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Introduction
On several occasions Professor HEYTING has commented on the

axiomatic method in intuitionistic mathematics [5], [6, p. 50], [8].
Before proceeding to our actual subject, we shall repeat some of his
remarks on the intuitionistic view on axiomatics. In intuitionistic mathe­
matics we deal with objects which have been constructed. For this reason
the axiomatic method cannot be understood in its creative function [8].
In its descriptivefunction it is applicable both in intuitionistic mathematics
and in classical mathematics. However, we need not limit ourselves so
far as to consider the axiomatic method in its descriptive function alone.
We can apply the axiomatic method even when it is unknown whether
there exists a model, then we attach the following meaning to it:

Suppose we derive in the intuitionistic sense from a set of axioms
(assumptions) A a theorem T, then whenever we construct a set S of
objects, satisfying A, we know that T holds for S.

As the construction of models is exceedingly sophisticated, there are
many open problems in this field.

We are dealing here with several extension problems in intuitionistic
geometry. The first problem is the extension of an affine plane in a natural
way to a projective plane. Professor HEYTINGinvestigated this problem
for the first time [7]. He added three more axioms to his list of axioms
for the affine plane in order to accomplish the demanded extension.
Here we prove the dependence of two of them on the axioms for the
affine plane. It is still unknown whether the remaining axiom is dependent
on or independent of the axioms for the affine plane, only partial results
were achieved.

The actual extension, i.e. the construction of new points and lines,
does not raise insurmountable difficulties. The real difficulty is met with
in proving the axioms for the projective plane. This is not surprising,
considering the existential quantifier in P1 and P2.

Though we cannot affirm the existence of a projective extension of
an affine plane, we at least know (theorem 2) that if an affine plane
possesses a projective extension, this extension is determined up to an
isomorphism.

The divergence of this theory from the classical theory is mainly caused
by the fact that where the classical theory considers only two kinds of
points (proper and improper), we also must introduce points of which
it is unknown whether they are improper or proper.

An analogous problem provides the theory of coordinatization. It is
well known that in the classical theory a ternary field determines an
affine plane (and even a projective plane) up to an isomorphism. Only a
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weaker version is proved here: If a ternary field determines an affine
plane, then the affine plane is determined up to an isomorphism. The last
problem to be considered is the extension of the pseudo-ordering of a
ternary field T to a cyclical ordering of a projective plane, determined
by T. Miss CRAMPEsolved this problem in the classical theory [1]. The
extension is accomplished here intuitionistically, always assuming that
the ternary ring determines a projective plane.

A number of classical extension problems are not represented here.
Especially those, that are concerned with incidence—structures and free
extensions. Indeed, the notion of an incidence structure seems too difficult
for a general intuitionistic treatment. An incidencestructure with apartness
relation appears to be rather unmanageable. To obtain a significant
notion of incidence structure one will have to suppose by definition its
imbedding in a projective plane. On the other hand, this would deprive
it of much of its character. Of course, there is no objection against incidence
structures in which both points and lines form discrete species. These
reflections show that incidence structures are not especially helpful for
the intuitionist in constructing models.

The axiom systems for the projective plane and the affine plane were
taken from [7]. The axiom system for the ternary field was developed
by Professor HEYTINGin his lectures during the course 1956-1957. We
have omitted proofs when they did not differ essentially from the proofs
in the classical theory. In those cases the reader is referred to the text­
books on projective geometry (for example [2], [9], [10]).

Notation: We use logical symbols as abbreviations. And, as we do
not intend to build a formalised theory in the classical sense (on the basis
of intuitionistic logic), we shall not be too particular in using them. They
must be understood in the intuitionistic sense [6, 7.1.1, 7.2.1]- —->stands
for implication, /\ for conjunction, v for disjunction, ——.for negation,

/\ pg stands for pl/xpg/\... Apn, V pg for p1v...vpn.
1<i<'n 1<'i<n

(Vac) is the universal quantifier (for every as), (Elm)is the existential
quantifier (there exists an as such that).

We shall freely use expressions like “P lies on l”, “A, B, 0 form an
affine triangle”.

Notwithstanding the apparent drawback of the symbol “E”, we use
it for the incidence relation.

The author wishes to express his gratitude to Professor HEYTINGfor
his interest during the preparation of this study; much of his advice
and his many suggestions determined its final shape.

1. I somorphism

The classical notion of a one-to-one mapping can be used in intu­
itionistic mathematics. We shall say that a law f, designing to every
element of a species A an element of a species B in such a way that equal
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elements correspond with equal elements, is a one-to-one mapping. If,
however, A and B are species with an apartness relation (#), then we
may define a stronger notion of one-to-one mapping f as a law, designing
to every element of A an element of B in such a way that elements lie
apart from each other if and only if the corresponding elements lie apart
from each other. In symbols it reads:

a=b<->f(a) /‘(b) (one-to-one)

a # 5 <->f(a) # f(1)) (strongly one-to-one).

It is easily seen that the second definition is strictly stronger than the
first one.

For completeness we state the axioms for the apart11ess—relation
(denoted by #):

S1 a#b—>b#a
S2 —qa#b<+a=b
S3 a#b—>(Vc)(c#avc#b).

Corresponding to the two notions of one-to-one mapping there are
also two notions of isomorphism. We shall use the strong notion of iso­
morphism, i.e. isomorphism with respect to the apartness relation, because
it is the more important one of the two. Note that in some cases the two
definitions are equivalent. For example: if f is an isomorphism in the weak
sense from a field F onto field F’, then f is an isomorphism in the strong
sense.

Proof: As usual one ascertains f(1)=1.
Let a # 0, then a'1 exists and 1=f(l)=f(a—1-a)=f(a‘1)-f(a). We see

that f(a'1)-f(a.) # O.This implies f(a) # 0 [6, p. 50]. Now if a # b, then
(a—b) # 0. We just showed that this implies f(a—b) # 0, or ]‘(a)# f(b).

Remark that dealing with groups we can define an isomorphism in the
strong sense as a mapping f with the property ab # c <—>]‘(a)-]‘(b)# f(c).
Compare definition 9.

2. The projective plane [7]

Let I? and A be disjoint species, E is a binary relation with domain
17 and range A; # is a binary relation for which both domain and range
are 17.

We call the elements of II (A) points (lines). The relation # is the
apartness relation and the relation E is called the incidence relation.
Points and lines are denoted by capitals in italics and lower case italics
respectively. The notation lfl m is used for the species of points which
are incident with both l and m.
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We first define two more relations:

Definition 1: Acol if (VB) (B el—>A # B) (A lies outside l).

Definition 2: l # m if (HA) (A E l AAcom).

Definition 3 : A projective plane is an ordered quadruple (IT,A, E,#)
with the following properties (a) and (b).

(a) S1, S2, S3.

(b) P1 A#B——>(JIl)(Ael/\Bel)
P2 A#B/\A€_=lflmABElflm——>l=m
P3 l#m—>(ElA)(AElflm)
P4 A#BAAEl/\BelAC'col/\AEm/\Cem—>Ba)m

(triangle axiom)
P5 (i) (HA) (H3) (A # 3)

(ii) (Vl) (HA1) (HA2) (HA3) ( /\ A: # A) A /\ At 6 1)
'i=l=7' 7'.

(iij) (Vl) (HA) (Awl).

Definition 4: If A # B, then the line l satisfying A El/\ B El is
denoted by AB.

Definition 5: If l#m, then the point A, satisfyingA Elflm
(which is unique) is denoted by lfl m (the use of l (Nm will always be
unambiguous).

It has been proved that the relation # between lines (definition 2)
satisfies S1, S2, S3 [4]. Therefore it is an apartness relation.

We denote the projective plane by ‘]3(U,A, E, #), or, if no ambiguity
is possible,by

3. The afline plane [7]

Let 17, A, E and # be as in the preceding section. We use the definitions
2-5 and add to them:

Definition 6: lam if l # m /\ (HA) (A E l H m) (l intersects m).

Definition 7: l// m if (VA) (A El —>Awm) (l is parallel to m).

Definition 8 : An affine plane is an ordered quadruple (17,A, E, #)
with the properties (a) and (b):

(3) S1, S2, 33­

(b) A1 l#mAAwl—>(EIp)(Aep/\lflp=lr\'m)
A2 A#B/\AElr'\'mABElf\m.—>l=m
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A3 lom—>(Vp)((HA)(A Epfll)v(HB) (B Epflm))
A4 A#BAAEl/\BElAC’colAAemACem—>Bcum

(triangle axiom)
A5 Pwl/\lflm=qSAPemAQel—>Qwm
As (V1) (Hm) (5 // m)

A7 (i) There exists at least one line

(ii) (V1) (HA1) (HA2) (HA3) (HA4)Aiel/x
(iii) A # B —>(El) (A E l A Bcol)

(iv) A El—>(EIm) (A em,/\l #717,).

VVeremark that A5 can be formulated as follows:

lflm=qS/xm #l—>l//m.

If (in A1) l and m intersect in a point B, then A1 asserts the existence
of AB. From A1 and As it follows that in the case l (Nm=¢, there is a
line through A, parallel to l. A1 is stronger than these two assertions,
since the existence of the line p is also ensured when it is unknown
whether lam.

The axioms S1, S2, S3 hold for the relation # between lines (def. 3),
so this is an apartness relation [7, p. 163]. Remark that by definition
the relation is neither reflexive nor transitive.

The affine plane is denoted by ‘ll (17, A, E, 7%), or simply 91.
Axiom A3 ca11be strengthened in the following way:

Theorem 1: lam —>(Vp) (pol vpom).

Proof: lam —>(HP) (P E l (Wp) v (HQ) (Q ep (Nm) (A3)

Suppose Q Ep (Nm. There exists a point D on m so that D # Q, l H m(A7).
Consider the line d through D and parallel to 10.By [7, lemma 7.1] we
know dol v dam. Say dol and A =d (Wl. d // p —>Acop.

Acop—>l#p. lod—>(C*IS)(SEpfll)v(.?IT)(TEpr'\d).

Since p// cl, we know (HS) (8 ep 0 l), moreover l# go, so lop. In the
same way we deduct pom from dam.

4. Extension of isomorphisms

Definition 9: Let 911-(I71-,/11-,61',#1) (i=1, 2) be two afline planes.
A pair of maps (991,(pg) is called an isomorphism if

(a) 991maps 171 onto [72

(b) (pg maps A1 onto A2

(0) Pco1 l<—+P""co2l"l2.
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For shortness we shall denote 991,6;, #;, co; respectively by q), e, #, co.

Lemma 1: Pel<—>P"’el"’.

Proof : Let P E l. Suppose P"’wl"’.By definition Pwl. This contradicts
P El, so -1 (P“’wl"’).Now by [7, lemma 2.2] P"’ E l"’ holds. Analogously
one proves the other implication.

Lemma 2: P # Q <—>P"’# Qf’.

Proof: Let P # Q. By A7 (Ell)(P elAQa)l). By definition and

lemma 1 P"’ E l"’AQ"’a)l"’.This implies with definition 1 P4” # Q9’. Ana­
logously for the inverse implication.

