Multivalued Coalgebraic Modal Logic for Multiagent
Systems and Multiplayer Games

MSc Thesis (Afstudeerscriptie)
written by

Nima Motamed
(born June 3'd 1998 in Amsterdam, The Netherlands)

under the supervision of prof. dr. Alexander Kurz (Chapman University)
and prof. dr. Yde Venema, and submitted to the Examinations Board in
partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 30", 2021 dr. Maria Aloni (chair)
dr. Alexandru Baltag
dr. Nick Bezhanishvili
prof. dr. Alexander Kurz (co-supervisor)
prof. dr. Yde Venema (co-supervisor)

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Multivalued Coalgebraic Modal Logic for Multiagent
Systems and Multiplayer Games

Nima Motamed

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Abstract

This thesis investigates coalgebraic generalizations of two multiagent modal
logics from the literature, in which truth values are identified with sets of
agents. In the first logic, which is due to Melvin Fitting, the truth value of
a formula is identified as the set of agents for whom the formula is true,
while in the second logic, which is due to Loes Olde Loohuis and Yde Ven-
ema, the truth value of a formula is identified as the set of players that have
a winning strategy at a corresponding position in a multiplayer evaluation
game. For the first logic, we identify a new base category of interest, from
which the generalization comes forth naturally using the theory of coalge-
braic modal logic, and give proofs of adequacy and expressivity. For the
second logic, we define multiplayer evaluation games in which play pro-
ceeds nondeterministically, and use the well-known fact that predicate lift-
ings induce transformations from coalgebras to neighbourhood frames. Fi-
nally, we prove that fragments of our generalizations are equiexpressive,
and show how they can naturally describe situations with multiple agents.

Acknowledgements

First and foremost, I wish to sincerely thank Yde Venema and Alexander
Kurz for their excellent supervision and constant support during every
phase of my work. My interest in coalgebra originated in a course Yde
taught, and can be fully attributed to the passion and care he displayed
when presenting the theory of coalgebra as a grand, unifying framework
for state-based systems. During the writing of the thesis, Yde took a strict
and critical, yet simultaneously incredibly comforting approach. There is
no doubt in my mind that I would not have been able to make it through the
thesis without this approach, and I find it difficult to express how incredibly
grateful I am to him.

Yde’s approach struck a good balance with that of Alexander, who con-
tinuously encouraged me to broaden my horizons. During the writing of
the thesis, he wore many hats besides that of a supervisor: he was a men-
tor, teaching me the ways of a mathematician; a lecturer, spending entire
mornings explaining material to me; and at times even an art connoisseur,
introducing me to the beautiful paintings of Saenredam. I cannot thank him
enough for the patience he had with me.

I wish to also extend my gratitude to Alexandru Baltag and Nick
Bezhanishvili for agreeing to be on the Thesis Committee and being will-
ing to read the thesis, despite the defence having been rescheduled to late
August, and to Maria Aloni for agreeing to chair the defence. On a similar
note, I wish to thank the entire ILLC staff — nowhere else could I have ex-
plored my curiosities this well, with top-class courses on anything ranging
from computation to cognition. Especially noteworthy is Ulle Endriss, who
was both a kind mentor and an excellent lecturer.

Furthermore, I want to thank Jesse Postema, Jan Schutte, Wilco Kruijer,
and Loes Gennissen for reading through so many drafts of the thesis, and
for being able to give such detailed and extensive feedback, even though
they are all in fields vastly different to mine, and even though most of them
are plenty busy writing their own theses. I also owe a great debt to Putri van
der Linden, who took the time to draw the wonderful illustration accompa-
nying this thesis, based on her interpretation of the concept of ‘slicing” in
multiagent systems, which appears in the thesis.

Finally, I wish to express my utmost gratitude to my family and friends.
They have all been patient and supportive — not only during the writing of
the thesis, but in fact throughout my life. I sadly do not have adequate space
to thank all of them, so I will only restrict myself to three. I thank Sem, for
being nothing less than a brother. I thank my mother, for her endless care
and perseverance. And most of all, I thank my late father. You were a true
friend. I dedicate this thesis to your memory.

vii

CONTENTS

1 Introduction
1.1 Thesis Outline and Contributions
2 Preliminaries
21 Coalgebra
2.2 Coalgebraic Modal Logic
23 Notation
3 Multiagent-Valued Logic
3.1 Boolean-Valued Basic Modal Logic
3.1.1 Syntax, Modelsand Slices
3.1.2 Propositional Constants
3.1.3 Bisimulations and Bounded Morphisms
3.2 Boolean-Valued Coalgebraic Modal Logic
321 Agent-Indexed Coalgebras
3.2.2 Logical Connection and Predicate Liftings
3.2.3 Bisimulations and Behavioural Equivalence
3.24 Adequacy and Expressivity
4 Multiplayer Game Logic

41 Deterministic Multiplayer Games

4.2

4.3

411
412

Games, Syntax and Semantics
Undefinability of Connectives and Modalities

Nondeterministic Multiplayer Games

421
422
423
424
425

Gamesand Matches
Demonic and Angelic Winning Strategies
Logic and Evaluation Games
Connectives and Negation
Bisimulations and Adequacy

Coalgebraic Multiplayer Logic

431
432

Predicate Liftings and Neighbourhood Frames
Polyadic Monotone Neighbourhood Games

ix

11
16

17
17
17
23
25
28
28
34
40
47

59
59
60
65
67
67
69
82
85
89
92
93

CONTENTS

5 Multiplayer Games and Multiagent-Valued Logic

5.1 Equiexpressivity and Deagentization
5.2 Multiagent Modal Logic and Role Switches

6 Conclusion

Bibliography

Cuarter 1

INTRODUCTION

In this thesis, we consider two multivalued modal logics with a common
conceptual basis: truth values are identified with sets of agents. We study
generalizations and properties of these two logics, and find ways to relate
them. We now begin describing the two logics.

The first logic we are considering comes from Fitting (2009). This logic
is based on the observation that logics taking truth values from Boolean
algebras other than the two-element Boolean algebra are conspicuously ab-
sent from the literature. As Fitting points out, allowing truth values from
arbitrary finite (or more generally, complete atomic) Boolean algebras pro-
vides an intuitive method to express situations involving multiple agents.
The idea is simple: taking sets of agents to be truth values (and hence con-
sidering the Boolean algebra arising from the powerset of the set of agents),
we can identify the Boolean-valued truth value of a formula with the set of
agents for whom the formula is true.

Let us see an example of how this identification of Boolean-valued truth
values with sets of agents (or in other words, with multiagent-valued truth
values) can aid in expressing situations with multiple agents. Consider two
agents Alice (a) and Bob (b). If we want to express using conventional
propositional logic that both Alice and Bob are wearing coats, we will usu-
ally introduce propositional variables c, (meaning that Alice is wearing a
coat) and ¢, (meaning that Bob is wearing a coat), and then assert that the
formula c, Acp has truth value ‘true’. Taking sets of agents to be truth values,
we can instead simply introduce a single propositional variable c, and assert
that it has truth value {a, b}. Similarly, if we want to express that Alice is
wearing a hat while Bob is not, we will conventionally do so by introducing
propositional variables i, and hy, and then assert that the formula i, A =hy
has truth value “true’. In the Boolean-valued setting, we can instead sim-
plify again by taking only one propositional variable /, and then asserting
that & has truth value {a}.

2 1. INTRODUCTION

Fitting (2009) shows how we can also define a Boolean-valued modal
logic. This again allows us to simplify the way situations with multiple
agents are expressed. Supposing that we use an epistemic interpretation of
the O-modality of modal logic, we will conventionally model the knowledge
of Alice and Bob through a multiagent Kripke model with separate accessi-
bility relations for Alice and Bob, with corresponding modalities O, and Op.
The statement that both Alice and Bob know that they themselves are wear-
ing coats, can then be expressed by asserting that the formula O.cq A Opcp
has truth value ‘true’. In the Boolean-valued setting, we instead need only
consider a single O-modality, with which we can assert that the formula Oc
has truth value {a, b}.

The second logic we are considering comes from Olde Loohuis and Ven-
ema (2010). Analogously to the reasoning behind the logic of Fitting (2009),
this logic is based on the observation that applications of games in logic typ-
ically only concern the interaction between two players, with little attention
for multiplayer games in logic. The logic is built on a multiplayer general-
ization of evaluation games for classical two-valued basic modal logic in-
terpreted over Kripke models. Formulas in the logic represent positions in
certain multiplayer evaluation games, and the truth value of a formula is
identified with the set of players that have a winning strategy at the position
represented by the formula.

While both logics we consider are generalizations of basic modal logic
interpreted over Kripke models, one could argue that their essence lies in
the way they identify truth values of formulas as certain sets of agents — as
the set of agents for whom the formula is true (in the logic of Fitting (2009)),
or as the set of players that have a winning strategy at the formula (in the
logic of Olde Loohuis and Venema (2010)). Two questions naturally arise.
First, to what extent are properties of the two logics determined by how
they identify truth values as sets of agents? Second, can logics with these
two different but similar identifications of truth values be related, through
e.g. an equiexpressivity result? To answer these questions, we will define
more general modal logics with the same set of truth values. Properties of
the logics that depend only on the identifications of truth values should per-
sist in the generalizations, thus answering the first question. And similarly,
any relations between the generalizations are more indicative of relations
between logics with the aforementioned truth values — as opposed to the
original logics which are just variants of basic modal logic over Kripke mod-
els — therefore answering the second question.

We will naturally define these more general modal logics using the the-
ory of coalgebra and coalgebraic modal logic. Coalgebras are objects that
can be viewed as generalizations of many transition systems (such as Kripke
frames) considered throughout mathematics and theoretical computer sci-
ence, and the theory of (universal) coalgebra (see Rutten (2000)) allows one

to parametrically discuss properties of said transition systems. Similarly, the
theory of coalgebraic modal logic (see e.g. Kurz and Leal (2012)) general-
izes many modal logics used to describe transition systems, and can also
allow us to parametrically discuss properties of said logics.

There are coalgebraic multivalued logics in the literature. First and fore-
most, in an unpublished note, Kurz (2017) has worked on a preliminary
coalgebraic generalization of the logic of Fitting (2009), which in fact was
the initial motivation behind this thesis, though we expand greatly upon the
methods therein. Bilkova and Dostal (2013, 2016) and Bilkova, Kurz, et al.
(2013) consider general coalgebraic multivalued logics where the truth val-
ues come from arbitrary commutative integral residuated lattices or com-
mutative quantales. Though this approach could work for our generaliza-
tion, since the powerset of the set of agents forms a commutative quantale, it
still falls short, as their approach does not consider any multivalued struc-
ture in their coalgebras, which is required to capture the logic of Fitting
(2009). On the other hand, Babus and Kurz (2016) consider coalgebraic
multivalued logics that both take truth values from a commutative quan-
tale, and enrich their base category with commutative quantales. But, there
still remains a problem: coalgebras over categories enriched with the pow-
erset of the set of agents do not capture the kind of structures considered by
Fitting (2009), meaning their approach would still not suffice for our stated
purpose.

We will instead approach the coalgebraic generalization of the multi-
agent-valued logic of Fitting (2009) by defining a new base category over
which we take our coalgebras, with sets as its objects, and agent-indexed
families of functions as its morphisms. By then applying standard concepts
of coalgebraic modal logic to this new base category, we naturally obtain
transition structures and logics generalizing the work of Fitting (2009). In
fact, we will show that we can proceed fully analogously to Fitting (2009),
and [ift two-valued coalgebraic modal logics to multiagent-valued modal
logics in such a manner that the truth value of a formula is precisely the
set of agents for whom the formula is true. Properties like adequacy and
expressivity with respect to bisimilarity also lift from the two-valued logic
to the multiagent-valued logic.

Analogously to how the logic of Olde Loohuis and Venema (2010) is
built on multiplayer evaluation games based on a generalization of two-
valued basic modal logic, a generalization of their logic should contain a
way to associate multiplayer evaluation games to two-valued coalgebraic
modal logics. It is of interest to note that there exists work relating coalge-
bra and games, such as that by Cirstea and Sadrzadeh (2008) and Venema
(2006) on two-valued evaluation games for coalgebraic fixed point logics in
the style of Moss (1999), and by Baltag (2000) and Kénig, Mika-Michalski,
and Schroder (2020) on (bi)simulation games for coalgebras. Our approach
does not bear much similarity to that of the above authors, however, with

4 1. INTRODUCTION

the focus solely on evaluation games for multiplayer logics in the style of
Olde Loohuis and Venema (2010).

As we will show, we can associate multiplayer evaluation games to two-
valued coalgebraic modal logics by reconsidering the definition of the un-
derlying game structure. We will argue that it is necessary to consider non-
deterministic games, in which play proceeds by nondeterministically select-
ing at each position a player that has to make a move. Using nondetermin-
istic games, we will then define the evaluation games by making use of the
well-known fact from coalgebraic modal logic that modalities in the coalge-
braic setting (i.e. predicate liftings) induce transformations to neighbour-
hood frames. Together with an assumption of monotonicity of the original
coalgebraic modal logic, these transformations will allow us to define the
evaluation games based purely on a game-theoretic definition of coalgebraic
modal logic over neighbourhood frames.

Given that we are considering two coalgebraic modal logics with the
same space of truth values, both of which arise as generalizations of two-
valued coalgebraic modal logics, we will also consider how the two logics
differ in expressive power. We will show that if we make some assump-
tions on the coalgebra type functor, and if we take differences between the
kinds of coalgebras the two logics are interpreted over into account, then
a certain fragment of the multiplayer logic is equiexpressive to multiagent-
valued logic. And furthermore, we will show that adding the full expres-
sive power of the multiplayer logic to the multiagent-valued logic enables
it to express more situations involving multiple agents than it is originally
capable of.

1.1 Thesis Outline and Contributions

Concretely, the structure of the thesis, as well as the original contributions
in the thesis, are as follows.

¢ In Chapter 2, we present the basic definitions and propositions of coal-
gebra and coalgebraic modal logic, as known from the literature.

e In Chapter 3, we start out by presenting the basic (noncoalgebraic)
multiagent-valued logic of Fitting (2009), along with original proofs
of adequacy and expressivity, as well as original definitions of boun-
ded morphisms for the structures he considers. Afterwards, we begin
defining the coalgebraic multiagent-valued logic by introducing and
studying a novel base category based on the definition of the afore-
mentioned bounded morphisms. We then show how applying the
standard theory of two-valued coalgebraic modal logic to this base
category produces a multiagent-valued logic generalizing that of Fit-
ting (2009). Finally, we conclude by giving proofs of adequacy and

1.1. Thesis Outline and Contributions 5

expressivity.

e In Chapter 4, we similarly start out by presenting the basic, noncoal-
gebraic multiplayer logic of Olde Loohuis and Venema (2010), and ar-
gue that the game structure it is based on will not allow a proper coal-
gebraic generalization. Having argued that, we give an original defi-
nition of a nondeterministic multiplayer game structure, compare dif-
ferent notions of winning strategies for these nondeterministic games,
and finally show how the nondeterministic games relate to the origi-
nal game structure through certain embeddings.

We then use nondeterministic games to generalize the logic of
Olde Loohuis and Venema (2010), still at the level of Kripke-like
structures. We show how the resulting logic is more expressive than
the original logic, allowing for connectives that were undefinable in
the original. Additionally, we also show that the logic is adequate
with respect to bisimilarity.

Finally, we then define an original coalgebraic generalization of the
logic by using (mostly) well-known facts about modalities and neigh-
bourhood frames in the coalgebraic setting, showing that we can lift
monotone two-valued coalgebraic modal logics to coalgebraic multi-
player logics.

e In Chapter 5, we relate the (coalgebraic generalizations of the) two
logics in two ways. We start by giving an original proof that frag-
ments of the logics are equiexpressive under some assumptions on
the coalgebra type functor. Afterwards, we prove that multiagent-
valued logic has less (informal) expressive power than expected when
it comes to expressing situations with multiple agents, and show how
adding features of the multiplayer logic can mend this lack of expres-
sive power.

e Finally, we conclude the thesis in Chapter 6 with directions for further
work.

CHAPTER 2

PRELIMINARIES

In this chapter, we will give (most of) the relevant definitions and theo-
rems required to understand the rest of the thesis. These will cover coal-
gebras (Section 2.1), and coalgebraic modal logic (Section 2.2). We will
presume familiarity with the basic notions of modal logic, and will there-
fore not treat these here, instead referring readers to Blackburn, de Rijke,
and Venema (2002). We will also presume basic understanding of game-
theoretic semantics for classical two-valued logic, as treated by e.g. Hintikka
(1983). Finally, the theories of coalgebra and coalgebraic modal logic make
heavy use of category theory, which we assume readers are familiar with,
though we will only make use of the basic definitions and properties of
categories, functors, natural transformations, adjunctions, (co)limits, and
subobiject classifiers. No knowledge of any advanced theorems is assumed.

2.1 Coalgebra

For a comprehensive introduction of the theory of coalgebra, we refer read-
ers to Jacobs (2016) and Rutten (2000, 2019).

Definition 2.1.1. Given a category C and an endofunctor 7: C — C, a 7-
coalgebra is a pair § = (S, o), where S is an object of C,and 0 : S — IS is
a C-morphism. The object S is referred to as the carrier object of 5, while o
is referred to as the coalgebra map of 5. The functor T is referred to as the
(coalgebra) type of T-coalgebras. A C-morphism f : S — 5" is a I-coalgebra
morphism f : § — §’ between J-coalgebras § = (S, 0) and ' = (S, 0’), if
the diagram

54)5/

T

IS —— I8

7f

7

8 2. PRELIMINARIES

commutes. The category of J-coalgebras and J-coalgebra morphisms is
denoted by Coalgq (7).

Dually, a J-algebra is a pair A = (A, a), where A is an object of C, and
a: JA — Ais a C-morphism. A C-morphism f : A — A’ is a J-algebra
morphism f : A — A’ between J-algebras A = (A, a) and A’ = (A’, a’), if
the diagram

7f
TA —— TA'
a a’
A T> A
commutes. The category of J-algebras and J-algebra morphisms is de-
noted by Algq(9). <

For now, we will mainly be considering coalgebras over the category
Set of sets and functions. These can be seen as general state-based transition
systems, as we will shortly give examples of. With this in mind, we will refer
to carrier sets of coalgebras over Set as state spaces, and to their coalgebra
maps as transition maps. Elements of a state space are referred to as states.
We will refer to endofunctors 5 : Set — Set as set functors. Elements of 75
for a set S are often referred to as unfoldings of S.

Example 2.1.2. (i) Consider the powerset functor & : Set — Set, send-
ing sets to their powerset, and functions f : X — Y to the function
Pf sending subsets U C X to the f-image (2f)(U) := f[U]. We have
that 9-coalgebras are precisely Kripke frames: -coalgebras (S, o) are
Kripke frames (S, R) in which R[s] = o(s) for states s € S (where
R[s] = {t € S;sRt}). Analogously, -coalgebra morphisms are pre-
cisely bounded morphisms between Kripke frames.

(ii) Considering the functor ofuzc (where C is a fixed set) defined for a
set X as ghtc X := 2 x SC, we have that ghc-coalgebras are precisely
deterministic automata over an alphabet C. A state s is final iff the
first component of o(s) (i.e. (proj, 0 0)(s)) is 1, and the c-transition of
s for a letter ¢ € C is the state (projsc o 0)(s)(c).

(iii) Considering the functor &/ defined for a set X as /X := C X S, we
have that §7c-coalgebras are so-called stream systems over C, in which
every state s generates an infinite stream ¢ € C” with cq defined as the
first component of o(s) and c¢;4; defined as the first component of 5 (s”)
where s’ is the second component of o(s).

(iv) Considering the functor Z¢# sending sets X to the set of discrete prob-
ability distributions over X, we have that 2% -coalgebras are precisely
discrete-time Markov chains over X, with o(s) being the probability
distribution over ‘next’ states from s.

2.1. Coalgebra 9

(v) Considering the functor J7¢e defined as J7¢eX = (X X X) + 1, we
have that F7ee-coalgebras represent (potentially infinite) binary trees,
with o(s) = 0 representing that the state s is a leaf of the tree, while
o(s) = (t, u) represents that the states t and u are the children ofs. <

The theory of coalgebras allows us to treat all the above examples uni-
formly with respect to the coalgebra type. It gives general definitions and
proofs applicable to all coalgebras. For example, in the study of a particular
class of transition systems, one is often interested in determining whether
states exhibit the same ‘behaviour’. Using coalgebras, one could say that the
behaviour of a state is precisely that which is preserved by a coalgebra mor-
phism. This allows us to give the following general definition of behavioural
equivalence.

Definition 2.1.3. Given a set functor J, together with J-coalgebras 5 = (S,
oyand$’ = (S, 0’), wesay states s € S and s” € S’ are behaviourally equivalent
(and we write 5,5 = §’, s”) if there is some J-coalgebra X with -coalgebra
morphisms f : 5 — Xand f’ : 8 — X such that f(s) = f'(s’). <

In the study of particular classes of transition systems, behavioural e-
quivalence is often captured by a suitable notion of bisimilarity. An elegant
definition of coalgebraic bisimilarity using coalgebra morphisms is given
by Aczel and Mendler (1989), which is the one we will use, though there
are several other possible definitions (see Staton (2009) for an overview).
Though originally defined for the category of sets, we will give a slightly
more general definition that only requires the category to have binary prod-
ucts, but is still sufficient for our purposes.

Definition 2.1.4. Given a category C with binary products, an object R is
an internal binary relation between objects X and Y, if it is (the domain of) a
subobject 7 : R < X X Y.

Given an endofunctor ¥ : C — C and J-coalgebras 5 = (S,o0) and
§’ = (8, 0’), an internal binary relation R between S and S’ is a (coalgebraic)
bisimulation between § and $’ (and we write R : § & §’) if there exists a
C-morphism p : R — IR (making R := (R, p) a J-coalgebra) such that
projs o r and projg, o ¥ become J-coalgebra morphisms from R to 5 and &/,
respectively. That is, the diagram

Sx§ Sx§
projs \ / projgs
~ ~
S R s’

o P o’
~ ~
IS IR gs’

o A~
Tprojg % % Tprojgr

TS xS TS xS

10 2. PRELIMINARIES

needs to commute.

Assuming C = Set, then internal binary relations are just binary rela-
tions. If there exists B € S X S’ such that B : § € &’ with sBs’ for states
s € Sand s’ € &, the states s and s’ are (coalgebraically) bisimilar, and we
write$5,s € §,5". <

Remark 2.1.5. We could have given an even more general definition in
which binary products need not exist, by defining internal binary relations
to be objects R with jointly monic morphisms px : R - Xand py : R —> Y.
But since we will only be considering categories with binary products
throughout this thesis, the definition given above will suffice. <

Bisimilarity is a specific instance of behavioural equivalence.

Proposition 2.1.6. Let T be a set functor, and take T-coalgebras S = (S, o) and
S’ = (S’,0’). It holds that

S,s 8, s" impliesS,s ~§',s’
foralls € Sand s’ € S'.

Using an example by Aczel and Mendler (1989, after Proposition 6.2), it
can be verified that behavioural equivalence and bisimilarity do not gener-
ally coincide. They coincide in specific situations: of particular interest, is
the situation where the coalgebra type T preserves weak pullbacks.

Definition 2.1.7. Given a category C, a weak pullback of C-morphisms fx :
X - Yand fz : Z — Y is a triple <P,px,pz> where the C-morphisms
px : P — X and pz : P — Z satisfy fx o px = fz o pz, such that for all
C-morphisms gx : Q — X and gz : Q — Z satisfying fx o gx = fz o qz,
there exists a (not necessarily unique) C-morphism h : Q — P making the
diagram

XL)Y
px fz
qax
P—=7
yd
Q 9z

commute. An endofunctor 7 : C — C is said to preserve weak pullbacks if
given such a weak pullback (P, pPx,p Z> of fx and fz, it holds that the triple
<W,9px,9pz> is a weak pullback of Tfx and Jfz. <

2.2. Coalgebraic Modal Logic 11

Proposition 2.1.8. Let T be a set functor that preserves weak pullbacks, and take
J-coalgebras S = (S, 0) and §' = (S’, ¢o’). It holds that

$,s =8, s impliesS,s < &, s’

foralls € Sand s’ € S'.

2.2 Coalgebraic Modal Logic

Though we will give some motivating explanations for the definitions of
coalgebraic modal logic, this will be far from an extensive treatment of the
matter. For a good general conceptual introduction to coalgebraic modal
logic, we refer readers to Cirstea, Kurz, et al. (2009), while more technically-
minded readers should also consider Bonsangue and Kurz (2005), Kupke,
Kurz, and Pattinson (2004), Kupke and Pattinson (2011), and Kurz and Leal
(2012). The parts of the coalgebraic modal logic appearing in this thesis
require knowledge of algebraic logic and Stone duality, which we assume
the reader is familiar with — see Davey and Priestley (2002).

To define a coalgebraic modal logic, we start with a category Space
of ‘state spaces’ over which we will be taking coalgebras, and a category
Algebra of “algebras’” (not to be confused with a category of J-algebras),
encoding a propositional logic with each object in Algebra generally being
viewed as consisting of formulas/predicates. We will informally assume
both categories to be “set-like’, to aid in giving intuitive descriptions. '

We require there to be a dual adjunction between Space and Algebra,
which we refer to as a logical connection following Pavlovic, Mislove, and
Worrell (2006).

Definition 2.2.1. An adjunction 9% 4 %4 consisting of functors 5% :
Algebra — Space®® and Ped : Space®® — Algebra is a logical connection.
The functor 9% is called the theory functor, and the functor %e« is called
the predicate functor. <

As implied by the names, we interpret %%« as sending spaces X in
Space to the algebra of the predicates over X, while 7% sends algebras A in
Algebra to the space of logically consistent theories of A (as also explained
by Bezhanishvili et al. (2020)). By requiring 7% 4 9%ed to be an adjunction,
we enforce that the notions of predicates and theories are well-behaved in
the sense also described by e.g. Klin (2007). Intuitively, we can describe the

IThough not relevant for our presentation of the material, the category Algebra is usually
assumed to be an algebraic category, in the sense that it comes equipped with a forgetful
functor Feorg : Algebra — Set with a left adjoint Free 4 Fory, referred to as the free algebra
functor of Algebra.

12 2. PRELIMINARIES

semantics encoded by the logical connection equivalently as either trans-
forming (using Algebra-morphisms [-] : A — P« X) propositional log-
ics (consisting of formulas) to state spaces of states at which the formu-
las of the logic are satisfied, or as transforming (using Space-morphisms
[-]" : X — J%A) state spaces to the object of formulas “satisfied’ by its
states.

Having defined the logical connection, we can then move on to actually
define a coalgebraic modal logic. We first specify the syntax of the logic
— that is, its modal similarity type. The modal similarity type is encoded in
an endofunctor $z#7 : Algebra — Algebra, intuitively associating to each
algebra a single layer of modal operators.” The resulting category of S#7z-
algebras will then encode the modal logics syntactically.

Next, to specify the semantics given a coalgebra type 7 : Space — Space,
we proceed by defining the one-step semantics, which is a natural transfor-
mation

one : Sun o Fred = Fred ©J,

intuitively defining the semantics of the modal operators in terms of un-
foldings. The one-step semantics allows us to functorially associate to each
J-coalgebra a Szre-algebra consisting of its predicates. This process is re-
ferred to as algebraification.

Definition 2.2.2. The algebraification functor
gty : Coalgspace(T)” — Algpigepra(Si72)
sends J-coalgebras § = (S, 0) to the Szz-algebra
AgS = (Pred S, Pred o o oneg) ,

as in the following diagram:

§

§

o
¥
S
o

oneg

St Fred S

The algebraification functor sends J-coalgebra morphisms f : § — §’ to
Stn-algebra morphisms dy f = g — dtgS defined as dtg f = Pred f.
<

2Though not required for our purposes, the endofunctor &z can encode not only a
modal similarity type, but also equations such as O(p A q) = Op A Og for the usual O-
operator of modal logic. We refer to Bonsangue and Kurz (2006) for a thorough treatment
of this.

2.2. Coalgebraic Modal Logic 13

It follows from the naturality of one that @#y is indeed a well-defined
functor.

Assuming that there exists an initial Sz7z-algebra Lang := (Lang, A), we
refer to Lang as being the algebra of formulas of Se77. The initiality of Lang
then gives rise to the semantics of our coalgebraic modal logic.

Definition 2.2.3. Given a J-coalgebra § = (S, o), the semantic mapping for
S is the unique Swz-algebra morphism [-]s : Lang — 9#5, which is an
Algebra-morphism [-]s : Lang — PedS from the algebra of formulas of
St to the algebra of predicates over S. <

It will be of value to us to look at this from a concrete perspective. Con-
sider Space = Set and Algebra = BA (i.e. the category of Boolean algebras
and Boolean algebra homomorphisms). The logical connection in this case
is the well-known dual adjunction between Set and BA. This dual adjunc-
tion arises by Thomming into” the dualizing object given by the two-element
set 2 and the two-element Boolean algebra 2. That is, Z»¢< X is the set of
functions from X to 2 (which is isomorphic to %X), with obvious Boolean
algebra structure. And 9%B is the set of Boolean algebra homomorphisms
from B to 2, or in other words, the set of ultrafilters of B.

To define the functor &z concretely given this logical connection, we
start from a more conventional conception of a modal similarity type as a
pair S5im = (Sym, ar) consisting of a set Sym of modality symbols, and an
arity function ar : Sym — w. Taking a set Prop of propositional variables,
we can then define a generator functor Yz : BA — Set sending Boolean
algebras B with domain B to the set

GenB = {@(b);@ € Sym,b € Bam} + Prop,

and which is defined on Boolean algebra homomorphisms in the obvious
way. Then using the free Boolean algebra functor F»eepa : Set — BA,
we can define &7z 1= Freepa o Ger. It is then easily verified (using e.g.
the initial sequence of &z72) that there exists an initial $#7z-algebra Lang,
with carrier object Lang being a Boolean algebra with a domain that we can
consider to consist of formulas® ¢ defined inductively as

pu=plTILI@eVe) l(@A@) (@) [(Ap,....9)),
N—
arQ times
where p € Prop and © € Sym. The Boolean algebra structure and the coal-
gebra map A are defined in the straightforward manner.
To specify the one-step semantics, we make use of collections of predicate

liftings.

3Technically, the Boolean algebra is a Lindenbaum-Tarski algebra, with a domain that
can more accurately be considered to consist of equivalence classes of formulas, with re-
spect to the relation of logical equivalence under the laws of Boolean algebra. This holds by
definition of the free Boolean algebras used in the definition of S#7e.

14 2. PRELIMINARIES

Definition 2.2.4. A (two-valued) n-ary predicate -lifting (for n < w) is a
natural transformation

lift : (Forg o Pred)" = Forg o Pred o T,

where Foryg is the forgetful functor from BA to Set. In other words, n-ary
predicate J-liftings are natural transformations lift : (27)" = 270). <

Since our logic includes propositional variables, we will consider the
functor Tprop, defined as TpropX = TX X FPProp, of which the coalgebras
are referred to as -models, and which we will denote as triples (S, o, col),
where g : S — 5 and col : S — PProp.

Given a Sym-indexed collection Lift = <Iift@>® eSym of (ar¥)-ary predicate

I-liftings (not Iprop), we can define the one-step semantics for a set S as
the unique Boolean algebra homomorphism induced, using the universal
property of the free Boolean algebra &7z P#e¢d S, by the function

one’s : Gen Pred S — Forg Pred TpropS
defined as

oneg(V(q)) = {(U,P) € TpropS; U € Iiftg(q)} and
One,s(P) = {<u1P> € 9Props;p € P} ’
where p € Prop, © € Sym and g € (2°)".
So specifying a concrete modal similarity type Sim and collection Lift of

predicate liftings suffices to define the other components. Because of this,
we refer to pairs Log = (Smm, Lift) as (two-valued) coalgebraic modal logics over

. Writing out the semantics ﬂ—]]g;“)g : Lang — Pred S (where the domain

of Pred S is 25 = FS) that we get through algebraification for a J-model S,
we find that we can give the following compositional characterization.

Proposition 2.2.5. Given a I-model $ = (S, o, col), it holds that

[PIX = <ol (p),
[TIs™ =,
[L]s™® =2,
[A Y™ = [o]e™ N @],
[o v ¥l = [pls™ U [l
[l = S\ [pl§™, and
(1, .., @ar)]s™ = o L ([P1]™%, - ., [Parc]s ™).

2.2. Coalgebraic Modal Logic 15

—

Note that we use the transpose col : Prop — S as defined in Sec-
tion 2.3.

Using the semantics, we can define logical equivalence on states.

Definition 2.2.6. Given J-models 5 and $’, we say states s in § and s’ in &’
are ILog-equivalent (and we write §,s =18 &', 5") if

s € [[(p]]gog iffs’ € [[qo]]%,og

for all formulas ¢ € Lang. <

Considering the notions of behavioural equivalence, it is desirable for a
coalgebraic modal logic to be adequate in the sense that behaviourally equiv-
alent states are logically equivalent, and expressive in the sense that log-
ically equivalent states are behaviourally equivalent. Adequacy is fortu-
nately guaranteed.

Proposition 2.2.7. Let 5 and ' be I-models. Then it holds that
$,s =58, s implies S, s =log g7 o/
for all states s in 5 and s’ in §’.

For expressiveness, two assumptions are required. First, the coalgebra
type 7 functor must be finitary. While this is defined as requiring that 7 pre-
serves w-filtered colimits, we can give a simpler characterization, as shown
by Adamek and Trnkova (1990): Jis finitary iff for every set X and unfold-
ing U € 9X, there is some finite Y € X and unfolding U’ € JY such that
U = (Jincl)(U’), where incl : Y — X is the inclusion function from Y to X.

The second assumption is that Lift must be separating.

Definition 2.2.8. We say that Lift is separating for 7 if for all sets X and
U,u’ e gX with U # U’, there exists some modality symbol © € Sym
with V1, ..., Va0 € @X such that it holds that either U € Iift;?(Vl, o, Varo)
orl’ € Iifti(Vl, ..., Varo), but not both. <

Proposition 2.2.9. Let T be a finitary set functor, and let Log = (Smn, Lift) be
a coalgebraic modal logic over T such that Lift is separating for 7. Then for all
T-models S and &, it holds that

S,s =8 /5" implies S, s ~§', s’

for all states s in S and s’ in §’.

16 2. PRELIMINARIES

2.3 Notation

We will use a lot of typographical conventions when writing mathematics.
Though we will define special notation whenever it is introduced, we make
note of the following conventions which will be used throughout the entire
thesis.

e Sets and relations (and objects of ‘general” categories) are denoted
using uppercase italics (e.g. X and R), though “special” distinguished
sets and relations will be denoted by uppercase sans-serif letters (e.g.
Fin and Adm).

e Functions (and morphisms of ‘general’ categories) are denoted us-
ing lowercase italics (e.g. f and g), though ‘special” distinguished
functions will be denoted by lowercase sans-serif letters (e.g. turn and
strat).

e Sets of agents are denoted using uppercase Gothic letters (e.g. @ and
%), while individual agents are denoted using lowercase Gothic letters
(e.g.a,band c).

e Categories are denoted using upright, serif bold letters (e.g. C and
Set).

e Functors are denoted using calligraphic letters (e.g. &, Forg and
Dix).
e Tuples of objects are enclosed using angular brackets (e.g. (x,y)).

e Sequences (or more generally, ‘homogeneous’ tuples of objects of the
same type) of objects are denoted using bold (italic or sans-serif) let-
ters (e.g. n and Lift). This includes natural transformations.

e Structures (which are generally ‘heterogeneous’ tuples of objects of
potentially different types) are denoted using blackboard bold letters
(e.g. M, S and Log).

e Transition maps of coalgebras are denoted using Greek letters e.g. (o,
& and ¢€). Greek letters ¢, 1 and y are reserved for formulas of logics.

