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Abstract

Westudy (generalized) Boolean algebras endowedwith an interior
operator, called (generalized) interior algebras. Particular attention
is paid to the structure of the free (generalized) interior algebra
on a finite numberof generators. Free objects in somevarieties of
(generalized) interior algebras are determined. Using methods of a
universal algebraic nature we investigate the lattice of varieties of
interior algebras.

Keywords:(generalized) interior algebra, Heyting algebra, free algebra,
*ra1gebra, lattice of varieties, splitting algebra.

AMSMOS70 classification: primary 02 J 05, 06 A 75

secondary 02 C 10, 08 A 15.

Dvuk:HuisdrukkerijUniversiteitvanAmsterdam T _



VARIETIES OF INTERIOR ALGEBRAS

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN

DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN

AAN DE UNIVERSITEIT VAN AMSTERDAM

OP GEZAG VAN DE RECTOR MAGNIFICUS

DR G. DEN BOEF

HOOGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN

IN HET OPENBAAR TE VERDEDIGEN

IN DE AULA DER UNIVERSITEIT

(TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 4!], HOEK SPUI)

OP WOENSDAG 3 NOVEMBER 1976 DES NAMIDDAGS TE 4 UUR

DOOR

WILLEM JOHANNES BLOK

GEBOREN TE HOORN



Promotor : Prof. Dr. Ph.Dwinger

Coreferent: Prof. Dr. A.S.Troe1stra

Druk: Huisdrukkerii Universiteit van Amsterdam T . I-‘£670/



aan mijn oude/Us

(U171 /LQVLQQ





Acknowledgements

I ammuch indebted to the late prof. J. de Groot, the contact with

whomhas meant a great deal to me.

The origin of this dissertation lies in Chicago, during mystay at

the University of Illinois at ChicagoCircle in the year '73 - '74.

I want to express myfeelings of gratitude to all persons whocontri­

buted to making this stay as pleasant and succesful as I experienced

it, in particular to prof. J. Bermanwhose seminar on "varieties of

lattices" influenced this dissertation in several respects. Prof.

Ph. Dwinger, who introduced me into the subject of closure algebras

and with whomthis research was started (witness Blok and Dwinger [75])

was far more than a supervisor; mathematically as well as personally

he was a constant source of inspiration.

I amgrateful to prof. A.S. Troelstra for his willingness to be

coreferent. The attention he paid to this work has resulted in many

improvements.

Finally I want to thank the Mathematical Institute of the University

of Amsterdamfor providing all facilities which helped realizing this

dissertation. Special thanks are due to Mrs. Y. Cahn and Mrs. L. Molenaar,

whomanaged to decipher my hand-writing in order to produce the present

typewritten paper. Most drawings are by Mrs. Cahn's hand.





CONTENTS

INTRODUCTION

1 Someremarks on the subject and its history

2 Relation to modal logic

3 The subject matter of the paper

CHAPTER 0. PRELIMINARIES

1 Universal algebra

2 Lattices

CHAPTER I.

1 Generalized interior algebras: definitions and

basic properties

(iii)
(vii)

GENERAL THEORY OF (GENERALIZED) INTERIOR ALGEBRAS 16

I6

2 Interior algebras: definition, basic properties and

relation with generalized interior algebras

3 Twoinfinite interior algegras generated by one

element

4 Principal ideals in finitely generated free

algebras in 31 and 5;

5 Subalgebras of finitely generated free algebras

in 31 and 3;

24

30

36

50



6 Functional freeness of finitely generated

algebras in gi and Q; 57

7 Someremarks on free products, injectives

and weakly projectives in fii and g; 70

CHAPTER II. ON SOME VARIETIES OF (GENERALIZED) INTERIOR 85

ALGEBRAS

1 Relations between subvarieties of gi and

III: , B. and H-, B. and BI 86-1 - -1 -1

2 The variety generated by all (generalized)

interior *-algebras 95

3 The free algebra on one generator in §;* 104

4 Injectives and projectives in fig and §;* 112

5 Varieties generated by (generalized) interior

algebras whose lattices of open elements are

chains I19

6 Finitely generated free objects in Q; and

M , n 6 N 128-n

7 Free objects in fl- and fl 145

CHAPTER III. THE LATTICE OF SUBVARIETIES OF fii I52

1 General results 153

2 Equations defining subvarieties of fii I57

3 Varieties associated with finite subdirectly

irreducibles 167



A Locally finite and finite varieties 178

5 The lattice of subvarieties of M 189

6 The lattice of subvarieties of (fii: K3) 200
7 The relation between the lattices of

subvarieties of fii and E 209

8 On the cardinality of some sublattices of 52 219

9 Subvarieties of Qi not generated by their
finite members 229

REFERENCES 238

SAMENVATTING 246





(1)

INTRODUCTION

1 Someremarks on the subject and its history

In an extensive paper titled "The algebra of topology", J.C.C. McKinsey
and A. Tarski [44] started the investigation of a class of algebraic struc­
tures which they termed "closure algebras". The notion of closure algebra
developed quite naturally from set theoretic topology. Already in 1922,
C. Kuratowski gave a definition of the concept of topological space in
terms of a (topological) closure operator defined on the field of all
subsets of a set. Bya process of abstraction one arrives from topological
spaces defined in this manner at closure algebras, just as one may inves­
tigate fields of sets in the abstract setting of Booleanalgebras. A clo­
sure algebra is thus an algebra (L,(+,.,',C,0,l)) such that (L,(+,.,',0,l))
is a Booleanalgebra, where +,.,' are operations satisfying certain postu­
lates so as to guarantee that they behave as the operations of union, in­
tersection and complementation do on fields of sets and where 0 and l are
nullary operations denoting the smallest element and largest element of
L respectively. The operation C is a closure operator, that is, C is a
unary operation on L satisfying the well-known "Kuratowski axioms"

(i) x s x°
(ii) xcc = xc

(iii) (x+y)° = x° + y“
(iv) 0° = o.

The present paper is largely devoted to a further investigation of classes
of these algebras. However, in our treatment, not the closure operator C will
be taken as the basic operation, but instead the interior operator 0, which
relates to C by x0 = x'C' and which satisfies the postulates (i)' x0 s x,
(ii)' x°° = x°, (iii)' (xy)° = x°y° and (iv)' 1° = 1, corresponding to
(i) - (iv). Accordingly, we shall speak of interior algebras rather than
closure algebras. The reason for our favouring the interior operator is the
following. An important feature in the structure of an interior algebra is
the set of closed elements, or, equivalently, the set of open elements. In
a continuation of their work on closure algebras, "On closed elements in
closure algebrasfi McKinseyand Tarski showed that the set of closed elements
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of a closure algebra may be regarded in a natural way as what one would
now call a dual Heyting algebra. Hence the set of open elements may be

taken as a Heyting algebra, that is, a relatively pseudo-complemented
distributive lattice with 0,], treated as an algebra (L,(+,.,+,O,l))
where + is defined by a + b = max {z I az 5 b}. Therefore, since
the theory of Heyting algebras is nowwell-established, it seems pre­
ferable to deal with the open elements and hence with the interior
operator such as to makeknownresults more easily applicable to the
algebras under consideration.

when they started the study of closure algebras McKinseyand Tarski
wanted to create an algebraic apparatus adequate to the treatment of
certain portions of topology. Theywere particularly interested in the
question as to whether the interior algebras of all subsets of spaces
like the Cantor discontinuum or the Euclidean spaces of any number of
dimensions .are functionally free, i.e. if they satisfy only those to­
pological equations which hold in any interior algebra. By topological
equations we understand those whose terms are expressions involving
only the operations of interior algebras. McKinseyand Tarski proved
that the answer to this question is in the affirmative: the interior
algebra of any separable metric space which is dense in itself is func­
tionally free. Hence, every topological equation which holds in Eucli­
dean space of a given number of dimensions also holds in every other
topological space.

However, for a deeper study of topology in an algebraic framework in­
terior algebras prove to be too coarse an instrument. For instance, even
a basic notion like the derivative of a set cannot be defined in terms

of the interior operator. A possible approach, which was suggested in
McKinseyand Tarski [44] and realized in Pierce [70], would be to consi­

der Boolean algebras endowedwith more operations of a topological nature
than just the interior operator. That will not be the course taken here.
Weshall stay with the interior algebras, not only because the algebraic
theory of these structures is interesting, but also since interior alge­
bras, rather unexpectedly, appear in still another branch of mathematics,
namely, in the study of certain non-classical, so-called modal logics.
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Algebraic structures arising from logic have received a great deal of
attention in the past. As early as in the 19th century George Boole
initiated the study of the relationship betweenalgebra and classical pro­
positional logic, which resulted in the development of what we nowknow
as the theory of Boolean algebras, a subject which has been studied very
thoroughly. In the twenties and thirties several new systems of proposi­
tional logic were introduced, notably the intuitionistic logic, created
by Brouwer and Heyting [30], various systems of modal logic, introduced
by Lewis (see Lewis and Langford [32]), and many-valued logics, proposed
by Post [21] and Lukasiewicz. The birth of these non-classical logics sti­
mulated investigations into the relationships between these logics and the
corresponding classes of algebras as well as into the structural properties
of the algebras associated with these logics. The algebras turn out to be
interesting not only from a logical point of view, but also in a purely
algebraic sense, and structures like Heyting algebras, Brouwerianalgebras,
distributive pseudo-complementedlattices, Post algebras and Lukasiewicz
algebras have been studied intensively. The algebras corresponding to cer­
tain systems of modal logic have received considerable attention, too,
and it was shown in McKinseyand Tarski [48] that the algebras correspon­

ding to Lewis's modal system S4 are precisely the interior algebras, the
subject of the present treatise. Although no mention will be made of modal
logics anywhere in this paper, it seems appropriate to say a few words
about the nature of the connection of interior algebras with these logics,
in order to facilitate an interpretation of the mathematicalresults of
our work in logical terms.

2 Relation to modal logic

The vocabulary of the language L of the classical propositional cal­
culus consists, as usual, of infinitely manypropositional variables
p,q,r,... and of the symbolsfor the logical operators: V for disjunction,
A for conjunction, ~ for negation, the truth symbol 1 and the falsehood

symbol 0. From these symbols the formulas (which are the meaningful expres­
sions) are formed in the usual way. Every formula ¢ in L can be inter­

preted as an algebraic function $ L on a Boolean algebra L by letting
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the variables range over L and by replacing V,A,~ with +,.,' respec­

tively. A formula is called valid (also: a tautology) if dz E I, where
g_denotes the two element Boolean algebra. It is well-known that a formula

¢ is a tautology if and only if $L 5 I for every Boolean algebra L. An
axiomatization of the classical propositional calculus consists of a re­
cursive set of special tautologies, called axioms, and a finite set of
rules of inference, such that the derivable formulas - the theorems of
the system - are precisely the tautologies.

The need for a refinement of the somewhatcrude classical logic which
led to the invention of the several modal logics arose, in particular, in
connection with deficiencies felt in the formal treatment of the intuitive
notion of implication. In classical propositional logic the implication
p =»q is treated as an equivalent of ~p V q, which leads to theorems like

p -’(q=- p)
and

(p-q)v(q-p)
which do not seem to be fully compatible with the intuitive notion of im­

plication. In modal logic the language L is enriched by three logical

operators to obtain the language LM: a binary operator -4 , t0 be read
as 'strictly implies‘ agunary operator [3 for "it is necessary that" and
a unary operator 0 for " it is possible that". Lawsgoverning -4 are

formulated intending to give it the desired properties of intuitive implica­
tion while avoiding "paradoxical" theorems like those holding for the
usual implication. In many systems D is now taken as a primitive opera­
tor, in which case p 4 q appears as D (p *’q) and o p as ~4]~p. The

sense of the formula Up, to be read as "it is necessary that p", can
be indicated as follows. Whenwe assert that a certain proposition is
necessary we mean that the proposition could not fail, no matter what
the world should happen to be like (to speak in Leibnizian terms: true
in all possible worlds). However, there was no unanimity amonglogicians

as to what the 'right' laws governing the modaloperators were, as appears
from the vast number of modal axiomatic systems which have been proposed.

One of the more important systems is S4, introduced by Lewis.
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Axioms governing the modal operators of S4 are the following:

(i) D(P * q) - (UP + Dq)

(ii) DP + P

(iii) UP ‘* EDP

These axiom schemas together with someaxiomatization of the classical
propositional calculus and somerules of inference amongwhich the rule that
if a is a theorem of S4 then so is Do, constitute an axiomatization
of S4. The following observation will clarify the relation of this
system with the notion of interior algebra.

Let V denote any set of propositional variables and ¢(V) the
set of all modal formulas formed from V by using the logical operators
v,A,~,D,0,l. Since ¢(V) is closed under these operators the structure

F(v) = (<I>(V).(v,A,~,El,0,1))

is an algebra, referred to as the free algebra of formulas in the

language LM. No algebraic equation formulated in terms of the fun­
damental operations is identically satisfied in ¢(V) unless it is a
pure tautology of the form p = p, so that for example the operations
v and A are neither commutative nor associative. From an algebraic
point of view, F(V) presents but little interest. Let us therefore

define a relation ~34 on ¢(V) by putting, for ¢,w c ¢(V)

¢~S4w iff (¢=: w) A (¢== ¢) is a theorem of S4.

The relation ~84 is an equivalence relation on ¢(V) and in fact,
it is a congruence relation, hence we can form the quotient algebra

F(V)S4 = F(V)/~34. Werefer to this algebra as the canonical algebra
for S4, and as one easily verifies, this algebra proves to be an in­
terior algebra. The theorems of S4 are the formulas in ¢(V) which

belong to the equivalence class containing the truth symbol, 1.
If (L,(+,.,',°,O,l)) is an arbitrary interior algebra and ¢ is

any formula in L then, just as in the Boolean case, ¢ can be inter­
M9

preted as an algebraic function ¢L on L, where in addition D is
0. It is easily seen that for any theorem ¢ of S4,now replaced by

¢L 5 1 on L. Indeed, the interpretations of the axioms of S4 are valid
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by the laws (i)' - (iii)' in the definition of interior operator,
whereas the rule of inference "if ¢ is a theorem then so is D ¢"
corresponds to the equation I0 = 1. The remaining axioms and rules of

inference are classical. Conversely, if ¢ is not a theorem of S4,

then $F(V)S4 £1 on the interior algebra F(V)S4, when V is large
enough. Wearrive at the conclusion that a modal formula ¢ is a

theorem of S4 iff $LE 1 on every interior algebra L.
Nowsuppose that S is a logic obtained from S4 by adding some

set of axioms A (formulas in Q”) to the axioms of S4. Clearly, for

each theorem cp of S, $1 5] for every interior algebra L in
which the interpretation of the formulas of A is valid. Andby con­

sidering algebras F(V)S whose definition is similar to that of F(V)S4
we infer that the converse holds as well. Hence a formula ¢ in LM
is a theorem of S iff $LEEl in the class ‘K of interior algebras
satisfying the interpretations of the axioms in A. Apparently, such a
class 3; is determined by the set of equations $ = 1, ¢e A, that means,
‘E is an equational class, alsocalleda variety.We conclude that every ex­
tension of S4 (of the considered type) is completely determined by a cer­
tain subvariety of the variety of interior algebras, and since on the other
hand every variety of interior algebrasgivesrise to such an extension of the
system S4, the study of these extensions of S4 reduces wholly to the study
of subvarieties of the variety of interior algebras. Andvarieties of al­
gebras are particularly nice to work with, for example, because they
are closed under certain general operations frequently used to construct
new algebras from given ones, namely the operations of forming subalgebras,
homomorphicimages and direct products. By a well-known result due to
Birkhoff the varieties are precisely those classes of algebras which
have all three of these closure properties.

In spite of the fact that the algebraic interpretation proved to be a
useful instrument to study several modal systems, notably in the work of

McKinsey and Tarski [48], Dummetand Lemmon[59], Lemmon[66], Bull [66]
and Rasiowa (see Rasiowa [74]L it has remained a method neglected by most
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logicians working in this area. A partial explanation maybe found
in the invention of a different semantics by Kripke [63] [65], which
did provide a manageable tool to investigate modal logics and to
create some order in this somewhatchaotic field and which, moreover,
is intuitively moreappealing than the algebraic interpretation. The
results of our work will showthat the algebraic approach, primarily
because it permits us to invoke powerful methods from universal alge­
bra, is in fact a very succesful one, in as muchas it provides a
clearer and more complete picture of the pattern formed by the va­
rious modal systems of a certain kind. Although we shall restrict
ourselves to interior algebras, it seemsthat the algebraic approach
might be fruitful in the study of more general modal systems as well.
And it need hardly be observed that the correspondence between certain
extensions of a given logical system and subvarieties of the variety
of algebras associated with that logic is not limited to modal logics.
A similar relation exists, for instance, betweenthe so~called inter­
mediate logics, i.e. the extensions of the intuitionistic propositional
calculus, and the subvarieties of the variety of Heyting algebras.

3 The subject matter of the paper

The present work contains, aside from an introductory "Preliminaries",
three chapters. The first two deal primarily with the algebraic theory of
interior algebras proper, in the last one we concern ourselves with the
lattice of subvarieties of the variety of interior algebras.

Wheninvestigating the structure of algebras in a given variety it
is of particular interest to find an answer to the question as to how
the (finitely generated) free objects look. Thevariety of Heyting alge­
bras is closely related to the variety of interior algebras since, as
noticed earlier in this introduction, the lattice of open elements of
an interior algebra is a Heyting algebra, and conversely, every Heyting
algebra maybe obtained as the lattice of open elements of some interior
algebra. The structure of the free object on one generator in the va­
riety of Heyting algebras has been knownfor some time (Rieger [57]) and
is easy to visualize (see the diagram on page 32 of this dissertation).
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On the other hand, Urquhart [73]'s work shows that the free objects on
more than one generator in the variety of Heyting algebras are of a great
complexity and extremely difficult to describe. Since the Heyting algebra
of open elements of a free interior algebra on a given number of genera­
tors is easily seen to contain a free Heyting algebra on the same number
of generators as a subalgebra, it seemswise to restrict oneself to the
problem of determining the free interior algebra on one generator. Easy
as it maybe to formulate, this problem proves to be a very difficult
one, and indeed, large portions of the first two chapters of our work
maybe seen as an outgrowth of various attempts to get nearer to its
solution.

At several points in the theory of interior algebras it appears that
the 0 element of an interior algebra, as a nullary operation, is from
an algebraic point of view a slightly disturbing element in that it
tends to obscure what really is going on. As a matter of fact, a similar
phenomenonoccurs in the study of Heyting algebras and for that reason
some authors have preferred to work with so-called Brouwerian algebras
instead, which are, loosely speaking, Heyting algebras not necessarily
possessing a least element. As an illustration, the free Brouwerianalge­
bra on one generator is just the two element Boolean algebra; in the
- infinite - free Heyting algebra on one generator the 0 element acts
as somespecial generator, besides the free generator, and it is thus
a homomorphicimage of the free Brouwerian algebra on two generators.

we have therefore introduced in addition to the variety ‘Bi of interior
algebras the variety §i- of generalized interior algebras. Here we un­
derstand by a generalized interior algebra an algebra (L,(+,., =»,°,l))
such that (L,(+,., =-,1)) is a generalized Booleanalgebra with a lar­
gest element 1 (but possibly without a least element), and such that O
is again an interior operator on L. The set of open elements of a ge­
neralized interior algebra is a Brouwerianalgebra. The fact that the
interior operator on a generalized Booleanalgebra is not definable
in terms of a closure operator on the same algebra is another explanation
for our preference to take the interior operator as the basic notion in
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the definition of interior algebra, rather than the closure operator.
In several respects, the theory of generalized interior algebras de­
velops in a muchsmoother way than the theory of interior algebras,
and it turns out that in the description of the free objects in some
varieties of interior algebras, undertaken in the second chapter, the
free objects in correspondingvarieties of generalized interior alge­
bras serve as a seemingly indispensable auxiliary device.

In the first two sections of Chapter I somebasic properties of ge­
neralized interior algebras and interior algebras are established, in
particular regarding the lattices of open elements. It is shownthat
every Brouwerian algebra can be embeddedas the lattice of open ele­
ments of its free Boolean extension, the latter being endowedwith a
suitable interior operator. This result generalizes a similar theorem
by McKinseyand Tarski [44] for Heyting algebras. These (generalized)
interior algebras, which,as (generalized) Booleanalgebras, are gene­
rated by their lattices of open elements, play an important role in
our discussion and, therefore, deserve a special name: we shall call
them *-algebras. Amongthe finite interior algebras the *-algebras
distinguish themselves by the fact that they are precisely the ones

which satisfy, speakingiJ1topological terms, the To separation axiom.
The next four sections are devoted to an investigation of the free

objects on finitely manygenerators in _§i and ‘§i—. As it appears,
even the free generalized interior algebra on one generator, denoted

by f§.—(1), is of an exceedingly complex structure. For example, it
can belseen to have continuously many homomorphic images on the one

hand, and to contain as a subalgebra the *-algebra whose lattice
of open elements is the free Heyting algebra on n generators, for
every natural numbern, on the other hand. These facts indicate that

the problem to characterize FB.-(1), let alone FB.(1), will be a
difficult one. -1 .1

In this connection, the question arises what the actual content is
of McKinseyand Tarski [44]'s theorem which says that no finitely gene­
rated free interior algebra is functionally free. It turns out that as
far as the lattice of open elements of the free interior algebra on fi­
nitely manygenerators is concerned, this non-functionally freeness is
rather inessential, in the sense that by dropping the 0 as a nullary
operation, that is, by regarding this lattice of open elements as a
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Brouwerian algebra, it becomesa functionally free Brouwerian algebra.

As for FB (n) itself, the situation is different. Weshowthat there
exists an increasing chain of subvarieties ES , n = 1,2, ... of §i_,
defined in a natural way, each of which is properly contained in the

next one, such that FB-(n) is functionally free in In_. Weinfer
that FB -(n) is not fhnctionally free in fig and McKinseyand
Tarski's1theorem follows as an immediate corollary.

Oneof the reasons to turn our attention to somespecial subvarieties

of .Bi and §i_, as we do in Chapter II, is the hope that we might
be able to describe the free objects in these smaller varieties and
might thus obtain knowledgeuseful to our original aim, the characte­

rization of free objects in fii and fii-. A natural candidate for such
an investigation wouldbe the class of all *-algebras,because *-algebras
have many pleasant properties and at the same time form a class which is
not too restricted in the sense that still every Heyting algebra or
Brouwerian algebra occurs as the lattice of open elements of some
(generalized) interior algebra in the class. Unfortunately however, the
class of *-algebras is not a variety and does not possess any free ob­

jects on one or more generators. Therefore the varieties ‘fig and fii-*
are introduced, defined to be the smallest subvarieties of ‘Li and Qi­
respectively, containing all *-algebras. Thesevarieties, which are proper

subvarieties of gi and §i_, have a lot in commonwith the varieties of
Heyting algebras and Brouwerian algebras; for example, whereas fii has
no non-trivial injectives, ‘§i* turns out to have essentially the same
injectives as the variety of Heytingalgebras has. It is regrettable that

a description of FB.*(l) is still beyondour reach, but at least we are
able to determine the free object on one generator in .§i-*, which proves
to be an infinite algebra, though one of a fairly simple structure.

In the remaining part of Chapter II we pay attention to somevarieties
of (generalized) interior algebras which are characterized by the fact that
their lattices of open elements belong to a certain variety of Heyting,
respectively Brouwerian, algebras. Wethink of varieties of Heyting, res­
pectively Brouwerian, algebras which satisfy the equation x + y + y + x = 1,
knownunder the nameof relative Stone algebras, and someof their subvarie­
ties. Becauseof the strong structural properties of the subdirectly irredu­
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cibles in these varieties we succeed in giving a characterization of
the finitely generated free objects in them.

In the third chapter we shift our interest from the proper algebraic
study of (generalized) interior algebras to an investigation of the set

R of subvarieties of ,§i. The set is partially ordered by the inclusion
relation and it is easy to see that this partial order induces a lattice
structure on Q. The trivial variety, that is, the variety containing one­

element algebras only, is the 0-element of the lattice, ,§i itself is
the 1-element. The unique equationally complete subvariety of hi, the
variety generated by the two element interior algebra, is contained in
every non-trivial variety and hence is the unique atom of 9.

Though Q is fairly simple at the bottom, going up, its structure
gets highly complex. An important tool for further investigation is pro­
vided by a deep result obtained by B. J6nsson [67] for varieties of alge­
bras whose lattices of congruences are distributive, a requirement met
by interior algebras. Fromhis workwe obtain as imediate corollaries

that the lattice Q is distributive, that fii does not cover any va­

riety (i.e. no subvariety of _§i is an immediate predecessor of _§i with
respect to the partial order induced by the inclusion relation) and that
every variety in Q is covered by somevariety in Q. But also in the
subsequent discussion, where we deal with cardinality problems and examine
the property of a variety to be generated by its finite members,J6nsson's
lemmacontinues to serve as the main device, as it does in the discussion

of the important notion of a splitting variety. A splitting variety is
characterized by the property that it is the largest variety not containing
a certain finite subdirectly irreducible algebra. Using the concept of
splitting variety weare able to give a satisfactory characterization of
the locally finite subvarieties of _Qi,i.e. the subvarieties of ,§i in
which the finitely generated algebras are finite, and to describe some
principal ideals of Q in full detail. Moreinterestingly, it is shown

that the variety .Bi* is the intersection of two splitting varieties.
This result would assume a somewhat more elegant form when treated in the

frameworkof _Bi—:the variety §i-* is a splitting variety, namely, the
largest variety not containing the "smallest" non *-algebra, the interior

algebra 22 whose only open elements are 0,]. In fact, _§i—*is the first
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element of an increasing chain of splitting varieties in-, n = 0,1,...

associatied with the interior algebras g?n+', n = 0,1,2,... whoseonly

open elements are 0,]. The In’, n = 1,2,... are precisely the varieties
mentioned earlier in this introduction, for which the FB-(n) are func­
tionally free. Equationsdetermining a given splitting vaiiety are easily
found, hence these results also settle the problemof finding equations

defining the variety ,Bi*. Andit is interesting to note that the equa­
tion for ,§i* we arrive at is well-known amongmodal logicians. The axiom
we have in mind reads U(U(Up=’p)== p) ='p. Thus the algebras in §i*

are the algebras corresponding to the modal logic obtained from S4 by
adding this axiom (denoted alternatively S4 Dym,Kl.l, S4 Grz ). And
our slightly unexpectedresult that the lattice of subvarieties of the
variety of Heyting algebras is isomorphic to the lattice of subvarieties
of _§.* means, interpreted in logical terms, that the extensions of S4
containing this axiomas a theorem are precisely those which are deter­
minedby their intuitionistic content.



CHAPTER 0

PRELIMINARIES

Section 1. Universal Algebra

In the following we shall give a concise survey of notions and

results of universal algebra which will be needed in this paper.

The usual set theoretic notation will be used. In particular,

if A is a set, [A] will denote its cardinality. N will denote

the set of natural members {l,2,3...}, Z the set of integers, and

'N* the set of nonnegative integers. If n e N, then ;3={O,l,...n-I};

w denotes the order type of the natural numbers, w* the order type

of the negative integers. Finally, 5 is used to denote inclusion,

c is used to denote proper inclusion.

In order to establish the algebraic notation we shall use we

recall the definitions of similarity type and algebra.

1.1 Definition. A similarity type T is an m-tuple (n],n2,...nfi)

of non-negative integers. The order of T, o(I), is H1.

For every i, 1 S i S 0(1), we have a symbol ii of an ni-ary

operation.
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1.2 Definition. An algebra of type T is a pair (A,F), where A

is a non-empty set and F = (fl,f2,...fO(T)) such that for each i,

I < i 5 0(1), fi is an ni-ary operation on A. fi is the real­

ization of ii in (A,F).

If there is no danger of confusion, we shall write A for (A,F).

For the notions of subalgebra, homomorphism and isomorphism,

direct product , congruence relation and other notions not defined,

we refer to Gratzer [68], where also proofs of most of the results to

be mentioned in this section may be found.

1.3 Classes of algebras

when talking about a class of algebras we shall always assume

that the class consists of algebras of the samesimilarity type.

Let E be a class of algebras. Wedefine:

I(§): the class of isomorphic copies of algebras in. E

S(§): the class of subalgebras of algebras ha 3

H(§): the class of homomorphic images of algebras in. E

P(§): the class of direct products of non-empty families of

algebras hi 5,

If E = {A} we write also I(A), S(A), H(A) and P(A). Instead.of

B e I(A) we usually write B : A or sometimes B % Ax to emphasize

that B and A are to be considered as algebras in E.

A class K of algebras is called a variety' or an

class if S(§) E K, H(K) E K and. P(K) E E . If 5 consists of

equational



I-element algebras only, then g is called a trivial variety.

1.4 Theorem. Let K be a class of algebras. The smallest variety

containing K is HSP(§).

Wewrite often V(§) instead of HSP(g), V(A) if 5 == {A},

and we call V(§) the variety generated by L. If 5 and E’ are

varieties such that K 5 K’, then we say that 5 is a subvariety

of K‘. If E is a variety, A,B e 5, f: A -e»B a homomorphism

then we shall sometimes call f a K-homomorphism in order to empha­

size that f preserves all operations in A, considered as _I§-algebra.

If A e K, S g A, then [S], or ESJK if necessarygmilldenote the

K-subalgebra generated by S.

An algebra A is said to be a subdirect product of a family

of algebras {AS I s 6 S} if there exists an embedding 1%A-€~S2SAé

such that for each s E S nsof is onto, where W8 is the projec~

tion on the s-th co—ordinate. If 5 is a class of algebras then

Ps(§) denotes the class of subdirect products of non-void families

of algebras in E.

Analgebra A is called subdirectly irreducible if

(i) |A| > 1,

(ii) If A is a subdirect product of {AS I s e S},

then nsof is an isomorphism for some s 6 S.

If E is a class of algebras, gSI(gFSI) will denote the class of
(finite) subdirectly irreducibles in E.

Auseful characterization of the subdirectly irreducible alge­

bras is the following:



1.5 Theorem.Analgebra is subdirectly irreducible iff it hasazleast

non-trivial congruencerelation.

A classic result by G. Birkhoff [44] states:

1.6 Theorem. If E is a variety, then every algebra in E isa1sub­

direct product of subdirectly irreducible algebras i11 E. ihisymbolsz

if E = V(E), then E = PS(ESI).

According to theorem 1.6 every varietyis completely determined

by the subclass of its subdirectly irreducibles. The next theorem

shows that even a smaller class will do:

1.7 Theorem. Let E be a variety. Then E is generatedlnzthe class

of its finitely generated subdirectly irreducibles.

If E happens to be a variety in which every finitely gener­

ated algebra is finite ( such :1 variety is called locally finite)

then we have E = V(EFSI).

1.8 Identities

1.9 Definition. Let n e N*. The n-ary polynomial symbols of type

T are defined as follows:

(i) §l,§2,...§n are n-ary polynomial symbols

(ii) if pI,p2,...pn are n-ary polynomial symbolsi
and 1 3 i S 0(T) then §i(2],g2,...pn ) isan n-ary polynomiali



(iii) the n-ary polynomial symbols are exactly those sym­

bols which can be obtained by a finite numberof applications of (i)

and (ii).

If p is an n-ary polynomial symbol of type -r, then p induces

on every algebra A of type 1 a polynomial p: An-—e>A defined

by:

(i) gi induces the map (a],a2,...an) l—e>ai for any

a1,a2,...an e A, i = l,2,...n

(ii) if pj induces pj, j = I,2,...n. , 1 3 0(1),I/\ I-‘
1

then fi(p],p2,...pni) induces fi(p},p2,...pni)
Conversely, every n-ary polynomial p: An-—e>A is induced by some

polynomial symbol. 2 (n1 A. Weshall often replace §],§2,§3,... by

§,y,g,... and usually omit _ from polynomial symbols if no con­

fusion will arise.

1.10 Definition. Let ;p, q_ be n-ary polynomial symbols of type T.

E 5 9 is calledeni identity or equation and is said to be satisfied

in a class K of algebras of type r (we write E != p 3 q) if for

every A e K the induced polynomials p and q are identical, or,

equivalently, if VA5 K, Va],Va2,...\/an e A P(a],a2,...an) =

= q(a1,a2,...an). If E = {A} we say that .A satisfies p 3 q and

write A I= p _Cl .

If E satisfies a set of equations 2, then so does the va­

riety generated by gg as identities are preserved under application

of H, S and P. If 2 is a set of identities, let 2* denote



the class of algebras satisfying the identities in 23. The following

theorem explains whya variety is also Called an "equational class".

1.11 Theorem (Birkhoff [35]). A class of algebras E is a variety

iff there exists someset of identities X such that 5 = 2*

If E = 2* then 2 is called a base for Id(§), where Id(§) is the

set of identities satisfied by 5. In order to characterize the sets

of identities which can be represented as Id(§) for some class of

algebras 5, let us makethe following definition.

1.12 Definition. A set of identities E is called closed provided

/‘\ R. pl­ \/ 1-‘ H» "O In 1.0
m ea

U ('1' 5m:1 A HI Iv m [V

then so is/\ )-l. <.‘ \./ H H‘: no
1-‘

In m P’) P'h o w I-4
u N 5

9

(V) If B 3 3 E Z, and we get 3', 3' from 2 ,3 by

replacing all occurences of gi py an arbitrary polynomial symbol

;, then B‘ 3 g‘ e Z.

1.13 Theorem (Birkhoff [35]). A set of identities Z is closed iff

Z = Id(§) for some class of algebras K.

1.14 Corollary. The assignment g P-5 Id(fi) establishes a 1-1

correspondence betweenvarieties and closed sets of identities. If

E and E’ are varieties, then g g 3' iff Id(g) 3 Id(g').



1.15 Definition. A set of identities Z iscalled equationallyrcomplete

if 31 E 32 d 2 and E E 2' , 31 32 ¢ 2' imply 2 = Z‘. An_

equational class 5 is called equationally complete if Id(§) is

equationally complete.

1.16 Free algebras

1.17 Definition. Let E be a class of algebras. A e E is said tobe

free over 5 if there exists a set S _C_A such that

(i) [S] = A, i.e. A is generated by S

(ii) If B e E, f: S -%'B a map, then there exists a

homomorphism g: A -¢>B such that g I S —f.

Wesay that S freely generates A., and we write also FK(S) for A.

If ISII = I52! and FE(S1), FK(S2) exist, then FK(SI) = FE(S2).

Therefore we write also FK(ISl) instead of FK(S). Note that the

homomorphismg in (ii) is necessarily unique.

1.18 Theorem (Birkhoff [35]). Let K be a non-trivial variety. Then

FK(m) exists for any cardinal Q > 0.

1.19 Corollary. Let K, K’ be non-trivial varieties. Then. yfi—E’

iff FI_<(RO) 2’ FI_<,(xO).

1.20 Corollary (Tarski [46]). A class of algebras g is a variety

iff it is generated by a suitable algebra.



The last corollary is an imediate consequence of theorems 1.7

and 1.18: if K is a variety, then g = HSP(FK(NO)).

1.21 Definition. If E is a variety, and A e E, suchtfluuz K = V(A),

then A is called functionally free hi 3 or characteristic for E.

Sometimesit will be necessary to consider an algebra generated

as free as possible with respect to certain conditions. For our pur­

poses it will be sufficient to restrict ourselves to finitely gener­

ated algebras.

1.22 Definition. Let g be a class of algebras, and let pi , qi,

i 6 I, be n-ary polynomial symbols, n e N*. The algebra A is said

to be freely generated 9333 13 by the elements al,a2,...an with

respect to Q = {pi = qi I i C I} if

(i) [{al,a2,...an}] = A and A e E

(ii) pi(al,a2,...an) = qi(al,a2,...an) for i 5 I

(iii) if B 6 E, b b ..bn<:B suchthat pi(bl,b2,...bn) =1’ 2"

= qi(bl,b2,...bn) for i e I, then the map aj-—%>bj, j = 1,2,...n
can be extended to a homomorphism f: A-—+»B. A will be denoted by

FK(n,R).
Note that if the homomorphisn1.fexists, it is necessarily unique. If

L ; FE(n,9) for somefinite set 9, then I. is said to be finitely
presentable.

1.23 Theorem. Let 5 be a variety. Then FK(n,Q) exists for any

n e N and for any 9.



Note that the elements al,a2,...an need not be different.

FK(n,Q) is unique uptx>isomorphism ifi1:exists and FK(n,¢) ; FK(n).

Wehave seen, that a variety of algebras is characterized (i)

by its (finitely generated) subdirectly irreducibles (theorem 1.7),

(ii) by a base for the identities satisfied by it (theorem l.ll) and

(iii) by its free object on countably manygenerators. An important

reason for our favoring the "subdirectly irreducibles approach" is a

result obtained by B.J6nsson, which we shall discuss now.

1.24 Congruencedistributive varieties

A class of algebras E is called congruencedistributive if

for all A e g the lattice of congruences of A, denotedlnr C(A), is

distributive. If {Ai I i e I} is a non-empty set of algebras,

F g P(I) an ultrafilter on. I and O(F) the congruence on igl Ai
defined by

xEyO(F) iff {ieI|xi=yi}eF

for any x = (xi) , y = (yi) 6 igl Ai , then igl Ai/O(F) is called

an ultra-product of {A1 I i 6 I}. For properties of ultra-products,

see Gratzer [68]. If E is a class of algebras, let PU(§) denote

the class of ultra-products of non-emptyfamilies of algebras in E.

1.25 Theorem (J6nsson [67]). Let K be a class of algebrasennfimthat

V(g) is congruence distributive. Then V(§)SI g HSPU(g) and hence

V(E) = PSHSPU(E)­
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1.26 Corollary. Let A],A7,...An be finite algebras and suppose that

V({AI,A2,...An}) is congruence distributive. Then

V({A ,A ,...An}) 5 HS({A],A2,...A }).I 2 SI n

Wemayregard the class of varieties of a given similarity type

as a lattice, the lattice product of varieties 50, E] being defined

to be the variety E0 n E], denoted by 30. E], the lattice sum

V(§O u 3]), denoted by K + K . One could argue thatvarietiesare

not sets, and that one therefore cannot speakwoftheclassof varieties.

However, our terminology only intends to be suggestive;vm:couLdeasi1y

avoid this problem by representing a variety by the set containingone

isomorphic copy of each finitely generated subdirectly irreducible be­

longing to it or, alternatively, by the set of identities satisfied by

it.

1.27 Corollary. If 5, 5' are varieties such that K + E‘ is con­

gruence distributive, then (E + g')QI —$31 U 3'31.

1.28 Corollary. If E is a congruence distributive variety, then the

lattice of subvarieties of E is distributive.

1.29 Equational categories

Sometimeswe shall use the language of category theory.Mb shall

be concerned with categories K whose objects are algebras belonging

to a certain class K of similar algebras, and ‘whosemorphisms are

311 h0m0m0rPhisms f: A.-9 B , where .A, B are objects of K.
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If E is a variety, then K is called an equational category. Note

that in equational categories the categorical isomorphismsare pre­

cisely the algebraic isomorphisms.Furthermore,the momonorphismsare

the 1-1 homomorphisms, but epimorphisms need not be onto.Fbr further

details we refer to Balbes and Dwinger [74].

Section 2. Lattices

Weassume that the reader is familiar with the basic concepts

of lattice theory, for which Balbes and Dwinger [74] or Gratzer [71]

maybe consulted. In this section we collect some topics which will

be of special importance in our work.

2.1 Distributive lattices and (generalized) Booleanalgebras

The following varieties will play an important role in our

discussion:

Q the variety of distributive lattices (L,(+,.))

Q] the variety of distributive lattices with 1 (L,(+,.,l))

Q0] the variety of distributive lattices with 0,! (L,(+,.,O,l))

- the variety of generalized Booleanalgebras (L,(+,.,=3l))

B the variety of Booleanalgebras (L,(+,.,',0,l)),
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where +,. denote sum and product respectively, 0 and 1 denote

the smallest and largest element of L, ' complement, and where =9

is a binary operation denoting "relative complement": a=» b is the

complement of a zhi [ab,l]. Thus ,B—has similarity type (2,2,2,0)

whereas B has similarity type (2,2,],0,0). If we wish to emphasize

that the operations are supposed to be performed in L, v«2write.a1so
L L L

+ O+L,.I,0L etc. or , ,0 etc. Equations defining the classes Q,

Q and B can be found in Balbes and Dwinger [74]; a system1 ’ 201

of equations defining B_ is e.g.

2.2

(i) usual equations for Q]

(ii) (x =-y)x = xy

x =»y + x = I .

Note that if L 6 E— has a smallest element a, then L can be con­

sidered as a Boolean algebra, a being the O, and for any x e L

x' = x = a. Conversely, every Boolean algebra L can be regarded as

Ia generalized Boolean algebra, denoted by L—, with x = y = x + y

for x,y e L. Often B and B- will be treated as subclasses of Doland D

2.3 Werecall the notion of free Boolean extension. If L 6 90]

then a free Boolean extension of L is a pair (L1,f) where L] e B

and f: L-91% is a 1-1 Q0]-homomorphism such that if L2 5 B and

g: L —+>L2 is a Q0]-homomorphism then there exists a unique §-homo­

m0rPhiSm ht L] -e>L2 such that hof = g. For every L 6 20] there

exists such a free Boolean extension. In other words: there exists a

reflector from Do] to B. The free Boolean extension is unique,
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essentially; therefore we shall always assume that L is a Q0‘-sub­

algebra of L] and that f is the inclusion map. The free Boolean

extension of L will be denoted B(L). Note that B(L) is §-gener­

ated by L, and if L is a Q01-subalgebra of L], L] e 5, then

[L]B = B(L).

The free generalized Boolean extension of a lattice L c Q] is

defined analogously: it is a pair (Ll,f), with L] 6 Q and

f: L —e>Ll a 1-1 Q1-homomorphism such that whenever L2 5 §— and

g: L *»~L2 is a Q]-homomorphism there exists aunique §_-homomorphism

hz L]-91? such that hof = g. It will be denoted by B-(L). Note

that if L] is a Q1-subalgebra of L1 5 §_, then [L]B- = B-(L).

2.4 Brouwerian algebras and Heyting algebras

If L is a lattice, a,b e L, then the relative pseudo-comple­

ment of a with respect to b (if itexists) is a->b = max{xl axtéb}.

A Brouwerianlattice L is a lattice in which ar+b exists for every

a,b e L. If L has a O, L is called a Heyting lattice.1}mac1asses

of Brouwerianlattices and Heyting lattices give rise to

E‘ the variety of Brouwerianalgebras (L,(+,.,+,I))

and

E the variety of Heyting algebras (L,(+,.,+,O,1)).

A system of equations defining E- is
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(i) equations for Q]

(ii) x + x = I

x(x-* Y) = X)’

xy + z = x + (y + z)

(X-+ y)y y­

Equations defining E are obtained by adding the identity x.O —0.

If L e E then we may consider L to be a Brouwerian algebra

L" by disregarding the nullary operation 0 (not the element 0) .

Conversely if L e H_, 0 f L, then we define 0 9 L to be the

Heyting algebra obtained by adding a smallest element 0 to ‘L with

the obvious changes in the definitions of the operations in {O} U L.

Also, if f: L -e-Ll is an E--homomorphism then f: O 0 L -+-0 9 L1

defined by f(O) = O, f i L = f is an fl-homomorphism. Thus the

assignment L ~e>O6 L, f ~%>f constitutes a covariant functor

H‘ —e»H.

If n 6 N then Q will be used to denote the Heyting algebra

{O,l,...n-1} with the operations induced by the usual linear order.

Hence n— denotes the corresponding Brouwerian algebra.

If L belongs to one of the varieties introduced, S E L ,

then (S] and ES) denote the ideal and filter generated by S

respectively. Instead of ({a}] and [{a}) we write (a] and Ea);

(al is called a principal ideal, [a) a principalfilter. If a,be L

Chen [a,b] = {X e L I a S x S b}. l(L) will denote the lattice

of ideals of L, F(L) will denote the lattice of filters of L.
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2.6 If L], L2 6 fl, then L] T L2 stands for the Heyting algebra

which is obtained by putting L2 "on top of" L], identifying IL‘

with 0L2. Thus L] f L2 is a lattice which can be written as
(a] u Ea) for some a 5 L] T L2, such that (al ; Ll and Ea) ll!

I‘.""‘

as lattices. Identifying (aJ with L] and [a) with L2 we have

1 if x e L], y 6 L2

x -+ y = y if x 6 L2, y e L]
I . .

2 x L? y if x,y e L. for 1 = 1,2.
1 1

A similar operation can be performed if L] e 3-. Instead of L T 2

we write also L 9 I. Recall that if L e E or L e E‘ then L is

subdirectly irreducible iff L = L’ 6 l for some L‘ e E, L‘ e E

respectively.
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CHAPTER I

GENERAL THEORY OF (GENERALIZED) INTERIOR ALGEBRAS

In this chapter we develop a portion of the theory of (genera­

lized) interior algebras. Havingestablished the basic facts in sec­

tions l,2 we devote most of our attention to the finitely generated

(free) algebras (sections 3-5), also regarding their functional free­

ness (section 6). Section 7 closes the chapter with some remarks on

free products, injectives and projectives.

Section 1. Generalized interior algebras: definitions and basic

properties

In this section generalized interior algebras are defined and

someof their basic properties are established. In 1.5 the congruence

lattice of a generalized interior algebra is characterized, from which

we obtain as a corollary a characterization of the subdirectly irredu­

cible generalized interior algebras as well as the result that the

class of generalized interior algebras is congruencedistributive, a

fact we shall use in the third chapter. After someconsiderations con­

cerning homomorphicimages and subalgebras of generalized interior

algebras we prove some important theorems dealing with the relation
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between generalized interior algebras and their lattices of open ele­

ments (1.12-1.18). It is shownthat for any Brouwerian algebra L the

Boolean extension B-(L) of L can be endowedwith an interior oper­

ator such that the set of open elements in this algebra is precisely

L. These generalized interior algebras have several nice properties

and will play an important role in the sequel. For lack of a better

namewe shall call them *-algebras.

1.1 Definition. Let (L,(+,.,l)) be a lattice with 1. A unary opera­

tion O: L -9 L is called an interior operator if for all x,y e L

(1) 1° = 1

(ii) x° s x

(iii) x°° = x°

(iv) (x.y)O = xo.yO

|.2 Definition. A generalized interior algebra is an algebra

(L,(+,.,=$,°,l)) such that (L,(+,.,=¢,l)) is a generalized Boolean
o . . .algebra and is an interior operator on L.

It is clear that the class of generalized interior algebras is

equationally definable: the equations given in 0.2.2 and 1.] provide

an equational base. The variety of generalized interior algebras will

be denoted by B;.

A typical exampleof a generalized interior algebra is the

generalized Boolean algebra of all subsets of a topological space

whose interior is dense in the space, endowedwith the (topological)

interior operator. In fact, it can be shownthat any generalized inte­

rior algebra is isomorphic with a subalgebra of somegeneralized inte­
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rior algebra of this kind.

If L 6 §;, then an element x of L is said to be open if

x0 = x and the set of open elements is denoted by LO. Obvious­

ly. L0 = {x0 I x e L} and it is readily seen that L0 is a

Q]-sublattice of L. Furthermore, L0 is a Brouwerian lattice:

1.3 Theorem. Let L e E; and for a,b e L0 let a + b = (a =9 b)O.

Then (LO,(+,.,+,1)) is a Brouwerian algebra..

Proof. Weverify that (a =9 b)o is the relative pseudocomplementof
o

a with respect to b in L . Indeed, a(a == b)° S a(a =9 b) = ab s b,

and if y 6 L0, ay S b, then y S a =9 b, hence y S (a =9 b)O.U

The next proposition tells us which Q]-sublattices of a genera­

lized Boolean algebra can occur as the lattices of open elements asso­

ciated with someinterior operator:

1.4 Theorem. Let L E E7, L] a Q]-sublattice of L. There exists an

interior operator 0 on L such that L] = L0 iff for all

a 6 L (a] n L has a largest element.
1

PrO0f- (i) =9 a0 satisfies the requirement.

(ii) ¢= Define for any x e L, x0 = max (x] n L]. Then (i) 10 = 1,

(ii) x0 S x, (iii) x00 = x0 and (iv) (xy)O = max (xy] n L] =
. max (y] n L = xoyo. Dmax (x] n L 11

It follows from the proof of the theorem that the interior oper­

ator with the property that L0 = L] is necessarily unique. Note also

that in particular for every generalized Boolean algebra L and every

finite Q]-sublattice of L there exists an interior operator on L

such that L0 = L].
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If L e gg, F e F(L), then F is called an open filter if

for all x E F, X0 e F. The lattice of open filters of L is denoted

by Fo(L). A principal filter [a) is open iff a0 = a.

