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Chapter I.

Introduction

Thefirst investigations in the field of
semantics of intuitionistic logic were by Beth with

the aid of his semantic tableaux [z],[ ]. His com­

pleteness results for the predicate calculus were

improved by Dyson and Kreisel [y]. Later Kripke [Ad

built on this work, and with slightly changed semantic

tableaux and a different interpretation reached more

easily completeness results closely related to the

earlier ones. Independently Beth in his last publi­

cations [3],[ ] and dc Jongh [&Uworked on these

methods. Later Aczel [i] gave a Henkin-type complete­

ness proof built on the same principles.

Wewill start out with a description of a com­

pleteness theorem for the propositional calculus which

is slightly different from but obviously equivalent
to Kripke's.

In our propositional calculus we will study for­

mulasU,V,w,...,Ul,U2,...,Vl,V2,...,wl,w2,..., built
from atomic formulas A A ..., by means of the con­l.9 2’
nectives &,v,:D and‘1. For a system of axiom schemas



for the intuitionistic propositional calculus Pp, and
for the classical propositional calculus PC, see e.g.

Elfl.

93;. A P.0.G.-set is a partially ordered set
with one maximal element (the greatest element).

we will write F for the set of all formulas.

23;. An I-valuation is a quadruple <P,;,pO,w> ,
where P is a P.O.G.-set with partial ordering ; and maxi­

mal element p0, and w is a function with domain PXFand

range the set {O,l} such that for all peP:

(i) For an atomic formula Ai,w(p,Ai)=l iff, for all
p'< , w(p',A )=l.

(ii) w(p,U&V)=liff w(p,U)=l and w(p,V)=l.

(111) w(p,UvV)=l 1rr w(p,U)=l or w(p,v)=1.

(iv) w(p,U:V)=l iff, for all p';p, w(p',U)=Oor w(p',V)=l.

(v) w(p;fiU):11rr, for all p'§p, w(p';u)=o.
Remark. (i) is assumed only for atomic formulas,

but can be proven thence for all formulas by using (ii)-(v).

‘\_ The following completeness theorem [vfl can be
proten by using semantic tableaux or from the theory of

pseudo-Boolean algebras (see Chapter IV).
Th.l.1. For all formulas U, U is a theorem of Pp

(1) iff, for all I-valuations for all P.O.G.-sets<P,§,

p0>w(p0,U)=l,or (2) iff, for all I-valuations on finite
P.O.G.-sets, w(pO,U)=l.



In [/y] Kripke also describes an intuitive inter­
pretation of l-valuations. The P.O.G.—setis taken as a

set of possible situations (stages), wherethe partial

ordering plays the role of time, i.e. if qép, then q is
supposed to be a possible future situation as seen from

p. lTime is seen as discreet, one can move from an

earlier stage to any possible later one, but one can

stay at any stage for an unlimited amount of time. The

stages can be represented by certain sets of axioms,

certain methodsof derivation or in a special application

of ours in Chapter VI, by the computability of certain
functions.

we can extend the concept of I-valuation to the

predicate calculus. There an I-valuation is a sextuple

<P,i,pO,d,D,w>, where P,;,pO and w have the same meaning
as before, D is a non-empty set (interpreted as a set of

individuals) and d is a function from % into P(D) (the

power set of D) such that, if p';p, the d(p)Ed(p'). The

domain of w is now the set of couples <p,U>, where U is

a formula without free variables built from atoms A1,

AJ( ),Ak( , 3,... (i,j,k=l,....w), individual constants’
from d(p), yariables and quantifiers. Andw has to fulfill
the additional properties:

(vi) w(p,VxU(x))=liff for all p'§p and ued(p') w(p',U(u))=l.
(vii) w(p,3xU(x))=l iff for some ued(p) w(p,U(u))=lJ



Chapter £1.

Connectives and Operators.

In this chapter we will try to develop a general

concept of connective for Pp, with respect to the seman­

tics described in Chapter I. Our work-modelis of

course, PC. There we have the following well-known

situation.
A valuation for a set of formulas of PC is a func­

tion from this set into the set {O,l}. Then for any

connective a for PC with respect to these semantics we

want to have a procedure that enables us to extend a

valuation for n formulas Ul,..,Un to a valuation for the

formulasUl,....,Un,a(Ul,...,Un). Thesolution here is
to represent any n-ary connective a by a function (n-ary

I-operator) from {O,l}n into {O,l}. Vice-versa we can

for any such operator introduce a connective that it

represents. It can then be proven that all the connectives

prdduced in this way can be defined in a natural way from

the standard connectives &,v,:>and-1, i.e., for any n-ary

operator axthere is a formula U(A ..,An), containingl"
as connectives only &,v,:>and-1, such that for all for­

mulas V containg as connectives &,v,=5-1and a, V and V*

have the same valuation for any valuation of their
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atoms, where V* is obtained from V by replacing all well­

formed parts of V of the form a(wl,...,wn) by u(w1,...,wn).
To be able to proceed in a similar way for Pp, we

have to be able to talk about "P.O.G.-sets of n-tuples of

0's and 13s". Since there are no easy unique represent­

ations for P.O.G.-sets as there are for totally ordered

sets ({l,...,n}), we go about this in the following way.

Wetake a countably infinite A, and we define B as

the set of all finite P.O.G.-sets with elements in A. Now

we define:

Q33. An I—function f is a function with domain a

P.O.G.-set FEBand range the set {0,l} with the property:

for all p',peP, if p‘;p and f(p)=l, then f(p')=l.
23;. An In-function f is a function with domain a

P.O.G.—set PCBand range the set {0,l}n with the property

that the function rm defined on P by_f(p)=(f(p))(m) (the

m-th element of the sequence f(p)) is an I—function for

all m (léméh).

So for any In-function f there is an n-tuple of

I—functions (fl,...,fn) with the samedomain, and vice

versa; sometimeswewill write (fl,...,fn) for f. wewill

write D for the domain of f, mf for the maximumelementf
of Dr. For the partial ordering of Dr we will often



write <f; if it is obvious which I“-function is meant
we will Just write ;. we write F“ for the set of all
I“-functions, F for F1.

Werestrict ourselves to finite P.O.G.—sets, since

all the important properties of the standard connectives

can be described with finite P.O.G.-sets, and there is

nonproblemin using intuitionistic methods. we will use

these finite P.O.G.-sets in the Chapters II,III and the
first part of Chapter V; in the last part of V we will

study In-functions with infinite domains, but there we
will not be able to use intuitionistic methods. whenin

the Chapters II,III and the first part of V we use

reasonings that are based on the law of the excluded

middle, the properties in question are always decidable.
we do not want the difference between two isomor­

phic P.O.G.—sets to play a role in the theory; for that

reason we define an equivalenc relation on F“.

Egg. Two In—functions f and g are congruent by ¢

iff ¢ is an isomorphism from Dr onto D8 such that

f(p)=g(¢fip)) for all p€Df­
23:. f is congruent to g (in symbols fag) iff

f is congruent to g by ¢ for some ¢.



It is obvious that E is an equivalence relation.

Further it is clear that for any other countably in­

finite set A we would get an exactly similar set of

congruence classes.

To each I-valuation on a sequence of atomic for­

mulas Al,...,An there corresponds naturally a congruence
class of In-functions. Also, if we take the P.O.G.-sets

for the I—valuations from B, then there is a 1-1 corres­

pondence between the I-valuations for A1,...,An and the
In-functions.

To illustrate the following discussions wewill

use pictures of In-functions. The following is an

example of a picture of an I3-function:

(0,0,l)
(l,l,l) (l,O 1)///\

(l,l,l) (l,l,l) (l,l,l) (l,O,l)
(Similar pictures are commonin lattice-theory, see e.g.

E53.) Note that such pictures represent In-functions only

up\to congruence, and moreover that two different pictures
can represent congruent In—functicns, e.g.:

you (1,o{
<1,1,1) },o,1> (1.0./> <1,1.1>

Nowwe are ready to define n—ary operators in such a

waythat, if we have an I-valuation for formulas Ul,...,Un,



we can extend it to an I-valuation for Ul,...,Un,
a(U1,...,Un), if a is the connective that represents the
operator a, keeping in mind that we want the result to be

independent of which particular P.O.G.—set we choose from

a class of isomorphic ones for the I-valuation.

’ Def. An n-ary I-operator a is a function from F“

into F with the properties:

(1) Da(f)=Df for all feFn,
(ii) If fag by ¢, then a(f)Ea(g) by ¢.

Here the similarity with the case for PCchanges,

since the set of I-operators does not even comeclose to

the set of I-operators that represent connectives definable

from the standard connectives &,v,:>and“1. we now look to

our intuitive interpretation for help in restricting this
class of I-operators. To begin with we will want the

valuation of a(Ul,...,Un) on peP to be dependent only on
the valuations of U1,...,Un for p';p in P, since a connec­
tive should in one way or other be a restriction on the

possible future valuations of U .,Un. To describe this1,00
property formally we will need somemore definitions.

If PcB and peP, we write P(p) for the set

{p'eP:p'§p3, P[p] for the set {p'eP:p'<p}. If~feFn and

peDf, wewrite fp for the restriction of f to Df(p). fp is
obviously again an In—function.



Obviousproperties are:

Dfp=Df(p). fmf=f. (fp)p=fp. For all pigp, (fp)p,=fp,.
If gifp for some pEDf, then we call g a sub-I"-function
of f, and wewrite gjf. It is obviousthat :_is transit­
ive and reflexive (is a pseudo-ordering), and that fig

implies fig, as well as that fig and gif together imply
fig.

Examples.

(l,0,l) P1/ \ (l,O,l) / \
If r=(1,1,1) (1,o,1), g= I with D = p2 p3- (l,l,l)f

(13191) pl,‘
p3 (l,0.1) p5

and D = g , then g=f . If h= I with Dh=] , then hag
3 P1; 93 (1,1,1) p5

and so hif.

we are now ready to define a smaller class of

I—operators

Def. An ordered I-operator is an n-ary I-operator
with the property:

(111) for all rep“, 1r p€Df, then (a(f))(p)=(a(fp))(p).
For ordered I-operators we can derive the following

stronger statements.

If p';fp. then (a(fp))(p')=(a((fp)p,))(p')=‘I
I

(a(fp,))Cp')=(a(f))(p'). This implies a(fp)=(a(f))p; and,
if qeDg, and fpigq by o, then (a(f))pE(a(g))q by o; and
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at last as a particular case of this, if gif, then for

somepeDf, a(g)E(a(f))p.
As an example, if b is an I-operator that maps

(l,0,l) 0
J= 1,1,1) (l,O,l) on J'=_0 1 ,,/’7\‘\- ,/’'\\x. /\ /\(l,l,l) (l,l,l)(l,l,l) (l,0,l) 0 0 I 1
then b is certainly not an ordered I-operator, since the

congruence class of I3—functions represented by the pic­

ture (1,1,1) has three of its elements as sub-I3­

functions of 3, which by an ordered I-operator should be

mapped onto three congruent I—functions, and such is not

the case here. If the I-operator c maps3 onto j"=

0///o\\\l/\ /\
1 1 1 1

, then c could be an ordered I—operator. The

class of ordered I-operators still comesout to be too
extensive. But before we restrict this class even more we

will discuss a very important property of ordered

I-operators.

233. The characteristic set Ca of an ordered

I-operator\a is the set of all feF” such that (a(f))(mf)=l.
Th:2.l. A subset G of F“ is the characteristic set

of some ordered I—operator a, which is then unique,



ll
iff Ghas the property:

(*) for all f,geF“, if feG and gff, then geG.

§§gg£,=€>If rgca, then (a(f))(mf)=l, so for

all pgDf (a(f))(p)=l. Now,if gff, then according

to the properties of ordered I-operators (a(g))(mg)=

(a(f)(p) for some pgDf, so (a(g))(mg)=l and ggca.
The uniqueness part of the theorem is obvious,

since, if a is an ordered I-operator, feFn and peDf,

then (a(f))(p)=(a(fp))(mf ), which is determined by
P

the fact whether f or fp¢Ca.peca
¢:Suppose G has the property (*). Then define

the I-operator a in the following way: for any feFn

and peDf, (a(f))(p)=l iff fpeG (of course take Da§f)=Df).
To prove that a is indeed an ordered I-operator with

Ca=G, we have to show:

(1) For all fcF“ and peDf, if (a(f))(p)él and p'§_p,
then (a(f))(p')=l. f

(11) For all r, geFn, if rzg by ¢, then a(f)Ea(g) by ¢.

(111? For all p€Df; (a(r))(p)=(a(fp)(p).

(1v)‘For all rgrg, feG iff (a(f))(mf)=l.
Proofs:

(i) If (a(f3(p)=l, then, by the waywe defined a,

fpgG. If nowp';fp, then fp.<fp, so by (*) fp;eG, and
(a(f))(p')=1.

(ii) If fag by ¢, then, for all peDf, fp2g¢(p) by the
restriction of ¢to Df(p), and so fpeGiff g eG.¢(p)
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This in its turn implies (a(f))(p)=(a(g))(¢(p)) for all

peDr, so that indeed a(f)5a(g) by ¢.

