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Abstract

Alongside the traditional Kripke semantics, modal logic also enjoys a topological interpretation,
which is becoming increasingly influential. We present various developments related to the topo-
logical derivational semantics based on the Cantor derivative operator. We establish useful char-
acterizations of the validity of the axioms of bounded depth, and prove results of soundness and
completeness for many other classical modal logics. We also address the expressivity of the topo-
logical µ-calculus, an extension of modal logic with fixpoint operators. We examine the tangled
fragments of µ-calculus and show that they are not expressively complete. We also exhibit a large
collection of classes of spaces that are definable in µ-calculus, but not in plain modal logic, thus
demonstrating the strength of the former.
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Chapter 1
Introduction

Modal logic has proven itself as an invaluable tool for modelling reasoning about various concepts
such as knowledge, belief, time, obligations, etc. While it is often associated with the relational
semantics introduced by Saul Kripke [Kri63], it also enjoys a topological interpretation which can
be traced back to the work of McKinsey and Tarski [MT44]: they proposed to interpret ♦ as
the topological closure operator (hence introducing the c-semantics) and proved the celebrated
result that S4 is the logic of any separable metric dense-in-itself space. This was subsequently
strengthened by Rasiowa and Sikorski [RS63] who eliminated the separability condition; for a good
survey of these results we recommend [vBB07]. Since open sets can naturally be interpreted as
pieces of observation [Vic96], this approach has recently gained momentum in fields such as formal
epistemology [BBÖS19] [Özg17] and learning theory [dBY10].

A less known close kin of the c-semantics is the derivational semantics, or d-semantics. It is
obtained by interpreting ♦ not as the closure, but as the derived set or derivative operator which is
attributed to Georg Cantor. This variant was also introduced by McKinsey and Tarski, and further
investigated by Esakia and others (see e.g., [Esa81][Esa01]). First, it must be noted that it is more
expressive than the c-semantics, in the sense that any modally expressible property with respect to
the c-semantics, is also modally expressible with respect to the d-semantics. This semantics thus
enables a more refined classification of spaces. Further, while the logic of the c-semantics is S4, the
logic of the d-semantics is wK4, as proved by Esakia [Esa01]. Since wK4 is weaker than S4, it
has more extensions, and thus more logics can be studied from the perspective of the d-semantics.

In spite of these compelling features, the d-semantics has received much less attention than the
c-semantics, and our knowledge of it is largely incomplete: the interpretation of many standard
logics is missing, and so are proofs of their completeness. One example is the axiom bdn (for any
natural integer n) which characterizes the Kripke frames that contain no path of length greater
than n; in other words, those with depth bounded by n. With the topological semantics, bdn also
yields a notion of depth for spaces, and this kind of parameter is of great interest when it comes
to classification: spaces with finite depth are generally easier to deal with, and their logics tend to
have good properties (e.g., the finite model property). The topological interpretation of the concept
of depth, however, is not obvious. This question was solved by Bezhanishvili et al. [BBLB+17] for
the c-semantics: they introduced for any space X a number called the modal Krull dimension of
X, which is smaller than n exactly when X validates bdn. However, the same problem for the
d-semantics remained open prior to our work. We may also mention the axioms .2 and .3 whose
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relation to extremally disconnected spaces is well known in the c-semantics [vBB07], but whose
interpretation in the d-semantics was still unexplored until now. This thesis aims to fill those gaps.

We also hope to identify promising proof techniques in response to the particular challenge of
turning Kripke frames into appropriate topological spaces. Here by “appropriate” we mean in a
way that preserves the truth of formulas with respect to the relevant semantics. This operation
is crucial because it allows one to immediately transfer results of completeness from the Kripke
semantics to the topological semantics. While this is straightforward in the c-semantics, the case of
the d-semantics presents many difficulties related to reflexive points, that we will explain in detail.
Our starting point will be the technique presented in [BBFD21], but as we will see, there are other
options, each having its pros and cons.

This inquiry will be revealing of what derivational modal logic can express, but how about
what it cannot? Among the proposals that have been made to increase its expressivity, the most
powerful is certainly the µ-calculus, which enables self-referencing definitions [Koz83] through fix-
point operators. As a result it embeds many temporal logics, while remaining decidable, and this
makes it very appreciated in formal verification. Its topological aspect is also of great interest:
for example, one can express the Cantor-Bendixson’s perfect core of a space in µ-calculus, but not
in basic modal logic. The perfect core is the greatest subset which is equal to its own derivative,
and it plays a central role in the modelling of epistemic puzzles such as the Surprise Examination
Paradox [Par92].

The completeness of the µ-calculus is a notoriously difficult problem, and recent progress has
been achieved in [BBFD21] regarding the topological completeness of many axiom systems. Yet we
do not know whether the µ-calculus defines more classes of spaces than basic modal logic. If this
were not the case, this would somewhat limit the relevance of the µ-calculus, while making modal
logic more attractive. Another line of inquiry regards the tangled closure and tangled derivative
operators, based on modalities introduced by Dawar and Otto [DO09], and whose topological
meaning was further investigated by Fernández-Duque [FD11]. In the search of a simple, completely
expressive fragment of the µ-calculus, they stand as natural candidates. In [BBFD21], it was shown
that the tangled closure cannot be expressed in terms of the tangled derivative, but other questions
remain: what is the expressivity of the tangled derivative relative to the tangled closure? And what
about the two taken together?

We describe below the structure of the thesis and enumerate our main results:

– In chapter 2 we present the mathematical background and notations used in the document.

– In chapter 3, we investigate the d-semantics of wK4 +bdn, and prove that it is also captured
by modal Krull dimension; we also give a proof of completeness. We then consider some
characterizations of modal Krull dimension and adapt them into characterizations that are
more relevant to the d-semantics. Finally, we investigate how modal Krull dimension is
affected by the derivative.

– In chapter 4 we consider diverse extensions of wK4 adapted from S4.2 and S4.3, and identify
the classes of spaces they describe. In particular, the study of axiom .3 will bring to the
table an intriguing class of topological spaces called accumulative, that we proceed to fully
axiomatize. We also provide various completeness results for stronger logics obtained by
adding the Löb axiom or bdn to the previous systems.

– In chapter 5 we investigate the relative expressivity of the tangled closure, the tangled deriva-
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tive and a new modality called the hybrid tangled operator. After that, we address the
expressivity of the µ-calculus and exhibit a large collection of axiom systems of the µ-calculus
that are not reducible to plain modal logic. We also show that these counter-examples are
not too pathological, by identifying one which is rather simple (thus not too unintuitive) and
showing that it is topologically complete. This backs our claim that there exist “good” logics
that lie outside of basic modal logic, and gives legitimacy to µ-calculus. Nonetheless, we also
manage to identify a syntactic fragment of the µ-calculus which is as expressive as modal
logic.

– In chapter 6, we summarize our contribution and propose directions for future work.
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Chapter 2
Background

In this chapter we introduce the material used throughout the document. Though all notations
are defined from the ground, elementary knowledge of modal logic, general topology and µ-calculus
is strongly recommended. Our main references for modal logic will be [BRV01] and [CZ97]. For
topology one may refer to [Rys89]. We present modal logic and some axiom systems in section 2.1,
and the Kripke semantics in section 2.2. In section 2.3, we introduce rudiments of general topology
as well as topological semantics for modal logic. Finally, section 2.4 is devoted to the modal
µ-calculus.

2.1 Modal logic

We start with the syntax:

Definition 2.1. We fix a countable set Prop of atomic propositions. The basic modal language L
is generated by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | ♦φ

As usual we use the abbreviations φ ∨ ψ := ¬(¬φ ∧ ¬ψ), �φ := ¬♦¬φ as well as ⊥ := p ∧ ¬p and
> := ¬⊥ for some arbitrary p ∈ Prop. Let φ, ψ1, . . . , ψn ∈ L and p1, . . . , pn ∈ Prop, and let us
write ψ := (ψ1, . . . , ψn) and p := (p1, . . . , pn). We then write φ[ψ/p] the formula φ where each ψi
is substituted for pi.

The smallest normal modal logic is the system K, which consists of the following induction
rules and axioms:

Name Axiom/inference rule

All propositional tautologies

Substitution From φ infer φ[ψ/p]

K (Distribution) �(p→ q)→ (�p→ �q)
Modus Ponens From φ and φ→ ψ infer ψ

Necessitation From φ infer �φ

In this thesis we will also be interested in the following axioms and axiom systems:
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Name Axiom

T p→ ♦p
4 ♦♦p→ ♦p
w4 ♦♦p→ p ∨ ♦p
.2 ♦�p→ �♦p
.3 �(�p→ q) ∨�(�q → p)

gl �(�p→ p)→ �p

wK4 := K + w4

K4 := K + 4

S4 := K + T + 4

wK4.2 := wK4 + .2

wK4.3 := wK4 + .3

S4.2 := S4 + .2

S4.3 := S4 + .3

GL := K + gl

2.2 Kripke semantics

The Kripke semantics consists in interpreting formulas in Kripke frames. A Kripke frame is a set
of possible worlds along with a relation of accessibility, indicating which worlds can be “seen” from
a given world.

Definition 2.2. A Kripke frame is a pair F = (W,R) with W a set of possible worlds and R ⊆W 2

a relation. A Kripke model based on F is a tuple of the form (W,R, ν) with ν : Prop → P(W ) a
valuation over F. If w ∈W we also call (M, w) a pointed Kripke model.

Definition 2.3. Given a Kripke model M = (W,R, ν) and a world w ∈W , we define by induction
on a formula φ ∈ L the satisfiability condition M, w � φ:

– M, w � p if w ∈ ν(p) (given p ∈ Prop)

– M, w � ¬φ if M, w 2 φ

– M, w � φ ∧ ψ if M, w � φ and M, w � ψ

– M, w � ♦φ if there exists u ∈W such that wRu and M, u � φ

We then define [[φ]]M := {w ∈W |M, w � φ} the extension of φ in M. If M, w � φ for some w ∈W
we say that φ is satisfiable in M. If φ is satisfiable in some model based on F we say that φ is
satisfiable in F.

If M, w � φ for all w ∈ W we write M � φ. If M � φ for any model M based on F we write
F � φ and we say that φ is valid in F. We also have a notion of pointwise validity, that is, if w ∈W
and M, w � φ for all model M based on F, then we write F, w � φ.

If F � φ for all frame F we write � φ. If � φ ↔ ψ we write φ ≡ ψ and say that φ and ψ are
equivalent. Finally, if Γ is a set of formulas we write M, w � Γ in case M, w � φ for all φ ∈ Γ, and
all of the other notations are adapted similarly.
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Here are additional useful properties on frames:

Definition 2.4. Let F = (W,R) be a Kripke frame.

– A world w ∈ W is said to be reflexive if wRw, and irreflexive if not wRw. The frame F is
reflexive (resp. irreflexive) if every w ∈W is reflexive (resp. irreflexive).

– F is transitive if for all w, u, v ∈W , wRu and uRv implies wRv.

– F is weakly transitive if for all w, u, v ∈W , wRu and uRv implies wRv or w = v.

– F is rooted in r ∈ W if for all w ∈ W we have rRw or r = w. The world r is then called a
root of F.

– F is strongly directed if for all w, u, v ∈ W , wRu and wRv implies that there exists t ∈ W
such that uRt and vRt.

– F is strongly connected if for all w, u, v ∈W , wRu and wRv implies uRv or vRu.

– F is converse well-founded if there exists no sequence (wn)n∈N ∈WN such that wnRwn+1 for
all n ∈ N.

These properties transfer to Kripke models too, e.g., a model M based on F is reflexive if F is
reflexive.

These properties are then related to axioms systems through the notion of Kripke completeness:

Definition 2.5. A logic L defines a class of frames C if C = {F | F � L}. We call L sound and
complete with respect to a class of frames C if for any formula φ we have L ` φ iff F � φ for all
F ∈ C. We say that L is Kripke complete if it is sound and complete with respect to the class of
frames defined by it.

Theorem 2.6. Each logic L on the left-hand side of the following table defines the corresponding
class of Kripke frames on the right-hand side. All of these logics are also Kripke complete.

Logic Condition on frames

wK4 weakly transitive

K4 transitive

S4 reflexive and transitive

S4.2 reflexive, transitive and strongly directed

S4.3 reflexive, transitive and strongly connected

GL converse well-founded

As a consequence of this theorem, weakly transitive frames (resp. models) will often be called
wK4 frames (resp. wK4 models) for short, while transitive and reflexive frames (resp. models)
will be called S4 frames (resp. S4 models).

A particular case of Kripke completeness is the well known finite model property [BRV01,
sec. 2.3 & 3.4]:

Definition 2.7. A logic L has the finite model property if whenever L 0 ¬φ, there exists a finite
Kripke frame F in which φ is satisfiable and such that F � L.
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We also introduce subframes, which are known for preserving the validity of formulas:

Definition 2.8. A frame (W0, R0) is called a subframe of (W,R) if W0 ⊆ W and R0 = W 2
0 ∩ R.

Note that it is completely characterized by W0, so we call it the subframe induced by W0. We say
that (W0, R0) is a generated subframe if w ∈W0, u ∈W and wRu implies u ∈W0. Given X ⊆W ,
the subframe of (W,R) generated by X is the subframe (W0, R0) induced by the set

W0 := {wn | w0, . . . , wn ∈W and w0 ∈ X and w0R . . . Rwn}

Then (W0, R0) is the smallest generated subframe of (W,R) containing X.
A model M0 = (W0, R0, ν0) is called a submodel of M = (W,R, ν) if (W0, R0) is a subframe of

(W,R) and for all p ∈ Prop we have ν0(p) = ν(p) ∩W0. Again, M0 is completely characterized by
W0 and we call it the submodel induced by W0. If (W0, R0) is a generated subframe of (W,R), then
we say that M0 is a generated submodel of M. Given X ⊆W , let us write (W0, R0) the subframe of
(W,R) generated by X; the submodel of M induced by W0 is then called the submodel generated
by X.

Proposition 2.9. Let φ be a formula, M a Kripke model, M0 a generated submodel of M and w
a world in M0. Then M, w � φ if and only if M0, w � φ.

We conclude this section by introducing chains, a simple kind of Kripke frames that the reader
will encounter many times throughout this document:

Definition 2.10. Let n ∈ N. An n-chain is a Kripke frame of the form F = (W,R) with W =
{wi | i ∈ [[0, n− 1]]} and

{(wi, wj) | 0 ≤ i < j ≤ n− 1} ⊆ R ⊆ {(wi, wj) | 0 ≤ i ≤ j ≤ n− 1}

If R = {(wi, wj) | 0 ≤ i < j ≤ n − 1}, we write F = n. If R = {(wi, wj) | 0 ≤ i ≤ j ≤ n − 1}, we
write F = n+.

Visually, an n-chain looks as in figure 2.1. Each world may be either reflexive or irreflexive,
so for all n there are 2n different n-chains (up to isomorphism). We can see that n denotes the
irreflexive n-chain, and n+ the reflexive n-chain.

w0

w1

wn−2

wn−1

Figure 2.1: An n-chain

2.3 Topological semantics

This section will discuss the c-semantics and the d-semantics for modal logic, but before that we
recall some basics of general topology:
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Definition 2.11. Let X be a set of points. A topology on X is a set τ ⊆ P(X) satisfying the
following:

– ∅ ∈ τ and X ∈ τ ;

– if U ⊆ τ then
⋃
U ∈ τ ;

– if U1, . . . , Un ∈ τ then
⋂n
i=1 Ui ∈ τ .

The pair (X, τ) is then called a topological space. The elements of τ are called the open sets of
X. The complement of an open set is called a closed set. If x ∈ U ∈ τ then U is called an open
neighbourhood of x.

A topological model based on X is a pair of the form (X, ν) with ν : Prop→ P(X) a valuation.
Given x ∈ X we then call (M, x) a pointed topological model.

Slightly abusing terminology, we will often keep τ implicit and let X refer to the space (X, τ).

Definition 2.12. Let X be a topological space, A ⊆ X and x ∈ X.

– The point x is said to be an interior point of A if there exists an open set U such that
x ∈ U ⊆ A. We denote by Int(A) the set of all interior points of A and call it the interior of
A.

– The point x is said to be an adherent point of A if for any open neighbourhood U of x, we
have U ∩A 6= ∅. We denote by Cl(A) the set of all adherent points of A and call it the closure
of A.

In case of ambiguity, the notations IntX(A) and ClX(A) may be used to indicate the space wherein
these two operators are evaluated.

When working with a space, a topological base is often very useful as it simplifies reasoning. A
base is essentially a collection of open sets from which the whole topology is generated by arbitrary
unions.

Definition 2.13. Let X be a set. A base for a topology is a collection B ⊆ P(X) such that:

–
⋃
B = X;

– for all U, V ∈ B and x ∈ U ∩ V , there exists W ∈ B such that x ∈W ⊆ U ∩ V .

The set τ := {
⋃
B | B ⊆ B} is then a topology, called the topology generated by B.

If a space admits a base B, it is well known that many properties can be reduced to a condition
involving the elements of B only, e.g., we have x ∈ Int(A) iff there exists U ∈ B such that x ∈ U ⊆ A.

The topological counterpart of subframes is the notion of subspace:

Definition 2.14. Let (X, τ) and (X0, τ0) be two topological spaces. We say that (X0, τ0) is a
subspace of (X, τ) if τ0 = {U ∩ X0 | U ∈ τ}. Note that τ0 is completely characterized by X0, so
any set X0 ⊆ X can be called a subspace of X.

A model M0 = (X0, ν0) based on X0 ⊆ X is then called a submodel of M = (X, ν) if for all
p ∈ Prop we have ν0(p) = ν(p) ∩X0. Again, M0 is completely characterized by X0 and we call it
the submodel induced by X0. If X0 is open in X then we call M0 an open submodel of M.
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Definition 2.15. Let X be a topological space.

– A point x ∈ X is said to be isolated if {x} is open. If x ∈ A ⊆ X we say that x is isolated in
A if there exists U open such that {x} = U ∩ A. The space X is called dense-in-itself if it
contains no isolated point, and discrete if all of its points are isolated. The space X is called
scattered if any subspace of X contains an isolated point.

– We say that X is extremally disconnected if Cl(U) is open for all open set U . It is called
hereditarily extremally disconnected (or HED for short) if every subspace Y ⊆ X is extremally
disconnected.

– We say that X is T0 if whenever x, y ∈ X, there exists an open set U such that |U∩{x, y}| = 1.
The space X is called T1 if for all x, y ∈ X such that x 6= y there exists an open set U such
that x ∈ U and y /∈ U . Finally X is called Td if every x ∈ X is isolated in Cl({x}).

The conditions T0, Td and T1 are known as separation axioms, though they are not the only
ones. It is easy to prove that T1 is stronger than Td, and that Td is stronger than T0.

We now introduce the c-semantics, which consists in interpreting ♦ as the closure operator:

Definition 2.16. Let M = (X, ν) be a topological model. We define by induction on φ the
extension [[φ]]cM of φ in M:

– [[p]]cM := ν(p)

– [[¬φ]]cM := X \ [[φ]]cM

– [[φ ∧ ψ]]cM := [[φ]]cM ∩ [[ψ]]cM

– [[♦φ]]cM := Cl([[φ]]cM)

Given x ∈ X we write M, x �c φ whenever x ∈ [[φ]]cM. The other notations introduced in defini-
tion 2.3 are defined similarly.

We can adapt definition 2.5 to the topological setting:

Definition 2.17. A logic L defines a class of topological spaces C if C = {X | X �c L}. We call
L sound and complete with respect to a class of spaces C if for any formula φ we have L ` φ iff
X �c φ for all X ∈ C. We say that L is topologically complete if it is sound and complete with
respect to the class of spaces defined by it.

When it comes to completeness, many results can be easily adapted from the Kripke semantics,
by a simple operation which turns a Kripke frame into a space while preserving logical truth:

Definition 2.18. Let F := (W,R) be a weakly transitive Kripke frame. A set U ⊆W is called an
upset if w ∈ U and wRu implies u ∈ U . The collection τR of all upsets over W is then a topology,
and (W, τR) is called the topological space induced by F. If M = (W,R, ν) is a Kripke model based
on F, then ((W, τR), ν) is the topological model induced by M.

In this document we will largely abuse terminology and not distinguish a weakly transitive
Kripke frame (resp. model) from the topological space (resp. model) induced by it. So the reader
should not be surprised when we start talking about the topological properties of such and such
frame. This convention is partly motivated by the following property, which states that the Kripke
semantics and the c-semantics agree over S4 models:
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Proposition 2.19. For all reflexive and transitive Kripke model M = (W,R, ν), all world w ∈W
and all formula φ we have

M, w � φ ⇐⇒ ((W, τR), ν), w �c φ

This proposition, combined with theorem 2.6, yields the topological completeness of S4.

Theorem 2.20. In the c-semantics, S4 is sound and complete with respect to the class of all
topological spaces.

We now introduce a slight variant of the closure operator called the derived set operator :

Definition 2.21. Let X be a topological space, A ⊆ X and x ∈ X. The point x is said to be a
limit point of A if for any open neighbourhood U of x, we have U ∩ A \ {x} 6= ∅. We denote by
d(A) the set of all limit points of A and call it the derived set of A. The dual of d(·) is defined by
d̂(A) := X \ d(X \A). Again the notations dX(A) and d̂X(A) may be used if needed.

