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Abstract

We study relation lifting in the context of universal coalgebra. In
particular, we develop a family of logics based on the cover modality.

Firstly, we prove a Hennessy-Milner-style theorem, showing that on
finite-branching coalgebras, logical equivalence coincides with a particular
form of bisimulation. We also give a characterization of those formulas
preserved under simulations.

Secondly, we present a sound and complete cut-free sequent calculus,
and use it to derive sound and complete cut-free sequent calculi for modal
logic and monotone modal logic.
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1 Introduction

In recent years, the categorical framework of coalgebra has gained importance as
a uniform way to model various kinds of state-based evolving systems. The the-
ory of coalgebras has close ties to automata theory and modal (fixpoint) logics.
Additionally, coalgebra has many applications in theoretical computer science;
including concurrency theory, formal verification and semantics of programming
languages.

While each of these fields have their own particular methods, they all feature
some notion of behavioral equivalence between systems. The most powerful
tool for establishing equivalence is by exhibiting a bisimilarity relation. Given
the universality of bisimulations in coalgebraic systems, an important task for
coalgebraists is to formulate a general theory of bisimulation and behavioral
equivalence. An elegant way of formulating bisimulation is via relation lifting

Relation lifting has its roots in relational algebra [2]. At its core, relation
lifting pertains to ways of ‘lifting’ a relation R between two sets X and Y to
a relation between TX and TY , for a given coalgebraic type T . From this, we
may call a relation R a bisimulation if, whenever two states are related by R,
their unfoldings are related by the lift of R.

In many settings, bisimilarity between coalgebras of type T is captured ex-
actly by a canonical relation lifting, called the Barr lifting. Indeed, the Barr
lifting is often taken to define bisimilarity in universal coalgebra[20]. However,
the Barr lifting only captures behavioral equivalence for functors preserving
weak pullbacks. Most relational structures are coalgebras for functors of this
type, but e.g. neighborhood-like functors often don’t preserve weak pullbacks.

This has prompted study into relation lifting for functors not (necessarily)
preserving weak pullbacks. In [18], a characterization is given of relation liftings
that capture behavioral equivalence. There is also work on using relation lifting
to capture coalgebraic simulation, rather than bisimulation [13][22]. Relation
liftings have also been used to capture relationships between coalgebras weaker
than behavioral equivalence [7].

On the side of coalgebraic logic, relation lifting is used to define the nabla-
modality ∇. The specific semantics of the ∇-modality on Kripke frames was
already implicitly present in work by K. Fine in modal logic [9], and explicit
in work by Janin and Walukiewicz on the modal µ-calculus [14]. The general
formulation using relation lifting was first given by L. Moss [19].

Since then, work on the ∇-modality has largely stuck to the Barr lifting (an
early exception is [1]). The resulting logical system is certainly elegant; but given
the diversity in possible relation liftings, much may be gained from moving to a
more general setting. Moreover, since the Barr lifting only captures bisimilarity
for functors that preserve weak pullbacks, the scope of the ∇-modality has been
somewhat limited. We are also motivated by [21], where a ∇-modality is used

based on the lifting M̃ for the monotone neighborhood functorM, which is not
a weak pullback-preserving functor.
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This thesis expands on work by A. Baltag [1] and J. Marti & Y. Venema
[18], where modalities are defined based on arbitary relation liftings. We will
explore these modalities in detail, both from a model-theoretic perspective as
well as a proof-theoretic perspective. We will see that, remarkably, many of the
standard results for the ∇-modality also hold in the more general setting. Our
main results are the following:

• We show that every functor admits a minimal lifting; and that the lift-
ing M̃ arises in a natural way as the minimal lifting for the monotone
neighborhood functor.

• We establish an alternative characterization of liftings in terms of weak
distributive laws.

• We prove that the ∇-modality based on a lifting L fully captures L-
bisimulation. We also show that in suitable circumstances, a formula
is preserved under L-simulations if and only if it is equivalent to a formula
featuring only the L-based nabla.

• We present a uniform family of sequent calculi which is sound and complete
for logics involving any number of ∇-modalities. Moreover, we show that
in suitable circumstances, the resulting sequent calculi are decidable.

• We modify the sequent calculi for the ∇-modalities to derive sound and
complete cut-free sequent calculi for modal logic and monotone modal
logic.

This thesis is divided into the following chapters:

1. Introduction Introduction and motivation.

2. Preliminaries This chapter consists of a collection of definitions and ex-
amples from category theory and universal coalgebra.

3. Relation lifting In this chapter, we define the notion of a T -lifting and
give key lemmas regarding the behavior of liftings. We also give a charac-
terization of liftings in terms of weak distributive laws.

4. Coalgebraic logic In this chapter, we introduce the modalities based on
relation liftings, and prove a number of lemmas and propositions needed
in the next two chapters.

5. (Relative) expressivity of the ∇-modalities In this chapter, we explore
the connections between logical equivalence and bisimulation (invariance).

6. A uniform sequent calculus We present a uniform family of sequent cal-
culi to one which is sound and complete for logics involving any number
of ∇-modalities. We also highlight some interesting fragments for which
the calculus is sound and complete.

7. Conclusion Summary of results and avenues for further research.
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2 Preliminaries

We assume that the reader is familiar with the language of categories and func-
tors, as well as the basic theory of coalgebras. This chapter serves only to fix
some notation, used throughout the thesis.

2.1 Preliminaries on functors

In this section, we introduce a number of important functors, as well as some
preservation properties of functors.

Notation 2.1. We will write Sets for the category of sets and functions.

Notation 2.2. For a functor T : Sets → Sets, a function f : X → Y and an
element α ∈ TX, we will usually add brackets as

(Tf)α

although we may in some cases write (Tf)(α) to avoid confusion.

Some important functors

Definition 2.3. We will denote the powerset functor with P . Explicitly, if
f : X → Y is a function, then Pf : PX → PY is defined as

Pf : A 7→ f [A] = {f(a) | a ∈ A}.

This makes the powerset into a covariant functor.
The powerset also has a contravariant version, which we will denote with P̆ .

That is, P̆X = PX for all sets X; but if f : X → Y is a function, we set
P̆ f : PY → PX to be

P̆ f : B 7→ f−1[B] = {a | f(a) ∈ B}

Two more functors of interest are the neighborhood functor and the monotone
neighborhood functor.

Definition 2.4. We define the neighborhood functor to be the functor N :=
P̆ P̆ . Since P̆ is contravariant, N is a covariant functor. Explicitly, we have
NX = PPX for a set X, and if f : X → Y is a function, then

N f : A 7→ {U | (̆Pf)U ∈ A}.

The monotone neighborhood functor is the subfunctor M of N given by

MX = {A ∈ NX | ∀U, V : if U ∈ A and U ⊆ V, then V ∈ A}.

It is easy to verify that if f : X → Y is a function, and A ∈ MX, then
N f(A) ∈MY ; so, if we set

Mf = N f �MX

we obtain a well-defined functor M.
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We will regularly return to the monotone neighborhood functor as an impor-
tant example. It will be useful to have simple notation for elements of MX.
We will write

〈U1, U2, . . . , Uk〉 = {U ∈ PX | U ⊇ Ui for some i}

for the upset generated by {U1, . . . , Uk}.
Notation 2.5 (Naming convention). In this thesis, we will come across elements
of sets X, but also of elements of TX for T a functor, PX, as well as TPX and
PTX. To avoid confusion as much as possible, we use the following conventions
for elements of particular sets, following [5]:

Set Elements
Proposition letters p, q, . . .

Formulas a, b, . . .
TX α, β, . . .
PX A,B, . . .
PPX A,B, . . .
TPX Φ,Ψ, . . .
PTX Γ,Θ, . . .

Figure 1

An important notion is that of a finitary functor.

Definition 2.6. A functor T : Sets→ Sets is finitary if for sets X, we have

TX =
⋃

X′⊆X
X′ finite

im(TιX′)

where ι : X ′ → X denotes the inclusion map.
For an arbitrary functor T : Sets → Sets, we can define a finitary version

Tω as

Tω =
⋃

X′⊆X
X′ finite

im(TιX′),

where for a function f : X → Y we set

Tωf = Tf �TωX .

Remark 2.7. In the case that T preserves inclusions - that is, if X ⊆ Y , then
TX ⊆ TY - definition 2.6 reduces to

TωX =
⋃

X′⊆X
X′ finite

TX ′.

This is the case for the powerset functor, but not for, e.g., the monotone neigh-
borhood functor.
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Definition 2.8. Let T : Sets → Sets be a functor, let X be a set, and let
α ∈ TωX. We define

Base(α) :=
⋂
{X ′ ⊆ X | α ∈ im(TιX′)}.

Then Base(α) is the smallest subset X ′ of X with the property α ∈ im(TιX′).
If Γ ⊆ TX, we define

B(Γ) :=
⋃
α∈Γ

Base(α).

We prove explicitly that the functor Tω defined in definition 2.6 is indeed a
functor, by deriving a useful ‘naturality property’ for Base.

Proposition 2.9. Let T : Sets → Sets be a functor, let X,Y be sets, and
f : X → Y a function. Then for all α ∈ TωX, we have

Base((Tf)α) ⊆ f [Base(α)]

Proof. Let B = Base(α). Then let B′ = f [B], and let g : B → B′ be the
restriction of f to B. We see that

X Y

B B′

f

ιB

g

ιB′

commutes. Hence, if we apply T to this diagram, we see that

TX TY

TB TB′

Tf

TιB

Tg

TιB′

commutes. Now since B = Base(α), we know that there is α′ ∈ TB with
(TιB)α′ = α. So, by commutativity, we see that

(Tf)α = (TιB′)((Tg)α′) ∈ im(TιB′)

which means that Base((Tf)α) ⊆ B′ by definition.

Note that Base is not a full natural transformation from Tω to Pω, since
only one of the two inclusions is present. In [15], it is proved that for a weak
pullback-preserving functor, Base is a natural transformation.

Remark 2.10. There is a useful criterion for Base in the case of the monotone
neighborhood functor. Namely, if p /∈ Base(U), then for all U ∈ U , we have

U ∈ U if and only if U \ {p} ∈ U .

That is, adding or removing p does not change whether U is an element of U .
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One notion which is common in coalgebraic logic is that of a weak pullback.

Definition 2.11. Let

P X

Y Z

p0

p1 f

g

be a commutative square in Sets. We

call (P, p0, p1) a weak pullback of f and g if for every commutative square

P ′ X

Y Z

p′0

p′1 f

g

there is a (not necessarily unique!) map m : P ′ → P such that

P ′

P X

Y Z

m

p0

p1 f

g

commutes.
A functor T : Sets → Sets is said to preserve weak pullbacks if, whenever

P X

Y Z

p0

p1 f

g

is a weak pullback square, so is

TP TX

TY TZ

Tp0

Tp1 Tf

Tg

Definition 2.12. Let T : Sets→ Sets be a functor. We say that T preserves
finite sets if TX is finite for all finite X.

2.2 Coalgebras

In this section we define T -coalgebras for a functor T , as well as behavioral
equivalence for T -coalgebras.

Definition 2.13. Let T : Sets → Sets be a functor. A T -coalgebra is a set S
together with a map σ : S → TS. For a given set of proposition letters Prop,
a T -coalgebra model with values in Prop, or simply a T -coalgebra model in case
the set Prop is clear from context, is a T -coalgebra S = (S, σ) together with a
map m : S → P (Prop).

Example 2.14. A P -coalgebra is simply a Kripke frame, presented in an unusual
way. Namely, let F = (W,R) be a Kripke frame, with W a set of worlds and
R ⊆ W ×W be an accessibility relation. Then we can define a P -coalgebra
F] = (W,χR), where χR : W → PW is defined as

χR(x) = {y | xRy}.
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Vice versa, if S = (S, σ) is a P -coalgebra, then we can define S[ = (S, σ3), with

σ3 = {(x, y) | y ∈ σ(x)}.

This correspondence extends to P -coalgebra models and Kripke models. Let
M = (F, V ) be a Kripke model, with F = (W,R) a Kripke frame, and V :
Prop→ PW a valuation. Then we can define M] as (F], V ]), with

V ](x) = {p ∈ Prop | x ∈ V (p)}.

Vice versa, if S = (S, σ,m) is a P -coalgebra model, we can set S[ = (S, σ3,m[),
with

m[(p) = {x ∈ S | p ∈ m(s)}.

Definition 2.15. Let S = (S, σ) and S′ = (S′, σ′) be T -coalgebras. A coalgebra
morphism from S to S′ is a function f : S → S′ such that σ′ ◦ f = Tf ◦ σ.

Let S = (S, σ,m) and S′ = (S′, σ′,m′) be T -coalgebra models. A morphism
of coalgebra models from S to S′ is a coalgebra morphism f : S → S′ such that
m′ ◦ f = m.

In cases where there can be no confusion, we will also use the term ’coalgebra
morphism’ for a morphism of coalgebra models.

Remark 2.16. Note that a morphism of P -coalgebras is the same as a bounded
morphism between Kripke frames.

Definition 2.17. Let S = (S, σ) and S′ = (S′, σ′) be T -coalgebras. For a given
s ∈ S, s′ ∈ S′, we call s and s′ behaviorally equivalent if there is a T -coalgebra
Z = (Z, ζ), together with T -coalgebra morphisms f : S → Z and g : S′ → Z
such that f(s) = g(s′).

If s and s′ are behaviorally equivalent, we write S, s ' S′, s′.

An important class of coalgebras is given by those that are finite branching.

Definition 2.18. Let T : Sets → Sets be a functor, and let S = (S, σ) be a
T -coalgebra. We call S finite branching if for all s ∈ S, we have σ(s) ∈ TωS.

We call a T -coalgebra model S = (S, σ,m) finite branching if (S, σ) is finite
branching.
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3 Relation liftings

In this chapter, we define relation liftings and give some examples for particular
functors. We show that any functor T admits a minimal lifting, and give an
explicit description of the minimal lifting for the monotone neighborhood func-
tor. Finally, we give an alternate characterization of liftings in terms of weak
distributive laws.

3.1 Relations and liftings

The fundamental notion of this thesis is relation lifting. Before defining this, we
first discuss the category of relations.

Definition 3.1. The category Rel of relations is defined as follows:

• Its objects are the sets.

• A morphism from X to Y is a relation from X to Y ; that is, a subset of
X × Y .

• If R is a morphism from X to Y and S a morphism from Y to Z, then
their composition is given by

R;S := {(x, z) | there exists a y ∈ Y such that xRySz}.

(Note the order in which we write composition of relations.) We will denote
a morphism R in HomRel(X,Y ) as R : X ( Y . We will denote the identity
relation on X with ∆X = {(x, x) | x ∈ X}, and call it the diagonal.

The category Rel has a lot of structure. We note the following facts:

Fact 3.2. 1. Rel is enriched over the category of posets. That is, for every
X the set HomRel(X,Y ) is a partial order under the ⊆-relation; and if
R,R′ : X ( Y and S, S′ : Y ( Z with R ⊆ R′ and S ⊆ S′, then
R;S ⊆ R′;S′.

2. Rel comes equipped with an operation (−)◦ : Rel→ Rel, given by

R◦ = {(y, x) | (x, y) ∈ R}.

This operation satisfies

(R◦)◦ = R, (R;S)◦ = S◦;R◦.

3. There is a canonical functor (−)gr : Sets→ Rel defined as

Xgr := X, (f : X → Y )gr := {(x, f(x)) | x ∈ X}.

We now come to the central definition.
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Definition 3.3. Let T : Sets→ Sets be any functor. A T -lifting is an assign-
ment L that associates to each relation R : X ( Y a relation LR : TX ( TY ,
satisfying the following properties:

1. If R ⊆ S, then LR ⊆ LS.

2. For all R : X ( Y and S : Y ( Z,

LR;LS ⊆ L(R;S).

3. If f : X → Y is a function, then

(Tf)gr ⊆ L(fgr) and ((Tf)gr)◦ ⊆ L((fgr)◦)

A lifting L is said to be symmetric if it satisfies

4. For all relations R : X → Y ,

L(R◦) = (LR)◦.

L is said to preserve diagonals if it satisfies

5. for all sets X,
L∆X ⊆ ∆TX .

T -liftings in this form were first introduced in [22], where they were called
monotonic relators.

There are a number of examples of T -liftings, for various functors T .

Example 3.4. 1. Any functor T : Sets→ Sets admits the trivial lifting >T ,
which maps a relation R : X ( Y to the maximal relation TX×TY . >T
is symmetric but does not in general preserve diagonals.

2. Let CQ : Sets → Sets be the constant functor with value Q. That is,
for any set X we set CQ(X) = Q, and for any function f : X → Y we
set CQ(f) = idQ. Then any preorder on Q gives rise to a corresponding
CQ-lifting, in the following way: if � is a preorder on Q, then

L�R := �

defines a CQ-lifting L�.1

For, the condition that (CQf)gr ⊆ L�(fgr) simply states that ∆Q ⊆ �,
which is equivalent to � being reflexive; and the condition that LR;LS ⊆
L(R;S) is equivalent to �;� ⊆ �, which simply states that � is transitive.

It is easy to see that L� is symmetric if and only if � is an equivalence
relation, and preserves diagonals if and only if � = ∆Q.

1In fact, it can be shown that any CQ-lifting is of the form L� for some preorder �.
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3. Let T2 = (−)2 be the ordered-pair functor. Then for a relationR : X ( Y ,
we set

T 2R = {(〈x, y〉, 〈x′, y′〉) | (x, x′) ∈ R, (y, y′) ∈ R}

This defines a T2-lifting T 2 which is symmetric and preserves diagonals.

4. The powerset functor has two natural liftings P
→

and P
←

. For a relation
R : X ( Y , we set

P
→
R := {(U, V ) | ∀u ∈ U∃v ∈ V : uRv},

P
←
R := {(U, V ) | ∀v ∈ V ∃u ∈ U : uRv}.

We also have the lifting P defined as PR = P
→
R∩P
←
R. P
→

and P
←

are neither
symmetric nor diagonal-preserving, but P is both.

5. The monotone neighborhood functor has two natural liftings M
 

and M

 

.

For a relation R : X ( Y , we setM
 
R := P

→
P
←
R,M

 

R := P
←
P
→
R. Explicitly,

this means that

(U ,V) ∈M
 
R iff ∀U ∈ U∃V ∈ V : ∀v ∈ V ∃u ∈ U : uRv,

(U ,V) ∈M

 

R iff ∀V ∈ V∃U ∈ U : ∀u ∈ U∃v ∈ V : uRv.

As in the case for the powerset, we have M̃R := M
 
R ∩ M

 
R. M

 
and

M
 

are not symmetric and do not preserve diagonals, but M̃ is symmetric
and preserves diagonals.

3.2 Barr lifting

Any weak pullback-preserving functor comes with a ‘canonical’ lifting.

Definition 3.5 (Barr lifting). Let T : Sets→ Sets be a functor. For a relation
R : X ( Y , we define T : TX ( TY

TR := {(α, β) | ∃γ ∈ TR such that (Tπ0)γ = α, (Tπ1)γ = β}

where π0 : R→ X and π1 : R→ Y are the natural projection maps.

This definition was first given in [2]. It is a general fact that T is a lifting if
and only if T preserves weak pullbacks (see the overview article [16] for a proof;
we will give the ‘if’-direction in this thesis as well). In example 3.4, we have
seen two instances of the Barr lifting: the lifting T 2 for the ordered-pair functor
T2, and the lifting P for the powerset functor.

Most of the existing literature on relation lifting for coalgebraic logic focuses
on the Barr lifting. This is because the Barr lifting satisfies stronger versions of
the properties for T -liftings.

Proposition 3.6. Let T : Sets→ Sets be a weak pullback-preserving functor.
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(i) For all functions f , we have Tfgr = (Tf)gr;

(ii) For all relations R : X ( Y and S : Y ( Z, we have

T (R;S) = TR;TS.

Proof. (i) We know that for a given relation R : X ( Y , we have

TR := (Tπgr
X )◦; (TπY )

with πX , πY the projection functions. But clearly, πX : fgr → X, which
maps (x, f(x)) to x, is a bijection, with inverse ρ : X → fgr : x 7→
(x, f(x)). Since functors preserves isomorphisms, TπX and Tρ are inverses
as well. Hence,

TR := (Tπgr
X )◦; (TπY ) = (Tρ)gr; (TπX)gr = T (πY ◦ ρ)gr = (Tf)gr

as πY ◦ ρ = f .

(ii) We set up the situation. Let X,Y, Z be sets, and let R : X ( Y and
S : Y ( Z be relations. Let P = {(x, y, z) ∈ X × Y × Z | xRySz}. Then
consider the following diagram:

P

R R;S S

X Y Z

πXY
πXZ

πY Z

πX
πY

ρX σY
σZ

ρZ

where the functions are the obvious projection functions. We note that
the ‘back’ square formed by PRSY is a pullback square.

