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0.1 Abstract.

The thesis presents an analysis of the hardness results for learning deterministic
finite automata from signed data examples. Focusing on the conditions which
allow for learning to take place, we investigate a notion of a “fair” sample that
would typically permit learning. Despite demonstrating the need for such a
sample in overcoming the hardness of the learning problem, we also detail a
major problem with the size of the sample that is required to be considered fair.

The major contribution of the thesis is to develop our understanding of the
role of entropy in optimal model selection and learning; developing connections
to aspects of cognition and inference. We provide a sufficient background in-
troduction to data compression, and an analysis of the Minimum Description
Length (MDL) principle for grammar induction, with the purpose of prepar-
ing the reader to understand these relationships. We also present novel results
which explicate deeper problems with the process of DFA model selection.

The contribution is specifically motivated by a similar result for the class of
partial and total recursive functions [Adriaans (2020)]: we analyse data sets
which have multiple optimal models under MDL, each of which share little to
no mutual information. These so-called “polysemantic” data sets are shown to
exist abundantly in the context of the much weaker class of regular languages.
Their existence poses severe difficulties to any algorithmic methods for reason-
ing inductively from low quality data samples; there seems to be no way of
avoiding mutually irreconcilable interpretations of certain samples. The focus
on polysemy brings some interesting considerations about learning to the fore,
which we relate back to the central concerns of the thesis.

Fergus Smiles Page ii of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

0.2 Acknowledgements.

Thanks go out to everyone who supported me on this project: my partner, my
friends, family, and the community at the ILLC.

To my supervisor, Professor Pieter Adriaans, for the boundless stream of ideas
that helped me shape my own interests in a challenging field that was quite new
to me.

To my academic mentor, Professor Dick de Jongh, for his support during my
studies at the ILLC.

To Tanja Kassenaar, for looking out for my well-being and for all the help dealing
with Brexit-related troubles, which would have proven a far greater distraction
otherwise.

To the Whitestone Church House Educational Foundation, for funding my stud-
ies after I was delayed graduating due to the Covid-19 pandemic.

Special thanks to my folks, for listening to my struggles and striving to grapple
with my ideas. And, lastly for all the beer and whisky while I was writing the
manuscript in Devon.

Fergus Smiles Page iii of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

Contents

0.1 Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

0.2 Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction. 1

1.1 Philosophical and Computational Roots. . . . . . . . . . . . . . . 5

1.2 Offshoots in Psychology. . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Structure and Goals of the Thesis. . . . . . . . . . . . . . . . . . 11

2 Preliminaries. 13

2.1 Automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Grammar Induction. . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 State Merging. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Partitions and Complexity. . . . . . . . . . . . . . . . . . 18

3 The Relationship Between Entropy and Optimal Model Selec-
tion for DFA Induction. 21

3.1 A Brief Introduction to Data Compression: Kolmogorov Com-
plexity and Shannon Entropy. . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Information Theory: Shannon Entropy. . . . . . . . . . . 22

3.1.2 Information Theory: Kolmogorov Complexity. . . . . . . . 26

3.2 Inductive Inference. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Learning DFA Using Entropy. . . . . . . . . . . . . . . . . . . . . 32

3.3.1 MDL for Grammar Induction. . . . . . . . . . . . . . . . . 32

3.3.2 Fair Samples from Simple Random Walks on DFA. . . . . 33

3.3.3 Maximal Entropy Random Walks and Intrinsic Markov
Shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Fergus Smiles Page iv of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

4 Learning Without Fair Data. 39

4.1 Polysemanticism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Polysemantic Fair Samples. . . . . . . . . . . . . . . . . . 49

4.2 Read Only Right Moving Turing Machines, DFA, and Regular
Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Patterns in Nature: Encodings and Processes. 54

6 Conclusions. 57

6.1 Summaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 The Circumstances Which Permit Learning to Take Place. 58

6.1.2 The Role of Entropy in Optimal Model Selection. . . . . . 59

6.2 Future Research Directions. . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Learning Idealised Regular Languages with Random Walks. 61

6.2.2 Process Equivalence and Entropy. . . . . . . . . . . . . . 62

A Appendix. 64

A.1 Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Definitions of Equivalence Between Computational Processes. . . 64

A.3 Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B Bibliography 68

Fergus Smiles Page v of 72



Learning Deterministic Finite
Automata with Signed Examples:
An Investigation into the Role of

Entropy in Optimal Model
Selection

MSc Logic Thesis at the Universiteit van Amsterdam

Fergus Smiles April 27, 2021

1 Introduction.

Suppose an infinite set of strings (sequences of symbols) of finite length. This
could be, for instance, the set of even numbers, or the set of all finite combina-
tions of letters from the Roman alphabet. Given some finite sampling of this
set, how hard would it be, computationally speaking, to infer the structure of
the infinite set? That is, how hard would it be to recover (all, or most of) the
infinitely many strings that are members of the set: viz. defined by some rule for
membership (e.g. the property of evenness from our first example)? Moreover,
how would this problem change if one were given, in addition, a finite sample of
strings labeled to be not a member of the infinite set? And, if it is possible to
effectively learn an infinite set from a finite sample, what are the conditions that
are typically required in order for learning to take place? This thesis concerns
itself with the last question in particular.

In the context of ‘proper’ regular languages, viz. infinite sets of finite strings
which are modelled by finite-state automata, there is a rich history concerning
the former questions: it is possible to infer a grammar for a regular language
by running a state-merging algorithm which attempts to derive a minimal, con-
sistent, deterministic finite automaton (DFA), from a finite collection of finite
strings, each labeled as to whether the DFA should accept or reject. Research
into the inferribility of regular grammars provides an analysis of the bedrock
of such methods, as the comparatively simple class of languages they generate
(regular languages) occupy the lowest rung in the Chomsky computational hier-
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archy [1]: regular ⊂ context-free ⊂ context-sensitive ⊂ recursively-enumerable,
corresponding to finite, pushdown, and linear-bounded automata, and Turing
machines, respectively. Thus, what is at stake is the achievability of methods
for inferring grammars from finite samples itself. However, the problem for ar-
bitrary DFA turns out to be at least as hard as the hardest problems solvable
in nondeterministic polynomial time (NP-hard).

Our object of study is the following general learning algorithm, formally de-
fined in §2, (definition 2.17): using a prefix-tree acceptor (PTA) that represents
exactly the positive (accepting) data examples, merge states of the PTA ac-
cording to a pre-selected heuristic, such as code-length minimisation, in order
to develop a hypothesis for the data which generalises the sample. The goal is
for the learner to identify a hypothesis that will match the label of the hidden
target (membership in the target regular language) on all (or most) examples
from the same distribution. The hypothesis developed is a deterministic finite
automaton (a model for a regular language), defined as follows:

Definition 1.1 (Deterministic finite automaton) A deterministic finite-state
automaton, M , is a 5-tuple (Q,Σ, δ, q0, F ) where:

Q is a finite set of states q ∈ Q
Σ is a finite alphabet of symbols a ∈ Σ

δ : Q× Σ 7→ Q is the transition or step function.

q0 ∈ Q is the initial state

F ⊆ Q is the set of final states f ∈ F

See §2, (definitions 2.1; 2.2) for the full definition of deterministism and non-
deterministism for finite automata. Terminology is given in §A.1.

Definition 1.2 (Input word) Starting at the initial state, the automaton reads
a finite string of symbols, w = a1, a2, . . . , an, where ai ∈ Σ, which is called an
input word, w ∈ Σ∗. By reading a symbol ai, the automaton transitions to a new
state qj ∈ δ(qj−1, ai) and accepts the word w if for each ai there is an accessible
state and for the final symbol an the accessible state is also a final state.

As an example of the kind of state-merging algorithm we are concerned with,
suppose we have a DFA. The set of strings which can be modelled with this
DFA is called the language of the DFA (see §2, definitions 2.4, 2.5, and 2.6).
Call this language, LT , the target language. Next suppose we have a sample
of positive examples D+ = {aaa, ab} such that D+ ⊆ LT . In other words, we
can be sure that the target automaton, when reading either of the sequences
‘aaa’ or ‘ab’, will successfully transition from the initial state to some final state
and halt its computation afterwards. The given information can be captured
by constructing the PTA. The sample is then generalised by merging states of
the PTA as follows:
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The digraph on the far right is the PTA, and represents D+ exactly. The centre
digraph is formed by the merge of states q3 and q4. The resulting automaton
is equivalent to the language of the PTA and accepts the finite language L1 =
{aaa, ab}. The merge of q1 and q2, however, yields a nondeterministic finite
automaton (NFA), that accepts the infinite language L2 = {a+{a, b}}. That is
the language of at least one ‘a’ followed by an ‘a’ or ‘b’. Now that we have a
grammar for an infinite language, the question is, for some target language, LT ,
do we have ∀w

(
w ∈ L2 ⇐⇒ w ∈ LT

)
(i.e. equivalence)? Otherwise, can one

say, for most w, with high probability w ∈ L2 ⇐⇒ w ∈ LT ?

It is often the case, however, that nondeterminism is controlled for under state
merging. This is because the minimal NFA is not unique. It is for this reason
that the problem of NFA minimisation is hard (PSPACE-complete) [2]. Focusing
on DFA thus simplifies the search problem. Nevertheless, the efficacy of these
general learning models for DFA, leaves much to be desired; there are problems
with over-generalisation and over-fitting. Furthermore, as mentioned above, the
computational complexity of the underlying combinatorial optimisation problem
is intractable. An exhaustive search to find the smallest DFA consistent with
an arbitrary data sample is NP-hard [3][4], and it is NP-hard to approximate
a target DFA of size OPT by a DFA of size within OPTk for any constant
factor k unless P=NP [5]. Phrased as a decision problem, it is NP-complete
to decide, given k ∈ N and two finite sets A and B of words, whether there
exists a DFA with at most k states which accepts every string in A and none
of the strings in B [6]. Furthermore, the cryptographic hardness of learning
DFA functions from signed data examples under the Probably Approximately
Correct (PAC) learning model is a reduction from the problem of inverting the
RSA cryptosystem, since one can encode the RSA function into a DFA [7]. This
constitutes good evidence that not even the average-case DFA will be easily PAC
learnable.
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The evidence against PAC learning begs the question as to whether a good choice
of learning model can alleviate the difficulty of learning DFA that is suggested by
the worst-case analysis. Indeed, many of the positive results for learning formal
languages have been achieved by additionally hypothesising constraints on the
distribution of examples in the data sample, see [8][9]. For DFA in particular,
Dennis (2001) showed that DFA are Probably Exactly Correct (PEC) learnable
with simple positive examples [10]. However, this algorithm is equipped with
access to a representation of the target language, something we wish to avoid.
Examples which are simple according to this representation are weighted likelier.
The information can then be used to lessen the difficulty of the learning problem.

Suffice it to say, the problem of inferring a minimally consistent DFA is embed-
ded in a web of related problems of quite some depth. However, the problem is
also manifestly interesting from an over-arching computational and philosoph-
ical stand-point as it penetrates deep into the heart of issues relating to the
foundation of inductive and abductive reasoning; how can we be sure our ab-
ductive predictions are good and our inductive inferences valid if we are working
with insufficient (noisy, incomplete or inconsistent) information?

Currently, there is no general theory for accurately inferring an arbitrary opti-
mal model under conditions of noisy and/or incomplete information. Compu-
tationally speaking, there is good reason to believe that a general theory is not
feasible, as even in simple contexts, such as learning DFA, the problem is com-
putationally hard. Considering the conditions which allow for learning to take
place may shed light on the feasibility of such a theory. Indeed, we require a
deeper understanding of the sort of samples that typically permit learning. This
thesis will develop and analyse exactly this notion and its relation to entropy.

In particular, we investigate samples generated by random walks under maxi-
mum entropy assumptions: assuming the given sample data is the result of m
random walks on the underlying digraph of the automaton, we call the data
sample fair with respect to the target automaton if and only if after m ran-
dom walks, every possible sub-path has been “seen” by the random walkers. In
other words, if we have a data set which almost surely traces out the complete
transition structure of some unknown digraph, underlying a DFA, then we can
call the respective sample fair with respect to the DFA in the sense that there
are no hidden constructions. Thus, we can be sure that a fair sample contains
the necessary structural information to reconstruct the DFA. However, in some
cases, there are problems with the sample size necessary to be considered fair.

Worse still, there are situations where learning is in principle not possible even
with fair data; the data may be “polysemantic”. That is, there may be multiple
optimal models for the same data set which share little to no mutual informa-
tion. The existence of polysemantic data sets in very simple situations, proven
in this thesis, can be used to demonstrate that they must occur in abundance.
The reason for this, we argue, is that there is a kind of subjectivism within the
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very heart of optimal model selection that defies resolution, and this is related
to entropy in the following sense: optimal compression is sometimes disjoint or
irreconcilable, making it incredibly hard to differentiate between equally parsi-
monious models.

Finding patterns and regularities in data is a natural process of structuring
data in order to fit a hypothesis or model. This is in essence how learning and
data compression relate to one another, and part of the reason why the prob-
lem of optimal model selection is computationally hard: it requires at least the
power of nondeterministic polynomial-time computation, where a correct solu-
tion can be “guessed” non-deterministically, analogous to the “creative leaps”
of human problem-solving. Ensuring the sample is fair, in a sense, removes
the guess-work. However, by doing so one introduces problems with the size of
the sample necessary to remove guess-work. By paying attention to the kind
of samples necessary to recover the correct hypothesis, a better appreciation
of the conditions which typically permit learning is achieved. Even if this is
a somewhat Pyrrhic victory, seeing as the computational pitfalls surrounding
DFA induction are quite severe, the hope is that the approach of this thesis
homes in on quintessential features necessary for learning, irrespective of the
context.

1.1 Philosophical and Computational Roots.

The problem outlined above is fundamentally related to a problem in the History
of Philosophy called the Essential Problem of Empiricism [11]: namely, how one
can utilise a finite empirical perspective to form conclusions that go beyond the
finitude of one’s subjective experience. This boils down to a question of whether
universal principles are ever truly learnable, or knowable, from experience, if all
of what one can know a posteriori is gathered by the senses, which are liable to
err, and which provide insufficient information about reality.

In other words, if, by assumption, empirical data does not permit the learn-
ing of universals, then for the radical empiricist who does not believe in any
form of immediate access to an immaterial world, conclusions about that which
is beyond one’s experiential data, are, by their nature, only attainable via a
process of abduction, or, as Hume argued, from the inductive fallacy coupled
with the fact that causal events are “constantly conjoined”[12]. However, there
is something of a paradox in that empirical investigation does sometimes re-
veal truth about the nature of reality; in some cases, one succeeds in learning
a universal principle. What is different about these successful situations is not
metaphysical. On the contrary, empirical investigation leads to knowledge when
there is the right kind of data at hand. More specifically, the data ought to be
consistent with the phenomenon and sufficient to predict further observations
accurately. The focus from the perspective of Philosophy, however, has been
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on the limits of knowledge; Philosophy has sought to find a firm bedrock of
unassailable knowledge, something not granted by empirical investigation. The
exact conditions which permit learning and the acquisition of knowledge to take
place have not been properly addressed being outside of the remit of classical
Philosophy.

The situation for machine learners is in many ways also held to account by
Philosophy; the exact difficulties regarding a posteriori knowledge recur in the
context of unsupervised machine learning, where a learning algorithm must
generate a model for some data which it builds via an algorithmic version of
induction or abduction. Supervised machine learners, on the contrary, can query
whether a particular string of data belongs to the target model or not. This kind
of algorithm is described as a machine with access to an oracle. Using oracles,
or some other kind of instructive feedback, one can more explicitly train an
algorithm to learn something. It is primarily due to this ability that supervised
learning algorithms are considered computationally ‘easier’ than unsupervised
ones. Learning algorithms which discover optimal models without such access
are arguably closer to ‘real’ cognition. Our focus is on unsupervised learning.

The question is: how can an algorithm, using only a learning set made up
of finite data examples—that is to say, partial information—build a model or
hypothesis that is sufficiently generalisable for unseen data, whilst also achieving
optimal codification for the data? We introduced the notion that this is a rather
complex feat to accomplish even in quite simple contexts such as the area of
finite automata identification. One explanation of the computational hardness
of optimal model selection may be that identifying the optimal model for an
arbitrary data set is intuitively just as hard as checking whether a given model
is optimal; in a sense we have to check every possible model in order to decide
whether the given model is optimal. As a rule of thumb: problems where it
is just as hard to merely check whether a given solution is correct, as it is to
actually find a solution, fall into the category of exponential time algorithms,
(EXPTIME). In general, if one has no information to indicate the superior
likelihood of any model, the difficulty of solving and checking will be identical.

EXPTIME problems are intractable due to the fact that it would take a brute-
force algorithm exponential time to even check a correct solution. One example
would be computing the perfect strategy for a game of (n × n)-Chess [13];
checking whether the strategy is optimal requires one to check all possible moves
and the repercussions of each move, which intuitively seems equally as hard as
actually computing which move is optimal. This is different to the situation one
finds in Sudoku, where checking whether a given solution is correct can be done
quickly without much effort, whereas actually solving the problem may be slow
and require complex computation. This difference in computational complexity
between checking and solving is the hall-mark of nondeterministic polynomial-
time (NP) problems. Note: NP-hardness means at least as hard as the hardest
problems in NP.
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Interestingly, for the case of model selection in human cognitive processing,
there seems to be an analogous correspondence between the perceived cogni-
tive complexity of the problem, and the quality and size of the data sample.
For instance, let us assume we seek an optimal model to explain the apparent
movement of the Sun. Given insufficient data, e.g. the experiential data from
observations on Earth with the naked eye, there is no way to rule out swathes of
possible models; all one can do is to check and compare all of them—an exponen-
tial process. And indeed, before the Copernican model was generally accepted,
there were solar models of varying complexity, some more or less equally par-
simonious, and most of which also succeeded to “save the phenomenon”. That
is, to remain consistent with the data at hand. The canonical example is the
Ptolemaic model versus the Copernican model, both of which are able to ex-
plain the “wandering” motions of the Planets. It is worth noting that, although,
for instance, Aristarchus correctly conjectured that our planetary system was
heliocentric, the Ptolemaic model with epicycles accounted for more of the data.
Thus a true model can sometimes be ruled out under measures of parsimony.
This is intriguing as it indicates that insufficient data in itself does not preclude
learning, rather data is sufficient or insufficient only with respect to a model; it
was not until additional information provided by Galileo, that one could finally
begin to rule out geocentric models, lessening the space of possible models for
the model selection problem.

