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ABSTRACT

Wepresent a survey on the theory of Resource-bound Classes in Abstract
Complexity Theory. In particular the theory of Honesty Classes is developed
in full analogy with the existing theory of Complexity Classes. Honesty
Classes are defined by gathering (functions computable by) programs, whose
run-times are bound almost everywhere by a function depending on the

argument and the computed value. It is proved that several known theorems,

like the Gap-, Operator Gap- and Union Theorem can be generalized to

Honesty Classes, although the proofs need somenon-trivial modifications.
The NamingTheorem, however, is invalid for Honesty Classes.

The concept of an Acceptance Relation is developed, to explain these
unexpected differences. In this frameworka numberof different types of
Resource-bound Classes can be described. Moreover, it is argued that there
exist two different ways in which a so called Abstract Resource-bound Class
is restricted by its name, called a weak and a strong restriction. Since
Complexity Classes are strong classes whereas Honesty Classes are weak,
this explains the difference in behaviour of the two types of classes.

Weintroduce a new formalism to represent algorithms in recursion
theory by mathematical expressions which do not differ much from the ones
traditionally used in an informal way. In this way a numberof ambiguities

which are rooted in the lack of formalism are eliminated. In the appendix
some of the more complicated algorithms used in Abstract Complexity Theory
are represented in this formalism.

Keywords: Complexity Classes, Honesty Classes, Blum measure, Gap Theorem,
Union Theorem, Naming Theorem, Honesty Procedures, Meyer-McCreight Algorithm,

Acceptance Relation, measured set, Resource-bound Classes,AbstractComplexity
Theory.

AMSM08 70 classification: primary 68 A 20, 02 F 35, (68 M 15)

secondary 68 A 10, (68 K 99), 02 F 43.

Computingreviews classification: 5.25, 4.29, 5.29.
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VOORWOORD VOOR DE LEEK.

Gegeven de grote waarde die de samenleving in het algemeen, en de

subgroep van verwanten en vrienden van de promovendus in het bijzonder,
toekent aan de promotie en de daarmee verband houdende gebeurtenissen, is
het onvermijdelijk dat dit proefschrift ook onder ogen komt van niet wiskun­
dig geschoolden. Wemoeten ernstig rekening houden met de mogelijkheid

dat deze lezers reeds na het lezen van een drietal zinnen geheel overdonderd
zijn. Tot overmaat van ramp is ook onder de bijgevoegde stellingen weinig
leuks voor hen te vinden. Ik wil daarom, en tegelijk omeens en vooral af te

rekenen met het fabeltje dat Wiskundeonbegrijpelijk is, in dit voorwoord
een van de centrale onderdelen van dit proefschrift verwoorden in de Volks­
taal en het op deze wijze geheel en al verklaren en ook voor de leek begrij­
pelijk maken. Het betreft hier het stuk theorie, dat in paragraaf 3.4.4 op
een meer traditionele wijze is behandeld.

Het is mij bovendien een groot genoegen in een jaar, waarin zovele
gruwelverhalen de ronde doen over zekere prijsvormingsmechanismen in de
wereldeconomie en over de daarvoor verantwoordelijk geachte duistere
krachten, U op de hoogte te mogen brengen van een geheel nieuwe theorie over
het economisch gebeuren. De feitelijke informatie, die in dit voorwoordver­
werkt is, ontleen ik aan de verhandeling "Religious Principles and Oil Price
Mechanisms; a Study on Socioeconomic Behaviour in Harad" van BALTHASARILLUB,

werkzaam aan het Theologisch Seminarium van de Universiteit van Umbar. Voor
de goede orde dien ik hierbij te melden dat dit geschrift het proefschrift
is, waarop de auteur recentelijk suma cumlaude de graad van doctor in de
godgeleerdheid verwierf.

Voordat ik kan ingaan op de theorie van de jonge doctor, eerst enkele
opmerkingenover Harad. Zoals U wellicht bekend zal zijn, telt dit land,
volgens de laatste schattingen, een 20.000 zielen; hierbij dient te worden
Opgemerkt. dat er voorzover bekend, nog nooit een volkstelling is gehouden.
Het land wordt sinds mensenheugenis geregeerd door een Iman. Aangezien er

in het gehele land niets wil groeien, is de gehele bevolking werkzaamin de
handel. Het zal U dan ook niet verbazen, dat tot ver in de twintigste eeuw
Harad een straatarm land was; in deze toestand is pas wijziging gekomenna
het aanboren van enkele oliebronnen.

De langdurige periode van armoede heeft het volk gelouterd, en men
zal op deze wereld lang moeten zoeken om een volk te vinden, dat op verge­
lijkbare wijze de religieuze wetten naleeft. Dit houdt onder meer in, dat
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vrouwen en kinderen in Harad niets in te brengen hebben en in het vervolg
van dit verhaal zullen we ons dan ook beperken tot de inwoners van het

mannelijk geslacht, die de leeftijd van 20 jaren gepasseerd zijn en die we
verder Haranen zullen noemen.

Een van de meest opvallende karakteristieken van Harad is de grote
invloed van de godsdienstige wetten op het economisch handelen van de

Haranen. Z0 is het de Haraan verboden om tegelijkertijd als koper en als
verkoper op te treden. Aangeziener in de practijk slechts één artikel is
om in te handelen, te weten de reeds eerder genoemdeolie, die iedere Haraan
in onbeperkte hoeveelheden uit zijn achtertuintje haalt, kunnenwe de
Haranen gevoegelijk onderverdelen in kopers en verkopers. Andere bepalingen
verbieden het de Haraan omvaker dan eens per jaar zijn bied- of laatprijs
te herzien, of nog erger, uit de rangen van de verkopers toe te treden tot
de groep der kopers (of omgekeerd). Slechts één keer per jaar, te weten

op het feest van de Groote Verrekening, krijgt men de kans zijn prijs te
herzien, terwijl de beslissing of men gedurende het komendejaar koper dan
wel verkoper zal zijn, van geheel andere factoren afhangt, iets, waarop
wij in het verdere betoog nader zullen ingaan. Overtreders van deze in de
heilige boeken verankerde geboden, worden gestraft met verbanning naar een
niet nader genoemde, doch vermoedelijk hoogst onaangenameverblijfplaats;
voorts worden hun bezittingen verdeeld onder het volk via de weg van
plundering. Dit gebruik is overigens de oorzaak van het feit, dat de
Internationale Concerns nooit enige invloed hebben weten te verwerven op de
Haraanse economie.

De overgang van een Haraan van koper tot verkoper komt als volgt tot
stand. Een koper die gewillig is de gedurende een jaar geldende olieprijs
te betalen, za1 a1 snel ontdekken, dat zijn beurs eerder is uitgeput dan
de oliebron van zijn leveranciers. Na afloop van het jaar zal de man dan
ook geheel berooid zijn en omhemniet geheel buiten spel te zetten, mag
hij weer toetreden tot de rangen der verkopers.

Het is duidelijk, dat het niet erg aanlokkelijk is een jaar lang als
koper te moeten optreden, gegeven het feit, dat men Bf niet kan handelen,
5f aan het eind van het jaar failliet is. De practijk leert dan ook, dat
er geen Haranen te vinden zijn, die zich vrijwillig aanbieden omkoper te
worden. Omhet economisch leven niet te verlammen, wordt daarom ieder jaar
een aantal Haranen, die tijdens het voorafgaande jaar de ergernis van de
Iman hebben opgewekt, tot koper gedegradeerd, met de verplichting koper
te blijven, tot het faillissement er op volgt.
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Aangezienalleen die kopers, die bereid zijn de vastgestelde prijs te
betalen, failliet gaan, is het mogelijk door het hanteren van lage bied­
prijzen, zich een aantal jaren als koper te handhaven.

De Haraan beschouwt het als een grove belediging wanneer een ander hem

rechtstreeks vraagt hoe hoog zijn bied- of laatprijs is; menmagslechts de
tegenpartij een prijs noemenen vragen of hij voor deze prijs a1 dan niet
bereid is te handelen. Aangezien reeds verscheidene toeristen hun onbekend­
heid met deze lichtgeraaktheid moesten bekopen met een messteek of een ge­
broken arm, moet ik de 1ezers- voorzover zij na het lezen van dit verhaal

nog steeds van zins zijn om op korte termijn een bezoek aan dit mooie land
te willen brengen - bezweren, toch vooral rekening te houden met dit ge­
voelige punt. De geleerden zijn het overigens niet eens over de oorsprong

van dit gebruik. De vermaarde auteur ISMAELB. MERODAKwijst op een passage
in de heilige boeken, die enige overeenkomst vertoont met Genesis 18
Vs 17-33. Zijn opvattingen worden bestreden door de minder bekende socioloog
HOSIAW. LABBERSjr., die zelf een theorie hanteert, uitgaande van een

vervelingssyndroom. Ik wil echter geen verdere tijd verdoen aan deze voor
ons niet ter zake doende kwestie en overgaan tot de bespreking van het
ritueel waarmedede olieprijs jaarlijks wordt vastgesteld.

De Iman, als absoluut despoot, is de vaststeller van de jaarlijkse
olieprijs. Hij is het imers die de handel in zijn land gaande moet houden.
Aangezien de Haranen zelf vrij zijn in het kiezen van hun privé bied­
en laatprijzen en het dus zeer wel denkbaar is dat de laagste biedprijs
uitkomt beneden het niveau van de hoogste vraagprijs, is het de Iman niet
mogelijk de verlangens van a1 zijn onderdanen tegelijkertijd te honoreren.
De Iman is in de practijk reeds dan tevreden, als hij er in slaagt oméén
enkele transactie mogelijk te maken. Daarnaast is de Iman Zeer Rechtvaardig.
Omte voorkomendat slechts een deel van de Haranen bij de prijsvastste1­
ling betrokken wordt, hanteert de Iman een hierarchie, waarin a11e
Haranen zijn opgenomenin volgorde vanancienniteit.Het is evenwel mogelijk

omeen Haraan zijn ancienniteit te ontnemenen in de practijk gebeurt dat
zelfs regelmatig, n.1. iedere keer als de Haraan van status verandert. Het
is duidelijk, dat iemand, die de toorn van de Iman opwekt, bij zijn degra­
datie tot koper tevens zijn ancienniteit kwijtraakt, maar ook op het
faillissement staat het verlies vanzumjenniteit.In d8 100Pdef jaren Zullen



daarom die Haranen die niet van status veranderen, oprukken in de hierarchie.
Laat ik tenslotte opmerkendat jongeren, die juist de leeftijd van twintig
jaren gepasseerd zijn, onderaan in de hierarchie worden opgenomen,meestal
als verkoper.

Ik wil bij de beschrijving van het feest der Groote Verrekening een
aantal sai11ante,maar voor ons doel irrelevante onderdelen, onvermeld laten.

Na het uitspreken van een reeks gebeden door de Hogepriester en een
rituele zuivering, volgt de inwijding der twintigjarigen die, zoals gezegd,
onderaan in de hierarchie worden opgenomen. Hierna volgt de verbanning der
onstandvastigen (maar dit onderdeel is de laatste jaren bij gebrek aan
schuldigen niet meer opgevoerd).

Vervolgens houdt de Groot-discriminator een boetepreek, waarin hij
allen, die de Iman gedurende het voorafgaande jaar onrecht hebben gedaan
of anderszins hebben geergerd, aanklaagt. De boosdoeners worden naar voren
gesleurd, bespot en uitgejouwd; de kleren worden hun van het lijf getrokken
en ten overstaan van de massa worden zij tot koper gedegradeerd. Het enige
wat zij mogenbehouden is hun beurs, want die zullen ze het jaar daarop
hard nodig hebben.

Meestal wordt tegenwoordig de ceremonie op dit punt onderbroken voor
het nuttigen van een bokaal wijn, maar dit is een verwatering van het oor­
spronkelijke ceremoneel, dat geen pauze kende.

Na de onderbreking stellen de Haranen zich op in de voorhof der
tempel. De Iman betreedt het Heilige der Heiligen en zet zich op een daar
speciaal voor dit doel ingerichte troon. Eenmaalgezeten spreekt hij een
gebed uit waarin hij de Groote Rekenaar bidt omhem te inspireren tot het
kiezen van een getal dat als beginprijs moet gaan dienen. In de practijk
blijkt de keuze altijd het getal nul te zijn.

Vervolgens worden de Haranen een voor een tot de Iman toegelaten om

te worden gehoord. Dit gebeurt in de volgorde waarin zij in de hierarchie
zijn opgenomen, maar de Iman zal niet meer mensen bij zich roepen dan hij
nodig heeft omde olieprijs vast te stellen.

Het doel van de Iman is een koper te vinden, die bereid is een prijs
te betalen, waarvoor a11e verkopers, die v66r hembij de Iman geweest zijn,
bereid zijn te handelen. Het is dan ook duidelijk dat de audientie snel is
afgelopen in het geval dat de eerste Haraan een koper blijkt te zijn,
want deze wordt uiteraard bereid geacht omte willen kopen voor de prijs
van nul pegels (de pegel is de plaatselijke munteenheid, waarvan de
waarde, tengevolge van het afwezig zijn van handelsverkeer met het buiten­
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land, moeilijk te bepalen is). Wezullen dan ook maar aannemen, dat de

eerste Haraan een verkoper is en derhalve zal de Iman met zijn wensen
rekening moeten houden. De Iman gaat, gegeven de onmogelijkheid de ver­

koper rechtstreeks omzijn prijs te vragen, net zolang de prijs die hem
voor ogen zweeft met een pegel verhogen, tot de verkoper ermee accoord
gaat. Na aldus zijn zin te hebben gekregen mag de verkoper vertrekken.

Het is van belang te vermelden, dat de uiteindelijk vastgestelde prijs
nooit lager zal zijn dan een tijdens het ritueel door de Imanuitgebracht
tussenbod.

Zolang de voorafgaande audienties nog geen definitieve prijs hebben
opgeleverd, wordt een volgende Haraan binnengeroepen. Als dit opnieuw een

verkoper is wordt hij gelijk zijn voorganger-verkopers behandeld en tevreden
gesteld. Blijkt de eerstvolgende Haraan echter een koper te zijn, dan wordt
hem gevraagd of hij zich kan verenigen met de laatstgenoemde vraagprijs.
Zo nee, dan kan hij het vertrek direct weer verlaten. Is de koper echter
wel bereid omdeze prijs te betalen, dan is hiermede de definitieve prijs
vastgelegd. De laatste koper wordt uitgeroepen tot koper van het jaar en
de prijs wordt onder paukengeroffel, bekkenslagen en het afsteken van
vuurwerk verkondigd aan het volk. Deze prijs zal gedurende het gehele jaar
gelden als de vaste olieprijs.

Er bestaan uiteraard diverse manieren omhet ritueel te frustreren. Het

is erg gemakkelijk voor een verkoper te doen alsof men voor geen enkele
prijs bereid is te verkopen. De traditie leert, dat de Iman, door dit
soort simulanten getergd, wel eens uit zijn rol wi1 va11en en onder be­
dreiging met een kromzwaarduiteindelijk toch nog een positieve reactie
weet los te peuteren.

Ernstiger is de situatie die optreedt a1s de Iman aan het einde der
hierarchie gekomen, nog steeds geen koper heeft gevonden. De Heilige Boeken
.schrijven voor, dat de Iman in dat geval zelf koper wordt, voor de laatst
genoemdeprijs; het is duidelijk dat in deze situatie de Imanmoet aftreden
en de geschiedenis van Harad kent vele burgertwisten en opvolgingstroebelen
die op een dergelijk aftreden gevolgd zijn.

Het feest van de Groote Verrekening wordt afgesloten met een dankgebed
en een orgie, maar de details daarvan wil ik U besparen. Veel interessanter
is de evaluatie die B.E. LUBgeeft van het hierv66r geschetste ritueel.

De zeergeleerde auteur maakt het aannemelijk, dat de Haranen er op uit
zijn om enerzijds in vrede te leven met hun Iman, om op deze wijze verkoper
te mogenblijven en aan de andere kant als verkoper graag zien gebeuren, dat
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hun vraagprijs gerespecteerd wordt. De kopers proberen op hun beurt het
faillissement te ontlopen door een lage biedprijs te hanteren, maar meestal
blijken enkelen onder hen zich te wi11en opofferen ommaar van het koper
zijn af te komen.

Vervolgens toont B.E. LUBaan, dat het gebruikte ritueel op optimale

wijze aan de verlangens der Haranen tegemoet komt.

Het bewijs berust op een splitsing van de Haranen in drie groepen,
afhankelijk van hun levenswandel (waarbij moet worden opgemerkt, dat

B.E. Ififlier bij de vorming van zijn model kennelijk van uitgaat, dat de
Haranenonsterfelijk zijn). Allereerst zijn er die Haranen, die telkens
opnieuw ruzie met de Iman krijgen en zich kort daarop failliet kopen. Deze
Haranen slagen er kennelijk niet in hun doeleinden te realiseren.

In de tweede plaats zijn er de Haranen, die na enige lotswisselingen
hun verdere levensdagen als verkoper slijten. Doordat zij nooit meer ruzie
krijgen met de Iman, rukken zij zover op in de hierarchie, dat op den duur
altijd met hun belangen rekening blijkt te worden gehouden.

De derde groep bestaat uit die Haranen, die uiteindelijk als koper
door het leven moeten gaan en er niet meer in slagen, of niet meer de
bereidheid opbrengen, nog een jaar de gevraagde olieprijs op te brengen.
Jaarlijks brengen zij hun bezoeken aan de Iman, want zij zijn wegens hun
standvastigheid opgerukt in de hierarchie, maar iedere keer is hun prijs
te laag gekozen.

Het voorafgaande levert een verklaring voor de interne stabiliteit
der Haraanse economie. Het zijn de standvastigen die, op hoge leeftijd
gekomen, ver zijn opgerukt in de hierarchie en die nooit meer van rol zu1­
len wisselen, die jaar na jaar de dienst uitmaken.

De oplettende lezer zal er na vergelijking met 3.4.4 en 3.4.1
misschien in slagen om de, in het betoog van B.E. LUBverpakte,

MEYER-MCCREIGHTalgoritme te herkennen. Ik wil hierbij niet nalaten te

vermelden, dat de gegeven beschrijving niet exact overeenstemt met de in
het proefschrift gebodene, maar op bepaalde details uitgebreider is dan de
in de literatuur bekende versies (vgl [HH71] of [MMC69]). Alhoewel
enige barokke versieringen niet ontbreken, vormt zij toch de weerslag van
het door mij gedurende de zomer van 1971 verkregen inzicht in deze als

lastig bekend staande algoritme - een inzicht, dat de basis heeft gevormd
voor het tot stand komenvan dit proefschrift.
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PREFACE

Abstract complexity theory is a subject in theoretical computer sci­
ence, treating the mathematical properties of someuniverse of computabil­
ity; more in particular it concentrates on the fact that the computations
in such a universe use irreversibly someresource, in absence of which
these computations are impossible.

The universe of computability is in general one of the formal systems
from recursion theory, like for example the Turing-machine formalism,
KLEENE'scalculus of general recursive functions based on defining equa­
tions, or more abstractly the concept of an effective enumeration, as de­
fined by ROGERS.

For the TURINGformalism a measure for the resource used by the com­

putation is given by the number of basic cycles executed during the course
of the computation, or, alternatively, the numberof tape squares "used".
For the KLEENEformalism one could count the number of times a left-hand

side is expanded by writing out a defining equation, but also the number z
for which the KLEENEpredicate T(i,x,z) holds can be interpreted to be the
measure for the resource used by the i-th program at argument x.

Clearly for an abstractly defined effective enumeration the resource
should be treated abstractly also. Such a treatment was given for the first
time by M. BLUM,who in 1966 introduced the concept of a complexity mea­

sure. A complexity measure consists of an effective enumeration, equipped
with a sequence of run-times, i.e. functions whose values represent the
amount of resource used by the corresponding programs in the effective enu­
meration, provided that the programs terminate. This sequence must satisfy
two conditions, called the BLUMaxioms. In the first place the run-time
has the same domain as the corresponding program; secondly the sequence of
run-times is a so-called measured set; i.e. it should be decidable whether
the run-time of program i at argument x equals y or not.

With this very general concept as a base, an impressive mathematical

theory has been developed by M. BLUM, A. BORODIN, R.L. CONSTABLE,

E.M. MCCREIGHT,A. MEYERand several others whose contributions are dis­
cussed in this treatise.

Froma mathematical point of view, abstract complexity theory provides
us with a language which enables us to describe constructions in recursion
theory in a fully machine-independent way. A disadvantage of the usual ma­
chine-independent treatment is the lack of formal rigidity used in the des­



xiv

cription and representation of the sometimesquite complicated algorithms
and constructions used in the theory. The same criticism applies to the
machine dependent theory as well.

Our personal interest in the subject mainly did originate from an en­
deavour to grasp the essential meaning of the MEYER-MCCREIGHTalgorithm,

from its erroneously informal description in the survey paper by J. HART­
MANIS and J.E. HOPCROFT[HH 71].

To substantiate our belief in the feasability of a more formal treat­
ment, we present a formalism for the representation of algorithms in ma­
chine-independent recursion theory, using this formalism throughout this
treatise. The formalism consists of a high level programminglanguage, en­
riched by primitives for a complexity measure.

During the development of this formalism we discovered that a formali­
zation of this type needs a further primitive, which enables one to gener­
ate, for a program represented by expressions in the programming language,
an index in the effective enumeration under consideration.

Traditionally, the corresponding step in argumentations is made from
outside the formal structure under discussion, by a reasoning like in
"look at this function which I have described; clearly it is a computable
and hence a recursive function (inessential use of CHURCH'sthesis!) so
there exists an index for it; get me such an index...".

Special care is taken to preserve those mathematical expressions which
provide a single-line definition for a computablefunction. This is real­
ized by extending the formalism with a mathematical representation style,
giving these traditional expressions an unambiguousmeaning. (As a matter
of fact, nobodyhas ever worried about existing ambiguities in the usual
language of abstract complexity theory.)

In abstract complexity theory, one of the main subjects is the be­
haviour of the different run-times of the distinct programs for a single
function; in particular, muchattention is paid to the so-called speed­
up phenomenon. The contents of this treatise mostly belong to a second sub­
ject: the theory of resource-bound classes. These classes are defined by
collecting all programs or functions whose run-times are bounded almost
everywhere by some (recursive) function called the name of the correspond­
ing resource-bound class.

To be more concrete, let (¢i)i denote the sequence of run-times of
the programs which are represented by the sequence (wi)i. The complexity
class Ft consists of all programs mi which for almost all arguments x in



the domain of the name t satisfy the condition ¢i(x) S t(x). The class of
functions computed by programs in Ft is denoted Ct. Analogously, for a two
variable functiLm1Rone defines the honesty class GRby collecting all pro­
grams satisfying almost everywhere the condition ¢i(x) S R(x,wi(x)) when­
ever the right-hand side is defined. The class of functions computedby

programs in GR is denoted HR.
The main attention in complexity theory has been given to the complex­

ity classes, whereas the honesty classes have been considered more or less
to be equivalent to the measured sets. This conception originates from a
well-known result by E.M. MCCREIGHTwhich states that for total R the set

HRis recursively presented by a measured set, and that conversely the
functions in a measured set all are R-honest for some total function R.

Wehave considered the honesty classes as an alternative type of
resource-bound classes, investigating their properties as comparedto the
properties of the hierarchy of complexity classes. The result of this com­
parison can be found in the schemeat the end of this treatise.

During the process of generalizing the knownresults for complexity
classes to honesty classes we discovered that, even in situations where
the result on complexity classes remains valid for honesty classes, the
classical proofs maybreak downand need repairing by non-trivial modifi­
cations. Moreover, a central result like the naming theorem of
E.M. MCCREIGHTbecomes invalid for honesty classes. This suggests that
there is more involved than a "slight modification of definitions".

Our analysis shows that what is involved is an essential difference
in the appreciation of an infinite run-time; such a run-time is felt to be
a violation in the case of the complexity classes, but it contributes no
evidence against the honesty of the corresponding program. This analysis
leads to the new abstract framework of an acceptance relation and a cor­
responding measured set of generalized run-times. Within this framework
we can discuss both types of resource-bound classes and several other
types at the same time.

Let (ai)i be somemeasured set. For a partial function t we denote by
FS(t) (Fw(t)) the set of all indices i which for almost all x in the do­
main of t satisfy the condition ai(x) S t(x) (ai(x) S t(x) or ai(x) = m).
FS(t) (Fw(t)) is called a strong (weak) abstract resource-bound class.

It will be argued that the strong classes generalize the complexity
classes, whereas the weak classes are a generalization of the honesty
classes. For a numberof important results in abstract complexity theory,



such as for example the gap and operator-gap theorems, the union theorem
and the naming theorem, (for their formulation, see the scheme, mentioned

earlier) the knownproofs for complexity classes yield proofs for the strong
abstract resource-bound classes by a straightforward translation. For weak
classes, however, the proofs of the operator-gap theorem and the union
theorem, need an essential repairing, and the naming theorem becomes in­
valid.

The final sections of this treatise contain someresults related to

the MYER-MCCREIGHTalgorithm which is involved in the proof of the naming
theorem for strong classes. Wepresent a further generalization of the
union theorem. Moreover, by concentrating on the renaming function of the
MEYER-MCCREIGHTalgorithm we are able to construct a closure operator which

mapsarbitrary 2 -sets of indices onto the smallest strong class contain­2

ing the given set. This latter theory is partially generalized for weak
classes, yielding somenewresults on the set theoretical closure proper­
ties of honesty classes.

The treatise is completed by providing programs for some of the more
complicated algorithms, treated in the text. Several of these programs are
represented using the non-deterministic feature of parallelism, to indi­
cate the amount of freedom which the user has in choosing a sequential
implementation.



xvii

TO THIS THESIS-EDITION

Since it was our intention to makethis thesis self-contained, with­
out, on the other hand, providing unnecessary details which may be found
elsewhere, the chapters 1-2 up to 2.4 have been reduced in size, and many
proofs have been omitted. These sections, including a number of minor new
results, will be restored to full length in the edition of this treatise
which will appear as a two-volumepublication in the Mathematical Centre
Tract series.
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PART 1

INTRODUCTION TO MACHINE-INDEPENDENT COMPLEXITY THEORY

{23 And Abraham drew near, and said, Wilt thou
also destroy the righteous with the wicked?
24 Peradventure there be fifty righteous
within the city: wilt thou also destroy and
not spare the place for the fifty righteous
that are therein?
25 That be for from thee to do after this
manner, to slay the righteous with the wicked:
and that the righteous should be as the
wicked, that be for from thee: Shall not the
Judge of all the earth do right?
26 And the Lord said, If I find in Sodom
fifty righteous within the city, then I will
spare all the place for their sakes.
27 And Abraham answered and said, Behold now,
I have taken upon me to speak unto the Lord,
which am but dust and ashes:
28 Peradventure there shall lack five of the
fifty righteous: wilt thou destroy all the
city for lack of‘five? Andhe said, If I find
there forty and five, I will not destroy it.
29 And he spake unto him yet again, and said,
Peradventure there shall be forty found there.
Andhe said, I will not do it for forty's
sake.
30 And he said unto him, 0h let not the Lord
be angry, and I will speak: Peradventure there
shall thirty be found there. Andhe said, I
will not do it, if I find thirty there.
31 And he said, Behold now, I have taken upon
me to speak unto the Lord: Peradventure there
shall be twenty found there. Andhe said, I
will not destroy it for twenty's sake.
32 And he said, Oh let not the Lord be angry,
and I will speak yet but this once: Peradven­
ture ten shall be found there. Andhe saiafi I
will not destroy it for ten's sake.

Genesis, XVIII 23-32}





CHAPTER 1.]

ALGORITHMS AND THEIR REPRESENTATION IN MACHINE-INDEPENDENT RECURSION THEORY

1.1.]. THE PROBLEM OF PROGRAMREPRESENTATION IN RECURSION THEORY

Recursion theory is a branch of mathematics dealing with computable
functions. Although by nowmost mathematicians are accustomed to at least
one formal definition of "computable function", the word itself betrays an
inherent ambiguity of this concept: mathematicians are inclined to consider
functions as being static objects (a specific type of a relation) whereas
the word "computation" suggests some dynamical behaviour.

Both aspects are present in a formal definition. In the KLEENEformal­
ism the functions are represented by defining sets of equations; stepwise
application of these definitions yields a computation for a function value.
In the TURINGformalism the computation is mathematically defined and the

function is nothing but the input output relationship defined by a particu­
lar interpretation of what is going on in the Turing machine.

Although the gap between the two aspects has been closed by rigorous
mathematical proofs, there is no traditional method to combinewithin a
single mathematical framework functions defined by describing some computa­
tion method and functions defined by mathematical expressions. There are
several reasons why such a framework is not yet developed.

In the first place, mathematical formulas have been used much longer
than formally represented algorithms. The description of a function by an
expression is in general shorter and more transparent then a description by
an algorithm for the same function.

Finally, there exists no "programminglanguage” yet which is generally
accepted by mathematicians.

Yet there exist functions, defined in recursion theory, which are only
definable by means of some algorithm for them, since a definition by means
of mathematical equations becomes uncomprehensible. The recursive permuta­
tion constructed in the proof of the MYHILLisomorphism theorem (th. 1.4.8)
(see also [R0 67]) may be considered to be a typical example of such a
function.

This leads to the deplorable situation in actual (machine-dependentor



machine-independent) recursion theory that the larger part of the algo­
rithms are described informally or even ambiguously. Excuse for this infor­
mality is sought by invoking (”inessentially") the thesis of CHURCHwhenever
needed.

To our opinion a great deal of formality and rigidity can be gained by
application of a well designed programing language. This language should
satisfy a numberof more or less contradicting conditions which we formu­
late below.

(i) The language should be directed to the subject under discussion. In
our situation, where we are dealing with Machine-Independent Complex­
ity Theory, this means that the structure of a complexity measure
should be easily accessible.

(ii) In order to be readable, the description of functions in our lan­
guage should not be unnecessarily distinct from the usual mathemati­
cal denotation by expressions.

(iii) The language should be unambiguous. (This is clearly necessary but
difficult to combinewith (ii).)

(iv) The language should be easy to read for mathematicians without any
programmingexperience (since manyrecursion theoreticians belong to
this category). The meaning of a program should be clear even without
knowing the language.

(v) It is not necessary that the language should be implemented.

In the sequel of this chapter a language designed to satisfy these condi­
tions is proposed.

If we have been able to construct this language indeed in such a way
that (iv) is satisfied this should makeit possible for those readers which
are not interested in the particularities of our language and the more com­
plicated algorithms written in it, to skip the remainder of chapter 1.] and
to proceed to where the mathematics is resumed (cf. chapter 1.2). These
readers should not be scared by the ALGOL-likeformulas and instructions,
keeping in mind a few usable translations like:

int i = 6 ; "let i be six".
int i ; "let i be an integer variable".
i := 6 ; "i becomes six".



ijfp then S else T f§_ ;

fQr_j tg_100 §Q_...
proc f I (int x) int: x*x+2*x+1 ;

"if p holds then do S; otherwise do

T". (The same i -§fl§n-§}§§- i con­
struction occurs also within expres­
sions.)
"repeat for j = O,l,2,...,]OO ..."
"f is a function with an integral ar­
gument denoted x and integral value;
f(x) = x2+2x+l".

After having lured this waypart of our readership into believing that
the reading of our programs will be easy, we now turn to the technical
problemsrelated to (i), (ii) and (iii).

In order to have a good accessibility to the structure of a complexity
measure we make the following proposals.

1) Our basic types are integers and booleans. By integers we mean the non­

2)

3)

4)

5)

negative integers O,l,2,3,... Boolean values are_trge_and fggse, Al­
though usually the integers 0 and I are used to represent E323 and fggse
we have preferred not to do so in our language. Pairing and projection
functions will be implementedmaking it possible to interpret our inte­
gers as being pairs, and multiplets or finite sequences of integers.

By a function we will understand a partial recursive function defined on
integers with integral values. Within our language we will at some
places also allow functions whose values maybe either integral or
boolean, or even more general integral, boolean or one of the two error

conditions error or Zoop.

The effective enumeration on which our complexity measure is based is
explicitly available in our language; the value of the i-th programat

argument x is simply denoted by wi(x).

The run-times of the complexity measures are accessible by the decision

procedure given by the second Blum axiom. The instruction to compute

whether the i-th program terminates at argument x within y steps is

simply denoted by ¢i(x) 5 y.

The universal machine, and the s-n-m function corresponding to our ef­
fective enumeration are explicitly implemented in our language. Moreover,
the language is introspective in the following sense: there exists an
operator index which transforms a function-routine, i.e. a piece of pro­



gram text describing somefunction, into an index of this function in
the effective enumeration.

6) Structuring of data types, expressions, clauses and procedures is de­
fined as is the case in ALGOL68; in fact the description of our lan­
guage consists of the description of an extension of ALGOL68, with a

few modifications; this extension is then mappedonto our language by
a syntactical transformation which makes it satisfy our requirement (ii)
on readability.

In trying to satisfy the requirements (ii) and (iv) we should not for­
get to keep our language unambiguous. A typical example of possible ambi­
guities is the meaning of the inequality operator 5. The algorithm used to
decide fYx) S g(x) is a quite different one, depending on whether f or g
are ordinary functions or run-times of programs in the enumeration; in the
second case the decision procedure given by the second Blumaxiom is in­
volved.

A more complete description of our language is given in the next two
sections. First we describe an extension of ALGOL68 with some particular­
ities, redefined according to our needs, in §1.1.2. Next we replace in
§l.1.3 a numberof constructs by "mathematical representations" to make our
programs readable. This replacement should be considered to be another ex­
tension.

In the sequel of chapter 1.1 the reader is supposed to know the con­
cepts of an effective enumeration, complexity measure, transformation of
programs and measured set. If these concepts are still unknownthe reader
should first read chapters 1.2 and 1.3.

1.1.2. DESCRIPTION OF A PROGRAMMINGLANGUAGE FOR RECURSION THEORY - THE

ALGOL 68 EXTENSION

Before introducing any new construct we indicate the following modifi­
cations to the definitions in the ALGOL68 report:

(1) Representation alfabet

A certain number of Greek characters have become terminal production
of 'letter token‘. Occurrence of these tokens is reserved for denoting the
programs and run-times of our Blum-measure (w and G), transformations of



programs (O,T,p,K), measured sets (Y,a), A- and u-expressions (X,u), opera­
tors (P), projection operators (N). the elaboration operator (A), the empty
function (8).

(2) Integers

Integral values are restricted to be non-negative. The set of non-neg­
ative integers is denoted by DL The integer capacity is supposed to be in­
finite.

(3) Defaults for arrays and loops

All counting starts at zero instead of one. Hence lower bounds of

arrays sliced from others are by default set to zero; from 0 can be omitted
and zero indicates the first case in a case-clause.

(4) Conditions

There exists a plain type "condition" (indicated by gggé) consisting
of the two values error and }gg25 error represents the result of detection
of someerror condition; E9Q2_represents the result of willfully executing
a statement like Z:qo§g_Z; whereas a result error can be used by subsequent
computations, Egg2_cannot be input to any terminating computation. The con­
ditions error and Zoo are used s ntactical analo ousl to jumps.2 Y 8 Y

(5) Boolean operators

The operators gEéanuior_are elaborated as should be the case when their
second operand had been of the mode 2r9g_§oQ£ instead of Qoog. Consequently

elaborating "£rge_or q" or ”fgE§e_gQQq" the operand q is not elaborated.
This modification is motivated by the fact that we use many times the

expression p gag q in a situation where termination of q is guaranteed only
if p holds. iffiis an indication for equality betweenbooleans.

(6) Indications

The symbolseq)§q)}§)E§)q§)qe are not used as alternative representa­
tions for =,z,<,s,>,2 (they are reserved to denote inequalities involving
functions from a measured set).

(7) Scoperestrictions

The following example of an ALGOL68 program is found to be illegal



because of scope restrictions:

§egin_prog inoreasor = (rei:int_ii) p§gg_ggig; ii +:= 1;
int i := 0;
prgg_2oi§ inc = inoreasor(i);
inc; print(i) p3_?pr

end

Since it is clear that the above program is intended to print the num­
ber I (inc is supposed to possess the routine i +:= 1 and not ii +:= 1), we
will forget the involved scope restrictions. (This modification is moti­
vated by requirement (v).).

Next we indicate howthe features promised in the introduction are re­
presented.

(8) United types

The following united modes are introduced.

moderesult = union (int,booZ),
outcome = union (int,booZ,cond)

(9) Operations on integral operands

Since there are no negative integers neither the monadic operator ­
nor the diadic operator - is implemented. There exists however a diadic
operator L with priority 6 and "declaration":

gp_‘ = (int x,y) int: f_ii:x2y then x-y else 0 f§_j;

(note that the body of this declaration is outside our language).
The following pairing function and projection operators are available:

gp_3l_= (int x) int: £_first coordinate of‘x E;
gp_3§_=(int x) int: f_second coordinate of'x E;
proc pair = (int x,y) int: f_integer representing the pair <x,y>3;

Werequest that pair(x,y) is a bijection from the set Ebzonto Bi. Moreover,
pair is monotonically increasing in both arguments. Consequently

pair(0,0) = O. El_and lg are the coordinate mappings to pair. Wehave the
following equalities:

pair(11_x, I§_x) = x
El_pair(x,~J = x
g§_pair(~gx) = x



Build from the above two-dimensional pairing and projection functions
are sufficiently manyhigher dimensional ones. For example:

Qp_n3,1I (int x) int: 1l_x;
9p_n3,2 = (int x) int: 3l_3§_x;
gp_n3,3 = (int x) int: 3§_1§_x;
proc triplet = (Qt x,y,z) pair(:z:,pair(y,z)),°

(10) Operations on boolean operands

Implication is implemented.

priority igp_= 1;
QB = (boolp,q) bool: p then q else true Li;

Elaboration of p imp q proceeds however like when q had been of the mode

proc bool; q is not elaborated in fialse igp_q.
The "assigning variants" of and and gr are implemented:

priority A:= = 1, v:= I 1;

532/\:= = (ref bool pp, bool q) ref bool: p := p and q;
gp v:= = (ref: bool pp, bool q) ref: bool: p := p o_r q,°

Again q is not elaborated if not needed, like in bool p := true, q;

P V-'=q; p -'= Q p; p /\-'= q;

(ll) Least—numberoperator, bounded quantifiers, maximaand minima

The following procedures are given:

prgg_least number= (p§gg_(igt)‘Qggl_p) igtg

(igt z := 0; gflile_§gt_p(z) §g_z +:= 1 gag z);

prgg_bnd unv qua = (prgg.(igt) §ggl_p, igg k) Qgglg

(§ggl_b := true; jgr i tg_k Qflile_b QQ_bA:= p(i) Egg b);

prgg bnd ext qua = (prgg.(ig§)‘§ggl p, i§t_k) Qgglg

(§ggl_b := false, fQr_i to k gflil§_ggt_b gg.b v:= p(i) QQBb);

prgg_bnd least number= (prgg_(i§§) §ggl_p, igt k) igg:

(i§t_z := 0; gflile_ggt p(z) ggg zsk ég_z +:: 1 gay z)

Note that (modulo side effects in p) one has



bnd least number (p,k) = bnd ext qua (p,k) then least number (p,7<)
elsek+1

gram;-r£=(l1222*’)
(fat 2 := 0; fQr_i from [r tg_[r go

‘if z < r[i] then z := r[i] fj_ggQ
2);

p20_cma-‘r= (1% (M) 212 f: 2'72 M) 2172-‘

(if u<l then 0
else m:=f'(l),'

fQr_j fr0m.l+1 t9_u Q3
3'_f(’b1_tn=f(j)) >m thenm .'=rz.’Ll_c§;

92 min = ([ ] int r) outcome:

iLtu= fr, Z= [rs
2'.tu<Zt7flfl
el§e_(§§t_z :2 r[l];

fQr_i frgg_l+1 tg_u.gg
.gf z > r[i] tfleg_z := r[i] f§_gg;

z)

.717;

2rgg_min = (g§gg_(§§§) §g§_f} §§t_l,u) outcome:

(gf u<l tfleg error
‘else 223 m := f(l);

f_0:J'.fMZ+1t_0ud_0
§i:§§t n = fYj); n<mtfle§_m := n t 9g;

m

L’);

Maximaand minima can be computed both for linear arrays and for functions

defined over finite segments. Note that the minimumover an empty domain

leads to the condition_errgr. Consequently whenever_fl§gor min are used the
definedness of the result must be checked using a conformity case clause.

For calls of the above procedure alternative "mathematical representa­
tions" will be provided in the next section.
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(12) Standard functions

The following special functions are used:

groc 5 = (int_x) int; (Z:goto Z);
gg_zero = (int_x) int; 0;
groe zero I (int x) int: 0;

These procedures exist also for more arguments

grog 52 = (int_x,y) int: (Z:ggto Z);
grgg_zero 2 = (int_x,y) int: 0;
gQ_evgn_= (int_x) goat: (x*x%2*2) = 0;

grog even = (int x) QQQE;even_x;

220132: (75’1_tx)b_00£=:1_0_t_e_?’e_"x5

proc odd I (int_x) bool: odd x;

(13) Effective enumeration and complexity measure

The basic elements of the BLUMmeasure under consideration (programs

and run—times)are introduced by the definition of a couple of structured
modes "computations" and ”run-times" and a number of operators defined on
values of these modes.

modecomp= struct(int ind,arg),
rt = struet(int prog,arg);

c0g2(i,x) represents the computationof ¢i(x) as an intentional object.
Similarly, rt(i,x) represents the run-time of this computation as an in­
tentional object. The value of a computation results from applying the
elaboration operator A.

22'A : (compc) int: i the value of wi(x) whenever defined
where i = ind_gf c and x = arg of c;

if'¢g(x) diverges so does the call Ac f;

This operator A replaces the universal machine.

For a run-time it is essential that the question ¢i(x) = y is decidable.
This is introduced into our language by defining the following operator = :

gQ_== (§t_r, int y) boot: f_the value of‘¢k(x) = y, Q8 computed using
the second Blum axiom where i = prog_gf r,
x I arg_gf r 5;

The numerical value of a run-time results from applying the elaboration



I2

operator A:

gg_A= (rt r) int: least number((int y) bool: rry);

The first BLUMaxiom is implemented by requesting that A c0mp(i,x)

converges if and only if A rt(i,x) converges.
Westill need the S-n-m function for our effective enumeration. In­

stead of providing this function by some fixed procedure declaration we
provide a muchstronger instrument: the operator index. The reason for this
is the following. In general one uses the s-n-m axiom to provide a total
function T(k) which computes an index for the function S(-,k) which results
from replacing in some (very complicated) recursive function S(-,-) the
second argument by a fixed integer k. The s-n-m axiom provides this func­
tion T, given some index for S. In general S itself is defined in our pro­
graming language itself, and since our effective enumeration contains all
recursive functions an index for S exists. Hence in order to be able to

apply the S-n-m function, we still need a way to go from a program for S to
an index for S; this translation is performed by the operator index. More­
over, by introducing index the s-n-m function becomes definable.

Nowa huge problem arises since in order to define index we must de­

fine which function is possessed by a function routine f which is given by a
piece of program text during elaboration of our algorithm. Clearly this
meaningdepends on the actual values of all non-local identifiers in f
which depend in their turn on the nest of active declarations. Onemight
try to replace all non-local identifiers in f by denotations for their
values (assuming sufficiently manydenotations exist), but this replacement
maybe non-terminating because of the presence of recursive procedures
which are referred to in f.

Still there is one type of non-local identifier which we want to be
replaced by a denotation of its value. Since we are particularly interested
to see how an index of the function S(-,k) depends on the numerical value
of k we replace k by its value.

Therefore we present the following description for index:

g2_index= (groc (int) int f) int:

f_an index for the function computedby the routine f’ which
results from the routine f‘by replacing all non-local integral
identifiers occurring in f'by denotations for the values pos­
sessed by these identifiers at the instance of the call index f_f



As an example we show how the s-n-m function is defined using index;

a°o_csnmI (iii i,j) i*_z_d_e£(ii:x) Ac_or7Q(i,pair(j,x));

The operators A and index_satisfy the following relation:

f'(x)I AC0fl( f',x)
(disregarding side-effects in f)

The operator index maybe considered to be an axiomatization of the
thesis of CHURCH:every function defined in our language is contained in
the effective enumeration.

The operator A acts as an inverse to index:

gQ_AI (int i) gr0c(int) int: (int x) int: A c0gg(i,x);

Note that not necessarily index A i I i. It is true, however, that f and
A index f are extensionally equivalent, i.e. they compute the same function.

The following operators are introduced to have all possibilities of
compairing run-times with integers and/or run-times:

I/'\ I (r_tr, y) b00Z:bnd ext qua Nil: .3)bool: r I z,y);
< I (r_t 1°, y) bool: rsy and not rIy_;

I (£2 r, int y) bool: ngg (rIy);
> I (§§_r, int y) bool: not (rsy);

F8F%P8F8l8
I (r_t r, y) b00Z:{£73(r<y);

22_s I (33 r,s) Qggg:
(Egg; undecided :I Egue, p; ing 2 :I 0;
gflige undecided do

iI:rIz §fi§n_p:I Egue; undecided :I fglsg
§}iifsIz §flgn_p :I fg}§§5 undecided :I fggsg
_.eZiez +:: 1

215%;
P

J;

QE_=I (53 r,3) QQQE;rss gnd_ssr;
gg_< I (§§_r,s) b0oZ: rss and not rIs;

In the next section we introduce the "mathematical representations"
for the above constructs.
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(14) Transformations of programs

The concept of a transformation of programs by definition is nothing
but a total recursive function which is supposed to transform the index of
a program into the index of another program. Intuitively one should think
the transformation to be some construction which modifies a program text in
a systematic way; this construction induces a total function mappingthe
index of the original program onto the index of its image. The transforma­
tion also modifies the computedfunction but since it is not certain that
extensional equality between programs is preserved it is not possible to
regard the transformation to be an operator.

Consider for example the transformation which maps a program wi onto

a program computing @gg(w%(x),¢%(x)). Using the s-n-m axiom one proves
mathematically the existence of a total function 0 such that for each x

¢%(i)(x) = flg§{$i(x),¢%(x)). Within our programing language, however, we
want to be able to write a definition for o. This has strongly motivated
our definition of the operator index. In the above example we can write:

Qroc 0 = (int i) int: index(int x) int: max(Ac0fl2(i,x), A_§§(i,x));

Rememberthat during a call of index i is replaced by a denotation of its
current value.

The example shows that it is possible to define transformations of
programs within our language without introducing any construct. Because of
the specific importance of the mathematical concept we provide in the next
section a mathematical representation for this type of a declaration of a
transformation of programs.

A transformation-declaration maybe formally defined as follows: Let
E be a unitary integral clause and suppose that i1,i2,...,ik and x repre­
sent distinct integral modeidentifiers whose scope contains E as a proper
subrange. Then the following procedure declaration

proc T = (int i1,i2,...,ik) int: index(int x) int: E;
is called a transformation declaration.

Note that (disregarding side effects) the following holds: Let
t1,...,tk denoteintegral primaries, andlet E[t1/i1,t2/i2,...,tk/ik,y/¢]
denote the result fromsubstitution of t1,...,tk,y for i1,...,ik,x in E.
Then one has:

Ac0gg(I(t1,t2,...,tk),y) = E[t1/i1,t2/$2,...,tk/ik,y/x]



(I5) Measured sets

A measured set (Yi)i is a sequence of functions for which a decision
procedure for Yi(x) = y is given. Consequently if a measured set is dealt
with in our language this decision procedure should be the data structure
to start with. All other operations and data structures are derived from
this structure.

modeE = p2°0c(7,'nt,int,int) b00Z,'

A value Y of the modeE§_is called improper if there exists integral i, x,
y and 2 such that y I z and both Y(i,x,y) = true and Y(i,x,z) = true.

modeme = strucflgg ga, int ind, arg);
modegf = struct(E ga, int ind);

Whereas the gs value Y represents the decision procedure for Yi(x) = y, the
mg (measured computation) value (Y,i,x) represents the computation of Yi(x)
as an intentional object and the gf (measured function) value represents

the intentional function Yi.
For dealing with measured sets in an unambiguousway the indications

eg, fig, £2, 2e, 3e, g§_have been reserved. Wegive the necessary declara­
tions below.

prioritg eg_= 4, §g_= 4, E§_= 5, §§_= 5, g§_: 5,__§ I 5;

gpeg = (m_cp, z) b_c_>o_Z.'(ga gfp)(7Snd gf p, arg of p, 2:)

Q2 A = (gg_p) £33; least number ((§g§_x) Qggé: pzx)

A(Y,i,x) is the numerical value of Yi(x).

92 I‘ = (E15pp) z>P_00_(75*l_t) (‘ii =0) A m_c(9a2.23pp. ind 2f PP.:c);

A(Y,i) is the function Ti considered to be an ordinary integral function.
The operations fig, fig, £3, ge_and g§_are derived from eg,

gp_§e = (gg_p, int y) b00Z: bnd ext qua ((int x) int: p eg_x,y);

22fi= (map. ’5_"£y)b00Z-'P£e_yfl<lfl£(P2g_y);

gpgqr (m_cp,i_n§y) b00Z:7_1g_§(peg_y);

gg_g£_= (gg_p, §§§_y) bool: gg§_(p }§_y);



16

Q3 £e_ = (m_cp,q) bool:

(§ggE_undecided := Egge, b; Eng 3 := 0;

g§§§e_undecided do
§i:p eg_z Eflen b := Egge; undecided := fgzge

egg; q eg_z §flen_b := fggseg undecided := fggse
§}§§_z +:= 1

1:’ ed;
b

1;

22§§z= (z?2p.q) bool-° p£eq£n_dq_Z_e_p;

ggfir (_m_cp,q)booZ:pZ_eqfld@(pflq);
A transformation of programs T is called measured if the sequence

(w (.)). is a measured set. Within our language this means that thereT 1 1

exists a proper fig value Y such that

Y(i,x,z) Igf A e0g2(r(i),x) = z_f.