Lemma 3: l#m<—>l"’#m"’.

Proof: See the proof of lemma 2.

Lemma 4 : 99is an isomorphism if and only if P # Q <—>P"’ # Q"’and
P E l <—>P"’ E l"’.

Proof: Use definition 1.

Consider in a projective plane the species of points lying outside a
given line looand the species of lines lying apart from loo.These species
with the restrictions of the relations E and # form an affine plane (a so­
called “affine subplane of the projective plane”) except for the fulfilment
of A7 (ii). Since the following remains true if we replace A7 (ii) by A7* (ii):
(Vl) (HA) (SIB) (A # B AA e l AB E l), we shall weaken the axiom­
system in this section. An incidental drawback of A7 (ii) is the existence
of certain projective planes without affine subplanes. We shall say that
an afline plane QIcan be extended to a projective plane ‘.13if 91is isomorphic
to an affine subplane of ‘Bis called an extension of QI.It is clear from
the definition that if two affine planes 911and 912are isomorphic and 911
possesses a projective extension, then $2 possesses an extension.

Theorem 2 : If 911and 9212are affine subplanes of ‘B1and ‘B2respec­
tively, and if 99is an isomorphism of 9211onto QI2,then oncan be extended
to an isomorphism of ‘B1 onto ‘J32.

Proof: (a) Each point P of 9131is incident with two lines of QI1,lying
apart from each other. This is clear in the case where P is an affine point.
In the general case we can find by P5 (iij) l such that Pwl. There are
points A1, A2, A3 on l (P5 (ij)), such that A; # A; for 7}# 7°.PcuA; A; A
AA; # A; —>A;-ooPA;, so PA; # PA; for 73aé 7'. Using S3 we conclude
that at least two of the lines PA; (i=1, 2, 3) lie apart from looand thus
belong to 211.Let a, b be two lines of QI1such that a # b and P=a 0 b.
Define the mapping (pl : P"" =a"’ (Wb‘’’.Remark that for afi‘ine points
(p1 and (p coincide.
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(b) P"" is independent of the choice of a and b. Let P=a fl b=al (Wb
and at, al # b. We shall show a‘’’n b"’=al"’ n b‘’’. a # b —>a,"’# b"’.

a"’ # b"’—>(HX’) (X’=a"’ (Wb‘’’). Likewise (Z/IY’) (Y’=al"’ n b‘’’. Suppose
X’ # Y’. X’, Y’ eb"’. b"’fl loo=B’. X’ # Y’ —>B’ # X’ v B’ # Y’. If
B’ # X’, then, considering b"’# loo, we see X 'wloo. Likewise B’ # Y’
implies Y’wloo.So one of the points X’ and Y’ belongs to QI2.Consequently
P belongs to 9Il, but then P"’=a"’ (Wb‘’’and P"’=al"’ (‘Nb"’, so a‘’’(N b"”=
=al"’ (Wb"’.This contradicts our supposition, thus —lX’ # Y’. And this
implies by S2 X’ = Y’.

Subsequently suppose P=al fl bl=a2 0 b2 and al # bl (13:1, 2).

Definition: (p, q) ~ (:c,y) E p‘’’H q"’=x"’m y‘’’Ap # q A:1:# y. One
easily sees that ~ is an equivalence relation.

CL1#b1—>a1 #Cl2Vb1 #a2

(ll # a2 A 661(W b1=Cl1 (W ag —> (CL1,bl) f\-’ (611, Cl/2) (see above)

al # a2 Aa2 fl b2=al fl (L2—>(CL2,b2) ~ (al, a2).

From these two lines it followsthat (al, bl) ~ (a2,b2).Starting from bl # ag
we reach the same conclusion. We proved al 0 b1=Cl2n b2Aal # bl A
ACL2# b2 —>al"’ fl bl"’=a2"’ fl b2"’. This justifies the definition of (pl.
We now define the extension of (p to the species of lines of ‘Bl. Every
line l in ‘Bl contains two points X and Y, lying apart from each other.
Define l""= X "1 Y"". As was done above we can prove that l""is independent
of the choice of X and Y.

(c) (pl is an isomorphism.

Let Pwl. VVe first show that P or l is affine. There exists an affine line m,
going through P. m # l. Put A=l M m. m # l —>m # loovl # loo.
l# loo means: l is an affine line. m # loo, then B=mfl loo. P # A —>
—>P#BvB #A.

(i) B # A AAB # loo—>Awloo. By definition 2: l # loo, so l is affine.

(ii) P # B APB # loo—>Pwloo, so P is affine. We know now that one
of the elements P or Z is afiine. We treat the cases separately. Write
P""=P’ and l""=l’.

1. P’ is an afline point.

There are two affine lines a’ and b’ through P’, such that a’ # b’.
a’ #b’—>l’#a’vl’ #b'.

If l’ # b’, then Q’=l’ O b’.
S’=b’ fl loo. Since P’ is an affine point, we know 8’ # P’. P’ -# S’ —>

-+Q' #P'vQ’ #3’.

(i) Q’ # S’ Ab’ # l’ —>S’wl’ and S’wl’ —>l’ # loo. So l’ is an affine line
and P""=P"’, l""=l"’. By the definition of (pp’wl’ holds.
m)o#Pmv#r+Pmc



2. l’ is an affine line.

We know that l is also an affine line. Choose A, B El so that A # B
and A, Bcoloo.If a=PA, b=PB, then P=a (Wb, where ct # b a11dct,b are
affine lines. Consequently P""=a"" (1 b"". Now A"”, B“, a"", b"" are all
affine elements and by lemma 2, 3:

A"" # B"", a"" # b‘“. Pwl —>l # b, so l"" # b"".

A‘“ # B” Al’ # b‘“ —>A""cob"". A""a>b‘“ —>At" # P’.

P’ # A"" Aa.""# l’ —>P’a)l’. This completes the proof.

Corollary: If an afline plane possessesa projective extension, then
this extension is determined up to an isomorphism. We state another
version of theorem 2: If the affine planes 911,912are isomorfic and if 911
possesses a projective extension ‘B1,then 9I2possesses a projective extension
9132and the isomorphism of 9I1onto 9I2can be extended to an isomorphism
of ‘B1 onto 932.

5. The projective extension

In [7] a construction has been given for the projective extension of
an affine plane. We shall sketch the procedure.

Definition 10: Ifl # m, then €B(l,m)={x | l H m=l (N9:v l (Wm:
=m H ‘Bis called a projective point. If lam, then 2B(l,m) is the species
of all lines, incident with l H m, in this case Wesay that 913is an affine point.
If we want to distinguish affine elements from projective elements, we
shall denote them by italics.

Definition 11: lco‘.]3if (Vp) (p E ‘.13—+l # p) (l lies outside EB).

Definition 12: 9i # ‘B if (Ell) (l E 91H la)93).

The ore m 3 : The relation # between projective points isan apartness
relation. [7, theorem 7].

Definition 13: If 91# §Bthen
M91,SB): {(5 | 910 2B=9I O (S v 91fl 98:93 (W is called a projective line.

Remark: Whenever €B(l,m) or A(9I,58) occurs, it is understood that
l # m, respectively 91# ‘B.

If l E 91(N38, then /l(9I, 53)is the species of all projective points, incident
with l (this is the case if either of the projective points 91, ‘B is affine).

Definition 14: SBis incident with A if ‘J36)..

Definition 15: 9Iwl if (V513)(‘B E /1—>‘.13# 91) (91 lies outside 1).

Definition 16: A# ptif 6/1A$60’/t)I

So far we have introduced new points and lines. Subsequently we must
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prove the axioms of the projective plane for the introduced species of
projective points and lines and relations E, #.

P1 is an immediate consequence of definition 13.
P3 holds if both lines are affine. In its generality P3 has as yet neither

been proved nor refuted.

HEYTING [7, p. 169] postulated therefore:

A3: 91 # 2%/\ lcu%[—>(EICS)(l E (Z A (S E M91, 23)). Or in an equivalent

formulation, avoiding quantification over projective points:

As’: 29 # q Ar # 8 Alw‘B(p, 9) Arw‘J3(20,q) —>

(3t)[t # l A (‘J3(p, q) 0 ‘BU, s)=‘J3(p» C1)0 ‘BU, l) v

‘13(29,q) 0 ‘J30: s>=‘J3(r, 8) F‘ ‘J3(t, l))].

In a large number of cases A3 can be proved. For example in the case
of a desargian affine plane one can coordinatize the plane in a well—known
way. By introducing homogeneous coordinates a projective extension is
readily constructed an A3 can be proved. The finite planes provide another
class of examples.

6. Proof of the triangle axiom

The triangle axiom P4 was proved in [7, p. 170] for the case that two
of the considered projective points are affine and for one case that one
of them is affine.

Two other cases were not proved and were introduced as the axioms
A9 and A10. We shall prove them here, using A1—A7 only.

Definition : A projective point fl3(l,m) is an improperpoint ifl m.

Lemma 5 : If A is an affine point and ‘]3(l,m) is an improper point,
thenA#

Proof: From A7 we can conclude that there are at least three lines
a, b, a lying apart from one another, incident with A. Each two of these
lines intersect in A. Using A3we see that at least two of them have a point
in commonwithl. SayPeafll and Qebfll. a#b—>l#avl#b,
so we conclude laa v lob. Suppose laa. l 0 m=qS and loci imply by
A3 (SIX) (X Em (Wa). lfl awm (def. 7), so a # m and even aam. In the
same way we can prove a: E ‘.]3(l,m) —>coax.

Lemma 6: Iflefil fl Q3A91# $, then either 921or ‘B is affine.

Proof: H513is the improper point ofl, then ‘ll # 58—>91# ‘Bv 33#
Suppose QI # ‘.13,then (Hm) (rn E 91 Amw‘.B). Choose 0 E in. By A1 there
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exists a line l’, incident with O’and mol’ holds, so by lemma 5 also mol.
And this implies that 91 is an affine point. Analogously for Q3#

Lemma 7: P E A (91, Q3)—>}.(‘lI,%) is an affine line.

Proof: ‘lI#iB—>P#QIvP#%. SupposeP#9I, then Pfl9I=9Ifl*l3‘.
(HZ)(lePn9I), so (ill) (le9In*B). By [7, th. 9] /1=l.

Theorem 4 (A9): A # Q) /\ CSwA*B—>Awl(93, 5).

Proof: If ‘B(l,m) E 103, (S)and if D. is the improper point of l, then
A #83, (lemma 6). S0 A #‘.]3v‘]3 #5:). EB#£),——>‘,Bis an affine point,
so (lemma 7) 1 is an affine line. Now one of the points 23 and (Eis affine,
i.e. we have reduced the problem to [7, th. 13, th. 14]. So Aw}.holds, and
in particular A # VVehave proved (V93) (‘)3E }.(‘B,QZ)—>A # EB),i.e.
Aw/1073,

Theorem 5 (A10) 2 ‘B # (S /\ Aw/1(‘B, E) —>§BcoACS.

