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Abstract

Traditional epistemic logics generally define knowledge as truth in all epis-
temic alternatives. This approach has two shortcomings: first, the link
between knowledge and justification is not represented. Second, epistemic
agents are highly idealised and suffer from the defect of logical omniscience.
In this thesis, we propose a framework that aims at bringing together knowl-
edge, belief and evidence possession of less idealised epistemic agents.

Our contribution consists of a combination and enrichment of existing
approaches that address each of these issues individually. On the one hand,
there are possible-worlds based semantic representations of evidence and
corresponding notions of knowledge and belief based on this conception of
evidence. On the other hand, it has been argued that epistemic attitudes
are topic-sensitive, which makes them hyperintensional.

Our framework combines the semantic representation of evidence with
strategies to formalise hyperintensional knowledge and belief. We suggest
that evidence itself should be understood as a hyperintensional concept.
We demonstrate how some of the closure principles for knowledge and be-
lief related to logical omniscience are consequences of the purely possible
worlds-based approach of interpreting the underlying evidence. In partic-
ular, we suggest that the missing component that cannot be captured by
these approaches is the relation that holds between a piece of evidence and
a proposition whenever the former is relevant for the latter.

Based on existing frameworks modelling subject matters, we develop
a topic-sensitive notion of evidence and show that knowledge and belief
can be defined based on this novel kind of evidence. As a consequence
of grounding knowledge and belief entirely in hyperintensional evidence,
our target notions of knowledge and belief are themselves hyperintensional.
In particular, our approach circumvents many of the defects pertaining to
logical omniscience.

Our main technical contribution consists of a sound and complete ax-
iomatisation of a logic for hyperintensional evidence and knowledge, which
is expressive enough to define all evidence, knowledge and belief modalities
developed throughout this thesis. We also provide a separate sound and
complete axiomatisation of a belief fragment.
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without you this thesis could have never become what it is. Your support,
encouragement, and inspiration continuously exceeded my hopes and expec-
tations. Thanks to you, this thesis was as much fun as it was demanding. I
cannot imagine how one could supervise better than you did.

A very special thanks goes to Thomas Randriamahazaka. Thomas, this
thesis was so much more fun because you were there for me with your
unbelievable brain in the moments of greatest logical despair. Your love for
logic has infected me, and provided a guiding star throughout the Master
of Logic. It is amazing to be friends with you.

I would like to thank the members of the defense committee: Maria
Aloni, Malvin Gattinger, and Anthia Solaki, for their time to read this
thesis and the pleasant and stimulating defense.

Being a student in the Master of Logic with a background in psychology
was as inspiring as it was challenging. I could only write this thesis because
the programme gave me the chance to acquire the necessary philosophical
and mathematical background. I am extremely thankful for the opportu-
nities that the programme provides to students of all backgrounds to dive
into new areas and to intellectually re-invent themselves. I would like to
thank the student mentors, my academic mentor, Ex Falso, and everyone
who contributed to the ILLC community for their countless efforts to create
this wonderful supportive and inspiring atmosphere, which makes the ILLC
such a unique and amazing place to study and conduct research.

Personally, I would like to thank my friends: Johannes, it feels like we
are taking this journey through both life and academia together. Thank
you for always being there to talk. Heiko, thank you for your friendship
and wisdom. I cannot imagine being where I am without you in my life.
Rachel, thank you for all the beautiful moments that we’ve had together
and that are yet to come. Anna, Fergus, Grace, Iason, Ion, Martin, Oana,
Pepijn, Sam, Terence and Tex: thank you for your friendship. You made
Amsterdam feel like home to me.

Last but not least, I would like to thank my parents. Without your
never-ending support and belief in me, none of this would ever have been
possible.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1
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Chapter 1

Introduction

This thesis is concerned with the formalisation of certain notions of evidence,
knowledge and belief. Since Hintikka (1962), it has become the standard
approach in epistemic logic to interpret knowledge as truth in all epistemic
alternatives. This formalisation of knowledge suffers from two limitations:
first, it is not connected with any kind of evidence or justification. Second,
it generally idealises an agent’s capacity to derive logical consequences of
what they already know; this phenomenon is known as the problem of logical
omniscience.

Each of these issues have been separately addressed in a number of
works. However, with a few exceptions mentioned in Chapter 4, there are
currently no frameworks addressing both problems combined. The goal of
this thesis is to provide a unifying framework that grounds knowledge and
belief in evidence in a way that gives rise to less idealised epistemic agents.

The evidence we are interested in is the kind of evidence that realistic
agents receive in normal, every day life. In particular, evidence does not
necessarily specify the complete state of the world, but may leave open
several ways of how things could be. Furthermore, we take evidence to be
possibly false or misleading. To give a semantic representation of this kind
of evidence, we capitalise on existing approaches and interpret evidence as
sets of possible worlds, to which an additional component is added: a subject
matter or topic, which represents what the evidence is about, or the context
in which the evidence is received and processed by the agent.

We also take inspiration from the existing literature in our treatment
of the problem of logical omniscience. In particular, we treat knowledge
and belief as hyperintensional concepts: they sometimes treat intensionally
equivalent contents in different ways. Thus, possible worlds are not suffi-
cient to give accurate and realistic formalisations of knowledge and belief.
Instead, we take them to be attitudes towards propositions whose content
consists of both an intensional (i.e., possible worlds-based) component and
a subject matter or topic component in the tradition of Yablo (2014) (see
also Hawke, 2018).
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The conceptual novelty in our approach is that we locate the source of
the hyperintensionality of both knowledge and belief at the level of evidence.
Instead of representing evidence purely as sets of possible worlds, we equip
evidence with topics. Based on this semantic representation, we offer a
definition of what it means for a piece of evidence to be relevant for a
proposition. The relation of evidential relevance is hyperintensional, and
we argue that knowledge and belief inherit their hyperintensionality from
the underlying evidence.

The resulting notions of knowledge and belief already block some of the
problematic closure principles pertaining to logical omniscience: for exam-
ple, not every tautology is known because the agent does not necessarily
possess relevant evidence for every tautology. However, we shall see that
this approach does not suffice to circumvent all problematic closure princi-
ples. For example, hyperintensional knowledge is still closed under taking
conjunctions. To improve on this situation, we take the concept of fragmen-
tation on board, according to which the total body of evidence possessed by
an agent may be scattered across different fragments. These can be thought
of as different contexts in which evidence is processed, as different sources
from which the evidence is received, or as distinct questions whose answers
the agent tries to obtain using her evidence.

In the remainder of the introduction, we briefly introduce the core no-
tions upon which our framework is based: the semantic representation of
evidence, the hyperintensional relation of evidential relevance, and fragmen-
tation. We also give a brief sketch of the problem of logical omniscience,
indicate the most important existing frameworks we took as inspiration,
and finally give an outline of the structure of this thesis.

1.1 Evidence à la van Benthem & Pacuit

In this section, we present the evidence models originally presented in van
Benthem and Pacuit (2011) and developed further in van Benthem, Fernández-
Duque, and Pacuit (2012) and van Benthem, Fernández-Duque, and Pacuit
(2014). These models laid the cornerstone of a whole research agenda cen-
tring around the semantic representation of evidence as sets of possible
worlds, and they also provide the starting point of our journey. Taking
evidence as unstructured propositions, that is, as sets of worlds rather than
formulas in a fixed language allows us to remain flexible with respect to
the different forms that evidence can take. In particular, it enables us to
represent non-linguistic evidence, such as some kinds of sensory percepts or
memories.

Definition 1.1 (Evidence Models (van Benthem and Pacuit 2011)). An
evidence model is a tuple M = (W, E0, V ), where
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i) W is a non-empty set of possible worlds ;

ii) E0 ⊆ P(W ) is a set of sets of worlds called basic pieces of evidence,
satisfying W ∈ E0 and ∅ 6∈ E0; and

iii) V : prop→ P(W ) is a valuation map.

The evidence models originally defined in van Benthem and Pacuit
(2011) are more general: they allow the collection of evidence E0 to vary
between different worlds. Here, however, we restrict attention to the “uni-
form” evidence models that assign the same evidence sets to all worlds.

Given an evidence model M = (W, E0, V ), a basic piece of evidence
e ∈ E0 and a formula1 ϕ, we say that e entails or supports ϕ if ϕ is true
throughout all worlds contained in e.

If we pick out a world w ∈ W as the actual world, we are in the position
to distinguish between truthful or factive evidence and false evidence: if a
basic piece of evidence e ∈ E0 contains w, then e is truthful; otherwise, it is
false.

Given two pieces of basic evidence e, f ∈ E0, we say that e and f are
consistent with each other if they have a non-empty intersection. In this
case, there exists a world which is compatible with both e and f .

Evidence combination

Two basic pieces of evidence e and f that are consistent with each other may
be combined by taking their intersection. The resulting piece of evidence
e∩ f is a stronger piece of evidence in the sense that it supports at least as
many propositions as e and f individually.

From now on, we will by default assume that our agent automatically
combines all mutually consistent available evidence. Formally speaking,
this amounts to assuming that the set of evidence is closed under non-
empty finite intersections. To be clear about this difference to the original
models from van Benthem and Pacuit (2011), we will denote the collection
of evidence closed under non-empty finite intersections by E instead of E0.
Clearly, the assumption that an agent always forms all possible finite com-
binations of available evidence is an idealisation. Later, we shall introduce
the concept of fragmentation to weaken this idealisation.

Based on the van Benthem-Pacuit evidence models, we can define two
modalities E and � for evidence possession. These have the following in-
tended readings:

1Of some propositional language; we will introduce our own full language of evidence,
knowledge and belief in Chapter 2.
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Eϕ The agent has (combined) evidence for ϕ.
�ϕ The agent has truthful (combined) evidence for ϕ.

Evidence operators

The following semantics for evidence operators were developed in van Ben-
them and Pacuit (2011) and Baltag et al. (2016). Given an evidence model
M = (W, E , V ) (note that we assume E to be closed under non-empty finite
evidence combination) and a world w ∈ W , the semantics for operators E
and � for (factive) evidence possession is defined as follows:

M, w 
 Eϕ iff ∃e ∈ E (e ⊆ JϕK);
M, w 
 �ϕ iff ∃e ∈ E (w ∈ e ⊆ JϕK).

In words, an agent has evidence for ϕ iff there exists a (combined) piece
of evidence entailing ϕ; and an agent has factive evidence for ϕ iff there
exists a (combined) truthful piece of evidence entailing ϕ.

These definitions formalise the relation e is evidence for ϕ in terms of
purely intensional entailment. We now turn to an example of a counter-
intuitive consequence not only of the formalisation of van Benthem and
Pacuit (2011), but of any purely intensional representation of evidence.

1.2 Hyperintensional evidence

Consider the following two examples from Özgün and Berto (2020):

Example 1.2.

(1) All bachelors are unmarried.

(2) No three positive integers x, y and z satisfy xn + yn = zn for any
integer value of n greater than 2.

Both of these sentences express necessary truths. As such, they are true
at every world in every evidence model and are therefore entailed by every
piece of evidence. In general, the following holds on intensional evidence
models:

Every piece of evidence constitutes evidence for every necessary truth.

This seems counter-intuitive: a radio announcement of Joe Biden having
won the state of Pennsylvania might provide evidence for the outcome of
the elections, but has nothing to do with the marital status of bachelors
or Fermat’s Last Theorem. Intuitively, then, what a piece of evidence e is
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about should be related to what P is about if e constitutes evidence for P .
In a slogan:

(Evidential
relevance)

The content of any evidence for a proposition P should
be relevant for P .

As the previous example suggests, the relevant notion of content cannot
be captured solely by the intensional content of evidence and propositions.
That is, our target notion of evidence content is hyperintensional : we need
something else besides possible worlds to capture evidential relevance.

Our proposal for a solution is presented in the next chapter, where we
also see some more examples of intuitively problematic principles that are
validated by intensional accounts of evidence, but should be rejected on
grounds of evidential relevance.

1.3 Fragmentation

For the van Benthem-Pacuit evidence models, we already introduced the
notion of evidence combination: given two consistent pieces of evidence, an
agent may take their intersection to obtain a new piece of evidence, which
may support more propositions. Arguably, it is an idealisation to assume
that an agent always combines all available evidence. Consider the following
modified example, originally from Lewis (1982, p. 436), as cited in Yalcin
(2020, p. 11):

Example 1.3. “I used to think that Nassau Street ran roughly east-west;
that the railroad nearby ran roughly north-south; and that the two were
roughly parallel.”

Let’s add the following to Lewis’ story: his belief concerning the orienta-
tion of Nassau Street was based on his frequent shopping tours through the
city centre after the end of his lectures, when the evening sun shone at the
street from the west. His belief concerning the orientation of the railroad
stemmed from a lake that he could see when he took the train to New York
and of which he knew that it was north of the city. Finally, his belief that
the street and the railroad were parallel was based on his memory of passing
a train in his car while driving out of the city on Nassau Street. We return
to Lewis’ story:

“So each sentence in an inconsistent triple was true according to my
beliefs, but not everything was true according to my beliefs. Now, what
about the blatantly inconsistent conjunction of the three sentences? I say
that it was not true according to my beliefs. My system of beliefs was
broken into (overlapping) fragments. Different fragments came into action
in different situations, and the whole system of beliefs never manifested
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itself all at once. [...] The inconsistent conjunction of all three did not
belong to, was in no way implied by, and was not true according to, any
one fragment. That is why it was not true according to my system of
beliefs taken as a whole. Once the fragmentation was healed, straightway
my beliefs changed: now I think that Nassau Street and the railroad both
run roughly northeast-southwest.”

We offer the following addition to Lewis’ explanation: the different frag-
ments into which his belief system was broken correspond to fragments
across which his evidence was distributed. One fragment might have in-
cluded his evidence from his shopping tours that justified his belief con-
cerning the street, another fragment included the evidence from his train
trips that justified his belief concerning the railroad, and a third fragment
included the evidence supporting the belief that the street and the railroad
ran in parallel.

Why would an agent’s body of evidence be broken into fragments? An
intuitive answer is based on the cognitive limitations of agents that operate
in finite time and space: we constantly receive a large amount of information
from different sources, and only some of that information is relevant to us.
Realistically, we cannot always combine all of these pieces of information
and derive all their logical consequences. Indeed, Yalcin (2020) argued that
it may be rational for epistemic agents to have fragmented beliefs.

A second explanation focuses on conceptual understanding : an agent
may possess two pieces of evidence and think that they have nothing to
do with each other; she associates them with different concepts. Especially
given the resource constraints mentioned in the previous paragraph, it makes
sense to assume that an agent only combines pieces of evidence that from
her perspective belong to similar concepts.

A third way of looking at fragmentation is centred around questions. On
this view, evidence is used to answer questions raised by the agent. The
different questions that are relevant to an agent at the same time can be
grouped into different agendas or inquiries : overarching big questions with
several associated smaller questions. When two pieces of evidence seem to
provide answers to entirely unrelated questions, or questions belonging to
different inquiries, an agent may not see the need to combine them with
each other.

We have seen three different motivations for fragmentation: First, an
agent’s mind can be seen as fragmented due to her failure to combine in-
formation from different contexts with each other ; on this interpretation,
the different fragments are like “logical echo chambers” between which no
information permeates. Second, an agent may understand different concepts
without being able to combine them to larger concepts. Third, an agent may
pursue inquiries related to different questions, or aiming at different goals.
On the last interpretation, it is natural to assume that for each of her goals,
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she consults different information sources, and again may fail to combine
information from different sources.

In this thesis, we will take inspiration from all of these perspectives and
take the idea of fragmentation on-board. Given our evidence-first perspec-
tive, we will split our agent’s total body of evidence into different frames,
where each frame is associated with an overarching topic, which intuitively
represents the connection between all evidence in that frame.

This gives as a way of relaxing the idealised assumption that an agent
always combines all available evidence:

(Evidential
fragmentation)

An agent’s body of evidence is fragmented. Only evi-
dence belonging to the same fragment can be combined.

1.4 Knowledge and belief

Knowledge and belief grounded in evidence

The seminal work of Hintikka (1962) laid the groundwork for modern epis-
temic logic: knowledge is interpreted as truth in all epistemic alternatives
as a necessity operator of modal logic. Formally, this means that a for-
mula ϕ is known at a world w if ϕ is true at all worlds that are considered
epistemically possible at w.

This formalisation of knowledge trails behind the developments in epis-
temology. Already in Plato’s Theaetetus (Ichikawa and Steup 2018) we can
find an argument that true belief is not sufficient for knowledge: the pres-
ence of some kind of justification should be added as a necessary condition
for knowledge. In the famous counterexamples by Gettier (1963), Plato’s
conception of knowledge as justified true belief was rebutted. In the subse-
quent epistemological literature, a wide variety of proposals was developed.
One example is the so-called Defeasibility Theory of Knowledge of Lehrer
and Paxson (1969) and Lehrer (2018), according to which knowledge is true
evidence-based belief which is stable under acquisition of certain kinds of
new evidence.

What all these accounts have in common is that they take justifica-
tions as required for knowledge. The first of our two pivotal objectives in
developing formalisations of knowledge and belief is to incorporate this epis-
temological tradition by grounding knowledge and belief in evidence. On
the technical side, our approach takes inspiration from Baltag et al. (2016),
who interpret knowledge and belief on topological models based on the evi-
dence models by van Benthem and Pacuit (2011). We give our proposal for
a definition of knowledge and belief in the next chapter.

Besides grounding knowledge and belief in evidence, our second objec-
tive is to ensure that our definitions of knowledge and belief do not give
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rise to overly idealises epistemic agents. To be clear about what kinds of
idealisation we mean here, we now briefly specify the problem of logical
omniscience.

Logical omniscience

Both the Hintikkan and the intensional evidence-based approaches to for-
malising knowledge and belief have in common that the epistemic attitudes
of their agents are closed under certain types of logical inference. The fol-
lowing core principles are usually associated with logical omniscience (our
list is based on Fagin et al. (1995) and Solaki (2017)):

– Knowledge of validities: If ϕ is valid, then ϕ is known.

– Closure under logical entailment: If ϕ logically entails ψ and ϕ is
known, then ψ is known.

– Closure under logical equivalence: If ϕ and ψ are logically equivalent
and ϕ is known, then ψ is known.

– Closure under known implication: If both ϕ and ϕ → ψ are known,
then ψ is known.

– Closure under conjunction: If both ϕ and ψ are known, then ϕ∧ψ is
known.

– Closure under disjunction: If ϕ is known, then ϕ ∨ ψ is known.

Phrased in terms of evidence, the principles knowledge of validities and
closure under conjunction are already familiar to us: In Example 1.2, we
saw that every piece of evidence supports every necessary truth; and in
Example 1.3, we discussed the idealised assumption that an agent always
finitely combines all available evidence.

1.5 Brief comparison with existing approaches

Our goal is to develop a hyperintensional, fragmented notion of evidence
and define knowledge and belief in such a way that they are (a) grounded
in evidence and (b) give rise to less idealised epistemic agents. Our frame-
work, which we will present in the next chapter, capitalises on the concepts
developed in three lines of research:

The first line is concerned with the representation of evidence in the
tradition of van Benthem and Pacuit (2011). We take particular inspiration
from the works of Özgün (2017) and Baltag et al. (2016), which exploit the
topological structure implicit in the van Benthem-Pacuit evidence models
to develop topological, evidence-based notions of knowledge and belief.
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Solutions to the problem of logical omniscience have been developed in,
among others, Hawke, Özgün, and Berto (2020), Özgün and Berto (2020),
and Berto and Hawke (2018), who argue that knowledge and belief should
be interpreted as hyperintensional and specifically topic-sensitive notions.
However, these proposals come without any notion of evidence.