First, assume that (α, β) ∈ TR;TS. That means that there is a γ ∈ TY
with (α, γ) ∈ TR, (γ, β) ∈ TS. By definition of T , that means that there
are ξ ∈ TR, η ∈ TS such that

(TπX)ξ = α, (TπY )ξ = γ = (TσY )η, (TσZ)η = β

13



From this, it follows that

{∗}

TR TS

TY

∗7→
ξ

∗7→
η

πY σY

commutes. Since T preserves weak pullbacks, we know that TP is a weak
pullback, and so there is a function θ : {∗} → P such that

ξ = (TπXY )θ, η = (TπY Z)θ

We may identify θ with the element θ(∗) ∈ P . Let µ = (TπXZ)θ. Then

α = (TπX)ξ

= (TπX)(TπXY )θ

= (T (πX ◦ πXY ))θ

= (T (ρX ◦ πXZ))θ

= (TρX)µ

β = (TσZ)η

= (TσZ)(TπY Z)θ

= (T (σZ ◦ πY Z))θ

= (TρZ)µ

and hence (α, β) ∈ T (R;S) by definition.

For the other inclusion, we draw a second diagram. We may pick, for
every (x, z) ∈ R;S, a yx,z ∈ Y such that xRyx,zSz; this defines a function
y : R;S → Y . Moreover, we get functions f : R;S → R and g : R;S → S
given by

f(x, z) = (x, yx,z), g(x, z) = (yx,z, z)

This yields the following diagram:

R R;S S

X Y Z

πX
πY

f

ρX

y

g

σY
σZ

ρZ

Now if (α, β) ∈ T (R;S), then there is a µ ∈ T (R;S) such that

(TρX)µ = α, (TρZ)µ = β

14



Then let ξ = (Tf)µ, η = (Tg)µ, γ = (Ty)µ. Then

(TπX)ξ = (TπX)(Tf)µ

= (TρX)µ

= α

(TπY )ξ = (TπY )(Tf)µ

= (Ty)µ

= γ

showing that (α, γ) ∈ TR. By a similar argument, (γ, β) ∈ TR. Hence, (α, β) ∈
TR;TS.

3.3 Operations on liftings

In this section, we discuss some important ways of obtaining new liftings from
old ones.

Definition 3.7. Let T : Sets→ Sets be a functor, and L a T -lifting. Then we
define the T -lifting L∼ by setting for R : X ( Y ,

L∼R := (L(R◦))
◦

It follows quickly from the definitions that L∼ is indeed a T -lifting for every
T -lifting L. We note that a lifting L is symmetric if and only if L = L∼.

Remark 3.8. In certain cases, we have separate symbols for R and R◦; in par-
ticular, ∈ versus 3 and 
 versus




. When dealing with these relations, we will
use equalities such as

(L∼∈)◦ = L 3

without comment.

The T -liftings are closed under arbitrary intersections.

Proposition 3.9. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings. For a relation R : X ( Y , we set

(
∧

Λ)R :=
⋂
L∈Λ

(LR).

Then
∧

Λ is a lifting for T .

Proof. Immediate from the definitions.

We finish with an important lemma.

Lemma 3.10. Let T : Sets→ Sets be a functor, and let L be a T -lifting.

(i) For any function f : X → Y and any relation R : Y ( Z, we have
L(fgr;R) = (Tf)gr;LR
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(ii) For any relation R : X ( Y and any function f : Z → Y , we have
L(R; (fgr)◦) = LR; ((Tf)gr)◦

(iii) Let R : Y ( Z be a relation, and f : X → Y, g : W → Z be functions.
Then

L(fgr;R; (ggr)◦) = (Tfgr);LR; (Tggr)◦

(iv) Let R : X ( Y be a relation, with X ⊆ X ′ and Y ⊆ Y ′. Let R′ : X ′( Y ′

be equal to R, with only the domain and codomain expanded. Then

LR′ ⊇ {((TιX)α, (TιY )β) | (α, β) ∈ LR}

Proof. (i) We calculate that

L(fgr;R) = ∆;L(fgr;R)

⊆ Tfgr; (Tfgr)◦;L(fgr;R)

⊆ Tfgr;L((fgr)◦);L(fgr;R)

⊆ Tfgr;L((fgr)◦; fgr;R)

= Tfgr;L(∆;R)

= Tfgr;LR

⊆ L(fgr);LR

⊆ L(fgr;R)

which shows that all inequalities are equalities, and hence L(fgr;R) =
Tfgr;LR.

(ii) We simply use part (i) to calculate

L(R; (fgr)◦) = (L∼(fgr;R◦))◦

= (Tfgr;L∼(R◦))◦

= LR; (Tfgr)◦

(iii) By points (i) and (ii), we have

L(fgr;R; (ggr)◦) = L(fgr;R); (Tggr)◦ = (Tfgr);LR; (Tggr)◦

(iv) Note that

R′ = {(ιX(a), ιY (b)) | (a, b) ∈ R} = (ιgr
X)◦;R; (ιgr

Y )

and therefore

LR′ = L ((ιgr
X)◦;R; (ιgr

Y ))

⊇ L(ιgr
X)◦;LR;L(ιgr

Y )

⊇ T (ιgr
X)◦;LR;T (ιgr

Y )

= {((TιX)α, (TιY )β) | (α, β) ∈ LR}
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We will often find ourselves in the following situation:

Example 3.11. Take Φ ∈ TωX, and let B = Base(Φ). Take Φ′ ∈ TB with
Φ = (Tι)Φ′. By an inductive argument, we know (Φ′, α) ∈ L(R�B), and hence
by 3.10(iv) we know that (Φ, α) ∈ LR.

We will usually omit the intermediate steps, identifying Φ and Φ′, and ignor-
ing the distinction between LR and L(R�B).

3.4 Minimal liftings

Proposition 3.9 implies that any functor T has a minimal lifting T̃ . The following
facts follow immediately from the minimality of T̃ .

Proposition 3.12. Let T : Sets → Sets be a functor. Let T̃ be the minimal
T -lifting.

(i) T̃ is symmetric.

(ii) T admits a diagonal-preserving lifting L if and only if T̃ preserves diago-
nals.

Proof. (i) Note that T̃ ∼ is a T -lifting, so T̃ ≤ T̃ ∼. But of course, (−)
∼

pre-

serves inclusions, so T̃ ∼ ≤ (T̃ ∼)
∼

= T̃ . Hence we have both inequalities,

showing T̃ = T̃ ∼, which means that T is symmetric.

(ii) The right-to-left direction is trivial. For the left-to-right direction, let L
be a T -lifting that preserves diagonals. Then we know that for any set X,

T̃∆X ⊆ L∆X ⊆ ∆TX

showing that T̃ preserves diagonals.

In general, it is not easy to give an explicit description of the minimal lifting
T̃ . In the case of weak pullback-preserving functors, however, we get a fortunate
characterization.

Proposition 3.13. Let T : Sets→ Sets be a weak pullback-preserving functor.
Then the minimal T -lifting T̃ is equal to T .

Proof. Let L be any T -lifting, and let R : X ( Y be a relation. Then R, being
a subset of X × Y , comes with two projections πX : R → X and πY : R → Y .
Then

(x, y) ∈ R iff ∃p ∈ R : πX(p) = x, πY (p) = y iff (x, y) ∈ (πgr
X )◦; (πgr

Y ),

so R = (πgr
X )◦; (πgr

Y ).
Note also that

TR = {(α, β) | ∃ρ ∈ TR : TπX(ρ) = α, TπY (ρ) = β} = (Tπgr
X )◦; (Tπgr

Y ).
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So, we conclude that

LR = L((πgr
X )◦; (πgr

Y ))

⊇ L(πgr
X )◦;L(πgr

Y )

⊇ (Tπgr
X )◦; (Tπgr

Y )

= TR

which shows that T is minimal.

The monotone neighborhood functor The astute reader may recognise
the notation T̃ in the M-lifting M̃. Indeed, we have the following proposition:

Proposition 3.14. The minimal M-lifting is the lifting M̃ from example 3.4.

In light of this proposition, M̃ really is the ‘canonical’ M-lifting. The proof
is not quite straightforward. We proceed in two steps: First, we show that M̃R
is minimal whenever R is a total and surjective relation. Then, we reduce the
general case to this specific case.

Lemma 3.15. Let R : X ( Y be a total surjective relation. Then M̃R ≤ LR
for all liftings L.

In [11], a similar statement appears as lemma 4.7.

Proof. Consider the two projection morphisms πX : R → X and πY : R → Y .
Since R is total and surjective, both these functions are surjective.

We claim that M̃R = (Mπgr
X )◦;Mπgr

Y . The inequality ≥ follows from R =
(πgr
X )◦;πgr

Y .

For ≤, let (U, V ) ∈ M̃R. Then we set

W0 := {{(x, y) ∈ R | x ∈ u} | u ∈ U}
W1 := {{(x, y) ∈ R | y ∈ V } | v ∈ V }
W := 〈W0 ∪W1〉

We claim that MπX(W ) = U . For this, we need to show that (1) if u ∈ U ,
then π−1

X (u) ∈W , and (2) if π−1
X (u) ∈W , then u ∈ U .

(1) Clearly, if u ∈ U , then π−1
X (u) = {(x, y) ∈ R | x ∈ u} ∈ W , so π−1

X (u) ∈
W .

(2) Assume π−1
X (u) ∈ W . There are two cases: (i) there is a u′ ∈ U with

{(x, y) ∈ R | x ∈ u′} ⊆ π−1
X (u), or (ii) there is a v ∈ V with {(x, y) ∈ R |

y ∈ v′} ⊆ π−1
X (u).

(i) In this case, we know that πX [{(x, y) ∈ R | x ∈ u′}] ⊆ πX(π−1
X (u)).

But since R was total, we know that πX [{(x, y) ∈ R | x ∈ u′}] = u′

and πX [π−1(u)] = u. So u′ ⊆ u, and hence u ∈ U .
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(ii) Clearly, πX [{(x, y) ∈ R | y ∈ v}] = {x | ∃y ∈ v : xRy}. Since

(U, V ) ∈ M̃R, there is a u′ ∈ U such that for all x ∈ u′, there is a
y ∈ v with xRy. But this just says that u′ ⊆ πX [{(x, y) ∈ R | y ∈ v}].
So we conclude that there is a u′ ∈ U with

u′ ⊆ πX [{(x, y) ∈ R | y ∈ v}] ⊆ πX(π−1
X (u)) = u

and hence u ∈ U .

So in both cases, we have u ∈ U , as desired.

The proof that MπY (W ) = V is completely symmetrical; so, we can conclude
that (U, V ) ∈ (Mπgr

X )◦;Mπgr
Y .

Now, let L be any lifting. Then

LR = L((πgr
X )◦;πgr

Y ) ≥ L(πgr
X )◦;Lπgr

Y ≥ (Mπgr
X )◦;Mπgr

Y = M̃R

With this lemma, we can prove the proposition.

Proof. Let R : X ( Y be any relation. Let X ′ be the domain of R and Y ′ the
range of R. Then we define X∗ = X ∪ {∗}, Y∗ = Y ∪ {∗} and

R∗ = R ∪ {(x, ∗) | x ∈ X \X ′} ∪ {(∗, y) | y ∈ Y \ Y ′} ∪ {(∗, ∗)}

Then R∗ : X∗( Y∗ is total and surjective.

Let ιX : X → X∗ and ιY : Y → Y∗ be the natural inclusion functions. First,
we note that R = ιgr

X ;R∗; (ιgr
Y )◦ The inequality ≤ is clear, since R ⊆ R∗. For ≥,

notice that ∗ is not in the range of either ιX or ιY .
Now by lemma 3.10, we know that for any lifting L,

LR = (Mιgr
X);LR∗; (Mιgr

Y )◦.

So we can calculate that

LR =Mιgr
X ;LR∗; (Mιgr

Y )◦

≥Mιgr
X ;M̃R∗; (Mιgr

Y )◦ by lemma 3.15

= M̃R

We conclude that M̃ is minimal.
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3.5 Lifted elements

In many situations, we will be concerned with the relation L∈: TX ( TPX.

Definition 3.16. Let T : Sets → Sets be a functor, and let L be a T -lifting.
Let Φ ∈ TPX. We define the set λL(Φ) of lifted elements of Φ as

λL(Φ) := {α ∈ TX | (α,Φ) ∈ (L∈X)}

where ∈X : X ( PX is the element relation.

Lemma 3.17. Let T : Sets → Sets be a weak pullback-preserving functor.

Let X be a set, take and Φ ∈ TωPωX. Then for all α ∈ λT (Φ), we have that
α ∈ TωX, and Base(α) ⊆

⋃
Base(Φ).

Proof. Let B =
⋃

Base(Φ), and let f : B → X be the inclusion. We prove
both statements by showing that α ∈ Tf [B]. Note that Φ ∈ TPf [PB] since
Base(Φ) ⊆ PB. So, there is a Φ′ ∈ PB with TPf(Φ′) = Φ. We see that

(α,Φ′) ∈ T∈; (TPfgr)◦ = T (∈; (Pfgr)◦).

But x ∈ Pf(A) for some A ∈ PB implies that x ∈ f [B]. Vice versa, if x ∈
Tf [B], then x ∈ Pf({x}). So, ∈; (Pfgr)◦ = (fgr)◦;∈. Hence,

(α,Φ′) ∈ T ((fgr)◦;∈) = (Tfgr)◦;T∈

and we see that α ∈ imTf , which means that Base(α) ⊆ B as desired.

3.6 Simulations and bisimulations

In this section we will examine notions of (bi)similarity based on relation liftings.

Definition 3.18. Let T be a functor, and let L be a T -lifting. Let S = (S, σ,m)
and S′ = (S′, σ′,m′) be T -coalgebra models. A L-simulation from S to S′ is a
relation R : S ( S′ with the following properties:

atom: If sRs′, then m(s) = m(s′);

unfolding: If sRs′, then (σ(s), σ′(s′)) ∈ LR.

If there is an L-simulation R from S to S′ with sRs′, then we write S, s→L S′, s′.
A L-bisimulation from S to S′ is a relation R : S ( S′ such that R is an

L-simulation from S to S′ and R◦ is an L-simulation from S′ to S. If there is an
L-bisimulation R from S to S′ with sRs′, then we write S, s↔L S′, s′.

Remark 3.19. The usual definition of simulation requires the weaker property
weak-atom, which states that if sRs′, then m(s) ⊆ m(s′). The reason for our
deviation is that we want to have the following equivalences:

(i) R : S( S′ is an L-simulation if and only if R◦ is an L∼-simulation;
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(ii) R : S ( S′ is an L-bisimulation if and only if it is both an L-simulation
and an L∼-simulation;

(iii) R : S( S′ is an L-bisimulation if and only if it is an (L∩L∼)-simulation.

Each of these equivalences would fail if the condition atom were replaced with
weak-atom

The following proposition can be seen as justifying the defining properties of
T -liftings.

Proposition 3.20. Let T be a functor, let L be a T -lifting, and let S,S′,S′′ be
T -coalgebra models.

(i) If f : S→ S′ is a coalgebra morphism, then fgr is an L-bisimulation.

(ii) If {Ri | i ∈ I} is a set of relations Ri : S ( S′, such that each R − i is
an L-simulation, then

⋃
i∈I Ri : S ( S′ is an L-simulation.

(iii) If R : S ( S′ and R′ : S′ ( S′′ are L-simulations, then R;R′ is an
L-simulation.

Proof. (i) Since f is a coalgebra morphism, the property atom is satisfied.
For the property unfolding, note that (s, s′) ∈ fgr if and only if s′ = f(s).
So, we see that if (s, f(s)) ∈ fgr, then

(σ(s), σ′(f(s))) = (σ(s), T f(σ(s)))

∈ Tfgr

⊆ L(fgr)

by assumption on L.

So fgr is an L-simulation. Since L was arbitrary, we also have that fgr is
an L∼-simulation; so by point (ii) in remark 3.19, we know that fgr is an
L-bisimulation.

(ii) Assume (s, s′) ∈
⋃
i∈I Ri. Then there is an i ∈ I with (s, s′) ∈ Ri. atom

is clearly satisfied. For unfolding, we see that

(σ(s), σ′(s′)) ∈ LRi ⊆ L(
⋃
i∈I

Ri)

since L preserves the ordering of relations.

(iii) Assume (s, s′′) ∈ R;R′. Then there is s′ such that (s, s′) ∈ R and (s′, s′′) ∈
R′. Then by assumption, we have

m(s) = m′(s′) = m′′(s′′)

showing that atom is satisfied.
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For unfolding, we know that (σ(s), σ′(s′)) ∈ LR and (σ′(s′), σ′′(s′′)) ∈
LR′; and therefore

(σ(s), σ′′(s′′)) ∈ LR;LR′ ⊆ L(R;R′)

Proposition 3.21. Let T be a functor, let L be a T -lifting, and let S,S′ be
T -coalgebra models. Then →L : S( S′ is an L-simulation; moreover, it is the
greatest such.

Proof. By definition, →L is the union of all L-simulations from S to S′. So
certainly, if R : S→ S′ is an L-simulation, then R ≤ →L .

By point (ii), we know that L-simulations are closed under union; hence →L

is an L-simulation, and moreover it is the greatest such.

3.7 Relation liftings and distributive laws

In this section, we give an alternative characterization of relation lifting in terms
of distributive laws. Distributive laws at their most general are simply natural
transformations FG ⇒ GF for two functors F,G. They can play a role in
defining interactions between algebraic and coalgebraic structure. In particular,
they are used in the study of coinduction and corecursion [3].

Definition 3.22. Let C be a category, and let T : C → C be a monad, with
unit η : 1C → T and counit µ : T 2 → T . Then define the Kleisli category CT to
have the same objects as C; set a morphism X →µ Y in CT to be a morphism
X → TY in C. Morphisms are composed via

g ◦µ f = µ ◦ Tg ◦ f

We remark that Rel is equivalent to the Kleisli category SetsP of the pow-
erset monad on Sets. The unit for P is the singleton map η : X → PX
given by η(x) = {x}. The counit is the union map µ : PPX → PX given by
µ(A) =

⋃
A∈AA.

We also note that, like Rel, the category SetsP is enriched over Poset by
setting for f, g : X →µ Y that f ≤ g iff for all x ∈ X, we have f(x) ⊆ g(x).
Moreover, SetsP has a ‘transposition’ operation (−)[: for f : X → PY , we set
f [ : Y → PX as

f [(y) = {x ∈ X | y ∈ f(x)}.

We have already seen the operation (−)[ in example 2.14.

It is generally known that if a functor T preserves weak pullbacks, then there
is a distributive law TP ⇒ PT ; namely, we can map Φ ∈ TP to its set of
lifted elements λT̄ (Φ) (see definition 3.16). There is also a partial converse; J.
Beck gave a general correspondence between distributive laws TM ⇒MT , and
functors CM → CM acting as T on objects [4]. Applied to P : Sets → Sets,
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we get from distributive law TP ⇒ PT a functor Rel → Rel; however, these
are not required to be monotone (see [16] for a discussion).

For our purposes, a natural transformation is not exactly the right notion;
in particular, we are not interested in strict functoriality L(R;S) = LR;LS,
but only in ‘weak functoriality’ L(R;S) ⊇ LR;LS. Hence, we introduce weak
distributive laws λ : TP  PT :

Definition 3.23. Let T : Sets→ Sets be any functor. A weak distributive law
for T is a collection of maps λ− : TP (−)→ PT (−), satisfying:

(Monotonicity) For any two functions f, g : X → PY , if f ≤ g, then

λY ◦ Tf ≤ λY ◦ Tg

(Weak naturality) For any function f : X → PY , we have

PTf ◦ λX ≤ λPY ◦ TPf

(Weak monadicity) For any Z, we have

µTZ ◦ PλZ ◦ λPZ ≤ λZ ◦ TµZ and λZ ◦ TηZ ≥ ηTZ

There are also the optional properties

(Weak extensionality) For any Z,

λZ ◦ TηZ ≤ ηTZ

(Symmetry) For any map f : X → PY ,

(λY ◦ Tf)[ = λX ◦ T (f [)

As mentioned earlier, we get a weak distributive law λL for each lifting L, as
defined in 3.16. We also get a lifting L from a weak distributive law.

Definition 3.24. Let λ : TP  PT be a weak distributive law. For a given
relation R : X ( Y , we define LλR as

LλR := {(α, β) | β ∈ λY ◦ TχR(α)}

where χR : X → PY is the characteristic function of R given by χR(x) = {y |
xRy}.

It is not yet clear that these operations do result in a distributive law and a
T -lifting respectively. This will be the main theorem of this section.

Theorem 3.25. Let T : Sets→ Sets be a functor.

(i) If L is a T -lifting, then λL is a weak distributive law. Moreover, if L
preserves diagonals then λL is weakly extensional, and if L is symmetric,
then λL is symmetric.
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(ii) If λ is a weak distributive law, then Lλ is a T -lifting. Moreover, if λ is
weakly extensional, then Lλ preserves diagonals, and if λ is symmetric,
then Lλ is symmetric.

(iii) The operations L 7→ λL
∼

and λ 7→ Lλ are inverse to each other.

There is a slight disharmony in the definitions of Lλ and λL, seen in point
(iii). It is interesting to note that we often consider the relation L∼∈, while
studying the behavior of L; we will see this again in the definitions 4.12 and
4.15.

Proof. (i) First, let L be any T -lifting. We check that λL satisfies all the
conditions.