1.5 Theorem. Let L 6 Eg. Then

I12(1) C(L) Foo.)

F(L°).112(ii) Fo(L)

Brggg. (i) If G E C(L), let Fb = {x 1 (x,l) e 0}. Evidently

F e F0(L). Conversely, if F e FO(L), it is easy to verify, that

OF = {(x,y) I (x =9 y)(y =9 x) e F} E C(L). Let f: C(L) -9 FO(L) be

defined by O H-9 Pb and g: Fo(L) -9 C(L) by F h—99F. Then fog

and gaf are the identity mappings and f,g are both order preserving.

Thus f establishes a lattice isomorphism between C(L) and F0(L).

(ii) Let f: FO(L) —~>F(L°) be defined by F ~—>F n L°,

g: F(LO) -> Fo(L) by F -9 [F). Again, fog and gof are the identity

mappings and f,g are order preserving, hence. f,g are isomorphisms.D

1.6 Corollary. Let L e E; . Then C(L) 3 C(L0), where L0 is con­

sidered as a Brouwerian algebra.
&I

Proof. If L epflf , then C(L) = F(L) .0

1.7 Corollary. If L e E; , then L is subdirectly irreducible iff

L0 is a subdirectly irreducible Brouwerian algebra. Thus L e g; SI

0 3 I 0 1, where L] e fif.

Proof. By 1.6 and 0.1.5. For the second remark, cf. 0.2.6.U

iff L L

1.8 Corollary. Thevariety §; is congruence-distributive.

Werecall that a variety E_ has the congruence extensituxproperty
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(CEP) if for all L e E_ and for all L] 5 SCL). f0f each C)! € C(L])

there exists a (35 C(L) such that G) n L? =(3] . If E_ has CEP,

then for all L e E HS(L) = SH(L).

1.9 Corollary. E; has CEP.

e C(Ll), then G>TF ) is the de­Proof. If L e S(L), L a B7 , 0
...———.._ I _.1 _I

sired extension.D

If F e FO(L), L e gg , then the quotient algebra with respect

to OF will be denoted by L/F and the canonical projection by

HP: L -9 L/F. Thus for x e L fiF(x) = {y 6 L l (X =9 y)(y =9 X) e F}

and in particular IL/F = fiF(1) = F. Furthermore, if h: L -9 L1 is

a homomorphism, L,L] EIE; , which is onto, then L/F 5 L] , where

F = h—1({l})

1.10 Every open filter of a generalized interior algebra is also a

subalgebra of it. If L e E; , a 5 L0, then L] = [a =9 x | x e L}

is a bf-subalgebra of L, but in general not a lgi-subalgebra of L,

since not necessarily (a =9 x)O = a =9 y for some y e L. But we can

provide Ll with an interior operator 01, by defining for x e L

(a =9 xfh = a =9 x0. It is a matter of easy verification to check that

O1 is well-defined and that it satisfies the requirements (i)-(iv) of

1.1. The map ha: L -9 L defined by ha(x) = a =9 x is now a1

gg-homomorphismwith kernel {x I a =9 x = 1} = [a). If in addition

(a =9 xfh = a =9 x0, then L is even a Btrsubalgebra of L, and hl -1 a

a gg-endomorphism.

Similarly, an arbitrary principal filter [a) of a generalized0

interior algebra can be endowedwith an interior operator 1 by defin­

ing xol = X0 + a for arbitrary x e Ea).
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1.11 If L e E; , a 6 L0, then (a] can be made into a generalized

interior algebra, too. Indeed, define for x,y e (a] x='-7’.)7 = (X=* Y)-8

°(a] o °<a:- . “J . ­and X = X _ Then ((a],(+,,, =», ,a)) IS a generalized inte­
(a]

rior algebra, and the map f: L -9 (a] defined by X*‘° X-3 is 3

§;—homomorphism.Since f-1GaD = [a), (a] 3 L/[a)- In 8 Similar way

we define for a,b 6 Lo, a 5 b, a (generalized) interior algebra

[a,b] = {x e L ] a 5 x S b}. Note that (a] e H(L). Ca) 6 S(L). and

[a,b] e HS(L). It is not difficult to verify that if L has a smallest

element 0, then L : (a] X (a =9 0] if a,a =9 0 6 Lo.

To close this section we present someimportant facts concerning

the relation between the classes EQ and gf, which are based on work

by McKinsey and Tarski [46].

1.l2 Theorem. Let L,L1 e g; , h: L -9 L1 a Eg-homomorphism. Then

(1) h£L°J g L? .

(ii) ho = h [ LO: LO -9 L? is an hf-homomorphism, and

if h is onto, then ho is onto.

Egggfi. (i) is obvious.

(ii) Weverify that ho preserves -+ : h0(a +-b) = h((a =9 b)o) =

= (h(a) ==»h(b))0 = h°(a) -+ h°(b), for any a,b 5 L°. If h is

onto, y e Lg, and x e L such that h(x) = y, then

hO(xO) = (h(x))O = yo = y, thus ho is onto.D

1.13 Corollary. The assignment 0-: B; -9 H_ given by L P-> L0 for

L e g; , h P—9ho for fig-homo/morphisms h, is a covariant functor

which preserves 1-1 homomorphisms and onto-homomorphisms.
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1 14 Theorem. Let L e H‘. There exists a unique interior operator on

B-(L) such that (B—(L))0= L, which is defined as follows: if
0 _ H _+

(uiaawvi), where ui,vi e L, then a -i21(ui vi).
_ n

a e B (L), a=.E1-1

In particular, it follows that 0 is representative.

Proof. Recall that for each a e B’(L) there exist Ui,Vi 6 L.
n .

i=l.-n, such that a =ifl](ui =9 vi). Now, if u,v e L then

max((u =9 V] n L) = max{x 5 L [ xu S v = u-+ v, and therefore, if
n .

a =_H Q1,=¢v;) then max((aj n L) =, (u.-+ v.). The theorem follows
1:] 1 1 1 1 1

now from 1.4.D

Henceforth B—(L) will denote the generalized interior algebra

provided with the interior operator as defined in 1.14, for any L 6 E-.

1.15 Definition. If L 6 g; is such that L = B—(LO) then L is

called a *-algebra.

1.16 Theorem. Let L e flf, L1 6 gg , h: L -9 L? an E7-homomorphism.

Then there exists a unique §;-homomorphism h: B-(L) -9 L1 such that

E I L = h.

Proof. There exists a unique Ef-homomorphism h: B—(L)——>L1,extending
- n

h. If a 6 B (L) then a = H (u. =9 vi), ui,vi 6 L and

‘ O _ n _ U __ _ n 0 _=
h(a ) h(i£](Ui + Vi)) - i2]h(Ui) > h(Vi) ~ (i£](h(Ui) '° h(Vi)))
= <fi<a>>°.n

1.17 Corollarz. If L 5 §; , L1 an flf-subalgebra of L0, then

ELIJBT = B'(L1).-1
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1.18 Corollary. The assignment 8-: H_ -9 8; given by L »-> B—(L)

for L e flf and h F-9 h for E:-homomorphisms h, is a covariant

functor which preserves I-I homorphisms and onto homomorphisms.

Furthermore, B‘ is full embedding.

In fact, the functor B- is a left adjoint of the functor 0-.
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Section 2. Interior algebras: definition, basic properties and

relation with generalized interior algebras

Most of the results obtained in section 1 for generalized inte­

rior algebras hold mntatis mutandis for interior algebras as well. For

future reference we list someof themwithout proof (2.3-2.17). In the

second part of this section we establish a relationship between the

classes Bi and fig. It is shownthat there exist a full embedding

Bi ——9Bi and a representative covariant functor Bi -9 B; (2.18).

Westart nowwith the definition of interior algebra.

2.1. Definition. Aninterior algebra is an algebra (L,(+,.,',°,0,l))

such that (L,(+,.,',0,l)) is a Booleanalgebra and O is an interior

operator on L.

The class of interior algebras is determined by the usual equa­

tions defining the variety of Boolean algebras together with the equa­

tions in 1.]. The variety of interior algebras will be denoted by Bi.

2.2 Associated with an interior operator 0 on a Boolean algebra is a
c . . .closure operator , defined by xc = x’o' for x e L. It satisfies

the identities <1)’ 0° = 0, <11)’ x g x“, (iii)' x°° = x“ and
c

+ yc. In the past, most authors preferred to work
. c

(1v)' (X + y) = x

with the closure operator; therefore our interior algebras are better

knownunder the nameclosure algebras. The alternative name "topologi­

cal Boolean algebras" (used in Rasiowa and Sikorski [63] ) finds

its origin in the well-known theorem by McKinseyand Tarski, which

says that every interior algebra can be embeddedin the interior alge­
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bra constituted by the Boolean algebra of all subsets of sometopologi­

cal space, provided with the topological interior operator.

Most of the results contained in 2.3-2.15 were published earlier

in Blok and Dwinger [74].

2.3 Theorem. Let L e gi , and for a,b e L0 let a + b = (a' + b)O.

Then (L°,(+,.,+,0,l)) is a Heyting algebra.

2.4 Theorem. Let L e §_, L1 a Q0]-sublattice of L. There exists an
0

interior operator 0 on L such that L1 = L iff for all

a e L (a] n L1 has a largest element.

2.5 Theorem. Let L e‘§i . Then

H2(1) C(L) Foo.)

F(L°)IIZ(ii) Fo(L)

2.6 Corollary. Let L e gi . Then C(L) ;’C(L°), where L0 is consid­

ered as a Heyting algebra.

2.7 Corollary. If L e gi then L is subdirectly irreducible iff L0

is a subdirectly irreducible Heyting algebra. Thus L e fiisl iff
LO IIZ L1 3 1, where L1 e‘fl .

2.8 Corollary. The variety ‘E1 is congruence-distributive.

2.9 Corollary. gi has CEP.

If L e gi , L1 e S(L), then 0 5 L1. Therefore a proper open

filter of L is not a subalgebra of L. If a,b 6 Lo, a S b, then

[a,b] can be madeinto an interior algebra by defining

°[a,b] = x0v b
x Ea’ ] = a + x'.b and x for any x 5 [a,b], and



-26­

+,.,O,l as usual. Moreover, the mapping f: L -9 (a] defined by

x F-9 x.a is a Bi~homomorphism.Furthermore, if h: l.-9 L] is an Onto

gi-homomorphism, L,L1 e gi , and h-1({l}) = [a) for some a e LO,

then L1 3 (a].

0 I
2.10 Theorem. Let L e gi , a 6 L , a 6 Lo. Then L (a] x (a'] =IIZ

= Ea) x [a').

The connection between ‘gi and E_ is clarified by the next few

theorems.

2.11 Theorem. Let L,L1 e Ei , h: L -9 L] a Ei-homomorphism. Then

(1) h[L°J s L? .

(ii) ho = h | Lo: L0-9'L€ is an fl-homomorphism, and if

h is onto, then ho is onto.

2.12 Corollary. The assignment 0: Bi ——9H given by L P-9 Lo, l1*-9 ho

is a covariant representative functor which preserves I-l homomorphisms

and onto homomorphisms.

2.13 Theorem. Let L 6 §_. There exists a unique interior operator on

B(L) such that (B(L))° = L_, defined as follows: if a e B(L),
0 D.+ V. where u. v. L then a = . v. .

1)’ 1’ 1 6 ’ ig (U1 + 1)
I

a - (ui 1than1

In the sequel, if L 5 §_, B(L) will denote the interior algebra

provided with this interior operator.

2.14 Definition. If L e‘§i is such that L = B(Lo) then L is called

a *-algebra.

2.15 Theorem. Let L e E_, L1 6 Ei , h: L -9 L? an Q-homomorphism.
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Then there exists a unique Ei-homomorphism h: B(L) -> L1 such that

hIL=h.

2.16 Corollary. If L e.§i , L1 an flfsubalgebra of L0, then

[L1 = B(L1).JB.-1

2.17 Corollary. The assignment 8: H -9 Bi given by L P-9 B(L),

h H-9 h is a covariant functor which preserves I-l homomorphismsand

onto homomorphisms. Furthermore, B is a full embedding.

Again, the functor B is a left adjoint of the functor 0 .

2.18 Relation between 31 and B;

2.19 Definition. Let L e_§i . An element x e L is called a dense

element of L if xO'O = 0 or, equivalently, if xoc = 1. The set of

dense elements of L will be denoted by D(L).

2.20 Theorem. Let L e.§i . Then D(L) is an open filter of L, and

hence D(L) is a E;-subalgebra of L.
'0 0'0

Proof. If x e D(L), y 2 x then yo S x = 0 , hence y e D(L).

Let x,y 6 D(L). Wewant to show that xy 5 D(L). Clearly
0|

xO.yO.(xy)0'O = x°.y°(xO.yo)'o = 0 . Hence y°.(xy)°'o S x and there­

fore y°.(xy)°'° S xO'O= 0 . This implies (xy)°'° 5 yo‘, therefore

(xy)°'° S yo'o = 0 , and thus xy 6 D(L). Finally, if x e D(L) then

x0 e D(L) so D(L) is an open filter of L and hence a E;-subalgebra

of L.D

In fact, every generalized interior algebra can be obtained as the

algebra of dense elements of some interior algebra, as we shall show now.
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Note that if L GE; then L is a 2]—lattice. In accordance with the

notation in 0.2.4,0 0 L denotes the Q0] lattice {0} UL, 0 being

added as a smallest element.

2.2! Theorem. Let L e.§; , with interior operator 0, 0 4 L. There

exists an interior operator 01 on the Boolean algebra B(Oe L) gen­

erated by the Q01 lattice 0 e L such that B(O e L)°1 = O 6 Lo and

D(B(O 0 L)) = L.

Proof. Note that B(O6 L) is the disjoint union of the sets L and

ix’ I x E L}. Define for x e B(O 6 L)

x0 if x e L

0 if x‘ e L

Clearly then 10101 = 1 , x01 S x , X0101 = x0’ for any x e B(O e L).

Let x,y e B(O 0 L). If x,y e L, then (xy)°1 = (xy)° = xoyo = xolyoi.

If x i L, y é L, then (XY)' = x' + y' e L, hence

(xy)°1 = 0 = xo1.y°1 . If x e L, y d L, then (xy)' = x' + y' =

_ V 01 _ _ O1 01 . . .—x =9 y 6 L, hence (xy) - O —x y . Similarly, if x 6 L,

y 6 L. Therefore 01 is an interior operator on B(O0 L). Furthermore,

it follows from the definition of O1 that B(O 6 L)O1 = 0 9 L0.

Finally, if u e L, then uO1' 6 L, hence u°"°1 = 0. Thus

L E D(B(O 0 L)). But if u ¢ L, then uol = 0, hence u°1'°1 = 1,

thus u é D(B(O 9 L)). We conclude that L = D(B(O 0 L)).D

2.22 Theorem. Let L, L1 6 gi , f: L -9 L1 a gi-homomorphism. Then
D L ­

f = f i D(L)= D(L) ‘*9 D(L1) is a Ei-homomorphism. Moreover, if f is
D .onto, then f is also onto.

§£22£- If X 6 D(L), then (f(x))o‘o = f(xO'°) = f(0) = 0, hence

f(x) 5 D(L1). Thus fD is well—defined. It is obvious that f is a
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B;~homomorphism. Next suppose, that y e D(L1), and let x e L be such

that f(x) = y. Then f(x°'°) = y°'° = 0. Thus f(x + x°'°) = y, and
0:0 ovo 0 0:0 10 0'0 O'O'O

) = X ux : 0'(x + x ) s (x + x Hence

x + xo'O e D(L), and fD(x + xo'°) = y.U

2.23 Theorem. Let L, L1 6 pg , f: L —> L1 a §;-homomorphism There

exists a unique §i- homomorphism f: B(O e L) ‘-9 B(O $ L1) Such that

f I L = f. If f is onto then so is f. Here B(O 9 L), B(O 0 L1)

are understood to be provided with the interior operator as defined in

2.2].

Proof. First extend f: L -9 L1 to a Q0]-homomorphism

f : O 6 L -9 0 9 L1 by defining f’ f U {(0,0)}. f‘ can be con­

sidered as a Q0]-homomorphism 0 9 L -9 B(O 9 L1), hence can be exten­

ded uniquely to a gfhomomorphism f: B(O 0 L) -9 B(O 0 L1)- It is 3

matter of easy verification to showthat f(xO1) = (f(x))°1 for any

x e B(O0 L), and that f is onto iff f is onto.U

2.24 Corollary. D: Bi -9 B; defined by L H-9 D(L) and f H-9 fD is

a covariant functor, which preserves 1-] and onto homomorphismsand is

representative.

2.25 Corollary. The assignment L P-9 B(O 9 L), f F-9 f is a covariant

functor from B; to Bi . It is in fact a full embedding.

Proof. Follows from the fact that D(B(0 o L)) = L , for L 5 §;, and

by 2.22, 2.23.D

2.26 Remark. Weshall often treat Bi as a subclass of B: by identifying""‘*‘ “ *1

the algebra L = (L,(+,.,',0,O,l)) e Ei with the algebra

L- = (La(+,.,=»,0,1)) 5 §; , where for a,b e L a =9 b = a' + b. If
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we want to emphasize that an algebra L 5 gi is to be considered an

element of E; we shall use the notation L_.

Conversely, every generalized interior algebra L with smallest ele­

ment a may be looked upon as an interior algebra by letting O = a

and x' = x -9 a for x 6 L. Furthermore, if L],L? 6 2g both

have a smallest element and h: L1 -9 L2 is a E;-homomorphism

mapping the smallest element of L1 upon the smallest element of L2

then h is a gi-homomorphismif we treat L1, L2 as indicated.

Section 3. Twoinfinite interior algebras generated by_one element

As early as 1922 C. Kuratowski [22] gave an example of a topolo­

gical space with a subset A, such that there exist gi-polynomials

,p ,... with the property that V i,j 2 0 pi(A) # pj(A) if0 l

i # j. Fromthis result it follows that FB(]) is infinite, and
—i

hence, that .§i- is not locally finite. The objective of this section

P

is to present two interior algebras, both infinite and generated by

one element, which are of a much simpler structure than Kuratowski's

example, and which will play a significant role in subsequent sections.

3.1 Let L e‘§i be such that

L = P(N) and L0 = {[1,n] I n 6 N} U {¢,N} ,

suggested by the diagram
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@993 ~>»

Let a = {Zn I n e N} e L. The §;- subalgebra of L, ‘§;—generated by

by a, [a]B- , will be denoted by K .(X3-1

3.2 Theorem. K0 ; w + 1, hence Kw is infinite.®

Proof. We show that B(LO) c Kw. Define a sequence of §;-polynomials

pO,p1,... as follows:

3.3 (i) PO(X) = x0 . p1(x) = (x =9 xO)O

(ii) p2n<x) = <<x =9 x°> => p2n_,<x>>° ,

p2n+,<x) = (x => p2n<x>>°

Then pb(a) = ¢ , pI(a) = {1} . Weclaim that pn(a) = [],n] ,

for n > 1. Suppose that p2k(a) = [l,2k] for some k 2 1. Then

[1,2k+1]fl
p2k+](a) == (a =9 p2k(a))O == ({2n-1 1 n e N} u [1,2k])°

And if p2k+l(a) = [l,2k+l] for some k 2 1, then

p2k+2(a) ((a =9 a0) =9 p2k+](a))° = ({2n I n e N} U [l,2k+l})° =

= [1,2k+2J . Hence L° c £aJB- = Km , thus B(L°).5 Km by 2.6.D-1

In fact, it is not difficult to see that [B(LO)U {a}]B‘ is a

w B

Note that B(LO) is,as a Boolean a1gebra,isomorphic to the Boolean

algebra of finite and cofinite subsets of a countable set, and that

therefore a E B(L°).
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3.4 Since K: is a well-ordered chain, every open filter of Km is

principal, hence every proper homomorphic image of Kw is of the form

([l,n]] for some n 2 0. The interior algebra ([l,n]] will be de­

IIZnoted by K , n 2 0. Thus K : 2n , K0 n+1 . K is
n n B - n -—- n

E;-generated by the element a.[l,n] = {2k I 2k 5 n, k e N} . A

remarkable property of the Kn , n 2 0 , is that they are generated

by their sets of open elements; in symbols, Kn = B(K:). Thus the

Kn , n 2 0, are *-algebras (cf. 2.14). As a e Kw\B(Ki), Kw itself

is not a *-algebra.

Our second example of an infinite interior algebra generated by

one element is the *-algebra, whose lattice of open elements is the

free Heyting algebra on one generator, FH(l). Rieger [57] was the

first to determine the structure of FH(]); cf. also Nishimura E60]:

FH(1) The generator is c‘ . (2)

Let H” = B(FH(])) (provided, as usual, with the interior operator of

2.13). Hm is a *-algebra, obviously, and we have
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3.5 Theorem. If cl is the generator of FH(l), then Hm= [c]]B
- —d

Proof. By 2.11, [CI] is an flfsubalgebra of Hg = FH(1). Because
o
B.-1

cl 5 Ecllgi , Ecllgi = FE(1). Therefore

Hm= B(FH(l)) = B([c]Jg_) g [c]]B_ g Hm .D- -1 -1

A set representation of Hm is obtained as follows.

Let L 5 Bi be such, that L = FKN) and

L° = {[l,n] | n E N} u {[1,n] u {n+2} | n E N} u {2} U {¢,N} .

This is a gooddefinition, since the conditions of 2.4 are satisfied.
0 :

It is easy to see, that L FH(l), where {1} e L0 corresponds

with the generator of FH(l). Hence Hm3 B(L0). B(LO) consists of

the finite and cofinite subsets of N, and is as Boolean algebra gen­

erated by the chain ¢ C {1} C {1,2} C ... C [l,n] C ... , which cor­

responds with the chain co < cl < C2 <.. < cn < ... as indicated in

the diagram of FH(l). Wedefine a sequence of Bi-polynomials as
follows:

3.6 Definition. q0,q1,... are unary Bi-polynomials such that

(i) q0(x) = 0 , q1(x) = x

(ii) for n 2 ] qn+1(x) = (qn(x)' + qn_1(x))o +

+ qn(x)

3.7 Theorem. As a Boolean algebra, Hm is isomorphic to the Boolean

algebra of finite and cofinite subsets of a countable set. If C1 is

the generator of H: , then Hm is Bfgenerated by the chain

q0(c1) < q1(c1) < .. < qn(c1) < .. , hence for any X e Hm either

x or x' can be represented uniquely in the form
k
E q (c])' qi.+l(c]) for some 0 S i] < ... < ik , k 2 O .
— J
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Proof. Consider the set representation of Hm, just given. By the

remarks made above, the theorem will follow if we show that

[l,n], n 2 0. Now qO({l}) = ¢ , q]({l}) = {I}. Supposeqn({1})

qn({]}) = [l,n], n > I. Bydefinition

qn+]({l}) = ([n+l,w) u [1,n—1])° u [1,n] = E1,n-1] u {n+1} u [1,nJ =

= [1,n+l].D

3.8 As can be seen by inspection of the diagram of FH(l), all open

filters of Hm are principal. Hence the proper homomorphicimages of

Hm are of the form ([l,nJ], n 2 0, which shall be denoted Hn ,

n > 0, or of the form ([l,n] U {n+2}], n 2 1. Apparently Hn E g“,
0 I2

—(cn] E_FH(1). The algebras ([],n] U {n+2}] are isomorphic with

B(H: e 1); indeed, ([I,n] u {n+2}]° 3([l,n]l°0 1 , and

([1,n] U {n+2}], being a homomorphic image of a *—algebra, is a

*-algebra itself. The next theorem tells us that except for Hm these

algebras are the only ones which are generated by an open element.

3.9 Theorem. Hm3 FB (l,{x0 = x})
—i

Proof. Weverify (i), (ii) and (iii) of 0.1.22. Hw is generated by the

the element c which satisfies c? = cl , and Hme Ei . To veri­I 9

fy the third requirement, let L e gi , y e L such that yo = y. Then

y 5 L0 e H’, hence there exists an Hfhomomorphism f: FH(]) -9 Lo

satisfying f(c]) = y. By 2.15 f can be extended to a fii-homomorphism

f: B(FH(])) = H; -9 L, still satisfying f(c]) = y.D

3.10 Corollary. Let L 6 ga be generated by an open element x. Then

L H , or L 3 B(H: 0 1), for some n 2 O . For all
k .

z 6 L, z or 2' can be written as ,2 q; (x) qi +](x), for some
J: a JD

1
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Proof. By 3.9, 3.8 and 3.7. U

Note that Hm is the only infinite interior algebra generated by an

open element. Theorem3.9 can be generalized without difficulty to

3.1] Theorem. B(FH(n)) 2; FB (n,{xE = xi I i = 1,2,...n}), for any- -i
n e N.

3.12 whereas Km is fig-generated by one element, it will follow

from considerations in section II.3 that Hm is not g;-generated by

any element. However, by slightly modifying the algebra Hm we can

turn it into an algebra Q;-generated by one element. Indeed, let

L = P(N), L° = {{1},{2,3},{1,4},¢,N} u {[1,n] | n 2 3, n e N} u

{[l,n] U {n+2} I n 2 3, n e N}. L is an interior algebra, and the

fig-subalgebra of L consisting of all finite and cofinite subsets

of N is the desired algebra, fig-generated by one element, which

will be denoted H: . The distinction between Hm and H; is that

the open atom {2} 5 Hm has been replaced by the open set {2,3}.

H+, H: N H+O : FH(l) (see diagram on pg.32 ).
llFurther Hm CD ®

IUUIIZ

Hm is not a *-algfibra, since {2},{3} e H: \ B(H:O). H; is_§;-gen­

erated by its element {3,4}. Using the polynomials defined in 3.6

we see that ¢ = {3,4}O, {1} = ({3,4}== ¢)O and [I,n+l] = qn({l})

for n > 1, which together with {3,4} clearly 37-generate Hm.

Likewise the homomorphic images of H: are fig-generated by one ele­

ment; the algebras ([l,n+l]] will be denoted H; for n > 1 .

2n+l , H+o
— II

II?
+

Hence Hn (cn] 5 Ffi(1) , n > I , n e N.lwnl
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Section 4. Principal ideals in finitely generated free algebras in

Q. and g?1 -——- 1

In the preceding section we have seen that there are infinite

(generalized) interior algebras generated by one element. This implies

that FB (1) as well as FB-(1) are infinite. Nowwe want to obtain
—i —i

somemore detailed information concerning these algebras and more gen­

erally about FB (n) and FB-(n) , n e N. A complete description
—i —i

as the one given of FH(l) in section 3 should not be expected: our

results will rather showhowcomplicated the structure of even FB-(1)
—i

and F3 (1) is.
—i

Westart with a general theorem on ideals in FB (n) or FB-(n)
—i —i

generated by an open element and deduce somecorollaries (4.!-4.1!).

Having established somefacts dealing with covers (4.12-4.17) the most

striking one of which is the result that there exists a u e FB (1)0
—i

which has R0 open covers, we proceed to show that not every interior

algebra generated by one element is isomorphic to a principal ideal of
8

FB (1) by exhibiting a collection of 2 ° non-isomorphic interior
—i

algebras generated by one element, which may even be chosen to be sub­

directly irreducible (4.18-4.28).

4.1 Theorem. (i) Let n e N . If 9 is a finite set of n-ary

B.gi-identities, then there exists a u e F (n)o such that
~ -1

(u] = FB (n,Q).
—i

(ii) If u e FB'(n)o, then (u] = FB (n,{p=l}), where p is some
._.]_ __i_

n-ary Ei-polynomial.

Thusan interior algebra L is finitely presentable iff

L 3 (u] . for some u 5 FB (n)0, and some n e N.-1



._

Proof. (i) AnyBi-identity p = q is equivalent with an identity of

the form r = 1. Indeed, p = q iff (p' + q)(p + q‘) = 1. Suppose

that Q = {pi = l I i = 1...k}. If xl...xn are free generators of
k _ ~

F (n), and u =_H p?(x ,...x ), then (uj = F (n,Q). Indeed, (uj
1=] 1 1 n

is generated by the elements x]u,...xnu , and pi(x]u,...xnu) =

= pi(xl...xn).u = u for i = 1,2...k since the map FB (n)-—$ 01]-i
defined by x Pe>x.u is a homomorphism. If L e §i , such that

pi(bl...bn) = 1 for i = l,2...k, let g: FB.(n)-——+L-1
i = 1,2...n . Then

L =[{b ..bn}]' 91’.

be a homomorphismsuch that g(xi) = bi,

pi(x1,...xn) 6 g-l({l}), hence p:(x]...xn) E g_]({l}) and therefore

Cu) S g-l({l}). By the homomorphismtheorem there exists a homomor­

phism g: (u] —e>L such that the diagram

F (n) -——3i-+ L
B. ,,-1 ///

NJ ,’_/I g/
(uj

commutes. g is the desired homomorphism extending the map xiu ~—+bi,

i = l,2IOOnO

(ii) Let u 5 FB (n)O. Then u = p(x],...xn), for somefii-polynomial-i
p, if xl...xn are free generators of FB (n). (u] is generated by-i
the elements x]u,...xnu , and the generators satisfy p(x]u,...xnu) =

= p(x1...xn).u = u = 1 . The remaining requirement is verified as it(u]
was in (i).D

4.2 Remark. The same theorem holds for the varieties §;,11,g'} andzfiifact,

fl, flf. The proofs arealso for any non-trivial subvariety of ]_3., 13,;,1
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similar to the given one. Thoughstated for fii only, the following

two corollaries apply to the mentionedvarieties, too.

4.3 Corollary. If L e gi is finite and generated by n elements then
0

there is a u e FB (n) such that L ; (u].-1

Proof. Let L e fii be finite and suppose that L = [{a1,...an}].

Let pa. be the n-ary fii-polynomial xi, i = l,...n, and in general1

let px be a fii-polynomial such that px(al,...an) = x,
for each X 6 L­

Let Q be the collection of equations of the type px + py = px+y ,

, and pxo = p 0 for x,y e L and p0 = O,P x.‘—' ' =

PX - py pX_y, X PX

pl = 1- Then L = F§i(n,Q). For if L] = [{b1,...bn}3 and b1,...bn

satisfy 9 then {px(b],...bn) I x e L} = L1 and the map f : L + L1

defined by f(x) = px(bl,...bn) is a homomorphismextending the map

i = l,...n. Since 9 is finite, the corollary follows.D

4-4 C0r011arz- If 0 < k 5 n , then there exists a u 6 FB (n)° such
1

that FB (k) 3' (u] .-1

3539i’ F3 (k) ; FD1(n’{xk = xk+l ’ xk = xk+2 ’ ’°° xk = xn})°D-1

4.5 Corollary. There exists a u 5 FB (1)0, such that H 3 (u]. Hence
...i °°

FB (1) possesses an infinite number of atoms.-1
Pr00f- BY3.9 and 4.1 (i). If p e (u] is an atom in (u], then p

is also an atom in FB (1); since Hm contains infinitely many atoms,-i
so does FB (1) .D-i

4.6 Corollary. For n e N , there exists a u 5 FB (n)O such that
N -i

B(FH(n)) = (u] .
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Proof. By 3.11, 4.1 (i).D

4.7 Corollary. For n e N, there exists a u e FB-(n)0, such that-i
B-(PH-(n)) 3 (u].

Proof. B—(FH-(n))3 FB-(n, ix? = xi I i = l...n}).U"“" - -1

Before proceeding to the next result, we need a lema. It will

showthat every finitely generated generalized interior algebra has a

smallest element and can therefore be treated as an interior algebra

(cf. 2.26). Thereuponwe prove that the free generalized interior alge­

bra on n generators is fii-isomorphic to a principal ideal of the free

interior algebra on n generators.

4.8 Lema. (i) Let L E fig be finitely generated. Then L has a

smallest element.
~ n

(ii) F -(n) = F (n,{ n x? = 0}), for any n e N.B. B- -= 1 ­-1 --1 1 1

Proof. (i) Let L € fig , and let x]...xn be generators of L. we
n

claim that a =.Hl x? is the smallest element of L. Obviously,1:

a S xi , i = ]...n . Let p,q be fl;-polynomials such that

a < P(Xl,...xn), a S q(xl...xn). Then a S p(x1...xn) + q(xl...xn) ,

a 5 p(X]...xn).q(x]...xn), a S p(x1...xn)== q(x]...xn) and

a S p(x1...xn)O. The proof of our claim now follows by induction.

(ii) Let x .xn be the free generators of FB~(n). Weshall1,‘. j
1 n

treat FB-(n) as element of fii with smallest element 0 =_H xi-1 i=1
. , 11

There exists a gi-homomorphism h: FB.(n,{iE] x2 = 0}) —e»FB-(n) map­*1 " -i
n

. t‘ out ?= to
ping ne generators yl yn of F§i(n,{i2] x1 0}) onto xl .xn

, n
respectively. On the other hand, F (n,{,H x? = 0}): [{y ...y H - ,1=] 1 1 n

n
as 0 =_H y? e[{y ...y H - . Since h is onto, it follows that

1=l 1 1 n Ei
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n ~
FB (n,{_H x? = 0}) =_ F -(n) , and because h(O) = 0,_. 1:1 1 _B_p E.1 1 1

n O &l

FE (n,{i§l xi = 0}) E. F§T(n) .D
1 1 1

4.9 Theorem. There exists a u 5 FB (n)° such that FB-(n) % (u] ,‘i ‘i -i
for any n e N.

Proof. By 4.1 (i), 4.8.U

Conversely, every FB (n), n e N is isomorphic to a principal
1

ideal of FB-(n+1).-1

“’ “H ° ' f N
4.10 Lemma. FE (n) 3. FE (n+l,{i£] xi - xn+l}), or any n 6 .

1 1 1
- n

3532:. Let {xl...xn+l} fii-generate F§;(n+1,{iE] xi = xn+l}), such

h E ° - d 1 F ( ) If
t at 1:] xi - xn+] , an et {yl...yn} gi generate Ei n .

yn+l = 0 , then {y]...yn+l} fig-generates FB (n) and-1
“*1 o . ~ .

ii] yi = yn+l , hence there exists a gi-homomorphism
n+1 0

h‘ F1t<n+'»{s;, xi = =<n+]}> -—->FB.(n)1 -1

such that h(xi) = yi , i = l,2...n+l, which is onto. Since h maps

the smallest element of F -(n+l,{,§ x? = x }) upon the O of
§. 1:] 1 n+1

1

. . . “+3 0

F§i(n), h 1s also a §i—homomorph1sm.Finally, FBj(n+],{iE] xi = xn+l}).-1
regarded as interior algebra, is gi-generated by xl...xn, therefore

h is 1-1 d F ( 3 F - +1 “+1 ° ­
an E1 n) _-Bi§i(n dig] xi -xn+,}) -0

4.1] Theorem. There exists a u e FB—(n+])° such that FB (n) (u),1 "i IwllZ
[-19

for any n e N.

Proof. By 4.10, 4.1 (i).D
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4.12 Covers in. FB (H)“i

Let L be a partially ordered set, a,b e L. Wesay that a is

covered by b or that b is a cover of a if a < b and.therr:exists

no c e L such that a < c < b. If b covers a we write a-4 b ;

if we wish to emphasize that b covers :1 in I. we write also a-4 b .

Thus the atoms in a lattice are the elements which cover 0.

In 4.5 we concluded that FB (1) has an infinite ‘numberof
—i

atoms and in virtue of 4.4 so does FB (n) , n e N". The question‘i
arises how many open atoms FB (n) possesses.

—i

4.13 Theorem. F (n) has Zn open atoms, n e N.

Proof. Let x],x2,...xn be free generators of FB (n).“i
51 xi if 51 = ’ n f(i)o

Let xi = . If f e {l,2} , then af = ‘H x.
x‘ if e = 2 1=1 1

1 1

is an open atom. Indeed, af is open and (af] = [{x]af,...xnaf}] =

= {0,af} 2: 2, since xiaf = af if f(i) = 1 , and xiaf = 0 if

f(i) = 2, i = 1...n. Therefore af is an open atom. Conversely, if
. f(i)

u 1S an open atom of FB (n) , then u S _H xi for some
—i 1=l

f e {l,2}n, hence u < (,3 x§(1))0 — , thus u = a . U1:] 1 f f

Theorem 4.13 says that the element 0 is covered by Zn open

elements in FE (n). In particular, the open atoms of f§i{x}) are
x0 and x'O ].We shall show now that there are open elements in

F (1) which have infinitely many open covers in. FB’(l) . Contrast

this with the situation in FH(]) , where every elememt except 1 has

precisely two covers.

Weneed a rather technical lema.
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4.14 Lema. Let for i e N Li be the interior algebra of all finite

and cofinite subsets of N U {i+}, where i+ d N, such that

L? = {¢,N,N u {1*},{2}} u {[1,n],[1,n] U {n+2} | n E N}

U {[l,n] U {i+},[1,n] u {n+2} u {i*} | n E N , n 2 i} ,

suggested by the diagram

C59’); . . .. .>, t,
Let q0,q],... be gi-polynomials as defined in 3.6 and let Qi con­

sist of the equations

(1) x? = X]

I/\
.. ,

(11) X2 qi+l(xl)'qi+2(x1)

(iii) (x2 + qj_](x]) + q3(xl))o , qj_](xl) + q3(x]).qj+](xl) ,lsjsi
(iv) (x2 + qi<x,>)° = x2 + qi(x])

IO '
(V) x2 = x2

Then Li ; F (2s5?i), where {l},{i+} are the generators of Li-1
satisfying Qi , for any i 5 N, i 2 2.

Proof. It easy to verify that Li is generated by the elements {I},

{i+}, and that these elements satisfy the equations in 91. Let

L e §i , L = [{y1.y2}]B' such that y],y2 satisfy the equations-1
of Q. . Let 'L' = [[y ] ,y ] ; then L‘ c L. We claim that1 1§.2 '­B1 2

L’ = L. If w 5 L’, then w = (y2+zl)(yé + zz), z],z2 e [yljfii
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(see e.g Gr§tzer_[7]] pg. 84). Weshall show that wo e L'

I

Now wo = (yz + zl)O.(y2 + Z2)o­

. - 0 _

1) (yé + z2)O 5 L‘. Since 22 e [y]J§i , yl —yl , by 3.10

z or 25 can be written as Z I . . ,

2 jzl q1j(Y1) q1j+](y1)

qi'(y]) qi.+l(y]) . If i],i2,...ik # i+l , then
J

k ..

yzzz 5 q£+](y]).qi+2(yl).(j§] q£j(yl) qij+](y1)) = 0 . by (11). hence

(yé + z2)O = yéo = yé 6 L’ , by (V). If ij = i+l for some j ,

1 < j 5 k , then y2 5 z2 , hence (yé + z2)o 2 (yé + y2)° = 1 € L’.

, = , . . . .

b) zz jg] qij(y]).qij+l(y]). If 1l,l2,...lk # 1 + l , then

yzzé = 0 , thus y2 5 z2 and (yé + z2)0 2 (yé + y2)0 = J 6 L’ . If

ij = i + I for some j , I S j S k , then y2 S zé , hence y2z2 = 0

and (yé + z2)° = yéo = yé e L‘

2) (yz + zl)0 e L'. If yz 5 2] , then (y2 + z])o = 2? 5 L’.

Applying the reasoning of 1), we conclude that if y2 5 z] , then

Y2-Z1 = 0 . Hence (yz + z])° S Y2 + y§(y2 + z,)° = Y2 + yé°(y2 + z])°,

again, by (V). Now y£0(y2 + z])O 5 yé(y2 + 2!) 5 z] , hence

yéO(y2 + z])O S z? . Thus (yz + z])° 5 y2 + z? . If qi(y]) 5 z] ,

then (yz + zl)° = (Y2 + qi(y,) + z])° 2 (Y2 + qi(y]))° + z:)=

= y2 + qi<y,> + 2? = y2 + 2? . by (iv), hence <y2 + z,>°

If qi(y]) £ Z] , then there is a jo , l 5 jo 5 i , such that
V

q jO_](y]) qjO(y]) £ 21 , thus 2] S qjO_1(y]) + q3O(y]) and
o o _

(Y2 + 2,) s (yz + qj _](y,) + qg (y,)) —o o

= ‘ ! 0 a

qJO_l(y]) + qJ (Y1) qJ +](yl) 9o o

by (iii)j , and since yz 5 q{+](y]).qi+2(y]) by (ii), and jo 5 i ,
O

= y2 + z? e L’.
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it follows that (yz + z])o = z? e L‘

Thus we have shown that L‘ is a §i-subalgebra of L ; since

L‘ contains the generators yl , yz of L it follows that L = L‘.
uz FB (2,Qi) it remains to show that the

—i

map {1} P%>y] , {i+}i-9 yz can be extended to a homomorphism Li-e>L.

In order to prove that Li

Since [{1}] g H , there exists a fli-homomorphism f: [{1}]-9 [yljm

such that f({l}) = y] . Then for all z e [{1}], {i+} S z implies

yz 3 f(z) and {i+} 2 2 iff yz 2 f(z). It is known (see Gratzer

[7]] pg. 84) that f can then be extended to a §-homomorphism

E: Li —->L such that E({i*}) = y2 . Let w = ({3} + z1)({i+}' + 22),

2 z2 e [{1}]. Then f(w) = (y2 + f(zl))(Yé + f(z2)) and it follows19

from the preceding arguments that f(w°) = (f(w))O . Therefore f is

"Z

a fii-homomorphism and Li F§i(2,Qi) .D

4.15 Theorem. There is a u 5 FB (1)0 which has Rb open covers in-i
F_B_<1>1

Proof. Li , i 2 2 , i e N is generated by the single element

x = {l,i+} , therefore Li : FB'(l,Qi), where 9; consists of the

equations of Qi with x] replaced by x0 , and x2 by x x0‘

B (1), fi: FB (1) ‘9 Li, i Z 2, i 6 N,

the homomorphismsatisfying fi(x) = {1,i+}.—1 Let ni:

Let x be the generator of F

L. ->11 be
1 ®

the homomorphismdefined by wi(z) = z.{i+}' , where we think of Hm

as being given in the set representation following 3.5. Then for each

i e N, i 2 2 niofi: F§i(])-—e~Hm with niofi(x) = {I}. Since Li,
i 2 2 and Hm are finitely presentable in virtue of 4.14 and 3.9 ,

(1)0 , i 2 2, such that (ui] '3-L.,
there exist by 4.1 (i) ui,u 6 PB‘ 1-1
i 2 2, (u] 3 Hw and (u] g (uil. In fact, if pi is the atom in

FB (1) corresponding with {i+}, then u = ui.pi , hence u 4 ui ,-i
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i 2 2, i e N .U

A similar result can be obtained for FB-(1). The proof, which
—i

. . . + .

we omit, uses a modification of our Li , based on Hm instead of

Hm (cf. 3.12).

4.16 Theorem. There exists a u e PB-(1)0 which is covered in FB-(1)"i -i
by 80 open elements.

4.17 Corollary FBT(l) has a subalgebra which has countably many open

atoms. 1

Erggg. If u e FBT(J) has 0 open covers then Eu) g FBT(J) is a

fig-subalgebra of lFBT(l) having countably many open atomsffl-1

R
4.18 2 ° interior algebras generated by one element

As far as principal ideals are concerned, there seems to be a lot

of room in FB (n), n e N. The question arises, whether every n-gen­

erated interio: algebra is isomorphic to someprincipal ideal in FB (n),

as is the case for l-generated Heyting algebras with respect to 1

FH(]). Weshall answer this question negatively by constructing a fa­

mily of continuously manypairwise non-isomorphic interior algebras,

generated by one element. The algebras will be a generalization of the

Li's employed above.

4.19 Let (an)n = a be a sequence of 0's and 1's, such that

a] = 0 Let

xa = {(n,O) | n e N} u {(n,1) | an = 1} g N x {o,1}.

Let
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B = {¢,(2,o)} U {{(k,0) | k g n} | n e N} u

U {{<k,o> I ksn} U {(n + 2.0)} I ne N} U

U {{(k.o) I k s n} U {cum} 1 n e N, an =1}

An example is suggested by the diagram:

., g=o1o11o...
«>99v>> i>» .

Let L = P(Xa) , and define an interior operator on L by taking Ba

as a base for the open elements; that is, if x e L let

x0 = E {y 6 Ba I y S x} : then 10 = 1 , xo 5 x , x00 = x0 and

(xy)O = xoyo since Ba is closed under finite products. If an = 1,

let us write n+ instead of (n,l) and in general let us write n

for (n,O). Let X: = {n+ | n e N, an = 1}, and let xg = {1} u x;

The gi-subalgebra of L generated by the element xa wil be denoted

by LE .

Since x: = {I}, {1},x; 5 La . B((X;']O);Hw and B((X;']°)=[x:],

hence B((X;']°)gLa . By induction we show that {n+} 5 La , if

a = l . If no is the first n 5 N such that an = I , then

{no} = ([1,nO] + xa)o.[l,n0]' e [xa], and if {k+} 5 La , k < n ,

a = 1 then

‘:1 k+}')q[1,n]' 6 La.xa kH{k+}' 5 [xa] and {n+} = ([l,n] + xa— _ <_(n
ak" 3 ‘7:K‘

._.:1,....

Thus La contains all atoms of L, and also Ba 5 L:
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4.20 Lemma. Lg ; Lb iff g = Q , for any two sequences a = (an)n ,

b = (bn)n of 0's and 1'5, with a] = b] = 0.

Proof. ==: Let w: La —e>Lb be a fii-isomorphism. {1} is the unique

open atom p in La , Lb satisfying p'0'O # p , hence

w({l}) = {I}. Note that if an = 0 then [],n] has precisely two

open covers, if an = 1 then [l,n] has precisely three open cov­

ers. Suppose w({i}) = {i}, 1 s i s n. By the remark just made then

a. = b. , l s i s n. Since [1,n+l] covers [l,n], w([1,n+l])

covers <D([l,n]) = [l,n], by the induction hypothesis. But [1,n+l]

is the only open cover of [J,n], such that [l,n+]].{n}' =

[l,n-1] U {n+1} is open. Hence w([1,n+l].{n}') = w([1,n+I]).®({n})' =

= m([l,n+l]).{n}' is open, thus ®([l,n+l]) = [l,n+l], and

tD({n+l}) = {n+1}. an“ = bnfl J]

4.2} Theorem. There are continuously manynon isomorphic interior al­

gebras generated by one element.

Proof. Lemma4.20 provides them.fl

4.22 Corollary. Not every interior algebra generated by one element is

isomorphic to a principal ideal (u] for some u 5 FB (1)0 and not-i
every interior algebra generated by one element is finitely present­

able.

Proof. Since FB (1)0 is countable.-i

4.23 Corollary. Not every open filter in F§i(l) is principal.
Proof. The homomorphic images of FB (1) correspond in a 1-1 manner

-1 R
with the open filters of FB (1). By 4.21 there are 2 ° open-i
filters, whereasthe cardinality of the set of principal open filters

is NE .D
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4.24 Corollary. There exists an infinite decreasing chain of open ele­

ments in FB (1).
—i

Proof. Let F 3 F (1) be a non-principal open filter. Let u] 5 F ,B.-1

ul 5 FB (1)0. There exists a v 5 FB (1)0 , v e F such that—i -i

u] g v. Let u2 = ulv, then uz < u] , uz 5 F§i(1)0, u2 5 F .

If u],u2,...uk 5 F§i(1)° , u],u2,...uk e F such that ui < uj ,
1 g j g i g k then there exists a v 5 FB (1)0, v e F such that-i

uk £ v. Then uk+] = uk.v < uk , uk+l 5 F§i(l)0, uk+J 5 F , and

the proof follows by induction.D

Wehave thus exhibited in F (1) an infinite increasing chainB.-1
of open elements (by 4.5, since Hm contains an infinite increasing

chain of open elements), an infinite set of incomparable open elements

(by 4.19: the ui , i 2 2 , i 5 N are incomparable) and an infinite

decreasing chain of open elements (by 4.24).

R
4.25 Corollary. There are 2 ° S.I. interior algebras generated by

one element.
. 1 1 1

Proof. We use the notation of 4.19. Let XE = Xa U {m}, Ba = B; U {XE},

and L] the interior algebra P(X;) with B; as base for the open
] +

elements. Let L2 = [xa] 5 L . Then x: = {1}, thus X8 45[xii], and

{Q}= X:'.X;'°' provided that 3 is not the sequence (an)n with
_ _ N 1

an = 0, for all n 5 N. Hence La = ({m}'] E [xa] = La , and
lo " " '

La = L0 0 l , thus L; is S.I. and generated by one element.
_ . K

From4.20 it follows that there are 2 0 interior algebras L; .U

4.26 Recall that an algebra L is called (Q)-universal for a class

E of algebras if ([Lf s Q and) for every L1 5 K, (ILII S m),

L] 5 S(L) . An interior algebra L will be called a generalized
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(m)-universal algebra for a class 5 of interior algebras if

(ILI S m and) for all L] e E , (ILII é m), there exists a u e L0

such that L1 5 S((u]) (cf. McKinseyand Tarski [44] pg. 151). In 4.3

we showed that FB (n) is a generalized universal algebra for all“i
finite interior algebras, generated by n elements.