The concept of fragmentation was already developed by Fagin and Halpern
(1987), who expressed the idea that an epistemic agent does not feature one
single mind which combines information in a coherent, centralised manner,
but rather a society of minds, whose members form their own beliefs. Yalcin
(2018) puts the idea this way: Belief is not one map by which we steer, but
rather an atlas, or a collection of maps. Depending on the situation we’re
in, we choose the appropriate map from our atlas to navigate through the
world. Finally, Hawke, Özgün, and Berto (2020) point to fragmentation as
one of the central strategies to tackle the problem of logical omniscience. All
of these approaches, however, locate fragmentation at the level of knowledge
and belief, and do not include evidence.

Our contribution is a combination of these three lines of research. In
particular, we argue that the notion of evidence should itself be understood
as hyperintensional and fragmented, and extend the approach of van Ben-
them and Pacuit (2011) by equipping evidence with topics as they were
developed for knowledge and belief in Hawke, Özgün, and Berto (2020) and
Özgün and Berto (2020). We also adopt the notion of fragmentation for
bodies of evidence. Building on this novel concept of topic-sensitive and
fragmented evidence, we define notions of knowledge and belief that are
entirely grounded in evidence using an approach resembling the topology-
based formalisation in Özgün (2017) and Baltag et al. (2016). Thus, we
present a unification of these authors’ works which unravels the hyperinten-
sional conception of knowledge and belief by including a layer of hyperin-
tensional and fragmented evidence, which gives rise to hyperintensional and
fragmented knowledge and belief.

Both hyperintensionality and fragmentation are needed Hawke,
Özgün, and Berto (2020) argue that logical omniscience arises from at least
two characteristics of classical epistemic logics: First, the definition of epis-
temic attitudes is entirely based on intensional content. That is, these
approaches fail to capture the hyperintensional character of knowledge and
belief. Second, these approaches assume that an agent always combines all
available information. Therefore, both hyperintensionality and fragmenta-
tion are required to fully address the problem of logical omniscience. Our
target notions of knowledge and belief will thus be both hyperintensional
and fragmented.
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1.6 In this thesis

In Chapter 2, we motivate and present our proposal for a logic of hyperin-
tensional and fragmented evidence, knowledge and belief. We first introduce
our language and provide the intended readings of our modalities. Follow-
ing that, we develop our semantic representations for topic-sensitivity and
fragmentation. After stating the full definitions of our models and evidence,
knowledge and belief modalities, we demonstrate in examples how our for-
malisation of evidence circumvents several intuitively problematic principles
that are validated by intensional conceptions of evidence. We extend this
discussion to knowledge and belief by showing that they do not exhibit
many of the principles associated with logical omniscience. The chapter is
concluded with an overview of epistemologically relevant (in-)validities for
all epistemic modalities introduced in this thesis.

Chapter 3 contains the main technical contributions of this thesis. We
provide sound and complete axiomatisations of two fragments of our full
logic of hyperintensional and fragmented evidence, knowledge and belief.
The first fragment is the factive evidence-knowledge fragment and is expres-
sive enough to define all epistemic modalities introduced in the thesis. The
second fragment is the belief fragment, for which we give a sound and com-
plete axiomatisation in order to provide a separate logical specification of
our notion of belief.

In Chapter 4, we compare our framework with similar existing ap-
proaches. First, we state the difference between our notion of belief and
its topological counterpart of Baltag et al. (2016). We also explain why our
notion of belief does not exploit the full topological structure of evidence.
After, we give a brief presentation of a question-based conception of subject
matters, which provides an alternative to the more abstract notion of topics
used by us. We sketch what a question-sensitive notion of evidence could
look like and point to limitations in such an approach. Finally, we compare
our framework to awareness logics and justification logics, which both share
some of the objectives pursued here.

Finally, in Chapter 5, we summarise what we hope to have contributed
with this thesis, and conclude with two possible directions for further re-
search.
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Chapter 2

A hyperintensional logic of
evidence, knowledge and belief

In this chapter, we motivate and present the semantic machinery to capture
hyperintensional and fragmented evidence, knowledge and belief. We begin
by introducing the language and modalities we will work with. In Sections
2.1 and 2.2, we define topic-sensitivity and fragmentation for evidence. In
Section 2.3, we give the full semantics of our logic, including the definition of
our models and the semantic clauses for all evidence, knowledge and belief
modalities. In Sections 2.4 and 2.5, we demonstrate how several problematic
properties of intensional evidence models are not exhibited by our notion
of evidence. In Section 2.6, we show how our formalisation of knowledge
and belief inherit the hyperintensional and fragmented properties of the
underlying evidence and in particular exhibit reduced logical omniscience.
Finally, Section 2.7 provides a concise overview of relevant validities and
non-validities for all our modalities.

Language of evidence, knowledge and belief

We first introduce the language we will work with. Let prop be a countable
set of propositional variables, and let F = {1, ..., n} be a non-empty, finite
set of frame symbols. These frame symbols correspond to the fragments of
an agent’s evidence. The full language L of hyperintensional fragmented
evidence, knowledge and belief is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [∀]ϕ | Eϕ | �ϕ | Bϕ | Kϕ |
Ekϕ | �kϕ | Bkϕ | Kkϕ for k ∈ F .

The remaining Boolean connectives ∨, →, and ↔ are defined as abbre-
viations in the usual way: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ); ϕ → ψ := ¬ϕ ∨ ψ; and
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). For any formula ϕ ∈ L, let V ar(ϕ) denote
the set of propositional variables occurring in ϕ.
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The intended meaning of the modalities for evidence, belief and knowl-
edge is given in Table 2.1.

Ekϕ The agent has evidence for ϕ in the kth evidential frame.
Eϕ The agent has evidence for ϕ (in some evidential frame).
�kϕ The agent has factive evidence for ϕ in the kth evidential frame.
�ϕ The agent has factive evidence for ϕ (in some evidential frame).
Bkϕ The agent believes ϕ in the kth evidential frame.
Bϕ The agent believes ϕ (in some evidential frame).
Kkϕ The agent knows ϕ in the kth evidential frame.
Kϕ The agent knows ϕ (in some evidential frame).

Table 2.1: Intended readings of epistemic modalities

[∀] denotes the global modality : [∀]ϕ says that ϕ is true in all possible
worlds. This operator will serve mostly as a technical aid. Epistemically,
we may interpret it as an a priori modality.

2.1 Topic-sensitive evidence

Our target notion of evidence should satisfy the following desideratum of
evidential relevance from Section 1.2, which we repeat here:

(Evidential
relevance)

The content of any evidence for a proposition P should
be relevant for P .

This requirement is what we identified as one of the missing components
we target in the purely intensional account of evidence. In this section, we
first introduce the necessary technical machinery and then provide a formal
definition of the notion of evidential relevance. In Example 1.2, we saw
that a piece of evidence concerning the outcome of the elections should not
constitute evidence for Fermat’s Last Theorem because it is not relevant
for it; however, if the intensional content of a piece of evidence e and a
proposition P is the only component in determining whether e is evidence
for P , then this relevance condition cannot be captured.

Thus, we need to enrich the content of both propositions and of evidence
to be able to capture evidential relevance. Intuitively, a radio announcement
concerning the outcome of an election should be dismissed as irrelevant for
the truth of Fermat’s Last Theorem because it is about an entirely different
subject matter. Before giving a formal definition of the notion of a topic,
we turn to an example to get a better grip of the nature of subject matters.

Example 2.1.
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(i) P : “Pia is a professor.”

(ii) Q: “Quita is a queen.”

What are the topics of these propositions, i.e. what are these proposi-
tions about? The following topic ascriptions have intuitive force:

(a) P is about both Pia and Pia’s profession.

(b) Q is about both Quita and Quita’s profession.

Aboutness relations exhibit some intuitive structure. For example, any-
thing that is about Pia’s profession is also about Pia, but not vice versa.
These interrelations can be captured by a mereological structure of subject
matters: for example, the topic Pia’s profession is part of the larger topic
Pia. The topic of P ∧Q is Pia’s and Quita’s professions, which is the fusion
of the respective topics of P and Q. The mereological structure exhibited
by topics is captured by the following definition:

Definition 2.2 (Mereology of Topics (Berto 2019)). A mereology of topics
is a tuple T = (T ,⊕), where

i) T is a non-empty set of topics ; and

ii) ⊕ : T × T → T is a binary operation on topics called topic fusion
assumed to be idempotent, commutative and associative.

The fusion a⊕ b of two topics a and b is the smallest topic that both a
and b are part of. Based on topic fusion ⊕, we define a binary relation v
called topic parthood on T as follows:

for all a, b ∈ T : a v b iff a⊕ b = b.

Then (T ,⊕) is a join semilattice and (T ,v) a poset.

We are now equipped with a precise notion of topics, but we still need
a way of assigning topics to sentences. We map propositional variables
to topics and make sure that the topic assigned to complex sentences is
systematically built up from the topics of its propositional components. We
assume topic-transparency of logical connectives : logical connectives do not
modify the topic of a sentence. For example, the topic of Pia is a professor
is the same as the topic of Pia is not a professor. The topic of Pia is a
professor and Quita is a queen is the fusion of the topics of Pia is a professor
and of Quita is a queen.
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Definition 2.3 (Topic assignment function). Given a mereology of topics
T = (T ,⊕), a topic assignment function t : prop → T is a function that
assigns topics from T to propositional variables in prop.

t is extended to the whole language L by putting t(ϕ) = t(p1)⊕· · ·⊕t(pn),
where {p1, ..., pn} = V ar(ϕ) are the propositional variables occurring in ϕ.
We say that ϕ is about t(ϕ).

Returning to the previous example, the underlying mereology of topics
is the following1:

Pia’s profession Quita’s profession

Pia QuitaPia’s and Quita’s professions

Pia and Quita

Figure 2.1: Topic structure of Example 2.1. Edges represent
topic parthood v: larger topics are further to the top

We are now in a position to formally capture aboutness relations of sen-
tences. For example, t(P ) = Pia’s profession, so P is about Pia’s profession.
Since t(P ) v Pia, we have that P is also about Pia. And since

t(P ∧Q) = t(P )⊕ t(Q)

= Pia’s profession⊕Quita’s profession

= Pia’s and Quita’s professions

v Pia and Quita,

we have that P ∧ Q is about both Pia’s and Quita’s professions and Pia
and Quita.

Assigning topics to evidence We now have a topic assignment for sen-
tences, but we still need to equip pieces of evidence with topics. The basic
idea is simple: instead of representing a piece of evidence only as a set of
worlds, we take it as a pair (e, a) consisting of a set of worlds e and a topic
a. However, we also need to accommodate evidence combination: given
two topic-equipped pieces of evidence (e, a) and (f, b) such that e and f are
consistent (i.e., e ∩ f 6= ∅), we need to make sure that the combined evi-
dence e∩ f receives an appropriate topic. Intuitively, if we combine a piece

1Obviously, there are more topics that could be depicted here, for example Pia’s
hobbies, Quita’s family, or generally anything else related to Pia or Quita. The topic
structure in Figure 2.1 is to be understood as a fragment of the structure of all topics.
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of evidence concerning Pia’s profession with another concerning Quita’s
profession, then the resulting piece of evidence concerns Pia’s and Quita’s
profession. Thus, the combination of (e, a) and (f, b) is (e ∩ f, a⊕ b), i.e. a
combined piece of evidence with the intersection of e and f as its intensional
component, and the fusion of a and b as its topic component.

The next definition summarises the assignment of topics to evidence and
completes our toolbox for representing hyperintensional evidence.

Definition 2.4 (Topic-indexed piece of evidence). Given an evidence model
M = (W, E , V ) and a mereology of topics T = (T ,⊕), a topic-indexed piece
of evidence is an element (e, a) of the set E × T .

Two topic-indexed pieces of basic evidence (e, a) and (f, b) are called
consistent if e ∩ f 6= ∅. For any two consistent topic-indexed pieces of
evidence (e, a) and (f, b), their evidence combination is defined as (e∩f, a⊕
b). If (e, a) is a topic-indexed (combined) piece of evidence, we say that (e, a)
is about a and often simply write ea instead of (e, a).

Evidential relevance Provided these definitions of the topic component
of both sentences and of evidence, we are now in a position to formally
define what it means for a piece of evidence to be relevant for a sentence:

Definition 2.5 (Evidential relevance). If M = (W, E , V ) is an evidence
model, T = (T ,⊕) a mereology of topics, ea ∈ E × T a topic-indexed piece
of evidence and ϕ ∈ L a formula, we say that ea is relevant for ϕ iff t(ϕ) v a,
i.e. iff the topic of ϕ is included in the topic a of ea.

2.2 Fragmented evidence

We now turn to the second conceptual component of our framework: frag-
mentation. We recall our desideratum from Section 1.3:

(Evidential
fragmentation)

An agent’s body of evidence is fragmented. Only evi-
dence belonging to the same fragment can be combined.

We interpret this idea in a straightforward manner. We assume a finite
number of evidence fragments, each of which is represented by a number
from the set F = {1, ..., n} of frame symbols. Interpreted on a model,
each frame symbol will be associated with its own body of evidence, i.e.
a set of topic-indexed pieces of evidence Ek called evidential frame. Each
evidential frame Ek is assumed to be closed under non-empty, finite evidence
combination, i.e. if ea, fb ∈ Ek and e ∩ f 6= ∅, then (e ∩ f, a⊕ b) ∈ Ek.

Each frame symbol k ∈ F is assigned a topic by extending the definition
of the topic assignment function t to frame symbols:

t : prop ∪ F → T
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t is extended to the whole language L as before (see Definition 2.3).
We place the following condition on each evidential frame Ek:

for each ea ∈ Ek, a v t(k).

This assumption corresponds to the idea that all evidence in the same
evidential frame is connected with the topic of that frame. If we interpret
different evidential frames as different sources from which the agent receives
her evidence or as different contexts in which she processes it, then the
topic of that frame corresponds to this source or context. Alternatively,
the topic associated with an evidential frame can be interpreted as the
concept connecting all evidence in that frame, or as the overarching inquiry
or question which the agent tries to answer using the evidence in that frame.

2.3 Semantics

We are now ready to give the full definition of our models for the language
L of hyperintensional fragmented evidence, knowledge and belief. These
models are effectively a fusion of the evidence models from van Benthem
and Pacuit (2011), topic mereologies, and fragmentation.

2.3.1 Models

Definition 2.6 (Topic-sensitive evidence model with fragmentation). A
topic-sensitive evidence model with fragmentation, or tsef-model for short,
is a tuple M = (W, T ,⊕, t, {Ek}k∈F , V ), where

i) W is a non-empty set of possible worlds ;

ii) (T ,⊕) is a mereology of topics (see Definition 2.2);

v denotes the associated topic parthood relation as defined there;

iii) t : prop ∪ F → T is a topic assignment function assigning a topic to
each atomic proposition and to each frame symbol;

iv) for each k ∈ F , Ek ⊆ P(W ) × T is a set of topic-indexed pieces of
evidence subject to the following two conditions:

(1) for each ea ∈ Ek, a v t(k); and

(2) Ek is closed under non-empty, finite evidence combination, i.e. if
ea, fb ∈ Ek and e ∩ f 6= ∅, then (e ∩ f)a⊕b ∈ Ek; and

v) V : prop→ P(W ) is a valuation function.

Topic assignment t is extended to L by taking as the topic of a sentence
ϕ the fusion of the topics of its propositional variables: t(ϕ) := ⊕{t(p) | p ∈
V ar(ϕ)} = t(p1)⊕ · · · ⊕ t(pn).
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2.3.2 Evidence modalities

We now define the semantics for Boolean connectives, the global modality,
and our evidence modalities.

Definition 2.7 (Semantics of evidence modalities). Given a tsef-model
M = (W, T ,⊕, t, {Ek}k∈F , V ) and a world w ∈ W , the satisfaction rela-
tion 
 for the Boolean connectives, the global modality and the evidence
operators is defined recursively as follows (we write JϕKM for the truth set
{w ∈ W | M, w 
 ϕ} of ϕ in M and shorten JϕKM to JϕK whenever M is
clear from the context):

M, w 
 p iff w ∈ V (p)

M, w 
 ¬ϕ iff not M, w 
 ϕ

M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ

M, w 
 [∀]ϕ iff W ⊆ JϕK
M, w 
 Ekϕ iff (∃ea ∈ Ek) (e ⊆ JϕK and t(ϕ) v a)

M, w 
 Eϕ iff (∃k ∈ F) (∃ea ∈ Ek) (e ⊆ JϕK and t(ϕ) v a)

M, w 
 �kϕ iff (∃ea ∈ Ek) (w ∈ e ⊆ JϕK and t(ϕ) v a)

M, w 
 �ϕ iff (∃k ∈ F) (∃ea ∈ Ek) (w ∈ e ⊆ JϕK and t(ϕ) v a)

Given a tsef-model M, validity of a formula ϕ on M, written M 
 ϕ, is
defined as M, w 
 ϕ for all w ∈ W .

The fragmented evidence operators E and � can equivalently be defined
as the following abbreviations:

Eϕ :=
∨
k∈F

Ekϕ

�ϕ :=
∨
k∈F

�kϕ

2.3.3 Knowledge and belief

In defining knowledge and belief based on our topic-sensitive, fragmented
notion of evidence, we take what Kelly (2016) calls an evidentialist stance
towards knowledge and belief. This means that we regard both epistemic
notions as supervening on evidence: knowledge and belief are entirely de-
termined by an agent’s evidential state. Two agents’ knowledge (and belief)
can differ only if their evidential states differ.

We will take strong inspiration from the topological evidence models
presented in Özgün (2017) and Baltag et al. (2016) and in particular follow
their coherentist perspective towards evidence with respect to knowledge
and belief. This means that evaluation of an agent’s belief and knowledge
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takes into consideration all evidence available to that agent. However, we
depart from the topological approach in a twofold manner: First, we ground
knowledge and belief in our topic-sensitive, fragmented notion of evidence.
Second, we exploit only part of the topological structure of evidence: we
assume that evidence is closed under finite intersections, but not under
arbitrary unions. We shall return to this difference in Section 4.2.

Semantics for knowledge and belief We say that ϕ is believed in ev-
idential frame k iff there exists a piece of evidence ea which supports ϕ
and which is consistent with all evidence in Ek. Knowledge in a frame k
is defined similarly, but with a factive piece of evidence as a witness. In
parallel with our notions of fragmented evidence, the fragmented versions
of knowledge and belief are defined as knowledge (belief) in some evidential
frame.

Definition 2.8 (Semantics of knowledge and belief modalities). Given a
tsef-model M = (W, T ,⊕, t, {Ek}k∈F , V ) and a world w ∈ W , the satisfac-
tion relation 
 for the knowledge and belief modalities is defined as follows:

M, w 
 Bkϕ iff (∃ea ∈ Ek) (e ⊆ JϕK and t(ϕ) v a

and ∀e′a′ ∈ Ek : e ∩ e′ 6= ∅)

M, w 
 Bϕ iff (∃k ∈ F) (∃ea ∈ Ek) (e ⊆ JϕK and t(ϕ) v a

and ∀e′a′ ∈ Ek : e ∩ e′ 6= ∅)

M, w 
 Kkϕ iff (∃ea ∈ Ek) (w ∈ e ⊆ JϕK and t(ϕ) v a

and ∀e′a′ ∈ Ek : e ∩ e′ 6= ∅)

M, w 
 Kϕ iff (∃k ∈ F) (∃ea ∈ Ek) (w ∈ e ⊆ JϕK and t(ϕ) v a

and ∀e′a′ ∈ Ek : e ∩ e′ 6= ∅)

In parallel with the evidence modalities, the fragmented modalities B
for belief and K for knowledge can then be defined as follows:

Bϕ :=
∨
k∈F

Bkϕ

Kϕ :=
∨
k∈F

Kkϕ

The modalities B and K are intended to capture our target notions of
hyperintensional, fragmented belief and knowledge.
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2.4 Hyperintensionality revisited

We now consider several examples demonstrating that our notion of topic-
sensitive evidence blocks a number of intuitively problematic principles valid
on intensional evidence models.