We see that for x to be a limit point of A, it is not enough that each of its open neighbourhoods
intersects A: the intersection must contain a point different from x. So any limit point of A is an
adherent point of A, and as a result we have d(A) ⊆ Cl(A), but the converse is not true in general.
We may then adapt the c-semantics to this new operator, and obtain what we call the derivational
semantics, or d-semantics for short.

Definition 2.22. Let M = (X, ν) be a topological model. We define by induction on φ the
extension [[φ]]dM of φ in M by

[[♦φ]]dM := d([[φ]]dM)

and the other cases are as in definition 2.16. Given x ∈ X we write M, x �d φ whenever x ∈ [[φ]]dM.
The other notations introduced in definition 2.3 are defined similarly.

Because the d-semantics is the main topic of this thesis, we do not find relevant to make explicit
all the time which of the c-semantics or the d-semantics we are talking about, so we will write �
for �d and [[φ]]M for [[φ]]dM as long as this causes no ambiguity.

When considering wK4 frames as topological spaces, the Kripke semantics and the d-semantics
do not coincide in general, though they agree on irreflexive frames:

Proposition 2.23. For all irreflexive and weakly transitive Kripke model M = (W,R, ν), all world
w ∈W and all formula φ we have

M, w � φ ⇐⇒ ((W, τR), ν), w �d φ

By the method of unraveling [BRV01, sec. 2.1], it is possible to prove that wK4 is complete for
irreflexive and weakly transitive Kripke frames; from proposition 2.23 we then derive the following:

Theorem 2.24. In the d-semantics, wK4 is sound and complete with respect to the class of all
spaces.

We can adapt definition 2.5 again. The following definition conflicts with definition 2.17, but
that is harmless as long as we mention in which semantics we are working.

Definition 2.25. A logic L defines a class of topological spaces C if C = {X | X �d L}. We call
L sound and complete with respect to a class of spaces C if for any formula φ we have L ` φ iff
X �d φ for all X ∈ C. We say that L is topologically complete if it is sound and complete with
respect to the class of spaces defined by it.
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For instance, in the d-semantics we have just seen that wK4 is topologically complete. This is
also the case for the following logics (see e.g., [vBB07]):

– K4, which defines the class of Td spaces;

– wK4 + ♦>, which defines the class of dense-in-itself spaces;

– GL, which defines the class of scattered spaces.

Part of what makes the d-semantics interesting is that it subsumes the c-semantics. Indeed, it is
easy to show that the identity Cl(A) = A∪d(A) holds in any space, and this gives birth to a logical
translation:

Definition 2.26. Given φ ∈ L we write �+φ := φ ∧ �φ and ♦+φ := φ ∨ ♦φ. The S4-translation
φ+ of a modal formula φ is defined inductively as followed:

– p+ := p

– (¬φ)+ := ¬φ+

– (φ ∧ ψ)+ := φ+ ∧ ψ+

– (�φ)+ := �+φ+

Note that we also have (♦φ)+ ≡ ♦+φ+.

Definition 2.27. Let F = (W,R) be a weakly transitive Kripke frame. The reflexive closure of R
is the relation R+ := R ∪ {(w,w) | w ∈ W}. We then write F+ := (W,R+). If M = (W,R, ν) is a
weakly transitive Kripke model, we also write M+ := (W,R+, ν).

Proposition 2.28. Let φ be a modal formula.

– For all pointed wK4 model (M, w) we have M, w � φ+ ⇐⇒ M+, w � φ.

– For all pointed topological model (M, x) we have M, x �d φ+ ⇐⇒ M, x �c φ

As a result, any topological property that can be expressed in the c-semantics (via the formula
φ), can also be expressed in the d-semantics (via the formula φ+).

We now turn our attention to invariance results. The following proposition shows that open
submodels are the topological analogue of generated submodels. In fact, it is easy to see that a
generated submodel is an open submodel (in the sense of definition 2.18), so this result actually
subsumes proposition 2.9.

Proposition 2.29. Let φ be a formula, M a topological model, M0 an open submodel of M and x
a point in M0. Then M, x �d φ if and only if M0, x �d φ.

Finally, we define the relevant morphisms for both the c-semantics and the d-semantics:

Definition 2.30. A interior map from a space X to a space Y is a function f : X → Y such that:

– if U is open in X, then f [U ] is open in Y ;

– if U is open in Y , then f−1[U ] is open in X.

13



If f is surjective, we call Y an interior image of X.
A d-morphism from a space X to a wK4 frame (W,R) is a function f : X →W such that:

– f is an interior map;

– for all irreflexive point w ∈W , the subspace f−1(w) of X is discrete;

– for all reflexive point w ∈W , we have f−1(w) ⊆ d(f−1(w)).

If f is surjective, we call W a d-morphic image of X.

What we mean when we call them morphisms is that they preserve logical validity in the
respective semantics:

Proposition 2.31. Let X be a space.

1. If f : X → Y is an interior map and X �c φ then Y �c φ.

2. If f : X →W is a d-morphism and X �d φ then W � φ.

A convenient characterization of d-morphisms is given by the following theorem:

Theorem 2.32. [BEG05] A map f : X → W is a d-morphism iff for all A ⊆ W we have
f−1(R−1A) = d(f−1A).

We note that unlike interior maps, d-morphisms are only defined when the codomain is a Kripke
frame. For our purpose this restriction is not limiting, though we could generalize the definition on
the basis of theorem 2.32.

2.4 Mu-calculus

Here we briefly introduce the modal µ-calculus; if needed a more in-depth survey can be found
in [BS07]. We also present an axiomatization of the topological µ-calculus.

Definition 2.33. The language Lµ of the modal µ-calculus is defined by the following syntax:

φ ::= p | ¬p | φ ∧ ψ | φ ∨ ψ | �φ | ♦φ | µp.φ | νp.φ

where ¬p does not occur in formulas of the form µp.φ and νp.φ. We also assume without loss of
generality that every formula φ is clean, that is, no bound variable is also a free variable, and for
every variable p there is at most one subformula of φ of the form µp.ψ or νp.ψ.

This version of µ-calculus is called the negative normal form because negations only apply
to atomic propositions. Another (equivalent) presentation allows unrestricted negations and only
takes µ as primitive; the operator ν is then defined as the dual of µ by

νp.φ := µp.¬φ[¬p/p]

In this thesis we opt for the negative normal form as it better suits our needs. For instance, it
will allow us to easily define the ν-free fragment of the µ-calculus in chapter 5, by removing the
operator µ from the syntax.
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Definition 2.34. Let X be a set, ν : Prop→ X a valuation, p ∈ Prop and A ⊆ X. We define the
valuation ν[p := A] by setting, for all q ∈ Prop:

ν[p := A](q) :=

{
A if q = p

ν(p) otherwise

Definition 2.35. We extend the Kripke semantics to the µ-calculus as follows: if M = (W,R, ν)
is a Kripke model, the extension [[φ]]M of a formula φ ∈ Lµ in M is defined by

[[p]]M := ν(p)

[[¬p]]M := W \ ν(p)

[[φ ∧ ψ]]M := [[φ]]M ∩ [[ψ]]M

[[φ ∨ ψ]]M := [[φ]]M ∪ [[ψ]]M

[[♦φ]]M := {w ∈W | ∃u ∈ [[φ]]M, wRu}
[[�φ]]M := {w ∈W | ∀u ∈W,wRu =⇒ u ∈ [[φ]]M}

[[µp.φ]]M :=
⋂
{A ⊆W | [[φ]]W,R,ν[p:=A] ⊆ A}

[[νp.φ]]M :=
⋃
{A ⊆W | A ⊆ [[φ]]W,R,ν[p:=A]}

This definition scheme applies to the topological semantics too: it suffices to replace M by a
topological model and to set

[[♦φ]]cM := Cl([[φ]]cM) and [[�φ]]cM := Int([[φ]]cM)

for the c-semantics and
[[♦φ]]dM := d([[φ]]dM) and [[�φ]]dM := d̂([[φ]]dM)

for the d-semantics.

One can prove that [[µp.φ]]M and [[νp.φ]]M are respectively the least fixpoint and the greatest
fixpoint of the map A 7→ [[φ]]W,R,ν[p:=A], and this is why we call µ and ν fixpoint operators. Further,
all the notations and concepts (satisfiability, validity, completeness, . . . ) related to the Kripke
and topological semantics can be extended to the µ-calculus. We now introduce the axiom system
µwK4:

Definition 2.36. The axiom system µwK4 is the extension of wK4 with the fixpoint axioms

φ[µp.φ/p]→ µp.φ

νp.φ→ φ[νp.φ/p]

and the induction rules
From ψ[φ/p]→ φ infer µp.ψ → φ

From φ→ ψ[φ/p] infer φ→ νp.ψ

A completeness theorem covering µwK4 and many of its extensions was established in [BBFD21].
For the moment though, the reader only needs to know this result for µwK4:

Theorem 2.37. [BBFD21] The logic µwK4 is Kripke complete, and topologically complete in the
d-semantics.

Our framework is now fully settled, and we are ready to jump into the next chapter devoted to
the modal depth of topological spaces.
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Chapter 3
Topological Depth and Modal Logic

In this chapter we investigate modal depth in the d-semantics. Depth in the sense of the maximal
length of a path is a natural characteristic of Kripke frames, and it is well known to be captured in
modal logic by the family (bdn)n∈N of bounded depth formulas [CZ97, sec. 3.5]. While the concept
of depth has no intuitive topological meaning, the bdn’s still have a topological semantics, so we
are necessarily faced with the question of their topological interpretation.

In the c-semantics, this was solved in [BBLB+17], where it was shown that the truth of bdn
corresponds to a parameter called modal Krull dimension: roughly summarized, the modal Krull
dimension of a space X is the size of a maximal stack of nested non-empty nowhere dense subspaces
of X. Though deeply meaningful from an algebraic perspective which is out of the scope of this
thesis, this definition has barely anything to do with depth, and one may ask for a more natural
characterization. This is provided by another result of [BBLB+17] stating that X �c bdn iff X
does not “contain” the reflexive n+ 1-chain (seen as a space). Such a formulation is already much
closer to the initial graph-theoretic notion of depth. What “contain” means in this context will
be made precise later, but we can already mention that it can be defined it two ways: either by
satisfiability of a Jankov-Fine formula, or by the existence of a surjective interior map. All these
results are recalled in section 3.1.

In the d-semantics, the interpretation of bdn is still unknown and one may desire a “derivative
modal dimension” capturing their meaning. In section 3.2, we show that in fact modal Krull
dimension precisely plays this role: in other words, the c-semantics and the d-semantics of bdn
coincide. We also establish the topological completeness of wK4+bdn in the d-semantics. Though
this answers the initial question, this result is not entirely satisfying since it does not provide a
characterization that is relevant to the d-semantics. Indeed the aforementioned conditions with
reflexive chains either involve satisfiability in the c-semantics, or interior maps, which are the
morphisms for the c-semantics. It is then natural to ask for conditions involving truth in the
d-semantics or d-morphisms, and this is investigated in section 3.3.

Finally, we briefly study in section 3.4 how taking the derivative of a space affects its modal
dimension.

3.1 Background

We start by making explicit the meaning of depth in Kripke frames.
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Definition 3.1. Let F = (W,R) be a Kripke frame. The depth depth(F) of F is the largest
n ∈ N ∪ {∞} such that there exists a sequence w1, . . . , wn ∈ W satisfying wiRwi+1 and not
wi+1Rwi for all i ∈ [[1, n− 1]].

The important part to keep in mind is the condition that every point in the sequence does not
see its predecessor. This definition thus differs from another, stricter concept of depth which does
not include this requirement. As mentioned at the beginning, depth can be measured by means of
modal formulas:

Definition 3.2. [CZ97, sec. 3.5] We define by recursion the following formulas:

– bd0 := ⊥

– bdn+1 := ♦(�pn+1 ∧ ¬bdn)→ pn+1

Proposition 3.3. Let F be a Kripke frame. For all n ∈ N, we have

F � bdn ⇐⇒ depth(F) ≤ n

In the c-semantics, the bdn’s measure the modal Krull dimension of a topological space:

Definition 3.4. Let X be a topological space. A subspace Y ⊆ X is nowhere dense in X if
Int(Cl(Y )) = ∅.

Definition 3.5. [BBLB+17] The modal Krull dimension mdim(X) of a space X is defined as
follows:

– mdim(X) ≤ −1 if X = ∅

– mdim(X) ≤ n+ 1 if for all Y ⊆ X nowhere dense in X, we have mdim(Y ) ≤ n

– mdim(X) := inf {n ∈ N ∪ {−1} | mdim(X) ≤ n} with the convention that inf ∅ =∞

Theorem 3.6. Let X be a topological space. For all n ∈ N we have

X �c bdn ⇐⇒ mdim(X) ≤ n− 1

Since modal dimension is a rather convoluted notion, other characterizations are also helpful,
and [BBLB+17] offers a handful of them; we will give special attention to three conditions describing
the depth of space as the length of the greatest reflexive chain contained in it. This property can
be expressed using interior maps, but another way involves Jankov-Fine formulas, which encode a
“pattern” given by a finite Kripke frame:

Definition 3.7. [BRV01, sec. 3.4] Let F = (W,R) be a finite rooted S4 frame. We write W =
{wi | i ∈ [[0, n− 1]]} where w0 is a root. The Jankov-Fine formula χF of F is the conjunction of the
following formulas:

1. q0

2. �
∨n−1
i=0 qi

3. �¬(qi ∧ qj) for all 0 ≤ i < j < n
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4. �(qi → ♦qj) for all i, j ∈ [[0, n− 1]] such that wiRwj

5. �(qi → ¬♦qj) for all i, j ∈ [[0, n− 1]] such that not (wiRwj)

We then have the following result (recall that n+ denotes the reflexive n-chain):

Theorem 3.8. [BBLB+17] Let X be a topological space. The following conditions are equivalent
for all n ∈ N:

1. mdim(X) ≤ n− 1

2. X �c ¬χn+1+

3. n+ 1+ is not an interior image of X

4. n+ 1+ is not an interior image of an open subspace of X

3.2 Bounded depth and modal Krull dimension

The main goal of this section is to show that given n ∈ N and a space X, we have X �d bdn
if and only if mdim(X) ≤ n − 1. To achieve this goal we proceed by induction on n. This will
bring us to a point where we have a nowhere dense subspace Y of X, and try to prove Y 2 bdn
iff X 2 bdn+1. From left to right, this is done by shifting up a valuation: summarized roughly,
p1 is relabelled as p2, p2 is relabelled as p3, etc. From right to left, this is simply achieved by the
reverse transformation which is the process of shifting down a valuation: p2 is relabelled as p1, p3

is relabelled as p2, etc. Here is the formal definition of these operations:

Definition 3.9. If n ∈ N, we write Pn := {pk | k ∈ [[1, n]]}. Let X be a topological space.

– Let ν be a valuation over X with domain Pn+1 and Y ⊆ X. The Y -downshift of ν is the
valuation ν↓Y over Y with domain Pn defined by ν↓Y (pk) := ν(pk+1) ∩ Y for all k ∈ [[1, n]].

– Let Y ⊆ X and ν be a valuation over Y with domain Pn. The Y -upshift of ν is the valuation ν↑Y
with domain Pn+1 defined by ν↑Y (p1) := X\Y and for all k ∈ [[1, n]], ν↑Y (pk+1) := ν(pk)∪X\Y .

Their effect is depicted in figure 3.11. In addition, in the implication from right to left, the
subspace Y is not given, so it is our task to define a nowhere dense subspace Y of X with the
desired property. We are going to show that the extension of the formula

σ := ♦+(¬p1 ∧ ♦�p1)

is qualified for being such Y . First, we prove that it is nowhere dense:

Lemma 3.10. Given a topological model M, the subspace [[σ]]M is nowhere dense in X.

1Contrary to what the picture might suggest, the extension of pn is in general not included in the extension of
pn+1.
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Figure 3.1: Depiction of valuation shifting

Proof. We aim at proving Int(Cl([[σ]]M)) = ∅, or equivalently

[[�+♦+♦+(¬p1 ∧ ♦�p1)]]M = ∅

By soundness of wK4, it suffices to show

wK4 ` ¬�+♦+♦+(¬p1 ∧ ♦�p1)

which can be reduced to
wK4 ` ¬�+♦+(¬p1 ∧ ♦�p1)

So using Kripke completeness, we consider a wK4 Kripke model M′ = (W,R, ν) and w ∈ W
and suppose toward a contradiction that M′, w � �+♦+(¬p1 ∧ ♦�p1). Then there exists u ∈ W
such that wR+u and M′, u � ¬p1 ∧ ♦�p1. It follows that there exists v ∈ W such that uRv and
M′, v � �p1. By weak transitivity we have wR+v and therefore M′, v � ♦+(¬p1 ∧ ♦�p1), that
is, there exists t ∈ W such that vR+t and M′, t � ¬p1 ∧ ♦�p1. If t 6= v then vRt and it follows
M′, t � p1, a contradiction. Therefore t = v and we obtain M′, v � ¬p1 ∧ ♦�p1.

The whole reasoning about u can then be applied again to v, giving us the existence of v′ ∈W
such that vRv′ and M′, v′ � ¬p1 ∧ ♦�p1. This contradicts M′, v � �p1, concluding the proof.

We now introduce, for all n ∈ N, the formula

θn := ♦(�pn+1 ∧ ¬bdn)

which is the antecedent of bdn+1, that is, we have bdn+1 = θn → pn+1. Equivalently we have
¬bdn+1 ≡ θn ∧ ¬pn+1, so for a topological model (X, ν), the following result will help transferring
the falsity of bdn from X to Y := [[σ]](X,ν):

Lemma 3.11. For all n ≥ 1, we have wK4 ` θn → σ.
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Proof. We proceed by induction on n. For n = 1 this is immediate since θ1 ≡ ♦(�p2∧♦�p1∧¬p1).
Suppose that this holds for n. Let M = (W,R, ν) be a wK4 Kripke model and w ∈W , and suppose
M, w � θn+1. We have

θn+1 ≡ ♦(�pn+2 ∧ θn ∧ ¬pn+1)

so there exists u ∈ W such that wRu and M, u � �pn+2 ∧ θn ∧ ¬pn+1. In particular M, u � θn so
there exists v ∈W such that uRv and M, v � �pn+1 ∧¬bdn. By weak transitivity we have wR+v.
If w = v then vRu and from M, v � �pn+1 and M, u � ¬pn+1 we derive a contradiction. Therefore
wRv, and it follows M, w � ♦(�pn+1 ∧ ¬bdn), that is, M, w � θn; by the induction hypothesis, we
then obtain M, w � σ. By Kripke completeness this proves wK4 ` θn+1 → σ.

We are now ready to prove that the operations of shifting up and down have the desired
properties:

Lemma 3.12. Let (X, ν) be a topological model, Y a subspace of X such that [[σ]](X,ν) ⊆ Y and

n ∈ N. If X, ν, x � ¬bdn+1 then x ∈ Y and Y, ν↓Y , x � ¬bdn.

Proof. By induction on n. For n = 0, suppose X, ν, x � ¬bd1, i.e., X, ν, x � θ0 ∧ ¬p1. Recall that
σ = ♦+(¬p1 ∧ ♦�p1); therefore x ∈ [[σ]](X,ν), so x ∈ Y and the rest is immediate since ¬bd0 ≡ >.

Suppose it holds for n and assume X, ν, x � ¬bdn+2, that is, X, ν, x � θn+1 ∧ ¬pn+2. Since
n+ 1 ≥ 1 we can apply lemma 3.11 to obtain x ∈ [[σ]](X,ν) and thus x ∈ Y .

Now consider an open neighbourhood U of x in Y , of the form U = U ′ ∩ Y with U ′ open.
From X, ν, x � θn+1 and x ∈ U ′ we obtain the existence of some y ∈ U ′ such that y 6= x and
X, ν, y � �pn+2 ∧ ¬bdn+1. Then by the induction hypothesis we obtain y ∈ Y and Y, ν↓Y , y �
¬bdn. There also exists some open neighbourhood V of y such that V \ {y} ⊆ ν(pn+2), and thus

Y ∩ V \ {y} ⊆ ν↓Y (pn+1). All in all we have y ∈ Y ∩ U ′ with y 6= x and Y, ν↓Y , y � �pn+1 ∧ ¬bdn.

Therefore Y, ν↓Y , x � θn. We also have x /∈ ν(pn+2) = ν↓Y (pn+1) so finally Y, ν↓Y , x � θn ∧ ¬pn+1 as
desired.

Lemma 3.13. Let (X, ν) be a topological model, Y nowhere dense in X, x ∈ Y and n ∈ N. If

Y, ν, x � ¬bdn then X, ν↑Y , x � ¬bdn+1.

