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5 Kolmogorov–complexity

Undoubtedly, the notion of Kolmogorov–complexity (sometimes called descriptive, as
opposed to computational complexity), with its attendant complexity–based definition of
randomness, is the most important development stimulated by von Mises' attempt to define
Kollektivs. The virtues of Kolmogorov–complexity seem to reside in the fact that it allows a
discussion of randomness at a more basic level. Indeed, the intuition behind its definition
stems from a tradition, going back to Antiquity, which views the essence of chance as
(objective) unpredictability or irregularity. So far, of course, we have been concerned with a
form of randomness in which irregularity coexists with statistical regularity. In later life,
Kolmogorov came to regard the relation between these two forms of chance as the problem for
the foundations of probability.

In everyday language we call random these phenomena where we cannot find a regularity
allowing us to predict precisely their results. Generally speaking there is no ground to believe
that a random phenomenon should possess any definite probability. Therefore we should
have distinguished between randomness proper (as absence of any regularity) and stochastic
randomness (which is the subject of probability theory). There emerges a problem of finding
the reasons for the applicability of the mathematical theory of probability to the real world
[51,1].

Elsewhere, he writes

In applying probability theory we do not confine ourselves to negating regularity, but from
the hypothesis of randomness of the observed phenomena we draw definite positive
conclusions [50,34].

Roughly speaking, irregular sequences are distinguishable from those which show
irregularities and statistical regularities by the following property: in the latter type of
sequences, the Kolmogorov–complexity of an initial segment divided by the length of that
segment tends to stabilize. This phenomenon illustrates one of the technical advantages of
Kolmogorov–complexity: not only does it classify sequences as random or otherwise, but it
also assigns "degrees of randomness" to sequences. This is particularly useful when we study
infinite sequences; it allows us, for instance, to discriminate between ∆2 definable and "truly"

random sequences. It must be admitted, however, that Kolmogorov himself considered infinite
sequences to be irrelevant for the foundations of probability; indeed, his main motive for
developing a measure of complexity for finite sequences was his conviction that only a
frequency interpretation in terms of finite sequences is worthy of the name.

The themes introduced above determine the structure of this chapter. Sections 5.1–3 are
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concerned with finite sequences. In 5.1 we define Kolmogorov–complexity and irregular
sequences. It will turn out that a slight modification of Kolmogorov's definition, first proposed
by Chaitin and Levin, has some conceptual and technical advantages. In 5.2 we discuss
Kolmogorov's explanation of the applicability of probability theory. 5.3 collects some
recursion theoretic properties of the complexity measures introduced in 5.1 and contains a
critical discussion of Chaitin's claim that Kolmogorov–complexity sheds light on the
incompleteness of formal systems. We then turn to the investigation of infinite sequences. In
5.4 we first characterize (Martin-Löf) randomness in terms of Chaitin's complexity measure,
but the full power of this complexity measure (namely, as an indicator for the degree of
randomness) is revealed only when we study complexity oscillations. Here, we meet various
sources of unavoidable order in infinite sequences. The same theme, complexity as degree of
randomness,  dominates 5.5, where we compare complexity with more traditional measures of
disorder, in particular (topological and metric) entropy. Lastly, in 5.6 we look back to Chapter
2 and define admissible place selections using Chaitin's complexity measure. The purpose of
the first three sections is expository; apart from the critical discussions they do not contain any
new material. The main novelty in 5.4 is that ∆2 definable sequences always must have "low"

complexity. This result allows a very simple proof of a theorem on complexity oscillations
due to Martin-Löf. The results in 5.5 on the relation between complexity and topological
entropy appear to be new.

5.1 Complexity of finite strings  The intuition behind the definition of complexity of finite
strings can be stated in various ways. One might say that if a sequence exhibits a regularity, it
can be written as the output of a (simple) rule applied to a (simple) input. Another way to
express this idea is to say that a sequence exhibiting a regularity can be coded efficiently,
using the rule to produce the sequence from its code. Taking rules to be partial recursive
functions from 2<ω to 2<ω, we may define the complexity of a word w with respect to a rule A

to be the length of a shortest input p such that A(p) = w. Sequences with low complexity (with
respect to A) are then supposed to be fairly regular (with respect to A). In order to take
account of all possible rules (i.e. partial recursive functions), we then use a universal machine.
One obtains different concepts of complexity by imposing additional restrictions on the
functions A. We begin with Kolmogorov–complexity, where no such restrictions are imposed.

5.1.1 Kolmogorov–complexity

5.1.1.1 Definition  Let A: 2<ω → 2<ω be a partial recursive function with Gödelnumber A .
The complexity  KA(w) of w with respect to A is defined to be
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KA (w)  =  {
∞  if there is no p such that A(p) = w

|p|  if p is a shortest input such that A(p) = w.

A universal machine U is said to be asymptotically optimal if it is specified by the requirement
that on inputs of the form q = 0 A 1p (i.e. a sequence of A  zeroes followed by a one,
followed by a string p), U simulates the action of A on p. Fix a Gödelnumbering and an
asymptotically universal machine U and put K(w) := KU(w). K is called the Kolmogorov–

complexity of w (Kolmogorov [48–51]). Inputs will also be called programs.

The fundamental properties of Kolmogorov–complexity are stated in the papers by
Kolmogorov cited above, in the survey article by Levin and Zvonkin [54] and, in a slightly
different form, in Chapter 15 of Schnorr's [88]. Clearly, we have

5.1.1.2 Lemma  (a) For any partial recursive A: 2<ω → 2<ω and for all w, K(w) ≤ KA(w) +

A  + 1; (b) for some constant c and for all w, K(w) ≤ |w| + c.

Before we put the above definition to work, let us remark that complexity measures are not
restricted to finite words over the alphabet {0,1}; any alphabet n = {0,..,  n–1} will do. We
only have to replace the functions A: 2<ω → 2<ω by functions which have as their range nω.

Identifying a natural number with its binary representation, it makes sense to speak of the
complexity of natural numbers. Similarly, given some recursive bijection 2<ω → 2<ω×2<ω, it
makes sense to speak of the complexity of a pair of binary strings.

We now embark upon the promised definition of regular and irregular sequences. First
suppose that K(w) << |w|; then for some algorithm A and input p such that both A and |p| are
small compared to |w|, A(p) = w. In this case, we say that w exhibits a (simple) regularity.
How small K(w) has to be is a matter of taste. Since we shall consider regularity only in
connection with infinite sequences (cf. section 5.5), we shall not be precise here. On the other
hand, it is worthwhile to develop a theory of irregularity for finite sequences. Recall that for
some c, K(w) ≤ |w| + c. We wish to say that w is irregular if it is maximally complex.
Formally:

5.1.1.3 Definition  Fix some natural number m. A binary string w is called irregular if |w| > m
and K(w) > |w| – m.

The definition of irregularity is relative to the choice of m, but this is inessential for our
(highly theoretical) purposes.
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A note on terminology What we call irregular is usually called random. The reason that we
prefer the term "irregular" over "random", is that we have used randomness so far in a
stochastic sense; but the intuition behind Kolmogorov's definition is combinatorial rather than
stochastic. This will become particularly clear when we generalize this intuition to irregularity
for binary words known to belong to a recursively enumerable subset  of 2<ω. It is possible to
put a condition on the complexity of a word w which implies that w is approximately a
Kollektiv with relative frequency (of 1) equal to p. However, this condition is stochastic from
the outset, in the sense that it explicitly mentions a measure (cf. 5.2). Only when the measure
is Lebesgue measure is the condition for stochastic randomness identical to the condition for
irregularity; but this reflects the fact that Lebesgue measure is a so–called maximum entropy
measure for the system (2ω,T). We shall come back to this topic in 5.5. In 5.1.4 the two
aspects of definition 5.1.1.3, the combinatorial and the stochastic, will be separated; in 5.4.
and 5.5 we investigate the corresponding definitions of randomness.

A simple counting argument will show that infinitely many irregular sequences exist. In the
sequel, the expression "#A" always stands for the cardinality of the (finite) set A.

5.1.1.4 Lemma  (a) #{w∈2n| K(w) ≤ n–m} ≤ 2n–m+1–1; (b) #{w∈2n| K(w) > n–m} > 2n·(1 –

2–m+1)

Proof  (a) The number of programs on U of length ≤ n–m is ≤ 2n–m+1–1. Hence (b) at least 2n

– 2n–m+1 = 2n·(1 – 2–m+1) sequences in 2n satisfy K(w) > n–m.                             

Note the extreme simplicity of the argument: it can be formalized in any formal system
capable of handling finite sets of integers. This is to be contrasted with the fact, proved in 5.3,
that the set of irregular sequences contains no infinite recursively enumerable subsets.

5.1.2 Chaitin's modification  While definition 5.1.1.1 captures the basic idea of a complexity
measure for sequences, it is open to dispute whether it is really the most satisfactory
definition. The intuition behind the definition is supposed to be that if p is a minimal program
(on U) for w (i.e. a program of shortest length), then the bits of p contain all information
necessary to reproduce w on U. But this might well be false: U might begin its operation by
scanning all of p to determine its length, only then to read the contents of p bit for bit. In this
way, the information p is really worth |p| + log2|p| bits,  so it's clear we have been cheating in

calling |p| the complexity of p.

Chaitin [12–14] and Levin [55] independently observed that we may circumvent this problem
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if we modify the construction of our Turing machines. We shall follow Chaitin's description.
From now on, Turing machines are assumed to have worktapes, a read–only input tape and a
write–only output tape. Furthermore, we constrain the reading head (operating on the input
tape) to read the input in one direction only and we do not allow blanks as endmarkers. We
say that a machine M (of this type) performs a successful computation on input p if M halts
while the reading head is scanning the last bit of p. The fact that we defined a successful
computation using the last bit of p and not the first blank following p means that p must itself
indicate where it ends; in other words, p must be a self delimiting program. Formally, this
means that the domain of M, that is, the set of p such that M performs a successful
computation on p, is prefixfree: if p and q are both in the domain of M, then neither is an
initial segment of the other. We may now introduce

5.1.2.1 Definition  A prefix algorithm is a partial recursive function A: 2<ω → 2<ω which has

a prefixfree domain.

To define a reasonable complexity measure associated with prefix algorithms, we need a
universal prefix algorithm. At first sight it might seem that no such algorithm exists, since the
set of Gödelnumbers of prefix algorithms is ∏1. But there exists nonetheless a recursive

enumeration of the set of prefix algorithms, as follows. We construct an algorithm P which
turns any number e into a Gödelnumber for a prefix algorithm P(e). Given e, generate the
domain of the function φe with Gödelnumber e. A partial recursive function φP(e) with
Gödelnumber P(e) is determined by the following prescription: φP(e) equals φe except for those
q ∈ domφe which are initial segments or prolongations of previously generated p ∈ domφe. If
one of these cases occurs, φP(e)(q) is undefined. By construction, φP(e) is a prefix algorithm and

all prefix algorithms have at least one Gödelnumber which occurs in the range of P. Hence the
set of prefix algorithms, as opposed to the set of their Gödelnumbers, is recursively
enumerable. (In other words, range(P) is not "extensional".)

We may now define a universal prefix algorithm as in definition 5.1.1.1: on inputs of the form
q = 0 A 1p, U simulates the action of A on p, where A is a prefix algorithm. We put

5.1.2.2 Definition  Let A: 2<ω → 2<ω be a prefix algorithm with Gödelnumber A . The
complexity  (also called information) IA(w) of w with respect to A is defined to be

IA (w)  =  {
∞  if there is no p such that A(p) = w

|p|  if p is a shortest input such that A(p) = w.

If U is the universal prefix algorithm constructed above, we let I(w) := min {|p|| U(p) = w}.
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This definition is due to Chaitin [12;13]; the notation "I(w)" derives from the formal
similarities of this complexity measure with Shannon's measure of information. Indeed, the
complexity measure I is not only conceptually cleaner than K, it has also a number of
technical advantages, as will become gradually clear in the sequel. We first state some
fundamental properties, parallel to those of K.

5.1.2.3 Lemma  For some constant c and for all w: I(w) ≤ |w| + I(|w|) + c.

Proof  Let A be the following algorithm: given input p, it simulates the action of the universal
machine U on some initial segment q of p such that U(q) is defined; if m is the natural number
determined by U(q), A reads the next m bits of the input tape and copies them on the output
tape. By our conventions on a successful computation, A(p) is defined only if |p| = |q| + m; this
turns A into a prefix algorithm. Now if q is a (minimal) program for |w|, then A(qw) = w and
I(w) ≤ IA(w) + A  + 1 ≤ |w| + I(|w|) + A  + 1.                       

Here we see clearly the distinguishing feature of the new algorithms: acceptable inputs must
themselves indicate where they end, hence the extra I(|w|)-term.

5.1.2.4 Lemma  (a) for some constant c: #{w∈2n| I(w) ≤ n + I(n) – m} ≤ 2n–m·c; (b) for some
constant c: #{w∈2n| I(w) > n + I(n) – m} > 2n·(1 – 2–m·c).

A proof of this lemma may be found in Chaitin [12,337] (and in 5.1.3 we shall derive 5.1.2.4
from a property of conditional complexity). It should be noted that, whereas the corresponding
result for K was trivial, the proof of 5.1.2.4 is rather involved. This fact may add fuel to a
nagging suspicion on the reader's part, that Chaitin's definition introduces only gratuitious
complications. This impression, however, is mistaken; although proofs are sometimes more
difficult, theorems and formulae generally take on a pleasanter aspect. One example will be
given below; we shall meet another instance of this phenomenon in 5.1.3, where we define
conditional complexity.

5.1.2.5 Example  The main technical advantage of I lies in the fact that desirable results which
hold for K only with logarithmic error terms, are now true within O(1). E.g. for K we have
only: K(<v,w>) ≤ K(v) + K(w) + min[log2K(v),log2K(w)] + O(1), but the formula for I is

more intuitive:

Claim  For some constant c, for all v,w: I(<v,w>) ≤ I(v) + I(w) + c.