The pivotal point of all examples and principles discussed in this section
is the topic-sensitivity of our notion of evidence. The concept of fragmen-
tation plays no role here: all problematic principles are blocked entirely in
virtue of the topic-sensitivity of evidence. Similarly, it is irrelevant whether
we phrase the principles and examples in terms of factive or non-factive
evidence. For the sake of brevity, we formulate all principles and examples
in terms of fragmented, factive evidence (i.e., using the operator �), but the
reader should note that all arguments can be given in a similar way when
substituting �k, E, or Ek for �. A full overview of the (non-)validities
considered in in this section is given at the end of the chapter.

We begin by revisiting a principle already familiar from the introduction:
the problem of evidence and necessary truths.

2.4.1 Necessary truths

The following generally holds on intensional evidence models:

Every piece of evidence constitutes evidence for every necessary truth.

Here is a counterexample demonstrating that this is not the case in
our framework. Let p denote the proposition that Biden won the elections,
and let ea represent a piece of evidence supporting p, for example a radio
announcement proclaiming his victory. Let q denote the necessary truth
from Example 1.2 stating that Bachelors are unmarried.

Counterexample 2.9. Let M = (W, T ,⊕, t, {Ek}k∈F , V ) be a tsef-model
s.t. W = {w, v}, V (p) = {w}, V (q) = W , T = {a, b, c} with a representing
the topic outcome of the elections, b the topic marital status of bachelors,
and c the topic marital status of bachelors and outcome of the elections ;
t(p) = a, t(q) = b, and ⊕ and the only evidential frame E1 as depicted:

ea w v
p, q q a b

c

Figure 2.2: Counterexample M for necessary truths: left hand side depicts
evidence component consisting of one evidential frame E1, right hand side
depicts topics component
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In this example, there is no evidence for q, because the only available
piece of evidence ea is not relevant for q. Thus, validity of q together with
the availability of some (factive) piece of evidence for p does not entail
availability of evidence for q. Formally, we have

M, w 6
 ([∀]q ∧�p)→ �q

Proof. Take the counterexample M from Figure 2.2. Since W ⊆ JqK, we
have M, w 
 [∀]q. As w ∈ e ⊆ JpK and t(p) = a, we have M, w 
 �1p
and therefore also M, w 
 �p. However, there is only one evidential frame
E1 and only one piece of evidence ea ∈ E1, and t(q) = b 6v a, so we have
M, w 6
 �1q and therefore also M, w 6
 �q.

2.4.2 Closure under logical entailment

Our next target is closure under logical entailment, which is one of the
central principles pertaining to the problem of logical omniscience. Consider
the following example (originally from Stalnaker (1984, p. 88), as cited in
Hawke, Özgün, and Berto (2020, p. 734)), here phrased in terms of evidence:

Example 2.10. William III might have had evidence that England could
avoid war with France, but he needn’t have thereby had evidence that Eng-
land could avoid nuclear war with France. He didn’t have the concept
nuclear, and so wasn’t positioned to think about nuclear wars at all.”

Since the implication if war can be avoided, then nuclear war can be
avoided is necessarily true, any piece of evidence entailing that war can be
avoided also entails that nuclear war can be avoided. Thus, evidence on van
Benthem-Pacuit models satisfies:

Evidence entailment is closed under logical entailment.

Using the global modality [∀] and evidence modality �, this is expressed
by the following principle, which is valid on intensional evidence models:

([∀](ϕ→ ψ) ∧�ϕ)→ �ψ

The next counterexample shows that this is not the case with our models.
For the sake of brevity, we henceforth do not specify the full models, but
only give pictorial presentations. The proofs are very similar in style to that
of the previous example, so we omit them as well.

Counterexample 2.11. Let p denote the proposition that England can
avoid war with France, and q the proposition that England can avoid nuclear
war with France. The counterexample is provided in Figure 2.3.
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ea w
p, q

v

 q

a = t(p)

t(q)

Figure 2.3: Counterexample M for closure under logical entailment

We have:

M, w 6
 ([∀](p→ q) ∧�p)→ �q

2.4.3 Closure under logical equivalence

The next principle is closely related to the previous one. Consider the
following two examples:

Example 2.12.

(1) Amsterdam is beautiful.

(2) Fermat’s Last Theorem is true.

Since (2) is a necessary truth, it holds in all possible worlds. Thus,
Amsterdam is beautiful and the conjunction Amsterdam is beautiful and
Fermat’s Last Theorem is true express logically equivalent propositions, so
they are true in the same worlds. In general, intensional evidence modals
validate:

Evidence possession is closed under logical equivalence.

Formally, this is captured by validity of the following principle:

([∀](ϕ↔ ψ) ∧�ϕ)→ �ψ

Counterexample 2.13. Let p denote the proposition Amsterdam is beau-
tiful, and q the proposition Fermat’s Last Theorem is true, then the model
depicted in Figure 2.4 is a counterexample:

ea w
p, q a = t(p) t(q)

·

Figure 2.4: Counterexample M for closure under logical equivalence

We have:

M, w 6
 ([∀](p↔ (p ∧ q)) ∧�p)→ �(p ∧ q)
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2.4.4 Closure under disjunction

For the next problematic principle, we will revisit William III (example
modified from Hawke, Özgün, and Berto (2020, p. 743)):

Example 2.14. “William III might have had evidence that France will go
to war without having evidence that either they will go to war or develop a
nuclear arsenal.”

Any piece of evidence entailing ϕ also entails ϕ∨ψ. Thus, van Benthem-
Pacuit evidence models validate:

Evidence entailment is closed under disjunction.

Formally, this corresponds to validity of the following:

�ϕ→ �(ϕ ∨ ψ)

Counterexample 2.15. Let p denote the proposition that France will go
to war, and q the proposition that France will develop a nuclear arsenal. A
counterexample is given in Figure 2.5:

ea w
p, q

v

 q a = t(p) t(q)

t(p ∨ q)

Figure 2.5: Counterexample M for closure under disjunction

We have:

M, w 6
 �p→ �(p ∨ q)

2.4.5 Intensionally equivalent pieces of evidence

We now give an example of two intensionally equivalent pieces of evidence
that provide evidence for different propositions. Unlike intensional evidence
models, our framework can account for such situations. Consider the fol-
lowing two scenarios from Builes (2020, pp. 114 sqq.):

Example 2.16.

(1) Finite Coins: Suppose you are in a room with a countable infinity of
people, and each of you flips a coin without looking at the result. You
know that all the coin flips are fair and independent. I then inform
you that something remarkable happened: almost every coin landed
tails. More precisely, only finitely many coins landed heads. Now
what should your credence be that your coin landed heads?
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(2) Finite Coins*: Again, you are in a room with countably many people
and each of you flips a coin without looking at the result. You know
that all the coin flips are fair and independent. This time, you will only
be told information about the other people in the room, excluding you.
Let S be the set of these other people. I inform you of the following
remarkable piece of information: only finitely many people in S flipped
heads. What should your credence be that your coin landed heads?

In the first scenario, intuitively the credence of my coin being heads up
should be 0, since I know that only a vanishingly small amount of all coins
landed tails2. In the case of Finite Coins*, the intuitive answer is different:
the credence of my coin being heads up should be 1/2, because the coin
flips are fair and independent3, and the information that only finitely many
people in S flipped heads only concerns the coins of people in S, but not
mine.

So if we call the piece of information we receive in Finite Coins evidence
e, and the piece of information we receive in Finite Coins* evidence e∗,
then we have the following situation: e constitutes evidence supporting the
belief that the likelihood of my coin being heads up is 0, whereas e∗ does not.
This situation turns paradoxical once we realise that e and e∗ are logically
equivalent: the number of people whose coins landed heads is finite if and
only if the number of people excluding myself whose coins landed heads is
finite.

Since e and e∗ are logically equivalent, a purely intensional represen-
tation of evidence would render them as identical sets of worlds. Thus,
if p denotes the proposition that the credence of my coin being heads up
is 0, these evidence models cannot account for our intuition that e should
constitute evidence for p, whereas e∗ shouldn’t.

In general, any purely intensional account of evidence validates the fol-
lowing principle:

Intensionally equivalent pieces of evidence always
constitute evidence for the same propositions.

This is not the case for our topic-sensitive notion of evidence:

Counterexample 2.17. Let my coin be the topic of p (the credence of
my coin being heads up is 0 ), everyone’s coin the topic assigned to e, and

2Builes (2020, pp. 115 sqq.) provides formal arguments for why it is rational to believe
that the probability of my coin being heads up should be 0, but since these are irrelevant
for our present purposes, we simply appeal to intuition.

3One might object that this example is inconsistent: on a frequentist conception of
probability, the possibility of an event in which a coin lands tails up infinitely often seems
to collide with its property of being fair. We ask the reader who shares this intuition to
bear with us for the sake of the example.
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everyone else’s coin the topic of e∗. The corresponding topic structure is as
depicted in Figure 2.6:

my coin everyone else’s coin

everyone’s coin

Figure 2.6: Counterexample for intensionally equivalent pieces of evidence

Since t(p) = my coin v everyone’s coin, evidence e with topic everyone’s
coin is relevant for p. In contrast, since everyone else’s coin 6v t(p) = my
coin, evidence e∗ with topic everyone else’s coin is not relevant for p.

2.4.6 Conjunction elimination

We saw various examples of principles that are intuitively problematic and
successfully blocked in our framework. However, we should make sure that
our hyperintensional evidence logic also accounts for some inferences that an
agent intuitively should be able to make. One such example is conjunction
elimination: if I have evidence that it is sunny and warm, then intuitively
I should also have evidence that it is sunny. And indeed, the following is
valid for � and in fact all other evidence modalities as well:

�(ϕ ∧ ψ)→ (�ϕ ∧�ψ)

Proof. We only prove the � version; the proofs for �k, E and Ek are similar.
Let M = (W, T ,⊕, t, {Ek}k∈F , V ) be a tsef-model and w ∈ W a world, and
suppose that M, w 
 �(ϕ ∧ ψ). Then by the semantics of �, there is an
evidential frame k ∈ F and a witnessing piece of evidence ea ∈ Ek, i.e. w ∈
e ⊆ Jϕ∧ψK and t(ϕ∧ψ) v a. Now since Jϕ∧ψK ⊆ JϕK, we have w ∈ e ⊆ JϕK.
Moreover, by definition of t and ⊕, we have t(ϕ) v t(ϕ)⊕ t(ψ) = t(ϕ ∧ ψ).
Thus, ea ∈ Ek is a witnessing piece of evidence for M, w 
 �ϕ, and in a
similar way we can show that M, w 
 �ψ. Therefore, M, w 
 �ϕ ∧�ψ.

(Note that the same proof works for Bk, B, Kk and K modalities: In all
cases, the witnessing piece of evidence for (fragmented) knowledge/belief in
ϕ∧ψ is consistent with all evidence in the same evidential frame, so it is also
a witness for (fragmented) knowledge/belief of ϕ and ψ, respectively.)

There is an interesting symmetry in the previous proof: If ea entails
ϕ ∧ ψ, then it also entails ϕ; and if ea is relevant for ϕ ∧ ψ, then it is also
relevant for ϕ. Intuitively explained, this means that having evidence for ϕ
is part of having evidence for ϕ ∧ ψ.
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2.4.7 Closure under conjunction within a fragment

A second positive example of a principle which should follow from our con-
ceptual motivation is the following: if an agent has a piece of evidence for ϕ
and another piece of evidence for ψ in the same evidential frame and both
pieces of evidence are truthful, then she can combine them to a piece of
evidence for ϕ ∧ ψ. That is, the following is valid:

�kϕ ∧�kψ → �k(ϕ ∧ ψ)

This corresponds to our assumption that each evidential frame is closed
under finite, non-empty evidence combination. For the proof, we refer the
reader to Proposition 3.6. Note that the non-factive Ek-version of this
principle is not valid, because the relevant pieces of evidence might be in-
consistent with each other.

2.4.8 Topic-sensitive closure under logical entailment

Hyperintensional evidence possession is not closed under logical entailment
because a piece of evidence for ϕ might not be relevant for ψ, even if ϕ
logically entails ψ. But what if ϕ logically entails ψ and our agent has both
a piece of evidence for ϕ and a piece of evidence which is relevant for ψ in
the same evidential frame? No matter whether the second piece of evidence
actually entails ψ, if the two pieces of evidence are consistent with each
other, then the agent should be able to combine them to a piece of evidence
for ψ.

Indeed, there is a topic-sensitive version of closure under logical entail-
ment, which is valid on our models. Before stating it, we need to introduce
some auxiliary notation. Given a formula ϕ, let

ϕ :=
∧

p∈V ar(ϕ)

(p ∨ ¬p).

Note that ϕ is a tautology for any formula ϕ, so ϕ is always true at every
world. Thus, �kϕ expresses that the agent has a piece of evidence which is
relevant for ϕ, even though this evidence might not entail ϕ.

Using this notation, we can state the following valid topic-sensitive ver-
sion of closure under logical entailment :

([∀](ϕ→ ψ) ∧�kϕ ∧�kψ)→ �kψ

For the proof, we refer to Proposition 3.6. Note that the non-factive
version of this principle obtained by substituting Ek for �k is not valid,
because the witnessing pieces of evidence for Ekϕ and Ekψ might be incon-
sistent with each other. Likewise, the � and E versions of this principle
are not valid either, because the relevant pieces of evidence may belong to
different evidential frames.
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2.5 Fragmentation revisited

2.5.1 Fragmented closure under conjunction

In the introduction, we encountered Lewis and his beliefs about the local
geography of Princeton. We observed that an agent’s evidential state may be
broken into several fragments, in between which no combination of evidence
is performed. However, Lewis’ evidence supporting his beliefs concerning
the orientation of Nassau Street and the nearby railroad were unfortunately
false, and we already noted in Section 2.4.7 that closure under conjunction
for non-factive evidence operators Ek and E may fail simply because pieces
of non-factive evidence may be inconsistent with each other.

To fully appreciate the fragmentation component of our framework, it
will therefore be instructive to additionally consider an example in which
an agent fails to combine two factive pieces of evidence.

The following is not valid on our models:

(�ϕ ∧�ψ)→ �(ϕ ∧ ψ)

Here is an intuitive example:

Counterexample 2.18. Suppose you have a friend Pieter, who sends you
a letter inviting you to visit him. Unfortunately, you don’t know where
he lives, so you try hard to consider all your evidence to find out where
you need to travel. You know that Pieter sent you the invitation letter
from his home, and since the letter has a stamp depicting the king of the
Netherlands, you have (let’s say) truthful evidence that Pieter currently lives
in the Netherlands. A while ago, a colleague of yours told you that Pieter
recently got married and moved in together with your common friend Renzo,
of whom you know that he currently lives somewhere in the Caribbean.
Thus, you have another (truthful) piece of evidence entailing that Pieter is in
the Caribbean. Unfortunately, you associate your colleague and everything
he tells you with your workplace, and you try to keep your work and private
life apart. Thus, while pondering the whereabouts of Pieter, you fail to
combine your two pieces of evidence to correctly infer that you should travel
to Curaçao.

We formally represent this counterexample as follows:
Let p denote the proposition that Pieter lives in the Netherlands, and

q the proposition that Pieter lives in the Caribbean. Let a represent the
topic holiday and b the topic work, and let ea denote the evidence in form
of the invitation letter, and fb the evidence your colleague has given to you.
Our counterexample is the tsef-model M = (W, T ,⊕, t, {E1, E2}, V ) with
W = {w, v, u}, V (p) = {w, v}, V (q) = {v, u}, T = {a, b, c}, and the two
evidential frames and topic structure as depicted in Figure 2.7:
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t(p ∧ q)

Figure 2.7: Counterexample M for fragmented closure under conjunction

Then M, w 6
 (�p ∧�q)→ �(p ∧ q).

Proof. Since w ∈ e ⊆ JpK and t(p) v a, ea ∈ E1 is a witness for M, w 
 �p.
Similarly, fb ∈ E2 is a witness for M, w 
 �q. Thus, we have M, w 

�p ∧ �q. However, there is no evidential frame with a piece of evidence
entailing p ∧ q. Therefore, M, w 6
 �(p ∧ q).

2.6 Logical omniscience

In this section, we demonstrate that the notions of knowledge and belief
which we defined as grounded in hyperintensional, fragmented evidence give
rise to agents that are less idealised than those assumed in purely inten-
sional, non-fragmented frameworks. In particular, our agents do not suffer
from full logical omniscience. These properties of our knowledge and belief
are direct consequences of the kind of evidence they are based on.

2.6.1 Topic-sensitivity

We shall see that both our fragmented and non-fragmented knowledge and
belief operators all block the problematic principles discussed in Section 2.4
pertaining to hyperintensionality. This symmetry is no coincidence: hyper-
intensionality is inherited from the level of evidence to that of knowledge
and belief.

Just as in the case of evidence, fragmentation plays no role in the discus-
sion of these principles in the context of knowledge and belief. Unless other-
wise stated, the following (in-)validities all hold for both the fragmented and
non-fragmented versions of our knowledge and belief modalities. In fact, not
even the distinction between knowledge and belief themselves matters for
this discussion, so for the sake of brevity we will state only the Bk-versions
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of the relevant principles. A full overview of all (in-)validities can be found
at the end of this chapter.

In the discussion of the evidence-related principles of the previous sec-
tion, we chose all counterexamples in such a way that they also provide
counterexamples for the cases of knowledge and belief. The proofs can be
easily adapted by noting that in each counterexample, there is only one
piece of evidence (per evidential frame), so this piece of evidence is vacu-
ously consistent with all other evidence in the same evidential frame and is
therefore a witness for knowledge and belief.

Necessary truths Our agents do not know/believe all necessary truths.
That is, the following does not hold (see Counterexample 2.9):

from ϕ infer Bkϕ

Closure under logical entailment Knowledge and belief are not closed
under logical entailment, i.e. the following does not hold (see Counterex-
ample 2.11):

from ϕ→ ψ infer Bkϕ→ Bkψ

Closure under logical equivalence Knowledge and belief are not closed
under logical equivalence, i.e. the following does not hold (see Counterex-
ample 2.13):

from ϕ↔ ψ infer Bkϕ→ Bkψ

Closure under disjunction Knowledge and belief are not closed under
disjunction, i.e. the following is not valid (see Counterexample 2.15):

Bkϕ→ Bk(ϕ ∨ ψ)

This concludes our analysis of problematic principles that are blocked on
the level of knowledge and belief due to the topic-sensitivity of the underly-
ing evidence. Before we move on to fragmentation, we show that just as in
the case of evidence, two principles are validated by knowledge and belief:
conjunction elimination and closure under conjunction within a fragment.

Conjunction elimination Just as in the evidence case, our notions of
fragmented and non-fragmented knowledge and belief are closed under con-
junction elimination. This corresponds to the intuition that believing ϕ is
part of believing ϕ ∧ ψ. Correspondingly, the following are valid:

Bk(ϕ ∧ ψ)→ (Bkϕ ∧Bkψ)
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B(ϕ ∧ ψ)→ (Bϕ ∧Bψ)

Kk(ϕ ∧ ψ)→ (Kkϕ ∧Kkψ)

K(ϕ ∧ ψ)→ (Kϕ ∧Kψ)

The proof can be found in Section 2.4.6.

Closure under conjunction within a fragment The reason why we
took fragmentation on board was to allow for the possibility that an agent
sometimes fails to combine two pieces of evidence, even if they are factive.
Thus, factive fragmented evidence (and knowledge and belief, we will come
to that in the next section) are not closed under conjunction. However, it
is interesting to note that the non-fragmented versions of knowledge and
belief are closed under conjunction, i.e. the following are valid:

(Bkϕ ∧Bkψ)→ Bk(ϕ ∧ ψ)

(Kkϕ ∧Kkψ)→ Kk(ϕ ∧ ψ)

The interesting part of the proof is to show that the combination of a piece
of evidence ea witnessing Bkϕ and another piece of evidence witnessing Bkψ
is non-empty and consistent with all evidence in evidential frame Ek. For the
proofs of the Kk- and Bk-versions of the principle, we refer to Propositions
3.6 and 3.29, respectively.