(111) (a(fp))(p)=1 iff (fp) eG, and (a<f))(p)=l iffP

f eG. But (fp)p=fp. S0 (a(fp))(P)=(a(f))(P)-.P

(iv) (a(f))(mf)=l iff fm 5G. but fm =f. Sp feG ifff f

(a(f))(mf)=1.
In our last example, if c is an ordered I-operator,

then ( ) ( ) (1,o,1) and1,0,1 , 1,1,1 d c
an (1,1§)},o,1) 6 °

(1 o 1)(1,1,1)

(1 I'll//"?i\1 1) and ,£33}:E§’)‘4‘?E3?<il~.1 tcc.
’ ’ ’ ’ (1,1,1) (1,1,1)(1,1,1) <1,o,1)

Next come somedefinitions needed to restrict the

class of ordered I-operators even more.

Q33. The partially ordered set <Q,§Q>is an

arreduction of the partially ordered set <P,;3 w.r.
(with respect) to r, r’ iff r, r'e§, P[r']=P(r) and

<QéQ>=<P—£r'},;3 , (

It is obvious that;Q has to be a partial ordering
again, since the restriction of any partial ordering is
again a partial ordering.

93;. The partially ordered set <Q,éQ>is a
8-reduction w.r. to r, r‘ of the partially ordered set

<P,;> iff r,r'eP, r#r', P[r]=P[r'], Q=P-{r'},and, for

all p,p'§Q, p'§Qp iff (p':p or (p'=r and r'§p)).
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éQwill always be a partial ordering, if r and r'
fulfill the required properties in P. Thereflexive and

symmetric properties are immediately clear. For the

transitive property, assume that p";Qp' and p';Qp. Then
there are four possibilities:

'(l) p";p' and p'ép. Then p"ép and so p";Qp.
(2) p"ép' and p'=r and r';p. Then either p"=p', so

p"=r and r'ép, so p";Qp; or p"<p'=r, so (by P[r]=P[r'])

p"<r' and p";©p.
(3) p"ar and r'§p'; and p';p. Then rgfip, so p";Qp.
(4) p"=r and r';Q', p'=r and r';p. This is impossible
since r'ér.

233. ‘The partially ordered set Qis a reduction

(w.r. to r,r') of the partially ordered set P iff Q is
an a- or 8-reduction of P (w.r. to r,r').

93;, If f,geFn, then g is a reduction (a-reduction,

B-reduction) of f w.r. to r,r' iff Dgis a reduction
(a—reduction, 8—reduction)of Df w.r. to r,r', f(r)=f(r')
and for all peD f(p)=g(p).\\ g)

Intuitively, what we do in a reduction of anX

In-function is to identify two elements of its domain.

Our intditive interpretation sees in a 8—reductiontwo

points with the same valuation under f, all possible

future states being the same for the two points.
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Obviously there are intuitively no qualms about identify­

ing two such points. In an a-reduction.one of the two

points is a future state as seen from the other, but, if we

movefrom the "earlier" point to the "later", we do not

change essentially, since we keep the same valuation under

f, and we do not loose any future possibilities, since the

"earlier" point has only one immediate predecessor. So,

intuitively we can Just as well identify these two points

{or leave the "earlier" one of them out). Wenowwant to

construct a class of operators, the membersof which do not
differentiate in their treatment of an In-function and its

reductions. For this purpose we will need some more defin­

itions and a theorem.

23:. AnIn-function is irreducible iff, there is no
In—function g that is a reduction of f.

233, An In-function g is a normal form of the In­

function f iff, g is irreducible and there is a sequence of

In-functions fO,...,f (kgl) such that f0=f, fk=g, and fork

alL_i (2éi;k) fi is a reduction of fi_l.
we now want to prove that the normal form of an

In—function is unique up to congruence, and that congruent
In-functions have congruent normal forms. This will be

easier, whenwe use the strongly isotone functions studied

in [5]].
Def. A function ¢ from <P,él> onto <Q,§2> is
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strongly isotone iff,

(1) for all p',pe:P, if p'=<__lp,then ¢(p')._€_2¢>(D)(if
fulfills (i), then wecall ¢ isotone),

(ii) for all p',peP, if ¢(p');2¢(p), then for some

p";§,lp, ¢(p")=¢(p').
Q33. A function from a partially ordered set P onto

a partially ordered set Q is a reduction- (a-reduction-,

B-reduction) function iff, for somer,r'eP, Q is a

reduction (a-reduction, 3-reduction) of P w.r. to r,r',

¢(r')=r, and for all peQ, ¢(p)=p.
The next theorem establishes a connection between

strongly isotone functions and reductions. This theorem

was implicit in [9 J. It follows from Th.ll.5 and Th.l%.6
of that article almost immediately, and a proof can also

be destilled from Th.H.7 of [5]]. However, we will give
a simple direct proof here.

Th.2.2. For any two finite partially ordered sets

P and Q the following two statements are equivalent:

(1) there is a strongly isotone function from P onto Q,
X

(2) there is a sequence of partially ordered sets

P1,...,Pk (fil) such that P=Pl, Q=Pkand for all i
(2éi:k), P1-l

Proof. (2):fi§(l). we have to prove, (a) any iso­
is isomorphic to, or a reduction of Pi.

morphismis strongly isotone, (b) any reduction—function

is strongly isotone, (c) a composition of strongly isotone
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functions is strongly isotone. Theproof for a is trivial.

(b) Assume¢ is a reduction-function from <P,;l>

onto <Q,;2> (w.r. to r,r') and assumep';lp. Then, if
p'#r' and p#r', then ¢(p')=p' and ¢(p)=p. so ¢(p');2¢(p).
If p=r', then p‘: r’, and either p'=r', so ¢(p')=¢(p), or1

.p';lr, so ¢(p‘);2¢(r)=¢(r')=¢(p). If p'=r', then p=¢(p)

and r';lp, so according to the definition of reduction

¢(p')=¢(r')=r;2p=¢(p). To prove (ii), assume¢(p');2¢(p).
Theneither ¢(p‘);lp, or in a B-reduction ¢(p')=r and

r'§lp, so ¢(r')=¢(P'), or in an a—reductionp'=r' and p=r,
so ¢(p)=¢(p')=r.

(c) That (i) carries over in composition, is trivial.

To show the same for (11), assume ¢ from P onto Q and m

from Q onto <R,;3> are strongly isotone, and assume

w(¢(q))g3w(¢(p)). Then for some reQ, ré2¢(p) and

w(r)=w(¢(q)). Nowr=¢(s) for some seP, so for some q';lp,
¢(¢(q'))=w(r)=w(¢(q)).

(l)::?(2). Let us write P¢ for the set of elements
peP such that ¢(p)=¢(q) for some q#p. First we will prove

that ,if P¢ =¢, then ¢ is an isomorphism from P onto Q.
In that case, if qilp, then obviously ¢(q)i2¢(p); if
¢(q)52¢(p), then for some rélp, ¢(q)=¢(r), so qsr and q;1p,_

since P is empty. Nowassume P¢ contains at least two
elements. we will prove that in that case there is a



17

partially ordered set R, a reduction-function w from P

onto R, and a strongly isotone function X from R onto Q

such that X¢=¢. Assume p is a minimal element of P¢, and

q, and reP Then ¢(r)§2¢(Q)=¢(P).assume ¢(q)=¢(p), rél ¢.

So, for some sélp, ¢(s)=¢(r). Since p is minimal in P¢,
s=p and ¢(r)=¢(p). This implies that the set S=

{qeP: ¢(q)=¢(p)} is M-closed in P¢. There are now two
possibilities. I. S has a minimal element q#p. Assume

rip. Then¢(r);2¢(p)=¢(q). So, for somesglq, .¢(r)=¢(s).

Since p is minimal in P¢, s=r. So P[p]§P[q]. By symmetric
considerations P[q]5P[q]. So P[p]=P[q]. Then take for

<R,;3> the B-reduction w.r. to p,q. II. p is the only
minimal element of 8. Obviously there has to be an

element qeS that is an immediate successor of p. Assume

réq. Then ¢(r)§2¢(q)=¢(p). So for some sglp, ¢(r)=¢(s).

This means that either r=p, or r=s and so rglp. So we

have proved that P[q]=P(p). Then take for <R,;3> the
a—reduction of P w.r. to p,q. In both cases we define P

as thexreduction-function from P onto R. Then we define x
by, for all reR, x(r)=¢(r). This function is clearly onto.

Nowassume s;3r. Then either sglr, so x(s);2x(r), or
(if R is an a—reduction of P) s=q and r=p, so x(s)=x(q)=

X(P)=x(r), or (if R is a B-reduction of P) s=p and qglr,

so x(s)=x(p)=x(q);2x(r). This meansthat x is isotone.
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Nowassume x(s)§2x(r). Then, for sometilr, ¢(t)=¢(s).

This implies that w(t);3r and X(W(t))=¢(w(t))=¢(t)=¢(s)=
x(s). So x is a strongly isotone function from R onto Q.

R contains less elements than P, and, if we take R=Pl and

repeat the process for P1 and Q, etc., then we get a

sequence PO,...,Pk as required.
Corollary 1. If f,geF“, then the following statements

are equivalent.

(1) There is a sequence f1,...,fk (kgl) such that

f=fl, g=fk and, for all i (2§i§k), fi is a reduction of

ri_1.
(2) There is a sequencefl,...,fk (k;l).such that

f=fl, g=f and, for all i (2§i;k) fi is congruent to ak

reduction of f1_l.

(3) There is a strongly isotone function ¢ from:Df

onto D such that, for all peDf. 8(¢(P))=f(p).8

In these cases we will call g a reduced form of f

(by ¢).

Corollary 2. fa?“ is irreducible, iff all reduced
forms of f are congruent to f.
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Next we prove three lemmas on the way to the

uniqueness theorem.

Lemma2.1. If g is a reduced form of f by ¢ ,

then for all peDf g¢(p) is a reduced form of fp.
Proof. It is immediately clear that ¢(Df(p))=

Dg(¢(p)). Since the restriction of a strongly isotone

function is strongly isotone, g ) is then a reduced form¢(p

of fp by the restriction of ¢ to Df(p).
Lemma2.2. If g is a normal form of f by ¢,

then for all p£Df, g¢(p) is a normal form of fp.
Proof. According to lemma2.1 g¢(p) is a reduced

form of fp. Assume h is a reduced form of g¢(p) by W

(DhnDg=d). Then we define an In-function k by Dk=

(Dg-Dg(¢(p)))UDh, and for all reDg—Dg(¢Cp)1k(r)=f(r),
and for all reDh,k(r)=h(r), and for all r', reDkr';kr iff

rvégr or rvéhr, or rveph and r;g¢(p). Then k is a reduced

form of g by X defined by, for all qeDg,x(q)=q if

qeD -Dg(¢(p)), x(q)=w(q) if qeDg(¢(p)). Then it is clear8

that X is strongly isotone. This meansthat h is congruent

, and so g is a normal form of f .¢(p) 9
Corollary. If f is irreducible and g<f, then g

t° g¢(p)

is irreducible.

Lemma2.3. If fer“, r,r'eDf, r#r', and rr;rr,,
then f is not irreducible.

Proof. Assumef is irreducible, r,r'eDf, r#r'

and frEfr' by ¢. without losing generality, we can
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assume that r is a minimal element with this property,

i.e., there are no s,s'eDf (s<r) such that s#s' and
fSEfs,. Nowassume peDf(r), p#r; then p=¢(p), since,

if p#¢(p), then fpEf¢(p) by ¢ would be contrary to our
assumption that r is minimal. This is also true for

any peDf(r'), p#r', since ¢ is onto. So actually we

have Df[r]=Df[r']. But then the conditions for a
Bmreductionare fulfilled, and f cannot be irreducible.

After one more definition we are ready to prove

our uniqueness theorem.
_‘.#./0 in 7/7. 5”‘./42,1 .

23;. The depth of an In-function f is the maxi­

mal length of the chains w.r. to <f in Dr.
Th.2.3. If fsh, g is a normal form of f, and k

is a normal form of h, then gEk.

Egggg. we proceed with induction on the depth of

r. (The depth of h‘is of course equal to the depth of
r.)

(1) The depth of f is l. Then Dr and Dh consist
of only one point, f and h are irreducible, and so the
result is immediate.

(2) Assume the depth of f is m, and the theorem

holds for In-functions with depth <m. According to

lemma 2.2, there is a function o from Dr onto D8 such

that, for all peDf, g¢(p) is congruent to a normal form

/iizt:-the/‘ }”‘v007/‘d‘{"‘7./)2'.3 W/Q/Z t5-9//sou
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f k-of fp, and a function ¢ from D onto D such that for all

pgDf, is congruent to a normal form of fp.k
Mp)
Wewill now show that for all P'.peDf, ¢(P')5g¢(P)

iff w(P')ék¢(P)­
In the first place, consider p',p<fmf. If

' th B th 1 d ti ' h th 1
¢(p )ég¢(p), en g¢(p'):g¢<p), y e n uc on ypo es s

So k . That meansk = d k 2, . k
;p(P')"g¢—(p‘) 3“ Mp) "¢<p> w<p~>-‘-mp)

that there is an rék¢(p) such that k =k But then the¢ ' ' r°
irreducibility of k implies by lemma§?3)that w(p')=r, and

so w(p');kW(p). Symmetric considerations give us the im­
plication in the other direction. So indeed, (*) for all

p',p<fmf, ¢(p');g¢(p) iff ¢(P')§kW(p). Nowwe consider two
possible cases.