Proof. By induction on n. For n = 0, suppose that x ∈ d̂(d(Y )). Then there exists an open
neighbourhood U of x such that U \ {x} ⊆ d(Y ). We note that x is not isolated, otherwise
{x} ⊆ Y ⊆ Cl(Y ) with {x} open, contradicting the fact that Y is nowhere dense. We then prove
that x ∈ Cl(Y ). Indeed, let V be an open neighbourhood of x; since x is not isolated there exists
y ∈ U∩V such that y 6= x. Thus y ∈ d(Y ), and it follows V ∩Y 6= ∅ as desired. Therefore x ∈ Cl(Y )
and since U \ {x} ⊆ d(Y ) ⊆ Cl(Y ) it follows U ⊆ Cl(Y ) with U non-empty, a contradiction since Y

is nowhere dense. Therefore x ∈ X \ d̂(d(Y )) = d(d̂(X \Y )), in other words X, ν↑Y , x � ♦�p1∧¬p1.
Now suppose that it holds for n, and assume Y, ν, x � ¬bdn+1, that is, Y, ν, x � θn ∧ ¬pn+1. It

is then immediate that X, ν↑Y , x � ¬pn+2, so we have to show X, ν↑Y , x � θn+1. Let U be an open
neighbourhood of x. By assumption there exists y ∈ Y ∩U \ {x} such that Y, ν, y � �pn+1 ∧¬bdn.
Thus there exists an open set W such that y ∈ Y ∩ W and Y ∩ W \ {y} ⊆ ν(pn+1). Now let

z ∈W \ {y}; if z ∈ X \ Y we have z ∈ ν↑Y (pn+2), and otherwise z ∈W ∩ Y ⊆ ν(pn+1) ⊆ ν↑Y (pn+2).

Hence W \ {y} ⊆ ν↑Y (pn+2). From Y, ν, y � ¬bdn we also get X, ν↑Y , y � ¬bdn+1 by the induction

hypothesis. All in all we have y ∈ U\{x} and X, ν↑Y , y � �pn+2∧¬bdn+1. Therefore X, ν↑Y , x � θn+1,
and this concludes the proof.
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This provides the desired theorem, which is the direct analogue of theorem 3.6 for the d-
semantics:

Theorem 3.14. Let X be a topological space. Then for all n ∈ N we have

mdim(X) ≤ n− 1 ⇐⇒ X � bdn

Proof. By induction on n. For n = 0 this is immediate. Suppose that this holds for n, and assume
mdim(X) > n. Then there exists some Y nowhere dense in X such that mdim(Y ) > n − 1. By
the induction hypothesis we have Y 2 bdn, so there exists a valuation ν and x ∈ Y such that
Y, ν, x � ¬bdn. Then by lemma 3.13 it follows X, ν↑Y , x � ¬bdn+1, and thus X 2 bdn+1.

Conversely, suppose that X 2 bdn+1. Then there exists a valuation ν and x ∈ X such that
X, ν, x � ¬bdn+1. We define Y := [[σ]]M and then by lemma 3.12 we know that x ∈ Y and

Y, ν↓Y , x � ¬bdn. Thus Y 2 bdn and by the induction hypothesis we obtain mdim(Y ) > n − 1. By
lemma 3.10, Y is nowhere dense in X and therefore mdim(X) > n.

This being achieved, we address the topological completeness of wK4+bdn (recall definition 2.25
for this term). To obtain this result, we need two ingredients: Kripke completeness of this logic,
and a way to transform a Kripke frame into a topological space. The former is provided by [BGJ11]
which asserts the finite model property for a class of extensions of wK4 called cofinal subframe
logics.

Definition 3.15. [BGJ11] Let F = (W,R) be a Kripke frame. A subframe F′ = (W ′, R′) of F is
called a cofinal subframe of F if w′ ∈ W ′ and w′Rw implies the existence of u′ ∈ W ′ such that
wR+u′.

Definition 3.16. [BGJ11] Let L be an extension of K. The logic L is called cofinal subframe if
whenever F � L and F′ is a cofinal subframe of F, we have F′ � L.

Theorem 3.17. [BGJ11] Every extension of wK4 which is a cofinal subframe logic has the finite
model property.

If F is a wK4 frame and F′ a subframe of F, it is clear that F′ is a wK4 frame too and that
depth(F′) ≤ depth(F). Therefore wK4 + bdn is a cofinal subframe logic, and from theorem 3.17 it
follows that is has the FMP, and thus that it is Kripke complete. As we can see, the FMP is not
used in itself but is merely instrumental to completeness. Later in the thesis, other applications of
this theorem will fulfill an actual need for the FMP.

The next step is to derive a topological space X from a Kripke frame F, but taking the space
induced by F (see definition 2.18) will not suffice. Indeed, we want that F 2 φ implies X 2d φ. If we
consider the frame F consisting of a single reflexive point, we see that F 2 �⊥ whereas F �d �⊥.
This is because the information that the point is reflexive is lost in the process2. To remedy this,
we duplicate every reflexive point, according to the following pattern:

w (w,0) (w,1)

This construction is adapted from [BEG09]. Here is the formal definition:

2As witnessed by the fact that the single irreflexive point generates the same space.
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Definition 3.18. Let F = (W,R) be a Kripke frame. We denote by Wr the set of reflexive worlds
of W , and Wi the set of irreflexive worlds of W . The dereflexivation of F is the Kripke frame
F• = (W•, R•) with:

– W• := (Wi × {0}) ∪ (Wr × {0, 1})

– R• := {((w, k), (u, i)) ∈W•2 | wRu and w 6= u} ∪
⋃
wRw{((w, 0), (w, 1)), ((w, 1), (w, 0))}

Lemma 3.19. [BEG09] If F is wK4 frame, then the map π : F• → F defined by π(w, k) := w is a
d-morphism.

In addition, we need to prove that dereflexivation preserves the validity of bdn:

Lemma 3.20. If F is a wK4 frame such that depth(F) � bdn, then F• � bdn.

Proof. Assume that F � bdn, that is, depth(F) ≤ n. We prove that depth(F•) ≤ n. For suppose there
exists (w1, k1), . . . , (wn+1, kn+1) ∈Wn+1

• such that (wi, ki)R•(wi+1, ki+1) and not (wi+1, ki+1)R•(wi, ki)
for all i ∈ [[1, n]]. It is then clear that we have wiRwi+1 and not wi+1Rwi for all i ∈ [[1, n]], contra-
dicting depth(F) ≤ n. Therefore depth(F•) ≤ n, and so F• � bdn.

We may then conclude with the final theorem:

Theorem 3.21. In the d-semantics, the logic wK4 + bdn is topologically complete.

Proof. Suppose that wK4 + bdn 2 φ. We have argued above that wK4 + bdn is Kripke complete,
so let F be a wK4 frame such that F � bdn and F 2 φ. Then by lemma 3.20, we have F• � bdn as
well, and since F• is irreflexive, proposition 2.23 yields F• �d bdn. In addition, π is a d-morphism
by lemma 3.19, so from F 2 φ it follows F• 2d φ.

3.3 Bounded depth and chains

In this section we aim to prove a variant of theorem 3.8 that is meaningful in the d-semantics. To
be more precise, we aim to find:

– an analogue of item 2 involving validity in the d-semantics instead of the c-semantics;

– an analogue of items 3 and 4 involving d-morphisms instead of interior maps.

To meet the first goal, we introduce a variant of Jankov-Fine formulas. They are adapted from the
subframe formulas presented in [CZ97, sec. 9.4], with some syntactic rework to make them more
readable.

Definition 3.22. Let F = (W,R) be a finite rooted Kripke frame. Let W := {wi | i ∈ [[0, n− 1]]}
where w0 is a root. The subframe formula αF associated to F is the conjunction of the following
formulas:

1. q0

2. �+¬(qi ∧ qj) for all 0 ≤ i < j < n

3. �+(qi → ♦qj) for all i, j ∈ [[0, n− 1]] such that wiRwj
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4. �+(qi → ¬♦qj) for all i, j ∈ [[0, n− 1]] such that ¬(wiRwj)

In words, αF is just like χF apart from two points: first, the terms of the conjunction are under
the scope of �+ instead of �, but this is merely an adjustment to account for the fact that we are
no longer restricted to reflexive frames; second, the term �+

∨n−1
i=0 qi is not present. This means

that satisfiability of αF in a space X encodes the presence of the “pattern” given by F within some
subspace of X, instead of necessarily X itself. This is made more precise by the following result:

Proposition 3.23. Let X be a topological space. Then αF is satisfiable in X iff F is a d-morphic
image of some subspace of X.

Proof. Suppose that there exists a set Y ⊆ X and a surjective d-morphism f : Y →W . We define
a valuation ν by setting, for all i ∈ [[0, n − 1]], ν(qi) := f−1(wi). Since f is surjective, there exists
x ∈ ν(q0). We prove that X, ν, x � αF.

1. X, ν, x � q0 by construction.

2. If 0 ≤ i < j < n then X, ν, x � �+¬(qi ∧ qj) since any point in X has at most one image by
f .

3. Suppose wiRwj and let y ∈ Y such that f(y) = wi (implying y ∈ Y ). Then y ∈ f−1(R−1{wj}),
so y ∈ dY (f−1({wj})) by theorem 2.32, that is, y ∈ d(f−1({wj})) ∩ Y . Hence X, ν, y � ♦qj .
Since X is open it follows that X, ν, x � �+(qi → ♦qj).

4. Suppose ¬wiRwj and let y ∈ Y such that f(y) = wi (implying y ∈ Y ). Then y /∈
f−1(R−1{wj}), so y ∈ dY (f−1({wj})) by theorem 2.32, that is, y /∈ d(f−1({wj}))∩Y . Hence
X, ν, y � ¬♦qj . Since X is open it follows that X, ν, x � �+(qi → ¬♦qj).

Conversely, suppose that there exists a valuation ν and a point x ∈ X such that X, ν, x � αF.
After swapping boxes and conjunction we can find an open neighbourhood U of x such that every
y ∈ U satisfies formulas 2 to 4. Then, given y ∈ U , if there exists some i ∈ [[0, n − 1]] such that
X, ν, y � qi, it is unique and we set f(y) := qi. We define Y := Dom(f) and prove that f : Y →W
meets the requirements.

– We show that f is surjective. By construction we have f(x) = q0. Let i ∈ [[1, n − 1]]. Since
F is weakly transitive and rooted in w0 6= wi we have w0Rwi. Thus X, ν, x � q0 → ♦qi, so
X, ν, x � ♦qi, so there exists y ∈ U \ {x} such that X, ν, y � qi and consequently f(y) = qi.

– We show that f is a d-morphism. If j ∈ [[0, n−1]], we show that f−1(R−1{wj}) = dY (f−1{wj})).
For suppose y ∈ f−1(R−1{wj}); writing wi := f(y), this means that wiRwj . It follows that
X, ν, y � qi → ♦qj and thus y ∈ d(ν(qj)), so finally y ∈ d(ν(qj))∩Y = dY (ν(qj)). Conversely,
suppose y /∈ f−1(R−1{wj}); then ¬(wiRwj), and thus X, ν, y � qi → ¬♦qj and y /∈ d(ν(qj)),
and therefore y /∈ dY (ν(qj))

Since W is finite and R−1 and d commute with union, it follows that f−1(R−1A) = dY (f−1A)
for all A ⊆W . By theorem 2.32 we obtain that f is a d-morphism.
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Now, our goal is to connect subframe formulas to modal dimension by showing that given a
space X we have X � bdn iff X � ¬αF for all n+1-chain F. We can see that we are now quantifying
over all chains instead of considering only the reflexive one, which makes sense with regard to the
d-semantics. Here the challenging implication is

X �
∧
{¬αF | F is a n+ 1-chain} =⇒ X � bdn

and for convenience we will instead prove

X �
∧
{¬αF | F is a n+ 1-chain} =⇒ X � bd+

n

(we will see that this is sufficient). It will however be easier to work with Kripke frames, which is
possible if we move to the syntactic level, and then use Kripke completeness. However, for a reason
that will soon be clear, attempting to show

wK4 + {¬αF | F is a n+ 1-chain} ` bd+
n

will not succeed. At some point in the proof we will need fixpoint operators (see section 2.4), and
this is why need to work within the stronger system µwK4. Thus, the claim we are going to prove
is

µwK4 + {¬αF | F is a n+ 1-chain} ` bd+
n (3.1)

Unfortunately, while µwK4 is Kripke complete, we do not know whether this is the case for
µwK4 + {¬αF | F is a n+ 1-chain}. The solution then comes from one crucial observation, namely
that only finitely many instances of the ¬αF’s are needed to derive bd+

n . Indeed we know that if
bd+

n is refuted in a frame F0, this is because of the presence of a sequence w0R
+ . . . R+wn such that

not wi+1R
+wi for all i ∈ [[0, n − 1]]. From this sequence we can then construct an n + 1-chain F3

such that by properly instantiating the qi’s, we can satisfy αF in F0. This instance is derived from a
tuple of formulas essentially describing the structure of F (i.e., which points are reflexive) along with
some information retrieved from the falsity of bdn; for this reason it is called the refutation tuple
associated to F. Since there are finitely many n+ 1-chains and each chain has only one refutation
tuple, we end up as intended with finitely many instances of subframe formulas. Therefore 3.1 can
be seen as an implication in µwK4.

This also explains why we work with the µ-calculus: if F is a n + 1-chain containing reflexive
points, then αF contains subformulas of the form �+(qi → ♦qi), which imposes a self-referential con-
dition on the formula that is substituted for qi. When fixpoint operators are available, constructing
such a formula is then very easy.

Definition 3.24. Let n ∈ N and F = (W,R) an n-chain with W = {wk | k ∈ [[0, n − 1]]}. The
refutation tuple associated to F is the tuple of formulas tF = (φ0, . . . , φn−1) defined by, for all
k ∈ [[0, n− 1]]:

φk :=

{
νp.(ψk ∧ ♦p) if wk is reflexive

ψk ∧ ¬♦ψk otherwise

where ψk is defined by downward recursion as follows:

3Warning: while one might think that the n+ 1-chain induced by {w0, . . . , wn} is a natural choice for this F, this
is not the case in general.
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– ψn−1 :=
∧

1≤i≤n−1�
+pi

– for all k ∈ [[0, n− 2]], ψk := ♦φk+1 ∧ ¬pn−k−1 ∧
∧
n−k≤i≤n−1�

+pi

The following lemma then establishes the result explained above:

Lemma 3.25. Let us write q := (q0, . . . , qn). We then have

µwK4 `
∧
{�+¬αF[tF/q] | F is a n+ 1-chain and tF = (φ0, . . . , φn)} → bd+

n

Proof. By theorem 2.37, it suffices to consider a weakly transitive Kripke model M = (W,R, V )
and w ∈W such that

M, w �
∧
{�+¬αF[tF/q] | F is a n+ 1-chain and tF = (φ0, . . . , φn)}

and to prove that M, w � bd+
n . For suppose not. Then there exist w0, . . . , wn with w0 = w

such that M, w0 � ¬pn and M, wn � �+p1 and for all k ∈ [[1, n − 1]], wkR
+wk+1 and M, wk �

¬pn−k∧�+pn−k+1. We define the formulas φ0, . . . , φn and ψ0, . . . , ψn recursively, with the condition
that M, wk � ψk for all k ∈ [[0, n]]. First we set ψn :=

∧
1≤i≤n�

+pi, and if k ∈ [[0, n]] and ψk is
defined, we consider two cases:

– if M, wk � νp.(ψk ∧ ♦p) then φk := νp.(ψk ∧ ♦p);

– otherwise we set φk := ψk ∧ ¬♦ψk.

If k > 0 we then define ψk−1 := ♦φk∧¬pn−k+1∧
∧
n−k+2≤i≤n�

+pi. It is then clear that (φ0, . . . , φn)
is the refutation tuple associated to some n+ 1-chain F; we write u0, . . . , un its elements.

We now construct by downward recursion a sequence of worlds (w′0, . . . , w
′
n) satisfying wkR

+w′k
and M, w′k � φk for all k ∈ [[0, n]]:

– Since M, wn−i+1 � �+pi for all i ∈ [[1, n]] and M is weakly transitive we have M, wn � ψn.
If M, wn � νp.(ψn ∧ ♦p) we set w′n := wn and we are done; otherwise there exists a path
v1R . . . Rvm with v1 = wn and such that M, vi � ψn for all i ∈ [[1,m− 1]] and M, vm 2 ♦ψn.
By weak transitivity we have w0R

+vm so we set w′0 := vm and we are done.

– If k ∈ [[0, n−1]] we have wkR
+wk+1R

+w′k+1 and M, w′k+1 � φk+1 by the induction hypothesis.
Then by weak transitivity we have wkR

+w′k+1, but wk = w′k+1 is impossible since M, wk �
¬pn−k and M, wk+1 � �+pn−k yields M, w′k+1 � pn−k. Hence wkRw

′
k+1 and since M, w′k+1 �

φk+1 by the induction hypothesis, we obtain M, wk � ♦φk+1. We also have M, wk � ¬pn−k
and M, wk � �+pi for all i ∈ [[n + 1 − k, n + 1]] by the same argument as above. Therefore
M, wk � ψk and the construction of w′k is analogous to the case k = 0.
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wn−2
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¬p1,�+p2

�+p1

φ0

φn−2

φn−1

φn

We then show that M, w′0 � ¬αF[tF/q]:

1. We know that M, w′0 � φ0.

2. If 0 ≤ i < j ≤ n then � φj → �+pn−i whereas � φi → ¬pn−i, so this proves M, w′0 �
�+¬(φi ∧ φj).

3. Suppose 0 ≤ i ≤ j ≤ n.

– If i < j we show that M, w′0 � �
+(φi → ♦φj). For suppose M, v � φj . Since for all

k ∈ [[i+ 1, j]] we have � φk → ♦φk+1 we obtain the existence of a path v1R . . . Rvm with
v1 = v and such that M, vm � φj . By weak transitivity it follows that vR+vm and by 2
we cannot have v = vm, so vRvm, and this proves M, v � ♦φj .

– If i = j we suppose ui reflexive in F, i.e., φi = νp.(ψi∧♦p). Then M, w′0 � �
+(φi → ♦φi)

as an immediate consequence of the fixpoint axiom.

4. Suppose 0 ≤ i ≤ j ≤ n

– If i < j we show that M, w′0 � �
+(φj → ¬♦φj). For suppose M, v � φj and vRu with

M, u � φi. Then M, v � �+pn−i whereas M, u � ¬pn−i, a contradiction. This proves
the claim.

– If i = j, suppose ui irreflexive in F, i.e. φi = ψi ∧ ¬♦ψi. It is then obvious that
M, w′0 � �

+(φi → ¬♦φi).

Since wR+w′0, it follows that M, w 2 �+¬αF[tF/q], a contradiction. This concludes the proof.

Lemma 3.26. We have

µwK4 + {¬αF | F is a n+ 1-chain} ` bd+
n

Proof. Let F′ be a n+ 1-chain. By the rules of necessitation and substitution we have

µwK4 + {¬αF | F is a n-chain} ` �+¬αF[tF′/q]

and we conclude by lemma 3.25.
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We are now able to state and prove the main result of this section:

Theorem 3.27. Let X be a topological space. The following conditions are equivalent for all n ∈ N:

1. mdim(X) ≤ n− 1

2. X � ¬αF for all n+ 1-chain F

3. No n+ 1-chain is a d-morphic image of a subspace of X

Proof. From 3 to 2, suppose that X 2 ¬αF for some n + 1-chain F, that is, αF is satisfiable in X.
Then by proposition 3.23, there exists a subspace Y of X and a surjective d-morphism from Y to
some F.

From 1 to 3, suppose that there exists a surjective d-morphism f from an open set Y ⊆ X to
some n+ 1-chain F. In particular, f is an interior map, and it can be seen as an interior map from
Y to the reflexive n+ 1-chain (since all n+ 1-chains induce the same topological space). Then from
theorem 3.8, we obtain mdim(X) > n− 1.

From 2 to 1, suppose that X � ¬αF for all n+ 1-chain F. In other words

X � µwK4 + {¬αF | F is a n+ 1-chain}

and from lemma 3.26 it follows that X � bd+
n . Then by proposition 2.28 we obtain X �c bdn, and

therefore mdim(X) ≤ n− 1 by theorem 3.8.

Remark 3.28. Items 3 and 4 of theorem 3.8 may suggest that, similarly:

– mdim(X) ≤ n− 1 iff no n+ 1-chain is a d-morphic image of X;

– mdim(X) ≤ n− 1 iff no n+ 1-chain is a d-morphic image of some open subspace of X.

This differs from 1 ⇐⇒ 3 above on the quantification over subspaces of X, that is, we only
consider X itself in the first case, and its open subspaces in the second case. Yet this is not the
case in general: if we take X := {0, 1, 2, 3} and τ := {∅, {1, 2}, {3}, X} (see figure 3.2) we find that
mdim(X) > 0 yet no 2-chain is a d-morphic image of X, nor any open subspace of X.

1 2

3

0

Figure 3.2: A counter-example
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3.4 Bounded depth and derivative

We conclude this chapter with a last, modest result: we show that taking the derivative of a space
decreases its modal dimension by at most 1. This proposition can be split into two parts: on
the one hand, given a space X we have mdim(d(X)) ≤ mdim(X), but in fact we will show the
stronger claim that mdim(Y ) ≤ mdim(X) whenever Y is a subspace of X; on the other hand,
mdim(X) ≥ mdim(d(X)) + 1. To achieve this goal we essentially reuse the techniques introduced
in section 3.2, starting with transformations of valuations:

Definition 3.29. Let n ∈ N, X a space, Y ⊆ X and ν a valuation over Y . The Y -stuffing ν•Y of ν
is the valuation over X with domain Pn such that for all k ∈ [[1, n]], ν•Y (pk) := ν(pk) ∪X \ Y .

