
Epistemic Logics for Cryptographic Protocols and Zero-Knowledge
Proofs

MSc Thesis (Afstudeerscriptie)

written by

Mateo C. Jaramillo
(born June 23rd, 1997 in Pasadena, California)

under the supervision of Dr Aybüke Özgün and Prof Dr Hans van Ditmarsch, and
submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

July 15, 2021 Dr Aybüke Özgün
Prof Dr Hans van Ditmarsch
Dr Malvin Gattinger
Dr Christian Schaffner

1

Abstract

This thesis presents an epistemic logic for modeling Zero-Knowledge proofs and other
cryptographic protocols. We consider multi-agent interactions where a prover convinces a
verifier of some proposition ϕ, with the verifier learning nothing more than the validity
of ϕ. By enriching existing cryptographic variants of DEL with notions of probability, we
introduce a cryptographic probability logic (CPL) that is capable of modeling cryptographic
primitives such as encryption and passive adversaries while also capturing the concepts of
interactive proofs and simulations. Within our presentation, we analyze multiple protocols
including RSA encryption and a zero-knowledge proof for the NP-Complete problem of
graph 3-coloring.

2

Acknowledgements

Firstly, I would like to thank my supervisors: Aybüke Özgün and Hans van Ditmarsch. They
provided invaluable feedback on both the small technical details and the overall conceptual goal
of the thesis. I would also like to extend my gratitude to the members of my defense committee
Christian Schaffner and Malvin Gattinger for being experts in the field of cryptography and
model checking and providing the level of critical scrutiny that challenged my thesis.

The intersection between cryptographic protocols and dynamic epistemic logic has been the
topic of my interests during my time at the ILLC. I would like to thank Floris Roelofsen for
entertaining my first attempt at tackling this problem during his Logic and Conversation class.
That initial project functioned as a proof of concept for the work presented in this thesis. I
would also like to the express my appreciation to Yfke Dulek for supervising a second attempt
at researching this intersection. Her expertise in cryptography challenged just how robust the
symbolic models would need to be, as well as introducing me to several concepts in cryptography
that are fundamental to proving security.

I would like to thank my family and friends for their support during the entire Master of
Logic program and thesis writing process. I would also like to thank Dr. Bruno Jacinto for
introducing me to the ILLC and recommending that I continue studying logic beyond my initial
undergraduate exposure. Finally, I want to thank the city of İstanbul for being home during my
final year of study and providing a physical escape from the sometimes overwhelming writing
process.

3

Contents

Contents 4

1 Overview and Introduction 5

2 Preliminaries 9
2.1 Epistemic Logic . 9
2.2 Dynamic Epistemic Logic . 11
2.3 Cryptography . 13
2.4 Probability Theory . 15

3 A Logic for Cryptographic Protocols 17
3.1 Syntax and Semantics . 17
3.2 Cryptographic Protocols . 21
3.3 Review and Discussion . 36

4 A Logic for Zero-Knowledge Protocols 38
4.1 Introduction . 38
4.2 Zero-Knowledge Proofs . 39
4.3 Cryptographic Probability Logic . 43
4.4 Zero-Knowledge Protocols . 55

5 Conclusion 69

Bibliography 71

4

CHAPTER 1
Overview and Introduction

In this thesis, we aim to examine cryptographic protocols through epistemic logics. We uti-
lize a logic introduced in Dechesne and Wang [2007], specifically for reasoning about cryp-
tographic protocols, and enhance features, such as the encryption keys, in order to model
signature schemes. We extend the framework from Dechesne and Wang [2007] and from Chen
and Deng [2020] with probabilities (inspired by a probability logic introduced in van Eijck and
Schwarzentruber [2014]). With this enriched cryptographic probability logic, we are able to
model zero-knowledge protocols.

A cryptographic protocol is a sequence of actions that ensure some security properties of a
communication protocol are satisfied. These security properties can include secrecy, anonymity,
privacy, authentication, or any combination of these properties. Protocols generally exist in
multi-agent systems, so multiple agents may exchange information with some assurance that
these aforementioned properties hold.

Existing work [Dechesne and Wang, 2007, 2010, Wang, 2010, Chen and Deng, 2020] has been
productive in verifying security properties of certain cryptographic protocols using models in
Dynamic Epistemic Logic (DEL). Given DEL’s dynamic, multi-agent capabilities, it is capable of
expressing intricate communication patterns as well as tracking the epistemic states of certain
agents, which makes it a useful tool for verifying what information states hold after certain
sequences of actions. The actual verification can be expressed by means of formal sentences,
whose validity can be checked within the given model where the actions were executed. For
example, after a cryptographic protocol in which Alice passes a secret message to Bob, we can
verify that the intruder Eve (eavesdropping) does not know the contents of the secret message.

The logic of Dechesne and Wang and further developed by Chen and Deng allows us to
model encryption of messages and adversarial actions. We provide several demonstrations
of how we can model protocols in the logic as well as how we can design action models to
represent adversaries of differing strengths. We also extend the logic by introducing the tools
for asymmetric encryption keys, allowing us to model RSA signature schemes in the logic. In a
subsequent extension, we add lotteries to the epistemic models, allowing agents within the model
to assign probabilities to propositions. This cryptographic logic with probability is sufficient
for modeling interactive proofs and zero-knowledge protocols.

A zero-knowledge protocol is an interaction between a prover and a verifier, in which the
prover convinces the verifier of the validity of some statement without leaking any information
beyond the validity of that statement [Goldwasser et al., 1989]. Therefore after a zero-knowledge
protocol, the verifier is convinced of a statement but does not have the necessary information to
prove the validity of the statement outside of the interaction with the prover. Zero-knowledge

5

Figure 1.1: Visualisation of Ali Baba’s cave [Commons, 2020]

interactions are epistemically interesting because of their counter-intuitive nature in which an
agent knows that some sentence is valid, yet lacks the information proving its validity.

In later chapters of this thesis we use DEL variants to model the interaction between a prover
and a verifier, as well as formalizing security goals within the syntax of the logic. Therefore, we
can check the validity of the security goals for a protocol by designing formal sentences which
accurately represent the security goals of the protocol and checking whether they are valid in
a model after executing the actions of the protocol. More specifically, we can verify that the
information agents obtained during the protocol does not violate zero-knowledge. Beyond ver-
ification, creating formal models of the protocols will allow an unobfuscated view to the logical
structure of the protocol, separated from cryptographic primitives like numerical encryption
procedures.

Zero-knowledge protocols can vary in design depending on the type of sentence they are
attempting to validate. For instance in the Ali Baba cave example [Quisquater et al., 1990],
a prover is trying to convince a verifier that she knows the password to a door obstructing
a circular hallway where the two exits meet at a central point. So, the prover steps into the
hallway, and the verifier randomly chooses an exit for the prover to walk to. If the prover has
the password to the obstructing door, then this poses no challenge and the prover will always
walk from the chosen exit, while if the prover does not have the password, then she can only
correctly walk from the chosen exit with a 50% success rate. An illustration of this example and
interaction can be seen in Fig 1.1. After a sufficiently large number of iterations, the verifier
is convinced with high certainty that the prover does in fact know the password to the door,
since in the alternative case, the probability of her being successful in the protocol approaches
a negligible number. This protocol succeeds in convincing the verifier that the prover has the
password without revealing any information about the password. Another example of a zero-
knowledge protocol involves two friends Alice and Bob, where Bob is colorblind and Alice wishes
to convince Bob that two dimensionally-identical balls are in fact distinguishable by their color.
Since the balls are indistinguishable to Bob, it would not suffice for Alice to merely tell him
that one is red and the other is green. Instead, they devise a zero-knowledge protocol in which
Bob places both balls behind his back away from Alice. He then brings one ball forward to
display, and then again places it behind his back. From here, Bob can choose to swap the balls
between his hands or to do nothing. After the action (or lack of action) is executed, he brings
forward his hand again and asks ‘Did I switch the balls?’. If the balls are distinguishable then
Alice will very easily answer ‘Yes’ or ‘No’ based on the decision Bob made, but if the balls
are in fact indistinguishable and Alice is trying to deceive Bob, then she could still guess as
to whether Bob made a switch. However, this guess would only be correct with a success rate
of 50%, and therefore after a sufficiently large number of iterations, Bob is convinced of the
distinguishability of the balls.

6

Clearly, these two protocols require different structures, parameters, and interaction types.
Thus in order to capture a family of protocols which is extensive and useful, a quick aside
to complexity classes must be made. The class of NP is used to define the class of decision
problems for which a witness that shows the positive answer to the problem, can be verified
in polynomial time. Formally we can consider a decision problem χ ∈ NP and x ∈ χ iff there
is a relation Rχ such that 〈x,w〉 ∈ Rχ where w is the witness to the fact that x ∈ χ and the
validity of w can be found in polynomial time [Arora and Barak, 2006]. A polynomial time
reduction from a problem P to another problem χ means that if an algorithm exists for solving
χ, then an algorithm exists for solving P as well. In other words, a reduction shows that one
problem is only as difficult to solve as another problem. Furthermore, a problem χ is said to
be NP-complete if every problem in NP is reducible in polynomial time to χ [Sipser, 2013].

For ease of explanation, later chapters of this thesis will focus on the NP-complete problem
of Graph 3-colorability. A graph is said to be 3-colorable if it is possible to color the vertices
of the graph such that no two vertices connected by an edge have the same color. Determining
whether or not a graph is 3-colorable is NP-complete [Goldreich et al., 1987]. The example
used in Chapter 4 of this thesis is a zero-knowledge protocol in which a prover convinces a
verifier that a graph is 3-colorable without revealing the coloring of the graph which serves as
the witness. It will be sufficient to show how to model this protocol as well as verify the security
goals, since all other problems within NP are reducible to the Graph 3-colorability problem
[Goldreich et al., 1991].

Consider a scenario between a government employee Alice trying to verify her identity with
an unknown agent Bob whose allegiance is disputed. Let this government agency’s identification
be a graph and a satisfying 3-color assignment to its vertices. Alice does not want to reveal
the coloring she knows to her graph, because if he is a foe then he can take her graph and
coloring to impersonate her, and regardless if Bob is friendly, Alice is not sure whether there any
eavesdroppers on the communication channel. So, together they implement a zero-knowledge
protocol in which Bob will be convinced of the validity that her graph is 3-colorable without
learning what that coloring is, nor will Bob be able to learn any coloring for the graph. The
zero-knowledge protocol will be an interaction between the two agents: Alice who is the prover
and Bob who is the verifier. Alice’s goal will be to convince Bob that a particular graph is
3-colorable, which she knows because she knows a coloring for the graph that satisfies the
definition of 3-colorability. Bob’s goal is two-fold: if the graph is indeed 3-colorable, then Bob
wants to learn the validity of this statement; if the graph is not 3-colorable then the probability
that Bob is convinced otherwise is negligible. Bob’s first goal is commonly called Completeness
and his second goal is called Soundness. Completeness and Soundness are common properties
of interactive protocols. By the end of the protocol, Bob is convinced that the graph is 3-
colorable, yet he will not know the coloring that Alice knows which justifies her knowledge of
this statement. Furthermore, Bob will not possess any evidence which might enable him to
deduce the coloring Alice knows. This last property is referred to as Zero-Knowledge.

Overview of Previous Works The initial cryptographic variant of DEL in Chapter 3 was
originally introduced in Dechesne and Wang [2007] and later improved in Chen and Deng
[2020]. The protocol examined in Chen and Deng [2020] used symmetric key encryption and a
passive adversary. We examine the protocol used in Chen and Deng [2020] and we analyze the
protocol under a stronger adversary as well as implementing asymmetric keys in the logic. The
asymmetric keys allow us to model signature schemes within the logic and to verify security
properties about the scheme.

The major novel contribution of this thesis lies in Chapter 4 with the introduction of a
cryptographic probability logic that can model zero-knowledge protocols. Although there have

7

been many symbolic systems presented with the capabilities of modeling zero-knowledge pro-
tocols, they rely on complicated term algebras and complex primitives [Backes et al., 2015,
2007, Baskar et al., 2009]. The concept of using epistemic logics to model zero-knowledge in-
teractions has been previously investigated by Halpern et al. [1988] and Halpern et al. [2009],
however these works characterize the requirements of zero-knowledge in an epistemic temporal
logic without focusing on protocol specifications. Our logic presented in Chapter 4 provides a
characterization of the zero-knowledge requirements as well as providing a general schematic
to modeling a protocol and verifying whether these requirements hold. This is in large part
possible due to a creative use of epistemic action models to represent simulated protocols with
rewind capabilities.

Outline The thesis will be structured in the following manner: first, preliminary notions
regarding epistemic logics, cryptography, and probability shall be introduced. Next, we will
examine an existing cryptographic variant of dynamic epistemic logic capable of modeling cryp-
tographic protocols and verifying security features of the protocol. We will demonstrate how
this logic represents the actions of adversaries in a modular way that allows us to modify the
strength of the adversary without changes to the formal modeling mechanisms or the underlying
protocol structure. Finally, we will enrich this cryptographic variant with lotteries which will
allow the agents in the model to use probabilistic reasoning. This logic will be sufficient for
formalizing the conditions of a zero-knowledge protocol, and thus will allow us to apply the
enriched logic to a zero-knowledge protocol for graph 3-colorability.

8

CHAPTER 2
Preliminaries

The purpose of this chapter is to introduce the preliminary concepts which we will be devel-
oping upon within this thesis. These concepts include dynamic epistemic logic, cryptographic
protocols, and basic probability theory. The later chapters include relevant definitions with
modifications as needed. We do presuppose familiarity with propositional logic, modal logic,
and standard set-theoretic notation.

2.1 Epistemic Logic

Epistemic logics allow us to reason about multi-agent systems in modal logic and express state-
ments about the epistemic states of a given agent. Given a set of agents A = {i1, ..., in}, then
we say i knows a proposition ϕ when ϕ is true in all worlds that are accessible by i. In that
way, knowledge works similarly to the � operator of propositional modal logic. We first define
the epistemic models of the logic before defining the syntax of epistemic logic. We then proceed
to introduce the semantics of the language which will allow us to reason about statements in
the language.

2.1.1 Kripke Frames

Modal logic uses the concept of worlds in order to make statements of necessity and possibility.
Worlds can be connected within a Kripke frame which is denoted as a tuple (W,R). For our
purposes, it is sufficient to only consider finite models. Let W be a finite set of worlds which
describe different states and R be an accessibility relation over the set of worlds. Two worlds w
and v are accessible by one another if 〈w, v〉 ∈ R, we can also write wRv for simplicity. To use
a Kripke frame for reasoning, we must pair it with a valuation function which assigns to each
world a set of propositions, namely those propositions which are true at that world.

Definition 1 (Kripke Model). Let (W,R) be a Kripke frame, V be a valuation function, and
P be a finite set of propositions. We define a Kripke model M as the tuple (W,R,V) such that
V : W → ℘(P).

By defining the accessibility relation R as a function which takes as input the set of agents
A and outputs pairs of worlds, we can define a family of accessibility relations for each agent in
A over the set of worlds in W .

9

Definition 2 (Multi-Agent Kripke Model). Let A be a finite set of agents, W be a finite set
of worlds, and V : W → ℘(P) be a valuation function. M = (W,R,V) defines a multi-agent
Kripke model where R : A → ℘(W ×W) is a function which assigns to each agent i ∈ A a set
of pairs of worlds. Let wRiv denote the case that 〈w, v〉 ∈ R(i) or informally, that the world v
is reachable from the world w by the agent i. Furthermore, a pointed-model is a model M with
a world w ∈ W designated as the actual world. Pointed models are denoted as the pair M, w
where w is the actual world of M.

We can define features about a Kripke model given certain properties of the accessibility
relations. R is reflexive if every world is accessible from itself. R is symmetric if for all pairs
wRiv, it also holds that vRiw. Lastly, R is transitive if wRiv and vRiz, then wRiz. Thus, if
R is reflexive, symmetric, and transitive, then R is an equivalence relation over the worlds for
each agent.

2.1.2 Syntax and Semantics

For the models, we need a language powerful enough to express epistemic statements with
respect to agents in the model. Let L be the language of epistemic logic with the knowledge
operator K.

Definition 3 (Syntax of L). Let p range over a finite set of propositions P and i range over
the set of agents A. We define the language L as follows in BNF:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ′ | Kiϕ

This BNF describes the ways in which formulas of ϕ can be defined. > is the constant for an
always true statement or tautology. ¬ϕ denotes the negation of a formula ϕ. ϕ ∧ ϕ′ is the
conjunction of two formulas ϕ and ϕ′. The last formula denotes: agent i knows that ϕ.

From the above definition we can define more convenient connectives with common abbre-
viations.

⊥ := ¬> ϕ ∨ ϕ′ := ¬(¬ϕ ∧ ¬ϕ′)
ϕ→ ϕ′ := ¬ϕ ∨ ϕ′ ϕ↔ ϕ′ := (ϕ→ ϕ′) ∧ (ϕ′ → ϕ)

The above abbreviations define a contradiction which is always false, disjunction, material
implication, and equivalence, respectively.

With the syntax established and the models defined we can give the semantics for L.

Definition 4 (Semantics). Let M = (W,R,V) be a multi-agent Kripke model and w ∈W .

M, w � > ⇔ always
M, w � p ⇔ p ∈ V(w)
M, w � ¬ϕ ⇔ M, w 2 ϕ
M, w � ϕ ∧ ϕ′ ⇔ M, w � ϕ and M, w � ϕ′

M, w � Kiϕ ⇔ if wRiv, then M, v � ϕ

ϕ is true at w in M iff M, w � ϕ and ϕ is true in M, denoted as M � ϕ, iff ϕ is true at all
w ∈W in M.

By the above definition, an agent i knows a proposition ϕ if ϕ is true at all worlds accessible
by i.

10

2.2 Dynamic Epistemic Logic

The models described so far represent static models, or models in which we are presented
with a snapshot of the current epistemic situation. To reason about puzzles, communication,
and protocols we need to be able to represent the situations in which information changes in
a model. The forms of information change might involve all agents learning the truth value
of some proposition, which would update their accessibility relations, or the agents execute
some action within the model which changes the structure of the model itself. These actions
might be a form of private communication, or in more advanced action models it could be the
reassignment of a truth value for a proposition. An epistemic logic with semantics designed for
dynamic events is called a dynamic epistemic logic.

As we have already described static Kripke models, we now need to define a general action
model, which when applied to a Kripke model will result in an updated model. These updates
will represent the dynamic change of information.

An action model structure is similar to a Kripke model structure, with the exception that
worlds are now action labels and the valuation function is replaced with preconditions and
postconditions. The postconditions will be defined by substitution functions adopted from van
Ditmarsch and Kooi [2008]. If P is the set of basic propositions for the language L, then the
function P→ L is a substitution in L if it maps all but a finite number of basic propositions to
themselves. The set of all substitutions for P in L is denoted by SUB(L).

Definition 5 (Action Model). An action model A is a tuple (A,∼,Pre,Pos) where A is a finite
set of action labels A = {σ1, ..., σn}, ∼ is a family of accessibility relations ∼i over the actions
σ ∈ A for i ∈ A such that σ ∼i σ′ iff agent i cannot distinguish between the execution of σ
and σ′. The precondition function Pre : A → L assigns to each action σ a formula ϕ such
that ϕ is true in a world iff σ can be executed at that world. The postcondition is a function
Pos : A → SUB(L) which assigns to each action σ ∈ A a substitution from the basic propositions
to formulas in the language L. This allows the postcondition of an action to change the truth
valuation of a proposition.

We can now make an addition to the syntax of Definition 3 by allowing formulas to have a
prefix denoting the execution of an action in an action model A. We refer to the language L
that is capable of expressing statements about dynamic actions as LDEL, for dynamic epistemic
logic.

Definition 6 (Syntax of LDEL). Let p range over the propositions of P, i over the agents in
A, and σ over the actions in A. The formulas ϕ of the language LDEL are defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ′ | Kiϕ | [A, σ]ϕ

The dynamic formula [A, σ]ϕ denotes that after the action σ in A is executed, ϕ holds.

We define the semantics of LDEL the same as the semantics of static epistemic logic with
an additional clause for the new dynamic operator.

Definition 7 (Semantics of LDEL).

M, w � [A, σ]ϕ ⇔ if M, w � Pre(σ) then M◦ A, 〈w, σ〉 � ϕ

where M◦ A is the update model composed of M and A.

11

z

p, q

v

q

w

p, q

⇒ z

p, q

w

p, q

Figure 2.1: Public announcement of q in a DEL model M

An update model is the model that results from updating a Kripke model with an action
model. An update model also has a similar structure to the structure of static Kripke models
with worlds being replaced by world and action pairs, denoting the actions which can be executed
at a given world. Furthermore, the accessibility relations of both the initial model and the action
model are combined such that world and action pairs are indistinguishable from other world
and action pairs iff both the worlds were indistinguishable in the initial model and both the
actions were indistinguishable in the action model. Lastly, the valuation function uses the
reassignments of the postcondition of an action in order to determine the new valuation for a
given world in the update model.

Definition 8 (Update Model). Let M = (W,R,V) be a multi-agent Kripke model and A =
(A,∼,Pre,Pos) be an action model. The update model composed of M updated by A is denoted
as M◦ A which is defined as the tuple (W ′, R′,V ′).

• W ′ := {〈w, σ〉 |M, w � Pre(σ)}

• R′ := {R′i | i ∈ A} such that (〈w, σ〉, 〈v, σ′〉) ∈ R′i iff 〈w, v〉 ∈ Ri and σ ∼i σ′.

• V ′(〈w, σ〉) := {p | M, w � Pos(σ)(p)}

We can demonstrate an example of a model update with the following Kripke model and
action model. Let M = (W,R,V) be a Kripke model with a set of agents A = {a, b}. W =
{w, v, z} is the set of worlds in the model with z being the actual world, and the accessibility
relations and valuations for each world are illustrated in the leftmost model of Figure 2.1, where
the solid arrows denote the accessibility relations of a and the dashed arrows denote those of
b. Since both agents of the model cannot distinguish between the actual world z and another
world in which the valuation of the propositions p and q are different from z, neither agent is
said to know both propositions. However, M, z � Kaq holds and M, z � Kbp holds.

An example of one of the more basic actions is that of public announcement. A public
announcement simply announces to all agents within the model that a given proposition holds.
This action severs the accessibility relations of the agents to the worlds in the model in which
the proposition does not hold. We can let A be an action model with one action σ which will
represent the announcement of q. The precondition of the proposition q is that q is true in
the world in which it is announced. Since the public announcement of q makes no changes to
the valuation of the propositions at a given world, we can denote the postcondition as id which
signifies that V(w) = V ′(〈w, σ〉) for all w such that M, w � Pre(σ).

By updating the model M with A, then the worlds of the updated model become the set
of worlds such that Pre(σ) is true, so in the example of Figure 2.1, that is worlds w and z.
The accessibility relations connecting the worlds of w and z to the world v where ¬q held, are
severed in the rightmost model of Figure 2.1.

12

Notably, even after the update, a still cannot distinguish between the worlds w and z, thus
a does not know whether p is true. Since b’s only reachable world from the actual world z is z
(the reflexive relation), then b does know p and q, thus M◦ A, 〈z, σ〉 � Kbp ∧Kbq holds.

2.3 Cryptography

Cryptography is the study of secure communication techniques and protocols. Many of the
methods and protocols used in this thesis will abstract away from cryptographic primitives such
as encryption functions and random bits, but as a useful guide as to what is being represented
by operators in the later chapters, we explain some basic encryption procedures here.

Oftentimes the goal of cryptography is to create ciphers which are easy to decipher if the key
is known and hard or infeasible if the key is not known. Much of modern cryptography relies
on notions of computational infeasibility, which dictates how difficult a computation is for any
computational device. For example, problems in the complexity class of NP are difficult for a
computer to solve in polynomial time, but by definition a solution to a problem is verifiable in
polynomial time. The security of many popular encryption methods will rely on this asymmetric
difficulty. So, any potential adversary cannot use a polynomial time algorithm to attempt to
invert the computations of the encryption without some auxiliary information. However, an
authorized participant in the protocol, who has said auxiliary information, can compute the
message in a reasonable amount of time. This often restricts potential attacks by adversaries
to brute force attacks, which involves them guessing and checking solutions to a problem in
the class of NP. For problems with large enough numbers and entities, the probability of a
successful guess can diminish to near-impossibility.