Proof: The lines A513and ACSare both affine (lemma 7), ‘EBand Q.
are the improper points of A% and ACErespectively.

Let ?ReA@. We must prove that SR7,‘-5&8.‘B #CS—>Sfi #EBv‘Ji #6:.
In the second case ER#C£—>E)1#§3.vQZ #5) (i) ER#Q—>Eli is an
affine point R (lemma 6), so R#‘]3. R #5]3—>§B#‘]3vQ3 #R.
23 # ‘J3—>Q3 is an affine point and then, by [7, th. 14] §BcoACS.
In particular Q3# R. (ii) 6: # £).—>(S is an affine point C’ (lemma 6).
Now by [7, th. 15] §Ba)A@.In particular 58 # ER. We have proved
(V91) (ER 6 AG: —>*3 # ER), i.e. ‘BcoA@.

In general it is not known, whether one of the points figuring in the
triangle axiom is affine. However, using A3, it can be proved [7, th. 17]
that at least one of them is proper. So at this moment we need A3 for the
deduction of the (projective) triangle axiom.

7. Proof of A3 in a. special case

When formulating an incidence theorem in affine geometry one has
to take special care of the existence of certain points and lines. These
difficulties can be avoided by using the notions of projective point and
projective line. This is done in the following incidence theorem, the
so-called axial theorem of Pappos:

Let there be given the points A, B, C, A’, B’, C’ and lines l, m, such that
A, B, Cel; A’, B’, C’em; A #B#O’#A; A’#B’ #0’ #A’;
A, B, Cwm; A’, B’, C’col and ‘>]3(AO”,A’O')EBB’, then €B(O'B’,BC’) E
E Z(‘>]3(AC’,CA’), €B(AB’, BA’)).

Theorem 6: A1,..., A7 and the axial theorem of Pappos imply A3.
We first prove the following lemmas:
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Lemma 8: EB#£1A:cw‘J3 A:vw£),——>(EIB)(BE:vAB2]3 # BEL).

Proof: ‘B #>D.——>(._7Il)(lE‘BAlwil). xw‘]3Ale2B——>(EIA)(Ae.rAAwl).
A‘.Ba:v —>(HS) (S E A‘B H l) v (HT) (T E ac (WZ).

In the first case ‘.13is an afline point. Then M9130.)is an affine line m.
Now there is an affine point B on as so that B # SR(:I:,m). Using the
triangle axiom one easily proves that B913# B5). In the second case xal.
Choose B=T, then B213# BE).

Lemma 9: Let ‘B, 53,,:1:and B be as in lemma 8, C’ 62:, C’ # B.
Then (EIB’) (B’ E ‘BB AB’ # B AC’B’wD.).

Proof: (HB’) ([*IB”)(B’, B" E B913AB # B’ AB’ # B" AB” # B).

C’ # B A as # B‘B —>O”coB‘J3. C"wB‘]3 A B’ 7%B” ——>C"B’ # C’B”. Since
C’ # Q, the line OI) exists.

C"B # C’B” —>(I'D. # C"B’ v O”D, # C’B”.

(i) 0'9. # C"B —>(HX) (X E C’B AXwC’D). Applying the triangleaxiom
to the triangle X(/"D, (this is allowed since two of the points are
afline) we find £1coC’B. This is equivalent to O"B’wD..
Likewise we can prove

(ii) 0'9 7,4403" /\ D. # 0' —>C’B”a)D..

Thus a point with the desired properties can be found.

0.

\Ve now proceed to the proof of theorem 6. ‘B and Q are projective
points. 513# D and the affine line as satisfies :cw‘B.We shall construct a
projective point ER,satisfying :1:E ERand SR6 l(‘]3, D). We start with an
extra assumption: xcofl.
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We enumerate the steps of the construction.

Choose B EX, so that B513# BE). (see lemma 8)

Choose 0’ 63:, so that C’ # B

Choose B’ E BEE so that B’ # B AC"B’wD. (see lemma 9)

Construct C"‘,IS

Construct B’£).

xw‘.B —>BB’ # :1:

BB’ # :r AC’ # B(2) ——>0’wBB’

C’wBB’ —>C’ # B’

C"wBB’ —>O”‘]3 # B’5]3

0'53 # B".]3 A ‘.13# B’ ——>B’w‘.BC”

B’w€[3C" —>B’D. # C".]3

Put 9I=‘B(B’D,C".B)

‘J3 # 9. ——>QI # ‘B V 91 # D»

91 # ‘.13—>91 is an affine point or ‘B is an affine point.

In the last case }.(9.]3£'),)is an affine line, then ERexists trivially. So
let us assume QIis an afiine point. This implies 9I=A # 53..Likewise
we treat 91# 8.. Thus we know that QI is an affine point A and
A # 513,D. or that one of the projective points ‘B, D. is affine. We
assume A # ‘B,D.

A #q3AA #£iAAa3 #As:1—>Aw/1(‘J3.£1)

3'93 #o's13(6)AB#q3AA #s1;_>Aws13B,

and q3wAB,

and A # B
Construct AB (11)

Construct B’C’ (5)

C"wBB’ (4) A B # B’ ——>Bwm

C’B’w>D (3) —>AB’ # B’C"

AB’ #.B’C" AB’ # C" —>C”coAB’

B’wAC" (7) —>B’ # A

B’ # A AC’a)AB’ (13) ——>Acom

Aw‘]3B (9) A B # B’ —>B’a)l

Boom (12) —>DB # m

Put 9l’=‘]3('m, B53.)

(8)

(9)

(10)

(11)
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C’B’wD. (3) —>AB’om.

AB’om —>(EIX) (X 6 AB’ (1 BED.)v (HY) (Y 6 BD (1

In the first case we see that D. is an affine point; then the theorem is
correct. So we shall assume (SIY) (Y E BD. (1 m), i.e. 91’ is an affine
point A’.

BYE # BE). (1) A B’ # B —>B’wBA’

B’coBA’ —>A’ # B’

B’wl (15) —>AB’ # l.

AB’ #l—->~BA’ #lvAB’ 77%.BA’

(i) BA’ # l AA’ # B —>A’wl

(ii) BA’#AB’AA #QAB#D.—>Dwl

Qwl —>BA’ # l.

BA’ #lAA’ # B—>A’wl
In both cases we find the same result.

(16)

(17)

<18)

<18)

Construct A".]3.

A",]3 7,95l. Put (—S=‘.]3(A")3, l)

‘.]3wl (10) —> ‘B # (E

‘J3# Q:~> ‘B is an affine point or is an affine point.

Again we assume that (S is an affine point C.

B’w"I§C" (7) /\ EB # C’ —>‘]3w7n

‘Bwm —>A0’ # m

A’cul (18) —->A’ # O’

A’ # C’ACA’ # m —>Cwm (20)

A’ # B’ (17) A‘Boom (19) —>B’wCA’, B’wC'A’ —>BB’ # CA’

BB’ # CA’ A 513# B —>BcoCA’

BwC'A’ —>B # C’. Likewise A # C

C"wBP (4) AB # P —>BcoC"A

Acum (14) —>A # C’. A # C’ A BwC’A —>C"wl

xwfl —>:1: 7% BA’

:3 # BA’ AB # O" —>C"a)BA’. C”cuBA’ —>C’ # A’.

(19)

Construct CB’

Then ?li=‘,)3(BC’,CB’) is the point we looked for.

VVestill have to get rid of the extra assumption: zvwil.
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We only assume now lw‘.]3. (HA) (A El AA913# AQ),

(Hm)(En) (Aem,nAl #m #11 #l).

At least one of these lines, say m, lies apart from AEB and AS).

971,# A213AA # ‘B ——>mwifi, and likewise mwil. We just showed the

existence of ER,so that ill Em and Si E MT, 9.).

AEB#AD,/\A #53.->D.wA‘.B.

QwA‘]3 A A # ‘>13—>Aco2("]3, D.)

Aco2(‘B, 53.) ~> A # Eli and A # SRA m 7,/él—> lwfli.

Now we can determine as we have do11e before EH’so that

ER’ El A SR’ E /l(‘]3, Ell)=}.(‘]3, $3,).

This theorem shows that when trying to disprove A3, we can leave
out of consideration those planes in which the axial theorem of Pappos
holds.

8. The ternary field

VVeshall give an intuitionistic treatment of the coordinatization proce­
dure of HALL [2, 20.3], [10, 1.5]. Consider in the projective plane ‘J3four
points 0, E, X, Y (lying apart from one another) so, that each point lies
outside the lines determined by the other points. To each point P, outside
XY, we adjoin the pair of points (YP (WOE, XP fl OE). VVecall these
the coordinates of P. We often shall ide11tifyP with this pair. Let l be
a line, satisfying Ywl. If (P1, P2) E l, then P2: (P1Y H l) X (NOE.

We shall consider the affine subplane determined by X Y and thus
speak of “parallel”. l is determined by the point l (NOY and the line l’
through 0 and parallel to l. Say N: (l H OY) X (WOE and Ill: (l’ (NEY)
X n OE, then l={(MX fl EY) O m XY} (NX (WOY). So

P2=(P1Y (‘N{(MX flEY)O fl XY} (NX n0Y))X HOE.

On the species of affine points, incident with OE, is defined a ternary
mapping by the formula above: P2=(D(P1, M, N). From this moment we
denote the points of OE by lower case italics. O and E are denoted by O
and 1.

Thus y=CZ5(:c,m, n) is the condition for a point (.23,y) to be incident
with a line l={(mX (W1)’) 0 0 XY} (nX fl OY). m and n are called the
coordinates of the line l. VVedenote l by [m, n]. y=d5(:r, m, n) is the
equation of l.

Theorem 7: (cc,3/) # (z, t) —>as# 2 vy # t.

Proof: (x, y) # (z, t) -+ (x, t) # (x, 3/)v (:23,t) # (2, t). If (;r,t) # (x,y),
then the li11esthrough (as,t) and X, (:13,y) a11dX are parallel. This entails
t ;,’Ly. Likewise (:11,t) # (.2,t) implies an#
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Theorem 8:

(a) (D(0,m, n) =n

b) €Z5(x,0, n) =n

) (D(x, 1, 0)=:::

d) d5(l, m, 0) =m

e) If (Z5(a,m, n)==b, then 72,is uniquely determined by a, m, I).

(f)

%%

C

/\%

If a1 # ag, €Z5(a1,m, n) = b1, (Z5(ag,m, n) = bg, then m and n are uniquely
determined by a1, ag, bl, bg.

(g) If m1 # mg, (Z5(x,ml, n1) =(D(:c, mg, ng), then asis uniquely determined
by 7711, ‘"12, ‘I21, 712.

(h) CD(a,m, n) =€Z5(a,m’, n’) Aa # a’ Am # m’—>d5(a’,m, n) # d5(a.’,m’,n’)

(i) m # 0 A 231# xg ——>(D(:c1, m, n) # §D(:vg,m, n).

(j) :::#OAm1 #mg —>€D(x,m1,n)#(D(x, mg,n).