(1). ¢(Df—{mf})has a greatest element rl=¢(pl).

Then by (*) W(Df-{mf}) also has a greatest element, namely

w(pl). we consider two subcases. I. f(mf)=f(pl). Then

¢(mf)=¢(pl); otherwise there would exist an 0-reduction of

g w.r. to mg=¢(mf),¢(Pl), and g is irreducible. For the
same reasons, w(mf)=W(Pl). II. f(mf)#f(pl). Then for

obvious reasons, ¢(mf)#¢(Pl) and ¢(p)<g¢(mf) for all p<fmf.
Also w(p)<kw(mf) for all p<fmf.

(2). ¢(Df-{mf}) has more than one maximal element.

Then again, for all p<mf, ¢(p)<g¢(mf). Otherwise D8 would

have more than one maximal element. If ¢(Df—{mf})has more
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than one maximal element, then so has (Df—{mf}), so also

¢(p)<kw(mf) for all p<fmf. .

In all these cases it is clear that for all p',peDf,

¢(P')ég¢(p) iff w(p');kw(P). This implies that for all
P'.PeDf. ¢(p')=¢(p) iff w(p')=w(p); also that
f(p)=g(¢(p))=k(¢(p)) for all peDf. If we nowdefine X from

Dg onto D by, x(q)=r iff for some peDf, ¢(p)=q and w(p)=r,k

then X is uniquely defined and gsk by X.

23:. TwoIn-functions f and g are equivalent (in
symbols fzg) iff they have congruent normal forms.

With the help of Th.2.3 it is easy to see that = is

an equivalence relation, and that congruent In-functions
are equivalent.

Qgf. A normal n-ary I-operator a is an ordered

I-operator such that, if feCa and gzf, then geca.

23:. The normalized characteristic set C; of a nor­
mal n—aryI-operator a is the set of all irreducible In­

functions in Ca. .
Q33. Afinite (infinite) normal I-operator is a

normal I-operator with a normalized characteristic set

consisting of a finite (infinite) numberof congruence
classes.

As an example, the ordered I-operator c-of the

example given on page 12 is not a normal I-operator,
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because (l,l,l) = (l,l,l), since (l,l,l) is
.(l,1,l) (l,l,l) (l,l,l)

a 8-reduction of (l,l 1) and (l,l,l) is an
//’4K\\(1,1,l)(l,l,l)

a-reductionof (l,l,l).
I(l,l,l)
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Chapter III.

Definabilit1*g£_I-operators.

In this chapter wewill investigate the relation­

ship between the connectives &,v,=5‘L and the set of

normal I-operators. Wewill showthat these standard

connectives are represented by normal I-operators, and that

the set of normal I-operators definable in these I-operators

is not the whole set of normal I-operators, but contains all

the finite normalI-operators.
Of course we first have to exhibit the I-operators

that represent the standard connectives, and define what we

meanby definability in the set of I-operators.

Q33, For all positive integers n, and all i (lgién),

the n-ary I-operator u? is defined thus: for all feF”,

u§(f)=f1.
Def. The n-ary I-operator a is the composition of

the n-ary I-operators b ..,bm by the m-ary I-operator c1”
iff, for all r;F“, a(f)=c(bl(f),...,bm(f)).

Def. An I—operator a is definable from a set S

of I-operators iff, there is a sequenceal,...,an such
J
1

for somei,J, or amis the composition of ak1,...,ak bys

that anua and for each m (limin), either amgs, or amau
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, where for all t (l;t;§+l), lgktgm.
3+1

Def. WTheclosure of a set of I-operators is the
by ak

set of all I-operators definable from S. A set of I­

operators is closed iff, it is equal to its closure.
The set of all I-operators is obviously closed.

Th.3.l The set of ordered I-operators is closed.

Erggg. (a). u? is ordered, since (u$(fp))(p)=

<<rp>1><p>=ri<p>=<ug<r>><p>. cu). Ir a is the compo­

sition of bl,...,bm by c, and bl,...,bm and c are ordered,

then a is an ordered I-operator, since (a(fp))(p)=

(c(b1(fp),...,bm(fp)))(p)=(c((bl(f))p,...,(bm(f))p))(p)=
(c((b1(f),...,bm(f))p))(p)=(a(f))(p).

Th.3.2. The set of normal I-operators is closed.

Egggg. Because of Th.3.l we only have to prove

(a) and (b) as follows. (a). If fecug and g=f, then

gecug , for all i (lgign). For all 1 (lgign), fecug iff
f1(mf)=l. If g is a reduction of f, then it is easy to

see that f(mf)=g(mg), so for all i (lgign), fi(mf)=gi(mg)
and fec iff gecun. Hence, by induction over the

“E2 1

sequences of reductions from f and g to their normal

forms, f=g implies fecu iff gecu .
E E

(b). If a is the composition of b1,...,bm by c,
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and bl,...,bm and c are normal, then a is normal, i.e.,

if fgca and g=f, then gcCa. Again it will be sufficient
to prove that, if g is a reduction of r, then g6Caiff

fcca. Assumeg is a reduction of f w.r. to r,r'. Then

for all 1 (l,<_i_<_m),(bi(f))(r)=(b1(f))(r')=(bi(g))(r'), and

for all sir, (bi(f))(s)=(b1(g))(s); also Dbi(f)=Dfand
Dbi(g)=D, complete with their partial orderings. So, for
all 1 (léigm), b1(g) is a reduction of bi(f) w.r. to r,r'.

But then also the Im-function (b1(g),...,bm(8)) is a re­

duction of (bl(f),...,bm(f)) w.r. to r,r'. Then,since
we assumed c to be normal feca iff geca.

Wepresent the I-operators representing the con­

nectives &,v,:>and‘1 in accordance with the results in

Chapter I. In each case we will use the same symbol for

the connective and the representing I-operator. For all

f6F2, peDf:
(f1&f2)(p)=l iff, fl(p)=l and f2(P)=l,
(f1vf2)(p)=l iff, r1(p)=1 or r2(p)=1,

(r?=r9)(p)=1 iff, for all p'§fp, f1(p')=0 or f2(p')-1.
For all feF, p€Df:

C1f)(p)-l iff, for all p'§p, f(p')-O.

Lemma3.1. For all f€F2, p€Df:

(a) (fl&f2)(p)=l iff, for all p'§fp, f1(p')=l and

r2<p'>-1. <b> <r1vr2)<p>=1 irr. for all p':fpD :1<p'>-1
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or f2(p')=l.

§_1_~__o_o_f_.(a).=:-(r1&r2)(p)=1 implies fl(p)'-=1 and

f2(p)=l, by the definition of &. Thenby the definition of

I-function, for all p';fp, fl(p')=l andf2(p')=l.
-4=Trivial.

(b).=>(r1vr2)(p)=1 implies f1(p)=1 or f2(p)=l. If

f1(p)-l, then for all p'§rp, f1(p')=l, so (f1vf2)(p)=l.
Similarly, it f2(p)'=l. ¢=Trivial.

The definitions of the I—operatorsrepresenting the

standard connectives and lemma3.1 immediately suggest the

following definition.

23;. An I-operator a is pseudo—cZassicaZiff, there

exists an operator ac of PC (considered as a function from
{O,l}n into {0,l}), with the property: for all feFn and

DeDf,(a(f))(p)=1 iff, for all p';fp, ac(f(p'))=1.
Th.3.3. &and'*|are finite normal I-operators.

ggggg. If feC&, then for all p§Df, fl(p)=l and
f2(p)=l. Nowdefine an I2-function g with a domain consis­

ting of a single element, and gl(mg)=g2(mg)=l. Then the

function ¢ from D onto Dg defined by, for all peDf,f
¢(p)-mg, is strongly isotone. So guf, and Cg-{f: fig}.
The proof for-1 is similar.

Th.3.N. &,v,:>and'1 are pseudo-classical I-operators.

Proof. If &c,vc,:h and‘1c are respectively the
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symbolsfor the conjunction, disjunction, implication,

and negation of PC, then, for all feF2 and peDf:

(r1a.r2)(p)=1 iff for all p'_<=fP(f1(p'))&c (r2(p'))=1.

(r1vr9)(p)=11rr for all p'éfp (fl(P'))vc (r2(p'))=1.

(fL>f2)(p)=liff for all p';fp (f1(p')),c (f2(P'))=l.
For all feF and peDf, G1f)(p)=l iff for all p'§fp1c(f(p'))=l.

23;. AnI-operator is a standard I-operator, if
a is definable from &, v, :>, -. .

Wedefine iterated conjunction and disjunction

in the natural way by induction, thus. If feF", then

('}(r)=(U(u"1‘(r),...,u:_l(r)))vu:(r), and/'\(r)=
(fku$(f),...,u:_1(f)))&u2(f). It is obviousthen that
L} and/7 naturally represent the connectives L}and(7

designating iterated conjunction and disjunction.

FurtherU is definable from v (actually from {v}); /1

is definable from &. Kvland/Ware pseudo-classical

I-operators corresponding to the classical iterated

conjunction and disjunction[Jc andflcg i.e. “j(f))(p)=l
iff for all p'§fp [mc(f(p'))=l5 (fi(f))(P)=l iff for all

p'_5,_,.p('3c<r<p'>>=1. Also <t"J<r>><p>=-1irr _gc<r1<p>>=1.

and (fl(f))(p)=l iff éZc(f1(p))=l. wewill also write

Q(f1) forLnJ(f), Q-(fi) forfi(f), and JLé(f-5)for

O(u’J‘l(r),...,u3‘k (1')) 1r J={Jl,...,jk}(l_-§_jl,...,jk§_n),
k

etc. wewill also write a-Lgai iff a is defined by:
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. k

for all feFn, a(f)=L{(a1(f)). etc.0
‘ Th.3.5. All pseudo-classical I-operators are

standard.

Proof. Assumea is a pseudo—classical I-operator,

correspoding to ac of PC, i.e. (a(f))(p)=1 iff, for all

p'éfp, ac(f(p'))=l. Bring ac into the conjunctite normal

form. Then for all te{0,1}n, ac(t)=fi1c(a:(t)) (R31), where

for each i (liiék), a:(t1,...,tfl)é5é;Q(7ct3))vc(L}Ctm) formd+
someJ M1§(l,...,n). For each i (lgiik) there are three19

possible cases. (a). Jifld and Mifd. Then a§(t)=

( ct~‘);.c(U tm). (b). Ji=¢5. Then ai(t)=U (cm).
J53. “CH? C me‘ ‘:0

(c). Mi=d. Thenai(t)='1((W tj). Now,if al,...,ak areC CJLJLC

the pseudo-classica} I-operators corresponding to

a1,...,a:, then a={)a1, where the a1 in the respectivec u

cases are, (a) a1(f0=({;fJ)=((/rm), (b) a1(f)=LJ(fm),
Q5 ‘, rnsml: HUM;

(c) a1(f)=W(£B(fJ)). This is easy to check with the help
dun

of the definitions of the I-operators ==,"1,U andn .
Th.3.6. All standard I-operators are normal.

2333:. Since we have already shown that the normal

I—operators form a closed set.(Th.3.2), it is by Th.3.h

sufficient to showthat all pseudo-classical I—operators

are normal. It is immediately clear from the definition

of pseudo-classical I-operator that they are ordered. So

assume a is a pseudo-classical I-operator corresponding to
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ac of PC, feca and g=f. Then it is sufficient to show

that geca. Fromfeca it follows that ac(f(p))=l for all

pED But g=f implies that for all peDf there is a qeDgf
such that f(p)=g(q). So also for all qeDg, ac(g(q))=l,
which means that g£Ca.

As the main result in this Chapter we will prove

that all finite normal I-operators are standard. This

can be done indirectly by applying someresults from [9 J.

(see Th.5.lQJ, but we will give a direct proof here that
( C{HIc’.7

gives us actually a definition for the normal I-operator.

For this purpose we will need the following lemmas.

O L")O O C =- = 9 b . I
Lemma3 2 ifa) If Ca u1Cai, then a &1ai ( ) fH

C =[\C then a=fla If a is normal, then (c) if- C;a 1' n
H

cgféicgi, then ai&iai, (d) if C§=£§C§1,then a=£lai.
Proof. (a). Assumeca=Lq§a , then (a(f))(p)=l iff,u 1

r eL')c , so (a(f))(p)=l Mr, ,0 ((ai(f))(p)=l. So,p iul " ¢‘1c
indeed a=LQa (b) is proved in exactly the same way as‘I 10

H .