2.3.1 Encryption Method Examples

Many of the encryption methods which we will investigate rely on the idea of one-way functions.
As described above, one-way functions are easy to compute for any given input, but given the
image of a random input, they are infeasible to invert. This section will briefly examine the
mathematics behind the popular RSA encryption method as well as the underlying principles
of a hash function.

RSA Encryption RSA is known as a public-key encryption system since it uses public in-
formation (the public key) known to all users and private information (the private keys) only
known to individual users. RSA works by providing each user with a pair of pairs, one being
her encryption key and the other being her decryption key. A user’s encryption and decryption
keys are pairs of positive integers (e, n) and (d, n), respectively. The integers e, d, n are selected
in a way such that it is mathematically possible to encrypt a message M (which is a number)
by applying a function of the encryption key on the message. First, n is a public number known
to all users and n is computed as the product of two secret large primes p and q. Despite n
being public, its considered a hard problem to factor n and obtain p, q [Katz and Lindell, 2007].
d is selected as a number that is relatively prime to (p − 1) · (q − 1) which means that the
GCD1(d, (p − 1) · (q − 1)) = 1 and e is the multiplicative inverse of d (mod (p − 1) · (q − 1))
so e · d ≡ 1 (mod (p − 1) · (q − 1)). Encrypting a message M is M e (mod n) and similarly,
decrypting a message M is Md (mod n). Since e and d are multiplicative inverses the process
of encrypting and then decrypting a message is the same as decrypting and then encrypting the
message. This can be seen in (M e)d (mod n) = M e·d (mod n) = (Md)e (mod n).

1GCD(X,Y) denotes the greatest common divisor of X and Y .

13

While RSA is a popular public-key encryption method, there are also symmetric key encryp-
tion methods which are not reliant on public and private information, but only on privately held
information. So, encryption with a symmetric key can be thought of as applying an operation
onto a message M , like multiplication by y, and the act of decryption is simply the inverse
operation of division by y. Therefore, the operation can be thought of as the symmetric key,
and thus as long as it is kept secret, then the secret values being encrypted cannot be read by
unauthorized users, or users who were not made privy to the key.

Hash Functions Hash functions take strings of bits of arbitrary length, potentially infinite,
and compress them into strings of a fixed length. One of the basic requirements for a hash
function is that it should be difficult to find a collision. A hash function H has a collision if
there is a pair of distinct elements x and x′ such that H(x) = H(x′). In such a case, x and
x′ are said to collide in H. H is collision resistant if it is infeasible to find a collision in H in
polynomial time. Since hash functions take strings of arbitrary length and compress them to
strings of fixed length, there must exist some collision due to the pigeon-hole principle [Katz
and Lindell, 2007]. So once again, the security of the hash function H relies on the difficulty of
finding values that collide in H.

2.3.2 Dolev-Yao Models

To analyze the security of cryptographic protocols, we must make a choice about the assump-
tions and proof methods of the model in which the analysis will take place. The computational
model is traditionally chosen since all messages are represented by bit strings over the language
{0, 1}∗, and the principals and adversaries are defined as algorithms which follow a given strat-
egy based upon their inputs. Proving security in the computational model typically relies on a
proof by reduction, which assumes that an attack by an adversary is possible on the protocol,
and then shows how this attack implies an attack on one of the underlying cryptographic primi-
tives of the protocol such as the encryption method or the hash function. Therefore, by proving
that the underlying primitives are impervious to attacks in polynomial time, the protocols are
proven to be secure against probabilistic polynomial time algorithms.

However, the computational models are intricate systems based reliant on advanced mathe-
matical operations and functions, and designing the reductions used can prove to be a difficult
task in itself. A Dolev-Yao model [Dolev and Yao, 1983] is a symbolic model which represents
messages as elements of a term algebra and represents the cryptographic primitives of encryp-
tion as operations of the algebra. Since all possible actions are defined by the operations and
available messages known to each principal of the protocol in a Dolev-Yao model, it provides
a compact method for defining any possible adversarial behavior. Therefore, this method of
modeling makes it possible to reason about the security of a given protocol with respect to
an adversary’s attack strategies. A general theorem could prove that an adversary’s goals lie
outside the range of possible executable actions, where an action is a transfer of information
from one principal to another or a deduction of information from available information. We do
not investigate Dolev-Yao models within this thesis, rather we use DEL to model protocols, but
it is important to identify the basic fundamentals of a symbolic model that would allow us to
produce the most accurate representations of a protocol.

A general Dolev-Yao model for public-key encryption and symmetric key encryption would
use an algebra A where the messages of the model are elements of A. Fragments of A can
define a set of publicly accessible users I, a set of privately generated nonces N , as well as three
types of encryption keys: public, private, and symmetric, denoted as KPub,KPriv, and KSym,
respectively. The encryption function can be an operation on A that takes a public key and a

14

message and outputs a message defined as the function encrypt : KPub × A → A. Likewise, a
concatenation or pairing function can be defined by pair : A× A→ A.

Assuming a bijection between public and private keys, we can define an inversion function

invert : KPub → KPriv. Let K−1 =

{
invert(K) if K is a public key

invert−1(K) if K is a private key
.

Intuitively, the inverse of a symmetric key is itself, so K−1 would be the identity function
[Herzog, 2005].

From the operations and terms defined above, we can construct protocol descriptions based
on nuanced message distributions and principal assignments in I. A protocol can then be
defined as a sequence of messages in A, where each message can have the prefix of the sender
in I, and the suffix of the intended receiver in I along with any other operations applied to the
messages.

2.4 Probability Theory

In later chapters of this thesis, we will analyze zero-knowledge protocols which require principals
in a protocol to be convinced of the validity of a proposition to a certain degree. That is, a
verifier in a protocol will assign probability values to certain statements that define whether or
not the verifier knows the statement. This section outlines basic probability notions which will
be used in later chapters, and can be skipped by those familiar to probability theory. For a
more thorough introduction to probability theory, see Schulz and Schaffner [2018].

Probability values are assigned to elements of a sample space, which can be defined as a set.

Definition 9 (Sample Space). Let any set Ω that can be formed from open sets through the
operations of countable union, countable intersection, and relative complement be a sample
space. Denote the members of a sample space as ω ∈ Ω.

A sample space can be thought of as a collection of events. We can define these events as
subsets of the sample space Ω.

Definition 10 (Event and Event Space). Any subset E ⊆ Ω is an event. An event space
associated with a sample space Ω is a set E such that:

1. E 6= Ø

2. If E ∈ E, then E ⊆ Ω

3. If E ∈ E, then Ω\E ∈ E

4. If E,E′ ∈ E, then E ∪ E′ ∈ E

We now define a probability measure as a function from an event space to a real number.
The following properties are also referred to as the Kolmogorov Axioms.

Definition 11 (Probability Measure). Define a probability measure P : E → R on an event space
E associated with the sample space Ω. P is a probability measure iff P satisfies the following
properties:

1. P(E) ≥ 0 for all E ∈ E

2. P
∞⋃
i=1

Ei =
∞∑
i=1

P(Ei) for disjoint events E1, E2, ...

15

3. P(Ω) = 1.

We can now define the notion of uniform probability, which is the probability measure for

equally likely events. Thus the value
1

|Ω|
defines the uniform probability assigned to each ω ∈ Ω.

So, the elements in our sample space Ω are equally probable when P({ω}) =
1

|Ω|
for all ω ∈ Ω.

The probability of two events occurring together is defined as the joint probability of the two
events. So, for two events Ei and Ej associated with Ω, Ei∩Ej = Ω\((Ω\Ei)∪ (Ω\Ej)) and the
joint probability of Ei and Ej is simply P(Ei∩Ej). We can now define the notions of conditional
probability and independence with respect to events. Informally, a conditional probability is
the probability measure of an event conditional on another specified event occurring.

Definition 12 (Conditional Probability). Let Ei and Ej be an event and P(Ej) > 0, then the
probability of Ei conditional on Ej is defined as

P(Ei|Ej) =
P(Ei ∩ Ej)

P(Ej)

The probability of Ei conditional on Ej is defined as the probability of both Ei and Ej
occurring divided by the probability of Ej .

If two events are not related, in the sense that the occurrence of one event does not affect
the occurrence of the other, then the two events are said to be independent. Formally, if two
events Ei and Ej are independent, then P(Ei ∩ Ej) = P(Ei)× P(Ej).

Remark 1. If two events Ei and Ej are independent, then the conditional probability of Ei on
Ej is:

P(Ei|Ej) =
P(Ei ∩ Ej)

P(Ej)
=

P(Ei)× P(Ej)

P(Ej)
= P(Ei)

16

CHAPTER 3
A Logic for Cryptographic Protocols

This chapter focuses on using a variant of DEL to model cryptographic primitives such as
encryption and adversarial actions. We expand upon the logic introduced in Dechesne and
Wang [2007] by introducing asymmetric encryption keys, making the logic more in line with
traditional Dolev-Yao models. We examine several cryptographic protocols as well as methods
for verifying security properties.

3.1 Syntax and Semantics

The logic used will be a variant of DEL in which standard DEL notation and syntax will be
used, but the propositions will be designed to better represent our cryptographic needs. Our
language is denoted by L where A is a finite set of agents we want to analyze within the protocol.
A will be used to denote the set of actions in an action model A. Since cryptography relies on
the exchange of messages in a secure manner, we will define the set M as the set of messages.

Definition 13 (Messages). Let M be a finite set of messages. A message m ∈M is defined as:

m ::= n | k | {m}k | (m,m′)

where n is an encoding of a message in ASCII, k is a cryptographic key, {m}k denotes a message
m encrypted by key k, and (m,m′) is the pairing of messages m and m′.

Following the work of Dechesne and Wang [2007] and Chen and Deng [2020] propositions
within the logic are refined by three predicates: has, const, and mk. The predicate has will
denote that an agent has a particular message within their information set, const will denote
that the agent can construct the message from the information within their information set
following a specified set of construction rules defined in Definition 17, and mk will mark actions,
simultaneously defined in Definition 19, in the protocol that have been executed.

Definition 14 (Basic Propositions). The set ΦA is the set of basic propositions defined by:

p ::= hasim | constim |mk(σ)

where i ∈ A, m ∈M , and σ ∈ A. The proposition hasim denotes that the agent i possesses the
message m, which means that i received the message m or obtained it during initial distribution.
The proposition constim means that i can construct m from the messages that i possesses via

17

construction rules. Lastly, the proposition mk(σ) denotes that the action σ is marked. Let
ΦI ,ΦI , and ΦAL be subsets of ΦA that contain the above propositions, respectively. That is ΦI

contains only propositions of the form hasim for all i ∈ A, ΦI contains only propositions of the
form constim for all i ∈ A, and likewise for ΦAL and propositions mk(σ) for all σ ∈ A.

Definition 15 (Syntax). Given agents A, propositions ΦA, and actions A, formulas of L are
defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ′ |Kiϕ | [A, σ]ϕ | [A]∗ϕ

Standard DEL meanings are assigned to each connective and operator, so Kiϕ means that “agent
i knows ϕ is true” and [A, σ]ϕ states that “after an action σ, ϕ holds in the model updated with
A”. The formula [A]ϕ is an abbreviation for

∧
σ∈A

[A, σ]ϕ and [A]∗ϕ signifies that after a finite

number of iterations of updating a model with A, ϕ holds. Standard abbreviations for disjunction,
material implication, and equivalence as shown in Definition 3 are assumed.

We also use the following abbreviations for formulas involving action models: 〈A, σ〉ϕ :=
¬[A, σ]¬ϕ, 〈A〉ϕ := ¬[A]¬ϕ, and 〈A〉∗ := ¬[A]∗¬ϕ.

Definition 16 (Models of L). A model is a tuple M = (W,R, I,AL) where W is a nonempty,
finite set of worlds. R : A → ℘(W ×W) is a function from the agents in A to a set of pairs
of worlds, denoting the reflexive, transitive, and symmetric accessibility relation of each agent
over the worlds in W . I : W × A → ℘(M) are the information states such that Iw,i is the set
of information that i possesses at world w either by an initial distribution or by receiving them
through communication with other agents. AL : W → ℘(A) are the action labels, so AL(w) is
the set of actions marked at w.

I and AL function the same as valuations for the propositions of L. Thus, the proposition
hasim is satisfied in a world w iff m ∈ Iw,i. The proposition constim is satisfied in a world
w iff there is a derivation from some set Γ ⊆ Iw,i to m using the rules of C defined below in
Definition 17.

Definition 17 (Cryptographic Construction Rules C). C is a set of construction rules of the
form Γ ` m where Γ is called a set of conditions and m is a result, it must be noted that Γ ⊆M
and m ∈ M . The set C acts as a set of rules that the agents can use to derive messages from
their information sets. The following rules determine what messages an agent can construct
from his information set. For ease of readability, the conditions of the rule are listed above the
line and the result of the rule is listed below the line.

m k

{m}k
{m}k k

m

m m′

(m,m′)

(m,m′)

m

(m,m′)

m′
m

m

An agent can only use a rule if his information set contains its conditions. Intuitively, with a
message and an encryption key one can construct an encrypted form of the message. Likewise,
with an encrypted message and the corresponding key one can obtain the plaintext message. The
subsequent three rules pertain to concatenation introduction and elimination and the final rule
states that one can always construct what they possess. Given an information set Iw,i ⊆ M ,
Iw,i is the closure of Iw,i under C.

First we will define the semantics of the basic propositions has, const, and mk before we
move on to the semantics of the language L.

Definition 18 (Semantics of basic propositions). Let M = (W,R, I,AL) be a model for L and
w ∈W .

18

M, w � hasim ⇔ m ∈ Iw,i

M, w � constim ⇔ m ∈ Iw,i

M, w � mk(σ) ⇔ σ ∈ AL(w)

The semantics for has states that an agent possesses the message m at world w iff m is a
member of his information state at world w. The semantics for const states that an agent i is
able to construct a message m iff m can be derived from the information state of i at world w
where Iw,i is the set of constructable messages from the set Iw,i. The proposition mk(σ) holds
at world w iff σ is marked at world w.

Proposition 1. Let m ∈ M be a message and M = (W,R, I,AL) be a model, C be a set of
construction rules such that m ` m ∈ C. For all agents i ∈ A it holds that M, w � hasim →
constim.

Proof. AssumeM, w � hasim holds for some agent i ∈ A. Then m ∈ Iw,i by Definition 18, and
by the construction rules of the model we have m ` m, thus by the closure of Iw,i under C we
have m ∈ Iw,i. So, M, w � constim.

Remark 2. It follows directly from Proposition 1 and contraposition that M, w � ¬constim→
¬hasim.

As in Baltag et al. [1998], we define our action models with precondition and postcondition
functions, which assign to each action label a proposition and substitution, respectively, which
allow us to transform a given model after an update. These structures require each action to
have a precondition and a pair of postconditions, where the precondition states which worlds
the action can be executed in. The postconditions of the action act as a substitution function
which assigns new valuations of propositions to the world where the action was executed and
as a labelling mechanism to denote which actions have been executed in a given world. The
preconditions will be propositions such that if the precondition is satisfied in the world then
the action can be executed in the world. We define the substitution function ΦA → L as in
Definition 5. The set of all substitutions for ΦA in L is SUB(L).

Definition 19 (Action Model). Define the action model as a tuple A = (A,∼,Pre,PosI ,PosAL).
Let A be a finite set of actions σ. The function ∼: A → ℘(A×A) assigns each agent to a set
of pairs of actions which represent the agents indistinguishability of events. We can refer to ∼
as a relation: σ ∼i σ′ if i cannot distinguish between the execution of action σ and σ′. The
relation ∼ is reflexive, symmetrical, and transitive. Let Pre, PosI , and PosAL be functions over
the set of actions A which assigns to each action a precondition, a postcondition pertaining to
information sets, and a postcondition pertaining to marked actions, respectively. Pre : A → L
is a formula in the language that denotes the precondition of σ ∈ A. PosI : A → SUB(L) is a
function that assigns to all actions σ ∈ A a substitution for L such that PosI(σ)(p) ∈ {>,⊥}
for all p ∈ ΦI and PosI(σ)(p) = p otherwise. PosAL : A → SUB(L) assigns to each σ ∈ A
a substitution for L such that PosAL(σ)(p) ∈ {>,⊥} for all p ∈ ΦAL and PosAL(σ)(p) = p
otherwise.

Later in protocol descriptions, we will write m ∈ Iw,i for the substitution that maps hasim to
> while leaving all other basic propositions unchanged. The effect of this postcondition adds m
to the information set of i after the execution of the action. Similarly, σ+ denotes the mapping

19

of mk(σ) to > while leaving all other propositions unchanged, and σ− denotes the mapping of
mk(σ) to ⊥ while leaving all other propositions unchanged.1

Definition 20 (Model Update). Let σ, λ be actions in A and m be a message in M . Given a
model M for L and an action model A, the updated model M◦A is the tuple (W ′, R′, I ′, AL′),
defined as follows:

• W ′ = {〈w, σ〉 |M, w � Pre(σ)}

• R′ := {R′i | i ∈ A} such that (〈w, σ〉, 〈v, σ′〉) ∈ R′i iff 〈w, v〉 ∈ Ri and σ ∼i σ′.

• I ′(〈w, σ〉, i) = {m | M, w � PosI(σ)(hasim)}

• AL′(〈w, σ〉) = {λ | M, w � PosAL(σ)(mk(λ))}

The model update transforms a given model such that, the worlds are defined as world-action
pairs where an action is paired with any world that satisfies its precondition. The accessibility
relations of the updated model are now relations over world-action pairs such that if an agent
cannot distinguish between two actions and two worlds, then the agent cannot distinguish
between the action and world pairs composed of those actions and worlds. The information
states of the updated model assign to a world and agent the set of messages the agent has at
that world after the execution of the action. The updated action labels assign to each world
the set of actions that are marked after the execution of an action at that world.

Definition 21 (Semantics of L). Let M = (W,R, I,AL) and w be a world in W . Define the
semantics of the language as follows with the basic propositions defined in Definition 18:

M, w � > ⇔ always

M, w � ¬ϕ ⇔ M, w 2 ϕ

M, w � ϕ ∧ ψ ⇔ M, w � ϕ and M, w � ψ

M, w � Kiϕ ⇔ for all v if wRiv, then M, v � ϕ

M, w � [A, σ]ϕ ⇔ if M, w � Pre(σ), then M◦ A, 〈w, σ〉 � ϕ

M, w � [A]∗ϕ ⇔ for all n ∈ N :M, w � [A]nϕ

Let JϕKM = {w ∈W | M, w � ϕ}. Recall that [A]ϕ :=
∧
σ∈A

[A, σ]ϕ.

Remark 3. The following follow from Definition 21 and the abbreviation of [A]ϕ in Defini-
tion 15:

• M, w � [A]ϕ ⇔ for all σ ∈ A :M, w � [A, σ]ϕ

• M, w � 〈A〉ϕ ⇔ there is a σ ∈ A :M, w � 〈A, σ〉ϕ

• M, w � 〈A〉∗ϕ ⇔ there are σ0, ..., σn ∈ A :M, w � 〈A, σ0〉...〈A, σn〉ϕ

With the logical syntax and semantics in place, we can now take cryptographic protocols and
model them within the logic. The protocols in this chapter rely on the exchange of information
resulting from the execution of actions. The following section will analyze cryptographic pro-
tocols and demonstrate how the logic is capable of modeling them as well as verifying security
goals. The protocols will be constructed by designing the action model A to be executable in a
modular way, so we can analyze potential intruders of different strengths.

1An example of when this might be required is if the precondition of an action σ is that σ is unmarked, thus
preventing repeated execution of σ with every model update.

20

3.2 Cryptographic Protocols

Cryptographic protocols are typically designed with respect to the security goals they are at-
tempting to reach. Since protocols are multi-agent interactions, the order of the sequence of
actions is important as well as the contents of the message. These details are dependent on the
network environment as well as the limitations of the agents, with respect to their epistemic
states. This section will recall back to the logical language to express how a cryptographic
protocol can be modeled within the logic as well as how the security goals can be verified.
The set of actions executable within the model must express certain properties with respect to
information exchange, furthermore the concept of an intruder must be given its own potential
actions which test the security of the protocol. Finally, we will illustrate some examples of
cryptographic protocols as well as verification of their security goals.

3.2.1 Verification

The execution of a protocol is the execution of a sequence of actions. While some of the
actions may take place within the information states of individual agents, such as computing
and constructing messages, the interactive portion of the protocol is the pattern of messages
exchanged between the agents. We will use the following notation to describe an instance of
communication: a → b : m denotes that a sends the message m to b. This notation will
allow for a proper protocol description which we can then map to actions within the logic. For
a communication described as a → b : m, m is a message of a fixed pattern, meaning that
given a protocol description we can assign parameters to the form of a given message. The
parameters that compose these patterns each have a fixed domain specified in the initial model.
Any parameter that has a specification that ranges over the set of agents is called a role.

In a run of a protocol, the action patterns are instantiated by some θ, which maps parameters
of the protocol to their domain. In the context of a given protocol, Θ refers to the set of all
possible instantiations. We will assume the set of parameters and their corresponding domain
are all finite, therefore Θ is finite.

The network environment with which the agents use to communicate is also important to
establish because it determines how exactly information is moved from one agent to another
and what possibilities there might be for an intruder to conduct an attack on the protocol. To
simulate a communication channel, we use an input buffer and an output buffer, adapted from
Baeten [2020], which we can represent by two special agents within the model. The agent In
will act as the input buffer, which all agents can send messages to, and the agent Out will act
as the output buffer which will deliver messages to agents. The interaction between In and Out
will not be made explicit, however if a sends a message m to b, then a must send the message
to In, and then Out sends the message to b. It is in this buffer environment that an intruder
may exist, eavesdropping messages from In, and passing on fake messages to Out. It holds that
IIn ⊆ IOut.

Lastly, we discuss the verification model which takes the security goals of the protocol and
checks whether they are valid in all instantiations of the protocol. Assuming we have designed
an action model A that properly represent the protocol description, we may also choose to
insert intruder actions Int and we will let AInt denote the set of actions containing the protocol
description and possible intruder actions. Verifying the security goals of the protocol requires
using a model as described in Definition 16 and the action model AInt. We formalize the
verification as follows:

M �
∧
θ∈Θ

[AInt]
∗[AInt, σ(θ)]ϕ(θ)

21

whereM is a model as defined in Definition 16 which includes all assumptions made at the initial
distribution and all information states for all agents. AInt denotes the action model including
the intruder actions, and σ(θ) is an action in AInt, which is instantiated by θ, typically σ(θ)
is the last action of a protocol, thus ensuring that we are verifying certain properties after a
proper execution of the protocol. ϕ is a formula in L, which we design to represent the security
goal. This formula is also instantiated by θ, which means that any schematic parameters set
in the protocol are mapped to a specific member of the domain.

∧
θ∈Θ

[AInt]
∗[AInt, σ(θ)]ϕ(θ) is a

formula that takes the conjunction over all possible instantiations of the parameters and says
that after any possible execution of the protocol described by AInt, ϕ holds. Given a ϕ which
accurately represents the security goal, then the validity of the above formula verifies that the
security goal holds within the model with the initial assumptions.

3.2.2 Modeling Actions

The first step to modeling a cryptographic protocol is to define the set of actions which are
possible. After the actions are designed, the initial model can be set which contains all initial
assumptions and parameters for each agent in the protocol. Let A be the set of agents in the
protocol, this includes an adversarial agent. Given an instantiation of the protocol, one of the
agents in A is mapped to the role of Eve, who is the intruder capable of performing intruder
actions as listed in Table 3.2. Recall our model requires two special agents to represent the
input and output buffer of the network environment, thus our agents will be A ∪ {In,Out}.

Since a protocol description is composed of actions of the form a→ b : m, where a sends b
the message m, we split this action into two parts to correspond with the network environment
of the model. The sending part of the action is denoted by the action σ where a→ In : m takes
place. The receiving part of the action is denoted by the action δ where Out → b : m takes
place. Since actions in A are defined by the functions Pre,PosI , and PosAL, they need to be
defined for each action. The precondition of the sending action is that the agent can construct
the message they are sending from their information set, Pre(σ) = constam. Furthermore, to
prevent a continuous execution of the same action over multiple updates, we stipulate that the
action σ must be unmarked at a world where it is executed, formally this is denoted as ¬mk(σ).
The postcondition of the sending action is that the message is now in the information state of
the input buffer, PosI(σ) = m ∈ IIn. The action is then marked, so PosAL(σ) = σ+.