(k) 71,;# ng —>€D(x, m, n1) # €D(:z:,m, ng).

(1) 45(~”v1,mi, 711) # <P(x2, m2, 722) —>2:1 # :62 v m1 # m2 v m # 722.

Proof: (a)—(g) can be proved just as in classical mathematics, see
[2], [9] or [10]. The proofs of (i)—(l) are quite straight forward. We shall
only attend to (h). Put p——-d5(a,m, n), q=(D(a/, m, n), 7': €D(a/,m’, n’) and
consider the points P=(a, p), Q=(a/, q), R=(a’, r). We shall prove that
Q # R. Let l1 and lg be the lines through P with equation y=€D(:v,m, n),
y=(D(x, m’, n’) respectively. m # m’ —>l10‘l2,for let M and M’ be the
intersections of l1 and lg with XY. m1 # mg —>1111# Mg. M1 # Mg A
APcoX Y —>MwPM' (triangle axiom), thus l10'l2.

a#a'—>P#Q. P#QAl1#lg—>Qwlg. Qa)lg—>Q#R.

Finally Q # R —>g # r.
In the classical theory three classes of lines are introduced. Here we

can do the same, but in general it need not be known to which class a
line belongs.

Conclusion : The coordinatization is effective for:

(a) affine points P —(p1pg)

(b) improper points apart from Y: III —(m)

(C) Y: Y —(0c)

(d) lines, so that Y lies outside them: l—[m, An]

(e) affine lines through Y: l: [c]

(f) XY:
acand ,8are mathematical objects which are not a member of T. We now
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proceed to the definition of a ternary field. Let T be a specieswith apartness
relation (77%),0 and 1 special elements of T and (Da mapping of T3 in T.

Definition 17: The ordered quintuple (T, 0, 1, #, CD)is a ternary
field (with apartness relation) if (a)—(h), (k), (1) of theorem 8 hold 1).

Remark 1: The properties (i) and (j) of a ternary field can be
derived. (i). Consider the lines with equation 3/=(D(xl, m, n) and

y=§D(x, m, n).

§D(:cl,O, (D(:vl,m, n)) =€D(:cl, m, n) Axl # xg Am # 0 —>d5(xg, 0, (D(:z:l,m,n)) #

# ¢(xg, m, 77,),thus by (b) (D(xl, m, n) # d5(xg,m, n).

(j) d5(0, ml, n) =<15(0,mg, n) Acc# 0 Aml # mg —>€D(x,ml, n) # d5(x,mg,n).

Remark 2 : The solutions in (e), (f), (g) are unique in a sharp sense
(compare [6, 4.2.1]).

(e) (D(a, m, n)=b An # n’ —>d5(a, m, n’) # b (by (k)).

(f) (m # m’ v n # n’) A al # ag A §D(a-l,m, n)=bl A ¢((l»2,m, n.)=bg —>

—>§D(al, m’, n’) # bl v (D(ag, m’, n’) # bg.

Proof: Suppose m # m’. Determine the unique elements nl and ng,
so that (D(al,m’, nl)=bl and d5(ag,m’, ng)=bg.

CD(al,m’, nl) = d5(al, mg,n) Aall # ag Am # m’ —>(D(ag, m’, nl) # (D(ag, m, n).

Thus €D(ag, m’, nl) 77%§D(ag, m’, ng).

By (1) nl # ng holds. nl # ng —>n’ nl v n’ # ng.

n’ # nl —>d>(al, m’, n’) # €D(al,m’, nl), or €D(a/l,m’, n’) # bl.

Likewise n’ # ng —>€D(ag,m’, n’) # bg.
Next suppose n # n’, then by (k) we see that d5(al,m,n) #€D(al,m,n’).

So §D(al,m, n) # €Z5(a.l,m’, n’) or §D(al, m’, n’) # €D(a,l,m, n’). In the first
case €Z5(al,m’, n’) # bl holds. In the second case m # m’ holds by (1).
This last case we treated above.

(g) at # :13’A ml # mg A d5(:v, ml, nl) =(Z5(:z:,mg, ng) —>d5(x’, ml, nl) #

# d5(:v’, mg, 122).

The sharp uniqueness of the solution is expressed here by (11)itself.
VVecan define in the usual way the two binary operations:

a+b=€D(a, 1, b)

a - b=d5(a, b, 0).

1) At first (a)—(g), (i)—(l)were used in definition 17. As for (h), a personal
communication from Professor HEYTINGdrew special attention to it. He also noted
the improvements indicated by remark 1 and 2.
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We see that the affine points of the line OE’(mentioned above) constitute
a ternary field. This is the ternary field of the plane with respect to
0, E, X, Y.

Definition 18: A mapping ocof a ternary field T1, onto a ternary
field T2 is an isomorphism if

y # d5(x, m, n) <—>y“ # (D(x"‘, m‘’‘,n“).

As an immediate consequence of this definition, we see

((D(:v, m, n))"‘=(D(a:"‘, m“, 72“).

If a ternary field is given we should expect a construction of a projective
plane with an isomorfic ternary field. This construction fails, however,
and the failure is due to the inhomogeneous way in which points and
lines are introduced. VVecan obviously confine ourselves to the con­
struction of an affine plane.

Definition 19: (a) a point is a pair of elements of T.

(b) a line is the species of points (as,3/) which satisfy y=(D(:v, m, n) or
the species of all points (as,y) with x=c (0 ET).

(c) E is the incidence relation.
(d) (x,y)#(z,t) if:c#zvy#t.

Theorem 9: (ac,y)w[m, n] <—>y # €D(:z:,m, 72,).

Proof:
(a) (-75,?/)w[m, 9%] A (iv, 45(93, ma, 71)) 6 [m, n] -> (96, 9) # (iv, ¢(9c, m, 7b)­

By definition y # ®(;v,m, n).

(b) y # (I5(:v, m, n) A t=€Z5(z, m, n) —> t # 3/ v €D(a:, m, n) 7,45€D(z, mi, 77,).

In the last case by theorem 8 (l) as# 2.
So (as,y) # (2, t). This holds for all (z, t) E [m, n], so (:22,3/)w[m, n].

Theorem 10: (x, y)a)[c] <—>x# 0.

Proof:
(5%) (9%3/)w[0] A (0, 3/) E [0] —>(93,3/) # (6, .71)-(iv, 9) # (0: 9) -> Iv # 0­

(1)) (z, t) E [0]—>z=c,
so :2:# 0 implies (cc,y) # (z, t); this holds for all points of c, so
(93:y)w[0]­

Theorem 11: [m1, n1] # [m2, ng] <->ml # 7722v 71,;# n2.

Proof: Use theorem 9 and theorem 8 (1).

It is clear that we cannot affirm the existence of a line through (as,y)
and (2, t) if it is not known whether as# 2. If we call, as usual, the
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improper point of the line with equation a:=O (y=0) Y (resp. X), then
we have so far constructed all (affine) lines l, so that Ycol or Y El.
In the case of general ternary fields no general construction for lines has
been found, so we do not know whether every ternary field determines
an affine plane. In the case of alternative fields or skew fields there are
well known procedures to define in a homogeneous way points and lines
of the projective plane. Since the axioms hold for these planes the problem
is settled for these ternary fields.

Theorem 12: If T1 and T2 are ternary fields of the affine planes
Q11and 912,then every isomorphism of T1 onto T2 can be extended to an
isomorphism of 911onto 912.

Proof : We have coordinatized the afline planes in the indicated way:
the points are determined by two coordinates, likewise the lines which
intersect the line OY (lines of the first kind).

The lines, belonging to the projective point Y are given by one coordinate
(lines of the second kind).

Let ocbe the isomorphism of T1 onto T2.

VVe define the mapping 0:1: (as,y)“ =(x"‘, y“)

[m, n]“‘ = [m“, n‘’‘]

[0]“‘ = [Gal­

We remark that by theorem 9 and theorem 10 for a line of the first or
the second kind the following holds:

Pwl <—>P°“wl“‘.

We now define 0:2for the entire affine plane: oc2=oc1for points. If l is a
line of QI1and there are P and Q so that P # Q and P, Q El, then
l°" = P°“Q“‘.

(1) For lines of the first or second kind o.'2=o41holds.

Let l be of the first kind: l= [m, n].

P E l <—>p2=(D(p1,m, n).

102=¢(101» 77%77»)<+P2“=¢(101°‘» W“: 7%“)­

p2"‘=(D(p1°‘, m“, n“) <—>P“ E l“‘.

So P E l <—>P°“ E l“’, likewise Q E l +> Q“ E l"“.

P # Q —>P‘’‘‘# Q“ (def. 19).

P“ # Q"“ A P“‘ E l°“ A Q‘’‘‘E l"“ ——>P“ Q"“=l°“.

Sl1OWS0é1=(X2.
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Let l be of the second kind: l=[c].

P E l +~>p1 =0.

P1=0 +*29i"=0“­

p‘1"=c°‘ <—>P“‘ E l‘’‘‘.

So Pe_=l<~>P“"el“"‘.Likewise Qel<->Q“‘El"". Again we see l"2=P"“ Q"“=l°“,
or 0.'.1=oc2.

(2) Z“ is independent of the choice of P and Q. For lines of the first
or second kind this is a direct consequence of the above.

Consider a line l of which it is unknown whether l is of the first or
second kind.

P,Q1,Q2€l/\P#Q1/\P#Q2.

Write P“‘=P’, Q,-"“=Q,-’and let y, y’ be the lines [0], [O]“‘. Suppose
P’Q1’ # P’ Q2’, then P'Q1’c7P'Q2' and so, by theorem 1, y’aP’Q1’vy’aP’Q2’.

If 3/’orP’Q1’,then yaPQ1, i.e. l=PQ1 is of the first kind. In that case
Q2 6 PQ1, S0 Q2’ E P’Q1'- B1113 P'Q1' # P'Q2' /\ P’ # Q2’ —>Q2'wP’Q1'­

VVehave produced a contradiction.
Thus P’Q1’= P’Q2’. Let now P1, P2, Q1, Q2be points on l, so that P1 # Q1-.
We need the following proposition:

l#mAA el/\Bel/\A #B—>AwmvBwm.

Proof: l # m —>[.?IP) (P E m APool).

Pwl —>P # A /\ P # B. So the lines AP and BP exist. Pool/\A #B—>

—>AwBP. AwBP —>AP # BP. AP # BP —>m# AP vm # BP.

m #AP/\A #P—>Acom.
Likewise Bwm holds if m # BP.

Denote again the image-points by accents.

SUPPOSG P1’ Q1’ # P2’ Q2’.

By the above P2’ # Q2’ implies P2’wP’Q1’ v Q2’wP1’Q1’.

Say Q2'wP1’Q1’. We see that the line P1’Q2’ exists and P1’Q1’ # P1’Q2’.

As we have already proved, this leads to a contradiction, so P1’Q1’= P2’Q2’.

(3) Pool <—>P""“a)l°‘”.

