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Abstract

Cyclic derivations are finite graphs in which adjacent nodes are labeled by sequents ac-
cording to locally sound derivation rules. These graphs serve as a finite representation of
the infinite derivation trees obtained by unraveling them. To be considered proofs, such
derivations need to satisfy an additional soundness condition called the global trace con-
dition. Intuitively, any given cyclic derivation system can be separated into two different
aspects: (i) its logical content, captured by the derivation rules and by how the global
trace condition relates to the sequents being derived, and (ii) its cyclic content, which is
concerned with the combinatorial aspects of the global trace condition and which kinds
of graphs can serve as derivations. When comparing cyclic derivation systems, even ones
with wildly different logical content, one often observes that their cyclic content is very
similar. A general theory of the cyclic content of cyclic derivation systems could prove
useful when designing, studying and comparing concrete cyclic derivation systems.

In this thesis, we formalize the cyclic content described above in an abstract manner easily
applicable to most cyclic derivation systems. We do this by abstracting infinite branches
through derivations to infinite sequences of morphisms through trace categories, categories
which are equipped with a condition on such sequences of morphisms which is invariant
under certain transformations. Cyclic derivations can then be represented as functors
mapping cyclic graphs into trace categories. Notably, this representation discards all of
the logical content of a cyclic derivation. Indeed, a handful of different trace categories
are sufficient to capture the cyclic content of all cyclic derivation systems in the literature
we have examined so far.

We demonstrate the viability of these abstract notions of cyclic content in two ways:
First, we use the framework to derive uniform proofs of properties of cyclic derivation
systems. Among them the regularization theorem for infinite proofs in finite derivation
systems and a well-known application of Ramsey’s theorem which reduces proof checking
to the examination of certain periodic paths. Second, we demonstrate that various cyclic
derivation systems from the literature fit within our framework, allowing the uniform
proofs to be applied to them.
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Chapter 1

Introduction

Cyclic derivations are rooted, cyclic graphs whose nodes are labeled with sequents accord-
ing to locally sound derivation rules. While a cyclic derivation is a finite object, unfolding
its cycles yields an infinite derivation tree, if at least one such cycle is present in the
graph. The fact that each derivation rule is locally sound in such an infinite derivation,
and by extension in a cyclic derivation, is not sufficient to guarantee that it embodies a
valid argument. This is because the soundness of its infinite branches cannot be reduced
to the validity of axioms. For a cyclic derivation to be a proof, it thus needs to satisfy an
additional soundness condition called the global trace condition (GTC). While the details
vary from system to system, the GTC generally requires every infinite branch through
the derivation to satisfy some desirable property. Usually, this “desirable property” is
some event taking place infinitely often in a trace along the branch, such as some object
decreasing according to a well-order or some fixed-point being unfolded.

Cyclic derivation systems exhibit useful properties which set them apart from more tra-
ditional derivation systems based on finite trees. For example, if there already exists an
infinite game semantics for a logic, it can often be “transformed” into a cyclic proof system
quite naturally because the winning conditions of infinite games are usually structurally
similar to GTCs. Examples of systems derived in this manner are the cyclic tableaux
for the modal µ-calculus [28] and the cyclic proof system for the higher-order fixed-point
logic with natural numbers [20]. When comparing the cyclic and finite tree-based proof
systems in logics for which both are known, such as Peano arithmetic [33] or the modal
µ-calculus [21, 28], the cyclic derivation systems usually require fewer axioms, often omit-
ting some of the more complex axioms, such as induction schemata or fixed-point rules.
This difference makes cyclic proof systems very attractive for use as underlying deriva-
tion systems of automated theorem provers (ATPs), programs designed to find proofs
of logical statements without further help or interaction from the user. When designing
an ATP, determining how to “guess” the right place and instantiation of complex axioms
during proof search often is a major point of difficulty. By using a cyclic derivation system
without such axioms, this issue can often be sidestepped completely, although at the cost
of having to perform an often computationally difficult GTC satisfaction check on any
candidate derivation. Indeed, there exist multiple automated theorem provers using cyclic
derivation systems [5, 6, 27, 38] and current investigations such as that of Stratulat [37]
promise to further reduce the cost currently imposed by the GTC checks during proof
searches, making cyclic derivation systems a promising tool for designing future ATPs.
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Cyclic proofs have also proven useful in carrying out proof-theoretic investigations. As a
recent example, cut-free cyclic proof systems have been applied to derive various interpola-
tion properties in a proof-theoretic manner, such as in [2, 24, 31]. Their suitability to this
task again stems from the absence of some of the more complex rules whose application
can disturb the proof-theoretic approach to interpolation (see e.g. [7]).

While cyclic derivations lend themselves to a broad range of different logics, they nonethe-
less tend to have some features in common, such as reasoning about inductively defined
structures [4, 20, 33], the presence of fixed-point quantifiers [10, 20, 28, 34] and proofs
generating (co-)recursively defined functions [9, 12, 30]. Even when comparing wildly
different logics, their cyclic derivation systems themselves often have a common struc-
ture. This similarity extends to logical properties desired of cyclic derivation systems:
Apart from soundness (and possibly completeness) the most important property of a
cyclic derivation system is the decidability of whether a sequent-annotated cyclic graph
constitutes a proof. While deciding whether it is a cyclic derivation is quite easy (simply
check whether each rule is applied correctly), deciding whether it satisfies the GTC tends
to be more complex. Most papers on cyclic derivation systems employ a variant of the
GTC decision procedure based on Büchi automata inclusion first put forward by Sprenger
and Dam [34] (for examples of this, see e.g. [9, 20, 33]). While targeting very different log-
ics, the automata constructed during this decision procedure tend to be very similar from
system to system. These observations suggest that any given cyclic derivation system can
be separated into two different aspects: (i) its logical content, captured by the derivation
rules and by how the global trace condition relates to the sequents being derived, and
(ii) its cyclic content, which is concerned with the combinatorial properties of the global
trace condition and which kinds of graphs can serve as derivations. Two systems of wildly
different logical content may thus be very similar in their trace content.

1.1 Contributions
In this thesis, we develop an abstract, categorical framework capturing the trace content
of cyclic derivation systems. We represent infinite paths through derivations by infinite
sequences of morphisms through trace categories, categories which come equipped with
a trace condition on such paths which is invariant under certain transformations. Cyclic
derivations are then abstracted into the functorial images of finite, rooted, cyclic graphs
into a trace category. Notably, this approach discards virtually all logical content of cyclic
derivation systems, allowing cyclic proofs for many different logics to be represented in
terms of the same trace category.

We demonstrate the viability of this framework in two ways:

1. We state theorems about cyclic derivation systems in terms of our categorical frame-
work and prove them in a uniform manner;

2. We demonstrate that the cyclic content of various cyclic derivation systems from
the literature is captured by our framework.

The abstract theorems of point 1 can then be specialized to the systems considered under
point 2 to obtain the theorems specific to those systems.

We believe that such a general notion of trace condition and cyclic proof can be applied
to multiple lines of investigation:
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(a) Unifying the proofs of commonly reproven theorems about cyclic derivation systems
by carrying them out within the categorical framework. Besides making the argu-
ments clearer by divorcing them from specific logical details, these general theorems
can then directly be applied to newly designed cyclic derivation systems, saving
their designers the trouble of having to reprove the theorems once again.

(b) Comparing the cyclic content of cyclic derivation systems, highlighting the similar-
ities and differences between their global trace conditions by investigating in which
trace categories they can be expressed.

(c) Asking and Answering new questions about the general properties of cyclic deriva-
tion systems in a manner which applies to many such systems at once.

(d) Generalizing results which are currently tied to specific cyclic derivation systems by
viewing them through the lens of the categorical framework, allowing them to be
easily transferred to many other cyclic derivation systems.

Within this thesis, we present results belonging to points (a) through (c). Notably, we
derive a novel GTC decision procedure which does not make use of automata theory
and which arises quite naturally from the notions of our abstract framework. Examples
of some problems suitable to inquiry along the line of (d) are given as future work in
Section 7.2.

Lastly, we note that ours is not the first proposed abstract notion of trace condition.
A system with similar underlying ideas and goals has previously been put forward by
Brotherston in his dissertation [4]. Brotherston’s approach is purely combinatorial while
we employ a category theoretic framework. Nonetheless, there are both significant over-
laps and differences between our approaches. For example, while his abstract notion of
trace and our A-activated trace categories are of equivalent expressivity, our more general
notion of trace categories has no analogue in his work. We postpone a detailed comparison
between his framework and ours to Section 7.1 since it requires referencing of a lot of the
more technical definitions and results laid out within this thesis. However, it should be
noted that all definitions and results concerning our framework have been derived inde-
pendently of those of Brotherston since we only became aware of his work during the late
writing stage of this thesis.

1.2 Outline
We close this chapter in Section 1.3 by laying out the cyclic derivation system for Peano
arithmetic to serve as a running example for later chapters. After this, the thesis is
structured as follows:

In Chapter 2 we introduce the concepts underpinning the rest of the thesis. Section 2.1
defines trace categories (Definition 2.7) and abstract cyclic derivations (ACDs) (Defini-
tion 2.12), which separate the “trace content” of cyclic derivations from the specific logic
they embody. Section 2.2 gives two procedures for transforming abstract cyclic derivations
into simpler, equivalent ACDs.

Chapter 3 gives a categorical mechanism for specifying the transformation procedure
which converts the cyclic derivations of a given logic into ACDs. For this, Section 3.1
provides an account of infinite trees constructed according to certain rule sets, a slightly
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more general rendering of infinite derivation trees. We then introduce categories of deriva-
tions (Definition 3.12) which are a categorical reformulation of the ideas form Section 3.1.
Based on categories of derivations, we define trace-interpretations (Definition 3.24), func-
tors which annotate derivations with trace information. These allow us to formalize the
distinction between ∞-derivations and ∞-proofs categorically. The chapter closes with
Section 3.4 in which we demonstrate how a trace-interpretation induces a transformation
from cyclic derivations of a logic to ACDs.

In Chapter 4 we prove general theorems about cyclic derivations using the abstract notions
from Chapters 2 and 3. The results in Section 4.1 are obtained via automata-theoretic
methods. We prove that the global trace condition of abstract cyclic derivations over cer-
tain trace conditions is decidable (Theorem 4.4) and that in certain finite derivation sys-
tems, all∞-proofs can be regularized (Theorem 4.6). The results in Section 4.2 are based
on Ramsey’s theorem. We identify an alternative soundness condition for abstract cyclic
derivations (Lemma 4.13) which is equivalent to the global trace condition and derive from
it a novel GTC decision algorithm which does not use automata (Theorem 4.14).

Chapter 5 is concerned with giving and comparing concrete examples of trace categories.
In Section 5.1 we introduce activation algebras (Definition 5.1) and their induced trace
categories (Definition 5.2), which yield a diverse range of trace categories. We then prove
for which kinds of activation algebras the induced trace categories exhibit the proper-
ties required for results from Chapters 3 and 4. In Section 5.2 we analyze and compare
activation algebras and their associated trace categories via activation-respecting homo-
morphisms (Definition 5.18). We close the chapter in Section 5.3 by investigating which
properties of trace categories are inherited by their subcategories, applying these results
to the subcategory of injective trace maps of a given A-activated trace category.

In Chapter 6 we demonstrate how a selection of cyclic derivation systems from the lit-
erature fits within the abstract framework outlined in the previous chapters and deduce
some of their properties as corollaries of results from Chapter 4.

We close the thesis in Chapter 7. We discuss related work in Section 7.1, including
a detailed comparison between our framework and that put forward in Brotherston’s
dissertation [4]. In Section 7.2 we lay out some questions raised by our work and point
out a number of problems suitable to investigations using our formalism.

Category Theory Prerequisites Most definitions and theorems of this thesis are
presented using ideas from category theory. We assume that the reader is already familiar
with the basic concepts of category theory, including categories, functors and natural
transformations. Readers unfamiliar with such matters are recommended to first consult
introductory works on category theory, such as [23]. All of the less common concepts of
category theory we employ, such as semi-categories and monoidal categories, are defined
in Appendix A.

1.3 Running Example: Cyclic Arithmetic
This thesis deals mostly in abstract definitions and theorems. It is thus useful to have
at hand a concrete cyclic derivation system to refer back to in examples. The system
we have chosen for this purpose is the cyclic derivation system for Peano arithmetic
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first put forward by Simpson [33], commonly referred to as “cyclic arithmetic” (CA) in
the literature. We begin by recalling the syntax and semantics of first-order arithmetic.

Definition 1.1. The terms and formulas of first-order arithmetic are specified by the
grammar given below:

s, t ∈ Term ....= x | 0 | S s | s+ t | s · t
ϕ, ψ ∈ Form ....= s = t | s < t | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀x.ϕ | ∃x.ϕ

Definition 1.2. For assignments ρ : Var→ ω we define a term interpretation by

0ρ ..= 0 xρ ..= ρ(x) (S t)ρ ..= tρ + 1 (s+ t)ρ ..= sρ + tρ (s · t)ρ ..= sρ · tρ

and satisfaction in the standard model ρ � ϕ

ρ � s = t holds iff sρ = tρ ρ � s < t holds iff sρ < tρ

ρ � ϕ ∧ ψ holds iff ρ � ϕ and ρ � ψ ρ � ϕ ∨ ψ holds iff ρ � ϕ or ρ � ψ
ρ � ∀x.ϕ holds iff ρ[x 7→ n] � ϕ for all n ∈ ω ρ � ϕ→ ψ holds iff ρ � ϕ entails ρ � ψ
ρ � ∃x.ϕ holds iff ρ[x 7→ n] � ϕ for some n ∈ ω ρ � ⊥ holds never

We write ρ � (Γ ⇒ ∆) if there is ϕ ∈ Γ such that ρ 6� ϕ or there is ϕ ∈ ∆ such that
ρ � ϕ. We write � (Γ⇒ ∆) if ρ � (Γ⇒ ∆) for all assignments ρ : Var→ ω.

The derivation system of cyclic arithmetic (Definition 1.3) is mostly standard, consisting
of the usual sequent rules for classical first-order logic (including the Cut-rule) and the
axioms of Robinson arithmetic, all arithmetical axioms of Peano arithmetic save for the
scheme of induction. The absence of the induction principle is a noteworthy example of the
pattern of complex axiom schemata being omitted from cyclic variants of proof systems.
The system furthermore contains two rather unusual rules: The Sub-rule allows for some
occurrences of a term t to be replaced by a fresh variable x, an operation admissible
in most derivation systems. The second rule, called Repeat, is more curious: If it is
applied at a node labeled with Γ ⇒ ∆, any occurrence of Γ ⇒ ∆ above the point of
application in the derivation may be treated as an axiom. The purpose of the Repeat-
rule is to create cycles in the derivation: When, while reading a CA proof bottom-up,
one reaches a leaf discharged because of the Repeat-rule, one circles back to the Repeat-
application and continues following the branches upward. The Repeat-rule thus allows
for the subderivation above it to be “pasted” onto suitable nodes above it, thus creating
cycles which induce an infinite derivation. We have chosen to present CA in terms of
such a Repeat-rule, inspired by that from [1], instead of general cyclic derivations graphs,
the variant more common in the literature, due to the similarity of its presentation to
traditional finitary derivation systems.

Definition 1.3. The sequents we consider are Γ ⇒ ∆ where Γ,∆ are sets of formulas.
The expressions Γ, ϕ and Γ,Γ′ are shorthands for Γ ∪ {ϕ} and Γ ∪ Γ′, respectively.

The derivation rules of cyclic arithmetic are the following standard rules for first-order
logic, denoting by [t/x] the operation of substituting a term t into all free occurrences of

5



the variable x,

Ax
Γ, ϕ⇒ ϕ,∆

→L
Γ, ϕ⇒ ∆ Γ⇒ ψ,∆

Γ, ϕ→ ψ ⇒ ∆
→R

Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆

∧L
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
∧R

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∧ ψ,∆ ∨L
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆

∨R
Γ⇒ ϕ, ψ,∆

Γ⇒ ϕ ∨ ψ,∆ ∀L
Γ, ϕ[t/x]⇒ ∆

Γ,∀x.ϕ⇒ ∆
∀R

Γ⇒ ϕ,∆ x 6∈ FV(Γ,∆)

Γ⇒ ∀x.ϕ,∆

∃L
Γ, ϕ⇒ ∆ x 6∈ FV(Γ,∆)

Γ, ∃x.ϕ⇒ ∆
∃R

Γ⇒ ϕ[t/x],∆

Γ⇒ ∃x.ϕ,∆ ⊥L
Γ,⊥ ⇒ ∆

=L
Γ[t/x, s/y]⇒ ∆[t/x, s/y]

Γ[s/x, t/y], s = t⇒ ∆[s/x, t/y]
=R

Γ⇒ t = t,∆

together with the following structural rules

Wk Γ⇒ ∆
Γ,Γ′ ⇒ ∆,∆

Cut
Γ, ϕ⇒ ∆ Γ⇒ ϕ,∆

Γ⇒ ∆

Sub Γ⇒ ∆
Γ[s/x]⇒ ∆[s/x]

Repeat

[Γ⇒ ∆]
...

Γ⇒ ∆
Γ⇒ ∆

and the following arithmetic-specific axioms and rules

s < t, t < u⇒ s < u s < t⇒ S s < S t ⇒ s+ S t = S (s+ t)

s < t, t < s⇒ ⇒ s < t, s = t, t < s ⇒ t · 0 = 0

s < t, t < S s⇒ ⇒ t < S t ⇒ s · S t = (s · t) + s

t < 0⇒ ⇒ t+ 0 = t

and the arithmetic-specific derivation rule

Γ, t = S x⇒ ∆ x fresh
Γ, 0 < t⇒ ∆

A cyclic derivation of Γ ⇒ ∆ is a finite derivation, derived according to the rules above
such that all of its leaves Γ′ ⇒ ∆′ are either axioms or discharged via an application of
the Repeat-rule. In the latter case, the leaf-occurrence of Γ′ ⇒ ∆′ is called a bud and the
application of the Repeat-rule is called its companion.

An∞-derivation of Γ⇒ ∆ is a possibly infinite derivation of Γ⇒ ∆ constructed accord-
ing to the rules above, excluding the Repeat-rule, such that all of its leaves are axioms.

As the scheme of induction is an axiom of Peano arithmetic and cyclic arithmetic is a
proof system for Peano arithmetic, the scheme of induction should be provable in cyclic
arithmetic. This is demonstrated by the derivation below which proves the scheme of
induction for a given formula ϕ. We employ the shorthand prg(ϕ) ..= ϕ → ϕ[S x/x] to
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denote the fact that ϕ is progressing. Note that, for the sake of readability, we do not
restrict ourselves to only use rules from Definition 1.3 but also employ other rules which
are easily seen to be admissible in cyclic arithmetic. Observe specifically the necessity of
the Sub-rule in the right-hand branch to obtain a sequent which may be discharged by
the Repeat-rule.

ϕ[0/x]⇒ ϕ[0/x]
Wk

ϕ[0/x], ∀x.prg(ϕ)⇒ ϕ[0/x]

ϕ[y/x]⇒ ϕ[y/x]
Wk

. . . , ϕ[y/x]⇒ ϕ[y/x]

[ϕ[0/x],∀x.prg(ϕ)⇒ ϕ] (∗)
Sub

ϕ[0/x],∀x.prg(ϕ)⇒ ϕ[y/x]

y < x, ϕ[0/x],∀x.prg(ϕ)⇒ ϕ[y/x]
→L

y < x, ϕ[0/x],∀x.prg(ϕ), prg(ϕ)[y/x]⇒ ϕ[S y/x]

x = S y, ϕ[0/x],∀x.prg(ϕ)⇒ ϕ[S y/x]

ϕ[0/x],∀x.prg(ϕ)⇒ ϕ
(∗) Repeat

ϕ[0/x],∀x.prg(ϕ)⇒ ϕ

The attentive reader may have noticed that we have not yet introduced the global trace
condition. Indeed, based on our explanation in the introduction of this thesis, one would
expect that simply taking cyclic CA derivations as a notion of proof should be unsound.
As an example of this, consider the derivation of ⇒ ⊥ given below:

[⇒ ⊥] (∗)
(∗) Repeat

⇒ ⊥

Specifying the global trace condition of cyclic arithmetic requires further definitions. We
begin by first introducing the GTC for ∞-derivations and derive the GTC for cyclic
derivations from it later in the chapter.

Definition 1.4. A term t occurs in a sequent Γ⇒ ∆ if it appears, possibly as a subterm
of another term, in a formula in Γ or ∆.

Let Γ′ ⇒ ∆′ be a premise of derivation rule R concluding Γ⇒ ∆ as below

R . . . Γ′ ⇒ ∆′ . . .
Γ⇒ ∆

Let t and t′ be terms occurring in Γ⇒ ∆ and Γ′ ⇒ ∆′, respectively. The term t′ is called
a precursor of t if one of the following three conditions holds:

− t = t′;

− if R = Sub and Γ = Γ′[s/x],∆ = ∆′[s/x] and t = t′[s/x];

− if R = (=L) and Γ = Γ′′[s/x, t/y],Γ′ = Γ′′[t/x, s/y] and analogously for the ∆ and
there exists a term t′′ such that t = t′′[s/x, t/y] and t′ = t′′[t/x, s/y].

When Γ⇒ ∆ and Γ′ ⇒ ∆′ are clear from the context, we write t′ ≺R t to denote the fact
that t′ is a precursor of t. Similarly, if the derivation rule can also be inferred, we often
omit the R, writing t′ ≺ t.

Definition 1.5. Let (Γi ⇒ ∆i)i∈ω be an infinite branch through an ∞-derivation and
(Ri)i∈ω be a sequence of rules such that Γi ⇒ ∆i is derived via Ri and Γi+1 ⇒ ∆i+1 is one
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of the premises. A trace through (Γi ⇒ ∆i)i∈ω is a sequence of terms (ti)i∈ω such that ti
occurs in Γi ⇒ ∆i and for every i ∈ ω

ti+1 ≺Ri
ti or there exists s ≺Ri

ti s.t. (ti+1 < s) ∈ Γi+1

If the latter condition holds for ti, ti+im the index i ∈ ω is called a progress point. We call
such a trace progressing if it has infinitely many progress points.

Remark. Intuitively, s ≺ t means that s and t denote the same natural number. This
observation extends to the fact that at any progress point i ∈ ω the natural number
denoted by ti+1 is strictly smaller than that denoted by ti. A progressing trace thus
denotes a sequence of never increasing, infinitely often decreasing natural numbers.

Definition 1.6. An ∞-derivation is a ∞-proof if it satisfies the global trace condition:
every branch (Γi ⇒ ∆i)i∈ω through the proof has a suffix through which there exists a
progressing trace.

Example 1.7. It is quite clear that unfolding the cyclic derivation of⇒ ⊥ cannot yield an
∞-proof: It does not even contain any terms which could serve as the basis of a progressing
trace. On the other hand, the cyclic derivation of the induction scheme we have given
above does unfold into an ∞-derivation which satisfies the global trace condition. To see
why, observe that there is only one branch which runs through it (“always go right”). The
progressing trace through it starts with t0 = x and tracks it until switching to the term
y above the →L-application, focusing back on x at the Sub application. This trace is
progressing as during the switch from x to y, the formula y < x is an assumption. As that
means all branches through the ∞-derivation have a progressing trace, it is an ∞-proof.

Having formally separated ∞-derivations and ∞-proofs, we now check that the global
trace condition indeed constitutes a soundness condition of ∞-derivations.

Theorem 1.8. If there is an ∞-proof of Γ⇒ ∆ then � (Γ⇒ ∆).

Proof. For this suppose that there was some ρ 6� (Γ ⇒ ∆). From this, we can obtain
a branch annotated with sequents (Γi ⇒ ∆i)i∈ω through the ∞-proof, together with a
sequence of assignments (ρi)i∈ω such that ρi 6� (Γi ⇒ ∆i) and furthermore if s and t are
terms occurring in Γi ⇒ ∆i and Γi+1 ⇒ ∆i+1, respectively, then t ≺ s entails tρi+1 = sρi .
We start by taking Γ0

..= Γ,∆0
..= ∆ and ρ0

..= ρ. Now suppose this sequence had already
been derived up to some index i ∈ ω. Then we perform a case distinction on the rule Ri

used to derive Γi ⇒ ∆i. We only spell out three illustrative cases, the other cases are all
analogous to one of them.

− Γi ⇒ ∆i is an axiom: This is not possible as any axiom is valid under every
assignment and ρi 6� (Γi ⇒ ∆i).

− R = Sub: Then Γi = Γ′[s/x],∆i = ∆′[s/x]. Pick Γi+1
..= Γ′ and ∆i+1

..= ∆′.
Furthermore, pick ρi+1

..= ρi[x 7→ sρi ]. Then ρi+1 6� (Γi+1 ⇒ ∆i+1) as we know
that ρi 6� (Γi+1[s/x] ⇒ ∆i+1[s/x]). For the condition on precursors, observe that if
ti+1 ≺Sub ti then either x ∈ FV(ti+1) meaning ti = ti+1[s/x] and thus tρii = t

ρi+1

i+1 , or
x 6∈ FV(ti+1) and thus ti = ti+1 and tρii = t

ρi+1

i+1 as ρi � Var\{x} = ρi+1 � Var\{x}.
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− R = ∧R : Then ∆i = ∆′, ϕ1∧ϕ2. Because ρi 6� (Γi ⇒ ∆i) we know that ρi 6� ϕ1∧ϕ2

and thus that there has to be j ∈ {1, 2} such that ρi 6� ϕj. Then pick Γi+1
..= Γi

and ∆i+1
..= ∆′, ϕj with ρi+1

..= ρi.

Because the ∞-proof satisfies the global trace condition, there exists a good trace (ti)i∈ω
along (Γi ⇒ ∆i)i∈ω. Consider the sequence of natural numbers given by (tρii )i∈ω: At every
index i ∈ ω, either ti+1 ≺Ri

ti, and thus tρi+1

i+1 = tρii , or there is some term s such that
s ≺Ri

ti and ti+1 < s ∈ Γi+1. In the latter case, we know by the same reasoning that
sρi+1 = tρii and furthermore that ρi+1 6� (Γi+1 ⇒ ∆i+1) means that ρi+1 � ti+1 < s and
thus tρi+1

i+1 < sρi+1 = tρii . As the latter case occurs infinitely often along (tρii )i∈ω, it is a
non-increasing sequence of natural numbers which decreases infinitely often, contradicting
the well-orderedness of the natural numbers. �

Remark. Intuitively, the global trace condition of CA enforces that ∞-proofs constitute
arguments by infinite descent: Along every infinite branch there is an infinitely decreasing
sequence of terms. This guarantees that each “semantic instance” of the derivation, the
derivation in which variables are interpreted by some assignment ρ, does not have any
infinite paths as these would give rise to a contradictory sequence of naturals which
decreases infinitely often. This means that each “semantic instance” of an ∞-derivation
is well-founded and its validity can thus be reduced to the validity of the axioms.

The global trace condition for ∞-derivations of CA extends quite naturally to cyclic
derivations of CA.