Similarly, for the receiving portion of the action we define Pre(δ) = hasOutm, since the buffer
agents are merely environmental they cannot construct messages from their information sets.
Recall, In and Out are assumed to be network buffers that communicate amongst themselves,
yet that communication is not made explicit within the models. The postcondition of δ is
defined as PosI(δ) = m ∈ Ib. Lastly, the action label is defined PosAL(δ) = {δ+, σ−} signifying
the completion of the message communication, which allows the σ action to be executed again.
Table 3.1 lists the described actions with the corresponding pre-and-post-conditions. It should
be noted that the preconditions and postconditions listed in the table are considered the most
general and basic of message communication, but if one wanted to design more stringent rules
on the interaction between the agents, more complex preconditions could be implemented in
the form of complex formulas in L.

To design an adversary’s potential actions, the strength of the intruder must be taken into
account. The strength must also be considered when interpreting the results of a verification
formula, for instance if the intruder only has passive actions, then the security goals can only
be said to hold in the presence of a passive adversary. For basic eavesdropping actions, which
are considered to be passive actions, the intruder is allowed to eavesdrop messages from the

22

Action Direction Message Pre PosI PosAL
σ a→ In m constam ∧ ¬mk(σ) m ∈ IIn σ+

δ Out→ b m hasOutm m ∈ Ib δ+, σ−

Table 3.1: Basic sending and receiving actions

Action Direction Message Pre PosI PosAL
take In→ Eve m hasInm m ∈ IEve -
fake Eve→ Out m constEvem m ∈ IOut -

Table 3.2: Intruder action model Int

input buffer as well as insert messages to the output buffer.2 For some arbitrary message m,
this consists of two sub actions take and fake, where take is of the form In→ Eve : m and fake
is of the form Eve→ Out : m. With these two actions, the intruder can take any message from
the input buffer and if the intruder can construct a message, then she can send that message via
the output buffer. The precondition and postcondition of these actions are defined the obvious
way and can be seen in Table 3.2. It should be noted, if one wanted a more powerful adversary
within the model then it is easy to design more complex actions as well as implementing the
adversary with more information in the initial state. An example of more aggressive adversarial
actions not considered in this thesis, is a jam action which prevents a message from passing
from the input buffer to the output buffer without the intruder learning the message.

The action model A also possesses the relation ∼ which assigns epistemic properties to each
action, namely whether an agent can distinguish the execution of one action from another.
The general method for modeling actions and indistinguishability is to assume each agent in
i ∈ A can only distinguish those actions which either directly affect his information set or
that he executed. That is, all other actions λ and ν have the relation λ ∼i ν. For simplicity,
we can determine partitions on the set of actions A for each agent i ∈ A with respect to a
given action model A which determines the actions they can distinguish. For example, the
action model represented in Table 3.1 has the equivalence relations ∼a= {〈σ, σ〉} ∪ {〈δ, δ〉} and
∼b= {〈σ, σ〉} ∪ {〈δ, δ〉} since only the σ action is relevant to a and only the δ action is relevant
to b. This example, however, represents a unique case in which there are only two action types:
σ and δ. We suppose a general common knowledge over the set of possible action types, that
is all agents know the actions as described in Table 3.1. We maintain that each agent can only
distinguish those actions which are directly relevant to him, however in a case with only two
types of actions, if an action is executed and the action is not relevant to an agent i, i will
still recognize that an action took place and conclude that the executed action was of the other
type.

With the set of basic actions defined, the initial model of a protocol can be set. The initial
model M = (W,R, I,AL) is defined as follows:

W : Define each world by the possible distribution of messages over the set of agents in A.
This then determines all information sets in I so for a given distribution of the messages
over the set A, m ∈ Iw,i for all i ∈ A such that m ∈ M is distributed to i in world

2Standard notions in cryptography tend to state that a passive adversary can only read messages without
the possibility of sending her own, however for our purposes the messages which Eve can send are restricted to
those messages which she can construct. Therefore, at initial stages of a protocol, the adversary is only capable
of reading messages, and then as she gains information over the course of the protocol, she can construct fake
messages.

23

w. We set the input and output buffer information sets to the empty set for all worlds:
Iw,In = Iw,Out = Ø.

Ri: let 〈w, v〉 ∈ Ri iff Iw,i = Iv,i

AL: In the initial model, AL(w) = Ø in all worlds w ∈W .

Consider a basic action model A that contains the actions of sending a message to the input
buffer and receiving an action from the output buffer, as previously described by Table 3.1. Let
M be a model with agents {a, b} and a message m. There are four possible distributions of
the message m amongst the set of agents including the distribution where neither of the agents
possesses the message. Assuming that each agent only knows the information which they hold
we can present a Kripke model M as follows:

• W = {a, b, ab,Ø}

• Ra = {〈a, ab〉, 〈ab, a〉, 〈b,Ø〉, 〈Ø, b〉, 〈a, a〉, 〈b, b〉, 〈ab, ab〉, 〈Ø,Ø〉}

• Rb = {〈b, ab〉, 〈ab, b〉, 〈a,Ø〉, 〈Ø, a〉, 〈a, a〉, 〈b, b〉, 〈ab, ab〉, 〈Ø,Ø〉}

• AL(w) = Ø for all w ∈W

Note that each world w is labeled by the name of the agent i such that m ∈ Iw,i for each agent
i ∈ A, so world ab is the world w in which m ∈ Iw,a and m ∈ Iw,b. The accessibility relation R
is symmetric, reflexive, and transitive. Figure 3.1(a) illustrates the Kripke model showing that
each agent can only distinguish the worlds relevant to the information they hold. The solid
lines denote the indistinguishability of a and the dashed lines join the worlds which b cannot
distinguish. The actual world is underlined as a, so b cannot distinguish the actual world from
the world in which neither agent has the message m, and a cannot distinguish the actual world
from the world where both a and b have the message m. Recall, the information sets of both
the input and output buffer are the null set at this stage in the protocol.

ab b

Øa

(a) M

〈a, σ〉

〈ab, σ〉

(b) M◦ A

〈〈a, σ〉, δ〉

〈〈ab, σ〉, δ〉

(c) M◦ A2

Figure 3.1: Results of updating a model M with the action model A

The action model A contains the actions σ and δ. The distinguishability of events in A is
such that a can only distinguish the σ action from all other actions, and b can only distinguish
the δ action from all other actions. Notably, the ∼i relation is reflexive, so for all actions λ
and agents i, λ ∼i λ. Therefore when we update the model M with the action model A, the
result is M◦ A as depicted in Figure 3.1(b), where the model is reduced to just those worlds
where the precondition of σ holds. The δ action cannot be executed in the initial model, since
by assumption IIn = IOut = Ø and thus the precondition of δ fails to hold in any world of the
initial model.

Once more, the model in Figure 3.1(b) can be updated by the action model A resulting in
the model depicted in Figure 3.1(c). Although not explicitly illustrated in the model, the input

24

and output buffer both possess the message m since IIn ⊆ IOut, thus satisfying the precondition
of δ, allowing the action to be executed. Since the precondition of σ states that σ cannot be
marked in the world in which it will be executed, the execution of σ cannot be repeated in
this model until σ is unmarked. After the δ action is executed in Figure 3.1(c), b possesses
the message m, thus changing the information set of an agent. At both worlds, it holds that
hasam ∧ hasbm, however the worlds are separate with respect to their histories which denote
how the world was in the initial model.

The following subsection examines specific cryptographic protocol examples and demon-
strates how to model them as well as verify specific security goals. These protocol examples
will utilize potential intruder actions and encryption methods.

3.2.3 Protocol Examples

To introduce the concept of modeling cryptographic protocols, we will examine a very basic
protocol where the agents have a shared key established in the initial state. Recall, the protocol
description will apply to roles, so different instantiations can map any agent from the domain
into a role, therefore our assumptions about what information is known in the initial distribution
must be made with respect to the roles and not the agent names. For example in the following
protocol between a sender S and a receiver R, we can map any of the agents from A = {a, b, c}
into the roles of S,R, and Eve by using different instantiations θ ∈ Θ. This first protocol is
designed with privacy from eavesdroppers as the goal. First, a protocol description is necessary
before implementing the initial state. This protocol model will also assume a passive adversary
as described in Table 3.2.

3.2.3.1 Secrecy with a Shared Key

This protocol only requires one key, but it must be known to all agents with whom private
communication wants to be shared. Let two principals share a key k that they use to encrypt
messages. Since both agents have the key, they can send encrypted messages over an open
channel and the other agent can decrypt the message without any eavesdropper obtaining the
contents of the message. So, for the shared key k, as long as a message is of the form mk, the
two principals can confidently send messages to one another.

Since the important aspect of this protocol functioning successfully is the shared key, it
requires the assumption that the two parties communicating, a sender and a receiver, both have
a shared key only known to them. Let the set of agents be A = {a, b, c} where Alice is a, Bob
is b, and Charlie is c. The total set of agents in the model will be A ∪ {In,Out} and the roles
of the protocol will be S for sender, R for receiver, and Eve for an eavesdropping intruder.

The protocol description only requires one message to be sent from S to R, and that is the
encrypted secret they wish to share. Thus, using our formal notation we have:

1. S → R : mk

where m is the secret possessed by the sender, and mk is the encrypted form of the message.
As previously mentioned, the parameters are m,S,R where the domain of m is the finite set
of secrets S, and the domain of the roles is A. We do not list the key k as a parameter since
it is fixed in this protocol, and thus remains the same in any instantiation. Since we assume
the key is only known to the sender and receiver, they are both capable of sending encrypted
messages over an open channel without an intruder obtaining their secrets, thus the protocol
ensures secrecy through the shared key.

With the protocol description above, the action model can be designed to accurately repre-
sent the required action patterns. Since our model uses a network environment with input and

25

Action Direction Message Pre PosI PosAL

σ S → In mk hasSm ∧ constSmk ∧ ¬mk(σ) mk ∈ IIn σ+

take In→ Eve Xk hasInXk Xk ∈ IEve -
fake Eve→ Out X constEveX X ∈ IOut -
δ Out→ R Xk hasOutXk Xk ∈ IR δ+, σ−

Table 3.3: The action model AInt for a shared key protocol

output buffers, the actions in the model A reflect that. Table 3.3 lists the set of action patterns
in A with the addition of intruder actions Int, where any instantiation of these actions is an
instance of the protocol described. As can be seen, the intruder’s eavesdropper actions allow her
to take the message mk from the input buffer, however since k is not a part of Eve’s information
state, she cannot obtain the plaintext message m from mk. The variable X is used to represent
the parameters that cannot be controlled by the role performing the action, so when S sends the
message mk, they control the secret that is m, but when Eve takes the message from the input
buffer, it need not be a secret message from S. We do assume the action model is well-typed
such that X will always be a message, but the content of the message is only determined by
the parameter mapped to S in the σ action, in all other actions X can range over any message
in M . This also ensures that there are only a finite amount of actions to be performed since
the domains of the parameters of the protocol are finite, for example since there are a finite
number of secrets in S, then there are a finite number of σ actions, which implies there are
also a finite number of take and δ actions since the σ actions determine what messages are in
the input buffer. Furthermore, since there are only a finite number of take actions, then the
information set of the intruder is finite implying that there are only a finite number of messages
the intruder can construct for fake actions.

The equivalence relation for each agent over the set of actions is determined by whether the
action changes the information set of the agent or whether the agent is executing the action.
Therefore, the sender’s equivalence relation can be denoted by the partitions ∼S = {〈λ, ν〉|λ, ν ∈
{σ(θ) | ∀θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈ {take(θ), fake(θ), δ(θ) | ∀θ ∈ Θ}} which represents the sender’s
ability to distinguish σ actions, but no other action in AInt. The instantiation θ in each partition
represents the total set of actions given an action’s parameters. The receiver’s equivalence
relation over the actions is denoted as ∼R = {〈λ, ν〉 | λ, ν ∈ {δ(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈
{σ(θ), take(θ), fake(θ) | ∀θ ∈ Θ}}, and the intruder’s equivalence relation over the actions is
∼Eve = {〈λ, ν〉 | λ, ν ∈ {take(θ) | ∀θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈ {fake(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈
{σ(θ), δ(θ) |∀θ ∈ Θ}}. The receiver’s equivalence relation is similar to the sender’s such that the
receiver can only distinguish one action, δ, and all other actions in AInt are indisitinguishable
from one another. The intruder’s equivalence relation contains three partitions since the intruder
is capable of executing two actions: take and fake.

We will design the initial model with the simplest amount of information possible. The set
of secrets S = {m} contains only the message m, and as previously mentioned only the roles of
sender and receiver have the encryption key k. Thus for all agents i ∈ A, Iw,i ⊆ {k,m}. We will
define the worlds of the initial model by the distribution of the secret message m. The name of
a world will be denoted by the set of agents i such that m ∈ Iw,i.

Figure 3.2(a) illustrates the initial model3 with the three agents a, b, c assigned by θ to the
roles of S,R,Eve, respectively. The solid lines represent a’s indistinguishability relation between
worlds, the dashed line represents b’s indistinguishability relations, and the dotted line denotes

3A similar illustration is found in Dechesne and Wang [2007] for the initial model of a cryptographic protocol,
however it is missing some distinguishability relations. This is fixed in Figure 3.2(a) by using indistinguishability
relations.

26

abc ab

aac

bc b

Øc

(a) M

〈abc, σ〉 〈ab, σ〉

〈ac, σ〉 〈a, σ〉

(b) M◦ AInt

〈〈abc, σ〉, take〉 〈〈ab, σ〉, take〉

〈〈a, σ〉, take〉〈〈ac, σ〉, take〉

〈〈abc, σ〉, δ〉 〈〈ab, σ〉, δ〉

〈〈a, σ〉, δ〉〈〈ac, σ〉, δ〉

(c) M◦ A2
Int

〈〈〈abc, σ〉, take〉, fake〉 〈〈〈ab, σ〉, take〉, fake〉

〈〈〈a, σ〉, take〉, fake〉〈〈〈ac, σ〉, take〉, fake〉

〈〈〈abc, σ〉, take〉, δ〉 〈〈〈ab, σ〉, take〉, δ〉

〈〈〈a, σ〉, take〉, δ〉〈〈〈ac, σ〉, take〉, δ〉

〈〈〈abc, σ〉, δ〉, take〉 〈〈〈ab, σ〉, δ〉, take〉

〈〈〈a, σ〉, δ〉, take〉〈〈〈ac, σ〉, δ〉, take〉

(d) M◦ A3
Int

Figure 3.2: Secret Sharing Scheme Model Updates

c’s indistinguishability relations. Intuitively, each agent can only distinguish between the worlds
that vary with respect to their own information set. Since there is only one message in the set
S, we can denote the secret message as m. The assumption that IIn = IOut = Ø in all worlds
holds in the initial model. We can assign the world labelled a in the model of Figure 3.2(a) to
be the actual world since a is the sender and is the only agent in A that possesses the secret
message m. Formally we can say, M, a � hasam ∧ ¬hasbm ∧ ¬hascm.

By updating the initial model with the action model AInt, we obtain the resulting model
in Figure 3.2(b). Only the worlds that satisfy the precondition of σ remain in the model, and
since the input and output buffer are empty, per the assumption of the initial model, no other
action’s precondition is satisfied. Notably, a has the universal accessibility relation over the
worlds in M◦ AInt since a cannot distinguish between the distributions because hasam holds
in all worlds and because a cannot distinguish one σ action from another σ action.

Updating M◦ AInt with AInt again results in the model illustrated in Figure 3.2(c) which
increases the number of worlds since the preconditions of two actions are satisfied at all the
worlds of M◦ AInt. Since the input buffer contains a message, namely mk, c can perform the
take action. The transaction is omitted, but we let Out obtain information from In, so the δ
action can be executed which delivers mk to b. Both of these actions are distinguishable by c

27

and b, but not by a, which results in a’s indistinguishability relation holding over all worlds in
M◦ A2

Int.
Updating the model for a third time results in the model M◦ A3

Int which is illustrated in
Figure 3.2(d). The model increases in size once more because the postconditions of the two
actions possible in the model M ◦ A2

Int satisfy the preconditions of the two actions fake and
δ. The fake action is only possible if c can construct a message she intends to insert into the
output buffer. Since it is possible for c to take the message mk in a subset of worlds in the model
M ◦ A2

Int, these aforementioned worlds satisfy the precondition of the fake action. It is also
possible for c to take the message in the previous update, but then to not do anything further and
instead the message continues on its delivery course through the output buffer, also satisfying
the precondition of δ. This can be seen as the middle quadrant of the model in Figure 3.2(d).
Lastly, in a sequence where the message mk is delivered to b from the output buffer, the message
is still in the information set of the input buffer, thus allowing c to perform a take action after
the fact. There is another possible action that is satisfied after the execution of δ, and that
is to execute σ again. However, since there is only one message in the set S this would be a
superfluous addition that would only serve to obfuscate the relevant information of the model
in Figure 3.2(d). All three quadrants in the model which denote possible action sequences are
joined by a’s accessibility relation since c can distinguish the actions of fake and take, and b can
distinguish the δ action. There are further expansions upon the model by updating it further
with AnInt for some n, however these models would quickly become unreadable.

This simple protocol has one straightforward goal: secrecy such that no unintended agent
obtains the message m. This goal must be formalised in the language of L so that the validity of
the statement in the constructed model can be checked. For the following goal and propositions,
let M be the initial model as described above.

Goal 1 (Privacy). Let k be a shared key between the roles of S and R, and m a message in S.
If an intruder does not know the shared key at the beginning of a protocol, then the intruder will
not be able to obtain any secret message m.

M �
∧
θ∈Θ

(¬hasEvek → [AInt]
∗¬constEvem(θ))

In order to prove the validity of the formula in Goal 1 we must utilize the following propo-
sitions.

Proposition 2. 4 For any message m and any agent i, if i can construct m, then he can still
construct m after an execution of any sequence of actions in AInt:

M � constim→ [AInt]
∗constim

Proof. Assume M, w � constim holds, so m ∈ Iw,i. Then by updating the model M with the
action model AInt given in Table 3.3, we obtain M◦AInt. By Definition 19, PosI is a function
that assigns to each action a substitution for L, and there is no action and proposition pair
(σ, p) such that σ ∈ AInt, p ∈ ΦI , and PosI(σ)(p) = ⊥. That is to say that no postcondition of
AInt deletes information from an agent’s information set. Therefore, for any action σ ∈ AInt,
M◦AInt, 〈w, σ〉 � constim. Thus, there is no sequence of actions that would result in an agent
losing the ability to construct a message he could previously construct.

4This proposition is presented in Dechesne and Wang [2007], and again in Chen and Deng [2020], without a
proof. I have adjusted the notation to fit present purposes and provided the proof.

28

The following proposition pertains to how there is no way to deduce a plaintext message from
the encrypted form of that message. The only way to obtain the plaintext from the encrypted
message is to have the corresponding key to the encryption. Let T be a set of messages and T
denote the closure of T under C.

Proposition 3. Let C be the set of construction rules given in Definition 17. For any set of
messages T , some key k, and any secret message m, if k /∈ T and m /∈ T , then m /∈ {mk} ∪ T
and k /∈ {mk} ∪ T .

Proof. Assume k /∈ T and m /∈ T . Suppose a set {mk} ∪ T . In C, the only rules which have a
conclusion of m are of the form (m,m′) ` m, m ` m, and {mk, k} ` m.

For the case of (m,m′) ` m, it requires that (m,m′) ∈ T . Since T is the closure of T under
C, then by rule (m,m′) ` m, m ∈ T which contradicts the assumption.

For the case of m ` m, it requires that m ∈ T which contradicts the assumption. For the
case of {mk, k} ` m, k /∈ T by assumption, and thus the conditions for this rule are not satisfied.
To prove k /∈ {mk} ∪ T repeat the above argument but let m = k.

Proposition 4. Goal 1: ‘Privacy’ is true in the initial model M.

Proof. 5 For the purposes of this proof we take an arbitrary instantiation θ ∈ Θ. Without loss
of generality, let the agents a, b, c in the initial model M be assigned to the roles of S,R,Eve,
respectively and the secret message m is mapped to the only element of S. For a proof by
contradiction assume there is a world w in M such that

M, w 2 ¬hasEvek → [AInt]
∗¬constEvem

It follows that there is a sequence of actions σ1, ..., σn ∈ AInt such that

M, w � ¬hasEvek ∧ 〈AInt, σ1〉...〈AInt, σn〉constEvem

Based on the initial model and assumptions on the information set of Eve, Eve does not have
the encryption key, so for all worlds w it holds that M, w � ¬hasEvek. It follows from this
assumption that in the initial model:

M, w � ¬constEvek ∧ 〈AInt, σ1〉...〈AInt, σn〉constEvem

since in the initial model the information set of Eve is empty. Let I li be the information set
of an agent i after executing actions σ1, ..., σl in M, w where I0

i is the information set in the

initial model. From Proposition 2 it follows that there must be a unique l such that m /∈ I lEve
but m ∈ I l+1

Eve. Of the actions designed in AInt, only the following type of action could add
information to Eve’s information set:

• σl+1 := take

In this case I l+1
Eve = {m} ∪ I lEve. The precondition of take is m ∈ IIn. The input buffer only

contains messages which agents send and there is no σ action in AInt where the content of the
message is not encrypted by the key k, so the information gained in σl+1 must be of the form
mk. However, by Proposition 3 it follows that to deduce m from mk one must have the key k,
but this is in contradiction with the first conjunct.

5This proof is inspired by techniques used in Dechesne and Wang [2007, pg. 12] for the proof of R2 in relation
to a different cryptographic protocol.

29

3.2.3.2 Secret Sharing Scheme and Man-in-the-Middle Attack

The following protocol examines a secret sharing scheme over an insecure network using sym-
metric keys, and does not rely on the assumption that the communicating agents already share
an encryption key. The protocol was the topic of Chen and Deng [2020], and the security goals
of the protocol have already been verified under the assumption of a passive adversary. The
passive adversary had the available actions of take and fake and was implemented with no infor-
mation set at the initial state. The verification of the security goals under the passive adversary
will be analyzed as well as making a modification to the initial model which results in a more
intelligent adversary capable of conducting a man-in-the-middle attack.

To begin, the protocol description relies on the notion that encryption is a commutative
process, so for two distinct keys k and t an encrypted message m denoted by {{m}k}t can be
decrypted in any order, thus mkt = mtk. Let the protocol interaction take place between roles
S and R, for sender and receiver, with each role’s key being ks and kr. For readability, denote
the encryption of message m with key kr as mr. Assuming each agent has their own individual
key only known to them, the protocol begins with the sender encrypting the secret message m
with her own key ks as ms and sending it over the open network. Once the receiver has received
the message, he encrypts the message again with his own key, kr, so the message is now of
the form msr and sends it back over the open channel. After the sender has received this new
message, she decrypts the message using her own key and sends mr back over the channel. Now
the receiver can open the secret message with his own key and obtain m.

The protocol description can be formalized as:

1. S → R : ms

2. R→ S : msr

3. S → R : mr

The same network environment consisting of an input and output buffer can be utilized to
represent the open communication channel. Thus the agents we want to analyze epistemically
can be set as A = {a, b, c} and the agents in the model are A ∪ {In,Out}. The roles of the
protocol are S,R, and Eve.

We will define the action model B to represent the protocol and the potential intruder’s
action are modelled by Int. The set of actions BInt can be seen in Table 3.4. Here we continue
the use of typed variables (X,Y) where X represents parameters that are of message type that
cannot be controlled by the agent executing the action and Y represents parameters that are
of key type that cannot be controlled by the agent. Some actions are also consolidated for
simplicity, for example the action δ1 demonstrates the output buffer sending a message of the
form XY to the receiver R, but as this happens multiple times in the protocol we only need to
list it once in Table 3.4 since none of the parameters change.