4.27 Corollary. There does not exist an interior algebra which is R0­

-universal for fii . Neither does there exist an interior algebra,

generalized R0-universal for fii.

Erggf. Suppose L e fii is generalized 5%-universal for fii. Since

there are at most countably many u 5 L0, and every (u]lush‘
O 9

has at most countably many subalgebras generated by one element.
Y

Therefore it is impossible that everycnmzof the 2 0 interior algebras

generated by one element can be embedded in some (u], u e LO.U

The results 4.21-4.27 have their obvious counterparts for g; ,
I V + Iusing in the constructions Hm instead of Hm. We state two of the

results without proof:

V
4.28 Theorem.There exist 2&0 (subdirectly irreducible) algebras in

fig generated by one element.

4.29 Theorem.There does not exist an R0-(generalized) universal

generalized interior algebra for Q;
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Section 5. Subalgebras of finitely generated free al ebras in gi and fii

Wecontinue the study of finitely generated free (generalized)

interior algebras, focussing our attention nowto the notion of subal­

gebra. At this point, the difference betweengeneralized interior alge­

bras and interior algebras becomes remarkable. For example, in 5.6 we

show that for each n e N FBf(n) contains a proper subalgebra iso­

morphic to itself; we were notlable to prove such a theorem for FB (n).

A natural question is whether perhaps for some n,m e N , n : m ,

FE (m) e S(F§ (n)) or FBf(m) e S(FBT(n)), as is the case in the

vaiiety L of lattices where even FLERO)e S(FL(3)).

In the next section we shall answer this question negatively. However,

the Brouwerian algebra FB-(1)0 has a property which reminds us of this-i
situation. It will be shown, namely, that FH*(n) e S(FB-(1)0) for each“ "i
n 6 N (theorem 5.11). The description of FH(n) given in Urquhart [73]

only emphasizes howcomplicated apparently the structure of even

F -(1)° is.
51

Westart recalling a result from McKinseyand Tarski [46].

5.1 Theorem. FH(n) is a subalgebra of FB (n)0 , n e N .- -i
Proof. Let xl,x .. x be free generators of FB (n) and consider2’ ' n -1

L = [{x?,xg,...x:}]H . Weclaim that L = FH(n). Indeed, let L] e E

and h: {x?,...x:}-9 L] a map. Define hl: {xl...xn}-9 B(L1) by
—- O I ' .1.­

hl(xi) —h(xi). Let g be the gi homomorphism FB (n) > B(Ll)-1

extending h , then g(x$) = g(xi)0 = hl(xi)o = h(xE)° = h(xE) and byl

2.11 g ] PB (n)°: FB (n)°-9 L] is an fl~homomorphism. Hence
' —i-1

g I L: L-9 L] is the desired extension of h .D

Similarly we show:
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5.2 Theorem. FH-(n) is a subalgebra of FB-(n)o, n e N.- -i

5.3 Corollary. B(FH(n)) 5 3(FB (n)), B—(FH‘(n)) € 5(FBj(n)), n e N.-i -1

IIZ

It is not true that FB (n) FE(n) or F§;(n)O 3 FE-(n).
We have even

5.4 Theorem. FB (n)o and FB-(n)O are not finitely generated, neN.-i -i
Proof. The algebra K , introduced in section 3, is Q;-generated by

one element. Hence Kb 5 H(FB (n)), K e H(FB‘(n)), for any n e N-i w —i

and thus by 2.11 K: 6 H(FB (n)°), K: e H(FB-(n)°), n e N. But KO-1 -i ”
is an infinite chain, whichapparently is not finitely g- or g -gen­

erated.D

5.5 Corollary. FB (n) and FB-(n) contain a subalgebra which is not-i -i
finitely generated, n 6 N.

Proof. B(FB.(n)O) and B(FB.(n)o) are such subalgebras. Indeed,-1 -1
suppose,for example, that B(FB(n)O) is generated by yl,y2,...yn.-i

. . . . . . . 0 I

There exist u?,u:,...u;. , v?,v:,...v:. 5 FB(n) , 1 = ]...k ,
1 1 *1

r..li_ ix ._ ..

such that. yi imiil uj vj , i = l...k. Then”. J=

[{u;,v; 1 j = 1...n. , 1 = l...k}]B. = B(FB.(n)O) ,"1 "1

and hence, by 2.14,

H :3 P"
II F"

H-4 t_u

I
"175 /\ 5 xx

i i . .
'J 000i not H_ B

which would contradict 5.4.U

Next wewish to identify someinteresting finitely generated

subalgebras, especially in FB—(n), n e N.-i
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5.6 Theorem. FB-(n) contains a proper subalgebra, isomorphic to“i
Ffi-(n), for any n e N .

1

-(n) has a smallest element, which shall be
“I

denoted by a (cf. 4.8.(i)). Let x]...xn be free generators of

FB-(n), then a = ,fil xg . Let L be the Boolean algebra g X FB-(n),-1 1- _i
provided with an interior operator given by

(0,a) if x 0
(xoy)o = 0

(l,y ) if x = 1

Note that L0 : g T FBj(n)o. L is generated by the elements

(0,x] =»a),(l,x2),...(i,xn). Indeed, (O,x]=: a)0 = (0,a) ,

(0,xl=» a) =9 (0,a) = (1,x]), and (i§](l,xi))° =: (O,a) = (0,1), and

it is clear that the elements (0,l),(l,x1)...(l,xn) generate L.

Since L is fig-generated by n elements there exists a surjective

homomorphism f: FBT(n)-—> L. The map i: FBT(n)-—> L defined by

i(x) = (1,x) is anlembedding. 1

Let g: F -(n)-—> F -(n) be .B. B. 1
*1 *1 FB—(n)-—--+the homomorphismextending a i

I

mapsatisfying g; f
-I . .

g(xi) e f (1(xi)), 1 = l,2...n. 1
FB-(n)

Then g is an embedding, not onto.D -i

5.7 Corollary. FB-(n) contains an infinite decreasing chain of dif­-i
ferent subalgebras isomorphic to itself.

Wehave not been able to determine whether or not a proposition

similar to 5.6 holds for FB (n), n 5 N.-i
Our next object is to show that FB—(])° contains even FH—(n)._i ­
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as a subalgebra, for every n e N.

5.8 Lemma.Let L e fii be fii-generated by a finite chain of open ele­

ments. Then there exists an L1 5 fii with the following properties:

(i) L] is fii-generated by a single element

(ii) there is an a e L? such that Ea) 3 L

(iii) L] is a *—algebra

(iv) if L is finite then so is L].
"2Proof. Recall that the algebra Hm (cm] g Hmcontains a chain of

open elements 0 < c] < ... < em = 1 , and is generated by the ele­

ment cl (see 3.8, 3.10). Let L be §i-generated by the open ele­

ments 0 = d] < d2 < ... < dm = l , for some m e N", m > 1. ‘Let

L} be the Boolean algebra Hmx L , provided with the interior

operator 0 given by

x,y 0 = xo,yO . w ere i = max j c. _ xo .
< > < d1) h { J < }

is an interior operator:

(1) (1,1>° ­

(ii) <x.y>° s (x.y>

(iii) (x,y)°° = (xo,yodi)° = (x0O,yOdi.di) = (xo,yOdi) =

= (x,y)° , where i is as in the

definition.

(iv) ((x,y).(xl,y]))° = (xx],yyI)° = <x°xf,y°yfdi>,

where i = max{j [ cj S xOx?}. On the other hand
0

<x.y> .<x,.y,>° = <x°.y°.dk).<xf.yf.d£) = (xox?’yOy?°dkd2)’

J
. o o .

max{J I cj 5 x x]} = k = 1 , hence (x,y)O.(x],y])0 = (x0x?,yOy?di),
as was to be shown.

where k = max{j [ cj 5 x0}, 2 = max{j I c. S x?}. If k s 2 then
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(i) L] is §i*generated by the element (c],l). Indeed

(Cl9l)0 = (C190): hence (091) = (C190).-(C191) 6 [(Cl9])] 9 and

therefore also (1,0) 5 [(c],l)]. Further

(Ciao) qi((C]s0))o(]a0) 6 [(C]al)]9 where qi is

as in 3.6,.and (o.di> <o.1>.<<ci.o> + <o.1>>° 5 [(01.1)]

Nowif x e Hm, y e L , let px,qy be §i-polynomials such that

x = px(cl), y = qy(dl,d2,...dm). Then

<x.y> = <1,o>.px<<c,,o>> + <o,1>.qy<<o.dl>,...<o,dm>> e t<c,.1>JB_
(ii) L 3 £<1,o>). since for any y e L. <1.y>° =.<1.y°)

(iii) L is §i-generated by the open elements (c],0),(l,0),1

(l,dl),...(I,dm). Hence L 3 B([{(c],0),(],0),(l,d])...(l,dm)}]H),
thus L is a *-algebra.

(iv) Since Hm is finite, Hmx L is finite if L is finite.D

5.9 Lemma.Let L 5 §; be g;-generated by a finite chain of open ele­

ments. Then there exists an L] 5 §; with the following properties:

(i) L] is gg-generated by a single element

(ii) there is an a 5 L? such that [a) g L , thus L

is a subalgebra of L]

(iii) if L is finite then L1 is finite.

There exists also an L2 5 §; , such that L2 is a *-algebra, L2 is

§;-generated by two elements, and L2 satisfies (ii) and (iii).

Proof. It is easy to see that L] = H; x L with the interior operator

defined as in 5.8 works if L is generated by a chain of open ele­

ments 0 = d] < ... < dm = 1. (For the definition of H; see 3.12).
+ .

Hm 1S not a *-algebra, however. In order to save that property, we

can use Hmx L, noting that Hm is §;-generated by the elements

0,c therefore Hmx L , endowedagain with the interior operator1 3

of 5.8, is fig-generated by two elements.D
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5.l0 Lemma. Let L e E— or L e 3 be finitely generated. Then there

exists a finite chain which generates L.

Erggg. Weprove the lemma in case L 5 E-, proceeding by induction on

the number of generators of L. If L is generated by one element,

there is nothing to prove. Suppose the theorem has been proved for all

L e E‘ generated by m-l elements, and let L = [{x],...xm}JE- ,1n> 1,

L1 = [{xl...xm_l}]H- is then fl_-generated by a chain, say by

D = {do < d] < ... < dn}, D 5 L1 . Then L is generated by

D‘ = {doxm2 do s d0+ dlxm s s di + diflxm s

Sd Sd +xm]-.... coo

Note that if 0 S i < n ,

(di + di+]xm)(di + dixm) = di(di + dixm) + di+]xm(di + dixm) =

= dixm + di+lxm = di+lxm'

Therefore if d.x e [D'] — for some i, 0 g i < n, then
1 m H ’

d = (di + d.+]x )(di + dixm) 5 [D']H- . Since doxm 5 [D']E- ,i+lxm 1 m _

it follows that d x e [D'] —, hence also
n m g

xm = (dn + xm)(dn + dnxm) 5 [D']B~ .

Therefore xl,x2,...xm e [D']fl- , and L = [D']E- .D

5.11 Theorem. FB-(1)0 contains FH-(n) as a subalgebra, for every
1

n 6 N.

Proof. By 5.10 FH-(n) is E--generated by a finite chain of elements,

hence B(F -(n)) is E;-generated by a finite chain of open elements.
IE

Let L] E E; be the interior algebra whose existence is guaranteed by

lemma5.9, that is, L] is fig-generated by one element and there

exists an a e L?, such that Ea) 3 B(FH-(n)). Hence FH-(n) 5 S(L?),

L? 5 H(FBT(l)0), and because FH-(n) is free, it follows that-1 _

F§_—<n>e s(F§;<n>°) .0
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5.12 Corollary. F§;(]) contains B(Ffl-(n)) as a subalgebra, for
every n 5 N.

For gi these results assume the following form.

5.13 Theorem. For each n e N, there exists a b e FB (1)0 such that-i
the Heyting algebra Eb)° contains FH(n) as a subalgebra.

Proof. By 5.10, FH(n) is E-generated by a finite chain, hence

B(FH(n)) is gi-generated by a finite chain of open elements. By 5.8

there exists an algebra L] 5 fii , generated by one element, and con­

taining an element a 5 L?, such that [a) 3 B(FH(n)). Let

f: FB (l)-—» L] be an onto §i—homomorphism, and let b e f—1({a}). we-i
may assume that b = bo. Then f = f | Eb): Eb) + Ea) is a §i-homo­

morphism. Furthermore, f is onto: if y e Ea) let x 5 FB (1) be-i
such that f(x) = y. Then f(x + b) = f(x + b) = f(x) + f(b) = y + a =

= y, and x + b e Eb). Since FH(n) is free, it follows that Eb)O

contains FH(n) as a subalgebra.U

5.14 Corollary. For each n e N there exists a be FB(1)0 such that thei
interior algebra Eb) contains B(FH(n)) as a subalgebra.
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Section 6. Functional freeness 9f_finitely generated algebras in

.3. and 37
1 1

Recall that an algebra L in a variety 5 is called functional­

ly_f£Ee in or characteristic for g if V(L) = 3. For any variety

E , FK(Ro) is functionally free (cf. 0.l.20,0.l.2l). If E is the

variety of lattices, then FL(3) is functionally free, since

FL(Ro) e S(FL(3)); g is functionally free in §. McKinseyand Tarski

[44] have shownthat no finitely generated interior algebra can be

functionally free in gi . Their proof is based on the fact that the

interior algebra with trivial interior operator Mk, where Mk % gk,

ME: g , does not belong to V(FB (n)), if we choose k 5 N large-1
enough. The question therefore comes up whether perhaps FB (n)° is-i
characteristic for E, or, loosely speaking,whether FB (n) is-i
characteristic for gi as far as the lattices of open elements are
concerned. Weshall show that this is not the case, that is,

V(FB (n)°) # 3 for all n e N (theorem 6.4). However, it follows easi­-1
1y from the results of the previous section that V(FB-(1)0) = g .-i
Essentially, this means that the only reason why FB (1)0 is not-i
characteristic for E is the presence of the 0 as a nullary oper­

ation.

Immediately the question comes to mind if McKinseyand Tarski's

result that V(FB(n)) # gi finds its origin in a similar phenomenon.-i
The second part of this section is devoted to that question. In 6.10

we prove that for all n 5 N V(FB-(n)) # g; . This shows that the-i
situation here is substantially different: whereas FB (n)0 is not-i
characteristic for g since it is not "general enough" near the 0
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which is there as a nullary operation, _FB(n) is "nowhere" charac­

teristic for §.. In order to arrive at this result we introduce in

6.7 the rank of triviality of a (generalized) interior algebra, which

measures howfarthe algebra is from being a *-algebra. This notion

gives rise to a strictly increasing chain T6,T;,... of subvarieties

of §; with the property that E; = V(FBT(n)), n e N (theorem 6.14),

which implies that V(FBj(n)) # fig . 1-1

Before starting our main subject we wish to give somemore infor­

mation concerning the algebras under consideration. First we need a

definition.

5.1 Definition. Let L 6 gi or L 6 g; . If If’ S 3; then the inte­

rior operator on L is called a trivial interior operator. The

finite interior algebra with k atomsand trivial interior operator
I‘! &l

_­­
will be denoted Mk , k 5 N. Thus Mk = 2 , M: 2 .

Note that if L is an interior algebra, then the open atoms of

L are atoms of the Heyting algebra L0; the atoms of L0 need not

be atoms of L, however.

6.2 Theorem. Let x be a free generator of FB (1). Then-1
(i) xo,x'o are the only open atoms of PB (1)-1

(ii) FB (1)0 has three atoms: xo, x'o and an atom a,-1
where (a] : M2.

(iii) if 0 ¥ h 5 FB (1)0, then X0 5 u , x s u-1
or u = a.

Proof. (i) is a special case of 4.13.

(ii) Let a = (XO'X'o')o = x°'°x'°'°. If b is an atom of the
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algebra M2 , then bO'O.b'O'o = 1. Since x is a free generator it

follows that a # 0. Furthermore xa # 0, since otherwise a 5 x'0
. 0 .Because also a S x'O', 1t would follow that a S x'o.x' ' = 0, which

is impossible. Similarly x'a # 0. Finally (xa)0 = xoa = O, (x'a)° =

= x'Oa = 0, therefore (a] = [xa]B = [xaJB 2
1

, (aJ° = {0,a}, so
!tuII2

IN

(a) 3 M2.

(iii) Let 0 ¢ u 5 FB (1)°, x° g u, x'° x u. Then-1
0' '°')°, thus u = a.Du s (x .x

In particular we see that FB (1)0 has finitely manyatoms and-i
that for every u e FB (1)0, u # 0, there exists an atom in FB (1)0-i -i
contained in u. The same is true in a more general case.

6.3 Lemma.Let L e fii be finitely generated.

(i) L0 has at least one atom.

(ii) Lo has only finitely manyatoms.

Proof. (i) Let L==[{x],x2,...xn}]§. . Wemay assume that xixj = 0 if
1

x = I. Let A g {xl...xn} be a minimal1 5 i < j 5 n and that 1 i
Ho

ll’-"35

set such that (£A)° # 0. Such a set exists, since (Z{x],...,xn})° =

= 1 # 0, and is non-empty. Let a = (EA)°, then (a] is generated,

as interior algebra, by {xia [ xi 5 A}. Indeed, (a] is generated

by x a,...xna , but if xi { A, then xia = xi(zA)° 5 xi.(ZA) = 0 .I

Let L] = [{xia ] xi 5 A}]§ g (a]. If y 5 L] , then

Y = Zfxia ] xie:A'} for some A’ g A. Hence

y° = (Z{xia I xi 5 A'})° =

((3{xi I xi 6 A'}).a)o = (zfxi I xi 6 A'})°.a ,

thus yo = 0 if A‘ C A, and yo = a if A’ = A. Hence

L] = [{xia I xi 5 A}]B = (a], and L0 = {O,a}. So a is an atom in Lo.1-1
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(ii) Let a 5 L0 be an atom in L0. Then (a] is an interior

algebra, generated by x]a,x2a,...xna , such that (alo = {0,a} .

Therefore[{xla,x2a,...xfia}] =[{x!a,x2a,...xna}] , thus |(a]| S 22 .

There are only finitely many homomorphisms L + Mzn , and since dif­

ferent atoms in L0 give rise to different homomorphisms L + Mzn ,

it follows that there are only finitely manyatoms in L0.U

Weare now in a position to prove

6.4 Theorem. FE (n)° is not characteristic for E , for any n e N.
1

Hence there exists no finitely generated L 6 fii , such that L0 is

characteristic for fl .

Proof. By 6.3 (ii) we know that FB (n)0 has finitely many, say k-i
atoms. Note that since for any u 5 FB (n)O (u] is a finitely gener­-i
ated interior algebra it follows from 6.3 (i) that every u 5 FB (n)0 ,-i
u # 0, contains an atom of FB (n)o. Let m 5 N be such that

-1 m f(i)o '0
2m > k, and consider the equation f€{§,2}m (igl xi ) = 1, where

g_ X. if E . = I
x.1 = 1 1

1 x! if e . = 2.
1 1

If f,g 5 {l,2}m , f # g , then _% x:(l)o, _%lx§(l)o - 0 .1: ]_=

If we evaluate the left hand side of the given equation in FB (n) for

_ m

any assignment of x],x2,...xm , then one of the terms _H x

will get the value 0, since otherwise we would have > k disjoint

non zero open elements, each of which would contain an atom of FB (n)°,
- -1

which is impossible. Therefore ,3 x:(1)O = O for some f e {l,2}m ,1-1

f(i)o 10m

and hence ( 2 X- ) = 1, for any assignment of

xl,x2,...xm in FE (n).
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~ gm
Now let L = B(FB(m) e 1) , L° = FB(m) ea: 2 ea I, and let

be the free Boolean generators of (1 ].
FB(m)a],a2,...am e (lFB(m)]

f(i)om f '_ .

In L, igl ai (1)0 1s an open atom and (igl ai )'0 S lFB(m) < 1,

Hence 2 m ( % a?(i)0)'0 s 1 < 1, and therefore the
f€{l,2} i=1 1

identity 3 m (,% x€(1)°)'° = 1 is not satisfied ix: L. we
fe{l,2} 1=l 1

conclude that L d V(FB (n)).-i
Nowit is easy to see (cf. section II.l) , that if 3 5 fii is a

variety, then g° = {L0 I L e E} 5 E is also a variety. Since

FB (n)° e V(FB-(n))°, it follows that V(FB (n)°) g V(FB (n))°. If-1 -1 1 1

L° e V(FB (n)°) then L° e V(FB (n))°, hence L = B(LO) e V(FB (n)),*1 *1 "i
contradicting the conclusion just arrived at. Therefore L0 9!V(FB (n)o) ,‘i
and FB (n)° is not functionally free in E. D‘i

Wethus obtained at the same time a new proof of Tarski and

McKinsey's result, that FB (n) is not characteristic for £1 ,‘i
for any n e N. The corollary following now is a theorem of McKinsey

and Tarski [46].

6.5 Corollary. FH(n) is not characteristic for fl, for any n e N.

Proof. By 5.1 and 6.4.[]

Roughly speaking, the proof of 6.4 shows that FB (n)O is not“i
general enoughnear the 0 element to be characteristic for fl. The

presence of the O as a nullary operation seems to be crucial. And

indeed, the results of the previous section enable us to state

6.6 Theorem. FB-(1)0 is characteristic for fi­
—i
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Proof. By 5.1], for every n 5 N FH-(n) 5 S(FB-(1)0). Hence
— -i

If = v<{FH-<n> | n 6 rm E v<FB7(1>°> g 1_a_‘.n
— -1

This implies that :1 g L1"= v(FB7(1)°) = V((FB.(l)°)-).
*1 "'1

As mentioned before we still wish to answer the question of the

functional freeness of the algebras FB-(n) in g; . It shall be
—i

answered in the negative, and in order to arrive at that conclusion we

shall show that if n E N we can choose k 5 N large enough such

nthat Mk does not belong to V(FB-(n)). In doing so we use the same-1
approach Tarski and McKinseyused in their proof of the non-character­

isticity of FB (n) for Q. , for any n 5 N. However, it seems not-i
possible to modify their proof so as to make it applicable to the §;­

-case. Our argumentwill be quite different, and it will at the same

time provide an elegant proof of their result.

6.7 Let L 5 fii . The gang of triviality rT(L) of L is the smal­

lest cardinal number _m_such that there exists a set X E L, |X| =_g,

with the property that L = [B(L°) u XJB . If L 5 §;, rT(L)

is defined similarly, the set X nowhaving the property that

L = [B_(L°) U X]B- . If L is a *-algebra, that is, L = B(L°),

then apparently rT(L) = 0. If L is an interior algebra with triv­

ial interior operator, then rT(L) is just the rank of L considered
as Boolean algebra.

6.8 Next we define a sequence of varieties E; = V({L 5 §; | rT(L) s n})

and in = V({L 5 gi [ rT(L) 5 n}), for n = 0,1,2,... . Note that

:§_) may contain algebras L with rT(L) > n; indeed, the algebra

Km introduced in 3.1 has rT(K“) = 1, since Kfi = [B(Kg) U {x}]B
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but Km# B(K£) and Kme SP({Kn I n > 0}) as one easily verifies,

thus Km 6 To

In the proof of the following theorem we generalize a method em­

ployed in McKinseyand Tarski [44] to prove that 51 is generated by

its finite members.

6.9 Theorem. T; and In are generated by their finite membersof
n.‘rank of triviality S n , for n —0,l,2,... .

Erggf. Weprove the theorem for in , n 2 0. Suppose that

gn ¢ V({L e in | L finite and rT(L) s n}).

Then for some 2 e N there exists an 2-ary Li-polynomial p such

that the equation p(x],x2,...x£) = I is satisfied in

V({L e Tn I L finite and rT(L) S n})

but not in In . Let L e In , al,a2,...a£ c L such that

p(al,a2,...a ) # 1. Wemayassume that rT(L) S n. Let qi(x],x2,...x£),£

i = l,2,...m be a shortest sequence of gi-polynomials satisfying
IAqi(x],x2,..{x£) = 0,1 , or xj for some j, l 5 j 2, or

qi(x],x2,...x£) = qj(x],x2,...x£) + qk(x],x2,...xl), j,k < i, or

qi(x],x2,...x£) = qj(x1,x2,...x£) . qk(x1,x2,...x2), j,k < i, or

qi(x1,x2,...x£) = qj(xl,x2,...x£)' , j < i, or

qi(xl.x2.-.-xi) = qj(xl,x2,...x£)O , j < i, such that

qm(x],x2,...x£) = p(x],x2,...x£).

Thus the qi are the sub-polynomials of p, ordered according to in­

creasing complexity.

Let bi = qi(al,a2,...a£), i = l,2,...m. Let yl,y2,...yn e L be

such that L = [B(Lo) U {y1,y2,...yn}]§ . Every bi , i = l,2,...m

“ fj<1> f (2) f (n)_ 2

can be represented in the form jg] cij yl y2J ...ynJ ’
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where f1,f2,...f n are all possible maps {l,2,...n} + {1,2}; and
2

5 y if E = I
y k = k k , and c.., j = l,2,...2n, belongs to B(Lo).

k y’ if e = 2 1]k k

In its turn, every cij can be written as
ni- .. .. .. ..
kg? (u:J)'.v;J , with u;J,v£J 5 L0. Let

L0 = B([{u:J,v:J | k = l,2,...nij, 1 = 1,2,...m, 3 = 1,2,...2“}]D )-01

and let L1 = [L0 U {y],y2,...yn}]B . Since L] is finite, we may
— 0

provide L] with an interior operator 1 by defining

x01==z {y e L] | y S x, yo = y} . It follows that
F .. .. . _ n 0

l 1,2,...I1ij,1=],2,uoom,J =1)-2)"'2 S 9
= 01 . ‘ . .

hence L] [B(LI ) u {y],y2,...yn}]§ , which implies that

rT(L]) S n. Though L in general is not a subalgebra of L, we1

claim that the value of p evaluated at a],a2,...a£ in L1 equals

the value of p evaluated at a],a2,...a£ in L, or, in symbols:

pL](a],a2,...a£) = pL(a],a2,...a£). Indeed, if qjLl(a],a2,...a£) =
= qjL(a],a2,...a£), for all j < i, i e {l,2,...m}, then

qiL](a],a2,...a£) = qiL(a],a2,...a£). This is obvious if
qi(x],x2,...x£) = 0,1 or xj , for some j, 1 s j s R, and if

q. = q. + qk , q. = qj.qk or qi - q for j, k < i, since
I

1 J 1 j

L] is a §-subalgebra of L. If qi = q? , then qiL (a1,a2,...a£) =
= q (a a .. a )°1 = bol < b0 = b but by the definition of O151”]1,2,.” 5‘.‘i i’ ’
bi 3 b3‘, hence bgl = bi = qiL(a1,a2,...a£) and therefore

qiL1(a1,a2,...a£) = qiL(a],a2,...a£).

Thus pLl(al,a2,...a£) # I, L] is finite and rT(L1) s n, contra­
dictory to our assumption.U
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6.10 Lema. Let L e Ei Or L E Ei­

(i) If L] e H(L), then rT(Ll) g rT(L)

(ii) If a 5 L°, then rT([a)) g rT(L).

Proof. Suppose that L = [B(L0) U XJE , with [XI = rT(L)­

(i) Let f: L -9-L be an onto gi-homomorphism. Then]

L] = [B(L?) u £[X]JB and rT(L]) s l£[x]| g [X] = rT(L).

(ii) Let a 5 L0. Then [a) = [B([a)O)tJ{x + a I X e X}JB .

Indeed, if z e L, then z = 12] ci H Xi , where Xi is a finite
a, thenIVsubset of X U {x' I x e X}, ci e B(LO), n e N» If Z

n
z = E c. H Xi + a =

= E (ci + a).H{X + a I x 5 Xi} e [B([a)O) U {X + a x e X}]Bsi
. . k 0since if c. = _Z u{v., u.,v. e L , then

J=l J J J J
k

c + a ,2 ulv. + a —

1 k J=l J J k '
= ,2 (U! + a)(v. + a) = _£ (u. + a) [a).(V. + a) 6 B([a)o)­

J=] J J J=] J J

F13Therefore rT([a)) 5 ]{x + I x 5 X}I 5 ]X] = rT(L).D

6.1] Theorem.

(5.) _'g0c'_r_]c...cgncgn+lc...cg._i, v(U1n)=§i
(ii) gBc1;c...cg;c;;+]c...cg;, v(u1;)=§;.

Ergof. It is clear from the definition of in , 1; that in 5 gn+1 ,

E; g $;+1 , for n = O,l,2,... . Furthermore, in McKinseyand Tarski

[44] it is shownthat gi is generated by its finite members; in a

similar way one can show that §T is generated by its finite members.
1

Obviously BiF SIJID, B: gIJ§;, therefore fii = V(U15),*1F

g; = VGJEQ). Weprove now, that 1; c:1;+] , n = O,l,2,... . In a

similar manner one can show that En c:gn+] , n = O,l,2,...

Recall that M-n+1 denotes the generalized interior algebra with
2
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trivial interior operator and 2n+1 atoms (cf. 2.26, 6,1). It is easy

to verify that rT(M;n+1) = n + 1 , therefore M;n+] e I;+] .

We claim that Mgn+}¢ 1;. Since in Mg , V x],x2,...x2k+]

\/ k xi ==xi , it follows that in Mg the followinglii<jfi2 +1 ~

equation is satisfied:

2 (x. =9 x.)0(x. -= x.)0 = 1
l:i<js2 +1 1 J J 1

and therefore also
k k

2 +1 2 +1

(( 2 '(x. =,-.x.)O(x. =9 x.)o) = ‘II x(i))o = ‘H X? .
1si<js2 +1 1 J J 1 1:1 1:‘

Let the left hand side of this equation be called fk.

Zn
The equation f (x ,x ,...x n ) = 2 n+1 x? is not satisfied in

2n 1 2 +1 i=1 1

M- since M- has 22n+] > Zzn + 1 elements we ma assi n
2n+l 2n+l Y 3

to xl,x2,...x Zn different values, in whichcaseuuaobtain I = O, a
2 +1

n
. . . _ 22 +1 0contradiction. Weclaim however, that f n(x ,x ,...x n ) — _n x.

2 I 2 2 — 12 +1 1-]

is identically satisfied in 1; . Supposenot. By6.9 there exists a

finite L 6 §; , rT(L) S n, al,a2,...a22n+l 5 L such that
Zn

f n(a],a ,...a n) > 2_H+Ia? = a. [a) is a finite generalized inte­
2 2 22 1=1 1

rior algebra, and by 6.10 (ii), rT([a)) s n. Let b 5 L0 be such

that 3 ‘E b S f n(al9a2s-~-3 n). Such a b exists, since L is
L 2 22

) is open and > a . Then
finite, f2n(a],a2,...a +1

n
22

[a,b] e H([a)), hence by 6.10 rT([a,b]) s n and since [a,b]O =

= {a,b}, [a,b] = Mg for some k, 1 S k 3 Zn. By the remark made

above’ f2n(a1b’a2b9°°°a -b) = 3 in [a,b]. But on the other hand22n+J

f2“(alb’a2b""a 'b) = f2n(3]s32»---3 n )-b = b . Since a ¥ b 9n
22 +1 22 +1
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we arrived at a contradiction.

Thus we have found an equation, identically satisfied by 1;, but not

by M'2'n+, . Therefore M2,,“ .3 1:11.13

6.l2 Corollary. FB-(n) is not characteristic for §;, for any
1

n e N. Likewise, F (n) is not characteristic for fii, for anyB.-1
n e N.

Proof. Let xl,x2,...xn be free generators of FB-(n). Then-1

F§;(n) = [B(F§;(n)°) u {xl,x2,...xn}]§-. Indeed, let .f beanurfi -poly­
nomial, of arity H120, y],y2,...ym e B(FB-(n)o) U {x],x2,...xn},then

1

f<y,.y,....ym>° e B(.FBj(n)°). hence cB<FB¢<n>°>u {x,.x2.--.xn}]B_- =-1 -1

= [3(F§;(n)°) u {x],x2,...xn}]§.i. = F§;(n).

Therefore rT(F§;(n) S n and F§;(n) e I; , hence

v(F§;(n)) E 1; c B; .
In similar way one shows that

V(FB_(n)) E In c: gi .D-1

6.13 Remark. Later we shall prove, tha FB-(n)° has the property'that
1

V u,v 6 FB-(n)°, if u < v then there exists a w e .FB—(n)° such‘i “i
that u 4 0 w 5 v, that is, that FB-(n)0 is strongly atomic

FB-(n) ‘i
1

(for terminology, see Crawley and Dilworth [74]).Usingtflfi£;observation,

it is possible to prove Corollary 6.12 more directly. Similarly for

FB.(n).
*1

In the proof of 6.12 we show that F§;(n) 6 ES, F§i(n) e In ,

for n 5 N. In the _]§;case, we are able to prove that in fact FB-(n)-i
is characteristic for T‘n
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6.14 Theorem. V(FB-(n))= I; , thus FB-(n) is characteristic for in, n6 N.
_i —i

Remark. Since by 6.4, V(FB (n)o) ¥ E , and on the other hand Tn = E ,-i
it follows that V(FB (n)) c Tn .-i

Weneed a lemma, which is related to lemmas 5.8 and 5.9.

6.15 Lema. Let n 5 N . Let L 5 gi be finite such that rT(L) s n .

There exists an L 5 §i , also finite, such that L] is gi-generated1

by s n elements and such that there is an a 5 L0 with [a) 3 L .

Proof. There exists a chain of open elements in L, say

D = {O = d] < dz < ... < dm = 1} ,

such that di -4 d i = l,2,...m-1. Then B(L0) = B(D). By 6.10,Lo i+1’

the interior algebra [di,di+1] is §-generated by
} c [d.,di ] for some xi xi xn - i i+l 1’ 2"" ’{di,di+]} U {x?,x;,...x

' m

where we may assume that di < x: 5 di+1 . Let xj — 1; x;.di ,

j = l,2,...n . Weproceed as in the proof of 5.8: let L] H x L ,

and define an interior operator 0 on L] by (x,y)° = (x°,yo.di),

where i = max{j c. 5 X0}. Then L 5 B. , and we claim "that L
J I "1 l

is generated by the elements (cl,x]),(0,x2),...(O,xn). Indeed,

(cl,x])O = (cl,0), hence

(oaxl) = (C1:O)'-(clsxl) E [{(C]sx1)s(09x2):°--(0axn)}]9
and therefore also

<1,x;>°= (1,0) 6 [{(c].x]),(0.x2)....(0.xn)}].

It follows from our choice of x that x'° = 0 ; suppose that 0 ¢ u =
I 1

0 . m it . . . . .
< = (x1 + di). Since (u] is finite, there is an atom p

s u s x; . But there must exist an i0 5 {l,2,...m}, such
7

. d . Then d! d.
1 1 +1

0 0 o o o
= p < x; S x:° + di , which

I s di + d; +1 . But this contradicts our assumption
0
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d < x O 5 d . Therefore XIO = 0. We have thus (1,0) and

therefore also (0,!) at our disposal; (cI,l) generates Hmx B(LO)

according to the proof of 5.8, providing {(l,di) I i = ],2,...m},

which together with (1,xl),(l,x2),...(l,xn) yield {1} x L and thus

all of L]. Obviously L 3 [(l,O)), and L] is finite.[]

6.16 Lema. Let n e N. Let L 5 §; such that rT(L) s n. There

exists an L e fig , also finite, such that In is fig-generated by1

s n elements and such that L 3 [a) for some a e LO.

Proof. As 6.15, now using H; .D

Proof of 6.14. Let n e N. Let L e I; , L finite, rT(L) s n . By

lemma 6.16, L e SH(FB-(n)). Since 1; = V({L e fig I L finite and‘i
rT(L) S n}) by 6.9, it follows that in 5 V(FB-(n)). The reverse inclu­

*1
sion holds also, as has been shownin the proof of 6.l2.D

Note that it follows from 6.15 that Tn = V({[a) I a e FB (n)0}).-i
In the second chapter we shall study the varieties To and TB in

greater detail.

Wefinish this section with a characterization of the finite inte­

rior algebras [u,v], u,v e FB-(n)°, or u,v e FB (n)°, n e N.i "1

6.17 Theorem. (i) Let L e E; be finite, n e N. There exist

u,v e FB—(n)° such that L Z [u,v] iff rT(L) S n. In particular,*1

FB-(n) is a generalized universal algebra for all finite generalized‘i
interior algebras of rank of triviality S n (cf. 4.26).

(ii) Let L 5 §i be finite, n 6 N. There exist

u,v 5 FB (n)° such that L 2' [u,v] iff rT(L) g n."1
Proof. (i) =9 by 6.10 and proof of 6.12.
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‘= By lemma6.16 there exists an L] 5 fig , finite, gl-generated by

n elements, such that L : [a) for some a e L?. By 4.3 for Q; ,

I.'‘ IIN (VJ for some v e F -(n)o. If a corresponds with u 5 (vjo,
51

then Cu,v] : L.

(ii) Similarly, using 6.15.D

—-:jj—zj————juj—-—u—­

projectives in 3, and B?

Weclose this chapter with someobservations on free products,

injectives and weakly projectives in fii and Qi . In 7.3 we note

that free products in fig and as a matter of fact in every subvariety

of fig always exist. In §i the free product of any collection of

non trivial algebras exists, too (theorem 7.4) but this is not the case

in every subvariety of fii (example 7.10 (ii)). There is not much to

say about injectives in fii and Q; : there just are no non-trivial

ones (theorem 7.12). In the next chapter we shall characterize the in­

jectives in certain subvarieties of gi and fig .

Wedo not know yet very much about weakly projectives in fii and

fit . In 7.21, 7.22 we present interesting classes of algebras with

that property. It is striking hownice the generalized interior alge­

bras behave comparedto the interior algebras here as well as with re­

spect to free products.
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7.] Free products in_ 31 and §;

Werecall the definition of free product in a class K of alge­

bras. Let {Ai I i e I} g E. A is the free product of {Ai I i e I}

in E if

(i) A e E

(ii) there exist 1-] homomorphismsji:Ai-9 A, 1 € 1

(iii) L131ji[Ai]] = A

(iv) If B e K, and fi: Ai-9 B, i e I are homo­

morphisms, then there exists a homomorphism f: A-—>B such that

foj. = f , for all i 5 I.

Weshall assume, that the ji are inclusion maps and thus that the
K

A1 are subalgebras of A and we shall simply write 2A==_EI- A1 to16

indicate that A is the free product of {A1 I i e I} in 5.

It is known that in 20] the free product of any collection

{Li I i e I} g Q ILiI > I for i e I, exists. The same holds0] ’

for Q. Indeed, if L e and {Li I i 5 I} is a family of 90]­9m ’

-sublattices of L, then L is the free product of {Li I i e I} iff

(a) tigl Li] = L

(b) If II,I2, are nonvoid finite subsets of I and

a.(-_'L., iell, b.eL., jgI2, ai=f0, bjiél,1 1 J J

i e I] , j 6 I2 , and _H a. s _Z b. then there exists an
1611 1 JeI2

i e I] n 12 such that ai s bi (cf. Gratzer [71]).

The next theorem,which can be found in Pierce and Christensen

[59], gives a useful criterium for the existence of free products in a

class.

7.2 Theorem. Let E be a variety, {A1 I i e I} E E. The free product
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of the A1 in E exists, provided there exists an A 5 E and 1-1

homomorphisms ki: Ai —e>A, i e I.

This can be applied to g; :

7.3 Theorem. In fig and in every subvariety of fig , free pro­
ducts exist.

Proof. Let K g fig be a variety, {Ai | i e I} 5 X. Then

,H A. 5 K and k.: A.-—e>_n A.
leI 1 J 1eI 1

1 if i # j
where ai = is a 1-1 homomorphism.D

a if i = j

defined by kj(a) = (ai)i ,

The problem of the existence of free products in gi and its

subvarieties is less simple because of the presence of the 0 as

nullary operation. Wesay that a variety E E §i has free products

provided the free product exists in g of any collection

{Li | i 5 I} 5 K, such that |Li[ > 1 for all i 5 I. A sim­

ilar terminology applies if 5 = Q0] , E = g , E E E etc.

7.4 Theorem. Let {Li [ i e I} 5 gi , [Li] > 1 for i 5 I ,

901
and suppose that L = _§I Li . Then L can be made into an1

interior algebra such that the interior operator on L extends the

interior operators of Li , i 5 I;

Proof. Let L1 = [_U L9] We prove that_for a e L (33 n L]
1eI 1 Q01

has a largest element. By 2.4 it will then follow that the operator

on L defined by a0 = max(a] n L for any a e L is an inte­
1

Orior operator such that L = L , a 5 L
I. Since L = [igl Lijgol

can be written a = ,H ,2 a. where {I., j 5 J} is a non-void
JeJ 15Ij 1 J
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finite collection of non-void finite subsets of I, and ai 5 Li ,

iglj, jeJ. Let a*- II 2 aci).Notethat a*sa, a*eL—jeJi€I.
J *< It is to be shown that b S aNow suppose b e L] , b _ a .

= k§K inl bi , where {Ik I k e K} is a
E k

non-void finite set of non-void finite subsets of I, and bi 5 LE ,

b can be written b

i e I , k e K . Since b 5 a, we have .H b. S 2 a. ,
l€Ik 1 ielj 1

for j 6 J, k e K . It follows that ‘H b? S _Z a? . Indeed,
1eIk 1 1€Ij

if some bi = 0 or ak = I then this is obvious; otherwise we

have b. S a. for some i e I n I. , and therefore b? S a?
1 1 o k J 1 1

O O O O

and hence _H b? 5 _Z a? . We conclude that b S a , as1eI 1 1€I. 1
R J

desired. Finally, it is immediate that if a 5 Li for some
. * * . . . .1 e I , then a = a0, thus extends the original interior

operator on Li , i e I.U

7.5 Corollarz. fii has free products.

Proof. By 7.2 and 7.4.D

7.6 Remark. The interior algebra L considered in the proof of 7.4

is in general not the fii-free product of the Li , i e I. Indeed,
D~ ~ '01

let L],L2 e fii , L1 = L2 = M2 (see 6.1), and let L = L] + L2

as in 7.4. Then for a e L] , a2 6 L2 , we have (a1 + a2)o =

= a? + a0 Let a ,a be atoms of L] and L2 respectively. Now

suppose that L = L +- L2 , then there exists a fii-homomorphism

h: L —e»L] such that h(al) = h(a2)' and h(a]) # 0,] ,

h(a2) ¥ 0,! . But then h((al + a2)°) = h(a] + a2)° = 1 ° = 1

Whereas h(a? + a3) = h(0) = 0, a contradiction.
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Note also, that it follows from the proof of 7.4 that if

{Li | i e I} E E , |Li| > 1 , i e I , then L = 12301 Li e fl ,

and that the injections ji: Li —e»L are fl-homomorphisms(this

fact was proven earlier in A. Burger [75]), implying that free

products in E exist as well. Unfortunately, the method employed

in the proof of 7.4 will not work for arbitrary subvarieties of fii.

However, a slight generalization can be obtained. Whenwe say that

a class E 5 E is closed under Q01-free products, we mean that if
D

2-0] L e E if it exists.{L. I i e I} , .1 1€I 1If‘! K then

7.7 Corollarx. Let K 5 E be a variety such that K is closed
0

under Q0]-free products. Then EC = {L 5 fii I L e K} has free

products.

Proof. It is not difficult to see that Kc is a variety (cf. II.l).

Let {Li ] i 5 I} 5 KC , such that )LiI > 1 , i e I, and let

90:
L = _EI Li , provided with an interior operator as in 7.4. Then15

o 201 o
L = Z L. e E hence L 6 KC. Thus KC satisfies the condi­

is]: 1

tions of 7.2 so free products exist in EC .D

7.8 Example. The class fie of interior algebras, whose lattices of

open elements are Boolean ( fie is also called the variety of monadic

algebras) has free products, since Q is closed under Q01-free

products.

The next theorem (brought to my attention by prof, J. Berman)

is a sharpened version of 7.2:
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7.9 Theorem. Let E be a variety of algebras and suppose that every

collection {Ai | i e I} g $31 can be embedded in some A e g.

Then the free product exists of any collection {Ai | i 5 I} E 5

satisfying |Ai| > I , i e I.

Erggf. Let A. 5 5, |Ai| > I, i e I. Weshall show that there

exists an A e 5 and 1-1 homomorphisms mi: Ai‘—e»A, i e I.

It will follow then from 7.2 that the free product of the .Ai exists

ha E. For every i e I thereexistsaacollection {Bj { j e Ji} g KS1

such that Ai e SP{Bj [ j e Ji} by 0.1.6. Let B e 3 be such

that for every j e Ji , i e I there exists a V-1 homomorphism

B. —->B. It follows that A. e SPS(B) E SP(B) , say k.: A. é II B
J 1 1 1 S€Si

is an embedding. Let A = II B , where S = ,L} S. , and chooseses 1eI 1

s. 6 S.. Define 2.: A. -e»A by
1 1 1 1

(ki(a))S if s 6 Si
(9«i(a))S = N 0k.(a) otherwise

si 1

ii is a 1-4 homomorphismfor i e I. U

Using 7.9 it can be seen very easily that Q01, Q and more

generally any variety containing only one subdirectly irreducible

has free products. Furthermore, classes like those of Ika Morgan

algebras, distributive pseudocomplementedlattices and its subvari­

eties, and several more are seen to have free products.

7.10 Examples. (i) The variety V(M2) has free products. Indeed,

by 0.1.26, V(M2)SI 5 HS(M2) == {M0,M],M2} hence V(M2)SI =

= {M],M2}S S(M2). By 7.9, free products exist in V(M2). Note

that the interior algebra L % M2 D+ M2 ; 24 , with
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L0 = g D+ g = 3 , which came up in the proof of 7.4, does not01

belong to V(M2). Theorem 7.9 is used here in an essential way.

Similarly one can show that V(Mn), n e N has free products.

(ii) Weshall present nowan example of a subvariety of gi

in which free products do not always exist. Let L0 = 2 , Ll 3 M2 ,

with atoms a,b ; L2 22, with atoms c,d and L; = {0,c,l} ;
loan2

~ 3 .
L3 E g , with atoms e,f,g, L3 = {0,e+f,l} .

(:3 i 63­
a b

C d e f g

L1 L2 L3

Let E] = V({Ll,L2}), then £151 = {L0,Ll,L2} and

_2 = V({L],L2,L3}), then §2SI = {L0,L],L2,L3} .

Claim. L] E] L2 does not exist.

By 7.9 52 has free products, since EZSI ‘g S(L3) . Let
~ 4 . .

L4 = L] E2 L2 . L4 3 2 , say with atoms h,1,k,£ and
0

L4­

“3

“2

I .

u] = h + 1

L: u2 u3 u2=h+i+k
u] u3=h+i+R.
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ll
0-‘

+ 77‘i]: L] —e>L4 is defined by i](a) = h + 2 , i](b)

i2: L2 —e>L4 is defined by i2(c) = h + i , i2(d) = k + 2

il , i2 are gi-embeddings,and i]CL]] U i2CL2] generates L4

Furthermore, L4 e S P (L3) 5 K2 . In order to prove, that L4

is the free product of L] and L2 in E2 , it is sufficient to

f]: L] -9L3 , £2: L2-->L3show, that for every two homomorphisms

there exists a homomorphism f: L4-—e»L3, such that foij = fj ,

j = 1,2 . This can be verified without difficulty. Nowsuppose E]

has free products, and let L = L] g L2 . Then L e H (L4) =-1

={L4,L3,Ll,_1_} ; but L4,L3 é E1 , and L2 é S(Ll) , L2 1’ S(l)

Contradiction.

7.1] Injectives in fii and Qi

Recall that if K is a class of algebras, then A e E is

injective in K , if for each monomorphism

f: A]-9 A2 and homomorphism
A

3: A]'—>A9 A]9'A2€Es 2\\
f] \hthere exists a homomorphism \\NA—-—+A

‘ gh: A2—>A satisfying hof = g.

Asnotmdbefore(0.l.29),monic maybe replaced by 1-1 in our investi­

gations.