(Monotonicity) Let f, g : X → PY with f ≤ g. Then

a ∈ λLY ◦ Tf(Φ) ⇐⇒ (a, Tf(Φ)) ∈ L(∈PY )

⇐⇒ (a,Φ) ∈ L(∈PY ); (Tfgr)◦

⇐⇒ (a,Φ) ∈ L(∈PY ; (fgr)◦)

=⇒ (a,Φ) ∈ L(∈PY ; (ggr)◦)

⇐⇒ · · · ⇐⇒ a ∈ λLY ◦ Tg(Φ)

(Weak naturality) Let f : X → PY be a function. Note that

((fgr)◦;∈X) ⊆ (∈PY ; (Pfgr)◦) ,

since if (y,A) ∈ (fgr)◦;∈X , then there is an x ∈ A with y = f(x), so
y ∈ Pf(A). We can now calculate that

(Tfgr)◦;L∈X ⊆ L((fgr)◦;∈X)

⊆ L(∈PY ; (Pfgr)◦)

= L∈PY ; (TPfgr)◦

But we know that

a ∈ PTf ◦ λLX(Φ) ⇐⇒ ∃a′ : a = Tf(a′) and a′ ∈ λLX(Φ)

⇐⇒ ∃a′ : a = Tf(a′) and (a′,Φ) ∈ L∈X
⇐⇒ (a,Φ) ∈ (Tfgr)◦;L∈X
=⇒ (a,Φ) ∈ ∈PY ; (TPfgr)◦

⇐⇒ a ∈ λLPY ◦ TPf(Φ)

So PTf ◦ λLX ≤ λLPY ◦ TPf .

(Weak monadicity) Let Γ ∈ TPPZ. Then

µ ◦ PλZ ◦ λPZ(Γ) = {z | ∃ξ : (z, ξ) ∈ L∈ and (ξ,Γ) ∈ L∈}
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Now take z ∈ µ ◦ PλZ ◦ λPZ(Γ); then (z,Γ) ∈ L∈;L∈ ⊆ L(∈;∈).

Next, note that
∈; (µgr)◦ = ∈;∈,

since (x,A) ∈ (∈; (µgr)◦) if and only if x ∈
⋃
A∈AA if and only if

there is A ∈ A with x ∈ A if and only if (x,A) ∈ (∈;∈). So we see
that (z,Γ) ∈ L(∈;∈) = L(∈; (µgr)◦) = L∈; (Tµgr)◦, which says that
z ∈ λLZ ◦ TµZ(Γ), as desired.

For the second inequality, we need to show that if α ∈ TZ, then
α ∈ λLZ(TηZ(α)). This is true if and only if (α, TηZ(α)) ∈ L∈. But
this is clear: we have

(α, TηZ(α)) ∈ Tηgr
Z ⊆ Lη

gr
Z ⊆ L∈Z ,

since ηZ ⊆ ∈Z ;

(Weak extensionality) Assume that L preserves diagonals. We simply
note that ∈; (ηgr

Z )◦ = ∆Z . So, we know that if β ∈ λLZ ◦TηZ(α), then

(β, α) ∈ L∈; (Tηgr
Z )◦ = L(∈; (ηgr

Z )◦) = L∆Z ⊆ ∆TZ .

So β = α, so we see that β ∈ {α} = ηTZ(α).

(Symmetry) Assume that L is symmetric. Then for a function f : X →
PY , and α ∈ TY , we have

β ∈ (λLY ◦ Tf)[(α) ⇐⇒ α ∈ λLY ◦ Tf(β)

⇐⇒ (α, Tf(β)) ∈ (L∈)

⇐⇒ (α, β) ∈ L∈; (Tfgr)◦

⇐⇒ (α, β) ∈ L(∈; (fgr)◦) by lemma 3.10.(ii)

⇐⇒ (β, α) ∈ L(fgr;3)

⇐⇒ (β, α) ∈ L(∈; (f [)◦) since f(x) 3 y iff x ∈ f [(y)

⇐⇒ (β, α) ∈ L∈; (T (f [)gr)◦

⇐⇒ (β, T (f [)(α)) ∈ L∈
⇐⇒ β ∈ λLX ◦ T (f [)(α)

showing that
(λY ◦ Tf)[ = λX ◦ T (f [)

(ii) Let λ : TP  PT be a weak distributive law.

We first need that if S ⊆ R, then Lλ(S) ⊆ Lλ(R). But this follows directly
from monotonicity of λ, and the fact that S ⊆ R if and only if χS ≤ χR.
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Next, we show that Lλ(fgr) ≥ (Tf)gr for all functions f : X → Y . Let f
be any function. Then χfgr = ηY ◦ f . Let α ∈ TX. Then we have

Tf(α) ∈ ηTY ◦ Tf(α)

⊆ λY ◦ TηY ◦ Tf(α)

= λY ◦ Tχfgr(α),

since χfgr(x) = {y | (x, y) ∈ fgr} = {f(x)} = ηY ◦ f . We now have that
(α, Tf(α)) ∈ Lλ(fgr); since α was arbitrary, we conclude that (Tf)gr ≤
Lλ(fgr).

For the other inclusion, we investigate Tχ(fgr)◦(Tf(α)). This is equal to
T (χ(fgr)◦ ◦f)(α). But χ(fgr)◦ ◦f(x) = {x′ | f(x′) = f(x)} ⊇ {x} = ηX(x).
Hence,

λX ◦ Tχ(fgr)◦(Tf(α)) ⊇ λX ◦ T (ηX)(α) ⊇ ηTX(α) 3 α

and hence we have that (Tf(α), α) ∈ Lλ((fgr)◦) by definition of Lλ. Since
α was arbitrary, we conclude that (Tfgr)◦ ≤ Lλ((fgr)◦).

Now, we show that Lλ(R;S) ≥ Lλ(R);Lλ(S). To show this, it suffices to
prove that

λZ ◦ TχR;S ≥ µTZ ◦ P (λZ ◦ TχS) ◦ λY ◦ TχR,

this second expression being the characteristic function of Lλ(R);Lλ(S).
We note that χR;S = µZ ◦ PχS ◦ χR. And so

µTZ ◦ P (λZ ◦ TχS) ◦ λY ◦ TχR = µTZ ◦ PλZ ◦ PTχS ◦ λY ◦ TχR
≤ µTZ ◦ PλZ ◦ λPZ ◦ TPχS ◦ TχR by weak naturality

≤ λZ ◦ TµZ ◦ TPχS ◦ TχR by weak monadicity

= λZ ◦ T (µZ ◦ PχS ◦ χR)

= λZ ◦ T (χR;S)

The above chain of (in)equalities can be represented by the diagram below:

TX TPZ PTZ

TPY TPPZ PPTZ

PTY PTPZ PPTZ

TχR;S

TχR

λZ

TPχS

λY

TµZ

λPZ

PλZ◦λPZ

µTZ≥

PTχS

≤
PλZ

=

=

The top left square follows from the identity χR;S = µZ ◦ PχS ◦ χR. The
top right square is the weak monadicity property. The bottom left square
is the weak naturality property.
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Next, we show that if λ is weakly extensional, then Lλ preserves diagonals.
But this is clear; if λ is weakly extensional, then

(α, β) ∈ Lλ(∆X) =⇒ β ∈ λX ◦ Tχ∆X
(α)

⇐⇒ β ∈ λX ◦ TηX(α)

=⇒ β ∈ ηTZ(α)

⇐⇒ β = α

Finally, we show that if λ is symmetric, then Lλ is symmetric. We calcu-
late

(x, y) ∈ Lλ(R◦) ⇐⇒ y ∈ λY ◦ TχR◦(x)

⇐⇒ y ∈ λY ◦ Tχ[R(x)

⇐⇒ y ∈ (λX ◦ TχR)[(x)

⇐⇒ x ∈ λX ◦ TχR(y)

⇐⇒ (y, x) ∈ LλR
⇐⇒ (x, y) ∈ (LλR)◦

where we use that χR◦ = χ[R.

(iii) This is an easy verification. First, let L be a T -lifting, and let R : X ( Y
be a relation. Then

(α, β) ∈ Lλ
L∼

R ⇐⇒ β ∈ λL
∼

◦ TχR(α)

⇐⇒ (β, (TχR)α) ∈ (L∼∈)

⇐⇒ (β, α) ∈ (L∼∈); (Tχgr
R )◦

⇐⇒ (β, α) ∈ L∼(∈; (χgr
R )◦) by lemma 3.10.(ii)

⇐⇒ (α, β) ∈ L(χgr
R ;3) by definition of (−)

∼

⇐⇒ (α, β) ∈ LR

since χgr
R ;3= R. Hence, Lλ

L∼

= L.

Second, let λ be a weak distributive law, and let Φ ∈ TPX. Then for all
α ∈ TX, we have

α ∈ λ(Lλ)
∼

X (Φ) ⇐⇒ (α,Φ) ∈ ((Lλ)
∼∈)

⇐⇒ (Φ, α) ∈ (Lλ3)

⇐⇒ α ∈ λX ◦ Tχ3(Φ) by definition of Lλ

⇐⇒ α ∈ λX ◦ T idPX(Φ)

⇐⇒ α ∈ λX(Φ)

since χ3(U) = {x | x ∈ U} = U for all U ∈ PX, and hence χ3 = idPX .
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One consequence of this proposition is that T -liftings are uniquely defined by
their action on the ∈-relation. This can also be seen directly: we have that

LR = L(∈; (χgr
R◦)
◦) = L∈; (Tχgr

R◦)
◦

for any relation R.
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4 Coalgebraic logic

The purpose of this chapter is to develop a family of logics for coalgebras based
on relation lifting. We will relate these logics to modal logic and monotone
modal logic, and give a number of logical laws that govern the interaction be-
tween the various logical symbols.

Throughout this thesis, we take a fixed set Prop of proposition letters.

4.1 The ∇-modalities

Definition 4.1. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings. We define the set LT (Λ) inductively as follows:

• If p ∈ Prop, then p ∈ LT (Λ);

• If a ∈ LT (Λ), then ¬a ∈ LT (Λ);

• If A ∈ PωLT (Λ), then
∨
A,
∧
A ∈ LT (Λ);

• If α ∈ TωLT (Λ) and L ∈ Λ, then

∇Lα,∆Lα ∈ LT (Λ)

A symbol of the form ∇L or ∆L will be called a modality. We will use the
symbol ♥ to stand in for an arbitrary modality. If p is a proposition letter, a
formula of the form p or ¬p will be called a literal.

Remark 4.2. A cautious reader may have some worries about the above ‘in-
ductive’ definition. After all, the inductive case for the modalities ranges over
elements of TωLT (Λ). Do we not need to have access to the entire set LT (Λ)
for this to be well-defined?

Indeed, take for instance the monotone neighborhood functor M. Since any
(non-empty) object α ∈ MωLM(Λ) contains the entire set LM(Λ), we cannot
give such an object before knowing what LM(Λ) is in its entirety; and hence
the undertaking seems circular.

There are two ways to waylay this doubt. The first is to note that there is no
problem if T preserves inclusions. There is no issue with the Booleans, since in
order to know what a ‘finite subset of LT (Λ)’ is, we do not need to have access
to the entire set. Similarly, if for a finite subset B ⊆ LT (Λ), the set TB is a
subset of LT (Λ), an element of TωLT (Λ) just is an element of TB for a finite
subset B of LT (Λ), and so an inductive definition is appropriate.

It so happens that every finitary functor Sets → Sets is equivalent to one
that preserves inclusions. And so, rather than work with Tω itself, we could
replace it with an equivalent functor that preserves inclusions.2

2This is essentially what we do forM, by giving elements ofMωLM(Λ) in tems of a finite
set of generators.
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An alternative route is explored in the appendix, where the functor is re-
tained, but the inductive construction is replaced by a colimit construction.

In either case, we are justified in arguing as though the set LT (Λ) was in-
ductively defined. In particular, we can use induction on the complexity of
formulas, both in definitions and in proofs.

Remark 4.3. We will often explicitly treat ¬,
∧
,
∨

as functions. In particular,
we will often apply the functor T to them, yielding the expressions

(T¬), (T
∧

), (T
∨

).

Notation 4.4. In the case for the powerset functor, we will write

♥
P
→ =: ♥

→
, ♥

P
← =: ♥

←
;

similarly, for the monotone neighborhood functor, we will write

♥M
 =: ♥

 
, ♥

M

 =: ♥

 

.

If L = T for a weak pullback-preserving functor T , we will omit the subscript,
and simply write ∇,∆ for ∇T ,∆T .

Definition 4.5. For a ∈ LT (Λ), we inductively define the set of subformulas of
a as

Sfor(p) := {p}
Sfor(¬a) := {¬a} ∪ Sfor(a)

Sfor(�A) := {�A} ∪
⋃
a∈A

Sfor(a) � ∈ {
∨
,
∧
}

Sfor(♥Lα) := {♥Lα} ∪
⋃

a∈Base(α)

Sfor(a) ♥ ∈ {∇,∆}

We define the set of variables occurring in a as Var(a) := Sfor(a) ∩ Prop; that
is, the set of proposition letters that are subformulas of a.

Definition 4.6. A formula a ∈ LT (Λ) is interpreted on a coalgebra model
S = (S, σ,m) as follows:

S, s 
 p iff p ∈ m(s)
S, s 
 ¬a iff S, s 1 a
S, s 


∧
A iff S, s 
 a for all a ∈ A

S, s 

∨
A iff S, s 
 a for some a ∈ A

S, s 
 ∇Lα iff (σ(s), α) ∈ L 

S, s 
 ∆Lα iff (σ(s), α) /∈ L 1

This is a well-defined inductive definition, since in each clause the definition
of S, s 
 a depends only on 
�S×(Sfor(a)\{a}).
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This ∇-logic was first introduced by L. Moss for specifically the Barr lifting in
[19]. In [1], A. Baltag generalized this method to general liftings. The modalities
used there are denoted�∞ and ♦∞; we have chosen to use∇ and ∆ to emphasize
the connection with the original Moss logic.

We finish this preliminary section with a definition of semantic consequence.

Definition 4.7. Let a, a′ ∈ LT (Λ) be formulas. We say that a′ is a consequence
of a if for all T -coalgebra models S and all s ∈ S, we have

S, s 
 a⇒ S, s 
 a′

If a′ is a consequence of a, we write a � a′.
If a � a′ and a′ � a, then we call a and a′ equivalent, and write a ≡ a′.

4.2 Modal logic

In this section, we compare the logic LT (Λ) with some known modal logics,
which are interpreted on certain coalgebra models.

Classical modal logic As noted earlier, a P -coalgebra model is essentially a
Kripke model. There is a standard logical language for reasoning about Kripke
models.

Definition 4.8. We define the set L�,♦ of modal formulas as follows:

• If p is a proposition letter, then p is a modal formula.

• If ϕ is a modal formula, then ¬ϕ is a modal formula.

• If ϕ and ψ are modal formulas, then ϕ∧ψ and ϕ∨ψ are modal formulas.

• If ϕ is a modal formula, then �ϕ and ♦ϕ are modal formulas.

Modal formulas are interpreted on coalgebra models as follows:

Definition 4.9. Let S = (S, σ,m) be a P -coalgebra model, and s ∈ S. Then
for a modal formula ϕ, we define by induction when S, s 
K.

S, s 
K p iff p ∈ m(s)
S, s 
K ¬ϕ iff S, s 1K ϕ
S, s 
K ϕ ∧ ψ iff S, s 
K ϕ and S, s 
K ψ
S, s 
K ϕ ∨ ψ iff S, s 
K ϕ or S, s 
K ψ
S, s 
K �ϕ iff ∀t ∈ σ(s),S, t 
K ϕ
S, s 
K ♦ϕ iff ∃t ∈ σ(s),S, t 
K ϕ

The definition of the modalities can also be phrased in terms of relation
lifting:

S, s 
K �ϕ iff (σ(s), {ϕ}) ∈ (P
→

K)

S, s 
K ♦ϕ iff (σ(s), {ϕ}) ∈ (P
←

K)
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From this, it is easy to see that the modalities � and ♦ are expressible in terms
of ∇
→

and ∇
←

respectively.
Perhaps surprisingly, they can also be expressed in terms of ∆

←
and ∆

→
respec-

tively. For, note that

(U, {x}) ∈ P
→
R iff for all u ∈ U, uRx

iff there is no u ∈ U with uRcx

iff not for all x ∈ {x} there is u ∈ U with uRcx

iff (U, {x}) /∈ P
←

(Rc)

and similarly
(U, {x}) ∈ P

←
R iff (U, {x}) /∈ P

→
(Rc)

This tells us that for singletons {p}, we have the equivalences

�p ≡ ∇
→
{p} ≡ ∆

←
{a}, ♦p ≡ ∇

←
{a} ≡ ∆

→
{a}

We see that we can regard the classical modalities as highly restricted ∇-
modalities. It would therefore seem that LP (P

→
, P
←

) is more expressive. This
is not the case however. For, we have that

S, s 
 ∇
→
{p1, . . . , pn} iff (σ(s), {p1, . . . , pn}) ∈ (P

→

)

iff ∀t ∈ σ(s).∃pi : S, t 
 pi

iff ∀t ∈ σ(s) : S, t 

n∨
i=1

pi

iff S, s 
K �(

n∨
i=1

pi)

and

S, s 
 ∇
←
{p1, . . . , pn} iff (σ(s), {p1, . . . , pn}) ∈ (P

←

)

iff ∀pi.∃t ∈ σ(s) : S, t 
 pi
iff ∀pi : S, s 
K ♦pi

iff S, s 
K

n∧
i=1

♦pi

showing that LT (P
→
, P
←

) and L�,♦ are equally expressive on P -coalgebras.

Definition 4.10. Let S = (S, σ,m) be a P -coalgebra model. We call a modal
formula ϕ valid on S if for all s ∈ S, we have S, s 
K ϕ.

We write K for the set of modal formulas valid on all P -coalgebra models.
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Monotone modal logic The language L�,♦ can also be interpreted on M-
coalgebras [11]; this leads to a logic called monotone modal logic.

Definition 4.11. Let S = (S, σ,m) be an M-coalgebra model. Then for a
modal formula ϕ, we define by induction when S, s 
M ϕ.

S, s 
M p iff p ∈ m(s)
S, s 
M ¬ϕ iff S, s 1M ϕ
S, s 
M ϕ ∧ ψ iff S, s 
M ϕ and S, s 
M ψ
S, s 
M ϕ ∨ ψ iff S, s 
M ϕ or S, s 
M ψ
S, s 
M �ϕ iff ∃A ∈ σ(s) : ∀t ∈ A : S, t 
M ϕ
S, s 
M ♦ϕ iff ∀A ∈ σ(s) : ∃t ∈ σ(s),S, t 
M ϕ

Here, too, the languages L�,♦ and LM(M
 
,M

 

) are interdefinable.
It is not hard to see that

♦p ≡ ∇
 
〈{p}〉, �p ≡ ∇

 

〈{p}〉

In the other direction, we see that for α ∈MωProp,

S, s 
M ∇

 

α iff ∀A ∈ α∃U ∈ σ(s) : ∀t ∈ U∃a ∈ A : S, t 
M a

iff ∀A ∈ α∃U ∈ σ(s) : ∀t ∈ U : S, t 

∨
A

iff ∀A ∈ α : S, s 
 �
∨
A

iff S, s 

∧
A∈α
�
∨
A

showing that ∇

 

is definable in terms of L�,♦.

∇
 

is more difficult; in [21] an explicit translation is given. This uses some
operations on MX that would take us too far to define here. Instead, we will
see in section 4.3 that ∇

 
can be defined in terms of ∆

 
, which in term can be

defined in terms of ∇

 

.

4.3 Dualities and distributive laws

In classical modal logic, a number of equivalences between formulas are known.
The most relevant to this thesis are

Duality: �ϕ ≡ ¬♦¬ϕ

Distribution: �(ϕ ∧ ψ) ≡ �ϕ ∧�ψ

Analogues of these laws are known for the modality ∇T for a weak pull-back
preserving functor (see e.g. [5]). In this section, we prove similar laws for the
languages LT (Λ).
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Duality

Definition 4.12. For a given a ∈ TωLT (Λ) and lifting L ∈ Λ, define

DLα := {Φ ∈ TP Base(α) | (α,Φ) /∈ (L∼ /∈)}

SLα := {(T
∧

)Φ | Φ ∈ DLα}

DLα := {(T
∨

)Φ | Φ ∈ DLα}.

In [5], SLα and DLα are called L(α) and R(α) respectively, for ‘left’ and
‘right’. Since in this thesis the letter L already plays many roles, we have opted
for S and D instead, referring to ‘sinister’ and ‘dexter’ (which are latin for ‘left’
and ‘right’).

Example 4.13. We calculate DL(α), SL(α) and DL(α) for some specific functors.

(i) Let T = T2 be the ordered-pair functor X 7→ X2, and let L = T 2 be the
Barr lifting. Then let α = 〈a, b〉 be any element of T2LT2

(T 2). We see
that Base(α) = {a, b}. Now for a Φ = 〈A,B〉 ∈ T2P Base(α), we have
Φ ∈ DT 2

(α) if (α,Φ) /∈ (T /∈).

By definition, (〈a, b〉, 〈A,B〉) ∈ (T 2 /∈) if and only if a /∈ A and b /∈ B. So
Φ ∈ DT 2

(α) if a ∈ A or b ∈ B.