Lemma 3.30. Let (X, ν) be a topological model, x ∈ Y ⊆ X and n ∈ N . If Y, ν, x � ¬bdn then
X, ν•Y , x � ¬bdn.

Proof. By induction on n. For n = 0 this is trivial since ¬bd0 ≡ >.
Suppose that it holds for n, and assume Y, ν, x � ¬bdn+1, i.e., Y, ν, x � θn ∧ ¬pn+1. Let U

be an open neighbourhood of x. By assumption there exists y ∈ U ∩ Y \ {x} such that Y, ν, y �
�pn+1 ∧ ¬bdn. Thus there exists an open neighbourhood V of y such that V ∩ Y \ {y} ⊆ ν(pn+1).
If z ∈ V \ {y} we have either z ∈ Y , in which case z ∈ ν(pn+1) ⊆ ν•Y (pn+1), or z /∈ Y which yields
z ∈ ν•Y (pn+1). This proves X, ν•Y , y � �pn+1, and we also have X, ν•Y , y � ¬bdn by the induction
hypothesis. Since y ∈ U \ {x} we obtain X, ν•Y , x � θn and we are done.

Proposition 3.31. Let X be a topological space and Y ⊆ X a subspace of X. Then mdim(Y ) ≤
mdim(X).

Proof. If mdim(X) =∞ this is obvious. Assume that n := mdim(X) is finite.
Suppose mdim(Y ) > n. Then, by theorem 3.14 we have Y 2 bdn+1, that is, there exists a

valuation ν and x ∈ d(X) such that Y, ν, x � ¬bdn+1. Then by lemma 3.30 we obtain X, ν•Y , x �
¬bdn+1 and thus X 2 bdn+1. By theorem 3.14 again we get mdim(X) > n, a contradiction.
Therefore mdim(Y ) ≤ n.

Lemma 3.32. Let X be a topological space. If mdim(d(X)) ≤ n then mdim(X) ≤ n+ 1.

Proof. By contraposition, suppose mdim(X) > n + 1. Then X 2 bdn+2 by theorem 3.14, so there
exists a valuation ν and x ∈ X such that X, ν, x � ¬bdn+2. It is clear that [[σ]](X,ν) ⊆ d(X) so

we can apply lemma 3.12 to Y := d(X) and obtain x ∈ d(X) and d(X), ν↓Y , x � ¬bdn+1. Hence
d(X) 2 ¬bdn+1 and it follows that mdim(d(X)) > n.

Theorem 3.33. For all topological space X we have

mdim(X)− 1 ≤ mdim(d(X)) ≤ mdim(X)

with the convention that ∞− 1 =∞.

Proof. If mdim(X) is finite then this is an immediate consequence of proposition 3.31 and lemma 3.32.
If mdim(X) = ∞, we show that mdim(d(X)) = ∞ too. If not, we have mdim(d(X)) ≤ n for some
n, so mdim(X) ≤ n+ 1 by lemma 3.32, a contradiction. This concludes the proof.
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This closes the chapter and leaves us with a good understanding of the derivational meaning of
bdn: in addition to the link with modal Krull dimension and the proof of completeness, we have also
established convenient characterizations that allow us to appreciate the differences and similarities
between the c-semantics and the d-semantics. These insights will be helpful in the next chapter,
wherein we study other axiomatic systems, and plan to combine them with bdn.
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Chapter 4
Extensions of wK4 and topological
completeness

Whereas the logics S4.2 and S4.3 have been part of the landscape of the c-semantics for a while,
with their well-known connection to extremally disconnected spaces, the interpretation of the ax-
ioms .2 and .3 in the d-semantics is still missing. Further, several axioms coincide with .2 or .3
over reflexive and transitive frames, but turn out to be distinct when we step outside of S4 and
only work under wK4. This generates some confusion, and preliminary work will be needed in
the first place to clarify the situation. We will eventually identify four logics of interest: wK4.2
and wK4.3 which correspond directly to S4.2 and S4.3, and wK4.2+ and wK4.3+ which are
obtained by taking the S4-translation of .2 and .3. We can already see that we will obtain the
semantics of the last two from proposition 2.28 for free, so we are merely studying them for the
sake of comprehensiveness.

More instructive will be the study of the first two systems: in section 4.1, we show that wK4.2
defines a subclass of the class of extremally disconnected spaces with some forbidden patterns. The
case of wK4.3 is also very fertile, for we observe that from .3 we can derive the simpler axiom
aT := �(p → ♦p). While its Kripke semantics is rather unimpressive, its topological semantics
will turn out to produce rich results, and this justifies the presence of section 4.2 which is entirely
devoted to aT and its relation to a new kind of spaces called accumulative. After that, we will show
in section 4.3 that wK4.3 defines the class of spaces that are hereditarily extremally disconnected
and accumulative. Finally, we address in section 4.4 a handful of extensions of these logics, obtained
by adding the axioms gl and bdn.

Along this road we will naturally be interested in the topological completeness of these logics.
To achieve this goal, we will use the operation of unfolding a Kripke frame presented in [BBFD21].
While this strategy works well for wK4.2 and wK4.2+, the topology of the unfolded frame turns
out to be too coarse as soon as extensions of wK4 + aT are concerned. To remedy this, we will
introduce the operation of refined unfolding which generates more open sets and successfully yields
the topological completeness of wK4 + aT and wK4.3. For the logic wK4.3+ we will reuse the
technique of dereflexivation, on which we will also rely in section 4.4.
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4.1 The logic wK4.2

In this section we adapt S4.2 to the d-semantics and establish completeness of the resulting logics.
The following is well known:

Theorem 4.1. [vBB07] In the c-semantics, S4.2 defines the class of extremally disconnected
spaces, and is topologically complete.

Recall that (hereditarily) extremally disconnected spaces were introduced in definition 2.15. It
may be tempting to focus solely on the axiom .2 = ♦�p → �♦p. But in [CZ97, sec. 3.5] we also
find K4.2 := K4 + ♦(p ∧ �q) → �(p ∨ ♦q) which defines the class of transitive directed frames.
The condition of directedness of a Kripke frame F = (W,R) is

for all w, u, v ∈W, if wRu and wRv and u 6= v then ∃t ∈W,uRt and vRt

Recall that the property of strong directedness is the same without the condition u 6= v. Hence we
must consider wK4+♦(p∧�q)→ �(p∨♦q) as a candidate to define wK4.2. This logic, however,
turns out to admit another axiomatization:

Proposition 4.2. We have wK4 + ♦(p ∧�q)→ �(p ∨ ♦q) = wK4 + .2+. In addition:

– the logic wK4 + .2+ defines the class of weakly transitive directed frames and is Kripke
complete;

– in the d-semantics, the logic wK4 + .2+ defines the class of extremally disconnected spaces.

Proof. We know from [CZ97, sec. 3.5] that ♦(p ∧ �q) → �(p ∨ ♦q) defines directedness. Since
w4 and ♦(p ∧ �q) → �(p ∨ ♦q) are Sahlqvist formulas [BRV01, sec. 4.3], we immediately obtain
Kripke completeness of L := wK4 + ♦(p ∧�q)→ �(p ∨ ♦q). In addition, given a Kripke frame F,
we can see that F is directed iff F+ is strongly directed, so by proposition 2.28 it follows that .2+

defines directedness too.
Since L and wK4 + .2+ define the same class of frames, and L is Kripke complete, we obtain

wK4 + .2+ ⊆ L. For the other inclusion, it suffices to prove L ` .2+. Substituting p for q in
♦(p∧�q)→ �(p∨♦q), we obtain L ` ♦�+p→ �♦+p, and from there it is not hard to prove that
L ` ♦+�+p→ �+♦+p.

Finally, if X is a topological space, we know from proposition 2.28 that X �d .2+ iff X �c .2,
and from theorem 4.1 it follows that X �d L iff X is extremally disconnected.

This being clarified, the choice of the following names is then natural:

wK4.2 := wK4 + .2

wK4.2+ := wK4 + .2+

We are now going to investigate the semantics of wK4.2. Unsurprisingly, validity of wK4.2 in a
space X implies that X is extremally disconnected, but this condition is not sufficient since the
following spaces spaces falsify wK4.2 even though they are extremally disconnected:
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X1 X2

Yet .2 is valid in the following spaces, which are open subspaces of the previous two:

X ′1 X ′2

This observation leads us to break any wK4.2 space into two open subspaces: one called almost
discrete which gathers all the subspaces of the form X ′1 and X ′2, and one called strongly dense-in-
itself which by construction cannot contain X1 nor X2. We will then show that this decomposition
is actually a complete characterization of the class of spaces defined by wK4.2. Here is the definition
of these properties:

Definition 4.3. Let X be a topological space. An open set U is said to be atomic if it is non-empty
and there exists no open set V such that ∅ ⊂ V ⊂ U1. Then X is called:

– almost discrete if every point has an atomic open neighbourhood U such that |U | ≤ 2;

– strongly dense-in-itself if for every non-empty open set U we have |U | ≥ 3.

Remark 4.4. To understand how this definition is related to discrete and dense-in-itself spaces, it
is insightful to reformulate these two conditions as follows:

– X is discrete iff every point has an atomic open neighbourhood U such that |U | ≤ 1;

– X dense-in-itself iff for every non-empty open set U we have |U | ≥ 2.

The link is then clear, and the names are consistent since any discrete space is also almost discrete,
and any strongly dense-in-itself space is also dense-in-itself.

Figure 4.1: A discrete space (left) and an almost discrete space (right)

1Here and throughout the whole document, A ⊂ B means that A ⊆ B and A 6= B
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The hardest part will be to show that .2 is valid in any strongly dense-itself extremally discon-
nected space, and to achieve this result a few preliminaries will be needed. We begin by introducing
a variant of the notion of extremal disconnectedness:

Definition 4.5. A topological space X is said to be strongly extremally disconnected if for all open
set U of X, d(U) is open too.

As suggested by the name, this is a stronger condition than extremal disconnectedness:

Proposition 4.6. Any strongly extremally disconnected space is also extremally disconnected.

Proof. Let X be strongly extremally disconnected. If U is open in X then d(U) is open too, and
so is U ∪ d(U) = Cl(U).

The converse is not true in general (the space induced by a 2-chain is a counter-example), but
the two conditions coincide on dense-in-themselves spaces:

Proposition 4.7. Any dense-in-itself extremally disconnected space is strongly extremally discon-
nected.

Proof. Let X be dense-in-itself and extremally disconnected. If U is open in X, we show that
Cl(U) = d(U). For consider x ∈ Cl(U) and V an open neighbourhood of x. Then U ∩ V is also
an open neighbourhood of x, and since X is dense-in-itself there must exist y ∈ U ∩ V such that
y 6= x, so that x ∈ d(U). This proves the claim, and since Cl(U) is open by assumption, d(U) is
open too.

The class of strongly extremally disconnected spaces then turns out to be defined by a modal
formula which without surprise is very similar to .2:

Theorem 4.8. The logic wK4 + (♦�+p → �♦p) defines the class of strongly extremally discon-
nected spaces.

Proof. Let X be a space and suppose X � ♦�+p → �♦p. Let U be open in X. By assumption
we have d(Int(U)) ⊆ d̂(d(U)), that is, d(U) ⊆ d̂(d(U)). Then d(U) ⊆ d(U) ∩ d̂(d(U)) = Int(d(U)),
which means that d(U) is open.

Conversely, suppose that X is strongly extremally disconnected. If A ⊆ X, we know that
d(Int(A)) is open. Thus

d(Int(A)) = Int(d(Int(A))) ⊆ d̂(d(Int(A))) ⊆ d̂(d(A))

and this proves X � ♦�+p→ �♦p.

These results lead to this key proposition:

Proposition 4.9. Let X be a strongly dense-in-itself space. Then X � wK4.2 if and only if X is
extremally disconnected.

Proof. Combining proposition 4.7 and theorem 4.8, it suffices to prove that X � ♦�p → �♦p iff
X � ♦�+p → �♦p. From left to right, suppose X � ♦�p → �♦p, and let A ⊆ X. Then by
assumption we obtain d(Int(A)) ⊆ d(d̂(A)) ⊆ d̂(d(A)).
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From right to left, suppose X � ♦�+p → �♦p, and let A ⊆ X and x ∈ d(d̂(A)). Then for
all open neighbourhood U of x there exists yU ∈ U \ {x} such that yU ∈ d̂(A). We then set
A′ := A∪ {yU | U open and x ∈ U} and by construction we have x ∈ d(Int(A′)). By assumption it
follows that x ∈ d̂(d(A′)), that is, there exists an open neighbourhood V of x such that V \ {x} ⊆
d(A′). Then it suffices to prove that V \ {x} ⊆ d(A). For consider y ∈ V \ {x} and W an open
neighbourhood of y. Then there exists z ∈ W \ {y} such that z ∈ A′. If z ∈ A we are done,
otherwise z = yU for some open neighbourhood U of x. Since yU ∈ d̂(A) there exists an open
neighbourhood T of yU such that T \ {yU} ⊆ A. Then yU ∈ W ∩ T and W ∩ T is open, and
since X is strongly dense-in-itself, there exists t, t′ ∈W ∩ T \ {yU} such that t 6= t′. Then we have
t, t′ ∈W ∩A, and one of t and t′ has to be different from y. Therefore y ∈ d(A), and this concludes
the proof.

We are now able to prove the announced decomposition theorem:

Theorem 4.10. Given a topological space X, we have X � wK4.2 iff there exist two disjoint open
subspaces Y, Z of X such that X = Y ∪Z, Y is strongly dense-in-itself and extremally disconnected,
and Z is almost discrete.

Proof. From left to right, suppose X � wK4.2. We define

Z :=
⋃
{U | U is open and atomic and |U | ≤ 2}

and Y := X \ Z.

– Z is clearly open.

– We show that Z is almost discrete. If x ∈ Z, then x ∈ U for some atomic open set U such
that |U | ≤ 2, and we have U ⊆ Z. Thus U is also open in Z. Then if ∅ ⊂ V ∩Z ⊂ U with V
open, we have V ∩Z open too and this contradicts the fact that U is atomic. Therefore U is
atomic in Z.

– We show that Z is closed. First, given any atomic open set V such that |V | = 2, we write
V = {zV0 , zV1 }, that is, we specify a first and a second element. We then define

A := {zV0 | V open and |V | = 2}

Now suppose that there exists x ∈ Cl(Z) \Z. Then for any open neighbourhood U of x there
exists an atomic open set V such that |V | ≤ 2 and U ∩ V 6= ∅. We actually have V ⊆ U ,
otherwise ∅ ⊂ U ∩ V ⊂ U contradicts the fact that V is atomic. If |V | = 1, then V is of
the form V = {z}, and we have z ∈ U ∩ d̂(A) since V \ {z} = ∅ ⊆ A; we also have z 6= x,
otherwise x ∈ V and this contradicts x /∈ Z. If |V | = 2, then V \ {zV1 } = {zV0 } ⊆ A and thus

zV0 ∈ U ∩ d̂(A); we also have zV0 6= x for the same reason as before.

This proves that x ∈ d(d̂(A)), and by assumption we obtain x ∈ d̂(d(A)), that is, there
exists an open neighbourhood W of x such that W \ {x} ⊆ d(A). Since x /∈ Z, there exists
y ∈W \ {x}, and then since y ∈W and y ∈ d(A) there exists z ∈W ∩A such that z 6= y. It
follows that z = zV0 for some atomic open set V such that |V | = 2. If z = x, then x ∈ V and
this contradicts x /∈ Z, so we have z 6= x. Then since z ∈ W we obtain z ∈ d(A), and from
z ∈ V it follows that zV1 ∈ A. Therefore there exists an atomic open set V ′ such that |V ′| = 2
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and zV1 = zV
′

0 . Then zV1 ∈ V ∩V ′ ⊆ V , and since V is atomic it follows that V ∩V ′ = V , that
is, V ′ ⊆ V . Again, since V is atomic this gives V = V ′. Therefore zV0 = zV1 , a contradiction.
Therefore Z is closed, and Y is open.

– We prove that Y is strongly dense-in-itself. For suppose there is an open set U such that
U ∩Y 6= ∅ and |U ∩Y | ≤ 2. Then there exists x ∈ U ∩Y , and if V is an open neighbourhood
of x we prove that V ∩ Z 6= ∅.

◦ If |U ∩ V | ≤ 2 then U ∩ V cannot be atomic, for otherwise x ∈ U ∩ V ⊆ Z. Thus there
exists z ∈ U ∩ V such that {z} is open, and we then have z ∈ Z.

◦ If |U ∩ V | ≥ 3, then from |U ∩ V ∩ Y | ≤ |U ∩ Y | ≤ 2 it follows that U ∩ V ∩ Z 6= ∅.

Therefore x ∈ Cl(Z), and since Z is closed it follows that x ∈ Z, a contradiction.

– Finally, since Y is open in X and X � ♦�p→ �♦p, we have Y � ♦�p→ �♦p as well. From
proposition 4.9 it then follows that Y is extremally disconnected.

From right to left, suppose that there exist two disjoint open subspaces Y,Z of X such that
X = Y ∪Z, Y is strongly dense-in-itself and extremally disconnected, and Z is almost discrete. Since
Y and Z are open, it is enough to prove that Y � wK4.2 and Z � wK4.2. The former immediately
stems from proposition 4.9. For the latter, let x ∈ Z and A ⊆ Z such that x ∈ d(d̂(A)). Let U
be an atomic open neighbourhood of x such that |U | ≤ 2. If y ∈ U \ {x}, we have y ∈ d̂(A) by
assumption, and since U is atomic this straight away entails U \ {y} ⊆ A, that is, x ∈ A. Hence
y ∈ d(A) (again because U is atomic), and this proves x ∈ d̂(d(A)).

To prove topological completeness, we use the technique of unfolding introduced in [BBFD21]
to turn a wK4 frame into an appropriate topological space2. The construction essentially consists
in replacing every reflexive point w of a frame by countably many copies of w, and to arrange them
all into a dense-it-itself subspace, so that to mimic the reflexivity of w in the d-semantics.

Definition 4.11. Let F = (W,R) be a wK4-frame. We denote by W r the set of reflexive worlds of
F, and by W i the set of irreflexive worlds of F. We then introduce the unfolding of F as the space

XF := (W r × ω) ∪ (W i × {ω})

and the collection τF ⊆ P(XF) of all sets U such that for all (w,α) ∈ U :

1. there exists nUw,α < ω such that for all (u, β) ∈ XF, if wRu, uRw and β ≥ nUw,α then (u, β) ∈ U ;

2. if (u, β) ∈ XF, wRu and not uRw then (u, β) ∈ U .

Proposition 4.12. [BBFD21] The pair (XF, τF) is a topological space and the map π : XF → W
defined by π(w,α) := w is a surjective d-morphism.

As a warm-up, we begin with the topological completeness of wK4.2+. The following two
lemmas will allow us to transfer the validity of .2+ from a Kripke frame to its unfolding.

Lemma 4.13. If U is open in XF we have Cl(U) = {(w,α) ∈ XF | ∃(u, β) ∈ U,wR+u}.
2It should be mentioned that the name “unfolding” is not from the original reference. It is our initiative to baptize

the technique as such.
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Proof. Let (w,α) ∈ Cl(U). The set V := {(u, β) ∈ XF | wR+u} is clearly an open neighbourhood
of (w,α), so V ∩ U 6= ∅ and we are done.

Conversely, suppose that (w,α) ∈ XF, (u, β) ∈ U and wR+u. Let V be an open neighbourhood
of (w,α). We consider several cases:

– If wRu and not uRw then (u, β) ∈ V since V is open.

– Otherwise, if w = u and w is irreflexive we obtain (w,α) = (u, β) = (w,ω) so (u, β) ∈ V .

– Otherwise, we have wRu and uRw. If u is irreflexive then β = ω ≥ nVw,α so (u, β) ∈ V . If u

is reflexive, we define n := max {nVw,α, nUu,β}; then from uRu it follows that (u, n) ∈ V , and
from wRu and uRw it follows that (u, n) ∈ U .

In all cases we find that U ∩ V 6= ∅ and this proves (w,α) ∈ Cl(U).

Lemma 4.14. If F is directed then XF is extremally disconnected.

Proof. Suppose that F is directed and let U be open in XF. To show that Cl(U) is open, consider
(w,α) ∈ Cl(U); by lemma 4.13 we know that wR+u for some (u, β) ∈ U .

1. We claim that n
Cl(U)
(w,α)

:= 0 satisfies the first condition. Indeed, if we suppose (v, γ) ∈ XF, wRv

and vRw, we obtain vR+u and thus (v, γ) ∈ Cl(U).

2. For the second condition, suppose (v, γ) ∈ XF, wRv and not vRw. Since F is directed, we
know that F+ is strongly directed. Then since wR+u and wR+v there exists t ∈W such that
uR+t and vR+t.

– If tRu then vR+u and thus (v, γ) ∈ Cl(U).

– Otherwise we define δ := 0 if t is reflexive and δ := ω otherwise. We have (u, β) ∈ U , uRt
and not tRu so (t, δ) ∈ U since U is open. Then from vR+t we obtain (v, γ) ∈ Cl(U).