Relating this back to the machine learning problem, the concerns with compu-
tational complexity are themselves inherently relatable to the conditions which
permit learning to happen, since they provide asymptotic bounds on the diffi-
culty of problems as they scale. It is known by the deterministic time hierarchy
theorem, that the class of polynomial-time algorithms, P, is not equal to EX-
PTIME; there are problems in EXPTIME that simply cannot be solved with
a fast algorithm [14]. P is the class of decision problems which can be solved
quickly (in deterministic polynomial-time). However, for NP problems this is
less clear, and depends on the P=?NP problem. Unless the world is an inher-
ently different place than initial investigation reveals to be the case, P 6=NP.
Thus it is safe to conjecture that DFA induction problems will be NP-hard in
the worst case. What remains to be seen is whether learning DFA is hard on
an average-case analysis. If the kind of data one requires is, on average, easy to
aquire, learning the average DFA might be easier than originally supposed.

To sum: focusing on the conditions which allow learning to occur provides
an alternative philosophical perspective to questions about epistemology and
ontology. That which is learned is not necessarily true or real, but functions
exactly the same; false opinions, or irrealities are nevertheless sometimes equally
justified by the data. The role of entropy in optimal model selection provides
the central theme for this discussion. What is it about the nature of certain
data sets that allow them to be captured by a hypothesis? What allows one
to identify what is noise from what is not? To describe this we need a notion
of sample data that is fair. Roughly speaking, we need to be certain that

Fergus Smiles Page 7 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

Figure 1: Gestalt vase or faces. See [15].

the sample is truly indicative of the target model that we hope the algorithm
identifies. For the technical side of the matter, working out the conditions which
permit learning DFA to take place will inform us as to whether the average-
case complexity ought to be as hard as is indicated by the worst-case analysis.
However, there are some problems with optional model selection which seem to
crop up irrespective of the quality of the data samples. That is, problems which
arise due to the very process of selecting optimal models. Polysemanticism is
one such example. These issues seem to transcend the machine world and apply
to aspects of cognition and inference more generally.

1.2 Offshoots in Psychology.

The problem of polysemanticism in optimal model selection, is, in fact, well-
known in the field of Psychology. However, it goes under a different guise:
namely, the notion of multistability in the theory of Gestalt Psychology. To put
it succinctly, a multistable gestalt image is one in which there is an irresolvable
conflict that defies the mind’s ability to neatly work the information into a single
interpretation as to what it is seeing. Figure 1, above, is the canonical example.
The gestalt theory of perception is relevant to the concerns of the thesis in
the following way: Gestalt Psychology emphasises the prime significance of
perceiving patterns, rather than the individual components of an image. The
state of one’s mind when perceiving Figure 1 demonstrates this fact, as it is
the choice of pattern on a backdrop which forces the image to coalesce into a
coherent object.
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Figure 2: Pareidolia of a face in the Cydonia region of Mars. See [18].

However, the image is multistable, meaning both stable images seem to com-
pete, causing the mind to flip between valid interpretations. In terms of optimal
model selection and entropy, this is an example of our mind’s failure to compress
the data of an image into a single coherent meaning. There are two optimal
ways to model the perceptual data; as a black vase on a background of white,
or as two white faces silhouetted on a black background. In other words, the
data set is polysemantic. These connections between Gestalt psychology and
data compression have been studied extensively in Adriaans (2020) [16]. The
phenomenon was also known to Wittgenstein, who used the polysemantic image
of a “duck-rabbit” to argue for the distinction between seeing that and seeing
as [17]. The ambiguous image can be seen as either a duck or as a rabbit. This
suggests a distinction between simply reporting what one sees and providing
an interpretation of what one sees. Wittgenstein asks “what is different: my
impression? my point of view?—–Can I say? I describe the alteration like a
perception; quite as if the object had altered before my eyes” [17]. From the
perspective of data compression, to say that one ‘sees the image as a rabbit’, is
to imply that a cognitive operation has interpreted (compressed) the perceptual
data to resemble a rabbit (rather than a duck).

Another related phenomena is that of pareidolia: the tendency to incorrectly
perceive meaningful objects (often faces) in natural patterns, such as cloud
formations, or in inanimate objects (see Fig 2). This is also related to the
problem of polysemanticism in optimal model selection in the sense that, if
the data are insufficient, there may be enough localised order in the data set
to build an optimal model that generalises the data into an entirely incorrect
model. This hypothesis about the data may compete with the true model when
there is already a lot of randomness or noise present in the true model, as is
the case with phenomena such as clouds or waves, or in low-resolution images:
the meaningful pattern is simpler to grasp than the random or noisy one. Of
course, as we have argued, these problems can sometimes be overcome when the
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Figure 3: DeepDream pareidolia by Wiki user MartaThoma. See [20].

quality of the data is improved. And indeed, for the Face on Mars [Fig 2], this
was exactly the case: in 2007, the Mars Reconnaissance Orbiter provided high-
definition pictures of the the Cydonia region. The face was nowhere to be seen.
As Adriaans puts it, “pareidolic phenomena can be explained on the basis of
Cilibrasi’s Normalised Compression Distance (NCD) when a random structured
(scale free) data set (e.g. a cloud, a stain on a wall) can be compressed by a
data set already known to the beholder (a face, the head of a dog etc.) [19].

So much for cases of pareidolia in human cognitive model selection; for machine
learners it is far more apparent how the problem of polysemanticism might be
seen to underlie pareidolic pattern recognition: for instance, DeepDream is a
deep-learning programme which allows the over-processing of images by training
an algorithm to detect a particular image in a data set, and then running the
algorithm in reverse so as to generate dream-like enhanced images on unseen
data sets. As an example, figure 3 (above) shows zero, ten and fifty iterations of
an algorithm trained to detect dogs applied to a new image. What is interesting
is that, eventually, after enough iterations, structures develop which could be
called dog-like, despite there never having been the image of a dog in the original
data set. What is going on here is akin to the cognitive model selection which
allows humans to perceive faces in clouds; localised areas of order are generalised
in such a way that resembles the target model already known to the beholder.

Relating the psychology of perception and the problem of optimal model se-
lection to learning formal languages, which is the concern of this thesis, it was
shown in Adriaans (2020) that for the class of partial and total recursive func-
tions, there exist data sets which have multiple optimal models, which share
little to no mutual information [16]. This thesis will show that a similar result
also holds for the much weaker class of regular languages. In particular, there are
close to behaviourally equivalent simulations, which share little to no algorith-
mic mutual information. Behaviourally equivalent simulations between finite
automata are essentially the regular language counterparts of emulations be-
tween Turing machines (TM) for the class of recursively enumerable languages.

Crucially, however, there is not a one-to-one parallel between every feature of a
language in each level of the Chomsky Hierarchy. In fact, the result in Adriaans
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(2020) is dependent on features of universal Turing machines (UTM) that do
not arise in the context of finite automata. In particular, finite automata are
equivalent to read-only right moving Turing machines [21], in that both compu-
tational models generate exactly the regular languages. Such Turing machines
lack a work tape; that is to say they only have constant (finite) memory. As a
consequence they cannot be used as universal Turing machines, as lacking even
a linear amount of space entails that they are unable to emulate other Turing
machines. Since the proof of Adriaans (2020) relies on UTM emulation to prove
the existence of such “polysemantic” data sets, the same or a similar argument
cannot hold in the context of regular languages.

However, we were able to construct polysemantic data sets, for which there are
multiple equally parsimonious models under minimal code length, each of which
generate a disjoint language. We also show that there can be no simpler model
than these. In the thesis the focus on poylsemanticism acts as a case-study for
the way in which the quality and nature of the data condition the possibilities
for learning. Moreover, polysemanticism exemplifies how entropy is in effect the
key player in what makes learning straightforward, or fiendishly roundabout:
it is exactly whenever the entropy of the data given a model is invariant over
multiple models, that we see polysemanticism arise.

1.3 Structure and Goals of the Thesis.

We first provide necessary preliminaries (section 2): chiefly, rudimentary Au-
tomata Theory (2.1) and an introduction to Grammar Induction (2.2). More
specifically, we provide an analysis of the concept of state merging on DFA, and
its computational hardness. We specify a state-merging operation for finite au-
tomata which corresponds to a partitioning on the set of states of the automata;
the expressivity of the automata can then be assessed via partition refinements.

We then go on to analyse the relationship between optimal model selection and
entropy in the context of DFA learning (section 3). We provide background and
context to the theories underlying data compression algorithms: specifically,
Information Theory, including Kolmogorov Complexity (3.1) and the Minimum
Description Length (MDL) principle (3.3.1). It is important to see how these
theories provide a mathematical foundation to the theory of inductive inference,
and, hence, how data compression is related to learning (3.2). We then investi-
gate random walk sampling strategies and use them to develop notions of fair
samples that would typically permit learning (3.3).

Next, we construct examples of data sets that are in a certain sense truly un-
learnable by compression algorithms, namely polysemantic data sets (section 4).
The goal is to show that any generic compression algorithm will have trouble
finding optimal models under MDL, or other principles that emphasise par-
simony, for certain data sets. This constitutes an answer to the question of
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whether a state-merging processes will yield multiple models which are optimal
for the same data set, whilst sharing little to no mutual information. The answer
is positive, a similar result to the case of partial and total recursive functions
holds.

Finally, we provide some philosophical analysis about optimal model selection
and compression; and how all these relate to patterns in nature, learning and
Empiricism (section 5).

A brief conclusion, summaries, and a review of future research directions are
also given (section 6).

An appendix is attached for additional material that could not be fitted into
the main text.
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2 Preliminaries.

In this section we collect together the necessary definitions to understand the
main structures we investigate in the thesis. See the appendix for terminology.

2.1 Automata.

Definition 2.1 (Deterministic) If an automaton can transition to one and only
one state, for a given current state and an input symbol, then it is a determin-
istic finite automaton (DFA).

Definition 2.2 (Nondeterministic) An automaton that, after reading an input
symbol, may transition to any of a number of states, as given by its transi-
tion relation (as opposed to a transition function), is called a nondeterministic
automaton (NFA). In this case δ is a relation, and we say that M is nondeter-
ministic, and write ∆ ⊆ Q× Σ×Q for the relation.

Definition 2.3 (Labeled transition system) A finite automaton without a given
initial state, and with no given accepting states is a finite state labeled transi-
tion system (LTS) sometimes called a semi-automaton. We write T = (S,Λ,→)
where S is a set of states, Λ is a set of labels and →⊆ S × Λ × S is a set of
labelled transitions.

Definition 2.4 (Recognised language) The language L ⊆ Σ∗ recognized by
an automaton is the set of all the words that are accepted by the automaton.
The language recognised by an automaton M is written L(M).

Definition 2.5 (Regular language) A language recognised by an NFA/DFA is
regular.

Definition 2.6 (Infinite language) We call a language L infinite when |L| =∞.

Definition 2.7 (Language equivalence) Two automata M1 and M2 are language-
equivalent if and only if they generate the same language: i.e. L(M1) = L(M2).

Definition 2.8 (Finite trace) Given a run of w, on an automaton M , a fi-
nite trace is a finite path in the directed digraph underlying M , starting from
the initial state, whose labels on the edges trace out the word w. Note: w need
not be a word accepted by M to be in M ’s set of traces, written trace(M).

Definition 2.9 (Trace equivalence) Two LTS T1 and T2 are trace-equivalent if
and only if they generate the same set of traces: i.e. trace(T1) = trace(T2).
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We follow [22] with the following two definitions, and prove the unproven lemma.

Definition 2.10 (Finite partition) A partition π of a set X is a set of nonempty
subsets of X such that every element x ∈ X is in exactly one of these subsets.
B(x, π) ⊆ X indicates the subset of the partition π of which x is an element.

Definition 2.11 (Quotient automaton) Let M = (Q,Σ, δ, q0, F ) be a determin-
istic finite automaton, the quotient automaton A/π = (Qπ,Σ, δπ, B(q0, π), Fπ)
derived from M on the basis of a partition π of Q is defined as follows:

(1) Qπ = Q/π = {B(q, π) ; q ∈ Q}

(2) Fπ = {B ∈ Qπ ; B ∩ F 6= ∅}

(3) δπ : (Qπ × Σ)→ 2Qπ ; ∀B,B′ ∈ Qπ, and ∀a ∈ Σ
B′ ∈ δπ(B, a) ⇐⇒ ∃q, q′ ∈ Q, q ∈ B, q′ ∈ B′ and q′ ∈ δ(q, a).

States of Q that are partitioned into the same equivalence class B, are
merged.

Lemma 2.12. If an automaton A/πj is derived from an automaton A/πi by
means of a partition then L(A/πi) ⊆ L(A/πj).

Proof. Follows immediately from definition 2.11: ∀a ∈ Σ and q, q′ ∈ Q/πi
with q′ ∈ δ(q, a), and some partition πj of Q/πi such that q ∈ B, q′ ∈ B′, we
get B′ ∈ δ′(B, a). Thus, every transition relation is preserved in the quotient
automaton, and since F/πj = {B ∈ Q/πj | B∩F/πi 6= ∅}, then every accepting
word in A/πi has a path, and is also an accepting word in A/πj as desired.

�

We base the following two definitions on what is essentially found in [23].

Definition 2.13 (Simulation) The relation ∼ which satisfies the following is
considered to be a simulation Rsim between labeled transition systems T, T ′:

q ∼ q′ ⇐⇒ If q
a−→ r, then q′

a−→ r′ for some r′ such that (r, r′) ∈ Rsim

For automata M,M ′, there are the added properties:

q0 ∼ q′0

q ∼ q′ =⇒
(
q ∈ FM =⇒ q′ ∈ FM ′

)
.
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Definition 2.14 (Simularity) Two states q, q′ are similar, written q ∼ q′ if
and only if there exists a simulation Rsim between them, and (q, q′) ∈ Rsim.

∼ :=
⋃
{Rsim | Rsim is a simulation}

Corollary 2.15 As a consequence of lemma 2.13 and the above definitions, the
quotient automaton M ′ derived from M via some partition, simulates M.

Definition 2.16 (Signed data) A sample of the set of words accepted by some
unseen automaton M produces a positively signed data set D+, whereas a sam-
ple of the set of non-accepting words of M , taken from the co-automaton of M ,
produces a negatively signed data set D−.

Definition 2.17 (State-merging DFA induction algorithms) A State-merging
DFA induction algorithm starts from an initial automaton called a prefix tree
acceptor PTA(D+). The PTA is the largest trimmed DFA accepting exactly
D+ The algorithm then merges states in the PTA relative to a partition π of the
state set of the original automaton. States belonging to the same block of π are
merged in the resulting quotient automaton. Any accepting path in the PTA is
also an accepting path in PTA/π. This clear definition is found in [24].

Theorem 2.18 State-space partitioning on DFA does not always preserve de-
terminism.

Proof. Suppose a DFA A with q1 ∈ δ(q0, a) and q2 ∈ δ(q1, a) for some a ∈ Σ
where uaav ∈ L(A) for some u, v ∈ Σ∗. The merge of q0, q1 ∈ B1, and q2 ∈ B2

under some partition π implies B1 ∈ δ(B1, a) and B2 ∈ δ(B1, a) by part (3)
of the definition of quotient automaton. The resulting automaton A′ is now
nondeterministic.

�

Theorem 2.19 Partitioning does not always preserve language equivalence.

Proof. We had for the constructed DFA A, uaav ∈ L(A), where a ∈ Σ, and
u, v ∈ Σ∗. Further suppose uaaav 6∈ L(A). However, the DFA A′ accepts strings
ua∗av ∈ L(A′), where a∗ is a finite number of iterations of a. Clearly, therefore
L(A) 6= L(A′). Thus partitioning can easily break language equivalence.

�
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2.2 Grammar Induction.

The problem of identifying an unknown deterministic finite automaton (DFA)
from signed (positive D+ and negative D−) data examples is central to the
study of Grammar Induction. The task is to inductively or abductively infer
which DFA generated the data purely in virtue of the labeled sample. If one
can be certain that the data are indicative of the model then the inference is
an induction from the specific data to a possibly true generalisation. However
if they are not indicative of the target language, then the inference is abductive
and one can only make likely guesses as to the correct structure. This may occur
when the data is an incomplete or corrupted observation of the target language.

Essentially, an automaton may be employed as a finite representation of a formal
language. The rules which yield the formal language are called its grammar.
Thus, the task of effectively identifying a grammar from strings of data, amounts
to syntactic or structural pattern recognition. In turn, this corresponds to the
problem of selecting an automaton which represents the formal language.

However, not only is it required that a learning algorithm succeed in identifying
a consistent DFA which stands as a theory–that is to say, a hypothesis–for
some data sample, it is also normally required that the algorithm select an
optimal (viz. minimal) theory for the data encoded in the model. Indeed,
if we were only concerned with consistency, ceteris paribus, then the universal
automaton would suffice for all data sets. Thus, although learning algorithms for
grammar induction tend to prefer automata with lower descriptive complexity,
that offer some form of data compression by reducing the state space by means
of state merging, clustering, or partition-refinement, the smallest model is not
necessarily the best. In fact, we require not only to have a minimal description
of the model, but to minimise the description of the model and the data when
encoded with the model.