Topic-sensitive logical entailment Just as for the �k modality, the
following topic-sensitive version of closure under logical entailment is valid:

([∀](ϕ→ ψ) ∧Bkϕ ∧Bkψ)→ Bkψ

The fragmented knowledge Kk-version of this principle is valid as well. For
the respective proofs, we refer to the soundness proof in Proposition 3.6.
Note, however, that fragmentation blocks the B- and K-variants.

2.6.2 Fragmentation

Fragmented closure under conjunction As the reader might expect,
fragmented knowledge and belief are not closed under conjunction. That is,
the following are not valid (see Counterexample 2.18):

(Bϕ ∧Bψ)→ B(ϕ ∧ ψ)

(Kϕ ∧Kψ)→ K(ϕ ∧ ψ)
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Fragmented closure under known/believed implication Closure un-
der known implication, which corresponds to the (K) axiom (�ϕ ∧�(ϕ→
ψ))→ �ψ of normal modal logics, is likewise invalidated by fragmentation.
That is, the following are not valid (the proof is similar to the one given in
Counterexample 2.18):

(Bϕ ∧B(ϕ→ ψ))→ B(ψ)

(Kϕ ∧K(ϕ→ ψ))→ K(ψ)

2.6.3 Positive and negative introspection

Two additional principles often mentioned in the epistemology literature are
positive and negative introspection. In the context of knowledge, positive
introspection says that if an agent knows ϕ, then she knows that she knows
ϕ; whereas negative introspection expresses that if an agent doesn’t know
ϕ, then she knows that she doesn’t know ϕ.

Positive introspection All of the modalities Bk, B, Kk, and K have
the property of positive introspection. That is, the following (expressed in
terms of Bk) is valid:

Bkϕ→ BkBkϕ

In the case of belief, this follows from (a) the fact that we assume all logical
operators, including the epistemic ones, to be topic-transparent, i.e. t(ϕ) =
t(Bkϕ) = t(BkBkϕ); and (b) that belief is a world-independent modality,
i.e. it either holds at all worlds of a given model or at none.

The full proof for positive introspection of Kk is given in Proposition 3.6;
the proof for Bk in Proposition 3.29. It is easy to see how positive intro-
spection for B and K follows from positive introspection for the respective
non-fragmented versions.

Negative introspection None of our belief or knowledge modalities are
negatively introspective. That is, the following (expressed in terms of Bk)
is not valid:

¬Bkϕ→ Bk¬Bkϕ

Proof. Let M be the tsef-model from Counterexample 2.9. The only piece
of evidence in E1 is ea and we have t(q) 6v a and t(¬Bkq) 6v a, therefore
M, w 6
 ¬Bkϕ→ Bk¬Bkq.

2.7 Overview

Table 2.2 provides an overview of relevant (in-) validities for all epistemic
modalities introduced in this chapter and used throughout this thesis.
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Ek E �k � Bk B Kk K

(KV) ([∀]ϕ ∧ ?ψ)→ ?ϕ 7 7 7 7 7 7 7 7

(CLEn) [∀](ϕ→ ψ)→ (?ϕ→ ?ψ) 7 7 7 7 7 7 7 7

(CLEq) [∀](ϕ↔ ψ)→ (?ϕ→ ?ψ) 7 7 7 7 7 7 7 7

(CE) ?(ϕ ∧ ψ)→ (?ϕ ∧ ?ψ) 3 3 3 3 3 3 3 3

(CC) (?ϕ ∧ ?ψ)→ ?(ϕ ∧ ψ) 3 7 3 7 3 7 3 7

(K) (?ϕ ∧ ?(ϕ→ ψ))→ ?ψ 3 7 3 7 3 7 3 7

(CD) ?ϕ→ ?(ϕ ∨ ψ) 7 7 7 7 7 7 7 7

(PI) ?ϕ→ ? ? ϕ 3 3 3 3 3 3 3 3

(NI) ¬ ? ϕ→ ?¬ ? ϕ 7 7 7 7 7 7 7 7

?s represent placeholder for modalities

(KV) Knowledge of validities
(CLEn) Closure under logical entailment
(CLEq) Closure under logical equivalence

(CE) Conjunction elimination
(CC) Closure under conjunction
(K) Closure under known implication

(CD) Closure under disjunction
(PI) Positive introspection
(NI) Negative introspection

Table 2.2: Overview of relevant (in-)validities for evidence, knowledge and
belief modalities
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Chapter 3

Technical results: soundness
and completeness

This chapter contains the main technical contributions of this thesis. We
provide sound and complete axiomatisations of two fragments of the full
logic of hyperintensional and fragmented evidence, knowledge and belief.
The first fragment is the factive evidence-knowledge fragment and is ex-
pressive enough to define all epistemic modalities introduced in the previ-
ous chapter (see Table 2.1 for a full list including the intended readings).
Whereas the soundness proof is routine, the completeness proof involves a
quasi-model construction and a non-trivial translation from quasi-models to
our topic-sensitive evidence models with fragmentation. The second frag-
ment is the belief fragment, for which we give a sound and complete axioma-
tisation in order to provide a separate logical specification of our notion of
belief.

Throughout the chapter, let prop be a countable set of propositional
variables and F = {1, ..., n} a non-empty, finite set of n frame symbols.
We use k as a metavariable for evidential frames. For any formula ϕ, we
use V ar(ϕ) to denote the propositional variables occurring in ϕ, and let ϕ
denote the tautology

∧
p∈V ar(ϕ)(p ∨ ¬p).

3.1 The factive evidence-knowledge fragment

L[∀]�kKk

3.1.1 Syntax

Definition 3.1 (Syntax of L[∀]�kKk
).

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [∀]ϕ | �kϕ | Kkϕ for k ∈ F

We define [∃]ϕ := ¬[∀]¬ϕ as an abbreviation for the dual of [∀]ϕ.
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3.1.2 Semantics

Definition 3.2 (Semantics for L[∀]�kKk
on tsef-models). Given a tsef-model

M = (W, T ,⊕, t, {Ek}k∈F , V ) and a world w ∈ W , the 
-semantics for
L[∀]�kKk

is defined recursively as follows (we write JϕKM for the truth set
{w ∈ W |M, w 
 ϕ} of ϕ in M and shorten JϕKM to JϕK when M is clear
from the context):

M, w 
 p iff p ∈ V (p)

M, w 
 ¬ϕ iff not M, w 
 ϕ

M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ

M, w 
 [∀]ϕ iff W ⊆ JϕK
M, w 
 �kϕ iff ∃ea ∈ Ek (w ∈ e ⊆ JϕK and t(ϕ) v a)

M, w 
 Kkϕ iff ∃ea ∈ Ek (w ∈ e ⊆ JϕK and t(ϕ) v a

and ∀e′a′ ∈ Ek : e ∩ e′ 6= ∅)

Validity of a formula ϕ on a tsef-model M is defined in Definition 2.7. If
Γ∪ {ϕ} is a set of formulas over L[∀]�kKk

, we say that Γ is satisfied at w in
M and write M, w 
 Γ iff M, w 
 ϕ for all ϕ ∈ Γ; moreover, we say that ϕ
is a local semantic consequence of Γ and write Γ 
 ϕ if for all tsef-models
M = (W, T ,⊕, t, {Ek}k∈F , V ) and all worlds w ∈ W , if M, w 
 Γ, then
M, w 
 ϕ.

3.1.3 Expressivity

The virtue of the factive evidence-knowledge fragment L[∀]�kKk
is its ex-

pressivity: all our (fragmented) evidence, belief and knowledge modalities
can be defined in it. The definitions of the modalities not covered by the
semantics above are as follows:

Ekϕ := [∃]�kϕ

Bkϕ := [∃]Kkϕ

Eϕ :=
∨
k∈F

Ekϕ

Bϕ :=
∨
k∈F

Bkϕ

Kϕ :=
∨
k∈F

Kkϕ

The validity of these definitions under the full semantics given in Definitions
2.7 and 2.8 follow directly from the respective semantic clauses.
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3.1.4 Axiomatisation

Table 3.1 provides a sound and complete axiomatisation of the logic HEK
of hyperintensional evidence and knowledge over L[∀]�kKk

. The proofs for
soundness and completeness can be found in Proposition 3.6 and Theorem
3.7, respectively.

(I) (CPL) all classical propositional tautologies and modus ponens

(II) (S5) axioms and rules for [∀]:
(K[∀]) ([∀]ϕ ∧ [∀](ϕ→ ψ))→ [∀]ψ
(T[∀]) [∀]ϕ→ ϕ
(4[∀]) [∀]ϕ→ [∀][∀]ϕ
(5[∀]) ¬[∀]ϕ→ [∀]¬[∀]ϕ
(Nec[∀]) from ϕ, infer [∀]ϕ

(III) Axioms for ♥k with ♥ ∈ {�, K} and k ∈ F :
(T♥k

) ♥kϕ→ ϕ
(4♥k

) ♥kϕ→ ♥k♥kϕ
(C♥k

) ♥k(ϕ ∧ ψ)↔ (♥kϕ ∧ ♥kψ)
(Ax1♥k

) ♥kϕ→ ♥kϕ
(IV) Axioms connecting [∀] and ♥k with ♥ ∈ {�, K} and k ∈ F :

(Ax2♥k
) ([∀](ϕ→ ψ) ∧ ♥kϕ ∧ ♥kψ)→ ♥kψ

(Ax3k) ([∃]Kkϕ ∧ [∃]�kψ)→ [∃]�k(ϕ ∧ ψ)
(Fk) Kkϕ→ �kϕ

Table 3.1: Sound and complete axiomatisation of the logic HEK of hyperin-
tensional evidence and knowledge over L[∀]�kKk

Proposition 3.3. The following are derivable in HEK:

(i) ♥kϕ↔
∧
p∈V ar(ϕ)♥kp for ♥ ∈ {�, K}

(ii) ♥kϕ→ ♥kψ, if V ar(ψ) ⊆ V ar(ϕ) for ♥ ∈ {�, K}

(iii) ([∃]Kkϕ ∧ [∃]�kψ)→ [∃](Kkϕ ∧�kψ)

Proof.

(i) ♥kϕ↔
∧
p∈V ar(ϕ)♥kp:

By definition of ϕ, ♥kϕ = ♥k
∧
p∈V ar(ϕ) p. Now, by (C♥k

), we have

`HEK ♥k
∧

p∈V ar(ϕ)

p↔
∧

p∈V ar(ϕ)

♥kp,

i.e. `HEK ♥kϕ↔
∧
p∈V ar(ϕ)♥kp.
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(ii) ♥kϕ→ ♥kψ, if V ar(ψ) ⊆ V ar(ϕ) for ♥ ∈ {�, k}:
Suppose V ar(ψ) ⊆ V ar(ϕ).

`HEK ♥kϕ→
∧

p∈V ar(ϕ)

♥kp (by (i))

`HEK
∧

p∈V ar(ϕ)

♥kp→
∧

p∈V ar(ψ)

♥kp

(by V ar(ψ) ⊆ V ar(ϕ) and `CPL (ϕ ∧ ψ)→ ϕ)

`HEK
∧

p∈V ar(ψ)

♥kp↔ ♥kψ (by (i))

`HEK ♥kϕ→ ♥kψ (by CPL)

Therefore, `HEK ♥kϕ→ ♥kψ.

(iii) ([∃]Kkϕ ∧ [∃]�kψ)→ [∃](Kkϕ ∧�kψ):

`HEK [∃]Kkϕ→ [∃]KkKkϕ (by (4Kk
) and S5[∀])

`HEK [∃]�kψ → [∃]�k�kψ (by (4�k
) and S5[∀])

`HEK ([∃]Kkϕ ∧ [∃]�kψ)→ ([∃]KkKkϕ ∧ [∃]�k�kψ)

`HEK ([∃]KkKkϕ ∧ [∃]�k�kψ)→ [∃]�k(Kkϕ ∧�kψ) (by (Ax3k))

`HEK ([∃]KkKkϕ ∧ [∃]�k�kψ)→ [∃](Kkϕ ∧�kψ) (by (T�k
))

`HEK ([∃]Kkϕ ∧ [∃]�kψ)→ [∃](Kkϕ ∧�kψ)

3.1.5 Soundness

Definition 3.4 (Derivability and Consistency). We say that a formula ϕ ∈
L[∀]�kKk

is a theorem of HEK and write `HEK ϕ if ϕ ∈ HEK. If Γ is a
set of formulas over L[∀]�kKk

, we say that ϕ is HEK-derivable from Γ, and
write Γ `HEK ϕ, if `HEK ϕ or there are formulas ψ1, ..., ψn ∈ Γ s.t. `HEK
(ψ1 ∧ · · · ∧ψn)→ ϕ. We say that a set of formulas Γ is HEK-inconsistent if
there is some formula ϕ ∈ L[∀]�kKk

s.t. Γ `HEK ϕ ∧ ¬ϕ, and HEK-consistent
otherwise. Finally, a formula ϕ ∈ L[∀]�kKk

is HEK-inconsistent if {ϕ} is
HEK-inconsistent; otherwise ϕ is HEK-consistent.

Lemma 3.5. Let M = (W, T ,⊕, t, {Ek}k∈F , V ) be a tsef-model and ea, fb ∈
Ek s.t. e ∩ f 6= ∅, e ∩ g 6= ∅ and f ∩ g 6= ∅ for all gc ∈ Ek. Then
(e ∩ f) ∩ g 6= ∅ for all gc ∈ Ek.
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Proof. Suppose towards a contradiction that ea, fb are as described and
there is gc ∈ Ek s.t. (e∩ f)∩ g = ∅. By assumption, f ∩ g 6= ∅. Since Ek is
closed under non-empty finite evidence combination, we have (f∩g)b⊕c ∈ Ek.
This implies e ∩ (f ∩ g) 6= ∅, which is a contradiction.

Proposition 3.6 (Soundness of HEK). The logic HEK of hyperintensional
evidence and knowledge is sound with respect to the class of tsef-models.
That is, for all formulas ϕ ∈ L[∀]�kKk

and all tsef-models M = (W, T ,⊕, t,
{Ek}k∈F , V ), `HEK ϕ implies M, w 
 ϕ for all w ∈ W .

Proof. Soundness is proved as usual by showing the validity of the axioms
and the preservation of soundness under the inference rules. We omit the
axioms and inference rules of classical propositional logic. The fact that the
global modality [∀] is an (S5)-operator is standard. The validity of (T♥k

)
and (Fk) follows immediately from the definition of the 
-semantics. It
remains to show the validity of the axioms (4♥k

), (C♥k
), (Ax1♥k

), (Ax2♥k
),

and (Ax3♥k
). For all of these axioms, we only show validity of the ♥k = Kk

case; the proofs for the �k cases are similar (and easier). For each of the
following cases, let M = (W, T ,⊕, t, {Ek}k∈F , V ) be an arbitrary tsef-model
and w ∈ W .

– Validity of (4Kk
) Kkϕ→ KkKkϕ:

Suppose M, w 
 Kkϕ, then there is ea ∈ Ek s.t. w ∈ e ⊆ JϕK,
t(ϕ) v a, and e ∩ e′ 6= ∅ for all e′a′ ∈ Ek. It is easy to see that
e ⊆ JKkϕK. Moreover, we have t(Kkϕ) = t(ϕ) v a, so ea is a witness
for M, w 
 KkKkϕ.

– Validity of (CKk
) Kk(ϕ ∧ ψ)↔ (Kkϕ ∧Kkψ):

⇒: Suppose M, w 
 Kk(ϕ ∧ ψ). Then there is ea ∈ Ek s.t. w ∈
e ⊆ Jϕ ∧ ψK, t(ϕ ∧ ψ) v a, and e ∩ e′ 6= ∅ for all e′a′ ∈ Ek.
Now we simply observe that e ⊆ JϕK and t(ϕ) v t(ϕ) ⊕ t(ψ) =
t(ϕ ∧ ψ) v a, so ea is also a witness for M, w 
 Kkϕ; similarly
for M, w 
 Kkψ.

⇐: Suppose M, w 
 Kkϕ ∧Kkψ, then there are

∗ ea ∈ Ek witnessing M, w 
 Kkϕ, i.e. s.t.

· w ∈ e ⊆ JϕK;
· t(ϕ) v a;

· e ∩ e′ 6= ∅ for all e′a′ ∈ Ek;
∗ fb ∈ Ek witnessing M, w 
 Kkψ, i.e. s.t.

· w ∈ f ⊆ JψK;
· t(ψ) v b;

· f ∩ e′ 6= ∅ for all e′a′ ∈ Ek.
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We claim that (e∩f)a⊕b is a witness for M, w 
 Kk(ϕ∧ψ). First
of all, since w ∈ e∩f , we have e∩f 6= ∅, so (e∩f)a⊕b ∈ Ek because
Ek is closed under non-empty finite evidence combination. Next,
we have t(ϕ ∧ ψ) v a ⊕ b: As t(ϕ) v a and t(ψ) v b, we have
t(ϕ), t(ψ) v a⊕b. Now t(ϕ∧ψ) = t(ϕ)⊕ t(ψ) is by definition the
least upper bound of {t(ϕ), t(ψ)}, so we have t(ϕ ∧ ψ) v a ⊕ b.
It remains to show that (e∩ f)∩ e′ 6= ∅ for all e′a′ ∈ Ek, but this
follows from Lemma 3.5. So M, w 
 Kk(ϕ ∧ ψ).

– Validity of (Ax1Kk
) Kkϕ→ Kkϕ:

Suppose M, w 
 Kkϕ, then there is ea ∈ Ek s.t.

· w ∈ e ⊆ JϕK;

· t(ϕ) v a;

· e ∩ e′ 6= ∅ for all e′a′ ∈ Ek.

We claim that ea is also a witness for M, w 
 Kkϕ:

First, note that ϕ =
∧
p∈V ar(ϕ)(p ∨ ¬p) is a tautology, so w ∈ e ⊆

JϕK = W . It remains to show that t(ϕ) v a, but this follows from
V ar(ϕ) = V ar(ϕ), which implies t(ϕ) = t(ϕ).

– Validity of (Ax2Kk
) ([∀](ϕ→ ψ) ∧Kkϕ ∧Kkψ)→ Kkψ:

Suppose M, w 
 [∀](ϕ → ψ) ∧Kkϕ ∧Kkψ, then by the semantics of
[∀] we have JϕK ⊆ JψK; and moreover, there are

– ea ∈ Ek witnessing M, w 
 Kkϕ, i.e.

∗ w ∈ e ⊆ JϕK;
∗ t(ϕ) v a;

∗ e ∩ e′ 6= ∅ for all e′a′ ∈ Ek;
– fb ∈ Ek witnessing M, w 
 Kkψ, i.e.

∗ w ∈ f ⊆ JψK;
∗ t(ψ) v b;

∗ f ∩ e′ 6= ∅ for all e′a′ ∈ Ek.

We claim that (e ∩ f)a⊕b is a witness for M, w 
 Kkψ: First, note
that w ∈ e ∩ f , so e ∩ f 6= ∅. Since Ek is closed under non-empty
finite evidence combination, we have (e ∩ f)a⊕b ∈ Ek. Second, since
JϕK ⊆ JψK, we have e ∩ f ⊆ e ⊆ JϕK ⊆ JψK. Third, we have t(ψ) =
t(ψ) v b v a⊕ b. Finally, it remains to show that (e ∩ f) ∩ g 6= ∅ for
all gc ∈ Ek, but this was shown in Lemma 3.5. Therefore, (e ∩ f)a⊕b
is indeed a witness for M, w 
 Kkψ.
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– Validity of (Ax3k) ([∃]Kkϕ ∧ [∃]�kψ)→ [∃]�k(ϕ ∧ ψ):

Suppose M, w 
 [∃]Kkϕ ∧ [∃]�kψ. Then, since M, w 
 [∃]Kkϕ, there
are u ∈ W and ea ∈ Ek s.t.

