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I. Formulas of propositional logic as
descriptions of frames

An introduction to the subject of this dissertation, with a synopsis of its contents, is contained in
§1. Further preliminaries on Kripke semantics take up §2; §3 explains a notion of semantic tableaux
that is central to part II. In §4 a number of fragments of intuitionistic logic are compared with
regard to expressive power. §5 explores the relationship between intuitionistic logic and modal
logic as means for describing frames.



§1. Introduction.

1.1 A short history of ideas.

Formal intuitionistic logic, as codified by Heyting [1930], is ultimately based on certain ideas of
Brouwer about the way mathematics is created. In view of their later development, these may be
sketched as follows.

Imagine somebody who enjoys mathematics (or a collective of mathematicians, if you consider that
more realistic)l. As time flows, this person makes calculations, stipulations, and the various other
things that mathematicians create — and of course, there may be periods during which he does
nothing of mathematical interest. Now we assume, and this is what makes the temporal aspect
important, that the mathematician has a certain freedom: the choice, at any time, to pursue one
subject rather than another; and that his choices may affect the actual content of his findings. Thus
given two mutually exclusive statements A and B, we need not know in advance whether the
mathematician — if he is to make a pronouncement at all — will settle for A or for B. (On the other
hand, we assume that our mathematician does not forget or blunder. So we do know, for example,
that if A has been established, B will never be found true.)

We thus arrive at a picture of the combination of time and the mathematicians choices as a tree, or,
more liberally, a partially ordered set. In the particular form of the 'theory of the creative subject’, it
was used by Brouwer to produce counterexamples to intuitionistically unacceptable statements (cf.
Troelstra [1969], Dummett [1977]). It may also serve as a background to the intuitionistic
explanation of the logical connectives in terms of proofs (the Brouwer-Heyting-Kreisel
explanation)?. Philosophical niceties apart, this explanation runs as follows:

- A proof of 'A and B' (A A B) is a pair of proofs, one for A and one for B.

-A proof of 'A or B' (A v B) is a construction which, depending on a parameter for which some
value is sure to be found eventually, either gives a proof of A or a proof of B.

-A proof of 'if A, then B' (A — B) is a construction which would turn any proof of A into a proof
of B.3

There may be things that are known to be false. It suffices to postulate one statement, the falsum

(symbol : 1), which is always known to be false; that another statement A happens to be false may
be expressed by A — L.

Relational semantics turns the notion of a creative subject into precise mathematics, and the above
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explanation of the connectives into a definition of truth for intuitionistic logic. In the main, there are
two approaches, associated with the names of Beth [1956] and Kripke [1965]. Of these, Beth's
approach stays closest to the picture painted above. It is considered in an appendix; our chief
concern will be Kripke's semantics. Further limiting the field, we shall deal only with propositional
logic.

On both approaches, the possible stages in the development of an idealized mathematician are
represented by a quasi-ordered set (more briefly : a frame) — i.e. a set A with a relation <, that
satisfies the conditions

(i)Vae A .a<, a (reflexivity)
(i) VabceA::a <4, b &b, ¢ = a<,c (transitivity).

At the basis of Kripke's semantics lies an important simplification (Grzegorczyk [1964], Kripke
[1965]), which is easy to explain in terms of the creative subject. The question is, what the
elements of the quasi-ordered set (the points of the frame) stand for. One possible answer is that
they stand for some combination of time and increasing knowledge; correspondingly, we envisage
the mathematician as traveling along a path through the frame, entering new stages automatically as
time goes on. This is the intuition behind Beth's semantics. In Kripke's semantics, on the other
hand, the temporal component is weaker: again, the mathematician travels through the frame in the
direction of the ordering, but now he may stay at any point arbitrarily long. As a consequence, the
explanation of disjunction changes to: A or B is known at stage a if either A is known ata or B is
known at a. For suppose the mathematician stays at a forever: that the parameter mentioned in the
explanation of disjunction gets a value eventually then simply means that it already has one.

1.2 Kripke's Semantics.
Now let us fix a formalism, and have some precise definitions.

1.2.1 The language I of intuitionistic propositional logic has an infinite set P of proposition letters
®.9,r.PgP1seeem will be used to refer to them), binary connectives A (conjunction), v
(disjunction) and — (implication), and a nullary connective L (falsity). Formulas are built from
these in the usual way. The symbol I will also be used to denote the set of all I-formulas. I shall
employ O, ,X,Po,P,....-as variables over I-formulas. Negation and truth are defined connectives:
—@:=¢—>L, T:=—l1.

If no confusion is likely to result, sub- and superscripts may be dropped without further warning.
For instance, I write a <b instead of a < 4b- As usual, a 2b is the same as b <a.
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1.2.2 Definition: Let A be a frame. A subsetX C A is upwards closed if
VaeAVxeX (x<a = a e€X).

U(A ) is the collection of all upwards closed subsets of A. If a € A, I write [a ), for the set
{a’e A |a’2a}.

For example, [a ) € U(A ). Observe that subsets X C A are quasi-ordered by the restriction of <
to X, and thus may immediately be viewed as frames. If x e X € U(A ), then clearly
[x)yx =I[x)4

1.2.3 Definition, Let A be a frame. A valuation on A is a function V: P — U(A ).
Forp e P,V (p) is to be thought of as the set of all stages at which p is true. The requirement that

V (p ) be upwards closed reflects the assumption above that the idealized mathematician never
forgets.

1.2.4 Definition, A model is a pair ¥ :=(A,V)ofaframe A and a valuation V on A.
The valuation V is extended to a map of I into U(A ) inductively, by
V) =9;
Viery)=V©@)NnV(y);
Vievy)=V@uV(y),
Ve y)={aeA|Va'2a (@'eV(p)=>a eV (y)}
The clauses of this definition are as we should have expected. In particular, given that we are not to

talk about proofs, what comes closest to the existence of a proof at a of ¢ — W is the circumstance
that as soon as ¢ becomes true,  does so too.

1.2.5 Definition, Let & = (A,V ) be a model, and a €A. If a e V (¢), we say a forces ¢ (under
valuation V on A ). Notation:

#H,a) ko
If we have a particular model & in mind, this will be shortened to a I+ ¢.

To determine whether a I ¢, we need only consider points a’ 2a. This fact may be put somewhat
more generally.
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1.2.6 Definition, (i) Let A be a frame. If B € U(A ), we call B, with the ordering inherited from
A, a generated subframe of A. Notation: B G A.

We say B is generated by Aj CA if B is the least generated subframe of A that contains A ;
and write B = [A().

(i) IfBSA and d-AV), B-BV ) are models such that foreverype P,V'(p )=V (p)
A B, then 7B is called a generated submodel of &. Notation: 18 S &.

By induction over I one proves:

Lemma: If B,V') S (AV), thenforallge L, V'(p) =V (p) N B.

1.3 Completeness.

Above, Kripke's semantics has been construed as a model for the intuitionistic conception of
mathematics. Now the question arises to what extent this model is adequate, and an obvious test is:
to see whether the formulas that are forced in every point of every Kripke model are the same as the
theorems of the traditional formal systems of intuitionistic logic. To formulate the result, some new
notation will be useful. If & = (4,V ) is a model, I shall write & I ¢ (¢ is valid in &) for: for all
acA, (a) ¢ andif ® C I, & - @ will mean that & I ¢ for all ¢ € ®. I shall assume some
formal system of intuitionistic propositional logic (there are several variants; perhaps the easiest to
use is the natural deduction system of Prawitz [1965]), and write @ +  for: there exists a
deduction of y from assumptions in .

Strong completeness theorem (Aczel [1968], Fitting [1969], Thomason [1968]): Let ® C I
and y € I. Then @ + y iff for every model &, & r @ implies & F .

It is to be noted that the proof of this theorem is not intuitionistically acceptable. Accepting it, we
decide to do classical mathematics. As it is, even our formulation of correspondence will be highly
unintuitionistic®. It is an open question to what extent a truly intuitionistic correspondence theory is
feasible. (Modulo a small modification of the forcing definition, intuitionistic completeness proofs
exist: see Veldman [1976], de Swart [1976],[1977].)

1.4 Intermediate logics.

The proofs of completeness, in Kripke [1965] and in the stronger form that appears above,
heralded a — classical — model theory for intuitionistic logic. A broad collection of results may be
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found in Gabbay's book [1981].

Of particular interest is a certain form of completeness theorem for intermediate logics - logics
stronger than intuitionistic logic, but weaker than classical logic. For instance, the intermediate
logic LC, obtained by adding the axiom (p —¢ )v(¢ —p ) (I shall call this formula LC as well) to a
standard set of axioms and rules (including substitution) for intuitionistic propositional logic, is
strongly complete for the class of all Kripke models on linearly ordered frames. Similarly, KC :=
—p v ——p is strongly complete for the Kripke models whose frames are 'piecewise’ (i.e. from
each point onwards) directed (Smoryniski [1973], see Gabbay [1981]). Through the interpretation
of Kripke's semantics as a model of an intuitionistic philosophy of mathematics, such theorems
connect intermediate axioms with possible conceptions of mathematics. Concretely, they allow us
to study formal systems through the consideration of 'geometrical’ properties of frames.

1.5 Validity.

Now we take a somewhat different view. We can interpret an axiom such as LC as expressing a
property of frames. Formally: we can abstract from the parameters V and a in the definition of
forcing (1.2.5), in three combinations. Suppression of a alone was explained above, in 1.3. Two
abstractions remain.

Definition. Let A be a frame, ae A, and ¢ an I-formula.
(i) (A,a)l¢ (@ is locally valid in ae A) iff for all valuations V on A, (A,V,a)l¢.
(ii) Alr¢ (¢ is (globally) valid on A) iff for all ae A, (A,a)l-o.

If (A,V,a)lfe, I will sometimes say that V refutes ¢ in A and a; and if A I ¢, that @ is
refutable in A.

The local and global notions are correlated through lemma 1.2.6. Let a be a point in a frame A, and
V any valuation on A. Define a valuation V,, on [a) by

V (p)=V(p)Nla) , forall peP.