Definition 1.9. An infinite branch through a cyclic derivation of Γ ⇒ ∆ is a sequence
(Γi ⇒ ∆i)i∈ω such that Γ0 = Γ,∆0 = ∆ and furthermore for every i ∈ ω

− Γi ⇒ ∆i is an inner node of the derivation and Γi+1 ⇒ ∆i+1 is one of its premises

− Γi ⇒ ∆i is a bud and Γi+1 ⇒ ∆i+1 is the premise of its companion

A cyclic derivation is a cyclic proof if it satisfies the global trace condition: infinite every
branch through it has a suffix which has a progressing trace.

Proposition 1.10. If there is a cyclic proof of Γ⇒ ∆ then � (Γ⇒ ∆).

Proof. Observe that any cyclic proof can be “unfolded” into an ∞-proof whose infinite
branches are precisely the infinite branches through the cyclic proof. Then the claim
follows by Theorem 1.8. �

Showing that cyclic arithmetic proves the same theorems as Peano arithmetic is quite
complex, which is why we choose to omit this result from our account of cyclic arithmetic.
We encourage the interested reader to consult [33] for the original proof and [8] for a more
detailed analysis of the derivations produced by the proof method.
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Chapter 2

Abstract Cyclic Derivations

This chapter covers most ideas at the heart of this thesis: cyclic trees, trace categories and
abstract cyclic derivations. These are introduced in order to obtain an abstract represen-
tation of cyclic derivations that captures all of their cyclic content (which infinite branches
run through the derivation and whether these branches satisfy the trace condition) while
discarding all of their logical content (the sequents and the specific derivation rules used to
manipulate them as well as how the trace condition relates to said sequents). Section 2.2
defines algorithms to simplify these abstract representations in different ways.

2.1 Definitions and Motivation
The notions we introduce in this section are easier understood in terms of examples, hence
we fix the following derivation of ⇒ x = x in cyclic arithmetic as a running example.
To fit the page, the derivation has been split into two trees at the node marked with
“Cont.”.

x < 0⇒
Wk

x < 0⇒ x = 0, 0 < x ⇒ x < 0, x = 0, 0 < x
Cut ⇒ x = 0, 0 < x

∨L ⇒ x = 0 ∨ 0 < x
Wk ⇒ x = x, x = 0 ∨ 0 < x

Cont.
x = 0 ∨ 0 < x⇒ x = x

Cut ⇒ x = x
(∗) Repeat ⇒ x = x

=R
x = 0⇒ x = x

⇒ y < S y
Wk ⇒ S y = S y, y < S y

=R
y = y ⇒ S y = S y

[⇒ x = x](∗)
Sub⇒ y = y

Wk⇒ S y = S y, y = y
Cut ⇒ S y = S y

Wk
y < S y ⇒ S y = S y

Cut⇒ S y = S y
=L

x = S y ⇒ x = x
0 < x⇒ x = x∨L

x = 0 ∨ 0 < x⇒ x = x
Cont.

The arithmetical content of the proof is extremely trivial as the same statement could be
proven with just one application of the (=R) rule. However, it serves as a simple example
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of a CA proof with a cycle. Its size is owed to the fact that we did not omit any details
in the proof. To verify that this is indeed a “proof” and not just a cyclic derivation, note
that there is only one infinite branch through the derivation (“always go right”). The
progressing trace along that branch tracks x until encountering the application of (=L),
briefly tracking S y and then switching the tracking to y at the (Cut) which is maintained
until the (Sub) application, when x is tracked again. Said trace is progressing as y < S y
is an assumption when the focus is switched from S y to y, making it a progress point
which occurs infinitely often along the trace.

An important cyclic aspect of any cyclic derivation is its “shape” which dictates the
branches which can run through it. We capture the tree shape of a derivation as trees
over sets.

Definition 2.1. Given a set X, the prefix-ordering on X∗ is defined as follows: For
s, t ∈ X∗ is s a prefix of t, writing s < t, if there is u ∈ X+ such that su = t. If |u| = 1
then one also writes s <+ t and calls t a direct extension of s.

Definition 2.2. Any non-empty set T ⊆ X∗ is called a tree if it is prefix-closed, that is,
if t ∈ T and s < t then s ∈ T . Every s ∈ T is called a node of T and ε ∈ T its root.

The children of a node s ∈ T are given by Chld(s) ..= {t ∈ T | s <+ t} and its breadth is
bd(s) = |Chld(s)|. A tree T is finitely branching if bd(s) ∈ ω for all s ∈ T . A sequence
s ∈ T is called a leaf if Chld(s) = ∅ and an inner node otherwise.

Example 2.3. The tree shape of the derivation of ⇒ x = x can be formalized as the
binary tree T ⊆ 2∗ depicted below. Each node is annotated with the element s ∈ T
representing it.

ε

0

01

011

0110

01100

011001

0110010

01100101

011001010

0110010100

01100100

011000

0110000

010

00

000

0000

0000100000

000000
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To highlight the correspondence between tree with the derivation above, we have un-
derlined all nodes at which the (Cut) rule is applied. Note also that 01 is where the
derivation given above is split.

If one was so inclined, one could also specify the tree explicitly as the set

T ..= {ε, 0, 00, 000, 0000, 00000, 0000000, 00001, 01, 010, 011, 0110, 01100, 011000, 0110000

011001, 0110010, 01100100, 01100101, 011001010, 0110010100}

While such trees arguably capture the “tree shape” of cyclic derivations, they do not
include the most important structural feature of cyclic derivations: the repeats. To fully
capture the “shape” or “structure” of cyclic derivations, we introduce cyclic trees. In
addition to the usual tree structure, they also include a means of connecting buds with
their companions.

Definition 2.4. A cyclic tree on X is a pair C = (T, β) consisting of a finite tree T ⊆ X∗

and a partial map β : Leaf(T ) →̇T with β(s) 6= s for all s ∈ dom(β). Each s ∈ dom(β) is
called a bud and β(s) its companion.

Example 2.5. The full structure of the derivation of ⇒ x = x can be formalized as the
cyclic tree C ..= (T, β) where T is the same as in Example 2.3 and β ..= {(0110010100, ε)}.
The cyclic tree C is pictured below:

ε

0

01

011

0110

01100

011001

0110010

01100101

011001010

0110010100

01100100

011000

0110000

010

00

000

0000

0000100000

000000

Apart from the structure of cyclic derivations, we also wish for our abstract cyclic deriva-
tions to capture the global trace condition and its satisfaction. As noted in the intro-
duction, the GTC of most cyclic derivation systems is of the form “all infinite branches
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through the derivation exhibit a desired property”. It suffices to capture this “desired
property”, which we call the trace condition, to define the notion of global trace condition
in an abstract manner. We begin by defining an abstract notion of path. We ask read-
ers unfamiliar with semi-categories and semi-functors to refer to Appendix A for their
definitions.

Definition 2.6. Fix a category T and denote by ω the preorder category on (ω,<).

1. A path through T is a functor P : ω → T .

2. For two paths P, P ′ : ω → T we write P ⊆ P ′ and say P is a subpath of P ′ if there
is a semi-functor S : ω → ω such that P = P ′ ◦ S

Remark. When used as the domain or codomain of a semi-functor, the symbol ω always
refers to the irreflexive order semi-category (ω,<), analogous to the usual preorder cate-
gory on ω but excluding the identity morphisms.

Remark. We require S : ω → ω to be a semi-functor in point 2. of Definition 2.6 to
exclude the choice of S ..= ∆n where ∆n(i) ..= n is the constant functor. P ◦ ∆n ⊆ P
would break both the intuition what a subpath is and some of the theorems in this thesis.

We formalize trace conditions as predicates on such paths through T which are invariant
under subpaths. Our definition associates each such trace condition with a trace category.
Such trace categories capture the “essence” of the global trace conditions of cyclic deriva-
tion systems. In practice, the global trace conditions of many cyclic derivation systems
which seem similar on an intuitive level are characterized by the same trace category.

Definition 2.7. A trace category is a category T which comes equipped with a trace
condition. A trace condition is a predicate on paths P : ω → T with the property that
for any P ⊆ P ′, the predicate holds for P if and only if it holds for P ′.

Remark. The subpath invariance of trace conditions guarantees two properties:

1. Finite prefixes of paths never matter for trace condition satisfaction: The first n
“steps” of a path P can be dropped by taking S(m) ..= m + n and observing that
P ◦ S ⊆ P .

2. The trace condition is invariant under composition. That is, if there is a path P of
the shape

X0
0

τ00−→ X1
0

τ10−→ X2
0 . . . X

n0
0

τ
n0
0−−→ X0

1

τ01−→ . . .
τ
n1
1−−→ X0

2

τ02−→ . . .

then it suffices to consider the path P ′ below

X0
0

τ
n0
0 ◦...◦τ00−−−−−→ X0

1

τ
n1
1 ◦...◦τ

n1
1−−−−−−→ X0

2

τ
n2
2 ◦...◦τ

n2
2−−−−−−→ . . .

since P ′ = P ◦ S with S(i) ..=
∑

j<i nj. Vice versa, one may also decompose paths
such as P ′ into paths of the shape of P .

The second property is quite natural in a categorical setting: No “information” about trace
condition satisfaction should be lost when composing morphisms. The first property arises
directly from Definition 2.7. It is not unreasonable as the trace conditions of all cyclic
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derivation systems from the literature we know of also exhibit this property. Nevertheless,
it could be eliminated by requiring that S(0) = 0 in the definition of subpath.

We continue by demonstrating how to represent the unique infinite branch through our
example derivation of ⇒ x = x with the formalism of paths through trace categories. We
begin by defining a trace category. It can be seen as a variant of the abstract notion of
trace given by Brotherston et. al in [6] with some slight adjustments to better fit our
categorical framework. It also is a special case of a more general family of trace categories
we define in Section 5.1. There, we also give a generic proof that the trace condition of
such trace categories is indeed invariant under subpaths. As the proof of this property is
very involved, we do not reprove the special case for this trace category here but instead
rely on the reader’s intuition that the trace condition is indeed subpath invariant.

Definition 2.8. The Brotherston category B has as its objects the finite sets. Given two
such sets X, Y , we define HomB(X, Y ) ..= P(X × Y × {0, 1}). The identity morphism of
a set X is given by 1X ..= {(x, x, 0) | x ∈ X}. For τ : X → Y , τ ′ : Y → Z we define:

τ ′ ◦ τ ..= {(x, z,max{a, b}) | ∃y ∈ Y, a, b ∈ {0, 1}. (x, y, a) ∈ τ, (y, z, b) ∈ τ ′}

Given a path P : ω → B, we say that P satisfies the trace condition if there exists s ∈ ω
and sequences σ : Πi ∈ ω. P (s + i) and a : {0, 1}ω such that for each i ∈ ω we have
(σi, σi+1, ai) ∈ P (s+ i < s+ i+ 1) and furthermore ai = 1 for infinitely many i ∈ ω.

Remark. The purpose of the s ∈ ω in the definition of the trace condition is to allow for
prefixes of paths to be discarded.

Example 2.9. With this in mind, we can formalize the branch through our example
derivation in our framework and verify that it indeed satisfies the trace condition. This
also serves as a demonstration of the idea behind the Brotherston category.

First recall that the part of the derivation which generates the infinite branch looks as
follows:

[⇒ x = x](∗)
Sub ⇒ y = y

Wk ⇒ S y = S y, y = y
Cut ⇒ S y = S y
Wk

y < S y ⇒ S y = S y
Cut ⇒ S y = S y

=L
x = S y ⇒ x = x
0 < x⇒ x = x∨L

x = 0 ∨ 0 < x⇒ x = x
Cut ⇒ x = x

(∗) Repeat ⇒ x = x

To represent such an infinite branch through a derivation as a path P : ω → B we
need to assign to each sequent on the branch a finite set and then find appropriate B-
morphisms between these sets such that the trace condition is modeled accurately. In the
case of cyclic arithmetic, we assign to each sequent Γ⇒ ∆ the set Term(Γ,∆) of terms
occurring in Γ and ∆. Then, if along a branch the sequent Γ⇒ ∆ is followed by Γ′ ⇒ ∆′

(meaning Γ⇒ ∆ is the conclusion of a rule one of whose premises is Γ′ ⇒ ∆′), we connect
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Term(Γ,∆) with Term(Γ′,∆′) via the morphism τ : Term(Γ,∆)→ Term(Γ′,∆′) given
below

τ ..= {(t, t′, 0) | t′ ≺ t} ∪ {(t, t′, 1) | ∃s. s ≺ t ∧ (t′ < s) ∈ Γ′}

where s ≺ t is the precursor relation defined in Definition 1.4. In other words, (t, t′, a) ∈ τ
if t′ can be the successor of t along a trace as defined in Definition 1.5 with a = 1 if progress
has been made. For a concrete example, consider the application of =L in the branch
above. In the Brotherston category, we would represent it as follows:

X ..= Term(x = S y, x = x) = {x, S y, y}
Y ..= Term(S y = S y) = {S y, y}

τ : X → Y ..= {(x, S y, 0), (S y, S y, 0), (y, y, 0)}

The full branch through our example derivation could be represented in this manner as
P : ω → B. However, defining it fully would be quite tedious, requiring us to spell out
10 different morphisms. As we only need this B-representation of the branch to check
whether it satisfies the trace condition, there is one simplification we can apply: We know
that the trace condition of B is invariant under subpaths, thus is suffices to define a path
Q ⊆ P . Consider the following Q : ω → B, where n ∈ ω:

Q(4n) ..= Term(x = x) ..= {x}
Q(4n+ 1) ..= Term(S y = S y) ..= {S y, y}
Q(4n+ 2) ..= Term(y < S y, S y = S y) ..= {S y, y}
Q(4n+ 3) ..= Term(y = y) ..= {y}

Q(4n < 4n+ 1) ..= {(x, S y, 0)}
Q(4n+ 1 < 4n+ 2) ..= {(S y, S y, 0), (y, y, 0), (S y, y, 1)}
Q(4n+ 2 < 4n+ 3) ..= {(y, y, 0)}

Q(4n+ 3 < 4(n+ 1)) ..= {(y, x, 0)}

This is a subpath of the B-representation of the branch through the derivation. Here,
the segment Q(4n < 4n + 1) combines the rule applications from the Repeat to above
=L, Q(4n + 1 < 4n + 2) is the Cut-step, Q(4n + 2 < 4n + 3) the steps until below the
Sub-application and Q(4n+ 3 < 4(n+ 1)) the Sub-application, cycling back to above the
Repeat. The path Q : ω → B can be visualized as follows:

Q(4n)

x

Q(4n+ 1)

S y

y

Q(4n+ 2)

S y

y

Q(4n+ 3)

y

Q(4(n+ 1))

x
0

0

0

1

0

0

. . . . . .

The picture above already suggests that there is only one possible choice for the sequences
σ : Πi ∈ ω.Q(i) and a : {0, 1}ω to demonstrate trace condition satisfaction: The trace
connecting the x ∈ Q(4n) with the x ∈ Q(4(n+ 1)) for all n ∈ ω. As such, we pick

σ4n
..= x σ4n+1

..= S y σ4n+2
..= y σ4n+3

..= y ai ..=

{
1 if i = 4n+ 1

0 otherwise
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Since these two sequences exhibit the properties required by the trace condition of the
Brotherston category, including infinitely many ai = 1 (in this case whenever i = 4n+ 1),
the path Q : ω → B satisfies the trace condition.

Concluding this example, observe that if arbitrary infinite branches through CA deriva-
tions are represented as some P : ω → B in this manner, the sequence σ : Πi ∈ ω.P (i)
witnessing the trace condition is precisely a good trace (σi)i∈ω as defined in Definition 1.5,
that is, a sequence of terms which never increases but decreases infinitely often. The trace
condition of CA can thus be faithfully captured by the Brotherston category.

We have now defined abstract renditions of (a) the structure of cyclic derivations, captur-
ing which infinite branches run through them, and (b) the notion of branches exhibiting
a desired property. By combining both, an abstract representation of the trace content
of a cyclic derivation can be obtained. Formally, we define them as functors mapping the
paths through a cyclic tree C into a trace category T .

Definition 2.10. For a cyclic tree C = (T, β) we inductively define the finite paths
PathC(s, t) ⊆ T+ through C, starting at s and ending at t, as follows

− For any s ∈ T we have s ∈ PathC(s, s)

− For any s, t, u ∈ T such that t <+ u we have pu ∈ PathC(s, u) if p ∈ PathC(s, t)

− For any s ∈ T and t ∈ dom(β) we have pβ(t) ∈ PathC(s, β(t)) if p ∈ PathC(s, t)

Definition 2.11. For some cyclic tree C = (T, β) the category PC of paths through C
has as its objects the nodes of T and fixes HomPC

(s, t) = Path(s, t) with the identity
1s = s : s → s. Given p : s → t and q : t → u they compose to pq′ where q = tq′ for
q′ ∈ T ∗.

We sometimes consider the semi-category PSC of progressing paths through C which is the
same as PC except that HomPS

C
(s, t) ..= {p ∈ Path(s, t) | |p| > 1}.

Definition 2.12. An abstract cyclic derivation (ACD) is a pair (C,Tr) of a cyclic tree
C = (T, β) and a functor Tr : PC → T from the category of paths through C into a trace
category T such that for any s ∈ dom(β), Tr(s) = Tr(βs) and Tr(sβs) = 1Tr(s).

Example 2.13. The cyclic derivation at the beginning of this chapter can be represented
as an ACD by defining a functor from PC , the path category of the cyclic tree given in
Example 2.5, into the Brotherston category B. Analogous to Example 2.9, each node
x ∈ T is mapped to Term(Γ,∆) if x corresponds to the node of the derivation tree
annotated with Γ ⇒ ∆. The morphisms are also defined in terms of the precursor
relation as outlined in Example 2.9. We forgo writing down this abstract cyclic derivation
explicitly due to its size.

Remark. At first glance, the preorder category generated by the edges of a cyclic tree C,
or equivalently the preorder category of the node reachability relation of C, might seem
like a simpler candidate for the domain of the functors Tr of abstract cyclic derivations.
However, this choice would, in general, interfere with the functoriality of Tr in the following
manner: Suppose x was a node of C and there was a cycle on x, represented by a
morphism c : x → x in the preorder category. Functoriality of Tr would require that
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Tr(c) ◦ Tr(c) = Tr(c) because c ◦ c = c holds in the preorder category. As this equation
does not hold for many legitimate trace morphisms which should be possible images of
Tr(c), taking these preorder categories as the domains of abstract cyclic derivations is
thus problematic.

We close the section by defining what it means for an abstract cyclic derivation to con-
stitute an abstract cyclic proof in a manner very similar to the distinction made in cyclic
arithmetic.

Definition 2.14. For an abstract cyclic derivation D = (C,Tr) we call a path P : ω → T
a path through D if there exists a semi-functor P ′ : ω → PSC such that P = Tr ◦ P ′.

We say an abstract cyclic derivation D satisfies the global trace condition (GTC) if every
path P : ω → T through D satisfies the trace condition of T . We an ACD satisfying the
GTC an abstract cyclic proof.

Remark. This definition differs somewhat from that given for cyclic proofs of CA in Def-
inition 1.9: Instead of only considering infinite branches, which always start at the root,
the GTC of ACDs is put in terms of arbitrary infinite paths. However, these two presen-
tations are equivalent as the trace condition is subpath invariant and every infinite path
is the suffix of an infinite branch. We have chosen the variant of the definition above as
it is slightly simpler.

Example 2.15. If a CA derivation has been faithfully transformed into an abstract cyclic
derivation D as described in Example 2.13, then D satisfies the global trace condition if
and only if the original cyclic derivation is a proof. In Example 2.9 we have already
observed that the trace condition on the paths through such an ACD coincides with the
notion of a good trace through an infinite branch in CA. Thus, both notions of global
trace conditions coincide as well as they are defined analogously.

2.2 Transforming Abstract Cyclic Derivations
This section is concerned with outlining two algorithms which transform abstract cyclic
derivations into ones which are simpler, in two different senses, and equivalent in terms of
GTC satisfaction, meaning the simpler ACD satisfies the GTC if and only if the original
one does. Such simplification procedures are of interest as they, for example, can be used
to improve the efficiency of algorithms for checking GTC satisfaction.

The first notion of “simplicity” for ACDs is “efficiency”. An efficient cyclic tree is com-
posed essentially exclusively of nodes which are either buds or companions. Such a cyclic
tree could intuitively be considered “efficient” as this means that all nodes of the tree
“contribute” towards its most interesting aspect: Which cycles exist within it and how
they can be combined into infinite paths. In practice, transforming an ACD induced by
a derivation of some cyclic derivation system into an efficient ACD can lead to a drastic
reduction in the number of its nodes (see Example 2.18 for an example). Such a size
reduction is of interest as all algorithms for deciding whether an ACD satisfies the GTC,
including those we give in Chapter 4, have time complexities dependent on the number of
nodes in the cyclic trees underlying the ACD in question. Reducing this number via some

17



transformation thus holds the promise of great performance improvements in concrete
implementations of such decision procedures.

Definition 2.16. We call a cyclic tree C = (T, β) efficient if for every s ∈ T either
s ∈ im(β) ∪ dom(β) or s = ε with bd(ε) > 1. An ACD D = (C,Tr) is efficient if C is.

Remark. The edge-case for ε 6∈ dom(β) stems from the fact that (abstract) cyclic deriva-
tions can contain multiple cycles which are not inter-connected. For example, the cyclic
tree pictured below should also be considered efficient as there is, in general, no way to
eliminate the root ε without inherently changing which infinite paths run through the
cyclic tree. However, this is only necessary if ε has at least two children.

ε

1

10

0

00

Proposition 2.17. Let D = (C,Tr) be an abstract cyclic derivation with dom(β) 6= ∅.
Then it can be transformed into an efficient D′ = (C ′,Tr′) with Tr′ : PC′ → T such that
D satisfies the global trace condition if and only if D′ does.

Proof. To obtain C ′, take G ..= im(β) ∪ dom(β). Now we iteratively construct a function
f : G → ω∗ which will yield the tree for C ′ as follows. To begin, let {s0, . . . , sn} ⊆ G
be the <-minimal elements of G. If there is only one such s ∈ G then fix f0(s) ..= ε.
Otherwise, take f0(si) ..= i. Now, iteratively extend fi to fi+1 as follows: For each
s ∈ f−1

i (Leaf(im(fi)))\dom(β), in other words any companion node added in the previous
construction step, let {t0, . . . , tn} ⊆ G be those t ∈ G such that there is spt ∈ Path(s, t)
for which p ∈ (T \ G)∗. Then set fi+1(tj) ..= fi(s)j and keep fi+1(s) = fi(s) for any
s ∈ dom(fi). Take f ..=

⋃
i≤|G| fi and observe that indeed f : G → ω∗ as each iterative

construction step needs to extend dom(fi) by at least one element from G. If ε 6∈ dom(f),
take f(ε) ..= ε. Observe that now T ′ ..= im(f) ⊆ ω∗ is a finite tree. Then we take
C ′ ..= (T ′, β′) where β′ ..= f ◦ β ◦ f−1 is well-defined as f is a bijection on im(f).

To extend this cyclic tree to an abstract cyclic derivation, take Tr′(s) ..= Tr(f−1(s)) for
s ∈ im(f). For any s <+ t ∈ T ′, observe that per construction of T ′, there exists a unique
path f−1(s)pstf

−1(t) ∈ PathC(f−1(s), f−1(t)) with the property that pst ∈ (T−G)∗. Then
pick Tr′(st) ..= Tr(f−1(s)pstf

−1(t)) and observe that this is both well-defined and fully
specifies Tr′ : PC′ → T .

It remains to prove that D satisfies the GTC if and only if D′ does. For the forwards
direction, we show that any path P : ω → T through D′ is a path through D as well and
thus satisfies the trace condition. Indeed, if Q : ω → PC′ is such that P = Tr′ ◦ Q then
each Q(i < i+ 1) = s0 . . . sn and thus

P (i < i+ 1) = Tr(f−1(sn−1)psn−1snf
−1(sn)) ◦ . . . ◦ Tr(f−1(s0)ps0s1f

−1(s1))

= Tr(f−1(s0)ps0s1f
−1(s1) . . . f−1(sn−1)psn−1snf

−1(sn))

meaning P = Tr ◦ Q′, and thus P is a path through D, where Q′(j < j + 1) ..=
f−1(s0)ps0s1 . . . f

−1(sm) whenever Q(j < j + 1) = s0 . . . sm.

18



Now conversely, pick some path P : ω → T through D with P = Tr◦Q. We may, without
loss of generality, assume that Q(i < i+ 1) = sisi+1 where either si <+ si+1 or βsi = si+1.
Now it is easy to observe that for any such infinite path through a cyclic tree the set
{i ∈ ω | Q(i) ∈ im(β) ∪ dom(β)} must be infinite. Then let S : ω → ω be the strictly
monotone enumeration of said set. Now simply observe that Q(S(i < i+ 1)) = spf(s)f(t)t
for Q(S(i)) = s,Q(S(i + 1)) = t and s < t and Q(S(i < i + 1)) = st with βs = t
if s ∈ dom(β). In either case, Tr(Q(S(i < i + 1))) = Tr′(f(Q(S(i)))f(Q(S(i + 1)))),
meaning that P ◦ S ⊆ P is a sequence through D′ as witnessed by Q′ : ω → PC′ where
Q′(i) = Q(S(i)) and Q′(i < i+ 1) = Q(S(i))Q(S(i+ 1)). As P ◦ S is a path through D′,
it satisfies the trace condition of T meaning P does so as well. �

Remark. A tight characterization of the time complexity of the algorithm described by
the proof above is likely very dependent on the choice representation of ACDs. However,
it is quite clear that for any such choice which is somewhat reasonable, the complexity
obtained would be at most polynomial in the number of nodes in the ACD. Given that the
common, automata-based GTC decision procedure is of a complexity super-exponential
in the number of nodes (see [37] for more details), it is to be expected that a GTC decision
procedure which operates on ACDs would see noticeable performance improvements when
combined with the algorithm given above.

Remark. The requirement that dom(β) 6= ∅ stems from the fact that otherwise im(β) ∪
dom(β) = ∅ which makes it impossible to construct a (cyclic) tree on that basis as we
have defined trees to be non-empty. However, as any cyclic tree with dom(β) = ∅ satisfies
the global trace condition vacuously, there is no need to improve the performance of the
GTC decision procedure for such cases in the first place.

Example 2.18. In Example 2.13 we describe how to obtain an ACD representing the
cyclic derivation of⇒ x = x. In that example, we chose not to spell out the full definition
of said ACD due to its size. When applying the procedure of Proposition 2.17 to the ACD
described in Example 2.13, we obtain the equivalent, efficient ACD (C,Tr) with

Tr(ε) = {x} Tr(0) = {x} Tr(ε0){(x, x, 1)}

and C as pictured below:

ε

0

This ACD is not only remarkably small when compared to the original derivation, it is
also trivial to check that it satisfies the global trace condition.

The other notion of simplicity we consider are cyclic trees having only backward edges,
meaning that every bud’s companion is on the path between it and the root. In the
derivation system for cyclic arithmetic in Section 1.3, this property is guaranteed for
all derivations as we chose to represent cycles via a Repeat-rule. For cyclic derivation
systems in general, and thus their corresponding ACDs, this need not always be the case.
Backward edges have previously been studied in the literature under many different names
(for example, Brotherston [4] calls derivations with this property “cyclic normal forms”).
The simplicity afforded by backward edges is somewhat more subtle, generally making
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some definitions easier as certain edge cases are eliminated. One notable application are
Brotherston’s trace manifolds [4], an alternative soundness condition which only applies
to cyclic derivations with backward edges.