Unlike the classes Q0] and Q , 5i and fig have no non­

-trivial injectives. Indeed, suppose L e fii , IL] > 1 and L

injective. Let Ll e §i be such that [L]f > [Lf., and L? = {0,1}.

0 , f(l) = 1 , andIILet f: {O,l}-9 L1 be defined by f(O)

l . Let h: L1-9 Lg: {0,l}-*9 L also by g(0) = O , _g(l)



-78­

, '1
be a fii-homomorphism such that hof = g . Then h ({1}) = {1} .

so h is 1-]. But [Ll] > IL] , a contradiction. A similar

argument applies to fig :

7.12 Theorem. hi and fig have no non-trivial injectives.

7.13 Weaklyprojectives in_ gi and 5;

If E is a class of algebras, then A e K is called weakly

projective in E if for each onto-homomorphism

f: A] -e>A2 and homomorphism
, 1

g: A -e>A2, A1,A2 e K, there 11/,’ 1 f/
. . /

exists a homomorphism h. Aé A] A/ A2
such that foh = g.

Since we<k) not know, at this moment,whether every epic §i-homomor­

phism is onto, we use the notion of weak projectivity rather than

that of projectivity.

7.14 Theorem. Let L 5 fii be a *—algebra. L is weakly projec­

tive in fii iff L0 is weakly projective in E .

Proof. (i) Suppose L e §i is weakly

projective and L = B(L0). Let hfi// L f/

f: L]-—+-L2 be an onto §~homomorphism, L0’ L28

L],L2 e E , and let g; LO-—»L2 be an

§~homorphism. Let fl: B(L]) —e>B(L2), g]: L —%>B(L2) be the

gi-homomorphismswhich extend f, g respectively. By assumption and

since f is onto, there exists a §i-homomorphism hl: L-9 B(L])1

with flohl = gl . If h° = h] 1 L° , then foh° = g , and h°
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is an fl-homomorphism.

(ii) Let L e fii , L = B(LO) and suppose that L0 is weakly

projective in fl. Let f: L] -e>L2 be an onto fii-homomorphism and

g: I.-9 L2 a fii-homomorphisnn Let f] —f I L], g] = g I L ,

then there exists an fl-homomorphism hl: L L?

flohl = gl . Let h: L = B(L0)-9 L‘ be the fii-homomorphism such

that h | L° = h]. Then foh I L° = f1oh]= g] = g I L , hence,

by the uniqueness of the extension, foh = g .U

Similarly:

7.15 Theorem. A *-algebra L e fig is weakly projective in fig iff

L0 is weakly projective in fl-.

Further inspection of the proof of 7.14 shows that the follow­

ing is true as well:

7.16 Theorem. A *-algebra L e E is weakly projective ha 5 iff L0

is weakly projective in 39 , for any class K 5 fii , or ‘Kg 3; ,

satisfying S(§) 5 g.

The finite weakly projectives in E have been characterized in

R. Balbes and A. Horn [70]. They showed, that L e EF is weakly pro­

jective iff 1; 3 10 T Ll + .. . + Ln, for some n 2 0, where

_ . : Z2 or L.
n 1 1

whose lattices of open elements are of this type are weakly projec­

IIZ Q, 0 S i < n. Thus the *-algebras

tive in E1. However, we shall give now an example which shows that

these finite interior algebras are not the only finite weaklyproje­

tives in B.. An important tool will be
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7.17 Theorem. Let _I§be a variety. Ae_l§ is weaklyprojective in 5

iff A is a retract of a 5-free algebra.

For a proof of this theorem werefer to Balbes and Dwinger [74].

7.18 Examgle. Let L E 2 , L 3 § , with atoms a,b,c and

open elements 0,a,l . This

interior algebra will be

denoted M1,2 . a b C

In order to showthat M] 2 is weakly projective, it suffices toI

prove that it is a retract of FB (1) by 7.17. According to 4.3,-1
there exists a u 5 FB (1)0 such that M] 2 3 (u] . Let a],bl,cl

be the atoms of (u], a] a] . Let a2 (bl + cl) , b2 bl,

= (a2 + b2)’. Then a b2,c2 are disjoint, a2 + b2 + c2 = 1.c
2 2’

. o o 0
Obviously a2 = a2 , b2 = 0. Further c2.u = 0 , hence

C; S (bl + c])'O —a2 , but on the other hand cg 3 (a2 + b2)‘ g aé,

hence cg = 0 . It is also readily seen that (a2 + b2)° = a2 ,

(a2 + c2)° = a2 , and finally (b2 + c2)O = 0 , since

(bz + c2)o.u = O , thus (b2 + c2)O s cg = 0. Therefore the

B (1) generated by a2, b2, and c2 is isomor­§i- subalgebra of F-1

phic to Ml,2.

Moreover, azu = a1 , bzu = b] , and c2u = cl , thus the maps

f: M]’2-—e>b§i(1) given by f(a) = a2 , f(b) = b2 , f(c) = c2

and 33 F§i(1) *->P%,2 given by g = g]ofl(uJ , where

1r(u]: F§i(l) —->(u] is defined by XI-—>XU and g]: (u] —>M],2
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by gl(al) = a , gl(b]) = b , gl(cl) = c are fii-homomorphisms

and gof is the identity on ‘M1 2 . So M] 2 is a retract of
3 9

FB (1), hence weakly projective in fii by 7.17 .
1

In a similar way one shows that M}2 is a retract of FB-(1).
, O-1

Hence M is weakly projective in g; , too.1,2

7.19 Example.The interior algebras with trivial interior operator

and more than two elements, like the Mn , n 2 2 are not weakly

projective in §i , though their lattices of open elements are
3

weakly projective in E. For instance, let L g , with atoms

22. Then (a + b] 3 M2 , thus

IWIIZ

a,b.c. wand L° = {0.a+b.c,1} §

M2 5 H(L), but obviously M2 g S(L). Therefore M2 is not weakly

projective in fii .

7.20 Examples 7.18, 7.19 provide the idea underlying the following

theorem. M will denote the interior algebra g ,n ,n ,...
1 2 “k
k ~

where n = ,§ ni , with M: n = k + 1 , such that1-] is 2:---nk
if M° = {0= =1 th (.1

n!,n2,...nk co < c] < < ck } , en CJ

has ‘£1 n. atoms, j = l,2,...k . Thus the Mn are the finite1.‘.

interior algebras with n atoms and trivial interior operator we

met before. For example:

M3,2,5,1
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7.2] Theorem. Let k e N , n1,n2,...nk e N . Mn ‘n nk is1 2,...
weakly projective in fii iff n] = 1

Proof. (i) ¢==Let k e N , nl,n2,...nk e N , n] = 1 . Weprove

that M is a retract of a free algebra in §. .
H ’n gooonk 11 2

Let m e N be such that Mn n e H(FB (m)) and let
I, ZVCOW 1].. .

u E F (m)o be such that (u) 3 M . A u with this
fii n],n2,...nk

property exists in virtue of 4.3. Let

(u]0 = {O = c 0< cl < < ck = 1}

and pg,pg,...pg. , j = l,2,...k be the atoms of (u] , with
J

J . - " _

pl S cJ_lcj , J 1,2,. k , 1 1,2,. .nJ

Let E()= C0 , Ej = (c + u')O , J — l,2,.. k

pi = pi , J = 1,2,. k , 1 — 1,2,. n -1

__.... nj-I . V I.:—

and pi. = ( ii] pg ) .cj_] .cJ , J = 1,2, ..k
J

n __ __ .
—- J J J J

0 = D Z O O = 0Note that c] cJ_l + i=1 p1 and pi u pl

Define f: (u] -—>F (111) byB.-1

f(x) = 2 {pi I pi s x , j = 1,2,...k , i = ],2,...nj}

It is clear from the definition of the pi that f is a 1-]

§-homomorphismand that f(x).u = x for all x e (u] . In order
0

to prove that f preserves O , let x e (u] such that x = c9.

1) 1 S R S k . Firstly, since C2 = x0 = (f(x)40° = f(x)O.u

it follows that f(x)0 5 c2 + u‘ , hence f(x)° 3 (CR + u‘) = E
— o . . ,

But also cg 5 f(x) for lf this were not the case then there 15 a

j , l S j S 2 and there is an i e {l,2,...nj} such that9

R0
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__. ——q -— ­

pg é f(x) , hence f(x) 3 pg and thus X = f(X).u 3 pg .u = pg .u,

contradicting pg 5 cl 5 x . Weconclude that f(x)° = E;'= f(x ) .

2) l = 0 , i.e. x0 = 0 . Then f(x)0.u = (f(x).u)O = x0 =

= O , hence f(x)O s u'0 s E: . But on the other hand, since

n = 1 , E? = p§ thus cl £ f(x) implies f(x) s ETJ. There­

fore f(x)o 5 E:IE—' = 0 , and we infer f(x)° = f(xO)1

Now, if g: FB (m) -e>(u] is defined by g(x) = x.u theni
f,g are fii-homomorphismssuch that gof is the identity on (u] .

So (u] is a retract of FB (m) and it follows by 7.17 that-i
M 3 J ' kl ' t’ ‘ B.
n],n2’...nk (u 18 wea y projec ive in _1

(ii) Suppose nl # l , Mn’n ,‘..nk is weakly projec­l 2

tive. Let L : 2 XM , with (x,y)o = (x,yo) .
§ n],n2,...nk

Th M 3 01 HL b M 9.‘ SL
en n1’n2,...nk (( 9 )3 € ( ) 9 ut n]’n2,...nk ( ) 9

since M contains M2 as a subalgebra, but L appar­n1,n2,...nk
ently does not.U

In fig the situation is slightly different. The argumentgiven

in 7.19 to show that M is not weakly projective in gi does not2

remain valid in fig : indeed, M;
Iv
= [c) , which is a §;-subalgebra

of L . In fact we have:

7.22 Ehggrem. Let k 5 N , nl,n2,...nk 5 N . Then M;],n2,...nk
is weakly projective in Q;

fgggg. Let_ m e N be such that Mnl’n2,...nk 5 H(F§;(m)) ,

u 5 F —(m)o , c. e F -(m)0 , j = O,l,...k and pg 5 F -(m) ,
Ei J §i 1 gi

j = l,2,...k , i = l,2,...nj as in the proof of 7.21.
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Let E; = (u =>cj)O , j = 0,1,...k , and for j = l,2,...k

let ;§—= pi + E; , i = l,2,...nj-1 ,

and = < cJ._1 = 35 >.EJT.<n<:>;::p{>=>50).

Again, E§'= cj_] + igfi ;§— , and p§—.u = pg

Define f: (u] -e>FB-(m) by-1

f(x) = E3 + 2 {_pi I Pg X x , j = l,2,...k , i = 1,2,...nj}

It is clear from the definition of pi that f is a 1-1 §—-homo­

morphismsatisfying f(x).u = x . In order to show that f pre­

serves O , suppose that x e (u] , X0 = cg , 0 S 1 5 k . Then

f(x)°.u = (f(x).u)o = x0 = cg hence f(x)o S (u => c£)o =‘E;

But also cl S f(x)° for if R = 0 then by definition of f
-.—.

co S f(x) hence c S f(x)O and if 2 > 0 then E; S f(x)O

would imply that for some j, I S j S R , i e {l,2,...nj},

pg S f(x) hence f(x) S pi =o.E6 thus

x = f(x).u S ( pg => —O).u = (pg =9 cO).u ,

which however would contradict pg 5 c2 S x . Thus in all cases

f(x)° = '6; = £(x°)

Define g: FB-(m) ~9 (u] by g(x) = x.u , then f, g are‘i
fig-homomorphismsand gof is the identity on (u] . By 7.17 it

follows that (u] and hence M. n is weakly projective in
- 2,COIn-k

E. .U1
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CHAPTER II

ON SOME VARIETIES OF (GENERALIZED) INTERIOR ALGEBRAS

In chapter I we have been working in the class of all (gener­

alized) interior algebras,mainly.In order tolxaable to be somewhat

more specific, we shall focus our" attention nowon (generalized )

interior algebras in certain subvarieties of fii and 5; . In section
­

. and E, g. and
1 1

I35I we study the relations between subvarieties of

fl‘, and finally fii zuul 5;. ln sections 2,3 and 4 an investigation

oftfim:variety generated by the (generalized) interior algebras which

are *-algebras is undertaken, resulting in 51characterization. of

FBT*(]) in section 3 and in a characterization of the injectives in

§:1 in section 4.Sections 5,6and 7are devoted to the study of vari­

eties generated by (generalized) interior algebras whose lattices of

open elements are linearly ordered. The main object here is to deter­

mine the finitely generated free algebras in someof them.
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Section 1. Relations between subvarieties of Q1 and E, g. and E1,

519951

The purpose of this section is to see howthe functors 0 ,0‘, B,

B: D and the one introduced in I.2.25 behave with respect to the

operations H, S and P. It will follow, in particular, that O,0­

and 0 mapvarieties onto varieties (l.3, 1.5, 1.12); a useful result,

we referred to already once (cf. the proof of I.6.4.). Moreover, in

1.] we show that 0 establishes a P-I correspondence between the

non-trivial subvarieties of a certain variety S c fii and the

subvarieties of fig, respecting the inclusion relations. The behaviour

of the functors E3and 3- is not so easy to grasp. The crucial question

whether a subalgebra of a *-algebra is itself a *-algebra will be

deferred to the next section. There we shall also see that the product

of *-algebras need not be a *-algebra. Hence B fails to map varieties

of Heyting algebras upon varieties of interior algebras, and for 3- a

similar statement holds.

If E g fii or K g 5;, then 30 = OEKJ respectively

5° = 0'[§J , thus g° = {L° I L e g}

Several of the following results are essentially contained in Blok and

Dwinger [75].

1.] Theorem. Let K g fii. Then:

(1) H<5°> = H<r>°

(ii) s<r°> = s<r>°

(iii) P<g>° = P<K>°

In other words: 0 commutes with H, S and P.



-87­

0
Proof. (i) Let L e H(§O), then there exists L1 5 E , f; L] —e»L

0
an fl-homomorphism which is onto. Let L2 5 5, such that L2 —L] .

f can be extended to E: B(LI)-—» B(L), with E an onto §i-homomor­

phism. Since gi has CIZP (cf. 1.2.9.) there exists an L3 e gi ,
N2

? an onto B.-homomorphism such that §[B(Li)] = B(L)uf:L2--?>L3, __1

Since L: = ?[L;] = ?[L]] : L , it follows that L 5 H(§)O.

Conversely, if L e H(K)O, then there exist interior algebras LI,
,­

L2 and an onto homomorphism r: L2-9 Ll such that L] = L ,

L2 5 K . Then f[L;] = L? and by I.2.Il f I L2 is an fl-homomor­

phism, hence L] 5 H(gO).
O 0

(ii) Let L e E , L 5 S(L) , L9 5 B such that L — L2.1

By 1.2.16 B(L]) 5 S(L2), thus L] 5 s(g)°.

Conversely, if L e S(L]) for some L] e K, then. by I. 2.11

L0 e S(L?) , hence LO 6 S(Ko).

(111) Let {Li I 1 5 I} g 5. Then \i2I Li) £31 Li

by the definition of product, hence P(§ ) = P(K)

1.2 Corollary. If K g gi , then v(g ) = v(g)°.

1.3 Corollary. If E is a variety of interior algebras then 5

is a variety of Heyting algebras.

Similarly for fig and E­

1.4 ggggggg. Let 3 g 3;. Then

(1) H<;<_°>= H<t>°

(ii) S(L<_°)= s<t>°

(iii) P<t°> = P<t>

Hence the functor 0- commutes with H, S and P.
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5 Eg, then V(Ko) = V(£)O. In particular,I7?1.5 Corollary. If

if K is a variety of generalized interior algebras, then go is a

variety of Brouwerianalgebras.

Next we consider the functors B and 3- vflfich assign to

L e g respectively L e 5‘ the algebra B(L) respectively

B-(L) (cf. 1.1.14 and I. 2.13).

1.6 Theorem. Let E E fl.

(i) H(B(_I§)) = 3(H(K))

(ii) PF(B(K)) = B(PF(K)) , where PF denotes the

operation of taking finite products.

Proof. (i) Let L e K, L] e E; , f: B(L) —+L] an onto

fii-homomorphism. Then L1 = fFB(L)] = B(fFL]) = B(L?) , hence

L] e B(H(§)) by I. 2.1} . Conversely, if L e K , L1 e E ,

f: L —+~L] an onto fl-homomorphism, then there exists by I.2.1S a

fii-homomorphism E: B(L) -%>B(L]) , which is also onto. Hence

B(Ll) 6 H( B(K)) ­

(ii) Let K 5 E, L],L2 e K. Weprove that

B(LI X L ) = B(L1) X B(L2).2

Note that since (B(Ll) X B(L2))O = L] X L2 we may consider B(LlXlQ)

as a subalgebra of B(Ll) X B(L2). Nowlet
n

= I I _ ' 1‘

x ( E u.v. , _§ xjyj) e E(Ll) X B(L2) ,i l 1 1 J 1

where u.,vi e L] , i = l,2,...n and xj,yj 5 L2 , j = I,2...m.
Then

= 2 u. . . . = . . . 3 . .x n ‘§('vx') §:1’§( x)'( )B(L>'L)
i=1 j=1 1 1’ JyJ i=1 j=l U1’ J V1’yJ 6 I 2

Thus B(L]) x B(L2) = B(L1 x L2) .3
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In the next section we shall prove that a subalgebra of a

*-algebra is again a *-algebra. This will imply that in addition to

1.6 (i), (ii) also B(S(§)) = S(B(§)) for any class E g Q .

Furthermore we shall see that a product of *-algebras need not be a

*-algebra, hence P(B(§)) = B(P(§)) does not hold in general.

It follows that if K g E is a variety then {B(L) I L e K} need

not be a variety. Therefore we introduce

1.7 Definition. Let E 5 31 . Then 5* will denote the variety

V({B(L0) I L e 3})

3i then g* will denoteInLikewise, if K

v({B”(L°) I L e r}) .

1.8 Theorem. Let K g fli (K g fig) be a variety. Then K* is the

smallest variety K] of (generalized) interior algebras satisfying

Proof. Let K 5 3i be a variety such that go —E . Then
n—.o

B(g°) g S(K ) = K , hence g* E K‘ .D

Also, if g g g is a variety, then V(B(&)) is the smallest

variety Klcfii such that $10 = 3 . A largest variety amongthe vari­

eties E E fii such that K? = 3 does exist, too. If E g QI

C
is a class, let K = {L e B O 6 K} , (cf. I.7.7).

1.9 Theorem. If g is a variety of Heyting algebras, then fie is

a variety of interior algebras.

Pr00f- (i) P(EC) 2 EC . obvious

(ii) s(§°) 5 5° , by 1.2.11

(iii) H(1_<°)5 5° , also by 1. 2.11 .g
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Later we shall see that for any non-trivial variety K g E ,

V(B(§)) c KC ; and obviously, EC is the largest among the varieties

5] of interior algebras such that K? = E .

1.10 Remark. If E E E such that V(§)qI E E , then V(§)C = v(g°

Indeed, (v(g)c)SI E <v<r>SI>Cg r“ , thus v(r>° c v<r°)

Obviously, V(§C) g V(K)C and the desired equality follows. we do

not know if the condition V(§)SI g 3 can be omitted; clearly the

condition is unnecessary.

C

1.1] The correspondence between varieties E g E and K g 51

has a nice feature. If E is a basis for the set of identities satis­

fied by § , or, loosely speaking if X is a basis for K , then we

can easily find from Z a basis for EC. Wedefine a translation of

fl-identities into gi-identities following the line of thinking of

McKinseyand Tarski [48]. Let p be an fl-polynomial. The fii-transform

of p, Tp is given by an inductive definition:
0

(i) if p = xi , i = 0,1,... , then Tp = xi

q + r, where q,r are fi~polynomials then(ii) if p

Tp = Tq + Tr

(iii) if p q.r , where q,r are fl~po1ynomials then

Tp = Tq .Tr

(iv) if p = q + r , where q,r are fl-polynomials then

Tp = <<Tq>' . Tr)O

(v) if p = 0, 1 then Tp = O,1 respectively.

If p = q is an fl-identity, then Tp = Tq is the 31-translation of

p = q. If X is a collection of fl-identities then T(Z) is the

collection of Bi-translations of the identities in Z.

) .
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1.12 Iheorem. If 3 g fl is a variety determined by a set E of

fl-identities then fie is determined by T(E).
C 0

Proof. Let L 5 5 . Then L e K, thus LO satisfies every

identity in 2. Nowit is easy to show that if p = q is an E-iden­

tity then L 6 3i satisfies Tp = Tq iff LO satisfies p = q.

Henceour L satisfies every identity in T(Z). Conversely, if L

satisfies every identity in T(Z) then LO satisfies every identity

in 2, hence L0 e K and L e KC .U

The results 1.6-1.12 hold, with obvious modifications,a1so for

3- y E

Finally in this section we want to investigate the functor 9

in relation with H, S and P and we establish a correspondence

between subvarieties of fii and subvarieties of 5; , reminiscent

of the correspondence Kohler [M1introduced between subvarieties of

Q and fl_ . Weshall use the notation introduced in [. 2.18.

1.13 Theorem. Let K g fii

) D(H(K)) _ H(0(£)) and H(D(E)) E D(H(K)) if K = S(L)(i C

(ii) D(S(K)) = S(D(K))

(iii) D(P(K)) = P(0(K))

Proof. (i) Let L e K , f: L -9 L] , L] e fli , f an onto
D

_1§i-homomorphism. By I. 2.22 D(L1) = fD[D(L)] and f is a

fig-homomorphism, hence D(L1) e H(D(g)). Conversely, if L c E ,
r

Ian onto E;-homomorphism then by 1.2 23F‘ 1 e fii , f: D(L)-9 L]

B(0 9 L1) 5 H(B(0 9 D(L)). But B(0 0 D(L)) e S(L) since on the

one hand it is a §-subalgebra of L and on the other hand either

Ix e D(L), implying x° e D(L) g B(0 eaD(L)) , or x 6 D0,) ,
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implying X0 = x"0 S x'0'O = O 5 B(O e D(L)). Because S(§) = 17?

it follows that L] = D(B(O eaL1))e D(H(_I§)).

(ii) Let L e E , L] 5 S(L). Then
0

D(L]) = {x 5 L] |x '° = 0} e S(D(L)).

1

subalgebra of L and L] = D(B(Oe L])) e 0(S(L)) g U(S(§)).

Conversely, if L] e S(D(L)) , L non-trivial, then B(O9 L1) is a

(iii) Obvious. D

1.14 Corollary. If E g fii then D(v(g)) = V(D(§)). In particu­

lar, if E is a variety of interior algebras then 9(3) is a variety

of generalized interior algebras.

As the following corollary shows, every variety of generalized

interior algebras can be obtained in this way.

17?1.15 Corollary. If g fig is a variety then

v({B(0 e L) I L e 5}) 2 ii5-1

is a variety such that D(§]) = E.

Proof. By 1.14

v(v<{B(0 e L) I L e g}>> = v(D<{B(o e L) | L e g}>) = v<g) = g. D

1.16 Note that if L e fig then B(O6 L) satisfies the equations:
7

(1) xoc + Xoco = 1

(ii) x°C + x'°“ = 1.

Let § 5 fii be the variety defined by (i) and (ii). Apparently

V({B(O 6 L) I L e §i}) 5 § . The reverse inclusion follows from a

lemma:
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1.17 Lemma. Let L €,BisI . If L satisfies the equations (i) and

(ii), then L = B(O e D(L)).

Erggf. Note that B(O e D(L)) may be considered a §-subalgebra of

L , and indeed, even a fii-subalgebra: if x e B(O m D(L)) , then

either x e D(L) , implying X0 5 D(L) g B(O $ D(L)), or x'e D(L),

in which case X0 = 0, since x0 = x“O S x'o‘O = 0.

It remains to show that B(O o D(L)) = L. Let x e L. Since L

is SI, LO : L] e 1 for some L1 5 fl, hence, by equation (i),

x0'O = x0e, = 1 or xoco = 1 . If xO'O = 1 , then x0 = 0,

oc . ..\ voc . .hence x = 0 , and by equation (11), x = 1, implying that

I ’ " OCO vx 5 D(L) and hence that x 5 B10 6 D(L)). II x = 1 then

x°° = 1 and x e D(L) E B(O e D(L)). Thus L = B(O e D(L)) .5

1.18 Corollary. g = V({B(0 e L) | L e §T}).1

_P_r_9_o_f_.Because gsl g {B(O en L) | L 5 pg} 53 §.[]

1.19 Theorem. If E g § is anon~trivialvariety then

v<{B<o e D(L)) 1 L e 5}) = i­

Erggf. Since for all L e K, L non-trivial, B(O0 D(L)) e S(L),

it follows that V({B(O6 D(L)) I L e 3}) E 5. For the converse,

let L 5 K Since L satisfies equations (i) and (ii) of 1.16,‘SI.
being a memberof §, it follows from 1.17 that L =B(O e D(L)),

hence gsl g {B(O e D(L)) 1 L 5 g} and g E V({B(O e 9(1))! L 5 3]),

in fact, even 3 = PS({B(O e D(L)) I L e 5}) .U

1.20 Corollary. There exists a 1-] Correspondence between non-trivial

subvarieties of § and subvarieties of E; , which respects the
inclusion relations.
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Proof. If K , £2 are two non-trivial subvarieties of § ,

_] _2 , then D(§1) ,

1.14 and U(§]) # D(K2) since

D(§2) are subvarieties of g. by

v<{B(o ea L) I L e D(K])}) = E] # I_<2= v({B<o a L) I L 6 va_<2)}).

And if E E Q; is a variety, then D(V({B(O 0 L) I L 5 g}) = K ,

where V({B(O 6 L) I L E 5}) is a subvariety of § by l.l8. It

is clear that D respects the inclusion re1ations.[]
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Section 2. The variety generated by all (generalized) interior

*-algebras

In our discussion the notion of a *—algebra came up cn several

occasions. The importance of *-algebras lies in the fact that because

of the absence of a "trivial part" they are completely determined by

the Heyting-algebra of their open e1ements,which makes them easier to

deal with. In section] we already raised the question, if subalgebras

of *—algebrasare again *-algebras. The first objective of this sec­

tion is to prove that the answer to this question is affirmative.

Havingnoticed that the variety §: generated by all *-algebras

contains non-*-algebras, we proceed to show that the class of finite

algebras in g: consists wholly of *-algebras. Weconclude the sec­
‘k

tion with some results on free objects in fil and §;* which follow

easily from similar results for fii and E; obtained in Chapter I.

If L e fii is a *-algebra, i.e., L = B(LO), then for each
n

x e L there are u ,...u , v ,...v e L0 suchthat x = Z u!v..
0 n 0 n i=0 1 1

This representation is not unique, however. If L] e S(L) and we

wish to show that L] is a *—algebra then we have to prove that for

any x 5 LI u0,...un , vO,...vn e L? can be found such that
n . .

x = i§0 uivi. For this purpose we introduce a sequence «of unary

fii-polynomials s0, s1, .. . defined as follows.

2.} Definition. 50, 5‘, .. . are unary fii-polynomials defined by

(i) s0<x> = x'° , s,(x> = <x'° + x>°

(ii) s2k(x)==(s2k_](x)+-x')O and s2k+](x)==(s2k(x)4-x)o. for" k 2 I.
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If L is a *-algebra such that L0 is a chain then any

x e B(LO) , x # 0 , can be written in a unique way as

x = £20 uivi , where 0 s uo < V0 < .. . < un < vn S 1. It is

easy to see that in this case s0(x) = uo , s1(x) = V0 ,

s2k(x) = uk and s2k+1(x) = vk , 1 S k S n . Therefore

x = E s2.(x)'s2.+](x) e [XJB . The next lemma shows that thei=0 1 1 _i
same conclusion holds in the more general case that L is a

*—a1gebra B—generated by some chain C g L0

2.2 Lema. Let L e Bi be a *~algebra such that L is §~gen­

erated by a chain C 5 Lo, 0, 1 e C. Suppose that

n V

X 1:0 C2iC2i+l G ’

with O S co < c] < .. . c2n+] S 1 , Ci 6 C, 1 = O,1,...2n+1.

Then

= 130 S2i(x)'S2i+1(X)'

Proof. (1) s2i(x)'s2i+l(x) = s2i(X)'(s2i(x) + x)° s

S s2i(x)'(s2i(x) + x) s x

for all i = 0,1,... and similarly

s2i+1(x)'s2i+2(x) s’x' , for all i = 0,1,...

(ii) Note that si(x) s si+l(x) , i = 0,1,... . with (i)
we obtain

5 .
1:0 s2i(x) s2i+](x) s x. s2k+1(x), k = 0,1,.

Weclaim that

H C)
U _.

VD

k .

X‘ S2k+l(X) = 130 S2i(x)'S2i+1(x) ’ k
This we show by induction:
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a) k = O x. s1(x)==2L(x'0 + x)0 5 x'o' (x'0 + x)O = sO(x)'.sl(x),

hence x. sl(x) = sO(x)'.s1(x).

b) Nowsuppose x. s (x) = kil s .(x)'s . (x) for some k > 0.2k-I 1:0 21 21+]

Then

X.S2k+](X)==)L(S2k_!(X)+ s2k_](x)'.s2k(x) + s2k(x)'s2k+](x))

S x.s2k_](x) + x.x' + s2k(x)'.s2k+](x)

~ 150 S2i(x)'S2i+1(x)
Hence the claim follows.

(iii) ci 5 si(x) , for i = 0,...2n+1

Indeed c x = c g c' c = 0 hence c < x'O = s (x)’ 0‘ 0'i;0 21 21+: ’ ' o- 0 °

Furthermore, if czk S s2k(x), for some k 2 0, k S n, then

c2k+l = czk + c£k;c2k+l S s2k(x) + x , hence

°2k+1 5 (S2k(X) + X) ’ S2k+l(x) ’

And if k < n,

°2k+2 = °2k+1 + °ik+1°2k+2 “ S2k+l(x) + X,’ thus

(X).(X) + x')O = s°2k+2 ‘ (S2k+1 2k+2

, n

Finally, x = x (X) = 1:0 s2i(x)'s2i+](x).X . C2n+] S . S2n+]

n

with (i), we obtain x = '20 s,i(x)'s (x) , as desired.UL1: 21+}

2.3 Theorem. Let L e 31 . Then x e B(L°) iff

x = (x)'s2i+](x) , for some n 2 O .S .3
i=0 21

Proof. <== Obvious, since si(x) 5 Lo, fora11 xe L, i=O,l,...

===>Let x e B(LO). Then x = Z u!v., u ,...u ,v ,...v 5 Lo,
i=1 1 1 1 m 1 m

u = F’ u 0 n ‘ 0 o 0 ‘ 1 C o .m > 0 Let L] B(_1uI, um ,v], vmj,fl) _ S(L) L] 15 a

51-subalgebra of L and indeed a *-algebra, and x 5 L] . Since

is a countable distributive lattice with 0,1 , there exists a0
L1
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chain C 5 L? such that L] is E-generated by C (cf. Balbes

and Dwinger [74] ). By 2.2, then,

_ n I
x —igo s2i(x) s2i+l(x) for some n 2 0 . D

2.4 Corollary. L e E1 is a *-algebra iff for each x 6 L there

is an n 2 0 such that

x = (x)'s (x)
D
Z s . .

i=0 21 21+‘

The answer to our question if a subalgebra of a *-algebra is

itself a *-algebra follows as an easy corollary:

2.5 Corollary. Let L e fii be a *—algebra, L] e S(L). Then

L] is a *-algebra. Hence, if L 6 5i then L is a *—algebra iff

for each x e L [x]B is a *-algebra.
—i

Proof. Let x e L] . Then x e B(LO), hence
n

x = igo s2i(x)'s2i+l(x) for some n 2 O .

But si(x) e [X]; , i = 0,1,... , and Ex}; g L? , hence"i -i
L1 is a *-algebra.[]

In order to establish similar results for *—a1gebrasin 5;

we just adapt the given proofs to the fig-case. Wedefine a sequence

so, SI, ... of E;-polynomials as follows:

2.6 Definition.

(i) s[_)(x) = (x = x°)O s;(x) = ((x => x°)° + x)O

(ii) sEk(x) = (x = s;k_1(x))° and

s§k+](x) = (sEk(x) + x)O , for k 2 I
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By modifying the proofs of 2.2-2.5 we obtain:

2.7 Theorem. Let L 5 B;. Then x e B_(L0) iff
n — \ O —

x = _ZO (s2i(x) =9 x ).s2i+] (x) , for some n 2 O.12 .

2.8 gorollary. Let L e E; be a *-algebra, L} e S(L). Then

L] is a *-algebra. Hence if L e E; then L is a *-algebra iff

for each x e L [x]B— is a *—algebra.-1'

2.9 In section 1 we have seen that a finite product of t-algebras

is a *-algebra. It is noweasy to see that a similar statement does

not hold for arbitrary products. Consider the interior algebras

I Kzn.l|:JE,-‘.
Kn : ([1,n]] 5 Km, introduced in 1.3.4 , and let L =

11

Obviously the Kzn are *-algebras. But I, fails Ix) be a

*-algebra: if x 6 L is the element ({2},{2,4},{2,4,6},...)

then s2n(x)'s2n+I(x) = (¢,¢,... ,¢,{2n+2},{2n+2}, ... )
(n+}){h coordinate

Clearly, there is no k such that x = ngo s2n(x)'s2n+](x)

The remaining part of this section will be devoted to a further

study of the variety generated by all (generalized) interior *—alge­

bras. In accordance with the notation introduced in section 1, let

5: = v<{L e Bi | L = B<L°>}> and E; = V({L 5 g; | L = B<L°>}>

As we have seen, H] Kzn is an example of an interior algebran=

belonging to §: without being a *-algebra.

Werecall that fig and B:* are precisely the varieties 30

respectively :6 introduced in I. 6.8 . By I. 6.9 §: and §;*

are generated by their finite *-algebras. 1.6.11 guarantees that
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fif and §;* are proper subclasses of gi and fig respectively.

As a matter of fact, M2i E: and M2 é §;* by virtue of the

proof of I.6.ll . Actually, we can describe the finite membersof

g: and §;* more precisely.

2.10 Lemma. Let L 5 5i or L e fig be finite. L isa *-algebra

iff for all u,v e L0 such that u < v there exists a w 5 LO

such that u-4 w 5 V .

Proof. ==$Suppose that I. is a finite *-algebra, u,v e L0 , u < vg

Since L0 is finite, there exists a w e L0 such that u 4 w s v.
Lo

If u-4 w , then there are two atoms al,a2 e L , al ¥ a2 ,

a‘ 2 u'w , a2 S u'w . Because L is a **algebra, there exist
0 , /

ul,vl e L such that a] = u;v]. Fhen a2 2 u] or a2 £ vl.

In the former case, u < (u + ul)w < w and (u + u1)w e L0 , con­

tradicting u -3 w . In the latter case, u < (u + v])w < w and
L

(u + v1)w e LO, again contradicting u -3 w . Thus u«< w
L O L

¢=== Let a e L be an atom, and let u = Z[v e L E v 3 a'}

Then u < I and u 6 Lo, hence, by assumption, there exists a

w e L0 such that u % w. w i a' , therefore a S w, and since

u 4 w, a S u', it follows that a = u'w. Thus every atom of

L belongs to B(L0) and as L is finite we infer that L = B(LO).H

2.]! Theorem. Let L 5 §: or L 5 §;* be finite. Then L is

a *—algebra.

Proof. Let L 5 §: be finite and suppose that L is not a

*—algebra. By 2.10, there are u,v 5 L0 such that u -3 v , but
L

Mk for some
0'\I

u 4 v. Consider (VJ. If u = 0, then (VJ
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k > I (cf. 1.6.1 ), hence Mk6 H(L) 5 §:, which is impossible

as we have seen in the proof of 1.6.11 . If u # 0 then M2 would

be a §;—subalgebra of (v] 5 §:. Since (v]_ e fig as well (cf.

1.2.26 ) M; would belong to §;*, again in contradiction with

I.6.1l . Hence L is a *-algebra.[]

Next we want to make some remarks concerning the free objects

on finitely manygenerators in Q: and §;*. Manyof the results

of sections 1.4-I.6 for FB (n) and FB-(n), n > O, carry‘i "i
over to F *(n) and FB—*(n), with some slight modifications.-i "i
Weshall select a few of the more interesting ones.

Firstly, note that since Km is infinite and an element of

§:, §;*, the fact that it is §;~generated by one element implies

that FB*(l) and FB-*(l) are infinite and hence that neither‘i “i
-* . . ,

B* nor fii are locally finite. Furthermore, remark I.4.2 ap­
. . . * —*

plies in particular to Qi and fii , hence

2.12 Corollary. If L 5 E: or L 5 §;* is finite, generated by

n elements, then there is a u 6 FBf(n)O, u e FBT*(n)D respec~"1 -1
tively, such that L = (u]

2.13 Corollary There exists a u e FB*(l)O such that Hm3 Cul.

Proof. By I. 3.9 , H002' FP (1,{x° = x}). Since Hmis a awalgebra,“i
Hm = FB*(l,{xO = x}) .0"i

2.14 Theorem. For any n e N there exists a u g FB*(n)0 , a-i
v 5 FB-*(n + 1)o, such that FB—*(n)= (u], FB*(n) 3 (vi,-i -i -1
Proof. Similar to the proofs of I.4.9 , I.4.ll .D
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f''’\ FB*(l)0 which has R0 Open-i
2.15 Theorem. (i) There is a u

covers in FB*(l).

"X FB-*(2)O which has 30 open-i(ii) There is a u

covers in FB-*(2).‘i
Proof. (i) CompareI.4.l5 : the algebras Li are *-algebras.

(ii) By (i) and 2.14. U

The next proposition tells us, howmanydifferent homomorphic

images FB*(l) and FB-*(1) have.*1 '1

R

2.16 Theorem. (i) There are 2 O non-isomorphic subdirectly

irreducible algebras in 2: generated by one element.

(ii) There are 2 O non-isomorphic subdirectly
—.

irreducible algebras in §i* generated by two elements.

Proof. (i) If g is a sequence of 0's and 1's , then La 6 E:

(cf. 1.4.19 ) and so is the SI algebra constructed from La in
I.4.25.

(ii) Follows from (i) and 2.14.D

As far as subalgebras are concerned, 1.5.1-1.5.7 could be

restated for FB*(n), FB-*(n) without change. Further, lema 1.5.8-i "i
deals exclusively with *-algebras, and the algebra In constructed

there is obviously §;~generated by two elements. Therefore we have

2.17 Theorem. (cf. I.5.!l ) FB—*(2)° contains FH-(n) as a
—.

subalgebra, for all n 5 N. Hence B(FH-(n)) is a subalgebra of

FB—*(2), for all n e N.‘i
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Similarly we obtain

2.18 Theorem. (cf. 1.5.13). For any n e N, there is a

b e FB*(l)O such that FH(n) e S([b)O). Hence, for any n e N

there exists a b e FB*(l)°, such that B(FH(n)) € S({b)).
_:‘L _

In I. 6.6 we have seen that FB-(1)0 is characteristic for
_ -i

fl . Here we have

2.19 Theorem. (cf. also 1.6.14 ) FB-*(2) is characteristic for

E.
1

Proof. Let L e B. be a finite *-algebra. Then L0 e H(FH-(n))-1

for some n e N, hence L = B(Lo) e H(B(FH-(n)).

By 2.17 L 6 HS(FBj*(2)) g V(FBj'*(2)) .-1 -1

Since 1_3;*= v({L e 51 | L = B(L°) and L finite}) by I. 6.9 ,

we deduce §;* 5 V(FB-*(2)). The reverse inclusion is trivial.i}-i

The algebras B(FB (l)0)— and FB*(l)— are two more examples*i ‘i
of functionally free algebras in Eif In E: the situation is
different:

2.20 Theorem. (cf. I.6.4) FB*(n) is not characteristic for fig
*1

for any n e N. Henceno finitely generated interior algebra in
‘k . . . 1':

5i is characteristic for fii.

Finally we notice that from I. 5.8 , 2.11 and 2.12 follows

2.2! Theorem. FB—*(2) is a generalized universal algebra for all“i
finite algebras in gi
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Contrary to what one might expect, the results obtained in the

last section indicate that F§:(n), n e N, and F§;*(n), n 2 2,
n e N, are not much less complicated then PB (n), FB:(n), n 5 N,_1 _

Not muchhas been said so far about FBj*(l), except that it is in­

finite. The purpose of this section is to provide a characterization

of this algebra. we start with a lemmaof a universal algebraic nature.

AIH3.1 Lemma. Let K be a class of algebras, A e V(g) and S

such that [S] = A. A is freely generated by S in V(§) iff

for all B 5 S(§) and for every map f: S —%>B such that [ffsll = B

there is a homomorphism E: A- -B such that f I S = f.

Proof . =='> Obvious .

¢=== Let C 5 V(g), C = [S'] and f: S-9 S‘ a surjective

map. Wewant to show that there exists a homomorphism E: A ~+ C

such that E I S = f. Since C e V(K) = HSP(§), there exists a

C' e SP(E), and a homomorphism h: C‘-9 C which is onto. Choose

for every s 5 S‘ a ts e h—]({s}), let T = {ts I s e S'}

and let f‘: S ——>T be defined by s he>tf(S). Then D =

= [T] e sP(g) _c_PSS(I_<) and h[D] = c.

Let {Ei I i 5 I} g S(§) such that D e PS({§i I ie I}), with

projections Ni: D -+>§i, i e I. Now niof': S -%>§i is a

mapsuch that [niof'[S]] = Ei, hence fliof' can be extended to

a homomorphism fi: A -+>§i. Consider the homomorphism

H f.: A‘-*>.H §.iel 1 1EI 1
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If s e S then

Cigl fi)(s) = (fi(S))i€I = (Cni0f'(S))i€I = f'(s),
thus _H f. I S = f'. Since h0f' = f, f = ho H f_: A_——>(j

icl 1 1g; 1

is a homomorphismsatisfying f I S = f. U

3.2 Theorem. Let 5 be a non~trivial class of algebras such that

K = S(§). Let Q be any cardinal number, E > 0, and 5m =

= {L 5 K I L is generated by s m elements} . Then F, (m)¢;P (K ).
” — Vifi) S *3

Proof. Let S be a set such that !S| = m. For A 5 Km , let
—.

{f? ' i 5 IA} be the collection of all possible maps f: S-9 A

such that f{S] = A. Let B = H _]1 A , and define
Aefim 1eIA

‘:8-—>Bb '~=.‘.‘.. .
1 y x<s) <<r1<e>>l€I >AEK

A. ‘Q

[i[S]] satisfies the condition of 3.1: if f: i[Sl -9 C , C e K,

is a map such that [f[i[SJ]] = C then C 5 since li[S]l =lSlK‘E

Eand foi = f? for some j 5 IC. Thus wj I i[S]]: [iFS]] -9 C
is the desired extension. By 3.1, then,

Since §;* is generated by its finite *-algebras and the class

of finite *-algebras is closed under subalgebras, we knowby 3.2 that

FET*(l) e PS({L e E; ! L is a finite *—algebra, §;—generated by one

element}). In the next theorema characterization of these finite

*-algebras fig-generated by one element is given. For the definition

of Kn and Kw, see I.3.4- and I.3.1.

3.3 Theorem. Let L 5 Q. be a finite *-algebra, fig-generated by

one element. Then L ; Kn for some n 2 0 .
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Proof. Let x e L such that L = [x]B-. By the proofof I.4.8(i)

x0 is the smallest element of L. First we show that L0 is

a chain. Weassume that IL! > I.

By lemma 2.10 there exists then a w e L0 such that X0-4 w.

Weclaim that w = (x =9 xO)0. In order to prove this we show that
. . - . , o 0 o 0
1f p 15 a unary fii-polynomial then p(x).(x => x ) = (x => x )

or p(x).(x =9 xo)O = X0. Since w is an atom and clearly

W i x, W 5 (x =9 x0) hence w 5 (x =9 xo)O. These two

facts will imp1y(Mu?C1aim that w = (x =9 xO)O.

Weproceed by induction:

(1) x.(x => x°)° = x°

(ii) Suppose the statement is true for unary fig-polynomials q, r.

(a) If p(x) = q(x)° then p(x).(x =~ x°)° = q(x)°.(x = xO)O =

(x =9 x0)0 if q(x).(x =9 x ) = (x =9 xO)O and

I Xx° if q(x).(x = x)

(b) If p(x) = q(x).r(x) then

P(X)-(X =9 x°)O = q(x).r(x).(x =9 xO)° =

O Ox° if q(x).(x =~ x°)° = x or r(x).(x =~ x°>° = x

[ (x =9 xC)C otherwise.

(c) If p(x) = q(x) + r(x) then

p(x).(x =9 xO)O = q(x).(x =9 x0)O + r(x).(x =9 xO)O =

O 0 O
x if q(x).(x =9 xO)O = X and r(x).(x =9 xO)O = x

(x =9 xO)O otherwise.

(d) If p(x) = q(x) =9 r(x) then

p<x>.<x => x°>° = (q(x) => r<x)>.<x => x°>° =

= (q(x) => x°><x => x°>° + r<x).<x = x°>° =
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[ X0 if q(x).(x =: xo)O = (X => X0)O and r(X).(X =9 XO)O = X0

(X =9 XO)O if q(X).(x => X0)O = X0 or

r(X).(x => xO)0 = (X =9 xO)o .

We conclude that X0 has a unique open cover namely (X = XO)O
~ 0

and that hence L0 = O as [(X =9 Xo)0) . If we can show that the

finite *-algebra [(x = XO)O) is _I§;—generatedby one element,

then by repeating this reasoninga finite numberof times, it follows

that L0 is a chain.

_C£L__ai§l:if p is a unary 3;-polynomial, then p(x) = q(X = X0) or

p(x) = q(x =9 x0).b, where b = (X =9 XO)O => X0 , for some

5;-polynomial q . The claim will be proven by induction on the

length of p . Notice first that for any BE-polynomial q ,

q(X => X0) 2 (x = XO)O (of. proof of I. 4.8).

O
)(1) x = «x => x°) = (x = x°>°>.<<x =» x°)° = x

= (X = X0) =9 (X =:~ xO)O.b = q(X =; XO).b ,

with C10’) = y =9 yo­

(ii) Suppose the claim has been verified for unary E;-polynomials

r, s.

(a) If p(x) = I'(X)O and r(X) = q(x = X0) for some §;-polyno­

mial q then p(x) = qO(x =: X0) . If r(x) = q(x => xO).b , then

p(x) = r(x)0 = q(x =9 XO)O.bo = X0 (X -9 XO)O.b .

(b) Suppose p(x) = r(x).s(x) . If r(X) = q](x =9 X0) , s(X) =

= C12(K => X0) , qi , C12 E;-polynomials, then p(x) = q(x => X0) ,

where q = q].q2 . If r(X) = q](X => xO).b, s(X) = q2(X => X0),

then p(x) = ql(x =9 XO).b.q2(x =:»X0) = q(x => XO).b , where

q = q].q2 . The other two cases are similar.
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(c) Suppose p(x) = r(x) + s(x). If r(x) = q1(x =9 x0).b ,

s(x) = q2(x =9 xo).b , then p(x) = q(x =9 xO).b with q = ql-Fqz.

If r(x) = q](x =9 xO).b, s(x) = q2(x =9 x0), then

p(x) = ql(x => x°).b + q2(x => x°) =

= q](x =9 xO).b + b =9 X0 -!- q2(x =9 x0) =

= q1(x =9 X0) + q2(x =9 x0) = q(x => x°) ,

with q = q] + qz , since b =9 x0 = (x =9 x0)O S q2(x =9 x0) and

b =: x0 5 q](x =9 x0). The remaining two cases are similar.