Since V ,(¢) is upwards closed, ( [a),V )¢ iff ( [a),V,,a)I-¢; the latter statement is equivalent to

(A,V,a)k¢ by lemma 1.2.6. Since every valuation on [a) is of the form V, for a valution Von A,

we get immediately that [a)I-¢ iff (4,a)IFo.

It can be shown (see 1.7 below) that for any frame A, AIFLC iff for all ae A, [a) is linear (that is,
A is upwards linear); and AFKC iff A is piecewise directed (see 2.6).

Thus, validity of these formulas corresponds to simple properties of frames. Such correspondences
are the subject of correspondence theory. Broadly speaking, we interpret I-formulas as statements
about frames, and study the properties of frames that they may express. In particular, the language
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I may be compared with other languages as a means for describing frames.
1.6 Correspondence with first order properties.

The properties mentioned above are simple in a particular way: they can be expressed in a first
order language L with one relation symbol <. Frames are structures for L, and we have

A F LC iff A EVxyz xSy A x5z — y<z Vv z5y);
A IF KC iff A EVxyz (x<y A x<z - Ju(y<u A z2u));

with F standing for the classical relation of satisfaction. Now, it is by no means obvious that all
properties expressed by I-formulas in this way are first order. Let us trace the definition of validity
in terms of classical predicate logic.

First, then, the definition of forcing may be read as a translation of I-formulas into formulas of an
expansion L; of L,: besides <, L, has a unary predicate symbol for each element of P — we
can use the same symbol in each case. Models (A,V) are structures for L; with the predicate
symbol p interpreted as V(p). For each ¢ € I, a standard translation St(¢) may be defined as
follows. (a[x:=y] will be the result of substituting the individual variable y for each occurence of
the variable x in o).

Definition, Fix an individual variable x.

(i) St(p) =px, forallp e P; St(L) = 1;

(ii) St(yax) = St(y) A StX);

(iii) St(yAy) = St(y) v St(Y);

(iv) St(y—y) = Vy(x<y = ( St(y) — St())) [x:=y]), with y some individual
variable distinct from x.

Clearly, for any model ¥ =(AV),eachae A and each el

#Ha)r ¢ iff FE St(g)[al.
Passing on to validity in frames, we need a second order language L,, obtained by allowing
quantification over the unary predicate letters of L. Then, if p,,....,p, are all the proposition letters
in @,

(A,a)F @ iff AEVp,...p, St(¢)[a],

with the understanding that the predicate variables of L, range over the upwards closed sets. So at
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first sight, I-formulas express second order properties of frames. To what extent, and under what
conditions, L,-translations of I-formulas reduce to L-sentences, will be the main concern of part
II of this dissertation.

1.7 Finding first order definitions.

How does one find an Ly-equivalent of an I-formula? The reader can easily convince himself by
the above examples that standard translations are not very useful. Instead, we should try to isolate a
pattern that must occur in every frame in which the given I-formula is not valid. Let us take LC as
an example.

Suppose, then, that (4,V,a)l¥(p—q) v(g—p). By the definition of forcing — precisely, by the
definition of V on disjunctions — we must have alfp—q and alfg—p. Again by the definition,
alfp—q reduces to the existence of a point a’ 2a such that a’I-p and a’lfq. For simplicity it would
be nice if we could take a’=a; but, since a’lFg—p, we would fail to falsify LC. So a’ and a are
distinct. Let us write x<y for (x<y and not y<x ): then similarly we must have a">a with a"l-q and
a"lfp. Actually, the important point is that a’ and a” be incomparable: not a"<a' and not a"<a'
— that they are distinct from a then follows from a<a’,a”. Now we may surmise that

(A,a)fLC iff AFdyz(y2a A z2a A —y<z A —zSy ).

We already have a proof for the direction from left to right, for the left hand side means that a
valuation V on A exists such that (4,V,a)fLC. For the converse we must show that the right hand
side implies the existence of such a V. Suppose b and ¢ are incomparable successors of A. Then we
can define V by: V(p)=[b); V(q)=[c); and the rest does not matter. Since not ¢ <b,blfq, and
similarly clifp; so by the heuristic reasoning above, alffL.C.
Summing up: AWLC iff JaeA. (A,a)LC

iff 3ae A. AF3yz (y2a A z2a A —y<z A —z<y)

iff AF3xyz (y2x A z2x A y<z A —zSy );
which may be rewritten as:

AIFLC iff AEVxyz (y2x A 22x — y<z v 2<y). 3

1.8 Semantic tableaux.

The search for 'refutation patterns' can be formalized by a method originally due to Beth, which
was used by Kripke in [1965]. I shall briefly explain it in the form one finds in Fitting [1969]. The
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general situation in the search for a refutation pattern is that, in some point a, we deal with a finite
set of formulas, some of which we want to come out true and others false. They can be marked
accordingly: Te if @ is to come out true, Fo if it should be false (the device of marking was
introduced by Smullyan). Let us call a finite set of such signed formulas a sequent. There are
obvious rules for expanding sequents.

if T(pAy) occurs in a sequent, add T¢ and Ty ; similarly,
to F(oAy) , add either Fo or Fy ;

to T(pvy),add Te or Ty ;
to F(pvy), add F¢ and Fy ;

to T(¢—v) , add Fo or Ty.

These rules correspond to the definition of forcing. E.g. if al-¢— , then either alfe or al-y. In
this particular case, the forcing definition says something about successors of a as well. To take
that into account, it will suffice to carry the true formulas along when we create successors to a —
something to be discussed presently.

Of course, we have no use for a sequent unless it is possible that in some model, some point a
forces the formulas signed T, and does not force the formulas signed F (i.e. a realizes the
sequent). A sequent is certainly not realizable if it contains T.L, or, for some ¢, both T and F¢.
Now suppose a sequent X contains the signed formula F(¢ — ). This situation requires, by the
definition of forcing, a successor to the point realizing X, in which ¢ is true and v is false. It may
be wise to try adding T¢ and Fy to X, and see of the result is realizable; but in general , one should
start a new sequent X' consisting of the signed formulas in Z that are marked T with T¢ and Fy
added, and make a note to the effect that X' is to be associated with a successor of the point X is
associated with — say, " £ caused X' ".

The complex of sequents that results from applying these rules to a given initial sequent, with their
causal relations, will be called a semantic tableau. Such a tableau is closed if some sequent in it
contains T or, for some ¢, both T¢ and F@; open otherwise.

Semantic tableaux were devised as a method for deciding universal validity. This use derives from
the fact that a sequent is realizable iff it can be developed to an open tableau. So in particular, ¢ is
not universally valid iff {F¢} can be so developed. (§3 contains a proof, of sorts; the matter is
treated explicitly in Kripke [1965] and in Fitting's book.) But we can employ them to find
refutation patterns, as the reader can illustrate by constructing an open tableau for {F(LC)}.
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1.9 Limits of first order definability.

The question complementary to the one that was just considered at length is: how does one prove
that a given I-formula (or rather, the property of frames that it states) is nor L-definable?

However, one might wonder if such I-formulas exist; and here a few historical remarks are in
order.

Just as Kripke semantics for intuitionistic logic derives from the relational semantics for modal
logic (the development of which is sketched in Bull & Segerberg [1984]), so intuitionistic
correspondence theory derives from modal correspondence theory. (The key reference for modal
correspondence theory is van Benthem's chapter [1984] in the Handbook of Philosophical Logic.)
In modal correspondence theory, a considerable divergence was found between modal definability
and first order definability. The examples of this divergence typically exploited modal turns of
speech that have no counterpart in intuitionistic logic. (By Gddel's translation [1932] — see §5
below — I-formulas may be considered as a special kind of modal formulas.) This suggested the
conjecture (van Benthem [1976a]) that all I-formulas express first order properties of frames. Van
Benthem also proposed semantic tableaux as the means to find these first order properties.

In the end, the conjecture was refuted, (see van Benthem [1984]). The proof used the
Lowenheim-Skolem property, which had also been widely used in modal correspondence theory.
Now, viewed from modal logic, intuitionistic logic represents not only a restriction on formulas,
but also on frames (modal frames need not be quasi-orderings) and valuations (in modal semantics,
V(p) need not be upwards closed).

The question then arises what happens when the restrictions on frames are strengthened. Indeed,
several more restricted classes have figured in the tradition of completeness theory. Some classes
worth an abbreviative name are:

QO : the class of all frames (quasi-orderings);

PO : the class of all partial orderings, i.e. frames in which a=b if both a<b and
b<a (antisymmetry);

DLO: the class of downward linear orderings, i.e. partial orderings in which
points with a common successor are always comparable -
Ix(asx & bsx) = a<b v ba;

TR: the class of trees, by which we shall understand downwards linear
orderings with a least element (the root) in which every interval [a,b]
(={x| asx<b}) is finite;

FPO: the finite partial orderings;

FTR: the finite trees;

LO: the linear orderings.

10
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(Note that the branches of our trees are all of type <m !)
Partially ordered by inclusion , these classes present the following picture:

QO

m/\
L\/

Strong completeness holds from TR upwards, weak completeness (the statement of which differs
from that of strong completeness by the requirement that @ be finite) from FTR.
In Rodenburg [1982] it was shown that the formula SP,:=

[=(Ag)v—(pA—=q)vV—(—pAq) = (PAQ)V(PA—g)V(—PAg)]
=(pAg)V(pA—q)V—(—pAq)

is not first order definable on DLO, and that every I -formula is first order definable on FTR. (See
§§6,8 below.) The first result turned on the compactness property of first order logic, which, as it
appeared, is much easier to handle than the Lowenheim-Skolem property. (Below we shall use the
preservation of Ly-formulas under ultraproducts).

In fact, these methods allow stronger conclusions: a formula such as SP, is not even definable by a
set of first order sentences - in other words, it is not A-elementary6. There is, however, no point in
mentioning this added strength in particular cases, since I-formulas are either elementary or not
even ZA-elementary, by an early result of van Benthem ([1976b], or see [1984]).

One naturally wonders whether overall first order definability holds for TR and FPO. (LO is
simple: see 7.7.) These questions remained open for a while: clearly, sweeping methods such as
compactness are of no avail here. Doets finally answered them, in the negative, by considering
Ehrenfeucht games (see [B]). His results are stated in §§8 and 10.