2.2.1 State Merging.

There are two fundamental functions for state merging algorithms for DFA
grammar induction that all such algorithms share: namely, (1) the actual func-
tion of merging states, and (2) an initial function which constructs the prefix
tree acceptor (PTA). The tree automaton accepts exactly D+, after which the
algorithm will successively merge states to induce a generalised language. The
PTA learns examples from D+ by generating a state for each prefix from the ex-
amples and thereby constructing the smallest DFA A, which is a tree for which
L(A) = D+ holds. The key difference between the respective algorithms is only
therefore (1), i.e. the order in which the states are considered for merging [24].

Sometimes, however, as we saw in the previous subsection, merges do not pre-
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serve determinism. Recall, that the minimal NFA for some language L is not
necessarily unique. Hence, we may wish to identify only DFA in order to side-
step this issue. However, transforming an NFA into a DFA may increase the
set of states exponentially: if the NFA had n states, the translation into a DFA
may require up to 2n states to encode the same regular language [25]. But, as
a corollary to this, it shows that NFA do not actually gain any additional com-
putational power (in terms of computability) from non-determinism. Indeed, if
every language that can be recognised by an NFA can also be recognised by a
DFA, and vice versa (trivially, every DFA is an NFA), then they define the same
class of languages. In sum, for the sake of simplicity we may require that non-
determinism is also controlled for: that way, supposing we discover the correct
regular language, we can be sure to find a unique optimal model in terms of a
DFA by minimising the regular language, see [26].

However, perhaps more crucially, if we do not include negative data examples in
our learning set, then over-generalisation will pose a problem. This is because
the minimum consistent DFA/NFA for purely positive data examples is simply
the universal automaton:

f

r0

a

Where a ∈ Σ is any transition for any symbol in any finite alphabet. Clearly the
universal automaton can accept any word from any regular language. However,
the universal automaton will not be optimal in most cases as it does not capture
any structure at all: it accepts all possible strings over any alphabet and is not
able to discern any of the grammatical rules for any of these languages. Put
differently, the universal automaton simulates any automaton, but not every
automaton may simulate the universal automaton.

Generalisation is controlled by the negative sampleD− to prevent merging states
which are not compatible. Merging incompatible states would lead to an incon-
sistent automaton: in other words, a DFA which accepts at least one negative
string from D−. It is for this reason that DFA induction with only positive
examples is more difficult, as there is no way to rule out inconsistent automata.

Suppose we add negative examples D− to the data set from the introduction,
yielding a new data set D = {aaa+, ab+, b−, aab−}. The same PTA is gener-
ated, below right. In this case, merging, for example q0 and q1 would create
the transition q4 ∈ δ({q0, q1}, b). This automaton would accept the string b,
generating an automaton inconsistent with D. The universal automaton would
also be inconsistent with the data, as b ∈ L(AU ) where AU is the universal
automaton. The following state merge would be valid and consistent with D,
however.
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Let the quotient automaton resulting from this merge be B, the hypothesis
that L(B) = LT is tempting as it is consistent with the positive and negative
data examples D, and merging any of the other states results in an inconsistent
automaton. But how can we be sure B is optimal for D, and can we be sure
that the process of merging states could not have yielded a smaller consistent
DFA? These questions, as we shall, see catapult us right back into the heart
of philosophical and computational questions regarding the problems of Em-
piricism, the problem of inductive inference, optimal data compression, entropy
and computational complexity.

2.2.2 Partitions and Complexity.

From a more general combinatorial point of view, ultimately all state merging
algorithms at some point actually utilise a function for merging states together,
reducing the size of the state space by k ≥ 1 many states. Hence, given some
automaton with n states, we can say without loss of generality, that there are
a finite number of partitions of n, and hence, a finite number of quotient au-
tomata that can be constructed from the original representation of the data.
Furthermore, the number of possible partitions decreases as n → 0. Bell num-
bers, denoted Bn, where n is an integer greater or equal to 0, count the number
of possible partitions on a set of n elements. Alternatively, since each parti-
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tion denotes an equivalence relation and vice versa, Bell numbers count possible
equivalence relations on a set. The first few Bell numbers are 1, 1, 2, 5, 15, 52.
Hence, for a set of 5 elements, like the state space for the PTA of the data set
{aaa, ab}, there are 52 possible partitions, i.e. 52 possible quotient automata
to check for optimality. Clearly Bell numbers grow exponentially quickly: as
the size of the set increases, the number of possible ways to partition it grows
exponentially in the size of the set. Hence any brute force algorithm which has
to check all possible partitions for a set of size n will be in EXP . Bad news.

What this means from a computational complexity point of view, is that as-
sessing all the possible models, the optimality of which we have yet to ascertain,
will simply be too great for even the most powerful computers when we con-
sider the asymptotic growth of Bell numbers. It is exactly the sheer number of
possibilities in optimal model selection that makes DFA identification, and the
related issue of DFA induction such hard problems. We may, nevertheless, try
to restrict our attention to incremental merging of states, where the number of
partitions that need to be checked are far fewer. This at first seems like it might
do better than brute-force state-merging algorithms, because it means we can
limit the search for optimal compressions of n-state automata to partitions of
size |(n − 1)|. In other words, automata generated by merging just two states.
Mathematically, the number of these partitions can be given by the Stirling
number S(n, n− 1) =

(
n
2

)
= 1

2n(n− 1), which grow asymptotically slower than
the Bell numbers. The aim would be to incrementally compress the automaton,
with the goal of approaching an optimal automaton. Unfortunately, however,
since partitions form a partial order, there will be some quotient automata that
are only reachable via a certain sequence of state merges that might be over-
looked because the incremental compression algorithm cannot “see” ahead to
the automata reached by all possible sequences of state merges.

Thus, in searching for optimal models, there is a concern that a poor choice
of initial states for merging can lead to a model that could have been further
optimised had the choice of initial states been different; incremental merging al-
gorithms again require some sophisticated kind of guiding principle. Indeed, the
requirement is necessary since, as mentioned above, searching through all pos-
sible partitions would require exponential computational time and space. What
has become clear is this “guidance” when selecting states for possible merges,
is not going to yield perfectly optimal automata, as in that case we would have
already found the fast algorithm we are searching for.

However, algorithmic methods may be able to yield approximate optimal min-
imisation, perhaps retaining other desirable properties. If, for example, deter-
minism is required, then controls are needed to prevent the algorithm yielding
an NFA. Likewise, if one requires the derived automaton to be in some way
minimal or parsimonious, then code-length minimisation can be the guiding
heuristic. Previous investigations have led, along these lines, to the develop-
ment of algorithms such as blue-fringe [27], which was one of the first to provide
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reasonable guidance for the algorithm (using evidence) while merging states.
For some other interesting approaches, see [28][29].

However, without surety about the sample, one cannot rule out the possibility
that the derived model is a failure. Thus, we must investigate the conditions
which permit learning to occur by focusing on fundamental principles of infor-
mation and randomness.
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3 The Relationship Between Entropy and Opti-
mal Model Selection for DFA Induction.

Before making the role of entropy in optimal model selection precise, we first
introduce the background notions: data compression, entropy, descriptive com-
plexity and inductive inference. We then go on to show how these notions can be
used to specify ways to select optimal models in the context of DFA induction.

3.1 A Brief Introduction to Data Compression: Kolmogorov
Complexity and Shannon Entropy.

The introductory remarks of this dissertation make a lot of mention of “optimal
codification” and “optimal models” for some data set. Thus we have introduced
some notion of data compression. The current section will explain what we mean
by compression in a mathematical sense. The main source of reference for this
section is [30], but some of the definitions (3.1 - 3.7) are taken from lecture notes
by Yfke Dulek and Christian Schaffner, see [31].

There are two main theories which attempt to provide a precise notion of opti-
mal encoding and compression and both are relevant to the present work. The
first, Shannon’s Information Theory, tackles this notion by providing a definitive
answer: the ultimate data compression–alternatively, the optimal codification
for the data–is the probabilistic (Shannon) entropy, H. Informally, Shannon
entropy is a measure of the average surprisal of a random variable. Or, put dif-
ferently, it is the average number of bits required to describe a random variable
using yes/no questions. However, the concern of Shannon was limited to what is
essentially an engineering problem in the field of Communication Theory. Opti-
mal codification, in terms of Shannon’s theory, is fundamentally concerned with
the ultimate transmission rate of communication, which Shannon worked out
to be the channel capacity, C. Thus, optimal data compression is seen as a way
of maximising the amount of information in a source to be sent over possibly
noisy channels.

(Prefix-free) Kolmogorov Complexity, K, on the contrary, measures the optimal
codification of objects in and of themselves, rather than the optimal codification
of the data source. It is a descriptive complexity measure that is defined as the
length of the shortest binary computer programme required for computing an
object—viz. a string in a formal language—on a universal Turing machine that
halts after printing. If no such input sequence exists the prefix Kolmogorov
Complexity is undefined. Typically, one talks about prefix-free Kolmogorov
Complexity rather than plain Kolmogorov complexity, since it is not always
possible to determine where one string stops and another begins, without using
prefix-free languages, where the programmes are assumed to be self-delimiting.
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Both Shannon entropy and Kolmogorov complexity share common ground, in
that K is approximately equal to H if the sequence is drawn at random from
a distribution that has entropy H [30]. The current section will introduce both
Shannon Information Theory and Kolmogorov Complexity more formally than
has been done already, in order to provide background for the discussion on
Grammar Induction. Later in the thesis we will apply concepts laid out here.

3.1.1 Information Theory: Shannon Entropy.

Definition 3.1 (Probabiliy Space) A probability triple (Ω,F , P ) is a mathe-
matical structure that models a random process. Also called a probability space,
it consists of three elements:

1. Ω is the sample space or set of all possible outcomes.

2. F ⊆ 2Ω is the event space, a subset of the power-set of the sample space.
We can assume this to be a σ-algebra where an event is a set of outcomes
in the sample space.

3. P : F → [0, 1] is a probability function, which assigns each event in the
event space a probability, which is a number between 0 and 1.

Definition 3.2 (Random Variable) A random variable is a measurable function
X : Ω→ E, from a set of possible outcomes Ω to a measurable space E. For our
purposes it will suffice to assume a real-valued function, E = R.

Shannon entropy is a measure of uncertainity contained in a random variable.
This is often more intuitively explained by stating that entropy is the amount
of yes/no questions one would have to ask, on average, to distinguish between
the elements of X. Formally, it is captured as the average surprisal of a random
variable, where the surprisal value for some probabilistic event, A, that occurs
with probability P [A], is log 1

P [A] . The logarithm function captures the sense in

which, the rarer the event is, the more surprised one would be for it to occur;
small probabilities therefore yield high surprisal values and vice versa.

Definition 3.3 (Entropy) Let X be a random variable with image X . The
Shannon entropy H(X) of X is defined as:

H(X) := E
[

log
1

PX(x)

]
=
∑
x∈X

PX(x) · log
1

PX(x)
= −

∑
x∈X

PX(x) · logPX(x),

with the convention that the log function represents the binary logarithm log2.
And the second convention that, for x ∈ X with PX(x) = 0, the corresponding
argument in the summation is 0.
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Entropy, as shown by Shannon, arises as a bound for the (optimal) minimum
code length of symbol codes.

Definition 3.4 (Minimal Code Length) The minimal code length of a source
PX is defined as:

`min(PX) := minC∈C`C(PX),

where C is a code in some class of codes, C. And `C(PX) is the average string
length of codewords in C.

We give without proof the following the well-known theorem:

Theorem 3.5 (Shannon’s Source-Coding Theorem) The (optimal) minimum
code length `min(PX) for any source PX is within the following bounds:

H(X) ≤ `min(PX) ≤ H(X) + 1

We draw attention to this theorem simply to show how entropy relates, in the
probabilistic setting, to compression of a data source PX . The theorem tells us
that in order to optimally encode any probabilistic data source, one requires on
average an amount of bits that is within one bit of the entropy of the source
H(X). However, the proof relies heavily on Kraft’s inequality and prefix-free
codes. Exploring why this is so will shed light on the relationship between prob-
abilistic entropy and optimal code length.

Definition 3.6 (Prefix-Free Code) A binary symbol code C : X → {0, 1}∗
is prefix-free, alternatively instantaneous , if for all x, x′ ∈ X with x 6= x′, C(x)
is not a prefix of C(x′).

We give without proof the following:

Theorem 3.7 (Kraft’s Inequality) There exists a prefix-free code with image
C = {c1, . . . , cm} and codeword lengths `i := `(ci) if and only if

m∑
i=1

2−`i ≤ 1.

The importance of this inequality cannot be overstated. It turns up in many
of the contexts we are dealing with. Essentially, it shows us that the length
of an optimal prefix-free code coincides with the length of an optimal uniquely
decodeable code, where the latter is a binary symbol code C : X → {0, 1}∗
where C∗ is also injective. Indeed, the same inequality holds for such codes;
this variant for uniquely decodeable codes is called McMillian’s inequality [32].
Thus for every uniquely decodable code, there exists a prefix code with the
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same length distribution. Moreover, these lengths are essentially given by the
Shannon entropy.

Due to the restriction that the sum of the fractional lengths of valid codewords
is less than or equal to one, the Kraft-McMillian inequality behaves a lot like
a probability mass function. Indeed, one can think of the inequality as speci-
fying a resource to be divided up between codewords for symbols; the shorter
the codeword the more expensive it is [33]. Mathematically speaking, Kraft’s
inequality is a semi-measure.

Definition 3.8 (Semi-measure) A semi-measure on a measure space (X,σ),
(where σ is a σ-algebra), is a function λ : X → [0, 1] satisfying:

1. λ(σ) ≤ 1,

2. λ(
⋃
i∈I Ai) ≥

∑
i∈I λ(Ai) for any collection {Ai}i∈I of pairwise disjoint

elements of X.

That is to say, that unlike a (plain) measure, the full event σ need have a
measure of at most 1, rather than exactly 1. And the union of disjoint events
may have a larger measure than the sum of the parts, hence semi-measures are
not necessarily additive.

These features of the Kraft-McMillian inequality are essentially what relates
the notion of optimal compression to entropy. Indeed, since the probability of
a rare event occurring is low, the codewords we use to describe them ought
to be longer. This way we save the shortest “expensive” codewords for the
most common symbols. As mentioned above, the notion of entropy as the
average surprisal of an event succeeds to quantify the information in random
variables. We now see that the achievable optimal compression length of codes
is essentially the Shannon entropy (with 1-bit of overhead), precisely because
the a priori amount of information contained in a random variable is given by
the entropy. Under the lens of coding theory, if codeword lengths are distributed
according to the probability of their occurrence, we capture that information
optimally.

Implicitly, we have married together two notions here; that the simplicity of a
process is somehow related to the likelihood distribution of its symbols; more
common symbols should be given the simplest codes. Thus, a process with uni-
formly distributed likelihood over its symbols, will appear to give rise to more
random or complex code. This is because, intuitively, there is a difference be-
tween an ordered string—one that we can see patterns in—and the vast majority
of strings, which seem random. In terms of code, if nearly all the probability
density is over one symbol, the code will appear very simple, only consisting
of a single simple codeword for the most part. The difference we are drawing
attention to is this: it would seem natural that an ordered string was generated
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by some simple deterministic process, algorithmically speaking, whereas a ran-
dom string is more likely generated by a complex, possibly non-deterministic or
random, sequence. Indeed, it seems that the most likely explanation would be
that an ordered string of data came from a simpler process than a complex one.
For example, it would appear highly unlikely to our intuitions that a sequence
of ten trials of a fair die landed on a six each time; we would expect that a uni-
formly random die would produce sequences of outcomes that appear far more
random than this example. The simpler explanation—that the sequence comes
from a biased die, that has been weighted to land on a six—appears likelier.

These insights eventually led Solomonoff [34] to the formal definition of a univer-
sal a priori notion of probability, which he called the Algorithmic “Solomonoff”
Probability (AP). This assigns to objects an a priori probability that is univer-
sal in the sense that it is defined with respect to universal Turing machines, the
properties of which are true irrespective of the particular universe we happen
to inhabit. Since the AP is essentially a prior (probability) distribution it has
clear theoretical applications in many areas. In particular in the field of induc-
tive inference theory. See [35] for further in depth discussion: we repeat what
is shown there, that Solomonoff’s prior probability is in fact also a semi-measure.

Definition 3.9 (Algorithmic Probability) Let a computable process that pro-
duces a string x be defined as a programme p that when executed on a universal
Turing machine U produces the string x as output. Note p is itself a binary
string. We define the discrete universal a priori probability, m(x), to be the
probability that the output of a universal prefix Turing machine U is x.

m(x) :=
∑

p: U(p)=x

2−`(p),

where the sum is over all halting programmes p for which U outputs the string
x.

AP is a semi-measure: since U is a prefix universal Turing machine, we sum
over a prefix-free set, viz. the set of valid programmes forms a prefix-free set.
Hence, by the Kraft-McMillian inequality, we have that

∑
p: U(p)=x 2−`(p) ≤ 1.

With this insight we are nearly in a position to describe inductive inference
problems from a sufficiently general point of view, but first we introduce an
inherently related concept: it was shown in Levin (1974) [36], that the AP
was related to Kolmogorov Complexity: − logm(x) = K(x) + O(1), where K
is the prefix-free Kolmogorov complexity. As mentioned above, K is a mea-
sure of the length of the shortest binary programme for computing some string
with a UTM that halts after printing. We now introduce this deeper notion
(algorithmic entropy) more formally, and explain how the concept helps us in
providing an analysis of data compression, and the relationship of entropy and
data compression to inductive inference problems, which is the main concern
of this thesis. As it turns out, Kolmogorov Complexity is in fact equivalent
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to Solomonoff’s algorithmic probability. In this sense, the fundamental limit
of data compression—an object’s descriptive complexity—is equivalent to some
notion of universal likelihood.