Nowin general the right-hand side of this expression does not describe the

algorithm which makes the relation wT(i)(x) = z decidable. Consequently
definition of the transformation T alone is not sufficient to describe the

corresponding fl§_yalue.
Therefore in defining a measured transformation one should have the

decision procedure available.

modeQ3’: struct(Q§_ga, pr0c(int) int tau)

Given a measured set Y one may define a measured transformation as follows:

gggfr (E Y) Q: (Y, (15:1371) index Arlzf (Y, i))

1.1.3. MATHEMATICALREPRESENTATIONS

The operators, structured values and other constructs defined in the
preceding section are not used in this form in the sequel. In order to in­
crease the readability of the represented algorithms we introduce by means
of several extensions a numberof mathematical representations. As a con­



sequence manyexpressions will be looking like the ones mathematicians
traditionally are using. There are a few exceptions. The numerical value of

a run-time must be written explicitly using the operator A; a restriction
leading to overredundant occurrences of this operator in situations where

it is clear that the numerical value is needed (like in R(x,A¢i(x)) ). A
second unusual phenomenonis the occurrence of the indications lg) gg, fig,
E2, Q§_andQ: in the context of a measured set or measured transformation.

Finally we describe a quite radical extension for transformation-dec­
larations which hides completely the use of the operator index; only the
occurrence of the symbol¢=remembersthe reader that in fact the transfor­
mation T is the identifier declared in

wT(i)(x) e=max(wi(x),A¢g(x)).

In the sequel of this section we let E,T,T1,...,Tk,U denote integral
unitary clauses. I,J,X,Y,Z,I ,...,I denote integral identifiers.

1

P,Q,P1,...,Pk denote unitary boolean clauses. L denotes an integral unit
list, R(F) denotes a procedure-with-integral-parameter-boolean (integral)
unit. P denotes a measured set identifier and 2 denotes a procedure iden­

o—tifier declared by a transformation declaration. : denotes a measured
transformation identifier.

(I6) A-notation

The procedure-with-integral-parameter-integral denotation

(Egg X) £33: E

may be replaced by

AX[E].

Similarly one may replace

(gag X) Qggé: P by AX[P].

This extension is not permitted in the declaration of recursive procedures:
the declaration Qroc p = AX[E]is invalid if p occurs in E.



This extension generalizes for many—variablefunctions as well. For
example

(int x,y) int: x+y maybe written Ax,y[x+y].

(17) Pairing and projection functions

Weprovide for the projection operators the following (non-linear)
representations:

E "1

H2 H2

n3,1 N:

as "E

Calls of the pairing functions pair, triplet etc. maybe represented using
< and >

pair(T1,T2) may be written as <T1,T2>
triplet(T1,T2,T3) maybe written as <T1,T2,T3>

(I8) Least-number operator, bounded quantifiers, maximaand minima

least number (AX[P]) may be replaced by uX[P].

It was noted by L.G.L.T. MEERTENSthat a separate extension of the type

least number (R) is replaced by uX[R(X)]

is unnecessary and in fact ambiguous.
Using this latter extension both least number (R) and

least number (AX[R(X)]) are represented by uX[R(X)].
The effect of the above extension can be collected without using it

since clearly R and AX[R(X)]are equivalent routines.
The same observation holds for other extensions defined in section

(18).
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This extension introduces the u-operator as usually written. For the
boundedquantifiers the usual mathematical representations are also legal.

bnd unv qua (AX[P],T) becomes VX 5 T[P]

bnd ext qua (AX[P],T) becomes 3X s T[P]

The analogous extension holds for the bounded least—number operation

bnd least number (AX[P],T) becomes uX S T[P]

In applying these extensions the identifier X must be selected such
that no clash of identifiers results.

For bounded quantification with the bound T not belonging to the do­
main over which is quantified we have the following extensions:

3X S T[X¢T and P] becomes 3X < T[P]

VX T[X=T 93 P] becomes VX < T[P]I/\

(Use of this extension is improper whenever evaluation of T has side-ef­
fects.)

For the calls of max and min we use the following mathematical repre­
sentations:

I/\ *-I I/\ U}

U}

max(AI[E],T,U) becomes max{E I T

min(AI[E],T,U) becomes min{E | T m ‘-1 m

Moreover, in the right-hand side representation

0 S I S U may be replaced by I S U.

In the mathematical text we allow, moreover, contraction of iterated maxi­
malizations or minimalizations; for example

max{mux{E | I s T} I J s T} becomes max{E I J,I s T}.

(These extensions are only a compromise to mathematicians.)
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(19) Effective enumeration and complexity measure

In the preceding section we separated the intentional meaning of a

comutation and a run-time from their numerical values by introducing spe­
cific newmodes for the intentional objects. Consequently in introducing

the mathematical representations mi(x) or ¢i(x) we must choose whether
these expressions denote the intentional or the extensional object. Our
choice is motivated by the practical use. Nobodyever uses in some expres­

sion ¢E(x) but for its numerical value, hence we let qE(x) denote the in­
tegral unit A £9flQ(i,x). For a run-time it is however crucial that the de­
cision procedure of the second Blum axiom may be invoked. Consequently we

let ¢&(x) denotedthe intentional object §§(i,x). This means that whenever a
run-time is used as argument for some function like in R(x,¢i(x)) this rep­
resentation becomes illegal; we must write R(x,A¢%(x)).

A similar problem exists for the distinction between a program and the
function computedby it. Mathematically a program is nothing but a function

in the effective enumeration. Most mathematicians consider mi to be the
computed function and if for some reason one wants to consider the program
computing it one takes not the program itself but its index i. Since we are
dealing in part 3 with situations where we have a three-level distinction
between an index, a program encoded by it, and the function computed by

this program where, moreover, two indices may encode the same program we
must abstain from this convention.

Therefore we are obliged to use the following representations. If i is

some index then mi denotes the program with index i and Ana denotes the

function computed by mi.

Note however, that the expression mi will not occur in any program
without a parameter pack following it (there exists no mode "program").

Moreover, there is no ambiguity between mi(x) and Ami(x); the first expres­
sion is not a phrase in the second but the values of the two integral
clauses are equal.

For the run-times oi the situation leads to an inessential ambiguity.
Since Qi is again an intentional representation of the step-counting func­
tion, which is not referred to in any program, there is no ambiguity in

¢i(x). The numerical-value-of-the-running-time function is represented by
Ami. Consequently the clause Ami(x) is ambiguous since it may represent
both of the following clauses.
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A §§(i,x) or ((§§§_x) gag; A§§fi,x))(x).

Note however that the values of both clauses are equal.

Wenowgive the formal definitions of our extensions:

The integral unit A c0g2(E,T) is replaced by wE(T)

The run-time unit 3£(E,T) is replaced by ¢f(T)

The gr0c(int) int unit AE is replaced by Au%

The ggggfégf) 23; unit (£33 x) 233; A¢E(x) is replaced by A¢E

Using the above extensions we are very often confronted in the mathe­

matical text with an expression Ax[S(x,A¢g(x))] which sometimes is used as
a subscript. For typographical reasons we use therefore in the text the
following extension: Let S be a procedure with two integral parameters and
integral (or boolean) value. Then AX[S(X,F(X))] may be denoted by SEJF.

Moreover, AX[S(X,A¢T(X))] may be denoted by SE3¢T (so the A may be omitted
in this context).

(20) Transformations of programs

The transformation declaration

roe Z = (int I .,Ik) int: indéx(int X) int E;1,..

may be represented by

£0 (X) ¢=E;z(I .,I)1"‘ k

This extension is motivated by the usual way to introduce transforma­
tions by expressions like:

"Let 0 be a total function such that wO(i) = max(mi(x),¢i(x))".

The symbol~=may not be used in any other way; its use as operator indica­
tion is strictly forbidden.

It should be noted that the above extension is used mostly within the
mathematical text.
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(2!) Measured sets

For measured sets we again have a distinction between the intentional
object of a measured computation and its numerical value.

The 52 unit flg{F,E,T) is represented by FE(T)

The m unit flf(F,E) is represented by FE.

Consequently expressions like FE(T) E§_Uare defined.
Again the combination AFE(T) is an ambiguous integral clause since it

is not clear whether the function APEis called or the measured computation
FE(T) is enumerated. Both parsings, however, lead to the same value, dis­
regarding side-effects. If side-effects are involved the extension is im­
proper.

If E is a measured transformation then ga gf E is a measured set and
tau gf E is a transformation. Consequently Qgfga gf E,I,E) is an mE_unit
and AgQfl2f(tau 9f:E)(I),E) is an integral unit. Since it is clear by the
operators in the context whether an integral clause or an mg clause is

needed, we allow that both clauses are represented by wE(T)(E). Consequent­
ly both wE(T)(E) Lg U and wE(T)(E) S U make sense but the computations in­
volved are distinct.

If the programmer creates an ambiguity by the introduction of new
operators the above extension becomes improper.

(22) Convergence test

In the mathematical text the symbol w is used to denote divergence

like for example in wi(x) = w (wi(x)<m) for "wi(x) diverges" ("wi(x) con­
verges"). The use of these expressions is legalized by the following exten­
sions:

A 8
(wF(T);§§gg) becomes wE(T)

(wb(T);fg£§§) becomes mE(T) = m

(A¢%(T);§§gg) becomes ¢ (T) < m
(A¢ (T);f§l§g) becomes @ (T) 3 W

PEI

E E

(AfE(T);true) becomes FE(T) £3 W

(AfE(T);faZse) becomes PE(T) gg_w

Note that for a measured transformation E both w:(i)(x) E§_wand
w:(i)(x) < w make sense; the two expressions have the same value.
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(23) Many-variable programs

By definition our enumeration consists of one-variable functions. The
same holds for the functions in a measured set. Since by use of the pairing

functions many-variable functions can be represented by one-variable func­
tions, the restriction to single-variable functions is not enforced
throughout this book. Weassume to be given a sufficiently large collection
of extensions like the two written below permitting the use of super in­
dices to indicate the numberof variables. Examples:

¢E(<T,U>) is denoted w§(T,U)

¢E(<T,U>) is denoted ¢§(T,U)

1.1.4. MANIPULATION OF UNBOUNDEDARRAYS, SUMATION AND LINEAR LISTS

The linear array of increasing size is a type of data structure which
is frequently used in algorithms within recursion theory. Instead of de­
fining an extension to permit a declaration like [0:w] i§§_a; after elabo­
ration of which each element of a is available, we use the construct of a
flexible array, which exists in ALGOL68. A disadvantage of this construct
is that for each extension of the array the whole contents must be copied.

To facilitate the use of these flexible arrays we introduce a number
of procedures. Wheneversome flexible array of a certain type is declared,
the corresponding manipulating routines are assumed to be delcared outside
the particular programunder consideration.

All arrays are supposed to have zero as lower bound. For each type we
have three procedures available. The first procedure inserts a given value
at a given place, creating if necessary the needed space; other newly
created fields are initialized with a default value dependingon the type;
the value of the call is the length of the extended array.

A second procedure looks for a certain item from the array; if the
wanted memberis not yet present the array is extended and the default
value is delivered.

The third procedure simply extends the array.

In the description below Q denotes a mode indication and D denotes the
default value corresponding to this mode. M is a sequence of symbols which

looks sufficiently like Mto see which modeis involved in the declaration
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(i.e. ifgfl is Egg then Mis int but ifgfl is 3truet(§§§_a,b), Mmaybecome
something like St? int a int b).

pg insert M= (_r'_eJf_’"Z;ea£[]_li[ar, ind, 1_V_val)

(i_n§ ub = far;

§i:ind ub
§fle§_ar[ind] := val; ub
eli [rind] fl temp;

£o_rj 3o_ub d_0temp[j] := ar[j] 0_d_;

fgg j gag ub+1 39 7Ind=1£19 temp[j] .-= D 34,­
temp[ind] := val;

I/\

ar :: temp;
ind

f_i)s

Qroe Zookup M = (§_ej_‘flea: [ ] fl ar, ind) @:

llf far 2 ind
then ar[ind]

e}§e_insert M(ar,ind,D);D
,L';

g=o_cea:tendM= (g'_ej_'f_Zg'z_?[]flar, _7£_n_t_7Ind)

(7S_71£ub= far;

§i:ub 2 ind
Legal)
else insert M(ar, 7Znd,D)

£2);

The default value for integers is 0 and for booleans the default value

equals false.
The procedure below computes the sum of the values of an integral

function over a finite interval:

groe sum= (Qr0e(int) int f} int n) int;
(1In_t_3 := 0;

j“0_r:c1:_0n d_0_s +:= f(:x:);
3);

To please mathematicians we allow for the call sum(AX[E],T) the non­

linear representation ZXSTE.
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Linear list manipulation

For a table of function values or an increasing sequence the flexible
array is a suitable data structure. For each item to be stored a fixed in­
dex in the array is available. In chapter 3.3 on the union theorem we will
have growing collections of information where no preassigned mapping into
the integers is defined. In this case the linear list is a more appropriate
type of data structure.

Let_M, M and D have the meaning as before.

modellM = struct(M info, ref llM tail);

93 head= (1 list) M:info of list;
93tail = (@ list) ggf tail of list;
pgggclear M= (gefM list) list := (D,nfl_);

p£o_cattach M= (gef M list, Mitem) _r_e_f

list := (item, heap llM :: list);

gggg lookup M= (llfl list, Mitem) goal:

Lgfhead list I item then true
elif tail list :=: nil then false
else lookup M (tail list, item) fig’;

Qrocdelete M= (r_e£llfl list, Mitem) fef

if list :=: nil thennil
elifi head list xitem then list xr(head list, delete M(tail list,item))
elifi tail list :=: nil then list := (D,nil); nil
_e_l‘.3_e_I_=e_fEM hulp I delete M(§ail list, item);

_gfhulp :=: nil then_list := (D,nil); nil
193 list := hulp

f_%'

125;

The default value of a linear list of items of the modeMequals (D,nil).
The void clause

(M item; r_ef _l_Z_Mdomain := list;

g7flI_Z_egei _l_lM(domain) :==: d_o

item := hecgd domain; domain := t_a’i_ldomain;

(5) c_9_d);
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may be represented by

fior item over Zist gQ_Sgg.

The void clause

(@item; §gf_§£fl domain := Zist;

yfli§§_§gf_£§@_(d0main) :1: §i}_go

item :2 @egg_domain;
domain

(5) gay

may be replaced by

::_if item = stop then nil else tail domainii;

for item over list upto stop gg_S gg.

1.1.5. MATHEMATICALNOTATIONS

The larger part of this treatise consists of mathematical text and
not of programs. The notations introduced in the preceding sections are
used however also within the text; whenever there is printed an expression
looking like a phrase in our programing language the corresponding mathe­
matical object is meant.

There are however many concepts having no counterpart in the program­

ming language, like sets, inequalities between functions etc. The present
section describes their notations.

The reader should keep in mind the following reserved (but not exclu­
sive) use of some characters:

f,g,h denote partial recursive functions in one variable
R,S denote partial recursive functions in manyvariables
i,j,k denote indices of programs
x,y,z denote arguments of functions or programs
O,p,T denote transformations of programs
A,B,E denote subsets of DL

List of special symbols

symbol {page of meaning
definition}

U end of proof

im set of non-negative integers
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symbol {page of meaning
definition}

Z set of positive and negative integers
Df:Rf 30 domain (range) of the function f
P 30 class of all partial recursive func­

tions (programs)
R 30 class of all total recursive functions

(programs)
Pn,Rn class of partial (total) recursive

functions in n variables

X S y 30 inequality

X < y 30 strict inequality
f S g 30 inequality between functions
f < g 30 strict inequality between functions
f _ 30 inclusion between functions
f_g g 30 "almost everywhere" inequality between

functions

f :_g(A) 30 idem, relativized to a set A 5 hi

I A. $1 I A restriction of a function (program) to
A 5 El

f gfl§gE_g 35 "f is cheaper than g"

f cheggv g 86 "f is cheaper than the values of g"
f nco g 69 "g cannot be computed within time f”

f ncoggv g 69 "the values of g cannot be computed
within time f"

These four relations again maybe relativized to a subset A ciN.

V,3 unboundedquantifiers
§ 30 for all x except finitely many

x
3 30 there exists infinitely manyx

x

fix there exists no x

s ,5] 43 many-one (one-one) reducibilitym
E 43 recursive isomorphism

# A 31 number of elements in set A

[k,1],[k,1) segment k S x S l (k S x < 1)

e,¢ is element of (is no element of)
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symbol

Ct,F
.Wc
C

R
E
t

HA ,GAr r
SCt,SCIt,CT1

<xi>i,<£i>i,<Ei>i
(T.).11
mi
¢.

5 ¢n
@-9 i1

E

>­

CpZ, Hon, CpZex,

Honex.E_,SopZ,

ScpZZ,TcpZ

F§<c>,FA<c>,F<c>

F3(t),Fw(t)

G$<c).G§<t>.G<c>

H3<c>,H§<c>,H<t>

(0-)1 i

{page of
definition}

45

64

65

65

68

66

100

35

35

34

39

35

67

95

97-100

95

95

96

96

104

halts, non-empty,finite,43-47
bound, oofinite,empty

Q C 49

meaning

empty set

degrees in the arithmetical hierarchy

complexity classes
weak complexity classes
honesty classes
complexity classes modulo sets of ex­
ceptional points
modified honesty classes
other types of resource bound classes

sequence of integers, functions, sets
measured set

i-th program in effective enumeration
run-time of i-th program
idem, for n-variable programs

class of sets of exceptional points

general acceptance relation

specific acceptance relations

strong abstract resource-bound class

weak abstract resource-bound class

abstract resource-bound class of pro­
grams

abstract resource-bound class of func­
tions

measured set of run-times derived from

acceptance relation

standard reference sets in the arith­
metic hierarchy

index set for a class of functions

f(°)<x) = x; f(k+])(x) = f(f(k)(x)).
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Within descriptions of algorithms designated "informal" we use (among
others) the following deviations of our own formalism:

(i)

(ii)

If S denotes some sequence of symbols which describes informally some

computation or computable value then_i S_f denotes a closed clause
within our programing language whose elaboration yields the computa­
tion or value intended.

For example if A is a recursive set then #{x e A I x S n} clearly

is a computable integer; consequently ¢ #{x 6 A I x S n} ¢ denotes a

closed integral clause yielding the number of elements in A whose
values are less than or equal to n.

If B(x) denotes somepredicate then the expression

maxigfi B(X) §§gg_F(X) gg§g_0 f§_| A s X s B}

can be represented also by

max{F(X) | A s X s B Egg B(X)}

Or even

max {F(X} I B(X)}.
ASXSB

Finally if B(X) = Ax[true] we replace

max {F(X)}.
AsXsB

max {F(X) I B(X)} by
AsXsB

Analogous representations are used for minima.
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CHAPTER 1.2

RECURSIVE FUNCTIONS AND EFFECTIVE ENUMERATIONS

1.2.1. MATHEMATICALCONVENTIONS *)

By a function we mean (unless stated otherwise) a partial recursive
function from the set E! of non-negative integers (including zero) into
itself. Functions which are defined for all argumentsare called total.
P(R) denotes the collection of all (total) functions. The set of all argu­
ments x for which f(x) is defined, the dbmain of f, is denoted Df. Wewrite

f(x) < w (f(x)=w) for x:e Df (xévf). Equality of functions f = g denotes
extensional equality (Df = Dg and Vx[x e Df =»f(x) = g(x)]).

The inequality f S g means 9f 3 Pg and g(x) 2 f(x) for all x 6 0g.
Strict inequality f < g means Df 3 0g and g(x) > f(x) for all x 6 0g. If

Df 3 Pg and g(x) = f(x) for x e Ug then we write g E_f.
The range of a function f is denoted Rf. For finite k the inequality

k S w is taken true whereas m S k is taken false. The inequality m S m is
also considered true.

If P is somepredicate then we write $x[P(x)] for "P(x) holds for all
except finitely manyx" and §x[P(x)] for "there exist infinitely manyx
such that P(x)". Using these notations we define the following "almost
everywhere" inequality between functions:

f 3 g iff $x[£(x) s g(x)].

This inequality maybe relativized to a subset A 5 ll; f g_g (A) means
$x[x e A.#~f(x) S g(x)]. Note that f :_g whenever0g is finite. uz[P(z)]
denotes "the least z such that P(z)".

Weuse a fixed recursive pairing function <x,y> with coordinate pro­
jections n and N ; N <x,y> = x; n <x, > = ; <n x,n x> = x. Moreover,21 2V7 2

I I

<x,y> is increasing in both arguments and consequently <0,0> = 0. Using

*> The conventions introduced in this section cover a few notations not in­
troduced in chapter 1.], although not all notations are new. Somenota­
tions, introduced already in chapter 1.], are repeated for the sake of
the readers whohave skipped chapter 1.].
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this pairing function many-variable functions are introduced in a formalism
consisting of one-variable functions.

Welet 8 (zero) denote the function which is everywhere undefined
(zero).

If R is a two-variable function and t a single variable function then
the function Ax[R(x,t(x))] is denoted Rnt.

It is a practice in recursion theory to identify (recursive) sets,
predicates and total 0-] valued functions using the interpretation of char­
acteristic functions and the interpretation 0 = Eggg, I = fg}§§_or vice
versa. Weabstain from these identifications. If a Boolean function is in­

tended the truth values frag and fggsg are used explicitly, and for recur­
sive sets the notations from set theory are used.

If A is some set then #A denotes the number of elements in A. #A = m

if A is not finite.
In the sequel "increasing" will always mean"strictly monotonically

increasing" and "non-decreasing" will stand for "monotonically non-decreasing‘.

1.2.2. THE ORIGIN OF MACHINE-INDEPENDENT RECURSION THEORY

The concept of a recursive function is one of the important results of
20-th century mathematics. During the years 1930-5 a number of distinct
formalized definitions of "computability" were given. Afterwards these dif­
ferent formalisms were proved to be equivalent; i.e. each formalism yields
the same class of computable functions.

The best known formalisms are those given by KLEENEand TURING.

KLEENEconsiders functions determined by defining systems of equations.
In his formalism the recursive functions form the smallest class of func­

tions containing a few base functions (zero, successor and projections)
which is closed under the schemesof substitution, primitive recursion and
minimalization. If the schemeof minimalization is excluded one defines

this way the class of primitive recursive functions. Reading the defining
equations from left to right yields a method to evaluate a given function
at a given arguent; consequently all functions in the KLEENEformalism are
indeed computable.

The formalism introduced by TURINGis based on the description of an
abstract machine (Turing machine) which performs a computation. Although
the computation is described in terms of physical entities (a machine oper­
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ating on a two-way,potentially infinite tape, consisting of squares upon
which symbols are printed and erased) the input-output relationship deter­
mined by this machine can be interpreted to be a function from El into EL
Again the origin of the function indicates that it is in fact computable.

For neither of the two formalisms it is clear that each function which

is felt to be computable is computable in the sense of the formalism. An
impression of the power of the two formalisms results from trying to prove
their equivalence. Such proofs can be found in KLEENE,Introduction to

Meta-mathematics [K152] or DAVIS,Computability and Unsolvability [Da58].
The proof of the equivalence of the formalism yields some very impor­

tant corollaries. In both formalisms there exists a "canonical" method to

enumerate the programs c.q. systems of defining equations, this way enumer­
ating the collection of computable functions. This makes it possible to in­
troduce the universal function u which is defined by

u(i,x) = "the value of the i-th programin the list
at argument x".

This universal function u itself can be shownto be recursive. Consequently
one mayreplace the collection of all Turing machines by a single one (the
universal machine) which operates on encodings of all other machines.

A second important corollary is the definition of the so-called Kleene
predicate T. This is a primitive recursive (and hence total) boolean func­
tion whichsatisfies

T(i,x,z) = "z is an encoding of the complete computation
of the i-th machine at argument x".

Byuse of this predicate it is possible to describe formally someconstruc­
tions which interfere with computable functions at the level of the compu­
tations determining the function values.

A third result which is easily derived from the technical tools devel­
oped for the preceding results is the so-called s-n-m-theorem. If R is a
recursive function in two variables then for each fixed k, R(k,-) is a
single—variable function which is computable. Nowboth R and R(k,-) have an
index in the canonical enumeration. The s-n-m-theorem expresses that an in­
dex for R(k,-) can be computed recursively from an index for R and k.

After having worked through the proofs of the preceding results the
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reader may be convinced that each function which he feels to be computable,
is formally computablewithin the formalisms. Still this is a mathematical­
ly unprovable assertion which is known under the name of "Thesis of CHURCH":

Each computable function is recursive.
The two formalisms described above are not usable to represent compli­

cated algorithms. This has led to the use of informal descriptions of al­
gorithms which are "clearly" recursive. This practice is justified by in­
voking the thesis of CHURCH.However, using this thesis this way is called
"inessential use" since one believes that a formalized description could be
written down, given the time and the paper.

Each of the formalisms for the recursive functions mentioned above

leads to a so-called machine-dependenttheory. It is hardly possible to
separate between the mathematical content of an algorithm and its "physical"
implementation.

The base for a machine-independent approach was given by ROGERS[R058]

who introduced the concept of an effective enumeration. In this formalism
the basic structure is given by the universal machine and the s-n-m-func­
tion. There exists however no equivalent to the KLEENEpredicate. Still it
is possible to derive the so-called recursion theoremwithin this frame­
work.

The concept of an effective enumeration was extended by BLUM[B167]

to the concept of a complexity measure. In this formalism an analogue for
the KLEENEpredicate is given. In the resulting mathematical system it is
fairly good possible to discuss computable functions at the level of their
computations; for example the construction of a "dovetailed" computation
can be formalized. Still it is felt by the author that in defining the so­
called transformations of'programs the formal discussion is interrupted by
an argumentation like: "look at this function; clearly it is computableand
consequently there exists an index for it in the enumeration; let i be such

an index ...". In order to formalize this argumentation the operator inéeg_
was introduced in the preceding chapter.

In the sequel of this treatise we present a survey of machine-indepen­
dent recursion theory.
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1.2.3. ABSTRACT EFFECTIVE ENUMERATIONS AND THE RECURSION THEOREM

{... and, lo, a great multitude, which no mancould
number, of all nations, and kindreds, and people,
and tongues, stood before the throne,

Revelation VII,9}.

DEFINITION1.2.]. An effective enumeration (mi)i is a sequence of partial
recursive functions (in one variable) called programs, which satisfies the
following properties:

(0) Each partial recursive function f: R0 + DJ occurs somewhere in the se­

quence (mi)i.

(1) [Universal machine]. There exists an index u such that

Vx,y[mu(<x,y>) = ®x(y)]­

(2) [s-n-m axiom]. There exists a total recursive function snm such that

Vi,x,y[m )(y) = wi(<x.y>)].snm(i,x

Although our programs mi are single-variable functions by definition
we introduce many-variable functions in our enumeration by using the pair­
ing function. Anoccasional super-index indicates use of this interpreta­

tion: for example m§(x,y) equals mi(<x,y>).
By definition the programs mi are nothing but functions. Wewant to

be able to separate the intentional object of an abstract computingprocess
from its extensional meaning which is the computed function. Therefore we

denote the function computed by the program mi by Ami. This symbol A may be
omitted in manycircumstances where it is clear that the numerical value is

intended. In particular mi(x) denotes always the numerical result. Also in
equalities between programs and/or functions the A is omitted. Note that
equality between programs means extensional equality; there is no concept
like "program equivalence" in our theory.

The above interpretation of the symbol mi occurs in papers by
J. HARTMANISand A. BORODIN.An alternative interpretation which is used by

M. BLUM,A. MEYER,P. YOUNGand others where mi denotes the function com­
puted by program i and where no distinction is made between index and pro­
gram, is less suitable for this treatise. In part 3 wehave situations
where an index encodes more information than just a program, and in this
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situation a three-leveled approach (index, program and function) is needed.

The fact that mi computes f is also expressed by saying "i is an index
for f".

DEFINITION1.2.2. A transformation of programs is a total recursive func­
tion (working on indices of programs).

In chapter 1.1 the background of this concept was fully explained.
Transformations of programs are defined by implicit use of the s-n-m axiom.

For example the function w:(y,x) being recursive in i, x and y there exists
by the s-n-m axiom a total function 0 for which

<D§(i)(x,y) = tDO(i)(<x,y>) = cDi(<y.x>) = tD§(y.x)­

Using the formalism of section 1.1.2 a formal definition of 0 becomes

2rgg_o = (§n§_i) inf; §n§g§f§n§_x)inf; A ggg2fi,pair(3§¢,3l¢))

or using the mathematical representation of 1.1.3

£00“) (:0) 4- tDi(<n2;z:,n1x>).

DEFINITION1.2.3. By a sequence of programs (functions) we understand a
sequence of programs (functions) which is enumerated by a transformation of

programs. Hence if 0 is a transformation of programs then (wO(i))i is a
sequence of programs and (A¢%(i))i is a sequence of functions.

For the concept of a measured set we have two equivalent definitions:

DEFINITION1.2.4. A measured set Y is a recursive ternary predicate such

that for each i and x there exists at most one value y for which
T(i,x,y) = true.

DEFINITION1.2.5. A measured set Y is a sequence of functions (Yi)i with
the property that the ternary predicate Yi(x) = y *) is recursive in i, x
and y.

*) . . .
In order to be consistent with chapter 1.1 we should write Yi(x) §g_y
instead of Yi(x) = y.
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Clearly the two definitions describe the same concept. From the ternary

predicate Y one derives the sequence (Yi) by taking Yi = the trans­
9

formation 0 being defined by

wO(i)(x) -=uz[Y(i.X,z)].

Conversely the ternary predicate Y is implicitly present in the second

definition, and it is clear that Ti(x) = y for at most one value y.

DEFINITION1.2.6. The transformation of programs 0 is called a measured

transformation if the sequence (wO(i))i is a measured set.

There exist sequences of functions which are not a measured set. For

example the sequence (wi)i is not measured since the predicate wi(x) = y is
not recursive (cf. chapter 1.4).

The recursion theorem of KLEENEstates that every transformation of
programs has a fixed point, i.e. a program extensionally equivalent with
its image. Moreover, the index of the fixed point depends uniformly on
further parameters.

THEOREM1.2.7. [Recursion theorem]. Let 0 be a transformation of programs.

Then there exists an index j such that w. = wB(j).

PROOF. Let p be defined by:

(X)
”b<j>‘“’ *‘“h3<j>

and let k be an index for the function Ai[o(p(i))]. Then j = o(k) is the
requested fixed point since for every x

wj(x) = wp(k)(x) = wbk(k)(x) = w6(p(k))(x) = ®0(j)(x). D

Note that the above proof seems to have no intuitive meaning at all.
(The reader may convince himself of this fact by closing the book and try­
ing to repeat the argumentation).

THEOREM1.2.8. [Uniform recursion theorem]. Let 01 ]N2 +-Ii be a transfor­

mation of programs. Then there exists a transformation T satisfying for

93°“ 5 ”o<r<j>,j> ‘ ”r<j>'
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PROOF. Let p: ]N2 + ]N be defined by

no . . (X) = to 2 (X)­
o(1.J) wi(i,J-)

Take for k an index such that

u>1f<i.j>= o<o<i.5>.j>.

Then the transformation T = Aj[p(k,j)] satisfies the fixed point conditions.
For each j and x we have

(x) = (x) = (X) = (X) =

‘°r<j> “’p<1<.j> “’@i(k,J.) “’o<o<k,j>.j>

‘ “’o<~r<j>,j>""' D

1.2.4. THE CONCEPT OF AN OPERATOR

DEFINITION1.2.9. A total effective operator P is a transformation of pro­

grams 0 with the following properties (writing F(wi) for wb(i)):

(1) [operator] P preserves functional equality: wi = wj== F(wi) = F(¢3),
(2) [totality] (pi total =:«I‘((pi) total,
(3) [continuity] if F(wi)(x) = y then there exists a finite set F C Dmiso

that F(milF)(x) = y and, moreover, for any index j such

that wjIF = wiIF one has F(¢3IF)(x) = y also.

If F is a finite set such that wilF completely determines the value of
F(wi)(x) then we say that the support of (the computation of) F(wi) on x is
contained within F. If a total effective operator T and a total function mi
are given one can effectively computea finite set F containing the support

of F(wi) on x.
Oneshould visualize a total effective operator as a "procedurd' which

computes F(t) using a program for t as a subroutine; in computing P(t)(x)
(which computation always terminates if t is total) the values of t at a
finite set of arguents of t (the support of F(t) on x) are used; the re­
sult only depends on these values and not on the way these values are com­

puted. (In fact this way the support of P(@i) on x is determined.)
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The procedure maybe based on paralellism; if the procedure is purely
sequential one gets a smaller subclass of the total effective operators
(the so-called subroutine operators [Sy 71]).

By dovetailing a procedure using paralellism can be translated into a
sequential procedure; however, the computations of t(x) should be dove­
tailed also. Another problem is that in general one cannot compute a mini­
mal support of a computation of such an operator. To illustrate this con­
sider the example below:

Example 1.2.10. Let ok be defined

$6 (i)(x) ¢=(ggr_begin §f:¢k(0) < w gag w%(k) < m then goto fbund ff,
k <p7:(0) < °°g_1gZ_<D,L.(1)< m then goto found

end;

found: 0);

Clearly ok satisfies for each k the conditions (1), (2) and (3) thus de­
fining a total effective operator F However,to decide whether the mini­k.
mal support of Fk(t) on x is {0} or {0,l} one must first solve the halting
problem which is unsolvable (cf. chapter 1.4).

The more general concepts of an operator, such as recursive operator,
partial recursive operator, and general recursive operator [R0 67] are not
used in this treatise.
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CHAPTER 1.3

COMLEXITY MEASURES

As indicated in the preceding chapter the concept of an effective enu­
meration is not powerful enough to treat computable functions at the level
of their computations. There is no analogue for the KLEENEpredicate.

To create a more powerful formalism M. BLUMhas introduced for each

program mi a step-counting function (or run-time) ¢i. One should think of
¢i(x) to be the "amount of resource used by the computation of wi(x)". The
behaviour of the functions (¢i)i is regulated by the two so-called Blum
axioms. The pair ¢ = ((¢i)i,(¢i)i) is called a complexity measure or Blum
measure.

A complexity measure may be considered to be an abstract universe of
computation. The working of the machinery is unknown; moreover, programs

cannot be freely combinedalthough alternative programs for the intended
combinations exist in the enumeration. Howeverthe formalism allows the in­

terruption of computations taking to muchresource.

DEFINITION1.3.1. A complexity measure Q is a pair ((wi)i,(¢i)i) consisting
of two sequences of (partial recursive) functions satisfying the following
axioms:

(0) The sequence (wi)i is an effective enumeration of partial recursive
functions.

(1) For each i Ow. = D¢..
1 1

(2) The sequence (¢i)i is a measured set (i.e. 0i(x) = y is decidable).

As before with the programs we should separate the intentional run­

times ¢i from the numerical functions which they are by definition. Again
the later objects are denoted A¢i. Contrasting to the preceding section it
is not permitted to suppress occurrence of the symbol A freely. For example

in determining the validity of ¢i(x) = y one wants to use the decision pro­
cedure given by the second Blum axiom, which terminates, whereas computa­

tion of ¢i(x) maydiverge. For this reason we reserved in chapter 1.] the
notation ¢i(x) for the intentional object; the numerical value is denoted
A¢i(x). This convention leads to many occurrences of the symbol A in cir­
cumstances where the numerical value of the run-time is used as argument
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for some computation. The denotation RD®ifrom Ax[R(x,A®i(x))] is an ex­
ception to this rule, which is motivated by the frequent occurrences of
such functions as index in some other expression, within our text we omit in
fact manyoccurrences of A in circumstances where the intentionality of the
run-time is irrelevant.

Note that the decision procedure for ¢i(x) = y is an analogue for the
Kleene predicate T(i,x,y) if we consider "the encoding of the computation
of the i-th program of argument x" to be the run-time of the i-th program
at x. For the effective enumeration of all Turing machines there exist two
well-known examples of complexity measures. In the so-called Turing time­

measure, ¢i(x) equals "the number of steps" taken by machine i at argument
x, a "step" denoting the reading and/or printing of a single symbol fol­
lowed by an internal transition and a possible replacement of the reading­

head over one tape square. In the Turing space measure ¢i(x) equals the
numberof tape squares used during the computation. In the latter case this
numbermay be finite also for a divergent computation and in order to

satisfy axiom (1) the function ¢i(x) must be set in diverge if this (decid­
able) phenomenonoccurs.

Consider somemore or less concrete instruction code for some computer

model, which is strong enough to allow computation of all recursive func­
tions. One should like to have in these circumstances a natural complexity

measure, with mi being the i-th program written in the instruction code
(using some encoding of programs by integers) and with ¢i(x) being the
numberof elementary instructions executed during computation of the i-th
program at argument x. In practice there are almost always hidden snags in
this definition. Manyinstruction codes permit situations leading to diver­
gent computations. As an example one might consider the divergent ALGOL60

program

begin switch S := S[1]; goto S[1] end

in which occurs a non-terminating but (at the level of the ALGOL60 seman­

tics) indecomposable statement. At a more machine-oriented level instruc­
tions using indirect addressing (5 la KNUTH[Kn 68 - 2.2.2, Ex.3]) or in­
directly executed instructions (like the DO-instruction in the ELX8ma­
chine code [EL 66]) are examples of instructions which may fail to termi­
nate. This situation becomes worse if by the use of microprogramming the
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power of the instruction code is increased. Consider a computer equipped
with an instruction which computes a zero with integral coordinates for a
many-variable polynomial with integral coefficients. As is indicated by the
unsolvability of HILBERT'stenth problem [Da 73] this instruction has an
unsolvable halting problem.

Although the reader will look in vain for a formal proof in this trea­
tise the following assertion is crucial at this place.

ASSERTION1-3-2. There exists a complexity measure.

In fact the Turing machine measures mentioned above are well-defined
Moreover, computer-model inspired measures without non-terminating instruc­
tions in their instruction codes exist also; for an exampleof a formally
defined type of "register machines" we refer to [SS 63] or [Hm71]. In a
recent textbook E. ENGELER[En 73] uses such a model of computation as a

foundation for recursion theory.

Weconclude this section with some remarks one the strength of the two
Blum axioms.

In the first place the two Blumaxioms are independent. Taking ¢i = mi
the first axiomis satisfied but the second is not since (mi)i is not a
measured set (cf. chap.l.4). If we take ¢i = zero for each i then (¢i)i is
measuredbut the first axiom fails.

The existence of a single complexity measure ¢ shows that it is pos­

sible to extend each effective enumeration (wi)i to a complexity measure by
"borrowing" the run-times from the measure ¢. Let u be the universal pro­

gramfor (wi)i i.e. u(i,x) = wi(x). Since u is recursiv; there exists an
index j fgr u in the enumeration (wi)i. Hence wi(x) = @j(i,x). Nowdefine
Wi(x) = ¢j(i,x). It is not difficult to prove that ((wi)i,(Wi)i) is indeed
a complexity measure.

From the fact that the sequence (¢i)i is a measured set one finds a

transformation p such that ¢i = wb(i). One defines p by

tDp(i)(x) <=uz[d>i(x) = 2].

Moreover, the following predicates are seen to be recursive: ¢i(x) I z,
¢i(x) < z, ¢i(x) S z, ¢i(x) > z and ¢i(x) 2 z. For the predicates

¢i(x) S @j(y), ¢i(x) < ¢j(y) and ¢i(x) = ¢3(y) the second Blum axiom sug­
gests a computation method consisting of "running the two machines in par­
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allel to find out which one terminates first"; see chapter 1.1 for a formal
definition.

If ¢ ((wi)i,(¢i)i) and ¢ ((wi)i,(¢i)i) are twomeasures on the
same effective enumeration then the following combinations yield complexity
measures also:

(i) Ax[A¢i(x) + A¢£(x)]

(ii) Ax[g(A¢i(x))] provided g is a total function such that there exists a
total h satisfying g(x) = y=¢ x S h(y).

(iii) Axiif <i,x> e A then A¢2(x) else A¢é(x) [£1
supposed A C hi is recursive.

(iv) Axigf <i,x> e B then 0 else ND?/.(a:)_fi3_]

supposed B C H0 is recursive and wi(x) < w for <i,x> e B.

These constructions show how measures may be combined, compressed, ex­

panded, and conditionally selected, or even set to zero at a recursive set
of converging computations. Application of these and similar constructions
may lead to "pathological" examples for complexity measures. For example it
is not difficult to design a measure where zero and Xx[x+l] both are com­
puted free of charge, whereas their composition Ax[|] cannot be computed
within polynomially bounded time.

One of the important unsolved problems in abstract complexity theory
consists of the characterization of ”naturalness" of measures. Several pro­
posed extensions of the Blumaxioms have been found to fail in this respect.
The reader is referred to [Hm73].
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CHAPTER 1.4

SOME CONCEPTS FROM RECURSION THEORY

In this chapter we discuss the concepts of unsolvability, and many-one
(one-one) reducibility. Furthermore wemention the arithmetical hierarchy,
indicating somestandard reference sets in this hierarchy. Finally the re­
cursive enumerable sets are defined.

As was suggested several times before, not all sets and functions are
recursive. The best knownexample of an unsolvable problem is the so-called
halting problem. Let the set halts be defined by

halts = {i I cpi(i) < co}.

Thenhalts is not recursive:

PROPOSITION1.4.]. For no index n one has

mg = Ax[§j:w&(x) < m then 0 else 1 f2].

PROOF.Supposen exists, then the following function is total recursive:

f’ = ?\x[3'_f LDn(:x:)= 0 then tDx(:z:)+1 else 0 E]

However, if j is an index for f then f(j) = f(j) + 1. Contradiction. U

The fact that not all problems are recursive has lead to a numberof
reducibility concepts. One says that problem 1 is reduced to problem 2 if
a solution of problem 2 yields a solution to problem I. Wedescribe two
reducibility concepts.

DEFINITION1.4.2. Let A and B be two (not necessarily recursive) subsets of
BL. Wesay that the total recursive function s m-redfices A to B if for all x

s(x) e B Eijrx e A; notation A SmB (by s). If s is, moreover, a 1-]
function we say that s 1-reduces A to B; notation A S‘ B. If s is a bijec­
tion (recursive permutation) then A and B are called recursively isomorphic;
notation A E B.
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It is not difficult to show that Smand < are pre-orderings on the power­-1

set P(ED. Defining A E] B (A Em B) by A S B and B S] A (A Sm B and1

B SmA) E, E] and Embecome equivalence relations. The equivalence classes

modulo E] (Em) are called 1-degrees (m-degrees).
The relation between E and E follows from the following theorem:

1

THEOREM1.4.3. [MYHILLisomorphism principle]. A E B iff A E] B.

For a proof the reader may consult ROGERS[R0 67], or the appendix.

The proof involves a method to construct from two injective functions f and

g such that A S] B (by f) and B S] A (by g) a recursive permutation s such
that A E B (by s). The algorithm for s is a nice example of an essentially
non-terminating algorithm, which can hardly be represented adequately by
the usual mathematical expressions. (The reader should compare the repre­
sentation in the appendix with the one given by ROGERS.)

EXAMPLE1.4.4. Let total be defined by

total = {i I Dwi =:m}.

then halts Smtotal by 0 when 0 is defined by

<oU(i)(x) ~=«aim.

Note that A SmB and B recursive implies that A is recursive.

PROPOSITION1.4.5. The sequence (wi)i is not a measured set.

PROOF.Let C = {<i,x,y> I wi(x) = y}. Then halts gm C by s if s is defined
from o as follows:

<.pO(1.)(x)= 3fcp7.(7,) < co then 0 else onQ

(note that the else part is never executed) and

s = Ai[<o(i),0,0>].

Consequently if C is recursive then so is halts. Contradiction. D
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Thearithmetical hierarchy classifies sets by the structure of their
descriptions by defining formulas. By a defining formula we understand an
expression of the form

F = Q,y].Q2y2....,Qkyk[E]

where E is sometotal recursive predicate with free variables x,yl,y2,...
.,yk and Q1,...,Qk are (unbounded)existential or universal quantifiers.

Consequently all free variables in E except x are bounded in F. The set de­

fined by F is the set {x I F} = {x I Q]y],Q2y2,...,Qkyk[E]}.

EXAMPLES: halts {x | 3y[¢x(x) = y]},

total = {x I Vy3z[¢x(y) = z]}.

Expressions like F are called expressions in prenex normal fbrm. The quan­

tifier block Q]y1,Q2y2,...,Qkykis called the prefix of F. It is not diffi­
cult to prove that without loss of generality we may assume that the quan­

tifiers are alternating: if Qi = 3 then Qi+l = V and vice versa. Otherwise
two equal quantifiers maybe contracted into a single one: e.g.

...,3y1,3y2,...[P(...,y],y2,...)] is replacedby
.,3y,...[P(...,n1y,n2y,...)] etc.

Wesay that F is of type H if the prefix of x consists of k alter­

nating quantifier blocks starting with V; similarly F is of type Zk if the
prefix of k consists of k alternating quantifier blocks starting with 3.

A set defined by a Zk (Wk) expression is called a Zk (Wk)-set. Sets

which are both Zk and Uk are called Ak-sets.
It is clear that a Zk-set or a Uk-set is a An-set for n > k; this is

proved by the use of ”dumy" variables.

If 5 denotes one of the types H , Zk or Ak then_§ denotes the class of
all E-sets. Wehave the following inclusions.

é7fl'£é27fl2fi3;/fl3\iéf/
33¢ \E\§2/EAg/S g\
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FACT1.4.6. [Hierarchy theorem]. All inclusions in the above diagram are
proper inclusions.

For a formal treatment of the arithmetical hierarchy and a proof of
the hierarchy theorem the reader is referred to ROGERS[R0 67].

It is not difficult to show that the complementof a Zk-set is a
k

DEFINITION1.4.7. A E-set is called E-complete if every E-set B can be m­
reduced to A.

Clearly the complementof a complete set is again complete.

PROPOSITION1.4.8. A Al-set is recursive.

PROOF.Let A = {x I Vy[P(x,y)]} = {x I 3z[Q(x,z)]}, P and Q total recur­

sive. Now lN \ A = {x I 3y[n01: P(x,y)]}. Since IN = A U ]N \ A we have

VX3Y[?;t0_tP(x,)') 9;: Q(x,y)].

Hence the following function g is total

g = Ax[uz[31_0_§P(x.z) 93 Q(x.z)]].

Now we can define A by

A = {x I Q(x.g(x))}.

which shows A to be recursive. U

The sets in X] are called recursively enumerable sets. This name is
explained by the following proposition:

PROPOSITION1.4.9. The following assertions are equivalent:

(i) A is recursively enumerable
(ii) A = Df for some f e P

(iii) A = Rf for some f e R or A = ¢

(iv) A = Rf for some f e P.

N -set and vice versa. Moreover if B is a E-set and A SmB then A is E also.
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PROOF:(i) =-(ii). Let A = {x I 3y[E(x,y)]}, E total recursive, then for
f = Ax[uy[E(x.y)]]. A = Uf­

(ii) =’(iii). Trivial for A = Q. Otherwise let A = Df then Df is not empty.
Let i be an index for f; the following expression yields a "first" element
of Df:

x = n1uz[®i(nlz) n z].0

Now define g by

g = Ax[§i:¢2(n1x) = n2x then nzx else x0 fzj.

Then g is total and Rg = Df.

(iii) =’(iv). Trivial since ¢ = R8.

(iv) = (i). Let A = Rf and let j be an index for f. Then

A = {x I 3y[¢j(n]y) = nzy and wj(n]y) = x]}. D

Weshould emphasize that totality of the recursive predicate

"¢j(n]y) = nzy and wj(n]y) = x is based on our specific interpretation of
the operator and; in fplse and q the value of q is not elaborated.

we introduce somefurther standard reference sets in the arithmetical

hierarchy:

non-empty = {i I Dmi z ¢}

errpty = {i I Dnoi = {6}

finite = {i I #0mi < m}

bound = {i I Dwi = nu gag #Rwi < w}

eofimlte = {i | #(]N\D<Di) < co}.

Wehave non-empty Emhalts, both sets being 2 -complete. Consequently emptyI

is H]-complete. finite is a Z2-set, since
x e finite iff 3yVz[n]z S y 9§_¢X(n]z) I nzz]. This latter condition may
also be written like

$z[¢ (n z) I n z].
x 1 2
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CD

This suggests a relation between X -sets and sets defined by V ex­
2

pressions. In fact the two classes of sets are equal as follows from the
following lemma:

LEMMA1.4.10. Let A be a Z2-set. Then there exists a total recursive pre­
dicate B such that

i e A eff ~‘?x[B(1,x)].

PROOF.Let A = {i | 3yVx[P(i,x,y)]}. we define B by:

B(i,x) = 3ySx[Vzsx[P(i,z,y)] gag

Egg 3w<y[Vz<x[P(i,z,w)] g§é_flg§ P(i,x,w)]].

To understand this horrible definition the reader should consider the

diagram below:

YT :********************************
* * *

-k* -kX _—'_————_—b
0 * l*

* I*
*
****************************
* I

*********************
****

********

****
* *******

* **** ***

I

I

** *1: |

I

I

X0

Diagram 1.4.1]

The asterisks denote the pairs <x,y> for which P(i,x,y) = true (i is fixed
for this diagram).

The value of B(i,xO) depends on the configuration of asterisks within
the square 0 S x,y 5 X0.