The other kind of restriction, on formulas, is tightened in §7, where it is shown that semantic

11
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tableaux always work as long as we avoid a certain sort of occurrences of disjunction, and in §11,
on formulas in one proposition letter. Further syntactic observations may be found in §12. The
expressiveness of 'fragments' of I is discussed on §4.

We are obviously very far removed from van Benthem's conjecture of 1976: first order definability
in I-formulas is a complex matter. Precisely how complex is difficult to say. It is shown in §7 that
the tableau method, as developed in §3, does not work for all first order definable I-formulas. I do
not know an upper bound to the computational complexity of the set of all I-formulas first order
definable on QO. For the rest, there are just a few local answers: on LO and FTR the set of first
order definable formulas is the entire set I; on TR it is a decidable proper subset (§9).

1.10 I-definability.

Part I1I is devoted to the question which first order properties of frames can be expressed by means
of I-formulas. As in part II, preservation properties — this time of I-formulas, of course — function
as a sieve. For example, Vxy(x<y v y<x) is not I-definable since I-formulas remain valid under
the operation of taking disjoint unions (cf 2.4.3). Ideally, we should like to characterize the
I-definable classes of frames by closure under such operations, and then derive the typical forms of
Ly-formulas that are presgrved under these operations. We shall find several obstacles in the way
of this project, both in characterizing the I-definable classes and in relating preservation properties
to syntax.

As a warming-up, then, the problem which L,-sentences correspond with I-formulas on models
is dealt with in §13. §14 contains a short presentation of intuitionistic duality theory, and a
characterization of the I-definable classes of frames along the lines of the characterization of
modally definable classes in Goldblatt & Thomason [1974]. The rest mirrors part II: both
restrictions on frames and restrictions on I-formulas are invoked to obtain elegant partial results.

1.11 Some other issues.

Comparison with first order logic is just one of several directions that an investigation of the
expressiveness of I-formulas may take. Two other directions are explored in part I: the
expressiveness of fragments of I (§4); and a comparison with modal logic (§5).

Van Benthem [1984] names "three pillars of wisdom supporting the edifice of modal logic":
completeness theory, correspondence theory and duality theory. Such pillars may also be thought
to bear intuitionistic logic. The connections between the three, insofar as they are known, are
similar. Duality has been mentioned above, and its relation to correspondence will appear in part
III. The relation between completeness and correspondence is shadowy. Analogously to the modal
case (van Benthem [1984]), it may be shown that the intuitionistic theory of an elementary class of

12
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frames is recursively axiomatizable. The related question: whether every first order definable axiom
set is complete, is open. It is known that incomplete intermediate logics exist (8ehtman [1977]), but
they are much harder to construct than their modal counterparts; in particular, van Benthem's
example settling the above question for the modal case makes essential use of features that
I-formulas lack.

As was remarked before, we shall deal only with intuitionistic propositional logic. Some examples
of correspondence in the realm of predicate logic may be found in van Benthem's Handbook article
[1984].

[Footnotes to §1]

1 Mutatis mutandis, a computing machine would serve as well.

21n itself, the BMK-explanation is independent of temporal considerations, as may be seen by its
formalization as realizability (see Troelstra [1973]).

3 The clauses for quantification are suppressed, since the body of this treatise deals only with
propositional logic.

4 See 1.7, and in particular note 5 below.

5 From an intuitionistic standpoint, the relation between this equivalence and the method by which
it was established is highly problematic. It would be preferable to state more precisely what our
method gives us; it relates refutability of an I-formula in A with the possibility of finding a certain
pattern in A, so we should get a statement on the form

¢ is refutable in A iff AFp,
where 3 would begin with an existential quantifier.

6 1 shall call a class of structures elementary if it is definable by a single first order sentence;
A-elementary if it is an intersection of elementary classes (i.e. definable by a set of first order
sentences); and ZA-elementary if it is a union of A-elementary classes.

This terminology is in accordance with van Benthem [1986] (see ch. VIII). Chang & Keisler
[1973], whose terminology for first order logic I will follow in almost all other respects, have
'basic elementary' for my ‘elementary' and 'elementary' for my 'A-elementary'.

13



§2. Further examples and Kripke model theory.

This section begins with two lemmas elaborating minor points that were glossed over in the
introduction. Next, the relation between the frame classes QO and PO is spelled out. The next
subsection sums up the fundamental validity-preserving operations on frames. 2.5 - 2.10 contain a
series of exemplary I-formulas expressing simple properties of frames. We end with a theorem on
a connection between embeddings and p-morphisms that will be applied in parts II and III.

2.1 In the example treated in §1, in defining a valuation to refute LC, only V(p) and V(q) were
important; the value of V on other proposition letters did not matter. This fact may be stated

generally, and proved by induction over I-formulas:

Proposition: Let A be a frame, ¢e I, and suppose V and V"’ are two valuations on A that agree on
every proposition letter that occurs in ¢. Then V(@) = V(o).

Hence if we only want to evaluate certain formulas in p,......... P> we need only specify

VEQ). V(D)

2.1 Substitution

If 0,90¢,...,0,€ L, py,....,p, € P, then ©[p:=94,.....,p,,:=0,] will denote the result of

Lemma: IfA I ¢, then A I Qo=@ 5P =0 ]

Proof: Suppose A I ¢, and let V be any valuation on A. Define a valuation V' on A by:
Vi@ )=V(p) if p & {py,....ppbs
Vi(p;) = V(o)) for 1<i<n.

Clearly, forally € I, V(W)=V(¥lp:=0y;.....2,:=9,])). In particular, we may take y=¢, and note
that , since A + ¢, V'(¢) = A. 0
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2.3 Quasi-orderings and partial orderings.

A valuation on a frame A is a map into U(A). Consequently, ifa<banda I+ ¢, b I ¢ as well. If
also b < a, a and b force the same I-formulas. Thus, as far as I-formulas are concerned, a and b
might as well be equal; and we are led to expect that the difference between QO and PO is
inessential.

2.3.1 Definition. Let A be a frame, a,be A. If a < b and b < a we write a ~b.

It is easily seen that ~ is an equivalence relation. I shall denote the equivalence class of a point a by

~

a.

2.3.2.Definition. Let A be a frame. The contraction C(A) of A is the quotient A/~, ordered by
asbiffa<, b.

The contraction is a partial ordering, and if A € PO, A = C(A). For X C A, define X := {zxxeX}.
In the description of the predicate languages L, L and L, in 1.6, equality was not mentioned. It
is time now to get precise: these languages do not contain equality. The reason will be made clear in
§6 (6.1). Remember that the set variables of L, are supposed to run over the upwards closed sets.
Thanks to these limitations, the following statement holds:

Proof: induction on a. In particular, if ¥ € X, then y € X for some y ~ x; then y <x, and x eX
since X is upwards closed. 0

We saw in 1.6 that I-formulas, as interpreted in frames, are a special sort of L,-formulas, so this
theorem says in particular that in a frame and its contraction the same I-formulas are valid.

2.4 Validity-preserving operations

Certain well-known constructions of new frames out of given ones have the property that all

I-formulas valid on the given frames are also valid on the new frame. One of these we met in
1.2.6.

15
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2.4.1 Lemma: Let B be a generated subframe of the frame A, and ¢ € L If A I ¢, then also
Blreo.

Proof: Any valuation V on B is also a valuation on A; and (B,V) G (4,V). Hence by lemma 1.2.6,
(B,V,b) If ¢ implies (A,V,b)If¢. It immediately follows that B If @ implies A If @. 0

2.4.2 p-morphisms

p-morphisms may be described as monotonic funtions (homomorphisms) that are locally surjective.
Precisely:

Definition. Let A and B be frames, and /: A - B a function.

(i) fis a homomorphism if it respects the ordering, i.e.
if a<ya’, then fla)<p fla").

(ii) A homomorphism f is a p-morphism if it satisfies the p-morphism condition

Vae AVbeB (fla)<b = 3Ja2a.f(a") =b)

Lemma: If f/A ~B is a surjective p-morphism, then for any ¢ € I, A I ¢ implies B I ¢.

Proof: If (B,V) I @, define for all p € P: V'(p) = f‘l[V(p)]. One shows by induction over
I-formulas y that for alla e A, (A,V',a) F vy iff (B,V f(a)) F ¥ — using the p-morphism
condition in the case of implication. So in particular (4,V")If¢. 0

If there exists a p-morphism of A onto B, we call B a p-morphic image of A. In any case:

Proposition: If A— B is a p-morphism, then f[A] S B.

Proof: F[A] € U(B) by the p-morphism condition. a]

2.4.3. Disjoint unions

In the disjoint union of sets that are quasi-ordered, the orderings may be carried along.

16
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Definition: Let (4; | i € I) be a family of frames. Let for all i, A;" = {i} xA;, ordered by (1,a)S,-
(i,@) iff a <4 a’. Then the disjoint union ¥, A; is the frame U;;A;’, ordered by the union of
the orderings on the frames A;".

Lemma: If oe L, and forallie I, A; F ¢, then X, A; F ¢.

Proof: A valuation refuting ¢ on ¥; A; immediately reduces to a valuation refuting ¢ on some 4; .
O

Example: I mentioned in 1.10 that the Ly-sentence Vxy (x <y v y <x) (=: @) is not I-definable.
This may be shown as follows: o holds in the trivial frame {0} (with 0<0, of course); but not in
the disjoint union {0}+{0}, since the two copies of 0 are not comparable. By the lemma above,
there cannot be an equivalent I-formula.
2.4.4 Preservation
For a class K of frames and an I-formula ¢, we abbreviate VA € K. A I ¢ to K I ¢ (similarly
we get K IF @ with @ C I). Taking generated subframes, p-morphic images or disjoint unions
may be considered as operations on classes of frames:
Definition, Let K be a class of frames. Then

gK is the class of generated subframes of elements of K;

pK is the class of p-morphic images of elements of K;

dK is the class of disjoint unions of families in K.
We can sum up the lemmas above as follows:
Proposition. Let K ba a class of frames, and ¢ € 1. Then

K ¢ implies gK upK udK I ¢.

In words: I-formulas are preserved under generated subframes, p-morphic images and disjoint
unions.