Definition 2.19. A cyclic tree C has backward edges if for every s ∈ dom(β), βs < s.

Proposition 2.20. Let D be an abstract cyclic derivation. Then it can be transformed
into an abstract cyclic derivation D′ which has backwards edges and satisfies the global
trace condition if and only if D does.

Proof. This proof works by iteratively eliminating all non-backwards edges, which we call
sideways edges, from D. We begin by laying out the iteration step. Pick some companion
t ∈ im(β) such that S ..= {s ∈ dom(β) | β(s) = t, t 6< s} is not empty. Then consider the
cyclic tree C ′ ..= (T ′, β′) defined as follows

T ′ ..= T ∪
⋃
s∈S

{su | u ∈ X∗, tu ∈ T}

β′(x) ..=


β(x) x ∈ T \ S
sv x = su for s ∈ S and β(tu) = tv

β(tu) x = su for s ∈ S and t 6< β(tu)

We extend this to a cyclic abstract derivation D′ ..= (T ′,Tr′) with

Tr′(x) ..=

{
Tr(x) x ∈ T \ S
Tr(tu) x = su, s ∈ S

Tr′(xy) ..=

{
Tr((tu)(tv)) x = su, y = sv, s ∈ X
Tr(xy) otherwise

Per construction, it is easy to see that D′ is a well-defined cyclic abstract derivation and
that the paths through D′ are precisely the paths through D. Furthermore, there exist
no more sideways edges whose companion is t as all s ∈ S are no longer sideways edges
and no new sideways edges with t as their companion have been introduced in D′.

To fully eliminate all sideways edges from D, we need to apply this sideways edge elim-
ination procedure iteratively as follows: At every step, choose a companion t ∈ dom(β)
eligible for the elimination procedure at the greatest possible height, that is with |t|
maximal among the eligible companions, and perform the elimination procedure on it.
Continue doing this until there are no more sideways edges left.

Now it remains to argue that this process always terminates. Calling the companion being
eliminated the target, observe that one elimination step of the process can only introduce
new sideways edges into the resulting abstract cyclic derivation in two ways:

1. If the subtree above the target already contains a sideways edge, this may remain
a sideways edge after the grafting process. Observe that while this may introduce
new sideways edges, it does not introduce any more companions of sideways edges
as the subtree above the target already contains a bud which has a sideways edge
to any such companion.

2. A backwards edge whose bud sits above the target but whose companion is below it
turn into a sideways edge above the grafting points (see the first step Example 2.21
for an example of this). Observe that the companions of such new sideways edges
are always more shallow than the target currently being eliminated.
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In summary, each transformation step completely removes one sideways edge companion
at the greatest depth while only introducing new sideways edge companions which are
more shallow. As there can only ever be finitely many companions at each depth level, the
process will always eventually move on to eliminating sideways edges with companions
at lower depths until finally reaching depth 0, meaning all sideways edges have been
eliminated. �

Remark. Similar transformation procedures have already been given in the literature.
Notably, Brotherston’s dissertation [4] describes essentially the same algorithm, both for
concrete cyclic derivations and his abstract representation of the same. We chose to also
present it in this thesis as it is a procedure of common interest in the field of cyclic proof
theory.

Example 2.21. For an example of the algorithm described in Proposition 2.20, consider
the sequence of cyclic trees below which depicts the state of the cyclic tree after each
grafting step. For the sake of legibility, we have opted not to label the nodes. The
first step eliminates all sideways edges (in this case, the unique one) with the highest
companion. During this elimination step, a new sideways edge is introduced at the left
side of the grafted fork. This sideways edge is then eliminated in the second step.

Remark. The procedure yielding efficient ACDs described in Proposition 2.17 is unique to
ACDs or similar abstract representations of cyclic derivations as it relies on the fact that
the morphisms of trace categories can be composed. The algorithm of Proposition 2.20,
on the other hand, can, in principle, also be used to transform sequent-labeled cyclic
derivations into ones with backward edges.
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Chapter 3

Infinite Derivation Trees

The overarching goal of this chapter is to fully formalize the transformation procedure
from cyclic derivations into ACDs over a trace category which we sketched in Section 2.1.
For this, we first formalize infinite derivation trees (Sections 3.1 and 3.2) and their trace
conditions (Section 3.3) in a categorical manner. By viewing cyclic derivations as regular
infinite derivation trees, these categorical notions can be used to naturally specify the
desired transformation procedure as we demonstrate in Section 3.4.

3.1 Infinite Labeled Trees and Construction Rule-Sets
We begin by defining a slightly generalized notion of infinite derivations: Infinite labeled
trees which are derived according to certain “rule-sets”.

Definition 3.1. An infinite labeled tree is a triple (Σ, S, λ) consisting of some labeling
alphabet Σ, a finitely branching tree S ⊆ ω∗, which we call the tree’s skeleton, and
a labeling function λ : S → Σ which assigns to each node of S a label from Σ. For
convenience, we require the children of a node to be in sequence, that is, for s ∈ ω∗ with
si ∈ S we also have sj ∈ S for any j < i.

Remark. Although we usually speak of “infinite labeled trees”, nothing in Definition 3.1
prevents the skeleton S from being finite. A more accurate, although much more awkward,
description would thus be “possibly infinite labeled trees”.

Remark. We consider such labeled trees instead of simply working with trees T ⊆ Σ∗

because these (i) allow for nodes with multiple children labeled with the same a ∈ Σ and
(ii) impose a fixed order on the children of a node. Both of these properties give fine-
grained control over which kinds of branches run through a labeled tree which is crucial
for representing derivation trees with trace conditions.

Example 3.2. The triple Tab ..= ({a, b}, Sab, λab) with

Sab ..= {1n | n ∈ ω} ∪ {1n0 | n ∈ ω} λab(s) ..=

{
a s matches 0∗

b s matches 0∗1

describes the infinite, right-leaning tree depicted on the left below.
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The triple Tω ..= (ω, Sω, λω) with

Sω ..= {0n | n ∈ ω} λω(0n) ..= n

describes the line-shaped tree on the right.

a

a

a

a

a

a

...
b

b

b

b

b

0

1

2

3

4

5

...

Definition 3.3. A construction rule-set is given by a triple (Σ,R, r) where Σ is an
alphabet, R is a set of rules and r : R → Σ × Σ∗ assigns to each a rule interpretation.
We call a construction rule-set deterministic if for each σ ∈ Σ there is at most one R ∈ R
with σ = π1(r(R)).

Definition 3.4. A tree T = (Σ, S, λ) is constructed according to a rule-set (Σ,R, r) if
there exists a tree J = (R, S, ρ) such that for each s ∈ S , if r(ρ(s)) = (σ, σ0σ1 . . . σn)
then bd(s) = n, λ(s) = σ and λ(si) = σi for i ≤ n. In this case, we call J the construction
justification.

Example 3.5. The tree Tab from Example 3.2 is constructed according to the finite,
deterministic rule-set ({a, b}, {a, b}, rab) with

rab(a) ..= (a, ba) rab(b) ..= (b, ε)

The tree Tω is constructed according to the deterministic rule-set (ω, ω, rω)

rω(n) ..= (n, n+ 1)

In both cases, the construction justification is the tree itself.

Example 3.6. The derivations of any sequent calculus are given by a construction rule-
set, namely the sequent calculus’ derivation rules. If Seq is the set of legal sequents then
the corresponding rule set is (Seq,R, r) where for every instance of a derivation rule

R
Γ0 . . . Γn

∆

we add R(∆,Γ0 . . .Γn) to R and take

r(R(∆,Γ0 . . .Γn)) ..= (∆,Γ0 . . .Γn)
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Remark. The idea of Example 3.6 also applies in the converse direction. We may view
any construction rule-set (Σ,R, r) as an — often admittedly quite strange — sequent
calculus on the “sequents” in Σ. Motivated by this intuition, we can represent the fact
that r(R) = (σ, σ0 . . . σn) for some R ∈ R as

R
σ0 . . . σn

σ

The regular trees, a subclass of labeled infinite trees, are of special interest in this thesis
as they correspond naturally to regular∞-derivations, which in turn correspond to cyclic
derivations.

Definition 3.7. A tree T = (Σ, S, λ) is a subtree of another tree T ′ = (Σ, S ′, λ′) if there
exists some s ∈ ω∗ such that S = S ′[s] ..= {t ∈ ω∗ | st ∈ S ′} and λ′(t) = λ(st).

Definition 3.8. A tree T is regular if it has only finitely many distinct subtrees.

Example 3.9. The tree Tab is regular, as it only has two distinct subtrees: the singular
node b and itself, namely,

a

a

a

...
b

b

On the other hand, Tω is not regular, as for each n ∈ ω, the tree

n

n+ 1

n+ 2

...

is a subtree of Tω, giving rise to countably many distinct subtrees.

The property of a tree being regular can be expressed in terms of construction rule-
sets. This property is crucial for our categorical rendering of regular ∞-derivations in
Section 3.2.

Definition 3.10. A tree T = (Σ, S, λ) is called a relabeling of a tree T ′ = (Σ′, S, λ′) if
there exists a function f : Σ′ → Σ such that λ = f ◦ λ′.

Proposition 3.11. A tree is regular if and only if it is a relabeling of a tree constructed
according to a finite, deterministic rule-set.

Proof.
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→ Let T = (Σ, S, λ) be such that SubTree(T ) is finite. Consider the tree T ′ =
(SubTree(T ), S, λ′) where SubTree(T ) is the set of subtrees of T and where

λ′(s) ..= T [s] ..= (Σ, S[s], t 7→ λ(st))

i.e. the labeling which labels each node s ∈ S with the subtree of T starting at s.
It is easy to see that T is a relabeling of T ′ via f : SubTree(T )→ Σ defined as

f(Σ, S ′′, λ′′) ..= λ′′(ε)

It thus remains tho show that T ′ is constructed according to a finite, deterministic
rule-set. For this, pick (SubTree(T ), SubTree(T ), r) where

r(T ′′) ..= (T ′′, T ′′[0] . . . T ′′[n]) if bdT ′′(ε) = n+ 1

As in the examples above, T ′ itself serves as the construction justification. The
rule-set is finite as SubTree(T ) is and deterministic as πi ◦ r is the identity function.

← Now suppose T = (Σ, S, λ) was a relabeling of T ′ = (Σ′, S, λ′), which in turn
was constructed according to a finite, deterministic rule-set. As the rule-set is
deterministic, which rule to apply at a given s ∈ S is fully determined by λ(s).
This means that T ′[s] = T ′[s′] for s, s′ ∈ S whenever λ′(s) = λ′(s′). Furthermore,
im(λ′) has to be finite as there are only finitely many rules in the rule-set deriving
T ′. Taken together, this means that SubTree(T ′) is finite. Now, as T is a relabeling
of T ′, every subtree of T must be a relabeling of a subtree of T ′. But this means
that SubTree(T ) is finite as well. �

Remark. Motivated by this result, we often call finite deterministic rule-sets regular.

Remark. There is another equivalent condition for regularity: An infinite labeled tree is
regular if and only if it is generated by unfolding a finite, labeled graph. This equivalence
bridges the gap between ∞-derivations and cyclic derivations: Any ∞-derivation which
can be described by a cyclic derivation has to be regular. For this reason, the formalism
we develop in this chapter uses regular∞-derivations as a “stand-in” for cyclic derivations.

We forgo proving this equivalence at this point of the chapter as we also prove it, somewhat
implicitly, in Section 3.4 where we give conversion procedures between∞-derivations and
abstract cyclic derivations.

3.2 Categories of Derivations
This section gives a categorical account of construction rule-sets and accordingly derived
trees. This allows us to give a completely formal description of the process for transforming
the concrete derivations of a cyclic system into abstract cyclic derivations, which we lay
out in Section 3.4.

We begin by defining the category of tree derivations induced by a construction rule-set.
Throughout this section, we denote the rules of construction rule-sets in the familiar style
of derivation system rules and speak of sequents Γ,∆ ∈ Seq, rather than labels σ, σ′ ∈ Σ,
to aid legibility and make clear the ultimate purpose of these definitions: formalizing
∞-proofs of sequent calculi.
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Definition 3.12. Given a construction rule-set R = (Seq,R, r), its associated category
of derivations DR has as its objects the finite lists of sequents Γ ∈ Seq. The morphisms
between two such lists, say of type [Γ0, . . . ,Γn] → [∆0, . . . ,∆m], correspond to lists of
derivations [Π0, . . . ,Πm] where each Πi derives ∆i and which, taken together, have the
open leaves Γ0, . . . ,Γn as sketched below.

Γ0... . . .
Γi0...Π0 ∆0

Γi0+1... . . .
Γi1...Π1 ∆1

. . .

Γim−1+1... . . .
Γn...Πm ∆m

Importantly, the assumptions Γi are used linearly and in-order. That is, each Γi corre-
sponds to precisely one open leaf of one of the derivations Πj and Γi is used to the left of
Γi+1. For the sketch above, this means 0 ≤ i1 ≤ i2 ≤ . . . ≤ im = n.

The identity morphisms on any [Γ0, . . . ,Γn] are given by the derivations

Γ0 Γ1 . . . Γn

that is, those in which no rule is applied and each conclusion is “passed on” as an as-
sumption. The composition operation is given by simply “plugging in” each derivation
into the corresponding open leaf. For example, if we were to compose the morphism
[Π0, . . . ,Πm] : [Γ0, . . . ,Γn] → [∆0, . . . ,∆m] with, for sake of simplicity, a morphism
[Π′] : [∆0, . . . ,∆m] → [Θ] this would result in the morphism [Γ0, . . . ,Γn] → [Θ] corre-
sponding to the derivation sketched below.

Γ0... . . .
Γi0...Π0 ∆0...

Γi0+1... . . .
Γi1...Π1 ∆1... . . .

Γim−1+1... . . .
Γn...Πm ∆m...

Π′ Θ

Remark. In particular, this means that each rule R ∈ R with r(R) = (∆,Γ0 . . .Γn),
corresponding to a derivation rule

Γ0 . . . Γn
∆

in turn induces a morphism R : [Γ0, . . . ,Γn] → [∆] in DR. The axioms of a sequent
calculus then correspond to morphisms in HomDR([], [∆]).

Remark. The general idea behind this categorical rendering of derivation trees, represent-
ing finite derivations as morphisms, is not new. For example, similar representations of
proofs, or equivalently terms in type theories, are explored in [15, 16, 22] to name only a
few examples.

The finite lists over a set form a monoid with regard to the list appending operation
A++B. This monoidal structure extends to any category of derivations DR.

Proposition 3.13. Any category of derivations induced by a construction rule-set R =
(Seq,R, r) is a monoidal category for the functor −⊗− : DR ×DR → DR given by

A⊗B ..= A++B (D : A→ B)⊗ (D′ : A′ → B′) ..= D ++D′ : A⊗ A′ → B ⊗B′

and the neutral object given by the empty list [].
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Proof. For functoriality of−⊗−, observe that, givenA = [Γ0, . . . ,Γn] andB = [Γ′0, . . . ,Γ
′
m]

appending the two lists “no progress” proofs 1A : A → A and 1B : B → B into 1A ⊗ 1B
yields precisely the list of “no progress” proofs of A ⊗ B = A ++B, meaning identities
are preserved. Similarly, since the derivations are always “plugged in” in-order during
composition, list-appending and derivation composition distribute over each other, lead-
ing the desired fact of (D3 ◦ D1) ⊗ (D4 ◦ D2) = (D3 ⊗ D4) ◦ (D1 ⊗ D2) for morphisms
D1 : A→ B,D2 : A′ → B′, D3 : B → C,D4 : B′ → C ′.

As the lists on Seq themselves form a monoid with regards to list-appending, all of the
law-witnessing natural transformations can simply be taken as the identity morphisms.
For example, the identity morphism of some A ∈ Ob(DR) can also be presented as
1A : A⊗ []→ A because A⊗ [] = A++[] = A. �

This monoidal structure gives rise to natural notions of derivation and an associated
normal form for morphisms in DR.

Definition 3.14. We call a morphism D : A→ B a derivation if B is a singleton [∆].

For any given D : A→ B if there are derivations D0 : A0 → B0, . . . , Dn : An → Bn such
that D = D0 ⊗ . . .⊗Dn we call D0 ⊗ . . .⊗Dn the derivation normal-form of D.

Proposition 3.15. Every morphism has a unique derivation normal-form.

Proof. Follows from the fact that we defined morphisms as lists of derivations. �

The aim of our definition of DR is to capture the notion of trees constructed according to
the rule-set R in a categorical manner. For finite trees, this is quite simple: For any given
sequent ∆ ∈ Seq, the Hom-set HomDR([], [∆]) contains precisely all of the finite trees
which are labeled by ∆ at their root and are constructed according to R. For infinite
labeled trees, the definition is a bit more subtle.

Definition 3.16. Each rule set R induces a semi-category of progressing derivations DPR.
Its objects are the same as those of DR and any morphism D : A → B of DR with
derivation normal form D = D0⊗ . . .⊗Dn is a morphism of DPR if and only if there is no
i ≤ n and ∆ ∈ Seq such that Di = 1[∆].

Remark. Intuitively, the semi-category of progressing derivations restricts DR to only
those morphisms D : [Γ0, . . . ,Γn]→ [∆0, . . . ,∆m] which “progress” the derivation process
of each ∆i by at least one rule-application. Observe also that, as 1[] = [] contains no
derivations, all of its derivations vacuously progress and thus 1[] ∈ HomDPR([], []).

Definition 3.17. An infinite tree constructed according to R is a contra-variant semi-
functor T : ωop → DPR with T (0) = [∆] for some ∆ ∈ Seq.

Remark. If the construction rule-set R describes a sequent calculus, we also call such
semi-functors ∞-derivations.
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Example 3.18. For an example, recall the tree Tab from Example 3.2 and its constructing
rule-set Rab

..= ({a, b},Rab, rab). We can represent it as T : ω → DPRab
with

T (0) ..= [a] T (i+ 1) ..= [b, a]

and

T (0 < 1) ..=
[
Ra

b a
a

]
T (i+ 1 < i+ 2) ..=

[
Rb

b
,Ra

b a
a

]
where Ra : [b, a] → [a] and Rb : [] → [b]. Note that this already specifies T : ω → DPRab

fully. For example, by the definition of composition in DPRab
we know that

T (0 < 2) ..=

[
b

b a
a

a

]
Indeed T (0 < n) will always yield an initial segment of depth n of the infinite derivation
tree which ultimately derives Tab from Rab.

An important point to observe is that this is not the only possible way of representing
Tab as such a semi-functor. For example, consider the semi-functor

T ′(0) ..= [a] T ′(i+ 1) ..= [b, a]

with

T ′(0 < 1) ..=

[
b

b a
a

a

]
T ′(i+ 1 < i+ 2) ..=

[
Rb

b
,Ra

b a
a

]
which also describes a partial approximation of the infinite derivation tree demonstrating
that Tab can be derived from Rab. While T and T ′ describe the same derivation tree, T ′
can in some sense be seen as doing so “faster” than T as T (0 < n) is of depth n while
T ′(0 < n) is of depth n + 1. Indeed, there are many different semi-functors T : ω → DPR
which all describe the same infinite derivation tree.

Remark. The contra-variance of these semi-functors T : ωop → DPR stems naturally from
the fact that in the semi-category of progressing derivations DPR, a derivation rule

Γ0 . . . Γn
∆

corresponds to a morphism D : [Γ0, . . . ,Γn] → [∆], i.e. a “mapping” of assumptions to
conclusions. This means that derivation trees in DPR naturally “grow backwards”, that is,
to extend a derivation D : [Γ0, . . . ,Γn]→ [∆], one pre-composes it with another morphism
D′ : [Γ′0, . . . ,Γ

′
m] → [Γ0, . . . ,Γn] to obtain a “deeper derivation” D ◦ D′ : [Γ′0, . . . ,Γ

′
m] →

[∆]. The semi-category on ω grows precisely in the opposite direction: To increase a map
0 < n to the map 0 < n + 1, one post-composes (n < n + 1) ◦ (0 < n). Thus the arrows
need to be reversed by these semi-functors to match the intuition that the derivation
described by T : ωop → DPR grows alongside the numbers of ω. While there is no technical
obstacle to defining it this way, the current definition seems more aesthetically pleasing
and natural, at least in cases in which the construction rule-set is a sequent calculus, as
one deduces from assumption to conclusions.
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Remark. The requirement that the semi-functors have codomain DPR guarantees that for
any T : ωop → DPR which describes an infinite derivation (i.e. one of unbounded depth),
the depth of T (0 < n+ 1) is always at least of depth n+ 1 and any open leaf of T (0 < n)
has been extended by at least one rule application to obtain T (0 < n+ 1). This rules out
nonsensical “derivation trees” such as T : ωop → DR with

T (i) = [∆] T (i < j) = 1[∆]

However, observe that the above guarantee only applies if T : ωop → DPR describes an
infinite derivation. Any finite derivation tree D : []→ [∆] can be described by a functor

T (0) ..= [∆] T (i+ 1) ..= [] T (0 < 1) ..= D T (1 < n) ..= 1[]

which stops progressing the derivation after T (0 < 1). This nicely parallels Definition 3.1
which also allows for trees of finite depth.

Inspired by Proposition 3.11 we give a categorical characterization of regularity.

Definition 3.19. An infinite tree T : ωop → DPR is called regular if there exists a tree
R : ωop → DPR′ derived according to a regular rule-set R′ and a functor F : DPR′ → DPR
such that T = F ◦R.

Example 3.20. This definition is a little more complex than a simple rephrasing of Propo-
sition 3.11. The functor F : DPR′ → DPR assigns to each derivation rule R′ : [Γ1, . . . ,Γn]→
[∆] of R′ a morphism F (R′) from DPR. Observe, however, that F (R) need not be a
derivation as nothing in the definition above prevents F ([∆]) = [∆′0, . . . ,∆

′
m] for 0 < m.

Furthermore, the derivations in F (R′) could be of greater depth than 1. Intuitively, this
could be described as the functor F being able to “encode more information” than the
relabeling f : Σ′ → Σ of Proposition 3.11.

For an example, consider the following regular tree

a

b

a

b

a

...
a

...

a

b

a

...
a

...

Clearly, it is constructed according to the rule-set R ..= ({a, b}, {a, b}, r) with r(a) = (a, b)
and r(b) = (b, aa). Furthermore, it cannot be the relabeling of any tree constructed
according to a regular rule-set with fewer rules.

However, this changes when moving to our categorical representation of infinite labeled
trees. Consider the rule-set R′ ..= ({a}, {R′}, r′) with r′(R′) ..= (a, aa) which describes
an infinite binary tree. The regularity of the tree above can be justified with the functor
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F : DPR′ → DPR given by

F ([]) ..= [] F ([a]) ..= [a] F (R′) ..=

[ a a
b
a

]
even though R′ only has one rule.

This difference in “expressive power” does not change the notion of regularity exhibited
by these two different definitions as the functor representation can only ever “compress”
finitely many rule-applications into the image of a rule from R′.

We close this section with two technical definitions that make it easier to work in the
setting of∞-derivation where any given infinite tree can be represented by many different
functors T : ωop → DPR.

Definition 3.21. We may represent any derivation D : [Γ0, . . . ,Γn] → [∆] in DPR as a
labeled tree TD = (R, S, λ) such that π1(r(λ(ε))) = ∆ and for every s ∈ S \ Leaf(S) we
have r(λ(s)) = (∆′,Γ′0 . . .Γ

′
m) where bd(s) = m + 1 and for each 0 ≤ i ≤ m we know

π1(r(λ(si))) = Γ′i. Furthermore, if Leaf(S) = {s0, . . . , sm} is ordered lexicographically
then π2(r(λ(si))) = Γli−1+1 . . .Γli for −1 = l−1 ≤ l0 ≤ . . . ≤ ln = n, i.e. the “open
assumptions” of the leafs of S are precisely [Γ0, . . . ,Γn].

For a D : ωop → DPR we define limD ..= (R,
⋃
Si,
⋃
λi) where (R, Si, λi) ..= TD(0<i).

Proposition 3.22. For D : ωop → DPR, limD is a well-formed construction justification.

Remark. We can now formally express the intuitive notion that two given derivations
D,D′ : ωop → DPR represent the same infinite tree by the statement limD = limD′.

Definition 3.23. We call D : ωop → DPR a step-wise ∞-derivation if, in derivation normal
form, D(i < i + 1) = D0 ⊗ . . .⊗Dn with D0, . . . , Dn ∈ R or D(i < i + 1) = 1[] for every
i ∈ ω.

Remark. Observe that if D,D′ : ωop → DPR are step-wise ∞-derivations, we have D = D′

if and only if limD = limD′. The step-wise derivation can thus serve as the canoni-
cal categorical representation of any given infinite labeled tree derived according to the
construction rule-set R.

3.3 Trace-Interpretations and Branch-Tracking
Categories

This section introduces trace-interpretations and path tracking categories. Trace-interpretations
are a formal means for associating the branches through derivations with paths through
trace categories. Branch-tracking categories allow for branches through ∞-derivations to
be defined. When combined, the two concepts induce a notion of ∞-proofs. Throughout
this section, we use σ, σ1, σ2, . . . to denote various natural isomorphisms between product
functors.

Definition 3.24. We call a contra-variant functor I : Dop
R → T a trace-interpretation if

T is a trace category with finite products and I is a strong monoidal functor between the
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monoids − ⊗ − and − × − of respectively DR and T . We denote the main witnessing
natural isomorphism by ηA,B : I(A⊗B) ' I(A)× I(B).

Remark. The contra-variance again stems from the fact that we took the morphisms
describing derivations to lead from the assumptions to the conclusion, whereas the paths
through a derivation lead from the conclusion to the assumptions.

Remark. The natural isomorphism entails that I([Γ0, . . . ,Γn]) ' I([Γ0]) × . . . × I([Γn]),
as we prove in Corollary 3.27. This means that I([Γi]) can be viewed as “the I-image of
Γi”. Based on this intuition, we from now on write I(Γi) ..= I([Γi]) for brevity.

The following result states that intuitive accounts of “how to represent branches in deriva-
tions as trace maps”, such as the one we gave for cyclic arithmetic in Example 2.9, already
contain enough information to fully specify a trace-interpretation. It also allows us to
specify trace-interpretations for the cyclic systems in Chapter 6 without having to always
consider the technicalities of monoidal functors.

Lemma 3.25. Let the construction rule-set R specify a sequent calculus on sequents Seq
and T be a trace category with finite products. Fix a mapping i : Seq→ Ob(T ) together
with, for each R ∈ R of shape

R
Γ0 . . . Γn

∆

a choice of morphisms τRj : i(∆) → i(Γj) in T for j ≤ n. This induces a trace-
interpretation I : Dop

R → T with I(Γ) = i(Γ) for Γ ∈ Seq.