– u ∈ e ⊆ JϕK;

– t(ϕ) v a; and

– e ∩ e′ 6= ∅ for all e′a′ ∈ Ek.

Moreover, since M, w 
 [∃]�kψ, there are v ∈ W and fb ∈ Ek s.t.

– v ∈ f ⊆ JψK and

– t(ψ) v b.

From e∩e′ 6= ∅ for all e′a′ ∈ Ek it follows that e∩f 6= ∅, so (e∩f)a⊕b ∈
Ek. Let x ∈ e∩f . Note that we have x ∈ (e∩f) ⊆ Jϕ∧ψK. Moreover,
since t(ϕ∧ψ) = t(ϕ)⊕t(ψ) is the least upper v-bound of {t(ϕ), t(ψ)},
it follows from t(ϕ) v a and t(ψ) v b that t(ϕ ∧ ψ) v a ⊕ b. Thus,
(e ∩ f)a⊕b is a witness for M, w 
 �k(ϕ ∧ ψ). Therefore, M, w 

[∃]�k(ϕ ∧ ψ).

This concludes the soundness proof of HEK.

3.1.6 Completeness

Theorem 3.7 (Completeness of HEK). The logic HEK of hyperintensional
evidence and knowledge is strongly complete with respect to the class of tsef-
models. That is, for any set of formulas Γ ∪ {ϕ} of the language L[∀]�kKk

,
if Γ 
 ϕ, then ϕ is derivable in HEK from Γ.

Before delving into the completeness proof, we need a few preliminary
definitions and results.

Definition 3.8 (Maximal HEK-consistent set). Let Γ be a set of formulas
over HEK. Γ is called maximally HEK-consistent (or, for short, a HEK-
mcs) if Γ is HEK-consistent, and for any set of formulas Γ′, if Γ ( Γ′, then
Γ′ is HEK-inconsistent. We denote by MCSHEK the set of all maximally
HEK-consistent sets.

Lemma 3.9 (Properties of HEK-mcs). The following hold for all HEK-mcs
Γ:

(i) Γ is closed under modus ponens: if ϕ ∈ Γ and ϕ → ψ ∈ Γ, then
ψ ∈ Γ;

(ii) if `HEK ϕ, then ϕ ∈ Γ;
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(iii) for all formulas ϕ, ϕ ∈ Γ or ¬ϕ ∈ Γ;

(iv) for all formulas ϕ, ψ: ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

Proof. Standard (e.g., Proposition 4.16 in Blackburn, Rijke, and Venema
(2001)).

Lemma 3.10 (Lindenbaum’s Lemma). If Φ is a HEK-consistent set of for-
mulas, then there is a HEK-mcs Φ+ s.t. Φ ⊆ Φ+.

Proof. Standard (e.g., Lemma 4.17 in Blackburn, Rijke, and Venema (2001)).

Proposition 3.11. HEK is strongly complete with respect to the class of
tsef-models iff every HEK-consistent set of formulas is satisfiable on some
world in some tsef-model M.

Proof. Standard (e.g., Proposition 4.12 in Blackburn, Rijke, and Venema
(2001)).

To prove strong completeness with respect to tsef-models, we prove the
equivalent statement that every HEK-consistent set of formulas is satisfiable
on some tsef-model. The equivalence is a standard fact and stated in Propo-
sition 3.11. However, we need to make a detour and prove this in two steps:
First, we show that the logic of HEK is strongly complete with respect to
a canonical quasi-model, i.e. that every HEK-consistent set of formulas is
satisfiable on the canonical quasi-model. We then proceed to show that for
every quasi-model, there is a modally equivalent tsef-model, which yields
the desired result that every HEK-consistent set of formulas is satisfiable on
a tsef-model.

Step 1: Strong completeness for quasi-models

Definition 3.12 (Quasi-model for L[∀]�kKk
). A quasi-model is a tuple Q =

(W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ), where W , V , T , ⊕ and t are as in Def-
inition 2.6 of tsef-models; and

i) for each k ∈ F , E�k
⊆ P(W ) × T is a set of topic-indexed pieces

of evidence s.t. for all ea ∈ E�k
, we have a v t(k); additionally, we

require that E�k
is closed under non-empty evidence combination, i.e.

for all ea, fb ∈ E�k
, if e ∩ f 6= ∅, then (e ∩ f, a⊕ b) ∈ E�k

; and

ii) for each k ∈ F , EKk
⊆ E�k

is a set of topic-indexed pieces of evidence
closed under non-empty evidence combination, i.e. for all ea, fb ∈ EKk

,
if e ∩ f 6= ∅, then (e ∩ f, a⊕ b) ∈ EKk

; and moreover, we require that
for all ea ∈ EKk

and fb ∈ E�k
, e ∩ f 6= ∅.
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Definition 3.13 (Semantics for L[∀]�kKk
on quasi-models). Given a quasi-

model Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ) and a world w ∈ W , the

∗-semantics for L[∀]�kKk

is defined recursively as follows (we write [ϕ]Q for
the truth set {w ∈ W | Q, w 
 ϕ} of ϕ in Q and shorten [ϕ]Q to [ϕ] when
Q is clear from the context):

Q, w 
∗ p iff p ∈ V (p)

Q, w 
∗ ¬ϕ iff not Q, w 
∗ ϕ

Q, w 
∗ ϕ ∧ ψ iff Q, w 
∗ ϕ and Q, w 
∗ ψ

Q, w 
∗ [∀]ϕ iff W ⊆ [ϕ]

Q, w 
∗ �kϕ iff ∃ea ∈ E�k
(x ∈ e ⊆ [ϕ] and t(ϕ) v a)

Q, w 
∗ Kkϕ iff ∃ea ∈ EKk
(x ∈ e ⊆ [ϕ] and t(ϕ) v a)

Definition 3.14. For any HEK-mcs Γ, we define

Γ[∀] := {ϕ ∈ L[∀]�kKk
| [∀]ϕ ∈ Γ}.

We define a binary relation ∼[∀] on MCSHEK as follows: for any Γ,∆ ∈
MCSHEK,

Γ∼[∀]∆ iff Γ[∀] ⊆ ∆.

Lemma 3.15. ∼[∀] is an equivalence relation.

Proof. We need to show that ∼[∀] is reflexive, symmetric, and transitive.

– Reflexivity: Take any Γ ∈MCSHEK. By (T[∀]) and Lemma 3.9, Γ[∀] ⊆
Γ, so Γ∼[∀]Γ.

– Symmetry: Take any Γ,∆ ∈ MCSHEK and suppose Γ∼[∀]∆. i.e.
Γ[∀] ⊆ ∆. We show that ∆[∀] ⊆ Γ. Take any ϕ ∈ ∆[∀], then [∀]ϕ ∈ ∆.
Towards a contradiction, suppose ϕ 6∈ Γ. By Lemma 3.9, ¬ϕ ∈ Γ. By
(T[∀]) and Lemma 3.9, [∃]¬ϕ ∈ ∆, which contradicts [∀]ϕ ∈ ∆. So
∆[∀] ⊆ Γ, which means that ∆∼[∀]Γ.

– Transitivity: Take any Γ,∆,E ∈ MCSHEK and suppose that Γ∼[∀]∆
and ∆∼[∀]E. Take any ϕ ∈ Γ[∀], then [∀]ϕ ∈ Γ. By (4[∀]) and Lemma
3.9, we have [∀][∀]ϕ ∈ Γ. Since Γ[∀] ⊆ ∆, we have [∀]ϕ ∈ ∆, and since
∆[∀] ⊆ E, we have ϕ ∈ E, as required.

Definition 3.16 (Canonical quasi-model for Γ0). If Γ0 is a HEK-mcs, then
the canonical quasi-model for Γ0 is a tuple Qc = (W c, T c,⊕c, tc, {Ec�k

}k∈F ,
{EcKk

}k∈F , V c), where
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i) W c := {Γ ∈MCSHEK | Γ0∼[∀]Γ};

ii) T c := P(prop);

iii) ⊕c := ∪ (it follows that vc=⊆);

iv) tc : prop ∪ F → T s.t.

– tc(p) = {p} for any p ∈ prop;

– tc(k) = {p ∈ prop | [∃]�kp ∈ Γ0} for any k ∈ F ; and

– tc is extended to L[∀]�kKk
by putting tc(ϕ) := V ar(ϕ);

v) for each k ∈ F , Ec�k
:= {(�̂kϕ, V ar(ϕ)) | [∃]�kϕ ∈ Γ0};

vi) for each k ∈ F , EcKk
:= {(K̂kϕ, V ar(ϕ)) | [∃]Kkϕ ∈ Γ0}; and

vii) V c : prop→ P(W c) s.t. V c(p) := p̂,
where ϕ̂ := {Γ ∈ W c | ϕ ∈ Γ} for all ϕ ∈ L[∀]�kKk

.

Lemma 3.17. For any n ∈ N, if
∧
i≤n [∀]ϕi → ψ is a theorem of S5[∀], then

so is
∧
i≤n [∀]ϕi → [∀]ψ.

Proof.

`S5[∀]
∧
i≤n

[∀]ϕi → ψ (Assumption)

⇒ `S5[∀] [∀](
∧
i≤n

[∀]ϕi → ψ) (Nec[∀])

⇒ `S5[∀] [∀]
∧
i≤n

[∀]ϕi → [∀]ψ (K[∀])

⇒ `S5[∀] [∀][∀]
∧
i≤n

ϕi → [∀]ψ (C[∀])

⇒ `S5[∀] [∀]
∧
i≤n

ϕi → [∀]ψ (4[∀])

⇒ `S5[∀]
∧
i≤n

[∀]ϕi → [∀]ψ (C[∀])

where (C[∀]) denotes [∀](ϕ ∧ ψ) ↔ ([∀]ϕ ∧ [∀]ψ), which is derivable from
S5[∀].

Lemma 3.18 (Existence lemma for [∀]). Let Γ0 be a HEK-mcs and Qc =
(W c, T c,⊕c, tc, {Ec�k

}k∈F , {EcKk
}k∈F , V c) the canonical quasi-model for Γ0.

Then, for all ϕ ∈ L[∀]�kKk
, we have

ϕ̂ 6= ∅ iff [̂∃]ϕ 6= ∅.
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Proof.

⇒: Suppose ϕ̂ 6= ∅. Then there is ∆ ∈ ϕ̂, i.e. ∆ ∈ W c and ϕ ∈ ∆. Since

ϕ → [∃]ϕ is a theorem of S5[∀], we have by Lemma 3.9 and modus

ponens that [∃]ϕ ∈ ∆. Therefore, [̂∃]ϕ 6= ∅.

⇐: Suppose [̂∃]ϕ 6= ∅, then there is ∆ ∈ [̂∃]ϕ, i.e. ∆ ∈ W c s.t. [∃]ϕ ∈ ∆.

Define F := {[∀]χ | [∀]χ ∈ ∆} ∪ {ϕ}.
We claim that F is consistent: towards a contradiction, suppose that
F is inconsistent. Then there are [∀]χ1, ..., [∀]χn ∈ ∆ s.t. `HEK∧
i≤n [∀]χi → ¬ϕ. By Lemma 3.17, it follows that `HEK

∧
i≤n [∀]χi →

[∀]¬ϕ. Since [∀]χ1, ..., [∀]χn ∈ ∆, by Lemma 3.9 we have
∧
i≤n [∀]χi ∈

∆, so by Lemma 3.9 and modus ponens it follows that [∀]¬ϕ ∈ ∆.
But this contradicts [∃]ϕ ∈ ∆.

So F is consistent. By Lemma 3.10, there is a HEK-mcs Φ s.t. F ⊆ Φ.
We claim that Φ ∈ W c: we need to show that for any [∀]χ ∈ Γ0, we
have χ ∈ Φ, so let [∀]χ ∈ Γ0. Since [∀]χ → [∀][∀]χ is a theorem of
S5[∀], it follows by Lemma 3.9 and modus ponens that [∀][∀]χ ∈ Γ0.
By definition of W c, this implies that [∀]χ ∈ ∆, and by definition of
F , we have [∀]χ ∈ F ⊆ Φ. Since [∀]χ → χ is a theorem of S5[∀], it
follows by Lemma 3.9 and modus ponens that χ ∈ Φ, as required.

Thus, Φ ∈ W c. Since ϕ ∈ F ⊆ Φ, we have ϕ̂ 6= ∅.

Lemma 3.19. For any HEK-mcs Γ0, the canonical model Qc = (W c, T c,
⊕c, tc, {Ec�k

}k∈F , {EcKk
}k∈F , V c) for Γ0 is a quasi-model.

Proof. Let Γ0 be a HEK-mcs and Qc = (W c, T c,⊕c, tc, {Ec�k
}k∈F , {EcKk

}k∈F ,
V c) the canonical model for Γ0. Then

(i) W c 6= ∅ because by (T[∀]), Γ0 ∈ W c;

(ii) T c = P(prop) 6= ∅ because prop 6= ∅;

(iii) ⊕c = ∪ is idempotent, commutative and associative;

(iv) T c is closed under binary ⊕c because P(prop) is closed under unions;

(v) tc is clearly well-defined; and moreover, we have tc(ϕ) = V ar(ϕ) =⋃
{{p} | p ∈ V ar(ϕ)} =

⊕c{tc(p) | p ∈ V ar(ϕ)};

(vi) for each k ∈ F , EcKk
⊆ Ec�k

:

Let ea ∈ EcKk
, then (e, a) = (K̂kϕ, V ar(ϕ)) for some ϕ ∈ L[∀]�kKk

s.t. [∃]Kkϕ ∈ Γ0. We need to show that ea ∈ Ec�k
, i.e. that (e, a) =

(�̂kψ, V ar(ψ)) for some ψ ∈ L[∀]�kKk
s.t. [∃]�kψ ∈ Γ0. We establish

the following two claims:
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(1) K̂kϕ = �kKkϕ
∧

:

⊆: K̂kϕ ⊆ KkKkϕ
∧

⊆ �kKkϕ
∧

, where the first inclusion follows

from (4Kk
), and the second inclusion from (Fk), applying

Lemma 3.9 throughout.

⊆: �kKkϕ
∧

⊆ K̂kϕ by Axiom (T�k
) and Lemma 3.9.

(2) [∃]�kKkϕ ∈ Γ0: Towards a contradiction, suppose [∃]�kKkϕ 6∈
Γ0. Then, by Lemma 3.9, ¬[∃]�kKkϕ ∈ Γ0. So [∀]¬�kKkϕ ∈ Γ0.

We have [∃]Kkϕ ∈ Γ0. Thus, [∃]Kkϕ
∧

6= ∅, so by Lemma 3.18,

K̂kϕ 6= ∅. Let ∆ ∈ K̂kϕ. Applying Lemma 3.9 throughout, we
obtain by (4Kk

) that KkKkϕ ∈ ∆. By (Fk), �kKkϕ ∈ ∆. Now,
since ∆ ∈ W c and [∀]¬�kKkϕ ∈ Γ0, we have by definition of
W c that ¬�kKkϕ ∈ ∆, but this contradicts �kKkϕ ∈ ∆. So
[∃]�kKkϕ ∈ Γ0.

Since we also have V ar(Kkϕ) = V ar(ϕ), the two claims show that

Kkϕ is the formula ψ we are looking for. That is, (e, a) = (K̂kϕ, V ar(ϕ)) =

(�kKkϕ
∧

, V ar(Kkϕ)) ∈ Ec�k
.

(vii) for all ea ∈ Ec�k
, we have a vc tc(k):

Let ea ∈ Ec�k
, then (e, a) is of the form (�̂kϕ, V ar(ϕ)) for some ϕ ∈

L[∀]�kKk
s.t. [∃]�kϕ ∈ Γ0. We claim that this implies

∧
p∈V ar(ϕ)[∃]�kp ∈

Γ0:

`HEK �kϕ→ �kϕ (Ax1�k
)

⇒ `HEK [∃]�kϕ→ [∃]�kϕ (S5[∀])

⇒ `HEK [∃]�kϕ→ [∃]
∧

p∈V ar(ϕ)

�kp (by Proposition 3.3(i))

⇒ `HEK [∃]�kϕ→
∧

p∈V ar(ϕ)

[∃]�kp (S5[∀])

So by Lemma 3.9 it indeed follows that
∧
p∈V ar(ϕ)[∃]�kp ∈ Γ0. There-

fore, applying Lemma 3.9 again, we have V ar(ϕ) ⊆ {p | [∃]�kp ∈ Γ0}.
So a vc tc(k).

(viii) for all♥ ∈ {�, K} and ea, fb ∈ Ec♥k
, e∩f 6= ∅ implies (e∩f)a⊕cb ∈ Ec♥k

:

Let ea, fb ∈ Ec♥k
and suppose that e ∩ f 6= ∅. This means that

(e, a) = (♥̂kϕ, V ar(ϕ)) for some ϕ ∈ L[∀]�kKk
s.t. [∃]♥kϕ ∈ Γ0 and

(f, b) = (♥̂kψ, V ar(ψ)) for some ψ ∈ L[∀]�kKk
s.t. [∃]♥kψ ∈ Γ0.
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Since e ∩ f 6= ∅, we have ♥̂kϕ ∩ ♥̂kψ 6= ∅, so there is ∆ ∈ W c s.t.
♥kϕ,♥kψ ∈ ∆. By Lemma 3.9, this implies that ♥kϕ ∧ ♥kψ ∈ ∆,
and by (C♥k

), we obtain ♥k(ϕ ∧ ψ) ∈ ∆.

We claim that [∃]♥k(ϕ ∧ ψ) ∈ Γ0. Towards a contradiction, suppose
[∃]♥k(ϕ ∧ ψ) 6∈ Γ0; then by Lemma 3.9, ¬[∃]♥k(ϕ ∧ ψ) ∈ Γ0. This
means that [∀]¬♥k(ϕ∧ψ) ∈ Γ0. Since ∆ ∈ W c, we have ¬♥k(ϕ∧ψ) ∈
∆, which contradicts ♥k(ϕ ∧ ψ) ∈ ∆.

So [∃]♥k(ϕ ∧ ψ) ∈ Γ0. Thus, by definition of Ec♥k
, we have

Ec♥k
3 (♥k(ϕ ∧ ψ)
∧

, V ar(ϕ ∧ ψ))

= (♥kϕ ∧ ♥kψ
∧

, V ar(ϕ) ∪ V ar(ψ)) (by (C♥k
))

= (♥̂kϕ ∩ ♥̂kψ, V ar(ϕ) ∪ V ar(ψ)) (by Lemma 3.9)

= (e ∩ f, a⊕c b).

(ix) for all ea ∈ EcKk
and fb ∈ Ec�k

, e ∩ f 6= ∅:

Let ea ∈ EKk
and fb ∈ E�k

. This means that

(e, a) = (K̂kϕ, V ar(ϕ)) for some ϕ ∈ L[∀]�kKk
s.t. [∃]Kkϕ ∈ Γ0 and

(f, b) = (�̂kψ, V ar(ψ)) for some ψ ∈ L[∀]�kKk
s.t. [∃]�kψ ∈ Γ0.

Since [∃]Kkϕ ∈ Γ0 and [∃]�kψ ∈ Γ0, by Lemma 3.9 it follows that
[∃]Kkϕ ∧ [∃]�kψ ∈ Γ0. By Proposition 3.3(iii), modus ponens and

Lemma 3.9, it follows that [∃](Kkϕ∧�kψ) ∈ Γ0. Thus, [∃](Kkϕ ∧�kψ)
∧

6=
∅. By Lemma 3.18, we obtain Kkϕ ∧�kψ

∧
6= ∅. By Lemma 3.9, we

have Kkϕ ∧�kψ
∧

= K̂kϕ ∩ �̂kψ = e ∩ f . Therefore, e ∩ f 6= ∅.