The clause "VzSxO[P(i,z,y)]" means that the y-th row in the diagram is
filled with asterisks upto xo.
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The clause "no; 3w<y[Vz<x0[P(i,z,w)] gn§_nQ§_P(i,x0,w)]" means that
there is no row in the diagram below the y-th row which is filled with as­

terisks upto xo-1.
Nowi e A whenever there exists a y such that the y-th row consists

of asterisks completely. A row containing asterisks upto x maybe a candi­0
date for such a row. The first clause detects the presence of such a candi­
date. However, in order to be sure that our candidate is "good" upto in­
finity we should not freely replace it by another if we have detected a
mistake by our candidate. The second clause ensures that B(i,x) is false
for x = x if some former candidate is found to perform its first mistake0

at x0.
Therefore if a good row exists after finitely manyrejections of wrong

candidates the lowest good row becomes the current candidate and remains
so forever. Consequently i e A implies $x[B(i,x)]. Conversely if no good
row exists each possible candidate will be rejected or there will be at x

no candidate at all. Hence i &A implies §x[B(i,x) = fgésg]. This completes
the proof.

It is not difficult to prove using this lema that finite is Z2-com­
plete.

total can be proved to be U2 and even U2-complete by reducing
1N\ finite to it. bound is a A -set which is not complete; this is not3

very amazing since there exist no A3-complete sets (cf. [R0 67]).

Finally the set cofinite is 23. One can prove it to be Z3-complete
using the lema below:

LEMMA1.4.12. Let A be a Z3-set. Then there exists a total predicate B such
that

i e Aiff $x3z[B(i,x,z)].

The proof of this lemma, which is more or less analogous to the proof
of the preceding lema, will appear in [EB74].

All the standard reference sets are so-called index sets. If F is some

collection of functions then OF = {i I Ami e F} is called the index set
corresponding to F. Except for the trivial cases F = ¢ or P e F the index
sets QF are never recursive. This fact is knownas RICE's theorem:
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THEOREM1.4.13. [RICE]. If F I ¢,P then RF is not recursive.

PROOF.Replacing if necessary RF by IJ\ QF = Q? where f is the complement

of F in P we may assume that 8 & F. Let f be some member of F. Then Df 1 ¢.

Define the transformation 0 by

<DO(7/.)(:z:)<=3'fcpi(1I) < °° then f‘(x) else 0°

Then halts Sm9F by 0. D

DEFINITIONI.4.l4. If A is a E-set and if 0 is a transformation of programs

then the class of functions {Aw6(i) I i e A} is called E-presentable (by 0).
In particular if A = R1 the class of functions {Aw0(i) I i 6 IN} is a re­
cursively presentable class. Note that a Z -presentable class is also re­

1

cursively presentable.
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CHAPTER 1.5

GENERAL PROPERTIES OF COMPLEXITY MEASURES

{parturiunt montes, naseetur ridieulus mus. Horatius}

In order that a complexity measure is a reasonable concept it should
be useful to have some facts from every day experience which could be for­

mulated and formally proved within the language of this concept. This chap­
ter is dedicated to this kind of translations of intuitive ideas like in­
efficient computations and algorithms constructed by combination of other
algorithms.

Daily life experience learns that it is difficult to design an effi­
cient algorithm but that it is very easy to spoil a good program by in­
cluding inessential, time wasting instructions. This inefficiency is useful
insofar that it proves the existence of infinitely manyprograms for each
recursive function, a fact known as the ROGERS’padding lema. The proof

of this lemmapresented below was first given in McCREIGHT'sunpublished
thesis [MC69].

LEMMA1.5.]. [Inefficiency lema - BLUM].There exists a transformation of
programs o satisfying

‘“ "“’o<i,j> ‘ W1 “ W3

(ii) Vx[x e DwO(ij) £fl2_@b(i j)(x) = ®i(x) gag ¢O(i j)(x) > wj(x)]­

In particular for total wj the transformation mi-+ replaces the(D . .O(1,J)
program mi by a program for the same function having a run-time which ex­

ceeds wj(x) for all arguments x.

PROOF. Let T be defined by

®T(i,j’k)(x)‘= §jf¢%(x) S ¢3(x) then w%(x)+1else wi(x) if,

L t b th f’ d— ‘ t t f t’ h th t . . = . . . . .
e T e e ixe poin rans orma ion suc a wG(1,J) wT(1,J,O(l’J))

Existence of o is proved by the recursion theorem. Then w6(i j) satisfies9

the equation

@O(i’j)(x) = §i:¢B(i’j)(xJ S¢3(x) then wO( (x)+J else wi(x) ii,7:397.)
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It is clear from this equation that m6 (x) is not computedby selecting(isj)
the then part at any argument x; hence m . .—— o(1.J)

(x) diverges if either the condition does not converge
(x) = mi(x) whenever defined.

M . .oreover mO(1,J)
(i.e. x &Um.) or if the subsequent computation of mi(x) fails to terminate

(x & Dmi). Therefore Um6(i,j) = Dmi n Dmj. D

By replacing mg by oi (or better mp(i) where p is the transformation
satisfying oi = mp(i)) we conclude that each program mi can be replaced by
a more expensive one, except when mi happens to be a program for the
empty function. Iterating this construction one finds a sequence of dis­

tinct indices for the function Ami.
Moreformally let P(j,O) = j and P(j,k+1) = o(P(j,k),p(P(j,k))). Then

and A¢. . A¢ . .
“’P<J,k) P<J.k+1> ’ P(Jak)

If qg I 8 it is clear that P(j,k) I P(j,n) if k I n. For indices j for
for each k mj =

the emptyfunctions either the sequence (P(j,k))k is again infinite or it
becomesperiodic (P(j,k) = P(j,k+m) for k sufficiently large). Nowthe
second development cannot occur for all indices j for 8 since otherwise the

test "does (P(j,k))k becomesperiodic?" yields a method to enumerate the
U]-complete set empty.

Moreoverit is not difficult to construct an index j for 8 such that

(P(j,k))k becomesnot periodic:

Define the transformation wby:

mw(j)(x)~=_gf film ¢ ngx g§g_P(j,n1x) = P(j,n2x) then 1 else Zooglfi.

If jo is the fixed point under w: qfio = mw(jO) then the then-part becomes
contradictory; consequently mjo = 8 and moreover P(jO,k) 1 P(j0,n) when­
ever k I n.

A slight modification of the function P consisting of the replacement
of values P(j,k) which have becomeperiodic by values from the sequence

(P(j0,k))k which still are "unused", yields a real "padding function" as
claimed by the ROGERS’Padding Zemma.

LEMMA1.5.2. [ROGERS'Padding lema]. There exists a transformation of pro­

grams N such that for each index j the sequence (n(j,k))k is a Sequence

of distinct indices for Amj.

By further modifications the transformation n can be made increasing
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in both arguments and moreover a 1-] function. Use of the padding lemma
leads to the following corollaries.

COROLLARY1.5.3. Let 0 be a transformation of programs. Then there exists

an increasing transformation T functionally equivalent to o; formally

mo“) = cpT(i) and r(i+l) > 'r(i).

COROLLARY1.5.4. [ROGERS- Isomorphism between effective enumerations]. Let

(wi)i and (wi)i be effective enumerations then there exists a recursive

permutation K such that Ami = A¢K(i).

In the proof of the second corollary we use the extension of (¢i)i to
a complexity measure from chapter 1.3 and the MYHILLIsomorphism principle.

Finally the standard reference sets of the preceding chapters, which
by definitions are index sets all can be shownto be complete in their cor­

responding I-degree; if A SmB by f and B is an index set then there exists
a 1-] function f' such that A S] B by f'.

A problem frequently considered in abstract complexity theory is the
existence of sufficiently many increasing run-times (cf. M. BLUM[B1 67]
and N. LYNCH[Ly 72]). A complete solution is given by the following

LEMA1.5.5. [Monotonicity lemma]. There exists a transformation T such
that:

(i) DwT(i) is the largest segment [O,x) contained within Dmi (hence

D“’i ‘ D“’T(i)

(ii) A¢T(i) is increasing on DwT(i).
= ]N for total Lpi).

PROOF.Let 0 be the transformation described in the inefficiency lema.
Define the transformation p by

cpp(7:’J.)(a:) ¢=3'f_'x = 0 then M>7.(0)

(:2:-1)) f_1:.eli _rniz:(oi(x),AoO(7.’J.)

Consequently 0 e Uwp(i j) ififi 0 e Dwi and for x > 0D

X€ X-1.6 r.‘ Engx€
Let Kbe the fixed-point transformation such that wk(i) —wb(i’K(i)).

Hence:
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(x) = Efix = 0 then A¢%(0)else gg§{A¢Z(x),A¢ (x-1)) ff,‘PK(1) o(»;,.<m))

Consequently 0 e Dwk(i) iffi 0 6 Dwi and for x > 0

x e DwK(i) eff x-1 e UwK(i) and x-1,x e Uwi.

This shows that Dwk(i) is the largest segment [0,x) contained in Dwi.

Let T = Ai[o(i,K(i))] = o D K. Since DwT(i) = Dwi n DwK(i) = DwK(i).
(i) is satisfied. (iii) follows from the definition of 0 whereas (ii) is
derived from:

M’-c<i>"" 2 ”°o<i.K<i>>"" ’ “’»<<i>"" ‘

if x==0 then A¢i(O) else gg§jA¢i(x),A@T(i)(x-1)) jg,

(x) > A¢ (x-1) for x > O. UA .Consequently ¢T( T(1)i)

COROLLARY1.5.6. Each total function is computed by a program with in­

creasing run-time.

Intuitively functions which are expensive in one measure should be ex­
pensive for other measures also. This is not completely true since measures
can be constructed were a decidable set of total functions can be computed
"for nothing" as was seen in chapter 1.3. However, "at large" the run-times
of a function in different measures are related.

PROPOSITION1.5.7. [Recursive relatedness between measures]. Let
* . .

((wi)i,(¢i)i) and ((wi)i,(¢i)i) be two complexity measures on a single enu
meration. Thenthere exists a total recursive function R satisfying:

vi‘7x[Aoi(x) s Rn<I>:(x) and Ao"i‘(x) s RD<Di(x)].

PROOF.Let P be defined by

P = >.1l,a:,z[5ng§_(3'fd>i(:c)=2 then A¢;(x) else 0 fig,

if o;(x) = z then A<Di(x)else 0 35)]

and define R by

R = Ax,z[maa:{P(7Z,x,z) I 71 s :z:}].
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Then for x > i R satisfies

RDOi(x) 2 A¢:(x) and RD¢:(X) 2 A¢i(X)- U

A similar result holds for complexity measures on different enumera­
tions. This showsthat (abstractly) compilers introduce a recursively
bounded "overhead".

A similar recursive "overhead-function" is involved in the combining
of several algorithms to a single one. This fact is knownas the "combining
lema".

LEMMA1.5.8. [Combining lemma]. Let 0 be a transformation of programs

satisfying Um Um. n Owj. Then there exists a total function R sat­o<i.j> 9 1
isfying:

Vi,j‘7x[Ad>0 (x) 5 R(x,/\d>i(x) ,Ad:>J.(x)) 1.(i,j)

PROOF.The domain condition Ugo Dwi n Dwj shows that the function P(1.5) 5
defined below is total:

P = >.1Z,j,:c,y,z[3'_f CD7/.(x)=y @ <I>J.(x)=3 then ACDO (ac) else 0 fll].(i,j)

The function R is defined by

R = Ax,y,z[max{P(i,j,x,y,z) I i,j s x}].

IV A¢b(i,j)(x). UHence for x 2 i,j one has R(x,A¢i(x),A¢3(x))

The combining lemma as formulated above was given by HARTMANIS&

HOPCROFT[HH7]]. For a "metamathematical" generalization of this lemma the
reader is referred to G. AUSIELLO[Au 70].

In any measure the run-time of a program recursively bounds the size
of this program, whereas no bounding the other way around exists.

PROPOSITION1.5.9. There exists a total function R such that for each i

mi 3 RD¢i but for no total function R one has A¢i g_RD@i.

PROOF.If P = Ai,x,z[§i:¢i(x) = z then wi(x) else 0 ii] and
R = Ax,z[max{P(i,x,z) I i S x}], then clearly mi g_RD¢i.
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To prove the second assertion we use a diagonalization argument. Let R
be total and define f by

f-= xx[§f:¢n1x(x) S R(x,0) then 1 =¢Hjx(x) else 0 f2].

Note that the then-part converges whenever it is selected; hence f is

a total function. If k is an index and nly = k the definition of f leads
to:

f(y) = §I:¢k(y) S R(y,0) then l-=f(y) else 0 £2.

So the then-part becomes contradictory. Consequently f(y) = 0 and

¢k(y) > R(y,f(y)). This shows that

°a"x[A¢k(x) > Rmpk (x) 1.

Hence not only for a given index i the assertion Afii E_RD¢kis false
but there exist functions f such that this assertion fails for each index
k for f. D

For specific programs it maybe possible that A¢i g_RDwi;such pro­
grams are called R-honest.

DEFINITION1.5.10. Let R be a (total) function. A program mi is called

R-honest whenever A¢i §_RDwi. A function f is R-honest whenever it is com­
puted by some R-honest program.

Our last proposition shows that for a given total R not all recursive
functions are R-honest.

A specific method to combine programs is to let two programs run in

parallel, terminating the computation, the momentthe fastest computation
terminates. Intuitively such a computation should have a run-time which
equals the minimu of the run-times of the two simulated computations.

The parallel-computation axiom, which is one of the axioms which have
been proposed to separate between natural and pathological measures, for­
malizes this intuition. This axiomreads:

AXIOM1.5.11. [Parallel computation axiom - [LR 72]]. There exists a trans­
formation K satisfying:
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¢.pK(i’j)(x) asZ,_f_‘.@i(x)S d>j(x) then (Di(x) else <Dj(x) Q
(11) NDK(i’j)(x) = m¢n(NDi(x),Am3(x)).

This axiom is satisfied for the model of many-tape, many-heads Turing
machines, with a read-only head on their input tape. Clearly the axiom is
not satisfied in all measures. Howevereach complexity measure can be ex­
tended to a measure for which the axiom holds by introducing sufficiently
many new programs. Cf. [EB 74].
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CHAPTER 1.6

THE SPEED-UP PHENOMNON

The speed-up phenomenonis one of the central results in abstract
complexity theory. Although the remaining parts of this treatise - which
deal with resource-bound classes and their generalizations —have almost
no relations to the speed-up phenomenon a short explanation is felt to be
appropriate at this time.

Consider the Turing machine model of computation. By combining two

squares into one and by processing this way two symbols in a single step

such a machine can be replaced by a new one operating about twice as fast.
This shows that all functions may be speeded-up linearly. It might be that
this is the best one can hope for; up to a linear factor each function has
an optimal program computing this function. In fact the above assertion is
false. Regardless the amountof relativity in the definition of "optimal­
ity", there exist always functions having no ”optimal" program at all.

This fact is formalized by the so-called speed-up theorem, first given
by M. BLUM [B1 67].

THEOREM1.6.1. [Speed-up theorem]. Let R be a total function. Then there

exists a (0-1 valued) total function f with the following property:
For every index i for f there exists an index j for f such that

mg q AG!0
J - 1

It has been shown by MYER and FISHER [MF 72] that the theorem remains

valid if the function R is replaced by a total effective operator P; in
this case still functions f exist such that for each index i for f an index

j for f exists such that FA¢j §_¢i.
This theorem eliminates at once the hope of uniformly optimizing all

programs at once. Thinking R to be a function like 2x+y, the theorem shows
that each program for f maybe replaced by another which is exponentially
faster (whichagain on its turn is surpassed by a still more efficient one,
etc.).

The theory has learned moreover that although the faster programs are
proved to exist it is not in general possible to find them. In fact it can
be shownthat for non-trivial speed-ups the faster programs have indices
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which do not depend recursively on the indices for the slower ones (Cf­
[B1 71], [HY 71] or [Mm721).

A central concept in the theory of the speed-up phenomenonis the con­
cept of a complexity sequence. This is a sequence of functions cofinal in
the gforder with the collection of run-times for a given function f.

DEFINITION1.6.2. A sequence of functions (pi)i is called a complexity se­
quence for the function f, provided that

(1) Vilvcoi = of]

(ii) Vj[f = coj-»aitpi gm]5

(iii) Viajlf = ¢3 and A¢j g_pi

]

].

Fromthis definition one sees that a function f with a complexity se­

quence (pi)i satisfying: Vi3j[RDpjg_pi] is an R-speed-up able function. In
fact the speed-up theorem is proved by constructing a function with such a
complexity sequence.

A more complete survey on the speed-up theory will be included in
[EB 74].





PART 2

RESOURCE-BOUND CLASSES

{27 So the servants of the householder came and
said unto him, Sir, didst not thou sow good
seed in thy field? from whence then hath it
tares?
28 He said unto them, An enemy hath done this.
The servants said unto him, Wilt thou then
that we go and gather them up?
29 But he said, Nay; Zest while ye gather up
the tares, ye root up also the wheat with them.
30 Let both grow together until the harvest:
and in the time of’harvest I will say to the
reapers, Gatherye together first the tares,
and bind them in bundles to burn them: but
gather the wheat into mybarn.

St. Matthew, XIII 27-30}
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CHAPTER 2.]

DEFINITIONS

2.1.]. INTRODUCTION

Resource-boundclasses are a particular type of subrecursive classes
of functions. The arithmetical hierarchy discussed in part 1, classifies
non-recursive functions and sets by the complexity of their definitions,
and the class of recursive functions is a non-structured class at the base

of this hierarchy. Subrecursive classes are subsets of the class of recur­
sive functions itself. Mostly they are defined in terms of somehierarchy.
Examples of such hierarchies are amongothers:

the hierarchy defined by R. PETER[Pe 50] based on multiple recursion,

the GRZEGORCZYCKhierarchy defined in terms of bounded primitive re­

cursive functions, which is the base class of the PETERhierarchy [G2 53],
the hierarchy of predicatably computable functions defined by

R.W. RITCHIE [Rr 63].

The first two hierarchies are defined in terms of program structure
whereas the last hierarchy is defined in terms of the Turing tape measure.

For an extensive survey on the classical examples of subrecursive
hierarchies the reader is referred to the first part of the thesis of
R. MOLL [Mo 73].

Given the concept of a complexity measure one can define several types
of resource-bound classes in terms of this measure. The most investigated
ones are the complexity classes, which consist of all functions which may
be computed by some progra whose run-time is bounded almost everywhere by
some (partial) recursive function. If the maximal run-time may depend on
both the argument and the computed value one gets the so-called honesty
classes (cf. chapter 1.5).

The approach to subrecursive classes by the way of resource-bound
classes has several advantages over the classical approach.

Parts of the theory (like for examplediagonalization techniques) are
measure independent; using resource-bound classes they can be treated this
way.
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The classical examples can be defined in terms of resource-bound

classes for some suitable complexity measure; we have therefore a good gen­
eralization.

The hierarchy of resource-bound classes which is indexed by the system of
partial recursive functions is muchricher than hierarchies indexed by nat­
ural numbersor ordinal notations. Moreoverhierarchies indexed by ordinal
notations can be defined, and the properties of these hierarchies (like
degeneration and non-uniqueness) can be analyzed [Ba 70, BY73].

During the sequel we take for ¢ = ((wi)i,(¢i)i) a fixed complexity
measure .

2.1.2. TYPES OF RESOURCE-BOUNDCLASSES

DEFINITION2.1. Let t be a partial (recursive) function. The complexity

class of programs Ft is the set of programs mi satisfying:

§x[x e Dt =’0i(x) S t(x)]

The complexity class of'functions Ct is the set of all functions computed
by some program in Ft. The function t is called a name for Ct respectively
FtO

It should be mentionedthat this definition differs from definitions

given by other authors. In the first place Ft is a class of programs and
not of indices, a distinction motivated by the theory developed in Part 3.

Furthermore there are no domain conditions enforced like Dwi = Dt (cf.
[LR 72]).

By the "almost everywhere" condition in the definition, programs are
. 10

included in Ft even if they behave extravagantly on the first 1010 argu­
ments only becomingnice at still larger arguments. The "almost everywhere"
condition is exploited heavily in the proofs. Moreover, for "natural" mea­
sures "almost everywhere" should become "everywhere" by modifying the pro­
gram in such a way that an initial segment of the function is computed by
table look-up, thus eliminating the bad behaviour at small arguments.

Clearly we have t E_u =»Ct g Cu and Ft5;Fu. Moreover,functionst and u
satisfying $x[t(x) = u(x)] clearly are names for the same classes. As we
shall see the converse of this assertion is false. The same class maybe
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namedby highly different functions.
The class namedby a function with finite domain contains all recur­

sive functions or programs. The smallest class consists of all functions
which can be computed without charge; zero (or any other function which is
almost everywhere equal to zero) is a name for this class.

Note that a class containing a function with finite domainmust have a
namewith finite domain as well, consequently a class, which contains a
single function with finite domaincontains every other function also.

From the definition of Ft it is easy to see that the set {i I mi 5 F }t
is a Z2-set. In fact it is a Z2-completeset provided t is sufficiently
large (see chapter 2.3). Consequently Ct is Z2-presentable. In chapter 2.3
it will be shownthat Ct is in fact recursively presentable, provided t is
large enough.;

DEFINITION2.1.2. Let R be a function with two arguments. The honesty class

of'programs G consists of all programs mi satisfying:R

§’/°x[<x,api(x)> 6 DR =><Di(x) 5 R(x,mi(x))]

(where by convention <x,mi(x)> & DR for all x ¢ Dmi).

The honesty class of functions HRconsists of all functions computed
by programs in GR.

The "honesty" of a function suggests that its run-time is boundedre­
cursively by the size of the function. For larger values a larger run-time
is permitted and for divergent computations there is no restriction on the
run-time at all. Consequently each honesty class contains all functions
c.q. programs with finite domain.

Several other types of resource-bound classes are defined by consider­
ing honesty classes with a special type of names.

DEFINITION2.1.3. Let t be a recursive function. The weak complexity class

of programs F? consists of all programs mi satisfying:

$x[mi(x) = w 93 (x 5 0t =-¢i(x) S t(x))].

The weak complexity class of functions C: consists of all functions com­
. W .

puted by programs in Ft. If we write T = Ax,y[t(x)] then clearly C: = HT

and F? = GTO
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The weak complexity classes behave like honesty classes. Note however

that Ct and C: contain the same total functions. Consequently the weak com­
plexity classes are a generalization of the ordinary complexity classes
consisting of total functions, which are frequently considered in the lit­
erature.

DEFINITION2.1.4. Let r be a recursive function and let

Rs=Ax,y[r(max(x,y))]. The modified honesty classes H: and G: are defined by

These modified honesty classes are introduced to solve a (for general
honesty classes still unsolved) problem in chapter 3.4.

zero 2 resp. H82 is the smallest
resp. largest honesty class. Again {i I mi 6 HR}is a Z2-class of indices.

An important result concerning honesty classes is the so-called

As before we have HT 5 HU for T g_U. H

"equivalence" between honest set and measured sets.

THEOREM2.1.5. Let R be a total function. Then there exists a measured set

(Yi)i such that {Yi I i 6 IN}= HR. Conversity, if (Yi)i is a measured set,
then there exists a total function R such that {Yi I i e 1} 5 HR.

This theorem, due to E.M. McCREIGHT,is very frequently mentioned in

the literature, but mostly the proof is omitted. Moreover, from the formu­
lation in [MCM69] the present author was lured into believing that the set

GRitself is a measured set. In general this is not true. The example below
(which is derived from the "counterexample" in [EB 71]) shows how the hon­

est set is "scrambled" non-recursively; given an index of an honest program
it is impossible to generate recursively an index for the corresponding
program in the measured set.

A proof of the theorem is found in the unpublished thesis of
E.M. MCCREIGHT[MC 69] and also in the thesis of R. MOLL[Mo 73]. We give

the proof in chapter 2.3 (th. 2.3.8).

EXAMLE2.1.6. Let 0 be a transformation increasing in both arguments sat­

isfying wG(i j)(x) =.gf x > j then 0 else wi(x) fi. Since 0 is non-de­I

creasing it is decidable whether k 6 R0 and, if so, the indices i and j such
that k = o(i,j) are computable. Hence we define a new measure ¢* by:
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¢k(x) + x for k & R0

¢;(x) = <2Di(x) for k o(i,j) and x sj

0 for k o(i,j) and x > j.

Clearly ®*= {(®i)i,(¢i)i} is a complexity measure.
NowGzer consists of all programs with finite domain and all programs0 2

Let (Yi)i be a measured set enumerating H Suppose that T iszero 2'

T(k) = A¢&for those k such that
w e G . Then a contradiction arises as follows: Wehavek zero 2

@ . . .O(l,J)
a recursive function such that AY

cDi(x) = y tff tDO(i’x)(x) = y.

The latter relation by assumption is equivalent to

Y-r<o<i,x>>"" ‘ V

which relation is decidable by the definition of a measured set. Hence

wi(x) = y is decidable, quod non. U

REMARK2.1.7: In the theorem it is essential that the function R is total.

For example let R be the partial function Ax,y[§i:y:=0 then Zqggelse 0 ii].

NowHRcontains among others the function

k = Ax[§if¢&(x) < m then 0 else w ii]

which is a memberof no measured set (k(x)==0 being equivalent to the
halting problem).

The "almost everywhere" condition in the definition of a complexity
class has been replaced by an even more general condition by L.J. BASS
[Ba 70]. His conclusion was that the complexity classes "modulo sets of ex­
ceptional points" defined this way behave not muchbetter than ordinary
complexity classes.

DEFINITION2.1.8. A class E consisting of subsets of Ed is called a class

of sets of'excepti0naZ points provided

(i) each memberof E is recursive
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(ii) E contains all finite sets
(iii) E is closed under finite union: E,F e E =’E U F e E

(iv) N 4! E.

The class E is called recursively presentable if there exists a transforma­
tion n satisfying

(i) Vi[n(i) e total ggg Rwn(i) 2 {0,1}]
(ii) E e E iff 3i[E = {x | <pn(i)(x) = 0}].

Note that by the padding lemmawe may assume that n is an increasing
function.

DEFINITION2.1.9. Let E be a class of sets of exceptional points. Then the

complexity classes (mod E) F: and CE are defined by:

wi 5 FE Eff 3E€EVx[x e E 2: (x 6 Pt =-¢i(x) S t(x)]

EE . _
f 6 Ct Eff 3i[f —Ami Egg mi 6 Ft].

The behaviour of the classes CE and FE depends essentially on whether E is
recursively presentable or not. In the first case the classes are in fact
a special type of complexity classes with partial names, as we shall prove
in part 3. Moreover one may use in this case the following lemma:

LEMMA2.1.10. Let E be a recursively presentable class of sets of excep­
tional points. Then there exists an infinite recursive set A such that
# A n E is finite for each E e E.

EEQQE.Let A be the range of a recursive function f such that f(x) = 0 and
f(x+1) is the least numbergreater than f(x) which is not contained in

igx Ei. By the definition of a class of sets of exceptional points f is
total. D

If, however, E is not assumed to be recursively presentable several
important theorems on complexity classes become invalid. Examples are men­
tioned in the chapters 2-4.

The other types of resource-bound classes like honestly classes and
weak complexity classes may be relativized to a class E analogously.
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CHAPTER 2.2

DIAGONALIZATION TECHNIQUES AND COMPRESSION THEOREMS

The inefficiency lema of chapter 1.5 shows that a given function f is
computedby arbitrarily expensive programs. This construction does not
yield howeveran "expensive" function, as is given by the diagonalization
construction in the proof that the run-time of a function cannot be bounded
recursively by its size.

There are several ways in which a function can be expensive:

Let f be a (recursive) function. The simplest way for F to be expen­

sive is that f &Ct; i.e. one has:

Any = f =’§x[®j(x) > t(x)].

A more essential way of being expensive is that each program for f has
almost everywhere a run-time larger than t:

Acpj = f = $x[<:>J.(x) > t(x)].

This relation is denoted by t ncoflg f (f cannot be computed within time t).
Finally it is possible that the individual values of f are expensive:

vji’/°x[«oJ.<x> = £<x> =~ a>J.<x> > c<x>1.

i.e. if wj computes the same value at x as f does its run-time ®j(x) is
large (except at finitely manyarguments)

This last relation is denoted by t ncomgvf (the values of f cannot be
computedwithin time t).

Expensive functions are constructed by diagonalization procedures. As­
sume for the momentthat t is a total function.

Define the functions f and g by:

“h
I
" Ax[§i:¢n x(x) S t(x) then 1 4 wn x(x) else 0 IZJ,

I 1

(D
H Ax[uz[Vi S x[¢i(x) > t(x) gg wi(x) i z]]].
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Then f ¢ Ct and t ncomgv g (hence also t gggg2_g). A more general assertion
is proved below.

Note that f is a zero-one-valued function whereas g(x) S x+l. It is
clear that for sufficiently large t no zero-one-valued function h satisfies
t ncoggv h since the values 0 and 1 are "cheaply" computed by programs for
the constant functions Ax[O]and Ax[l].

M. BLUMdescribes in his proof of the so-called compression theorem

[B1 67] a diagonalization procedure which yields for total t a 0-1 valued

total function h satisfying t ncomgh.

The diagonalization constructions involved in the definition of the
above f and g are more or less uniform in a program for t. For partial t
however the above definitions may run astray and one must use some more so­

phisticated techniques. Oneuses the fact that the domainof a function is
recursively enumerable, and the characterization of the recursively enumer­
able sets in chapter 1-4.

Uniforming the proofs given at that place one concludes the existence

of a pair of transformations a and B such that for i such that Uwi is in­
finite

(i) wh(i) is a 1-] function such that R¢h(i) = Dwi.
(ii) ¢B(. is a monotonically increasing function such that Rm , g Dw,.1) 8(1) 1

Since Rm is recursive we can define a total result valued functionB(i)
wY(i) such that wY(i)(x) = fialse if x é RwB(i) and wk (x) = k whenever(i)

wB(i)(k) = x. For wh(i) we can find a partial inverse @n(i) such that
”‘°n<i) ‘ R“’a<i>and “’n<i>"" ‘ V 335 ‘°a<i>"” ‘ "°

Next consider the following transformations:

£06”) (cc)-==case <pY(7:)(x) (7l_71§n): <I>n1n(ac)StDi(a:)

then 1-=¢%n(x) else 0 jg
1

out 0 esac; *)

<p5,(7:)(x)=(i_ngt_ n=Lpn(7:)(a:); uz[VkSn[<Dk(x) ><pi(x) 31; (.Dk(x)==z]]).

+) This case conformity clause should be read like: "If m (i)(x) takes theintegral values n then .... otherwise O." Y
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PROPOSITION2.2.].

(i) m5(i) is total and for i such that Dmiis infinite m5(i) & qpi.
(ii) Dm6,(i) = Dmiand for i with Dmi is infinite mi noomgvm5,(i). Finally

there exists a total function R such that A¢6,(i) g_RD¢i.

PROOF.

, and let mi be infinite. Assumen n==k. Then fork 1

x = mB(i)(n) one has mk(x) = m5(i)(x) =
= §i:¢k(x) 5 mi(x) then 1 * ¢%(x) else 0 fZ_ and consequently

(i) Let <05“) = to

¢k(x) > mi(x). Since mB(i) is total this argument shows that

“’a<i> ‘* 901'
.. . . . , . . = = =

(ii) Fromthe definition of 6 it is clear that Um6,(i) U¢%(i) R¢h(i)
= Dmi. If Dmi is infinite then mm is total. For x e Dmn( ) with(i) i
n = mn(i)(x) Z k one has

£D5.(i)(X) = uz[VjSn[<1>J.(x) > tDi(X) 93 <Dj(X) 7: 2]]

consequently

<Dk(x) > <Di(x) 0_I’t0k(x) 1 <05.(i)(x).

This proves mi ncomgvm6,(i). Existence of R follows from Dm6,(i)==Dmi
by using the combining lema (1.5.8). D

Wesay that a function f is compressed between two functions t and u

provided t nggmp f and f 5 Cu. The compression theorem [B1 67] states that
there exists a total function R such that for all indices i with Dmiinfi­
nite, a function exists which is compresses inbetween mi and Rnmi. Without
further restrictions on the large behaviour of f this is a corollary to the
above proposition. In fact one can construct a zero-one valued function
satisfying the conditions. The proof uses a diagonalization method given by
BLUM,which we mentioned before.

One might ask whether the upper bound RD¢i may be replaced by an upper

bound of the form Rnmi. The answer is negative as shown by the Gap theorem.

THEOREM2.2.2. [Gap theorem] [B0 72]. For every total R such that R(x,y0 2y

there exist (arbitrarily large) total functions t such that Ct = CRDt
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The situation is even worse, as indicated by the muchstronger result:

THEOREM2.2.3: [Operator-gap theorem] [Co 72]. For every total effective

operator F satisfying F(t) 2 t there exist total functions t such that

Ct = Cr(t)'

These theorems are proved in chapter 3.2.
The gap-theorems show that uniform extension of all complexity classes

is not possible. However:

THEOREM2.2.4. Let (Yi)i be a measured set. Then there exists a total func­

tion R such that for each i such that DYiis infinite, there exists a func­
tion f which is compressed inbetween Y1 and Rnyi.

This result follows from the fact that measured sets are honest; con­
sequently there exists a transformation 6 and a total function S such that

Am5(i) = Y1 and A¢5(i) g_SUYi. The compression theorem now yields the re­
sult.

The gap-phenomenonmay be escaped by restricting oneself to names se­
lected from a measured set. The naming theorem shows that measured sets
exist, which contain namesfor all complexity classes.

THEOREM2.2.5. [Naming theorem] [MC69]. There exists a measured transfor­

mation of programs v such that for each i Cwi = CwV(i).

The naming theorem is proved in part 3.
Combining the two results we see that a uniform procedure to extend

complexity classes exists. The larger class however depends on a given in­
dex for a name of the class and not on the name itself.

Wehave considered up to now only the problem of diagonalizing over

complexity classes. For the other types of resource-bound classes analogous
diagonalization constructions can be defined; moreover the constructions
for ordinary complexity classes are good for someother types too.

For complexity classes modulosets of exceptional points diagonaliza­
tion is possible unless the domainof the nameof the class is included in
someexceptional set. This follows as a corollary to the compression theo­
rem.

For honesty classes the situation is more interesting. Wecan show

that the class HRcan be extended provided DRcontains the graph of a re­
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cursive function with infinite domain.This later condition is fulfilled

whenever HIDRis infinite.

LEMMA2.2.6. There exist transformations p, T and 6, satisfying the follow­

ing condition: If nlflwi is infinite then

(1) mp(i) is total and 1-1, Rmp Dog.

(ii) Ax[n]wb(

(iii) n2cop(i)(x) = coT(i)(n]cop(i)(x))
(iv) @T(i) is total, we(i) E_¢%(i) and Dw6(i) = n]Rwp(i).

<1) 5

i)(x)] is increasing

PROOF.There exists a transformation K such that w . is a 1-1 enumeration
K(1)

of Dwi. p, T and 6 are constructed from K by:

mp(i)(x) = §i:x=0 then wK(i)(0) eZse

“’.<(i)(‘”‘["1“’.<(i)(z) > “po(i)("_')]) -E‘

(In this "definition" we have implicitly used the recursion theorem, hence

q%(i)(x)-= ... wouldhave been illegal.)

“’e(«;/“” “ "2“’p(»;)(“'3[“z“’p(z°/Z’: W

‘'’m)(‘’‘’’ “ “2“’p(7:)“‘3["1‘°p(z°/Z’ 2 ‘W’ D

An example of a diagonalizing procedure is the transformation 6 below:

¢%(i)(x)‘= (£33 k = uz[fl1¢b(i)(z) 2 x];
3g§_xx = n1¢b(i)(k);
éirxx > x then ¢%( (x)i)

¢ hence <x,y> e Uuk ¢

else int y = n

int z I @i(x,y);
3'f<1>,,;.(x) Sz2*z_c£¢>,,;Jx)=24t_7ze_*zy+1eés_eyJ°_75

1
£2 1

);

Informally: to evaluate w6(i) for x see whether somepair <x,y> is
enumerated by wb(i). If n]wb(i) becomes too large take wT(i)(x); otherwise
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let k be the rank of <x,y> in the enumeration by ¢b(i) and let z be the
value of wi(x,y) (which by now is knownto be finite). If the k-th program

at x terminates within z steps and computes the value y then w6(i) is set
to computea different function by setting w6(i)(x) = y+l, otherwise the
value y is safe.

The above diagonalization procedure yields for nlvwi infinite a total
function Aw6(i (x) which is not included in H 2.)

1
An interesting variant of 6 is the following transformation:

(x) = (Egg k uz[nZ¢b(i)(z) = x];“’5'(v:)

int y = n2wp(i)(k);
int z = ¢€(x,y);
‘gt on k(x) s z then Zogpelse y if);

1

. . . 2 . . . .

For indices 1 such that nlvmi is infinite we have m5,(i) E_me(i) and

“°<s'<i> * “no?

It should be noted that for honesty classes we have only looked at the

simplest "expensiveness" relation "f &HR". Onemight consider also the re­

lation "for each programwj for f the relation ®j(x) > R(x,f(x)) holds al­
most everywhere". Weshall not consider this topic any further.

Becauseof the technicalities involved in lema 2.2.6 there is no nice

analogue of the compression theorem for arbitrary honesty classes. For hon­
esty classes with total names such an analogue is a straightforward corol­
lary to the ordinary compression theorem.

Finally it should be noted that the two gap-theorems can be general­
ized for honesty classes. This subject is treated in chapter 3.2. Wewill
also show that the assertion of the naming theorem becomes invalid for hon­

esty classes: there exists no uniform method to rename honesty classes by a
measured set of names (cf. chapter 3.4).
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CHAPTER2.3.

ARITHMETICAL COMPLEXITY OF RESOURCE-BOUND CLASSES

2.3.]. CLASSES OF PROGRAMS

By their definitions the classes of programs are Z2-sets. This can be
seen as follows:

(pi eFwj 3yVx1Vx2Vx3[d>j(x1) 1x2 Q2 Lpj(xl) 12:3 95 x] Sy Q5 <Di(x]) <1-:3],

api e G“)? tff 3yVx]Vx2Vx3Vx4Vx5

[d>J?(x].x2) *1: 0_r w§(x1.x2) ‘X4 93 X153’ Q3

For the class F$_ where E = (Ei)i is recursively presentable one must

replace "x1 5 y" by "£1 6 Ey" in the above expression to provide a Z2-defi­
nition for Fw_.

Wefirstlconsider the classes Ft. In [B1 66] M. BLUMshows that for
the Turing time measure the class Ft with t = Ax[x+l] is not recursively
enumerable. F.D. LEWISshows in [Ee 70] that for sufficiently large total t

the set of indices {i I mi e Ft} n Egfgg is Z2-complete; for small t this
set may be of any recursive enumerable degree. His proof is based upon di­
agonalization.

Belowwe prove the same result using the recursion theorem.

LEMMA2.3.]. For sufficiently large total t there exists a transformation
T satisfying:

(1) ¢%(i) is total.
(ii) ¢%(i) e Ft_g£f i e finite.

COROLLARY2.3.2. For sufficiently large total t, Ft is Z2-complete.

PROOF.Define the transformation 0 by:
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==§i:¢3(n1x) I n2x then 0
elifi ¢i(x) S ¢%(x) then ¢€(x)-+1
else 1

.L5

“’o(7;,j,z<)

By the recursion theorem there exists a transformation p such that

¢%(p(j,k),j,k) = Wb(j’k). Repeating the argumentation from the inefficiency
lemmaone verifies that

(<x,y>) = £i:¢3(x) I y then 0
elif:¢%(<x,y>) < m then I else w jZ_

‘pom’.k)

and

¢b(j,k)(<x,y>) > ¢&(<x,y>) whenever wb(j’k)(<x,y>) = I.

Since wb(j,k)(x) = 0 if: ¢j(n]x) = nzx we can define a total function mh
by:

¢%(x) : max{£i:¢3(n1x)::n2x then ¢p(j’k)(x) else 0 iZ_l j,k:sx}.

Now we have

v'vk? . = 0 o . .
J "[‘°o<J.k> " oo.k>("’ ‘ “’n"‘”

Let t = wk be a total function such that wn f_t, and define T by

T(j) = p(j,k). Then T is the transformation requested by the lemma.wT(j)
is total (since mk

< wh(x) S t(x) if ¢j(n]x) I N
¢j(n]x) nzx.
Clearly j e finite iflfi’wT(j) e Ft. D

is total), and for almost all x we have ¢T(j)(x) <
2x whereas ¢T(j)(x) > wk(x) = t(x) if

If E is a recursively presentable class of sets of exceptional points

the following modification shows that C: is Z2-complete for sufficiently
large t. Construct an infinite recursive set A with # A n E finite for each

E e E (see lemma 2.1.10). Nowwb (x) is going to be a program computing(5 .10
an "expensive" value I only if x is the k-th element of A (in some enumera­

tion of A) and if ¢3(n]k) = nzk. The remainder of the construction is un­
changed.
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For honesty classes we can do without the "sufficiently large" assump­
tion on the name.

PROPOSITION2.3.3. Let R be a total function. Then GR is Z2-complete.

PROOF.By the inefficiency lemmawe can define a transformation T such that

wT(i) = wi and ¢T(i) > Rnwi. NowwT(i) 6 GRiff i e finite. U

One should beware not to confuse our classes of programs with the in­
dex sets for the corresponding classes of functions (cf. chapter 1.4). For

example we consider the classes flct. Let 0 be defined by:

tDO(i)(:c) <=3'f&Di(:z:)< °°_tfie_n_0 ggwfi.

It is not difficult to construct a measuredset of 0-” valued functions

containing all O-wfunctions with cofinite domain. From this one concludes

the existence of somefunction to such that Ct contains all those func­
tions. Nowfor total t 2 to, 0 reduces the Z3-complete set cofinite to Qct.
This shows that Qct is 23

By the absense of domainconditions this result differs from corres­
ponding results by E.L. ROBERTSON[Rb 71].

-completefor sufficiently large total t.

2.3.2. CLASSES OF FUNCTIONS

It is a well-knownresult that a complexity class Ct is recursively
presentable provided this class contains all finite modifications of one of
its members. See [Le 70], [LR 72], [B0 72], [HH71]. This can be derived

from a general enumerability criterium which we describe below.
The non-enumerability results on resource-bound classes are more in­

teresting. F.D. LEWISand E.L. ROBERTSONconstructed independently a non­

enumerable complexity class for some specific measure. (It has been pro­
posed as one of the "naturalness"-criteria that such classes do not exist.)

The other result states the non-enumerability of the class C: n R,
where E is a recursively presentable class of sets of exceptional points
containing an infinite set. This result holds only because of domaincon­
ditions, for by our general enumerability principle we can prove that the

classes Ct are recursively presentable for sufficiently large t.
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DEFINITION2.3.4. Let X be a class of functions. A way-out strategy for X
is a recursive transformation which maps (indices of) finite functions onto
programs for membersof X extending these finite functions.

The index of a finite function is understood to be the index of a se­

quence whose elements are the points in the graph of this function.

Note that if o is a way-out strategy for X and if X e V then o is also

a way-out strategy for V.

LEMMA2.3.5. Let X be a Z -presentable class of functions and let 0 be a2

way-out strategy for X, then X is recursively presentable.

PROOF.Our proof is a straightforward translation of the earlier proof of

enumerability of Ct (cf, [B0 72]).
Let A be a Z2-set such that X = {Ami I i e A}. There exists a total

recursive Boolean function B such that:

1 e A igf $x[B(i,x)].

Wedefine a transformation I(i,j) such that m . . simulates a dove­

tailed computation of mi. Simultaneously the value;(dfJ%(i,y) for y 2 j are
computed. Upon finding an argument y 2 j with B(i,y) = f§}§§_the way-out

strategy is invoked and the program mi is replaced by an extension in X of
the finite segment of mi which was enumerated already. The function computed

by mT(i,j) is the function whose graph is enumerated in this way. (A f0fma1‘
ized definition of T is given in the appendix.)

)To see that (m is indeed a recursive presentation of X weT(ia.l) i.j
consider two cases.

(i) i t A. In this case the way-out strategy is invoked regardless the

value of j. Consequently mT(i,j) is a memberof X.
(ii) i e A. Nowthere exists a value j such that for all y 2 j B(i,y)

holds. Consequently the way-out strategy is never invoked and there­

fore m = mi which function happens to be a member of X. Moreover

each memberof X is included in this way in the sequence mT(i j). U9

The next lema provides us with classes for which a way-out strategy
exists.
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LEMMA2.3.6. Let (¢fik)k be a sequence of total functions, then there exists
a total function t such that for each k, @­Jk 5 Ft.

PROOF. Take t = ma.x{/\d>jk(x) I k s x}. D

It is not hard to see that for the class of functions which are total

and almost everywhere zero, a way-out strategy can be given. Moreover, this
class is entirel included in C for sometotal t . From this we conclude:

Y to 0

COROLLARY2.3.7. For sufficiently large t the classes C: are recursively
presentable. The same holds for the classes CEprovided E is recursively
presentable.

(The second part follows since Ct 5 CE; hence a way-out strategy for Ct is
one for C: also.)

For honesty classes the enumerability construction yields in fact the
so-called "equivalence between honest and measured sets" (cf. chapter 2.1).

THEOREM2.3.8. (=2.l.5). Let R be total. Then HRis presented by a measured
set of programs. Conversely each measured set is subset of an honesty class
with total name.

PROOF.Let (Ti)i be a measured set, and let 0 be a transformation such that

Y1 = wB(i). If we define the total function R by
R = Ax,y[max{}'_fY,L.(x)=y then d>O(i)(x) else 0 I 73sa:}] then clearly
(Yi)i g HR. This proves the second assertion.

To prove the first assumption we use a way-out strategy into the class
of functions with finite domain which are knownto be R-honest regardless

the size of R. This way HRis recursively presented. The problem is to pro­
duce a measured transformation which presents HR.

Define K by:

K = ).1I_,j,k,:c,y[3'_f x sj then(3'f d>7.(:r:)sk a_n_clcp1:(a:)=y then 0 else 1 lg)

elif 3zsj[<I>i(z) >k gig ¢>i(z) Sm] 0_I’

3zSx[j <z g:_n5i_<Di(z) Sa: an_d d>1.(z)>R(z,cpi(z))]' then 1

elif: d>7.(a:)SR(x,y) gn_d (.Di(.’I7)=y then 0
else 1 fi].

K is a total O-1-valued function. Since K(i,j,k,x,y) = 0 implies ¢i(x) = y
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for given i,j,k,x, there exists at most a single y such that K(i,j,k,x,y)=O.
Consequently we may interpretate K to be the decision procedure for some
measured transformation T defined by

¢%(i,j,k)(x) = uz[K(i,j,k,x,z)].

Clearly m Nowthe definition of q% (x) depends on-r(i,j,k) 5“’i°
whether x S j or not.

(i.J'.k)

If x S j we have m (x) = mi(x) provided ¢i(x) S k; otherwiseT(isjak)
(x) = m. For x S j we have ¢% = mi(x) provided the fol­¢%(i9jsk)

lowing three conditions are satisfied.
<i,j,k>‘“’

(i) ¢i(x) S R(x,mi(x)) i.e. mi is R-honest at x.
(ii) It is impossible to detect a violation k < ¢i(y) S x for O S y S j.
(iii) It is impossible to detect a violation R(y,mi(y)) < ¢i(y) S x for

J'<y<x­

If one of the conditions is violated, mT(i (x) = W. Clearly theJ',k)
conditions (ii) and (iii) once violated for xo remain violated for all
larger x. Consequently m is a finite function unlessT(i9jak)

(*) for x S j, ¢i(x) = w or mi(x) S k and

<**> for j < x, ¢i<x> < R(x.wi(x)).

Validity of (*) and (**) implies that mi is R-honest. Conversely for R­
honest mi, parameters j and k can be selected such that (*) and (**) are
satisfied. In this case m mi. This shows that indeed HRis recur­'r(i,j,k) =
sively presented by T. U

Next we consider non-enumerable classes.

DEFINITION2.3.9. Let G be a transformation. If the sequence (wi)i defined

by wi = ¢%(i) is an effective enumeration then the pair of sequences
((wi)i,(Wi)i) = Wwith Wi = ¢6(i) is called a sub-measure of the measure
((<oi)i,(<1>i)i) =<:>. Notation w E <1:(by 0).

THEOREM2.3.10. Let o be some measure. Then for sufficiently large t, a sub­
. W . .

measure Wg m can be defined such that Ct is not recursively presentable.

. . W . .

(The super-index Win Ct refers to the measure relative to which the class
is defined.)
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1-complete set. We
define a transformation p by

¢b(i)(x) ==§i:¢i(i) S x then loop else i ii.

Consequently¢b( is total if wi(i) diverges; otherwise Dwb(i) is finite.1)

Since x e Dmb(i)if: ¢i(i) >x, there exists a total function t satisfying:0

Vi$x[x E Dwb(i) =»¢p(i)(x) S t0(x)].

Assumethat t is a total function, t 2 to.
By the inefficiency lemmaone constructs a transformation T such that

= wi and A¢T(i) > t. we now define our sub-measure Wby defining o.
Let o = Ai[2i:even i then T(i%2) else p(i%2) ii}; then (QT

“’r(i)
(i))i con­

sists of all programs mo and w(i) T(i)'
It is not difficult to prove that the sequence (wO(i))i is indeed an

effective enumeration. However, by the choice of T the class Ft only con­

tains programswb(i); in particular one has:

F” = up . | 1 e ]N\ halts}.t 0(1)

Consequently C: = {Ax[k] I k 6 DJ\ halts}.

Assumethat C: is recursively presented by n:

W

{Am I i 6 IN} = Ct.n(i)

Then also

{q)n(i)(O) | 1 e ]N} = ]N\ halts.

