: given x, y ∈ W3, we have

x ≤3 y if and only if x ∈ W1 and y ∈ W2, or

x, y ∈ W1 and x ≤1 y, or

x, y ∈ W2 and x ≤2 y.

If L and M are order-types, then we write L + M for the order-type of the sum of
the linear orders L and M .

For order-types L and M , we will write L ≤M if L embeds into M and we write
L 6≤ M for its negation. We write L < M if L ≤ M and M 6≤ L. We will denote
the order-type of the rationals by η, i.e. otp(Q, <) = η. The order-type of the reals
will be denoted by λ, i.e. otp(R, <) = λ.

We will need to make use of the universality of Q. That is, any countable linear
order embeds into η.

Theorem 2.9 (Cantor). Let L be a countable order-type. Then L ≤ η.

Proof. See [Ros82, Theorem 2.5] for a proof.

We will also need to make use of the ℵ0-categoricity of the theory of dense
linear orders without endpoints. That is, any countable dense linear order without
endpoints is isomorphic to η.

Theorem 2.10 (Cantor). Let L be a countable dense order-type without endpoints.
Then L ∼= η.

Proof. See [Ros82, Theorem 2.8] for a proof.

Definition 2.11 (Partition relations with order-types). Let L and M be order-
types, let r < ω and m any cardinal. We say that

L→ (M)rm

if the following statements holds:
“For every ordered set (S,<) such that otp(S,<) = L and every m-colouring

of [S]r, f : [S]r → m, there exists a homogeneous set H ⊆ S for f of order-type
otp(H,<) = M .”

So far, we have only introduced balanced partition relations, that is, relations
κ → (µ)rm in which there is only one goal µ. In the paper by Erdős-Rado [ER56]
there are many interesting results in which there are multiple goals, which are called
unbalanced partition relations.

17



Chapter 2.2

Definition 2.12 (Unbalanced partition relation). Let r < ω and m be any cardinal.
Let L and Mn be order-types for every n < m. We say that

L→ (Mn)rn<m

if the following statement holds:

“For every ordered set (S,<) such that otpS = L and every colouring f : [S]r →
m, there exists some n < m and an n-homogeneous set H ⊆ S for f of order-type
otp(H,<) = Mn.”

Remark 2.13. For a positive unbalanced partition relation L → (Mn)rn<m, the
colour set may only be decreased (or, alternatively, goals may be removed) if those
goals are at least as large as the exponent, i.e. Mn ≥ r. For example, 4→ (1, 3, 3)2

is trivially positive, but 4 6→ (3, 3)2.

Observation 2.14. It is irrelevant what the order is of the goals for an unbalanced
partition relation. In other words, if π : m→ m is some permutation of m, then

L→ (Mn)rn<m ⇐⇒ L→ (Mπ(n))
r
n<m.

Sometimes we will explicitly write out all the goals in a partition relation, and
then do not mention the colour set. We usually do this in the case of m = 2 and
m = 3, e.g., we write L→ (M,N)r instead of L→ (M,N)r2.

Naturally, the definition of the cardinal-based unbalanced partition relation is
similar.

More notation and terminology

We say that a partition relation κ→ (µ)rm is positive, and its negation κ 6→ (µ)rm is
called negative. Given a relation κ→ (µ)rm, we say that κ is the resource, µ the goal,
r is the exponent and m is the colour set. A positive partition relation κ→ (µ)rm is
sharp or tight if decreasing the resource or increasing the goal, exponent or colour
set, results in a negative partition relation. A partition relation κ→ (µ)rm is balanced
if all the goals are equal. The relation κ→ (µn)rn<m is unbalanced if some goals are
distinct. If some, but not all, of the goals are equal, then we will write, for example,
κ→ (µ, ρ, (ν)m−2)

r for the relation κ→ (µn)rn<m, where µ0 = µ, µ1 = ρ and µi = ν
for all 2 ≤ i < m. The relation κ→ (µ, ρ ∨ ν)r means that for all f : [S]r → 2 with
|S| = κ, there is either a 0-homogeneous set of cardinality µ, or a 1-homogeneous
set of cardinality either ρ or of cardinality ν. All these definitions have an analogous
definition for partition relations for order-types.

Given an ordered set (S,<) and an r-tuple X ∈ [S]r, we write X = {x0 <
x1 < . . . < xr−1} as shorthand for X = {x0, x1, . . . , xr−1} ∧ x0 < x1 < . . . < xr−1.
Given a colouring f : [S]r → m, some i ∈ m and {x0, x1, . . . , xr−1} ∈ [S]r, we write
f({x0 < x1 < . . . < xr−1}) = i as shorthand for f({x0, x1, . . . , xr−1}) = i ∧ x0 <
x1 < . . . < xr−1. Given subsets A,B ⊆ S, we will write A < B as an abbreviation
of “for all a ∈ A and b ∈ B, we have that a < b”.

Given sets A and B and integers m,n, we define [A,B]m,n := {X ⊆ A∪B : |X ∩
A| = m and |X ∩B| = n}.
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2.2 Basic partition results

In this section we will prove many properties of partition relations. All of these
results have been known for decades and most can be found in the Erdős-Rado
paper [ER56]. To be more precise, Theorem 11 to Theorem 21 (See the Overview
in Section 1.2). Throughout the thesis these basic results will often be invoked,
and sometimes we will do so without explicitly mentioning. Also, these partition
relations will hold if we replace cardinals by order-types and vice versa.

First, we establish some trivial partition relations.

Lemma 2.15. Let r < ω and m be any cardinal. If κ and µ are cardinals such that
µ ≤ κ and µ < r, then κ→ (µ)rm.

Proof. Let |S| = κ and let f : [S]r → m be a colouring. Take any set H ⊆ S with
|H| = µ. Note that [H]r = ∅ and therefore the function f � [H]r is the empty
function, which is vacuously constant.

Similarly, all partition relations where the goal does not embed into the resource
are trivially negative, unless the colour set m is empty.

Observation 2.16. Let r < ω and κ be any cardinal and m > 0. If µ is a cardinal
such that µ 6≤ κ, then κ 6→ (µ)rm.

Observation 2.17. Suppose κ → (µn)rn<m holds, then either (i) there is some
n < m with µn < r and µn ≤ κ, or (ii) µn ≤ κ for all n < m.

We present some classical results of the partition calculus here, because they
are referenced in the thesis multiple times. The theorem below is the well-known
Ramsey’s theorem.

Theorem 2.18 (Ramsey’s Theorem, F. Ramsey (1930), [Ram30]). For every r, k <
ω it holds that

ℵ0 → (ℵ0)rk .

Proof. Proof is from [Jec03, Theorem 9.1]. We can assume r, k > 0, else the state-
ment is trivially true.

Base case r = 1. If f : ω → k, then, as k < ω, there is an infinite homogeneous
set for f by the Pigeonhole Principle.

Induction step r + 1. Assume the statement holds for r. Let f : [ω]r+1 → k be
a k-colouring of [ω]r+1. We will show that there exists an infinite homogeneous set
H ⊆ ω for f , so that the statement holds for r + 1.

For each a ∈ ω define the function fa : [ω \ {a}]r → k : X 7→ f(X ∪ {a}). By
the induction hypothesis, for every a and every infinite S ⊆ ω \ {a} there is an
infinite homogeneous set HS

a ⊆ S for fa. Note that by AC we can choose this set
HS
a . Construct an infinite sequence 〈ai | i ∈ ω〉 as follows: let S0 = ω and a0 = 0,

and Si+1 = HS
ai

and ai+1 the least element of Si+1 larger than ai. Note that the set
HS
ai

is infinite, so such ai+1 exist. For every i < j we have that aj ∈ HSi
ai

, and hence
[{aj | j > i}]r is a homogeneous set for fai , with value, say, g(ai). This defines a
function g : {ai | i < ω} → k, and by the Pigeonhole Principle there is an infinite
set H ⊆ {ai | i < ω} that is homogeneous for g.
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We show that H is homogeneous for f . Let {ai0 , ai1 , . . . , air} ∈ [H]r+1 and
assume ai0 < ai1 < . . . < air , then

f({ai0 , ai1 , . . . , air}) = fai0 ({ai1 , . . . , air}) = g(ai0),

which is what we wanted to show.

As a consequence of Ramsey’s theorem, we can also prove a finite version of
Ramsey’s theorem.

Theorem 2.19 (Finite Ramsey’s Theorem). For all n,m, r < ω, there exists some
` < ω such that

`→ (n)rm. (2.1)

Proof. Proof is from [Mar02, Theorem 5.1.2]. Suppose that there are n,m, r < ω
such that for all ` < ω we have ` 6→ (n)rm. This means for all ` < ω there exists a
colouring f` : [`]r → m such that there are no homogeneous sets for f` of size n.

Define for each ` < ω,

T` = {f : [`]r → m | there is no homogeneous set for f of size n}.

Define the tree T =
⋃
`<ω T`, ordered by inclusion. By assumption, each T` is

non-empty and given h ∈ T` there are only finitely many extensions of h in T`+1.
Therefore T is an infinite finitely branching tree and hence by König’s lemma, there
is an ⊂-increasing sequence 〈g` | ` ∈ ω〉 with g` ∈ T` for each ` < ω.

Define g =
⋃
`<ω g`, then g : [ω]r → m. By Ramsey’s theorem, there exists

X = {x0 < . . . < xn−1} such that X is homogeneous for g. Let s > xn−1, then X is
homogeneous for gs, contradicting gs 6∈ Ts. This concludes the proof.

Definition 2.20 (Dual order-type). For a given order-type L ordered by ≤, we
write L∗ as the dual order-type of L, ordered by ≤∗. That is, for x, y ∈ L we have

x ≤ y ⇐⇒ y ≤∗ x.

Lemma 2.21 (Theorem 11). Given order-types L,M , and r < ω and m any cardi-
nal, then the following statements are equivalent:

L→ (M)rm, (2.2)

L∗ → (M∗)rm. (2.3)

Proof. We only show (2.3) =⇒ (2.2) as the other implication follows analogously.
Given an ordered set (S,≤) with otp(S,≤) = L and a partition f : [S]r → k.

By (2.3) there is a homogeneous set H ⊆ S for f with otp(H,≤∗) = M∗. It follows
immediately that otp(H,≤) = M , which shows (2.2).

The following lemma shows why, in many cases, the exponent may be decreased
for a positive partition relation. Consequently, in many cases the exponent may be
increased for negative partition relations.

Lemma 2.22 (Theorem 15). Let L,M be order-types, r < ω and k any cardinal. If
L+ 1→ (M + 1)r+1

k , then L→ (M)rk.
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Proof. Let (S,<) be an ordered set such that otp(S,<) = L and let f : [S]r → k be a
colouring. Let x0 be some set which is not an element of S and define S0 := S∪{x0}.
Extend the ordering < of S to an ordering <′ of S0 such that for every x ∈ S,
x <′ x0. Then otp(S0, <

′) = L + 1. Define the colouring g : [S0]
r+1 → k such that

for {y0 <′ . . . <′ yr−1 <′ yr} in [S0]
r+1 it holds that

g(y0, . . . , yr−1, yr) = f(y0, . . . , yr−1).

By assumption there is a homogeneous set H0 = {hm | m ∈M + 1} ⊆ S0 for g such
that otp(H0, <

′) = M+1. Then it is easy to see that the setH := {hm | m ∈M} ⊆ S
is homogeneous for f with otp(H,<) = M .

Remark 2.23. By applying Lemma 2.21, we can show Lemma 2.22 also holds if we
replace L+ 1 and M + 1 by 1 + L and 1 +M .

Lemma 2.22 is particularly useful if L = α and M = β are infinite ordinals,
because then it holds that 1 + α = α and 1 + β = β. This means, if the resource
and goal are infinite ordinals, we can decrease the exponent of a positive partition
relation without altering the resource or the goal.

Lemma 2.24 (Theorem 14). Let r < ω and let k be any cardinal. Let α be an
ordinal and suppose that βn are initial ordinals for all n < k. Then the following
statements are equivalent:

α→ (βn)rn<k, (2.4)

|α| → (|βn|)rn<k. (2.5)

Proof. (2.4) =⇒ (2.5). Let S be a set with |S| = |α| and let f : [S]r → k be
a colouring. Let < be any order on S such that otp(S,<) = α. Then by (2.4)
there is some n < k and some homogeneous set H ⊆ S for f with colour n and
otp(H,<) = βn. In particular, |H| = |βn|, which shows (2.5).

(2.5) =⇒ (2.4). Take some ordered set (S,<) such that otp(S,<) = α, and let
g : [S]r → k be an arbitrary colouring. Obviously, |S| = |α|, and hence by (2.5) there
is some n < k and a homogeneous set H ⊆ S for g with colour n and |H| = |βn|.
As α is an ordinal, we have that otp(H,<) = γ for some ordinal γ. Since βn is an
initial ordinal, it follows that βn ≤ γ, which shows (2.4).

Lemma 2.24 shows that we can switch between cardinals and the initial ordinal
of that cardinal. We mention that the implication from (2.4) to (2.5) also holds if the
βn are not initial ordinals, and even if α and βn are merely order-types. Interestingly,
Corollary 3.3 shows that (2.5) does not imply (2.4) for all order-types.

One application of Lemma 2.24, together with Ramsey’s Theorem, gives the
following corollary. We will often refer to this corollary simply as “Ramsey’s Theo-
rem”.

Corollary 2.25 (Ramsey’s Theorem for ordinals). For all r, k < ω it holds that

ω → (ω)rk.

In Remark 2.5 we argued that we only need to define partition relations for finite
exponents because AC implies that all partition relations with infinite exponents are
negative. Similarly, we only defined the partition κ → (µ)rm for when the colour
set m is a cardinal. Naturally, one might wonder if it is interesting if we would let
m be an ordinal, or even an order-type. The following result shows that only the
cardinality of the colour set m matters.

21



Chapter 2.2

Lemma 2.26 (Theorem 17). Let r < ω, let L,M be order-types and let m and k be
sets. Suppose |m| = |k|, then L→ (M)rm if and only if L→ (M)rk.

Proof. Assume m, k 6= ∅, else both partition relations are vacuously true. Suppose
L→ (M)rm, we will show L→ (M)rk. Let (S,<) be an ordered set with otp(S,<) =
L and let f : [S]r → k be an arbitrary colouring. As |m| = |k|, there is a bijection
g : k → m. Then g ◦ f : [S]r → m, so by assumption there exists a homogeneous set
H ⊆ S for g ◦ f with colour n ∈ m and otp(H,<) = M . Then for any X ∈ [H]r we
have g◦f(X) = n, and hence f(X) = g−1(n) ∈ k. This gives that H is homogeneous
for f , thus we have shown L→ (M)rk.

The lemma below is the Transitivity Rule. This lemma essentially shows that if
there are two partition relations agreeing on the exponent, and M is a goal in one
partition relation, while it is the resource of the other, then we can substitute the
goals of the latter partition relation in the former partition relation. The proof is
from [Erd+84, Theorem 9.8].

Lemma 2.27 (Theorem 16). Let r,m, kn < ω for all n < m, let L,Mn, Nni be order-
types for all n < m and i < kn. Suppose L → (Mn)rn<m and also Mn → (Nni)

r
i<kn

for each n < m. Then L→ (Nni)
r
n<m,i<kn

.

Proof. Let I = {(n, i) | n < m and i < kn}. Let (S,<) be an ordered set with
otp(S,<) = L and let f : [S]r → I be a colouring. This gives rise to the colouring
π0 ◦ f , where π0 is the projection onto the first coordinate. By assumption L →
(Mn)rn<m, so there exists some n < m and a set X ⊆ S which is homogeneous
for π0 ◦ f with colour n and otp(X,<) = Mn. Similarly, since Mn → (Nni)

r
i<kn

,
there exists a homogeneous H ⊆ X for π1 ◦ f � [X]r with colour, say, i < kn and
otp(H,<) = Nni . It follows that H ⊆ S is homogeneous for f with colour (n, i),
showing L→ (Nni)

r
n<m,i<kn

.

Lemma 2.28 (Theorem 18). Let m, r < ω. Let L and Mi be order-types for all
i < m. Suppose L → (Mi)

r
i<m and let f : [L]r → m be a partition. Then there are

sets I, J ⊆ m with |I| + |J | > m such that for all i ∈ I and j ∈ J , there is an
j-homogeneous set for f of order-type Mi.

Proof. First, we may assume that Mi ≥ r for all i < m. For suppose otherwise, and
Mi < r for some i < m. Then the sets I = {i} and J = m suffice.

For each j < m, define

Pj = {i ∈ m | there is an j-homogeneous set for f of order-type Mi}.

Also define Qj = m \ Pj.
We want to show that there exists some J ⊆ m such that |

⋂
j∈J Pj| > m− |J |,

because then the set I =
⋂
j∈J Pj suffices. Then, m − |

⋂
j∈J Pj| < |J |. Hence, it is

sufficient to show there is some J ⊆ m such that |
⋃
j∈J Qj| < |J |.

Suppose for the sake of contradiction such J does not exist. Then for all J ⊆ m,
it holds that |

⋃
j∈J Qj| ≥ |J |. Then we can pick pairwise distinct elements ij ∈ Qj

for all j < m.1 The relation L → (Mij)
r
j<m holds by Observation 2.14. Thus there

is some j < m such that there is an j-homogeneous set for f of order-type Mij ,
contradicting that ij ∈ Qj.

1This result is known as Hall’s marriage theorem.

22



Chapter 2.2

Lemma 2.29 (Theorem 19). Let L,M,N be order-types and let δ be the initial
ordinal of |L|. Suppose L → (M,N)2. Then at least one of the following four
situations must be true.

(i) M < ω, or

(ii) N < ω, or

(iii) M,N ≤ L and M,N ≤ δ, or

(iv) M,N ≤ L and M,N ≤ δ∗.

Proof. Let S be a set and let < and � be orders on S such that otp(S,<) = L and
otp(S,�) = δ. Define the partition f : [S]2 → 2 by sending {x, y} 7→ 0 if and only
if x < y ⇐⇒ x � y. Now, we apply Lemma 2.28 in the case where m = 2. This
gives one of the following four cases.

Case (i). There are a 0-homogeneous set and a 1-homogeneous set for f of order-
type M , which we call A and B, respectively. On the one hand, M = otp(A,<) =
otp(A,�) ≤ otp(S,�) = δ, and hence M is an ordinal. On the other hand,
M = otp(B,<) = otp(B,�) ≤ otp(S,�) = δ∗. This implies M < ω.

Case (ii). There are a 0-homogeneous set and a 1-homogeneous set for f of
order-type N . Analogous to case (i). Hence N < ω.

Case (iii). There are 0-homogeneous sets A and B for f of order-type M and
N , respectively. Then M = otp(A,<) ≤ otp(S,<) = L and M = otp(A,<) =
otp(A,�) ≤ otp(S,�) = δ. Similarly, N ≤ L and N ≤ δ.

Case (iv). There are 1-homogeneous sets A and B for f of order-type M and N ,
respectively. Analogous to case (iii) and this gives M,N ≤ L and M,N ≤ δ∗.

Corollary 2.30. For all order-types L,

L 6→ (ω, ω∗)2. (2.6)

Proof. Suppose otherwise, i.e. L → (ω, ω∗)2. Then we apply Lemma 2.29 with
M = ω and N = ω∗. Clearly, cases (i) and (ii) do not hold. Then (iii) or (iv) must
hold, hence M,N ≤ δ or M,N ≤ δ∗, where δ is the initial ordinal of |L|. But as δ
is an ordinal, it must be that ω 6≤ δ∗ and ω∗ 6≤ δ, which gives a contradiction.
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Modernisation

In this chapter we study a large portion of the Erdős-Rado paper. To be more precise,
Theorem 23 to Theorem 45 of [ER56] are presented here.1 We have partitioned the
results into four sections, where in each section we will study partition relations with
a certain kind of resource.