We will also repeatedly use the following pieces of notation. Given a
function f : X — YZ (where YZ is the set of functions from Z to Y), its
transpose is the function f : Z — YX defined by ‘swapping’ the order of the
first two arguments, i.e. f(z) = x € X f(x)(z). The canonical projec-
tions of a product [[;¢; X; are denoted proj;, and the canonical injections of
a coproduct ;. X; are denoted inj;.

Finally, we will generally treat natural numbers 7 as ordinal numbers
in the set-theoretic fashion, with n = {0,1,...,n — 1}, and will therefore
denote the set of all natural numbers by w.

CHAPTER 3

MULTIAGENT-VALUED LoGIC

In this chapter, we will define and generalize multiagent-valued logic as
treated by Fitting (2009).! In Section 3.1, we give the basic definitions and
properties of the structures and logic defined in How True. Afterwards,
we generalize these structures and logics to the coalgebraic setting in Sec-
tion 3.2.

3.1 Boolean-Valued Basic Modal Logic

Throughout this thesis, we will usually fix a countable set Prop of proposi-
tional variables, along with a potentially infinite set @ of agents. Whenever
we assume @ to be finite, we will make said assumption explicit.

As stated in Chapter 1, we will consider logics of which the powerset
94 serves as the space of truth values. This powerset forms a Boolean alge-
bra IPg with the usual operations of intersection, union, and complementa-
tion. Asitis known (Tarski 1935) that all complete atomic Boolean algebras
are isomorphic to such a powerset Boolean algebra (which are themselves
complete and atomic), our logics can be viewed as taking truth values from
arbitrary complete atomic Boolean algebras. With this in mind, we will re-
fer to these logics as being Boolean-valued, while we still explicitly work with
the interpretation that the truth values correspond to sets of agents from @.

3.1.1 Syntax, Models and Slices
The basic language Lang we consider is precisely that of basic modal logic
interpreted over Kripke models.

Definition 3.1.1. The Boolean-valued basic modal language Lang is inductively
defined as

Lang> @ :=p [(@ V @) | (=) | (09),

1Hereafter, this article is referred to as How True.

17

18 3. MuLTIAGENT-VALUED LoGic

where p € Prop. <

We diverge slightly from the original definitions in How True by taking
only disjunction, negation, and the modality ¢ to be the connectives in our
language. This is done to facilitate comparisons with our work in Chapter 4.
The other connectives from How True are defined as abbreviations in the
usual manner, i.e.

) A lp = —|(—|(P Vv _llp),
oY i=mp VY,
D(P = —|<>—|90_

Things become interesting when we consider the semantics. Instead of
interpreting Lang over ‘ordinary” Kripke models, How True instead inter-
prets it over Kripke models in which the accessibility relation itself is also
in a sense Boolean-valued. These are instances of so-called Boolean-valued
(binary) relations between sets X and Y, which are defined to be functions
R: X xY — 4. We will however diverge from the original terminology,
and instead refer to these as agent-indexed relations. The reason for this will
first be expanded upon when we introduce the Slicing Slogan later in this
section, before being made more rigorous when we discuss the coalgebraic
generalization of the logic in Section 3.2.

Definition 3.1.2. An agent-indexed Kripke frame IF is a pair IF = (S, R), where
S is a set of states, and R : S X S — A is an agent-indexed relation referred
to as an (agent-indexed) accessibility relation. An agent-indexed Kripke model
M is a pair ([, col), where F = (S, R) is an agent-indexed Kripke frame,
and col : S — ()PP is an agent-indexed colouring. We often unfold the
inner pair in the definition of agent-indexed Kripke models, writing them
as triples M = (S, R, col). <

Again we diverge from How True in that we work with colourings col :
S — (PA)ProP instead of (agent-indexed) valuations val : S X Prop — 4.
This clearly is only a matter of presentation and irrelevant to any results,
since (XY)? = (X?)Y for any sets X, Y and Z. We use colourings for ease of
comparison with the coalgebraic generalization in Section 3.2.

Before we consider the matter of how the semantics of agent-indexed
basic modal logic should be defined using agent-indexed Kripke models,
it is essential for our presentation of the material to introduce the follow-
ing notion. We are able to take apart an agent-indexed Kripke model into
component Kripke models by only considering a single agent’s part of the
model. These component Kripke models are referred to as slices.

Definition 3.1.3. Given an agent-indexed Kripke frame F = (S, R) and an
agent a € 4, the a-slice of IF is the ordinary Kripke frame IF, = (S, R,), where

3.1. Boolean-Valued Basic Modal Logic 19

a,b

0

t
Nl

a,¢
— v

b,c

a

— w»n

C‘C:

col(u)(p) := {a, ¢}, col(v)(q) := {a, b}, col(t)(p) := {c}

Figure 3.1.1: Example of an agent-indexed Kripke model M, defined in Ex-
ample 3.1.4.

0 0
s t s t s t
U
colg(u) := {p}, colp(v) := {q} cole(u) := {P}r
coly(v) := {c]} cole(t) := {P}
(a) M. (b) M. (¢) M.

Figure 3.1.2: Slices of M from Figure 3.1.1.

Rq € S xS is defined by putting sR,t iff a € R(s, t). Given an agent-indexed
Kripke model M = (I, col), the a-slice of M is the ordinary Kripke model
M, = (F,, coly), where col, : S — PProp is defined by putting coly(s) :=
{p € Prop;a e col(s)(p)}. <

Let us look at an example of how slicing works.

Example 3.1.4. Consider the agent-indexed Kripke model M in Figure 3.1.1
— states are vertices, the agent-indexed accessibility relation is denoted by
the (labelled) edges, and the agent-indexed colouring is written out be-
neath the frame. In case an edge or colouring is missing, it means that said
edge/colouring holds for no agents. The slices of M are displayed in Fig-
ure 3.1.2. <

The way slices fully determine the structures we are considering moti-
vates our usage of the term ‘agent-indexed’ in referring to the introduced
structures. Slices are also of vital importance for our logic, being used in
a theorem (which we present as Theorem 3.1.6) in How True which states

20 3. MuLTIAGENT-VALUED LoGic

that the semantics of Boolean-valued basic modal logic is fully determined
by the semantics of two-valued basic modal logic, applied to each slice of an
agent-indexed Kripke model. Conceptually, it is this theorem that validates
the title of How True. In that article, slices are presented after introducing the
logic and its semantics, and the aforementioned theorem is seen as a conse-
quence of how the semantics is defined. However, we believe it is fruitful
to take a different point of view at Fitting’s work, with it actually being built
with the notion of slicing as a primitive notion. We will therefore present
things in a different order, with the following Slicing Slogan being a funda-
mental and helpful slogan motivating all of our design choices, including
those of the semantics.

Slicing Slogan. Multiagent structures consist of single-agent slices, and single-
agent slices define multiagent structures.

Note that we make no claims about the generality of this slogan beyond
its application in studying and generalizing the structures and logics con-
sidered in How True.

As a first instance of the Slicing Slogan, let us see how the notion of
slicing naturally gives rise to the semantics of Boolean-valued basic modal
logic. First consider the semantics of two-valued basic modal logic. Over an
ordinary Kripke model M = ({5, R), col), these can be given as a semantic
mapping [—]m : Lang — PS, mapping a formula ¢ € Lang to the set [¢]m C
S of states in IM at which ¢ holds. Since %S = 25, we can also view the
semantics as a function [~]p : Lang — 2%, mapping formulas to elements
of the function space 2°. This offers an elegant and precise interpretation of
f € 2% as two-valued predicates in IM, mapping states s € S to truth values
in 2. These two-valued predicates denote whether the predicate holds at s
(ie. f(s) = 1), or does not (i.e. f(s) = 0).

From an algebraic point of view, we can consider 2° to be the domain of
a modal algebra” 2 consisting of functions mapping states to elements of
the two-element Boolean algebra 2, usually referred to as a complex algebra.
The Boolean operations of 2y arise naturally from those of 2, with e.g. the
join of predicates f, g € 2° defined fors € Sas (f V2M g) (s) := f(s)VZg(s).
The operator &M is defined for f € 25 and s € S as (02Mf) (s) := 1 iff there
is some t € S such that sRt and f(f) = 1. Now, the semantics of two-
valued basic modal logic are then simply given by the operations on 2,
with [o V¥l = [o]m V3 [{]m, [-¢]m = =*M[@]m, and [op]m =
oM [p]m.

Since the truth values in Boolean-valued logics do not come from 2, but
instead from algebra IPg, it is natural to now consider the semantic map-
ping to be a function [[—]}]?\4 : Lang — (9/3)°, mapping formulas to ‘Boolean-
valued predicates’ f € (2@)°, determining for each state s € S the set of

2That is, a Boolean algebra B with an additional unary operator ¢ on its domain that is
normal and additive, meaning that it preserves finite (possibly empty) joins.

3.1. Boolean-Valued Basic Modal Logic 21

agents f(s) for whom the underlying predicate holds. Analogously to what
we did with the two-valued semantics, we apply 2@ = 2%, and instead de-
scribe Boolean-valued predicates f € (2%)° as determining for states s € S
and agents a € @ whether the underlying predicate holds in state s for a. Us-
ing the isomorphisms (2%)° = (2%)?, we can see how Boolean-valued predi-
cates f € (2%)° fit the Slicing Slogan, as they consist of two-valued predicate
‘slices’ f(a) for eacha € @.°

Putting this into an algebraic context again, we consider (2°)? to be the
domain of a modal algebra 2q . Using the modal algebras 2, given
by the a-slices of M for a € @, we can define all operations on Boolean-
valued predicates in 2g v by applying the operations of these modal algebra
slices 2, to the component two-valued predicate slices. This is uniformly
done for all the operations, with for f, ¢ € (2°)F the join being defined as
(f v2aM g} (a) := f(a) V2™ g(a), and the operator ©Z3M being defined as
(0ZaM £) (a) := ©2Ma ().

The modal algebra 24 n as we have just defined it can now again be used
to give the semantics of Boolean-valued basic modal logic. Working this out
a bit, we see that the following definition precisely gives the semantics aris-
ing from 2g v, only considering Boolean-valued predicates to be elements
of (#4)°, instead of the equivalent (2°)%.

Definition 3.1.5. Given an agent-indexed Kripke model M = ((S, R) , col),
the semantics of Boolean-valued basic modal logic is given by the function [[—]]]?v[:
Lang — (94)° defined inductively by putting

[pIaq(s) = col(s)(p), (for p € Prop)
[o v YIRa(s) = [@DRe(s) U [W34(s),
[~Ii(s) := AN [@I}e(s), and
[o@lfs(s) =] (R(s,) 0 [p]3 (1))

teS

fors € S. <

The fact that these semantics actually correspond to the slice-based se-
mantics arising from 2g 1 is the main content of what we refer to as the
Basic Slicing Theorem (Fitting 2009, Theorem 4.2). To clarify that this is
in fact what is stated by the theorem, we first give a slightly different, but
equivalent and arguably more elegant presentation of the theorem, before
Fitting’s original formulation.

3As defined in Section 2.3, given a function f : X — YZ, we write f : Z — YX for
the function obtained by swapping the order of the first two arguments (or more formally,
through (Y4)X = (yX)2),

22 3. MuLTIAGENT-VALUED LoGic

Theorem 3.1.6 (Basic Slicing Theorem). Let M be an agent-indexed Kripke
model. For each formula ¢ € Lang and agent a € G, it holds that

—

[#13 (@) = [@]n,-

Equivalently, we have that

[Plu(s) = {ae@;s € [pm, }
for states s in M.

Both formulations of the theorem can be proven by a simple induction
on formulas ¢ € Lang.

Writing out the semantics for the logical connectives defined as abbre-
viations, we see that

[A YIRa(s) = [@DRe(5) N [34(s),
[p = ¢Iai(s) = [@lay(s) = [(s)
= (@ [9]%() U [¥]2,(s), and
[0913465) = [| (R(s, 1) = [pI34(5))

teS

= (@R, 1) U [p]3(s))

teS

The Basic Slicing Theorem (Theorem 3.1.6) confirms the Boolean-valued
semantics for these defined connectives is truly just built out of the two-
valued semantics for those same connectives, justifying their usage.

Before moving on, let us see an example of the semantics in action.

Example 3.1.4 (continued). Considering the agent-indexed Kripke model
in Figure 3.1.1, we compute the semantics of e.g. the formula ¢4 to find

(R(s,5) N [9]34(5))
(R(s, £) N [q]3:(D))
(R(s, u) N [q]}(w))
(R(s,) N [q]}s(®))
= (2NQ)

U((@n o)

U{a} No)

U({a,b} Nn{a,b})
= {a,b}.

[oqla,(s) =

U
U
U

3.1. Boolean-Valued Basic Modal Logic 23

Similarly, we find that

[oqlfs () = {a}
[[Oq]]]i’\,[(u) =@, and

[0q]3,(v) = @.

We can see that the Basic Slicing Theorem (Theorem 3.1.6) indeed holds
here, with ¢q being true at s in IM, and My, and at ¢ in IM,. <

3.1.2 Propositional Constants

While the Basic Slicing Theorem (Theorem 3.1.6) does provide an elegant
characterization of the semantics of Boolean-valued basic modal logic, it
also shows inherent limitations in the expressive power of the logic. Though
two-valued logic does allow one to define formulas ¢ for some fixed truth
value t such that [@]m(s) = t for any Kripke model M (e.g. p V —p for T,
p A —p for L), this same property no longer holds in the Boolean-valued
setting. In fact, the only truth values for which such formulas exist are @
and @, with the corresponding formulas again being p V =p and p A —p,
respectively. To see that such formulas do not exist for truth values ¥ €
P\ {4, 2}, one need only consider agent-indexed Kripke models M in
which every agent has the same slice: the Basic Slicing Theorem guarantees
that [¢]3,(s) € {4, @}.

To combat this lack of expressivity, How True introduces propositional
constants for each set of agents into the logic. This is a natural choice, as
these sets are now the truth values in our logic.

Definition 3.1.7. The extended Boolean-valued basic modal language Langg is
defined as Langg := Lang U {37 ;% C @}, where "3 is a purely syntactic
constant. Given an agent-indexed Kripke model M with set of states S, the
semantics of extended Boolean-valued basic modal logic is given by the function
[—]]?\;IEXT : Langg — (9%3)°, defined by putting [[(p]]]?\;lEXT := [@]3, for ¢ € Lang,
and [[rﬂﬁ"']]g/’[EXT(s) =%forBCQands €S. <

From now on, we will always be working with extended Boolean-valued
basic modal logic, and will therefore drop the ‘extended” part both in our
text, as well as in the semantics (writing [-]3, instead of [[—]}%[EXT .

These new propositional constants can be used in conjunction with other
logical connectives to create rich expressions. For example, using the abbre-

viation for implication, we find that

[B7 — iy (s) = @ B) U [plRy(s),

which effectively allows us to use an assertion of "#" — ¢ to put a lower
bound on the truth value of ¢, since

[787 — @]3,(s) = Fiff B C [p]3(s).

24 3. MuLTIAGENT-VALUED LoGic

Conversely, we find that [¢ — "35"']]%/[(5) = @ iff [[(p]]%,[(s) C 3. Such formu-
las containing implications between propositional constants and other for-
mulas are referred to as bounding formulas in How True, and are used there
to produce tableaux. Bounding formulas will also be of vital importance to
our work in Chapter 5.

Though not addressed in How True, the Basic Slicing Theorem (Theo-
rem 3.1.6) no longer directly applies after introducing the new propositional
constants, since these do not exist in the language of basic modal logic. But
considering how a propositional constant "3 effectively ‘behaves” as T for
agents a € 3, and as L for agents a ¢ 3, we are able to give translations of
the formulas in our extended language to the original language in such a
way that a version of the theorem still applies.

For an agent a € 4, inductively define the translation tr, : Langg — Lang
by putting

tro(p) :=p, (p € Prop)
T ifae®
tro("H7) = {J_ fag®’ (B CQ)

tra(=¢) = tra(),
tra(@ V ¥) :=tro(@) V tra(y), and
tra(O@) 1= Otra(@).

Though not given in How True, the following extended version of the slicing
theorem holds when using this translation.

Theorem 3.1.8 (Extended Slicing Theorem). Let M be an agent-indexed Kripke
model. For each formula ¢ € Langq and agent a € @, it holds that

—

[elas (@) = [tra(@)]m,-

This theorem is yet again proven using a simple induction on formulas
@ € Langg.

The Extended Slicing Theorem shows that the extended logic still has
some glaring limitations expressivity-wise. Informally speaking, it is still
the case that there are no formulas ¢ such that determining whether its
evaluation contains some agent a requires one to also consider the slice of
another agent b. This holds because in determining what the truth value of
a formula is, we need only independently evaluate the formula in each slice,
before aggregating the results of these evaluations into a single truth value.
This makes the logic unsuited for expressing general multiagent two-valued
logics. We will revisit this limitation in Section 5.2, as we will be equipped
to provide a possible solution by then.

3.1. Boolean-Valued Basic Modal Logic 25

a,b
b ..
.. N
S t X
a,b
a a,c a,b,¢
a,b,c

l/l — ’Z) y —_— Z
U b,c U ¢
b ab b

Figure 3.1.3: An agent-indexed bisimulation between two agent-indexed
Kripke models, defined in Example 3.1.10.

3.1.3 Bisimulations and Bounded Morphisms

As is standard within the field of modal logic, it is important to have a
proper notion of bisimulation in order to study behavioural equality be-
tween two structures. Agent-indexed Kripke models are no exception to this
requirement. In How True, a notion of bisimulation between agent-indexed
Kripke models is given that was originally defined by Fitting (2003), which
we refer to as agent-indexed bisimulations. While How True solely discusses
mechanical ways of determining whether an agent-indexed bisimulation
between two models exists, we will focus on their semantic properties.

The definition of agent-indexed bisimulations fully arises through the
Slicing Slogan. Where an ordinary bisimulation between Kripke models is
a binary relation between the two models’ state spaces satisfying some con-
ditions, through application of the Slicing Slogan we will require the mul-
tiagent analogue to be an agent-indexed relation consisting of bisimulation
slices.

Definition 3.1.9. Given agent-indexed Kripke models M and IM’ with re-
spective state spaces S and S’, an agent-indexed relation B : S X S" — 94
is called an agent-indexed bisimulation B : M < M’ if B, : M, € M for
all agents a € 4. If B C B(s,s’) for states s € S and s’ € S’, we also write
B:M,s €y M’,s’. If there is some B such that B : M,s <y M’,s’, we
write M, s €5 M/, s’. If Bis a singleton {a}, we leave out the brackets, and
we write €2, instead of € (). <

Example 3.1.10. Consider the agent-indexed Kripke models in Figure 3.1.3:
the left one is from Figure 3.1.1, while the right one is new. We ignore
colourings for clarity of presentation: we could just assume the colourings
assign no propositional variables to any of the states. The dotted lines de-

26 3. MuLTIAGENT-VALUED LoGic

S t x S t X S £ X
u ’() y Z u & ’Z) y Z u <~ v y e Z
....... U U
(a) The a-slices. (b) The b-slices. (c) The c-slices.

Figure 3.1.4: Slices of the agent-indexed Kripke models and bisimulation
from Figure 3.1.3.

note an agent-indexed bisimulation between the two models, as can be ver-
ified by looking at the slices in Figure 3.1.4. <

Though How True does not expand upon this, as we will see shortly as
well as later in Section 3.2, agent-indexed bisimulations as defined thusly
are indeed the natural candidate for bisimulations between agent-indexed
Kripke models. For now we focus on two arguments not given in How True:
with respect to our definition of bisimulations, Boolean-valued basic modal
logic is both adequate (meaning that bisimilar states are logically equivalent)
and expressive (meaning that logically equivalent states are bisimilar), as
also treated in Section 2.2.

We first need to define what it means for two states to be logically equiv-
alent. Following the Slicing Slogan, we will consider a sliced version of log-
ical equivalence, in which two states are logically equivalent for a specific
agent.

Definition 3.1.11. Given agent-indexed Kripke models M and M’ and states
s and s’ from M and M’ respectively, and an agent a € @, we say s and s’ are
logically a-equivalent with respect to Boolean-valued basic modal logic (and
we write M, s EEML M’,s") if

a € [p]3,(s)iff a € [@]a(s)

for all formulas ¢ € Langg. If M, s EEML M’, s’ for all agents a € 4, then we
just say s and s’ are logically equivalent with respect to Boolean-valued basic

’

modal logic, and we write M, s =BML ©\p/ o, <

Using this sliced definition of logical equivalence, we can express the
adequacy of our logic in the following, also sliced form.

Theorem 3.1.12. Let M and IM’ be agent-indexed Kripke models with states s and
s’ from M and M’ respectively. 1t holds that

M,s €, M, s" implies M, s EEML M, s’

for all agents a € Q.

3.1. Boolean-Valued Basic Modal Logic 27

Proof. By assumption, there must be some agent-indexed bisimulation B
such that B, : M,,s € M}, s’. Take any ¢ € Langg. Suppose without
loss of generality that a € [[(p]]%/[(s). Then by the Extended Slicing Theorem
(Theorem 3.1.8) we find that s € [tro(@)]m,. Since My, s € My, s, it fol-
lows from the adequacy of two-valued basic modal logic that s” € [tro(¢)]m
as well. Finally, applying the Extended Slicing Theorem again, we get that

a e [p]3,(s). O

Most properties we wish to prove about Boolean-valued basic modal
logic can be proven quite simply by using the same property in the two-
valued case, along with (potentially) the Extended Slicing Theorem, like
we did here. Therefore we generally omit proofs of such statements. One
instance of such a property is expressivity over image-finite agent-indexed
Kripke models.

Theorem 3.1.13. Let M and M’ be agent-indexed Kripke models such that the
slices M, and M, for all agents a € @ are image-finite. Then for all states s in IM
and s’ in M, it holds that

M, s =PML MY, s implies M, s ©, M, s’.
for all agents a € 4.

While bisimulations are a unifying concept all throughout modal logic,
they were historically preceded by the notion of a bounded morphism. These
are the natural analogue of a structure-preserving map between two Kripke
models, and are in fact precisely functional bisimulations. There are no ana-
logues to bounded morphisms in How True, however. In order to define
a notion of agent-indexed bounded morphisms in accordance with the Slicing
Slogan, we will require a structure with ordinary bounded morphisms as
its slices. In order to do this, the notion of an agent-indexed function will be
essential. These are defined similarly to agent-indexed relations, but will
be of such great importance throughout our exploration of Boolean-valued
modal logic that we highlight them here.

Definition 3.1.14. Given sets X and Y, an agent-indexed function between X
and Y is a function f : X — Y2, For such f, we write f : X ~w Y to
make explicit that it is an agent-indexed function. Given an agent a € @,
the a-slice of f is the function f, : X — Y defined as fi(x) := f(x)(a)
for x € X. We say f is injective (resp. surjective, bijective) if f, is injective
(resp. surjective, bijective) for each agent a € 4. The agent-indexed graph
of f is the agent-indexed relation Grw# pprf © X XY — P4 defined as

(Grapthh pmaf)(x,y) = {a € A; fulx) = y}. <

Remark 3.1.15. Though we define agent-indexed functions as functions f :
X — Y%, it is arguably conceptually clearer to consider them to be families

28 3. MuLTIAGENT-VALUED LoGic

<fa>aeg of functions f, : X — Y (i.e. functions f : 4 — YX), as this would
make the slices explicit. It will often however be technically clearer to work
with the first definition f : X — Y#, since the domains of the agent-indexed
function and the underlying function match. As all three of these definitions
are equivalent for our purposes, we will freely switch between these two
presentations as needed to make notation clearer, though we will implicitly
assume that the first definition is the “actual’ one. Having said that, the
alternative definitions might be better suited when generalizing the current
work even further by creating agent-indexed versions of categories other
than Set. <

Definition 3.1.16. Given agent-indexed Kripke frames M and IM’ with state
spaces S and S’, respectively, an agent-indexed function f : S w» S"is an
agent-indexed bounded morphism between IM and M (writtenas f : M — M’)
if the slice f, is a bounded morphism f, : M, — M/ forallagentsa € 4. <

As with two-valued bounded morphisms, we have that agent-indexed
bounded morphisms are precisely functional bisimulations.

Proposition 3.1.17. Let f : M — M’ be an agent-indexed bounded morphism
between agent-indexed Kripke models with respective state spaces S and S’, and let
B :SxS" — 94 be an agent-indexed bisimulation such that B, is functional for
each agent a € A. Then it holds that

(i) Graptipcenef * M, s 20 M, fo(s) forall s € S and agents a € 4, and

(if) g: M — M, where g : S ~» S is defined by putting g.(s) := s’ fors € S
with s’ being the unique state in S’ such that sBs’.

Corollary 3.1.18. Foragent-indexed bounded morphisms f : M — M’ and states
s in M, it holds that M, s =BML M, £ (s) for all agents a € Q.

3.2 Boolean-Valued Coalgebraic Modal Logic

Having given an overview of the theory of Boolean-valued basic modal logic
built on top of agent-indexed Kripke models, we now set our sights on a
more general goal: defining generalized Boolean-valued modal logics over
arbitrary state-based systems. We will do this using the framework of coal-
gebraic modal logic. These logics, like the original logic from How True, will
be defined as natural Boolean-valued ‘liftings’ of an underlying two-valued
logic.

3.2.1 Agent-Indexed Coalgebras

As our first step towards a coalgebraic generalization, we will try to fit
agent-indexed Kripke models as a structure into the framework of coal-
gebra. For simplicity, let us first consider frames. We define the category

3.2. Boolean-Valued Coalgebraic Modal Logic 29

AgentKF of agent-indexed Kripke frames and agent-indexed bounded mor-
phisms.* To properly model these as coalgebras, we require a category C
and an endofunctor 7 : C — C such that the category Coalgc(9) of I-
coalgebras is equivalent to AgentKF.

An initial guess would be to use C = Set and I = FA and this guess
would not be entirely wrong. If we purely consider the objects in the cate-
gories, we can see that 7*-coalgebras § = (S, o) are precisely agent-indexed
Kripke frames, with the agent-indexed accessibility relation R : S X § —
94 being recoverable by defining R(s,t) = {a € 4;t € o(s)(a)}. And con-
versely, we can consider agent-indexed Kripke frames to be 9#-coalgebras
by defining the transition map o : S — (£S)* as o(s)(a) := {t € S;sRt}.

So far this works out. But what do 9#-coalgebra morphisms look like?
As our base category is Set, a 7*-coalgebra morphism f : § — §’ is a func-
tion f : S — S’ such that the diagram

s— 1 g

a na
(2S) W (PS')

commutes. Unfortunately, not all agent-indexed bounded morphisms cor-
respond to #*-coalgebra morphisms. In fact, 7*-coalgebra morphisms can
all be viewed as agent-indexed functions f : S ~» S’ for which f, = f; for all
agents a,b € 4. So clearly, Coalgg.,(7?) will not be equivalent to AgentKF.

Since the problem stems from the fact that #*-coalgebra morphisms are
functions in Set, an obvious next step is to change our base category to one
in which morphisms correspond to agent-indexed functions. As we will
see, this move is the right one.

Definition 3.2.1. We denote by ASet the category of sets and agent-indexed
functions. Given two agent-indexed functions f : X w Yand g : Y w Z,
their composition g o f : X ~» Z is defined in the obvious way by composing
along slices, i.e. (§ o f)a := ga © fo. If f and g are functions f : X — Y% and
¢:Y — Z% we define it as (g o f)(x)(a) := g(f(x)(a))(a). The agent-indexed
identity id?(S‘3t : X »» X on a set X is defined as (id;set)a = id?ft. <

It is not difficult to verify that these specifications produce a well-defined
category. This is quite a simple category to work with, as virtually all we
can say about Set extends easily to a statement about ASet. Most of this
follows from the following basic but essential observation.

4Though we have not explicitly defined them, it should be clear how an agent-indexed
bounded morphism between frames is defined: it is an agent-indexed function between
state spaces such that every one of its slices is a bounded morphism between the slices of
the frames.

30 3. MuLTIAGENT-VALUED LoGIC

Fact 3.2.2. Agent-indexed functions f and g are equal iff the a-slice functions f,
and g, are equal for all agents a € 4.

As a consequence of this observation, diagrams in ASet commute iff the
diagram in Set obtained by taking a-slices of all agent-indexed functions in
the original diagram commutes for all a € 4. Furthermore, mono-, epi- and
isomorphisms in ASet are precisely injective, surjective and bijective agent-
indexed functions (as defined in Definition 3.1.14), respectively.

Before showing how coalgebras over ASet can capture agent-indexed
Kripke frames and models, we first show how some general important prop-
erties of Set extend to ASet.

Proposition 3.2.3. The category ASet
(i) has all small products,
(if) has all small coproducts,
(iii) is Cartesian closed, and
(iv) has subobject classifiers.

Proof. (i) Take a set {X;},; of sets indexed by a set I. Since Set is com-
plete, the Set-product [];c; X; exists. We equip this Set-product with
agent-indexed projections proj**¢ : [];c; X; ~> X; for each i € I by ap-
plying the Set-projections along each slice —i.e. (proj*3°t), := projASet,

To see that [];¢; X; along with these agent-indexed projections actu-

ally forms the ASet-product of the sets X;, consider some set P with

agent-indexed functions f) : P ~» X; for each i € I. For each such

@, we have that fa(i) is a function fa(i) : P — X; for each a € 4. So ap-
plying the universal property of the Set-product, we see that for every
a € 4 there is a unique function g, : P — [];¢; X; such that

2 = projft o g 5.1

Considering these functions g, as slices, we obtain an agent-indexed
function g : P ~» [];¢; Xi;. And since Equation (3.1) holds for each
a € @andi € I, we immediately get that f() = projASeto ¢ foreachi € I
as well. The uniqueness of g is finally guaranteed by the uniqueness
of each of the functions g.. So [];¢; Xi along with the agent-indexed

projections is the ASet-product [];¢; X;.

(ii) This can be shown using approximately the same line of reasoning
used to show ASet has small products, only with all arrows reversed.
The ASet-coproduct is the Set-coproduct }};; X; with agent-indexed

injections injﬁset : Xi)1 Xi whose slices are the injections inj?et.

3.2. Boolean-Valued Coalgebraic Modal Logic 31

(iii) Since we have shown that ASet has all small products, it suffices to
show that exponential objects exist.” Given sets X and Y, we define
their exponential as Expyge(X,Y) := { fif: X~ Y}. Its evaluation
map evali‘*(?‘;t : Expaset(X,Y) X X~ Y is given as (eval%lsft)a(f, x) =
fa(x). To see that Expage(X,Y) is indeed the exponential of X and
Y, take any set Z and agent-indexed function g : Z X X ~» Y. De-
fine the exponential transpose / : Z ~» Expaget(X, Y) of g by putting
(ha(2))6(x) := gb(z, x). We then have that

(evalet) o (o (%)) = (evaldSy') o (o xic)
= (z,x) € ZX X > (1a(2)), (x)
=(z,x) € ZX X — gz, x)
= ga

for every agent a € @. So evaly* o (h X id%>*) = g. To see that I is the
only agent-indexed function satisfying this equality, note that for any
alternative 1’ : Z ~» Exppger(X,Y) with evalgsfﬁt o (W xid{5) = g, it
holds for every a € @and (z,x) € Z X X that (h}(z)).(x) = gu(z, x) =
(ha(2))a(x). Thus Expaget(X,Y) with evalf’{?t is the exponential of X
and Y.

(iv) First note that the one-element set 1 is the terminal object in ASet,
with the unique term}5¢ : X > 1 for sets X consisting of the func-
tions term§<et for all of its slices. Based on our discussion of logic in the
agent-indexed setting so far, it is natural to guess that the subobject
classifier of ASet consists of the set 4. But this is actually not the
case: like in Set, we have that the subobject classifier in ASet is 2, with
corresponding agent-indexed truth function true®5¢t : 1 ~» 2 defined
as trueASet := trueSet,

To see that this is indeed the subobject classifier, take any set X and
injective agent-indexed function m : U ~» X. Then every slice m, :
U — X is an injective function, and so by definition of the subobject
classifier in Set, for every a € @ there exists a unique function char™ :
X — 2suchthatm, and term Eft form the pullback of trueSet and char™.
Define char™ : X ~» 2 by taking the functions char™ to be its slices.

Then by definition of true®Set and termﬁset, it follows immediately that

5In order to reduce confusion between Set and ASet, we will sometime make explicit that
we take an exponential object YX in category C by writing Expc(X, Y) instead.

32 3. MuLTIAGENT-VALUED LoGic

the diagram
termLAISet
m trueASet
char™

t and

commutes. And since m, and termlsft form the pullback of trueSe
char™, it follows quite simply that m and termﬁset indeed form the

pullback of char™ and trueASet. m

Remark 3.2.4. While we gave an explicit and (arguably) pragmatic defini-
tion of ASet that will suit our purposes, the following may be of interest
to readers with more background in category theory. Note that ASet actu-
ally can also be seen to arise as the Kleisli category for a monad. Consider
the endofunctor & : Set — Set defined on sets X as €X := X%, and on
functions f : X — Y as (§f)(g) := f o g for g € X*. We equip & with
the unit unit : s = & defined as unitx(x)(a) := x, and multiplication
mult : & 0 & = & defined as multx(f)(a) := f(a)(a). It is easily verified that
E = (%, unit, mult) indeed forms a Set-monad, with

multy o Emulty = f € EEEX - (a € A f(a)(a)(a)) = multx o multex

and
multx o &unitxy = idgx = multx o unitgx

for all sets X. The morphisms in the Kleisli category Kleisli(IB) between sets
X and Y are then functions f : X — &Y = Y%, i.e. precisely agent-indexed
functions f : X ~» Y. Since composition of morphisms f : X — Y and
g Y — Z in Kleisli(E) is given as g oxieislig) f = multz oset &g Oset f,
we get that (¢ okieisti(r) f)(x) = a € @ = g(f(x)(a))(a) for x € X, which is
precisely the composition of ¢ and f in ASet. It follows immediately that
Kleisli(IE) = ASet.

Note that similarly to how we built a monad out of the functor &, we
can naturally build a comonad D = (9, counit, comult) out of the functor
X := Xx4. Since & is right adjoint to @ (in any Cartesian closed category),
it follows quite simply that the Kleisli category Kleisli(E) is isomorphic to
to the co-Kleisli category coKleisli(ID), providing us with yet another way
to view ASet. g

For now, we will again consider the question of how to treat agent-
indexed Kripke frames and models as coalgebras. Similar to how ordinary
Kripke frames are coalgebras for the powerset functor %, agent-indexed
Kripke frames are coalgebras for a suitable version of the powerset functor
on ASet. We define the agent-indexed powerset functor %z : ASet — ASet

3.2. Boolean-Valued Coalgebraic Modal Logic 33

on sets X as P4X = PX. On agent-indexed functions f : X ~ Y, we
define Zaf : FaX ~> FY for a € A as (Zaf), = Pfo. It now follows
immediately from the definition of agent-indexed functions, and from the
fact that diagrams in ASet commute iff all of their slices commute in Set,
that Pz-coalgebra morphisms are precisely agent-indexed bounded frame
morphisms. In other words, we have that Coalgy g (%) = AgentKF.

Note that the way we defined %4 relied in no way on the specifics of
2. We can similarly define the functor % prop based on the -model func-
tor Pprop as defined in Section 2.2. More generally, we associate with any
set functor a corresponding agent-indexed functor, which we refer to as its
agentization.