Proof. We begin by specifying what the functor does on objects. Observe that any object
A ∈ Ob(DR) is of the form [Γ0] ++ . . .++[Γn] ++[]. Thus we can recursively specify

I([Γ] ++A) ..= i(Γ)× I(A) I([]) ..= 1

Fix for each A,B ∈ Ob(DR) the isomorphism ηA,B : I(A⊗B)→ I(A)× I(B) which can
be constructed from the natural isomorphisms witnessing the monoidality of −×− in T .

For the functor actions on morphisms, notice similarly that all morphisms of D can be
obtained via the ⊗-functor and compositions from the rules R ∈ R. We may thus specify
the functor actions on morphism recursively via their “construction history”. As such, we
take, denoting the unique morphism from 1 to F (∆) by !F (∆),

I(D′ ◦D) ..= I(D) ◦ I(D′) I

(
R

Γi . . . Γn
∆

)
..= 〈τR0 , 〈. . . 〈τRn , !F (∆)〉〉〉

and for D : A→ B, D′ : A′ → B′ we take

I(D ⊗D′) ..= η−1
A⊗A′ ◦ (I(D) ◦ π1 × I(D′) ◦ π2) ◦ ηB⊗B′

As most morphisms in DR have more than one “construction history”, we need to check
that the result of I(D) is independent of which “construction history” of D was used to
compute it. But this follows readily from the fact that both −⊗− and −×− are monoids
and that the ηA⊗B are isomorphisms.

It remains to argue that I : Dop
R → T is monoidal. This follows from the fact that both

ηA,B : I(A⊗B) ' I(A)×I(B) and ε : I([]) ' 1 are obtained via the natural isomorphisms
between product functors and thus make all of the required diagrams commute. �
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The fact that a trace-interpretation is a monoidal functor gives rise to some nice structural
properties and guarantees which can be expressed via certain natural isomorphisms.

Proposition 3.26. If I : Dop
R → T is a trace-interpretation then there are isomorphisms

ηA0,...,An : I(A0 ⊗ . . .⊗ An) ' I(A0)× . . .× I(An)

naturally in A0, . . . , An ∈ Ob(DR).

Proof. We can define ηA0,...,An : I(A0 ⊗ . . .⊗ An) ' I(A0)× . . .× I(An) inductively

ηA ..= 1I(A) ηA0,...,An,An+1
..= σ ◦ (1n−1 × ηAn,An+1) ◦ ηA0,...,An⊗An+1

where we employ short-hands 1n × f ..= 1I(A0) × . . . × 1I(An) × f and take the unique
isomorphism σ : A0× . . .×An−1× (An×An+1) ' A0× . . .×An+1. Naturality follows once
again from the definition of I(D ⊗D′) and the fact that these isomorphisms are induced
by the monoid-witnessing natural transformations of products in T . �

Corollary 3.27. If I : Dop
R → T is a trace-interpretation then

ηΓ0,...,Γn : I([Γ0, . . . ,Γn]) ' I([Γ0])× . . .× I([Γn])

for any Γ0, . . . ,Γn ∈ Seq.

This leads us to introduce a projection operation on the images of a trace-interpretation
which “projects out” the I-image of one of the elements of a list.

Definition 3.28. Let I : Dop
R → T be a trace-interpretation and Γ0, . . . ,Γn ∈ Seq. We

define the i-th trace projection map

τi ..= πi ◦ ηΓ0,...,Γn : I([Γ0, . . . ,Γn])→ I(Γi)

Remark. If I : Dop
R → T was obtained via Lemma 3.25 then τi ◦I(R) = τRi for any R ∈ R.

The following proposition essentially states that all trace-interpretations can be viewed
as being defined “trace-wise” in the style of Lemma 3.25.

Proposition 3.29. If I : Dop
R → T is a trace-interpretation and D : [Γ0, . . . ,Γn] → [∆]

is a derivation then

I(D) = η−1
Γ0,...,Γn

◦ 〈τ0 ◦ I(D), . . . , τn ◦ I(D)〉

Proof. For this, simply observe that

I(D) = η−1
Γ0,...,Γn

◦ ηΓ0,...,Γn ◦ I(D)

= η−1
Γ0,...,Γn

◦ 〈π0, . . . , πn〉 ◦ ηΓ0,...,Γn ◦ I(D)

= η−1
Γ0,...,Γn

◦ 〈τ0 ◦ I(D), . . . , τn ◦ I(D)〉

�

The following lemma, while very technical in nature, can be understood as asserting that
trace projection maps are well-behaved with regards composition in DR.
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Lemma 3.30. If I : Dop
R → T is a trace-interpretation and

D′ : [Γ0, . . . ,Γn]→ [∆] Di : [Γi]→ [Θli−1+1, . . . ,Θli ]

are morphisms in DR where −1 = l−1 ≤ l0 ≤ . . . ≤ ln then

τli−1+k ◦ I(D′ ◦ (D0 ⊗ . . .⊗Dn)) = τk ◦ I(Di) ◦ τi ◦ I(D′)

where i ≤ n and k ≤ li − li−1.

Proof. The claim can be proven as follows

τli−1+k ◦ I(D′ ◦ (D0 ⊗ . . .⊗Dn))
..= πli−1+k ◦ ηΘ ◦ I(D0 ⊗ . . .⊗Dn) ◦ I(D′)

= πli−1+k ◦ ηΘ ◦ I(D0 ⊗ . . .⊗Dn) ◦ η−1
Γ ◦ ηΓ ◦ I(D′)

= πli−1+k ◦ ηΘ ◦ η−1
Θ′⊗
◦ (I(D0)× . . .× I(Dn)) ◦ ηΓ ◦ I(D′) (1)

= πli−1+k ◦ σ ◦ (ηΘ0 × . . .× ηΘn) ◦ (I(D0)× . . .× I(Dn)) ◦ ηΓ ◦ I(D′) (2)

= πk ◦ πi ◦ (ηΘ0 ◦ I(D0)× . . .× ηΘn ◦ I(Dn)) ◦ ηΓ ◦ I(D′) (3)

= πk ◦ ηΘi ◦ I(Di) ◦ πi ◦ ηΓ ◦ I(D′) (()
..= τk ◦ I(Di) ◦ τi ◦ I(D′)

where we use short-hands ηΘ
..= ηΘ0,...,Θln

, ηΓ
..= ηΓ0,...,Γ1 , ηΘ′⊗

..= η(Θ0⊗...⊗Θl0
),...,(Θln−1+1⊗...⊗Θln )

and ηΘi
..= ηΘli−1+1,...,Θli

. Further, we take

σ : (I(Θ0)× . . .× I(Θl0))× . . .× (I(Θln−1+1 × . . . I(Θln))) ' I(Θ0)× . . .× I(Θln)

Step (1) follows by the naturality of ηΓ, step (2) by Lemma A.8 — whose proof is quite
technical and thus relegated to Appendix A— and steps (3) and (4) by the relationships of
projections, product functors and the natural isomorphisms between product functors. �

We close this section by formally defining the global trace condition on∞-derivations and
thus the notion of ∞-proofs. To this end, we first define the auxiliary branch-tracking
categories.

Definition 3.31. Let T be a trace category. The branch-tracking category of T , denoted
by BT , has as its objects pairs (X,ϕ) where X is a finite set and ϕ : X → Ob(T ) assigns
to each element of X an object of T . Given two such objects (X,ϕ), (Y, ψ) a morphism
R : (X,ϕ)→ (Y, ψ) is a relation R ⊆ Σx ∈ X.Σy ∈ Y.HomT (ϕ(x), ψ(y)). The identity is
given by

1(X,ϕ)
..= {(x, x, 1ϕ(x)) | x ∈ X}

and two such relations R : (X,ϕ)→ (Y, ψ), R′ : (Y, ψ)→ (Z, θ) compose as

R′ ◦R ..= {(x, z, τ ′ ◦ τ) | (x, y, τ) ∈ R, (y, z, τ ′) ∈ R′}

i.e. by composing the relation and the transition maps.

Definition 3.32. Fix a path P : ω → BT . A path Q : ω → T is called a branch through
P if there exists a sequence xi : Πi ∈ ω.Xi where P (i) = (Xi, ϕi) and for each i ∈ ω we
have Q(i) = ϕi(xi) and (xi, xi+1, Q(i < i+ 1)).
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Path-tracking categories allow us to give a reasonable definition of branches through
∞-derivations, and thus of ∞-proofs.

Definition 3.33. Fix a category of derivations DR and an associated trace-interpretation
I : Dop

R → T . We define the branch-tracking functor B : Dop
R → BT as follows. We take

B([Γ1, . . . ,Γn]) ..= ({1, . . . , n}, i 7→ I(Γi))

For a D : [Γ1, . . . ,Γn] → [∆1, . . . ,∆m], consider its derivation normal form D = D1 ⊗
. . .⊗Dm with Di : [Γki−1+1, . . . ,Γki ]→ [∆i] for −1 = k−1 ≤ k0 ≤ . . . ≤ km = n and take

B(D) ..= {(i, ki−1 + 1 + l, τl ◦ I(Di)) | 1 ≤ i ≤ n, 0 ≤ l ≤ ki − ki−1 − 1}

i.e. precisely the traces from the conclusion of some Di to one of its premises.

Remark. Let us elaborate on the relationship between the concepts of “branch” and “path”.
Formally, every branch is a path P : ω → T . However, the branches through a derivation
D are “special” paths: Those which start at the root of the derivation and in which P (i)
is I(∆) for some sequent occurring in D(i). Notably, every proper subpath of P (i.e. not
P itself) will most likely not be a branch through D anymore.

Definition 3.34. Let D : ωop → DPR be an ∞-derivation and I : Dop
R → T a trace-

interpretation. P : ω → T is a branch through D if it is a branch through B◦D : ω → BT .
We call D an ∞-proof if it satisfies the global trace condition: Every branch P : ω → T
through D satisfies the trace condition of T .

Example 3.35. For an example of how the branch-tracking functor works for a concrete
derivation, consider the regular tree depicted below

a

b

b

b

...
a

...

a

b

...
a

...

a

b

b

...
a

...

a

b

...
a

...

which can be derived via the following regular construction rule-set R

A a b
a B a b

b

as described by the step-wise derivation D : ωop → DPR defined via

D(0) ..= [a] D(n+ 1) ..= [a, b]n where [a, b]0 ..= [a, b] [a, b]n+1 ..= [a, b]n ⊗ [a, b]n

D(0 < 1) ..=
[
A a b

a

]
D(1 < 2) ..=

[
A a b

a ,B a b
b

]
D(n+ 2 < n+ 3) ..= D(n+ 1 < n+ 2)⊗D(n+ 1 < n+ 2)

Now fix some trace category T and a trace-interpretation I : DR → T . When denoting
αa ..= τ0 ◦ I(A), βa ..= τ1 ◦ I(A) and αb ..= τ0 ◦ I(B), βb ..= τ1 ◦ I(B), then the path
P ..= B ◦D : ω → BT can be drawn as follows:
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0

1

3

7

...

βb

6

...

αb

βb

2

5

...

βa

4

...

αa

αb

βa

0

1

3

...

βb

2

...

αb

βa

0

1

...

βa

0

...

αa

αa

αa

P(0)

P(1)

P(2)

P(3)

where P (i) = (X,ϕ) with ϕ(2n) := I(a) and ϕ(2n+ 1) ..= I(b) for n ∈ ω. Given this path
through the branch-tracking category BT , it is quite easy to discern that from among the
Qi : ω → T given below, Q1 and Q2 are branches through D while Q3 is not.

Q1(i) ..= I(a) Q1(i < i+ 1) ..= αa

Q2(i) ..=

{
I(a) if i = 2n

I(b) otherwise
Q2(i < i+ 1) ..=

{
βa if i = 2n

αb otherwise

Q3(i) ..= I(b) Q3(i < i+ 1) ..= βb

To close the section, we prove that the global trace condition from Definition 3.34, and
thus the induced notion of ∞-provability, is well defined with regards to different repre-
sentations of the same infinite derivation.

Proposition 3.36. Let D,D′ : ωop → DPR with limD = limD′. Then D is an ∞-proof if
and only if D′ is.

Proof. Observe that the step-wise derivation DS : ωop → DPR of limD = limD′ is unique.
It thus suffices to prove that for every D : ωop → DPR, D is an ∞-proof if and only if the
step-wise ∞-derivation DS : ωop → DPR of limD is an ∞-proof.

For one direction, we prove that any branch P : ω → T through D is the subpath of
some branch P ⊆ P ′ through DS. If P is a branch through D, that means there is a
sequence (ki)i∈ω such that, if D(i) = [Γi0, . . . ,Γ

i
n], P (i) = I(Γiki) and ki+1 is the index of

the jith premise of Di
ki
where D(i < i+1) = Di

0⊗ . . .⊗Di
n in derivation normal form and

furthermore P (i < i+ 1) = τji ◦ I(Di
ki

) : I(Γiki)→ I(Γi+1
ki+1

). Taking limD = (R, S, λ) it is
easy to see that this essentially describes a sequence (si ∈ S)i∈ω through limD such that
π1(r(λ(si))) = Γiki and si < si+1. We can then find a similar sequence of indices (li)i∈ω
inducing a path P ′ : ωop → DPR through DS “tracing the si”, with the same properties.
That is, if DS(i) = [∆i

0, . . . ,∆
i
n] then P ′(i) = I(∆li) and li+1 is the index of the pith

premise of Ri
li
where D(i < i+ 1) = Ri

0⊗ . . .⊗Ri
n in DNF and P ′(i < i+ 1) = τpi ◦ I(Ri

li
).

However, only a subsequence of the li matches the path si through limD, that is, there
exists a subsequence qi of li such that π1(r(λ(si))) = I(∆qi

lqi
). Notably, this means that,

taking Q : ω → ω to be the semi-functor i 7→ qi, we already know that P ′ = P ◦ Q on
objects. It then remains to prove the same on morphisms. For this, observe that we have

D(i < i+ 1) = (Xn ⊗Rqi+n
lqi+n
⊗ Yn) ◦ . . . ◦ (X1 ⊗Rqi+1

lqi+1
⊗ Y1) ◦ (X0 ⊗Rqi

lqi
⊗ Y0)
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where n = qi−qi+1 and the Xi and Yi are morphisms in DPR “filling in” the assumptions not
touched by the sequence li. By repeatedly applying Lemma 3.30, we can then conclude

P (i < i+1) = τji ◦I(D(i < i+1)) = τpqi+n ◦I(Rqi+n
lqi+n

)◦ . . .◦τpqi ◦I(Rqi
lqi

) = P ′(Q(i < i+1))

which means P ′ = P ◦Q and thus P ⊆ P ′ as desired.

The converse direction, i.e. finding for each branch P : ωop → T through DS a subpath
P ′ ⊆ P branching through D is analogous. �

3.4 Converting between Regular ∞-Derivations and
Abstract Cyclic Derivations

We close this chapter by combining all of the definitions from the previous sections to
give formal transformation procedures between regular ∞-derivations and abstract cyclic
derivations.

Proposition 3.37. Fix a trace-interpretation I : Dop
R → T and let D : ωop → DPR be a

regular ∞-derivation. Then there exists an abstract cyclic derivation DC = (C,Tr) such
that

(i) any branch P through D is a path through DC

(ii) any path P through DC is the subpath of some branch P ′ through D

Proof. As D is regular, there exists a regular rule-set R′, a translation F : DR′ → DR
and an ∞-derivation R : ωop → DPR′ with D = F ◦ R. As R′ is finite, we may assume
that R′ = (n,R′, r′), meaning that its underlying alphabet are the natural numbers
i < n for some n ∈ ω. For simplicity, we also assume that for any R′ ∈ R′ with
r′(R′) = (i,m0 . . .mj) all the mi are distinct, a state of affairs that can always be brought
about by renaming some premises and adding “renamed copies” for their derivation rules.

We begin by constructing the cyclic tree C = (T, β) by inductively defining

T0
..= {R(0)}

Ti+1
..=

⋃
uk∈Ti

{
uklj |

l1 . . . ln
k

rule in R′, 0 ≤ j < n, no letter appears in uk twice
}

and set T ..= {u | R(0)u ∈ Ti, i ≤ n}, thus ensuring that ε ∈ T . It is easily observed
that T describes a tree following the rules of R′. There are two kinds of u ∈ Leaf(T ): If
u = vi such that A : [] → [i] is a derivation rule of R′ then we call u an axiomatic leaf.
Otherwise, there exist v, v′ ∈ n∗ with u = viv′i for a unique i which is repeated twice in
u, in which case we call u a bud. For each bud u ∈ Leaf we pick β(u) ..= vi, i.e. jumping
back to the first occurrence of i in u. Then C ..= (T, β) is the cyclic tree underlying the
abstract cyclic derivation DC .

For the functor Tr : PC → T , we take Tr(ui) ..= I(F (R([i]))). Observe that this means
that Tr(u) = Tr(β(u)) for any bud u. For the morphism-part of Tr, it suffices to specify
what to map direct successor edges to. Thus if ui, uimj ∈ S then R′ has the rule

A
m1 . . . mk

i
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meaning A : [m1, . . . ,mk]→ [i] is a morphism of R′. Then take

Tr(ui < uimj) ..= τj ◦ I(F (R(A))) : I(F (R([i])))→ I(F (R([mj])))

as Tr(ui) = I(F (R([i]))) and Tr(uimj) = I(F (R([mj]))).

Observe that any path P : ω → T through D is also a path through R w.r.t. the trace-
interpretation I ◦ F : Dop

R′ → T . Using this observation, it is an easy, albeit somewhat
involved, exercise to prove the properties (i) and (ii). �

Remark. Importantly, if an ACD DC was obtained from D : ωop → DPR via this procedure,
DC is an abstract cyclic proof iff D is an ∞-proof because of the conditions (i) and (ii).

Remark. As noted in Example 2.13, the procedure above can be used to obtain, given
a trace-interpretation, an ACD for any given cyclic derivation: Simply unfold the cyclic
proof into an ∞-derivation and recall that any ∞-derivation obtained in this manner is
regular. Then apply the procedure to said regular ∞-derivation.

Proposition 3.38. If D = (C,Tr : PC → T ) is a abstract cyclic derivation, then there
exists a regular rule-set R, a trace-interpretation I : Dop

R → T and an ∞-derivation
D′ : ωop → DPR such that

(i) any path P through D is the subpath of some branch P ′ through D′

(ii) any branch P through D′ is a path through D

Proof. For C = (T, β), denote by ∼ the reflexive, symmetric, transitive closure of β and
by T∼ the quotient of T by ∼. For t ∈ T , let JtK ∈ T∼ be the class in T∼ containing
t. Furthermore, observe that for each A ∈ T∼, there exists precisely one t ∈ A with
t 6∈ (A \ Leaf(T )) and call it q(A).

We define R ..= (T∼, T∼, r) with

r(A) ..= (A, Js0K . . . JsmK) where Chld(q(A)) = {s0, . . . , sm}

It is easy to observe that R is indeed regular. Then, take D′ : ωop → DPR to be the unique
step-wise derivation with D′(0) = [JεK]. To obtain the interpretation I : Dop

R → T , apply
Lemma 3.25 choosing

i(A) ..= Tr(q(A)) and τAj
..= Tr(q(A)si) where Chld(q(A)) = {s0, . . . , sm}.

Again, it is easy to verify that the conditions (i) and (ii) hold. �

Remark. The proofs of the two previous propositions together also demonstrate, somewhat
implicitly, that every regular infinite tree (equivalently, ∞-derivation) is generated by
unfolding a finite graph (equivalently, ACD): Proposition 3.38 describes the unfolding
procedure while Proposition 3.37 describes how the finite graph can be derived from a
regular tree.
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Chapter 4

Abstract Theorems of
Cyclic Proof Theory

This chapter employs the abstract framework laid out in Chapters 2 and 3 to state and
subsequently prove theorems of cyclic proof theory in such a way that they can be ap-
plied uniformly to any cyclic derivation system whose cyclic content is captured by said
abstractions. The theorems in Section 4.1 are generalized variants of theorems which are
wide-spread in the literature and whose proofs make use of automata theory. In Sec-
tion 4.2 we give an alternative soundness condition whose equivalence to the GTC follows
from Ramsey’s theorem and outline a novel GTC decision procedure based on it.

4.1 Proofs via Automata Theory
We begin by recalling the definitions of infinite word automata.

Definition 4.1. An infinite word automaton is a quintuple A = (Q,Σ,∆, q0, C) where
Q is a finite set of states, Σ is a finite alphabet. We call q0 ∈ Q the starting state, the
relation ∆ ⊆ Q × Σ × Q the transition relation and the set C ⊆ Qω is the acceptance
condition. If for each q ∈ Q, s ∈ Σ there is at most one q′ ∈ Q such that (q, s, q′) ∈ ∆, we
call ∆ and the automaton A overall deterministic.

Given a word σ ∈ Σω, the sequence ρ ∈ Qω is called a run of A on σ if ρ0 = q0 and for each
i ∈ ω we have (ρi, σi, ρi+1) ∈ ∆. A run ρ is accepting if ρ ∈ C. A word σ is accepted by A
if there exists an accepting run of A on σ. The set L(A) ..= {σ ∈ Σω | σ is accepted by A}
is the language of A.

Definition 4.2.

1. For a subset F ⊆ Q the Büchi condition is defined by

Büchi(F ) ..= {ρ ∈ Qω | Inf(ρ) ∩ F 6= ∅}

2. For a coloring c : Q→ ω the parity condition is defined by

Parity(c) ..= {ρ ∈ Qω | max{c(q) | q ∈ Inf(ρ)} is even}
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Remark. If A = (Q,Σ,∆, q0, C) with C = Büchi(F ) or C = Parity(c), we call A a
Büchi or parity automaton, respectively. If the type of automaton is clear from the
context, we sometimes omit the construction function, for example simply denoting a
Büchi automaton by (Q,Σ,∆, q0, F ).

The usefulness of automata theory in the field of cyclic proof theory stems from the fact
that the trace condition of many cyclic derivation systems can be recognized by infinite
word automata. Transferring to our framework, all proofs in this section rely on the
automata recognizability of the trace condition of a trace category.

Definition 4.3. Pick a trace category T . We say that its trace condition is deterministi-
cally parity-recognizable if for any finite set T of morphisms τ : A→ B of T and starting
object S ∈ Ob(T ), there exists a deterministic parity automaton with T as its alphabet
which accepts a sequence

τ0τ1τ2τ3τ4 . . . ∈ T ω with τi : Ai → Bi

if and only if the following

P (i) ..= Ai P (i < i+ 1) ..= τi

induces a path P : ω → T with P (0) = S and P satisfies the trace condition of T .

Similar concepts, such as a trace category being non-deterministically Büchi-recognizable
are defined analogously.

The first theorem we prove is the fact that, for cyclic derivation system’s whose trace
condition is recognizable by some infinite word automaton, it is decidable whether a
cyclic derivation constitutes a proof. Such an automata-based GTC decision algorithm
was first put forward by Sprenger and Dam [34] and has since become a staple of cyclic
proof theory (for further instance of it, see e.g. [9, 20, 33]).

Theorem 4.4. Let D = (C,Tr : PC → T ) be an abstract cyclic derivation and the
trace condition of T be non-deterministically Büchi-recognizable. It is decidable whether
D satisfies the global trace condition.

Proof. For C = (T, β), consider the set of trace maps in T given by

M := {Tr(uv) | u <+ v ∈ T} ∪ {1Tr(u) | u ∈ dom(β)}

which is finite as T is. Per assumption, there exists a non-deterministic Büchi-automaton
A which recognizes valid paths consisting of maps fromM satisfying the trace condition of
T . We construct a second non-deterministic Büchi-automaton B = (T,M, ε,∆, T ) with

∆ ..= {(u,Tr(uv), v) | u <+ v ∈ T} ∪ {(u, 1Tr(u), β(u)) | u ∈ dom(β)}

Clearly, B accepts precisely the single-step paths through D. A path P : ω → T thus is
a path through D if and only if it is a subpath of a path recognized by B. Thus we can
decide whether D satisfies the global trace condition by checking L(B) ⊆ L(A). As this
is decidable for non-deterministic Büchi-automata [26], we are done. �
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Instances of the next two theorems are not quite as common in cyclic proof theory as
they come with a strong precondition: they only apply to finite derivation systems. That
means, for example, that they do not apply to cyclic arithmetic as its derivation system
includes countably infinitely many instances of the ∃R-rule alone. Note that, in Chapter 6,
we present two cyclic derivation systems to which this theorem does apply. Notably, the
proofs of the next two theorems also make use of the abstract notion of derivation for
Chapter 3.

Definition 4.5. An infinite tree automaton is a quintuple A = (Q,Σ, q0,∆, C). Same as
for infinite word automata, Q and Σ are a finite set of states and a finite alphabet, q0 ∈ Q
is the starting state and C ⊆ Qω is an acceptance condition. Differing from infinite word
automata, the transition relation is ∆ ⊆ Q×Σ×Q∗ and furthermore required to be finite.

Given a labeled tree T = (Σ, S, λ), we call R = (Q,S, ρ) a run of A on T if ρ(ε) = q0 and
for each s ∈ S with bd(s) = n we have (ρ(s), λ(s), ρ(s0) . . . ρ(s(n − 1))) ∈ ∆. If σ ∈ Qω

is such that there exists τ ∈ ωω with τ � i ∈ S and ρ(τ � i) = σi for every i ∈ ω then we
call σ a path through R. We call a run R accepting if σ ∈ C for every path σ through R.
A tree T is then accepted by A if there exists an accepting run of A on it.

To the best of our knowledge, the first instance of the following result in the literature
is given by Niwiński and Walukiewicz for a tableaux system for the modal µ-calculus
in [28].

Theorem 4.6. Let DR be the category of derivations of a finite sequent calculus on Seq.
Furthermore, let I : Dop

R → T be a trace-interpretation into a trace category T whose
trace condition is deterministically parity recognizable. Then there exists an ∞-proof of a
sequent Γ ∈ Seq if and only if there exists a regular ∞-proof of Γ.

Proof. The right-to-left direction is immediate. We begin to prove the other direction by
constructing a parity tree automaton B which can recognize the ∞-proofs of Γ.

As the sequent calculus R = (Seq,R, r) is finite, we know that the set R = {R0, . . . , Rn}
of rules generating DR is finite. Each such rule Di : [Θ0

i , . . . ,Θ
mi
i ]→ [Γi] corresponds to a

morphism I(Ri) : I(Γi) → I([Θ0
i , . . . ,Θ

mi
i ]) via the trace-interpretation I, which in turn

have components τ ji ..= τj ◦ I(Ri) : I(Γi)→ I(Θj
i ). Now consider the set

T ..= {τ ji : I(Γi)→ I(Θj
i ) | 0 ≤ i ≤ n, 0 ≤ j ≤ mi}

By the parity recognizability of the trace condition of T there exists deterministic parity
automaton A ..= (Q, T, δ, q0, c) which recognizes paths consisting of morphisms from T ,
starting at I(Γ), which satisfy the trace condition of T . With this, we can construct a non-
deterministic parity tree automaton B ..= (Seq×Q,R,∆B, (Γ, q0), c◦π2) on infinite trees
labeled by rules in R where we take ∆B

..=
⋃
Ri∈R∆Ri

. specifically, for each derivation
rule

Ri

Θ0
i . . . Θmi

i

Γi

we take

∆Ri
..=

{(
(Γi, q), Di,

(
(Θ0

i , δ(q, τ
1
i )), . . . , (Θni

i , δ(q, τ
ni
i ))

)) ∣∣∣∣ q ∈ Q}
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i.e. the automaton may take steps corresponding to any applicable derivation rule, walk-
ing the state from Q along according to A for the trace map τ ji chosen by the trace-
interpretation I.