In Section 3.1, we study partition relations where the resource is an order-type.

In Section 3.2, we study the order-type of the reals R, denoted as λ, as resource.

In Section 3.3, we study ordinals as resource.

In Section 3.4, we study cardinals as resource.

Of course, as ordinals, cardinals and λ are all specific cases of an order-type,
Section 3.1 is the most general of all the sections. Any theorem that is proven in
that section, can be used in the more specific cases. Similarly, as a cardinal is a
specific case of an ordinal (any cardinal is an initial ordinal), any theorem from
Section 3.3 can be used in Section 3.4.

As the paper has been published over 65 years ago, many strengthenings of
results in [ER56] have been proven since then. We sometimes provide these newer
results, but as the literature on partition calculus is so vast, we are not able to show
all new results. In fact, if for some result in this thesis no additional improvements
are given, this does not imply that no such improvements exist. We refer the reader
to an historical exposition of partition calculus by J. Larson in [Lar12] for a more
complete overview.

3.1 Order-types

In the first section of this chapter we study partition relations based on order-types.
All order-types in this chapter will, in fact, be linear order-types. We remark that
partition relations based on order-types are the most general in this thesis,2 and
hence any result in this section is also of relevance in subsequent sections.

We begin with an interesting result, with which we will be able to prove that
many partition relations are negative.

1With the exception of Theorem 40. This result is about finite Ramsey Theory and has no
further applications in the paper, hence we decided to omit this theorem in the thesis.

2There are partition relations for partial orders instead of linear orders, but these will not be
treated in this thesis. See [Gal75] for examples of such partition relations.
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Lemma 3.1 (Lemma 4). Let L0, L1,M0,M1 be order-types. Suppose that r ≥ 2 and
M0,M

∗
1 6≤ L0 and |L0| = |L1|, then

L1 6→ (M0,M1, (r + 1)r!−2)
r.

Proof. Throughout we may assume |M0|, |M1| ≥ ℵ0. Let S be a set and let < be
an order on S such that otp(S,<) = L1. As |S| = |L1| = |L0|, there is an ordering
� on S such that otp(S,�) = L0. Given any X ∈ [S]r, we can index the elements
in X such that X = {x0 < x1 < . . . < xr−1}. There is a unique permutation
π : r → r such that xπ(0) � xπ(1) � . . . � xπ(r−1). Note that there are precisely r!
permutations of r. Fix an enumeration 〈πn | n < r!〉 of permutations of r, where π0
is the identity, and π1 = π∗0.

Define the r!-colouring f : [S]r → r! : {x0 < x1 < . . . < xr−1} 7→ n where πn is
such that xπn(0) � xπn(1) � . . .� xπn(r−1). Suppose there is an n-homogeneous set
H for f with otp(H,<) = Mn, where Mn = r + 1 for n ≥ 2. There are three cases
to consider.

Case n = 0. Then otp(H,<) = M0 and f � [H]r ≡ 0. As π0 is the identity and
r ≥ 2, we have in particular for any x, y ∈ H that x < y ⇐⇒ x� y. This means
M0 = otp(H,<) = otp(H,�) ≤ otp(S,�) = L0, which is a contradiction.

Case n = 1. Then otp(H,<) = M1 and f � [H]r ≡ 1. In this case π1 = π∗0, which
means for any x, y ∈ H we have x < y ⇐⇒ y � x. Therefore M∗

1 = otp(H,<∗) =
otp(H,�) ≤ otp(S,�) = L0, again a contradiction.

Case n ≥ 2. Then otp(H,<) = r + 1 and f � [H]r ≡ n. In particular πn 6= π0
and πn 6= π1. Write H = {x0 < x1 < . . . < xr−1 < xr} and define yk = xk+1. Then

xπn(0) � xπn(1) � . . .� xπn(r−1),

yπn(0) � yπn(1) � . . .� yπn(r−1).

Suppose x0 � x1, then xπ−1
n (0) < xπ−1

n (1) and so y0 � y1. This gives x1 � x2.
Repeating this argument gives that x0 � x1 � . . . � xr−1, and hence πn = π0,
which is a contradiction. Similarly, if we assume x1 � x0, then by an analogous
argument, we get xr−1 � . . .� x1 � x0, i.e., πn = π1, which is also a contradiction.

We conclude that such a homogeneous set H cannot exist, and this concludes
the proof.

The first application of Lemma 3.1 shows that increasing the resource in Ram-
sey’s Theorem to a larger countable ordinal, does not yield larger homogeneous
sets.

Corollary 3.2. For any α < ω1,

α 6→ (ω + 1, ω)2. (3.1)

Proof. We may assume α is infinite. Clearly, ω+ 1, ω∗ 6≤ ω. As |α| = |ω|, we obtain
the desired result by Lemma 3.1.

As a side note, we mention another application of Lemma 3.1 which shows that
the partition relation3 η → (η,ℵ0)2 cannot be improved to ω. Recall that η denotes
the order-type of the rationals.

3Theorem 6 in [ER56], see [Jon99, p. 17] for a proof.
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Corollary 3.3. η 6→ (η, ω)2.

Proof. Obviously, ω is scattered, i.e. η 6≤ ω, and ω is well-ordered, which gives
ω∗ 6≤ ω. Finally, |ω| = |η|, which gives the desired result by Lemma 3.1.

The following result shows that the colour set r! in Lemma 3.1 can be reduced
to 2, given some extra assumptions. In particular, the goals M0 and M1 have to be
additively indecomposable. An order-type M is said to be additively indecomposable
if for any additive decomposition M = N +N ′, it must be that M ≤ N or M ≤ N ′.
Also, the resource and goal will be slightly increased.

Theorem 3.4 (Theorem 42). Let r ≥ 3, and let L0, L1,M0,M1 be order-types such
that |L0| = |L1| and M0,M

∗
1 6≤ L0, and M0,M1 are additively indecomposable. Then

(r − 3) + L1 6→ ((r − 3) +M0, (r − 3) +M1)
r. (3.2)

Proof. In view of Lemma 2.22, we only need to prove (3.2) for r = 3. Let (S,<)
be an ordered set with otp(S,<) = L1. As |L0| = |L1|, there is an order � on
S such that otp(S,�) = L0. Given {x0 < x1 < x2} ∈ [S]3, there is a unique
permutation π : 3 → 3 such that xπ(0) � xπ(1) � xπ(2). A permutation is even if
it makes an even numbers of inversions.4 The three even permutations of 3 are
(0, 1, 2) 7→ (0, 1, 2), (0, 1, 2) 7→ (1, 2, 0) and (0, 1, 2) 7→ (2, 0, 1).

Define f : [S]3 → 2 by {x0 < x1 < x2} 7→ 0 if and only if the permutation π with
xπ(0) � xπ(1) � xπ(2) is even. We prove this partition shows (3.2). Suppose there is
a 0-homogeneous set H ⊆ S for f with otp(H,<) = M0. Define B = {x ∈ H | ∀y ∈
H(y < x =⇒ y � x)}. Define C := H \ B. Let x, y, z denote elements of H. We
show a few facts.

1. Suppose x < y, y ∈ B, x ∈ C. Since x ∈ C, there is some z ∈ H such that
z < x and x � z. But then also, z < y and y � z, contradicting y ∈ B.
Therefore x < y and y ∈ B implies x ∈ B and x� y. Also, x < y and x ∈ C
implies y ∈ C. This shows B < C and otp(B,<) ≤ otp(B,�).

2. Suppose x ∈ B, y ∈ C and x� y. Then x ∈ B and x� y implies x < y. As
y ∈ C, there is z ∈ H with z < y and y � z. Then x � y � z and x < y
and z < y. If it were the case that x < z, then the permutation would be odd,
which contradicts {x, y, z} ∈ [H]3. Therefore z < x, but now x � z shows
x 6∈ B, also a contradiction. Hence x ∈ B and y ∈ C implies y � x. This
implies C � B.

3. Suppose x, y ∈ C and x < y and y � x. As x ∈ C, there is z ∈ H such
that z < x and x � z. But then z < x < y and y � x � z, showing the
permutation is odd and contradicting {x, y, z} ∈ [H]3. Therefore x, y ∈ C and
x < y implies x� y. This shows otp(C,<) ≤ otp(C,�).

Fact 1 shows that (B,<) is an initial segment of (H,<). Hence (H,<) = (B,<) +
(C,<). Define otp(B,<) = N0 and otp(C,<) = N1, then M0 = N0 +N1. Then the
three facts imply that otp(H,�) ≥ N1 + N0. Since M0 is indecomposable, there is
some i ∈ 2 with M0 ≤ Ni. We obtain

M0 ≤ Ni ≤ otp(H,�) ≤ otp(S,�) = L0,

4An inversion of a permutation π is a pair (i, j) such that i < j and π(i) > π(j).
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for some i ∈ 2. This contradicts that M0 6≤ L0.
Suppose now that there is some 1-homogeneous H for f with otp(H,<) = M1.

The proof is nearly analogous to the previous case. If {x0 < x1 < x2} ∈ [H]3, then
the permutation π such that xπ(0) � xπ(1) � xπ(2) is odd. But this means π is an
even permutation with respect to �. Hence, we can replace M1 by M∗

1 and we can
completely analogously show that M∗

1 ≤ L0, which gives a contradiction.
We conclude that L1 6→ (M0,M1)

3.

Theorem 3.5 (Theorem 43). Let L,M,N be order-types. Let r < s < ω and
s ≤M . If L→ (M,N)s and N → (s)rk, then

L→ (M)rk. (3.3)

Proof. Let S be a set with otpS = L and let f : [S]r → k be a partition. Define
the partition g : [S]s → 2 by g(X) = 0 if and only if X is homogeneous for f , where
X ∈ [S]s.

We have assumed L → (M,N)s. Suppose there exists a 1-homogeneous H ⊆ S
for g with otpH = N . Since N → (s)rk, there exists X ∈ [H]s which is homogeneous
for f � [H]r, and thus is also homogeneous for f . But this is a contradiction, because
g(X) = 1, meaning that X cannot be homogeneous for f .

Therefore there is a 0-homogeneous H ⊆ S for g with otpH = M . Fix X ∈ [H]r,
and let Y ∈ [H]r be arbitrary such that X 6= Y . Such Y exists because M > r.
Write X = {x0, . . . , xr−1} and Y = {xm, . . . , xm+r−1}, where 1 ≤ m ≤ r. Define
Xn = {xn, . . . , xn+r−1} for all n ≤ m. Again, s > r, so for all n < m there exists
Yn ∈ [H]s such that Xn ∪ Xn+1 ⊆ Yn. Note that since H is 0-homogeneous for g,
then Yn is i-homogeneous for f , for some i < k.

As Yn is i-homogeneous for f , it follows immediately that f(Xn) = f(Xn+1) = i.
But then it holds for all n ≤ m that f(Xn) = i. In particular, f(X) = f(X0) = i
and f(Y ) = f(Xm) = i. Since Y was arbitrary, we conclude that H is homogeneous
for f , showing L→ (M)rk.

Lemma 3.6 (Erdős-Szekeres Theorem, 1935). Let r < ω and let s > (r − 1)2. Let
(S,�) be an ordered set and suppose that N = {n0, n1, . . . , ns−1} ∈ [S]s. Then there
are indices 0 ≤ i0 < i1 < . . . < ir−1 < s such that such that ni0 � ni1 � . . .� nir−1

or ni0 � ni1 � . . .� nir−1.

Steele in his survey [Ste95, p. 114] on the Erdős-Szekeres Theorem5 credits
Seidenberg (1959) for “what is perhaps the slickest and most systematic proof [of
the Erdős-Szekeres Theorem]”. We present this proof here.

Proof. For every i < s, define the pair (ai, bi), where ai is the length of the longest
�-increasing subsequence ending with ni, and bi is the length of the longest �-
decreasing subsequence ending with ni. Given i < j < s, one of two cases holds: if
ni � nj, then ai < aj, and if ni � nj, then bi < bj. In other words, given indices
i 6= j, we have that (ai, bi) 6= (aj, bj).

Now, suppose the statement of the theorem is false. Then there are no �-
increasing or�-decreasing sequences of length r. In particular, for all i < s it holds
that 0 < ai, bi < r. This means there are at most (r− 1)2 distinct pairs (ai, bi), but
this contradicts that there must be s > (r − 1)2 distinct pairs. This concludes the
proof.

5This result is sometimes referred to as the Ordered Pigeonhole Principle.
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Theorem 3.7 (Theorem 35). Let L,M,N be order-types and let s, r < ω. Assume
M ≥ r ≥ 3 and s > (r − 1)2. Suppose M,M∗ 6≤ L and |L| = |N |. Then

N 6→ (s,M)r. (3.4)

Proof. Let S be a set and let < and� be orders on S such that otp(S,<) = N and
otp(S,�) = L. Define the partition f : [S]r → 2 by {x0 < x1 < . . . < xr−1} 7→ 1 if
and only if x0 � x1 � . . .� xr−1 or x0 � x1 � . . .� xr−1.

Let H ∈ [S]s be arbitrary. Since s > (r − 1)2, there is as a consequence of the
Erdős-Szekeres Theorem some A ∈ [H]r such that f(A) = 1, which shows H is not
0-homogeneous for f .

Now assume there is a 1-homogeneous H ⊆ S with otp(H,<) = M . Define the
sets

A := {{x0 < x1 < . . . < xr−1} ∈ [H]r | x0 � x1 � . . .� xr−1}, and (3.5)

B := {{x0 < x1 < . . . < xr−1} ∈ [H]r | x0 � x1 � . . .� xr−1} (3.6)

Since H is 1-homogeneous for f , it holds that [H]r = A ·∪B.

Claim. [H]r = A or [H]r = B.

Proof of claim. Suppose for the sake of contradiction that the claim is false. Then
there are sets X, Y ∈ [H]r such that

X = {x0 < x1 < . . . < xr−1} = {x0 � x1 � . . .� xr−1}, (3.7)

Y = {y0 < y1 < . . . < yr−1} = {y0 � y1 � . . .� yr−1}. (3.8)

We suppose that X and Y are chosen in such a way that n ≤ r − 1 is maximal,
where xi = yi for all i < n, but xn 6= yn. Assume w.l.o.g. that xn < yn.

First, suppose n < r − 1. Then define

Z := {y0 < y1 < . . . yn−1 < xn < yn < . . . < yr−2} ∈ [H]r.

By the maximality of n, it cannot be that Z ∈ B, and thus Z ∈ A. Therefore, as
also r ≥ 3, it holds that y0 � yr−2, which is a contradiction with (3.8). If, on the
other hand, n = r − 1, then immediately x0 = y0 � y1 = x1, contradicting (3.7).
This concludes the proof of the claim. �

If now [H]r = A, then M = otp(H,<) = otp(H,�) ≤ otp(S,�) = L, which
is a contradiction. Similarly, if [H]r = B, then M∗ = otp(H,<∗) = otp(H,�) ≤
otp(S,�) = L, which also gives a contradiction. We conclude such H does not
exist, and therefore N 6→ (s,M)r2.

Given order types Mn, for all n ≤ m < ω, we can define an order-type of the
product

∏
n<mMn, where we order the elements lexicographically according to the

orders on Mn.6

Theorem 3.8 (Theorem 45). Let m > 0, and let Mn be order-types for all n < m.
Then ∏

n<m

Mn → (Mn)1n<m. (3.9)

6We treat the order-type of the Cartesian product with the lexicographical order in more depth
in Section 4.1.
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Proof. Let Bn be sets with otpBn = Mn, and order S =
∏

n<mBn lexicographically
by ≺.

First, suppose that there is some n < m such that for all i < n there are xi ∈ Bi

such that for every xn ∈ Bn, there are some elements xxnk ∈ Bk for n < k < m with
f((x0, . . . , xn−1, xn, x

xn
n+1, . . . , x

xn
m−1)) = n. Then the set

H = {(x0, . . . , xn−1, xn, xxnn+1, . . . , x
xn
m−1) | xn ∈ Bn},

has order-type Mn and is n-homogeneous for f .
Suppose, on the other hand, that for all n < m and all elements xi ∈ Bi with

i < n, there is some element gn(x0, . . . , xn−1) ∈ Bn such that for all xk ∈ Bk with
n < k < m it holds that

f((x0, . . . , xn−1, gn(x0, . . . , xn−1), xn+1, . . . , xm−1)) 6= n.

Then we inductively define elements yn = gn(y0, . . . , yn−1) for all n < m. Clearly,
for some n < m, it must be that f(y0, . . . , yn−1, yn, yn+1, . . . , ym−1) = n, but this
contradicts the definition of yn.

This concludes the proof.

3.1.1 Baumgartner-Hajnal theorem

Many results in the partition calculus have been proven after the publication of
[ER56]. We will give an overview of some results, but we will not go into detail.

The following result by Baumgartner-Hajnal (1973) answered many questions
posed by Erdős and Rado.7 The theorem provides a strengthening for many results
in this thesis, such as Theorem 3.46, Theorem 3.22 and Lemma 3.18. The original
proof by Baumgartner and Hajnal used a meta-mathematical proof. First, they
proved the partition relation assuming Martin’s Axiom (MA) and then they used an
absoluteness argument to show that the result must be a theorem of ZFC after all.

Two years after the publication of [BH73], Fred Galvin provided a more standard
proof, avoiding the use of a meta-mathematical argument. As he says in [Gal75,
p. 712]: “While this method [of Baumgartner and Hajnal] works, still one would
naturally like to see a direct ‘combinatorial’ proof”.

Theorem 3.9 (Baumgartner-Hajnal Theorem, [BH73], Theorem 1). Let L be any
order-type such that L→ (ω)1ω. Then for any γ < ω1 and any k < ω,

L→ (γ)2k. (3.10)

We will not present a proof in this thesis. The most important uses of the
Baumgartner-Hajnal theorem are for the resources ω1 and λ, where λ is the order-
type of the reals.

Central to the partition calculus is to find a potential strengthening, if it ex-
ists. Ideally, we want to find proofs that a positive partition relation is sharp, i.e.
decreasing the resource or increasing the goal, exponent or colour set will give a neg-
ative partition relation. One instance of the Baumgartner-Hajnal Theorem is sharp:
ω1 → (γ)2k for all γ < ω1. The exponent cannot be increased by Corollary 3.44, nor

7See [Lar12, p. 265] for an historical exposition.
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can the resource be decreased by Corollary 3.2. It is also not possible to increase
the goal, because as a corollary of Theorem 3.47 we obtain

ω1 6→ (ω1)
2
2. (3.11)

And finally, the colour set can also not be increased because α 6→ (2)1ω for any
countable ordinal α, and hence by Lemma 3.36,

ω1 6→ (3)2ω. (3.12)

Of course, for the sake of completeness, we could decrease the exponent yet
again. And as a consequence of ℵ1 being regular, the partition relation is positive
when the exponent is 1:

ω1 → (ω1)
1
ω. (3.13)

3.2 The reals

In this section we study partition relations where the resource is the order-type of
the reals. We will denote the order-type of the reals as otpR = λ. We alternate
between the usual real line R and the Cantor space 2ω, but this does not matter as
both λ ≤ otp 2ω and otp 2ω ≤ λ. Note that |λ| = 2ℵ0 .

3.2.1 Linear continuum

We give the following definition to make more precise what properties of λ shall be
needed.

Definition 3.10 (Linear continuum). A non-empty linearly ordered set (S,<) is a
linear continuum if it is dense and has the least upper bound property (l.u.b.), that
is

1. for all x, y ∈ S if x < y there exists z ∈ S such that x < z < y, and

2. every non-empty subset B ⊆ S that has an upper bound in S also has a least
upper bound in S.