(d) Suppose p(s) = r(x) =9 s(x). If r(x) == q](x =9 x0) ,

s(x) = q2(x =9 x0) then p(x) = q(x =9 X0) , with q = q] =9 q2 ;

if r(x) = ql(x =9 xO).b , s(x) = q2(x =9 x0) , then p(x)-=q(x =9X0)

with q = q] =9 q2 ; if r(x) = q](x =9 x0) , s(x) = q2(x =9 xO).b,

then p(x) = q(x =9 x°).b , with Q ‘ ql 57 dz, nd finally, if

r(x) = q](x =9 x0).b , s(x) = q2(x =9 xO).b , then p(x)=q(x =9X0),

9 = Q] =’ Q2 ­

Now, let y e [(x == xO)O) . Then y = p(x) for some

fig-polynomial p, hence, by the claim just proven, y = q(x =9 X0)

or y = q(X =* xO).b, for some fig-polynomial q. But since

(x=9xO)Osy, y£(x=9xO)0=9 xO=b, hence y=q(x=9xO)

for some E;-polynomial q. Thus we have shown, that the figsubalgebra

[(x ==x0)O) of L is §;~generated by the element X =9 xo.
0

Our assertion that L is a chain has thus been proven; say

LO ; (n + l)_, n 2 0. As L is a *-algebra, l. = B_(LO) =

B-(tn + l)_) , hence L Kn , for some n 2 0. D
H2 H2

3.4 Lemma.For each n 2 O, K; has precisely one E;-generator.

Pm,...n}), 1<‘n°=m,k11osksn}—(n +1)‘
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Wehave seen (cf. I.3.4) that the element x = {2k I k 5 N, 2k 3 n}

fig-generates Kg. Suppose that y g [1,n], y # x also §;-gener­

ates K; . By the proof of I.4.8 , yo is the smallest element of

K- , hence yo = ¢, and consequently i f y. Let i0 be the

first number such that i0 5 y, i0 + I C y or 10 a y, £0 + I d y.

If ,. . - . .
L = L‘j.[l , 10 4’ l]_,'-B:E , 1.0 + ,

then
L = [([l ,i0 ’ 1]] U {io. i0 + 1}]B‘ .

u—

and one easily verifies, that {io} f L. Thus ([1, i0 + 1]] is not

fig-generated by y.[l ,i0 + I], and since ([1, i0 + 1]] is a homo­

morphic image of ([1,n]] it follows that Kg is not generated by

y, a contradiction. Hence, if 1 S i < n, then i e y, i + 1 ¢ y

or i é y, i + I e y ; together with 1 é x, 1 é y, this implies

that y = x. D

Nowwe are ready for the main result of this section.

3.5 Theorem. FB-*(1) 3 K; . The free generator of K; is“i
x = {2n I n 5 N}.

Proof. Firstly, K- e B. . Indeed, if y # z, y,z e K; , thenm "1

there is an atom {n} such that {n} £ y, {n} s z or conversely.

Then y.[l,n] %z.[l,n]. Therefore the homomorphism

f: K ~—> F K­
n=I n

defined by

.' 7

is an embedding.

The K‘ are *-algebras, hence K- e P ({K- I n e N}) 3 §T*.
n m S n 1
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In order to show that K; is freely generated by x, by 3.1

it suffices to prove that if L is a finite *-algebra 5;-generated

by an element y , then there exists a homomorphism h: K; -%>L

such that h(x) = y. But by 3.3, L : Kg, and by 3.4, y corresponds

with x.[1,n]. Thus the map z F->z.[l,n] provides the desired

homomorphism.U

3.6 Corollary. If L e 3: or L € §;* then for each x e L there

is an n 2 0 such that [x]B- 3 K; or [x]B- 2 K; .-i ‘i

It will be proven later that the converse of this corollary

holds as well. Then we shall have at our disposal a nice character­

ization of algebras belonging to g: or §T*1

Note that in the.proof of 3.5 we only used that EE* is gen­

erated by its finite *-algebras; not the result 2.1], that eachfinite
. -* . . .

algebra in §. is a *-algebra. In fact, this IS nowan easy conse~

quence:

3.7 Corollary. Let L 5 B. or L 5 §;* be finite. Then L is a

*-algebra.

IIZ

Proof. Let x e L. By 3.6, [x]B- K— for some n 2 O , hence-i
x e B<tx3B9> g B<L°> .0

*1

The following diagram suggests the more important features of

the structure of FB-*(]):‘i
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. O‘(X‘*}( /‘X 1+‘

.O\­
(x==~:« ,—9x ~
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. . . . . *

Section 4. Injectives and projectives in fii and Qi

In I. 7.1l we arrived at the conclusion that in gi and 3;

no non-trivial injectives exist. The reason seemed to be the presence

of arbitrarily large interior algebras with trivial interior operator.

Since fig and §;* do not contain any interior algebraswnith trivial

interior operator except 1 and g, non-trivial injectives might be

expected to exist in these varieties. As for fig, this is indeed

the caseastwaprovein 4.10: the injectives in E: are the complete

so-called discrete interior algebras. This result as well as itsproof

make the close relationship visible which exists not only between

Heyting algebras and *-algebras but also between the varieties ll and

g7. h14.Il weremark that E. does not have any non-trivial injec­

tives;neither does §;*, as one easily concludes. The section ends

with someobservations concerning projectives in E: and §;*.

4.1 If E E 51 is a class such that S(K) 5 K and L is injec­

tive in K then L0 is injective in KO. Indeed, let L1,L2 e 50,

I ­

tended to g: B(L]) —e>L and E: B(L])-9 B(L2), respectively,

g: Ll-9-LO and f: L -9 L? a monomorphism. g, f can be ex­

where B(L]),_B(L2) e K, and E is a monomorphism. By the injec­

tivity of L, there exists a homomorphism h: B(L2)-—»L such

that ho? = g . Hence h I L2 of = g and it follows that L0 is

iUleCtiVe in 30- Balbes and HOTH[70] have shown that the injective

Heyting algebras are precisely the complete Boolean algebras. Thus,
. * . . . . . .

1f L e fii is injective in fig then L0 IS complete and Boolean.
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4.2 Definition. A (generalized) interior algebia L is called

discrete if for all x F L, x = x.

* . . . . . * .

4.3 Ehegreg, If L e 3; 1s 1n]ect1ve 1n fii, then L 18 a com­

plete discrete interior algebra.
* , . . . . * ,0 . . . .

Proof. Let L c fii oe 1n3ect1ve in fii. Then L 18 injective

in Q30 = 3, thus L0 is a complete Boolean algebra as we observed

in 4.1. It remains to be shown that L = L0. Suppose x e L \ L0
0 vor 0 o vor . 0' to:

Then x ,x e L and x < X < X . lf a = X x then

xa # 0, x'a # 0, and xoa = x'Oa = 0. Therefore M2: Fxa]B 5 Ca],

and hence, since a e L0 ’ M2 6 SH(L). But No E Q: by 2.11, a

contradiction. Weconclude that L = L . H

To establish the converse of theorem 4.3 weshall applyzntheorem

on Heyting algebras, essentially due to Glivenko F29] (see:also Balbes

and Dwinger [74]). If L m

element if x = (x + 0) + O. The set of regular elements of L

is denoted by Rg(L).

4.4 Theorem. If L e E then Rg(L) is a Boolean algebra under

the operations induced by the partial order of L. The operations

are given by:

u + v == ((u + V) + 0) + O
Rg(L)

U. ' V 3- Ll.V

Rg(L)

u -> v = ((u + 0 + v) + 0) + O
Rg(L)

= 0
Rg(L)

E, X 6 L, then X is calledaz egular
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Moreover, the map rL: L-%>Rg(L) given by xr—e>(x + 0) + O

is an Q-homomorphism.

4.5 Wewant to extend this result to a similar one for algebras in
CO

§:. If L e E1, x e L, then x is called regular if x = x.

Hence, if x is regular then x = xoco. On the other hand, it is

well-known (cf. McKinsey and Tarski [46]) that (xOC0)CO= xoco is

an identity in fii. Thus the set of regular elements of L, Rg(L),

is {xoco ! x e L}. Recall that the set D(L) of dense elements

of L is {x e L [ x°° = 1} (cf. 1.2.19) .

4.6 Theorem. Let L 5 3i. Rg(L) is a Boolean algebra under the

operations induced by the partial order of L. In fact, it is a

discrete interior algebra, the operations being given by:

x + 37 = (x + y)°C°
Rg(L)

x . y == x.y
Rg(L)

X'Rg(L) = xvoco

xORg(L) X

°Rg<L> 0

lRg(L) I

- L-9 Rg(L) defined by x+«+ x°°°
, *

Moreover, if L e 31, then rL.

is a §i~homomorphism, with kernel D(L). Hence Rg(L) : L / D(L).

For the proof’ of the second part of the theorem: we need

a lemma.
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o oco _ voco)oco.* . ,. . . oc ,
4.7 Lema. fii Sat1SI1eS the identity (x + y) = ax v , (*).

Proof. Since fig is generated by its finite s-algebras (see I, 6.9)

it suffices to showthat every finite w-algebra L e gi satisfies

(s). So let L e g. be a finite *—algebra and let $2 LO-—+~Rg(LG)

be the E-homomorphism, which exists by virtue of 4.4. Since Rg(LO)

is Boolean we mayregard it as a discrete interior algebra. By 1.2.15,

there exists a E;-homomorphism $: L-¥Rg(L0), such that 5 1 L0 = ¢.

Thus, if x e L0 then g(x) = ¢(x) = (X + 0) + O = x'O'0 = xco ,

, - — o ~ 0 oco _. - .hence for x e L, ¢(x) = (¢(x)) = ¢(x ) = x . since o is a

fii-homomorphism, then,

(x + y)OC° = $(x + y) = $(x) + $(y) = XOLO + O YOCO =o . ,
Rg(L ) Rs(L 2

((X0c0 + yoco) + 0) + O = (xoco + rocoioco U

Notice that the identity (*) is not valid in fiiz for example,

it is not satisfied by M2.

?roof of 4.6. Let L e Bi, As Rg(L) = Rg(LO) and L e 5,

it follows from 4.4 that Rg{L) is a Boolean algebra under the given

‘< Co 23 CLoperations and indeed, this is a well-known fact (cf. McKinse

Tarski [46]). Thus Rg(L) provided with the given interior operator

is a discrete interior algebra.
V * I‘!

Nowassume that L e fii. lne map rl preserves . , because of the

well-known identity (x.y)OCO = xOCO.yOC0, and rL preserves 0,1.

Moreover, rL(x + y) = (x + y)OCo = (XOCO+ yOC0)OCO = rL(x) -F rL(y)
Rg(L) '

by 4.7. Thus r is a D -homomorphism and therefore a fi-homomor­L ‘O1

phism. Finally, rL is a Bi-homomorphismsince
0 .

(rL(x)) Rgm = x°°° = rL(xO) .
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The last assertion of the theorem follows from

r;]({l}) = {X e L ! xoco = I} = D(L) .U

4.8 Theorem. Every complete discrete interior algebra is injective
, *1n B..-1

Proof. Suppose that L is a complete discrete interior algebra.
* . .

Let Ll,L2 e fii, f: LI-é L2 a l~l fii-homomorphism, g: L]-9 L

a Q,-homomorphism. Let rL : Li-9 Rg(Li), i = 1,2 be the xnaps1 v1

guaranteed by 4.6. Let g: Rg(L])-9 L be defined by g = g E Rg(L‘).

Then Eco) = o, Em = 1, §<x . y) = §<x.y> = g<x.y> =
Rg(L)

= g<x>.g<y> = §<x>.é<y>, and go: + y) = é<<x + y>°°°> =
Rg(L)

g<<x + y)°“°> = <g(x> + g<y>>°“° = §<x> + icy), for any x.yeRg<L,>.

Since both Rg(L]) and L are discrete, it follows that g is a

§i~homomorphismsatisfying gorL = g. Analogously, there exists a
1 .

f: Rg(L]) —->Rg(L2) such that f is a _]§i-homomorphism, f= rL of I Rg(L]),
2

and for = r of . Note that f is 1-1.
L1 L2

Rg(Lp

Since L is injective in the category of Boolean algebras (see Balbes

and Dwinger E743), there exists a 3-homomorphism h: Rg(L2) —->1. such
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that h°f = g . Since Rg(L2) and L are discrete h is also a

B.-homomorphism. Now hoior. = g°r , thus h°r 0 f = g, and
*1 L1 L] L2

horL is the sought-—for fii-homomorphism.[i
2

4.9 Remark. As a matter of fact, we have shown in the proof of 4.8

that the equational category E of discrete interior algebras is a
_ *

reflective subcategory of 3i and that the reflector preserves mono­

morphisms.

. . . . . . *

The promised characterization of the lDJeCt1VeSin Bi follows

now from 4.3 and 4.8:

. . . . * .

4.10 gorollary. The injectives in fii are the complete discrete

interior algebras.

4.11 As in 4.1 we see that if L e §i* is injective then L0 is

injective in fl‘ = (§;*)O. However, let L e E‘ be injective in

H.’ 3Ll > 1, u e L, u # 1. Let L] e fl_ be a subdirectly

irreducible algebra such that IL I > 1L1, with V 5 L] the
1

unique dual atom in L]. Define g: Q-€>L by g(O) = u, gtl) — 1

and f: g-%>L, by f(O) = V,
L

£(1)= 1. Then both g and f ¢'\
.. - fl \\ h

are fl~homomorphisms. Suppose that \\
K

h: L -91; is a homomorphism 2 --->L
I 8

such that hof = g. Since

ILll > |Li h is not 1-1, hence h‘]({1}) ¥ {1} . But then

V e h_]({1}). This implies that I = h(v) = h°f(O) = g(0) = u ,

contradicting our assumption that u # 1. Hence L cannotlxzinjective,
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unless it is a trivial algebra. we have shown:

4.12 Theorem. §;* does not have any non-trivial injectives.

Note that 4.1] provides a different proof for the Q;-part of

1.7.12 as well; in fact, this proof works for any variety 3 such
* _that BTcKcB..—1—.—_].

As for projectives in fig, 1.7.16 assumes the following

elegant form:

4.13 Theorem. The finite weakly projectives in g: are the algebras

B(L), where L 3 L T L T ... T L for some n 2 0 , L
O l n n

2
L. 2 or L. 2, O S i < n.

1 — 1 *
uz

Proof. By 2.)! and Balbes and Horn !70!. H

we have not considered the problem of determining the weakly

projectives in §;*. Thoughit is clear that the algebras mentioned

in 4.13 are weakly projective in §;*, one might expect that there

are more, because of a possible existence of finite algebras, weakly

projective in fl- but not in Q. Weshall confine ourselves there­
*fore to the obvious remark that the finite weakly projectives of gt

1

are the algebras B(L), such that L is weakly projective in fl



- 119 ~

Section 5. Varieties generated by (generalizedl interior algebras

whose lattices of open elements are chains

Particularly nice and simple examples of Brouwerian algebras

and Heyting algebras are the ones which are totally ordered, i.e.,

the chains. For any two elements x,y in a chain, x e y = 1 or

y a x = 1, which leads to the observation that chains satisfy the

equation (x -9 y) + (y —>x) = l (=k) . The subvarieties 9- of E­

and Q of Q determined by this equation (*) are.anatura1 object

of study, and have indeed received considerable attention in the

literature, for example in Horn F69, 69 a], Hecht and Katrinak {72]

and Kohler [73].

The remaining three sections will be mainly devoted to an in­

vestigation of the free finitely generated objects in somesubvari­

eties of QC and Q-C. In this section we start with some pre­

paratory results.

It will be useful to give a brief review of the main facts

concerning Q and Q_. Werestrict ourselves to Q and its sub­

varieties since the results and arguments for Q. are essentially

the same.

It is known (see Balbes and Dwinger [74]) that Q‘ is the

class of relative Stone algebras and that Q is the class of rela­

tive Stone algebras with 0. Recall that a relative Stone algebra
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is a distributive lattice such that each interval [a,b] of L is

a Stone algebra, i.e. a distributive lattice with pseudocomplementa­
. * . . . . * ** . .tion satisfying the identity x + x = I. Moreinteresting

to us is the fact that the subvarieties of Q and Q- have been

characterized, in Hecht and Katrinék [72]. Weshall sketch now a

simple proof of their results.

5.2 Firstly, if L e 981 then L '=”L] as 1 , where Ll e Q ,

hence for any x,y e L 5 QSI x e y = I or y e x = J and thus

x S y or y s X. Therefore QSI consists entirely of chainsxdith

a penultimate element. If Q, n e N, denotes as usual the chain

{O < 1 < :.. < r1~ I}, considered as Heyting algebra, then the finite

subdirectly irreducibles in Q are n , n > 1 , n e N. we con­

sider the subvarieties V(g) of Q, n e N. Since m e H(g) if

0 S m S n, it follows that V(m) 5 V(n) for m S n. Moreover,

if m > n 2 0 then m é V(n). This can be seen by applying one

of J6nsson's results (0.l.26), but also in a more elementary way,

by realizing that the identity , I xi 4 xi+l = 1 1S satisfied in1:

Q but not in‘ m. As a matter of fact, this identity determines

V(m-I) relative to Q}. Weconclude that V(l) c v(g) c ... c Q.

Thevariety Q is locally finite. Indeed, it is sufficient to

note that if L e C is generated by k elements then lLl::k-+2.‘SI

If Ll g Q is generated by k elements then by 0. 1.6 I“ is a

subdirect product of subdirectly irreducibles in Q. Since there are

only finitely manymappings from In onto subdirectly irreducibles

L in Q, L] is a subalgebra of a finite product of finite alge­

bras, hence finite. Since any variety is generated by its finitely
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generated free algebras, it follows in particular that Q is gener­

ated by its finite members,and even by its finite subdirectly irre­

ducibles. Hence Q = V( 3] V(g)). Now, if E g Q is a varietyn=.

8, g {Q I n s m} for some m 2 1 since otherwiseL
then E

K , 3 C C , as one easily verifies, and hence K = Q , in con­’SL ‘ ‘Fol

tradiction with our assumption. Thus K = V(m) for some m C N,

and the chain of subvarieties V(l) c v(;) c ... c Q comprises

all subvarieties of Q. If Ls+L denotes the Heyting algebra of

order type au+1, then obviously Q = V(w-FL).

Summarizing, we have:

5.3 Theorem. (cf. Hecht and Katrinék T723)

(i) The subvarieties of Q form a chain of type <u+1:

V(l) c v(g) c ... c Q = V(9g;l) and

V(g)SI = {m i I < m 5 n}, n 5 N,

c = {c o 1 | c e g, c a chain}.—sI

(ii) The subvarieties of Q- form a chain of type a)+l

v(;") c v(;") c ... c = v((9;;l) ) andK3

< S‘ \/
d

z-—--. IB
/\ '5‘ M 3 D m Z

-51 =

Furthermore, both Q and Q_ are locally finite.

In section I of this chapter we associated with a variety E

of Heyting algebras the variety EC = {L 5 31 L05 3}, and simi­

larly with a variety E of Brouwerian algebras the variety KC=
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Let now

M.= 9° . L4" = 9'“ and

Mn = V(g)C, M; = V(g )C , for n e N.

By 1.9 M and Mn, n e N are varieties, and similarly M—, M;,

n e N are varieties.

5.4 Theorem.

(i) The equation (XO' + y°)°

determines M relative to fi
1'. O

The equation (x0 =>yo)O + (yo =’x°)o = 1

determines M- relative to fig.

(ii) MSI - {L e fii I L0 is a chain with a dual atom},

_;I = {L e fig I L0 is a chain with a dual atom}.

(iii) M = v(uFSI) and M" = v(m;SI)

Mn = V({L e fii I L is finite and Lo : 3}), n 5 N,

M; = V({L e fig I L is finite and Lo ; g_}), n e N
¢n

(IV) 2'1] €1.42 C CM and L4= V(nl__J]L1.n).

M" c M; c ... c M" and M" = v( E M ).

Note that it is not claimed - and as a matter of fact it is not

true - that the chains of subvarieties of M and M- mentioned in

(iii) and (iv) comprise all subvarieties of M and M- respectively.

Proof. (i) Apply 1.12 to the equation (x 4 y) + (y + x) = 1 ,

whichdefines Q and Q- relative to fi and M respectively.

(ii) By 5.3, since for any L e fii, L 5 M51 iff

L° e M°_SI = QSI . Similarly for M-.
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(iii) we show that

fig = V({L 5 Bi E L0 : Q and L is finite}), n 5 N.

The treatment of the other cases is similar.

According to 0.1.6, flu = V(flnSI). In virtue of 1.2.7 and 5.3,

L e EDS”: iff LO 6 V(g)ST iff L0 : 5, for some m, I <H1STL

Assuming Mn= V(MnFSI), it is sufficient to note that if L is

finite, L0 g Q, 1 < m S n, then L 3 H, , (cf. I.7.20)
K ,0 I UK

N l m

hence L e H(L]), where L] = Mk ’ ‘k ’k ’...k , km+],...kn
I m m+l n

being arbitrary positive numbers and LT: Q, in order to conclude

that Mn = V(MnF8I)§; V({L 6 fii I L is finite and LO ; 3}). It

remains to show that E_ is generated by its finite subdirectly

irreducibles. Suppose that flu # V(finFSI), then there exists an

\ V(fln and a gi-polynomial p such that the identity
\

-‘n SI FSI’

p(x,,...xn)= 1 is satisfied by V(M ) but not by L. LetI 'T1FSI

a ..an e L be such that p(a‘,...an) # }. Apply a simplified1’.

version of the methodexhibited in I.6.9 , i.e. let b1,...br be theH

subterms of p(a],...an), including a],...an , and define on L] =

= [{bl,...bm}]B an interior operator 01 by

X01 = Z{y 6 L] l yo = y and y S x}.

Since L} is finite this is a good definition and it follows that
0 . . . . , .

L e M because L1 15 a chain, the Length of which 1S at most1 ‘nFSI’

the length of L0. Furthermore, pl (a],...an) = pL(a],...an) # I,

a contradiction. Thus Mn= V(flnFSI ) as desired.

(iv) is an immediate consequence of (iii) and 5.3.8

It is not our aim to describe here the lattice of all subvari­

eties of M or M—; that will be done afterwards. Nowwe want to



throw some light on the algebras in g and §_ themselves, in

particular on the finitely generated free algebras. In order to do

so, we shall have to restrict ourselves occasionally to suitable

subvarieties of g and M­

The class Q2 of interior algebras the lattices of open ele­

ments of which are Boolean, definable by the equation xoc = X0 ,

deserves some special attention. It is about the only proper subvari—

ety of Qi, which has been investigated before, and indeed, rather

extensively. The interest in the algebras belonging to flz is not

surprising if one considers that they form on the one hand a starting

point for the notion of cylindric algebra (Henkin, Monk, Tarski

E711), on the other hand for that of a polyadic algebra (Halmos[6ZD.

The algebras in flz, which got already some attention from McKinsey

and Tarski [48], are knownas monadic algebras, and it was probably

Halmos who gave them this name.

The subdirectly irreducible monadicalgebras are precisely the inte­

rior algebras with trivial interior operator (the finite ones among

which are our familiar Mn, n 5 N) and therefore simple, which fa­

cilitates the study of monadic algebras greatly. Bass {S8} showed

that M is locally finite and he determined the finitely generated-2

free objects in fiz. See also J. Berman[M].

~ (33?
5.5 Theorem. FM (n) = H Mk hence

-2 n 1sks2n
, 2 -1 2“

FM (n) has 2n.2 atoms, and PM (n)O has 2 -1 atoms.*2 -2

This result is in fact a simple corollary of lema 3.1 and

corollary 6.5, still to follow.
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The subvarieties of M2 have been characterized by MonkT703:

5.6 Theorem. The subvarieties of M2 form a chain of type w+-1

V(MU) c V(M]) C ... C M2

grggf. Clearly V(Mk) g V(M£), if 0 S k 5 2.

That V(Mk) C V(MZ) if k < 2 follows immediately from 0. 1.26 and

Lo1.” 8 , or, alternatively, from the observation that the equation

2 1 (K! + x.)o(x1 + x.)O = 1(*)
Isi<js2“+1 1 J 3 1

is valid in V(Mk) but not in V(M£), R > k. Furthermore, if gggm?

is a variety, and K wouldcontain an infinite subdirectly irreduc­

ible or infinitely manyfinite subdirectly irreducibles, then one

deduces that KS13 §2FST , hence by 5.4 (iii), E = 32. Therefore,

5 = E2 or KS: 2 {Mk I k S n} forsome n e N implying E = V(Mn)

for some n 5 N. It also follows that the equation (*) defines

V(Mk) relative to M2, k 2 0. U

5.7 In 1.7.8 we have already observed that free products in 3?
4.

exist. In virtue of I.7.9 , free products exist in each subvariety

V(Mn) , I1 5 N, of M2. (hi the other hand, the variety M2

has no non-trivial injectives: the proof of I.7.l2 applies to M2

as well as it does to E1. As for the subvarieties of M2, it isknown

that V(Mn) hasrm>non-trivial injectives if n 2 3, n e N, whereas

the injectives of V(Ml), the class of discrete interior algebras,

are of course the complete algebras, and the injective objects of

VCMZ) are the extensions of M by complete Boolean algebras (cf.2

Quackenbusch [74]).



The classes Mn, n > 2, n 5 N, are more difficult to deal

with, chiefly because of the presence of manymore subdirectly irre­

ducibles. Before starting to try to characterize finitely generated

free objects in (subvarieties of) En, fig, n > 2 , n { N, we

want to establish the important fact that these algebras are finite,

Note that since Koo.5 g, K e M , Km and K; being L3;-generated

by one element, it follows that M and M_ are not locally finite,

unlike the classes 9 = E , and Q = M

5.8 Theorem. fin and Q; are locally finite, for each n e N.

Erggf. Let L e flnsl and suppose that L is generated by ls ele­

ments, say by x1,...xk. Then

L = [{xl,...xk}]E: = [{x],...xk} U L015

and since ILOJ S n it follows that lLi S 22k+n . Hence there are

only finitely manysubdirectly irreducibles in Mn generated by k

elements all of which are finite, and using 0.1.6 it follows as in

5.2 that every algebra in fin generated by k elements is finite.

The proof for Mg is similar.[]

In the next section, FM-(1) and FM(1), n e N, will be
‘n ‘n _

determined. As far as the free objects in fin and Mn on more than

one generator are concerned, we shall restrict ourselves to finding
. . . . . . -* *

the finitely generated free objects in the subvarieties Mn and flu

of M; and Mn respectively. These varieties are still typical for

the behaviour of M_ and M in the sense that V(fl-) = M—O= M_*O‘n “n ‘n “n

and V(n) = fig = M30 and have at the same time the advantage of pos­

sessing only a very limited numberof subdirectly irreducibles.



5.9 Lemma. Let 2 151i or .1:E 11; be a variety and let 1i, E 1_<°

be such that 13°= mg). Then Ig*=v({B(L> S L erg).

Proof. V({B(L) i L e r,}>° = mg) = 22° by'1.2,

hence by 1.8

1<.*s v<{B(L> I L e r,}).

On the other hand
‘A’

V({B(L) I L e g]}) g v({B(L°) { L e 19) = I: [1

5.10 Theorem,

I * __ 1* = -— ’
(1) En - V(Kn_1) and Mn V(Kn_1), n e N.

1;1r’:SI= {Km I 1 S-In < n}, 1.~_4'”SI={1<;1 I 1 Sm<r1}, n e N.

(11) if‘ = VT(Koo)’ If = V<I<Z,).

(iii) The subvarieties of M* are
* * ‘k

24.,r--.I:I2c cm

The subvarieties of M—*are
-* -‘k --:k

I~_/I] c: {:12 C __, C M

proof. (i) The first line follows from 5.9, since ME= V(n) ,
I

III
2 I

Mno = V(g—), and B(g) Kn_] , B(n—) = K , n e N. In order
, _ *

to prove the second pair or statements, let n e N and let L 5 MnSI.

hence by 5.3 (ii), LO;Then L0 e V(H) E for some m,SI ’

1 < m S n. If L were not a *—algebra then L would contain a fi ­

nite non *-algebra as a subalgebra, in contradiction with 2.11. Thus
:\I

L = B(L°) and hence L Km for some m, I S m < n. Similarly

for M—*“n
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(ii) By the proof of 3.5, 5w 5 SP({Kn : n > 0}, hence
rv

K e M . Since by 5.3 (i) Q = V(w-+1) and K: zu+ 1, it follows

that Q* = V(B(w4-1)) g V(Km)E fl*, with 5.9. Similarly for M—*

(iii) Note that y1*FSI = {Kn 3 n .: .1 } . Let 1_<5 »_a*

be a variety. If E # fl* then X0 C M0= 9, hence, by 5.3 (i).

go == V(n) for some n , n E N . Thus 3 g Mn, and by 5.8

5 is locally finite,implying E = V(£FSI). But
it

BFSI 9- MFSI ” M1131 ‘ {Km} ' S "1 < n}

and it follows that E = V(Km_]) for some m e N. Similarly for

any variety g E M . D

Section 6. Finitely generated free objects in E; andy Mn, n 5 N-——_

Our first goal is to determine FM—(l) and FM (1) , n e N"n n
(6.6 and 6.8). Weshall use 3.1, and since M and M are generated

by their finite members,we therefore first have to find out what the

finite subdirectly irreducibles generated by one element are in M

and M_. Someof the lemmas will be formulated in a more general

fashion than needed at this point; they will be useful in the charac­

terization of FM*(k) and FM-*(k), n c N, n 2 2, k e N, our“n -n
second object in this section.

If L = M , n1,...nk being arbitrary positive numbers,
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(cf. 1. 7.20 for notation), then the chain of open elements of L

will be denoted by {O = co < c < ... ( c = 1}.

6.} Eemma. Let L e M or L e M- be a finite subdirectly irreduc~....

ible algebra generated by one element. Then L 3 MP n respec~.1, .. k
tively L = M for some k e N, with n’ =... = n = I ,

F-I9 0 1 k‘i

nk = 1 or nk = 2.

Eroof. Let L 5 Since L is a finite subdirectly irreduc~MFSI'
0

ll?ible algebra, by 5.4 (ii) L g, for some k > O and hence

HZL Mn n , where n1,...nk are positive integers(cf. 1.7.20).1"" k
Suppose now that L is gi-generated by one element >: andthat IL >11

for some i, I s i < k.

___\\

M3,2,s,1

(i) If c£_lci 3 x or c{_]ci 5 x' , then

[x]B' g [(ci_]J U {c;_1ci} u (CEJJD # L ,
"1 ‘G1

a contradiction.

" If ~! ~. ' 2 I '(11) L1_1L1 £ < , c1_]ci £ x , then
0

(X + Ci—1) = (x' + Ci-l)0 = Ci—1 ’

andixzfollowsthat [x]B‘<L Kci_]] U {x}]B thus TX]: <3(c1 130 U {1}

and since i < k, Ci 5 L K [X33 2 a contradiction.
—i

we conclude that ni = 1, i = 1,...k-1, By"assumption ,

rT(L) s 1, hence rT([ck_l)) s 1 by I.6.lO (ii),



thus for some y e [ck_1) , [C _1) = [{ck_],l} U {y}]E hencek

22 or Eckml) E 2, So nk = g or nk = I .U7?‘
I \.2

Icon2

In the following we shall use again the notation introduced in

1.2.21, i.e., if L e g;, then s(")(o asL) will denote the
(-)(generalized) interior algebra § -generated by O G L satisfying

B(')(0 e L)° = 0 e L° .

6.2 Lema. Let L e E1, L = [{x],...xn}]E;, n e N.
(i) B-(0 9 L) is E;-generated by any set

{yl,...yn} g B (0 e L),

where y. = x. or y. = x,== 0 i —1,...n, and for at least one
1 1 1 1 ’

i, 1 S i S n, yi = xi =»O.

(ii) B(O6 L) is fii-generated by any set

{yl,...yn} C B(O6 L),

where yi = xi, or yi = xi, i = 1,...n.

Proof. (i) Since there is an i, I S i S n such that yi = xi=a 0,

y? = (xi =-O)O = O for some i, 1 S 1 5 n (cf. I.2.2l ), hence
* , x ,

0 e [{y],...yn}]§f . Let xi = yi if yi = xi, xi = yi =-O if
1 * * _

yi = xi =-O. Then xi 6 [{yI,...yn}3§; and xi = Xi , 1 = 1,...n.
Hence

{0} U L = {O} U [{x]...xn}]B— g [{y],...yn}]B- ,-1 —i

thus B (0 6 L) g [y],...yn]B­-1
(ii) The assertion follows from the fact, that

f{y,,---yn}3§i 2 {0} U [{y],---yn}]§; 2 {O} u L ,
hence B(O0 L) = [{yl,...yn}]B for any set {y],...yn} as given.fl"i



6.3 Lemma. Let k.e N , n] = ... = nk_l = l , nk = I or 2.

(i) M; n is §;~generated by one element. If x and y1,... k .

fig-generate M— then there exists an automorphism1,... k

QNMI: n_*Mn n1’ '1; 1"‘ ‘k
such that w(x) = y.

(ii) M n is fii-generated by one element. If X and y1,... k
§i—generate Mn n then there exists an automorphism1,...

.M ——->

m n], .nk nl,...nk

such that m(x) = y or w(x') = y.

Prooi. (i) If k = 1 then Mn = M, or M = Ma, in which cases

the statement is obvious.

Suppose now that the assertion is true if k = m 2 I . Then

2 n
B(O 9 Mn n )m+l 2"" m+l

and since by assumption Mn is generated by one element, it

follows by 6.2 that 3% n is generated by one element.«],ICOm+]

In ordertxnprove the uniqueness of the 5;-generator, let x ,y

be §T—generators of M , k 2 1. If n = I the statement
1 n‘,...nk k

follows from 3.4, so assume nk = 2 and x # y. Then x.ck_1 and

y.ck_] are §;—generators of (ck_l] : Mn],‘..nk_] 2: Kk_] , hence

x.ck_l = y.ck_l by 3.4. Let a, b be the atoms :€ cfi_1ck , then

x = x.ck_l + a , y = y.ck_1 + b or vice versa.

Let (p: Mn ,‘..n -9 Mn ,...n be the automorphisnx defined by
I k 1 k

w i (Ck_]3 = id i (Ck_]], m(a) = b, m(b) = a. Then m(x) = y.

(ii) Let x be a §;-generator of Mn n . Note that X0 = O" 1,00. k
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'0 —0. If x0 = 0 then 1: is also a fig-generator of M ,n],...nk
o

and if X’ = 0 then x’ is a gf-generator of M . D
1 n1,... k

Thus the finite subdirectly irreducibles in M_ euui M, gener­

ated by one element may be pictured as follows:

The next lema is concerned with the generation of products of

(generalized) interior algebras.

6.4 Lemma.Let L L e;§i or fig be finite, with smallest element (),I’ 2

and let L g L] X L2 be a fii-respectively E;-subalgebrasuch that

n,[L] = L‘, n9[L] = L7. If there are run onto homomorphisms

fl: L1-9 L3, f2: L2-9 L3, L3 6 fii, L3 6 E; respectively,

[L3] 2 2, such that flovrl { L = f2o1r2 | L, then L = L] x L2.

Proof. Werestrict ourselves to the fii-case.

Let (a,b) e L be an atom of L. Wewant to show that it is an atom

of L] X L2 as well. Since any atom of LI X L2 is contained in some

atom of L, it will follow then that all atoms of L] x L2 belong to

L, and hence that L = L] X L2. First note that if a # 0 then a

is an atom of L] , and similarly, if b # 0 then b is an

Indeed, since n][L]= I. , there exist a] 6 LI,atout of L 12.



-133­

b] 5 L2, such that al is an atom of L], a] S a, and (a!,b]) e L.

Hence 0 % (aa],bb]) = (al,bbl) 5 L, and (a],bb]) : (a,b), thus/

a = a] and a is an atom of LI.
-1,.

Next we show that a = 0 or b = 0. Let F] = v] Lil}) n L

F2=n'?"({1})r.L, F]=[g])gL, F2=L‘g._,)gL, F=[gzg2)gL.
L L L L . . L .Let f : /, -9 / , f : / -9 / be defined in the canonical

1 L, F 2 F2 F
L L

way. Then flo1r1:L—> /F, f2°1T2IL—> /F, andfor xeL f,o~.r](x)=
IIZ= x.g1g2 = f2on2(x). By assumption then, L/F 1, hence g1.g2==0.

Since (a,b) is an atom of L, (a,b).g] = 0 or (a,b).g2 = 0, hence

n1((a,b)) = O or n2((a,b)) = 0, so a = 0 or b = 0. Weinfer that

(a,b) is an atom of L] X Lo. D

Note that this proposition could be stated in a more general set­

ting as well: a lemmaof this kind holds for example in any equational

class in which the algebras have a distributive lattice structure

(possibly with someadditional operations, of course).

6.5 Corollary. Let L. e E. or E: , i.=1,...r1 be:finite, L g ,E L.
—-—-————-— 1 1 1 1:1 1

a 31- respectively 5;-subalgebra such that wiCL]= Li, :i=l,...n.

If for no i ,j , I S i < j E n there are onto homomorphisms

fi: Li-€>L0, fj: Lj-—+'L0, LOE 3i, E; respectively, ILO!2 2,
such that f.°n. I L = f.°t. i L, then L = _E L..

1 1 J J i=1 1

Proof. Let (a],...an) be an atom of L. As in the proof of 6.4\w2can
/ n

show that ai is an atom of Li. Suppose ai # O, bj # O, I ;1_<j Srh

Consider the subalgebra L‘ = (ni><nj)[L] E Li><Lj. Clearly (ai,aj)
1is an atom of L‘, and n![L'] = L. , nY[L'] = In , where n. ,

1 1 J J 1

N3 are the projections from Li X L. to L: and Lj respectively.1.
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If L 6 Bi ,§; respectively, ILOI 5 it i O, fj: j 0
are onto homomorphismssuch that

then also

f.on. I L = f.0n. i L ,11 JJ
contradictory to our assumption. Hence we can apply 6.4 to

L' E L X Lj and conclude that ai = O or bj = 0, a contradiction.Ui

Nowwe are ready to give the characterization of FM-(1), n 2 2.‘n

ll? B—(0e F - (1)) X M; , for n 2 2, where
6.6 Theorem. FM-(I) fln_]n

FM—(1) stands for the one element algebra. If x is a free generator-I
of FM-(1), then (x =-0, a) is a free generator of FM—(1), where

—n-1 _ “n

a is an atom of M2.

Proof. (i) For n = 2 the assertion takes the form FM—(l); MI><Mg,"2

(O,a) being a free generator. Indeed, obviously, [(0,a)]B“ ==M;><M;.*i
If L e MZSI then L0 = g . If in addition L is generated by one

element, then by 6.] L : M; or L 2 ME. The E;-generator of M;

is 0, the fii-generators of M0 are a or a== O, a being anI.

atom of M;. The desired homomorphisms are

H]: M; X MT-9 M; , with nl((0,a)) = 0 ,

N22 M; X ME--9 ME , with n2((O,a)) = a , or

honzz M; X M;-9 Mg , with hon2((0,a)) = a=>0

h being the automorphism of M; interchanging a and a=vO. It.fo11ows

from 3.1 and the fact that M2 = V(M2FSI) that FM;(I) = M] x M2
and that (O,a) is a free generator.



(ii) Let n > 2. Firstly, we claim that

B"(o e FM- (1)) x M; = [(x=:»0,a)_1B-,"n-1 -i
where x is a free generator of FM— (1) and a is an atom of Mg.

‘-‘n-1 ­

we use lemma 6.4. Since x is a fig-generator of FM- (1) it follows
‘—n—1

by 6.2 that B (O 6 FM- (1)) is §i—generated by x== 0. Obviously,
_ -n-1

M2= [a]§;. Hence
1r[[(x=>0,a)]-] = B—(0eF_—(1))

1 B. M*1 -n-1
and

n2[[(x =»O, a)J§;] = M; .

If L 5 3;, [LI 2 2, f: B-‘(O eaFM— (1))——> L and g: M;—~> L"n-1 “
are onto homomorphisms such that

fo1r]I[(x=>0,a)]§; = g01r21 [(x==~O,a)]E-i-,
then on the one hand L : M; since H(M;) = {M_,_l}, but on the

other hand M; E H(B-(0 9 FM- (1))) since every non-trivial homo­‘n-1
morphic image of B-(0 6 F (1)) contains an open atom. The rea~

*‘—‘n—1

son for this is the fact that if u e B—(OG F (1))O, u # 0, then
-1M"

O "nu contains the open atom x (cf. I.2.21 ). This is a contradiction,

and the claim follows by 6.4.

In order to show that B_(0 a FM- (1)) X M; is freely gener­“n-1

ated by (x=» 0, a) in M; we apply 3.1. Since fig = V(fi;FSI) it

suffices to prove that for each L e flgpnl such that L = [y]B­D ."1
for some y 5 L there exists a homomorphism

f: B-(O ea FM— (1)) x M; —> L
such that ~n_]

f((x =-O, a)) = y .

Let L E MLFSI be fig-generated by one element, say by y.

Then L 3 M‘ , where 1 S k S n-1 , n = = n = 1 and
n1,...nk 1 "° k-1



- 136 ~

nk = 1 or 2 , according to 6.1 . Furthermore the generator y is

unique up to automorphisms of L in virtue of 6.3 .

If k =1, then L 3M; or L SMI. If L 311;, then

112: B-(O ea FM- (1)) X 11;-->11;
“n-I _

or 112 followed by an automorphism of MO is the desired homomor­

phism (cf. (i) of this proof). If L : then L = [0]B- , and-i
the homomorphism

B-(0@F.- (1))><M_—->(xO] ,
M 2

O-n-1
defined by (w,z) 0-->w.x is the desired one, since then

(x=:»O,a)I-—> (x=> O).xO = 0.

If k> 1, then L2'B'(oeM’ ). By6.2 and 6.3
n ,OOOn-k_ 2_

there exists a §.—generator y of M such that y = y =0,
1 1 n.2,...nk 1

Since M_ e M— , there exists a homomorphism
2, ..nk “n-1

h: FM- (1) ——>M; n—n-1 2’°" k
such that

h(x) = Y]

By I. 2.23 , h can be extended to a homomorphism

E: B—(O6) FM- (1)) -->B—(0 ea1~1;’”_n)= L.
_ “n-1 2 k

Then h(x = O) = y] =>0 = y , hence

E0112: B-(O <9 FM—— (1)) x M; —> L"n-1
is a homomorphism such that

ho112((x => 0 , 21)) = y ,

as required. 1']

A set representation of F — (1) is suggested by the diagram:
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B_(O e FM-(1)) ME
-11

Free generator: {bl,d2,a2,b3,d4,a4,b5,...} U {a}

The p.o. set of join irreducibles of FM- (1)0 can be repre­
n+1

sented as follows:

6.7 Corollary. F_- (I) ; Z3n , n e N
Ln+I @­

Proof. If n = 1, F —(l) 3 bf-X M_ 3 g3 . Let for L e 5. or
—— L12 1 2 .- 1

L e fig, L finite, At L denote the get of atoms of L. Suppose
, ~ 3m~3 . ~ - _ *

that P -(1) = Z ,1nZ 1. Slnce F'- (I) = B (0 $ F "(1)) X Mr;
M - M M Z‘m 5 -m+ I -m

lAt(FM- (1))| = I + [At(FM- (1))| + 2 = 3m 5
—m+1 “m
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The step to the characterization of the free object on one gen­

N1erator in the corresponding varieties Ln , n 2 2 is only a small

one, now.

6.8 Iheorem. FM (1) 2: (B(O $ FM‘ (1)))2 X M2 , for n D 2.
*n —n-I

If x is a free generator of FM- (1), then (x',x,a) is 3 free‘n-I
7

generator of (B(O e FH- (l)))“ x M2, where a is an atom of M2.Ln-1

Proof. First we show that (x',x,a) generates (B(O(BFM- (1)))2 X M2,
1_n_

using 6.4. Note that both x’ and x are E1-generators of

B(O0 F - (1)), by 6.2. Let I.€§i, HA22, f,g: B(O6 FM- (1))-9 L
‘ 1Mn-1 “n­

onto homomorphisms such that f(x') = g(x). Since B(O 0 FM- (1))-n-I
has a unique open atom X0, L has one open atom too, say cl. Let

: (c1] be the canonical projection. Because f and g

are onto, so are hof and hog, hence 0 = hnf(x') = hog(x) , x‘

h: L ->_2_

being a fig-generator of B(O$ Fa-_l(l)) by 6.2. But on the other
hand, g(xO) = c], hence hog(x) : 1, a contradiction. By 6.4, then,

B(O6 FM—-I(l))2 is generated by (x',x). For the proof of the fact

that (;?,x,a) generates B(O 6 FM—(1))2 x M2, we refer to the"Uri
corresponding part of the proof of 6.6.

In order to showthat (x',x,a) freely generates

(B(O ® FM;—](1)))2 X M2 , we apply 3.1 again. Let L e ELIFSI be

fii-generated by one element, say by y. By 6.1, L Mn n , where1,... k
I 5 k S n-1, n] = ... = nk_] = 1, nk = I or 2.

(1) If k=l then L§M2 or L:M]. If L:M,), then
y = a or y = a', and the desired homomorphismis

TF3! M"I1-1(B(O <9 F - ‘(1)))2 x M2 —> M2
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or N3 followed by an automorphism of M2. If L : MI, then y = i

or y = 0. If y = I let ht B(0 $ FM-—](1)) -9 M] be defined by
z +—»I if z 2 x0, z F-> 0 if 2 in X0. Then h is a homomor­

phisng and howzz B((O 6 FM;_}(l)))2>< M2 —-e M] satisfies

honz ((x',x,a)) = 1 , as reqdired. If y = 0, then howl is the

desired homomorphismsince hon} ((x',x,a)) = O.

(ii) k > I. y or y‘ is a fig-generator of L. If y is a

5;-generator, then how] is the desired homomorphism,where h is

as in the k > 1 case of (ii) of the proof of 6.6. If y' is a fig­

-generator of L, then define in a way analogous to the definitioncof

h , a homomorphism

g: B (0 $ FM— (1)) -9 L
—n-I

such that g(x') = y'. gowz is the homomorphismwe were looking

for, since g°w2((x',x,a)) = g(x) = g(x')' = y .U

The p.o. set of join irreducibles of F (1)0 may be repre­

sented as follows:

6.9 Corollary. FM (1) g g , e Nn+1 *

Proof. By 6.7, B(0 9 FM-(l)) % 23“‘2 .a
-an cg —I



we announcedalready earlier that insteadcfi:tryingtxndetermine

FM-(k), FM (k) , n 2 2, k 2 2, whichseeuxrather complicated,
—n ‘n

we shall restrict ourselves to characterizing the simpler but still

typical algebras FM-*(k), FM*(k), n 2 2, k 2 2.-n “n

~ - 2k-1
6.}O Theorem. FM-*(k) = (B (O 9 FM-* (k))) , for n,k G N, n22.

‘n ~n—l

Here FM-*(k) stands for the one element algebra.
-1

Erggg. Let k r N. M;* is the class of disciete generalized in­

terior algebras. Thus FM;*(k) §_ FE-(k) Q2 -1 Nextvmaconsider

the case n > 2. Let {;],...y;} be a set of free generators of

FM;:l(k) , {x],...xk} a set of free generators of FM;*(k). Let
A 5 {l,...k} be a non~emptyset, and let

gA: FM;*(k) ——>B (0 e FM;:l(k))

be a homomorphism, such that

gA(xj) = yj if j J A, j 5 {l,...k}.

gA(xj)=yJ.=>0 if jeA.

By 6.2, A # gt implies that gA[{x1,...xk}] fii-generates

B_(0 e FM—*(k)). Let"n-I
_ 7k_l

FM-*(k) ——s(B (0 e FM-* (k)))"
-—‘n ‘ ­

= H ­

g Ag{l,...k}gll' _P I
Aaé¢

(i) g is a homomorphism

(ii) g is 1- 1.

Let X 5 FM-*(k), x # 1. There exists an L e M_* and an_n -n SI

onto homomorphism f: FM-*(k) -—>L such that f(x) # 1 . By 5,10 (1)

L = K— for some m, I S m < n. Let C] be the open atom of I“ Then

L : B—(06 [C])) and KC!) 6 Mgfl. Let h: FM-* (k) -9 icl) g L
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be a homomorphism such that

l/\ W‘h(yj) = f(xj) if c] S f(xj), I S j
and

h(yj) f(xj) =’O if C] £ f(xj), l S j s k .

My1.2.23 , h can be extended to a homomorphism

E; B-(0 9 FM—*(k)) ——>B_(0 9 [c1)) 3 L
—n-]

Let A E {],...k} be defined as follows:

j¢A iff c!Sf(xJ.), lsjsk.
(*) Since f is onto, there is at least one j, 1 s j 5 k, such that

c] £ f(xj). Hence A # ¢ .

Weclaim that hogA = f. Indeed, if c] S f(xj) then j 5 A, thus

h°gA(Xj) = E<gA<xj>> = E<yj> = h<yj> = f<xj>

If cl { f(xj), then j e A, so hogA(xj) = h(gA(xj)) h(yj =»O)=

= h(yj)== 0 = h(yj) =»o = (f(xj).= o)== 0 = f(xj).

Thus hog (xj) = f(xj) , j = l,...k , hence h°gA = f. SinceA

f(x) # 1, it follows that gA(x) # 1 ,whence g(x) # 1. So g is 1-1.

_ 2k-I
.% w(oe%«§mn"I1

T!’