(a). (c). If c;=L%o; , then ca={r: (Eg)(g=f and gec;)1=
n ¢' n . '

g{{f: (Eg)(g=f and gee; )}=L}C . So, according to (a),‘ 1 cfilaih

a=L{a1. (d) is proved in the same way as (c).­‘I

Lemma3.3. Let f and g be irreducible In-functions,

and let ql,...,qk be the direct predecessors of mgin D8

w.r. to <g. Then fig iff, for all p€Df, either there



30

exists an i (lfiiék) such that fpigqi, or f(p)=g(mg) and
for each i (léigk), there eiists a p'§fp such that

fp,Egq1.
Proof;¢For k=O the lemmais trivial. So assume

k>0. There are two possible cases. (a) fsgq by ¢ for

some q<gmg. Then for some 1 (lgiék), qégqi. So for all

pgDf, ¢(p);gq1, and, since fp=g¢(p), fpfigqi. (b) fag
by ¢. Then for each peDf there are two possible subcases.

I. p<fmf. Then again for some 1, ¢(p);gqi and fpigqi.

II. p=mf. Then for each 1 (léiéy), ¢-1(q1)§fp and
f g

¢‘1(q1) Q1.
<¢=Consider the set P of all peDf such that for some

i Cléiék), fpigqi. For each peP there is exactly one qeDg

such that fpsgq (lemma 2.3). This defines a function o

from P into Dg. ¢‘ is an isomorphism, since p'éfp implies

“p'5-‘D’ 3° “¢<p'>-‘-5 (p)

Also, if peP and p';fp, then p'eP. If qeDf-P, then
, and so ¢(P')§g¢(p), and inversely.

f(q)=g(mg) and for each i (léiiy) there exists a p';fq

such that f So for each qcDf-P and pep‘, q<fp. Nowp'Egq1°

there are two possible cases. (1) Df-P has more than one
minimal element. Assume s and s' are minimal and s#s'.

Then there is a 3-reduction of f w.r. to s,s' contrary to

the fact that f is irreducible (Df[s]=Df[s']=P,

f(s)-f(s')=g(mg)). (2) Dr-P has exactly one minimal
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element s. Assumes’ is a direct successor of s w.r.

to <f. Then s is the only immediate predecessor of s'
w.r. to < . For if t;fs', then either teP, so t<fs, or

f-P, so s;ft<fs', and so s=t. This meansthat there
is an a-reduction of f w.r. to s,s', contrary to the

teD

hypothesis that f is irreducible. So Df-P contains only

one element mf, and we can extendwpto Df by defining

¢(mf)=mg. Then fag by ¢, so fig.

Lemma3.4. Let f,gcF“, and let q1,...,qk be the

direct predecessors of mgw.r. to < . Then fag iff fig and8

for no i (lgigk) figqi.
Proof. Trivial.

Lemma3.5. If f and g are irreducible In-functions,

and ql,...,qk are the direct predecessors of mgw.r. to

<8, and for each i (lgiék), qil,...,qik1 (kigo) are the
direct predecessors of qi w.r. to <g, then fig iff, for
all peDf, either there exists an i (lgiik) such that

fpfigqi, or f(p)=g(mg) and for each i (liigk), there is a

poéfp such that fp,:gqi, but for no J (lijgki), fp,§gq1J.
figggf. Immediate from Lemmas3.3 and 3.U.

Th.3.7. All finite normal I-operators are standard.

ggggg. A finite normal I—operator a has a normalized

characteristic set C§={f: fjgi} for somesequence

(gl,...,gk) (kgo), wherefor each 1,3 (l§i,J;k, ifj) not

31:53, since there are only a finite numberof maximal



32

congruence classes in C; (w.r. to the relation 3). If

k=0, then C; is empty and a=u$&“M?. If kgl, then assume

for all i (lgigk), ai is the normal I-operator with Cgi=

(f: f__<_g1}. Then C;=£L.k}1C§i,and by Lemma 3.2 a=‘_gai, so

a is definable in the ai. That means in the proof we can
restrict ourselves to the case that k=1, i.e. we can assume

C;a={f: ffg} for some irreducible geFn.

Without loss of generality we can assume g1(mg)=O

for i=l,...,m (lgmgp) and gi(mg)=l for i=m+1,...,n. Now
let b be the m-ary normal I-operator with Cg=
{feFm:f:(gl,...,gm)}. (gl,...,gm) obviously is an irredu-­
cible Im-function, so b is again a finite normal I-operator.

Nowdefine the normal n-ary I-operator bl by

b1(f)=b(u$(f),...,u:(f)). Thenc;=c;./5 C*n, so by
n 1 [slid-I U

Lemma3.2 a=b &[\un, which means that a is definable in
umol

b- So, in the proof we can restrict ourselves to the case

that gi(m8)=0for all 1 (1;1;n).
Since all standard I-operators are normal, we only

have to investigate the behavior of a with respect to the

irreducible In-functions; if we find a standard I-operator

that agrees with a there, then a has to be standard.

we will now proceed to prove the theorem by induction

on the depth of g.
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(a) The depth of g is 1. Then Dg={mg}, and

Df={mf}for all fig. Hence, for all irreducible feFn

and peDf, (a(f))(p)=1 iff fpeC;, i.e. (a(f))(p)=l iff

fpig, so ( since Dg={mg})(a(f))(p)=1 iff, for all

p'eDf , 'r(pv)==g(mg)=(o,...,o), and so (an(f))(p)=n1iff,
P n

A C-,cr1<p'>=1. so a<r>=fl<-1r1>-=,/)<—»u“<r>>.£‘1 ‘I1 C9 1

(b) The depth of g is m>1, and we assume that the
for all p'£fp,

theorem holds for all In-functions with depth<m. Assume

further that mghas k direct predecessors (kil) w.r. to

<8, and that for each i (lfiiéy) qi has ki direct pre­

decessors q11,...,qiki (kigo). Also assumethat, for
each i and J (léiék, léjéki), a1 and aij are the normal
I-operators with respective normalizedcharacteristic

sets C;1={f: f:gq1}°afld Cg1J={f: ffigqij}. Then by the
induction hypothesis we can assume that a1 and aij are
standard I-operators, so we Just have to prove that a is

definable in the a and aid. Now, for any irreducible1

feFn, peD (a(f))(p)=l iff fpfg; i.e.(Lemma3.5)fa
(a(f))(p)=1 iff, for all p':fp, either there exists an i

(léiék) such that fp,:gqi, or f(p')=g(mg)=(0,...,O) and

for each i (liiék) there is a p"§fp' such that fpnigqi
but for no 3 (lggéki) fpufgqid. Fromthis it follows
that (a(f))(p)=l iff, for all p'§fp, either there is an



1 (1513) such that fp,<gq , or for all 1 (l§_i_f_n),._ 1 .

fi(p')=0 and for each i (lfiiék) it is not true that

(1) for all p"§fp' not f "fig or for some3 (léjfiki),P

f "<gq . But (1) is equivalent, if ki#O, to (2) for' ij k­
some p"___<,_fp',(a1(f))(p"):cJgc((a1J(f))(p"))=1 and, if
k1=O,to (2') for all p";fp',-1c((ai(f))(p'))=l, which
in turn are equivalent respectively to (3)

*0

<<a1=»JgaiJ)<r>><p'>=1, (3') <<-1a1><r>><p'>=1. Then

<a<r>><p>-=1irr. for an p';,.p, <<L")<ai<r>><p'>>v
n 2 a=1° °

'.(-1° ('.Uc(ur£(f))(p'))&c-)cLJc((<ai',C?1a-in)(f))(p'))))=]­
{=1 ‘. ‘:31 J

(with aiawa replaced by *1ai 11‘ki=O). But thenJ':1_
(a(f))(p)=l iff, for all p';fp,

, k n k

(<<,Uu‘1‘)v_L)<ai=LJaiJ>><r>><p'>:c<<,Ua1><r>><p'>=1. But
¢=1 :.=1 J7-1 ,, g k-"1 1;

this meansthat a=((Uu$)vU(ai?U ai )):aUa , with
fi‘- . L: J31 J ‘::1 1

aiefigaij replaced by -ai if ki=O.
Corollary to the proof of Th.3.7. For the special

case that for each m (lfimép) there is an i (léiék) such

that gm(q1)=0, the formula obtained for a in the proof
can be slightly simplified. (Namely, in that case, from

for each i (léiék) there is a p";fp' such that fpnjgqi,
it follows by the definition of I-function that fm(p')=O

for all m (lémén). So we can leave out the rfouiremiht

that f(p')=g(mg), and we end up with a=_‘C’j(ai7€gan ):«.(JaiL.1 .1k
(with a1>L/a replaced by'1a1 if kivo).
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Wewill continue our investigations on I-operators

in Chapter V. In Chapter IV we will apply Th.3.7. to

another problem.
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Chapter £1.

.5 Characterization of the
Intuitionistic Propositional Calculus

In this chapter we will find a characterization

of Pp from above, i.e. we will describe a property of Pp
that no consistent propositional calculus stronger than
Pp possesses. By a propositional calculus stronger than

Pp we understand one in which all formulas provable in Pp

are provable, and some others as well, and which is closed

under substitution and modus ponens. (Closure under sub­

stitution is, of course, assured if no particular axioms
are postulated, but only axiom schemata.) By a formula we

understand a formula built up from atoms A1,A2,... with
the connectives :8, v,= and"I.

Lukasiewicz [/53 proposed the conjecture that Pp

can be characterized from above by the property: for any

formulas U,V, if fPp UvV, then }§pUor tfipv. This conjec­
ture was disproved by Kreisel and Putnam [/3], who showed

that Pp + the axiom schema (1UeVvw):C1U-V)vCfiUnw)has the

same property.

' ‘In [I23 Kleene proved a stronger property of

Pp, and he subsequently proposed to the author the
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conjecture that this property characterizes Pp from above.

First, one defines a notion K|TU for any sequence X of
formulas, any formula U, and any propositional calculus T,

from the notion ff of provability in T. Kleene states
the definition in [IL] in particular for the case T is Pp

(see [I2] 54), and he proves (amongother things) that,

for each u,v,w, if UIPPU and }§pU:VvW,then ]§pU>Vor

f§pU>W. Kleene's conjecture, which we will confirm in
this chapter is: if T is a propositional calculus at

least as strong as Pp, possessing the property

(*) for each U,v,w,1r UITU and f&U5VvWthen yguav or fTU=w,

then T is Pp. Also we will give another characterization

of Pp from above by replacing (*) by

(*I) for each u,v if UITU, }bu>v and rgvau then v|Tv.

Before we will be able to do this, we will have

to discuss pseudo-Boolean algebras and their connection

with I-valuations. The duals of pseudo-Boolean algebras

(Brouwerianalgebras) and their connection with intu ticnis­

tic logic were first discussed by McKinseyand Tarski [/6],

[I7]. A pseudo-Boolean algebra is an abstract algebra with
three binary operations u,,1,=¢(relative pseudo-complement),

ane unary operation——~(pseudo-complement), and two con­

stants 1 and Wewill use as variables over elements
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of these algebras a,B,y,a1,a2,...,Bl,B2,... . Termsare
then defined in the usual wayand if U(al,...,an) and

V(a1,...,an) are terms, then U(al,...,an)=V(al,...,an) is
an equation. Wesay that this equation is valid in an

algebra A, if for all a1,...,angA,U(al,...,an)=V(al,..-,an)­
Anequation is valid in a class of algebras, if it is valid
in all algebras of the class. A set of equations defines

the class of algebras in which all the equations are valid.

The class of pseudo-Boolean algebras can be defined by a

set of equations (see e.g. [20]).

A formula U(&,v,b,fi,Al,...,An) is said to be
valid in pseudo-Boolean algebra A, iff the equation

U*(n,Lu-h~,a1,...,an)= j_is valid in A, where U* is formed
from a1,...,an by meansof/1,u,4-and__, in exactly the

same way as U from Al,...,An by means of &,v,:>and-1.
McKinsey and Tarski [ICU proved the following theorem.

Th.N.l. The propositional formula U is derivable

in Pp (a) iff U is valid in every pseudo-Boolean algebra,

and (b) iff U is valid in every finite pseudo-Booleanalgebra.

233. For any propositional calculus T stronger

than Pp we say a pseudo-Boolean algebra A is a T-p8eudo­

Boolean algebra iff, for each formula U such that r%U,
U is valid in A.

Th.N.2. For every propositional calculus T

stronger than Pp, }%Uiff, U is valid in each T-pseudo­
Boolean algebra.
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§_r_'_o_<_)_f_.==>Trivial. <4-—=Follows from a particular

case of a theorem of Birkhoff [5"] that says that in a

class of algebras defined by equations an equation is

valid iff it is derivable fromthe defining equations

by means of the following four rules. (i) U=U. (ii) If

U¢V then V=U. (iii) If U=V and V=W,then U=W. (iv) If

U=Vand W=X,and U‘ results from U by replacing some oc­

currences of Wby X, then U'=V. It is easy to see that

the rules (i),...,(iv) can be simulatedin the logic, if
we realize that from U=Vwe can derive U~V=l and‘V+U=l

and conversely.

Another special case of a theorem of Birkhoff

[5’] we will use is:

Th.H.3. The class of all T-pseudo-Boolean

algebras is closed under the formation of sub—algebras,

homomorphismsand direct products.