Remark 3.11. In fact, for non-empty linearly ordered sets, having the l.u.b. is
equivalent to having the greatest lower bound property, hence every non-empty
linear order that has the l.u.b. is complete. We give a quick proof below.

Suppose (S,<) is a non-empty linearly ordered set and has the least upper bound
property. Let P ⊆ S be a non-empty subset which has a lower bound ` ∈ S. Then
the set of lower bounds L := {x ∈ S | ∀p ∈ P (x < p)} is non-empty as ` ∈ L. Since
(S,<) has the l.u.b. and any p ∈ P is an upper bound of L, supL exists. Finally,
it is easy to see that supL = inf P , and hence (S,<) has the greatest lower bound
property.

Theorem 3.12 (Theorem 26). If r ≥ 0, k > 0, then

λ 6→ (ω1)
r
k. (3.14)

If, additionally r ≥ 2, then

λ 6→ (r + 1)rℵ0 . (3.15)
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Proof. (3.14) follows from the fact that ω1 does not embed into R. For suppose
there is an order-preserving function h : ω1 → R. As Q is dense in R, for every
α < ω1 there exists a rational qα such that h(α) < qα < h(α + 1). Define the
mapping g : ω1 → Q : α 7→ qα, which is order-preserving and hence injective. We get
a contradiction because ω1 cannot be injected into a countable set.

In view of Lemma 2.22 it suffices to show (3.15) for r = 2. Fix an enumeration
〈qi | i < ω〉 of Q. Define the colouring f : [R]2 → ℵ0 by

{x < y} 7→ least i such that x < qi < y.

Suppose there exists a set {x < y < z} ∈ [R]3 that is i-homogeneous for f for some
i ∈ ω. Then it holds that x < qi < y < qi < z, which is a contradiction.

Theorem 3.13 (Theorem 27). λ 6→ (ω, ω + 2)32.

Proof. Let 2ω be the Cantor space with the usual linear ordering and topology. That
is, for y, z ∈ 2ω we have y ≺ z if for the least n ∈ ω such that y(n) 6= z(n), then
y(n) < z(n). And the basic opens are Ns = {x ∈ 2ω | s ⊂ x} for all s ∈ 2<ω. As
λ ≤ otp 2ω, it suffices to show otp 2ω 6→ (ω, ω + 2)32.

Define f : [2ω]3 → 2 by f({x ≺ y ≺ z}) = 1 if and only if n < m, where n is
the least with x(n) < y(n) and m the least with y(m) < z(m). Clearly, there is no
0-homogeneous set for f of order-type ω, else there would be an infinitely decreasing
sequence of natural numbers.

Let H = {xβ | β < ω + 2} be a set of order-type ω + 2. As the Cantor space is
compact, the infinite sequence {xn | n < ω} has a converging subsequence with limit,
say, ` ∈ 2ω. Suppose ` 6= xω. Then there are xi, xm in the converging subsequence
such that xi is closer to xm, than xm is to xω. In other words, xi and xm differ later
than xm and xω, i.e. f({xi ≺ xm ≺ xω}) = 0. So, H is not 1-homogeneous for f .
An analogous result holds if xω+1 6= `. Hence there are no 1-homogeneous sets for
f of order-type ω + 2.

Theorem 3.14 (Theorem 28). For r ≥ 4,

λ 6→ (r + 1, ω + 2)r. (3.16)

Proof. It suffices to show the theorem for r = 4. Define the colouring f : [(0, 1)]4 → 2
by

{x0 < x1 < x2 < x3} 7→ 0 ⇐⇒ x2 − x1 < x3 − x2 and x2 − x1 < x1 − x0.

Suppose there is set {x0 < x1 < x2 < x3 < x4} ⊆ (0, 1) which is 0-homogeneous
for f . Then simultaneously f({x1, x2, x3, x4}) = 0, so that x3 − x2 < x2 − x1, and
f({x0, x1, x2, x3}) = 0, and so x2 − x1 < x3 − x2, which gives a contradiction.

Assume that there is a 1-homogeneous set H ⊆ (0, 1) for f of order-type otpH =
ω + 2. As (0, 1) is complete and H is bounded by hω+1, there is some subsequence
of {hn | n < ω} converging to some limit, say, ` ∈ (0, 1). Similar to the proof of
Theorem 3.13, we assume that ` 6= hω. Let ε := min{h1 − h0, hω − `}. There exist
m,n < ω with m > n such that hm−hn < ε/2, and hence hm−hn < h1−h0 ≤ hn−h0
and hm−hn < hω−` ≤ hω−hm, and therefore f({h0, hn, hm, hω}) = 0, contradicting
our assumption. An analogous argument holds if ` 6= hω+1, and this concludes the
proof.
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Theorem 3.15 (Theorem 29). Let L be an order-type with |L| ≥ 2ℵ0, then

λ 6→ (L)12. (3.17)

Proof. Suppose that L ≤ λ, i.e. L embeds into λ, else the result follows trivially
because there would be no subset H ⊆ R with otpH = L. Note that this also
implies |L| = 2ℵ0 .

Fix some A ⊆ (0, 1) such that otpA = L. Let B ⊆ (0, 1) with otpB = L be
arbitrary. As A and B have the same order-type, there is an order-isomorphism
fB : A → B. We extend fB to a total function f̃B on (0, 1) as follows: for all strict
lower bounds ` of A, we set f̃B(`) = 0, and furthermore for all other x ∈ (0, 1) \ A,

x 7→ sup{fB(y) | y ≤ x ∧ y ∈ A}.

Note that f̃B is non-decreasing and that f̃B and A uniquely determine B.
As f̃B is non-decreasing on (0, 1), its set of discontinuous points D(B) is count-

able. This is because for every b ∈ D(B) we have that f̃B(b−) < f̃B(b+), where
f̃B(b−) = limx→b− f̃B(x) and f̃B(b+) = limx→b+ f̃B(x) are the left-sided and right-
sided limits, respectively. Hence there exists some rational qb such that f̃B(b−) <
qb < f̃B(b+). Thus we can construct an injection from D(B) into Q and so D(B) is
countable.

As the rationals are dense in (0, 1), we can approximate functions values of fB on
continuous points arbitrarily well using the function values on the rationals. Hence,
the function fB is completely determined by the set D(B), its function values on
D(B), and its function values on Q. Therefore there are at most

|L3·ℵ0| = |(2ℵ0)ℵ0| = 2ℵ0

such functions. As every B was completely determined by fB and A, we conclude
that are at most 2ℵ0 subsets of (0, 1) of order-type L.

Let κ ≤ 2ℵ0 be the amount of subsets of (0, 1) of order-type L. Fix an enu-
meration 〈Bγ | γ < κ〉 of subsets of (0, 1) of order-type L. Define inductively for
γ < κ,

xγ, yγ ∈ Bγ \ {xδ, yδ | δ < γ} with xγ 6= yγ.

This is possible because for every γ < κ we have

|{xδ, yδ | δ < γ}| < 2ℵ0 = |L| = |Bγ|.

Now define f : (0, 1)→ 2 by sending for all γ < κ, xγ 7→ 0 and yγ 7→ 1, and all other
elements to 1 as well.

Take any H ⊆ (0, 1) with otpH = L. Then there is some γ < κ such that
H = Bγ. Then by construction xγ, yγ ∈ H and f(xγ) = 0 and f(yγ) = 1, which
shows H is not homogeneous for f .

3.2.2 Real order-types

While proving certain partition results where the resource was λ, the order-type of
the continuum, Erdős and Rado noted that only a few properties of λ were needed
to prove these theorems. Hence they defined a more general order-type, which we
will denote as φ throughout this subsection, and proved the partition results with φ
as resource. Obviously, it follows that all relations in this subsection hold when the
resource is λ.
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Definition 3.16 (Real order-types). An order-type φ is a real order-type if |φ| > ℵ0
and neither ω1 nor ω∗1 embed into φ.

We prove an important proposition, which essentially shows that any set S with
real order-type φ contains Q-many uncountable sets, where these sets are themselves
ordered by the rationals. We prove a slightly stronger result than what we need.

Proposition 3.17 (Lemma 1). Let S be a linearly ordered set such that cf |S| = ℵn
and ωn, ω

∗
n 6≤ otpS. Then for every rational q there is a set Aq ⊂ S such that

1. |Aq| = |S|, and

2. Ap < Aq for all rationals p < q, (i.e. x < y for all x ∈ Ap and y ∈ Aq).

Proof. Case 1. There is some A ⊆ S with |A| = |S| such that for all x ∈ A the
initial segment of A with respect to x has cardinality strictly less than |A|. In other
words, for all x ∈ A,

|{y ∈ A | y < x}| < |A|.

Define xν inductively for ν < ωn, where

xν ∈ A \
⋃
µ<ν

{y ∈ A | y ≤ xµ}.

Note that since ν < ωn = cf |A| such xν exist for all ν < ωn. In particular, we
have found a strictly <-increasing sequence 〈xν | ν < ωn〉 in S. This means that
ωn ≤ otpS, which is a contradiction. Hence such A cannot exist.

Case 2. There is some A ⊆ S with |A| = |S| such that for all x ∈ A the final
segments are sufficiently small, i.e.,

|{y ∈ A | y > x}| < |A|.

Analogous to Case 1, we can show ω∗n ≤ otpS, which is a contradiction.
Case 3. There is some A ⊆ S with |A| = |S| such that for all x ∈ A, either the

initial segment or the final segment with respect to x has cardinality strictly less
than |A|. Define AL := {x ∈ A | |{y ∈ A | y < x}| < |A|} and AR := {x ∈ A |
|{y ∈ A | y > x}| < |A|}. As |A| = |AL| + |AR|, we have |AL| = |A| or |AR| = |A|.
If |A| = |AL|, then we follow Case 1, and if |A| = |AR|, we follow Case 2. As both
cases give a contradiction we conclude such A does not exist.

So far, we have shown that whenever A ⊆ S is such that |A| = |S|, there is some
x ∈ A such that the initial and final segment with respect to x both have cardinality
|A|. In other words,

|{y ∈ A | y < x}| = |S| = |{y ∈ A | y > x}|.

Since |{y ∈ A | y < x}| = |S|, there is x′ ∈ A such that |{y ∈ A | y < x′}| = |S| =
|{y ∈ A | x′ < y < x}|. Define

A0 := {y ∈ A | y < x′}, A1 := {y ∈ A | x′ < y < x} and A2 := {y ∈ A | x < y}.

Note that A0 < A1 < A2.
We “fix” A1, but we continue this operation for A0 and A2, to obtain the sets

A00, A01, A02 and A20, A21, A22. Generally, for every finite ternary sequence of the
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form 〈i0, . . . , im−1, 1〉 with i0, . . . , im−1 ∈ {0, 2} we obtain the set Ai0...im−11. The
(finite) sequences of this form define the set

Q = {〈i0, . . . , im−1, 1〉 | i0, . . . , im−1 ∈ {0, 2},m ∈ ω},

which when ordered lexicographically is a dense countable linear order without end-
points, and hence is isomorphic to the rationals, see Theorem 2.10.

By construction, for all p ∈ Q we have |Ap| = |S| and for any q ∈ Q with p < q
it holds that Ap < Aq, which is what we wanted to show.

We remark that all the following results in this subsection, with the exception of
Lemma 3.21, are strengthened by the Baumgartner-Hajnal theorem. This is because
φ→ (ω)1ω, and hence by Theorem 3.9 we obtain φ→ (γ)2k, for all γ < ω1 and k < ω.

The main theorem in this section is Theorem 3.22. This theorem heavily depends
on Proposition 3.17. First, we prove a lemma which we will need later.

Lemma 3.18 (Theorem 31iii). Let φ be a real order-type and let γ < ω1. Then

φ→ (ω, γ)2. (3.18)

Proof. Assume w.l.o.g. that |φ| = ℵ1. Let S be a set with otpS = φ and let
f : [S]2 → 2 be a colouring. Assume there does not exist a set B ⊆ S with |B| = ℵ1
such that for all x ∈ B it holds that

|{y ∈ B | f({x < y}) = 0}| ≤ ℵ0.

Then we can inductively define an increasing ω-sequence which will be 0-homogeneous
for f . Let B0 = S and x0 ∈ B0 such that

|{y ∈ B0 | f({x0 < y}) = 0}| = ℵ1.

For n < ω let xn ∈ Bn be such that

Bn+1 := {y ∈ Bn | f({xn < y}) = 0}

is uncountable. Then {xn | n < ω} constitutes the 0-homogeneous set of order-type
ω.

Assume now that such B does exist. As |B| = ℵ1 and ω1, ω
∗
1 6≤ B, by Proposi-

tion 3.17 for all rationals q there are Bq ⊆ B such that

1. |Bq| = ℵ1, and

2. Bq < Bp for all rationals q < p.

As (γ,<) is a countable linear order, there is an order-preserving injection g : (γ,<)→
(Q, <), see Theorem 2.9. Inductively define xδ for δ < γ, where

xδ ∈ Bg(δ) \
⋃
β<δ

{y ∈ Bg(δ) | f({xβ < y}) = 0}.

Note that this is possible because |Bg(δ)| = ℵ1 and for every β < δ,

|{y ∈ Bg(δ) | f({xβ < y}) = 0}| ≤ ℵ0,

and ℵ1 is regular. Finally, X := {xδ | δ < γ} is 1-homogeneous for f of order-type
γ.
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Recall that the relation L→ (M0,M1 ∨M2)
2 means:

“For all sets S with otpS = L and every colouring f : [S]2 → 2, there is either a
0-homogeneous set for f of order-type M0, or a 1-homogeneous set for f of order-type
either M1 or M2.”

Lemma 3.19 (Theorem 32i). Let φ be a real order-type. Assume that α < ω · 2 and
γ < ω1, then

φ→ (α, γ ∨ ω · γ∗)2. (3.19)

Proof. Let S be a set with otpS = φ and assume w.l.o.g. that |S| = ℵ1. As α < ω ·2,
we can assume w.l.o.g. that α = ω+m for some m < ω. We make a case distinction.
Assume that whenever A ⊆ S is such that |A| = ℵ1, then there is some x ∈ A with

|{y ∈ A | f({y < x}) = 0}| = ℵ1.

Let A0 = S and x0 ∈ A0 such that A1 := {y ∈ A0 | f({y < x0}) = 0} is uncountable.
We can continue this construction to obtain the set {xm−1 < . . . < x0} and the
uncountable set Am = {y ∈ Am−1 | f({y < xm−1}) = 0}. Note that |Am| = ℵ1 and
ω1, ω

∗
1 6≤ otpAm, and hence by Lemma 3.18, otpAm → (ω, γ)2. If there were a 0-

homogeneous set H ⊆ Am for f of order-type ω, then the set H∪{xm−1 < . . . < x0}
would be 0-homogeneous for f of order-type α. If, on the other hand, there were a
1-homogeneous set for f of order-type γ, we would be done as well.

Now we assume that there is some uncountable A ⊆ S such that for all x ∈ A,

|{y ∈ A | f({y < x}) = 0}| ≤ ℵ0.

Again, as |A| = ℵ1 and ω1, ω
∗
1 6≤ otpA, we have by Proposition 3.17 that for all

rationals q there exist Aq ⊂ A such that

1. |Aq| = ℵ1, and

2. Aq < Ap for all rationals q < p.

As (γ,<) is a countable linear order and (Q, >) is a countable dense linear order
without endpoints, there is an order-preserving injection g : (γ,<) → (Q, >), see
Theorem 2.9. We inductively define sets Pν for ν < γ. For µ < ν assume that
Pµ ⊂ Ag(µ) with otpPµ = ω have already been defined. Note that by assumption

{y ∈ Ag(ν) | ∃µ < ν∃x ∈ Pµ f({y < x}) = 0}

is countable, and hence the set

Bν = {y ∈ Ag(ν) | ∀µ < ν∀x ∈ Pµ f({y < x}) = 1}

is uncountable. By Lemma 3.18 we have otpBν → (α, ω)2. If there exists a 0-
homogeneous set H ⊆ Bν of order-type otpH = α, we halt the process because we
have showed (3.19). Otherwise there is a homogeneous set Pν ⊆ Bν with colour 1
and otpPν = ω. This completes the construction of the Pν . Now, define the set
H =

⋃
ν<γ Pν , which is homogeneous for f with colour 1 and otpH = ω ·γ∗, showing

(3.19).
We have exhausted all cases and this concludes the proof.

35



Chapter 3.2

Corollary 3.20 (Theorem 31ii). Let φ be a real order-type. Let α < ω · 2 and
β < ω2, then

φ→ (α, β)2.

Proof. As β < ω2 there is some m < ω such that β ≤ ω ·m. Let S be a set with
otpS = φ and let f : [S]2 → 2 be a colouring. By Lemma 3.19, φ→ (α, β ∨ω · β∗)2.
Thus there exists some set H ⊆ S such that either H is 0-homogeneous for f of
order-type otpH = α, orH is 1-homogeneous for f of either order-type otpH = ω·m
or of order-type otpH = ω · (ω ·m)∗. As β embeds into ω ·m, β also embeds into
ω · (ω ·m)∗ = ω · ω∗ ·m, we conclude φ→ (α, β)2.

Lemma 3.21 (Theorem 32ii). Let φ be a real order-type. Assume γ < ω1. Then

φ→ (ω + ω∗, γ ∨ γ∗)2. (3.20)

Proof. Let S be a set with otpS = φ and assume w.l.o.g. that |S| = ℵ1. First we
suppose that there exists a set A ⊆ S with |A| = ℵ1 such that for all x ∈ A,

|{y ∈ A | f({x < y}) = 0}| ≤ ℵ0.

By Proposition 3.17, for all rationals q there exists a set Aq ⊆ A such that

1. |Aq| = ℵ1, and

2. Aq < Ap whenever q < p.

There exists an order-preserving injection g : (γ,<)→ (Q, <). We inductively define
elements xν for ν < γ by picking

xν ∈ Ag(ν) \
⋃
µ<ν

{y ∈ A | f({xµ < y}) = 0}.

Note that this is possible becauseAg(ν) is uncountable, and {y ∈ A | f({xµ < y}) = 0}
is countable for all µ < ν. The set H = {xν | ν < γ} is 1-homogeneous for f of
order-type otpH = γ. This would show (3.20).

Assume now that there is a set A ⊆ S with |A| = ℵ1 such that for all z ∈ A,

|{y ∈ A | f({y < z}) = 0}| ≤ ℵ0.

As there is an order-preserving injection from (γ,<) to (Q, >), we can find, by an
analogous argument, a 1-homogeneous set for f of order-type γ∗. This would also
show (3.20).

Finally, suppose that for all sets A ⊆ S with |A| = ℵ1 there are x, z ∈ A such
that

|{y ∈ A | f({x < y}) = 0}| = ℵ1, and (3.21)

|{y ∈ A | f({y < z}) = 0}| = ℵ1. (3.22)

We inductively define xn, zn for n < ω as follows: let A0 = S and let x0 ∈ S such
that B0 := {y ∈ A0 | f({x0 < y}) = 0} is uncountable. Then let z0 ∈ B0 such that
A1 := {y ∈ B0 | f({y < z0}) = 0} is uncountable. We then pick x1 ∈ A1 such that
B1 is uncountable, etc. After that, we can define the set H = {x0 < x1 < x2 <
. . . } ∪ {· · · < z2 < z1 < z0}, which has order-type ω + ω∗. By construction, H is
0-homogeneous for f , hence we have showed (3.20).

We have exhausted all cases and this concludes the proof.
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The following theorem is a key result in this section. Of course, we mention again,
that the Baumgartner-Hajnal theorem implies a stronger partition relation. The
proof of the following theorem is rather long and complex, using many combinatorial
tricks. We advise the reader that, unless they are particularly interested, they can
safely skip reading this proof.