There are three points A1, A2, A3 on l, lying apart from one another.
Pwl implies that the lines PA1, PA2, PA3 lie apart from one another.
By applying theorem 1 we conclude that y intersects at least two of them,
say yaPA1, PA2. Then PA1 and PA2 are of the first kind.

la2=A1a2 Azaz. A2cuPA1 —>A2°‘”cu(PA1)"'”. A1 # P —>Alaz # Paz.
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Using the triangle axiom we find P°‘“wl"‘”.Analogously for the inverse
implication. This finishes the proof.

Corollary: If a ternary field determines an afline plane QI,then QI
is determined up to an isomorphism.

Remark that we have not translated axiom A1 into a property of the
ternary field. It is to be expected that such a property must be joined
to the properties of the ternary field.

Since, however, such a procedure does not help us to overcome the
trouble with affine lines and since it would look rather clumsy we have
refrained from adding it to the list of properties. Moreover, we do not
need this property for the proof of theorem 12.

We should like to point out here that A1 is a rather strong axiom
from an affine point of view, and that its main task is found in the con­
struction of the projective extension.

9. Ordered projective planes

The intuitionistic theory of ordered projective planes has been developed
by HEYTINGin [3] and in a number of (unpublished) lectures. The
reduction of cyclical order to (linear) order is treated in [3, § 15].

Definition 2O: An ordered projective plane is an ordered quintuple
(17, A, E, #, |) (see def. 3), where | is a relation (the separation relation)
between collinear pairs of points, if the following holds:

(a) S1,S2, S3

(b) P1,...,P5

(c) 01 A1,A2|A3,A4—> _/\_ A,-#A,­

02 A,B|C,D—>B,Al$|,O,D/\C,D]A,B

03 A,-#A,-/\([*Il)(/i\A,;el)—>
1<i.9‘<4

_> A1, A2 1A3, A4 V A1, A3 yA2, A4 v A1, A4 | A2, A3

04 A,C|B,DAA,D|C,E—>A,D|B,E

05 ([+Il)(EIA1)...(£+IA4)(/z_\A,-elAi/+\jA,-#A,-)
C6 A1,A2 | A3,A4 A/\ A; elASa)l/\Sam7,A /\ SA,-fl m=B,;—>

B1, 32 I 33, B4.

(order is invariant with respect to projection).

We mention some results, for the proofs the reader is referred to the
original paper of HEYTING [3].
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For future use we define the relation i between unordered point-pairs:

Definition 21; A,B§C’,D if A,B#O,D and _, (A,B|C, D).
The following theorem, well-known in classical projective geometry,
holds here too:

Theorem 13: A,B§X,Y/\A,B| Y,Z—>A,B|X,Z.

Proof: Remark that A, B | Y,Z implies Y # Z, so X # Y or X # Z.
In both cases we can give the usual proof.

Theorem 14: If A, B and C’,D are harmonic pairs, then A, B | C, D
[3, p. 59].

Definition 22: Let P, Q and A lie apart from one another, then
2={B | A, B | P, Q} is a segment.

It is well-known that P and Q (P # Q) define exactly two segments
21 and 22 on PQ. Remark that 21 U 22 U {P, Q}=l need not be true.

Theorem 15: Every segment contains (at least) countably many
points, lying apart from each other.

We shall now describe the construction of an order relation on an afiine

line [3, p. 63]. Let P, Q and E be mutually apart. 21 is the segment,
determined by P, Q, to which E belongs, the other one is 22.

We define: for A, BEZ1 that A<B if P, B | A,Q.

for A, B622 that A<B if P,A | B, Q.
for A 622, B621 that A<B.

We still have to consider those points for which it is unknown whether
they lie apart from P.

Let X and Y be points of PQ, so that X # Y and Q # X, Y. Then
one of them lies apart from P, say X # P. There exists a point B, lying
apart from P, Q, X, Y. R E 21 v R E 22 [3, pag. 61]. R determines
(like P) with Q two segments 21' and 22'.

If R E 21, then z1’={S | S, P | R, Q},

if R E 22, then Z2’={S | S, P | R, Q}.

It was proved that the order relations, defined by the couples P, Q
and R, Q agree on (W2,-’.

We define the order relation between X and Y with respect to the
couple R, Q. Thus we see that the order relation can be defined for all
point-pairs, lying apart from each other and from Q.
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Definition 23: We say that a binary relation < on a species S
is a pseudo—order relation if

CL<b—>—”1(b<Cl/)/\Cl« 7-é bp-I

NJ

-1 (a<b) /\ —1(b<a)—>a=bO0

)

) a<b /\b<c—>a.<c

)

)I-P a<b —>(Va) (a<c v c<b).

Example : the natural order relation in the speciesof real numbers is
a pseudo—order relation [6, p. 106].

It is easily seen that the relation, we just introduced is a pseudo—order
relation.

10. Order and the ternary field

It is clear from the above that the species of elements of a ternary
field T of an ordered projective plane is pseudo-ordered. Of the two
possible pseudo—orderings we choose that in which O< 1 holds. We shall
study the influence of the pseudo-ordering on T.

Theorem 16: n<n’—>d5(a,,m,n)<(D(a.,m,n')(compare [9, th. 7.3.l]).

Proof: We obtain q9(n)=€Z5(a,m, n) from n by projecting thrice,
according to the definition of (15.Since the cyclical order is invariant
under projection, either the order is preserved or reversed. It is sufficient
to show for one pair of points 0, d that c<d implies q:(c)<<,v(d).VVefirst
show: d5(a,m,p)= 0ACD(a,m,0)=2/xz # O—>p,z |O, W (where W:
=X Y D OE).

Consider the line l with equation 3/=€D(x,m, 0).

R=l 0 XY. Then z=(OR (Wa Y) X r\ OW;

O={R(Xp fl OY) fl aY} X (1 OW, so we find

p={(aY KNOX)R n0Y}X n OW.

Denote OR 0 al’ by 8. Considering the quadrangle OXYS we see that
U=OXr\a,Y, R, V=0YnRU, T=XSflRU form a harmonicquadruple.
So U, R | V, T. Projecting from X onto OW we see O, W |p, 2.

Now .2#0—>p #0 and p #O—>p<0v0<p
0<p ——>z<O or (D(a, m, 0)<€D(a, m, p)

p<O —>0<z or @(a, m, p)<d5(a, m, 0).

This does not finish the proof, for we have still to consider the case
in which it is unknown whether a.m=(D(a, m, 0) # O.
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Let x< 0, then 99(0)< 0 v 99(0)>x.

(i) <p(0)<0 —><p(0)# 0, so a.m. # 0. Then the theorem is correct.

(ii) 97(0) >911-> W?) >93 V <P(:v)< 99(0)

<p(x)>x ——>a.m. # 0, as is clear by the definition of (p.

Again the theorem is correct. There remains q2(x)<<p(O).
This finishes the proof.

Corollary : n<n’ —>x+n<:c+n’.

Theorem 17: :c<x’ ——>a:+n<zv’+n.

The usual classical proof is applicable here.

Theorem 18: If the lines [m1,n1], [mg,ng] intersect in the point
(3, t) and m1<mg, then

(a) :c>s —+¢(:z:, m1, n1) <€D(x, mg, ng)

(b) x<s ——>(D(x, m1, n1)>€D(:c, mg, ng).

Here too the classical proof can be used.
Next we give a definition of a pseudo—orderedternary field.

Definition 24 : A pseudo—ordered ternary field is an ordered
quintuple (T, 0, 1, 45, <), where < is a pseudo-ordering on ‘T, with the
properties:

(1) (a)— (g), (l) of theorem 8.

(2) n<n’ —>(D(a,m, n)<(D(a, m, n’).

(3) If €D(s,m1, n1) =€D(s, mg, ng), then

p>s Am1<mg —>d5(p, m1, n1)<(D(p, mg, ng) and

p<s Am1<mg —>d5(p, m1, n1) >€D(p, mg, ng).

The absence of # in the quintuple need not disturb us, since we define
a # b as a<b vb<a.

From (2) we readily conclude:

Corollary 1: n<n’—>a:+n<:c+n’.

Corollary 2: n # n’ —>d5(a,m, n) # d5(a,m, n’).

An immediate consequence of (3) is:

Corollary 3 : In a pseudo—orderedternary field theorem 8, (h) holds.

The next theorems present no specifically intuitionistic difficulties, so
we have omitted the proofs. For a treatment from the classical point of
View the reader is referred to [9].
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Theorem 19: m1<m2Ax>0—>(Z5(:c,m1,n)<¢(:c,m2,n)and
m1<m2 Ax<0 —>§D(a:,m1,n)>€D(x,m2, n).

Corollary 1: m1<m2 A9c<0 —>xm1>xm2and
m1<m2 Ax>0 —>xm1<xm2.

Corollary 2: as # 0 Aml # mg ——>€D(:v,ml, n) # (D(x, mg, n).

Theorem 20: x1<:2:2Am>0——>d5(;v1,rn, n)<€D(x2, m, n) and

a:1<3cg Am<0 —>d5(:v1,rn, n)>€D(:v2, m, n).

Corollary 1: a:1<xg Am>0 ——>:z:1m<x2mand
:z:1<x2 Am<0 —>x1rn>x2m.

Corollary 2: 2:1# £82Am # O—>¢(x1, m, n) # (D(a:2,m, n).

We easily derive:

Corollary 3 : An ordered ternary field contains (at least) countably
many elements, lying apart from each other.

We have showed by the way that the missing properties (h) and (k)
of definition 17 are derivable here.

Theorem 21: If(Z5(s,m1,n1)=€D(s,'m2,n2)and(D(p,m1,n1)<(Z5(p,rn2,n2),
then either p>s /\’fl’L1<7?’L2or p<s /‘\’)’n1>7’I’L2.

11. Extending order to the projective plane

Starting from a pseudo—orderedternary field T, belonging to a pro­
jective plane ‘B, we shall introduce cyclical order in The divergence
of our theory of the corresponding classical theory is for a considerable
part due to the fact that it is seriously to be doubted whether a pseudo­
ordering of an affine line can be extended to a cyclical ordering of its
projective extension. Here is meant an affine line, considered as an
independent structure, i.e. not imbedded in an affine plane. The problem
of finding sufficient conditions for the problem, mentioned above is
interesting in itself.

In this paper considerable use is made of the properties of the whole
plane in order to define cyclical order on a projective line. Several times
we shall need the existence of a point (line) lying apart from a number
of points (lines). The existence is then ensured by theorem 26. We shall
not fully demonstrate the existence each time.

Let ‘>13be a projective plane. 0, E, X, Y are chosen as usual. ‘ll is the
affine plane determined by X Y and T is the ternary field of ‘Bwith respect
to 0, E, X, Y. The ternary field is pseudo—ordered.

Defining pseudo-order for affine lines we distinguish two cases.
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Definition 25: Let A and B be points with coordinates (a1,a2)
and (b1,b2),A, B E

(i) if Ywl, then we define A<B if a1<b1

(ii) if Xwl, then we define A <B if a2<b2.