Nowwe are ready to look at the relationship

between pseudo-Boolean algebras and I-valuations (or I­

functions). The following definitions are from [3]

(see also [l3]).
If a partially ordered set <V,£>is a complete

lattice, then aeVis called join-irreducible iff
.a>LJ{B:B<a}. The set of all Join-irreducible elements

of V will be denoted by V0.
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Def. A lattice A is called join-representable,
iff A is complete and completely distributive, and every

acA can be written as a=LJ{5:B;a and 8540}.

Def. A subset F of <1>,_§_>is called M-closed 1:1‘

for all p,qeP, peF and qép implies qgF.
The set of all M-closedsubsets of a partially

~ordered set P will be denoted by P. P is then complete

and completely distributive.

Th.lI.l|. ([3 ],[l_g]). Every _°?join—representable
lattice A is isomorphic to E6.

Th.M.5. (e.g. [4#]). A complete and completely

distributive lattice is a pseudo-Booleanalgebra, if we

define a+B=LJ?Y:unY;8}.

Every finite distributive lattice is complete

and completely distributive, and Join-representable

(e.g. [94]). So this theorem implies that every finite

distributive lattice is a pseudo-Booleanalgebra P for
somepartially ordered set P.’ Since for every partially

ordered set P, P°is a distributive lattice, there is
therefore a 1-1 correspondence between finite pseudo­

Booleanalgebras and finite partially ordered sets.

233. If P is a partially ordered set, then P
is T-admissible iff P'is a T-pseudo-Booleanalgebra.

Th.N.6. (essentially in [g']). If P is a P.O.G.§
set, then thereis the following correspondence between

any I-valuation <P,w>and the pseudo-Boolean algebra
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$3 for all formulas U and V, if F1={p: w(p,U)=l} and

F2={p: w(p,V)=l}, then (i) Ff1F2={p: w(p,U&V)=l},

(ii) FluF2={p: w(p,UvV)=l},(iii) Fr+F2={p: w(p,U=V9%1},

(iv)-F1={p= w(p.fiU)=1}­

ggggg. F1 and F2 are M-closed, so F1nF2,

l 2 l

(i) FrwF2={p: w(p,U)=l}and w(P.V)=l ={p: w(p,U&V)=l}.

FrJF2, F=#F and-F are well-defined.

(ii) FjuF2={p: w(p,U)=l}or w(p,V)=l ={p: w(p,UvV)=l}.

(iii) peF=#F iff P(p)SFi#F P(p)$Ff#F2 iff P(p)nFl£F2.l 2 2°

P(p)nFfiF iff for all p';p if w(p,U)=1then w(p,V)=l, so2

ultimately peFf#F2 iff w(p.u>v)=1, and indeed Ff#F2=
(p: w(p,U=V)=l}. (iv) Similar to (iii).

LemmaU.l. For any P.O.G.-set P with maximum

element po and any formula U(Al,...,An), w(po,U)=l for

all I-valuations <P,pO,w>iff U*(a1,...,an)=P for all

O1, 0 0 0 ,anE.-P5-u

figggf. Immediate by induction on_the result of
Th.M.6.

Th.H.7. If P is a P.O.G.-set with maximum

element po, then P is T-admissible iff, for all I-valuations

'<p,w> , and all formulas U such that }TU, w(p0,U)=1.

Egggf. Immediate from the lemma, and the defi­

nition of T-admissible.
The main theorem of this chapter is a little

bit stronger than we need to establish the results predicted
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_above. Probably the double negation of this theorem is
valid intuitionistically. wehave not checkedthis.

Th.u.8. If T is a consistent propositional

calculus stronger than Pp, then for each integer r32

there is a formula U=Vlv...vVs (szr) such that U|TUand

f§U>Vlv...vVs, but not }&U=Vilv...vV1 for any proper. k

subsequence(il,...,ik) (kzl) of (l,...,s).
ggggf. Wewill first construct a finite P.O.G.­

set <P',;O,pO>, having pl,...,pk (x31) as the immediate

predecessors of po , such that P‘ is not T-admissible,

but for all i (lgigk) P'(pi) is T-admissible. For this
purpose we start with a formula X such that }iX, but not

fppx. There is an I-valuation <P",p6,w>such that

w(p6,X)=0. If P" has the desired properties, then take
P'=P". Otherwise there is a peP" such that P"(p) has

the desired properties. For, if q is a minimal element

of P", then ?"T§Y is a two-element Boolean algebra. So

in that case P"(q) is certainly T—admissable,since T
is assumed to be consistent and therefore does not con­

tain theorems that are not provable in PC. we take then

P'=P"(p) for someP"(p) with the desired properties.

Since P‘ is not T—admissable and therefore FTuis not a

Boolean algebra, P‘ contains more than one element and

K31.
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Once we_have constructed P‘, we construct another

P.O.G.-set P. If kgr, then we take P=P', and in the proof

we will take s=k. If k<r, then we take a natural number 3

such that Jkgr, and we construct J-1 partially ordered sets

P1 (l:i:J—l) (disjoint from P and from each other) that are

isomorphic images of P’-{po} by ¢i and have partial orderings

< . Then we take P= P'uPfu...uPJ_l and the partial ordering

on P as for all p',p£P, p'§p iff p'§0p or p';ip for somei
(lgigg-l) or p=pO. It is clear then that P is a P.O.G.-set

with maximumelement po. Also that for all p<p0, P(p) is

T-admissible, since either P(p)=P'(p), or P(p)sP'(¢;l(p))
for some i (lfiiij-1). But P is not T-admissible, as we prove
in the following way. There is a formula Y and an I-valuation

<P',w> such that w(p0,Y)-O while PTY. we now define an
I-valuation <P,w'2 in the following way: for any atomic

formula A if peP', then w!(p,Ai)=w(p,Ai), 1r pePJ, then1:

w'(p,A1)=w(¢El(p,Ai)). Then we can prove that w'(p0,U)=
w(p0,U) for all formulas U, by induction on the length of

U.? Of course, for all pePi and all U, w'(p,U)=w(¢;l(p),U).
The statement to be proved is true for atomic formulas.

If it is true for U and V, then it follows immediately

for U&V,UvV, UDVand-1V by applying the definition of

I-valuation. So w'(p0,Y)-0 and P is not T-admissible. We
will take s=Jk in the proof in this case.
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Assume P contains n+1 elements. Then we will

construct an irreducible In-function g with Dg=Psuch that

for all m (léméfl) gm(p)=O for some p<p0. AssumepO,...,pn
is an enumeration of the elements of P, and assume

p1,...,pS are the direct predecessors of'p0 (s;r;2). Then

we define gm(p1)=1 iff prgpm for all m (lgmgn) and all i

(1;1;n) and g(p0)=(0,...,O). Then obviously g is an
In-function. g is irreducible, since for all p,p'eP, if

p;tp', then g(p>#g(p'). Also for all ,1 (1_g,1;n)g5(p)=o

for some p<pO, namely if 2;1;n then take p=p1 and if J=l

then take p=p2. All this implies that we can apply the
corollary of Th.3.7 to the I-operator with normalized

characteristic set ff: fig}.

Assumea,a1,...,aS are the standard I-operators
with normalized characteristic sets {feFn: fgg} and

{fehflg fggpi} (lgigs), and assume that U,Vl,...,VS are
the formulas corresponding to a,al,..-,as formedfrom

the atoms Al,...,An. Nowwe will prove:

(a) }TU=V1v...vVS, (b) not f&U=Vilv...vVik for any proper
subsequence(il,...,ik) of (l,...,s), (c) UITU.

(a) The crucial point of the proof is that the

class of T-pseudo-Boolean algebras does not contain a

pseudo-Boolean algebra on which U=Vlv...vVS is not valid,
a "counter-example" to this formula. Moreprecisely, for
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any pseudo-Boolean algebra A on which U>Vlv...vVS is not
valid, the pseudo-Boolean algebra § is isomorphic to a

subalgebra ofia homomorphismof A, and so Th.H.3 implies

that, since F is not a T-pseudo-Boolean algebra, A can­

not be one, and therefore }%U>Vlv...vVS. we will now

prove this assertion. AssumeU=Vlv...vVSis not valid

on A. Then there are elements cfi,...,aneA such that

U*#V*u...uV*(a1,...,an)#1. Nowwetake the relativization

AU‘ of A with respect to U* (see e.g. Data), i.e. the sub­
lattice of elements of A 30*. with an appropriate relative

pseudo-complement defined this is a pseudo-Boolean algebra

and a homomorphic image of A. TheQH-element of AU* is U*
of A, and the homomrphism ¢ can be written in A as

¢(a)=a&U*. Nowwe write ¢(ai)=81 for all i (liiin); then

VIU.. .W;(8l,. . . ,Bn)<U*(Bl,. . . ,Bn)=1in Am‘.

Nowwe take the sub-algebra B of AU“ generated by

B1,...,8n. we claim that B is isomorphic to F} Take any

element W*(B1,...,Bn) of B; W*(Bl,...,bn)=

(U*nW*)(Bl,...,Bn). Nowassume b is the standard I-operator

corresponding to (U&w)(A1,...,An). Then b is a normal

I-operator with Cg
This means that any element of 8 corresponds to.a finite

sag. So b is also a finite normal I-operator.

normal I-operator b with CgsC*. Nowassume WI and WEarea

two elements of 8 corresponding to the I-operators bl and

b It is easy to see that, if C’ QC‘ , then )gp(wf=w2)2' b1 b2
(Al,...,An), so wfswg in B. On the other hand, assume that
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Wigflg. Wewill prove that then CglEC62. For that purpose

we assume that cgigcgz, and deduce that }%p((Wf>W2)>

(U:(Vlv...vVS)))(A1,...,An). Assumethis formula is not
a theorem of Pp. Then there is an I-valuation <Q,;A,qO,w>

such thatuw(qO,((wf:w2):(U=(Vlv...vVs)))=0. Then, for

some qeQ, w(q,wi>w2)=1pand w(q,U9(Vlv...vVS))=O. Then

again there is an r;Aq such that w(r,wf:w2)=w(r,U)=l and

w(r,V v...vVs)=O, so w(r,Vi)=0 for all i (l;i§sl, Now1

take an irreducible In-function h corresponding to the

restriction of the I-valuation to Q(r), i.e. an irreducible
In-function equivalent to the one corresponding to this

restriction. Then ((bf:b2)(h))(mh)=l and (a(h))(mh)=l,
so hecg, and (ai(h))(mh)=O, so htcg for any i (lgigs).

1

But this implies that hag. But if cgfacgz, then there
is a peP such that gpecg and gptCg , so (bl(g))(p)=l and2

(b2(g))(p)=O, and ((br>b:)(g))(mg)=0, and we have a contra­
diction. So we have now proved that_}gp(w1:W2l:.

(U:>(Vlv...vVS)). This implies that w§¢w§;U£¢(V§u...uV;)

in B ahd AU*. But we had assumed that wiéwg, so w§¢W*2=I1

and U*¢(V*lu...uV*S)=J1 in AU*. But this again gives us

a contradiction, and we have proved CglgCg2.
The result we have reached now is that B is

isomorphic to the lattice of all normal I-operators b

with normalized characteristic sets cgscg. This lattice
is isomorphic to f, since for every M-closed subset R of
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P there is exactly one such I-operator, namely the

I-operator with normalized charcteristic set {hEFn:

h irreducible and hggp for some pER}. This concludes the

proof that UDVv...vVS is valid on every T-pseudo­l
Boolean algebra, and so }TU>Vlv...vVS.

(b) To prove that not }-UDV v...vVi , assume
T 11 k

t{(il,...,ik) (lgtés). Thengp eC;, so (a(g))(pt)=1; butt
for all J (15353) rpttcgid, so (ai (f))(Dt)=0 for all J
(15533). All this implies that ((a=ai v...vai )(g))(pt)=O,l k

so U:V1lv...vVik is not valid on FIpt§; and, since P(pt$
is a T-pseudo-Boolean algebra, not }&U=Viv...vV1 .1 k

(c) Here we rely on the corollary to the proof

of Th.3.7. Assumethat for all i (1;1;s) pi has ti (tigo)

immediatepredecessors p1l,...,pit in P, and assumethati
for all i.J (l:i§s,1§;§t1) aid is the I-operator with
normalized characteristic set C’ ={heFn: h<g } and

that V1J(A1,...,An) are the corresponding formulas. Then
according to the corollary,

a=((a )v...v(aS¥;..vaSt )))=(a1v...va;)s1=(allv...va
(in case t

11-.1

i=0, use'nai instead of a£=(a11v...va1ti) for
each i (l§i§p)). To show that UITUit is sufficient to

llv...vV1tl)v...v(V§=Vslv...vVStS).
To prove that it is sufficient to showthat for no i (l§i§s)
show that not U|T(Vf>V

U}Tv1V11v...vVit for any i (lgigs). But this is immediate
1

from the facts that f eC*,f cC* , but for no J (1533: )
pi a pi a1 1

f C‘ 1 th t '0 f C“ .
pic aid (or n e case 1 W, pit fiai)
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Eor the proof of our second characterization
of Pp from above we will need another definition and a

theorem.