Proof of claim  Let A be the prefix algorithm which does the following. On input s, it sets U
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reading s; if U performs a successful computation on s, it outputs U(s). If U halts while
scanning the last bit of some proper initial segment s' of s, it stores U(s') on its worktape and
continues reading s'', where s = s's''. If U halts again scanning the last bit of s'', A outputs
<U(s'),U(s'')> and stops. Simulating A on U we get the desired result.       

The root of the superiority of I over K can thus be traced to the circumstance that we may
concatenate self delimiting programs; we only have to add a couple of bits which tell the
machine that it must expect two (or more) programs (this is what simulating A on U means).
One immediate application of the above formula for the complexity of a pair will illustrate its
force: if T is the leftshift on 2ω, we have for some constant c and all x in  2ω,

         I(x(n+m)) ≤ I(x(n)) + I(Tn(x(n+m))) + c.
The sequence of functions fn(x) := I(x(n)) thus forms a subadditive sequence and by the

subadditive ergodic theorem1, we have that for any ergodic measure µ there exists a constant
H such that

lim
n→∞ n

I(x(n))
  =  H  µ–a.e.

(It is, however, notoriously difficult to identify the limit of a subadditive process; eventually,
in 5.5.2, we shall show that H equals the metric entropy of µ, but via an entirely different
route.) These considerations justify calling the property of I stated in claim 5.1.2.5
subadditivity. End of the example.

Parallel to definition 5.1.1.3 we have

5.1.2.6 Definition  Fix a natural number m. A binary word w is irregular if I(w) > |w| + I(|w|)
– m.

By lemma 5.1.2.4, the great majority of binary strings is irregular.

Before we turn to conditional complexity, we introduce an important technical tool. Since we
defined I by restricting the class of admissible algorithms to those with a prefixfree domain,
we need some criterion to decide whether a certain task can be performed by a prefix
algorithm. Almost trivially, we have

5. 1. 2. 7 Lemma   (a) If A is a prefix algorithm, then  ∑
A(p) defined

 2–|p| ≤ 1. (b)  ∑
w∈2<ω

 2 I(w) ≤ 1.
–

Proof   (a) The cylinders in {[p]| A(p) defined} are pairwise disjoint.  (b)  Apply (a) to the
universal prefix algorithm.                                                                                                 
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Part (a) of the following lemma, to be called the Chaitin–Kraft inequality2 is a converse to
lemma 5.1.2.7.

5. 1. 2 . 8  Lemma  (a) Let S be an r.e.  set of pairs <w,m> such that  ∑
<w,m>∈S

 2–m  ≤ 1.  Then there

exists a prefix algorithm A with the property: <w,m> ∈ S iff ∃p (|p| = m & A(p) = w).

(b) Simulating A on the universal machine, we have for all <w,m>∈S: I(w) ≤ m + A + 1.

For a proof, see Chaitin [12,333]. Part (b) will be our main tool in deriving upper bounds on I.
Here is a useful consequence of lemma 5.1.2.8:

5. 1. 2. 9 Lemma  Let f: ω → ω be a total recursive function   ∑
n

 2–f(n) = ∞

 ∀m ∃n≥m (I(n) > f(n) + m).  (b)

. (a)  If ,  then

If  ∑
n

 2–f(n) < ∞,  then  ∃m ∀n (I(n) ≤ f(n) + m).

Proof  (a) follows from part (b) of lemma 5.1.2.7.  To prove (b), determine k such that

∑
n≥k

2–f(n) ≤ 1.  Lemma 5.1.2.8 (b),  applied to the r.e. relation {<n,f(n)> | n ∈ ω} yields a

constant m0 such that for n ≥ k: I(n) ≤ f(n) + m0.  Put m1:= max{I(n) | n≤k}. Then for all n:

I(n) ≤ f(n) + m.                                                                                                                      

In conclusion of this subsection, we mention a result on the relation between K and I due to
Solovay [93]. Obviously, for all w: K(w) ≤ I(w).

5.1.2.10 Lemma  For all w, I(w) = K(w) + K[K(w)] + O(log2K[K(w)]).

The intuitive meaning of this expression is, that it takes K[K(w)] + O(log2K[K(w)]) bits to

turn a minimal program for w into a self delimiting program.

5.1.3 Conditional complexity  In Chaitin's set–up, conditional complexity comes in two
varieties. The most straightforward definition is the following. We consider algorithms B(p,q)
in two arguments p and q, which can be thought of as being presented on the input tape and a
work tape, respectively, of a Turing machine. Such an algorithm is called a prefix algorithm if
for each q, the set {p| B(p,q) defined} is prefixfree. We shall use U interchangeably for both
the one–argument and the two–argument universal prefix algorithm.

5.1.3.1 Definition  I0(w|v) := min{|p|| U(p,v) = w}.



131

For the second variant, denoted I(w|v), we demand that U is presented, not with v itself, but
rather with a minimal program for v.

5.1.3.2 Definition  I(w|v) := min{|p|| U(p,v*) = w}, where v* is some minimal program for v.

It will be seen in the sequel that both notions are useful. Some easy facts:

5.1.3.3 Lemma For some constant c and all w: I0(w||w|) ≤ |w| + c.

Proof  The algorithm B defined by B(w,|w|) = w is a prefix algorithm in the new sense.   

5.1.3.4 Lemma For some constant c and for all w: I(w||w|) ≤ I0(w||w|) + c.

Proof  Consider the following prefix algorithm B: on being presented with <p,q>, it calculates
U(q); if and when this computation halts, it calculates U(p,U(q)). Hence if p is a program such
that U(p,|w|) = w, then B(p,|w|*) = w.                                                            

The difference between the two notions of conditional complexity is brought out by the
following lemma:

5.1.3.5 Lemma  (a) I0(w||w|) – I(w||w|) is unbounded; (b) For some constant c and all w:
|I(w||w|) – I0(w|<|w|,I(|w|)>)| ≤ c.

A proof may be found in Chaitin [12,338]. The main difference between I and I0, however, is

that the former satisfies

5.1.3.6 Lemma  For some constant c, for all v,w: |I(w|v) + I(v) – I(<w,v>)| ≤ c.

This formula is proved in Chaitin [12,336] and is desirable if we think of I as giving the
information of a string. As an application of the preceding lemma, we may now prove lemma
5.1.2.4 (a): for some constant c, #{w∈2n| I(w) ≤ n + I(n) – m} ≤ 2n–m·c.

Observe that for some constant d, all n and all w in 2n: |I(<w,n>) – I(w)| ≤ d.
This observation, taken in conjunction with the lemma 5.1.3.6, enables us to write (for some
constant c): #{w∈2n| I(w) ≤ n +I(n)–m} = #{w∈2n| I(w) – I(n) ≤ n – m} ≤ #{w∈2n| I(w|n)≤
n–m–c}(we apply 5.1.3.6 to the pair <w,n>).
But #{p| |p| ≤ n – m – c & U(p,n) defined} ≤ 2n–m–c+1.

5.1.4 Information, coding, relative frequency  In the previous subsection, we studied the
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effect of using the information contained in a word v upon the complexity of a word w. We
now show how to take in account extraneous or global information, namely, knowledge of a
recursively enumerable subset of 2<ω to which a given word belongs, or knowledge

concerning the probability of a word, as given by some computable probability distribution.
We first make explicit the relation between complexity and coding, which was used to
motivate the definition of complexity in 5.1.1; the effect of the extra information may then be
explained in terms of coding procedures.

5.1.4.1 Definition  A prefix code is a prefix algorithm (in the sense introduced in 5.1.3)  A:
2<ω×ω → 2<ω such that for all n, {w| ∃p (A(p,n) = w)} ⊆ 2n. Note that A is given n itself, not

a minimal program for n.

A prefix code A provides for each n a coding scheme for the binary words of length n which is
uniquely decipherable: the requirement that A be a prefix algorithm ensures that any sequence
of length n·k can be coded into a uniquely decodable concatenation of k codewords. Observe
that any prefix algorithm can be transformed into a prefix code by a suitable restriction of its
domain. For instance, if U is the universal prefix algorithm, we may define a prefix code U*
by setting U* equal to U on domU* = {p| ∃w (U(p,|w|) = w)}. U* embodies many different
coding schemes. The expression I0(w||w|) = min{|p|| U*(p,|w|) = w}, where I0 was defined in

5.1.3.1, gives the length of the shortest code for w with respect to U*. The expression
I0(w||w|)/|w| might be called the compression coefficient of w; it measures how efficiently w

can be coded, using the universal coding U*. In section 5.5 we shall derive various asymptotic
estimates on the compression coefficient.

The fact that U* embodies many different coding schemes will now used to derive upper
bounds on I in the presence of extraneous information. The following lemmas may be seen as
elaborations of two aspects of the definition of irregularity (5.1.2.6). We motivated this
definition as follows: a finite binary sequence w was judged to be irregular if its complexity is
close to the theoretical upper bound |w| + I(|w|). But this upper bound can be interpreted in at
least two ways: if |w| = n, then n is the logarithm of the cardinality of 2n, or minus the
logarithm of the probability of w on the uniform distribution. The first lemma elaborates the
first interpretation.
5.1.4.2 Lemma  Let S ⊆ 2<ω be an r.e. set of words, Sn := S∩2n, #Sn the cardinality of Sn.
Then for some constant c, for all n and for all w ∈ Sn:

I0(w|n) ≤ [log2#Sn] + c and I(w|n) ≤ [log2#Sn] + c.

As a consequence, for some constant d and all w ∈ Sn:
I(w) ≤ [log2#Sn] + I(|w|) + d.
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Proof  For each n, order the words in Sn lexicographically and enumerate them in this order. If
p is the ordinal number of a word w in Sn, we may consider p to be a binary string of length
[log2#Sn] + 1, by adding if necessary zeros to the left of the ordinal number p, written in
binary notation. Now define an algorithm B as follows. If |p| = [log2#Sn] + 1, then B(p,n) is
the pth word in Sn. By construction, B is a prefix algorithm in the sense of 5.1.3. Hence for
some c, for all n and w in Sn: I0(w|n) ≤ [log2#Sn] + c. To get I(w|n) ≤ [log2#Sn] + d, replace B

by B' defined as follows: B'(p,q):= B(p,U(q)), where U is the universal prefix algorithm.  To
get the upper bound on I(w), apply lemma 5.1.3.6.             

5.1.4.3 Lemma  Let µ be a computable measure on 2ω.  Then for some c and all w:
I0(w||w|) ≤ [–log2µ[w]] + c and I(w||w|) ≤ [–log2µ[w]] + c.

As a consequence, for some c and all w:
I(w) ≤ [–log2µ[w]] + I(|w|) + c.

Proof  Since for each n

∑
w∈2n

 2
–[-log2µ[w]] –1

 ≤ 1,

we can, using the Chaitin–Kraft inequality, construct prefix algorithms An, uniformly in n,

such that

∀n ∀w∈2n ∃p (|p| = [–log2µ[w]] – 1  &  An(p) = w).

Defining B by B(p,n) := An(p), we see that for some c and all w:
I0(w||w|) ≤ [–log2µ[w]] + c

and if we put B'(p,q) := B(p,U(q)), we get for some c,
 I(w||w|) ≤ [–log2µ[w]] + c.

The upper bound on I(w) follows again by applying lemma 5.1.3.6.                                  

As we said above, both lemmas can be seen as generalizations of lemma 5.1.2.3:

for some constant c and for all w: I(w) ≤ |w| + I(|w|) + c,

corresponding to different interpretations of the expression "|w|". For n = |w| denotes not only
the length of w ∈ 2n, but is also equal to #log2Sn if S = 2<ω (this observation leads to lemma
5.1.4.2) and to [–log2λ[w]] (which leads to lemma 5.1.4.3). The upper bound of lemma 5.1.2.3

is not always sharp; in particular, additional information on w may lead to a sharper estimate
on I(w). The above two lemmas are cases in point.
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Lemma 5.1.4.2 says roughly that if we know that w belongs to S, to specify w completely it
suffices to give n (with cost I(n)) and then the ordinal number of w in Sn (with cost ≤
[log2#Sn] + 1). This might be called the combinatorial or topological aspect of I. The reason

for this nomenclature will become clear in 5.5, when we discuss the relation of I to topological
and metric entropy.

On the other hand, lemma 5.1.4.3 is based on the idea that words which have large probability
(with respect to µ) can have short codes, at the expense of words with small probability, which
must then receive long codes. This could be called the metric aspect of I. To give the reader an
idea of the size of the upper bounds obtained in this way, we need the following corollary of
the Shannon – McMillan – Breiman theorem. Unexplained concepts are defined in section 7.

5.1.4.4 Theorem  (Petersen [82,263] Let µ be an ergodic measure on 2ω with entropy H(µ).
For all ε > 0 there exists n0(ε) such that for n ≥ n0(ε), 2n can be partitioned into two sets Bn (of
"bad words") and Gn (of "good words") which satisfy
(1) µ[Bn] < ε;
(2) for all w ∈ Gn, 2–n(H(µ)+ε) < µ[w] <2–n(H(µ)–ε).
In other words, if we know that w belongs to the "good" words of µ (for given ε), then the
upper bound on I(w) is given by I(w) ≤ (H(µ)+ε)·|w| + I(|w|) + c. For "bad" words the upper

bound of lemma 5.1.4.3 may be much worse than that of lemma 5.1.2.3.

With these two interpretations on the upper bound of I at our disposal, we may develop the
fundamental intuition that a string is irregular if its complexity is almost maximal, in two
directions. We shall do so in section 5.5.

In conclusion, we note that lemma 5.1.4.2 can be used to derive an upper bound on I(x(n·k)) in
terms of the relative frequencies of words of length k occurring in x(n·k). This upper bound is
helpful when we study the relation between I and metric entropy.

5.1.4.5 Lemma  (Kolmogorov [50]) Let x ∈ 2ω. Fix an integer k and denote by qi(n) the

relative frequency of the ith word of length k in x(n·k). Then

I(x(n·k)) ≤ –n·∑
i=1

2
k

qi(n)log2qi(n) + I(n·k) + O(log2n).

Proof  By lemma 5.1.4.2, it suffices to show that the number N of words of length n·k which
have the given set of frequencies q1(n),...,qm(n), where m = 2k, is less than
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–n·∑
i=1

2
k

qi(n)log2qi(n) + O(log2n).

