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Abstract

This thesis investigates coalgebraic generalizations of twomultiagentmodal
logics from the literature, in which truth values are identified with sets of
agents. In the first logic, which is due to Melvin Fitting, the truth value of
a formula is identified as the set of agents for whom the formula is true,
while in the second logic, which is due to Loes Olde Loohuis and Yde Ven-
ema, the truth value of a formula is identified as the set of players that have
a winning strategy at a corresponding position in a multiplayer evaluation
game. For the first logic, we identify a new base category of interest, from
which the generalization comes forth naturally using the theory of coalge-
braic modal logic, and give proofs of adequacy and expressivity. For the
second logic, we define multiplayer evaluation games in which play pro-
ceeds nondeterministically, and use the well-known fact that predicate lift-
ings induce transformations from coalgebras to neighbourhood frames. Fi-
nally, we prove that fragments of our generalizations are equiexpressive,
and show how they can naturally describe situations with multiple agents.
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CHAPTER 1

INTRODUCTION

In this thesis, we consider two multivalued modal logics with a common
conceptual basis: truth values are identified with sets of agents. We study
generalizations and properties of these two logics, and find ways to relate
them. We now begin describing the two logics.

The first logic we are considering comes from Fitting (2009). This logic
is based on the observation that logics taking truth values from Boolean
algebras other than the two-element Boolean algebra are conspicuously ab-
sent from the literature. As Fitting points out, allowing truth values from
arbitrary finite (or more generally, complete atomic) Boolean algebras pro-
vides an intuitive method to express situations involving multiple agents.
The idea is simple: taking sets of agents to be truth values (and hence con-
sidering the Boolean algebra arising from the powerset of the set of agents),
we can identify the Boolean-valued truth value of a formula with the set of
agents for whom the formula is true.

Let us see an example of how this identification of Boolean-valued truth
values with sets of agents (or in other words, with multiagent-valued truth
values) can aid in expressing situations withmultiple agents. Consider two
agents Alice (𝔞) and Bob (𝔟). If we want to express using conventional
propositional logic that both Alice and Bob are wearing coats, we will usu-
ally introduce propositional variables 𝑐𝔞 (meaning that Alice is wearing a
coat) and 𝑐𝔟 (meaning that Bob is wearing a coat), and then assert that the
formula 𝑐𝔞∧𝑐𝔟 has truth value ‘true’. Taking sets of agents to be truth values,
we can instead simply introduce a single propositional variable 𝑐, and assert
that it has truth value {𝔞, 𝔟}. Similarly, if we want to express that Alice is
wearing a hat while Bob is not, we will conventionally do so by introducing
propositional variables ℎ𝔞 and ℎ𝔟, and then assert that the formula ℎ𝔞∧¬ℎ𝔟
has truth value ‘true‘. In the Boolean-valued setting, we can instead sim-
plify again by taking only one propositional variable ℎ, and then asserting
that ℎ has truth value {𝔞}.

1



2 1. INTRODUCTION

Fitting (2009) shows how we can also define a Boolean-valued modal
logic. This again allows us to simplify the way situations with multiple
agents are expressed. Supposing that we use an epistemic interpretation of
the2-modality ofmodal logic, wewill conventionallymodel the knowledge
of Alice and Bob through a multiagent Kripke model with separate accessi-
bility relations for Alice and Bob, with correspondingmodalities2𝔞 and2𝔟.
The statement that both Alice and Bob know that they themselves are wear-
ing coats, can then be expressed by asserting that the formula 2𝔞𝑐𝔞 ∧ 2𝔟𝑐𝔟
has truth value ‘true’. In the Boolean-valued setting, we instead need only
consider a single 2-modality, with which we can assert that the formula 2𝑐
has truth value {𝔞, 𝔟}.

The second logic we are considering comes fromOlde Loohuis and Ven-
ema (2010). Analogously to the reasoning behind the logic of Fitting (2009),
this logic is based on the observation that applications of games in logic typ-
ically only concern the interaction between two players, with little attention
for multiplayer games in logic. The logic is built on a multiplayer general-
ization of evaluation games for classical two-valued basic modal logic in-
terpreted over Kripke models. Formulas in the logic represent positions in
certain multiplayer evaluation games, and the truth value of a formula is
identified with the set of players that have a winning strategy at the position
represented by the formula.

While both logics we consider are generalizations of basic modal logic
interpreted over Kripke models, one could argue that their essence lies in
the way they identify truth values of formulas as certain sets of agents — as
the set of agents forwhom the formula is true (in the logic of Fitting (2009)),
or as the set of players that have a winning strategy at the formula (in the
logic of Olde Loohuis and Venema (2010)). Two questions naturally arise.
First, to what extent are properties of the two logics determined by how
they identify truth values as sets of agents? Second, can logics with these
two different but similar identifications of truth values be related, through
e.g. an equiexpressivity result? To answer these questions, we will define
more general modal logics with the same set of truth values. Properties of
the logics that depend only on the identifications of truth values should per-
sist in the generalizations, thus answering the first question. And similarly,
any relations between the generalizations are more indicative of relations
between logics with the aforementioned truth values — as opposed to the
original logics which are just variants of basicmodal logic over Kripkemod-
els — therefore answering the second question.

We will naturally define these more general modal logics using the the-
ory of coalgebra and coalgebraic modal logic. Coalgebras are objects that
can be viewed as generalizations ofmany transition systems (such asKripke
frames) considered throughout mathematics and theoretical computer sci-
ence, and the theory of (universal) coalgebra (see Rutten (2000)) allows one
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to parametrically discuss properties of said transition systems. Similarly, the
theory of coalgebraic modal logic (see e.g. Kurz and Leal (2012)) general-
izes many modal logics used to describe transition systems, and can also
allow us to parametrically discuss properties of said logics.

There are coalgebraic multivalued logics in the literature. First and fore-
most, in an unpublished note, Kurz (2017) has worked on a preliminary
coalgebraic generalization of the logic of Fitting (2009), which in fact was
the initialmotivation behind this thesis, thoughwe expand greatly upon the
methods therein. Bílková and Dostál (2013, 2016) and Bílková, Kurz, et al.
(2013) consider general coalgebraic multivalued logics where the truth val-
ues come from arbitrary commutative integral residuated lattices or com-
mutative quantales. Though this approach could work for our generaliza-
tion, since the powerset of the set of agents forms a commutative quantale, it
still falls short, as their approach does not consider any multivalued struc-
ture in their coalgebras, which is required to capture the logic of Fitting
(2009). On the other hand, Babus and Kurz (2016) consider coalgebraic
multivalued logics that both take truth values from a commutative quan-
tale, and enrich their base category with commutative quantales. But, there
still remains a problem: coalgebras over categories enriched with the pow-
erset of the set of agents do not capture the kind of structures considered by
Fitting (2009), meaning their approach would still not suffice for our stated
purpose.

We will instead approach the coalgebraic generalization of the multi-
agent-valued logic of Fitting (2009) by defining a new base category over
which we take our coalgebras, with sets as its objects, and agent-indexed
families of functions as its morphisms. By then applying standard concepts
of coalgebraic modal logic to this new base category, we naturally obtain
transition structures and logics generalizing the work of Fitting (2009). In
fact, we will show that we can proceed fully analogously to Fitting (2009),
and lift two-valued coalgebraic modal logics to multiagent-valued modal
logics in such a manner that the truth value of a formula is precisely the
set of agents for whom the formula is true. Properties like adequacy and
expressivity with respect to bisimilarity also lift from the two-valued logic
to the multiagent-valued logic.

Analogously to how the logic of Olde Loohuis and Venema (2010) is
built on multiplayer evaluation games based on a generalization of two-
valued basic modal logic, a generalization of their logic should contain a
way to associate multiplayer evaluation games to two-valued coalgebraic
modal logics. It is of interest to note that there exists work relating coalge-
bra and games, such as that by Cîrstea and Sadrzadeh (2008) and Venema
(2006) on two-valued evaluation games for coalgebraic fixed point logics in
the style of Moss (1999), and by Baltag (2000) and König, Mika-Michalski,
and Schröder (2020) on (bi)simulation games for coalgebras. Our approach
does not bear much similarity to that of the above authors, however, with
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the focus solely on evaluation games for multiplayer logics in the style of
Olde Loohuis and Venema (2010).

As we will show, we can associate multiplayer evaluation games to two-
valued coalgebraic modal logics by reconsidering the definition of the un-
derlying game structure. We will argue that it is necessary to consider non-
deterministic games, in which play proceeds by nondeterministically select-
ing at each position a player that has to make a move. Using nondetermin-
istic games, we will then define the evaluation games by making use of the
well-known fact from coalgebraic modal logic that modalities in the coalge-
braic setting (i.e. predicate liftings) induce transformations to neighbour-
hood frames. Together with an assumption of monotonicity of the original
coalgebraic modal logic, these transformations will allow us to define the
evaluation games based purely on a game-theoretic definition of coalgebraic
modal logic over neighbourhood frames.

Given that we are considering two coalgebraic modal logics with the
same space of truth values, both of which arise as generalizations of two-
valued coalgebraic modal logics, we will also consider how the two logics
differ in expressive power. We will show that if we make some assump-
tions on the coalgebra type functor, and if we take differences between the
kinds of coalgebras the two logics are interpreted over into account, then
a certain fragment of the multiplayer logic is equiexpressive to multiagent-
valued logic. And furthermore, we will show that adding the full expres-
sive power of the multiplayer logic to the multiagent-valued logic enables
it to express more situations involving multiple agents than it is originally
capable of.

1.1 Thesis Outline and Contributions
Concretely, the structure of the thesis, as well as the original contributions
in the thesis, are as follows.

• In Chapter 2, we present the basic definitions and propositions of coal-
gebra and coalgebraic modal logic, as known from the literature.

• In Chapter 3, we start out by presenting the basic (noncoalgebraic)
multiagent-valued logic of Fitting (2009), along with original proofs
of adequacy and expressivity, as well as original definitions of boun-
dedmorphisms for the structures he considers. Afterwards, we begin
defining the coalgebraic multiagent-valued logic by introducing and
studying a novel base category based on the definition of the afore-
mentioned bounded morphisms. We then show how applying the
standard theory of two-valued coalgebraic modal logic to this base
category produces a multiagent-valued logic generalizing that of Fit-
ting (2009). Finally, we conclude by giving proofs of adequacy and
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expressivity.

• In Chapter 4, we similarly start out by presenting the basic, noncoal-
gebraic multiplayer logic of Olde Loohuis and Venema (2010), and ar-
gue that the game structure it is based on will not allow a proper coal-
gebraic generalization. Having argued that, we give an original defi-
nition of a nondeterministic multiplayer game structure, compare dif-
ferent notions of winning strategies for these nondeterministic games,
and finally show how the nondeterministic games relate to the origi-
nal game structure through certain embeddings.

We then use nondeterministic games to generalize the logic of
Olde Loohuis and Venema (2010), still at the level of Kripke-like
structures. We show how the resulting logic is more expressive than
the original logic, allowing for connectives that were undefinable in
the original. Additionally, we also show that the logic is adequate
with respect to bisimilarity.

Finally, we then define an original coalgebraic generalization of the
logic by using (mostly) well-known facts about modalities and neigh-
bourhood frames in the coalgebraic setting, showing that we can lift
monotone two-valued coalgebraic modal logics to coalgebraic multi-
player logics.

• In Chapter 5, we relate the (coalgebraic generalizations of the) two
logics in two ways. We start by giving an original proof that frag-
ments of the logics are equiexpressive under some assumptions on
the coalgebra type functor. Afterwards, we prove that multiagent-
valued logic has less (informal) expressive power than expectedwhen
it comes to expressing situations with multiple agents, and show how
adding features of the multiplayer logic can mend this lack of expres-
sive power.

• Finally, we conclude the thesis in Chapter 6 with directions for further
work.





CHAPTER 2

PRELIMINARIES

In this chapter, we will give (most of) the relevant definitions and theo-
rems required to understand the rest of the thesis. These will cover coal-
gebras (Section 2.1), and coalgebraic modal logic (Section 2.2). We will
presume familiarity with the basic notions of modal logic, and will there-
fore not treat these here, instead referring readers to Blackburn, de Rijke,
and Venema (2002). We will also presume basic understanding of game-
theoretic semantics for classical two-valued logic, as treated by e.g. Hintikka
(1983). Finally, the theories of coalgebra and coalgebraic modal logic make
heavy use of category theory, which we assume readers are familiar with,
though we will only make use of the basic definitions and properties of
categories, functors, natural transformations, adjunctions, (co)limits, and
subobject classifiers. No knowledge of any advanced theorems is assumed.

2.1 Coalgebra
For a comprehensive introduction of the theory of coalgebra, we refer read-
ers to Jacobs (2016) and Rutten (2000, 2019).

Definition 2.1.1. Given a category C and an endofunctor T : C → C, a T-
coalgebra is a pair S = ⟨𝑆, 𝜎⟩, where 𝑆 is an object of C, and 𝜎 : 𝑆 → T𝑆 is
a C-morphism. The object 𝑆 is referred to as the carrier object of S, while 𝜎
is referred to as the coalgebra map of S. The functor T is referred to as the
(coalgebra) type of T-coalgebras. A C-morphism 𝑓 : 𝑆 → 𝑆′ is a T-coalgebra
morphism 𝑓 : S → S′ between T-coalgebras S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩, if
the diagram

𝑆 𝑆′

T𝑆 T𝑆′
𝜎

𝑓

𝜎′

T𝑓

7



8 2. PRELIMINARIES

commutes. The category of T-coalgebras and T-coalgebra morphisms is
denoted by CoalgC(T).

Dually, a T-algebra is a pair A = ⟨𝐴, 𝛼⟩, where 𝐴 is an object of C, and
𝛼 : T𝐴 → 𝐴 is a C-morphism. A C-morphism 𝑓 : 𝐴 → 𝐴′ is a T-algebra
morphism 𝑓 : A → A′ between T-algebrasA = ⟨𝐴, 𝛼⟩ andA′ = ⟨𝐴′, 𝛼′⟩, if
the diagram

T𝐴 T𝐴′

𝐴 𝐴′
𝛼

T𝑓

𝛼′

𝑓

commutes. The category of T-algebras and T-algebra morphisms is de-
noted by AlgC(T). �

For now, we will mainly be considering coalgebras over the category
Set of sets and functions. These can be seen as general state-based transition
systems, aswewill shortly give examples of. With this inmind, wewill refer
to carrier sets of coalgebras over Set as state spaces, and to their coalgebra
maps as transition maps. Elements of a state space are referred to as states.
We will refer to endofunctors T : Set → Set as set functors. Elements of T𝑆
for a set 𝑆 are often referred to as unfoldings of 𝑆.

Example 2.1.2. (i) Consider the powerset functor P : Set → Set, send-
ing sets to their powerset, and functions 𝑓 : 𝑋 → 𝑌 to the function
P𝑓 sending subsets𝑈 ⊆ 𝑋 to the 𝑓 -image (P𝑓 )(𝑈) := 𝑓 [𝑈]. We have
thatP-coalgebras are preciselyKripke frames: P-coalgebras ⟨𝑆, 𝜎⟩ are
Kripke frames ⟨𝑆, 𝑅⟩ in which 𝑅[𝑠] = 𝜎(𝑠) for states 𝑠 ∈ 𝑆 (where
𝑅[𝑠] = {𝑡 ∈ 𝑆 ; 𝑠𝑅𝑡}). Analogously, P-coalgebra morphisms are pre-
cisely bounded morphisms between Kripke frames.

(ii) Considering the functor Aut𝐶 (where 𝐶 is a fixed set) defined for a
set 𝑋 as Aut𝐶𝑋 := 2 × 𝑆𝐶 , we have that Aut𝐶-coalgebras are precisely
deterministic automata over an alphabet 𝐶. A state 𝑠 is final iff the
first component of 𝜎(𝑠) (i.e. (proj2 ◦ 𝜎)(𝑠)) is 1, and the 𝑐-transition of
𝑠 for a letter 𝑐 ∈ 𝐶 is the state (proj𝑆𝐶 ◦ 𝜎)(𝑠)(𝑐).

(iii) Considering the functor St𝐶 defined for a set 𝑋 as St𝐶𝑋 := 𝐶 × 𝑆, we
have thatSt𝐶-coalgebras are so-called stream systems over𝐶, inwhich
every state 𝑠 generates an infinite stream 𝒄 ∈ 𝐶𝜔 with 𝑐0 defined as the
first component of 𝜎(𝑠) and 𝑐𝑖+1 defined as the first component of 𝜎(𝑠′)
where 𝑠′ is the second component of 𝜎(𝑠).

(iv) Considering the functorDist sending sets𝑋 to the set of discrete prob-
ability distributions over𝑋, we have thatDist-coalgebras are precisely
discrete-time Markov chains over 𝑋, with 𝜎(𝑠) being the probability
distribution over ‘next’ states from 𝑠.
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(v) Considering the functor Tree defined as Tree𝑋 := (𝑋 × 𝑋) + 1, we
have thatTree-coalgebras represent (potentially infinite) binary trees,
with 𝜎(𝑠) = 0 representing that the state 𝑠 is a leaf of the tree, while
𝜎(𝑠) = ⟨𝑡 , 𝑢⟩ represents that the states 𝑡 and 𝑢 are the children of 𝑠. �

The theory of coalgebras allows us to treat all the above examples uni-
formly with respect to the coalgebra type. It gives general definitions and
proofs applicable to all coalgebras. For example, in the study of a particular
class of transition systems, one is often interested in determining whether
states exhibit the same ‘behaviour’. Using coalgebras, one could say that the
behaviour of a state is precisely that which is preserved by a coalgebra mor-
phism. This allows us to give the following general definition of behavioural
equivalence.
Definition 2.1.3. Given a set functor T, together with T-coalgebras S = ⟨𝑆,
𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩, we say states 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ are behaviourally equivalent
(and we write S, 𝑠 ≃ S′, 𝑠′) if there is someT-coalgebraX withT-coalgebra
morphisms 𝑓 : S→ X and 𝑓 ′ : S′ → X such that 𝑓 (𝑠) = 𝑓 ′(𝑠′). �

In the study of particular classes of transition systems, behavioural e-
quivalence is often captured by a suitable notion of bisimilarity. An elegant
definition of coalgebraic bisimilarity using coalgebra morphisms is given
by Aczel and Mendler (1989), which is the one we will use, though there
are several other possible definitions (see Staton (2009) for an overview).
Though originally defined for the category of sets, we will give a slightly
more general definition that only requires the category to have binary prod-
ucts, but is still sufficient for our purposes.
Definition 2.1.4. Given a category C with binary products, an object 𝑅 is
an internal binary relation between objects 𝑋 and 𝑌, if it is (the domain of) a
subobject 𝑟 : 𝑅 ↩→ 𝑋 × 𝑌.

Given an endofunctor T : C → C and T-coalgebras S = ⟨𝑆, 𝜎⟩ and
S′ = ⟨𝑆′, 𝜎′⟩, an internal binary relation 𝑅 between 𝑆 and 𝑆′ is a (coalgebraic)
bisimulation between S and S′ (and we write 𝑅 : S ↔ S′) if there exists a
C-morphism 𝜌 : 𝑅 → T𝑅 (making R :=

〈
𝑅, 𝜌

〉
a T-coalgebra) such that

proj𝑆 ◦ 𝑟 and proj𝑆′ ◦ 𝑟 become T-coalgebra morphisms from R to S and S′,
respectively. That is, the diagram

𝑆 × 𝑆′ 𝑆 × 𝑆′

𝑆 𝑅 𝑆′

T𝑆 T𝑅 T𝑆′

T(𝑆 × 𝑆′) T(𝑆 × 𝑆′)

proj𝑆 proj𝑆′

𝜎

𝑟 𝑟

𝜌 𝜎′

T𝑟 T𝑟
Tproj𝑆 Tproj𝑆′
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needs to commute.
Assuming C = Set, then internal binary relations are just binary rela-

tions. If there exists 𝐵 ⊆ 𝑆 × 𝑆′ such that 𝐵 : S ↔ S′ with 𝑠𝐵𝑠′ for states
𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′, the states 𝑠 and 𝑠′ are (coalgebraically) bisimilar, and we
write S, 𝑠 ↔ S′, 𝑠′. �
Remark 2.1.5. We could have given an even more general definition in
which binary products need not exist, by defining internal binary relations
to be objects 𝑅 with jointly monic morphisms 𝑝𝑋 : 𝑅 → 𝑋 and 𝑝𝑌 : 𝑅 → 𝑌.
But since we will only be considering categories with binary products
throughout this thesis, the definition given above will suffice. �

Bisimilarity is a specific instance of behavioural equivalence.

Proposition 2.1.6. Let Tbe a set functor, and take T-coalgebras S = ⟨𝑆, 𝜎⟩ and
S′ = ⟨𝑆′, 𝜎′⟩. It holds that

S, 𝑠 ↔ S′, 𝑠′ implies S, 𝑠 ≃ S′, 𝑠′

for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′.

Using an example by Aczel andMendler (1989, after Proposition 6.2), it
can be verified that behavioural equivalence and bisimilarity do not gener-
ally coincide. They coincide in specific situations: of particular interest, is
the situation where the coalgebra type Tpreserves weak pullbacks.

Definition 2.1.7. Given a category C, a weak pullback of C-morphisms 𝑓𝑋 :
𝑋 → 𝑌 and 𝑓𝑍 : 𝑍 → 𝑌 is a triple

〈
𝑃, 𝑝𝑋 , 𝑝𝑍

〉
where the C-morphisms

𝑝𝑋 : 𝑃 → 𝑋 and 𝑝𝑍 : 𝑃 → 𝑍 satisfy 𝑓𝑋 ◦ 𝑝𝑋 = 𝑓𝑍 ◦ 𝑝𝑍, such that for all
C-morphisms 𝑞𝑋 : 𝑄 → 𝑋 and 𝑞𝑍 : 𝑄 → 𝑍 satisfying 𝑓𝑋 ◦ 𝑞𝑋 = 𝑓𝑍 ◦ 𝑞𝑍,
there exists a (not necessarily unique) C-morphism ℎ : 𝑄 → 𝑃 making the
diagram

𝑋 𝑌

𝑃 𝑍

𝑄

𝑓𝑋

𝑝𝑍

𝑝𝑋 𝑓𝑍
𝑞𝑋

𝑞𝑍

ℎ

commute. An endofunctor T : C → C is said to preserve weak pullbacks if
given such a weak pullback

〈
𝑃, 𝑝𝑋 , 𝑝𝑍

〉
of 𝑓𝑋 and 𝑓𝑍, it holds that the triple〈

T𝑃,T𝑝𝑋 ,T𝑝𝑍
〉
is a weak pullback of T𝑓𝑋 and T𝑓𝑍. �
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Proposition 2.1.8. Let Tbe a set functor that preserves weak pullbacks, and take
T-coalgebras S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩. It holds that

S, 𝑠 ≃ S′, 𝑠′ implies S, 𝑠 ↔ S′, 𝑠′

for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′.

2.2 Coalgebraic Modal Logic

Though we will give some motivating explanations for the definitions of
coalgebraic modal logic, this will be far from an extensive treatment of the
matter. For a good general conceptual introduction to coalgebraic modal
logic, we refer readers to Cîrstea, Kurz, et al. (2009), whilemore technically-
minded readers should also consider Bonsangue and Kurz (2005), Kupke,
Kurz, and Pattinson (2004), Kupke and Pattinson (2011), andKurz and Leal
(2012). The parts of the coalgebraic modal logic appearing in this thesis
require knowledge of algebraic logic and Stone duality, which we assume
the reader is familiar with — see Davey and Priestley (2002).

To define a coalgebraic modal logic, we start with a category Space
of ‘state spaces’ over which we will be taking coalgebras, and a category
Algebra of ‘algebras’ (not to be confused with a category of T-algebras),
encoding a propositional logic with each object in Algebra generally being
viewed as consisting of formulas/predicates. We will informally assume
both categories to be ‘set-like’, to aid in giving intuitive descriptions. 1

We require there to be a dual adjunction between Space and Algebra,
which we refer to as a logical connection following Pavlovic, Mislove, and
Worrell (2006).

Definition 2.2.1. An adjunction Th ⊣ Pred consisting of functors Th :
Algebra → Spaceop and Pred : Spaceop → Algebra is a logical connection.
The functor Th is called the theory functor, and the functor Pred is called
the predicate functor. �

As implied by the names, we interpret Pred as sending spaces 𝑋 in
Space to the algebra of the predicates over 𝑋, while Th sends algebras 𝐴 in
Algebra to the space of logically consistent theories of 𝐴 (as also explained
by Bezhanishvili et al. (2020)). By requiringTh ⊣ Pred to be an adjunction,
we enforce that the notions of predicates and theories are well-behaved in
the sense also described by e.g. Klin (2007). Intuitively, we can describe the

1Though not relevant for our presentation of thematerial, the category Algebra is usually
assumed to be an algebraic category, in the sense that it comes equipped with a forgetful
functor Forg : Algebra → Set with a left adjoint Free ⊣ Forg, referred to as the free algebra
functor of Algebra.
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semantics encoded by the logical connection equivalently as either trans-
forming (using Algebra-morphisms J−K : 𝐴 → Pred𝑋) propositional log-
ics (consisting of formulas) to state spaces of states at which the formu-
las of the logic are satisfied, or as transforming (using Space-morphismsJ−K♭ : 𝑋 → Th𝐴) state spaces to the object of formulas ‘satisfied’ by its
states.

Having defined the logical connection, we can then move on to actually
define a coalgebraic modal logic. We first specify the syntax of the logic
— that is, its modal similarity type. The modal similarity type is encoded in
an endofunctor Sim : Algebra → Algebra, intuitively associating to each
algebra a single layer of modal operators.2 The resulting category of Sim-
algebras will then encode the modal logics syntactically.

Next, to specify the semantics given a coalgebra typeT : Space → Space,
we proceed by defining the one-step semantics, which is a natural transfor-
mation

one : Sim ◦Pred ⇒ Pred ◦T,

intuitively defining the semantics of the modal operators in terms of un-
foldings. The one-step semantics allows us to functorially associate to each
T-coalgebra a Sim-algebra consisting of its predicates. This process is re-
ferred to as algebraification.
Definition 2.2.2. The algebraification functor

Alg : CoalgSpace(T)op → AlgAlgebra(Sim)
sends T-coalgebras S = ⟨𝑆, 𝜎⟩ to the Sim-algebra

AlgS := ⟨Pred𝑆,Pred𝜎 ◦ one𝑆⟩ ,
as in the following diagram:

𝑆 Pred𝑆

T𝑆 PredT𝑆

SimPred𝑆

𝜎 Pred𝜎

one𝑆

The algebraification functor sends T-coalgebra morphisms 𝑓 : S → S′ to
Sim-algebra morphisms Alg 𝑓 : AlgS′ → AlgS defined as Alg 𝑓 := Pred 𝑓 .

�
2Though not required for our purposes, the endofunctor Sim can encode not only a

modal similarity type, but also equations such as 2(𝑝 ∧ 𝑞) = 2𝑝 ∧ 2𝑞 for the usual 2-
operator of modal logic. We refer to Bonsangue and Kurz (2006) for a thorough treatment
of this.
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It follows from the naturality of one that Alg is indeed a well-defined
functor.

Assuming that there exists an initialSim-algebra Lang := ⟨Lang,𝜆⟩, we
refer to Lang as being the algebra of formulas of Sim. The initiality of Lang
then gives rise to the semantics of our coalgebraic modal logic.
Definition 2.2.3. Given a T-coalgebra S = ⟨𝑆, 𝜎⟩, the semantic mapping for
S is the unique Sim-algebra morphism J−KS : Lang → AlgS, which is an
Algebra-morphism J−KS : Lang → Pred𝑆 from the algebra of formulas of
Sim to the algebra of predicates over 𝑆. �

It will be of value to us to look at this from a concrete perspective. Con-
sider Space = Set and Algebra = BA (i.e. the category of Boolean algebras
and Boolean algebra homomorphisms). The logical connection in this case
is the well-known dual adjunction between Set and BA. This dual adjunc-
tion arises by ‘homming into’ the dualizing object given by the two-element
set 2 and the two-element Boolean algebra 2. That is, Pred𝑋 is the set of
functions from 𝑋 to 2 (which is isomorphic to P𝑋), with obvious Boolean
algebra structure. And ThB is the set of Boolean algebra homomorphisms
from B to 2, or in other words, the set of ultrafilters of B.

To define the functor Sim concretely given this logical connection, we
start from a more conventional conception of a modal similarity type as a
pair Sim = ⟨Sym, ar⟩ consisting of a set Sym of modality symbols, and an
arity function ar : Sym → 𝜔. Taking a set Prop of propositional variables,
we can then define a generator functor Gen : BA → Set sending Boolean
algebras B with domain 𝐵 to the set

GenB :=
{♡(𝒃) ;♡ ∈ Sym, 𝒃 ∈ 𝐵ar♡} + Prop,

and which is defined on Boolean algebra homomorphisms in the obvious
way. Then using the free Boolean algebra functor FreeBA : Set → BA,
we can define Sim := FreeBA ◦ Gen. It is then easily verified (using e.g.
the initial sequence of Sim) that there exists an initial Sim-algebra Lang,
with carrier object Lang being a Boolean algebra with a domain that we can
consider to consist of formulas3 𝜑 defined inductively as

𝜑 ::= 𝑝 | ⊤ | ⊥ | (𝜑 ∨ 𝜑) | (𝜑 ∧ 𝜑) | (¬𝜑) | (♡(𝜑, . . . , 𝜑︸    ︷︷    ︸
ar♡ times

)),

where 𝑝 ∈ Prop and ♡ ∈ Sym. The Boolean algebra structure and the coal-
gebra map 𝜆 are defined in the straightforward manner.

To specify the one-step semantics, wemake use of collections of predicate
liftings.

3Technically, the Boolean algebra is a Lindenbaum-Tarski algebra, with a domain that
can more accurately be considered to consist of equivalence classes of formulas, with re-
spect to the relation of logical equivalence under the laws of Boolean algebra. This holds by
definition of the free Boolean algebras used in the definition of Sim.
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Definition 2.2.4. A (two-valued) 𝑛-ary predicate T-lifting (for 𝑛 < 𝜔) is a
natural transformation

lift : (Forg ◦Pred)𝑛 ⇒ Forg ◦Pred ◦T,

where Forg is the forgetful functor from BA to Set. In other words, 𝑛-ary
predicate T-liftings are natural transformations lift : (2−)𝑛 ⇒ 2T(−). �

Since our logic includes propositional variables, we will consider the
functor TProp, defined as TProp𝑋 := T𝑋 × PProp, of which the coalgebras
are referred to as T-models, and which we will denote as triples ⟨𝑆, 𝜎, col⟩,
where 𝜎 : 𝑆 → T𝑆 and col : 𝑆 → PProp.

Given a Sym-indexed collection Lift =
〈
lift♡

〉
♡∈Sym of (ar♡)-ary predicate

T-liftings (not TProp), we can define the one-step semantics for a set 𝑆 as
the unique Boolean algebra homomorphism induced, using the universal
property of the free Boolean algebra SimPred𝑆, by the function

one′𝑆 : GenPred𝑆 → ForgPredTProp𝑆

defined as

one′𝑆(♡(𝒒)) :=
{⟨𝑈, 𝑃⟩ ∈ TProp𝑆 ;𝑈 ∈ lift♡𝑆(𝒒)

}
and

one′𝑆(𝑝) :=
{⟨𝑈, 𝑃⟩ ∈ TProp𝑆 ; 𝑝 ∈ 𝑃

}
,

where 𝑝 ∈ Prop, ♡ ∈ Sym and 𝒒 ∈ (2𝑆)𝑛 .
So specifying a concrete modal similarity type Sim and collection Lift of

predicate liftings suffices to define the other components. Because of this,
we refer to pairsLog = ⟨Sim, Lift⟩ as (two-valued) coalgebraicmodal logics over
T. Writing out the semantics J−KLog

S
: Lang → Pred𝑆 (where the domain

of Pred𝑆 is 2𝑆 � P𝑆) that we get through algebraification for a T-model S,
we find that we can give the following compositional characterization.

Proposition 2.2.5. Given a T-model S = ⟨𝑆, 𝜎, col⟩, it holds that

J𝑝KLog
S

= col̂ (𝑝),J⊤KLog
S

= 𝑆,J⊥KLog
S

= ∅,J𝜑 ∧ 𝜓KLog
S

= J𝜑KLog
S

∩ J𝜑KLog
S

,J𝜑 ∨ 𝜓KLog
S

= J𝜑KLog
S

∪ J𝜑KLog
S

,J¬𝜑KLog
S

= 𝑆 ∖ J𝜑KLog
S

, andJ♡(𝜑1 , . . . , 𝜑ar♡)KLogS = 𝜎−1[lift♡𝑆(J𝜑1KLogS , . . . , J𝜑ar♡KLog
S

)].
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Note that we use the transpose col̂ : Prop → P𝑆 as defined in Sec-
tion 2.3.

Using the semantics, we can define logical equivalence on states.

Definition 2.2.6. Given T-models S and S′, we say states 𝑠 in S and 𝑠′ in S′
are Log-equivalent (and we write S, 𝑠 ≡Log S′, 𝑠′) if

𝑠 ∈ J𝜑KLog
S

iff 𝑠′ ∈ J𝜑KLog
S′

for all formulas 𝜑 ∈ Lang. �
Considering the notions of behavioural equivalence, it is desirable for a

coalgebraic modal logic to be adequate in the sense that behaviourally equiv-
alent states are logically equivalent, and expressive in the sense that log-
ically equivalent states are behaviourally equivalent. Adequacy is fortu-
nately guaranteed.

Proposition 2.2.7. Let S and S′ be T-models. Then it holds that

S, 𝑠 ≃ S′, 𝑠′ implies S, 𝑠 ≡Log S′, 𝑠′

for all states 𝑠 in S and 𝑠′ in S′.

For expressiveness, two assumptions are required. First, the coalgebra
typeTfunctormust be finitary. While this is defined as requiring thatTpre-
serves 𝜔-filtered colimits, we can give a simpler characterization, as shown
by Adámek and Trnková (1990): Tis finitary iff for every set 𝑋 and unfold-
ing 𝑈 ∈ T𝑋, there is some finite 𝑌 ⊆ 𝑋 and unfolding 𝑈′ ∈ T𝑌 such that
𝑈 = (Tincl)(𝑈′), where incl : 𝑌 ↩→ 𝑋 is the inclusion function from 𝑌 to 𝑋.

The second assumption is that Lift must be separating.

Definition 2.2.8. We say that Lift is separating for T if for all sets 𝑋 and
𝑈,𝑈′ ∈ T𝑋 with 𝑈 ≠ 𝑈′, there exists some modality symbol ♡ ∈ Sym
with 𝑉1 , . . . , 𝑉ar♡ ∈ P𝑋 such that it holds that either 𝑈 ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡)
or𝑈′ ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡), but not both. �
Proposition 2.2.9. Let Tbe a finitary set functor, and let Log = ⟨Sim, Lift⟩ be
a coalgebraic modal logic over T such that Lift is separating for T. Then for all
T-models S and S′, it holds that

S, 𝑠 ≡Log S′, 𝑠′ implies S, 𝑠 ≃ S′, 𝑠′

for all states 𝑠 in S and 𝑠′ in S′.
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2.3 Notation
We will use a lot of typographical conventions when writing mathematics.
Though we will define special notation whenever it is introduced, we make
note of the following conventions which will be used throughout the entire
thesis.

• Sets and relations (and objects of ‘general’ categories) are denoted
using uppercase italics (e.g. 𝑋 and 𝑅), though ‘special’ distinguished
sets and relations will be denoted by uppercase sans-serif letters (e.g.
Fin and Adm).

• Functions (and morphisms of ‘general’ categories) are denoted us-
ing lowercase italics (e.g. 𝑓 and 𝑔), though ‘special’ distinguished
functions will be denoted by lowercase sans-serif letters (e.g. turn and
strat).

• Sets of agents are denoted using uppercase Gothic letters (e.g. A and
B), while individual agents are denoted using lowercaseGothic letters
(e.g. 𝔞, 𝔟 and 𝔠).

• Categories are denoted using upright, serif bold letters (e.g. C and
Set).

• Functors are denoted using calligraphic letters (e.g. P, Forg and
Dist).

• Tuples of objects are enclosed using angular brackets (e.g.
〈
𝑥, 𝑦

〉
).

• Sequences (or more generally, ‘homogeneous’ tuples of objects of the
same type) of objects are denoted using bold (italic or sans-serif) let-
ters (e.g. 𝒏 and Lift). This includes natural transformations.

• Structures (which are generally ‘heterogeneous’ tuples of objects of
potentially different types) are denoted using blackboard bold letters
(e.g.M, S and Log).

• Transition maps of coalgebras are denoted using Greek letters e.g. (𝜎,
𝜉 and 𝜀). Greek letters 𝜑, 𝜓 and 𝜒 are reserved for formulas of logics.

We will also repeatedly use the following pieces of notation. Given a
function 𝑓 : 𝑋 → 𝑌𝑍 (where 𝑌𝑍 is the set of functions from 𝑍 to 𝑌), its
transpose is the function �̂� : 𝑍 → 𝑌𝑋 defined by ‘swapping’ the order of the
first two arguments, i.e. �̂� (𝑧) := 𝑥 ∈ 𝑋 ↦→ 𝑓 (𝑥)(𝑧). The canonical projec-
tions of a product

∏
𝑖∈𝐼 𝑋𝑖 are denoted proj𝑖 , and the canonical injections of

a coproduct
∑

𝑖∈𝐼 𝑋𝑖 are denoted inj𝑖 .
Finally, we will generally treat natural numbers 𝑛 as ordinal numbers

in the set-theoretic fashion, with 𝑛 = {0, 1, . . . , 𝑛 − 1}, and will therefore
denote the set of all natural numbers by 𝜔.



CHAPTER 3

MULTIAGENT-VALUED LOGIC

In this chapter, we will define and generalize multiagent-valued logic as
treated by Fitting (2009).1 In Section 3.1, we give the basic definitions and
properties of the structures and logic defined in How True. Afterwards,
we generalize these structures and logics to the coalgebraic setting in Sec-
tion 3.2.

3.1 Boolean-Valued Basic Modal Logic
Throughout this thesis, we will usually fix a countable set Prop of proposi-
tional variables, along with a potentially infinite set A of agents. Whenever
we assume A to be finite, we will make said assumption explicit.

As stated in Chapter 1, we will consider logics of which the powerset
PA serves as the space of truth values. This powerset forms a Boolean alge-
bra PA with the usual operations of intersection, union, and complementa-
tion. As it is known (Tarski 1935) that all complete atomic Boolean algebras
are isomorphic to such a powerset Boolean algebra (which are themselves
complete and atomic), our logics can be viewed as taking truth values from
arbitrary complete atomic Boolean algebras. With this in mind, we will re-
fer to these logics as being Boolean-valued, while we still explicitly work with
the interpretation that the truth values correspond to sets of agents from A.

3.1.1 Syntax, Models and Slices
The basic language Lang we consider is precisely that of basic modal logic
interpreted over Kripke models.
Definition 3.1.1. The Boolean-valued basic modal language Lang is inductively
defined as

Lang ∋ 𝜑 ::= 𝑝 | (𝜑 ∨ 𝜑) | (¬𝜑) | (3𝜑),
1Hereafter, this article is referred to as How True.

17
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where 𝑝 ∈ Prop. �
We diverge slightly from the original definitions in How True by taking

only disjunction, negation, and the modality 3 to be the connectives in our
language. This is done to facilitate comparisonswith ourwork in Chapter 4.
The other connectives from How True are defined as abbreviations in the
usual manner, i.e.

𝜑 ∧ 𝜓 := ¬(¬𝜑 ∨ ¬𝜓),
𝜑 → 𝜓 := ¬𝜑 ∨ 𝜓,

2𝜑 := ¬3¬𝜑.
Things become interesting when we consider the semantics. Instead of

interpreting Lang over ‘ordinary’ Kripke models, How True instead inter-
prets it over Kripke models in which the accessibility relation itself is also
in a sense Boolean-valued. These are instances of so-called Boolean-valued
(binary) relations between sets 𝑋 and 𝑌, which are defined to be functions
𝑅 : 𝑋 × 𝑌 → PA. We will however diverge from the original terminology,
and instead refer to these as agent-indexed relations. The reason for this will
first be expanded upon when we introduce the Slicing Slogan later in this
section, before being made more rigorous when we discuss the coalgebraic
generalization of the logic in Section 3.2.

Definition 3.1.2. An agent-indexed Kripke frame F is a pair F = ⟨𝑆, 𝑅⟩, where
𝑆 is a set of states, and 𝑅 : 𝑆 × 𝑆 → PA is an agent-indexed relation referred
to as an (agent-indexed) accessibility relation. An agent-indexed Kripke model
M is a pair ⟨F, col⟩, where F = ⟨𝑆, 𝑅⟩ is an agent-indexed Kripke frame,
and col : 𝑆 → (PA)Prop is an agent-indexed colouring. We often unfold the
inner pair in the definition of agent-indexed Kripke models, writing them
as triplesM = ⟨𝑆, 𝑅, col⟩. �

Again we diverge from How True in that we work with colourings col :
𝑆 → (PA)Prop instead of (agent-indexed) valuations val : 𝑆 × Prop → PA.
This clearly is only a matter of presentation and irrelevant to any results,
since (𝑋𝑌)𝑍 � (𝑋𝑍)𝑌 for any sets 𝑋, 𝑌 and 𝑍. We use colourings for ease of
comparison with the coalgebraic generalization in Section 3.2.

Before we consider the matter of how the semantics of agent-indexed
basic modal logic should be defined using agent-indexed Kripke models,
it is essential for our presentation of the material to introduce the follow-
ing notion. We are able to take apart an agent-indexed Kripke model into
component Kripke models by only considering a single agent’s part of the
model. These component Kripke models are referred to as slices.

Definition 3.1.3. Given an agent-indexed Kripke frame F = ⟨𝑆, 𝑅⟩ and an
agent 𝔞 ∈ A, the 𝔞-slice of F is the ordinary Kripke frame F𝔞 = ⟨𝑆, 𝑅𝔞⟩, where
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𝑠 𝑡

𝑢 𝑣

𝔞,𝔟
𝔞

𝔞,𝔟

𝔞,𝔠

𝔟

𝔟,𝔠

col(𝑢)(𝑝) := {𝔞, 𝔠}, col(𝑣)(𝑞) := {𝔞, 𝔟}, col(𝑡)(𝑝) := {𝔠}
Figure 3.1.1: Example of an agent-indexed Kripke modelM, defined in Ex-
ample 3.1.4.

𝑠 𝑡

𝑢 𝑣

col𝔞(𝑢) :=
{
𝑝
}
,

col𝔞(𝑣) :=
{
𝑞
}

(a)M𝔞.

𝑠 𝑡

𝑢 𝑣

col𝔟(𝑣) :=
{
𝑞
}

(b)M𝔟.

𝑠 𝑡

𝑢 𝑣

col𝔠(𝑢) :=
{
𝑝
}
,

col𝔠(𝑡) :=
{
𝑝
}

(c)M𝔠.

Figure 3.1.2: Slices ofM from Figure 3.1.1.

𝑅𝔞 ⊆ 𝑆×𝑆 is defined by putting 𝑠𝑅𝔞𝑡 iff 𝔞 ∈ 𝑅(𝑠, 𝑡). Given an agent-indexed
Kripke modelM = ⟨F, col⟩, the 𝔞-slice ofM is the ordinary Kripke model
M𝔞 = ⟨F𝔞 , col𝔞⟩, where col𝔞 : 𝑆 → PProp is defined by putting col𝔞(𝑠) :={
𝑝 ∈ Prop ; 𝔞 ∈ col(𝑠)(𝑝)}. �

Let us look at an example of how slicing works.