Therefore, Qc is indeed a quasi-model.

Lemma 3.20 (Truth Lemma). Let Γ0 be a HEK-mcs and Qc = (W c, T c,
⊕c, tc, {Ec�k

}k∈F , {EcKk
}k∈F , V c) the canonical quasi-model for Γ0. Then, for

all ϕ ∈ L[∀]�kKk
and all Γ ∈ W c, we have

Qc,Γ 
∗ ϕ iff ϕ ∈ Γ.

Proof. By induction on the complexity of ϕ. The Boolean cases are elemen-
tary and omitted. The cases for ϕ = ♥kψ are identical for ♥ ∈ {�, K} and
k ∈ F , so we prove them in one go.

– Case ϕ = [∀]ψ:

⇒: Suppose Qc,Γ 
∗ [∀]ψ. Then W c ⊆ [ψ]. Towards a contradic-

tion, suppose [∀]ψ 6∈ Γ. Then, by Lemma 3.9, ¬[∀]ψ ∈ Γ, which
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means that [∃]¬ψ ∈ Γ. Thus, [̂∃]¬ψ 6= ∅. By Lemma 3.18,

it follows that ¬̂ψ 6= ∅, so there is ∆ ∈ W c s.t. ¬ψ ∈ ∆. By
Lemma 3.9, this means that ψ 6∈ ∆. By the induction hypothesis,
we have Qc,∆ 6
∗ ψ, but this contradicts W c ⊆ [ψ]. Therefore,
[∀]ψ ∈ Γ.

⇐: Suppose [∀]ψ ∈ Γ. By definition of W c and Lemma 3.15, we have

W c ⊆ ψ̂. By the induction hypothesis, it follows that W c ⊆ [ψ],
so Qc,Γ 
∗ [∀]ψ.

– Case ϕ = ♥kψ, where ♥ ∈ {�, K} and k ∈ F :

⇒: Suppose Qc,Γ 
∗ ♥kψ. Then there is ea ∈ Ec♥k
s.t. Γ ∈ e ⊆ [ψ]

and tc(ψ) vc a. This means that there is a formula χ ∈ L[∀]�kKk

s.t. [∃]♥kχ ∈ Γ0, Γ ∈ ♥̂kχ ⊆ [ψ], and V ar(ψ) ⊆ V ar(χ). Since
we have [∃]♥kχ ∈ Γ0 and [∃]♥kχ → [∀][∃]♥kχ is a theorem of
S5[∀], it follows by Lemma 3.9 that [∀][∃]♥kχ ∈ Γ0. Thus, by
definition of W c, we have [∃]♥kχ ∈ Γ.

We proceed by establishing the following claims:

(1) [∀](♥kχ→ ψ) ∈ Γ.
Proof. Define D := {[∀]ξ | [∀]ξ ∈ Γ} ∪ {♥kχ ∧ ¬ψ}.
We claim that D is inconsistent: towards a contradiction,
suppose that D is consistent. Then, by Lemma 3.10, there
is a HEK-mcs ∆ s.t. D ⊆ ∆. Since [∀]ξ ∈ ∆ for all ξ s.t.
[∀]ξ ∈ Γ, by Lemma 3.15 we have ∆ ∈ W c. Now♥kχ ∈ ∆, so

by ♥̂kχ ⊆ [ψ], we have Qc,∆ 
∗ ψ. Thus, by the induction
hypothesis, we have ψ ∈ ∆, which contradicts ¬ψ ∈ ∆.
So D is inconsistent. This means that {[∀]ξ | [∀]ξ ∈ Γ} `HEK
♥kχ→ ψ. Thus, there are ξ1, ..., ξn ∈ L[∀]�kKk

s.t. [∀]ξ1, ..., [∀]ξn ∈
Γ and `HEK

∧
i≤n [∀]ξi → (♥kχ → ψ). By Lemma 3.17, we

have `HEK
∧
i≤n [∀]ξi → [∀](♥kχ→ ψ). Since [∀]ξ1, ..., [∀]ξn ∈

Γ, by Lemma 3.9 we have
∧
i≤n [∀]ξi ∈ Γ. Therefore, by

modus ponens, it follows that [∀](♥kχ→ ψ) ∈ Γ.

(2) ♥k♥kχ ∈ Γ.

Proof. Since Γ ∈ ♥̂kχ, we have ♥kχ ∈ Γ. By (4♥k
), modus

ponens and Lemma 3.9, it follows that ♥k♥kχ ∈ Γ.

(3) ♥kψ ∈ Γ.
Proof. Since ♥kχ ∈ Γ, it follows from (Ax1♥k

), Lemma 3.9
and modus ponens that ♥kχ ∈ Γ. As V ar(ψ) ⊆ V ar(χ),
by Proposition 3.3(ii) we have `HEK ♥kχ → ♥kψ, so using
Lemma 3.9 and modus ponens again, we obtain ♥kψ ∈ Γ.

Now, by (Ax2♥k
) and Lemma 3.9, ([∀](♥kχ → ψ) ∧ ♥k♥kχ ∧
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♥kψ) → ♥kψ ∈ Γ. From claims (1) through (3) above together
with modus ponens, it follows that ♥kψ ∈ Γ.

⇐: Suppose ♥kψ ∈ Γ. Define (e, a) := (♥̂kψ, V ar(ψ)). We proceed

by establishing the following claims:

(1) (e, a) ∈ Ec♥k
.

Proof. We have ♥kψ ∈ Γ. We claim that [∃]♥kψ ∈ Γ0: to-
wards a contradiction, suppose otherwise. Then, by Lemma
3.9, ¬[∃]♥kψ ∈ Γ0, which means [∀]¬♥kψ ∈ Γ0. Since
Γ0∼[∀]Γ, it follows that ¬♥kψ ∈ Γ, contradicting the con-
sistency of Γ. So [∃]♥kψ ∈ Γ0. Therefore, by definition of

Ec♥k
, (e, a) = (♥̂kψ, V ar(ψ)) ∈ Ec♥k

.

(2) Γ ∈ e.
Proof. Follows immediately from ♥kψ ∈ Γ.

(3) e ⊆ [ψ].

Proof. Let Γ ∈ e = ♥̂kψ, then ♥kψ ∈ Γ. From (TKk
),

Lemma 3.9 and modus ponens it follows that ψ ∈ Γ. By the
induction hypothesis, we have QC ,Γ 
∗ ψ, so Γ ∈ [ψ].

(4) tc(ψ) vc a.
Proof. tc(ψ) = V ar(ψ) = a.

Combining claims (1) through (4), we obtain that (e, a) ∈ Ec♥k
is

a witness for Qc,Γ 
∗ ♥kψ.

Step 2: Equivalence of quasi-models and tsef-models

We have now established that every HEK-consistent set of formulas is sat-
isfiable on the canonical quasi-model. We now show that for every quasi-
model, there exists a modally equivalent tsef-model. This step requires a
construction that transforms quasi-models into tsef-models, which is given
in Definition 3.21.

In order to build a tsef-model from a quasi-model Q = (W, T ,⊕, t,
{E�k
}k∈F , {EKk

}k∈F , V ), we need to “fuse” the two evidence sets E�k
and

EKk
into one for each k ∈ F in a way that preserves satisfaction of formulas

of the form �kϕ and Kkϕ. Each piece of evidence in EKk
is consistent

with all evidence in E�k
by definition of quasi-models, so intuitively, each

piece of evidence in EKk
potentially witnesses knowledge of some formula

at some world. However, there may also be pieces of evidence that are in
E�k

but not in EKk
that are consistent with all evidence in E�k

. In order
to guarantee that the initial quasi-model and the tsef-model constructed
from it are indeed equivalent, we need to ensure that none of these evidence
pieces give rise to knowledge in the translated tsef-model. We achieve this
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by creating two copies of the original quasi-model and additionally copies
of the evidence in E�k

and EKk
in such a way that all and only the evidence

from EKk
are consistent with all evidence in the constructed tsef-model.

Definition 3.21 (Translation of quasi-models to tsef-models). Given a
quasi-model Q = (W, T ,⊕, t, {E�k

}k∈F , {EKk
}k∈F , V ), we construct a tsef-

model MQ := (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q) as follows:

WQ := {0, 1} ×W ;

T Q := T ;

⊕Q := ⊕;

tQ := t;

EQk := {({0} × e, a) | ea ∈ E�k
}

∪ {({1} × e, a) | ea ∈ E�k
}

∪ {({0, 1} × e, a) | ea ∈ EKk
};

V Q : prop→ WQ such that V Q(p) := {0, 1} × V (p).

Lemma 3.22. For any quasi-model Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F ,
V ), the corresponding structure MQ := (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q) is a
tsef-model.

Proof. Let Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ) be a quasi-model and
MQ = (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q) its corresponding tsef-model as given
in Definition 3.21. Since T Q = T , ⊕Q = ⊕ and tQ = t, it suffices to check
the following conditions:

(i) WQ 6= ∅: follows from W 6= ∅;

(ii) for all ea ∈ EQk , we have a vQ tQ(k):

follows from the definition of E�k
and the fact that vQ=v;

(iii) EQk is closed under non-empty finite evidence combination, i.e. for all
e1,a1 , ..., en,an ∈ EQk , e1 ∩ · · · ∩ en 6= ∅ implies e1,a1 u · · · u en,an ∈ EQk .

Proof. We show that if ea, e
′
a′ ∈ EQk and e∩e′ 6= ∅, then (e∩e′)a⊕Qa′ ∈

EQk . After establishing this, a simple inductive argument suffices to
prove the desired result.

Let ea, e
′
a′ ∈ EQk and suppose that e ∩ e′ 6= ∅. Since e ∩ e′ 6= ∅

and without loss of generality, exactly one of the three following cases
holds for some i ∈ {0, 1}:

(1) (e, a) = ({i} × f, a) for some fa ∈ E�k
and

(e′, a′) = ({i} × f ′, a′) for some f ′a′ ∈ E�k
;
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(2) (e, a) = ({i} × f, a) for some fa ∈ E�k
and

(e′, a′) = ({0, 1} × f ′, a′) for some f ′a′ ∈ EKk
;

(3) (e, a) = ({0, 1} × f, a) for some fa ∈ EKk
;

(e′, a′) = ({0, 1} × f ′, a′) for some f ′a′ ∈ EKk
.

In the first case, since e ∩ e′ 6= ∅, we have f ∩ f ′ 6= ∅. Since fa, f
′
a′ ∈

E�k
, it follows that (f ∩ f ′, a⊕ a′) ∈ E�k

. Therefore,

(e ∩ e′, a⊕Q a′) = (({i} × f) ∩ ({i} × f ′), a⊕Q a′)

= ({i} × (f ∩ f ′), a⊕Q a′) ∈ EQk .

In the second case, since f ′a′ ∈ EKk
, we have f ∩ f ′ 6= ∅. Since f ′a′ ∈

EKk
⊆ E�k

and E�k
is closed under non-empty evidence combination,

we have (f ∩ f ′, a⊕ a′) ∈ E�k
. Then

(e ∩ e′, a⊕Q a′) = ({i} × f ∩ ({0, 1} × f ′), a⊕Q a′)

= ({i} × (f ∩ f ′), a⊕Q a′) ∈ EQk ,

where the last step follows from the definition of EQk .

In the third case, since e ∩ e′ 6= ∅, we have f ∩ f ′ 6= ∅. Moreover,
since fa, f

′
a′ ∈ EKk

, we have (f ∩ f ′, a⊕ a′) ∈ EKk
. Now

(e ∩ e′, a⊕Q a′) = (({0, 1} × f) ∩ ({0, 1} × f ′), a⊕Q a′)

= ({0, 1} × (f ∩ f ′), a⊕Q a′) ∈ EQk ,

where the last step follows from the definition of EQk .

So EQk is closed under non-empty finite evidence combination.

Therefore, MQ is indeed a tsef-model.

Lemma 3.23. If Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ) is a quasi-model
and MQ = (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q) its corresponding tsef-model as
given in Definition 3.21, then the following holds for every piece of evidence
ea ∈ EQk :

e ∩ e′ 6= ∅ for all e′a′ ∈ EQk
iff (e, a) is of the form ({0, 1} × f, a) for some fa ∈ EKk

.

Proof. If E�k
= ∅, then EQk = ∅, and the lemma holds vacuously. Thus,

assume that E�k
6= ∅.

⇒: Let ea ∈ EQk , and suppose that e ∩ e′ 6= ∅ for all e′a′ ∈ EQk . By

assumption, we have E�k
6= ∅, so let f ′b′ ∈ E�k

. By definition of
EQk , we have ({0} × f ′, b) ∈ EQk and ({1} × f ′, b) ∈ EQk . Now, since by
assumption e∩ ({0}× f ′) 6= ∅ and e∩ ({1}× f ′) 6= ∅, it follows from
the definition of EKk

that (e, a) must be of the form ({0, 1}× f, a) for
some fa ∈ EKk

, as required.
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⇐: Let ea ∈ EQk , and suppose that (e, a) = ({0, 1} × f, a) for some fa ∈
EKk

.

Since fa ∈ EKk
, we have by definition of EKk

that f ∩ f ′ 6= ∅ for all
f ′a′ ∈ E�k

. Thus, {0} × (f ∩ f ′) 6= ∅ and {1} × (f ∩ f ′) 6= ∅ for all
f ′a′ ∈ E�k

. It is easy to see that this implies e∩ e′ 6= ∅ for all e′a′ ∈ EQk ,
as required.

Lemma 3.24. For any quasi-model Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F ,
V ) and its corresponding tsef-model MQ = (WQ, V Q, T Q,⊕Q, tQ, {EQk }k∈F)
as given in Definition 3.21, and for any formula ϕ ∈ L[∀]�kKk

and any
w ∈ W , we have

MQ, (0, w) 
 ϕ iff MQ, (1, w) 
 ϕ.

Proof. Let Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ) be a quasi-model and
MQ = (WQ, V Q, T Q,⊕Q, tQ, {EQk }k∈F) its corresponding tsef-model as given
in Definition 3.21. The proof proceeds by induction on the complexity of ϕ.
The cases for the Boolean connectives ¬, ∧ and the global modality [∀] are
elementary, so we only present the cases for ϕ = �kψ and ϕ = Kkψ.

– Case ϕ = �kψ:

⇒: Suppose MQ, (0, w) 
 �kψ. Then there is ea ∈ EQk s.t. (0, w) ∈
e ⊆ JψKMQ

and tM
Q

(ψ) vMQ
a. Since (0, w) ∈ e and by definition

of EQk , either one of the following two cases holds:

(1) (e, a) = ({0} × f, a) for some fa ∈ E�k
; or

(2) (e, a) = ({0, 1} × f, a) for some fa ∈ EKk
.

Case (1): Since {0}× f = e ⊆ JψKMQ
, by the induction hypothe-

sis, we have {1} × f ⊆ JψKMQ
. From fa ∈ E�k

and the definition
of EQk , it follows that ({1} × f, a) ∈ EQk . As (0, w) ∈ e, we have

w ∈ f , so (1, w) ∈ {1} × f . Moreover, we have tM
Q

(ψ) vMQ
a.

Therefore, ({1} × f, a) ∈ EQk is a witness for MQ, (1, w) 
 �kψ.

Case (2): Since (0, w) ∈ e, we have w ∈ f , so (1, w) ∈ {1}×f ⊆ e.
As e ⊆ JψKMQ

and tM
Q

(ψ) vMQ
a, ea ∈ EQk is a witness for

MQ, (1, w) 
 �kψ.

⇐: Similar.

– Case ϕ = Kkψ:

⇒: Suppose MQ, (0, w) 
 Kkψ. Then there is ea ∈ EQk s.t. (0, w) ∈
e ⊆ JψKMQ

, tM
Q

(ψ) vMQ
a and e ∩ e′ 6= ∅ for all e′a′ ∈ EQk .
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By Lemma 3.23, we have that (e, a) = ({0, 1} × f, a) for some
fa ∈ EKk

. Since (0, w) ∈ e, we have w ∈ f , so (1, w) ∈ e. We also

have e ⊆ JψKMQ
, tM

Q
(ψ) vMQ

a and e ∩ e′ 6= ∅ for all e′a′ ∈ EQk .
Therefore, ea ∈ EQk is a witness for MQ, (1, w) 
 Kkψ.

⇐: Similar.

Lemma 3.25. For any quasi-model Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F ,
V ) and its corresponding tsef-model MQ := (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q)
as given in Definition 3.21, and for any formula ϕ ∈ L[∀]�kKk

and w ∈ W ,
we have

Q, w 
∗ ϕ iff MQ, (i, w) 
 ϕ for any i ∈ {0, 1}.

Proof. Let Q = (W, T ,⊕, t, {E�k
}k∈F , {EKk

}k∈F , V ) be a quasi-model and
MQ := (WQ, T Q,⊕Q, tQ, {EQk }k∈F , V Q) its corresponding tsef-model as given
in Definition 3.21. By Lemma 3.24, it suffices to show that for any formula
ϕ ∈ L[∀]�kKk

and any w ∈ WQ, Q, w 
∗ ϕ iff MQ, (0, w) 
 ϕ. The proof
proceeds by induction on the complexity of ϕ. The cases for the Boolean
connectives ¬, ∧ and the global modality [∀] are elementary, so we only
present the cases for ϕ = �kψ and ϕ = Kkψ.

– Case ϕ = �kψ:

⇒: Suppose Q, w 
∗ �kψ, then there is ea ∈ E�k
s.t. w ∈ e ⊆ [ψ]Q

and tQ(ψ) vQ a. By definition of EQk , ({0}×e, a) ∈ EQk . As w ∈ e,
we have (0, w) ∈ {0} × e. From e ⊆ [ψ]Q and the induction
hypothesis, it follows that {0} × e ⊆ JψKMQ

. Moreover, since
tQ = tM

Q
and vQ=vMQ

, we have tM
Q

(ψ) vMQ
a. Therefore,

({0} × e, a) ∈ EQ�k
is a witness for MQ, (0, w) 
 �kψ.

⇐: Suppose MQ, (0, w) 
 �kψ. Then there is ea ∈ EQk s.t. (0, w) ∈
e ⊆ JψKMQ

and tM
Q

(ψ) vMQ
a. Since (0, w) ∈ e and by definition

of EQk , either one of the following two cases holds:

(1) ea = ({0} × f, a) for some fa ∈ E�k
; or

(2) ea = ({0, 1} × f, a) for some fa ∈ EKk
⊆ E�k

.

In either case, we have w ∈ f for some fa ∈ E�k
. Moreover,

since e ⊆ JψKMQ
and by the induction hypothesis, we have in

both cases that f ⊆ [ψ]Q. Finally, since tM
Q

(ψ) vMQ
a, we have

tQ(ψ) vQ a. Therefore, fa ∈ E�k
is a witness for Q, w 
∗ �kψ.

– Case ϕ = Kkψ:
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⇒: Suppose Q, w 
∗ Kkψ, then there is ea ∈ EKk
s.t. w ∈ e ⊆

[ψ]Q and tQ(ψ) vQ a. Define fa := ({0, 1} × e, a). We claim
that fa is a witness for MQ, (0, w) 
 Kkψ. By definition of EQk ,
fa ∈ EQk . Since w ∈ e, (0, w) ∈ f . Moreover, from e ⊆ [ψ]Q

and the induction hypothesis it follows that f ⊆ JψKMQ
. Since

tQ(ψ) vQ a, we have that tM
Q

(ψ) vMQ
a. It remains to show

that f ∩ f ′ 6= ∅ for all f ′b′ ∈ EQk , which follows from Lemma 3.23.
Therefore, MQ, (0, w) 
 Kkψ.