For the verification that this is indeed so, the reader may consult Levin and Zvonkin [54].
(They prove the result for K, but the proof goes over unchanged.)                                      

It is instructive to compare the preceding lemma with lemma 5.1.4.3. Both determine an upper
bound on I(w) in terms of probabilities; but in 5.1.4.5 these probabilities are the relative
frequencies of small words in w, whereas in 5.1.4.3 the upper bound is derived using the
frequency of w itself.

5.1.5 Discussion  Obviously the definition of complexity is open to the charge of arbitrariness
on various accounts. For one thing, we might have chosen a different Gödelnumbering or a
different universal machine. The difference between the resulting complexity measures is then
bounded by a constant. While this might impair the practical utility of complexity, it is quite
harmless for theoretical purposes. In particular the asymptotic results derived later are not
affected by such a change of scale.
More serious, perhaps, is the decision to restrict the concept of a rule to partial recursive
functions. Here, we are confronted with the same problem as in Chapters 2 and 3: Why choose
only recursive place selections, why choose only recursive sequential tests?
Complexity was invented to formalize an essentially negative concept, namely irregularity.
This formalization can succeed only if we replace the implicit negation of all regularity by a
negation of some particular form of regularity. The particular form of regularity we choose to
reject depends upon our view of chance. If we regard it as something subjective, e.g. if we
believe that the universe is really deterministic and that the appearance of chance is caused by
our limited observational and computational abilities, then a definition of rule which reflects
our mental powers is not unreasonable. But if we believe in objective chance, for instance
because we believe in quantum mechanics and the no–hidden variable proofs, then there
seems to be no reason at all why partial recursive rules should occupy a privileged position.

We have already seen, for example, that some ∆2 definable sequences are random; but such

sequences can with reason be regarded as far too regular, since they are produced by a Turing
machine operating by trial and error. This fact prompted Müller [76] to define a complexity
measure using ∑2 instead of ∑1 functions. The cynic might then ask: Why stop here? We

would be surprised to find any arithmetical or analytical regularity in a sequence. On the
positive side, we may remark that already the above complexity measures, which were defined
using recursive functions only, reveal that ∆2 definable sequences are really deterministic
sequences: the asymptotic behaviour of K and I on a ∆2 definable sequence is rather atypical
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(see section 5.4).
On the whole, however, we must conclude that complexity as presented above fits the
subjective aspect of irregularity and chance best. This is even more true of the resource–
bounded complexity measures briefly discussed below.

One more source of arbitrariness might be given by the coexistence of different definitions of
complexity for finite binary strings: for instance Kolmogorov–complexity, Chaitin–
complexity and monotone complexity, of which more will be said in 5.4. Nor is this the end of
the list. On this score, however, we are not so pessimistic: we believe that there are good
arguments to show that Chaitin's definition is both conceptually and technically the most
satisfactory.

5.1.6 Digression: Resource–bounded complexity  In the definition of K and I one feature of
computations has been left out of consideration: the amount of resources (time, space; in some
cases the number of times an oracle is consulted) needed to compute a string from a given
program. This is the motivation behind resource–bounded complexity. The gist of this concept
can be gathered from the following definition:

5.1.6.1 Definition  Let g be a total recursive function and U a universal Turing machine. Then
Kg(w) := min{|p|| U(p) = w and the computation takes ≤ g(|p|) steps}.

Natural choices for g would be: polynomials, functions of order f·log2f, where f is a

polynomial, or functions of order 2cn etc. For information on the use of these complexity
measures in computer science, the reader may consult the references [36], [59] and [90]2a.

5.2 Kolmogorov's program  In [50,34], Kolmogorov writes

The idea that "randomness" consists in a lack of "regularity" is thoroughly traditional. But
apparently only now has it become possible to found directly on this simple idea precise
formulations of conditions for the applicability of the mathematical probability theory to real
phenomena.

In other words, irregularity leads to (stochastic) randomness and
Practical deductions of probability theory can be justified as consequences of hypotheses
about the limiting complexity, under given restrictions, of the phenomena in question [50,34].
The applications of probability theory can be put on a uniform basis. It is always a matter of
consequences of hypotheses about the impossibility of reducing in one way or another the
complexity of the description of the objects in question [50,39].

For later reference, we shall call this view Kolmogorov's program. Its most sophisticated
presentation is [50], but some of the fundamental ideas are already present in [47]. We do not
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give the formal details of the program, but limit ourselves to some philosophical comments.
To give the reader an impression of the formal details, we state here a result for infinite

sequences (proven in 5.4) which may be seen as an illustration (but only an illustration ) of
this program:

If µ is a computable measure, then x ∈ R(µ) iff (*) ∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m.

This theorem is an illustration of Kolmogorov's program in the following sense: it states that
regular statistical behaviour, in this case the satisfaction of the effective probabilistic laws
associated with the measure µ, is implied by the assumption of (almost) maximal complexity
compatible with that measure. We saw in 5.1.4.3 that the upper bound on I(x(n)) is of the form
[–log2µ[x(n))]] + I(n) + c. Condition (*) indeed states that I(x(n)) is "sufficiently close to the

upper bound": by lemma 5.1.2.9, if a > 1 (and computable), then for some c and all n, I(n) ≤
a·log2n + c. Hence I(n) ∈ o(n), whereas, at least for ergodic measures, [–log2µ[x(n)]] is of

order n for almost all x. (Of course, (*) does not quite express that the complexity is maximal;
although the term I(n) is of lower order, hence may be neglected for large n, it has to be
explained why it doesn't occur in the right hand side of (*). This matter is taken up in the next
section.)

One of the reasons why the theorem announced above cannot be taken as a literal fulfillment
of Kolmogorov's program, is the fact that it is stated in terms of infinite sequences.
Kolmogorov considered it to be a major advantage of complexity, that it allowed a smooth
theory of randomness for finite sequences. Contra von Mises, he believed that infinite
sequences could not serve as a foundation for probability theory.

The set theoretic axioms of the calculus of probability [...] had solved the majority of formal
difficulties in the construction of a mathematical apparatus [...] so successfully that the
problem of finding the basis for real application of the results of the mathematical theory of
probability became rather secondary to many investigators. I have already expressed the view
that the basis for the applicability of the results of the mathematical theory of probability to
real "random phenomena" must depend on some form of the frequency concept of
probability, the unavoidable nature of which has been established by von Mises in a spirited
manner. However, for a long time I had the following views.
(1) The frequency concept based on the notion of limiting relative frequency as the number
of trials increases to infinity, does not contribute anything to substantiate the applicability of
the results of probability theory to real practical problems where we always have to deal with
a finite number of trials.
(2) The frequency concept applied to a large but finite number of trials does not admit a
rigorous formal exposition within the framework of pure mathematics.
Accordingly, I have sometimes put forward the frequency concept which involves the
conscious use of certain not rigorously formal ideas about "practical reliability",
"approximate stability of the frequency in a long series of trials", without the precise
definition of the series which are "sufficiently large" etc.
I still maintain the first of the two theses mentioned above. As regards the second, however, I
have come to realise that the concept of random distribution of a property in a large finite
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population can have a strict formal mathematical exposition [47,369].

We do not think that the use of finite, instead of infinite Kollektivs connects probability theory
closer with reality. Although it is theoretically possible to verify of a finite sequence of data
that it is a finite Kollektiv3, this is not the way probability theory is used in practice: one
assumes that the data form a Kollektiv with respect to some distribution and one makes
predictions on that hypothesis. If the predictions are wrong, then so is the hypothesis. Since
the property of being a Kollektiv is thus never exhaustively verified, it does not seem
mandatory to use finite Kollektivs only. In general, Kollektivs should be thought of as a
vehicle for expressing the necessary presuppositions of sucessful applications of probability
(when interpreted as relative frequency), not as an instrument yielding immediately verifiable
or falsifiable predictions. In fact, on the frequency interpretation, in any of its versions, such
immediately verifiable or falsifiable predictions are impossible. It then appears to be of
secondary importance whether we express the necessary presuppositions in terms of a finite or
an infinite model.

But even if we accept infinite sequences in the foundations of probability, the above theorem
is still not quite what Kolmogorov has in mind. It is clear from the quotation just given, that
Kolmogorov to a large extent subscribes to von Mises' version of the frequency interpretation.
In particular, relative frequency is the primary concept, not measure, as in the propensity
interpretation. But if that is so, (*) has to be replaced by a different condition; after explaining
von Mises' definition of Kollektiv, Kolmogorov observes

But it turns out that this requirement can be replaced by another one that can be stated much
simpler. The complexity of a sequence of 0's and 1's [of length n and with frequency of 1
approximately equal to p] cannot be substantially larger than nH(µp) = n·(–plog2p – (1–
p)log2(1–p)) [cf. lemma 5.1.4.5]. It can be proved that the stability of frequencies in the sense
of von Mises is automatically ensured if the complexity of the sequence is sufficiently close to
the upper bound indicated above [50,35].

Clearly, Kolmogorov envisages a condition of randomness in which the complexity I(x(n)) is
compared with an expression involving the (limiting) frequency p of 1; but in (*) I(x(n)) is
compared with an expression which involves the (limiting) relative frequency of the word x(n)
as given by µp (cf. the difference between lemmas 5.1.4.3 and 5.1.4.5). Hence (*) implicitly

refers to coordinate-wise probabilities and not to the (limiting) relative frequency of 1. This is
of course to be expected, given the material from section 4.6 and the fact that (*) is an
equivalent condition for randomness. We have added these cautionary remarks to warn the
reader that the characterization of (Martin-Löf) randomness in terms of complexity cannot be
seen as an execution of Kolmogorov's program.
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In our opinion, the most important feature of Kolmogorov's program is not so much its finitary
character, but rather the explanation scheme that it offers. Von Mises based the applicability
of probability theory on two (idealizations of) brute facts: existence of limiting relative
frequencies and invariance under admissible place selections. Kolmogorov replaces
admissibility by simplicity:

In fact, we can show that in sufficiently large populations the distribution of the property may
be such that the frequency of its occurrence will be almost the same for all subpopulations,
when the law of choosing these is sufficiently simple [47,370].

In other words, a prediction is successful if the place selections which are involved in its
derivation (in the sense of 2.4) have a simple description, while the phenomena are complex.
This characterization of successful predictions seems correct for a number of cases, although it
is not applicable to situations involving, for instance, two independent coins: the place
selection determined by the second coin is, in an absolute sense, no less complex than the
Kollektiv determined by the first coin. But a modification of Kolmogorov's program is able to
handle this situation as well: what seems to be important is not so much that the selection is
simple and the data complex, but rather that there exists an "information gap" between place
selection and Kollektiv. The existence of such a gap can be stated precisely using some form
of conditional complexity, and we shall do so in 5.6.

5.3 Metamathematical considerations on randomness The present section serves two
purposes: we collect some recursion theoretic properties of the complexity functions K and I,
and, more importantly, we investigate Chaitin's claim that the ideas of complexity theory may
help to explain the incompleteness of (sufficiently rich) formal systems.

In [13,336] Chaitin reformulates Gödel's first incompleteness theorem as follows:

Here is our incompleteness theorem for formal axiomatic theories whose arithmetical
consequences are true. The set-up is as follows: the axioms are a finite string, the rules of
inference are an algorithm for enumerating the theorems given the axioms and we fix the
rules of inference and vary the axioms. Within such a formal system a specific string cannot
be proven to be of entropy [=complexity] greater than the entropy of the axioms of the
theory. Conversely, there are formal theories whose axioms have entropy n + O(1) in which it
is possible to establish all true propositions of the form "I(specific string) > n".

In other words, Chaitin claims there exist constants c and d such that (i) an axiomatic theory
with axiom p does not prove any statement of the form "I(w) > I(p) + c", and (ii) for any n,
one may construct an axiomatic theory with axiom qn which proves all statements of the form
"I(w) > n" and for which I(qn) ≤ n + d. (i) implies that many assertions on the complexity of

individual binary strings are undecidable in arithmetic or set theory and as such it can be
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compared to the first incompleteness theorem. But (i) and (ii) go much further and assert that
there exists a precise quantitative relationship between the information content of an axiom
system (as measured by the complexity of the axioms) and the values of n such that I(w) > n is
not derivable in that system. Chaitin's ultimate aims are even more ambitious:

I would like to be able to say that if one has ten pounds of axioms and a twenty-pound
theorem, then the theorem cannot be derived from the axioms [14,942].

Hence not only the underivability of certain true complexity statements is to be explained by
an appeal to the finite information content of a formal system, but any undecidability result is
to be explained in this way. We must now investigate whether Chaitin's claim can be
substantiated.

5.3.1 Complexity and incompleteness  We first state precisely and prove Chaitin's version of
the incompleteness theorem; a discussion follows in 5.3.2. We use Rogers' notation for partial
recursive functions and recursively enumerable sets [86]: φn denotes the partial recursive
function from  to  with Gödelnumber n and We denotes the r.e. subset of  with
Gödelnumber e. As usual, we shall assume that sets such as 2<ω or 2<ω×ω  etc. are coded into

the natural numbers.

5.3.1.1 Lemma  {<w,m> ∈ 2<ω×ω | I(w) ≤ m} is recursively enumerable.

Proof  If U is the universal machine defined in 5.1, we have, using the definition  of I,
{<w,m> ∈ 2<ω×ω | I(w) ≤ m} = {<w,m> ∈ 2<ω×ω | ∃p (U(p) = w & |p| ≤ m)}; the condition
on the right hand side is ∑1.    

Hence {<w,m> ∈ 2<ω×ω | I(w) > m} is ∏1; but it also satisfies a stronger property:

5.3.1.2 Definition  (a) A set A is immune if it is infinite but contains no infinite recursively
enumarable subset; (b) a set A is effectively immune  if for some total recursive function g: ω
→ ω: We ⊆ A implies #We ≤ g(e); (c) a set B is (effectively) simple if B is r.e. and Bc is

(effectively) immune.

5.3.1.3 Theorem There exists a constant c such that any r.e. subset We of {<w,m> ∈ 2<ω×ω |

I(w) > m} is bounded in the second coordinate by I(e) + c.