3.1.2 Information Theory: Kolmogorov Complexity.

Recalling the definition of Shannon entropy, an object X is a random variable
drawn with respect to a probability distribution PX . The descriptive complex-
ity of the event X = x is given by Shannon’s source coding theorem; we require
at most dlog 1

PX(x)e bits of Shannon code to describe such an event, provided X

is random. In this sense, the individual amount of information in an object x is
given by log 1

PX(x) , where the weighted average for x ∈ X yields H(X). Thus,

the descriptive complexity of an object depends on a probability distribution,
and is related to the entropy of the distribution. Kolmogorov decouples the
notion of descriptive complexity from probability distributions and instead de-
scribes it algorithmically: the descriptive complexity of an object is the length
of the shortest binary programme that describes the object. The shortest com-
puter code will be uniformly good for any probability distribution, and in this
sense will act as a universal code [30]. It is for this reason that Kolmogorov
complexity is considered more fundamental than the Shannon entropy, since
the expected length of the shortest binary programme for a random variable is
approximately equal to its entropy [37].

Definition 3.10 (Kolmogorov Complexity) The Kolmogorov ComplexityKU (x)
of a string x with respect to a universal prefix-free Turing machine U is defined
as

KU (x) := minp: U(p)=x `(p),

which is the minimum length over all programmes that print x and halt.

Note that the requirement here that p be a halting programme means that
Kolmogorov complexity—and also Solomonoff probability for that matter—is
uncomputable. The reason for this is due to the undecidability of the question
of whether an arbitrary programme will halt or not on a given input. Indeed,
Turing (1937) showed that what has come to be known as the halting problem
is undecidable over Turing machines [38]. The halting set made of programmes
p such that p halts on input x, is thereby uncomputable by any Turing machine.
Nevertheless, Kolmogorov complexity can be approximated; in practical situa-
tions it is enough to find a very short, but not necessarily minimal algorithm as
a guide to the Kolmogorov complexity of the problem. Moreover, Kolmogorov
complexity provides us with the apparatus to think about universal codes and
inductive inference. In fact, Kolmogorov complexity explicitly formulates the
notion that the simplest explanation is best. That is essentially the principle of
Occam’s Razor, well known to Philosophy.
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By way of example, the Kolmogorov complexity of the 100-bit string x = 0
×100︷︸︸︷. . . 0

is at least a lot smaller than 100 bits, as the programme: p1 = PRINT (0×100)
is smaller than the programme p2 = PRINT (x). This is because the sequence
is intuitively not at all random. Hence, it has lower descriptive complexity. In
other words, it has low algorithmic entropy; the most likely explanation is that
this sequence was generated by a simple process. Contrast this sequence with
the binary representation of the golden ratio, ϕ. Here we see the descriptive
complexity seems to increase somewhat. Indeed, ϕ is the most irrational of the
irrational numbers. Yet this process is still simple; we already know of a shorter
programme (for computing the decimal expansion) which outputs the string,

namely the arithmetic algorithm 1+
√

5
2 . In a truly random sequence, however,

each of the 2n possible sequences of n-bits is equally probable. In this case, the
descriptive complexity is the same length as the string itself, as we can do no
amount of compression to the string, seeing as no shorter description exists.

Definition 3.11 (Conditional Kolmogorov Complexity) The conditional prefix
Kolmogorov complexity of x given y is

K(x|y) = minp{`(p) | U(〈p, y〉) = x, p ∈ {0, 1}∗}

Note: by this definition, we can also understand the non-conditional prefix Kol-
mogorov complexity to be K(x) = K(x|ε) since U(〈p, ε〉) = U(p), that is to say
that it is equal to the conditional Kolmogorov complexity with empty input.

We are now in a position to address the role of data compression, algorithmic
probability/Kolmogorov Complexity and probabilistic entropy in the theory of
inductive inference and optimal model selection. From this sufficiently general
vantage point we can then assess particular compression techniques in the con-
text of finite automata. However, first we present the final piece of the puzzle.

3.2 Inductive Inference.

As mentioned in the introduction, the fundamental problem of Empiricism is
that it is at root a philosophy which disparages sources of knowledge beyond ex-
perience; conjectures, or speculations are considered not well founded, whereas
innate ideas, and abstract deductions from what can be garnered a priori, are
thought to be somewhat less interesting, or trivial, as opposed to that which
can be discovered through observation and experiment. This poses something of
a self-contradictory paradox within empiricist philosophy, since the conclusions
one makes about observations and experiments cannot themselves be founded
in experience, at least prima facie.

From a naive point of view, Empiricism must posit some extra apparatus in
order to explain why theories are true, and in what way this truth is assured by
the observations and data that support said theories. Otherwise, the problem

Fergus Smiles Page 27 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

of inductive inference would seem to falsify empirical knowledge. Exactly what
is it that allows one to make an inductive generalisation about observations?
Answering this question satisfactorily would lead us far into debates in the
Philosophy of Science, which for space reasons we cannot attempt. However,
what can be said briefly is that the pragmatic notion to focus on heuristics
and other criteria (such as confidence) for hypothesis testing, circumvents the
actual need for theories to be ‘true’. If we specify some theory or model which
we believe to be true, and test it against the observed data, then we can learn
from a new observation and update our beliefs in such a way that is consistent
with our observations. Probability Theory itself focuses on finding approximate
answers. Indeed, Empiricism can avoid many of the philosophical pitfalls by
accepting that the kind of knowledge attained by finitely experiencing beings
is, by its nature, approximate. Given enough data, the possibility of a false
inductive inference shrinks to an inconsequential number.

One such method for updating one’s beliefs is Bayes’ Law [39], which states
that given two events A and B, the conditional probability of A given that B
is known, is proportional to the conditional probability of B given A:

P (A|B) =
P (B|A) · P (A)

P (B)

Under the frequentist interpretation of probability, this rule is perhaps hard

to parse, as the conditional probability P (A|B) is usually defined as P (A∩B)
P (B) ,

where P (A ∩ B) is the probability that both events A and B occur. One can
interpret this as a restriction of the sample space to events in which B occurs.
However, when probabilities are interpreted in the Bayesian sense—that is to
say, where we interpret probabilities as reflecting the (subjective) degree of belief
with respect to events, rather than the relative frequency of an event—Bayes’
Law can be seen to constitute a learning algorithm.

Thus we interpret P (M) as the initial probability of some theory, i.e. our initial
degree of belief in the theory prior to observing any evidence for the theory.
Whereas, P (M |D) is the probability of the theory given the observation of
some data, which is the probability of M after accounting for the evidence
D. Thus, the conditional probability P (M |D) is the posterior probability of
the theory after being updated with evidence. Finally, the probability P (D)
is the universal probability of the data occurring, that is, the probability of
seeing D given all possible models. One can derive a measure of the amount
of information in the theory that explains the data, by simply computing the
difference P (M)− P (M |D), a formalisation of the difference between the prior
probability and the posterior probability.

The reader may have already noticed the similarity in this kind of reasoning
to the motivations underlying Solomonoff’s algorithmic probability, and equiva-
lently, Kolmogorov’s notion of algorithmic complexity. Indeed, both Bayes’ Law
and Kolmogorov complexity seem to formalise, or provide a basis, for the the-
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ory of inductive inference. However, this connection is deeper than one might
imagine. The first thing to recall is that the amount of information required to
encode an event according to Shannon’s probabilistic theory of information is
given by the log function. Indeed, it is worth noting that in a very real sense,
the logarithmic function is the only suitable measure of information since it is
the only function satisfying continuity and additivity for independent events.
Hence, we arrive at the following definition for quantifying information:

Definition 3.12 (Shannon Information Content) The amount of information
in the event X = x for some random variable X with probability distribution
PX is

IS(x) = log
1

PX(x)
= − logPX(x)

Definition 3.13 (Conditional Shannon Information Content) The amount of
information in the event X = x given that Y = y, for random variables X,Y
with probability distributions PX , PY is

IS(x|y) = log
1

PX|Y (x|y)
= − logPX|Y (x|y)

This immediately allows us to precisely quantify the amount of Shannon infor-
mation gained from a Bayesian update as − logP (M) + logP (M |D).

However, we know from Levin (1974) that Solomonoff’s universal probability
is related to Kolmogorov complexity by the equation − logm(x) = K(x) +
O(1). Thus replacing the information-theoretic description of Bayes’ Law for
an unspecificed probability measure, with Solomonoff’s universal probability
yields the following equation for the algorithmic probability version of Bayes’
Law:

− logm(x) + logm(x|y) = K(x)−K(x|y) +O(1).

Intriguingly this is exactly the definition of mutual algorithmic information.

Definition 3.14 (Kolmogorov’s Mutual Algorithmic Information) The infor-
mation in y about x is defined as

I(y : x) = K(x)−K(x|y∗)

where y∗ denotes the first (in a standard enumeration order) shortest prefix pro-
gramme that generates y and then halts [37][40].

Thus, we have arrived at the result that Bayes’ Law is actually a very foun-
dational notion indeed; it is equivalent to Kolmogorov’s algorithmic mutual
information (see [40] for further discussion). Moreover, this connection relates
both Kolmogorov complexity (algorithmic entropy) and thereby compression to
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what is essentially an axiomatic foundation of inductive inference, ergo also to
learning. Indeed, since Bayes’ Law gives a kind of algorithm for updating one’s
beliefs, it ends up relating algorithmic notions of learning with algorithmic data
compression (entropy).

This ultimately relates back to Empiricism in the following sense: if we cannot
ever find a logically valid reason to infer a conclusion inductively, we can still
find an algorithm with a sensible heuristic for making inductive inferences. In
fact, we have already mentioned one such heuristic, namely: Occam’s Razor.
As we have already pointed out the connection of Kolmogorov complexity and
this heuristic, the next natural question is how well can we formulate the exact
notion of Occam’s Razor in this information-theoretic context? The answer is,
using the Minimum Descriptive Length (MDL) principle, we can formulate Oc-
cam’s Razor rather precisely.

Definition 3.15 (The Minimum Descriptive Length Principle) The best the-
ory to explain the data is the one which minimises the sum of the length in bits
of the description of the theory, and the length in bits of the data when encoded
according to the theory [22].

Clearly, therefore, the MDL principle is related to Occam’s Razor, which puts
forward the idea that the simplest explanation, among equivalent descriptions
is preferable to the more complicated explanations. For Occam, this meant
that theories which posit fewer assumptions are ‘better’; that is to say, that
the theory ought to be parsimonious. MDL, by contrast, chooses the simplest
description among various explanations of the data. However, the justification
that the simpler the description, the more likely it is to be responsible for
the data we see, is backed up by Kolmogorov Complexity and the notion of
algorithmic probability.

Indeed, the MDL principle is equivalent to the Maximum A Posteriori Hypoth-
esis (MAP), which is itself an argmax function over models, with Bayes’ Law
as input. Thus, Occam’s Razor, Bayes’ Law, algorithmic proability and Kol-
mogorov complexity all come neatly together in the notion of MDL as two-part
code optimisation. Ultimately, we have improved upon the position from which
we started this section; Shannon code offers a one-part code optimisation, with
MDL we can select not just the shortest descriptions but also take into account
the data encoded with the help of the theory.

We now provide the derivation of the equivalence between MAP and MDL
[22][41].

Let M ∈M be a model in a class of models, and let D be a data set. The prior
probability of a model or hypothesis is P (M). This is the likelihood we ascribe
to the model before any observations have been made. P (D) is the probability of
the data, defined with respect to all models which are consistent with the data.
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The posterior probability is P (M |D), that is the probability we ascribe to the
model given the data we have observed. The maximum a posteriori probability
is the argmax function of this probability.

MMAP ≡ argmaxM∈MP (M |D) (1)

= argmaxM∈M

(
P (D|M) · P (M)

P (D)

)
(2)

≡ argmaxM∈M
(
P (D|M) · P (M)

)
(3)

≡ argmaxM∈M log

(
P (D|M) · P (M)

)
(4)

≡ argmaxM∈M
(

logP (D|M) + logP (M)

)
(5)

≡ argminM∈M
(
− logP (M)− logP (D|M)

)
(6)

(2) Follows by Bayes’ Law. Since D is constant over M ∈ M we get (3). How-
ever, since log is always increasing, we can take the logarithm of argmax without
loss of generality (4). Finally by the laws of logarithms, and argmax/argmin we
get (5) and (6). In terms of Shannon code, the derived MAP says that the min-
imal (optimal) amount of bits required to encode the model is − logP (M), and
the optimal length in bits to encode the model given the data is − logP (D|M).
We call the former, the model code, and the latter the data-to-model code. The
MAP we have derived to be the minimum M ∈ M of the summed lengths of
the model and data-to-model code. But this is exactly the definition of MDL.
Hence MMDL ≡MMAP .

Of course, the argmax equation is reliant on the class of models, which we have
yet to specify. If we were to specify M as consisting of an enumeration of all
self-delimiting programmes for a preselected arbitrary universal Turing machine
U , then we would be dealing with one of the most general classes. Under this
interpretation of M, the length of the optimal two-part code is given by the
Kolmogorov complexity [22]. We get via Levin’s coding theorem:

MMDL = argminM∈M

(
− logP (M)− logP (D|M)

)
= argminM∈M

(
K(M) +K(D|M)

)
In our context, however, we seek to deal with finite automata. Hence M ∈ M
will specify an automaton in the class of all deterministic finite automata. From
now on, we will interpretM in this sense. Seeing as, in this context, programmes
are in general not self-delimiting, it will not be appropriate to concatenate
programmes at will. Thus in our case the Shannon code length seems the
most appropriate measure of MDL. We merely state the relation to Kolmogorov
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complexity for the reader to appreciate the sense in which the work on finite
automata identification that is to come, should yet be understood in terms of
data compression, algorithmic probability and inductive inference.

Keeping in mind what we have seen about compression, optimal code length,
heuristics such as Occam’s Razor and MDL, the notion of algorithmic learning
in the form of Bayes’ Law and Kolmogorov mutual algorithmic information, we
now apply this background of theoretical knowledge to the particular context of
finite automata induction, in particular grammar induction for finite automata.
The goal in the rest of the thesis will be to probe the following questions:

1. Is there a precise relationship between entropy and optimal model selection
(in the context of DFA induction)? See section 3.3.

2. Is it possible, in the context of finite automata to find multiple optimal
models for the same data set—possibly giving the data a gestalt quality?
See section 4.

3. Can bisimulations and other behavioural equivalences aid us in selecting
optimal models, and what is the relation of (bi)simulation to entropy and
optimal model selection? See sections 6.1.1, 6.2.2 and appendix.

We start with the first of these.

3.3 Learning DFA Using Entropy.

3.3.1 MDL for Grammar Induction.

We have made a point to show how the optimal length of codes are related
to learning heuristics; the marriage of which yields the principle of minimum
description length. We also mentioned in the preliminaries that state-merging
algorithms need some form of guiding principle in order to get around issues
of computational complexity for average-case DFA learning. MDL as a guiding
principle has had varying success in the field of DFA induction. However, in
probing the relationship between entropy and optimal model selection, it is the
natural place to start.

The general idea is to measure the descriptive complexity of some automaton
(the size of the state-space, number of transitions, size of the alphabet) along
with the descriptive complexity of encoding a set of sample words using the
automaton as a model. It will not always be the case that the smallest automa-
ton is recognized as the most promising, since the complexity of the process of
parsing strings in the sample is also quantified.
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Following [42], let A = (Q,Σ, δ, q0, F ) be a DFA all of whose non-final states
have outgoing edges. The number of bits required to encode the path traversed
in order to parse a word w can be assessed by the function ch given below. We
associate with each state q ∈ Q the value tq =

∑
a∈Σ |δ(q, a)| if q 6∈ F . Whereas,

if q ∈ F then tq = 1 +
∑
a∈Σ |δ(q, a)|, since one more choice is available, namely

the choice to accept. We are now in a position to define ch(q, w). For the
empty word we have ch(q, ε) = log(tq) if q ∈ F ; otherwise ch(q, ε) = ∞. For
w = au(a ∈ Σ, u ∈ Σ∗), the function depends on the recursive definition:
ch(q, w) = log(tq) +minr∈δ(q,a)ch(r, u) and c(q, w) =∞ if δ(q, a) = ∅. Given a
sample D+ and a DFA A, we can now measure the MDL score sc of A:

sc(A,D+) = |Q|+ ||δ||(2 log |Q|+ log |Σ|) +
∑
w∈D+

ch(q0, w)

where ||δ|| is the number of transitions of A. Note, see Wieczorek (2016) for
details on this choice of MDL two-part code optimisation for DFA induction.

Recall that in our example from the introduction D+ = {aaa, ab}. Note that for
the PTA we constructed, tq0 = tq2 = tq3 = tq4 = 1, whereas tq1 = 2. Then the
MDL score for the PTA is sc(PTA,D+) = 5+4(2 log 5+log 2)+2 log 2 = 29.58.
For the first compression sc(L1(DFA), D+) = 4+4(2 log 4+log 2)+2 log 2 = 26.
For the NFA we have sc(L2(NFA), D+) = 3 + 4(2 log 3 + log 2) + 3 log 3 ≈ 24.4.
Whereas for the B automaton, consistent with the data set of both positive and
negative data, we have sc(B,D) = 3+4(2 log 3+log 2)+4 log 2+2 log 3 ≈ 26.85.
Thus from the MDL perspective we ought to prefer the NFA, even if this au-
tomaton is not consistent with the negative data examples.

Since the MDL principle works like a form of Occam’s Razor, we should prefer
the parsimonious theory; the one which takes the fewest bits to describe. But
this may not be an entirely satisfying answer. If we are certain that the sample
data are fair, then it may be possible to rule out some of these models as possible
generators of the data. But if we do not have this assurance, we are left with
possible (likely) guesses only. The patterns we think we recognise might be
simply noise. In the cases where we are not sure of the fairness of the data,
polysemanticism seems to pose a big problem. We will deal with the particular
issue of polysemanticism in section 4. First we need to be clear about the kind
of data that might constitute a fair sample.