From this, we see that an element of SLα is of the form 〈
∧
A,
∧
B〉 with

a ∈ A or b ∈ B. An element of DLα is of the form 〈
∨
A,
∨
B〉 with a ∈ A

or b ∈ B.

(ii) Let T = P be the powerset functor, and let L = P
→

. Note that L∼ = P
←

.

First we consider the case α = ∅. Then Base(α) = ∅, and so TP Base(α) =

PP∅ = {∅, {∅}}. For Φ ∈ TP Base(∅), we have (∅,Φ) ∈ P
←

if for all
A ∈ Φ, there is an a ∈ ∅ with a /∈ A. Clearly, this is only the case if
Φ = ∅. So, D

P
→(∅) has one element, {∅}. Hence, S

P
→(∅) = {{

∧
∅}} and

D
P
→(∅) = {{

∨
∅}}.

In general, for a given α ∈ PLP (P
→
, P
←

), we have that Base(α) = α, and so

an element of D
P
→α is a set Φ of subsets of α, such that (α,Φ) /∈ (P

←
/∈).

This happens precisely when α ∈ Φ. For, if α ∈ Φ, then there is no a ∈ α
with a /∈ α, so it is not the case that for all A ∈ Φ there is a ∈ α with
a /∈ A. And if α /∈ Φ, then every element of Φ is a strict subset of α,
and hence for every A ∈ Φ there is a ∈ α with a /∈ A, which means that
(α,Φ) ∈ (P

←
/∈).

From this, we see that an element of S
P
→(α) is some set of conjunctions,

at least containing
∧
α; and an element of D

P
→(α) is a set of disjunctions,

at least containing
∨
α.
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(iii) Again, let T = P be the powerset functor, and let L = P
←

(and hence

L∼ = P
→

). The case α = ∅ is now trivial: for all elements Φ ∈ PP∅,

we have (∅,Φ) ∈ (P
→

/∈), as its condition is “for all a ∈ ∅, . . . ”. So
D
P
←(∅), S

P
←(∅), D

P
←(∅) are all empty.

In general, for a given α ∈ PLP (P
→
, P
←

), an element of D
P
←α is a set Φ of

subsets of α, such that (α,Φ) /∈ (P
→
/∈). For this to happen, it should not

be the case that for all a ∈ α, there is an A ∈ Φ with a /∈ A. In other
words, (α,Φ) /∈ (P

→
/∈) if there is an a ∈ α such that for all A ∈ Φ, a ∈ A.

Or, put concisely: if Φ has non-empty intersection.

An element of S
P
←α is a set of conjunctions, such that there is one element

a ∈ α occurring in each conjunction. An element of D
P
←α is the same, but

with disjunctions instead of conjunctions.

Proposition 4.14 (Duality lemma). For a given pointed coalgebra model S, s,
the following equivalences hold:

S, s 
 ∆Lα iff S, s 
 ¬∇L(T¬)α iff S, s 
 ∇L∼β for some β ∈ SLα (1)

S, s 
 ∇Lα iff S, s 
 ¬∆L(T¬)α iff S, s 
 ∆L∼β for all β ∈ DLα (2)

Proof. Let T be a functor, Λ a set of T -liftings, S = (S, σ,m) a T -coalgebra
model, and let s ∈ S. Finally, let α ∈ TLT (Λ).

(1) First, assume that S, s 
 ∆Lα. Assume towards a contradiction that
S, s 
 ∇L(T¬)α. Then

(σ(s), α) ∈ L 
; (T¬gr)◦ ⊆ L(
; (¬gr)◦) = L(1)

since S, t 
 ¬a if and only if S, t 1 a. But this is a contradiction with
S, s 
 ∆Lα. So, S, s 
 ¬∇L(T¬)α.

Next, assume that S, s 
 ¬∇L(T¬)α. Then define Thα : S → Base(α) as

Thα(t) := {a ∈ Base(α) | S, t 
 a}

and set Φ := (T Thα)σ(s). We claim that Φ ∈ DLα. For, if (α,Φ) ∈
(L∼ /∈), then as illustrated in figure 2,

(σ(s), (T¬)α) ∈ (T Thα)gr; (L 63); (T¬)gr ⊆ L(Thα; 63;¬gr) ⊆ L 


since if a /∈ Thα(t), then S, s 
 ¬a. This is a contradiction with S, s 

¬∇(T¬)α, and hence (α,Φ) /∈ (L∼ /∈).

Φ α

σ(s) Φ

L63

T¬grT Thgr
α

L


≤

Figure 2
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Now if we set β := (T
∧

)Φ, then β ∈ SLα. We claim that S, s 
 ∇L∼β.
But this is straightforward: we see that

(σ(s), β) ∈ T Thgr
α ;T

∧
gr ⊆ L(Thgr

α ;
∧

gr) ⊆ L 


since for all t ∈ S, we have that S, t 

∧

Thα(t) by definition.

Finally, assume that S, s 
 ∇L∼β for some β ∈ SLα. Let Φ ∈ DLα such
that β = (T

∧
)Φ. Then assume towards a contradiction that (σ(s), α) ∈

L 1. We calculate that, as illustrated in figure 3,

(α,Φ) ∈ (L∼

1

); (L∼ 
); (T
∧

gr)◦ ⊆ L∼(

1

;
; (
∧

gr)◦) ⊆ L∼ /∈

since if S, t 1 a and S, t 

∧
A, then a /∈ A. This is in contradiction with

(α,Φ) /∈ L∼ /∈.

σ(s) β

α Φ

L∼


L∼

1

L∼ /∈

∧gr≥

Figure 3

So, we conclude that (σ(s), α) /∈ L 1, and hence S, s 
 ∆Lα.

(2) First, assume that S, s 
 ∇Lα. Then

(σ(s), T¬α) ∈ (L 
);T¬gr ⊆ L(
;¬gr) = L 1

and hence S, s 
 ¬∆(T¬)α.

Next, assume that S, s 
 ¬∆L(T¬)α. Let β ∈ DLα. Then there is Φ ∈
DLα with β = (T

∨
)Φ. Assume towards a contradiction that (σ(s), β) ∈

L∼ 1. Then as illustrated in figure 4, we have

(α,Φ) ∈ T¬gr; (L∼

1

); (L∼ 1); (T
∨

gr)◦ ⊆ L∼(¬gr;

1

;1; (
∨

gr)◦) ⊆ L∼ /∈

since if S, t 1 ¬a, and S, t 1
∨
A, then S, t 
 a and hence a /∈ A. This is

in contradiction with Φ ∈ DLα, and hence S, s 
 ∆L∼β.

(T¬)α σ(s) β

α Φ

L∼

1

L∼1

T¬

L∼ /∈

∨gr

≥

Figure 4
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Finally, assume that S, s 
 ∆L∼β for all β ∈ DLα. Let Th¬α : S → Base(α)
be defined as

Th¬α(t) = {a ∈ Base(α) | S, t 1 a}

and set Φ = (T Th¬α)(σ(s)). Then (α,Φ) ∈ L∼ /∈. For, assume towards a
contradiction that (α,Φ) /∈ L∼ /∈. Then Φ ∈ DLα; set β = (T

∨
)Φ. Since

β ∈ DLα, we know that S, s 
 ∆L∼β by assumption. But also,

(σ(s), β) ∈ (T Th¬α)gr; (T
∨

gr) ⊆ L∼((Th¬α)gr;
∨

gr) ⊆ L 1

since certainly S, t 1
∨

Th¬α(t). This contradicts S, s 
 ∆L∼β, and hence
(α,Φ) ∈ L∼ /∈.

But now

(σ(s), α) ∈ (T Th¬α)gr; (L 63) ⊆ L(Th¬α; 63) ⊆ L 


since if a /∈ Th¬α(t), then S, t 
 a by definition.

Distribution

Definition 4.15. Let Λ be a set of T -liftings, and let Γ ∈ PωTωLT (Λ). For
every γ ∈ Γ, let Lγ ∈ Λ be an associated lifting, and let

∇Γ := {∇Lγγ | γ ∈ Γ}.

Recall from definition 2.8 the notation B(Γ) =
⋃
γ∈Γ Base(γ). We call an object

Φ ∈ TPB(Γ) a redistribution of ∇Γ if for all γ ∈ Γ, we have (γ,Φ) ∈ L∼γ∈. We
will write

R(∇Γ) := {Φ ∈ TPB(Γ) | Φ is a redistribution of ∇Γ}.

Proposition 4.16 (Distributive law). Let Λ be a set of T -liftings, and let Γ ∈
PωTωLT (Λ). Then write ∇Γ = {∇Lγγ | γ ∈ Γ} and assume that L0 ∈ Λ is
such that L0 ≤ Lγ for all γ ∈ Γ. Then for a pointed T -coalgebra model S, s, the
following equivalence holds:

S, s 

∧
∇Γ iff S, s 
 ∇L0

(T
∧

)Φ for some Φ ∈ R(∇Γ).

Proof. First, assume that S, s 

∧
∇Γ. Then let ThΓ : S → B(Γ) be defined as

ThΓ : t 7→ {a ∈ B(Γ) | S, t 
 a}

and set Φ = (T ThΓ)σ(s).
We claim that Φ ∈ R(∇Γ). For, take γ ∈ Γ. Then S, s 
 ∇Lγγ, so (σ(s), γ) ∈

Lγ 
. Hence,

(γ,Φ) ∈ L∼γ




; (T ThΓ)gr ⊆ L∼γ(




; Thgr
Γ ) ⊆ (L∼γ∈)
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as desired.
Moreover, we clearly have

(σ(s), (T
∧

)Φ) ∈ T Thgr
Γ ;T

∧
gr ⊆ L0(Thgr

Γ ;
∧

gr) ⊆ (L0 
)

showing that S, s 
 ∇L0
(T
∧

)Φ.

Now assume that there is a Φ ∈ R(∇Γ) with S, s 
 ∇L0
(T
∧

)Φ. Then let
γ ∈ Γ. We see that

(σ(s), γ) ∈ (L0 
); (T
∧

gr)◦; (Lγ 3)

⊆ (Lγ 
);Lγ((
∧

gr)◦); (Lγ 3)

⊆ Lγ(
; (
∧

gr)◦;3)

⊆ (Lγ 
)

since if S, t 

∧
A and A 3 a, then S, t 
 a.

Hence, for all γ ∈ Γ, we have S, s 
 ∇Lγγ, and so S, s 

∧
∇Γ.

Remark 4.17. In order to make use of the distributive law in proposition 4.16
on some conjunction

∧
∇Γ, there must be a L0 ∈ Λ with L0 ≤ Lγ for all γ. For

this to be the case, we see that Λ needs to be filtered.

Definition 4.18. Let T be a functor, and let Λ be a set of T -liftings. We call Λ
filtered if for all L1, . . . , Lk ∈ Λ, there is an L ∈ Λ with L ≤ Li for i = 1, . . . , k.

This is not such a strong requirement; we know that T admits a minimal
lifting L0, and hence Λ′ = Λ ∪ L0 is always filtered.

Strong distributive law One can wonder why we have chosen the distribu-
tive law for � as our template for the distributive law for ∇. After all, the
∇-modality can be seen as a generalization of ♦ just as well as a generalization
of �. And for ♦, the distributive law reads

♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

It seems that the ∇-modality is closer to � than to ♦, since both the ∇- and
�-modality have a ‘universal’ flavor, in contrast to the ‘existential’ flavor of the
♦.

Still, in the specific case of ∇T for a weak pullback-preserving functor, we do
obtain a distributive law for the disjunction.

Proposition 4.19 (Strong distributive law). Let T be a weak pullback-preserving
functor, and let Λ be a set of T -liftings containing T . Let Φ ∈ TωPωLT (Λ), and
let S, s be a pointed T -coalgebra. Then we have the following equivalence:

S, s 
 ∇(T
∨

)Φ iff there is α ∈ TωLT (Λ) with (α,Φ) ∈ (T∈) and S, s 
 ∇α
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Proof. First, assume that S, s 
 ∇(T
∨

)Φ. Then

(σ(s),Φ) ∈ (T 
); (T
∨

gr)◦

= T (
; (
∨

gr)◦)

= T (
;∈)

= (T 
); (T∈)

and hence there is α with (σ(s), α) ∈ (T 
), and (α,Φ) ∈ (T∈), as desired.

Next, assume that S, s 
 ∇α for some α with (α,Φ) ∈ (T∈). Then

(σ(s), (T
∨

Φ)) ∈ (T 
); (T∈); (T
∨

)gr

= T (
;∈;
∨

gr)

⊆ T (
)

showing that S, s 
 ∇(T
∨

)Φ.

It is instructive to note that the right-to-left direction holds not just for the
Barr lifting T , but for general liftings L. It is only in the left-to-right direction,
where we need to find the ‘intermediate’ point α in T (
;∈), that the strict
distributivity of the Barr lifting is needed.

4.4 Normal Forms

In this section, we will discuss a number of normal forms for LT (Λ)-formulas.

Definition 4.20. Let T : Sets → Sets be a functor, and let Λ be a set of T -
liftings. A formula a ∈ LT (Λ) is called clean if all negations in a occur directly
before a proposition letter.

Inductively, we define the set LcT (Λ) of clean (T,Λ)-formulas as follows:

• If p is a proposition letter, then p and ¬p are clean formulas;

• If A is a set of clean formulas, then
∧
A and

∨
A are clean formulas;

• If L ∈ Λ and α ∈ TωLcT (Λ), then ∇Lα and ∆Lα are clean formulas.

Proposition 4.21. Let T : Sets→ Sets be a functor, and let Λ be a set of T -
liftings. Then any formula a ∈ LT (Λ) is equivalent to a formula c(a) ∈ LcT (Λ).

Proof. We prove it by induction on the complexity of formulas. If a is not of
the form ¬a′, then the induction is straightforward. So, assume that a = ¬a′
for some a′ ∈ LT (Λ). There are several cases to consider.

• If a′ = p is a proposition letter, then a is already clean.
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• If a′ = ¬a′′, then we see that a is equivalent to a′′, which by induction is
equivalent to a clean formula c(a′′).

• If a′ =
∧
A, then we see that a is equivalent to∨

{¬a′′ | a′′ ∈ A}

and by induction, for every a′′ the formula ¬a′′ is equivalent to a clean
formula c(¬a′′). So, we see

a ≡
∨
{c(¬a′′) | a′′ ∈ A} =: c(a)

which shows that a is equivalent to a clean formula.

• The case a′ =
∨
A is similar to the case a′ =

∧
A.

• If a′ = ∇Lα, then by proposition 4.14, we know that

a = ¬∇Lα ≡ ∆L(T¬)α

and by induction, we have a function c : Base((T¬)α)→ LcT (Λ) such that
a′′ is equivalent to c(a′′) for all a′′ ∈ Base((T¬)α). Hence, if we set

c(a) = ∆L(Tc ◦ T¬)α

we see that c(a) is a clean formula, equivalent to a.

• The case a′ = ∆Lα is similar to the case a′ = ∇Lα.

So now by induction, we have shown that every formula in LT (Λ) is equivalent
to a clean formula.

If T preserves finite sets, then we can use the duality theorem to completely
eliminate the ∆-modalities.

Definition 4.22. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings. We define the set L∇T (Λ) of ∆-free (T,Λ)-formulas as those clean
formulas containing only ∇-modalities. Inductively, they are defined as follows:

• If p is a proposition letter, then p and ¬p are ∆-free formulas;

• If A is a set of ∆-free formulas, then
∧
A and

∨
A are ∆-free formulas;

• If L ∈ Λ and α ∈ TωLcT (Λ), then ∇Lα is a ∆-free formula.

Proposition 4.23. Let T : Sets→ Sets preserve finite sets, and let Λ be a set
of T -liftings, closed under (−)

∼
. Then any formula a ∈ LT (Λ) is equivalent to

a ∆-free formula π(a) ∈ L∇T (Λ).
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Proof. First, by proposition 4.21, we may assume that a is a clean formula. The
only interesting case in the induction is the case a = ∆Lα for some L ∈ Λ, α ∈
LcT (Λ). Then since T preserves finite sets, we know that DLα ⊆ TP Base(α) is
finite. So, SLα is finite, and hence we see that by proposition 4.14,

a ≡
∨
{∇L∼β | β ∈ SLα}.

By induction, for every formula b ∈ B(SLα), there is an equivalent ∆-free for-
mula π(b). So now, ∨

{∇L∼(Tπ)β | β ∈ SLα}

is a ∆-free formula equivalent to a.

If Λ is filtered (see definition 4.18), we can obtain an even stronger normal
form, where negations occur only before proposition letters, only ∇-modalities
appear, and conjunctions only apply to sets of literals and at most one modality.

Definition 4.24. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings. We define the set LNF

T (Λ) of Normal Forms as follows:

• If P is a set of literals, then
∧
P is a normal form.

• If P is a set of literals, L ∈ Λ and α ∈ TωLNF
T (Λ), then

∧
P ∧ ∇Lα is a

normal form.

• If A is a finite set of normal forms, then
∨
A is a normal form.

Proposition 4.25. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings, closed under (−)

∼
. If T preserves finite sets, and Λ is filtered, then

any LT (Λ)-formula a is equivalent to a formula NF(a) ∈ LNF
T (Λ).

The idea is the following: first, we push negations down as in proposition
4.21. Then we flip each ∆ as in proposition 4.23. Finally, we push conjunctions
down by using the De Morgan law

a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)

and the distributive law from 4.16.

Proof. By proposition 4.23, we may assume that a is a ∆-free formula. The
cases a =

∨
A and a = ∇Lα are trivial. The only non-trivial case is that of

a =
∧
A.

By induction, we may assume that all elements of A are normal forms. If
there is any a′ ∈ A with a′ =

∨
A′, then

a ≡
∨
{
∧

(A \ {a′}) ∪ a′′ | a′′ ∈ A′}

and every formula
∧

(A\{a′})∪a′′ has lower complexity than a, so by induction
is equivalent to a normal form. Now a is equivalent to a disjunction of normal
forms, and hence a normal form.
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So, we may assume that every formula in A is either a conjunction of literals,
or a conjunction of literals and one nabla formula. That is, we have A = A0∪A1,
with

A0 = {
∧
P1, . . . ,

∧
Pk}, A1 = {

∧
Q1 ∧∇L1α1, . . . ,

∧
Qm ∧∇Lmαm}

Now let P =
⋃k
i=1 Pi ∪

⋃m
j=1Qj . Clearly, we now have that

a ≡
∧
P ∧

m∧
j=1

∇Ljαj

Let L0 ≤ Lj for j = 1, . . . ,m. Then by proposition 4.16, we know that

m∧
j=1

∇Ljα ≡
∨
{∇L0

(T
∧

)Φ) | Φ ∈ R({∇L1
α1, . . . ,∇Lmαm})}

Hence, we can write

a ≡
∨
Φ

∧
P ∧∇L0(T

∧
)Φ.

Now by induction, for any Φ ∈ R({∇L1
α1, . . . ,∇Lmαm}), every formula b in

{T
∧
B | B ∈ Base(Φ)} is equivalent to a normal form NF(b), and hence

a ≡
∨
Φ

(∧
P ∧∇L0

(T (NF ◦
∧

))Φ
)

is a normal form for a.

We finish with a strong normal form theorem for LT (T ).

Definition 4.26. Let T : Sets → Sets be a functor, and let Λ be a set of
T -liftings. We define the set of pure (T,Λ)-formulas LpT (Λ) as follows:

• If P is a consistent set of literals, then
∧
P is a pure formula.

• If P is a consistent set of literals, L ∈ Λ a lifting, and α ∈ TωLpT (Λ), then∧
P ∧∇Lα is a pure formula.

We call a formula a ∈ LT (Λ) a pure normal form if it is a disjunction of pure
formulas.

Proposition 4.27. Let T : Sets→ Sets be a weak pullback-preserving functor,
that additionally preserves finite sets. Then any formula a ∈ LT (T ) is equivalent
to a pure normal form.

Proof. By proposition 4.25, we may assume that a is a normal form. First,
we consider the case a =

∧
P for P a set of literals. If P is consistent, then
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a ≡
∨
{
∧
P} is a pure normal form. If P is inconsistent, then a ≡ ⊥ ≡

∨
∅. So

in this case, a is equivalent to a pure normal form.
Next, assume that a =

∨
A is a disjunction of normal forms. Then by

induction, we can write every ai ∈ A as
∨
Ai, with Ai a set of pure formulas.

Now a ≡
∨⋃

iAi, showing that a is equivalent to a pure normal form.
Finally, assume that a is of the form

∧
P ∧∇α for P a set of literals, and α ∈

TωLNF
T (T ). Then again, if P is inconsistent, a ≡ ⊥, and hence a is equivalent

to a pure normal form. If P is consistent, then we continue. By induction, for
every b ∈ Base(α), there is a set A(b) ⊆ LpT (Λ) such that b ≡

∨
A(b). Hence,

we see that
a =

∧
P ∧∇α ≡

∧
P ∧∇(T

∨
◦TA)α

Note that (TA)α ∈ TωPωLpT (Λ). LetA := {β ∈ TωLpT (Λ) | (β, (TA)α) ∈ (T∈)}.
By lemma 3.17, we know that if β ∈ A, then Base(β) ⊆

⋃
Base(TA)α. Since

T preserves finite sets, we know that T (
⋃

Base(TA)α) is finite, and hence A is
finite as well. By proposition 4.19, we now know that

∇(T
∨
◦TA)α ≡

∨
β∈A

∇β.