A

B-(0 e FM-* (k))

l 1- -n-1

4’n

(iii) g is onto.

Weapply lema 6.4 again. Let
k

L] = [{g(xi) | 1 = 1;...k}i§; g (B-(0 9 FM—*1(kjD2”'_n_
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Since gA[{xl,...xk}] fig-generates B_(0 $ FM-* (k)) , it follows
—n-l

that 1rA[L]]=’B (0 43FM—*(k)). Let A,B 5 {1,...1<.} , A,B as q),-n-I
A # B, L 5 fii, IL! > 2 and f],f2: B (0 9 FM-* (k)) ——9L be

' —n-I

onto homomorphisms such that flunk i L] = fqnnfl I L‘. As in (i) of

the proof of 6.8 we may assume that L 3 g. Suppose that j c A\ B.

Then gA (xJ.)= yj => 0, gB (xj) = yj . Hence f!0':*.A(g(xJ.)) =

= f](yj =»O) = 0 , and f2onB(g(xj)) = f2(yj) = 1, a contradiction.
_ k­

By 6.4, then, L] = (B (0 63FM-* (k)))2 ' .5
‘—n—1

Note that the free object on one generator in Mg* has a par­

ticularly simple structure: FM-*(l) ; K;_]
Ln

k n

6.11 Corollary. FM-* (k) =_ g“, where a = (Zk-1).-Eé—7:LL—;;J-,
“n+1 E 2 -2

n,k o N, k > 1.

. 2k­
Proof. If n = I, k > 1, then FM-*(k) ==; hencetfluanumber

L2
of atoms is 2k- I.

If the statement is correct for some n 2 I , k > I , thenwlsing 6.10

we see that the number of atoms of F“-* (k) is
Ln+]

k -1 k

(2k-1)_[(2k_1)_£L +1]=(21‘_]}. _D2 -2 2 -2

. . * . . _The free object in M on finitely many generators n 2 2 1sn ’ ’

only slightly more complicated.

2k
M'* (k)» , n, k C N, n 2 2.
‘-11- I

-*(k) denotes the one element algebra.
I

Proof. The proof is almost identical to the one just given in 6.10.

6.12 Theorem. FM*(k) 3 B (0 «BF
"Tl

Again, FM

Weomit however the condition that A g {l,...k} be non-empty, and
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thereby obtain 2k factors. By6.2, also g¢[{xi,...xk}] 5;-generates

B(O e FM-* (k)). Furthermore, the remark (*) in the proof of 6.10 be­‘n-1
comes irrelevant now, and should be dropped in this case.!]

Thus F *(l) = Kn_], n 2 2

k n
~ k 2 --I ~ I

6.13 Corollary. FM* (k) = 2 where a = 2 . ( - ) ——,n,k c N,“""”"‘"' B R."n+1 _ 2 2
k > 1.

Wewish to emphasize the essential role played by thegeneralized

interior algebras in the discovery of the free interior algebrasin 33;,

n 2 2. A similar idea has been exploited in P. K5hlerl:73],nmere the

finitely generated free objects in the classes Q- and Q and their

subvarieties are characterized; our proof of 6.10 has been inspired by

his work. Wemention some of his results:

~ k—1 (15)

FV(E1;l-)(k) == igo (0 o FV(E-)(i)) 1 n,k E N
and

~ k <‘=<>

FV(flJ;l) (R) =‘ 120 (0 9 FV(E) (1)) 1 n,k 5 N.

FV(l-) (k) and FV(l) (k) are used to denote the one element algebra.
See also Horn [69 a] .

In 6.10 and 6.12 we have not given the free generators explicitly.

However, one can find them easily just following the construction of

the proof. Weillustrate this with a simple example.



X1 and x2
A I= 2,3 andflFM-*(2) is suggested below for

are the free generators.
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Section 7. Free objects in M_ and M

The free objects on IK generators, k E N, in g‘ and M can

be found in a rather straightforward manner from those irl fig zuui fin ,

respectively, n 2 2. Weshall discuss the principle behind this in

more general terms, so as to be able toenmloy the results in the sequel

as well.

7.) Let E denote a non-trivial variety of (generalized) interior

algebras, and let g] C $2 C ... C K be a chain of non-trivial sub­

varieties of 5, such that V( U K )==K, and such that 1( is locallyneN'71 "n

finite, n e N. Note that g is then necessarily generated by its

finite members. Let k e N. Wewish to describe FK(k) in terms of

the FK (k) , n e N.-n

Let x1,...xk be free generators of FK(k), y?,...y£ free

generators of FK (k), n e N. By I.4.2, there exists a un e FK(k)O,_n _

such that (u J i; F (k), while xiun corresponds with y?, for\-n
i = 1,...k. In fact, there exists a chain of open elements in FK(k),

u < uz < ... < un < ... , such that for each n e N there exists an

isomorphism mh: (un] —e~FKn(k) with.the property that (pnogn = fn ,

fn being the homomorphism FE(k) —e»F£n(k) satisfying fn(xi) = y: ,

i = l,...k, and g being the projection FK(k) —e~(uP], defined:1 _ .

by x F%>x.u . Let n 2 (u ] —e-(u ] for n 2 m 2 I be the homo—n nm n m

morphism defined by x ke>x.u . Then n on = w , for rzzxnz £2 1.
m m2 nm nfi

_ K

Thus we have an inverse system L1; == {(un], nnm ! n;z:n2 1} , and the
. . . ,5 . E . .
inverse limit D1‘ = lim ULC exists, since the (un], n 2 I, are
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finite (cf. Gratzer [68], pg 131). Recall that

‘E: C: '1' = >
(Jk {(xn)n 6 n2] flap ; n£m(xQ) xm, 2 2 m 2 I}

Let n : 11%—e>(un] be the canonical projection. Letn
. K .

zi = (u]xi,u2xi,...) , 1 = l,...k. Then zi 6 [IE , and we claim
~ - K

that FE(k) = [{zl,...zk}J g Uiz, and hence that FE(k) € 803%).

In virtue of lemma 3.1 and the fact that E = V( L“ fin) , we onlyn:

need to show, that every map zi »——>ai , i = 1,..,k, to an

algebra L = !Ial,... ak}]belonging to a 5n can be extended to a

homomorphismfrom [{zl , . . . zn}] to that algebra. But if

L 6 En , then there exists a homomorphism h: FK (k) -6L such‘n
that h(y?) = a4 , i = l,...k and

hownonnI [{z],...zk}]: [{z],...zk}] -9 L

is the desired homomorphismextending the map zi he>ai, i= I,...k.

We have proved

7.2 Theorem. FK(k) is isomorphic with a subalgebra of an inverse

limit IJE of a chain of order type w* of finite algebras, for

k 5 N.

7.3 Next we wish to study the set representation of this inverse

limit, thus gaining more insight in the structure of FK(k). we

discuss the case 5 g fii only; the results can be transferred to­

varieties E g fig without difficulty. If I, is an interior alge­

bra, a € L, then [lafl will denote the set of atoms S a. Note

that in FK(k), Eumllgllunll, if 1 S m S n. Let X = 3 [[u E,

and let UIJED be the complete Boolean algebra of all subsets of

X, as usual with operations U, 0, , ¢, X, provided. with



- I47 ­

an interior operator which is determined by:

A g X is open iff Vn >. I A n ffunfl = [[v1] for some v e; (u_l]O.
. . . . . K 0

This definition makes sense since the set IIUEII of open elements of

[[11-E1] is clearly a Q0]-sublattice of [IUE J , and in addition EUEEO

is closed under arbitrary" unions: if {Ai [ i I} E [‘CU'EBO, then

U A. n[[u J] = _U (A. 0 [Tu Il) = _U ‘Iv. ]] , for certainicl 1 n IEI 1 n KI 1,n

vi n e (un]O, i 6 I, and since (un] is finite, it follows that

the last union is finite, hence U A. n Eu ]] = []'.,Z v. 1], where
RI 1 n 151 1,n

,2 v. e (u ]O , n 2 I . By 1.2.4 [[UE]] provided with this operator
M1 i,n n k on

is an interior algebra; in fact, if A f_ X , then AO= U (A r‘.[l'un]])O.n=]

Observe that L[IJ1!:’]1Ois also closed under arbitrary intersections: if
. . K

{A. 1 1 5 I} _c_[[11-]J° then _n A_. n [[u :1] = _n (A. n r[u I1) =
1 1‘ 1.51 + T‘ 151 1 F1

= _H Ev. ]] , where v. ~: (u .10, i e I . The last intersection161 1,n 1,n n

is finite however, hence _fl A
I i n Kunl] = [[_H v. 1] andl€_ 151 lan

0 K.o
H v. 5 (un] . Thus ,0 A1 6 [[UkIJ .i€I 1:“ 15I

It is easy to verify that the map (un] --> ([[unD] defined by

a*—‘>II:-1]]establishes an isomorphism between (u_1] and (fiurlflii we
.I. I.

assert that lim U15= UL 1: U.U‘K]]. Indeed define not U5 --> [IIJED
-<~ k k k k kx

by Lp(a) = U] lI1rn(a)]J . Note that Lp(a) n |Iun]] = [['nn(_a):'J Wen:
verify that to is an isomorphism:

(i) no is 1-]: if a 75b then 1Tn(a) 741rn(b) for some n 2 1,

hence t0(a) n Liunl] = [[vrn(a)D # !I1rn(b)]3 = u3(b) r»Eunll 9

thus (p(a) 7‘ <p(b) .

(ii) (p is onto. Let A _c_X. If a = (a],a2,...) such that

an es (un] and |Ian]] = A n lIunI| , n = 1,2,... then.
K

a e UE , and tp(a) A.
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(iii) (0 is a Q01-homomorphism.For example, if a,b 5 LIE,

a = (a1,a2,...) , b = (b],b2,...) then

<o(a-b) = n§1U§wn(a.b)D = :3] lInn(a).vrn(b)ll =n

= on ' = 00 T 1 0° =
ng‘[Inn(a)B n Enn(b)]] ng][rnn(a)11 n ngI[lnn(b)]

= co(a) n <a(b)

In a similar way it can be shown that w preserves

+, O, 1.

(iv) w preserves the interior operator:

q3(aO) = u [I11 (a°)1fl —- u [[n (a)°1] = u ((p(a) n [[u J])°=
11:] n 11:] I1 11:] n

= ¢KaJO, by the definition of O in ULIEI].

we conclude

7.4 Theorem. The (complete, atomic) interior algebra HIJEI] is iso­

morphic with U
F17? = lin1{(un], nnm I n 2 m 2 1], for any k 6 N.

According to our previous remarks, it follows that FK(k) is

isomorphic with the subalgebra of ELIEI] generated by the elements

Zi = w(zi) = nglllxiunfl , i = l,...k. The next theorem tells us,

that this subalgebra [{Zl,---Zkl] contains at least all "finite"

elements of Ulléfl.

7.5 Theorem. Let A € [IU ED , k 42N , be such that A g [[um]] for

some m e N. Then A 6 [{Z],...Zk}].

m

Let p be a fii-polynomial such that a = p(xl,...xk). In (unl,

p(un](xlun,...xkun) ==pFK(k)(x],...xk).un = a.un.
Hence



Proof. We show that [{Z

fln(p Kfzl, zk)) p(un](nnz1, n zk) =

p(un](Xlun’ xkun) = a‘fi;
Thus

K

p E(z],...zk) = (aul,au2,...) 6 1];
Uk

But since a S um, we have

pU%(zl,...zk)= (aul,au2,...aum_l,a,a,...).
Hence

pn: K]](Zl,...Zk) =(p(pUK(zl,...zk)) =(p((au],au2,...aum_1,a,a,.. .)) =­v- “ Ek

= ng][Inn((au],au2,...aum_1,a,a,...))D = §][IaunIl=[IaI]= A. DT1

7.6 Corollary. FK(k) is atomic, for all k e N.

],...Zk}] g HIJED is atomic. Since

X = U][Iun]], for every a e X {a} E Etngfl for some m 6 N.n-J

Hence {a} c [{Z],...Zk}J by 7.5. Thus [{Z],...Zk}] contains all

atoms of UlJ§Il; since Hljfll is atomic, so is [{Z|,...Z }J.[}

7.7 Corollary. FK(k)0 is strongly atomic, i.e.,fot all u,w e FK(k)2

if u < w then there is a V e FK(k)0 such that u -< V S w ,
FK<k>°for every k e N.

Proof. Let u,w e FK(k)O , u < w. Then U.-uI|',[[w]] 5 -FIUII-:]]O, and

IIUB C Ewll. Thereexistsan n e N such that !luDr1[unI]cU3flDn[IunD.

Since (un] is a finite interior algebra, there exists a V e (u ]O ,11

such that t1u 4 V S wL1 S w. Then u 4 u + v S w , andn n 0
(un] FK(k)

u + V e FK(k)O. D _
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In virtue of 5.4 and 5.8 we are allowed to apply the just devel­

oped theory zhmorderto obtain a representathx1ofthe algebras FM(])

and FM-(I) and also of FM*(k), FM~*(k), k 5 N.

The pictures furnish an adequate portrait of these algebras.

FE—(1) = F x M2

x = {ai,bi,di ; i e N} u {a,b}

A base for the open sets of U? consists of the sets:

{a,b}, {di I i S H}, H C N, and {di I i S n} U {an,bn}, n e N.
Free generator:

Z = {a} U {b
i € N } u {d2i,a2i ! i c N }.2i-1 I
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Free generator:

2 = {a} u {b2i_] i 5 1 N } u

In a similar way one obtains the representationsci the FM-+(k),

FM*(k), k e N.

As an illustration, we consider Fv-*(2):
Ll

The atoms of FM-*(2) are denoted by the finite sequences consisting

of the numbers 1,2, and 3. Thus

x = {al....ak { k 5 N, ai € {1,2,3}, 1 = 1,...k}
_-*

A base for the open sets of U? consists of the sets:

{a1....a9 | 1 : R 5 k} , a ....ak e X.

In general, the poset of join irredueibles in FM-*(k)O may be
kl 3 U k 1 Qrepresented as 2 -1 copies of a tree with 2 -i brancnes in every

. . . . . . , _, k .

node; likewise the poset of Join irreducibles OI P%*(k)O as 2 copies

of a tree with 2k-I branches in every node.
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CHAPTER III

THE LATTICE OF SUBVARIETIES OF B;
'_.L

Having studied (generalized) interior algebras in certain

subvarieties of 3; and §i in the chapters I and II we shall turn

our attention nowto the varieties themselves. Weshall deal with

several problems. For example, we shall try to obtain information

on the lattice Q of all subvarieties of gi (sections 1 and 8),

or, morespecifically, on certain principal ideals of this lattice,

like the lattice of subvarieties of M (sections 5 and 6).

Weshall investigate somesublattices of the lattice of all sub­

varieties of Bi consisting of varieties having pleasant proper­

ties, such as local finiteness (section 4). In these considera~

tions, J6nsson's work (O.l.25 - 0.1.28) will play a central role.

Further, in section 2 the problem of finding equations defining

a variety which is given in terms of some generating set of

algebras will be dealt with. The results obtained there can be

used succesfully in the study of the important class of so-called

splitting varieties (section 3).

Most of the theory we develop for subvarieties of B. could be' -1

carried over to subvarieties of B; without difficulty; we shall

do so explicitly only if the case seems to be of special interest.
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Section 1. General results

As indicated in chapter 0, disregarding set theoretical dif­

ficulties, we mayconsider the class of subvarieties of Qi as a

lattice. This lattice shall be denoted by Q. Weshall derive

now some general results concerning subvarieties of fii and the

lattice Q.

In I.2.8 we mentioned that 51 is congruencerdistributive. There­

fore J6nsson's results 0.1.25 - 0.1.28 can be applied:

1.] Theorem. For 3 g fii, V(g)SI.g HSPU(§).

1.2 Corollary. If Li C fii is finite for j = l,...n, then

V({L]....Ln})SI 3 HS({L], ..Ln}).

:3 1"‘ 31.3 Corollary. If L1, L2 5 §iFSI then V(L]) = V(L2) iff L! 7 Z.

1.4 Corollary. If 30 and K, are varieties such that 50, 5] 3 §,,

then (30 + K K u 5—1)sI = ~03: 1s1'

1.5 Corollary. The lattice Qof subvarieties of gi is distributive.

In order to exploit 1.! to the fullest extent, we prove the follc—

wing lema, which will serve as an analogue of lemma 5.1 of Jénsson

[67].

Ei.6 Lemma Every interior algebra is a homomorphic image or some

subdirectly irreducible interior algebra. In symbols: 3. = H(B.SI).*1 *1
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Proof. Let L 6 Bi, with unit element IL and interior operator

Then L 9 IEID where I > IL. Let L] = B(L 0 I) with complementation '.0|’
. . . O1 O1 _ O

Wedefine an interior operator on L] such that L] —L 9 1,

as follows:
I 01 f (a + b'. 1L)° if b l a

if a,b E L 0 1, then (a + b ) * =
3 if b S a

n

and if x = H (ai + bi), where ai, bi 6 L 9 1, i = 1,...n, then
i=1

0 n o
x 1 = H (ai + bi’) 1.

i=1

It is easy to verify that O1 is an interior operator on L] and that

LiQ1='LQ’$"l. Thus L1 is a subdirectly-irreducible interior algebra.

Let h:L] + (ILJ be defined by h(x) =:;JL. Since IL 5 LO#,h is a

fii-homomorphism. From the definition of 01 it follows that (ILJE L,

hence L E H(L]).U

Note that it follows from the proof of this lemmathat likewise

‘k ‘k

1.7 Lema. §iF g H(§iFSI) and §iF g H(fiiFSI).

!.8 Corollary. fii = HSPU(B.,) = HSP,"Ir J irSI

froof. Since gi = V(§iF), gi = H(§iSI) = HSPU(§iF) = HSPU(§iFSI).U

1.9 Corollary. If K c Bi is a variety, then there exists a variety

E’, such that E-<§' g fii.

Erggf. Let K C fii be a variety. Since fii = V(§iF), there exists a

finite interior algebra L such that L i X. By 1.2 and 1.4,

(E + V(L))SI g KSI U HS(L), and since every variety is determined

by its subdirectly irreducibles, it follows that there are at most

finitely manyvarieties K’ such that K C E‘ g E + V(L). At least one



Proof. Suppose that EO, E]

of these varieties covers K.u

1_10, c0ro11ary. If 30, E] are varieties of interior algebras and

+ K = B.K0 _1 _1, then K = B. or K] = 3..*0 "1 1

are varieties such that £0 E 5. K G

Let L0 e §i\gO, L] 6 §i\K‘, and L 5 £181 such that LOXLI5 H(L).

Then LO 5 H(L), L] e H(L), and thus L e §i\KO and L 6 §i\Kl.

By |,4,(fiO + gl)SI = 3031 U K181, therefore L { (£0 + §1)SI and

fl , 7
hence £0 + £1 ¥ E1 L

1.1] Corollary- There is no variety 5 g fii, such that fii covers 5.

3 a variety, let L e §;F be such that L f g.

(L) C E-.D
‘I

Proof. If E C B

<’r:K+I?Then V(L) # fii, hence by 1.10

The results obtained so far indicate already clearly the strength

of 1.1. For the future use of 1.}, let us recall that if 3 is a

class of algebras satisfying a first order sentence 0 in the language

of the algebras, then any L e PU(g) satisfies 0. The first order

language LB_, suitable to speak about algebras in fii, contains the

following symbols:

(i) variables g, 30, gl,

(ii) operation symbols 1, L , L , _ , Q, 1

(iii) relation symbols3, g

(iv) logical connectives V, A,rv, =»,3 ,V.

As atomic formulas be admitted not only terms connected by E or g,

but also terms themselves where the term Q (gO,...gn) is an equiva­
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lent of the atomic formula Q(gO,...§n) 3 1. Formulas and sentences

will be formed as usual (with their obvious interpretation in inte­

rior algebras). Hence the terms are nothing but our fii-polynomial

symbols. If no confusion is to be expected, we shall write

X0, X1, X,y,Z,..., + , o,_ ,ouo £0, £1, E2900.’1: , _o_,
,..., etc. Moredetails regarding these matters can be found in

Gratzer [68].

For (generalized) interior algebras L we have that L is subdirectly

irreducible iff L F 0, where 0 is the first order sentence
0

3n [ u = u A ~'u = I A

Vv [ V = V0 : [ v S u V V = 1 ]]]

Therefore, if K g E181, then PU(g) g fiisl.
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Section 2. Equations defining subvarieties of fii

If a variety is given in terms of a generating set of algebras,

it maybe a difficult problem to determine a set of equations which

characterizes the variety, i.e. to find a base for the equational

theory of the class. Baker [M] has considered this problem for

varieties of Heyting algebras generated by a class of algebras which

is defined by someset of positive universal sentences in the first

order language of Heyting algebras, and also for more general

classes. (A sentence is called positive universal, if, whenwritten

in prenex form, it contains only universal quantors and the symbols

V and A ). Parts of this section are merely an adaptation of Baker's

results to our situation.

Firstly we find the identities describing the variety V(K) for

any class K of interior algebras given by means of a set of positive

universal sentences (2.l- 2.6) In the second half of the section we

consider the case where K is defined by a set of universal sentences

in which the connectives a» and «wmay occur but in which not all

operations are admitted (2.7-2.12).

2.] For any formula ®(x], x2,...xn) of LB without quantifiers let-i
us define the "modal translation" MT(®)of ¢ (the reason for this

namewill be explained later) to be the term, defined by induction

on the complexity of ¢ in the following way:

(i) If p,q are terms, then

MT<p> = p°

.MT(p S q) = (p' + q)°

MT(P= Q) = (P' "' q)°.(p + q')°, also written (p Aq)°
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(ii) Suppose that ¢ and w are formulas such that MT(¢) and MT(¢)

have been defined. Then

MT(¢ V ¢) MT(¢) + MT(¢)

MT(¢ A w) MT(¢).MT(w)

MT<¢ =>w) = <MT<¢)' + nT<w>>°

MT(~¢) = MT(¢)'°

Note that the formula ¢ andtfluaterm MT(@)have the.same variables.

The modal translation of an arbitrary formula in prenex form, contai­

ning universal quantors only, say

¢'(zl...zn) = Vx1...Vxk¢(x1...xk, zl...zn)

is MT(¢') = Vx]...Vxk MT(¢)(x1...xk, zl--.zn>.

Now, if 0 is a universal sentence in prenex form, then MT(0) will

be a universally quantified term, that is,an identity. For example,

if U is the sentence

vxvy [X0 5 yo V yo 2 x°]

then MT(0) is

Vxvy f(x0' + yO)° + (y0' + x°)°]

or, just the identity
0, O0

(x°' + y°)° + (y + x ) = I.

If ¢ is a formula of LE; , we define MT(®)in a similar way, writing
(P ='q)0 instead Of (p' + q)O for terms p,q. If 2 is a set of univer­

sal §§—)- sentences, then MT(Z) = {MT(o) I 0 e Z}. We say that a sen­

tence or a set of sentences 2 in LB’ defines or describes a class K of

interior 318€br3Ss if K = {L E 3i ‘IL F E}. An identity is just a

(very simple) sentence.
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2.2 Theorem (cf. 2.] of Baker [M]).

(i) If E g fii is defined by a positive universal sentence 0 of

LE1 in prenex form then V(g) is described by MT(J).

(ii) If E 5 fii is defined by a set E of positive universal sentences

in prenex form of LB. then v(g) is described by MT(Z).-1

(iii) For any K g fii, if E is a set of positive universal sentences

in prenex form in L2 defining HSPU(§), then MT(E)describes1

WE) ­

Proof. (i) Let K = {Le:§i I L F MT(o)}. We show that V(£) = E].*1

0 is supposed to be of the form Vx]...Vxk¢ (x3...xk), where ¢ is a

quantifier free formula in which only V and A occur as logical symbols.

Weshow (I)'that K 5 gr which will imply that V(E) g E] since E} is

a variety, and (II) that $1 g V(fi).

1- K E K]

Let L e K, then L:= 0. Let al,...ak e L. Weprove that MT(®}(a1,...ak) —

This will be done by induction on the complexity of ¢.

a) ¢ is a term, say p. Then p(a],...ak) = 1, hence p(a]..‘ak) —1,

thus MT(¢)(al,...a = 1.R)

b) ¢ is a formula of the form p S q, p,q terms, Then p(a],...ak) _

q(a],...ak), and hence

MT(®)(a],,..ak) = (p(a],...ak)' + q(a],...ak))O = 1.

c) ¢ is a formula of the form p = q, where p and q are terms. Similarly.

d) ¢ = ¢ V w. Then ¢{a],...ak) or w(al,...a,). Hence, by induction,ix

MT(¢)(a],...ak) = I or MT(®)(a]...ak) = 1. Therefore MT(®)(a',...ak)=

MT(¢)<a]$"'9k) + MT<ii))<aI9"'ak) = I.

e) ¢= ¢ A w. Similarly.
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Weconclude that g g_fi which implies that V(K) 5 $1 since19

MT(o) is an identity and hence g is a variety.
1

II. 31 5 V(g).

Let L 5 £181. Then L satisfies the equation MT(c) = 1, where

0 = Vxl...Vxk©(x],...xk). If ¢ is a term p.or a formula of the

form p < q, p = q where p and q are terms, it is immediate that

L satisfies G.

Next suppose that ¢ = ¢ V p. Let aI,...aP 6 L. Then MT(®)(a],...ak) —»

MT(¢)(a]...ak) + MT(w)(a]...ak) = I. It follows from the definition

of the modal translation that MT(¢)(a1,...ak) e L0 and MT(m)(aI,...ak) c L0

Since L is SI, 1 is join-irreducible in L0 and we conclude that

) = 1. An even simpler argument
u—aMT(¢)(al,...ak) = or MT(w)(a],...a k

¢ A w. In both cases, it follows by induction thatworks in case ¢

L F=o. Hence £181 5 K, and thus K] 5 V(K), completing this part of

the proof.

(ii) The reasoning for individual sentences in (i) applies ana­

logously to sets of sentences: 2 implies MT(g)for interior algebras,

and MT(Z)implies Z for SI interior algebras. Thus the variety des­

cribed by.MT(Z) is just V(E).

(iii) HSPU(§)can be described by positive universal sentences

(cf. Gratzer [68], pg 275), and V(§) = V(HSPU(§)). The desired result

follows by (ii). E

2.3 Corollary. Let E g §i be such that HS(g) = 5. If.fi is strictly

elementary, i.e. if E is definable by a single first-order sentence,

then V(g) is definable by a single identity.

Erggf. Since HS(K)= K, E is definable by a positive universal sentence 0.

By 2.2 V(g) is described by the single identity MT(o) = l.D
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2.4 Corollary. If L<s§iu, then V(L) has a finite base.
1.‘

finitely manyfinite algebrad) E satisfies the hypotheses of 2.3.D

It can be shown, that 2.4 holds for any congruence-distributive

variety (Makkai [74]). This is a muchdeeper result and the proof of

it is rather delicate. In general, 2.4 is not true: there exists a

6-element semigroup whose equational theory has no finite base (cf.

Lyndon [54]).

2.5 Corollary. The finitely based subvarieties of giiknmwasublattice

of the lattice of subvarieties of Bi.

Proof. That the meet of two finitely based subvarieties of fii is fi­

nitely based is obvious. If E], £2 E 3i are finitely based varieties,

then K + K = V(K1 2 _l U 52), and since K U K2 is a strictly elementary

positive universal class, 2.3 applies.D

0
II?2.6 Examples. 1) Let K = {L e §i[L 2}. Then g is definable relative

I u c a O

to gi by a single positive universal sentence Vxfx = 0 v x = 1],

which is equivalent to 0 = Vx[xO' V X]. Hence V(§) is described by

MT(o) = VxCx0'O + X0], which is the identity xO'O + X0 = I, or,

xoc = x0. Apparently, V(§) consists of all interior algebras whose

open elements are also closed: V(K) is the variety of monadic algebras

(cf. II.5).

2) Let K = {L 6 fii I I L I S n}, where n e]N is fixed. Then 5 is defi­

nable: relative t0.§i; by the single positive universal sentence 0

I . . . . - .) An expression like this, here as well as in the sequel, is under­
stood to mean: E consists of finitely manyalgebras, up to isomorphism.
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\/ .
VXO'°'Vxn 0£i<jsn xi = Xj'

Hence V(K) is described by MT(o):

x (xi A x.)° = 1.
Oii<jSn J

3) Recall that M2EB Q2, Mg5 2 (cf. I.6.l). V(M2) is described by

the two identities xoc = X0 and

Z (x. A x.)O = I,
0si<js4 1 3

relative to_§i.

4) Let K = {L e fii I L0 has width 5 m}, where m €IN is fixed.

A lattice has width S m iff it does not contain a totally unordered

set of m + I elements. 5 is desribed by the sentence

I/\\/ x9 x9.
Osi,jsm J

i#j

Hence V(§) is described by the identity

2 (x?' + x(_?)° = 1­
Osi,jsm L J

i#j

5) Let g = {L e §i| L0 is a chain of n elements}, where n eIN is

fixed. 5 is described by the sentences

0 o S X0]vxvy[x° S y V y

and

1+1
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V(§) is definable by the equations
I _ I

(X0 + y0)o + (yo + xo)0 = I

and

H-1 o‘ 0 o
X (x + x. ) = 1.1+]

1=O

2.7 Thus far we have solved the problem of finding the identities

defining a variety V(§) of interior algebras in case 3 is a class

of interior algebras defined by a set of positive universal sentences.

Next we will consider the same problem for classes E which are de­

fined by universal sentences in which the ccnnectives== and ~

may occur, but in which the terms contain only the operation
0 O 1- ‘

symbols +, ., and 0. Let 0 be a universal sentence or LB . For"i
the sake of brevity , universal quantors will be omitted. The sen­

tence U is equivalent to a sentence 0' of the form

k i. m.
a) A (VJ¢-V‘/J ~19),

. . .1 F1
3=1 i=1 ' n=]

where ¢i, wn are atomic formulas of the type p , p =q , p 3 q ,

where p , q are fii-polynomials.

In its turn, 0' is equivalent to:

5?
I k J

a) /\ << wn)=~¢i)
j=l i=1 n=1

i

.<:N

‘k

Let 0 be the p0S1t1Ve universal sentence



- 164 ­

where, of course, MT(¢i), MT(¢i) are now of the form po, (p A q )0

or (p' + 0 )0

The following lema will be useful on several occasions. But

first we need a definition (cf. 4.6 of Baker [M]).

2.8 Definition. Let L e gi or L 5 B;. The algebra L’ W111be ¢a11ed

a principal homomorphic image of L if L‘ 9 L/F for some principal

open filter F g L. If E C Bi or K g fig then Hp(K) will denote the

class of principal homomorphicimages of algebras in K.

2.9 Lemma. Let L e Ei and let 0 be a universal sentence of the

form a) or a)’ and 0* as in b) above. The following conditions

are equivalent:

<1) L l= 0*

(ii) VL' e HSPU(L) L‘ |= 0

(iii) VL' e H(L) L'|= 0

(iv) vi’ 6 Hp(L) L‘ L 0.

Erggf. It suffices to prove the lemma for k‘= 1; the case k > 1

will then follow trivially.

(i) =- (ii) Since 0* is a positive universal sentence, L F 0*

implies L’ F 0* for every L‘ E HSPU(L). It remains therefore to

be shown that if L‘ F 0* for any L’ e 31, then L‘ F 0. Suppose

L’ # 0 and let a .ap€ L'be such that ¢j(a],...ap) is falseP..

and ¢n(a],...ap) is true, for all i = l,...£ n = l,...m].

Then MT(¢i)(al,...ap)< I and MT(Wn)(al,...ap) = 1, for all i =

l,...£], n = l,...mi, thus
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m.
J . \ ' . I

HE]MT(¢n)(aP...ap)$ MT(¢i)\a],...ap)

for every i = l,...fl], and hence L’ L 0*.

(ii) =¢ (iii) obvious.

(iii) %- (iv) obvious.

(iv) a» (i) Suppose L H 0*. Then there exist a],...ap e L, such
that

: MT(wn)(al,...ap) $ MT(¢i)(a],...ap), 1 = 1,...21.
C II

II:1511

Since u 6 Lo, (u] e Hp(L), and in (u] MT(¢n)(a]u,...apu) = I

for n = I,...m1, whereasMT(¢i)(a]u,...apu)< 1 for i = ],...Q].

Thus wn(alu,...apu) would be true in (u] for n = 1,...m], and

¢i(a]u,...apu) wouldbe false in (ui for i = ],...k]; hence 0
would fail in (ui, contradictory to our assumption.H

, o . .
2.10 Lemma- If only the operations +9 -, , 0 Occur Ln the

sentence 0 of 2.7 and 2.9 then for any L e E1, Lj=o iff L F o*.

Proof. we have already shown in the proof of 2.9 (l) =»(ii) that

for any L e fii, if L F 0* then L F 0. Now suppose L % 5. Note that

for any L’ e Hp(L), L' ~ (u] for some u c L0 and (u? is a (+, ., 0,0)­

subalgebra of L. Since 0 is a universal sentence, it follows that

(u] F 0; hence VL' e H@(L) L’ F 0. By 2.9 it follows then that

L F-0*. D

2.11 Theorem. Let K 5 E1 be a class of algebras defined by a set

X of universal sentences, the terms of which contain only the ope­

ration Symbols +, ., O and 0. Then V(K) is defined by {MT(o*) E Gel},
*. .where 0 1s formed as in 2.7.
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Proof. Weconsider the case that 2 consists of one universal

sentence of the form a) as presented in 2.7. The general case

follows then easily. Let K‘ be the variety determined by MT(o*).

(i) Let L 5 3. Then L[= o, and since the hypotheses of 2.10

are satisfied L[= 0*. Thus certainly LI= MT(o*), hence

E g E] and therefore V(E) g E

(ii) Let L E KISI, then L]= MT(o*). Since I is join irredu­

1

cible in L° it follows that L|= o* (cf. (1)11 of the proof

of 2.2), and by 2.9, Ll= 0. Thus 5 535, hence K]g;V(§).DISI

As an illustration we give two examples of an application of 2.11.

2.12 Examples. 1) Let K = {L 6 §. I 0 is meet irreducible in L0}.
1

K is definable relative to fii, by the sentence

0 = VxVy[x0yO = 0 =’ X0 = O V yo = 0]

Note that E satisfies the hypothesis of 2.1]. 0 is equivalent to

0' = vxvy.r£x°y°=o =>x° = oJv[x°y° —.-0 = y° = 03.1.

Hence

0* = VxVy[(xo,+ yov)o S X010 V (xov + yo.)o S yovoj.

Thus v(g) is defined by the identity MT(o*):

<<x°' + y°'>°' + x°'°>° +<<x°' + y°'>°' + y°'°>° = 1.

However, note that K is also defined by the sentence

1 = VXEXO = O V x0'o = 0]­

Applying now the method of 2.2 we conclude that VQK)can also be
I

described by the simpler equation x0 O + xo'O'O = I, or, equiva­

lently, by xOC' + xoco = 1.
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2) Let 0 be the sentence

Vxvyvzfizs zo A x + y 2 2 A xyz = O A x0 — O A y

Note that L F 0 iff M9 é SHD(L), for any L e fii, Let K = {L e _i ;

L F 0}. E satisfies the hypothesis of 2.il, hence V(g) is definable

by the equation

(z' + zO)O . (X + y + z')O . (x' + y‘ + z')O. xO'O. yO'O 33'O
or

(z' + z0)0' + (x + y + z')O' + (x' + y' + z')O' + xoc +

yoc + z'o = I.

In the next section, a method will be presented which will enable

us to find a simpler equation defining this variety.

Section 3. Varieties associated with finite subdirectly irreducibles

3.1 A lattice L is said to be split by a pair of elements (a,b),

a, b e L, if for any c e L, either a S c or c S b. Such_a pair

splits the lattice L into two disjoint intervals, Ca) and (bj.



- I68 ­

McKenzie[72] analyzed the splittings of the lattice fl of varieties

of lattices. It has been knownfor a long time that the lattice N5

gives rise to such a splitting of A. Indeed, a lattice is modular

iff it does not contain a sublattice isomorphic to N5. Hence, if

Mdenotes the variety of modular lattices, then any variety K of

lattices either contains V(N5) as a subvariety, or K g M. Thus

(V(N5), M) is a splitting of A. There are countably many splitting

pairs in A, and it can be shownthat the first term in each split­

ting pair is a variety generated by a finite subdirectly irreducible

Lattice, McKenziecharacterizes these lattices, which are called

splitting lattices. Althoughthere are countably manysplitting

lattices, not every finite subdirectly irreducible lattice is

splitting: in fact, an effective method is given in McKenzieK72],

to determine whether a given finite subdirectly irreducible lattice

is splitting or not.

3.2 For an arbitrary variety 5 of algebras the notion of splitting

lattice can be generalized to that of a splitting K-algebra in an

obvious way: an algebra A e E is called a splitting algebra if there

exists a largest variety K2 5 K not containing A, i.e. if (V(A), E2)

splits the lattice of subvarieties of E. If we assume that E is con­

gruence distributive and that K is generated by its finite members
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then we can show that here too for every pair (51, £2) of subvarie­
7ties of Kwhich splits the lattice of subvarieties of 5 there exists

some finite subdirectly irreducible algebra A 5 3 such that K] = V(A).

Indeed, since 5 = v(gF) also g = v(gFSI), hence 5] s L {v(A') Q

A‘ e EFSI}. If 31 i V(A') then V(A') S E2 since the pair (51, $2)

is splitting. But as K] $ 32 it follows that $1 5 V(A') for some

A‘ e §FSI. Wemay apply J6nsson's 0.1.26, K being congruence distri­

],...An}, for some0butive, therefore KISI _ HS(A'), say 3181 = {

M:3.*:>n eiN, Ai finite for i = i,...n. Hence K] = V(Ai)- Using again

the fact that (K1, K2) is a splitting pair we=donc1udethat K] g V(Ai)

for some i, i = 1,...n and hence that E] = V(Ai). Apparently, there

exists a 1-1 correspondence between the splittings of the lattice

of subvarieties of K and the finite subdirectly irreducible split­

ting,g-algebras.

All this applies in particular to the varieties fi_and51. Further­

more, in Jankov [63] an equation 6 is exhibited for every subdi­
IJ

rectly irreducible Heyting algebra L such that for any Heyting

algebra L‘ L’ h 6 iff L é V(L'). This proves that every finiteL

subdirectly irreducible Heyting algebra L is splitting: the pair

(V(L), {L' e E I L' F €L}) is a splitting of the lattice of sub­

varieties of E. Wewant to shownowfirst that a similar result

holds for (generalized) interior algebras.

3.3 Theorem. Let L 5 3i be a finite subdirectly irreducible al­

gebra. ThenL is a splitting interior algebra.
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2523:. Wehave to Showthat there exists a subvariety E of fii,

such that the pair (V(L),K) splits the lattice Q of subvarieties

of Li. This will be done by finding an equation eL (using the

method of section 2) which defines the class {L' e fii E L d V(L')}.

This is the variety 5 we are looking for.

Let L‘ e fii. Since L is subdirectly irreducible L ¢ HSPU(L')

implies L i V(L') and a fortiori L d S(L") for all L" e HSPU(L')

implies L i V(L'). Conversely, L é V(L') implies L 4 S(L") for all

L" e HSPU(L'), hence
, , .. _

L g V’L ) 1If L { S(I") for all L" e HSPU(L'}

Let Bx abbreviate 3x ,...3x where c ,...c is a complete listc c c 0 n
ceL 0 H

without repetitions of the elements of L. Let co = 0, on = 1, cq_l
the dual atom of L0 and let 0 be the first order sentence

3 x /\ [x = x‘ + x A x = x .x A
C€L C C,d€L c+d c d c.d c d

Then L ¢ S(L") iff L" F ~w. Indeed, if L e S(L") then clearly

L" F c and conversely, if L" F 0 then the positively asserted

atomic formulas express that the map L + L" given by c + (value

of xcx c e L, is a homomorphism, and the formula xc # 1 garan­n-1
tees that the homomorphismis 1 - 1. Thus L"F 0 iff L e S(L").

Applying the method given in 2.7 to the sentence ~o we see that

(~o)* is the universally quantified inequality

H [(X O-(KC d A xC.xd)O.A x + x )
c,deL C d

c+d

, o _o,o o o
(xc. A xc) .(xC0 A xc) ]. (xco A O) . (xcn A 1) S xcn‘l
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By 2.9, L‘ k G~o)* iff for all L" e HsPU(L')L”}= ~c. Thus L'}= (~g)*

iff for 311 L" 5 HsPU(L') L g S(L"), which by the remark made

above implies that L’ F O~o)*iff L é V(L'). Since (~c)* is equiva­

lent to the identity eL==MT((~o)*),we see that the class {L' e fii i

L f V(L')} is precisely the variety determined by the equation eL.U

3.4 Definition. If L 5 3i is a finite subdirectly irreducible alge­

bra, then the variety {L' e Ei I L J V(L')} will be denoted by

(gi : L) and it will be called the splitting variety associated with L.

3.5 Corollary. Let L e §iFSI.

(1) (B. : L) = {L' 6 Li I L g SHp(L')}.

(ii) If L is weakly projective then (fii : L) = {L' 5 Bi E

L g S(L')}.

3392:. (i) Using the notation of the proof of 3.3, we have that

L‘ e (fii : L) iff L’ % (~U)*. By 2.9 L’ P (“U)* iff VL" c Hp(L')

L" # ~0. But L" F “U iff L é S(L"), hence L’ e (31 : L) iff

vL" e Hp(L') L é S(L") iff L g SHp(L').

(ii) is immediate: if L 5 Bi is weakly projective and L’ 5 5.,1
L e HS(L') = SH(L'), then also L e S(L').D

Thenext corollary is an interesting addition for gi (which like­

wise holds for fig) to J6nsson's 1.2:

3.6 Corollary. Let g E fii. Then V(K) g Sfllgg).FSI

FSI. Suppose that L 6 SHIJK). Then

K E {L' I L E SHp(L')} = (fli : L); hence v(g) E (gi : L). But L e V(§):
a contradiction.[]
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3.7 we have not paid muchattention yet to the property of a variety

of being generated by its finite members. we have seen, for example,

that 3., §i*, In, n eiw, are generated by their finite members(cf.I.6.9).

In section 9 we shall give examples of varieties which are not generated

by their finite members.At this point corollary 3.6 gives rise to a

remark concerning the subvarieties of fii generated by their finite members.

If K E 5i are varieties such that 50 = V{gOF), g! = V(g]F),ISO’ -1

0 + I_<, = v<_1sOFu rm), hence to + K

finite members. Later we shall show (cf. 9.5) that K0.E1 need not be

then K 1 is also generated by its

generated by its finite members. we do have however V(§0F n KIF) g 30.31,

and V(§OFn EFF) is certainly the largest variety contained in 30.5)

which is generated by its finite members. Thus, under the partial orde­

ring 5, the subvarieties of fii generated by their finite membersform a

lattice (thoughnot a sublattice of the lattice Qof all subvarieties

of 31).

Recall that a subset H of a partially ordered set(P,5) is called :­

hereditary if for all x e H and for all y e P if y S x then y e H.

In the following, let EiFSI denote a set containing precisely one iso­

morphiccopy of each finite subdirectly irreducible interior algebra.

Wedefine a relation 3 on §iFSI by

L] S L2 iff L] e HS(L2)

for any L1, L2 6 §iFSI. It is easy to verify that S is partial ordering

°“ 5iFsI'

3.8 Theorem. The subvarieties of Q1 generated by their finite members

forma lattice isomorphic to the set lattice of all S-hereditary subsets

°f (BiFSI’S ‘
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Proof. Wehave seen above that the subvarieties of fii generated by
4­

their finite membersform a lattice, which we shall call QF. Let

H(B:FSI)denote the set lattice of all S-hereditary subsets of.L

(ERVSI,5 ) , set theoretic union being join and set theoretic

intersection being meet. Define

: 9 H -.¢ F"“* (§1FsI)

by

K>—> E. N- KFSI ” -1FsI

for any K 5 QF. It is clear that EFSI n EiFS is S-hereditary, thus

Q is well-defined. Furthermore, if K], K, e RF, £1 %£2, then since2

E} = V(§lFSI n §iFSI) and E2 = V(g2FSI n §iFSI) it follows that

EIFSI n §iFSI # EZFSI n §iFSI. Thus ¢ is I - I. In order to prove

that ¢ is onto, let us assume that 5 5 EiFST is a £-hereditary

subset. In virtue of 3.6 V(§)FSI g HS(K) hence

E) ” —iFSI = K‘D lml iFSl 5 HS(K

Therefore ¢(V(§)) = K and ¢ is onto.Since ¢ and ¢—}are both order

._,
Ipreserving it follows that ¢ is an isomcrphism.L

3.9 Examples. 1) The variety (fii : M7)

The finite members of (fii : M2) can be described in a simple
T . . . . ,0

manner: u e (31 : M2)F iff L is finite and the atoms of L are also
. . 0 . .atoms of L. Indeed, if a 15 an atom of L such that a 18 not an atom

of L, then |(a] E > 2, (a]O = {O,a}, hence M e S((a]) 5 SH (L) and
2 P

L 5 (Bi : M2). Conversely, if Le:§iF \ (§i:M2)then M2 6 SHp(L), by

3.5 (i), hence there exists a u 5 L0, such that M, e S((ul). Let
L

v e L0 be an atom of L0 such that v s u,znuilet [0, a, b, u} constitute

the copy of M2which is a subalgebra of (u]. By assumption. v is an
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m o 0atom of L too, hence v S a or v S b. lhen a # 0 or b # O, a con­

tradiction.

An identity defining (fii : M2) is easily obtained:

mi ¢ s(L) iff L # ~ax:x° = 0 A x'° = 0 A 0 ¢ :1.­

iff 1.§=.vxfx =0/\x =0=:.0=1_'_1._

According to the proof of 3.3, (§.1 : M?) is then definable by
VOCovo Iovo . oc

.x = O, or, equivalently, by X + X = I.the identity x

2) Recall (I.7.l8, I.7.20) that ha .) denotes the interior,_

algebra suggested by the diagram:

[Po
3 ll*

Iv)that is, M
ICUIH

1,2

P({a,b,c}), M? = {¢,{a}, {a,b,c}). we
IEXJIII

or, more precisely, M 91,. ,2

consider now the variety (fii : M12).
9

First note that

(B. :1~Il’2)F={L€_§iF I for all u,ve L0 if u'O=O and u'iOv then u-4 V}.-1 L

Indeed, if L e (fii : M1 2%?and there is a u e L0 such that u'° = 0, .

and a V e L0 such that u.£3 v but u‘i V, then i u'v I > I hence

there are a,b S u'v, such that a # 0, b # O, ab = 0 and a + b —u v.

It follows that the set {u, a, b} is the set of atoms of a §i-sub­

algebra of (VJ isomorphic to M] 2 : (u + a)0 = (u + b)O = u since
9

u £3 v,and u # O, (a + b)O = 0 since u'° = 0. Therefore M] 2 e SH(L),

contradicting L e (31 : M],2). Conversely, if Le€§iF \ (fii : Ml’2) than

M] 2 e SH(L) = HS(L), hence, by 1.7.21 M1 2 e S(L). Let u 6 L0 be
9 3

the element corresponding to the open element of M different from1,2



0,], and let v 5 L0 be such that u £3 v. Then uio = O and u-{ v.

In order to find identities defining (fli : M] 2) note that

e.‘S(L) iff Ll-=0] or L.5G2,"'1

where 0] is the universal sentence equivalent to
0c 0 o o 0

~ 3x[x = 1 A (x' + x ) S x A X # 1]

and 02 is the universal sentence equivalent to

~ 3x[xOC = I A (x' + xO)O S x A X0 # 1]

According to 2.7, 01* is

Vx[xOC?((x' + xO)O' + xO)o S X0]d*'
an 02 1S

Vx[xOCO.((x' + xO)O' + x)O X0]M

which is equivalent to o3:
o

S X].Vx[xOC0.((x' + xO)o' + x)

It follows by the proof of 3.3 that examples of equations defining

(Q. : MI 2) are1 9

MT(o1*) : ((x' + xO)O' + xO)O' + xOcO' + x0 = 1

MT(o2*) : ((x' + xO)O' + x)O' + xOCo' + x3 = I

and MT(o3) : ((x' + xO)O' + x)O' + xOC0' + = I

3) Next we consider the variety (fii : M2) n (E. : M] 2;. We

claim that

((21 = M2) n (51 : M ,,>>F =

for all u,v 5 Lo, if u -3 v then u'i V}
L

Indeed, let L e((§; : M2) n (fii : M] 2))F and let u, v e L0 such

{L e §iF I

that u —§v. If u'9v = 0 then it follows that u-fiflv from the fact
L

that (V3 6 (fii : Ml 2)F and from what has been said in example 2).I

If u'O.v # 0 then u'fO v implies that u'v is an atom of L0. Since

L 5 (gi : M2)F it follows from example 1) that u-E v. The converse
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is obvious from examples 1) and 2).