The equivalence relation over the actions in BInt for each agent (as assigned by their role)
are given as follows:

• ∼S ={〈λ, ν〉 | λ, ν ∈ {σ1(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈ {δ2(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈
{σ3(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈ {δ1(θ), σ2(θ), take(θ), fake(θ) | θ ∈ Θ}}

• ∼R ={〈λ, ν〉 | λ, ν ∈ {δ1(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈ {σ2(θ) | θ ∈ Θ}} ∪ {〈λ, ν〉 | λ, ν ∈
{σ1(θ), δ2(θ), σ3(θ), take(θ), fake(θ) | θ ∈ Θ}}

• ∼Eve ={〈λ, ν〉 |λ, ν ∈ {take(θ) | θ ∈ Θ}}∪{〈λ, ν〉 |λ, ν ∈ {fake(θ) | θ ∈ Θ}}∪{〈λ, ν〉 |λ, ν ∈
{σ1(θ), σ2(θ), σ3(θ), δ1(θ), δ2(θ) | θ ∈ Θ}}

30

Action Direction Message Pre PosI PosAL
σ1 S → In ms hasSm ∧ constSms ms ∈ IIn σ+

1

δ1 Out→ R XY hasOutXY XY ∈ IR δ+
1

σ2 R→ In Xr hasRX ∧ constRXr Xr ∈ IIn δ−1 , σ
+
2

δ2 Out→ S XY hasOutXY XY ∈ IS δ+
2

σ3 S → In mY constSmY mY ∈ IIn δ−2 , σ
+
3

take In→ Eve XY hasInXY XY ∈ IEve -
fake Eve→ Out X constEveX X ∈ IOut -

Table 3.4: Set of actions BInt for the Secret Sharing scheme

For our purposes of verification, the initial model of the protocol will only contain the
necessary information. Our set of secrets S = {m} again, contains only the message m, and the
roles S and R will both have their own encryption keys ks and kr. We define the information
sets of all agents A = {a, b, c} such that Iw,i ⊆ {ks, kr,m}. Once again, we can define the worlds
of the initial model by the distribution of the secret message m. For any instantiation θ ∈ Θ,
the actual world of the initial model will be the world w such that M, w � hasSm ∧ ¬hasRm ∧
¬hasEvem.

Verification of the security goals of this protocol will follow as before6, where the goals of
secrecy is formalised with relevant alterations to the formulas.

Goal 2 (Secrecy). The intruder does not learn the secret message if she did not already have
the secret message at the beginning of the protocol.

M �
∧
θ∈Θ

(¬hasEvem(θ)→ [BInt]
∗¬constEvem(θ))

Proposition 5. Goal 2 is true in the model M.

Proof. Since our set of secret messages S only contains m, we can omit the θ instantiation and
assume without loss of generality that agents a, b, c are mapped to the roles S,R, and Eve,
respectively. We proceed with a proof by contradiction. Let w be a world in the modelM such
that M, w 2 ¬hasEvem→ [BInt]

∗¬constEvem. It follows that:

M, w � ¬hasEvem ∧ 〈BInt〉∗constEvem

Which implies there is a sequence of actions such that:

M, w � ¬hasEvem ∧ 〈BInt, σ0〉 · · · 〈BInt, σn〉constEvem

Based on the assumptions made in the initial model about the information set of Eve it follows
that

M, w � ¬constEvem ∧ 〈BInt, σ0〉 · · · 〈BInt, σn〉constEvem

Using a similar method to the proof of Proposition 4, there must be an action σl such that

m /∈ I lEve and m ∈ I l+1
Eve. In order for the intruder to receive information, there is only one type

of action:

• σl+1 = take

6Goal 2 appears in Chen and Deng [2020] as well as Proposition 5 which prove that they hold. However, the
proofs by Chen and Deng make epistemic statements about the agents in the model with the knowledge operator
that have been adjusted here to be solely formal statements about possession and construction.

31

Subsequently, I l+1
Eve = {m} ∪ I lEve. The precondition of take for the message m is that m ∈ IIn

however all σ type messages in BInt which have an agent send a message to the input buffer
have three possible forms: ms, Xr, and mY . All three of these require a key to access the
contents of the message, which would violate the assumption made in the initial model that
Eve has no key. Furthermore, any possibility that there is some action σj where j < l, such
that Eve receives a key is impossible since once again, the messages will be of the form ms, Xr,
and mY and would require Eve to have a key.

To modify the protocol described in Chen and Deng [2020] to make the adversary more
intelligent at the initial model, consider a situation in which the intruder has her own encryption
key keve, and upon intercepting a message m from the input buffer, she can now construct meve

from her information set. Implementing the assumption that Eve has her own encryption key
in the initial model allows the protocol to become susceptible to a man-in-the-middle attack.
After the sender has sent the message ms to the input buffer, Eve takes the message ms and
applies her own encryption key to it, constructing ms,eve. Based on the modular format of
BInt, we only need to add one action to the action model BInt to make this possible. By
adding the action of Table 3.5 to the action model depicted in Table 3.4, we can obtain the new
action model B+

Int. The construction of this action can be thought of as modifying one of the
parameters of the fake action as described in Table 3.4. Namely, modifying the key parameter
in the fake action such that Eve has control over the key used. Now, Eve can implement the
fake message ms,eve in a fake action so the output buffer sends the sender ms,eve. The sender
continues on with the protocol, thus decrypting the message with her own key and sending meve

to the input buffer. From here it is easy for Eve to use her own encryption key to obtain the
secret message m.

The initial model M can be described as before with the additional modifying assumption
that Eve has her own key keve.

Action Direction Message Pre PosI PosAL
fake Eve→ Out Xeve constEveXeve Xeve ∈ Out -

Table 3.5: Action for Man-in-the-Middle attack when adversary has keve

Goal 2 will prove not to hold with the action model of B+
Int, since Eve will be able to

construct the secret message m after the attack. Assuming the actual world is the world in the
initial modelM such that hasSm∧¬hasRm∧¬hasEvem holds, it is easy to check based on the
preconditions of each action that

M, S � ¬hasEvem ∧ 〈σ1〉〈take〉〈fake〉〈δ2〉〈σ3〉〈take〉constEvem

holds, providing a sequence of actions that is a counterexample to Goal 2.

3.2.3.3 RSA Signature Scheme

With a slight adjustment to the construction rules regarding encryption, the logic becomes
powerful enough to model the RSA digital signature protocol [Rivest et al., 1978]. By changing
to a public-key encryption method, the language obtains two types of keys: public and private
keys. Encrypting a message with a key works the same, so long as the conditions of having a key
and having a message are met, one can construct an encrypted form of that message. However,
for decrypting an encoded message it is no longer sufficient to have the key with which it was
encrypted. Instead, one must have the corresponding inverse of the key. Intuitively, we can
denote keys as k+ and k− where k− is the inverse of k+, and vice versa. Given a message

32

m, {m}k+ denotes an encryption of the message with a public key, and {{m}k+}k− denotes
the private key applied to the encrypted message such that {{m}k+}k− = m. Another notable
feature of public-key encryption is the commutativity of the keys, so {{m}k+}k− = {{m}k−}k+ .

A network environment suitable for public-key encryption would require all trusted agents
in the system to have a pair of keys, one private and one public. The public key of each agent
would be known to everyone, or at least accessible via some database, and the private key of
each agent is known only to the agent to whom the key belongs. Thus to send messages in the
network, a sender only needs to know the public key of the person to whom they wish to send
the message to and then encrypt the message with the recipient’s public key. With the message
encrypted, the sender can send the message over an open channel and the only agent who can
decrypt and read the contents of the message is the agent with the corresponding private key,
which is the intended recipient.

The following definition provides the new cryptographic construction rules for public-key
encryption.

Definition 22 (Public-Key Encryption Construction Rules). The following rules determine
what messages an agent can construct from his information set. Let i ∈ A and this set of
public-key construction rules will be referred to as C+.

m k+
i

{m}k+i

m k−i
{m}k−i

mk+i
k−i

m

mk−i
k+
i

m

m m′

(m,m′)

(m,m′)

m

m m′

m′
m

m

With the public-key encryption construction rules in place, it is now possible to construct a
model that accurately represents the RSA signature scheme.

Digital signatures work similarly to how handwritten signatures work on personal letters
in that they are a unique and ideally unforgable identifying mark on the letter that signifies
to the reader that the sender is who they say they are. Rivest et al. [1978] designed a digital
signature scheme that utilizes public-key encryption in order to generate personal signatures for
each agent in a network. The signatures rely on the commutativity of the public and private
keys when applied to a message and the fact that it is infeasible to derive a private key from a
corresponding public key.

Consider two agents that want to exchange secret messages while also verifying that the
recipient knows who created each message. Suppose Alice is the signer of the message and Bob
is the verifier. Alice has the public-key encryption pair of (k+

s , k
−
s) as well as all other public keys

for all other agents and Bob has the public-key encryption pair of (k+
v , k

−
v) as well as all other

public keys for all other agents. The protocol works by Alice first decrypting a message m with
her private key, obtaining {m}k−s . Then, Alice sends this message to Bob by encrypting it with
Bob’s public key, so the message being sent over the open channel is of the form {{m}k−s }k+v .
Even though the message is sent over an open channel, only Bob can obtain the contents of
the message since he is the only one with the corresponding private key k−v . After decrypting
the message, Bob has {m}k−s which means he cannot obtain the secret message m without first
encrypting the message using Alice’s public key. The private key decryption of the message m
is the signature, since in order to view m, Bob must use Alice’s public key and since Alice is
the only agent in the network that possesses her private key, Bob is able to verify that only
Alice could have constructed the signature.

Since the signature protocol utilizes individual agent computation to sign and to verify, the
protocol description of sent messages is only an exchange of one message:

1. S → V : {{m}k−s }k+v

33

Action Direction Message Pre PosI PosAL
σ S → In {{m}k−s }k+v hasSm ∧ constS{{m}k−s }k+v {{m}k−s }k+v ∈ IIn σ+

take In→ Eve XY hasInXY XY ∈ IEve -
fake Eve→ Out XY constEveXY XY ∈ IOut -
δ Out→ V XY hasOutXY XY ∈ IV δ+

Table 3.6: Action model CInt for the RSA Signature Scheme with passive intruder

where S is the signer of the message m and V is the verifier of the signature. Assuming the
standard network environment and set of agents A assigned to the roles of S, V,Eve, we can
build the action model CInt as seen in Table 3.6. The action model CInt contains the same
equivalence relations for each agent as the action model AInt with the exception that the role
R is substituted with the role V .

The initial model can be designed with the parameter for secret messages being the set
of messages S = {m}, and a set of worlds constructed as before in previous examples with
a single secret message. The actual world will be the world that satisfies hasSm ∧ ¬hasRm ∧
¬hasEvem. For all agents i ∈ A, the information sets are defined as {k+

s , k
+
v , k

+
eve, k

−
i(θ)} ⊆ Iw,i ⊆

{k+
s , k

+
v , k

+
eve, k

−
s , k

−
v , k

−
eve} ∪ S. The initial distribution will ensure that all agents know the

public keys of all other agents as well as their own private key, and the agent in the role of S
has the secret message which they will sign.

The initial model of the RSA protocol contains more information than the initial model
of the shared key example with respect to each agent’s information set since each agent has
at least the set of all public keys as well as their own private key. With respect to the set
of secret messages S, the information is distributed in the same manner as the shared key
example and therefore the initial models are identical. An illustration of the initial model can
be found in Figure 3.3(a) where we suppose the agents a, b, c are assigned to the roles S, V,Eve,
respectively. This instantiation makes the world a the actual world based on our assumptions
about the distribution of messages in the initial model.

Updating the initial model with CInt results inM◦CInt, seen in Figure 3.3(b), which provides
two possible actions to execute. Either the signer of the protocol can send a signed message, or
the intruder can insert a fake message into the output buffer. The σ action can only be executed
at those worlds where the signer has the message m, so all worlds w where m ∈ Iw,a, while the
fake action can be executed from all worlds w where m ∈ Iw,c. Notably, these two sets of worlds
intersect at the worlds abc and ac, resulting in four possible worlds with each world paired with
one of the possible actions. In the model M◦ CInt, the new worlds 〈abc, σ〉 and 〈abc, fake〉 are
joined by the accessibility relation of b since b cannot distinguish between σ actions and fake
actions, while the other agents can distinguish at least one. Similarly for the worlds 〈ac, σ〉 and
〈ac, fake〉.

The model in Figure 3.3(c) illustrates updating M◦ CInt with CInt. From the quadrant of
worlds where σ took place, two new actions become possible: δ and take because there is now
a message in the buffer satisfying the preconditions of these actions. Similarly, in the quadrant
of worlds where the fake action took place, it is possible for a δ action to occur, namely the
delivery of the fake message constructed. The quadrant of worlds where the σ action is followed
by the take action is joined to the quadrant of worlds satisfying the execution of σ followed by δ
via a’s equivalence relation. The actions δ and take are indistinguishable for a, while the other
agents can distinguish at least one of the actions.

The security goals we want to show with this protocol are twofold: first, standard secrecy of
the messages must hold such that no eavesdropper can obtain the secret message, and secondly
the verifier must be able to verify the identity of the sender of the message. The formula

34

abc ab

aac

bc b

Øc

(a) M

〈abc, σ〉 〈ab, σ〉

〈a, σ〉〈ac, σ〉

〈abc, fake〉

〈bc, fake〉

〈c, fake〉

〈ac, fake〉

(b) M◦ CInt

〈〈abc, σ〉, take〉

〈〈ac, σ〉, take〉

〈〈ab, σ〉, take〉

〈〈a, σ〉, take〉

〈〈abc, σ〉, δ〉 〈〈ab, σ〉, δ〉

〈〈a, σ〉, δ〉〈〈ac, σ〉, δ〉

〈〈abc, fake〉, δ〉

〈〈bc, fake〉, δ〉

〈〈c, fake〉, δ〉

〈〈ac, fake〉, δ〉

(c) M◦ C2
Int

Figure 3.3: RSA Model Updates

for secrecy, can follow the standard secrecy formulas designed in previous protocol verification
sections with only slight alterations to relevant propositions.

Goal 3 (RSA Secrecy).

M �
∧
θ∈Θ

(¬hasEvem(θ)→ [CInt]
∗¬constEvem(θ))

Goal 4 (RSA Verification). For any run of the protocol described in CInt ending with the action
δ, the verifier knows that the signer constructed the signed message.

M �
∧
θ∈Θ

([CInt]
∗[CInt, δ(θ)]constV {m(θ)}k−S → KV constS{m(θ)}k−S)

Proposition 6. Goal 3: ‘RSA Secrecy’ is true in the initial model M.

Proof. The proof can be constructed similarly to the secrecy proofs of the previous examples.
The assumptions of the initial model and the patterns of the available actions in CInt imply
that all messages that pass through the buffer must be encrypted. By the assumptions of the
initial model, agents only have the private keys which belong to them, so therefore any message
sent to the buffer cannot be read by an intruder Eve since Eve will not have the corresponding
k−v key to decrypt the messages of a σ action.

35

Proposition 7. Goal 4: ‘RSA Verification’ is true in the initial model M.

Proof. Let w be an arbitrary world in the initial model M and m be a message instantiated
by any θ ∈ Θ. We want to show that if M, w � [CInt]

∗[CInt, δ]constV {m}k−S holds then M, w �

KV constS{m}k−S holds. After updating M, w with [CInt]
∗[CInt, δ], constV {m}k−S holds if the

message sent in the δ action is of the form {{m}k−S }k+V . Thus, it only holds in those worlds

where hasSm holds since {m}k−S can only be constructed by S. Furthermore, it only holds in

those worlds where a σ action was executed containing {{m}k−S }k+V since S is the only agent in

the protocol that has the key k−S by assumption and therefore, the message {m}k−S could not

have been faked by an intruder.
By the assumptions of a public-key encryption protocol, no agent has another agent’s private

key, therefore it is not possible that the verifier constructed the message {m}k−S himself, since

it would require encrypting m with S’s private key. Thus, in the worlds 〈· · · 〈w, σ1〉, ...〉, δ〉 in
M ◦ C∗Int that satisfy constV {m}k−S , the verifier had to receive the message {m}k−S after an

action in the sequence σ1, ..., σn, δ.
In the model M ◦ C∗Int, there are no possible worlds in which V receives {m}k−S and

constS{m}k−S does not hold. Therefore, in all worlds accessible by V after receiving {m}k−S ,

constS{m}k−S holds. So, in M, w if [CInt]
∗[CInt, δ]constV {m}k−S holds then KV constS{m}k−S

holds.

3.3 Review and Discussion

This chapter has presented the syntax and semantics of a cryptographic variant of DEL first
introduced in Dechesne and Wang [2007], inspired by traditional Dolev-Yao models [Dolev and
Yao, 1983]. The basic propositions of the logic represent whether an agent in the model is in
possession of, or can construct, a message. This makes the model suitable for representing cryp-
tographic protocols where each step in the protocol requires an exchange of messages amongst
the agents. Furthermore, we examined the set of construction rules which makes cryptographic
processes and deductions possible such as encryption and concatenation. Rather than designing
mathematically sound encryption functions, we abstract away from such notions and assume
our encryption operations work akin to one-way functions, such that they are easy and fast
to generate and reversing the function is computationally infeasible. Therefore, having an en-
crypted message is not the same as having the message unless the agent in possession of the
encrypted message also possesses the corresponding encryption key.

Using standard action dynamics and model updates [Baltag et al., 1998, van Ditmarsch
et al., 2015], we could accurately model protocol descriptions within the logic. Upon updating
given models with the protocol actions, it is possible to design sentences in the logical language
which represent security goals of the protocol that can then be verified within the model. To
give a few examples, we modeled two standard symmetric key protocols and the RSA public-key
signature scheme. Within all of these examples under passive adversary assumptions, we could
verify standard message secrecy which stated that no eavesdropper could obtain the secret
message during or after the protocol execution. However, when modeling the secret sharing
scheme presented in Chen and Deng [2020], if we adjusted the strength of the intruder, giving
her the capability to conduct a man-in-the-middle attack, she could obtain the secret message.

The use of instantiations in the logic introduced by Dechesne and Wang allows a protocol to
be re-usable in the sense that the actions in the protocol are not specific to particular messages
or agents, only to the patterns which the parameters hold. The logic presented in this chapter

36

deviates from the original formulation by preventing interleaving instantiations which is allowed
in Dechesne and Wang [2007] and Chen and Deng [2020]. The choice to prevent interleavings,
which allow agents to take on multiple roles in a given instance of a protocol by using multiple
instantiations simultaneously, is made to prevent undesirable deductions by the agents. The
assumptions made in the initial model with respect to each agent’s information set, was specified
according to the role the agent was taking on in the protocol. For example, to allow an agent to
be both a receiver and an intruder in a basic secret sharing scheme would allow an intruder to
have a secret key under the initial assumption which would make breaking the scheme trivial.
Ways around such a problem would require more stringent and dynamic initial assumptions
that are less general than those presented in this chapter and directly pertain to a given initial
model as well as the roles and strategies utilized by the agents.

In a real-world setting, symmetric key encryption is cheaper from a computational perspec-
tive than asymmetric key encryption since RSA requires larger encryption keys as factoring
algorithms get more efficient, but symmetric key encryption relies on the assumption that all
trusted agents already have a shared key, which is unrealistic [Hasib and Haque, 2008]. There-
fore, it is common to implement a hybrid encryption method in which agents in a network
perform a key exchange and authenticate identities using asymmetric encryption keys, like
RSA. This does not require any common knowledge assumptions amongst the agents. Once
identities have been authenticated and the agents have exchanged a symmetric key with one
another, they begin communicating encrypted messages with the symmetric key.

More complex DEL variants have been constructed capable of modeling the Diffie-Hellman
key exchange [Gattinger and van Eijck, 2015]. This variant required a heavier reliance on
cryptographic primitives such as prime numbers and algebraic operations. In order to model
epistemic relations over large sets of numbers, it requires a transition from Kripke models to reg-
ister models [van Eijck and Gattinger, 2015] which encodes indistinguishability over countably
infinite worlds into a finite set. Furthermore, rather than create a network environment such
as input and output buffers for the messages of the protocol to pass through, attention-based
announcements, introduced in van Ditmarsch et al. [2013], are utilized which assigns a set of
agents that are listening. After a public announcement is made in the model, two copies are cre-
ated, one in which those agents that are listening receive the information of the announcement
and one in which the inattentive agents maintain the same level of ignorance.

While the above models and methods of implementation abstract away from the fundamental
mathematics behind cryptography, they still provide a useful logical model that can reveal
structural weaknesses in the protocol description. The work of Lowe [1996] famously revealed a
flaw in the Needham-Schroeder protocol by analyzing a symbolic representation of the protocol.

37

CHAPTER 4
A Logic for Zero-Knowledge

Protocols

4.1 Introduction

The next section of this thesis will focus on zero-knowledge interactive proofs and using DEL to
verify whether certain epistemic properties hold of the protocol. In order to do so, cryptographic
principles and techniques need to be explained so that these principles and techniques can
be later introduced in a purely logical system. Then the characterization of knowledge in a
cryptographic setting must be analyzed as the standard notion of knowledge in modal logic
does not suffice for applications towards zero-knowledge [Halpern et al., 2009]. Using a formal
characterization, we can extend the logic described in the previous chapter to be able to express
cryptographic notions essential to zero-knowledge protocols. Thus, this will enable us to model
zero-knowledge protocols and verify the security goals of the protocol.

There is existing literature on symbolic systems capable of modeling zero-knowledge pro-
tocols. However, these systems extend the standard Dolev-Yao models [Dolev and Yao, 1983]
to capture a notion of indistinguishability within zero-knowledge proofs. Baskar et al. [2009]
developed a type system which allows an interactive proof to be represented by a sequence of
typed terms such that proofs are not communicated between agents, but instead the content of
the proof is expressed by assigning the correct type to the appropriate term. Backes et al. [2007,
2015] implement a zero-knowledge constructor zk in the term algebras of Dolev-Yao models.
These methods aim to verify security features of protocols through these symbolic systems yet
they require complex and rigid syntax as well as constructing new derivation rules or a heavy
reliance on computational soundness. Using DEL to model zero-knowledge protocols stems from
a desire to incorporate the elegance of epistemic logics with the succinct semantics for model
updates [Baltag and Moss, 2004].

A preliminary attempt was made to characterize zero-knowledge proofs in epistemic logic
in Halpern et al. [1988] and was later refined in Halpern et al. [2009]. This required defining
practical knowledge which expressed knowledge of a proposition with respect to what that
proposition implied as well as defining temporal epistemic models in which the protocol runs
could take place. Halpern et al. provide a formal sentence within their temporal epistemic
logic that holds iff a protocol is a zero-knowledge protocol. Furthermore, the characterization
used by Halpern et al. is effective at reasoning about the system and run of a given protocol,
yet lacks a method for detailed analysis of specific interactions and communications made in a

38

given protocol. That is, one could not use the formal characterization as a means of reasoning
about the epistemic states of the parties in an interaction.

Kramer [2007] designed a probabilistic polynomial-time symbolic system (PPL), in the spirit
of Dolev-Yao models, aimed at reasoning about many types of cryptographic protocols. Once
again this comes at the cost of a complex syntax and semantics, however the language itself is
based in logical notions of knowledge and implication. We implement some logical techniques
from PPL, such as the cryptographic parsing function, that makes modeling the protocols more
accurate.

The following section will provide an overview for the cryptographic notions required for zero-
knowledge as well as a brief explanation of the computation and probability necessary, before
moving on to logical approaches to define these notions. This will be necessary for explaining
how the interactions of a zero-knowledge proof ought to be perceived and how knowledge should
be accounted for in the logic.

4.2 Zero-Knowledge Proofs

The central idea behind a zero-knowledge proof, at least from an epistemic perspective, is that
the verifier in the interaction is not able to deduce any more information after the interaction
than he was able to before the interaction, other than the validity of the proof. An interactive
proof works by using two principals: a prover and a verifier, which can both be represented by
an algorithm that determines the strategy they use based on an individual input and a common
input shared between them. Let P and V be the algorithm used by the prover and verifier,
respectively, with x being the common input shared between them. Thus an interactive proof
can be described by the pair of algorithms (P, V) [Goldwasser et al., 1989]. Both P and V can
do their own internal computations as well as send the other principal a value or input, which
makes them interactive algorithms. An execution of (P, V) is a sequence of rounds such that
for any round, V performs a computation and then outputs a value to P and then P performs
a computation and outputs a value to V . In this manner, both P and V alternate making
computations and sending information to one another. Each principal in the interactive proof
can only see their own computations, their own auxiliary information, and a transcript of the
exchanged messages between the principals. Finally, the execution ends when V either enters
an accepting halt state or a rejecting halt state.