For the correctness of the automaton, it is easy to see by the choice of ∆B that B has a run
on some tree T at all if and only if T at least constitutes a construction justification of a
valid∞-derivation of Γ, i.e. if each rule is correctly applied. Furthermore, the automaton
accepts if and only if the T -path induced by each infinite path of the derivation tree
described by the construction justification is accepted by A. Thus it is easy to see that A
will only accept construction justifications of ∞-proofs of Γ.

Taken together, the argument is thus as follows: If there is an∞-proof D : ωop → DPR of Γ
there is step-wise D′ : ωop → DPR of Γ. Then the construction justification inherent in D′
is recognized by B, meaning L(B) is not empty. By Corollary 8.20 of [13] this means there
is a regular tree J = (R, S, λ) ∈ L(B). As B only recognizes construction justifications of
∞-proofs of Γ, this J must thus be such. Obtaining the regular ∞-proof D′′ : ωop → DPR
from this construction justification is straight-forward. �

Remark. An interesting application of the result above is establishing the equivalence
between cyclic proofs and Cut-free cyclic proofs in cyclic derivation systems with a Cut-
rule. Many Cut-elimination procedures for cyclic derivation systems in the literature
(e.g. [3, 12, 31]) are corecursive algorithms which lazily transform cyclic proofs with Cut-
applications into ∞-proofs without Cut-applications. If the Cut-free fragment of the
derivation system is finite, the result above can then be applied to conclude that there
must also exist a regular, Cut-free ∞-proof and thus a Cut-free cyclic proof, as is done
in [31].

The construction employed in the proof of Theorem 4.6 also yields a decision procedure
for ∞-provability.

Corollary 4.7. Let DR be the category of derivations of a finite sequent calculus on Seq.
Let furthermore I : Dop → T be a trace-interpretation into a trace category T whose trace
condition is deterministically parity recognizable. Then the ∞-provability of any sequent
Γ ∈ Seq is decidable.

Proof. The proof of Theorem 4.6 constructs a parity tree automaton B such that L(B) is
precisely the construction justifications of ∞-proofs of Γ. As the emptiness problem for
parity tree automata is decidable (see Theorem 8.19 of [13]), we can thus decide if there
exists an ∞-proof of Γ by deciding whether L(B) is empty. �

4.2 Proofs via the Ramsey Theorem
We begin this section by recalling Ramsey’s theorem. For this, we employ the notation
[A]n ..= {X ⊆ A | |X| = n} for n ∈ ω.

Theorem 4.8 ([29], Theorem A). Let A be a countably infinite set and n,m ≤ ω. For
any coloring f : [A]n → m there exists a color c ≤ m and countably infinite C ⊆ A such
that for any X ∈ [C]s we have f(X) = c.
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When examining the applications of Ramsey’s theorem in cyclic proof theory through
our framework, many of them can be identified as instances of the following categorical
corollary of Ramsey’s theorem.

Definition 4.9. For every endomorphism τ : X → X of a category T , the periodic τ
path is the path τω : ω → T given by τω(i) ..= X and τω(i < i+ 1) ..= τ .

Definition 4.10. We call an endomorphism τ : X → X idempotent if τ = τ ◦ τ .

Lemma 4.11. Let P : ω → T be a path and X ∈ Ob(T ) such that P (i) = X infinitely
often. If HomT (X,X) is finite then τω ⊆ P for some idempotent τ : X → X.

Proof. P (i) = X holding infinitely often means there exists Q ⊆ P such that Q(i) = X
for all i ∈ ω. Then Q({i, j}) ..= Q(i < j) induces a coloring Q : [ω]2 → HomT (X,X)
on ω. By the Ramsey theorem, there exists τ ∈ HomT (X,X) and M ⊆ Q such that for
i < j ∈ M we have Q(i < j) = τ . Then τω = Q ◦ S where S(i) ..= the ith least m ∈ M .
The idempotence of τ follows as τ = Q(S(0 < 2)) = Q(S(1 < 2))◦Q(S(0 < 1)) = τ◦τ . �

This consequence of Ramsey’s theorem allows us to derive an alternative soundness con-
dition on ACDs which is equivalent to the GTC.

Definition 4.12. For any abstract derivation D = (C,Tr) we define its progressing semi-
functor TrS : PSC → T as Tr restricted to the semi-category PSC .

Remark. We employ the shorthand HomTrs(u, v) ..= Homim(TrS)(Tr
S(u),TrS(v)) to aid

readability from this point forward.

Lemma 4.13. Let D = (C,Tr) be an abstract cyclic system such that for each u ∈ dom(β)
the set HomTrS(u, u) is finite. Then D satisfies the global trace condition if and only if for
every u ∈ dom(β) and every idempotent τ ∈ HomTrS(u, u), the path τω : ω → T satisfies
the trace condition.

Proof. First, suppose D satisfied the GTC. Then pick u ∈ dom(β) and τ : Tr(u)→ Tr(u)
from im(TrS). As τ is in the image of TrS, we know that there exists some p ∈ Path(u, u)
with |p| > 1 and Tr(p) = τ . Then τω = Tr ◦ P for P : ω → PSC with P (i) ..= u and
P (i < i+ 1) ..= p, meaning τω is a path through D and thus satisfies the trace condition.

Now suppose that all periodic paths on idempotent endomorphisms of buds satisfied
the trace condition and pick some path Tr ◦ P for P : ω → PSC . Clearly, there exists
P ⊆ P ′ with |P ′(i < i+ 1)| = 2 for all i ∈ ω, i.e. a representation of P which does
not “skip” any nodes. As P ′ describes an infinite path through C, there needs to be
some u ∈ dom(β) with P ′(i) = u for infinitely many i ∈ ω and thus by Lemma 4.11 an
idempotent τ : Tr(u) → Tr(u) such that τω ⊆ Tr ◦ P ′ ⊆ Tr ◦ P . Per assumption, τω
satisfies the trace condition, meaning Tr ◦ P does so as well. �

Remark. By restricting our attention to HomTrs(u, u), we guarantee that 1Tr(u) can only
occur in HomTrs(u, u) if there is some p ∈ PathC(u, u) such that Tr(p) = 1Tr(u). This
is important as in most trace categories — including all trace categories defined in this
thesis — the path 1ωTr(u) does not satisfy the trace condition. Naïvely including 1Tr(u) in
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the collection of idempotent morphisms to consider when checking for GTC satisfaction
would thus invalidate the condition given above.

This alternative soundness condition gives rise to an alternative GTC decision procedure.
While this procedure could be formalized in any formal model of computation covered
by the Church-Turing thesis, such as Turing machines or the λ-calculus, we forgo such
a technical presentation, instead relying on the readers intuitive understanding of com-
putability. To the best of our knowledge, we are the first in the literature to describe this
procedure.

Theorem 4.14. Let T be such that

(1) from τ : X → Y and τ ′ : Y → Z one can compute τ ′ ◦ τ : X → Z

(2) for τ, τ ′ : X → Y one can decide whether τ = τ ′

(3) for idempotent τ : X → X one can decide whether τω : ω → T satisfies the trace
condition

Let further D = (C,Tr : PC → T ) be an abstract cyclic system such that for u, v ∈ T
the set HomTrS(u, v) is finite. Then it is decidable whether D satisfies the global trace
condition.

Proof. By Lemma 4.13 we know that it suffices to check that for each u ∈ dom(β) and for
all idempotent τ ∈ HomTrS(u, u), τω satisfies the trace condition. For this, we compute
all of the Hom-sets and then check each morphism in question via procedure guaranteed
by assumption (3). The Hom-sets are computed by an iterative procedure with base cases

H0(u, v) ..= {Tr(uv) | if u <+ v} ∪ {1Tr(u) | if u ∈ dom(β) and β(u) = v}

and the iterative steps, using the procedure from assumption (1),

H i+1(u, v) ..= H i(u, v) ∪ {τ ◦ τ ′ | w ∈ T, τ ′ ∈ H i(u,w), τ ∈ H i(w, v)}

We carry out the procedure until a fixed point is reached, i.e. H i(u, v) = H i+1(u, v)
for all u, v ∈ T , which can be detected using the equality decision procedure guaranteed
by assumption (2). Observe that for any i ∈ ω, H i(u, v) ⊆ H i+1(u, v) ⊆ HomTrS(u, v).
Thus, a fixed point will be reached after N ..=

∑
u,v∈T |HomTrS(u, v)| steps. Any fixed

point H(−,−) of this procedure has the property that H(u, v) = HomTrS(u, v): Simply
pick some τ ∈ HomTrS(u, ) with τ = Tr(ux0 . . . xnv), as all of the H(−,−) are closed
under composition it follows that τ = Tr(xnv) ◦ . . . ◦ Tr(x0x1) ◦ Tr(ux0) ∈ H(u, v). Then
we can decide whether D satisfies the GTC by using the procedure (3) on all τ ∈ H(u, u)
for u ∈ dom(β) which satisfy τ = τ ◦ τ , which can in turn be decided by using the
procedures (1) and (2). �

Remark. Note that, as we establish in Chapter 5, many trace categories satisfy the condi-
tions (1) through (3), including those used to model the cyclic content cyclic arithmetic
and the cyclic derivation systems in Chapter 6. The procedure thus seems to be widely
applicable.

Remark. Naïvely, the procedure described in Theorem 4.14 seems preferable to the com-
mon automata-based procedure outlined in Theorem 4.4 due to its greater simplicity. The
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language inclusion check of the latter procedure relies on quite complicated automata
transformations, including Büchi-automaton complementation. The procedure from The-
orem 4.14, on the other hand, does not require any further theory to be implemented.

Of course, a much better comparison of these two procedures would be one in terms of
their computational complexities. Unfortunately, we have not been able to carry out such
a comparison due to the time-restrictions inherent to Master’s thesis projects.
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Chapter 5

Concrete Trace Categories

In this chapter, we define and study concrete examples of trace categories. In Section 5.1
we introduce activation algebras and trace categories activated by them, which give rise to
a diverse family of trace categories. We then prove for which kinds of activation algebras
the induced trace categories exhibit the properties required for results from Chapters 3
and 4. In Section 5.2 we analyze and compare activation algebras and their associ-
ated trace categories via activation-respecting homomorphisms. We close the chapter in
Section 5.3 by investigating which properties of trace categories are inherited by their
subcategories, applying these results to the subcategory of injective trace maps of a given
A-activated trace category.

5.1 A-activated Trace Categories
Activation algebras induce a family of trace categories which model a broad range of
possible trace conditions. They generalize the “some event happens infinitely often along
a trace” of the Brotherston category to more complex conditions.

Definition 5.1. An activation algebra A = (A,≤,∨, 0, α) is a semilattice (A,≤,∨, 0)
together with a fixed activation element α ∈ A where 0 6= α. That is,

− ≤ is a reflexive, transitive, antisymmetric order or A

− for a, b ∈ A, a ∨ b ∈ A is the least upper bound of a and b

− 0 ∈ A is the least element, meaning 0 ≤ a for any a ∈ A

Definition 5.2. Let A be an activation algebra. The A-activated trace category TA has
as its objects the finite sets. The morphisms between sets X, Y are given by relations
R ⊆ X ×A× Y . Given R : X → Y,R′ : Y → Z they compose as follows

(x, a ∨ b, z) ∈ R′ ◦R iff ∃y ∈ Y. (x, a, y) ∈ R and (y, b, z) ∈ R′

For any set X, the identity is given by 1X ..= {(x, 0, x) | x ∈ X}.

For some R : X → Y we often write xRay to mean (x, a, y) ∈ R.

45



Definition 5.3. Let A = (A,≤,∨, 0, α) be an activation algebra then a path P : ω → TA
satisfies the trace condition of TA if there exists a subpath P ′ ⊆ P and along it a sequence
σ : Πi ∈ ω.P ′(i) such that σiP ′(i < i+ 1)ασi+1 for all i ∈ ω.

The lemma below yields a different perspective on the trace condition in Definition 5.3: A
path satisfying the trace condition can be split into infinitely many finite segments such
that on each such segment σi+1(Ran

n ◦ . . . ◦R
a1
1 )σi we have

∨
aj = α.

Lemma 5.4. In an A-activated trace category, pick Ri : Xi → Xi+1 for 1 ≤ i ≤ n
and suppose x1(Rn ◦ . . . ◦ R1)axn+1. Then there exist x2, . . . , xn and a1, . . . , an such that
xiR

ai
i xi+1 with a =

∨n
i=1 ai.

Proof. Proof by induction on n. For n = 1, the matter is trivial. For the inductive case,
suppose x1(Rn+1◦ . . .◦R1)axn+2, this means x1(Rn+1◦(Rn◦ . . .◦R1))axn+2. Per definition,
there then exists xn+1 ∈ Xn+1 as well as an+1, b ∈ A such that x1(Rn ◦ . . . ◦ R1)bxn+1,
xn+1R

an+1

n+1 xn+2 and a = b ∨ an+1. The inductive hypothesis then yields a1, . . . , an and
x2, . . . , xn such that xiRai

i xi+1 and b =
∨n
i=1 ai. These x2, . . . , xn, xn+1 are as desired since

a = an+1 ∨ b = an+1 ∨
∨n
i=1 ai =

∨n+1
i=1 ai �

Before we continue with a technical analysis of A-activated trace categories, we give a few
examples of activation algebras and the sort of trace conditions induced by them.

Example 5.5. The simplest example of an activation algebra is given by the simplest
semilattice of at least two elements: The binary Boolean algebra B = {>,⊥}. Here the
choice α ..= > is forced as necessarily ⊥ = 0 6= α.

With Lemma 5.4, it is easy to notice that the B-activated trace category is essentially
the Brotherston trace category: A path satisfying the trace condition can be split into
infinitely many segments such that σi+1(Ran

n ◦ . . . ◦ R
a1
1 )σi and

∨
aj = >. This means

there must always exist at least one aj = > in such a segment and there thus exists a
trace along the path with in which infinitely many activations occur overall.

Example 5.6. A more complex example are the “k out of n” algebras for 0 < k ≤ n
given by

(
n
k

)
..= (A,≤,∨, ∅, α) where A ..= {X ⊆ n | |X| < k} ∪ {α} and the order ≤ is

such that X ≤ Y iff X ⊆ Y for X, Y ⊆ n, and a ≤ α for all a ∈ A. As a more concrete
example, observe the Hasse-diagram of

(
3
2

)
:

∅

{1}{0} {2}

α

The idea behind
(
n
k

)
is to view the singleton sets {i} as “events” which can occur along a

trace. To achieve activation, k distinct “events” need to take place along a segment. This
intuitive understanding is made formal by Lemma 5.7.

Lemma 5.7. Let P : ω → T(n
k)

with 1 < n be such that for each i ∈ ω and each
(x, a, y) ∈ P (i < i+ 1), we have that a = {j} for some j ≤ n. Then P satisfies the trace
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condition iff there exists s ∈ ω and sequences σ : Πi ∈ ω.P (s + i) and a :
(
n
k

)ω such that
σiP (s + i < s + i + 1)aiσi+1 for all i ∈ ω, and there furthermore exists a set E ⊆ n with
|E| ≥ k such that for each e ∈ E, ai = {e} for infinitely many i ∈ ω.

Proof. First, suppose P satisfied the trace condition, meaning there is an S : ω → ω
such that for P ′ ..= P ◦ S : ω → T(n

k)
there exists a sequence σ′ : Πi ∈ ω.P ′(i) with

σ′iP
′(i < i + 1)ασ′i+1 for all i ∈ ω. Then take s ..= S(0) and observe that by Lemma 5.4

this means that for each i ∈ ω, when taking li ..= S(i + 1) − S(i), there exist xi0, . . . , xili
and ai0, . . . , a

i
li−1 such that for j < li, we have xijP (S(i) + j < S(i) + j + 1)a

i
jxij+1 and

α =
∨
aij. This already entails that the sequences σ := x0

0x
0
1 . . . x

0
l0−1x

1
0 . . . x

1
l1−1x

2
0 . . . and

a := a0
0a

0
1 . . . a

0
l0−1a

1
0 . . . a

1
l1−1a

2
0 . . . are as desired. It remains to find the set of events E.

For this, we apply the Ramsey Theorem to singleton subsets of ω as follows: For any
i ∈ ω, pick the color c({i}) ..= {e < n | ∃j < li. a

i
j = {e}}. This coloring is finite as

c({i}) ⊆ n for every i ∈ ω. Furthermore, observe that |c({i})| ≥ k for each i ∈ ω as
per assumption, only singleton events can occur along σ and at least k distinct singleton
events are required for their join to be α. The Ramsey theorem thus yields some coloring
E ⊆ n and an infinite subset I ⊆ ω such that for i ∈ I, c({i}) = E. That means each
event in E takes place infinitely often along σ.

For the opposite direction, simply observe that α =
∨
e∈E{e}. �

Example 5.8. In both examples so far, α was maximal. However, this need not be the
case for general activation algebras. Such lattice elements f 6≤ α can act as a “failure
state” for the trace condition: Observe that there exists no finite subset S ⊆ A of lattice
elements such that f ∨

∨
S = α. This means that once some transition xRfy has been

taken, the activation element α can no longer be reached by taking further transition
steps. Such “failure” elements can thus be used to rule out certain kinds of “bad events”
taking place along a trace.

One specific example of an activation algebra with such a failure element is the three-value
lattice F ..= (3,≤,∨, 0, 1) in which 2 serves as the failure element. As we demonstrate in
Section 6.2, the F-activated trace category lends itself well to modeling trace conditions
which are most naturally expressed as a parity condition, such as in the case of the modal
µ-calculus.

We now proceed by establishing various properties of A-activated trace categories. First,
we need to show that the trace condition we gave above is indeed a trace condition.

Proposition 5.9. The condition in Definition 5.3 is invariant under subpaths.

Proof. First of all, suppose P ⊆ Q with P = Q ◦ S and P satisfies the trace condition,
meaning there exists P ′ ⊆ P with P ′ = P ◦S ′ and a validating sequence σ. Then P ′ ⊆ Q
via P ′ = Q ◦ S ◦ S ′, meaning σ is a validating sequence through a subpath of Q as well.

Conversely, let Q ⊆ P with Q = P ◦ S and suppose P satisfied the trace condition as
witnessed by P ′ ⊆ P with P ′ = P ◦ S ′ and a sequence σ : Πi ∈ ω.P ′(i). Let b ..= S ′(0)
then by Lemma 5.4 this induces two sequences σ′ : Πi ∈ ω.P (b + i) and a : ω → A such
that σ′i P (b + i < b + i + 1)ai σ′i+1 with ai ≤ α, for ij ..= S ′(j) − b we have σ′ij = σj and
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∨i≤ij+1

i=ij
ai = α. Now construct the following sequence

k0
..= the least i ∈ ω such that S(i) ≥ b

kn+1
..= the least i > kn such that there is j ∈ ω with S(kn) ≤ S ′(j) < S ′(j + 1) ≤ S(i)

and claim that S ′′(i) ..= S(ki) induces the desired subsequence Q′ ⊆ Q via Q′ = Q ◦ k−
as witnessed by σ′′ : Πi ∈ ω.Q′(i) given by σ′′i ..= σ′S(ki)

. For this, we need to check that
σ′′i+1Q

′(i < i+ 1)α σ′′i+1. Let j ∈ ω be such that S(ki) ≤ S ′(j) < S ′(j + 1) ≤ S(ki+1) then
Q′(i < i+ 1) = P (b+ ij+1 ≤ ki+1) ◦ P (b+ ij < b+ ij+1) ◦ P (ki ≤ b+ ij) meaningσ′′i ,

l<ki+1∨
l=b+ij+1

al−b︸ ︷︷ ︸
≤α

∨
l<ij+1∨
l=ij

al︸ ︷︷ ︸
=α

∨
l<b+ij∨
l=ki

al−b︸ ︷︷ ︸
≤α

, σ′ki+1−b︸ ︷︷ ︸
=σ′′i+1

 ∈ Q′(i < i+ 1)

and thus (σ′′i , α, σ
′′
i+1) ∈ Q′(i < i+ 1) as desired. �

The remainder of this section is concerned with proving that A-activated trace categories
exhibit all of the properties required by the definitions and theorems in Chapters 3 and 4.
We begin by proving that they have finite products and thus allow for the definition of
trace-interpretations.

Proposition 5.10. For any activation algebra A the A-activated trace category TA has
finite products.

Proof. For this, it suffices to show that TA has a terminal object and binary products.

− Terminal object: We take 1 ..= ∅. This is a terminal object as we know for any
X ∈ Ob(TA) that Hom(X, 1) = {!X} where !X ..= ∅.

− Binary products: For X, Y ∈ Ob(TA) we take X×Y ..= X+Y (here X+Y denotes
the sum in Set1). The projections πX : X × Y → X and πY : X × Y → Y are given
by

πX ..= {(Lx, 0, x) | x ∈ X} πY ..= {(Ry, 0, y) | y ∈ Y }

For morphisms R : X → Y,R′ : X → Z we define their product 〈R,R′〉 : X → Y ×Z
as

〈R,R′〉 ..= {(x, a, L y) | (x, a, y) ∈ R} ∪ {(x, a,R z) | (x, a, z) ∈ R′}

It is easy to verify that these definitions together yield a product. �

For the results from Section 4.1, we need to establish that the trace condition of A-
activated trace categories is recognizable by various kinds of infinite word automata. In
general, this is only the case if A is finite. However, this restriction should not be an issue
as all the global trace conditions from the literature which we know of can be modeled
in terms of finite AAs. Indeed, the study of infinite AAs seems quite futile as their trace
condition need not be Büchi-recognizable, meaning proof checking for cyclic derivation
systems whose trace condition is modeled by them might not be decidable either.

1We assume here that X + Y ..= {Lx | x ∈ X} ∪ {Ry | y ∈ Y } where Lx and Ry denote distinct
“taggings” such as Lx ..= (x, 0) and Ry ..= (y, 1). Any other representation would work just as well.
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Proposition 5.11. Let A be a finite activation algebra. The trace condition of TA is
non-deterministically Büchi-recognizable.

Proof. Let O ⊆ Ob(TA) be finite, M = {Ri : Xi → Yi | 1 ≤ i ≤ n,Xi, Yi ∈ O} be the
choice of morphisms and S ∈ O be the starting object. We construct a Büchi automaton
B ..= (M,Q,∆, S, F ) as follows: Take Q ..= O ∪ ΣX ∈ O.X × (A ∪ {r}) for some r 6∈ A.
For the transitions ∆ we take

∆ ..= {(X,R : X → Y, Y ) | R : X → Y ∈M}
∪ {(X, ε, (X, x, 0)) | X ∈ O, x ∈ X}
∪ {((X, x, a), R : X → Y, (Y, y, a ∨ b)) | xRby,R ∈M}
∪
⋃
{{((X, x, α), ε, (X, x, r)), ((X, x, r), ε, (X, x, 0))} | X ∈ O, x ∈ X}

and for the acceptance condition F ⊆ Q we pick

F ..= {(X, x, r) | X ∈ O, x ∈ X}

Towards the correctness of this automaton, first suppose P : ω → TA is a path such that
P (i) ∈ O and P (i < i + 1) ∈ M for all i ∈ ω which satisfies the trace condition of TA
and P (0) = S. Per definition, there thus exists a semi-functor G : ω → ω and a sequence
σ : Πi ∈ ω.P (G(i)) such that σi P (G(i < i + 1))α σi+1. From this, we construct the
following run ρ : Qω of B:

− Begin by reading the prefix of P “irrelevant” to the trace condition with

S
P (0<1)−−−−→ P (2)

P (1<2)−−−−→ . . .
P (G(0)−1<G(0))−−−−−−−−−−→ P (G(0))

and start the actual recognition via P (G(0))
ε−→ (P (G(0)), σ0, 0).

− At a state (P (G(i)), σi, 0), having already read P (0 < 1) . . . P (G(i) − 1 < G(i)),
continue as follows: Take b ..= G(i), n ..= G(i+ 1)−G(i) and observe that

P (G(i < i+ 1)) = P (b+ n− 1 < b+ n) ◦ . . . ◦ P (b < b+ 1)

By Lemma 5.4 this means there are x0, . . . , xn and a0, . . . , an−1 such that for 0 ≤
j < n we have xjP (b + j < b + j + 1)ajxj+1 as well as x0 = σi, xn = σi+1 and
α =

∨n−1
j=0 aj. Now we read P (G(i < i+ 1)) via the sequence:

(P (G(i)), σi, 0)
P (G(i<i+1))−−−−−−−→ (P (G(i+ 1)), σi+1, α)

ε−→
(P (G(i+ 1), σi+1, r))

ε−→ (P (G(i+ 1)), σi+1, 0)

where (P (G(i)), σi, 0)
P (G(i<i+1))−−−−−−−→ (P (G(i+ 1)), σi+1, α) is a shorthand for the steps

(P (b+ 0), x0,
∨0−1
j=0 aj)

P (b+0<b+1)−−−−−−−→ . . .
P (b+n−1<b+n)−−−−−−−−−→ (P (b+ n), xn,

∨n−1
j=0 aj)

We may then continue in the same manner as this yields a state (P (G(i+1)), σi+1, 0)
having already read P (0 < 1) . . . P (G(i)− 1 < G(i)).
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Clearly, this is a run ρ of B. Furthermore, observe that there is a finite prefix of states
outside of F along ρ, all occurring along the prefix S

P (0<G(0))−−−−−−→ G(0), which we may thus
discard in our consideration of the acceptance of ρ. On the other hand, there are infinitely
many states in F along ρ, namely the interim state of

(P (G(i+ 1)), σi+1, a)
ε−→ (P (G(i+ 1), σi+1, r))

ε−→ (P (G(i+ 1)), σi+1, 0)

for each i ∈ ω. Thus ρ is an accepting run of B, meaning B accepts the path P overall.