Example 3.1.4. Consider the agent-indexed Kripke modelM in Figure 3.1.1
— states are vertices, the agent-indexed accessibility relation is denoted by
the (labelled) edges, and the agent-indexed colouring is written out be-
neath the frame. In case an edge or colouring is missing, it means that said
edge/colouring holds for no agents. The slices ofM are displayed in Fig-
ure 3.1.2. �

The way slices fully determine the structures we are considering moti-
vates our usage of the term ‘agent-indexed’ in referring to the introduced
structures. Slices are also of vital importance for our logic, being used in
a theorem (which we present as Theorem 3.1.6) in How True which states
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that the semantics of Boolean-valued basic modal logic is fully determined
by the semantics of two-valued basic modal logic, applied to each slice of an
agent-indexed Kripke model. Conceptually, it is this theorem that validates
the title ofHow True. In that article, slices are presented after introducing the
logic and its semantics, and the aforementioned theorem is seen as a conse-
quence of how the semantics is defined. However, we believe it is fruitful
to take a different point of view at Fitting’s work, with it actually being built
with the notion of slicing as a primitive notion. We will therefore present
things in a different order, with the following Slicing Slogan being a funda-
mental and helpful slogan motivating all of our design choices, including
those of the semantics.
Slicing Slogan. Multiagent structures consist of single-agent slices, and single-
agent slices define multiagent structures.

Note that we make no claims about the generality of this slogan beyond
its application in studying and generalizing the structures and logics con-
sidered in How True.

As a first instance of the Slicing Slogan, let us see how the notion of
slicing naturally gives rise to the semantics of Boolean-valued basic modal
logic. First consider the semantics of two-valued basic modal logic. Over an
ordinary Kripke modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, these can be given as a semantic
mapping J−KM : Lang → P𝑆, mapping a formula 𝜑 ∈ Lang to the set J𝜑KM ⊆
𝑆 of states in M at which 𝜑 holds. Since P𝑆 � 2𝑆, we can also view the
semantics as a function J−KM : Lang → 2𝑆, mapping formulas to elements
of the function space 2𝑆. This offers an elegant and precise interpretation of
𝑓 ∈ 2𝑆 as two-valued predicates inM, mapping states 𝑠 ∈ 𝑆 to truth values
in 2. These two-valued predicates denote whether the predicate holds at 𝑠
(i.e. 𝑓 (𝑠) = 1), or does not (i.e. 𝑓 (𝑠) = 0).

From an algebraic point of view, we can consider 2𝑆 to be the domain of
a modal algebra2 2M consisting of functions mapping states to elements of
the two-element Boolean algebra 2, usually referred to as a complex algebra.
The Boolean operations of 2M arise naturally from those of 2, with e.g. the
join of predicates 𝑓 , 𝑔 ∈ 2𝑆 defined for 𝑠 ∈ 𝑆 as

(
𝑓 ∨2M 𝑔

) (𝑠) := 𝑓 (𝑠)∨2 𝑔(𝑠).
The operator 32M is defined for 𝑓 ∈ 2𝑆 and 𝑠 ∈ 𝑆 as

(32M 𝑓
) (𝑠) := 1 iff there

is some 𝑡 ∈ 𝑆 such that 𝑠𝑅𝑡 and 𝑓 (𝑡) = 1. Now, the semantics of two-
valued basic modal logic are then simply given by the operations on 2M,
with J𝜑 ∨ 𝜓KM := J𝜑KM ∨2M J𝜓KM, J¬𝜑KM := ¬2MJ𝜑KM, and J3𝜑KM :=
32MJ𝜑KM.

Since the truth values in Boolean-valued logics do not come from 2, but
instead from algebra PA, it is natural to now consider the semantic map-
ping to be a function J−KAM : Lang → (PA)𝑆, mapping formulas to ‘Boolean-
valued predicates’ 𝑓 ∈ (PA)𝑆, determining for each state 𝑠 ∈ 𝑆 the set of

2That is, a Boolean algebra Bwith an additional unary operator 3B on its domain that is
normal and additive, meaning that it preserves finite (possibly empty) joins.
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agents 𝑓 (𝑠) for whom the underlying predicate holds. Analogously to what
we did with the two-valued semantics, we apply PA � 2A, and instead de-
scribe Boolean-valued predicates 𝑓 ∈ (2A)𝑆 as determining for states 𝑠 ∈ 𝑆
and agents 𝔞 ∈ Awhether the underlying predicate holds in state 𝑠 for 𝔞. Us-
ing the isomorphisms (2A)𝑆 � (2𝑆)A, we can see how Boolean-valued predi-
cates 𝑓 ∈ (2A)𝑆 fit the Slicing Slogan, as they consist of two-valued predicate
‘slices’ �̂� (𝔞) for each 𝔞 ∈ A.3

Putting this into an algebraic context again, we consider (2𝑆)A to be the
domain of a modal algebra 2A,M. Using the modal algebras 2M𝔞 given
by the 𝔞-slices of M for 𝔞 ∈ A, we can define all operations on Boolean-
valuedpredicates in2A,M by applying the operations of thesemodal algebra
slices 2M𝔞 to the component two-valued predicate slices. This is uniformly
done for all the operations, with for 𝑓 , 𝑔 ∈ (2𝑆)A the join being defined as(
𝑓 ∨2A,M 𝑔

) (𝔞) := 𝑓 (𝔞) ∨2M𝔞 𝑔(𝔞), and the operator 32A,M being defined as(32A,M 𝑓
) (𝔞) := 32M𝔞 𝑓 (𝔞).

Themodal algebra2A,M aswe have just defined it can now again be used
to give the semantics of Boolean-valued basic modal logic. Working this out
a bit, we see that the following definition precisely gives the semantics aris-
ing from 2A,M, only considering Boolean-valued predicates to be elements
of (PA)𝑆, instead of the equivalent (2𝑆)A.
Definition 3.1.5. Given an agent-indexed Kripke modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩,
the semantics of Boolean-valued basic modal logic is given by the function J−KAM :
Lang → (PA)𝑆 defined inductively by putting

J𝑝KAM(𝑠) := col(𝑠)(𝑝), (for 𝑝 ∈ Prop)J𝜑 ∨ 𝜓KAM(𝑠) := J𝜑KAM(𝑠) ∪ J𝜓KAM(𝑠),J¬𝜑KAM(𝑠) := A ∖ J𝜑KAM(𝑠), andJ3𝜑KAM(𝑠) :=
⋃
𝑡∈𝑆

(
𝑅(𝑠, 𝑡) ∩ J𝜑KAM(𝑡))

for 𝑠 ∈ 𝑆. �
The fact that these semantics actually correspond to the slice-based se-

mantics arising from 2A,M is the main content of what we refer to as the
Basic Slicing Theorem (Fitting 2009, Theorem 4.2). To clarify that this is
in fact what is stated by the theorem, we first give a slightly different, but
equivalent and arguably more elegant presentation of the theorem, before
Fitting’s original formulation.

3As defined in Section 2.3, given a function 𝑓 : 𝑋 → 𝑌𝑍 , we write �̂� : 𝑍 → 𝑌𝑋 for
the function obtained by swapping the order of the first two arguments (or more formally,
through (𝑌𝑍)𝑋 � (𝑌𝑋 )𝑍).
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Theorem 3.1.6 (Basic Slicing Theorem). Let M be an agent-indexed Kripke
model. For each formula 𝜑 ∈ Lang and agent 𝔞 ∈ A, it holds that

J𝜑KAM̂ (𝔞) = J𝜑KM𝔞 .

Equivalently, we have that

J𝜑KAM(𝑠) :=
{
𝔞 ∈ A ; 𝑠 ∈ J𝜑KM𝔞

}
for states 𝑠 inM.

Both formulations of the theorem can be proven by a simple induction
on formulas 𝜑 ∈ Lang.

Writing out the semantics for the logical connectives defined as abbre-
viations, we see that

J𝜑 ∧ 𝜓KAM(𝑠) = J𝜑KAM(𝑠) ∩ J𝜓KAM(𝑠),J𝜑 → 𝜓KAM(𝑠) = J𝜑KAM(𝑠) ⇒ J𝜓KAM(𝑠)
=

(
A ∖ J𝜑KAM(𝑠)) ∪ J𝜓KAM(𝑠), andJ2𝜑KAM(𝑠) =

⋂
𝑡∈𝑆

(
𝑅(𝑠, 𝑡) ⇒ J𝜑KAM(𝑠))

=
⋂
𝑡∈𝑆

((A ∖ 𝑅(𝑠, 𝑡)) ∪ J𝜑KAM(𝑠)) .
The Basic Slicing Theorem (Theorem 3.1.6) confirms the Boolean-valued
semantics for these defined connectives is truly just built out of the two-
valued semantics for those same connectives, justifying their usage.

Before moving on, let us see an example of the semantics in action.

Example 3.1.4 (continued). Considering the agent-indexed Kripke model
in Figure 3.1.1, we compute the semantics of e.g. the formula 3𝑞 to find

J3𝑞KAM(𝑠) = (
𝑅(𝑠, 𝑠) ∩ J𝑞KAM(𝑠))

∪ (
𝑅(𝑠, 𝑡) ∩ J𝑞KAM(𝑡))

∪ (
𝑅(𝑠, 𝑢) ∩ J𝑞KAM(𝑢))

∪ (
𝑅(𝑠, 𝑣) ∩ J𝑞KAM(𝑣))

= (∅ ∩ ∅)
∪ (∅ ∩ ∅)
∪ ({𝔞} ∩ ∅)
∪ ({𝔞, 𝔟} ∩ {𝔞, 𝔟})

= {𝔞, 𝔟} .
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Similarly, we find that J3𝑞KAM(𝑡) = {𝔞}J3𝑞KAM(𝑢) = ∅, andJ3𝑞KAM(𝑣) = ∅.
We can see that the Basic Slicing Theorem (Theorem 3.1.6) indeed holds
here, with 3𝑞 being true at 𝑠 inM𝔞 andM𝔟, and at 𝑡 inM𝔞. �
3.1.2 Propositional Constants
While the Basic Slicing Theorem (Theorem 3.1.6) does provide an elegant
characterization of the semantics of Boolean-valued basic modal logic, it
also shows inherent limitations in the expressive power of the logic. Though
two-valued logic does allow one to define formulas 𝜑 for some fixed truth
value 𝑡 such that J𝜑KM(𝑠) = 𝑡 for any Kripke modelM (e.g. 𝑝 ∨ ¬𝑝 for ⊤,
𝑝 ∧ ¬𝑝 for ⊥), this same property no longer holds in the Boolean-valued
setting. In fact, the only truth values for which such formulas exist are A
and ∅, with the corresponding formulas again being 𝑝 ∨ ¬𝑝 and 𝑝 ∧ ¬𝑝,
respectively. To see that such formulas do not exist for truth values B ∈
PA ∖ {A,∅}, one need only consider agent-indexed Kripke models M in
which every agent has the same slice: the Basic Slicing Theorem guarantees
that J𝜑KAM(𝑠) ∈ {A,∅}.

To combat this lack of expressivity, How True introduces propositional
constants for each set of agents into the logic. This is a natural choice, as
these sets are now the truth values in our logic.
Definition 3.1.7. The extended Boolean-valued basic modal language LangA is
defined as LangA := Lang ∪ {⌜B⌝ ;B ⊆ A}, where ⌜B⌝ is a purely syntactic
constant. Given an agent-indexed Kripke modelM with set of states 𝑆, the
semantics of extended Boolean-valued basic modal logic is given by the functionJ−KA,EXTM

: LangA → (PA)𝑆, defined by putting J𝜑KA,EXTM
:= J𝜑KAM for 𝜑 ∈ Lang,

and J⌜B⌝KA,EXTM (𝑠) := B for B ⊆ A and 𝑠 ∈ 𝑆. �
Fromnowon, wewill always beworkingwith extended Boolean-valued

basic modal logic, and will therefore drop the ‘extended’ part both in our
text, as well as in the semantics (writing J−KAM instead of J−KA,EXTM ).

These newpropositional constants can be used in conjunctionwith other
logical connectives to create rich expressions. For example, using the abbre-
viation for implication, we find thatJ⌜B⌝→ 𝜑KAM(𝑠) = (A ∖ B) ∪ J𝜑KAM(𝑠),
which effectively allows us to use an assertion of ⌜B⌝ → 𝜑 to put a lower
bound on the truth value of 𝜑, sinceJ⌜B⌝→ 𝜑KAM(𝑠) = A iff B ⊆ J𝜑KAM(𝑠).
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Conversely, we find that J𝜑 → ⌜B⌝KAM(𝑠) = A iff J𝜑KAM(𝑠) ⊆ B. Such formu-
las containing implications between propositional constants and other for-
mulas are referred to as bounding formulas in How True, and are used there
to produce tableaux. Bounding formulas will also be of vital importance to
our work in Chapter 5.

Though not addressed in How True, the Basic Slicing Theorem (Theo-
rem3.1.6) no longer directly applies after introducing the newpropositional
constants, since these do not exist in the language of basic modal logic. But
considering how a propositional constant ⌜B⌝ effectively ‘behaves’ as ⊤ for
agents 𝔞 ∈ B, and as ⊥ for agents 𝔞 ∉ B, we are able to give translations of
the formulas in our extended language to the original language in such a
way that a version of the theorem still applies.

For an agent 𝔞 ∈ A, inductively define the translation tr𝔞 : LangA → Lang
by putting

tr𝔞(𝑝) := 𝑝, (𝑝 ∈ Prop)

tr𝔞(⌜B⌝) :=

{
⊤ if 𝔞 ∈ B
⊥ if 𝔞 ∉ B

, (B ⊆ A)

tr𝔞(¬𝜑) := ¬tr𝔞(𝜑),
tr𝔞(𝜑 ∨ 𝜓) := tr𝔞(𝜑) ∨ tr𝔞(𝜓), and

tr𝔞(3𝜑) := 3tr𝔞(𝜑).

Though not given inHow True, the following extended version of the slicing
theorem holds when using this translation.

Theorem3.1.8 (Extended Slicing Theorem). LetM be an agent-indexed Kripke
model. For each formula 𝜑 ∈ LangA and agent 𝔞 ∈ A, it holds that

J𝜑KAM̂ (𝔞) = Jtr𝔞(𝜑)KM𝔞 .

This theorem is yet again proven using a simple induction on formulas
𝜑 ∈ LangA.

The Extended Slicing Theorem shows that the extended logic still has
some glaring limitations expressivity-wise. Informally speaking, it is still
the case that there are no formulas 𝜑 such that determining whether its
evaluation contains some agent 𝔞 requires one to also consider the slice of
another agent 𝔟. This holds because in determining what the truth value of
a formula is, we need only independently evaluate the formula in each slice,
before aggregating the results of these evaluations into a single truth value.
Thismakes the logic unsuited for expressing generalmultiagent two-valued
logics. We will revisit this limitation in Section 5.2, as we will be equipped
to provide a possible solution by then.
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Figure 3.1.3: An agent-indexed bisimulation between two agent-indexed
Kripke models, defined in Example 3.1.10.

3.1.3 Bisimulations and Bounded Morphisms

As is standard within the field of modal logic, it is important to have a
proper notion of bisimulation in order to study behavioural equality be-
tween two structures. Agent-indexedKripkemodels are no exception to this
requirement. In How True, a notion of bisimulation between agent-indexed
Kripke models is given that was originally defined by Fitting (2003), which
we refer to as agent-indexed bisimulations. While How True solely discusses
mechanical ways of determining whether an agent-indexed bisimulation
between two models exists, we will focus on their semantic properties.

The definition of agent-indexed bisimulations fully arises through the
Slicing Slogan. Where an ordinary bisimulation between Kripke models is
a binary relation between the twomodels’ state spaces satisfying some con-
ditions, through application of the Slicing Slogan we will require the mul-
tiagent analogue to be an agent-indexed relation consisting of bisimulation
slices.

Definition 3.1.9. Given agent-indexed Kripke modelsM andM′ with re-
spective state spaces 𝑆 and 𝑆′, an agent-indexed relation 𝐵 : 𝑆 × 𝑆′ → PA

is called an agent-indexed bisimulation 𝐵 : M ↔ M′ if 𝐵𝔞 : M𝔞 ↔ M′
𝔞 for

all agents 𝔞 ∈ A. If B ⊆ 𝐵(𝑠, 𝑠′) for states 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′, we also write
𝐵 : M, 𝑠 ↔B M

′, 𝑠′. If there is some 𝐵 such that 𝐵 : M, 𝑠 ↔B M
′, 𝑠′, we

writeM, 𝑠 ↔B M
′, 𝑠′. If B is a singleton {𝔞}, we leave out the brackets, and

we write ↔ 𝔞 instead of ↔ {𝔞}. �
Example 3.1.10. Consider the agent-indexed Kripke models in Figure 3.1.3:
the left one is from Figure 3.1.1, while the right one is new. We ignore
colourings for clarity of presentation: we could just assume the colourings
assign no propositional variables to any of the states. The dotted lines de-
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𝑠 𝑡 𝑥

𝑢 𝑣 𝑦 𝑧

(a) The 𝔞-slices.

𝑠 𝑡 𝑥

𝑢 𝑣 𝑦 𝑧

(b) The 𝔟-slices.

𝑠 𝑡 𝑥

𝑢 𝑣 𝑦 𝑧

(c) The 𝔠-slices.

Figure 3.1.4: Slices of the agent-indexed Kripke models and bisimulation
from Figure 3.1.3.

note an agent-indexed bisimulation between the two models, as can be ver-
ified by looking at the slices in Figure 3.1.4. �

Though How True does not expand upon this, as we will see shortly as
well as later in Section 3.2, agent-indexed bisimulations as defined thusly
are indeed the natural candidate for bisimulations between agent-indexed
Kripke models. For now we focus on two arguments not given inHow True:
with respect to our definition of bisimulations, Boolean-valued basic modal
logic is both adequate (meaning that bisimilar states are logically equivalent)
and expressive (meaning that logically equivalent states are bisimilar), as
also treated in Section 2.2.

We first need to define what it means for two states to be logically equiv-
alent. Following the Slicing Slogan, we will consider a sliced version of log-
ical equivalence, in which two states are logically equivalent for a specific
agent.
Definition 3.1.11. Given agent-indexedKripkemodelsM andM′ and states
𝑠 and 𝑠′ fromM andM′ respectively, and an agent 𝔞 ∈ A, we say 𝑠 and 𝑠′ are
logically 𝔞-equivalent with respect to Boolean-valued basic modal logic (and
we writeM, 𝑠 ≡BML

𝔞 M′, 𝑠′) if

𝔞 ∈ J𝜑KAM(𝑠) iff 𝔞 ∈ J𝜑KAM′(𝑠′)
for all formulas 𝜑 ∈ LangA. IfM, 𝑠 ≡BML

𝔞 M′, 𝑠′ for all agents 𝔞 ∈ A, then we
just say 𝑠 and 𝑠′ are logically equivalent with respect to Boolean-valued basic
modal logic, and we writeM, 𝑠 ≡BML M′, 𝑠′. �

Using this sliced definition of logical equivalence, we can express the
adequacy of our logic in the following, also sliced form.
Theorem 3.1.12. LetM andM′ be agent-indexed Kripke models with states 𝑠 and
𝑠′ fromM andM′ respectively. It holds that

M, 𝑠 ↔ 𝔞 M
′, 𝑠′ impliesM, 𝑠 ≡BML

𝔞 M′, 𝑠′

for all agents 𝔞 ∈ A.
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Proof. By assumption, there must be some agent-indexed bisimulation 𝐵
such that 𝐵𝔞 : M𝔞 , 𝑠 ↔ M′

𝔞 , 𝑠
′. Take any 𝜑 ∈ LangA. Suppose without

loss of generality that 𝔞 ∈ J𝜑KAM(𝑠). Then by the Extended Slicing Theorem
(Theorem 3.1.8) we find that 𝑠 ∈ Jtr𝔞(𝜑)KM𝔞 . SinceM𝔞 , 𝑠 ↔ M′

𝔞 , 𝑠
′, it fol-

lows from the adequacy of two-valued basicmodal logic that 𝑠′ ∈ Jtr𝔞(𝜑)KM′
𝔞

as well. Finally, applying the Extended Slicing Theorem again, we get that
𝔞 ∈ J𝜑KAM′(𝑠′). □

Most properties we wish to prove about Boolean-valued basic modal
logic can be proven quite simply by using the same property in the two-
valued case, along with (potentially) the Extended Slicing Theorem, like
we did here. Therefore we generally omit proofs of such statements. One
instance of such a property is expressivity over image-finite agent-indexed
Kripke models.

Theorem 3.1.13. Let M and M′ be agent-indexed Kripke models such that the
slicesM𝔞 andM′

𝔞 for all agents 𝔞 ∈ A are image-finite. Then for all states 𝑠 inM
and 𝑠′ inM′, it holds that

M, 𝑠 ≡BML
𝔞 M′, 𝑠′ impliesM, 𝑠 ↔ 𝔞 M

′, 𝑠′.

for all agents 𝔞 ∈ A.
While bisimulations are a unifying concept all throughout modal logic,

they were historically preceded by the notion of a bounded morphism. These
are the natural analogue of a structure-preservingmap between two Kripke
models, and are in fact precisely functional bisimulations. There are no ana-
logues to bounded morphisms in How True, however. In order to define
a notion of agent-indexed bounded morphisms in accordance with the Slicing
Slogan, we will require a structure with ordinary bounded morphisms as
its slices. In order to do this, the notion of an agent-indexed function will be
essential. These are defined similarly to agent-indexed relations, but will
be of such great importance throughout our exploration of Boolean-valued
modal logic that we highlight them here.

Definition 3.1.14. Given sets 𝑋 and 𝑌, an agent-indexed function between 𝑋
and 𝑌 is a function 𝑓 : 𝑋 → 𝑌A. For such 𝑓 , we write 𝑓 : 𝑋 ⇝ 𝑌 to
make explicit that it is an agent-indexed function. Given an agent 𝔞 ∈ A,
the 𝔞-slice of 𝑓 is the function 𝑓𝔞 : 𝑋 → 𝑌 defined as 𝑓𝔞(𝑥) := 𝑓 (𝑥)(𝑎)
for 𝑥 ∈ 𝑋. We say 𝑓 is injective (resp. surjective, bijective) if 𝑓𝔞 is injective
(resp. surjective, bijective) for each agent 𝔞 ∈ A. The agent-indexed graph
of 𝑓 is the agent-indexed relation GraphAGENT 𝑓 : 𝑋 × 𝑌 → PA defined as
(GraphAGENT 𝑓 )(𝑥, 𝑦) :=

{
𝔞 ∈ A ; 𝑓𝔞(𝑥) = 𝑦

}
. �

Remark 3.1.15. Though we define agent-indexed functions as functions 𝑓 :
𝑋 → 𝑌A, it is arguably conceptually clearer to consider them to be families
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〈
𝑓𝔞
〉
𝔞∈A of functions 𝑓𝔞 : 𝑋 → 𝑌 (i.e. functions 𝑓 : A → 𝑌𝑋), as this would

make the slices explicit. It will often however be technically clearer to work
with the first definition 𝑓 : 𝑋 → 𝑌A, since the domains of the agent-indexed
function and the underlying functionmatch. As all three of these definitions
are equivalent for our purposes, we will freely switch between these two
presentations as needed to make notation clearer, though we will implicitly
assume that the first definition is the ‘actual’ one. Having said that, the
alternative definitions might be better suited when generalizing the current
work even further by creating agent-indexed versions of categories other
than Set. �
Definition 3.1.16. Given agent-indexed Kripke framesM andM′ with state
spaces 𝑆 and 𝑆′, respectively, an agent-indexed function 𝑓 : 𝑆 ⇝ 𝑆′ is an
agent-indexed bounded morphism betweenM andM′ (written as 𝑓 :M→M′)
if the slice 𝑓𝔞 is a boundedmorphism 𝑓𝔞 :M𝔞 →M′

𝔞 for all agents 𝔞 ∈ A. �
As with two-valued bounded morphisms, we have that agent-indexed

bounded morphisms are precisely functional bisimulations.
Proposition 3.1.17. Let 𝑓 : M → M′ be an agent-indexed bounded morphism
between agent-indexed Kripke models with respective state spaces 𝑆 and 𝑆′, and let
𝐵 : 𝑆 × 𝑆′ → PA be an agent-indexed bisimulation such that 𝐵𝔞 is functional for
each agent 𝔞 ∈ A. Then it holds that
(i) GraphAGENT 𝑓 :M, 𝑠 ↔ 𝔞 M′, 𝑓𝔞(𝑠) for all 𝑠 ∈ 𝑆 and agents 𝔞 ∈ A, and
(ii) 𝑔 :M→M′, where 𝑔 : 𝑆⇝ 𝑆′ is defined by putting 𝑔𝔞(𝑠) := 𝑠′ for 𝑠 ∈ 𝑆

with 𝑠′ being the unique state in 𝑆′ such that 𝑠𝐵𝔞𝑠′.
Corollary 3.1.18. For agent-indexed boundedmorphisms 𝑓 :M→M′ and states
𝑠 inM, it holds thatM, 𝑠 ≡BML

𝔞 M′, 𝑓𝔞(𝑠) for all agents 𝔞 ∈ A.

3.2 Boolean-Valued Coalgebraic Modal Logic
Having given an overviewof the theory of Boolean-valued basicmodal logic
built on top of agent-indexed Kripke models, we now set our sights on a
more general goal: defining generalized Boolean-valued modal logics over
arbitrary state-based systems. We will do this using the framework of coal-
gebraic modal logic. These logics, like the original logic from How True, will
be defined as natural Boolean-valued ‘liftings‘ of an underlying two-valued
logic.

3.2.1 Agent-Indexed Coalgebras
As our first step towards a coalgebraic generalization, we will try to fit
agent-indexed Kripke models as a structure into the framework of coal-
gebra. For simplicity, let us first consider frames. We define the category
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AgentKF of agent-indexedKripke frames and agent-indexed boundedmor-
phisms.4 To properly model these as coalgebras, we require a category C
and an endofunctor T : C → C such that the category CoalgC(T) of T-
coalgebras is equivalent to AgentKF.

An initial guess would be to use C = Set and T = PA, and this guess
would not be entirely wrong. If we purely consider the objects in the cate-
gories, we can see thatPA-coalgebras S = ⟨𝑆, 𝜎⟩ are precisely agent-indexed
Kripke frames, with the agent-indexed accessibility relation 𝑅 : 𝑆 × 𝑆 →
PA being recoverable by defining 𝑅(𝑠, 𝑡) = {𝔞 ∈ A ; 𝑡 ∈ 𝜎(𝑠)(𝔞)}. And con-
versely, we can consider agent-indexed Kripke frames to be PA-coalgebras
by defining the transition map 𝜎 : 𝑆 → (P𝑆)A as 𝜎(𝑠)(𝔞) := {𝑡 ∈ 𝑆 ; 𝑠𝑅𝔞𝑡}.

So far this works out. But what do PA-coalgebra morphisms look like?
As our base category is Set, a PA-coalgebra morphism 𝑓 : S→ S′ is a func-
tion 𝑓 : 𝑆 → 𝑆′ such that the diagram

𝑆 𝑆′

(P𝑆)A (P𝑆′)A

𝑓

𝜎 𝜎′

(P𝑓 )A

commutes. Unfortunately, not all agent-indexed bounded morphisms cor-
respond to PA-coalgebra morphisms. In fact, PA-coalgebra morphisms can
all be viewed as agent-indexed functions 𝑓 : 𝑆⇝ 𝑆′ for which 𝑓𝔞 = 𝑓𝔟 for all
agents 𝔞, 𝔟 ∈ A. So clearly, CoalgSet(PA) will not be equivalent to AgentKF.

Since the problem stems from the fact thatPA-coalgebra morphisms are
functions in Set, an obvious next step is to change our base category to one
in which morphisms correspond to agent-indexed functions. As we will
see, this move is the right one.

Definition 3.2.1. We denote by ASet the category of sets and agent-indexed
functions. Given two agent-indexed functions 𝑓 : 𝑋 ⇝ 𝑌 and 𝑔 : 𝑌 ⇝ 𝑍,
their composition 𝑔 ◦ 𝑓 : 𝑋 ⇝ 𝑍 is defined in the obvious way by composing
along slices, i.e. (𝑔 ◦ 𝑓 )𝔞 := 𝑔𝔞 ◦ 𝑓𝔞. If 𝑓 and 𝑔 are functions 𝑓 : 𝑋 → 𝑌A and
𝑔 : 𝑌 → 𝑍A, we define it as (𝑔 ◦ 𝑓 )(𝑥)(𝔞) := 𝑔( 𝑓 (𝑥)(𝔞))(𝔞). The agent-indexed
identity idASet

𝑋 : 𝑋 ⇝ 𝑋 on a set 𝑋 is defined as (idASet
𝑋 )𝔞 := idSet

𝑋 . �
It is not difficult to verify that these specifications produce awell-defined

category. This is quite a simple category to work with, as virtually all we
can say about Set extends easily to a statement about ASet. Most of this
follows from the following basic but essential observation.

4Though we have not explicitly defined them, it should be clear how an agent-indexed
bounded morphism between frames is defined: it is an agent-indexed function between
state spaces such that every one of its slices is a bounded morphism between the slices of
the frames.
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Fact 3.2.2. Agent-indexed functions 𝑓 and 𝑔 are equal iff the 𝔞-slice functions 𝑓𝔞
and 𝑔𝔞 are equal for all agents 𝔞 ∈ A.

As a consequence of this observation, diagrams in ASet commute iff the
diagram in Set obtained by taking 𝔞-slices of all agent-indexed functions in
the original diagram commutes for all 𝔞 ∈ A. Furthermore, mono-, epi- and
isomorphisms in ASet are precisely injective, surjective and bijective agent-
indexed functions (as defined in Definition 3.1.14), respectively.

Before showing how coalgebras over ASet can capture agent-indexed
Kripke frames andmodels, wefirst showhowsomegeneral important prop-
erties of Set extend to ASet.

Proposition 3.2.3. The category ASet

(i) has all small products,

(ii) has all small coproducts,

(iii) is Cartesian closed, and

(iv) has subobject classifiers.

Proof. (i) Take a set {𝑋𝑖}𝑖∈𝐼 of sets indexed by a set 𝐼. Since Set is com-
plete, the Set-product

∏
𝑖∈𝐼 𝑋𝑖 exists. We equip this Set-product with

agent-indexed projections projASet
𝑖 : ∏𝑖∈𝐼 𝑋𝑖 ⇝ 𝑋𝑖 for each 𝑖 ∈ 𝐼 by ap-

plying the Set-projections along each slice— i.e. (projASet
𝑖 )𝔞 := projASet

𝑖 .
To see that

∏
𝑖∈𝐼 𝑋𝑖 along with these agent-indexed projections actu-

ally forms the ASet-product of the sets 𝑋𝑖 , consider some set 𝑃 with
agent-indexed functions 𝑓 (𝑖) : 𝑃 ⇝ 𝑋𝑖 for each 𝑖 ∈ 𝐼. For each such
𝑓 (𝑖), we have that 𝑓 (𝑖)𝔞 is a function 𝑓 (𝑖)𝔞 : 𝑃 → 𝑋𝑖 for each 𝔞 ∈ A. So ap-
plying the universal property of the Set-product, we see that for every
𝔞 ∈ A there is a unique function 𝑔𝔞 : 𝑃 → ∏

𝑖∈𝐼 𝑋𝑖 such that

𝑓 (𝑖)𝔞 = projSet
𝑖 ◦ 𝑔𝔞. (3.1)

Considering these functions 𝑔𝔞 as slices, we obtain an agent-indexed
function 𝑔 : 𝑃 ⇝

∏
𝑖∈𝐼 𝑋𝑖 . And since Equation (3.1) holds for each

𝔞 ∈ A and 𝑖 ∈ 𝐼, we immediately get that 𝑓 (𝑖) = projASet
𝑖 ◦𝑔 for each 𝑖 ∈ 𝐼

as well. The uniqueness of 𝑔 is finally guaranteed by the uniqueness
of each of the functions 𝑔𝔞. So

∏
𝑖∈𝐼 𝑋𝑖 along with the agent-indexed

projections is the ASet-product
∏

𝑖∈𝐼 𝑋𝑖 .

(ii) This can be shown using approximately the same line of reasoning
used to show ASet has small products, only with all arrows reversed.
The ASet-coproduct is the Set-coproduct

∑
𝑖∈𝐼 𝑋𝑖 with agent-indexed

injections injASet
𝑖 : 𝑋𝑖 ⇝

∑
𝑖∈𝐼 𝑋𝑖 whose slices are the injections injSet

𝑖 .
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(iii) Since we have shown that ASet has all small products, it suffices to
show that exponential objects exist.5 Given sets 𝑋 and 𝑌, we define
their exponential as ExpASet(𝑋,𝑌) :=

{
𝑓 ; 𝑓 : 𝑋 ⇝ 𝑌

}
. Its evaluation

map evalASet
𝑋,𝑌 : ExpASet(𝑋,𝑌) × 𝑋 ⇝ 𝑌 is given as (evalASet

𝑋,𝑌 )𝔞( 𝑓 , 𝑥) :=
𝑓𝔞(𝑥). To see that ExpASet(𝑋,𝑌) is indeed the exponential of 𝑋 and
𝑌, take any set 𝑍 and agent-indexed function 𝑔 : 𝑍 × 𝑋 ⇝ 𝑌. De-
fine the exponential transpose ℎ : 𝑍 ⇝ ExpASet(𝑋,𝑌) of 𝑔 by putting
(ℎ𝔞(𝑧))𝔟(𝑥) := 𝑔𝔟(𝑧, 𝑥). We then have that

(
evalASet

𝑋,𝑌

)
𝔞
◦ (

ℎ𝔞 × (
idASet

𝑋

)
𝔞

)
=

(
evalASet

𝑋,𝑌

)
𝔞
◦ (

ℎ𝔞 × idSet
𝑋

)
= ⟨𝑧, 𝑥⟩ ∈ 𝑍 × 𝑋 ↦→ (ℎ𝔞(𝑧))𝔞 (𝑥)
= ⟨𝑧, 𝑥⟩ ∈ 𝑍 × 𝑋 ↦→ 𝑔𝔞(𝑧, 𝑥)
= 𝑔𝔞

for every agent 𝔞 ∈ A. So evalASet
𝑋,𝑌 ◦ (

ℎ × idASet
𝑋

)
= 𝑔. To see that ℎ is the

only agent-indexed function satisfying this equality, note that for any
alternative ℎ′ : 𝑍 ⇝ ExpASet(𝑋,𝑌) with evalASet

𝑋,𝑌 ◦ (
ℎ′ × idASet

𝑋

)
= 𝑔, it

holds for every 𝔞 ∈ A and ⟨𝑧, 𝑥⟩ ∈ 𝑍 × 𝑋 that (ℎ′𝔞(𝑧))𝔞(𝑥) = 𝑔𝔞(𝑧, 𝑥) =
(ℎ𝔞(𝑧))𝔞(𝑥). Thus ExpASet(𝑋,𝑌) with evalASet

𝑋,𝑌 is the exponential of 𝑋
and 𝑌.

(iv) First note that the one-element set 1 is the terminal object in ASet,
with the unique termASet

𝑋
: 𝑋 ⇝ 1 for sets 𝑋 consisting of the func-

tions termSet
𝑋 for all of its slices. Based on our discussion of logic in the

agent-indexed setting so far, it is natural to guess that the subobject
classifier of ASet consists of the set PA. But this is actually not the
case: like in Set, we have that the subobject classifier in ASet is 2, with
corresponding agent-indexed truth function trueASet : 1⇝ 2 defined
as trueASet

𝔞 := trueSet.

To see that this is indeed the subobject classifier, take any set𝑋 and
injective agent-indexed function 𝑚 : 𝑈 ⇝ 𝑋. Then every slice 𝑚𝔞 :
𝑈 → 𝑋 is an injective function, and so by definition of the subobject
classifier in Set, for every 𝔞 ∈ A there exists a unique function char𝑚𝔞 :
𝑋 → 2 such that𝑚𝔞 and termSet

𝑈 form the pullback of trueSet and char𝑚𝔞 .
Define char𝑚 : 𝑋 ⇝ 2 by taking the functions char𝑚𝔞 to be its slices.
Then by definition of trueASet and termASet

𝑈 , it follows immediately that

5In order to reduce confusion between Set and ASet, wewill sometimemake explicit that
we take an exponential object 𝑌𝑋 in category C by writing ExpC(𝑋,𝑌) instead.
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the diagram

𝑈 1

𝑋 2

termASet
𝑈

𝑚 trueASet

char𝑚

commutes. And since 𝑚𝔞 and termSet
𝑈 form the pullback of trueSet and

char𝑚𝔞 , it follows quite simply that 𝑚 and termASet
𝑈 indeed form the

pullback of char𝑚 and trueASet. □

Remark 3.2.4. While we gave an explicit and (arguably) pragmatic defini-
tion of ASet that will suit our purposes, the following may be of interest
to readers with more background in category theory. Note that ASet actu-
ally can also be seen to arise as the Kleisli category for a monad. Consider
the endofunctor E : Set → Set defined on sets 𝑋 as E𝑋 := 𝑋A, and on
functions 𝑓 : 𝑋 → 𝑌 as

(
E 𝑓

) (𝑔) := 𝑓 ◦ 𝑔 for 𝑔 ∈ 𝑋A. We equip E with
the unit unit : IdSet ⇒ E defined as unit𝑋(𝑥)(𝔞) := 𝑥, and multiplication
mult : E ◦E ⇒E defined as mult𝑋( 𝑓 )(𝔞) := 𝑓 (𝔞)(𝔞). It is easily verified that
E = ⟨E, unit,mult⟩ indeed forms a Set-monad, with

mult𝑋 ◦Emult𝑋 = 𝑓 ∈ EEE𝑋 ↦→ (
𝔞 ∈ A ↦→ 𝑓 (𝔞)(𝔞)(𝔞)) = mult𝑋 ◦ multE𝑋

and
mult𝑋 ◦Eunit𝑋 = idE𝑋 = mult𝑋 ◦ unitE𝑋

for all sets 𝑋. The morphisms in the Kleisli category Kleisli(B) between sets
𝑋 and 𝑌 are then functions 𝑓 : 𝑋 → E𝑌 = 𝑌A, i.e. precisely agent-indexed
functions 𝑓 : 𝑋 ⇝ 𝑌. Since composition of morphisms 𝑓 : 𝑋 → 𝑌 and
𝑔 : 𝑌 → 𝑍 in Kleisli(E) is given as 𝑔 ◦Kleisli(E) 𝑓 = mult𝑍 ◦Set E𝑔 ◦Set 𝑓 ,
we get that (𝑔 ◦Kleisli(E) 𝑓 )(𝑥) = 𝔞 ∈ A ↦→ 𝑔( 𝑓 (𝑥)(𝔞))(𝔞) for 𝑥 ∈ 𝑋, which is
precisely the composition of 𝑔 and 𝑓 in ASet. It follows immediately that
Kleisli(E) � ASet.

Note that similarly to how we built a monad out of the functor E, we
can naturally build a comonad D = ⟨D, counit, comult⟩ out of the functor
D𝑋 := 𝑋×A. SinceE is right adjoint toD (in anyCartesian closed category),
it follows quite simply that the Kleisli category Kleisli(E) is isomorphic to
to the co-Kleisli category coKleisli(D), providing us with yet another way
to view ASet. �

For now, we will again consider the question of how to treat agent-
indexed Kripke frames and models as coalgebras. Similar to how ordinary
Kripke frames are coalgebras for the powerset functor P, agent-indexed
Kripke frames are coalgebras for a suitable version of the powerset functor
on ASet. We define the agent-indexed powerset functor PA : ASet → ASet
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on sets 𝑋 as PA𝑋 := P𝑋. On agent-indexed functions 𝑓 : 𝑋 ⇝ 𝑌, we
define PA 𝑓 : PA𝑋 ⇝ PA𝑌 for 𝔞 ∈ A as

(
PA 𝑓

)
𝔞 := P𝑓𝔞. It now follows

immediately from the definition of agent-indexed functions, and from the
fact that diagrams in ASet commute iff all of their slices commute in Set,
that PA-coalgebra morphisms are precisely agent-indexed bounded frame
morphisms. In other words, we have that CoalgASet(PA) � AgentKF.

Note that the way we defined PA relied in no way on the specifics of
P. We can similarly define the functor PA,Prop based on the P-model func-
tor PProp as defined in Section 2.2. More generally, we associate with any
set functor a corresponding agent-indexed functor, which we refer to as its
agentization.

Definition 3.2.5. Given a functor T : Set → Set, the agentization of T is the
functor TA : ASet → ASet defined on sets 𝑋 as TA𝑋 := 𝑋, and on agent-
indexed functions 𝑓 : 𝑋 ⇝ 𝑌 by putting

(
TA 𝑓

)
𝔞 := T𝑓𝔞 for each agent 𝔞 ∈ A.

Given a TA-coalgebra S = ⟨𝑆, 𝜎⟩ and agent 𝔞 ∈ A, the 𝔞-slice of S is the
T-coalgebra S𝔞 := ⟨𝑆, 𝜎𝔞⟩. �

This definition fits the Slicing Slogan: slices of TA-coalgebras are T-
coalgebras, and slices of TA-coalgebra morphisms are again T-coalgebra
morphisms between slices. The agentization TA can also be truly consid-
ered an extension of T, in the sense that the diagram

ASet ASet

Set Set

TA

Incl

T

Incl

commutes, with Incl being the inclusion functor keeping sets unchanged,
and sending functions 𝑓 : 𝑋 → 𝑌 to the agent-indexed function defined
as (Incl 𝑓 )𝔞 := 𝑓 for all 𝔞 ∈ A. Even more strongly, we can show that
the agentizationTA precisely captures the idea that ‘multiagent’-structured
T-coalgebras should not only consist of T-coalgebras for each agent, but
also that conversely, T-coalgebras for each agent determine ‘multiagent’-
structured T-coalgebras. We formalize this statement by treating the set A
as the discrete category Agents in which agents 𝔞 ∈ A are the objects, and
there are no morphisms besides identity morphisms. We then find the fol-
lowing isomorphism, fully in line with the Slicing Slogan.

Proposition 3.2.6. For any set functor T, denote by S the full subcategory of the
category (CoalgSet(T))Agents of functors from Agents to CoalgSet(T) with natural
transformations, consisting of all functors S : Agents → CoalgSet(T) for which
there is a set 𝑆 such that S𝔞 = ⟨𝑆, 𝜎𝔞⟩ for all 𝔞 ∈ A. That is, we only consider S
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that send agents toT-coalgebras with the same carrier set. It then holds that

CoalgASet(TA) � S,

is an isomorphism.

Remark 3.2.7. We note that TA-coalgebras are structurally the same as T-
coalgebras with input, as considered by Hansen and Klin (2011). The dif-
ference lies in our usage of the base category ASet as opposed to Set. This
difference in base category allows us to fully work with the Slicing Slogan
through Proposition 3.2.6, as well as through proper ‘sliced’ notions of coal-
gebra morphisms and bisimulations, as we will see in Section 3.2.3. �

As an aside before moving on towards the matter of defining coalge-
braic modal logics, we wish to note that generally speaking, endofunctors
F : ASet → ASetdo not arise as agentizations of set functorsT : Set → Set.
Any F for which there is an agent-indexed function 𝑓 : 𝑋 ⇝ 𝑌 with
𝔞, 𝔟 ∈ A such that 𝑓𝔞 = 𝑓𝔟 but

(
F𝑓

)
𝔞 ≠

(
F𝑓

)
𝔟 serves as a counterexample.