Qgg. a is a connected I-operator iff a is

ordered and for all f,geCa there exists an heca such
that fih and gih.

rIt is obvious that a normal I-operator a is

connected iff for all f,geC; there is an heC; such that
fih and gfih. Also that a finite normal I-operator is
connected iff there exists an In-function g such that

C;-{reF“: fig} .

Th.fl.9. For any formula U, U|PpUiff the stan­
dard I-operator corresponding to U is connected.

£3333, :::>If UIPPU,then according to [IL],

for any formulas v,w, if }?pU>Vvw,then f%pU:Vor }?pU=w.
Nowassume the normal I-operator c corresponds to U.

Assumef,geC:, and assume further that pl,...,pr are the

immediate predecessors of m w.r. to <f, and that ql,...,qSf

are the immediate predecessors of mgw.r. to <g (r;O,s;O),
and for all i (léiér) ai is the normal I-operator with

normalized characteristic set {keFn: k<fp}, and for all 3_ i
(léjés) b is the normal I-operator with normalized charac­J

teristic set {keFn: kigq}, and a and b are the normal
I-operators with normalized characteristic sets {keFn:kif}

, W n

and (kcF : kig}. Also assumethat v0,vl,...,vr,w0,wl,...,wS
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are the corresponding formulas.

Then we have not f§pU=(VO9Vlv...vVr) and not

u:(wd=wv...vWS), since ((c=(a=alv...var))(f))(mf)=O*'Pp 1

and ((c:(b=blv...vbS))(g))(mg)=0. This implies that also
not ifip U9((VdDVlv...vVr)v(W&>wlv...vws)). Then for some

irreducible heFQ((c=((a:alv...var)v(b=b1v...vbS))

(h))(mh)=O. Nowfor somepsDh,(c(h))(p)=l, ((a:alv...var)

(h))(p)=O and ((bJblv...vbS)(h))(p)=0. Since n is

irreducible, hp is irreducible, and there are irreducible
h‘ and h" such the hlfihp, h"$hp, (a(h'))(mh,)=l.

(a(h"))(mh")=1, ((alv...var)(h'))(mh,)=O and

((b1v...vbS)(h"))(mh")=0. So h'eC;, h"eC;, for no 1

(lgigk), h'eC;i, for no 1 (lgiés), h'eCg1. This implies
that h'Ef and h"Eg. So fjhp and gghp, and we have com­
pleted the proof that c is connected.

Assumea corresponds to U, and a is connected.

Nowassume not iEpU:V and not l§pU9w, with the I-operators

b and c corresponding to V and W. Then there is an recg,

rib; and a gecg, gtcg. Since a is connected, there is

an In-function hecg such that ffh and gih. This implies
5 x a x a

htcb, htcc and htcbvcc, so htcbvc. This means that

h¢C;Dbvc, so not f§pU=VvW. Now we have proved that for all

V,W, if }§pU:VvW, then fEpU=V or f§pU=W. Then according

to [/2], UIPPU.
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Th.N.l0. If T is a consistent propositional

calculus at least as strong as Pp, and

(H) for each u,v, 1r u={'tTU,hpav and hrvau, then v|Tv,
then T is Pp.

Proof. To begin with, the property (**) holds for

Pp, since if UIPPU, then the operator corresponding to U
is connected, and this is of course a property that is

invariant under logical equivalence. If T contains a

theorem not contained in Pp, then we will again use the

formulas U,V1,...,VS used in the proof of Th.N.8. For

these formulas, UITU, fTUdVlv...vVS and }?p(V1v...vVS)=U,

so }T(Vlv...vVs)=U, but not V1v...vVs|T V1v...vVs, since
not V1v...vVS}TV1. This means that if T is stronger than
Pp, then T does not have the property (**) and our theorem

is proved.
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Chapter 1.

More Results about Definability

‘ggI—operators. Generalized I-operators.

The first part of this chapter will be devoted

to somemoreresults about the definability of I-operators,
the most important result being that not all normal

I—operators are standard. The last part will be devoted

to a generalization of the concept of In-function to In­

functions with infinite domains and to the consequent

generalization of the concepts of I-operators, characteris­

tic sets, etc. Here we will reach a completeness theorem,
but we will have to use classical methods.

The clearest method to prove that not all normal

I-operators are standard uses In-functions on trees. As

this is also an interesting subject in itself. wewill
start with an exposition on these In-functions.

Q33, A tree is a P.O.G.-set such that for all

teT the set {t'eT: t§t'} is finite and linearly ordered.

933. If feFn, then f is tree-irreducible if Dr
is a tree, and for every geFn, if g is a reduced form of

f, and D is a tree, then gsf.8
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Lemma5.1. If T is a tree, then, for all u:T,

T(t) is a tree, and T-T(t) is a tree.
Proof. Trivial.

Th.S.l. If f is tree-irreducible; then for all

p€Dffp is tree-irreducible.
2593;. By the lemmaDf(p) is again a tree.

If there were a non-isomorphic reduced form g of fp by ¢,
then we could construct a non-isomorphic reduced form n

(by W)of f by defining Dh=(Df-Df(p))uDg, q'§hq iff q'§fq

or q'§gq or ¢-l(q‘)§fq for all q',qsDh,.h(q)=g(q) for all
qeD h(q)=f(q) for all qeDf-Df(p), and ¢(p')=p' for all83

p'€Dg4Dg(p). and ¢(p')=w(p') for all p'eDf(p).

Th.5.2. feFn is tree—irreducible iff_Df is a
tree, . and (1) f allows no a-reduction, (2) there are no

&r,r',teDf, such that r#r', r' is an immediatepredecessor
of t, rgft and fr,Efr.

§§gg§.::>(l) is obvious.
(2) Assumethere are P,P'EDf such that r‘ is an

immediate predecessor of t and réft, and frsfr. by ¢. Then

define g as the restriction of f to Dr-Df(r'). By the

lemma DE is a tree. Nowdefine w on Dr as follows: w(p)=

p iff p¢Df(r'), ¢(p)-¢(p) iff peDf(r'). To prove that w
is strongly isotone we have to prove the properties (i) and

(ii) of the definition of strongly isotone. Property (1)

is immediately obvious. To prove (ii), assume w(q)§w(p).
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Nowthere are three possibilities:

1- w(q)tDf(r). v(p)iDf(r). Then w(q)=q. w(p)=p. so q;p­

II. ¢(Q)eDf(r), w(p)tDf(r). Then w(p)=p, so w(q)§p, and
W(w(q))=w(q).

III. w(q)eDf(r), w(p)eDf(r). Then there are again two
possibilities: (a) w(p)=p- Then w(q);w(p>=p. and w<w(q))=w<q).

(b) w(p)#p. so p= ¢(w(p)) and ¢(v(q));p, and w<¢(w(q)))=w(q).

since on Df(r) ¢ is the inverse of w.
<g=;This we will prove by induction on the

depth of f. For depth 1 the result is trivial. So assume

the depth of f is m and the theorem is valid for depth <m,

and assume (1) and (2). Obviously (1) and (2) also hold

for the sub—In-functions of f. So, if we assume that

pl,...,pk (kgl) are the immediatepredecessors of mf w.r.
to <f , then the induction hypothesis assures us that
f ,...,f are tree-irreducible. Nowthere are two pos­

91 Pksibilities:
I. k=l. Now, if g is a reduced form of f by ¢,

then ¢(Df(pl)) is siomorphic to Df(pl), since according

to the induction hypothesis'fp1 is tree-irreducible. But
also ¢(mf)#¢(pl), otherwise ¢ would be an a-reduction­
function, contrary to (1). This implies that fag by c,
and f is tree-irreducible.

II. k>1. Again assume g is a reduced form of f

by ¢. Assumer,r'eDf, r¢r' and ¢(r)=¢(r'). If we assume

that r‘-m thenfor some m (limik) rgpm. But thenf!
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¢(pm);¢(mf)=¢(r), and, since o is strongly isotone, for
-some sgr ¢(s)=¢(Dm). This means that we can assume that

r#mf and r'¥mf. In that case fodexactly one i and exactly

one 3 (l_<_J,i§_k) répi

iij, otherwise g¢(p ) would be a non-congruent reduced1

form of fp contrary to the induction hypothesis. But

and r'§pJ, since Dr is a tree. Also

1

¢(p1);¢(pJ) or ¢(PJ)£¢(p1), otherwise Dg would not be a

tree. Assume¢(p )§§(pi). Then, since ¢ is strongly iso­J

tone, ¢(p )=¢(q) for some qgpi. Since fp is tree­J

irreducible, ¢(Df(p )) is isomorphic to Df(pJ), and forJ

the same reason, ¢(Df(q)) is isomorphic to Df(q). Now,
if sép then ¢(s);¢(q). So for somes';q ¢(s')=¢(s). ButJ:
the fact that ¢(Df(q)) is isomorphic to Df(q).then
implies that this s' is unique. The samething holds

inversely, so f if , and qgmf, the immediate successor

of pj, contrary to (2). So for all r,r'eDf, r#r' implies
¢(r)#¢(r'). The properties of strongly isotone functions

then imply that ¢ is an isomorphism. So f is a tree­

irreducible In-function.
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Anexample of an I2-function that is tree­

irreducible, but not irreducible, is: (0,0) (0,0) .
/ o>(ole) (1.0)

D

It allows a B-reduction to the irreducible I2-function:

Th.5.3. If fer“, Dr is a tree, andpl is theonly
immediate predecessor of mf w.r. to <f, then f is tree­

irreducible iff, fp is tree—irreducible and f(mf)#f(p).
1

Proof. Immediate from Th.5.2.

Th.5.u. If feFn, D is a tree, and p1,...,pkf
(k;2) are the only immediate predecessors of mf w.r. to<f,

then f is tree-irreducible iff, for all i (léigy) fp is1

tree-irreducible and for no i,J (1;i,J5k, 1#J) fpiifpj.
_f_’_r_‘_9_o__f_‘_.=:>Immed°1ace from Th_.5.l and Th.5.2.

-<=: Assumef not tree-irreducible, and apply

Th.5.2. As no a-reduction is possible, there must be r,r'eDf

(r#r') such that frsfr, and rfit, t being the direct
successor of r‘. Obviously r<mf and r'<mf, so for some 1,3

(l£i,J;k) ripi and r‘§pJ. Aspi is tree-irreducible ifij.
But then t=m , r'=p and f <f , contrary to hypthesis.

- f 3 pd“ piSo f is tree-irreducible.
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Wewill now prove that in each equivalence­
class of In-functions there is a tree-irreducible

In—function, unique up to congruence. The meaning of

this theorem is that in our discussions in the Chapters
II and III we could have restricted ourselves to

In-functions on trees instead of P.O.G.-sets. The

intuitive interpretation of Chapter I does not give

groundseither for or against restricting ourselves to
trees. Intuitively that means the choice between

excluding or not excluding the possibility that two

states incomparable in time both have the samepossible

future state in common.

Lemma5.2. If P is a finite P.O.G.-set, and

for all peP p has at most one immediate successor, then
P is a tree.

2333;. Take any peP . Then define a sequence

p0,...,pm for some m;O in the following way: p=p0; for

all integers i, if p1_1 is the maximumelement of P, then

i-1=m. If p1_1 is smaller than this maximumelement, then

pi is the unique immediate successor of pi_l. The
sequence thus obtained is the set {p'cP: pip’), and so
this set is linearly ordered, and P is a tree.

Th.5.5. For any heFn, there is an f such that

hzf and f is tree-irreducible. This f is unique up to

congruence.
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23933, Assume ggFn, g irreducible and gzh. We

will construct a tree—irreducible f such that fzg. If

D is a tree, our problem is solved. So we assume that

D is not a tree. By lemma 5.2 there is then an reDg
such that r has more than one immediate successor. Let

us assume that r is minimal with respect to this property,

and that sl,...,sk are the immediatesuccessors of r. Then

D (r) is a tree, and, for all r'eDg(r), if r';s, then sgr8' _
or rés. Nowwe take k-1 trees from A, Tl,...,Tk 1, disjoint

from DEand from each other, such that for all i (léiék-1),

T1 is isomorphic to Dg(r) by ¢i. Then we define an In.(‘-1

function g’ as follows: Dg,=Dgu‘L.£Ti;for all peDg g'(p)=
BC?)and for all peTi (léiék-1) g'(p)=g(¢i(p)); and for all

p',peD , p'< ,p iff, either p',peDg(r).and p'ggp, or8 =8

p',peDg-Dg(r) and p'égp, or for somei (liiék-1) p',peT1

and ¢i(p')ég¢i(p), or for somei (léiék-1) p'eT1 and siégp,

or pvcDg(r) and skégp. Then the function ¢ from Dg, onto Dg

defined by ¢(p)=p for all peDg and*¢(p)e¢i(p)~for peT1, is

strongly isotone. So g’ is equivalent to g. If Dg, is not
a tree, then we repeat the same procedure for g‘ etc. . As

the number of elements with more than one immediate succes­

.sor deminishes each time, the process must end. The end

product f has then a tree as domain. we will prove by

'induction on the depth of g (= the depth of r) that r is
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tree—irreducib1e. For depth 1 this is trivial. So we
now assume that the depth of g is m and that this

process applied to any irreducible In-function of
depth (m delivers a tree-irreducible In-function. when

we look at the construction of f above, we see that

m =mg, and that the immediate predecessors pl,...,pkf

of mgw.r. to < are also the immediate predecessors~ 8

of mf w.r. to <f. we also see in that construction that

the same process was applied to gp for all i (lgifik)i
with the function fp as outcome for all i (lgifik).' i
The induction hypothesis then states that f is

P1
tree—irreducible for all i (lgigy). Nowwe study two

cases. (1). k=l. Then f(mf)=g(mg)#g(pl)=f(pl), and by
Th.S.3 f is tree-irreducible. (2). k>l. Then for no i,J

(l<i,J5k,i#J) f <f , since that would imply g <g
‘ "' p1“pJ P1-DJ

(see lemma2.2), which in its turn would imply that

g is not irreducible(by lemma2.3). Then Th.S.U implies
that f is irreducible.