⇐: Suppose MQ, (0, w) 
 Kkψ, then there is ea ∈ EQk s.t. (0, w) ∈
e ⊆ JψKMQ

, tM
Q

(ψ) vMQ
a, and e ∩ e′ 6= ∅ for all e′a′ ∈ EQk . By

Lemma 3.23, we have that ea = ({0, 1}×f, a) for some fa ∈ EKk
.

As (0, w) ∈ e, we have w ∈ f . Moreover, since e ⊆ JψKMQ
, by

the induction hypothesis we have that f ⊆ [ψ]Q. Finally, since
tM

Q
(ψ) vMQ

a, we have tQ(ψ) vQ a. Therefore, fa ∈ EKk
is a

witness for Q, w 
∗ Kkψ.

Theorem 3.7 (Completeness of HEK). The logic HEK of hyperintensional
evidence and knowledge is strongly complete with respect to the class of tsef-
models. That is, for any set of formulas Γ ∪ {ϕ} of the language L[∀]�kKk

,
if Γ 
 ϕ, then ϕ is derivable in HEK from Γ.

Proof. By Proposition 3.11, it suffices to show that every HEK-consistent
set of formulas is satisfiable on some tsef-model. Let G be a HEK-consistent
set of formulas. By Lemma 3.10, there is a HEK-mcs Γ s.t. G ⊆ Γ. Let
Qc = (W c, T c,⊕c, tc, {Ec�k

}k∈F , {EcKk
}k∈F , V c) be the canonical quasi-model

for Γ as defined in Definition 3.16. By definition of Qc, we have Γ ∈ W c,
and by Lemma 3.20, we have Qc,Γ 
∗ G. Now we use the construction in
Definition 3.21 to build a structure MQc

from the canonical quasi-model Qc

for Γ. By Lemma 3.22, MQc
is a tsef-model, and by Lemma 3.25, we have

MQc
, (0,Γ) 
 G. So G is satisfiable on a tsef-model, as required.

3.2 The belief fragment L[∀]Bk

In this section, we provide a separate sound and complete axiomatisation
for the belief fragment of our language.

3.2.1 Syntax

Definition 3.26 (Syntax of L[∀]Bk
).

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [∀]ϕ | Bkϕ for k ∈ F

51



3.2.2 Semantics

Definition 3.27 (Semantics for L[∀]Bk
on tsef-models). Given a tsef-model

M = (W, T ,⊕, t, {Ek}k∈F , V ) and a world w ∈ W , the |=-semantics for
L[∀]Bk

is defined recursively as follows (we write JϕKM for the truth set
{w ∈ W |M, w |= ϕ} of ϕ in M and shorten JϕKM to JϕK when M is clear
from the context):

M, w |= p iff p ∈ V (p)

M, w |= ¬ϕ iff not M, w |= ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= [∀]ϕ iff W ⊆ JϕK
M, x |= Bkϕ iff ∃ea ∈ Ek (e ⊆ JϕK and t(ϕ) v a

and ∀e′ ∈ Ek : e ∩ e′ 6= ∅)

The notions of satisfaction of a set of formulas, validity of a formula, and
logical semantic consequence are defined analogously to Definition 3.2.

3.2.3 Expressivity

The modality B for fragmented belief is definable in L[∀]Bk
as

Bϕ :=
∨
k∈F

Bkϕ.

3.2.4 Axiomatisation

Table 3.2 provides a sound and complete axiomatisation of the logic HB of
hyperintensional belief over L[∀]Bk

. The proofs for soundness and complete-
ness can be found in Proposition 3.29 and Theorem 3.30, respectively.

Proposition 3.28. The following are derivable in HB:

(i) Bkϕ↔
∧
p∈V ar(ϕ)Bkp

(ii) Bkϕ→ Bkψ, if V ar(ψ) ⊆ V ar(ϕ)

Proof. Same as in Proposition 3.3, items (i) and (ii).

The notions of derivability of a formula ϕ in HB, written `HB, and of
consistency of a (set of) formula(s) of L[∀]Bk

is defined as previously in
Definition 3.4.
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(I) (CPL) all classical propositional tautologies and modus ponens

(II) (S5) axioms and rules for [∀]:
(K[∀]) ([∀]ϕ ∧ [∀](ϕ→ ψ))→ [∀]ψ
(T[∀]) [∀]ϕ→ ϕ
(4[∀]) [∀]ϕ→ [∀][∀]ϕ
(5[∀]) ¬[∀]ϕ→ [∀]¬[∀]ϕ
(Nec[∀]) from ϕ, infer [∀]ϕ

(III) Axioms for Bk with k ∈ F :
(CBk

) Bk(ϕ ∧ ψ)↔ (Bkϕ ∧Bkψ)
(Ax1Bk

) Bkϕ→ Bkϕ

(IV) Axioms connecting [∀] and Bk:

(Ax2Bk
) ([∀](ϕ→ ψ) ∧Bkϕ ∧Bkψ)→ Bkψ

(ABk
) Bkϕ→ [∀]Bkϕ

(EBk
) Bkϕ→ [∃]ϕ

Table 3.2: Sound and complete axiomatisation of the logic HB of hyperin-
tensional belief over L[∀]Bk

3.2.5 Soundness

Proposition 3.29 (Soundness of HB). The logic HB of hyperintensional
belief is sound with respect to the class of tsef-models. That is, for all
formulas ϕ ∈ L[∀]Bk

and all tsef-models M = (W, T ,⊕, t, {Ek}k∈F , V ), `HB ϕ
implies M, w |= ϕ for all w ∈ W .

Proof. Soundness is proved as usual by showing the validity of the axioms
and the preservation of soundness under the inference rules. As we did for
the soundness proof of HEK, we omit the axioms and inference rules of clas-
sical propositional logic as well as the (S5)-axioms for the global modality
[∀]. It is easy to see how the validity of (ABk

) and (EBk
) follows from the

semantic definitions. For (Ax1Bk
), we refer to the proof in Proposition 3.6

(Soundness of HEK), which is very similar. For (CBk
) and (Ax2Bk

), we like-
wise refer to the proofs there; for the right-to-left direction of (CBk

), simply
observe that the witnessing pieces of evidence for Bkϕ and Bkψ have non-
empty intersection with all evidence in the same frame of mind k; so in
particular, they have non-empty intersection with each other. The same
remark applies to (Ax2Bk

), where the witnessing pieces of evidence for Bkϕ
and Bkψ have non-empty intersection for the same reason.

3.2.6 Completeness

Compared to HEK, proving completeness for HB is straightforward. In
particular, we can directly show completeness with respect to a canonical
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tsef-model.
The notion of a maximal HB-consistent set is defined as before in Def-

inition 3.8. We denote the set of all HB-consistent sets by MCSHB. We
will make repeated use of the HB-equivalents of Lemma 3.9 (Properties of
MCS), Lemma 3.10 (Lindenbaum’s Lemma) and Proposition 3.11 (Strong
completeness), which we do not state explicitly again.

Theorem 3.30 (Completeness of HB). The logic of HB is strongly complete
with respect to the class of tsef-models. That is, for any set of formulas
Γ∪ {ϕ} of the language L[∀]Bk

, if Γ |= ϕ, then ϕ is derivable in HB from Γ.

Definition 3.31. For any HB-mcs Γ, we define

Γ[∀] := {ϕ ∈ L[∀]Bk
| [∀]ϕ ∈ Γ}.

Define the binary relation ∼[∀] on MCSHB as follows: for any Γ,∆ ∈
MCSHB,

Γ∼[∀]∆ iff Γ[∀] ⊆ ∆.

Lemma 3.32. ∼[∀] is an equivalence relation.

Proof. Same as in Lemma 3.15.

Definition 3.33 (Canonical tsef-model for Γ0). If Γ0 is a HB-mcs, then the
canonical model for Γ0 is a tuple Mc = (W c, T c,⊕c, tc, {Eck}k∈F , V c), where

i) W c := {Γ ∈MCSHB | Γ0∼[∀]Γ};

ii) V c : prop→ P(W c) s.t. V c(p) := p̂,
where ϕ̂ := {Γ ∈ W c | ϕ ∈ Γ} for all ϕ ∈ L[∀]Bk

;

iii) T c := P(prop);

iv) ⊕c := ∪ (it follows that vc=⊆);

v) tc : prop ∪ F → T s.t.

– tc(p) = {p} for any p ∈ prop;

– tc(k) = {p ∈ prop | Bkp ∈ Γ0} for any k ∈ F ; and

– tc is extended to L[∀]Bk
by putting tc(ϕ) := V ar(ϕ);

vi) for each k ∈ F , Eck := {(ϕ̂, V ar(ϕ)) | Bkϕ ∈ Γ0}.

Lemma 3.34 (Existence lemma for [∀]). Let Γ0 be a HB-mcs and Mc =
(W c, T c,⊕c, tc, {Eck}k∈F , V c) the canonical tsef-model for Γ0. Then, for all
ϕ ∈ L[∀]Bk

, we have

ϕ̂ = ∅ iff [̂∃]ϕ = ∅.
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Proof. Same as in Lemma 3.18.

Lemma 3.35 (Truth Lemma). Let Γ0 be a HB-mcs and Mc = (W c, T c,
⊕c, tc, {Eck}k∈F , V c) the canonical tsef-model for Γ0. Then, for all ϕ ∈ L[∀]Bk

and all Γ ∈ W c, we have

Mc,Γ |= ϕ iff ϕ ∈ Γ.

Proof. By induction on the complexity of ϕ. The Boolean cases are elemen-
tary and omitted. The case ϕ = [∀]ψ is identical to the one in Lemma 3.20,
so we only prove the case for ϕ = Bkψ.

– Case ϕ = Bkψ:

⇒: Suppose Mc,Γ |= Bkψ. Then there is (e, a) ∈ Eck s.t. e ⊆ JψK,
tc(ψ) vc a, and (e, a) = (χ̂, V ar(χ)) for some χ ∈ L[∀]Bk

s.t.
Bkχ ∈ Γ0. Since χ̂ = e ⊆ JψK, by the induction hypothesis we

have χ̂ ⊆ ψ̂. Moreover, since tc(ψ) vc a, by definition of tc we
have V ar(ψ) ⊆ V ar(χ).

We establish the following three claims:

(1) [∀](χ→ ψ) ∈ Γ.
Proof. Define D := Γ[∀] ∪ {χ,¬ψ}. We claim that D is
inconsistent: towards a contradiction, suppose D is consis-
tent. Then by Lemma 3.10, there is a HB-mcs ∆ s.t. D ⊆ ∆.
Since Γ[∀] ⊆ ∆, we have by definition of W c that ∆ ∈ W c.

Now χ ∈ ∆, so by χ̂ ⊆ ψ̂, we have ψ ∈ ∆, which contradicts
¬ψ ∈ ∆.
So D is inconsistent. Thus, there are [∀]ξ1, ..., [∀]ξn ∈ Γ
s.t. `HB

∧
i≤n [∀]ξi → (χ → ψ). By Lemma 3.17, it follows

that `HB
∧
i≤n [∀]ξi → [∀](χ → ψ). Applying Lemma 3.9

throughout, we have
∧
i≤n [∀]ξi ∈ Γ, so by modus ponens,

[∀](χ→ ψ) ∈ Γ.

(2) Bkχ ∈ Γ.
Proof. We have Bkχ ∈ Γ0, so by (ABk

), we have [∀]Bkχ ∈ Γ0.
Thus, by definition of W c, we have Bkχ ∈ Γ.

(3) Bkψ ∈ Γ.
Proof. As shown in (2), we have Bkχ ∈ Γ. Thus, by (Ax1Bk

),
we have Bkχ ∈ Γ. Since we also have V ar(ψ) ⊆ V ar(χ), by
Proposition 3.28(ii), it follows that Bkψ ∈ Γ.

By claims (1) through (3) and axiom (Ax2Bk
), we obtain Bkψ ∈

Γ.

⇐: Suppose Bkψ ∈ Γ. Define (e, a) := (ψ̂, V ar(ψ)). We establish

the following three claims:
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(1) (e, a) ∈ Eck.
Proof. We have Bkψ ∈ Γ, so by (ABk

), modus ponens and
Lemma 3.9, it follows that Bkψ ∈ Γ0. Thus, by definition of
Eck, we have (e, a) ∈ Eck.

(2) e ⊆ JψK.
Proof. By the induction hypothesis, we have e = ψ̂ = JψK.

(3) tc(ψ) vc a.
Proof. By definition of tc and a, we have tc(ψ) = V ar(ψ) =
a.

(4) for all e′a′ ∈ Eck, e ∩ e′ 6= ∅.
Proof. Let e′a′ ∈ Eck, then e′ = χ̂ for some χ ∈ L[∀]Bk

s.t.
Bkχ ∈ Γ0. We already established in (1) that Bkψ ∈ Γ0.
Applying Lemma 3.9 throughout, we get from (CBk

) that
Bk(ψ ∧ χ) ∈ Γ0, and by (EBk

) that [∃](ψ ∧ χ) ∈ Γ0. So

[∃](ψ ∧ χ)
∧

6= ∅, which by Lemma 3.34 implies that ψ̂ ∧ χ 6=
∅. So e ∩ e′ = ψ̂ ∩ χ̂ = ψ̂ ∩ χ 6= ∅.

By claims (1) through (4), (e, a) ∈ Eck is a witness for Mc,Γ |=
Bkψ.

Lemma 3.36. For any HB-mcs Γ0, the canonical model Mc = (W c, T c,
⊕c, tc, {Eck}k∈F , V c) for Γ0 is a tsef-model.

Proof. Let Γ0 be a HB-mcs and Mc = (W c, T c,⊕c, tc, {Eck}k∈F , V c) the
canonical model for Γ0. Then

(i) W c 6= ∅ because by (T[∀]), Γ0 ∈ W c;

(ii) T c = P(prop) 6= ∅ because prop 6= ∅;

(iii) ⊕c = ∪ is idempotent, commutative and associative;

(iv) T c is closed under binary ⊕c because P(prop) is closed under unions;

(v) tc is clearly well-defined; and moreover, we have tc(ϕ) = V ar(ϕ) =⋃
{{p} | p ∈ V ar(ϕ)} =

⊕c{tc(p) | p ∈ V ar(ϕ)};

(vi) for all k ∈ F and ea ∈ Eck, we have a vc tc(k):

Let ea ∈ Eck, then (e, a) is of the form (ϕ̂, V ar(ϕ)) for some ϕ ∈ L[∀]Bk

s.t. Bkϕ ∈ Γ0. We claim that this implies
∧
p∈V ar(ϕ)Bkp ∈ Γ0: By

(Ax1Bk
), we have `HB Bkϕ→ Bkϕ. By Proposition 3.28(i), it follows

that `HB Bkϕ →
∧
p∈V ar(ϕ)Bkp. Since Bkϕ ∈ Γ0, by modus ponens

and Lemma 3.9, we have
∧
p∈V ar(ϕ)Bkp ∈ Γ0. Thus, Bkp ∈ Γ0 for

all p ∈ V ar(ϕ), so a = V ar(ϕ) ⊆ {p ∈ prop | Bkp ∈ Γ0} = tc(k).
Therefore, a vc tc(k).
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(vii) for each k ∈ F , Eck is closed under non-empty finite evidence com-
bination, i.e. for all e1,a1 , ..., en,an ∈ Eck, e1 ∩ · · · ∩ en 6= ∅ implies
e1,a1 u · · · u en,an ∈ Eck.
Proof. We show that if ea, e

′
a′ ∈ Eck, then (e ∩ e′, a ⊕c a′) ∈ Eck. After

establishing this, a simple inductive argument suffices to prove the
desired result.

Let ea, e
′
a′ ∈ Eck. Then (e, a) = (ϕ̂, V ar(ϕ)) and (f, b) = (ψ̂, V ar(ψ))

for some ϕ, ψ ∈ L[∀]Bk
s.t. Bkϕ ∈ Γ0 and Bkψ ∈ Γ0. It follows from

(CBk
) and Lemma 3.9 that Bk(ϕ ∧ ψ) ∈ Γ0. Thus,

(e ∩ f, a⊕c a′) = (ϕ̂ ∩ ψ̂, V ar(ϕ) ∪ V ar(ψ)) (Definition of ⊕c)
= (ϕ ∧ ψ
∧

, V ar(ϕ ∧ ψ)) (Lemma 3.9)

∈ Eck. (Definition of Eck)

Thus, Mc is indeed a tsef-model.

Theorem 3.30 (Completeness of HB). The logic of HB is strongly complete
with respect to the class of tsef-models. That is, for any set of formulas
Γ∪ {ϕ} of the language L[∀]Bk

, if Γ |= ϕ, then ϕ is derivable in HB from Γ.

Proof. By Proposition 3.11, it suffices to show that every HB-consistent set
of formulas is satisfiable on some tsef-model. Let G be a HB-consistent set
of formulas. By Lemma 3.10, there is a HB-mcs Γ s.t. G ⊆ Γ. Let Mc =
(W c, T c,⊕c, tc, {Eck}k∈F , V c) be the canonical tsef-model for Γ as defined in
Definition 3.33. By definition of Mc, we have Γ ∈ W c, and by Lemma 3.35,
we have Mc,Γ |= G. By Lemma 3.36, Mc is a tsef-model. So G is satisfiable
on a tsef-model, as required.
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Chapter 4

Comparison with other
approaches

In this chapter, we compare our framework with similar existing approaches,
some of which inspired our approach. In Section 4.1, we briefly sketch the
topological evidence models of Baltag et al. (2016) and Özgün (2017), whose
definitions of knowledge and belief strongly inspired our respective formal-
isations. We point out that our epistemic notions only exploit part of the
topological structure of evidence developed there, show that our notion of
belief stripped free from its topic-sensitive and fragmented components is
strictly stronger than its topological variant, and point to conceptual prob-
lems rendering it difficult to combine full evidential topologies with topics.
In Section 4.2, we summarise question-based approaches to interpret knowl-
edge and belief, which provide alternatives to our topic-based framework,
and we show how some problems pertaining to logical omniscience can in-
herently not be solved by these approaches. Finally, in Sections 4.3 and 4.4,
we compare our framework with awareness logics and justification logics,
respectively.

4.1 Topological evidence models

Our approach to defining knowledge and belief based on evidence is strongly
inspired by that of Baltag et al. (2016) and Özgün (2017), where van
Benthem-Pacuit evidence models are further developed into topological ev-
idence models.

Roughly, the idea is as follows: an agent’s evidential topology is the
topology generated by her set of evidence E , i.e. the collection of all arbi-
trary unions of finite intersections of evidence pieces in E . Just like on van
Benthem-Pacuit models, a combined piece of evidence is simply a non-empty
finite intersection of evidence in E0.

If we strip away the topic and fragmentation components of our evidence
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models, then a collection E of combined evidence is simply a family of
subsets of W closed under non-empty finite intersections. By adding the
empty set to E , we get the basis of an evidential topology. Thus, our
semantics is built on the basis of evidential topologies.

In topological evidence models, ϕ is believed iff there exists a non-empty
open subset of the truth set of ϕ which is consistent with all combined
evidence, or phrased topologically: iff there exists a dense open subset of
ϕ. Note the similarity with (the intensional component of) our framework,
in which ϕ is believed iff there exists a combined piece of evidence which is
consistent with all other combined evidence.

Since every basic subset of an evidential topology which is consistent
with all combined evidence is also a dense open subset, belief under (the
intensional component of) our semantics implies belief under the topological
semantics in Baltag et al. (2016). However, the converse does not hold, so
(the intensional reduction of) our notion of belief is strictly stronger than
the topological notion. Here is a sketch of a counterexample:

e1 e2

e3 e4

w1 w2 w3

w4 w5

w6 w7

JpK

Figure 4.1: Example: The intensional reduction of our belief
is strictly stronger than its topological variant

Whereas the union e1 ∪ e2 is a dense open subset of JpK and therefore a
witness of Bp under the topological semantics, there is no combined piece of
evidence consistent with all combined evidence, so Bp does not hold under
our semantics.