Using this, we see

a ≡
∨
β∈A

∧
P ∧∇β

showing that a is equivalent to a pure normal form.
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5 (Relative) expressivity of the ∇-modalities

This chapter is devoted to investigating which coalgebraic phenomena are cap-
tured by the languages LT (Λ) for variable Λ. We start by proving an analogue
of the Hennessy-Milner theorem from modal logic[6].

The rest of this chapter explores the relative expressivity of the modalities.
There are two central questions we will be concerned with:

1. If a formula a is defined from a lifting L, and L′ ≤ L, can a also be defined
from L′?

2. If a formula a is preserved under L-simulations, can it be defined from L?

5.1 Adequacy

In this section, we show that two T -coalgebra models are L-bisimilar if and only
if they are indistinguishable to LT (L).

Definition 5.1. Let T : Sets → Sets be a functor, and let Λ be a set of T -
liftings. Let S = (S, σ,m) and S′ = (S′, σ′,m′) be T -coalgebra models, and let
s ∈ S, s′ ∈ S′. We call S, s and S′, s′ LT (Λ)-equivalent if for all a ∈ LT (Λ), we
have

S, s 
 a if and only if S′, s′ 
 a.

If S, s and S′, s′ are LT (Λ)-equivalent, we write S, s ≡Λ S′, s′.

Theorem 5.2. Let T : Sets → Sets be a functor, let Λ be a set of T -liftings,
and set L0 :=

∧
Λ. Then for finite branching T -coalgebra models S = (S, σ,m)

and S′ = (S′, σ′,m′), with s ∈ S and s′ ∈ S′, the following are equivalent:

(i) S, s↔L0 S′, s′;

(ii) S, s ≡Λ S′, s′.

Proof. (i)⇒(ii): Assume that S, s↔L0 S, s′. Then let R : S ( S′ be an L0-
bisimulation. Note that since L0 ≤ L for all L ∈ Λ, we know that for each
L ∈ Λ, R is an L-bisimulation.

We prove by induction on a ∈ LT (Λ) that S, s 
 a if and only if S′, s′ 
 a.
The only non-trivial cases are the cases a = ∇Lα and a = ∆Lα for some L ∈ Λ
and α ∈ TωLT (Λ).

So, assume that S, s 
 ∇Lα. Then (σ(s), α) ∈ (L 
). Hence,

(σ′(s′), α) ∈ (LR◦); (L 
) ⊆ L(R;
)

and by assumption, R◦;
 ⊆ 
 (when we restrict the codomain of 
 to Base(α),
see example 3.11). Hence, (σ′(s′), α) ∈ (L 
), showing that S′, s′ 
 ∇Lα. By
symmetry, we now have S, s 
 a if and only if S′, s′ 
 a.

Next, assume that S, s 
 ∆Lα, and assume towards a contradiction that
(σ′(s′), α) ∈ (L 1). Then

(σ(s), α) ∈ (LR); (L 1) ⊆ L(R;1) ⊆ (L 1)
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again by the induction hypothesis. But S, s 
 ∆Lα, and hence (σ(s), α) /∈ (L 1),
and we have a contradiction. So, (σ′(s′), α) /∈ (L 1), and hence S′, s′ 
 ∆Lα.
By symmetry, we now have that S, s 
 a if and only if S′, s′ 
 a.

So, by induction, we have S, s ≡Λ S′, s′.

(ii)⇒(i): It suffices to show that ≡Λ is an L0-bisimulation. The condi-
tion atom is obvious. We prove by contraposition that if S′, s′ ≡Λ S, s, then
(σ′(s′), σ(s)) ∈ (L0 ≡Λ).

Assume that (σ′(s′), σ(s)) /∈ (L0 ≡Λ). By definition of L0, this means that
there is some L ∈ Λ such that (σ(s), σ′(s′)) /∈ (L ≡Λ).

Since S and S′ were finite branching, we can take B = Base(σ(s)) and B′ =
Base(σ′(s′)), being finite subsets of S and S′ respectively. Let J = {(t, t′) ∈
B×B′ | S, t 6≡Λ S′, t′}. Then by definition of ≡Λ, for every (t, t′) ∈ J , there is a
formula dt,t′ ∈ LT (Λ) such that (a) S, t 
 dt,t′ and S′, t′ 1 dt,t′ , or (b) S, t 1 dt,t′

and S′, t′ 
 dt,t′ .
By replacing dt,t′ with ¬dt,t′ we can make sure that for every (t, t′) we are in

case (a). Now define for t ∈ B the formula at as

at :=
⋂

(t,t′)∈J

dt,t′

Then since we had ensured that we were in case (a) for all (t, t′), we see that
S, t 
 at for all t ∈ B. Hence, if S, t ≡Λ S′, t′, then S′, t′ 
 at. On the other
hand, if S, t 6≡Λ S′, t′ for t′ ∈ B′, then S′, t′ 1 at since dt,t′ will be a conjunct in
at.

We can summarize this as

agr ⊆ 
, ≡Λ �B′×B = 
; (agr)◦

where we see a as a function B → LT (Λ).
Now let β := (Ta)σ(s), and let b = ∇Lβ. Then

(σ(s), β) ∈ (Ta)gr ⊆ L(agr) ⊆ (L 
)

and hence S, s 
 b. On the other hand, we see that if (σ′(s′), β) ∈ (L 
), then

(σ′(s′), σ(s)) ∈ (L 
); (Tagr)◦ ⊆ L(
; (agr)◦) ⊆ L(≡Λ)

and hence (σ′(s′), σ(s)) ∈ L(≡Λ), which was not the case by assumption.
Thefore, we conclude that S′, s′ 1 ∇Lβ, showing that S′, s′ 6≡Λ S, s, since

they disagree on the formula ∇Lβ.

In [18], it is shown that for L a symmetric T lifting, L-bisimilarity is equiva-
lent to behavioral equivalence if and only if L preserves diagonals. Combining
this theorem with theorem 5.2, we obtain the following corollary:

Corollary 5.3. Let T : Sets → Sets be a functor, and let L be a T -lifting
such that L∩L∼ preserves diagonals. Then for given coalgebra models S,S′ and
points s ∈ S, s′ ∈ S′, we have

S, s ' S′, s′ if and only if S, s ≡L S′, s′
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5.2 Downward expressivity

In this section, we seek to answer question 1 from the introduction to this
chapter: “If a formula a is defined from a lifting L, and L′ ≤ L, can a also be
defined from L′?” It turns out that the answer is “not in general”. Consider the
following example:

Example 5.4. Let T be the functor X 7→ Propω. Then for all relations R, we
have TR = ∆Propω , the diagonal relation (see definition 3.1).

Now consider the lifting Lω defined as

LωR = {(u, v) ∈ Propω | {i | ui 6= vi} is finite }

Then clearly, T ≤ Lω. Now let p be a proposition letter, and let a be the formula

a := ∇Lωp,

where p is the constant function i 7→ p. We claim that a is not equivalent to
any formula in LT (T ).

Clearly, a is not equivalent to any formula of modal depth 0. For a constant
functor T , any LT (Λ) formula is equivalent to a formula of depth ≤ 1; so it
suffices to consider formulas of the form

b =

n∨
i=1

 ni∧
j=1

`i

 ∧∇ui
with ui : ω → Prop for every i.

Assume that b � a for some LT (T )-formula b of the above form. Then for
every i, we must have uij = p for all but finitely many j; otherwise, we could

have S, s 
 ∇Tui without S, s 
 ∇Lωp. Let j0 be such that uij0 = p for all
i = 1, . . . , n. Then if S = (S, σ,m) and S, s 
 b, we must have σ(s)j0 = p. Now
consider S = ({∗}, σ,m) with

σ(∗)j =

{
p j 6= j0

q j = j0

where q is any proposition letter distinct from p.
Then clearly, (σ(∗),p) ∈ Lω 
, and hence S, ∗ 
 ∇Lωp. But also, (σ(∗), ui) /∈

T 
 for any i; so S, ∗ 1 ∇Tui for every i, and hence S, ∗ 1 b.

The obstruction in example 5.4 is the fact that only finite boolean combina-
tions are allowed; otherwise, we could express ∇Lωp as∨

u:ω→Prop
|{ui 6=p}|<ω

∇Tu,

where the disjunction is taken over all u : ω → Prop such that ui is different
from p for only finitely many i.
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It turns out that this ‘finitarity problem’ is, essentially, the only thing stand-
ing in our way. We can remove it by stipulating that T preserve finite sets.

The crucial property of functors that preserve finite sets, is that if α ∈ TX,
then T Base(α) is finite, giving us strong normal form theorems, as in section
4.4. In the remainder of this chapter, we will often use this without comment.

Theorem 5.5 (Downwards expressivity). Let T be a functor preserving finite
sets, and let Λ be a set of liftings closed under (−)

∼
. Let L0 be a lifting such

that L0 ≤ L for all L ∈ Λ. Then any formula a ∈ LT (Λ) is equivalent to a
formula a0 ∈ LT (L0).

Proof. Let γ ∈ TωLT (Λ). Let L ∈ Λ, and set Sγ := {Φ ∈ TP Base(γ) | (γ,Φ) ∈
L∼∈}. Note that S is finite, as Base(γ) is finite, so P Base(γ) is finite, and T
preserves finite sets.

Let S = (S, σ,m) be a coalgebra model, and let s ∈ S. Then consider the
following equivalence:

S, s 
 ∇Lγ iff S, s 

∨

Φ∈S
∇L0

(T
∧

)Φ.

This is a special case of the distributive law given in proposition 4.16, where Γ
is a singleton {γ}. So, we can define the following partial translation:

Let L∇T (Λ) be the set of ∆-free (T,Λ)-formulas. Then we inductively define

τ(`) := ` ` is a literal

τ(�A) := �τ [A] � ∈ {
∧
,
∨
}

τ(∇Lγ) :=
∨

Φ∈Sγ

∇L0(T
∧

)Φ

Then by the above discussion, every a ∈ L∇T (Λ) is equivalent to τ(a). By
proposition 4.23, for every a ∈ LT (Λ), there is a formula a∇ ∈ L∇T (Λ) such that
a ≡ a∇. So, if we set

a0 := τ(a∇)

we have obtained the desired translation LT (Λ) to LT (L0).

5.3 Upwards expressivity

Next, we aim to answer question 2 in the affirmative. We will prove the following
theorem:

Theorem 5.6 (Upwards expressivity). Let T : Sets → Sets be a functor
preserving weak pullbacks and finite sets. Let a ∈ LT (T ) be preserved under
L∼-simulations. Then a is equivalent to a L∇T (L)-formula.

This theorem is a generalization of the well-known fact that a modal logic
formula a ∈ L�,♦ is preserved under simulations if and only if it is equivalent
to a negation-free formula containing only diamonds ([6], theorem 2.78).
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Our approach is similar to the method of K. Fine in [9]. In that paper,
modal logic is shown to have the Final Model Property by taking an arbitrary
satisfiable formula a, rewriting it into a particular normal form, and extracting
an explicit model from this normal form.

Proof (Sketch). Let a ∈ LT (T ) be preserved under L∼-simulations. Then write
a as a pure normal form

∨
i∈I ai. Define aL by replacing every ∇ in

∨
i∈I ai

with ∇L. Then a � aL, since at every ∇, the condition S, s 
 ∇Lα is less strict
than S, s 
 ∇α.

For the other direction, assume that S, s 
 aL. Then there is an i ∈ I with
S, s 
 aLi . Now, Sfor(ai) can be regarded as a T -coalgebra, such that

• Sfor(ai), ai 
 ai;

• 
L:= {(s, a) | S, s 
 aL} is an L-simulation from S to Sfor(ai).

Then




L is an L∼-simulation from Sfor(ai), ai to S, s. Since Sfor(ai), ai 
 ai,
we know that Sfor(ai), ai 
 a. Since a was preserved under L∼-simulations, we
conclude that S, s 
 a, showing that aL � a.

There are many technical details in this argument left to be filled in. The
rest of this chapter will be devoted to smoothing out the wrinkles.

5.4 Some semantic notions

In this section, we introduce some operations on and relations between models
that will be useful in the proof of theorem 5.6.

Finite simulations

Definition 5.7. Let T : Sets → Sets be a functor, and L a T -lifting. Let
n ≥ 0 be a natural number. Let S = (S, σ,m) and S = (S′, σ′,m′) be coalgebra
models. A (L, n)-simulation from S to S′ is a sequence of relations (R0, . . . , Rn)
with Ri : S ( S′ such that

• For all i, if sRis
′, then m(s) = m′(s′);

• For all i > 0, if sRis
′, then (σ(s), σ′(s′)) ∈ L(Ri−1).

If there is an (L, n)-simulation (Ri)i=0,...,n from S to S′ with (s, s′) ∈ Rn, we
will write S, s→L

n S′, s′.
If S, s →L

n S′, s′ and S′, s′ →L
n S, s, then we will call S, s and S′, s′ (L, n)-

bisimilar and write S, s↔L
n S′, s′.

Proposition 5.8. Let S,S′ be T -coalgebra models, and assume S, s↔L
n S′, s′.

Then for any a ∈ LT (L) of modal depth at most n, we have

S, s 
 a iff S′, s′ 
 a.
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Backwards unraveling

Definition 5.9. Let T : Sets→ Sets be a functor, and fix some default value
δ ∈ T{∗}. Let S = (S, σ,m) be a T -coalgebra model, and let n ≥ 0 be a natural
number. The backwards unraveling of S is defined as ρ(S) = (ρ(S), ρ(σ), ρ(m))
where

ρ(S) := S × ω ∪ {∗}

ρ(σ)(x) :=

{
Tιi−1(σ(s)) x = (s, i), for some s ∈ S, i > 0

Tι∗(δ) otherwise

ρ(m)(x) :=

{
m(s) x = (s, i) for some s ∈ S, i ∈ ω
∅ x = ∗

where we write ιi : S → S × ω ∪ {∗} for the natural map s 7→ (s, i), and ι∗ for
the inclusion {∗} ↪→ S × ω ∪ {∗}.

We give an illustration of the backwards unraveling for a P -coalgebra in figure
5.

Lemma 5.10. For every T -coalgebra model S, T -lifting L, natural number n ≥
0, default value δ ∈ T{∗}, and s ∈ S, we have

S, s↔L
n ρ(S), (s, n)

Proof. Setting Ri = ιgr
i gives a (L, n)-bisimulation by construction.

Restricted models

Definition 5.11. Let S = (S, σ,m) be a T -coalgebra model. Let Q ⊆ Prop be
some (usually finite) set of proposition letters. We define the restriction of S to
Q as the T -coalgebra model S�Q= (S, σ,mQ), with

mQ(s) = m(s) ∩Q

Lemma 5.12. If S is a T -coalgebra model, a ∈ LT (Λ) is a formula, and Q ⊆
Prop a set of proposition letters with Var(a) ⊆ Q, then for any s ∈ S, we have

S, s 
 a if and only if S�Q, s 
 a

Proof. Simple induction on the complexity of a.

5.5 Syntactic coalgebras

Pure formulas as coalgebras A generic pure formula has the form a =∧
P ∧∇Lα with α ∈ TLpT (Λ) (see definition 4.26). It is natural to see α as the

unfolding of a. In this way, we can view LpT (Λ) as a T -coalgebra model, where a
formula a =

∧
P ∧∇Lα is marked with the positive literals in P , and λ(a) = α

is the unfolding.
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...

*

Figure 5: The frame on the right is the backward unraveling of the frame on
the left, with default value ∅ ∈ P{∗}. It is obtained by taking ω many copies
of the old frame, stacking them on top of each other, and shifting the target
of each arrow up one level. To illustrate this, we have kept the arrows of the
original frame in each copy, shown as dotted arrows.

There is still a gap in this definition, since there is a priori no way to unfold
pure formulas of the form

∧
P . In order to give an unfolding for these formulas,

we pick a default value δ> ∈ T{>}. This gives the following definition:

Definition 5.13. Let Λ be a set of T -liftings, and let δ> ∈ {>} be a default
value. Then we define a canonical (T,Λ)-coalgebra CT (Λ) = (LpT (Λ), λ,m) by
setting

λ(a) :=

{
α a =

∧
P ∧∇Lα for some P, α

δ> a =
∧
P for some P

m(a) := P ∩ Prop where a =
∧
P or a =

∧
P ∧∇α for some α

Proposition 5.14. Let a be a pure (T,Λ)-formula. Then CT (Λ), a 
 a.
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Proof. We prove it by induction on the complexity of a. If a is of the form
∧
P ,

then since P is satisfiable, we know that it is of the form P = P+ ∪ {¬p | p ∈
P−} for disjoint sets of proposition letters P+, P−. Now m(a) = P+, and so
CT (Λ), a 
 p for all p ∈ P+, and since P+ ∩ P− = ∅, we know CT (Λ), a 1 p for
all p ∈ P−. So, we know

CT (Λ), a 

∧
P

as desired.

Let Cd be the set of pure formulas of modal depth less than d, and assume
that we have proven the proposition for formulas in Cd. Then let a =

∧
P ∧∇α

be a pure formula of depth d. Then we know that

(α, α) ∈ ∆TCT (λ) ∩ (TCd × TCd)
= (Tιgr

Cd
)◦; (Tιgr

Cd
)

⊆ L(ιgr
Cd

)◦;Lιgr
Cd

⊆ L((ιgr
Cd

)◦; ιgr
Cd

)

= L(∆CT (Λ) ∩ (Cd × Cd))
⊆ L 


showing that CT (Λ), a 
 ∇Lα (since α = λ(a)). By the same argument as
above, we know that CT (Λ), a 


∧
P , and hence we have that

CT (Λ), a 

∧
P ∧∇Lα

as desired.

Now, if S is a T -coalgebra, then 
 is almost an L-simulation from S to CT (L).
But there are two obstructions.

(1) Once we reach a formula a of modal depth 0, its unfolding is not in any
relation to σ(s), even if s 
 a. For this reason, we introduced the back-
wards unraveling, since this allows us to replace s with a node ρn(s) that
only has interesting behavior up to depth n. Still, if a = ∇α is a pure
formula of depth n, there may be a′ ∈ Base(α) of depth much smaller than
n, which means that the ‘syntactic coalgebra’ Sfor(a) will display default
behavior much earlier than ρn(s).

(2) If a =
∧
P is a conjunction of proposition letters, then the truth condition

for s 
 a is P ⊆ m(s), while the condition for a simulation is m(s) = P .

We will remove these obstructions by considering classes of even more well-
behaved formulas.

Definition 5.15. The set LhT,d(Λ) of homogeneous formulas of depth d is in-
ductively defined as follows:
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• If p is a proposition letter, then p is homogeneous of depth 0.

• If a is homogeneous of depth d, then ¬a is homogeneous of depth d.

• If A is a finite set of homogeneous formulas of depth d, then
∧
A and

∨
A

are homogeneous of depth d.

• If α ∈ TωLhT,d(Λ), and L ∈ Λ, then ∇Lα and ∆Lα are homogeneous of
depth d+ 1.

Notation 5.16. Let Q be a finite set of proposition letters, and let σ : Q→ {0, 1}
be a function. We write∧

σ :=
∧

({p | σ(p) = 1} ∪ {¬p | σ(p) = 0})

Definition 5.17. Let Q be a finite set of proposition letters. The set of Q-full
formulas LfT (Λ, Q) (or simply full formulas if Q is understood form context) is
defined as follows:

• If σ : Q→ {0, 1} is a function, then
∧
σ is full.

• If a is full, then ¬a is full.

• If A is a set of full formulas, then
∧
A and

∨
A are full.

• If α ∈ TωLfT (Λ, Q), and σ : Q → {0, 1} is a function, then for all L ∈ Λ,∧
σ ∧∇Lα and

∧
σ ∧∆Lα are full.

Definition 5.18. If a formula a ∈ LT (Λ) is a pure formula that is (Q-)full and
homogeneous, we will call a a full homogeneous pure formula, or fhp formula.
We will denote the set of fhp formulas with LfhpT (Λ).

If a formula a ∈ LT (Λ) is a pure normal form with every disjoint being an
fhp formula, we will call a a full homogeneous pure normal form, or fhp normal
form.

We will prove in several stages that every formula is equivalent to an fhp
normal form.

Lemma 5.19. Let T be a weak pullback-preserving functor, and assume that T
preserves finite sets.

(i) If a ∈ LNF
T (T ) is a normal form of depth d, and d′ ≥ d, then a is equivalent

to a homogeneous normal form of depth d′.

(ii) If a ∈ LhT (T ) is a homogeneous normal form of depth d, and Q is a finite
set of proposition letters with Var(a) ⊆ Q, then a is equivalent to a Q-full
homogeneous normal form of depth d.

(iii) Every homogeneous full normal form is equivalent to a hfp normal form.

52



The proof strategy will be to first pump up the modal depth of too-shallow
end points by using the equivalence

> ≡
∨

γ∈T{>}

∇γ,

and second use the equivalence

p ≡ (q ∧ p) ∨ (¬q ∧ p)

to ‘fill out’ any conjunction of literals. Both these steps introduce new disjunc-
tions, but these can be pulled out using the distributive law from proposition
4.19.