Theorem 4.15. The logic wK4.2+ is topologically complete.

Proof. Suppose that wK4.2 0 φ. By proposition 4.2, there exists a directed wK4 Kripke frame F
in which φ is satisfiable. Since π is a d-morphism from XF to F, we obtain from proposition 2.31
that φ is satisfiable in XF as well. By lemma 4.14, XF is extremally disconnected, and we are
done.

When it comes to wK4.2, conditions of validity are more complex, and the first step is to prove
a result close enough to theorem 4.10 in the Kripke semantics, so that we may eventually derive a
wK4.2 space from a wK4.2 frame.

Proposition 4.16. Let F = (W,R) be a wK4 frame. Then F � .2 if and only if there exist two
generated subframes F0,F1 of F induced respectively by W0 and W1 and such that:

– W0 ∪W1 = W and W0 ∩W1 = ∅;

– F0 is directed;
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– every point in F0 has a reflexive successor, or has at least two distinct successors;

– F1 is almost discrete.

Proof. Suppose that F � .2. We denote by W0 the set of points in W that have a reflexive successor,
or at least two distinct successors, and W1 := W \W0. By construction we have W0∪W1 = W and
W0 ∩W1 = ∅. We first prove that the subframes F0 and F1 induced by W0 and W1 are generated
subframes of F:

– Suppose w ∈ W1 and wRu. If u has a reflexive successor v, then so does w, a contradiction.
Note that w 6= u for the same reason. Suppose that u has two distinct successors v1, v2. Since
u is irreflexive we have u /∈ {w, v1, v2}; also vi 6= w for some i ∈ {1, 2}, and thus w has two
distinct successors u and vi, a contradiction. Therefore u /∈W0, and we obtain u ∈W1.

– Suppose w ∈ W0 and wRu. Suppose that u /∈ W0. Then u has at most one successor, which
is not reflexive. If u has no successor, then F, u � �⊥ so F, w � ♦�⊥, so F, w � �♦⊥ since
F � .2. It follows that F, u � ♦⊥, a contradiction. Thus u has a unique successor v. Since u
is irreflexive we have u 6= v and u 6= w. By the previous item we know that v ∈W1, so v 6= w
and by weak transitivity it follows that wRv. Then reasoning as before, we know that v has
a successor t. We have t 6= v since v is irreflexive. If u 6= t then uRt by weak transitivity and
this contradicts the uniqueness of v, so t = u. The situation is depicted below:

v

u

w

We then define a valuation ν by setting ν(p) := {v}. It follows that F, ν, w � ♦�p but
F, ν, w 2 �♦p, a contradiction. Therefore u ∈W0.

We then proceed to check the remaining conditions:

– By construction, W0 ∪W1 = W and W0 ∩W1 = ∅.

– Since F � .2 we know that F is strongly directed, and thus directed. Since F0 is a generated
subframe of F, it is directed too.

– The condition on W0 is satisfied by definition.

– Let w ∈ W1. If w has no successor then {w} is a 1-element upset. Otherwise let u be the
unique successor of w. Then we have seen that u ∈ W1. Reasoning as before, we can prove
that u cannot be an endpoint, so it has a unique successor v. Since u is irreflexive we have
v 6= u, and if v 6= w then wRv by weak transitivity, but this contradicts the uniqueness of v.
Therefore w = v, so {w, u} is a 2-element upset (and {u} is not an upset). This proves that
F1 is almost discrete.
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Conversely, suppose that there exists such of decomposition of F into F0 and F1. Since F0 and F1

are generated subframes of F, it suffices to prove that F0 � .2 and F1 � .2, or equivalently that F0

and F1 are strongly directed. This is clear for F1, since it is almost discrete. For F0, suppose that
w, u, v ∈ W0 with wRu and wRv. Since F0 is directed, there exists t ∈ W0 such that uR+t and
vR+t. Then there are four cases:

– If uRt and vRt we are done.

– Suppose that u = v = t. Then by assumption t has a successor t′ and it follows uRt′ and
vRt′.

– Suppose that uRt and t = v. If t has a reflexive successor t′ then uRt′ by weak transitivity.
Otherwise t has two distinct successors t1 and t2, and there exists i ∈ {1, 2} such that ti 6= u.
Then uRti by weak transitivity.

– If vRt and t = u, the reasoning is analogous to the previous case.

Theorem 4.17. The logic wK4.2 is topologically complete.

Proof. Suppose that wK4.2 0 φ. Since .2 is a Sahlqvist formulas, wK4.2 is Kripke complete, so
there exists a Kripke frame F = (W,R) in which φ is satisfiable and such that F � wK4.2. We
then write F0 and F1 the Kripke frames introduced by proposition 4.16, and consider the subspaces
Y := π−1[W0] and Z := π−1[W1] of XF. We claim that Y satisfy the conditions of theorem 4.10.

– Since W0 ∪W1 = W and W0 ∩W1 = ∅, we have Y ∪ Z = X and Y ∩ Z = ∅.

– Since π is a d-morphism, it is also an interior map. Since F0 and F1 are generated subframes
of F, they are open in F, and therefore Y and Z are open in X.

– Every point in W1 is irreflexive, so Z = W1 × {ω}. As a result, the restriction of π to Z is
bijective, and thus a homeomorphism. Then, since F1 is almost discrete, so is Z.

– Since F � .2, the frame F is strongly directed. Then by lemma 4.14 it follows that XF is
extremally disconnected, and so is Y since it is open in X.

– We show that Y is strongly dense-it-itself. Let (w,α) ∈ Y and let U be an open neighbourhood
of (w,α) in Y . If w is reflexive, we set n := 1 +max {nUw,α, α}, and we obtain (w, n) ∈ U and
(w, n+ 1) ∈ U with (w,α), (w, n) and (w, n+ 1) all different. Otherwise, since w is in W0 it
has two distinct successors u, v both different from w. Since ω ≥ nUw,α, we have (u, ω) ∈ U
(whether uRw or not) and likewise (v, ω) ∈ U . Since (w,ω), (u, ω) and (v, ω) are all different,
we are done.

Therefore XF � wK4.2. Since π is a d-morphism from XF to F and φ is satisfiable in F, we obtain
from proposition 2.31 that φ is satisfiable in XF, and this concludes the proof.
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4.2 The axiom aT and accumulative spaces

If we substitute p for q in the axiom .3, we obtain aT := �(p → ♦p), whose name stands for
“almost T” (recall that T = p→ ♦p). Whereas this formula is a mere tautology in the c-semantics,
it contains a surprising amount of information in the d-semantics, in fact enough to justify taking
a detour via this section to focus solely on it. At the level of Kripke frames, its semantics is quite
simple:

Definition 4.18. A Kripke frame (W,R) is called almost reflexive if for all w, u ∈W , wRu implies
uRu.

Proposition 4.19. The logic wK4 + aT defines the class of transitive and almost reflexive Kripke
frames. It also has the finite model property.

Proof. If F is transitive and almost reflexive then it is clear that F � wK4+aT. Conversely, suppose
F � wK4 + aT. If wRu, we define a valuation ν by ν(p) := {u}; then from F, ν, w � �(p → ♦p)
it follows that F, ν, u � p → ♦p and thus uRu. Since F � wK4 we also know that it is weakly
transitive, and we show that it is in fact transitive. Indeed, suppose wRuRv. If w 6= v we obtain
wRv and we are done. If w = v, then since uRv we know that vRv, and it follows that wRv too.

Finally, any cofinal subframe of a transitive and almost reflexive frame is also transitive and
almost reflexive, so wK4+T is a cofinal subframe logic. By theorem 3.17, this yields the FMP.

Not that since wK4 + aT defines a class of transitive frames, it is, by completeness, equivalent
to K4 + aT. Just as K4 + T is called S4, we then choose to define aS4 := K4 + aT. On the
topological side, it is connected to a class of spaces that we call accumulative:

Definition 4.20. A space X is said to be accumulative if for all A ⊆ X such that d(A) 6= ∅, there
exists an open set U with ∅ 6= A ∩ U ⊆ d(A).

As the concept of accumulative spaces might look somewhat unintuitive, we immediately provide
an example:

Example 4.21. We call A ⊆ N cofinite if N \ A is finite. We then endow the space N with the
topology τ := {A | A is cofinite} ∪ {∅}. It is easy to see that for any A ⊆ N, we have d(A) 6= ∅ iff
d(A) = N iff d(A) is unbounded. Thus d(A) 6= ∅ implies d(A) ⊆ N, and it follows that (N, τ) is
accumulative.

This example is not fully satisfying though: the property that d(A) 6= ∅ implies d(A) = N is
absurdly strong and not representative of what accumulative spaces look like in general. A more
refined range of examples would be welcome, and this can be obtained by generalizing example 4.21
to any pre-order:

Definition 4.22. Let (X,�) be a pre-order. If x ∈ X we define ↑x := {y ∈ X | x � y}. The
cofinite topology on X is the topology generated by the base

{↑x \A | x ∈ X and A finite}

That the aforementioned sets form a base is quite straightforward to prove: for any x ∈ X we
have x ∈ ↑x so they cover all of X, and for any x, y ∈ X, A and B finite and z ∈ (↑x \A)∩ (↑y \B)
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we have z ∈ ↑z \ (A ∪B) ⊆ (↑x \A) ∩ (↑y \B). The name “cofinite topology” is motivated by the
fact that when A is finite, the set ↑x \ A can be seen as “cofinite in ↑x”. We are then going to
prove that X is accumulative whenever X has “almost finite depth” and “almost finite width” in
a sense that we define below:

Definition 4.23. Let (X,�) be a pre-order.

– Given x, y ∈ X, we call x and y incomparable if x 6� y and y 6� x, in which case we write
x⊥y. A set A ⊆ X is called an antichain if for all x, y ∈ A such that x 6= y we have x⊥y.
We say that (X,�) has locally finite width if for all x ∈ X and all antichain A ⊆ X, the set
↑x ∩A is finite. We say that (X,�) is total if is contains no antichain of size 2.

– Given an ordinal α, a descending α-sequence is a sequence (xξ)ξ<α ∈ Xα such that whenever
ξ < η < α we have xη � xξ and xξ 6� xη. We call (X,�) almost well-founded if it contains
no descending ω + 1-sequence.

– If A ⊆ X we call A infinitely ascending if for all x ∈ A, the set ↑x ∩ A is infinite. The set A
is called almost infinitely ascending if there exists B ⊆ A finite such that A \ B is infinitely
ascending.

The definition of locally finite width is related to the property of finite width which says that
(X,�) has no infinite antichain; what it states instead is that (X,�) has no infinite antichain above
a point. Likewise, almost well-founded pre-orders are reminiscent of well-founded orders, i.e., those
that contain no descending ω-sequence. We prove that the conjunction of these two conditions is a
necessary and sufficient conditions for X to be accumulative. First, the following result states that
under these two assumptions, any set is “big enough above a point”:

Lemma 4.24. Suppose that (X,�) is almost well-founded and has locally finite width, and let
x ∈ X. Then any subset of ↑x is almost infinitely ascending.

Proof. Suppose that there exists and A ⊆ ↑x not almost infinitely ascending. We construct by
recursion a sequence (xn)n<ω ∈ Aω such that for all n < ω, the set ↑xn ∩A is finite. First we select
some x0 ∈ A such that ↑x0∩A is finite. If xn is defined, we know that for all k ≤ n, the set ↑xk ∩A
is finite, and thus so is

B := A ∩
n⋃
k=0

↑xk

It follows that A\B is not infinitely ascending, so there exists xn+1 ∈ A\B such that ↑xn+1∩A\B
is finite, and then ↑xn+1 ∩A is finite too.

Now suppose toward a contradiction that there exists n < ω such that xn⊥xm for all m > n.
Then A0 := {xm | m ≥ n} is an antichain and A0 ∩ ↑x = A0 is infinite, and this contradicts the
fact that (X,�) has locally finite width. Thus we can construct an increasing sequence of integers
(nk)k<ω as follows: we set n0 := 0 and for all k < ω, we select some nk+1 > nk such that xnk and
xnk+1

are comparable. By construction we also have xnk 6� xnk+1
so we are left with xnk+1

� xnk .
Further we have ∀n < ω, x � xn. Thus if xnk � x for some k < ω, it follows that xnk � xnk+1, a
contradiction. Therefore, if we define yk := xnk for all k < ω and yω := x we obtain that (yk)k≤ω
is a descending ω + 1-sequence. This contradicts the fact that (X,�) is almost well-founded, and
concludes the proof.
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We can then prove the announced equivalence:

Theorem 4.25. Let (X,�) be a pre-order. Then X (with the cofinite topology) is accumulative if
and only if (X,�) is almost well-founded and has locally finite width.

Proof. Suppose that (X,�) is almost well-founded and has locally finite width. Let A ⊆ X and
suppose that x ∈ d(A). By lemma 4.24, there exists B ⊆ A finite such that (↑x∩A)\B is infinitely
ascending. We introduce U := ↑x \ (B \ {x}) which is an open neighbourhood of x. Then we have
U ∩ A 6= ∅ and we also prove that U ∩ A ⊆ d(A). For consider y ∈ U ∩ A. If y = x then y ∈ d(A)
immediately, otherwise we have y ∈ (↑x∩A) \B. Now consider an open neighbourhood of y of the
form ↑z \C with C finite. We know that ↑y ∩ (↑x ∩A) \B is infinite and that C ∪ {y} is finite, so
there exists t belonging to the former but not the latter, and it follows that t ∈ (↑z \C) ∩A \ {y}.
Therefore y ∈ d(A) and this concludes the proof.

Conversely, suppose that X is accumulative.

– To prove that (X,�) is almost well-founded, suppose toward a contradiction that there exists
a descending ω+1-sequence (xn)n≤ω. We define A := {xn | n < ω} and claim that xω ∈ d(A).
Indeed, suppose xω ∈ ↑x \ B with B finite. Since A is infinite there exists n < ω such that
xn /∈ B ∪ {xω}, and from x � xω � xn it follows that xn ∈ A ∩ (↑x \ B) \ {xω}. Therefore
d(A) 6= ∅, so by assumption there exists an open set U such that ∅ 6= A ∩ U ⊆ d(A). Thus
there exists xn ∈ A ∩ U . Then V := ↑xn \ {xk | k < n} is an open neighbourhood of xn, but
we have V ∩A = {xn}, and this contradicts xn ∈ d(A).

– To prove that (X,�) has locally finite width, suppose toward a contradiction that there exists
x ∈ X and an antichain A such that ↑x∩A is infinite. Then if x ∈ ↑y \B with B finite, there
exists a ∈ (↑x∩A)\(B∪{x}), and it follows that a ∈ A∩(↑y\B)\{x}. This proves x ∈ d(A),
and by assumption we obtain the existence of an open set U such that ∅ 6= U ∩ A ⊆ d(A).
Then there exists a ∈ U ∩A, but since A is an antichain we have ↑a∩A = {a}, contradicting
a ∈ d(A).

We also prove two simple properties of accumulative spaces. Proposition 4.26 states that this
condition is hereditary, i.e., preserved by taking subspaces, and proposition 4.27 states that all
accumulative spaces satisfy the separation axiom T1.

Proposition 4.26. If X is accumulative then so is any subspace of X.

Proof. Suppose that X is accumulative and let Y ⊆ X. Let A ⊆ Y and assume dY (A) 6= ∅,
i.e., d(A) ∩ Y 6= ∅. Then d(A) 6= ∅, so by assumption there exists an open set U such that
∅ 6= U ∩ A ⊆ d(A), and since A ⊆ Y we have (U ∩ Y ) ∩ A = U ∩ A 6= ∅. In addition, if
x ∈ (U ∩ Y ) ∩A we obtain x ∈ Y ∩ d(A) = dY (A). This proves the claim.

Proposition 4.27. Any accumulative space is also T1.

Proof. Let X be accumulative. Suppose that X is not T1, i.e., there exists x ∈ X such that
d({x}) 6= ∅. By assumption we obtain the existence of an open set U such that ∅ 6= {x}∩U ⊆ d({x}).
It follows that x ∈ d({x}), a contradiction.
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Now that we are more familiar with the landscape of accumulative spaces, we can delve into
their axiomatization and begin by proving that they are defined by the axiom aT:

Theorem 4.28. The logic aS4 defines the class of accumulative spaces.

Proof. Let X be a space and suppose X � aT. Let A ⊆ X such that d(A) 6= ∅. Then there
exists x ∈ d(A), and by assumption there is an open neighbourhood U of x such that U \ {x} ⊆
(X \A)∪ d(A). Since x ∈ d(A) we have in fact U ⊆ (X \A)∪ d(A), and this entails U ∩A ⊆ d(A).
Since x ∈ U and x ∈ d(A) we also have U ∩A 6= ∅.

Conversely, suppose that X is accumulative. Let M be a model based on X and x ∈ X, and
suppose M, x 2 aT. Then M, x � ♦(p∧�¬p), that is, d(A) 6= ∅ if we write A := [[p∧�¬p]]M. Then
by assumption there exists an open set U such that ∅ 6= A ∩ U ⊆ d(A). So there exists y ∈ U ∩A,
and we have M, y � �¬p, but from y ∈ d(A) we also get M, y � ♦p, a contradiction.

When it comes to topological completeness, we first notice that we will not be able to resort
to the technique of unfolding, because any accumulative space must be T1 and the spaces obtained
by unfolding critically fail to satisfy this requirement. Indeed, if F = (W,R) is a Kripke frame and
(w,α), (u, β) ∈ XF are such that wRu and not uRw, then it is clear that any open neighbourhood
of (w,α) is also a neighbourhood of (u, β). In words, the topology of XF is too coarse to guarantee
enough separation, but this can be fixed by adding more open sets. We first observe that we can
endow XF with the pre-order � defined by

(w,α) � (u, β) ⇐⇒ wR+u

and that the topology of XF is generated by

{↑(w,α) \A | (w,α) ∈ XF and A finite and for all (u, β) ∈ A, not uRw}

Then if we drop the condition “for all (u, β) ∈ A, not uRw”, we obtain a finer topology which
appears to coincide with the cofinite topology generated by (X,�); the resulting space is called
the refined unfolding of F and denoted by X∗F. We can already see that this defines a T1 space,
since whenever (w,α) 6= (u, β), the open set ↑(w,α) \ {(u, β)} separates (u, β) from (w,α). On
top of that, we will be able to reuse our results regarding the cofinite topology, and thus easily
carry out the proof of completeness. The downside, however, is that the projection π is no longer
a d-morphism in most cases. Though the proof still goes through for aS4 and its extensions, this
drastically limits the applicability of the method in general.

Proposition 4.29. The map π : X∗F →W defined by π(w,α) := w is a d-morphism if and only if
F is almost reflexive.

Proof. Suppose that π is a d-morphism, and let w, u ∈ W be such that wRu. Suppose toward a
contradiction that u is irreflexive. Then we introduce the open set

U :=

{
↑(w, 0) \ {(u, ω)} if w is reflexive

↑(w,ω) \ {(u, ω)} otherwise

By assumption, π is an interior map, so π[U ] is open in F. Yet w ∈ π[U ] and u /∈ π[U ], a
contradiction. This proves that F is almost reflexive.
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Conversely, suppose that F is almost reflexive. If U ⊆W is open, then

π−1[U ] =
⋃

w∈U∩W r

↑(w, 0) ∪
⋃

w∈U∩W i

↑(w,ω)

so π−1[U ] is open too. If U = ↑(w,α)\A is a base open of X, we clearly have that π[U ] ⊆ {u ∈W |
wR+u}. Also, if wRu, then u is reflexive by assumption and since A is finite there exists n < ω
such that (u, n) /∈ A, and it follows that u ∈ π[U ]. So we have either π[U ] = {u ∈ W | wRu} or
π[U ] = {u ∈ W | wR+u}, and we prove that in both cases π[U ] is open in F. This is clear in the
second case, and for the first case suppose that wRu and uRv. By weak transitivity we have either
wRv, and we are done, or w = v; then we have uRw so w is reflexive by assumption, and it follows
that wRv as well. This proves that π is an interior map.

Now let w ∈ W . If w is irreflexive then π−1(w) = {(w,ω)} is discrete. If w is reflexive then
π−1(w) = {w} × ω. If (w, n) ∈ {w} × ω we prove that (w, n) ∈ d({w} × ω). For suppose that
(w, n) ∈ ↑(u, α)\A with A finite. Then uR+w, and we select some m < ω such that m 6= n, m 6= α
and (w,m) /∈ A. It follows that (w,m) ∈ (↑(u, α) \A) ∩ ({w} × ω) \ {(w, n)} and we are done. We
conclude that π is a d-morphism.

Theorem 4.30. The logic aS4 is topologically complete.

Proof. Suppose that aS4 0 ¬φ. Then by proposition 4.19 there exists a finite transitive and almost
reflexive Kripke frame F = (W,R) wherein φ is satisfiable. That F is finite immediately implies
that (X∗F,�) has locally finite width and is almost well-founded, and from theorem 4.25 it follows
that X∗F is accumulative. Since F is almost reflexive, we also know from proposition 4.29 that π is
a d-morphism from X∗F to F. Thus, since φ is satisfiable in F, it is also satisfiable in X∗F and we are
done.

4.3 The logic wK4.3

We now move to the axiom .3, which in the c-semantics is the hereditary version of .2:

Theorem 4.31. [BBLBvM15] In the c-semantics, S4.3 defines the class of HED spaces, and is
topologically complete.