Theorem 22: If X, Ywl, then

(VA)(VB)(A,Bel/xA<B—>A<B)v
(VA)(VB)(A,BelAA<B—>B<A).

Proof: If X, Ywl, then l is of the first kind, i.e. l has an equation
y=(D(x, m, n) and moreover m> 0 v m<0.

Let A = (a1, (£2), B=(b1, b2), A < B —>a1<b1.
There are two cases:

m>O Aa1<b1 —>(D(a1, m, n) <(D(b1, m, n),

or a2<b2. Thus A < B.

m<O Aa1<b1 ——>d5(a1, m, n) >(D(b1, m, n),

or a2>b2. Thus A > B.
Thus we see that if both < and < are defined, they either coincide

or are opposed to each other.
It would be natural now to introduce a betweenness relation in the

affine plane. Since we are interested in the projective plane, we imme­
diately pass to the next stage, i.e. the introduction of the separation
relation.

Definition 262 P1, P3 IP2, P4 Pnm<Pn(2)<Pn(3)<Prim, where
yzis a permutation from the subgroup of 64 generated by $4 and (1,3).

We also define the separation relation in the case that one of the four
points is improper.

Definition 26a: IfZ EXY,thenP, R | Q,ZifP<Q<R vR<Q<P.
In these definitions we can also replace < by <. In the next theorem

it is asserted that these two pseudo-orderings provide the same cyclical
ordering.

Theorem 23: If < and < are both defined on l, they define the
same cyclical ordering.

Proof: Apply theorem 22 and definition 26 (26a).

Since at least one of the relations < and < is defined on a line l, we
have defined the separation relation for all affine lines.

Theorem 24: The cyclical ordering | is invariant under projection
from any point Z of X Y.
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Proof : If Z: Y, then the theorem holds trivially.

(a) Next let Z be an improper point and Z # Y. Then all lines through
Z are of the first kind.

Z E ll, lg, ll= [m, nl], lg: [m, ng] and nl<ng.
Let l* be a line of the first kind (i.e. l* = [m*, n*]) and m* # m. ll and lg

both intersect l*:

1*H l1=P=(p1,p2), l* 0 l2=Q=(C11,qz).

]?2=¢(P1,m, 7l1)=¢(P1,m*,7l*),

qg=d5(ql, m, ng)=(D(ql, m*, n*).

nl<ng —>¢(pl, m, nl) < (D(pl, m, ng).

€D(ql,m*, n*)=<P(ql, m, ng) A€Z5(pl,m*, n*)<€D(pl, m, ng) —+

—>(pl>ql Am* <m) v (pl<ql A791*>772). (theorem 21).

Thus, if 771*>771,then the points are in the same pseudo-order relation
as that of nl and 97.2.If m* <m, then the relation between the points is
opposite (we use < for the points). So by projecting from Z from a line
of the first kind onto a line of the first kind the pseudo-ordering is either
invariant or reversed. In both cases the cyclical ordering is invariant.

(b) Let l* be of the second kind: l*=[c].

P=l* (‘Nl1 —>P=(C,p2),

Q=l* fl lg —>Q=(c, qg).

nl<ng —>§Z5(c,m, nl) < §D(c,m, ng) or pg<qg.

This means P < Q. Here the pseudo-ordering is preserved, and there­
fore the cyclical ordering too.

(c) Let it be unknown whether l* is of the first or second kind. P = l* 0 ll,
Q=l* fl lg. Since ll and lg are parallel, we know P # Q. P # Q —>
pl # ql vpg # qg. If pl # ql, then l* is of the first kind and then the
cyclical ordering of the points on l* corresponds with the cyclical ordering
of the lines through Z (being defined by the cyclical ordering of their
second coordinates).
Consider pg # qg. Put R=(pl, €D(pl,m, ng)).

nl<ng —>d5(pl, m, nl)<(D(pl, m, ng) or pg<rg

]92<7‘2 ——>q2<7'2V q2>p2.

If qg<rg, then qg # 7'2. qg # T2—>(Z5(ql,m, ng) # €D(pl, m, ng).

From this we conclude ql # pl. As before, this means that the cyclical
ordering is invariant. Resuming we see that if nl < ng, the cyclical ordering
is invariant or qg> pg, i.e. P < Q. In the last case the cyclical ordering
is again invariant.
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(d) Let it be unknown whether Z # Y. VVeproject from the line a onto
the line b. Zcua,b, consequently Z # Y or a and b are of the first kind.
VVetreated the case Z # Y above, and thus suppose that a and b areof
the first kind.

Z E ll, lg and Z1# lg. Both lines are affine. l1 and lg intersect at and b.
P=l1 n a, Q=‘—l2n a, R=l1 n b, S=lg n b.

Let P<Q, or p1<q1. As l1 and lg are parallel, we see that R #8.
Since R and S are incident with a line of the first kind, this means r1 # 81.
T1 # 81 —>7‘1<81 V 7‘1>81.

Suppose r1>s1. p1<q1 —>r1<q1 v r1>p1.

7'1<q1 A81<7‘1 —>81<q1.

So p1<q1 —>s1# ql vrl #101.

In the first case we see that lg is of the first kind and in the second case
Z1is of the first kind. The problem is now reduced to Z # Y, i.e. the
cyclical ordering is invariant. Our conclusion is: r1<s1 or the cyclical
ordering is invariant. In the first case the cyclical ordering is evidently
invariant too.

This finishes the proof of theorem 24.

Theorem 25: (i) If A El and < is the pseudo-order relation
on l, then there exist points P and Q on l, so that P<A<Q.

(ii) If A, B El and < is the pseudo-order relation on l, and A<B,
then there exists a point P on l, so that A<P<B.

Proof: Use theorem 20 corollary 3 and theorem 24.

Remark: We may replace in the theorem < by <.

Theorem 26 : If A, B, and 0 lie apart from one another on an affine
line l (one of them may be improper), then there exists a point P, so that
A, P I B, 0’.

Proof: Use theorem 25.

One immediately verifies that the separation relation satisfies C1—— 05.
Though the verification can be a lengthy procedure it can every time be
accomplished in a finite number of steps. VVeshall not go into this matter
as it does not present any intuitionistic difficulties.

The following theorem is known as the axiom of PASCH.We have
formulated it in terms of separation rather then in terms of betweenness.

Theorem 27: Let ABC’be an affine triangle.
BCflXl’=M, CAflXY=M', ABnXY=M”. l is a line so that
A, B, Cwl. lfl BC=P, lfl CA=P’, lfl AB=P”. Then B,C | P, III
implies either C’,A |P’, M’ or A, B | P”, M”, but not both.
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Proof: B,C|P,M—>P#M. P#M/\BC’#XY—>Pis an affine
point. Then l is an affine line. O’AaAB —+laO’Av laAB, i.e. one of the
points P’ or P” is affine.

Suppose that P’ is an afline point, then the points 0, A, P’, M’ are
apart from one another. Between the points 0, A, P’ some pseudo-order
relation exists, consequently the four points can_be divided into two
separating pairs.

We consider two cases:

(i) C’,A | P, M’.
Suppose A, B IP”, M”. From P” # M” and l # P”M” we derive

M*=l (1 XY # M”. Put Q=M*C’ fl AB. Projecting from M*, we find
by theorem 24: Q,A | P’’, 111”and Q, B | P”, M”. Just as in classical
geometry we derive a contradiction from these two propositions and
A, B | P”, M”. So A, B j P”, M”.

(ii) 0, A j P’, M’. Again lfl XY=M*. Suppose for the moment
M* # M”. Then M*C'oAB, say M*C (‘NAB=Q. Projecting from M* we
find by theorem 24:

3,0 | P,M—>B, Q 1P”, M"; 0,A§P', M’—>Q,A§P",

Combining these two results we find A, B | P”, Ill”.
Now let it be unknown whether M * # M”. AOGAB —>M *BoAC v

vM*BaAB. If M*BaAB, then M* #JlI” and this case we have already
treated. So suppose M *BaAC'. Projecting from M * we find M, P | B, C —>
—>M’, P’ | B’, C’ where B’:-M*B fl AC’.

By (ii) we know that III’, P’ j A, 0 holds. M’, P’ j A, C AM’, P’ [
IC’,B’—>]l1’,P’ | A, B’. This entails A # B’. A # B’/\AC’ #AB —>B’coAB.
B’wAB —>M*B # M”B. M*B # ]ll”B A Ill” # B —>M”coM*B.
111”a)M*B —>M” # M *, here we are back again in the previous case.
This finishes the proof.

VVeshall now define a new relation between pointpairs. First we define
the relation for points lying apart from each other, afterwards we extend
the definition to all pairs.

Definition 27: Let Zbe a11affine line and let A and B be points,
both lying outside l and X Y, so that A # B. If AB fl l=P and
AB (WXY=M then 5;* (A, B) means A, B2’P, M.

It is clear that c5;*(A,B) —>c5;*(B,A). The relation 61* is, however,
neither reflexive nor transitive. To obtain a more suitable relation we
proceed to

Definition 27a: Let Zbe an affine line and A and B points, both
lying outside l and X Y. Then 6;(A, B) means

(HP) (5z*(A: P) A5z*(B=P))­
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The relation (5;includes the relation 61*.Let c5;*(A,B) hold, i.e. A, B f P,M.
By a simple reasoning we derive from theorem 26 that there exists a
point C, so that A, B | C, M.

A,B|O,MAA,B§P,M—>A,B|P,C.
A,B|P,O—>A,0§P,B and A,B|C,M—>A,C§B,M.
A,0§P,BAA,O§B,M—>A,C§P,M, i.e. 6;*(A,C).

Likewise (5;*(B,C') holds, thus by definition: 6;(A, B).

Theorem 28: 6; is an equivalence relation on the species of all
points outside l and X Y.

Proof: (1) c3;(A,A) is true.

Choose a line a through A. a (1 l=P, a MXY=M. By theorem 26
there exists a point B, so that P, B | A, M consequently P, M §A, B.
Thus by definition 27a c5;(A,A) holds.

(2) 6;(A, B) —>6;(B, A) holds by definition.

(3) 61(A,/\ 6;(B, —>(5z(A,

We prove (3) in a number of steps.

(3.1) (5;*(A,B) and (5;*(B,C) hold in the triangle ABC’.
BC 0 l=P, CA n l=P’, AB 0 l=P”; BC’fl XY=M, CA (WXY=M’,
ABflXY=M”. By theorem 27 A, B § P”, M”/\B,O§ P, M—>A,C'{P’,M’,
thus 6;*(A,C').

(3.2) 6;*(A, B) and c5;*(B,C) hold and A, B and O’ are collinear and
lie apart from one other.

A,B{P,MAB,O§P,M—>A,0§P,M, thus 6;*(A,0).

(3.3) Let the points A, B and 0 lie mutually apart. Let it be unknown
whether CcoAB or not, then 6;*(A, O) Ac5;*(B,C) —>c5;*(A, B).

There exists a line m through 0’, so that m # AB, A0, B0’. Choose
D and E on m, so that C, D and E lie apart from each other and (5;*(O’,D),
c5;*(C, E ).