We will largely not be considering such functors, as they do not play a role
in showing how two-valued coalgebraic modal logics extend to Boolean-
valued ones. Whenever we give results that do work for general endofunc-
tors on ASet, we will make this explicit.

3.2.2 Logical Connection and Predicate Liftings
To define a Boolean-valued coalgebraic modal logic for coalgebras over the
category ASet, we will start with a base logical connection, as in Defini-
tion 2.2.1. This is one between ASet and BA, giving us the base Boolean-
valued propositional logic. As is the case for two-valued logic, the logical
connection here arises by ‘homming into’ the dualizing object given by the
set 2 and Boolean algebra 2.6

Definition 3.2.8. The Boolean-valued predicate functorPredA : ASetop → BA
sends sets 𝑋 to the Boolean algebra 2A,𝑋 with domain ExpASet(𝑋, 2), i.e.
(2A)𝑋 , and operations derived naturally from the operations of the two-
element Boolean algebra 2 and the Slicing Slogan (cf. our explanation pre-
ceding Definition 3.1.5). It sends agent-indexed functions 𝑓 : 𝑋 ⇝ 𝑌 to the
Boolean algebra homomorphismPredA 𝑓 : 2A,𝑌 → 2A,𝑋 defined by putting
((PredA 𝑓 )(𝑔))𝔞 := 𝑔𝔞 ◦ 𝑓𝔞 for 𝑔 : 𝑌⇝ 2 and 𝔞 ∈ A.

The Boolean-valued theory functor ThA : BA → ASetop sends Boolean
algebras B to the set ExpBA(B,2) (or equivalently, to the set of ultrafil-
ters of B). It sends Boolean algebra homomorphisms 𝑓 : B → C to the
agent-indexed function ThA 𝑓 : ExpBA(C,2) ⇝ ExpBA(B,2) defined as(
ThA 𝑓

)
𝔞 (𝑔) := 𝑔 ◦ 𝑓 for 𝑔 ∈ ExpBA(C,2) and 𝔞 ∈ A. �

6For those readers unfamiliar with the terminology, the phrase ‘homming into’ an object
𝑋 refers to considering exponential objects 𝑋(−).



3.2. Boolean-Valued Coalgebraic Modal Logic 35

It is simple to verify that these data truly define functors.

Proposition 3.2.9. The Boolean-valued predicate functor PredA is right adjoint
to the Boolean-valued theory functorThA.

Proof sketch. The details of this proof are largely the same as those of the
proof that Th ⊣ Pred in the two-valued setting. We only define the natu-
ral isomorphism adj : HomASet(−,ThA−) ⇒ HomBA(−,PredA−) together
with its inverse, and do not fully write out the proof that it is natural and
an isomorphism. Given a set 𝑋 and Boolean algebra B, we define adj𝑋,B :
HomASet(𝑋,ThAB) → HomBA(B,PredA𝑋) as

adj𝑋,B( 𝑓 ) := 𝑏 ∈ 𝐵 ↦→ (
𝑥 ∈ 𝑋 ↦→ {

𝔞 ∈ A ; 𝑏 ∈ 𝑓𝔞(𝑥)
})

,

where 𝐵 is the domain of B, 𝑓 is an agent-indexed function 𝑓 : 𝑋 ⇝ ThAB,
and we apply the isomorphism 2A � PA to simplify notation. The inverse
function adj−1

𝑋,B : HomBA(B,PredA𝑋) → HomASet(𝑋,ThAB) as(
adj−1

𝑋,B( 𝑓 )
)
𝔞

:= 𝑥 ∈ 𝑋 ↦→ {
𝑏 ∈ 𝐵 ; 𝔞 ∈ 𝑓 (𝑏)(𝑥)} ,

where 𝑓 : B→ PredA𝑋 is a Boolean algebra homomorphism, andwe apply
2𝐵 � P𝐵 to treat the elements ofThAB as sets/ultrafilters, again to simplify
notation. □

Given the logical connection, we could proceed fully analogously to the
situation in Section 2.2, defining the resulting general Boolean-valued coal-
gebraic modal logics through the use of a modal similarity type functor
Sim : BA → BA, which is represented by generators through a genera-
tor functor Gen : BA → Set, together with one-step semantics one : Sim ◦
PredA ⇒ PredA ◦Fop

Prop for some endofunctorF : ASet → ASet. Since our
interest is especially in showing how two-valued coalgebraic modal logics
extend to Boolean-valued ones, we will mainly be interested in concretely
defining such extended Boolean-valued coalgebraic modal logics.

Consider a modal similarity type ⟨Sym, ar⟩ consisting of a set Sym of
modality symbols and an arity function ar : Sym → 𝜔. We define our
generator and signature functors based on this type as follows.

Definition 3.2.10. Given a modal similarity type Sim = ⟨Sym, ar⟩, the Sim-
generator functorGen : BA → Set sends Boolean algebrasBwith underlying
sets 𝐵 to

GenB :=
{♡(𝒃) ;♡ ∈ Sym, 𝒃 ∈ 𝐵ar♡} + {⌜B⌝ ;B ⊆ A} + Prop,

where ♡(𝒃) is purely a syntactic construction. The Sim-functor Sim : BA →
BA is then defined as Sim = FreeBA ◦Gen, where FreeBA : Set → BA is
the free Boolean algebra functor. �
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The one-step semantics of the logic can now be given by predicate lift-
ings for each modality symbol. As might be expected, these predicate
liftings are Boolean-valued, as opposed to two-valued. Two-valued predi-
cate liftings can however be simply extended to Booleanized Boolean-valued
ones.
Definition 3.2.11. An 𝑛-ary Boolean-valued predicate F-lifting for a functor
F : ASet → ASet is a natural transformation lift :

(
ForgBA,Set ◦PredA

)𝑛 ⇒
ForgBA,Set ◦ PredA ◦ F, where ForgBA,Set is the obvious forgetful functor
from BA to Set.

Given an 𝑛-ary (two-valued) predicateT-lifting lift (i.e. a natural trans-
formation lift :

(
ForgBA,Set ◦Pred

)𝑛 ⇒ ForgBA,Set ◦ Pred ◦ T for a set
functor T), the Booleanization of lift is the 𝑛-ary Boolean-valued predicate
TA-lifting liftA defined over a set 𝑋 as((liftA)𝑋 (𝑞1 , . . . , 𝑞𝑛))𝔞 := lift𝑋(𝑞1,𝔞 , . . . , 𝑞𝑛,𝔞)
for

〈
𝑞1 , . . . , 𝑞𝑛

〉 ∈ ((2A)𝑋 )𝑛 and 𝔞 ∈ A. �
So 𝑛-ary Boolean-valued predicate F-liftings lift are mappings sending

𝑛 Boolean-valued predicates 𝑞𝑖 : 𝑆 → PA on a set 𝑆 to a Boolean-valued
predicate lift𝑆(𝑞1 , . . . , 𝑞𝑛) : T𝑆 → PA over the set F𝑆 of F-unfoldings
of 𝑆. And Booleanizations of two-valued predicate T-liftings are defined
neatly in accordance with the Slicing Slogan: the 𝔞-slice of the Boolean-
valued predicate (liftA)𝑋 (𝑞1 , . . . , 𝑞𝑛) is the predicate lift𝑋(𝑞1,𝔞 , . . . , 𝑞𝑛,𝔞) ob-
tained from the 𝔞-slices 𝑞1,𝔞 , . . . , 𝑞𝑛,𝔞.
Example 3.2.12. Consider the two-valued predicate liftingP-lifting lift3 for
the 3-modality of basic modal logic, defined (using 2𝑆 � P𝑆) as lift3𝑆 (𝑄) :=
{𝑈 ∈ P𝑆 ;𝑈 ∩𝑄 ≠ ∅} for 𝑄 ∈ P𝑆. Then its Booleanization is the Boolean-
valued predicate PA-lifting lift3

A
mapping Boolean-valued predicates 𝑞 ∈

(PA)𝑆 over 𝑆 to the Boolean-valued predicate(
lift3
A

)
𝑆 (𝑞) = 𝑈 ∈ P𝑆 ↦→ {

𝔞 ∈ A ;𝑈 ∩ �̂�(𝔞) ≠ ∅}
.

Though superficially similar to the definition of the two-valued3-modality,
it might not be fully clear now that this lifting will indeed capture the se-
mantics of the 3-modality in Boolean-valued basic modal logic, and will
need to wait until Theorem 3.2.19. �

Putting together modal similarity types ⟨Sym, ar⟩ and a family Lift =〈
lift♡

〉
♡∈Sym of (ar♡)-ary Boolean-valued predicate F-liftings for each ♡ ∈

Sym, we have all we need to fully specify the Boolean-valued coalgebraic
modal logic through its one-step semantics. We refer to suchpairings ⟨⟨Sym,
ar⟩, Lift⟩ as Boolean-valued coalgebraic modal logics, or if we wish to make the
coalgebra type specific, Boolean-valued coalgebraic modal logics over F.
Note that we wish to interpret these logics over F-models, that is, FProp-
coalgebras.
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Definition 3.2.13. Given a Boolean-valued coalgebraic modal logic Log =
⟨Sim, Lift⟩ overF, the one-step semantics ofLog is the natural transformation
oneLog : Sim ◦ PredA ⇒ PredA ◦ F

op
Prop defined for a set 𝑆 as the unique

Boolean algebra homomorphism induced by the function

one′𝑆 : GenPredA𝑆 → ForgBA,SetPredAFProp𝑆

defined as

one′𝑆(♡(𝒒)) := ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ lift♡𝑆(𝒒)(𝑈),
(♡ ∈ Sym, 𝒒 ∈ (PredA𝑆)ar♡)

one′𝑆(⌜B⌝) := ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ charB ,
(charB is characteristic of B ⊆ A)

one′𝑆(𝑝) := ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ (
𝔞 ∈ A ↦→ char𝑃(𝑝)) ,

(char𝑃 is characteristic of 𝑃 ⊆ Prop)

using the universal property of free Boolean algebras. �
As was the case for two-valued coalgebraic modal logic, it follows quite

simply from the naturality of lift♡ for each ♡ ∈ Sym that one is in fact a natu-
ral transformation. And so we can again define an algebraification functor,
like in Definition 2.2.2.

Definition 3.2.14. Given a Boolean-valued coalgebraic modal logic Log =
⟨Sim, Lift⟩ over an endofunctor F, the Log-algebraification functor AlgLog :
CoalgASet(FProp)op → AlgBA(Sim) sends F-models (i.e. FProp-coalgebras)
S = ⟨𝑆, 𝜎⟩ to the Sim-algebra

AlgLogS :=
〈
PredA𝑆,PredA𝜎 ◦ oneLog𝑆

〉
,

It sends FProp-coalgebra morphisms 𝑓 : S → S′ to the Sim-algebra mor-
phism AlgLog 𝑓 := PredA 𝑓 . �

As was also the case in the two-valued setting, the category AlgBA(Sim)
has an initial algebra LangSim,A =

〈
LangSim,A ,𝜆

〉
with its carrier being the

obvious Boolean algebra built on the set of formulas 𝜑7 over the modal sim-
ilarity type Sim along with propositional constants ⌜B⌝, and the obvious
Boolean algebra homomorphism sending elements of SimLangSim to the
formulas they represent as its transition map.

Definition 3.2.15. Given a modal similarity type Sim = ⟨Sym, ar⟩, the Bool-
ean-valued language of Sim is the set LangSim,A underlying the carrier Boolean

7Though technically, LangSim consists of equivalence classes [𝜑] of formulas with respect
to the axioms of Boolean algebras, we will always work with it as if it were just the set of
formulas 𝜑.
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algebra of the initial Sim-algebra LangSim,A. The language can be induc-
tively defined (up to using standard abbreviations) as

LangSim,A ∋ 𝜑 ::= 𝑝 | ⌜B⌝ | (𝜑 ∨ 𝜑) | (¬𝜑) | (♡(𝜑, . . . , 𝜑︸    ︷︷    ︸
ar♡ times

)),

where 𝑝 ∈ Prop, B ⊆ A, and ♡ ∈ Sym. �
The unique Sim-algebra morphisms from LangSim,A then finally give

the semantics of the logic, using algebraifications. So we can give the defi-
nition of the logic in full now.
Definition 3.2.16. Given a Boolean-valued coalgebraic modal logic Log =
⟨Sim, Lift⟩ over F, together with an F-model S = ⟨𝑆, 𝜎⟩, the semantics of
Log is the unique Sim-algebra morphism J−KLog

S
: LangSim,A → AlgLogS.

Forgetting the Boolean algebra structure and applying 2A � PA, we will
often view the semantics as a function J−KLog

S
: LangSim,A → (PA)𝑆. �

Working out the semantics, we find the following inductive characteri-
zation.
Proposition 3.2.17. LetLog = ⟨Sim, Lift⟩ be a Boolean-valued coalgebraic modal
logic overF, and S = ⟨𝑆, 𝜎, col⟩ be an F-model.8 The semantics of Log satisfies

J𝑝KLog
S

(𝑠) = col(𝑠 )̂ (𝑝), (𝑝 ∈ Prop)J⌜B⌝KLogS (𝑠) = B,J𝜑 ∨ 𝜓KLog
S

(𝑠) = J𝜑KLog
S

(𝑠) ∪ J𝜓KLog
S

(𝑠),J¬𝜑KLog
S

(𝑠) = A ∖ J𝜑KLog
S

(𝑠), and
J♡(𝜑1 , . . . , 𝜑ar♡)KLogS = (PredA𝜎)

(
lift♡𝑆

(J𝜑1KLogS , . . . , J𝜑ar♡KLog
S

))
for all 𝑠 ∈ 𝑆.
Proof. By definition of the algebraification functor (Definition 3.2.14) and
the fact that J−KLog

S
is a Sim-algebra morphism, the square in the diagram

SimLangSim SimPredA𝑆

PredAFProp𝑆 FProp𝑆

LangSim PredA𝑆 𝑆

SimJ−KLog
S

𝜆

oneLog𝑆

PredA𝜎′

J−KLog
S

𝜎′

8As also done in Section 2.2, we will often denote F-models by triples ⟨𝑆, 𝜎, col⟩, where
𝜎 : 𝑆⇝ F𝑆 and col : 𝑆⇝ PProp.
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commutes in BA. Considering a propositional variable 𝑝, we thus get by
definition of the one-step semantics (Definition 3.2.13) and the Boolean-
valued predicate functor (Definition 3.2.8) that

J𝑝KLog
S

= (PredA𝜎′)
(
oneLog𝑆 (𝑝)

)
= (PredA𝜎′)

(
𝑓
)

(where 𝑓 = ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ (
𝔞 ∈ A ↦→ char𝑃(𝑝)))

= 𝑠 ∈ 𝑆 ↦→
(
𝔞 ∈ A ↦→ ( �̂� )𝔞(𝜎′𝔞(𝑠))

)
= 𝑠 ∈ 𝑆 ↦→

(
𝔞 ∈ A ↦→ charcol𝔞(𝑠)(𝑝)

)
= 𝑠 ∈ 𝑆 ↦→ {

𝔞 ∈ A ; 𝑝 ∈ col𝔞(𝑠)
}

= 𝑠 ∈ 𝑆 ↦→ col(𝑠 )̂ (𝑝).

Similarly, we find for B ⊆ A that

J⌜B⌝KLogS = (PredA𝜎′)
(
oneLog𝑆 (⌜B⌝)

)
= (PredA𝜎′)

(
𝑓
)

(where 𝑓 = ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ charB)
= 𝑠 ∈ 𝑆 ↦→ (

𝔞 ∈ A ↦→ charB(𝔞))
= 𝑠 ∈ 𝑆 ↦→ B.

The statements for the semantics of 𝜑 ∨ 𝜓 and ¬𝜑 follow directly from the
definition of the Boolean operations on PredA𝑆, together with the fact thatJ−KLog

S
: LangSim,A → PredA𝑆 is a Boolean algebra homomorphism. The

statement for ♡(𝜑1 , . . . , 𝜑ar♡) is also simple to prove. We use the abbrevia-
tion J𝝋KLog

S
=

〈J𝜑1KLogS , . . . , J𝜑ar♡KLog
S

〉
. We then find that

J♡(𝜑1 , . . . , 𝜑ar♡)KLogS = (PredA𝜎′)
(
oneLog𝑆 (♡(𝜑1 , . . . , 𝜑ar♡))

)
= (PredA𝜎′)

(
𝑓
)

(where 𝑓 = ⟨𝑈, 𝑃⟩ ∈ F𝑆 ×PProp ↦→ lift♡𝑆(J𝝋KLog
S

)(𝑈))
= 𝑠 ∈ 𝑆 ↦→

(
𝔞 ∈ A ↦→ lift♡𝑆(J𝝋KLog

S
)(𝜎𝔞(𝑠))(𝔞)

)
= (PredA𝜎)

(
lift♡𝑆

(J𝝋KLog
S

))
. □

Let us now at long last reconsider the matter of extending two-valued
coalgebraic modal logics. Using Booleanizations of two-valued predicate
liftings, we can associate with any two-valued coalgebraic modal logic over
a set functor T, a corresponding Boolean-valued coalgebraic modal logic
over the agentization TA, which we again refer to as its Booleanization.
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Definition 3.2.18. For a two-valued coalgebraic modal logic Log = ⟨⟨Sym,
ar⟩, Lift⟩ over a set functor T9, the Booleanization of Log is the Boolean-
valued coalgebraic modal logic LogA = ⟨⟨Sym, ar⟩ , LiftA⟩ over TA, where
LiftA =

〈
lift♡
A

〉
♡∈Sym consists of the Booleanizations of the liftings in Lift. �

We can now show that Booleanizations of two-valued predicate liftings
(and two-valued coalgebraic modal logics) are indeed proper generaliza-
tions of the original liftings (and coalgebraic modal logics) in accordance
with the Slicing Slogan. We do this through a general Coalgebraic Slic-
ing Theorem (cf. Theorems 3.1.6 and 3.1.8). Recall the definition of the
translations tr𝔞 for 𝔞 ∈ A as used in Theorem 3.1.8, and note that we can
also define translations tr𝔞 : LangSim,A → LangSim taking formulas in the
Boolean-valued language to formulas in the two-valued one, by mapping
constants ⌜B⌝ to either ⊤ or ⊥, dependent on whether 𝔞 ∈ B or not. Using
the translation, we can state the following theorem.

Theorem 3.2.19 (Coalgebraic Slicing Theorem). Let Log = ⟨Sim, Lift⟩ be a
two-valued coalgebraic modal logic overT, and S a TA-model. It holds that

J𝜑KLogA
Ŝ

(𝔞) = Jtr𝔞(𝜑)KLogS𝔞
for all 𝜑 ∈ LangSim,A and 𝔞 ∈ A.
Proof. The theorem follows almost immediately from Proposition 3.2.17, to-
gether with the definition of the Booleanization of a two-valued predicate
lifting (Definition 3.2.11). □

Example 3.2.20. Consider the two-valued coalgebraic modal logic LogBML

overPcorresponding to two-valued basic modal logic with the3-modality.
Then it follows almost immediately from Theorems 3.1.8 and 3.2.19 that the
Booleanization LogBML

A
corresponds precisely to the Boolean-valued basic

modal logic from How True and Section 3.1, both syntactically and semanti-
cally. �
3.2.3 Bisimulations and Behavioural Equivalence
Havingworked out how to generalize arbitrary two-valued coalgebraic mo-
dal logics (over functorsT : Set → Set) to Boolean-valued ones (over func-
tors TA : ASet → ASet) in accordance with the Slicing Slogan, it is of in-
terest to verify whether our definitions are able to properly capture general
agent-indexed coalgebraic bisimulations and their relations to the logic. In

9We assume for the sake of simplicity that the generator functor for ⟨Sym, ar⟩ does not
include propositional variables, as this would introduce unnecessary complexity in describ-
ing the formulas of the Booleanization. We hence also assume that Tis not a model functor
(i.e. T≠ T′

Prop for all set functors T′).
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doing so, it is natural to also consider similar questions about the notion of
behavioural equivalence.

Let us start generallywith coalgebraic bisimulations onF-coalgebras for
some F : ASet → ASet. Extending the definition of coalgebraic bisimula-
tions we gave in the Definition 2.1.4, bisimulations between F-coalgebras
S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩ are built on internal binary relations

〈
𝑅, 𝑝𝑆 , 𝑝𝑆′

〉
in ASet between 𝑆 and 𝑆′. These are sets 𝑅 such that 𝑝𝑆 : 𝑅 ⇝ 𝑆 and
𝑝𝑆′ : 𝑅 ⇝ 𝑆′ are jointly monic — that is, for all 𝑓 , 𝑔 : 𝑋 ⇝ 𝑅 it holds that
if 𝑝𝑆 ◦ 𝑓 = 𝑝𝑆 ◦ 𝑔 and 𝑝𝑆′ ◦ 𝑓 = 𝑝𝑆′ ◦ 𝑔, then 𝑓 = 𝑔. Since ASet is complete
by Proposition 3.2.3, it has binary products, and thus we can more simply
describe such internal binary relations in ASet as subobjects 𝑅 of the ASet-
product 𝑆×𝑆′, which aremonic agent-indexed functions 𝑟 : 𝑅⇝ 𝑆×𝑆′, with
𝑝𝑆 = proj𝑆 ◦ 𝑟 and 𝑝𝑆′ = proj𝑆′ ◦ 𝑟. To make a bisimulation 𝑅 : S ↔ S′ out
of such subobjects, we equip it with F-coalgebra structure 𝜌 : 𝑅 ⇝ TA𝑅
such that 𝑝𝑆 and 𝑝𝑆′ are TA-coalgebra morphisms. So putting this all to-
gether, a coalgebraic bisimulation 𝑅 : S ↔ S′ between S and S′ is a subob-
ject 𝑟 : 𝑅⇝ 𝑆 × 𝑆′ such that the diagram

𝑆 × 𝑆′ 𝑆 × 𝑆′

𝑆 𝑅 𝑆′

F𝑆 F𝑅 F𝑆′

F(𝑆 × 𝑆′) F(𝑆 × 𝑆′)

proj𝑆 proj𝑆′

𝜎 𝜌

𝑟 𝑟

𝜎′

F𝑟 F𝑟
Fproj𝑆 Fproj𝑆′

(3.2)

commutes.
Note the fact that ASet has subobject classifiers, as shown in Proposi-

tion 3.2.3. Because of this, it holds that subobjects 𝑖 : 𝑈 ⇝ 𝑋 of a set 𝑋 are
in a one-to-one correspondence with agent-indexed functions 𝑓 : 𝑋 ⇝ 2.
So each slice 𝑖𝔞 : 𝑈 → 𝑋 can be identified with a function 𝑓𝔞 : 𝑋 → 2
determining a subset of 𝑋. We can then identify subobjects 𝑖 : 𝑈 ⇝ 𝑋
as agent-indexed subsets of 𝑋 consisting of subsets 𝑈𝔞 of 𝑋 for each agent
𝔞 ∈ A. And thus using (P(𝑆 × 𝑆′))A � (PA)𝑆×𝑆′, subobjects 𝑟 : 𝑅 ⇝ 𝑆 × 𝑆′
correspond precisely to agent-indexed relations 𝑅 : 𝑆 × 𝑆′ → PA. Since di-
agrams in ASet commute if the Set-diagram obtained by taking 𝔞-slices of
all agent-indexed functions commutes for all 𝔞 ∈ A, we can verify by slicing
Diagram (3.2) that we can give the following definition of bisimilarity in
ASet.

Definition 3.2.21. Given F : ASet → ASet and F-coalgebras S = ⟨𝑆, 𝜎⟩
and S′ = ⟨𝑆′, 𝜎′⟩, we say that states 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ are B-bisimilar (and
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we write S, 𝑠 ↔B S
′, 𝑠′) for B ⊆ A if there is an agent-indexed relation

𝐵 : 𝑆 × 𝑆′ → PA that, viewed as an agent-indexed subset of 𝑆 × 𝑆′, is a
bisimulation 𝐵 : S ↔ S′ with B ⊆ 𝐵(𝑠, 𝑠′). If B is a singleton {𝔞}, we will
leave out the brackets, writing ↔ 𝔞 instead of ↔ {𝔞}. �

We have that coalgebraic bisimulations on ASet for agentized functors
admit a ‘sliced’ (i.e. agent-indexed) characterization similar to that of bisim-
ulations for agent-indexed Kripke models (Definition 3.1.9), which are de-
fined as agent-indexed relations 𝑅 : 𝑆 × 𝑆′ → PA between state spaces 𝑆
and 𝑆′ ofM andM′, such that 𝑅𝔞 :M𝔞 ↔ M′

𝔞 for all agents 𝔞 ∈ A.
Proposition 3.2.22. Let S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩ be TA-coalgebras for some
set functor T : Set → Set. Then S, 𝑠 ↔B S

′, 𝑠′ iff S𝔞 , 𝑠 ↔ S′𝔞 , 𝑠′ for all agents
𝔞 ∈ B.
Proof. The direction from left to right follows immediately from the defi-
nition of bisimulations and the fact that diagrams in ASet commute iff all
their slices commute in Set. The direction from right to left follows by not-
ing that given bisimulations 𝐵𝔞 : S𝔞 , 𝑠 ↔ S′𝔞 , 𝑠′ for all 𝔞 ∈ B, we can construct
an agent-indexed bisimulation 𝐵 : S, 𝑠 ↔B S

′, 𝑠′ by using the 𝐵𝔞 as slices,
while setting 𝔟-slices 𝐵𝔟 for 𝔟 ∈ A ∖ B to be empty. □

So coalgebraic bisimulations for agentized functors truly generalize the
agent-indexed bisimulations as we saw them in Definition 3.1.9.

Considering the coalgebraic notion of behavioural equivalence given in
Definition 2.1.3, we can also give a ‘sliced’ characterization: two states are
behaviourally equivalent iff they are behaviourally equivalent in all slices.
To do this, we first need to settle on what it generally means for two states
to be behaviourally equivalent for some agents.

Definition 3.2.23. Given an endofunctor F : ASet → ASet together with
F-coalgebras S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩, we say states 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ are
behaviourally B-equivalent (and we write S, 𝑠 ≃B S′, 𝑠′) for B ⊆ A if there is
someF-coalgebraX withF-coalgebra morphisms 𝑓 : S→ X and 𝑓 ′ : S′ →
X such that 𝑓𝔞(𝑠) = 𝑓 ′𝔞 (𝑠′) for all 𝔞 ∈ B. If B is a singleton {𝔞}, we will leave
out the brackets, writing ≃𝔞 instead of ≃{𝔞}. �

Clearly S, 𝑠 ≃ S′, 𝑠′ iff S, 𝑠 ≃A S′, 𝑠′, showing that this sliced definition
properly generalizes the standard definition of behavioural equivalence on
F-coalgebras.

Using the definition, we can now give the ‘sliced’ characterization of
behavioural equivalence.

Proposition 3.2.24. Let S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩ be TA-coalgebras for some
T : Set → Set. Then S, 𝑠 ≃B S′, 𝑠′ iff S𝔞 , 𝑠 ≃ S′𝔞 , 𝑠′ for all agents 𝔞 ∈ B.
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Proof. We prove the specific case where B = A for the sake of simplicity.
The case where B ≠ A is proven virtually identically, with some additional
uninformative bookkeeping required to deal with agents 𝔞 ∉ B, and it is not
difficult to derive the proof of the general statement from this specific case.

The direction from left to right is trivial, and follows directly from the
fact that diagrams in ASet commute iff all slices of the diagram commute in
Set: if 𝑓 : S→ X and 𝑓 ′ : S′ → X are TA-coalgebra morphisms with 𝑓 (𝑠) =
𝑓 ′(𝑠′), then 𝑓𝔞 : S𝔞 → X𝔞 and 𝑓 ′𝔞 : S′𝔞 → X𝔞 are T-coalgebra morphisms with
𝑓𝔞(𝑠) = 𝑓 ′𝔞 (𝑠′) for all 𝔞 ∈ A.

The direction from right to left is still simple, though a bitmore involved.
Suppose there existT-coalgebrasZ𝔞 = ⟨𝑍𝔞 , 𝜁𝔞⟩ andT-coalgebramorphisms
𝑓𝔞 : S𝔞 → Z𝔞 and 𝑓 ′𝔞 : S′𝔞 → Z𝔞 satisfying 𝑓𝔞(𝑠) = 𝑓 ′𝔞 (𝑠′) for all 𝔞 ∈ A. Consider
the Set-coproduct10

∑
𝔞∈AZ𝔞, which is the T-coalgebra ⟨∑𝔞∈A 𝑍𝔞 , 𝜁⟩ with 𝜁

being the unique morphism making the diagrams

𝑍𝔟
∑

𝔞∈A 𝑍𝔞

T𝑍𝔟 T
∑

𝔞∈A 𝑍𝔞

𝜁𝔞

inj𝔟

𝜁

Tinj𝔟

(3.3)

for all 𝔟 ∈ A commute, guaranteed to exist by the universal property of the
coproduct. We construct aTA-coalgebraX = ⟨∑𝔞∈A 𝑍𝔞 , 𝜉⟩ by putting 𝜉𝔞 := 𝜁
for all 𝔞 ∈ A. As 𝑓𝔞 : S𝔞 → Z𝔞 is a T-coalgebra morphism for all 𝔞 ∈ A, we
have that the diagram

𝑆 𝑍𝔟

T𝑆 T𝑍𝔟

𝜎𝔞

𝑓𝔞

𝜁𝔞

T𝑓𝔞

(3.4)

always commutes. Putting Diagrams (3.3) and (3.4) together, we find that
the function 𝑔𝔟 := inj𝔟 ◦ 𝑓𝔟 is a T-coalgebra morphism 𝑔𝔟 : S𝔟 → ∑

𝔞∈AZ𝔞 for
all 𝔟 ∈ A. Defining 𝑔 : S⇝

∑
𝔞∈A 𝑍𝔞 by putting together the slices 𝑔𝔞, we get

by definition of ASet that 𝑔 : S → X is a TA-coalgebra morphism. Using
similar reasoning in which we replace all objects on the S-side by those on
the S′-side (e.g. replacing 𝑓𝔞 by 𝑓 ′𝔞), we obtain a TA-coalgebra morphism
𝑔′ : S′ → X as well. Since 𝑔𝔞 = inj𝔞 ◦ 𝑓𝔞 and 𝑔′𝔞 = inj𝔞 ◦ 𝑓 ′𝔞 for all 𝔞 ∈ A, it
follows from the fact that 𝑓𝔞(𝑠) = 𝑓 ′𝔞 (𝑠′) that 𝑔𝔞(𝑠) = 𝑔′𝔞(𝑠′) as well, and thus
that 𝑔(𝑠) = 𝑔(𝑠′). So S, 𝑠 ≃ S′, 𝑠′. □

10When proving the general statement where B ≠ A, one should consider the coproduct
(∑𝔞∈BZ𝔞)+(∑𝔞∈A∖B ∅). The rest of the proof then proceeds as before, but using the initiality
of the empty set in Set to equip it with T-coalgebra structure.
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It is natural to ask whether the notions of bisimilarity and behavioural
equivalence on coalgebras in ASet coincide. As is the case in Set, we have
that bisimilar states are behaviourally equivalent, but that the converse does
not necessarily hold

Proposition 3.2.25. (i) Given an endofunctor F : ASet → ASet, it holds
that S, 𝑠 ↔B S

′, 𝑠′ implies S, 𝑠 ≃B S′, 𝑠′ for all F-coalgebras S and S′, and
B ∈ B, and

(ii) there are coalgebras S and S′ over ASet such that S, 𝑠 ≃B S′, 𝑠′ but S, 𝑠 ↮
B

S′, 𝑠′.

Proof. To show (i), we use a line of reasoning virtually identical to that that
in the proof of the statement that bisimilarity implies behavioural equiva-
lence in Set. To show (ii), we extend the example from Aczel and Mendler
(1989, after Proposition 6.2), which we said in Section 2.2 shows that be-
havioural equivalence does not imply bisimilarity in Set, to ASet in the ob-
vious manner by taking the agentization of the functor, and turning func-
tions in the counterexample to agent-indexed functions with said functions
for every slice. □

Recall from Proposition 2.1.8 that behavioural equivalence and bisim-
ilarity in Set coincide if the coalgebra type functor preserves weak pull-
backs. Using Propositions 3.2.22 and 3.2.24, it then follows immediately
that if a set functor Tpreserves weak pullbacks, then S, 𝑠 ≃B S′, 𝑠′ implies
S, 𝑠 ↔B S

′, 𝑠′, forTA-coalgebras S and S′. We can also provemore generally
that if an endofunctorF : ASet → ASet preserves weak pullbacks, then be-
havioural B-equivalence implies B-bisimilarity forF-coalgebras. The proof
for this statement is virtually identical to the proof of the statement in Set.

It is natural to ask under what circumstances agentizations TA preserve
weak pullbacks. This is potentially of interest for future work, as the prop-
erty of preserving weak pullbacks is important throughout many areas of
coalgebraic modal logic. As we will see, agentizations preserve weak pull-
backs precisely when the original functor preserves weak pullbacks. To
show this, we first require the following lemma.

Lemma 3.2.26. Let 𝑓𝑋 : 𝑋 ⇝ 𝑌, 𝑓𝑍 : 𝑍⇝ 𝑌, 𝑝𝑋 : 𝑊 ⇝ 𝑋, and 𝑝𝑍 : 𝑊 ⇝ 𝑍
be agent-indexed functions. Then the pair

〈
𝑝𝑋 , 𝑝𝑍

〉
is a weak pullback of

〈
𝑓𝑋 , 𝑓𝑍

〉
in ASet iff the pair

〈
𝑝𝑋,𝔞 , 𝑝𝑍,𝔞

〉
is a weak pullback of

〈
𝑓𝑋,𝔞 , 𝑓𝑍,𝔞

〉
in Set for all

𝔞 ∈ A.

Proof. Throughout this proof, we assume that |A| > 1. This is without loss
of generality, since ASet � Set otherwise, which would trivially prove the
statement.
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For the direction from left to right, suppose
〈
𝑝𝑋 , 𝑝𝑍

〉
is a weak pullback

of
〈
𝑓𝑋 , 𝑓𝑍

〉
in ASet. Then by definition of ASet, the Set-diagram

𝑋 𝑌

𝑊 𝑍

𝑓𝑋,𝔞

𝑝𝑍,𝔞

𝑝𝑋,𝔞 𝑓𝑍,𝔞

commutes for all 𝔞 ∈ A. Fix an agent 𝔞 ∈ A. Consider functions 𝑝′𝑋,𝔞 : 𝑊 ′
𝔞 →

𝑋 and 𝑝′𝑍,𝔞 : 𝑊 ′
𝔞 → 𝑍 making the diagram

𝑋 𝑌

𝑊 𝑍

𝑊 ′
𝔞

𝑓𝑋,𝔞

𝑝𝑍,𝔞

𝑝𝑋,𝔞 𝑓𝑍,𝔞𝑝′𝑋,𝔞

𝑝′𝑍,𝔞

(3.5)

commute. For all 𝔟 ∈ A ∖ {𝔞}, take the pullback
〈
𝑊 ′

𝔟 , 𝑝
′
𝑋,𝔟 , 𝑝

′
𝑍,𝔟

〉
of the func-

tions 𝑓𝑋,𝔟 and 𝑓𝑍,𝔟, making the diagram

𝑋 𝑌

𝑊 ′
𝔟 𝑍

𝑓𝑋,𝔟

𝑝′𝑍,𝔟

𝑝′𝑋,𝔟 𝑓𝑍,𝔟 (3.6)

commute. Let 𝑊 ′ be the coproduct 𝑊 ′ :=
∑

𝔟∈A𝑊 ′
𝔟. By the universal prop-

erty of the coproduct, there exists unique functions 𝑞𝑋 : 𝑊 ′ → 𝑋 and
𝑞𝑍 : 𝑊 ′ → 𝑍 such that the diagram

𝑊 ′

𝑍 𝑊 ′
𝔟 𝑋

𝑞𝑋𝑞𝑍

𝑝′𝑋,𝔟𝑝′𝑍,𝔟

inj𝔟 (3.7)

commutes for all 𝔟 ∈ A. Take these functions 𝑞𝑋 and 𝑞𝑍, and trivially turn
them into agent-indexed functions 𝑟𝑋 : 𝑊 ′ ⇝ 𝑋 and 𝑟𝑍 : 𝑊 ′ ⇝ 𝑍 by
setting 𝑟𝑋,𝔟 := 𝑞𝑋 and 𝑟𝑍,𝔟 := 𝑞𝑍 for all 𝔟 ∈ A. Similarly consider inj𝔞 to be
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an agent-indexed function by putting it in every slice. By commutativity of
Diagrams (3.5) to (3.7), we then deduce that the diagram

𝑋 𝑌

𝑊 ′

𝑊 𝑍

𝑊 ′
𝔞 𝑊 ′

𝑓𝑋

𝑟𝑋

𝑝𝑋

𝑝𝑍

𝑓𝑍

inj𝔞

inj𝔞

𝑟𝑍

commutes in ASet. Since we assumed 𝑝𝑋 and 𝑝𝑍 form a weak pullback,
theremust be some agent-indexed function 𝑝′ : 𝑊 ′

𝔞 ⇝𝑊 such that 𝑟𝑋◦inj𝔞 =
𝑝𝑋 ◦ 𝑝′ and 𝑟𝑍 ◦ inj𝔞 = 𝑝𝑍 ◦ 𝑝′. Using the 𝔞-slice 𝑝′𝔞 : 𝑊 ′

𝔞 → 𝑊 of 𝑝′, it then
finally follows that the diagram

𝑋 𝑌

𝑊 ′

𝑊 𝑍

𝑊 ′
𝔞 𝑊 ′

𝑓𝑋,𝔞

𝑞𝑋

𝑝𝑋,𝔞

𝑝𝑍,𝔞

𝑓𝑍,𝔞

inj𝔞

inj𝔞

𝑝′𝑋,𝔞

𝑝′𝑍,𝔞

𝑝′𝔞

𝑞𝑍

commutes, showing that 𝑝𝑋,𝔞 and 𝑝𝑍,𝔞 form a weak pullback of
〈
𝑓𝑋,𝔞 , 𝑓𝑍,𝔞

〉
.

The proof of the direction from right to left is much simpler. Suppose〈
𝑝𝑋,𝔞 , 𝑝𝑍,𝔞

〉
is a weak pullback of

〈
𝑓𝑋,𝔞 , 𝑓𝑍,𝔞

〉
for all 𝔞 ∈ A. Then it follows

immediately that 𝑓𝑋 ◦ 𝑝𝑋 = 𝑓𝑍 ◦ 𝑝𝑍. For any agent-indexed functions 𝑝′𝑋 :
𝑊 ′ ⇝ 𝑋 and 𝑝′𝑍 : 𝑊 ′ ⇝ 𝑍 for which 𝑓𝑋 ◦ 𝑝′𝑋 = 𝑓𝑍 ◦ 𝑝′𝑍, we construct the
required 𝑝′ : 𝑊 ′ ⇝ 𝑊 by taking as its 𝔞-slices the functions 𝑝′𝔞 : 𝑊 ′ → 𝑊
we get by applying the fact that

〈
𝑝𝑋,𝔞 , 𝑝𝑍,𝔞

〉
is a weak pullback of

〈
𝑓𝑋,𝔞 , 𝑓𝑍,𝔞

〉
to the 𝔞-slices 𝑝′𝑋,𝔞 and 𝑝′𝑍,𝔞. □

Theorem 3.2.27. For all set functors T, it holds that Tpreserves weak pullbacks
iff the agentizationTA preserves weak pullbacks.

Proof. For the direction from left to right, take a weak pullback
〈
𝑝𝑋 , 𝑝𝑍

〉
of agent-indexed functions 𝑓𝑋 and 𝑓𝑍. By Lemma 3.2.26, we get that〈
𝑝𝑋,𝔞 , 𝑝𝑍,𝔞

〉
is a weak pullback of 𝑓𝑋,𝔞 and 𝑓𝑍,𝔞 for all agents 𝔞 ∈ A. Since T

preserves weak pullbacks, it follows that
〈
T𝑝𝑋,𝔞 ,T𝑝𝑍,𝔞

〉
is a weak pullback
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of T𝑓𝑋,𝔞 and T𝑓𝑍,𝔞 for all agents 𝔞 ∈ A. Since T𝑔𝔞 = (TA𝑔)𝔞 for any agent-
indexed function 𝑔, we thus have that

〈(TA𝑝𝑋)𝔞 , (TA𝑝𝑍)𝔞〉 is aweak pullback
of (TA 𝑓𝑋)𝔞 and (TA 𝑓𝑍)𝔞 for all agents 𝔞 ∈ A. So applying Lemma 3.2.26 again,
we get that

〈
TA𝑝𝑋 ,TA𝑝𝑍

〉
is a weak pullback of TA 𝑓𝑋 and TA 𝑓𝑍. Thus TA

preserves weak pullbacks.
For the direction from right to left, take a weak pullback

〈
𝑞𝑋 , 𝑞𝑍

〉
in Set

of functions 𝑔𝑋 and 𝑔𝑍. Define the agent-indexed functions 𝑝𝑋 and 𝑝𝑍 by
taking 𝑞𝑋 and 𝑞𝑍 respectively for each slice. Similarly, define agent-indexed
functions 𝑓𝑋 and 𝑓𝑍 in similar fashion for 𝑔𝑋 and 𝑔𝑍. By Lemma 3.2.26, we
then have that 𝑝𝑋 and 𝑝𝑍 form a weak pullback of 𝑔𝑋 and 𝑔𝑍. As TA pre-
serves weak pullbacks, it follows thatTA𝑝𝑋 andTA𝑝𝑍 form aweak pullback
of TA 𝑓𝑋 and TA 𝑓𝑍. Applying Lemma 3.2.26 again, we then finally find that
(TA𝑝𝑋)𝔞 = T𝑞𝑋 and (TA𝑝𝑍)𝔞 = T𝑞𝑍 form a weak pullback of (TA 𝑓𝑋)𝔞 = T𝑔𝑋
and (TA 𝑓𝑍)𝔞 = T𝑔𝑍 for all 𝔞 ∈ A. So Tpreserves weak pullbacks. □

3.2.4 Adequacy and Expressivity
We now finally turn our attention towards matters of adequacy and expres-
sivity with respect to Boolean-valued coalgebraic modal logics. We state
the results for an arbitrary endofunctor F : ASet → ASet for greater gen-
erality. To do this, we first require a notion of logical equivalence for some
agents.
Definition 3.2.28. Given a Boolean-valued coalgebraic modal logic Log =
⟨Sim, Lift⟩ over F : ASet → ASet and F-models S and S′, we say states 𝑠
in S and 𝑠′ in S′ are Log-equivalent for B ⊆ A (and we write S, 𝑠 ≡Log

B
S′, 𝑠′)

if
𝔞 ∈ J𝜑KLog

S
(𝑠) iff 𝔞 ∈ J𝜑KLog

S′ (𝑠′)
for all formulas 𝜑 ∈ LangSim,A and agents 𝔞 ∈ A. �

Although we will always be working withF-models throughout the fol-
lowing section, we will often pretend that F is itself a model functor for
simplicity of notation.