Definition 3.2.5. Given a functor 7 : Set — Set, the agentization of T is the
functor 93 : ASet — ASet defined on sets X as 7gX := X, and on agent-
indexed functions f : X ~» Y by putting (7af), := If. for each agenta € Q.

Given a Jg-coalgebra § = (S, o) and agent a € @, the a-slice of 5 is the
J-coalgebra 5, := (S, 0q). <

This definition fits the Slicing Slogan: slices of Jg-coalgebras are -
coalgebras, and slices of Jg-coalgebra morphisms are again J-coalgebra
morphisms between slices. The agentization T3 can also be truly consid-
ered an extension of 7, in the sense that the diagram

ASet — 25 ASet

Snct Sncl

Set — Set

commutes, with et being the inclusion functor keeping sets unchanged,
and sending functions f : X — Y to the agent-indexed function defined
as (Sectf' f)a = f for all a € 4. Even more strongly, we can show that
the agentization Jg precisely captures the idea that ‘multiagent’-structured
J-coalgebras should not only consist of J-coalgebras for each agent, but
also that conversely, J-coalgebras for each agent determine ‘multiagent’-
structured J-coalgebras. We formalize this statement by treating the set @
as the discrete category Agents in which agents a € @ are the objects, and
there are no morphisms besides identity morphisms. We then find the fol-
lowing isomorphism, fully in line with the Slicing Slogan.

Proposition 3.2.6. For any set functor 7, denote by S the full subcategory of the
category (Coalgge; (7)) 8™ of functors from Agents to Coalgg,(7) with natural
transformations, consisting of all functors § : Agents — Coalgg,(7) for which
there is a set S such that Sa = (S, 0,) for all a € 4. That is, we only consider &

34 3. MuLTIAGENT-VALUED LoGic

that send agents to -coalgebras with the same carrier set. It then holds that
Coalgpset(Ta) = S,
is an isomorphism.

Remark 3.2.7. We note that 9g-coalgebras are structurally the same as -
coalgebras with input, as considered by Hansen and Klin (2011). The dif-
ference lies in our usage of the base category ASet as opposed to Set. This
difference in base category allows us to fully work with the Slicing Slogan
through Proposition 3.2.6, as well as through proper ‘sliced” notions of coal-
gebra morphisms and bisimulations, as we will see in Section 3.2.3. <

As an aside before moving on towards the matter of defining coalge-
braic modal logics, we wish to note that generally speaking, endofunctors
F : ASet — ASet do not arise as agentizations of set functors 7 : Set — Set.
Any # for which there is an agent-indexed function f : X ~» Y with
a,b € A such that f, = f, but (%f), # (Ff), serves as a counterexample.
We will largely not be considering such functors, as they do not play a role
in showing how two-valued coalgebraic modal logics extend to Boolean-
valued ones. Whenever we give results that do work for general endofunc-
tors on ASet, we will make this explicit.

3.2.2 Logical Connection and Predicate Liftings

To define a Boolean-valued coalgebraic modal logic for coalgebras over the
category ASet, we will start with a base logical connection, as in Defini-
tion 2.2.1. This is one between ASet and BA, giving us the base Boolean-
valued propositional logic. As is the case for two-valued logic, the logical
connection here arises by ‘homming into” the dualizing object given by the
set 2 and Boolean algebra 2.°

Definition 3.2.8. The Boolean-valued predicate functor Pred q : ASet°® — BA
sends sets X to the Boolean algebra 2g x with domain Expge(X,2), ie.
(2%)%, and operations derived naturally from the operations of the two-
element Boolean algebra 2 and the Slicing Slogan (cf. our explanation pre-
ceding Definition 3.1.5). It sends agent-indexed functions f : X ~» Y to the
Boolean algebra homomorphism »edqf : 2qy — 2q x defined by putting
(Fredaf)(g))a:=8a0 faforg:Y ~» 2andaed.

The Boolean-valued theory functor 7%q : BA — ASet°® sends Boolean
algebras B to the set Expga (B, 2) (or equivalently, to the set of ultrafil-
ters of B). It sends Boolean algebra homomorphisms f : B — C to the
agent-indexed function J7%qf : Expga(C,2) ~> Exppa(B,2) defined as
(F#af),(g) :=go f for g € Exppa(C,2)and a € Q. <

6For those readers unfamiliar with the terminology, the phrase Thomming into” an object
X refers to considering exponential objects X(-).

3.2. Boolean-Valued Coalgebraic Modal Logic 35

It is simple to verify that these data truly define functors.

Proposition 3.2.9. The Boolean-valued predicate functor Pred q is right adjoint
to the Boolean-valued theory functor T7q.

Proof sketch. The details of this proof are largely the same as those of the
proof that 9% 4 Pred in the two-valued setting. We only define the natu-
ral isomorphism adj : Ho7z aset(—, Tia—) = Hompa(—, Predq—) together
with its inverse, and do not fully write out the proof that it is natural and
an isomorphism. Given a set X and Boolean algebra B, we define adjy j :
%mASet(X/ 9ﬁ/gIB) — %mBA(IB, %gX) as

adjx g(f) =beB (xe X {ae@;be fi(x)}),

where B is the domain of B, f is an agent-indexed function f : X ~w» J7%41B,
and we apply the isomorphism 2% = 94 to simplify notation. The inverse
function adj;&B s Hompa(B, PredaX) — Homaset(X, T%aB) as

(adix's(D) =x € X {b e Biae FOIM),

where f : B — %%d qX is a Boolean algebra homomorphism, and we apply
2B = 9B to treat the elements of F%qB as sets/ultrafilters, again to simplify
notation. O

Given the logical connection, we could proceed fully analogously to the
situation in Section 2.2, defining the resulting general Boolean-valued coal-
gebraic modal logics through the use of a modal similarity type functor
S : BA — BA, which is represented by generators through a genera-
tor functor Gez : BA — Set, together with one-step semantics one : §#7z o
Pred q = Predq o 9752’) for some endofunctor & : ASet — ASet. Since our
interest is especially in showing how two-valued coalgebraic modal logics
extend to Boolean-valued ones, we will mainly be interested in concretely
defining such extended Boolean-valued coalgebraic modal logics.

Consider a modal similarity type (Sym, ar) consisting of a set Sym of
modality symbols and an arity function ar : Sym — w. We define our
generator and signature functors based on this type as follows.

Definition 3.2.10. Given a modal similarity type Sim = (Sym, ar), the Sim-
generator functor Gen : BA — Set sends Boolean algebras B with underlying
sets B to

GenB = {@(b);@ € Sym, b € Bam} +{"87;B Ca} + Prop,

where 9(b) is purely a syntactic construction. The Sim-functor Sz : BA —
BA is then defined as w7z = Freepa © Gen, where Freepa : Set — BA is
the free Boolean algebra functor. <

36 3. MuLTIAGENT-VALUED LoGic

The one-step semantics of the logic can now be given by predicate lift-
ings for each modality symbol. As might be expected, these predicate
liftings are Boolean-valued, as opposed to two-valued. Two-valued predi-
cate liftings can however be simply extended to Booleanized Boolean-valued
ones.

Definition 3.2.11. An n-ary Boolean-valued predicate F-lifting for a functor
F : ASet — ASet isanatural transformation lift : (Forgpy o © Preda)” =
Forgpa set © Freda o F, where Forgp, g is the obvious forgetful functor
from BA to Set.

Given an n-ary (two-valued) predicate J-lifting lift (i.e. a natural trans-
formation lift : (Forgpy s © Predd)’ = Forgpa e © Pred o T for a set
functor), the Booleanization of lift is the n-ary Boolean-valued predicate
Iq-lifting liftg defined over a set X as

((ifta)x (91, -, qn)), = liftx(1,0r - - - s Gnja)
for (q1,...,qn) € (2%HX)" and a € Q. N

So n-ary Boolean-valued predicate F-liftings lift are mappings sending
n Boolean-valued predicates g4, : S — 9@ on a set S to a Boolean-valued
predicate lifts(q1,...,q94) : IS — P4 over the set FS of F-unfoldings
of S. And Booleanizations of two-valued predicate J-liftings are defined
neatly in accordance with the Slicing Slogan: the a-slice of the Boolean-
valued predicate (liftg)y (41, ..., qn) is the predicate liftx(q1,a, .., gn,a) Ob-
tained from the a-slices 1,4, .., Gn,a-

Example 3.2.12. Consider the two-valued predicate lifting Z*lifting lift® for
the ©-modality of basic modal logic, defined (using 2° = %S) as Iiftg(Q) =
{UePS;UnNQ # @} for Q € #S. Then its Booleanization is the Boolean-
valued predicate P-lifting Iift;[> mapping Boolean-valued predicates q €
(92)° over S to the Boolean-valued predicate

(liftg) s () =U € 2S > {a e A;UNG(a) # 2} .

Though superficially similar to the definition of the two-valued ¢-modality,
it might not be fully clear now that this lifting will indeed capture the se-
mantics of the ¢-modality in Boolean-valued basic modal logic, and will
need to wait until Theorem 3.2.19. <

Putting together modal similarity types (Sym, ar) and a family Lift =
(Iift@>@ esym Of (arv)-ary Boolean-valued predicate #-liftings for each © €
Sym, we have all we need to fully specify the Boolean-valued coalgebraic
modal logic through its one-step semantics. We refer to such pairings ((Sym,
ar), Lift) as Boolean-valued coalgebraic modal logics, or if we wish to make the
coalgebra type specific, Boolean-valued coalgebraic modal logics over #.
Note that we wish to interpret these logics over #-models, that is, Fprop-
coalgebras.

3.2. Boolean-Valued Coalgebraic Modal Logic 37

Definition 3.2.13. Given a Boolean-valued coalgebraic modal logic Log =
(Simn, Lift) over &, the one-step semantics of Log is the natural transformation
onel : Sim o Fredq = Predq o Fy defined for a set S as the unique
Boolean algebra homomorphism induced by the function

oneg : GenPredaS — Forgpy sy Fred aFpropS
defined as

oney(V(q)) := (U, P) € FS x PProp — lifte(q)(U),
('€ Sym, q € (PredaSy™)
oneg("87) := (U, P) € FS X PProp char®,
(char® is characteristic of 3 C @)

onel,(p) := (U, P) € FS x PProp — (a € A char’(p)),
(charP is characteristic of P C Prop)

using the universal property of free Boolean algebras. <

As was the case for two-valued coalgebraic modal logic, it follows quite
simply from the naturality of lift” for each © € Sym that one is in fact a natu-
ral transformation. And so we can again define an algebraification functor,
like in Definition 2.2.2.

Definition 3.2.14. Given a Boolean-valued coalgebraic modal logic Log =
(Sim, Lift) over an endofunctor &, the Log-algebraification functor dtgy .y -
Coalg s gei(Frrop)® — Algpa(Si72) sends F-models (i.e. Fprop-coalgebras)
5 = (S, 0) to the Sy7e-algebra

A0S = (PredaS, Predac o onel™),

It sends Fprop-coalgebra morphisms f : § — §’ to the Swz-algebra mor-
phism gy ., f = Predaf. <

As was also the case in the two-valued setting, the category Algga (Su72)
has an initial algebra Langg;, g = (Langgﬁmlg, A) with its carrier being the
obvious Boolean algebra built on the set of formulas ¢’ over the modal sim-
ilarity type Sim along with propositional constants "7, and the obvious
Boolean algebra homomorphism sending elements of $#7zLangg;,, to the
formulas they represent as its transition map.

Definition 3.2.15. Given a modal similarity type Sim = (Sym, ar), the Bool-
ean-valued language of Simm is the set Langg;,,, 4 underlying the carrier Boolean

"Though technically, Langg;,,, consists of equivalence classes [¢] of formulas with respect
to the axioms of Boolean algebras, we will always work with it as if it were just the set of
formulas ¢.

38 3. MuLTIAGENT-VALUED LoGIC

algebra of the initial Sz7z-algebra Langg;,, g. The language can be induc-
tively defined (up to using standard abbreviations) as

Langgima 2 @ =p | "B [(@ Vo) | (=) | (V(p,...,9)),
———
arQ times

where p € Prop, 3 € 4, and © € Sym. <
The unique Szzz-algebra morphisms from Langs;, 4 then finally give

the semantics of the logic, using algebraifications. So we can give the defi-
nition of the logic in full now.

Definition 3.2.16. Given a Boolean-valued coalgebraic modal logic Log =
(Simn, Lift) over &, together with an #-model 5 = (S, o), the semantics of
Log is the unique $w7z-algebra morphism [[—]]gfog t Langgy, g — H7y1,,5-
Forgetting the Boolean algebra structure and applying 2% = 2@, we will
often view the semantics as a function [[—]]g:@g - Langg;, g — (Z9)°. <

Working out the semantics, we find the following inductive characteri-
zation.

Proposition 3.2.17. Let Log = (Sim, Lift) be a Boolean-valued coalgebraic modal
logic over &, and & = (S, o, col) be an F-model.® The semantics of Log satisfies

[pls™(s) = col(s) (p), (p € Prop)
[TB7]6™(s) = 8B,
[v ¥ls™(s) = [pls™(s) U [¢]g™(s),
[=ls™(s) = AN [l ™(s), and

961, Pa)ls™ = (Preao) (e (o115, - [parcls™))
foralls € S.

Proof. By definition of the algebraification functor (Definition 3.2.14) and
the fact that [[—]]stog is a Sz7z-algebra morphism, the square in the diagram

Sim[-]5"®
St langgy,, ———> SunFredqS
one];“‘Dg

~

A %@dggprops 9pr0p5

Sred qo’ I\a’
~ ~

Langsﬁ]m HT %@dgs
s

8 As also done in Section 2.2, we will often denote #-models by triples (S, g, col), where
0:S~ FSand col : S v PProp.

3.2. Boolean-Valued Coalgebraic Modal Logic 39

commutes in BA. Considering a propositional variable p, we thus get by
definition of the one-step semantics (Definition 3.2.13) and the Boolean-
valued predicate functor (Definition 3.2.8) that

[p]§" = (Predad’) (one]smg(r)))

= (Predqd’) (f)
(where f = (U, P) € S x PProp — (a € @ char’(p)))

=se5e (ae@m (Paloils))

seESH (a el char°°'“(5)(p))

SESH{aeg;pECOIa(s)}

—

s €S col(s) (p).

Similarly, we find for 3 C 4 that

[[riﬁ"ﬂgfog = (Predq0’) (onelsLog('_iﬁ"'))
= (Predad’) (f) (where f = (U,P) € FS x PProp > char®)

:s€S|—>(a€g|—>charB(a))
=seSH B

The statements for the semantics of ¢ V 1) and —~¢ follow directly from the
definition of the Boolean operations on %e2/gS, together with the fact that

[—]]g‘og : Langgy, g — Pred S is a Boolean algebra homomorphism. The
statement for V(1 ..., Paro) is also simple to prove. We use the abbrevia-

tion [[(pﬂ%og = <[[q01ﬂ%®g, e, [[(par@]]gog>. We then find that

[9(@1,. ., Parc) LB = (Predac’) (onefg@g(@(gol, ., @ar@)))

= (Predao’) (f)
(where f = (U, P) € FS X PProp > Iiftg([[(p]]gfog)(ll))

—seS (a € nftg([[cp]]gj@g)(aa(s))(a))

= (redao) (i (I15™)))

Let us now at long last reconsider the matter of extending two-valued
coalgebraic modal logics. Using Booleanizations of two-valued predicate
liftings, we can associate with any two-valued coalgebraic modal logic over
a set functor 7, a corresponding Boolean-valued coalgebraic modal logic
over the agentization Jg, which we again refer to as its Booleanization.

40 3. MuLTIAGENT-VALUED LoGic

Definition 3.2.18. For a two-valued coalgebraic modal logic Log = ((Sym,
ar), Lift) over a set functor 7, the Booleanization of Log is the Boolean-
valued coalgebraic modal logic Logg = ((Sym, ar) , Liftg) over I3, where

Liftg = (Iiftg>%sym consists of the Booleanizations of the liftings in Lift. <

We can now show that Booleanizations of two-valued predicate liftings
(and two-valued coalgebraic modal logics) are indeed proper generaliza-
tions of the original liftings (and coalgebraic modal logics) in accordance
with the Slicing Slogan. We do this through a general Coalgebraic Slic-
ing Theorem (cf. Theorems 3.1.6 and 3.1.8). Recall the definition of the
translations tr, for a € @ as used in Theorem 3.1.8, and note that we can
also define translations tr, : Langg;,, 4 — Langg;, taking formulas in the
Boolean-valued language to formulas in the two-valued one, by mapping
constants "B~ to either T or L, dependent on whether a € ¥ or not. Using
the translation, we can state the following theorem.

Theorem 3.2.19 (Coalgebraic Slicing Theorem). Let Log = (Sim, Lift) be a
two-valued coalgebraic modal logic over 7, and S a Tq-model. It holds that

[pls™* (a) = [tra(@)]§™®
forall ¢ € Langg;,, q and a € @.

Proof. The theorem follows almost immediately from Proposition 3.2.17, to-
gether with the definition of the Booleanization of a two-valued predicate
lifting (Definition 3.2.11). O

Example 3.2.20. Consider the two-valued coalgebraic modal logic Log®™t

over & corresponding to two-valued basic modal logic with the ¢-modality.
Then it follows almost immediately from Theorems 3.1.8 and 3.2.19 that the
Booleanization]L@ggML corresponds precisely to the Boolean-valued basic
modal logic from How True and Section 3.1, both syntactically and semanti-

cally. <

3.2.3 Bisimulations and Behavioural Equivalence

Having worked out how to generalize arbitrary two-valued coalgebraic mo-
dal logics (over functors 7 : Set — Set) to Boolean-valued ones (over func-
tors 73 : ASet — ASet) in accordance with the Slicing Slogan, it is of in-
terest to verify whether our definitions are able to properly capture general
agent-indexed coalgebraic bisimulations and their relations to the logic. In

9We assume for the sake of simplicity that the generator functor for (Sym, ar) does not
include propositional variables, as this would introduce unnecessary complexity in describ-
ing the formulas of the Booleanization. We hence also assume that J is not a model functor

(ie. T+ ‘G],Prop for all set functors 7).

3.2. Boolean-Valued Coalgebraic Modal Logic 41

doing so, it is natural to also consider similar questions about the notion of
behavioural equivalence.

Let us start generally with coalgebraic bisimulations on #-coalgebras for
some # : ASet — ASet. Extending the definition of coalgebraic bisimula-
tions we gave in the Definition 2.1.4, bisimulations between %-coalgebras
$=(S,0)and $’ = (S, ¢’) are built on internal binary relations (R, ps,p 5/>
in ASet between S and S’. These are sets R such that ps : R ~» S and
ps : R ~» S are jointly monic — that is, for all f, g : X ~» R it holds that
ifpsof =psogandps o f = ps o g, then f = g. Since ASet is complete
by Proposition 3.2.3, it has binary products, and thus we can more simply
describe such internal binary relations in ASet as subobjects R of the ASet-
product SxS’, which are monic agent-indexed functions 7 : R ~» SxS’, with
ps = projs o r and ps: = projg o r. To make a bisimulation R : § € § out
of such subobjects, we equip it with F-coalgebra structure p : R ~» IR
such that ps and ps are Jg-coalgebra morphisms. So putting this all to-
gether, a coalgebraic bisimulation R : § € 5’ between 5 and &’ is a subob-
ject 7 : R »» § x §” such that the diagram

SxS Sx S
projs\i 7<\’\’\,\J;’\’\ /JJZJJJJ iprojs/
S R s’
g\i P \ig' (32)
FS FR FS’
Piprojs/; [Fr’;;/ \;\;L\'\\/L g\?projsl
F(SxS) F(S xS

commutes.

Note the fact that ASet has subobject classifiers, as shown in Proposi-
tion 3.2.3. Because of this, it holds that subobjects i : U ~» X of a set X are
in a one-to-one correspondence with agent-indexed functions f : X ~» 2.
So each slice i, : U — X can be identified with a function f, : X — 2
determining a subset of X. We can then identify subobjects i : U ~» X
as agent-indexed subsets of X consisting of subsets U, of X for each agent
a € @. And thus using (A(S x §)? = (P2)5*5, subobjects 7 : R »» S x S’
correspond precisely to agent-indexed relations R : S X 5" — 9. Since di-
agrams in ASet commute if the Set-diagram obtained by taking a-slices of
all agent-indexed functions commutes for all a € @, we can verify by slicing
Diagram (3.2) that we can give the following definition of bisimilarity in
ASet.

Definition 3.2.21. Given & : ASet — ASet and F-coalgebras S = (S, o)
and $’ = (S, 0’), we say that states s € S and s’ € S are ¥-bisimilar (and

42 3. MuLTIAGENT-VALUED LoGic

we write 5,5 2y §,s") for B C 4 if there is an agent-indexed relation
B : S§xS§8 — 94 that, viewed as an agent-indexed subset of S X S/, is a
bisimulation B : 5 < §’ with 3 C B(s,s’). If B is a singleton {a}, we will
leave out the brackets, writing <, instead of < (. <

We have that coalgebraic bisimulations on ASet for agentized functors
admita ‘sliced’ (i.e. agent-indexed) characterization similar to that of bisim-
ulations for agent-indexed Kripke models (Definition 3.1.9), which are de-
fined as agent-indexed relations R : S X S’ — 9 between state spaces S
and S’ of M and M, such that R, : M, € M for all agents a € 4.

Proposition 3.2.22. Let $ = (S,0) and S’ = (S’, 0”) be Tg-coalgebras for some
set functor 7 : Set — Set. Then $,s 25 §',s" iff S., 5 2 S, s for all agents
ae B

Proof. The direction from left to right follows immediately from the defi-
nition of bisimulations and the fact that diagrams in ASet commute iff all
their slices commute in Set. The direction from right to left follows by not-
ing that given bisimulations B, : §,,5 € 5, s’ forall a € 3, we can construct
an agent-indexed bisimulation B : 5,5 €y 5’, s’ by using the B, as slices,
while setting b-slices By for b € @ \ 3 to be empty. m]

So coalgebraic bisimulations for agentized functors truly generalize the
agent-indexed bisimulations as we saw them in Definition 3.1.9.

Considering the coalgebraic notion of behavioural equivalence given in
Definition 2.1.3, we can also give a ‘sliced” characterization: two states are
behaviourally equivalent iff they are behaviourally equivalent in all slices.
To do this, we first need to settle on what it generally means for two states
to be behaviourally equivalent for some agents.

Definition 3.2.23. Given an endofunctor # : ASet — ASet together with
F-coalgebras 5 = (S, 0) and §' = (S, 0’), we say states s € S and s’ € S” are
behaviourally B-equivalent (and we write 5,5 =y §’,s") for B C 4 if there is
some F-coalgebra X with #-coalgebra morphisms f : 5 — Xand f': &' —
X such that f,(s) = f/(s’) for all a € 8. If ¥ is a singleton {a}, we will leave
out the brackets, writing ~ instead of ~. <

Clearly 5,5 = §,5"ift 5,5 =g §’,5’, showing that this sliced definition
properly generalizes the standard definition of behavioural equivalence on
F-coalgebras.

Using the definition, we can now give the ‘sliced” characterization of
behavioural equivalence.

Proposition 3.2.24. Let $ = (S,0) and S’ = (S’, 0”) be Tg-coalgebras for some
T :Set — Set. Then S,s ~ §',s" iff Sq, 5 = 5, s for all agents a € B.

3.2. Boolean-Valued Coalgebraic Modal Logic 43

Proof. We prove the specific case where 3 = @ for the sake of simplicity.
The case where 3 # @ is proven virtually identically, with some additional
uninformative bookkeeping required to deal with agents a ¢ %, and it is not
difficult to derive the proof of the general statement from this specific case.

The direction from left to right is trivial, and follows directly from the
fact that diagrams in ASet commute iff all slices of the diagram commute in
Set: if f : 5 — X and f’ : $ — X are Jg-coalgebra morphisms with f(s) =
f'(s"), then fq : 8¢ — X, and f] : 8, — X, are I-coalgebra morphisms with
fa(s) = fi(s’) forall a € 4.

The direction from right to left is still simple, though a bit more involved.
Suppose there exist 7-coalgebras Z, = (Z,, Co) and J-coalgebra morphisms
fa 184 = Zgand f] : S, — Z, satistying fu(s) = fi(s”) forall a € 4. Consider
the Set-coproduct'’ 3 cq Z,, which is the J-coalgebra (3 ,cq Za, C) with C
being the unique morphism making the diagrams

injp

Zy ——— 2aeaZa

cal lc (3.3)

Ty ——— T eea Za

Finjy

for all b € @ commute, guaranteed to exist by the universal property of the
coproduct. We construct a 9g-coalgebra X = (3 ,cq Zo, &) by putting &, := C
forall a € 4. As f, : 5. — Z, is a I-coalgebra morphism for all a € 4, we
have that the diagram

SL)ZB

l l) (3.4)

F/”ST)F]ZB

always commutes. Putting Diagrams (3.3) and (3.4) together, we find that
the function g := inj; o fp is a I-coalgebra morphism gy : Sy — > 4cq Z, for
all b € 4. Defining ¢ : 5 ~> }},ca Zq by putting together the slices g,, we get
by definition of ASet that ¢ : 5 — X is a 9g-coalgebra morphism. Using
similar reasoning in which we replace all objects on the $-side by those on
the §'-side (e.g. replacing f, by f,), we obtain a Jg-coalgebra morphism
g’ 8 — Xas well. Since g, = inj, o fo and g = inj, o f; forall a € @, it
follows from the fact that f,(s) = f;(s’) that g.(s) = gi(s") as well, and thus
that g(s) = g(s’). S0 8, s ~ %, s". O

19When proving the general statement where % # @, one should consider the coproduct
(Daens Za)+ (X qea-n 2)- The rest of the proof then proceeds as before, but using the initiality
of the empty set in Set to equip it with J-coalgebra structure.

44 3. MuLTIAGENT-VALUED LoGic

It is natural to ask whether the notions of bisimilarity and behavioural
equivalence on coalgebras in ASet coincide. As is the case in Set, we have
that bisimilar states are behaviourally equivalent, but that the converse does
not necessarily hold

Proposition 3.2.25. (i) Given an endofunctor ¥ : ASet — ASet, it holds
thatS,s <% S, s" implies $,s ~x5 S, s’ for all F-coalgebras S and &', and
Bed and

(ii) there are coalgebras S and §’ over ASet such thatS,s ~x &',s" butS,s £y
S ,s’.

Proof. To show (i), we use a line of reasoning virtually identical to that that
in the proof of the statement that bisimilarity implies behavioural equiva-
lence in Set. To show (ii), we extend the example from Aczel and Mendler
(1989, after Proposition 6.2), which we said in Section 2.2 shows that be-
havioural equivalence does not imply bisimilarity in Set, to ASet in the ob-
vious manner by taking the agentization of the functor, and turning func-
tions in the counterexample to agent-indexed functions with said functions
for every slice. m]

Recall from Proposition 2.1.8 that behavioural equivalence and bisim-
ilarity in Set coincide if the coalgebra type functor preserves weak pull-
backs. Using Propositions 3.2.22 and 3.2.24, it then follows immediately
that if a set functor preserves weak pullbacks, then §,s ~y §’,s” implies
5,5 235, for Tg-coalgebras 5 and §’. We can also prove more generally
that if an endofunctor # : ASet — ASet preserves weak pullbacks, then be-
havioural #-equivalence implies #-bisimilarity for #-coalgebras. The proof
for this statement is virtually identical to the proof of the statement in Set.

It is natural to ask under what circumstances agentizations Jq preserve
weak pullbacks. This is potentially of interest for future work, as the prop-
erty of preserving weak pullbacks is important throughout many areas of
coalgebraic modal logic. As we will see, agentizations preserve weak pull-
backs precisely when the original functor preserves weak pullbacks. To
show this, we first require the following lemma.

Lemma 3.2.26. Let fx : X w Y, fz: Z~ Y, px : W X, andpz : W ~» Z
be agent-indexed functions. Then the pair (px, p Z} is a weak pullback of (fx, fz>
in ASet iff the pair (px,a,pz,a> is a weak pullback of <fx,a,fz,a> in Set for all
aed.

Proof. Throughout this proof, we assume that || > 1. This is without loss
of generality, since ASet = Set otherwise, which would trivially prove the
statement.

3.2. Boolean-Valued Coalgebraic Modal Logic 45

For the direction from left to right, suppose <p X, P Z) is a weak pullback
of < fx, fz> in ASet. Then by definition of ASet, the Set-diagram

X L) Y
PX,a Tz,u
W —>~Z7

commutes for all a € 4. Fix an agent a € 4. Consider functions p, : W; —
X and p’, :W; — Z making the diagram

X —— 5y
Py pX'“T fz.a

W —— Z (3.5)
Wa P2

commute. For all b € @ \ {a}, take the pullback <W[: , p;(y p’z b> of the func-
tions fx p and fz, making the diagram

x 2o oy
P fzp (3-6)
Wt: —F> Z
Pz

commute. Let W’ be the coproduct W’ := }}cq W;. By the universal prop-
erty of the coproduct, there exists unique functions gx : W — X and
gz : W — Z such that the diagram

W/
/JT \ (3.7)
x W, > X
Pz

’ ’
pX,I)

commutes for all b € 4. Take these functions gx and 4z, and trivially turn
them into agent-indexed functions rx : W ~ X and rz : W ~» Z by
setting rx » := gx and rz := gz for all b € 4. Similarly consider inj, to be

46 3. MuLTIAGENT-VALUED LoGic

an agent-indexed function by putting it in every slice. By commutativity of
Diagrams (3.5) to (3.7), we then deduce that the diagram

fx

Y
gfz
inj[é\ AN bz 7
\ 7
W({ —/\/\/v\/\/v\} W’

inj,

=

commutes in ASet. Since we assumed px and pz form a weak pullback,
there must be some agent-indexed function p” : W; »» W such that rxoinj, =
px op’and rz oinj, = pz o p’. Using the a-slice p; : W, — W of p’, it then
finally follows that the diagram

injq

inj,

commutes, showing that px , and pz,, form a weak pullback of < X, lea>.

The proof of the direction from right to left is much simpler. Suppose
(px,0,Pz,0) is a weak pullback of {fx .., fz,a) for all a € . Then it follows
immediately that fx o px = fz o pz. For any agent-indexed functions p :
W’ ~» X and p’, : W'~ Z for which fx o p’, = fz o p’,, we construct the
required p’ : W’ ~» W by taking as its a-slices the functions p; : W — W
we get by applying the fact that <p X,a, P Z,a> is a weak pullback of < fX,ar fz,a>
to the a-slices p} and p’, .]

Theorem 3.2.27. For all set functors 7, it holds that T preserves weak pullbacks
iff the agentization g preserves weak pullbacks.

Proof. For the direction from left to right, take a weak pullback (pX, pz>
of agent-indexed functions fx and fz. By Lemma 3.2.26, we get that
<PX,a, pz,a> is a weak pullback of fx . and fz . for all agents a € 4. Since 7
preserves weak pullbacks, it follows that (97 Px,a, TP Z,a> is a weak pullback

3.2. Boolean-Valued Coalgebraic Modal Logic 47

of Tfx . and Tfz, for all agents a € 4. Since 7g, = (93g). for any agent-
indexed function g, we thus have that ((f’/‘gp xX)a, (Tap Z)a> is a weak pullback
of (Fafx). and (Fafz), for all agents a € @. So applying Lemma 3.2.26 again,
we get that <§7ng, 9gpz> is a weak pullback of 3 fx and J3fz. Thus Jq
preserves weak pullbacks.

For the direction from right to left, take a weak pullback {gx, qz) in Set
of functions gx and gz. Define the agent-indexed functions px and pz by
taking gx and gz respectively for each slice. Similarly, define agent-indexed
functions fx and fz in similar fashion for gx and gz. By Lemma 3.2.26, we
then have that px and pz form a weak pullback of gx and g7. As I3 pre-
serves weak pullbacks, it follows that 7gpx and Jgpz form a weak pullback
of Jafx and Jgfz. Applying Lemma 3.2.26 again, we then finally find that
(Tapx)a = 99x and (Tapz)a = T4z form a weak pullback of (Tafx)a = Tgx
and (Fafz). = 7gz for all a € 4. So T preserves weak pullbacks. O

3.2.4 Adequacy and Expressivity

We now finally turn our attention towards matters of adequacy and expres-
sivity with respect to Boolean-valued coalgebraic modal logics. We state
the results for an arbitrary endofunctor # : ASet — ASet for greater gen-
erality. To do this, we first require a notion of logical equivalence for some
agents.

Definition 3.2.28. Given a Boolean-valued coalgebraic modal logic Log =
(Sim, Lift) over # : ASet — ASet and F-models 5 and §’, we say states s
in$ and s’ in §’ are Log-equivalent for ¥ C 4 (and we write S, s E%Og $,s")
if

a € [pls™(s) iff a € []™()
for all formulas ¢ € Langg;,, 4 and agents a € 4. g

Although we will always be working with F-models throughout the fol-
lowing section, we will often pretend that & is itself a model functor for
simplicity of notation.

We state the adequacy and expressivity theorems for the single-agent
versions of the behavioural and logical equivalence relations — the general
versions for multiple agents then follow immediately by their definition.
We start with adequacy, showing that behavioural equivalence implies log-
ical equivalence. The proof of this theorem is largely identical to the proof
in the two-valued setting, and proceeds through the following proposition
showing that morphisms preserve the semantics.

Proposition 3.2.29. Take some ¥ : ASet — ASet, and let S and X be F-models
with an Fpeop-coalgebra morphism f : S — X, and let Log = (Sim, Lift) be a
Boolean-valued coalgebraic modal logic over & . It holds that

[]s" = (Predaf) ([Q]®

48 3. MuLTIAGENT-VALUED LoGic

for all formulas ¢ € Langg;,, q.

Proof. This follows immediately from our setup. As Langs;, q is the initial
Stm-algebra, we have that the triangle in Alggs (S%72) on the right of

]La)g
5 A S % Tangsi, a
f\l/ ﬂfg]Long ‘%
X G 1 X

commutes. Since 9y, f = Fredaf (considered as a function), we get
that it indeed holds that

[p]5" = (Predaf)([p]3)

for any formula ¢ € Langg;,, g m]

Theorem 3.2.30. Let S = (S,0) and $’ = (S, 0’) be F-models and let Log be
a Boolean-valued coalgebmzc modal logic, all over some endofunctor & : ASet —
ASet. For states s € Sand s’ € S, it holds that

S,s~,%, s implies$,s = =g g o

forall a € Q.

Proof. Suppose 5, s ~, §’,s” —i.e. that there is some #-model X with Fpop-
coalgebra morphisms f : § — Xoand f' : & — X such that fi(s) =
f1(s’). By Proposition 3.2.29, we know that [[qo]]gfog = (Pedaf)([p]™®) and
[[(p]]gf,og = (Pedaf ’)([[(p]]gfg) for any formula ¢. Writing these equalities
out, we get that a € [[(p]]g;@g(s) iff a € [[(p]]ﬂ)\“(@g(fa(s)) and that a € [[(p]]sog(s’)
iffae [[go]] ®B(fl(s")). Since fu(s) = f{(s"), it thus follows that a € [qo]]SOg(s)
iffae [[(p]]Sog(s’) showing that indeed §,s =+ &, 5", m

For expressivity, we also proceed similarly to Section 2.2. We again re-
quire the two conditions required in the two-valued setting to also be sat-
isfied: collections of predicate liftings need to be separating, and coalgebra
type functors need to be finitary. But as we will see, our proof of expressiv-
ity for a general endofunctor on ASet requires the set 4 of agents to be finite
as well. We will come back to this after proving the general statement.