(P, V) is said to be an interactive proof system for a language1 L if, when (P, V) is run on
input x, then after the protocol execution, the verifier is convinced with high probability that
x ∈ L. The prover and verifier of an interactive proof are considered good, when they follow
the strategy imposed by the algorithms P and V , respectively. To denote the possibility that
an algorithm is not good (ie. deviating from its prescribed strategy to attempt to manipulate
the other party), we can refer to it as P̂ or V̂ . To say that the verifier of an interactive proof
for the language L is convinced that x ∈ L, means that on input x, (P, V) enters an accepting
halt state. The run time of P and V during the execution of (P, V) is the number of rounds
for each principal, respectively, and V is assumed to be limited by polynomial-probabilistic
computations for each round, so V runs in time polynomial bounded by the length of the
input, |x|. No assumptions about the run time of P are made at this point. The notion of
being convinced with high probability is determined by a negligible function. ε : N → [0, 1]
is negligible if for every positive integer z, there exists a n0 ∈ N such that for all n > n0:
ε(n) < n−z. That is, for sufficiently large n, ε grows slower than any inverse polynomial [Katz
and Lindell, 2007]. Thus, the verifier in an interactive proof is convinced with high probability

1The word ‘language’ here is defined differently than standard logical uses of ‘language’. In this context,
‘language’ refers to the set of inputs for a given Turing machine that results in an accepting halt state.

39

if on input of a sufficiently large x, the probability that V enters an accepting halt state is
greater than 1− ε(|x|).

Definition 23 (Interactive Proof Systems). Let L be a language over {0, 1}∗ and let (P, V) be
an interactive proof system. Let P((P, V)(x)) be the probability that (P, V) enters an accepting
halt state on input x. (P, V) is an interactive proof system for the language L if the following
conditions are satisfied:

• Completeness: For a sufficiently large |x|, if x ∈ L, then P((P, V)(x)) ≥ 1− ε(|x|)

• Soundness: For a sufficiently large |x| and any protocol P̂ , if x /∈ L, then P((P̂ , V)(x)) <
ε(|x|).

The condition of completeness says that if both the prover and verifier are good, then the
verifier is convinced with a high probability that x ∈ L. Whenever x /∈ L, the condition of
soundness ensures that a good verifier, even in the presence of a dishonest prover, will not be
convinced that x ∈ L.

A zero-knowledge proof is an interactive proof with the added condition that the interaction
is zero-knowledge. The concept of being zero-knowledge is informally defined as the verifier
learning nothing that he did not already know before the interaction other than the validity
of some statement. However, simply constructing an interactive proof and showing that it is
designed such that it is not possible for the verifier to deduce the secret information is not
a sufficient argument and thus, the formal notion of a simulator needs to be introduced. A
simulator simulates the execution of the verifier’s algorithm V and outputs what V outputs,
so if (P, V)(x) enters an accept state with a probability µ(x) where µ(·) is some polynomial
function on the input x, then a simulator ought to enter an accept state with a probability
µ(x). Now we define how exactly it is that a simulator is able to simulate an execution of an
interactive protocol given that each round of computation for V depends on its initial input and
auxiliary information or some output from P . A simulator Sim has rewind capabilities if it is
able to rewind an interactive protocol to a previous step within a round or to a round within an
execution. Let SimV be the simulation of V with a simulator that has rewind capability. Thus,
a simulator enters an interactive proof with V and simulates a dummy prover that interacts
with V , however, when needed the simulator can rewind the interaction to change its output or
computation as the dummy prover.

The simulator SimV either outputs the same output that V outputs within the simulation
or it outputs the fail symbol ⊥ if some exceptional condition is met.2 The motivation for the
simulator is to show that the probability distribution with which SimV accepts is indistinguish-
able from the probability distribution that V would accept given a real-life interaction with a
prover. Therefore, since the simulated interaction was done with a dummy prover (one that did
not actually know the proof to the statement in question), then the verifier does not accomplish
anything with the interactive proof that it wasn’t already able to accomplish on its own [Lindell,
2017].

Let PSimV
(x) be the probability that a simulation of V with a dummy prover Sim enters an

accept state on input x. A proof is zero-knowledge if for all probabilistic polynomial-time (PPT)
algorithms V , there exists a PPT algorithm SimV such that the probability that SimV (x)
enters an accepting halt state is indistinguishable from the probability that (P, V)(x) enters an
accepting halt state. For any two algorithms G and G′, two probabilities PG and PG′ are are
polynomially-indistinguishable if |PG(x)− PG′(x)| ≤ ε(|x|) for a sufficiently large x [Goldwasser
and Micali, 1982, Goldreich et al., 1987].

2Typically this refers to run-time, so if SimV exponentially exceeds the run-time of V , then the simulation
is no longer accurate since we assume all V run in time polynomial bounded by the length of the input.

40

Definition 24 (Zero-Knowledge Interactive Proof). Let (P, V) be an interactive proof system
and let L be a language over {0, 1}∗. Let x be of sufficiently large length. (P, V) is said to be a
zero-knowledge interactive proof for L if the following conditions are satisfied:

• Completeness: If x ∈ L, then P((P, V)(x)) ≥ 1− ε(|x|),

• Soundness: For any protocol P̂ , if x /∈ L, then P((P̂ , V)(x)) < ε(|x|),

• Zero-Knowledge: |PSimV
(x)− P((P, V)(x))| ≤ ε(|x|)

The completeness and soundness conditions are the same as in Definition 23. The con-
dition of zero-knowledge states that the probabilities assigned to SimV (x) and (P, V)(x) are
polynomially-indistinguishable. The above definition claims that the difference between the
probabilities of each algorithm accepting is negligible, but this only describes statistical zero-
knowledge. The concept of perfect zero-knowledge is satisfied when the probabilities associated
with SimV (x) and (P, V)(x) are identical.

A proof that x ∈ L can be called a witness y such that TL(x, y) = 1 where TL is a polynomial
computable Boolean predicate associated with the language L such that TL(x, v) = 0 for all v
if x /∈ L. y must have a length |y| = ρ(|x|) for some polynomial function ρ, but does not need
to be computable from x in polynomial time. We can refer to the set of all witnesses for the
fact that x ∈ L by TL(x) = {y |TL(x, y) = 1}. Next, we look at an example of a zero-knowledge
proof as well as viewing the simulator algorithm which satisfies the condition of zero-knowledge.

4.2.1 Zero-Knowledge Protocol Example: Graph 3-Coloring

A simple graph G(V, E) consists of a nonempty, finite set of vertices V and a finite set E
consisting of unordered pairs of distinct elements of V called edges. A graph is simple if there is
at most one edge joining a given pair of vertices. A walk in a graph G(V, E) is a finite sequence
of edges in which any two consecutive edges are adjacent. Furthermore, if all edges and vertices
in a walk are distinct, then we refer to it is a path. A graph is connected iff there is a path
between each pair of vertices [Wilson, 2010]. When refering to the graph 3-coloring problem,
we restrict ourselves to the graphs defined as simple and connected.

Let Γ be a finite set, then Sym(Γ) is the symmetric group of Γ, that is Sym(Γ) is the
group of permutations over the set Γ [Sagan, 2001]. Let π, τ ∈ Sym(Γ) then π ◦ τ denotes the
composition of the permutations π and τ such that π ◦ τ(x) = π(τ(x)). Of note, if |Γ| = z, then

|Sym(Γ)| = z!, so in the case of {1, 2, 3}, Sym({1, 2, 3}) =

 1 2 3 1 3 2
2 1 3 2 3 1
3 1 2 3 2 1

 .

For our protocols to function properly, a method of encryption known as a commitment
scheme must be introduced. A commitment scheme allows a user to commit to a chosen value
while keeping it hidden to others with the ability that they may reveal the value at a later
time. This is typically done by a mathematical operation being performed on the value that
is computationally infeasible to invert. We can define a commitment scheme as a one-to-
one function F , and we let c = F (x) denote the commitment of x. We let D(c) denote the
decommitment scheme of the value c, so if c = F (x), then D(c) = x. We can refer to the act
of sending D(c) for a known commitment c as opening the commitment c. We also assume
that the commitment scheme F produces c1 = F (x1) and c2 = F (x2), for x1 6= x2, such that
c1 and c2 are indistinguishable. That is one cannot deduce any information about x from a
commitment F (x). With the commitment scheme in place we can now provide an overview of
a problem in NP and provide the interactive proof for a statement x ∈ L where L ∈ NP.

41

The language L is composed only of graphs whose vertices are colorable with three colors
in a manner such that no two vertices joined by an edge have the same color. A graph is
considered 3-colorable iff the graph is in L. Given a graph g, it is within the complexity class
NP to determine whether g ∈ L [Goldreich et al., 1991]. The witness y such that TL(g, y) = 1
is a 3-coloring that satisfies the aforementioned requirements. Suppose someone knows such a
coloring for a graph and wanted to prove to someone else that g ∈ L without revealing any
information about y. To do so, they could implement a zero-knowledge protocol.

Informally, a zero-knowledge protocol for proving that a graph is 3-colorable is an interactive
protocol between a prover and a verifier. Both the prover and the verifier know the shape of
the graph, that is they know the set of vertices as well as the set of edges. This is considered
the common input. Only the prover knows a coloring for the graph, and the first step is for
the prover to randomly pick a permutation over the set of three available colors and apply this
permutation to the coloring that she knows for the graph. The prover then implements the
commitment scheme to each vertex with a permuted coloring and sends the list of commitments
to the verifier. The verifier randomly selects an edge of the graph and sends it to the prover. The
prover responds by opening the commitments of the vertices in the edge selected by the verifier
and the verifier checks to see if the colors of the vertices are not identical. If the prover knows a
valid witness (a 3-coloring), then this process will always result with the verifier accepting, since
the colors will never be identical. If the prover does not know a coloring for the graph, then she
can never commit to a valid coloring of the graph, and thus there is at least one edge such that
the colors of the vertices are identical. Therefore, if the prover does not know a coloring for the
graph and is trying to deceive the verifier, then the verifier has a probability of 1

m to select the
edge with identical vertices, where m is the total number of edges in the graph. In this case,
the verifier will accept with a probability less than or equal to 1− 1

m . By repeating the whole
protocol, as described, n×m times, then the probability that the verifier accepts drops to less
than (1− 1

m)nm where n is the number of vertices in the graph. We now give a formal definition
of the zero-knowledge protocol. For a finite set Γ, x ∈R Γ says that x is distributed uniformly
over the set Γ.

Protocol 1 (Zero-Knowledge Proof for 3-Coloring). Formally, the algorithm (P, V) can be
described as follows:

• Common Input: Graph G(V, E) with V = {v1, ..., vn}

• Prover’s Input: A coloring f : V → {1, 2, 3} such that for every (vi, vj) ∈ E it holds that
f(vi) 6= f(vj).

• Protocol: Repeat n× |E| times

1. P randomly selects a permutation π ∈R Sym({1, 2, 3})that is defined by h(vi) =
π(f(vi)) for all vi ∈ V. P computes ci = F (h(vi)) for all i ∈ 1, ..., n. P sends the
list (c1, ..., cn) to V .

2. V randomly chooses an edge e ∈R E and sends e to P .

3. Let e = (vi, vj), then P sends D(ci) and D(cj) to V .

4. Let h(vi) = D(ci) and h(vj) = D(cj). V checks whether h(vi), h(vj) ∈ {1, 2, 3} and
whether h(vi) 6= h(vj), if not then V halts and outputs 0.

• If Step 4 does not halt in any iteration, then V outputs 1.

Protocol 1 satisfies completeness, since if P has a coloring f , then V will accept every
iteration with a probability of 1. The protocol satisfies soundness since P((P, V)(x)) < ε(|x|)

42

where x represents a coloring that does not satisfy 3-colorability. To verify that Protocol 1
satisfies zero-knowledge, we need to construct a simulator Sim capable of simulating V for the
above protocol. Recall, Sim takes as input V and the common input of Protocol 1 and runs its
own algorithm with V operating as a subroutine.

Protocol 2 (Simulator for Protocol 1). SimV (x) is defined as follows:

1. Repeat n× |E| times

a) Sim sets j = 1 as an index.

b) Sim randomly chooses an edge (vk, vl) ∈R E. Sim chooses h(vk) ∈R {1, 2, 3} and
h(vl) ∈R {1, 2, 3}/{h(vk)}. For all vi ∈ V/{vk, vl} Sim sets the coloring of vi to the
null color 0.

c) For every i ∈ 1, ..., n, Sim computes the commitments ci = F (h(vi))

d) Sim sends (c1, ..., cn) to V . Let e ∈ E be the reply from V .

e) If e = (vk, vl) then Sim sends V D(ck) and D(cl) and completes this iteration.

f) If e 6= (vk, vl), then Sim sets j := j+ 1. If j = n×|E|, then Sim outputs ⊥; else, Sim
returns to Step 2b).

2. Sim outputs whatever V outputs on the final iteration.

In Protocol 2, the act of moving from Step 2f) to 2b) is the simulator rewinding the inter-
action. As can be seen in the protocol, if the edge that the simulator generated a coloring for
is not the edge chosen by V , then Sim rewinds the interaction to the point where Sim chooses
an edge and proceeds from there. Clearly, Sim runs in polynomial time since there are at most
n× |E| iterations that each run at most n× |E| times. To prove that the probability assigned
to Sim entering an accept state, P(SimV (x)), is indistinguishable from P((P, V)(x)) we need
to prove that the probability that SimV outputs ⊥ is negligible.

Given that all commitments are indistinguishable, the probability that a single run of an
iteration succeeds is 1

|E| . So for one iteration, Sim outputs ⊥ with a probability of (1− 1
|E|)

n·|E|,

which is less than exp(−n). For the total n× |E| iterations in Protocol 2, the probability that
Sim outputs ⊥ is less than n×|E|×e−n, which is negligible [Lindell, 2017]. Recall, Sim accepts
and rejects depending on whether the subroutine of V accepts or rejects within Sim, so it holds
that |P(SimV (x))− P((P, V)(x))| < ε(|x|).

The computational concepts described above will need to be represented in the formal lan-
guage of a logic capable of modeling zero-knowledge protocols. An issue of concern for the logic
would be the representation of probabilities in an epistemic logic. Previous work regarding
probability and epistemic logic has been done by van Eijck and Schwarzentruber [2014] and
Kooi et al. [2009]. We follow van Eijck and Schwarzentruber in turning the epistemic cryptog-
raphy models of Chapter 3 into epistemic probability models where we can equate knowledge
with a high level of certainty, thus allowing us to model zero-knowledge proofs where a verifier
is convinced with a high level of certainty and where propositions are indistinguishable based
on their probability distributions.

4.3 Cryptographic Probability Logic

The logic established in this section will aim to accomplish similar protocol modeling techniques
as previously described while also implementing a syntax robust enough to accommodate the
intricate conditions of a zero-knowledge protocol. We will implement a parsing function so we

43

can utilize the identity relation amongst cryptographic messages. We will also refine the basic
propositions of the logic to allow us to reason about more complex interactive protocols. There
is something to be said about the notion of knowledge utilized in DEL compared to the type of
knowledge necessary in an interactive proof system.

4.3.1 Epistemic Probability Models

The objective of converting epistemic models into probability models assigns each agent to an
equivalence relation on the set of worlds as well as a function from worlds to the set of positive
rationals Q+. Therefore, we can link an agent’s epistemic access to information via subjective
probabilities. Other logics designed to account for probabilistic reasoning are subtly different
in the fact that rather than express statements about the probability an agent assigns to a
given world where propositions may or may not hold, they contain terms that represent an
agent’s expectation of the truth of a proposition at a given world [French et al., 2019a,b]. This
section will first introduce the concepts of lotteries which assign rational numbers to each world
in a model, as well defining an epistemic probability model before converting the epistemic
cryptography models of Chapter 3 into epistemic probability models.

In the traditional approach of epistemic probability logic [van Eijck and Schwarzentruber,
2014], knowledge is equated with absolute certainty. Therefore, to say an agent i knows a
proposition ϕ is to say that the probability that i assigns to ϕ equals 1. We will adjust this
notion later so that i knows a proposition ϕ iff the probability i assigns to ϕ equals α for
α ∈ (1− ε(n), 1] for a sufficiently large n. That is, the probability i assigns to ϕ is greater than
1− ε(n).

We define a probability model M for a set P of propositions and agents A as a tuple
(W,R,V,L), where (W,R,V) is a standard Kripke model. L : A → (W → Q+) is a function
which assigns to each agent, a lottery representing the subjective probabilities that the agent
assigns to worlds.

Definition 25 (Lotteries). A W -lottery L is a function from W to the set of positive rationals

Q+. A W -lottery is bounded on U ⊆W if
∑
u∈U

L(u) <∞.

Definition 26 (Epistemic Probability Model). An epistemic probability model M is a tuple
(W,R,V,L) where W,R,V are defined as a standard Kripke model and L is a function that
assigns to every agent i ∈ A a W -lottery that is bounded on every Ri equivalence class.

An epistemic probability model is normalized if Li restricted to ξ is a probability measure,
as defined in Definition 11, for all agents i ∈ A and for all Ri equivalence classes ξ. Since Li is
bounded on Ri for all i ∈ A, then all epistemic probability models can be normalized.

We can now introduce the language of epistemic probability logic LEPL for a set of propo-
sitions P and a set of agents A.

Definition 27 (Syntax of EPL). Let p range over P, i over A, and q over Q.

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ | ti ≥ 0 | ti = 0
ti := q | q · Piϕ | ti + ti

Where ti + ti assumes that both agent indices are identical.

The term ti generates linear expressions dealing with the subjective probabilities of i, so
we say ti = 0 or ti > 0 is an i-probability formula. The expression Pi(ϕ) = q expresses
that the probability of ϕ according to i is q. Besides the usual abbreviations for disjunction,

44

material implication, and equivalence statements, we can define useful abbreviations relating to
probabilities using the syntax of the language as follows:

t ≥ t′ := t+ (−1)t′ ≥ 0
t < t′ := ¬t ≥ t′
t > t′ := ¬t′ ≥ t
t ≤ t′ := t′ ≥ t
t 6= t′ := ¬t = t′

Pi(ϕ|ϕ′) = q := Pi(ϕ′) > 0 ∧ q · Pi(ϕ′) = Pi(ϕ ∧ ϕ′)

Pi(ϕ|ϕ′) = q is an expression stating that according to i, the probability of ϕ, conditional on ϕ′

is q.

Definition 28 (Semantics of Epistemic Probability Logic). Given an epistemic probability
model M = (W,R,V,L) and a world w ∈W :

M, w � > ⇔ always
M, w � p ⇔ p ∈ V(w)
M, w � ¬ϕ ⇔ M, w 2 ϕ
M, w � ϕ ∧ ϕ′ ⇔ M, w � ϕ and M, w � ϕ′

M, w � ti ≥ 0 ⇔ JtiKMw ≥ 0
M, w � ti = 0 ⇔ JtiKMw = 0
JqKMw := q
Jq · PiϕKMw := q × PMi,w(ϕ)

Jti + t′iK
M
w := JtiKMw + Jt′iK

M
w

where

PMi,w(ϕ) =

∑
{Li(v) | 〈w, v〉 ∈ Ri and M, v � ϕ}∑

{Li(v) | 〈w, v〉 ∈ Ri}

The definition of PMi,w is well-defined since Li(v) > 0 for all v ∈W and by Definition 26, all
lotteries are bounded over the equivalence relation of the agent, so

∑
{Li(v) | 〈w, v〉 ∈ Ri} <∞.

As mentioned, when integrating probabilities into the cryptographic models, our definition
of knowledge will not require absolute certainty, only a high level of certainty. However, for
present purposes of explanation we continue with the notion that Kiϕ := Piϕ = 1. Consider a
model with two agents a and b and two propositions p and r as seen in Figure 4.1. This model
has the lotteries of La = {0 : 1

8 ,1 : 1
4 ,2 : 1

2 ,3 : 1
8} and Lb = {0 : 1

3 ,1 : 1
3 ,2 : 1

6 ,3 : 1
6} and the

accessibility relations of a and b denoted by the solid and dashed lines, respectively. The lines
for reflexive relations are omitted, but we assume they hold for all agents at all worlds.

Our example model shows a situation in which at world 1, Kbr holds. At all worlds accessible
from 1 by b, r is true, and thus the probability that b assigns to r at world 1 is 1. Likewise,

Kbp is false at world 1 since
1
3
2
3

=
1

2
< 1.

Proposition 8 (van Eijck and Schwarzentruber [2014]). Let ϕ be a formula of standard epis-
temic logic. The formula ϕ is satisfiable in a standard epistemic model iff tr(ϕ) is satisfiable in
an epistemic probability model. tr is defined by tr(Kiϕ) = Pitr(ϕ) = 1

Proof. ⇒) Suppose ϕ is satisfiable in a standard epistemic model, then by the finite model
property there is a finite standard epistemic model for ϕ [Blackburn et al., 2001]. This model

45

0 : p, r

a : 1
8 , b : 1

3

1 : r

a : 1
4 , b : 1

3

2 : p

a : 1
2 , b : 1

6

3 : −
a : 1

8 , b : 1
6

Figure 4.1: Example of a model M in Epistemic Probability Logic

can be transformed into an epistemic probability model M = (W,R,V,L) by adding fake
lotteries that assign to each agent a W -lottery of 1 to every world. As the model is finite, it is
guaranteed that the W -lottery Li is bounded on every Ri equivalence class for all i ∈ A. We
can then prove that tr(ϕ) is true in M.
⇐) Extract a standard epistemic model from a epistemic probability model by removing all

lotteries and proving that ϕ is satisfiable.

We can now define epistemic probability action models, which will allow us to update the
epistemic probability models. With update models in place, we can model dynamic scenarios
in multi-agent settings with subjective probabilities.

An epistemic probability action model E is defined as (E ,∼,Pre,Pos,L) where E is a set of
actions, ∼ is the function from agents to pairs of actions serving as the accessibility relation,
Pre and Pos are the preconditions and postconditions of the model that assign propositions in
P to formulas in LEPL. Finally, L is a function which assigns to each agent i ∈ A an E-lottery
that is bounded on every ∼i equivalence class.

Definition 29 (Epistemic Probability Action Models). Let E be an epistemic probability action
model defined by the tuple (E ,∼,Pre,Pos,L) where E is a finite set of actions. ∼ is a function
from agents in A to pairs of actions in E such that e1 ∼i e2 denotes i’s indistinguishability of
the actions e1 and e2. Pre is a function which assigns to each action e ∈ E a formula ϕ ∈ LEPL
such that ϕ holds in all worlds that e can be executed. Pos : E → SUB(LEPL) maps actions
in e ∈ E to a substitution from P to formulas in LEPL. The lottery function is defined as
L : A→ (E → Q+) which assigns an E-lottery to each agent i ∈ A such that for all actions e in
a ∼i equivalence class E:

∑
e∈E

Li(e) <∞.

The substitution function in the postcondition Pos binds propositions to formulas so we
can say that propositions are bound to > or ⊥ to determine their truth value. For example, a
postcondition p := > binds p to true, so the result of the action executed makes p true. We can
now define an update model for epistemic probability models.

Definition 30 (Probability Update Model). Let i range over the set of agents A and p over P.
Let E be an epistemic probability action model and M be an epistemic probability model. We
denote the update model as M◦ E = (W ′, R′,V ′,L′) defined as follows:

• W ′ := {〈w, e〉 |M, w � Pre(e)}

• R′i := {(〈w, e〉, 〈u, e′〉 | 〈w, v〉 ∈ Ri and e ∼i e′}

• V ′(w) := {p | M, w � Pos(e)(p)}

• L′i(〈w, e〉) = Li(w)× Li(e)

46

If the initial model M and the action model E are both normalized, then M◦E is an epistemic
probability model.

We can now define a dynamic epistemic probability logic (DEPL) by adding actions to the
syntax of our language LEPL as well as the corresponding semantic clause. We will append the
standard formula [E, e]ϕ to the syntax of LEPL. We can now refer to the logic as DEPL.

Definition 31 (Syntax of LDEPL).