We state the adequacy and expressivity theorems for the single-agent
versions of the behavioural and logical equivalence relations — the general
versions for multiple agents then follow immediately by their definition.
We start with adequacy, showing that behavioural equivalence implies log-
ical equivalence. The proof of this theorem is largely identical to the proof
in the two-valued setting, and proceeds through the following proposition
showing that morphisms preserve the semantics.
Proposition 3.2.29. Take someF : ASet → ASet, and let S andX beF-models
with an FProp-coalgebra morphism 𝑓 : S → X, and let Log = ⟨Sim, Lift⟩ be a
Boolean-valued coalgebraic modal logic overF. It holds that

J𝜑KLog
S

=
(
PredA 𝑓

) (J𝜑KLogX )
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for all formulas 𝜑 ∈ LangSim,A.

Proof. This follows immediately from our setup. As LangSim,A is the initial
Sim-algebra, we have that the triangle in AlgBA(Sim) on the right of

S AlgLogS LangSim,A

X AlgLogX

𝑓

J−KLog
S

J−KLog
X

AlgLog 𝑓

commutes. Since AlgLog 𝑓 = PredA 𝑓 (considered as a function), we get
that it indeed holds that

J𝜑KLog
S

= (PredA 𝑓 )(J𝜑KLogX )
for any formula 𝜑 ∈ LangSim,A. □

Theorem 3.2.30. Let S = ⟨𝑆, 𝜎⟩ and S′ = ⟨𝑆′, 𝜎′⟩ be F-models and let Log be
a Boolean-valued coalgebraic modal logic, all over some endofunctor F : ASet →
ASet. For states 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′, it holds that

S, 𝑠 ≃𝔞 S
′, 𝑠′ implies S, 𝑠 ≡Log𝔞 S′, 𝑠′

for all 𝔞 ∈ A.
Proof. Suppose S, 𝑠 ≃𝔞 S′, 𝑠′ —i.e. that there is someF-modelXwithFProp-
coalgebra morphisms 𝑓 : S → X and 𝑓 ′ : S′ → X such that 𝑓𝔞(𝑠) =
𝑓 ′𝔞 (𝑠′). By Proposition 3.2.29, we know that J𝜑KLog

S
= (PredA 𝑓 )(J𝜑KLogX ) andJ𝜑KLog

S′ = (PredA 𝑓 ′)(J𝜑KLogX ) for any formula 𝜑. Writing these equalities
out, we get that 𝔞 ∈ J𝜑KLog

S
(𝑠) iff 𝔞 ∈ J𝜑KLogX ( 𝑓𝔞(𝑠)), and that 𝔞 ∈ J𝜑KLog

S′ (𝑠′)
iff 𝔞 ∈ J𝜑KLogX ( 𝑓 ′𝔞 (𝑠′)). Since 𝑓𝔞(𝑠) = 𝑓 ′𝔞 (𝑠′), it thus follows that 𝔞 ∈ J𝜑KLog

S
(𝑠)

iff 𝔞 ∈ J𝜑KLog
S′ (𝑠′), showing that indeed S, 𝑠 ≡Log𝔞 S′, 𝑠′. □

For expressivity, we also proceed similarly to Section 2.2. We again re-
quire the two conditions required in the two-valued setting to also be sat-
isfied: collections of predicate liftings need to be separating, and coalgebra
type functors need to be finitary. But as we will see, our proof of expressiv-
ity for a general endofunctor on ASet requires the set A of agents to be finite
as well. We will come back to this after proving the general statement.

Let us start by defining separation. In the Boolean-valued setting, this
concept needs to take the presence of agents into account. We require that
different unfoldings can be differentiated by Boolean-valued predicates that
differentiate them for all agents.
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Definition 3.2.31. Given a modal similarity type ⟨Sym, ar⟩ and Boolean-
valued predicate F-liftings Lift =

〈
lift♡

〉
♡∈Sym of the right arities, we say

that Lift is separating for F if for all sets 𝑋 and 𝑈,𝑈′ ∈ F𝑋 with 𝑈 ≠ 𝑈′,
there exists some modality symbol ♡ ∈ Sym with Boolean-valued predi-
cates 𝑣1 , . . . , 𝑣ar♡ ∈ PredA𝑋 such that for all agents 𝔞 ∈ A it holds that either
𝔞 ∈ lift♡𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈) or 𝔞 ∈ lift♡𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈′), but not both. �

This definition truly generalizes that of separation of two-valued predi-
cate liftings (Definition 2.2.8), as stated formally in the following theorem.

Theorem 3.2.32. Let ⟨Sym, ar⟩ be a modal similarity type with two-valued pred-
icate T-liftings Lift =

〈
lift♡

〉
♡∈Sym of the right arities. Then Lift is separating for

Tiff LiftA (as defined in Definition 3.2.18) is separating forTA.

Proof. For the direction from left to right, take some set 𝑋 and 𝑈,𝑈′ ∈
TA𝑋 = T𝑋 with 𝑈 ≠ 𝑈′. Since Lift is separating for T, there must be some
♡ ∈ Sym and 𝑉1 , . . . , 𝑉ar♡ ∈ Pred𝑋 such that either 𝑈 ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡)
or 𝑈′ ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡), but not both. We assume without loss of gener-
ality that 𝑈 ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡). We construct Boolean-valued predicates
𝑣1 , . . . , 𝑣ar♡ ∈ PredA𝑋 by putting 𝑣𝑖(𝑥) := A if 𝑥 ∈ 𝑉𝑖 , and 𝑣𝑖(𝑥) := ∅ other-
wise. By definition of Booleanized liftings (Definition 3.2.11), we find that

(lift♡
A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈) = {

𝔞 ∈ A ;𝑈 ∈ lift♡𝑋(𝑣1,𝔞 , . . . , 𝑣ar♡,𝔞)
}

=
{
𝔞 ∈ A ;𝑈 ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡)

}
= A

≠ ∅
=

{
𝔞 ∈ A ;𝑈′ ∈ lift♡𝑋(𝑉1 , . . . , 𝑉ar♡)

}
= (lift♡

A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈′),

showing that indeed LiftA is separating for TA.
For the direction from right to left, again take some set 𝑋 and 𝑈,𝑈′ ∈

T𝑋 with 𝑈 ≠ 𝑈′. Since LiftA is separating for TA, there must be some
♡ ∈ Sym and 𝑣1 , . . . , 𝑣ar♡ ∈ PredA𝑋 such that for all 𝔞 ∈ A either 𝔞 ∈
(lift♡

A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈) or 𝔞 ∈ (lift♡

A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈′), but not both. We

fix some agent 𝔞 ∈ A, and assume (clearly without loss of generality) that
𝔞 ∈ (lift♡

A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈). By definition of Booleanized liftings, we have

that

(lift♡
A
)𝑋(𝑣1 , . . . , 𝑣ar♡)(𝑈) = {

𝔟 ∈ A ;𝑈 ∈ lift♡𝑋(𝑣1,𝔟 , . . . , 𝑣ar♡,𝔟)
}
, (3.8)

with a similar equality when we replace 𝑈 by 𝑈′. So it holds that 𝑈 ∈
lift♡𝑋(𝑣1,𝔞 , . . . , 𝑣ar♡,𝔞), while 𝑈′ ∉ lift♡𝑋(𝑣1,𝔞 , . . . , 𝑣ar♡,𝔞). Since 𝑣𝑖,𝔞 ∈ Pred𝑋,
this already proves that Lift is separating for T. □
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Finitariness of set functors is usually defined in terms of 𝜔-accessibility
(cf. Worrell (2005)), which can be defined as stating that a functor preserves
𝜔-filtered colimits. In our setting, we will work with a concrete and ar-
guably simpler definition, which suffices for the proof of expressivity. First
a quick note about notation: for sets 𝐴 and 𝐵 with 𝐴 ⊆ 𝐵, we denote by
incl𝐴,𝐵 : 𝐴 → 𝐵 the obvious inclusion function. These inclusion functions
can be treated as agent-indexed functions incl𝐴,𝐵 : 𝐴 ⇝ 𝐵 by placing the
original inclusion function in each slice.

Definition 3.2.33. An endofunctor F : ASet → ASet is finitary if for every
set 𝑋 and 𝑈 ∈ F𝑋, there exists some finite subset 𝑌 ⊆ 𝑋 such that 𝑈 ∈
(Fincl𝑌,𝑋)𝔞[F𝑌] for all 𝔞 ∈ A. �
Remark 3.2.34. Note thatwewill assume thatF preserves inclusions, in the
following concrete sense. We say that F preserves inclusions if Fincl𝐴,𝐵 =
inclF𝐴,F𝐵. This also means that 𝑋 ⊆ 𝑌 implies F𝑋 ⊆ F𝑌. Under this
assumption of inclusion preservation, we find that for finitary F we get
that for every 𝑋 and 𝑈 ∈ F𝑋, there exists a finite subset 𝑌 ⊆ 𝑋 such that
𝑈 ∈ F𝑌.

This is quite an innocent assumption. We know (see e.g. Adámek and
Trnková (1990)) that any set functorTis naturally isomorphic to a set func-
tor T′ that preserves inclusions, when restricted to nonempty sets. Given
an endofunctor F : ASet → ASet, we can also define a naturally isomor-
phic (when restricted to nonempty sets) F′ : ASet → ASet that preserves
inclusions. Note that for any agent 𝔞 ∈ A, we can define a set functor F𝔞

defined on sets 𝑋 as F𝔞𝑋, and on functions 𝑓 as F𝔞 𝑓 := (F𝑓 )𝔞 (where we
treat 𝑓 as an agent-indexed function in the obvious way). As stated before,
we then get a set functor F′

𝔞 preserving inclusions. Using these, we define
the functor F′. Since the F′

𝔞 are naturally isomorphic to F𝔞 for all 𝔞 ∈ A,
and F𝔞𝑋 = F𝑋, we can define F′𝑋 := F𝑋 without problems. Similarly,
for agent-indexed functions 𝑓 we define (F′ 𝑓 )𝔞 := F′

𝔞 𝑓𝔞. It is not difficult
to verify that F′ must be naturally isomorphic to F (over nonempty sets),
and preserves inclusions. �

Finitariness for endofunctors on ASet truly generalizes finitariness for
set functors (Section 2.2), as stated in the following simple proposition for
agentizations.

Proposition 3.2.35. LetTbe a set functor. Then Tis finitary iff TA is finitary.
Proof. Assuming T preserves inclusions, it holds (as shown by Adámek,
Milius, et al. (2019)) that Tis finitary (i.e. preserves 𝜔-filtered colimits) iff
for every set 𝑋 and 𝑈 ∈ T𝑋, there exists finite 𝑌 ⊆ 𝑋 such that 𝑈 ∈ T𝑌.
The statement follows trivially from this equivalence. □

We are now almost equipped to prove the general expressivity result.
We need a simple lemma, intuitively stating that for the evaluation of a
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Boolean-valued predicate lifting with predicates 𝑣1 , . . . , 𝑣𝑛 on some 𝑈 ∈
F𝑋, one can safely restrict the predicates to the parts of 𝑋 that are required
to ‘produce’𝑈 .

Lemma 3.2.36. Let lift be an 𝑛-ary Boolean-valued predicate F-lifting. Then for
all sets 𝑋, 𝑌 ⊆ 𝑋,𝑈 ∈ F𝑌 ⊆ F𝑋, and ⟨𝑣1 , . . . , 𝑣𝑛⟩ ∈ (PredA𝑋)𝑛 it holds that

lift𝑋(𝑣1 , . . . , 𝑣𝑛)(𝑈) = lift𝑌(𝑣′1 , . . . , 𝑣′𝑛)(𝑈),
where 𝑣′𝑖 is defined by putting 𝑣′𝑖,𝔞 := 𝑣𝑖,𝔞 ∩ 𝑌 for all agents 𝔞 ∈ A.
Proof. This follows quite simply from the naturality of lift and our assump-
tion that F preserves inclusions. Considering the agent-indexed inclusion
incl𝑌,𝑋 : 𝑌⇝ 𝑋, it follows from naturality of lift that the diagram

(PredA𝑌)𝑛 PredAF𝑌

(PredA𝑋)𝑛 PredAF𝑋

lift𝑌

(PredAincl𝑌,𝑋 )𝑛

lift𝑋

PredAFincl𝑌,𝑋 (3.9)

commutes in Set, with us leaving out the forgetful functors for brevity of
notation. Now for simplicity, we assume 𝑛 = 1. Working out the top-left
composition in Diagram (3.9), it follows from the definition of PredA and
incl𝑌,𝑋 that

lift𝑌((PredAincl𝑌,𝑋)(𝑣)) = lift𝑌(𝑦 ∈ 𝑌 ↦→ {
𝔞 ∈ A ; 𝔞 ∈ 𝑣(incl𝑌,𝑋,𝔞(𝑦))

})
= lift𝑌(𝑦 ∈ 𝑌 ↦→ {

𝔞 ∈ A ; 𝔞 ∈ 𝑣(𝑦)})
= lift𝑌(𝑦 ∈ 𝑌 ↦→ {

𝔞 ∈ A ; 𝑦 ∈ 𝑣𝔞
})

= lift𝑌(𝑣′) (3.10)

for 𝑣 ∈ PredA𝑋. Similarly working out the bottom-right composition in
Diagram (3.9), it follows from F preserving inclusions and the definitions
of PredA and incl𝑌,𝑋 that

(PredAFincl𝑌,𝑋)(lift𝑋(𝑣))
= (PredAinclF𝑌,F𝑋)(lift𝑋(𝑣))
= 𝑈 ∈ F𝑌 ↦→ {𝔞 ∈ A ; 𝔞 ∈ lift𝑋(𝑣)(inclF𝑌,F𝑋,𝔞(𝑈))}
= 𝑈 ∈ F𝑌 ↦→ {𝔞 ∈ A ; 𝔞 ∈ lift𝑋(𝑣)(𝑈)}
= 𝑈 ∈ F𝑌 ↦→ lift𝑋(𝑣)(𝑈). (3.11)

By commutativity of Diagram (3.9), we get that the expressions in Equa-
tions (3.10) and (3.11) are identical, which is precisely what we wished to
prove. □
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We prove the expressivity result given a finite set of agents, by consider-
ing the specific case in which we are considering states in the same model.
The general result follows as a simple corollary. Our proof is derived from
the proof by Schröder (2008, Theorem 41) of the expressivity of two-valued
coalgebraicmodal logic. Interestingly, our proofmakes use of propositional
constants ⌜B⌝, which are not present in the two-valued coalgebraic modal
logics over which the result of Schröder (2008) is proven.

Theorem 3.2.37. Let F be a finitary endofunctor on ASet, and let Log = ⟨Sim,
Lift⟩ be a Boolean-valued coalgebraic modal logic overF such that Lift is separat-
ing for F. If A is finite, then for all F-models S, it holds for all states 𝑠 and 𝑡 in S
that

S, 𝑠 ≡Log𝔞 S, 𝑡 implies S, 𝑠 ≃𝔞 S, 𝑡

for all 𝔞 ∈ A.

Proof. Throughout the proof, we will drop the Log-superscript for brevity
of notation.

We will construct an F-coalgebra E with an F-coalgebra morphism 𝑓 :
S→ E such that 𝑓𝔞(𝑠) = 𝑓𝔞(𝑡) for all 𝑠, 𝑡 ∈ 𝑆 and 𝔞 ∈ A with S, 𝑠 ≡𝔞 S, 𝑡. This
will suffice to prove the theorem.

Consider the set 𝐸 defined as

𝐸 :=
∑
𝔞∈A

(𝑆/≡𝔞),

where we treat ≡𝔞 as a binary relation on 𝑆. Note that for each agent 𝔞 ∈
A, there is a quotient function quo(𝔞) : 𝑆 → 𝑆/≡𝔞 sending a state 𝑠 to its
equivalence class [𝑠]≡𝔞 . We can extend these quotient functions to an agent-
indexed function quo : 𝑆 ⇝ 𝐸 by putting quo𝔞 := inj𝔞 ◦ quo(𝔞). We then
immediately get that quo𝔞(𝑠) = quo𝔞(𝑡) for all 𝑠, 𝑡 ∈ 𝑆 and 𝔞 ∈ A with S, 𝑠 ≡𝔞

S, 𝑡. So we only need to define an agent-indexed function 𝜀 : 𝐸 ⇝ F𝐸
making quo an F-coalgebra morphism from S to E := ⟨𝐸, 𝜀⟩.

For each agent 𝔞 ∈ A, fix a function rep(𝔞) : 𝑆/≡𝔞 → 𝑆 sending equiva-
lence classes 𝐶 ∈ 𝑆/≡𝔞 to a representative state 𝑠 ∈ 𝐶.11 By the universal
property of the coproduct, there exists a unique function 𝑔 : 𝐸 → 𝑆 such
that 𝑔 ◦ inj𝔞 = rep(𝔞) for all 𝔞 ∈ A. We turn 𝑔 into an agent-indexed function
rep : 𝐸⇝ 𝑆 by putting rep𝔞 := 𝑔 for each 𝔞 ∈ A. We then define 𝜀 : 𝐸⇝ F𝐸

11Note that these functions are choice functions, and can generally only be proven to exist
using the Axiom of Choice.
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as the composition making the diagram

𝑆 𝐸

𝑆 𝐸

F𝑆 F𝐸

quo

𝜎

rep

𝜀

Fquo

commute, i.e. 𝜀 := Fquo ◦ 𝜎 ◦ rep. To show that quo is an F-coalgebra mor-
phism quo : S→ E, we thus need to show that

Fquo ◦ 𝜎 ◦ rep ◦ quo = Fquo ◦ 𝜎. (3.12)

Writing out what Equation (3.12) means, it follows from the definition of
quo and rep thatwe need to show that for every agent 𝔞 ∈ A and states 𝑠, 𝑡 ∈ 𝑆
such that S, 𝑠 ≡𝔞 S, 𝑡, it holds that

(Fquo)𝔞(𝜎𝔞(𝑠)) = (Fquo)𝔞(𝜎𝔞(𝑡)). (3.13)

For brevity, we write𝑈𝔞 = (Fquo)𝔞(𝜎𝔞(𝑠)) and𝑈′
𝔞 = (Fquo)𝔞(𝜎𝔞(𝑡)).

Fix some agent 𝔞 ∈ A, along with states 𝑠, 𝑡 ∈ 𝑆 such that S, 𝑠 ≡𝔞 S, 𝑡.
Since Lift is separating for F, considering the contrapositive of the state-
ment in Definition 3.2.31, we find that we can show that Equation (3.13)
holds by showing that for all modality symbols ♡ ∈ Sym, Boolean-valued
predicates 𝑣1 , . . . , 𝑣ar♡ ∈ PredA𝐸, it holds that

𝔞 ∈ lift♡𝐸(𝑣1 , . . . , 𝑣ar♡)(𝑈𝔞) iff 𝔞 ∈ lift♡𝐸(𝑣1 , . . . , 𝑣ar♡)(𝑈′
𝔞). (3.14)

AsF is finitary, there exist finite subsets 𝑍, 𝑍′ ⊆ 𝑆 such that 𝜎𝔞(𝑠) ∈ F𝑍
and 𝜎𝔞(𝑡) ∈ F𝑍′. Taking the union𝑌 := 𝑍∪𝑍′, it follows fromF preserving
inclusions that 𝜎𝔞(𝑠), 𝜎𝔞(𝑡) ∈ F𝑌 ⊆ F𝑆. Now take any number 𝑖 with 1 ⩽
𝑖 ⩽ ar♡, and note that 𝑣𝑖 is a Boolean-valued predicate 𝑣𝑖 ∈ PredA𝐸. Define
a Boolean-valued predicate 𝑏𝑖 ∈ PredA𝑌 by putting

𝑏𝑖,𝔟 := 𝑌 ∩ quo−1
𝔟 [𝑣𝑖 ,𝔟] (3.15)

for all agents 𝔟 ∈ A.
By definition of quo, we find that whenever S, 𝑦 ≡𝔟 S, 𝑦′ for 𝑦, 𝑦′ ∈ 𝑌,

it holds that 𝔟 ∈ 𝑏𝑖(𝑦) iff 𝔟 ∈ 𝑏𝑖(𝑦′). So by contraposition we get that for
all 𝑦, 𝑦′ ∈ 𝑌 such that 𝔟 ∈ 𝑏𝑖(𝑦) but 𝔟 ∉ 𝑏𝑖(𝑦′), it must be the case that
S, 𝑦 .𝔟 S, 𝑦′. By definition of logical 𝔟-equivalence, it then follows that for
all 𝑦, 𝑦′ ∈ 𝑌 such that 𝔟 ∈ 𝑏𝑖(𝑦) but 𝔟 ∉ 𝑏𝑖(𝑦′), there exists some formula
𝜑𝑖,𝔟,𝑦,𝑦′ ∈ LangSim,A such that

𝔟 ∈ J𝜑𝑖 ,𝔟,𝑦,𝑦′KS(𝑦) and 𝔟 ∉ J𝜑𝑖 ,𝔟,𝑦,𝑦′KS(𝑦′).
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As 𝑌 is the union of finite sets 𝑍 and 𝑍′, it follows that 𝑌 is itself finite.
So the formula 𝜑𝑖 ,𝔟 defined as

𝜑𝑖 ,𝔟 :=
∧
𝑦′∈𝑌

𝔟∉𝑏𝑖(𝑦′)

∨
𝑦∈𝑌

𝔟∈𝑏𝑖(𝑦)

𝜑𝑖,𝔟,𝑦,𝑦′

is truly a formula of LangSim,A. We have for 𝑧 ∈ 𝑌 that

J𝜑𝑖,𝔟KS(𝑧) = ⋂
𝑦′∈𝑌

𝔟∉𝑏𝑖(𝑦′)

⋃
𝑦∈𝑌

𝔟∈𝑏𝑖(𝑦)

J𝜑𝑖,𝔟,𝑦,𝑦′KS(𝑧) (3.16)

by Proposition 3.2.17.
We claim that 𝔟 ∈ 𝑏𝑖(𝑧) iff 𝔟 ∈ J𝜑𝑖 ,𝔟KS(𝑧) for all 𝑧 ∈ 𝑌. For the direc-

tion from left to right, note that it must hold by definition of the formulas
𝜑𝑖 ,𝔟,𝑦,𝑦′ that for all 𝑦′ ∈ 𝑌 with 𝔟 ∉ 𝑏𝑖(𝑦′) it holds that 𝔟 ∈ J𝜑𝑖,𝔟,𝑧,𝑦′KS(𝑧).
This corresponds to the semantics of 𝜑𝑖 ,𝔟 in Equation (3.16), and we thus
get that 𝔟 ∈ J𝜑𝑖 ,𝔟KS(𝑧). For the direction from right to left, suppose for the
sake of contradiction that 𝔟 ∉ 𝑏𝑖(𝑧), then we would have that for all 𝑦 ∈ 𝑌
with 𝔟 ∈ 𝑏𝑖(𝑦) it would hold that 𝔟 ∉ J𝜑𝑖,𝔟,𝑦,𝑧KS(𝑧). So again looking at the
semantics of 𝜑𝑖,𝔟 in Equation (3.16), we would get that 𝔟 ∉ J𝜑𝑖 ,𝔟KS(𝑧), which
is contradictory. Thus 𝔟 ∈ 𝑏𝑖(𝑧).

Since A is finite, the formulas 𝜑𝑖 defined as

𝜑𝑖 :=
∧
𝔟∈A

(⌜A ∖ {𝔟}⌝ ∨ 𝜑𝑖,𝔟)

are also well-formed formulas of LangSim,A. Working out the semantics of
the 𝜑𝑖-formulas, it follows from the semantics of the 𝜑𝑖 ,𝔟-formulas that

J𝜑𝑖KS(𝑧) = 𝑏𝑖(𝑧) (3.17)

for all 𝑧 ∈ 𝑌.
We now finally move on to the final part of the proof. Note that by the

naturality of Boolean-valued predicate liftings, we have that the square on
the right in the diagram

𝑆 (PredA𝑆)ar♡ PredAF𝑆

𝐸 (PredA𝐸)ar♡ PredAF𝐸

quo

lift♡𝑆

(PredAquo)ar♡

lift♡𝐸

PredAFquo (3.18)

commutes in Set — we have left out the forgetful functors for brevity of
notation. Working the composition on the bottom-right of Diagram (3.18)
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out, we find that

(PredAFquo)(lift♡𝐸(𝒗)) = 𝑊 ∈ F𝑆 ↦→ {
𝔟 ∈ A ; 𝔟 ∈ lift♡𝐸(𝒗)((Fquo)𝔟(𝑊))} ,

(3.19)
where 𝒗 = ⟨𝑣1 , . . . , 𝑣ar♡⟩. And working the composition on the top-left of
Diagram (3.18) out, we find that

lift♡𝑆((PredAquo)ar♡(𝒗)) = lift♡𝑆(. . . , 𝑠 ∈ 𝑆 ↦→ {𝔟 ∈ A ; 𝔟 ∈ 𝑣𝑖(quo𝔟(𝑠))} , . . . ).
(3.20)

Importantly, note that the Boolean-valued predicates

𝑞𝑖 = 𝑠 ∈ 𝑆 ↦→ {𝔟 ∈ A ; 𝔟 ∈ 𝑣𝑖(quo𝔟(𝑠))}
in Equation (3.20) are equal to

𝑞𝑖 = 𝑠 ∈ 𝑆 ↦→ {
𝔟 ∈ A ; 𝑠 ∈ quo−1

𝔟 [𝑣𝑖,𝔟]
}
. (3.21)

Given these equations, we find that

𝔞 ∈ lift♡𝐸(𝒗)((Fquo)𝔞(𝜎𝔞(𝑠))) iff 𝔞 ∈ (PredAFquo)(lift♡𝐸(𝒗))(𝜎𝔞(𝑠))
(Equation (3.19))

iff 𝔞 ∈ lift♡𝑆((PredAquo)ar♡(𝒗))(𝜎𝔞(𝑠))
(Diagram (3.18) commutes)

iff 𝔞 ∈ lift♡𝑆(𝑞1 , . . . , 𝑞ar♡)(𝜎𝔞(𝑠))
(Equation (3.20))

iff 𝔞 ∈ lift♡𝑌(𝑏1 , . . . , 𝑏ar♡)(𝜎𝔞(𝑠))
(Lemma 3.2.36 and Equations (3.15) and (3.21))

iff 𝔞 ∈ lift♡𝑆(J𝜑1KS , . . . , J𝜑ar♡KS)(𝜎𝔞(𝑠))
(Lemma 3.2.36 and Equation (3.17))

iff 𝔞 ∈ (PredA𝜎)(lift♡𝑆(J𝜑1KS , . . . , J𝜑ar♡KS))(𝑠)
(Proposition 3.2.17)

iff 𝔞 ∈ J♡(𝜑1 , . . . , 𝜑ar♡)KS(𝑠).
Using identical reasoning, we also find that

𝔞 ∈ lift♡𝐸(𝒗)((Fquo)𝔞(𝜎𝔞(𝑡))) iff 𝔞 ∈ J♡(𝜑1 , . . . , 𝜑ar♡)KS(𝑡).
Since S, 𝑠 ≡𝔞 S, 𝑡, we know that

𝔞 ∈ J♡(𝜑1 , . . . , 𝜑ar♡)KS(𝑠) iff 𝔞 ∈ J♡(𝜑1 , . . . , 𝜑ar♡)KS(𝑡),
and thus we get

𝔞 ∈ lift♡𝐸(𝒗)((Fquo)𝔞(𝜎𝔞(𝑠))) iff 𝔞 ∈ lift♡𝐸(𝒗)((Fquo)𝔞(𝜎𝔞(𝑡)))
which is precisely what we set out to prove, namely Equation (3.14). Thus
Equations (3.12) and (3.13) also hold, showing that quo : S → E is indeed
an F-coalgebra morphism, and so S, 𝑠 ≡𝔞 S, 𝑡 implies S, 𝑠 ≃𝔞 S, 𝑡 for all
𝔞 ∈ A. □
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Corollary 3.2.38. LetF be a finitary endofunctor on ASet, and let Log = ⟨Sim,
Lift⟩ be a Boolean-valued coalgebraic modal logic overF such that Lift is separat-
ing forF. If A is finite, then for allF-models S and S′, it holds for all states 𝑠 in S
and 𝑠′ in S′ that

S, 𝑠 ≡Log𝔞 S′, 𝑠′ implies S, 𝑠 ≃𝔞 S
′, 𝑠′

for all 𝔞 ∈ A.
Proof. Consider the coproduct S + S′ — i.e. the F-model with state space
𝑆 + 𝑆′ and coalgebra map 𝜎 + 𝜎′ being the unique agent-indexed function
making the diagram

𝑆 𝑆 + 𝑆′ 𝑆′

F𝑆 F(𝑆 + 𝑆′) F𝑆′

𝜎

inj𝑆

𝜎+𝜎′ 𝜎′

inj𝑆′

Finj𝑆 Finj𝑆′

commute. By definition of the semantics of Log, we have that the diagram

AlgLogS AlgLog(S + S′) AlgLogS
′

LangSim,A

AlgLoginj𝑆 AlgLoginj𝑆′

J−KLog
S

J−KLog
S′

J−KLog
S+S′

commutes. Working this out, it follows that S, 𝑠 ≡𝔞 S+S′, inj𝑆(𝑠) and S′, 𝑠′ ≡𝔞

S + S′, inj𝑆′(𝑠′) for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′. So S, 𝑠 ≡𝔞 S′, 𝑠′ iff S + S′, inj𝑆(𝑠) ≡𝔞

S + S′, inj𝑆′(𝑠′).
It follows from the universal property of the coproduct that whenever

there are F-coalgebra morphisms 𝑓 : S → X and 𝑓 ′ : S′ → X, that there
exists a unique 𝑔 : S + S′ → X making the diagram

S (S + S′) S′

X

inj𝑆

𝑓
𝑔

inj𝑆′

𝑓 ′

commute. Writing this out, it is easily verifiable that S, 𝑠 ≃𝔞 S′, 𝑠′ iff S +
S′, inj𝑆(𝑠) ≃𝔞 S + S′, inj𝑆′(𝑠′).

The corollary now follows immediately through Theorem 3.2.37. □

While we are only capable of proving expressivity for general endofunc-
tors on ASet in case there are finitelymany agents, we can do awaywith this
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requirement when we are considering Booleanizations of two-valued coal-
gebraic modal logics. For those, expressivity is an immediate consequence
of expressivity in the two-valued setting. To see this, we require one final
‘sliced’ characterization: that of logical equivalence.

Proposition 3.2.39. Let Tbe a set functor, and let Log = ⟨Sim, Lift⟩ be a two-
valued coalgebraic modal logic over T. For all TA-models S and S′, it holds that
S, 𝑠 ≡LogA

B
S′, 𝑠′ iff S𝔞 , 𝑠 ≡Log S′𝔞 , 𝑠′ for all 𝔞 ∈ B.

Proof. For the direction from left to right, take any 𝜑 ∈ LangSim (i.e. from the
two-valued language) and 𝔞 ∈ B. Suppose (clearly without loss of general-
ity) that 𝑠 ∈ J𝜑KLog

S𝔞
. We will show that 𝑠′ ∈ J𝜑KLog

S′𝔞
as well. Note that the

translation tr𝔞 used in the Coalgebraic Slicing Theorem (Theorem 3.2.19)
is surjective: for any 𝜑 ∈ LangSim, there is some 𝜓 ∈ LangSim,A such that
tr𝔞(𝜓) = 𝜑. So fix any such 𝜓 for 𝜑. Since S, 𝑠 ≡LogA

B
S′, 𝑠′, we have that

𝔞 ∈ J𝜓KLogA
S

(𝑠) iff 𝔞 ∈ J𝜓KLogA
S′ (𝑠′). We know from the Coalgebraic Slic-

ing Theorem that 𝔞 ∈ J𝜓KLogA
S

(𝑠) iff 𝑠 ∈ Jtr𝔞(𝜓)KLogS𝔞 . As tr𝔞(𝜓) = 𝜑 and
𝑠 ∈ J𝜑KLog

S𝔞
, it then follows that indeed 𝔞 ∈ J𝜓KLogA

S
(𝑠). And so we also find

that 𝔞 ∈ J𝜓KLogA
S′ (𝑠′). Again applying the Coalgebraic Slicing Theorem, we

find that 𝑠′ ∈ J𝜑KLog
S′𝔞

, which is what we needed. So S𝔞 , 𝑠 ≡Log S′𝔞 , 𝑠′.
For the direction from right to left, take any 𝜑 ∈ LangSim,A and 𝔞 ∈ B.

Suppose (again, without loss of generality) that 𝔞 ∈ J𝜑KLogA
S

(𝑠). We will
show that 𝔞 ∈ J𝜑KLogA

S′ (𝑠′). By the Coalgebraic Slicing Theorem, it holds
that 𝑠 ∈ Jtr𝔞(𝜑)KLogS𝔞 . As S𝔞 , 𝑠 ≡Log S′𝔞 , 𝑠′ for all 𝔞 ∈ A, it then follows that
𝑠′ ∈ Jtr𝔞(𝜑)KLogS′𝔞 as well. Again applying the Coalgebraic Slicing Theorem,
we then immediately find that 𝔞 ∈ J𝜑KLogA

S′ (𝑠′), which is what we needed to
show. So S, 𝑠 ≡LogA

B
S′, 𝑠′. □

Theorem 3.2.40. Let Tbe a finitary set functor, and let Log = ⟨Sim, Lift⟩ be a
two-valued coalgebraic modal logic over Tsuch that Lift is separating for T. For
allTA-models S and S′, it holds for all states 𝑠 in S and 𝑠′ in S′ that

S, 𝑠 ≡LogA𝔞 S′, 𝑠′ implies S, 𝑠 ≃𝔞 S
′, 𝑠′

for all 𝔞 ∈ A.
Proof. By Proposition 3.2.24, it holds that S, 𝑠 ≃𝔞 S′, 𝑠′ iff S𝔞 , 𝑠 ≃ S′𝔞 , 𝑠′. And
by Proposition 3.2.39, it holds that S, 𝑠 ≡LogA𝔞 S′, 𝑠′ iff S𝔞 , 𝑠 ≡Log S′𝔞 , 𝑠′. As T
is finitary and Lift is separating forT, it follows from the expressivity result
in the two-valued setting (Proposition 2.2.9) that S𝔞 , 𝑠 ≡Log S′𝔞 , 𝑠′ implies
that S𝔞 , 𝑠 ≃ S′𝔞 , 𝑠′. And thus we also have that S, 𝑠 ≡LogA𝔞 S′, 𝑠′ implies S, 𝑠 ≃𝔞

S′, 𝑠′. □





CHAPTER 4

MULTIPLAYER GAME LOGIC

In this chapter, we will define and generalize multiplayer games and their
logic as treated by Olde Loohuis and Venema (2010).1 In Section 4.1, we
give the basic definitions and properties of the game structures and their
logic defined in LAMP. Afterwards, in Section 4.2 we generalize the afore-
mentioned game structures in a way that is more amenable to coalgebraic
generalization. Finally, in Section 4.3 we work out this coalgebraic general-
ization.

4.1 Deterministic Multiplayer Games
Throughout the chapter, we will be working with sets A of players. Unlike in
Chapter 3 however, we will usually not take A to be fixed, and will instead
parameterize our definitions by it.

In LAMP, Olde Loohuis and Venema propose a logic, based on earlier
work by Tulenheimo and Venema (2008), of which the semantics is natu-
rally defined through certain multiplayer games. These multiplayer games
are games of perfect information played over directed graphs, with vertices
in the graph corresponding to positions in the game, and outgoing edges
corresponding to potentialmoves. The only difference between these games
and those considered in the classical two-player evaluation game, is that any
player 𝔞 ∈ A could get a turn at a given position, and that multiple players
can win at a final position.

The semantics of the logic in LAMP is given similarly to the semantics of
classical modal logic using two-player evaluation games, based on players
having winning strategies at positions in games. But again different from the
classical two-player setting, it is now possible for arbitrary sets of players to
have winning strategies at a given position. So like in Chapter 3, the logic
takes truth values from PA.

1Hereafter, this article is referred to as LAMP.

59
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4.1.1 Games, Syntax and Semantics

Let us first consider the basic game structure treated by LAMP. We define
these in a manner that is more suited to our eventual generalizations, and
is equivalent within the scope of both our logic and that of LAMP.

Definition 4.1.1. A deterministic A-game (or more generally, a deterministic
multiplayer game) is a quintuple G = ⟨Pos,Adm, Fin, turn,win⟩, where Pos
is a set of positions, Adm is a binary admissibility relation Adm ⊆ Pos × Pos
with no infinite Adm-chains2, Fin is a set Fin ⊆ Pos of final positions such that
Adm[𝑝] = ∅ for all 𝑝 ∈ Fin, turn is a turn function turn : Pos ∖ Fin → A, and
win is a win function win : Fin → PA. A pointed deterministic A-game is a pair
G@𝑝 =

〈
G, 𝑝

〉
consisting of a deterministic A-game G and a position 𝑝 in

G. �
Note that these games are never referred to as deterministic multiplayer

games in LAMP. Our usage of the term ‘deterministic’ arises from the fact
that the codomain of the turn function is the set A of players, and hence,
that fixing players’ strategies (as wewill shortly define) suffices to determine
how matches proceed. But this only shows the terminology is correct. We
will not be able to argue in favour of its relevance before we get to Section 4.2
and define nondeterministic multiplayer games, in which the codomain of
the turn function is no longer the set A of players, but instead the powerset
PA.

Let us expound upon thewaymatches proceed. A deterministic A-game
G is played over a board represented by the directed graph ⟨Pos,Adm⟩. At
each step of a match, the game will be in precisely one of the positions 𝑝 ∈
Pos. The admissibility relation Adm denotes the admissible positions which
play can move to from a given position, with 𝑝 Adm 𝑝′ meaning that 𝑝′ is
admissible from 𝑝. If the game is at a nonfinal position 𝑝 ∉ Fin, the player
turn(𝑝) chooses a position 𝑝′ that is admissible from 𝑝, after which the game
will be at position 𝑝′.

Note that contrary to what one might expect of nonfinal positions, it
might be the case that Adm[𝑝] = ∅ for 𝑝 ∉ Fin. A match ends if it reaches
such positions, since the player turn(𝑝)will not be able to choose an admissi-
ble position. In case amatch ends in thismanner, the players in A∖

{
turn(𝑝)}

are declared to be the winners of the match, with the player turn(𝑝) intu-
itively losing because he got ‘stuck’. Matches otherwise end if they reach
a final position 𝑝 ∈ Fin, with the players in win(𝑝) being declared to be the
winners of thematch. Since we require that there be no infinite Adm-chains,
matches are guaranteed to end.

Formally, we define matches and strategies as follows.

2That is, we require that there exist no infinite sequences
〈
𝑝𝑖

〉
𝑖<𝜔 of positions 𝑝𝑖 ∈ Pos

satisfying 𝑝𝑖 Adm 𝑝𝑖+1 for all 𝑖 < 𝜔.
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Definition 4.1.2. Fix a pointed deterministic A-game G@𝑝0 with G = ⟨Pos,
Adm, Fin, turn,win⟩. A match (of G@𝑝) is a finite sequence 𝒑 =

〈
𝑝0 , . . . , 𝑝𝑛

〉
of positions 𝑝𝑖 ∈ Pos such that 𝑝𝑖 Adm 𝑝𝑖+1 for each 𝑖 < 𝑛. The last position
of 𝒑 is the position last(𝒑) = 𝑝𝑛 .

Amatch 𝒑 is said to be complete if Adm[last(𝒑)] = ∅, and incomplete other-
wise. The set of all completematches is denoted Comp(G@𝑝), andwe define
a function win : Comp(G@𝑝) → PA by putting win(𝒑) :=

{
win(last(𝒑))} if

last(𝒑) ∈ Fin, and win(𝒑) := A ∖
{
turn(last(𝒑))} otherwise. For players 𝔞 ∈ A,

𝔞 wins the (complete) match 𝒑 if 𝔞 ∈ win(𝒑).
Given a player 𝔞 ∈ A, the set of all incomplete matches 𝒑 such that

turn(last(𝒑)) = 𝔞 is denoted Incomp𝔞(G@𝑝). A strategy for 𝔞 is a function
strat : Incomp𝔞(G@𝑝) → Pos such that last(𝒑) Adm strat(𝒑) for all 𝒑 ∈
Incomp𝔞(G@𝑝).3 A strategy profile strat is a player-indexed collection strat =
⟨strat𝔞⟩𝔞∈A such that strat𝔞 is a strategy for 𝔞.

Given a strategy profile strat, a match 𝒑 =
〈
𝑝0 , . . . , 𝑝𝑛

〉
is said to have

been played conform strat if 𝑝𝑖+1 = stratturn(𝑝𝑖)(𝑝0 , . . . , 𝑝𝑖) for all 𝑖 < 𝑛. �
The formal definition of when amatch is played conform a strategy pro-

file confirms what we stated earlier about the deterministic nature of these
games. Given a strategy profile and an initial position, the course of the
match is fully determined.

The notion of a winning strategy is defined in the most straightforward
manner: a strategy is winning if it can force a win in any match.

Definition 4.1.3. Given a pointed deterministic A-game G@𝑝, a strategy
strat for player 𝔞 ∈ A is a winning strategy for 𝔞 if for all strategy profiles
strat with strat𝔞 = strat and all complete matches 𝒑 played conform strat, it
holds that 𝔞 wins 𝒑. If there is a winning strategy for 𝔞 in G@𝑝, we say that
𝔞 has a winning strategy from 𝑝 in G, or more concisely that 𝔞 wins G@𝑝. �

Having defined the game structures, we now move on to the logic. The
syntax and semantics of deterministic multiplayer logic4 are defined via a strai-
ghtforward generalization of two-player evaluation games for basic modal
logic to the multiplayer setting. In two-player evaluation games for basic
modal logic, disjunctions 𝜑 ∨ 𝜓 correspond to a binary choice of 𝜑 and 𝜓
for theVerifier andmodal formulas3𝜑 correspond to a choice of a successor
state for the Verifier. As we have a set A of players, it is natural to consider

3We define strategies as functions with sets of incomplete matches as their domain. It
should be noted that we could in fact get away with a simpler definition, with us defining
strategies for 𝔞 as functions strat : turn−1[𝔞] → Pos (also respecting admissibility), which
would intuitively correspond to memoryless strategies in which players only make local de-
cisions at each step, with no regards to how they arrived at a certain position. For ease of
comparison with the original definitions from LAMP, we refrain from pursuing this alter-
native definition any further.

4Note that we are not saying the logic itself is deterministic, but are only making explicit
that we are considering multiplayer logic interpreted over deterministic multiplayer games.
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binary choices and successor state choices for each player. Negation in two-
player evaluation games corresponds to the Verifier and Falsifier switching
roles. Generalizing this idea, we will allow arbitrary players to switch roles.
To achieve this, we define the general notions of role distributions.

Definition 4.1.4. An A-distribution (or more generally, a role distribution) is
a permutation role : A→ A. The set of A-distributions is denoted RDA. For
players 𝔞, 𝔟 ∈ A, the A-distribution [𝔞, 𝔟] is defined by putting [𝔞, 𝔟](𝔞) := 𝔟,
[𝔞, 𝔟](𝔟) := 𝔞, and [𝔞, 𝔟](𝔠) := 𝔠 for 𝔠 ∈ A ∖ {𝔞, 𝔟}. �

Intuitively, a role distribution role assigns to a player 𝔞 the role 𝔞 is taking,
i.e. that of player role(𝔞).

We can now introduce the syntax of deterministic multiplayer logic.