Theorem 3.22 (Theorem 31i). Let φ a real order-type. Assume that α < ω · 2.
Then

φ→ (α)23. (3.23)

Proof. Assume w.l.o.g. that |φ| = ℵ1. Let S be a set with otpS = φ and let
f : [S]2 → 3 be a colouring. Assume for the sake of contradiction that there is no
homogeneous set for f of order-type α. As α < ω ·2, we can assume that α = ω+m,
for some m < ω. The only properties of S that we will use are that S is uncountable
and ω1, ω

∗
1 6≤ otpS. Therefore whenever an uncountable subset A ⊆ S has a certain

property, we shall assume without loss of generality that S has this property.
By Proposition 3.17 there are uncountable subsets A0, A1 ⊆ S such that A0 <

A1. Fix s0 ∈ A1, then in particular, there must be some colour k ∈ 3 such that
{x ∈ A0 | f({x < s0}) = k} is uncountable. Continuing with A0 and repeating this
argument 3m times, we obtain a set {sim−1 < . . . < si0} which is homogeneous for f
with, say, colour 0, and {x ∈ S | (∀n < m)f({x < sin}) = 0} is uncountable. Note
that we can assume without loss of generality that the colour is k = 0, because we
could reshuffle the colours if necessary.

Suppose that {x ∈ S | (∀n < m)f({x < sin}) = 0} has a subset H of order-
type ω which is 0-homogeneous for f . Then the set H ∪ {sim−1 < . . . < si0} is
homogeneous for f with order-type α, which is a contradiction. Therefore we can
assume without loss of generality that

S has no infinite subset which is 0-homogeneous for f . (3.24)

Suppose now that for all uncountable A ⊆ S there is some x ∈ A such that

|{y ∈ A | f({x < y}) = 0}| = ℵ1.

Then we can inductively define sets A0 = S and An+1 = {y ∈ An | f({hn < y}) = 0}
and elements hn ∈ An such that {hn | n < ω} is 0-homogeneous for f of order-type
ω, contradicting (3.24). Therefore we may assume without loss of generality that
for all x ∈ S,

|{y ∈ S | f({x < y}) = 0}| ≤ ℵ0. (3.25)

Using Proposition 3.17 again, we obtain uncountable subsets A,B ⊆ S such that
A < B. As α < ω1, we have the partition relation otpA→ (ω, α)2 by Lemma 3.18.
By Ramsey’s Theorem, ω → (ω, ω)2, and hence otpA→ (ω, ω, α)2 by Lemma 2.27.
By (3.24) and the fact that A has no subset homogeneous for f of order-type α, it
must be the case that

A ⊆ S has a subset P which is 1-homogeneous for f of order-type ω. (3.26)

Since P is countable, we have by (3.25) that |{y ∈ S | (∃x ∈ P )(f({x < y}) = 0)}| ≤
ℵ0. In particular, B \ {y ∈ S | (∃x ∈ P )(f({x < y}) = 0)} is uncountable, and
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of course, P < B. Therefore we may assume without loss of generality that P is
1-homogeneous for f of order-type ω and

f({x < y}) ∈ {1, 2} for all x ∈ P and y ∈ S \ P . (3.27)

Assume that whenever Q ⊆ P is of order-type ω and A ⊆ S is such that |A| = ℵ1,
there is some x ∈ A such that

|{y ∈ Q | f({y < x}) = 1}| = ℵ0. (3.28)

We will show that this assumption gives a contradiction. Note that A = S \ P is
uncountable, and hence by Proposition 3.17 for all rationals q there are Aq ⊆ A
such that |Aq| = ℵ1 and Aq < Ap for all rationals q < p. There is an order-
preserving injection g : (ω · m,<) → (Q, <). Let x0 ∈ Ag(0) such that P0 =
{y ∈ P | f({y < x0}) = 1} is infinite. We define inductively xν and Pν for ν < ω ·m
as follows. Suppose for all µ < ν that

1. xµ ∈ Ag(µ),

2. |Pµ \ Pρ| < ℵ0 for all ρ < µ < ν, and

3. Pµ ⊆ P .

Fix an enumeration 〈δn | n < ω〉 of ν. Inductively pick elements for n < ω,

yn ∈
n−1⋂
j=0

Pδj \ {y0, . . . , yn−1}.

Set Y = {yn | n < ω}, and note that since Y ⊆ P it holds that Y is 1-homogeneous
for f and is of order-type ω. By (3.25) the set Ag(ν) \ {y ∈ A | (∃µ < ν)(f{xµ <
y)} = 0} is uncountable. Therefore, by (3.28), there exists some xν ∈ Ag(ν) \ {y ∈
A | (∃µ < ν)(f{xµ < y)} = 0} such that

|{y ∈ Y | f({y < xν}) = 1}| = ℵ0.

Let Pν = {y ∈ Y | f({y < xν}) = 1}. We check that Pν satisfies the properties
listed above. Obviously, Pν ⊆ Y ⊆ P . Also, for µ < ν there is some n < ω such
that µ = δn. Then

|Pν \ Pµ| = |Pν \ Pδn| ≤ |Y \ Pδn| ≤ |{y0, . . . , yn}| < ℵ0.

This completes the definition of the xν and Pν .
Note that X = {xµ | µ < ω ·m} has order-type ω ·m. By construction of the xν ,

we have that for all any µ < ν < ω ·m that f({xµ < xν}) ∈ {1, 2}, and therefore
f � [X]2 is a 2-colouring. By Theorem 3.25 we have ω · m → (m,α)2. So, there
exists a set H ⊆ X such that either H is 1-homogeneous for f and otpH = m,
or H is 2-homogeneous for f and otpH = α. In the latter case we immediately
get a contradiction, because we supposed f does not have a homogeneous set of
order-type α.

Thus, assume otpH = m and H is 1-homogeneous for f . We can write H =
{xi0 < . . . < xim−1}. For every n < m we have

|Pim−1 \ {y ∈ A | f({y < xin}) = 1}| ≤ |Pim−1 \ Pin| < ℵ0.
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Therefore Q = {y ∈ Pim−1 | (∀n < m)(f({y < xin}) = 1)} has order-type ω. As
Q ⊆ P , we have that Q∪ {xi0 < . . . < xim−1} is homogeneous for f of order-type α,
which is a contradiction. So, our assumption in (3.28) was false. Therefore we can
assume that there are P ′ ⊆ P of order-type ω and uncountable A ⊆ S such that for
all x ∈ A

|{y ∈ P ′ | f({y < x}) = 1}| < ℵ0. (3.29)

As P ′ is countable, there are only countably many finite subsets of P ′. As A is un-
countable, there is an uncountable subsetA′ ⊆ A such that {y ∈ P ′ | f({y < x}) = 1}
is constant for all x ∈ A′. Set P ′′ = {y ∈ P ′ | f({y < x}) = 2} for some x ∈ A′,
which we note by (3.27) is then also constant for x ∈ A′. Note that otpP ′′ = ω.

The argument from (3.24) onwards remains valid if we replace S by any uncount-
able subset A ⊆ S. Therefore we have shown that whenever A ⊆ S is uncountable

there exists P,A′ ⊂ A such that (3.30)

1. A′ is uncountable,

2. P is 1-homogeneous for f of order-type ω, and

3. for all x ∈ P and y ∈ A′, we have f({x < y}) = 2.

Using Proposition 3.17 there are A0, B0 ⊂ S such that |A0| = ℵ1 = |B0| and
A0 < B0. There are P0, A

′
0 ⊂ A0 as in (3.30). Noting that A0 is uncountable, we

can use a repeated application of (3.30), to obtain the sets Pn+1, A
′
n+1 ⊂ A′n, for all

n < ω.
Define

B1 := B0 \ {y ∈ B0 | ∃x ∈
⋃
n<ω

Pn(f({x < y}) = 0)},

where we note that
⋃
n<ω Pn is countable, and hence it follows from (3.25) that

|B1| = ℵ1. Also, the sets Pn have the following properties

1. f({x < y}) = 2 when x ∈ Pk, y ∈ Pn for k < n < ω, (3.31)

2. f({x < y}) = 1 when x, y ∈ Pn for all n < ω, (3.32)

3. f({x < y}) ∈ {1, 2} when x ∈ Pn, y ∈ B1 for all n < ω. (3.33)

Note that (3.31) follows from the fact that Pn ⊂ A′k for k < n, (3.32) holds because
the Pn are homogeneous for f with colour 1.

Fix n < ω for now. Suppose that there are uncountable B2 ⊆ B1 and infinite
P ′ ⊆ Pn such that for all x ∈ B2,

{y ∈ P ′ | f({y < x}) = 2} < ℵ0. (3.34)

Then, using the same argument as before, there are only countably many finite
subsets of P ′ and hence there is an uncountable set B3 ⊆ B2 such that {y ∈ P ′ |
f({y < x}) = 2} is constant for all x ∈ B3. This means in particular that D = {y ∈
P ′ | f({y < x}) = 1} is fixed for all x ∈ B3, and has order-type ω. Using (3.26) we
know there is Q ⊆ B3 which is 1-homogeneous for f of order-type ω. Then the set
D∪Q is homogeneous for f and has order-type ω ·2, which is a contradiction. Thus
our assumption in (3.34) was false.
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Therefore it is the case for every n < ω that if P ′ ⊆ Pn is infinite, then

|{x ∈ B1 : |{y ∈ P ′ : f({y < x}) = 2}| < ℵ0}| ≤ ℵ0. (3.35)

The idea is to repeat the whole argument from (3.24), but now to the set B1 and
we “invert” the colors. This entails that instead of using (3.26), we use the relation
otpB1 → (ω, α, ω)2 to obtain an infinite homogeneous set Q with colour 2, instead
of colour 1. Therefore, we will obtain sets Qn, B2 ⊆ B1 for n < ω, such that Qn has
order-type ω, B2 is uncountable, and

1. f({x < y}) = 1 when x ∈ Qk, y ∈ Qn for k < n < ω, (3.36)

2. f({x < y}) = 2 when x, y ∈ Qn for all n < ω, (3.37)

3. f({x < y}) ∈ {1, 2} when x ∈ Qn, y ∈ B2 for all n < ω. (3.38)

And it also holds for any n < ω and any infinite Q′ ⊆ Qn that

|{x ∈ B2 : |{y ∈ Q′ : f({y < x}) = 1}| < ℵ0}| ≤ ℵ0. (3.39)

Using Proposition 3.17 we obtain uncountable Cn ⊆ B2 for all n < ω, such that
Ck < Cn for all k < n < ω. For any n < ω and any infinite P ′n ⊆ Pn and Q′n ⊆ Q
we have by (3.35) and (3.39) that there at most ℵ0 elements x ∈ B2 such that

|{y ∈ P ′n : f({y < x}) = 2}| < ℵ0 and |{y ∈ Q′n : f({y < x}) = 1}| < ℵ0. (3.40)

Therefore we can inductively define xn ∈ Cn such that for all i < ω

|{y ∈ Pi : (∀k ≤ n)(f({y < xk}) = 2)}| = ℵ0, and (3.41)

|{y ∈ Qi : (∀k ≤ n)(f({y < xk}) = 1)}| = ℵ0. (3.42)

Set X = {xn | n < ω}. By Ramsey’s Theorem, ω → (ω)23, and hence there
is some infinite X ′ ⊆ X which is k-homogeneous for f , where k ∈ 3. Write X ′ =
{xin | n < ω}. IfX ′ were 0-homogeneous, we’d have a contradiction by (3.24). Hence
k = 1, 2. Choose for all i < ω,

yi ∈ {y ∈ Pi : (∀n ≤ im−1)(f({y < xn}) = 2)}, and (3.43)

zi ∈ {z ∈ Qi : (∀n ≤ im−1)(f({z < xn}) = 1)}. (3.44)

Set Y = {yn | n < ω} and Z = {zn | n < ω}.
If k = 1, then Z ∪ {xi0 , xi1 , . . . , xim−1} has order-type ω + m = α. By (3.44),

(3.36), and since X ′ is 1-homogeneous for f , the set Z ∪ {xi0 , xi1 , . . . , xim−1} is 1-
homogeneous for f . Which gives a contradiction.

Hence k = 2, but then the set Y ∪ {xi0 , xi1 , . . . , xim−1} is 2-homogeneous for f
and has order-type α, hence a contradiction.

We conclude that our assumption of f having no homogeneous set of order-type
α is false, and hence φ→ (α)23.

The final result of this section also appeared in [ER56], again with a rather com-
plicated proof. Albin Jones has provided a much simpler proof in [Jon00, Theorem
1], although it relies on an additional assumption.

Theorem 3.23 (Baumgartner-Hajnal, 1973). φ→ ((ω+m)n, ω)2 for all n,m < ω.
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We omit the proof of this theorem, but we mention that it follows from the
Baumgartner-Hajnal Theorem.8 Also, Fred Galvin gives a combinatorial proof of
the result in [Gal75, Theorem 9].

Lemma 3.24 (Theorem 31iv). Let φ be a real order-type and let α < ω · 2. Then

φ→ (α, 4)3. (3.45)

Proof. Proof is from [Jon00, Theorem 1].
Let S be a set with otpS = φ and let f : [S]3 → 2 be a partition. We can write

α = ω +m for some m < ω. We will show either

(a) There is A ∈ [S]ω+m which is 0-homogeneous for f , or

(b) There is B ∈ [S]4 which is 1-homogeneous for f .

We will make use of the following claim.

Claim. Suppose there are x ∈ S and A ∈ [S \ {x}]ω+m such that f � [{x}, A]1,2 ≡ 1,
then either (a) or (b) holds.

Proof of claim. If A ∈ [S \ {x}]ω+m is such that f � [A]3 ≡ 0, then (a) holds. If
f � [A]3 6≡ 0, then there is a triple {a0, a1, a2} ∈ [A]3 such that f({a0, a1, a2}) = 1.
Setting B = {x, a0, a1, a2} then gives f � [B]3 ≡ 1, showing (b). �

We may assume throughout that |S| = ℵ1. Now, by Proposition 3.17 there
are R,P ⊂ S such that otpR = φ, otpP = ω2 and R < P (i.e., r < p for all
r ∈ R and p ∈ P ). We will focus on the set R ∪ P . Note that [R ∪ P ]3 =
[R]3 ∪ [R,P ]2,1 ∪ [R,P ]1,2 ∪ [P ]3.

By the Finite Ramsey’s Theorem, there exists some n < ω such that n→ (m, 4)3.
Define for each r ∈ R the partition fr : [P ]2 → 2: {p, p′} 7→ f({r, p, p′}). Using

Corollary 3.31, the relation ω2 → (n, ω + m)2 holds. If there is some r ∈ R such
that there is Ar ∈ [P ]ω+m with fr � [Ar]

2 ≡ 1, then we are done by the claim.
Therefore suppose for all r ∈ R there is Dr ∈ [P ]n with fr � [Dr]

2 ≡ 0. In other
words, for all r ∈ R there is Dr ∈ [P ]n such that f � [{r}, Dr]

1,2 ≡ 0. As |R| = ℵ1
and |[P ]n| = ℵ0, there is some T ⊆ R such that for all t ∈ T we have Dt = D,
for some fixed D = {d0, . . . , dn−1} ∈ [P ]n, and also otpT is a real order-type. In
particular, f � [T,D]1,2 ≡ 0.

Define the partition fD : [T ]2 → n+ 1 by

fD({t, t′}) =

{
i if i < n is the least such that f{t, t′, di} = 1, and
n otherwise.

Theorem 3.23 gives otpT → ((ω +m)n, ω)2. If there is some i < n and A ∈ [T ]ω+m

such that A is i-homogeneous for fD, then we are done by the claim.
Therefore we may assume there is C ∈ [T ]ω such that f � [C,D]2,1 ≡ 0. Consider

the partition f � [C]3 : [C]3 → 2. By Ramsey’s theorem, ω → (ω, 4)3. If there is
B ∈ [C]4 such that f � [B]3 ≡ 1, we have shown (b) and are done.

Thus we can assume without loss of generality that there is E ∈ [C]ω which
is 0-homogeneous for f . Recall that we chose n < ω such that n → (m, 4)3. If

8See [BH73, Theorem 1].
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there is B ∈ [D]4 such that B is 1-homogeneous for f , we are done. Therefore we
assume there is F ∈ [D]m such that f � [F ]3 ≡ 0. Define A = E ∪ F . Note that
E < F and hence otpA = ω+m. Finally, we have already shown that f � [E]3 ≡ 0,
f � [E,F ]2,1 ≡ 0, f � [E,F ]1,2 ≡ 0, and f � [F ]3 ≡ 0. Hence we have shown A is
0-homogeneous for f and this concludes the proof.

3.3 Ordinals

In this section we study ordinal-based partition relations. As an ordinal has a well-
ordered order-type, we remark that every ordinal-based partition relation is a special
case of a partition relation based on an order-type.

3.3.1 Countable ordinals

Theorem 3.25 (Theorem 23i). For n < ω and α < ω · 2 it holds that

ω · n→ (n, α)2. (3.46)

Proof. Let S be a set with otpS = ω · n and let [S]2 = A ·∪ B be a partition. We
can write S as S =

⋃
i<n Si, where otpSi = ω for all i < n, and i < j < n implies

Si < Sj. Assume for the sake of contradiction that there exists no set H ⊆ S such
that either otpH = n and [H]2 ⊆ A or otpH = α and [H]2 ⊆ B.

Note that for every i < n we have essentially a colouring fi : [Si]
2 → 2. As

|Si| = ℵ0, we have by Ramsey’s Theorem that there exists an infinite homogeneous
set Ki ⊆ Si for fi. By assumption it cannot be that [Ki]

2 ⊆ A, and hence it must
be that [Ki]

2 ⊆ B.
Fix some i < j < n. We define an operator Oi,j as follows. We look at sets

K ⊆ Ki ∪Kj such that |K ∩Ki| = ℵ0 and [K]2 ⊆ B. Note that K = Ki works, so
there is at least one such set. As by assumption it must be that otpK < α < ω · 2,
there is in fact such a set K such that otpK is maximal. Choose such a set K and
set

Oi,j(K0, K1, . . . , Kn−1) = (L0, L1, . . . , Ln−1),

where Li = K ∩Ki, Lj = Kj \K and Lm = Km for m 6= i, j.
We have otpLj = ω, because if otpLj < ω, then otpK∩Kj = ω. As otpK∩Ki =

ω this would imply that otpK ≥ ω · 2, a contradiction because [K]2 ⊆ B. It is even
the case that for all i < n we have otpLi = ω.

We also have for every y ∈ Lj that the set X := {x ∈ Li | {x, y} ∈ B} has
cardinality |X| < ℵ0. For suppose otherwise, then define the set K ′ = X ∪ (K ∩
Kj) ∪ {y}. Then K ′ ⊆ Ki ∪ Kj and |K ′ ∩ Ki| = ℵ0. Also [K ′]2 ⊆ B, because
[K ′ \{y}]2 ⊆ [K]2 ⊆ B, and for every x ∈ X we have by definition {x, y} ∈ B. Also,
[(K ∩Kj) ∪ {y}]2 ⊆ [Kj]

2 ⊆ B. Finally, we have otpK ′ = otpK + 1, contradicting
the maximality of K.