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ | ti ≥ 0 | ti = 0 | [E, e]ϕ
ti := q | q · Piϕ | ti + ti

Definition 32 (Semantics for LEPL). We define the semantics for each formula in the language
as in Definition 28 with the addition of the following:

M, w � [E, e]ϕ ⇔ if M, w � Pre(e) then M◦ E, 〈w, e〉 � ϕ

4.3.1.1 Probability Puzzle

We can consider an example based in probability theory to see the effect of dynamic models in
probabilistic reasoning amongst agents. The following probability puzzle originates in Carroll
[1895]. Suppose Alice has an opaque urn with two compartments and a marble in each com-
partment such that she cannot see either marble. The marbles can either be black or white, and
Alice knows this. Alice pulls a marble out of one of the compartments of the urn and inspects
it, to see that it is white, she then places the marble back into the urn. Lastly a white marble is
removed by a third-party and shown to Alice. What probability does Alice assign to the marble
remaining in the urn also being white?3 We can model Alice’s epistemic uncertainty at each
stage of the puzzle as well as update our model with actions as described.

Let p and r refer to the two marbles in the urn. Since Alice is uncertain to the color of
the marbles we denote p for white and ¬p for black, likewise for the second marble and the
proposition r. Furthermore, we will attach the probabilities with which Alice considers each
world possible. There is an illustration of the initial model in Figure 4.2(a). Let us note
that in the initial model Alice assigns the proposition that each marble in the urn is white a
probability of 1

2 . Each world has a lottery of 1
4 , but when each proposition p and r is considered

individually, the probability that Alice assigns to p and r is 1
2 . Without loss of generality, let r

be the marble in the compartment that Alice observes. The action models are illustrated such
that the precondition is listed before the postcondition. Figure 4.2(b) lists r as the precondition
which means that the action takes place in only those worlds where r holds, Figure 4.2(b) also
lists a probability of 1, representing the certainty of Alice observing the white marble in the
compartment of the urn.

By updating the model in Figure 4.2(a) with the action model depicted in Figure 4.2(b),
we obtain the resulting model of Figure 4.2(c) by applying the action in all worlds where
the precondition holds and by multiplying the lotteries of the initial worlds by the lottery
of the action. The action of removing a white marble is represented by the action model in
Figure 4.2(d) where Alice cannot distinguish between removing the marble p or the marble r by
the third-party. The precondition for removing p and seeing that it is white is p, and likewise
the precondition for removing r and observing that it is white is r. This means the action of
removing p and observing that it is white can only be executed in world 0, while the action
of removing r and observing that it is white can be executed in both 0 and 1. Updating the

3This is a single agent version of the puzzle which appears in van Eijck and Schwarzentruber [2014] making
it more in line with the original puzzle posed by Carroll [1895].

47

0 : p, r

1
4

1 : p, r

1
4

2 : p, r

1
4

3 : p, r

1
4

(a) Initial Model M

r, id

1

(b)
First
action
model:E

0 : p, r

1
4

1 : p, r

1
4

(c) First Update ModelM◦E

p, id

1
2

r, id

1
2

(d) Second Action
Model: E′

0 : p, r

1
8

0′ : p, r

1
8

1 : p, r

1
8

(e) Final Updated Model: (M◦ E) ◦ E′

Figure 4.2: Models of the Puzzle updates

model in Figure 4.2(c) with the action model E′ results in the model of Figure 4.2(e) with the
standard changes to the probabilities and propositional values at each world.

In the final updated model, at all worlds Alice assigns to the proposition that the marble
still in the urn is white the probability 2

3 since all worlds 0,0′, and 1 are accessible by Alice

and

∑
{La(0),La(0′)}∑

{La(0),La(0′),La(1)}
=

1
4
3
8

=
2

3
. So, the act of observing a white marble in the urn

and then removing a white marble from the urn causes Alice to increase her certainty that the
remaining marble is white from 1

2 in the initial model to 2
3 in the final updated model.4

4.3.1.2 Applying Probability Models to Cryptographic Models

Now that we have introduced the concept of dynamic epistemic probability models and we are
comfortable performing probabilistic reasoning within the models, we can apply lotteries and
probability action models to our cryptographic logic thus allowing us to model more complex
cryptographic scenarios.

4To verify that this result is correct, take the conditional probability P[D2 = w | D1 = w] =
P[D2 = w ∩D1 = w]

P[D1 = w]
which is the probability that the second marble drawn from the urn is white conditional

on the fact that the first marble drawn is white. The probability that both marbles were white is simply the
probability that the unobserved marble was white, since the probability that the observed marble is white is 1 we
have 1

2
× 1 = 1

2
. The probability that the marble removed was white is the sum of the probabilities of removing

a white marble from both initial cases: the unobserved marble is white and the unobserved marble is black. As
stated, in the first case the probability is 1

2
, and in the second case the probability is 1

2
× 1

2
, which are summed

to 3
4
. Thus, P[D2 = w |D1 = w] = 2

3
.

48

Let us start by defining a cryptographic probability model as the tuple (W,R, I,AL,L) where
W,R, I,AL are defined as in Definition 16 and L is a function which assigns to each agent i ∈ A
a W -lottery bounded on the set of equivalence classes in Ri. Likewise, we can modify the
action models in the same manner by defining a cryptographic probability action model A as
(A,∼,Pre,PosI ,PosAL,L) where A,∼,Pre,PosI ,PosAL are defined as before in Definition 19
and L assigns to each agent i ∈ A an A-lottery bounded on the set of equivalence classes in ∼i.

For a cryptographic probability model M and a cryptographic probability action model A,
we can denote the product of update M with A as M ◦ A = (W ′, R′, I ′, AL′,L′). Letting i
range over the agents in A, w over the worlds in W , and σ over the actions in A; W ′, R′, I ′, AL′

can all be defined as in Definition 20 with the addition that L′i(〈w, σ〉) = Li(w) × Li(σ). In
the next section we will define the syntax and semantics of cryptographic probability logic and
define knowledge in terms of the new probability semantics.

4.3.2 Syntax and Semantics

Much of the syntax for cryptographic probability logic (CPL) will remain the same from Chapter
3 with the addition of linear expressions in the language LCPL. The set of messages M is
still a collection of numerical values and keys that can be composed into encrypted forms or
concatenated forms.

Definition 33 (Messages). Let M be a finite set of messages. A message m ∈M is defined as:

m ::= n | k | k+ | k− | {m}k | (m,m′)

where the keys have appropriate subscripts when necessary.

Definition 34 (Propositions). The set ΦA contains the basic set of propositions, defined as:

p ::= hasim | constim | mk(σ) | m =i m
′

The propositions remain the same with the addition of an identity proposition indexed for
each agent i ∈ A. The new proposition of identity should be interpreted as ‘according to i, m
and m′ are identical’.

Definition 35 (Syntax). Given agents i ∈ A, propositions p ∈ ΦA, actions σ ∈ A, and rationals
q ∈ Q; formulas of L are defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | [A, σ]ϕ | [A]∗ϕ | ti ≥ 0 | ti = 0

ti ::= q | q · Piϕ | ti + ti

Standard abbreviations for disjunction, material implication, equivalence, and inequality expres-
sions are assumed as well as probability expressions for conditional probability. The indices in
ti + ti are assumed to be identical.

For simplicity we can design a set of construction rules that contains both symmetric keys
and asymmetric keys, thus allowing both types of encryption within a given model.

Definition 36 (Construction Rules C). Let m range over the set of messages M and k range
over the set of keys in M . We let k+

i , k
−
i denote the public and private key of agent i, respectively.

m

m

m k

mk

mk k

m

m k+
i

mk+i

m k−i
mk−i

mk+i
k−i

m

mk−i
k+
i

m

m m′

(m,m′)

(m,m′)

m

(m,m′)

m′

49

While the const proposition captures what messages an agent is capable of constructing by
using the construction rules and their available information set, we need to establish a notion of
identity within the logic. Cryptographic parsing will capture how messages are perceived by an
agent given their information sets. When an encrypted message is received by an agent, they
will be able to decide whether it is identical to another message they possess if they are capable
of decrpyting the message, otherwise it is an abstract, un-readable message �.

Definition 37 (Cryptographic parsing). Let m be a message. The cryptographic parsing func-
tion p·q : M ×W × A → M ∪ {�} uses an agent’s information set at a world to determine
how a message can be interpreted by the agent. We define the value of the cryptographic parsing
function p·qwi by induction on the structure of a message m.

pnqwi := n

pkqwi := k

p{m}kqwi :=


pmqwi if k ∈ Iw,i or k ∈ Iw,i

� otherwise,

p{m}k−j q
w
i :=


pmqwi if k+

j ∈ Iw,i or k+
j ∈ Iw,i

� otherwise,

p{m}k+j q
w
i :=


pmqwi if k−j ∈ Iw,i or k−j ∈ Iw,i

� otherwise,

p(m,m′)qwi := (pmqwi , pm
′qwi)

If M, w 2 hasik and M, w′ 2 hasik, then p{m}kqwi = � = p{m′}kqw
′

i . Two plaintexts that
are encrypted with the same symmetric key k are parsed by p·q to the same abstract message
� when the agent does not know the decryption key. With the parsing function, we can now
represent how messages are perceived by individual agents and thus we can establish an identity
relation indexed to each agent corresponding to the parsing function.

Definition 38 (Semantics of basic propositions). Let M be a model for LCPL as described in
Section 4.3.1.2 and w ∈W .

M, w � hasim ⇔ m ∈ Iw,i

M, w � constim ⇔ m ∈ Iw,i

M, w � mk(σ) ⇔ σ ∈ AL(w)

M, w � m =i m
′ ⇔ pmqwi = pm′qwi

The identity relation over the set of messages holds for an agent iff that agent’s cryptographic
parsing function assigns the two messages to the same value. With the semantics of the basic
propositions defined we can define the semantics for formulas in the language LCPL.

50

Definition 39 (Semantics of CPL). Given a cryptographic probability modelM = (W,R, I,AL,L)
and w ∈W :

M, w � > ⇔ always
M, w � ¬ϕ ⇔ M, w 2 ϕ
M, w � ϕ ∧ ϕ′ ⇔ M, w � ϕ and M, w � ϕ′

M, w � [A, σ]ϕ ⇔ M, w � Pre(σ) implies M◦ A, 〈w, σ〉 � ϕ
M, w � [A]∗ϕ ⇔ for all n ∈ N :M, w � [A]nϕ
M, w � ti ≥ 0 ⇔ JtiKMw ≥ 0
M, w � ti = 0 ⇔ JtiKMw = 0
JqKMw := q
Jq · PiϕKMw := q × PMi,w(ϕ)

Jti + t′iK
M
w := JtiKMw + Jt′iK

M
w

where

PMi,w(ϕ) =

∑
{Li(v) | 〈w, v〉 ∈ Ri and M, v � ϕ}∑

{Li(v) | 〈w, v〉 ∈ Ri}

4.3.2.1 Knowledge in CPL

Given a CPL model, we need to define what it means for an agent within this model to know
a proposition ϕ. The simplified5 epistemic probability logic [van Eijck and Schwarzentruber,
2014] equates knowledge with absolute certainty, i.e., a probability of 1 assigned to ϕ. For our
cryptographic purposes we won’t need such a high threshold for knowledge, instead we can say
that the knowledge operator Kiϕ is an abbreviation for Piϕ = α where α ∈ (1 − ε(n), 1] for a
sufficiently large n.

van Ditmarsch and Kuijer [2019] analyze knowledge without absolute certainty within modal
logic by enriching standard epistemic logic with a set of filters creating Epistemic Logic with
Filters (ELF). The models of ELF rely on the use of filters to ensure that knowledge of a
proposition ϕ is equivalent to ϕ holding in a sufficiently large number of possible worlds. The
notion of sufficiently large relies on the possible worlds which are both considered by the agents
in the model and the worlds which are contextually relevant for scenarios. CPL differs from
ELF with respect to how many worlds are necessary by virtue of the lotteries assigned to worlds
in models of CPL. As will be seen in later sections, we can arrive at knowledge in CPL even
when only considering two possible worlds with diametrically opposed valuations for a given
proposition so long as the lottery assigned to one of the worlds is negligible.

The traditional view of knowledge in epistemic logics and computer science is that of implicit
knowledge which states that an agent i knows a proposition ϕ if ϕ is true in all states that are
accessible by i from the current state. Using this traditional definition, there is a knowledge
axiom which states Kiϕ→ ϕ, interpreted as meaning ‘i only knows true statements’. To reason
about resource-limited distributed computations (PPT algorithms) and specifically interactive
protocols, implicit knowledge will be inadequate for accurate modeling techniques [Fischer and

5While the epistemic probability logic introduced by [van Eijck and Schwarzentruber, 2014] is certainly the
most simplified version in terms of semantics, it is not the only attempt made at conjoining probabilistic reasoning
and epistemic logics. See: Baltag and Smets [2008], Fagin and Halpern [1994], Fagin et al. [1990], Kooi [2003], Kooi
et al. [2009] for other variations of probability epistemic logic that aim to model different types of probabilistic
reasoning. The choice to use the epistemic probability logic introduced by van Eijck and Schwarzentruber as
the foundation of CPL was made to keep the mechanical focus of the logic on the cryptographic notions rather
than elaborate semantics designed to allow for probabilistic reasoning. van Eijck and Schwarzentruber provided
a method that could transform any epistemic model into a probabilistic model, so it requires the fewest changes
to the underlying model structure, making it an ideal system to enrich the cryptographic variant of DEL.

51

Zuck, 1987]. Fischer and Zuck list a number of reasons why new conceptions of knowledge like
probabilistic knowledge need to be introduced for modeling interactive protocols and we sketch
a few of those reasons here.

The central notion behind most cryptographic protocols and computations is that they are
computationally difficult or infeasible to accomplish in a reasonable amount of time. Despite
this, there is potential for an agent to simply guess or accidentally determine some value for
a computationally infeasible function. In a case such as an interactive proof, the prover’s
knowledge might not be that she knows how to compute discrete logarithms but rather that
it happens sometimes for an unknown reason. We can refer to such a situation as accidental
knowledge.

Furthermore in an interactive proof that requires probabilistic reasoning, it might be the
case that the verifier sees a proposition ϕ at 99% of the worlds accessible to it, but in the
remaining 1% of the worlds, ϕ is false. Under the definition of implicit knowledge, it would fail
to hold that the verifier knows ϕ because ϕ is not always true in the worlds accessible by the
verifier. Therefore, the notion of knowledge used in interactive proofs must forgo the knowledge
axiom and use a definition of knowledge that is traditionally reserved for belief. This way, a
notion of probabilistic knowledge is not absolute but corresponds to a degree of certainty.

The application of probabilistic knowledge applied to cryptographic protocols allows specifi-
cation of these protocols with a high-level of abstraction in terms of knowledge and probability.
Thus, reasoning about correctness of cryptographic protocols can then be done with axioms
and inference rules for probabilistic knowledge [Halpern and Tuttle, 1989].

As a further consideration for knowledge in logics with probability, the lottery paradox
demonstrates that basic notions of probabilistic reasoning lead to a contradiction [Kyburg Jr.,
1961]. With our definition of knowledge in CPL, we can accept that an agent knows a proposition
ϕ if the probability that the agent assigns to ϕ is greater than 1−ε(n). Now consider a guessing
game between two agents in which one agent thinks of a number z, and the other agent, a,
must guess what this number is. We can assume the range of numbers that z is in is large but
finite, say 3n for a sufficiently large n, and the guesser thinks that each number is equally likely.
Let each world in a model of CPL represent a possible value of z, therefore in a normalized

model the guesser assigns a lottery of
1

3n
to each world. For each world 1 ≤ q ≤ 3n there is

a unique proposition pq such that pq says q is the correct number and for all other j ∈ [1, 3n],
¬pj holds. For a sufficiently large number n, the lottery of any given world is negligible since
1

3n
< exp(−n), and thus the probability a assigns to a proposition ¬pj for any j ∈ [1, 3n] is

1− 1

3n
. Therefore, for every number j ∈ [1, 3n] we can say in CPL that Ka¬pj .

The lottery paradox states that it is rational to take the conjunction of these propositions
¬pj and state that the agent a would then know that no number in [1, 3n] is the correct number,
which contradicts an initial assumption about the game, namely that there is a correct number
to be guessed. It is easy to check in our example, that the conjunction ¬p1 ∧ . . . ∧ ¬p3n will
not hold in any world, and thus the probability that a will assign to such a conjunction is 0.
Despite the guesser a knowing (under the CPL definition of knowledge) that for each number,
that number is not the correct number, a never reaches the conclusion that there is no correct
number. Thus, CPL avoids the lottery paradox. Clearly, this scenario does bring to a light a
false instance of knowledge, however given that the alternative is paradox, such instances can
be justified.

52

4.3.3 CPL Characterization of Zero-Knowledge

Recall the conditions of a zero-knowledge protocol are completeness, soundness, and zero-
knowledge. Since a protocol is a sequence of actions, we can define an action model A such
that the actions contained within A constitutes a zero-knowledge protocol iff certain conditions
in the form of LCPL formulas hold. We can design formulas for completeness, soundness, and
zero-knowledge within the language of LCPL that are dependent on the execution of a sequence
of actions in A.

Consider a zero-knowledge proof of a statement. Let a zero-knowledge protocol take place
in a model with at least two agents where we can refer to the agents as prover P and verifier
V . For simplicity in our meta-language, we can think of computational languages in NP, and
say that our zero-knowledge protocols will prove that for a given language, some x is a member
of that language. x will be a message in our logical language6 LCPL. The zero-knowledge
protocols themselves will aim to prove hasP y, meaning that the prover in the protocol has a
message y where y is the witness to the fact that x is in a specific computational language.
For the following generalizations, we can let ϕ := hasP y for an arbitrary witness y. Since we
will be checking whether a sequence of actions is a zero-knowledge protocol, we will assume
a well-designed action model A and say that A is a zero-knowledge protocol for M iff the
following formulas are satisfied in M. Supposing z is a sufficiently large natural number, we
can characterize completeness via the sentence:

ϕ→ [A]zKV ϕ

Where [A]z is the number of necessary applications of A toM to reach a high level of certainty. A
number z can be considered sufficiently large, in the case where updating a modelM with some
action model [A]z achieves the intended result of the protocol. Sufficiently large numbers are
arbitrarily selected during the action model design phase and are simply a way to necessitate that
the actions of the action model are used as intended. Recall that knowledge is an abbreviation
for a high level of certainty. Thus, KV ϕ := PV ϕ = α for some α ∈ (1− ε(|x|), 1]. Informally, the
sentence states that if the prover has a valid witness, then after the execution of the protocol
(which is an interaction with the prover), the verifier will have high certainty of the fact that
the prover has the witness.

To get around the fact that the verifier shouldn’t know the contents of the witness after
the protocol, we can say that ϕ := hasP {y}k for some encryption key k that is known only to
the prover. Thus, by the cryptographic parsing function p{y}kqwV = � for all worlds w since
the verifier will never know the key k. So the verifier can come to know that the prover has
the witness, but cannot deduce its contents. As we will show, this will have no effect on the
nature of the protocols or how the actions are executed, it is merely a semantic trick to prevent
undesirable deductions in the logic.

The condition of soundness also must hold for a sufficiently large number z. The soundness
condition will express that in the case where ¬ϕ, the probability that the verifier assigns to ϕ is
less than a negligible number. That is, the probability where the verifier is successfully deceived
by a dishonest prover is negligible. We can characterize soundness via the formal sentence:

¬ϕ→ [A]z−1PV (〈A, σ〉>) < β

For some β ∈ (0, ε(|x|)) where σ is an action executable in A denoting a successful step in the
protocol despite the prover not having a valid witness. The formula 〈A, σ〉> allows the verifier

6Beware of the multiple uses of ‘language’. I try to make it explicit when I am referring to a computational
language in the sense of Turing machines and when I am referring to logical languages denoted by L (with some
possible subscripts).

53

p

n

p

n

(a) Model M

η : mk(η) ∧ p, q
z

ι : >, id
1

(b) Arbitrary Action Model SA

p, qη+

nz

p

n

p

n

(c) Update Model M ◦
SA with copy of M

Figure 4.3: Model Updates within SA such that the simulator has rewind capabilities.

to reason about the probability he assigns to a given world, by assigning a probability to the
always true formula > in the world where a specific action can be executed. The reasoning for
the structure of this formula will become clear when proving the soundness of a specific zero-
knowledge protocol in Proposition 10. In both formulas for the soundness and completeness
conditions, we can assume that z is the same number. Clearly, we can define A as an interactive
proof for a computational language L by the conjunction

(ϕ→ [A]zKV ϕ) ∧ (¬ϕ→ [A]z−1PV (〈A, σ〉>) < β)

where ϕ is a statement about the prover possessing a witness to a message x ∈ L.
Lastly, the condition of zero-knowledge states that the probability the verifier assigns to ϕ

is indistinguishable from the probability a simulator would assign to ϕ had the simulator been
given the same common input, auxillary information, and transcript of the communication.
Such a simulated scenario would require another action model, called SA that is designed to
simulate a dummy prover against the verifier’s actions of A. In order to give the simulator
rewind capabilities, we need to design the action model SA such that a copy of previous model
updates is saved in current model updates, and at certain points the simulator can rewind the
interaction by executing an action exclusively at the worlds that model the previous model
update.

The simulator will require intentional design to ensure the lotteries of the previous model
stay constant in the updated model. Furthermore, the probability the verifier assigns to a
proposition should not be affected by access to the previous updates, so these copies of previous
models will only be accessible to the simulator.

Let Sim be the simulated agent in the action model and V be the verifier. The actions of
SA will follow a similar pattern to the actions of A with the addition that certain actions are in
the equivalence class ∼Sim (ι). Those actions will be the actions which update the model with
information we want to ‘save’ in the model. ι is an action with precondition > and postcondition
id. The action ι has the lottery of 1 assigned to it, for all agents so the lotteries of the updated
model, with respect to those worlds created by the ι action, are unchanged.

Figure 4.3 shows how such a simulator would function in an updated action model and
how the rewind capabilities of the simulator are expressed in the model. We can let M be an
arbitrary model with more than one world and lottery of n assigned to each world for both
agents. The accessibility relation of the simulator Sim is denoted by the solid line and the
accessibility relation of the verifier V is denoted by the dashed line. The action model SA

contains an action, called η, with the precondition p and a postcondition that makes q true, as
well as the ι action, both of which are in the same equivalence class of ∼Sim. We also say that
a precondition of η is that η is unmarked in the world, that is, it has not been executed there

54

before. The ι action has a lottery of 1 and the η action has a lottery of z. Note that the use of
the precondition p in η is completely arbitrary and could have just as well been ¬p or >, but
the goal of this example is to show that the initial model can be updated and restricted while
also preserving a copy of the initial model.

The updated model in Figure 4.3(c) shows the initial model joined by Sim’s accessibility
relation to a world in which η has been executed. Notably, the lottery assigned to this new world
is nz while the worlds that were in the initial model maintain their lotteries n. Furthermore,
the accessibility relations of V are not altered by the addition of the ι action. The world where
the η action was executed is labelled by the η+ marking. It is possible for the simulator Sim to
rewind the interaction, by executing the action model SA again on the model of Figure 4.3(c),
in which the η action can only be executed in the world in the copy of the initial model where
p holds, since η is unmarked there. Such an action (with the ι action as well) would result in
an updated model that looks identical to Figure 4.3(c). Thus, the simulator was able to update
the model M◦SA with the model SA as if it was updating M with SA.

Now that we are able to model a simulator with rewind capabilities, we can define what it
means for an action model to be zero-knowledge. For a proposition ϕ := hasP y, we want to
express that the probability the verifier assigns to ϕ after an interactive protocol A with P is
indistinguishable from the probability that the verifier assigns to ϕ after an interactive protocol
with a dummy prover in the simulation of SA. This can be formalized in the language of LCPL
as follows:

PV ([A]zϕ) ≡ PV ([SA]ρ(z)ϕ)

where a statement of the form Λ ≡ Ψ is an abbreviation of an expression for indistinguishability
with respect to the absolute value of the difference between Λ and Ψ in the language of LCPL:
(Λ ≤ Ψ → (Ψ − Λ < β)) ∨ (Ψ ≤ Λ → (Λ − Ψ < β)) for some β ∈ (0, ε(n)) for a sufficiently
large n. The number of iterations ρ(z) signifies that the iterations of SA are a function of the
number of iterations of A.