Proof  Although the result is stated for I only, it holds for a wide variety of complexity
measures. To bring this out, we give an abstract proof. Let U be the universal prefix algorithm
and define a partial recursive function f as follows. f operates on inputs of the form 0n1q.



141

Given this input, f first calculates U(q); if and when it has found e = U(q), it generates We

until it has found a pair <w,m> ∈ We such that m > |q| + n + 1; it then outputs w. Now

suppose We ⊆ {<w,m> ∈ 2<ω×ω | I(w) > m}. Apply the recursion theorem to get an n such
that for all q, φn(q) ≅ f(0n1q). (That is, the left hand side is defined iff the right hand side is

and when defined the two sides are equal.) Since f first calculates U(q) it is a prefix algorithm,
hence so is φn. Let q0 be such that e = U(q0); we claim that φn(q0) is undefined. For suppose
that φn(q0) = w. Then on the one hand, by construction,

(1) I(w) > m > |q0| + n + 1;
on the other hand, since φn is a prefix algorithm,
(2) I(w) ≤ I

φn
(w) + n + 1 ≤ |q0| + n + 1.

Hence φn(q0) is undefined. It follows that I(e) + n + 1 is an upper bound for the second
coordinate of We. To obtain a recursive upper bound, we can take any recursive upper bound
for I(e), e.g. 2log2e: observe that ∑ee–2 < ∞  and apply lemma 5.1.2.9.     

If we had used K instead of I, we could have dispensed with the demand that f on input 0n1q
first compute U(q); this condition was introduced only to ensure that f be a prefix algorithm.
We first apply the theorem to obtain some recursion theoretic information on I.

5.3.1.4 Corollary  Let g: ω → ω be total recursive and suppose that lim g(n) = ∞.
n→∞

Then {w| I(w) > g(|w|)} is immune. In addition, if  lim g(n) = ∞ recursively, then
n→∞

{w| I(w) > g(|w|)} is effectively immune. We obtain the same results if we replace I by K.

Proof  Let We ⊆ {w| I(w) > g(|w|)}. Put Ve := {<w,g(|w|)>| w ∈ We}; then for some total
recursive f, Ve = Wf(e). Since Wf(e) ⊆ {<w,m>| I(w) > m}, Wf(e) is bounded in   the second
coordinate, e.g. by 2log2f(e). But then, if lim g(n) = ∞, We must be finite and if

n→∞

lim g(n) = ∞ recursively, we can choose effectively n0(e) such that for n ≥ n0(e),
n→∞

2log2f(n). In the latter case we therefore have #We ≤ 2
n0(e)+1

.                                                        

It follows from the corollary that the r.e. relation {<w,m>| I(w) ≤ m} is not recursive and
likewise that the function I: 2<ω → ω is not recursive. We also have:

5.3.1.5 Example The set of irregular strings {w| K(w) > |w| – m} is effectively immune. By a
theorem of Martin (see Soare [92,87]) it follows that {w| K(w) ≤ |w| – m} is a complete

recursively enumerable set4. On the other hand, the arithmetical complexity of the set {w| I(w)
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≤ |w| + I(|w|) – m}is higher (namely ∑2), due to the presence of the term "I(|w|)".

We now formulate the first half of Chaitin's incompleteness theorem. Recall that for any
natural number m all except finitely many w satisfy I(w) > m. We proved this in 5.1 using
only elementary properties of finite sets; the proof can be formalized in any theory which
contains a modicum of arithmetic.  Nevertheless, as the following theorem shows, it is well
nigh impossible to verify that some specific string has high complexity.

5.3.1.6 Theorem  Let S be a sound formal system, identified with its r.e. set of theorems.
Delete from S all theorems not of the form "I(w) > m" and call the resulting sound formal
system S'. Let p be an r.e. index for S'. Then for some constant c, independent of S', and for all
w: S I(w) > I(p) + c.

Proof  S' may be identified with an r.e. subset of {<w,m> ∈ 2<ω×ω  | I(w) > m}with

Gödelnumber p. By Theorem 5.3.1.3, S' is bounded in the second coordinate by I(p) + c, for
some constant c not depending on p.                                                                              

Let us call the constant I(p) + c, which depends on S, the characteristic constant  of the formal
system S. We shall denote the characteristic constant as c(S). If we compare the preceding
theorem with Chaitin's formulation, we see that what matters is not the complexity or
information content of the formal system S, but only that of its reduced version S'. Indeed, we
shall see below, in 5.3.2, that it can't be otherwise. Before we discuss Chaitin's claims,
however, we shall prove the second half of the theorem announced above.

5.3.1.7 Theorem  The sets {w| I(w) > k} are r.e. and have indices pk such that for some
constant d independent of k,  I(pk) ≤ k + d.

Proof  (Sketched in Chaitin [13])  Obviously the sets {w| I(w) > k}, being the complements of
finite sets, are r.e.; but Theorem 5.3.1.3 tells us that their indices are not recursive in k. Let W
be a listing of all pairs <w,m> for which I(w) ≤ m. Let P be a set of programs for the <w,m>
in W such that every pair <w,m> in W is produced by exactly one p in P. P can be chosen to
be r.e. Let U be the universal prefix algorithm.
Consider P' := {<p,m>| p ∈ Ρ & (U(p) = <w,m> → I(w) ≤ m)}. P' is r.e. and

∑
<p,m>∈P'

2–m = ∑
{w|I(w)≤m}

2–m ≤  ∑
w

2–I(w) ≤ 1,

hence there exists a constant c such that for all p in P, if U(p) = <w,m>, then I(p) ≤ m + d, by
lemma 5.1.2.8. Now fix k and let pk be a program in P for the last pair <w,k> in W. (Such a
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program exists, although it cannot be found effectively.) Using the program pk,  we can

enumerate all of {w| I(w) > k}: enumerate W until we come to the last pair <w,k> (given by
pk); all w not occurring in this finite list must satisfy I(w) > k. We have seen above that I(pk) ≤
k + d.
Observe that if c is the constant determined in Theorem 5.3.1.6, then I(pk) + c ≥ k, so that the

preceding theorem is more or less the best possible result.

5.3.2 Discussion   Theorem 5.3.1.6 implies that any formal system can verify the irregularity
of at most a finite number of words. Alternatively, one could say that a Turing machine can
produce only a finite number of irregular sequences. This result may be seen as a modern
version of von Mises' conviction [67,60] "das man die "Existenz" von Kollektivs nicht durch
eine analytische Konstruktion nachweisen kann" and it justifies to some extent the misgivings
of those who maintain that randomness or irregularity cannot be formalized. But Theorem
5.3.1.6 is really much more than a formal statement of these intuitions: it expresses a precise
connection between the information content of some formal system (namely S') and its
"degree of incompleteness". We now discuss the question whether this theorem supports
Chaitin's philosophical claims.

1. Although Theorem 5.3.1.6 was hailed as a "dramatic extension of Gödel's theorem"5, we
should not forget that there is a big difference between the two results. Gödel's first
incompleteness theorem is an explicit construction of an undecidable (hence true) ∏1 formula:

the fixed point lemma [91,827] associates with any formal system S in a primitive recursive
way a formula ψS which says of itself "I am unprovable in S". But Theorem 5.3.1.6 provides

no such explicit construction. First, its proof shows that the characteristic constant c(S) is not a
recursive function of S. Second, suppose we take some recursive upper bound f(S) for c(S),
then it is still not possible to determine recursively a word w(S) such that I(w(S)) > f(S) ≥
c(S). If this were so, we could define an infinite r.e. sequence of

formal systems Sn and words w(Sn) such that I(w(Sn)) > f(Sn) and lim f(Sn) = ∞  as
n→∞

follows: S0 = PA, S1 = S0∪{I(w(S0)) > f(S0)} etc. An examination of the construction of c(Sn)
(cf. Theorem 5.3.1.6 and its proof) shows that lim c(Sn) = ∞, hence also

n→∞

lim f(Sn) = ∞. But corollary 5.3.1.4 implies that we can construct only finitely many
n→∞

w(Sn). Hence it is impossible to determine effectively, given a formal system S, a word w(S)

such that I(w(S)) > c(S). In this sense, Theorem 5.3.1.6 is a weak form, rather than an
extension, of the first incompleteness theorem.
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2. Furthermore, there is nothing in theorem 5.3.1.6 which supports Chaitin's claim that the
undecidability of a formula can be explained as the result of an excess of information content.
Observe that we said nothing about the information content of the formula  "I(w) > c(S)" (for
some specific w); all that mattered was that the undecidable formula asserts that some specific
string contains too much information, which is something entirely different.
This being said, it must be acknowledged that some true statements are undecidable in PA
precisely because they contain too much information.The construction of such a statement
utilizes the fixed point lemma:

5.3.2.1 Lemma [91,827] Let φ be an arithmetical formula in one free variable. Then, for
infinitely many ψ, PA (ψ ↔ φ( ψ )).

We use the fixed point lemma to define a sentence ψ which says intuitively "I contain too
much information for PA". Put k0 := max {k| I(k) ≤ c(PA)}. Choose (non-effectively!) ψ such
that  ψ > k0 and PA (ψ ↔ Ι( ψ ) > c(PA)). Then PA ψ, since otherwise PA I( ψ ) >
c(PA), which is impossible by theorem 5.3.1.6; but ψ is true, for if ¬ψ were true then I( ψ ) ≤
c(PA), which implies ψ  ≤ k0. Since PA is sound, PA ¬ψ. Hence ψ is true but undecidable

in PA. The construction is somewhat trivial, however, since we essentially use the fact that
there exist fixed points of "I( ψ ) > c(PA)" with arbitrarily large Gödelnumber.

3. The preceding discussion showed that Chaitin's explanation of the incompleteness of formal
systems: " I would like to be able to say that if one has ten pounds of axioms and a twenty-
pound theorem, then the theorem cannot be derived from the axioms", is at present only
scantly supported by the facts. But also his more modest claim, " Within ... a formal system a
specific string cannot be proven to be of entropy [=complexity] greater than the entropy of the
axioms of the theory" is not borne out by theorem 5.3.1.6. Recall that what mattered was not
so much the information content of the formal system S as a whole, but rather that of its
intersection S' with the set of statements of the form "I(w) > m". Of course there exists a
primitive recursive function which brings us from S to S', and this justifies the notation "c(S)"
for the characteristic constant of S. But since the information content of S', and not that of S,
determines the characteristic constant of S, we cannot say that stronger theories lead to larger
characteristic constants. Indeed, this is false, as we now show.
By theorem 11 in Kreisel–Levy [53,121], the arithmetical fragment of ZF is not finitely
axiomatisable over PA. Theorem 5.3.1.6 assigns finite constants c(PA) and c(ZF) such that no
statement "I(w) > c(PA)" ("I(w) > c(ZF)") is provable in PA (ZF). (Note that we do not even
know whether c(ZF) > c(PA)!) It follows that an infinity of ever stronger number theories Sn,

which lie in between PA and (the arithmetical fragment of) ZF must have the same
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characteristic constant c and they must prove the same (finite) set of statements of the form
"I(w) > m". Since I is unbounded on axioms for the Sn, the information contents of these

axioms are totally irrelevant for the determination of c.

These considerations do not completely rule out the possibility that some kind of information
concept is useful in studying incompleteness. They do show, however, that the complexity of
the axioms is not a good measure of information. Furthermore, if the information is an
integer–valued function and obeys something like theorem 5.3.1.6, then we must accept the
consequence that a theory S1 may be stronger than S2, while having the same information
content as S2. It is difficult to imagine a concept of information which allows this possibility.

The most reasonable way-out appears to be, to define a rational-valued  (or real-valued)
measure of information6.

Even if the information concept turns out to be useless for the study of formal systems, it may
be worthwhile to investigate what other properties of formal systems are relevant for the
values of their characteristic constants. This investigation, however, is seriously hampered by
the extreme scarcity of concrete examples: as noted above, we do not even know whether
c(PA) < c(ZF)!

5.4 Infinite sequences: randomness and oscillations Two themes will occupy us in the
present section. First, we try to express randomness (in the sense of Martin-Löf) in terms of
the notions of complexity developed in 5.1.1 and 5.1.2. Now one might conjecture that the
following generalisation (to infinite binary sequences) of the definition of irregularity
(5.1.1.3): ∃m ∀n K(x(n)) > n – m, is an equivalent condition for randomness with respect to

Lebesgue measure; but Martin-Löf has shown that no sequence x satisfies this generalisation.
Similarly, no x satisfies ∃m ∀n I(x(n)) > n + I(n) – m, the natural generalisation of definition

5.1.2.6. But it turns out that membership of R(µ) can be characterised in terms of I, if we
choose a smaller lower bound instead of one of the form n + I(n) – m. This brings us to the
second topic: the oscillatory behaviour of the complexity measures K and I. Although this
oscillatory behaviour is usually considered to be a nasty feature, we believe that it illustrates
one of the great advantages of complexity: the possibility to study degrees of randomness.

5.4.1 Randomness and complexity  Early attempts to characterize randomness with respect
to some computable measure µ of an infinite binary sequence, in terms of a condition on the
complexity of the initial segments of the sequence, foundered upon the following obstacle:

5.4.1.1 Theorem  (Martin-Löf [61])  For all x and for all m, there are infinitely many n such
that K(x(n)) ≤ n – m. More precisely, if f: ω → ω is a total recursive function such that ∑n2–
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f(n) = ∞, then for all x there are infinitely many n such that K(x(n)) ≤ n – f(n).

A simple proof of a special case, namely f(n) := [a·log2n], with a ∈ (0,1) computable, is given

in Schnorr [88,110]. His proof can easily be adapted to show:

5.4.1.2 Lemma  Let a ∈ (0,1) be computable and let µ be a computable measure. For all x,
there are infinitely many n such that I(x(n)) ≤ [–log2µ[x(n)]] + I(n) – [a·log2n]. In particular,
no x satisfies ∃m ∀n I(x(n)) > [–log2µ[x(n)]] + I(n) – m.