This is a contradiction since EJ\ halts is knownnot to be recursively
enumerable. D

In his thesis [Ba 70] L. BASSproves that for sufficiently large total

t the classes C: are not recursively presentable provided E contains an in­
finite set. Seeminglythis contradicts our earlier result for recursively
presentable E. Howeverthere is no contradiction since the classes consi­
dered by L. BASSconsist of total functions only.
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PROPOSITION2.3.1]. If the recursively presentable class of sets of excep­
tional points E contains an infinite set E then there exists for suffi­

ciently large t no recursive presentation for Ct n R.

PROOF.Writing "x e E" for "g(x) = 0" where g is the characteristic func­
tion for E, we define the transformation T by:

£DT(7:)(a:)-- fix e E then cpi(x) else 0 fl.

Let to be defined by:

t0 = Ax[§i:x e E then 0 else max{¢T(i)(x) I i S x} ii].

Nowfor t 2 t one has ¢% 5 FE, Let n be a recursive presentationE 0 (i)
of Ct n R. Define a function n so that

n(x)=3'fx&Ethen0
elifa: = 0 then 1
else uz S x[Vy<x[n(y) < z]]
ft.

So for x e E , n(x) = # [0,x] 0 E­

Define f = wk by f = Axflgf x 6 E then ¢%(n(x))(x)+l else 0 fig]. Since

(0 = q%(k), f 6 Ct. Moreover, f is total. Howeverby considering thek

m-th element of E one finds that f 1 ¢H . Consequently f é {¢H(i) Ii.e]NL(In)
This completes the proof. D

Clearly this proof collapses if we try to diagonalize over a presen­

tation for the complete set CE.
An analogous contradiction for ordinary classes does not arise. The

classes Ct n R are recursively presentable for sufficiently large total t.
The proof is based on our enumeration technique, using a way-out strategy
into the set of total functions which are almost everywhere zero, using
moreover an extra test against divergence on an initial segment.
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CHAPTER2.4.

SET THEORETICAL PROPERTIES OF RESOURCE-BOUND CLASSES

2.4.1. CLOSURE PROPERTIES OF RESOURCE-BOUNDCLASSES

Resource-bound classes are sets of programs or functions, and conse­
quently their behaviour under set theoretical operations and relations has
received the attention of several investigators.

To conclude our survey on the knowntheory of resource-bound classes
wemention a numberof results relating these set theoretical properties of
resource-bound classes. Proofs in this chapter are omitted. They can be
found in the literature referenced to, and also in the more extended ver­
sion of this chapter in [EB74]. Werestrict outself to complexity and hon­
esty classes.

FINITE INTERSECTION

It is clear from the definition that resource-bound classes of pro­
grams are closed under finite intersection, provided the namesare total.

For example the set Ft n Fu = Fv where v = Ax[flE§jt(x),u(x))]. If t and u
are partial functions v still is a "name" for Ft n Fu. Howeverv need not
be recursive.

This problem is solved by replacing t and u by names from a fixed

measured set (this is possible by the naming theorem). The minimumof two

measured functions is again measured and hence a recursive function.
For honesty classes we have the same problem. However, we no longer

can apply the naming theorem since this theorem is invalid for honesty
classes (cf. 3.4.2). Still the intersection of twohonesty classes having
partial names can be shown to be an honesty class. Wewill give the proof
in 3.4.5.

The theory on classes of functions is uninteresting. By specific exam­
ples one showsthat for specific measures the intersection of certain spe­
cific complexity or honesty classes is not again such a class.

There are no knownresults indicating whether this is a pathological
behaviour at the bottom of the hierarchy or whether this behaviour occurs
"generically".
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FINITE UNION

Neither the classes of programs nor the classes of functions are
closed under finite union. A theorem by E.M. McCREIGHT[MC69] shows that

for sufficiently large total t a total function t' can be constructed such

that Ct U Ct, is not a complexity class. The same result then follows for
the classes Ft.

Bya non-trivial modification an analogous result can be proved for
honesty classes. The difficulty is to find total R and R' such that

HRU HR, is not an honesty class. If R and R‘ are partial an easy example
is given by R = Xx,y[£f x=O then Zoop else 0 ii] and

R'==Ax,y[§i:x=l then Zoop else 0 ii]. Under this assumption HR (HR,) con­
tains arbitrary expensive 0-w (1-w) valued functions, but no non-trivial
0-1-w valued function is included in their union. Proofs are given in
[EB 74].

INTERSECTION OF A DECREASING CHAIN

For both classes of functions and programs the results are negative.
For complexity classes of programs an example of a decreasing chain of
classes such that the intersection is not a class has been given by
E.L. ROBERTSON[Rb 71]. His example can be translated to give an example

for honesty classes as well.
The result for classes of functions which is based upon the speed-up

theorem is due to L.J. BASS[Ba 70]. His proof can be generalized for hon­
esty classes, but one uses essentially the presence of partial functions
in a honesty class. (See [EB74]).

UNION OF AN INCREASING CHAIN

This is the only set theoretical closure property for which the re­
sults are positive.

By the union theorem of E.M. McCREIGHT[MC69], the union of a se­

quence Cti (Fti) with total names ti such that ti S ti+l is again a com­
plexity class.

In part 3 this theorem is proved together with a numberof general­

izations. First we showthat the names (ti)i maybe partial as well,
supposed the relation ti 5 t. includes the domaincondition Uti 3 Dti+1+1 1'
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Moreover the condition on the names may be replaced by the condition

"Fti 5 Fti+ " on the classes Fti themselves. (This latter generalization
does not hold for the classes of functions.)

For honesty classes we have some weaker results. The union theorem

holds, provided (Ri)i is an increasing sequence. The theorem holds also if

(Ri)i is a total sequence such that GRi g GRi+]. It is unknownwhether this
last assertion holds also for partial (Ri)i. An implicit connection between
the union theorem and the namingtheorem is responsible for these weaker results.

Investigation whether the union theorem holds also for the classes CE
shows that this depends on whether the class E is recursively presentable
or not. If E is recursively presentable the theorem holds, as will be de­
rived from our abstract approach in Part 2. For non-recursively presentable
E there exists a counterexample. Cf. [Ba 70].

2.4.2. EMBEDDINGTHEOREMS

A partial order R on H1 is an antisymmetric and transitive relation on
DL It is called recursive provided the relation xRy is recursive.

Let S be a partial order on someset X and let f be a (partial) func­
tion from D! into X. Wesay that a partial order R on El is embedfled in

(X,S,f) by g provided R8 E Df gag ;(g(x))£3f(g(y)) iij:xRy. The embedding
is called effective if g is a recursive function.

The triple (X,S,f) is called a universal partial order provided any
recursive partial order R on El can be embeddedeffectively into it.

Abstract complexity theory has yielded several universal partial or­
ders.

The simplest example is described as follows:
Let X be the system of all complexity classes, ordered by inclusion. f maps

the integer j onto the class with name¢3. Then (X,g,f) is universal.
This result is essentially due to E.M. McCREIGHT[MC69]. He describes

the construction in a context where he proves the existence of uncountably
manydifferent complexity classes (with non-recursive names).

A more interesting universal partial order is the following. For Xwe
take the set R of total recursive functions, and for f we take the mapA.
A partial order on R is defined as follows. Wesay that f is cheaper than
g provided some program for f is faster almost everywhere than each program

for g. Notation f cheap g.
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More formally:

f cheap g gfif 3i[f = Auk gEg.A¢i ncogp g].

An analogous relation cheagg is defined by

f cheggv g 3i[f = AgpiE Adbinc0mE1_Jg].

The embedding theorem by E.M. MCCREIGHT[MC69] states that (R,cheapv,A) is

universal (from this the universality of (X,g,f) becomesa corollary.)
This result has been strengthened by D. ALTON[Al 73] and R. MOLL

[Mo73] who have shown that the "representing functions" may be separated by

large "gaps". For a total effective operator P one defines a relation RF
by:

f RI, g 3'3: 3i[f = Anpigig 1*(/xoi) ncomp g].

The generalized embeddingtheorem states that the triple (R,RP,A)
still is universal in the sense that each partial order can be embeddedin­
to it.

For honesty classes only the order by inclusion makes sense. It is al­
most trivial that this yields a universal partial order.

At this place we should mention an interesting degeneracy of the com­
plexity classes modulosets of exceptional points. The definition of a
class of sets of exceptional points is more or less dual to the definition
of a free filter in set theory. Following this idea we mayconsider a free
ultrafilter F on B9. For E we take the class of all recursive complements
of membersof F. It is not hard to prove that E is a class of sets of ex­
ceptional points, which has the property that for each covering of Hi by
two disjoint recursive sets A and B, either A e E or B e E.

This has the strange consequence that each pair of classes CEand CE
is inclusion-comparable, provided their namesare total. Consequently the
complexity classes modE with total names are linearly ordered by inclu­
sion!



PART 3

ABSTRACT RESOURCE-BOUND CLASSES

{If Weopened for the unbelievers a gate in
heaven and they ascended through it higher and
higher, still they would say: "Our eyes were
dazzled: truly, we must have been bew1Itched".

Koran 15, ed. 1V.J. Dawood}
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CHAPTER3.].

ACCEPTANCE RELATIONS

3.1.]. INTRODUCTION

The concept of a complexity class of recursive functions has proved
to be a useful tool in the theory of recursive functions. It has been used
to define newhierarchies of classes of recursive functions and it has

given a new understanding of other hierarchies which were defined previously
by other means.

Furthermore the system of complexity classes has interesting properties
on its own. The most important of these were formulated in Part 2 of this
treatise. In particular, the compression theorems, gap theorems as well as
the union and naming theorem should be mentioned.

The above theorems can be divided into two classes. In the first place
we have those theorems which use in their proof a diagonalization construc­
tion. The compression theorems are examples of this type of result. Also
the speed-up theorems (which are not theorems on complexity classes) can be

considered to be of this type. Wealways use the finiteness of a run-time

¢i(x) in the construction of somefunction f to make f and mi different by
defining f(x) = wi(x)+-1. This means that we use the first Blumaxiom.

In the second place we have theorems which only use the system of run­

times (¢i)i as well as the fact that these run-times form a measured set.
The gap theorems and the union and naming theorems are theorems of this
second type. The proofs do not use the first Blumaxiom, and consequently

no program mi is ever computed. What is used is the fact that the relation
¢i(x) 5 z is decidable.

In Part 2 of this treatise we discussed the honesty classes as an al­
ternative way to define subrecursive hierarchies. Westated that the gap
theorems and the union theorem were true for honesty classes, but the
proofs were not given.

Our motivation is that these theorems should be proved in an abstract
formulation from which one derives them for complexity classes, honesty
classes and lots of other types of similar classes at the same time.

The present part of this treatise discusses the above mentioned ab­
straction. The concept of an acceptance relation which is formally intro­
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duced in 3.1.3 is an abstraction from the fact that for the run-times (¢i)i
the relation ¢i(x) S y is decidable (i.e. the property of a measured set).

As we shall see in 3.1.4 this acceptance relation remains equivalent
to somemeasured set of generalized "run-times". Howeverthe two-valued

logic of the relation ¢i(x) S y is replaced by a "three-valued logic" of
the acceptance relation as result of the introduction of the "truth-value"
void which represents the answer "does not apply".

Although for both complexity classes and honesty classes an underlying
acceptance relation can be defined, there remains a difference in the way
the acceptance relation "bounds" the classes. In 3.1.2 we analyze the con­
cept of an honesty class and we arive at the conclusion that honesty
classes need some "alternative way of bounding" which we shall call weak
restriction constrasting the strong restriction used in the definition of a
complexity class.

This notion of weakrestriction forms the justification for intro­
ducing the acceptance relation. In the case of strong restriction, false
and2gié_are identified, but for weakrestriction their difference is cru­
cial.

In general the proof of a theorem on strongly restricted classes is a
straightforward translation of the proof given for the corresponding theo­
remon complexity classes in the literature. For the weakly restricted
classes we use sometricks, varying from a "one-stage look-ahead" in the
proof of the operator-gap theorem to a "two-phased test on violations" in
the proof of the union theorem.

A surprising difference between strong and weak classes is the non­
existence of a naming theorem for weak classes. This negative result is the
main theoremof this treatise.

The remaining sections of chapter 3.1 contain the definitions of ab­
stract resource-bound classes, and a number of examples. Furthermore chap­
ter 3.2 gives the proofs of the gap theorems. In chapter 3.3 we present two
independent generalizations of the union theorem. Chapter 3.4 contains the
discussion of the naming theorem, the negative result announced above and
somerelated topics.

Throughout this part of the present treatise programs and algorithms
are defined informally. In the appendix the reader will find a numberof
formalized descriptions, using the programminglanguage introduced in Part
1, of some of the more complicated algorithms discussed in the text. This
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way the author hopes to separate the essential features of the designs of
these algorithms from the inessential particularities of someimplementa­
tion.

3.1.2. THE HONESTY CONDITION AS A THREE-VALUED PREDICATE

The definition of a complexity class of programs Ft can be given as

(pi 5 Ft ifif $x[¢i(x) S t(x)]

where we use the following interpretation in case one or two sides of the
inequality diverge.

The value t(x) should be considered to be a test-value. If the compu­
tation of t(x) diverges we have no testvalue and hence no test. This means

that in testing the program mi no test is performed for the argument x.
The formula given above should therefore read:

mi 6 Ft ifif §x[x 5 Pt £g2_¢i(x) 5 t(x)].

If t(x) converges and yields a value z we recall that ¢i(x) 5 z stands
for the finite disjunction:

<Di(x) = 0 0_I'<I>i(x)= 193 g§<I>i(x) = z

which can be tested componentwise. In this interpretation ¢i(x) S z is
fgE§§_whenever¢i(x) diverges.

There is a difference with the case where¢i(x) is finite but greater
than z. If z < ¢i(x) < w then ¢i(x) s z' will become§3gg_for a suffi­
ciently large z'. If, however,¢i(x) diverges then ¢i(x) 5 z‘ will never be
frag no matter howlarge z' is chosen.

The reader should keep this artifical distinction in mindwhile read­
ing the sequel of this section.

In Part 2 we used a definition of an honesty class which can be for­
mulated to read:

¢&is R-honest if it satisfies the R-honesty condition ¢i(x) S R(x,¢i(x))
for almost all x
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and

the honesty class H is the set of all recursive functions computedby anR

R-honest program.

The honesty condition ¢i(x) S R(x,mi(x)) is an implicit condition.
Since mi(x) occurs at the right-hand side, one must first computemi(x) to
see whether mi is honest at x or not.

In trying to "localise" the honesty condition we can consider the fol­
lowing equivalent interpretations:

(i) [Global]. Enumerate the graph of mi and for each pair <x,mi(x)> enu­
merated, compute R(x,mi(x)). If this converges (R is not assumed to
be total) test whether ¢i(x) S R(x,mi(x)). If the answer is no we
have found a violation. The numberof violations detected has to be
finite.

(ii) [Argumentwise]. Computemi(x) and if this converges compute
R(x,mi(x)). If this also converges, test whether ¢i(x) S R(x,mi(x)).
If the answer is no then mi is not R-honest at x. The number of ar­
guments x at which mi is not R-honest should be finite.

Both interpretations have the disadvantage that they invite us to exe­
cute infinite computations, which do not contribute any negative evidence.
Furthermore we cannot isolate the bound function R from the honesty condi­
tion. Therefore, we still localize further; this obviates the seconddis­
advantage mentioned above, but does not solve the first disadvantage.

(iii) [Local]. Wesay that mi satisfies the honesty condition with value z
at the argument-pair <x,y> if ¢i(x) S z_and mi(x) = y.
Wesay that mi violates the honesty condition with value z at the ar­
gument-pair <x,y> if ¢i(x) > z and mi(x) = y.
In 311 Other Cases (¢i(X) = "_g§ @i(X) 1 y) we say that the honesty
condition with value z at the argument pair <x,y> does not apply to

Wi­

mi should violate the honesty condition with value R(x,y) at the ar­
gument-pair <x,y> for at most finitely manypairs <x,y>.

In this local interpretation we have isolated the function R from the
honesty condition. The price we have to pay is the introduction of a third
answer "the honesty condition does not apply". This, however, is not un­
reasonable.
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The happenstance that R(x,y) = 0 has no influence on R-honesty of mi
at x if wi(x) happens to be distinct from y. Also, if wi(x) diverges then
mi is R-honest at x, regardless the values of R(x,y).

The computational situation is more complicated. Wecan test recur­

sively whether mi satisfies an honesty condition with value z at <x,y>. To
do so, we first test whether ¢i(x) S z; if this is not the case then mi
violates the honesty condition at <x,y>, or the honesty condition does not

apply. If ¢i(x) 5 z we compute wi(x) and if the answer is y then mi satis­
fies the honesty condition; otherwise the honesty condition does not apply.

After having decided that mi does not satisfy the honesty condition
with value z at <x,y>, the situation is more complicated. Nowwe must com­

pute wi(x) to decide whether the condition was violated, or whether the
condition did not apply. Again the danger of an infinite computation arises.

To give an overview of the formal properties of the three­

valued predicate which is suggested above, we write §onfli,x,y,z) for "the

honesty condition with value z applied to mi at the argument-pair <x,y>".
The possible outcomesare: "is satisfied", "is violated" and "does not ap­
ply ­

Wehave the following properties:

(a) If z‘ > z and §on(i,x,y,z) is satisfied then §on(i,x,y,z') is also sat­
isfied.

(b) If §gnfii,x,y,z) does not apply then §9nfli,x,y,z') does not apply for
all z'.

(c) If fl2n(i,x,y,z) is violated then there exists a z' > z so that
§gE(i,x,y,z') is satisfied.

(d) The quadruples <i,x,y,z> for which§gnfii,x,y,z) is satisfied form a re­
cursive set.

(e) The quadruples <i,x,y,z> for which §2Efli,x,y,z) is violated form a re­
recursively enumerable set.

The properties (a) to (e) represent in fact everything we use about
the honesty relation in the proofs of the union and gap theorems. They play
a role similar to that of the fact that the run-times of programs form a
measured set in the theory of complexity classes. Furthermore (e) can be
derived from (a) uo(d), and (b) and (c) can be formulated in a weaker way.
In such a weaker formulation the properties described above will be used
as axioms for the concept of an acceptance relation in 3.1.3.
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Below, we give an interpretation which shows that a similar three­
valued predicate can be defined to represent a complexity condition.

Let Cpl be defined by:

is satisfied if ¢i(x) s z

Cpl(i,x,z) = is violated if z < ¢i(x) < w

does not apply if ¢i(x) diverges.

NowEpl has the same formal properties (a) ... (e) as §9n_had before.
However,in our interpretation of complexity classes at the beginning of
this section, we have treated the two cases "is violated" and "does not ap­
ply" as being the same.

This identification is in fact the crucial difference betweenthe defi­
nition of a complexity class and the definition of an honesty class. The
difference is not the three-valuedness of the underlying relation but the
way the classes are defined in terms of this three-valued predicate.

In order to be a memberof the complexity class of programs Ft the pro­

grammi should satisfy for almost all x 6 Pt the condition §plfli,x,t(x)).
This type of restriction could be called strong restriction.

In order to be an R-honest program, the program mi should violate the
condition §gnfli,x,y,R(x,y)) for at most finitely manypairs <x,y> in DR.
This type of restriction could be called weakrestriction.

The notions suggested above will be defined formally in the next sec­
tion.

Although we give lots of other examples, the complexity classes and
the honesty classes can be considered to be the "categorical" examples. The
honesty classes however have the disadvantage of having two-dimensional
names. we have available however another example of weakly restricted
classes; the weak complexity classes. These classes were defined by taking

the relation §pl_defined above and applying weakrestriction.
The strongly restricted classes behave in manyaspects similarly to

the complexity classes. The whole theory would becomeuninteresting if this
were the same for weakly restricted classes too. There are however a num­
ber of differences, the most remarkable being the absence of a naming theo­
remfor weakly restricted classes.
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3.1.3. FORMAL DEFINITIONS AND EXAMPLES OF ABSTRACT RESOURCE-BOUND CLASSES

DEFINITION3.1.1. Anacceptance relation A is a set-theoretical total func­
tion with three number arguments (say i, x, and z) and values in the three­

element set {true,f@Zse,v0id} which satisfies the following axioms:

Al, Monotonicity: If z < z then

(Ma)Afi,mz)=tmw2mpACgx¢')=tmw
(Alb) A(i,x,z) voidvoid §flE_A(i,x,z')
furthermore

(Alc) A(i,x,z) [else ggp 3z'[A(i,x,z') = true]

Ag, Computability

(A2) The predicate A(i,x,z) = true is recursive in i, x, and z.

REMARK3.1.2. One should visualize the arguments i, x and z as playing the

role of "index", "argument" and "testvalue". Weshall have examples where i
or x encode more information than does the index of a program or some argu­

ment of a computation.

REMARK3.1.3. In the next section we shall prove that the concept of an ac­
ceptance relation is recursively equivalent to the concept of a measured
set, which is in fact the content of the second Blumaxiom. For future use

one could think of a third axiom, expressing the fact that A(i,x,z) is true
forces a computation to terminate. Up to now we have no reasonable candi­
date for this axiom, and since we don't need it we Omit it.

DEFINITION3.1.4. Let A be an acceptance relation, and let t be a partial
recursive function. The set cf‘indice8 strongly A-restricted by t, denoted

F§(t) is defined by

FA . w . .S(t) = {1 I Vx[t(x) < oo3m_EA(1,x,t(x)) = tI'ue]}.

The set of indices weakly A-restricted by t, denoted F$(t) is defined by

F3(:;) = {i | $x[c(x) < as3r_rp_A(1,x,c(x)) z faZse]}.

CONVENTION3.1.5. The notations introduced above are subjected to the fol­

lowing rules of simplification:
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If the acceptance relation intended is clear from the context or if

this relation is otherwise irrelevant wewrite FS(t) (Fw(t)) instead of
A

Fgm <Fw<t>>.
If it is clear from the context that we have a strongly restricted

class we write F(t) (FA(t)) instead of FS(t) (F§(t)).

The index as such in general has no "physical meaning”. However, in

most of the examples i encodes some program and this program again computes

somefunction. This means that the sets of indices defined above represent
sets of programs and functions as well.

This encoding is formalized in our next convention.

CONVENTION3.1.6. If the index i of an acceptance relation encodes a pro­

gram then this program is denoted by grog i. If the index represents a
function this function is denoted by fun i. If grog is defined we have al­
ways fyn i = A(grog i).

In our examples we either have grog i = mi or grog i = wnli. In the
first case we usually use the word program instead of index.

The sets of programs and functions corresponding to the sets of in­
dices defined above are the following:

DEFINITION3.1.7. Let A be an acceptance relation for which grog and/or fun
are defined. Then we have the following sets of programs (functions)

G§<t>

H§<t>

G$(t) = {grog i I i e F$(t)} set of programs weakly A-restricted by t

. . A .

{grog 1 I 1 e FS(t)} set of programs strongly A—restr1cted by t

{fun i I i e F§(t)} set of functions strongly A-restricted by t

H$(t) {fgg_ i | i e F3(t)} set of functions weakly A-restricted by t.

Convention 3.1.5 extends to these classes as well:

CONVENTION3.1.8. If the acceptance relation A is clear from the context we

suppress the occurrence of the symbol A in the above notations. Furthermore,
the symbol3 can be deleted if it is clear from the context that the classes
are strongly restricted.

All the classes defined in 3.1.4 and 3.1.7 together are called
Abstract Resource-Bound Classes. Weuse the abbreviation ARBCfor abstract
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resource-bound class. Wealso speak of strong classes (weak classes) in­
stead of strongly restricted classes (weaklyrestricted classes).

The following definition introduces a technical term which is used
frequently in our discussions.

DEFINITION3.1.9. Let A be an acceptance relation and let t be a function.

Let i be an index and let x be an argument. A strong violation by i at x
against t occurs if A(i,x,t(x)) is defined and A(i,x,t(x)) 1 true. Aweak
violation by i at x against t occurs if A(i,x,t(x)) is defined and
A(i,x,t(x)) = false.

The violations introduced above can be grouped together to form the
violations by a given index, c.q. the violations at a certain argumentetc..
The words "weak" and "strong" are used in an unnatural way. A weak viola­
tion is also a strong violation but conversely a strong violation is not
necessarily also a weakviolation. This peculiar use of the words "strong"
and "weak" is motivated by the fact that an index i is contained in a
strong (weak) class provided that there exist only finitely manystrong
(weak)violations by i against t.

Wenow give a number of examples of old and new classes which are ab­
stract resource-bound classes.

EXAMPLE3.1.10. Let Cpl be defined by

true iff<Di(x) S z

Cpl(i,x,z) = false z < <Di(x)< co

void <I>i(x)= 0°.

This acceptance relation can be called the complexity condition. Wehave

grog i = mi. Werecognize the following complexity classes

C = HgpZ(t) and F = Q§pZ(t).t t

Furthermore, there are the weakly Cpl-restricted classes, which were de­
fined in part 2 as a particular type of honesty classes;

c‘: = H5pZ(t) and F‘: = G5pZ(t)
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These weak complexity classes form an unnatural alternative for the
usual complexity classes. To be in a weak complexity class a program must
either be cheap to compute or otherwise the program must diverge. This
could be the interpretation of "bounding" from someonewho only has to pay
for terminating computations. If the program loops forever (and is termi­
nated abnormally by the operator) the computing centre pays. It is clear
that this is not a realistic interpretation.

EXAMPLE3.1.11. Let Hon be defined by

true zflf<Di(n]x) s z and mi(n1x) = n2x
ll :1 >4H0n(i,x,z) = false <Di(1Tlx)> z gn_d<I>i(nlx)
ll 8void iff<pi(n1x) ¢ nzx 9r_¢i(nlx) .

This acceptance relation is the honesty condition which was discussed in

section 3.1.2. The honesty classes are now given by HR= H3On(r) and
G = GgonR (r) where r(<x,y>) = R(x,y). Wehave again grog i = w..1

EXAMPLE3.1.12. Let (Yi)i be a measured set of functions. Wedefine a cor­
responding acceptance relation P by:

true ifif Yi(x) 5 z

F(i,x,z) = faZse_g££ z < Yi(x) < m

void Yi(x) = 0°

In this example grog is not defined. One can define fun by putting

fan i = Yi, but this does not correspond to the special case that (Yi)i is
the measured set of the run-times of the programs (¢i)i, in which case P
and Cpl become the same acceptance relation.

The example of a measured set can be used in several situations to
construct examples without having to extend the measured set to a complete
system of run-times (by making all other programs muchmore expensive).

EXAMPLE3.1.13. Let E = (Ei)i be a recursive presentable class of sets of
exceptional points (cf. [Ba 70],[BY 71] and also Part 2). The acceptance
relation Cplex is defined by:
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true if: x E Enzi or ¢nli(x) S z

CpZex(i,x,z) = false ifif x & Enzi and z < ®n]i(x) < w

void ifiix & E" i and Q“ i(x) = w.
2 1

In this example grog is defined by grog i = wnli.
The definition of the complexity classes modulo the class of sets of excep­
tional points E can be given as

E = HCpZex(t) E _ Cplex
t 3 F -G (t).t SC and

In this example we have encoded the sets of exceptional points in the
index of the program. In his thesis [Ba 70] BASSuses a similar trick in

the proofs of the union and naming theorem for the classes CEwith recur­
sively presentable E. He encodes the sets of exceptional points in the pri­
ority numbers featuring in the algorithms used in these proofs.

The honesty condition maybe relativized modulo sets of exceptional
points in the same way.

EXAMPLE3.1.14. Let E be as above. We define Honex by:

true iff nlx e En2i_o£ (<Dn1i(TI]x)S2 and Lpn]i(n1x)=n2x)

Honex(i,x,z) = fialse n]x&En2iand <Dn]i(n]x)>zandgon i(nlx) =n2x-——' _-—' I

void otherwise.

Again define grog by grog i = wnli and let r(<x,y>) = R(x,y). Nowwe can
introduce the honesty classes modulosets of exceptional points

HE = H$°"e‘”(r) and CE = G$°"e""(r).

EXAMPLE3.1.15. Let Sopl be the acceptance relation defined by:

223. iii ,4; <=>i<>'>S 2

SopZ(i,x,z) = false i z < yéx ¢i(x) < w
void otherwise.
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Define grog i = mi. The strong classes corresponding to this acceptance re­
lation may be called the summedcomplexity classes.

_ Sopl

Note that the membersof SCt are total functions, whenever Dt is in­
finite. In this way, the condition of totality which is enforced by many
authors, holds automatically.

There is an element of arbitrariness in this definition. If a program
has long run-times in its initial segment it can be thrown out of the sum­
medcomplexity class, although its asymptotic behaviour is excellent. This
imperfection is eliminated in our next alternative definition of a sumed
complexity class.

EXAMPLE3.1.16. Let Scpll be defined by:

true ifif YE ¢n i(y) 5 z-+n i‘___' 1gx 2

Scpl1(i,x,z) = fplse i z-+n2i < yéx ¢n‘i(y) < m
void otherwise.

Wedefine grog by grog i = wnli. Nowthe sumed complexity class
SClt = H§cpZ1(t) no longer carries the disadvantage mentioned above.

EXAMLE3.1.17. A type of classes which goes still further in the direction
of the total complexity introduced by J.A. FELDMANand P.C. SHIELDS[FS 72]

can be defined if we replace the initial segments of E1 by the system of
finite sets.

Let (Dx)x be a fixed enumeration of all finite subsets of DL Then define
the acceptance relation Tepl by:

me. 2:: YEDX¢,<v> s z

Tcpl(i,x,z) = fialse.g££ z < YED ¢i(y) < wx
void otherwise.

Again grog i = Lpi. For each function 1: Pf(]N) + ]N we define CT1=HgcpZ(m)

where m(x) = 1(Dx). CT1 can be called a total complexity class. Again, a
modification like example3.1.16 is possible.
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After this list of examples (which could easily be extended) we con­
sider the totality of the functions and programs in our classes. In almost
all examples the classes defined above contain partial functions or pro­
grams, even if the names are total. Manyauthors have restricted themselves
in the study of complexity classes to total functions and programs, and
have enforced different types of domainconditions in the definitions of
classes with partial names.

Wehave not considered such extra domain conditions since it is clear

that the classes defined using these conditions becomemore complex in the
sense of the arithmetical hierarchy. Furthermore, for a numberof theorems
the restriction to total programsand functions does not influence the re­
sults. If a theorem states two classes to be equal, then these classes will
also contain the sametotal functions.

If we restrict ourselves to total functions and programsthe differ­
ence between strong and weak complexity classes disappears: For each par­
tial function t we have:

and a similar equality holds for the classes of programs.

It is useful to consider at several occasions abstract resource-bound

classes consisting of functions having more than one argument. The number
of arguments (if greater than one) appears as an extra index in the nota­
tions. For example:

C: is the complexity class of all two-variable functions computedalmost
everywhere (i.e. for all pairs <x,y> with finitely manyexceptions) within
R(x,y) steps.

Using these extended notations we can formulate a relation between honest
sets and weak complexity classes of semicharacteristic functions.

If f is a (partial) function then the semicharacteristic function of
the graph of f, denoted sag f, is the function defined by:

§gg_f I Ax,y[§I:fYx) = y then 0 else wfjj.

Let T be a transformation of programs satisfying ¢€(i) = sag mi. Wemay as­
sume (after modification of the measure) that we also have



102

2 . .

®T(i)(x,y) = 3i:¢k(x) = y then ¢i(x) else w£3.

ASSERTION3.1.18. Under the above assumptions GR Sm Ffiw by T.

PROOF. We have

mi 6 GR£i1:§<X,y>[®i(x) x y_Q§ ¢i(x) s R(x,y)]

3:: $<x.y>[«of(i)<x,y> = asg ¢f(i)<x.y> s R<x,y>1

§iI:¢€(i) 6 Ffiw. D

In general there only exists a total function K so that

=yEm SK(XaYa¢i(X))]­
This only yields the implication

6 G i 2 e F W
‘"1 R—”’B“’—r<i> xx,yn<<x.y.R<x.y>>1 ’

the converse implication not being generally true.
For the classes of programs we derive from Ass. 3.1.18:

. 2w
f 5 HR 3gp_scg f e CR .

The converse implication may be spoiled by cheap programs for sea f which
. . . . 2

are not contained in the list of special programs (wT(i))i.

3.1.4. BASIC PROPERTIES OF ACCEPTANCERELATIONS.

The following lema lists the essential properties of an acceptance
relation.

LEMMA3.1.19. Let A be an acceptance relation. Then we have:

(a) A(i,x,z)
(b) A(i,x,z)

(c) A(i,x,z) = 2gié_£flE Vw[A(i,x,w) = 292g]
(d) A(i,x,z) = f§£§§_g§é A(i,x,z') = §§g§_£fl2_z < z'

fplse gag z' < 2 Egg A(i,x,z') = {@139

void an_d 2' < z _7l_m2A(i,x,z') = void
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(e) §9§flA(i,x,z) = fg£§e_g§é A(i,x,z') = ggzé)
§2t(A(i,x,z) = true_g§é A(i,x,z') = ggié)

(f) A(i,x,O) = 2g£é_gr uz[A(i,x,z) = true] < m
(g) the triplets <i,x,z> with A(i,x,z) = igE§e_forma recursively enumera­

ble set.

PROOF.(a) to (e) are evident from the definitions.

(f) If A(i,x,O) = true then the u-operator yields 0. If A(i,x,0) = false
then there exists a {J for which A(i,x,w) becomes true and consequent­
ly the u-operator yields a finite value.

(g) By (Alc) and (c) we have

A(i,x,z) = false ££f_A(i,x,z) 1 true ggé 3w[A(i,x,w) = true].

The right-hand side clearly is a recursively enumerablepredicate. U

PROPOSITION3.1.20. Let A be an acceptance relation. Define the functions

(ai)i by:

ai(x) = uz[A(i,x,z) = true].

Then (ai)i is a measured set.

PROOF.The following equivalence is true:

ai(x) = y iff A(i,x,y) = true and (y==O9r_A(i,x,y*1):=true).

The right-hand side clearly is recursive in i, x and y. D

In example 3.1.12 we have constructed an acceptance relation from a
measured set. Nowwe have given a converse construction. It is intuitively
clear that the two constructions are inverses of each other. Weshall prove
in fact that this correspondence is a recursive equivalence between the
concepts of an acceptance relation and a measured set.

In the case of the acceptance relation Cpl the measured set defined
above is again the set of the run-times of the programs in the underlying
complexity measure. This fact inspires the following definition:
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DEFINITION3.1.21. Let A be an acceptance relation. Let the sequence (a?)i
be defined by a?(x) = uz[A(i,x,z) = true]. Then a?(x) is called the A-run­
time of index i at argument x. The function ai is called the A-run-time of
index i and the measured set (a?)i is called the set of A-run-times.

By convention the symbolA is not written if the acceptance relation

intended is clear from the context or otherwise irrelevant. If Q§9Q_i= mi
the run-time of index i is also called the run-time of the program ¢&. This
definition allows us to discuss abstract resource-bound classes within the
language of complexity classes. One should however be careful:

The Hbn-run-time of mi at <x,y> equals ¢i(x) iff wi(x) = y, otherwise the
Hbn-run-time of mi at <x,y> is infinite. This example shows that the Hon­
run-time of w. is not the same as the " h sical" run-time of w..

1 P y 1

To describe the recursive equivalence between measured sets and accep­
tance relations we first must define which are the "indices" of an accep­
tance relation or a measured set.

A measured set (Yi)i is given by the recursive predicate P(i,x,y)
which is §3ge_if Yi(x) equals y and false otherwise. The index for a pro­
gram computing P can be considered to be an index for the measured set.*)

The acceptance relation A(i,x,z) as a three-valued function is in gen­
eral not recursive. However, the relation is determined completely by the

set of triples <i,x,z> for which A(i,x,z) ==fgge. An index for an accep­
tance relation can be considered to be the index of a program computing the

characteristic function of this set. If (oi)i is the measuredset of the
A-run-times, this is precisely an index for the recursive predicate

Gi(x) S z.
The recursive isomorphism between measured sets and acceptance rela­

tions is in fact nothing but the "equivalence" between the predicates

ai(x) 5 z and ai(x) = z.

In the sequel, let N be the set of indices of acceptance relations and
let Mbe the set of indices of measured sets, both as defined below. We

prove that N E Musing the well-known MYHILLisomorphism principle (cf.

1.4.3). By this principle it is sufficient to show N 5] Mand N S] M. In

ac) This choice is consistent with our representation of measured sets in
our algorithmic language in chapter 1-].
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fact it is even sufficient to prove that N SmM and N SmM, since both N
and Mare index sets, defined in terms of the functions computed by these

programs, and therefore we may apply the padding lema to transform many­
one reductions into one-one reductions (cf. chapter 1.5).

DEFINITION3.1.22. An index 0f'an acceptance relation j is an index of a

program wg so that:

(a) «o§’<i.x.z> = o 0_r «oJ?<i,x.z> = 1.
(i.e. A(@?)is a total characteristic function).

(b) if z < z' then m§(i,x,z) = 0 £fl2_¢€(i.X.Z') = 0­

By (b) we have also for z < z' ¢€(i,x,z') = 1 §fl2_¢§(i.X.Z) = 1­
The set of indices of acceptance relations is denoted by N.

DEFINITION3.1.23. An index of a measured set j is an index of a program

¢€ so that:

(a) w§(i,x,z) = 0 g§_w§(i,x,z) = I.
(i.e. A(w?)is a total characteristic function)

(b) <p§(i,x,z) = 0 gn_dcp§(i,x,z') = o i_r_nEz = 2'.

The set of indices of measured sets is denoted by M.

PROPOSITION 3.1.24. N E M.

PROOF.As explained above, it is sufficient to prove N SmM and M sm N.

M SmN: Define the transformation 0 by:

(i,x,z)<= if 3ySz[¢§(i,x,y) > 1] §flg§_2
§£§§_§gE_y= uvSz[w§(i,x,v) = 0];

3’.fy>z_t_he_"1

_e_Z§g1£21_tw=pvsz[v >y_c_z_n£i.'<p:.(1l,:c,v)=0];
£.fw>z£h_e£0§_Z_F£1.’L'

3

“’o(j)

.L'
E

The first clause tests both whether ¢€(i,x,y) is defined for Orsyrsz
and whether no forbidden values occur in this interval; consequently ¢b(j)
is a total characteristic function iff ¢E is one.

In the second clause it is computedwhether ¢§(i,x,y) = 0 holds for
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none, one or more than one value z S y. Only if there exists precisely a

single value z 5 y such that w§(i,x,y) = 0 one has w:(j)(i,x,y) = O. From
this, one concludes that o(j) is the index of an acceptance relation iff j

is the index of a measured set. Hence M 5m N by 0.

N SmM: Define the transformation T by:

¢€(j)(i,x,z) ==£f 3ySz[¢§(i,x,y) > 1] Eflgg2
1'5 <Dj.(7$,x,z)= 0 gr1c_i(z=0 _0_1r:q>§(7S,x,z*1)=1)mi 0

_e;z_i:U>§(i,x,z) : 1 g 2:>0 ggi cD§(7l,x,z*1)=0 fig 0
Eli 1 £2

. . . . . 3 .

(j) is a total characteristic function iff ufi is
. . . . 3 .

one. Moreover, a necessary and sufficient condition for ¢%(j)(1,X,Z) to be
Again it is clear that ufi

zero is (z=O 3:34 Lp§(i,x,z) =0) 93 (z >0 _a_rg<.p§(i,x,z) :=io3?'(1,x,z::)).
If w§(j)(i,x,z) has to be zero for at most one value of z (i and x

being fixed), there should be at most a single change of value for

w§(i,x,z); moreover this should be a change from 1 to 0 since otherwise
wT(j)(i,x,O) = 0.

Fromthis one derives that I(j) is the index of a measured set iff j

is the index of an acceptance relation, proving N SmMby T.
This completes the proof of 3.1.24. U

The conclusion of 3.1.24 could be that the concept of an acceptance
relation can be eliminated from the theory. If we were to consider only

strong classes, this is indeed the case; for strong classes false and ggié
are identified, and the measured set of the A-run-times is sufficient to
formulate everything we need. For weak classes, however, the three-valued­
ness of the acceptance relation becomescrucial, as this three-valuedness
visualizes the difference betweenthe finite-but-to-large run-time and the
infinite run-time. This provides a motivation to preserve the concept of an
acceptance relation.

Another motivation may arise by giving a third axiom as suggested in
3.1.3.
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CHAPTER 3.2.

GAP AND OPERATOR GAP

3.2.]. INTRODUCTION

In this chapter we prove the generalizations of the gap theorem of
A. BORODIN[B0 72] and the operator-gap theorem of R.L. CONSTABLE[Co 72]
for abstract resource-bound classes. These theorems can be formulated in

the following way:

THEOREM3.2.]. [Gap and operator gap]. Let A be an acceptance relation and
let P be a total effective operator, satisfying P(t) 2 t. Let R be a total
function in twovariables satisfying R(x,y) 2 y. Then there exist arbitrar­
ily large total functions t and t so that the following equalities hold:

I 2

F§<c,>

Fé(t2)

F§(RDt]); F3(t]) F$(RDt])

F§<r<c2>>; F3<t2> = F$<r(t2>>.

The main subject in this chapter is the operator-gap theorem for weak
classes. This theorem is proved by construction of a function t which sat­
isfies the conditions formulated in the lemmabelow:

LEMMA3.2.2. Let A be an acceptance relation, let P be a total effective
operator with F(t) 2 t and let f be a fixed total recursive function. Then
there exists a total recursive function t 2 f so that for each index j the
following implication holds:

§xtA<j.x.c<x)> 2 true g§é_A(j.x.P(t)(x)) = true]

implies

§xtA<j.x.P<c><x>> = false].

This is a stronger condition than the condition enforced in the proof
of the operator-gap theorem for complexity classes, where we have:
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§x[A(j,x,t(x)) x true]

implies

°§x[A(j,x,r‘(t)(x)) ==true].

The function t which is constructed in the proof of lema 3.3.2 yields
an operator-gap for both strong and weak classes. By considering the compo­
sition-gap theorem to be a special case of the operator-gap theorem, we can
derive the four possible gap theorems from the most difficult one, the
proof of which is given in this chapter. However, the old proofs of the
composition-gap theorem remain valid for weak classes.

First we prove that the gap theorems can be derived from lemma3.2.2.

PROOFof 3.2.1 (a). [Operator-gap]. Let A be an acceptance relation, and
let P be a total effective operator and let f be a total function. If
F(t) 2 t for each total recursive t then there exists a function t 2 f so
that both:

F3<c> = r3<r<t>> gag F§<c> = F§<r<c>>.

By lemma3.2.2 there exists a function t 2 f so that for each index i the
following implication holds:

§x[A(i,x,t(x)) I true and A(i,x,F(t)(x)) = true]

implies

§x[A(i,x,r(t)(x)) = false].

Nowsuppose that i e F3(F(t)) ggg i & F$(t), then we have by defini­
tion:

$&[A(i,x,r(c)(x)) 2 fplse] g§g_ §x[A(i,x,c(x)) = false]

and consequently, since A(i,x,t(x)) = false g§é'A(i,x,F(t)(x)) = void is
impossible

§x[A(i,x,t(x)) = fhlse ggg A(i,x,F(t)(x)) = true].
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By the choice of t we conclude

°a"x[A(i,x,r(c)(x)) = false]

which is a contradiction. Therefore F3(P(t» C F$(t). The converse inclusion
is trivial since P(t) 2 t.

For strong classes Fé(t) C F§(P(t)) again is trivial. If i e F§(F(t))
and i at F§(t) then we conclude

°s‘ix[A(i,x,c(x)) : t_m£] 9:4 °9x[A(i,x,r(c)(x)) = 3z_»u_e_]

hence we have again

°3°x[A(i,x,t(x)) : mi _a_n_gA(i,x,I‘(t)(x)) = tie]

which implies by the choice of t

°s‘ix[A(i,x,r(c)(x)) = false].

This is a contradiction, therefore F§(P(t)) C F§(t). This completes
the proof. U

PROOFof 3.2.] (b). [Composition-gap theorem]. Let A be an acceptance rela­
tion and let R be a total function satisfying R(x,y) 2 y. Then there exist

arbitrarily large total functions t so that both Fé(t) = F§(Rnt) and
F$(t) = F3(Rnt).

As indicated below, the old proof for the composition-gap theorem
yields a function t which satisfies the condition of lemma3.2.2. Weneed
no modifications since the composition-gap algorith is based on extension
by "local gap-sections of length one" which are automatically closed.

LEMMA3.2.3. Let A be an acceptance relation and let R be a total recursive
function with R(x,y) 2 y. Let f be a total function. Then there exists a
total function t 2 f so that for each index i the following assertion holds:

Vx>i[A(i,x,R(x,t(x))) = true Egg A(i,x,t(x)) = true].
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PROOF.First we remark that this assertion implies the condition in lemma

3.2.2. Suppose that

§x[A(i,x,R(x,t(x))) = £§Ee_ g3g_ A(i,x,t(x)) ¢ gage]

then also

§x>i[A(i,x,R(x,t(x))) = E§ge_ g§é_ A(i,x,t(x)) z EEEE]

which contradicts the above assertion. Hence in order to prove 3.2.l(b) it
is sufficient to prove 3.2.3.

The function t is constructed the following way:

Define T by the recursive definition:

T(x,k) = k=O then f(x) else R(x,T(x,k-1))+1

NowT is a total function and for each k and x one has

T(x,k) < T(x,k+l). Next we define the function n by:

n = Ax[ukSx[Vi<x[A(i,x,T(x,k)) = true g§_ A(i,x,T(x,k+1)) 1 truell].

Thus n(x) is the lowest value of k so that none of the x run-times ai(x)
with i < x is contained within the interval (T(x,k),T(x,k+l)]. Since these
intervals are disjoint for different k there exists a numbern(x) S x with
this property.

Nowt = Tan is a total function with the property asked for by the
lemma. U U

Although our gap theorems are formulated in terms of classes of indices
it is clear that they hold also for classes of programs or functions when­

ever Eggg and fag are defined for a given acceptance relation. Most general­
izations thus generated are well-known; only the operator-gap theorem for
honesty classes needs the full strength of the operator-gap theorem for
weak classes.
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COROLLARY3.2.4. Let F be a total effective operator from R2 to R2 satisfy­

ing F(T) 2 T. Then there exist arbitrarily large total functions T so that

HT = HF(T)'

{Iam aliquantum spatii ex eo Zoco

ubi pugnatum est aufugerat, cum
respieiens videt magnisintervallis
sequentes.

Livius, ab Urbe Condita I.25.8}

3.2.2. THE OPERATOR-GAP ALGORITHM FOR STRONG CLASSES, AND ITS MODIFICATIONS

The proof of lema 3.2.2 is based on an algorithm which is defined in
§3.2.3 in an informal way. A program for this algorithm is given in the ap­
pendix. The algorithm is a modification of the algorithm constructed for
the proof of the operator-gap theorem by P. YOUNG[Y0 73]­

In this section a description is given of the algorithm originally
given by P. YOUNG(formulated within the language of acceptance relations).
Next it is explained whythis algorithm itself does not yield the result
for weak classes.

In the following P is a total effective operator which satisfies
P(t) 2 t; f is a fixed total recursive function and A is a fixed acceptance
relation.

The algorithm of P. YOUNGis a stagewise algorithm which computes at

each stage x the values of t for all arguments z within a segment [yO+l,yl].
At the beginning of stage x the values of t are knownon the initial seg­

ment [O,y0]. The value of y] is also computed during stage x.
The computation during stage x can be described as follows:

(I) generate x+l programs for functions tj extending t I [O,y0] so that
t > P(tj) on [y0+l,w).5+1

(2) generate x+l integers zj > y so that for each v e [y0,zj+l] the value
of P(t.)(v) can be computedgsing only values of tj on arguments in the
segment [0,z.]. (The zj are computeddownward,for j = x,x-1,...,0.)
Makesure that zj > zj+]. tj is replaced by its restriction tj I [O,zj].

(3) For each i < x, 0 S j S x we test whether there exists an argument

z e [yO+l,zj] where A(i,z,tj(z)) 1 Egge. If such an argument z exists we
say that i violates the extension tj. No i < x violates the non-exis­
tent extension t .

x+l
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(4) If i violates the extension tj and does not violate the extension tj+1
then we declare the gap-section <tj,tj+l> unsafe fbr i.
Note that each index i has at most one gap-section which is declared

unsafe for it. Since we have x indices and x+l gap-sections we safely may
execute (5).

(5) Select a gap-section <tj,tj > which is not declared unsafe for any in­+1

dex. Extend t by tj over the segment [y0+l,zj]; put yo = zj, and pro­
ceed to the next stage.

It is not difficult to verify that the function t constructed in this
waysatisfies the condition:

§x[A(i,x,c(x)) z true]

implies

§x[A(i,x,F(t)(x)) I true].

Nowthe operator gap theorem for strong classes is a straightforward
corollary.

To illustrate the above algorithm we represent in diagram 3.2.5 the
behaviour of a single index i with respect to the local gap-sections

<ti,ti+]> created in (2). Thevertical lines represent A-run-times of index
i. If ai(x) is finite this is indicated by a boundedvertical line termi­
nating at but not including the point <x,ai(x)>. Anunboundedline corres­
ponds to an infinite value for ai(x). Consequentlyat intersections of the

graph of tj with a bounded line one has A(i,x,tj(x)) = fgégg, where for un­
boundedlines one has A(i,x,tj(x)) = ggig.

The local gap-section <tj,t. > maybe visualized as the area in be­1+1

tween the curves tj and tj+l. Since zj+] < z, it is an open local gap-sec­
tion.