Let us start by defining separation. In the Boolean-valued setting, this
concept needs to take the presence of agents into account. We require that
different unfoldings can be differentiated by Boolean-valued predicates that
differentiate them for all agents.

3.2. Boolean-Valued Coalgebraic Modal Logic 49

Definition 3.2.31. Given a modal similarity type (Sym, ar) and Boolean-
valued predicate F-liftings Lift = (Iiftv><,eSym of the right arities, we say
that Lift is separating for & if for all sets X and U, U’ € FX with U # U’,
there exists some modality symbol © € Sym with Boolean-valued predi-
cates vy, ..., Va0 € PredqX such that for all agents a € @ it holds that either
a € lift$(v1, . .., Varo)(U) or a € lift5(v1, . . ., Varo)(U’), but not both. 4

This definition truly generalizes that of separation of two-valued predi-
cate liftings (Definition 2.2.8), as stated formally in the following theorem.

Theorem 3.2.32. Let (Sym, ar) be a modal similarity type with two-valued pred-
icate I-liftings Lift = (Iift”) oeSym of the right arities. Then Lift is separating for
T iff Liftg (as defined in Definition 3.2.18) is separating for Ig.

Proof. For the direction from left to right, take some set X and U, U’ €
TaX = X with U # U’. Since Lift is separating for 7, there must be some
© e Symand Vi, ..., Vao € Pred X such that either U € Iift?((Vl, oo Varo)
orlU’ e Iift?((Vl, ..., Varo), but not both. We assume without loss of gener-
ality that U € Iift?((Vl, ..., Varo). We construct Boolean-valued predicates
Vi, ...,Varo € PredqX by putting v;(x) := Aif x € V;, and v;(x) := @ other-
wise. By definition of Booleanized liftings (Definition 3.2.11), we find that

(liftg)x (01, . . ., varo)(U) = {a € A; U € lift3 (01,0, - .., Varo,a)}
={ae@;U €lift}(Vy, ..., Vaw)}
=4a
+0
={ae@; U €lifth(Vi,..., Vaw)}
= (liftg)x(v1, ..., var)(U"),

showing that indeed Liftg is separating for 3.

For the direction from right to left, again take some set X and U, U’ €
IX with U # U’. Since Liftg is separating for g, there must be some
© € Sym and vy,...,0a0 € PredaX such that for all a € G either a €
(lift)x (01, . .., varw)(U) or a € (lifty)x(v1, ..., Varo)(U’), but not both. We
fix some agent a € @, and assume (clearly without loss of generality) that
ae (Iift;)x(vl, ..., Uaro)(U). By definition of Booleanized liftings, we have
that

()x (01, .., aro)(U) = {b € AU € Wt 01y, .., Varon)}, (38)

with a similar equality when we replace U by U’. So it holds that U €
lifty (01,4, - - -, Varo,a), While U’ & lift5 (01,0, ., Varw,a)- Since v;, € Pred X,
this already proves that Lift is separating for 7. m|

50 3. MuLTIAGENT-VALUED LoGIC

Finitariness of set functors is usually defined in terms of w-accessibility
(cf. Worrell (2005)), which can be defined as stating that a functor preserves
w-filtered colimits. In our setting, we will work with a concrete and ar-
guably simpler definition, which suffices for the proof of expressivity. First
a quick note about notation: for sets A and B with A C B, we denote by
inclap : A — B the obvious inclusion function. These inclusion functions
can be treated as agent-indexed functions incly g : A ~ B by placing the
original inclusion function in each slice.

Definition 3.2.33. An endofunctor & : ASet — ASet is finitary if for every
set X and U € FX, there exists some finite subset Y C X such that U €
(Fincly x)od[FY] for all a € @. <

Remark 3.2.34. Note that we will assume that # preserves inclusions, in the
following concrete sense. We say that # preserves inclusions if Fincls g =
inclza,#p. This also means that X C Y implies #X C %Y. Under this
assumption of inclusion preservation, we find that for finitary & we get
that for every X and U € X, there exists a finite subset Y C X such that
uexFy.

This is quite an innocent assumption. We know (see e.g. Addmek and
Trnkova (1990)) that any set functor 7 is naturally isomorphic to a set func-
tor 77 that preserves inclusions, when restricted to nonempty sets. Given
an endofunctor # : ASet — ASet, we can also define a naturally isomor-
phic (when restricted to nonempty sets) ¥’ : ASet — ASet that preserves
inclusions. Note that for any agent a € @, we can define a set functor %,
defined on sets X as #,X, and on functions f as %, f = (#f), (where we
treat f as an agent-indexed function in the obvious way). As stated before,
we then get a set functor % preserving inclusions. Using these, we define
the functor #’. Since the % are naturally isomorphic to %, for all a € 4,
and F,X = FX, we can define #'X := %X without problems. Similarly,
for agent-indexed functions f we define (F'f), := %, fa. It is not difficult
to verify that #” must be naturally isomorphic to # (over nonempty sets),
and preserves inclusions. <

Finitariness for endofunctors on ASet truly generalizes finitariness for
set functors (Section 2.2), as stated in the following simple proposition for
agentizations.

Proposition 3.2.35. Let 7 be a set functor. Then T is finitary iff Tq is finitary.

Proof. Assuming J preserves inclusions, it holds (as shown by Addmek,
Milius, et al. (2019)) that Jis finitary (i.e. preserves w-filtered colimits) iff
for every set X and U € JX, there exists finite Y C X such that U € JY.
The statement follows trivially from this equivalence. m]

We are now almost equipped to prove the general expressivity result.
We need a simple lemma, intuitively stating that for the evaluation of a

3.2. Boolean-Valued Coalgebraic Modal Logic 51

Boolean-valued predicate lifting with predicates vy,...,v, on some U €
FX, one can safely restrict the predicates to the parts of X that are required
to ‘produce’” U.

Lemma 3.2.36. Let lift be an n-ary Boolean-valued predicate F-lifting. Then for
all sets X, Y C X, U € FY C FX,and (vy,...,v,) € (PredaX)" it holds that

liftx (v1, ..., v.)(U) = lifty (0], ..., v,)(U),
where v} is defined by putting v} = via NY for all agents a € 4.

Proof. This follows quite simply from the naturality of lift and our assump-
tion that # preserves inclusions. Considering the agent-indexed inclusion
incly x : Y ~» X, it follows from naturality of lift that the diagram

lifty

(PredqY)' ——— PredaFY
(‘%”m’gindy,x)"T Te%‘ﬂdgg;indy’x (3.9)

(PredaX)" T} Pred qF X

commutes in Set, with us leaving out the forgetful functors for brevity of
notation. Now for simplicity, we assume n = 1. Working out the top-left
composition in Diagram (3.9), it follows from the definition of P««g and
incly x that

lifty (Predqincly x)(v)) = lifty(y € Y {a €ed;ae v(incly,x,a(y))})
=lifty(y € Y — {a e @sae0v(y)})
=lifty(y € Y > {a € A5y € v,})
= lifty(v”) (3.10)

for v € PredqX. Similarly working out the bottom-right composition in
Diagram (3.9), it follows from & preserving inclusions and the definitions
of Pred q and incly x that

(FedaFincly x)(liftx (v))

= (Predqinclgy zx)(liftx(v))

=U e FY — {aed;ac liftx(v)(inclgy gx,o(U))}

=U e FY — {ae@;acliftx(v)(U)}

=U € FY > liftx(v)(U). (3.11)
By commutativity of Diagram (3.9), we get that the expressions in Equa-

tions (3.10) and (3.11) are identical, which is precisely what we wished to
prove.]

52 3. MuLTIAGENT-VALUED LoGic

We prove the expressivity result given a finite set of agents, by consider-
ing the specific case in which we are considering states in the same model.
The general result follows as a simple corollary. Our proof is derived from
the proof by Schroder (2008, Theorem 41) of the expressivity of two-valued
coalgebraic modal logic. Interestingly, our proof makes use of propositional
constants "#™', which are not present in the two-valued coalgebraic modal
logics over which the result of Schroder (2008) is proven.

Theorem 3.2.37. Let & be a finitary endofunctor on ASet, and let Log = (Sim,
Lift) be a Boolean-valued coalgebraic modal logic over F such that Lift is separat-
ing for F. If A is finite, then for all #-models S, it holds for all states s and t in §
that

S,s=2g ¢ implies $,s ~, S, t

foralla € 4.

Proof. Throughout the proof, we will drop the Log-superscript for brevity
of notation.

We will construct an #-coalgebra E with an #-coalgebra morphism f :
$ — E such that fu(s) = fo(t) forall s,t € Sand a € Awith §,s =, 5, t. This
will suffice to prove the theorem.

Consider the set E defined as

E=) (5/=),

aed

where we treat =, as a binary relation on S. Note that for each agent a €
4, there is a quotient function quo@® : § — S /=. sending a state s to its
equivalence class [s]=,. We can extend these quotient functions to an agent-
indexed function quo : S ~» E by putting quo, := inj, o quo'”. We then
immediately get that quo,(s) = quo,(t) foralls,t € Sand a € @with S, s =,
5,t. So we only need to define an agent-indexed function ¢ : E ~» FE
making quo an #-coalgebra morphism from S to E := (E, ¢).

For each agent a € @, fix a function rep® : S/=, — S sending equiva-
lence classes C € S/=, to a representative state s € C.!! By the universal
property of the coproduct, there exists a unique function ¢ : E — S such
that g o inj, = rep'® for all a € @. We turn g into an agent-indexed function
rep : E ~» S by putting rep, := g for each a € 4. We then define ¢ : E ~» FE

HNote that these functions are choice functions, and can generally only be proven to exist
using the Axiom of Choice.

3.2. Boolean-Valued Coalgebraic Modal Logic 53

as the composition making the diagram

S S E

H rep H

O'é/ é/g
FS W FE

commute, i.e. € := Fquo o ¢ o rep. To show that quo is an F-coalgebra mor-
phism quo : § — [, we thus need to show that

Fquo o g orepoquo=Fquooa. (3.12)

Writing out what Equation (3.12) means, it follows from the definition of
quo and rep that we need to show that for every agenta € @and statess,t € S
such that$,s =, 5, t, it holds that

(Fquo)a(0a(s)) = (Fquo)a(aa(t)). (3.13)

For brevity, we write U, = (Fquo)a(04(s)) and U} = (Fquo)a(oa(t)).

Fix some agent a € @, along with states s,¢ € S such that$,s =, S,t.
Since Lift is separating for %, considering the contrapositive of the state-
ment in Definition 3.2.31, we find that we can show that Equation (3.13)
holds by showing that for all modality symbols ¥ € Sym, Boolean-valued
predicates vy, ..., U0 € PredgE, it holds that

a € lift7(v1, ..., Varo)(Ua) iff a € lift} (01, . .., Varo)(U). (3.14)

As Z is finitary, there exist finite subsets Z, Z" C S such that 04(s) € #Z
and o4(t) € #Z'. Taking the union Y := ZUZ’, it follows from # preserving
inclusions that 04(s), 04(t) € FY C FS. Now take any number i with 1 <
i < ar9®, and note that v; is a Boolean-valued predicate v; € PedqE. Define
a Boolean-valued predicate b; € P»e¢dqY by putting

bip:=YN quob_l[vi,b] (3.15)

for all agents b € 4.

By definition of quo, we find that whenever S,y =, §,y" for y,y’ € Y,
it holds that b € b;(y) iff b € b;(y’). So by contraposition we get that for
all y,y’ € Y such that b € b;(y) but b ¢ b;(y’), it must be the case that
5,y #p 5, y’. By definition of logical b-equivalence, it then follows that for
all y,y” € Y such that b € b;(y) but b ¢ b;(y’), there exists some formula
®iv,y,y € Langg;, q such that

b € [@in,y,y]s(y) and b ¢ [@i,y,]s(y").

54 3. MuLTIAGENT-VALUED LoGic

As Y is the union of finite sets Z and Z’, it follows that Y is itself finite.
So the formula ¢; defined as

Pip = /\ \/ Pibyy

y'eY yeYy
beb;(y’) bebi(y)

is truly a formula of Langg;,, . We have for z € Y that

lpinls@ = () | l9inyyls@) (3.16)
y'ey yeYy
b¢bi(y') bebi(y)

by Proposition 3.2.17.

We claim that b € b;(z) iff b € [@;p]s(z) for all z € Y. For the direc-
tion from left to right, note that it must hold by definition of the formulas
®ipy,y that forall y' € Y with b ¢ b;(y’) it holds that b € [¢;5,z,]s(2).
This corresponds to the semantics of ¢;p in Equation (3.16), and we thus
get that b € [¢; v[s(z). For the direction from right to left, suppose for the
sake of contradiction that b ¢ b;(z), then we would have that forall y € Y
with b € b;(y) it would hold that b ¢ [¢@;5,,-]s(z). So again looking at the
semantics of ¢; ; in Equation (3.16), we would get that b ¢ [@; y]s(z), which
is contradictory. Thus b € b;(z).

Since 4 is finite, the formulas ¢; defined as

i = A\CAN{D}TV i)

bed

are also well-formed formulas of Langg;,, 3. Working out the semantics of
the @;-formulas, it follows from the semantics of the ¢; p-formulas that

[pils(z) = bi(z) (3.17)

forallz €Y.

We now finally move on to the final part of the proof. Note that by the
naturality of Boolean-valued predicate liftings, we have that the square on
the right in the diagram

lifts
s (PredaS)™ ———S PredaFS
quo\é (%gquo)ar"T T@”@dnguo (3~18)
E (Pred aE)2"™ T> Pred qFE
Mg

commutes in Set — we have left out the forgetful functors for brevity of
notation. Working the composition on the bottom-right of Diagram (3.18)

3.2. Boolean-Valued Coalgebraic Modal Logic 55

out, we find that

(Pred aFquo)(lifti(v)) = W € FS > {b €ed;be Iiftg(v)((?quo)b(W))} ,
(3.19)
where v = (v1,...,0a0). And working the composition on the top-left of
Diagram (3.18) out, we find that

lifte (Predaquo)™™ (v)) = lifte(...,s € S+ {b € ;b € v;(quoy(s))}, ...).

Importantly, note that the Boolean-valued predicates (320
qi=s €S {bed;bevi(quoy(s))}

in Equation (3.20) are equal to
gi=s €S> {be@;s € quoy'[vip]}. (3.21)

Given these equations, we find that
ae Iiftg(v)((%"quo)a(aa(s))) iff a € (%g&«‘quo)(liftz(v))(oa(s))
(Equation (3.19))

iff a € lift{ ((Predaquo)®™ (v))(aa(s))
(Diagram (3.18) commutes)

iff a € ||ftg(q1/ ceey Qarv)(aa(s))
(Equation (3.20))

iff a € lift} (b1, . . ., barw)(0a(s))
(Lemma 3.2.36 and Equations (3.15) and (3.21))

iff a € liftg([als, - -, [parc]s)(aa(s))
(Lemma 3.2.36 and Equation (3.17))

iff a € (Predqao)(liftd([@1]s, - - ., [@ars]s))(s)
(Proposition 3.2.17)

iff a € [V@1,..., Paro)]s(s).
Using identical reasoning, we also find that
a € lifty (v)((Fquo)a(oa(t))) iff a € [V(@1, ..., Paro)]s(t)-
Since 5, s =, $, t, we know that
a € [UA@1, ..., Qarw)ls(s) iff a € [O(@1,..., Paro)]s(t),
and thus we get
0 € 1t (o) ((Fquo)u(oa(s) iff a € lift?(0)((Fquo)u(aa(t))

which is precisely what we set out to prove, namely Equation (3.14). Thus
Equations (3.12) and (3.13) also hold, showing that quo : $ — [is indeed
an #-coalgebra morphism, and so §,5 =, §,t implies 5,5 ~, §,t for all
aed. O

56 3. MuLTIAGENT-VALUED LoGic

Corollary 3.2.38. Let F be a finitary endofunctor on ASet, and let Log = (Sim,
Lift) be a Boolean-valued coalgebraic modal logic over F such that Lift is separat-
ing for F. If A is finite, then for all F-models S and S, it holds for all states s in 5
and s" in §’ that

S,5s =28, s implies$,s ~, 8, s’

forall a € 4.

Proof. Consider the coproduct 5 + & — i.e. the #-model with state space
S + S’ and coalgebra map ¢ + o’ being the unique agent-indexed function
making the diagram

n_]sr

SW5+S'WS'

n s’

Finjg

commute. By definition of the semantics of Log, we have that the diagram

tg O J ‘Q{@ O inj 4
A S S A (5 +S) —=S Mgy 0,

ILng
L S+S
[-15**

]LamgSmm,g

commutes. Working this out, it follows that S, s =, $+5, injs(s)and &', s” =,
S+ ,injg(s’) foralls € Sand s’ € §’. S0 5,5 =, %,s" iff $ + 5, injs(s) =,
$+5,injg(s").

It follows from the universal property of the coproduct that whenever
there are #-coalgebra morphisms f : 5 — X and f’ : §' — X, that there
exists a unique g : 5 + 5’ — X making the diagram

injs

s L (548 g
\gl/
X

commute. Writing this out, it is easily verifiable that 5,5 =, §',s" iff § +
S,, injs(S) =a S+ S,, injsr(S’).
The corollary now follows immediately through Theorem 3.2.37. O

While we are only capable of proving expressivity for general endofunc-
tors on ASet in case there are finitely many agents, we can do away with this

3.2. Boolean-Valued Coalgebraic Modal Logic 57

requirement when we are considering Booleanizations of two-valued coal-
gebraic modal logics. For those, expressivity is an immediate consequence
of expressivity in the two-valued setting. To see this, we require one final
‘sliced” characterization: that of logical equivalence.

Proposition 3.2.39. Let T be a set functor, and let Log = (Sim, Lift) be a two-
valued coalgebraic modal logic over J. For all Tg-models $ and &', it holds that

S,5 =38, s iff S, s =B S, &’ forall a € B,

Proof. For the direction from left to right, take any ¢ € Langg;,, (i.e. from the
two-valued language) and a € 3. Suppose (clearly without loss of general-

ity) that s € [[go]]gfg. We will show that s’ € [[(p]]gf@g as well. Note that the

translation tr, used in the Coalgebraic Slicing Theorem (Theorem 3.2.19)
is surjective: for any ¢ € Langg;,,, there is some gb € Langg;, g such that
tra(¥) = @. So fix any such ¢ for ¢. Since §,s =, 27§/ s, we have that
a e [[gb]]sogg(s) iff a € [¢ﬂsogg(s’) We know from the Coalgebraic Slic-
ing Theorem that a € [[1/)]]S As) iff s € [[tra(t//)]]S:)g. As tro(y) = ¢ and
s € [[(P]]g;@g it then follows that indeed a € [[gb}]gogg(s). And so we also find
that a € [yY] Sogg(s’) Again applying the Coalgebraic Slicing Theorem, we
find that s’ € [[(p]]g:,log, which is what we needed. So §,,s =% G/, 5’.

For the direction from right to left, take any ¢ € Langg;,, 4 and a € 3.
Suppose (again, without loss of generality) that a € [[(p]]gfogg(s). We will
show that a € [[(p]]sq}gg(s’) By the Coalgebraic Slicing Theorem, it holds

that s € [[tra((p)]]S % As S, s =8 G/ s’ for all a € @, it then follows that
s’ € [[tra((p)]]s/ as well. Again applying the Coalgebraic Slicing Theorem,

we then immediately find that a € [(p]] Py "57(s"), which is what we needed to

show. S0 S, s —”ogg S, s’ m]

Theorem 3.2.40. Let T be a finitary set functor, and let Log = (Sim, Lift) be a
two-valued coalgebraic modal logic over T such that Lift is separating for 7. For
all Tq-models S and &', it holds for all states s in S and s” in §' that

S, s Ea®gg S, s" implies $,s ~, &', s’

foralla € Q.

Proof. By Proposition 3.2.24, it holds that §,s ~, §’,s" iff 5., s ~ §(,s". And
by Proposition 3.2.39, it holds that S, s _aogg S,s"iff §,, 5 =8 G/ s’ As T
is finitary and Lift is separating for 7, it follows from the expressivity result
in the two-valued setting (Proposition 2.2.9) that $,, s =L S/, s’ implies
thatS,,s ~ 5, s’. And thus we also have that 5, s E]aLogg 5, s’ implies §, s ~,
5, s’ O

CHAPTER 4

MurtipLAYER GAME LoaGic

In this chapter, we will define and generalize multiplayer games and their
logic as treated by Olde Loohuis and Venema (2010).! In Section 4.1, we
give the basic definitions and properties of the game structures and their
logic defined in LAMP. Afterwards, in Section 4.2 we generalize the afore-
mentioned game structures in a way that is more amenable to coalgebraic
generalization. Finally, in Section 4.3 we work out this coalgebraic general-
ization.

4.1 Deterministic Multiplayer Games

Throughout the chapter, we will be working with sets @ of players. Unlike in
Chapter 3 however, we will usually not take @ to be fixed, and will instead
parameterize our definitions by it.

In LAMP, Olde Loohuis and Venema propose a logic, based on earlier
work by Tulenheimo and Venema (2008), of which the semantics is natu-
rally defined through certain multiplayer games. These multiplayer games
are games of perfect information played over directed graphs, with vertices
in the graph corresponding to positions in the game, and outgoing edges
corresponding to potential moves. The only difference between these games
and those considered in the classical two-player evaluation game, is that any
player a € @ could get a turn at a given position, and that multiple players
can win at a final position.

The semantics of the logic in LAMP is given similarly to the semantics of
classical modal logic using two-player evaluation games, based on players
having winning strategies at positions in games. But again different from the
classical two-player setting, it is now possible for arbitrary sets of players to
have winning strategies at a given position. So like in Chapter 3, the logic
takes truth values from 9.

1Hereafter, this article is referred to as LAMP.

59

60 4. MurtirLAYER GAME Locic

4.1.1 Games, Syntax and Semantics

Let us first consider the basic game structure treated by LAMP. We define
these in a manner that is more suited to our eventual generalizations, and
is equivalent within the scope of both our logic and that of LAMP.

Definition 4.1.1. A deterministic @-game (or more generally, a deterministic
multiplayer game) is a quintuple G = (Pos, Adm, Fin, turn, win), where Pos
is a set of positions, Adm is a binary admissibility relation Adm C Pos X Pos
with no infinite Adm-chains?, Fin is a set Fin C Pos of final positions such that
Adm[p] = @ for all p € Fin, turn is a turn function turn : Pos \ Fin — @, and
win is a win function win : Fin — 9. A pointed deterministic @-game is a pair
Gap = <G, p> consisting of a deterministic @-game G and a position p in
G. <

Note that these games are never referred to as deterministic multiplayer
games in LAMP. Our usage of the term ‘deterministic” arises from the fact
that the codomain of the turn function is the set @ of players, and hence,
that fixing players’ strategies (as we will shortly define) suffices to determine
how matches proceed. But this only shows the terminology is correct. We
will not be able to argue in favour of its relevance before we get to Section 4.2
and define nondeterministic multiplayer games, in which the codomain of
the turn function is no longer the set @ of players, but instead the powerset
4.

Let us expound upon the way matches proceed. A deterministic @-game
G is played over a board represented by the directed graph (Pos, Adm). At
each step of a match, the game will be in precisely one of the positions p €
Pos. The admissibility relation Adm denotes the admissible positions which
play can move to from a given position, with p Adm p’ meaning that p’ is
admissible from p. If the game is at a nonfinal position p ¢ Fin, the player
turn(p) chooses a position p’ that is admissible from p, after which the game
will be at position p’.

Note that contrary to what one might expect of nonfinal positions, it
might be the case that Adm[p] = @ for p ¢ Fin. A match ends if it reaches
such positions, since the player turn(p) will not be able to choose an admissi-
ble position. In case a match ends in this manner, the players in @\ {turn(p)}
are declared to be the winners of the match, with the player turn(p) intu-
itively losing because he got ‘stuck’. Matches otherwise end if they reach
a final position p € Fin, with the players in win(p) being declared to be the
winners of the match. Since we require that there be no infinite Adm-chains,
matches are guaranteed to end.

Formally, we define matches and strategies as follows.

2That is, we require that there exist no infinite sequences (p,'>
satisfying p; Adm p;;1 foralli < w.

;<o Of positions p; € Pos

4.1. Deterministic Multiplayer Games 61

Definition 4.1.2. Fix a pointed deterministic @-game GQp, with G = (Pos,
Adm, Fin, turn, win). A match (of GQp) is a finite sequence p = (po, - ,pn>
of positions p; € Pos such that p; Adm p;4; for each i < n. The last position
of p is the position last(p) = p,.

A match p is said to be complete if Adm[last(p)] = @, and incomplete other-
wise. The set of all complete matches is denoted Comp(G@p), and we define
a function win : Comp(G@p) — 24 by putting win(p) := {win(last(p))} if
last(p) € Fin, and win(p) := @ \ {turn(last(p))} otherwise. For players a € 4,
a wins the (complete) match p if a € win(p).

Given a player a € @, the set of all incomplete matches p such that
turn(last(p)) = a is denoted Incomp,(G@Qp). A strategy for a is a function
strat : Incomp,(G@p) — Pos such that last(p) Adm strat(p) for all p €
Incomp,(G@p).> A strategy profile strat is a player-indexed collection strat =
(straty) .eq such that strat, is a strategy for a.

Given a strategy profile strat, a match p = (po, e, pn> is said to have
been played conform strat if p;y1 = strateym(p,)(po, - - -, pi) forall i < n. <

The formal definition of when a match is played conform a strategy pro-
file confirms what we stated earlier about the deterministic nature of these
games. Given a strategy profile and an initial position, the course of the
match is fully determined.

The notion of a winning strategy is defined in the most straightforward
manner: a strategy is winning if it can force a win in any match.

Definition 4.1.3. Given a pointed deterministic @-game GQp, a strategy
strat for player a € @ is a winning strategy for a if for all strategy profiles
strat with strat, = strat and all complete matches p played conform strat, it
holds that a wins p. If there is a winning strategy for a in G@Qp, we say that
a has a winning strategy from p in G, or more concisely that a wins GQp. <

Having defined the game structures, we now move on to the logic. The
syntax and semantics of deterministic multiplayer logic* are defined via a strai-
ghtforward generalization of two-player evaluation games for basic modal
logic to the multiplayer setting. In two-player evaluation games for basic
modal logic, disjunctions ¢ V 1 correspond to a binary choice of ¢ and ¢
for the Verifier and modal formulas ¢ correspond to a choice of a successor
state for the Verifier. As we have a set @ of players, it is natural to consider

3We define strategies as functions with sets of incomplete matches as their domain. It
should be noted that we could in fact get away with a simpler definition, with us defining
strategies for a as functions strat : turn~![a] — Pos (also respecting admissibility), which
would intuitively correspond to memoryless strategies in which players only make local de-
cisions at each step, with no regards to how they arrived at a certain position. For ease of
comparison with the original definitions from LAMP, we refrain from pursuing this alter-
native definition any further.

“Note that we are not saying the logic itself is deterministic, but are only making explicit
that we are considering multiplayer logic interpreted over deterministic multiplayer games.

62 4. MurtirLAYER GAME Locic

binary choices and successor state choices for each player. Negation in two-
player evaluation games corresponds to the Verifier and Falsifier switching
roles. Generalizing this idea, we will allow arbitrary players to switch roles.
To achieve this, we define the general notions of role distributions.

Definition 4.1.4. An @-distribution (or more generally, a role distribution) is
a permutation role : @ — @. The set of @-distributions is denoted RDgq. For
players a,b € 4, the @-distribution [a, b] is defined by putting [a, b](a) := b,
[a,B](0) := a, and [a, b](¢) := ¢ for ¢ € A\ {a, b}. <

Intuitively, a role distribution role assigns to a player a the role ais taking,
i.e. that of player role(a).
We can now introduce the syntax of deterministic multiplayer logic.

Definition 4.1.5. The language of deterministic @-logic is the set Langp,, 4 in-
ductively defined as

Langper a2 @ 5=p | L] T Lol Tal (@ Va@) | (0ap) | (roleg),
where p € Prop, a € 4, and role € RDgq. <

Intuitively, the atomic formulas L and T represent positions at which
nobody or everybody wins, respectively. To be able to express winning and
losing for individual players, there are also player-indexed versions L, and
T, these are positions at which only a loses or only a wins, respectively.
Formulas ¢ V, 1) are positions at which a has to choose one of the positions
corresponding to ¢ and ¢, and formulas ¢,¢ are positions at which a has
to choose a position corresponding to ¢ and a successor state w.r.t. some
given Kripke model.

Connectives role are referred to as role switches. Some arbitrary fixed
player x has a turn at a formula rolep, and there is precisely one admissible
position: the formula ¢, but with players a € @ now playing the ‘role” of the
player role(a).”

We can now begin defining the semantics of deterministic multiplayer
logic. The logic is defined over ordinary Kripke frames of which the colour-
ing is not a function from states to sets of propositional variables, but in-
stead an agent-indexed colouring (cf. Definition 3.1.2) col : S — (Z@)PrP,
intuitively assigning to each state s and p € Prop precisely those a € 4 that
win there. We will refer to these as player-indexed colourings in this chapter,
and will refer to ordinary Kripke frames [F equipped with player-indexed
colourings col as Kripke multiplayer (or @-) models M = (F, col).

Let us start by giving the evaluation games, which are instances of de-
terministic multiplayer games.

5Tn LAMP, role switches are indexed by two players, instead of an arbitrary role distribu-
tion. If 4 is finite, these two approaches are equivalent. But when @ is infinite, indexing by
role distributions gives more expressive power, which will be required in e.g. Section 4.2.4.

4.1. Deterministic Multiplayer Games 63

Table 4.1: Specification of a deterministic @-logic evaluation game.

Position Admissible moves Turn Winners
(p, s, roIe) @ - role™[col(s)(p)]
(L,s,role) %) - %)

(T, s, role) %) - a
(Lq, s, role) %) - role ! [@ \ {a}]
(Tq,s,role) @ - {"0|e_1(a)}

<(p Vaib,s, roIe) {< ,s, role> , (1,[;, s, roIe)} role™!(a)
<<>aq0,s, role> {((p, t, roIe) it e R[s]} role™!(a) -

<a(p, s, role> {{p,s,rdorole)} X -

Definition 4.1.6. Given a Kripke @-model M = ((S, R), col), the determin-
istic @-logic evaluation game over M is the deterministic @-game %MQDET]M

with positions Langp,; g4 X S X RDg, and other components specified in Ta-
ble 4.1. <

Note that these evaluation games are always well-defined determinis-
tic @-games: admissible moves always involve moving from a formula to a
subformula, and so there are no infinite Adm-chains.

Having defined evaluation games, we are now able to define the seman-
tics of deterministic @-logic fully analogously to the way it is defined in two-
player evaluation games.

Definition 4.1.7. Given a Kripke @-model M = ((S, R), col), the semantics
of deterministic @-logic is given by the function [[—]]]1]3/}”’g . Langpg, g — (93)°
defined by putting

[[(p]]&”’g(s) = {a € 4;awins (%MQDETM)@ ((p, s, idg>}
for ¢ € Langp,;gand s € S. <

We can give a more familiar compositional characterization of the se-
mantics of deterministic @-logic. To do this, first note the following essen-
tial, general and easily proven property of deterministic @-games.

Proposition 4.1.8. Let G = (Pos, Adm, Fin, turn, win) be a deterministic A-game,
and p € Pos a position with Adm[p] # @. Then

(i) turn(p) has a winning strategy from p in G iff there is some position q €
Adm(p] such that turn(p) has a winning strategy from q in G, and

(ii) any player a € A\ {turn(p)} has a winning strategy from p in G iff a has a
winning strategy from q in G for all positions g € Adm[p].

64 4. MurtirLAYER GAME Locic

This is fully analogous to the situation in two-player evaluation games,
where Verifier has a winning strategy at a position ¢ V ¢ iff Verifier either
has a winning strategy at ¢ or at 1, and Falsifier has a winning strategy at
@ V ¢ iff Falsifier has a winning strategy at both ¢ and .

Using Proposition 4.1.8, we can give a compositional characterization of
the semantics of deterministic @-logic. This compositional characterization
is most elegant and easy to interpret if we use the transpose of the semantics.
Recall that given a function f : X — Y%, we define its transpose to be the
function j?: Z — YX defined by putting f(z)(x) := f(x)(z). Since PPX = 2%
for all sets X, we also consider the transpose of a function f : X — %Y to
be a function f 1Y — 9X. Using these transposes, we can consider for any

formula ¢ functions [[(pﬂDET A . a - P8, with [[(pﬂEfT’g (a) being the set of
states s such that a is in the truth value [[go]]DET As) ats.

Proposition 4.1.9. Let M = ((S, R), col) be a Kripke A-model. Then for any
p € Prop, ¢, ¢ € Langp,, q, role € RDg, and a,b € @, it holds that

—

[PI>2 (@) = ol () (a),

[LIn " (@) =

[[T]]DET 4

7

fa=1,
ifa#b,

ifa=b,
ifa#b,

[[L]]DETQ

[[T]]DET 4

—

(a) =S
0= {
(0= {
o~ pMW“@uwP”@ fa=o,
(0= [

[[(PVBIPHDETQ
[[(P DETg(a)m [w)]]DETg(a) ifa;tb,

seSR ﬂ[[(p]]DETg(a);t@} ifa=0,

[[<> (P]]DET 4

s € S;R[s [[(pﬂg/}”’g (a)} ifa#b, and

[rolep] ™™ (a) = [@]pr™ (role(a)).

Proof sketch. We can show this by induction on formulas ¢ € Langp,, q, in

which we apply Proposition 4.1.8. The case for role switch formulas rolep
requires a lemma, stating that for all formulas ¢, a player a wins the pointed
game (%vangET]M)@ <(p, s, roIe) iff role(a) wins (%MEETIM)@ ((p, s, idg>. We
can also show this lemma through induction on formulas. m]

4.1. Deterministic Multiplayer Games 65

So we can consider e.g. formulas ¢ V, ¢ to be ‘behaving’ like ¢ Vv ¢ for
player a, while ‘behaving’ like ¢ Ay for others. And similarly, ¢ ¢ ‘behaves’
like ¢ ¢ for a, while ‘behaving’ like O¢ for others.

Though the semantics of deterministic @-logic seems quite unintuitive,
they in fact generalize the semantics of two-valued basic modal logic. To
see this, note that we can consider all two-valued colourings to be player-
indexed colourings with players @ = {v, f} corresponding to the Verifier and
Falsifier respectively, by putting col(s)(p) := {v} if the two-valued colouring
assigns p to s, and col(s)(p) := {f} otherwise. We can then give a translation
trper from formulas of basic modal logic to formulas in Langp,, 4, defined
inductively as

trper(T) == Ty,

trper(L) == Ly,

troe(p) == p, (p € Prop)
trper(@ V U) 1= trpe(@) Vo troec(y),

trDET(_'(P) = [D/ﬂtrDET((p)/ and
trDET(O(P) = <>ntrDET((P)-

Thenv € [[qo]]ﬂ?/f“g

and f € [[(p]]EfT’g(s) iff ¢ does not hold at s in the two-valued Kripke model.

(s)iff p holds at s in the original two-valued Kripke model,

4.1.2 Undefinability of Connectives and Modalities

Even though deterministic @-logic generalizes two-valued logic in the sense
described above, it has glaring limitations from the perspective of our pur-
poses: as we will shortly argue, the framework of deterministic multiplayer
games will not suffice for a proper coalgebraic generalization of multiplayer
logic, capable of accounting for different kinds of modalities.