17
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2.5 Example. We call a frame A atomic if for all a,a’ € A, a < a’ implies a’ < a. (The atoms are
the equivalence classes &, that are unrelated in C(A) and cannot be split by I-formulas.)

We identify models for classical propositional logic with valuations on the singleton frame {0} — it
may help to further identify {0} with 1 (truth), and @ with O (falsity). We shall understand
tautology in the sense of classical logic: @ is a tautology iff {0} I ¢. We may write V F ¢ for
({0}, V) I+ ¢, and F ¢ for {0} I+ @.

Claim: an I-formula ¢ is a tautology iff ¢ is valid in all atomic frames.

Proof: the direction from right to left is obvious, since {0} is atomic. Conversely, suppose k @. If
A is atomic, then it can be written as a disjoint union of equivalence classes under ~: A =
Y. (alde C(A)). For each a € A, C(@) = {0}, so C(d@) + ¢. By theorem 2.3.3, @l-¢, hence
Y(8|ae C(A)) - ¢ by lemma 2.4.3, and A I ¢ by the isomorphism.

2.6 Example. A frame A is piecewise directed if whenever a<, b,c, there exists d € A with
b,c <d. We claim (cf. 1.5) that A I KC (= —p v —p) iff A is piecewise directed.

1° Suppose A is not piecewise directed: say a < b,c and there is nod € A with b,c <d. Let
V(p)=[b). Then blf—p ; and for all d >c ,d £ b, hence d W p , and clF—p, so clf~—p. We
conclude that a Iif KC.

2° Suppose A If KC; say (A,V,a) ¥ KC. Then bi-p and cl-—p for some b,c = a. Points d = b,c
cannot exist, since they would force L. So A is not piecewise directed.

2.7 Definition, Let A be a frame.
(i) The quasi-ordering <, determines a strict quasi-ordering <4 , defined by

a<yb iff a<b & bfa.
If a < b, b will be called a strict successor of a.
(ii) X C Aisachain (in A) if Vx,ye X (x<yory<x). X is a strict chainif Vx,ye X (x<y

Orx=yory<=x).
(iii) The height of A is the least upper bound of the cardinalities of strict chains in A.

2.8 Example, A sequence of I-formulas generalizing Peirce's Law can be defined as follows:
let

18
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Po =Dp
Pp1 =@p12P)=Ppi1] 2 Ppir-
(Peirce's Law is P;.)
We claim that A P, iff the height of A is at most n.

Proof, with induction over n: P, is never valid, as it should. Suppose the statement holds for n.
IfAWP, ., say (A,V,a) ifP

e 1o then there must be a2 a with

n+l>
9 L (pn+1 - Pn ) Pni1> 99 I|7‘pn+1.

Then a, ¥ p,,1—P,, so we can find a; 2 a; with a;Ip,, ,, a; I P,. Since V(p,,,,) is upwards
closed, a; > aj. By induction hypothesis, [a,) has a chain a; < ... < a,; with aj<a,, A has height
at least n+2.

Conversely, let ay<a; < ... <a,,,in A. Let V(py),.....,V(p,, ) C [a,) be such that ([a,,V) I

P,; and V(p,, ) = [a)). Then as above, a, If P

n+l*

2.9 Definition. Let A be a frame.

(i) We shall say a and b are comparable (a,b € A) if a <b or b < a; incomparable otherwise.
(ii) An antichain in A is a set of mutually incomparable points.

(iii) The width of A is the least upper bound of the cardinalities of antichains in subframes [a)CA.

We write a<X, for a point a and a set X, as an abbreviation for Vxe X. a < x ; and similarly a <X.
The reason for the introduction of subframes [a) in clause (iii) of the definition above is that
antichains can only be relevant for the evaluation of I-formulas if they have a predecessor.

We shall use the symbol A for iterated conjunction, with the convention that A@=T. Similarly, V
stands for iterated disjunction,and V@= 1.

2.10 Example. Let W, for n € N, be the formula
Vicn (/\(pj | j#iand j<n) — p,).
Note that LC = W ,.

Claim: A W, iff the width of A is at most n. Indeed, if (4,V) If W, there must be a <4 ag,
..... , a, with a; I /\jﬂpj and ag;lfp; : then {ay,......a,} must be an antichain of n+1 elements.
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Conversely, if [a), contains an antichain {q,.....,a,} of n+1 elements, define Von A by V(p)) =
Ujgi [aj); then g; I+ /\jau' pj W p; anda f W,.

2.11 p-retractions.

Within a restricted class of frames, the notions of 2.4 may become easier to handle. We conclude
with two examples of this phenomenon (2.11.2, 2.11.6). They connect certain embeddings with
surjective p-morphisms. We shall use them later on.

2.11.1 Definition, Let A,B be frames. Suppose fis a function from A to B, and g:B—~A is a
p-morphism such that gof = 1, (the identity mapping of A).Then g will ba called a p-retraction
of f. If f: A>B is the canonical embedding of a subframe of B, g may be called a p-retraction of B
onto A, and A a p-retract of B.

2.11.2 Example. Suppose a € A € DLO, and a* > a has no strict successors. Then [a) is a
p-retract of A: define f: A — [a) by f(b) =bif b= a, f(b) =aif b<a, and f(b) = a* if a and b are
incomparable. The main reason why this works is that if b is not comparable with a, it is not
comparable with any successor of a, by downward linearity.

2.11.3 Definition.

(i) Let A be a frame, X C A, anda < X Then a branches into X if, whenever xx’ € X are
incomparable, a < b < xx’implies b < X.

(ii) An (isomorphic) embedding f: A>—B is strong if whenever a € A branches into some set
XCA, f(a) branches into f[X].

The paths through a tree, as defined in §1, have type <w . Therefore:
2.11.4Lemma LetX C A € TR; then X has a greatest lower bound in A.

Some lattice notation will be useful. Suppose a partial ordering A is given. If X C A has a greatest
lower bound, we denote it by AX, and A{a,b} =: anb; VX is the least upper bound, if it exists,
and V{a,b} =: avb. (The symbols are the same as for conjunction and disjunction, but harmful
confusions are not likely.)

A least element of the entire set A we call the root of A. A cover of a point a € X is a strict
successor b such that Vxe A (@a<x<b = b<x).

2.11.5 Lemma. Let A e TR and X C A. If AX branches into X, then for each x € X there is a
unique cover ¢, of AX such that AX<c, <x. If x,x’e X are incomparable, then c #c,..
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Proof: Since AX branches into X, AX < X. As intervals [/AX, x] are always finite, there exists for
each x € X a cover c of AX such that AX < ¢ < x. This c is unique by downward linearity.

Now suppose x,x’e X are incomparable, and c,=c,-. Then since /AX branches into X, ¢, <X. But
this implies ¢, < AX, contradicting that ¢, covers /\X. 0

For a point a in a frame A, let Cov4(a) be the set of all covers of a in A.
2.11.6 Lemma. Suppose A € TR, B € DLO, and f: A>—B is an embedding. Then f is strong iff
(*)VaeA Vc,c'eCovy(a) VbeB (c#c' & fla) <b<flc)fc) = b<f[Covy(a)l).

Proof: (=) Immediate by definition 2.11.4, since a branches into Cov4(a).

(<) Assume (*). Suppose a€ A branches into X; let x,x’€ X, f(x) and f(x") incomparable, with
fla) £b <f(x)fix"). Note that x and x’” must be incomparable, since fis a homomorphism. We are
to show that b < fX].

If b < {/AX), there is nothing to prove. By downward linearity, b £ f{X] implies R AX) < b. So let
us assume that f(AX) < b.

Observe that AX ¢ X: since a < AX <xx’, we hflve AX <X by the definition of branching. In
fact, AX branches into X. For if y,y’ are incomparable elements of X, and AX <a’<y,y’, thena
<a’'<y,y’ (as a< AX), soa’ <X.

Let c,, c, be covers of AX such that AX < ¢, <xand NX < ¢,-<x". By the above lemma, ¢ #c ..
Since f is an embedding, f(c,) and f(c,) are incomparable. Now f(c,),b < f(x); and f(c,), b < f(x");
hence, by downward linearity, b must be comparable with fic,) and f(c ). Since f(c,) £ f(c,)) and
fle,) £f(c,), the only arrangement possible is b < f(c,), f(c,). By (*), b < f[Cov4(/AX)]. Since
NX <X, we conclude that b <f[X]. ]

2.11.7 Lemma: Let A € TR and B € DLO. Suppose f: A >— B is a strong embedding, and be B.
Then every cover of Af~1[[b)] belongs to f-1[[b)].

Proof: Let C be the set of all covers of /Af-1[b) (we drop the outermost brackets); we must prove
that f{C] > b. Observe that /Af-1[b) branches into C.

Since f-1[b) is upwards closed, C C f-1[b) is obvious if Af-1[b) € f-1[b). So suppose Af-1[b)
¢/-1[b). Then there must be incomparable a,a’ € f-1[b), and distinct ¢,c’ € C such that Af-1[b) <
c<aand Afl[b) <c'<a’. We get

ANFIB)) < b < fle), fic) :

for example, b < f(a), so, since also f(c) < f(a),_b <f(c) or f(c) < b by downward linearity — the
second of which would give ¢ <f-1[) since f is an embedding, and a contradiction. Now, since f
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is strong, A \f" 1[b)) branches into f[C]; hence b < f[C], as was to be shown. O

The following theorem generalizes one half of an unpublished theorem of de Jongh. The other half
will appear as lemma 16.4. We write (a], for {a’e A|a’<, a}.

2.11.8 Theorem. Let A € TR, with rootay, and B € DLO; let f: A >> B be a strong embedding.
Suppose

(a) every a € A has a successor that is maximal in A;

(b) for every b e B, f-1(b] is finite.
Then f has a p-retraction.
Proof: Suppose A, B and f are as stated, and satisfy conditions (a) and (b). We are to define a
p-morphism g: B -» A such that gof = 1,. Thus for some points b € B, the value of g is fixed in
advance: if b=f(a), then g(b)=a. This can be generalized to some extent. Let

B, :={be B|fl[b) % B}.
Since g is to be a homomorphism, we must have g(b) < £1[b); and it is not unreasonable to try

(i) if b € By, then g(b) = A\f[b).
Because f-1[f(a)) = [a), this guarantees that gof = 1: gof(a) = /\[a) = a. Moreover, it is obvious that

g is a homomorphism of By,. Here is a diagram sketching some effects of clause (i); note that the
triple branching (of a, into a,, a; and a,) must be preserved by f.