We then find ourselves in a situation similar to that of the beginning of section 4.1. Indeed,
in [CZ97, sec. 3.8] we find the definition S4.3 := S4 + scon with

scon := �(�p→ q) ∨�(�q → p)

but it is also noticed that this system is equivalent to S4 + con with

con := �(�+p→ q) ∨�(�+q → p)

Though scon and con coincide under S4, this is not the case in general, so it is worth investigating
the semantics of both wK4+ scon and wK4+con. In fact we will favour working with the variants
�(p → ♦q) ∨ �(q → ♦p) and �(p → ♦+q) ∨ �(q → ♦+p) obtained by contraposition. The axiom
con, however, turns out to coincide with scon+:

Proposition 4.32. We have wK4 + con = wK4 + scon+. In addition:
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– the logic wK4 + con defines the class of weakly transitive frames F such that F+ is strongly
connected;

– the logic wK4 + con is Kripke complete;

– in the d-semantics, the logic wK4 + con defines the class of HED spaces.

Proof. First, it is clear that wK4 + scon+ ` con. In addition, given a Kripke frame F, we know
that F � scon iff F is strongly connected [CZ97, sec. 3.5], so by proposition 2.28 it follows that
F � scon+ iff F+ is strongly connected.

We note that con is a Sahlqvist formula and therefore that wK4 + con is Kripke complete.
Thus, to prove wK4 + con ` scon+, it suffices to show that for any Kripke frame F = (W,R), if
F � con then F+ is strongly connected. According to [CZ97, sec. 3.5], we have F � con iff F is
connected, i.e., for all w, u, v ∈W , if wRu, wRv and u 6= v then uRv or vRu. It is then easy to see
that this condition entails strong connectedness of F+, and we are done.

Finally, if X is a topological space, we know from proposition 2.28 that X �d scon+ iff X �c scon,
and from theorem 4.31 it follows that X �d scon+ iff X is HED.

This leads us to introduce the following names:

wK4.3 := wK4 + scon

wK4.3+ := wK4 + scon+

When it comes to wK4.3, we have mentioned earlier that it yields aT. Thus wK4.3 contains aS4
and in particular K4, so it is equivalent to K4 + scon. The following result provides its semantics:

Theorem 4.33. The logic wK4.3 defines the class of HED accumulative spaces.

Proof. Suppose that X � scon. Then we obviously have X � con as well, and thus X is HED
by proposition 4.32. As mentioned earlier we also have X � aT, and thus X is accumulative by
theorem 4.28.

Conversely, suppose that X is HED and accumulative. Let M be a model based on X and
x ∈ X; we prove that M, x � scon. Since X is HED we know that X � scon+, and by substituting
p ∧�¬q for p and q ∧�¬p for q we obtain

M, x � �+(p ∧�¬q → ♦+(q ∧�¬p)) ∨�+(q ∧�¬p→ ♦+(p ∧�¬q))

Then we assume M, x � �+(p∧�¬q → ♦+(q ∧�¬p)) without loss of generality. Thus there exists
an open neighbourhood U of x such that U ⊆ [[p ∧ �¬q → ♦+(q ∧ �¬p)]]M. Suppose toward a
contradiction that M, x 2 �(p→ ♦q). Then M, x � ♦(p∧�¬q). If V is an open neighbourhood of
x, so is U ∩V , and thus there exists y ∈ U ∩V \{x} such that M, y � p∧�¬q. Since y ∈ U it follows
that M, y � ♦+(q∧�¬p). We cannot have M, y � ♦(q∧�¬p) because this contradicts M, y � �¬q,
so we obtain M, y � q ∧�¬p. In particular M, y � p ∧�¬p and this proves M, x � ♦(p ∧�¬p).

Writing A := [[p ∧ �¬p]]M, this yields d(A) 6= ∅, so by assumption there exists an open set U
such that ∅ 6= A∩U ⊆ d(A). So there exists y ∈ A∩d(A), but then y ∈ A yields M, y � �¬p while
y ∈ d(A) yields M, y � ♦p, a contradiction. Therefore M, x � �(p → ♦q) and this concludes the
proof.
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In the c-semantics, S4.2 is the logic of extremally disconnected spaces, while S4.3 is the logic of
HED spaces. Thus S4.3 is “hereditary S4.2”, but we do not have this pattern in the d-semantics in
the case of wK4.2 and wK4.3. Indeed, the two-element space with the coarse topology is almost
discrete and thus .2 is valid in all of its subspaces, but it is not T1 and therefore .3 is not valid in
it. However we are going to show that the converse holds.

Lemma 4.34. If X is extremally disconnected and accumulative then X � wK4.2.

Proof. We define

Z :=
⋃
{U | U is open and atomic and |U | ≤ 2}

and Y := X \ Z. The proof that Z is open and almost discrete, and that Y is strongly dense-in-
itself, can be directly imported from the proof of theorem 4.10; however we also need to prove that
Z is closed and that Y is extremally disconnected. First, given any atomic open set U such that
|U | = 2, we write U = {zU0 , zU1 }, that is, we specify a first and a second element. We then define

Z• := {z ∈ Z | z is isolated}

Z0 := {zU0 | U is open and atomic and |U | ≤ 2}

Z1 := {zU1 | U is open and atomic and |U | ≤ 2}

and it is clear that Z = Z• ∪ Z0 ∪ Z1. Now suppose that there exists x ∈ Cl(Z) \ Z. Then
x ∈ d(Z) = d(Z•) ∪ d(Z0) ∪ d(Z1), so there exists Z ′ ∈ {Z•, Z0, Z1} such that x ∈ d(Z ′). By
assumption we then obtain the existence of an open set V such that ∅ 6= Z ′ ∩ V ⊆ d(Z ′). Then
there exists z ∈ Z ′ ∩ V and we have three cases:

– Z ′ = Z• is an immediate contradiction since z ∈ d(Z•) and z is isolated.

– If Z ′ = Z0, then z = zU0 for some atomic open set U such that |U | = 2. From zU0 ∈ U and
zU0 ∈ d(Z0) we then obtain zU1 ∈ Z0, so zU0 = zU

′
1 for some U ′. But then ∅ 6= U ∩U ′ ⊆ U , and

since U is atomic it follows that U ∩ U ′ = U . Hence U ⊆ U ′ and since U ′ is atomic we get
U = U ′. Therefore zU0 = zU1 , a contradiction.

– The case Z ′ = Z1 is symmetric.

We thus conclude that Z is closed.
Consequently, Y is open. Since X is extremally disconnected, we have X � .2+, and therefore

Y � .2+ as well. Hence Y is extremally disconnected. We can finally apply theorem 4.10 and obtain
X � wK4.2.

Proposition 4.35. If X � wK4.3 then for any subspace Y of X we have Y � wK4.2.

Proof. Suppose that X � wK4.3. By theorem 4.33 we know that X is HED and accumulative. If
Y is a subspace of X, it is then extremally disconnected and also accumulative by proposition 4.26.
By lemma 4.34 we then obtain Y � wK4.2.

We now address the topological completeness of wK4.3+. Once again the method of unfolding
will not succeed here; consider indeed the following frame:
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w

u

The subspace Y := {(w,ω), (u, 0), (u, 1)} of its unfolding XF is depicted below:

(w, ω)

(u, 0) (u, 1)

We can see that it is not HED since {(u, 0)} is open but Cl({(u, 0)}) = {(u, 0), (w,ω)} is not. The
problem here stems from the possibility to separate the elements of π−1(u) from each other with
open sets, so this time we need a coarser space. This is why we resort again to the method of
dereflexivation presented in section 3.2. For a reminder of the formal construction, we refer to
definition 3.18.

Lemma 4.36. If F+ is weakly transitive and strongly connected then F• is HED.

Proof. By a straightforward case distinction, we can see that if F+ is strongly connected then so is
F+
• . Therefore F+

• � S4.3, so F• �c S4.3, so F• is HED by theorem 4.31.

Theorem 4.37. The logic wK4.3+ is topologically complete.

Proof. Suppose that wK4.3+ 0 φ. Then by proposition 4.32, φ is satisfiable in a wK4 frame F
such that F+ is strongly connected. By lemma 4.36 we then know that F• is HED. Then since φ
is satisfiable in F and π is a d-morphism by lemma 3.19, it is also satisfiable in X∗F and we are
done.

We now address the topological completeness of wK4.3, which is essentially a continuation of
the work laid out in section 4.2; the only extra ingredient we need is a way to preserve the validity
of wK4.3 by refined unfolding. First, let us establish Kripke completeness:

Proposition 4.38. The logic wK4.3 defines the class of transitive and strongly connected Kripke
frames. It is also has the finite model property.

Proof. We know that scon defines strong connectedness [CZ97, sec 3.5] and w4 defines weak tran-
sitivity, and that weak transitivity along with almost reflexivity yields transitivity (see the proof
of proposition 4.19), so the proof is routine. Finally, any cofinal subframe of a transitive and
strongly connected frame is also transitive and strongly connected, so again we obtain the FMP
from theorem 3.17.
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Lemma 4.39. If (X,�) is a total pre-order then the space X (with the cofinite topology) is HED.

Proof. Let (X,�) be a total pre-order, Y ⊆ X and ↑x \A a base open set. We show that

U := ClY ((↑x \A) ∩ Y ) = Y ∩ Cl((↑x \A) ∩ Y )

is open. Given y ∈ U , we show that the open neighbourhood Y ∩ ↑y \ (A \ {y}) of y is included in
U . Indeed, let z ∈ Y ∩ ↑y \ (A \ {y}). If z = y it is immediate that z ∈ U so we can assume y ≺ z,
and it follows that z /∈ A. Since � is total, there are two cases:

– If x � z then we have z ∈ Y ∩ (↑x \A) and z ∈ U follows immediately.

– Otherwise x 6� z and z � x. Suppose z ∈ Y ∩ (↑t \ B) with B finite; we can assume B ⊆ ↑t.
Then suppose toward a contradiction that Y ∩ (↑x \ A) ∩ (↑t \ B) = ∅. Since t � z � x this
boils down to Y ∩ (↑x \A) \B = ∅, and thus Y ∩ (↑x \A) ⊆ B. If y /∈ B then Y ∩ (↑y \B) is
an open neighbourhood of y in Y which does not intersect ↑x\A, and this contradicts y ∈ U .
Therefore y ∈ B, and it follows that t � y. Then Y ∩↑t \ (B \ {y}) is an open neighbourhood
of y in Y , so there exists

u ∈ Y ∩ (↑x \A) ∩ (↑t \ (B \ {y}))

but since Y ∩ (↑x \ A) \ B = ∅ the only possibility is u = y. In particular y ∈ ↑x, and from
y � z it follows that x � z, a contradiction.

Theorem 4.40. The logic wK4.3 is topologically complete.

Proof. Suppose that wK4.3 0 φ. Then by proposition 4.38, φ is satisfiable in a finite transitive
and strongly connected frame F = (W,R). We can also assume that F is rooted, so for all w, u ∈W
we have either wR+u or uR+w. As a result, the order � on X∗F is total, and because F is finite it
is also almost well-founded and has locally finite width. Then from theorem 4.25 and lemma 4.39
it follows that X∗F is HED and accumulative. In addition, since F � wK4.3 we also have F � aS4,
so F is almost reflexive, and from proposition 4.29 we obtain that π is a d-morphism. Then since
φ is satisfiable in F, it is also satisfiable in X∗F and we are done.

4.4 Additional axioms

In this section we consider other extensions of wK4 for which completeness results can be obtained
effortlessly. More precisely, we address the axiom bdn that we have already seen in chapter 3,
and the axiom gl. Recall that gl defines the class of converse well-founded Kripke frames, and
in the d-semantics the class of scattered spaces [vBB07]. Most of our results are obtained by
dereflexivation, so we need a handful of related invariance results. Some of them are already
known, and the remaining ones are proved in the following lemma:

Lemma 4.41. Let F = (W,R) be a wK4 frame.

1. If F is directed then F• is extremally disconnected.

2. If F � wK4.2 then F• �d wK4.2.
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Proof. 1. Clearly, if F is directed, then so is F•. Therefore F+
• � S4.2, so F• �c S4.2, so F• is

extremally disconnected by theorem 4.1.

2. Suppose that F � wK4.2. Let F0 = (W0, R0) and F1 = (W1, R1) be the generated subframes
of F obtained by proposition 4.16. Then F0 is directed, and so is F0•. Further, let (w, n) ∈
W0•. If w has two distinct successors u and v, then (u, 0) and (v, 0) are distinct successors of
(w, n). Otherwise, w has a reflexive successor u, in which case (u, 0) and (u, 1) are two distinct
successors of (w, n). Since F1 is almost discrete, the shape of F1• is completely described by
the following case distinction:

In the first three patterns, almost discreteness is preserved. In the last two, all the resulting
worlds have two distinct successors, so we can group them with the worlds of F0• to form
F′0. We then define F′1 as the complement of F′0, and we have seen that all the conditions
of proposition 4.16 are satisfied. Therefore F• � wK4.2, and since F• is irreflexive it follows
F• �d wK4.2.

We are now ready to state the completeness theorem, which covers all the mentioned combina-
tions excepted wK4.3 + bdn:

Theorem 4.42. In the d-semantics, the following logics are topologically complete:

wK4.2+ + bdn GL.2+ := wK4.2+ + gl

wK4.2 + bdn GL.2 := wK4.2 + gl

wK4.3+ + bdn GL.3+ := wK4.3+ + gl

GL.3 := wK4.3 + gl

Proof. First, it is easy to check that all of these logics are cofinal subframe logics. By theorem 3.17,
they are thus Kripke complete. For wK4.2+ + bdn, wK4.2 + bdn and wK4.3+ + bdn, the result
follows from lemma 3.20, lemma 4.36, lemma 4.41 and the usual proof scheme. For the extensions
of GL, we notice that a converse well-founded frame is necessarily irreflexive, so it suffices to apply
proposition 2.23.
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The logic wK4.3 + bdn is absent from the list above, because dereflexivation does not yield T1

spaces, so for the reasons already explained it is not adapted for wK4.3. We also notice that the
system GL.3 is so strong that it actually collapses to a trivial logic:

Lemma 4.43. We have aS4 + gl = GL.3 = K +�⊥.

Proof. Let F = (W,R) be a Kripke frame such that F � aS4 + gl. Then F is almost reflexive,
but also irreflexive since it validates gl. Therefore R = ∅, and it follows that F � �⊥. By Kripke
completeness, this proves that aS4 + gl ` �⊥. Conversely, it is clear that w4, aT, .3 and gl are
derivable in K +�⊥, and this concludes the proof.

Remark 4.44. Due to the simplicity of dereflexivation, one may wonder why it was not used to
prove completeness of wK4.2 and wK4.2+. This is because the operation of unfolding has other
good properties that we did not mention, e.g., it turns transitive frames into Td spaces [BBFD21],
so it is best if it remains the standard method whenever this is possible.

At this point we have managed to describe a large zoology of logics, and have acquired a
satisfying grasp of the techniques involved to generate spaces from Kripke frames. We now move
to the topic of fixpoint logics.
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Chapter 5
Topological mu-calculus and expressivity

The success of the µ-calculus naturally raises the question of whether other logics can compete with
its expressive power. By “expressive power” we actually mean two different notions: expressivity
with respect to formulas, and expressivity with respect to logics. The former is the strongest and
most well known, it says that a fragment L′ of Lµ is as expressive as Lµ if for any formula φ in
Lµ there exists a formula ψ ∈ L′ such that φ ≡ ψ. For instance, the tangled derivative operator
(introduced by Dawar and Otto [DO09]) is known to be as expressive as Lµ when restricted to Td
spaces [DO09], but not in general since it does not capture the tangled closure operator [BBFD21].
This raises the question of whether the tangled closure is more expressive than the tangled deriva-
tive, and if not, whether the combination of the two is enough to obtain a completely expressive
fragment. In section 5.1, we give a negative answer to both of these questions. We prove this by
introducing the hybrid modality which combine the tangled closure and the tangled derivative in a
more expressive operator.

The other notion of expressivity involves equivalence of formulas as whether they induce the
same logic, instead of usual equivalence. This is a weaker condition, since for instance the two
formulas p → ♦p and �p → p define KT even though they are not equivalent. A less trivial
example is µwK4+µp.�p = GL [vB06], which defines the class of scattered spaces in two different
ways, one involving fixpoint operators and the other using only basic modal logic. We have already
mentioned the results of [BBFD21] which establish topological completeness for many extensions
of µwK4 with basic modal axioms. This raises the question of whether any axiom of the µ-calculus
is reducible to a basic modal axiom, in which case the landscape of logics over µ-calculus would
simply collapse. We show in section 5.2 that this is true for a fragment called the ν-free fragment,
but fails in general; we also make sure to present the best counter-example we can produce, thus
obtaining several refinements of the answer.

Slightly abusing notations, we will interpret the relation of logical equivalence ≡ as equivalence
modulo wK4, that is, we write φ ≡ ψ whenever M, w � φ↔ ψ for all pointed wK4 model (M, w).
We will also use the term path with the following meaning:

Definition 5.1. Let F = (W,R) be a Kripke frame. A path in F (starting from w0) is a sequence
(wn)n<α with α ≤ ω and such that 0 < n < α implies wn−1Rwn. If α < ω this path is said to be
of length α, otherwise it is called an infinite path.
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5.1 The tangled fragments

In this section we investigate the expressive power of the tangled closure and derivative relatively
to each other and to the new hybrid modality.

Definition 5.2. Let {φ1, . . . , φn} ⊆ Lµ be a finite set of formulas. We define:

– the tangled derivative ♦∞{φ1, . . . , φn} := νp.
∧n
i=1 ♦(φi ∧ p)

– the tangled closure ♦+
∞{φ1, . . . , φn} := νp.

∧n
i=1 ♦

+(φi ∧ p)

– the hybrid tangled operator ♦•∞{φ1, . . . , φn} := νp.
∨n
j=1

(
♦+(φj ∧ p) ∧

∧
i 6=j ♦(φi ∧ p)

)
We then define:

– L♦∞ the basic modal language extended with ♦∞;

– L♦+
∞

the basic modal language extended with ♦+
∞;

– L♦∞,♦+
∞

the basic modal language extended with ♦∞ and ♦+
∞;

– L♦•∞ the basic modal language extended with ♦•∞.

The formula ♦•∞{φ1, . . . , φn} says that every time the ν operator is unfolded, the formula
♦(φi ∧ p) must be satisfied for all i ∈ [[1, n]], except for possibly one i, for which we may have φi ∧ p
instead. The hybrid tangled operator is thus a sort of a mix of the tangled closure and the tangled
derivative, hence its name. In fact, we can prove that it subsumes both of them:

Proposition 5.3. The modalities ♦+ and ♦+
∞ can be expressed in L♦•∞.

Proof. Let Γ = {φ1, . . . , φn} be a finite set of formulas. For all i ∈ [[1, n]] we introduce some φ′i
distinct from φi but equivalent to it (for instance φ′i := φi ∧>). Then each term of the disjunction
in ♦•∞{φ1, φ

′
1, . . . , φn, φ

′
n} contains at least one of ♦(φi ∧ p) or ♦(φ′i ∧ p), and it follows that

♦•∞{φ1, φ
′
1, . . . , φn, φ

′
n} ≡ ♦∞{φ1, . . . , φn}

For the tangled closure, we define

φ :=
∨

(I1,...,Im) is a partition of [[1,n]]

♦•∞

∧
i∈Ij

φi | 1 ≤ j ≤ m


and we show that φ ≡ ♦+

∞Γ. Since µwK4 is sound and complete with respect to the class of wK4
frames, and has the finite model property [BBFD21], it suffices to prove that M, w � φ ↔ ♦+

∞Γ
for any finite weakly transitive Kripke model M = (W,R, ν) and w ∈ W . That M, w � φ implies
M, w � ♦+

∞Γ is easy to check. Conversely, suppose that M, w � ♦+
∞Γ. We define

Wmax := {u ∈ [[♦+
∞Γ]]M | for all v ∈ [[♦+

∞Γ]]M, if uR+v then vR+u}

Suppose that Wmax = ∅. Then we can construct an infinite path (wk)k∈N within [[♦+
∞Γ]]M by setting

w0 := w and for all k ∈ N, taking some wk+1 ∈ [[♦+
∞Γ]]M such that wkR

+wk+1 and not wk+1R
+wk
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(which exists by assumption). If k < m, we have wk 6= wm, for otherwise we obtain wmR
+wm−1

by weak transitivity, a contradiction. We thus end up with infinitely many worlds, contradicting
the fact that M is finite. Therefore, there exists u ∈ Wmax. From M, u � ♦+

∞Γ, it follows that for
all i ∈ [[1, n]] there exists wi ∈ W such that M, wi � φi ∧ ♦+

∞Γ and uR+wi. Then by construction
of Wmax we have wiR

+u as well. By weak transitivity it follows that wiR
+wj for all i, j ∈ [[1, n]].