Definition 4.1.5. The language of deterministic A-logic is the set LangDET,A in-
ductively defined as

LangDET,A ∋ 𝜑 ::= 𝑝 | ⊥ | ⊤ | ⊥𝔞 | ⊤𝔞 | (𝜑 ∨𝔞 𝜑) | (3𝔞𝜑) | (role𝜑),
where 𝑝 ∈ Prop, 𝔞 ∈ A, and role ∈ RDA. �

Intuitively, the atomic formulas ⊥ and ⊤ represent positions at which
nobody or everybody wins, respectively. To be able to express winning and
losing for individual players, there are also player-indexed versions ⊥𝔞 and
⊤𝔞: these are positions at which only 𝔞 loses or only 𝔞 wins, respectively.
Formulas 𝜑 ∨𝔞 𝜓 are positions at which 𝔞 has to choose one of the positions
corresponding to 𝜑 and 𝜓, and formulas 3𝔞𝜑 are positions at which 𝔞 has
to choose a position corresponding to 𝜑 and a successor state w.r.t. some
given Kripke model.

Connectives role are referred to as role switches. Some arbitrary fixed
player 𝔵 has a turn at a formula role𝜑, and there is precisely one admissible
position: the formula 𝜑, but with players 𝔞 ∈ A now playing the ‘role’ of the
player role(𝔞).5

We can now begin defining the semantics of deterministic multiplayer
logic. The logic is defined over ordinary Kripke frames of which the colour-
ing is not a function from states to sets of propositional variables, but in-
stead an agent-indexed colouring (cf. Definition 3.1.2) col : 𝑆 → (PA)Prop,
intuitively assigning to each state 𝑠 and 𝑝 ∈ Prop precisely those 𝔞 ∈ A that
win there. We will refer to these as player-indexed colourings in this chapter,
and will refer to ordinary Kripke frames F equipped with player-indexed
colourings col as Kripke multiplayer (or A-) modelsM = ⟨F, col⟩.

Let us start by giving the evaluation games, which are instances of de-
terministic multiplayer games.

5In LAMP, role switches are indexed by two players, instead of an arbitrary role distribu-
tion. If A is finite, these two approaches are equivalent. But when A is infinite, indexing by
role distributions gives more expressive power, which will be required in e.g. Section 4.2.4.
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Table 4.1: Specification of a deterministic A-logic evaluation game.

Position Admissible moves Turn Winners〈
𝑝, 𝑠, role

〉 ∅ - role−1[col(𝑠)(𝑝)]
⟨⊥, 𝑠 , role⟩ ∅ - ∅
⟨⊤, 𝑠 , role⟩ ∅ - A

⟨⊥𝔞 , 𝑠 , role⟩ ∅ - role−1[A ∖ {𝔞}]
⟨⊤𝔞 , 𝑠 , role⟩ ∅ -

{
role−1(𝔞)}〈

𝜑 ∨𝔞 𝜓, 𝑠 , role
〉 {〈

𝜑, 𝑠 , role
〉
,
〈
𝜓, 𝑠 , role

〉}
role−1(𝔞) -〈3𝔞𝜑, 𝑠 , role

〉 {〈
𝜑, 𝑡 , role

〉
; 𝑡 ∈ 𝑅[𝑠]} role−1(𝔞) -〈

rd𝜑, 𝑠 , role
〉 {〈

𝜑, 𝑠 , rd ◦ role
〉}

𝔵 -

Definition 4.1.6. Given a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, the determin-
istic A-logic evaluation game over M is the deterministic A-game EvalDET

A
M

with positions LangDET,A × 𝑆 × RDA, and other components specified in Ta-
ble 4.1. �

Note that these evaluation games are always well-defined determinis-
tic A-games: admissible moves always involve moving from a formula to a
subformula, and so there are no infinite Adm-chains.

Having defined evaluation games, we are now able to define the seman-
tics of deterministic A-logic fully analogously to the way it is defined in two-
player evaluation games.

Definition 4.1.7. Given a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, the semantics
of deterministic A-logic is given by the function J−KDET,A

M
: LangDET,A → (PA)𝑆

defined by putting

J𝜑KDET,A
M (𝑠) :=

{
𝔞 ∈ A ; 𝔞 wins (EvalDET

A
M)@ 〈

𝜑, 𝑠 , idA
〉}

for 𝜑 ∈ LangDET,A and 𝑠 ∈ 𝑆. �
We can give a more familiar compositional characterization of the se-

mantics of deterministic A-logic. To do this, first note the following essen-
tial, general and easily proven property of deterministic A-games.

Proposition 4.1.8. LetG = ⟨Pos,Adm, Fin, turn,win⟩ be a deterministicA-game,
and 𝑝 ∈ Pos a position with Adm[𝑝] ≠ ∅. Then
(i) turn(𝑝) has a winning strategy from 𝑝 in G iff there is some position 𝑞 ∈

Adm[𝑝] such that turn(𝑝) has a winning strategy from 𝑞 in G, and

(ii) any player 𝔞 ∈ A ∖ {
turn(𝑝)} has a winning strategy from 𝑝 in G iff 𝔞 has a

winning strategy from 𝑞 in G for all positions 𝑞 ∈ Adm[𝑝].
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This is fully analogous to the situation in two-player evaluation games,
where Verifier has a winning strategy at a position 𝜑 ∨ 𝜓 iff Verifier either
has a winning strategy at 𝜑 or at 𝜓, and Falsifier has a winning strategy at
𝜑 ∨ 𝜓 iff Falsifier has a winning strategy at both 𝜑 and 𝜓.

Using Proposition 4.1.8, we can give a compositional characterization of
the semantics of deterministic A-logic. This compositional characterization
ismost elegant and easy to interpret if we use the transpose of the semantics.
Recall that given a function 𝑓 : 𝑋 → 𝑌𝑍, we define its transpose to be the
function �̂� : 𝑍 → 𝑌𝑋 defined by putting �̂� (𝑧)(𝑥) := 𝑓 (𝑥)(𝑧). Since P𝑋 � 2𝑋
for all sets 𝑋, we also consider the transpose of a function 𝑓 : 𝑋 → P𝑌 to
be a function �̂� : 𝑌 → P𝑋. Using these transposes, we can consider for any

formula 𝜑 functions J𝜑KDET,A
M̂

: A→ P𝑆, with J𝜑KDET,A
M̂ (𝔞) being the set of

states 𝑠 such that 𝔞 is in the truth value J𝜑KDET,A
M (𝑠) at 𝑠.

Proposition 4.1.9. Let M = ⟨⟨𝑆, 𝑅⟩ , col⟩ be a Kripke A-model. Then for any
𝑝 ∈ Prop, 𝜑,𝜓 ∈ LangDET,A, role ∈ RDA, and 𝔞, 𝔟 ∈ A, it holds that

J𝑝KDET,A
M̂ (𝔞) = col̂ (𝑝)̂ (𝔞),

J⊥KDET,A
M̂ (𝔞) = ∅,

J⊤KDET,A
M̂ (𝔞) = 𝑆,

J⊥𝔟KDET,A
M̂ (𝔞) =

{
∅ if 𝔞 = 𝔟,

𝑆 if 𝔞 ≠ 𝔟,

J⊤𝔟KDET,A
M̂ (𝔞) =

{
𝑆 if 𝔞 = 𝔟,

∅ if 𝔞 ≠ 𝔟,

J𝜑 ∨𝔟 𝜓KDET,A
M̂ (𝔞) =


J𝜑KDET,A

M̂ (𝔞) ∪ J𝜓KDET,A
M̂ (𝔞) if 𝔞 = 𝔟,

J𝜑KDET,A
M̂ (𝔞) ∩ J𝜓KDET,A

M̂ (𝔞) if 𝔞 ≠ 𝔟,

J3𝔟𝜑KDET,A
M̂ (𝔞) =


{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ∩ J𝜑KDET,A

M̂ (𝔞) ≠ ∅
}

if 𝔞 = 𝔟,{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ⊆ J𝜑KDET,A

M̂ (𝔞)
}

if 𝔞 ≠ 𝔟, and

Jrole𝜑KDET,A
M̂ (𝔞) = J𝜑KDET,A

M̂ (role(𝔞)).
Proof sketch. We can show this by induction on formulas 𝜑 ∈ LangDET,A, in
which we apply Proposition 4.1.8. The case for role switch formulas role𝜑
requires a lemma, stating that for all formulas 𝜑, a player 𝔞wins the pointed
game (EvalDET

A
M)@ 〈

𝜑, 𝑠 , role
〉
iff role(𝔞) wins (EvalDET

A
M)@ 〈

𝜑, 𝑠 , idA
〉
. We

can also show this lemma through induction on formulas. □
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So we can consider e.g. formulas 𝜑 ∨𝔞 𝜓 to be ‘behaving’ like 𝜑 ∨ 𝜓 for
player 𝔞, while ‘behaving’ like 𝜑∧𝜓 for others. And similarly,3𝔞𝜑 ‘behaves’
like 3𝜑 for 𝔞, while ‘behaving’ like 2𝜑 for others.

Though the semantics of deterministic A-logic seems quite unintuitive,
they in fact generalize the semantics of two-valued basic modal logic. To
see this, note that we can consider all two-valued colourings to be player-
indexed colouringswith players A = {𝔳, 𝔣} corresponding to the Verifier and
Falsifier respectively, by putting col(𝑠)(𝑝) := {𝔳} if the two-valued colouring
assigns 𝑝 to 𝑠, and col(𝑠)(𝑝) := {𝔣} otherwise. We can then give a translation
trDET from formulas of basic modal logic to formulas in LangDET,A, defined
inductively as

trDET(⊤) := ⊤𝔳 ,

trDET(⊥) := ⊥𝔳 ,

trDET(𝑝) := 𝑝, (𝑝 ∈ Prop)
trDET(𝜑 ∨ 𝜓) := trDET(𝜑) ∨𝔳 trDET(𝜓),

trDET(¬𝜑) := [𝔳, 𝔣]trDET(𝜑), and
trDET(3𝜑) := 3𝔳trDET(𝜑).

Then 𝔳 ∈ J𝜑KDET,A
M (𝑠) iff 𝜑 holds at 𝑠 in the original two-valuedKripkemodel,

and 𝔣 ∈ J𝜑KDET,A
M (𝑠) iff 𝜑 does not hold at 𝑠 in the two-valued Kripke model.

4.1.2 Undefinability of Connectives and Modalities
Even though deterministic A-logic generalizes two-valued logic in the sense
described above, it has glaring limitations from the perspective of our pur-
poses: as we will shortly argue, the framework of deterministic multiplayer
games will not suffice for a proper coalgebraic generalization of multiplayer
logic, capable of accounting for different kinds of modalities.

But first, we note that even before considering modalities, the frame-
work of deterministic multiplayer games encounters problems when trying
to define Boolean connectives like conjunction. Though this need not be a
problem from the coalgebraic perspective, as there is no apparent reason a
priori to require multiplayer logics to contain all of these Boolean connec-
tives, it will in fact allow us to relate the multiplayer logic with the logic
from Chapter 3, as we will do in Chapter 5.

For example, it is easily verified that it is not possible to define connec-
tives ∧𝔞 that, similarly to ∨𝔞, behave as conjunction for 𝔞, and as disjunction
for others. And perhaps more pressingly, we observe that there is no true
negation. While role switches are inspired by theway negation is defined in
evaluation games for two-valued logic, they do not suffice on their own to
be able to define negation in deterministic A-logic. Negation in two-valued
evaluation games works because precisely one player has a turn or wins at
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any given position. But in the setting of deterministic A-logic, an arbitrary
set of players can be winning at a position. We can in fact verify quite easily
by Proposition 4.1.9 that the semantics is monotone with respect to colour-
ings, in the sense that col(𝑠)(𝑝) ⊆ col′(𝑠)(𝑝) for all states 𝑠 and 𝑝 ∈ Prop

implies that J𝜑KDET,A
F,col̂ (𝔞) ⊆ J𝜑KDET,A

F,col′̂ (𝔞) for all players 𝔞. This monotonicity
would obviously not hold if the logic allowed for negation, showing that
indeed role switches do not suffice.

But for our purposes, it is most important that deterministic A-logic ad-
mits a natural coalgebraic generalization. When generalizing multiplayer
logic to work over coalgebras other than Kripke frames (i.e. P-coalgebras),
the main challenge comes in how to approach modalities. We need to some-
how fit these into the existing framework, with semantics based on the exis-
tence of winning strategies. Let us consider an example coalgebra type and
modality, so we can see where the pitfalls lie.

Recall the distribution functor Dist : Set → Set defined in Exam-
ple 2.1.2, sending a set 𝑋 to the set Dist𝑋 ⊆ [0, 1]𝑋 of discrete probability
distributions over 𝑋. We have that Dist-coalgebras are precisely Markov
chains. We can define a unary predicate Dist-lifting representing a modal-
ity 3𝑘 for some 𝑘 ∈ [0, 1], of which the semantics in coalgebraic modal logic
will be defined for a Dist-coalgebra S = ⟨𝑆, 𝜎⟩ as

J3𝑘𝜑KS = {
𝑠 ∈ 𝑆 ; 𝜎(𝑠)(J𝜑KS) ⩾ 𝑘

}
,

where 𝜎(𝑠)(𝑇) :=
∑

𝑡∈𝑇 𝜎(𝑠)(𝑡) for 𝑇 ⊆ 𝑆.
Suppose we were trying to include these modalities in ordinary multi-

player logic. We would have to construct a position in the resulting evalua-
tion game corresponding to formulas 3𝑘𝜑. In deterministic A-games, there
needs to be exactly one player that gets a turn at this position. So to keep
things natural, we create player-indexed versions3𝑘

𝔞 of themodalities. If we
interpret this indexed version as we did with the indexed3 in deterministic
A-logic for KripkeA-models, thenwewant the formula3𝑘

𝔞𝜑 to truly ‘behave’
as 3𝑘𝜑 for 𝔞. In other words, we want our resulting semantics to satisfy

J3𝑘
𝔞𝜑KDET,A

Ŝ
(𝔞) =

{
𝑠 ∈ 𝑆 ; 𝜎(𝑠)( J𝜑KDET,A

Ŝ
(𝔞)) ⩾ 𝑘

}
.

Keeping this goal in mind, we now ask ourselves: what actions can
player 𝔞 take at the position corresponding to 3𝑘

𝔞𝜑 and state 𝑠? Unlike with
the 3-modality for Kripke models, the player needs to choose more than
just a single state 𝑡, since the desired semantics of the modality seems to
express something about multiple states. So let us have the player select a
set of states. A natural option is to have the player select sets 𝑇 ⊆ 𝑆 such
that

∑
𝑡∈𝑇 𝜎(𝑠)(𝑡) ⩾ 𝑘. This takes care of the probability-related part of the

semantics.
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But such sets 𝑇 do not suffice. We need to somehow enforce that a win-
ning strategy for 𝔞 from the original 3𝑘

𝔞𝜑 position corresponds to a winning
strategy for 𝔞 from all positions corresponding to 𝜑 and states 𝑡 ∈ 𝑇. If we
can do this, then the resulting semantics for 𝔞 will check out. So after 𝔞 has
chosen a set 𝑇, we require there to be a choice of state 𝑡 ∈ 𝑇. If we let 𝔞make
this choice again, the resulting semantics will be wrong, since then 𝔞 has a
winning strategy from the original position iff there is a set 𝑇 as described
earlier along with a state 𝑡 ∈ 𝑇 such that 𝔞 has a winning strategy from the
position corresponding to 𝜑 and 𝑡. Hence, some other player should get a
turn after𝑇 is chosen. If wewere to just let an arbitrary other player 𝔟 choose
the state, then the semantics for 𝔞 will be correct. The semantics for 𝔟 will
then behave like the dual 2𝑘 of the 3𝑘-modality. But for players other than
𝔞 and 𝔟, the semantics will become somewhat nonsensical, corresponding
neither to 3𝑘 nor to 2𝑘 . In fact, we can verify that the semantics for other
players 𝔠 will correspond to a global, universal modality, with 𝔠 having a
winning strategy from a 3𝑘

𝔞𝜑 position in state 𝑠 iff 𝔠 has a winning strategy
from 𝜑 in all states 𝑡 ∈ 𝑆.

Thus, we arrive at the essential insight that trying to incorporate other
modalities in evaluation games built on top of deterministic multiplayer ga-
mes quickly gives rise to unnatural semantics. This is what motivates our
move to nondeterministic multiplayer games in the next section.

4.2 Nondeterministic Multiplayer Games
Having discussed some problems with generalizing deterministic multi-
player logic based on deterministic multiplayer games, we now propose a
solution that takes care both of the problems with including other modali-
ties, and of the lack of usual connectives like conjunction and negation. We
will reconsider the very base game structure, instead defining nondetermin-
istic multiplayer games, in which players’ strategies do not fully determine
the course of matches.

4.2.1 Games and Matches
The definition of a nondeterministic multiplayer game is obtained by con-
sidering structures defined like deterministic multiplayer game, with the
additional relaxation that arbitrary sets of players can be selected by the
turn function at any position, instead of only a single player. This allows us
to shorten the definition drastically, as in the following.

Definition 4.2.1. A nondeterministic A-game (or more generally, a nondeter-
ministic multiplayer game) is a triple G = ⟨Pos,Adm, turn⟩, where Pos is a set
of positions, Adm is a binary admissibility relation Adm ⊆ Pos × Pos with no
infinite Adm-chains, and turn is a turn function turn : Pos → PA. A pointed
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nondeterministic A-game is a pairG@𝑝 =
〈
G, 𝑝

〉
consisting of a nondetermin-

istic A-game G and a position 𝑝 in G. �
We will comment, after describing the way matches proceed, on why

this shorter definition with no mention of final positions and win functions
truly corresponds to the definition of a deterministic multiplayer gamewith
the aforementioned relaxation of the turn function.

Let us expound upon thewaymatches proceedwith this newdefinition.
A nondeterministic A-game G is again played over a board represented by
the directed graph ⟨Pos,Adm⟩, with the admissibility relation Adm denoting
the admissible positions which play can move to from a given position. At
any position 𝑝 ∈ Pos with turn(𝑝) ≠ ∅ and Adm[𝑝] ≠ ∅, a nondeterministic
choice of one of the players 𝔞 ∈ turn(𝑝) is made. Said player 𝔞 chooses a
position 𝑝′ that is admissible from 𝑝, afterwhich the gamewill be at position
𝑝′. If turn(𝑝) = ∅, then a nondeterministic choice of an admissible position
𝑝′ ∈ Adm[𝑝] is made instead, with the game again moving to that position.

A match ends if it reaches a position 𝑝 with no admissible moves (i.e.
Adm[𝑝] = ∅). After ending, the players in A∖ turn(𝑝) are declared to be the
winners of the match, with the players in turn(𝑝) intuitively losing because
they got stuck. Since we again require that there be no infinite Adm-chains,
matches are guaranteed to end.

While deterministic multiplayer games had to make a distinction be-
tween final positions (over which the win function is defined) and nonfinal
positions with no admissible moves, this distinction is not needed in non-
deterministic multiplayer games. To see this, suppose we include in our
definition of nondeterministic multiplayer games a subset Fin ⊆ Pos of fi-
nal positions such that Adm[𝑝] = ∅ for all 𝑝 ∈ Fin, and such that turn is
defined only over nonfinal positions. We also include a win function win.
We redefine the conditions for winning a match that ends at a position 𝑝
by declaring the players in win(𝑝) to be the winners if 𝑝 ∈ Fin, and those
in A ∖ turn(𝑝) otherwise. Now note that all such games correspond to ones
without Fin and win, since if we just put turn(𝑝) := A∖win(𝑝) for 𝑝 ∈ Fin, we
would get that the same set of players win a match under either definition.

Keeping this in mind, we will often define the set Fin ⊆ Pos of final
positions in a nondeterministic A-game as an abbreviation Fin := {𝑝 ∈ Pos ;
Adm[𝑝] = ∅}. We similarly define a win function win : Fin → PA by putting
win(𝑝) := A ∖ turn(𝑝).
Definition 4.2.2. Fix a pointed nondeterministic A-game G@𝑝0 with G =
⟨Pos, Adm, turn⟩. A match (of G@𝑝) is a finite sequence 𝒑 =

〈
𝑝0 , . . . , 𝑝𝑛

〉
of

positions 𝑝𝑖 ∈ Pos such that 𝑝𝑖 Adm 𝑝𝑖+1 for each 𝑖 < 𝑛. The last position of 𝒑
is the position last(𝒑) = 𝑝𝑛 .

Amatch 𝒑 is said to be complete if Adm[last(𝒑)] = ∅, and incomplete other-
wise. The set of all completematches is denoted Comp(G@𝑝), andwe define
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a function win : Comp(G@𝑝) → PA by putting win(𝒑) := win(last(𝒑)). For
players 𝔞 ∈ A, 𝔞 wins the (complete) match 𝒑 if 𝔞 ∈ win(𝒑).

Given a player 𝔞 ∈ A, the set of all incomplete matches 𝒑 such that
𝔞 ∈ turn(last(𝒑)) is denoted Incomp𝔞(G@𝑝). A strategy for 𝔞 is a function
strat : Incomp𝔞(G@𝑝) → Pos such that last(𝒑) Adm strat(𝒑) for all 𝒑 ∈
Incomp𝔞(G@𝑝). A strategy profile strat is a player-indexed collection strat =
⟨strat𝔞⟩𝔞∈A such that strat𝔞 is a strategy for 𝔞.

Given a strategy profile strat, a match 𝒑 =
〈
𝑝0 , . . . , 𝑝𝑛

〉
is said to have

been played conform strat if for all 𝑖 < 𝑛 such that turn(𝑝𝑖) ≠ ∅, it holds that
𝑝𝑖+1 = strat𝔞(𝑝0 , . . . , 𝑝𝑖) for some 𝔞 ∈ turn(𝑝𝑖) �

Observe that this definition of matches and strategies matches our infor-
mal description ofmatches, and confirms our statement that the progress of
matches of nondeterministic multiplayer games are not fully determined by
the players’ strategies. Given a strategy profile strat and a position 𝑝, there
are distinct matches 𝒑 and 𝒑′ both starting from 𝑝 and played conform strat.

Remark 4.2.3. As an aside before moving on, we wish to note that Başkent
(2015) studies evaluation games of which the underlying games are similar
in structure to the nondeterministic multiplayer game we are defining. In-
terestingly, he uses these games to give game-theoretic semantics for para-
consistent logics, of which e.g. Priest’s Logic of Paradox (Priest 1979) can
also be viewed as a multivalued logic. The games Başkent considers for the
Logic of Paradox are also multiplayer games, in order to be able to define
the multivalued semantics. �
4.2.2 Demonic and Angelic Winning Strategies
Wehave definedwhat strategies are in nondeterministicmultiplayer games.
But how do we define the notion of a winning strategy? As we will see, the
most straightforward definition, in which we follow the usual definition of
winning strategies on e.g. deterministic multiplayer games, will not be the
most fruitful. A strategy for a player 𝔞 ∈ A in a (pointed) deterministic
A-game is winning if no matter what strategies other players use, 𝔞 wins
any complete match played conform the players’ strategies. This defini-
tion makes no mention of the deterministic nature of the game, and so it is
straightforward to generalize it to nondeterministic multiplayer games. We
will refer to strategies defined thusly as simple winning strategies.

Definition 4.2.4. Given a pointed nondeterministic A-gameG@𝑝, a strategy
strat for player 𝔞 ∈ A is a simple winning strategy for 𝔞 ∈ A if for all strategy
profiles strat with strat𝔞 = strat and all complete matches 𝒑 played conform
strat, it holds that 𝔞 wins 𝒑. If there is a simple winning strategy for 𝔞 in
G@𝑝, we say that 𝔞 has a simple winning strategy from 𝑝 inG, ormore concisely
that 𝔞 simply wins G@𝑝. �
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In order to obtain a better understanding of the nature of simple win-
ning strategies for nondeterministic multiplayer games, we first need to ob-
tain a better understanding of the working of matches. Note that while the
definition of matches and strategies in Definition 4.2.2 do capture the non-
determinism of the games (as explained), the definition makes no explicit
mention of nondeterministic choices anywhere, even though these were part
of our informal description of the workings of matches. We can make these
choices explicit with the following definition.

Definition 4.2.5. Given a nondeterministic A-game G = ⟨Pos,Adm, turn⟩,
a nondeterministic choice for G (or simply a G-choice) is a function6 choice :
Pos ∖ Fin → A ∪ Pos such that choice(𝑝) ∈ turn(𝑝) ⊆ A for 𝑝 ∈ Pos ∖ Fin
with turn(𝑝) ≠ ∅, and choice(𝑝) ∈ Adm[𝑝] ⊆ Pos for 𝑝 ∈ Pos ∖ Fin with
turn(𝑝) = ∅.

Given a G-choice choice, the choice-instantiation of G is the deterministic
A-game Gchoice := ⟨Pos,Admchoice , Fin, turnchoice ,win⟩, where Fin and win are
defined precisely as they are for G, the admissibility relation is defined as

Admchoice :=
{〈
𝑝, 𝑞

〉
; 𝑝 Adm 𝑞 and turn(𝑝) ≠ ∅}

∪ {〈
𝑝, choice(𝑝)〉 ; 𝑝 ∈ Pos ∖ Fin and turn(𝑝) = ∅}

,

and the turn function is defined as

turnchoice(𝑝) :=

{
choice(𝑝) if turn(𝑝) ≠ ∅, and
𝔵 if turn(𝑝) = ∅,

where 𝔵 is some arbitrary player.7 We will generally refer to choice-instan-
tiations of G as all being instantiations of G. �

This definition fits the informal description stating that matches require
nondeterministic choices of players who will take a turn at positions 𝑝 such
that turn(𝑝) ≠ ∅, and choices of admissible positions at positions 𝑝 such
that turn(𝑝) = ∅. We can also make this relation precise: assuming that
G@𝑝 is such that all 𝑞 ∈ Pos are reachable from 𝑝 through Adm, it is easily
verified that given a strategy profile strat, the complete matches in G@𝑝
played conform strat correspond precisely to G-choices.

These choices can be considered to make the game deterministic, as we
capture through instantiations. Importantly, note that strategy profiles in
a nondeterministic A-game G can be restricted to be strategy profiles in the
choice-instantiationGchoice. Thiswill allowus to define a strategy for a player
inG to bewinning, based onwhether its restriction is winning in the instan-
tiations of G.

6Recall that we define Fin :=
{
𝑝 ∈ Pos ; Adm[𝑝] = ∅}

, and win(𝑝) := A ∖ turn(𝑝).
7It is easily verified that the choice of which player is used here is not important, since

these positions have precisely one admissible move.
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A natural first definition that is constructed in this manner is what we
refer to as a demonic winning strategy. This is based on the term demonic non-
determinism used throughout the theory of programming, stated by Søn-
dergaard and Sestoft (1992) to be due to Tony Hoare. In the theory of pro-
gramming, demonic nondeterminism is roughly nondeterminism in which
all nondeterministic choices are made by a ‘demon’ that will always choose
the worst possible outcome.8 In the context of the nondeterministic mul-
tiplayer games we defined, if the nondeterministic choices are made by a
demon, then a player can only truly be guaranteed to win if he wins no
matter which choices the demon makes.
Definition 4.2.6. Given a pointed nondeterministic A-gameG@𝑝, a strategy
strat for player 𝔞 ∈ A is a demonic winning strategy for 𝔞 ∈ A if the restriction
strat↾Incomp𝔞(Gchoice@𝑝) is awinning strategy for 𝔞 inGchoice@𝑝, for allG-choices
choice. If there is a demonic winning strategy for 𝔞 inG@𝑝, we say that 𝔞 has
a demonic winning strategy from 𝑝 in G, or more concisely that 𝔞 demonically
wins G@𝑝. �

We consider the restriction strat↾Incomp𝔞(Gchoice@𝑝), which is the strategy
in Gchoice@𝑝 that is identical to strat. We require this restriction since there
might be incomplete matches in G@𝑝 at which 𝔞 has a turn, but at which
𝔞 would not have a turn if we were considering Gchoice@𝑝. Even then, if
we want to be fully precise, we can not just consider this restriction, since
we defined instantiations of nondeterministic multiplayer games to require
some fixed arbitrary player in the definition of turnchoice(𝑝) for 𝑝 ∈ Pos ∖
Fin with turn(𝑝) = ∅. If 𝔞 is said arbitrary player, the restriction would
not truly be a strategy for 𝔞 in Gchoice@𝑝. But since |Admchoice[𝑝]| = 1 for
such 𝑝, the restriction can be uniquely extended to be a proper strategy for
𝔞 in Gchoice@𝑝. So we can always assume without loss of generality that
the player for whom we are considering a strategy is not the fixed arbitrary
player used in the definition of turnchoice.

Perhaps unsurprisingly, demonic winning strategies correspond pre-
cisely to simple winning strategies.
Proposition 4.2.7. Let G@𝑝 be a pointed nondeterministic A-game, and let strat
be a strategy for a player 𝔞 ∈ A. Then strat is a simple winning strategy iff it is a
demonic winning strategy.
Proof. Throughout the proof, we define the abbreviation

stratREST := strat↾Incomp𝔞(Gchoice@𝑝).

For the direction from left to right, take any G-choice choice. We need
to show that stratREST is a winning strategy for 𝔞 in Gchoice@𝑝. So consider

8To be precise, demonic nondeterminism in the theory of programming refers to a prop-
erty of nondeterministic programs inwhich the possibility of nontermination implies certain
nontermination, as stated by Berghammer and Zierer (1986).
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a strategy profile strat in Gchoice@𝑝 with strat𝔞 = stratREST, and a complete
match 𝒑 in Gchoice@𝑝 played conform strat. Writing 𝒑 =

〈
𝑝0 , . . . , 𝑝𝑛

〉
with

𝑝0 = 𝑝, we then know that Admchoice[𝑝𝑛] = ∅ and 𝑝𝑖 Admchoice 𝑝𝑖+1 for all
𝑖 < 𝑛. Since it is easily verified that Admchoice ⊆ Adm, and that Adm[𝑞] = ∅
iff Admchoice[𝑞] = ∅, it then follows that 𝒑 is also a complete match in G@𝑝.

As turnchoice(𝑞) ∈ turn(𝑞) for all 𝑞 ∈ Pos ∖ Fin with turn(𝑞) ≠ ∅, we
also have that Incomp𝔟(Gchoice@𝑝) ⊆ Incomp𝔟(G@𝑝). So we can safely fix a
strategy profile strat′ in G@𝑝 with strat′𝔞 = strat, and strategies strat′𝔟 such
that

strat′𝔟↾Incomp𝔟(Gchoice@𝑝) = strat𝔟.

By definition of 𝒑 being played conform strat in Gchoice@𝑝, we know that
𝑝𝑖+1 = stratturnchoice(𝑝𝑖)(𝑝0 , . . . , 𝑝𝑖) for all 𝑖 < 𝑛. Again since turnchoice(𝑞) ∈
turn(𝑞) for all 𝑞 ∈ Pos ∖ Fin with turn(𝑞) ≠ ∅, it follows that 𝒑 is also played
conform strat′ in G@𝑝.

Now since we assume strat is a simple winning strategy for 𝔞 in G@𝑝,
and strat′𝔞 = strat, it must be that 𝔞 wins 𝒑 in G@𝑝. And so by definition of
the win function inGchoice@𝑝, we have that 𝔞 also wins 𝒑 inGchoice@𝑝. Thus,
strat is a demonic winning strategy for 𝔞 in G@𝑝.

For the direction from right to left, take any strategy profile strat with
strat𝔞 = strat, and any complete match 𝒑 =

〈
𝑝0 , . . . , 𝑝𝑛

〉
with 𝑝0 = 𝑝 in G@𝑝

played conform strat. Then for all 𝑖 < 𝑛, it must hold that 𝑝𝑖 Adm 𝑝𝑖+1, and
𝑝𝑖+1 = strat𝔟𝑖 (𝑝0 , . . . , 𝑝𝑖) for some 𝔟𝑖 ∈ turn(𝑝𝑖) if turn(𝑝𝑖) ≠ ∅. Let choice be
a G-choice such that for all 𝑖 < 𝑛 it holds that choice(𝑝𝑖) = 𝔟𝑖 if turn(𝑝𝑖) ≠ ∅,
and choice(𝑝𝑖) = 𝑝𝑖+1 if turn(𝑝𝑖) = ∅.

Consider the strategy profile strat′ in Gchoice@𝑝 with

strat′𝔟 := strat𝔟↾Incomp𝔟(Gchoice@𝑝)

for all players 𝔟 ∈ A. Since strat is a demonic winning strategy for 𝔞 in
G@𝑝, it follows that strat′𝔞 is a winning strategy for 𝔞 inGchoice@𝑝. By defini-
tion of choice, we have that 𝒑 is a complete match played conform strat′ in
Gchoice@𝑝. So 𝔞 wins 𝒑 in Gchoice@𝑝, and therefore by definition of the win
function in Gchoice, also wins 𝒑 in G@𝑝. Therefore strat is a simple winning
strategy for 𝔞 ∈ A in G@𝑝. □

Hence, we will be justified in just speaking of demonic winning strate-
gies, instead of simple winning strategies. Whenever it aids understanding
to do so, however, we will use the definition of simple winning strategies
instead.

As already alluded to just before giving Definition 4.2.4, demonic win-
ning strategies are not the winning strategies that are most fruitful in the
study of nondeterministic multiplayer games. We will promptly show that
one can essentially do away with most of the structure in nondeterminis-
tic multiplayer games differentiating them from deterministic multiplayer
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games, when one only considers demonic winning strategies. To see this,
we first define demonizations of nondeterministic multiplayer games. These
modify the structure of a nondeterministic multiplayer game in such a way
that we can determine the existence of a demonic winning strategy in the
original game by determining their existence in the demonization.

Definition 4.2.8. Given a pointed nondeterministic A-game G@𝑝 with G =
⟨Pos,Adm, turn⟩, the demonization of G is the pointed nondeterministic A-
game Dem(G@𝑝) := GDEMON@𝑝, where GDEMON := ⟨Pos,Adm, turnDEMON⟩ is
defined by putting

turnDEMON(𝑞) :=

{
turn(𝑞) if 𝑞 ∈ Fin or |turn(𝑞)| = 1, and
∅ otherwise,

for 𝑞 ∈ Pos. �
In other words, in the demonization of a nondeterministic multiplayer

game, players can only get a turn at a nonfinal positions if they are guar-
anteed to get a turn there. As a consequence, |turn(𝑝)| ⩽ 1 for all positions
𝑞, making demonizations more similar to deterministic multiplayer games
than to general nondeterministic multiplayer games. Intuitively, it makes
sense that the existence of demonic winning strategies is determined over
demonizations: if the demon will always choose the worst possible out-
come, players can safely assume they will only get a turn if the demon has
no other choice but to grant them a turn.

Proposition 4.2.9. Let G@𝑝 be a pointed nondeterministic A-game, and 𝔞 ∈ A a
player. Then 𝔞 demonically wins G@𝑝 iff 𝔞 demonically wins Dem(G@𝑝).
Proof. For the direction from left to right, let strat be a demonic winning
strategy for 𝔞 in G@𝑝. Define a strategy stratDEMON := strat↾Incomp𝔞(GDEMON@𝑝)
for 𝔞 in Dem(G@𝑝). We will show that stratDEMON is a demonic winning
strategy in Dem(G@𝑝). Consider any strategy profile strat with strat𝔞 =
stratDEMON, and a complete match 𝒑 (where 𝒑 = ⟨𝑝0 , . . . , 𝑝𝑛⟩) in Dem(G@𝑝)
played conform strat. By definition of demonizations, we have that 𝒑 is also
a complete match in G@𝑝.

Since 𝒑 is played conform strat, it holds that 𝑝𝑖+1 = strat𝔟(𝑝0 , . . . , 𝑝𝑖)
for some 𝔟 ∈ turnDEMON(𝑝𝑖) if turnDEMON(𝑝𝑖) ≠ ∅, for all 𝑖 < 𝑛. So for any
𝔟 ∈ A ∖ {𝔞}, we can safely consider an arbitrary strategy strat′𝔟 in G@𝑝 with
restriction strat′𝔟↾Incomp𝔟(GDEMON@𝑝) = strat𝔟 and strat′𝔟(𝑝0 , . . . , 𝑝𝑖) := 𝑝𝑖+1 for all
𝑖 < 𝑛 with 𝔟 ∈ turn(𝑝𝑖).

We gather these strategies strat′𝔟 into a strategy profile strat′ defined as
strat′𝔞 := strat. It follows from the definition of strat′ and the turn function
in the demonization that 𝒑 is played conform strat′. Since strat is a demonic
winning strategy for 𝔞 in G@𝑝, this means that 𝔞 wins 𝒑 in G@𝑝, and so 𝔞
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also wins 𝒑 in Dem(G@𝑝). Thus, stratDEMON is a demonic winning strategy
for 𝔞 in Dem(G@𝑝).

The proof of the direction from right to left is similar in spirit, with one
extending demonic winning strategies for 𝔞 in Dem(G@𝑝) to demonic win-
ning strategies for 𝔞 in G@𝑝 straightforwardly. □

Throughout the remainder of this section, we will usually give proof
sketches instead of fully detailed proofs. This is because while the proofs are
usually conceptually quite straightforward, they are still quite long, and do
not offer much understanding beyond a sketch.

Note the following analogue to Proposition 4.1.8 from the deterministic
setting, which states that a player 𝔞 has awinning strategy from a (nonfinal)
position 𝑝 if there is an admissible position atwhich 𝔞has awinning strategy
(in case turn(𝑝) = 𝔞), or if 𝔞 has awinning strategy at all admissible positions
(in case turn(𝑝) ≠ 𝔞). In the nondeterministic settingwith demonic winning
strategies, a distinction is made instead between the case where turn(𝑝) =
{𝔞}, and the case where turn(𝑝) ≠ {𝔞}.
Proposition 4.2.10. Let G = ⟨Pos,Adm, turn⟩ be a nondeterministic A-game,
𝑝 ∈ Pos ∖ Fin a nonfinal position, and 𝔞 ∈ A a player. It holds that
(i) If turn(𝑝) = {𝔞}, then 𝔞 demonically winsG@𝑝 iff there is some 𝑞 ∈ Adm[𝑝]

such that 𝔞 demonically wins G@𝑞, and

(ii) if turn(𝑝) ≠ {𝔞} (i.e. if turn(𝑝) = ∅ or turn(𝑝) ∖ {𝔞} ≠ ∅), then 𝔞 demoni-
cally wins G@𝑝 iff 𝔞 demonically wins G@𝑞 for all 𝑞 ∈ Adm[𝑝].

Proof sketch. This follows from application of Proposition 4.2.9. □

So having seen that demonic winning strategies do away with most of
the structure of nondeterministic multiplayer games, we will instead con-
sider another definition of winning strategies. Where demonic winning
strategies are strategies that are winning under all possible nondetermin-
istic choices, we will now consider strategies that are winning under some
nondeterministic choices. This definition of winning strategies is in a sense
dual to that of the demonic winning strategy.

Again analogously to nondeterminism in the theory of programming,
we will refer to these as angelic winning strategies. In the theory of pro-
gramming, angelic nondeterminism is roughly nondeterminism in which
all nondeterministic choices are made by an ‘angel’ that will always choose
the best possible outcome. In the context of nondeterministic multiplayer
games, this will mean that a player need only win for some choices of the
angel, and still be guaranteed to win.

Definition 4.2.11. Given a pointed nondeterministic A-game G@𝑝, a strat-
egy strat for player 𝔞 ∈ A is an angelic winning strategy for 𝔞 ∈ A if there is
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someG-choice choice for which the restriction strat↾Incomp𝔞(Gchoice@𝑝) is a win-
ning strategy for 𝔞 in Gchoice@𝑝. If there is an angelic winning strategy for
𝔞 in G@𝑝, we say that 𝔞 has an angelic winning strategy from 𝑝 in G, or more
concisely that 𝔞 angelically wins G@𝑝. �

While Proposition 4.2.9 intuitively shows that nondeterministic multi-
player games are ‘almost’ deterministic when one considers demonic win-
ning strategies, considering angelic winning strategies requires one to pre-
serve more structure. This is reflected in the definition of an angelization,
analogous to demonizations. These angelizations are not the same for all
players.

Definition 4.2.12. Given a pointed nondeterministic A-gameG@𝑝 withG =
⟨Pos,Adm, turn⟩ and a player 𝔞 ∈ A, the 𝔞-angelization ofG is the pointed non-
deterministic A-game Ang𝔞(G@𝑝) := GANGEL,𝔞@𝑝, where GANGEL,𝔞 := ⟨Pos,
Adm, turnANGEL,𝔞⟩ is defined by putting

turnANGEL,𝔞(𝑞) :=

{
turn(𝑞) if 𝑞 ∈ Fin or 𝔞 ∉ turn(𝑞), and
{𝔞} otherwise,

for 𝑞 ∈ Pos. �
In other words, in the 𝔞-angelization of a nondeterministic multiplayer

game, the player 𝔞 is guaranteed to get a turnwhenever this is possible. Note
that our definition of 𝔞-angelizationsmatches our intuitions about the angel:
if the angel will always choose the best possible outcome for a player, the
angel might as well choose to grant that player a turn as often as possible.

The way angelizations are bound to a specific player while demoniza-
tions were not also makes intuitive sense. Demons choosing the worst pos-
sible outcome for everyone can be considered by only granting players turns
when there is no other option, while an angel always choosing the best pos-
sible outcome for a player will give that player a turn as often as possible,
which is not compatible with that angel also always choosing the best possi-
ble outcome for another player as well, as there might be positions at which
both players could get a turn.

Analogous to demonizations, the existence of angelic winning strategies
is determined over angelizations. Noting that angelic winning strategies
in angelizations are also demonic winning strategies, we can state this as
follows.

Proposition 4.2.13. Let G@𝑝 be a pointed nondeterministic A-game, and 𝔞 ∈ A
a player. Then 𝔞 angelically wins G@𝑝 iff 𝔞 angelically (or demonically) wins
Ang𝔞(G@𝑝).
Proof sketch. If a strategy strat for 𝔞 is an angelic winning strategy in G@𝑝,
then there is a G-choice choice such that 𝔞wins the choice-instantiation of G
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𝑝, {𝔞, 𝔟}

𝑞, {𝔠}

𝑟,∅ 𝑠, {𝔞, 𝔠}

𝑡 , {𝔟, 𝔠} 𝑢, {𝔟} 𝑣, {𝔞, 𝔟}
Figure 4.2.1: Nondeterministic multiplayer game considered in Exam-
ple 4.2.15.

at 𝑝 following strat. Note that if we modify choice to always select 𝔞 when
possible, this will still hold. The strategy strat is also a strategy for 𝔞 in
Ang𝔞(G@𝑝). Any complete match in Ang𝔞(G@𝑝) played conform a pro-
file with 𝔞 following strat will then also be a complete match in the choice-
instantiation of G at 𝑝, played conform a corresponding profile with 𝔞 fol-
lowing strat. And so 𝔞 wins the match.

If a strategy strat for 𝔞 is an angelic winning strategy inAng𝔞(G@𝑝), then
there is a GANGEL,𝔞-choice choice such that 𝔞 wins the choice-instantiation of
Ang𝔞(G@𝑝) following strat. We can easily extend choice to aG-choice choice′
by always selecting 𝔞 whenever possible. Noting that strat is also a strategy
in G@𝑝, it then follows quite simply that strat is a winning strategy in the
choice′-instantiation of G@𝑝. □

We again have an analogue to Proposition 4.1.8 from the deterministic
setting. A distinction is now made between the case where 𝔞 ∈ turn(𝑝) or
not. As we will see in Section 4.2.3, it is this difference between angelic and
demonic winning strategies that makes angelic winning strategies a more
natural candidate for the semantics of our multiplayer logic.