Intuitively, the conceptual difference between the two semantics is the
following: an agent may possess a piece of combined evidence e entailing ϕ,
but which is too “specific” or too “small” to guarantee consistency with all
other combined evidence.

Topic-sensitive evidence goes full topology?

The present framework does not make full use of the topological structure
of evidence developed in Özgün (2017) and instead uses topics combined

59



with topological bases. This confinement has a reason: the interaction of
topics with unions of evidence – from a topological perspective, the missing
component in our approach – produce problematic results.

If we want to combine full evidential topologies with topics, we need to
introduce a union equivalent of our notion of evidence combination. That
is, given two topic-indexed pieces of evidence ea and fb, which topic should
be assigned to the union e ∪ f? The obvious choice would be to assign the
topic a⊕ b to e ∪ f , just as we did for evidence combination. But then the
following problem arises:

Suppose our agent has two pieces of evidence ea and fb, both belonging
to the same evidential frame Ek. The agent now performs two subsequent
steps of evidence combination: first, ea and fb are combined by taking their
union, producing (e ∪ f)a⊕b. This new piece of evidence is now combined
with ea by means of intersection, yielding ((e∪ f)∩ e)(a⊕b)⊕a = ea⊕b. Thus,
the agent produced a piece of evidence which is intensionally equivalent to
ea, but with topic a ⊕ b. In general, given any evidential frame Ek and
evidence ea ∈ Ek, an agent can always produce a new piece of evidence ea′ ,
where a′ is the fusion of all topics assigned to evidence in Ek.

This phenomenon would arguably undermine our objective of modelling
evidential relevance. In the fragmentation setting, the topic of all pieces
of evidence in one frame effectively reduce to one topic which is attached
to that frame. For this reason, we only considered finite intersections as
a means of (intensional) evidence combination. We leave the problem of
combining full topological evidence models with topics for future research.

4.2 Question-based approaches

We used an abstract notion of topics to supply both evidence and propo-
sitions with a hyperintensional content component. However, there are al-
ternative notions that could be used instead of topics. In particular, the
idea that subject matters correspond to partitions of logical space, often
interpreted as questions, has sparked a considerable amount of literature
(originating with Lewis (1988); more recent developments include Boddy
(2014) and Yalcin (2018) and Hoek (2020)). In this section, we briefly de-
lineate the basic conceptual features of question-based accounts of knowl-
edge and belief, sketch how these could be extended to incorporate a notion
of question-sensitive evidence, and point out limitations compared to our
approach.

A partition P of a set of worlds W is a collection of non-empty subsets
of W such that (1) P covers W (i.e.,

⋃
P = W ); and (2) all subsets in P are

mutually disjoint. We take partitions to represent questions. An answer to
a question P is a cell C ∈ P . A partial answer to a question P is a union
of answers to P .
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The cells of a partition represent ways the world might be, but they
do not settle all possible distinctions. Instead, as phrased by Yalcin (2018),
they foreground some distinctions and background others. The foregrounded
propositions are those that cut along the lines of the partition, i.e. those
that constitute partial answers to the associated question.

Given a set of worlds W , an agent might be interested in obtaining
answers to only some of all possible questions over W . We call the set
of these special questions A the set of questions available to the agent.
Intuitively, A should exhibit some structure. For example, if I ask myself
whether ϕ∧ψ is true, then I ask myself whether ϕ is true and whether ψ is
true. Thus, the availability of some questions should intuitively imply the
availability of others. An example of an implementation is Hoek (2020), but
providing the details would go beyond the scope of this comparison.

These fundamental ideas can be applied to develop a question-based
notion of evidential relevance as follows: given a set of worlds W , a question
P over W , an (intensional) piece of evidence e ⊆ W and a formula ϕ, we
say that e is relevant for ϕ iff e and the truth set of ϕ are both partial
answers to some question available to the agent.

Note that such a question-sensitive notion of evidence would circumvent
some of the problems related to logical omniscience. For example, question-
based evidence is not closed under logical entailment: If ϕ entails ψ and I
have a piece of evidence e which is relevant for and entails ϕ, then ϕ and e
are both partial answers to a question available to me; however, this does
not entail that ψ is also a partial answer to a question available to me, so
it does not follow that I also know ψ.

However, the questions-based approach is unable to offer a solution to
closure under logical equivalence: if ϕ and ψ are logically equivalent and
I have relevant evidence e for ϕ, then ϕ and e both partially answer some
question P available to me. Since ϕ and ψ are equivalent, their truth sets are
identical, so ψ is also a partial answer to P . Thus, e is also relevant evidence
for ψ. This should come as no surprise: logically equivalent formulas are also
intensionally equivalent. As partition-based question approaches confine
content to possible worlds, they cannot distinguish between such sentences.

Questions provide an intuitive way of interpreting subject matters, and
developing a framework for question-sensitive evidence could be fruitful.
Combining a partition-based approach to questions with evidence provides
solutions to some of the logical omniscience-related problems; however, since
such an approach would still be entirely intensional, it inherently struggles
with problems whose solutions require a strictly hyperintensional approach
such as ours.
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4.3 Awareness logics

Awareness logics (originally developed by Fagin and Halpern (1987)) tackle
the problem of logical omniscience by drawing a distinction between implicit
and explicit knowledge. Implicit knowledge corresponds to the classical
Hintikkan notion of knowledge, whereas explicit knowledge is a conjunction
of two components: ϕ is explicitly known iff (1) ϕ is implicitly known and
(2) the agent is aware of ϕ. Logical omniscience is primarily exhibited by
implicit, but not by explicit knowledge.

Awareness is typically modelled in terms of awareness sets, which are
(possibly world-dependent) sets of formulas that specify which formulas the
agent is aware off. Thus, the hyperintensional component is implemented
in a purely syntactical way. The extent to which awareness sets exhibit
structure varies by approach: on the one end of the extreme, any arbitrary
set of formulas is admissible as an awareness set; in other approaches, more
requirements are imposed.

The extreme variant that allows any set of formulas as an awareness set is
arguably of limited use in capturing an interesting notion of hyperintensional
knowledge. Our goal is to provide epistemic logics that strikes the right
balance in terms of epistemic closure principles. This extremely liberal way
of determining awareness misses this goal: “explicit attitudes obey no non-
trivial logical closure properties” (Berto and Özgün, unpublished, p. 8).
For example, K(ϕ ∧ ψ) entails neither K(ψ ∧ ϕ) nor Kϕ.

In contrast, our topics-based approach imposes an intuitive mereological
structure on the hyperintensional content of both propositions and of evi-
dence, which achieves a better balance in terms of the logical inferences it
warrants. For example, ϕ∧ψ has the same intensional and hyperintensional
content as ψ ∧ ϕ; in the most general awareness logic, this is not the case.

In general, “[a] requirement often suggested is that a hyperintensional
account of this or that notion shouldn’t make it as fine-grained as the syntax
of the language one is working with – on pain of giving away the very point
of having a semantics for it” (Berto and Nolan 2021, p. 22).

Of course, some more structure can be induced on the awareness set by
imposing constraints. For example, in a variant called awareness generated
by primitive propositions (Ditmarsch et al. (2015, p. 81); a similar approach
is pursued in van Ditmarsch and French (2014)), the agent is aware of ϕ
just in case she is aware of all its atomic constituents taken together. This
delivers some closure properties such as closure under conjunction.

In general, topic-based approaches to hyperintensional epistemic atti-
tudes such as in Hawke, Özgün, and Berto (2020) and Özgün and Berto
(2020) can be mapped to awareness structures. If b represents the greatest
topic associated with a concept the agent understands, then the relevant
condition for knowledge of ϕ in these approaches is t(ϕ) v b. The general
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strategy is to construct an awareness sets that consist of all formulas ϕ s.t.
t(ϕ) v b holds on the topic model. The approach can be easily generalised
to a fragmented setting.

Thus, awareness logic can be seen as a syntax-based generalisation of
approaches that use topics to represent conceptual understanding. However,
our framework gives a different twist to topics: we use them to formalise
the notion of relevance of evidence for propositions. There currently is
no awareness logics-based approach (in the author’s awareness set) that
combines evidence with awareness. Such frameworks could be implemented
by associating evidence with sets of formulas, each of which represents a
sentence for which the evidence is relevant. However, we find that the
mereological structure of topics provides an intuitively compelling way of
understanding the hyperintensional components of both propositions and of
evidence.

4.4 Justification logics

Justification logics (originally developed by Artemov and Fitting (2021))
set out to add a notion of justification to epistemic logic: a proposition P
is known in justification logics iff there is a justification for P .

Justifications are represented by syntactic objects called justification
terms, which together with propositional formulas build up the language
of justification logic. If ϕ is a formula and t is a justification term, then
t : ϕ is a formula, which is intended to be read as

t is a justification for ϕ.

Justification logic makes the implicit modalities of standard modal logic
explicit by unfolding them in terms of justifications. That is, whereas in
classical (i.e., Hintikkan) epistemic logic the formula Kϕ (ϕ is known) is
interpreted as truth of ϕ in all epistemic alternatives, justification logic
interprets Kϕ as there exists a justification for ϕ.

Justification logic does not assume that there is a justification for every
tautology, i.e. formulas of the form t : ϕ with ϕ a tautology are not neces-
sarily valid. However, justification terms come with a number of principles
which hold in general, one of which is application: If s is a justification for
ϕ → ψ and t is a justification for ψ, then [s · t] is a justification for ψ. As
an axiom:

(s : (p→ q) ∧ t : p)→ [s · t] : q

Note the similarity between the application axiom above and the K
axiom of normal modal logic:
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(�(p→ q) ∧�p)→ �q

If we interpret � as knowledge, then the above axiom turns into the prin-
ciple of closure under known implication. By unfolding � into its underly-
ing justifications, justification logic features a kind of justification tracking,
which limits epistemic closure under known implication to those instances
in which the agent possesses relevant justifications for the involved pieces
of knowledge.

Thus, justification logics provide a hyperintensional notion of justifica-
tion for epistemic logics that gives rise to agents which are not fully logically
omniscient. As such, they share the central objectives of our framework.
However, there is one important limitation to classical justification logics:
they interpret justifications as mathematical proofs. In particular, justifi-
cations are assumed to be infallible, indefeasible, and never misleading.

Whereas this kind of justification is certainly important, the resulting
logics are of limited use in modelling soft, for example empirical evidence
and its associated notions of knowledge and belief, which our framework
can capture.

Justification Logic for soft evidence Baltag, Renne, and Smets (2012)
provide a framework based on justification logic that aims at representing
exactly this kind of soft evidence. Their approach combines the central
ideas of justification logic with the distinction between implicit and explicit
knowledge drawn in awareness logics (see Section 4.3).

In particular, Baltag, Renne, and Smets (2012) define a notion of defea-
sible knowledge, which roughly boils down to the following: At a world w,
ϕ is explicitly known iff there is a justification term t for ϕ, t is available
to the agent, and each formula ψ whose evidential certificate cϕ occurs in t
is explicitly known. An evidential certificate cϕ for ϕ is a justification term
which is interpreted as a canonical piece of evidence in support of ϕ.

Therefore, Baltag, Renne, and Smets (2012) capture a notion of de-
feasible knowledge grounded in soft evidence similar to that developed in
this thesis. However, the approach of Baltag, Renne, and Smets (2012)
remains rather syntactical; in particular, it is unclear how evidential cer-
tificates should be intuitively understood and what evidence corresponds to
semantically. In comparison, our framework provides a more semantic and
intuitive representation, including the mereological structure of the hyper-
intensional component of evidence.
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Chapter 5

Conclusions and further
research

To sum up, we developed a hyperintensional and fragmented notion of evi-
dence, provided definitions for knowledge and belief based on this conception
of evidence, and showed how the resulting logic gives rise to an agent that
does not suffer from full logical omniscience. Moreover, we provided sound
and complete axiomatisations of a factive evidence and knowledge fragment
as well as a belief fragment.

We began with a purely intensional, possible worlds-based representation
of evidence in the tradition of van Benthem and Pacuit (2011) and demon-
strated how this conception of evidence validates a number of intuitively
problematic principles closely related to logical omniscience. To improve on
this situation, we took inspiration from Hawke, Özgün, and Berto (2020)
and Özgün and Berto (2020) and supplemented the notion of evidence with
two complementary components:

On the one hand, we argued that evidence is hyperintensional. Specifi-
cally, we proposed that the purely intensional requirement e entails p is not
sufficient for a piece of evidence e to constitute evidence for a proposition
p. Instead, we suggested that e additionally needs to be relevant for p. To
model evidential relevance, we adopted the notion of topics from Hawke,
Özgün, and Berto (2020) and Özgün and Berto (2020) and developed a way
of assigning topics to both evidence and propositions. Having equipped both
evidence and propositions with subject matters, we defined the relation of
evidential relevance in terms of topic inclusion.

On the other hand, we took an agent’s body of evidence to be fragmented,
i.e. consisting of several bodies of evidence called evidential frames that act
as “evidential echo chambers”: Pieces of evidence can only be combined
within the same evidential frame, but not between different frames.

Based on this conception of hyperintensional, fragmented evidence, we
defined notions of knowledge and belief. In doing so, we chose an eviden-
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tialist and coherentist approach: First, our notions of knowledge and belief
are entirely grounded in evidence. Second, knowledge and belief require a
piece of evidence which is consistent with other evidence possessed by the
agent.

We argued that knowledge and belief inherit their hyperintensional and
fragmented properties from the underlying evidence. Correspondingly, we
defined non-fragmented belief of ϕ as possession of a piece of evidence which
(a) entails ϕ; (b) is relevant for ϕ; and (c) is consistent with all other evi-
dence in the same evidential frame. Fragmented belief of ϕ corresponds to
believing ϕ (in the non-fragmented sense) in some or other evidential frame.
Non-fragmented and fragmented knowledge are defined like the correspond-
ing notions of belief, but with a factive witnessing piece of evidence.

We showed that our target notions of fragmented knowledge and be-
lief suffer from the defect of logical omniscience to a significantly reduced
extent, and that this is due to the topic-sensitivity and fragmentation of
the underlying evidence. For example, topic-sensitivity ensures that agents
do not know all validities, and that knowledge is not closed under logical
entailment. Fragmentation guarantees that knowledge is not closed under
conjunction.

Our technical contributions consist of a sound and complete axiomatisa-
tion of the logic of hyperintensional factive evidence and knowledge, whose
language is expressive enough to define all fragmented and non-fragmented
evidence, knowledge and belief modalities used throughout this thesis. We
also provided a sound and complete axiomatisation of the logic of hyperin-
tensional belief.

Our framework shares motivational and conceptual similarities with
topological evidence models, question-based approaches to knowledge and
belief, awareness logics and justification logics. However, to the best of my
knowledge, our approach is the first to provide a full semantic treatment of
hyperintensional evidence.

We conclude with mentioning two aspects of logical omniscience that
our current framework does not solve and point to existing approaches that
could be fruitfully combined with ours in future work.

5.1 Conjunctive parts

Our framework has in common with that of Hawke, Özgün, and Berto (2020)
that it validates the following principle:

([∀](ϕ→ ψ) ∧K(ϕ ∧ (ψ ∨ ¬ψ)))→ Kψ (5.1)

As an example, assume that Goldbach’s conjecture G is true and follows
as a logical consequence of the conjunction α of the Peano axioms. The
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above sentence entails that someone who knows α conjoined with G ∨ ¬G
also knows G, which is implausible.

One response given in Hawke, Özgün, and Berto (2020) traces this prob-
lem back to the general way how knowledge of conjunctions is treated. Con-
sider the following sentence:

K(ϕ ∧ (ϕ→ ψ))→ Kψ (5.2)

Since both conjuncts ϕ and ϕ → ψ occur in the scope of K, they are
evaluated in the same evidential frame. Since Kk validates closure under
conjunctions, this sentence is valid in our framework. The same explanation
is applicable to (5.1) above.

We now briefly sketch the solution proposal in Hawke, Özgün, and Berto
(2020). The notion of knowledge in Hawke, Özgün, and Berto (2020) is
fragmented. As in our proposal, their knowledge modalities Kk correspond
to frames of mind, which are conceptually similar to our evidential frames.
Fragmented knowledge Kϕ is understood as ‘ϕ is known in some frame of
mind’.

Now, according to Hawke, Özgün, and Berto (2020, p. 750), ascriptions
of conjunctive knowledge as in ‘Jones knows ϕ and ψ’ are generally ambigu-
ous between the following two readings:

1. Jones knows ϕ ∧ ψ in the same frame of mind;

2. Jones knows ϕ in some frame of mind
and Jones knows ψ in some other frame of mind.

The suggestion is to modify the definition of knowledge in such a way that
it “pulls apart” the conjuncts of a knowledge ascription and evaluates them
in a fragmented way. That is, knowledge ascriptions of the form K(ϕ ∧ ψ)
are always interpreted according to the second reading given above. Using
this modified definition of knowledge breaks the validity of (5.1) and (5.2),
because the conjuncts in the scope of K are evaluated in a fragmented
manner, and there is no guarantee that the full conjunction is known in any
single frame.

In the framework of Hawke, Özgün, and Berto (2020), this fix indeed
seems to path the way to a notion of knowledge which is not closed under
logical entailment in the sense of (5.1). A similar solution could be applied to
our approach, but the implementation would have to be implemented at the
level of evidence. While we leave this opportunity for further research, we
point out one possible objection to this strategy: a dedicated mathematician
who unsuccessfully devoted most of her life to prove Goldbach’s conjecture
might retort that her failure to know that Goldbach’s conjecture is true is
not due to the fact that her mind is fragmented and she knows the Peano
axioms in one part, and the Law of the Excluded Middle in another; but
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that it is simply very hard to prove Goldbach’s Conjecture. In the next
and final section, we turn to a perspective towards the problem of logical
omniscience that focuses on the computational cost associated with logical
inference.

5.2 Computationally bounded agents

In this thesis, we approach the problem of logical omniscience by making
explicit the hyperintensional and fragmented nature of evidence. A fun-
damtenally different perspective on logical omniscience focuses on the com-
putational limitations of epistemic agents who operate in finite space and
time.

We consider a brief example of a situation in which computational
bounds intuitively restrict an agent’s knowledge. Let p be a proposition
and ϕ the following formula:

ϕ = ¬¬ · · · ¬︸ ︷︷ ︸
100 negations

p

Suppose an agent believes p, and someone asks her whether she believes
ϕ. The intuitive explanation for why it might be difficult for the agent to
infer belief of ϕ from belief of p is that she fails to keep track of the number
of negations. Processing complex sentences takes resources, and a lack of
these resources can limit the logical inferences one is able to perform.

Our framework does not capture this perspective towards logical omni-
science. The reason is that we assume topic transparency of logical connec-
tives: the topic of p is identical to the topic of ϕ. Since p and ϕ are also
intensionally equivalent, this implies that any piece of evidence for p is also
evidence for ϕ; that belief of p implies belief of ϕ; and so on.

Some solutions to this problem focus on representing the computational
cost of performing logical inference. For example, Smets and Solaki (2018)
develop a framework in which both the cognitive capacity of an agent and
the cost associated with different inference rules is captured quantitatively.
A complexity-theoretic treatment is given in Artemov and Kuznets (2014).

We suggest that the bounded computation perspective towards logical
omniscience and our perspective targeting the notion of evidential relevance
are orthogonal aspects of logical omniscience. Specifically, a piece of evi-
dence can be relevant for two propositions p and q which share the same
intensional and hyperintensional content, but an agent may nevertheless
fail to realise this because she lacks the required resources to perform the
inference. Combining these two perspectives could be a fruitful agenda for
future research.
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