Martin-Löf's theorem was considered to be a surprising result. To quote from Schnorr
[89,377]: "This fact is hard to comprehend and is the main obstacle for a common theory of
finite and infinite random sequences". In retrospect, it is somewhat difficult to understand why
Martin-Löf's theorem should be surprising. After all, results indicating that total chaos in
infinite binary sequences is impossible were known already. One example is van der
Waerden's theorem (from 1928), which states that if the natural numbers are partitioned into
two classes, then at least one of these classes contains arithmetic progressions of arbitrary
lengths7. Another example is a theorem in Feller [25,210] (cf. theorem 5.4.2.5 below) which
states that if a ∈ (0,1), then for µp–a.a. x, for infinitely many n, xn is followed by a run of
[a·logqn] 1's, where q = p–1.

More important, the association between the oscillatory behaviour of K (or I) and the
difficulty of characterising randomness in terms of complexity appears to be unfortunate.
Thus, although Chaitin's I also oscillates (and for at least three essentially different reasons), it
is possible to characterise randomness using I.

5.4.1.3 Theorem8  Let µ be a computable measure. Then x ∈ R(µ) if and only if
∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m.

Proof  ⇒  It suffices to show that {x| ∀m ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m} is a recursive
sequential test with respect to µ. By lemma 5.3.1.1, this set is ∏2. We therefore have to show
that µ{x| ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m} ≤ 2–m for each m. We may write

µ{x| ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m}  ≤  ∑ {µ[w] | w ∈ 2<ω, I(w) ≤ [–log2µ[w]] – m};

however, since I(w) ≤ [–log2µ[w]] – m iff µ[w] ≤ 2–m·2–I(w), the right hand side of the above

inequality is less than or equal to

∑ {2–m·2–I(w) | w ∈ 2<ω, Ι(w) ≤ [–log2µ[w]] – m}  and since ∑
w∈2<ω

2 I(w) ≤ 1, this is ≤ 2–m.–
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⇐  Let U = ∩mUm be the universal recursive sequential test with respect to µ. We may

suppose Um = [Tm], with Tm prefixfree; hence µUm = ∑{µ[w] | w ∈ Tm} ≤ 2–m. Define S :=
{<w, [–log2µ[w]] – m> | w ∈ Tm}. We show that ∑{2–k | ∃w (<w,k> ∈ S)}  < ∞:

∑
m

 ∑
w∈Tm

 2
[–log2µ[w]]+ m

  ≤  ∑
m

 ∑
w∈Tm

  2   =  ∑
m

 2
m

·µUm ≤ ∑
m

 2
– m

  <  ∞. 
m

·µ[w]

By lemma 5.1.2.8, we get for some constant c and all m and w: if w ∈ Tm, then I(w) is less
than or equal to [–log2µ[w]] – m + c. In particular, if x ∈ U, then ∀m ∃n (x(n) ∈ Tm),
hence ∀m ∃n (I(x(n)) ≤ [–log2µ[w]] – m + c).
In other words, if ∃m ∀n (I(x(n)) > [–log2µ[w]] – m + c), then x ∈ R(µ); but the antecedent is
equivalent to ∃m ∀n (I(x(n)) > [–log2µ[w]] – m).                                                               

The significance of this result has already been discussed in 5.2. The essence of the proof
consists in the observation that randomness in the sense of Martin-Löf is a negative condition:
x is random if it is not rejected at arbitrarily small levels of significance by the universal test

U. Now U, conceived of as a  r.e. set of finite sequences (namely ∪mTm), contains only

elements of low complexity; hence for an infinite sequence to be random it is necessary and
sufficient if it has no (except perhaps finitely many) initial segments of low complexity. In
other words, any complexity measure C is able to characterise Martin-Löf randomness if the
universal sequential test can be written in terms of C. Nothing more is necessary, but much
more is possible. The monotone complexity of Schnorr [89] and Levin [54] developed in
response to theorem 5.4.1.1 (see 5.4.4) also characterises randomness; but whereas I adds fine
structure to the theory of random sequences (see 5.4.2–3), monotone complexity does not and
we consider this to be a disadvantage.

5.4.2 Downward oscillations We now investigate more closely why the seemingly more
reasonable condition of randomness ∃m ∀n I(x(n)) > [–log2µ[x(n)]] + I(n) – m is impossible.

Not only doesn't this condition characterize randomness, it even cannot be satisfied by any

sequence. Interestingly, this is true for several very different reasons and in this section we
shall examine some of them. Martin-Löf's theorem 5.4.1.1 (and the simple version of it given
as lemma 5.4.1.2) essentially use only the fact that 2<ω has a  recursive enumeration. Below,
we present two more derivations of Martin-Löf's theorem, the first based on the observation
that ∆2 definable sequences, even when random, have low complexity and the second

elaborating the ancient idea that the existence of statistical regularities is incompatible with
total chaos. For ease of notation, we consider Lebesgue measure only.

We first investigate the complexity of simply definable infinite binary sequences.
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5.4.2.1 Lemma  Let x be recursive, then for some c and all n, I(x(n)) ≤ I(n) + c.

Proof  Let A be an algorithm such that A(n) = x(n) for all n. Define B as follows. On input q,
it calculates U(q). If and when U halts on q, B computes A(U(q)) = x(U(q)) and outputs this
sequence. B is a prefix algorithm, hence I(x(n)) ≤ I(n) + B  + 1.                                  

We now turn to ∆2 definable sequences. The conditional complexity I0 was defined in 5.1.3.

5.4.2.2 Theorem  If x is ∆2 definable, then lim␣(n – I0(x(n)|n)) = ∞.
n→∞

(As it stands the theorem is of course interesting only for x ∈ R(λ).)

Proof   By the modulus lemma (theorem 3.2.2.4), x can be written as: xn =  lim
k→∞

ξn
k,

where ξk  ∈  2ω such that {<k,n>| ξn
k = 1} is recursive.

Define a prefix algorithm A as follows. Let A be given n on its worktape and q as input. On
being presented with q, A first scans an initial segment s of q until it has determined an integer
i = U(s); it then calculates n – i, scans the remainder p of q, calculates U(p,n–i) and outputs

A(q,n) =  ξn(i)U(p,n–i).

For fixed i, if n is large enough, A(q,n) is of the form
A(q,n) = x(i)w.

Then there exist constants c,d such that  I0(x(n)|n) ≤ (IA)0(x(n)|n) + c ≤
≤ I(i) + I0(xi+1.....xn|n–i) + d ≤ I(i) + n – i + d. Then n – I0(x(n)|n) ≥ n – (n – i) – I(i) – d =

= i – I(i) + d. In other words
∀i ∃n0(i) ∀n≥n0(i) (n – I0(x(n)|n) ≥ i – I(i) + d).

Because the right hand side is unbounded, lim  (n – I0(x(n)|n)) = ∞.                                   
n→∞

5.4.2.3 Corollary  If x is ∆2 definable, then lim  (n + I(n) – I(x(n))) = ∞.
n→∞

Proof  By lemmas 5.1.3.4/6, I(x(n)) ≤ I0(x(n)|n) + I(n).                                                     

The corollary is most likely not the best possible result; we used the estimate I(x(n)) ≤
I0(x(n)|n) + I(n), which is far from being sharp (lemma 5.1.3.5). We conjecture that at least for
low degrees x, i.e. x with x' ≡T Ø', even I(x(n)) ≤ n + c. Anyway, the result obtained just now

will do for our purposes.
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5.4.2.4 Theorem  For all x: ∀m ∃n≥m (I(x(n)) < n + I(n) – m).

Proof  We use the Basis Theorem (3.2.2.2). Suppose the theorem is false, then for some m, {x|
∀n≥m (I(x(n)) ≥ n + I(n) – m)} ≠ Ø. This set is not itself ∏1, but may be shown to be included
in a set of the form {x| ∀n≥m (I0(x(n)) ≥ n – c)}, which is ∏1.

Indeed, by lemma 5.1.3.5, for some constant d, I(x(n)) ≤ I(x(n))|n) + I(n) + d, hence the
condition  I(x(n)) ≥ n + I(n) – m can be rewritten as I(x(n)|n) ≥ n – c. Now apply lemma
5.1.3.4, which says that I0(x(n)|n) is (much) larger than I(x(n)|n).
It follows that the ∏1 set {x| ∀n≥m (I0(x(n)) ≥ n – c)} has a ∆2 definable element x. But this is

impossible in view of theorem 5.4.2.2.                                                                      

We now give a second proof of the above theorem, based on a different idea: that statistical
regularities must lead to a decrease in complexity. We use an exercise in Feller [25].

5.4.2.5 Theorem  (after Feller [25,210])  Let Nn(x) denote the length of the run of 1's
beginning at xn. Then for all x ∈ R(λ):

limsup
n→∞

 
log2n

Nn(x)
 = 1.

Proof  (1) Let a > 1 be computable. We have to show that {x| ∀m ∃n Nn(x) > a·log2n} is a
recursive sequential test with respect to λ. We use the first effective Borel–Cantelli lemma
(3.3.1). Define An := {x| xn is followed by [a·log2n] + 1 1's}. It suffices to show that ∑nλAn

converges constructively. But this is so, since ∑nλAn ≤  ∑nn–a.
(2) Let a < 1 be computable. Since the set {x| ∃m ∀n Nn(x) < a·log2n} is ∑2, it suffices to

show that it has Lebesgue measure 0. Define a total recursive function f by f(n) := n + (n–
1)·[a·log2n]. Then we have f(n+1) – f(n) > [a·log2n].
Define An := {x| xn is followed by [a·log2n] 1's}, then the Af(n) are independent. Because
∑nλAf(n) ≥ ∑nn–a diverges for a < 1, the second Borel–Cantelli lemma (3.3.2) gives the

desired result.                                                                                                                        

5.4.2.6 Corollary  Let a ∈ (0,1) be computable. Define bn := n + [a·log2n]. Then for some
constant c, for all x ∈ R(λ): for infinitely many n, I(x(bn)) ≤ bn + I(bn) – [a·log2n] + c.

Proof  Define a prefix algorithm A(s,k) as follows. A first solves the equation k = bn for n. If

it has succeeded in doing so, it computes U(s) and when this computation terminates, it
outputs

A(s,k) = U(s)1
[a·log2n]

.
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It follows that, for x(bn) = x(n)1
[a·log2n]

,   I(x(bn)) ≤ I(x(n)) + A  + 1 ≤ n + I(n) + d =

= bn + I(bn) – [a·log2n] + c, for some constants c and d. Now apply theorem 5.4.2.5.        

5.4.2.7 Corollary  For all x and for all m there are infinitely many n such that I(x(n)) ≤  ≤ n +
I(n) – m.

Proof  If x ∉ R(λ), the result follows from theorem 5.4.1.3. If x ∈ R(λ), apply corollary

5.4.2.6.                                                                                                                                  

With corollary 5.4.2.6 at our disposal, we may understand the often repeated query: "How can
a random sequence exhibit statistical regularities, since randomness entails the absence of
regularities?" In a sense, the implied objection is right; we might even say that it is illustrated
by the failure of the putative definition of irregularity ∃m∀n I(x(n)) > n + I(n) – m.

This definition turned out to be impossible because a statistical regularity brought about a
decrease of I (although this is not the only source of downward oscillations of I). We see,
however, that some regularities are more regular than others; in particular, statistical
regularities are not simple, that is, they do not lead to a significant decrease in complexity.
We may also observe that there are essentially different reasons why total chaos in infinite
binary sequences is impossible: Martin-Löf's 5.4.1.1 (or Schnorr's 5.4.1.2) uses in essence
only the fact that 2<ω is recursive, whereas our theorem 5.4.2.4, although also of a recursion–
theoretic character, uses some less trivial facts about the arithmetical hierarchy. Corollary
5.4.2.6 is of a different nature altogether and depends on statistical properties of product
measures.

5.4.3 Upward oscillations  We now prove some results which show that the behaviour of I on
∆2 definable sequences is rather atypical: for most sequences x, I(x(n)) comes close to its

theoretical upper bound infinitely often. Our method of proof again involves Turing degrees.
In 5.4.2 we derived the existence of downward oscillations from the fact that the degrees
between Ø and Ø' have low information content; we derive the existence of upward
oscillations from the fact that the degrees above (and including) Ø', the so called complete

Turing degrees, have high information content.
We use "high information content" in the following sense. Let y be an infinite binary sequence
and let Iy be defined as I, except that we allow functions partial recursive in y, instead of
partial recursive functions only. Clearly, for all w: Iy(w) ≤ I(w).The following theorem shows
that if y is a complete Turing degree, then for most x, the difference I(x(n)) – Iy(x(n)) is large
infinitely often, indicating that y contains some information about most x. We use ≡T to
denote Turing equivalence and ≤T, ≥T to denote Turing reducibility.
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5.4.3.1 Theorem  Let y ≥TØ' and let g: ω → ω be a total recursive function such that ∑n2–g(n)

diverges. Then (*) λ{x| ∀m ∃n≥m (Iy(x(n)) < I(x(n)) – g(n))} = 1.

Proof  Since for some c and all w, Iy(w) ≤ |w| + Iy(|w|) + c, it suffices to prove that
 λ{x| ∀m ∃n≥m (n + Iy(n) + c < I(x(n)) – g(n))} = 1.

We absorb c into g. We show that for each m, λ{x| ∀n≥m (n + Iy(n) + g(n) < I(x(n))} = 0.

Observe that for each n, the measure of this set is smaller than
∑n{2–|w| | w ∈ 2n, I(w) ≤ n + g(n) + Iy(n)}.

Now the number of w ∈ 2n satisfying I(w) ≤ n + g(n) + Iy(n) = n + I(n) – (I(n) – g(n) –Iy(n))

is less than or equal to 2n–(I(n)–g(n)–I
y
(n))·d, for some constant d (lemma 5.1.2.4).

It follows that for each n, the required measure is smaller than 2–(I(n)–g(n)–I
y
(n))·d;

and we have to show that ∀k ∃n≥k (I(n) – g(n) – Iy(n) > k).
Now the function fk defined by fk(n) := I(n) – g(n) – k is recursive in y since Ø' ≤Ty and
unbounded since ∑n2–g(n) diverges (by lemma 5.1.2.9). Relativizing the definition of
immunity  (5.3.1.2) to y, we see that the set {n| Iy(n) ≥ fk(n)} must be y–immune for each k.
Hence for each k, {n| n ≥ k} ⊄ {n| I(n) –g(n) –Iy(n)  ≤ k}; in other words, for all k there is

some n larger than k for which I(n) – g(n) – Iy(n) > k.                                                      

The assumption that Ø' ≤Ty is essential for the proof, since for some fk, we may have fk ≡TØ'.