Proposition 4.2.14. Let G = ⟨Pos,Adm, turn⟩ be a nondeterministic A-game,
𝑝 ∈ Pos ∖ Fin a nonfinal position, and 𝔞 ∈ A a player. It holds that
(i) if 𝔞 ∈ turn(𝑝), then 𝔞 angelically wins G@𝑝 iff there is some 𝑞 ∈ Adm[𝑝]

such that 𝔞 angelically wins G@𝑞, and it holds that

(ii) if 𝔞 ∉ turn(𝑝), then 𝔞 angelically wins G@𝑝 iff 𝔞 angelically wins G@𝑞 for
all 𝑞 ∈ Adm[𝑝].

Proof sketch. This follows from application of Proposition 4.2.13. □

Example 4.2.15. Consider the nondeterministic {𝔞, 𝔟, 𝔠}-game represented
visually in Figure 4.2.1. The vertices represent positions, the edges represent



4.2. Nondeterministic Multiplayer Games 77

the admissibility relation, and the annotations at each vertex represent the
turn function. This game shows that angelic winning strategies are truly
more general than demonic winning strategies. In the bottom row (i.e. the
final positions), the sets of winners are {𝔞} for 𝑡, {𝔞, 𝔠} for 𝑢, and {𝔠} for 𝑣.

Considering demonic winning strategies, it can be verified using Propo-
sition 4.2.10 that 𝔞 has a demonic winning strategy at 𝑟 but not at 𝑠, 𝔟 has
a demonic winning strategy at neither 𝑟 nor 𝑠, and that 𝔠 has a demonic
winning strategy at 𝑠 but not at 𝑟. And so, neither 𝔞 nor 𝔟 has a demonic
winning strategy at 𝑞, while 𝔠 does (since turn(𝑞) = {𝑐}). Finally, none of
the players has a demonic winning strategy at 𝑝.

Considering angelic winning strategies, it can be verified using Propo-
sition 4.2.14 that 𝔞 has an angelic winning strategy at both 𝑟 and 𝑠, 𝔟 has an
angelicwinning strategy at neither 𝑟 nor 𝑠, and that 𝔠 has an angelicwinning
strategy at 𝑠 but not at 𝑟. And so, both 𝔞 and 𝔠 have an angelic winning strat-
egy at 𝑞, while 𝔟 does not. Finally, only 𝔞 has an angelic winning strategy at
𝑝. �

Before moving on to defining multiplayer logic over nondeterministic
multiplayer games, wewish to give some final comments on the relation be-
tween deterministic and nondeterministic multiplayer games. It should be
clear that deterministic multiplayer games can be embedded within nonde-
terministic multiplayer games, in such a way that winning strategies corre-
spond to demonic winning strategies, which end up being precisely angelic
winning strategies in this setting.

Proposition 4.2.16. Let G@𝑝 be a pointed deterministic A-game with G = ⟨Pos,
Adm, Fin, turn,win⟩. Define the pointed nondeterministic A-game Non(G@𝑝) :=〈
GNON, 𝑝

〉
withGNON := ⟨Pos,Adm, turnNON⟩where turnNON is defined by putting

turnNON(𝑞) :=

{{
turn(𝑞)} if 𝑞 ∈ Pos ∖ Fin, and
A ∖ win(𝑞) if 𝑞 ∈ Fin,

for 𝑞 ∈ Pos.
For all 𝔞 ∈ A, it holds that 𝔞 wins G@𝑝 iff 𝔞 demonically wins Non(G@𝑝), or

equivalently, iff 𝔞 angelically wins Non(G@𝑝).
Given that deterministic multiplayer games always embed into nonde-

terministic multiplayer games in a way that preserves winning strategies, it
is natural to ask whether converse embeddings preserving demonic or an-
gelic winning strategies generally exist. For pointed nondeterministic mul-
tiplayer games G@𝑝 in which |turn(𝑞)| = 1 for all nonfinal positions 𝑞, there
is a straightforward embedding. We will denote these deterministic games
as Non−1(G@𝑝), though Non−1 should not be strictly taken to denote the
inverse of the Non-operation. This Non−1-operation then preserves both
demonic and angelic winning strategies.
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But aswewill start proving now, embeddings also exist in general, albeit
being slightly more complicated. Essential for these embeddings are three
ideas. First, when determining whether there exist demonic or angelic win-
ning strategies for a player 𝔞, we can ‘abstract away’ from all other players,
treating them as if they are part of the nondeterministic environment (i.e.
the demon or angel). Second, we can make the role of the nondeterministic
environment explicit by including it as a player 𝔫 in the game. Third, the
existence of both demonic and angelic winning strategies is ‘monotone’ in
a certain sense: if we increase the amount of nonfinal positions at which a
player 𝔞 wins, the existence of demonic and angelic winning strategies is
preserved.

We can capture the first two ideas in the following definition.

Definition 4.2.17. Given a pointed nondeterministic A-gameG@𝑝 withG =
⟨Pos,Adm, turn⟩, and a player 𝔞, the 𝔞-abstraction of G@𝑝 is the pointed non-
deterministic (A∪{𝔫})-gameAbst𝔞(G@𝑝) :=

〈
GABST,𝔞 , 𝑝

〉
withGABST,𝔞 := ⟨Pos,

Adm, turnABST,𝔞⟩, where turnABST,𝔞 is defined as

turnABST,𝔞(𝑞) :=


turn(𝑞) if 𝑞 ∈ Fin,
(turn(𝑞) ∩ {𝔞}) ∪ {𝔫} if 𝑞 ∉ Fin and turn(𝑞) ≠ {𝔞}, and
{𝔞} otherwise,

for 𝑞 ∈ Pos.
The environment-only abstraction of G@𝑝 is the pointed nondeterministic

(A∪{𝔫})-gameAbstENV(G@𝑝) :=
〈
GENV , 𝑝

〉
withGENV := ⟨Pos,Adm, turnENV⟩,

where turnENV is defined as

turnENV(𝑞) :=

{
turn(𝑞) if 𝑞 ∈ Fin or turn(𝑞) ≠ ∅, and
{𝔫} otherwise,

for 𝑞 ∈ Pos. �
Let us break down what this definition states. In the 𝔞-abstraction, we

only allow 𝔞 and 𝔫 to actually make choices by replacing all other players
by 𝔫 (though we do not modify turns/winners at nonfinal positions). In
the environment-only abstraction, we give 𝔫 a turn at (nonfinal) positions
where no other player can get a turn. This makes sense, since these are
positions at which the next position is chosen nondeterministically.

The following is easily verified.

Proposition 4.2.18. Let G@𝑝 be a pointed nondeterministic A-game, and 𝔞 ∈ A a
player. Then

(i) 𝔞 demonically (resp. angelically) wins G@𝑝 iff 𝔞 demonically (resp. angeli-
cally) winsAbst𝔞(G@𝑝), and
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(ii) 𝔞 demonically (resp. angelically) wins G@𝑝 iff 𝔞 demonically (resp. angeli-
cally) wins AbstENV(G@𝑝).

The third idea we mentioned will be used in the following form.

Definition 4.2.19. Given a pointed nondeterministic A-gameG@𝑝 withG =
⟨Pos,Adm, turn⟩, and a set B ⊆ A of players, the B-trivialization ofG@𝑝 is the
pointed nondeterministicA-gameTrivB(G@𝑝) :=

〈
GTRIV,B , 𝑝

〉
withGTRIV,B :=

⟨Pos,Adm, turnTRIV,B⟩, where

turnTRIV,B(𝑞) :=

{
turn(𝑞) if 𝑞 ∉ Fin, and
turn(𝑞) ∖ B if 𝑞 ∈ Fin,

for 𝑞 ∈ Pos. �
Proposition 4.2.20. Let G@𝑝 be a pointed nondeterministic A-game, and B ⊆ A
a set of players. Then for all players 𝔞 ∈ B, it holds that 𝔞 both demonically and
angelically wins TrivB(G@𝑝).

We are now equipped to show the embeddings. First, we give a sim-
ple embedding preserving demonic winning strategies. This embedding is
quite simple, and relies on our intuition that demonizations as defined in
Definition 4.2.8 are already ‘almost’ deterministic.

Definition 4.2.21. Given a pointed nondeterministic A-gameG@𝑝 withG =
⟨Pos,Adm, turn⟩, the demonic determinization ofG@𝑝 is the pointed determin-
istic (A ∪ {𝔫})-game

DetDEMON(G@𝑝) := Non−1AbstENVDem(G@𝑝). �
Theorem 4.2.22. Let G@𝑝 be a pointed nondeterministic A-game. For all players
𝔞 ∈ A, it holds that 𝔞 demonically wins G@𝑝 iff 𝔞 wins DetDEMON(G@𝑝).
Proof. This follows immediately from Propositions 4.2.9 and 4.2.18. □

Example 4.2.23. Denote the nondeterministic multiplayer game used in Ex-
ample 4.2.15 and visualized in Figure 4.2.1 byG. The demonic determiniza-
tion ofG@𝑝 is visualized in Figure 4.2.2. All verticeswith no outgoing edges
are final positions, and their annotations represent the win function. Note
that indeed, none of the players win DetDEMON(G@𝑝). �

The embedding preserving angelic winning strategies will require us to
consider angelizations for all players. To be able to gather these in a sin-
gle game, we will use coproducts of (not pointed) nondeterministic multiplayer
games. These are defined in the obvious manner, which is informally de-
scribed by placing games alongside each other. We will also require a way
to link each of these angelizations, for which we will use the following con-
struction. Note that we slightly abuse notation, and will write e.g. Ang𝔞G
instead of GANGEL,𝔞.
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𝑝, 𝔫

𝑞, 𝔠

𝑟, 𝔫 𝑠, 𝔫

𝑡 , {𝔞} 𝑢, {𝔞, 𝔠} 𝑣, {𝔠}
Figure 4.2.2: Demonic determinization considered in Example 4.2.23.

Definition 4.2.24. Given a pointed nondeterministic A-game G@𝑝, define

G′ :=
∑
𝔞∈A

Abst𝔞TrivA∖{𝔞}Ang𝔞G.

Writing G′ = ⟨Pos,Adm, turn⟩, we define the nondeterministic (A ∪ {𝔫})-
game G′′ :=

〈
Pos ∪ {

𝑝DET
}
,AdmDET , turnDET

〉
by putting

AdmDET := Adm ∪ {〈
𝑝DET , inj𝔞(𝑝)

〉
; 𝔞 ∈ A}

and turnDET(𝑞) := turn(𝑞) for 𝑞 ∈ Pos, while turnDET(𝑝DET) := {𝔫}.
The angelic determinization of G@𝑝 is the pointed deterministic (A∪ {𝔫})-

game
DetANGEL(G@𝑝) := Non−1(G′′@𝑝DET). �

Taken step by step, we construct the angelic determinization by taking
the angelizations for all players. Wemake sure that in the 𝔞-angelization, all
other players 𝔟 ∈ A∖{𝔞}will trivially have angelic winning strategies. Then,
we abstract away from these other players. Finally, we gather together the
resulting nondeterministic (A∪ {𝔫})-games for all players, and create a new
position at which the nondeterministic environment (i.e. the angel) has to
choose one of the component games.

Before stating the theorem that this embedding preserves angelic win-
ning strategies, let us consider an example.

Example 4.2.25. As in Example 4.2.23, we denote the nondeterministic mul-
tiplayer game used in Example 4.2.15 and visualized in Figure 4.2.1 by G.
The angelic determinization of G@𝑝 is visualized in Figure 4.2.3. We re-
move all position names except those of the positions 𝑝 in each angelization,
which we subscript by the player to make clear in which angelization they
lie, and the new position 𝑝DET — it should then be clear for other positions
to which position in the original game they correspond. We can verify that
indeed only 𝔞 wins DetANGEL(G@𝑝). �
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𝑝DET , 𝔫

𝑝𝔞 , 𝔞 𝑝𝔟 , 𝔟 𝑝𝔠 , 𝔫

𝔫 𝔫 𝔠

𝔫 𝔞 𝔫 𝔫 𝔫 𝔠

{𝔞, 𝔟, 𝔠} {𝔞, 𝔟, 𝔠} {𝔟, 𝔠} {𝔞, 𝔠} {𝔞, 𝔠} {𝔞, 𝔠} {𝔞, 𝔟} {𝔞, 𝔟, 𝔠} {𝔞, 𝔟, 𝔠}
Figure 4.2.3: Angelic determinization considered in Example 4.2.25.

Theorem 4.2.26. Let G@𝑝 be a pointed nondeterministic A-game. For all players
𝔞 ∈ A, it holds that 𝔞 angelically wins G@𝑝 iff 𝔞 wins DetANGEL(G@𝑝).
Proof. This follows from Propositions 4.1.8, 4.2.13, 4.2.18 and 4.2.20. □

Remark 4.2.27. Wewish to note that introducing the nondeterministic envi-
ronment as a player like we have done with abstractions (Definition 4.2.17)
has interesting conceptual consequences. We could consider the nondeter-
ministic environment to be a ‘moderator’ or an ‘umpire’ of sorts, tasked
with choosing which player gets a turn, and with moving the game along
whenever the players cannot (i.e. at positions 𝑝 with turn(𝑝) = ∅).

Note that this is quite similar to theway nondeterminism is often treated
in the theory of programming. As discussed by Harmer (1999), who con-
siders game-theoretical semantics for nondeterministic computation, non-
determinism is often used in the theory of programming as an abstraction
of certain aspects of a computational process, such as amachine’s scheduler
that is responsible for choosing which process to execute at what time. The
role of the moderator in our setting is largely analogous to that of such a
scheduler.

Considering moderators also offers a conceptual argument for the us-
age of angelic over demonic winning strategies. Consider debates (or if
one wishes to stay within the realm of logic, medieval obligationes) as mul-
tiplayer games with a moderator. Positions correspond to states of the de-
bate, while players’ admissible moves correspond to statements they can
utter. By Proposition 4.2.9, a demonic winning strategy for a player in this
context would be a collection of arguments such that nomatter whether the
moderator actually gives the player a turn or not, the player is guaranteed
to win the debate. This is quite a strict requirement, that would in this ex-
ample mean that players have to collude with the moderator outside of the
debate.
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By Proposition 4.2.13 however, an angelic winning strategy for a player
would be a collection of arguments that could win the debate if the moder-
ator does not prevent the player from uttering it. One could then argue that
angelic winning strategies better reflect the ‘quality’ of players’ arguments,
since they require no action outside of the debate.

Treating the nondeterministic environment as a moderator suggests av-
enues for further work, in which one could study games where the modera-
tor has explicit goals of his own. It would be of interest to see what implica-
tions this could have for the logicwewill be introducing in Section 4.2.3. �
4.2.3 Logic and Evaluation Games
We can now move on to define a more general version of the determinis-
tic multiplayer logic of Section 4.1: nondeterministic basic multiplayer logic
defined over nondeterministic multiplayer games and multiplayer Kripke
models. Where deterministic multiplayer logic consists of instances of (a
subset of) the connectives of two-valued basic modal logic for each individ-
ual player, the framework of nondeterministic multiplayer games naturally
allows us to consider connectives for sets of players.

Definition 4.2.28. The language of nondeterministic basic A-logic is the induc-
tively defined set

LangBASIC,A ∋ 𝜑 ::= 𝑝 | ⊥B | (𝜑 ∨B 𝜑) | (3B𝜑) | (role𝜑),
where 𝑝 ∈ Prop, B ⊆ A, and role ∈ RDA. If B = {𝔞}, we will usually omit the
brackets. �

In the way we will define the evaluation games, the atomic formulas ⊥B
will represent positions at which precisely those players in B lose. Formu-
las 𝜑 ∨B 𝜓 are positions at which some player in B has to choose one of
the positions corresponding to 𝜑 and 𝜓, and formulas 3B𝜑 are positions at
which some player in B has to choose a position corresponding to 𝜑 and a
successor state in a given multiplayer Kripke model.

Definition 4.2.29. Given a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, the nondeter-
ministic basic A-logic evaluation game overM is the nondeterministic A-game
EvalBASIC

A
Mwith positions LangBASIC,A×𝑆×RDA, and other components spec-

ified in Table 4.2. �
Note that unlike in the evaluation games in the deterministic setting (Ta-

ble 4.1), there is no need any more to fix an arbitrary player 𝔵 who takes a
turn at positions corresponding to role switches.

As should be evident from our discussion in the previous section, the se-
mantics will be given in terms of angelic instead of demonic winning strate-
gies, since demonic winning strategies do awaywithmost nondeterministic
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Table 4.2: Specification of a nondeterministic basic A-logic evaluation game.

Position Admissible moves Turn〈
𝑝, 𝑠, role

〉 ∅ A ∖ role−1[col(𝑠)(𝑝)]
⟨⊥B , 𝑠 , role⟩ ∅ role−1[B]〈

𝜑 ∨B 𝜓, 𝑠 , role
〉 {〈

𝜑, 𝑠 , role
〉
,
〈
𝜓, 𝑠 , role

〉}
role−1[B]〈3B𝜑, 𝑠 , role

〉 {〈
𝜑, 𝑡 , role

〉
; 𝑡 ∈ 𝑅[𝑠]} role−1[B]〈

rd𝜑, 𝑠 , role
〉 {〈

𝜑, 𝑠 , rd ◦ role
〉} ∅

structure. In particular, demonic winning strategies only consider games
with at most one player that can get a turn at any position. This would not
make sense for our logic, in which we have connectives for arbitrary sets of
players.

Definition 4.2.30. Given a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, the semantics
of nondeterministic basic A-logic is given by the function

J−KBASIC,AM
: LangBASIC,A → (PA)𝑆

defined by putting

J𝜑KBASIC,AM (𝑠) :=
{
𝔞 ∈ A ; 𝔞 angelically wins (EvalBASIC

A
M)@ 〈

𝜑, 𝑠 , idA
〉}

for 𝜑 ∈ LangBASIC,A and 𝑠 ∈ 𝑆. �
Example 4.2.31. For A = {𝔞, 𝔟, 𝔠}, consider a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩,
col⟩ with 𝑆 = {𝑠, 𝑡 , 𝑢}, 𝑅 = {⟨𝑠, 𝑡⟩ , ⟨𝑠, 𝑢⟩}, col(𝑠)(𝑝) = ∅, col(𝑡)(𝑝) = {𝔞}, and
col(𝑢)(𝑝) = {𝔠}. Take the nondeterministic basic A-logic formula

𝜑 = ⊥𝔠 ∨{𝔞,𝔠} [𝔞, 𝔟]3{𝔟,𝔠}𝑝.

The nondeterministic basic A-logic evaluation game overM pointed at the
position

〈
𝜑, 𝑠 , idA

〉
is visualized in Figure 4.2.4. As in other examples, the

annotations at each position represent the turn function. We can verify (us-
ing e.g. Proposition 4.2.14) that J𝜑KBASIC,AM (𝑠) = {𝔠}. �

Applying Proposition 4.2.14, we can give a compositional characteriza-
tion of the semantics of nondeterministic basic multiplayer logic, similar to
that of deterministic multiplayer logic (Proposition 4.1.9).

Proposition 4.2.32. LetM = ⟨⟨𝑆, 𝑅⟩ , col⟩ be a Kripke A-model. Then for any
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〈
⊥𝔠 ∨{𝔟,𝔠} [𝔞, 𝔟]3{𝔟,𝔠}𝑝, 𝑠, idA

〉
, {𝔟, 𝔠}

⟨⊥𝔠 , 𝑠 , idA⟩ , {𝔠}
〈
[𝔞, 𝔟]3{𝔟,𝔠}𝑝, 𝑠, idA

〉
,∅

〈3{𝔟,𝔠}𝑝, 𝑠, [𝔞, 𝔟]
〉
, {𝔞, 𝔠}

〈
𝑝, 𝑡, [𝔞, 𝔟]〉 , {𝔞, 𝔠} 〈

𝑝, 𝑢, [𝔞, 𝔟]〉 , {𝔞, 𝔟}
Figure 4.2.4: The nondeterministic basic multiplayer logic evaluation game
considered in Example 4.2.31.

𝑝 ∈ Prop, 𝜑,𝜓 ∈ LangBASIC,A, role ∈ RDA, B ⊆ A, and 𝔞 ∈ A, it holds that

J𝑝KBASIC,AM̂ (𝔞) = col̂ (𝑝)̂ (𝔞),

J⊥BKBASIC,AM̂ (𝔞) =
{
∅ if 𝔞 ∈ B,
𝑆 if 𝔞 ∉ B,

J𝜑 ∨B 𝜓KBASIC,AM̂ (𝔞) =


J𝜑KBASIC,AM̂ (𝔞) ∪ J𝜓KBASIC,AM̂ (𝔞) if 𝔞 ∈ B,
J𝜑KBASIC,AM̂ (𝔞) ∩ J𝜓KBASIC,AM̂ (𝔞) if 𝔞 ∉ B,

J3B𝜑KBASIC,AM̂ (𝔞) =

{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ∩ J𝜑KBASIC,AM̂ (𝔞) ≠ ∅

}
if 𝔞 ∈ B,{

𝑠 ∈ 𝑆 ;𝑅[𝑠] ⊆ J𝜑KBASIC,AM̂ (𝔞)
}

if 𝔞 ∉ B, and

Jrole𝜑KBASIC,AM̂ (𝔞) = J𝜑KBASIC,AM̂ (role(𝔞)).

Proof sketch. Like in Proposition 4.1.9, we can show this by induction on for-
mulas 𝜑 ∈ LangBASIC,A, in which we apply Proposition 4.2.14. The case for
role switch formulas role𝜑 again requires a lemma, stating that for all formu-
las 𝜑, a player 𝔞 wins the pointed game (EvalBASIC

A
M)@ 〈

𝜑, 𝑠 , role
〉
iff role(𝔞)

wins (EvalBASIC
A
M)@ 〈

𝜑, 𝑠 , idA
〉
. This lemma is also shown through simple

induction on formulas. □



4.2. Nondeterministic Multiplayer Games 85

4.2.4 Connectives and Negation
As discussed in Section 4.1.2 and afterwards mentioned in the beginning of
Section 4.2, the usage of nondeterministic multiplayer games is a solution
to the lack of usual connectives (like conjunction and negation) and alter-
native modalities in deterministic multiplayer logic. We are now equipped
to address how nondeterministic multiplayer games solve the first of these
two problems. The second problem will be addressed in Section 4.3.

Let us start with the positive connectives — i.e. conjunction and the 2-
modality. We can now very naturally define abbreviations

𝜑 ∧B 𝜓 := 𝜑 ∨A∖B 𝜓 and
2B𝜑 := 3A∖B𝜑

for B ⊆ A. This is quite intuitive — e.g. conjunction for the players in B is
precisely disjunction for the others. By Proposition 4.2.32, we in fact imme-
diately find that

J𝜑 ∧B 𝜓KBASIC,AM̂ (𝔞) =


J𝜑KBASIC,AM̂ (𝔞) ∩ J𝜓KBASIC,AM̂ (𝔞) if 𝔞 ∈ B,
J𝜑KBASIC,AM̂ (𝔞) ∪ J𝜓KBASIC,AM̂ (𝔞) if 𝔞 ∉ B,

J2B𝜑KBASIC,AM̂ (𝔞) =

{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ⊆ J𝜑KBASIC,AM̂ (𝔞)

}
if 𝔞 ∈ B, and{

𝑠 ∈ 𝑆 ;𝑅[𝑠] ∩ J𝜑KBASIC,AM̂ (𝔞) ≠ ∅
}

if 𝔞 ∉ B.

We can take this even further, by considering the connectives for B = A.
These can be seen as ‘absolute’ versions of the connectives that behave the
same for all players. For example, we have that

J3A𝜑KBASIC,AM̂ (𝔞) =
{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ∩ J𝜑KBASIC,AM̂ (𝔞) ≠ ∅

}
.

By definition of the transpose, we then find that

J3A𝜑KBASIC,AM (𝑠) =
{
𝔞 ∈ A ;𝑅[𝑠] ∩ J𝜑KBASIC,AM̂ (𝔞) ≠ ∅

}
=

⋃
𝑡∈𝑅[𝑠]

J𝜑KBASIC,AM (𝑡).

Comparing this with the semantics of Boolean-valued basic modal logic
(Definition 3.1.5), it quickly becomes apparent that nondeterministic ba-
sic multiplayer logic ‘contains’ Boolean-valued basic modal logic, at least
over agent- indexed Kripke models with the same accessibility relation for
all agents. We will revisit relations between Boolean-valued modal logics
and nondeterministic multiplayer logics in Section 5.1.
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Introducing negation into the logic is not as simple as defining it as
an abbreviation. Recall the way negation works in two-player evaluation
games for two-valued logic. Note that the underlying two-player games
there are quite specific types of two-player games: the Verifier and Falsi-
fier are antagonistic towards each other, in the sense that they are playing a
zero-sum game in which precisely one of them will win. The antagonism
is enforced by e.g. giving precisely one of the two players a turn at any po-
sition. Negation works in these games by way of this antagonism, since it
allows one to express through role switches that one of the players does not
have a winning strategy at a given position.

Note that if we consider a (deterministic) two-player games in which
the players are antagonistic in the sense just described, then it would suf-
fice to know for just one of the players at which positions they get a turn
and/or win, in order to be able to be able to specify the entire game’s struc-
ture. Keeping this in mind, we could consider the evaluation games for
two-valued logic to just be single-player games (with the player represent-
ing the Verifier) to which we add an antagonistic player.

These ideas can be naturally generalized to the multiplayer setting: we
obtain negation by adding antagonists for each of the players. This also clar-
ifies why the nondeterministic structure is necessary to introduce negation
into multiplayer logic — adding antagonists for all players requires it to be
possible for multiple players to get a turn at any given position.

Note that we can describe the process of adding antagonists for any gen-
eral nondeterministic multiplayer game.

Definition 4.2.33. Given a set A of players, its set of antagonists is a set A− :=
{𝔞− ; 𝔞 ∈ A} of players disjoint from those in A. By slight abuse of notation,
we will write (𝔞−)− := 𝔞 for 𝔞 ∈ A, and B− := {𝔞− ; 𝔞 ∈ B}. We also write
BANT := B ∪ (A ∖ B)− for B ⊆ A. Additionally, we define for each B ⊆ A the
(A ∪ A−)-distribution antB defined by putting

antB(𝔞) :=

{
𝔞− if 𝔞 ∈ B ∪ B−, and
𝔞 otherwise.

Finally, given an A-distribution role, we define the (A ∪ A−)-distribution
roleANT as roleANT(𝔞) := role(𝔞) for 𝔞 ∈ A, and roleANT(𝔞−) := (role(𝔞))− for
𝔞− ∈ A−.

Given a pointed nondeterministic A-game G@𝑝 with G = ⟨Pos,Adm,
turn⟩, the antagonization of G@𝑝 is the pointed nondeterministic (A ∪ A−)-
gameAnt(G@𝑝) :=

〈
GANT , 𝑝

〉
, whereGANT := ⟨Pos,Adm, turnANT⟩ is defined

by putting turnANT(𝑞) := (turn(𝑞))ANT for all 𝑞 ∈ Pos. �
For clarity: the set BANT consists of all players in B, along with the an-

tagonists of all players not in B. And the role distribution antB swaps the
players in Bwith their antagonists.
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Proposition 4.2.34. Let G@𝑝 be a pointed nondeterministic A-game, and 𝔞 ∈ A a
player. Then the following are equivalent:

(i) 𝔞 angelically wins G@𝑝,

(ii) 𝔞 angelically wins Ant(G@𝑝), and

(iii) 𝔞− does not angelically win Ant(G@𝑝).

Proof sketch. The equivalence of (i) and (ii) can be proven using the insight
that we can abstract away from other players (cf. Proposition 4.2.18). The
equivalence of (ii) and (iii) is a bit more involved, and requires a lot of case
distinctions (i.e. 𝑝 is final, 𝑝 is nonfinal with 𝔞 ∈ turn(𝑝), and 𝔞 ∉ turn(𝑝)). It
can be shown by using the property that there exist no infinite Adm-chains,
together with Proposition 4.2.14. The method for this is quite similar to the
method we will use in the proof of Theorem 4.2.39 in Section 4.2.5. □

Applying the same ideas as used in general antagonizations, we can
modify the evaluation games of nondeterministic A-logic to include a nega-
tion connective ¬B for B ⊆ A as an abbreviation of a role switch antB𝜑.

Definition 4.2.35. The language of nondeterministic basic A-logic with negation
is the inductively defined set

Lang¬BASIC,A ∋ 𝜑 ::= 𝑝 | ⊥B | (𝜑 ∨B 𝜑) | (3B𝜑) | (role𝜑) | (¬B𝜑),

where 𝑝 ∈ Prop, B ⊆ A, and role ∈ RDA. If B = {𝔞}, we will usually omit the
brackets.

Given a Kripke A-modelM = ⟨⟨𝑆, 𝑅⟩ , col⟩, the nondeterministic basic A-
logic evaluation game overM with negation is the nondeterministic (A ∪ A−)-
gameEval¬BASIC

A
M with positions taken from the set

Lang¬BASIC,A × 𝑆 × {roleANT ; role ∈ RDA} ,

and other components specified in Table 4.3.
The semantics of nondeterministic basic A-logic with negation is given by the

function J−K¬BASIC,AM
: Lang¬BASIC,A → (PA)𝑆

defined by putting

J𝜑K¬BASIC,AM (𝑠) :=
{
𝔞 ∈ A ; 𝔞 angelically wins (Eval¬BASIC

A
M)@ 〈

𝜑, 𝑠 , idA∪A−
〉}

for 𝜑 ∈ Lang¬BASIC,A and 𝑠 ∈ 𝑆. �
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Table 4.3: Specification of a nondeterministic basic A-logic evaluation game
with negation.

Position Admissible moves Turn〈
𝑝, 𝑠, role

〉 ∅ (A ∖ role−1[col(𝑠)(𝑝)])ANT
⟨⊥B , 𝑠 , role⟩ ∅ (role−1[B])ANT〈

𝜑 ∨B 𝜓, 𝑠 , role
〉 {〈

𝜑, 𝑠 , role
〉
,
〈
𝜓, 𝑠 , role

〉} (role−1[B])ANT〈3B𝜑, 𝑠 , role
〉 {〈

𝜑, 𝑡 , role
〉

; 𝑡 ∈ 𝑅[𝑠]} (role−1[B])ANT〈
rd𝜑, 𝑠 , role

〉 {〈
𝜑, 𝑠 , rdANT ◦ role

〉} ∅ANT = A−〈¬B𝜑, 𝑠 , role
〉 {〈

𝜑, 𝑠 , antB ◦ role
〉} ∅ANT = A−

Theorem 4.2.36. LetM = ⟨⟨𝑆, 𝑅⟩ , col⟩ be a Kripke A-model. Then for any 𝑝 ∈
Prop, 𝜑,𝜓 ∈ Lang¬BASIC,A, role ∈ RDA, B ⊆ A, and 𝔞 ∈ A, it holds that

J𝑝K¬BASIC,AM̂ (𝔞) = col̂ (𝑝)̂ (𝔞),

J⊥BK¬BASIC,AM̂ (𝔞) =
{
∅ if 𝔞 ∈ B,
𝑆 if 𝔞 ∉ B,

J𝜑 ∨B 𝜓K¬BASIC,AM̂ (𝔞) =


J𝜑K¬BASIC,AM̂ (𝔞) ∪ J𝜓K¬BASIC,AM̂ (𝔞) if 𝔞 ∈ B,
J𝜑K¬BASIC,AM̂ (𝔞) ∩ J𝜓K¬BASIC,AM̂ (𝔞) if 𝔞 ∉ B,

J3B𝜑K¬BASIC,AM̂ (𝔞) =

{
𝑠 ∈ 𝑆 ;𝑅[𝑠] ∩ J𝜑K¬BASIC,AM̂ (𝔞) ≠ ∅

}
if 𝔞 ∈ B,{

𝑠 ∈ 𝑆 ;𝑅[𝑠] ⊆ J𝜑K¬BASIC,AM̂ (𝔞)
}

if 𝔞 ∉ B,

Jrole𝜑K¬BASIC,AM̂ (𝔞) = J𝜑K¬BASIC,AM̂ (role(𝔞)),

J¬B𝜑K¬BASIC,AM̂ (𝔞) =

𝑆 ∖ J𝜑K¬BASIC,AM̂ (𝔞) if 𝔞 ∈ B, and
J𝜑K¬BASIC,AM̂ (𝔞) if 𝔞 ∉ B.

Proof sketch. Similar to Propositions 4.1.9 and 4.2.32, we require a lemma
showing that for any 𝜑 ∈ Lang¬BASIC,A, 𝑠 ∈ 𝑆, role ∈ RDA, and 𝔞 ∈ A, it
holds that 𝔞 has an angelic winning strategy from position

〈
𝜑, 𝑠 , roleANT

〉
inEval¬BASIC

A
M iff roleANT(𝔞) has an angelic winning strategy from position〈

𝜑, 𝑠 , idA∪A−
〉
inEval¬BASIC

A
M. Butwe now also need a lemma showing that 𝔞

has an angelic winning strategy from position
〈
𝜑, 𝑠 , roleANT

〉
inEval¬BASIC

A
M

iff 𝔞− does not have an angelic winning strategy from position
〈
𝜑, 𝑠 , roleANT

〉
inEval¬BASIC

A
M. The theorem can then be proven by an induction in which

we apply Proposition 4.2.14. □
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4.2.5 Bisimulations and Adequacy
Having defined nondeterministic basic multiplayer logic, it is natural to ask
whether it is adequate with respect to bisimulations on Kripke multiplayer
models, which are defined in the obviousway. Wewill answer this question
via a general property of nondeterministic multiplayer games.

Note that nondeterministic multiplayer games are structurally identical
to Kripke models, with the turn function corresponding to a colouring, and
the added requirement that the accessibility relation has no infinite chains.
More precisely, nondeterministic A-games can be seen as specific instances
of coalgebras for the set functor sending sets 𝑋 to P𝑋 ×PA. This perspec-
tive is interesting, as we can then use general coalgebraic notions to study
nondeterministic multiplayer games. We will make use of the coalgebraic
definition of bisimulations, and obtain a definition of nondeterministic multi-
player game bisimulations. Unpacking these, we see that they can be defined
as follows.
Definition 4.2.37. Given nondeterministic A-games G = ⟨Pos,Adm, turn⟩
and G′ = ⟨Pos′,Adm′, turn′⟩, a binary relation 𝐵 ⊆ Pos × Pos′ is called a
nondeterministic A-game bisimulation 𝐵 : G ↔ G′ if the conditions
(turn) turn(𝑝) = turn′(𝑝′),
(forth) for all 𝑞 ∈ Adm[𝑝], there exists 𝑞′ ∈ Adm′[𝑝′] such that 𝑞𝐵𝑞′, and

(back) for all 𝑞′ ∈ Adm′[𝑝′], there exists 𝑞 ∈ Adm[𝑝] such that 𝑞𝐵𝑞′

hold for all 𝑝 ∈ Pos and 𝑝′ ∈ Pos′ such that 𝑝𝐵𝑝′.
If there is some 𝐵 such that 𝐵 : G ↔ G′, we write G ↔ G′. If 𝑝𝐵𝑝′, we

additionally write G, 𝑝 ↔ G′, 𝑝′. �
It is important to note that we are not making any claims about non-

deterministic multiplayer game bisimulations being the right definition of
bisimulations for nondeterministicmultiplayer games. Instead, we consider
these bisimulations to be simple definition that suffices for what we will
state in Corollary 4.2.42: the semantics of deterministic multiplayer logic
is invariant with respect to bisimilarity on Kripke multiplayer models. For
this invariance, our definition of bisimulations is quite strong, as one can
easily think of examples of games in which two positions have different
sets of player that get a turn, but still have the same sets of angelically win-
ning players. For more natural ways to approach bisimulations on games,
we refer the interested reader to van Benthem, Bezhanishvili, and Enqvist
(2019).
Remark 4.2.38. Using the coalgebraic view of nondeterministic A-games,
we also obtain a natural notion of a nondeterministic A-game homomor-
phism, throughwhich we can define a category PNDA of pointed nondeter-
ministic multiplayer games and point-preserving nondeterministic A-game
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homomorphisms. The astute reader might have noticed that we have type-
set many of the constructions throughout this chapter like functors. All of
these constructions can in fact be extended to become functors from and to
(suitable variations on) PNDA. �

The reason nondeterministic A-game bisimulations are of interest to us
lies in the important fact that the existence of angelic winning strategies is
invariant with respect to them.

Theorem 4.2.39. LetG andG′ be nondeterministic A-games with sets of positions
Pos and Pos′, respectively. Then for all 𝑝 ∈ Pos and 𝑝′ ∈ Pos′, it holds that
G, 𝑝 ↔ G′, 𝑝′ implies that 𝔞 angelically wins G@𝑝 iff 𝔞 angelically wins G′@𝑝′
for all players 𝔞 ∈ A.
Proof. We show that for every nondeterministic A-game bisimulation 𝐵 :
G ↔ G′, it holds for all

〈
𝑝, 𝑝′

〉 ∈ 𝐵 and 𝔞 ∈ A that 𝔞 angelically wins G@𝑝
iff 𝔞 angelically wins G′@𝑝′. Fix such 𝐵 and 𝔞.

Define 𝑊 ⊆ 𝐵 to be the set of pairs
〈
𝑝, 𝑝′

〉 ∈ 𝐵 such that it is not the
case that 𝔞 angelically wins G@𝑝 iff 𝔞 angelically wins G′@𝑝′. To prove the
theorem, we assume for the sake of contradiction that 𝑊 ≠ ∅. Define a
relation ⊑ ⊆ 𝐵×𝐵 by putting

〈
𝑝, 𝑝′

〉 ⊑ 〈
𝑞, 𝑞′

〉
iff 𝑝 Adm∗ 𝑞 and 𝑝′(Adm′)∗𝑞′.9

Since there exist neither infinite Adm- nor infinite Adm′-chains by definition
of nondeterministic A-games, it is easily verified that ⊑ is a partial order
on 𝐵. We denote the corresponding strict order by <, defined as

〈
𝑝, 𝑝′

〉 <〈
𝑞, 𝑞′

〉
iff

〈
𝑝, 𝑝′

〉 ⊑ 〈
𝑞, 𝑞′

〉
and

〈
𝑝, 𝑝′

〉
≠

〈
𝑞, 𝑞′

〉
.

Again due to the absence of infinite Adm- and Adm′-chains, ⊑ can be
seen to satisfy the ascending chain condition — i.e. there exists no infinite
<-chain. It follows from this that for all nonempty subsets 𝐶 ⊆ 𝐵, there
exist <-maximal pairs

〈
𝑝, 𝑝′

〉 ∈ 𝐶 — i.e. there exist pairs
〈
𝑝, 𝑝′

〉 ∈ 𝐶 such
that there is no

〈
𝑞, 𝑞′

〉 ∈ 𝐶 with
〈
𝑝, 𝑝′

〉 < 〈
𝑞, 𝑞′

〉
. If this would not hold,

then there would exist nonempty 𝐶 ⊆ 𝐵 such that for all
〈
𝑝, 𝑝′

〉 ∈ 𝐶, there
exists

〈
𝑞, 𝑞′

〉 ∈ 𝐶 with
〈
𝑝, 𝑝′

〉 < 〈
𝑞, 𝑞′

〉
, contradicting the ascending chain

condition.
Applying this to 𝑊 , it follows that there is some <-maximal pair〈

𝑝, 𝑝′
〉 ∈ 𝑊 . In other words, 𝑝𝐵𝑝′ holds, but it is not the case that 𝔞

angelically wins G@𝑝 iff 𝔞 angelically wins G′@𝑝′. We can assume without
loss of generality that 𝔞 angelically wins G@𝑝, while 𝔞 does not angelically
win G′@𝑝′. Note that since 𝑝 and 𝑝′ are related by the nondeterministic
A-game bisimulation 𝐵, precisely one of the following two conditions must
hold: (i) 𝑝 ∈ Fin and 𝑝′ ∈ Fin′, or (ii) Adm[𝑝] ≠ ∅ ≠ Adm′[𝑝′].

First, suppose (i) holds. Then because 𝐵 is a nondeterministic A-game
bisimulation, it follows from the (turn) condition that turn(𝑝) = turn′(𝑝′).

9Given a binary relation 𝑅 ⊆ 𝑋 × 𝑋, we inductively define relations 𝑅𝑛 ⊆ 𝑋 × 𝑋 for all
𝑛 < 𝜔 by defining 𝑅0 := Diag𝑋 = {⟨𝑥, 𝑥⟩ ; 𝑥 ∈ 𝑋}, and putting 𝑥𝑅𝑛+1𝑦 iff there is some
𝑧 ∈ 𝑋 such that 𝑥𝑅𝑛𝑧𝑅𝑦. We then put 𝑅∗ :=

⋃
𝑛<𝜔 𝑅𝑛 .
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Since a player has a relative winning strategy from a final position iff that
player is not in the set of players that can get a turn there, it therefore holds
that 𝔞 angelically wins G@𝑝 iff 𝔞 angelically wins G′@𝑝′. This contradicts
the assumption that

〈
𝑝, 𝑝′

〉 ∈ 𝑊 .
Second, suppose (ii) holds. Assume first that 𝔞 ∈ turn(𝑝). Since 𝔞 an-

gelically wins G@𝑝, it follows from Proposition 4.2.14 that there is some
𝑞 ∈ Adm[𝑝] such that 𝔞 angelically wins G@𝑞. As 𝐵 is a nondeterministic A-
game bisimulation, it follows from the (forth) condition that there is some
𝑞′ ∈ Adm′[𝑝′] such that 𝑞𝐵𝑞′. So

〈
𝑝, 𝑝′

〉 ⊑ 〈
𝑞, 𝑞′

〉
. As there exist neither

infinite Adm- nor infinite Adm′-chains, it must be that 𝑞 ≠ 𝑝 and 𝑞′ ≠ 𝑝′. So〈
𝑝, 𝑝′

〉 < 〈
𝑞, 𝑞′

〉
. As

〈
𝑝, 𝑝′

〉
is <-maximal in𝑊 , it must be that

〈
𝑞, 𝑞′

〉
∉ 𝑊 .

So by definition of 𝑊 , it holds that 𝔞 angelically wins G@𝑞 iff 𝔞 angelically
wins G′@𝑞′. As we already derived that 𝔞 angelically wins G@𝑞, it there-
fore also holds that 𝔞 angelicallywinsG′@𝑞′. Since it follows from the (turn)
condition that turn(𝑝) = turn′(𝑝′), and thus, that 𝔞 ∈ turn′(𝑝′), we can then
conclude using Proposition 4.2.14 again that 𝔞 also angelically wins G′@𝑝′.
This contradicts our assumption that

〈
𝑝, 𝑝′

〉 ∈ 𝑊 .
Still assuming that (ii) holds, we now assume that 𝔞 ∉ turn(𝑝) (and

hence, also 𝔞 ∉ turn′(𝑝′)). Now take any 𝑞′ ∈ Adm′[𝑝′]. As 𝐵 is a nonde-
terministic A-game bisimulation, it follows from the (back) condition that
there is some 𝑞 ∈ Adm[𝑝] such that 𝑞𝐵𝑞′. As before, it holds that

〈
𝑝, 𝑝′

〉 <〈
𝑞, 𝑞′

〉
, and therefore

〈
𝑞, 𝑞′

〉
∉ 𝑊 , whichmeans that 𝔞 angelically winsG@𝑞

iff 𝔞 angelically wins G′@𝑞′. Since 𝔞 angelically wins G@𝑝, it follows from
Proposition 4.2.14 that 𝔞 angelically wins G@𝑟 for all 𝑟 ∈ Adm[𝑝]. So 𝔞 must
also angelically winG@𝑞. Thus, it follows that 𝔞 angelically winsG′@𝑞′. As
𝑞′ ∈ Adm′[𝑝′] was arbitrary, we can then conclude using Proposition 4.2.14
that 𝔞 angelically wins G′@𝑝′. This yet again contradicts our assumption
that

〈
𝑝, 𝑝′

〉 ∈ 𝑊 .
Thus, our initial assumption that𝑊 ≠ ∅ holds is contradictory. □

Using Theorem 4.2.39, we can now show that nondeterministic basic
multiplayer logic is adequate with respect to bisimulations on Kripke mul-
tiplayer models. We do this by showing that bisimulations on Kripke mul-
tiplayer models lift to nondeterministic multiplayer game bisimulations on
the evaluation games in a suitableway. Note that we consider nondetermin-
istic basic multiplayer logic without negation for simplicity — the statement
and proof of these results can be modified to also work for the logic with
negation, but this does not offer any conceptual insight.