However the wi’s are not necessarily pairwise distinct, so we write {w1, . . . , wn} = {u1, . . . , um}
with the ui’s being pairwise distinct. This induces a partition (I1, . . . , Im) of [[1, n]], where

Ij := {i ∈ [[1, n]] | wi = uj}

for all j ∈ [[1,m]]. Then given j ∈ [[1,m]] we have M, uj �
∧
i∈Ij φi, and whenever j′ 6= j we

have ujRuj′ and thus M, uj � ♦
∧
i∈Ij′

φi. Therefore M, w � ♦•∞
{∧

i∈Ij φi | 1 ≤ j ≤ m
}

and this

concludes the proof.

In [BBFD21] it was proven that ♦+
∞ is not expressible in L♦∞ , and thus that L♦∞ is not as

expressive as Lµ. Reusing the same technique we easily obtain the symmetric result, that is, ♦∞
is not expressible in L♦+

∞
. This can also be seen as a warm-up for the next result. To achieve this,

we introduce the Kripke model M = (ω + 1, R, ν) with:

– R := {(β, α) | α < β ≤ ω} ∪ {(ω, ω)}

– ν the valuation defined by ν(p) := ω + 1 and ν(q) := ∅ for any other variable q

0

1

2

ω

p

p

p

p

Lemma 5.4. For every formula φ ∈ L♦+
∞

, there exists nφ < ω such that nφ ≤ α, β ≤ ω implies
M, α � φ ⇐⇒ M, β � φ.

Proof. By induction on φ:

– For an atomic proposition q, we simply have nq := 0.

– If this holds for φ, then it is clear that n¬φ := nφ works for ¬φ.

– If this holds for φ ∧ ψ, then it is clear that nφ∧ψ := max {nφ, nψ} works for φ ∧ ψ.

– Suppose that this holds for φ. We set n♦φ := nφ + 1. Suppose that n♦φ ≤ α, β ≤ ω and that
M, α � ♦φ. Then there exists ξ ≤ ω such that αRξ and M, ξ � φ. If ξ < β we are done,
otherwise nφ < β ≤ ξ. Then by the induction hypothesis, M, ξ � φ entails M, nφ � φ, and
therefore M, β � ♦φ.
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– Suppose that this holds for φ1, . . . , φn and let Γ := {φ1, . . . , φn}. We set n♦+
∞Γ

:= max {nγ |
γ ∈ Γ}. Suppose that n♦+

∞Γ ≤ α, β ≤ ω and that M, α � ♦+
∞Γ. We define α0 := min {ξ ≤ ω |

M, ξ � ♦+
∞Γ}.

For all i ∈ [[1, n]], there exists ξi such that α0R
+ξi and M, ξi � φi ∧ ♦+

∞Γ. Then ξi = α0 by
minimality of α0, and therefore M, α0 �

∧
Γ. If n♦+

∞Γ < α0, then by the induction hypothesis

we obtain M, n♦+
∞Γ �

∧
Γ and thus M, n♦+

∞Γ � ♦
+
∞Γ , contradicting the minimality of α0.

Therefore α0 ≤ n♦+
∞Γ ≤ β, and it follows that M, β � ♦+

∞Γ.

Proposition 5.5. No formula in L♦+
∞

is equivalent to ♦∞{p}.

Proof. Suppose that there is such a formula φ. Let nφ be the integer given by lemma 5.4. Since
M, ω � ♦∞{p} we obtain M, nφ � ♦∞{p} as well, contradicting the absence of infinite path from
nφ.

Now that we know that L♦∞ and L♦+
∞

are not as expressive as Lµ, we may be tempted to
combine the two into L♦∞,♦+

∞
with the hope of obtaining a fragment as expressive as Lµ. We are

going to prove that this conjecture fails, and more precisely that the hybrid tangled operator ♦•∞
cannot be expressed in L♦∞,♦+

∞
. To this end we introduce the Kripke model M := (ω + 3, R, ν)

with:

– R := {(β, α) | α < β < ω + 3} ∪ {(n, n) | n < ω and n ≡3 2}
∪ {(α, α+ 1) | α < ω + 3 and α ≡3 0} ∪ {(ω, ω + 2), (ω + 1, ω + 2)}

– ν the valuation defined by ν(p) := ν(q) := {α < ω + 3 | α ≡3 0 or α ≡3 2},
ν(r) := {α < ω + 3 | α ≡3 1} and ν(p′) = ∅ for any other variable p′.

with the relation ≡3 being the classical equivalence modulo 3 extended to ordinals:

Definition 5.6. If n,m, k ∈ N we write n ≡k m whenever there exists q ∈ Z such that n = m+kq.
Given α, β ∈ {0, ω} we also write α+ n ≡k β +m whenever n ≡k m.

0 1

2

3 4

5

ω
ω + 1

ω + 2

p, q

p, q

p, q

p, q

p, q

p, q

r

r

r
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Lemma 5.7. For every formula φ ∈ L♦∞,♦+
∞

, there exists nφ < ω such that nφ ≤ α, β < ω+ 3 and
α ≡3 β implies M, α � φ ⇐⇒ M, β � φ.

Proof. By induction on φ:

– For an atomic proposition p′, we simply have np′ := 0.

– If this holds for φ, then it is clear that n¬φ := nφ works for ¬φ.

– If this holds for φ ∧ ψ, then it is clear that nφ∧ψ := max {nφ, nψ} works for φ ∧ ψ.

– Suppose that this holds for φ. We set n♦φ := nφ + 3. Suppose that n♦φ ≤ α, β < ω + 3 and
that M, α � ♦φ. Then there exists ξ < ω + 3 such that αRξ and M, ξ � φ. If ξ < β we are
done, otherwise nφ ≤ β ≤ ξ. Let n be the integer in {nφ, nφ + 1, nφ + 2} satisfying n ≡3 ξ;
since nφ + 3 ≤ β, we have n < β and thus βRn. Then by the induction hypothesis, M, ξ � φ
entails M, n � φ, and therefore M, β � ♦φ.

– Suppose that this holds for φ1, . . . , φn and let Γ := {φ1, . . . , φn}. We set n♦+
∞Γ

:= max {nγ |
γ ∈ Γ} + 2. Suppose that n♦+

∞Γ ≤ α, β < ω + 3 and that M, α � ♦+
∞Γ. We define α0 :=

min {ξ < ω + 3 |M, ξ � ♦+
∞Γ}.

◦ Suppose α0 < ω. For all i ∈ [[1, n]], there exists ξi such that α0R
+ξi and M, ξi � φi∧♦+

∞Γ.
Then ξi ∈ {α0, α0 + 1} by minimality of α0.

Let k be the integer in {n♦+
∞Γ − 2, n♦+

∞Γ − 1, n♦+
∞Γ} satisfying k ≡3 α0. Suppose that

α0 > n♦+
∞Γ. Then for all i ∈ [[1, n]] we have α0, k ≥ nφi , as well as M, α0 � φi or

M, α0 + 1 � φi, so M, k � φi or M, k + 1 � φi by the induction hypothesis. We consider
three cases:

· If α0 ≡3 0, we have k ≡3 0 as well so kRk + 1, and therefore M, k � ♦+
∞Γ.

· The case α0 ≡3 1 cannot occur because then M, α0−1 � ♦+
∞Γ as well, contradicting

the minimality of α.

· If α0 ≡3 2 then ¬α0R
+α0 + 1 so ξi = α0. Therefore M, k �

∧
Γ and it follows that

M, k � ♦+
∞Γ.

Since k < α0, this contradicts the minimality of α0. Hence α0 ≤ n♦+
∞Γ ≤ β, so βR+α0

and it follows that M, β � ♦+
∞Γ.

◦ Suppose α0 ≥ ω. Then for all i ∈ [[1, n]] there exists ξi such that M, ξi � φi ∧ ♦+
∞Γ. By

minimality of α0 we have ξi ∈ {ω, ω + 1, ω + 2}, and since ω and ω + 2 are bisimilar we
can assume ξi ∈ {ω, ω + 1}. Then, if we take k < ω such that k ≥ n♦+

∞Γ and k ≡3 0,
we obtain by the induction hypothesis that either M, k � φi or M, k+ 1 � φi. Therefore
M, k � ♦+

∞Γ, contradicting the minimality of α0.

– Suppose that this holds for φ1, . . . , φn and let Γ := {φ1, . . . , φn}. We set n♦∞Γ := max {nγ |
γ ∈ Γ} + 3. Suppose that n♦∞Γ ≤ α, β < ω + 3 and that M, α � ♦∞Γ. We define α0 :=
min {ξ < ω + 3 |M, ξ � ♦∞Γ}.

◦ Suppose α0 < ω. For all i ∈ [[1, n]], there exists ξi such that α0Rξi and M, ξi � φi∧♦∞Γ.
Then ξi ∈ {α0, α0 + 1} by minimality of α0. If α0 ≡3 2 then ξi = α0. Otherwise α0 ≡3 0
and ξi = α0 + 1; we also have M, α0 + 1 � ♦∞Γ so there exists ξ′i < α0 + 1 such that
M, ξ′i � φi ∧ ♦∞Γ; again by minimality of α0 we obtain ξ′i = α0.
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Let k be the integer in {n♦∞Γ− 3, n♦∞Γ− 2, n♦∞Γ− 1} satisfying k ≡3 α0. Suppose that
α0 ≥ n♦∞Γ.

· If α0 ≡3 0 then for all i ∈ [[1, n]] we have α0, k ≥ nφi , as well as M, α0 � φi and
M, α0 + 1 � φi, so M, k � φi and M, k + 1 � φi by the induction hypothesis.

· If α0 ≡3 2 then for all i ∈ [[1, n]] we have α0, k ≥ nφi , as well as M, α0 � φi, so
M, k � φi by the induction hypothesis.

In both cases we obtain M, k � ♦∞Γ, and since k < α0 this contradicts the minimality
of α0. Hence α0 < n♦∞Γ ≤ β, so βRα0 and it follows that M, β � ♦∞Γ.

◦ Suppose α0 ≥ ω. Then in particular M, ω + 1 � ♦∞Γ, so for all i ∈ [[1, n]] there exists ξi
such that ω+1Rξi and M, ξi � φi∧♦∞Γ. By minimality of α we must have ξi ∈ {ω, ω+2},
and since ω and ω + 2 are bisimilar we can assume ξi = ω + 2. Then, if we take k < ω
such that k ≥ n♦∞Γ and k ≡3 2, we obtain by the induction hypothesis that M, k � φi.
Therefore M, k � ♦∞Γ, contradicting the minimality of α0.

Proposition 5.8. No formula in L♦∞,♦+
∞

is equivalent to ♦•∞{p, q, r}.

Proof. Suppose that there is such a formula φ. Let nφ be the integer given by lemma 5.7, and
consider some k < ω such that k ≥ nφ and k ≡3 0. Since M, ω � ♦•∞{p, q, r} we obtain M, k �
♦•∞{p, q, r} as well, a contradiction.

These results are summarized in figure 5.1, where a language L1 is placed above a language L2

whenever L1 is more expressive than L2. The question that naturally arises now is whether L♦•∞
is as expressive as the µ-calculus, but we leave this problem to future work.

L

L♦∞ L♦+
∞

L♦∞,♦+
∞

L♦•∞

Lµ

(a) from [BBFD21]
(b) from propositions 5.3 and 5.5
(c) from proposition 5.8

(a) (b)

(c)

?

Figure 5.1: Relative expressivity of the tangled fragments
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5.2 Logic-wise expressivity

As mentioned at the beginning of the chapter, the question under discussion is whether for all
φ ∈ Lµ there exists ψ ∈ L such that µwK4 + φ = µwK4 + ψ, that is, whether every axiom of the
µ-calculus can be rid of its fixpoint operators and reduced to a plain modal axiom. We will favour,
however, a more semantic conception.

Proposition 5.9. Let φ, ψ ∈ Lµ.

– If µwK4 + φ = µwK4 + ψ then {F | F � µwK4 + φ} = {F | F � µwK4 + ψ}.

– If µwK4 + φ and µwK4 + ψ are Kripke complete, then
{F | F � µwK4 + φ} = {F | F � µwK4 + ψ} implies µwK4 + φ = µwK4 + ψ.

– If µwK4 + φ = µwK4 + ψ then {X | X � µwK4 + φ} = {X | X � µwK4 + ψ}.

– If µwK4 + φ and µwK4 + ψ are topologically complete, then
{X | X � µwK4 + φ} = {X | X � µwK4 + ψ} implies µwK4 + φ = µwK4 + ψ.

Proof. Straightforward.

This proposition shows that in general, the equality of two logics is a stronger condition than
the equality of their classes of frames or spaces. This motivates the following definition:

Definition 5.10. A class of spaces (resp. Kripke frames) C is modally definable if there exists a
modal formula φ such that for all space X (resp. for all frame F) we have

X ∈ C ⇐⇒ X � φ

(resp. F ∈ C ⇐⇒ F � φ).

Let φ be a formula of the µ-calculus. In general, rather than “Is the axiom φ reducible to a
basic modal axiom?”, the question we are going to address is “Is the class of spaces/frames defined
by φ, modally definable too?”. There are two reasons for this choice: first, a negative answer to the
latter will bring by contraposition a negative answer to the former, and since most of our results
will be negative this is essentially the strongest choice; second, this approach lends itself to many
refinements since we can add any restriction we want to the kind of spaces we consider (for example
we can quantify over finite spaces only), and thus derive interesting auxiliary results.

5.2.1 The ν-free µ-calculus

We first consider the fragment of the µ-calculus wherein the ν operator does not occur, and prove
that it does not define more classes of spaces than basic modal logic. This result is not only
interesting in itself, it also guides us in the process of finding an axiom of the µ-calculus which is
not reducible to an axiom of basic modal logic, by telling what kind of formula can not be such a
counter-example.

Definition 5.11. The language L0
µ of the ν-free µ-calculus is defined by the following grammar:

φ ::= p | ¬p | φ ∧ ψ | φ ∨ ψ | �φ | ♦φ | µp.φ

where ¬p does not occur in formulas of the form µp.φ.
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We recall that the extension of a formula of the form µp.φ in a topological model (X, ν) is
defined as

[[µp.φ]]X,ν :=
⋂
{A ⊆ X | [[φ]]X,ν[p:=A] ⊆ A}

Therefore, if x ∈ X we have

X, ν, x � µp.φ iff ∀A ⊆ X, ([[φ]]X,ν[p:=A] ⊆ A) =⇒ x ∈ A

We can then observe that the universal quantification over the subsets of X is, implicitly, nothing
more than a quantification over the possible valuations of p. This is precisely the kind of quantifi-
cation that validity of formulas allows to capture, and this leads to the following translation:

Definition 5.12. We define the function trµ : L0
µ → L by induction as follows:

– trµ(p) := p

– trµ(¬p) := ¬p

– trµ(φ ∧ ψ) := trµ(φ) ∧ trµ(ψ)

– trµ(φ ∨ ψ) := trµ(φ) ∨ trµ(ψ)

– trµ(�φ) := �trµ(φ)

– trµ(♦φ) := ♦trµ(φ)

– trµ(µp.φ) := �+(trµ(φ)→ p)→ p

Recall that formulas of the µ-calculus are assumed to be clean, so each formula of the form µp.φ
comes with its own variable p. Our goal is then to prove that φ and trµ(φ) define the same class of
spaces. One direction is obtained by a stronger claim:

Lemma 5.13. For all φ ∈ L0
µ we have � φ→ trµ(φ).

Proof. By induction on φ. This is straightforward for Boolean and modal formulas, so we only
treat the fixpoint operator.

Let M = (X, ν) be a pointed topological model, x ∈ X and assume M, x � µp.φ and M, x �
�+(trµ(φ)→ p). By the induction hypothesis we have [[φ]]M ⊆ [[trµ(φ)]]M, and thus M, x � �+(φ→
p). Then there exists a neighbourhood U of x such that U ⊆ [[φ→ p]]M and we set A := (X \U)∪
[[p]]M.

Let y ∈ [[φ]]X,ν[p:=A]. If y ∈ X \ U , then y ∈ A immediately. Otherwise y ∈ U , and it is easy
to prove by induction on φ that U ∩ [[φ]]X,ν[p:=A] = U ∩ [[φ]]M. Since y ∈ U ∩ [[φ]]X,ν[p:=A], and
U ⊆ [[φ → p]]M, we obtain y ∈ [[p]]M ⊆ A. This proves [[φ]]X,ν[p:=A] ⊆ A, so x ∈ A by assumption.
Since x ∈ U it follows that x ∈ [[p]]M and this concludes the proof.

For the other direction, we will need to transform a model of trµ(φ) into a model of φ. This is
obtained by tweaking a valuation in a way that makes any formula of the form µp.ψ coextensive
with p:

Definition 5.14. Let (X, ν) be a topological model and φ ∈ L0
µ. We define a valuation [ν]φ as

follows: for all subformula of φ of the form µp.ψ, we set [ν]φ(p) := [[µp.ψ]]X,ν , and for any other
q ∈ Prop we set [ν]φ(q) := ν(q).
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Lemma 5.15. Let (X, ν) be a pointed topological model and φ ∈ L0
µ. If X, [ν]φ, x � trµ(φ) then

X, ν, x � φ.

Proof. By induction on φ. Again, this is straightforward for Boolean and modal formulas.
Suppose that X, [ν]µp.φ, x � �+(trµ(φ) → p) → p. We write A := [[µp.φ]]X,ν and then the fix-

point equation givesA = [[φ]]X,ν[p:=A]. By the induction hypothesis we then have [[trµ(φ)]]X,[ν[p:=A]]φ ⊆
A, and [ν[p := A]]φ = [ν]µp.φ by construction, so [[trµ(φ)]]X,[ν]µp.φ ⊆ A. Hence X, [ν]µp.φ, x �
�+(trµ(φ)→ p), and by assumption it follows that X, [ν]µp.φ, x � p. Therefore X, ν, x � µp.φ.

We can now conclude with the desired result:

Theorem 5.16. For any formula φ ∈ L0
µ, the class {X | X � µwK4 + φ} is modally definable.

Proof. Given φ ∈ L0
µ, we prove that φ and trµ(φ) define the same class of spaces. Indeed, if X � φ

then X � trµ(φ) follows immediately from lemma 5.13. Conversely, suppose X � trµ(φ). Then
for any valuation ν we have X, [ν]φ � trµ(φ), and by lemma 5.15 we obtain X, ν � φ. Therefore
X � φ.

5.2.2 The case of full µ-calculus

The goal of this section is to show that in the general case, the µ-calculus is more expressive than
basic modal logic. Thanks to the previous section, we know that the counter-example we are
looking for should contain the operator ν. It turns out that a whole family of formulas of the form
φ ∨ νp.♦p will yield the desired result. It is easy to see that given a pointed Kripke model (M, x),
we have M, x � νp.♦p if and only if there exists a infinite path starting from x.

Our final result will be the following:

Theorem 5.17. Let φ ∈ L and suppose that for all n ∈ N there exists a wK4 frame Fn = (Wn, Rn)
and rn ∈Wn such that:

– Fn is rooted in rn and Fn, rn 2 φ ∨ νp.♦p;

– Fn contains a path of length n.

Then there is no formula ψ ∈ L such that µwK4 + φ ∨ νp.♦p = µwK4 + ψ.
Further, suppose that for all w ∈Wn\{rn} we have Fn, w � φ. Then {F | F � µwK4+φ∨νp.♦p}

and {F | F is transitive and F � µwK4 + φ ∨ νp.♦p} are not modally definable. In addition:

– If every Fn is finite, then {F | F is finite and F � µwK4+φ∨νp.♦p} is not modally definable.

– If every Fn is irreflexive then

{F | F is irreflexive and F � µwK4 + φ ∨ νp.♦p}

{F | F is irreflexive and transitive and F � µwK4 + φ ∨ νp.♦p}

{X | X � µwK4 + φ ∨ νp.♦p}

{X | X is Td and X � µwK4 + φ ∨ νp.♦p}

are not modally definable.
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– If every Fn is irreflexive and finite then

{F | F is irreflexive and finite and F � µwK4 + φ ∨ νp.♦p}

{X | X is finite and X � µwK4 + φ ∨ νp.♦p}
are not modally definable.

From now on, we fix a formula φ and a family of frames (Fn)n∈N satisfying the assumptions of
theorem 5.17. For all n ∈ N, we assume that Wn∩ω = ∅. We start with an elementary observation:

Claim 5.18. For all n ∈ N, Fn is transitive.

Proof. For suppose not. Then there exist n ∈ N and w, u ∈ Wn such that wRnu, uRnw and
not wRnw. This entails Fn, w � νp.♦p and then Fn, rn � νp.♦p since rn is a root. Therefore
Fn, rn � φ ∨ νp.♦p, a contradiction.