But first, we note that even before considering modalities, the frame-
work of deterministic multiplayer games encounters problems when trying
to define Boolean connectives like conjunction. Though this need not be a
problem from the coalgebraic perspective, as there is no apparent reason a
priori to require multiplayer logics to contain all of these Boolean connec-
tives, it will in fact allow us to relate the multiplayer logic with the logic
from Chapter 3, as we will do in Chapter 5.

For example, it is easily verified that it is not possible to define connec-
tives A, that, similarly to Vv, behave as conjunction for a, and as disjunction
for others. And perhaps more pressingly, we observe that there is no true
negation. While role switches are inspired by the way negation is defined in
evaluation games for two-valued logic, they do not suffice on their own to
be able to define negation in deterministic @-logic. Negation in two-valued
evaluation games works because precisely one player has a turn or wins at

66 4. MurtirLAYER GAME Locic

any given position. But in the setting of deterministic @-logic, an arbitrary
set of players can be winning at a position. We can in fact verify quite easily
by Proposition 4.1.9 that the semantics is monotone with respect to colour-
ings, in the sense that col(s)(p) € col’(s)(p) for all states s and p € Prop

implies that [[(p]]%;? (a) € [[(p]]gEcTﬁ (a) for all players a. This monotonicity
would obviously not hold if the’ logic allowed for negation, showing that
indeed role switches do not suffice.

But for our purposes, it is most important that deterministic @-logic ad-
mits a natural coalgebraic generalization. When generalizing multiplayer
logic to work over coalgebras other than Kripke frames (i.e. %-coalgebras),
the main challenge comes in how to approach modalities. We need to some-
how fit these into the existing framework, with semantics based on the exis-
tence of winning strategies. Let us consider an example coalgebra type and
modality, so we can see where the pitfalls lie.

Recall the distribution functor Zw¢ : Set — Set defined in Exam-
ple 2.1.2, sending a set X to the set Zi# X C [0, 1]X of discrete probability
distributions over X. We have that Zu#-coalgebras are precisely Markov
chains. We can define a unary predicate Z#-lifting representing a modal-
ity ok for some k € [0, 1], of which the semantics in coalgebraic modal logic
will be defined for a Zdé#-coalgebra § = (S, o) as

[o%pls = {s € S;a(s)([p]s) > k},

where o(s)(T) := Yjer 0(s)(t) for T C S.

Suppose we were trying to include these modalities in ordinary multi-
player logic. We would have to construct a position in the resulting evalua-
tion game corresponding to formulas ¢¥¢. In deterministic @-games, there
needs to be exactly one player that gets a turn at this position. So to keep
things natural, we create player-indexed versions of of the modalities. If we
interpret this indexed version as we did with the indexed < in deterministic
@-logic for Kripke @-models, then we want the formula ©X ¢ to truly ‘behave’
as K@ for a. In other words, we want our resulting semantics to satisfy

[k pID™2 (a) = {s e 550(s)([9]°™ (0) > k} |

Keeping this goal in mind, we now ask ourselves: what actions can
player a take at the position corresponding to ©X¢ and state s? Unlike with
the ¢o-modality for Kripke models, the player needs to choose more than
just a single state ¢, since the desired semantics of the modality seems to
express something about multiple states. So let us have the player select a
set of states. A natural option is to have the player select sets T C S such
that >};cr 0(s)(t) > k. This takes care of the probability-related part of the
semantics.

4.2. Nondeterministic Multiplayer Games 67

But such sets T do not suffice. We need to somehow enforce that a win-
ning strategy for a from the original ©X¢ position corresponds to a winning
strategy for a from all positions corresponding to ¢ and states t € T. If we
can do this, then the resulting semantics for a will check out. So after a has
chosen a set T, we require there to be a choice of state t € T. If we let a make
this choice again, the resulting semantics will be wrong, since then a has a
winning strategy from the original position iff there is a set T as described
earlier along with a state t € T such that a has a winning strategy from the
position corresponding to ¢ and t. Hence, some other player should get a
turn after T is chosen. If we were to just let an arbitrary other player b choose
the state, then the semantics for a will be correct. The semantics for b will
then behave like the dual O of the ¢¥-modality. But for players other than
a and b, the semantics will become somewhat nonsensical, corresponding
neither to ©* nor to OF. In fact, we can verify that the semantics for other
players ¢ will correspond to a global, universal modality, with ¢ having a
winning strategy from a <>f§(p position in state s iff ¢ has a winning strategy
from @ inall states t € S.

Thus, we arrive at the essential insight that trying to incorporate other
modalities in evaluation games built on top of deterministic multiplayer ga-
mes quickly gives rise to unnatural semantics. This is what motivates our
move to nondeterministic multiplayer games in the next section.

4.2 Nondeterministic Multiplayer Games

Having discussed some problems with generalizing deterministic multi-
player logic based on deterministic multiplayer games, we now propose a
solution that takes care both of the problems with including other modali-
ties, and of the lack of usual connectives like conjunction and negation. We
will reconsider the very base game structure, instead defining nondetermin-
istic multiplayer games, in which players’ strategies do not fully determine
the course of matches.

4.2.1 Games and Matches

The definition of a nondeterministic multiplayer game is obtained by con-
sidering structures defined like deterministic multiplayer game, with the
additional relaxation that arbitrary sets of players can be selected by the
turn function at any position, instead of only a single player. This allows us
to shorten the definition drastically, as in the following.

Definition 4.2.1. A nondeterministic @-game (or more generally, a nondeter-
ministic multiplayer game) is a triple G = (Pos, Adm, turn), where Pos is a set
of positions, Adm is a binary admissibility relation Adm C Pos X Pos with no
infinite Adm-chains, and turn is a turn function turn : Pos — 9. A pointed

68 4. MurtirLAYER GAME Locic

nondeterministic @-game is a pair GQp = (G, p) consisting of a nondetermin-
istic @-game G and a position p in G. <

We will comment, after describing the way matches proceed, on why
this shorter definition with no mention of final positions and win functions
truly corresponds to the definition of a deterministic multiplayer game with
the aforementioned relaxation of the turn function.

Let us expound upon the way matches proceed with this new definition.
A nondeterministic @-game G is again played over a board represented by
the directed graph (Pos, Adm), with the admissibility relation Adm denoting
the admissible positions which play can move to from a given position. At
any position p € Pos with turn(p) # @ and Adm[p] # @, a nondeterministic
choice of one of the players a € turn(p) is made. Said player a chooses a
position p’ that is admissible from p, after which the game will be at position
p’. If turn(p) = @, then a nondeterministic choice of an admissible position
p’ € Adm[p] is made instead, with the game again moving to that position.

A match ends if it reaches a position p with no admissible moves (i.e.
Adm([p] = @). After ending, the players in 4 \ turn(p) are declared to be the
winners of the match, with the players in turn(p) intuitively losing because
they got stuck. Since we again require that there be no infinite Adm-chains,
matches are guaranteed to end.

While deterministic multiplayer games had to make a distinction be-
tween final positions (over which the win function is defined) and nonfinal
positions with no admissible moves, this distinction is not needed in non-
deterministic multiplayer games. To see this, suppose we include in our
definition of nondeterministic multiplayer games a subset Fin C Pos of fi-
nal positions such that Adm[p] = @ for all p € Fin, and such that turn is
defined only over nonfinal positions. We also include a win function win.
We redefine the conditions for winning a match that ends at a position p
by declaring the players in win(p) to be the winners if p € Fin, and those
in @ \ turn(p) otherwise. Now note that all such games correspond to ones
without Fin and win, since if we just put turn(p) := @ \ win(p) for p € Fin, we
would get that the same set of players win a match under either definition.

Keeping this in mind, we will often define the set Fin C Pos of final
positions in a nondeterministic @-game as an abbreviation Fin := {p € Pos;
Adm([p] = @}. We similarly define a win function win : Fin — 9@ by putting
win(p) := @\ turn(p).

Definition 4.2.2. Fix a pointed nondeterministic @-game GQp, with G =
(Pos, Adm, turn). A match (of G@Qp) is a finite sequence p = <p0, e, pn> of
positions p; € Pos such that p; Adm p;1 for each i < n. The last position of p
is the position last(p) = p,.

A match p is said to be complete if Adm[last(p)] = @, and incomplete other-
wise. The set of all complete matches is denoted Comp(G@p), and we define

4.2. Nondeterministic Multiplayer Games 69

a function win : Comp(G@p) — 94 by putting win(p) := win(last(p)). For
players a € @, a wins the (complete) match p if a € win(p).

Given a player a € @, the set of all incomplete matches p such that
a € turn(last(p)) is denoted Incomp, (GQp). A strategy for a is a function
strat : Incomp,(G@Qp) — Pos such that last(p) Adm strat(p) for all p €
Incomp,(G@p). A strategy profile strat is a player-indexed collection strat =
(straty) ,eq such that strat, is a strategy for a.

Given a strategy profile strat, a match p = (po, e, pn> is said to have
been played conform strat if for all i < n such that turn(p;) # @, it holds that
pi+1 = stratq(po, - . ., pi) for some a € turn(p;) <

Observe that this definition of matches and strategies matches our infor-
mal description of matches, and confirms our statement that the progress of
matches of nondeterministic multiplayer games are not fully determined by
the players’ strategies. Given a strategy profile strat and a position p, there
are distinct matches p and p’ both starting from p and played conform strat.

Remark 4.2.3. As an aside before moving on, we wish to note that Bagkent
(2015) studies evaluation games of which the underlying games are similar
in structure to the nondeterministic multiplayer game we are defining. In-
terestingly, he uses these games to give game-theoretic semantics for para-
consistent logics, of which e.g. Priest’s Logic of Paradox (Priest 1979) can
also be viewed as a multivalued logic. The games Bagkent considers for the
Logic of Paradox are also multiplayer games, in order to be able to define
the multivalued semantics. <

4.2.2 Demonic and Angelic Winning Strategies

We have defined what strategies are in nondeterministic multiplayer games.
But how do we define the notion of a winning strategy? As we will see, the
most straightforward definition, in which we follow the usual definition of
winning strategies on e.g. deterministic multiplayer games, will not be the
most fruitful. A strategy for a player a € @ in a (pointed) deterministic
d-game is winning if no matter what strategies other players use, a wins
any complete match played conform the players’ strategies. This defini-
tion makes no mention of the deterministic nature of the game, and so it is
straightforward to generalize it to nondeterministic multiplayer games. We
will refer to strategies defined thusly as simple winning strategies.

Definition 4.2.4. Given a pointed nondeterministic @-game GQp, a strategy
strat for player a € @ is a simple winning strategy for a € 4 if for all strategy
profiles strat with strat, = strat and all complete matches p played conform
strat, it holds that a wins p. If there is a simple winning strategy for a in
GQp, we say that a has a simple winning strategy from p in G, or more concisely
that a simply wins GQp. <

70 4. MurtirLAYER GAME Locic

In order to obtain a better understanding of the nature of simple win-
ning strategies for nondeterministic multiplayer games, we first need to ob-
tain a better understanding of the working of matches. Note that while the
definition of matches and strategies in Definition 4.2.2 do capture the non-
determinism of the games (as explained), the definition makes no explicit
mention of nondeterministic choices anywhere, even though these were part
of our informal description of the workings of matches. We can make these
choices explicit with the following definition.

Definition 4.2.5. Given a nondeterministic @-game G = (Pos, Adm, turn),
a nondeterministic choice for G (or simply a G-choice) is a function® choice :
Pos \ Fin — @ U Pos such that choice(p) € turn(p) € @ for p € Pos \ Fin
with turn(p) # @, and choice(p) € Adm[p] € Pos for p € Pos \ Fin with
turn(p) = @.

Given a G-choice choice, the choice-instantiation of G is the deterministic
A-game Gehoice := (Pos, AdMchoice, Fin, turnchoice, win), where Fin and win are
defined precisely as they are for G, the admissibility relation is defined as

AdMchoice := {(p, q) ;p Adm g and turn(p) # @}
U {(p, choice(p)) ; p € Pos \ Fin and turn(p) = @},

and the turn function is defined as

hoi if
turnchoice(P) = {C Olce(p) 1 tum(P) #+ @, and

if turn(p) = @,

where x is some arbitrary player.” We will generally refer to choice-instan-
tiations of G as all being instantiations of G. <

This definition fits the informal description stating that matches require
nondeterministic choices of players who will take a turn at positions p such
that turn(p) # @, and choices of admissible positions at positions p such
that turn(p) = @. We can also make this relation precise: assuming that
G@p is such that all g € Pos are reachable from p through Adm, it is easily
verified that given a strategy profile strat, the complete matches in GQp
played conform strat correspond precisely to G-choices.

These choices can be considered to make the game deterministic, as we
capture through instantiations. Importantly, note that strategy profiles in
a nondeterministic @-game G can be restricted to be strategy profiles in the
choice-instantiation Gehoice- This will allow us to define a strategy for a player
in G to be winning, based on whether its restriction is winning in the instan-
tiations of G.

6Recall that we define Fin := {p € Pos; Adm[p] = @}, and win(p) := @ \ turn(p).
71t is easily verified that the choice of which player is used here is not important, since
these positions have precisely one admissible move.

4.2. Nondeterministic Multiplayer Games 71

A natural first definition that is constructed in this manner is what we
refer to as a demonic winning strategy. This is based on the term demonic non-
determinism used throughout the theory of programming, stated by Sen-
dergaard and Sestoft (1992) to be due to Tony Hoare. In the theory of pro-
gramming, demonic nondeterminism is roughly nondeterminism in which
all nondeterministic choices are made by a ‘“demon’ that will always choose
the worst possible outcome.® In the context of the nondeterministic mul-
tiplayer games we defined, if the nondeterministic choices are made by a
demon, then a player can only truly be guaranteed to win if he wins no
matter which choices the demon makes.

Definition 4.2.6. Given a pointed nondeterministic @-game GQp, a strategy
strat for player a € @ is a demonic winning strategy for a € 4 if the restriction
strat [ncomp, (Genoice@p) 1S @ Winning strategy for ain Gehoice @p, for all G-choices
choice. If there is a demonic winning strategy for a in G@p, we say that a has
a demonic winning strategy from p in G, or more concisely that a demonically
wins GQp. <

We consider the restriction strat[ncomp, (Gepoice@p), Which is the strategy
in Gehoice@p that is identical to strat. We require this restriction since there
might be incomplete matches in GQp at which a has a turn, but at which
a would not have a turn if we were considering Gehoice@p. Even then, if
we want to be fully precise, we can not just consider this restriction, since
we defined instantiations of nondeterministic multiplayer games to require
some fixed arbitrary player in the definition of turncheice(p) for p € Pos \
Fin with turn(p) = @. If a is said arbitrary player, the restriction would
not truly be a strategy for a in Gepoice@p. But since |Admchoice[p]| = 1 for
such p, the restriction can be uniquely extended to be a proper strategy for
a in Gehoice@p. So we can always assume without loss of generality that
the player for whom we are considering a strategy is not the fixed arbitrary
player used in the definition of turncpeice.

Perhaps unsurprisingly, demonic winning strategies correspond pre-
cisely to simple winning strategies.

Proposition 4.2.7. Let GQp be a pointed nondeterministic A-game, and let strat
be a strategy for a player a € Q. Then strat is a simple winning strategy iff it is a
demonic winning strategy.

Proof. Throughout the proof, we define the abbreviation

REesT .

strat 1= strat r|nC0mPa(Gchoice@p)'

For the direction from left to right, take any G-choice choice. We need
to show that stratR®®T is a winning strategy for a in Gchoice@p. So consider

8To be precise, demonic nondeterminism in the theory of programming refers to a prop-
erty of nondeterministic programs in which the possibility of nontermination implies certain
nontermination, as stated by Berghammer and Zierer (1986).

72 4. MurtirLAYER GAME Locic

a strategy profile strat in Gcpoice @p with strat, = strat®®” and a complete
match p in Gehoice@p played conform strat. Writing p = (pg, e, pn> with
po = p, we then know that Admchoice[pr] = @ and p; Admchoice pi+1 for all
i < n. Since it is easily verified that Admchoice € Adm, and that Adm[g] = @
iff Admchoice[q] = @, it then follows that p is also a complete match in G@p.

As turnchoice(q) € turn(g) for all g € Pos \ Fin with turn(q) # @, we
also have that Incompy(Gchoice@p) C Incompy(G@p). So we can safely fix a
strategy profile strat’ in GQp with strat; = strat, and strategies strat; such
that

/ f—
Stratb rIncc’mpb(Gchoice@p) = stratp.

By definition of p being played conform strat in Gehoice@p, we know that
Pir1 = Strateurngece(pn)(Po, - -+, pi) for all i < n. Again since turnchoice(q) €
turn(q) for all g € Pos \ Fin with turn(g) # @, it follows that p is also played
conform strat’ in G@p.

Now since we assume strat is a simple winning strategy for a in G@p,
and strat; = strat, it must be that a wins p in G@p. And so by definition of
the win function in Gehoice @p, we have that a also wins p in Gehoice @p. Thus,
strat is a demonic winning strategy for a in GQp.

For the direction from right to left, take any strategy profile strat with
strat, = strat, and any complete match p = <p0, cey pn> with po = p in GQp
played conform strat. Then for all i < 7, it must hold that p; Adm p;41, and
pi+1 = straty,(po, . . ., pi) for some b; € turn(p;) if turn(p;) # @. Let choice be
a G-choice such that for all i < n it holds that choice(p;) = b; if turn(p;) # @,
and choice(p;) = pis1 if turn(p;) = @.

Consider the strategy profile strat’ in Gchoice @p With

/.
Stratb T Stratb rIncc’mpb(Gchoice@P)

for all players b € @. Since strat is a demonic winning strategy for a in
G@Qp, it follows that strat] is a winning strategy for a in Gehoice@p. By defini-
tion of choice, we have that p is a complete match played conform strat’ in
Gchoice@p. So a wins p in Gehoice@p, and therefore by definition of the win
function in Gehoice, also wins p in GQp. Therefore strat is a simple winning
strategy for a € 4 in GQp.]

Hence, we will be justified in just speaking of demonic winning strate-
gies, instead of simple winning strategies. Whenever it aids understanding
to do so, however, we will use the definition of simple winning strategies
instead.

As already alluded to just before giving Definition 4.2.4, demonic win-
ning strategies are not the winning strategies that are most fruitful in the
study of nondeterministic multiplayer games. We will promptly show that
one can essentially do away with most of the structure in nondeterminis-
tic multiplayer games differentiating them from deterministic multiplayer

4.2. Nondeterministic Multiplayer Games 73

games, when one only considers demonic winning strategies. To see this,
we first define demonizations of nondeterministic multiplayer games. These
modify the structure of a nondeterministic multiplayer game in such a way
that we can determine the existence of a demonic winning strategy in the
original game by determining their existence in the demonization.

Definition 4.2.8. Given a pointed nondeterministic @-game GQp with G =
(Pos, Adm, turn), the demonization of G is the pointed nondeterministic @-
game Zen(GQp) := Gpeumon@p, Where Gpgwon := (Pos, Adm, turnpeyon) is
defined by putting

UM Deon() = {turn(q) if g € Fin or [turn(g)| = 1, and

@ otherwise,

for q € Pos. <

In other words, in the demonization of a nondeterministic multiplayer
game, players can only get a turn at a nonfinal positions if they are guar-
anteed to get a turn there. As a consequence, [turn(p)| < 1 for all positions
g, making demonizations more similar to deterministic multiplayer games
than to general nondeterministic multiplayer games. Intuitively, it makes
sense that the existence of demonic winning strategies is determined over
demonizations: if the demon will always choose the worst possible out-
come, players can safely assume they will only get a turn if the demon has
no other choice but to grant them a turn.

Proposition 4.2.9. Let GQp be a pointed nondeterministic A-game, and a € A a
player. Then a demonically wins GQp iff a demonically wins e (GQp).

Proof. For the direction from left to right, let strat be a demonic winning
strategy for a in GQp. Define a strategy stratDPMON := strat Mncompy(Cpeon@p)
for a in Pere(GQp). We will show that stratP™°~ is a demonic winning
strategy in Ze(GQp). Consider any strategy profile strat with strat, =
stratP™N and a complete match p (where p = (po, ..., pn)) in D (GQp)
played conform strat. By definition of demonizations, we have that p is also
a complete match in GQp.

Since p is played conform strat, it holds that p;;; = straty(po, ..., pi)
for some b € turnpeyon(pi) if turnpevon(pi) # @, for all i < n. So for any
b € @\ {a}, we can safely consider an arbitrary strategy strat; in G@Qp with
restriction strat; [ncomp, (Gpmox@p) = Strats and stratg(po, - - ., pi) := pir1 forall
i < n with b € turn(p;).

We gather these strategies strat; into a strategy profile strat” defined as
strat) := strat. It follows from the definition of strat’ and the turn function
in the demonization that p is played conform strat’. Since strat is a demonic
winning strategy for a in G@p, this means that a wins p in G@Qp, and so a

74 4. MurtirLAYER GAME Locic

also wins p in Qe (GQp). Thus, stratP™N is a demonic winning strategy
for a in Qe (GQp).

The proof of the direction from right to left is similar in spirit, with one
extending demonic winning strategies for a in e (GQp) to demonic win-
ning strategies for a in G@Qp straightforwardly. m]

Throughout the remainder of this section, we will usually give proof
sketches instead of fully detailed proofs. This is because while the proofs are
usually conceptually quite straightforward, they are still quite long, and do
not offer much understanding beyond a sketch.

Note the following analogue to Proposition 4.1.8 from the deterministic
setting, which states that a player a has a winning strategy from a (nonfinal)
position p if there is an admissible position at which a has a winning strategy
(in case turn(p) = a), or if ahas a winning strategy at all admissible positions
(in case turn(p) # a). In the nondeterministic setting with demonic winning
strategies, a distinction is made instead between the case where turn(p) =
{a}, and the case where turn(p) # {a}.

Proposition 4.2.10. Let G = (Pos, Adm, turn) be a nondeterministic A-game,
p € Pos \ Fin a nonfinal position, and a € A a player. It holds that

(i) Ifturn(p) = {a}, then a demonically wins GQp iff there is some g € Adm[p]
such that a demonically wins GQgq, and

(it) if turn(p) # {a} (i.e. if turn(p) = @ or turn(p) \ {a} # @), then a demoni-
cally wins GQyp iff a demonically wins GQq for all g € Adm[p].

Proof sketch. This follows from application of Proposition 4.2.9. m]

So having seen that demonic winning strategies do away with most of
the structure of nondeterministic multiplayer games, we will instead con-
sider another definition of winning strategies. Where demonic winning
strategies are strategies that are winning under all possible nondetermin-
istic choices, we will now consider strategies that are winning under some
nondeterministic choices. This definition of winning strategies is in a sense
dual to that of the demonic winning strategy.

Again analogously to nondeterminism in the theory of programming,
we will refer to these as angelic winning strategies. In the theory of pro-
gramming, angelic nondeterminism is roughly nondeterminism in which
all nondeterministic choices are made by an “angel’ that will always choose
the best possible outcome. In the context of nondeterministic multiplayer
games, this will mean that a player need only win for some choices of the
angel, and still be guaranteed to win.

Definition 4.2.11. Given a pointed nondeterministic @-game G@Qp, a strat-
egy strat for player a € @ is an angelic winning strategy for a € @ if there is

4.2. Nondeterministic Multiplayer Games 75

some G-choice choice for which the restriction strat [ncomp, (Gepoice@p) 1S @ Win-
ning strategy for a in Gehoice@p. If there is an angelic winning strategy for
a in GQp, we say that a has an angelic winning strategy from p in G, or more
concisely that a angelically wins GQp. <

While Proposition 4.2.9 intuitively shows that nondeterministic multi-
player games are ‘almost” deterministic when one considers demonic win-
ning strategies, considering angelic winning strategies requires one to pre-
serve more structure. This is reflected in the definition of an angelization,
analogous to demonizations. These angelizations are not the same for all
players.

Definition 4.2.12. Given a pointed nondeterministic @-game GQp with G =
(Pos, Adm, turn) and a player a € @, the a-angelization of G is the pointed non-
deterministic @-game g (GQp) = Gancr,a@p, Wwhere Gancger,a = (Pos,
Adm, turnancer,q) is defined by putting

0 cFi
turnaxeen o(q) = {turn(q) if g € Finor a ¢ turn(g), and

{a} otherwise,

for q € Pos. <

In other words, in the a-angelization of a nondeterministic multiplayer
game, the player ais guaranteed to get a turn whenever this is possible. Note
that our definition of a-angelizations matches our intuitions about the angel:
if the angel will always choose the best possible outcome for a player, the
angel might as well choose to grant that player a turn as often as possible.

The way angelizations are bound to a specific player while demoniza-
tions were not also makes intuitive sense. Demons choosing the worst pos-
sible outcome for everyone can be considered by only granting players turns
when there is no other option, while an angel always choosing the best pos-
sible outcome for a player will give that player a turn as often as possible,
which is not compatible with that angel also always choosing the best possi-
ble outcome for another player as well, as there might be positions at which
both players could get a turn.

Analogous to demonizations, the existence of angelic winning strategies
is determined over angelizations. Noting that angelic winning strategies
in angelizations are also demonic winning strategies, we can state this as
follows.

Proposition 4.2.13. Let GQp be a pointed nondeterministic A-game, and a € 4
a player. Then a angelically wins GQp iff a angelically (or demonically) wins

g (GQAp).

Proof sketch. 1f a strategy strat for a is an angelic winning strategy in GQp,
then there is a G-choice choice such that a wins the choice-instantiation of G

76 4. MurtirLAYER GAME Locic

p,{a, b}

I

q,{c}

N

r,d s, {a, c}

L

t,{b, c} u,{b} v,{a,b}

Figure 4.2.1: Nondeterministic multiplayer game considered in Exam-
ple 4.2.15.

at p following strat. Note that if we modify choice to always select a when
possible, this will still hold. The strategy strat is also a strategy for a in
g (GQp). Any complete match in g ,(G@Qp) played conform a pro-
file with a following strat will then also be a complete match in the choice-
instantiation of G at p, played conform a corresponding profile with a fol-
lowing strat. And so a wins the match.

If a strategy strat for a is an angelic winning strategy in @g ,(GQp), then
there is a Gaycrr,a-choice choice such that a wins the choice-instantiation of
dreg (GQp) following strat. We can easily extend choice to a G-choice choice’
by always selecting a whenever possible. Noting that strat is also a strategy
in G@Qp, it then follows quite simply that strat is a winning strategy in the
choice’-instantiation of GQp. o

We again have an analogue to Proposition 4.1.8 from the deterministic
setting. A distinction is now made between the case where a € turn(p) or
not. As we will see in Section 4.2.3, it is this difference between angelic and
demonic winning strategies that makes angelic winning strategies a more
natural candidate for the semantics of our multiplayer logic.

Proposition 4.2.14. Let G = (Pos, Adm, turn) be a nondeterministic A-game,
p € Pos \ Fin a nonfinal position, and a € @ a player. It holds that

(i) if a € turn(p), then a angelically wins GQyp iff there is some q € Adm[p]
such that a angelically wins GQgq, and it holds that

(ii) if a ¢ turn(p), then a angelically wins GQp iff a angelically wins GQgq for
all g € Adm[p].

Proof sketch. This follows from application of Proposition 4.2.13. m|

Example 4.2.15. Consider the nondeterministic {a, b, c}-game represented
visually in Figure 4.2.1. The vertices represent positions, the edges represent

4.2. Nondeterministic Multiplayer Games 77

the admissibility relation, and the annotations at each vertex represent the
turn function. This game shows that angelic winning strategies are truly
more general than demonic winning strategies. In the bottom row (i.e. the
final positions), the sets of winners are {a} for ¢, {a, ¢} for u, and {c} for v.

Considering demonic winning strategies, it can be verified using Propo-
sition 4.2.10 that a has a demonic winning strategy at but not at s, b has
a demonic winning strategy at neither r nor s, and that ¢ has a demonic
winning strategy at s but not at . And so, neither a nor b has a demonic
winning strategy at g, while ¢ does (since turn(q) = {c}). Finally, none of
the players has a demonic winning strategy at p.

Considering angelic winning strategies, it can be verified using Propo-
sition 4.2.14 that a has an angelic winning strategy at both r and s, b has an
angelic winning strategy at neither r nor s, and that c has an angelic winning
strategy at s but not at 7. And so, both a and ¢ have an angelic winning strat-
egy at g, while b does not. Finally, only a has an angelic winning strategy at
p. N

Before moving on to defining multiplayer logic over nondeterministic
multiplayer games, we wish to give some final comments on the relation be-
tween deterministic and nondeterministic multiplayer games. It should be
clear that deterministic multiplayer games can be embedded within nonde-
terministic multiplayer games, in such a way that winning strategies corre-
spond to demonic winning strategies, which end up being precisely angelic
winning strategies in this setting.

Proposition 4.2.16. Let GQp be a pointed deterministic @-game with G = (Pos,
Adm, Fin, turn, win). Define the pointed nondeterministic A-game Non(GQp) :=
(GNow, p) with GNow = (Pos, Adm, turnnox) where turnoy is defined by putting

o (q) = {turn(.q)} z:fq € P.os \ Fin, and
A\ win(q) ifq € Fin,
for q € Pos.
For all a € @, it holds that a wins GQp iff a demonically wins Mo (GQp), or
equivalently, iff a angelically wins Mo (GQp).

Given that deterministic multiplayer games always embed into nonde-
terministic multiplayer games in a way that preserves winning strategies, it
is natural to ask whether converse embeddings preserving demonic or an-
gelic winning strategies generally exist. For pointed nondeterministic mul-
tiplayer games G@p in which [turn(q)| = 1 for all nonfinal positions g, there
is a straightforward embedding. We will denote these deterministic games
as o1 (G@p), though 7~ should not be strictly taken to denote the
inverse of the /r-operation. This /7~ '-operation then preserves both
demonic and angelic winning strategies.

78 4. MurtirLAYER GAME Locic

But as we will start proving now, embeddings also exist in general, albeit
being slightly more complicated. Essential for these embeddings are three
ideas. First, when determining whether there exist demonic or angelic win-
ning strategies for a player a, we can ‘abstract away’ from all other players,
treating them as if they are part of the nondeterministic environment (i.e.
the demon or angel). Second, we can make the role of the nondeterministic
environment explicit by including it as a player n in the game. Third, the
existence of both demonic and angelic winning strategies is ‘monotone” in
a certain sense: if we increase the amount of nonfinal positions at which a
player a wins, the existence of demonic and angelic winning strategies is
preserved.

We can capture the first two ideas in the following definition.

Definition 4.2.17. Given a pointed nondeterministic @-game GQp with G =
(Pos, Adm, turn), and a player qa, the a-abstraction of GQp is the pointed non-
deterministic (AU {n})-game o/, (GQp) := (GABST,G, p) with Gagsr,a := (Pos,
Adm, turnager), where turnager o is defined as

turn(q) if g € Fin,
turnagsr,a(q) := { (turn(g) N {a}) U {n} if g ¢ Fin and turn(q) # {a}, and
{a} otherwise,

for q € Pos.

The environment-only abstraction of GQp is the pointed nondeterministic
(@U{n})-game st gny (GQP) := <GENV, p) with Ggyy := (Pos, Adm, turngyy),
where turng,y is defined as

. @ turn(g) if g € Fin or turn(g) # @, and
urngay(q) =
Bnvid {n} otherwise,

for g € Pos. <

Let us break down what this definition states. In the a-abstraction, we
only allow a and n to actually make choices by replacing all other players
by 1 (though we do not modify turns/winners at nonfinal positions). In
the environment-only abstraction, we give 1 a turn at (nonfinal) positions
where no other player can get a turn. This makes sense, since these are
positions at which the next position is chosen nondeterministically.

The following is easily verified.

Proposition 4.2.18. Let GQp be a pointed nondeterministic A-game, and a € A a
player. Then

(i) ademonically (resp. angelically) wins GQp iff a demonically (resp. angeli-
cally) wins fbst,(GQp), and

4.2. Nondeterministic Multiplayer Games 79

(ii) ademonically (resp. angelically) wins GQp iff a demonically (resp. angeli-
cally) wins A6 gxv(GQp).

The third idea we mentioned will be used in the following form.

Definition 4.2.19. Given a pointed nondeterministic @-game GQp with G =
(Pos, Adm, turn), and a set 3 C 4 of players, the B-trivialization of GQp is the
pointed nondeterministic @-game J7x5(GQp) := <GTRIV,35, p> with Grgy 6 :=
(Pos, Adm, turntgy 1), where

turn(q) if g ¢ Fin, and

t RIV =
MM 3(4) {turn(q) \¥ ifgeFin,

for q € Pos. <

Proposition 4.2.20. Let GQp be a pointed nondeterministic A-game, and B C 4
a set of players. Then for all players a € 3, it holds that a both demonically and
angelically wins Frax(GQp).

We are now equipped to show the embeddings. First, we give a sim-
ple embedding preserving demonic winning strategies. This embedding is
quite simple, and relies on our intuition that demonizations as defined in
Definition 4.2.8 are already ‘almost” deterministic.

Definition 4.2.21. Given a pointed nondeterministic @-game GQp with G =
(Pos, Adm, turn), the demonic determinization of GQp is the pointed determin-
istic (@ U {n})-game

Detpenmon(GAp) 1= Non ™' dbst gy Dern (GQp). <

Theorem 4.2.22. Let GQp be a pointed nondeterministic @-game. For all players
a € 4, it holds that a demonically wins GQp iff a wins Detpemon(GQAP).

Proof. This follows immediately from Propositions 4.2.9 and 4.2.18. O

Example 4.2.23. Denote the nondeterministic multiplayer game used in Ex-
ample 4.2.15 and visualized in Figure 4.2.1 by G. The demonic determiniza-
tion of GQp is visualized in Figure 4.2.2. All vertices with no outgoing edges
are final positions, and their annotations represent the win function. Note
that indeed, none of the players win Zefpevon(GQp). <

The embedding preserving angelic winning strategies will require us to
consider angelizations for all players. To be able to gather these in a sin-
gle game, we will use coproducts of (not pointed) nondeterministic multiplayer
games. These are defined in the obvious manner, which is informally de-
scribed by placing games alongside each other. We will also require a way
to link each of these angelizations, for which we will use the following con-
struction. Note that we slightly abuse notation, and will write e.g. 9% G
instead of Gancer,a-

80 4. MurtirLAYER GAME Locic

t,{a} u,{a,c} v, {c}

Figure 4.2.2: Demonic determinization considered in Example 4.2.23.

Definition 4.2.24. Given a pointed nondeterministic @-game GQp, define

G i=) dbwaTriva. o) Ing G.

acd

Writing G' = (Pos, Adm, turn), we define the nondeterministic (@ U {n})-
game G” := <Pos U {pDET} , Admpgr, turnDET> by putting

Admpg; := Adm U {{pper, injo(p)) ;0 € @}

and turnpg(q) := turn(q) for g € Pos, while turnpgr(pper) := {n}.
The angelic determinization of GQp is the pointed deterministic (AU {n})-
game
%ANGEL(G@;?) = J%Z_l(G”@pDET). <

Taken step by step, we construct the angelic determinization by taking
the angelizations for all players. We make sure that in the a-angelization, all
other players b € @\ {a} will trivially have angelic winning strategies. Then,
we abstract away from these other players. Finally, we gather together the
resulting nondeterministic (2 U {n})-games for all players, and create a new
position at which the nondeterministic environment (i.e. the angel) has to
choose one of the component games.

Before stating the theorem that this embedding preserves angelic win-
ning strategies, let us consider an example.