Definition 4.2.40. Given Kripke A-modelsM = ⟨𝑆, 𝑅, col⟩ andM′ = ⟨𝑆′, 𝑅′,
col′⟩, along with a relation 𝑇 ⊆ 𝑆 × 𝑆′, the nondeterministic basic A-logic eval-
uation game lifting of 𝑇 is the binary relation

EvalBASIC
A

𝑇 ⊆ (LangBASIC,A × 𝑆 × RDA) × (LangBASIC,A × 𝑆′ × RDA)
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defined by putting
〈
𝜑, 𝑠 , role

〉 (EvalBASIC
A

𝑇) 〈𝜓, 𝑠′, role′
〉
iff 𝜑 = 𝜓, role = role′,

and 𝑠𝑇𝑠′. �
Theorem 4.2.41. Let M = ⟨𝑆, 𝑅, col⟩ and M′ = ⟨𝑆′, 𝑅′, col′⟩ be Kripke A-
models. Then a relation 𝐵 ⊆ 𝑆 × 𝑆′ is a Kripke A-model bisimulation

𝐵 :M ↔ M′

iffEvalBASIC
A

𝐵 is a nondeterministic A-game bisimulation

EvalBASIC
A

𝐵 : EvalBASIC
A
M ↔ EvalBASIC

A
M′.

Proof sketch. The direction from left to right follows very simply from the
definitions of the turn function and admissibility relation. For the direction
from right to left, we can derive col(𝑠)(𝑝) = col′(𝑠′)(𝑝) for 𝑠𝐵𝑠′ and 𝑝 ∈ Prop
by considering the turn functions at positions

〈
𝑝, 𝑠, idA

〉
and

〈
𝑝, 𝑠′, idA

〉
.

And we can derive the (back) and (forth) conditions by considering po-
sitions

〈3B𝜑, 𝑠 , idA〉 and
〈3B𝜑, 𝑠′, idA〉 for any formula 𝜑, and applying the

(back) and (forth) conditions of nondeterministic A-game bisimulations.
□

Corollary 4.2.42. Let M = ⟨𝑆, 𝑅, col⟩ and M′ = ⟨𝑆′, 𝑅′, col′⟩ be Kripke A-
models, and consider states 𝑠 inM and 𝑠′ inM′. ThenM, 𝑠 ↔ M′, 𝑠′ implies
that J𝜑KBASIC,AM (𝑠) = J𝜑KBASIC,AM′ (𝑠′)
for all 𝜑 ∈ LangBASIC,A.

Proof. This follows by applying Theorem 4.2.39 to Theorem 4.2.41, noting
thatM, 𝑠 ↔ M′, 𝑠′ implies that

EvalBASIC
A
M,

〈
𝜑, 𝑠 , idA

〉 ↔ EvalBASIC
A
M′,

〈
𝜑, 𝑠′, idA

〉
for all formulas 𝜑. □

4.3 Coalgebraic Multiplayer Logic

As discussed in Section 4.1.2, the main challenge in a proper coalgebraic
generalization of multiplayer logic as treated in LAMP10 lies in how we
approach modalities. In this section, we will show how we can achieve a
coalgebraic generalization with a uniform treatment of modalities, by us-
ing nondeterministic multiplayer games as the basic game structure.

10Recall that we use the term LAMP to refer to the article by Olde Loohuis and Venema
(2010) on which this chapter is based.
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4.3.1 Predicate Liftings and Neighbourhood Frames

Both deterministic and nondeterministic (basic) multiplayer logic are in-
terpreted over Kripke (multiplayer) models, and only include (multiplayer
variations of) the 3- and 2-modality. The behaviour of these modalities is
quite simple, in the sense that the semantics of the 3-modality can be de-
fined through existential quantification over successor states, while the se-
mantics of the 2-modality is defined through universal quantification over
successor states. Using Propositions 4.1.8 and 4.2.14, this fits nicely into the
multiplayer game structures we have considered, as existential quantifica-
tion can be captured through a choice for some player(s), and universal
quantification can be captured through a choice for other players.

But in general, modalities need not only be restricted to either of these
two patterns (i.e. existential or universal quantification over states). In-
stead, they can have richer choice patterns, as can be seen from the example
of the 3𝑘-modality forDist-coalgebras considered in Section 4.1.2. The way
we proposed to game-theoretically capture the semantics of 3𝑘 there con-
sisted of a choice pattern consisting of existential quantification (over sets
of states) followed by universal quantification (over states in those sets).

As we will show, the semantics of a large class of modalities in the coal-
gebraic setting can always be captured through this latter choice pattern:
existential quantification follows by universal quantification, or in game-
theoretic terms, a choice by some player(s) followed by a choice by all other
players.11 Thewaywe show thismakes use of an essential property of predi-
cate liftings that allows us to view any coalgebras as (polyadic) neighbourhood
frames.

Neighbourhood frames are standard structures used in the study of non-
normal modal logics.12 They generalize Kripke frames, in which states are
related to others states, by considering states that are related to sets of states,
referred to as neighbourhoods.

Definition 4.3.1. A neighbourhood frame is a pairN = ⟨𝑆, neigh⟩, where 𝑆 is
a set of states, and neigh : 𝑆 → PP𝑆 is a neighbourhood function, mapping
states 𝑠 to the set neigh(𝑠) ⊆ P𝑆 of neighbourhoods of 𝑠. �

Coalgebraically, neighbourhood frames are coalgebras for the functor
N : Set → Setdefined asN := 22− . This coalgebraic perspective is essential,
as we will now show.13

11We wish to briefly remark that this is quite similar to the way Venema (2006) defines
evaluation games for coalgebraic fixed point logic, in which modal formulas are captured
by two consecutive positions, with the Verifier (corresponding to existential quantification)
moving first, followed by the Falsifier (corresponding to universal quantification).

12We refer the interested reader to Chellas (1980) and Hansen, Kupke, and Pacuit (2009)
for an overview of the study of neighbourhood frames within modal logic.

13What we are about to show is well-known within the field of coalgebraic logic, albeit
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Wewill begin in a simple settingwith a single unarymodality. Consider
a unary predicateT-lifting lift : ForgBA,Set ◦Pred ⇒ ForgBA,Set ◦Pred ◦T
for some set functor T. Recalling that ForgBA,Set ◦ Pred = 2−, the lifting
lift is more simply described as a natural transformation lift : 2− ⇒ 2T−.
We have that the transposed collection of functions lift�̂� : T𝑋 → 22𝑋 also
defines a natural transformation lift̂ : T ⇒ N, as can be easily verified.
Importantly, this natural transformation allows us to functorially transform
T-coalgebras into N-coalgebras, i.e. neighbourhood frames.

Proposition 4.3.2. LetTbe a set functor, and lift : 2− ⇒ 2T− be a unary predicate
T-lifting. Given a T-coalgebra S = ⟨𝑆, 𝜎⟩, define the neighbourhood frame Slift :=〈
𝑆, lift�̂� ◦ 𝜎

〉
. Given a function 𝑓 : 𝑆 → 𝑆′, define 𝑓 lift := 𝑓 .

The operation (−)lift on T-coalgebras and functions defines a functor

(−)lift : CoalgSet(T) → CoalgSet(N).

Proof. This follows immediately from the naturality of lift̂ . □

Predicate liftings are not always unary. General predicate liftings in-
duce functorial transformations to so-called polyadic neighbourhood frames.
These are quite naturally defined by associating to a state a set of polyadic
neighbourhoods, each consisting of multiple sets of states.

Definition 4.3.3. For 𝑛 < 𝜔, an 𝑛-ary neighbourhood frame (ormore generally,
a polyadic neighbourhood frame) is a pair N = ⟨𝑆, neigh⟩, where 𝑆 is a set of
states, and neigh : 𝑆 → P((P𝑆)𝑛) is an 𝑛-ary neighbourhood function, mapping
states 𝑠 to the set neigh(𝑠) ⊆ (P𝑆)𝑛 of 𝑛-ary neighbourhoods of 𝑠. �

We have that 𝑛-ary neighbourhood frames are coalgebras for the func-
tor N𝑛 : Set → Set defined as N𝑛 := 2(2−)𝑛 . Analogous to the situation
before with Proposition 4.3.2, 𝑛-ary predicate T-liftings lift induce natu-
ral transformations lift̂ : T ⇒ N𝑛 , which again gives rise to a functor
(−)lift : CoalgSet(T) → CoalgSet(N𝑛) defined similarly.

Note that we have been considering a single predicate lifting so far. In
the general setting, we will have a (two-valued) coalgebraic modal logic
Log = ⟨⟨Sym, ar⟩ , Lift⟩ with Lift =

〈
lift♡

〉
♡∈Sym. By considering the trans-

poses of each of these liftings, we can see that these logics still induce func-
torial transformations to a certain class of coalgebras.

largely folkloric. Part of the following is briefly mentioned by Hansen, Kupke, and Pacuit
(2009, Remark 5.9). A much more restricted version of the following, however, was exten-
sively treated by Pattinson (2001).
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Definition 4.3.4. Given a set 𝐼 and an 𝐼-indexed sequence 𝒏 ∈ 𝜔𝐼 of natural
numbers, define the set functor N𝒏 as

N𝒏 :=
∏
𝑖∈𝐼

N𝑛𝑖 .

Given a modal similarity type Sim = ⟨Sym, ar⟩, we write NSim for the
functorNar (where ar is treated as a Sym-indexed sequence of natural num-
bers).

Given a coalgebraic modal logic Log = ⟨Sim, Lift⟩ over a set functor T
and a T-coalgebra S = ⟨𝑆, 𝜎⟩, define the NSim-coalgebra SLog as

SLog :=

〈
𝑆,

〈
lift♡�̂� ◦ 𝜎

〉
♡∈Sym

〉
,

and given a function 𝑓 : 𝑆 → 𝑆′, define 𝑓 Log as 𝑓 Log := 𝑓 . �
Proposition 4.3.5. For all coalgebraic modal logics Log, the operation (−)Log on
T-coalgebras and functions defines a functor

(−)Log : CoalgSet(T) → CoalgSet(NSim).

Itwill be of specific interest to us to consider a particular class of polyadic
neighbourhood frames. Namely, the class of polyadic monotone neighbour-
hood frames. These are polyadic neighbourhood frames in which the set
neigh(𝑠) is closed upwards with respect to set inclusion for each of the 𝑛
neighbourhoods. We give a coalgebraic definition of this class, by defining
the coalgebra type functor.

Definition 4.3.6. For 𝑛 < 𝜔, the 𝑛-ary monotone neighbourhood functor M𝑛 :
Set → Set is defined on sets 𝑋 as

M𝑛𝑋 :={𝑊 ⊆ (P𝑋)𝑛 ; ⟨𝑈1 , . . . , 𝑈𝑖 ∪𝑉, . . . , 𝑈𝑛⟩ ∈ 𝑊

for all𝑼 ∈ 𝑊, 1 ⩽ 𝑖 ⩽ 𝑛,𝑉 ⊆ 𝑋},

and on functions 𝑓 : 𝑋 → 𝑌 as (N𝑛 𝑓 )↾M𝑛𝑋 . We refer to M𝑛-coalgebras as
𝑛-ary monotone neighbourhood frames. �

Note that M𝑛-coalgebras are indeed also N𝑛-coalgebras.
The reason we are interested in polyadic monotone neighbourhoods is

based on their relation to monotone predicate liftings. These are predicate
liftings representing modalities of which the semantics is monotone with
respect to the semantics of given argument formulas. For example, the 2-
modality of basic modal logic is monotone, with J2𝜑K ⊆ J2𝜓K if J𝜑K ⊆ J𝜓K.
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Definition 4.3.7. Given a set functor T, an 𝑛-ary predicate T-lifting lift is
monotone if for all sets 𝑆 and 𝐴1 , . . . , 𝐴𝑛 , 𝐵 ⊆ P𝑆, it holds that

lift𝑆(𝐴1 , . . . , 𝐴𝑖 , . . . , 𝐴𝑛) ⊆ lift𝑆(𝐴1 , . . . , 𝐴𝑖 ∪ 𝐵, . . . , 𝐴𝑛)
for all 1 ⩽ 𝑖 ⩽ 𝑛.

A coalgebraic modal logic Log = ⟨⟨Sym, ar⟩ , Lift⟩ over T is monotone if
lift♡ is monotone for all ♡ ∈ Sym. �
Proposition 4.3.8. LetTbe a set functor, and lift be an 𝑛-ary monotone predicate
T-lifting. Then the operation (−)lift defines a functor (−)lift : CoalgSet(T) →
CoalgSet(M𝑛).

Defining M𝒏 and MSim analogously to the way N𝒏 and NSim were defined in
Definition 4.3.4, it holds for all coalgebraic modal logics Log = ⟨Sim, Lift⟩ that
the operation (−)Log defines a functor (−)Log : CoalgSet(T) → CoalgSet(MSim).

Proof. This follows easily from the naturality of lift♡̂ and the monotonicity
of lift♡ for each ♡ ∈ Sym. □

So monotone coalgebraic modal logics induce transformations from
T-coalgebras to (products of) polyadic monotone neighbourhood frames.
This is of interest to us because, as we will shortly show, it allows us to
capture the semantics of monotone modalities through certain modalities
for monotone neighbourhood frames, in a way that is amenable to the even-
tual game-theoretic generalization. These certainmodalities are the polyadic
monotone 2-modalities, denoted by the symbols �𝑛 for 𝑛 < 𝜔, and given by
the following predicate liftings.

Definition 4.3.9. For 𝑛 < 𝜔, the 𝑛-ary monotone 2-lifting is the 𝑛-ary predi-
cate M𝑛-lifting lift�,𝑛 defined by putting

lift�,𝑛
𝑆 (𝐴1 , . . . , 𝐴𝑛) := {𝑈 ∈ M𝑛𝑆 ; ⟨𝐴1 , . . . , 𝐴𝑛⟩ ∈ 𝑈}

for sets 𝑆 and 𝐴1 , . . . , 𝐴𝑛 ⊆ 𝑆. �
Given the general setting in which there is more than one modality,

it will also be helpful to define the following version of the monotone 2-
modality, denoted by the symbols �𝒏 ,𝑖 for sequences 𝒏 of natural numbers,
and indices 𝑖.

Definition 4.3.10. Given a set 𝐼, an 𝐼-indexed sequence 𝒏 ∈ 𝜔𝐼 , and an index
𝑖 ∈ 𝐼, themonotone2-lifting for (𝒏 , 𝑖) is the 𝑛𝑖-ary predicateM𝒏-lifting lift�,𝒏 ,𝑖

defined by putting

lift�,𝒏 ,𝑖
𝑆 (𝐴1 , . . . , 𝐴𝑛𝑖 ) :=

{
𝑼 ∈ M𝒏𝑆 ;𝑈𝑖 ∈ lift�,𝑛𝑖

𝑆 (𝐴1 , . . . , 𝐴𝑛𝑖 )
}

for sets 𝑆 and 𝐴1 , . . . , 𝐴𝑛𝑖 ⊆ 𝑆. �
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Recall that the semantics of a formula ♡(𝜑1 , . . . , 𝜑ar♡) in a coalgebraic
modal logic Log is given as

J♡(𝜑1 , . . . , 𝜑ar♡)KLogS = (Pred𝜎)(lift♡𝑆(J𝜑1KLogS , . . . , J𝜑ar♡KLog
S

)).
We show the semantics of modalities for T-coalgebras can be captured by
the semantics of monotone2-modalities for polyadic monotone neighbour-
hood frame obtained through the (−)Log-functor as follows.14

Proposition 4.3.11. Let S = ⟨𝑆, 𝜎, col⟩ be a T-model, and Log = ⟨⟨Sym, ar⟩,
Lift⟩ be a monotone coalgebraic modal logic overT. Then for all ♡ ∈ Sym, it holds
that

(Pred𝜎)(lift♡𝑆(𝐴1 , . . . , 𝐴ar♡))
is equal to

(Pred⟨ lift♣�̂� ◦ 𝜎⟩♣∈Sym)(lift�,ar,♡
𝑆 (𝐴1 , . . . , 𝐴ar♡))

for all sets 𝑆 and 𝐴1 , . . . , 𝐴ar♡ ⊆ 𝑆.

Proof. For brevity, we will write 𝑨 := ⟨𝐴1 , . . . , 𝐴ar♡⟩. We compute and find
that

(Pred⟨ lift♣�̂� ◦ 𝜎⟩♣∈Sym)(lift�,ar,♡
𝑆 (𝑨))

=

{
𝑠 ∈ 𝑆 ;

(
⟨ lift♣�̂� ◦ 𝜎⟩♣∈Sym

)
(𝑠) ∈ lift�,ar,♡

𝑆 (𝑨)
}

(definition Pred)

=

{
𝑠 ∈ 𝑆 ;⟨ lift♣�̂� (𝜎(𝑠))⟩♣∈Sym ∈ lift�,ar,♡

𝑆 (𝑨)
}

=
{
𝑠 ∈ 𝑆 ;⟨{𝑻 ∈ (P𝑆)ar♣ ; 𝜎(𝑠) ∈ lift♣𝑆(𝑻)

}⟩♣∈Sym ∈ lift�,ar,♡
𝑆 (𝑨)}

(definition transpose)
=

{
𝑠 ∈ 𝑆 ;

{
𝑻 ∈ (P𝑆)ar♡ ; 𝜎(𝑠) ∈ lift♡𝑆(𝑻)

} ∈ lift�,ar♡
𝑆 (𝑨)}

(definition lift�,ar,♡)
=

{
𝑠 ∈ 𝑆 ;𝑨 ∈ {

𝑻 ∈ (P𝑆)ar♡ ; 𝜎(𝑠) ∈ lift♡𝑆(𝑻)
}}

(definition lift�,ar♡)
=

{
𝑠 ∈ 𝑆 ; 𝜎(𝑠) ∈ lift♡𝑆(𝑨)

}
= (Pred𝜎)(lift♡𝑆(𝑨)), (definition Pred)

which is what we set out to prove. □

Definition 4.3.12. Given a monotone coalgebraic modal logic Log with
modal similarity type Sim over a set functor T, its monotone neighbourhood

14The following proposition would also hold if Log were not monotone. The reason we
state it for monotone logics specifically, is for ease of comparison with our eventual game-
theoretic definitions.
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translation is the coalgebraic modal logic Log� over MSim with modal simi-
larity type 〈{�ar,♡ ;♡ ∈ Sym

}
,�ar,♡ ↦→ ar♡〉

and the predicateMSim-lifting lift�,ar,♡ for the symbol �ar,♡. We inductively
define a translation trLog,� from the language of Log to the language of
Log� by putting

trLog,�(𝑝) := 𝑝,

trLog,�(𝜑 ∨ 𝜓) := trLog,�(𝜑) ∨ trLog,�(𝜓),
trLog,�(¬𝜑) := ¬trLog,�(𝜑), and

trLog,�(♡(𝜑1 , . . . , 𝜑ar♡)) := �ar,♡(trLog,�(𝜑1), . . . , trLog,�(𝜑ar♡))
for 𝑝 ∈ Prop and ♡ ∈ Sym. �
Corollary 4.3.13. Let S = ⟨𝑆, 𝜎, col⟩ be aT-model, and Log = ⟨⟨Sym, ar⟩ , Lift⟩
be a monotone coalgebraic modal logic overT. Then it holds that

J𝜑KLog
S

= JtrLog,�(𝜑)KLog�
SLog

for all formulas 𝜑 in the language of Log.15

Proof. Follows from the definition of (−)Log and Proposition 4.3.11. □

4.3.2 Polyadic Monotone Neighbourhood Games

We now have all that we need to define nondeterministic multiplayer logics
for arbitrary coalgebra types. The idea is to start from a monotone coalge-
braic modal logic Log over a set functor Twith modal similarity type Sim,
and to instead work in the logic Log� over MSim. By Corollary 4.3.13, it
holds that the semantics of Log is precisely captured by Log�, and so it
will suffice to give a proper multiplayer version of the coalgebraic modal
logic over functors M𝒏 for sequences 𝒏 ∈ 𝜔𝐼 .

Definition 4.3.14. Given a sequence 𝒏 ∈ 𝜔𝐼 , the language of nondeterministic
monotone neighbourhood A-logic w.r.t. 𝒏 is the inductively defined set

LangM𝒏 ,A ∋ 𝜑 ::= 𝑝 | ⊥B | (𝜑 ∨B 𝜑) | (�𝒏 ,𝑖
B
(𝜑, . . . , 𝜑︸    ︷︷    ︸

𝑛𝑖 times

)) | (role𝜑),

where 𝑝 ∈ Prop, B ⊆ A, 𝑖 ∈ 𝐼, and role ∈ RDA. If B = {𝔞}, we will usually
omit the brackets. �

15Note that we extend the (−)Log-functor to operate on T-models in the obvious way, by
keeping colourings intact and only operating on the actual T-coalgebra map.
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Note thatwe can give an alternative characterization of the predicate lift-
ings lift�,𝒏 ,𝑖 that makes the pattern of existential quantification followed by
universal quantification explicit. By definition of polyadic monotone neigh-
bourhood frames, it can be verified that lift�,𝒏 ,𝑖

𝑆 (𝐴1 , . . . , 𝐴𝑛𝑖 ) is equal to the
set

{𝑼 ∈ M𝒏𝑆 ;∃ ⟨𝑋1 , . . . , 𝑋𝑛𝑖 ⟩ ∈ 𝑈𝑖 (∀(1 ⩽ 𝑘 ⩽ 𝑛𝑖)(∀𝑠 ∈ 𝑋𝑘 : 𝑠 ∈ 𝐴𝑘))} . (4.1)

We can capture this in nondeterministic monotone neighbourhood A-logic
as follows. Given anM𝒏-coalgebra S = ⟨𝑆, 𝜎⟩ (i.e. with 𝜎 : 𝑆 → ∏

𝑖∈𝐼 M𝑛𝑖𝑆),
we will construct the evaluation games in such a way that at a position cor-
responding to formula�𝒏 ,𝑖

B
(𝜑1 , . . . , 𝜑𝑛𝑖 ) and state 𝑠, players inB select an 𝑛𝑖-

ary neighbourhood ⟨𝑋1 , . . . , 𝑋𝑛𝑖 ⟩ ∈ proj𝑖(𝜎(𝑠)), afterwhich the other players
(i.e. those in A∖B) select one of the sets𝑋𝑘 for 1 ⩽ 𝑘 ⩽ 𝑛𝑖 , and a state 𝑡 ∈ 𝑋𝑘 .
Play then continues from 𝜑𝑘 and 𝑡.

In order to formally define this, we will add another component to the
positions in the evaluation games representing the 𝑛𝑖-ary neighbourhoods.

Definition 4.3.15. Given a multiplayer M𝒏-model16 S = ⟨𝑆, 𝜎, col⟩ for some
𝒏 ∈ 𝜔𝐼 , the nondeterministic monotone neighbourhood A-logic evaluation game
over S is the nondeterministic A-game EvalM𝒏

A
S with positions taken from

the greatest subset

Pos ⊆ LangM𝒏 ,A × 𝑆 × RDA ×
(
{∗} ∪

⋃
𝑖∈𝐼

(P𝑆)𝑛𝑖
)

such that 〈
𝜑, 𝑠 , role,𝑿

〉 ∈ Pos

only if 𝜑 = �𝒏 ,𝑖
B
(𝜑1 , . . . , 𝜑𝑛𝑖 ) and 𝑿 ∈ (P𝑆)𝑛𝑖 for some 𝑖 ∈ 𝐼, and with other

components specified in Table 4.4.
The semantics of nondeterministic monotone neighbourhood A-logic is given

by the function J−KM𝒏 ,A
S

: LangM𝒏 ,A → (PA)𝑆

defined by putting

J𝜑KM𝒏 ,A
S

(𝑠) :=
{
𝔞 ∈ A ; 𝔞 angelically wins (EvalM𝒏

A
S)@ 〈

𝜑, 𝑠 , idA , ∗
〉}

for 𝜑 ∈ LangM𝒏 ,A and 𝑠 ∈ 𝑆. �
16Analogously to how Kripke multiplayer models are Kripke models with an agent-

indexed colouring, we consider multiplayer T-models for a set functor T to be T-models
with an agent-indexed colouring.
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Table 4.4: Specification of a nondeterministic monotone neighbourhood
multiplayer logic evaluation game.

Position Admissible moves Turn〈
𝑝, 𝑠, role, ∗〉 ∅ A ∖ role−1[col(𝑠)(𝑝)]

⟨⊥B , 𝑠 , role, ∗⟩ ∅ role−1[B]〈
𝜑 ∨B 𝜓, 𝑠 , role, ∗〉 {〈

𝜑, 𝑠 , role, ∗〉 , 〈𝜓, 𝑠 , role, ∗〉} role−1[B]〈�𝒏 ,𝑖
B
(𝝋), 𝑠 , role, ∗

〉 {〈�𝒏 ,𝑖
B
(𝝋), 𝑠 , role,𝑿

〉
;𝑿 ∈ proj𝑖(𝜎(𝑠))

}
role−1[B]〈�𝒏 ,𝑖

B
(𝝋), 𝑠 , role,𝑿

〉 {〈
𝜑𝑘 , 𝑡 , role, ∗〉 ; 1 ⩽ 𝑘 ⩽ 𝑛𝑖 and 𝑡 ∈ 𝑋𝑘

}
role−1[A ∖ B]〈

rd𝜑, 𝑠 , role, ∗
〉 {〈

𝜑, 𝑠 , rd ◦ role, ∗〉} ∅

Proposition 4.3.16. Let S = ⟨𝑆, 𝜎, col⟩ be a multiplayer M𝒏-model for some 𝒏 ∈
𝜔𝐼 . Then for any 𝑝 ∈ Prop, 𝜑,𝜓 ∈ LangM𝒏 ,A, role ∈ RDA, B ⊆ A, and 𝔞 ∈ A, it
holds that

J𝑝KM𝒏 ,A
Ŝ

(𝔞) = col̂ (𝑝)̂ (𝔞),

J⊥BKM𝒏 ,A
Ŝ

(𝔞) =
{
∅ if 𝔞 ∈ B,
𝑆 if 𝔞 ∉ B,

J𝜑 ∨B 𝜓KM𝒏 ,A
Ŝ

(𝔞) =


J𝜑KM𝒏 ,A
Ŝ

(𝔞) ∪ J𝜓KM𝒏 ,A
Ŝ

(𝔞) if 𝔞 ∈ B,
J𝜑KM𝒏 ,A

Ŝ
(𝔞) ∩ J𝜓KM𝒏 ,A

Ŝ
(𝔞) if 𝔞 ∉ B,

J�𝒏 ,𝑖
B
(𝝋)KM𝒏 ,A

Ŝ
(𝔞) =


(Pred𝜎)

(
lift�,𝒏 ,𝑖

𝑆

( J𝝋KM𝒏 ,A
Ŝ

(𝔞)
))

if 𝔞 ∈ B,

𝑆 ∖ (Pred𝜎)
(
lift�,𝒏 ,𝑖

𝑆

(
𝑆 ∖ J𝝋KM𝒏 ,A

Ŝ
(𝔞)

))
if 𝔞 ∉ B,

Jrole𝜑KM𝒏 ,A
Ŝ

(𝔞) = J𝜑KM𝒏 ,A
Ŝ

(role(𝔞)),

where we use abbreviations 𝝋 =
〈
𝜑1 , . . . , 𝜑𝑛𝑖

〉
,

J𝝋KM𝒏 ,A
Ŝ

(𝔞) :=
〈 J𝜑1KM𝒏 ,A

Ŝ
(𝔞), . . . , J𝜑𝑛𝑖KM𝒏 ,A

Ŝ
(𝔞)

〉
, and

𝑆 ∖ J𝝋KM𝒏 ,A
Ŝ

(𝔞) :=
〈
𝑆 ∖ J𝜑1KM𝒏 ,A

Ŝ
(𝔞), . . . , 𝑆 ∖ J𝜑𝑛𝑖KM𝒏 ,A

Ŝ
(𝔞)

〉
.

Proof sketch. This can be shown using Proposition 4.2.14. □

Remark 4.3.17. We can now briefly comment on why we required our coal-
gebraic modal logic to be monotone. Note that Equation (4.1) would not
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hold if the coalgebraicmodal logicwas notmonotone. As a result, wewould
need to define evaluation games inwhich at a position corresponding to for-
mula �𝒏 ,𝑖

B
(𝜑1 , . . . , 𝜑𝑛𝑖 ) and state 𝑠, players in B choose an 𝑛𝑖-ary neighbour-

hood ⟨𝑋1 , . . . , 𝑋𝑛𝑖 ⟩ ∈ proj𝑖(𝜎(𝑠)), such that 𝑋𝑖 = J𝜑𝑖KŜ (𝔞) for all 1 ⩽ 𝑖 ⩽ 𝑛𝑖 .
To guarantee these equalities using themachinery of angelicwinning strate-
gies, we would need to also capture that all states in J𝜑𝑖KŜ (𝔞) lie in 𝑋𝑖 as
well. The only way we know of to achieve this, is to allow the players not in
B to either select a state 𝑥 ∈ 𝑋𝑖 for some 𝑖, from which play then continues
using formula 𝜑𝑖 , or to select some 𝑖 and a state 𝑥 that is not in the set 𝑋𝑖 ,
from which play would then continue using some sort of negation of the
formula 𝜑𝑖 .

But these negations are not part of the logic we have just defined.
Though we are able to modify evaluation games to also allow negation in
Section 4.2.4, we still refrain from pursuing nondeterministic multiplayer
logic for nonmonotone coalgebraic modal logic any further. This is mainly
by virtue of how unnatural such a logic is: note that we would no longer
even have the property that play in evaluation games always proceeds to
subformulas, since play (as described earlier) could potentially move to
the negation of a formula 𝜑𝑖 . But beyond this, monotonicity is a property
we will also rely on in Section 5.1 when proving Proposition 5.1.4, showing
nondeterministic A-logic and Boolean-valued coalgebraic modal logic are
equiexpressive. �

Having defined the multiplayer variant of the coalgebraic modal logic
over M𝒏 with modalities �𝒏 ,𝑖 , we can now finally define the multiplayer
variant of any arbitrary monotone coalgebraic modal logic.
Definition 4.3.18. Given a modal similarity type Sim = ⟨Sym, ar⟩, the Sim-
language of nondeterministic A-logic is the inductively defined set

LangND,Sim,A ∋ 𝜑 ::= 𝑝 | ⊥B | (𝜑 ∨B 𝜑) | (♡B(𝜑, . . . , 𝜑︸    ︷︷    ︸
ar♡ times

)) | (role𝜑),

where 𝑝 ∈ Prop, B ⊆ A, ♡ ∈ Sym, and role ∈ RDA. If B = {𝔞}, we will usually
omit the brackets.

Given a monotone coalgebraic modal logic Log overTwith modal sim-
ilarity type Sim, the semantics of nondeterministic A-logic w.r.t. Log for a mul-
tiplayer T-model S = ⟨𝑆, 𝜎, col⟩ is given by the function

J−KLog,A
S

: LangND,Sim,A → (PA)𝑆
defined by putting

J𝜑KLog,A
S

:= JtrLog,�(𝜑)KMSim ,A
SLog

for 𝜑 ∈ LangND,Sim,A, where trLog,� is the translation defined analogously to
Definition 4.3.12, extended to preserve the B-subscripts. �
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Theorem 4.3.19. Let S = ⟨𝑆, 𝜎, col⟩ be amultiplayerT-model for some set functor
T, and letLog be a monotone coalgebraic modal logic overTwith modal similarity
type Sim. Then for any 𝑝 ∈ Prop, 𝜑,𝜓 ∈ LangND,Sim,A, role ∈ RDA, B ⊆ A, and
𝔞 ∈ A, it holds that

J𝑝KLog,A
Ŝ

(𝔞) = col̂ (𝑝)̂ (𝔞),

J⊥BKLog,AŜ
(𝔞) =

{
∅ if 𝔞 ∈ B,
𝑆 if 𝔞 ∉ B,

J𝜑 ∨B 𝜓KLog,A
Ŝ

(𝔞) =


J𝜑KLog,A
Ŝ

(𝔞) ∪ J𝜓KLog,A
Ŝ

(𝔞) if 𝔞 ∈ B,
J𝜑KLog,A

Ŝ
(𝔞) ∩ J𝜓KLog,A

Ŝ
(𝔞) if 𝔞 ∉ B,

J♡B(𝝋)KLog,A
Ŝ

(𝔞) =

(Pred𝜎)

(
lift♡𝑆

( J𝝋KLog,A
Ŝ

(𝔞)
))

if 𝔞 ∈ B,

𝑆 ∖ (Pred𝜎)
(
lift♡𝑆

(
𝑆 ∖ J𝝋KLog,A

Ŝ
(𝔞)

))
if 𝔞 ∉ B,

Jrole𝜑KLog,A
Ŝ

(𝔞) = J𝜑KLog,A
Ŝ

(role(𝔞)),

where we use abbreviations 𝝋 =
〈
𝜑1 , . . . , 𝜑ar♡

〉
,

J𝝋KLog,A
Ŝ

(𝔞) :=
〈 J𝜑1KLog,AŜ

(𝔞), . . . , J𝜑ar♡KLog,A
Ŝ

(𝔞)
〉
, and

𝑆 ∖ J𝝋KLog,A
Ŝ

(𝔞) :=
〈
𝑆 ∖ J𝜑1KLog,AŜ

(𝔞), . . . , 𝑆 ∖ J𝜑ar♡KLog,A
Ŝ

(𝔞)
〉
.

Proof sketch. Follows from Proposition 4.3.16 and corollary 4.3.13. □

Thus, we have obtained a coalgebraic generalization of the multiplayer
logic in LAMP, at least when restricting ourselves to monotone coalgebraic
modal logics. Though we do not pursue this any further for the sake of
brevity, we note that many of the ideas considered in Sections 4.2.3 to 4.2.5
can also be applied to and proven for the coalgebraic multiplayer logic (e.g.
defining additional logical connectives and duals ofmodalities, introducing
negation, adequacy).



CHAPTER 5

MULTIPLAYER GAMES AND MULTIAGENT-
VALUED LOGIC

In this chapter, we will consider two ways to bring together the Boolean-
valued coalgebraic modal logics from Chapter 3 and the nondeterministic
coalgebraic multiplayer logics from Chapter 4. In Section 5.1, we begin by
showing that under some restrictions, nondeterministic coalgebraic multi-
player logics is equiexpressive to Boolean-valued coalgebraic modal logic.
We then finish in Section 5.2 by showing how enriching Boolean-valued
coalgebraic modal logic with the tools of nondeterministic coalgebraic mul-
tiplayer logic enables it to fully expressmore standardways of definingmul-
tiagent versions of coalgebraic modal logics.

5.1 Equiexpressivity and Deagentization

Throughout this section, we fix a monotone two-valued coalgebraic modal
logic Log over a set functor Twith modal similarity type ⟨Sym, ar⟩. We
will assume that there exists at least one nonnullary modality — i.e. some
♣ ∈ Sym with ar♣ ⩾ 1.

The semantics of the Booleanization LogA is fully determined by the
semantics of Log applied to slices, as in the Coalgebraic Slicing Theorem
(Theorem 3.2.19). Considering the semantics of nondeterministic A-logic
w.r.t. Log (cf. Theorem 4.3.19), we can informally observe that a similar
property almost holds there, with role switches forming the only source of
interaction between agents. Wewill make this observation precise: the non-
deterministic A-logic without (arbitrary) role switches is equiexpressive to
LogA, given suitable assumptions.

We briefly note that we will be working with a version of nondetermin-
istic A-logic with negation, which can be defined analogously to the way
we defined nondeterministic basic A-logic with negation (cf. Section 4.2.4).

103
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When we speak of role switches, we will not mean it to include negation
(which is implemented as role switches between players and their antago-
nists), but only role switches between players in A.

We need to be careful in defining when we consider these logics to
be equiexpressive, since they are not interpreted over the same type of
structure. The Booleanization LogA is interpreted over TA-models, while
the nondeterministic A-logic is interpreted over multiplayer T-models (i.e.
T-coalgebras with agent-indexed colourings). We will informally say one
logic is expressed by another logic, if there is a transformation from the struc-
tures of the former logic to the structures of the latter logic, as well as a
translation of the formulas of the former to the formulas of the latter, such
that the semantics of the former logic are preserved by said transformation
and translation.1

Using this informal definition, we will first tackle the matter of LogA
expressing nondeterministic A-logic w.r.t. Log. We will define the transfor-
mation between pointed versions of the structures in question, and show that
the semantics is preserved for the specific given points. Generally speaking,
a pointedT-coalgebra for a set functorTis a pair ⟨S, 𝑠⟩ such that 𝑠 is a state
in S, referred to as a basepoint. Themorphisms in the category Coalg∗Set(T) of
pointed T-coalgebras are T-coalgebra morphisms 𝑓 : S → S′ that preserve
basepoints. It is obvious how we can extend this notion of pointedness to
also work with multiplayer models and coalgebras on ASet — note that for
the latter, morphisms preserve basepoints in all slices.

We denote byTMP the functor defined asTMP𝑋 := T𝑋 ×(PA)Prop. Then
pointed multiplayer T-models will precisely be pointed TMP-coalgebras.
We can define an operation

Tr : Obj
(
Coalg∗Set(TMP)) → Obj

(
Coalg∗ASet(TA,Prop))

(whereTA,Prop is the type ofTA-models) in the obvious manner, by keeping
the colouring intact, and having the same transition structure for each agent.
That is, we define

Tr ⟨𝑆, 𝜎, col, 𝑠⟩ := ⟨𝑆, 𝔞 ∈ A ↦→ 𝜎, col, 𝑠⟩ .

We inductively define a translation tr from the formulas of nondeterministic

1Though it can be natural to require functoriality of the transformations, we will not do
so. Our definition is intended as a simple to understand definition of logics expressing one
another, and we make no claims to this being the optimal definition.
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A-logic w.r.t. Log (minus role switches) to the formulas ofLogA, by putting

tr(𝑝) := 𝑝, (𝑝 ∈ Prop)
tr(⊥B) := ⌜A ∖ B⌝,

tr(𝜑 ∨B 𝜓) := ⌜B⌝→ (tr(𝜑) ∨ tr(𝜓)) ∧ ⌜A ∖ B⌝→ (tr(𝜑) ∧ tr(𝜓)),
tr(¬B𝜑) := ⌜B⌝→ ¬tr(𝜑) ∧ ⌜A ∖ B⌝→ tr(𝜑), and

tr(♡B(𝝋)) := ⌜B⌝→ ♡(tr(𝝋)) ∧ ⌜A ∖ B⌝→ ¬♡(¬tr(𝝋)),
where we use abbreviations 𝝋 =

〈
𝜑1 , . . . , 𝜑ar♡

〉
,

tr(𝝋) = 〈
tr(𝜑1), . . . , tr(𝜑ar♡)

〉
, and

¬tr(𝝋) :=
〈¬tr(𝜑1), . . . ,¬tr(𝜑ar♡)

〉
.

This translation makes use of bounding formulas, which were briefly men-
tioned in Section 3.1.2.
Theorem 5.1.1. Let ⟨S, 𝑠⟩ be a pointed multiplayerT-model with S = ⟨𝑆, 𝜎, col⟩.
Denoting the basepoint of Tr ⟨S, 𝑠⟩ by 𝑠∗, it holds that

J𝜑KLog,A
S

(𝑠) = Jtr(𝜑)KLogATrS (𝑠∗)
for all formulas 𝜑 of nondeterministic A-logic w.r.t. Log, minus role switches.
Proof sketch. We can show this by induction on 𝜑, in which we apply Propo-
sition 3.2.17 and theorem 4.3.19. Note that for any B ⊆ A and formulas 𝜓
and 𝜒 of LogA, we have that 𝔞 ∈ B implies that ⌜B⌝ → 𝜓 ∧ ⌜A ∖ B⌝ → 𝜒
holds for 𝔞 (at some state) iff 𝜓 holds for 𝔞, while 𝔞 ∉ B implies that the
formula holds for 𝔞 iff 𝜒 holds for 𝔞. □

It makes conceptual sense that the Booleanization LogA only expresses
nondeterministic A-logic w.r.t. Log as long as there are no role switches. By
the Coalgebraic Slicing Theorem (Theorem 3.2.19), there is no interaction
between different agents, which is precisely what role switches require.

Showing that nondeterministic A-logic w.r.t. Log (minus role switches)
expresses the Booleanization LogA is more difficult. This difficulty lies in
the difference between the structures over which the two logics are inter-
preted. For nondeterministic A-logic w.r.t. Log to express LogA, we need
to find a proper way to transform arbitrary TA-models (which are agent-
indexed coalgebras) to multiplayer T-models, which are just TA-models in
which agents share the same transition structure.2

We will define the transformation of structures and the translation in
three steps.

2Note that the way LogA expresses nondeterministic A-logic w.r.t. Log minus role
switches implies that in a sense, the latter logic is just the former logic, interpreted over
agent-indexedmodels in which each agent has the same transition structure, but potentially
different colourings. So in essence, we will be showing a way to express Boolean-valued
coalgebraic modal logic over coalgebras with ‘two-valued’ transition structure.
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First Step

We begin the first step by noting that like in Definition 4.3.4, we can define
a transformation3

(−)LogA : Obj
(
Coalg∗ASet(TA,Prop)) → Obj

(
Coalg∗ASet(MSim,A,Prop))

by putting

⟨𝑆, 𝜎, col, 𝑠⟩LogA :=

〈
𝑆, 𝔞 ∈ A ↦→

〈
lift♡�̂� ◦ 𝜎𝔞

〉
♡∈Sym

, col, 𝑠
〉
.

We can verify, like in Proposition 4.3.11, that this transformation preserves
the semantics, in the sense that

J𝜑KLogA
S

(𝑠) = JtrLog,�,A(𝜑)KLog�,A

SLogA
(𝑠) (5.1)

for all 𝜑 in LogA, where trLog,�,A is the translation from Definition 4.3.12
extended to include constants ⌜B⌝, and Log�,A is the Booleanization of the
coalgebraic modal logic Log� over MSim also defined in Definition 4.3.12.

Second Step

Now we consider the second step. Given an agent-indexed polyadic mono-
tone neighbourhood model, as is produced by the functor (−)LogA defined
above, we will proceed in somewhat similar fashion to the way we defined
angelic determinizations of nondeterministic A-games in Definition 4.2.24.
There, we took the coproduct of angelizations for each agent, afterwhichwe
introduced a new position from which one of the angelizations needed to
be chosen. Here, we will take the coproduct of the slices of each agent, after
which we will introduce a new state from which one of the slices needs to
be chosen. We refer to the resulting multiplayer polyadic monotone neigh-
bourhood model as a deagentization.