We now apply the operators Oi,j iteratively on the system (K0, . . . , Kn−1) for
all pairs i < j < n. There are

(
n
2

)
such pairs, so we only apply finitely many

operators. We denote the end result as (D0, . . . , Dn−1). Note we have for all i < n
that otpDi = ω. Importantly, for every i < n we have for all y ∈

⋃
i<j<nDj that

|{x ∈ Di : {x, y} ∈ B}| < ℵ0. Assuming the elements xn−1, . . . , xi+1 have been
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chosen, in this order, then we have

|{x ∈ Di : {x, y} ∈ B for some y ∈ {xi+1, . . . , xn−1}}| < ℵ0,

hence we can choose an element xi ∈ Di such that for all j with i < j < n we have
{xi, xj} ∈ A. Finally, the set D = {x0, . . . , xn−1} has otpD = n and [D]2 ⊆ A,
which is a contradiction with our assumption that such a set did not exist.

The following theorem shows that we cannot strengthen Theorem 3.25 by in-
creasing the goal to n + 1, because the partition relation is already negative for
ω + 1.

Theorem 3.26 (Theorem 23ii). For n < ω it holds that

ω · n 6→ (n+ 1, ω + 1)2. (3.47)

Proof. Define S := {(m, `) ∈ ω × ω | m < n ∧ ` < ω} and order S lexicographically
by ≺. That is, (m, `) ≺ (m′, `′) if and only if m < m′ or m = m′ and ` < `′.
Note that otp(S,≺) = ω · n. Let [S]2 = A ·∪ B be a partition such that B contains
precisely the pairs {(m, `), (m, `′)} for all m < n and `, `′ < ω. Suppose there is a
set H = {(m0, `0) ≺ . . . ≺ (mn, `n)} ⊆ S, so otp(H,≺) = n+ 1, such that [H]2 ⊆ A.
Then in particular we would get m0 < . . . < mn < n, which is a contradiction.
Similarly, suppose G ⊆ S is such that [G]2 ⊆ B with otp(G,≺) = ω + 1. Then G
must be of the form G = {(m, `) | ` < ω}, which does not have order-type ω + 1.
We conclude ω · n 6→ (n+ 1, ω + 1)2.

Often we will need to make an assumption before we can prove a partition
relation, as is the case in the next theorem.

Theorem 3.27 (Theorem 25). Let 2 ≤ m,n < ω be natural numbers. Assume that
` < ω is such that

`→ (m,m, n)2. (3.48)

Then

ω · `→ (m,ω · n)2. (3.49)

In fact, we will prove an even stronger result. For this stronger result, we will
need to introduce a certain property that natural numbers can have. This property
is similar to the ordinary partition relation, but now we want to account for ordered
pairs instead of only unordered pairs.

Definition 3.28 (Pm,n property). A natural number ` is said to have property Pm,n
if the following holds: for every h : ` × ` \∆ → 2, where ` × ` denotes the ordered
pairs of ` and ∆ = {(d, d) | d < `} is the diagonal, there is

1. either a set {a0, . . . , am−1} ∈ [`]m such that i < j < m implies h(ai, aj) = 0,

2. or a set {a0, . . . , an−1} ∈ [`]n such that for all i, j < n with i 6= j that
h(ai, aj) = 1.
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Theorem 3.29 (Theorem 25i). Let 2 ≤ m < ω and 1 ≤ n < ω. Suppose that ` < ω
has property Pm,n. Then

ω · `→ (m,ω · n)2. (3.50)

Proof. Let f : [ω · `]2 → 2 be a colouring. Note that we can write

[ω · `]2 = {{ω · a+ r, ω · b+ s} | a, b < ` and r, s < ω and (a, r) 6= (b, s)}.

Fix an enumeration 〈pi | i < `2〉 of the ordered pairs ` × `. We assume that the
diagonal ∆ appears last, i.e. p`(`−1)+j is the pair (j, j). Define g : [ω]2 → 2`

2
by

{r < s} 7→ (xi)
`2−1
i=0 ,

where xi = f({ω · a + r, ω · b + s}) and where (a, b) = pi is the i-th pair of the
enumeration. By Ramsey’s Theorem there is a homogeneous set H ⊆ ω for g with
otpH = ω.

Let {r < s} ∈ [H]2. We can now define h : `× ` \∆→ 2 by

(a, b) 7→ (g({r < s}))i = f({ω · a+ r, ω · b+ s}),

where pi = (a, b). Note that by the homogeneity of H it is irrelevant which element
{r < s} ∈ [H]2 is chosen. By assumption ` has property Pm,n, which means the
following: either there is some set Xm = {c0, . . . , cm−1} ⊆ ` such that i < j < m
implies h(ci, cj) = 0, or there is a set Xn = {d0 < . . . < dn−1} ⊆ ` such that
h(di, dj) = 1 for all i, j < n with i 6= j. In the first case, define the set Hm :=
{ω · ci + ri | i < m}, where {r0 < . . . < rm−1} ⊆ H. It follows that Hm is
0-homogeneous for f and otpHm = m.

Suppose that there is no 0-homogeneous set for f of order-type m. Then in
particular the second case of property Pm,n must hold. There is another consequence,
namely it holds for all i < n that for {r, s} ∈ [H]2 that f({ω · di + r, ω · di + s}) = 1,
else the set {ω · di + r | r ∈ H} would constitute a 0-homogeneous set for f of
order-type ω. We create a partition of H = ·∪i<nH i in n pairwise disjoint sets
such that for every i < n we have otpH i = ω. Define Hn := {ω · di + s | i <
n and s ∈ H i}. Finally, Hn is 1-homogeneous for f of order-type otpHn = ω · n.
To see this, take {ω · di + r, ω · dj + s} ∈ [Hn]2. If i = j we already saw above that
f({ω ·di+r, ω ·di, s}) = 1. If i 6= j, then r 6= s and suppose s < r (the case for r < s
follows analogously). Let k be the index of the pair (dj, di) in the enumeration. It
follows that 1 = h(dj, di) = (g({s < r})k = f({ω · dj + s, ω · di + r}), which is what
we wanted to show.

We are now ready to prove Theorem 3.27.

Proof of Theorem 3.27. In view of Theorem 3.29, it suffices to show that if

`→ (m,m, n)2

holds, then ` has property Pm,n.
Hence, take an arbitrary function h : `×`\∆→ 2. Define the partition f : [`]2 →

3 by

{a < b} 7→


0 if h(a, b) = 0,
1 if h(a, b) > h(b, a), and
2 if h(a, b) = h(b, a) = 1.

44



Chapter 3.3

If there is a 0-homogeneous set for f of order-type m, or there is 2-homogeneous set
for f of order-type n, then we are done.

Therefore we may assume we find a 1-homogeneous set H = {a0 < . . . < am−1}
for f . Define bi = am−1−i for all i < m, then the set {b0, . . . , bm−1} has the property
that i < j implies h(bi, bj) = 0. We conclude that ` has the property Pm,n and this
concludes the proof.

The positive partition result from Theorem 3.29 is actually tight, in the sense
that if the assumption of ` having property Pm,n were dropped, the partition relation
would be negative.

Lemma 3.30 (Theorem 25ii). Let 2 ≤ m,n < ω. Let `0 denote the least natural
number which has property Pm,n. Then

γ 6→ (m,ω · n)2 where γ < ω · `0. (3.51)

Proof. Let γ < ω · `0. Then there is some ` < `0 such that ω · ` ≤ γ < ω · (` + 1).
By assumption ` does not have property Pm,n, and hence there exists a function
g : `× ` \∆ → 2 such that for all {a0 < . . . < am−1} ⊆ ` there are i < j < m with
g(ai, aj) = 1 and for all {b0 < . . . < bn−1} ⊆ ` there are i, j < n where i 6= j with
g(bi, bj) = 0.

Define f : [γ]2 → 2 by f({ω · a + r, ω · b + s}) = 0 if and only if r < s < ω and
a, b < `, a 6= b and g(a, b) = 0. Suppose that there is a set H ⊆ γ with otpH = m
such that f � [H]2 ≡ 0. We can write H = {ω ·a0+r0 < . . . < ω ·am−1+rm−1} where
we have for all i < m that ai < `. It follows immediately that for all i < j < m we
have g(ai, aj) = 0 and a0 < . . . < am−1, which contradicts our assumption.

Suppose, on the other hand, that there is a 1-homogeneous set H ⊆ γ for f of
order-type otpH = ω · n. Then we can write H = {ω · bi + sij | bi < `, i < n, j < ω},
where sij < ω for all i < n and j < ω. It must be that bi < ` because γ < ω · (`+ 1).

There are some indices k0, . . . , kn−1 and r0, . . . , rn−1 such that s0k0 < . . . < sn−1kn−1
< ω

and ω > s0r0 > . . . > sn−1rn−1
. Then for all i, j < n with i 6= j, if i < j, then it

is the case that g(bi, bj) = f({ω · bi + siki , ω · bj + sjkj}) = 1, and if j < i, then

g(bj, bi) = f({ω · bj + sjrj , ω · bi + siri}) = 1, which gives a contradiction.

We conclude γ 6→ (m,ω · n)2.

Theorem 3.27 gives us an interesting corollary, which we will need to use in this
thesis.

Corollary 3.31. For all n,m < ω it holds that

ω2 → (m,ω · n)2.

Proof. Suppose w.l.o.g. that m ≤ n (the case for n ≤ m is analogous). By Finite
Ramsey’s Theorem9 there exists a natural number ` such that `→ (n)23. Obviously,
then `→ (m,m, n)2 is true as well. Using Theorem 3.27 we have ω · `→ (m,ω · n)2

and as ω · ` ≤ ω2, we obtain the desired result.

9See Theorem 2.19.
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At the end of this section, we present some results that were proven after the
publication of [ER56], but we will not give the proofs or go into much detail.

In a paper by Ernst Specker, [Spe57], we find a strengthening of Corollary 3.31,
and the same paper demonstrates that the result cannot be generalised for all finite
powers of ω.10

Theorem 3.32 (E. Specker, [Spe57]). For all m < ω and n ≥ 3,

ω2 → (m,ω2)2, and (3.52)

ωn 6→ (3, ωn)2. (3.53)

The next interesting partition relations concerns ωω as resource, and C.C. Chang
showed that this relation is positive.

Theorem 3.33 (C.C. Chang, [Cha72], Theorem 1).

ωω → (ωω, 3)2. (3.54)

E.C. Milner was able to generalise Chang’s result to all finite n, although he did
not publish this result.11 Larson provided a short proof in her PhD.12

Theorem 3.34 (E.C. Milner, 1972). For all n < ω,

ωω → (ωω, n)2. (3.55)

In his PhD thesis (1999), Rene Schipperus studied partition relations where the
resource was of the form ωω

β
. The results can be found in [Sch10].

E.C. Milner showed in his PhD thesis an ordinal-variant of the Positive Stepping
Up Lemma.

Theorem 3.35 (E.C. Milner, [EM72], p. 501). Let γ and δ be countable ordinals
and let k < ω. If ωγ → (ω1+δ, k)2, then ωγ+δ → (ω1+δ, 2k)2.

3.3.2 General ordinals

Lemma 3.36 (Lemma 5). Let α be an ordinal and k a cardinal. Suppose that βn
are ordinals for all n < k such that for all β < α it holds that β 6→ (βn)rn<k. Then
α 6→ (βn + 1)r+1

n<k.

Proof. Let S be a set such that otp(S,<) = α. For every x ∈ S, define Ix = {y ∈
S | y < x}, then otp(Ix, <) = β < α, for some β. By assumption there is some
colouring fx : [Ix]

r → k such that for all n < k there is no set H of order-type βn
which is n-homogeneous for fx.

Define f : [S]r+1 → k by

{x0 < x1 < . . . < xr−1 < xr} 7→ fxr({x0 < x1 < . . . < xr−1}).

If there is a homogeneous set H = {hi | i < βn + 1} ⊆ S for f with colour n and
otp(H,<) = βn + 1, then the set {hi | i < βn} is homogeneous for fhβ of order-type
βn and colour n. This is a contradiction and hence the proof is concluded.

10Cited after [Lar12, p. 219].
11Larson credits Milner with this unpublished result in [Lar73, p. 129].
12See [Lar73, Theorem 3.1].
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3.4 Cardinals

In this section we study partition relations where the resource is a cardinal. If
we view a cardinal as its initial ordinal with the ordinal ordering, we observe that
every cardinal-based partition relation is a special case of an ordinal-based partition
relation. Hence, given a cardinal κ and an ordinal α, we often look at partition
relations of the form κ→ (α)rm. This relation means that our resource is the ordinal
κ with the ordinal ordering < on κ, and there is a homogeneous subset H ⊆ κ such
that otp(H,<) = α.

3.4.1 Positive Stepping Up Lemma

Here we prove a key result of the Erdős-Rado paper: the “Positive Stepping Up
Lemma”,13 and we investigate some of its corollaries. Given some positive partition
relation, this result allows one to increase the exponent and goal, at the cost of
increasing the resource as well. Interestingly, the well-known Erdős-Rado theorem
follows from the Positive Stepping Up Lemma. We mention that the proof below is
a modernisation by [Löw19].

Theorem 3.37 (Positive Stepping Up Lemma, [ER56], Theorem 39). Let κ be an
infinite cardinal, let 2 ≤ m < κ be a cardinal and let r ≥ 1 be a natural number. Let
βn be ordinals for all n < m. Assume κ→ (βn)rn<m. Then (2<κ)+ → (βn + 1)r+1

n<m.

Proof. Take some m-colouring f : [(2<κ)+]r+1 → m and fix some arbitrary ordinal
α < (2<κ)+. Define a sequence of ordinals below α as follows: γα0 := 0, γα1 :=
1, . . . , γαr−1 := r − 1. For δ < κ, assume that γα0 , . . . , γ

α
δ are already defined. Let

γ > γαδ be the least ordinal such that for all indices i0 < · · · < ir−1 ≤ δ it holds that

f(γαi0 , . . . , γ
α
ir−1

, α) = f(γαi0 , . . . , γ
α
ir−1

, γ).

If γ = α we terminate the recursive definition, γαδ+1 is undefined and we set %(α) :=
δ + 1; otherwise γ < α, then set γαδ+1 := γ. If γαδ is defined for all δ < κ, we set
%(α) := κ.

Define for every α < (2<κ)+ the set Aα := {γαδ | δ < %(α)}. There are two
possible cases: in the first case there is some α < (2<κ)+ such that |Aα| = κ, and
in the second case, |Aα| < κ for all α < (2<κ)+. We shall show that in the first
case that for some n < m we can find an n-homogeneous set H for f of order-type
βn + 1, and that the second case will give a contradiction.

Case 1. There is some α < (2<κ)+ such that |Aα| = κ. Define the function

f̂ : [κ]r → m by

f̂(i0, . . . , ir−1) := f(γαi0 , . . . , γ
α
ir−1

, α).

By the assumption κ→ (βn)rn<m, there is some n-homogeneous set H for f̂ of order-
type βn, for some n < m. Then H ∪ {α} has order-type βn + 1 and we claim that it
is n-homogeneous for f . Every (r+ 1)-tuple of H ∪ {α} that contains α clearly has

colour n, since f(γαi0 , . . . , γ
α
ir−1

, α) = f̂(i0, . . . , ir−1) = n. Also, for every (r+1)-tuple
not containing α, we have for i0 < . . . < ir−1 < ir,

f(γαi0 , . . . , γ
α
ir−1

, γαir) = f(γαi0 , . . . , γ
α
ir−1

, α) = f̂(i0, . . . , ir−1) = n,

13This result is [ER56, Theorem 39].
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where the first equality follows by definition of γαir .

Case 2. |Aα| < κ for every α < (2<κ)+. For any two ordinals α, β < (2<κ)+ we
say that α and β are equivalent, if %(α) = %(β) and for all indices i0 < . . . < ir−1 <
%(α),

f(γαi0 , . . . , γ
α
ir−1

, α) = f(γβi0 , . . . , γ
β
ir−1

, β).

Note that the equivalence class of some ordinal α < (2<κ)+ is completely determined
by the value %(α) < κ and by the function

f̃ : [%(α)]r → m : (i0, . . . , ir−1) 7→ f(γαi0 , . . . , γ
α
ir−1

, α).

Note that there are at most |m[%(α)]r]| ≤ 2<κ such functions. Therefore there are at
most |

∑
µ<κm

|µ|| = 2<κ equivalence classes and so there must be an equivalence
class of size (2<κ)+.

We show that any two equivalent ordinals must be the same. For the sake of
contradiction suppose that α and β are equivalent and α < β. By an inductive
argument we can show that for every δ < %(α) = %(β), γαδ = γβδ . Now, for all indices
i0 < . . . < ir−1 < %(β), we have by definition of the equivalence

f(γβi0 , . . . , γ
β
ir−1

, β) = f(γαi0 , . . . , γ
α
ir−1

, α) = f(γβi0 , . . . , γ
β
ir−1

, α),

which shows that α could have taken the role of γβ%(β) and gives us a contradiction.

There are some incredibly interesting applications of the Positive Stepping Up
Lemma, which we will demonstrate here. It will be useful to define notation for
iterated exponentiation.

Definition 3.38 (Beth function). Let κ be any cardinal. By recursion on the
ordinals, we define the beth function as

i0(κ) = κ, iα+1(κ) = 2iα(κ), iα(κ) = sup{iβ(κ) | β < α} for α limit.

In the case where κ = ℵ0, we simply write iα = iα(ℵ0).

Theorem 3.39. For any r,m, n < ω,

i+
n → (ω + n+ 1)rm. (3.56)

Proof. Start with the relation ℵ0 → (ω)rm, which is true by Ramsey’s Theorem.
Then iteratively apply the Positive Stepping Up Lemma n+ 1 times. Note that for
all n < ω, (2<i+

n )+ = (2in)+ = i+
n+1.

In particular, we obtain the following two relations.

Corollary 3.40. For all r,m < ω,

ω1 → (ω + 1)rm, and (3.57)

(2ℵ0)+ → (ω + 2)rm. (3.58)

As promised, the well-known Erdős-Rado Theorem also follows from the Positive
Stepping Up Lemma.
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Theorem 3.41 (Erdős-Rado Theorem). For any infinite cardinal κ and any n < ω,

in(κ)+ → (κ+)n+1
κ .

Proof. Proof by induction on n.
Base case n = 0. κ+ → (κ+)1κ is true because κ < cf(κ+).
Assume for n ≥ 1 that in−1(κ)+ → (κ+)nκ is true. As

2<in−1(κ)+ = 2in−1(κ)

= in(κ),

the result follows from the Positive Stepping Up Lemma.

Remark 3.42. We actually obtain a slightly stronger partition relation for the
Erdős-Rado Theorem, namely the relation

in(κ)+ → (κ+ + n)n+1
κ .

One reason why some applications of the Positive Stepping Up Lemma are so
interesting, is because they seem to be sharp. We are able to show that the relations
of Corollary 3.40 cannot be improved, i.e. increasing the goal will change the parity
of the partition relation. In Chapter 4, we will conjecture that Theorem 3.39 is
sharp. Unfortunately, we have not been able to prove nor disprove this. However,
we have been successful in establishing a bound: there are no homogeneous sets of
order-type ω2. For these results, see Chapter 4.

For now, we want to show the relation ω1 → (ω+ 1)rm is sharp. We have already
seen a different result where there are no homogeneous sets of order-type ω + 2,
namely Theorem 3.13. This theorem gave us otp 2ω 6→ (ω + 2)32, where 2ω is the
Cantor space.14 Even though the Cantor space has the cardinality of the continuum,
Theorem 3.13 does not imply 2ℵ0 6→ (ω + 2)32, nor even the weaker ω1 6→ (ω + 2)32,
because ω1 does not embed into Cantor space. However, [ER56, Theorem 41] implies
this negative partition relation.

Proposition 3.43 (Theorem 41). For all n < ω,

ωn+1 6→ (ωn + 2, ω + 1)3. (3.59)

Proof. Clearly ωn + 1, ω∗ 6≤ ωn. For any β < ωn+1 it holds that |β| ≤ |ωn| and
hence by Lemma 3.1 we have β 6→ (ωn + 1, ω)2. Then immediately by Lemma 3.36
it follows that ωn+1 6→ (ωn + 2, ω + 1)3.