In the situation described by the diagram the gap-section <tj+2,tj+3>
is unsafe for i since there is an A-run-time of i which violates tj+2

on the interval [yO,z. ].3+3
> which is unsafe for an index i,

3

The concepts of a gap-section <tj,tj+1
upon which one algorithm is based, is defined in terms of strong violations;

whereas i respects tj+

1

over the interval [y0+I,zj] without strongly violating tj+ over the inter­
the gap-section <tj,tj+ > is unsafe for i, provided i strongly violates tj

1

val [y0+l,zj+l].



113

\ 4T!

N3
Lu:"'_”"'

(_a

I

I

I I tj+]

L——””’/1/I’/’ i ,,»/””’] qr

zj+3 zj+2 5+1

Diagram 3.2.5

To get an algorithm which works correctly for weak classes we must
consider weakviolations instead of strong ones. Consequently we will need
a new unsafety concept. This new unsafety concept is defined as follows:

DEFINITION3.2.6. The gap-section <tj,t. > is called weakly unsafe fbr iJ-I-I

provided i weakly violates t. over the interval [yO+l,zj] without weakly
violating tj+ over the interval [yO+l,zj ].1 +1

The reader may convince himself that, given this concept of "weakly
unsafe", the earlier argumentations remain valid. In particular one can
prove that each index has at most one gap-section which is weakly unsafe
for it. Henceusing the pigeon-hole principle as before one proves the ex­

istence of an extension t. such that the gap-section <tj,tj+]>.is not
weakly unsafe for any index i < x.

There is howevera hidden snag in this argumentation. In the algorith
as given by P. YOUNGit is not possible to determine whether a gap-section
is weakly unsafe for an index i or not. To understand this we should remem­

ber that the tests are executed along the graphs of the functions tj. The
tests moreover only yield answers of the type A(i,x,tj(x)) = §§g§_or
A(i,x,tj(x)) I frag.

Weconsider the situation in more detail in diagram 3.2.7 below. The
diagram represents all possible behaviours at an argument x of the run-time

ai with respect to the open local gap-section <tj,tj+l>. Situations
(x]),...,(x7) are discussed separately.
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Diagram 3.2.7

(x=x1) A(i,x,tj(x)) = A(i,x,tj+1(x) = true; no problem.

'+

positively knowthat i weakly violates tj at x .
(x=x2) A(i,x,tj(x)) 1 true; A(i,x,tJ l(x)) = true; in this situation we

2

(x=x3)or (x=x4) A(i,x,tj(x)) 1 true; A(i,x,tj+](x)) 1 true.
In this situation we only knowthat if i weakly violates tj at x
it also weaklyviolates tj+ at x, but it is not possible, without1

execution of further tests to determine whether there are weakvio­
tations or not.

(x=x5) A(i,x,tj(x)) = true. Although the value of tj+l(x) is undefined
there is no problem since whenever tj is selected to extend t, we
still have F(t) 2 t and therefore A(i,x,F(t)(x)) = true will be
valid also.

(x=x6) or (x=x7). A(i,x,tj(x)) 1 true and tj+](x) is undefined. Again it
is impossible to determine whether there is a weakviolation or not.

Our conclusion is that the information which we have gathered is es­

sentially incomplete. There mayexist run-times ai(x) which are larger than

all'values tj(x) for which x e Ut.. Let us call such a run-time an unchecked
large run-time. The other run-times ai(x) are called checked run-times.

The problem is that we cannot say whether or not an unchecked large

run-time ai(x) at x weakly violates the extensions tj for which x e Utj.
Nowwe return to the definition of "weakly unsafe". The gap-section

<tj,t. > is weakly unsafe for i provided there exists a weakviolation by3+]

i against tj and there exists no weakviolation by i against tj+]. Since it
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is not possible to determine whether or not weakviolations are perpetrated
by unchecked large run-times, we look for a more general concept of
"unsafety", such that all weakly unsafe gap-sections are also unsafe in
this more general sense.

> is potentially

LEMMA3.2.9. If the gap-section <tj,tj+

PROOF.Clearly condition (8) holds since otherwise i weakly violates t.

DEFINITION3.2.8. Wesay that the gap-section <tj,tj+]
weakly unsafe for i if the following situation occurs;

(a) tj is weakly violated by a checked run-time, or there exists an un­
checked large run-time ai(x) with x e Utj \ Dtj+],

(B) tj+] is not weakly violated by a checked run-time.

> is potentially weakly un­Note that it is decidable whether <tj,tj+]
safe for i.

l> is weakly unsafe for i then it is
also potentially weakly unsafe.

3+].
Let ai(x) be a run-time weakly violating tj. If ai(x) is a checked run-time
we must have a situation like at x = x2 in diagram 3.2.9. If ai(x) is un­
checked then the situation is like at x = x3 or at x = x6. In the first

1 is weakly violated and consequently <tj,tj+1> is weakly
safe for i, contradicting our assumption. Hencewe have a situation like at
case however, t.

J+

x = x6. Nowthe situations x = x2 and x = x6 both make for (a) to be satis­
fied. U

The solution therefore should be to replace the concept "weakly un­
safe" by "potentially weakly unsafe". But this leads to new complications
since it is possible that more than one gap-section is declared potentially
weakly unsafe by a single index i. This situation is illustrated in diagram
3.2.10.

Diagram 3.2.10 shows that many gap-sections are spoiled by unchecked

large run-times of ai.
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Diagram 3.2.10

Fromthe definition of "potentially weakly unsafe" one reads that only

the unchecked large run-times ai(x) with x e Utj \ Dtj+] are dangerous.
These run-times could be eliminated if, by some trick, we would be able to

extend t. over Dtj in such a way that the relation "tj 2 F(t) if t isJ+l

an extension of tj" remains valid.
+1

Suppose that such a trick is found. Then we can reformulate the defi­
nition of potentially weakly unsafe, which nowbecomes:

DEFINITION3.2.11. The gap section <tj,tj+‘> is potentially weakly unsafe:
for i if the following situation occurs:

(a') t. is weakly violated by a checked run-time,
(B) t j+l is not weakly violated by a checked run-time.

Note that in this formulation the unchecked large run-times no longer

figure. Moreover, if Dtj = Utj there is no longer a difference between+1

"weakly unsafe" and "potentially weakly unsafe". To see this assume that

Dtj = Dtj+]. Weknowalready that "weakly unsafe" implies "potentially
weaklyunsafe"; the latter is equivalent with "potentially weaklyunsafe'"

since Dtj = Utj Conversely from (a') and (B) it is clear that <tj,tj+ >+1’ 1
is weakly unsafe for i.

This situation is illustrated in diagram3.2.12.
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Diagram 3.2.12

In the situation represented in diagram 3.2.12 the gap-section

< l,t > is weakly unsafe for i and the other two gap-sections are safe‘j+ 5+2

for i. Without use of the extension of the tj all gap-sections are poten­
tially weaklyunsafe for i.

The trick used to extend the tj+] over Dtj is a one-stage look-ahead
in the algorithm. The reason that tj+ is not defined over Dtj is that tj+I I

must be an upperbound for F(t) assuming that t is an extension of t.. To

compute F(t)(x) for x e Utj we may need values t(x) for x &Dtj, which are
not yet fixed.

However,by selecting t to be an extension of tj we restrict the pos­
sible values of t on a larger domain, because t is going to be an extension

of one of the x+2 extensions ui,j generated during stage x+1. Without loss
of generality we mayenforce that all extensions uijj are defined over a
domainsufficiently large such that F(ui,j)(z) is defined for all z e Ut..

Therefore, in order to generate an upperbound for P(t) on Utj based on
the assumption that t is an extension of t., the x+2 next stage-extensions

9

stage in advance. This way we compute closed local gap-sections.
ui j and the values of P(ui j)(z) for z 6 Utj only need to be computed one9

This one-stage look-ahead is illustrated in diagram 3.2.13.
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The informal discussion above contains all essential ideas behind the

operator gap algorithm for weak classes. The next section contains an in­
formal description of a program executing the one-stage look-ahead. Next it
will be that the function computedby this algorithm satisfies the condi­
tions of lema 3.2.2.

3.2.3. THE OPERATOR-GAP ALGORITHM FOR WEAK CLASSES

The algorithm described in this section computes the function t which
is claimed by lema 3.2.2. This lemmais repeated below:

LEMMA3.2.2. Let A be an acceptance relation, let P be a total effective
operator with P(t) 2 t and let f be a total function. Then there exists a
function t 2 f such that for every index j the following holds:

‘§°x[A(j,x,t(x)) : true and A(j,x,I‘(t)(x)) = true]

implies

§x[A(j.x.F(t)(x)) = fialsel.

The algorithm is executed stage-wise. Wedescribe stage k. Assumethat

at the beginning of stage k t(x) is defined over the interval [0,yO];
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furthermore there are k+l programs of functions ti, i = 0,...,k which
satisfy:

(1) ti(x) = t(x) for x S yo, 0 S i S k.

(2) ti+](x) 2 F(ti)(x) for x > yo, 0 S i < k.
(3) ti(x) 2 f(x) for all x, O S i S k.
(4) ti(x) is non-decreasing in x (by F(t) 2 t and by (2) ti(x) is non-de­

creasing in i as well).

Finally there exist k+1 pointers zi (OSi.Sk) which satisfy:

(5) zk 2 yO+l; zi 2 zi+]+I for 0 S i < k.
(6) The support of P(t ) on [0,y +1] is contained in [0,z ].k 0 k

(7) The support of F(ti) on [O,zi+l] is contained in [0,zi] for 0 S i < k.

Remarkthat the above conditions are satisfied after execution of (1)
and (2) in the algorithm of P. YOUNGwhich is described in the preceding
section.

The computations of stage k can be described as follows:

(I) For 0 S j S k we construct k+2 programs for the next stage-extensions

uj 1 which are defined by:

uj,0 = Ax[§i:a:szj then tj(x) else max(fYx),uj,0(x-1)) ff},

uj,1 = Ax[3i:x’szj then tj(x)
else_gg§(f(x),uj’Z(x-1),uj’Z_1(x),F(uj’Z_])(x)) ii]

for 0 < 1 < k+l.

(2) For 0 S j S k, k+l 2 1 Z O we construct a pointer vj 1 which satisfies:

the support of F(uj ) on [O,zj+l] is contained within,k+l

[O,vj ] for o s j s k,,k+l

,1+l

[0,vj,1] for 0 S j,1 S k, moreover vj,1 > vj,1+].
the support of P(uj 1) on [0,vj ] is contained within9

f the pointers v. are computeddownwardsfor 1 = k+l,k,...,0 f1.1
f these computations correspond to (1) and (2) in the algorithm of

P. YOUNG ¢

(3) For 0 S j S k we compute a function segment gj on the interval

[yO+l,zj] which is defined by:
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gj = Az[§i:z é [y0+1,zj] then loop
eZi::z S z.+1 then t. (z).7 3+1

else max{P(u. Z)(z) I Z S k+1} ff]J:

¢ By (2) the support of F(uj 1) on [y0+l,zj] is contained within9

[0,vj,1
for z S z

]; furthermore by assumption F(tj)(z) = F(uj 1)(z) S tj (z)
¢

+1

5+1‘

(4) For 0 S j S k and O S i S k-I we check whether there exists a

z e [yO+l,zj] with A(i,z,tj(z)) I t§ge_a§é A(i,z,g.(z)) = tgge. If such
a z exists we say that i enters the j-th Zocal gap-section.

(5) For i = O,...,k-1 select the largest j such that the index i enters the

j-th local gap-section. If such a j exists (say ji) then we declare the
ji-th local gap-section weaklyunsafe for i.

(6) Select a (the lowest) j such that the j-th local gap-section is not de­

clared unsafe for any index i, with 0 S i S k-I. Denote this j by jo.
¢ Such an index j exists by the pigeon-hole principle. ¢

(7) Extend t by tjo over [y0+l,zjO]; put yo == , for 0 S j S k+l,zjo
put tj := uj0,j, zj ;= vj0,j.

(8) Proceed to stage k+l.
¢ Remarkthat by execution of (7) the assumptions (l),...,(7) become

correct before entering the next stage. f

To initialize the program one executes onece (1) and (2) using k=0
and a function t which is defined over the empty segment [0,-1]. This

yields two programs to and t] 2 f and two pointers zo and z]. Weput

yo = -I. Nowthe assumptions (1),...,(7) as assumed to hold before entering
stage 1 are correct.

Next we start stage 1.

Weshould emphasize that the algorithm manipulates on programs for the

functions ti and that during elaboration of the algorithm these programs
are executed at several arguments. The programming environment in which the
above algorithm can be formally described must include therefore facilities
which permit to create procedures at run-time.

To prove lemma3.2.2 we present an informal and intuitive correctness
proof for the above algorithm.

The reader should convince himself that each stage in the algorith
terminates. Oneuses the fact that for each total effective operator P and
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each total function t and each argument x, an integer y can be found effec­
tively so that the support of F(t)(x) is contained within the interval
[0,y] (although the y found this way is in general not minimal, cf. §l.2.4).

It is clear from the description that after a finite numberof stages
t is defined over a finite segment; moreover t(x) is defined before or at
stage x+1 since each stage properly extends the defined part of t.

Nowlet i be an index with the property:

%u°x[A<i.x.t<x>> ==3ru_e gfl A<i,x.1"<c><x>> =t_m_e1,

we prove that this implies:

°s‘:’x[A(i,x,r(t)(x)) = £c_z_Z§e].

First we discard those arguments and values of t which are defined
before or at stage i.

Let x be an argument so that t(x) is defined at stage k with k > i and
so that

A(i,x.t(x)) ¢ true gag’ A(i.x.F(t)(x)) = Exag­

Byabuse of notation we give yo, zj, tj, uj,1, vj,1, gj and J0 the
meaning they have during execution of stage k (6).

Hence t I [0,zjO] = tjo
that the jo-th gap-section is not declared weakly unsafe for any index i'

I [O,zjO] for a jo so that x e [y0+l,zj0] and so

with O S i' S k-1; in particular the jo-th gap-section is not declared
weakly unsafe for i.

Nowby assumption i enters the jo-th gap-section, for let t be extended
during stage k+l by the next stage-extension u- ,1 . Then the support ofJo
P(t)(x) = F(uj0 10)(x) is contained within [O,v­J0,10] and by definition of
gjo we have

8jO(X) 2 P(uj )(x) = F(t)(x)­o*1o

Therefore A(i,x,tjO(x)) I true and A(i,x,gj0(x)) = true. Since the
jo-th gap-section is not declared weakly unsafe for i we conclude that i
enters also a j-th ga -section with j > j . This implies that for someP 0
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z e [y0+1,zj] we have

A(i,z,tj(z)) ¢ true gflé A(i,z,gj(z)) = true

hence A(i,z,tj(z)) = fgégg.
Since j > jo one has tj(z) 2 tj +](z) 2 F(tj0)(z) = P(t)(z) and there­

for A(i,z,tj(z)) = A(i,z,P(t)(z)) = fgggg.
Our conclusion is that for each stage k where values t(x) are defined

so that A(i,x,t(x)) = fgzsg and A(i,x,F(t)(x)) = Eggg at least one new
value t(z) is defined with A(i,z,F(t)(z)) = fgggg.

Using the fact that only finitely manyvalues of t are defined during
a single stage we conclude that

§’x[A(i,x,I‘(t)(x)) = false]. [1
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CHAPTER 3.3

THE UNION THEOREM

3.3.0. INTRODUCTION

This chapter contains a discussion on the union theorem of
E.M. McCREIGHTand A. MEYER[MCM69]. This theorem states that the union of

a sequence of complexity classes namedby a non-decreasing sequence of
total names is again a complexity class. This complexity class is namedby
a total function, which is computable from programs for the names in the
sequence. The theorem is a typical example of a theorem which can be
translated straightforward to yield a union theoremfor strong abstract
resource-bound classes.

There are howeverfurther generalizations, which state that the theo­
rem holds also for weak classes and partial names. The condition of mono­
tonicity of the names includes in this case also the condition that the
sequence of domains of the names is a non-increasing sequence of sets.

In this chapter we concentrate on the most complicated case (weak
classes with partial names). The other cases are left to the reader for
verification.

In 3.4.3 and 3.4.5 we will meet another type of generalized union
theorems where the condition of monotonicity of names is replaced by the
condition that the classes of indices themselves form an increasing sequence.

An application of the union theorem is the translation of complexity
classes modulosets of exceptional points into complexity classes with par­
tial names.

In section 1 we give the proof of the classical union theorem; next in
section 2 the modifications needed for the generalization are explained. In
section 3 we present the design of our union algorithm, followed by a cor­
rectness proof in section 4. (A formal program can be found in the appen­
dix.) Section 5 contains applications of the union theorem.

REMARK.The terminology "j respects t" which is used frequently in this

chapter is equivalent to j e Fg(t) (j e F3(t)) depending on the type of re­
striction considered.
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3.3.]. THE CLASSICAL UNION THEOREM

In the context of strong abstract resource-bound classes the formula­
tion of the union theorem reads:

THEOREM3.3.1. [Union]. Let (ti)i be a sequence of total functions so that

PROOF.The function tin

ViVx[ti(x) S (x)]. Then there exists a total function ti so that:ti+l nf

A _ A
V ES(ti) ‘ FS(tinf)'1

f is computed by a stagewise algorithm. Wepresent
the description of stage x below.

stage x: (1) guess[x] := x;

(2) jg; k S x £9 compute (tk(x)) ggg
(3) val := tx(x);
(4) i§§_k S x Q9

fijggt (A(k,x,tguesS[k](x)) = true) then
val := min(vaZ,t (x));

-——— guess[k]
guess[k] := x+1

£2,923
(5) t. (x) := val;tnf
(6) goto stage x+1

The algorithm is started at stage 0.
This algorithm is called the standard algorithm during the next sec­

tions of this chapter.

It is clear from the totality of the ti that tinf(x) is computedat
the end of stage x. Hence t. is total.

1nf A
To prove the equality U FA(t.) = F (t. ) we look for a fixed j at

1 S 1 S inf
the two possible behaviours of the value of guess[j].

Case I) guess[j] is unstable (i.e. guess[j] grows unboundedly):

This meansthat the run-time aj(x) is larger than ti(x) for arbitrar­
ily large x and i; hence j & U F(ti). Furthermore for each stage x where1

guess[j] is redefined a violation by j at x against tin is created. Hencef
j é F(tinf).
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Case 2) guess[j] stabilizes at i.

This implies that j does not violate ti at arguments x with x larger
than the stagenumber of the stage during which guess[j] := i is executed.

Hence j e F(ti) C 2 F(ti).
For each x the value of tinf(x) is defined during stage x; moreover,

this value euqals tk(x) for some k S x. However, if k S x then a value
guess[j], which equalled k at the beginning of stage x, equals x+l at the

end of stage x. Hence a "low" value of tinf(x) implies the disappearance of
a low guessvalue. At each momentduring the computation only a finite num­
ber of guess-values less then 1 are alive in the algorithm; moreover after
termination of stage 1 this numberonly decreases.

One concludes from this that tinf(x) 2 ti(x) for almost all x. Since

aj(x) S ti(x) almost everywherewe derive the relation

3 [a. ) S t. ( )]X J(x inf x

which implies j e F(tinf).
In both case we have found

3 6 ti’Fg(‘i) if” 3 5 Fg(tinf)°

This equivalence proves the theorem. U

Readers familiar with the proof of the naming theorem should recognize
the similarity between this proof and the above argument. In fact, the
above reasoning is a simplification of the original proof of the union
theorem, which was more related to the naming theorem. Wereturn to this
subject in 3.4.3.

The arguments in the foregoing proof represent the essential ideas of
the generalization. The value guess[j] specifies simultaneously the bound
index which index j is supposed to respect, and a priority number. The

value of tinf(x) could be defined as the value of tk(x) where k is "the
lowest bound-indexviolated against at x". In future this k shall be called
the b0undFindex used at x.

The correctness of the program (or somegeneralization of it) can be
expressed by means of the following four correctness claims:



Claim 1: If guess[j] is unstable, then j violates ti

Claim 2: If j violates t

Claim 3: If j respects a bound t

Claim4: If guess[j] stabilizes then j respects tin
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nf infinitely many
times.

k infinitely often, then guess[j] does not stabi­
lize at a value S k.

k then guess[j] stabilizes.

f0

Weformulate two more assertions, which seem rather complicated for
the present case, but which are designed for the generalizations:

Assertion 1. Let tinf(x) be defined (at stage z) using bound-index k. Let j
be an index and let i be the value of guess[j] at the momenttinf(x) is de­
fined. Then we have:

i > k 25 A(j,x,ti(x)) = A(j,x,tinf(x)).

For the standard algorithm Assertion 1 is valid. Weknow that z = x.
Assumethat i S k. Clearly it is impossible that guess[j] has been rede­
fined during stage x, for in this case i > x 2 k. Consequently we must have

A(j,x,ti(x)) = Ezgg, but nowi 5 k implies A(j,x,tk(x)) = A(j,x,tinf(x)) =
= frag, which proves the assertion. '

Assertion I becomes interesting whenwe treat the case of weak re­
striction.

Assertion 2. For each n the bound-index used at x, denoted by k(x), satis­
fies

$x[k(x) > n].

By this assertion (which was used explicitly in the above proof)

tinf(x) 2 tn(x) almost everywhere. The correctness of the assertion is
based on an exhaustion of low guess-values, which are mortal when they are
used as bound-index at x.

{Dieses war der erste Streich

Dockdér Zweite fblgt sogleich.
Max und Moritz Wilhebn Busch}
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3.3.2. MODIFICATIONS TO THE UNION ALGORITHM

The modifications needed to construct a union algorithm which applies
to weak classes with partial names, are of different types. To tackle the

partiality of the names, we replace the computation of the bounds ti by an
enumeration of their graphs. To deal with the weak restriction we replace
the one-phased test on strong violations by a two-phased test on weakvio­
lations. Finally there are modifications to the synchronization of the al­
gorithm.

These types are discussed separately; application of a well-chosen
selection yields the union algorithms for the two generalizations which are
not treated explicitly in this treatise.

MODIFICATIONS TO DEAL WITH PARTIAL BOUNDS

The idea is simple. Instead of computing the values of ti(x) which are
needed at a certain moment, a dovetailed computation is used to enumerate

all values of ti(x) (i,x:eIN) simultaneously.
In the standard algorithm the tests on violations at x are executed

when the values of ti(x) are knownfor i = 0,l,...,x. The example below
shows however that these tests should not be delayed upto this momentin

our new algorithm.

EXAMPLE3.3.2. [Do not wait until t0(x),...,tx(x) are known]. Let

ti = Ax[§i:x S i then loop else 0 f2]

For each i we have F(ti) = F(zero). Howeverfor each x tx(x) is undefined;
if we have to wait until all values ti(x) with i S x are computed, we have
to wait forever. Hence an algorithm, based on this principle computes the
empty function 8. However

O F(ti) = F(zero) 1 F(£).1

Our policy is therefore to use each value ti(x) which is enumerated at
once for the testing of the indices j with guess[j] = i. It is howeverpos­
sible that other indices j' with guess[j'] = i' < i are not yet tested at x

(as ti,(x) was not yet enumerated).
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In general these indices j' might force the value of tinf(x) to become
smaller. In this respect the value of guess[j] acts as a priority number.
The indices with lower guess-value should be tested first.

At this point the condition of non-increasing domains can be applied.

If tk(x) converges, then ti(x) converges also for i < k. Therefore we can
compute all ti(x) for i < k if we know that tk(x) has been enumerated.
This allows us to "fill-in" the "holes" in the table of knownvalues of

ti(x).
Alternative solutions to this problemare:

(i) Replace the programs computing ti(x) by a single program T(i,x) which
has a run-time monotonically increasing in i. (This is possible by a
variant of the monotonicity lema 1.5.5.)

(ii) Use the table of knownvalues only as far as it is complete.

Each of these modifications allows us to generate the values of ti(x)
in an usable order.

In the standard algorithm the value of tx(x) is used also as an escape
definition if the situation arises that none of the indices introduced so
far violates at x. This escape definition is used to enforce totality of

tinf. If partial bounds are used, these escape definitions are not needed.
It is howeverpossible to apply the definition tinf(x) = tx(x) whenever
tx(x) is enumerated and execution of all tests induced by this appearance
does not yield a value for ti (x). The proof, however, becomes more com­nf
plex.

A complication which is unconceivable in the standard algorithm is the
fact that tests at x are performed at widely different stages in the compu­
tation. This opens the possibility that a single index j is tested several
times at the same argument x. This situation may arise in the following
way:

Index j has guess[j] = i at a certain stage.

ti(x) is enumerated.
A test showsthat j violates ti at x.
guess[j] is redefined (guess[j] := i‘ where i' is chosen large enough that

no value of ti,(x) has yet been enumerated).
At the time ti,(x) is enumerated we are invited to perform another test on

j at x.

This multiple testing at a single argument could easely lead to in­
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finite testing at a single argument. Then guess[j] could becomeunstable

because of a violation of j at a single argument x against all bounds ti,
and this wayClaim3 collapses. It is therefore clear that infinite testing
must be prevented. Twosolutions which can be given are:

(1) Each test on j at x is registered to prevent multiple testing.

(2) Novalues ti(x) with i‘>x are enumerated. This does not necessarily
prevent multiple testing (depending on the way guess[j] is redefined)
but prevents infinite testing.

In our program in 3.3.3 we use the second technique as this is easier
for implementation. Weneed no extra data structure to store all tests
which are executed. As we will see our method of redefining guess[j] pre­
vents in fact multiple testing as well.

MODIFICATIONS NEEDED TO DEAL WITH WEAK RESTRICTION

Fromthe definition of weakrestriction one can derive that weakvio­

lations by an index j against a bound ti cannot be found by a single test;
they have to be enumerated.

Given a value ti(x) we can test whether A(j,x,ti(x)) = true or not.
If this is not the case we have to search for a value z > ti(x) with
A(j,x,z) = true to discriminate betweenA(j,x,ti(x)) = gg§§_and
A(j,x,ti(x)) = false. In our programsuch an index j is called suspect at x
and a so-called suspect report (SR) is placed on the suspect Zist (SL). The
suspect report contains the following information:

(1) the suspect index j
(2) the argument x
(3) the bound-index i

(4) the value ti(x)

It is called a suspect report on j at x against i with value ti(x).
In our algorithm i always equals the value of guess[j] at the time

the SR is created.

Wewill consider at returning occasions in the course of the computa­
tion all items on the suspect list, to see whether someof them represent
weakviolations. To do so we use an ever increasing test value z to test
A(j,x,z) = true, whenever an SRon j at x is present. If for a certain SR
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this test yields a positive answer, a weakviolation is detected. The sus­

pect report <j,x,i,ti(x)> is transformed into a violation report (VR)
having the same format and values. Violations reports are placed in a vio­

lation queue (VQ)to be used in the computation of tinf(x).
In order for Claim 2 to be valid, it is necessary that guess[j] is re­

defined if a violation by j against somebound index i 2 guess[j] is dis­
covered (only a finite number of violations may be overlooked). At the same
time it is not permitted to redefine guess[j] before it is certain that a

corresponding violation of j against tin is (or has been) created, since
otherwise Claim I becomes invalid. f

This problem is solved by giving a correct method to select the bound­
index used at x. In the standard algorithm this bound index k equals "the
lowest bound-index violated against at x". If we should be able to use a
similar definition of k as function of x in our modified algorithm, i.e.
something like "the lowest bound-index weakly violated against at x", our
problem would have been solved. However, the above description represents
a non-computable function.

In the situation where ti, has been violated against at x there may
exist suspect reports at x on the suspect list against bounds ti with
i < i‘, which might be (or might not be) transformed into violation reports
at muchlater stages, and this question is undecidable.

The correctness assertion Assertion 1 formulated in the preceding sec­

tion nowbecomes relevant. Let j be an index having an SR<j,x,i,ti(x)> on
the suspect list. If, at the time where it is discovered that j violates ti
at x, the value of tinf(x) is not yet defined then we still have the free­
domto select the bound-index k used at x in such a way that k S i. It is

not a goodpolicy to postpone the definition of the value tinf(x), until
all SR's at x against bound indices i' S i have becomeVR's, for it is im­
probable that all of themwill do so.

Consequentlyit is thinkable that the violation by j at x against ti
is discovered at a time where tinf(x) already is defined, using a bound­
index k > i.

Nowassume that the bound-index k used at x was selected in such a way

that Assertion 1 holds. If guess j was redefined during the period start­

ing at the time where the SR<j,x,i,ti(x)> was created and the current
time, we mayassume that at the occasion of this redefinition a violation

by j against tin was created (or was recognized to have been created at af



131

still earlier time). Consequentlywe are free to consider, in this case
the new detected violation as having been punished "in advance". (In our
final algorithm, a "clean-up" of the suspect list at the occasion of the
redefinition of guess[j], makesthis reasoning unnecessary.)

However, if guess j was not redefined we must redefine it at the cur­
rent stage in the algorithm. At the same time we no longer have the freedom

to create a violation by j against tinf at x since the bound-index k used
at x has already been selected, and this mayhave resulted into the problem
that k > i. But in this situation we may apply Assertion 1, which yields
the relation

A(j,x,ti(x)) = A(j,x,tk(x)).

This equality showsthat is is irrelevant, for the case that j actually

violates ti at x, whether this violation is "punished"by setting tinf(x) =
= ti(x) or tinf(x) = tk(x).

It is therefore sufficient to select the bound-indexused at x in such

a way that Assertion 1 holds. This selection proceeds as follows:

The first time an SR at x is transformed into a VR (by finding an SR

<j,x,i,ti(x)> and a testvalue z with A(j,x,z) = 333g) this testvalue z is
used to test all SRsat x on the suspect list. These tests lead to a number
of violation reports. The bound-index used at x is the lowest bound-index
violated against at this first occasion.

The above method is consistent with Assertion I. Let <j',x,k,tk(x)>
be the VRused to define tinf(x). If an index j has guess[j] 2 k then there
is no problem. If guess[j] = i < k and if there is an SR<j,x,i,ti(x)> on
the suspect list, then we knowthat for the test value z A(j,x,z) ¢ Eggg.

However,we knowalso that for the index j' A(j',x,tk(x)) ¢ 3333 whereas
A(j',x,z) = Eggg. Hencewe have the inequalities: z 2 tk(x) 2 ti(x) which
implies

sxst:-L(x))= ax)‘-k(x))= axaz)1 true­

If i < k and if there is no SR on j at x on the suspect list then we

use the fact that j was tested at x against ti and was accepted. (This fact
does not yet result from the design explained so far; we will have to en­

force it.) In this case wehave therefore A(j,x,ti(x)) = true = A(j,x,tk(x)),
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MODIFICATIONS TO THE SYNCHRONIZATION

In the preceding argumentation someother correctness conditions are
hinted at, which still have to be enforced. These conditions are related to
the global synchronization of the algorithm. In the standard algorithm this
synchronization is performed by the stagenumber x. This stagenumber repre­
sents concurrently:

(a) the maximal argument x for which the bounds ti(x) are computed
(b) the maximal bound-index i for which the ti(x) are computed
(c) the largest index j introduced in the computation
(d) the largest guess-value created by introduction at or redefinition be­

fore ggggg x; (at redefinition during sfggg x a guess-value is set
equal to x+l in order to makeit larger than all guess-values existing
before).

This accumulation of functions seems irrelevant. For reasons of modu­

larity we introduce four different indicators for these maximalvalues
named maxarg, maxbnd, maxind and maxguess.

In our modified union algorithm two more functions of the stagenumber
will be visible; these are represented by the variables maxcompand maxtest.
The variable maxcomprepresents the number of steps used in the enumeration

of the ti(x) and maxtest is the ever increasing testvalue used to detect
weakviolations.

To enforce that no index j misses a test against a guessed bound ti
whenti(x) is already knownbefore guess[j] gets the value i, it is suffi­
cient to keep maxguess 2 maxbnd.

The indicators maxarg, maxbndand maxind control the values ti(x)
which are enumerated and which tests are executed.

It is not possible to enforce in this way that all SRson j presents

on the suspect list are SRs against the bound ti where i equals the current
value of guess[j]. To enforce this relation one should remove from the sus­
pect list all SRs on j whenever one of these SRs is transformed in a VR.
This modification smoothes the argumentation, but is is not necessary in
order to prove the correctness of the algorithm.

Using the strategy that no value of ti(x) is enumerated for i > x the
phenomenonof multiple testing of an index j at a single argument x is pre­
vented by keeping maxguess > maxarg. If guess[j] is then redefined, its

value is larger than all arguments x for which values of ti(x) were enumer­



I33

ated, and therefore also larger than all arguments at which j was tested
before. These arguments x are never used again to test j since the corres­

ponding values of t ](x) are never enumerated.guesslj
To be able to use the value tx(x) as an escape definition for ti nf(x)

one should keep maxtest 2 the largest value of ti(x) enumerated so far;
this is needed to keep Assertion 1 correct.

3.3.3. A STAGEWISE UNION ALGORITHM FOR WEAK CLASSES WITH PARTIAL NAMES

In this section a stagewise algorithm is presented which computes tinf
in this case of weak classes with partial names. The description is an in­
formal one; it is the skeleton of the program which can be found in the ap­
pendix. For exampleall declarations are deleted.

It is assumedthat the following options are active:

(a) no escape definitions are used.

(b) no ti(x) with i > x is enumerated.
(c) if a violation by j is detected all suspect reports on j are deleted.
(d) multiple testing is prevented by having maxguess = maxarg.

These options are not essential, but they simplify the argumentation
in the next section.

The sequence of names ti is computed by the single program wi(i,x)
with run-time c]>i(i,x); <p:(i,x) = ti(x).

The guess-values are stored in the infinite array *) guess. Weneed

also an infinite array to keep track on the values ti(x) which already have
been enumerated. This array is called tcomp. The element tcomp[x] is the

first bound-index i such that ti(x) is still unknown.
Thevalues of tin are stored in the infinite array tinf. The operator

undefined tests whethefi a certain variable has been given a value by the
program or not.

The program uses the ALGOL68 semantics of a loop: to execute a loop
the values of the bounds on the controlled variable are elaborated and

copied and afterwards the loop is executed, using these static values.

+«> In the formal representations these infinite arrays are represented by
flexible arrays. Insertion and inspection of values is performedby the
procedures described in section 1.1.5.
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Therefore a loop terminates if the bounds determine a finite domain, and if
for each value in this domain the embraced clause terminates.

Suspect reports and violation reports are structured values of the
modestruct ( ind,arg,bnd,val) .

Each stage consists of 6 sections, called the blocks of the algorithm.
stage x is described below.

¢ 0 #5synchronization: maxcomp:= maxtest := maxguess := maxarg :=

maxind := maxbnd := x;

¢ 1 ‘.5introduction: guess[ma.'z:ind] := maxguess; tcomp[ma:carg]:= 0;

¢ 2 ‘.5enumeration and test on suspectness:

fgr z tg_maxarg do

Qegin newcomp.#=tcomp[z]-J¢largest knowni for which ti(x) is known*)¢;
or i fr-1 tcomp[z] E@(z,maxbnd) d_o¢ @n(z,maxbnd) = z ¢

ii:¢:(i,z) S maxcompthen_newcomp:= i f§_ggg
¢ which new values come out at this stage? ¢

‘E i from tcomp[z] E newcompd_o
be in val := £D2(i,z) 4‘ compute value 35;_9__ ,3

fo_rj E maxindQ
if guess[j] = i gn_d_ngt(A(,7',z,val) = true)
thenattach(suspectlist, (j,z,i,val))

¢ and use this value to test all indices introduced so far ¢

2"_dfls

tcomp[z] := newcomp+1

4 these values are enumerated and used for tests ¢

3_"é ¢ 2 4‘ _0_d_s

¢ 3 ¢ working through the suspect list: '

for item over suspect list Q
if Mind of item, arg of item, maxtest) = true
then attach (violation queue, item) ¢ violation detected “Pg;

Since the dyadic operator " - " is not implementedthis trick to detect
whether newvalues are enumerated is illegal in our formalized algorithm.



135

,7;o_1_=item gr violation queue do
13%

‘E item] o_ve3suspect list Q
if ind of item = ind gf item]
tli delete (iteml, suspect list) f_i

¢ delete all suspect reports on violator 4 Q;

guess[ind of item] := maxguess + 1
ad ¢ 3 ¢ £3

154 ¢ definition of tinf:

E z _t£maxargdg
if undefinedtinf'[z] flag

begin violbnd := maxbnd+1 ¢ lowest bound violated against at 2:¢;
val := 0 ‘.5eventual value of tinf[z] ¢;

fQr_item over_violation queue_dg
if arg of item = z afii bnd of item < violbnd
flen b_e£2_violbnd := bnd gf item;

val := val gf item
e_"¢i

1;’E;

if violbnd S maxbnd¢ serious violation at z detected ‘.5
tflen_tinf[z] := val_fi

flé
fi¢ 4 ¢ gd;

¢ 5 ‘.5cleanup: clear (violation queue),'

goto stage ac+1

The programis initiated by starting stage 0 with all values undefined.
Note that the following non-interference relations hold:

(l),...,(5) leave the variables maxguess, maxarg, maxbnd,maxind, and
maxcompinvariant.
(0),(3),(4) and (5) leave guess invariant.
(0),(l),(4) and (5) leave the suspect list invariant; (2) only extends this
list and (3) only deletes from this list.
(0),(l),(2) and (4) leave the violation queue invariant; (3) loads this
queue and (5) clears this queue completely.
(0),(l),(2),(3) and (5) leave tinf'invariant.
tcomp is only used in (2).
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3.3.4. CORRECTNESS OF THE UNION ALGORITHM

By lack of appropriate tools, it is not possible to present a rigid
correctness proof of the union algorithm. The assertions formulated in this
section mostly consist of a close inspection of the algorithm during its
execution. In a few cases an assertion is shownto be invariant under the

execution of the algorithm, by showing it to be preserved under the indi­
vidual parts of somemodular decomposition; this is in essence an inductive
assertion method.

Readers who are already convinced of the correctness of the union
theorem by the explanation in section 3.3.2 and whoare willing to believe
that the algorithm is designed according to our objectives, do better to
skip this section.

In this section the computation of the program in the preceding sec­
tion is analyzed. A numberof assertions are nowformulated, yielding
Assertion 1 and Assertion 2 and the four correctness claims. These four

claims together prove that the function tinf computedby the program indeed
satisfies:

A .

liJF$(ti) —Fw(t1nf).

Byassumption the functions ti(x) satisfy:

Vi,i',x[ti,(x) S wand i < i' £g2_ti(x) S ti,(x)].

In the discussion the folloqing abbreviations are used:

(1) The status of the computation is mostly considered when its execution
is in between two blocks of a stage. This momentis denoted as:
{n,(l)i for stage n, beginning of block (1) and
{n,[l]$ for stage n, end of block (1).

(2) A suspect or violation report is denoted as a quadruple <j,x,i,ti(x)>;
wewrite <j,x,i,ti(x)> e SLor <j,x,i,ti(x)> e VQto denote that this
suspect (violation)-report is present on the suspect list (violation
queue).

(3) Any identifier which is used in the program denotes in the discussion
its current value (at the momentconsidered).
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FACT3.3.3. [Termination]. Each stage terminates.

ERQQE.It is sufficient to show that each block terminates. For the blocks
(0), (1) and (5) this is trivial. Block (2) consists of a for-loop embracing
two disjoint for-loops, which contain only elementary actions and elementary

tests, with exception of the assignmentval := wi(i,z). This latter assign­
ment is executed only if newcomp2 i > tcomp[z], indicating that for a cer­

tain i' 2 i we have ¢E(i',z) S maxcomp.Nowti,(z) < w and therefore
ti(z) < w also. Hence the computation of w:(i,z) terminates.

Block (3) consists of a for-loop over the SL followed by a nested for­
loop over the VQand the SL; these loops contain only elementary actions
and tests. Since the number of items on the SL and the VQis bounded by

maxind X maxarg X maxbnd, both the SL and the VQare finite.

Block (4) consists of a for-loop embracing a foor-loop over the VQ
which contains only elementary actions.

This completes the proof. D

COROLLARY3.3.4. Each stage is executed. D

FACT3.3.5. Let ¢i(i,x) = y < w, i S x. Then ¢€(i,x) = ti(x) is enumerated
during precisely one stage n with x S n S max(x,y). Moreover the predicate

"ti(x) is enumeratedbefore or at stage 2" is equivalent to the predicate P
defined by

. . . . 2 .

P(1,x,z) = z 2 x and 3J[1 S J S x and<Dt(J,x) S z].

Hencen = uz[P(i,x,z)].

PROOF.In order to have ti(x) enumerated at stage z it is necessary that
during execution of the second loop in block (2) of stage z the relation
tcomp[x] S i S newcompholds. Afterwards but before {x,[2]} the assignment

tcomp[x] := newcoum-+1is executed. Consequently if ti(x) is enumerated
during stage z one has tcomp[x] S i at ¢z,(2)i and tcomp[x] > i at {z,[2]}.
Since the value of tcomp[x] does not decrease during the elaboration of the

algorithm this shows that ti(x) is enumerated at most once.
The converse implication is easily seen to be true also: if

tcomp[x] S i at tz,(2)$ and tcomp[x] > i at {z,[2]} then ti(x) must be enu­
merated at stage z.
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Next assume that ti(x) is enumerated at stage z, i.e. tcomp[x] 5 i at
tz,(2)}. In order that newcompis raised above i during the execution of
the first loop of block (2) of stage z one needs an index j with i S j S x

and ¢3(x) S z. Since moreover, z 2 x we conclude that P(i,x,z) holds. It is
clear that P(i,x,z) implies that P(i,x,z') holds also for z' > z. This

shows that P(i,x,z) holds whenever ti(x) is enumerated before or at stage z.
Conversely, assuming that tcomp[x] S i at {z,(2)} (so ti(x) is not

enumerated before stage z) and that P(i,x,z) holds, we read from the pro­
gram that newcompis increased and becomes indeed larger than i, and that

ti indeed is enumerated. HenceP(i,x,z) implies that ti(x) is enumerated
before or at stage z.

The proof is completed by observing that P(i,x,z) is invalid for z < x
whereas P(i,x,max(x.Y)) holds true. U

Fromthe fact that the predicate P satisfies the relation

P(i,x,z) and j < i iflg P(j,x,z)

we derive:

COROLLARY3.3.6. [Correctness of enumeration]. If i S x and if ti(x) < m

then ti(x) is enumerated at precisely one stage z. If moreover j < i then

tj(x) is enumeratedbefore or at stage z.

FACT3.3.7. If guess[j] is (re-)defined and gets value i then no value of

ti(x) is yet enumerated.

PROOF.guess[j] is defined for the first time at tj,(l)}. In this situation

guess[j] := maxguess 2 maxbnd= j. At this stage no values of ti(x) are yet
enumerated hence we should look at values enumerated before stage j. At

that time however maxbnd< j, so no values of ti(x) are yet enumerated.
If guess[j] is redefined during (3) of stage n the newvalue becomes

maxguess-+1 > maxbnd. Therefore no values of t (x) are yet known. Umaxguess+l

COROLLARY3.3.8. [Correctness of testing]. If at tn,(3)} guess[j] = i and
' s x which is enumerated beforeif there exists a value ti,(x) with i S i

{n,(3)} then j is tested at x against i during execution of (2) of a stage
before {n,(3)}.
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23992. using the predicate P from 3.3.5 we conclude that P(i',x,n) holds.

Nowi S i‘ implies that P(i,x,n) holds also, hence ti(x) is enumerated
during execution of stage m (2) with m S n. From 3.3.7 it follows that
{m,(2)} does not preceed the moment that guess[j] = i becomes valid. Nowwe

can conclude that the test A(j,x,ti(x)) = Eggg? ‘is executed during execu­
tion of stage m (2).

FACT3.3.9. [Correctness of manipulation with reports]. Let Al(j) be the
assertion:
There exists a number (possibly zero) of SRs on j on the SL, all against

the same bound ti where the bound-index i equals the current value of
guess[j], and the VQcontains no VRon j.

Let A2(j) be the assertion:
There exists a non-zero number of VRs on j in the VQ, all against the same

bound ti where the boundindex i is less then the current value of guess[j]
and the SL contains no SRs on j.

Then for each j and at each moment in between two blocks during the compu­

tation the disjunction A1(j) Q3 A2(j) holds.

Remarkthat Al(j) and A2(j) are never simultaneously true.

£3993. Al(j) is trivial before {j,(2)}. By studying the effect of execu­
tion of the blocks (0),...,(5) one proves that each of these blocks leaves
the correctness of Al(j) Q3A2(j) invariant.

(0) and (1) both leave the SL and the VQunchanged. Furthermore with

exception of (1) of stage j, the value of guesslj] is not changed either.
Hence after tj,(2)} the blocks (0) and (1) leave both Al(j) and A2(j) un­
altered.

At {n,(2)i the VQis still emptyand therefore correctness of Al(j)
g§_A2(j) implies that Al(j) holds. During execution of (2) the SL is left
unaltered or extended by some further SRs; those of these SRs which are
SRson j are SRs against t For this reason Al(j) holds also afterguess[j]°
completion of (2).

The effect of execution of block (3) depends on whether a violation
by j is detected at the current stage or not. At {n,(3)i the VQis empty
and consequently A2(j) is not true. Wemay assume therefore that Al(j)
holds at {n,(3)}.

If no violation by j is detected then guess[j] remains unchanged; no
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VRon j is placed in the VQand all SRs on j remain undisturbed on the SL.

ThereforeAl(j) is still valid at tn,[3]}.
If a violation by j is detected, then at least one SRon j is trans­

formed intoaaVR on j which is placed in the VQ; the value of guess[j] is
redefined and therefore increased, and all remaining SRs on j are deleted
from the SL. NowA1(j) is no longer true but A2(j) is correct at {n,[3]$.

Execution of (4) leaves the SL, VQ, and the value of guess[j] unchanged.
If at {n,(5)} the assertion Al(j) holds the VQcontains no VRson j either
at {n,(5)i or at {n,[5]i, whereas the SLand guess[j] are invariant under
(5). If at {n,(5)$ the assertion A2(j) holds then by the clearing of the VQ
A2(j) becomesfalse but Al(j) becomes trivially true. Hence (5) leaves
Al(j) 9§_A2(j) invariant in this case too. This completes the proof. D

FACT3.3.10. If guess[j] = i at a certain stage and if A(j,x,ti(x)) = false
for an x 2 i then guess[j] is redefined at a future stage (and consequently
guess[j] > i will become true).

ERQQE.Assumeby hypothesis to be shown contradictory that guess[j] stabi­

lizes at i. Since ti(x) < w and i S x the value ti(x) will be enumerated at
a momentwhen guess[j] = i is already valid. Nowthe test A(j,x,ti(x)) =
= Eggg ? is executed, and by hypothesis the answer is negative. This leads

to the creation of an. SR on j; <j,x,i,ti(x)> 6 SL becomes true.
Since SRs are only deleted from the SL during execution of (3) at

which occasion the guess-values of the corresponding indices are redefined,
one derives from the fact that guess[j] has stabilized at i that

<j,x,i,ti(x)> 5 SLforever.
A(j,x,ti(x)) = fg2§§_implies that there exists a z so that for all

w > z one has A(j,x,w) = fggg. Consequently execution of stage w (3) where

maxtest = w > z would result in the transfer of the SR<j,x,i,ti(x)> to the
VQand to the redefinition of guess[j]. This is a contradiction.

This shows that guess[j] is indeed redefined. D

COROLLARY3.3.11. [Claim 2]. If j violates ti infinitely often then
guess[j] does not stabilize at a value k S i.

PROOF.First consider the case k = i. As follows from 3.3.10, the assump­

tion guess[j] = i at a certain momentimplies guess[j] > i in some future.

If k < i then the fact that j violates ti infinitely often implies that j
violates tk infinitely often also. U
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ASSERTION3.3.12. [Assertion 1]. If tinf[x] is defined during stage n (4)

and if guess[j] = i at {n,(4)i and if k is the bound-index used at x then

either i 2 k or A(j,x,ti(x)) = A(j,x,tk(x)).

ERQQE.If guess[j] is redefined during execution of stage n (3) then
k S maxbnd < maxguess +1 = guess[j] and the assertion is proved. The case
i 2 k is also trivial, therefore we restrict ourselves to the case that
i < k and (consequently) guess[j] not redefined during stage n (3).

when tk(x) is enumerated, k S x and consequently i S x also. ti(x) is
enumerated after guesslj] = i has becomevalid and A(j,x,ti(x)) = t§Ee_?
has been tested at this occasion (3.4.8). Dependingon the outcome of this
test there are twopossibilities:

(i) A(j,x,ti(x)) = true. Nowti(x) S tk(x) implies A(j,x,tk(x)) = true as
well and we are ready.

(ii) A(j,x,ti(x)) I tgge. This results in the creation of the SR
<j,x,i,ti(x)> and since guess[j] = i is still valid at {n,(4)} we
still have <j,x,i,ti(x)> e SLat {n,(4)}.
The absense of the VR<j,x,i,ti(x)> in the VQat {n,(4)}, implies that
A(j,x,maxtest) 1 tgge; for the index j' which violates against tk at
x, and which is used to define tinf[x] one has A(j',x,maxtest) = tgge.

Therefore: ti(x) S tk(x) < maxtest which implies:
A(j,x,ti(x)) = A(j,x,tk(x)) = A(j,x,maxtest) 1 true.

This completes the proof. U

COROLLARY3.3.13. If during stage n (3) a VR on j at x is created then j
violates tinf at x.

PROOF.Let <j,x,i,ti(x)> be the VRon j at x and let this VRbe produced
at stage n (3). Let tinf[x] be defined at stage m (4). Let i‘ be the value
of guess[j] at {m,(4)}.

Since stage m is the first stage during which VRsat x are produced
(this follows directly from the program text of block (4)) one concludes
both that m exists and that m s n.