Definition 5.1.2. We fix an enumeration Prop =
{
𝑝𝑖 ; 𝑖 < 𝜔

}
.

Given a pointedMSim,A-model ⟨S, 𝑠⟩with S = ⟨𝑆, 𝜎, col⟩, define themul-
tiplayer MSim-model ⟨𝑆′, 𝜎′, col′⟩ by letting ⟨𝑆′, 𝜎′⟩ be the coproduct∑

𝔞∈A
⟨𝑆, 𝜎𝔞⟩ ,

and letting col′ be the unique function induced from col by the universal
property of the coproduct

∑
𝔞 𝑆 of sets.

The deagentization of ⟨S, 𝑠⟩ is the pointed multiplayer MSim-model

Deag ⟨S, 𝑠⟩ :=
〈
𝑆′ ∪ {𝑠DEAG} , 𝜎DEAG, colDEAG , 𝑠DEAG

〉
,

3We write Obj(C) for the collection of objects of a category C.
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where 𝜎DEAG is defined for ♡ ∈ Sym by putting 𝜎DEAG♡ (𝑠′) := 𝜎′♡(𝑠′) for 𝑠′ ∈ 𝑆′,
and

𝜎DEAG♡ (𝑠DEAG) := (P(𝑆′ ∪ {𝑠DEAG}) ∖ {∅})ar♡.

The colouring is defined by putting

colDEAG(𝑠DEAG)(𝑝𝑖) := ∅,

colDEAG(inj𝔞(𝑠))(𝑝0) := {𝔞} ,
colDEAG(inj𝔞(𝑠))(𝑝𝑖+1) := col(𝑠)(𝑝𝑖),

colDEAG(𝑠′)(𝑝0) := ∅,

colDEAG(𝑠′)(𝑝𝑖+1) := col(𝑠′)(𝑝𝑖),

where 𝑠′ ≠ inj𝔞(𝑠) for all 𝔞 ∈ A, and 𝑠′ ≠ 𝑠DEAG. �
Intuitively, the deagentization ‘flattens’ the multiagent structure in a

polyadic monotone neighbourhood model by separating the slices through
the use of the coproduct. The state 𝑠DEAG is conceptually similar to the posi-
tion 𝑝DET in the angelic determinization (Definition 4.2.24). Wherewe could
then consider 𝑝DET to be a position from which a choice of one of the rela-
tivizations could be made by way of the admissibility relation, we are now
working in a setting where we have a monotone neighbourhood function.
So to enforce that one of the states inj𝔞(𝑠) for 𝔞 ∈ A is ‘chosen’ from 𝑠DEAG,
we fix the propositional variable 𝑝0, and will enforce through our transla-
tion of formulas that a neighbourhood is chosen from 𝑠DEAG that satisfies
𝑝0. In order to deal with formulas that contained 𝑝0, we ‘move forward’ all
propositional variables one place.

Though this is all quite informal, the corresponding translation of for-
mulas should make things clearer. We will be translating to nondetermin-
istic monotone neighbourhood A-logic.

Definition 5.1.3. Inductively define a function tr′�,MSim
from the language

of Log�,A to the language of nondeterministic monotone neighbourhood
A-logic w.r.t. Sim as

tr′�,MSim
(𝑝𝑖) := 𝑝𝑖+1 , (𝑖 < 𝜔)

tr′�,MSim
(⌜B⌝) := ⊥A∖B ,

tr′�,MSim
(𝜑 ∨ 𝜓) := tr′�,MSim

(𝜑) ∨A tr′�,MSim
(𝜓),

tr′�,MSim
(¬𝜑) := ¬Atr′�,MSim

(𝜑), and
tr′�,MSim

(�ar,♡(𝜑1 , . . . , 𝜑ar♡)) := �ar,♡
A

(tr′�,MSim
(𝜑1), . . . , tr′�,MSim

(𝜑ar♡))

Fix some ♣ ∈ Sym with ar♣ ⩾ 1. The translation from the language of Log�,A
to the language of nondeterministic monotone neighbourhood A-logic w.r.t. Sim is
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then given by the function tr�,MSim defined as

tr�,MSim(𝜑) := �ar,♣
A

(𝑝0 ∧A tr′�,MSim
(𝜑), . . . , 𝑝0 ∧A tr′�,MSim

(𝜑)︸                                               ︷︷                                               ︸
ar♣ times

)

for all 𝜑 in the language of Log�,A. �
Proposition 5.1.4. Let ⟨S, 𝑠⟩ be a pointedMSim,A-model with S = ⟨𝑆, 𝜎, col⟩, and
write Deag ⟨S, 𝑠⟩ = ⟨DeagS, 𝑠DEAG⟩ and DeagS =

〈
𝑆DEAG , 𝜎DEAG , colDEAG〉. Then

it holds that J𝜑KLog�,A

S
(𝑠) = Jtr�,MSim(𝜑)KMSim ,A

DeagS (𝑠DEAG)

for all formulas 𝜑 of Log�,A.

Proof. We first prove by induction on 𝜑 that

𝔞 ∈ J𝜑KLog�,A

S
(𝑡) iff 𝔞 ∈ Jtr′�,MSim

(𝜑)KMSim ,A
DeagS (inj𝔞(𝑡)) (5.2)

for all 𝑡 ∈ 𝑆 and 𝔞 ∈ A.
For the case of 𝑝𝑖 for some 𝑖 < 𝜔, we have that

𝔞 ∈ J𝑝𝑖KLog�,A

S
(𝑡) iff 𝔞 ∈ col(𝑡)(𝑝𝑖)

iff 𝔞 ∈ colDEAG(inj𝔞(𝑡))(𝑝𝑖+1)
iff 𝔞 ∈ J𝑝𝑖+1KMSim ,A

DeagS (inj𝔞(𝑡)),

and so the statement follows from tr′�,MSim
(𝑝𝑖) = 𝑝𝑖+1. The case of ⌜B⌝ is

immediate.
The cases for disjunction and negation follow using routine Boolean rea-

soning. Take a modal formula �ar,♡(𝝋) with 𝝋 =
〈
𝜑1 , . . . , 𝜑ar♡

〉
, and write

the abbreviations

J𝝋KLog�,A

S
:=

〈J𝜑1KLog�,A

S
, . . . , J𝜑ar♡KLog�,A

S

〉
,

J𝝋KLog�,A

Ŝ
(𝔞) :=

〈 J𝜑1KLog�,A

Ŝ
(𝔞), . . . , J𝜑ar♡KLog�,A

Ŝ
(𝔞)

〉
, and

tr′�,MSim
(𝝋) :=

〈
tr′�,MSim

(𝜑1), . . . , tr′�,MSim
(𝜑ar♡)

〉
.
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We have that 𝔞 ∈ J�ar,♡(𝝋)KLog�,A

S
(𝑠) holds

iff 𝔞 ∈ (lift�,ar,♡
A

)𝑆(J𝝋KLog�,A

S
(𝜎𝔞(𝑠)) (semantics Log�,A)

iff 𝔞 ∈ (lift�,ar♡
A

)𝑆(J𝝋KLog�,A

S
)(𝜎𝔞,♡(𝑠)) (definition lift�,ar,♡)

iff J𝝋KLog�,A

Ŝ
(𝔞) ∈ 𝜎𝔞,♡(𝑠) (definition lift�,ar♡)

iff
{
𝑡 ∈ 𝑆 ; 𝔞 ∈ J𝜑𝑖KLog�,A

S
(𝑡)

}
∈ {𝑈𝑖 ;𝑼 ∈ 𝜎𝔞,♡(𝑠)}

(definition transpose, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff

{
𝑡 ∈ 𝑆 ; 𝔞 ∈ Jtr′�,MSim

(𝜑𝑖)KMSim ,A
S

(inj𝔞(𝑡))
}
∈ {𝑈𝑖 ;𝑼 ∈ 𝜎𝔞,♡(𝑠)}

(IH, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff

{
inj𝔞(𝑡) ; 𝔞 ∈ Jtr′�,MSim

(𝜑𝑖)KMSim ,A
S

(inj𝔞(𝑡))
}
∈ {inj𝔞[𝑈𝑖] ;𝑼 ∈ 𝜎𝔞,♡(𝑠)}

(inj𝔞 is injective, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff

{
inj𝔞(𝑡) ; 𝔞 ∈ Jtr′�,MSim

(𝜑𝑖)KMSim ,A
S

(inj𝔞(𝑡))
}
∈ proj𝑖[(Mar♡inj𝔞)(𝜎𝔞,♡(𝑠))]

(definition Mar♡, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff

{
inj𝔞(𝑡) ; 𝔞 ∈ Jtr′�,MSim

(𝜑𝑖)KMSim ,A
S

(inj𝔞(𝑡))
}
∈ proj𝑖[𝜎DEAG♡ (inj𝔞(𝑠))]

(coproduct in Definition 5.1.2, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff

{
𝑡 ∈ 𝑆DEAG ; 𝔞 ∈ Jtr′�,MSim

(𝜑𝑖)KMSim ,A
S

(𝑡)
}
∈ proj𝑖[𝜎DEAG♡ (inj𝔞(𝑠))]

(monotonicity, for all 1 ⩽ 𝑖 ⩽ ar♡)
iff Jtr′�,MSim

(𝝋)KMSim ,A
DeagŜ (𝔞) ∈ 𝜎DEAG♡ (inj𝔞(𝑠)) (definition transpose)

iff 𝔞 ∈ J�ar,♡
A

(tr′�,MSim
(𝝋))KMSim ,A

DeagS (inj𝔞(𝑠)),
(semantics nondeterministic A-logic)

completing the induction.
Having shown Equation (5.2), we now show that

𝔞 ∈ Jtr�,MSim(𝜑)KMSim ,A
DeagS (𝑠DEAG) iff 𝔞 ∈ Jtr′�,MSim

(𝜑)KMSim ,A
DeagS (inj𝔞(𝑠)) (5.3)

for all 𝔞 ∈ A and formulas 𝜑. By the semantics of nondeterministic A-logic,
we find that 𝔞 ∈ Jtr�,MSim(𝜑)KMSim ,A

DeagS (𝑠DEAG) holds
iff 𝔞 ∈ J�ar,♣

A
(𝑝0 ∧A tr′�,MSim

(𝜑), . . . , 𝑝0 ∧A tr′�,MSim
(𝜑))KMSim ,A

DeagS (𝑠DEAG)

iff
{ J𝑝0 ∧A tr′�,MSim

(𝜑)KMSim ,A
DeagŜ (𝔞)

}ar♣
∈ 𝜎DEAG♣ (𝑠DEAG)

(semantics nondeterministic A-logic)

iff
{ J𝑝0 ∧A tr′�,MSim

(𝜑)KMSim ,A
DeagŜ (𝔞)

}ar♣
∈ (P𝑆DEAG ∖ {∅})ar♣

(definition 𝜎DEAG)
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iff J𝑝0 ∧A tr′�,MSim
(𝜑)KMSim ,A

DeagŜ (𝔞) ≠ ∅

iff J𝑝0KMSim ,A
DeagŜ (𝔞) ∩ Jtr′�,MSim

(𝜑)KMSim ,A
DeagŜ (𝔞) ≠ ∅
(semantics nondeterministic A-logic)

iff colDEAĜ (𝑝0)̂ (𝔞) ∩ Jtr′�,MSim
(𝜑)KMSim ,A

DeagŜ (𝔞) ≠ ∅
(semantics nondeterministic A-logic)

iff {inj𝔞(𝑠)} ∩ Jtr′�,MSim
(𝜑)KMSim ,A

DeagŜ (𝔞) ≠ ∅ (definition colDEAG)

iff inj𝔞(𝑠) ∈ Jtr′�,MSim
(𝜑)KMSim ,A

DeagŜ (𝔞)
iff 𝔞 ∈ Jtr′�,MSim

(𝜑)KMSim ,A
DeagS (inj𝔞(𝑠)). (definition transpose)

Putting together Equations (5.2) and (5.3), we obtain the statement we
set out to prove. □

Third Step

Starting with a pointed TA-model ⟨S, 𝑠⟩, we can go to a pointed MSim,A-
model ⟨S, 𝑠⟩LogA , whichwe can then deagentize to get themultiplayerMSim-
model Deag(⟨S, 𝑠⟩LogA). Similarly, starting with a formula 𝜑 of LogA, we
translate it to a formula trLog,�,A(𝜑) of Log�,A, which we then translate to
a formula tr�,MSim(trLog,�,A(𝜑)) of nondeterministic monotone neighbour-
hood A-logic w.r.t. Sim.

But in order to obtain a proof of equiexpressivity, we now need to trans-
form pointed TA-models to pointed multiplayer T-models, and translate
formulas of LogA to formulas of nondeterministic A-logic w.r.t. Log (mi-
nus role switches). We will aim to transform pointed TA-models ⟨S, 𝑠⟩ to
pointed multiplayer T-models DeagT⟨S, 𝑠⟩, which we will refer to as T-de-
agentizations. Informally, we define DeagTsuch that the diagram

Obj
(
Coalg∗ASet(TA,Prop))

Obj
(
Coalg∗ASet(MSim,A,Prop)

)
Obj

(
Coalg∗Set(TMP)

)
Obj

(
Coalg∗Set(MSim,MP))

(−)LogA
DeagT

Deag
(−)Log

(5.4)

almost commutes. Let us make precise what we mean by this. Recall that
we have fixed some nonnullary ♣ ∈ Sym. We will write Deag(⟨S, 𝑠⟩LogA) =
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⟨S′, 𝑠′∗⟩ with S′ = ⟨𝑆′, 𝜎′, col′⟩ and (DeagT⟨S, 𝑠⟩)Log = ⟨S′′, 𝑠′′∗ ⟩ with S′′ =
⟨𝑆′′, 𝜎′′, col′′⟩. We will define DeagT in such a way that 𝑆′ = 𝑆′′, 𝑠′∗ = 𝑠′′∗ ,
col′ = col′′, 𝜎′♡(𝑠′) = 𝜎′′♡(𝑠′) for all 𝑠′ ∈ 𝑆′ ∖ {𝑠′∗} and ♡ ∈ Sym, and 𝜎′♣(𝑠′∗) =
𝜎′′♣(𝑠′∗). Thus we justify the usage of the term almost: Diagram (5.4) would
commute, were it not for the possibility that 𝜎′♡(𝑠′∗) ≠ 𝜎′′♡(𝑠′∗) for ♡ ≠ ♣.

Let us first define the corresponding translation trMSim ,Log from LogA
to nondeterministic A-logic w.r.t. Log. This is completely analogous to the
composition tr�,MSim ◦ trLog,�,A. We first inductively define

tr′MSim ,Log(𝑝𝑖) := 𝑝𝑖+1 , (𝑖 < 𝜔)
tr′MSim ,Log(⌜B⌝) := ⊥A∖B ,

tr′MSim ,Log(𝜑 ∨ 𝜓) := tr′MSim ,Log(𝜑) ∨A tr′MSim ,Log(𝜓),
tr′MSim ,Log(¬𝜑) := ¬Atr′MSim ,Log(𝜑), and

tr′MSim ,Log(♡(𝜑1 , . . . , 𝜑ar♡)) := ♡A(tr′MSim ,Log(𝜑1), . . . , tr′MSim ,Log(𝜑ar♡)).
Then we can define

trMSim ,Log(𝜑) := ♣A(𝑝0 ∧A tr′MSim ,Log(𝜑), . . . , 𝑝0 ∧A tr′MSim ,Log(𝜑)︸                                                    ︷︷                                                    ︸
ar♣ times

)

for all 𝜑 in LogA. Using this translation trMSim ,Log along with a transforma-
tion DeagTmaking Diagram (5.4) almost commute in the sense described
earlier, it will follow immediately from the semantics of nondeterministic A-
logic w.r.t. Log and Equation (5.1) and proposition 5.1.4 that the semantics
gets preserved using said transformation and translation. To understand
this better, observe from the definition of trMSim ,Log that intuitively we will
only be interested in the ♣-neighbourhood function, at least when we are
considering the basepoint of a multiplayer T-model. This is again quite in-
formal, and will become more precise when we prove Proposition 5.1.7.

To define a transformation DeagT satisfying our criteria, we unfortu-
nately require an additional assumption about the logicLog. Besides mere-
ly assuming there to be some ♣ ∈ Sym with ar♣ ⩾ 1, we also require that for
all nonempty sets 𝑆, there exists some𝑈𝑆 ∈ T𝑆 such that

𝑈𝑆 ∈ lift♣𝑆(𝐴1 , . . . , 𝐴ar♣) iff there exists 1 ⩽ 𝑖 ⩽ ar♣ such that 𝐴𝑖 ≠ ∅,

for all 𝐴1 , . . . , 𝐴ar♣ ∈ P𝑆. We will refer to this assumption as (★).

Remark 5.1.5. Our assumption of (★) is quite a strong assumption to make.
In general, not every set functor admits a predicate lifting lift♣ (of any arity)
such that (★) holds. Considering some of the classic examples of coalgebra
functors (cf. Example 2.1.2), the interested reader can verify that the func-
tors IdSet, 𝐶 × (−) for some set 𝐶, and 2 × (−)𝐶 do not admit predicate
liftings satisfying (★), no matter the arity. Using the well-known bijective
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correspondence between 𝑛-ary predicate T-liftings and subsets 𝐶 ⊆ T(2𝑛)
(see e.g. Leal (2008)), it is not difficult to verify for e.g. the identity functor
IdSet that (★) being satisfied would entail that 𝐴𝑖 ≠ ∅ for some 𝑖 (as in
the definition of (★)) implies that there is some 𝑗 such that 𝑈𝑆 ∈ 𝐴 𝑗 , which
obviously does not hold in general.

But other classic examples like P, N, and M, as well as the bag func-
tor Bag4, all admit (unary) predicate liftings satisfying (★). Consdering
e.g. P, the lifting is in fact the one corresponding to the 3-modality: taking
𝑈𝑆 := 𝑆 works. Similarly, considering Bag, the lifting is the one corre-
sponding to the unary modality 3>0, with 3>0𝜑 holding at a state 𝑠 ∈ 𝑆
given transition map 𝜎 iff there is some 𝑡 ∈ 𝑆 at which 𝜑 holds such that
𝜎(𝑠)(𝑡) > 0.

Though we do not pursue this further or try to argue formally for it, it
informally seems to be the case that (★) holding for some coalgebra type T
requires that states in T-coalgebras can potentially ‘reach’ all other states.
All examples of functors we gave for which (★) holds are of this kind, while
the counterexamples are in fact not. �
Definition 5.1.6. Given a pointed TA-model ⟨S, 𝑠⟩ with S = ⟨𝑆, 𝜎, col⟩, de-
fine themultiplayerT-model ⟨𝑆′, 𝜎′, col′⟩ by letting ⟨𝑆′, 𝜎′⟩ be the coproduct∑

𝔞∈A
⟨𝑆, 𝜎𝔞⟩ ,

and letting col′ be the unique function induced from col by the universal
property of the coproduct

∑
𝔞 𝑆 of sets.

The T-deagentization of ⟨S, 𝑠⟩ is the pointed multiplayer T-model

DeagT⟨S, 𝑠⟩ :=
〈
𝑆′ ∪ {𝑠DEAG} , 𝜎DEAG,T, colDEAG, 𝑠DEAG

〉
,

where 𝜎DEAG,T is defined for 𝑠′ ∈ 𝑆′ as 𝜎DEAG,T(𝑠′) := 𝜎′(𝑠′), and for 𝑠DEAG as
𝜎DEAG,T(𝑠DEAG) := 𝑈𝑆′∪{𝑠DEAG}, where𝑈𝑆′∪{𝑠DEAG} is given by our assumption of
(★). The colouring colDEAG is defined identically to the colouring of the same
name in Definition 5.1.2. �
Proposition 5.1.7. Let ⟨S, 𝑠⟩ be a pointed TA-model with S = ⟨𝑆, 𝜎, col⟩, and
write Deag(⟨S, 𝑠⟩LogA) = 〈

𝑆DEAG, 𝜎DEAG , colDeag , 𝑠DEAG
〉
and (DeagT⟨S, 𝑠⟩)Log =〈

𝑆DEAG , 𝜎DEAG,T, colDeag , 𝑠DEAG
〉
. It holds that

(i) 𝜎DEAG♡ (inj𝔞(𝑠)) = 𝜎DEAG,T
♡ (inj𝔞(𝑠)) for all 𝑠 ∈ 𝑆 and ♡ ∈ Sym,

(ii) 𝜎DEAG♣ (𝑠DEAG) = 𝜎DEAG,T
♣ (𝑠DEAG).

4Also knownas themultiset functor, this functor sends sets𝑋 to the setBag𝑋 := (𝜔+1)𝑋 .
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Proof. First of all, note that the theorem is stated correctly: the state spaces,
colourings and basepoints of Deag(⟨S, 𝑠⟩LogA) and (DeagT⟨S, 𝑠⟩)Log are in-
deed equal.

We begin by showing (i). Expanding the definition of Deag(⟨S, 𝑠⟩LogA),
we denote the transition map of the coproduct obtained through the dea-
gentization (Definition 5.1.2) by 𝜎′. We can (partially) summarize the con-
struction of Deag(⟨S, 𝑠⟩LogA) by stating that the diagram

Σ𝑆 𝑆 T𝑆

MSimΣ𝑆 MSim𝑆 Mar♡𝑆

𝜎′

inj𝔞 𝜎𝔞

〈
lift♡�̂� ◦𝜎𝔞

〉
♡∈Sym

lift♡�̂�

MSiminj𝔞 proj♡

(5.5)

commutes for all 𝔞 ∈ A and ♡ ∈ Sym. We write Σ instead of
∑

𝔞∈A for sim-
plicity.

Denoting the transition map of the coproduct in the construction of the
T-deagentization (DeagT⟨S, 𝑠⟩)Log by 𝜎′′, we similarly find that the diagram

𝑆 Σ𝑆

T𝑆 TΣ𝑆

Mar♡𝑆 Mar♡Σ𝑆

inj𝔞

𝜎𝔞 𝜎′′

Tinj𝔞

lift♡�̂� lift♡Σ�̂�

Mar♡inj𝔞

(5.6)

commutes for all 𝔞 ∈ A and ♡ ∈ Sym.
Gluing Diagrams (5.5) and (5.6) together and adding the projection

map proj♡ : MSimΣ𝑆 → Mar♡Σ𝑆, we obtain the diagram

Σ𝑆 TΣ𝑆

𝑆 T𝑆

MSimΣ𝑆 Mar♡Σ𝑆

MSim𝑆 Mar♡𝑆

𝜎′′

𝜎′
lift♡Σ�̂�

inj𝔞

𝜎𝔞

〈
lift♡�̂� ◦𝜎𝔞

〉
♡∈Sym

Tinj𝔞

proj♡
MSiminj𝔞

proj♡

Mar♡inj𝔞

lift♡�̂�
(5.7)

for each 𝔞 and ♡. It follows from Diagrams (5.5) and (5.6) commuting that
Diagram (5.7) commutes if the bottom and back faces of the cube commute.
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The back face of the cube commutes by definition of 𝜎′ and 𝜎′′. The com-
mutativity of the bottom face can be easily verified by direct computation.

As a particular instance of the commutativity of Diagram (5.7), we then
get that

lift♡Σ�̂� ◦ 𝜎′′ ◦ inj𝔞 = proj♡ ◦ 𝜎′ ◦ inj𝔞 ,
from which (i) follows immediately by definition of 𝜎DEAG and 𝜎DEAG,T.

It finally follows immediately from the definition of the operation (−)Log
and the assumption of (★) that (ii) also holds. □

Theorem 5.1.8. Let ⟨S, 𝑠⟩ be a pointed TA-model with S = ⟨𝑆, 𝜎, col⟩, and write
DeagT⟨S, 𝑠⟩ = ⟨DeagTS, 𝑠DEAG⟩. Then it holds that

J𝜑KLogA
S

(𝑠) = JtrMSim ,Log(𝜑)KLog,ADeagTS
(𝑠DEAG)

for all formulas 𝜑 of LogA.

Proof. This follows fromEquation (5.1) and propositions 5.1.4 and 5.1.7. □

5.2 Multiagent Modal Logic and Role Switches

In How True5, Fitting gives examples showing how Boolean-valued basic
modal logic “can facilitate the natural expression of things.” These are ex-
amples of multiagent situations which would usually be expressed using
propositional variables and modalities for each agent, like the motivating
example we gave in Chapter 1, in which propositional variables 𝑝𝔞 and 𝑝𝔟
are replaced by a single propositional variable 𝑝. Fitting further alludes to
such applications of Boolean-valued basic modal logic, by stating that e.g.
using an epistemic interpretation of the 2-modality, it holds that “a truth
value for 2𝜑, in P{𝔞, 𝔟}, is the set of [agents] who know 𝜑.”

But as the Extended Slicing Theorem (Theorem 3.1.8) and themore gen-
eral Coalgebraic Slicing Theorem (Theorem 3.2.19) show, Boolean-valued
modal logic is more limited in this regard than one would reasonably ex-
pect. This limitation arises from the fact that Boolean-valuedmodal logic al-
lows no interactions between agents’ slices, which corresponds to e.g. a lack
of nested modalities for different agents. In this section, we will rigorously
show that there are even further limitations, and propose role switches,
from the nondeterministic A-logic of Section 4.3, as a way to circumvent
these limitations.

We begin by making formal a desideratum stating that Boolean-valued
coalgebraicmodal logic “facilitates the natural expression of things.” We in-
terpret this as meaning that Boolean-valued coalgebraic modal logics over a

5Recall that we use the term How True to refer to the article by Fitting (2009) on which
Chapter 3 is based.
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set functorT(more specifically, Booleanizations LogA) express two-valued
coalgebraicmodal logics over the set functor (T(−))A, inwhich propositional
variables and modalities are all indexed by agents. We refer to such two-
valued coalgebraic modal logics as multiagent coalgebraic modal logics.

Definition 5.2.1. Let Log = ⟨Sim, Lift⟩ be a two-valued coalgebraic modal
logic over a set functor T, and Prop a set of propositional variables. The
multiagent coalgebraic modal logicLogMA, over the set functor (T(−))A and set

PropMA :=
{
𝑝𝔞 ; 𝑝 ∈ Prop, 𝔞 ∈ A}

of propositional variables, is defined as LogMA := ⟨SimMA , LiftMA⟩, where

SymMA := {♡𝔞 ;♡ ∈ Sym, 𝔞 ∈ A} ,

and
LiftMA :=

〈
lift♡𝔞

〉
♡∈Sym,𝔞∈A

is defined by putting

lift♡𝔞
𝑆 (𝐴1 , . . . , 𝐴ar♡) :=

{
𝑈 ∈ (T𝑆)A ;𝑈(𝔞) ∈ lift♡𝑆(𝐴1 , . . . , 𝐴ar♡)

}
for 𝐴1 , . . . , 𝐴ar♡ ∈ P𝑆. �

We can view (T(−))A-models (over PropMA) as TA-models (over Prop),
and vice versa, giving the transformation between structures. This should
be immediately clear for the transition maps, but is also easy for the colour-
ings, since we can consider a colouring assigning 𝑝𝔞 and 𝑝𝔟 to a state 𝑠 to be
an agent-indexed colouring assigning {𝔞, 𝔟} to 𝑝 at 𝑠. Keeping this in mind,
we will no longer distinguish these two types of models, and will refer to
both as TA-models for brevity of notation.

Note that we need to be careful in defining when we consider the
Booleanization LogA to express the multiagent coalgebraic modal logic
LogMA, since their truth values differ. We will say the Booleanized coalge-
braic modal logic LogA expresses the multiagent coalgebraic modal logic
LogMA if there is a translation tr from the formulas of LogMA to those of
LogA, such that for all TA-models S = ⟨𝑆, 𝜎, col⟩ and states 𝑠 ∈ 𝑆, it holds
that

𝑠 ∈ J𝜑KLogMA
S

iff Jtr(𝜑)KLogA
S

(𝑠) = A
for all formulas 𝜑 in LogMA. This is a natural way to define LogA express-
ing LogMA, as the truth value ⊤ in the two-element Boolean algebra corre-
sponds to the truth valueA in the powersetPA. In fact, Fitting also considers
the assertion of a formula 𝜑 to mean that its truth value is A.

Let us first treat some examples in which the translation is easily found.
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Example 5.2.2. Consider A = {𝔞, 𝔟}. For single propositional variables 𝑝𝔞,
the translation is easily given, with tr(𝑝𝔞) := ⌜𝔞⌝→ 𝑝 doing the trick. Con-
junctions 𝑝𝔞∧ 𝑝𝔟 are also easily dealt with, by defining tr(𝑝𝔞∧ 𝑝𝔟) := (⌜𝔞⌝→
𝑝) ∧ (⌜𝔟⌝ → 𝑝). Negations are very simple, with tr(¬𝑝𝔞) := ⌜𝔞⌝ → ¬𝑝. We
can even work with some nested modalities and more complex formulas.
Considering a unary modality ♢ for simplicity, we can e.g. use the transla-
tion

tr(♢𝔞♢𝔞𝑝𝔞 ∧ ¬𝑝𝔟) := (⌜𝔞⌝→ ♢♢𝑝) ∧ (⌜𝔟⌝→ ¬𝑝). �
Unfortunately, we can also give counterexamples showing that suitable

translations do not generally exist.

Example 5.2.3. Consider A = {𝔞, 𝔟}. As said before, the Coalgebraic Slicing
Theorem shows thatwe cannot dealwith e.g. formulas ♢𝔞♢𝔟𝑝𝔞. Interestingly,
there is an even simpler andmore essential part ofLogMA thatLogA cannot
deal with. Consider the formula 𝑝𝔞 ∨ 𝑝𝔟. Intuition obtained from the other
translations would suggest that a suitable translation could be something
like (⌜𝔞⌝ → 𝑝) ∨ (⌜𝔟⌝ → 𝑝). But by the semantics of LogA, this translation
is always trivially valid with truth value A.

There is in fact no suitable translation tr(𝑝𝔞 ∨ 𝑝𝔟). Consider three TA-
models S = ⟨{𝑠} , 𝜎, col⟩, S′ = ⟨{𝑠} , 𝜎, col′⟩ and S′′ = ⟨{𝑠} , 𝜎, col′′⟩, where 𝜎
is irrelevant and the colourings are defined as col(𝑠)(𝑝) = ∅, col′(𝑠)(𝑝) = {𝔞},
and col′′(𝑠)(𝑝) = {𝔟}. Then clearly, S, 𝑠 ↔ 𝔟 S′, 𝑠 and S, 𝑠 ↔ 𝔞 S′′, 𝑠 (where
we are using bisimilarity as defined in Definition 3.1.9), and so by adequacy
(Theorem 3.1.12) it follows that S, 𝑠 ≡𝔟 S′, 𝑠 and S, 𝑠 ≡𝔞 S′′, 𝑠.

Obviously, 𝑠 ∈ J𝑝𝔞 ∨ 𝑝𝔟KLogMA
S′ and 𝑠 ∈ J𝑝𝔞 ∨ 𝑝𝔟KLogMA

S′′ . Supposing the
semantics-preserving formula 𝜑 = tr(𝑝𝔞 ∨ 𝑝𝔟) exists, we would then have
that J𝜑KLogA

S′ (𝑠) = A and J𝜑KLogA
S′′ (𝑠) = A. By S, 𝑠 ≡𝔟 S′, 𝑠 and S, 𝑠 ≡𝔞 S′′, 𝑠, it

then follows that J𝜑KLogA
S

(𝑠) = A as well. But 𝑠 ∉ J𝑝𝔞 ∨ 𝑝𝔟KLogMA
S

, contradict-
ing the assumption that tr(𝑝𝔞 ∨ 𝑝𝔟) preserves semantics. �

As we will now show, enriching LogA with role switches allows us to
define tr. Furthermore, we can even restrict to role switches of the form [𝔞, 𝔟]
(where [𝔞, 𝔟] is the role distribution only switching 𝔞 and 𝔟), as opposed to
general role switches role for arbitrary role ∈ RDA.

Definition 5.2.4. The language of LogA with role switches is the inductively
defined set

LangLogA ,RS ∋ 𝜑 ::= 𝑝 | ⌜B⌝ | (𝜑 ∨ 𝜑) | (¬𝜑) | (♡(𝜑, . . . , 𝜑︸    ︷︷    ︸
ar♡ times

)) | ([𝔞, 𝔟]𝜑),

where 𝑝 ∈ Prop, B ⊆ A, ♡ ∈ Sym, and 𝔞, 𝔟 ∈ A.
Given aTA-model S = ⟨𝑆, 𝜎, col⟩, the semantics ofLogAwith role switches is

given by the function J−KLogA ,RS
S

: LangLogA ,RS → (PA)𝑆, inductively defined
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as

J𝑝KLogA ,RS
S

(𝑠) := col(𝑠)(𝑝),J⌜B⌝KLogA ,RS
S

(𝑠) := B,J𝜑 ∨ 𝜓KLogA ,RS
S

(𝑠) := J𝜑KLogA ,RS
S

(𝑠) ∪ J𝜓KLogA ,RS
S

(𝑠),J¬𝜑KLogA ,RS
𝑆 (𝑠) := A ∖ J𝜓KLogA ,RS

S
(𝑠),

J♡(𝜑1 , . . . , 𝜑ar♡)KLogA ,RS
S

:= (PredA𝜎)
(
lift♡𝑆(J𝜑1KLogA ,RS

S
, . . . , J𝜑♡KLogA ,RS

S
)
)
,

J[𝔞, 𝔟]KLogA ,RS
S

:= P[𝔞, 𝔟] ◦ J𝜑KLogA ,RS
S

for 𝜑 ∈ LangLogA ,RS. �
The translation wewill now define is based on the informal idea that we

can consider the semantics of formulas in LogMP for ‘one agent at a time’,
with role switches then allowing us to capture the semantics for the entire
set of agents.

Definition 5.2.5. The 𝔞-translation tr𝔞 for 𝔞 ∈ A from formulas of LogMP to
formulas of LogA with role switches is defined by simultaneous induction
over all 𝔞 ∈ A as

tr𝔞(𝑝𝔞) := 𝑝,

tr𝔞(𝑝𝔟) := [𝔞, 𝔟]𝑝, (𝔞 ≠ 𝔟)
tr𝔞(𝜑 ∨ 𝜓) := tr𝔞(𝜑) ∨ tr𝔞(𝜓),

tr𝔞(¬𝜑) := ¬tr𝔞(𝜑),
tr𝔞(♡𝔞(𝜑1 , . . . , 𝜑ar♡)) := ♡(tr𝔞(𝜑1), . . . , tr𝔞(𝜑ar♡)), and
tr𝔞(♡𝔟(𝜑1 , . . . , 𝜑ar♡)) := [𝔞, 𝔟]♡(tr𝔟(𝜑1), . . . , tr𝔟(𝜑ar♡)). (𝔞 ≠ 𝔟)

Fixing an 𝔞 ∈ A, the translation tr is then defined as

tr(𝜑) := ⌜𝔞⌝→ tr𝔞(𝜑)
for 𝜑 in the language of LogMP. �
Theorem 5.2.6. Let S = ⟨𝑆, 𝜎, col⟩ be a TA-model over PropMP. Then it holds
that

𝑠 ∈ J𝜑KLogMA
S

iff Jtr(𝜑)KLogA ,RS
S

(𝑠) = A
for all 𝜑 in the language of LogMP.

Proof. We first show by induction on 𝜑 that

𝑠 ∈ J𝜑KLogMA
S

iff 𝔟 ∈ Jtr𝔟(𝜑)KLogA ,RS
S

(𝑠) (5.8)
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for all 𝔟 ∈ A. First consider a variable 𝑝𝔟. Then we have that

𝑠 ∈ J𝑝𝔟KLogMA
S

iff 𝔟 ∈ col(𝑠)(𝑝)
iff 𝔟 ∈ J𝑝KLogA ,RS

S
(𝑠).

Now consider a variable 𝑝𝔠 with 𝔟 ≠ 𝔠. Then we have that

𝑠 ∈ J𝑝𝔠KLogMA
S

iff 𝔠 ∈ col(𝑠)(𝑝)
iff 𝔠 ∈ J𝑝KLogA ,RS

S
(𝑠)

iff 𝔟 ∈ J[𝔟, 𝔠]𝑝KLogA ,RS
S

(𝑠).
The inductive steps for disjunction and negation only require routine Boo-
lean reasoning, so we only consider modalities. Starting with the formula
♡𝔟(𝜑1 , . . . , 𝜑ar♡), we find that 𝑠 ∈ J♡𝔟(𝜑1 , . . . , 𝜑ar♡)KLogMA

S

iff 𝑠 ∈ (Pred𝜎)(lift♡𝔟
𝑆 (J𝜑1KLogMA

S
, . . . , J𝜑ar♡KLogMA

S
))

iff 𝜎𝔟(𝑠) ∈ lift♡𝑆(J𝜑1KLogMA
S

, . . . , J𝜑ar♡KLogMA
S

)
iff 𝜎𝔟(𝑠) ∈ lift♡𝑆( Jtr𝔟(𝜑1)KLogA ,RS

Ŝ
(𝔟), . . . , Jtr𝔟(𝜑ar♡)KLogA ,RS

Ŝ
(𝔟)) (IH)

iff 𝔟 ∈ (PredA𝜎)((lift♡A)𝑆(Jtr𝔟(𝜑1)KLogA ,RS
S

, . . . , Jtr𝔟(𝜑ar♡)KLogA ,RS
S

))(𝑠)
iff 𝔟 ∈ J♡(tr𝔟(𝜑1), . . . , tr𝔟(𝜑ar♡))KLogA ,RS

S
(𝑠)

iff 𝔟 ∈ Jtr𝔟(♡𝔟(𝜑1 , . . . , 𝜑ar♡))KLogA ,RS
S

(𝑠).
Finally, taking the formula ♡𝔠(𝜑1 , . . . , 𝜑ar♡) for 𝔠 ≠ 𝔟, we find that

𝑠 ∈ J♡𝔠(𝜑1 , . . . , 𝜑ar♡)KLogMA
S

iff 𝔟 ∈ Jtr𝔟(♡𝔠(𝜑1 , . . . , 𝜑ar♡))KLogA ,RS
S

(𝑠)

by the semantics of [𝔟, 𝔠] and the previous inductive step.
Having shown Equation (5.8), the theorem then follows trivially from

the simple observation that Jtr(𝜑)KLogA ,RS
S

(𝑠) = A holds if and only if 𝔞 ∈Jtr𝔞(𝜑)KLogA ,RS
S

(𝑠). □



CHAPTER 6

CONCLUSION

In this thesis, we have studied coalgebraic generalizations of two logics in
which truth values are identified as sets of agents. We have generalized the
multiagent-valued logic of Fitting (2009) by applying the theory of coalge-
braic modal logic to a new base category of sets and agent-indexed func-
tions, and give proofs of the coincidence of bisimilarity and behavioural
equivalence, as well as of adequacy and expressivity. We have generalized
the multiplayer logic of Olde Loohuis and Venema (2010) by considering a
new, nondeterministic game structure, on which we defined multiplayer
evaluation games by transforming coalgebras into monotone neighbour-
hood frames. Finally, we have proven, under some assumptions on the
coalgebra type, that the coalgebraic multiagent-valued logic is equiexpres-
sive to the fragment of coalgebraic multiplayer logic without role switches,
and that adding role switches to coalgebraic multiagent-valued logic allows
the resulting logic to naturally express situations with multiple agents.

Our work lends itself to several interesting avenues for future work.

• Coalgebraic modal logic offers provides general approaches to sound-
ness and completeness proofs on the basis of so-called one-step deriva-
tion systems (see e.g. Kupke and Pattinson (2011)). Similar to how we
lifted two-valued coalgebraic modal logics to multiagent-valued coal-
gebraicmodal logics, one could askwhether sound and complete one-
step derivation systems for a two-valued coalgebraic modal logic also
lift to sound and complete derivation systems for multiagent-valued
coalgebraic modal logics.

Furthermore, Fitting (2009) provides tableaux for his logic. Tab-
leaux have also been considered in the literature for (two-valued)
coalgebraic logics (Cîrstea, Kupke, and Pattinson 2009; Goré, Kupke,
and Pattinson 2010; Goré, Kupke, Pattinson, and Schröder 2010) – it
is of interest whether we can similarly find and study tableaux for
multiagent-valued coalgebraic modal logics.

119
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• The way we considered coalgebraic modal logics for a functor T as
requiring collections of predicate T-liftings, is not fully parametric in
the coalgebra typeT. But the original coalgebraic modal logic ofMoss
(1999) — who founded the field — was defined in a way that is fully
parametric inT, albeit syntactically a bit more unintuitive, and requir-
ing T to preserve weak pullbacks.1 The semantics of Moss’ logic are
defined using relation lifting, mapping relations 𝑅 ⊆ 𝑋 × 𝑌 to lifted
relations T𝑅 ⊆ T𝑋 × T𝑌 in a certain way. For a multiagent-valued
version of Moss’ logic, it is of interest to see what the corresponding
relation liftings look like.

• In Chapter 1, we mentioned that there has been other work relating
coalgebraicmodal logic and games. In particular, Venema (2006) con-
siders game-theoretic semantics for a coalgebraic generalization of the
modal 𝜇-calculus. The games considered byVenema (2006) are parity
games, in whichmatches are generally infinite, unlike in our nondeter-
ministic gameswith finitematches. It is of interest to seewhether suit-
able (nondeterministic) multiplayer analogues of these parity games
can be given, and whether they provide game-theoretic semantics for
some multiagent-valued version of the coalgebraic 𝜇-calculus.

• The multiagent-valued logic of Fitting (2009) logic was in fact histor-
ically preceded by the multiagent-valued logic of Fitting (1992). That
logic is built using a partial ordering ⩽ over agents, instead of merely
a set of agents, with 𝔞 ⩽ 𝔟 being interpreted as stating that 𝔞 dom-
inates 𝔟, meaning that all basic facts considered to be true by 𝔞 are
also considered to be true by 𝔟. Using this partial ordering, Fitting
(1992) then constructs an intuitionisticmultiagent-valuedmodal logic
in which the space of truth values corresponds to the Heyting alge-
bra of upwards closed sets of agents (with respect to the dominance
ordering), as opposed to the powerset Boolean algebra. This gives a
richer logic, as the property of dominance between agents becomes
built into the truth values.

It is of interest to see whether this intuitionistic multiagent-valued
logic can also be coalgebraically generalized. This would most likely
require a logical connectionwith the categoryHA ofHeyting algebras,
and a suitable multiagent version of the category IntKF of intuition-
istic Kripke frames, analogously to how ASet is a multiagent version
of Set.

If a coalgebraic generalization of the logic of Fitting (1992) is
achieved, it is then natural to ask whether there is a corresponding

1Though not relevant to our recommendation for future work, there is work (see e.g.
Marti and Venema (2015)) on Moss-style coalgebraic modal logic without the requirement
of weak pullback preservation.
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generalization of multiplayer logic that also takes the dominance or-
dering into account. This could potentially arise through interesting
implementations of the multiplayer games, with e.g. turn functions
being monotone with respect to the dominance ordering.

• Finally, we close with the following suggestion. There is work by
Baltag (2003), Carreiro, Gorín, and Schröder (2013), and Cîrstea
and Sadrzadeh (2007), in which coalgebraic dynamic epistemic sys-
tems and logics are considered. Since dynamic epistemic logics are
generally studied in a multiagent setting, it is natural to study how
multiagent-valued logic relates to the aforementioned coalgebraic
dynamic epistemic logics.
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