Example 4.2.25. Asin Example 4.2.23, we denote the nondeterministic mul-
tiplayer game used in Example 4.2.15 and visualized in Figure 4.2.1 by G.
The angelic determinization of GQp is visualized in Figure 4.2.3. We re-
move all position names except those of the positions p in each angelization,
which we subscript by the player to make clear in which angelization they
lie, and the new position ppgr — it should then be clear for other positions
to which position in the original game they correspond. We can verify that
indeed only a wins ZeZance (GQp). <

4.2. Nondeterministic Multiplayer Games 81

PDgr, 1

/\

pala pb/b pc,n

D AN AN
N, N, N
AV ARV AV SRRV ANd

{a,b,¢} {a,b,¢c} {b,¢} {a,¢} {a, ¢} {a,¢c} {a,b} {a,Db,¢c} {a,b,c}

Figure 4.2.3: Angelic determinization considered in Example 4.2.25.

«— 3 — ~

Theorem 4.2.26. Let GQp be a pointed nondeterministic A-game. For all players
a € 4, it holds that a angelically wins GQp iff a wins Detance. (GQp).

Proof. This follows from Propositions 4.1.8,4.2.13, 4.2.18 and 4.2.20. m]

Remark 4.2.27. We wish to note that introducing the nondeterministic envi-
ronment as a player like we have done with abstractions (Definition 4.2.17)
has interesting conceptual consequences. We could consider the nondeter-
ministic environment to be a ‘moderator” or an ‘umpire” of sorts, tasked
with choosing which player gets a turn, and with moving the game along
whenever the players cannot (i.e. at positions p with turn(p) = @).

Note that this is quite similar to the way nondeterminism is often treated
in the theory of programming. As discussed by Harmer (1999), who con-
siders game-theoretical semantics for nondeterministic computation, non-
determinism is often used in the theory of programming as an abstraction
of certain aspects of a computational process, such as a machine’s scheduler
that is responsible for choosing which process to execute at what time. The
role of the moderator in our setting is largely analogous to that of such a
scheduler.

Considering moderators also offers a conceptual argument for the us-
age of angelic over demonic winning strategies. Consider debates (or if
one wishes to stay within the realm of logic, medieval obligationes) as mul-
tiplayer games with a moderator. Positions correspond to states of the de-
bate, while players” admissible moves correspond to statements they can
utter. By Proposition 4.2.9, a demonic winning strategy for a player in this
context would be a collection of arguments such that no matter whether the
moderator actually gives the player a turn or not, the player is guaranteed
to win the debate. This is quite a strict requirement, that would in this ex-
ample mean that players have to collude with the moderator outside of the
debate.

82 4. MurtirLAYER GAME Locic

By Proposition 4.2.13 however, an angelic winning strategy for a player
would be a collection of arguments that could win the debate if the moder-
ator does not prevent the player from uttering it. One could then argue that
angelic winning strategies better reflect the ‘quality” of players’ arguments,
since they require no action outside of the debate.

Treating the nondeterministic environment as a moderator suggests av-
enues for further work, in which one could study games where the modera-
tor has explicit goals of his own. It would be of interest to see what implica-
tions this could have for the logic we will be introducing in Section 4.2.3. <

4.2.3 Logic and Evaluation Games

We can now move on to define a more general version of the determinis-
tic multiplayer logic of Section 4.1: nondeterministic basic multiplayer logic
defined over nondeterministic multiplayer games and multiplayer Kripke
models. Where deterministic multiplayer logic consists of instances of (a
subset of) the connectives of two-valued basic modal logic for each individ-
ual player, the framework of nondeterministic multiplayer games naturally
allows us to consider connectives for sets of players.

Definition 4.2.28. The language of nondeterministic basic @-logic is the induc-
tively defined set

LangBASIC,g S¢pu=p | 1w | ((P Vg (P) | (Qiﬁ(P) | (Q(P),

where p € Prop, 3 C @, and role € RDg. If 3 = {a}, we will usually omit the
brackets. <

In the way we will define the evaluation games, the atomic formulas Ly
will represent positions at which precisely those players in 3 lose. Formu-
las ¢ Vg 1) are positions at which some player in 3 has to choose one of
the positions corresponding to ¢ and 1, and formulas ¢g¢ are positions at
which some player in 3 has to choose a position corresponding to ¢ and a
successor state in a given multiplayer Kripke model.

Definition 4.2.29. Given a Kripke @-model M = ((S, R) , col), the nondeter-
ministic basic @-logic evaluation game over IM is the nondeterministic @-game
Eval gAs‘C]M with positions Langg,, 4 XS XRDg, and other components spec-
ified in Table 4.2. <

Note that unlike in the evaluation games in the deterministic setting (Ta-
ble 4.1), there is no need any more to fix an arbitrary player x who takes a
turn at positions corresponding to role switches.

As should be evident from our discussion in the previous section, the se-
mantics will be given in terms of angelic instead of demonic winning strate-
gies, since demonic winning strategies do away with most nondeterministic

4.2. Nondeterministic Multiplayer Games 83

Table 4.2: Specification of a nondeterministic basic @-logic evaluation game.

Position Admissible moves Turn
(p, s, roIe) %) a~ role_l[col(s)(p)]
(Lw, s, role) @ role ™ [#]
(go Va,s, roIe) {(.S, role> , (1,[1, s, roIe}} role ™[]
<<>35g0, s, role> {((p, t, roIe) it e R[s]} role™ [3]
<ﬁ(p,s,role> {((p,s,rd o roIe)} @

structure. In particular, demonic winning strategies only consider games
with at most one player that can get a turn at any position. This would not
make sense for our logic, in which we have connectives for arbitrary sets of
players.

Definition 4.2.30. Given a Kripke @-model M = (({S, R) , col), the semantics
of nondeterministic basic @-logic is given by the function

[[_]]ﬂB\ZSIC/g : LangBASIC,g - (%)S
defined by putting

[[(P]]]IB\ZSIC,Q(S) := {a € @; a angelically wins (Bvar 3" “M)Q (¢, s, idg)}

for ¢ € Langg,cqand s € S. <

Example 4.2.31. For 4 = {a,b, ¢}, consider a Kripke @-model M = ((S, R),
coly with S = {s,t,u}, R = {(s,t), (s, u)}, col(s)(p) = @, col(t)(p) = {a}, and
col(u)(p) = {c}. Take the nondeterministic basic @-logic formula

@ = L Vg [a,0]O0,0p.

The nondeterministic basic @-logic evaluation game over M pointed at the
position <g0, s, idg> is visualized in Figure 4.2.4. As in other examples, the
annotations at each position represent the turn function. We can verify (us-
ing e.g. Proposition 4.2.14) that [[qo]]gflc’g(s) ={c}. <

Applying Proposition 4.2.14, we can give a compositional characteriza-
tion of the semantics of nondeterministic basic multiplayer logic, similar to
that of deterministic multiplayer logic (Proposition 4.1.9).

Proposition 4.2.32. Let M = ((S, R) , col) be a Kripke @-model. Then for any

84 4. MurtirLAYER GAME Locic

<J-¢ Vo, [0, 0]Cwm,qP, s, idg> b, ¢}

— |

(L,s,ida), {c} <[a, Bl 0,07, S, idg> @

/

<<>{b,c}P, s, [a, b]) a, ¢}

b T

(p,t,[a, b]),{a, c} (p,) {a, b}

Figure 4.2.4: The nondeterministic basic multiplayer logic evaluation game
considered in Example 4.2.31.

p € Prop, ¢, ¢ € Langp,qcq, role € RDq, 3 C @, and a € @, it holds that

[plpy ™ (@) = :J(P) (@),
[[J_]]BASICQ lfC(€ 35/
ifag3,
Basic,@ m .
o n i (o) - { P2 @ U IS (@ ok,
II BASICQ)n H¢HBASICQ(Q) ifaiiﬁ,
s € S;R[s]N [plp*? (a) # @} ifae®,
[[0 g0]]BASIC 4 (Cl)
s € S;R[s] C [[(p]]BASICg (a)} ifa¢®, and
[[role(p]]BASIC A (Cl) [[(P]]BASIC A (role(a)).

Proof sketch. Like in Proposition 4.1.9, we can show this by induction on for-
mulas ¢ € Langg,q g, in which we apply Proposition 4.2.14. The case for

role switch formulas rolep again requires a lemma, stating that for all formu-
las ¢, a player a wins the pointed game (&’ EASICIM)@ <g0, s, role> iff role(a)
wins (et gASIC]M)@ <(p, s, idg). This lemma is also shown through simple
induction on formulas. O

4.2. Nondeterministic Multiplayer Games 85

4.2.4 Connectives and Negation

As discussed in Section 4.1.2 and afterwards mentioned in the beginning of
Section 4.2, the usage of nondeterministic multiplayer games is a solution
to the lack of usual connectives (like conjunction and negation) and alter-
native modalities in deterministic multiplayer logic. We are now equipped
to address how nondeterministic multiplayer games solve the first of these
two problems. The second problem will be addressed in Section 4.3.

Let us start with the positive connectives — i.e. conjunction and the O-
modality. We can now very naturally define abbreviations

@ AP =@ Vgp P and
Og@ = Oa P

for ¥ C 4. This is quite intuitive — e.g. conjunction for the players in ¥ is
precisely disjunction for the others. By Proposition 4.2.32, we in fact imme-
diately find that

IIQOHBASICQ (Cl) N Hl)b]]BASIcg (a) ifae 3&,
H(PHBASICQ (Cl) U HIP]]BASICQ (a) ifag 33’

[[QD Ax 1p]]BASICQI (a) —

{s € S;R[s] [[(p]]BASIcg (a)} ifae®, and

[[D (p]]BASICg (Cl)

{SES R[s]N [[(p]]BASIcg(a);t@} ifag®.

We can take this even further, by considering the connectives for 3 = 4.
These can be seen as ‘absolute’ versions of the connectives that behave the
same for all players. For example, we have that

[oaglr™® (@) = {s € SiR[s]N [@ln™? (a) # @}.

By definition of the transpose, we then find that

[[<> (P]]BASICQ(S):{C(EQ R ﬂ [[(P]]BASICQ[(G)#:@}

U [[QOIIBASIC A

teR[s]

Comparing this with the semantics of Boolean-valued basic modal logic
(Definition 3.1.5), it quickly becomes apparent that nondeterministic ba-
sic multiplayer logic ‘contains” Boolean-valued basic modal logic, at least
over agent- indexed Kripke models with the same accessibility relation for
all agents. We will revisit relations between Boolean-valued modal logics
and nondeterministic multiplayer logics in Section 5.1.

86 4. MurtirLAYER GAME Locic

Introducing negation into the logic is not as simple as defining it as
an abbreviation. Recall the way negation works in two-player evaluation
games for two-valued logic. Note that the underlying two-player games
there are quite specific types of two-player games: the Verifier and Falsi-
fier are antagonistic towards each other, in the sense that they are playing a
zero-sum game in which precisely one of them will win. The antagonism
is enforced by e.g. giving precisely one of the two players a turn at any po-
sition. Negation works in these games by way of this antagonism, since it
allows one to express through role switches that one of the players does not
have a winning strategy at a given position.

Note that if we consider a (deterministic) two-player games in which
the players are antagonistic in the sense just described, then it would suf-
fice to know for just one of the players at which positions they get a turn
and/or win, in order to be able to be able to specify the entire game’s struc-
ture. Keeping this in mind, we could consider the evaluation games for
two-valued logic to just be single-player games (with the player represent-
ing the Verifier) to which we add an antagonistic player.

These ideas can be naturally generalized to the multiplayer setting: we
obtain negation by adding antagonists for each of the players. This also clar-
ifies why the nondeterministic structure is necessary to introduce negation
into multiplayer logic — adding antagonists for all players requires it to be
possible for multiple players to get a turn at any given position.

Note that we can describe the process of adding antagonists for any gen-
eral nondeterministic multiplayer game.

Definition 4.2.33. Given a set 4 of players, its set of antagonists isa set @~ :=
{a7; a € @} of players disjoint from those in . By slight abuse of notation,
we will write (a7)” := afora € @, and B := {a”;a € B}. We also write
Banr = BU (@ \B) for B C 4. Additionally, we define for each B C @ the
(@ U @7)-distribution anty defined by putting

t5(0) a” ifaeBUB,and
an =
% otherwise.

Finally, given an @-distribution role, we define the (@ U @7)-distribution
roleanr as roleayr(a) := role(a) for a € @, and roleayr(a™) := (role(a))” for
aeq.

Given a pointed nondeterministic @-game GQp with G = (Pos, Adm,
turn), the antagonization of GQp is the pointed nondeterministic (2 U @")-
game o7 (GQp) := (GANT, p), where Gayr 1= (Pos, Adm, turnay,) is defined
by putting turnant(q) := (turn(q))anr for all g € Pos. <

For clarity: the set ¥syr consists of all players in 3, along with the an-
tagonists of all players not in 3. And the role distribution anty swaps the
players in 3 with their antagonists.

4.2. Nondeterministic Multiplayer Games 87

Proposition 4.2.34. Let GQp be a pointed nondeterministic @-game, and a € A a
player. Then the following are equivalent:

(1) aangelically wins GQp,
(if) aangelically wins ot (GQp), and
(iii) a~ does not angelically win gt (GQp).

Proof sketch. The equivalence of (i) and (ii) can be proven using the insight
that we can abstract away from other players (cf. Proposition 4.2.18). The
equivalence of (ii) and (iii) is a bit more involved, and requires a lot of case
distinctions (i.e. p is final, p is nonfinal with a € turn(p), and a ¢ turn(p)). It
can be shown by using the property that there exist no infinite Adm-chains,
together with Proposition 4.2.14. The method for this is quite similar to the
method we will use in the proof of Theorem 4.2.39 in Section 4.2.5. m]

Applying the same ideas as used in general antagonizations, we can
modify the evaluation games of nondeterministic @-logic to include a nega-
tion connective —g for 3 C @ as an abbreviation of a role switch antg.

Definition 4.2.35. The language of nondeterministic basic @-logic with negation
is the inductively defined set

Lang—!BASIC,g S¢pu=p | 1y | (§0 Vi §0) | (Oiﬁ(P) | (E(P) | (_‘33(P)/

where p € Prop, # C 4, and role € RDg. If 3 = {a}, we will usually omit the
brackets.

Given a Kripke @-model M = ((S, R), col), the nondeterministic basic @-
logic evaluation game over IM with negation is the nondeterministic (4 U @")-
game &val &BASICIM with positions taken from the set

Lang_p.sica X S X {roleanr; role € RDg},

and other components specified in Table 4.3.
The semantics of nondeterministic basic @-logic with negation is given by the
function

—Basic,4 . S
II_]]]MASIC : Lang—!BASIC,g - (%)

defined by putting

[[@HH:/?ASIC'Q(S) = {a € @; a angelically wins (%M;BAS‘CIM)@ ((P, s, idaua- >}

for ¢ € Lang_g,qcqand s € S. <

88 4. MurtirLAYER GAME Locic

Table 4.3: Specification of a nondeterministic basic @-logic evaluation game
with negation.

Position Admissible moves Turn
(p, s, role> @ (@ role™ [col(s)(P)]) Anr
(L, s, role) @ (role™ [3]) Anr
<g0 Va U, s, roIe) {((p, s, role> , <1,b, s, role>} (role ™ [3]) Anr
<>33(p, s, roIe) {((p, t, role> it e R[s]} (role ™ [B]) ane
<rd(p, s, role> {(qo, S, rdanr © role>} Danr = A~
_|33(P,S roIe) {<<p, S,antg o roIe)} Dane =4~

Theorem 4.2.36. Let M = ((S,R), col) be a Kripke @-model. Then for any p €
Prop, ¢, € Lang_p,qcq, role € RDg, 3 C @, and a € @, it holds that

[PI? (@) = Q(p) (@,
[[J_]]—BASICQ lfae33
ifag3,
e { [Pl @U W1 (@) ifacs,
[[ﬁBASIcg (C() N [w)]]—'BASICQ (Cl) ifC(¢ 35,
s € S;R[s]N [o]]ﬁBAS‘Cg(a);t@} ifae®,
[[<> (p]]—!BASICg (Cl)
s €S:R[s] C [¢]]ﬂBASIcg(a)} ifagn,

[roleg] "% (a) = [l ? (role(a)),

SN [@lp™? (a) ifae B, and
[[]]ﬁBASICg (1) if‘a ¢ 35

H_' (pﬂ—!BASICg a) —

Proof sketch. Similar to Propositions 4.1.9 and 4.2.32, we require a lemma
showing that for any ¢ € Lang_p,qca, s € S, role € RDg, and a € @, it
holds that a has an angelic winning strategy from position ((p, s, roIeANT>
in &al ;BASICIM iff roleanr(a) has an angelic winning strategy from position
<(p, s, idaua- > in &al ;BAS‘C]M. But we now also need alemma showing that a
has an angelic winning strategy from position <(p, s, role ANT) in &at SEB"‘S‘C]M
iff a~ does not have an angelic winning strategy from position <(p, s, role ANT)
in val g;BASICIM. The theorem can then be proven by an induction in which
we apply Proposition 4.2.14. m]

4.2. Nondeterministic Multiplayer Games 89

4.2.5 Bisimulations and Adequacy

Having defined nondeterministic basic multiplayer logic, it is natural to ask
whether it is adequate with respect to bisimulations on Kripke multiplayer
models, which are defined in the obvious way. We will answer this question
via a general property of nondeterministic multiplayer games.

Note that nondeterministic multiplayer games are structurally identical
to Kripke models, with the turn function corresponding to a colouring, and
the added requirement that the accessibility relation has no infinite chains.
More precisely, nondeterministic @-games can be seen as specific instances
of coalgebras for the set functor sending sets X to X x 924. This perspec-
tive is interesting, as we can then use general coalgebraic notions to study
nondeterministic multiplayer games. We will make use of the coalgebraic
definition of bisimulations, and obtain a definition of nondeterministic multi-
player game bisimulations. Unpacking these, we see that they can be defined
as follows.

Definition 4.2.37. Given nondeterministic @-games G = (Pos, Adm, turn)
and G’ = (Pos’, Adm’, turn’), a binary relation B C Pos X Pos’ is called a
nondeterministic A-game bisimulation B : G < G’ if the conditions

(turn) turn(p) = turn’(p’),
(forth) forall g € Adm(p], there exists 4" € Adm’[p’] such that gBg’, and

(back) for all 4" € Adm'[p’], there exists g € Adm[p] such that gBq’

hold for all p € Pos and p’ € Pos’ such that pBp’.
If there is some B such that B : G € G/, we write G € G'. If pBp’, we
additionally write G,p € G/, p’. <

It is important to note that we are not making any claims about non-
deterministic multiplayer game bisimulations being the right definition of
bisimulations for nondeterministic multiplayer games. Instead, we consider
these bisimulations to be simple definition that suffices for what we will
state in Corollary 4.2.42: the semantics of deterministic multiplayer logic
is invariant with respect to bisimilarity on Kripke multiplayer models. For
this invariance, our definition of bisimulations is quite strong, as one can
easily think of examples of games in which two positions have different
sets of player that get a turn, but still have the same sets of angelically win-
ning players. For more natural ways to approach bisimulations on games,
we refer the interested reader to van Benthem, Bezhanishvili, and Enqvist
(2019).

Remark 4.2.38. Using the coalgebraic view of nondeterministic @-games,
we also obtain a natural notion of a nondeterministic @-game homomor-
phism, through which we can define a category PNDgq of pointed nondeter-
ministic multiplayer games and point-preserving nondeterministic @-game

90 4. MurtirLAYER GAME Locic

homomorphisms. The astute reader might have noticed that we have type-
set many of the constructions throughout this chapter like functors. All of
these constructions can in fact be extended to become functors from and to
(suitable variations on) PNDg. <

The reason nondeterministic @-game bisimulations are of interest to us
lies in the important fact that the existence of angelic winning strategies is
invariant with respect to them.

Theorem 4.2.39. Let G and G’ be nondeterministic @-games with sets of positions
Pos and Pos’, respectively. Then for all p € Pos and p’ € Pos’, it holds that
G,p € G, p’ implies that a angelically wins GQp iff a angelically wins G'Qp’
for all players a € 4.

Proof. We show that for every nondeterministic @-game bisimulation B :
G < G/, itholds for all (p, p’> € B and a € 4 that a angelically wins GQp
iff a angelically wins G’@Qp’. Fix such B and a.

Define W C B to be the set of pairs <p, p’> € B such that it is not the
case that a angelically wins G@p iff a angelically wins G’@p’. To prove the
theorem, we assume for the sake of contradiction that W # @. Define a
relation C C B X B by putting <p, p’) C <q, q’> iff p Adm* g and p’(Adm’)*q’.”
Since there exist neither infinite Adm- nor infinite Adm’-chains by definition
of nondeterministic @-games, it is easily verified that C is a partial order
on B. We denote the corresponding strict order by C, defined as (p,p’) C
(9.9") iff (p,p’) E (a,9") and (p,p’) # (q.9')-

Again due to the absence of infinite Adm- and Adm’-chains, C can be
seen to satisfy the ascending chain condition — i.e. there exists no infinite
C-chain. It follows from this that for all nonempty subsets C C B, there
exist C-maximal pairs <p, p’) € C —i.e. there exist pairs <p, p’> € C such
that there is no <q, q’> € C with (p,p’) C (q, q’). If this would not hold,
then there would exist nonempty C C B such that for all <p, p’) € C, there
exists (q, q') € C with (p, p’> C <q, q'), contradicting the ascending chain
condition.

Applying this to W, it follows that there is some C-maximal pair
(p,p’) € W. In other words, pBp’ holds, but it is not the case that a
angelically wins G@p iff a angelically wins G’@Qp’. We can assume without
loss of generality that a angelically wins GQp, while a does not angelically
win G’@Qp’. Note that since p and p’ are related by the nondeterministic
@-game bisimulation B, precisely one of the following two conditions must
hold: (i) p € Finand p’ € Fin’, or (ii) Adm[p] # @ # Adm’[p’].

First, suppose (i) holds. Then because B is a nondeterministic @-game
bisimulation, it follows from the (turn) condition that turn(p) = turn’(p’).

9Given a binary relation R C X x X, we inductively define relations R” C X x X for all
n < w by defining RY := Diagy = {{x, x} x € X}, and putting xR™*1y iff there is some
z € X such that xR"zRy. We then put R* := |, <, R

4.2. Nondeterministic Multiplayer Games 91

Since a player has a relative winning strategy from a final position iff that
player is not in the set of players that can get a turn there, it therefore holds
that a angelically wins GQp iff a angelically wins G’@Qp’. This contradicts
the assumption that (p, p’> eW.

Second, suppose (ii) holds. Assume first that a € turn(p). Since a an-
gelically wins G@p, it follows from Proposition 4.2.14 that there is some
q € Adm[p] such that a angelically wins GQq. As B is a nondeterministic @-
game bisimulation, it follows from the (forth) condition that there is some
q’ € Adm’[p’] such that gBq". So (p,p’) C {(q,q’). As there exist neither
infinite Adm- nor infinite Adm’-chains, it must be that g # p and g’ # p’. So
(p,p") C{q,9"). As (p,p’) is C-maximal in W, it must be that (g, q") ¢ W.
So by definition of W, it holds that a angelically wins GQg iff a angelically
wins G'Qq’. As we already derived that a angelically wins GQgq, it there-
fore also holds that a angelically wins G’@gq’. Since it follows from the (turn)
condition that turn(p) = turn’(p’), and thus, that a € turn’(p’), we can then
conclude using Proposition 4.2.14 again that a also angelically wins G’@p’.
This contradicts our assumption that (p, p’) eW.

Still assuming that (ii) holds, we now assume that a ¢ turn(p) (and
hence, also a ¢ turn’(p’)). Now take any q° € Adm’[p’]. As B is a nonde-
terministic @-game bisimulation, it follows from the (back) condition that
there is some g € Adm[p] such that gBg’. As before, it holds that (p, p’) C
(q, q’), and therefore (q, q’> ¢ W, which means that a angelically wins GQgq
iff a angelically wins G’@Qq’. Since a angelically wins GQp, it follows from
Proposition 4.2.14 that a angelically wins G@r for all ¥ € Adm[p]. So a must
also angelically win GQgq. Thus, it follows that a angelically wins G’@q’. As
q’ € Adm’[p’] was arbitrary, we can then conclude using Proposition 4.2.14
that a angelically wins G’@Qp’. This yet again contradicts our assumption
that (p,p') eW.

Thus, our initial assumption that W # @ holds is contradictory. m|

Using Theorem 4.2.39, we can now show that nondeterministic basic
multiplayer logic is adequate with respect to bisimulations on Kripke mul-
tiplayer models. We do this by showing that bisimulations on Kripke mul-
tiplayer models lift to nondeterministic multiplayer game bisimulations on
the evaluation games in a suitable way. Note that we consider nondetermin-
istic basic multiplayer logic without negation for simplicity — the statement
and proof of these results can be modified to also work for the logic with
negation, but this does not offer any conceptual insight.

Definition 4.2.40. Given Kripke @-models M = (S, R, col) and M’ = (S’, R’,
col’), along with a relation T C S X §’, the nondeterministic basic A-logic eval-
uation game lifting of T is the binary relation

Gual T C (Langp,geq X S X RDg) X (Langg,gcq X S” X RDq)

92 4. MurtirLAYER GAME Locic

defined by putting <(p, s, roIe) (%mngSICT) (1,b, s/, roIe') iff o = 1, role = role’,
and sTs’. <

Theorem 4.2.41. Let M = (S,R, col) and M’ = (S’,R’, col’) be Kripke @-
models. Then a relation B C S X §" is a Kripke @-model bisimulation

B:M < M
iff val gAS‘CB is a nondeterministic @-game bisimulation
Gual 9B : Evat M © Sval g M.

Proof sketch. The direction from left to right follows very simply from the
definitions of the turn function and admissibility relation. For the direction
from right to left, we can derive col(s)(p) = col’(s")(p) for sBs” and p € Prop
by considering the turn functions at positions (p,s, idg) and (p,s’, idg}.
And we can derive the (back) and (forth) conditions by considering po-
sitions <<>33(p, s, idg> and <<>35g0, s’, idg> for any formula ¢, and applying the
(back) and (forth) conditions of nondeterministic @-game bisimulations.

]

Corollary 4.2.42. Let M = (S,R, col) and M’ = (S’,R’, col’) be Kripke A-
models, and consider states s in M and s” in M’. Then M,s < M’, s’ implies
that

[[(P]]RZSIC/Q(S) — [[(P]]RZ,SIC/Q(SI)
forall ¢ € Langg, g a-

Proof. This follows by applying Theorem 4.2.39 to Theorem 4.2.41, noting
that M,s < M’, s” implies that

gMgASICM, <(P' s, idg> o gMgASICMI, <(Pl S” idg>

for all formulas ¢. m]

4.3 Coalgebraic Multiplayer Logic

As discussed in Section 4.1.2, the main challenge in a proper coalgebraic
generalization of multiplayer logic as treated in LAMP'" lies in how we
approach modalities. In this section, we will show how we can achieve a
coalgebraic generalization with a uniform treatment of modalities, by us-
ing nondeterministic multiplayer games as the basic game structure.

10Recall that we use the term LAMP to refer to the article by Olde Loohuis and Venema
(2010) on which this chapter is based.

4.3. Coalgebraic Multiplayer Logic 93

4.3.1 Predicate Liftings and Neighbourhood Frames

Both deterministic and nondeterministic (basic) multiplayer logic are in-
terpreted over Kripke (multiplayer) models, and only include (multiplayer
variations of) the ¢- and O-modality. The behaviour of these modalities is
quite simple, in the sense that the semantics of the ¢-modality can be de-
fined through existential quantification over successor states, while the se-
mantics of the O-modality is defined through universal quantification over
successor states. Using Propositions 4.1.8 and 4.2.14, this fits nicely into the
multiplayer game structures we have considered, as existential quantifica-
tion can be captured through a choice for some player(s), and universal
quantification can be captured through a choice for other players.

But in general, modalities need not only be restricted to either of these
two patterns (i.e. existential or universal quantification over states). In-
stead, they can have richer choice patterns, as can be seen from the example
of the ¢*-modality for Z-coalgebras considered in Section 4.1.2. The way
we proposed to game-theoretically capture the semantics of ©F there con-
sisted of a choice pattern consisting of existential quantification (over sets
of states) followed by universal quantification (over states in those sets).

As we will show, the semantics of a large class of modalities in the coal-
gebraic setting can always be captured through this latter choice pattern:
existential quantification follows by universal quantification, or in game-
theoretic terms, a choice by some player(s) followed by a choice by all other
players.!! The way we show this makes use of an essential property of predi-
cate liftings that allows us to view any coalgebras as (polyadic) neighbourhood
frames.

Neighbourhood frames are standard structures used in the study of non-
normal modal logics.'> They generalize Kripke frames, in which states are
related to others states, by considering states that are related to sets of states,
referred to as neighbourhoods.

Definition 4.3.1. A neighbourhood frame is a pair N = (S, neigh), where S is
a set of states, and neigh : S — PPS is a neighbourhood function, mapping
states s to the set neigh(s) € %S of neighbourhoods of s. N

Coalgebraically, neighbourhood frames are coalgebras for the functor
A : Set — Set defined as /" := 22", This coalgebraic perspective is essential,
as we will now show."

HWe wish to briefly remark that this is quite similar to the way Venema (2006) defines
evaluation games for coalgebraic fixed point logic, in which modal formulas are captured
by two consecutive positions, with the Verifier (corresponding to existential quantification)
moving first, followed by the Falsifier (corresponding to universal quantification).

12We refer the interested reader to Chellas (1980) and Hansen, Kupke, and Pacuit (2009)
for an overview of the study of neighbourhood frames within modal logic.

13What we are about to show is well-known within the field of coalgebraic logic, albeit

94 4. MurtirLAYER GAME Locic

We will begin in a simple setting with a single unary modality. Consider
a unary predicate F-lifting lift : Forgpy gor © Fred = Forgpp st © Fred 0T
for some set functor 7. Recalling that Forgpy g, © Pred = 27, the lifting
lift is more simply described as a natural transformation lift : 2= = 27~.

—

We have that the transposed collection of functions liftx : X — 22% also

—

defines a natural transformation lift : I = J/, as can be easily verified.
Importantly, this natural transformation allows us to functorially transform
J-coalgebras into .#-coalgebras, i.e. neighbourhood frames.

Proposition 4.3.2. Let T be a set functor, and lift : 2= = 27~ be a unary predicate
F-lifting. Given a I-coalgebra $ = (S, o), define the neighbourhood frame S'ift :=

<S, lifts o o>. Given a function f : S — S', define f'ift := f.

The operation (=) on -coalgebras and functions defines a functor

(_)Iift . Coalgset(g') — CoalgSet(/V)-

—

Proof. This follows immediately from the naturality of lift . m]

Predicate liftings are not always unary. General predicate liftings in-
duce functorial transformations to so-called polyadic neighbourhood frames.
These are quite naturally defined by associating to a state a set of polyadic
neighbourhoods, each consisting of multiple sets of states.

Definition 4.3.3. For n < w, an n-ary neighbourhood frame (or more generally,
a polyadic neighbourhood frame) is a pair N = (S, neigh), where S is a set of
states, and neigh : S — P((PS)") is an n-ary neighbourhood function, mapping
states s to the set neigh(s) C (£S)" of n-ary neighbourhoods of s. N

We have that n-ary neighbourhood frames are coalgebras for the func-
tor #, : Set — Set defined as /¥, = 227", Analogous to the situation
before with Proposition 4.3.2, n-ary predicate -liftings lift induce natu-

ral transformations lift : 9 = .}, which again gives rise to a functor
()l : Coalgg,,(7) — Coalgge,(F;) defined similarly.

Note that we have been considering a single predicate lifting so far. In
the general setting, we will have a (two-valued) coalgebraic modal logic
Log = ((Sym, ar), Lift) with Lift = <Iift©>vesym. By considering the trans-
poses of each of these liftings, we can see that these logics still induce func-
torial transformations to a certain class of coalgebras.

largely folkloric. Part of the following is briefly mentioned by Hansen, Kupke, and Pacuit
(2009, Remark 5.9). A much more restricted version of the following, however, was exten-
sively treated by Pattinson (2001).

4.3. Coalgebraic Multiplayer Logic 95

Definition 4.3.4. Given a set I and an [-indexed sequence n € w' of natural
numbers, define the set functor /4, as

N = | | o

iel

Given a modal similarity type Sim = (Sym, ar), we write /s, for the
functor /4, (where ar is treated as a Sym-indexed sequence of natural num-
bers).

Given a coalgebraic modal logic Log = (Sim, Lift) over a set functor 7
and a J-coalgebra § = (S, o), define the /&;m,-coalgebra glog 45

ghoe .= s,<|ift§ oa> ,
©eSym

and given a function f : S — S/, define f*8 as flos .= f. <

Proposition 4.3.5. For all coalgebraic modal logics Log, the operation (—)™*8 on
J-coalgebras and functions defines a functor

(—)™& : Coalgg.;(T) — Coalgge(Hsim).

It will be of specific interest to us to consider a particular class of polyadic
neighbourhood frames. Namely, the class of polyadic monotone neighbour-
hood frames. These are polyadic neighbourhood frames in which the set
neigh(s) is closed upwards with respect to set inclusion for each of the n
neighbourhoods. We give a coalgebraic definition of this class, by defining
the coalgebra type functor.

Definition 4.3.6. For n < w, the n-ary monotone neighbourhood functor M, :
Set — Set is defined on sets X as

My X ::{Wg(g’X)”;(Ul,...,uiUV,...,UH) ewW
foralU e W,1<i<n,VCX},

and on functions f : X — Y as (4, f)[4,x- We refer to ./,-coalgebras as
n-ary monotone neighbourhood frames. <

Note that .#,-coalgebras are indeed also .#;,-coalgebras.

The reason we are interested in polyadic monotone neighbourhoods is
based on their relation to monotone predicate liftings. These are predicate
liftings representing modalities of which the semantics is monotone with
respect to the semantics of given argument formulas. For example, the O-
modality of basic modal logic is monotone, with [O¢] € [Ov¢] if [¢] < [¢]-

96 4. MurtirLAYER GAME Locic

Definition 4.3.7. Given a set functor 7, an n-ary predicate J-lifting lift is
monotone if for all sets S and A1,...,A,, B C &S, it holds that

lifts(A1, ..., A, ..., An) Clifts(A1,...,A;UB,..., Ay)

forall1 <i<n.
A coalgebraic modal logic Log = ((Sym, ar), Lift) over J is monotone if
lift” is monotone for all © € Sym. <

Proposition 4.3.8. Let T be a set functor, and lift be an n-ary monotone predicate
F-lifting. Then the operation (=)'t defines a functor (—)t : Coalgg,(9) —
Coalgg,y(LLy).

Defining M, and Msiy, analogously to the way N, and Nsyy, were defined in
Definition 4.3.4, it holds for all coalgebraic modal logics Log = (Sim, Lift) that
the operation (—)'°8 defines a functor (—)L"8 : Coalgg(7) — Coalgge(Msin)-
Proof. This follows easily from the naturality of lift” and the monotonicity
of lift” for each © € Sym. O

So monotone coalgebraic modal logics induce transformations from
J-coalgebras to (products of) polyadic monotone neighbourhood frames.
This is of interest to us because, as we will shortly show, it allows us to
capture the semantics of monotone modalities through certain modalities
for monotone neighbourhood frames, in a way that is amenable to the even-
tual game-theoretic generalization. These certain modalities are the polyadic
monotone O-modalities, denoted by the symbols @" for n < w, and given by
the following predicate liftings.