Weconsider several possibilities:

(i) n = m.

By our choice of the bound-index used at x we conclude that i 2 k. If

A(j,x,ti(x)) = [else then A(j,x,tinf[x]) = A(j,x,tk(x)) = fialse also.
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(ii) n > m and i‘ = i.
From Assertion 1 we now conclude that either i‘ 2 k in which case

A(j,x,ti,(x)) = fgE§§_whichimplies that A(j,x,tinf[x]) =
= A(j,x,tk(x)) = fgésg also or otherwise A(j,x,ti,(x)) = A(j,x,tk(x))
which also implies A(j,x,tinf[x]) = fgégg.

(iii) n > m and i' ¢ i.

In this case i > i' since i is a more recent value of guess[j] then

i', Whenthe redefinition guess[j] = i was executed tk(x) was already
enumerated, hence i > k. Combining this with the fact that

A(j,x,ti(x)) = fgggg one derives that A(j,x,tinf[x]) = A(j,x,tk(x)) =
= false. D

Note that case (iii) is actually madeimpossible by the fact that
maxguess = maxarg. The assumed redefinition of guess[j] implies i > x and

consequently ti(x) is never enumerated, and the assumedVR<j,x,i,ti(x)> is
never created.

Case (iii) is included in the proof to showthat the correctness does
not depend on the option maxguess 2 maxarg.

The next assertion is again based on the choice maxguess 2 maxarg.
This assertion is inessential for the remainder of the proof.

FACT3.3.14. [Prevention of multiple testing]. If <j,x,i,ti(x)> e VQat
{n,(4)} and if <j,x',i',ti(x')> e VQat {n',(4)} then x 1 x' or the two VRs
are equal and n = n'.

PROOF.If n = n‘ then the two VRs are derived from two SRs which were si­

multaneously on the SL at {n,[2]i. Then i = i' and consequently x i x'
since otherwise the two SRs were equal.

If n and n' are distinct we may assume that n < n‘. At {n,[5]} there
is no SR on j present on the SL and the VQ is empty. Moreover guess[j] =

= maxguess-+1 > maxarg 2 x. Because i' is at least this value of guess j
at {n,[5]} and i’ S x' we conclude that x' > x.

This completes the proof. U

COROLLARY3.3.15. [Claim 1]. If guess[j] is unstable then j violates tinf
infinitely often.

PROOF.If guess[j] is redefined at stage na (3) then at tna,(4)} a VR
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<j,xa,ia,ti (xa)> e VQwhere ia equals the value of guess[j] at {na,(3)}.a
Consequently as follows from 3.3.13 j violates tinf at xa. Moreover,

n < n implies i < i and by our enumeration technique we have x 2 i .a b a b a a

If there exists an infinite sequence of stage numbersna with this
property then the sequence of corresponding arguments xa contains infinitely
manyelements as well, and consequently j violates tinf infinitely often. U

Note that from 3.3.14 we derive straightforward na 1 nb Egg xa 1 xb.

FACT3.4.16. [Assertion 2]. For each k the number of arguments where the

bound-index used at x (denoted by k(x)) satisfies k(x) S k is finite.

PROOF.After stage k+l we have maxguess > k. From that moment on each value

guess[j] which is redefined will be made larger than k. The set Gk defined
by Gk= {j I guess[j] S k} is a finite set which decreases after {k+1,[0]}.

Weprove that for each argument x where tinf[x] is defined and where
k(x) S k an index j is deleted from G Assertion 2 is now a consequence ofk.
the exhaustion of the finite set Gk.

Let tinf[x] be defined at stage n, (4) with n > k. Then the following
implications hold (x and n being constant):
k(x) S k

2:72

there exists a VR<j,x,l,ti(x)> E VQat {n,(4)} with l S k
i_m2

there is an SR<j,x,l,t1(x)> 5 SL at {n,(3)} with guess[j] = l S k at
{n,(3)} and during execution of stage n (3) this SR becomes a VRand
guess[j] is redefined to be equal maxguess-+1 > k

217?.

k at {n,(3)} and j é Gk at {n,(4)}.
If k(x) S k for infinitely manyx, then for infinitely manyof these

there exists a j with j e G

arguments tinf[x] is defined after {k+l,[0]$. At each stage tinf[x] is de­
fined for at most a finite numberof arguments x. Consequently infinitely

many elements are deleted from the finite set formed by the members of Gk
at {k+1,[0]}. This is a contradiction. D

COROLLARY3.3.17. [Claim 4]. If guess[j] stabilizes then j respects tinf.

PROOF.As follows from Claim 2 guess[j] does not stabilize unless j re­

spects some tk. However the fact that k(x) 2 k almost everywhere implies
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that tinf[x] 2 tk(x) for almost all x. Therefore j respects tinf as well. D

ASSERTION3.3.18. [Claim 3]. If j respects some bound t then guess[j] sta­k
bilizes.

PROOF.Suppose that guess[j] does not stabilize. Then guess[j] is redefined

during stage na for infinitely manyna. Then redefinitions correspond to an
infinite sequence of VRs<j,xa,ia,ti (xa)> where ia strictly increases anda

where xa 2 ia. Therefore there exist arbitrary large x and i with
A(j,x,ti(x)) = false.

If j respects tk then there exists a 2 so that for all x 2 z where
tk(x) is defined A(j,x,tk(x)) 1 false. The monotonicity of the sequence
(ti)i implies:

3zVx2zVi2k[ti(x) < wEgg A(j,x,ti(x)) 1 false].

This contradicts the existence of arbitrarily large x and i with

A(j,x,ti(x)) = fa_Z_§e. El

THEOREM3.3.19. [Union theorem]. The function tinf computed by the program
in 3.4.3 satisfies:

A _ A .

3 Fw(ti) —Fw(t1nf).

. A . . A

PROOF.Let J 6 U Fw(ti). Then there exists a k so that J 6 Fw(tk); now by“““ 1
Claim 3 guess[j] stabilizes and by Claim 4 j e F$(tinf).

If j é O F$(ti) then there exists no k so that j e F$(tk). Therefore1
guess j does not stabilize at a value S k for each k by Claim 1. This

shows that guess[j] is instable, and consequently, by Claim 2, j t F$(tinf).
This completes the proof. D

3.3.5. APPLICATIONS AND REMARKS

The union theorem can directly be applied to classes consisting of
total functions or programs. The reason is that equality of two sets of
programs (functions) remains valid if both sides are intersected with a
fixed third class (in this case the class of total programs (functions)).



145

For the complexity classes with partial names as defined by
E.L. ROBERTSON[Rb 71] a union theorem makes no sense. If the domain condi­
tion

, .

apj 6 Ft zfif co]. 6 Ft and Dcpj 3 Dt

is enforced, then the sequence of names defined in example 3.3.2 yields a

"counterexample" to a union theorem for the classes Fé.

EXAMPLE3.3.20: [The union theorem does not hold if domain conditions are

enforced]. Let

F; {cpi | «pi e Fta_ncjDLpi 3 01:}.

Let

0''?
ll Ax[§I:x S i then Zoqp else 0 £2].

Suppose moreover that ti = with Awb = A¢O and suppose that all‘°o<i> (i) (1)
other programs have run-times larger than zero for almost all their argu­

ments. Then for no function tinf the equality U FE_ = is correct.
1 1

IFtinf

} and therefore

(1) I Féinf. If Dtinf = ¢ then
= P x U F£_. If Dtinf ¢ ¢ then let z be the least element of Dtinf;1 1

I

& Ftin D

PROOF. One has Fl, = {w
' =

LgFti {coo

<o)""o<1>'°"""o<i>
i 5 IN}. Suppose now that L:Féi =

'
Ftinf
now w so again O F;0 1(z) f i I Ftinf'

The general union theorem on abstract resource-bound classes yields
several other union theorems by selecting as acceptance relation one of
the specific examples given in 3.1.3.

It should be noted that the union theorem for complexity classes
modulo sets of exceptional points can be found already in the thesis of
L. BASS[Ba 70]. He uses the trick to encode the set of exceptional points

in the guess-value of the program and not, as is done in our proof, in the
the index of the program.

If the class E of sets of exceptional points is not assumed to be re­
cursively presentable the union theorem becomes invalid. L. BASS[Ba 70]

describes a sequence of classes CE. with (ti)i non-decreasing and total,
and E not recursively presentable, such that 9 Ct_ for each totalx C .

1 1 tinf
function tinf.
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If the class E is recursively presentable then we can eliminate this
class E completely by replacing the names of the classes by other names
(which in general are partial); moreover this renaming can be done uniformly.

THEOREM3.3.2]. Let E = (Ei)i be a recursively presentable class of sets of
exceptional points. Then there exists a transformation of programs 0 so

that Fg = Fm for each index i.i 0(i

PROOF.Since E is recursively presentable there exists a recursive function

e such that e(i,x) =.£f x e Ei then melse I ff,
Wedefine the transformation of programs T by:

wT(i’j)(x) ==¢3(x) * max{e(k,x) I k S i}.

Hence

“Q(i,j)(x) = if.“ 5 kgi Ek.EEEE”.§£§§ ¢j(x).fE°

Although we have not stated this explicitly in the formulation of the union
theorem one derives easily, using the algorithm given to compute tinf, that
the program for tinf depends uniformly on the program for the sequence

(i’j))i to be a sequence of programs
which depends uniformly on the index j. Since this sequence satisfies for
(ti)i. Weconsider the sequence (wk

each value of j the monotonicity condition w there exists5 . .-r<i.j) “’r<1+1.J)
a sequence of names (tinfj)j which satisfy:

UF =F. .
1 @T(i’j) tinfj

Moreover tinfj depends uniformly on j; there exists a transformation of
programs o so that (wb ) = tinfj. Weclaim that o is the transformation(3')
we need.

From the union theorem it follows that:

qi;eF¢%(j) Eff Biiwk 6 FwT(i,j)]
Eff 3iVx[tD_[(i’j)(X) < °° 2/12 4>k(x) S ¢>T(i,J-)(x)]

gff 3i$v°’x[x & 1lSJi E1 gzfl cDj(x) < °° _i_r_n2<Dk(x) < tDJ.(x)]

Eff 31°EIF[#F<°° fl Vx[x ¢ 121 E1 UF _a_n_c££Dj(x) <00 <Dk(x)<Lpj(x)]]

Eff 31Vx[x ct E1 gag <oJ.(x) < w i_mp_<I>k(x) < <oJ.(x)]
. E

‘Eff wk 6 Pay.
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These equivalences follow from the fact that E is closed under finite unions

and contains all finite sets. One concludes that Fm (_) = F$_.O J J
This completes the proof. D

An application of the union theorem for weak classes with partial
names is the proof given below that the family of all programs with bounded
range is an honesty class (provided that no computation terminates in zero
steps).

DEFINITION3.3.22. A program mi is a program with bounded range, if there

exists a number k so that Vx[mi(x) < w EQp_mi(x) S k].

ASSERTION3.3.23. Suppose that ¢i(x) > O for each i and x. Then the set of
programs with bounded range is an honesty class of programs.

PROOF. Let

RR = Ax,y[£f y S k then loop else 0 £2].

NowGRk is the set of all programs mi so that

‘°;’x[€Di(x) < co imp mi(x) s k].

Hence the programs in GRRhave a bounded range. Conversely, suppose that mi
has a bounded range. Then there exists a k so that mi(x) < w implies

mi(x) S k and consequently mi 6 GRk.

The conclusion is that E GRRis precisely the class of all programs
with bounded range. However, this union is also an honesty class, as follows
from our union theorem. U

Considering the name Rinf for U GRRwhich is computed by our union al­
gorithm in section 3.3.3 we can make the following observations:

(i) Vx,y[Rinf(x,y) = w‘g§ Rinf(x,y) = 0]

since a value of Rinf is also a value of one of the Rk.

(ii) Vy$x[Rinf(x,y) = m].

Otherwise a program with bounded range, which is not contained within

GRinf could be constructed by diagonalization.
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(iii) If f has infinite range then DRinf contains infinitely manyelements
from the graph of f.

Otherwise f would be contained in HRinf.

These peculiar properties of the domain Qf Rinf can also be expressed
as follows:

(iv) If the (non-recursive) function k is defined by:

k(x) = uy[3z2x[Rinf(z,y) = 0]]

then R has unbounded range, but k increases slower than any partial
recursive function with unboundedrange.

A set with analogous properties can also be constructed straightfor­

wardly; for example one might enumerate the graphs of all mi simultaneously,
accepting from the graph of ¢k at most k points <xO,y0>,...,<xn,yn> so that

yo < < OOO < y Cn
At the same time this example shows that the concept of an honesty class

with a partial namehas little to do with the original concept of a function
whose complexity is bounded by its size.
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CHAPTER 3.4

THE NAMING THEOREM AND THE MEYER-MCCREIGHT ALGORITHM

3.4.0. INTRODUCTION

This chapter discusses the MEYER-MCCREIGHTnaming theorem [MMC69] and

somerelated topics. This theorem states the existence of a transformation

of programs 0 so that the sequence (wb(i))i is a measured set, and so that

for each index i, the function mi and w6(i) are names of the same complex­
ity class. The transformation 0 is also called an honesty procedure on P,
since the membersof the measured set form a honest family of functions.

Although in the original proof only the restriction of o to R is con­

sidered, and o is defined in such a way that wB(i) is total whenever mi is
total, (a so-called honesty procedure on R), the proof yields the result
for P as well. The first Blumaxiom is not used, and therefore a straight­
forward translation for strong abstract resource-bound classes can be
proved. See section I of this chapter.

Section 2 contains the proof that an analogous uniform honesty proce­
dure for weakabstract resource-bound classes is impossible. Morespecifi­
cally, we show that for every transformation of programs o such that

(wO(i))i is a measured set, an index e can be found so that

HgpZ(we) I H$pZ(wo(e)
finally the construction of a total we with the property that the above in­

). A similar result is given for honesty classes and

equality holds proves the non-existence of honesty proceudres on R for weak
classes as well.

The observations made in an informal correctness proof in section I
are used in section 3 to construct a number of modified MEYER-MCCREIGHTal­

gorithms which prove some properties of the system of names of strong

classes. Weshow that it is possible to rename a class FS(wi) by two names

wOl(i) and wb2(i) having disjoint domains. Wenext prove a generalization
of the union theorem where the condition of monotonicity of the sequence of
names is repalced by the condition that the corresponding classes of in­
dices themselves form a monotonic sequence of classes.

In section 4 we consider the problem whether a given set of indices can
be represented as a strong abstract resource-bound class in a given accep­
tance relation. Weprove that a suitable modification of the MEYER-MCCREIGHT
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algorithm acts as a closure operator; it computes a name t so that a given
class X is entirely contained within F(t) and so that the class F(t) is
minimal with this property. If X is already a strong abstract resource­
bound class named by some unknown name then the two classes are equal.

Section 5 contains a further analysis of the possibilities to save
something of the MEYER-MCCREIGHTalgorithm for weak classes. By equipping

the algorithm with a so-called "wizard" we loose measuredness but the re­
namingproperties are preserved. As applications we find a generalized
union theorem for weak classes with total names, and an intersection theo­
rem.

3.4.]. THE MEYER-MCCREIGHT ALGORITHM; AN INFORMAL DESCRIPTION AND CORRECT­

NESS PROOF

A formulation of the naming theorem in the context of abstract re­
source-bound classes reads:

THEOREM3.4.]. For every acceptance relation A there exists a measured
transformation of programs 0 such that for each index i the equality

_ A

A straightforward corollary is a naming theorem for the classes G§(t)
and H§(t).

DEFINITION3.4.2. A transformation 0 satisfying the condition of theorem
3.4.] is called an honesty procedure on P. If 0 maps R into R, o is called
an honesty procedure on R.

All honesty procedures which are knownup to now are variants of the
original MEYER-MCCREIGHTalgorithm [MGM69] or the simplification of this

algorithm as given by R. MOLL[Mo72]. Wecall these algorithms therefore

MYER-MCCREIGHTalgorithms, which is abbreviated to MC-algorithms.

In the sequel of this section we explain the design of the MMC-algo­
rithm which is formally defined in the appendix. The essential ideas needed
to prove the correctness are derivable from the design alone, and hence we
disregard all implementation problems which might disturb our argumentation.

Our MMC-algorithmis described as a program to compute ¢6(i) = t' by
enumeration of the graph of t'; since this program depends uniformly on the
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index i, this implicitly defines the transformation 0.

To enforce that the sequence (wO(i))i is a measured set we design this
enumeration in such a way that for increasing y pairs <x,y> are tested to
see whether they belong to the graph of t’ or not; moreover, we prevent a
pair <x,y> being accepted as memberof the graph of t' in case it was re­
jected at an earlier occasion. In other words: t' is computedby a least
numberoperator application on a certain total but dynamically changing
condition uniformly depending on i, j, x, and y.

Since it is never certain that the computation of t'(x) converges, the
algorithm executes a dovetailed computation of t'. Traditionally one uses a
stagewise description, where, at each stage, for one or more pairs <x,y>
the equality t'(x) = y is tested (and in most cases rejected). This implies
that in the case where t'(x) diverges in the course of time an infinite
numberof attempts to compute t'(x) will be elaborated, none of which is
going to succeed.

From the point of view of the user of the algorithm, a description,
where all values t'(x) are enumerated in parallel, using a least number
operator on somecontinuously changing condition, gives a better impression
on what the algorithm is intended to do.

The difficult part of the design of an MMC-algorithmis to make the
equality F(t) = F(t') true. This is done by enforcing the following equiv­
alence:

j violates infinitely often against t ififi
j violates infinitely often against t'

To enforce this relation one tries to create a violation by j against
t' (by taking a "low" value for t'(x)) whena violation by j against t(x)
has been discovered. However, t' should be larger than the run-times of
the indices which either have comitted no violations yet, or have been
punished already for all the violations comitted by themup to the current
moment.

It is not hard to see that these requests on the indices currently
under consideration may contradict each other. To resolve this problem we
introduce a priority system. Each index j is given a priority status con­
sisting of a Boolean b(j) and a priority numberp(j). The Boolean b(j) re­
presents whether j has still an "unpunishedviolation" on its "crime record"
(this is encoded by b(j) = false). Wesay j is "on the black list" or
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shortly "j is black" to describe b(j) = jgzse, The remaining indices form
the "white list". The numberp(j) places j in the so-called "priority
queue". This priority queue consists of the indices introduced up to the
current moment,ordered by increasing priority number. A higher value of
p(j) meansa lower priority.

Except for the introduction of an index in the algorithm, at which
occasion this index is placed at the tail of the priority queue (with a
value for b(j) which is irrelevant at this occasion), the indices are sub­
mitted to the following acts of "social regulation":

a) if a white index is detected to violate a newly enumerated value of t(x)
it is movedas a black index to the tail of the priority queue.

b) If a black index is detected to violate a newly created value of t'(x)
it is movedas a white index to the tail of the priority queue.

The values of t'(x) are defined in such a way that "justice" as described
above is served in the most effective way. Wewant to "punish" a black in­

dex jo by creating a violation by jo against t'(x) but at the same time we
should respect the demandsof the white indices j, having higher priority

than jo (the requests of indices which are white and have lower priority
maybe refuted; our algorithm is an implementation of corruption). More
formally, t'(x) is defined to be:

"the least z such that there exists a black index jo for which
A(jO,x,z) ¢ true whereas for all white indices j having higher priority
A(j,x,z) = true".

(The priority of) this index jo above is called (if present) the index
(priority) used at x.

Since it is quite possible that such a value z does not exist we pro­
tect ourselves against the resulting infinite computationsby "dovetailing"

the algorithm which computes this minimal z and the corresponding index jo.
The diagram below explains the problem and the algorithm used to solve

it. Horizontally we draw the successive indices in the priority queue, the
priority decreasing from let to right. In the vertical direction we draw
the run-times of these indices at x whereas the "colour" of each index is

indicated by halflines going up for white indices (meaning that z should be
at least as large as the corresponding run-time) and going downfor black
indices (meaning that z should be less than this run-time).
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In the situation represented z = aj4(x) and jo = j7 is a solution to
the problem.

If at some point in time index j4 should be moved to the tail of the

priority queue, the solution would become z —aj2(x) and jo = j5.
This solution yields a lower value of z.

31 32 i3 ja 35 j6 57 j8 39 310 5'11 512

Diagram 3.4.3

As the example shows, care must be taken that by dovetailing no "revi­
sions" occur in the sense that solutions which are rejected, are accepted
at subsequent consideration. Wewill return to this problem in a moment.

The dotted line in the diagram represents the algorithm which we will
use in the sequel to solve the problem.

Starting at the first index with the value z = O (or at a second try
z = low, where low is the first value not yet tried) we walk through the
diagram guided by the following instructions:

if we are considering a white index j for which A(j,x,z) I Eggg then
we increase z by one and we try again

otherwise

if we are considering an index j with A(j,x,z) = Eggg then we proceed
to the next index in the priority queue if such an index is present (other­
wise report failure)



I54

otherwise

if we have a (black) index with A(j,x,z) I true then we have found the
solution.

The algorithm is implemented below in the subroutine searchtime which

is used in our informal description of the MMC-algorithm. The meaning of
the parameters is the following:

x is the argument we are trying to compute t'(x) for;
low is the first value not yet tried as t'(x);
high is the largest value whichwill be tried as t'(x) at this run (to pre­
vent infinite computations);
prior is a parameter which represents the priority queue *) used in the
computation.

If the computation of searchtime terminates succesfully it has as out­
put the value of z in the variable val and the index used at x in the vari­
able candidate.

prgg searchtime = (int x,low,high,i_prior gueue f_prior) ggid;
§ggin_int_val := low, candidate := f_first index in prior £5

gflile val S high dg
if f_b(candidate) E A(candidate,x,val) i tI_’u_e¢_

tflgn val +:: 1
elif f_A(candiate,x,val) I true f_

t§en_f_if still candidate available
tfl§n_candidate := next candidate in prior
el§e_ggtg failure
E i_

else ¢ t'(x) := val; index used at x := candidate; report success f_
:L' 0_ds

failure: f_report falure to calling program£_
end ¢ searchtime ¢;

In the actual program the expressions i_... ¢ are replaced by
ments and expressions formally computing the values suggested by the clause
in between the underlined commentsymbols.

*) In an actual implementation it is handy if searchtime has access to
prior as a linear list, whereas the rest of the programtreates prior
as an increasing array of priority-status values. Wepostpone the dis­
cussion on this interface till the appendix.



155

It is not hard to verify that in this algorithm at each occasion where
candidate gets a new value, val equals the maximumof low and the maximal

run-time of a white index with a higher priority than the index which is
the newvalue of candidate. Moreoverval is at least as large as the maxi­
mal run-time of a black index with higher priority.

If the new candidate happens to be a black index with run-time larger
than the current value of val then the algorithm terminates successfully.
In other words, the algorithm will not proceed in the priority queue beyond
the first black index having a run-time at x larger than low and larger
than the run-times of all the (white) indices having higher priority.

In the description of searchtime we gave already the beginning of an
implementation of an MMC-algorithm.Our motivation is that the absense of
this or a similar implementation of the "definition" of t'(x) as given be­
fore is the main reason why the knownMC-algorithms in the literature are
hard to understand [MCM69] [HH 7]].

To complete the design we should explain how to prevent the accep­
tance of solutions being rejected at an earlier occasion. Twostrategies
are knownin the literature.

The first strategy, which is used in the original MMC-algorithmof
MEYERand MCCREIGHT[MCM69], uses for each computational try for t'(x) as

priority queue status the historical contents of the priority queueat the
end of stage n, where n in fact equals the value of the argument x. There­
fore the problem which searchtime must solve, depends only on x and not on
the stage during which searchtime is called.

The second strategy is used in the simplified MMC-algorithm of R. MOLL

[Mo73]. In this algorithm prior represents the current state of the prior­
ity queue; however, by using a non-zero value for low each value z is tried
at at most one occasion, and therefore no revisions occur (in fact low =
= high is used and at each call of searchtime only one value z is tried).

Having explained the design globally, we can now give an informal des­
cription of a complete MMC-algorithm.A stagewise description is used,
without being to explicit on the amount of work executed during the dif­
ferent sections of a stage. This is motivated by our opinion that this
choice should be made for an actual implanentation. Wemust however be sure

that (1), (2) and (4) are organized in such a way that:

(i) all indices j are introduced,
(ii) all converging values of t(x) are actually enumerated,
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(iii) computationsof t'(x) are tried until t'(x) has converged; moreover
the value of high used in these computations grows to infinity where
as at no momentlow is larger (or, if no protection against revisions
is used, smaller) than the first value z not yet tried at x,

(iv) the priority queue status used for the computation of t'(x) should
represent the actual status of the priority queue in the computation
at some stage in between stage x and the current stage.

(These conditions are needed to make the argumentation in our "correctness­
proof" valid.)

The MMC-algorithmis initialized by clearing the lists of enumerated
values of t and t' and the priority queue. Next stage 1 is executed.

stage k consists of the following 6 sections:

(1) Introduction of a finite numberof indices j by placing them at the
tail of the priority queue(their colours b(j) are irrelevant).

(2) Using a universal enumerator universal(i,x,z) we search for some time
whether we can find one or more new values of t(x).

(3) If we have generated in (2) new values of t(x), we use them to test for

all currently white indices j whether A(j,x,t(x)) = 3533 or not. The
indices which are detected to violate t are movedto the tail of the

priority queue and becomeblack indices.
(4) Using a devise against unwantedrevisions of earlier rejections we exe­

cute a numberof calls of searchtime, hoping to find newvalues of t'.
(5) If in (4) newvalues of t'(x) have been created, we use them to test

for all currently black indices whether A(j,x,t'(x)) = £§E3_ornot. The
indices which are detected to violate t' are movedto the tail of the

priority queue and becomewhite indices.
(6) Proceed to stage k+I.

Before giving a "correctness-proof" we like to isolate sections (2)
and (3) from their surroundings. In these two sections the tests are per­
formed which discriminate between the indices which are contained in F(t)
and those indices which are not. This discrimination should be understood

in the following way: if an index j is a memberof F(j) then it will be
movedon the black list by (2) and (3) only a finite number of times; if
however, j é F(t) then (2) and (3) will remove j from the white list at a
future stage, each time j happens to becomewhite.
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The sections (2) and (3) together are called the discriminator of the
MMC-algorithm.

A further important observation concerns the index jo and the priority
used at x. Fromthe definition it is clear that this priority is the prior­

ity of a black index. Moreoverby definition A(j0,x,t'(x)) I Eggg. Hence,
if the index jo still is a black index at the momentt'(x) is defined, it
will be removedfrom the black list and its black priority will be deleted.
It is howeveralso possible (by the fact that the priority-queue status
used to computet'(x) was a "historical snapshot") that the black priority

of jo was deleted already a long time ago. In both cases, however, the
black priority of jo is a "mortal" one. From this we conclude that a cer­
tain priority cannot be used at infinitely manyarguments x and that conse­
quently for each k the number of arguments x at which a priority S k is
used is finite.

Wenow turn to our correctness proof for the MMC-algorithm. Wedevide

the set of all indices in three classes, depending on the behaviour of
their priority status <p(j),b(j)>.

Case 1. p(j) does not stabilize.

In this case j is transferred infinitely manytimes from the white
list to the black list (for violating t) and transferred back afterwards
(for violating t'). In our design we test each index j only once for each
argument against t respectively t‘. Hence the numberof violations by j
against both t and t‘ is infinite: j & F(t) and j & F(t').

Case 2. p(j) stabilizes with b(j) = true (j is white-stable).

In this case j violates t at at most finitely manyarguments, and
therefore j e F(t). Let k be the value at which p(j) stabilizes. For almost
all x the priority used at x is larger than k, and this means that for al­
most all x, by definition of t'(x), we have A(j,x,t'(x)) = Eggg, Therefore
j e F(t') also.

Case 3. p(j) stabilizes with b(j) = false (j is black-stable).

In this case it is almost trivial that j e F(t'). The tricky part is
to show that j e F(t). Wederive this from the following assertion.
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ASSERTION3.4.4. If p(j) becomes stable with b(j) = false and with p(j) = k,

then the run-time of j is bounded almost everywhere by the maximumof the

run-times of those indices i which are white-stable and stabilize at prior­
ities p(i) S k.

This assertion can be derived by considering the computations of
searchtime as represented by diagrams like diagram 3.4.3 for x going to in­
finity.

For sufficiently large x the priority queue status used to compute
t'(x) will represent a situation wherep(j) together with all priorities
p(i) S p(j) have becomestable priorities. This means that the head of the
priority queue upto j has become stable. For each x and at each occasion
the priority queue used to compute t'(x) starts with the same sequence of
indices having the same colours.

Nowsuppose that for such an x the run-time of j is larger than the
(finite!) maximumof the run-times of the white stable indices with higher
priorities. Then our search algorithm cannot movein the priority queue
beyond j without finding j to be a solution. It can however not terminate
before reaching j since this wouldmean that a priority p(i) S p(j) is
used (whichcontradicts the fact that p(i) is stable). It is also not pos­
sible that our search algorithm diverges with val going to infinity on the
initial segment of the priority queue since we assumed that the maximumof
the white run-times on this segment is a finite value. Hence we must accept

that index j is accepted as solution, and this contradicts the fact that j
has a black stable priority. This proves assertion 3.4.4. D

Fromassertion 3.4.4 one easily derives that j 5 F(t). Let {j1,...,j1}
be the finite set of white indices which stabilize with p(jn) S p(j). Now
by assertion 3.4.4 one has:

"$°'x[a.(x)s maa:(ot.(x),...,a. (x))].
J —- J1 J1

Since jn is a white-stable index we have jn e F(t); hence

‘:’°x[CXj(x) s t(x)] (lsnsl).
I1

Therefore:



I59

$x[@a£(a.(x),...,a. (x)) s t(x)]
31 J1

and consequently

Vx[aj(x) 5 t(x)].

Hence j 6 F(t); this completes the proof. D

To complete this section we emphasize that assertion 3.4.4 does not
depend on the actual structure of the discriminator in the MMC-algorithm,
but represents a property of this algorithm in a muchmore general shape.
This observation will be a crucial argument in section 3 and 4 of this
chapter.

A final observation is that the argumentation given above is highly
non-constructive. Given a concrete MMC-algorithmit is possible to give
constructive proofs as well (see for example [EB71] and the proof of the

BASS-YOUNGirregularity theorem [Ba 70] [BY 73]).

3.4.2. THE NON-RENAMEABILITY OF WEAKABSTRACT RESOURCE-BOUND CLASSES

{The Lieutenant of the Tower of Barad-dfir he was,
and his name is rememberedin no tale; for he
himseZf'hadforgotten it, ...

J.R.R. Tolkien. The Lord of the Rings}

To prove the negative result that no naming theorem for weak abstract
resource-bound classes exists, we cannot simply show that the MEYER­

MCCREIGHTalgorithm we sketched in section 1 fails to rename these classes,

because we could imagine that someweird but still unknownconstruction
could be correct. Wemust show that each construction which does part of
the job, fails in someother part.

In this section we prove assertions of the following type:

Let 0 be a measured transformation of programs. Then there exists an index

so that we and $6 are names of different classes.(e)

The so-called honesty procedures 0 which are constructed in the proof of
the naming theorem are knownto show irregularities of the following type:
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If mi is a program with an extremely large run-time ®i then ¢%(i) becomes
a function with unreasonable large values at infinitely manyarguments.

This phenomenon was first described by L. BASS [Ba 70, BY73] for

the original honesty procedure described in [MCM69]. More recently A.]HEYER

and R. MOLL[MMo72] have shown that these irregularities occur for each

measured transformation of programs which maps the set of functions with
finite domaininto itself, a property shared by all honesty procedures,

since these functions are precisely the names of the class C8 = P. Their
proof is a simple application of the recursion theorem. Their much stronger
result reads:

FACT3.4.5. Let o be a measured transformation of programs which is a hon­

esty procedure on P. Then there exists for each total f and each total t an
index e of a program computing f so that:

liminf (#{y S x I
X'*°°

wO(e)(y) S t(Y)})/X = 0­

These irregularities can be explained intuitively as follows. Consider

a machine into which is fed the graph of the program mi and which computes

the relation wO(i)(x) = y. If Dwi is finite, then the answer onto the ques­
tion "is ®6(i)(x) = y?" will be almost always negative. Moreover, since 0 is
measured these answers must be produced in a finite amount of time regard­

less of the speed at which the graph of wi is introduced into the machine.
Consequently, if we make mi so expensive that the machine is lured into
believing that we are feeding it a function with finite domain it will have

decided that q% (x) 1 y for the small values of y before receiving a newi (1)input.
Essential in this argumentation and also in the formal proofs is the

assumption that 0 should work correctly both for total and partial mi. If
this assumption is weakened in the sense that the honesty procedure may run
astray on partial functions the irregularities maybe suppressed; cf.
[Mo 73].

Our negative results are based on a similar pathology which is formu­
lated in the lema below:

LEMMA3.4.6. [Mirror lema]. Let o be a measured transformation of programs.

Let t be a total function and let u be a partial function satisfying u > t.

Then there exists a program we so that
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VX[@e(x) = 0 Q3 we(x) = u(x)] gag VX[®e(X) = 0 iii ¢6(e)(X) > t(x)]­

The program me is "reflected in t" by 0; O = we(x) S t(x) implies

(e)(x) S t(x).
(x) E3 t(x) is a decidable relation, one can de­

®O(e)(x) > t(x) and u(x) = we(x) > t(x) implies $6
Moreover since w’ 0(e)

cide also whether w (x) = O. Conse uentl if u is the empty function thene q y

Dweis a recursive set.

PROOF.Let T be the transformation defined by

wT(£)(x) ==3i:¢%(i)(x).Q§ t(x) then 0 else u(x) I},

Since 0 is a measured transformation this is a well-defined transfor­

mation of programs. As a consequence from the recursion theorem there exists

a fixed point we such that me = wT therefore<e>‘

¢g(x) = §i:¢%(e)(x) Q3 t(x) then 0 else u(x) fig.

This program me has the properties claimed by the lemma. B

Our proofs are based upon the diagonalization constructions for honesty
classes which we mentioned in chapter 2.2.

In particular we use the following lemmas:

LEMA3.4.7. There exist transformations K and 6 satisfying the following
. . 2 . . .

conditions: Let nlflwi be infinite, then:

(i) <oK(i)

(ii) nlwK(i)(x) < n1wK(i)(x+I)

(iv) nzwK(i)(x) = we(i)(n]wK(i)(x)).

is a total 1-] function with RwK(i) E Dwi

This lema (which is included in lemma2.2.6 in chapter 2.2) shows

that from an index for a program mg with NIDQEinfinite one gets uniformly
both a programand a graph-enumerator for a partial function, with infinite

domain whose graph is contained within Dwi.

LEMA3.4.8. Define the transformation 6 by

€D5(7:’J.,k)('x) <=(313 z=uw[£Dk(w)=x]; <Dn] z(x) scp7.(:c) then Zoopelse <,0J.(cr:)fll_).
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Then for indices i, j, and k such that w is a total 1-] function enumer­k
& Cating a subset of Dwi n Dwj we have w6(i j k)9 9

W

W R mi, E‘Dj,
<s<i,j.k> 5 ‘°k°

The proof of these lemmasis left to the reader.

Our first negative result is the non-existence of a honesty procedure
on P for weak complexity classes.

THEOREM3.4.9. Let 0 be a measured transformation of programs. Then there
exists an index e such that CW 1 Cw .

we ‘po(e)
W

zero’
tion of the mirror lema yields an index e such that
PROOF.Let t be a total function such that C: 3 C Take u = 8. Applica­

me(x) = £i:¢%(e)(x) g§_t(x) then 0 else Zoopii,

We claim that CW 1 Cw . We consider three cases:

¢% ¢%(e) W W W. . . w = =

(1) Dme is finite. Now Cwe C8 P, whereas Cwb(e) g t z
. . . . w w C w w. = C .

(2) Rl‘\9we is finite In this case Cwe Czero, whereas Czero ¢ Ct C wb(e)
Again the classes are distinct.

(3) Both Dweand Ri‘\Dwé are infinite. Since Dméis recursive, there exists
a total 1-1 wk such that Rwk= El‘\Dwe. Let i be an index for t and let

qfi be somearbitrary total function. Consider the function f = w6(i,j,k)
as given by lemma3.4.8. Since Df 5 Ri‘\Dwe one has trivially
f 6 CW; at the same time for x 6 0f one has t(x) 2 w (x). Con e­

w? & w w 1 f & w °(e) w Cws Utl f C = C im ies C . This roves C I .
quen y wi t P wb(e) P we wo(e)

Our second negative result treats the case of honesty classes. The
proof is similar but the diagonalization is more complicated.

THEOREM3.4.10. Let 0 be a measured transformation of programs from P2 into

P2. Then there exists an index e so that H 2 I Hwz .e o(e)

PROOF.Using the two dimensional analogue of the mirror lemmawith u the

empty function 52 = Ax,y[Z002] and for t a total function R so that

HR 1 H , we find an index e for which we have:zer02

<.p:(x,y) = 35 (p:(e)(x,y) g_t R(x,y) then 0 else Z002 f_7Z.
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Let S = $2, S' = $2 . We consider two cases:e o(e)

(1) vxvy[s(x,y) = 0]. This leads to HS = Hzerog § HR2 HS,.

(2) §x3y[S(x,y) ml.
. . . 2Slnce US 15 recursive we can enumerate R0 ‘x08. Consequently the

function T defined by:

T = Xx,y[if_i <x,y> e DS_f then loop else R(x,y) ii]

is a partial recursive function. Byapplication of lema 3.4.7 we find a
function w enumerating the graph of a partial function w. whose graph isk

contained within DT. Moreover if wk, = Ax["l¢k(x)] then wk. is total and
increasing.

Let w. = TU¢.. We consider the function f = w . . , . Since ffiw.
1 J 2 5(1.J.k) -J

and the graph of wj is contained in E! ‘\US we know that f 6 HS. At the
same time by construction f & C$,. This implies that for each index n for1
f we have

3x[wi(x) = R(x,f(x» < ¢n(x) < w]

and since for these arguments x we have also S'(x,f(x)) S R(x,f(x)) this

proves f & HS.

This shows that the classes HS and HS, are distinct. U

The preceding results are based on the use of partial funcitons. It
is a reasonable question to ask whether partial functions are essential.
Moreparticularly one may ask the following questions:

*>(1) Is it essential that o is a honesty procedure on P?
(2) Do the negative results remain valid if only the total functions in the

classes are considered? *)

(3) Does there exist a non-uniform renaming procedure, i.e. does there
exist a measured set containing names for all honesty classes?

The first question can be settled completely. Wecan "uniformize" our
proofs in such way that the negative results extend to total honesty proce­
dures as well.

‘A’ )
Questions (I) and (2) were suggested by A. MEYER.
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The second question makes no sense for weak complexity classes since
W

Ct n R = Ct n R. Consequently, the naming theorem itself yields a positive

result for the classes C: n R.. Although we have no answer to this problem
for general honesty classes we can prove that for the modified honesty

classes the negative result remains valid: the classes H: cannot be renamed
uniformly by a measured set of names.

The third problem is still unsolved.
The results on total honesty procedures are based on a uniformized

version of the mirror lema:

EXERCISE3.4.11. Let 0 be a measured transformation of programs; let t be
total. Then there exists a transformation p such that

mp(j)(x) = §i:¢%(p(j))(x) Ee t(x) then t(x)-+¢3(x)-+1 else 0 £2

Moreover, the relation ¢b(j)(x) 1 O is recursive in j and x.

THEOREM3.4.12. Let 0 be a measured transformation of programs. Then there
. . . W Wexists an index e of a total function such that C I C .

we wo(e)
. W W

PROOF.Take a total function t such that Cze ¢ Ct. Let p be the transfor­r0

mation from lema 3.4.11. Since wp(j)(x) ¢ 0 is decidable the function k
defined by:

k = Aj,x[£_#{z S x I mp x 0} E}(j)

is a total recursive function.
Wedefine a transformation of programs I by:

<.0T(J.)(x) = t.0p(J.)(:z:)=0 then loop

e}iif¢n1k(j,x)(x):st(x) §fl§§_wn1k(i,x)(x)-+1§}§§_0£2

Since Um = {x I ¢b(j)(x) I O} is recursive the following function m isI(j)
total:

3 II
Xx[max{§f:wp( (x) =0 then 0 else ¢T(j)(x) ff I j S x}]j)

. . . . . . . WThe definition of T ensures that whenever Um . 1S infinite w . & C . ByT(J) T(J) t
the definition of m,wT(j) 5 C3 for each j. Let jo be an index of m and let
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e = p(jO). If we take u = me, u' = wO(e) then we have

u(x) =.£f u'(x) fig t(x) then t(x) + m(x) + 1 else 0 ii

and

Dw = {x I u'(x) gg t(x)}.
T(_l0)

Since m is total, so is u. If u(x) = 0 almost everywhere, then
u'(x) > t(x) almost everywhere and then

cw=cw §cwgcw,.u zero t u

. . . W W
If u(x) I O infinitely often then m . & C and hence w . é C , ,

T(JO) t T(JO) u
whereas w . 5 CWby construction.

T(_]O) u
This proves that Cw I Cw - U

“)8 ‘”0(e)

THEOREM3.4.13. Let o be a measured transformation of programs. Then there

exists an index e of a total function such that Hqfl= H 2 .e wo(e)

PROOF.The proof combines ideas from the preceding proofs.

Let Hzerog 5 HR, R total. By 3.4.11 there exists a transformation p
satisfying:

co§(J.)(x.y) = if co§(p(J.))(x.y) 33 R(x.y) then R(x,y) +<9J?(x.y)+1 else 0 fi­

Nowfor total $3, w: is total and moreover the relation w§(j)(x,y) = O(3')
is recursive.

Using lema 3.4.7 we can find transformations K and 8 such that mK(j)
e(j), which graph is entirely

contained in the set Lj = {<x,y> | ¢§(j)(x,y) z 0}. Given that nlLj is in­
will be a total increasing function. In this case we derive

enumerates the graph of a partial function w

finite wK(j)
from the recursiveness of L. that it is decidable whether <x,y> e R¢k(j)
(or equivalently whether we(j)(x) = y); consequently both K and 6 are
measured transformations.

Wedefine the transformations n and 5' by:

Lpn(J.)(x) ~==(RDcpe(J.))(:1:) and 5' : Aj[<s(n(j),e(j),.<(j))].
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where 6 is defined as in lema 3.4.8. Consequently ¢%,(j) E_we(j) and

¢%,(j) é HRwhenever mK(j) is total.
The following equivalence can be derived:

=y fig<X,)’>andQ"w(X)>R(x,y)].
1

This equivalence shows that 6' is a measured transformation as well.
By the equivalence of measured and honest sets (th. 2.3.8) there exists a

total function S such that (w6(j C HS. Let jo be an index for S, and).)1‘
let e = p(jO). Writing T resp. T‘ for we resp. w§(e) we conclude that T is

total. Moreover the case that @K(j0) is a finite function leads to the in­
equality HT= H 5 HRg H ,, whereas in the alternative case the con­zer02 T

struction of 6' implies ¢%, 6 HT\ HT,. Hence e satisfies the condition(jg)
of the theorem. U

These theorems yield a satisfying answer to question (1): there exist
no honesty procedures on R for weak complexity classes or honesty classes.
Wenext consider the second question.

All our diagonalization procedures used upto this point constructed
expensive functions by deleting values from some given function. This way
we produce partial diagonalization functions. If we want a total function

we must provide also finite "escape values". Our aim was to define w5(j) in
such a way that w5(j)(x) = y only when wp(j)(x,y) was large (and consequentc
ly wb(p(j))(x,y) was small). Therefore we need for each x at least two
values of y such that mp (x,y) 1 0.(j)

Up to nowwe are unable to solve this difficulty for ordinary honesty
classes. Using modified honesty classes the problem however disappears; if
r(x) i O for infinitely manyx and if R(x,y) = r(max(x,y)) then R(x,y) I 0
whenever x S y and r(y) I O.

THEOREM3.4.14. For each measured transformation 0 there exists an index e

( f t t 1 f t’ h th t A R x HA n R.
o a o a unc ion) sue a Hwg n wO(e)

PROOF.Wedescribe the diagonalization procedure for tha case that we is
obtained by application of the mirror lemmausing u = 8, leaving the mod­

ification yielding a total we to the reader.
Suppose H; x H: and let we satisfy the relation8P0
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we(x) = §i:¢%(e)(x) E3 t(x) then loop else 0 f2,

Let R(x,y) = ¢%(Eg£(x,y)), R'(x,y) = ¢b(e)(gg§jx,y)). The case that we is
cofinite leads to the inclusions H$ = H“ § HAg Hg .e zero t e

Otherwise there exist infinitely manyx such that we(x) ¢ 0; these x
form a recursive set. Let y] and y2 be defined by

Y] = lx[uz[z 2 x g§§.¢é(z) I 0]]
and

y2 = Ax[uz[z > y](x) E§§_@e(z) 1 0]].

Then y] and y2 are total and for each x, R(x,yl(x)) = R(x,y2(x)) = w.
Define f by:

f = Ax[§jf¢%_x(x) S t(y,(x)) g§§_w“ x(x) = y1(x)
I 1

then y2(x) else y](x) ii].

Then as before f & HR, and f e HR; moreover, f is total. This proves that
A A

Hwe n R I Hwb(e) n R. D

The third question on the existence of non-uniform honesty procedures
remains unsolved. An idea which is used as a short cut in the proof of

theorem 3.4.13 suggests a way to approach the solution. Let (Ri)i be a
measured set of names of honesty classes. Then there exists a transforma­

tion 6 such that w d HR_(unless HR = P). It is not very difficult to
1 i6 i

construct such a transformation.

However, if we are able to define 6 in such a way that 6 becomes a

measured transformation of programs then we are done. In this case (w6(i))i
is a measured set which is contained in HRfor some total R. This honesty
class HRclearly has no name in the sequence (Ri)i. Wetherefore specialize
our third problem to:

UNSOLVEDPROBLEM3.4.15. Let (Ri)i be a measured sequence of functions in
two variables. Does there exist a measured transformation 6 such that, for
H 2 P w & H ?Ri ’ 6(i)

One may weaken the condition by asking w & HR, only for total16(i)
functions Ri. A positive answer to this question should show the non-exis­
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tence of a measured set containing total names for all honesty classes
namedby a total function.

3.4.3. ALTERNATIVE MYER-MCCREIGHT ALGORITHMS FOR STRONG CLASSES

This section contains two modifications of the MEYER-MCCREIGHTalgo­

rithm. The first modification is designed to produce two names for a single
class which have disjoint domains. The second modification proves a gener­
alized union theorem for strong classes. Finally we discuss the problem

whether this generalization allows us to nameclasses which are not already
named by the original union theorem.

A result of R. MOLL[MMo72] states that for each strong class F(t) a

name t' can be constructed with a domain having asymptotical density zero.
His proof uses a modified MMCalgorithm which manipulates the priorities in
such a way that t'(x) is seldom defined. It is not very amazing that there
are arguments enough in the complement of Ut' to define a second name t"
for F(t). In order to prevent that t' uses all the "good" arguments for its
ownwe define t' and t" simultaneously.

Weshall see afterwards that we even may assume that Pt‘ and Pt" are

subsets of Pt - this however for the price of loosing the property of mea­
suredness. Weindicate further howone may prove a generalization where a
single nameis splitted into an infinite numberof nameswith disjoint do­
mains, each naming the original class.

THEOREM3.4.15. There exists a measured transformation of programs from P

into P><Pmapping each index i onto a pair of indices <o(i),I(i)> so that

' ' . = . = F .
<1) V1[F(<o1) F(coO(l)) <«oT(1)>1

(11) V1[D@O(i) U T(i) = O].

By measuredness of this transformation we mean that both sequences (mO(i))i
and (mT(i))i are measured sets.

PROOF.We construct a modified MMC-algorithm which enumerates wO(i) and

wT(i) simultaneously, using an enumerator for mi as input.
= 1 = H =

Let t _ wi, t wT(i) and t wT(i).
The indices j are manipulated as before. If a violation by j against t

is discovered j is placed on the black list. To be transferred back to the
white list a violation by j against both t' and t" must be created, and
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these violations will have to occur at two distinct arguments.
To represent the intermediate situation where a violation by j against

t is halfway being punished we introduce two more colours red and blue. The
procedure searchtime works as before, but identifies all non-white indices
as black ones. If it yields a positive solution the index used at x choosen
whether the value found by searchtime is going to be a value for t' or for
t". This way any index which is used twice becomes white again. D

The algorithm below is a modification of the MMC-algorithm by R. MOLL;

next is a subroutine which computes the next free priority number, as sug­
gested by the program:

Qroc next = int: p +:= 1;

which operates on a global variable p which is initialized at zero. defined
is a boolean operator testing whether somevariable is initialized or not.
The algorithm is a stagewise algorithm; below we describe stage n.

stage n:

1. Introduce index n: p[n] := next; b[n] := white;

2. Computation of't: x := nzn; y := ngn;

ii:¢%(x) 2 y th§n_g9§o_4 el§e_z := t[x] := ¢%(x) fi

3. Discriminator against t:

fQr_j S n_dg_gf b[j] = white and A(j,x,z) I true
then (b[j] := black; p[j] := next) f§_ggQ

4. if defined t’[x] or defined t"[x] then goto stage n+1ii;

5. searchtime(x,y,y,prior); §f'failure then goto stage n+1ii;

¢ if success occurred in searchtime cand is the index used at x and val
is the value foundk we now choose which bound is going to collect this
value ¢

6. ii:b[cand] = black 9r_b[cand] = blue
1; t’[x] := y)
2; t"[x] := y) if;

then (choice :
else (choice :
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7. Discriminator against t’ and t":

fo§_j S n gQ_if.b[j] 1 white aha A(j,x,z) i tggentheh
if b[j] I black theg b[j] :=_if choice = 1 theg red e}§e_bZueii
etif b[j] = red_a§é choice I 2 the§_(b[j] := white; p[j] := next)
gjif b[j] = blue aha choice I 1 the§_(b[j] :2 white; p[j] := next)
2
f_i0_d;

8. goto stage n+1;

It is clear from the description that t' and t" have disjoint domains.
To prove that t, t' and t" all name the same class we consider the possible
behaviours of p[j] and b[j].