We conjecture that condition (*) in fact characterizes the complete Turing degrees. In any case
the results of 5.4.2 and 5.4.3 indicate that it may be profitable to study the Turing degrees
using complexity measures.

In conjunction with theorem 5.4.1.3 (with "Iy" replacing "I")), the preceding theorem
immediately implies:

let g: ω → ω be a total recursive function such that ∑n2–g(n) diverges; then  λ{x|
∃k ∀m ∃n≥m ( I(x(n)) > n + g(n) – k)} = 1.

Using the following lemma due to Chaitin, we can do slightly better:

5.4.3.2 Lemma  (Chaitin [12,337]) λ{x| ∃m ∀n≥m I(x(n)) > n} = 1.

Proof  By the first Borel–Cantelli lemma, it suffices to show that ∑nλ{x| I(x(n)) > n} < ∞. But
this is so, since λ{x| I(x(n)) > n} ≤ 2–I(n)·c by lemma 5.1.2.4. 
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5.4.3.3 Corollary  (Solovay) Let g: ω → ω be a total recursive function such that ∑n2–g(n)

diverges; then  λ{x| ∀m ∃n≥m ( I(x(n)) > n + g(n))} = 1.

The following observation is also due to Solovay (both results are announced, without proof,
in Chaitin [13]).

5.4.3.4 Theorem   λ{x| ∃m ∀k ∃n≥k ( I(x(n)) > n + I(n) – m)} = 1.

Proof  It obviously suffices to show that for some c and all m,
 λ{x| ∃k ∀n≥k ( I(x(n)) ≤ n + I(n) – m)} ≤ 2–m·c.

But the collection {{x| ∀n≥k ( I(x(n)) ≤ n + I(n) – m)}| k ∈ ω} is increasing in k and, for all n,
λ{x| ∀n≥k ( I(x(n)) ≤ n + I(n) – m)} ≤ ∑n{2–|w| |w ∈2n, I(w)≤n+I(n)–m} ≤ 2–m·c by lemma

5.1.2.4. 

It follows from this theorem that the behaviour of ∆2 definable sequences, for which we

could show lim (n + I(n) – I(x(n))) = ∞, is not typical of arbitrary random sequences.
 n→∞

5.4.4 Digression: monotone complexity  We saw in 5.4.1 that, according to Schnorr [89], the
difficulties encountered in characterising randomness in terms of K, were due to K's
oscillatory behaviour. In response to Martin-Löf's theorem 5.4.1.1, he (and independently
Levin [54]) developed a notion of complexity which does not oscillate on random sequences.
The new notion, so called monotone complexity, is again obtained by restricting the class of
algorithms. Schnorr considers monotone algorithms, i.e. those partial recursive functions A
such that v ⊆ w implies A(v) ⊆ A(w). The set of monotone algorithms is recursively

enumerable9, so we may define a universal monotone algorithm U by U(0 A 1p) = A(p). Let
KM denote the resulting concept of complexity. Schnorr [89,380] proves

x ∈ R(λ) if and only if ∃c ∀n |KM(x(n)) – n| ≤ c;

and generally (see Gacs [32])

x ∈ R(µ) if and only if ∃c ∀n |KM(x(n)) – [–log2µ[x(n)]]| ≤ c.

This is obviously in sharp contrast with the behaviour of I. The lower bound is the same (and
the proof follows very much the same lines), but the upper bound is not, and this is due to the
fact that the identical function F(w) = w is a monotone algorithm, but not a prefix algorithm:
since F is monotone, we have KM(w) ≤ |w| + F  + 1. (In general, every prefix algorithm is a
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monotone algorithm, but not conversely.) However, the only effect of lowering the upper
bound is, that KM obliterates distinctions which I is able to make. For instance, consider the
algorithm A defined in the proof of corollary 5.4.2.6; define B similarly but with the universal
monotone algorithm replacing the universal prefix algorithm. B is not a monotone algorithm,
whereas A is. The operation of suffixing words with strings of 1's is not monotone, except
when the domain of the suffixing algorithm is prefixfree; in other words, when the suffixing
algorithm is like A. But KM << KMA, so KM doesn't see these regularities.

Thus, although a characterisation of randomness in terms of KM can be given, this is where its
utility stops. Using I, we can learn something about random sequences over and above the fact
that they satisfy Martin-Löf's definition; it suggests questions such as "Does the complexity of
easily definable random sequences differ from the complexity of those which are not?", a
question which has only a trivial answer for KM. Historically, complexity oscillations have
earned their bad repute from the apparent impossibility of characterising randomness in terms
of complexity. Now that such a characterisation has been given, we see that oscillations need
not be feared. In fact, if a (downward) oscillation occurs, then, in accordance with the
motivation given in 5.1, we must accept the presence of a temporary regularity. These
regularities do not vanish the moment we decide to adopt a different complexity measure, to
wit, monotone complexity.

5.5 Complexity and entropy  Two problems will occupy us in this section. The first is to
explain the meaning of the phrases "topological aspect of I" and "metric aspect of I", used in
5.1.4. The second is to link I, which is a measure of disorder for sequences, with more
traditional measures of chaotic behaviour, defined for dynamical systems, such as (metric or
topological) entropy. This problem has received some attention in the physics literature (see
Ford 27], Lichtenberg and Lieberman [58], Alekseev and Yakobson [2] and Brudno [10]), in
connection with research on chaotic dynamical systems. It is shown here (theorem 5.5.2.5)
that if µ is an ergodic measure, then µ-a.a. x satisfy

lim
n→∞ n

I(x(n))
  =  H(µ),

where H(µ) is the metric entropy of µ. We use theorem 5.5.2.5 to elucidate the metric aspect
of I in terms of (un)predictability.
We then proceed to an investigation of the relation between E(A), the topological entropy of a
∏1 set A, and the behaviour of I on sequences x in A. It is shown that A must satisfy special

conditions (A must be "homogeneous") if there are to be many sequences in A with

lim
n→∞ n

I(x(n))
  =  E(A).

Lastly, we compare I with another measure of randomness for sequences, viz. Kamae–



154

entropy.

5.5.1 Dynamical systems  Our set–up is as follows. A symbolic dynamical system on a set of
symbols n = {0,...,n-1} is a set X ⊆ nω (or n , as the case may be), together with the left–shift

(or two–sided shift) T. We assume that X is closed under the action of T. Symbolic dynamical
systems arise naturally in the study of general dynamical systems, in the following way.

Suppose (Γ,S) is a dynamical system, where Γ can be thought of as a phase space, equipped
with a σ–algebra of measurable sets, and S is a measurable transformation on Γ, which

represents the evolution of the system, considered in discrete time. A measurement with finite
accuracy on (Γ ,S) is represented (ideally) by a measurable partition A0,...An-1 of Γ ,

corresponding to "pointer readings" 0,...,n–1.
Define a mapping ψ: Γ → nω by  ψ(γ)k = i iff Sk(γ) ∈ Ai; then ψ(γ) represents the sequence of
pointer readings obtained upon repeatedly measuring {A0,...An-1} on a system which is in
state γ at time t = 0.
If the system (Γ,S) is also equipped with a probability distribution P, this distribution
generates a measure µ on nω by µA := Pψ−1Α.
One may now study the dynamical system (Γ,S,P) by means of its symbolic representative
(ψ[Γ],Τ,µ). In particular, the question whether, and to what extent, (Γ,S,P) displays chaotic

behaviour can be investigated in this way. Below, we introduce various measures of disorder
directly for symbolic dynamical systems, where for notational convenience we assume that the
alphabet consists of just two symbols, 0 and 1. For an overview of the theory of dynamical
systems, the reader may consult Petersen [82].

5.5.2 Metric entropy  Let µ be a stationary measure on 2ω; that is, for all Borel sets A, µ
satisfies µT–1A = µA. In other words, T conserves µ. For such measures, we may define the
metric entropy H(µ) as follows:

5.5.2.1 Definition  Let µ be a stationary measure on 2ω. The metric entropy H(µ) of µ is

defined to be H(µ) := lim
n→∞

– n
1∑

w∈2n

 µ[w]log2µ[w].  (Petersen  [82,240])

5.5.2.2 Example  It is easy to verify that H(µp) equals –plog2p – (1 –p)log2(1 – p).

The interpretation of H(µ) is roughly as follows. w ∈ 2n is a possible series of outcomes if we

perform n experiments upon the system under consideration. The probabilistic information
present in w is (by definition) –log2µ[w]; then
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– 
n
1∑

w∈2
n

 µ[w]log2µ[w]

is the average amount of information gained per experiment if we perform n  experiments.
H(µ) is obtained if we let n go to infinity. A positive value of H(µ) indicates that each
repetition of the experiment provides a non–negligable amount of information; systems with
this property may be called random. Obviously, H(µ) is a global characteristic of the system
(2ω,T,µ); it depends only on µ and T and reflects the the randomness of the system as a whole.
We must now investigate how this global characteristic is related to randomness properties of
individual sequences.

The measures occurring in 5.5.2 will be assumed to be ergodic; that is, if T–1A = A, µA is
either 0 or 1. If µ is ergodic, then µ[w] can be interpreted as the limiting relative frequency of
w in a typical sequence x:

5.5.2.3 Ergodic theorem (see Petersen [82,30])  Let µ be a stationary measure on 2ω,
f: 2ω → integrable. Then

f*(x)  =  lim
n→∞ n

1∑
k=1

n

f(Tkx)

exists µ-a.e., f* is T-invariant and ∫fdµ = ∫f*dµ. In addition, if µ is ergodic then f* is constant

µ-a.e. As a consequence, if µ is ergodic, then for any w ∈ 2<ω:

µ{x| lim
n→∞ n

1∑
k=1

n

 1[w] (T
kx)  =  µ[w]}  =  1.

Below, we use not only the ergodic theorem, but also one of its consequences, the Shannon–
McMillan–Breiman theorem:

5.5.2.4 Theorem  (see Petersen [82,261]) Let µ be an ergodic measure on 2ω, H(µ) its

entropy. Then for µ a.a. x– :  lim
n→∞ –

n

log2µ[x(n)]
  =  H(µ).

One immediate application of the Shannon–McMillan–Breiman theorem in this context is the
computation of the constant H such that

lim
n→∞ n

I(x(n))
  =  H  µ–a.e.

We saw in 5.1.2 that this constant exists, due to the subadditivity of I; but we couldn't compute
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it. However, at least for computable µ it is easy to see that H must equal H(µ). Combining
lemma 5.1.4.3 and theorem 5.4.1.3, we get: x ∈ R(µ) if and only if ∃m ∀n (m + I(n) + [–
log2µ[x(n)]] ≥ I(x(n)) > [–log2µ[x(n)]] – m). Since µR(µ) = 1, the preceding theorem implies

for µ–a.a.x: lim
n→∞ n

I(x(n))
  =  H(µ) 10

.

Hence for computable ergodic µ, the statement that I(x(n))/n converges to H(µ) µ almost
everywhere, is a trivial (and less informative) consequence of the characterization of
randomness. For arbitrary ergodic µ, we must do some more work.

5. 5. 2. 5 Theorem  Let µ be an ergodic measure, H(µ) its entropy. Then for µ–a.a. x:

lim
n→∞ n

I(x(n))
  =  H(µ) 11.

Proof   Stripped of its recursive content, the "⇒" half of theorem 5.4.2.3 shows that
µ{x |∀m ∃n I(x(n)) > [–log2µ[x(n)]] – m} = 0. Using theorem 5.5.2.4

it follows that liminf
n→∞ n

I(x(n))
  ≥  H(µ)  ,  for µ–a.a. x. To get limsup

n→∞ n
I(x(n))

  ≤  H(µ) for

µ–a.a. x,  we remark first that, for each x and for each k,  limsup
n→∞ n

I(x(n))
  =  limsup

n→∞ n·k
I(x(n·k))

.

Indeed, by the subadditivity of I,  there exists a constant c such that for all k: I(x(n))  =  
I(x(n0·k + r))  ≤  I(x(n0·k)) + I(xn0·k+1, . . . ,xn0·k+r) + c.

Clearly, then, limsup
n→∞ n

I(x(n))
  ≤  limsup

n→∞ n·k
I(x(n·k))

 ;  the converse inequality is trivial.

We now use lemma 5.1.4.5, slightly rephrased:

I(x(n·k)) ≤ n·[–∑
w∈2

k

(
n
1∑

j=1

n

1[w](T
j x)log2 n

1∑
j=1

( 1[w](T
j x)))  +  

n

O(log2n)
]·k

,·k

which implies

(*)  
n·k

I(x(n·k))
  ≤  – k

1 ∑
w∈2

k

(
n
1∑

j=1

n

1[w](T
j x)log2(n

1∑
j=1

n

1[w](T
j·kx)))·k

+  
n·k

O(log2n)
.

Since µ is stationary (although not necessarily ergodic) with respect to the Tk, the ergodic

theorem  implies that fw(x) = lim
n→∞ n

1∑
j=1

n

1[w](T
j x) exists µ–a.e. and that ∫fwdµ = µ[w]: .
·k

Taking limsups (with respect to n) and integrals (with respect to µ) on the left hand side and
right hand side of (*), we get, for all k:
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∫limsup
n→∞ n·k

I(x(n·k))
 dµ  ≤  –

k
1∑

w∈2
k
 ∫fwlog2fwdµ; hence by Jensen' s inequality

∫limsup
n→∞ n·k

I(x(n·k))
dµ  ≤  –

k
1∑

w∈2
k

 ∫fwdµlog2∫fwdµ  =  –
k
1∑

w∈2
k

µ[w]log2µ[w].