Definition 4.3.9. For n < w, the n-ary monotone O-lifting is the n-ary predi-
cate M ,-lifting lift®" defined by putting

Iift?’”(Al, oAy ={U € MS;{A,..., Ay) €U}
for sets Sand Ay,...,A, CS. <

Given the general setting in which there is more than one modality,
it will also be helpful to define the following version of the monotone O-
modality, denoted by the symbols @" for sequences n of natural numbers,
and indices i.

Definition 4.3.10. Given a set I, an I-indexed sequence n € w! and an index
i € I, the monotone O-lifting for (n, i) is the n;-ary predicate ./,-lifting lift® "
defined by putting

iftS" (A1, ..., Ap) = {U € M,S;U; € liftT™ (A1, ..., An)}

1

forsets Sand Ay,..., Ay CS. <

4.3. Coalgebraic Multiplayer Logic 97

Recall that the semantics of a formula 9(¢;, ..., parw) in a coalgebraic
modal logic Log is given as

[9(p1, - - -, Parc) L = (Predo)(lift([91]5%, . .., [Parc] 5.

We show the semantics of modalities for J-coalgebras can be captured by
the semantics of monotone O-modalities for polyadic monotone neighbour-
hood frame obtained through the (—)-&-functor as follows.'*

Proposition 4.3.11. Let $ = (S, g, col) be a T-model, and Log = ((Sym, ar),
Lift) be a monotone coalgebraic modal logic over I. Then for all © € Sym, it holds
that

(Pred o) (if2(As, ..., Auo))

is equal to

—

(‘%%< “ftg o U>&€Sym)(“ft§|larlo(A1/ s /AarQ?))
forall sets S and Ay, ..., Aso CS.

Proof. For brevity, we will write A := (A, ..., Aao). We compute and find
that

——

(Pred (1ifts o 0)acsym)(lifts ™" (A))

= {s €S; ((lifts o o).,,esym) (s) € Iift?’ar’Q(A)} (definition Pred)

= {s €S ;<@(G(S))>&€Sym € |ift?’ar’o(A)}

= {s € S;({T € (#5)*™* ; 0(s) € lift§(T)}aesym € lifte*""(A)}
(definition transpose)
={s € S;{T € (#5)*7;0(s) € liftd(T)} € lifts*"(A)}

(definition lift®2"%)
={seS;Ae{T e (P57 ;0(s) € liftd(T)}} (definition lift®2™)
={s € S;a(s) € lift(A)}
= (Pred 0)(lift (A)), (definition Pred)

which is what we set out to prove. m]

Definition 4.3.12. Given a monotone coalgebraic modal logic Log with
modal similarity type Sim over a set functor 7, its monotone neighbourhood

14The following proposition would also hold if ILog were not monotone. The reason we
state it for monotone logics specifically, is for ease of comparison with our eventual game-
theoretic definitions.

98 4. MurtirLAYER GAME Locic

translation is the coalgebraic modal logic Logg over /s, with modal simi-
larity type
<{@ar,v VIS Sym} , 5827 > ar<7>

and the predicate s, -lifting lift® " for the symbol @*"”. We inductively
define a translation try s g from the language of Log to the language of

Logg by putting

trLogm(P) = P,
tr]LcDg,@((P A l[)) = trlog,@(qo) \4 tr]Log,@(ll))/
trLog,@(—@) = —triee,m(@), and
tr]L(Dg,IE\(Q((Pll e Par)) = @ar'o(trlog,@((Pl)/ ceey tr]Log,@((ParQ?))

for p € Propand © € Sym. <

Corollary 4.3.13. Let S = (S, g, col) be a T-model, and Log = ((Sym, ar) , Lift)
be a monotone coalgebraic modal logic over . Then it holds that

]L 5]
[Pl = [trLog,o(@)]gie

for all formulas ¢ in the language of Log."

Proof. Follows from the definition of (—)™*2 and Proposition 4.3.11.]

4.3.2 Polyadic Monotone Neighbourhood Games

We now have all that we need to define nondeterministic multiplayer logics
for arbitrary coalgebra types. The idea is to start from a monotone coalge-
braic modal logic ILog over a set functor with modal similarity type Sim,
and to instead work in the logic Logy over /si,. By Corollary 4.3.13, it
holds that the semantics of ILog is precisely captured by Logy, and so it
will suffice to give a proper multiplayer version of the coalgebraic modal
logic over functors .#, for sequences n € .

Definition 4.3.14. Given a sequence n € w!, the language of nondeterministic
monotone neighbourhood @-logic w.r.t. n is the inductively defined set

Lang, a2 ¢ =p|La|(@Vae) | (@ (@,...,9) | (rolep),
N———
n; times

where p € Prop, 3 C 4,7 € I, and role € RDg. If = {a}, we will usually
omit the brackets. <

15Note that we extend the (-)F°&-functor to operate on J-models in the obvious way, by
keeping colourings intact and only operating on the actual 9-coalgebra map.

4.3. Coalgebraic Multiplayer Logic 99

Note that we can give an alternative characterization of the predicate lift-
ings lift®" that makes the pattern of existential quantification followed by
universal quantification explicit. By definition of polyadic monotone neigh-
bourhood frames, it can be verified that IiftS@’"’i(Al, ..., Ay,) is equal to the
set

{Uey,S;3(Xq,...,Xn;) e U;(V(1 < k <ny)(Vs € Xi :s € Ax))}. (4.1)

We can capture this in nondeterministic monotone neighbourhood @-logic
as follows. Given an .#,-coalgebra$ = (S, o) (i.e.witho : S = [];; #,,S),
we will construct the evaluation games in such a way that at a position cor-
responding to formula @;;’i((pl, ..., ®n,) and state s, players in B select an n;-
ary neighbourhood (X1, ..., Xy,) € proj;(c(s)), after which the other players
(i.e. those in @\ B) select one of the sets X for 1 < k < n;, and astate t € X.
Play then continues from ¢y and t.

In order to formally define this, we will add another component to the
positions in the evaluation games representing the 1;-ary neighbourhoods.

Definition 4.3.15. Given a multiplayer .Z, -model'® § = (S, g, col) for some
n € !, the nondeterministic monotone neighbourhood @-logic evaluation game
over 5 is the nondeterministic @-game &var g%"S with positions taken from
the greatest subset

Pos C Lang 4, 4 X S X RDg X ({*} U U(@S)”")

iel
such that
((p,s, roIe,X) € Pos

only if ¢ = @;’i(gol, ..., @p)and X € (PS)" for some i € I, and with other
components specified in Table 4.4.

The semantics of nondeterministic monotone neighbourhood @-logic is given
by the function

[-]Z* : Lang 4, g — (23)°

defined by putting
[p]: n,@(s) = {a € @; a angelically wins (%Mé”ns)@ <(P’ s, idg, *>}

for ¢ € Lang 4, gands € S. <

16 Analogously to how Kripke multiplayer models are Kripke models with an agent-
indexed colouring, we consider multiplayer -models for a set functor I to be I-models
with an agent-indexed colouring.

100 4. MurtirLAYER GAME Locic

Table 4.4: Specification of a nondeterministic monotone neighbourhood
multiplayer logic evaluation game.

Position Admissible moves Turn
<p, s, role, *) %] @ \ role™![col(s)(p)]
(Lz, s, role, =) % role™![%]
((p Vg 1/J,s,role,*> {((p,s,role, *) , (1/},5, roIe,*)} role™[3]
<@§’i((p), s, role, *> {< "’i((p) s, role, X> ;X € proji(o(s))} role™[3]
<@£’i((p),s, roIe,X> {((pk,t role, *) 1<k<njandt e Xk} role ! [@ \ B]
<E(p,s,role, *> {((p,s,rd o role, *>} @

Proposition 4.3.16. Let S = (S, 0, col) be a multiplayer JM,-model for some n €
w'. Then for any p € Prop, ¢, € Lang,, q, role € RDg, B C @, and a € @, it
holds that

—
—

(P15 (a) = ?o7<p> (@),
ifael,
ifa¢3,

[[J-iﬁ]]s "

[o vs ¢lg™ T) = { [els™ o) [[IP]]S A (a) ifae®,
[l @) 0 [l () ifag3,
(a) = [

(gmza) |.ft@ i ([(a))) ifae®,

(o3 ()5
EAN (9%%50) I|ft@ i (S N lels™ (a))) ifag 3,

[role@] 2 (a) = [(role(a)),

where we use abbreviations ¢ = <(p1, cey gonl.>,

[l () = < [o1ld % (@), ..., [ould? (a)>, and

S\ [l (o) = <s NN (a)>.

Proof sketch. This can be shown using Proposition 4.2.14. m]

Remark 4.3.17. We can now briefly comment on why we required our coal-
gebraic modal logic to be monotone. Note that Equation (4.1) would not

4.3. Coalgebraic Multiplayer Logic 101

hold if the coalgebraic modal logic was not monotone. As a result, we would
need to define evaluation games in which at a position corresponding to for-
mula @y (@1, ..., @y,) and state s, players in 3 choose an ;-ary neighbour-

hood (X, ..., Xy,) € proj;(a(s)), such that X; = [@;]s (a) forall 1 < i < n;.
To guarantee these equalities using the machinery of angelic winning strate-

gies, we would need to also capture that all states in [¢;]s (a) lie in X; as
well. The only way we know of to achieve this, is to allow the players not in
¥ to either select a state x € X; for some i, from which play then continues
using formula ¢;, or to select some i and a state x that is not in the set X;,
from which play would then continue using some sort of negation of the
formula ¢;.

But these negations are not part of the logic we have just defined.
Though we are able to modify evaluation games to also allow negation in
Section 4.2.4, we still refrain from pursuing nondeterministic multiplayer
logic for nonmonotone coalgebraic modal logic any further. This is mainly
by virtue of how unnatural such a logic is: note that we would no longer
even have the property that play in evaluation games always proceeds to
subformulas, since play (as described earlier) could potentially move to
the negation of a formula ¢;. But beyond this, monotonicity is a property
we will also rely on in Section 5.1 when proving Proposition 5.1.4, showing
nondeterministic @-logic and Boolean-valued coalgebraic modal logic are
equiexpressive. <

Having defined the multiplayer variant of the coalgebraic modal logic
over ./, with modalities @", we can now finally define the multiplayer
variant of any arbitrary monotone coalgebraic modal logic.

Definition 4.3.18. Given a modal similarity type Smm = (Sym, ar), the Sin-
language of nondeterministic @-logic is the inductively defined set

Langnp sima @ @ 5= P | Lx | (@ Va @) | (93(@, ..., 9)) | (rolep),
—
arQ times

where p € Prop, 3 € @, © € Sym, and role € RDq. If 3 = {a}, we will usually
omit the brackets.

Given a monotone coalgebraic modal logic Log over 7 with modal sim-
ilarity type Sim, the semantics of nondeterministic A-logic w.r.t. Log for a mul-
tiplayer 7-model $ = (S, o, col) is given by the function

Log,d
[: Langnp i a — (78)°

defined by putting

[pls™? := [triog o(@)]ger?

for ¢ € Langnp sy, @, Where trgg g is the translation defined analogously to
Definition 4.3.12, extended to preserve the B-subscripts. <

102 4. MurtirLAYER GAME Locic

Theorem 4.3.19. LetS = (S, o, col) be a multiplayer T-model for some set functor
T, and let Log be a monotone coalgebraic modal logic over T with modal similarity
type Sim. Then for any p € Prop, ¢, € Langyp gim g, role € RDg, 3 C @, and
a € 4, it holds that

[PIL=2 (o) = €J<p> (a),
Log,@ ifaed,
[t @ =10 oy

—

[9ls™" (@ U [YIg™* () ifae,
[o]e™® (a) N nwﬂlﬁgg<a) ifag®,

(Md) Ilfts ([p]s™ " (g’)L ifae®,

S\ (Fred o) I|ftS (s N [ple™? (a))) ifag®,

[0n()]5 ™ (a) =

[o va Y™ (a) = {

[roleq]s™? (a) = []e™®? (role(a)),

where we use abbreviations ¢ = <(p1, cee, goar<7>,

[T (q) := < [0 (@), .., [puol™* <a>> nd

N <s N IO N T <a>>.

Proof sketch. Follows from Proposition 4.3.16 and corollary 4.3.13. O

Thus, we have obtained a coalgebraic generalization of the multiplayer
logic in LAMP, at least when restricting ourselves to monotone coalgebraic
modal logics. Though we do not pursue this any further for the sake of
brevity, we note that many of the ideas considered in Sections 4.2.3 to 4.2.5
can also be applied to and proven for the coalgebraic multiplayer logic (e.g.
defining additional logical connectives and duals of modalities, introducing
negation, adequacy).

CHAPTER 5

MuLtiPLAYER GAMES AND MULTIAGENT-
VALUED LoaIic

In this chapter, we will consider two ways to bring together the Boolean-
valued coalgebraic modal logics from Chapter 3 and the nondeterministic
coalgebraic multiplayer logics from Chapter 4. In Section 5.1, we begin by
showing that under some restrictions, nondeterministic coalgebraic multi-
player logics is equiexpressive to Boolean-valued coalgebraic modal logic.
We then finish in Section 5.2 by showing how enriching Boolean-valued
coalgebraic modal logic with the tools of nondeterministic coalgebraic mul-
tiplayer logic enables it to fully express more standard ways of defining mul-
tiagent versions of coalgebraic modal logics.

5.1 Equiexpressivity and Deagentization

Throughout this section, we fix a monotone two-valued coalgebraic modal
logic Log over a set functor J with modal similarity type (Sym,ar). We
will assume that there exists at least one nonnullary modality — i.e. some
& € Sym with ars > 1.

The semantics of the Booleanization Logg is fully determined by the
semantics of Log applied to slices, as in the Coalgebraic Slicing Theorem
(Theorem 3.2.19). Considering the semantics of nondeterministic @-logic
w.r.t. Log (cf. Theorem 4.3.19), we can informally observe that a similar
property almost holds there, with role switches forming the only source of
interaction between agents. We will make this observation precise: the non-
deterministic @-logic without (arbitrary) role switches is equiexpressive to
Logg, given suitable assumptions.

We briefly note that we will be working with a version of nondetermin-
istic @-logic with negation, which can be defined analogously to the way
we defined nondeterministic basic @-logic with negation (cf. Section 4.2.4).

103

104 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

When we speak of role switches, we will not mean it to include negation
(which is implemented as role switches between players and their antago-
nists), but only role switches between players in 4.

We need to be careful in defining when we consider these logics to
be equiexpressive, since they are not interpreted over the same type of
structure. The Booleanization ILogg is interpreted over J3-models, while
the nondeterministic @-logic is interpreted over multiplayer -models (i.e.
J-coalgebras with agent-indexed colourings). We will informally say one
logic is expressed by another logic, if there is a transformation from the struc-
tures of the former logic to the structures of the latter logic, as well as a
translation of the formulas of the former to the formulas of the latter, such
that the semantics of the former logic are preserved by said transformation
and translation.’

Using this informal definition, we will first tackle the matter of Logg
expressing nondeterministic @-logic w.r.t. Log. We will define the transfor-
mation between pointed versions of the structures in question, and show that
the semantics is preserved for the specific given points. Generally speaking,
a pointed J-coalgebra for a set functor T is a pair (S, s) such that s is a state
in §, referred to as a basepoint. The morphisms in the category Coalgy,, () of
pointed J-coalgebras are J-coalgebra morphisms f : 5 — &’ that preserve
basepoints. It is obvious how we can extend this notion of pointedness to
also work with multiplayer models and coalgebras on ASet — note that for
the latter, morphisms preserve basepoints in all slices.

We denote by Jyp the functor defined as SvpX 1= X X (72)P P, Then
pointed multiplayer S-models will precisely be pointed J\p-coalgebras.
We can define an operation

Tr: Obj(Coalgget(gMp)) — Obj(Coangset(?]g,prop))

(where I3 prop is the type of 7g-models) in the obvious manner, by keeping
the colouring intact, and having the same transition structure for each agent.
That is, we define

Tr(S,0,col,s) :=(S,ae @+ g,col,s).

We inductively define a translation tr from the formulas of nondeterministic

1Though it can be natural to require functoriality of the transformations, we will not do
so. Our definition is intended as a simple to understand definition of logics expressing one
another, and we make no claims to this being the optimal definition.

5.1. Equiexpressivity and Deagentization 105

@-logic w.r.t. Log (minus role switches) to the formulas of Logg, by putting

tr(p) :==p, (p € Prop)
tr(Lly) = "ANBT,
tr(p Ve) := "B — (tr(e) Vir(P)) ATANBT — (tr(e) A tr(y)),

tr(_ljﬁ(P) :
tr(Vu(p)) :

where we use abbreviations ¢ = <(p1, eel, (pa,@>,

BT — —tr(p) ATANBT - tr(p), and
BT - Otr(p)) ATANBT = =0(=tr(g)),

tr((P) = <tr((P1)/ sy tr(@ar@)> , and
—tr(g) = <—|tr((p1), el ﬂtr((par@)> .

This translation makes use of bounding formulas, which were briefly men-
tioned in Section 3.1.2.

Theorem 5.1.1. Let (S, s) be a pointed multiplayer T-model with S = (S, o, col).
Denoting the basepoint of Tr(S, s) by s*, it holds that

15 ™) = [r@)7g" ")
for all formulas ¢ of nondeterministic A-logic w.r.t. Log, minus role switches.

Proof sketch. We can show this by induction on ¢, in which we apply Propo-
sition 3.2.17 and theorem 4.3.19. Note that for any 3 C 4 and formulas ¢
and x of Logg, we have that a € 3 implies that "3 — ¢y ATANH' — y
holds for a (at some state) iff ¢ holds for a, while a ¢ 3 implies that the
formula holds for a iff y holds for a. m|

It makes conceptual sense that the Booleanization Logg only expresses
nondeterministic @-logic w.r.t. ILog as long as there are no role switches. By
the Coalgebraic Slicing Theorem (Theorem 3.2.19), there is no interaction
between different agents, which is precisely what role switches require.

Showing that nondeterministic @-logic w.r.t. Log (minus role switches)
expresses the Booleanization ILogg is more difficult. This difficulty lies in
the difference between the structures over which the two logics are inter-
preted. For nondeterministic @-logic w.r.t. Log to express Logg, we need
to find a proper way to transform arbitrary Jg-models (which are agent-
indexed coalgebras) to multiplayer I-models, which are just Fg-models in
which agents share the same transition structure.’

We will define the transformation of structures and the translation in
three steps.

ZNote that the way Logg expresses nondeterministic @-logic w.r.t. Log minus role
switches implies that in a sense, the latter logic is just the former logic, interpreted over
agent-indexed models in which each agent has the same transition structure, but potentially
different colourings. So in essence, we will be showing a way to express Boolean-valued
coalgebraic modal logic over coalgebras with ‘two-valued’ transition structure.

106 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

First Step

We begin the first step by noting that like in Definition 4.3.4, we can define
a transformation®

(_)ngg : Obj (Coalg*Aset(gg,Prop)) — Ob)j (Coalg;set(ﬂSm,Q,Prop))
by putting

—

(S,a,col,s)]mgg =({S,aed > < Iiftg o aa> ,col,s).
YeSym

We can verify, like in Proposition 4.3.11, that this transformation preserves
the semantics, in the sense that

[9153(5) = [triog s a(@)] gz (s) (5.1)

for all ¢ in ILogg, where trg g a is the translation from Definition 4.3.12
extended to include constants "%7, and ILog q is the Booleanization of the
coalgebraic modal logic Log, over s;y, also defined in Definition 4.3.12.

Second Step

Now we consider the second step. Given an agent-indexed polyadic mono-
tone neighbourhood model, as is produced by the functor (—)toga defined
above, we will proceed in somewhat similar fashion to the way we defined
angelic determinizations of nondeterministic @-games in Definition 4.2.24.
There, we took the coproduct of angelizations for each agent, after which we
introduced a new position from which one of the angelizations needed to
be chosen. Here, we will take the coproduct of the slices of each agent, after
which we will introduce a new state from which one of the slices needs to
be chosen. We refer to the resulting multiplayer polyadic monotone neigh-
bourhood model as a deagentization.

Definition 5.1.2. We fix an enumeration Prop = {pi i< a)}.
Given a pointed /s;, g-model (S, s) with § = (S, o, col), define the mul-
tiplayer /si-model (S’, o7, col’) by letting (S’, ¢’) be the coproduct

Z (S,04),
aed

and letting col’ be the unique function induced from col by the universal
property of the coproduct), S of sets.
The deagentization of (5, s) is the pointed multiplayer /#s;,-model

Deag (S, s) := <S’ U {SDeac} , 07F4C, colPEAS, sDEAG> ,

3We write Obj(C) for the collection of objects of a category C.

5.1. Equiexpressivity and Deagentization 107

where ¢P™S is defined for © € Sym by putting agEAG(s’) = 0,(s") fors” € &,
and

05" %(5Drac) 1= (F(S" U {sDrac}) \ {2}

The colouring is defined by putting

COlDEAG(SDEAG)(pi) =0,
colP™(injy(s))(po) = {a},
colP#S(injy(s))(pi+1) := col(s)(pi),
col®*(s")(po) = @,

colP26(s")(pis1) = col(s”)(p:),
where s’ # inj,(s) for all a € @, and s’ # sP™¢C, <

Intuitively, the deagentization ‘flattens” the multiagent structure in a
polyadic monotone neighbourhood model by separating the slices through
the use of the coproduct. The state spg,¢ is conceptually similar to the posi-
tion ppgr in the angelic determinization (Definition 4.2.24). Where we could
then consider ppg; to be a position from which a choice of one of the rela-
tivizations could be made by way of the admissibility relation, we are now
working in a setting where we have a monotone neighbourhood function.
So to enforce that one of the states inj,(s) for a € @ is ‘chosen’ from spgac,
we fix the propositional variable pg, and will enforce through our transla-
tion of formulas that a neighbourhood is chosen from spg,s that satisfies
po. In order to deal with formulas that contained py, we ‘move forward’ all
propositional variables one place.

Though this is all quite informal, the corresponding translation of for-
mulas should make things clearer. We will be translating to nondetermin-
istic monotone neighbourhood @-logic.

Definition 5.1.3. Inductively define a function try, , from the language

of Logg q to the language of nondeterministic monotone neighbourhood
Q-logic w.r.t. Sim as

tr’@,ﬂsﬁm(Pi) = Pivls (i < w)
tr/@,.ﬂsﬂn(raﬁj) = Lg\33/
tr/@/ﬂsium((P V lp) = tr/@,ﬂsﬁm((P) Vg tr’@,ﬂﬁm(l]l})l
tr’@’%gﬁm(ﬁ(P) = ﬂgtr'@’ﬂsﬁm(go), and

ar,Q

tl’l@l‘%ﬁm(@ar'v((Plz ceey (ParQ)) = @g (tr’@,/ﬂsm((Pl)/ ceey tr’@,/ﬂsm((ParO))

Fix some & € Sym with ar& > 1. The translation from the language of Logy q
to the language of nondeterministic monotone neighbourhood A-logic w.r.t. Sim is

108 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

then given by the function trg, 4, defined as

ar,%

tre, s, () = 83" (Po Aa try e (@)oo, po Aatry 4 (@)

ar& times

for all ¢ in the language of Logg q. <

Proposition 5.1.4. Let (S, s) be a pointed Msi, a-model withs = (S, o, col), and
write Deag (S, s) = (Deag$, Speac) and Deag$ = (Speac, 0™, col). Then
it holds that

L A
[[(P]]S(Dg@,g(s) = [[tr@,/%sxim((P)]]B{S;gég(sDEAG)
for all formulas ¢ of Logg q.

Proof. We first prove by induction on ¢ that

a € [plg ™ (1) iff a € [t 4 (@) (inj(1)) (52)

forallt € Sand a € 4.
For the case of p; for some i < w, we have that

a € [pilg ™= (t) iff a € col()(pi)
iff a € colP*(inj,(+))(pi+1)
iff a € [Jpemg (inja (1)),
and so the statement follows from tr’@, s, (pi) = pi+1- The case of "B is
immediate.
The cases for disjunction and negation follow using routine Boolean rea-
soning. Take a modal formula @"¥(¢) with ¢ = <g01, cey (par@>, and write
the abbreviations

IL IL I
oI5 ™ = (lpils ™%, . [parols %),

[]s ™" (a) := < [o1]s ™™ (a), ..., [arolg =" (a)>, and

Wt (P) = (i (@) W (ar).

5.1. Equiexpressivity and Deagentization 109

We have that a € [[@ar'”((p)]]?g@’g(s) holds

iff a € (lift2*")s([p]g ™ (0u(s)) (semantics Logg g)
iffa e (”ftg'am)s([[(P]]gq}g@’g)(ca,o(S)) (definition lift®2"")
iff s ™" (a) € 00,0(5) (definition lift™2")

iff {t €S;ae [[Qoiﬂgog@’g(t)} € {U;;U € go0(s)}
(definition transpose, for all 1 < i < ar®)
iff {t € S5ae [t 4, (@I (nin(t)} € (Ui U € 00o(s))
(IH, forall 1 < i < ar®)
iff {inja(t) La e [[tr'@’/%sm((pi)]]fﬁm’g(inja(t))} € {inj,[U]; U € 0a0(s)}
(inj, is injective, for all 1 < i < ar?)
i {inja(t) 0 € [t g, (@015 (nia(t))} € proj,[(Haroiniy)(a,0(6)]

(definition M4, for all 1 < i < ar®)

i {inja(t) 0 € [t g, (@015 nia())] € proj,[a2<(injo(s))]
(coproduct in Definition 5.1.2, for all 1 < i < ar?)

i {1t € Spuac 0 € 177 g, (@DI™ (0] € proj[a2<(ini,(5))]

(monotonicity, for all 1 < i < ar?)

iff [er], s, (go)]]gﬁsa"‘gg (a) € a2"S(inj,(s)) (definition transpose)

iff a € [@377 (] 4 (PNpee(inja(s)),

(semantics nondeterministic @-logic)

completing the induction.

Having shown Equation (5.2), we now show that

0 € [tra, a5, (P)] P (sDrrc) i 0 € [tr 4o (@) (injo(s)) (5.3)
for all a € 4@ and formulas ¢. By the semantics of nondeterministic @-logic,

we find that a € [trg, 4., (@)]pcizs (sDrac) holds

. 4 Msim, A
iffae [[@;r (PO Na tr'@,ﬂgm(@)r -o.,PoAa tr'@,/ﬂsﬁm(ﬁo))ﬂD;gg (SDEAG)

ars
. My, A D
iff { [Po Aatr g (@) (a)} € oD (seac)

(semantics nondeterministic @-logic)

ars
iff { [po Aatr, 4 ()]pem® (a>} € (PSpeac \ {2}

(definition gP®¢)

110 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

iff [po Aatrl 4 (e (a) # @

. M m,g M im/g
iff [[PO]] DeSagS (Cl) N [[tr,@,.%Sﬁm((P)Il DeSagS (C() 2
(semantics nondeterministic @-logic)

iff colpeac (po) (@) N [tr, 4 (@)pe® (a) # @

(semantics nondeterministic @-logic)

iff {inj,(s)} N [[tr’@,/%&m((p)ﬂg%j’;?ég (0) # @ (definition colpgac)

iff injo(s) € [t 4 (P)peme? (a)

iff a € [try, /%Sﬁm(qo)]]gﬂesggg(inja(s)). (definition transpose)
Putting together Equations (5.2) and (5.3), we obtain the statement we
set out to prove. m|

Third Step

Starting with a pointed Jg-model (5, s), we can go to a pointed s, a-
model (S, s)IL‘Dgg, which we can then deagentize to get the multiplayer /sg;,-
model Deag((§, s)2). Similarly, starting with a formula ¢ of Logg, we
translate it to a formula try oz 5 a(¢@) of Logg g, which we then translate to
a formula trg g, (triee,ma(@)) of nondeterministic monotone neighbour-
hood @-logic w.r.t. Sim.

But in order to obtain a proof of equiexpressivity, we now need to trans-
form pointed Jg-models to pointed multiplayer -models, and translate
formulas of Logg to formulas of nondeterministic @-logic w.r.t. Log (mi-
nus role switches). We will aim to transform pointed Jg-models (S, s) to
pointed multiplayer -models Deaggs (5, s), which we will refer to as J-de-
agentizations. Informally, we define Deagg such that the diagram

Obj (Coalg*Aset (9G,Prop))

Deagg
(_)1L®gg \
~

Obj (Coalg) g, (Lsim,a Prop)) Obj (Coalgy, () (5:4)

Deag
L
N %

Obj (Coalg},, (sin,mp))

almost commutes. Let us make precise what we mean by this. Recall that
we have fixed some nonnullary & € Sym. We will write Deag((S, s)]L‘Dgg) =

5.1. Equiexpressivity and Deagentization 111

(8',s’) with & = (S’,0",col’y and (Deags(S,s))t8 = (8”,s”) with §” =

(8”,0”,col”). We will define Deagg in such a way that S’ = S”, s, = s/,

col” = col”, 6l,(s") = 05(s’) forall s” € S’ \ {s.} and © € Sym, and g, (s]) =
04 (s!). Thus we justify the usage of the term almost: Diagram (5.4) would
commute, were it not for the possibility that o{,(s) # 0J(s;) for © # &.

Let us first define the corresponding translation tr g, 10s from Logg
to nondeterministic @-logic w.r.t. ILog. This is completely analogous to the
composition trg g, © trLeg,sa. We first inductively define

t f, Log(Pi) 1= Pist, (i < w)
t g 1o B7) = Laa,
t g Lo (P VW) =t o (@) Vatt e 1o (§),
trl/ﬂgﬁm,Log(ﬂ(P) = —'gtr'/%smlog((p), and
t e Log (V@1 Paro)) = Qaltr ey (01), oty (Par)).

Then we can define

tF Msion Loz (P) = da(po Aatr ey o (@), po Attty 10, ()

ar& times

for all ¢ in Logg. Using this translation tr 4, 1.z along with a transforma-
tion Deagg making Diagram (5.4) almost commute in the sense described
earlier, it will follow immediately from the semantics of nondeterministic @-
logic w.r.t. Log and Equation (5.1) and proposition 5.1.4 that the semantics
gets preserved using said transformation and translation. To understand
this better, observe from the definition of tr 4, 10 that intuitively we will
only be interested in the &-neighbourhood function, at least when we are
considering the basepoint of a multiplayer 9-model. This is again quite in-
formal, and will become more precise when we prove Proposition 5.1.7.

To define a transformation Deagg satisfying our criteria, we unfortu-
nately require an additional assumption about the logic Log. Besides mere-
ly assuming there to be some & € Sym with ar& > 1, we also require that for
all nonempty sets S, there exists some Us € IS such that

Us € lift§ (A1, ..., Aara) iff there exists 1 <7 < ard such that A; # @,

forall Ay, ..., Asa € PS. We will refer to this assumption as ().

Remark 5.1.5. Our assumption of (x) is quite a strong assumption to make.
In general, not every set functor admits a predicate lifting lift* (of any arity)
such that (%) holds. Considering some of the classic examples of coalgebra
functors (cf. Example 2.1.2), the interested reader can verify that the func-
tors Fse;, C X (=) for some set C, and 2 x (=)¢ do not admit predicate
liftings satisfying (%), no matter the arity. Using the well-known bijective

112 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

correspondence between n-ary predicate J-liftings and subsets C C J(2")
(see e.g. Leal (2008)), it is not difficult to verify for e.g. the identity functor
Jdse that (k) being satisfied would entail that A; # @ for some i (as in
the definition of (x)) implies that there is some j such that Us € A;, which
obviously does not hold in general.

But other classic examples like %, /', and ./, as well as the bag func-
tor Bag®, all admit (unary) predicate liftings satisfying (x). Consdering
e.g. &, the lifting is in fact the one corresponding to the ¢-modality: taking
Us := S works. Similarly, considering %Beg, the lifting is the one corre-
sponding to the unary modality ¢>°, with ¢>%¢ holding at a state s € S
given transition map o iff there is some t € S at which ¢ holds such that
o(s)(t) > 0.

Though we do not pursue this further or try to argue formally for it, it
informally seems to be the case that (x) holding for some coalgebra type 5
requires that states in J-coalgebras can potentially ‘reach” all other states.
All examples of functors we gave for which (%) holds are of this kind, while
the counterexamples are in fact not. <

Definition 5.1.6. Given a pointed Jg-model (S, s) with 5 = (S, 0, col), de-
fine the multiplayer 7-model (S’, 0/, col’) by letting (S’, 0”) be the coproduct

D (S0,

acd

and letting col’ be the unique function induced from col by the universal
property of the coproduct }, S of sets.
The F-deagentization of (S, s) is the pointed multiplayer I-model

Deagy (S, s) := <S/ U {sDeac} GDEAG'g/ COlDEAG/ SDEAG> ’

where D467 is defined for s’ € S’ as ¢PF4%7(s”) := ¢’(s’), and for spgac as
0P 7 (5ppag) = Usrugsp.), Where Usiugsp,..) is given by our assumption of
(%). The colouring colP** is defined identically to the colouring of the same
name in Definition 5.1.2. <

Proposition 5.1.7. Let (S, s) be a pointed Tgq-model with S = (S, o, col), and
write Deag«S/ S>]L®gg) = <SDEAGI GDEAG/ COlDeag/ SDEAG> and (Deagg(S, S>)]L®g =
<SDEAG/ gDEAGT co|Deag, sDEAG> . It holds that

(i) oS (injy(s)) = GQDEAG’g(inja(s))for all s € S and © € Sym,

. DEaG,
(Zl) UEEAG(SDEAG) =0, EAG 9(SDEAG)-

4 Also known as the multiset functor, this functor sends sets X to the set Bag X := (w+1)X.

5.1. Equiexpressivity and Deagentization 113

Proof. First of all, note that the theorem is stated correctly: the state spaces,
colourings and basepoints of Deag((S, s)Logg) and (Deag4(S, s))t*8 are in-
deed equal.

We begin by showing (i). Expanding the definition of Deag(($, s)"*5%),
we denote the transition map of the coproduct obtained through the dea-
gentization (Definition 5.1.2) by ¢’. We can (partially) summarize the con-
struction of Deag({$, s)“‘ogg) by stating that the diagram

nj, Oa

LS < S

> IS

—

o’ lifty oo(>) (55)
< S a oeSym liftg

Msi, 1S T Msir, S ———— MaroS
Sim NJq pProjo
commutes for all a € @ and © € Sym. We write X instead of }},.q for sim-
plicity.

Denoting the transition map of the coproduct in the construction of the
JI-deagentization (Deagg (S, s))1°8 by ¢, we similarly find that the diagram
s — ™ v ¥s
Oa a”
gs — ™ 4 978 (5.6)

ng lifty

ﬂarvs —> ﬂarvzs

Maroinj,

commutes for all « € @ and © € Sym.
Gluing Diagrams (5.5) and (5.6) together and adding the projection
map proj, : Msim2S — MaoXS, we obtain the diagram

”

IS z > JLS
S * 5 IS el
l ™ (5.7)

Projo

<Iiftf5’ oaa> At i M, LS > Moo XS
VeSym Sim NJq

/ %inja

Msim S > MaroS

projo

for each a and 9. It follows from Diagrams (5.5) and (5.6) commuting that
Diagram (5.7) commutes if the bottom and back faces of the cube commute.

114 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

The back face of the cube commutes by definition of ¢’ and ¢”. The com-
mutativity of the bottom face can be easily verified by direct computation.