02 as a4 ﬂa ) ﬂa‘j) ﬂ‘|14)
al <

b,

flay)
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For the rest of B, we generalize the trick of the example above. This time a single maximal element
of A might not suffice: it is possible that, though f-1[b) = @, some f(a) precedes b; and then we
must be sure that g(b) 2 a. Fix for every a € A a maximal successor m(a) € A. Since B is

downwards linear and f is an embedding, f-1(b] is linearly ordered; by condition (&) it is finite.
Therefore it has a least upper bound Vf-1(b] (we set V@ = ag). The proper generalization of the
example is

(ii) if b € B - By, then g(b) = m(Vf~1(b]).

Illustration:

It remains to check that g is a p-morphism. There are two parts to this: (I) g is a homomorphism;
(1) g satisfies the p-morphism condition.

L Suppose by <g b,. B is downwards closed: b < b’ € B, implies b € B. Hence for checking
that g is a homomorphism there are three cases, one of which was dealt with above. The cases that

In case (i), g(bg) € f1(by], 50 g(bp) < Vf1(by] < m(Vf (b)) = g(by).

In case (i), since by < b,, we have f1(by] C f-1(b,].Suppose f-1(by] #f1(b;]; letx € £-1(b;] -

f‘l(bO]. Then both f(x) < b, and by < by, so by downward linearity f(x) < by — contradicting x ¢
f1(bgl — or by < fix), contradicting by & By. Sof1(by] =f-1(b;], whence g(by) = g(b,).

II. Suppose g(b) < a. We must find a successor b’ of b (which may be b itself) with g(b") = a. If

be B, then g(b) is maximal in A, so g(b) = a. If b € B, then by 2.11.7, every cover, hence every
strict successor, of g(b) belongs to f-1[b). So if 8(b) # a, still f(a) 2 b, and g(f(a)) = a. ]
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2.11.9(a) Example, The necessity of condition (b) is easily demonstrated. Let A = N U ({0} x N),
with <, extending the natural ordering on N by

n<, (0,k) iff n<gk;

Let oo be a new point; B = A U {eo}, with the ordering of A extended by > > N.

>
4
l' 4

s 4

e ’ e
4 /
0,1
0,0) A B
/ 2
0

Then the canonical embedding A < B is strong, and condition (a) is satisfied; but it is easily
checked that A is not a p-morphic image of B.

2.11.9(b) Remark, By II of the proof of the above theorem, g(b) <4 a implies g(b) = a or b <gf(a).
Since f(a) 2 b implies a = gf(a) > g(b), the p-retraction g constructed in that proof has the property
that

{g(®)} L [B)g] = [g(B)),-

2.11.10 Corollary. If (i) A € FTR and B € DLO;
or (ii) A,B € TR, and every a € A has a successor that is maximal in A;
then every strong embedding of A into B has a p-retraction.

Proof, In either case it is immediate that condition (a) of the theorem is satisfied. Condition (b)
holds in case (i) because A is finite, and in case (ii) because (] is finite. ]
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2.11.11 Definition, A tree A is binary if every point in A has at most 2 covers. More general, A is
n-ary (n € N) if every point of A has at most n covers.

2.11.12 Corollary, If A and B satisfy either (i) or (ii) of corollary 2.11.10, and A is binary, then
every embedding of A into B has a p-retraction.

Proof: Every embedding of a binary tree is strong. O
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§3. Refutation patterns

The examples we have met so far were meant to suggest the following picture: there is a certain
well-defined procedure, 'making semantic tableaux', that gives for each I-formula ¢ a finite
refutation pattern — or possibly a finite number of such patterns — with the property that @ is
refutable in a frame A if and only if A exhibits, in some sense, one of these patterns. Several parts
of this picture are still rather vague. This section will fill in the details: it contains a formal definition
of semantic tableaux; and a precise description of the relation between tableaux and the frames in
which the formula they treat is not valid, through the intermediary of multiple tableaux.

3.1 Signed formulas and sequents.

A signed formula is a pair (§,p) with ¢ € I and £ one of the letters T,F. We always write T, Fo
instead of (T,), (F,9). A finite set of signed formulas we call a sequent.

We use 0,1 as variables over signed formulas. Of a point a in a given model, we say a realizes T¢
(notation a I To) if a I @; a realizes Fo (a - Fo) if a I . A sequent X is realized in a (a IFX) if
forallo e Z,alto.

If T is a sequent, then =T = {To | T € X} and Zr={9|To € Z} ('T dropped’). Similarly we
have ZF and I

3.2 Definition, A sequent X is full if for all ¢,y € I,

) T(oay)e Z= To, Ty e I, F(pay) e £ = Fope ZorFye I
(i) T(pvy) e £ = Toe ZorTy e Z; F(pvy) € £ = Fo,Fy e Z;
(iii)) T(p>y) e X = Fpe ZorTy e Z;F(poy)e £ = Fye X

3.3 Semantic tableaux.

Informally, a semantic tableau was defined as a set of sequents, together with information on the
causal relations between them. Formally, we shall use a mapping S from the set X of the sequents
that make up the tableau, to the power set P(X); S(x) may be read as 'the set of immediate

successors of x', or 'the sequents caused by x'.

Definition. A (semantic) tableau is a pair X = (X,S) of a finite set X of full sequents and a map
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S: X - P(X) such that forall xe X

(@) if y € S(x), then xT C yT;

(ii) if F(p—) € x, then either T € x or S(x) contains a sequent y such that either
To, Fy € y or F(¢—V) € y and yT #xT.

A tableau as defined here is the finished product of a tableau construction as described in 1.8. The
elements of S(x) represent the forcing behaviour of the nearest different successors of a point with
behaviour x. Observe that since X is finite, and yT in clause (ii) properly extends xT, F(p—V) € x
implies there are xy=x, xy, ..., x, (n20) with x; ; € S(x;) (i<n) and T, Fy € x,,.

We call a tableau X = (X,S) open if no x € X contains T, or, for some ¢ € I, both Ty and Feo,
otherwise X closes, or is closed. X is strict if for all x € X,y € S(x) implies xT # yT.

3.4 Examples. Tableau constructions serve to find refutation patterns for I-formulas. Suppose one
wants to refute ¢: then it seems reasonable to consider only subformulas of ¢, since these are the
only formulas relevant to the evaluation of ¢. Indeed, the sensible approach will be to start with a
sequent {F¢}, and construct from it, step by step, a tableau that contains only what the rules
(embodied in definitions 3.2 and 3.3) require.

(a) The search for an open tableau of F(KC) runs as follows. Start with F(KC) (= F(—p v ——p)),
and expand this as far as possible using the rules of definition 3.2: add F—p, F—p and FL. Now
definition 3.3 must be used, and there are several options; let us try them all. First attempt: simply
add Tp. For F—~—p, let us do the same: add T—p. Now we must add either Fp or T, both of
which make the tableau close. There were, however, other possibilities, which should be traced -
but first let us write down what we have done in a concise way. We have expanded a sequent,
adding signed formulas:

F(KC), F—p, Fm—p, FL

and then we (repeatedly) chose one option out of several, and to help ourselves remember that there
were other options, we mark the signed formulas involved:

ey TP, Tp?

Let us signify closure by underlining the last signed formula added:

Now we work back from right to left, taking the other alternative each time we meet a choice.
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We conclude that the choice of T—p leads to closure. The alternative is to start a new sequent.

F(KC), F—p, F=—p, F1, Tp?

Tp, T—p,F1

Now, this will lead to closure, as before. Given the choice of Tp, this development is unavoidable,
so we should have

| F(KC), F-p, F~—p, F1

Now we could again try T—p in the root sequent; but it would be handed on to the successor, and
lead to closure. Likewise it does not make sense to try T—p in the successor sequent. So we end up
with

F(KC), F-p, F~—p,F1
| L]

‘Tp,FJ_ T-p ,FL,Fp

This is an open tableau, and with the observation that the successor sequents cannot have a
common successor (Tp and T—p give TL1), it gives off the refutation pattern of example 2.6.

We shall save a little on notation by leaving out signed formulas whose presence can be easily
inferred, and that do not give rise to new steps in the construction. For example, with F—p and
F——p present, there was no need to repeat F(KC); and writing FL does not make sense ever.

(b) Recall that Py = ((p; = pp) = p;) = py, and Py = ((py & Py) = py) = p,. In constructing an
economical open tableau for {FP,}, FP, reduces immediately to

T((py = Py) = py), Fp,
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(We could have started with a separate sequent {FP,}; but then we would have continued with this
one anyway.) Next, it is easy to choose between F(p, — P;) and Tp,: we get

(1) T((py = Py) = py), Fpy, F(py > Py)
This must lead to a successor:

M

.

Tp,, FP,

FP, is attacked in the same way, resulting in

0y

v

P2, T(pry—Py), Fpp, FlopRy

which is the pattern established by 2.8. (It is not necessary to repeat Tp, in the last sequent: it is
inherited by a general rule.)

(c) The formula

(p-op)>pv—P)>—PpVv—-p

is known as Scott's Axiom; we shall refer to it as SC. A tableau for {F(SC)} may look as follows:

LT((—'-' p—p)—pv—p), F-p,F-—p, Fe—pop) |

[T—ﬂ—ap, Fp, F—lp |
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If we had required, in (ii) of definition 3.3, that some sequent in S(x) contain {T¢, Fy}, the root
of this tableau should have had three successors: {Tp}, besides what it already has; whereas two is
clearly enough to represent a model in which SC is not valid.

(d) There need not be a single ‘smallest’ open tableau. A very simple example would be KC A P,,
which leads to both the tableau in (a) and the one in (b).

3.5 Models from tableaux.

Some formal details apart, an open tableau is a model of the sort that the tableau construction was to
help us find.

Definition, Let X = (X,S) be an open tableau.

(i) <y is the reflexive and transitive closure of the relation {(x,y) | y € S(x)}. We shall consider X
as a frame, with quasi-ordering <x.