One easily deduees from 11.2.10 that this means that ((B.: M2)n'1
*

(Ei: M1’2))F —§iF. If we would know that (fiiz M2) n (fiiz M],2)
is generated by its finitemembersit would follow that

* I I

(fii: M2) r1(§i: MI,2) = Ei, since fig is so generated.

An equation defining the variety (§.: M2) n (§.: M )1 1 1,2

is easily obtained. Note that L e (fiiz M2) n (fiiz M1 2)

iff Mq é SHp(L) and M1 2 d SHD(L). Now for any L‘ e fii,

M2 é SHp(L') and M],2 é S(L') iff L’ P 0} or L'!= 02,

where 01 is the universal sentence equivalent to

~3x[(x' + xO)O S X0 A X0 # I]

and O2 is the universal sentence equivalent to

~3x[(x' + x°)° s x A X0 # 1].

By 2.9, then, M2 cf SHp(L) and 311,2 «ESHp(L) iff L := J]

or L F 0; , where 01* is

Vx[((x' + xO)O' + x0)O 5 X0]

and GE is

Vxl((x' + xO)O' O K x0].+ x)

The last sentence is equivalent to 03:
00' O

Vx[((x' + X ) + x) S x].

. * * . .
Since 0] , 02 and 03 are equivalent to the equations

0v oO\
) + x = l((x' + x°)O' + x

((x, + xo)o' + x)ov + x0 2 1

and ((x' + xO)O' + x)O + x ll
._.

U

respective1y,everyone of these equations defines the variety

(.P_»i=M2) n (Bi = Ml,2)­
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4) In I.6.8 we introduced the chain of subvsrieties

B. = T C T C...C§i. By 1.6.9 these varieties are generated by

their finite membersof rank of triviality 2 n. It is not diffi­
O

cult to show that L e 31F has rT(L) S n iff for all u, v 5 L

if u is v then u'v has 5 2n atoms. Apparently L 6 Bi? has

rT(L) 5 n iff L e (fiiz Ml,2n+]) r1(§i: M2n+]). Hence

In i M1,2n+i) r1(§i: r2n+1) and if we would know that

(51: M],2n+l) n (31: M2n+l) is generated by its finite members

it would follow that In = (§.: M1’2n+l) n (B.: M2n+1). By means

2 and 3 it is also possible.__- .. -4- - ..1,. /\ :
Of Lil: lllctiluub czlnpiuycd L I. cAcuup1€-Io

to obtain equations defining the varieties (3,: M‘ qn+l) n
1- I , /.­

(fii: M2n+l), for n e'N.

3.10 The problem if every splitting variety and every finite in­

tersection of splitting varieties is generated by its finite members

is unsolved yet. In the preceeding examples we have seen that a posi­

tive answer to this question, at least for those cases, has interes­

ting consequences: it provides a new characterization of 31* and

of the varieties In, n eIN, and thereby also equations defining

these varieties. In the next section we introduce a chain of split­

ting varieties whichare even locally finite, so certainly generated

by their finite members.It is also possible to showthat the varie­

ties (fii: Mn), (31: M],n) and (fiiz Mn) r1(§i: M1,n) are gene­

rated by their finite members. The proofs are tedious, however, and

since the most interesting conclusion, namely,

g.* = (_1§.: M) n (3.: M )
1 1 2 -1 1,2 ’

will be derived independently in section 7 we have chosen not to

include these results at this point.
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Section 4. Locally finite and finite varieties

In this section we shall characterize and study the locally

finite subvarieties of §. andthe so~called finite subvarieties

of fii, i.e. the varieties which are generated by a finite algebra.
The notion of local finiteness has been considered at several

points already. In Il.5.8 we learned that the varieties contained

in M , n eIN, are locally finite whereas a variety like M*is not,

—* (1) § Kmsince it contains, unlike the Mn, n e'N, the algebra F
I33 '4

(e.f. Il.3.5). It will turn out that as far as the local finiteness

of a variety g g fii is concerned, the presence of the algebra Kmis

decisive: fi_is locally finite iff Kw { K (4.2). Tn order to prove this

we shall introduce the chain of varieties (fii : Kn), where Kn, as

before, is the finite interior algebra with n atoms whoselattice

of open elements is an (n+1)-element chain (cf. I.3.4). This chain

of varieties provides a measure for the height of the lattices”­

of open elements of the interior algebras: (E11 Kn) COntainS

the interior algebras whose lattices of open elements have height

3 n. It will serve as a tool in the second part of this section,

where we shall characterize the finite subvarieties of fii as being

the varieties which themselves have only finitely manysubvarieties

(4.7).

The chain (fiiz Kn), n aim was earlier introduced in Blok and

Dwinger [74]; it is closely related to the chain (E :3), n eiN,

n 2 2, investigated by Hosoi [67], Ono [70], Day [M] et al..
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4.1 Theorem.

(i) (gi : Kn) = {L 6 5i | Kn 4 S(L)}, n e:N.

(ii) (fii : Kn) g (fii : Km), for n, m c'N, n S m and

gi = 2 {(21 : Kn) I n etu}.

(iii)(3i : Kh+])SI = {L e 51 I L° E L] e 1, L e (5. : Kn)},

n eIN.

(iv) (fii : Kn) is locally finite for each n eiN.

Proof (i) Let n eiN. Since Knis a finite subdirectly irreducible,

(fii : Kn) is a variety by 3.3. By 1.7.21, Kn is weakly projective

in fii; according to 3.5 (ii), then, (fii : Kn) = {L e fii I Kn f S(L)}.

(ii) Let n, m eiN, n S m, L e (fii : Kn). Then Kn é S(L) by (i),

hence Kmé S(L) since Kn e S(Km); thus (fii : Kn) g (fii : Km). To

prove the second statement, note that since Bi = V(§iF), it suffices

to show that BiF 5 U{(§i : Kn)-I n e N}. Now, if L e §iF, say ILI = 2“,

for some n e‘N, then certainly Kh+] é S(L), so L e (31 : Kn+]).

SI, n eIN, L0 = L] 0 I for some L] e E.

As Kn+l é S(L), n + 2 ¢ S(L0) hence n + 1 4 S(Ll). Thus Kn é S(B(L]))

(iii) Let L e (gi : Kn+l)

and hence B(L]) e'(§i : Kn). Since L° = B(L])° G 1 it follows that
i 0 : 0 . _

(fii . Kh)SI g {L e 31 I L —L] e 1, L16 (fli . Kn)}. By a reverse argu

ment, if L] 5 (gi : Kn), n eZN, L e fii such that L0 ; L? 9 1, then

L E (fii : K )n+1 SI’

(iv) (31 : Kl) being the trivial class, the statement is true for

n = 1. Suppose now that it has been proven for some n 2 I. Let

L e (fii : Kn+l)SI, and suppose L = [{xl,...xk}]§i, where k e N is

fixed. By (iii), L0 = L? 9 l, where L]

1L] 6 L? 5 L , IL! 6 L°. Let L2 = [(1Ll] u {x1,...x

e (fii : Kn), and since

k}]B. We show
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= L. Indeed, if a 5 L2, a # 1, then a0 e L? c L , and ifthat L _ 22

a = I, then a0 = 1. Hence L2 is a Bi- subalgebra of L containing

x],...xk, thus L2 = L. Furthermore, (ILIJO = L?, where L] e (fii: Kn),

hence (ILIJ e (fii : Kn). Since(lL]] is a fii-homomorphic image of L,

(ILIJ is fii-generated by x1.1Ll,...xk.l%l. In case n = I (ILIJ = {O}
and I L I= I [{0} u {xl,...xk}]B I S 22 . In case n > l,I LI =

I [(lL]] U {x],...xk}]B hE22 where K = I F(B'_Kn) (k) I + k (recall_ —1'

that by the induction hypothesis, (k) is finite). In eitherF
(Bi-Kn)

case, I L I S N, N being a fixed integer. It follows that every mem­

ber of (fii :.Kn+]) which is generated by k elements is a subalgebra

of a finite product of finite subdirectly irreducible algebras, and

is therefore finite.D

Wenoticed already that (fii : K‘) = {L e fii |_g é S(L)} is the
_ 0: 0

SI - {L e fii I L — Il.""trivial class. (fii : K2) 6 l, L e (B. : K1)} =I -1

{L e fii I L0 ;_g}, so (fii : K2) is generated by the interior algebras

with trivial interior operator, and because of local finiteness of

(Li : K2), even by the finite ones: Ml, M2,... . Thus (fii : K2) coin­

cides with the class of monadic algebras, M2(cf II.5).

4.2 It follows from the definition of (Qi : Kn) that (fii : Kh) =

(g : n_+i)°, n e N (see 11.1.9). Results 44(1), (ii) and (iii) can

therefore also be derived from Day [M] and II.l.9. An equation defining

(fii : Kh) can thus be found from the well-known equation defining

(fl : n+1), n eiN, which was first given by McKay[68].
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Let P! = X]

p I = ((xn+1 + pn) + xn+]) + xn+] for n 2 1.11+

Then (fl : n+1) is defined by the equation pn = 1. Using the "trans­

lation" described in II.l.Il we obtain equations defining (fii : Kn),
;1e'N. Indeed, let

_ Oq1"‘1
or

+
0' O 01 0 O

qn+, — <<<xn+, qn> + xn+,> >
+}{ for n 2 1.

n+1

(fii : Kn) is defined by the equation qn = 1.

Using the ideas presented in section 3, we can find still another

equation defining (fii : Kn), in only one variable. Weuse the nota~

tion established in 11.2. It follows from the results of lI.2, that

Kn ( S(L) iff L F 0, where 0 = ~3x[sn_](X)hsn(x) # 01. Thus the iden­

tity sn_](x) + sn(x)' = 1 defines (fii : Kn), n ciN, as well.

Locally finite subvarieties of_§i maybe characterized now in

several ways:

4.3 Theorem. Let E g fii be a variety. The following are equivalent:

(i) FK(l) is finite

(ii) F_B_E*(1) if K

I7‘!(iii) ._c (gi : Kn), for some n.€ N

(iv) 5 is locally finite.

Proof. (i) ==(ii) is obvious since FB-* (1) is infinite (cf.II.3.5).._1

7%‘(ii) =~ (iii) Suppose _ f (fii : Kn), for all n eiN. Then for each

n eIN there is an L e X such that Kn e S(L); but since FBj* (1) e-1

SP{KnI n 6 N}, (cf.proof of lI.3.5), this would imply that

FB-i-*(1)6 E.

(iii) =»(iv). This is 4.1.(iv).

(iv) = (i). Obvious. U
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4.4 Corollary. The locally finite subvarieties of fii form a sublat­

tice of the lattice of subvarieties of Bi. Moreover, if K is a——

locally finite subvariety of fii and K’ is a subvariety of fii which

covers K, then K‘ is locally finite.

Proof. The first statement follows easily from the characterization

of locally finite varieties, given in 4.3 (iii).

In order to prove the second statement, assume that K g fii is a

locally finite variety. Then_fi g (fii : Kn), for some n e N} Now, if

K‘ is a subvariety of E1 such that K'* K’ then K’ 5 (fii : Kn+]).

Indeed, suppose not; then there exists an L e K’ satisfying

L i (Bi : Kn+]), hence Kn+l 5 S(L) 3 K‘. Since Kn d K, Kn+] ¢

V(K U {Kn}) = K + V(Kn), we would have K < K + V(Kn) < K’, a

contradiction. Thus K’ g (g. : K ), and hence K‘ is locally fi­1 n+1

nite by 4.I.(iV)- D

In II.2.9 we have seen that a variety generated by *—algebras

may contain algebras which are not *-algebras. In the next corollary

we characterize the subvarieties of fii for which such a thing cannot

happen. For notation, see II.].7.

4.5 Corollary. Let K g fii be a variety such that K = K*. Then K con­

sists of *-algebras iff K is locally finite.

Proof. If K is locally finite then FBj* (1) ¢ 5 by 4.3. Let L 5 K
1

be arbitrary, x e L, x # 1. Then [x]B- 6 §;*, and fx]B7 is a proper-1 -1

homomorphic image of FB-* (1). Hence [x]B7 3 Kn, for some n e'N (cf._i -1
II.3.6), so L is a *-algebra (use II.2.5).

Conversely, if K is not locally finite, then by 4.3 FB7* (1) e K;-1
ll?since FB§* (I) K; by II.3.5, FBE* (1) is not a *-algebra. U
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4.6 In particular, the classes (fii : Kn)*, n e'N, consist of

*-algebras. Note that (fii : K2)* is the variety of discrete in­

terior algebras. In Blok en Dwinger [7&], elegant equations

defining the varieties (fii : Kn)*, n eim, were obtained.

Equations defining (fii : Kn)*, n eIN, can also be found by noting

that

(ii = I<n>* = (Ei : Kn) n (21 = M3) n (1.31 : Mm)

and by using 4.2 and 3.9 3).

The locally finite subvarieties of fii seemto be rather close

to the bottom of the lattice 9. However, these classes maystill

have infinitely manysubvarieties. For example, the variety

(fii : K2) of monadic algebras has according to lI.5.6 infinitely

manysubvarieties. we want to restrict our attention now to sub"

varieties of gi which are characterized by the fact that they

have only finitely manysubvarieties. These will turn out to be

precisely the finite subvarieties of fii, i.e., the subvarieties

of fii which are generated by a finite algebra. By 2.fi, finite

varieties are always finitely based; their theories are decidable.

ByJ6nsson's 1.2, if K is a finite variety of interior algebras

then KS1is a finite set of finite subdirectly irreducibles; and

conversely, every finite collection of finite subdirectly irre­

ducibles generates a finite variety: if L],...L e §iFSI, thenn

n 9
kElLk is finite and V(k:]Lk) = V({L],...Ln}). It follows, that

the finite subvarieties of §i form a sublattice of the lattice

Q of subvarieties of Qi, and in fact, using the notation of 3.8,
we have:
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4.7 Theorem. The finite subvarieties of Qi form a sublattice of Q

isomorphic to the set lattice of finite <~hereditary subsets of (§iFSI,<).

Proof. Restrict in the proof of 3.8 the map© to the sublattice

of 9 consisting of finite subvarieties of B..U
F

It is immediatethat every finite variety has only finitely

many subvarieties. To establish the converse, we need a lemma.

4.8 Lemma.Let K g fii be a locally finite variety. Then 3 contains an

infinite subdirectly irreducible algebra iff 5 contains infini­

tely manydistinct finite subdirectly irreducibles.

Proof. =' Let L e K be an infinite subdirectly irreducible algebra.

If x],...xk 5 L, k aim, then L’ = E{x],...xk}]Ei g L is finite,
hence L‘ # L. Moreover L‘ is subdirectly irreducible, since

u = Z{x e L'° I x # I} < 1, u = uo and for any y e L'O\{1}, y S u. By

induction one can construct a sequence of subalgebras L]c:L2c ...cL,

such that Li is finitely generated, hence finite, and such that Li

is subdirectly irreducible, i eim. Thus {Li I i eiN} is an infinite

set of finite subdirectly irreducibles in K, which are distinct be­

cause they have distinct cardinality.

= If 5 contains an infinite numberof distinct finite subdirect­

ly irreducibles, we take a non-trivial ultraproduct of these. That

is an infinite algebra in 3 which is subdirectly irreducible since

PU(§. B according to a remark made at the end of section l.D151) 5 -131’
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4.9 Theorem. A variety 5 E 5i has finitely manysubvarieties

iff E is generated by somefinite algebra.

§£9of.4= is an immediate consequence of 1.2.

= Suppose that K E 5i is a variety which has finitely many sub­

varieties. There exists an n EIN such that Kn d g, otherwise we

would have

V(K1) C V(K2) c ...C§.

Therefore 3 5 (fii : Kn), for some n eiN, implying that E is locally

finite. Since K has only finitely manysubvarieties § contains only

finitely manyfinite subdirectly irreducibles. Applying4.8, we

conclude that there are no non—finite subdirectly irreducibles;

hence E = V({L1,...Ln}) for some n e?N, where {Ll,...Ln] g
n n

gFSI. Thus 5 = V(kg] Lk) and kg] Lk is a finite algebra in fi.U

4.10 Corollary. Let E, E’ be subvarieties of fii, such that K is

a finite variety and K -<5’. Then3' is a finite variety.

Erggf. The lattice (§'], being a sublattice of R, is distributive

(cf. 1.5); the length of a maximalchain in (§'l is therefore inde­

pendent of the choice of the chain. Since (53 is finite the length

of a maximal chain in (53 will be m, for some m e N*. Thus(K'] con­

tains a maximal chain of length m + 1. Hence (K'] is a finite lat­

tice, and by 4.9 5' is a finite variety.D

While investigating the structure of the lattice of finite sub­

varieties of B., the question arises howto find all successors of-1

a given finite variety. The next theorem deals with this problem.
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4.Il Theorem. Let K 5 fii be a finite variety. There are only

finitely manysubvarieties of fii which cover 5.

Proof. Suppose that E 3 bi is a finite variety and that 5' g Q1

is a variety such that g 4 5'. By4.10, E’ is a finite variety,

and by 4.7 2 K'FSI \ KFSI ! = 1, say g'FSI = gFSILJ{L}. Suppose

that KFSI = {Ll,...Ln}, for some n 2 0.

Let

no = min in I E S (Ei 1 Kn)}

and

k0 = min {k 5 Ll,...Ln are generated by 4 k elements}.

we claim that L e HCF (R0 + 1)). Since F(§ (k0 + 1)
(3i’Kn +1) 1‘KnO+:)

is finite, this will imply that there are only finitely manysubvarie­

ties of fii covering K.

(i) Suppose L f (fii : KnO+]). Then Kno, KnO+l e S(L) whereas by

our choice of no, Kno, d E. Hence g < g + V(Kn0) < g + V(KnO+1) S 5’,

a contradiction. Thus L e (fii : KnO+]).

(ii) Suppose L is not generated by k0 + 1 elements. Let E > k0 + I

be the smallest number such that L is generated by 2 elements, say

by a],...a£. Consider L‘ = [{a], a2,...a£_1}]§i. Then L‘ C L] and

L‘ is not generated by 5 k0 elements, since otherwise L’ would be

generated by 5 k0 + 1 elements. Furthermore, L‘ is subdirectly irre­

ducible, being a finite subalgebra of a subdirectly irreducible al­

gebra. Therefore K < K + V(L') < E + V(L) = K’, a contradiction.D

The proof of 4.!) provides an effective method to find the

successors of a given finite variety: if E = V(L), L c §iF, ko, no

as in the proof of 4.9, then we need only to check which of the fi­

nitely manyfinite subdirectly irreducible homomorphicimages of the
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finite algebra F(B _K ) (k0 + 1) gives rise to a variety 3:*i' n +

covering 5. In practice there is an obstacle, however: the algebras

F(§i:K ) (k) have not yet been determined. Their structure is very
complizated, and their cardinality is fastly growingfor increasing

n,k.

Wehardly need to observe, that the converse of 4.11 is not true:

a subvariety,E C fii, having but finitely manysuccessors, need not

be finite. Indeed, (fii : Kn), n 2 2, n eiN, is not finite, but has

only one cover, namely, (fii : Kn) + V(Kn). For if K g fii is a varie­

ty such that §'D (fii : Kn) then K é (fii : Kn), hence Kn e K. There­

fore (fii : Kn) + V(Kn) g E. On the other hand, obviously (fii : Kn) +

V(Kh) > (fii : Kn).

In order to give a (very modest) idea of the structure of the lat­

tice of finite subvarieties of fii, we present the following picture

of the poset of join irreducibles of the lattice near its bottom.

V(K ) V(M ) V(M )
v(B(g2e1>> “2 2" >
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Note that the trivial class is covered by precisely one variety:

the class of discrete interior algebras, the only equationally

complete variety of interior algebras (cf. 0. 1. 15 ). The finite

subvarieties of §i correspond 1 - 1 with the finite hereditary sub­

sets of this poset.

In the final part of this section we show how the chain

(pi : Kn), n EIN of subvarieties of Qi can be used to obtain in—

formation concerning free objects. Indeed, according to 4.1,_§i

is the lattice sumof the locally finite varieties (fii : Kn),

n 5 N. Hence FB (k), k e'N is isomorphic with a subalgebra of the"1

complete atomic interior algebra U31 (cf.Il.7.1 - II.7.4), and we
have:

4.12 Theorem. (cf-lI.7.6) FB (k) is atomic, for all k ezm.
*1

and

4.13 Theorem. (cf. II.7 7) FB (k)0 is strongly atomic, for all‘i
k GIN.

4.14 Remark. Theorem 4.13 implies that FH(k) is strongly atomic

for all k eIN. By I.4.6 B(FH(k)) is isomorphic to a principal ideal

of Ffi (k); hence FH(k) is isomorphic to a principal ideal of FB_(k)O.

SincelFB_(k)O is strongly atomic by 4.13, so is FH(k). Needlesslto

say, 4.1; and 4.13 are equally valid for FBf(k) and FBf(k)O, and-1 *1

therefore FH-(k) is also strongly atomic for all kelN.

Thenext corollary is a counterpart to an earlier result (I.4.I5),

which stated that there exists an open element in FB (1)0 which has-i
countably many open covers.
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4.l5 Corollary. Let u 5 FB (k)O be such that (u] is finite. Then"i
there are only finitely manyopen elements covering u in F3 (k)

.L

0

Proof. Let (u] e (E. : K ), for some n £'N, and SUPPOSQU '4 3V,
—— 1 :1 1,1, (ky-1

v e FEi(k)O. Then (V1 5 (fii : Kn+l), as one easily verifies, and
(V3 6 H(F . )(k))- NOWF ,

. Bi’ Kn+1) (']‘3i'Kn+l)

w 5 FB (k)o, and V S w. Since (w] is finite, the corollary is“i
proven.D

(k) 5 (w] for some unique

. * . . . .

Since E: = L (B. : Kn) , lt follows in a similar way that

FB*(k) is atomic and that FB$(k)0 is strongly atomic. Note that_i -1
if u,v e FBf(k)0, u 4 v then also u <'v, hence u'v is an atom.

-1 F *(k)° F *(k)
E1 Bi

Conversely, if a e FB*(k) is an atom, then, in accordance with-i
the results of II.7, there exists a u e FBf(k)O such that a S u-1
and (u] ; * (k) for some n e'N. Hence (u] is finite, andF 0

(21.1%)

it follows that a = v'w for some v,w E (ujo 5 FB*(k)O.-i

Section 5- The lattice of subvarieties of M

The purpose of the present and the next section is to give a de­

tailed description of two principal ideals ofQ, (M3and ((§i1 K33]­



- 190 ­

These sublattices are of a relatively simple structure; in particular,

both are countable and consist wholly of varieties which are genera­

ted by their finite members.

In II.5 we started the investigation of the variety Mconsisting

of all those interior algebras, whose lattices of open elements are

relatively Stone, and someof its subvarieties, like Mn, n e‘N.

Several of the results we are going to present nowwere obtained

earlier in the context of modal logics by Bull [66] and Fine [7]].

They studied modal logics which are "normal extentions" of the modal

logic called S.4.3. The lattice of these extensions of S.4.3 is

the dual of the lattice of subvarieties of M, we are about to con­

sider. Fine investigated this lattice using the so-called Kripke

semantics (cf.Kripke[63]). Our methods, being of an algebraic na­

ture, are quite different and seemto give additional insight into

some of the problems. Furthermore, we shall be able to present for

any subvariety of Mthe equation defining it. Weshall close this

section with somefacts concerning covers of certain varieties in (M].

In II.5.4(iii) we have seen, that though the variety Mis not 10­

cally finite, it is generated by its finite subdirectly irreducibles.

In the next theorem it will be shown that any subvariety of M is ge­

nerated by its finite subdirectly irreducibles. Bull [66] discovered

this fact, and our proof is similar to his.

5.] Theorem. Let M5 M be a variety. Then M is generated by its

finite members.
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Proof. Suppose not. Let L e K \ V(§F) and let p be a gi-polynomialSI

such that the equation p = I is satisfied in V(KF)but not in L. Let

a},...ane L such that p(a],...aP) # 1. Let L] be the Boolean algebra

§-generated by all terms occurring in p(aI,...an). (For a more pre~

cise formulation, see the proof of 1.6.9). Define an interior operator

01 on L] as follows. if a e L] then

a0] = Hib 5 L1 I b0 2 ac}.

This is a good definition since L} is finite. Obviously I01 = I,

aol S a, and aolol = aol. Furthermore, if a,b e L], then a0 S b0 or

a0 2 b0 since L is subdirectly irreducible. If a0 5 bi then (ab)O1 =

i C0 2 aobo} = H{c 6 L1] co2:aO}==a1

Also, if a0 3 b0 then aol S bol, hence (ab)O1 = aol = aolbol.

ll{ceL JcO2(ab)O}=H{ceLl

Similarly if a0 2 b0. Hence L1 is a finite interior algebra.

Furthermore, if a 6 L] and a0 E L] then a0 = aol. Therefore

pL1(aI,...an) = pL(al,...an) % I. Weshall show now that L] 5 S(L)
hence L1 6 KF. This will contradict our assumption that p = 1 holds

in EF.

0 _ o _ _ _ (‘ P = - M
Let L] - {x I 5 6 L1} — {O — C0 < c] < ...~cn < _n+] I} g L.

Note that L? g L], in general. Let Ai = {a 6 At L! I a'° = c.},

i = 0,...n, where At L] denotes the set of atoms of L]. Then Ai # 0

and Ai n Aj = ¢ if 0 S i # jssn, and A. = At L]. Note that if1
llcfli O

a 5 Ai then a S ciand a i c! i = O,...n. Choose one atom ai from1+1’

every set Ai, i = O,...n. we define a map ¢ : L] + L by the following

rule: if a e Ai, i = O,l,...n , let
a.c. if a # a.

¢(a) = J 1+1 1

1(c. + Za)'.c. if a = a.1 1+1 1
aeA.

1

a#ai
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and if x c L‘ is arbitrary then

¢(x) = X{¢(a) 5 a a At LI and a s X}

we observed already that if a ( Ai then a i c3+l and hence a.ci+l # O

and a1so (Ci + a#a a)‘, ¢i+! 9 aj. ci+i # 0. Furthermore, if a,b 6 Ai

such that:a # b gfiéi ¢(a).¢(b) = O and Z ¢(a) = Z a.c. +
' aeA. a¢ai 1+1

1 a£A.

(c + Z a)’ C. = c3c. Since c' c. . c3. c =30 if 0‘<i % "<n andi aeA. ' 1+1 1 1+1’ 1’ 1+1 3 j+1 ‘ 3 *
a#a.

n 1
2 c.c. = 1t LO ows tnat or any a, 5 t a . = an1 1+1 1 ° ‘ 11 ' f b A L] ¢( ) ¢(b) 0 di=0

2 ¢(a) = 1. Thus the set {¢(a) I a 6 At L1} is the set of atoms
a€At L

1

of a_§-subalgebrauof L and ¢ is a 1 - I 5-homomorphism from L‘ to L.

In order to establish that ¢ is in fact a fii-homomorphismlet us

note that it is sufficient to prove that for any a 6 At L] ¢(a'O1)=<@(a)'0.

LIt follows from the definition of °1 that for a,b 6 L1 a0 > b0 if‘

aol 2 bol. Therefore, if a e Ai, 0 s i S n and p 6 At L] then

p $ a'O1 iff p'01 : a'01iff-p'O 2 a'0 iff p e Aj, for some j,
where i S j S n.

.01 11-1

gence if a e Ai then a = kgo EAR ‘and >¢(a:o1) =
¢(a) = c.. On the other hand, if a e A. then

k=0 3eAk 1 1

¢(a)'0 = (a.ci+])‘O = (a' + c£+])O = ci if a # ai

and

'o _ n to
¢<ai> ~ “Ci + a:A].a)"Ci+l)

a#ai

— (Ci + aeA.a Ci+1)
a#a

V v 0 5 I I O =
5 (C1 + ai + Ci+1> (ai + Ci+l) Ci’

. , v0\ ‘o
and since ¢(ai) S ci ci+] also ¢(ai) =‘Ci, hence ¢(ai) = ci. It

follows that ¢(a'o ) = ¢(a)'O, for all a 6 At L], hence ¢ is a fii-em*

bedding.U
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5.2 It follows from 5.! that every subvariety of Mis generated

by its finite subdirectly irreducibles. Thefinite subdirectly ir­

reducibles Of M are Of the form M , up to isomgrghjsm,n,,...n ‘O k-I

where n0,...nk_1 and k are positive integers, (cf, 1.7.20 and

II. 5. 4). Henceevery finite subdirectly irreducible algebra in

Mcan be represented by a finite sequence of positive integers.

Conversely, each finite non-empty sequence of positive integers

determines a finite subdirectly irreducible algebra in M, which

is unique up to isomorphism. Let Mdenote the set of all finite

non-empty sequences of positive integers. Let for x,y s M,

x 5 y iff MK6 HS(My)(cf-3.8). It is not difficult to see that

< is a partial ordering on M. Wedefine a map ¢ from the lattice

of subvarieties of Mto the lattice of hereditary subsets of M,

by putting

c:><r>= {XGMIMXEK}

for any variety M5 M. Just as in the proof of 3.8 we can show

that the map ¢ is an isomorphism. we conclude:

5.3 Theorem. The lattice of subvarieties<ofM is isomorphic to the

lattice ofhereditarysubsets of the partially ordered set (M, i).

The next theorem gives a more practical characterization of the

relation 5 on M.

5.4 Theorem. Let x,y c M, x = n0,n],...n k—l’ 3’ = ’”0”“1"""‘2—1'

Then x 5 y iff thereexistO = i0 < il <...< ik_] s'£ —I such that

nj 5 mi , j = 0, 1,...k - 1.
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Proof. (i) =» Suppose x,y e i, x S y. Then by definition of S,

Mx 6 HS(My), hence there exists a z e E, such that Mx c H(M7),

M2 6 S(My). But then z = x,nk,...n = D09n1a"-np_1 f°r Sfimep-I

P 2 k. Thus, if we can show that there are 0 = i0 < i] < ...< ip_l

s 2 - 1 such that nj 5 mi_, j = O,l,...p - I then it will follow
J

a fortiori that there are 0 = i0 < i] < ...< ikr] 5 2 - I such

that nj s mi , j = 0,I,...k —1.
J

Let M0 = {O = co < c < ...< c = I} and MO =n0,nl,...np_] I p m0,m],...m£

{O = do < d] < ...< dg = 1}, i : Mz + My a fii-embedding. Since

i(M:) g M; and i is order preserving , there exist 0 = i0 < il<...<ip_1

< 2 such that i(cj) = di , j = O, l,...p-1. Let a%,...ai be the atoms
. ' j

in M2satisfying ai S c3cj+1, k = l,...nj, j = O,l,...p - 1. The

i(ai), k = 1,...nj, j = O,l,...p - I are disjoint elements in Myand

if nj > 1 then .(dij + i(ai))° = (i(cj + ai))o = i((cj + ai)°) =

i(cj) = dij. Hencei(ai).d{j.dij+] # 0, for k = 1,...nj, j = O,l,...p-1.
Therefore di.;d contains at least nj atoms and it follows thatij+l

nj 5 mij for J = O,l,...p - 1.

(ii)-w Let 0 = i0 < i] < OO%<ik_l < ik = £ be such that nj s m. ,

j = 0,I,...k + 1.

Let M: = {o = o < c < ...< c : 1} and M; = {o = d < d < ...< dz = 1},0 1 k 0 1

as above. we define a map i : Mx+ My as follows. Let i(cj) = di ,
. . . j,

j = 0, l,...k. If a%,...aij are the atomsof Mx,S c3cj+], bg,...bii.
the atoms of M , S d! d. , then let J

i(a%) = bi, r = I,...nj-I
and
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. n.-I .
i(aJ)=(d- + 3;: bJ)'.d. ,j=O, I,...k-1.n- 1. r 1.

J J r=] 3+1

Since n. 5 mi , this is possible and i(a£ ) # 0, r = l,...nj,
j .

and it is clear, that the i(ag), r = l,...nj, j = O,l,...k - 1

are disjoint and jzr i(ai) = 1. Thus the map i defined byI

1

i(z) = Z{i(a) I a is an atom in Mx, a S zi

for any z 6 My is a §-embedding. In order to show that i is a

fii-embedding, let z 5 Mx, zo = cj, 0 S j S k. The case j = k, i.e.

cj = z = I being trivial, let us suppose that j < k. Then there

exists an atom a e Mx, a S cg cj+] such that a $ 2. By the defini­

tion of 1, i(a) $ i(z), and since i(a).di +1 ¢ 0, i(z)° 5 d:
o Lj

On the other hand, it is obvious that that i(z)0 2 di , implying
3

that i(z)O = di = i(c.) = i(zO). Wehave now shown that

Mx e S(My), and thus that x S y. E

In the next lemmaa useful property of the partially ordered

set (Q, 5) is established. The technical proof requires only a

slight modification of the proof of theorem 5 in Fine [7]], and

will therefore be omitted.

5.5 Lema. If x , x ,...,x ,... is a sequence of elements of Q
————— I 2 n ’

then there exists a subsequencexi ,xi ,...,xi ,... such that
1 2 n

xi 5 xi , j = I, 2,... . In particular, every set of mutually
J j+1 _

incomparable elements in Mis finite.

5.6 Nowlet R g H be a hereditary subset, such that E X i # Q.
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A = {X 6 M \ K I there is no y e M \ K such that y # x

and y S X}.

Since every element z e Mhas finitely many predecessors in M,for

every z 5 M \ K there is an a e A such that a S 2, and conversely,

if z c M, a e A such that a 3 2, then 2 é K, since K is hereditary.

Thus

x c K iff Va 6 A [a $ X].

It is obvious from the definition of A that A consists of mutually

incomparable elements. Hence by lema 5.5 A is finite. The following

theorem is now an easy consequence:

5.7 Theorem. Every proper subvariety K of M is a finite intersection

of varieties of the form (M : L), L e MFSI.

Eroof. Let K C M be a variety, K = ¢(g) (compare 5.2 ) . Then

K is a proper hereditary subset of M. According to the remarks above,

there is a finite set A 5 M such that X e K iff Va 6 A {a i X].

_ = ' = n ' =
Hence {MK I x 6 K} {Mx I Ma é HS(Mx) if a e A} a€A (M . Ma)FSI

( 0 Since 5 = V({Mx I x e K}), it follows thataeA (M ‘ Ma))FSI'

.,-= n .
5 aeA (M ' Ma)'D

In the proof of 3.3 we exhibited for any L e §iFSI an equation CL = l

defining the variety (fii : L). Since (M : L) = (fii : L) n M for any

L c MFCI, (M : L) is determined by the equation EL = 1 relative to M.L)



- I97 —

5.8 Corollary. Every subvariety of E is determined relative to E
n

by a single equation. Moreprecisely, if E = i21(fl : Li), L!,...Lne
n

fiFSI, then relative to M, K is defined by the equation igi €Li = 1.

By a result of Harrop [58] , it follows from the corollary and

5.1 that the equational theory of every subvariety 5 of Mis deci­

dable.

5.9 Corollary. (cf.Fine C713) Mhas NOsubvarieties.

Proof. In II.5.4 we have seen that Mhas at least fin subvarieties.T‘ J
By 5.7 every subvariety of Mis determined by a finite set of finite4.

subdirectly irreducibles. HenceMhas at most Ra subvarieties.D\;

In order to get somemore insight in the structure of the lattice

of subvarieties of M, we prove a lemmadealing with the successor

relation in the partially ordered set (E, S).

5.10 Lemma.Let x,y e R, where x = nO,n],...nk_l and y = mO,m1,...mQ_].

Then x -<y iff

(i) 2 = k + l and there are 0 = i0 < il...<ik_1 S K - I such

that nj = m. , j = O,I,...k —I and mi : 1 if i # ij,
j = O,|,...k-I.

(ii) z = k and there is a jo, O S jo S k — I such that nj = mi

if j # jo, j e {O,I,...k - 1} and mj = nj + 1.0 0

Proof.-= is straightforward

=» It is obvious that k s R S k + 1.

(i) Suppose that£.= k + 1. There are 0 = i0 < i] ...< ik_l 3 R 1
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such that nj 5 mi .1f nj < mi. for some jo, 0 $ jo S k - 1,
J 0 J0however, then

x = nO,n1,...nk_] < m0,m1,...mij-l,...m£_l< mO,m], mfl_i = y,0

contradicting x 4 y. Hence nj = mi j = 0,l,...k - 1. Ifj
{],2,...Q - 1} \ {i],i2,...ik_]} = {i}, and mi > I, then

x = nO,nl,...nk_l < m0,ml,...mi_1, I, mi+],...m£_I

< mO,ml,...mi,...m£_] = y

again contradicting x.< y. Hence mi = 1.

(ii) Suppose that Q = k. There is at least one jo, such that

n. < m. . If mj > n. + 1, then30 50 0 30

x = no, nl,...nj0,...nk_] < n0,n],...njO+1,...nk_l
< m0,m],...mj ,...m2_] = y,0

a contradiction. Thus m. = n. + I. Finally, if j ,j C {0,l,...k —ll,
0 J0 0 I

j # j‘ such that n. < m. , n, / m. then likewise
0 I J J J

0 0 1 I

X =n0,nl,to <I'l0,n1,...mjO,..oT'ljl,...I1k_] <U]O,ml,...m2l—]=y’

a contradiction. The implication thus fo1lows.fl

5.1] Corollary. Let x e R, x = nO,n],...nk_l. If a is the number

of indices among l,2,...k-1 such that ni = 1, then x has 2k - a

covers in (5, S).

Proof. x has k different covers of length k, by 6.8. The covers

of x of length k + 1 are

nO,1,n],..-nk_], nO,n],l,n2,...nk_], ..., n0,n],...nk_1,l.
Now

“0’“1*"'“i-1*“i"’ “i+1"'°“k—1= “(r“1"""i—I"’“i’“i+|""“k—1
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iff ni = 1 for any i e{l,2,...k-1} and hence

n0,n],...ni,l,...nk_] = nO,n],...nj,l,...nk_l, 0 S i < j : k ~

iff ni+l ‘ ... = nj = I.
Therefore there are k ~ a covers of length k + 1. The total number

of covers is thus 2k - a.D

The lower part of the poset E is suggested in the following diagram:

Evidently, this poset is not a lattice. It does have several nice

properties, however. As we noted before,any x 5 Q has finitely

manypredecessors. One can show, that all maximal chains of prede­

cessors of an element x contain the same number of elements;
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Indeed, if x = n0,nl,...nk_‘ c Q, then a maximal chain of prede­
_ k-1 k-l

cessors of x contains k - I + X (ni - I) = ‘Xi=0 1: ni " I elements.0

Section 6. The lattice of subvarieties of (fii : K3)

As mentioned earlier (see the remark preceding 4.2), (fii : K2)

C the variety of monadic algebras and the lattice of subvarieties;4pl.

of (fii : K2) is the chain

V(MO) C V(Mi) C ...c V(Mn) c ... g (Bi : K2)

where Mn, as usual, denotes the interior algebra with n atoms and

with trivial interior operator (cf. II.5.6). Thenext layer,

(EL : K3), will occupy us in this section.

6.} In 4.! we showed that (fii : K3) is locally finite - hence

every subvariety of (51 : K3) is locally finite and therefore ge~

nerated by its finite membersand even by its finite subdirectly

irreducibles. It follows also from 4.1 that L e (fli : K3)FSI iff

L is finite and LO; L] e 1 for some finite Boolean algebra L].

Now, if x = nO,n],...nk is a non-empty sequence of positive in­k

tegers, let Nx e (fii : K3)FSI be an interior algebra with igoni atoms
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such that N0 has k atoms, say u ,...u with ! At(u.] | = n,,
x 1 k J J

j = !,...k, where At(u.l denotes as usual the set of atoms 2 uj.

Note that I At(( 2 ui)'] I = no, or, in other words, if N: = L] e 1,i=1

then I At(I£ .1] I = no. Clearly, for any such sequence x, Nx is
1

unique up to isomorphism.

6.2 Lemma. Let x = nO,n],...nk, y = m0,m1,...m£, k, £220, ni,

mj > 0. Then Nx ; Ny iff k = E, n = m and n

a permutation of m

Proof. Obvious.D

6.3 From now on in this section we shall consider only sequences

x = nO,n],...nk, k 2 O, ni > 0 such that n] S n2 S ...s nk. The

set of all such sequences will be denoted by fi. Then for x,y e N

NX; Ny iff x = y. Define a relation s on E by stipulating x s y

iff Nx e HS(Ny). It is easy to verify that K is a partial orderingII

and as in 5.3 we have

6.4 Theorem. The lattice of subvarieties of (fii : K3) is isomorphic

to the lattice of hereditary subsets of the partially ordered set

(15. s).

In the next few lemas we give a more intrinsic description of

the partial order on N.
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6.5 Eemma. Let x,y e N, x = nO,n],...nk, y = m0,ml, ..m£. Then

fix e H(Ny) iff
I)x=y

or

2) k = 0, no = mi for some i, 1 S i S 2

Proof. -= Obvious.

Proof. Let »a

= Let h : N + Nx be an onto homomorphism. If h is an isomor­

phism, then x = y. Hence assume that h is not 1 - I. Since NX

is subdirectly irreducible, it follows that 2 2 I and that

NX; (bJ for some atom b of N:. Therefore k = O and

no = m., where mi = I At(b]l , for some i, 1 S i S £.U

6.6 Lemma. Let x,y e N, x = n0,nl,...nk, y = mO,ml,...m£.

Then N 5 S(N ) iff
x y

1) k,R Z l and i0 = 0 < i] = l < ...<ik S 1 such that

nj S mi‘, J = 0,], . k
J

or

2) k = O, 2 2 l and no S mi, for all i, 1 S i S 9

or

],...ak be the atoms of N:, b],...b£ the atoms of
O . j .

Ny, p£,...pnj the atoms of Nx,S aj, q],...qmj the atoms of Ny,

S b. p0 ...pO the remaining atoms of N qo . O the remaining
3’ 1’ no X’ 1"‘ “mo

atoms if N .
Y
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Furthermore, if i e Ij, then

0

J

i-embedding.

l,...n.
1J

¢= 1) Suppose k 2 l, E 2 1 Define X + Ny£’j=..Z. i a=1...z
(pr) 1j<1<1j+]qr ’ F ’ “J

and
. D-'-If(p-")=(% .(.. q')' . b...
nj r=l 1..:l(-1.j+l r lj$l\1j+] 1

Further, let
0 O . _

f(pi) - qi, 1 — 1, .n0 1

and

0 not‘ 0 , 1
f<pn ) = < z qi> .<,: bi>'

0 i=0 1=l

Now if z e Nx, let

f(z) = Z {f(p) I p is an atom, p 2].

Then f is a fii-embedding.

2) Suppose k = 0, Q 2 1 Define f : Nx + Ny
0 9- i .

f(p .) = Z q. , l < J < n ­

and

O nO~l 2 i\
f(pn ) =( 2: _>‘ q’.,'

0 j=1 1.=1 3

Again, f induces a fii-embedding.

3) Suppose k = 2 = 0. Define f : N‘ + Ny by f(p?) = q.,
H -1

1 S j S no-1, f(pg ) = ( OZ qQ)'. f induces a g
0 j=I 3

=- Let f : N + N be a §.-embedding.
x y 1

1) Suppose that k, E 2 1. Let Ij = {i e {l,...2} | b.

j = l,...k. Note that Ii # 9, j = l,...k, E Ii —. .
and j # j' implies Ij r»I,' = ¢.J

bi S f(aj), hence nj S mi. Indeed, f(pg). bi # O, r
. . j‘ 0 J’ 0

since otherwise 0 = f(0)= f((pr .aj) ) = f(pr.aj) 2

and f(p%). f(pi,) = 0 if r # r'. Let Qj min {i

3
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Then n. S mo . Now, if {rj I j = l,...k} g {l,...Q}, with

j # j' implying rj # rjv, such that nj S mr , j = l,...k,
J

then if j < j‘, but r. > r.., still n. S m_ and n.. S m .
J _] Iii rj

For nj S nj, S mr and nj, S mr S mr . Therefore we can re­
J" J’ *3’

arrange the £j, j = 1, ,...k, to obtain a sequence ij, j = l,...k

satisfying nj S mij, j = l,...k and i] < i2 < ...< ik S 2. There
is a j e {l,...k} such that 1 e I; and if I e Ij then Rj = 1.k -'2 2
Hence i, = I. Finally, f( 2 a.) = 2 b., hence f(( i 3-)')’=(-E b.)'.

- -= J -= J -=; J J-1 J
k J I J I R J

Since no = E At ((j§]aj)'] I , m0 = I At((j§]bj)'3 i , it follows

that no S mo. Thus the sequence i0 = O < il = I < i2 < ...< ik S 2

satisfies the requirements.
0 .

2) Suppose k = O, 2 2 1. If f(pr). bi = O, for some r, 1,
:0

N U‘1 s r 3 no, 1 s 1 s z then 0 = f(0) = f((pOL )0) = f(pOr)

H
C>Ii 0, a contradiction. Since r # r’ implies f(p0r). f(p0r,)

no 0 .
Z f(p r) 1t follows that

r=l
Mand for each i e {l,...1}, bi

’ m. i = l,...£.“O E 1’

3) Suppose k,£ = 0. Then obviously no S mo. U

6.7 Lemma. Let x,y e N, x = nO,n],...nk, y = m0,m],...m£. Then

x S y iff

I) k,£ 2 I and there are i0 = O < i] = I < i2 <...< ik S R

such that nj S mi_, j = 0,l,...k.
3

or 2) k = O, 2 > l and no S mi, for some i, 1 S i S £.

or 3) k = 0, 2 = O and no S mo.

Proof. By the definition of S and lemmas 6.5, 6.6.U
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An important feature of the partially ordered set (E, S) is that

every set of incomparable elements is finite, as was shown in

lemma5.5. (h, 5) shares this property with (F, S) and that

this is so can be proven in the same way, except for some minor

points.

6.8 Lema. If xi, x2,... is a sequence of elements of h then

Cthere exists a subsequence xi , xi ,... such that xi 5 x;
I 2 j "j+1

= 1,2,... . In particular, every set of imcomparableelements

of E is finite.

i i i
Proof. Let xi = no, n],...nk i = 1,2,... . If ki = O for

infinitely many i, then this subsequence has a subsequence satis­

fying the requirement. Hence we may assume that ki > 0, i = 1,2,...

By thinning we may assume that us : n5+], i = 1,2,... . Let
i i i . . . ,

yi = n], n2,...nk . By consldering the sequence yi, 1 = l,2,..i
as a sequence in (M, S) and by applying lemma 5.5 we can find a

subsequence yi , j = 1,2,... with yi S yi , j = 1,2,... in
J i+l

(H, S). Then xi , j = 1,2,... (where xi = n0J,yi ) is a subse"
j J ' _

quence of xi, i = 1,2,... satisfying xi 5 xi in (N, £).U
3 3+!

Weare now in a position to prove

6.9 Theorem. Let K C (B. : K3) be a variety. Then

-1: = LgA(Bi = Ky = L>

for some finite set A 5 (fii : K3)FSI.
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Proof. Let ¢(K) = {x e E I Nx 6 KFSI}. Then ¢(K) is a proper he­

reditary subset of E and if K = {x e E \ ¢(K)I there is no y e fi‘\¢(K)

such that y # x and y S x} then A is finite (and non-empty)

“since it consists of non-comparable elements and .{Nx I Nx E KFSI} =

a2A((§i : K3) : Na)FSI. Hence, if A = {Nx I x 6 K}, then

x = V({Nx I Nx e gFSI}) = L2A((_1;i : K3) : L).D

6.10 Corollary. Every subvariety of (Bi : K3) is determined by a
n

single equation. Moreprecisely, if K = _nl((§i : K3) : Li),1:

L],...Ln e (fii : K3)FSI, then relative to (fii : K3) K is deter­
n

mined by the equation _H]sL = 1.

6.1] Corollary. (fii : K3) has R0 subvarieties.

2) s (Iii = K3) 2)

subvarieties V(Mn),I1= 1,2,... it followsthat I Z 230 .

Proof. Since (fii : K and (fii : K has the R0

Using 6.9 we conclude that I((§i : K3)] I== RO.[]

Weclose this section with some remarks concerning the successor re­

lation in (N, S).