Now, conversely, suppose P ∈ Mω was a sequence accepted by B, meaning there is an
accepting run ρ ∈ Qω of B on P . It is easy to observe that the fact thatM has any run on
B at all means that the induced path P : ω → T is indeed a functor, as only “well-typed”
transition steps may be taken, and furthermore P (0) = S, as this is the starting state of
B. Now, as ρ is accepted, it has to have a prefix of the form

S
P (0<G(0))−−−−−−→ G(0)

ε−→ (P (G(0)), σ0, 0)

for some G(0) ∈ ω and σ0 ∈ P (G(0)). Otherwise, all of ρ would be outside of F , meaning
ρ is not accepting. Further, there need to be infinitely many occurrences of states in F
along ρ. Denote them, in sequence, by (P (G(i+ 1)), σi+1, r) for i ∈ ω. Clearly, each such
state needs to be directly preceded by (P (G(i + 1)), σi+1, α) and directly succeeded by
((P (G(i + 1))), σi+1, 0). Then these indexes induce a semi-functor G : ω → ω because
necessarily G(i) < G(i+ 1): We know that

(P (G(i)), σi, r)
ε−→ (P (G(i)), σi, 0)

s−→ (P (G(i+ 1)), σi+1, α)
ε−→ (P (G(i+ 1)), σi+1, r)

for some s ∈M∗. Now observe that G(i) 6= G(i+ 1), as that would mean that s = ε and
thus 0 = a, contradicting our assumption. Thus G(i) < G(i + 1), since labeling the G(i)
in sequence rules out G(i) > G(i+ 1). Lastly, the fact that

(P (G(i)), σi, 0)
P (G(i<i+1))−−−−−−−→ (P (G(i+ 1)), σi+1, α)

with no states in F in between means that σiP (G(i < i + 1))aσi+1. This allows us
to conclude that P : ω → T satisfies the trace condition as witnessed by the subpath
P ◦G ⊆ P and the sequence σ : Πi ∈ ω. P (G(i)). �

Remark. This theorem was the main motivation behind the requirement that α 6= 0 in
activation algebras. While the trace condition of an “activation algebra” with α = 0 is still
Büchi-recognizable, the automaton construction is quite different. As the trace condition
induced by such an “activation algebra” also diverges from the usual trace conditions quite
drastically (intuitively, it is “nothing ever happens along the trace”), we decided to rule
out the case in the definition of activation algebras, rather than giving an additional,
different construction for it.

Corollary 5.12. Let A be a finite activation algebra. The trace condition of TA is deter-
ministically parity-recognizable.

Proof. This follows because for every non-deterministic Büchi-automaton, one can con-
struct an equivalent deterministic Muller automaton via McNaughton’s theorem [26],
which can in turn be transformed into a deterministic parity automaton. �
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We close the section by proving the properties required by the algorithm for deciding the
global trace condition based on Ramsey’s Theorem as presented in Section 4.2.

Proposition 5.13. If A is finite, then for X, Y ∈ Ob(TA) the set HomTA(X, Y ) is finite.

Proof. Observe that HomTA(X, Y ) = P(X×A×Y ) which is finite as X, A and Y are. �

Proposition 5.14. Let A be finite. Then the following is true for TA
(1) from R : X → Y and R′ : Y → Z one can compute R′ ◦R : X → Z

(2) for R,R′ : X → Y one can decide whether R = R′

(3) for idempotent R : X → X one can decide whether Rω satisfies the trace condition

if equality on the finite sets X, Y, Z is decidable.

Proof. Observe that any finite AA A can be suitably encoded such that the

(i) from a, b ∈ A one can compute a ∨ b

(ii) for a, b ∈ A one can decide whether a = b

The procedures for (1) and (2) are easily derived by making use of points (i) and (ii),
respectively. For (3), we show that for a given R : X → X, Rω satisfies the trace condition
if and only if there exists some x ∈ X such that xRαx, which is easily decided using (ii).
First, if there exists such an x ∈ X than Rω itself is the trace condition satisfying subpath
of Rω with the witnessing sequence σi ..= x. Now suppose, P ⊆ Rω and σ : Πi ∈ ω.P (i)
such that σiP (i < i + 1)ασi+1. First observe that any subpath of the periodic path of
an idempotent trace map is just that periodic path again, meaning P = Rω and thus
σiR

ασi+1 for σ : ω → X. Then simply observe that among σ0, . . . , σ|X| there need to be
i < j with σi = σj by the pigeon hole principle. We may thus conclude xRαx for x ..= σi
by the idempotence of R, since we know that σi(R ◦ . . . ◦R︸ ︷︷ ︸

j−i times

)ασj. �

5.2 Comparing Activation Algebras
This section studies the relative expressive power of activation algebras by examining what
kind of trace conditions they can describe. Intuitively, an AA B can be considered more
powerful than some other AA A if any path in TA can be transformed homogeneously
into a path in TB which satisfies the trace condition iff the original path did. A suitable
notion of “homogeneous transformation” is given by functors.

Definition 5.15. For trace categories T , T ′ we call a functor F : T → T ′ a trace-
simulation if for any path P : ω → T , P satisfies the trace condition of T if and only if
F ◦ P satisfies the trace condition of T ′.

If there exists a trace-simulation F : T → T ′ we say T is simulated by T ′. If there exists
trace-simulations in both direction, we call T and T ′ inter-simulated.

As we want to compare the strength of the activation algebras, we restrict our attention
to a special class of simulations: Those induced by activation algebra homomorphisms.
Intuitively, these only modify the “activation information” of a path while leaving the
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underlying sets unchanged, meaning the simulation truly witnesses a fact about AAs.

Definition 5.16. Pick two activation algebrasA = (A,≤,∨, 0, α) and B = (B,≤,∨, 0, β).
We call a function f : A→ B a activation algebra homomorphism, if

− f is monotone, that is, if a ≤ b then f(a) ≤ f(b)

− f distributes over joins, that is, f(a ∨ b) = f(a) ∨ f(b)

− f preserves 0 and α, that is, f(0) = 0 and f(α) = β

We denote such a homomorphism by f : A → B.

Proposition 5.17. Any f : A → B induces a functor F : TA → TB given by

F (X) ..= X F (R : X → Y ) ..= {(x, f(a), y) | (x, a, y) ∈ R}

such that for any P : ω → T if P satisfies the trace condition of TA, then F ◦ P satisfies
the trace condition of TB.

Proof. First of all, observe that F : TA → TB is indeed a functor as

F (1X) = {(x, f(0), x) | x ∈ X} = 1F (X)

because f(0) = 0 and

F (R2 ◦R1) = {(x, f(a ∨ b), z) | xRa
1yR

b
2z}

= {(x, f(a) ∨ f(b), z) | xF (R1)f(a)yF (R2)f(b)z} = F (R2) ◦ F (R1)

because f(a ∨ b) = f(a) ∨ f(b).

Now, if P : ω → TA satisfies the trace condition then there is S : ω → ω and a sequence
σ : Πi ∈ ω.P (S(i)) such that σiP (S(i))ασi+1. Observe that, since F (X) = X, this means
that σ is a sequence of type Πi ∈ ω.F (P (S(i))) as well with σiF (P (S(i)))f(α)σi+1. Then
F ◦ P satisfies the trace condition as well, as f(α) = β. �

However, not every functor induced by a homomorphism is a simulation. We thus fur-
ther restrict our attention to the so-called activation-respecting homomorphisms, whose
induced functors are guaranteed to be simulations.

Definition 5.18. A homomorphism f : A → B is called activation-respecting if for a ∈ A,
f(a) = β implies a = α.

Proposition 5.19. If f : A → B is an activation-respecting homomorphism then its
induced functor F : TA → TB is a trace-simulation.

Proof. The forward direction of the condition holds in the general case. Now pick a path
P : ω → TA such that F ◦ P satisfies the trace condition of TB. This means there is an
S : ω → ω and a sequence σ : Πi ∈ ω.F (P (S(i))) such that σiF (P (S(i)))βσi+1. Observe
that then also σiP (S(i))aiσi+1 with f(ai) = β. As f is activation-respecting, we know
that ai = α for each i ∈ ω and P thus satisfies the trace condition of TA. �
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With these notions, we can begin analyzing activation algebras. First, we show that the
Booleans B occupy a special position when it comes to activation algebras.

Proposition 5.20. Any injective f : A → B is activation respecting.

Proof. We know that f(α) = β thus, by injectivity, f(a) = β implies α = β. �

Proposition 5.21. For every activation algebra A there exists a unique !A : B → A.
Furthermore, the !A are activation-respecting.

Proof. Take !A(⊥) ..= 0 and !A(>) ..= α. Uniqueness follows as these choices are forced
by the definition of activation algebra homomorphisms. It is activation-respecting as it is
injective. �

Remark. In other words, B is initial in the category of activation algebras.

We continue with an investigation of linear activation algebras, that is, activation algebras
whose Hasse diagram is a line. The three point failure algebra F can be seen as “most
powerful” linear activation algebra as it can simulate any other linear AA.

Definition 5.22. An activation algebra A is called linear if ≤ is a linear order.

Proposition 5.23. If A is linear, there exists a unique activation-respecting !A : A → F.

Proof. Take

!A(x) ..=


0 x < α

1 x = α

2 α < x

which is clearly activation-respecting. Furthermore, it is monotone and thus preserves
joins as both activation algebras, and thus the underlying semi-lattices, are linear. For
uniqueness, observe every x < α needs to be mapped to some y < 3 with y ≤ 1, as
f(α) = 1 for any homomorphism and to guarantee monotonicity, and with y 6= 1 to
guarantee that the homomorphism is activation-respecting, together forcing y < 1 and
thus the choice of f(x) = 0. Similar reasoning shows that f(x) = 2 needs to be the case
for α < x. �

Remark. In other words, F is terminal in the subcategory of linear activation algebras and
activation-preserving maps.

Remark. In contrast to the initiality of B, the homomorphisms into F are only unique if
we restrict ourselves to activation-respecting homomorphisms. That is, there is a unique
activation-respecting homomorphism !A : A → F for any linear A whereas there is a
unique homomorphism !A : B→ A for any A which happens to also always be activation-
respecting. For an example of a homomorphism f : F→ F with f 6= !F, consider one with
f−1(α) = {1, 2}.

Our study of linear activation algebras concludes with a somewhat surprising result: up
to inter-simulation, B and F are the only linear activation algebras. In practice, this
means that there is little reason to ever use TA for some other linear activation algebra A
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to formalize the trace condition of a cyclic derivation system, as it could just as well be
formulated in terms of either B or F.

Proposition 5.24. For any A which has some a ∈ A with α < a there exists an
activation-respecting f : F→ A.

Proof. Simply take f(0) = 0, f(1) = α and f(2) = a. It clearly is an activation algebra
homomorphism and it respects activations as it is an injection. �

Proposition 5.25. If A is linear and has no a ∈ A with α < a then there is a unique,
activation-respecting f : A → B.

Proof. Simply take

f(x) ..=

{
⊥ x < α

> x = α

The reasoning as to why this is an activation algebra homomorphism, activation-respecting
and unique is analogous to that in Proposition 5.23. �

Theorem 5.26. If A is linear, TA is inter-simulated with either TB or TF.

Proof. If there is no a ∈ A with α < a then the unique map !A : B → A and the
map f : A → B granted by Proposition 5.25 induce the two trace-simulations. If there
is an α < a, then the unique map !A : A → F and the map f : F → A granted by
Proposition 5.24 induce them. �

Lastly, we investigate activation algebras with failure points, that is, activation algebras
which have elements a 6≤ α. The result below shows that “one failure point is enough”,
i.e. that adding more failure points to an activation algebra which already possesses at
least one does not increase its expressivity.

Definition 5.27. For a given activation algebra A = (A,≤,∨, 0, α) we define its failure-
simplification AF = (AF ,≤F ,∨, 0, α) by taking

AF ..= {a ∈ A | a ≤ α} ∪ {1} ≤F ..= (≤ ∩AF × AF ) ∪ {(a, 1) | a ∈ AF}

Proposition 5.28. For any A, there exists an activation-respecting f : A → AF .

Proof. For this, simply take

f(x) ..=

{
x x ≤ α

1 otherwise

Again, it is easy to see it respects activations. For monotonicity, observe that for x ≤
y ∈ A, either y ≤ α or not. In the former case, x ≤ y ≤ α and thus f(x) = x, f(y) = y,
in the latter case f(y) = 1 and thus f(x) ≤ f(y) trivially. For join distributivity, pick
x, y ∈ A. We again need to cover two cases: If x, y ≤ α then x ∨ y ≤ α as well and
thus f(x) ∨ f(y) = x ∨ y = f(x ∨ y). If, say y 6≤ α then x ∨ y 6≤ α as well, meaning
f(x) ∨ f(y) = f(x) ∨ 1 = 1 = f(x ∨ y). 0 and α are clearly preserved. �
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Corollary 5.29. Any TA is simulated by TAF .

We close this section by demonstrating that, when dropping the restrictions on simula-
tions we have imposed so far, namely that they should be functors generated by homo-
morphisms, it is possible to obtain “simulation-like” functions between all A-activated
trace categories.

Theorem 5.30. For any activation algebra A there exists a function I mapping objects
of TA to objects of TB and maps R : X → Y in TA to maps I(R) : I(X) → I(Y ) in
TB. Furthermore, pick a path P : ω → TA and consider the path P̂ : ω → TB given by
P̂ (i) ..= I(P (i)) and P̂ (i < i+ 1) ..= I(P (i < i+ 1)). Then P satisfies the trace condition
iff P̂ does.

Proof. For this, take I(X) ..= X ×A and, for R : X → Y ,

I(R) ..= {((x, a),⊥, (y, a ∨ b)) | a ∈ A, xRby}
∪ {((x, a),>, (y, 0)) | a ∈ A, xRby, a ∨ b = α}

First suppose that P satisfied the trace condition. That means there is a subpath P ◦ S
and a sequence σ : Πi ∈ ω.P (S(i)) such that σiP (S(i))ασi+1. We claim that P̂ ◦ S is
the witnessing subpath of P with the sequence σ̂ : Πi ∈ ω.P̂ (S(i)) given by σ̂i ..= (σi, 0).
It remains to prove that σ̂iP̂ (S(i < i + 1))>σ̂i+1. By Lemma 5.4 we know that there
are σi = x0, . . . , xn = σi+1 and a0, . . . , an−1 for n ..= S(i + 1) − S(i) and b ..= S(i) such
that xjP (b + j)ajxj+1 and α =

∨
aj. Then define x̂j ..= (xj,

∨j−1
k=0 ak) and observe that

σ̂i = x̂0P̂ (b)⊥x̂1P̂ (b+ 1)⊥ . . . x̂n−1P̂ (b+ n− 1)>(xn, 0) = σ̂i+1.

Now suppose that P̂ satisfied the trace condition. Then there is a subpath P̂ ◦ S and
a sequence σ̂ : Πi ∈ ω.P̂ (S(i)) such that σ̂iP̂ (S(i < i + 1))>σ̂i+1. Let, without loss of
generality, π2(σ̂i) = 0 (this can always be achieved by moving the S(i) appropriately). By
taking σi ..= π1(σ̂i) we have that σiP (S(i < i+ 1))ασi+1 as desired. �

Corollary 5.31. For any two activation algebras A,B there exists a function I mapping
objects of TA to objects of TB and maps R : X → Y in TA to maps I(R) : I(X)→ I(Y ) in
TB. Furthermore, pick some path P : ω → TA and consider the path P̂ : ω → TB given by
P̂ (i) ..= I(P (i)) and P̂ (i < i+ 1) ..= I(P (i < i+ 1)). Then P satisfies the trace condition
iff P̂ does.

Proof. Simply take I ..= !B ◦ I ′ where I ′ is obtained via Theorem 5.30. �

Remark. This result is somewhat hard to make sense of. In a way, it states that all
A-activated trace categories are inter-simulated, albeit by a somewhat unclean, non-
functorial simulation. One interesting consequence of this fact is that the Cyclicst
generic theorem prover developed by Brotherston et.al. [6], which can work with any cyclic
system whose trace condition is (essentially) specified in terms of TB, can be extended to
accept and work with cyclic systems whose trace condition is specified in terms of some
finite activation algebra A.

These results also raise the question why the concept of activation algebras is useful in the
first place, if they cannot be used to formalize any trace conditions that are not expressible
in TB. The answer to this question is somewhat subtle: If all one cares about is a generic
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notion of trace condition for which one can develop abstract results such as those in
Chapter 4, there indeed seems no need to use activation algebras. For example, the Büchi
automatons for some TA given by Proposition 5.11 are essentially of the same size as
the ones obtained by first applying Theorem 5.30 and then constructing the automaton
for TB. However, activation algebras often allow for trace conditions to be modeled in
a trace category in a manner much more similar to the “original formulation” from the
respective papers introducing them. They thus separate the information of traces into
two parts: The elements of the finite sets signify which objects is being tracked, typically
terms, inductive predicates or fixed-point quantifiers, while the elements of the activation
algebra describe how progress of these objects is detected. This separation is muddled
by the transformation in Theorem 5.30, which models both the objects being tracked
and their progress via the underlying sets. Apart from the clear aesthetic benefit of this
separation, it might also help solve certain kinds of problems, some of which we outline
in Section 7.2.

Remark. The functions given by Theorem 5.30 fail to be functors on both accounts:
preserving identities and distributing over composition. The failure of identity preser-
vation is easily observed, simply notice that any I(1X) will contain triples of the form
((x, α),>, (x, 0)) which the identities of TB do not contain. This issue could, in theory, be
alleviated by taking the definition to be

I(R) ..= {((x, a),⊥, (y, a ∨ b)) | a ∈ A, xRby}
∪ {((x, a),>, (y, 0)) | a ∈ A \ {α}, xRby, a ∨ b = α}

instead, i.e. explicitly excluding that kind of transition. Indeed, this would still preserve
the property asserted of I. However, as this still does not resolve the more pressing
matter, the distributivity over composition, we chose to forgo this to keep the definition
and proof simpler.

The failure of distributivity over composition is a bit more subtle. For this, suppose there
were a < b < c < α ∈ A such that a ∨ b = α and take

R ..= {(?, b, ?)} R′ ..= {(?, c, ?)}

Then clearly, (?, a) I(R)> (?, 0) I(R′)⊥ (?, c). However, as R′ ◦R = {(?, b∨ c, ?)}, the only
two transitions possible via I(R′◦R) are (?, a) I(R′◦R)⊥ (?, α) and (?, a) I(R′◦R)> (?, 0).
Thus I(R′) ◦ I(R) 6= I(R′ ◦R).

5.3 Subcategories of Trace Categories
In this section, we prove that many properties of trace categories are inherited by some
of their subcategories. Motivation these results is the subcategory of a trace category T IA
which is restricted to injective trace maps. In the early stages of research for this thesis,
some results, including Theorem 4.14, turned out to be significantly easier to obtain when
restricting one’s attention to these subcategories. We thus believe the subcategory could
serve as a sort of “staging area” in which partial results for some open problems, such
as the ones listed in Section 7.2, could be obtained first before proving theorems in full
generality. Even results restricted to T IA should enjoy wide applicability. For example, all
global trace conditions of the cyclic derivation systems from the literature we analyze in
Chapter 6 can be formalized in them.
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Definition 5.32. Let A be an activation algebra. The A-activated injective trace category
T IA has as its objects the finite sets. The morphisms between setsX, Y are given by relation
R ⊆ X × A × Y such that for every y ∈ Y there exists at most one x ∈ X and at most
one b ∈ A such that (x, b, y) ∈ R. Given R : X → Y,R′ : Y → Z they compose as follows

(x, b ∨ b′, z) ∈ R′ ◦R iff ∃y ∈ Y. (x, b, y) ∈ R and (y, b′, z) ∈ R′

For any set X, the identity is given by 1X ..= {(x, 0, x) | x ∈ X}.

The precise kind of subcategory we study in this section are those which can be embedded
into the full category. Of course, there always exists an embedding I : T IA → TA.

Definition 5.33. An embedding is a faithful functor which is injective on objects.

Proposition 5.34. For any activation algebra A there is an embedding I : T IA → TA.

Proof. For this, simply take I(X) ..= X on objects and I(R) ..= R on morphisms. �

The first property we transfer from the full category to the subcategory is the trace
condition, making T IA a trace category.

Proposition 5.35. If F : C → T is a functor and T is a trace category then there exists
a trace condition for C such that F : C → T is a trace-simulation.

Proof. The functor F : C → T induces the following condition on paths

P : ω → C satisfies the trace condition iff F ◦ P : ω → T satisfies the trace condition

This trivially makes F : C → T a trace-simulation. Observe that if P ′ ⊆ P then I ◦ P ′ ⊆
I ◦P as well, thus we have that P ′ satisfies the induced trace condition iff P does, making
this a proper trace condition. �

Definition 5.36. For an activation algebra A the trace condition of T IA is the one induced
by the embedding I : T IA → TA.

Next, we prove that T IA has finite products using a well-known fact about embeddings.

Proposition 5.37. Let I : C → D be an embedding and let im(I) have finite products.
Then C has finite products as well.

Corollary 5.38. For any activation algebra A, T IA has finite products.

Proof. Observe that the morphisms chosen in Proposition 5.10 are all injective. The claim
thus follows by Proposition 5.37. �

Furthermore, we want to show that a trace condition being recognizable by some infinite
word automaton transfers through certain trace-simulations.

Proposition 5.39. If G : T → T ′ is a trace-simulation which is injective on objects and
the trace condition of T ′ is non-deterministically Büchi-recognizable, then so is the trace
condition on T .
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Proof. Pick S ∈ Ob(T ) and morphismsM = {τi : Xi → Yi | 1 ≤ i ≤ n}. As the trace con-
dition of T ′ is non-deterministically Büchi-recognizable, there exists a non-deterministic
Büchi automaton A = (G(M), Q,∆, q0, F ) which recognizes paths consisting of morphisms
from the set G(M) ..= {G(τi) : G(Xi) → G(Yi)} with starting state G(S). Consider
the automaton B ..= (M,Q,∆′, q0, F ) where ∆′ ..= {(q,G(τ), q′) | (q, τ, q′) ∈ ∆}. Then
clearly, for some sequence σ ∈ Mω, we know that B accepts σ if and only if A accepts
G(σ) ..= (i 7→ G(σi)) ∈ G(M)ω which in turn is the case if and only if P (i) ..= G(dom(σi))
and P (i < i + 1) ..= G(σi) defines a path P : ω → T ′ with P (0) = G(S) which satisfies
the trace condition of D. By the injectivity of G on objects, this can happen if and only
if P ′ : ω → T with P ′(i) ..= dom(σi) and P ′(i < i + 1) ..= σi is a path through C with
P (0) = S. As then P = G ◦ P ′, we know that P satisfies the trace condition if and only
if P ′ does since G is a trace-simulation. �

Remark. This proof strategy extends to other notions kinds of automatons, such as de-
terministic parity automatons.

Corollary 5.40. For finite A, the trace condition of T IA is non-deterministicall Büchi-
and deterministically parity-recognizable.

Lastly, we derive the properties needed for to apply the results from Section 4.2.

Proposition 5.41. If I : C → D is an embedding and the set HomD(I(X), I(Y )) is finite
for X, Y ∈ Ob(C) then so is HomC(X, Y ).

Proof. This follows from the fact that any embedding is faithful, and thus injective on
morphims, and injections preserve finiteness in this manner. �

Proposition 5.42. Let F : C → D be a computable functor. Then

(1) Let F be an embedding and F−1 : im(F ) → C be computable as well. If X, Y, Z ∈
Ob(C) are such for any τ : F (X)→ F (Y ) and τ ′ : F (Y )→ F (Z) one can compute
τ ′ ◦ τ : F (X)→ F (Y ) in D, then for any τ : X → Y, τ ′ : Y → Z, τ ′ ◦ τ : X → Z is
computable as well.

(2) If F is an embedding and for any τ, τ ′ : F (X) → F (Y ) it is decidable whether
τ = τ ′, then the same is true for any τ, τ ′ : X → Y .

(3) If F is a trace-simulation and for every idempotent τ : F (X) → F (X) one can
decide whether τω : ω → D satisfies the trace condition, then the same can be
decided for idempotent τ : X → Y .

Proof.

1. Simply compute F−1(F (τ ′) ◦ F (τ)) = τ ′ ◦ τ .

2. Deciding whether F (τ) = F (τ ′) is sufficient to determine whether τ = τ ′ by the
faithfulness of F .

3. Observe that F ◦ τω = F (τ)ω and thus τω satisfies the trace condition iff F (τ)ω

does. Furthermore, F (τ) is idempotent as F (τ) = F (τ ◦ τ) = F (τ) ◦ F (τ). Thus
the decision can be made for F (τ) in D. �
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Chapter 6

Concrete Cyclic Derivation Systems

This chapter relays the definitions of a selection of cyclic derivation systems from the
literature and demonstrates how their global trace condition can be represented in terms
of trace categories. Taken together, these further examples serve as an illustration of the
fact that the formalism proposed within this thesis is applicable to a wide range of cyclic
derivation systems. Each cyclic derivation system in this chapter has been included for a
certain reason:

− Section 6.1 covers a cyclic derivation system [20] for a higher-order fixed-point logic
whose terms refer to the natural numbers. Together with cyclic arithmetic from
Section 1.3, it serves as an example of the broad range of logics (other examples can
be found in [4, 9, 11, 34]) whose GTC is straightforwardly formalized in terms of TB
or T IB . Its main point of interest thus lies in the ordinarity of its GTC formalization.

− Section 6.2 covers a cyclic derivation system [1, 28] for the modal µ-calculus. Its most
interesting aspect, in the context of this thesis, is that its GTC is most naturally
expressed by the three-point failure algebra F.

− Section 6.3 covers a cyclic derivation system [31] for the Grzegorczyk modal logic.
It is of interest because of the great simplicity of its GTC which translates to a very
simple representation in terms of T IB .

As each section of this chapter serves as a self-contained example, the reader is encouraged
to only read those sections which peak their curiosity and skip those which do not. Only
the contents Section 6.2 is referred to in Chapter 7 in relation to future work.

6.1 Higher-Order Fixed-Point Logic with
Natural Numbers

The higher-order fixed-point logic with natural numbers HFLN was put forward by Kobayashi
et. al. [18, 19] as an extension of higher-order fixed-point modal logic [40] for the purpose
of automated program verification. Due to its higher-order nature, it lends itself well to
formalizing the behavior and properties of higher-order programs, such as those written
in purely functional programming languages. Kori et. al. [20] have recently introduced a
cyclic derivation system for HFLN which we present in this section. Unless stated other-
wise, all definitions and propositions not related to the abstract framework put forward
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in this thesis were taken directly from [20].