3.3.2 Fair Samples from Simple Random Walks on DFA.

Throughout this thesis we have not yet made an assumption about how the data
examples were sampled. However, this question has a bearing on the nature of
the learning problem. We want to limit abductive “guess-work” to the best of
our abilities, in order to lessen the chance that human bias creeps into model
selection. One way of going about this would be to assume the principle of
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maximum entropy. The principle essentially states that the probability distri-
bution which best represents the current state of knowledge is the one with the
largest entropy [43]. In this sense we are maximally uncertain about the data.
And because of this, the principle assumes the least number of assumptions.
Moreover, it can be seen as another application of Occam’s Razor.

In the context of our DFA induction problem, the principle of maximum entropy
applies to the sampling process which grants us the positive and negative data
examples. To achieve maximum entropy, one may assume that the data were
generated by a random walk (stochastic process) on the DFA. The random walk
would start at the initial state of the unseen DFA and begin to move around the
digraph. To ensure maximum uncertainty about the language defined by this
unknown DFA, let the process evolve to the next state by selecting uniformly
at random from the possible transitions.

To define a simple random walk on a DFA, we need to pay attention to the
underlying digraph of the DFA. For M = (Q,Σ, δ, q0, F ) we can define a directed
graph G = (V,E) where Q = V and 〈qi, qj〉 ∈ E ⇐⇒ qj ∈ δ(qi, a) for some
a ∈ Σ. From this we can study properties of the underlying graph. For instance,
we may wish to consider whether the graph is reducible or periodic. We can
now state the random walk formally:

Definition 3.16 (Simple random walk) A discrete-time simple random walk
on a graph is a sequence of random variables Xi = X1, X2, . . . with i ∈ N. If
the walk is of length k on a finite graph G with a root q0, the random walk is a
stochastic process with random variables X1, X2, . . . , Xk such that X1 = q0 and
Xi+1 is a vertex chosen uniformly at random from the neighbors of Xi.

We can use this definition of a simple random walk to think about how the
sample data might be generated under the principle of maximum entropy. We
want to ensure the sample is truly indicative of the target model.

Definition 3.17 (Basic fair sample) A basic fair sample of a language generated
by an unknown DFA M is the set of words for which each possible sub path in
the DFA has been visited at least once by the m random walks on the underlying
digraph of M .

It is clear from this definition that even for finite languages it could take a
number of runs exponential in the number of states to generate such a sample.
To see this consider the following linear automaton, M :

f

q0

f

q1

f

q2

f

q3

. . .

qi

f

qk

1 2 3 4 k

Note that |Σ| = k and |L(M)| = k+ 1 since every state is accepting. A random
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walk on the underlying digraph of M has two options: halt or transition to the
next state. Thus, taking a basic fair sample of this automaton under maximum
entropy could require 2k random walks, since the probability that a word of
length n is visited is 2−n [44]. Despite this fact, it seems that given a basic
fair sample of this automaton, it would be in principle possible to recover the
structure. However, recalling what was mentioned in the introduction: it is NP-
hard to approximate a target DFA of size OPT by a DFA of size within OPTk for
any constant factor k unless P=NP [5]. Thus even with a basic fair sample there
may be automata that are unlearnable under maxium entropy assumptions. For
further discussion of these insights (for context-free languages) see [45].

3.3.3 Maximal Entropy Random Walks and Intrinsic Markov Shifts.

In the previous subsection we dealt with simple random walks which evolve with
uniform probabilities over choices. However, we will now demonstrate that this,
in general, does not maximise the entropy rate of a stochastic process. For that
we require a uniform distribution over path lengths of the same length. In this
sense one captures the intrinsic characteristics of the underlying process, and
thereby its absolute entropy. We investigate this topological notion of entropy
as a way to demonstrate that a simple random walk strategy is not the best
way to generate a fair sample. Intuitively, in order to generate fair samples,
transitions to more topologically complex parts of the automaton should have
higher probabilities. But this will not, in general, maximise the entropy of
random walk, viz. random walks cannot generate fair samples without breaking
the principle of maximum entropy.

For example, take the following stationary stochastic process, representable as
a two-state Markov chain with transition matrix:

A =

[
1− p p

1 0

]

This matrix yields the following two-state graph:

0 1p

1
1− p

We can describe a discrete stochastic process V1, V2 . . . , as a path moving
through the graph, where Vi describes the state of the process at a given time
step. Thus, a typical sequence may look like the binary string 0010101, where
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the digits refer to the sequence of states visited by the process. We can talk
about the probability of reaching the next state, given the current state by
analysing the probability matrix. For example, PVn+1|Vn(0|1) is the probability
that the next state in the sequence will be 0, given that Vn = 1. In this case,
we can see by the matrix and by the graph, that PVn+1|Vn(0|1) = 1.

Clearly we have

PVn+1|Vn(i|j) = PV2|V1
(i|j) ∀i, j ∈ {0, 1}

Hence we can conclude that the stochastic process is a time-invariant Markov
process. If this Markov process were evolving under a maximum entropy dis-
tribution over choices, the transition probability p would be 0.5. However, this
is in fact not the probability which maximises the entropy rate of this process.
We give without proof the following:

Proof 3.18 The process defined by the transition matrix A has entropy rate

equal to log2 ϕ where ϕ = 1+
√

5
2 is the golden ratio . See [46].

To see why this is so, we have to analyse the topological properties of the Markov
chain given by A, divorced from probabilities. In other words, we must consider
each sequence of the same length to be equally likely. In this sense we capture
the intrinsic (topological) entropy of the system.

Definition 3.19 (Language) The collection L(X) = {w ∈ X | `(w) 6= ∞}
where `(w) is the length of the string w, is called the language of X.

Definition 3.20 (Word Complexity) The function p : N→ N defined by

p(n) = #{w ∈ L(X) | `(w) = n}

where `(w) is the length of the string w, is called the word-complexity of X.

Definition 3.21 (Topological Entropy) The topological entropy of a subshift
is

htop(X,σ) = lim sup
n→∞

1

n
log p(n)

The previous three definitions are found in [47].

Let X be the set of allowable sequences of the Markov process defined by tran-
sition matrix A. Intuitively, the process produces all possible sequences of 0’s
and 1’s that do not contain consecutive 1’s for different sequence lengths n. The
infinite set X, which contains all these possible sequences is a subshift of finite
type, known as the golden mean shift. As we can see from the table below, to
produce sequences of length n, one can construct p(n− 1) sequences by adding
0 in front of every (n − 1)-long sequence because 0 can precede 0 or 1. An-
other p(n − 2) sequences of length n are produced by putting 1 in front of all
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n possible sequences p(n)
1 0, 1 2
2 00, 01, 10 3
3 000,001,010,100,101 5
4 0000,0001,0010,0100,0101,1000,1001,1010 8
. . . . . . . . .

(n− 1)-long sequences that start with 0, since 1 can only occur before 0’s, and
we have by definition p(n− 2) sequences of length (n− 1) that start with an 0.
Therefore, the linear recurrence that we were looking for is

p(n) = p(n− 1) + p(n− 2)

This recurrence relation defines the Fibonacci numbers. To calculate the topo-
logical entropy of the subshift we make use of its closed form expression.

htop(X,σ) = lim sup
n→∞

1

n
log p(n)

= lim sup
n→∞

1

n
log

(
ϕn − (1− ϕ)n√

5

)
= lim sup

n→∞

1

n

(
log(ϕn − (1− ϕ)n)− log

√
5
)

= lim sup
n→∞

1

n

(
log(ϕn − (1− ϕ)n)− lim sup

n→∞

1

n
log
√

5︸ ︷︷ ︸
=0

= lim sup
n→∞

1

n

(
log

(
ϕn
(

1− (1− ϕ)n

ϕn

)))
= lim sup

n→∞

1

n

(
logϕn + log

(
(1− (1− ϕ)n

ϕn

))
= lim sup

n→∞

1

n
(logϕn) + lim sup

n→∞

1

n

(
log

(
(1− (1− ϕ)n

ϕn

))
︸ ︷︷ ︸

=0

= lim sup
n→∞

(logϕ)

= logϕ

= log

(
1 +
√

5

2

)
= 0.6942

As we can see, the absolute topological entropy is equal to the maximum entropy
rate for the stationary stochastic process defined by A. This is because maximal
entropy random walks are essentially identical to topological shifts, in that equal
probability is given to sequences of the same length. The uniform distribution
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over choices, which would yield a probability p = 0.5 would lower the chance of
choosing a ‘0’ after a ‘0’ thereby increasing the chance of reading a ‘1’ for which
there is no information gain. Hence, using simple random walks to sample this
process will not be a good strategy for recovering the language.

Thus a significantly different picture emerges when we consider the global uni-
form distributions over paths of the same length, as opposed to the local notion
of maximum entropy over choices. For the problematic linear automaton from
the previous section, there is only one path of length n, for each n ≤ k. Thus
p(n) is a constant and does not grow. In trying to compute the (absolute) topo-
logical entropy for this automaton we get lim supn→∞

1
n (log 1) = 0. In other

words, there is no topological entropy (or complexity) in this system. Having
zero topological entropy would make sense from a dynamical systems perspec-
tive since we are always certain where every walker will end up: there is only
ever one transition to the next state, so the walker will end up deadlocked in the
final state on all trials. However, on the contrary, this analysis shows that a fair
sample generated from a number of random walks on the linear automaton is
not going to tell us anything about its topological structure, unless the sample
is a complete picture of the finite language itself. In other words, we need to be
given every accepting string in order to learn the language as there is no way
to tell on the basis of (e.g.) w ∈ L and wav ∈ L (for finite words w, v), that
wa ∈ L.

Ultimately it seems that a fair sample, though seemingly required in order to
be assured that learning will take place, occasionally may require the sample to
be identical to the language one seeks to learn. That is to say, that sometimes
in order to contain the necessary structural information of the automaton, an
extremely large sample (possibly containing the entire language) is needed. It
would appear that attention to the distribution of the data examples in this way
has not lessened the difficulty of the problem significantly. However, idealised
situations may be amenable to learning with data sampled under maximum en-
tropy assumptions. Some interesting avenues for future research were developed
during the writing of this thesis, for those see §6.2.

In the next section we consider the problem of polysemanticism in optimal model
selection for DFA induction. We first examine the situation of polysemanticism
occurring without fair data and go on to explore the possibility of fair data
aiding the solution of the problem.
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4 Learning Without Fair Data.

We now turn to question (2), posed at the end of section 3.2, namely: whether
in the context of finite automata, it is possible to find multiple optimal models
for the same data set. This question turns out to be inherently related to the
amount of entropy in the model and in the data. Indeed, this phenomenon
occurs when one tries to decide between models based on some principle of
parsimony. We here utilise the minimal description length principle, introduced
in section 3.3.1.

4.1 Polysemanticism.

It was mentioned in the introduction that, for the class of partial and total
recursive functions, there can be data sets for which there are multiple optimal
models [Adriaans (2020)]. That is, data sets which under the MDL perspective
of two-part code optimisation give rise to two or more distinct optimal hypothe-
ses for the data. The concept is essentially the computational version of the
“gestalt effect”. Adriaans calls the phenomenon polysemy; data which exhibit
polysemy are called polysemantic. Since the class of partial and total recursive
functions are type 0 languages in the Chomsky hierarchy, it would be interest-
ing to see if the same or similar result would hold for the regular languages.
Since regular languages are far simpler, they can in some way be seen as more
fundamental. Indeed, regular languages have only a constant amount of mem-
ory. Thus, if one were to discover polysemantic data sets for regular languages,
it would imply a further barrier against learning in some of the simplest con-
texts. That is to say, even in rudimentary forms of computations, the correct
interpretation of data can possibly be indeterminable.

Such data sets will be compressible in mutually exclusive ways, much like the
famous duck-rabbit image of Wittgenstein. This is in some sense related to
paraconsistency: seeing the image as a duck implies that it cannot be seen as
a rabbit and vice versa, yet the image is somehow both a duck and rabbit at
the same time. These competing interpretations cannot be reconciled since to
be duck means to be not rabbit and to be rabbit means to be not duck. For
polysemantic sets, there would be no way to tell from the data which model
is the ‘true’ one. The amount of mutual information shared by the competing
optimal models is minimal or zero: to assert rabbit is to reject duck.

Definition 4.1 (Polysemantic data set) A data set D is polysemantic if there
exist multiple optimal codifications Mi ∈ M for D such that the mutual infor-
mation between any two Mi is small, or zero, i.e. I(M1 : M2) is near to or
equal to D.

With this definition, we try to capture the sense that D is polysemantic ex-
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actly because in compressing D to form Mi we become unable to compress it to
form Mj . The requirement that the mutual information between two models is
minimised captures the sense of polysemanticism exemplified by Wittgenstein’s
duck-rabbit. Indeed, if there was significant mutual information between inter-
pretations ‘duck’ and ‘rabbit’, it would seem to imply a way to fully compress
the duck-rabbit into a single coherent image; it would cease to be gestalt. It is
precisely the switching roles of uncompressed ad-hoc data (possible noise), and
interpreted structural data—which are complements of one another—that gives
rise to polysemanticism.

We give the following example as a motivation for the kind of data set we
are talking about, take D+ = {ab, ac}. We will show how mutually exclusive
compression can lead to disjoint languages.

q0

q1

fq2 fq3

q0q1

fq2 fq3

fq0q3

q1

fq2

a

b c

a

b c
a

b

c

The left hand automaton accepts the language L1 = (ac)∗+(ab). The right hand
automaton accepts the language L2 = (a∗b)+(a∗c). Clearly these languages are
not fully disjoint as they each must contain at least the data D+ by lemma 2.12.
However, since the state space has been partitioned in an entirely irreconcilable
way, we have (L1 ∩ L2) \D+ = ∅.

We can assess the MDL scores for these models with respect to the data. Both
have the same number of states, final states, transitions and alphabet. Thus
the model code is of the same descriptive complexity. However, the data-to-
model code is slightly different: 5 log 2 bits versus 4 log 3 bits, for the left hand
and right hand automata, respectively: a difference of roughly 1.34 bits. This
is almost too close to call using the MDL perspective. However, this example
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does not yet show that there are two competing optimal models for the data
set, since the universal automaton is still a stronger contender. In the following
we will construct a data set which clearly does have polysemantic properties,
and prove the following theorem.

Theorem 4.2 Regular languages are polysemantic under MDL.

In principle, just one counterexample is sufficient to disprove the claim that
regular languages are not polysemantic under MDL. This would then imply,
under the assumption that languages are regular, that there are cases where
regular languages are also polysemantic.

Thus we first prove the following lemma:

Lemma 4.3 There exist data samples from regular languages which give rise to
multiple optimal models under MDL.

Proof. Suppose we have a data set made up from positive and negative examples
(in order to control for overgeneralisation). Let D0

+ = {ab+, ef+, ij+, op+, uv+}
and D0

− = {b−, f−, j−, p−, v−}. With D0 = D0
+ ∪D0

−. The PTA can be formed
as usual:

q0

q3

q1q5

q2q4

fq8

f

q6

f

q7

f

q9

f

q10

i

au

eo

j

bv

fp

The data seem to have the pattern “vowel followed by consonant”, and the rule
“never consonant without a vowel prefix.” There are two natural choices for
regular languages which might describe this: L1 = (V owel) ◦ (Consonant)∗, or,
L2 = [(V owel) ◦ (Consonant)]∗. DFA models for these languages can be found
by merging states of the PTA.

The merge of qi ∈ B(qf , π) ∀i : 0 < i ≤ 10, and q0 ∈ B(q0, π) yields the
DFA representing L1. This merge is depicted below top. The merge of q0, qn ∈
B(q′f , π

′) ∀n : 5 < n ≤ 10, and qn ∈ B(q′, π′)∀n : 0 < n ≤ 5 yields the DFA
representing L2. This merge is depicted below bottom.
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q0

q3

q1q5

q2q4

fq8

f

qfq0

f

q6

f

q7

f

q9

f

q10

i

Consonants

vowels

au

eo

j

bv

fp

q0

q3

q1q5

q2q4

fq8

q′f

q′f

f

q6

f

q7

f

q9

f

q10

i

Consonants

vowels

au

eo

j

bv

fp
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We now have two, 2-state DFA which are consistent with D0.

f

q′f
q′

f

qf
q0

Consonants

vowels

Consonants

vowels

A2 on the left, and A1 on the right. Note that L(A1) ∩ L(A2) = D0, there
are no other words in the intersection. Indeed, in A1 a consonant can follow
a consonant which is not possible in A2, whereas in A2 a vowel can follow a
consonant, which is not possible in A1. We now show that A1 and A2 are
equally parsimonious optimal descriptions of D0 despite being disjoint.

Recall the MDL score sc of A:

sc(A,D+) = |Q|+ ||δ||(2 log |Q|+ log |Σ|) +
∑
w∈D+

ch(q0, w)

where ||δ|| is the number of transitions of A.

We associate with each state q ∈ Q the value tq =
∑
a∈Σ |δ(q, a)| if q 6∈ F .

Whereas, if q ∈ F then tq = 1 +
∑
a∈Σ |δ(q, a)|, since the choice to accept is

available. We use the recursive definition of ch(q, w) to describe the data-to-
model code. For the empty word we have ch(q, ε) = log(tq) if q ∈ F ; otherwise
ch(q, ε) =∞. For w = au(a ∈ Σ, u ∈ Σ∗), the function depends on the recursive
definition: ch(q, w) = log(tq)+minr∈δ(q,a)ch(r, u) and c(q, w) =∞ if δ(q, a) = ∅.

We have tq′f = tqf = 6 and tq0 = tq′ = 5. However, since q′f and qf are the

final states of L2 and L1 respectively, and likewise q′ and q0 are the non-final
states, it is clear that the cost of encoding D+ on either A1 or A2 will be
the same, as encoding D+ according to either model nullifies what might be
saved by encoding in the other model. Since the number of states, transitions
and alphabet are also identical for A1 and A2, we can be sure sc(A1, D+) =
sc(A2, D+). This is, incidentally, 93 bits rounded to the nearest whole bit.