Since limsup
n→∞ n·k

I(x(n·k))
  =  limsup

n→∞ n
I(x(n))

,  we have, for each k: ∫limsup
n→∞ n

I(x(n))
dµ  ≤

–
k
1∑

w∈2
k

µ[w]log2µ[w]. Letting go  to infinity, we see that ∫limsup
n→∞ n

I(x(n))
  ≤  H(µ)  andk

the desired result follows since limsup
n→∞ n

I(x(n))
  is T–invariant, hence constant µ–a.e.           

5. 5.2. 6 Remark  Use of Solovay' s formula (5.1.2.10) immediately gives lim
n→∞ n

K(x(n))
  =

= H(µ) µ–a.e., but employing I instead of K reduces one half of the proof to a triviality.

We now interpret the preceding theorem as a result on the amount of computer power
necessary to predict the outcome sequence x(n), given x(m), where m < n. This problem arises
for instance in the study of dynamical systems (Γ,S) on which we perform a measurement
given by the partition A0,...Ak–1: we have observed the state of the system (i.e. one of the

numbers 0,...,k–1) at instants t = 1,...,m and we wish to predict the state at instants t =
m+1,...,n.
To calculate x(n) from x(m) we may use the evolution S, but other algorithms are also
allowed. We impose but one restriction: the algorithm should not be too large. So we fix some
constant c (representing the size of a program too large for practical purposes) and we call
x(n) unpredictable given x(m) if I(x(n)|x(m)) > c + I(n), or, what comes down to the same
thing (by lemma 5.1.3.6), if I(x(n)|<n,x(m)>) > c. (We use as conditions both x(m) and n,
since the instant n chosen in advance also belongs to the data.) The term unpredictable is used
here in the sense of not potentially predictable.

We now show that there exists a close connection between entropy and unpredictability. Since
c has been chosen so large, we may write the following chain of equivalent inequalities:

I(x(n)|x(m)) > c + I(n) ⇔

I(x(n)|x(m)) + I(x(m)) > c + I(n) + I(x(m)) ⇔ (by lemma 5.1.3.6)

I(<x(n),x(m)>) > c + I(n) + I(x(m)) ⇔ (since m and x(n) determine x(m))
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I(x(n)) + I(m) > c + I(n) + I(x(m)) ⇔

          (*) I(x(n)) > c + I(n) + I(x(m)) – I(m).

Since I(x(m)) ≤ m + I(m) + d, with d<<c, (*) surely holds if I(x(n)) > c + m + I(n).

Now let µ be an ergodic measure with entropy H(µ) and suppose lim
n→∞ n

I(x(n))
  =  H(µ).

Assume H(µ) > 0, choose ε > 0 small compared to H(µ) and let n0 be so large that
I(x(n)) > n(H(µ) – ε) for n ≥  n0.

Then (*) is surely satisfied if n > 
H(µ)–ε

c+m+I(n)
, an inequality which can thus be taken as a

sufficient condition for unpredictability.

Note that this condition can be significantly improved if we assume in addition that µ is
computable. In this case we may replace the upper bound I(x(m)) ≤ m + I(m) + d by I(x(m)) ≤
[–log2µ[x(m)]] + I(m) + d. By the Shannon–McMillan–Breiman theorem (5.5.2.4), there is
m0(ε) such that for m ≥ m0(ε): [–log2µ[x(m)]] ≤ m(H(µ) + ε). For suitable choices of n and m

the above sufficient condition for unpredictability can thus be sharpened to:

n  >  
H(µ) – ε

c + m(H(µ) + ε) + I(n)
 .

If ε<<H(µ),  then this boils down to: n  >  m + 
H(µ)

c + I(n)
 .

In other words, the complexity theoretic characterisation of randomness shows that random
sequences have a definite "predictability horizon", which is approximately (modulo the term
I(n), which is small compared to n) linear in the data x(m).

5.5.3 Topological entropy  Like metric entropy, topological entropy is a global measure of
disorder, pertaining to the dynamical system as a whole, not to individual trajectories. Again
our main interest concerns the relation between this global measure and the behaviour of I.

5.5.3.1 Definition  Let A ⊆ 2ω be closed. Call w ∈ 2n admissible for A if A∩[w] ≠ Ø. Put An

:= {w∈2n | w admissible for A}. #An denotes the cardinality of An.

5.5.3.2 Definition  Let A ⊆ 2ω be closed. E(A), the topological entropy of A is defined

to be E(A) :=  limsup
n→∞ n

log2#An .
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5.5.3.3 Remark   If A is shift–invariant, i.e. if T–1A = A, where T is the left–shift, we

have in fact  E(A)  =  lim
n→∞ n

log2#An . This is so,  for instance, if A is of the form ψ[Γ],  where 

ψ and Γ are as in 5.5.1. In this case, E(A) measures the extent to which the transformation S
on Γ scatters points around Γ. It may be of interest to note that for shift–invariant A, E(A)

equals the Hausdorff dimension of A.

5.5.3.4 Example  Let A consist of all those infinite binary sequences in which maximal blocks
of 0's and of 1's have even length. Clearly #A2n = 2n, hence E(A) = .

The calculation of topological entropy is sometimes made difficult by the circumstance that
the set of admissible words for a ∏1 set A need not be recursive, as it was in the example just
given. For instance, if A is a ∏1 set without recursive elements (one may think of the set of
complete consistent extensions of Peano arithmetic; or the set A = {x| ∀n V(x(n)) ≤ m} where

V is a universal subcomputable Martingale (cf. 3.4)), then its set of admissible words cannot
be recursive, for if it were, the leftmost infinite branch would also be recursive. (We
conjecture that in fact the following holds: if A is ∏1 without recursive elements, then E(A) =

0,1 or non–computable.)

5.5.3.5 Lemma  Let A ⊆ 2ω be ∏1. The set of admissible words for A is ∏1.

Proof  By König's lemma, w is admissible for A iff ∀n≥|w| ∃v∈2n (v∈T & w⊆v), where T is

the recursive binary tree associated with A.                                                                    

The relation between topological and metric entropy is given by

5.5.3.6 Variational principle  (Petersen [82,269]) Let A ⊆ 2ω be shift–invariant and closed.

Then E(A) = sup{H(µ)| µ stationary measure on A}.

A measure µ on A for which in fact E(A) = H(µ) is called a maximum entropy measure (e.g. λ
is the maximum entropy measure on 2ω).

At last, we may now discuss the relation between complexity and topological entropy. In order
to see what kind of relation can be expected, let us first derive some simple consequences of
the material presented so far.

5.5.3.7 Lemma  Let A ⊆ 2ω be ∏1 with a recursive set of admissible words. Then for all
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x in A: limsup
n→∞ n

I(x(n))
  ≤  E(A).

Proof  Since the set of admissible words is ∆1, we have by  lemma 5.1.4.2, for w ∈ An,

I(w) ≤ [log2#An] + I(|w|) + d. Hence also for all n, x ∈ An: I(x(n)) ≤ [log2#An] + I(n) + d,

and the result follows since lim
n→∞ n

I(n)
  =  0.                                                               

5.5.3.8 Lemma  Let A ⊆ 2ω be shift–invariant, µ a stationary measure on A. Then

µ{x∈A| lim
n→∞ n

I(x(n))
  ≤  E(A)}  =  1.

Proof  By theorem 5.5.2.5, the limit equals H(µ) µ–a.e. By the variational principle, H(µ) ≤
E(A). 

These results show that E(A) is in some interesting cases an upper bound for limsup
n→∞ n

I(x(n))
.

Now obviously, if µ is a maximum entropy measure for (A,T), then "≤" can be replaced by
"=" in 5.5.3.8.
But one would like to know whether,without special assumptions (such as shift–invariance)

about A, there exist x in A for which lim
n→∞

(sup) 
n

I(x(n))
  =  E(A), and if so, how many.

A little reflection shows, that the condition "lim (sup)
n→∞ n

I(x(n))
  =  E(A)" implies something

about the structure of A; and this becomes particularly clear when we consider the slightly
stronger form "∃m ∀n I(x(n)) > [–log2#An] – m", the topological analogue of the criterion for

randomness. In fact, this topological analogue seems to embody the pure form of irregularity
or lawlessness; irregularity which does not necessarily imply statistical regularity. The
condition roughly means the following (cf. 5.1.4). We are given a ∏1 set A, which determines
a priori restrictions on our freedom to choose x(n). For each n, we may choose among #An

possibilities to determine x(n). Obviously, once x(n) has been chosen, there is not much
freedom to choose x(n+1); but we are entirely free in choosing a program for x(n+1). Bearing
in mind that, at least when A has a recursive set of admissible words, the upper bound for
I(x(n)) is of the form [–log2#An] + I(n) + d, the condition for topological irregularity means by

and large (modulo the unavoidable oscillations) (1) that a program for x(n) is of the form
"program for n plus ordinal number of x(n) in An" and (2) that we need the full range of
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possibilities in the An in order to determine x, so that we have not restricted our freedom of

choice more than demanded by the a priori restrictions imposed by A. This seems to be a
pleasant way of saying what irregularity or lawlessness means in a classical setting.

But we only need the full range of possibilities in the An if it is not possible to restrict the

freedom of choice significantly (as measured on the logarithmic scale) by specifying, say, a
finite number of bits in advance. These considerations suggest that it may not be possible to
find many elements of A satisfying the topological irregularity condition if A can be
(effectively) resolved into components with properties very different from those of A itself12.
We attempt to formalize this idea in the following definition.

5.5.3.9 Definition  Let A⊆2ω be ∏1. A is called homogeneous if there exists a constant c

such that for every ∏1 subset B of A:  ∀n ∀k≥n 
#Bn

#Bk   ≤  c·
#An

#Ak  (where Bn is the set of

words of length n admissible for B).

For homogeneous ∏1 sets there is indeed a connection between complexity and topological

entropy.

5.5.3.10 Theorem  Let A ⊆ 2ω  be a homogeneous ∏1 set. Then for some x in A:
∃m ∀n I(x(n)) > [log2#An] – m.

Proof  Put C(m,k) := {w∈Ak| ∀n≤k I(w(n)) > [log2#An] – m}. By compactness, it suffices to

show that there exists m such that for all k: C(m,k) ≠␣Ø.

Now #C(m,k)  ≥  #Ak – ∪n≤k {w∈2k  | I(w(n)) ≤  [log2#An] – m}.  To calculate

#{w∈2k | I(w(n)) ≤ [log2#An] – m}, note that  #{v∈2n | I(v) ≤ [log2#An] – m}  ≤   #An

by lemma 5. 1.2.4.  Hence by homogeneity,   #{w∈2k | I(w(n)) ≤  [log2#An] – m}  ≤

·2–I(n)–m·d

≤  c·
#An

#Ak ·#An·2–I(n)–m·d  =  #Ak·2–I(n)–m·c·d.  Take m so large that c·d is dwarfed. We may

then write:  #C(m,k)  ≥  #Ak– ∑
n≤k

#Ak·2–I(n)–m  ≥  #Ak(1 – 2–m)  >  0. Hence there exists m

such that for all k, C(m,k) ≠ Ø. 

                              
This is not quite the optimal result. The topological analogue of theorem 5.4.2.3, x ∈ R(µ) if
and only if ∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m,would be: under suitable restrictions on A, for
sufficiently large m, E(A) = E{x∈A| ∀n I(x(n)) > [log2#An] – m}13. By putting a condition on

A which is an elaboration of the considerations which lead up to the definition of
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homogeneity, we can indeed achieve this.

Observe that, if A is homogeneous, for all w, n and k≥n:
#(A∩[w])n

#(A∩[w])k   ≤  c·
#An

#Ak.

However, this fact does not exclude the possibility that  
#(A∩[w])n

#(A∩[w])k   is of lower order than

#An

#Ak.  This happens for instance if A∩[w]  =  {x}, whereas #An is unbounded.

Hence, even if A is homogeneous in the sense of definition  5.5.3.9, it may still be possible to
resolve A effectively into components which do not resemble A in the least. We therefore put

5.5.3.11 Definition  A is strongly homogeneous if A is homogeneous and if for some

constant e, for all w such that A∩[w] ≠ Ø, for all n and k≥n:
#An

#Ak  ≤  e·
#(A∩[w])n

#(A∩[w])k .

We then have

5.5.3.12 Corollary  Let A ⊆ 2ω be a strongly homogeneous ∏1 set. Then for sufficiently large
m, E(A) = E{x∈A| ∀n I(x(n)) > [log2#An] – m}.

Proof  If A is strongly homogeneous, then for all w such that A∩[w] ≠ Ø and for all ∏1

 subsets B of A∩[w]:

#Bn

#Bk   ≤  
e
c
·
#(A∩[w])n

#(A∩[w])k  .

For each w such that A∩[w] ≠ Ø we may therefore repeat the argument of theorem 5.5.3.10.
Since c/e is independent of w, we get m such that for all w such that A∩[w] ≠ Ø, there is x in
A∩[w] satisfying ∀n I(x(n)) > [log2#An] – m. Hence w is admissible for A iff it is admissible
for {x∈A| ∀n I(x(n)) > [log2#An] – m}, which shows that the topological entropies must be

equal.                                                                                                         

5.5.3.13 Remark  If A is a strongly homogeneous ∏1 set, and if #An is unbounded, A must be
perfect. It follows that {x∈A| ∀n I(x(n)) > [log2#An] – m} must have the cardinality of the
continuum, e.g. by observing that a non–empty ∏1 set without recursive elements has the

cardinality of the continuum (cf. lemma 26 in Jockusch and Soare [38,38]).

5.5.3.14 Corollary  Let A ⊆ 2ω be a strongly homogeneous ∏1 set with a recursive set of
admissible words and such that #An is unbounded.
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Then E(A) = E({x∈A| lim
n→∞ n

I(x(n))
  =  E(A)} and {x∈A| lim

n→∞ n
I(x(n))

  =  E(A)} has the 

cardinality of the continuum.

Digression: oscillations  We investigate briefly the oscillations of complexity of sequences x
in a ∏1 set A. The material in 5.4.2 leads one to conjecture that there is no x in A which
satisfies ∃m ∀n I(x(n)) > [log2#An] + I(n) – m. That this is indeed so, at least for A such that
#An does not grow too slowly, is the content of the following theorem. To state the condition

of growth in a simple form, we assume that A is shift–invariant.