Nowwe prove that f is unique, by induction

on the depth of f. For depth 1 it is again trivial. If

the depth of f is m, the we assume the theorem for
n

I -functions with depth <m. Assumethat pl,...,pk are

the immediate predecessors of mf w.r. to <f. Then

p1,...,fpk are
uniquely determined. It is then very easy to see that

according to the induction hypothesis f

f is also uniquely determined.
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Lemma5.3 If f,g are tree-irreducible, f=hl,

g=h2, hl and h2 irreducible and hlihe, then (fig.
Egggg. Clear from the construction in Th.5.5.
Th.5.6. A normal I-operator a is uniquely

characterized set C;* of all tree-irreducible feFn in
its characteristic set (the tree-characteristic set of

a), and there is a function from C; onto C§* that is

an isomorphism w.r. 3, and if it maps f onto g then figg.

Egggg. Immediate from Th.5.5 and lemma 5.3.

Th.5.7. For Q32not all normal n-ary I-operators
are standard.

Egggg. we will construct a sequence of I2-functions

{u1Jh_,M__as follows by induction on i (it is obvious
°-zza

how go do this in an exact way, but very tiresome, so we

will do it with the help of pictures) ull=(l,l), ul2=(l,O),

u13=(0a-1): u1+l= (flaw 3 ui-l-2%(0:O\)3 ’ ’ ui+3=Ba{) 3
“11 “i2 “il “i3 "12 “I3

for all 131. Then we can prove by induction on i (a) for

all 1,3 (i;l,l;j§3) uij is tree-irreducible, and (b) for all
131, if j#k (lgJ,K;3) uijguik. For i=l it is trivial and
if (b) is true for i=k, then by Th.S.N (a) is true for i=k+l,

and (b) follows immediately for i=k+l.

Nowwe construct a sequence {vi} of I2-functions by

induction on i from the sequence {uiJ},cv1= (0,0) ,

for all igl. uil uia ui3
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Again it is obvious that for all i (l§i<m) vi is
tree-irreducible, but also for all 1,3 (i:l,J;l) if iflj

then viévd. This is obvious if i>J, and if i<J, then
viivj would imply visukm, for somek and m'(l:k;J,lém;3),

and this is impossible since Du is a binary tree, and
km

has three immediate predecessors. Nowwe can for anymvi

set of natural numbers MEN(N being the set of all natural

numbers)define an operator am, by its tree-characteristic

set, rgcgg iff fivi for some ieM. Nowit is obvious from

the fact that i#J then vi£vJ that, if M#L,then C;;#C;£.
This implies that there are non-denumerably manynormal

I-operators, and so they cannot all be standard.

Note that not even all primitive recursive normal
I-operators are standard, since the logic is decidable. This

is of course a negative theorem, and we will nowprove that

no I-operator like amwith Minfinite can be a standard I­
operator.

993. A set {fl,...fn_}9F“ is independent, if for no

1,3 (l_<_i,J_5_m,i#J)fiifd.
Egg. A normal n-ary I-operator a is weakly connected

of degree m, if for any independent sequence f1,...,fm+leC;*
there exists a geC;* of the form g(m ) for some 1,3 (151,/ 3\

f1 f5

J§m,i#J). (I.e. if there exists a gecg, such that mghas
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two direct predecessors ql and q2 in D , and gq_5fi and18

,3 er).
Q2 J

Note that, if a is weakly connected of degree 1,

then a is connected. Not even for standard I-operators

though are these concepts equivalent; e.g. the unary

standard I-operator with tree-characteristic set

,0\ O
{-/0 0, I, 1, Q}is connected like all finite normal

1 1

I-operators of which the tree-characteristic (or normalized

characteristic).set has only one maximalelement, but for

the I-functions 0 and l we cannot find an I-function g

as required by the definition. Onthe other hand this

I-operator is trivially weakly connected of degree 2,
since there are no subsets of more than two elements of

its tree-characteristic set that are independent.

23:, Anormal I-operator is weakly connected, if

it is weakly connected of degree m for some m. A normal

I-operator is disconnected, if it is not weakly connected.

From the remarks Just made it is easy to conclude

that all finite normal I—operators are weakly connected.

Examplesof disconnected I-operators are the binary

I-operators amdefined in the proof of Th.5.7, in the cases
that Mis infinite. we will prove that all standard

I—operators are weakly connected, but that not all weakly

connected normal I-operators are standard. we wil prove
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the last statement first.

Th.5.8. Not all binary weakly connected normal

I-operators are standard.

Proof: we consider the I-operators am for subsets
Mof N constructed in the proof of Th.5.7. we define a

binary operation C on the set of all independent couples

from (F2)2 by, C(f,g)= (0,0) . Then we take for all/\
MENthe closure S of C;* w.r. to C. The set SMhas all

M

the properties required for a tree-characteristic set.

8

Nowdefine for all MENbMas the normal I-operator with

tree-characteristic set SM.For all MENb“ is weakly con­
nected of degree 1, and for all M,L§N, if M#L, then bM#bL.
This implies that there are nondenumerably manybinary

weakly connected normal I-operators, and not all of these
can be standard.

The proof of this theorem shows that the sharpest

characterization we have as yet been able to give, is by

no means sharp enough. It seems that we need a more restric­

tive concept in the spirit of weakly connected. The set of

n-ary weakly connected I-operators is not even a closed

set, at least for nl3.(for binary I-operators wehave not
been able to prove this, for unary I-operators the whole

situation is special, as wewill see later).
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Th.5.9. The set of ternary weakly connected normal

I-operators is not closed.

Proof. Since &is a finite normal I-operator

.(Th.3.3). & is weakly connected. In fact &is weakly

connected of degree 1. we will nowconstruct two ternary

normal I-operators that are weakly connected of degree 1

of which the conjunction is disconnected. Define aN as in
the proof of Th.5.7. Then define the ternary I-operator

a‘ by, for all f5F3, reczf iff (fl,f2)cC** and for allan
p€D f3(p)=l. And we define the binary operations C andf!
C‘ on the set of independent couples from (F3)2 by

(0,0,l)(0,0,0)
C(f,g)= f’,z”‘\\\. and C'(f,g)= f,»”'\\\\_. Thenwe3 8

take the closures S and S‘ of Cgf w.r. to C and C‘. S and
3' again have all the properties required for tree­

characteristic sets and SnS'=C:f. This meansthat for
the normal I-operators b‘ and c’ defined by Cgf=S and

C:f=S', b'&c'=a'. But is clear that b' and c' are weakly
connected, while a‘ is not weakly connected. This means

that the set of ternary weakly connected normal I-opera­
tors is not closed.

As &,b' and c‘ are connected and a‘ is not, this

proof also shows that the set of all connected normal

I-operators is not closed. The proof shows too that we
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cannot prove that all standard I—operators are weakly

connected by a simple induction over the number of

occurrences of the symbols &,v,:>and'fl in the definition

of the I-operator, since, if a and b are weakly connected,

a&bis not necessarily so.
Th.5.10. All standard I-operators are weakly

connected.

Proof. By induction over the length of the definition

of the I-operator a. If a has length 1, then a=u? for some

i. u? is weakly connected of degree 1, since, if fl,f2€C;§
and f1,f2 independent, then the g defined by, gJ(mg)=0
for J#i (lgjén) and g= g(m has the required/g’\

11 1'2

Nowwe assume the theorem is valid for all standard

properties.

I-operators with length 5k, and we assume a has length

k+l. Wewill treat a as a=n(u?:u$). This means that we

have to look at the cases a=1(u$=u$), a=bvc, a=b=c and
a-b&c.

(i). a=1(u$>u$). In that case C;*=¢, and a is
trivially weakly connected of degree 1.

(ii). a=bvc. By the induction hypothesis b and c

are weakly connected, assume of degrees k and m. Wewill

prove that then a is weakly connected of degree k+m.

Assumef1,...,f independent and in C2’, then, sincek+m+l
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C;*=C;*UC;*,either if necessary after renumbering ‘
xx an

fl,...,fk+lgCb , or fl,...,fm+l€Cc . In both cases we
find a g as required.

(iii) a=boc. By the induction hypothesis c is

weakly connected, assume of degree m. Wewill prove

that a is weakly connected of degree m. Assumef1,...,fm+1

independent and in cggc, then there are two possibilities:

(1) for all i (l;i<m+l) f1€C§*; then the g we find

in 03* is also an element of cggc, O

(2) for somei (l;i;m+l) riicz; then take Jfii
(1;3;m+1) and define g= (0,0,...,O). Nowf1¢Cg* implies

f1 f3

f1¢Cg*, since fieCg*c. But then also g¢C;*, g¢C:*. This

implies that for all pEDg, if gp€C;*, then gp€C;*, so g€Cg*c.
(iv) a=b&c. There are three subcases:

11

J

connected of degree 1. The proof is similar to the one for
(1) b=u2, c=u for some i,j:n. Then a is weakly

case (1).

(2) b=b vb2, or c=c1vc . Then since (blvb2)&c=1 2

(bl&c)v(b2&c) and b&(c1vc2)=(b&cl)v(b&c2) and bl&c, b2&c,
b&c are weakly connected by the induction hypothe­1 and b&c2

sis, we can apply (ii) again.

(3) Since we can write (u?3u$)Du$ for u?, the only

case left to investigate is asfi¥af=bi). wewill give the‘I

proof for the case that m=2, it is easily seen that the
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proof for the general case is similar. By the induction

hypothesis bl,b2 and bl&b2 are weakly connected, assume
of respective degrees p,q,r. Assumes=Max(p,q,r), Then

we will prove that a is weakly connected of degree 3s+l.

Let us assume f1,...,f3#l is an independent se­
quence in Cg? Then (after renumbering if necessary) there
are four possible cases.

I. fl,...,fS+leC;:, f1,...,fS+1¢Cg§. Then
f1,...,fS+leCg:&b2, so we can find a g with the required

properties in Cg:&b2. Then gecgx, since Cg:&bg;C;*.

II. f1,...,fs+leCbl, fl,...,fS+ltCg;. Thenfor some

1,3 (l;i,J§s+1) g= E£mg3cCg:, so geC;;=bl. Now, since
‘T1 "J

f1tCg*, £15033, also grog; and'gtC§*.2 2

III. fl,...,fS+l£C;:, fl,...,fS+leCgg. Proof
similar to case II.

IV. f £C**, f tC**. Then take g= (0,0,...,O) and
1 b1 1 b2

again geC;*. I1 f2

The unary normal I—operators take a very special

place in the set of all I-operators. we are able to prove

that all unary normal I-operators are standard, since the

only infinite normal I-operator is uipui. This wewill
prove now in the following theorem.
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Th.5.ll. All unary normal I-operators are standard.

2393;, we define a sequence of the irreducible

I-functions wi(i-l,..., ) with the help of pictures in the

following way: won 1 , w1- 0 , w2- 0, for all 133
l

W1-‘"I:;”o\h1—3.

Wewill prove for all 139 that wi is tree-irreducible

and that for all 339, wdfiwiiff J=i or J31-2, by induction
on i. The statement is clearly true for i=O,l,2. Let us

assumek;3 and the statement is valid for all i<k.

wk= //,0\_ . According to the induction hypothesis
"k-2 "K-3

wk_2and wk_3 are tree-irreducible and wk_3£wk_2. If J>i,

then clearly wjéwi, so wk_3§wk_3. Then according to Th.5.2
wkis tree-irreducible. Nowassume Jgk-2, then there are

three possible cases: (1) Jgy-H, then w3§wk_2jwk,by the

definition of wk. (2) J=k-3, then wjjyk by the definition
of wk. (3) J=k-2, then wjjwk by the definition of wk. To

conclude, not wk_l§wk, since not wk_l§wk_2, wk_1§wk_3, and

not wk_l=wk.
Next we will prove that this sequence is complete

in the sense that all I-functions are equivalent to wi for
somenatural numbers. According to the Th.5.5 it is suffia

cient to prove that all tree-irreducible I-functions are
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congruent to wi for some i. we will prove this for
tree-irreducible I-functions f by induction on the depth
of f.