Case I. p[j] is unstable.

Movingback and forwards j violates t, t‘ and t" all at infinitely
many arguments. Hence j 4 F(t), j & F(t') and j d F(t").

Case 2. p[j] is white-stable.

In this case j e F(t) is trivial like before. To showthat j e F(t')
and j e F(t") we must prove that the priority used at x is almost every­
where larger than lim p[j]. In the original MMC-algorithmthis is clear
since a priority used at x is a mortal priority, but this assertion is no
longer true for our modification. However, an index which is used twice
liberates himself by choosing the right bound to violate against, and with
this liberation its priority dies. Henceeach priority is used at most
twice. (Since we have implemented an R. MOLLMMC-algorithm there is no his­

torical backlog between the priority status used by searchtime and the ac­
tual priority status.)

Therefore the assertion that the priority used at x is almost every­
where larger then lim p[j] remains valid. Consequently j e F(t') and
j e F(t").

Case 3. p[j] is black-stable.

Nowj e F(t') and j e F(t") are trivial. Moreoverby assertion 3.4.4

the run-time aj is bounded almost everywhere by the maximumof the run­
runtimes of a finite set of white-stable indices which run-times are

bounded in their turn by t almost everywhere. Hence j e F(t).
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Case 4. p[j] is blue-stable.

This situation arises only if the index j, after having reached its
stable priority value k on the black list is used at most once, for if it
is used at a momentwhere its colour is already blue then we take choice==l

and b[j] becomes again white and the blue priority is deleted. Furthermore
no violation against t' is created after b[j] has becomeblue for the last
time. Hence j e F(t').

Because searchtime makes no difference between black and blue indices

j e F(t) can be derived from assertion 3.4.4.
To prove that j e F(t") we need a stronger assertion about the working

of searchtime than assertion 3.4.4. Weuse that val is not only larger than
all white run-times left of candidate, but larger than the non-white run­
times left of candidate also, since otherwise such a run-time should have
yielded a solution. Since the priority used at x is almost everywhere larger

than lim p[j] one derives aj(x) S t'(x) and aj(x) S t"(x) almost everywhere.
This shows that j e F(t").

Case 5. p[j] is red-stable.

This case is analogous to case 4.

In each of the five case we have j e F(t) iff j e F(t') iff j e F(t").
This proves that the three classes are equal.

Finally the measuredness follows straightforward from the program. U

Using Theorem3.4.15 we may split a single name into an infinite se­
quence of names by defining t To derive that

y k = ‘°p<i.k) = “’r<o“‘)(i>)‘
these names have disjoint domains we need an inclusion of the type

DwO(i) g Dwi and DmT(i) g Dwi, but these inclusions are not derivable from
the above algorithm.

In order to enforce such inclusions we modify the program so that calls
of searchtime are suppressed until t[x] is enumerated, but by doing so the
condition of measuredness is lost. Then we may also withdraw all precautions
against unwantedrevisions.

PROPOSITION3.4.16. There exists a transformation of programs from P into

P><Pwhich maps each index i onto a pair of indices <o(i),I(i)> so that:

(i) Vi[F(u>i) = F(¢>O(i)) = F(coT(i))
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PROOF.Replace in the above algorithm the instructions after 5 by

5': if defined t[x] then searchtime (x,0,y,pri0r) else goto stage n+1IE;
jiifhilure then goto stage n+1ii;

The correctness proof above must be relativized to the domain of t;
for cases 1 and 2 this makes no difference, whereas for cases 3, 4 and 5

the following relativization of assertion 3.4.4 maybe used:

FACT3.4.17. If an index j has a stable non-white priority, then its run­

time oj is bounded for almost all x in the domain of t by the maximumof
the run-times of (white) stable indices with higher priority.

The remainder of the proof is left to the reader. D

COROLLARY3.4.18. For each t there exists an infinite sequence of names ti
for F(t) with disjoint domains.

A nicer way to prove this corollary is the construction of an MMC­
algorithm which enumerates infinitely manynames for F(t) instead of two.
In this algorithm a black index j on its way back to the white list must
violate the first p[j] namesbeing constructed (at p[j] distinct arguments)
before it becomeswhite again. Weneed an infinite collection of interme­
diate colours. The choice which name is going to collect a fresh value at
x found by searchtime is made by the index used at x, which selects the
lowest bound which he must violate and which he has not yet violated. The
details are left to the reader.

In contrast to the sequence found in 3.4.18 the sequence constructed
by an algorithm as suggested above will be a measured set.

Our next subject is the generalized union theorem. This theorem states
that the union of an increasing sequence of strong classes of indices is
again a strong class with a name which is computable from programs for the
sequence of names. In contrast to the situation of the classical union
theorem, which was discussed in chapter 3.3, this union theorem does not
hold for classes of functions. The reason is that manyindices with far

distinct run-times may be mappedby iy§_onto the same functions. Conse­
quently we cannot derive from the fact that the sequence of classes of
functions is an increasing sequence that these classes correspond to an in­
creasing sequence of classes of programs. A counterexample is given below.



173

EXAMPLE3.4.19. [The union of an increasing sequence of complexity classes

is not in general again a complexity class].

Let DJ be written as the disjoint union of an infinite sequence of in­

finite recursive sets Ai. 14 = U Ai, Ai n Aj = ¢ for i x j.1
Let

gi(x) =_£f x 6 Ai then I else 0 ii.

Weconstruct a complexity measure which contains amongothers the following

programs wij with corresponding run-times Wij:

wij = Ax[j], Wij = gi for O < j S i,

wij = Xx[x], Wij = gi + gj for O < i < j,

wij = Ax[“], Wij = Ax[“] for O = i < j,

wij = Ax[i], Wij = Ax[x] for O = J < 1,

wij = Ax[x], Wij = Ax[x] for O = i = j.

All other programs have run-times larger than Ax[x+l] at all arguments.

We claim that C C C , whereas C = U Cg_ is not a complexity class.81°‘ 814.1 1 1

PROOF.From the definitions one concludes that Fg_ consists of the programs““‘ 1
wij with O < j 5 i. Therefore Cg, consists of the constant functions with1
values 1,2,...,i. This shows that C S C . Note however, that

¢ Si 81+]F n F = .
Si 8i+1

Now suppose that Ct = C = U C ,. If t(x) 2 x almost everywhere then Ft1 31

contains the program woo, and Ct contains therefore the non-constant func­
tion Ax[x] which is not contained in C. Hence t(x)S x for infinitely manyx.

) ).Weconclude that Ft consists of programs from the sequence (wij ij
Let A be the set of arguments x with t(x) > 0.

If A contains (modulo a finite set) none of the sets Aj then Ft is
empty and consequently Ct = ¢ 1 C. If A contains (modulo a finite set)

precisely one of the sets Aj (lets say Ai) then Ft = Fgi and again Ct and
C are distinct.

If A however contains (modulo a finite set) two of the sets Aj (say
Ai and A1 with i < 1) then Ft contains among others the program wil which
computes the non-constant function Ax[x]. Therefore in this case the

classes Ct and C are also different.
This completes our proof. U
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THEOREM3.4.20. Let A be an acceptance relation and let (ti)i be a sequence
of (partial) functions, so that Fé(ti) c Fg(ti+]). Thenthere exists a

function tinf so that E F§(ti) ==Fg(tinf).

If grog is defined for A and if grog i = mi then the theorem holds
also for the classes G§(ti).

PROOF.The function tinf is computed by a modified MMC-algorithm. The items

manipulated are not the indices j themselves, but pairs consisting of an

index j and a bound-index i of a bound ti which j want to respect. The item
<j,i> is placed on the black list if it is discovered that j violates ti
and <j,i> is placed back on the white list after creation of a violation by
j against tinf.

It may happen that a pair <j,i> becomes white-stable whereas the same
index, combinedwith a "wrong" bound i' violates its bound infinitely often.
In this situation the pair <j,i'> is doomedto becomeblack-stable.

. 2

Weassume that the functions ti are computed by the program<Dt
The algorithm is a stagewise algorithm; we describe stage n.

stage n:

1. Introduce item n: p[n] := next; b[n] := true;

2. Computationof the ti: discriminator: x :: nln; y := n2n;

,flksxgg3'f<z>i(k_,x)=y1:I£
Q12 := tpi(k,x),'

fQr_m 5 n g§_ij:b[m] = true_gnd n

A(fi1m,x,z) ¢ frag
thgn_(p[m] := next; b[m] := fggsg) jZ_gd

£121. 1:524;

3.;gf defiined tinflxl then goto stage n+1ii;

4. searchtime (x,y,y,prior); ¢ the run-time of an item as considered by

2m = k gnd

searchtime is the run-time of its indbx f
if failure then goto stage n+1ii;

5. Discriminator against tinf: tinflx] := y;

gm 3 n b[m]= false a_ndA(n1m,x,y)==true
then (b[m] := true; p[m] := next) iZ_gd;

6. goto stage n+1;
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To prove that F(tinf) = U F(ti) we consider the possible behaviours of1

the items. Let j = nln, and i = nzn.

Case 1. p[n] is unstable.

Fromthe unstability of p[n] one derives that j violates both ti and
tinf at infinitely manyarguments. Hence j é F(ti) and j é F(tinf).

Case 2. p[n] is white-stable.

The white stability of n implies j e F(ti). Moreoverby the usual ar­
gument that the priority used at x is almost everywhere larger than
lim p[n] one derives that j e F(tinf) also.

Case 3. p[n] is black-stable.

In this case j e F(tinf) by the black stability of n. Assertion 3.4.4

can be applied and yields that the run-time of item n i.e. aj is bounded
almost everywhere by the run-times of finitely manywhite-stable items. Let
these finitely manywhite stable items bounding the run-times of item n be

denoted by n1,...,nk. Let jm = nlnm and let im = nznm.

Since the nm are white-stable we have jm e F(tim) for 1 S m S k. Now
the condition of monotonicity of classes is applied. Let i be the maximum0

of il,...,i Then jm e F(ti0) for I 5 m S k and consequently:k.

$x[a. (x) S t. (x)].
Jm 10

This implies

a.(x) S max(a. (x),...,a. (x)) S t. (x) for almost all x
3 — J1 Jk 10

Consequently j e F(ti ) c 2 F(ti).
If j e F(tinf) and i 5 Hi then we have for item n = <j,i> either

case 2 or case 3 and consequently j e U F(ti). Conversely if j e F(ti) then1

we have for n = <j,i> also either case 2 or case 3 and therefore j e F(tinf).
This completes the proof. D

Although 3.4.20 as a theorem looks stronger than the union theorem in
chapter 3.2 for strong classes, it is not clear whether it is an essential
generalization or not. It could be that each sequence of strong classes
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(F(ti))i satisfying F(ti) c F(ti+]) can be renamedby a sequence of names
which is monotonic in the sense of chapter 3.3.

Upto now this is an open question. Wecan show by an example that it

is not generally possible to rename a class F(t) D F(u) by a name t' with

t' 2 u. If t and u both are total we can rename u by u' = fl£n(t,u) but this
construction does not work for infinite sequences.

EXAMPLE3.4.21. [F(t) D F(u) cannot generally be renamed by a name t' 2 u].

Let (Yi)i be the measured set defined by:

Y = Ax[£f even x then 2 else 1 ii]

‘ Ax[§ifeven x then 3 else 0 ijj4
M

I

‘ Ax[4] for k 2 2.«4
x4

I

If P is the corresponding acceptance relation, and if t and u are defined
by:

u(x) = 1; t = Ax[gf even x then 3 else 0 ii],

then FF(u) = ¢ and Fr(t) = {1}, hence FF(u) c Fr(t).

Suppose that Fr(t) = FF(t') with t' 2 u. Since I e FP(t) we have
t'(x) 2 3 for almost all even x, whereas t' 2 u implies t'(x) 2 I for all
odd x. But now 0 e FF(t') also which is a contradiction. U

The transformation of sequences (ti)i ='(ui)i defined below is an in­
finite version of the operation of taking the minimumto rename the smallest
class.

ui(x) =‘£f x < i then max{t.(x)} else ‘min {t.(x)} ii.
Jsx 1SkSx

This transformation maps a sequence of total functions onto a non-decreasing
sequence of total functions. It does not yield however

Vi[F(ti) c F(ti_H)] imp Vi[F(ti) = F(ui)].

The reason for this failure is shown in the example below; it is not
possible to prevent the addition of infinitely manymeaningless restrictions
forming together an unwantedserious restriction.
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EXAMPLE3.4.22. Let do be a total run-time and suppose F(zer0) = G. Let

ti(x) = if x x i then aO(x) else 0 IE.

Nowthe transformed sequence ui becomes:

ui(x) = if x < i then aO(x) else 0 £2.

Hence 0 e F(ti) = F(tj) whereas F(ui) = F(zer0) = ¢.

An approach which looks more fruitful is to rename the complete se­

quence of classes by an increasing sequence of names, not necessarily pre­
serving the individual classes but preserving the union of the classes.

Sucha construction is possible for total ti.

PROPOSITION3.4.23. Let (ti)i be a sequence of total functions so that
F(ti) C F(ti+l). Then there exists a sequence of total functions (ui)i so
that:

(i) ViVx[ui+](x) 2 ui(x)],
(ii) u F(ui) = u F(ti).

1 1

PROOF. Define

uk(x) = max{ai(x) I i Sk Egg

3nSk[ai(x) E3 tn(x) and Vy[(k:Sy and y<<x) imp ai(y) £3 tn(y)]]}

For x S k this definition simply yields

uk(x) = max{ai(x) I i S k Egg ai(x) §e_max{t.(x)}}.
Jsk

For x > k the extra condition that a fixed tn bounds oi over the complete
interval [k,x] starts its influence.

First suppose that j e F(tn). Then there exists an argument b so that

x 2 b implies aj(x) S tn(x). If k 2 flg£fij,n,b) then uk(x) 2 aj(x) for x 2 k,
since j,n S k and aj(x) E3 tn(x) for x e [k,x]. Consequently j e F(uk).

Conversely, suppose that j e F(uk) then aj is bounded almost every­
where by the maximumof the run-times of a finite set of indices, which are
all contained within ,U F(t.) = F(t ); for if a is boundedover arbitrary

1<k 1 k m
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long intervals [k,x] by a function ti with i S k then an is bounded also by
a fixed ti with i S k over the infinite interval [k,w). But nowone con­
cludes that j e F(tk) by the same argumentation we used before.

This shows that

U F(t.) = U F(u.).
i 1 i 1

The monotonicity of the sequence (ui)i is derived from the fact that

the conditions on the run-times aj(x) used in the maximalization for uk+](x)
are weaker than the corresponding conditions for uk(x); therefore the maxi­
mumdoes not become smaller. U

3.4.4. THE MYER-MCCREIGHT ALGORITHM AS A CLOSURE OPERATOR

In this section we consider the MMC-algorithmwith a "general" dis­
criminator. Although we do not intend to present a discussion on relativised
complexity theory, it should be noted that the results in this section do
not assumecomputability of this discriminator. If it is a non-recursive
discriminator, then the function computed by our MMC-algorithmis non-re­
cursive also.

In section I we considered the MMC-algorithm which computes a new name

for a strong class, given by an old name. Forgetting the fact that our in­
tention was that the new name should be measured, the MMC-algorithm is an
inefficient procedure. In fact we use the old namet to generate an infinite
sequence of "boolean procedures" b.(x) (the tests on violations perpetrated

by the indices) so that j e F(t) iii:bj(x) = §rE§_for almost all x. Using
these test-results the priority statusses are manipulated in such a way

that the equivalence j e F(t') Eff bj(x) = £rE§_for almost all x holds also.
Nowsuppose that the class F(t) is not given by the name t but by an

oracle for the indices contained in F(t). Onemayask whether it is still
possible to compute a name t' so that F(t) = F(t'). The answer is positive
To computet' one simply replaces the test-results reporting on the viola­
tions by the answers given by the oracle; it is not difficult to verify
that the modified MMC-algorithmindeed computes a function t' satisfying
F(t) = F(t').

The samemodification is possible if not an oracle for F(t) is given
but a so-called general discriminator for F(t), a concept which is defined
below:
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DEFINITION3.4.24. Let X be an arbitrary set of indices. A general discri­
minator for X, is a total boolean function B(i,x) so that the following
equivalence holds:

i e X if£'$x[B(i,x) = true].

Using this terminology we can reformulate a technical result in
Chapter 1.4 (lemma1.4.10) by the following proposition:

PROPOSITION3.4.25. Let X be a Z2-class of indices, then there exists a re­
cursive general discriminator for X.

PROOF.Let P be a total recursive predicate so that

j e X ififi 3bVa[P(j,a,b)].

Wedefine B(j,x) by:

B(j,x) = 3ySx[VzSx[P(j,z,y)] and Egg 3w<y[Vz<x[P(j,z,w)] gndflngt P(j,x,w)]].

Then j e X ififi'$x[B(j,x)] (see chapter 1.4). U

The converse implication holds also: if B is a general discriminator

for X and if B is a recursive function, then X is a Z2-class.
Let X be a class of indices and let B be a general discriminator for

X. Thenwe construct the following stagewise algorith, called the MYER­
McCREIGHTalgorithm based on B.

stage n:

1. Introduce index n: p[n] := next; b[n] := true;

2. Discriminator:

far: y 5 " £9. if blyl 171.4."_0£34%") Le"
(p[y] := next; b[y] := false) (Egg;

3. x := nzn; y := n2n; if defined t’[x] then goto stage n+1 I23

4. searchtime (x,y,y,pri0r); fjtfailure then goto stage n+1I2;
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5. Discriminator against t’: t'[x] := y;

for 2 S n g§_§I:§gt b[z] ggg A(z,x,y) ¢ true then
(p[z] := next; b[z] := true) iZ_ggQ

6. goto stage n+1;

Dropping the prime which is superfluous since there is no danger for
confusion we denote the function computed by this program by t. The rela­

tion between X and F(t) is expressed by the following theorem:

THEOREM3.4.26: Let B be a general discriminator for a class of indices

and let t be the function computed by the MMC-algorithm based on B. Then:

(i) X C F(t).

(ii) X C F(u) jégg F(t) C F(u)­

(iii) X = F(t) iff there exists a function u (not necessary recursive)
so that X = F(u).

PROOF.

(i) Consider the behaviour of the priorities during execution of the MMC­

algorithm based on B.

Case 1. p[j] is unstable.

In this case j ¢ X since B(j,x) = false for infinitely manyx; j d F(t)
by the same argumentation as before.

Case 2. p[j] is white-stable.

In this case j e X since at the momentthat p[j] gets its ultimate
value, only finitely manyvalues of B(j,x) are computed; for all x for
which B(j,x) is computedafterwards this value is true. The proof that
j e F(t) remains unchanged.

Case 3. p[j] is black-stable.

Nowj e F(t) as before but we cannot prove that j e X.

In each case we have j e X imp j e F(t) which proves X c F(t).
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(ii) Fromassertion 3.4.4 we conclude that the run-time of a black-stable
index j is bounded almost everywhere by the maximumof finitely many run­
times of white indices having stable priorities larger than the stable
priority of j.

Denote this set of white-stable indices with higher priority by

{j],...,jk}. Thenwe have:

{j],...,jk} c X c F(u) Egg

Vl$x[aj (x) 5 u(x)] £fl2_
1

$x[ max {a. (x)} S u(x)].
lslsk J1

Combiningthis with $x[aj(x) 5 max {aj1(x)}] (assertion 3.4.4) we findlslsk

$x[aj(x) s u(x)]

hence j e F(u).

Note that u does not need to be recursive in order to make the proof
correct .

(iii) The only if side is trivial since X = F(t) implies the existence of a
name u so that X = F(u). Conversely suppose that X = F(u) for some unknown

nameu. Then F(t) C F(u) by (ii). Combining (i) and (ii) this yields
F(t) = X. D

The MMC-algorithm based on B computes a name of a strong ARBCwhich

contains X, and the equality holds if and only if X is already a strong
ARBCwith an unknown, not necessarily recursive, name. The above proof how­
ever yields further information on the indices contained in F(t) \ X.

COROLLARY3.4.27. j e F(t) if: there exist finitely manyindices j1,...,jk
which are contained in X so that

vx[a.(x) s max {a. (x)}].
J lslsk 1

PROOF.If j e X then the assertion is trivial whereas for indices
j e F(t) \ X the assertion is nothing else but assertion 3.4.4, using the
fact that j must be a black-stable index.
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Conversely assuming that the run-time aj is bounded almost everywhere
by the maximumof finitely many run-times of indices which are contained in
X and therefore also are contained in F(t) we derive that j e F(t) by the
same argumentation as before. D

The preceding results yield also the following corollary:

COROLLARY3.4.28. F(t) = n{F(u) | X g F(u)}.

PROOF.Since X g F(t) the inclusion fl{F(u) | X g F(u)} g F(t) is trivial.
The converse inclusion follows directly from 3.4.26 (ii). U

Note that the preceding results showthat the class F(t) does not
depend on the discriminator B used for X. The results showmoreover that
every 2 -class of indices is contained in a minimal strong class (without

2

minimality one has always X g F(£)).

COROLLARY3.4.29. Let X be some X -class of indices. Then there exists a
2

function t such that X g F(t) and such that F(t) g F(u) for each u with
X E F(u).

PROOF.By 3.4.25 there exists a recursive general discriminator for X, and
therefore the MMC-algorithmbased on this discriminator yields a recursive
name for a class F(t) which has the claimed properties by 3.4.26. D

As a fourth corollary we prove that the inclusion X c F(t) preserves
monotonicity:

COROLLARY3.4.30. If X] and X2 are two sets of indices determined by dis­

criminators B] and B2 and if the functions computed by the MMC-algorithms
based on Bl respectively B
F(t1) c F(t2).

are denoted by t and t then X] c X2 implies2 l 2

PROOF. X] c X2 implies Vu[F(u) 3 X2 Egg F(u) 3 XI]. Hence

F(t]) = n{F(u) | F(u) 3 x1} c n{F(u) | F(u) 3 x2} = F(t2). D

Writing X for F(t) we conclude that the transformation X + X is a
closure operator (the MMC-closureoperator):
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XIX C by 3.4.26,

§<=§ by 3.4.26,

X] C X2 Egg X] C X2 by 3.4.30.

This closure operator is however no Kuratowski closure operator for a
go1”2

ple two complexity classes whose union is not a complexity class [MC69].
topology, since XI U X2 is not in general equal to X Take for exam­

Another application yields the following result:

PROPOSITION3.4.31. The intersection of two strong classes is again a
strong class.

PROOF.In fact this is nothing but a trivial property of closure operators.

2-classes which are identical to their MMC-closure.The
intersection of two {Z
X:

Strong classes are 2
-class. Moreoverif-classes X and V is again a £2

X and V = 7 we have:

X n V = X n V c X n V c X n V

hence X n V = X n 7

This shows that X n V is a Z2-class which is identical to its MMC-closure.

Note that for total t and u one trivially has F(t)r1F(u) = F(min(t,u)).
The function g£§flt,u) is computable also in the case where t and u are
selected from a measured set. Consequently 3.4.31 follows directly from the
naming theorem.

To complete this section we consider the intersection of a sequence of
strong classes. It is knownthat there exist examples of decreasing se­

quences (ti) of total recursive functions, so that Q F(ti) 1 F(t) for each
recursive t [Ba 70]. Using 3.4.28 we can prove that this intersection is a
class F(t) for a A function t. The non-existence of an intersection theo­

4

rem means therefore only that the intersection is not namedby a recursive
name, and not (as is sometimes the case with the union of two classes) that
the intersection is not nameable.

PROPOSITION3.4.32. Let (ti)i be a sequence of partial recursive functions.
Then there exists a A function t so that O F(t.) = F(t).

4 1 1

D
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23993. Let X = Q F(ti) and let B be a discriminator for X. By 3.4.28 the
function t computed by the MMC-algorithm based on B is a name for the set

x = fl{F(u) | X c F<u)}.

Since X c F(ti) for each i we conclude that F(t) C Q F(ti) = X. The
converse inclusion follows straightforwards from 3.4.26. This proves that

X = F(t) = Q F(ti).
By repeating the original proof one shows that the function t computed

by the MMC-algorithm based on B is "measured modulo B" i.e. the graph of t
is a set which is recursive relative B. To determine the arithmetical com­

plexity of B we remark that the set X is a H3-set: we have
j e X iff Vk[j e F(tk)]; since j 5 F(tk) is a 22
X is a H -set. Furthermore it is trivial that any H -set possesses a H ­3 3 3
discriminator B. Since t is A relative B we conclude that t is a A -func­

l 4

-relation we conclude that

tion. D

The above bounds are not sharp; it is not difficult to construct a £2­
discriminator B for X. The existence of non-recursive names for infinite

intersections is proved also in the thesis of E.L. ROBERTSON[Rb 70].

3.4.5. A MEYER-MCCREIGHT ALGORITHM FOR WEAK CLASSES

{Amagician uses deception, deceit and fakery
to hocdwink the people, while a wizard is a
master of the secrets of the universe.

Parker & Hart. The wizard of ID}

In section 3.4.2 we proved that weak classes cannot be uniformly re­
named, so the title of this section announces a non-existent algorithm. The
reader should expect therefore not to much.

The proofs in section 3.4.2 are all based on the assumption that we
are considering a measured transformation of programs. In order to escape
the prohibiting effect of these results we maydrop this condition of mea­
suredness. One should beware however for trivialities like "The identity
transformation renames both weak and strong classes".

In the preceding section the MC-algorithm has been considered as a
method to compute a name for a set X defined by means of a general discrim­

inator, provided that the set X can be represented as an ARBC.
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Nowour weak classes are Z2-classes of indices also, and hence recur­
sive discriminators for a weak class exist. Moreoverwe will construct in

the sequel of this section a modification of the routine searchtime which
creates weakviolations instead of strong ones. So the subroutines for a
weak MC-algorithm are available, and it seems that we only have to wait
for a clever programmer to combine these parts into a complete algorithm.

To the opinion of the author it is precisely this combination which is
forbidden by the negative results in section 2. In synchronizing the dis­
criminator with the modified searchtime we must prevent somewaythat

searchtime starts looking for solutions at extremely high values, because
of the discriminator being unable to determine which white indices i at x
are "good" bound-respecting ones, which ones are the "bad" violators at x,

and which ones are the "ugly" bystanders (with A(i,x,z) = ggéé for each z).
To eliminate this uncertainty we must teach the algorithm to separate

the violators from the bystanders, something which can only be done on the
base of prejudice.

To be more precise, we use in our modified routine which plays the
role fulfilled by searchtime in the ordinary MMC-algorithm,and which will
be called weaksearchtime hereafter, a subroutine called bias. The
subroutine bias predicts whether somewhite index in the priority queue
is well-behaved, and should be respected, or whether the index is a by­
stander and should be disregarded. The routine bias is called the wizard
of the resulting weak MEYER-MCCREIGHTalgorithm.

First we describe the routine weak searchtime. In the ordinary MMC­
algorithm the routine searchtime terminates successfully if it has located
a black index, whose run-time at x exceeds the run-times of the white in­
dices with higher priority. However, in order to be sure that we will
create a weakviolation, we must be certain that this black index has in­
deed a finite run-time at x. Therefore weak searchtime marks all possible
candidates (black indices j which are encountered at a momentwhere

val S aj(x)), and we continue by increasing val, and pushing cand through
the priority queue, until one of our marked candidates is found to have a
run-time a.(x) = val-+1. At this momentweak searchtime termiantes success­

fully, and nominates this index j to be the index used at x.
To prevent abnormal termination of weak searchtime because of exhaus­

tion of the priority queue, we insert at the tail of the priority queue a
white index with infinite run-time.
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If the current candidate is a white index, weak searchtime uses its
subroutine bias to determine whether it should increase val in order to

respect this index, or whether it should forget about this index and pro­
ceed to the next candidate. If val has to be increased we must look for a

possible marked black candidate which might have run-time equal to val-+1.
These black candidates are stored in a linear list earlier cand; the task
involved in increasing val is performed by the local subroutine increase
val.

The routine weak searchtime is described by the following program.

proc weaksearchtime = (int x,low,high,f_priorgueue f_prior,
proc(ifi§,ie§) bool bias) void:

eeg§e_p3eeincreaseval I (§ef_ie§ val,llie§ earlier cand) geid:
§egin_val +:= 1;

fee j eeee earlier candde
_2f f A(j,x,val+Z) = E222 $_£flee_cand :=j; ge§e_success.f£

0_d

3734;

f_...remaining declarations etc. ...f_

start weaksearchtime: val := low; cand :=_f first index of prior E;
‘f initialize earlier cand to be an emptylist, insert the closing

item "eps" with aepS(x) = w, b[eps] = true, and bias(eps,x) = true
at the tail of the priority queue_i

steps: while_val 5 high de
_2fb[cand] they

_if bias(cand,x) egg f A(cand,x,val) I §§ge_f
ghee increaseval(val,earlier cand)
elee cand :='£ next item in prior_£

J2
_e_l_i_f_fA(ccmd,x,val)= trif M cand := E next item in priori
elif_f A(candLx,val+1)= true i then goto success
else attach int(earlier cand,cand); cand :=£next item in prior:
.257; Q;

failure:_f report failure to calling program_£.
success:_f report success to calling programwith t(x) = val and

index cand to become the index used at xii

end ¢ weak searchtime ¢;
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The computation of weaksearchtime is illustrated in diagram 3.4.33. At
the momentof successful termination as represented in this diagram the

list earlier cand contains the indices j3,j4,j6 and jg.

J.

/T J J

*1

:4 .......... .. ..4.. ,.
T ILL. ...>.. . . . .

45........,.............
111

%~

51 52 53 54 55 56 57 58 59 510511512 8'95
b[j] + — - - + — + + — + — + +

bias(j,x) + ~ ~ ~ + ~ - - ~ + ~ + +

Diagram 3.4.33.

Note that not all the properties
example it is no longer true that val
left of cand; this holds only for the
bias(j,x) = fggg. Moreoverval is not
of candidate; this holds only for the
in the list earlier cand.

of seachtime are preserved. For
is larger than all white run-times
white indices j satisfying
larger than all black run-times left
black indices which are not contained

As before the routine weak searchtime will be used in a dovetailed

manner by our weak MMC-algorithm. One could ask for whether the list

earlier cand must be saved from one call of weak searchtime at the argu­
ment x to the subsequent call at the same argument. This is unnecessary,
since the candidates on earlier cand are precisely the black indices with
run-time greater than val. One should beware for "hidden" increases of val
in between two calls of weak searchtime at the same argument. Moreover,
since we are not interested in computing a measured function, we may forget
the precautions against revisions of earlier rejections; hence we can take
low = 0 throughout our weak MMC-algorithm.
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wizard bias is decribed by the following program:
The weak MMC-algorithmbased on the general discriminator B and the

stage n:

1. Introduction: b[n] := true; p[n] := next;

2. Discriminator:

for m s n do

_if b[m] and not B(m,x)

then p[m] :2 next; b[m] := false

f;' 0_ds

3. x := nln; y := ngn;

6.

_gfdefiined t[x] then goto 5 ii;

weaksearchtime(x,0,y,prior,bias);
if success then t[x] := y ff;

Discriminator against t:

iQr_m S n do

ii:n9t_b[m] then
fQr_x S n do

if defined t[x] and not test against
then ii:f_A(m,x,t[x]) = true_£

then test against output [m,x] :
elif £_A(m,x,n)= true_i
then test against output [m,x] :

p[m] := next; b[m] :=
fl

f_75 £1.

f_i Q ¢ discriminator against t ¢,°

goto stage n+1;

output [m,x]

Itnw;

Itnw;

Note that a major part of the algorithm consists of section 5:
discriminator against t; wemust look for weakviolations against t,
which violations have to be enumerated. Consequently we must beware for
multiple tests at a single argument; the bookkeepingarray test against
output is introduced for this purpose.

Before investigating what the computedfunction t stands for, we allow
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ourselves one more generalization. Upto nowwe have tacitly assumed that
the wizard bias used by searchtime is a total function. In our applica­
tions we need a wizard which is partial; however, if for a given argument
x, bias(i,x) converges for some index i, then bias(i,x) should converge

for all indices i; i.e. Ubias = NZIAfor some recursively enumerable subset
A g EL

To prevent that bias(i,x) is called for at arguments outside Dbias,
the calls of weak searchtime are executed conditionally; section 4 is re­
placed by:

4':_;f_f bias(0,x) convergeswithin n steps f_then
begin weaksearehtime(x,0,y,pri0r,bias);

ii:success then t[x] := y [i end
E;

It is clear that by this modification only terminating calls of bias
are issued, and that the domainof the computedfunction t satisfies
Dt g A.

In order to investigate the relation between the 2 -class X discrim­

inated by B and the weak class Fw(t), we consider (as usual) the behaviour
of the priorities of the indices.

If p[j] is instable then j é X and j é Fw(t).
If p[j] is white-stable then j 6 X. In order that j e Fw(t) it is

necessary that the finite run-times aj(x) for x e A are almost everywhere
respected. Since the priority used at x grows unboundedly (this property of
the MMC-algorithmis not lost by our modifications) the only possible cause

of not respecting a finite run-time aj(x) with x e A and x sufficiently
large, can be an incorrect prediction by the wizard: bias(j,x) = ig2§§_for

an argument x where aj(x) < w.
Therefore, in order to deal correctly with white-stable indices j the

wizard should not overlook more than finitely manyfinite run-times aj(x)
with x e A.

If p[j] is black-stable then j e Fw(t). Inspired by the result on
strong classes we should not expect anything more than that j e Fw(u) for
each u such that X C Fw(u). In order to be able to derive such a relation
we need an assertion like assertion 3.4.4. This assertion is formulated
below:
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ASSERTION3.4.34. If p[j] becomes black-stable, then for almost all x e A
either a.(x) = w or otherwise a.(x) is bounded by the maximumof the finite

set of run-times ai(x) of those white-stable indices with higher priority
which satisfy at x the condition bias(i,x) = true.

If at a certain argument x one of the run-times ai(x) included in this
finite collection actually diverges the assertion becomestrivial for this x.
Consequently this indicates a second condition which the wizard must satisfy
in order to deal correctly with black-stable indices; for white-stable in­
dices j the wizard should not declare to be finite more than a finite num­

ber of runtimes aj(x) with x e A which are actually diverging.
Wenow have found two conditions on the wizard, in order that the weak

MMC-algorithmbehaves correctly. Clearly the property of an index to be
white-stable is algorithm dependent; however, white-stable indices are
always membersof X. Combining these observations we arrive at the following
definition:

DEFINITION3.4.35. The wizard bias is called justified for the class X on A

if Dbias = n2lA and the following condition holds:

vi$x[i e x fig x 5 A i_rnE(ai(x) < co3'35 bias(i,x))].

THEOREM3.4.36. Let B be a general discriminator for the 2 -class X. Let2

bias be a wizard which is justified for X on A g EL Then the function t

computed by the weak MEYER-McCREIGHTalgorithm based on B and bias satisfies

the following conditions:

(1) X E Fw(t)

(ii) if Du C A and X c Fw(u) then Fw(t) C Fw(u).

PROOF.The condition that bias is justified for X on A includes both con­

ditions which we recognized to be necessary in order that the MMC-algorith
behaves correctly.

The instable indices present no problem at all. White-stable indices j
are memberof X and, because of the fact that bias is justified, their finite

run-times aj(x) with x e A are respected.
Since black-stable indices are contained automatically in Fw(t) the

first assertion X c Fw(t) is proved.
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To derive the second assertion we use assertion 3.4.34. Let Du C A and

X c Fw(u). Assume that j e Fw(t). Then j is a stable index. If j is white­
stable then j 6 X and we are done. If j is black-stable then for almost all

x e A the run-time aj(x) either diverges, or aj(x) is bounded by the maximum
of the finite set of run-times ai(x) of the white-stable indices with higher
priority, satisfying the condition bias(i,x) = Eggg. Since bias is justified
for X on A and since white-stable indices are contained in X

bias(i,x) = Eggg is almost everywhere equivalent to ai(x) < w. Since
X E Fw(u) this implies also ai(x) < u(x) (for almost all x). From this we
derive:

$x[x e A fig cxj(x) < co otJ.(x) 5 u(x)]

and since Du g A this implies j e Fw(u). D

Wecomplete this section by presenting some applications of the weak
MMC-algorithm.The first application is a triviality.

TRIVIALITY3.4.37. There exists a transformation 0 such that for each index

i, Roi = 0200“); coo“) S «Di and Fwfloi) = Fw(noO(i)).

PROOF.For B we take the natural discriminator for Fw(wi) whereas bias is
defined by:

bias = Aj,x[A(j,x,wi(x)) = true].

To enforce the domain condition and the inequality we include in our

weak MMC-algorithm an escape-value mechanism: whenever wi(x) = y has con­
verged and weaksearchtime(x,O,z,prior,bias) fails to provide a solution
when called with z 2 y, we set t[x]==y. It is left to the reader to show
that this escape-value mechanismdoes not disturbe the correctness of our
preceding arguments.

It is clear that bias as defined above is justified for Fw(mi)on Uwi.
The result now follows by 3.4.36. D

The transformation 0 from 3.4.37 may be used to eliminate unnecessarily

large values from mi.
Our next application yields a generalized union theorem for weak

classes:
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THEOREM3.4.38. Let (ti)i be a sequence of total functions such that
Fw(ti) C Fw(ti+]). Then there exists a function tinf such that

E Fw(ti) = Fw(tinf).

EBQQE.Similarly to the proof of 3.4.20 we design a weak MMC-algorithm
which operates on items consisting of an index.and a bound-index. The dis­

criminator B tests for the pair <i,k> whether index i respects the bound tk.
The run-time of an item <i,k> is the run-time oi of its constituent

index.

The wizard bias is defined by

bias(<i,k>,x) ififi A(i,x,tk(x)) = true.

Note that by the assumption that the t are total, bias is a total function.
Let tinf be the function computedkby the weak-MMC-algorithm.
The class of pairs X discriminated by B contains all pairs <i,k> with

i e Fw(tk). Moreover "<i,k> e Fw(tinf)" provided i e Fw(tinf). Clearly bias
is justified for X on EL

By 3.4.36(i) we conclude "X c Fw(tinf)" which implies

E Fw(tk) c Fw(tinf).
To prove the converse inclusion 3.4.36(ii) is not strong enough but by

using assertion 3.4.34 and by repeating the argumentation from the proof of
3.4.20 this inclusion is easily derived. This completes the proof. U

Looking backwards one may ask whether this theorem could be proven

also by renaming the sequence of classes by a non-decreasing sequence of

names. For total ti such a renaming leads to the same problems as was the
case with the strong classes. A weak analogue of proposition 3.4.23 is
valid.

PROPOSITION3.4.39. Let (ti)i be a sequence of total functions so that for
all i, Fw(ti) C Fw(t ). Then there exists a non-decreasing sequence of1+1

total functions (ui)i so that 2 Fw(ti) = E Fw(ui).

PROOF. Define uk by:

uk I xx[§i:x 5 k then max{a.(x) I j 5 k and a.(x) Ze max{t.(x)}}" J —J —is7<7'
eZse max{o.(x) I j 5 j and a.Lx) Ze max{t.(x)} and"'— =7 —J _isk —
3isk[Vye[k,x][aj(y) §g_ti(y)_g§ aj(y)‘g§ x]]} jZ_].
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The proof that 3 Fw(ti) = O Fw(ui) is analogous to the proof of propoc
sition 3.4.23. If j e Fw(tn) then there exists an m 2 j,n so that for all

x 2 m, aj(x) = w or aj(x) S tn(x). From this one derives that for all x 2 m
the run-time a.(x) is used in the maximalization to compute um(x) whenever

aj(x) is finite, and therefore j e Fw(um).
Conversely the run-times a1(x) which are used in the maximalization to

compute um(x) are the run-times of precisely those indices 1 5 m which do

not violate weakly at least one of the bounds ti with i S m over arbitrary
long intervals [m,x]. Hencefor sufficiently large x only indices 1 con­

tained in igm Fw(ti) = Fw(tm) contribute to the maximalization. Since only
finite run-times contribute to the value of um(x) we conclude that for suf­
ficiently large x, um(x) 5 tm(x) and consequently Fw(um)c Fw(tm).

Finally the fact that um(x) 5 (x) is derived from the fact that"m+I

more run-times a1(x) are used in the maximalization for um+l(x) than for
um(x).

This completes the proof. U

Proposition 3.4.39 reduces 3.4.38 to the union theorem for weak classes
(3.3.l9).

There remains an open question whether a generalized union theorem for
weak classes with partial namesexists or not. Starting with the original
union theorem, we have investigated generalizations in three independent
directions (partial names, weakclasses, and monotonicity of classes in­
stead of monotonicity of names). These generalizations and their pairwise
combinations now are proved, but the triple combination remains unsolved.
It should be quite amazing if this combination should be false.

Our final application concerns the intersection of two weak classes.

If fl£§(t,u) is a computable function then one has Fw(fl£§fit,u))==Fw(t) nFw(u).
Consequently the intersection of two weak classes with total (or measured)
names is again a weak class. Since the weak classes cannot be renamed by a

measured set of names we cannot reduce the general case to this special
C388.

PROPOSITION3.4.40. Let t and u be partial functions then there exists a

partial function v such that Fw(t) n Fw(u) = Fw(v).

PROOF.Take for B a discriminator for the 2 -class X = Fw(t) n Fw(u). A2

wizard for X is constructed as follows: Let i and j be indices for t and u.
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Define the function w by:

w = Xx[§ij¢3(x) S ¢3(x) then t(x) else u(x) ii].

Clearly Dw= Ut u Du. we define bias by:

bias = li,x[A(i,x,w(x)) = true].

Nowbias is justified for X on Dw. Let v be the function computed by
the weak MMC-algorithm based on B and bias. By 3.4.36 we have:

(i) X C Fw(v) and

(ii) if Df C Dw and X C Fw(f) then Fw(v) C Fw(f).

Taking f = u and f = t in (ii) proves Fw(v) C X. D

The following generalization of 3.4.40 is left to the reader:

EXERCISE3.4.4]. Let (ti)i be a sequence of functions then there exists a
(non-recursive) function tint such that 0 Fw(ti) = Fw(tint).1







APPENDIX

ALGORITHMS

{WahreWbrte sind nicht wohlklingend.
Wbhlklingendé Wbrte sind nicht wahr.

Ein guter Mbnschstreitet nicht mit Wbrten.
Warmit Wbrtenstreitet, ist kein guter.Mbnsch.
Der Wbiseweiss nicht vieles;
Wervieles weiss, ist nicht weise.

Lao Tse, dds Buch vom Tao, VII 81,

ed. Lin Yutang}
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A0. INTRODUCTION

This appendix contains some algorithms which were described more or

less formally in the preceding parts of this treatise. Weuse the language
defined in §l.1.2, the extensions defined in §l.l.3 and the procedures
given in §l.1.4.

In order to get some useful programs we have to disregard several
scope restrictions in the definition of ALGOL68.

Consider the following program:

2%
E332fL =Pflflfl) E3
modegpgrator : proc(f_u_J1)E;

fan f := Ax[0];
operator gamma= (1% h) fin.‘ (int x) h(a:)+1;

fan g := gamma(f7;
pr_iZZegaZ since the environ of"@amma(f)" is newer than that of
9 25

f := gamma(f)

25 illegal as above; moreoverwhat is happening to the relation
g = gamma(f)? pr

end

In the above example our interpretation is that g posesses after the
assignation g := gamma(f7the routine Ax[1], and so does f after the as­
signation f := gamma(f7. Hence g = gama(f) is no longer true.

Al. THE MYHILL ISOMORPHISMALGORITHM(chapter 1.4)

If f and g are two injective total recursive functions, and if A and

I B by f and B S] A by g then
myhill (f,g) yields a recursive permutation s such that A E B by s.

B are two subsets of Ii such that A 5
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Qrocmyhill I (proc(int) i§§_f}g) Qroetint) int;

(mx2
(flex [0:0] int x list, y list;
flex [0:0] bool x def; y def}

x def[0] :: y def[0] :2 false;

gflile_not look up bool(x defgx) fig
gzgii :2 uk[not look up bool(x def,k)];
int j := f(i);

gflile look up bool(y def;j) §g_j := f(y list[j]) go;
insert int(x list,i,j); insert int(y list,j,i);
insert bool(xdef;i,true); insert bool(ydef;j,true);

j : uk[ngt look up bool(y def,k)];
i :: g(j);
'gflile look up bool(x defgi) go_i := g(x list[i]) go;
insert int(x list,i,j); insert int(y list,j,i);
insert bool (x def;i,t§ge); insert bool(y def}j,trge)

Q;
m list[x]

) ¢ myhill ¢;

DISCUSSION

Values of s and S-1 are stored in x list and y list. The boolean ar­
rays x def and y def designate whether s(x) or s-l(y) is defined or not.
During execution of the program a loop is executed during which first s(x)
is defined for the lowest x for which s(x) was not defined before; after­
wards the lowest value y is found for which s-](y) is not yet defined and
a corresponding x is found such that s(x) = y is a legal extension of s.
Execution of the loop is terminated when s(x) is found to be defined for
the requested argument x.

During execution of the algorithm we preserve correctness of the as­
sertions:

(a) $x[x def[x] = false]; $y[y def[y] = folse];
(b) x def[x] = true iflg 3y[x list[x] = y gné y def[y] = true Eng

Y 1ist[y] = X gflé (X e A_££f y e B)];
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x Eng x def[x] = tang ané

y_ané (x e A_2fif y e B)].

(c) x def[x]] = x def[x2] = t£Ee_ang x1 1 x2 Emax list[xl] z x list[x2];
y def[y]]

y def[y] = true imp 3x[y list[y]
x list[x]

y def[y2] = true and y] x y2 Emay list[y1] : y list[y2].

Because of (a) computation of i always succeeds. Hence j can be com­

puted as well. Wheni and j are knownexecution of a while loop is initi­

ated. Let i0 and jo be the values of i and j when the execution of the

while loop begins. If y def[jk] = tine then let i
= f(i

k+] = y list[jk] and
jk+1 k+]). By (a) the while loop will terminate unless the sequences

(ik)k and (jk)k become periodic. Since by our assumptions on f and g and
(c) both f and the partial function whosevalues are stored in y list are

k = i0 for some k > O, which, by (b) contra­

dicts the fact that x def[iO] = false. This shows that the while loop must

1 - 1 this occurs only if i

terminate by detecting y def[jk] = false. Next s is extended by letting
s(iO) = jk, (and s-l(jk)==iO). By (b) and the assumptions on f and g we
have i0 5 A iff jo e B iff il 6 A iff .... if: jk E B. Hence the extension
of s with the pair <i > preserves the validity of (a), (b) and (c).O’jk

During the second half of the main loop the roles of x and y are in­
terchanged in order to enforce that s becomesa surjection.

A2. ENUMERATION OF A X -PRESENTABLE CLASS X USING A WAY-OUT STRATEGY

(§2.3.2)
2

Let A be a Z2-class and let B be a general discriminator for A (i.e.

x e A iIi:§x[B(i,x)]). Assume moreover that X = { mi I i e A}.
Finite functions are represented by tables for their values; i.e. an

array of the mode_§ef‘f£e§[ ] struct(int vaZ,§gg§ def?. The default value
of a value of the mode (int vaZ,§o2£ def) equals (0,f§£§e).

The way-out strategy is represented by a routine gage way-out =

I (tggée t) int_: f_some element i such that mi is an extension of the
finite function encodedin t E;

For example, the way-out strategy which extends each finite function
by the constant value zero is defined by:
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modetablit = struct(£Qt val,bool def7; 2r_the default value of a tablit
equals (0,false) Q3

_fl@£L_5Llg= gefflejl ] tablit;
2rog_wayout ='(tgQle t) int:

v:_nd_e2@as)
(tablit z = look up tablit(t,x);

(defhof z I val of z I 0));

The enumeration of the class X is performed by the transformation T:

for each i and j m .) will be a member of X and for each f e X there1-‘(i-9.]

exist indices i and j such that f = wT(i j).

2roo(int i,x) bool B = ~g
2roe(table t) int way out I ~3

wT(i,j)(x)'=
(fZe§I0:0] tablit results;
int_prog := i;
Qggl original prog := true;
fQr_z gflile_not def_of look up tablit(results,x) fig

‘if original prog and z > j and not B(i,z)
t§en_prog := wayout(results); original prog := fgl§e_ij;

if:ngt_def_gf look up tabZit(results,n1z) gn§_¢br0g(n1z) S z
(n1z)_,§_I‘y_§))

0_d;

then insert tabZtt(PeSuZtS,fl1Z,(¢br0g

val of lookup tablit(results,x));

DISCUSSION

This enumeration technique was described in §2.3.2. The way-out strat­
egy is used at most once (because of the boolean original prog). The inte­
gral variable prog is initialized at the candidate index i. If the way-out

strategy is not used then the function mi is enumerated by a dove-tailed
computation; otherwise a safe uxtension of some subfunction in mi is enu­
merated.

Only finite values of wprog are stored in results. Note that the com­
putation runs independent of the argument x up to the point where w (x)Pr08
is enumerated.
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A3. THE OPERATOR GAP ALGORITHM FOR WEAKCLASSES (chapter 3.2)

222:1
‘F The algorithm described in §3.2.3 is a non-terminating algorithm

which enumerates the graph of t. Clearly this program may be used to
computet(x) by inserting into it a suitable exit, which is activated
if t(x) is enumerated.