6.12 Eggs. Let x,y e N, x = n0,n],...nk, y = m0,ml,...ml.

Then x -<y iff one of the following is true:

I) k = O, E = 1:

2) k > 0, 2 = k + 1: if r = max {i I 1 S i S k, n. = nl}

then mo = no, m] = m2 = ... = m = n], m. = n. for

r < j S k.
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3) 9 = k and a) no + I = mo, nl = ml, i = 1,4, k

b) ni < ni+l for some i, 1 s i < k and

nj = m , O < J < i, ni + I = ml, nj = ml,

1 < j < k

c) nj = mj, O S j < k, nk + I = mk.

Erggg. ¢= straightforward.

=» It is obvious that £ = k + l or 1 = k.

1) 2 = k + 1. If k = 0 then one easily sees that no = m‘,

1. Suppose k > 0. Since x S y, there is a sequencem0 =

i0 = O < i] = l < i2 < ...< ik S 2 such that n. s mi , j = 0,1,. k
'3'

Suppose nj < mi for some jo, 0 S jo S k. We may assume
0 30

n. 2 n. if 0 < j < k. Then
30+} JO 0

nO,n1,...nk < nO,n],...njO_1,njO+l,nj0+],,,,,nk < mO,m],,,,mR
a contradiction. Hence nj = mi , j = O,1,...k. Let r = max {i {I S isI<,

J

ni = nl} and suppose mr+] # n]. Then mr+l > nl, hence

no ,nl,...nk < no ,n],...nr,nr,nr+l,...nk < mO,ml, .mr,

mr+1,mr+2,...m£.

a contradiction. Hence mr+1 n] and m1 = m2 = . = mr+l n].

U2) £ = k. Since x S y, n. S m: for i 0,I,...k. Obviously

ni < mi for at most on i, and then mi = ni+§. The only i's for

which this can occur are i = O, the i e {1,2,...£ - 1} such that

ni+1 > ni and i = k.U

6.13 Corollary. Let x 5 §, x = n0,nI,...nk. If a is the number

Of indices i among {},2,...k - I} such that ni+] > ni, then
x has 2 covers if k = O and X has 3 + a covers if k > 0.
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Proof. If k = 0, then x has two covers by 6.12 1) and 3a).

If k 2 0 then x has one cover of the form given in 6.12 2),

k > 0 thenand 2 + a covers as given in 3). Hence, if

x has 3 + a covers.H
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Section 7. The relation between the lattices of subvarieties of fii

D Iand

So far our study of the lattice of varieties of interior algebras

has been rather limited, in the sense that we restricted ourselves

mainly to varieties generated by their finite membersor even to lo­

cally finite varieties. Next wewant to turn our attention to problems

of a more general nature, concerning the structure of the lattice Q

as a whole, and certain interesting subsets of Q .

In ll.l we established somerelations betweenvarieties of inte­

rior algebras and varieties of Heyting algebras. The first object

of this section is to formulate somecorollaries to these results

for the lattice R of subvarieties of fii and the lattice X of

subvarieties of E. Wewill thus obtain a better insight in the

structure of Q and moreover we shall be able to carry over known

results on E to 9 directly. The corresponding results for the

lattice Q- of subvarieties of E; and for the lattice 2- of

subvarieties of flh will not be mentioned explicitly; they follow

easily. Wewant to recall however the I-1 order-preserving corres­

pondencebetween non-trivial subvarieties of the variety § g fii,
. . . co

where § is determined by the equations xocv + x0 = 1 and

xoc + xioc = I, and the subvarieties of 5;, established in lI.l.20.
It shows that

7.1 Theorem. 9- is isomorphic to the sublattice [V(g), § ] of Q,

where v(g) is the variety of discrete interior algebras,determined
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by the equation X = X0 (cf, 11.4.2), and § is as above.

* \* , .
Proof. Recall that M2 = (gi : K2) = V(Z)o If E E E1 13 3

nontrivial variety then 2 e K, hence V(Z) E E (that iS, V(§}

is the unique atom of Q, contained in every element of Q and hence

the only equationally complete subvariety of §i).The theorem follows

nowimediately from II.l.20. D

7.2 In order to establish the desired relations between Q and

2 let us define mappings Y and D as follows:

n
l7< H1 0 H 7: '7\ Q7 :52 + Z by Y(K)

and

0 1 Z * 9 by 9(K) n
IN H1 0 H W: m on

By II.l.3 and II.l.9 Y as well as O are well—defined. By

J6nsson'sresu1ts we knowthat Z and Q are complete distributive

lattices (cf. section I).

7.3 Theorem. Y is a complete surjective D0]-homomorphism.

Proof. Since 09 is the variety of trivial interior algebras,

Y(O§Q= O}, the variety of trivial Heyting algebras. Also

If {Ki E i 6 I} E Q then

5 K )= v(v(.“i€I-i 1€I LJK')O (3) V('U K0) = ii: 0<5i)Y‘ ieI 1 1€I”iKi)) = V(

where the equality * follows from II.1.2. Further Y also preser­

ves arbitrary meet:
n

*('“ K’) ‘ Y(iQ15i) = (i:iKi)0 = iclfii = iE1Y(Ki)'

Finally, y is onto since for any _K€ 2 , Y(K9) = 590 = E.U
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7.4 Theorem. p is a Q0]-embedding. Furthermore, y ° p = id E X,

hence E is a retract of 9.

Proof. Obviously, p(0Z) = 09, p(lZ) = 19. Let 3], E2 5 X. Then
_ c = c

since an interior algebra L is subdirectly irreducible iff L

is a subdirectly irreducible Heyting algebra. By 1.4
C c c c _ ,\

((51 + K2)SI) ’ (K131 ” K251) ’ K181 ° K231 ‘ O(EI)SI U ‘(52’s1

Therefore

V(o(K1)SI LJ o(E2)SI) = p(E,) + D(K2)­

Also

Mr, -132) = M5, n .132) = (r, n I_<>°

n 5; = p<r1> n p<r2> = o(K])- o(E9).

To prove the second statement of the theorem we note that for g e X,

Y ° o(K) = Y(K ) = K = 5­

Note that 0 actually preserves arbitrary meet. we do not know

at the present time if p preserves also arbitrary join.

The map 0 assigns to a variety E of Heyting algebras the lar­
'o

gest variety 5' 5 Ei iuch that K =_fi. The smallest variety with

this property is the variety V({B(L) i L s 3}) E §i,Therefore:

7.5 Consider the map
‘Jr *_

p : Z———> (fii J 5 9

defined by
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p*<r> = V({B(L) : L 5 r}) = p<r> for r e 2.

it is obvious that 9* is 1-1 and that p* preserves 0,1 and

(arbitrary) sums. However, the question if p* is onto amounts

to the following problem: if E is a subvariety of 31* does it

follow that g is generated by its *- algebras (as is the case for

§i* itself, by definition)? This is reminiscent of the question

whether every subvariety of fii is generated by its finite mem­

bers, fii itself so being generated. This last question will

be considered in the next section and will get a negative answer.

The more surprising it is that the problem we are dealing with

now will be solved in a positive manner. The next lemma is the

key result.

7.6 Lema. Let L be a countable interior algebra satisfying the

¢qUaCi0n ((x' + xO)0' + xO)O' + X0 = 1. Suppose that L] is a

subalgebra of L such that L0 E L! g L = [L] U {x}]B for some

x 6 L. Then L e SPU(Ll).

Erggf. Enumerate the elements of L] : a], a2,.... . Let

be defined by

L be the element
_ ®

x = (Z {ai I ai S x, i S n})n=].

Let F be an arbitrary non-principal ultrafilter on ZN and
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x X
' : . .H =
“ 1E1L1 ‘* 1=1L1/Q L2

be the canonical homomorphism. Finally define f : L] + L2

by f = hoi . The map f is then a hi-homomorphism which is

1-1.

L] c——~——_w——-——+ L

, I

I . _

1 f : f

E I

I .

! !

¢ .
m l

h
H L] —~———~~————~—+ L2i=l

We claim that f : L] + L2 can be extended to a 5-homomorphism

by defining E(x) = h(;). In virtue of a well-knownf 2 L + L2

lemma (see Gratzer [71], pg. 84) it suffices to prove for a 4 L]

1) if a s x then f(a) s n(i)

2) if a 2 x then f(a) 2 h(§).

Suppose that a = ak, for some k aim.

1) If a S x, then for n 2 k E = X{a. E a. s x, i S n} Z'ak —a

Since F is a non-principal ultrafilter onIN, it follows that

{n ezm I in 2 a } e F. Hence n(§);:n(§) = hoi (a) = f(a).

2) If a 2 x then i 5 a for each n e?N, hence h(;) s h(a) = f(a).
I1

Thus f : L + L? is a Boolean extension of f and

3 — 2'

Nowwe shall show that for any 2 e L (E(z))O = E(zO). This will

?[L] = [f[Ll] u {h(§)}]B = L c L

imply at the same time that L3 is a fii-subalgebra of L2
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and that f : L + L3 is a Bi-homomorphism. Since f I L°= f IL?

is 1-], it follows that f is a Bi-embedding and hence that

L 6 S(L2) 5 SPU(Ll).

If z e L, then 2 = (x + yl) . (x' + y2), where yl,

yz 6 L]. It suffices to show for y 6 L] that f((x + y)o) =

(f(x + y))° and that E((x' + y)°) = (f(x' + y))°, since then

Rf>=Ru+yp9<#+yg%=f«x+mW>
E«w+gP)=Gm+ypP.&m'+h»°=&u»9

1) Note that (x + y)o = ((x + y)O y‘ + y)O since

(x + y)° S ((x + y)° y‘ + y)° s (x + y)° because (x + y)°y' s x.

Since L0 5 LI (x + y)° y' e L], say (x + y)°. y' = ak, for

some k GIN. Then for n 2 k

I/\
z'\

Nm+yV=<u+yWw+yW n n
(h(§ + §))°, and henceTherefore h((;—:—§33)= h((; + §)°)

Ru+yP>=&u+y»9
2) Let v = (x' + y)o, and u = (xy' + v)°

= ((x' + y)' + (x' + y)°)°. Then V'u S xy' and

m'+w°=«u'+w'+u'+w%“+<w+yPP=
= (x' + y)°

since L satisfies the equation ((x' + x°)°' + xO)o' + x0 = 1.

Since V'u e B(L°) g L], there is a k eiN such that v'u = ak.

Then for n 2 k ak S Qn §n'. Hence for n 2 k ai 2 ;Q + §n

and

(x' + y)° = (u' + v)° = a£° 2 (E; + §n)° 2 (x' + y)°­

Thus (h(§' + §))° = h((§' + §)°) = h((§T‘:“§7U) and

Ru'+w%=<Rw+y»9

+ y )0 = e: + ;>:s<x+y)°
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This completes the proof of the fact that E is a

fii-homomorphism.U

7.7 Theorem. Let K 5 (§. : M2) r1(§i ; M} 2) be a variety.
9

Then g = g*.

Proof. Let x1, x2,... be free generators of FK(RO) and let

n B, n = 0,1,2,... . Then g isLn = [B(FK(N%)°) u {xl,...x }J

generated by the Ln, n = 1,2... since FK(n) e S(Ln), n = 1,2,...

and 5 is generated by the FK(n), n = 1,2,... (see 0.1.7).

By induction we show that Ln 5 E*, for n = 0,1,2,...

1) L0 = B(FK(Ro)°) E g*, by definition of g*.

2) Suppose that Ln 6 3*. In 3.9 3) it was established that the

variety (fii : M2) r1(§i : M] 2) is defined by the equation
9

((x' + x°)°' + x°)°' + x0 = 1, hence L +1 satisfies thisn

equation. Furthermore, Ln+1 = [Ln u {xn+1}]§, L:+] = Fg(R0)0 E Ln

and I Ln+l | =.80. By lemma 7.6 it follows that Ln+: € SPU(Ln)5;§*.E

7.8 Corollary. L: = (E.1 : M2) r1(§i : M],2).

Proof. By 3.9 we know that §: C (fii : M2) r1(§i : M 2). According­
1.

I . * fir

to 7.7 (gi : M2) n (gi : Ml’2) = ((gi : M2) flgfli . Ml,2)) g 31.0

This corollary does not only provide a nice geometric charac­
0 I * 0 p . . .

terization of Q1 : 1t enables us to derive an equation defining Bi.

COO.

7.9 Corollary. The variety fig is characterized by the equation

((x' + x°)°' + x°>°' + x° = 1.
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Of course, the other equations mentioned in 3.9 3) will do

equally well. Observe that it follows from 7.8 and I.6.9 that

(B. : M ) r1(§. : M ) is generated by its finite members-1 2 1 1,2

(cf. 3.9.4)).
* . .

Nowwe can also say more about the map 0 introduced ln

7.5:

7.10 Theorem. The map 0* : Z + (LE3 is a Q0]-isomorphism.

Proof. It is obvious that 0* is 1-1, and by 7.7 0* is onto.

If .r,,.r2 e 2, then o* tr, + r2) = v<{B<L> I L e 5, + 521) =

o*(1$]) + o*(K2), and o*(,I$].I$2) = .o*(E]).o*(,I$2) since

e*<r,>.e*<r2> s 3: hence by 7.7 o*(K1)-o*(K2) =

v<{B<L°> I L e o*<r,).p*(r2>}> = V({B(L) I L e 5, . r2}) = o*<r,.r2).n

The assignment §;** 3* for K 5 Q proves to be a very nice
‘A’ *

one. Indeed, E = 5 . 3i and we have

7.1! Corollary. The map * : Q'* (EEJ defined by K *-5* is a

complete surjective Q0]-homomorphism.

Proof. If g e 9, then g* = p*oy (3). The corollary then follows

from 7.10 and 7.3.U

It follows that Q is a disjoint union of intervals [5, ECG]9

K e (§i*], the interval [5, ECG] being the preimage of Q under the

mapping *. In the study of 9 two important aspects can be dis­

tinguished: on the one hand the lattice (§:] which is just 2,

on the other hand the lattices [5, KOC], K e (flgl, consisting
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of varieties which do not differ in the lattices of open elements

of their algebras. This description gives us the opportunity to

separate to a certain degree the ”Heyting-aspect" from the "trivial"

aspect.

The first part of 7.12 merely repeats in the language of equations

what essentially was stated in 7.7: that every subvariety of

(51 2 M2) r1(§i : Ml,2) is completely determined by the Heyting­

algebras of open elements of the interior algebras contained in it.

For the notation in 7.12, see Il.1.ll.

7.12 Theorem. Let K 5 fig be a variety. Suppose that K0 is deter­

mined by a set E of fl-equations.

(i) K is determined by T(Z) together with the equation

(((x' + xO)°' + xO)°' + X0 = 1

(ii) 50 is finitely based iff 3 is finitely based iff

5°C is finitely based.

Proof. (i) Since 5 = K = K = 5 . fig the assertion follows

from II.I.l2 and 7.9.

(ii) By II.l.l2, (i),and the compactness theorem. U

The next theorem will be useful later.

7.13 Theorem. Let E g fii be a variety.
3 I I I O O * I(1) 5° is generated by its finite members iff 5 is

generated by its finite members.

(ii) If KOC is generated by its finite members, then
. 0

so 1S E .
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0
Proof. (i) Note that K0 = (K*F)C. If E = V(§OF) then

0
3° = v((_1g*F)°) = v(1<*F)° by 11.1.2, therefore g* = V({B(L) 1 L e g }) g

* *
W5?) 25 .

Conversely, if 5* = V(§*F) then 5° = K = V(K F)o = V((§ F)O) =

V(§0F), again by II.l.2.

(ii) Follows from II.1.2.U

Wedo not know if the converse of (ii) holds as well. However, if

we require g° to be locally finite then it is not difficult to

show that goc is generated by its finite members.
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Section 8. 9n_the cardinality of some sublattices o£_ Q

The purpose of this section is to determine the cardinality of

certain sublattices of 9. Since any subvariety of 51 is determined

by a subset of the (countable) set of all fii-equations there are
R

at most 2 O subvarieties of fii. On the other hand, it follows

from 7.4 that I Q I 2 I Z . In Jankov [68] it was proved that
R R

has 2 O subvarieties, thus I Q I = I Z I = 2 0. As a matter of
R

* r-u ‘ F

fact, even I (Bi] I = I A I = 2 0. We start with a simple example

LI.‘

of a collection of continuously manysubvarieties of fl (taken frofil

Blok [M]) and adapt it in order to obtain a collection of con­

tinuously manysubvarieties of E_ (8.7), thus providing a proof of

the fact that also the lattice Q” of subvarieties of fig has the

cardinality of the continuum. As a by-product we obtain examples

of subvarieties of £1 and fig which are not finitely based.

After some remarks on the cardinality of the classes (fii : Kn)

nand (Li : K ), n = 1,2,... we turn our attention to the cardi­

nality of the intervals Kg, g°°J, 5 e (§:3 (8.13 —8.17).

8.} Let Gn = (cnl + 3, n = l,2,..., where (cm) is a principal

ideal of FH(l) and Q = {O < v < 1} (for notation see I.3).

Hence G0 3 Q, G] ; 4, G ; g T Q and G8 is suggested by the

diagram :
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Note that if n 2 3, then cl satisfies C] + 0 # Q and

(cl + O) + O # cl in Gn, and also in FHCI). we shall use the

notation Gen (x), where

Gen (x) iff x + 0 # 0 and (x + O) + O # x.

Then in Gn, n 2 3, and in FH(1), Gen(c]) and in fact, c,

is the only element x in Gn, n 2 3, and in FH(l) such that

Gen (x).

8.2 Lemma. If n, m eIN, n,m 2 3, n # m, then Gn { SH(Gm).

Proof. Let n, m eimg n, m 2 3, n # m and let L] e H(Gm) and

i : Cu + L1 be an fi~embedding. L‘ = (ck), LI = (ck? 6 1

Gm and we may assume that 3 S k S m. Since cl isO H E" II

the only element x of L] satisfying Gen(x), it follows that

i(cl) = C]. Let pk be a unary E-polynomial, k = O, 1, 2,..

with (i) P0(x) = 0, pl(x) = x

(ii) pk+,(x) = pk(x) + (pk(x) + pk_l(X)) , for k ;».1
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Since cn = pn(cl) = pn+](c]) < pn+2(c1) = 1 in Gn,

it follows that pn(c]) = Pn+](c!) < pn+2(Cl) = I in L].

Because n # m, this can only be true if L] 3 (cfi] $ 1. But

this is impossible since then i(v) = cm of i(v) = 1, con­

tradicting the fact that i is an embedding.U

R
8.3 Theorem. (Jankov [68]). E has 2 0 subvarieties.

Proof. For A QIN \ {1,2} let K = V({Gn 1 n 5 A}). It is-A

known(Jankov [633) that each finite subdirectly irreducible

Heyting algebra L is splitting, and that the splitting variety

(H : L) = {L' s fl I L Z SH(L')} (this result can also be deduced

from our 3.3 and 3.5). Hence by the lemma _A g (g : Gn) if

n é A, implying that Gn ¢ EA if n ¢ A. Therefore there are

as many subvarieties E of fl as there are subsets of IN\ {l,2}.U
A

8.4 Note that the Gn, n e'N, are fl—generated by 2 elements.

Hence EA = V(FKA(2)) and it follows that there are 2&0 non­
isomorphic Heyting algebras generated by 2 elements. In l.3 we

have seen that there are only countably manynon-isomorphic

Heyting algebras generated by one element. Contrast this with

1.4.2].

N

8.5 Corollary. Qi and §: have 2 0 subvarieties.

Proof. By 7.10, X 5 (§:3 g Q. The statement follows from 8.3.3
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By a slight modification of the given example we can show
_ _ N

that also H and therefore §i* and fii have 2 ° subvarieties.

8.6 Lemma. Let n, m eIN, n, m 2 3, n # m. Then F; I SH(FQ).

Proof. Let n, m GZN, n, m 2 3 and n # m. Let L] e H(F;) and

i : Fn + L] be an E-embedding. we may assume that L] E (231'(ck])m,

II?L] (23 T (ckl 9 l)- or L] ; Fm— with 3 S k S m. It is easily

seen that the three atoms of F; have to be mapped upon the three

atoms of L1. Therefore i(c0) = co and it follows that

i I Gn : Gn + ECO) 3 L1 is a fii-homomorphism. But then

Gn e SH(Gm), in contradiction with 8.2.D

8.7 Theorem. fl- has 2&0subvarieties.

Proof. Similar to the proof of 8.3.3

_ _ N

8.8 Corollary. fii and §i* have 2 ° subvarieties.
s

As there are only countably manyvarieties of given finite type

which are finitely based (i.e. which are determined by a finite

set of equations) it follows from 8.3 and 8.5 (and likewise from

8.7 and 8.8) that there are varieties of Heyting and interior al­

gebras (respectively Brouwerianand generalized interior algebras)

that are not finitely based. In order to give an example of such

a variety, let
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Q_n -A v({ck ! k e IN, k ¢ :1} u (I-1S(Gn) \_ {Gn})). n «. 1N

' J

8.9 Theorem. Q is not finitely based.

Proof. Let _Fn be an equational base for Qn, n c N, that is,
O)

J = {L e E I L§= Tr}. Then F U P is a base for Q. Supposern ‘ n=1 n

that Q has a finite base. By the compactness theorem, there

exists then a finite set 70 g P which is a base for Q. There
9

are ?0,...n£ eIN such that To g ig] Fni and ther:fore
= ‘I {'2 IF] ,

Q i2] Qni. But -1 k % l,2,nO,...n£ then Gk e i=1Qni though

Gk i Q, a contradiction.U

8.10 Corollary. 0*(Q) and QC are subvarieties of fii which are

not finitely based.

Proof. By 7.12 (ii).B

In a similar way one could give examples of subvarieties of fi­

and fig which are not finitely based, using the F; instead of

the G .n

Thevariety Q has still another interesting property. In

section I we have seen that every 3 5 Q is covered by some

IE‘ 5 Q. The variety Q is an example of an element of

having countably many covers in Z.

8.1] Theorem. Q is covered in Z by the countably many varieties

Q + V(Gn), n = 3,4,... .
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Proof. By Jénssonfs 0.1.27 and by definition of Q,

(J + V(Gn))SI = 431 ” {Gn} 3 431

for neN,n.>:3. Henceg-<;+V(Gn) for neN,nZ_3.

And if n f m, n, m eZN, n, m 2 3, then Q + V(Gn) # J + V(Gm)

since

(.1.+ v<cn>>SI = gsl u {an} a‘ is, u {em} = (J. + v<cm>)SI.n

In fact, if g = V({Gn I n e N}) then one can easily verify

that the sublattice EJ, E3 of Z is isomorphic to the Boolean

lattice of all subsets of a countable set. The atoms of [J, E]

are the varieties J + V(Gn), n = 3,4,...

8,12 Corollary. o*(;) is covered in Q by the countably many

varieties O*(l) + V(B(Gn)), n = 3,4,...

Proof. Obious from 7.10 and 8.8. It can also be showndirectly

without difficulty, though.U

. * R . .
Having seen that fii has 2 ° subvarieties, we want to say

a few words about the cardinality of the lattices ((§. : Kn)*]1

and ((§i : Kn)], n eifl. Wehave already observed that (gi : K1)

is the trivial variety, that (fii : K2)* is the class.of discrete

interior algebras - the unique atom of Q - and that (51 : K2)

is the class of monadicalgebras, the lattice of subvarieties

of which is a countable chain of order type w + I. In section 6

we have given a description of the lattice ((§i_: K3)]; in parti­

cular, we showedthat it is of countable cardinality. The lattice
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((§i : K3)*1, which is isomorphic to ((H : 5)}, is particularly

simple: it is the countable chain of ordertype w + I

(ii = Kl) c (fii : K2>* = v(N,) c

V(NH) C: ... c V(N,

Recently A.V. Kuznetsov [74] announced that he has shown that

the next layer, ((E : §)] has 2 ° elements. The same holds

then for ((§i : K4)*} and a fortiori for ((§i : K4)]. In the

context of modal logics a proof of this fact can be found in

Fine [74].

So far in this section, our results concerning the cardinality

of certain sublattices of Q were mainly consequences of corres­

ponding results on the cardinality of sublattices of Z . The

question arises what can be said about the cardinality of the in­

tervals CK, EGG], K 6 (EEE. That is, how many subvarieties 5

of fii can there be having a comon g°?

Westart with a simple theorem.

8.13 Theorem. Let K g fig be a non-trivial variety. Then

contains infinitely manyvarieties.

Proof. Consider the chain of varieties

OC

5 C K + V(M2) c K + V(M3) c...c K + V(Mn) c...c g

Indeed, for any n eim, 3° E (E + v(Mn))° = v(§° u {g}) = 50

since 2 E K, 3 being non-trivial. Hence g g E + VCMH)5 50¢.

Furthermore (K + V(Mn))SI = gsl u {Mk I 1 s k s n} by 1.4,

and Mk { E if k > 1, since 5 5 fig. Thus

K + V(Mn) C K + V(Mn+]), n = 1,2,... . U
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In section 6 we have seen that I [(§i : K2)*, (fii : K2)! |= 30

and that even II(§i : K3) , (fii : K3)I I = Nb. From the next

theorem it will follow, iven Kuznetsov's result that8 9

* . - _ so
I [(§i . K4) , (gi . K4)J I - 2 .

8.14 Theorem. Let E E g: be a variety having 2h° subvarieties
R

generated by their finite members. Then I [5, 5°C] I = 2 0.

Proof. Let K be a subvariety of fig and let {Ki I i e I}
R

be a collection of 2 O subvarieties of 5, all generated by

their finite members. For L 6 EFSI let L+ e §iFSI be such

that L+0 = L0 but L+ ¥ L. Note that L is a *-algebra

whilv L+ is not a *-algebra. Lot Xi = V(5 H IL+ I L r KiFqlI).

Then 5 3 Mi 3 50C. Suppose that i # j, i, j r I, and say

L K \ K Th n L+ v b t L+ 4 V I d "de _iFSI _jFSI. e e _i u _j. n ee ,
+

yjFSI g KFSI u Hs({L | L . gjFSI}) by 1.4 and 3.6. But

L+ é EFSI since L+ is not a *-algebra, and if L+ c HS(L:)

for some L] e K then L0 c HS(L?) hence L = B(L0) e-jFSI’

HS(B(L?)) = HS(Ll)) g §jF, a contradiction.D

By Kuznetsov's result, the varieties 5 which contain

(fii : K4)* (all of whose subvarieties are generated by their

finite memberssince (fii : K4) is locally finite) satisfies

the requirements of the theorem, hence for those varieties we

have I [g*, 39°] 1 = 280.



The condition of 8.14 is not necessary, however. Weshall
. . * .

now give an example of a variety 5 g fii which has only coun­
oc

]tably manysubvarieties; nevertheless ifi, E has the power

of the continuum.

8.15 Let Pn be the interior algebra defined for n eIN in

the following way:
+2

P n2n _ , PE= (CHJGBI.
lmuz

where (cn] denotes a principal ideal of FH(l) (see [.3),
- 2 ~ ~ _

such that (c'] = 3. Then (c 3 = H . The algebra P 13 sug­n n n 4

gested in the diagrams:

)3
8.16 Lemma. Let n, m eiN, n, m 2 3, n # m. Then Pu E SH(Pm).

Proof. Suppose that PH 5 SH(Pm). Note that every homomorphic

image of Pm which is different from Pm is a homomorphic

image of (cnl 5 HD and therefore a *-algebra. Since Pn is

not a *-algebra and by II.2.5 subalgebras of *-algebras are



*—algebras we may assume that PH 6 S(Pm). Let i : P + P

be a fii-embedding. Then i I P: : P: + PS is an fl—embedding

and since cl is the only element x of P: and P; which

satisfies Gen(x) (see 8.1) we conclude that i(c]) = C].

Since P; is E-generated by cl it follows that i(P:) = P:

and hence that n = m, a contradiction. D

Recall that Hm= B(FH(l)) (cf. 1.3).

. c . 3'4

8.17 Theorem. The interval fV(Hm), V(FH(l)) l contains 2 0

varieties.

Proof. For A giN \ {l,2} such that A is infinite let

5A = V({Pn | n e A}). Then 5: = V({P: | n e A}) = V(FH(l)),

hence 1_<Ae [v(Hm), V(FH(l))C]. If m .5 A, m e N \ {1,2},
R

then Pm5 EA by 8.16 and 3.6. Since there are 2 0 infinite

subsets of EI\{l,2}, the theorem follows.D

using arguments similar to those employed before we can see

that [V(Hm),V(FH(l))Cl contains a sublattice isomorphic to
the Boolean lattice of all subsets of a countable set and hence

also contains varieties covered by infinitely manyvarieties.



Section 9. Subvarieties Bf fij not generated by their finite

members

The property of a variety to be generated by its finite members

is an informative one as we have seen already several times. For

example, theorem 3.8 gave a satisfactory description of the lattice

of subvarieties of 3. which are generated by their finite members,

further refined in the description of the lattices (M3 and

((§i : K3)J of sections 5 and 6. Also, if a variety 5 has

this property and moreover K is determined by a finite number

of equations, then one can decide in a finite number of steps

if a given equation is satisfied by K or not. Another nice

feature of varieties K generated by their finite membersis

the fact that the locally finite varieties (fli : Kn) n g,

n = 2,3,..., generate K, which makes the results of II.7

concerning the finitely generated free objects FE(m), m = 1,2,...
applicable.

As announcedbefore, it appears that not every subvariety

of fii is generated by its finite members.Varieties which

lack this property are muchmore difficult to handle and give

rise to several problems which are not settled yet. The pur­

pose of this section is to give someexamples of varieties

which are not generated by their finite membersand to con­

sider some of the problems related to them.



Proof. First note that c
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To begin with, let us note that if K g fii is a variety

which is generated by its finite membersthen so is 50.

Indeed, by 11.1.2, if 3 = v(gF) then 5° = v((EF>°) = v((g“)F).

Hence, if we can find a variety 3 of Heyting algebras which is

not generated by its finite membersthen the interval ln*(g),p(g)}

Consists completely of subvarieties of fii not generated by

their finite members. Weshall briefly sketch now an example
R

of a collection of 2 O varieties of Heyting algebras not

generated by their finite members.

9.! Let X = FH(l) i Q3 T g. The generator of FH(I) will

as usual be denoted by c]; the atoms of 23 by a], a2, a3.

9.2 Theorem. V(X) is not generated by its finite members.

I is the only element X of X satisfying

Gen(X) (for notation, see 8.1). By 3.6, V(X) g HS(X). NowFSI

suppose that L e V(X)FSI and let d 5 L be such that Gen(d).
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Then there are L] 5 S(X) and an onto-homomorphism h : L} + L.

If h(y) = d, y e L],then necessarily Gen(y), hence by the re­

mark above, y = c]. Thus cl 6 L] and therefore FH{l) = [C]iH g L].

Since L is finite it follows that h-]({l}) —ic I ({1}) =n) or h

+ cn) for some n eIN, n 2 3 and we conclude that L 3 (cnl[Cn+l

or L = (cn] o l for some n e N, n 2 3. In particular, L con­

tains no three mutually incomparable elements. Thus the class

V(X)FSIsatisfies the sentence
V V V , A/. _. ; x.

3xGen(x)== X1 X2 xj ]Sl,JS3 r1 < J

which is equivalent to the positive universal sentence 0

f x.J.Vx Vx Vx Vx [X-+0 = O V (X + 0) + 0 ='xV ..fV.. x. ­1i1,JS3 1 JI 2 3

The sentence 0 is preserved under the operations H, S and PU

(see Gratzer [68], pg.275). If V(X) would be generated by its

finite members then by 1.] X e HSPU(V(X)FSI). But X clearly

does not satisfy 0, hence X ¢ HSPU(V(X)FSI), thus V(X) is

not generated by its finite members.U

9.3 Theorem. There are 2 varieties of Heyting algebras which

are not generated by their finite members.

Erggf. Let for A giN \ {l,2} EA be the variety of Heyting algebras

defined in the proof of 8.3. By 1.4, (§A + V(X))FSI = 5A FSI u V(X)FSI.

It is imediate that EAFSI satisfies the sentence 0 given in the

), thus g + v(x) isproof of 9.2. Hence X 4 V((§A + V(X)) AFSI

not generated by its finite members. Let A, B gfN \ {l,2], A # B,
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say- no 6 A \ B. In the proof of 9.2 we have seen that if

L c V(X)FSI possesses an element d such that Gen(d), then

(c J or L ; (cn] 0 I for some n eiw, n 2 3. HenceE" II

G ¢ V(X)FSI. By the proof of 8.3, Gno d KB F31. Hence0

G ¢ EB FSIU V(X)FSI = (EB + V(X))FSI, and thus Gno 4 K84-V(X).

‘A

and hence that there are 2 0 different subvarieties of fii not

Since G“ e K + V(X), it follows that EA + V(X) # gB+-V(X),0

generated by their finite members.D

Weobserved already that these varieties of Heyting algebras

not generated by their finite membersgive rise to whole inter­

vals of varieties of interior algebras not generated by their

finite members.The question arises if there are varieties

5 g fii such that K0 is generated by its finite memberswhile

5 itself is not. In the next theorem we show that this pheno­

menon does indeed occur.

0 _ . - ;

9.4 Let Y e fii be such that Y - PB(l) e 1, (1FH(])J —Hm

and (1; (])] Q 22, Let as usual C] 6 Y denote the generator of
g _

FH(1). Now V(Y)O = V(Y°) = V(FH(1) $ 1) is generated by its

finite members since FH(1) $ 1 e SPU({(cn] I n € N}) g V(V(Y0)F).

However:

9.4 Theorem. V(Y) is not generated by its finite members.



Proof. Let L c V(Y)pQ[ be such that there is a d 5 L0 satis­

fying Gen(d) in L0 (cf. 8.1), or equivalently, such that

dO'O # 0 and dO'0'0 # do. By 3.6, L e HS(Y). Let therefore

L] 5 S(Y) and h : L1 + L be an onto homomorphism. Let y 6 L]

be such that h(y) = d. Then h(y0) = d and Gen (yo) in L?.

Since c] is the only element x of Y0 satisfying Gen(x) it

follows that c] = y 5 L]. Hence [c]]B = HmE L] and we infer
.L

that L ; Hn or L ; B((cn] 8 I) for some n eiN, n 2 3, so

in particular, L is a *-algebra. It follows that in V(Y)FS1
the sentence 6

O0? 0
) ‘I3x Gen(x0) =-Vy[((y' + y°)O' + y + y = 1;

is satisfied. The consequence of 0 expresses the fact that the
* .

algebra under consideration belongs to fii (cf. 7.9), which

clearly is true for L. The sentence 0 is equivalent to the

positive universal sentence
0'0‘ 0' O

VxVy [X

Because 0 is positive universal, it is preserved under the operations

H, S and PU. But Y é 3: since M1 2 5 S(Y), and there is an x 5 Y
9

such that Gen(x), hence Y does not satisfy 0. Therefore

Y i HSPU(V(Y) ) and hence Y 5 V(V(Y)F). UFSI

Using the algebra Y we can obtain a whole bunch of varieties having

the same property:

= 0 v x°'°'° = x° v ((y' + y°)°' + yo) + y =13
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R . . . .9.5 Theorem. There are 2 0 varieties g of interior algebras

such that K0 is generated by its finite memberswhile 3 itself

is not.

Proof. For A g'N \ {l,2} let EA = V({Y} U {B(Gn) I U 6 A?)

where the Gn are as defined in 8.1. By 1.4, KAFSI = V(Y)FSI u

V({B(Gn) I n e A}) Because the B(Gn) are *-algebras,FSI.

V({B(Gn) ! n e A}) g 5: and therefore surely satisfies the sen~

tence 0 given in the proof of 9.4. Hence EAF81 satisfies 6,

and therefore Y i V((gA)F). Further, if n 2 3, n eTN, then B(Gn) 4

V(Y) since Gn é V(Y0) (cf. proof of 9.4), and if n 4 AFSI

then B(Gn) é V({B(Gn) I n c A})FSI, by the proof of 8.3.

Therefore if A, B giN \ {l,2}, A f B, then EA # EB. Finally,

5: = v({Y°} u‘{cn I n e A})

= V({(cn] i n elm} U {Gn I n C A}),

hence E: is generated by its finite members.U

In 3.7 the question arose if the intersection of two varieties which are

generated by their finite membersis also generated by its finite

members - if this would be true the subset of subvarieties of

fii which are generated by their finite members- which is a proper

subset by 9.1 - 9.5 - would be a sublattice of 9. Weare now ready

to give an example showing that the answer to this question is nega­

tive.

9.6 First we present two varieties of Heyting algebras, both gene­

rated by their finite members,such that their intersection is not



generated by its finite members. Let

II
I31V({(C2n] + 23 + 2 : n = 1,2,...}> gKI

and

,. . .3 . .
52 = V(t(c2n_1] T 5 T 2 I n = l,2,...}) _ fl.Fl

Here (cn], as usual, denotes a principal ideal in FH(]) (see I.3).

Note that by definition El, K2are generated by their finite mem­

bers.

9.7 Theorem. g] n 52 is not generated by its finite members.

Proof. Let F be a non-principal ultrafilter on ‘N, and let

L = HEN(c2n] T g3 T g/F . It is easy to see (using the properties
3

of ultraproducts) that X = FH(I) T g T 2 e S(L) 5 51. Similarly

X e E2. Let L e (51 n g2)FSI = g]FSI n KZF I such that L9

satisfies 3x Gen(x). By 3.6, L 6 HS((c2n] T 2 T 2) and

L e HS((c2k_]] T 23 T 2 for some n, k e N. Let

3 T 2) and let h : L + L be an onto homo­L e S((c2n] T 2 11 ....

morphism. Let d e L be such that Gen(d) and y 6 LI such

that h(y) = d. Then Gen(y), hence n 2 2 and y = cl since

cl is the only element x of (c2n] T E3 T g such that Gen(x),

n 2 2. If h is I - I then it follows that L 5 (cznl T 32 T Z

R = O,l,2,3. If h is not I - 1, then since L is SI we con­

clude that L 5 (cp] T 2 for some p, 3 S p s Zn. In the same

way we show that since L e HS((c,k_]] T 23 T 2) for some k 5 EL

no IN U
‘'0

II C
U V

N
U L») 0it follows that k 2 2 and that L 5 (c2k_]] T

or L ; (cp] T 2 for some p, 3 S p 3 2k-1. In order to satisfy

both requirements we must conclude that L = (CUJ T 2 for some
1'
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p ejm, p 2 3. So (K1 n K2)FSI satisfies the sentence 0

3x Gen(x) =’Vxl Vxz VX3 lgi, j$3 xi S xj.

As 0 is a positive universal sentence, it is also satisfied by

HSPU((Kl n K2)FSI). But 0 is not valid in X, so we may

infer that X ¢ V((§] n K2)FSI). Since X e g! n g2, we have

proved that K] n K2 % V((E] n K2)FSI).U

9.8 Corollary o*(g]) and p*(§2) are subvarieties of fii

which are generated by their finite membersthough their inter­

section is not.

Proof. By 9.7 and 7.13 (i).D

The results of this section imply that the representation of

the lattice of subvarieties of Qi which are generated by their
finite membersas a certain lattice of subsets of a countable

set does not provide a description of the lattice Q of all

subvarieties of fii . The question comes up what the smallest

cardinality is for which there exists a set X of that cardina­

lity such that 9 can be embeddedas a set lattice in the lattice

of all subsets of X. It is not difficult to see that this cardi­

nality is just the cardinality of the "set" of varieties 5 g fli
which are strictly join irreducible in 9 (an element X in a lat­

tice L is called strictly join irreducible if x = iEI ai im­

plies x = ai for some i c I, for any set {ai I i e I} E L).

Note that such a variety is always generated by a single subdi­

rectly irreducible. If this subdirectly irreducible is not finite
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then the variety cannot be generated by its finite members. Our

example V(X) of 9.1 is an example of a strictly join irredu­

cible element of E and p*(V(X)) is a strictly join irredu­

cible of 9 ' both are not generated by a finite algebra. The

problem to characterize the subdirectly irreducibles in E or

fii whichgenerate strictly join irreducible varieties in 2

respectively 9 is unsettled yet; we donot even know howmany

there are.
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SAMNVATTING

In dit proefschrift wordt de theorie ontwikkeld van wat wij "inwendige

algebra's” noemen, dat zijn Boole algebras voorzien van een extra één­

plaatsige operatie 0 (de inwendige-operator) die aan de Kuratowskiaxiomas

vo1doet, d,w.z. x0 S x, X00 = x0, (xy)0 = xoyo en IO = I. Toen McKinsey

en Tarski in 1944 de studie van inwendige algebras aanvingen, was hun be­

doeling, een algebraisch apparaat te scheppen dat geschikt was omeen deel

van de verzamelings-theoretische topologie te behandelen. Voor ons echter

is het feit interessanter dat inwendigealgebra's juist de algebraische

modellen zijn van de modale logica S4, geintroduceerd door Lewis. Dat geeft

in het bijzonder aanleiding tot speciale aandacht voor varieteiten van in­

wendige a1gebra's;

De hoofdstukken I en II zijn grotendeels gewijd aan het onderzoek van de

algebraische structuur van eindig voortgebrachte vrije objecten in varietei­

ten van inwendige algebra's. Het blijkt nuttig omnaast inwendige algebra's

ook gegeneraliseerde inwendige algebra's te beschouwen;dat zijn gegenera1i­

seerde Boole a1gebra's met een grootste element, voorzien van een inwendige­

operator. Een speciale rol wordt voorts gespeeld door de inwendige a1gebra's,

*-algebras genaamd, die, als Boole algebra, voortgebracht worden door hun

tralie van open elementen. In hoofdstuk I blijkt hoe ingewikkeld zelfs de

vrije inwendige algebra op één voortbrenger is; in het tweede hoofdstuk wor­

den de vrije eindig voortgebrachte objecten in zekere deelvarieteiten geka­
rakteriseerd.

Hoofdstuk III is gewijd aan een onderzoek van het tralie van alle varie­

teiten van inwendigealgebra's. Resultaten van universeel algebraische aard

verkregen door B. J6nsson [67] verschaffen ons een doelmatig instrument om.

de structuur van het tralie nader te leren kennen. Gebruik makendevan het_



begrip splitsingsvariéteit karakteriseren wede locaal eindige dee1va~

riéteiten en geven een gedetailleerde beschrijving van enkele interessan~

te hoofdidealen van het tralie. Wetonen aan dat het tralie van dee1va­

riéteiten van de variéteit voortgebracht door alle *-a1gebra's isomorf

is met het tralie van variéteiten van Heyting a1gebra's. Besloten wordt

met enige overwegingenbetreffende kardinaliteitsproblemen en betreffen­

de variéteiten die niet voortgebracht wordendoor hun eindige a1gebra's.
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Stellingen
bij het proefschrift

"Varieties of interior algebras"

1. Een topologische ruimte X heet lokaal homogeenals er voor elke
x € X willekeurig kleine omgevingen U van x bestaan 26 dat voor

elke y e U er een autohomeomorfisme van de ruimte X is dat de

identiteit is buiten U en dat x op y afbeeldt.
Zij nu X volledig metrizeerbaar en lokaal homogeen. Als A,B
twee aftelbaar dichte deelverzamelingen van X zijn (X is dus
separabel) dan bestaat er een autohomeomorfisme van X dat A
op B afbeeldt.
Gevolg: X\.A is homeomorfmet X‘\B. In het bijzonder, als
peX\A, dan is ){\A homeomorfmet X\A\{p}.

(met J. de Groot, niet gepubliceerd)

2. Gebruik makendevan de topologische representatie van distributieve
tra1ie's met 0,1 kan meneen doorzichtig bewijs leveren van een stel­
ling van Balbes die zegt dat het centrum van het vrije product van
eindig veel distributieve tralie's met 0,] juist het vrije product
van de centra van deze tra1ie's is. Bovendienlaat dit bewijs zich
gemakkelijk aanpassen teneinde de beperking "eindig veel" te
kunnen laten vervallen.

Balbes, R. The center of the free
product of distributive
lattices, PAMS32 (1971)
pp. 434-436

Blok, W.J. The center of the coproduct
of distributive lattices
with 0,1. NieuwArchief

voor Wiskunde Ea (1974)
pp. I66-169

3. Een Post algebra P wordt gekarakteriseerd door een Boole deel­
tralie B en een totaal geordend (eindig) deeltralie C. Hier zijn



B en C uniek bepaald. Er geldt, dat P als tralie isomorf is
met het tralie van continue functies van de Boolese ruimte cor­

C.

topologie. Gegeneraliseerde Post algebra's, zoals geintroduceerd
responderend met B naar waar C voorzien is van de discrete

door Chang en Horn, kunnen - als tralie - gerepresenteerd worden
door het tralie (X,C) van continue functies van een Boolese
ruimte X naar een totaal geordende discrete ruimte C. Als
(X,C) en (X',C') twee van dergelijke representaties van eenzelfde
gegeneraliseerde Post algebra zijn, dan geldt dat X homeomorfis

Echter, de representatie
(X,C) + (X.C')

en een iso­

met X‘ en dat C isomorf is met C‘.

bier is niet uniek in de zin dat als w: een
isomorfisme is er noodzakelijk een homeomorfisme w

zouden bestaan z6dat
f

X —-——»- C

1*’ 1*‘

morfisme h

x'_EL(":l, CV

commuteert voor elke f e (X,C).

Blok, w.J. Generalized Post Algebras
doctoraalscriptie U.v.A. I972

Vele enigszins moeizaamverkregen resultaten betreffende intermediaire
en modale logica's zijn directe toepassingen van enkele stellingen uit
de universele algebra.

cf. T. Hosoi, H. Ono, Intermediate pro­
positional logics, J. Tsuda
College §_(l973) pp. 67-82

K. Fine heeft een voorbeeld gegeven van een modale logica die niet
door zijn Kripke modellen wordt gekarakteriseerd, d.w.z. een logica
met "graad van onvolledigheid" 2 2. Menkan bewijzen dat de graad

van onvolledigheid van de klassieke logica, beschouwdals uitbreiding
van het modale grondsysteem K, 2 0 bedraagt.

Fine, K. An incomplete logic containing

S4, Theoria £9 (1974) pp. 23-29



6. Zij K een varieteit van a1gebra's van eindig type, waarvan a11e

a1gebra's een onderliggende structuur hebben van Boolese a1gebra's.
Het vrije object in E; op aftelbaar veel voortbrengers is, als
Boolese algebra, isomorf met de vrije Boolese algebra op aftelbaar

veel voortbrengers. In het bijzonder geldt FB (Rb)¢3 FB(Ro)¢
-—i B

Een varieteit heet biina eindig als zij zelf oneindig veel dee1­
varieteiten heeft maarelke echte deelvarieteit eindig is, i.e.
slechts eindig veel deelvarieteiten heeft.
Er zijn twee bijna eindige varieteiten van Brouwersea1gebra's:
de varieteit voortgebracht door alle lineair geordende Brouwerse
a1gebra's en de varieteit voortgebracht door de a1gebra's
gne 1, n =1,2,....
Er zijn drie bijna eindige varieteiten van gegeneraliseerde inwendige
a1gebra's: de varieteit voortgebracht door alle *-a1gebra's waarvan
de open verzamelingen een lineair geordende Brouwerse algebra vormen,

de varieteit voortgebracht door de a1gebra's B(2F9 1), n = 1,2,...
en de varieteit der monadischegegeneraliseerde inwendige a1gebra's.
Deze drie varieteiten corresponderen met de drie dimensies hoogte,
breedte en "trivialiteit" van een gegeneraliseerde inwendigealgebra.
Zowel in het geval van de Brouwerse a1gebra's als in dat der gegene­
raliseerde inwendigea1gebra's geldt dat elke niet eindige varieteit
een bijna eindige omvat.

Menkan op de collectie van deelvarieteiten van Bi een vermenig­
vuldiging definiiéren door aan deelvarieteiten El en _I_(_2toe te
kennen de klasse van alle extensies van a1gebra's uit K met be­

hulp van a1gebra's uit ‘E2, i.e. .§]r§2 = {L e g; I er is een
open filter F in L, zodat F e E4, L/F 6 E2}. Aldus verkrijgt
men een halfgroep. De idempotenten van deze halfgroep zijn de

varieteiten (g; : Mn), n = 0,l,2,... en gg. De lokaal eindige
deelvarieteiten van ‘£1 vormeneen vrije onderhalfgroep van con­
tinue machtigheid.

De promotieplechtigheid in z'n huidige vormdient afgeschaft te
worden. Een zinvolle vervanging lijkt een voordracht over enkele
aspecten van het proefschrift, begrijpelijk voor een publiek, zo
breed dat het tenminste het merendeel der vakgenoten omvat.