Thus an action model A is said to be a zero-knowledge proof for a computational language
L if:

(ϕ→ [A]zKV ϕ) ∧ (¬ϕ→ [A]z−1PV (〈A, σ〉>) < β) ∧ PV ([A]zϕ) ≡ PV ([SA]ρ(z)ϕ)

where ϕ is a sentence about the prover’s possession of some witness for x ∈ L.
The following section will analyze the exact construction of these action models and what

each initial model will be composed of, as well as providing a demonstration of a zero-knowledge
protocol for graph 3-colorability with a CPL model.

4.4 Zero-Knowledge Protocols

4.4.1 Modeling Protocols

A protocol will be a sequence of action patterns with specific pre and post-conditions of the
form a→ b : m where m is a message of a fixed pattern. The parameters of these patterns will
have a fixed domain, and we say they are instantiated by an instantiation θ when parameters
are mapped to objects in their respective domain. Unlike the models of Chapter 3 we will not
assign roles as parameters of the protocols and instead leave the roles to be fixed as prover
P and verifier V . This decision is not arbitrary, the protocols of Chapter 3 are flexible with
respect to the roles of the agents so that they might alternate positions as sender and receiver in
a cryptographic protocol to communicate with security, but for zero-knowledge protocols, the
roles of prover and verifier are fixed in the sense that the protocol only needs to be executed in
one direction.

55

Instantiations of a protocol can be interleaved in one run of the protocol, which as we will
see in a coming example allows the agents of the protocol to make uniform decisions over the
domains of the parameters. Therefore, the agents may repeat actions of the protocol, but
with different instantiations mapping the parameters to the domain. The set of all possible
instantiations is denoted as Θ, and since the set of parameters as well as the respective domains
are finite, then Θ is finite [Dechesne and Wang, 2007].

As a further deviation from the models constructed in Chapter 3, we are not concerned with
the possibility of an intruder eavesdropping on the communication. This arises from the nature
of zero-knowledge protocols, where not enough information is transmitted for the verifier to
learn the secret, let alone an intruder. In many ways, zero-knowledge protocols are intended to
protect against the scenario in which the verifier is the intruder. Without this concern, we can
simplify our models and subsequently our action models by bypassing any input and output
buffers. Our actions can simply be transmitted directly from agent to agent.

As stated previously, our agents will be P and V to denote prover and verifier. An action
of the form P → V : m states that P sends m to V , so we can design the precondition
and postcondition accordingly. Without loss of generality, the default precondition states that
hasPm holds in the world where the action is executed, and the postcondition m ∈ IV states that
m is added to the information set of V in the updated model. Furthermore, the action becomes
marked at the world in which it is executed. To tailor the protocol for specific action sequences,
more elaborate preconditions and postcondtions can be used. As previously mentioned, for
each action model A, there is an action model SA that simulates A with a dummy prover agent
Sim. Many of the actions remain the same bar the replacement of P with Sim, and there are
additional actions ι, η1, η2 that are added. The ι action is as described previously, which allows
the copies of the previous models to be saved within the updated models, and the η1, η2 actions
are the actions which actually rewind the updated model to these saved models. As will be
seen in the example protocol, the zero-knowledge aspect of the simulated action model arises
in the internal computations made by Sim. Therefore, a transcript of A and SA, from V ’s
perspective, are indistinguishable.

We now define an initial model for our protocols in a general sense to capture what neces-
sary information must be implemented while simultaneously describing the initial model of a
simulation, since each simulation will be derived from an actual initial model. Clearly the two
agents are P and V for our initial model, while in parallel we know the agents of the simulation
are Sim and V . The zero-knowledge protocol is concerned with a message x and whether x
has some property. A message y is a witness to the fact that x has the property in question
if y is an instance of x having this property. The point of a zero-knowledge proof is for the
prover to prove that x has some property, so in an honest situation, it is the case that hasP y
holds. Thus, our initial model is composed of the world where hasP y holds and the world where
¬hasP y holds. Naturally, the verifier cannot distinguish between these two worlds, otherwise
the proof would be trivial. Furthermore, we assign to each agent the same lottery that maps
both worlds to 1. This is a choice made for simplicity, so the probabilities the verifier assigns to
each proposition will cleanly follow after an action. It is possible to have an initial model that
is normalized, but it would require additional computational steps with respect to assigning
probabilities after actions, so we use lotteries of 1 to avoid this. Since each world has a lottery
of 1, then for any model update the lottery at the updated world simply becomes the lottery of
the action that was executed there. The same holds for the initial models of the simulations.

The information sets of each agent in the initial model are simple to describe. For all agents
i ∈ A and worlds w ∈ W , x ∈ Iw,i holds, which means that all agents have the common input
of x. Furthermore, the distinction between the worlds is with respect to the prover’s possession
of the witness y, so in one world y ∈ Iw,P and in the other world y /∈ Iw′,P . We can assume that

56

for all worlds w: y /∈ Iw,V . Any further auxiliary information such as encryption keys or other
messages can be implemented on a case by case basis at the needs of the protocol description.
In a simulation initial model, both agents Sim and V possess x, but it’s important to note
that Sim does not possess y. In fact, the point of the simulation is to show that V enters a
simulation with Sim and arrives at the same conclusion as he would have with P because of
Sim’s rewind capabilities, thus demonstrating zero-knowledge. Except for the witness y, Sim
will be implemented with necessary auxiliary information such as encryption keys. In both the
initial models and the simulated initial models, no actions are marked so AL(w) = Ø for all
worlds w ∈W .

With the general description of initial models in place, we can analyze a zero-knowledge
protocol description for proving whether a graph is 3-colorable. First, we will demonstrate how
the necessary information of graph coloring can be encoded in the syntax of LCPL. Next, we
will construct the action model and initial model of the protocol. Finally, we will verify within
the logic that the action model satisfies completeness, soundness, and zero-knowledge.

4.4.2 Zero-Knowledge Protocol Example: Graph 3-Colorability

It is easy to see that one could represent a graph as a message in the language LCPL. By
assigning a number to each vertex of the graph one could create a list of all vertices, and by
joining these numbers in pairs one could represent an edge of the graph. We can encode a
simple graph as seen in Figure 4.4, into the message ((1, (2, 3)), ((1, 2), (1, 3))). The first tuple
contains the set of all vertices in the graph, and the second tuple contains the edges of the graph
represented as pairs of vertices.

1 2

3

Figure 4.4: Simple Graph

Let G(V, E) be a graph with vertices V and edges E. If G(V, E) has a 3-color assignment,
then it is possible to color each vertex of the graph with 3 distinct colors such that for every
edge (t, l) ∈ E, the color of t is not identical to the color of l. Formally, G(V, E) is 3-colorable
if there exists a mapping ρ : V → {r, b, g} such that for every (t, l) ∈ E : ρ(t) 6= ρ(l). For
simplicity we let {r, b, g}7 represent a set of distinct colors (red, blue, green). We can encode a
coloring of a graph as a message in M , which will allow for relevant statements in the language
of LCPL, by pairing a vertex number with a color, so a coloring for the graph in Figure 4.4
can be encoded as the concatenation of the pairs: (1, r), (2, b), (3, g). Thus, if a prover has this
message, then they have a witness to the fact that the graph x = G((1, (2, 3)), ((1, 2), (1, 3)))
is 3-colorable. In a message that is a witness, for a given vertex v, let col(v) denote the color
assigned to that vertex.

Suppose a prover knows a 3-coloring of a graph G(V, E) and wishes to prove that fact to
a verifier without revealing the coloring itself. At the end of the conversation the verifier will
be convinced that there is a coloring of the graph satisfying the 3-color definition, yet he will
not know that coloring. Let c = |V|, f = |E|. Recall, a coloring is a map from vertices in
the graph to a coloring in Sym({r, b, g}), which are the permutations over the set {r, b, g}. So,
ρ ∈ Sym({r, b, g}). Let π also be a permutation over the set {r, b, g}, then for a vertex vj ,

7Recall, messages are numbers, but for readability let r, b, g be some numbers not in V.

57

π(ρ(vj)) is π ◦ ρ(vj). With such a permutation and an encoding of the graph and coloring in
the language LCPL, the prover and the verifier can use the following protocol description:

1. Repeat c× f times:

a) P → V : ({π(col(v1))}k1 , ..., {π(col(vc))}kc)
b) V → P : (vt, vl) ∈ E
c) P → V : (kt, kl)

The above protocol works by having the prover use a permutation on the set of colors and
apply that to the coloring that she knows of the graph. With all vertex colors permuted, she
then encrypts each color with an individual key associated with each vertex8, thus preventing
someone from learning one key and gaining access to all the vertices. The prover sends these
encrypted permutations to the verifier. The verifier then chooses an edge in the graph and
sends this edge back to the prover. The prover then sends the keys that decrypt the colorings
of the vertices in the edge. Lastly, the verifier checks whether the colors are identical in the
edge selected. If not, then the protocol continues, else the verifier knows with certainty that
the prover does not have a coloring to the graph.

4.4.2.1 Action Model

The concept of selection appears twice in the above protocol: first when the prover selects a
permutation and second when the verifier selects an edge to send back to the prover. When
designing the action model, we can set these two items to be parameters such that they are
instantiated at every iteration of the action model and thus we can get a uniform distribution
over the domain of the parameters by randomly selecting an instantiation θ ∈ Θ. With this in
mind, we can design the action model Z and specify the action patterns to model the protocol
description.

Figure 4.1 lists the actions of Z for an overview of the protocol. To fit the table within the
margins, let ψ := ({π(col(v1))}k1 , ..., {π(col(vc))}kc), and furthermore, let us assume that each
action has the precondition that the sender has the message being sent in conjunction with the
other formulas listed in the Pre column of the table. The addition of the L column denotes
the lottery each action has in Z. Since we are only concerned with the probabilities that the
verifier assigns to actions, and because P has no accessibility relations between actions other
than reflexive ones, we can say that the lottery listed in the L column is applied to both agents
in the model.

Notably, the σ and δ actions of Z both have a lottery of 1. This is because the contents of
these messages do not lead to any ambiguity and their execution has no bearing on the assign-
ment of probabilities. However, both of these actions utilize the θ instantiation within their
message. For the σ action, the θ maps the parameter of π to a permutation in Sym({r, b, g}),
and for the δ action, the θ maps the parameter of t and l to numbers such that 1 ≤ t, l ≤ c.
The θ instantiation is only applied to these actions, so for actions γ{1,2,3} the t and l indexes
are the same t, l that were set in the δ action. In that sense, the γ{1,2,3} actions are dependent
on the δ action instantiation.

The set of actions γ{1,2,3} represent the three possible situations that can arise from the
prover’s response. γ1 is the case where the prover has the witness y and sends the corresponding
keys to the edge selected by the verifier. The lottery that a prover sends a set of keys that
decrypts two non-identical vertex colors and has the witness y is 1. Meanwhile, in the case

8This encryption is meant to parallel the commitment function of the computational model from Section 4.2.1.
For other attempts at modeling commitment protocols in epistemic logics see: Yu [2004], Hadzilacos [1987]

58

Action Direction Message Pre PosI PosAL L
σ P → V (θ)ψ ¬mk(σ) ψ ∈ IV σ+ 1
δ V → P (θ)(vt, vl) mk(σ) ∧ ¬mk(δ) vt, vl ∈ IP δ+ 1
γ1 P → V (kt, kl) mk(δ) ∧ hasP y kt, kl ∈ IV σ−, δ− 1
γ2 P → V (kt, kl) mk(δ) ∧ ¬hasP y kt, kl ∈ IV - 1

f

γ3 P → V (kt, kl) mk(δ) ∧ ¬hasP y kt, kl ∈ IV σ−, δ−
f − 1

f

Table 4.1: Action Model Z for a zero-knowledge protocol of graph 3-colorability

where the prover does not have a witness y and sends the keys to the selected edge, then there
is a minimum lottery of 1

f that the verifier will deduce that ¬hasP y holds. Therefore, in the
same case the prover without the witness sends the keys of the edge, there is a maximum
lottery of f−1

f that the verifier will decrypt two non-identical vertex colors. Structuring the
lotteries of the actions in this way will allow the model updates to depict the three possible
scenarios in the protocol with an accurate probability assigned to each possibility. Furthermore,
all actions of Z are distinguishable from one another except for γ1 and γ3, which are both in
the same equivalence class of ∼V . This represents the verifier’s inability to distinguish whether
or not the prover has a valid coloring or has just gotten lucky during the decryption step of the
protocol.

The preconditions and action postconditions are written in such a way, that it guarantees
iterated model updates will follow a specific pattern. The σ action can only be executed if it
is unmarked, and once it is marked, then the δ action can be executed. The δ action cannot
be executed unless it is unmarked, and once it is marked, the γ{1,2,3} actions can be executed,
which in turn unmark the σ and δ actions, allowing the cycle to repeat. The action γ2 is an
exception in that it does not unmark the σ and δ actions. This represents the immediate halting
of the protocol in such a scenario where a pair of identically colored vertices is discovered.

4.4.2.2 Initial Model

With the action model Z in place, we can establish the initial model and see how the model
updates would affect the epistemic states of the agents. The initial modelM = (W,R, I,AL,L)
will consist of two worlds, both labeled by the proposition which holds in the world: hasP y and
¬hasP y. Both worlds are joined by the equivalence relation of V . As previously stated, the
lottery for each world is 1. Both P and V will know the common input of x = G(V, E), but P
will know a witness y and a series of keys to encrypt each vertex in every round of the protocol.
Thus, for c×f rounds, P will need c× (c×f) symmetric encryption keys, one for each vertex in
each round. The parameters of the protocol are π, t, l where the domain of π is Sym({r, b, g})
and the domain of t, l is {n | vn ∈ V}. So the information states of both agents in all worlds
w ∈W are set in the initial model as:

{x} ⊆ Iw,V ⊂ {k1, ...kc·(c·f), y} ∪ {x} ⊆ Iw,P

All actions are unmarked at all worlds in the initial model. Figure 4.5 illustrates a probability
model for the initial model M. Updating the model M with Z does not result in any change
to the model with respect to worlds and lotteries; it only changes in that at both worlds hasV ψ
holds, where ψ is the constructed list of the encrypted, permuted colorings of vertices.

For z divisible by 3, M ◦ Zz results in a model of three worlds, each representing the
possibilties expressed by the actions γ{1,2,3}. Notably, the world in which the verifier discovers
a pair of vertices with identical colors is distinguishable from the others. Figure 4.6 illustrates

59

0 :
hasP y

1

1 :
hasP y

1

Figure 4.5: Initial Model M for zero-knowledge protocol

0 :
hasP y

1

1 :
hasP y

f−1
f

2 :
hasP y

1
f

Figure 4.6: Update model M◦ Z3

the first of these update models: M◦Z3 assigns a lottery of 1 at world 0 in which hasP y holds.
This world is indistinguishable from world 1 where ¬hasP y holds, the lottery assigned to 1 is
f−1
f . The disconnected world 2 also satisfies ¬hasP y, but has a lottery of 1

f . In worlds 0 and 1,

π(col(vt)) 6=V π(col(vl)) holds because p{π(col(vt))}ktq0V 6= p{π(col(vl))}klq0V and likewise for 1.
World 2 represents the situation that satisfies π(col(vt)) =V π(col(vl)).

At this stage in the protocol, in worlds 0 and 1, the verifier assigns probability PV (hasP y) =
1

1 + f−1
f

. Clearly, as lim
f→∞

1

1 + f−1
f

=
1

2
. Likewsie, PV (¬hasP y) =

f − 1

2f − 1
and as lim

f→∞

f − 1

2f − 1
=

1

2
. Generally, this follows our intuition about the zero-knowledge protocol, in that at the

beginning stages the verifier is uncertain about whether or not the prover has the witness. To
continue updating the model with Z3z would result in updating the lotteries assigned to the

worlds 0 and 1 such that PV (hasP y) =
1

1 +
(
f−1
f

)z and PV (¬hasP y) =
(f − 1)z

fz + (f − 1)z
. The

probability assigned to the world 1 can be thought of as the probability of a prover successfully
cheating the verifier. Thus for z rounds of the protocol and subsequently 3z model updates, as
lim
z→∞

PV (¬hasP y) = 0 which means as the number of rounds of the protocol in which the verifier

decrypts the vertices and sees non-identical colors increases, the verifier’s certainty level that
the prover has a valid witness increases. As the protocol stipulates, the action model should
update M at least 3× (c× f) times which we can denote as 3u.

4.4.2.3 Verification

Proposition 9 (Completeness of Z). Let y be a witness for the fact that x has the property of
being 3-colorable, then following is true in the initial model M:

hasP y → [Z]3uKV hasP y

Proof. Recall Kiϕ := Piϕ = α for some α ∈ (1 − ε(n), 1] for a sufficiently large n, and in the
case of a zero-knowledge protocol for x, α ∈ (1 − ε(|x|), 1]. Let w be a world in M such that

60

M, w � hasP y. The only world in M where this holds is world 0. In M◦ Z3u it holds that

PM◦Z
3u

V,0 (hasP y) =
LV (0)

LV (0) + LV (1)

=
1

1 +
(
f−1
f

)u
= α

Now, we want to show that α ∈ (1 − ε(|x|), 1]. We assume x has at least 3 vertices, and since
u ∈ N by Definition 39, then clearly α ≤ 1.

Since x is a simple and connected graph, we can show that c and f are polynomially related
in that c− 1 ≤ f < c2

2 [Goldreich et al., 1991] and by assumption u = c× f . Therefore there is

some polynomial function h such that h(|x|) = u. By taking the limit of
(
f−1
f

)u
as f approaches

∞ we will show that
(
f−1
f

)u
is approximately equivalent to the negligible expression exp(−c).

∆ = lim
f→∞

(
f − 1

f

)u

= lim
f→∞

(
f − 1

f

)c·f
By taking the natural log of both sides, we obtain:

ln ∆ = lim
f→∞

c · f ln

(
f − 1

f

)

= lim
f→∞

ln

(
f − 1

f

)
1

cf

We can then use L’Hôpital’s Rule, which states lim
a→b

j(a)

g(a)
= lim

a→b

d
daj(a)
d
dag(a)

, to solve for the limit

[L’Hospital, 1696].

= lim
f→∞

d
df ln

(
f − 1

f

)
d
df

1

cf

= lim
f→∞

1

f(f − 1)

− 1

cf2

= lim
f→∞

− cf

f − 1

As f approaches ∞, this rational becomes −c, therefore we have:

ln ∆ = −c
∆ = exp(−c) = e−c =

1

ec

61

Thus, for a sufficiently large graph x such that h(|x|) = u, ∆ is negligible and α ∈ (1 −∆, 1],
so this implies that α ∈ (1− ε(|x|), 1] for a negligible function ε on the size of x.

Recall, the concept of soundness in zero-knowledge protocols refers to the probability a
verifier accepts a statement ϕ as valid, even when ¬ϕ is true. This can be represented in
the logical protocol as the probability that the verifier is successfully tricked by a dishonest
prover. That is, the lottery of the world where γ3 is executed is the probability that the verifier
is successfully deceived. We can reason about this lottery by taking the probability that the
verifier assigns to the formula [Z]3u−1〈Z, γ3〉>.

Proposition 10 (Soundness of Z). Let y be a witness for the fact that the graph x has the
property of being 3-colorable, then the following holds in M:

¬hasP y → [Z]3u−1PV (〈Z, γ3〉>) < β

for some β ∈ (0, ε(|x|)).

Proof. Let w be a world in M such that M, w � ¬hasP y. The only world in M where this
holds is world 1. Update the model M with Z3u−1 and we want to show that the probability
V assigns to being in a world where the γ3 actions has been executed is negligible.

PM◦Z
3u−1

V,1 (〈Z, γ3〉>) =

∑
{LV (z) | 〈w, z〉 ∈ RV &M◦ Z3u, 〈z, γ3〉 � >}∑

{LV (z) | 〈w, z〉 ∈ RV }

=

(
f − 1

f

)u
1 +

(
f − 1

f

)u
By Proposition 9, we know this is equivalent to:

PM◦Z
3u−1

V,1 (〈Z, γ3〉>) =
∆

1 + ∆

where ∆ is a negligible function on the size of x. We can show that
∆

1 + ∆
≤ ∆:

∆

1 + ∆
≤ ∆

∆ ≤ ∆(1 + ∆)
∆ ≤ ∆ + ∆2

The truth of which immediately follows from the fact that ∆ > 0. Therefore, we can show that
PM◦Z

3u−1

V,1 (〈Z, γ3〉>) < β for β ∈ (0, ε(|x|)) and thus, Z is a sound protocol.

Corollary 1. It follows immediately from Propostion 9 and Proposition 10 that the action
model Z is an interactive protocol for the language of 3-colorable graphs.

The simulation for the protocol will work in a way that the simulator does not need to know
a valid 3-coloring of the graph x. Rather, at the beginning of each iteration of the protocol,
the simulator will select an edge (ve, vd) from the graph and assign a coloring to this edge
such that col(ve) 6= col(vd) The simulator will then assign a null color 0 to all other vertices
in the graph. After encrypting each coloring for the vertices and sending the list of encrypted

62

messages to the verifier, the verifier selects an edge in the graph and sends it to the simulator.
If the edge selected by the verifier is the edge that the simulator assigned a non-null coloring
to, then the protocol proceeds as normal where the simulator sends the keys corresponding to
the encrypted messages which contain those colorings. If the edge selected is not the edge the
simulator assigned a non-null coloring to, then the simulator rewinds the interaction to the step
in which the simulator selects an edge (ve, vd). From this point the iteration continues as before.

To prove that Z is also a zero-knowledge protocol, we must design the action model SZ

which will replace the prover in Z with Sim in SZ. The set of actions in SZ contains the ι
action, so as the model is being updated with respect to the θ instantiation made in the σ and
δ actions, copies of the previous updates are saved within the updated model. In order to keep
the information saved by the ι action restricted to the information created during the selection
of θ ∈ Θ, σ ∼Sim ι and δ ∼Sim ι holds in SZ. Thus, when the σ action is executed, a copy
of the initial model is saved within the updated model M ◦ SZ, and from an updated model
M ◦ SZ when the δ action is executed a copy of the updated model M ◦ SZ is accessible to
Sim in M◦SZ

2.
Once the verifier has made the selection of an edge (vt, vl) and sent it to the simulator, if

t = c and l = d, then p{col(vt)}ktqwSim 6= p{col(vl)}klqwSim for all w ∈ W , with the appropriate
indices attached to k in both instances. Rather than rewind, the simulator proceeds, but in the
action model we must now disconnect the saved information since the simulator will not need it.
This is done by executing the η2 action which requires that p{col(vt)}ktqwSim 6= p{col(vl)}klqwSim
holds as well as mk(σ) and mk(δ), thus ensuring that the new model represents the current
state of the iteration where the keys can be sent from the simulator to the verifier. The action η2

has the postcondition of id which does not change any agent’s information state. The simulator
can then send the keys of the colorings of those vertices. The verifier then checks whether
col(vt), col(vl) ∈ {r, b, g} and whether col(vt) 6=V col(vl) holds as in the standard action model
Z.

If the edge selected by the verifier is one of the edges that received a null coloring by
the simulator such that (vt, vl) 6= (ve, vd) then p{col(vt)}ktqwSim 6= p{col(vl)}klqwSim holds in
all w ∈ W . To rewind the interaction, which is essentially resetting the model to a previous
instance, the η1 action is executed, which requires that p{col(vt)}ktqwSim 6= p{col(vl)}klqwSim
holds as well as ¬mk(σ) which ensures that the model is reset to an update where (θ)ψ has not
been instantiated yet. From this point, the iteration will continue as normal with the simulator
selecting an instantiation θ ∈ Θ which selects an edge (ve, vd) for the simulator to assign a
coloring to.