If f has depth 1, then f is clearly congruent to

either woor wl. It is also clear that for all 130,

w21_2 and w21_l have depth 1. Nowassume f has depth n>l,
and assume the statement we want to prove is valid for all

I-functions with depth <n. Assumefurther mf has immediate

predecessors pl,...,pk (kil). Thenfor all i (léiék) fpi
has depth <n, so according to the induction hypothesis

fpifwj for some J (0;Jé2n—l). There are now two possible

cases: (1) k=l. Then f(mf)=0, f(pl)=l, otherwise there

would exist an a-reduction of f w.r. to pl, mf. Then fp E1
51, then f is not tree-irreducible

and neither is f (Th.5.l). So f=w2. (2) kgg. Since for

l=w0, since, if not f

all i,J if 3:1-2 then wjiwi, according to Th.5.N k=2. That

the depth of f is n implies that fa ///,0\\b = wzn 1 or
"an-u "2n-3

f5 \ aw ­2 -2
W“'4'w2n-3 n

Nowwe define a sequence cij (i=l,...w,J=l,2)
of unary normal I-operators by their tree-characteristic

sets. C** =d. Cg“ -{w ];'r . . C** = 0 . For all i>2
°o1 02 6- 1,~--.-==- °12 "'

Cg:l‘{feF3 f§wi_l or f§w1_2}={w0,...,wi_l}. C::2={fcF: ffiw } =
{w0,...,w1_2,wi}. It is clear that this sequencecontains
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all unary normal I-operators. All these I-operators are

finite except cog, and c02=u$aui, so all unary normal
I-operators are standard according to Th.3.7.

But we will give here a simpler way of defining
1 1 l 1

the cij. wewill prove that c0l="(u£:u1), c02=uf:ul,
c11=u:,‘cl2=‘5 c2l=uiv7(ul), c22=77, and for all 133

cil=ci_l’2vci_2’2, ci2=ci_l,é=ci_2’l. This is evident
for col, coz, cll, e12 and c2l. f tree-irreducible and
feC€r,, iff for no gif geci, i.e. for no gif, g=0. This

is true only for w0,w2. And {w0,wé}=C: =Cg* , so indeed22 22
=71 Nowwe prove the last part by induction on i.C22

Assumem;3 and assume the definitions are valid for all

1<m. Then we have to prove cm1=cm_1,2vcm_2’2, which fol­
lows from C** =C§* uC** =C** (reasoning

ml m-1,2 m-2,2 °m-1,2"m-2,2

like in lemma 3.1 (c)). And we have to prove cm2=

cm_l,2=cm_2’1. To prove this last statement it is sufficient
to establish that wmeC** , w {C** , since

m2""°m-1 ,1 "‘‘'l
c=C
m2 m-1,1

Cg;2={wO,...,wm_2:wm}. According to the induction hypo­
xa xx - *a

thesis wm_1gCcm_1,2, wm,wm_2£Ccm-1,2, wm,wm_1,wm_2£Ccm-2,l

In the first place this implies wmléC** . Furthercm23°m-l,l
0

flmnw’,/’ \% and for all sub-I-functions f‘ofxwm_2that
m-2 m-3
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,ggCf* and ggC'* ; andare not congruent to w
m'2 “m-1,2 cm-2,1

W cCg* and w eC** . All this imp1ies.that
“-3 m-l,2 “'3 °m-2,1

1 d d c** 1 r 11 D 11‘ )
n ee Wmecm-l,2:cm-2’l, s nce or a pa wm, (wmpa

C‘* , then (w ) eC** .
°m-1 ,2 m °m-2 ,1

Nowwe are able to give a sequence of formulas

that comprises all equivalencezclasses of formulas formed

from a single atom A. The formulas here seem to have the

shortest length possible. (See for a very similar result
[19]). ’

(-u4:A=A)v( ("7'7A=>A:-(Av-:A ((*1-:A=>A):>(Av1A) ):>(-1Av'r1A)

(7wA3A)=(AvqA))9(7Av77A))v
(¢r1A=A)9(Av1A))

>'U9-..--..--. >­
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In the last part of this chapter wewill give a

short description of howwe can generalize our concepts
.to In-functions with infinite domains. Wewill restrict

our attention to countable domains. The generalization

to higher cardinalities is easy to make.
Let B‘ be the set of all P.O.G.-sets from A.

233. An“II-function is a function with domain a

P.O.G.-set PcB' and range the set {0,l} with the property:

for all p,p'eP, if p';p and f(p)=l, then f(p')=l.
Wecan now define the concepts of II”-function,

congruenceof II“-functions, II-operator, ordered II­
operator, and characteristic set of an II-operator in exactly

the same way as in Chapter II. we write Dr for the domain
of an II”-function f, In for the set of all II”-functions,
I for I1. The generalization of the notions of normal

form, equivalence and normal I-operator gives somediffi­

culties. If we define normal form in the same way as for

Inefunctions, by meansof reductions, then not all II“­
functions have a normal form. Th.2.2 is not valid for in­

finite partially ordered sets. E.g. take <N,£1>where for

all m,ngN, miln iff n=O, and the set {0,l} with the normal
ordering. Then there is a strongly isotone function from

N onto {0,l} (for all n ¢(n+l)=0, ¢(0)-1), but {0,l} cannot

be reached from <N,§1> by reductions. Wesucceed in
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defining a normal form with the help of the strongly isotone

functions. Wecan define the concept of reduced form in the

same way as in Chapter II. we then give a definition sugges­

ted by Th.2.l. Cor.2. ¥
233. AnIIn—function is irreducible, if for any gel”,

if g is a reduced form of f, then gsf.

ggg. An II“-function g is a normal form of the 11“­

function f, if g is a reduced form of f, and g is irreducible.

Wehave not succeeded in giving a direct proof of an

equivalent of the uniqueness theorem Th.2.3. But we can give

an indirect proof based on Th.fl.6 of [:7].

.'I'h.5.12. ('I‘h.ll.6 of E31.) If P and Q are partially
ordered sets, then 5 is a complete subalgebra (i.e. a sub­

‘algebra w.r. to\;,n,¢,-,L}andf)) of F iff there exists a
strongly isotone mapping from P onto Q. In fact, if ¢ is a

strongly isotone function from P onto Q, then the subalgebra

A of 5 defined by, A={acF: for all p,qeP if pea and ¢(p)=¢(q)

then qga}, is isomorphic to 5 and forms a complete subalgebra
of‘F.

Th.5.l3. If f,ggIn and g is a reduced form of r, then

5- is isomorphic to a complete subalgebra of Dr that contains

for all i (léifin) the elements ai={peDf: f1(p)=l}.
Proof. According to Th.S.l2, if g is a reduced form

of f by ¢, then 5; is isomorphic to the complete subalgebra
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of 5; formed by the set A of elements «{5} with the property

that for all pea, qgDf, if ¢(p)=¢(q), then qea. Assumefor

some 1 (1_<_i_§_n)peai and ¢(p)=¢(q). Then f(p)=g(¢(p))=

g(¢(q))=f(q). So, since f1(p)=l, also f1(q)=l, and qeai.

So we have proved that for all i (l§i;n)a1gA.
The next theorem besides giving us the necessary

apparatus to prove that the normal form is unique up to con­

gruence, also gives us some more insight in the results of

Chapters II and III.

Th.5.lH. If f,8eIn, and g is a normal form of f,

then 5;’ is isomorphic to the complete subalgebra of 5;

generated by the elements a1={DeDf:f1(p)=l} (léién) (i.e.

the smallest complete subalgebra containing the g1) and if

mis the isomorphismthen for all reDg, g1(r)=l iff rsw'l(ai).

Egggf. 5; is isomorphic to a complete subalgebra A
of 5;. If B is the complete subalgebra of Dr generated by

the g1, then BEA. Now, according to Th.S.l2 there is a

strongly isotone function ¢ from Dg onto 30. There is an
II“-function h definable on B0 by, for all reB0, h(r)=g(s),

if s is such that ¢(s)=r. This is a proper definition, for

assume s,s'gDg,¢(s)=¢(s'), and assume g1(s)=l for some

1 (1_5_1;n). Then smi, and by Th.5.l2 applied to '1')‘;and 3,

s'5ai, so g1(s')=l. By the samereasoning, if g1(s')=l then
g1(s)-l, for all i (léiin). This meansthat we have proven
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g(s)=g(S'). So h is properly defined and h is a reduced

form of f. As g was assumed to be irreducible it follows

that g h, and DEis isomorphic to B. The last part of
the theorem now follows immediately.

Th.5.l5. If f,g,hgIn, and g and h are normal forms

of f, then gsh.

£5333. Immediate from the Th.5.lU, since, in the

first place, both D8 and 5; are isomorphic to the same

subalgebra B of 5;, so DEand Dh are isomorphic (Th.h.fl),
and in the second place, both f and h are determined by

the partial ordering of the ai in B.
Th.S.lS enables us to define the concepts of equiva­

lence, normal II-operator and normalized characteristic

set in the same way as in Chapter II. Also, the concept of

standard II-operator can be defined in the same way as in

Chapter III.

_Ig_c_e_I_‘_.If J has cardinality n<,.and {ai}‘.‘J_ is a set of

normal II—operators, then £L;./3_(ai).(Q_(ai)) is defined as

the II-operator with normalizedcharacteristic set{i;(C;i)

9Q¥C;1)). we call these "generalized" II-operatorstthe
nidisjunction and K-conjunction.

Egg. A quasi-standard II-operator is an II-operator
the intersection of the sets G of II-operators such that

(1) G contains all standard II-operators, (2) J'has car­
cgw , Udinality K: 2 and for all ieJ, aieG, implies _Jfiai)eGat

‘('14.
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andfl(a1)£G .££J'
Def. For any cardinal K theuset of K—pseudo—BooZean

terms is the intersection of all sets T such that (1) ¢,B,

y,al,a2,...,8l,82,...eT, (2) if Uand Vare in T, then uuv,
Unv, U¢Vand—-Uare in T, (3) if J has cardinality énaand

for all ie:J, UieT, then £%UieT and2QUieT.
Lemma5.H. If the pseudo-Boolean algebra A has

cardinality 2m’ and A is generated by {cl,...,aa} , then
all elements of A can be written as in -pseudo-Boolean

termsin al,...,un.
' Proof. we can define a function from the set of

atomic terms onto the set {a1,...,ar;§ . Then according to
the recursion principle for terms (3.2.l of [/cfl) there is

a homomorphism from the set of 2m'—pseudo-Boolean terms

into X that.is an extension of this function; It is clear
that the range of this mapping is a complete subalgebra

of A containing al,...,an. Fromthis the lemmafollows
immediately.

Th.5.l6. All normal II-operators are quasi—standard.

figggg. If a is a normal II-operator, then a has some

}é£J_. {g1}m=£$],{reI“= r_<_gi1.

are the normal II-operators with C§i=

normalized characteristic set {gi
so, if for all ieJ al

{fcIn' ffgi}, then a?E¥(ai). So we only have to consider9

the normal II-operators that have a normalized characteris­

tic set with a greatest element. Let us assume then that
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C;={feIn: fig} for some irreducible g. Then 5;’ is gener­

ated by the gi={qgDg: g1(q)=1} isfiiép). This means that
flD——.=Dg=U(al,...,an) for some 2 °-pseudo-Boolean term U in

a1%...,ah, agcording to Lemma5.U, since 5; cannot have
more than 2 ‘elements. Assumethat {Ui}i€J is the set of
all pseudo-Boolean terms with this property. J then has at

most cardinality 2(zF¢. Assumethat, for all ieJ, ai is

the normal II-operator corresponding to U1. (It is obvious
that all quasi-standard II-operators are normal by the same

reasoning as in Th.3.6.) Then wewill prove that ajézai.
If we write V= U then we have to show that f<g iff1:

V(51,...,3n)=Df where , for all i, 31 is defined as

{pgDf: f1(p)=l}. First assume fig. Without losing gener­

ality we can assume that f=gq for some qeDg. Then Df=Dg(q)

and '5'; is a relativization of '15;(see Th.3.5 of [9 J).

Then there is a complete homomorphismfrom 5; onto 5;
("complete" meaning a homomorphismalso w.r. to the

infinite operations) defined by, for all_5g , ¢(a)=anDf.

This implies, for all i (lfiifp), that‘¢(u1)=Bi. And,.since

¢ is a complete homomrphism, U(Bl,...,gn)=Df. Nowassume

fig. Then take an irreducible II-function h such that

fjh and gfh. we again assume without losing generality

that f-he and g-h for some s,teDh. Let fort!
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all 1 (1;1;n) yi= {reDh: hi(r)=l}. Then by lemma5.u

for some 2&'—pseudo-Boolean term W, w(Yl,...,Yn)=Dg.

But then in 5;'W(al,...,an)=Dg. So for some 1eJ, w=Ui.
D-I:

Th.5.l7. The unary normal II-operators consist

of the standard I-operator, and the II-operator Licie.‘I’

Proof. It is easy to check that this system ofo f
O.­

II-operators is closed under the operations of &,vy=,fl,

(LU.

’ (4A%w—
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