Corollary 3.44. ω1 6→ (ω + 2, ω + 1)3.

In fact, Theorem 4.9 provides the strengthening ω1 6→ (ω + 2, ω)3. Obviously,
Corollary 3.44 implies ω1 6→ (ω+ 2)32. It is not clear whether we can strengthen this
relation to the resource 2ℵ0 , i.e. whether 2ℵ0 6→ (ω + 2)32 is true. It turns out that
this relation is indeed negative, as we shall show in Corollary 4.10.

The partition relation from Corollary 3.44 is negative when r = 3. Changing
the exponent in the partition relations gives interesting results. If we increase the
exponent, then one of the goals can be reduced to a natural number and the partition
relation will remain negative. Curiously, if we reduce the exponent to r = 2, then
the partition relation is positive, as we prove in Theorem 3.46.

14Recall that otp 2ω ≡ λ, i.e. otp 2ω ≤ λ and otp 2ω ≥ λ.
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Lemma 3.45. There is a natural number15 ` < ω such that for all 4 ≤ r < ω,

ω1 6→ (ω + 2, `+ r − 4)r. (3.60)

Proof. In view of Lemma 2.22, it suffices to show (3.60) for r = 4. First, by Corol-
lary 3.44, we have ω1 6→ (ω+2)32. Then, by Finite Ramsey’s Theorem, there is some
` < ω such that `→ (4)32. Finally, using Theorem 3.5, we obtain ω1 6→ (ω+2, `)4.

Theorem 3.46 (Theorem 33). Let α < ω · 2, then ω1 → (α)22.

Proof. Let S be a set such that otpS = ω1 and let f : [ω1]
2 → 2. As α < ω · 2, we

can assume w.l.o.g. that there is some k < ω such that α = ω + k. Assume for the
sake of contradiction that there is no homogeneous set for f which has order-type
α = ω + k. By the Dushnik-Miller Theorem, ω1 → (ω, ω1)

2. As f cannot have an
uncountable homogeneous set, there must be a 0-homogeneous set P ⊆ S for f with
otpP = ω.

Suppose first, that whenever P ′ ⊆ P is infinite, there is an uncountable set
A ⊆ S such that for every x ∈ A,

|{y ∈ P ′ | f({y < x}) = 0}| = ℵ0. (3.61)

Let x0 ∈ S such that |{y ∈ P | f({y < x0}) = 0}| = ℵ0. Call this set P0. Let ν < ω1

and assume that xµ, Pµ are defined for all µ < ν, such that

1. |Pµ \ Pρ| < ℵ0, for all ρ < µ < ν, and

2. Pµ ⊆ {y ∈ P | f({y < xµ}) = 0} has order-type ω, for all µ < ν.

Note that ν < ω1 is countable, so fix an enumeration 〈δn | n < ω〉 of ν. Inductively
choose elements yn such that for every n < ω,

yn ∈
⋂
i≤n

Pδi \ {y0, . . . , yn−1}.

Set P ′ = {yn | n < ω}, which is then infinite and contained in P . Note that,
since otpS = ω1, it must be that for every x ∈ S, |{y ∈ S | y < x}| ≤ ℵ0. By
assumption there is an uncountable set A such that for every x ∈ A, (3.61) holds.
Therefore, we can pick

xν ∈ A \
⋃
µ<ν

{y ∈ S | y ≤ xµ}.

Set Pν = {y ∈ P ′ | f({y < xν}) = 0}, and since xν ∈ A, otpPν = ω. Also, note
that for any µ < ν, there is n < ω such that µ = δn, and then

|Pν \ Pµ| = |Pν \ Pδn| ≤ |P ′ \ Pδn| ≤ |{y0, . . . , yn−1}| < ℵ0.

This concludes our definition of xν and Pν for all ν < ω1.
Set X := {xδ | δ < ω1}, which we note has order-type ω1 by construction. Again,

by the Dushnik-Miller Theorem, ω1 → (ω, ω1)
2. There cannot be a homogeneous

set of order-type ω1, therefore there are indices i0 < . . . < im−1 < ω1 such that

15Erdős and Rado calculate on [ER56, p. 474] that ` = 226 suffices.
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f � [{xi0 < . . . < xim−1}]2 ≡ 0. Note that for any j < m, |Pim−1 \ Pij | < ℵ0, and
hence

Q = {y ∈ Pim−1 | (∀j ≤ m− 1) f({y < xij}) = 0}

has order-type ω. Then the set Q ∪ {xi0 < . . . < xim−1} is homogeneous for f and
has order-type ω +m = α. This is a contradiction.

Therefore we now assume that there is P ′ ⊆ P such that

|{x ∈ S : |{y ∈ P ′ : f({y < x}) = 0}| = ℵ0}| ≤ ℵ0. (3.62)

This means there is uncountable A ⊆ S such that for all x ∈ A,

|{y ∈ P ′ | f({y < x}) = 0}| < ℵ0. (3.63)

As there are only countably many finite subsets of P ′, there is an uncountable set
A′ ⊆ A such that E := {y ∈ P ′ | f({y < x}) = 0} is constant for all x ∈ A′. Set
P ′′ = P ′ \ E, which has order-type ω. Again, there is uncountable A′′ ⊆ A′ such
that P ′′ < A′′. Note that so far we have proven that,

1. ∀y ∈ P ′′, x ∈ A′′, f({y < x}) = 1,

2. P ′′ is 0-homogeneous for f of order-type ω,

3. A′′ is uncountable.

Since A′′ is uncountable, we can repeat the construction above, this time on A′′

instead of S. This will give us sets Pn such that for every n ∈ ω,

1. Pn is homogeneous for f with colour 0 and order-type ω,

2. ∀y ∈ Pj, x ∈ Pn, f({y < x}) = 1, whenever j < n < ω.

By (3.62), there is for every n < ω a countable set Qn, such that for every x ∈
S \Qn, the set {y ∈ Pn | f({y < x}) = 0} is finite. Note that

⋃
n<ωQn is countable,

and hence there is an uncountable set B ⊆ S \
⋃
n<ωQn such that

⋃
n<ω Pn < B. By

Dushnik-Miller, ω1 → (ω1, ω)2, and as we cannot have a homogeneous set of order-
type ω1, there is a set D ∈ [B]k homogeneous for f with colour 1. Since D ⊆ B, it
follows that for every n < ω that the set

{y ∈ Pn | (∃x ∈ D)f({y < x}) = 0} is finite.

Therefore we can pick yn ∈ {y ∈ Pn | (∀x ∈ D)f({y < x}) = 1}. Put Y = {yn |
n < ω}, then Y ∪D is homogeneous for f and has order-type ω + k. This gives a
contradiction with our assumption, and therefore ω1 → (ω + k)22.

Returning to the Erdős-Rado theorem, we obtain in particular the relation i+
1 →

(ω1)
2
2. The classical result by Sierpińsky shows that reducing the resource to i1 will

produce a negative partition relation. Remarkably, this result shows that a direct
generalisation of Ramsey’s Theorem already fails at the first uncountable cardinal.

Theorem 3.47 (Sierpińsky, 1933).

2ℵ0 6→ (ℵ1)22. (3.64)
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Proof. Fix a well-order <∗ on R and let < be the usual ordering. Define the colouring
f : [R]2 → 2 by

{x <∗ y} 7→ 0 ⇐⇒ x < y.

Suppose there is a set H ⊆ R homogeneous for f with colour, say, 1. Then > is a
well-order on H, and for every h ∈ H there is a rational qh between h and its >-
successor h′. This gives an injection of H into Q, and hence H is at most countable.
Therefore there is no uncountable homogeneous set for f .

The technique employed in Theorem 3.47, where one considers distinct orders
on a set, is also used in Lemma 3.1. As a consequence, Sierpińsky’s result can
be improved to all ordinals of cardinality i1. In particular, this shows that the
first instance of the Erdős-Rado Theorem cannot be strengthened by reducing the
resource.

Lemma 3.48. For all β < (i1)
+, β 6→ (ω1)

2
2.

Proof. Since ω1, ω
∗
1 6≤ λ and |λ| = 2ℵ0 , the result follows by Lemma 3.1.

3.4.2 Erdős-Dushnik-Miller theorem

In 1941, one of the first partition relations concerning uncountable cardinals was
proven by Dushnik and Miller. They credit16 Paul Erdős for help with the proof,
and in particular for proving the case for when κ is a singular cardinal. And thus,
the result is now known as the Erdős-Dushnik-Miller Theorem. In [ER56, Theorem
44], Erdős and Rado present a proof of this theorem, which we will omit. See [Jec03,
Theorem 9.7] for a proof.

Theorem 3.49 (Erdős-Dushnik-Miller Theorem, [DM41]). For all infinite cardinals
κ,

κ→ (ℵ0, κ)2. (3.65)

Erdős and Rado proved a strengthening of the Erdős-Dushnik-Miller theorem
and were able to increase the order-type of the homogeneous sets from ω to ω + 1.
However, they were only able to prove this for uncountable regular cardinals.

Theorem 3.50 (Theorem 34). Let κ be an uncountable regular cardinal. Then

κ→ (ω + 1, κ)2. (3.66)

In Corollary 3.58 we show that (3.66) fails for all infinite cardinals with countable
cofinality. In [SS00], Saharon Shelah and Lee J. Stanley show that it is consistent
for singular cardinals κ with uncountable cofinality that κ→ (ω+1, κ)2. They claim
on [SS00, p. 259] that it is consistent for (3.66) to fail for singular cardinals with
uncountable cofinality.

To prove Theorem 3.50 we will need to establish some other results first.

Lemma 3.51 (Lemma 2). Let (T,<) be a well-ordered set and let f : [T ]2 → 2 be a
partition. Then there exists a unique set H ⊆ T such that H is 1-homogeneous for
f and for all x ∈ T \H there is some h ∈ H such that f({h < x}) = 0.

16See the footnote on [DM41, p. 606].
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Proof. We can assume T 6= ∅. Let κ be a cardinal such that κ > |T |. We define the
set H by induction on κ. Suppose 〈hβ | β < α〉 is already defined for some α < κ.

Case 1. If there is x ∈ T \ {hβ | β < α} such that for all β < α, f({x, hβ}) = 1,
then set hα to be the <-least such x in T \ {hβ | β < α}.

Case 2. If for all x ∈ T \ {hβ | β < α} there is β < α such that f({x, hβ}) = 0,
we set hα = h0.

As |T | < κ there is a least α < κ such that α > 0 and hα = h0. Define
H = {hβ | β < α}. By construction, H is 1-homogeneous for f . Also, if x ∈ T \H,
then by definition there is a least β < α such that f({hβ, x}) = 0. Then, for all
γ < β, we have f({hγ, x}) = 1, and by definition of hβ it must be that hβ < x.

To see that H is unique, let H ′ ⊆ T be a set that also satisfies the properties.
Assume x ∈ T is the least element in the symmetric difference H4H ′. Suppose
w.l.o.g. that x 6∈ H ′ (the case for x 6∈ H is analogous). Then by assumption there
exists y ∈ H ′ such that f({y < x}) = 0. As x was the <-least, it must be that
y ∈ H. But as H is 1-homogeneous for f , it follows that x 6∈ H, contradicting that
x ∈ H4H ′. Therefore H4H ′ = ∅, showing H = H ′ and thus H is unique.

The following proposition will be pivotal to prove Theorem 3.50, although the
proof is rather technical. Recall that β− denotes the predecessor of β, i.e. it is the
ordinal γ where γ + 1 = β if β is a successor ordinal, and β− = β if β is a limit
ordinal.

Proposition 3.52 (Theorem 34). Let α, β, γ be ordinals and suppose α 6→ (β, γ)2.
Then there exists a sequence of ordinals 〈αµ | µ < β−〉, such that

α 6→ (αµ + 1)1µ<β− , and (3.67)

αµ 6→ (γ)1κµ , (3.68)

for all µ < β−, where κµ =
∏

ν<µ |αν |.

Proof. Let (S,<) be an ordered set with otp(S,<) = α and let f : [S]2 → 2 be a
colouring witnessing α 6→ (β, γ)2. Note that α is an ordinal, hence (S,<) is well-
ordered. Let ρ be an ordinal such that |ρ| > |α|. Fix x ∈ S, we define a sequence
〈γxµ | µ < ρ〉 by transfinite recursion on ρ. Let µ < ρ and suppose the sequence
〈γxν | ν < µ〉 is already defined such that

1. γxν ∈ S for all ν < µ, and

2. f({γxν < x}) = 0 if ν < µ and γxν 6= x.

We define γxµ as follows. If γxν = x for some ν < µ, then we let γxµ = x. Otherwise,
γxν 6= x for all ν < µ, and in this case we define the set T consisting precisely of the
elements y ∈ S such that f({γxν < y}) = 0 for all ν < µ. Note that by assumption
x ∈ T , so T is non-empty. There exists a unique set H ⊆ T satisfying the properties
of Lemma 3.51. Then H ⊆ T is 1-homogeneous for f � [T ]2, and hence also 1-
homogeneous for f . Since f witnesses α 6→ (β, γ)2, it holds that otp(H,<) < γ.
If x ∈ H, then we set γxµ = x. If x 6∈ H, then there exists some z ∈ H such that
f({z < x}) = 0 and we set γxµ to be the <-least such z ∈ H. This completes the
definition of 〈γxµ | µ < ρ〉.

For every x ∈ S, there is a <-least σ(x) < ρ such that γxσ(x) = x. Otherwise,

the sequence 〈γxµ | µ < ρ〉 would be strictly increasing sequence in (S,<), where
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otp(S,<) = α < ρ, giving a contradiction. Therefore, for fixed x ∈ S, we obtain a
set A = {γxµ | µ ≤ σ(x)}, which has order-type σ(x)+1. The set A is 0-homogeneous
for f by construction, and since f witnesses α 6→ (β, γ)2, we have σ(x) + 1 < β. In
other words, σ(x) < β−.

Define for every µ < β−, Mµ = {γxµ | x ∈ S and σ(x) ≥ µ}. Clearly, S =
∪µ<β−Mµ, and we can define a partition g : S → β− by sending x ∈ S to the least
µ < β− such that x ∈Mµ. Define αµ = otp(Mµ, <) for all µ < β−, then g witnesses
α 6→ (αµ + 1)1µ<β− . Hence we have shown (3.67).

Using Lemma 3.51, we obtain a unique set H(S) which is 1-homogeneous for f
and for all x ∈ S \H(S) there is h ∈ H(S) with f({h < x}) = 0. By construction
and the uniqueness of H(S), we obtain M0 ⊆ H(S). Therefore α0 = otpM0 < γ
and since κ0 = 1 by definition, we obtain α0 6→ (γ)1κ0 .

Fix 0 < µ < β−. We want to write Mµ as a union of “sufficiently small” sets. We
know z ∈Mµ if and only if there is x ∈ S with σ(x) ≥ µ and γxµ = z. In particular,
if z ∈Mµ there are yν ∈Mν for all ν < µ such that γxν = yν . This gives us

Mµ =
⋃

〈yν |ν<µ〉∈
∏
ν<µMν

{γxµ | x ∈ S and σ(x) ≥ µ and ∀ν < µ(γxν = yν)}.

Now, given some 〈yν | ν < µ〉 ∈
∏

ν<µMν , we will show that the set {γxµ | σ(x) ≥
µ and ∀ν < µ(γxν = yν)} has order-type strictly less than γ. To see this, consider
the set

T = {y ∈ S | f({yν < y}) = 0 for all ν < µ}.

Let H ⊆ T be the set we obtain from Lemma 3.51. If x ∈ S is now such that
σ(x) ≥ µ and γxν = yν for all ν < µ, then γxµ ∈ H, by definition of the γxµ. Therefore

{γxµ | x ∈ S and σ(x) ≥ µ and ∀ν < µ(γxν = yν)} ⊆ H.

Finally, H is 1-homogeneous for f and therefore otp(H,<) < γ. Define κµ =∏
ν<µ |αν |. Also, define the colouring h : Mµ → κµ by sending y ∈ Mµ to the <∗-

least element 〈yν | ν < µ〉 ∈
∏

ν<µMν such that there are x ∈ S with σ(x) ≥ µ with
γxν = yν for all ν < µ (here <∗ is some fixed well-order on κµ). Then h witnesses
αµ 6→ (γ)1κµ , showing (3.68). This concludes the proof.

We are now ready to prove Theorem 3.50.

Proof of Theorem 3.50. Suppose κ 6→ (ω + 1, κ)2. Then by Proposition 3.52 there
exists a sequence of ordinals 〈αn | n < ω〉 satisfying

κ 6→ (αn + 1)1n<ω, and (3.69)

αn 6→ (κ)1κn , (3.70)

for all n < ω, where κn =
∏

m<n |αm|.
We show αn < κ for all n < ω. By definition κ0 = 1 is the cardinality of the

empty product. Thus immediately, α0 < κ by α0 6→ (κ)11. Let n ≥ 1 and suppose
now that αm < κ for all m < n. Then

κn =
∏
m<n

|αm| = max{|αm| : m < n} < κ.
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Then by (3.70) we have αn 6→ (κ)1κn , which immediately gives αn < κ, because
κn < cf(κ) = κ.

Now, by (3.69), there is a partition κ =
⋃
n<ω An, such that otpAn ≤ αn for all

n < ω. In particular,

κ ≤
∑
n<ω

|αn| < κ,

because |αn| < κ for all n < ω and cf(κ) > ℵ0. This is a contradiction and hence
we conclude κ→ (ω + 1, κ)2.

A straightforward modification of the proof above gives us the following result.

Theorem 3.53. Let κ and ν be infinite cardinals such that κµ ≤ κ for all µ < ν.
Then κ+ → (ν + 1, κ+)2.

Theorem 3.50 should be compared to the result by Todorčević [Tod86, Theorem
2], in which he showed that for any cardinal κ of uncountable cofinality, there is a
c.c.c. forcing which adds a witness to κ 6→ (ω + 2, κ)2.

We find another corollary of Proposition 3.52.

Corollary 3.54. Let κ be a (strongly) inaccessible cardinal.17 Then for all β < κ,

κ→ (β, κ)2. (3.71)

Proof. Suppose for the sake of contradiction that there is some ordinal β < κ such
that κ 6→ (β, κ)2. Using Proposition 3.52, we obtain a sequence of ordinals 〈αµ |
µ < β−〉 such that

κ 6→ (αµ + 1)1µ<β− , and (3.72)

αµ 6→ (κ)1κµ , (3.73)

for all µ < β−, where κµ =
∏

ν<µ |αν |.
We prove by induction that |αµ| < κ for all µ < β−. Suppose for some µ < β−

it holds for all γ < µ that |αγ| < κ. Define ν =
∑

γ<µ |αγ|, then ν < κ by the

regularity of κ. Then |κµ| ≤ ν |µ| ≤ 2ν·|µ| < κ, since κ is a strong limit. By (3.73), we
can write |αµ| =

∑
ν<κµ
|ρν | for ordinals ρν < κ for all ν < κµ. Then, again by the

regularity of κ, |αµ| < κ. This concludes the proof by induction. Hence, |αµ| < κ
for all µ < β−.

Now, by (3.72) and the regularity of κ, we obtain κ =
∑

µ<β− |αµ| < κ. This is

a contradiction. We therefore conclude that κ→ (β, κ)2.

Theorem 3.55 (Theorem 37). Let κ be an infinite cardinal, and let ν be the least
cardinal such that κν > κ. Let µ be an ordinal such that κ < cf ℵµ ≤ ℵµ ≤ κν, then

ℵωµ 6→ (ν+,ℵωµ)2. (3.74)

Proof. As κκ > κ, we have by minimality of ν that ν ≤ κ. Define F to be the set
of functions form ν to κ, then |F | = κν . Let ≺ be the lexicographic ordering on κν .
Then κ+, (ν+)∗ 6≤ otp(F,≺) by [ER53, Lemma 2].