Our formal description follows the informal one in §3.2.3 except
that the instruction "proceed to stage k+1" is implementedby a recur­
sive call of the procedure stage. ¢

modej‘i_ : proc(i_7i_§)1;
modeoperator : proc (fig) fig;
modeacrel = proc(int_, int, int) bool;

E lower bound= ~;
operator gamma= ~;

ggrgl acceptance = ~;
@c_[0.'0] table;

¢ it is assumedthat lower bound is total, that gammais total effective
and satisfies ga7nma(f)2 f and that acceptance computes A(i,x,z) I true
for some acceptance relation A ¢

p_1£c_extend = (323 x_,low,f‘Lun t,_r3f_'[ 1&7} tj) _1Jfl3_d:

beg7S_7i_i_71£ub=[tj; (ub<x I e_I'£g1:);
tj[0] := (211;z)

if z 5 low t_hen t(z)

_e__l_§£x_(t(z=1),lower bound(z)+1)
ii;

fir.’ J E! 1 E2 4”£
73.7'[.7']:= (int 2)

if z S low £h_e_r_z_t(z)

3% m_ax_(tj[j*1](z),tj[j](z=1),gamma(tj[j*1])(z))
J1"

od

gig ¢ extend ‘F;

35 the above procedure is illegal in ALGOL68 since the environ of the
routine denotations in the above routine text is newer than the environ

of the names to whomthey are assigned E
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p1;o_c_support = ( xhfiuflf, operator g)
ma»: Lt. ab -'= 03

_fu_nfstaI*= (323 i) ((i > ub I ub := i); f(i))_;
g(f star) (at);
ub

§_r_z_c_i_¢ support ‘)3

pr we assume that the operator g works by issuing calls of the function it
works on, the result being independent of the actual computation in­

voked by it but dependent only on the value which is delivered pg

proc suponint = (int x, y, tun f_,operator g) int.­
begin (:1:> y I error);

int out ."—'y+1_;

J‘:o_rzfromxto_yd_o
in_t p = support(z,f,g),' (p > out I out := p)

od;
out

inf ¢ suponint $5;

proc domains = (1l:t_t_low, [ ] 1% tj) [ ]
beginup= Itj; |_tj > 0 thenerror

[0.-up] .1/J’; last yj := low+ 1;
£0_I:J‘ .2272 up 21 -1 22 0 12

last yj := yj[,7'] := suponint(0, last yj, tj[j],gamma)
gig

pg this downwardloop is assumed to be legitimate, al­
though it uses the monadic operator - Lr

ya‘

_e1c_i' ‘? domains ‘F;

Lr domains is the procedure which computes the pointers vj,l in part 2 of‘
the informal algorithm pg
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Eroc entergap = (int nof;low,up,fun bottom,roof) bool:
¢ tests whether index nof enters the local gap-section determined by

bottom and roof over the interval [low+1,up]; the gap-section is as­
sumed to be closed ¢

ism wi safe -'=£u_e:
for z from low + 1 to_up‘ghile safe do
safe A:= acceptance(nof}z,bottom(z)) = acceptance(fl0f}Z,P00fYZ))

gé;
safe

end ¢ entergap ¢;

groc unsafegap = (int nof;k,low,[ ]int up,[ ]i2n_bottom,roof) result:
¢ seeks the highest entered gap—sectionif such a gap-section exists;

otherwise unsafegap yields true ¢

@£i_fk>|'up£k>|'bottomgrk>froofthenegrgrfi;
bool untouched := true; int_p :2 k+1;

.’Ej‘En_kb_zi-1lt£)_0212_i_l_ew1touched_d__o_

if‘untouched A:=entergap(nof3low,up[j],bottom[j],roof[j])
t_hflP-°=P*1f_i

261;

(p=0 I true I p41)

gnd ¢ unsafegap ¢;

Eroc stage = (int stage number,last defined,[ ]fun_local extension ¢ : tj ¢,
[ ]§§t locub 4 = zk 4) void:

begin int st = stage number, y0 I last definedk
[0:st][0:st+1] int next stage locub;
[0:st][0:st+1] fun next stage extension;
[0:st] fun giant;

[pr j from Oltg st do

extend(st+1,locub[j],local extension[j],next stage extension[j]);
next stage locub[j] := domains(locub[j],next stage extension[j]);
¢ informal description 1 and 2 ¢
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giant[j] := (int 2) int:
if z 5 y0 gr_z > locub[j] then ghgp
e}ii:j < st and z 5 locub[j+1]

then local extension[j+1](z)
_elseint great := local extension[j](z)+1;

f2r_k_tg st+1 do
int_p = gamma(nextstage extension[j,k])(z);

(p > great I great := p)

gci;

great
J1’

¢ informal description 3 ¢

gd ¢ end for j-loop ¢;

[0:st] bool safegap;
I23 j to_st_do safegap[j] := true pd;

fgr nof.tg st=1 do
case_unsafegap(nof;st,y0,locub,local extension,giant)

i_"1LZ-' 27:52:
‘int mis : safegap[mis] := false

9}L72£"0£

esac Egg
¢ informal description 4 and 5 ¢

int select := 0;
while not safegap[select1do select +:= 1 gay
_gfselect > st then error if;

¢ informal description 6 ¢

i§r_x from y0+1 to locub[select1do
insert(table,x,local extension[select](x)) gg;

pr_£f locub[select] 2 argument looked for then exit if pr

stage(sn+1,locub[select],next stage extension[select],
next stage locub[select])

¢ this recursive call takes care of 7 in the informal descrip­
tion ¢

end ¢ stage ¢;
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start of the algorithm:
[0:1] fzfl extensions;
[031] upperbounds;

extend(1_,0, zero, extensions);

upper bounds := domains(0,extensions);

¢ initialization from informal description 4‘

stage (1, 0, extensions, upper bounds)

e_@¢ operator-gap algorithm ¢

A4. THE UNION ALGORITHM(chapter 3.3)

The union algorithm as described in chapter 3.3 clearly is a sequen­
tial implementation of a more general algorithm involving a great deal of
synchronization and parallelism. Belowwe present first a sequential and
next a parallel implementation.

E2121
¢ declarations commonto both implementations ¢

mode tablit = struct(13:z§ val_,_I33o_ldef);

mo_delsflzg = _r_eff‘lex[ Jtablit;
Ede Q = struct(3'n_t ind,arg_.bnd,val);
Lie v_r= £2;

pg the default value of a suspect report equals (0,0, 0,0) pg:
modeacrel = proc(int_, int, int) bool;

;“Zj[0:0]tablit tinf;
acrel acceptance = s_7<’zI£3_;

i_71_tindex of sequence = s_7<ip; #5the index t such that cp:(i_,x) = t7/.(x) ¢
‘E[0:0]i2_’zt tcomp, guess;
_l_ls_r suspect list := (§_fi_7£2_,17_3_l);

Llgr violation queue := (§E1_§p_,n';l);

int max comp, max test, max guess, max arg, max ind, max bnd, stage number;
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‘r‘sequential implementation ¢

p_r=_o3sequential union algorithm = goié: (

pggg stage I (7l21_tn)3c37_lcj:

fig t = indexof sequence;
l0: max comp := max test := max guess := max arg := max ind := max bnd := n;

ll: insert int(guess,max ind_,maxguess);
insert int(tcomp_,maxincl,0);

l2:&r_*ztomaxaI'gio_
in_t_new comp := tcomp[z]; §_oo_lnew := 1&3,­

fo_I*i fig new comp 133m_73r1(z,maxbnd) Q

if <I>:(i,z) S max comp t_}z_ennew comp := i; new := t_r'u_e__;“_i

0_d;

if newElfin
Er i £2102 tcomp[z]t_o_new comp Q

37¢ val = <.pi(i,z),°
£91: ,7’_t_omax ind go

if guess[j] = i glad;it acceptance(z,j,val)
then attach sr(suspect list, (J, z, i, val))

11'

.‘L'

od;

l3: for; item o1)_e1_r=_suspect list d_o_

if acceptance(ind of item, arg of item_,maxtest)
Elfin attach vr(violation queue,item)
.L' .024;

‘E item ov_erviolation queueQ
fo_r: item 1 o1_)_e_r_suspect list Q

ifindgfitemrindofitemltlfl
delete sr(suspect list_,item1)

E _0_d_:

guess[ind _o_fitem] := max guess + 1

0_d;
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l4: i2r_z to_max arg do
ii:not'def_of lookup tablit(tinf;z) then

int viol bnd := max bnd + 1; val := 0;
jg; item over violation queuedg

_gf arg of item : z and bnd_gf item < viol bnd
then_viol bnd := bnd_of’item; val := val of item
f_i £1;

if viol bnd 5 maxbnd_then
insert tablit(tinf;z,(val,true))
.1’

fl 0d;

l5: clear vr(violation queue); stage(n+1)

gag ¢ Stage ¢;

start of sequential implementation: stage(0)

¢ end of sequential union algorithm ¢ );

¢ parallel implementation of union algorithm.
There are three independent sections. The driver adjusts maxarg, max

bnd, max ind and max guess. The enumerator computes values of ti(x) and
uses these values to test indices in order to place possible violators
on the suspect list. The inventor tries to find on the suspect list a
weakviolator and using these weakviolators tinf is defined. The array
guess and the suspect list are shared by the enumerator and the inventor;
consequently these structures can only be read or written within "criti­
cal sections". The driver is only activated at a time where both the
enumerator and the inventor have completed a full turn. ¢

proc parallel union algorithm = void: (

proc something = int: skip + 1;
proc waste time = void:

f e.g. executes Lucas’ test in order to find a newMersenneprime ff;

sema inventor sem = level 1, enumerator sem I level 1, guessem = level 1,
suspect sem I level 1;

int t Z index of sequence;



210

go driverI
d_o d_ow_nenumerator sem; dc_)__wlinventor sem;

max bnd +:= something;

max arg +:= something; extend int(tcomp,max arg);
extend tab Zit(tinf_,max arg);

int mi = max ind; maxind +:: something; extend int(guess,max ind);
max guess +:= something;

E mai = Eagfmaxind,max arg);

whi Ze max guess < mai _c£)_max guess +:= something ad;

fig: i _f_‘2:o_mmi+1 E max ind do guess[i] :: max guess _o_d;

up_ enumerator sem; _L_¢p_inventor sem;
waste time

536}¢ end driver ¢;

E enumerator=
do din enumerator sem;

£95 z 31 max arg Q
new comp :2 tcomp[z]; _lg_o_o£new := fcie;

‘flog i j3*_oLn_new comp Egm:irz_(z,max bnd) d_0

if ¢t(i_,z) s max comp15% new comp := i; new := Ezfefl
0_d;

if new t_hfl_’“c>;r i j-“grimtcomp[z] to new comp d_o_

323 val = cpi(i,z)_;
fog j to maxind do
dfl guessem; g : guess[j],° 332guessem;

if g = i and not acceptance(z,j,vaZ)
Jilin _c_i_ow_nsuspect sem;

attach sr(suspect list, (j, z_,i,vaZ));
3:2 suspect sem

£3’ 24 0_d

L5 261;

max comp +:= something; ug enumerator sem

$7: ¢ end enwnerator ¢;
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£93 inventor = vogd:
do Q23 inventor sem;

d_ou2_nsuspect sem;

fpr item over suspect list do
if acceptance(ind of item,arg of item,maxtest)
‘then attach vr(violation queue,item)
1:’ 92;

up suspect sem;

for item _o_1)e_rviolation queue d_o_

dogn suspect sem;

E item 1 _c_)_ve_1_°suspect list do

if ind of item = ind of item 1
then delete sr(suspect list,item 1)

.71’ 9&3

3gLsuspect sem;

dpgn guessem;

guess[ind of item] := max guess + 1;
up_guessem

od;

fpr_z tg_max arg dg
ifflt defgf tinf‘[z]
then_int viol bnd := max bnd + 1, val := 0;

jg; item over violation queue do
_gfarg_gf item : z and bnd of item < viol bnd
then viol bnd :: bnd of item; val := val of item
Ii 2!;
if viol bnd S maxbnd then tinf[z] := (vaZ,trug).fi

1;’ 25%;

clear vr(violation queue);
max test +:= something;

up inventor sem
gd ¢ end inventor ¢;

start of'parallel implementation:
par begin driver,enumerator,inventor end

¢ end of'parallel union algorithm ¢ );
pg at this place one of the two union algorithms must be called pr_skip
gfld ¢ union algorithm ¢
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AS. THE MEYER-MCCREIGHTALGORITHM(chapter 3.4)

In the discussion of the MEYER-MCCREIGHTalgorithm we indicated a num­

ber of variants of such an algorithm. Belowwe present again a sequential
and a parallel implementation, both of which use the strategy against un­
wanted revisions developed by R. MOLL.Both MMC-algorithms are based upon

some general discriminator B; for the classical case, where membershipof
F(t) is tested, a procedure is given.

As we indicated in §3.4.l there must be designed some interface be­
tween the MMC-algorithmand its subroutine searchtime with respect to the
representation of the priority queue. Thepossible representations are
(i) an infinite array of pairs consisting of a priority numberand a

boolean

(ii) a queue of pairs consisting of an index and a boolean
(iii) a double representation consisting of both (i) and (ii).

The first representation is easy for the MMC-algorithmas a whole
whereas the second one makes it easier to write the subroutine searchtime.

Choosing a double administration does not solve the problem since every
manipulation on one structure must be repeated for the other structure.

In our implementation we have used the representation by an infinite
array. The routine searchtime is equipped with a number or procedures yield­
ing the first or next element in the priority queue.

begin ¢ declarations commonto both MMC-algorithms ¢
modepyiostat I struct(int prio,booZ stat);
modeacrel I proc(int,int,int) boot;
modediscr I proc(ip§,in§j boot;
modequit I struct(int ind,booZstat);
modecandval I struct(int cand,vaZ);
modegyiter I union(qyit,booZ);
mode candvaler I union(candvaZ,booZ);

modetablit I struct(£Q§ vaZ,booZdef?;

acreZ acceptance I skip­
discr B I skip;
int index nameI skip; int t I index name;

discr strong class I (int i,x) boot:

(¢t(n1x)=n2x I acceptance(i,n1x,mt(n]x)) I true);
¢ tests membership i e F(mt) ¢
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flex[0:0]priostat prior;
E the default value of a priorstat value equals (0, true) pg

int priorcounter := 0;
proc next I int: priorcounter +:= 1;

f'lex[0:0]tablit t prime;

¢ the procedures first and next take care of the interface inbetween search­
time and the MMC-algorithm ¢

proc first I ([ ] priostat prior) guiter:
if [ prior < |_prior then false
else int cand:= Lprior; height :: prio of prior[cand];

bool colour :2 stat of prior[cand];
for i cand+1t_o_[ prior Q

if now= prio gf prior[i]; height > now
then height := now; cand := i; color := stat of prior[i]
f_i £3

(cand, colour)
£73‘? end first ¢;

Kroc next : ([ ]priostat prior,_cZ2,¢_itthis) guiter:
Leg height; §3o_l_not found := trLe_;

E i n L prior E [ prior _ui1_1_l_lenot found Q
if(i,stat of prior[i]) = this
thfl height := prio of prior[i]; not found:= gig
2:’ 2;

if not found then g°_r_or_."Li;

1 next height, cand; bool colour,found := false;
fl i from[_prior to [ prior do
if p = prio of prior[i]; p > height then

if n:ot_found

the_n found := _t_r_ue;next height := p;

cand := i; colour := stat of prior[i]
fl next height> p
thin next height := p; cand := i; colour := stat of prior[i]
.L3

1:‘ 92;
if found then(cand,colour)else found
gs? next ¢,'
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3393searchtime= ( arg, low,high,[ Jgriorstat prior) candvaler:
gain val:=low; cand; candidate;

£33 first(prior)
in yes: candidate:= yes
gt £o_t_gfailure
esac;

_z._J_l3SEval 5 high do

if stat _o_f_‘candidate _c_z_n_d_lg acceptance (ind _o_j_‘candidate, arg, val)

fle_n_ val +:= 1

ilif acceptance(ind of candidate,arg,val)
in gzse next(prior, candidate)

3'2 yes: candidate:= yes
out _go_tofailure
fig

else 4 solution found ¢ g_o_t_o_success

:3‘ 2!:

sucess: (ind _o_fcandidate, val).
failure:If

_gn_c_i¢ searchtime ‘F;
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gggg sequential MMCalgorithm I ggid: (

gggg stage = (int n{di§g§_B)goid:
Qeginextend priostat(prior,n); prior[n] := (next,§3iE);

extend tablit(t prime,n);
fQ5_ind to nldo

ii1not B(ind,n) tfl3n_prior[ind] := (next,fgl§§)
Li _0_ds

not def‘of t prime[n1n]then
ease searchtime(n1n,n2n,n2n,prior)
in_oandval good:

(int test :2 val of goodkt prime[n1n] := (test,true);
.”&iE2"_d_0

ii:not stat oi:prior[i]and_ngt acceptance(i,n1n,test)
tfien_prior[i] := (next,t3gg)
E E3.)

2§_3f def of t prime[wanted]
then terminate(val of t prime[wanted])
£7322

esac

f_i;
stage(n+1,B)

Egg ¢ stage ¢;

¢ to start a MMCalgorithm to compute a new name for F(wt) ¢
stage(1,strong class)

¢ end sequential MMC-algorithm 4 )3
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Lro_cparallel MMCalgorithm 2 (
‘.5parallel implementation of MMC-algorithm.

There are two independently operating sections. The discriminator
tests indices and movesviolators to the black list. Also the task of‘ in­
troducing newindices is given to the discriminator. The incriminator issues
calls of‘ searchtime, and tries to invent values for t-prime. Both sections
share the priority queue as a commondata structure. This queue is protected
using a semaphore prior sem ¢

proc something = int: skip;
sema prior sem I level 1;

i discriminator=
d_0

£o_r ind E max ind do
if not B(ind_,max ind)

tl_2_e_n_£_o2:_m_prior sem;

prior[ind] := (next,fc_z_l_s_§);

up prior sem
:L' 24.;
max ind +.'= 1;

_dou_271_prior sem;

insert priorstat (prior,max ind, (ne:z:t,§E@)),'
up prior sem

gt; ‘:5end discriminator ‘F;

p_1£c_incriminator=
ioin_t arg -7TI]trial;

if defof t prime[arg]thfl
eli low= last tried[arg]; highI low+ something;

last tried[arg] := high + 1
candval happy;

d_o3n_prior sem;

gag searchtime(arg, low,up,prior)
in candval good: happy := good; up prior sem
it up prior sem;failure
esac;
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int test = val gf happy;
t prime[arg] := (test,trg§);
dggn_pri0r sem; int up := [ prior; gp_pri0r sem;
f_0£ 752 up Q

dggn_pri0r sem;

if 7_2g§_stat pf pr7,'0r[1l]

and.ngt_acceptance(i,arg,test)
tflen_pri0r[i] :2 (next,trEe)
f_i;

gp_prior sem pd
Li;

failure: trial +:= I;
extendtablit(t prime,trial);
extendint(last tried,trial)

gd ¢ end ineriminator ¢;

start: int maxind := 0, trial :: 0;
flex[0:0]int last triedk

par begin discriminator,incriminator end
¢ end parallel MMC-algorithm¢ );

pr_at this place one of the MMC-algorithmsmust be called pr skip

§nd_¢ MMC-algorithms 4

A6. THE WEAKMEYER-MCCREIGHTALGORITHM (Chapter 3.4)

For this algorithm we present a parallel implementation. The algorithm
is based upon the acceptance relation "acceptance", the discriminator "B"
and the wizard "bias". The algorithm consists of three independent sections.
The discriminator has the same function as in A5. The incriminator uses the

subroutine weak searchtime in order to generate new values of t'. Testing
of indices against t' and makingwhite indices out of black ones is per­
formed by a new section called "the judge".

A number of modedeclarations, which are equal to the corresponding
ones in A5, have been omitted.
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begin
proc(j§§,j§§)bias I skip; acrel acceptance I skip; discr B = skip;
_int k : index Ax[bias(0,x)] ¢ used to test convergence of'bias(0,x) ¢;
¢ int eps : an index whose a-run-time equals 8 ¢
int prior counter := 0; proc next = int: prior counter +:= 1;
int time := 0, max test := 0, trial := 0, max ind :2 0;

prgg something = int; ship;
prgg current time = int: time +:= (something + 1);
sema prior sem I level 1, t prime sem =_level 1;
iZex{0:0]priorstat prior; iZex[0:0]tablit t prime;
pr9c_first = ([ ]priorstat prior)quitter:_f see A5f;
prgc_next = ([ ]priorstat prior,quit this)quitter: i see A5E;
fZexI0:0]§9gl test against output;
pr_rememberthat the default value of a boolean value equals false pr

proc weak searchtime =
(int x,low,high,[ Jpriorstat prior,proc(int,int)bool bias)candvaler:

begin_i£ ¢k(x) > current time then comeback another time ii;

downprior sem; int up = [ prior;

[0:up+1]priorstat ownprior; ownprior[0:up] := prior;
ownprior[up+1] := (next,true);
up_prior sem;
proc ownbias = (int i)bool:_if i = up+1 then true else bias(i,x)fZ;
proc ownaccept = (int_i,z)bool: if i = up+1 then false else

acceptance(i,x;z)fZ;
¢ by these redefinitions of'prior, bias and acceptance the element

eps is inserted at the tail of the priority queue 4

llint earlier cand:: (up+1;nil);
¢ this element never gives a solution ¢

pr9g_increase val ='vgid:
(val +:= 1;

f2r_j over earlier cand dg
_gfownaccept(j,val+1) §flgfl_cand 3: is £232 3u0c933.fi

od);
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int val := low; Quit candidate;
case first(0wn prior)
in_guit_yes: candidate := yes
gut err2r_¢ ownprior is not empty ¢
Efiflfj

int cand := ind gj'candidate;
Qhile val s high dc

if stat cf candidate
then if ownbias(eand) g§§_ngt ownaccept(cand,val)

then increase val

else case next(0wnpri0r,candidate)
in_guit yes: candidate := yes
out error ¢ the last queue element has infinite

a-run-time ¢
88610

E
elif ownaccept(cand,ual)
tfi§n_ca§e_next(0wnpri0r,candidate)

in_guit_yes: candidate := yes
gg§_§£§g§ ¢ see above ¢

.E§2E

elif awnaccept(cand,val+1)
then ggtg success
else attach int(earlier cand,cand);

case next(0wnpri0r,candidate)
_in Quit yes: candidate := yes
gg§_§§§g§_¢ the last item in the queue is white ¢
esac

:L' 0_ds

failure: false.
comeback another time: true.

success: (cand,val)

end ¢ weak searchtime ¢;
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p2_°_o£discriminator = 3o_i_d:

do £03 ind E max ind d_o

if _n_otB(ind,ma.'r: ind)

_t_h;e_nd_g1g_n_prior sem ,°

prior[ind] := (neact,_ffls_e_);
yp prior sem

ii 25%:

max ind +:= 1,­

_ci_ow_nprior sem;

insert prviorstat (prior, max ind, (next, §l<_7_Sp_)),­

gp prior sem
gé ‘Fend discriminator ‘:5;

go incriminator=id:
_do__132_t_arg = III trial;

dflm_ t prime sem;

if def‘of t prime[arg]
tfle_n gap t prime sem

ease _z_¢pt prime sem;

gzse weaksearchtime(arg, 0, trial, prior, bias)
in candval good:

(gig t prime sem;
t prime[arg] := (val of good,_tru_g);
_L_¢p_t prime sem),

§oo_Zmis:
£9.10.

f_75;

trial +:= 1;

dgu_7n_t prime sem,­

extend tabZit(t prime,trial);
_z_¢p_t prime sem

gg ¢ end incriminator ¢,'
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pr2g_judge I ggid:
d9_d9wn_pri0r sem; int_upp = f prior; up_pri0r sem;

dawn t prime sem; int upt = [ t prime; up_t prime sem;
if <upp,upt> > [ test against output
then extend b00l(test against output, <upp,upt>)
fis

fer ind_tg upp dg
fgr arg tg_upt dg
if test against 0utput[<ind,arg>]
_§fl§Q_§§§2_¢test was already executed ¢

_el§etablit targ; priorstat prind;
d2wn_prior sem; prind := pri0r[ind]; up_pri0r sem;
dawn t prime sem; targ := t prime[arg]; up_t prime sem;
ii:ngt def_gf targ
then_§Eip_¢ test value not yet available ¢
iii" stat _c_)_fprind
§fl§§_§§ip_¢white indices are not tested ¢
§£§e_int_val targ = val gf targ;

if acceptance(ind,arg, val targ)
then test against 0utput[<ind,arg>] := true
elifi acceptance(ind,arg,max test)
then test against 0utput[<ind,arg>] := true

gpwn prior sem;
pri0r[ind] := (next,trug);
up_pri0r sem

11'

.’L'

£2
$124;

max test +:= (something + 1)

gé_¢ judge ¢;
start of the weak MMCalgorithm:

par_§egin discriminator,incriminat0r,judge end
gag ¢ weak MMC-algorithm 4
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SUMMARY

Wepresent a survey of the theory of resource-bound classes in ab­
stract complexity theory within a machine-independent framework.

To be able to discuss algorithms without relying on the informal or
semi-formalized descriptions found otherwise, we present a formalism to
represent algorithms and expressions denoting computable functions. This
formalism, described in chapter 1.], consists of a high level programing
language, extended by a number of primitives needed for discussing the
basic concepts of an effective enumeration and a complexity measure. In
order to accomodate the mathematical reader, a mathematical style of rep­
resentation is defined, which makes it possible in a majority of situations
to use the sam informalexpressionswhich have been traditionally used, by
giving these expressions a formalized meaning. In this way a number of im­
plicit ambiguities within the language of abstract complexity theory are
eliminated.

After this introduction we present the basic concepts of an effective
enumeration (1.2) and a complexity measure (1.3). To illustrate our formal­
ism, and in order to make this publication self-contained, we present some
basic facts from recursion theory (1.4) and some elementary results on com­
plexity measures (1.5). The monotonicity lemmain 1.5, showing the exis­
tence of programswith increasing run-times for total functions, completely
solves the problem whether sufficiently manyincreasing run-times exist.
Part 1 is completed by mentioning the speed-up phenomenon.

The second part gives a survey of the known results on classes of com­
putable functions defined by bounds on computations, the so-called resource­
bound classes. The most important types of such classes are the complexity
classes (where the bound on the run-time depends on the argument only) and

the honesty classes (where the maximally allowable run-time depends both
on the argument and on the computedvalue). In particular, the results on
the behaviour of honesty classes compared with the knownproperties of com­
plexity classes, are new.

Following the definitions of the classes (2.1) we discuss diagonal­
ization techniques (2.2), enumerability properties (2.3) and set theoreti­
cal closure properties (2.4).

In part 3 the resource-bound classes mentioned above are reconsidered
from a more general point of view. To explain the different behaviour of
complexity classes and honesty classes, given their similarity of defini­
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tion, we introduce the concept of an acceptance relation, together with a
corresponding measured set of generalized run-times. It is argued that
there exist two different ways in which some function, used as a name of a
class, restricts membershipin this class, depending on whether divergence
of the run-time is felt to be in violation of the restriction (strong re­
striction) or not (weakrestriction).

Relative to a given acceptance relation we define in this way for each
partial recursive function a corresponding strong (weak) class; these
classes will be called abstract resource-boundclasses hereafter.

The difference between complexity classes and honesty classes origi­
nates from the fact that classes of the former type are examples of strong
classes whereas the latter type consists of weak classes.

In the sequel of Part 3 we discuss those results on resource-bound
classes which can easily be treated within the language of abstract resource­
bound classes. Chapter 3.2 contains the proofs of the gap theorem and the
operator-gap theorem for both strong and weak classes, yielding the opera­
tor-gap theorem for honesty classes as a corollary. In chapter 3.3 we dis­
cuss the union theorem, which is proved for both strong and weak classes,
where, moreover, the functions in the increasing sequence of names are al­
lowed to be partial (using the extra condition that the domains of the
functions form a decreasing sequence of sets). Again the union theorem for
honesty classes is a straightforward corollary.

In chapter 3.4 we discuss the MEYER-MCCREIGHTnaming theorem, which

claims the existence of a measured transformation of programs renaming all
complexity classes. This theorem, in combination with the compression
theorem, yields a method to extend uniformly complexity classes by operat­
ing on programs for their names. This is interesting since the gap theorems
show that no uniform extension by operation on the names themselves is pos­
sible. In contrast to the situation in the preceding two chapters, this
theorem cannot be generalized for weak classes; instead we prove that each
measured transformation fails to rename correctly at least one honesty
class.

Section 3.4.3 contains a number of modifications of the MEYER­

McCREIGHTalgorithm which is used in the proof of the naming theorem. The

first modification enables us to rename a strong class by two names having
disjoint domains. The second modification yields a further generalization
of the union theorem for strong classes, where the monotonicity of the se­
quence of names is replaced by the monotonicity of the sequence of classes
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of indices c.q. programs.
In section 3.4.4 we discuss how the MEYER-MCCREIGHTalgorithm can be

used to compute a name for the smallest strong class containing a Z2-class
which is given to us by means of some "almost everywhere”-condition. Al­

though the computed name highly depends on the precise MYER-MCCREIGHTal­

gorithm used, the strong class namedby this function is characterized in

terms of the given Z2-class.
The theory of these last two sections is generalized for weak classes

in section 3.4.5. As follows from the negative results in 3.4.2, the MEYER­

MCCREIGHTalgorithm behaves badly for weak classes; however, its renaming

properties maybe preserved by equipping it with a so-called "wizard" which
guesses by means of prejudice which run-times are finite and which ones

diverge. The weak MEYER-MCCREIGHTalgorithm, constructed this way, yields

a further generalization of the union theorem for weak classes, and a
proof that the intersection of two honesty classes of programswith partial
names is again an honesty class; the latter result cannot be derived in the
usual way by taking the minimumof the two names since this no longer needs
to be a computable function.

In the Appendix we formally represent a number of the more complicated
algorithms by means of programs written in the programming language des­
cribed in chapter 1.].
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SAMENVATTING

Dit proefschrift geeft, in het kader der abstracte complexiteitstheorie,
een overzicht van de theorie van de klassen van functies die gedefinieerd
worden in termen van begrenzingen op de rekentijd, die we bij gebrek
aan ingeburgerde Nederlandse terminologie "verbruiksklassen" zullen noemen.
Wewerken op een machine-onafhankelijke basis.

Omte kunnen praten over algoritmen zonder te hoeven vervallen in het
gebruikelijke, informele of half-formele taalgebruik, ontwikkelen we een
formalisme omalgoritmen, en expressies die een berekenbare functie voor­
stellen, te beschrijven. Dit formalisme is gebaseerd op een hogere orde
programmeertaal, voorzien van enkele primitiva, nodig omde structuur van
een effectieve enumeratie van recursieve functies, of een comp1exiteits­
maat, formuleerbaar te maken. Omhet de wiskundige lezer echter niet a1 te
moeilijk te maken, definieren we ook een wiskundige representatiestijl
voor deze programeertaal. Hiermee vangen we twee vliegen in een klapz we
kunnen in een groot aantal gevallen volstaan met de expressies die inge­
burgerd zijn voor simpele berekenbare functies, en bovendien krijgen deze1f­
de expressies een geformaliseerde betekenis. Op deze wijze verdwijnen
bovendien een aantal impliciet aanwezige ambiguiteiten uit de taal der
abstracte complexiteitstheorie.

De basisbegrippen van een effectieve enumeratie en een comp1exiteits­
maat worden gedefinieerd in hoofdstuk 1.2 resp. 1.3. Hoofdstuk 1.4 bevat
(ten behoevevan de zelfstandigheid van dit proefschrift en ter illustratie
van ons formalisme) enkele basisstellingen uit de recursietheorie, en in
hoofdstuk 1.5 behandelen we de elementaire theorie der complexiteitsmaten.
In dit laatste hoofdstuk lossen we het probleem op of er voldoende stijgen­
de rekentijden bestaan, door aan te tonen, dat iedere totale functie zich
laat berekenen met behulp van een programa met stijgende rekentijd. Een
korte toelichting van de versnellings-stelling in hoofdstuk 1.6 besluit
het eerste deel.

In het tweede gedeelte vertellen we wat er bekend is over verbruiks­
klassen. De belangrijkste typen verbruiksklassen zijn de zo te noemen
complexiteitsklassen (waar de begrenzing op de rekentijd slechts van het
argument afhangt) en de "gelijkmatigheidsklassen" (waar de begrenzing
zowel bepaald wordt door het argument als door de berekende waarde). De
hier gepresenteerde resultaten over gelijkmatigheidsklassen, in vergelijking
met die over complexiteitsklassen, zijn nieuw.
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Na de definities (2.1) volgen achtereenvolgens diagona1isatie­
technieken (2.2), opsombaarheids-kwesties (2.3) en verzamelingstheoretische
aspecten van de verbruiksklassen (2.4).

In deel 3 bekijken we de verbruiksklassen vanuit een algemener stand­
punt. Hoe is het mogelijk dat, ondanks een zichtbare analogie in definities
van comp1exiteits- en gelijkmatigheidsklassen, de twee types een verschi1­
lend gedrag vertonen? Omdit te verklaren voeren we het begrip "acceptatie­
relatie" in met een daarbij behorende "opvraagbare rij" van gegenera1iseer­
de rekentijden. Wemaken aannemelijk dat er twee verschillende manieren
zijn waarop een functie op kan treden als naamvan een klasse, afhankelijk
of het divergeren van de rekentijd beschouwdwordt als een schending van
de begrenzingsconditie (sterke begrenzing), of niet (zwakkebegrenzing).
Met betrekking tot een gegeven acceptatierelatie definieren we voor iedere
partieel recursieve functie een bijbehorende sterke resp. zwakkeklasse.
Deze klassen noemenwe in het vervolg abstracte verbruiksklassen.

Het verschil tussen comp1exiteits- en gelijkmatigheidsklassen is nu
geheel en a1 te verklaren, door op te merken, dat eerstgenoemde klassen
sterk begrensd zijn, terwijl de laatstgenoemde klassen een voorbeeld zijn
van zwak begrensde klassen.

In de rest van deel 3 komendie resultaten uit de abstracte complexi­
teitstheorie aan de orde, die zich goed laten behandelen in de taal der
abstracte verbruiksklassen. Hoofdstuk 3.2 bevat het bewijs van de "gaten­
stelling" en de "operator-gatenstelling" voor zowel de sterke als zwakke
verbruiksklassen; geldigheid van de laatste stelling voor ge1ijkmatigheids­
klassen is een direct gevolg.

In hoofdstuk 3.3 behandelen we de verenigingsstelling. Deze laat zich
generaliseren tot zwakkeklassen; bovendien mogende functies in de stij­
gende rij namenpartieel zijn, mits wordt aangenomendat de bijbehorende
rij definitie-gebieden een krimpende rij verzamelingen is. Ookdeze
stelling is nu voor gelijkmatigheidsklassen bewezen.

Hoofdstuk 3.4 handelt over de omnoemings-stelling van MEYERen

MCCREIGHT,die uitspreekt dat alle complexiteitsklassen op uniforme wijze
kunnen worden voorzien van een opvraagbare rij namen. Deze stelling ont­
leent haar belang aan het feit dat zij, in samenwerkingmet de "compressie­
stelling", de mogelijkheid geeft op uniforme wijze complexiteitsklassen te
vergroten door middel van operaties op programma's voor de namen van deze

klassen. Mendient hierbij te beseffen dat een zodanige vergroting door
middel van operaties op de namen zelf op grond van de gatenstellingen



235

onmogelijk is. In tegenstelling tot de voorafgaande stellingen laat deze
stelling zich niet generalizeren voor zwakkeklassen; in tegendeelz iedere
transformatie van programma's die een opvraagbare rij namengeeft is foutief
voor minstens één gelijkmatigheidsklasse (3.4.2).

Paragraaf 3.4.3 bevat een aantal varianten van de Algoritme van MEYER

en MCCREIGHT,die gebruikt wordt om de omnoemings-stelling te bewijzen. De
eerste variant laat zien hoe een naamvan een sterke verbruiksklasse zich

laat transformeren tot een paar namenvoor dezelfde klassen die disjuncte
definitie-gebieden hebben. De tweede variant levert een generalisatie van
de verenigings-stelling, waarbij de conditie, dat de nameneen monotonerij
vormen, is vervangen door de monotonie van de rij verbruiksklassen van
rangnumers resp. programa's.

Paragraaf 3.4.4 laat zien hoe de MEYERrMcCREIGHTalgoritme ons in staat
stelt een naamte berekenen voor de kleinste sterke verbruiksklasse die

een Z2-klasse omvat, die gedefinieerd is m.b.v. een "bijna overal”-criterium.
Hoewel de berekende naam afhangt van de gebruikte algoritme, laat de bijbe­
horende sterke klasse zich helemaal definieren in termen van de gegeven

Z2-klasse.
De theorie uit de laatste twee paragrafen wordt gegeneraliseerd voor

zwakkeklassen in paragraaf 3.4.5. Het negatieve resultaat uit paragraaf
3.4.2 laat zien dat de MEYERrMcCREIGHTalgoritme niet werkt voor zwakke

klassen. Wekunnen echter, door de algoritme te voorzien van een ”waarzegger"

die (op grond van ingeworteld vooroordeel) gokt of een rekentijd a1 dan niet
divergeert, een algoritme construeren, die de omnoemings-eigenschappenvan
de MEYERrMcCREIGHTalgoritme bewaart. Dit geeft aanleiding tot een verdere

generalisatie van de verenigings-stelling voor zwakkeklassen en een bewijs
dat de doorsnede van twee gelijkmatigheidsklassen met partiele nameneen
gelijkmatigheidsklasse is; dit laatste laat zich niet bewijzen door (als
gewoonlijk) het minimumvan twee namen te trekken, omdat dit een niet­

recursieve functie kan zijn.
In de Appendix geven we voor enkele der meer ingewikkelde algoritmen

programma's, geschreven in onze programmeertaal uit hoofdstuk 1.].
Bij het schrijven van deze samenvatting is de volgende terminologie in

het Nederlands ingevoerd:
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(Abstract) Resource-Boundclass (Abstracte) Verbruiksklasse
Honesty class Gelijkmatigheidsklasse
Measured Set Opvraagbare rij
Acceptancerelation Acceptatierelatie
Run-time Rekentijd
Index Rangnumer

Gap Theorem Gatenstelling

Naming Theorem Omnoemings-stelling

Een aantal andere nieuwe begrippen werd verkregen door woordelijke verta­
ling van het Engelse equivalent.
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1

In iedere complexiteitsmaat kan iedere totale functie worden
berekend met een programmamet monotoon stijgende rekentijd.

Corollary 1.5.6, dit proefschrift.

2

De inbeddingsstelling, genoemdin 2.4.2, kan als volgt worden
verscherpt: voor iedere complexiteitsmaat bestaat er een totale
recursieve functie t met de eigenschap dat bij iedere recursie­
ve partiele ordening s op EJ een transformatie 0 bestaat zodat
aan de volgende voorwaarden is voldaan:

(i) O E Ct ,

(ii) voor iedere i e nu geldt wO(i)e Ft ,
(iii) voor iedere i e E0 geldt CwO(i)c Ct ,
(iv) voor iedere i,j 6 El geldt is” "“’ °<Do<i>° Cwo<j>

P. VANEMDEBOAS, Machine-independent complexity
theory. Part 2, Resource-bound classes. Math.
Centre Tracts MCT61 (in voorbereiding), Amsterdam,
1974.

3

De begrippen "opvraagbare rij" en "gelijkmatigheidsklasse"
zijn, mede gezien voorbeeld 2.1.6, minder gelijkwaardig dan
gesuggereerd wordt door de equivalentiestelling 2.1.5.

Hoofdstuk2.1, dit proefschrift.

4

Ben subbasis S voor een topologie heet minimaal indien iedere
echte deelcollectie van 8 een echt zwakkere topologie genereert.
Voor iedere metrizeerbare ruimte bestaat er een minimale sub­
basis voor de topologie.

P. VANEMDEBOAS, Minimally generated topologies.
Proc. conf. on Topology and appl. Herceg Novi 1968.



5

De door BALTHASARELIAS LUBaangegeven constructie van een af­
telbare gegeneralizeerde rij die geen minimale subbasis voor de
topologie toelaat, kan worden gebruikt om CW-complexenzonder
minimale subbases te construeren.

B.E. LUB, Sequences without minimal subbases.
Rapport ZW26/74, Mathematisch Centrum, Amsterdam.

6

Voor een eindige Abelse groep G = 2Z/m1><ZZ/m2>< ><2Z/mk, met
l<m1|m2| ... lmk , definieren we de grootheden A(G) en A(G)
door: A(G) = m +m + ... +m -k+1 ; A(G) = de maximale lengte van1 2 k
een rij elementen uit G met somnul die geen niet-triviale
deelrij met som nul bevat. De gelijkheid A(G) = A(G) geldt o.m.
in de volgende gevallen:

k=3, m1=m2=3, 6Xm3 ;
k=3, m.=3x2“i ;1

k=3, m1=3, m2=6XnXd,m = 6XnXe, waarbij n slechts factoren 2,3
3,5, en 7 bevat en, hetzij d=l, hetzij d en e beiden een
macht van eenzelfde priemgetal zijn.

P. VAN EMDE BOAS & D. KRUYSWIJK, A combinatorial

problem on finite Abelian groups III.
Rapport ZW08/69, Mathematisch Centrum, Amsterdam.

7

Bij de meeste behandelingen in de literatuur Van de nergens
differentieerbare functie van CELERIER:f(X) =n:0a-n sin(annX),
wordt het geval dat a=2 niet bewezen. Ook in dit speciale geval
is een elementair bewijs mogelijk.

P. VANEMDEBOAS, Nowhere differentiable contiuous
functions, with an extended Zist of references.
Rapport ZW12/69, Mathematisch Centrum, Amsterdam.



8

In een relationele calculus voor de semantiek van programma­
schema's laat de eigenschap dat p een ondeelbaar predicaat is
zich karakterizeren door de axioma's p c E en p;U n U;p c p.

W.P. DE ROEVER,Operational, Mathematical and
Axiomatized Semantics for Recursive Procedures and
Data structures.
Rapport ID 01/74, Mathematisch Centrum, Amsterdam.

9

De axiomatizering van de KLEENEstandaard algebra's die is
gegeven door J.H. CONWAYis onvolledig, tenzij bij impliciete

{1} _
tZ:Et—E1 .

J.H. CONWAY,Regular algebra and finite machines.
Chapman & Hall, 1971.

conventie wordt aangenomen dat

10

De universele verzamelingenalgebra die is beschreven door
A. MOSTOWSKIis ook in constructieve zin universeel: men kan,
gegeven een recursieve partiele ordening, op effectieve wijze
een inbedding van deze ordening in de MOSTOWSKIalgebra
construeren.

A. MOSTOWSKI,Uber Gewisse Universelle Relationen.
Ann. Soc. Polon. Math. 11 (1938) 117-118 ;
P. VANEMDEBOAS, M0st0wski's universal set algebra.
Rapport ZW14/73, Mathematisch Centrum, Amsterdam.

11

De door J. VANDE LUNEingevoerde Truncated-average limit en
de CESAROlimiet zijn onafhankelijk.

P. VANEMDEBOAS, The truncated-average limit and
the Cesaro limit are independent.
Rapport zw 21/74, Mathematisch Centrum, Amsterdam.



12

ACHMEDprobeert er achter te komen of een gerichte graaf zonder
lussen op n22 punten, genummerd 1 t.e.m. n, die BALTHASARin
gedachte heeft, al dan niet een gerichte cykel bevat. Hiertoe
mag ACHMEDaan BALTHASARvragen of er al dan niet een kant van
i naar j loopt. Als ACHMEDer niet uit komt alvorens alle n(n-1)
mogelijke kanten opgevraagd te hebben, wint BALTHASAR.
Indien BALTHASARvals speelt, en zijn graaf opbouwt naar aan­
leiding van de vragen van ACHMED,met de bedoeling het hem
moeilijk te maken, dan heeft BALTHASAReen gegarandeerde winst.

M.R. BEST, P. VAN EMDE BOAS & H.W. LENSTRA jr., A

sharpened version of the Aanderaa-Rosenberg
conjecture.
Rapport ZW30/74, Mathematisch Centrum, Amsterdam.

13

Het assignment-axioma van HOAREis onhanteerbaar in situaties
waarbij assignments aan herhaald geindiceerde array elementen
optreden zoals in a[a[l]] := a[a[2]].

C.A.R. HOARE,An axiomatic base for computer
programming.
Comm.Assoc. Comput. Mach., lg (1969) 576-583.

14

Tweerechthoeken heten onvergelijkbaar indien het onmogelijk is
door verschuiving en/of draaiing over 90° de ene rechthoek tot
deelfiguur van de andere te maken. Er bestaan rechthoeken met
gehele zijden die niet-triviale decomposities in onderling on­
vergelijkbare deelrechthoeken met gehele zijden toelaten. De
kleinste oplossing bestaat uit zeven deelrechthoeken.

Elementary problems and solutions E 2422 [1973,691].
Amer. math. Monthly, gl (1974) 664-666.
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In de uitgave van de Heidelberger Katechismus, verzorgd door
DAVIDKNIBBE,treffen wij bij de katechizatie over de 1028
vraag (37e Zondag) het volgende betoog aan.

V rag. matigi Dan at uugbcclm batzfiufgph / hie y'cpbe:_<1Be1'1ef.4.2:
mpg 15'. S00 waarlijk als Pharaolccfc 5 mdlen gy van hler fult uyt—
gaan , ’t en fy dan , wanneer uwc klcynftc brocder hcrwaart: fal gck.O­
men fi°n.

Ant}w. 1. Lflfbtt en fig?gcen ecd, txmat aflecnemfierke bebeflin /
but by funfeeker,met'aaIiwi1de,alfiyetlzcbenbanfljatao. 2. (Bf an
httem eenigi/’[weft "jqfeplj gefianmgt. 3. files: mutt tmnlecnenna
<I5nng$.3Euo9B/mam: um ua crgtnpeimnrtntgnffin. ¢E5ecI).zo: 19.11:
ban dc Hcere uwe God , wandelt 111m1;ne1nfctt1ngen , cnde onderhoudet
mime regtcn , ends doct dc felvc.

Deze gedachtengang vertoont een niet te ontkennen overeen­
komst met de welbekende redenering van de gebroken pot, die 1.
niet was geleend, 2. ten tijde van het uitlenen reeds was be­
schadigd, en 3. in geheel goede toestand was teruggegeven. In
beide gevallen is er sprake van een bewijs op grond van niet
eenvoudige implicaties. Kennelijk is dit type argumenten niet
alleen voor beoefenaren van de kunstmatige intelligentie
problematisch.

DE LEERE DER GEREFORMEERDEKERK, Volgens de order

Van de HEYDELBERGSEKATECHISMUSVerklaard,

bevestigt, en tot oeffening der Godsaligheyd
toegepast. Vermeerderd, verbeeterd, en voor yder
Sondag met een ontleedende TAFEL, EN Een kort
ONDERWIJS,om een PREDICATIE met order te hooren
en te herhaalen, verrijkt.
DOORDAVIDKNIBBE, Bedienaar van het Goddelijk
Woord, tot LEYDEN.

DEN TWEEDEN DRUK. TOT LEYDEN, By JORDAAN LUGTMANS,

Boekverkooper, 1696. Met Privilegie.
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De onoverzienbaarheid van de hedendaagse wiskunde blijkt onder
andere uit het ervaringsfeit dat de gemiddeldewiskundige niet
in staat is van alle rubrieken die voorkomen in het AMSMOS70
classificatiesysteem, ook maar bij benadering te weten wat het
desbetreffende onderwerp inhoudt. Het is dan ook ondenkbaar dat
één persoon, zonder hulp van collega's van diverse richtingen,
een systematische catalogus voor een wiskundebibliotheek op
verantwoorde wijze kan opbouwenof bijhouden. Daarnaast is het
dringend gewenst dat de auteurs van geavanceerde boeken en
rapporten zelf voor een indeling volgens dit systeem zorg
dragen.

AMS(MOS)Subject classification scheme (1970).
Math. Reviews, Q2 (1970) Al—A42.

17

Het is strijdig met de culturele functie van de Universiteit,
dat de Dienst Bouwen Huisvesting van de Universiteit van
Amsterdam zich bij herhaling schuldig maakt aan vormen van
actieve of passieve verwaarlozing en/of verwoesting van de haar
toevertrouwde historische monumentenin de stad Amsterdam, op
een wijze die men eerder verwacht van de dienaren van POENE
BEURSKRAKERof de HEILIGE BUREAUCRATIUS.

Folia Civitatis 18 Mei 1974 en 8 Juni 1974.
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Het uit de kelder van het Stedelijk Museumafkomstige, niet
convexe kunstwerk van C. KORTLANG,dat de Universiteit van
Amsterdamheeft opgehangen in de voormalige consistoriekamer,
die zij tijdelijk in gebruik heeft als receptieruimte bij
oraties en promoties, is noch qua oppervlakte, noch qua uit­
werking op diegenen die in deze ruimte vertoeven, in staat het
hiaat op te vullen dat ontstaan is na de verwijdering van het
voorheen aldaar aanwezige Meesterwerk van A. VANPELT
(1815-1895), voorstellende MAARTENLUTHERvoor de Rijksdag te
Worms(1521). De voor het weghalen verantwoordelijke Lutherse
gemeente, die handelde op grond van een gerechtvaardigde Vrees
voor het immeroproerige studentenvolkje, treft in dezen geen
blaam.

19

De Wegtot de Wetenschap voert langs een militair complex.