Definition 6.1. The terms and formulas of HFLN are typed with the following types

A ....= N | T T ....= Ω | A→ T

their syntax being specified by the grammar

s, t ∈ Term ....= x | Z | S t
ϕ, ψ ∈ Form ....= x | s = t | ϕ ∨ ψ | ϕ ∧ ψ | λxA.ϕ | ϕψ | ϕ t | µxT .ϕ | νxT .ϕ

The typing rules are as follows, Ξ representing mappings from variables to types

Ξ(x) = a

Ξ ` x : A Ξ ` Z : N
Ξ ` t : N

Ξ ` S t : N
Ξ ` s : N Ξ ` t : N

Ξ ` s = t : Ω

Ξ ` ϕ : Ω Ξ ` ψ : Ω

Ξ ` ϕ ∨ ψ : Ω

Ξ ` ϕ : Ω Ξ ` ψ : Ω

Ξ ` ϕ ∧ ψ : Ω

Ξ[x 7→ A] ` ϕ : T

Ξ ` λxA.ϕ : A→ T

Ξ ` ϕ : T → T ′ Ξ ` ψ : T

Ξ ` ϕψ : T ′
Ξ ` ϕ : N → T Ξ ` t : N

Ξ ` ϕ t : T

Ξ[x 7→ T ] ` ϕ : T

Ξ ` µxT .ϕ : T

Ξ[x 7→ T ] ` ϕ : T

Ξ ` νxT .ϕ : T

Definition 6.2. Each type A is interpreted as a poset JAK = (JAK,≤A) as follows

JNK ..= N x ≤N y :⇔ x = y

JΩK ..= B x ≤Ω y :⇔ x = 0 or y = 1

JA→ T K ..= {f : JAK→ JAK | f monotone} f ≤A→T g :⇔ ∀x ∈ JAK. f(x) ≤T g(x)

Furthermore, type environments Ξ are interpreted as posets as follows

JΞK ..= Πx ∈ dom(Ξ). JΞ(x)K ρ ≤ ρ′ :⇔ ∀x ∈ dom(Ξ). ρ(x) ≤T ρ′(x)

Formulas are interpreted as monotone functions JΞ ` ϕ : AK ∈ JΞK→ JAK

JΞ ` x : AK(ρ) ..= ρ(x)

JΞ ` Z : NK(ρ) ..= 0

JΞ ` S t : NK(ρ) ..= 1 + JΞ ` t : NK(ρ)

JΞ ` s = t : ΩK(ρ) ..= (JΞ ` s : NK(ρ) = JΞ ` t : NK(ρ))

JΞ ` ϕ ∧ ψ : ΩK(ρ) ..= JΞ ` ϕ : NK(ρ) ∧ JΞ ` ϕ : NK(ρ)

JΞ ` ϕ ∨ ψ : ΩK(ρ) ..= JΞ ` ϕ : NK(ρ) ∨ JΞ ` ϕ : NK(ρ)

JΞ ` λxA.ϕ : A→ T K(ρ) ..= (JAK 3 v 7→ JΞ ` ϕ : A→ T K(ρ[x 7→ v]))

JΞ ` ϕψ : T K(ρ) ..= JΞ ` ϕ : A→ T K(ρ)(JΞ ` ψ : A→ T K(ρ))

JΞ ` ϕ t : T K(ρ) ..= JΞ ` ϕ : N → T K(ρ)(JΞ ` t : N → T K(ρ))

JΞ ` µxT .ϕ : T K(ρ) ..= lfp(JΞ ` λxT .ϕ : T → T K(ρ))

JΞ ` νxT .ϕ : T K(ρ) ..= gfp(JΞ ` λxT .ϕ : T → T K(ρ))

where lfp and gfp refer to the least and greatest fixed-point operations, respectively.
These fixed-points always exists as any poset JT K, and thus by extension JΞK → JT K,
forms a complete lattice and each formula interpretation is monotone.
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Example 6.3. HFLN is quite expressive. For example, a universal quantifier ∀ of type
(N → Ω)→ Ω can be defined as follows

∀ ..= λpN→Ω. (νaN→Ω.λxN . P x ∧ a (S x))Z

For some ϕ : N → Ω, the expression ∀ϕ can be transformed into ϕ 0 ∧ ϕ 1 ∧ ϕ 2 ∧ . . . by
repeated β-reductions and fixed-point unfoldings, which perfectly captures the universal
quantification on natural numbers. Readers curious about further examples of HFLN
expressions are encouraged to consult [20].

Definition 6.4. We write Ξ | Γ ⇒ ∆ for lists of formulas Γ,∆ if for every formula
ϕ ∈ (Γ,∆) we have Ξ ` ϕ : Ω. Formally, all sequents of the derivation system for HFLN
are such Ξ | Γ ⇒ ∆, although we do not write out the Ξ for the sake of legibility. The
derivation rules of the sequent calculus H for HFLN are as follows

Ax ϕ⇒ ϕ Cut
Γ⇒ ϕ,∆ Γ, ϕ⇒ ∆

Γ⇒ ∆
WkL Γ⇒ ∆

Γ, ϕ⇒ ∆

WkR Γ⇒ ∆
Γ⇒ ϕ,∆

CtrL
Γ, ϕ, ϕ⇒ ∆

Γ, ϕ⇒ ∆
CtrR

Γ⇒ ϕ, ϕ,∆

Γ⇒ ϕ,∆

ExL
Γ, ψ, ϕ,Γ′ ⇒ ∆

Γ, ϕ, ψ,Γ′ ⇒ ∆
ExR

Γ⇒ ∆, ψ, ϕ,∆′

Γ⇒ ∆, ϕ, ψ,∆′
Sub Γ⇒ ∆

Γ[ϕ/x]⇒ ∆[ϕ/x]

Mono

x occurs in ϕ precisely once
Γ, ϕ, ψ ~y ⇒ ϕ, θ ~y,∆

Γ, ϕ[ψ/x]⇒ ϕ[θ/x],∆
=L

Γ[t/x, s/y]⇒ ∆[t/x, s/y]

Γ[s/x, t/y], s = t⇒ ∆[s/x, t/y]

=R
Γ⇒ t = t,∆

∨L
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
∨R

Γ⇒ ϕ, ψ,∆

Γ⇒ ϕ ∨ ψ,∆

∧L
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
∧R

Γ⇒ ϕ,∆ Γ⇒ ψ,∆

Γ⇒ ϕ ∨ ψ,∆ λL
Γ, ϕ[ψ/x] ~θ ⇒ ∆

Γ, (λx.ϕ)ψ ~θ ⇒ ∆

λR
Γ⇒ ϕ[ψ/x] ~θ,∆

Γ⇒ (λx.ϕ)ψ ~θ,∆
σL

Γ, ϕ[(σx.ϕ)/x] ~ψ ⇒ ∆

Γ, (σx.ϕ) ~ψ ⇒ ∆
σR

Γ⇒ ϕ[(σx.ϕ)/x] ~ψ,∆

Γ⇒ (σx.ϕ) ~ψ,∆

Γ, N xN ⇒ ∆

Γ⇒ ∆ S t = S ⇒
Γ, s = t⇒ ∆

Γ, S s = S t⇒ ∆

where N ..= µX.λx.(x = Z) ∨ (∃x′. x = S x′ ∧ X x′) and σ ∈ {µ, ν}. We generally
work with ∞-derivations of this derivation system and call regular ∞-derivations cyclic
derivations.

Remark. The Mono-rule we give is slightly different from that of [20]. We chose this
presentation as it was proposed to us by the authors of [20] in an e-mail exchange because
it leads to a slightly clearer formulation of the GTC.

Remark. In [20], cyclic derivations are defined as finite derivation trees in which non-
axiomatic leaves are assigned an inner node companion. We chose to forgo such techni-
calities and simply, equivalently, consider regular ∞-derivations as cyclic.
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Definition 6.5. Let Γ′ ⇒ ∆′ be a premise of derivation rule R ∈ H concluding Γ ⇒ ∆
as below

R . . . Γ′ ⇒ ∆′ . . .
Γ⇒ ∆

Pick some occurrence of a formula ϕ from either Γ or ∆. We call an occurrence of a
formula ϕ′ in Γ′ or ∆′ the precursor of ϕ, writing ϕ′ ≺R ϕ if

(a) ϕ is not principal in R, that is, if ϕ is not “altered by R”, and ϕ = ϕ′ with ϕ′ being
in the same position as ϕ

(b) ϕ is principal in R and ϕ′ is one of the formula occurrences resulting from ϕ via R

Remark. Technically, being “an occurrence resulting from ϕ via R” in (b) needs to be de-
fined on a case-by-case basis for each possible rule. However, the notion is quite intuitive,
so we simply give a few illustrative examples:

∨R
Γ⇒ ϕ, ψ,∆

Γ⇒ ϕ ∨ ψ,∆ Mono
Γ, ϕ, ψ ~y ⇒ ϕ, θ ~y,∆

Γ, ϕ[ψ/x]⇒ ϕ[θ/x],∆

In (∨R), both ϕ and ψ are occurrences resulting from ϕ∨ψ. In (Mono), both ϕ and ψ ~y
are occurrences resulting from ϕ[ψ/x]. A definition of the concept in full detail can be
also found in [20, Appendix A].

Definition 6.6. Let (Γi ` ∆i)i∈ω be a branch through an ∞-derivation according to
Definition 6.4. A sequence of formulas (ϕi)i∈ω is called a pre-trace along (Γi ` ∆i)i∈ω if
ϕi+1 ≺R ϕi for the rule R deriving Γi ` ∆i from Γi+1 ` ∆i+1 for every i ∈ ω. Such a
pre-trace is a trace if case (b) from Definition 6.5 occurs for infinitely many ϕi+1 ≺R ϕi.
If the ϕi always occur in Γi (in ∆i), we call (ϕi)i∈ω a left trace (right trace).

Definition 6.7. Given a path (Γi ` ∆i)i∈ω and a trace (ϕi)i∈ω along it, its unfolding tree
is defined by by annotating the fixed-point quantifiers occurring in the ϕi with words from
ω∗ as follows:

− Label each occurrence of a fixed-point quantifier in ϕ0 with ε and take U0
..= {ε}

− If ϕi+1 is results from the σ-rule, meaning ϕi = (σsx.ψ) ~θ for s ∈ Ui, then label
ϕi+1 as ψ[σsix.ψ/x] ~θ, i.e. label each of the instances of σ “substituted in” by the
unfolding with si ∈ ω∗. Take Ui+1

..= Ui ∪ {si}.

− If ϕi is not principal in a σ-rule, simply “leave the labels on” in the transformation
from ϕi to ϕi+1. For example, if ϕi+1 = ψ results from ϕi = ψ∨θ via ∨L then simply
label the fixed-point quantifiers in ϕi+1 as they were labeled in ϕi. Take Ui+1

..= Ui.

The unfolding tree of ϕ is defined as U(ϕ) ..=
⋃
i∈ω Ui.

Lemma 6.8 ([20, Lemma 22]). For every trace (ϕi)i∈ω along a path (Γi ` ∆i)i∈ω the
unfolding tree U(ϕ) has precisely one infinite path.

Definition 6.9. Given a trace (ϕi)i∈ω along a path (Γi ` ∆i)i∈ω we call it a good trace if

− (ϕi)i∈ω is a left trace and the infinite branch of U(ϕ) follows a µ-quantifier

− (ϕi)i∈ω is a right trace and the infinite branch of U(ϕ) follows a ν-quantifier
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An ∞-derivation (cyclic derivation) of a sequent Γ ` ∆ is a ∞-proof (cyclic proof ) if
every infinite branch through it has a suffix which has a good trace running along it.

Remark. This formulation of the trace condition in terms of unfolding trees is inspired by
the winning condition of HFLN games in [39] rather than the trace condition of [20].

We now demonstrate how the global trace condition of HFLN can be captured in terms
of the B-activated injective trace category T IB . This formalization of the trace condition
allows us to apply theorems from Chapter 4 to HFLN.

Definition 6.10. We call p ∈ B∗ a subformula path and define a partial addressing
function on formulas ϕ and sequences of formulas Γ as follows:

ϕ@ε := ε (ϕ0�ϕ1)@ip := ϕi@p (λx.ϕ)@0p := ϕ@p (ϕ0 ϕ1)@ip := ϕi@p

(ϕ t)@0p := ϕ@p (σx.ϕ)@0p := ϕ@p (Γ, ϕ)@0p := ϕ@p (Γ, ϕ)@1p := Γ@p

where � ∈ {∨,∧} and σ ∈ {µ, ν}. The set of fixed-point paths is defined as

Π(ϕ) := {p ∈ B∗ | ϕ@p = σx.ψ}

and extended analogously to Π(Γ) for sequences Γ.

Definition 6.11. Let H be as in Definition 6.4, then we define a trace-interpretation
I : Dop

H → T IB via Lemma 3.25 with the mapping i : Seq→ Ob(T IB ) given by

i(Γ⇒ ∆) ..= {Γ@p = µx.ϕ | p ∈ Π(Γ)}+ {∆@p = νx.ϕ | p ∈ Π(∆)}

and for each R ∈ H where

R
Γ0 ⇒ ∆0 . . . Γn ⇒ ∆n

Γ⇒ ∆

we define the trace maps τRj : i(Γ ⇒ ∆) → i(Γj ⇒ ∆j) such that (p, b, q) ∈ τRj if the
occurrence q is a predecessor of the occurrence of p, where we take b = > if R is a σ-rule
and p is its principal occurrence and b = ⊥ otherwise.

Remark. Similar to Definition 6.5, the notion of “predecessor” used in this definition would
need to be defined on a case-by-case basis. Instead, we again opt to give a few illustrative
examples. Annotating each quantifier with its position, the rule

λL
(µcy.y) ∨ (µdy.y)⇒ νey.y

(λx. x ∨ x)µay.y ⇒ νby.y

would yield τ = {(a,⊥, c), (a,⊥, d), (b,⊥, e)}. The rule

νR
⇒ (νbx. x ∨ x) ∨ (νcx. x ∨ x)

⇒ νax. x ∨ x
would yield τ = {(a,>, b), (a,>, c)}. Lastly, the rule

Mono
(µcx.x) ∨ y, µdx.x⇒ (µx.x) ∨ y, µx.x
(µax.x) ∨ (µbx.x)⇒ (µx.x) ∨ (µx.x)

would yield τ = {(a,⊥, c), (b,⊥, d)}.
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Proposition 6.12. Given some ∞-derivation D of a sequent Γ ⇒ ∆, it is an ∞-proof
according to Definition 6.9 if and only if D : ωop → DPH is an ∞-proof according to the
trace condition induced by I : Dop

H → T IB from Definition 6.11.

Proof. Simply observe that the T IB trace condition induced by I : Dop
H → T IB is satisfied

precisely if there exists a µ-quantifier to the left of the ⇒ or a ν-quantifier to the right of
the ⇒ which is, heredetarily, unfolded infinitely often. �

Corollary 6.13. Given a cyclic derivation of H it is decidable whether it is a proof.

Proof. Every cyclic derivation D is a regular ∞-derivation D : ωop → DPH. From this,
we can generate an equivalent abstract cyclic derivation D′ on T IB via Proposition 3.37.
Now, either the algorithm from Theorem 4.4 or Theorem 4.14 can be applied to decide
whether D′ is an abstract cyclic proof. �

Remark. This result is also derived in [20, Section 4] via an explicit automata construction.

6.2 Modal µ-Calculus
The modal µ-calculus µML, introduced by Kozen [21], extends modal logic with fixed-
point quantifiers. These quantifiers grant µML great expressive strength, notably allowing
for many logics from the field of program verification to be embedded into µML. A
cyclic derivation system for µML was first given by Niwinski and Walukiewicz [28] in
1996, although they presented it as a tableaux system yielding a decision procedure for
a fragment of µML. The cyclic derivation system for µML we present in this section
is essentially the same as that given by Niwinski and Walukiewicz, although we follow
the modern presentation of it given by Afshari and Leigh in their technical report [1].
Unless explicitly stated otherwise, all definitions and theorems in this section which do
not involve the abstract framework of this thesis stem from their report.

Definition 6.14. For a set Π of propositional letters, the syntax of the modal µ-calculus
is given by the following grammar

ϕ, ψ ∈ Form ....= p | p | x | ϕ ∧ ψ | ϕ ∨ ψ | �ϕ | ♦ϕ | µx.ϕ | νx.ϕ

where p ∈ Π and x ∈ Var are formal variables.

Definition 6.15. A Kripke frame is a pair (W,R) where W is a set of worlds and
R ⊆ W ×W is a relation. A Kripke model is a triple (W,R, ρ) where (W,R) is a Kripke
frame and ρ : Π ∪Var→ P(W ) is an assignment.

For a Kripke frame (W,R) and an assignment ρ : Π ∪Var→ P(W ) the evaluation of ϕ
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under ρ, denoted by JϕKρ, is recursively defined by

JpKρ ..= ρ(p)

JpKρ ..= W \ JpKρ J�ϕKρ ..= {w ∈ W | ∀v ∈ JϕKρ. w R v entails v ∈ JϕKρ}
JxKρ ..= ρ(x) J♦ϕKρ ..= {w ∈ W | ∃v ∈ JϕKρ. w R v ∧ v ∈ JϕKρ}

Jϕ ∧ ψKρ ..= JϕKρ ∩ JψKρ Jµx.ϕKρ ..=
⋂
{S ⊆ W | JϕKρ[x 7→S] ⊆ S}

Jϕ ∨ ψKρ ..= JϕKρ ∪ JψKρ Jνx.ϕKρ ..=
⋃
{S ⊆ W | S ⊆ JϕKρ[x 7→S]}

Note that by the Knaster-Tarski theorem, Jµx.ϕKρ and Jνx.ϕKρ are the least and greatest
fixed-point of (S 7→ JϕKρ[x 7→S]) : P (W )→ P (W ), respectively.

A formula ϕ is a validity of the modal µ-calculus if for every Kripke model (W,R, ρ) we
have JϕKρ = W .

Definition 6.16. Taking Var(ϕ) ..= {x ∈ Var | x occurs in ϕ} the subsumption order
<ϕ⊆ Var(ϕ)×Var(ϕ) is the smallest partial order such that x <ϕ y if σy.ψ occurs as a
subformula of ϕ for some σ ∈ {µ, ν} and ψ, and further x is free in σy.ψ. A formula is
well-named if <ϕ is irreflexive.

Remark. Note that every formula ϕ can be α-renamed into a well-named formula, and
that for a well-named ϕ = σx.ψ we have <ϕ=<ϕ′ where ϕ′ ..= ψ[σx.ψ/x] for σ ∈ {µ, ν}.

Definition 6.17. The sequents of µML are given by finite sets Γ of well-named formulas.
As usual, Γ, ϕ is short for Γ ∪ {ϕ}. The derivation rulesM of µML are given below

Ax
p, p

Wk Γ
Γ, ϕ

∨
Γ, ϕ, ψ

Γ, ϕ ∨ ψ ∧
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ Mod
Γ, ϕ

♦Γ,�ϕ

µ
Γ, ϕ[µx.ϕ/x]

Γ, µx.ϕ
ν

Γ, ϕ[νx.ϕ/x]

Γ, νx.ϕ

where ♦Γ = {♦ϕ | ϕ ∈ Γ}. We generally consider∞-derivations in that sequent calculus,
calling regular ∞-derivations cyclic derivations.

Definition 6.18. Let Γ be the conclusion of the derivation rule R ∈M and let Γ′ be one
of R’s premises. We call ϕ′ ∈ Γ′ a precursor of ϕ ∈ Γ, writing ϕ′ ≺ ϕ

(i) if ϕ is not principal in R, that is, if ϕ is not “altered by R”, and ϕ = ϕ′

(ii) or if ϕ is principal in R and ϕ′ is one of the formula occurrences resulting from ϕ
via R

Definition 6.19. Let (Γi)i∈ω be a branch through an ∞-derivation formed according to
Definition 6.17. A sequence of formulas (ϕi)i∈ω is called a trace along (Γi)i∈ω if ϕi+1 ≺ ϕi
for all i ∈ ω according to the rule deriving Γi from Γi+1. Such a trace is called a ν-trace
if there exists an x ∈ Var(ϕ0) such that

(i) ϕi = νx.ψ and ϕi+1 = ψ[νx.ψ/x] for infinitely many i ∈ ω, and

(ii) for any y ∈ Var(ϕ0) if there are infinitely many ϕi = µy.θ then x <ϕi
y
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Remark. Note that whenever ϕ′ ≺ ϕ and ϕ is well-named then so is ϕ′. Furthermore, this
means that <ϕ′=<ϕ ∩Var(ϕ′)×Var(ϕ′). We often simply write <ϕ for the subsumption
relation of a trace (ϕi)i∈ω which should be taken as <ϕi

for the “contextually sensible”
i ∈ ω. This abuse of notation is appropriate because the facts stated above mean that all
<ϕi

are “consistent with each other”.

Definition 6.20. An∞-derivation of µML is an∞-proof if every infinite branch running
through it has a ν-trace.

The global trace condition of µML can be captured in terms of T IF . This allows us to
apply theorems from Chapter 4 to µML.

Definition 6.21. We define a trace-interpretation I : Dop
M → T IF according to Lemma 3.25

with the mapping i : Seq→ Ob(T IM) given by the function

i(Γ) ..= Σϕ ∈ Γ.Var(ϕ)

That is, pairs of formulas ϕ occurring in Γ and variables occurring in ϕ. For each R ∈M
where

R
Γ0 . . . Γn

Γ

then we define the trace maps τRj : i(Γ)→ i(Γj) as

τRj
..=

{
((ψ, x), a, (ψ′, x))

∣∣∣∣∣ ψ′ ≺ ψ, a =


2 if R = µ, ψ = µy.θ and x 6<ψ y

1 if R = ν, ψ = νx.θ

0 otherwise

}

Proposition 6.22. Given an ∞-derivation D of a sequent Γ, it is an ∞-proof according
to Definition 6.19 if and only if D : ωop → DPM is an ∞-proof according to the trace
condition induced by I : Dop

M → T IF from Definition 6.21.

Proof. First of all, observe that if an infinite branch (Γi)i∈ω of D has a ν-trace (ϕi)i∈ω,
then there exists an x ∈ Var(ϕ0) such that

(i) the formula νx.ψ associated with x is unfolded infinitely often along (ϕi)i∈ω

(ii) if for some x 6<ϕ y the associated formula is µy.θ, it is unfolded only finitely often

That means there exists some index j from which point on no µy.θ for x 6<ϕ y is unfolded
anymore. Then the sequence σi ..= (ϕi+j, x) witnesses that the path P : ω → T IF generated
by (Γi)i∈ω via I : Dop

M → T IF satisfies the trace condition of T IF as the activation state 2
never occurs along it.

A similar argument can be made to show that if the branch P : ω → T IF through D
generated by a branch (Γi)i∈ω satisfies the trace condition of T IF this means there exists a
suffix of (Γi)i∈ω along which a ν-trace runs, which also means a ν-trace runs along (Γi)i∈ω
starting at Γ0. However, the actual argument for this is very combinatorial as the trace
condition of T IF is defined in terms of arbitrary subpaths Q ⊆ P , which is why we chose
not elaborate it any further. �

Corollary 6.23. For every cyclic derivation ofM it is decidable whether it is a proof.

66



Proof. Every cyclic derivation D is a regular ∞-derivation D : ωop → DPM. From this,
we can generate an equivalent abstract cyclic derivation D′ on T IF via Proposition 3.37.
Now, either the algorithm from Theorem 4.4 or Theorem 4.14 can be applied to decide
whether D′ is an abstract cyclic proof. �

Proposition 6.24. Every ∞-derivation of M is derived using a finite fragment of the
derivation rules given in Definition 6.17.

Proof. The Fischer-Ladner closure Clos(ϕ) of a formula ϕ is the smallest set such that

− ϕ ∈ Clos(ϕ)

− if ψ ◦ θ ∈ Clos(ϕ) then ψ, θ ∈ Clos(ϕ) for ◦ ∈ {∧,∨}

− if ©ψ ∈ Clos(ϕ) then ψ ∈ Clos(ϕ) for © ∈ {�,♦}

− if σx.ψ ∈ Clos(ϕ) then ψ[σx.ψ/x] ∈ Clos(ϕ) for σ ∈ {µ, ν}

It is well known that for any ϕ the set Clos(ϕ) is finite, as for example argued in [21]. For
a set of formulas Γ we extend Clos(Γ) ..=

⋃
ϕ∈Γ Clos(ϕ).

Now consider some ∞-proof D : ωop → DPM such that D(0) = [Γ]. We first claim that
for any sequent Γ′ occurring within D, we have Γ′ ⊆ Clos(Γ). This is the case as every
derivation rule only adds new formulas to the sequents in its premises which are in the
closures of formulas already present in the premise, as is easily observed. This, in turn,
means that all sequents which may ever occur in D are collected in the finite set

{Γ′ | Γ′ ⊆ Clos(Γ)}

As only a finite number of derivation rules can be applied to any given sequent Γ′, there
also exist only a finite number of derivation rules which can be applied within D. �

Corollary 6.25. If Γ can be proven by an ∞-proof of µML, it can also be proven via a
cyclic proof.

Proof. We may apply Theorem 4.6 by viewing the ∞-proof D : ωop → DPM as D : ωop →
DPM′ whereM′ is the category of derivations generated by the finite fragment ofM used
within D according to Proposition 6.24. �

Corollary 6.26. It is decidable whether any given sequent of µML is provable.

Proof. Follows from Corollary 4.7 in the same manner as the result above. �

6.3 Grzegorczyk Modal Logic
The Grzegorczyk modal logic Grz, introduced by the eponymous author in [14], is the
modal logic of reflexive, transitive and conversely well-founded modal Kripke frames. It
is also the provability logic of Peano arithmetic obtained when interpreting �ϕ as “ϕ is
both provable and true”. In the context of cyclic proof theory, it is remarkable in featuring
neither inductively defined objects nor fixed-point quantifiers explicitly, the staples of
logics admitting cyclic derivation systems, but nonetheless having a cyclic derivation
system, which was put forward by Savateev and Shamkanov in [31].
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Definition 6.27. For a set Π of propositional letters, the syntax of modal logic is

ϕ, ψ ∈ Form ....= ⊥ | p | ϕ→ ψ | �ϕ p ∈ Π

the remaining connectives can be obtained as their DeMorgan translations

¬ϕ ..= ϕ→ ⊥ ϕ ∧ ψ ..= ¬(ϕ→ ¬ψ) ϕ ∨ ψ ..= ¬ϕ→ ψ ♦ϕ ..= ¬�¬ϕ

Definition 6.28. A Kripke frame is a pair (W,R) where W is a set of worlds and
R ⊆ W×W is a relation. A Kripke frame is reflexive or transitive if R is such, respectively.
A Kripke frame is conversely well-founded if R−1 ..= {(y, x) | xR y} is well-founded. A
Kripke model is a triple (W,R, ρ) where (W,R) is a Kripke frame and ρ : W → P(Π) is
an assignment.

Fix a Kripke model (W,R, ρ) and some x ∈ W . The satisfaction of formula ϕ at world
x, denoted by x � ϕ, is defined as follows

x � ⊥ :⇔ never x � ϕ→ ψ :⇔ x � ϕ entails x � ψ

x � p :⇔ p ∈ ρ(x) x � �ϕ :⇔ y � ϕ for every xR y

A formula ϕ is a validity of Grzegorczyk modal logic if for every Kripke frame (W,R) which
is reflexive, transitive and conversely well-founded, every assignment ρ : W → P(Π) and
every world x ∈ W we have x � ϕ.

Definition 6.29. The sequents of Grzegorczyk modal logic are given by Γ ⇒ ∆ where
Γ,∆ are sets of formulas. The expression Γ, ϕ is short for Γ∪{ϕ} and the expression Γ,∆
is short for Γ ∪∆. The derivation rules G of Grzegorczyk modal logic are

Γ, p⇒ p,∆ Γ,⊥ ⇒ ∆
→L

Γ, ψ ⇒ ∆ Γ⇒ ϕ,∆

Γ, ϕ→ ψ ⇒ ∆

→R
Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆
refl

Γ,�ϕ, ϕ⇒ ∆

Γ,�ϕ⇒ ∆
�

Γ,�Γ′ ⇒ ϕ,∆ �Γ′ ⇒ ϕ

Γ,�Γ′ ⇒ �ϕ,∆

where �Γ′ ..= {�ϕ | ϕ ∈ Γ′}. We generally consider ∞-derivations in that sequent
calculus, calling regular ∞-derivations cyclic derivations.

Definition 6.30. An ∞-derivation of Grzegorczyk modal logic is an ∞-proof if every
infinite branch running through it passes through the right premise (�Γ′ ⇒ ϕ) of the
�-rule infinitely often.