Then at least one of the points D and E lies outside AB (compare
theorem 12), say DwAB. By these precautions D lies outside AB, BC’,CA.

Apply (3.1) in triangle ACD: c5;*(A,C) /\ 6;*(C, D) —>6;*(A, D)

and in triangle BOD: 6;*(B, C) Ad;*(C, D) —>6;*(B, D),

finally in triangle ABD: c5;*(A,D) A 6;*(B, D) ——>6;*(A, B).

Remark: (3.3) tells us that (5;(A,B) AA # B —>6;*(A, B).

(3.4) dz(A,B) A5;(B, —>(5z(A,
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We can find P and Q, so that for P and Q holds: (3;*(A,P), 6;*(B, P),
5z*(B,Q), 5z*(CQ)­

There exists a line m through P, so that m # CQ. Choose T E m, so
that TcoC'Q,T # A, T # B and 61*(P,T). We now apply a number of
times (3.3).

A # T A 61*(A, P) A 61*(P, T) —>6)*(A, T).

B # T A6)*(B, P) Aa)*(P, T) + 5)*(B, T),

T # Q A 6)*(B, T) A 6)*(B. Q) —>5z*(T= Q).

0 # T A(we, Q) Aa,*(T, Q) —>a,*(0, T).

Finally a)*(A, T) Aa*(0, T) —>a)(A, 0)

This finishes the proof.

Theorem 29: If A and B lie outside l and XY then 61(A,B) v
V—|6l(A,

Proof: Let V 6 XY, so that V # l 0 XY. Choose P1, P2 EAV, with
the properties P1 # P2, B # P1, P2 and 51*(A,P1), 61*(A,P2). Since
B # P1, P2, the lines P1B, P2B exist. AVol —>P1BoAVvP1Bal. If
P1Bal, then P1B fl XY # P1B (‘Nl. If P1BoA V, then BcoAV. Thus
BP1aBP2. This entails BP1ol v BP2ol. We have now ensured the existence
ofa point P with the properties P # A, B, c3)*(P,A), PB 0 l # PBKWXY.
Put PA n l=S1, PA n XY=M1, PB n l=S2, PB m XY=M2. By
definition 27 either c5;*(P, B) or —nc51*(P,B) holds. If c31*(P,B) holds,
then 6)(A, B) is true. If -1 6)*(P, B) holds, then P, B | S2, M2. 6;*(A, P) —>
—>A, P j S1, M1. Projecting from the improper point T of l, we find
A’, P§S2, .012 (where A’ is the projection of A). A’, Pi S2, M2 /\ P, B |
|S2,]lI2 —>A’, B | S2, ]lI2. This entails A’ # B. Choose 0’ 6 AA’, and let
A’ # C’.C’# A’ m BA’ # A’C —>C’coBA’.By the triangle axiom BwAA’
holds, thus B # A. Then the line AB exists and projecting once more
from T we find B, A |S3, M3 (where S3=AB F) l, M3=AB F) XY). This
implies —.61*(A, B). Above we showed that (5;and c5)*coincide if 61* is
defined, so -7 (51(A,B) holds. This finishes the proof.

From the proof we also learn

Corollary: —.61(A,B) —>A # B.

Theorem 30: The relation 61determines exactly two equivalence­
classes.

Proof : (a) theorem 26 entails that there are at least two equivalence­
classes.

(b) It suffices by theorem 29 to prove

-1 §z(A, A—-15;(B, —>5;(A,

By the corollary we know that A # B, B # 0. Let m be a line through
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A; on # AB, BC. Choose D on m, such that DwAB, BC and 6;*(D, A).
Applying the axiom of Pasch to the triangle ABD we find 6;*(B, D).
Applying the axiom of Pasch once more to the triangle BCD we find
6;*(C, D). Finally c3;*(A,D) and (5;*(D,C) imply 6;(A,C).

Theorem 31 : Let P, Q, R, S be mutually apart, affine points on a
line l, and T an afiine point outside l, and p=PT, q=QT, 7'=RT, 8:-ST,
then P, R | Q, S <->(6q(P, R) A -1 c5s(P, R)) v ((5s(P, R) A -1 c5q(P, R)).

The classical proof is applicable [9, th. 7, 4.8]. For shortness we define
a new relation. This relation is defined under rather restrictive conditions.

Definition 28: Let P, R, (_],sbe affine elements, so that P # R,
q # 3, P, Rcoq, .9,then c3qs(P,R) means (6q(P, R) A-1 63(P, R)) v (r5s(P,R)A
A —16q(P, R)).

We refor1nulate the conclusion of theorem 31: P, R | Q, S <->(5q3(P,R).

Theorem 32: Let P, Q, R, S,p, q, .9,T be given as i11theorem 30;
Let P’ ep and P’ 7,45T, P’a)XY, then c5q3(P,R) —>6qs(P’, R).

Proof: P’ # T Ap # 7'—>P’wr.P’a)r —>P’# R.

Suppose —16q(P, R) A6s(P, R). Put Mzp (WXY. As P’ws, we know
that either (5s(P,P’) or - (5s(P,P’). We treat these cases separately:

(i) (5,-(P, P’) A c53(P, R) —>63(P’, R). (1)

It is clear that (53(P,P’) —>6q(P, P’).

6q(P, P’) A -1 6q(P, R) —>-1 6q(P’, R) (2)

Combining (1) and (2) we find 6qs(P’, R).

(ii) —16,-(P, P’) A 63(P, R) —>- c33(P’, R) (3)

Again it is clear that -1 63(P, P’) —>—1c3q(P,P’)

by theorem 29 c5q(P,P’) A 6q(P, R) —>(5q(P’, R) (4)

Combining (3) and (4) we find 5qs(P’, R).
Likewise we treat the case (3q(P,R) A-1 53(P, R).
Since in all cases we find (3qs(P’,R), the theorem is proved.

Theorem 33: If we project the affine points P, Q,R,S onto the
affine poi11ts P’, Q’, R’,S’ from the affine centre T, then

P, R | Q,S-—>P’, R’ | Q’,S’.

Proof: Apply theorem 31 and theorem 32.

Remark: We can reformulate theorem 33, so that it holds even
when some of the points are improper.
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Now at last we are able to define a separation relation on all lines of P.
Since the new relation will be an extension of the relation we introduced
in definition 26 and 26a, we will denote it by the same symbol.

Definition 29: Let P, Q,R, S be four collinear points, lying apart
from one another; l an afiine line, so that P, Q, R, Soul; and T an affine
point, so that TwPQ, l. Put P’=PT n l, ..., S’=ST (Wl. Then P, R IQ,S
if P’, R’ I Q’, S’.

To justify this definition we remark that:

(i) the relation is independent of the choice of l (by theorem 33);

(ii) the relation is independent of the choice of T.

Proof: (a) In the first place we shall consider the improper points.
An improper point Z is called “of the first kind” if Z # Y. Suppose that
P, Q, R, S are improper points of the first kind. By projecting P’, Q’, R’, S’
(on the affine line l) onto X Y from T we define the separation relation:
P’, R’ I Q’, S’ —>P, R I Q, S. Let mp, mg, m,, ms be the first coordinates
of the lines TP, TQ, TR, TS. A reasoning from classical geometry shows
that c3p,(Q,S) emp, m, Imq, ms. Combining this with definition 29 and
theorem 31 we find P, R I Q, S 9 mp, m, Img, ms. Now it is clear that
the definition is independent of the choice of T.

If one of the points coincides with Y, then an analogous reasoning
shows: P, R I Q, Y <—>mp<mq<m, v m,<mq<mp. Here the independence
is also clear.

If it is unknown whether all points are of the first kind, we proceed as
follows. At least three of the points are of the first kind, say P, Q, R.
Let there be given P, R I Q, S (1). Projecting from an affine centre onto
an afi‘ine line we find the affine points P”, Q”, R”, S”.

Suppose P”, R”I Q”, S” (2). We know that P, R I Q, Y (3) vP,R2’ Q, Y(4).
(1) and (4) imply P, R IS, Y, thus S # Y. That case we considered before
and led us to P”, R” I Q”,S”. This contradiction eliminates (4). (3) implies
P”, R” I Q”, Y” (5) (where Y” is the projection of Y). (5) and (2) entail
P”, R” IS", Y”, thus S" # Y”. Then S # Y also holds. We proved in that
case that P”, R” I Q”,S”, this contradicts (2), so a (P”, R” I Q”,S”)
holds, i.e. P”, R” I Q”,S”. This fully justifies definition 29 for improper
points.

(b) If P, Q, R, S are affine then theorem 33 yields the independence.
Let PQ be an affine line. Then at least three of the points are affine,
say P, Q and R. PQ n XY=U. Projecting from a point T* we find
P*, Q*, R*, S* and U* on l (remark that TUol v TUOTS, in the last case
S # U, then by theorem 33 the independence is ensured). Considering
U’=TU H l, we observe that either P’, R’ IQ’, U’ or P’, R’ I Q’, U’, in
the last case P’, R’ I Q’,S’ entails P’, R’ IS’, U’, so S’ # U’. Then we
know that S is an affine point, so the independence is proved. If
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P’, R’ I Q’, U’, then P*, R* I Q*, U* (by theorem 33, remark). For
P*, Q*, R*, 8* the following holds: P*, R* I Q*,8* or P*, R* {Q*, 8*.
Consider thelastcase: P*, R* I Q*, 8* AP*, R* I Q*, U* —>P*, 13*I8*, U*.
Then 8* # U* holds, thus 8 # U, i.e. 8 is afline. However, if 8 is aflFine,
then we know that P*, R* Q*,8* is contradictory. We conclude that
P*, R* I Q*, 8*.

(e) Let it be unknown whether PQ is an affine line. P, Q, R, 8, T and l
are as in definition 29.

The improper points of TP, ..., T8 are P, ....,8. Project P, Q,R, 8,
P, Q, R, 8 from a point T* onto l, so that the images of P, Q, R,8 are
afline. A simple reasoning shows that either the images of P, Q, R8
are aiffine or PQ is an affine line. The last case we considered above. The
images are marked by an asterisk. VVealready know that P*,R* IQ*,8* (1).
The points P*, Q*, R*,8* lie apart from each other, so P*, R* I Q*, 8*
(2) v P*, R* I Q*, 8* (3). We shall derive a contradiction from the
last formula. In the following reasoning we shall often use axiom 83.
If we encounter one of the formulae P* # P*, ...,8* #8*, we know
that the line PQ is affine.

We then need only consider the other part of the disjunction. VVe
frequently use this type of reasoning here, without fully motivating it.

We may assume that P* # I_{*,Q*,8*, so

P*,R* Io*,s* (4) vP*,1?*§Q*,§* (5)

(1) and (5) entail P* # P*, so consider (4).

VVemay assume that R* # Q*,8*, so

P*,R*IQ*,8* (6)vP*,R*IQ*,8* (7)
(4) and (7) entail R* # P*, so consider (6).