(ii) The model induced by X is the pair (X,V) with V(p) = {xe X |Tp € x},forallp e P.

It is easy to see that the induced 'model' is indeed a model; in particular, each V(p) is upwards
closed by clause (i) of definition 3.3. If X is strict, then <x is a partial ordering.

Proposition, Let X =(X,S) be an open semantic tableau. Then in the model induced by X, every
point realizes itself.

Proof, Induction on the complexity of & will show that ¢ € x implies x I ©. Since X is open, TL
¢ x; Fp e x implies Tp ¢ x, so x Iff p.

The induction steps are straightforward, except for implication. There T(¢ — y) € x implies, for
all y 2x, T(¢ — y) € y; now y I ¢ gives Fo ¢ y by induction hypothesis, hence Ty € y by
fullness, and y I y by induction hypothesis; so x IF ¢ — . On the other hand, F(¢ — y) € x
gives y 2 x with T, Fy € y, or y > x with F(¢ — ) € y, by 3.3(ii). Since X is finite, we must
end up with T, Fy € y 2 x, so, by the induction hypothesis, x If ¢ — y. O

Thus, our induced models are a pocket version of the standard Henkin models (cf. Aczel,
Thomason [1968]). They are alike both in what they are made of (syntactic matter) and in their
original purpose: to obtain counterexamples to formulas that are not deducible in some given
calculus. The differences are in constructivity and size. Tableau constructions can be finished,
whereas Henkin models are infinite; the ordering in a Henkin model would be defined globally, in a
tableau successors are tailored to local needs. Finiteness and some freedom in the ordering will
appear necessary for such purposes as establishing connections with first order logic.
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In the meantime, it has not been stated how small the tableaux we deal with may be taken.

3.6.1 Definition, Let X be a sequent. The set of signed subformulas of Z (notation: Sf(Z)) is
the smallest sequent ' D X such that

(a) for £ € {T,F}, &, oay) € T or (€, ovy) € X' implies (§,9) € Z' and (E,y) € X'

L) T(e->yYeX = Fp,Tye X, Flp o y)e X = To,Fye X

3.6.2 Definition, If X = (X,S) is a tableau, X is contained in some element of X, and UX C Sf(Z),
we call X a Z-tableau. A refutation of ¢ is an open {Fo}-tableau.

3.7 1t is easy to see that for any X, there are only finitely many Z-tableaux. Many of these will
contain sequents and connections that are not necessary. We shall define the minimal tableaux as
the tableaux without frills.

3.7.1 Definition. Let X = (X,S) and X' = (X’,S") be tableaux. X is a subtableau of X' if either X
# X’ and there exists an injection f: X >— X’ such that for all x € X, x C f(x) and Vy € S(x).
f0) 2% fix); or X =X"and Vx e X . S(x) C S'(x).

A subtableau of a closed tableau may close no longer; but a subtableau of an open tableau is open,
and this is what matters.

3.7.2 Definition. Let Z be a sequent. A minimal Z-tableau is a Z-tableau no proper subtableau of
which is a Z-tableau. A minimal refutation of ¢ is a minimal open {F@}-tableau.

A X-tableau is a finite constellation of finite sets, so it is clear that every Z-tableau has minimal
Z-subtableaux. Minimality has a few simple consequences, illustrated in the examples above.

3.7.3 Proposition. If X-= (X,S) is a minimal X-tableau, then
(i) Exactly one element Xo € X contains Z; x; is the root of (X, <x)-

(ii) For every x € X — {x,}, there exist y € X and F(¢ — ) € y such that x € S(y), Fy € x, and
To € x —y.
(iii) X is strict.

3.8 What is the connection between a frame in which ¢ is refutable and the — preferably minimal —
refutations of ¢? For the examples of §2, the following simple solution works:
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A I @ iff the induced frame of some minimal refutation of ¢ can be embedded into
A - provided certain sequents are mapped to points ay, ..., @, such that
[ap)n..Nla,)=9.

The proviso would be needed for {T—p, Fp} and {Tp} in 3.4(a). — This is a useful approach (cf.
§7), but it does not work in general.

Example. Recall the formula SP, of 1.9: with ¢ for p A g, Y:= p A —q, and X:= —p A g, it reads
EOVYVY2OVY VY DOV YV Y.

Its minimal refutation is, in a diagram omitting matters of course:

T(=ev-yv—x—=ovyvy ), F—@ F-y F= )

[Tp, T-q,Fq | [ T5Fp, Tq |

The induced frame can be embedded in a binary tree C of five nodes a < a,, a,, b, by, with a; <
az,bl:

NS
N

Take any valuation V on C, and suppose (C,V) If SP,. Since ¢, y and  are mutually exclusive,
a must realize the bottom sequent of the tableau, with ¢,  and ¥ each true in one top node. Say a,
I ¢ and by Fy. Then a; F —); sincea; k=@ v-yv X >0vyvyalkovyvy.
Whichever of @, y and  a; picks must hold in both a, and b;: an impossibility.

It may be part of a refutation pattern that there are no points in certain positions. Here a; causes
trouble, and we might think that such points do not occur in frames in which SP, is not valid. This
would be a mistake, however. Consider the frame A of example 2.11.7 (on the next page):
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0,2)
©,1)

1/ 0,0)
N,

Define: V(p) = {0} x {3n,3n+1 | ne N}; V(q) = {0} x {3n,3n+2| n e N}. Then (4,V) I/ SPZ‘

'Intermediate’ points such as a; cannot simply be forbidden; they must be taken into consideration.
This suggests that the general link between frames and tableaux is not to be thought of as
embedding (tableaux into frames), but projection of frames onto tableaux. Indeed, the induced
frame of the refutation of SP, is a p-morphic image of A. In general, however, p-morphism cannot
be the right kind of projection: there are frames without finite p-morphic images (cf. Jankov
[1968], in view of the duality explained in part III below).

We avoid this problem by generalizing the notion of tableau. The difficulty may be viewed as
follows: we want to identify points that realize the same subset of some finite set of signed
formulas, to guarantee a finite image. There may thus be several points realizing the same sequent x
containing, say, some formula F(p — g A r). In some points, F(p — g A r) may be dealt with by a
successor containing Fg; in others, by a successor containing Fr. In the image of the projection,
this comes down to the existence of two kinds of successors for x. They should not be thrown into
one successor set, for then the image would contain a pattern not to be found in the original.

3.9 Multitableaux.

3.9.1 Definition, A multiple tableau (short: multitableau) is a pair (X,®) of a finite set X of
full sequents and a function &: X — P(P(X))—{@} such that

()ifye S e $(x), then xT C yT;

(ii) if F(¢ — ) € x, then either T € x or every S € &(x) contains a sequent y such that either
To,Fy e yor F(¢ = y) € yand xT #yT.

The old 'simple' tableaux will be regarded as multitableaux in which every collection &(x) is a
singleton: $(x) = {S(x)}.

Tableau terminology will be extended to multitableaux. Some extensions are entirely
straightforward (open, Z-multitableau, multirefutation). The canonical ordering <, for X-=
(X,$), is the reflexive and transitive closure of {(x,y) |y € US(x)}. Xis strictif ye Se H)
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implies xT # yT. Minimality will be discussed indirectly in §7 (labeled frames).
A few more words on the relation between simple tableaux and multitableaux may be helpful.

3.9.2 Definition. By a component of a multitableau X = (X,8) I shall understand a tableau X' =
X’,S") such that X' C X, and

(i) the minimal elements of (X',<y.) are minimal elements of (X,<x);

(ii) for every x € X', S'(x) € &(x).

3.9.3 Definition, The union of a finite family (X; | i € I) of multitableaux (X; = (X;,$))) is the
multitableau X = (X,8) with X = U; ., X; and B(x) = B (x) | x € X)).

One easily checks that X indeed conforms to definition 3.9.1.
The relation between simple tableaux and multitableaux can now be stated as follows:

3.9.4 Proposition, Any multitableau is the union of its components.

3.9.5 Example, Multitableaux have practical use as a notation for alternative refutations of complex
formulas. For instance, two open tableaux for

{F(l(p3 A (=p4 vV —~—p4 = Ps) A (Py = pg) = ps A pg) = p3]l = p3)}

are represented in

TN (P ——P4— P 5) AByP)>PsnP )P, EP;,

F @A (Pgv—=P4—P 5) A BB )-PAPg ), EPs

? ?

'IP3, T(—qh\’—v—'p‘t—w, T(Pz—)!h), B’6 pr T("P4v—l—\12|,—¥75 ) T(Pz_)p6)’
(continue as in 3.4(b)) (continue as in 3.4(a))

(The alternative successor sets - singletons - of the root sequent are signalled by the different labels
of the arrows issuing there.)

3.10 Projections.

34



§3. REFUTATION PATTERNS.

Definition, Let A be a frame; X = (X,$) a multitableau. A surjectionf: A —» X is a projection of
A onto X if

(i) f is a homomorphism, in the sense that a <4 a’ implies f(a) <x f(a");

(ii) for every x € X, there exists for every a € fYx}an S e $(x) such that S C fla).

Projections generalize p-morphisms:

Proposition, Let A be a frame; X = (X,S) a simple tableau. Then f: A —» X is a projection iff f: A
-» (X,<g) is a p-morphism.

Proof,

(=) Letf: A - X be a projection; we must check the p-morphism condition.

Suppose x € S(f(a)). Since a € f1{f(a)}, we have S(f(a)) C fla) by the definition. That is to say:
for some a’2 a, f(a’) = x. Now if x 2y f(a), there must be a sequence f(a) = xg, Xy, ..., X, =x (n
2 0) with x; ; € S(x;). Accordingly we find a = ayy, ..., a, with f(a;) = x; (in particular f(a,) = x)
and g; ; 2 a;. By transitivity of <, a, 2 a.

(<) Let f: A » X be a p-morphism; again, there is only one condition to check. Suppose x €
S(f(a)). Then x 2 f(a), so by the p-morphism condition there exists b > a with f(b) = x. It follows

that S(f(a)) C fla). 0

3.11 Definition, Let & be a model, and ¢ an I-formula. Then O‘Pg is the function which assigns to
each point a of ¥ the sequent @,Pg(a) :={c € Sf{Fo} | (&,a) } o}.