Proof. (i) As an initial case, we prove that > is equivalent to a homogeneous
formula of depth d for all d ≥ 0. As > ≡

∧
∅, we know that it is

homogeneous of depth 0.

Now assume that > is equivalent to a homogeneous normal form >d of
depth d. Then let j : {>} → LhT,d(Λ) be the function > 7→ >d. Note that

> ≡
∨

γ∈T{>}

∇γ

and hence
> ≡

∨
γ∈T{>}

∇(Tj)γ

is a homogeneous normal form for > of depth d+ 1.

Now we can prove by induction that every normal form a is equivalent to
a normal form of depth d′ whenever d′ ≥ a.

First, assume that a =
∧
P is a conjunction of literals. Then let d ≥ 0;

above, we have seen that there is a set S such that > ≡
∨
γ∈S ∇γ is a

homogeneous normal form for > of depth d. Now

a ≡
∧
P ∧ > ≡

∨
γ∈S

∧
P ∧∇γ

is a homogeneous normal form for a of depth d.

Next, assume that a =
∧
P ∧∇α for some α ∈ TωLNF

T (T ). Let d′ ≥ d(a).
Then for every b ∈ Base(α), we know d(b) < d(a) ≤ d′, so there is a
homogeneous normal form h(b) of depth d′ − 1. Now

a ≡
∧
P ∧∇(Th)α

is a homogeneous normal form for a of depth d′.
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Finally, if a =
∨
A for some set A of normal forms, then let d′ ≥ d(a).

Clearly, for every b ∈ A we have d(b) ≤ d′, so there is a homogeneous
normal form h(b) of depth d′. Now

a ≡
∨
b∈A

h(b)

is a homogeneous normal form for a of depth d′.

(ii) We proceed by induction on the complexity of the formula. First, let
a =

∧
P be a set of literals, and assume that Var(a) ⊆ Q. Then if P is

inconsistent, we know that a ≡
∨
∅, which is a Q-full normal form. So,

we assume that P is consistent. Now, consider the partial function

σ0 : Q ⇀ {0, 1} : q 7→


1 q ∈ P
0 ¬q ∈ P
undefined q /∈ P and ¬q /∈ P

Let S = {σ : Q→ {0, 1} | σ extends σ0}. It is now clear that

a ≡
∨
σ∈S

∧
σ

showing that a is equivalent to a full homogeneous normal form.

Next, let a be homogeneous of the form
∧
P ∧ ∇α for P a set of literals,

and α ∈ TωLNF
T (T ). If P is inconsistent, then a ≡

∨
∅, so we may assume

that P is consistent. Assume that Var(a) ⊆ Q. Then by induction, every
a ∈ Base(α) is equivalent to a Q-full homogeneous normal form f(a).
Now, as before, let σ0 : Q ⇀ {0, 1} be the partial function defined as

σ0 : p 7→


1 p ∈ P
0 ¬p ∈ P
undefined p /∈ P,¬p /∈ P

and let S = {σ : Q→ {0, 1} | σ extends σ0}. Then

a ≡
∨
S

(∧
σ ∧∇(Tf)α

)
which is a full homogeneous normal form.

Finally, if a is of the form
∨
A for A a finite set of homogeneous normal

forms, then assume Var(a) ⊆ Q. By induction, for every b ∈ A we have a
Q-full homogeneous normal form f(b), and hence

a ≡
∨
b∈A

f(b)

is a Q-full homogeneous normal form for a.
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(iii) This proof is analogous to the proof of 4.27. In particular, let us look at
the case a =

∧
P ∧∇α for P consistent.

Let d be the modal depth of a, and let d′ ≥ d. Let Q be a finite set of
proposition letters with Var(a) ⊆ Q. By induction, we know that for every

b ∈ a, there is a set A(b) ⊆ LhfpT,d′−1(T ,Q) such that b ≡
∨
A(b). Hence,

we see that
a ≡

∧
P ∧∇α ≡

∧
P ∧∇(T

∨
◦TA)α

Now let B = B((TA)α), and let A := {β ∈ TωLT (Λ) | (β, (TA)α) ∈
(T∈)}. Then A is finite: by lemma 3.17, if β ∈ A, then Base(β) ⊆ B.
Since T preserves finite sets by assumption, we know that TB is finite.
Since every element of A is of the form Tι(γ) for some γ ∈ TB, we know
that A must be finite as well.

Now by proposition 4.19, we know that

∇(T
∨
◦TA)α ≡

∨
β∈A

∇β

Note that A ⊆ TωLhfpT,d′−1(T ,Q), and hence for each β ∈ A, we have

β ∈ TωLhfpT,d′−1. Set σ0 : Q ⇀ {0, 1} given by

σ0 : p 7→


1 p ∈ P
0 ¬p ∈ P
undefined p /∈ P,¬p /∈ P

,

and let S = {σ : Q→ {0, 1} | σ extends σ0}. Then

a ≡
∨
β∈A

∨
σ∈S

(∧
σ ∧∇β

)
is an hfp normal form for a.

Note that for all sets Q of proposition letters, LfhpT (T ,Q)∪{>} is a subcoal-
gebra of the canonical T -coalgebra CT (T ) (see definition 5.13). We will write

this subcoalgebra as CfhpT (Q). We will indicate the set of fhp formulas of depth

d with CfhpT,d (Q).

Lemma 5.20. Let Q be a finite set of proposition letters. Let S = (S, σ,m) be
a T -coalgebra model, such that m(s) ⊆ Q for all s. Let

Ri := {((s, i), a) | s ∈ S and a ∈ CfhpT,i (Q),S, s 
L a}.

Let S′ = ρ(S) be the backwards unraveling of S. Then

R =
⋃
i≤n

Ri ∪ {(∗,>)}

is an L-simulation from S′ to CfhpT (Q).
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The definition of ρ(S) depends on some default value δ ∈ {∗}, and the defini-

tion of CfhpT (Q) depends on some default value δ> ∈ {>}. There is, of course, a
unique isomorphism ! : {∗} → {>}. We choose δ and δ> such that (T !)δ = δ>.

Proof. First, let (s, i) ∈ S′, let a ∈ CfhpT,i (Q). Then a is of the form
∧
σ or∧

σ ∧∇α for some function σ : Q→ {0, 1}. We see that if S, s 
L a, then

q ∈ m(s) if and only if S, s 
 q
if and only if σ(q) = 1

if and only if q ∈ m(a).

Note that if S, s 
 q, then σ(q) is well-defined, as m(s) ⊆ Q by assumption.
Additionally, we of course have m(∗) = ∅ = m(>).

Next, we prove that if ((s, i+1), a) ∈ Ri+1, then (ρ(σ)((s, i+1)), λ(a)) ∈ LRi.
But this is clear: if ((s, i),

∧
P ∧ ∇α) ∈ Ri+1, then (σ(s), α) ∈ L 
L. Taking

into account the restricted domain of Ri, we have

(ρ(σ)((s, i+ 1)), α) ∈ (Tιgr
i )◦;L 
;Tgi ⊆ L((ιgr

i )◦;
; gi) = LRi

where we write gi for the inclusion CfhpT,i (Q) ↪→ CfhpT (Q).

If ((s, 0), a) ∈ R0, then

(ρ(σ)((s, 0)), λ(a)) = (δ, δ>) ∈ T !gr ⊆ L!gr = L{(∗,>)} ⊆ LR0 ⊆ LR,

which also shows that (ρ(σ)(∗), λ(>)) ∈ R.

5.6 Proof of the upwards expressivity theorem

Now we are ready to prove theorem 5.6.

Proof. Let a be a LT (T )-formula of depth d, and assume that a is invariant
under L∼-simulations. Let Q be the set of variables occurring in a, and let a′

be an fhp normal form for a of depth at least d. Then let (a′)L be the formula
a′ with each instance of ∇ replaced with ∇L. We claim that a is equivalent to
(a′)L.

First, we prove that a � aL for all ∆-free formulas a. This is a simple
induction on the complexity - if a is of modal depth 0, then aL is identical to
a. If a is of the form �A for � ∈ {

∧
,
∨
}, then

a � �{bL | b ∈ A} = aL

Finally, if a = ∇α, then by the induction hypothesis, we know ((−)L)gr ⊆ � if
we restrict to Base(α). Hence,

(α, (T (−)L)α) ∈ L � .
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Now if S, s 
 ∇α, then

(σ(s), (T (−)L)α) ∈ (T 
); (L �) ⊆ L(
;�) ⊆ L 


showing that S, s 
 ∇L(T (−)L)α = aL, as desired.
Since a′ was fhp, it is ∆-free, and so

a ≡ a′ � (a′)L

which is one of the two directions.

Now assume that S, s 
 (a′)L. Take S′ = S�Q. By lemma 5.12, we know that
S′, s 
 (a′)L. Let ρ(S′) be the backwards unraveling of S′. Then since S′, s and
ρ(S′), (s, d) are d-bisimilar, we know ρ(S′), (s, d) 
 (a′)L; that is, ρ(S′), (s, d) 
L
a′.

Since a′ is an fhp normal form, we know that it is of the form
∨
A, for A a set

of fhp formulas. So, there is an a0 ∈ A with ρ(S′), (s, d) 
L a0. By lemma 5.20,

we know that CfhpT (Q), a0→L∼ ρ(S′), (s, d). By proposition 5.14, we know that

CfhpT (Q), a0 
 a0. As a0 is a disjunct in a′, we know that CfhpT (Q), a0 
 a′.

Since a and a′ are equivalent, we conclude that CfhpT (Q), a0 
 a. Since a
iss preserved under L∼-simulations, we now have that ρ(S′), (s, d) 
 a. And
ρ(S′), (s, d) iss d-equivalent to S′, s, and d is at least the modal depth of a. So,
S′, s 
 a. Finally, since Var(a) ⊆ Q, we have by lemma 5.12 that S, s 
 a.

Hence, (a′)L � a as desired.

Remark 5.21. We used the assumption that T preserves weak pullbacks to argue
that every formula in LT (T ) has a pure normal form. In [21], it is shown
that for the monotone neighbourhood functor, disjunctions below a ∇M̃ can be
eliminated, yielding a distributive law similar to proposition 4.19. From this,
we see that the proof of theorem 5.6 will also apply to LT (∇M̃).
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6 A uniform sequent calculus

In [5], a sound and complete sequent calculus is given for the LT (T )-formulas,
where T is a weak-pullback preserving functor. In this chapter, this sequent
calculus is extended to LT (Λ)-formulas for arbitrary functors T and sets of
liftings Λ.

6.1 The sequent calculus

Definition 6.1. Let T be a functor and Λ a set of T -liftings. A (T,Λ)-sequent
is an expression of the form A =⇒ B, where A and B are finite sets of
LT (Λ)-formulas.

A sequent A =⇒ B should be read as an implication∧
A→

∨
B.

In light of this reading, we will say that a sequent A =⇒ B is valid if the
following holds: For every pointed coalgebra model S, s such that S, s 
 a for
all a ∈ A, there is a b ∈ B such that S, s 
 b. We will call a sequent refutable if
it is not valid.

Our goal is to obtain a sequent calculus G2T (Λ) such that a sequent Γ is
derivable in G2T (Λ) if and only if it is valid. We build our sequent on top of
the propositional sequent calculus G2. The rules of G2 are the following:

init
A, p =⇒ p,B

A,A′ =⇒ B∧
-l
A,
∧
A′ =⇒ B

{A =⇒ b, B | a ∈ B′}∧
-r

A =⇒
∧
B′, B

{A, a =⇒ B | a ∈ A′}∨
-l

A,
∨
A′ =⇒ B

A =⇒ B′, B∨
-r
A =⇒

∨
B′, B

A =⇒ b, B
¬-l

A,¬b =⇒ B

A, a =⇒ B
¬-r

A =⇒ ¬a,B

Note that A =⇒ B is an initial sequent if there is a proposition letter p with
p ∈ A and p ∈ B.

It should be noted that weakening is not a rule in G2; though it is admissible.
The exchange and contraction rules are implicit, as in this thesis sequents are
considered pairs of sets.

Notation 6.2. If ♥ is a modality, we will write ♥Γ for a set of the form

{♥Lγγ | γ ∈ Γ}

with Γ ∈ PωTωL, and for every γ ∈ Γ an associated lifting Lγ .
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Separated joint slim redistributions In order to define the modal rule,
we first introduce the concept of the separated redistribution. Recall the redis-
tributions we had defined in proposition 4.16. A similar notion will allow us
to reduce validity of a sequent to validity of sequents of smaller modal depth.
However, when dealing with sequents, we will need to keep track of which side
the formulas in the Base originate from.

Definition 6.3. Let ∇Γ, P =⇒ Q,∆Θ be a sequent, where P,Q are sets of
proposition letters, and ∇Γ,∆Θ are of the form

∇Γ = {∇Lγγ | γ ∈ Γ}, ∆Θ = {∆Lθθ | θ ∈ Θ}.

Then we define

B0(Γ) = {(a, 0) | a ∈ B(Γ)}, B1(Θ) = {(b, 1) | b ∈ B(Θ)}

and let f0 : B(Γ)→ B0(Γ), f1 : B(Θ)→ B1(Θ) be the natural maps. We identify
B(Γ) ] B(Θ) with B0(Γ) ∪ B1(Θ), with f0, f1 as canonical inclusions.

The set of separated redistributions of ∇Γ, P =⇒ Q,∆Θ is defined as

Rs(∇Γ, P =⇒ Q,∆Θ) =
{

Φ ∈ TP (B(Γ) ] B(Θ)) | if γ ∈ Γ, then ((Tf0)γ,Φ) ∈ (L∼γ∈),

and if θ ∈ Θ, then ((Tf1)θ,Φ) ∈ (L∼θ∈)
}
.

If Φ ∈ Rs(∇Γ, P =⇒ Q,∆Θ) is a separated redistribution, then an element
A ∈ Base(Φ) is some subset of B(Γ) ] B(Θ). That is, it is of the form

A = {(a, 0) | a ∈ Al} ∪ {(b, 1) | b ∈ Ar}

for some sets Al ⊆ B(Γ), Ar ⊆ B(Θ). Note that Al = P̆ f0(A), Ar = P̆ f1(A).
This will be our formal definition:

Definition 6.4. Let Γ,Θ ∈ PωTωL, and let A ∈ P (B(Γ) ] B(Θ)). We define
Al := (P̆ f0)A and Ar := (P̆ f1)A.

Then we can see A as being itself a sequent Al =⇒ Ar. This will be
important in defining the modal rule in the sequent calculus G2T (Λ).

The sequent calculus SCT (Λ) To the propositional calculus G2, we add the
following rules governing the modalities:

∆T,L-l
{A,∇L∼β =⇒ B | β ∈ SLα}

∆Lα,A =⇒ B
∇T,L-r

{A =⇒ ∆L∼β,B | β ∈ DLα}
A =⇒ ∇Lα,B

T (∇∆)
{AΦ

l =⇒ AΦ
r | Φ ∈ Rs(Γ,Θ)}

∇Γ, P =⇒ Q,∆Θ
∀Φ.AΦ ∈ Base(Φ)

Recall the notations SL, DL from definition 4.12. The rule T (∇∆) should be
read as follows: If P and Q are sets of proposition letters, and Γ,Θ are as
described in 6.2, the sequent ∇Γ, P =⇒ Q,∆Θ can be concluded from a
premise set Π if for every Φ ∈ Rs(Γ,Θ) there is some AΦ ∈ Base(Φ) with
AΦ
l =⇒ AΦ

r ∈ Π.
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Notation 6.5. In text, we will call the ∆T,L-l and ∇T,L-r rules the interchange
rules, and the T (∇∆) rule the modal rule.

Remark 6.6. The modal rule T (∇∆) can be understood by thinking of proofs as
two-player games, played between a Prover who aims to show that a sequent is
provable, and a Refuter who aims to show that it is not. On a sequent A =⇒ B,
the Prover proposes a rule with A =⇒ B as its conclusion. Ordinarily, the
Refuter then chooses a premise as the next position, at which point it is Prover’s
turn again, who chooses a rule, etc. The game continues until an initial sequent
is reached, at which point Prover wins; or a sequent is reached that is not the
conclusion of any proof rule, at which point the Refuter wins.

The behavior of the modal rule is special: if the Prover proposes the modal
rule, then the Refuter does not pick a premise, but rather a separated redistri-
bution Φ, at which point the Prover is allowed to pick an A ∈ Base(Φ) with
which to continue.

In general, a proof of A =⇒ B in G2T,L proceeds as follows: first, a series
of propositional rules reduces every formula to one that starts with a modal.
Next, the interchange rules are applied until all modals occurring on the left are
∇’s, and those on the right are ∆’s. Finally, the modal rule T (∇∆) is applied,
which reduces the modal depth.

Examples We give some example derivations to illustrate G2T (Λ).

Example 6.7. Let T be the functor X 7→ X2. Consider the T -sequent

∇〈p, q〉 =⇒ ∆〈p, p〉.

We see that in any proof of this sequent, the last rule applied will be the modal
rule. Therefore, we will want to calculate Rs(∇〈p, q〉 =⇒ ∆〈p, p〉).

An element ofRs(∇〈p, q〉 =⇒ ∆〈p, p〉) will be an element of TP{(p, 0), (q, 0), (p, 1)};
that is a pair 〈A,B〉 with A,B ⊆ {(p, 0), (q, 0), (p, 1)}. Such a pair is an element
of Rs(∇〈p, q〉 =⇒ ∆〈p, p〉) if it satisfies the following conditions:

1. (p, 0) ∈ A;

2. (q, 0) ∈ B;

3. (p, 1) ∈ A;

4. (p, 1) ∈ B.

Conditions 1 and 2 together ensure ((Tf0)〈p, q〉, 〈A,B〉) ∈ T ∈, and conditions
3 and 4 ensure that ((Tf1)〈p, p〉, 〈A,B〉) ∈ T∈.

For such an 〈A,B〉 ∈ Rs(∇〈p, q〉 =⇒ ∆〈p, p〉), we have that Base(A,B) =
{A,B}. Moreover, A will be equal to either {(p, 0), (p, 1)} or {(p, 0), (q, 0), (p, 1)}.
So, we see that

p =⇒ p p, q =⇒ p
T (∇∆)

∇〈p, q〉 =⇒ ∆〈p, p〉
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is a valid instance of the modal rule. Since both p =⇒ p and p, q =⇒ p are
initial sequents, this is already a complete proof. So ∇(p, q) =⇒ ∆(p, p) is a
derivable sequent.

It is instructive to look at the above proof from a semantic perspective. The
formula ∇〈p, q〉 is true at S, s if p is true at the left successor, and q is true at
the right successor. The formula ∆〈p, p〉 is true at S, s if p is true at either the
left or the right successor. So, the sequent ∇〈p, q〉 =⇒ ∆〈p, p〉 is valid. The
proof also reveals why it is so: given that ∇〈p, q〉 is true, we can move to the
left successor to find a witness for the truth of ∆〈p, p〉. This is reflected in the
fact that for all separated redistributions, we chose the left element as our base
element.

Example 6.8. Consider the P, {P
→
, P
←
}-sequent =⇒ ∇

→
∅,∇
←
{>}. This sequent

expresses that every point in a Kripke frame either has zero successors or at
least one successor.

We will give a derivation for this sequent. Using the calculations from exam-
ple 4.13, we have that

D
P
→(∅) = {{

∨
∅}}

D
P
←({>}) = {{

∨
{>}}}.

This lets us build up a derivation

. . .

=⇒ ∆
←
{
∨

∅},∆
→
{
∨
{>}}

∇
←

-r
=⇒ ∆

←
{
∨

∅},∇
←
{>}

∇
→

-r
=⇒ ∇

→
∅,∇
←
{>}

with two applications of the interchange rule. We are now at a point where
we can apply the modal rule. An element of Rs( =⇒ ∇

→
∅,∇
←
{>}) is some set

Φ of subsets of {(
∨
∅, 1), (

∨
{>}, 1)} such that

• ({(
∨
∅, 0)},Φ) ∈ (P

→
∈); that is, there is an element A ∈ Φ with (

∨
∅, 1) ∈

A.

• ({(
∨
{>}, 1)},Φ) ∈ (P

←
∈); that is, all elements of Φ contain (

∨
{>}, 1) as

an element.

From this, it follows that a separated redistribution always contains {(
∨
∅, 1), (

∨
{>}, 1)}

as an element, and may additionally contain {(
∨
{>}, 1)} as an element.

We see that both separated redistributions have {(
∨
{>}, 1), (

∨
∅, 1)} as a

base element; so, we can give our derivation as

61



∧
-r

=⇒ >∨
-r

=⇒
∨
{>}∨

-r
=⇒

∨
{>},

∨
∅

P(∇∆)
=⇒ ∆

←
{
∨

∅},∆
→
{
∨
{>}}

∇
←

-r
=⇒ ∆

←
{
∨

∅},∇
←
{>}

∇
→

-r
=⇒ ∇

→
∅,∇
←
{>}

where we recall that > is an abbreviation for
∧

∅.

Example 6.9. Consider the M-sequent ∇
 
〈{p}〉 ∨ ∇

 
〈{q}〉 =⇒ ∇

 
〈{p}, {q}〉. We

first need to know whatDM
 (〈{p}, {q}〉) is. It turns out that Φ ∈ DM

 (〈{p}, {q}〉)
if and only it satisfies the following three conditions:

(i) Base(Φ) ⊆ P{p, q};

(ii) There is an αp ∈ Φ such that every A ∈ αp contains p;

(iii) There is an αq ∈ Φ such that every A ∈ αq contains q.