We may assume Q* #8*, so P*,R* IQ*,8* (8)

or P*,R*IQ*,8* (9)
(6) and (9) entail Q* # Q*, so consider (8).

(8) and (3) entail 8* # 8*. This means that PQ is affine, and thus (3)

is not true by (b).

We have now, by the way, advanced as far as the invariance of cyclical
ordering with respect to projection from affine points. To complete the
proof of axiom 05 we still consider projections with improper centre and
with a centre which is not known to be affine.

(oc) The centre of projection is improper. It is clear that the range and
domain of the projection are afline lines. We have already proved the
invariance in the case that all points are affine, or in the case that one
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of them is improper. In general three of the points lie outside X Y. Let
it be unknown whether Sa)XY. Put PQ O X Y=U , projecting from Z
onto m we find the points P’, Q’, R’,S’, U’. Let be given P,R I Q, S.
VVe 1nay suppose P,R | Q, U (otherwise S would be affine, which we
considered before). By theorem 24 P’, R’ | Q’, U’. The points P’, Q’, R’, S’
are apart from one another and can be divided in separat-ing pairs.
Suppose P’, R’ gQ’, S’, then P’, R’ | Q’, U’ entails U’ # S’ thus S’ is
affine. As a consequence P’, R’ | Q’,S’, which contradicts P’, R’3’Q’,S’
so P’. R’ | Q’, S’ holds.

([3) It is unknown whether the centre is affi11eor improper. We use
here the same kind of reasoning as in (c) above, i.e. each time we encounter
a disjunction in which one part affirms that some element is affine, we
need consider the other part only. Let T be the centre of projection and l
and m domain and range respectively. We remark that T is affine or Z
a11dm are affine. The last case remains to be considered. P, Q, R, S E l;
P’, Q’, R’, S’ E m and, as m is affine, at least three points are affine, say
P’, Q’, R’. PT (‘NXY=T*. Projecting with centre T* from Zonto m we
find P*, S* as images of P, ..., S. Let be given P, R | Q,S, we want
to prove P’, R’ | Q’, S’. By (a) P*, R* | Q*, S* (1) holds. Suppose
P',R'§Q',s' (2).

VVemay assume P’ # R*, Q*, S*, so P’, R* | Q*, S* (3) v P’, R* 1’Q*,S*
(4). (1) and (4)entail, P’ # P*, so consider (3). We may assume R’ #Q*,S*,
so P’, R’ | Q*,S* (5) v P’, R’ j Q*,S* (6). (3) and (6) entail R’ # R*, so
consider (5). We may assume Q’ # S*, so P’, R’ | Q’, S* (7) v P’,R’ 2’Q’,S*
(8). (5) and (8) entail Q’ # Q*, so consider (7). Finally (2) and (7) entail
S’ # S*. A simple reasoning shows us that T’ is affine if S’ # S*.
The results found above contradict (2), so -1 (P’, R’ 2’Q’, S’), i.e.
P’, R’ | Q’, S’.

VVehave now fully established the invariance of cyclical order under
projection.

Bearing in mind that the separation relation was introduced by means
of the separation relation for affine points, it is obvious that the axioms
C1-C5 hold. The proof of 06 we have just finished. By now we have
reached our goal:

Theorem 34: The pseudo—orderingof a ternary field T of a pro­
jective plane ‘B can be extended to a cyclical ordering of
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Samenvatting

In dit proefschrift Worden, Van intuitionistisch standpunt, een aantal
uitbreidingsproblemen bestudeerd. Aanleiding hiertoe was het artikel [7]
Van Professor HEYTING,waarin de uitbreiding Van een affien vlak tot
een projectief vlak geconstrueerd werd. In de intuitionistische afliene
meetkunde kan men niet Volstaan met de toevoeging Van oneigenlijke
punten en de oneigenlijke rechte, omdat ook die punten en lijnen toege­
voegd moeten Worden, waarvan het onbekend is of ze oneigenlijk zijn.
Hier worden projectieve punten ingevoerd, naar het Voorbeeld van [7],
als waaiers Van afliene lijnen (definition 10). Behalve de waaiers Van
snijdende lijnen e11Van evenwijdige lijnen komen hier bovendien waaiers
voor, bestaande uit lijnen, waarvan het onbekend is of zij elkaar snijden.

Voor het bewijs Van de axioma’s Van het projectieve vlak werden in
[7] drie nieuwe axioma’s ingevoerd. Twee daarvan zijn hier (theorem 4,
theorem 5) afgeleid uit de axioma’s Van het afliene vlak. Het is niet bekend
of het derde axioma (A3) afgeleid kan Worden uit de axioma’s A1—A7.
Na toevoeging van de axiale stelling van PAPPOSaan het axiomastelsel
blijkt A3 afleidbaar te zijn (theorem 6). Hoewel het onzeker is of elk affien
vlak een projectieve uitbreiding bezit, kunnen wij wel bewijzen dat ee11
projectieve uitbreiding, indien deze bestaat, eenduidig bepaald is op
isomorfie na (theorem 2, corollary).

Het tweede uitbreidingsprobleem behelst de constructie Van een pro­
jectief vlak over een gegeven ternair lichaam. De axioma’s Van het
ternaire lichaam met Verwijderingsrelatie werden voor het eerst aan—
gegeven door Professor HEYTINGin zijn college “Intu'1'tionistische pro­
jectieve meetkunde”. 1956-1957.

In de klassieke wiskunde Voert men een aantal soorten punten en lijnen
in (zie bij Voorbeeld [2, p. 356]). Deze methode faalt echter bij een
intu'1'tionistische behandeling. Men kan bij Voorbeeld niet altijd uitmaken
Van welke soort de lijn is, die twee Van elkaar Verwijderde punten bepalen.
Dit bezwaar doet zich hier reeds voor bij de constructie van een affien
vlak over een ternair lichaam. De constructie Van een projectief vlak is
wel mogelijk langs algebraische weg als het ternaire lichaam een alter­
natief lichaam of een scheef lichaam is. Wanneer men aanneemt dat een
ternair lichaam een aflien vlak bepaalt, dan is dat vlak op, isomorfie na,
eenduidig bepaald (theorem 12, corollary).

Het laatste deel Van l1et proefschrift behandelt de ordening in een
projectief vlak. In [3] werd de pseudo-ordening op de affiene rechte afge­
leid uit de cyclisch.e ordening van het vlak. Hier is, uitgaande van een
pseudo-geordend ternair lichaam een cyclische ordening op het projectieve
vlak gedefinieerd. In verband met het Voorgaande was het daarbij nood­
zakelijk te veronderstellen dat het ternaire lichaam een projectief vlak
bepaalt. Bij de behandeling Van dit probleem werd gebruik gemaakt Van
het manuscript van [9], welwillend beschikbaar gesteld door de auteur.



STELLINGEN

I

Er bestaan voorbeelden Van groepen, waarin de ontkenning Van de
ontkenning Van de gelijkheid niet de gelijkheid inhoudt.

II

Men kan (gr0epen-)is0m0rfisme11 beschouwen ten opzichte van de
Verwijderingsrelatie, de gelijkheidsrelatie, de 0ngelijkheidsrela.tie, Een
isomorfisme Van de eerste soort is strikt sterker dan een van de tweede
soort en een isomorfisme Van de tweede soort is strikt sterker dan een
isomorfisme Van de derde soort.

III

De karakteristiek Van een intuitionistisch lichaam is niet altijd te
bepalen.

IV

Afgebakende puntsoorten behoeven geen diameter te bezitten. Begrensde
afgebakende puntsoorten bezitten echter wel een diameter.

H. FREUDENTHAL.Zum intuitionistischen Raumbegriff.
Comp. Math., 4, 1936, p. 99.

X,’

Men Verkrijgt een generalisatie Van het begrip co—V0udigenegatieve
convergentie door Willekeurige deelsoorten der reéle getallen toe te laten
in plaats Van een aftelbare rij getallen. De stellingen betreffende de
meervoudige negatieve convergentie Van so1n- en produktrijen kunnen
bewezen Worden. Bovendien geldtz is een rij {an} negatief convergent
naar twee deelsoorten, dan is {an}negatief convergent naar de doorsnede.

J. G. DIJKMAN. Convergentie en divergentie in de
intuitionistische wiskunde. Dissertatie 1952, p. 13 e.V.

VI

Als F een complexe, lineaire ruimte Van afbeeldingen Van een Ver­
zameling X in een complexe, lineaire hausdorffruimte Y is, dam is er
hoogstens een Volledige, metrizeerbare, lineaire topologie waarvoor de
afbeeldingen 6x: ]‘—>]‘(a:)Van F in Y continu zijn.



VII

Laten P1 en P2 twee projectieve ruimten met homomorfisme zijn en
laat P2 een homomorf beeld Van P1 zijn. P1 en P2 kunnen dan zo ge­
coordinatizeerd Worden 1n.b.v. lokale ringen R1 en R2, dat het homo­
morfisme Van P1 op P2 geinduceerd wordt door een semi-lineaire afbeelding
(f, 0), waarin a een kanoniek homomorfisme is Van R1 op R2.

VV. KLINGENBERG,Projektive Geometrien mit Homo­
morphismus. Math. Ann. 132, 1956/57, p. 180-200.

VIII

De opmerking Van MCCALL,dat TARSKI en MCKINSEY niet bewezen
hebben, dat er juist zes formules in de intuitionistisclie propositie calculus

CC 7)zijn, opgebouwd uit één Variabele en “—>”e11 fl , is misleidend.
S. MCCALL.A simple decision procedure for one-Variable
implicational negation formulae in intuitionistic logic.
Notre Dame Journal of formal logic 1962, p. 120.
J. C. C. MCKINSEYand A. TARSKI.Some theorems about
the sentential calculi of Lewis and Heyting. Journal of
symbolic Logic 1948, p. 1.

IX

Zowel tegen de argumenten waarmee P. G. J. VREDENDUINbetoogt
dat “men bij de rechtvaardiging van de contrapositie door een bewijs
uit het ongerijmde in een Vicieuze cirkel geraakt” als tegen de conclusie
zelf zijn bezwaren in te brengen.

P. G. J. VREDENDUIN.De contrapositie en het bewijs
uit het ongerijmde. Euclides, 38, 1962, p. 20.

X

De procedure Van KLINGENBERG,ter Verkrijging Van een isoinorfisme
van de partieel geordende verzameling der directe somrnanden van een
Vrij moduul over een Waarderingsring op het tralie der deelruimten Van
een Vectorruimte, kan gegeneraliseerd Worden.

VV. KLINGENBEIRG.Projektive Geometrie und lineare
Algebra fiber verallgemeinerten Bewertungsringen. Alge­
braical and topological foundations of geometry. Oxford
1962.

XI

Het zou de wiskunde-beoefening ten goede komen indien in ruimere
mate in wiskunde—tijdschriften problemen gepubliceerd werden.

XII

Gezien de plaats, die de film zich in het culturele leven heeft verworven,
is het wenselijk dat de filmkunst in het middelbaar onderwijs betrokken
Wordt.