Furthermore, we can be sure that there can be no smaller model, since the
universal automaton is inconsistent with D0

−. There is of course a 3-state au-
tomaton generating a finite language equivalent to the PTA which has slightly
lower descriptive complexity (91 bits). This is formed by essentially ‘collapsing’
the fan shaped PTA into a chain of three states. However, this language can
be ruled out as it offers no possibility for generalisation. Any other merge will
result in an inconsistent automaton. Thus D0 is polysemantic under MDL.

�
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Corollary 4.4 Regular languages are polysemantic under MDL.

Proof. We have shown, assuming the sampled language is regular, there can be
data sets which give rise to multiple, distinct optimal models and these models
share little to no mutual information. D0 is one such data set. The existence of
this data set falsifies the negation of theorem 4.2. From this we conclude that
regular languages are polysemantic under MDL.

�

We now seek to generalise the above result by showing that there are, in fact,
infinitely many regular languages which are polysemantic under MDL. To do so,
we presently go on to define a subclass of regular languages that generalises the
essential features of the counterexample. This new class of regular languages
captures the structural properties of the kind of regular language we have shown
to be polysemantic under MDL. However, there may yet be other examples of
polysemantic regular languages outside of this subclass.

We start with several important definitions:

Definition 4.5 (Concatenation) For regular languages A and B and strings a
and b, define the concatenation of A and B as A ◦B = {ab | a ∈ A and b ∈ B}.

Definition 4.6 (Alteration) For regular languages A and B and strings c, we
define the alteration of A and B as A ∪B = {c | c ∈ A or c ∈ B}.

Definition 4.7 (Kleene star) For a regular language A, and strings ai ∈ A, we
define the Kleene star of A to be A∗ = {a1a2 . . . ak | k ≥ 0 and each ai ∈ A}

The above three definitions essentially define the closure properties of regular
languages; viz. combining regular languages with Kleene star, concatenation
and alteration yield new regular languages. We say, regular languages are closed
under the aforementioned operations.

Definition 4.8 (Regular expressions) Regular languages are described by regular
expressions, which are constructed from the letters of the alphabet, the empty set,
and Boolean operators: (concatenation, alteration and Kleene star).

We have implicitly been using regular expressions throughout the thesis. We
state the definition here for use in the proof that is to come. Regular expres-
sions are usually said to generate regular languages, whereas deterministic finite
automata are said to accept regular languages.

One can also talk about sub-classes of regular languages. For instance, languages
generated by regular expressions which have been built up from operations that
are more restrictive than those used for regular languages. For example:
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Definition 4.9 (Alteration-free regular languages) We call the sub-class of reg-
ular languages which are described by regular expressions constructed from the
letters of alphabet, the empty set and Boolean operators including concatenation
and Kleene star, but excluding alteration, the alteration-free regular languages.

We can define the alteration-free regular languages recursively, as follows:

1. ε is an alteration-free regular expression which indicates the language of
the empty string.

2. E is an alteration-free regular expression denoting the empty language
L(E) = {}.

3. a is an alteration-free regular expression denoting the language L = {a}.

4. If A is an alteration-free regular expression denoting the language L(A)
and B is an alteration-free regular expression denoting the language L(B),
then:

(a) A ◦ B is an alteration-free regular expression corresponding to the
language L(A) ◦ L(B) where L(A ◦B) = L(A) ◦ L(B).

(b) A∗ is an alteration-free regular expression corresponding to the lan-
guage L(A∗) where L(A∗) = (L(A))∗.

Note: technically, the Kleene closure L∗ on L is defined as
⋃∞
i=0 L

i, which clearly
involves some notion of set union in the definition. However, since our recur-
sive definition of alteration-free regular languages disallows the construction of
regular expressions of the form (a ∪ b), the Kleene closure of an alteration-free
regular set simply becomes shorthand for the (potentially infinite) concatena-
tion of some string with itself. That is, since every finite alteration-free regular
language is simply a language consisting of a single finite string.

Definition 4.10 (Star-height) The star height of a regular expression A over a
finite alphabet Σ is inductively defined as follows:

h(∅) = h(ε) = h(a) = 0

h(A ◦B) = h(A ∪B) = max

(
h(A), h(B)

)
h(A∗) = h(A) + 1

The star-height h(A) of a regular language A is defined as the minimum star-
height among all regular expressions representing A. See [48]

Fergus Smiles Page 45 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

Definition 4.11 (Star-free regular languages) We call the sub-class of regular
languages which are described by regular expressions constructed from the let-
ters of alphabet, the empty set and Boolean operators including concatenation,
complementation and alteration, but excluding Kleene star, the star-free regular
languages [49].

If complementation is defined so as not to increase star-height (h(Ac) = h(A)),
then it is clear to see that star-free languages are those with a generalised star-
height of 0.

Definition 4.12 (Confusable regular languages) We call the following sub-class
of regular languages confusable:

{{L | L is regular} \ {L | L is star-free}} ∩ {L | L is alteration-free}

This is the set of languages which are infinite in size, and which are described
by regular expressions constructed from the letters of the alphabet, the empty
set, and Boolean operators: concatenation and Kleene star. Such languages also
have a star-height of at least 1.

The syntax of confusable regular expressions therefore has a reduced alphabet
S = {a, b, . . . , ◦, (, ),∗ }, and a more restrictive set of grammatical rules. The
grammar is the same as ordinary regular languages, with the added rule that
well formed confusable regular expressions have at least one sub-string where
Kleene star has been applied. Note that ab = a ◦ b and a∗ = (a)∗ are shorthand
expressions.

Examples of such languages can be given with regular expresions such as:

L = (abc)∗ of star-height 1

L = a∗bca(da)∗ of star-height 1

L = (de(fe)∗)∗ of star-height 2

Lemma 4.13. For every confusable language L defined by a regular expression
with # alphabet symbols |Σ| ≥ 2, there exists a finite word of the form w =
a1a2 . . . an with ai ∈ Σ and a data set D = {w}, which will be polysemantic
under MDL.

Proof. Consider the regular expression for some confusable language, L1 using
an alphabet of size |Σ| ≥ 2. This will be a string R of symbols, R = s1s2 . . . sm,
with si ∈ S where S is the set of syntax symbols used in the regular expression.
By definition there exists at least one sub-string of R of the form (sj . . . sk)∗

corresponding to a Kleene star operation of star-height 1, on some part of the
regular expression.

Suppose we parse R and print the symbol si whenever si is a symbol from the
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alphabet a ∈ Σ. This generates a finite string of concatenated alphabet symbols
a1a2 . . . an. Call this string w. It is clear to see that w ∈ L1. For any string
v, (v)1 = v. Thus, parsing the string and printing every alphabet symbol will
in effect generate a concatenation of symbols capturing the 1st iteration of each
and every Kleene star operation in R.

Now take the sub-string of R, the symbols sj . . . sk are by definition a regular
expression for some concatenated alphabet symbols, which correspond to a sub-
string in w. There are two cases:

1. ¬∀s : sj = sj+2 = · · · = sk i.e. there is at least one alphabet symbol inside
the brackets which is not identical to the others.

2. sj = sj+2 = · · · = sk i.e. there is only one kind of alphabet symbol inside
the brackets.

For the first case: we can move the position of the brackets: let sj−1 exchange
positions with sj . Or, alternatively, let sk jump over sk+1 and sk+2, so that the
order is now sk+1sk+2sk.

In each of these operations, we have by definition new regular expressions R′, R′′

for distinct confusable regular languages, as the substring repeated by the Kleene
star operation has been changed. For example, a string of the form . . . (ab)∗ . . .
might become . . . ab∗ . . . or . . . a∗b . . . under these operations.

For the second case, since the regular expression uses an alphabet of at least two
symbols, we can be sure there is at least one different alphabet symbol in R. This
time we can expand rather than shrink the scope of the bracketed expression.
Expanding the scope maximally such that sj−1 is now the initial symbol, and
sk+1, sk+2 is the final segment, will yield a regular expression for a new language
R′′′ by ensuring that at least one other alphabet symbol is now under the scope
of the Kleene star operation. Note that doing this may increase the star-height
of the regular expression. For example . . . (aa)∗ . . . would become (. . . aa . . . )∗.

However, if we parse R′, R′′ or R′′′ under the same algorithm as before: print the
symbol si whenever si is a symbol from the alphabet a ∈ Σ, then we recover w.
Thus w ∈ L2 = R′, w ∈ L3 = R′′, w ∈ L4 = R′′′ but clearly R 6= R′ 6= R′′ 6= R′′′

since regular expressions can be unambiguously parsed from the left (or right).

This implies that the data set D = {w} is polysemantic under MDL, since
the models R,R′, R′′, R′′′ differ only at some repeatable sub-string in w. Thus
D = {w} will be polysemantic under MDL as there is no information in w about
which part of the string is repeated by the Kleene star operation. This means it
will take approximately the same amount of information to encode D according
to multiple confusable languages.

If, for example, the star-height of the target language is guessed to be h(M) = 1,
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for some target automaton M = (Q,Σ, q0, δ, F ): then if |w| = n, there will
be confusable languages Li, with i ∈ I for some index set, and corresponding
automata over the same alphabet with |Qi| = n−1, ||δi|| = n, and data-to-model
code which varies by log 2 i.e. the cost of encoding the final state whenever it
is not deadlocked. Such automata are assumed to contain only a single loop.

In other words, there would exist (at least two) models Ai, Aj and a data set
D = {w} such that D ⊆ L1(Ai) and D ⊆ L2(Aj) and sc(Ai, D) ≈ sc(Aj , D).

�

Assuming star-height h(A) > 1 makes the effect even more extreme: the data
set {w} would provide proportionally less information about nested repeating
patterns from languages of increasing star-height. For instance, consider the
language L = (a(a(ab)∗b)∗b)∗ and the data set D = {aaabbb}. The generalisa-
tion of the data set to, for example, L′ = a∗b∗ would seem far more appropriate
in terms of MDL, since it is a much simpler language. But L′′ = aaab∗ is an
even simpler language with a very close MDL score. Thus, even though the
true model might be excluded under MDL in this case, the data set {w} is still
a polysemantic sample of the confusable regular language L. If, however, the
star-height is known (in this case equal to 3), then using the algorithm given
above, we can form another language (for instance) L′′′ = (a(a(a)∗bb)∗b)∗ with
an identical MDL score when D is given as input for L or L′′′.

To sum up, we know that polysemantic data sets always exist under MDL for
confusable regular languages. That is, any confusable regular language can be
made polysemantic under MDL by at least one insufficient data set consisting
of a singleton data point.

Corollary 4.14 There are infinitely many regular languages that can be made
polysemantic under MDL.

Proof. This is clearly implied by lemma 4.13, so the proof is immediate.

�

Since confusable regular languages are all infinite regular languages without al-
teration, we actually improved upon the result of lemma 4.3, which provided a
counterexample to the claim that regular languages are not polysemantic un-
der MDL. We have now shown that an infinite number of regular languages
are polysemantic under MDL, since there are infinitely many confusable regular
languages. The basic idea is still simple: take a data set of positive examples of
an unknown DFA. One can do evidence-driven state merging on a constructed
PTA. By merging states loops are created on the learned DFA, but sometimes
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there are mutually exclusive choices the algorithm must take in order to gen-
eralises the sample. This creates disjoint hypotheses about the language of the
unknown DFA.

Suffice it to say, samples from regular languages can be entirely insufficient for
recovering the structure of the target automaton. This is especially the case
when the star-height of the target language is large, as this implies a level of
recursive complexity in the automaton that cannot be captured by insufficient
data. In section 5, we will contextualise the polysemanticism result for confus-
able languages in relation to patterns in nature and pareidolia. For now, the
question arises, does polysemanticism continue to pose a problem as the quality
of the data increases? In particular, can fair samples help us escape from this
problem?

4.1.1 Polysemantic Fair Samples.

Unfortunately, initial investigations point towards the ineffectiveness of fair sam-
ples for dealing with polysemanticism. We next construct a model of a poly-
semantic data set based on fair samples, and show how the problem reoccurs
[50].

Suppose we have the following data set: D0 = {abcd+, abcabcd+, abcdbcd+}.
The PTA can be constructed in the usual manner:

q0 q1 q2 q3
f

q5

q4 q6

q7

q8

q9

f

q10

f

q11

a b c d

a

b c d

b c d

There is a sequence of merges which can lead to the following models: first, a
model for the regular language L1 = {(abc)∗d+ abcdbcd}. The string ‘abcdbcd’
in this case we interpret as unwanted noise.

q0q3q8
q1q4 q2q6

f

q5q10
q7 q9

f

q11

a

d

b

c

b c d
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Secondly, the model for the regular language L2 = {a(bcd)∗ + abcabcd}, where
‘abcabcd’ is noise.

q0

f

q1q5q11
q2q7 q3q9 q4 q6 q8

f

q10

a b c

d

a b c d

It would seem that fair sampling of the target automaton should eventually
reveal which of these automata are most parsimonious under MDL. Indeed,
there is only one accepting word that is ‘noisy’ on both examples, whereas there
are an infinite amount of words corresponding to the rules (abc)∗d or a(bcd)∗.
Whilst, it is true that L(A1) is more parsimonious for these particular examples,
there are situations where the sample may come from a confusable automaton
such that no amount of sampling will remove the confusion.

Consider L3 = a((bca)∗bcd)∗, given by the following automaton:

q0

f

q1q5q10q11

q2q6q7 q3q8q9

q4

a b c

d

ab

It is possible to generate fair samples of this automaton that appear, from the
perspective of MDL, to be generated by L1: for instance, let (abc)nd ∈ D1 for
1 ≤ n ≤ 1000. The data are almost surely fair for L3 since the transition struc-
ture is captured, but the model of the language (abc)∗d is more parsimonious.
Depending on the distributions of examples from L3, we can generate fair data
samples that seem to be without noise, or data sets which appear to have a lot of
latent noise. The interpretation of these data sets can lead to polysemanticism
as in the case of L1 and L2 where in the former, words of the form a(bcd)∗ are
considered to be noise, while in the latter case words of the form (abc)∗d are
considered to be noise. Of course, we can always create longer branches in L1

or L2 to represent this noise.
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4.2 Read Only Right Moving Turing Machines, DFA, and
Regular Languages.

Why is it that regular languages exhibit polysemy? Exactly what kind of notion
of computation does one require in order for data to possibly appear polyseman-
tic? In the case of regular languages, we are dealing more or less with very simple
parsing algorithms, that seem to behave purely syntactically. They don’t seem
to exhibit semantic ambiguity until we consider the sampling process.

A regular language is essentially just a set of instructions to move through a
graph, we now show how this is identical to the description of a read-only Turing
machine that is only allowed to parse its input tape by moving its tape heads
around without printing, and can only move the input tape to the right.

Definition 4.6 (Read-only right-moving Turing machine ) A Read-only right-
moving Turing machine (RORMTM), M , is a 7-tuple (Q,Γ, b,Σ, δ, q0, F ) where:

1. Q is a finite set of states q ∈ Q

2. Γ is a finite alphabet of symbols a ∈ Γ

3. b is the blank symbol (the only symbol which may occur infinitely on the
work-tape)

4. Σ ⊆ Γ \ b

5. δ : Q×Γ 7→ Q×Γ×{R,S} is the transition or step function which moves
the head to the right after reading each symbol at a state or stays put.

6. q0 ∈ Q is the initial state

7. F ⊆ Q is the set of final or accepting states f ∈ F

Theorem 25 Read-only right moving Turing machines accept exactly the regu-
lar languages.

Sketch. Suppose M is a TM with a set of states Q, an alphabet Γ, and transition
function δ : Q × Γ → Q × Γ × {R,S} where S and R determine whether the
read-only head stays put or moves to the right. We next define a DFA A with
δA, a transition function defined as follows:

1. If M is in state q when it first moves rightward onto a symbol a ∈ Γ,
either M accepts or rejects without ever moving farther to the right. In
this case let A transition to an accepting or rejecting state and end the
computation.

2. If M falls into a loop and never moves further right, let A reject.
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3. Otherwise, let δA(q, a) define the state which M moves to if M moves to
the right. This is clearly determined by q and a.

�

Weaker variants of Turing machines, and their relationship to regular languages
are discussed in [51], where the crux of this proof sketch are also found.

This model is now equivalent to a DFA. Clearly this TM can never backtrack;
it is right-moving. Indeed, nor can it write on the tape; it is read-only. The
intuition is that such a Turing machine has only one-way access to its input,
much like a DFA. Hence, it is clearly not possible for such a Turing machine to
store information, or compute operations on the input tape using more than a
constant amount of computational space. These Turing machines are able to
parse strings, just like regular languages. If we had a UTM, on the other hand,
we could store the information of a DFA by first using a read-only right-moving
Turing machine to parse the structure of a regular grammar, and then utilise
the grammar on the rest of the input tape. However, this is clearly not possible
without more than constant memory.

What this demonstrates, however, is that regular languages are unable to emu-
late one another. Indeed, feeding a read-only right moving Turing machine the
instructions of another read-only right moving Turing machine would lead to
situations where the one machine trying to emulate the other would be stuck
in a loop or rejecting. This would be equivalent to running a DFA with data
inconsistent with the regular language it accepts. In fact, a read-only, right
moving Turing machine is only able to parse. Necessarily, therefore, it cannot
do calculations on the data. This is exactly the intuition that prevents DFA
from being able to emulate one another, for they too are just graphical rep-
resentations of ways to parse strings of data. In fact, regular expressions can
always be parsed unambiguously from the left (or right). This in itself implies
there is no memory function for equivalent constructions.