As a particular instance of the commutativity of Diagram (5.7), we then
get that

liftyg © 0” oinj, = proj, © o’ o inj,,
from which (i) follows immediately by definition of dP*¢ and D=7

It finally follows immediately from the definition of the operation (—)-°2
and the assumption of () that (ii) also holds. O

Theorem 5.1.8. Let (S, s) be a pointed Tg-model with' S = (S, o, col), and write
Deag (S, s) = (DeaggS, Speac). Then it holds that

[p15"5%(5) = [t1.trsim Lo ()] po s (5DeG)

for all formulas ¢ of Logg.
Proof. This follows from Equation (5.1) and propositions 5.1.4and 5.1.7. O

5.2 Multiagent Modal Logic and Role Switches

In How True’, Fitting gives examples showing how Boolean-valued basic
modal logic “can facilitate the natural expression of things.” These are ex-
amples of multiagent situations which would usually be expressed using
propositional variables and modalities for each agent, like the motivating
example we gave in Chapter 1, in which propositional variables p, and py
are replaced by a single propositional variable p. Fitting further alludes to
such applications of Boolean-valued basic modal logic, by stating that e.g.
using an epistemic interpretation of the O-modality, it holds that “a truth
value for Og, in % {a, b}, is the set of [agents] who know ¢.”

But as the Extended Slicing Theorem (Theorem 3.1.8) and the more gen-
eral Coalgebraic Slicing Theorem (Theorem 3.2.19) show, Boolean-valued
modal logic is more limited in this regard than one would reasonably ex-
pect. This limitation arises from the fact that Boolean-valued modal logic al-
lows no interactions between agents’ slices, which corresponds to e.g. a lack
of nested modalities for different agents. In this section, we will rigorously
show that there are even further limitations, and propose role switches,
from the nondeterministic @-logic of Section 4.3, as a way to circumvent
these limitations.

We begin by making formal a desideratum stating that Boolean-valued
coalgebraic modal logic “facilitates the natural expression of things.” We in-
terpret this as meaning that Boolean-valued coalgebraic modal logics over a

5Recall that we use the term How True to refer to the article by Fitting (2009) on which
Chapter 3 is based.

5.2. Multiagent Modal Logic and Role Switches 115

set functor 7 (more specifically, Booleanizations Logg) express two-valued
coalgebraic modal logics over the set functor (7(-))?, in which propositional
variables and modalities are all indexed by agents. We refer to such two-
valued coalgebraic modal logics as multiagent coalgebraic modal logics.

Definition 5.2.1. Let Log = (Sim, Lift) be a two-valued coalgebraic modal
logic over a set functor 7, and Prop a set of propositional variables. The
multiagent coalgebraic modal logic Logys, over the set functor (7(—))? and set

Propya = {pa;p € Prop,a € g}
of propositional variables, is defined as Logya := (Simma, Liftya), where

Symya = {¥q;9 € Sym, a € @},

and
Liftya = (Iift@“%esym’aeg
is defined by putting
lifte (A1, . .., Aarw) == {U € (I5)*;U(a) € lift(Ay, ..., Aaw)}
for Ay, ..., Ao € 9S. <

We can view (7(-))*-models (over Propy;s) as Ta-models (over Prop),
and vice versa, giving the transformation between structures. This should
be immediately clear for the transition maps, but is also easy for the colour-
ings, since we can consider a colouring assigning p, and py to a state s to be
an agent-indexed colouring assigning {a, b} to p at s. Keeping this in mind,
we will no longer distinguish these two types of models, and will refer to
both as 7g-models for brevity of notation.

Note that we need to be careful in defining when we consider the
Booleanization Logg to express the multiagent coalgebraic modal logic
Logya, since their truth values differ. We will say the Booleanized coalge-
braic modal logic Logg expresses the multiagent coalgebraic modal logic
Logp, if there is a translation tr from the formulas of Logy, to those of
Logg, such that for all 73-models § = (S, o, col) and states s € S, it holds
that

s € [plg™™ iff [tr(p)]s ™ (s) = @

for all formulas ¢ in Logys. This is a natural way to define Logg express-
ing Logya, as the truth value T in the two-element Boolean algebra corre-
sponds to the truth value @ in the powerset 4. In fact, Fitting also considers
the assertion of a formula ¢ to mean that its truth value is 4.

Let us first treat some examples in which the translation is easily found.

116 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

Example 5.2.2. Consider @ = {a,b}. For single propositional variables p,,
the translation is easily given, with tr(p,) := "a” — p doing the trick. Con-
junctions p, A py are also easily dealt with, by defining tr(p, A pp) := (Ta™ —
p) A ("b7 — p). Negations are very simple, with tr(—-p,) := "a7 — —p. We
can even work with some nested modalities and more complex formulas.
Considering a unary modality ¢ for simplicity, we can e.g. use the transla-
tion

tr(0a®apa A —pp) == (Tam = Oop) A(TDT — —p). <

Unfortunately, we can also give counterexamples showing that suitable
translations do not generally exist.

Example 5.2.3. Consider @ = {a, b}. As said before, the Coalgebraic Slicing
Theorem shows that we cannot deal with e.g. formulas ¢,¢pp,. Interestingly,
there is an even simpler and more essential part of ILogy, 4 that Logg cannot
deal with. Consider the formula p, V pp. Intuition obtained from the other
translations would suggest that a suitable translation could be something
like ("a™ — p) V ("b7 — p). But by the semantics of ILogg, this translation
is always trivially valid with truth value @.

There is in fact no suitable translation tr(p, V py). Consider three Ig-
models $ = ({s},0,col), % = ({s},0,col’yand " = ({s}, g, col”), where o
is irrelevant and the colourings are defined as col(s)(p) = @, col’(s)(p) = {a},
and col”(s)(p) = {b}. Then clearly, S5,s €5 5,5 and $,s <, 5", s (where
we are using bisimilarity as defined in Definition 3.1.9), and so by adequacy

(Theorem 3.1.12) it follows that $,s =, $’,s and 5,5 =, $”, s.

Obviously, s € [pa V pb]]gf,%MA and s € [pa vV pb]}g;",)gMA. Supposing the

semantics-preserving formula ¢ = tr(p, V pp) exists, we would then have

that [[(p]]gf,@gg(s) = @ and [[(p]}gf,?gg(s) =Q. ByS,s = %,sand 5,5 =, 57, s, it
then follows that [[(p]]gfogg (s) =@ aswell. Buts ¢ [p, Vv pbﬂgfogMA, contradict-

ing the assumption that tr(p, V pp) preserves semantics. <

As we will now show, enriching ILogg with role switches allows us to

define tr. Furthermore, we can even restrict to role switches of the form [a, b]
(where [a, b] is the role distribution only switching a and b), as opposed to
general role switches role for arbitrary role € RDgq.

Definition 5.2.4. The language of Loggq with role switches is the inductively
defined set

Langioe,rs 2 @ ==p [BT [(@ V @) | (=) | (@, ..., 9)) | ([a, b]e),
N——
arQ times

where p € Prop, 8 C 4,V € Sym,and a,b € 4.

Givena Jg-model S = (S, 0, col), the semantics of Logg with role switches is

given by the function [[—]]gf%g’RS : Langy o, RS — (@)°, inductively defined

5.2. Multiagent Modal Logic and Role Switches 117

as

P15 (s) = col(s)(p),
7™ > =3,
[v 915 (s) = [p]s ™ () U ML% s
[-els™ RS(s) =N I
91,) Parc)l§ 5" 1= (Fredta0) (nftsw(p 5, Tpslg™),

[[a,][+ := P[a, b] o [] B

for ¢ € Langy g, gs- <

The translation we will now define is based on the informal idea that we
can consider the semantics of formulas in Logyp for ‘one agent at a time’,
with role switches then allowing us to capture the semantics for the entire
set of agents.

Definition 5.2.5. The a-translation tr, for a € @ from formulas of Logypp to
formulas of Logg with role switches is defined by simultaneous induction
overall a € 4 as

tra(pa) == p,
tra(p) = [a, b]p, (a#D)
tra(@ V) = tra(@) V tra(y),
tro(—@) := —tro(@),
tra(Va(@1, - -+, Qaro)) = tra(@1), . . ., tra(@arv)), and

tra(@b((f)l/ ey (Parv)) = mv(trb((Pl)f ey trb((Par@))' (Cl # b)

Fixing an a € @, the translation tr is then defined as

tr(p) :="a7 — tr(@)
for ¢ in the language of Logyp. <

Theorem 5.2.6. Let $ = (S, g, col) be a Tg-model over Propyp. Then it holds
that

s € [ols™ i [tr(e)]s ™ () = @
for all @ in the language of Logyp.

Proof. We first show by induction on ¢ that

5 € [plg™ ™ iff b € [try(@)] ™" (s) (5.8)

118 5. MuLTIPLAYER GAMES AND MULTIAGENT-VALUED LoGIC

for all b € 4. First consider a variable py. Then we have that

s € [[pb]}gfogMA iff b € col(s)(p)
iffb € ﬂp]]ﬂ“ogg RS (s).

Now consider a variable p. with b # ¢. Then we have that

s € [pg™™ iff ¢ € col(s)(p)
iff ¢ € [p]***"(s)
iff b € [0, cIp[s™*"(s).

The inductive steps for disjunction and negation only require routine Boo-
lean reasoning, so we only consider modalities. Starting with the formula

Ou(P1, - - -, Paro), we find that s € [Op(@1, . .., Parc) 5 =M

iff s € (%%a)(llft%([[(p]]]LogMA, [[(Parv]]]LogMA

iff 05(s) € liftg([pa]s ™™, ..., [[q)a,@]]SGgMA)

iff 0y(s) € TftZ([ers(@0)]e ™™ (), ..., [tro(@arc)]5™ () (IH)
iff b € (Mga)((hftg)s(ﬂtrb«pl)ﬂ;’gg oo, [trs(@are) 15 22))(5)
iff b € [O(tro(@1), - - -, tro(@are)) 5 E"5(5)

iff b € [tro(Du(@1, - - -, Paro)) s B (s).

Finally, taking the formula (@1, ..., @aro) for ¢ # b, we find that
s € [Qder, ... ,(Parv)]]g@gMA iff b € Jtrp(Vc(@, . .. /(Pam))ﬂmgg RS (s)

by the semantics of [b, ¢] and the previous inductive step.
Having shown Equation (5.8), the theorem then follows trivially from

the simple observation that [[tr((p)]]mgg Rs(s) = @ holds if and only if a €
[tra()]s (s 0

CHAPTER 6

CONCLUSION

In this thesis, we have studied coalgebraic generalizations of two logics in
which truth values are identified as sets of agents. We have generalized the
multiagent-valued logic of Fitting (2009) by applying the theory of coalge-
braic modal logic to a new base category of sets and agent-indexed func-
tions, and give proofs of the coincidence of bisimilarity and behavioural
equivalence, as well as of adequacy and expressivity. We have generalized
the multiplayer logic of Olde Loohuis and Venema (2010) by considering a
new, nondeterministic game structure, on which we defined multiplayer
evaluation games by transforming coalgebras into monotone neighbour-
hood frames. Finally, we have proven, under some assumptions on the
coalgebra type, that the coalgebraic multiagent-valued logic is equiexpres-
sive to the fragment of coalgebraic multiplayer logic without role switches,
and that adding role switches to coalgebraic multiagent-valued logic allows
the resulting logic to naturally express situations with multiple agents.
Our work lends itself to several interesting avenues for future work.

o Coalgebraic modal logic offers provides general approaches to sound-
ness and completeness proofs on the basis of so-called one-step deriva-
tion systems (see e.g. Kupke and Pattinson (2011)). Similar to how we
lifted two-valued coalgebraic modal logics to multiagent-valued coal-
gebraic modal logics, one could ask whether sound and complete one-
step derivation systems for a two-valued coalgebraic modal logic also
lift to sound and complete derivation systems for multiagent-valued
coalgebraic modal logics.

Furthermore, Fitting (2009) provides tableaux for his logic. Tab-
leaux have also been considered in the literature for (two-valued)
coalgebraic logics (Cirstea, Kupke, and Pattinson 2009; Goré, Kupke,
and Pattinson 2010; Goré, Kupke, Pattinson, and Schroder 2010) — it
is of interest whether we can similarly find and study tableaux for
multiagent-valued coalgebraic modal logics.

119

120 6. CONCLUSION

e The way we considered coalgebraic modal logics for a functor 7 as
requiring collections of predicate J-liftings, is not fully parametric in
the coalgebra type 7. But the original coalgebraic modal logic of Moss
(1999) — who founded the field — was defined in a way that is fully
parametric in 7, albeit syntactically a bit more unintuitive, and requir-
ing 7 to preserve weak pullbacks.! The semantics of Moss’ logic are
defined using relation lifting, mapping relations R C X X Y to lifted
relations 7R € IX x JY in a certain way. For a multiagent-valued
version of Moss’ logic, it is of interest to see what the corresponding
relation liftings look like.

e In Chapter 1, we mentioned that there has been other work relating
coalgebraic modal logic and games. In particular, Venema (2006) con-
siders game-theoretic semantics for a coalgebraic generalization of the
modal p-calculus. The games considered by Venema (2006) are parity
games, in which matches are generally infinite, unlike in our nondeter-
ministic games with finite matches. It is of interest to see whether suit-
able (nondeterministic) multiplayer analogues of these parity games
can be given, and whether they provide game-theoretic semantics for
some multiagent-valued version of the coalgebraic u-calculus.

e The multiagent-valued logic of Fitting (2009) logic was in fact histor-
ically preceded by the multiagent-valued logic of Fitting (1992). That
logic is built using a partial ordering < over agents, instead of merely
a set of agents, with a < b being interpreted as stating that a dom-
inates b, meaning that all basic facts considered to be true by a are
also considered to be true by b. Using this partial ordering, Fitting
(1992) then constructs an intuitionistic multiagent-valued modal logic
in which the space of truth values corresponds to the Heyting alge-
bra of upwards closed sets of agents (with respect to the dominance
ordering), as opposed to the powerset Boolean algebra. This gives a
richer logic, as the property of dominance between agents becomes
built into the truth values.

It is of interest to see whether this intuitionistic multiagent-valued
logic can also be coalgebraically generalized. This would most likely
require a logical connection with the category HA of Heyting algebras,
and a suitable multiagent version of the category IntKF of intuition-
istic Kripke frames, analogously to how ASet is a multiagent version
of Set.

If a coalgebraic generalization of the logic of Fitting (1992) is
achieved, it is then natural to ask whether there is a corresponding

IThough not relevant to our recommendation for future work, there is work (see e.g.
Marti and Venema (2015)) on Moss-style coalgebraic modal logic without the requirement
of weak pullback preservation.

121

generalization of multiplayer logic that also takes the dominance or-
dering into account. This could potentially arise through interesting
implementations of the multiplayer games, with e.g. turn functions
being monotone with respect to the dominance ordering.

Finally, we close with the following suggestion. There is work by
Baltag (2003), Carreiro, Gorin, and Schroder (2013), and Cirstea
and Sadrzadeh (2007), in which coalgebraic dynamic epistemic sys-
tems and logics are considered. Since dynamic epistemic logics are
generally studied in a multiagent setting, it is natural to study how
multiagent-valued logic relates to the aforementioned coalgebraic
dynamic epistemic logics.

BIBLIOGRAPHY

Peter Aczel and Nax Mendler (1989). “A Final Coalgebra Theorem.” In: Cat-
egory Theory and Computer Science. Ed. by David H. Pitt, David E. Ry-
deheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné. Berlin, Hei-
delberg: Springer, pp. 357-365. 1sBN: 978-3-540-46740-3. por: 10 . 1007 /
BFb0018361.

Jiti Adémek, Stefan Milius, Lurdes Sousa, and Thomas Wifimann (2019).
“On Finitary Functors.” In: Theory and Applications of Categories 34.35,
pp- 1134-1164.

Jifi Adamek and Vera Trnkova (1990). “F-Automata.” In: Automata and Al-
gebras in Categories. 1st ed. USA: Kluwer Academic Publishers. Chap. 3.
1sBN: 0792300106.

Octavian Babus and Alexander Kurz (2016). “On the Logic of Generalised
Metric Spaces.” In: Proceedings of the 13" International Workshop on Coal-
gebraic Methods in Computer Science. Ed. by Ichiro Hasuo. Berlin, Heidel-
berg: Springer, pp. 136-155. 1sBN: 978-3-319-40369-4. por: 10.1007/978-
3-319-40370-0_9.

Alexandru Baltag (2000). “A Logic for Coalgebraic Simulation.” In: Elec-
tronic Notes in Theoretical Computer Science 33. CMCS"2000, Coalgebraic
Methods in Computer Science, pp. 42—60. 1ssn: 1571-0661. por: 10.1016/
S1571-0661(05)80343-3.

— (2003). “A Coalgebraic Semantics for Epistemic Programs.” In: Electronic
Notes in Theoretical Computer Science 82.1. CMCS’03, Coalgebraic Meth-
ods in Computer Science (Satellite Event for ETAPS 2003), pp. 17-38.
1ssN: 1571-0661. por: 10.1016/51571-0661(04)80630-3.

Can Bagkent (2015). “Game Theoretical Semantics for Paraconsistent Log-
ics.” In: Logic, Rationality, and Interaction. Lecture Notes in Computer Sci-
ence. Ed. by Wiebe van der Hoek, Wesley H. Holliday, and Wen-fang
Wang. Berlin, Heidelberg: Springer, pp. 14-26. por: 10 . 1007 /978-3-
662-48561-3_2.

Johan van Benthem, Nick Bezhanishvili, and Sebastian Enqvist (2019). “A
New Game Equivalence, its Logic and Algebra.” In: Journal of Philosoph-
ical Logic 48, pp. 649-684. por: 0.1007/s10992-018-9489-7.

Rudolf Berghammer and Hans Zierer (1986). “Relational Algebraic Seman-
tics of Deterministic and Nondeterministic Programs.” In: Theoretical

123

https://doi.org/10.1007/BFb0018361
https://doi.org/10.1007/BFb0018361
https://doi.org/10.1007/978-3-319-40370-0_9
https://doi.org/10.1007/978-3-319-40370-0_9
https://doi.org/10.1016/S1571-0661(05)80343-3
https://doi.org/10.1016/S1571-0661(05)80343-3
https://doi.org/10.1016/S1571-0661(04)80630-3
https://doi.org/10.1007/978-3-662-48561-3_2
https://doi.org/10.1007/978-3-662-48561-3_2
https://doi.org/0.1007/s10992-018-9489-7

124 BIBLIOGRAPHY

Computer Science 43, pp. 123-147. 1ssN: 0304-3975. por: 10.1016 /0304 -
3975(86)90172-6.

Nick Bezhanishvili, Marcello Bonsangue, Helle Hvid Hansen, Dexter Ko-
zen, Clemens Kupke, Prakash Panangaden, and Alexandra Silva (2020).
Minimisation in Logical Form. ARX1v: 2005.11551 (cs.FL).

Marta Bilkov4 and Matéj Dostél (2013). “Many-Valued Relation Lifting and
Moss’ Coalgebraic Logic.” In: Proceedings of the 5 International Conference
on Algebra and Coalgebra in Computer Science. Ed. by Reiko Heckel and
Stefan Milius. Berlin, Heidelberg: Springer, pp. 66-79. 1sBN: 978-3-642-
40205-0. por: 10.1007/978-3-642-40206-7_7.

— (2016). “Expressivity of Many-Valued Modal Logics, Coalgebraically.”
In: Proceedings of the 23" International Workshop on Logic, Language, In-
formation, and Computation. Ed. by Jouko Vadnanen, Asa Hirvonen, and
Ruy de Queiroz. Berlin, Heidelberg: Springer, pp. 109-124. 1ssn: 978-3-
662-52920-1. por: 10.1007/978-3-662-52921-8_8.

Marta Bilkova, Alexander Kurz, Daniela Petrisan, and Jifi Velebil (2013).
“Relation Lifting, With an Application to the Many-Valued Cover Mo-
dality.” In: Logical Methods in Computer Science 9 (4). por: 10.2168/LMCS-
9(4:8)2013.

Patrick Blackburn, Maarten de Rijke, and Yde Venema (2002). Modal Logic.
1st ed. Cambridge University Press. 578 pp. 1sBN: 9780521527149. por:
10.1017/CB09781107050884.

Marcello Bonsangue and Alexander Kurz (2005). “Duality for Logics of
Transition Systems.” In: Proceedings of the International Conference on
Foundations of Software Science and Computational Structures. Ed. by Vla-
dimiro Sassone. Berlin, Heidelberg: Springer, pp. 455-469. 1sBn: 978-3-
540-25388-4. por: 10.1007/978-3-540-31982-5_29.

— (2006). “Presenting Functors by Operations and Equations.” In: Proceed-
ings of the 9" International Conference on Foundations of Software Science
and Computation Structures. Ed. by Luca Aceto and Anna Ing6lfsdoéttir.
Berlin, Heidelberg: Springer, pp. 172-186. 1sBn: 978-3-540-33045-5. por:
10.1007/11690634_12.

Facundo Carreiro, Daniel Gorin, and Lutz Schroder (2013). “Coalgebraic
Announcement Logics.” In: Proceedings of the 40" International Collo-
quium on Automata, Languages, and Programming. Ed. by Fedor V. Fomin,
Risins Freivalds, Marta Kwiatkowska, and David Peleg. Berlin, Heidel-
berg: Springer, pp. 101-112. 1sBN: 978-3-642-39211-5. por: 10.1007/978~
3-642-39212-2_12.

Brian F. Chellas (1980). Modal Logic: An Introduction. Cambridge University
Press. 1sBN: 9780511621192. por: 10.1017/CB09780511621192.

Corina Cirstea, Clemens Kupke, and Dirk Pattinson (2009). “EXPTIME
Tableaux for the Coalgebraic p-Calculus.” In: Proceedings of the 23™ In-
ternational Workshop on Computer Science Logic. Ed. by Erich Gradel and

https://doi.org/10.1016/0304-3975(86)90172-6
https://doi.org/10.1016/0304-3975(86)90172-6
2005.11551
https://doi.org/10.1007/978-3-642-40206-7_7
https://doi.org/10.1007/978-3-662-52921-8_8
https://doi.org/10.2168/LMCS-9(4:8)2013
https://doi.org/10.2168/LMCS-9(4:8)2013
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/978-3-540-31982-5_29
https://doi.org/10.1007/11690634_12
https://doi.org/10.1007/978-3-642-39212-2_12
https://doi.org/10.1007/978-3-642-39212-2_12
https://doi.org/10.1017/CBO9780511621192

Bibliography 125

Reinhard Kahle. Berlin, Heidelberg: Springer, pp. 179-193. 1sBn: 978-3-
642-04026-9. por: 10.1007/978-3-642-04027-6_15.

Corina Cirstea, Alexander Kurz, Dirk Pattinson, Lutz Schrdder, and Yde
Venema (2009). “Modal Logics are Coalgebraic.” In: The Computer Jour-
nal 54.1, pp. 31-41. 1ssn: 0010-4620. por: 10.1093/comjnl/bxp004.

Corina Cirstea and Mehrnoosh Sadrzadeh (2007). “Coalgebraic Epistemic
Update Without Change of Model.” In: Proceedings of the 2" Interna-
tional Conference on Algebra and Coalgebra in Computer Science. Ed. by Till
Mossakowski, Ugo Montanari, and Magne Haveraaen. Berlin, Heidel-
berg: Springer, pp. 158-172. 1sBn: 978-3-540-73857-2. por: 10.1007/978-
3-540-73859-6_11.

— (2008). “Modular Games for Coalgebraic Fixed Point Logics.” In: Elec-
tronic Notes in Theoretical Computer Science 203.5. Proceedings of the
Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS
2008), pp. 71-92. 1ssn: 1571-0661. por: 10.1016/j.entcs.2008.05.020.

Brian A. Davey and Hilary A. Priestley (2002). Introduction to Lattices and
Order. 2nd ed. Cambridge University Press. por: 10.1017/CB097805118
09088.

Melvin Fitting (1992). “Many-Valued Modal Logics IL.” In: Fundamenta In-
formaticae 17, pp. 55-73.

— (2003). “Bisimulations and Boolean Vectors.” In: Advances in Modal
Logic 4. Ed. by Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and
Michael Zakharyaschev, pp. 97-125.

— (2009). “How True It Is = Who Says It's True.” In: Studia Logica: An In-
ternational Journal for Symbolic Logic 91.3, pp. 335-366. 1ssn: 00393215,
15728730. por: 10.1007/s11225-009-9178-1.

Rajeev Goré, Clemens Kupke, and Dirk Pattinson (2010). “Optimal Tableau
Algorithms for Coalgebraic Logics.” In: Proceedings of the 16" Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Ed. by Javier Esparza and Rupak Majumdar. Berlin, Heidel-
berg: Springer, pp. 114-128. 1sBn: 978-3-642-12001-5. por: 10.1007/978-
3-642-12002-2_9.

Rajeev Goré, Clemens Kupke, Dirk Pattinson, and Lutz Schroder (2010).
“Global Caching for Coalgebraic Description Logics.” In: Proceedings of
the 5" International Joint Conference on Automated Reasoning. Ed. by Jiirgen
Giesl and Reiner Héahnle. Berlin, Heidelberg: Springer, pp. 46-60. 1sBN:
978-3-642-14202-4. por: 10.1007/978-3-642-14203-1_5.

Helle Hvid Hansen and Bartek Klin (2011). “Pointwise Extensions of GSOS-
Defined Operations.” In: Mathematical Structures in Computer Science 21.2,
pp- 321-361. 1ssn: 0960-1295. por: 10.1017/5096012951000054X.

Helle Hvid Hansen, Clemens Kupke, and Eric Pacuit (2009). “Neighbour-
hood Structures: Bisimilarity and Basic Model Theory.” In: Logical Meth-
ods in Computer Science 5.2, pp. 1-38. 1ssn: 1860-5974. por: 10.2168/LMCS-
5(2:2)2009.

https://doi.org/10.1007/978-3-642-04027-6_15
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1007/978-3-540-73859-6_11
https://doi.org/10.1007/978-3-540-73859-6_11
https://doi.org/10.1016/j.entcs.2008.05.020
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1007/s11225-009-9178-1
https://doi.org/10.1007/978-3-642-12002-2_9
https://doi.org/10.1007/978-3-642-12002-2_9
https://doi.org/10.1007/978-3-642-14203-1_5
https://doi.org/10.1017/S096012951000054X
https://doi.org/10.2168/LMCS-5(2:2)2009
https://doi.org/10.2168/LMCS-5(2:2)2009

126 BIBLIOGRAPHY

Russell S. Harmer (1999). “Games and Full Abstraction for Nondetermin-
istic Languages.” PhD thesis. University of London.

Jaakko Hintikka (1983). The Game of Language: Studies in Game-Theoretical
Semantics and its Applications. 1st ed. Springer Netherlands. 356 pp. 1sBN:
978-90-277-1950-8. por: 10.1007/978-94-010-9847-2.

Bart Jacobs (2016). Introduction to Coalgebra: Towards Mathematics of States and
Observation. 1st ed. Cambridge University Press. 494 pp. 1sex: 97811071-
77895. por: 10.1017/CB09781316823187.

Bartek Klin (2007). “Coalgebraic Modal Logic Beyond Sets.” In: Electronic
Notes in Theoretical Computer Science 173. Proceedings of the 23™ Con-
ference on the Mathematical Foundations of Programming Semantics
(MFPS XXIII), pp. 177-201. 1ssn: 1571-0661. por: 10 . 1016/ j . entcs .
2007.02.034.

Barbara Konig, Christina Mika-Michalski, and Lutz Schroder (2020). “Ex-
plaining Non-bisimilarity in a Coalgebraic Approach: Games and Dis-
tinguishing Formulas.” In: Proceedings of the 15" International Workshop
on Coalgebraic Methods in Computer Science. Ed. by Daniela Petrisan and
Jurriaan Rot. Berlin, Heidelberg: Springer, pp. 133-154. 1sBN: 978-3-030-
57200-6. por: 10.1007/978-3-030-57201-3_8.

Clemens Kupke, Alexander Kurz, and Dirk Pattinson (2004). “Algebraic Se-
mantics for Coalgebraic Logics.” In: Electronic Notes in Theoretical Com-
puter Science 106. Proceedings of the Workshop on Coalgebraic Meth-
ods in Computer Science (CMCS), pp. 219-241. 1ssn: 1571-0661. por:
10.1016/j.entcs.2004.02.037.

Clemens Kupke and Dirk Pattinson (2011). “Coalgebraic Semantics of
Modal Logics: An Overview.” In: Theoretical Computer Science 412.38.
CMCS Tenth Anniversary Meeting, pp. 5070-5094. 1ssn: 0304-3975. por:
10.1016/j.tcs.2011.04.023.

Alexander Kurz (2017). “Boolean-Valued Coalgebraic Logic.” Unpublished.

Alexander Kurz and Raul Andres Leal (2012). “Modalities in the Stone
Age: A Comparison of Coalgebraic Logics.” In: Theoretical Computer Sci-
ence 430. Mathematical Foundations of Programming Semantics (MFPS
XXV), pp. 88-116. 1ssn: 0304-3975. por: 10.1016/j.tcs.2012.03.027.

Raul Andres Leal (2008). “Predicate Liftings Versus Nabla Modalities.” In:
Electronic Notes in Theoretical Computer Science 203.5. Proceedings of the
Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS
2008), pp. 195-220. 1ssn: 1571-0661. por: 10.1016/j . entcs.2008.05.
026.

Johannes Marti and Yde Venema (2015). “Lax Extensions of Coalgebra
Functors and Their Logic.” In: Journal of Computer and System Sciences
81.5. 11th International Workshop on Coalgebraic Methods in Computer
Science, CMCS 2012 (Selected Papers), pp. 880-900. 1ssn: 0022-0000. por:
10.1016/j.jcss.2014.12.006.

https://doi.org/10.1007/978-94-010-9847-2
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/j.entcs.2007.02.034
https://doi.org/10.1016/j.entcs.2007.02.034
https://doi.org/10.1007/978-3-030-57201-3_8
https://doi.org/10.1016/j.entcs.2004.02.037
https://doi.org/10.1016/j.tcs.2011.04.023
https://doi.org/10.1016/j.tcs.2012.03.027
https://doi.org/10.1016/j.entcs.2008.05.026
https://doi.org/10.1016/j.entcs.2008.05.026
https://doi.org/10.1016/j.jcss.2014.12.006

Bibliography 127

Lawrence S. Moss (1999). “Coalgebraic Logic.” In: Annals of Pure and Applied
Logic 96.1, pp. 277-317. 1ssn: 0168-0072. por: 10.1016/50168-0072(98)
00042-6.

Loes Olde Loohuis and Yde Venema (2010). “Logics and Algebras for Mul-
tiple Players.” In: The Review of Symbolic Logic 3.3, pp. 485-519. por: 10.
1017/81755020310000079.

Dirk Pattinson (2001). “Semantical Principles in the Modal Logic of Coalge-
bras.” In: Proceedings of the 18th Annual Symposium on Theoretical Aspects of
Computer Science. Berlin, Heidelberg: Springer-Verlag, pp. 514-526. 1sBN:
3540416951. por: 10.1007/3-540-44693-1_45.

Dusko Pavlovic, Michael Mislove, and James Worrell (2006). “Testing Se-
mantics: Connecting Processes and Process Logics.” In: Proceedings of the
International Conference on Algebraic Methodology and Software Technology.
Ed. by Michael Johnson and Varmo Vene. Berlin, Heidelberg: Springer,
pp- 308-322. 1sBN: 978-3-540-35633-2. por: 10.1007/11784180_24.

Graham Priest (1979). “The Logic of Paradox.” In: Journal of Philosophical
Logic 8.1, pp. 219-241. 1ssn: 00223611, 15730433.

Jan J.M.M. Rutten (2000). “Universal Coalgebra: A Theory of Systems.” In:
Theoretical Computer Science 249.1. Modern Algebra, pp. 3-80. 1ssn: 0304-
3975. por: 10.1016/50304-3975(00) 00056-6.

— (2019). The Method of Coalgebra: Exercises in Coinduction. Amsterdam, The
Netherlands: CWI. 1sBn: 978-90-6196-568-8.

Lutz Schroder (2008). “Expressivity of Coalgebraic Modal Logic: The Lim-
its and Beyond.” In: Theoretical Computer Science 390.2. Foundations of
Software Science and Computational Structures, pp. 230-247. 1ssn: 0304-
3975. por: 10.1016/j.tcs.2007.09.023.

Harald Sendergaard and Peter Sestoft (1992). “Non-Determinism in Func-
tional Languages.” In: The Computer Journal 35.5, pp. 514-523. 1ssN: 0010-
4620. por: 10.1093/comjnl/35.5.514.

Sam Staton (2009). “Relating Coalgebraic Notions of Bisimulation.” In: Al-
gebra and Coalgebra in Computer Science. Ed. by Alexander Kurz, Marina
Lenisa, and Andrzej Tarlecki. Berlin, Heidelberg: Springer, pp. 191-205.
1SBN: 978-3-642-03741-2. por: 10.1007/978-3-642-03741-2_14.

Alfred Tarski (1935). “Zur Grundlegung der Boole’schen Algebra. I.” Ger-
man. In: Fundamenta Mathematicae 24.1, pp. 177-198.

Tero Tulenheimo and Yde Venema (2008). “Propositional Logics for Three.”
In: Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid
Rahman. London, UK: College Publications, pp. 399-429. por: 11245/1.
299852.

Yde Venema (2006). “Automata and Fixed Point Logic: A Coalgebraic Per-
spective.” In: Information and Computation 204.4. Seventh Workshop on
Coalgebraic Methods in Computer Science 2004, pp. 637-678. 1ssn: 0890-
5401. por: 10.1016/j.ic.2005.06.003.

https://doi.org/10.1016/S0168-0072(98)00042-6
https://doi.org/10.1016/S0168-0072(98)00042-6
https://doi.org/10.1017/S1755020310000079
https://doi.org/10.1017/S1755020310000079
https://doi.org/10.1007/3-540-44693-1_45
https://doi.org/10.1007/11784180_24
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1093/comjnl/35.5.514
https://doi.org/10.1007/978-3-642-03741-2_14
https://doi.org/11245/1.299852
https://doi.org/11245/1.299852
https://doi.org/10.1016/j.ic.2005.06.003

128 BIBLIOGRAPHY

James Worrell (2005). “On the Final Sequence of a Finitary Set Functor.”
In: Theoretical Computer Science 338.1, pp. 184-199. 1ssn: 0304-3975. por:
10.1016/j.tcs.2004.12.009.

https://doi.org/10.1016/j.tcs.2004.12.009

	Introduction
	Thesis Outline and Contributions

	Preliminaries
	Coalgebra
	Coalgebraic Modal Logic
	Notation

	Multiagent-Valued Logic
	Boolean-Valued Basic Modal Logic
	Syntax, Models and Slices
	Propositional Constants
	Bisimulations and Bounded Morphisms

	Boolean-Valued Coalgebraic Modal Logic
	Agent-Indexed Coalgebras
	Logical Connection and Predicate Liftings
	Bisimulations and Behavioural Equivalence
	Adequacy and Expressivity

	Multiplayer Game Logic
	Deterministic Multiplayer Games
	Games, Syntax and Semantics
	Undefinability of Connectives and Modalities

	Nondeterministic Multiplayer Games
	Games and Matches
	Demonic and Angelic Winning Strategies
	Logic and Evaluation Games
	Connectives and Negation
	Bisimulations and Adequacy

	Coalgebraic Multiplayer Logic
	Predicate Liftings and Neighbourhood Frames
	Polyadic Monotone Neighbourhood Games

	Multiplayer Games and Multiagent-Valued Logic
	Equiexpressivity and Deagentization
	Multiagent Modal Logic and Role Switches

	Conclusion
	Bibliography