From this, it follows that ν ∈ DM
 (〈{p}, {q}) if and only if Base(ν) ⊆ {

∨
∅,
∨
{p},

∨
{q},

∨
{p, q}},

and there are Ap, Aq ∈ ν such that every disjunction in Ap contains a p, and
every disjunction in Aq contains a q.

So, let ν ∈ DM
 (〈{p}, {q}). We need to provide a proof of ∇

 
〈{p}〉 =⇒ ∆

 

ν;

the only applicable rule is the modal rule. If Φ is a separated redistribution of

∇
 
〈{p}〉 =⇒ ∆

 

ν, then all α ∈ Φ contain a B with (p, 0) ∈ B, and there is
αp ∈ Φ such that every A ∈ αp contains an element of the form (

∨
P, 1) with

P 3 p (this the condition for (ν,Φ) ∈ (M
 
∈) applied to Ap × {1}).

Then let α′p be equal to αp ∩ Base(Φ). By the criterion from remark 2.10,

α′p ∈ Φ. Then we know that there is a AΦ ∈ α′p with (p, 0) ∈ AΦ. Moreover,

since α′p ⊆ αp, we know AΦ has an element of the form (
∨
P, 1) with p ∈ P .

Since α′p ⊆ Base(Φ) by definition, we know that AΦ ∈ Base(Φ).

Now for this AΦ, the sequent AΦ
l =⇒ AΦ

r is of the form X, p =⇒
∨
P, Y

with p ∈ P , and this is easily derivable by the
∨

-r rule.

So, for all Φ ∈ Rs(∇
 
〈{p}〉 =⇒ ∆

 

ν), there is a derivable AΦ ∈ Base(Φ), and

so by the modal rule we can derive ∇
 
〈{p}〉 =⇒ ∆

 

ν. Since ν was arbitrary, we

can use interchange to derive ∇
 
〈{p}〉 =⇒ ∇

 
〈{p}, {q}〉. By the same argument,

we can derive ∇
 
〈{q}〉 =⇒ ∇

 
〈{p}, {q}〉; so, finishing off with

∇
 
〈{p}〉 =⇒ ∇

 
〈{p}, {q}〉 ∇

 
〈{q}〉 =⇒ ∇

 
〈{p}, {q}〉∨

-l
∇
 
〈{p}〉 ∨ ∇

 
〈{q}〉 =⇒ ∇

 
〈{p}, {q}〉

we have shown that the sequent ∇
 
〈{p}〉∨∇

 
〈{q}〉 =⇒ ∇

 
〈{p}, {q}〉 is derivable.
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From these examples, it can be seen that actually using G2T (Λ) can be quite
complicated, even for relatively simple sequents.

6.2 Soundness

In this section, we will prove soundness of G2T,L. That is, we will show that
if a sequent A =⇒ B is derivable, it is valid. As is standard, we proceed by
proving that every rule is sound; by which we mean that if

Π

A =⇒ B

is any instance of a rule, where Π is a set of valid premises, then A =⇒ B is a
valid sequent.

We will not concern ourselves with the soundness of the Boolean rules, and
only focus on the rules governing the modals.

Interchange rules To prove soundness of the interchange rules, we make
heavy use of the duality lemma (proposition 4.14).

Proof. Let
{A,∇L∼β =⇒ B | β ∈ SLα}

A,∆Lα =⇒ B

be an instance of the ∇T,L-l rule for some L, and assume that for each β ∈ SLα,
the sequent A,∇L∼β =⇒ B is valid.

Then let S, s be a pointed coalgebra model, and assume that S, s 
 a for all
a ∈ A ∪ {∆Lα}. Then by the duality lemma, we know that there is a β ∈ SLα
with S, s 
 ∇L∼β. So now S, s 
 a for all a ∈ {A} ∪ ∇L∼β, and since by
assumption the sequent A,∇L∼β =⇒ B was valid, we know that there is some
b ∈ B with S, s 
 b.

We conclude that the sequent A,∆Lα =⇒ B is valid.

Next, let
{A =⇒ ∆L∼β,B | β ∈ DLα}

A =⇒ ∇Lα,B
be an instance of the ∆T,L-r rule for some L, and assume that for each β ∈ DLα,
the sequent A =⇒ ∆L∼β,B is valid.

Then let S, s be a pointed coalgebra model, and assume that S, s 
 a for all
a ∈ A. Then since for every β ∈ DLα, the sequent A =⇒ ∆L∼β,B is valid, we
know that either S, s 
 b for some b ∈ B, or else S, s 
 ∆L∼β for all β ∈ DLα.

In the first case, we clearly have that S, s 
 b for some b ∈ B∪{∇Lα}. In the
second case, we know by duality that S, s 
 ∇Lα, and hence S, s 
 b for some
b ∈ B ∪ {∇Lα}. So, we conclude that the sequent A =⇒ ∇Lα,B is valid.

Remark 6.10. Note that in fact, the interchange rules are invertible; the con-
clusion is valid if and only if all the premises are valid.
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Modal rule To prove soundness of the modal rule, we need the following key
lemma:

Lemma 6.11 (Refutability lemma). Let P,Q sets of proposition letters, ∇Γ,∆Θ
of the form

∇Γ = {∇Lγγ | γ ∈ Γ}, ∆Θ = {∆Lθθ | θ ∈ Θ}.

The following are equivalent:

(i) The sequent ∇Γ, P =⇒ Q,∆Θ is refutable;

(ii) P ∩Q = ∅, and there is a Φ ∈ Rs(∇Γ, P =⇒ Q,∆Θ) such that for every
A ∈ Base(Φ) the sequent Al =⇒ Ar is refutable.

Proof. (i)⇒(ii): Assume that S, s is a pointed coalgebra model such that S, s 

a for all a ∈ ∇Γ ∪ P but S, s 1 b for all b ∈ Q ∪∆Θ. Then clearly P ∩Q = ∅;
for the second part, define A : S → Pω(B0(Γ) ∪ B1(Θ)) as

t 7→ {f0a | a ∈ B(Γ) and S, t 
 a} ∪ {f1b | b ∈ B(Θ) and S, t 1 b}

and set Φ = TA(σ(s)).

First, we show that Φ is a separated redistribution of ∇Γ, P =⇒ Q,∆Θ.
Let ∇Lγγ ∈ ∇Γ; then S, s 
 ∇Lγγ. Note that if a




t, then f0a ∈ A(t).
Hence, (fgr

0 )◦;




;Agr ⊆ ∈. So, we can calculate that

(Tf0γ,Φ) ∈ (Tfgr
0 )◦; (Lγ 
)◦;TAgr ⊆ L∼γ((fgr

0 )◦;



;Agr) ⊆ L∼γ∈

as illustrated in figure 6.

γ σ(s)

(Tf0)γ Φ

fgr
0

Lγ


TAgr

L∼γ∈

≤

Figure 6

On the other hand, if ∆Lθθ ∈ ∆Θ, then S, s 1 ∆Lθθ. Note that if b

1

t, then
f1b ∈ A(t). So, we have

(Tf1θ,Φ) ∈ (Tfgr
1 )◦; (Lθ 1)◦;TAgr ⊆ L∼θ((fgr

1 )◦;

1

;Agr) ⊆ L∼θ∈

as illustrated in figure 7.

θ σ(s)

(Tf1)θ Φ

fgr
1

Lθ1

TAgr

L∼θ∈

≤

Figure 7
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Next, we show that for every A ∈ Base(Φ), the sequent Al =⇒ Ar is not
valid. But this is clear: since Φ = TA(σ(s)), we know that

Base(Φ) ⊆ {A(t) | t ∈ Base(s)},

and for every t, the sequent A(t)l =⇒ A(t)r is refuted at t.

(ii)⇒(i): Assume that P ∩ Q = ∅, and that there is a Φ ∈ Rs(Γ,Θ) such
that for every A ∈ Base(Φ), the sequent Al =⇒ Ar is refutable.

Then fix for everyA ∈ Base(Φ) a pointed coalgebra model SA = (SA, σA, VA, tA),
such that AL =⇒ AR is refuted at SA, tA. Note that t defines a map
Base(Φ)→

⊎
A∈Base(Φ) SA.

Then define S = (S, σ, V ) as

S :=

 ⊎
A∈Base(Φ)

SA

 ] {s0}

σ(s) :=

{
(TιA)(σA(s)) s ∈ SA for some A

Tt(Φ) s = s0

V (s) :=

{
VA(s) s ∈ SA for some A

P s = s0

We claim that ∇Γ, P =⇒ Q,∆Θ is refuted at S, s0.
First, we clearly have that S, s0 
 p for all p ∈ P and S, s0 1 q for all q ∈ Q.

Let γ ∈ Γ. By assumption, for all A ∈ Base(Φ), if f0a ∈ A, then SA, tA 
 a.
Since the inclusion SA ↪→ S is a coalgebra morphism, we also have that S, tA 
 a.
This means that fgr

0 ;∈; tgr ⊆




. So,

(σ(s), γ) ∈ (Ttgr)◦; (L∼γ ∈)◦; (Tfgr
0 )◦ ⊆ Lγ((tgr)◦;3; (fgr

0 )◦) ⊆ Lγ 


as illustrated in figure 8

Φ (Tf0)γ

σ(s)γ γ

tgr

L∼γ∈

L∼γ


Tfgr
0

≤

Figure 8

Similarly, if θ ∈ ΘL, then

(σ(s), θ) ∈ (Ttgr)◦; (L∼ ∈)◦; (Tfgr
1 )◦ ⊆ L((tgr)◦;3; (fgr

1 )◦) ⊆ L 1 .

We conclude that ∇Γ, P =⇒ Q,∆Θ is refuted at S, s0, showing that it is
refutable.
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Validity of the modal rule is now simply the contrapositive of (i)⇒(ii) in
lemma 6.11: If for every Φ ∈ Rs(Γ,Θ) there is an A ∈ Base(Φ) such that
Al =⇒ Ar is valid, then point (ii) is false, so point (i) is false, meaning that
∇Γ, P =⇒ Q,∆Θ is valid.

6.3 Completeness

Our proof of completeness proceeds as follows: to every sequent A =⇒ B, we
associate a measure m(A =⇒ B) ∈ ω2, where we order ω2 lexicographically.
That is, we set (n, k) < (n′, k′) if n < n′ or n = n′ and k < k′. We aim to define
m(A =⇒ B) in such a way that the following claim is satisfied:

Claim 6.12. In any instance of a rule, the measure of any assumption is strictly
smaller than that of the conclusion.

Since the lexicographic order on ω2 is a well-order, we will be able to use
induction to show that every valid sequent is derivable.

Remark 6.13. Formally, claim 6.12 only applies to productive instances of rules.
To illustrate this, consider the following application of the

∧
-l rule:

a, b, a ∧ b =⇒ c∧
-l

a ∧ b =⇒ c

If we are building a proof of a ∧ b =⇒ c, the above instance of the
∧

-l rule
will not be useful in finding a proof, since we have not reduced the complexity
of the sequent. Such an instance can be considered unproductive.

To be slightly more formal: in all rules except the initial and modal rule,
there is a single formula in the conclusion that is active. If

A1 =⇒ B1 . . . Ak =⇒ Bk

A, a =⇒ B

is an instance of a rule, where a is the active formula, we call this instance pro-
ductive if a does not appear in any of the Ai, and similarly if the active formula
appears on the right of the conclusion. For technical reasons, we consider all
instances of the initial and modal rules to be productive.

In the completeness proof, we will show that every valid sequent has a deriva-
tion where all instances are productive.

Remark 6.14. Note that if claim 6.12 holds, then the proof game from remark 6.6
always ends after finitely many turns (again, provided the Prover only chooses
productive instances of rules): because the measure of the sequent chosen by
Refuter is strictly decreasing, there are no infinite games, since there are no
infinite descending sequences in (ω2, <).

Measure
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Definition 6.15. By induction on the complexity of a formula a ∈ L, we define

kl(p) := 0 kr(p) := 0
kl(¬a) := 1 + kr(a) kr(¬a) := 1 + kl(a)
kl(�A) := 1 +

∑
a∈A kl(a) kr(�A) := 1 +

∑
a∈A kr(a) (� ∈ {

∧
,
∨
})

kl(∇Lα) := 0 kr(∇Lα) := 1
kl(∆Lα) := 1 kr(∆Lα) := 0

We then define

m(A =⇒ B) :=
(

max(d[A ∪B]),
∑
a∈A

kl(a) +
∑
b∈B

kr(b)
)

It is now easy to see that claim 6.12 holds. After all, in any productive
instance of a boolean rule, the boolean complexity of at least one formula de-
creases; in an interchange rule, a ‘heavy’ modal is replaced with a ‘weightless’
one; and in the modal rule, the maximal modal depth decreases.

We are now ready to prove the completeness of G2T (Λ).

Proof. As a base case: assume that A =⇒ B is a valid sequent, and m(A =⇒
B) = (0, 0). This can only happen if A and B are both sets of proposition
letters. Therefore, A =⇒ B is only valid if A ∩ B 6= ∅, meaning that it is an
initial sequent, and hence provable.

Now, assume that A =⇒ B is a valid sequent of measure m(A =⇒ B) =
(d, k), and assume that any valid sequent A′ =⇒ B′ with m(A′ =⇒ B′) <
(d, k) is provable.

If k 6= 0, then A =⇒ B is the conclusion of a boolean or interchange rule,
say

Π

A =⇒ B

We have previously noted that these rules are invertible, so every sequent in Π
is valid. Moreover, by claim 6.12, we know that every sequent in Π has measure
strictly less than (d, k), so is derivable. Hence, A =⇒ B is derivable.

We are only left with the case that k = 0. This can only be true if A =⇒ B
is of the form ∇Γ, P =⇒ Q,∆Θ, with P,Q sets of proposition letters, and

∇Γ = {∇Lγγ | γ ∈ Γ}, ∆Θ = {∆Lθθ | θ ∈ Θ}.

Here, we know by (ii)⇒(i) of the refutability lemma that since ∇Γ, P =⇒
Q,∆Θ is valid, either P ∩Q 6= ∅, in which case A =⇒ B is an initial sequent
and hence derivable, or for every Φ ∈ Rs(∇Γ, P =⇒ Q,∆Θ), there is an
AΦ ∈ Base(Φ) such that AΦ

l =⇒ AΦ
r is valid. Since m(AΦ

l =⇒ AΦ
r ) < (d, k)

for all Φ, the induction hypothesis tells us that each of the sequents AΦ
l =⇒ AΦ

r

is derivable, and hence by an application of the modal rule, so is ∇Γ, P =⇒
Q,∆Θ.
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6.4 Finitarity and decidability

We first note that not all rules in G2T (Λ) are necessarily finitary. In particular,
the interchange rules may introduce infinite branching, since SLα and DLα may
be infinite sets.

At first blush, it may seem as if the modal rule may require infinitely many
premises as well; this is not the case, however. If

{AΦ
l =⇒ AΦ

r }
∇Γ, P =⇒ Q,∆Θ

is an instance of the modal rule, then for any Φ, we know that AΦ
l ⊆ B(Γ)

and AΦ
r ⊆ B(Θ). Since B(Γ) and B(Θ) are finite, there are only finitely many

different sequents among the AΦ
l =⇒ AΦ

r , even if there may be infinitely many
distinct Φ ∈ Rs(∇Γ, P =⇒ Q,∆Θ).

Still, if Rs(∇Γ, P =⇒ Q,∆Θ) is infinite, it may be undecidable if a partic-
ular expression

Π

A =⇒ B

is a valid instance of the modal rule or not. So even if we restrict our attention
to sequents containing only ∆-free formulas on the left and ∇-free formulas on
the right, it may not be decidable if such a sequent is valid.

Hence, if we wish to ensure that G2T (Λ) is decidable, it seems necessary to
demand that T preserve finite sets. The question now is: is this sufficient?

A common method of establishing decidability of a sequent calculus is to show
that it has the subformula property. A sequent calculus C has this property if in
a proof of a sequent A =⇒ B, only subformulas of formulas in A ∪B appear.

Unfortunately, G2T (Λ) does not enjoy the subformula property, since in an
application of the interchange rule, new modalities are introduced. Moreover,
the boolean complexity of the formulas in its Base increases.

However, these increases in complexity are not too large; we can derive a
weaker form of the subformula property, from which decidability follows in
favourable conditions.

Definition 6.16. Let a ∈ LT (Λ) be a formula. We define by simultaneous
induction two sets of supporting formulas; the left support suppl(a) and the
right support suppr(a).

suppl(p) := {p} suppr(p) := {p}
suppl(¬a) := {¬a} ∪ suppr(a) suppr(¬a) := {¬a} ∪ suppl(a)
suppl(

∧
A) := {

∧
A} ∪

⋃
a∈A

suppl(a) suppr(
∧
A) := {

∧
A} ∪

⋃
a∈A

suppr(a)

suppl(
∨
A) := {

∨
A} ∪

⋃
a∈A

suppl(a) suppr(
∨
A) := {

∨
A} ∪

⋃
a∈A

suppr(a)

suppl(∇Lα) := {∇Lα} ∪
⋃

a∈Base(α)

suppl(a) suppr(∇Lα) = {∇Lα} ∪
⋃

β∈DLα
suppr(∆L∼β)

suppl(∆Lα) := {∆Lα} ∪
⋃

β∈SLα
suppl(∇L∼β) suppr(∆Lα) := {∆Lα} ∪

⋃
a∈Base(α)

suppr(a)
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For a sequent A =⇒ B, we write

Σ(A =⇒ B) :=
⋃
a∈A

suppl(a) ∪
⋃
b∈B

suppr(B).

We will call Σ(A =⇒ B) the support of the sequent A =⇒ B.

We now prove the following lemma:

Lemma 6.17. Let A =⇒ B be a LT (Λ)-sequent. If π is a proof of A =⇒ B,
and A′ =⇒ B′ appears in π, then

A′, B′ ⊆ Σ(A =⇒ B)

Proof. First, we note that for any sequent A′ =⇒ B′, we have

A′, B′ ⊆ Σl(A′ =⇒ B′)

Next, the key observation is that if Π
A =⇒ B is a valid instance of a proof rule,

and A′ =⇒ B′ ∈ Π, then

Σ(A′ =⇒ B′) ⊆ Σ(A =⇒ B)

From this, the statement follows by a simple induction on the length of the
proof.

As an illustration, we show the key observation in two specific cases.

¬-l: Assume we have some application of the ¬-l rule

A =⇒ a,B

A,¬a =⇒ B
.

Then

Σ(A,¬a =⇒ B) =
⋃
a′∈A

suppl(a′) ∪ suppl(¬a) ∪
⋃
b∈B

suppr(b)

=
⋃
a′∈A

suppl(a′) ∪ {¬a} ∪ suppr(a) ∪
⋃
b∈B

suppr(b)

⊇
⋃
a′∈A

suppl(a′) ∪ suppr(a) ∪
⋃
b∈B

suppr(B)

= Σ(A =⇒ a,B)

showing that the support of the assumption is included in the support of
the conclusion.

∇-r: Assume we have some application of the ∇-r rule

{A =⇒ ∆L∼β,B | β ∈ DLα}
A =⇒ ∇Lα,B

.
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Then for any β0 ∈ DLα, we see that

Σ(A =⇒ ∇Lα,B) =
⋃
a∈A

suppl(a) ∪ suppr(∇Lα) ∪
⋃
b∈B

suppr(B)

=
⋃
a∈A

suppl(a) ∪
⋃

β∈DLα

suppr(∆L∼β) ∪
⋃
b∈B

suppr(b)

⊇
⋃
a∈A

suppl(a) ∪ suppr(∆L∼β0) ∪
⋃
b∈B

suppr(b)

= Σ(A =⇒ ∆L∼β0, B)

showing that the support of each assumption is included in the support of
the conclusion.

We can use this lemma to prove decidability of G2T (Λ).

Theorem 6.18. Let T : Sets → Sets be a computable functor that preserves
finite sets, and let Λ be a set of computable T -liftings closed under (−)

∼
. Then

the set of valid LT (Λ)-sequents is decidable.

Proof. Let A =⇒ B be an LT (Λ)-sequent. Let Σ = Σ(A =⇒ B) be the
support of A =⇒ B. Since T preserves finite sets, we know that Σ is finite.
In the proof of completeness, we saw that any valid sequent has a proof where
the measure is strictly decreases in every step. So, let T be the set of trees,
annotated by sequents A′ =⇒ B′ for A′, B′ ⊆ Σ, such that for any π ∈ T , the
measure of the sequents strictly decreases along the paths. Clearly, T is finite
as well, and computable from A =⇒ B.

Now by the completeness of G2T (Λ), we know that A =⇒ B is a valid
sequent if and only if at least one annotated tree π ∈ T is a valid proof in
G2T (Λ). And for each such annotated tree π, it is decidable if it is a valid proof
in G2T (Λ).

For this, we note explicitly that since T preserves finite sets, we know that
for any sequent A =⇒ B, the set Rs(A =⇒ B) is finite; hence it is decidable
if a given instance

Π

A =⇒ B

is a valid instance of the modal rule. Hence, the set of valid LT (Λ)-sequents is
decidable.