5.5.3.14 Theorem  Let A be a shift–invariant ∏1 subset of 2ω with a recursive set of

admissible words. Suppose there exists a total recursive f: ω → ω with lim
i→∞

f(i) = ∞,

such that for all n and i:  
#An–i

#An   ≥  f(i).  Then no sequence x in A satisfies

∃m ∀n I(x(n)) > [log2#An] + I(n) – m.

Proof  The proof is modelled upon that of theorem 5.4.2.4. It suffices to show that for every
∆2 definable sequence x in A:
lim
n→∞

([log2#An] – I0(x(n)|n)) = ∞.

To this end, we may copy the proof of theorem 5.4.2.2 until we come to the inequality:
I0(x(n)|n) ≤ I(i) + I0(xi+1.....xn|n–i) + d. By shift invariance, Tix ∈ A, hence (forgetting about
the constants) I0(xi+1.....xn|n–i) ≤ [log2#An]. We then have [log2#An] – I0(x(n)|n) ≥

≥  [log2#An] – [log2#An–i] – I(i)  ≥ log2#An–i

#An   – I(i)  ≥  f(i) – I(i).

Since f is total recursive and lim
i→∞

f(i) = ∞ , ∀m ∃i (f(i) > I(i) + m),  which proves the theorem.

Although natural examples from probability theory (such as example 5.5.3.4) satisfy the
hypothesis of the theorem, equally natural examples from the logic (such as the set of
complete consistent extensions of Peano arithmetic) do not. It is conceivable that in those
cases the complexity is considerably higher.

5.5.4 Kamae–entropy  This measure of disorder is local, i.e. pertains to individual

trajectories and as such can be compared directly to the quantity limsup
n→∞ n

I(x(n))
.
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5.5 . 4 .1  Definition  Given x ∈ 2ω,  define measures µn on 2ω by: µn[w]  =  
n
1∑

k=1

n

1[w](T
kx).

Let V(x) denote the set of limit points of the µn (with respect to the topology of weak
convergence). Each limitpoint µ is stationary, so we may associate to each µ ∈ V(x) its metric
entropy H(µ). Put h(x) := sup{H(µ)| µ ∈ V(x)}. h(x) is called the Kamae–entropy of x (Kamae

[40]).

5.5.4.2 Example  Let µ be a stationary measure and x an ergodic point with respect to µ,

i.e. for all w, µ[w]  =  lim
n→∞ n

1∑
k=1

n

1[w](T
kx). Then V(x)  =  {µ} and h(x)  =  H(µ).

5.5.4.3 Example (Sturmian trajectories)  Let C be the unit circle, parametrized as C = {eia |
a ∈ [0,2π)}. Let α ∈ [0,2π) be irrational and let S be the transformation S(eia) = ei(a+α). S
represents an irrational rotation of the circle around angle α. Put C0 := {eia | a ∈ [0,π)}, C1 :=
{eia | a ∈ [π,2π)}. C0 and C1, together with the excluded points eiπ = –1 and e2πi = 1 represent

a partition (or "measurement") of the "phase space" C. As in 5.5.1, we may define a mapping
ψ: C → 2ω by ψ(γ)k = j iff Sk(γ) ∈ Cj. Let A:= ψ[C], then A is an uncountable closed shift–

invariant set. Elements of A are called Sturmian trajectories. It can be shown that there exists
only one stationary measure µ on A, and that this measure has zero entropy. As a
consequence, the Kamae–entropy of all x in A equals zero. Kamae calls sequences x with h(x)
= 0, deterministic. An examination of the definition of entropy shows that such sequences are
in a sense asymptotically predictable. It will be seen in 5.6 that deterministic sequences have
some of the properties postulated of admissible place selections.
The relation between Kamae–entropy and I is given by

5. 5. 4. 4 Theorem  (Brudno [10,145]) For all x, limsup
n→∞ n

I(x(n))
  ≤  h(x).

In this case, use of I does not seem to have technical advantages, so we refer the reader to
Brudno's proof (l.c.). Note that the inequality is strict for recursive points which are ergodic
for a measure with positive entropy. Examples are recursive Bernoulli sequences; for instance,
the sequence constructed by Champernowne: 0100011011000001...

5.6 Admissible place selections  In conclusion of this chapter, we come back to one of the
issues raised in Chapter 2, namely, the intensional character of admissible place selection. We
observed in 2.3.3 that, in general, admissibility is not a property of the graph of a place
selection, but, as indicated by the phrase ohne Benützung der Merkmalunterschiede, a relation
between the process generating the Kollektiv and the process determining the place selection.
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In some degenerate cases, namely, when the admissibility of a place selection is assumed for a
priori reasons, one may predicate admissibility of a place selection itself. This is so, for
instance, if the selection is lawlike. But we noted in 2.5.1 that it is doubtful whether  a priori
admissibility and lawlikeness really coincide. To substantiate this claim, we present in 5.6.1 a
theorem due to Kamae, which states that the deterministic sequences introduced in 5.5.4 have
many of the virtues of admissible place selections. In 5.6.2 we widen the framework and
attempt to capture the intensional aspect of admissible place selection.

5.6.1 Deterministic sequences  A deterministic sequence, as introduced in 5.5.4, is one which
is asymptotically predictable. A nice way to see this, is to apply Brudno's theorem 5.5.4.4,
which implies that if h(x) = 0, then I(x(n))/n converges to 0. Using a computation similar to
the one given in 5.5.2, we see that the predictability horizon, which is approximately linear in
the data for positive entropy, must recede in this case. In this sense, deterministic sequences
are generalisations of recursive sequences. (In another sense, they are not: it is easy to show
that each Turing degree contains, e.g., a Sturmian trajectory (5.5.4.3).) It stands to reason that
two sequences, one of which is asymptotically predictable and the other having a
predictability horizon linear in the data, are independent. The following theorem bears this
out. Recall that B(p) is the set of Bernoulli sequences with parameter p (definition 2.5.1.3).

5. 6. 1 . 1 Theorem  (Kamae [40]) Under the hypothesis liminf
n→∞ n

1∑
k=1

n

yk > 0,  the following are

equivalent  

(1)  h(y)  =  0

(2)  for  all x ∈ Β(p):  x/y  ∈  Β(p).

 for all p  ∈ (0,1):

The hypothesis of the theorem is necessary, since given x ∈ B(p) it is easy to construct a y in
which 1 occurs with limiting relative frequency 0, such that x/y ∉ LLN(p).

It is out of the question to prove Kamae's theorem here. To give the reader nevertheless an
inkling of the fundamental idea involved, we have decided to include a quick calculation,
which illustrates the direction (2) ⇒ (1) of the theorem.

5.6.1.2 Proposition Let p ∈ (0,1) and let µ be a stationary measure on 2ω  such that
µ{y| ∀x∈LLN(p): x/y ∈LLN(p)}=1. Then for µ–a.a. y: h(y) = 0.

Proof  By the ergodic decomposition theorem, it suffices to prove the proposition for ergodic
µ. By the ergodic theorem (5.5.2.3), µ–a.a. y are ergodic points with respect to µ. Hence (cf.
example 5.5.4.2) the conclusion holds if we can show that, under the hypothesis of the
theorem, H(µ) = 0. Suppose H(µ) > 0. By a result of Furstenberg (lemma 3.1 in Kamae [40]),
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in this case there exists a stationary measure ν on 2ω×2ω which has µ and µp as marginals, but
for which ν([0]×[1]) ≠ µp[0]·µ[1]. By the ergodic theorem

ν€<x,y>| lim
n→∞ n

1∑
k=1

n

1
[0]×[1]

(T
k
<x,y>)  ≠  µp[0]·µ[1]   >  0.{ }

But then, by the properties of /,

ν{<x,y>| x ∈ LLN(p), lim
n→∞ n

1∑
k=1

n

yk
  = µ[1], x/y ∉ LLN(p)}  >  0.

Disintegrating ν,  i.e.  constructing a family of measures {νy}y∈2ω
 such that for all E ⊆ 2ω×2ω,

νE  =  ∫
2ω

νyEydµ(y),

we see that for some A ⊆ 2ω  with µA > 0, and all y in A: νy(LLN(p)∩(/y)–1LLN(p)c) > 0,
whence µ{y| LLN(p)∩(/y)–1LLN(p)c ≠ Ø} < 1, a contradiction.                                         

The key ingredient of the proofs, both of Kamae's theorem and the above proposition, is
provided by Furstenberg's theorem which states, very loosely speaking, that two processes of
positive entropy cannot be entirely independent. One may now wonder whether Kamae's
theorem has an analogue for random sequences. In particular, do we have, under suitable
restrictions on y:

for all p ∈ (0,1), the following are equivalent

(1) lim
n→∞ n

I(y(n))
  =  0

(2) for all x ∈ R(µp): x/y ∈  R(µp)?

computable

5.6.2 Admissibility and complexity  We now turn to the intensional aspect of admissibility.
One way to explain admissibility is as follows: we might say that a sequence y is an
admissible place selection for a Kollektiv x if y contains no information about x. In other
words, y cannot use the Merkmalunterschiede  of x since it knows too little about x. There are
various ways to formalize this idea. One might use conditional complexity I(x(n)|y(m)), or the
relative complexity Iy, which was defined in 5.4.3. We choose the latter possibility.

5.6.2.1 Definition  Let p ∈ (0,1) be computable. If x ∈ R(µp), then y is an admissible place

selection with respect to x if ∃m ∀n Iy(x(n)) > [–log2µp[x(n)]] – m.

5.6.2.2 Remark  This definition may seem surprising, in view of the preceding motivation. In
fact, a definition of the form: "y is an admissible place selection with respect to x if ∃m ∀n
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Iy(x(n)) > I(x(n)) – m" would be rather more elegant. But then it is not clear that there exist
non–recursive y which are admissible (in this sense) with respect to a non–negligible set of
x's. We have already seen (in 5.4.3.1) that if y is a complete Turing degree, i.e. if Ø' ≤T y, then
λ{x| ∀m ∃n≥m (Iy(x(n)) ≤ I(x(n)) – m)} = 1. On the other hand, with the definition of
admissibility we have chosen, it is immediately clear that for all computable µ: µ{x| ∃m ∀n
Iy(x(n)) > [–log2µ[x(n)]] – m} = 1: just relativize theorem 5.4.1.3 to y.

We now put definition 5.6.2.1 to work.

5.6.2.3 Theorem  (a) If x ∈ R(µp) and y is admissible with respect to x, then x/y ∈ R(µp). (b)
If x ∈ R(µp), then the set of y not admissible with respect to x is recursively small (cf. 4.5).

Proof  (a) follows by relativizing theorem 5.4.1.3 to y. For (b), we have to show that for any
computable measure ν: ν{y| ∀m ∃n Iy(x(n)) > [–log2µp[x(n)]] – m} = 0.

By the Fubini theorem for recursive sequential tests (4.4.4), it suffices to show that
{<x,y>| ∀m ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m} is a recursive sequential test with respect to
µp×ν. Now this set is obviously ∏2; moreover, we have

µp×ν{<x,y>| ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m}  =  

∫µp{x| ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m}dν(y)  ≤  ∫2–mdν(y)  =  2–m,  

the inequality following from the relativized version of theorem 5.4.1.3.                              

A trivial combination of the Fubini theorem and theorem 5.4.1.3 thus allows us to capture at
least some of the content of the randomness axiom.

Notes to Chapter 5

1. For the subadditive ergodic theorem, see e.g. Y. Katznelson, B. Weiss, A simple proof of
some ergodic theorems, Isr. J. Math  42 (1982) 291–300.
2. It is a generalisation of the Kraft–inequality from coding theory.
2a. See also Ker-I Ko, On the definition of infinite pseudo–random sequences, Theor. Comp.

Sc.  48 (1986), 9-34.
3. But with the condition of randomness proposed by Kolmogorov, this verification cannot be
effective. A finite sequence w may be called random  with respect to the distribution ( , ) if
for some m, I(w) > |w| – m. It can be shown that finite random sequences have many of the
desired statistical properties, such as (approximate) stability of relative frequency etc.; but, as
will be shown in 5.3, there exists no infinite r.e. set of finite random sequences, so that
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randomness for finite sequences is in a very strong sense not effectively verifiable. In this
respect, Kolmogorov's proposal substitutes one kind of unverifiability for another.
4. The argument used to prove corollary 5.3.1.4 also proves that the graph of the complexity
measure I, {<w,m>| I(w) = m} has degree Ø'.
5. Martin Davis, What is a Computation? in L.A. Steen (ed.), Mathematics Today, Springer
Verlag (1978).
6. One might try to define a real–valued measure of the information content of a formal
system S along the following lines. Let A(S) be the set of complete consistent extensions of S,
then A(S) may be identified with a ∏1 subset of 2ω. If S1 is stronger than S2, then A(S1) is
contained in A(S2). One may now define the information content of S as the inverse of the

topological entropy  (see section 5.5.3) of A(S). Of course, this measure is interesting only if it
can be shown that it is independent of the Gödelnumbering adopted.
7. Although perhaps the usual proofs of van der Waerden's theorem are too ineffective to bring
about a decrease in complexity.
8. It is not clear to whom to attribute this result. Chaitin credits Schnorr in [12] and Solovay in
[13]. The first published proof appears to be Dies [19].
9. This should be understood (and is proved) in the same way as the corresponding result for
prefix algorithms.
10. The proof of the Shannon–McMillan–Breiman theorem does not yield: x ∈ R(µ) implies

 lim
n→∞ n

I(x(n))
  =  H(µ) .  For certain special µ,  e.g. those of the form µp  this can be proved.,

11. Brudno [10,132] proves: if µ is an ergodic measure, then for µ–a.a. x:

limsup
n→∞ n

K(x(n))
  =  H(µ).

12. A simple example of a ∏1 set which can be so resolved is the set A consisting of

sequences of the form 1n0ω for n ≥ 0. Any element of A is determined by finitely many bits.
Having specified these bits, there is no more need to choose in An.
13. We cannot define topological entropy for the set {x∈A|∃m ∀n I(x(n)) > [log2#An] – m},

since this set need not be compact. We therefore choose the formulation "for m sufficiently
large....".