3.12 Theorem, Let A be a frame, and ¢ € I. Then A If ¢ iff A can be projected onto a
multirefutation of ¢.

Proof. Suppose (4,V) If ¢; let © = G(P(A'V). It is easy to see that each ©(a) is a full sequent. Let X
={O(a) | a € A}. Define & by

&(x) = {O[a) | ae O {x}}.

Then (a) (X,$) (=: X) is an {Fe}-multitableau, and (b) © projects A onto X.
Both these facts are direct consequences of the definitions:
(a) (i) Suppose y € S € $(x); say y = O(b), x = ©(a). We may assume by the definition of & that
a <b, whence xT C yT is immediate.
(i) If F(y—Y) € ©(a), and Ty ¢ O(a), then a If y—Y, a If y, and b Iy, b I x for some b
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> a. Then by the definition of ®, Ty, Fx € ©(b); and O(b) € O[a) € $(O(a)).
(b) (i) © is a homomorphism since a < b implies O(b) € O[a) € H(O(a)).

(ii) Trivially ©[a) C ©[a). '
For the converse, letf: A —» X be a projection; define a valuation V on A by V(p) = {a | Tp € f(a)}.
We claim that for each a € A, a I f(a); hence A If ¢.
That a I f(a) is established by showing inductively that ¢ € f(a) implies a I+ 6. The case of
implication is as follows:
If T(y—x) € fla), a<a’ Iy, then, since f is a homomorphism, fla) <x f(a"), so T(y—Y) e
fla"). Then Fy e f(a") (otherwise a’ If y by induction hypothesis); so Tx € f(a") by fullness. By
induction hypothesis, a’ I . We conclude that a IF y—.
If F(y—Y) € f(a), then either Ty € fla), or to every S € &(f(a)) belongs some x containing
F(y—y) with xT #f(a)T, or some x containing Ty, Fx. In the first case, a I y and a If x by
induction hypothesis (using fullness), so a Iif y—. In the first subcase of the second case, take
So € $(f(a) such that S, C fla). We find a’ > a with F(y—Y) € fla) € S, and f(a)T # f(a)T.
Since X is finite, this can only be repeated finitely often; then we must have found a” 2 a with Ty,
Fx € fla"). Then as before, a” If y—, and a If y— since V(y—) is upwards closed.

3.13 Remark. Since multiple tableaux are unions of simple components (3.9.4), we find,
combining proposition 3.5 and theorem 3.12, that an I-formula ¢ is valid in every frame iff every
{Fop}-tableau closes. Because the set of all (minimal) {F¢}-tableaux can be effectively constructed,
we can decide whether an I-formula is universally valid. By 3.5 again, intuitionistic propositional
logic has the finite model property: if @ is not universally valid, it is not valid in some finite model.
Indeed, since (3.7) every refutation contains a minimal refutation, which is strict, and thus (3.5)
gives rise to a partially ordered frame, we may state the finite model property in the form

+ ¢ iff FPO I ¢.

(It is well known that FPO may even be replaced by FTR; see Smorynski [1973] or Gabbay
[1981]. Actually, the proof of this fact will surface in §17.)
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It is well known that in intuitionistic logic the connectives A, v, — and L are not interdefinable.
For an I-formula ¢, let Mod(¢) be the class of all models in which ¢ is valid. Then
non-interdefinability may be expressed in terms of the interpretation in Kripke models by
statements such as : there exist I-formulas ¢ such that for no I-formula Wy not containing A,
Mod(¢)=Mod(y).

Validity in frames does not have the same connection with intuitionistic logic. We shall investigate
in this section to what extent connectives can be dropped without loss of expressive force with
regard to frames. (A reduction of the sort we are seeking exists in modal logic: in van Benthem
[1986] (Cor. 2.9) it is shown that for each modal formula  there exists a modal formula {* with
— and ¢ as its logical constants, such that for all modal frames A-(A,R):VacA (%h:C[a] iff

HLx [a]).)

4.1 Definition. Let c¢;,...,c, be a sequence of connectives (not necessarily primitive); then
I[cy,....¢,] (the {cy,...,.c,}-fragment) is the set of all I-formulas that can be built from P using
only ¢y,...,Cpp.

4.2 Definition. (i) Let ¢ be an I-formula; then Fr(¢) is the class of all frames on which @ is valid.
(ii) I-formulas ¢ and y are equivalent (notation: =) if Fr(¢)=Fr(y).

These notions may be relativized to any class K of frames; Fry (¢), then , is Fr(¢)nK, and =gy
if Frg(9)=Frg (y).

As usual, we abbreviate (o Y)A(Y— @) to pe>y. We call @ and y logically equivalent if
ey (equivalently, by completeness: @<V is universally valid). Note that logical equivalence
implies equivalence on frames.

We shall drop some parentheses in iterated implications, assuming association to the right: so
Py = ¢ (YY)
4.3 The elimination of conjunction.

4.3.1 Lemma. For each ¢e I, there are @1ees @, € I[>,v, 1] such that *“P‘_)/\lsiSn(Pi-
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Proof: Move out conjunctions, using the logical equivalence of Wy Ay, Y5 to YW, —VYs,
Y1 W AY3 1o (W1 2W) AW —V3), (W1 AYR) VY3 to (W V3) AW, VY3), and Yy V(W) AY3) to
(W1 VW) AW VY3). 0

4.3.2 Lemma. Let ¢ be an I-formula. If the proposition letter p does not occur in @, then
9=(¢—p)—p.

Proof: Since F¢—(¢—p)—p, AlF@ implies Al-(p—p)—p. For the converse, substitute ¢ for p in
(9—p)—p. 0

Now conjunction can be eliminated by a trick in which the adept will recognize the definition of
conjunction in second order propositional logic (Prawitz [1965]).

4.3.3 Theorem. Every I-formula is equivalent to a formula of the {v,—, 1 }-fragment.

Proof: Suppose @el. By the first lemma, there are ¢y,...,9,€1[v,—,1] such that l—(p(—)/\lg-s"(pi.
Take a new proposition letter p. By the second lemma, /Ag; is equivalent to ( A@;—p)—p; the latter
formula is logically equivalent to (¢;—...—¢,—p)—p € I[v,—,1]. 0

Note that the proof gives equivalents in I[—,1] for formulas of the {A,—, 1 }-fragment. We go on
to show that conjunction is the only connective that can be dispensed with.

4.4 Example. We saw in example 3.8 a frame C in which SP, is valid. In the subframe
C'={a0,a2,b0,b1}, Sp, is not valid: C' is isomorphic to the induced frame of the minimal refutation
of SP2. It will be shown in §17 below that I[A,—,1]-formulas are preserved in passing from C to
C' (C'is a directed subframe of C, and I[A,—,1]-formulas are transparent); hence SP, is not
equivalent to an I[A,—,1]-formula.

4.5 Lemma. Let A, A be frames; A=AjU{a*}, and Ag<a*. Suppose @el[A,v,—], V,isa
valuation on A such that (4,,V() Iife, and V is defined by V(p)=Vy(p)w{a*}, for all pe P. Then
ANite.

Proof: By induction over vy, (4,V,a*)ky for all yeI[A,v,—]. Using this and induction over
yeI[A,v,—], one proves that for all ae Ay, (AV,a)ry iff AgVoa)hy. 0

The lemma implies that if some @eI[A,v,—] is not valid in a frame A, it remains not valid if we
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add to A a new top element a*. Now KC is valid in frames with a top element, by 2.6. So if it were
equivalent to a formula without L, it would be universally valid ; quod non. So KC # ¢ for all
ellr,v,>].

4.6 Recall the notion of height, defined in 2.7.

Lemma. The height of the induced frame of a minimal refutation of an I[A,v,—]-formula is at
most 2.

Proof: Let X =(X,S) be a minimal refutation of @eI[A,v,—] . It suffices, by definition 3.5, to
show that if ye S(x) for some xe X, then S(y) =@.

Suppose there are x and z such that ye S(x) and ze S(y). Whenever x contains a signed formula of
form F(y—Y), we have x=1, since xCSf(F¢). By 3.7.3 (ii), FLle y and Flez Moreover,
yTCzT. Now let X'=X~{y}, and for xe X',

S'(x)=(Sx)US»))-{y} if ye S(x),
=S(x) otherwise.

Then (X',S") is still a refutation of ¢, contradicting minimality. For by 3.7.3, Fo¢y, so some
xe X' contains F@; and if S'(x)#S(x), and F~ye x, then Tyey implies that Ty belongs to all

successors of y; while if Tye y, some ze S(y) contains either {Ty,F1} or F—y. 0

If an I-formula ¢ is not universally valid, it has a refutation (3.13), which may be taken minimal
(3.7); @ is not valid in the induced frame of this refutation (3.5). So:

Corollary. If an I A, v,—]-formula is valid in all frames of height at most 2, it is universally valid.
Now by 2.8, P, is valid in all frames of height at most 2, but not universally valid. So P, is not
equivalent to an If A, v,—]- formula.

4.7 Downwards linear orderings.

The argument of 4.5 fails if we consider only downwards linear frames. In fact, for equivalence
on DLO, 1 can be eliminated; as will appear presently.

4.7.1 Definition. Let pe P. For @el, we define ¢PeI[A,v,—] inductively:
(i) gP=qVp, for all ge P; LP=p.
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(i) (WAxP=yPrxP.
(iii) (yvO)P=yP vyP.
(iv) (WoP=yP-xP.

This definition is a version of the translation to minimal logic in Prawitz & Malmnis [1968]. One
easily proves by induction on the complexity of ¢ :

4.7.2 Lemma: Suppose ¢el. Then
(1) Fpo¢?
(ii) if p does not occur in @, then F@P[p:=L]-@.

Now consider a minimal refutation X=(X,S) of ¢—p. No xe X contains Tp: the one sequent
(3.7.3) containing F(¢P—p) contains Fp, and again by proposition 3.7.3, any other xe X contains
some FyPe Sf(T¢P), hence (since kp—yP , whence {Tp,FyP} is not realizable) Tpe x. Therefore
substituting L for p in a minimal refutation of ¢P—p gives a (minimal, even) refutation of
@P[p:=L]—1. By (ii) of the lemma, if p does not occur in @, this shows —¢ is not universally
valid. Thus:

4.7.3 Lemma. Suppose ¢ is an I-formula in which p does not occur. Then +—¢ implies FpP—p.
4.7.4 Lemma (Glivenko): If —¢ is a tautology, then —¢ is universally valid.