What this tells us about regular languages is that given perfect data, ultimately
all regular languages should be distinguishable from one another. Indeed, a reg-
ular language is simply is a set of instructions that tells us how to move around
a graph, and so long as the languages are not equivalent to one another, there
will be some distinguishing string which can be used to differentiate between
languages. Indeed, this was already known by the Myhill-Nerode theorem [52],
and used to show the existence of unique minimal DFA for each regular language
with a number of states equal to the number of distinct equivalence classes of
the language. What this suggests is that the polysemanticism we see is not
attributable to the nature of regular languages in and of themselves, but rather
to the nature of inferring complete structure from incomplete information; in-
ferring an infinite set from finite data is hard exactly because we cannot be sure
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we will ever find a uniquely distinguishing element from finite samples. We will
explore what this means, in philosophical terms, in the next section.
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5 Patterns in Nature: Encodings and Processes.

Patterns and processes are found everywhere in nature; from the logarithmic
spiral in the shell of the nautilus, cyclonic weather, and sprial galaxies; the
fractal pattern of coast formations; to atomic rates of decay or fluctuations in
the stock-market. But in what sense is reality actually made up of these phe-
nomena (or the processes which underlie them)? And furthermore, how are
various examples of the same pattern related? Perhaps a better question to ask
is to what extent is the perception of a pattern due to cognitive rather than
physical processes? What is clear is that spontaneous pattern formation seems
to exhibit mathematical structure. This suggests a link between the structure
of patterns and the underlying processes which generate them. But this fact
does little to inform us as to whether patterns in nature are simply coincidental
(e.g. fluctuations in the stock market may simply be caused by noise), benign
(see [53]), or whether they are truly indicative of structure. It is worth stating
that here we understand ‘pattern’ to be an essentially geometrical notion, and
hence related to space. ‘Process’, on the contrary, cannot be divorced from its
temporal nature, almost by definition. Thus, by posing a question on the rela-
tionship between patterns and processes, by implication we pose a question on
the nature of the relationship between space and time.

A more general notion of a pattern would be that of an abstract structure;
a formal object defined by a set of rules. Understood this way, the question
about how patterns relate to processes becomes a question about the role of
abstract structures in the temporal, perceptible world. This is, in essence, the
question which occupies most of the discussion in Plato’s Timaeus: how do
general, abstract, mathematical forms underlie the perceptible objects of our
everyday life? Suffice it to say, that actual processes seem to unfold according
to some kind of rule, e.g. the nautilus’ shell grows according to a ratio. Like-
wise a pattern abstracted from particulars, though timeless, seems to somehow
define all the processes which unfold according to it, for instance, the role Fi-
bonacci numbers play in the growth of some spirals and many other examples
where growth is the operative concept. It remains to be seen exactly what this
duality between mathematical structures (patterns) and processes entails for
ontology. However, what has become clear throughout this thesis is that the
process underlying a pattern might not be so transparent. One can, for exam-
ple, look around the world and see Fibonacci numbers in the data, but it is not
clear whether or not we are making false generalisations about the system which
generated the data. Indeed, if the data are consistent with multiple hypotheses,
we cannot ground the justification behind some generalisation in the data alone.

Metaphysicians have argued for the notion that patterns and processes play an
underlying role in reality, i.e. part of a substratum of reality [54-58]. However,
rarely has the discussion focused on developing theoretical notions to explain
how patterns and processes actually relate to one another. This might be due to
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the fact that it is rather hard to specify the duality between a timeless syntactic
description of an abstract structure (or patterns generally) given by mathemat-
ics and logic, and the temporal nature of actual things. However, it is the view
of this thesis, that a pattern could be taken to be some distribution of examples
(viz. data), whilst a process is the generating system which we are sampling
whenever we observe these patterns. That is, namely: that which we attempt
to model in Science.

There is a very real sense in which patterns and processes can be understood
as kinds of formal languages; patterns can be seen to exhibit a syntax – or set
of rules – which specifies some information about how the pattern is generated.
An instantaneous result thereof is that simple patterns can be described with
less information than more complicated ones, with some patterns behaving so
randomly that they achieve a fundamental limit of disorder. Indeed, the notion
of a pattern is abstract enough so that there is no sufficient reason to imagine
a pattern being instantiated in any perceptible way whatsoever. Processes, on
the other hand, are ongoing; they are in a sense, a pattern in time. If a pro-
cess is observed for a long time, it may exhibit some regularities which can be
understood as the exhibition of some pattern. It can then be treated in the
aforementioned way: as a language. In this way, one can understand a process
as also obeying some kind of syntax or set of rules. Put rather differently, if
some process exhibits a pattern, it is equivalent to that process “accepting” the
pattern. It is for this reason that patterns and processes seem to be two slides
of the same coin.

This way of describing the duality of patterns and processes as languages lends
itself particularly well to describing the structure of computation. Indeed, a
computation is at once both a set of rules to follow, and an actual process that
may or may not terminate. Due to this it is very natural to suppose that com-
putation would be an ideal candidate for explaining the sense in which patterns
and processes underlie reality. If the world is in some sense fundamentally com-
putational, then the sense in which patterns and processes underlie reality is
clear; processes are the subroutines of some kind of cosmic computation, and
patterns presented in those processes reveal the structure of the computation.
To paraphrase Prigogine and Stengers [59] here, in describing this duality we
search for a new metaphor, one which captures the relationship between stillness
and motion, time arrested and time passing.

However, how can one distinguish a pattern of substance from one which is
(co)incidental? In fact, this is simply philosophically untenable: as Bohm suc-
cinctly puts it “the content of the observed fact cannot coherently be regarded as
separate from modes of observation and instrumentation and modes of theoreti-
cal understanding” [58]. The messy, unpredictable, imperfect kinds of knowledge
that are ascertainable from insufficient data leads to modelling techniques which
necessarily permit irreconcilable pictures of reality. Thus, in these contexts in
particular, we must be aware of the sense in which, a pattern, however much it
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impresses itself on our senses, however much it is suggestive of some underlying
process, may be a figment of our minds, or a quirk of the tools and methods
which we use to analyse the data.

For the particular case of learning formal languages, in our exploration of pol-
ysemantism we have evidenced this kind of problem arising. However, the con-
nection between these idealised formal languages and real instantiated patterns
in nature goes deeper than one might imagine: the most striking connection
becomes clear when we analyse the relationship between polysemanticism and
languages with star-height greater than 0. As we have seen, star-height captures
the idea that repeating patterns may be nested and thus recursion can occur at
different levels in the pattern. In the context of DFA this implies nested loops
within the automaton. In terms of patterns in nature, nested levels of recursion
are a fundamental property of fractals and are related to the notion of the scale
of a process. The DFA models with nested loops thereby provide a clear, albeit
abstract picture of the kind of phenomena that give rise to pareidolia.

More precisely, many random fractal patterns, such as cloud formations are
scale-free: we, in fact, mentioned this in the introductory remarks on pareidolia.
Indeed, we note that one of the reasons we see images in clouds is the scale-
free nature of the underlying physical process: the condensation of water is
happening at every scale, from individual atoms to droplets to larger structures
and so forth. Thus, in looking at a complex scale-free cloud formation we
have the possibility to see patterns at many different scales. If the cloud as a
whole does not have a meaningful form there might be smaller formations that
can be grouped into meaningful forms. In this sense random fractal forms are
overloaded with possible meanings.

This is truly the kind of phenomena we see in confusable regular languages: cer-
tain data samples taken from these languages may appear to be generated from
simpler languages. The data which do not necessarily fit that model are inter-
preted as noise. As we have often mentioned, simple meanings are more easily
identified, which is part of the reason pareidolic and polysemantic phenomena
are possible in data sets that have a lot of latent noise, and/or randomness.
However, the more nested the regular language is, the more it is possible to
identify patterns at every level, just like scale-free processes in nature. Put
this way is it any wonder that the entire subclass of confusable regular lan-
guages is polysemantic under MDL? These kinds of formal languages exemplify
polysemanticism and paredolia in natural processes.
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6 Conclusions.

The work presented in this thesis is a step towards understanding the subtle
role of entropy in the process of optimal model selection. From a focused per-
spective, we have demonstrated for the very simple class of regular languages,
that the quality and nature of the data sample conditions the possibilities for
learning in the following sense: an insufficient sample, which fails to provide the
necessary structural information needed to reconstruct a regular grammar, will,
through the lens of minimum description length, potentially give rise to multi-
ple optimal models each of which share little to no mutual information. This
problem is attributable to the lack of information contained in the sample, and
not to the nature of regular languages themselves. Indeed, it is the inference
from the incomplete picture given by an insufficient sample, to a possibly true
generalisation, which poses a problem. If (as is often the case in Science) the
goal is to find the most parsimonious model, there will be no way to rule out
a myriad of inferences to false generalisations; there is no way to distinguish
between noise or randomness, and true structural data.

This conclusion that we have arrived at may strike one as obvious. Yet, in
fact, we were originally working under the assumption that regular languages
could not be polysemantic under MDL. The reason for holding this belief was
that it seemed insoluble that such fundamentally simple computations could be
mistakable for one another. Ultimately, a DFA is simply an effective procedure
for parsing strings; we assumed that a random sampling of one of these proce-
dures would therefore always be determinable, even if there were other “closely”
competing hypotheses. In fact, this insight still holds some truth, as the sorts
of data sets we have shown to give rise to multiple optimal models are highly
unsuitable for drawing conclusions about generalised populations.

Perhaps more interestingly, however, is the fact that these insights provide one
with a general picture of the role of entropy in optimal model selection which
transcends the specific learning problem we have answered: there are analogous
situations in human cognition where polysemanticism seems to arise due to the
existence of localised order which is mistakenly taken to be evidence of a model.
That is, irrespective of the simplicity of the model and the model selection
problem, there is a general relationship of data, sample and population which
is not based strictly in statistics or probability, but in the deeper framework of
algorithmic learning. Specifically, learning with insufficient information leads to
situations where entropy becomes invariant over optimal models. For machine
learners this means that without supervision there may never be a way to ensure
A.I. make sensible generalisations from insufficient data sets. From the more
general view of inference and model selection in cognition, the results of the
thesis suggest that the existence of patterns in nature do not necessarily support
the reality of an underlying process (a model for the pattern). In fact, such
distributions may be benign, or incidental, under measures of parsimony.
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6.1 Summaries.

In this section we detail some of the challenges that were overcome in the process
of researching this topic. We explain why our approach to the DFA learning
problem may seem piecemeal at times, and why we consider the main contribu-
tion to be in developing one’s understanding of the role of entropy in optimal
model selection, as it pertains to the conditions which permit learning to occur.

6.1.1 The Circumstances Which Permit Learning to Take Place.

The thesis attempted to make clear, in the context of DFA identification, the
conditions which typically permit the learning of regular languages. Ultimately,
the attempt has failed to make these conditions precise. However, the reason
for this is that every avenue for learning DFA without queries is problematic.
There is, however, a use in acknowledging that an avenue is not worth traveling
down.

We have described the computational complexity of the combinatorial problem
of selecting an optimal DFA from an arbitrary data sample. It was clear from
the outset that looking for a polynomial-time algorithm for selecting optimal
DFA from arbitrary data samples was out of the question. Incidentally, finding
such an algorithm would have solved the P=?NP problem, a strong indication
that an MSc thesis is probably not the suitable place to attempt such a feat.

The original impetus of this thesis was to investigate whether computational
equivalence, in particular bisimulation, could offer possible new avenues for re-
search into the problem, (see §A.2). The justification was based on the fact
that one would expect an algorithm, whose aim it is to uncover the syntactic
structure of a language, to infer an automaton that is in some way equivalent
to the target automaton. However, we quickly understood that this would be
unfeasible; computational equivalence is far too strict a notion to apply in this
context, as state-merging does not preserve equivalence relations. Moreover,
seeing as bisimulation is polynomial-time decidable over finite labeled transi-
tion systems [60], if there had been a way to utilise bisimulation in this manner,
we would have discovered a fast algorithm for DFA identification, and could
have concluded P=NP. Nevertheless, as a limit case some insight was attained:
bisimulation-invariant grammars for regular languages can be minimised effi-
ciently to a unique optimal DFA à la the result shown in [61]. Thus, for perfect
samples, where the sample is essentially equivalent to the entire language, a
unique optimal (minimal) model is discoverable in polynomial-time.

We then attempted to find some threshold value for the size and/or quality
of the samples necessary to permit learning. Under maximum entropy assump-
tions, the sample might be generated by a number of random walks on the target

Fergus Smiles Page 58 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

automaton. If these random walks were to recover all of the necessary structural
information of the target automaton, the resulting data sample would be called
fair with respect to the target automaton. Whilst in principle fair sampling
ought to be possible, there are situations where the size of the sample necessary
to recover the automaton is exponentially larger than the size of the target au-
tomaton. What this essentially implies is, for arbitrary automata, no threshold
value for determining the size of the sample necessary to contain all the relevant
information exists.

Finally, we investigated extremely insufficient data samples, to get a sense of
the worst-case inferences from insufficient data. For these very simple samples,
we discovered that there can be multiple optimal models, each of which share
little to no mutual information. These polysemantic data sets are, in essence,
the result of being maximally uncertain about the target automaton: that is,
polysemanticism arises from uncertainty about the correct model.

What has become clear is that the quality of data needs to be near perfect
(infinite, noiseless, uncorrupted) in order to avoid all the problems we have
uncovered relating to the learning problem. Whilst, at the other end of the
scale, insufficient, incomplete or inconsistent data can not be used to discover
parsimonious models, as it is impossible to rule out what is noise from what is
structural information. Between these extremes there is no threshold size for a
sample set to permit learning. In fact, there is no way, without supervision and
without exponentially large sample sets, for an algorithm to uncover the more
topologically complex parts of the automaton’s transition structure.

6.1.2 The Role of Entropy in Optimal Model Selection.

What does this tell us about the broader picture of entropy in optimal model
selection? Ultimately, since entropy is both a measure of the information in
objects themselves, and also in distributions over sets of objects, the results of
this thesis reinforce the sense in which entropy plays both an epistemological
and ontological role in model selection. Epistemological, in the sense that the
(probabilistic) entropy of some distribution is a measure of our uncertainty
about the average behaviour of individuals over that distribution. Entropy
thus measures the epistemological state of affairs, since, if the entropy of a
distribution is high, there is more information value gained in each sample of
the distribution. However, (algorithmic) entropy measures the information in
objects in and of themselves, and for that reason can be considered an ontological
measure of information. In other words, the more informationally complex an
object may be, the harder it will be find an algorithm to compute it. For that
reason such objects may be harder to learn.

The problem of polysemanticism, we have argued, is essentially a problem with
a lack of information. However, the reason for this is exactly because there
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is a causal relationship between entropy and polysemanticism: data sets are
considered to be polysemantic whenever there exist mutually irreconcilable op-
timal models for the data, under some notion of minimal description lengths,
each of which share little to no mutual information. Ergo, whenever the entropy
(specifically, the algorithmic mutual information) is invariant over multiple mod-
els, we see polysemanticism arise. For that reason polysemanticism is a lack of
information. However, whether this lack of information is epistemological or on-
tological is debatable, since the polysemanticism result can be interpreted under
both paradigms. Either the amount of mutual algorithmic information between
two objects is invariant, in which case these two objects both seem to be good
a priori models for the same data, and one is unable to decide which object
is the ontologically responsible parent for the data. Or, the amount of mutual
probabilistic information between two distributions is invariant, in which case
one would be uncertain whether they are drawing examples from the former or
the latter distribution, and hence unable to distinguish which one is the true
distribution. It may be the case that polysemanticism has mathematical roots.

Mark Kac (1966) once asked “can we hear the shape of a drum?” [62]. The
problem is a 2-dimensional generalisation of the question “can we hear the shape
of a string”. It is possible, in the case of the string, to work out the exact length
of a string by sampling the sound of the string, and extracting a fundamental
tone via Fourier Analysis. Some additional analysis of the non-fundamental
tones—called harmonics—gives one some more information about the kind of
stringed instrument which was sampled. However, one cannot, in principle,
work out the shape of a drum [63]. This is because it has been proven that two
distinct shapes can give rise to the same sound waves, and, hence, that there
exists some non-surjective 2-dimensional functions which take some shape as an
input, and output a sound wave, and which therefore will be indistinguishable
from one another on the basis of sonic information alone. This means that
whilst the data, viz. the sampled sound waves, would contain some information
about the shape of a drum, they don’t contain all the information, since you
cannot, in principle, distinguish between the shape of some drums on the basis
of the sound waves themselves. No amount of sound data will do.

From a cognitive point of view, on the other hand, many instances of pattern
recognition and model selection appear polysemantic because of the subjective,
solipsistic perspective of consciousness. These are typically instances of parei-
dolia. However, it is hard to ascribe a purely epistemological barrier to finding
a single optimal model for gestalt images, since, in those instances, increasing
the quality and size of the given data sample will not affect the polyseman-
tic nature of the model selection problem. They appear, at root, ontologically
polysemantic. Thus, we are somewhat stuck in the position of being uncertain
about what kind of uncertainty we are uncertain of: either it is the world that
is uncertain (or fundamentally gestalt), or it is our methods for apprehending
the world that are insufficient (some data are insufficient for some questions).
Either way, the answer to this question cannot be found in the data themselves.
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6.2 Future Research Directions.

6.2.1 Learning Idealised Regular Languages with Random Walks.

It remains to be proven whether learning the average-case DFA under maximum
entropy assumptions is easy. However, previous study of idealised DFA has
resulted in some relevant facts concerning random walks and learning: first, the
notion of a random DFA can be defined by selecting uniformly at random from
the class of functionally complete DFA of state-size n with k outgoing arrows.
By analysing the properties of typical elements of this class which hold with high
probability, the notion of a typical DFA comes to the fore: typical DFA induce
ergodic Markov chains from simple random walks on their underlying digraphs
(starting at the initial state) [64]. This is due to the fact that a random k-out
digraph D(n,k) of size n, has a unique largest strongly connected component
(SCC) that is attractive with high probability [65]. Essentially what this means
is that a simple random walk on the digraph of a typical DFA will eventually
fall into a closed communicating class which is irreducible by definition, and
aperiodic [64]. Hence, ergodic.