Given a subframe F = (W,R) of Fn, we define the wK4 frames AF
n = (WA, RA) and BF

n =
(WB, RB) by:

– WA := Wn ∪ ω

– RA := Rn ∪ {(rn, k) | k ∈ ω} ∪ {(m, k) | 0 ≤ m < k < ω} ∪ {(k,w) | k ∈ ω and w ∈W}

– WB := Wn ∪ {0, 1}

– RB := Rn ∪ {(rn, 0), (rn, 1), (0, 1), (1, 0)} ∪ {(k,w) | k ∈ {0, 1} and w ∈W}

In words, AF
n is the frame Fn endowed with an infinite branch starting from the root, and whose

every element sees all the worlds of F. The frame BF
n is constructed similarly, but with a two-element

loop instead of a branch. The two frames are depicted in figure 5.2.
If µwK4 + φ ∨ νp.♦p = µwK4 + ψ for some modal formula ψ, then by construction ψ should

be refuted at Fn, rn for any n, but not at AF
n, rn or BF

n, rn since in both of them there is an infinite
path starting from the root. Yet we will prove that if n is big enough and ¬ψ is satisfiable at
Fn, rn then it is also satisfiable at BF

n, rn for some F, leading to a contradiction1. The proof is very
technical, but we can sketch the main lines of our strategy. First, it is clear that transferring the
satisfiability of a diamond formula (i.e., of the form ♦θ) or a Boolean formula from Fn, rn to BF

n, rn
is immediate, so the challenge really comes from box formulas (of the form �θ). The difficulty here
is that a box formula may contain other box subformulas, which themselves contains their own box
subformulas, and so on. However, since n may be arbitrarily large, we can always consider a frame
with an arbitrarily long path. By means of a tricky pigeonhole argument, we will then be able to
show that somewhere on this path, if �θ is satisfied, then so is θ (when �θ is any subformula of ¬ψ).
Then, transferring the truth of �θ to the two elements of the loop in BF

n will be straightforward.
First, we recall that the negative normal form (or NNF for short) for modal logic is the syntax

generated by the following grammar:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | �φ | ♦φ

It is well known that for any modal formula, there exists an equivalent formula in NNF. We also
introduce the notion of type of a possible world, but restricted to the box subformulas of a given
formula:

1The same result with AF
n, rn will follow for free. We have introduced both of AF

n and BF
n because each of them

has its own particularities that will be useful when proving the various results asserted in theorem 5.17
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Figure 5.2: The frames AF
n and BF

n

Definition 5.19. Let φ be a modal formula. We write ψ E φ whenever ψ is a subformula of φ.
We also call the box size |φ|� of φ the number of subformulas of φ of the form �ψ. If M is a Kripke
model and w a world in M, we define the box type of w relative to φ as the set

tφM(w) := {�ψ | �ψ E φ and M, w � �ψ}

As explained above, the following result allows to transfer the satisfiability of box formulas as
soon as the parameter n is large enough:

Claim 5.20. Let φ be a modal formula in NNF and n ≥ 2|φ|� + 1. Suppose that there exists a
valuation ν over Fn such that Fn, ν, rn � �φ. Then there exists a generated subframe F of Fn and
a valuation ν ′ over BF

n such that BF
n, ν
′, rn � �φ, and ν and ν ′ coincide over Fn.

Proof. First, we know that Fn contains a path (wi)i∈[[0,n−1]] of length n. By construction there are

2|φ|� different box types relative to φ. Thus, by the pigeonhole principle, there exists i, j ∈ N such
that 0 ≤ i < j ≤ n− 1 and tφM(wi) = tφM(wj). We then denote by F the subframe of Fn generated
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by wj and define a valuation ν ′ over BF
n by setting, for all p ∈ Prop:

ν ′(p) :=

{
ν(p) ∪ {0, 1} if wj ∈ ν(p)

ν(p) otherwise

So ν and ν ′ coincide over Fn, and ν ′ is defined over 0 and 1 so that those points satisfy the same
atomic propositions as wj . We then prove by induction on ψ E φ that Fn, ν, wj � ψ implies
BF
n, ν
′, 0 � ψ and BF

n, ν
′, 1 � ψ:

– If ψ is of the form ψ = p or ψ = ¬p with p ∈ Prop this is just true by construction.

– If ψ is of the form ψ = ψ1∧ψ2, then Fn, ν, wj � ψ1∧ψ2 implies Fn, ν, wj � ψ1 and Fn, ν, wj � ψ2

and it suffices to apply the induction hypothesis. If ψ is of the form ψ = ψ1 ∨ ψ2, then
Fn, ν, wj � ψ1 ∨ ψ2 implies Fn, ν, wj � ψ1 or Fn, ν, wj � ψ2 and the result follows in the same
way.

– Suppose that ψ is of the form ψ = ♦ψ0 and Fn, ν, wj � ψ. Then since ν and ν ′ coincide over
Fn, we have BF

n, ν
′, wj � ψ as well. By transitivity it follows BF

n, ν
′, 0 � ψ and BF

n, ν
′, 1 � ψ.

– Suppose that ψ is of the form ψ = �ψ0 and that Fn, ν, wj � ψ. Then since tφM(wi) = tφM(wj),
we have Fn, ν, wi � ψ as well. Since wiRnwj it follows Fn, ν, wj � ψ0, and then BF

n, ν
′, 0 � ψ0

and BF
n, ν
′, 1 � ψ0 by the induction hypothesis. Since ν and ν ′ coincide over Fn we also have

BF
n, ν
′, wj � �+ψ0. All in all we obtain BF

n, ν
′, 0 � �ψ0 and BF

n, ν
′, 1 � �ψ0 as desired.

Now observe that since wiRnwj we must have wj 6= rn, otherwise we would obtain rnRnrn by
transitivity. Thus rnRnwj and from Fn, ν, rn � �φ we obtain Fn, ν, wj � φ, and then BF

n, ν
′, 0 � φ

and BF
n, ν
′, 1 � φ. Since ν and ν ′ coincide over Fn, we conclude that BF

n, ν
′, rn � �φ.

We can then extend the result to any modal formula:

Claim 5.21. Let φ be a modal formula. There exists n ∈ N such that if φ is satisfiable at Fn, rn,
then there exists a generated subframe F of Fn such that φ is satisfiable at AF

n, rn and BF
n, rn.

Proof. Applying the theorem of disjunctive normal form for propositional logic, and using the fact
that � and ∧ commute, we can assume that φ is of the form φ =

∨m
i=1 σi with, for all i ∈ [[1,m]],

σi = �ψi ∧ ρ ∧
mi∧
j=1

♦θi,j

where ρ is a propositional formula. Note that since �> is a tautology, we can always assume the
presence of �ψi. We also suppose that ψi is presented in NNF. We then define

n := 1 + max {2|ψi|� | 1 ≤ i ≤ m}

and assume that there exists a valuation ν such that Fn, ν, rn � φ. Then there exists i ∈ [[1,m]] such
that Fn, ν, rn � σi. It follows that Fn, ν, rn � �ψi with n ≥ 2|ψi|� + 1, so by claim 5.20 there exists
a subframe F of Fn and a valuation ν ′ over BF

n such that BF
n, ν
′, rn � �ψi, and ν and ν ′ coincide

over Fn. It is then clear that BF
n, ν
′, rn � σi, and thus BF

n, ν
′, rn � φ.

This proves that φ is satisfiable at BF
n, rn. Now consider the application f which maps every

n ∈ ω to n mod 2, and every w ∈Wn to w itself. Then f clearly defines a bounded morphism from
AF
n to BF

n with f(rn) = rn, and we conclude that φ is satisfiable at AF
n, rn.
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We are now ready to prove theorem 5.17:

Proof. Suppose toward a contradiction that there is a formula θ ∈ L such that µwK4+φ∨νp.♦p =
µwK4 + θ. Let n be the integer obtained by applying claim 5.21 to ¬θ. By assumption, φ∨ νp.♦p
is not valid at Fn, rn, so ¬θ is satisfiable at Fn, rn. Then by claim 5.21 there exists a generated
subframe F of Fn such that ¬θ is satisfiable at BF

n, rn. Yet BF
n contains an infinite path starting

from rn, so BF
n, rn � φ∨νp.♦p and thus BF

n, rn � θ, a contradiction. In addition, if Fn, w � φ for all
w 6= rn, then φ∨νp.♦p is valid in all of BF

n, so we obtain the stronger result that {F | F � φ∨νp.♦p}
is not modally definable.

By the same reasoning, we can show that {F | F is transitive and F � φ∨ νp.♦p} is not modally
definable. To that end it suffices to replace BF

n by AF
n, which is transitive since Fn is transitive by

claim 5.18. Likewise, we can prove all the other variants:

– If Fn is finite, so is BF
n.

– If Fn is irreflexive, then so are BF
n and AF

n. By proposition 2.23, the Kripke semantics and the
d-semantics will then agree over BF

n and AF
n, and this yields the result for topological spaces.

Since AF
n is transitive, we have AF

n � K4 and thus AF
n is a Td space.

– If Fn is irreflexive and finite, so is BF
n.

Theorem 5.17 remains a very general result, and it is worth instantiating it with several ex-
amples. The following proposition shows the existence of infinitely many non-modally definable
classes of spaces:

Corollary 5.22. Let m ∈ N. The class of spaces X such that

X � (♦+�+q → �+♦+q) ∨�m⊥ ∨ νp.♦p

is not modally definable.

Proof. It suffices to prove that the assumptions of theorem 5.17 are satisfied for φ := (♦+�+q →
�+♦+q) ∨�m⊥. We note that given a frame F = (W,R) we have F � φ ∨ νp.♦p iff for all w ∈ W
one of the following holds:

– for all u, v ∈W such that wR+u and wR+v, there exists t ∈W such that uR+t and vR+t;

– there exists no path of length m+ 1 starting from w;

– there exists an infinite path starting from w.

We thus define, for all n ∈ N, a frame Fn := (Wn, Rn) with:

– Wn := {rn} ∪ [[0,m]]× {0} ∪ [[0, n]]× {1}

– Rn := {(rn, w) | w ∈ [[0,m]]× {0} ∪ [[0, n]]× {1}} ∪
{((k, 1), (k′, 1)) | 0 ≤ k < k′ ≤ m} ∪ {((k, 0), (k′, 0)) | 0 ≤ k < k′ ≤ n}
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rn

(0, 0)

(m, 0)

(0, 1)

(n, 1)

We can see that the Fn’s fulfil the conditions of theorem 5.17, and are irreflexive, so we are done.

In addition, we can notice that every Fn is finite, so all the sub-results of theorem 5.17 are
actually satisfied. This makes .2+ ∨ �m⊥ ∨ νp.♦p an optimal example in some sense, though we
can aim at even better. We are going to focus on the case m = 0, which reduces to .2+ ∨ νp.♦p.
We first show that it has an intuitive topological interpretation.

Proposition 5.23. Let φ be a modal formula and X a topological space. Then X � φ ∨ νp.♦p if
and only if there exist two disjoint subspaces Y and Z of X such that X = Y ∪ Z, Y � φ and Z is
dense-in-itself.

Proof. From left to right, assume that X � φ ∨ νp.♦p. We set Z := {x ∈ X | X,x � νp.♦p} and
Y := X \ Z.

– The fixpoint equation immediately gives Z = d(Z), so Z is dense-in-itself. We also note that
Cl(Z) = Z ∪ d(Z) = Z, so Z is closed and Y is open.

– Let x ∈ Y and ν be a valuation over Y . We have X, ν, x � φ ∨ νp.♦p and by construction,
X, ν, x 2 νp.♦p, so X, ν, x � φ. Since Y is open we obtain Y, ν, x � φ. Therefore Y � φ.

From right to left, suppose that such a decomposition X = Y ∪ Z exists. Let x ∈ X and ν be
a valuation over X.

– Suppose that x ∈ Z. Since Z is dense-in-itself we have Z ⊆ d(Z), so Z ⊆ [[νp.♦p]]X,ν .
Therefore X, ν, x � νp.♦p.

– Suppose that x ∈ Y . If x /∈ Int(Y ), then x ∈ Cl(Z) and since x /∈ Z it follows that x ∈ d(Z).
We have seen that X, ν, z � νp.♦p for all z ∈ Z, so X, ν, x � ♦νp.♦p, and then the fixpoint
equation gives X, ν, x � νp.♦p. Otherwise we have x ∈ Int(Y ). Since Y � φ and Int(Y ) is
open in Y , we have Int(Y ) � φ. Then Int(Y ), ν, x � φ and since Int(Y ) is open, we finally get
X, ν, x � φ.

In all cases we obtain X, ν, x � φ ∨ νp.♦p and this concludes the proof.

Remark 5.24. As made clear by the proof of the left-to-right implication, we can also assume
that Y is scattered and Z is perfect (i.e., closed and dense-in-itself).

From chapter 4, we know that .2+ defines the class of extremally disconnected spaces. We thus
obtain the following result:
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Corollary 5.25. The class of spaces that can be written as the disjoint union of an extremally
disconnected subspace and a dense-in-itself subspace is not modally definable.

We can make this example even stronger by showing that µwK4 + .2+ ∨ νp.♦p is Kripke and
topologically complete. To this end, we use the canonical model of this logic and apply the technique
of the final model introduced in [BBFD21]. In fact, we will be able to prove the result for any cofinal
subframe logic.

Definition 5.26. Let L be an extension of K. The canonical model of L is the model M = (Ω, R, ν)
with:

– Ω the set of maximal L-consistent subsets of L;

– R := {(Γ,∆) | �φ ∈ Γ =⇒ φ ∈ ∆};

– ν(p) := {Γ ∈ Ω | p ∈ Γ}.

The so-called Truth Lemma then establishes an equivalence between truth and membership at
the worlds of M, i.e., M,Γ � φ iff φ ∈ Γ. Combined with the Lindenbaum’s Lemma, this yields
completeness of L with respect to its canonical model [BRV01, sec. 4.2]. When it comes to the
µ-calculus, the canonical model is defined in the same way, but the Truth Lemma then fails to
hold. In this case the technique consists in restricting oneself to an appropriate cofinal subframe
(see definition 3.15). More precisely, given a consistent formula θ, one can construct a finite set of
formulas Σ containing θ and with some closure properties, and a so-called Σ-final cofinal submodel
of M, wherein θ is satisfiable and the Truth Lemma holds. This tool is used to prove Kripke
completeness of µwK4 and, in fact, of any logic of the form µwK4 +φ where φ ∈ L and wK4 +φ
is a cofinal subframe logic (see definition 3.16). Note that this result is limited to extensions of
µwK4 with basic modal axioms. The theorem we are going to prove is thus a novelty since it
asserts completeness of a family of axioms involving a fixpoint operator.

Theorem 5.27. Let φ be a modal formula such that wK4 + φ is cofinal subframe and canonical.
Then µwK4 + φ ∨ νp.♦p is Kripke complete and topologically complete.

Proof. We write L := µwK4 + φ ∨ νp.♦p and L0 := µwK4 + φ. Suppose that L 0 θ and let Σ be
a finite set of formulas containing φ and with the relevant closure properties. We introduce:

– M = (Ω, R, ν) the canonical model of L, and F = (Ω, R) the underlying frame;

– MΣ = (ΩΣ, RΣ, νΣ) the Σ-final submodel of M, and FΣ = (ΩΣ, RΣ) the underlying frame;

– M0 = (Ω0, R0, ν0) the canonical model of L0, and F0 = (Ω0, R0) the underlying frame.

We know that FΣ is a cofinal subframe of F. In addition we have L ⊆ L0, so for any maximal
consistent set Γ such that L0 ⊆ Γ we also have L ⊆ Γ; it is also clear that R and R0 coincide over
Ω0, so F0 is a subframe of F. We then introduce

Ω′ := {Γ ∈ ΩΣ |MΣ,Γ � ¬νp.♦p}

and Ω′ then induces a subframe F′ = (Ω′, R′) of F, and this is actually a generated subframe:
indeed, if Γ ∈ Ω′ and ΓR+

Σ∆, then since MΣ,Γ � ¬νp.♦p we have MΣ,∆ � ¬νp.♦p too and thus
∆ ∈ Ω′.
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FΣ F0

F′

Figure 5.3: The canonical frame of L and its subframes

Also, if Γ ∈ Ω′ then MΣ,Γ � ¬νp.♦p, and we obtain ¬νp.♦p ∈ Γ by the Truth Lemma. If φ′

is any formula obtained from φ by substitution, we have φ′ ∨ νp.♦p ∈ Γ and ¬νp.♦p ∈ Γ, so we
deduce φ′ ∈ Γ. Therefore L0 ⊆ Γ, and we obtain Γ ∈ Ω0. This proves that F′ is a subframe of F0.

Now, suppose Γ ∈ Ω′, ∆ ∈ Ω0 and ΓR∆. Since FΣ is cofinal in F, there exists Λ ∈ ΩΣ such
that ∆R+Λ. By weak transitivity it follows that ΓR+Λ, and since F′ is a generated subframe of
FΣ it follows that Λ ∈ Ω′. Therefore F′ is a cofinal subframe of F0. Since L0 is canonical, we have
F0 � φ, and since L0 is cofinal subframe it follows that F′ � φ as well.

Now let ν• be a valuation over ΩΣ and Γ ∈ ΩΣ.

– If Γ ∈ Ω′, let (Ω′, R′, ν ′•) be the submodel of (ΩΣ, RΣ, ν•) induced by Ω′. We know that
(Ω′, R′, ν ′•),Γ � φ, and since F′ is a generated subframe of FΣ, it follows that (ΩΣ, RΣ, ν•),Γ �
φ.

– Otherwise we have MΣ,Γ � νp.♦p, but since νp.♦p contains no free variable, its truth value
does not depend on the valuation νΣ, and thus (ΩΣ, RΣ, ν•),Γ � νp.♦p.

Therefore FΣ � φ ∨ νp.♦p. As mentioned earlier, θ is satisfiable in MΣ and this proves Kripke
completeness.

For topological completeness, we use again the technique of unfolding presented in chapter 4.
We introduce the spaces X := XFΣ

, Y := π−1[Ω′] and Z := X \ Y . We prove that Y and Z satisfy
the conditions of proposition 5.23.

– We know that F′ is a generated subframe of FΣ, so Ω′ is open, and since π is an interior map,
so is Y . As a result, it is clear that Y is homeomorphic to XF′ . In addition, since F′ � ¬νp.♦p,
the frame F′ is irreflexive, so XF′ = Ω′ × {ω} is in bijection via π to Ω′. Since π is also an
interior map, it follows that XF′ is homeomorphic to F′; we also know that the d-semantics
and the Kripke semantics coincide over F′, and therefore Y � φ.
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– Suppose toward a contradiction that there exists (Γ, α) ∈ Z isolated in Z. Then (Γ, α) ∈
d̂(X \ Z) = d̂(π−1[Ω′]), and since π is a d-morphism, it follows that (Γ, α) ∈ π−1[d̂(Ω′)] by
theorem 2.32, that is, Γ ∈ d̂(Ω′). Since (Γ, α) ∈ Z we have Γ /∈ Ω′, so MΣ,Γ � νp.♦p and thus
there exists ∆ ∈ ΩΣ such that ΓRΣ∆ and MΣ,∆ � νp.♦p. If Γ = ∆, then Γ is reflexive, and
since π is a d-morphism we obtain (Γ, α) ∈ d(π−1(Γ)) ⊆ d(Z), a contradiction. Therefore
Γ 6= ∆, but since Γ ∈ d̂(Ω′) it follows that ∆ ∈ Ω′, a contradiction. This proves that Z is
dense-in-itself.

It follows that X � φ ∨ νp.♦p. We know that θ is satisfiable in FΣ, and since π is a d-morphism it
follows that θ is satisfiable in X as well. This concludes the proof.

In particular, since wK4 + .2+ is cofinal subframe, we obtain that µwK4 + .2+ ∨ νp.♦p is
Kripke and topologically complete. We thus obtain a strong non-modal axiom in support of our
claim that the µ-calculus is really more expressive than modal logic. This closes this chapter which
overall leans heavily in favour of the strength of the µ-calculus. The only exception is the proof
that axioms expressed in the ν-free fragment are reducible to modal axioms, but this is not too
concerning since this language is not very large.
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Chapter 6
Conclusion

We presented various advances in the derivational semantics for modal logic. Our results essentially
cover the semantics of several classical logics, and limitations of the expressivity of modal logic in
comparison with the µ-calculus.

In chapter 3, we elucidated the derivational meaning of the axioms of bounded depth, and
proved a number of useful characterizations of depth that are appropriate for the d-semantics.
These results show the relevance of topological depth for the derivational framework, and will
hopefully lead to the apparition of this parameter in future classifications.

In chapter 4, we presented a handful of soundness and completeness theorems for logics based
on the axioms .2, .3 and many variants thereof. In fact, they are known to be related to the axioms
of bounded width bwn (with n ∈ N) [CZ97, sec. 3.5], so in some way they talk about the width of
spaces, and thus accompany very well our work on bounded depth. More precisely, .3 is merely
equivalent to bw1, so a natural line of research would be to generalize our results to bwn in general.
In addition, a key concept encountered in our work was the operation of unfolding a Kripke frame.
Though powerful, it is also very technical: we have seen more than one way to do it, and doing it
right requires precision. This demonstrates the richness of the method, and may thus be a source
of inspiration to future work.

Lastly, we investigated in chapter 5 the expressive power of the topological µ-calculus. Our work
finally discards the tangled closure and tangled derivative as candidates to expressive completeness,
even when they are taken in tandem. We achieved this by introducing a hybrid of the two which
turns out to subsume both of them, but this is not over, since we are now faced with the question
of whether this new modality is expressively complete. And if not, can we strengthen it again so
that to obtain an expressively complete operator? The story may go on for a long time. We also
proved that many axioms of the µ-calculus cannot be reduced to basic modal axioms, and found
in particular a simple and topologically complete example of such an axiom. We would like to
conclude by stressing that this result is not a simple curiosity: we believe that it really legitimates
the study of the topological µ-calculus and we hope that it will raise interest in the subject.
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