63

A
c
ti

o
n

D
ir

e
c
ti

o
n

M
e
ss

a
g
e

P
re

P
os
I

P
os
A
L

L
σ

S
im
→
V

(θ
)ψ

¬m
k
(σ

)
ψ
∈
I V

σ
+

1
δ

V
→
S
im

(θ
)(
v t
,v
l)

m
k
(σ

)
∧
¬m

k
(δ

)
(v
t,
v l

)
∈
I S
im

δ+
1

η 1
-

-
¬m

k
(σ

)
∧
co
l(
v t

)
=
S
im

co
l(
v l

)
id

-
1

η 2
-

-
m
k
(σ

)
∧
m
k
(δ

)
∧
co
l(
v t

)
6=
S
im

co
l(
v l

)
id

-
1

γ
1

S
im
→
V

(k
t,
k
l)

m
k
(σ

)
∧
m
k
(δ

)
∧
h
as
S
im
y

(k
t,
k
l)
∈
I V

σ
−
,δ
−

1

γ
2

S
im
→
V

(k
t,
k
l)

m
k
(σ

)
∧
m
k
(δ

)
∧
¬h

as
S
im
y

(k
t,
k
l)
∈
I V

σ
−
,δ
−

f
−

1

f
ι

-
-

>
id

-
1

T
ab

le
4.

2:
D

es
cr

ip
ti

on
of

th
e

ac
ti

on
m

o
d

el
S

Z

64

Table 4.2 lists the actions of SZ with the corresponding descriptions and requirements. The
actions η1, η2, ι notably do not have a direction nor a message, this is because these actions
are intended to manipulate the model itself and not represent a proccess of communication in
the protocol. The lack of message and direction is reflected in the postcondition of id. The
specific precondition formulas ensure that the actions of SZ are executed in a specific cyclic
order similar to Z and that the actions η1 and η2 are only executed under certain circumstances,
namely when the edge selected in the δ action is the same edge selected in the σ action.

All actions in SZ have a lottery of 1 except for the action γ2, since γ2 represents the action
in which a possible prover in the protocol would supply the keys to an encrypted pair of vertices
that happen to have non-identical colorings even though the prover does not know a valid
coloring for the graph x. Thus, this event occurs with a maximum probability of f−1

f . Since the
simulator has rewind capabilities, we do not consider the event in which the simulator sends a
pair of keys to decrypt a pair of identical vertex colorings.

Epistemically, the accessibility relations ∼ in SZ are constructed to make the model updates
compatible with the rewind capabilities of the simulator. Therefore, V can distinguish between
all actions in SZ except for γ1 and γ2. So ∼V = {〈λ, λ〉 | λ ∈ SZ} ∪ {〈γ1, γ2〉, 〈γ2, γ1〉}. The
simulator Sim cannot distinguish between the ι action and the σ, δ actions which allows Sim
to save the worlds updated by these actions within the model. Thus, ∼Sim= {〈λ, λ〉 | λ ∈
SZ} ∪ {〈ι, σ〉, 〈σ, ι〉, 〈ι, δ〉, 〈δ, ι〉, 〈σ, δ〉, 〈δ, σ〉}. For the other actions in SZ, Sim can distinguish
between them.

Figure 4.7 illustrates a sequence of model updates starting with the initial model (Fig-
ure 4.7(a)) and first executing the σ action (Figure 4.7(b)), and then executing the δ action
(Figure 4.7(c)). We let the dashed lines represent the accessibility relations of V , and the solid
lines to represent the accessibility relations of Sim. To further distinguish which worlds are
copies, we have labeled the worlds according to the action labels at the given world, so a world
labeled with σ+ denotes that σ is marked at that world. The initial model is unlabeled since
no actions are marked there. As can be seen in Figure 4.7(b), a copy ofM is accessible to Sim
and likewise in Figure 4.7(c), a copy of M◦SZ is accessible to Sim.

In the model depicted in Figure 4.7(c), the next possible action depends on the instantiations
θ used in the actions of σ and δ. Figure 4.8 shows the possible scenarios that can follow from
the model in Figure 4.7(c). If the edge selected by the verifier and sent in the δ action was not
the same edge selected by the simulator, then the updated model M◦SZ

3 will be a model in
which the η1 action was executed, depicted in Figure 4.8(a). Notice, this model has no action
labels, therefore it is a way for the simulator to rewind back to the initial model. If both the
simulator and the verifier select the same edge, then the updated model M ◦ SZ

3 will be a
model where η2 has been executed, an illustration can be found in Figure 4.8(b). The action
labels denote that from this model the protocol can proceed with the message containing the
keys to the encrypted colorings. Finally, Figure 4.8(c) depicts a model update from the model
M ◦ SZ

3 where η2 was executed to a model where γ1 and γ2 have been executed. Notably,
the lotteries assigned to each world in the model have changed since with each successful key
delivery, the probability that the verifier assigns to the possible world where the prover does
not have a valid witness decreases.

With a functioning simulation described via model updates, we can prove that Z is a zero-
knowledge protocol, since the probability that the verifier assigns to a prover having a valid
witness y after an update of Zu will be indisitinguishable from the probability that the verifier
assigns to the simulator having a valid witness y after an update of SZ

ρ(u) where ρ(u) is some
polynomial function on u = c× f . Since a single iteration of the protocol takes at least 4 model
updates, then the maximum number of model updates we want to allow for is 12×u2 = 3u×4u,
accounting for the number of times we allow the simulator to rewind per iteration: u, where

65

hasSimy

1

hasSimy

1

(a) Initial
Model M

hasSimy

1

hasSimy

1

hasSimy
σ+

1

hasSimy
σ+

1

(b) M◦SZ

hasSimy

1

hasSimy

1

hasSimy
σ+

1

hasSimy
σ+

1

hasSimy
σ+, δ+

1

hasSimy
σ+, δ+

1

(c) M◦S2
Z

Figure 4.7: Simulation of a zero-knowledge protocol for graph 3-colorability with SZ with a
possible rewind action.

each rewind requires 3 model updates.

Proposition 11 (Z Zero-Knowledge). Let y be a valid witness to the fact that graph x is 3-
colorable. Let u = h(|x|) for some polynomial function h on the size of x. The following is true
in M:

PV ([Z]3uhasP y) ≡ PV ([SZ]12u2hasSimy)

Proof. The probability the verifier V assigns to [Z]3uhasP y is the probability that the verifier
assigns to hasP y in the model M◦ Z3u, so we can solve for the probability with the following
equation9 from Definition 39:∑

{LV (z) | 〈w, z〉 ∈ RV &M◦ Z3u, 〈z, γ1〉 � hasP y}∑
{LV (z) | 〈w, z〉 ∈ RV }

=
1

1 +

(
f − 1

f

)u
9Here we let z abbreviate the world that has been updated 3u − 1 times, thus 〈z, γ1〉 is the world z in the

update model M◦ Z3u where Pre(γ1) holds.

66

hasSimy

1

hasSimy

1

(a) M ◦ SZ
3

with η1

hasSimy
σ+, δ+

1

hasSimy
σ+, δ+

1

(b) M ◦ SZ
3

with η2

hasSimy

1

hasSimy

f−1
f

(c) M ◦ SZ
4

if η2 was exe-
cuted

Figure 4.8: The possible model updates of M◦SZ depending on whether the preconditions of
η1 or η2 are satisfied.

As shown in Proposition 9, ∆ =

(
f − 1

f

)u
is negligible as f approaches ∞, so it follows that

as lim
f→∞

PV ([Z]3uhasP y) =
1

1 + ∆
.

The probability that the verifier V assigns to [SZ]12u2hasSimy is the probability that V

assigns to hasSimy in the modelM◦SZ
12u2 . Thus we can use the following equation10 to define

the probability:∑
{LV (υ) | 〈w, υ〉 ∈ RV &M◦SZ

12u2 , 〈υ, γ1〉 � hasSimy}∑
{LV (υ) | 〈w, υ〉 ∈ RV }

=
1

1 +

(
f − 1

f

)κ
where u ≤ κ ≤ u2. So we want to show that the difference between the two values is less than
the negligible number ∆:

lim
f→∞

1

1 +

(
f − 1

f

)u2 − lim
f→∞

1

1 +

(
f − 1

f

)u < ∆

1

1 + 0
− 1

1 + ∆
< ∆

1− 1

1 + ∆
=

∆

1 + ∆

By Proposition 10, we know that
∆

1 + ∆
< ∆. Thus, PV ([SZ

12u2]hasSimy)−PV ([Z]3uhasP y) < β

where β ∈ (0, ε(|x|)). So, the probability that V assigns to hasP y after the protocol of Z is
indistinguishable from the probability that V assigns to hasSimy after the protocol of SZ.

10We similarly let υ abbreviate the world that has been updated 12u2 − 1 times, so 〈υ, γ1〉 is the world in

M◦SZ
12u2

where Pre(γ1) holds.

67

Corollary 2. From Corollary 1 and Proposition 11 it follows that Z is a zero-knowledge protocol
for the language of 3-colorable graphs.

We have shown that in an interaction where the prover has a witness y for the fact that
the graph x satisfies 3-colorability, then the verifier assigns a probability of 1 to the proposition
hasP y. In the alternative case where a prover does not have a witness y for the fact that x satisfies
3-colorability, we have shown that the probability the verifier assigns to being successfully
deceived is negligible after a sufficiently large number of rounds in the protocol. Furthermore,
we have shown that the probability the verifier assigns to the prover having a witness y is
indistinguishable from the probability that the verifier assigns to a simulated prover having a
witness y, thus demonstrating that the protocol satisfies the condition of zero-knowledge.

68

CHAPTER 5
Conclusion

We examined multiple variants of epistemic logics to model different types of cryptographic
protocols. We verified certain security properties about each of the protocols analyzed as well
as investigating the strength of the adversary in one of the protocols. The initial cryptographic
variant of DEL is capable of modeling symmetric key encryption and adversarial agents. We
extended the construction rules to allow for asymmetric encryption keys, making it possible to
model signature schemes. Using verification techniques, we designed formal sentences within
the logic that allow us to check the validity of statements which ensured security properties of
the protocol held.

By combining methods of cryptographic modeling and notions of probability logics, we
developed CPL which can characterize the three requirements of zero-knowledge protocols.
Finally, we implemented the zero-knowledge protocol for graph 3-colorings in CPL. By modeling
the zero-knowledge protocol of the graph 3-coloring problem, we showed that our representation
of the protocol within CPL is accurate with respect to probability assignments and superficial
knowledge of individual agents. Furthermore, we showed that upon repeated iterations of the
protocol, notions of completeness, soundness, and zero-knowledge held. The verification of
completeness and soundness for the zero-knowledge protocol in CPL were a product of the
semantics of the lottery assignments in updated models of CPL and intentional design of the
formal sentences in the language of CPL that the probability is being assigned to. Lastly,
the notion of zero-knowledge required the introduction of simulators in the logic CPL. The
simulations provide the verifier with the ability to run a protocol against a simulated prover
with rewind capabilities, thus ensuring that the entire protocol is executable without the verifier
learning any information.

Our decision to use the graph 3-coloring problem as our application of CPL stems from
the fact that graph 3-coloring is NP-Complete. Therefore, all zero-knowledge protocols for
problems in NP reducible to the graph 3-coloring problem can be modeled and verified in CPL.

Further areas of research regarding the topics covered in this thesis are plentiful. We only
sketch a few here to give useful guidelines for further research. The protocol examples analyzed
in Chapter 3, focused mainly on secrecy and verification in the case of the signature scheme.
Further security properties such as authentication, non-repudiation, anonymity, and deniable
authentication can be analyzed by implementing relevant protocols in the logic.

A further study of CPL would involve a complete axiomatization. Dechesne and Wang
conjectured that the cryptographic variant of DEL which they introduced could be axiomatized
in S5 models, however that problem remains open. Furthermore, EPL is axiomatized in [van
Eijck and Schwarzentruber, 2014]. These provide an essential foundation for the axiomatization

69

of CPL, however it is important to keep in mind that the definition of knowledge in EPL equates
knowledge with absolute certainty, while CPL uses high levels of certainty.

Variations of zero-knowledge protocols include concurrent protocols which can take place
between multiple provers and a single verifier or vice versa. Research around concurrent zero-
knowledge protocols [Dwork and Sahai, 1998, Dwork et al., 2004, Lin et al., 2010] has identified
security weaknesses in protocol structures, such that if colluding dishonest verifiers concurrently
query a prover, then they can strategically query the prover such that they gain information,
thus compromising the secret information of the prover. CPL would be ideal to model such
concurrent scenarios and to analyze potential information leakage because of its multi-agent
environment and modular action models. The solutions to these attacks proposed by Dwork
and Sahai involve timing constraints such that if the verifier takes more than β amount of time
to respond to a prover’s challenge then the prover terminates the protocol. Modeling timing
constraints and other temporal aspects of a cryptographic protocol in CPL remains an open
area of interest.

The field of computational model checking is constantly advancing, and given the reliance on
sufficiently large numbers in cryptography, utilizing computational methods for model checking
would provide an efficient method for verifying the requirements of cryptographic protocols
in CPL. Model checkers for epistemic logics have already been devised [van Ditmarsch et al.,
2012, van Eijck and Orzan, 2007, Gattinger and van Eijck, 2015], however they often require
fine-tuning for specific systems.

Lastly, to broaden the scope of research, many areas of cryptography are transitioning to the
so-called ‘post-quantum’ world. Post-quantum cryptography focuses on cryptographic protocols
that aim to be secure against quantum computers. It is known that quantum algorithms exist
which can solve difficult problems that are fundamental to cryptographic security [Schmidt,
2006]. An obvious intersection of study would be to investigate recent advancements in quantum
epistemic logics [Baltag and Smets, 2011, Baltag et al., 2013] and to investigate whether they
are suitable for modeling post-quantum cryptographic protocols.

70

Bibliography

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2006.

M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated
verification of the direct anonymous attestation protocol. Cryptology ePrint Archive, Report
2007/289, 2007. https://eprint.iacr.org/2007/289.

M. Backes, M. Maffei, K. Pecina, F. Bendun, and E. Mohammadi. Symbolic malleable zero-
knowledge proofs. In Proceedings of the 28th IEEE Computer Security Foundations Sympo-
sium (CSF ’15), 2015.

J. C. Baeten. Models of Computation: Automata, Formal Languages and Communicating
Processes. Unpublished, 2020.

A. Baltag and L. S. Moss. Logics for epistemic programs. Synth., 139(2):165–224, 2004.

A. Baltag and S. Smets. Probabilistic dynamic belief revision. Synth., 165(2):179–202, 2008.

A. Baltag and S. Smets. Quantum logic as a dynamic logic. Synthese, 179:285–306, 2011.

A. Baltag, L. S. Moss, and S. Solecki. The logic of public announcements, common knowledge,
and private suspicions. In Proceedings of the 7th Conference on Theoretical Aspects of Ra-
tionality and Knowledge, TARK ’98, page 43–56, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

A. Baltag, J. M. Bergfeld, K. Kishida, J. Sack, S. J. L. Smets, and S. Zhong. Quantum
probabilistic dyadic second-order logic. In L. Libkin, U. Kohlenbach, and R. de Queiroz,
editors, Logic, Language, Information, and Computation, pages 64–80, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

A. Baskar, R. Ramanujam, and S. P. Suresh. A Dolev-Yao model for zero knowledge. In
A. Datta, editor, Advances in Computer Science - ASIAN 2009. Information Security and
Privacy, 13th Asian Computing Science Conference, Seoul, Korea, December 14-16, 2009.
Proceedings, volume 5913 of Lecture Notes in Computer Science, pages 137–146. Springer,
2009.

P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge tracts in theoretical
computer science ; 53. Cambridge University Press, 2001.

L. Carroll. Curiosa Mathematica: Pillow Problems. 1895.

X. Chen and H. Deng. Efficient verification of cryptographic protocols with dynamic epistemic
logic. Applied Sciences, 10:6577, 2020.

71

https://eprint.iacr.org/2007/289

W. Commons. File:zkip alibaba2.png — wikimedia commons, the free media repository,
2020. URL https://commons.wikimedia.org/w/index.php?title=File:Zkip_alibaba2.

png&oldid=455408739.

F. Dechesne and Y. Wang. Dynamic epistemic verification of security protocols: framework and
case study. 2007.

F. Dechesne and Y. Wang. To know or not to know: epistemic approaches to security protocol
verification. Synth., 177(Supplement-1):51–76, 2010.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

C. Dwork and A. Sahai. Concurrent zero-knowledge: Reducing the need for timing constraints.
In H. Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, pages 442–457, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–898, 2004.

R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. J. ACM, 41(2):
340–367, 1994. ISSN 0004-5411.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Inf.
Comput., 87(1–2):78–128, 1990. ISSN 0890-5401.

M. Fischer and L. Zuck. Relative knowledge and belief. Technical Report YALEU/DCS/TR-
589, Yale University, 1987.

T. French, A. Gozzard, and M. Reynolds. A modal aleatoric calculus for probabilistic reasoning.
In M. A. Khan and A. Manuel, editors, Logic and Its Applications - 8th Indian Conference,
ICLA 2019, Delhi, India, March 1-5, 2019, Proceedings, volume 11600 of Lecture Notes in
Computer Science, pages 52–63. Springer, 2019a.

T. French, A. Gozzard, and M. Reynolds. Aleatoric dynamic epistemic logic for learning agents.
In A. C. Nayak and A. Sharma, editors, PRICAI 2019: Trends in Artificial Intelligence - 16th
Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji,
August 26-30, 2019, Proceedings, Part I, volume 11670 of Lecture Notes in Computer Science,
pages 433–445. Springer, 2019b.

M. Gattinger and J. van Eijck. Towards Model Checking Cryptographic Protocols with Dynamic
Epistemic Logic. In Proceedings LAMAS (LAMAS 2015), Turkey, 2015.

O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP statements in zero-knowledge
and a methodology of cryptographic protocol design (extended abstract). In A. M. Odlyzko,
editor, Advances in Cryptology — CRYPTO’ 86, pages 171–185, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all
languages in NP have Zero-Knowledge proof systems. J. ACM, 38(3):690–728, 1991.

S. Goldwasser and S. Micali. Probabilistic encryption how to play mental poker keeping
secret all partial information. In Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing, STOC ’82, page 365–377, New York, NY, USA, 1982. Association for
Computing Machinery.

72

https://commons.wikimedia.org/w/index.php?title=File:Zkip_alibaba2.png&oldid=455408739
https://commons.wikimedia.org/w/index.php?title=File:Zkip_alibaba2.png&oldid=455408739

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof system.
SIAM J. Comput., 18:186–208, 1989.

V. Hadzilacos. A knowledge theoretic analysis of atomic commitment protocols. In M. Y. Vardi,
editor, Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, March 23-25, 1987, San Diego, California, USA, pages 129–134. ACM,
1987.

J. Halpern, Y. Moses, and M. Tuttle. A knowledge-based analysis of zero knowledge. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88,
page 132–147, New York, NY, USA, 1988. Association for Computing Machinery.

J. Y. Halpern and M. R. Tuttle. Knowledge, probability, and adversaries. In Proceedings of the
Eighth Annual ACM Symposium on Principles of Distributed Computing, PODC ’89, page
103–118, New York, NY, USA, 1989. Association for Computing Machinery.

J. Y. Halpern, R. Pass, and V. Raman. An epistemic characterization of zero knowledge. In
Proceedings of the 12th Conference on Theoretical Aspects of Rationality and Knowledge,
TARK ’09, page 156–165, New York, NY, USA, 2009. Association for Computing Machinery.

A. Hasib and A. Haque. A comparative study of the performance and security issues of AES and
RSA cryptography. In Proceedings of the 2008 Third International Conference on Convergence
and Hybrid Information Technology - Volume 02, ICCIT ’08, page 505–510, USA, 2008. IEEE
Computer Society.

J. Herzog. A computational interpretation of Dolev-Yao adversaries. Theor. Comput. Sci., 340
(1):57–81, 2005.

J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman Hall/Crc Cryptography
and Network Security Series). Chapman Hall/CRC, 2007.

B. Kooi. Probabilistic dynamic epistemic logic. Journal of Logic, Language and Information,
12, 2003. doi: 10.1023/A:1025050800836.

B. Kooi, J. Gerbrandy, and J. van Benthem. Dynamic update with probabilities. Studia Logica,
93, 2009.

S. Kramer. Logical Concepts in Cryptography. PhD thesis, École Polytechnique Fédérale de
Lausanne, 2007.

H. E. Kyburg Jr. Probability and the Logic of Rational Belief. Wesleyan University Press, 1961.

G.-F.-A. d. .-. A. d. t. L’Hospital. Analyse des infiniment petits, pour l’intelligence des lignes
courbes. A Paris, de l’Imprimerie royale. M.DC.XCVI, Bibliothèque nationale de France,
1696.

H. Lin, R. Pass, W.-L. D. Tseng, and M. Venkitasubramaniam. Concurrent non-malleable
zero knowledge proofs. In T. Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages
429–446, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Y. Lindell. Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich, chapter
How to Simulate It – A Tutorial on the Simulation Proof Technique, pages 277–346. Springer
International Publishing, Cham, 2017.

73

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. Software
- Concepts and Tools, 17(3):93–102, 1996.

J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. Guillou, M. A. Guillou,
G. Guillou, A. Guillou, G. Guillou, and S. Guillou. How to explain zero-knowledge protocols
to your children. In G. Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings,
pages 628–631, New York, NY, 1990. Springer New York.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

B. E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmet-
ric Functions, volume 203 of Graduate Texts in Mathematics. Springer-Verlag, New York,
2nd edition, 2001.

A. Schmidt. Quantum algorithm for solving the discrete logarithm problem in the class group
of an imaginary quadratic field and security comparison of current cryptosystems at the be-
ginning of quantum computer age. In G. Müller, editor, Emerging Trends in Information
and Communication Security, pages 481–493, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

P. Schulz and C. Schaffner. Lecture notes in basic probability and statistics, 2018.

M. Sipser. Introduction to the Theory of Computation. Course Technology, third edition, 2013.

H. van Ditmarsch and B. Kooi. Semantic results for ontic and epistemic change, pages 87 –
117. Texts in Logic and Games 3. Amsterdam University Press, 2008.

H. van Ditmarsch and L. B. Kuijer. Knowledge without complete certainty. In R. Iemhoff,
M. Moortgat, and R. J. G. B. de Queiroz, editors, Logic, Language, Information, and Com-
putation - 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-
5, 2019, Proceedings, volume 11541 of Lecture Notes in Computer Science, pages 619–632.
Springer, 2019.

H. van Ditmarsch, J. van Eijck, I. Hernández-Antón, F. Sietsma, S. Simon, and F. Soler-
Toscano. Modelling cryptographic keys in dynamic epistemic logic with DEMO. In J. B.
Pérez, M. A. Sánchez, P. Mathieu, J. M. C. Rodŕıguez, E. Adam, A. Ortega, M. N. M.
Garćıa, E. Navarro, B. Hirsch, H. L. Cardoso, and V. Julián, editors, Highlights on Practical
Applications of Agents and Multi-Agent Systems - 10th International Conference on Practical
Applications of Agents and Multi-Agent Systems, volume 156 of Advances in Intelligent and
Soft Computing, pages 155–162. Springer, 2012.

H. van Ditmarsch, A. Herzig, E. Lorini, and F. Schwarzentruber. Listen to me! public an-
nouncements to agents that pay attention — or not. In D. Grossi, O. Roy, and H. Huang,
editors, Logic, Rationality, and Interaction, pages 96–109, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

H. van Ditmarsch, W. van der Hoek, J. Halpern, and B. Kooi, editors. Handbook of Epistemic
Logic. College Publications, 2015.

J. van Eijck and M. Gattinger. Elements of epistemic crypto logic. In Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15,
page 1795–1796, Richland, SC, 2015. International Foundation for Autonomous Agents and
Multiagent Systems.

74

J. van Eijck and S. Orzan. Epistemic verification of anonymity. Electron. Notes Theor. Comput.
Sci., 168:159–174, 2007.

J. van Eijck and F. Schwarzentruber. Epistemic probability logic simplified. Advances in Modal
Logic, 10, 2014.

Y. Wang. Epistemic Modelling and Protocol Dynamics. PhD thesis, Universiteit van Amster-
dam, 2010.

R. J. Wilson. Introduction to Graph Theory. Prentice Hall/Pearson, New York, 2010.

W. Yu. Constructing atomic commit protocols using knowledge. NIK ’04, 2004.

75

	Contents
	Overview and Introduction
	Preliminaries
	Epistemic Logic
	Dynamic Epistemic Logic
	Cryptography
	Probability Theory

	A Logic for Cryptographic Protocols
	Syntax and Semantics
	Cryptographic Protocols
	Review and Discussion

	A Logic for Zero-Knowledge Protocols
	Introduction
	Zero-Knowledge Proofs
	Cryptographic Probability Logic
	Zero-Knowledge Protocols

	Conclusion
	Bibliography