6.5 Fragments

In this section, we highlight some interesting fragments of LT (Λ) for which
G2T (Λ) is complete. This can be given a meaning in two different ways:

Definition 6.19. Let L′ ⊆ LT (Λ) be a set of formulas. We will call L′ a
complete fragment if whenever A =⇒ B is provable in G2T (Λ), and A,B ⊆ L′,
there is a proof containing only formulas from L′.
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Let L′l,L′r ⊆ LT (Λ) be two sets of formulas. We will call S = {A =⇒ B |
A ⊆ L′l, B ⊆ L′r} a complete sequent-fragment if, whenever A =⇒ B ∈ S is a
provable sequent, there is a proof containing only sequents from S.

We note that L′ is a complete fragment if and only if {A =⇒ B | A,B ⊆ L′}
is a complete sequent-fragment.

We can give a general sufficient criterion for some subset L′ ⊆ LT (Λ) to be
a complete fragment. In lemma 6.17, we showed that G2T (Λ) has an adjusted
form of the subformula property. In particular, it tells us the following:

Proposition 6.20. Let L′ ⊆ LT (Λ) be a set of formulas, and assume that for
all a ∈ L′, both its supports suppl(a), suppr(a) are subsets of L′. Then L′ is a
complete fragment.

Let L′l,L′r ⊆ LT (Λ) be sets of formulas, and assume that for all A ⊆ L′l, B ⊆
L′r, if Σ(A′ =⇒ B′) ⊆ Σ(A =⇒ B), then A ⊆ L′l, B ⊆ L′r. Then

{A =⇒ B | A ⊆ L′l, B ⊆ L′r}

is a complete sequent-fragment.

Unidirectional fragments Consider a T -lifting L. We have previously seen
that the LT (L,L∼)-formulas preserved under L-simulation are those equivalent
to a clean formula only containing ∇L∼ and ∆L. Let LcT (∇L∼ ,∆L) be the set
of these formulas.

By a straightforward induction, it can be seen that if a ∈ LcT (∇L∼ ,∆L),
then suppl(a), suppr(a) ⊆ LcT (∇L∼ ,∆L). So by proposition 6.20, we know that
LcT (∇L∼ ,∆L) is a complete fragment.

Classical modal logic We can construct a sequent calculus for the classical
modal logic K based on G2P (P

→
, P
←

). After all, we have equivalences

∇
→
{p} ≡ �p ≡ ∆

←
{p}, ∇

→
{p} ≡ ♦p ≡ ∆

←
{p}.

So, a L�,♦-sequent can be seen as a LP (P
→
, P
←

)-sequent, where all modalities are
applied to a singleton. Moreover, we can do this in such a way that only ∇’s
occur on the left, and only ∆’s occur on the right.3

Formally, we can define by simultaneous induction two translations ϕ 7→ ϕl

and ϕ 7→ ϕr:

pl := p pr := p
(¬ϕ)l := ¬ϕr (¬ϕ)r := ¬ϕl
(ϕ ∧ ψ)l :=

∧
{ϕl, ψl} (ϕ ∧ ψ)r :=

∧
{ϕr, ψr}

(ϕ ∨ ψ)l :=
∨
{ϕl, ψl} (ϕ ∨ ψ)r :=

∨
{ϕr, ψr}

(�ϕ)l := ∇
→
{ϕl} (�ϕ)r := ∆

←
{ϕr}

(♦ϕ)l := ∇
←
{ϕl} (♦ψ)r := ∆

→
{ϕr}

3this is to eliminate the interchange rules, which don’t have a productive counterpart on
the L�,♦-side.
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Then for sets A and B of modal formulas, the sequent A =⇒ B is valid if
and only if the sequent Al =⇒ Br is valid, where Al = {ϕl | ϕ ∈ A}, Br =
{ψr | ψ ∈ B}.

We can now give a proof system for K. We define a sequent calculus GK
consisting of the following rules:

init
A, p =⇒ p,B

A,ϕ, ψ =⇒ B
∧-l

A,ϕ ∧ ψ =⇒ B

A =⇒ ϕ,B A =⇒ ψ,B
∧-r

A =⇒ ϕ ∧ ψ,B
A,ϕ =⇒ B A,ψ =⇒ B

∨-l
A,ϕ ∨ ψ =⇒ B

A =⇒ ϕ,ψ,B
∨-r

A =⇒ ϕ ∨ ψ,B
A =⇒ ϕ,B

¬-l
A,¬ϕ =⇒ B

A,ϕ =⇒ B
¬-r

A =⇒ ¬ϕ,B
{AΦ

l =⇒ AΦ
r }modal ∀Φ.AΦ ∈ Φ

�Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2

The modal rule should be read similarly to the T (∇∆)-rule in G2T (Λ): Call
Φ ∈ P ((Γ1 ∪ Γ2) ] (Θ1 ∪Θ2)) a separated redistribution if

• for all U ∈ Φ, Γ1 ]Θ1 ⊆ U , and

• for all (x, i) ∈ Γ2 ]Θ2, there is a U ∈ Φ with (x, i) ∈ U ,

If for all separated redistributions Φ there is an AΦ ∈ Φ such that Al =⇒ Ar
is derivable, then �Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2 is derivable.

This defines a sound and complete sequent calculus for K. To prove this, we
argue that GK ` A =⇒ B if and only if G2P (P

→
, P
←

) ` Al =⇒ Br. The crucial
point is that

A1 =⇒ B1 . . . Ak =⇒ Bk
R

A =⇒ B

is an instance of a proof rule in GK if and only if

Al1 =⇒ Br1 . . . Alk =⇒ BrkRl,r

Al =⇒ Br

is an instance of a proof rule in G2P (P
→
, P
←

). Moreover, {Al =⇒ Br | A,B ⊆
L�,♦} is a complete sequent-fragment, since it satisfies the criterion from 6.20.

So, any proof of A =⇒ B in GK can be turned into a proof of Al =⇒ Br in
G2P (P

→
, P
←

) by translating; and any proof of Al =⇒ Br in G2P (P
→
, P
←

) is equal
to the translation of some proof of A =⇒ B in GK.

We can be more explicit about the modal rule if we examine the separated
redistributions. Any sequent �Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2 has a ‘canonical’
redistribution

Φ0 := {(Γ1 ]Θ1) ∪ {(γ, 0)} | γ ∈ Γ2} ∪ {(Γ1 ]Θ1) ∪ {(θ, 1)} | θ ∈ Θ2}.
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So, if
Π

modal
�Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2

is a valid instance of the modal rule, there is some sequent AΦ0

l =⇒ AΦ0
r ∈ Π

for AΦ0 ∈ Φ.
Moreover, for any separated redistribution Φ, every A ∈ Φ0 is contained

in some element A′ ∈ Φ. So, if there is some A ∈ Φ0 with Al =⇒ Ar
derivable, then by weakening, every separated redistribution Φ contains an A′

with A′l =⇒ A′r derivable. So, we can replace our modal rule with the following
two rules:

Γ1, γ =⇒ Θ1
♦-l γ ∈ Γ2
�Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2

Γ1 =⇒ θ,Θ1
�-r θ ∈ Θ2

�Γ1,♦Γ2, P =⇒ Q,♦Θ1,�Θ2

Monotone modal logic We can perform the same process for monotone
modal logic: we define

pl := p pr := p
(¬ϕ)l := ¬ϕr (¬ϕ)r := ¬ϕl
(ϕ ∧ ψ)l :=

∧
{ϕl, ψl} (ϕ ∧ ψ)r :=

∧
{ϕr, ψr}

(ϕ ∨ ψ)l :=
∨
{ϕl, ψl} (ϕ ∨ ψ)r :=

∨
{ϕr, ψr}

(�ϕ)l := ∇

 

〈{ϕl}〉 (�ϕ)r := ∆
 
〈{ϕr}〉

(♦ϕ)l := ∇
 
〈{ϕl}〉 (♦ψ)r := ∆

 

〈{ϕr}〉

and write down rules for M such that

A1 =⇒ B1 . . . Ak =⇒ Bk
R

A =⇒ B

is an instance of a proof rule in GK if and only if

Al1 =⇒ Br1 . . . Alk =⇒ BrkRl,r

Al =⇒ Br

is an instance of a proof rule in G2M(M
 
,M

 

).
In order to refine the modal rule, we investigate Rs(∇Γl =⇒ ∆Θr).

Let Γ1,Γ2,Θ1,Θ2 ∈MLM(M
 
,M

 

), such that

Γ1 = {〈{a1
1}〉, . . . , 〈{a1

k1}〉}
Γ2 = {〈{a2

1}〉, . . . , 〈{a2
k2}〉}

Θ1 = {〈{b11}〉, . . . , 〈{b1m1
}〉}

Θ2 = {〈{b21}〉, . . . , 〈{b2m2
}〉}

LetB = B(Γ1∪Γ2)]B(Θ1∪Θ2). A given Φ ∈MPB is a separated redistribution

of ∇
 

Γ1,∇

 

Γ2 =⇒ ∆

 

Θ1,∆
 

Θ2 if and only if
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(i) For i = 1, . . . , k1, for all A ∈ Φ there is an A ∈ A with (a1
i , 0) ∈ A.

(ii) For i = 1, . . . , k2, there is a Ai ∈ Φ such that for all A ∈ Ai, (a2
i , 0) ∈ A.

(iii) For i = 1, . . . ,m1, there is a Bi ∈ Φ such that for all B ∈ Bi, (b1i , 1) ∈ B.

(iv) For i = 1, . . . ,m2, for all B ∈ Φ there is a B ∈ B with (b2i , 1) ∈ B.

Again, we can consider the ‘canonical’ redistribution Φ0, defined as follows:
For i = 1, . . . , k2 and j = 1, . . . ,m1, we set

Ai := {{(a1
i′ , 0), (a2

i , 0)} | i′ = 1, . . . , k1} ∪ {{(b2j′ , 1), (a2
i , 0)} | j′ = 1, . . . ,m2}

Bj := {{(a1
i′ , 0), (b1j , 1)} | i′ = 1, . . . , k1} ∪ {{(b2j′ , 1), (b1j , 1)} | j′ = 1, . . . ,m2}

Then we define
Φ0 := 〈A1, . . . ,Ak2 ,B1, . . . ,Bm1〉

It is easy to check that Φ0 satisfies conditions (i) - (iv), and hence is a separated
redistribution. We also see that

Base(Φ0) =

k2⋃
i=1

Ai ∪
m1⋃
j=1

Bj

So if ∇
 

Γ1,∇
 

Γ2 =⇒ ∆

 

Θ1,∆
 

Θ2 is valid, then one of the following four cases
occurs:

1. There are a ∈ Γ1, a
′ ∈ Γ2 such that a, a′ =⇒ is valid.

2. There are a ∈ Γ1, b ∈ Θ1 such that a =⇒ b is valid.

3. There are a ∈ Γ2, b ∈ Θ2 such that a =⇒ b is valid.

4. There are b ∈ Θ1, b
′ ∈ Θ2 such that =⇒ b, b′ is valid.

We claim that vice versa, if any of these four cases occurs, then every separated

redistribution Φ of ∇
 

Γ1,∇

 

Γ2 =⇒ ∆

 

Θ1,∆
 

Θ2 has an element AΦ ∈ Base(Φ)
with AΦ

l =⇒ AΦ
r derivable.

To illustrate this, we consider case 1. Let a ∈ Γ1, a
′ ∈ Γ2 with a, a′ =⇒ valid.

If Φ ∈ Rs(∇
 

Γ1,∇

 

Γ2 =⇒ ∆

 

Θ1,∆
 

Θ2), then since it satisfies condition (ii), there
is a A ∈ Φ such that all A ∈ A contain (a′, 0). Now let A′ = A ∩ Base(Φ).
By the criterion from remark 2.10, we know that A′ ∈ Φ. Since Φ satisfies
condition (i), there is an AΦ ∈ A′ with (a, 0) ∈ AΦ. Now AΦ ∈ Base(Φ), and
(a, 0), (a′, 0) ∈ AΦ. So, we have that AΦ

l =⇒ AΦ
r is of the form

A, a, a′ =⇒ B

for some sets A,B. Since a, a′ =⇒ was derivable, we know by weakening that
AΦ
l =⇒ AΦ

r is derivable.
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This motivates the following sequent calculus GM for M:

init
A, p =⇒ p,B

A,ϕ, ψ =⇒ B
∧-l

A,ϕ ∧ ψ =⇒ B

A =⇒ ϕ,B A =⇒ ψ,B
∧-r

A =⇒ ϕ ∧ ψ,B
A,ϕ =⇒ B A,ψ =⇒ B

∨-l
A,ϕ ∨ ψ =⇒ B

A =⇒ ϕ,ψ,B
∨-r

A =⇒ ϕ ∨ ψ,B
A =⇒ ϕ,B

¬-l
A,¬ϕ =⇒ B

A,ϕ =⇒ B
¬-r

A =⇒ ¬ϕ,B
γ, γ′ =⇒

♦-l,�-l γ ∈ Γ1, γ
′ ∈ Γ2

♦Γ1,�Γ2, P =⇒ Q,�Θ1,♦Θ2

γ =⇒ θ
♦-l,�-r γ ∈ Γ1, θ ∈ Θ1

♦Γ1,�Γ2, P =⇒ Q,�Θ1,♦Θ2

γ =⇒ θ
�-l,♦-r γ ∈ Γ2, θ ∈ Θ2

♦Γ1,�Γ2, P =⇒ Q,�Θ1,♦Θ2

=⇒ θ, θ′
�-r,♦-r θ ∈ Θ1, θ

′ ∈ Θ2
♦Γ1,�Γ2, P =⇒ Q,�Θ1,♦Θ2

By the discussion above, we see that for any L�,♦-sequent A =⇒ B, GM `
A =⇒ B if and only if G2M(M

 
,M

 

) ` Al =⇒ Br. Since G2T (M
 
,M

 

) was
complete, we know that GM is complete for M.
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7 Conclusion

7.1 Summary

In this thesis, we have studied relation lifting as a general approach to coalge-
braic logic. We have defined a family of logics LT (Λ) based on Moss’∇-modality,
and showed that on finite-branching coalgebras, logical equivalence coincides
with the natural associated notion of bisimulation. It is also shown that for
functors preserving weak pullbacks and finite sets, the L∼-simulation-invariant
formulas are (up to equivalence) those defined from ∇L.

We have further given a family of sound and complete cut-free sequent calculi
G2T (Λ), and demonstrated how these calculi may be modified to obtain proof
systems for specific coalgebraic logics of interest.

7.2 Further Research

One of the places the ∇-modality arises naturally is in the study of the modal
µ-calculus [14] [8]. Indeed, coalgebras are the natural models for fixpoint logics
in general. Hence, there may be a universal method to add fixpoint operators
to LT (Λ). The proof theory of the µ-calculus is notoriously complex; taking the
calculi G2T (Λ) as a starting point may give a new perspective.

Another line of research would be to compare relation liftings to predicate
liftings. In [17], it is shown that for weak pullback-preserving functors, the logic
LT (T̄ ) can be translated into a language based on predicate liftings. A natural
question is: can this translation be extended beyond weak pullback-preserving
functors? Are predicate lifting-based logics and relation lifting-based logics
always equally expressive?

Here, we also mention research by Goŕın and Schröder on simulations based
on predicate liftings [10], which in some ways mirrors the work in this thesis.

We further note that in general, the structure of the class of T -liftings is
not well understood. In this thesis, it is shown that there is always a minimal
element; however, as of yet, no explicit construction is known. For the neigh-
borhood functor N , no non-trivial lifting is known. In [12], several notions of
equivalence for the neighborhood functor are given; it may be possible to adapt
one of these into a N -lifting.

Of particular interest is the question of which functors admit a diagonal-
preserving functor; since these are the functors for which behavioral equivalence
is captured by L-bisimulation for some L.

Finally, in the upward expressivity theorem 5.6, we made essential use of pure
normal forms. The existence of a pure normal form is guaranteed if T preserves
weak pullbacks. But there are other functors that admit pure normal forms -
notably, the monotone neighborhood functor. This leads to the question: can
the reliance on weak pullback-preservation be eliminated from the proof of 5.6?
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A A colimit construction for LT (Λ)

Let us recap the problem with the given construction of LT (Λ). In the definition
of formulas of the form ∇α, we take α ∈ TωLT (Λ). The problem is that it is not
always clear what an object in TωLT (Λ) looks like, without first having LT (Λ)
available.

One solution would be to make the inductive nature of the construction
explicit. We could define L0 := Prop, and

Li+1 := Li∪{¬a | a ∈ Li}∪{
∧
A,
∨
A | A ∈ PωLi}∪{∇Lα,∆Lα | L ∈ Λ, α ∈ TωLi}

and set LT (Λ) :=
⋃∞
i=1 Li.

This will however lead to an overdefinition of many formulas. Consider, for
instance, the monotone neighborhood functor M. At stage i, we may define
some modal formula ∇〈A1, . . . , Ak〉i. At the next stage, we can define this for-
mula again as ∇〈A1, . . . , Ak〉i+1. Here, we denote by 〈A1, . . . , Ak〉i the upwards
closure of {A1, . . . , Ak} in Li.

We would ideally want to identify these formulas. This identification is not
completely straightforward, as their identification will also have consequences
for formulas where they occur as subformulas. To coordinate the identifications,
we perform a suitable colimit construction.

Define the functor F : Sets→ Sets as

FX := X × {¬}+ PωX × {
∧
,
∨
}+

∑
L∈Λ

TωX × {∇L,∆L}

and set L0 := Prop. We define L1 to be the coproduct of L0 and FL0. This
yields the diagram

L0 L1

FL0

f0

g0

Now apply F to f0 to get the diagram

L0 L1

FL0 FL1

f0

g0

Ff0

We define L2 as the pushout of g0 and Ff0. This gives us

L0 L1 L2

FL0 FL1

f0 f1

g0

Ff0

g1
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Now we set L3 to be the pushout of g1 and Ff1, yielding

L0 L1 L2 L3

FL0 FL1 FL2

f0 f1 f2

g0

Ff0

g1

Ff1

g2

Continuing like this, we obtain an infinite diagram

L0 L1 L2 L3 L4 . . .

FL0 FL1 FL2 FL3 FL4 . . .

f0 f1 f2 f3 f4

g0

Ff0

g1

Ff1

g2

Ff2

g3

Ff3 Ff4

g4

We define LT (Λ) to be the colimit of the above diagram. Note that this is
simply the colimit of

L0 L1 L2 . . .
f0 f1 f2

What makes this the right construction? Consider FLT (Λ). F is a sum of
finitary functors, and is hence itself finitary. It is a fortunate fact from category
theory that a functor is finitary if and only if it commutes with directed colimits.
Since LT (Λ) is the limit of a directed diagram, we know that FLT (Λ) is the
colimit of

FL0 FL1 FL2 . . .
Ff0 Ff1 Ff2

By construction, we have a collection of maps gi : FLi → Li+1, from which we
get a map between the colimits g : FLT (Λ)→ LT (Λ).

We can read g as the following map:

(a,¬) 7→ ¬a

(A,
∧

) 7→
∧
A

(A,
∨

) 7→
∨
A

(α,∇L) 7→ ∇Lα
(β,∆L) 7→ ∆Lα

There are a few properties that we expect g to have.

(1) g is injective, and LT (Λ) is the disjoint union of Prop and the image of g.

(2) Set a ≺ b if a ∈ Base(β) with b = g(β); then the transitive closure of ≺ is
a well-founded relation.

Each of these properties is easily verified. The result is the following:
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(1) Every formula a ∈ LT (Λ) is of exactly one of the following forms:

• a = p for a unique p ∈ Prop;

• a = ¬b for a unique b ∈ LT (Λ);

• a =
∧
A for a unique A ∈ PωLT (Λ);

• a =
∨
A for a unique A ∈ PωLT (Λ);

• a = ∇Lα for unique L ∈ Λ, α ∈ TωLT (Λ);

• a = ∆Lα for unique L ∈ Λ, α ∈ TωLT (Λ).

(2) If ϕ(p) is true for every proposition letter p, and the implication

(∀a ≺ b : ϕ(a)) =⇒ ϕ(b)

holds for all formulas b, then ϕ holds for all formulas.

Hence, by point (2) we can perform induction on the complexity of a formula,
and by point (1) we can unambiguously distinguish the cases.

This procedure may seem overly complicated to obtain something as simple
as ‘the set of formulas’. Yet there is a hidden merit to this construction.

For, note that both the syntax of the modalities, as well as the semantics of

, rely on there being an ‘object of formulas’ inside the category. This poses a
problem when we move beyond the category of sets. For instance, what if we
were to attempt relation lifting on the category of Stone spaces? If we simply
define our ‘set of formulas’ by induction, we run into problems, since (a) a modal
formula of the form ∇α takes an α ∈ TLT (Λ), requiring LT (Λ) to be something
that T can be applied to, and (b) the semantics of 
 require it to be a relation
between the coalgebra and LT (Λ), meaning that LT (Λ) needs to live in the same
category as the (carriers of the) coalgebras.

Both these problems can be solved if we view LT (Λ) not as a collection
of formulas on a meta-level, but as a colimit computed inside the category of
interest.
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