17This means that κ > ℵ0, κ is regular, and for all cardinals ν < κ it holds that 2ν < κ. Of
course, if κ = ℵ0, the result holds by Ramsey’s Theorem.
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Fix some X ⊆ F with |X| = ℵµ. Let f : X → ωµ be an injection, then f [X]
is unbounded in ωµ. Define S = {(x, α) | x ∈ X and α < ωf(x)}, and write
otp(S,�) = L, where � is the lexicographic ordering on S (w.r.t. the lexico-
graphic ordering ≺ on X, and the usual ordering < on ωf(x)). Then, on the one
hand,

|S| =
∑
x∈X

ℵf(x) ≤
∑
x∈X

ℵωµ ≤ |X| · ℵωµ = ℵωµ .

On the other hand, for all ρ < ℵωµ there is some τ < ωµ such that ρ < ℵτ . As f [X]
is unbounded in ωµ, there is some x ∈ X with f(x) > τ . Therefore ρ < ℵf(x) ≤ |S|.
Hence |L| = |S| = ℵωµ .

Claim. ωωµ , (ν
+)∗ 6≤ L.

Proof of claim. First we show ωωµ 6≤ L. Let S1 ⊆ S be arbitrary such that
otp(S1,�) is well-ordered. Define the projection X1 = π(S1) = {x ∈ X | ∃α <
ωµ(x, α) ∈ S1}, then otp(X1,≺) is well-ordered. As κ+ 6≤ otp(F,≺), it holds that
otp(X1,≺) < κ+ and hence |X1| ≤ κ < cf ℵµ. Therefore,

∑
x∈X1

|f(x)| < ℵµ and
thus β := ∪x∈X1f(x) < ωµ. Then

|S1| ≤
∑
x∈X1

ℵf(x) ≤
∑
x∈X1

ℵβ = |X1| · ℵβ < ℵωµ .

Since S1 was an arbitrary well-ordered subset of S, we conclude that ωωµ 6≤ L. Note
that L = otp(S,�).

It remains to show (ν+)∗ 6≤ L. For this, let S2 ⊆ S be an arbitrary subset such
that otp(S2,�∗) is well-ordered. Define X2 = π(S2) = {x ∈ X | ∃α < ωµ(x, α) ∈
S2}, then otp(X2,≺∗) is well-ordered. As (ν+)∗ 6≤ otp(F,≺) and otp(X2,≺) ≤
otp(F,≺), we obtain otp(X2,≺) < (ν+)∗ and hence otp(X2,≺∗) < ν+. In particular,
|X2| ≤ ν. For x ∈ X2, define Nx = {β < ωµ | (x, β) ∈ S2}, then otp(Nx, <) is well-
ordered. But, since otp(S2,�∗) is well-ordered, it follows that otp(Nx, >) is also
well-ordered. This can only happen if |Nx| < ℵ0. Therefore

|S2| =
∑
x∈X2

|Nx| ≤ |X2| · ℵ0 ≤ ν.

This gives otp(S2,�) < (ν+)∗, and since S2 was arbitrary, we get (ν+)∗ 6≤ L. This
concludes the proof of the claim. �

Now we can apply Lemma 3.1: since |L| = ℵωµ and using the claim we obtain
the result ℵωµ 6→ (ℵωµ , ν+)2.

Corollary 3.56. If α is an ordinal with ℵ0 < cf ℵα ≤ ℵα ≤ 2ℵ0, then

ℵωα 6→ (ℵ1,ℵωα)2. (3.75)

Theorem 3.57 (Theorem 36). Let γ be an ordinal, and let Lβ be order-types for
all β < γ. Suppose δ is such that Lβ < δ for all β < γ. Define L =

∑
β<γ Lβ. Then

L 6→ (γ + 1, δ)2.

Proof. Define f : [L]2 → 2 by {x, y} 7→ 1 if and only if {x, y} ∈ [Lβ]2 for some β < γ.
If there is some H ⊆ L that is 0-homogeneous for f , then for all β < γ, it holds
that |H ∩ Lβ| ≤ 1 and hence otpH < γ + 1. Suppose, on the other hand, H is
1-homogeneous for f . Then there is a unique β < γ such that [H]2 ⊆ [Lβ]2, which
implies otpH < δ.
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Corollary 3.58. Let κ be an infinite cardinal, then κ 6→ (cf κ+ 1, κ)2.

Proof. By definition of cofinality, there is a sequence 〈κβ | β < cf κ〉 of ordinals
below κ and κ =

∑
β<cf κ κβ. Then apply Theorem 3.57.

As cf ℵω = ω, this immediately yields the following partition relation.

Corollary 3.59. ℵω 6→ (ω + 1,ℵω)2.

Theorem 3.60 (Theorem 38). Let γ be an ordinal and r < ω. Let m be some
cardinal and let αβ be ordinals for all β < m. If ℵγ 6→ (|αβ|)rβ<m, then ωγ+1 6→
(αβ + 1)r+1

β<m.

Proof. Let δ < ωγ+1, then |δ| ≤ ℵγ. Then by the assumption |δ| 6→ (|αβ|)rβ<m, and
hence δ 6→ (αβ)rβ<m. Then using Lemma 3.36 we obtain the desired result.
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Sharpness of Positive Stepping Up
Lemma

In this chapter, we investigate some results from [Erd+84]. This compendium writ-
ten by Erdős, Hajnal, Máté, and Rado, is about cardinal-based partition relations.
Of course, as remarked before, cardinals are very specific order-types, and we want
to generalise these results by placing them in the context of order-types.

Of particular importance is the “Negative Stepping Up Lemma” in [Erd+84,
Theorem 24.1]. We will adjust its proof and prove the implication κ 6→ (ωα)rm =⇒
2κ 6→ (ωα)r+1

m . This in turn will provide us with the relation i+
n 6→ (ω2)n+3

2 .
We relate this result to an instance of the Positive Stepping Up Lemma, i+

n →
(ω + n+ 1)rm, and conjecture that this partition relation is sharp.

4.1 Some results in the context of order-types

We will study some results from [Erd+84, Chapter 5], and we place these results in
the context of order-types.

Definition 4.1 (Discrepancy). Let α be an ordinal and let f and g be distinct
functions from α to m, where m is some arbitrary set. Then the discrepancy δ(f, g)
is defined to be

δ(f, g) = min{ξ ∈ α | f(ξ) 6= g(ξ)}.

Observation 4.2. If f, g, h are pairwise distinct functions from α to m, then
δ(f, g) < δ(g, h) implies δ(f, g) = δ(f, h).

Definition 4.3 (Cartesian product). Let α be an ordinal and assume that we have a
linearly ordered set (Aγ, <γ) for every γ < α. Define the lexicographical ordering ≺
on
∏

γ<αAγ with respect to the orderings <γ. That is, for distinct f, g ∈
∏

γ<αAγ,
we let f ≺ g if and only if f(ξ) <ξ g(ξ), where ξ = δ(f, g).

Similarly, given order-types Lγ = otp(Aγ, <γ) for all γ < α, we can define
L =

∏
γ<α Lγ as the order-type of (

∏
γ<αAγ,≺).

Observation 4.4. Let (Aγ, <γ) be ordered sets and let ≺ be the lexicographic
ordering on the Cartesian product A =

∏
γ<αAγ. Suppose f, g, h ∈ A are such that

f ≺ g ≺ h. If δ(f, g) ≤ δ(g, h), then δ(f, g) = δ(f, h).
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Theorem 4.5 (Theorem 19.3, [Erd+84]). Given an ordinal α > 0 and order-types
Lγ for every γ < α. Let ≺ be the lexicographical ordering of the Cartesian product
L =

∏
γ<α Lγ. Suppose that κ is a regular cardinal, and suppose that there exists a

subset B ⊆ L such that |B| = κ and ≺ well-orders B.
Then there exists a strictly ≺-increasing sequence 〈fβ | β < κ〉 in B, and there

exists a non-decreasing sequence 〈ξβ | β < κ〉 of ordinals less than α with the addi-
tional property that

δ(fµ, fν) = ξµ (4.1)

whenever µ < ν < κ.
An analogous result holds if we replace ≺ by the reverse lexicographic ordering �.

Proof. We may assume that otp(B,≺) = κ. We construct by transfinite recursion
on κ a sequence 〈Bν | ν < κ〉 of non-empty final segments of B. Define B0 = B.
Suppose for some 0 < ν < κ we have defined non-empty final segments Bµ of B for
all µ < ν such that for η < µ < ν, we have B ⊇ Bη ⊇ Bµ. Then let B′ν =

⋂
µ<ν Bµ.

Then B′ν is a final segment of B, and by the regularity of |B|, we have that B′ν is
non-empty. Now, let fν = min≺{f ∈ B | f ∈ B′ν} and define ξν = min<{δ(fν , f) |
f ∈ B′ν \ {fν}}. Then define Bν = {f ∈ B′ν \ {fν} | δ(f, fν) = ξν}. Note Bν ⊆ Bµ.

Clearly, Bν is non-empty. To see that Bν is a final segment of B, let f ∈ Bν and
let g ∈ B be such that f ≺ g. Then as f ∈ B′ν and B′ν is a final segment of B, we
have g ∈ B′ν . Then fν ≺ f ≺ g. If it were the case that δ(f, g) < ξν = δ(fν , f), then
by Observation 4.2, we have δ(g, fν) < ξν . As g ∈ B′ν , this gives a contradiction with
the minimality of ξν . Therefore δ(fν , f) ≤ δ(f, g), and hence by Observation 4.4 we
obtain δ(fν , g) = ξν . This gives g ∈ Bν , and hence Bν is a final segment of B. This
concludes the definition of 〈Bν | ν < κ〉.

By construction, we see that 〈fν | ν < κ〉 is a strictly ≺-increasing sequence.
Also, given µ < ν < κ, we have fν ∈ Bµ and hence δ(fµ, fν) = ξµ, showing (4.1).
Finally, to see 〈ξν | ν < κ〉 is non-decreasing, let η < µ < ν < κ. Then ξη =
δ(fη, fµ) = δ(fη, fν) ≤ δ(fµ, fν) = ξµ.

Definition 4.6. Given order-types L,M,N,R, we say that L establishes the relation
M 6→ (N,R)2 if |L| = |M | and N,R∗ 6≤ L. Note that Lemma 3.1 shows that this
definition is well-defined.

Theorem 4.7 (Theorem 19.6, [Erd+84]). Let α > 0 be an ordinal and let Lγ,Mγ, Nγ

and Rγ be order-types for all γ < α such that Lγ establishes the relation Mγ 6→
(Nγ, Rγ)

2. Put M =
∏

γ<αMγ as in Definition 4.3. Let ρ and σ regular cardinals
and assume

ρ→ (Nγ)
1
γ<α, and (4.2)

σ → (Rγ)
1
γ<α. (4.3)

Then there is an order-type establishing the relation

M 6→ (ρ, σ)2. (4.4)

Proof. Let L = (
∏

γ<α Lγ,≺), where ≺ is the lexicographical ordering. Then, as
|Lγ| = |Mγ| for all γ < α, clearly |L| = |M |. We will show that L is the order-type
establishing the relation (4.4).
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Suppose for the sake of contradiction that ρ ∼= (B,≺) where (B,≺) ⊆ L is a
subordering. As |B| = ρ is regular and ≺ well-orders B, we have by Theorem 4.5 a
strictly ≺-increasing sequence 〈fβ | β < ρ〉 in B, and there exists a non-decreasing
sequence 〈ξβ | β < ρ〉 of ordinals less than α such that (4.1) holds.

Define the partition g : ρ→ α by g(γ) = ζ if and only if ξγ = ζ. By (4.2), there
exists some set χγ ⊆ ρ such that χγ ∼= Nγ and g � χγ is constant. This means for
all η, λ ∈ χγ that δ(fη, fλ) = ζ, for some fixed ζ. As the sequence 〈fη | η ∈ χγ〉 is
strictly increasing in the lexicographical ordering, the sequence 〈fη(ζ) | η ∈ χγ〉 is
strictly increasing in Lγ. However, we assumed that χγ ∼= Nγ 6≤ Lγ, which gives us
a contradiction. Hence ρ 6≤ L.

The case for σ∗ 6≤ L is analogous. Hence we conclude that the order-type L
establishes the relation M 6→ (ρ, σ)2.

Theorem 4.8 (Theorem 21.1, [Erd+84]). Let γ be a cardinal and let αξ, βξ,ν , τ, ρν
be ordinals for all ξ < τ and all ν < γ. Assume

αξ 6→ (βξ,ν)
2
ν<γ, and (4.5)

τ 6→ (ρν)
2
ν<γ. (4.6)

For all ν < γ, put

σν = sup{ otp

(∑
ξ∈Y

ζξ

)
+ 1 | Y ⊆ τ ∧ otpY < ρν ∧ ∀ξ < τ [ζξ < βξ,ν ]}. (4.7)

Then ∑
ξ<τ

αξ 6→ (σν)
2
ν<γ. (4.8)

(Note that τ is an ordinal, and hence any subset Y ⊆ τ is isomorphic to an ordinal.
Using that all βξ,ν are also ordinals, we have for any sequence 〈ζξ | ξ ∈ Y 〉 with
ζξ < βξ,ν that (

∑
ξ∈Y ζξ) + 1 is isomorphic to an ordinal and hence there exists a

supremum, i.e., σν is well-defined.)

Proof. For every ξ < τ there is a partition fξ : [αξ]
2 → γ witnessing (4.5). Similarly,

there is a partition f : [τ ]2 → γ witnessing (4.6). We can assume without loss of
generality that all αξ are pairwise disjoint. Define the partition f ′ : [

∑
ξ<τ αξ]

2 → γ
by f ′({x, y}) = fξ({x, y}) if x, y ∈ αξ for some unique ξ < τ and let f ′({x, y}) =
f({ξ, η}) if x ∈ αξ and y ∈ αη where ξ 6= η.

Suppose that H ⊆
∑

ξ<τ αξ is ν-homogeneous for f ′ for some ν < γ. Then, by
definition of f ′, we have for every ξ < τ that the set H ∩ αξ is homogeneous for fξ.
As fξ witnesses (4.5), it must be that otpH ∩ αξ < βξ,ν . Similarly, the set

Y = {ξ < τ | H ∩ αξ 6= ∅}

is homogeneous for f . Therefore Y < ρν by (4.6). By definition of σν it follows that
σν 6≤ otpH. As H was an arbitrary homogeneous set for f ′, we conclude that are
no homogeneous sets for f ′ into which σν embeds, and this concludes the proof.
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4.2 A curious pattern emerges

In this section we return to the question whether one corollary of the Positive Step-
ping Up Lemma, namely Theorem 3.39, is sharp. In Corollary 3.44 we had already
shown that i+

0 6→ (ω+2)32. After investigating the consequences of a result by Albin
Jones, and combining it with an earlier result of Erdős-Rado, we observe that the
pattern continues for at least one more relation, i.e. i+

1 6→ (ω + 3)42.

Theorem 4.9 (Albin L. Jones (2000), [Jon00], Theorem 2). Let L be an order-type
and let κ be an infinite cardinal. If L 6→ (ω)12κ, then L 6→ (κ+ 2, ω)3.

Proof. Let e : L→ 2κ be a witness of L 6→ (ω)12κ . As ω is regular, it follows for every
B ∈ [L]ω there is C ∈ [B]ω such that e � C is injective.

We view 2κ as the set of functions from κ to 2. Recall that, given s, t ∈ 2κ,
we define the discrepancy δ(s, t) as the least ξ < κ such that s(ξ) 6= t(ξ), if it
exists, and let δ(s, t) = κ otherwise. Define the partition f : [L]2 → κ + 1 by
{x, y} 7→ δ(e(x), e(y)).

Define the partition of triples g : [L]3 → 2 by

g({x < y < z}) =

{
0 if e is injective on {x, y, z} and f({x, y}) < f({y, z}), and
1 if e is not injective on {x, y, z} or f({x, y}) ≥ f({y, z}).

We show that g is the partition which proves L 6→ (κ+ 2, ω)3.

Claim. There is no 0-homogeneous H ⊆ L for g with otpH = κ+ 2.

Proof of claim. Suppose for the sake of contradiction that such H = {hγ | γ <
κ + 2} exists. We observe immediately that e � H is injective. In particular,
e(hκ) 6= e(hκ+1) and hence δ(e(hκ), e(hκ+1)) = ξ < κ. For any µ < ν < κ we have
f({hµ, hν}) < f({hν , hκ}), and by Observation 4.2, f({hµ, hκ}) = f({hµ, hν}) <
f({hν , hκ}). Note that f({hµ, hκ}) < f({hκ, hκ+1}) = ξ < κ. Hence, the sequence
〈f({hµ, hκ}) | µ < κ〉 is a strictly increasing sequence of ordinals below ξ which has
length κ, which gives a contradiction. �

Claim. There is no 1-homogeneous H ⊆ L for g with otpH = ω.

Proof of claim. Again, for the sake of contradiction assume such H ∈ [L]ω exists.
By the remark above there is B ∈ [H]ω such that e � B is injective. Consider the
colouring h : [B]3 → 2 by

h({x < y < z}) =

{
0 if f({x, y}) > f({y, z}), and
1 if f({x, y}) = f({y, z}).

By definition of g and since B is 1-homogeneous for g, the colouring h is well-defined.

Now, by Ramsey’s Theorem, ω → (ω, 4)3. Hence, either

(a) there is C ∈ [B]ω such that h � [C]3 ≡ 0, or

(b) there is D ∈ [B]4 such that h � [D]3 ≡ 1.
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If (a) holds, then 〈f({cn, cn+1}) | n ∈ ω〉, where C = {c0 < c1 < . . . }, is a strictly
decreasing sequence of ordinals of length ω, which is a contradiction. Alternatively,
if (b) holds and such D = {x < y < z < w} exists, then f({x, y}) = f({y, z}) =
f({x, z}). This gives us three pairwise distinct functions e(x), e(y), e(z) ∈ 2κ such
that they are pairwise different at some point ξ < κ, which is not possible since
these functions map to 2. Hence we reach a contradiction. �

This shows that there cannot be homogeneous set for g of the appropriate order-
type, and this concludes the proof.

Corollary 4.10. Let α be an ordinal such that α < (2ℵ0)+, then

α 6→ (ω + 2, ω)3. (4.9)

Proof. As α < (2ℵ0)+ we have |α| ≤ 2ℵ0 and we can define the colouring f : [α]1 →
α : {β} 7→ β, which witnesses α 6→ (ω)1α. Then α 6→ (ω)1

2ℵ0
, hence the result follows

by Theorem 4.9.

This result gives, in particular, the negative partition relation 2ℵ0 6→ (ω+ 2, ω)3,
which improves Corollary 3.44.

Theorem 4.11.

i+
1 6→ (ω + 3, ω + 1)4. (4.10)

Proof. By Corollary 4.10 we have for every ordinal α < (2ℵ0)+ the negative relation
α 6→ (ω + 2, ω)3. Then Lemma 3.36 gives us the desired result.

The theorem above demonstrates that the goal of the relation (2ℵ0)+ → (ω+ 2)rk
from Corollary 3.40 cannot be increased.

A pattern of partition relations seems to emerge, showing the sharpness of the
positive partition relations of Theorem 3.39. Here r and k are natural numbers.

1. i+
0 → (ω + 1)rk.

2. i+
0 6→ (ω + 2)32.

3. i+
1 → (ω + 2)rk.

4. i+
1 6→ (ω + 3)42.