A result known as Ornstein’s theory states that measure-theoretic entropy com-
pletely classifies Bernoulli shifts (generalised Bernoulli processes) up to isomor-
phism [66]. That is to say, two Bernoulli shifts are isomorphic if and only if
they have the same entropy. Since ergodic Markov chains are aperiodic and
irreducible by definition, they are also Mixing Markov [67]. This further implies
that they are weakly Bernoulli [68], and hence isomorphic to a Bernoulli shift.
Thus, there are Bernoulli shifts that are isomorphic to the realisations of ergodic
stationary stochastic processes induced by random walks on typical DFA, and
Ornstein’s theory applies. Thus, there is a connection concerning optimal model
selection between certain idealised DFA, random walks, and entropy.

Interestingly, the regular (sub)language generated by a sub-DFA corresponding
to the SCC of a typical k-out DFA can be retrieved by decomposing the lan-
guages via inverse concatenation. Indeed, regular languages are closed under
concatenation. The existence of an SCC in the digraph of a typical DFA implies
a closed communicating class such that there are no transitions out of the SCC.
This means any accepting word that utilises the SCC can be decomposed into
a prefix outside the SCC and a suffix inside the SCC.

This implies that there is a possibly infinite language L1 consisting of paths
from the initial state of the typical DFA to states just within the SCC, and an
infinite language L2 consisting of paths starting from exactly those states to
final states within the SCC.

Definition 6.1 (Factorial language) A language L ⊆ Σ∗ is factorial if ∀x, y, z ∈
Σ∗(xyz ∈ L =⇒ y ∈ L).
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Factorial languages can be explained intuitively: if all the states of a DFA are
accepting, then any sub-word (factor) of an accepting word, is also accepting.
Since labelled transition systems have no distinction between accepting and non-
accepting states, there is a sense in which LTS describe factorial languages. In
the context of typical DFA, if all the states within the SCC were accepting states,
the sublanguage L2 is also factorial. Thus equivalent to a sofic subshift [69].
Interestingly, the properties of random DFA we have been discussing can easily
be generalised to LTS, since the results of [64][65] are reliant on the structure
of random k-out digraphs of size n. The main difference between automata
and transition systems is that the former are models of machines, programmes,
languages, etc., while the latter are models of a machine’s, programme’s or
language’s behaviour. In this sense, one might argue from these results, that
the behaviour of a typical DFA eventually becomes equivalent to a sofic subshift.

Clearly in the idealised situation of typical DFA with k-out structure, random
walks would be effective for learning: sufficiently long maximal entropy ran-
dom walks on the underlying graph will eventually fall into the SCC with high
probability. Hence, a sample taken from n many of such random walks, will,
with high probability, have recovered the structure of the closed communicating
class. For the case of typical DFA, we can use the fact that such a language is
prolongable and transitive to automatically reconstruct the language from the
sample.

However, the conditions for this idealised situation would rarely occur. Indeed,
the majority of DFA do not have a k-out structure, and as such typical DFA
selected from the class of all DFA doubtfully have a SCC with high probability.
The average-case DFA from this bigger class may yet be hard to learn.

6.2.2 Process Equivalence and Entropy.

The original idea of the thesis was to analyse for what notion of bisimula-
tion (if any) is entropy an invariant. See §A.2 for definitions. Bisimulation
is a local notion of equivalence (see [70] for logical analysis of bisimulation),
whereas entropy (probabilistic, measure-theoretic, topological or algorithmic) is
a somewhat more global measure. Models which satisfy some notion of local
equivalence are not necessarily equivalent in terms of their global informational
structure. Isomorphism, by contrast, is a one-to-one correspondence between
points in a model, and thus is more of a likely candidate for preserving the
entropic properties of a model’s informational structure. Nevertheless search-
ing for a similar result to Ornstein regarding bisimulations is tempting. Initial
steps to combine analyses the logical notion of bisimulation with probabilistic
processes are taken in [71][72].

Bisimulation is explicitly a form of equivalence that uses local information to
verify global structural relationships. This property in particular we sought to
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analyse for what it might inform us about optimal model selection. Intuitively,
a bisimulation preserves the local information of models, hence if the data were
to share the same local information as the model, we ought to be able to find
bisimulations between the data and the models to aid in our inferences. Some
work has been done to make bisimulation more of a ‘relaxed’ notion [73] and
attempts in related learning problems have had some success using bisimulation,
see [74][75]. It might be possible using a tool like mCRL2 [76] to utilise bisim-
ulation for learning DFA in some situations. However, if one were always able
to efficiently and effectively draw conclusions about exactly which hypotheses
are optimal explanations for arbitrary data sets, it would seem to suggest that
total, or near to total information, is contained within samples regardless of
the quality of the sample data. This is simply not feasible. Bisimulation can
optimise the description of any regular language, but it cannot make guesses
about the hidden structure of an automaton from a data set. See §A.3.

However, it would still be interesting, given what is laid out in 6.2.1 to consider
bisimulation again. Since the induced sofic subshifts for random LTS will be
entropy-invariant under almost-topological conjugacy, there may yet be a sim-
ilar result for some notion of bisimulation between the LTS (understood to be
equivalent to the subshifts).
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A Appendix.

A.1 Terminology.

Σ denotes a finite alphabet.

a, b, c, . . . stand for the letters of the alphabet.

Σ∗ denotes the set of finite words over Σ.

u, v, w, . . . stand for finite words.

ε is the empty word.

Σ+ = Σ∗ \ ε is the set of nonempty words over Σ.

L1, L2, . . . denote sets of finite words (∗-languages) ⊆ Σ∗.

M1,M2, . . . denote automata.

T1, T2, . . . denote labeled transition systems.

q, r, s, . . . are states of an LTS or finite automaton.

Q,R, S, . . . are sets of states.

A.2 Definitions of Equivalence Between Computational
Processes.

The following nine definitions are essentially given in [23] unless otherwise indi-
cated. We list them here to detail the early work done exploring the relationship
between target model and quotient automata. The next section (A.3) provides
a rudimentary proof that demonstrates the impossibility of this initial line of
research. However, considered alongside the speculative remarks in 6.2.2, there
may be some notion of computational equivalence, akin to those listed here, that
preserves entropy over certain idealised automata. A clear logical exposition of
computational equivalence in terms of bisimulation is outlined in [70].

Definition A.1 (Strong bisimulation) An equivalence relation that partitions
the set of states in such a way that the set of actions that can be executed to
reach some class is the same for every two states in a class, induces a strong
bisimulation [72].

Mathematically, the relation ≈ which satisfies the following is considered to
be a strong bisimulation between labeled transition systems T, T ′:

q ≈ q′ ⇐⇒ ∀a ∈ Σ

(
∆T (q, a) ≈ ∆T ′(q′, a)

)
.
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More commonly this is defined like so:

q ≈ q′ ⇐⇒ If q
a−→ r, then q′

a−→ r′ for some r′ such that (r, r′) ∈ R

∧ If q′
a−→ r′, then q

a−→ r for some r such that (r, r′) ∈ R.

For automata M,M ′, there are the added properties:

q0 ≈ q′0

q ≈ q′ =⇒
(
q ∈ FM ⇐⇒ q′ ∈ FM ′

)
.

Definition A.2 (Strong bisimularity) Two states q, q′ are strongly bisimilar,
written q ≈ q′ if and only if there exists a strong bisimulation R between them,
and (q, q′) ∈ R.

≈ :=
⋃
{R | R is a strong bisimulation}

Definititon A.3 (Weak transition relation) Let T = (S,Λ,→) be an LTS with
an additional label τ 6∈ Λ for “hidden” or “unobservable” transitions. We define
a

=⇒ as follows:

a
=⇒ =

{
(
τ−→)∗◦ a−→ ◦( τ−→)∗ if a 6= τ .

(
τ−→)∗ if a = τ .

Where ◦ has the usual meaning of concatenation, and (·)∗ the usual meaning
of iteration. Weak transition relations can also be defined on automata without
loss of generality.

Definition A.4 (Weak simulation) One can define weak simulation by replacing
the transition requirement (defined in §2, definition 2.13) with the following:

q ∼ q′ ⇐⇒ If q
a−→ r, then q′

a
=⇒ r′ for some r′ such that (r, r′) ∈ Rsim

Definition A.5 (Weak simularity) Two states q, q′ are weakly similar, written
q ∼w q′ if and only if there exists a simulation Rsimw between them, and (q, q′) ∈
Rsimw .

∼w :=
⋃
{Rsimw | Rsimw is a weak simulation}

Definition A.6 (Weak bisimulation) Mathematically, the relation ≈w which
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satisfies the following is considered to be a weak bisimulation Rw between la-
beled transition systems T, T ′:

q ≈w q′ ⇐⇒ If q′
a−→ r′, then q

a
=⇒ r for some r such that (r, r′) ∈ Rw

∧ If q
a−→ r, then q′

a
=⇒ r′ for some r′ such that (r, r′) ∈ Rw.

For automata M,M ′, there are the added properties:

q0 ≈w q′0

q ≈w q′ =⇒
(
q ∈ FM ⇐⇒ q′ ∈ FM ′

)
.

Definition A.7 (Weak bisimularity) Two states q, q′ are weakly bisimilar,
written q ≈w q′ if and only if there exists a weak bisimulation Rw between them,
and (q, q′) ∈ Rw.

≈w :=
⋃
{Rw | Rw is a weak bisimulation}

Definition A.8 (Branching bisimulation) A relationRb ⊆ S×S between labeled
transition systems T, T ′ is called a branching bisimulation if it is symmetric and
satisfies the following property: If (q, q′) ∈ Rb and q

a−→ r then:

1. If a 6= τ then ∃r′, s′ such that q′(
τ−→)∗r′

a−→ s′ with (q, r′), (r, s′) ∈ Rb.

2. If a = τ then (r, q′) ∈ Rb

For automata M,M ′, there are the added properties:

q0 ≈b q′0

q ≈b q′ =⇒
(
q ∈ FM =⇒ q(

τ−→)∗q′ with q′ ∈ FM ′

)
.

Definition A.9 (Branching bisimularity) Two states q, q′ are branching bisim-
ilar, written q ≈b q′ if and only if there exists a branching bisimulation Rb
between them, and (q, q′) ∈ Rb.

≈b :=
⋃
{Rb | Rb is a branching bisimulation}
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A.3 Proofs.

Theorem A.3.1 State merging on finite automata does not preserve strong
bisimulation.

Along the same line as theorem 2.18, of §2. Suppose a DFA A with q1 ∈ δ(q0, a)
and q2 ∈ δ(q1, a) for some a ∈ Σ where uaav ∈ L(A) for some u, v ∈ Σ∗ where,
with some abuse of notation, a 6∈ v and a 6∈ u. The merge of q0, q1 ∈ B1, and
q2 ∈ B2 under some partition π implies B1 ∈ δ(B1, a) and B2 ∈ δ(B1, a) by
part (3) of the definition of quotient automaton. The quotient automaton A′

yielded from such a merge is not bisimilar to A: consider the block B1 and the
transition B1 ∈ δ(B1, a). In order for there to be a bisimulation between A and

A′ there must be a state(s) bisimilar to B1. If we assess q0 ≈ B1 and B1
a−→ B1,

we have q0
a−→ q1. So we must then check whether (B1, q1) ∈ R. Again, for the

transition B1
a−→ B1 there is q1

a−→ q2. However, now we must assess whether
(B1, q2) ∈ R, but this we know cannot hold, since q2

a−→ > is false.

�

In the context of DFA, this theorem is actually already guaranteed by theorem
2.19. This is because determinacy implies the equivalence of strong bisimularity
and trace/language-equivalence [77].

For other notions of computational equivalence listed in §A.2 (i.e. those de-
fined using weak transition relations) similar proofs can be used to demonstrate
that state-merging can often break equivalence. But it should not really require
proof to expose the mismatch of bisimulation and state-merging. Intuitively,
“bisimulation-invariant” grammars are especially uninteresting from the per-
spective of state-merging; inferring such grammars would amount to merely
searching through equivalent descriptions. Since such an algorithms would have
essentially already fixed the target grammar, optimal minimisation is possible
with relative computational ease. However, since the main goal of grammatical
inference is to infer a grammar from a sample, having a fixed target grammar,
known a priori, would be to profoundly miss the wood for the trees.

Fergus Smiles Page 67 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

B Bibliography

[1] N. Chomsky. Three models for the description of language. IRE Transactions
on Information Theory (2): 113–124, 1956.

[2] T. Jiang and B. Ravikumar. Minimal NFA Problems are Hard. SIAM Jour-
nal on Computing, 22: 1117–1141, 1993.

[3] D. Angluin. On the complexity of minimum inference of regular sets. Infor-
mation and Control, 3(39): 337–350, 1978.

[4] L. Pitt. Inductive inference, DFAs, and computational complexity. Lecture
Notes in Computer Science: 18–44, 1989.

[5] L. Pitt and M. Warmuth. The minimum consistent DFA problem cannot be
approximated within any polynomial. Journal of the Association for Com-
puting Machinery, 40(1): 95–142, 1993.

[6] E. M. Gold. Complexity of automaton identification from given data. Inform.
Contr., 37: 302–320, 1978.

[7] M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. J. ACM 41(1): 67–95, 1994.

[8] D. Angluin. Inference of reversible languages. J. ACM, 29(3): 741–765, 1982.

[9] Y. Sakakibara. Efficient learning of context-free grammars from positive
structural examples. Information and Computation, 97:1, 23–60, 1992.

[10] F. Denis. Learning Regular Languages from Simple Positive Examples. Ma-
chine Learning 44: 37–66, 2001.

[11] A. Benjamin. The Essential Problem of Empiricism. Philosophy of Science,
10(1): 13-17, 1943.

[12] D. Hume. An Enquiry Concerning Human Understanding. Clarendon Press,
Oxford, U.K., edited by Tom L. Beauchamp, 2000.

[13] A. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n × n
chess requires time exponential in n, J. Combin. Theory Ser. A, 31 (2):
199–214, 1981.

[14] J. Hartmanis and R. Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society. American Math-
ematical Society: 117: 285–306, 1965.

[15] E. Rubin, Synsoplevede Figurer, 1915.

[16] P. Adriaans. A computational theory of meaning, in Advances in Info-
Metrics: Information and Information Processing across Disciplines. Editors:
Min Chen, Michael Dunn, Amos Golan and Aman Ullah, OUP, 2020.

Fergus Smiles Page 68 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

[17] L. Wittgenstein. Part II, §xi in Philosophical Investigations. Blackwell Pub-
lishing, 1953.

[18] J. Carlotto. Digital Imagery Analysis of Unusual Martian Surface Features
Applied Optics. 27 (10): 1926–1933, 1988.

[19] P. Adriaans, via private communication.

[20] Wikipedia contributors. DeepDream. Wikipedia, 26 Feb. 2021. Web. 10
Mar. 2021.

[21] M. Davis, R. Sigal and E. Weyuker. Computability, Complexity, and Lan-
guages and Logic: Fundamentals of Theoretical Computer Science (2nd ed.).
San Diego: Academic Press, Harcourt, Brace Company, 1994.

[22] P. Adriaans, C. Jacobs. Using MDL for Grammar Induction. In: Sakakibara
Y., Kobayashi S., Sato K., Nishino T., Tomita E. (eds) Grammatical Infer-
ence: Algorithms and Applications. ICGI 2006. Lecture Notes in Computer
Science, vol 4201. Springer, Berlin, Heidelberg, 2006.

[23] J. Groote and M. Reniers. Chapter Two: Actions, behaviour, equiva-
lence and abstraction. Modelling and analysis of communicating systems. MIT
Press, 2014.

[24] B. Lambeau, C. Damas and P. Dupont. State-Merging DFA Induction Al-
gorithms with Mandatory Merge Constraints. ICGI 2008: Grammatical In-
ference: Algorithms and Applications: 139-153, 2008.

[25] M. Rabin and D. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development. 3 (2): 114–125, 1956.

[26] J. Hopcroft and J. Ullman. Chapter 3, Introduction to Automata Theory,
Languages, and Computation, Reading, Massachusetts: Addison-Wesley Pub-
lishing, 1979.

[27] Lang, K., Pearlmutter, B., Price, R.: Results of the abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433: 1–12,
1998.

[28] M. Bugalho, A. L. Oliveira. Inference of regular languages using state merg-
ing algorithms with search. Pattern Recognition, 38(9): 1457–1467, 2005.

[29] Sebban, M., J. Janodet and Frédéric Tantini. “BLUE∗: a Blue-Fringe Pro-
cedure for Learning DFA with Noisy Data.”

[30] T. Cover & J. Thomas. Elements of Information Theory (2nd ed.). John
Wiley & Sons, 2006.

[31] Y. Dulek, C. Schaffner, Lecture Notes, 2017: accessed from
https://homepages.cwi.nl/ schaffne/courses/inftheory/2017/

Fergus Smiles Page 69 of 72



Institute for Logic, Language and Computation
Learning Deterministic Finite Automata with Signed Examples: An
Investigation into the Role of Entropy in Optimal Model Selection

[32] B. McMillan. Two inequalities implied by unique decipherability, IEEE
Trans. Inf. Theory, 2 (4): 115–116, 1956.

[33] David J. C. MacKay. Information Theory, Inference & Learning Algo-
rithms. Cambridge University Press, USA, 2002.

[34] R. J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2.
Information and Control, 7(1): 224-254, 1964.

[35] Marcus Hutter et al. Algorithmic probability. Scholarpedia, 2(8):2572, 2009.

[36] L. A. Levin. Laws of Information Conservation (Nongrowth) and Aspects of
the Foundation of Probability Theory, Problems Inform. Transmission, 10(3):
206–210, 1974.
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