Remark. The cyclic derivation system of Grzegorczyk modal logic stands apart from the
other cyclic derivation systems we cover in this thesis by the fact that its soundness
condition is not formulated as a property of traces which run along each infinite branch
but instead a property of the branches themselves.

The global trace condition of Grz can be captured in terms of T IB . In this, the simplicity
of Definition 6.30 extends to Definition 6.31. Capturing the trace condition of Grz via a
trace category also allows us to apply theorems from Chapter 4.
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Definition 6.31. Denoting the derivation system from Definition 6.29 by G, we define a
trace-interpretation I : Dop

G → T IB according to Lemma 3.25 with the mapping i : Seq→
Ob(T IB ) given by the constant function i(Γ⇒ ∆) ..= {?}. For each R ∈ G which is not an
instance of the �-rule, we take τRj ..= {(?,⊥, ?)}. For any � instance

�
Γ,�Γ′ ⇒ ϕ,∆ �Γ′ ⇒ ϕ

Γ,�Γ′ ⇒ �ϕ,∆

we fix τ�0 ..= {(?,⊥, ?)} for the left side and for the right side we take τ�1 ..= {(?,>, ?)}.

Proposition 6.32. Given some ∞-derivation D of a sequent Γ ` ∆, it is an ∞-proof
according to Definition 6.30 if and only if D : ωop → DPG is an ∞-proof according to the
trace condition induced by I : Dop

G → T IB from Definition 6.11.

Proof. Simply observe that a branch’s induced path P : ωop → T IB satisfies the trace
condition only if the branch passes through the right side of a �-rule application infinitely
often. �

Corollary 6.33. For every cyclic derivation of G it is decidable whether it is a proof.

Proof. Every cyclic derivation D is a regular ∞-derivation D : ωop → DPG . From this,
we can generate an equivalent abstract cyclic derivation D′ on T IB via Proposition 3.37.
Now, either the algorithm from Theorem 4.4 or Theorem 4.14 can be applied to decide
whether D′ is an abstract cyclic proof. �

Proposition 6.34. Every ∞-derivation of G is derived using a finite fragment of the
derivation rules given in Definition 6.29.

Proof. For a set of formulas Γ, we define Sub(Γ) ..= {ψ | ϕ ∈ Γ, ψ subformula of ϕ}. Now
consider some ∞-proof D : ωop → DPG such that D(0) = [Γ⇒ ∆]. We first claim that all
of the sequent Γ′ ⇒ ∆′ occurring within D we have Γ′ ∪ ∆′ ⊆ Sub(Γ ∪ ∆). This is the
case as every derivation rule only adds new formulas to the sequents in its premises which
are subformulas of formulas already present in the premise, as is easily observed. This, in
turn, means that all sequents which may ever occur in D are collected in the finite set

{Γ′ ⇒ ∆′ | Γ′,∆′ ∈ Sub(Γ ∪∆)}

As only a finite number of derivation rules can be applied to any given sequent Γ′ ⇒ ∆′,
there also exist only a finite number of derivation rules which can be applied within D. �

Corollary 6.35. If Γ ⇒ ∆ can be proven by an ∞-proof of G, it can also be proven via
a cyclic proof.

Proof. We may apply Theorem 4.6 by viewing the∞-proof D : ωop → DPG as D : ω → DPG′
where G ′ is the category of derivations generated by the finite fragment of G used within
D according to Proposition 6.34. �

Corollary 6.36. It is decidable whether any given sequent of Grz is provable.

Proof. Follows from Corollary 4.7 in the same manner as the result above. �
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Remark. Another modal logic worth mentioning in the context of cyclic proof theory is
Gödel-Löb modal logic, the logic of transitive, conversely well-founded frames. Gödel-
Löb modal logic also admits a cyclic derivation system [32]. Notably, its Cut-free cyclic
derivation system does not require a GTC, which is why we did not pick it as the example
of this section. If one was so inclined, one could model such a trivial global trace condition
in T IB by mapping all sequents to the set {?} and all traces through derivations to the
map τ ..= {(?,>, ?)}, although there seems little to be gained by such an exercise.
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Chapter 7

Discussion

7.1 Related Work
Cyclic proofs whose soundness was guaranteed by a global trace condition (GTC) were
first put forward by Sprenger and Dam [34]. They present a cyclic derivation system for
first-order fixed-point logic with explicit ordinal approximations. Their trace condition
is based on infinitely decreasing sequences of ordinals and, from a modern perspective,
very similar to that of cyclic arithmetic [33]. This paper also pioneered the popular GTC
decision procedure based on Büchi automata inclusion we present in Theorem 4.4.

Similarly to this thesis, Santocanale and Fortier [12, 30] work at the intersection of cyclic
proofs and category theory. Santocanale [30] gives a Cut-free, cyclic derivation system
describing the arrows of free µ-bicomplete categories, a categorical generalization of com-
plete lattices and thus the µ-calculus. However, the system is incomplete as there exist
arrows in free µ-complete categories which are not described by any cyclic proof. This
problem is alleviated by Fortier and Santocanale [12] via the addition of Cut-rule to the
derivation system. The way in which category theory and cyclic proof interact in their
work and in ours is perfectly opposite. They use cyclic derivations to study an aspect of
category theory, namely which kinds of arrows exist in free µ-bicomplete categories. Our
work, on the other hand, uses the notion of trace categories to study the properties of
various cyclic derivation systems.

To the best of our knowledge, Brotherston’s [4, 6] is the only previous work examining
cyclic systems from an abstract point of view. While the overarching goal of his disserta-
tion [4] is the definition and study of a cyclic derivation system for first-order logic with
mutually inductive definitions à la Martin-Löf [25], he also defines a generic notion of
trace condition which is equivalent to the Boolean-activated trace category TB we present
in Section 5.1. He then studies various properties purely in terms of the induced notion of
cyclic derivation. This line of work is continued by the Cyclist generic automatic the-
orem prover for cyclic derivation systems which was developed by Brotherston et. al. [6].
It is designed in such a way that it can easily be extended to support any system whose
trace condition can be described in terms of TB from the perspective of our framework.
There are a few points of comparison between our works:

− The point of view Brotherston takes is slightly different from ours. His abstract
notion of cyclic and ∞-proof still consists of derivation trees labeled by sequents
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which were derived by a rule-set and along whose branches the traces run. While
we consider similarly generic ∞-proofs, we also study abstract cyclic derivations
(ACDs) which are removed from concrete derivation systems.

− Some theorems are proven in generalized manners by both theses. Both Brother-
ston and ourselves prove the decidability of GTC satisfaction via Büchi-automata.
Furthermore, we both formalize the unfolding of cyclic proofs into an equivalent
representation with backward edges.

− Brotherston studies some properties which we do not consider. He introduces the no-
tion of ordinal trace functions, assigning ordinals to semantic interpretations along a
trace, which allow him to give a generic variant of the soundness proof for∞-proofs.
He also studies derivation graph homomorphisms, which can describe transforma-
tions between derivations which preserve certain paths (and thus traces). Further-
more, he describes an alternative, possibly weaker, soundness condition on cyclic
proofs which is witnessed by finite objects called trace-manifolds.

− We also prove results Brotherston does not cover. Most notable are the result about
regularizing ∞-derivations (Theorem 4.6) and the decision procedure justified via
Ramsey’s theorem (Theorem 4.14). We also consider a transformation for “com-
pressing ACDs” in Proposition 2.17 which would not make sense in Brotherston’s
framework.

− Our notion of trace categories does not have an analogue in Brotherston’s work.
However, Brotherston’s abstract notion of traces and our A-activated traces lend
themselves well to a direct comparison. As demonstrated in Theorem 5.30, any
cyclic derivation system whose trace condition can be expressed in terms of some
A-activated trace category can also be formalized in terms of TB and thus Broth-
erston’s notion of trace. Our more complicated formalism does thus not add any
mathematical expressivity when compared to Brotherston’s. However, trace condi-
tions can sometimes be expressed more naturally in terms of activation algebras, as
exhibited in Section 6.2, making them easier to reason about. Indeed, we point out
some points of future work in Section 7.2 for which expressing the trace condition
more naturally may be of help.

In a more general sense, every cyclic derivation system that has been put forward in the
literature may be considered related work. Such systems have been proposed for a breadth
of logics such as those dealing with inductively defined structures [4, 20, 33], fixed point
logics [20, 28, 34, 35] and modal logics [10, 28, 31]. The systems presented in Chapter 6
are merely intended to be a representative sample. During our literature search, we have
yet to come across a cyclic system whose trace conditions cannot be naturally expressed
in terms of one of the A-activated trace categories we define in Section 5.1, including all
systems mentioned earlier in this paragraph.

7.2 Future Work
Continuing Chapter 6, one could continue looking into which cyclic derivation systems fit
into the formalism of this thesis. In this direction, there are two particularly interesting
questions. First, are there cyclic systems in the literature which cannot be described in
terms of A-activated trace categories? Such a system could inspire new kinds of trace
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categories or changes to the formalism as a whole. For the second question, note that so
far, only two activation algebras (B and F) were needed to naturally formalize the trace
conditions of all cyclic systems we have surveyed. This raises the question whether there
exist cyclic derivation systems whose GTC is most naturally expressed in terms of a more
exotic activation algebra, such as one of the binomial

(
n
k

)
algebras. We conjecture that

such a cyclic system might manifest for a logic whose central concern is not induction but
some other principle, such as fairness conditions.

A considerable part of this thesis was concerned with demonstrating the aptitude of our
framework by deriving generalized variants of well-known results about said cyclic systems.
Moving beyond this, we believe that the formalism of trace categories and abstract cyclic
derivations can also be used to derive new results which apply to many concrete cyclic
derivation systems uniformly. We close this section by listing some problems suited to
this line of inquiry.

Checking whether a cyclic derivation constitutes a proof is computationally expensive.
While verifying that every derivation rule has been applied correctly only takes the usual
O(n), the automaton based method of verifying the GTC is at least 2Ω(n logn) as it involves
an emptiness check for an automaton of that size [37]. To alleviate this, it is interesting
to search for soundness conditions different from the usual “every infinite path has a good
trace”. Jungteerapanich [17] and Stirling [36] propose one such condition for the cyclic
derivation system of the modal µ-calculus we cover in Section 6.2. They present it in
the form of an alternative derivation system in which the sequents and modal quantifiers
occurring in sequents are annotated with sequences of the quantifiers that have been
unfolded, requiring certain “progress” to be made between buds and their companions.
Notably, proof checking in their system is of complexity O(n). So far, their approach
has not been transferred to other cyclic systems. We believe that by connecting their
system with the trace condition in terms of the injective F-activated trace category we
give in Section 6.2, we should be able to capture the idea behind their system in terms
of an abstract notion of trace and thus be able to extent their approach to other cyclic
derivation systems. Our presentation in terms of the F activation algebra is uniquely
well-suited for this task as the objects in the finite sets along which the traces run are
precisely the quantifier variables which are also the basis of the annotations in their
derivation system. The ability to cleanly separate “what is being tracked” from “how the
tracked objects activate” afforded by A-activated trace categories should thus be crucial
to tackling this problem.

The literature contains quite a few alternative soundness conditions, such as those put for-
ward by Sprenger and Dam [34, 35], Brotherston [4], Stratulat [37], Jungteerapanich [17]
and Stirling [36]. An important property of such soundness conditions is their com-
pleteness. That is, does every formula (or, more generally, every sequent) provable via
a cyclic proof satisfying the usual global trace condition also have a cyclic proof satis-
fying the alternative soundness condition? Examples of complete soundness conditions
are Stirling’s proofs with names for the modal µ-calculus [36] and Sprenger and Dam’s
tree-dischargeable proofs for the first-order µ-calculus with explicit approximations [35].
While there have been abstract accounts of alternative soundness conditions [4], their
completeness proofs are always tied to specific systems, often relying on semantics prop-
erties of the logic embodied by the cyclic system. It is thus of interest to study, either
based on these already existing soundness conditions or by finding a novel one, whether
and to what extend the completeness of alternative soundness conditions can be proven
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in an abstract framework of cyclic derivation systems, such as the one we present in this
thesis.

One of the problems of cyclic derivation systems in general is that nontrivial proof trans-
formations, such as Cut-elimination procedures, are very difficult to prove correct. In
non-cyclic, finite derivation systems, it suffices to check that every derivation rule is ap-
plied correctly to guarantee that the derivation produced by such a procedure always
constitutes a proof. When working with cyclic systems, it must also be verified that the
transformation does not “disturb” the global trace condition. Thus proof transformations
involving cyclic proofs have either been derived via semantic methods [11], forgoing an
explicit transformation algorithm, or spend considerable effort verifying that the given
procedure maintains the GTC [3, 12, 31]. We believe that by analyzing the proof tech-
niques used in the latter case through the lens of our abstract framework, we may find
conditions in terms of trace categories which guarantee that certain transformation steps
do not disturb the GTC, thereby making it easier to derive proof transformation pro-
cedures for cyclic derivations systems. This could facilitate deriving Cut-elimination
procedures for systems for which none have been found so far.
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Appendix A

Purely Categorical Matters

We begin by defining the categorical concepts employed throughout this thesis which we
consider somewhat uncommon.

Definition A.1. A semi-category C consists of

(i) A collection of objects Ob(C);

(ii) For each pair X, Y ∈ Ob(C) a collection HomC(X, Y ) of morphisms ;

(iii) A composition operation which, given f ∈ HomC(X, Y ), g ∈ HomC(Y, Z), yields a
g ◦ f ∈ HomC(X,Z).

Furthermore, composition operation is required to be associative. In other words, a semi-
category is a category which may lack identity morphisms.

Definition A.2. Given two semi-categories C,D, a semi-functor F : C → D consists of

(i) A mapping on objects F : Ob(C)→ Ob(D);

(ii) A mapping on morphisms F : HomC(X, Y )→ HomD(F (X), F (Y )) for each X, Y ∈
Ob(C)

Furthermore, we require F (g) ◦ F (f) = F (g ◦ f) for every f : X → Y, g : Y → Z.

Definition A.3. A monoidial category is a category C together with a binary functor
−⊗− : C × C → C, a unit object 1 ∈ Ob(C) and the following natural isomorphisms

− associativity: α : (A⊗B)⊗ C ' A⊗ (B ⊗ C) natural in A,B,C ∈ Ob(C)

− left unit: λ : (1⊗ A) ' A natural in A ∈ Ob(C)

− right unit: ρ : (A⊗ 1) ' A natural in A ∈ Ob(C)

such that the following diagrams commute for all A,B,C,D ∈ Ob(C):
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(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗1D

αA,B⊗C,D

1A⊗αB,C,D

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

αA,1,B

ρA⊗1B 1A⊗λB

Definition A.4. Let (C,⊗C, 1C) and (D,⊗D, 1D) be monoidal categories. A functor F :
C → D is strongly monoidal if the following isomorphisms exist

tensor: η : F (A⊗C B) ' F (A)⊗D F (B) natural in A,B ∈ Ob(C)

unit: ε : F (1C) ' 1D

and the following diagrams commute for all A,B,C,D ∈ Ob(C)

(F (A)⊗D F (B))⊗D F (C) F (A)⊗D (F (B)⊗D F (C))

F (A⊗C B)⊗D F (C) F (A)⊗D F (B ⊗C C)

F ((A⊗C B)⊗C C) F (A⊗C (B ⊗C C))

αD
F (A),F (B),F (C)

η−1
A,B⊗1F (C) 1F (A)⊗η−1

B,C

η−1
A⊗CB,C η−1

A,B⊗CC
F (αC

A,B,C)

1D ⊗D F (A) F (1C)⊗D F (A)

F (A) F (1C ⊗ A)

λDA

ε−1⊗D1F (A)

η−1
1C ,A

F (λCA)

F (A)⊗D 1D F (A)⊗D F (1C)

F (A) F (A⊗C 1C)

ρDA

1F (A)⊗ε−1

η−1
A,1C

F (ρCA)

We now proceed by proving Lemma A.8, which is required by the proof of Lemma 3.30.
Towards this, we first prove a few lemmas yielding various useful properties of the natural
isomorphisms ηA0,...,An : I(A0 ⊗ . . .⊗ An)→ I(A0)× . . .× I(An).

Proposition A.5. Pick A0, . . . , An, An+1, . . . , An+m ∈ Ob(DR) then

ηn+m = σ ◦ (1n × ηm) ◦ ηn

where σ : I(A0)×. . . I(An)×(I(An+1)×. . .×I(An+m))→ I(A0)×. . . I(An+m) and further
ηn+m ..= ηA0,...,An+m and ηm ..= ηAn+1,...,Am

79



Proof. Proof per induction on m. For m = 1 the claim holds per definition. Thus let
m > 1, then we have

ηn+m+1

..= σ1 ◦ (1n+m−1 × ηAm,Am+1) ◦ ηn+m

= σ1 ◦ (1n+m−1 × ηAm,Am+1) ◦ σ2 ◦ (1n × ηm) ◦ ηn IH
= σ1 ◦ σ3 ◦ (1n × (1m × ηAm,Am+1)) ◦ (1n × ηm) ◦ ηn naturality of σ2

= σ4 ◦ (1n × ((1m × ηAm,Am+1) ◦ ηm)) ◦ ηn (∗)
= σ5 ◦ (1n × σ6) ◦ (1n × ((1m × ηAm,Am+1) ◦ ηm)) ◦ ηn (∗)
= σ5 ◦ (1n × (σ6(1m × ηAm,Am+1) ◦ ηm)) ◦ ηn
..= σ5 ◦ (1n × ηm+1) ◦ ηn

where σi denote the following instances of the natural isomorphisms between product
functors

σ1 : An+m−1 × (I(Am)× I(Am+1))→ An+m+1

σ2 : An × (Am−1 × I(Am ⊗ Am+1))→ An+m−1 × I(Am ⊗ Am+1)

σ3 : An × (Am−1 × (I(Am)× I(Am+1)))→ An+m−1 × (I(Am)× I(Am+1))

σ4 : An × (Am−1 × (I(Am)× I(Am+1)))→ An+m+1

σ5 : An × (Am+1)→ An+m+1

σ5 : Am−1 × (I(Am)× I(Am+1)→ Am+1

with An ..= I(A0) × . . . × I(An) and so forth. The steps marked with (∗) follow by the
uniqueness of said isomorphisms which in turn follow from the fact that they are induced
by the universal properties of the various products involved. �

Proposition A.6. Pick A0, . . . , An, B, C ∈ Ob(DR) then

ηA0,...,An,B⊗C ◦ η−1
An
⊗⊗B,C

= (1n × η−1
B,C) ◦ σ ◦ (ηA0,...,An,B × 1C)

where An⊗ ..= A0 ⊗ . . .⊗ An and σ : (An × I(B))× I(C) ' An × (I(B)× I(C)).

Proof. Proof per induction on n.

n = 0 : This is precisely the commuting diagram for the associativity induced by the fact
that I : Dop → T is a strong monoidal functor.

n > 0 : Then

ηAn+1,B⊗C ◦ η−1

An+1
⊗ ⊗B,C

= σ1 ◦ (1n × ηAn+1,B⊗C) ◦ ηAn,An+1⊗B⊗C ◦ η−1
An
⊗⊗(An+1⊗B) (1)

= σ1 ◦ (1n × ηAn+1,B⊗C) ◦ (1n × η−1
An+1⊗B,C) ◦ σ2 ◦ (ηAn,An+1⊗B × 1C) IH

= σ1 ◦ (1n × (ηAn+1,B⊗C ◦ η−1
An+1⊗B,C) ◦ σ2 ◦ (ηAn,An+1⊗B × 1C)

= σ1 ◦ (1n × ((1An+1 × η−1
B,C) ◦ σ3 ◦ (ηAn+1,B × 1C)) ◦ σ2 ◦ (ηAn,An+1⊗B × 1C) (2)

= (1n+1 × η−1
B,C) ◦ σ4 ◦ (1n × (σ3 ◦ (ηAn+1,B × 1C)) ◦ σ2 ◦ (ηAn,An+1⊗B × 1C) (3)
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= (1n+1 × η−1
B,C) ◦ σ4 ◦ (1n × σ3) ◦ σ5 ◦ ((1n × ηAn+1,B)× 1C) ◦ (ηAn,An+1⊗B × 1C) (4)

= (1n+1 × η−1
B,C) ◦ σ6 ◦ (((1n × ηAn+1,B) ◦ ηAn,An+1⊗B)× 1C) (5)

= (1n+1 × η−1
B,C) ◦ σ7 ◦ (σ8 × 1C) ◦ (((1n × ηAn+1,B) ◦ ηAn,An+1⊗B)× 1C) (5)

= (1n+1 × η−1
B,C) ◦ σ7 ◦ ((σ8 ◦ (1n × ηAn+1,B) ◦ ηAn,An+1⊗B)× 1C)

..= (1n+1 × η−1
B,C) ◦ σ7 ◦ (ηAn+1,B × 1C)

where (1) follows by Proposition A.5, (2) by the strong monoidality of I, (3) and (4)
by the naturality of σ1 and σ2, respectively, and (5) again by the uniqueness of product
natural isomorphisms. These isomorphisms are

σ1 : An × (I(An+1)× I(B ⊗ C)) ' An+1 × I(B ⊗ C)

σ2 : (An × (I(An+1 ⊗B)))× I(C) ' An × (I(A⊗B)× I(C))

σ3 : (An+1 × I(B))× I(C)× An+1 × (I(B)× I(C))

σ4 : An × (I(An+1)× (I(B)× I(C))) ' An+1 × (I(B)× I(C))

σ5 : (An × (I(An+1)× I(B)))× I(C) ' An × ((I(A)× I(B))× I(C))

σ6 : (An × (I(An+1)× I(B)))× I(C) ' An+1 × (I(B)× I(C))

σ7 : (An+1 × I(B))× I(C) ' An+1 × (I(B)× I(C))

σ8 : An × (I(An+1)× I(B)) ' An+1 × I(B) �

Corollary A.7. Pick A0, . . . , An, B ∈ Ob(DR) then

ηAn,B ◦ η−1
An
⊗,B

= σ ◦ (ηAn × 1B)

where σ : (An)× I(B) ' An × I(B).

Proof. Observe that

ηAn,B ◦ η−1
An
⊗,B

= σ1 ◦ (1n−1 × ηAn,B) ◦ ηAn−1,An⊗B ◦ η−1

An−1
⊗ ⊗An,B

Proposition A.5

= σ1 ◦ (1n−1 × ηAn,B) ◦ (1n−1 × η−1
An,B

)× σ2 ◦ (ηAn × 1B) Proposition A.6

= σ ◦ (ηAn × 1B)

where

σ1 : An−1 × (I(An)× I(B)) ' An × I(B)

σ2 : An × I(B) ' An−1 × (I(An)× I(B)) �

Lemma A.8. Choose A0, . . . , Ai0 , Ai0+1, . . . , Ai1 , . . . , Ain ∈ Ob(DR) then

ηA0,...,An ◦ η−1
A0
⊗,...,A

n
⊗

= σ ◦ (ηA0 × . . .× ηAn)

where Aj ..= Aij−1+1, . . . , Aij and Aj⊗
..= Aij−1+1 ⊗ . . . ⊗ Aij and σ : A0 × . . . An '

A0 × . . .× Ain.

Proof.
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n = 1 : Then

ηA0,A1 ◦ η−1
A0
⊗,A

1
⊗

= σ1 ◦ (10 × ηA1) ◦ ηA0,A1
⊗
◦ η−1

A0
⊗,A

1
⊗

Proposition A.5

= σ1 ◦ (10 × ηA1) ◦ σ2 ◦ (ηA0 × 1A1
⊗

) Corollary A.7

= σ1 ◦ σ3 ◦ (1A0 × ηA1) ◦ (ηA0 × 1A1
⊗

) naturality of σ2

= σ ◦ (ηA0 × ηA1)

where

σ1 : A0 × (A1) ' A0 × A1

σ2 : (A0)× A1
⊗ ' A0 × A1

⊗

σ3 : (A0)× (A1) ' A0 × (A1)

n > 1 : Then

ηA0,...,An+1 ◦ η−1

A0
⊗,...,A

n+1
⊗

= σ1 ◦ (1n × ηAn+1) ◦ ηA0,...,An,An+1
⊗
◦ η−1

A0
⊗,...,A

n
⊗⊗A

n+1
⊗
◦ (1n⊗ × η−1

An
⊗,A

n+1
⊗

) ◦ σ2 (1)

= σ1 ◦ (1n × ηAn+1) ◦ σ3 ◦ (ηA0 × . . .× η
An,A

n+1

⊗
) ◦ (1n−1

⊗ × η−1

An
⊗,A

n+1
⊗

) ◦ σ2 (2)

= σ1 ◦ (1n × ηAn+1) ◦ σ3 ◦ (ηA0 × . . .× (η
An,A

n+1

⊗
◦ η−1

An
⊗,A

n+1
⊗

)) ◦ σ2

= σ1 ◦ (1n × ηAn+1) ◦ σ3 ◦ (ηA0 × . . .× (σ4 ◦ (ηAn × 1An+1
⊗

))) ◦ σ2 (3)

= σ1 ◦ σ5 ◦ (1A1 × . . .× (1A
n × ηAn+1)) ◦ (ηA0 × . . .× (σ4 ◦ (ηAn × 1An+1

⊗
))) ◦ σ2 (4)

= σ1 ◦ σ5 ◦ (ηA0 × . . .× ((1A
n × ηAn+1) ◦ σ4 ◦ (ηAn × 1An+1

⊗
))) ◦ σ2

= σ1 ◦ σ5 ◦ (ηA0 × . . .× (σ6 ◦ (1An × ηAn+1) ◦ (ηAn × 1An+1
⊗

))) ◦ σ2 (5)

= σ1 ◦ σ5 ◦ (ηA0 × . . .× (σ6 ◦ (ηAn × ηAn+1))) ◦ σ2

= σ1 ◦ σ5 ◦ (1A0 × . . .× 1An−1 × σ6) ◦ (ηA0 × . . .× (ηAn × ηAn+1)) ◦ σ2

= σ1 ◦ σ5 ◦ (1A0 × . . .× 1An−1 × σ6) ◦ σ7 ◦ (ηA0 × . . .× ηAn × ηAn+1) (6)

= σ ◦ (ηA0 × . . .× ηAn × ηAn+1) (7)

where (1) follows from Proposition A.5 and the inverse of the definition from Proposi-
tion 3.26, (2) by the inductive hypothesis, in which we take An ..= (An, An+1), (3) follows
by Corollary A.7, (4), (5) and (6) by the naturality of σ3, σ4 and σ2, respectively, and (7)
once again by the uniqueness of the product isomorphisms. Furthermore, we have

σ1 : An × . . .× An × (An+1) ' A0 × . . .× An+1

σ2 : A0
⊗ × . . .× An+1

⊗ ' A0
⊗ × . . .× (An⊗ × An+1

⊗ )

σ3 : (A0)× . . .× (An−1)× (An × An+1
⊗ ) ' A0

⊗ × . . .× An × An × An+1
⊗

σ4 : (An)× An+1
⊗ ' An × An+1

⊗

σ5 : (A0)× . . .× (An−1)× (An × (An+1)) ' A0
⊗ × . . .× An × An × (An+1)

σ6 : (An)× (An+1) ' An × (An+1) �
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