5. i+
2 → (ω + 3)rk.

Of course, the Positive Stepping Up Lemma guarantees that the pattern continues
for the positive partition relations. In general, the relation i+

n → (ω + n + 1)rk is
true by Theorem 3.39. However, it is not clear whether all such positive partition
relations are sharp, i.e., whether increasing the goal results in a negative partition
relation.

It is natural to conjecture that this pattern continues, and hence we propose that
the following partition relation is negative.

Conjecture 4.12. For all n < ω,

i+
n 6→ (ω + n+ 2)n+3

2 . (4.11)
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Note that we have already shown that this conjecture holds for both n = 0 and
n = 1.

Before we move on to the next section and provide a bound for the conjec-
ture, we want to make a few notes about the exponent of the partition relation in
Conjecture 4.12. If we compare (4.11) to the Erdős-Rado Theorem, which gives
i+
n → (ℵ1)n+1

ω , we see that the partition relation is positive with exponent n + 1,
even with ℵ1 as goal. However, what happens if we decrease the exponent in (4.11)
to n + 2? In other words, why don’t we conjecture i+

n 6→ (ω + n + 2)n+2
2 ? In this

case we also have a conclusive answer. Starting with a corollary of the Baumgartner
Hajnal Theorem, we have the positive partition relation i+

0 → (γ)22, where γ < ω1.
Applying the Positive Stepping Up Lemma iteratively, we obtain for all n < ω,
i+
n → (γ)n+2

2 . This result shows that the exponent in Conjecture 4.12 cannot be
decreased, unless the partition relation becomes positive.

As a final side note, the goal in the relation i+
1 → (γ)32 cannot be increased to

ω1 + 1: immediate from Lemma 3.36 and Lemma 3.48 the following result is true.
(Alternatively, it follows from Theorem 3.47 and Theorem 3.60.)

Lemma 4.13.

i+
1 6→ (ω1 + 1)3. (4.12)

4.3 Negative Stepping Up Results

Our main goal in this section is studying the implication

κ 6→ (λ)r−1m =⇒ 2κ 6→ (λ)rm. (4.13)

In the case that κ and λ are infinite cardinals and r ≥ 4, this implication is true
and the result is known as the “Negative Stepping Up Lemma”.1

Ideally, we would be able to prove κ 6→ (α)r−1m =⇒ 2κ 6→ (α + 1)rm, in the
case where κ is a cardinal and α is any infinite ordinal. This would immediately
solve Conjecture 4.12. Unfortunately, we have not been successful in proving this
implication for arbitrary infinite ordinals. We have, however, been able to adjust
the proof of the Negative Stepping Up Lemma and prove the implication in the case
that α is an additively indecomposable ordinal. This novel result provides a bound
to Conjecture 4.12. We thank Luke Gardiner for his help with this result.

Throughout we will fix a well-order <∗ on 2κ, where 2κ is viewed as the set
of functions from κ to 2. We will denote by ≺ the lexicographic order on 2κ.2

The main idea is that if there are <∗-increasing sequences in 2κ, then we can find
sufficiently large <-increasing sequences of their discrepancies. If that is the case,
then if 〈In | n < m〉 is a partition of [κ]r−1 witnessing κ 6→ (λ)r−1m , there exists a
partition 〈Jn | n < m〉 of [2κ]r such that if λ ≤ otp Jn, then λ ≤ otp In. Hence this
partition of [2κ]r witnesses 2κ 6→ (λ)rm.

1See [Erd+84, Section 24].
2Recall that the lexicographical order on 2κ is defined as f ≺ g if and only if f(ξ) < g(ξ), where

ξ = min{η < κ | f(η) 6= g(η)}.
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Now, we will need a bunch of definitions. As said before, the goal is to find
subsets of 2κ on which the well-order <∗ and lexicographic order ≺ agree. Given a
sequence x0 <

∗ x1 <
∗ . . . <∗ xr−1 of 2κ, put

η(x0 <
∗ x1 <

∗ . . . <∗ xr−1) = (η(x0, x1), η(x1, x2), . . . , η(xr−2, xr−1)), (4.14)

where η(x, y) = 0 if x <∗ y ⇐⇒ x ≺ y, and η(x, y) = 1 otherwise.
Let 1 ≤ s ≤ r − 1 and k0, k1, . . . , ks−1 ∈ 2, define

K(k0, k1, . . . , ks−1) = {u ∈ [2κ]r | η(u) � s = (k0, k1, . . . , ks−1)}. (4.15)

In particular, if s = r − 1, then we put for i = 0, 1,

Ki = K(i, i, . . . , i), (4.16)

and also

K = K0 ∪K1. (4.17)

We also want to extend Definition 4.1, so we define

δ(x0, x1, . . . , xr−1) = (δ(x0, x1), δ(x1, x2), . . . , δ(xr−2, xr−1)). (4.18)

For distinct ordinals δ0, δ1, define ζ(δ0, δ1) = 0 if δ0 < δ1 and let ζ(δ0, δ1) = 1 if
δ0 > δ1. Similarly, for a tuple of distinct ordinals such that δi 6= δi+1 we define

ζ(δ0, δ1, . . . , δr−2) = (ζ(δ0, δ1), ζ(δ1, δ2), . . . , ζ(δr−3, δr−2)). (4.19)

Finally, for 1 ≤ s ≤ r − 2, and k0, k1, . . . , ks−1 ∈ 2, we define

P (k0, k1, . . . , ks−1) = {u ∈ K | ζ(δ(u)) � s = (k0, k1, . . . , ks−1)}. (4.20)

and also for s = r − 2 and i = 0, 1 we put

Pi = P (i, i, . . . , i), (4.21)

and

P = P0 ∪ P1. (4.22)

Lemma 4.14 (Lemma 23.12, [Erd+84]). Let r ≥ 3, let κ be a cardinal and let α be
an ordinal. Let I ⊆ [κ]r−1 and put

I∗ = {u ∈ P0 | δ(u) ∈ I}. (4.23)

Assume that [H]r ⊆ I∗ for some ∅ 6= H ⊆ 2κ where by assumption otp(H,<∗) = α.
Then there is X ⊆ κ with otp(X,<) = α− such that [X]r−1 ⊆ I.

Here α− is the ordinal β such that β + 1 = α, if it exists, and is α otherwise.

Proof. We may assume that |H| ≥ r and write H = {hγ | γ < α} where α =
otp(H,<∗). (Recall that <∗ is a fixed well-order on 2κ). For ordinals γ such that
γ + 1 < α we let

δγ = δ(hγ, hγ+1),
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where the function δ is defined in Definition 4.1. Set

X = {δγ | γ + 1 < α}.

First we show that otp(X,<) = α−. It obviously suffices to show for all γ <
γ′ < α− that δγ < δγ′ . By the assumption [H]r ⊆ I∗ ⊆ P0, it follows that

ζ(δ({hγ, hγ+1, hγ′})) = ζ(δ(hγ, hγ+1), δ(hγ+1, hγ′)) = 0.

Also

ζ(δ({hγ+1, hγ′ , hγ′+1})) = ζ(δ(hγ+1, hγ′), δ(hγ′ , hγ′+1)) = 0.

In other words, δγ < δ(hγ+1, hγ′) < δγ′ . Note that we assumed γ + 1 < γ′, because
if γ + 1 = γ′, we could just leave out the term δ(hγ+1, hγ′). In particular, we obtain
δγ < δγ′ , showing that otp(X,<) = α−.

It remains to show that [X]r−1 ⊆ I. Given ξ0 < . . . < ξr−2 < α−, we want to
show {δξ0 < . . . < δξr−2} ∈ I. Let 0 ≤ i ≤ r − 2 and suppose that ξi + 1 < ξi+1.
As [H]r ⊆ P0, we have δ(hξi , hξi+1) < δ(hξi+1, hξi+1

) and hence by Observation 4.2,
δ(hξi , hξi+1) = δ(hξi , hξi+1

). If ξi+1 = ξi+1, then δ(hξi , hξi+1) = δ(hξi , hξi+1
) obviously

holds as well. Now, writing ξr−1 = ξr−2 + 1, we obtain

{δξi | i < r − 1} = {δ(hξi , hξi+1) | i < r − 1}
= {δ(hξi , hξi+1

) | i < r − 1}
= δ({hξi | i < r}).

As {hξi | i < r} ∈ [H]r ⊆ I∗, we have by definition of I∗ that {δξi | i < r − 1} ∈ I.
This gives us [X]r−1 ⊆ I, which is what we wanted to show.

Lemma 4.15. Let α be any ordinal, and suppose (X,<) is an ordered set such that
otp(X,<) = ωα. Then for any non-empty final segment (Y,<) of (X,<) , it holds
that otp(Y,<) = ωα.

Proof. First, we prove by transfinite induction on α that every power of ω is addi-
tively indecomposable. That is, if β, γ < ωα, then β + γ < ωα.

If α = 0, then ωα = ω0 = 1. Clearly, 0 + 0 < 1.
If α = δ + 1, then ωα = ωδ+1 = ωδ · ω. For β, γ < ωα, there is some n < ω such

that β, γ < ωδ · n. Then β + γ ≤ ωδ · n+ ωδ · n = ωδ · (n+ n) < ωδ · ω = ωα.
If α is a limit ordinal, then for β, γ < ωα there is some α′ < α such that

β, γ < ωα
′
. In that case, β + γ ≤ ωα

′
+ ωα

′
= ωα

′ · 2 ≤ ωα
′ · ω = ωα

′+1 < ωα. This
concludes the proof by induction.

Now, we let (Y,<) be a non-empty final segment of (X,<). Suppose it were the
case that otp(Y,<) < ωα. Then there are β, γ < ωα with otp(X \ Y,<) = β and
otp(Y,<) = γ, but β + γ = ωα. This is a contradiction, because ωα is additively
indecomposable. Therefore we conclude that otp(Y,<) = ωα.

Lemma 4.16 (Lemma 23.5, [Erd+84]). Let κ be an infinite cardinal, let X ⊆
2κ and assume otp(X,<∗) = ωα, where α > 0 is any ordinal. Assume that (i)
[X]r ∩ K(0, 1) = ∅ or (ii) [X]r ∩ K(1, 0) = ∅. Then there is a set Y ⊆ X with
otp(Y,<∗) = ωα such that [Y ]r ⊆ K0 or [Y ]r ⊆ K1.
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Proof. Assume for the sake of contradiction that no such Y exists. We first prove a
claim

Claim. There are elements x0 <
∗ x1 <

∗ x2 <
∗ x3 such that x0 ≺ x1 � x2 ≺ x3.

Proof of claim. For every x ∈ X there are y, z ∈ X and y′, z′ ∈ X such that

x ≤∗ y <∗ z and y ≺ z, (4.24)

x ≤∗ y′ <∗ z′ and y′ � z′. (4.25)

Suppose not and let x ∈ X be a counterexample, then define the set Y = {x′ ∈
X | x ≤∗ x′}. Clearly, (Y,<∗) is a non-empty final segment of (X,<∗) and by
Lemma 4.15 we obtain otp(Y,<∗) = ωα. As Y is contained in either K0 or K1, we
obtain a contradiction.

Now let x0, z1 ∈ X with x0 <∗ z1 and x0 ≺ z1. Then let y1, z2 ∈ X with
z1 ≤∗ y1 <∗ z2 with y1 � z2. Define x1 = max≺{y1, z1}, then x0 <

∗ x1 and x0 ≺ x1.
Also, x1 � z2.

Pick y2, x3 ∈ X with z2 ≤∗ y2 <∗ x3 and y2 ≺ x3. Let x2 = min≺{y2, z2}. Then
x1 <

∗ x2 and x1 � x2. Also, x2 ≺ x3. This proves the claim �

Finally, {x0, x1, x2, . . .} ∈ [X]r ∩ K(0, 1) and {x1, x2, x3, . . .} ∈ [X]r ∩ K(1, 0),
contradicting (i) or (ii), respectively. Hence such Y exists.

Lemma 4.17 (Lemma 23.9, [Erd+84]). Let r ≥ 4, let κ be an infinite cardinal, let
X ⊆ 2κ and let α > 0 be any ordinal such that otp(X,<∗) = ωα. Suppose [X]r ⊆ K0

or [X]r ⊆ K1. Assume (i) [X]r ∩P (0, 1) = ∅ or (ii) [X]r ∩P (1, 0) = ∅. Then there
exists Y ⊆ X with otp(Y,<∗) = ωα such that [Y ]r ⊆ P0.

Proof. We first prove a claim.

Claim. Suppose x0 <
∗ x1 <

∗ . . . <∗ xs−1 are such that

ζ(δi, δi+1) 6= ζ(δi+1, δi+2), (4.26)

for all i ≤ s− 4. Then s ≤ 4.

Proof of claim. Suppose s ≥ 5 and x0 <∗ x1 <∗ x2 <∗ x3 <∗ x4 constitutes a
counterexample. If ζ(δ0, δ1) < ζ(δ1, δ2) > ζ(δ2, δ3), then δ0 < δ1 > δ2 < δ3. Then
{x0, x1, x2, x3, . . .} ∈ [X]r ∩ P (0, 1) or {x1, x2, x3, x4, . . .} ∈ [X]r ∩ P (1, 0), giving a
contradiction with (i) or (ii), respectively.

Similarly, if ζ(δ0, δ1) > ζ(δ1, δ2) < ζ(δ2, δ3), we get δ0 > δ1 < δ2 > δ3. In this
case {x0, x1, x2, x3, . . .} ∈ [X]r ∩ P (1, 0) or {x1, x2, x3, x4, . . .} ∈ [X]r ∩ P (0, 1), also
giving a contradiction with (ii) or (i), respectively. �

Now let such s ≤ 4 be maximal (note s ≥ 3 always holds) and define x = xs−3,
y = xs−2 and z = xs−1. Note that since [X]r ⊆ K0 or [X]r ⊆ K1, we have x ≺ y ≺ z
or x � y � z. This gives δ(x, y) 6= δ(y, z), hence either (a) δ(x, y) > δ(y, z) or (b)
δ(x, y) < δ(y, z). Then by maximality of s, for all z ≤∗ z0 <∗ z1, either

(a) not δ(x, y) > δ(y, z0) < δ(z0, z1), or (4.27)

(b) not δ(x, y) < δ(y, z0) > δ(z0, z1). (4.28)
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We show case (a) is impossible. For suppose otherwise, then for all z0 ∈ X with
z <∗ z0 we have

δ(y, z) > δ(z, z0) = δ(y, z0).

Therefore, δ(x, y) > δ(y, z0). Continuing, we obtain by (a) for all z1 ∈ X with
z0 <

∗ z1 that δ(y, z0) > δ(z0, z1) = δ(y, z1).
Picking an <∗-increasing sequence 〈zn | n < ω〉 gives us

δ(y, z0) > δ(y, z1) > δ(y, z2) > . . . ,

which is an infinitely decreasing sequence of ordinals, and hence gives us a contra-
diction.

So, assume (b) holds. Let z0, z1, z2 ∈ X be arbitrary such that z <∗ z0 <∗

z1 <
∗ z2. Then firstly, δ(x, y) < δ(y, z) < δ(z, z0), hence δ(x, y) < δ(y, z0) = δ(y, z).

As δ(x, y) < δ(y, z0), it must be by (b) that δ(x, y) < δ(y, z0) < δ(z0, z1). Then
δ(x, z0) = δ(x, y) and so δ(x, z0) < δ(z0, z1). Therefore, in view of the maximality
of s,

δ(z0, z1) < δ(z1, z2).

Define Y = {z′ ∈ X | z <∗ z′}, then we showed that [Y ]r ⊆ P0. Also, (Y,<∗)
is a non-empty final segment of (X,<∗), and hence by Lemma 4.15 it holds that
otp(Y,<∗) = ωα. This concludes the proof.

We are now ready to prove the Negative Stepping Up Lemma where the goal is
an additively indecomposable ordinal.

Theorem 4.18 (Negative Stepping Up Lemma, [Erd+84]). Suppose r ≥ 3 and m
is any cardinal. Let α > 0 be any ordinal and suppose that κ is an infinite cardinal.
Assume κ 6→ (ωα)rm. Then 2κ 6→ (ωα)r+1

m .

Proof. Let [κ]r =
⋃
n<m In be the partition witnessing [κ]r 6→ (ωα)rm.

Define a partition [2κ]r+1 =
⋃
n<m Jn as follows. For n ≥ 2, we let Jn = I∗n,

where I∗n is defined as in Lemma 4.14, and

J1 = K(0, 1) ∪ P (0, 1) ∪ I∗1 ,

and
J0 = [2κ]r+1 \ J1.

Note that Jn ∩ P0 = I∗n for all n < m.
Suppose there is X ⊆ 2κ is such that otp(X,<∗) = ωα and [X]r+1 ⊆ J0. Then

[X]r+1∩K(0, 1) = ∅, hence by Lemma 4.16 there is some Y ⊆ X with otp(Y,<∗) =
ωα and [Y ]r+1 ⊆ K0 or [Y ]r+1 ⊆ K1. By Lemma 4.17, there is Z ⊆ Y with
otp(Z,<∗) = ωα and [Z]r+1 ⊆ P0. But this means [Z]r+1 ⊆ I∗0 . Using Lemma 4.14,
we find a homogeneous set of order-type ωα in I0, which is a contradiction.

Similarly, suppose X ⊆ 2κ such that otp(X,<∗) = ωα and [X]r+1 ⊆ J1. Then
[X]r+1 ⊆ K ∪K(0, 1), and thus [X]r+1 ∩K(1, 0) = ∅. This gives by Lemma 4.16
some Y ⊆ X with [Y ]r+1 ⊆ K0 or [Y ]r+1 ⊆ K1 and otp(Y,<∗) = ωα. Then
[Y ]r+1 ⊆ P (0, 1) ∪ P0, hence [Y ]r+1 ∩ P (1, 0) = ∅. Thus by Lemma 4.17 there is
Z ⊆ Y with [Z]r+1 ⊆ P0 and otp(Z,<∗) = ωα. Therefore [Z]r+1 ⊆ I∗1 and so we find
a homogeneous set of order-type ωα in I1, a contradiction.

If there is some X ⊆ 2κ with otp(X,<∗) = ωα and [X]r+1 ⊆ Jn = I∗n for n ≥ 2,
then immediately by Lemma 4.14 there is a homogeneous set of order-type ωα in In,
which is a contradiction. We conclude 2κ 6→ (ωα)r+1

m .
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Chapter 4.3

Finally, we are able to establish a limitative result for Conjecture 4.12.

Corollary 4.19. For all n < ω,

in 6→ (ω2)n+2
2 . (4.29)

Proof. We prove this by induction on n, we can skip n = 0 as this case is trivially
negative. For n = 1 we obtain by Corollary 4.10 the negative relation i1 6→ (ω+2)32.
Hence i1 6→ (ω2)32.

For the inductive step, supposing we have in 6→ (ω2)n+2
2 , we apply Theorem 4.18

to obtain in+1 6→ (ω2)n+2+1
2 .

In particular, from Corollary 4.19 we can deduce the following theorem.

Theorem 4.20. For all n < ω,

i+
n 6→ (ω2)n+3

2 , (4.30)

This gives a bound to Conjecture 4.12.

Future work could be directed towards investigating Conjecture 4.12, which
states that increasing the goal in the relation i+

n → (ω + n + 1)rm results in a
negative partition relation. It is unknown where the threshold is, but we know that
if αn is the least ordinal such that i+

n 6→ (αn)n+3
m , then ω + n+ 2 ≤ αn ≤ ω2.

We suspect that the bound ω2 can be decreased. In particular, if the conjecture
were proven to be true, then we would have a uniform bound of ω · 2, i.e., for all
n < ω, i+

n 6→ (ω · 2)n+3
m .
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