Proof: Suppose F—¢ and A€ FPO; let V be a valuation on A. By example 2.5, —¢ is forced in
every top element of A. Since V(¢) is upwards closed, no element of A forces ¢, hence
(A,V)IF=¢. So FPO I—@; by the finite model property (3.13), F—®. 0
Corollary. Let @ be a finite set of I-formulas. If f—~/A®, then ® is classically satisfiable.

Proof: If @ is not classically satisfiable, we have F—/A®; then by Glivenko's theorem, F—~A®.0O

If @ is a set of I-formulas, and pe P, ®P={@P|pe ®}. Observe that (ADP=ADP,

4.7.5 Lemma. Suppose @€, and p does not occur in ¢. If Ae DLO is rooted, and (A,V) i ¢P,
then there is a valuation VP on A such that (4,VP)ifo.

Proof: let A,V,¢ and p be as stated, and a the root of A. Then aylfp, since Fp—@P (by (i) of

4.7.2).
Let @ be the set of all subformulas of ¢. For every ae V(p), define
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D ,:={ye ®[3a'<a(a'lfp and a'lFyP)}.

Since @ is finite and (a]-V(p) nonempty and linearly ordered, there exists a'<a forcing @ . Hence
F=A®,; for otherwise - A® P—p by lemma 4.7.3, implying a'l-p.

By corollary 4.7.4, @ is classically satisfiable. Fix for each @, (not for each a! ) a model V F®,.
Now we define VP on ®P:

VP(@)=(V(g)-V(p))H{ac V(p)IV Fq}.

We shall abbreviate (A,VP,a)lFy to al-Py, and continue to use 'al-y' for (4,V,a)ly.

Note that if ae V(p) and ye @, al-Py iff V Fy. We now establish the lemma by showing
inductively that for all ye ®, for all ae A-V(p), alFPy iff al-y?: for, since aylfp and aylif@P, we
shall have a,iP¢.

Most steps are simple; e.g. alf LP by a¢ V(p), and for the same reason al-qvp implies al-Pq. We
check the case of implication. Let Y=y —y,.

Suppose al-Py, asbi-y P. If bip, then, by Fp—y,P, bikyP. If bifp, by induction hypothesis
bIFPy,; so bIFPy,, and by induction hypothesis biFy,P. So al-yP.

For the converse, suppose al-yP, a<bI-Py . If blfp, use the induction hypothesis. If bI-p, then
ye @, since a<h, alfp and alkyP. Since bIHPy, y,, we have V Ry, vy, so V Fy,, and bi-Py,.
Thus al-Py. O

4.7.6 Theorem. For every @€, there exists ye I[v,—] such that o=p; V.
Proof: Take xeI[v,—,l] equivalent to @, by 4.3.3. Since for Ae DLO, Alfy iff [a) 4y for
some a€ A iff , by the lemma, [a),WxP for some pe P and ae A (p not occurring in ), iff AlfxP,

XEDLOXP; so take \lf=xp n]

From 4.6 and 4.4, it is clear that further reductions are not possible on DLO.

4.8 Linear orderings

On LO, disjunction can be dropped by a 'logical' equivalence:
LOHevy)o(@-y)-VAIy—0)-0e].

From a given I-formula, one may successively eliminate L (by 4.7), v (by the above equivalence )

and A (by 4.3). Consequently
Theorem: On LO, every I-formula is equivalent to a formula of I[—].
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§5. Modal logic

As was noted in the introduction, modal logic allows a greater freedom of interpretation than
intuitionistic logic. In general, a modal frame consists of a set A and a relation R on A — R need

not be reflexive or transitive; and the sets in the range of a valuation need not be upwards closed in
any sense. However, in comparing modal logic with intuitionistic logic as languages for talking
about frames, restrictions on frames must be taken for granted; otherwise intuitionistic formulas
could not be interpreted in the usual way. So in this section, as always, frames will be
quasi-ordered sets. The restriction on valuations, on the other hand, can be limited to the
interpretation of intuitionistic formulas. We shall say of an I-formula that it is valid in a frame A if it
is valid under all valuations that are appropriate for intuitionistic logic (just as we have done thus
far), and of a modal formula if it holds everywhere in A under all valuations that are allowed for
modal logic.

5.1 The language M of propositional modal logic has the same proposition letters as I, a binary
connective — (implication), a unary operator O (necessity), and a nullary connective L. Formulas
are built as usual. We also denote by M the set of all M-formulas; , n, 6, §, §;,... serve as
variables over M-formulas. Other connectives are defined from — and L in the classical manner.
The possibility operator ¢ is defined by 0{:=—0-C.

5.2 Definition. If A is a frame, and XCA, we let [X) 4= U, x[x)4 ( the upward closure of X in
A).

For a simple example, we have [{x})=[x).

5.3 Let A be a frame. A modal valuation (short: M-valuation) on A is a mapping V:P-P(4). A
modal model (short: M-model) is a pair &=(A,V) of a frame A and a modal valuation V on A. A
valuation V is extended inductively to a map of M by

V(L)=9;
V(-n)=(A-V()uv(m);
V(0Q)=[V(©)).

Note that the interpretation of — differs from the interpretation for I. There is no I-connective
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corresponding to this ‘classical’ implication.

5.4 Parallel to the forcing notation of 1.2.5, we may write ae V() as (&,a)F{; next, the parameters
V and a may be abstracted from as in 1.5. Clearly, many notions defined for I can be carried over
or extended to M. Thus, for a modal formula £, Fr({) is the class of all frames in which { is valid.

5.5 As before, we have a notion of equivalence on frames: N={ if Fr(n)= Fr({). We want to
discuss equivalence between I-formulas and M-formulas. ¢={ is defined as Fr(¢)=Fr({). Note
that on the modal side, more valuations are taken into account than on the intuitionistic side.
Generally, in speaking of equivalence between formulas of different languages, we shall assume
each formula is interpreted in the way proper to its language.

Now we shall consider how the expressive power of M with regard to models and frames
compares with that of I.

5.6 In the direction from I to M, translations have been known since Godel's paper [1932].
Define M: I->M by

M(p)=0p ; M(1)=1;
M(pAy)=M()r M(¥); M (¢vy)= M(9) v M(y);
M(p—V) = 0 (M(9)->M(V)).

Then if el and (4,V) is a model, al-@ iff aEM(@), for all ae A. As to frames: since I-valuations
are special M-valuations, it is immediate that (A,a)FM(¢) implies (4,a)+¢. For the converse,
suppose (A,V,a) ¥M(p), where V is some modal valuation. Define V' byV'(p) = V(Op) (for all
peP); then V" is an [-valuation, and it is easily seen that (4,V',a) Ifo.

Remark: Modal notation is an alternative to signed formulas: if & is a model for I, and a a point in
&, then (&,a)I-Fo is equivalent to (H,a)-—M(o).

5.7 In the converse direction, not every M-formula has an equivalent in L.

Example. AF00p—Q0p iff every point in A has a maximal successor (van Benthem [1984],
example 2.2.16; note that we assume frames are transitive). This implies that 00p—00p , though

not universally valid, is valid in all finite frames; something no I-formula can match, by the finite
model property (3.13).
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We shall not answer the general question which M-formulas are equivalent, on frames, to
I-formulas. One should compare the characterization of I-definable classes of frames (in part III)
with that of M-definable classes (Goldblatt and Thomason [1974]; cf. van Benthem [1986]). It
may not be easy to derive an interesting necessary and sufficient criterion. A candidate is the finite
submodel property:

if BH¥C, then IBYC for some finite B H.

If { is of form M(9), it has this property (Smoryniski [1973]; cf. §7).

Instead, we shall give a characterization for equivalence on modal models, and derive from this a
sufficient criterion for frames. The M-translation above produces formulas with two notable
properties: the proposition letters are boxed, i.e. immediately preceded by a O symbol; and so are
the implications. In fact, we may consider every M-translation to be of form OC; the equivalences
NADB-0(MAB), INvDBe-D(ONvD0) and L«> D1 are easily seen to be universally valid (the
latter two because our frames are reflexive and transitive).

Definition: The degree d({) of an M-formula { is defined inductively by
(i) d(p) = O for peP; d(L) = 0;
(ii) d(n—6)= max(d(n),d(6));
(iii) d(Om) = d(M)+1.

Lemma: Suppose Ne M, and every occurrence of a proposition letter in 01 is boxed. Then there
exists an I-formula I(n) such that QOEONeM(I(M)).

Proof: Induction on d(n). If d(n)=0, then n is logically equivalent to L or T, or neP, and we may
take I(n)=n.
If d(n)>0, then n is a Boolean combination of formulas of form 06, and can be written (modulo
logical equivalence) as

/\ISJ.SM(V(DGI-ﬂISjSIi)v V(—00';,]1<k<l')
Then
and it will suffice to consider the conjuncts of the right hand side. We have

O DAMIE ) VMAG,))
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o M(AJO)- VjI(Oij)),

using the induction hypothesis on 6;; , 9,-1-. Let

IM) = N\(AJ®')— VjI(e,-j)). n]
Theorem: Let {e M. There exists ¢e I such that QOFLM(9) iff

(a) QOK{-0OL; and

(b) if py,...,p, are all the proposition letters in C, then

QOKLeL[py:=0py,.., Ppi=0p,).

Proof: («=) If an M-formula  satisfies (a) and (b), we have QOFLe 0L for an M-formula ' in
which all occurrences of proposition letters are boxed (box the proposition letters by (b), and use
that N0 implies On¢>00). Now apply the lemma.
(=) (a) and (b) hold for M-translations of I-formulas: (a) by the remarks preceding the definition

of degree, and (b) since Op is equivalent to 00p in models on quasi-orderings.

Corollary. If all occurrences of proposition letters in {e M are boxed, then there exists gel such
that {=¢.

Proof: By the lemma, since {=DC. ]
Note that the equivalence {=0( holds for global validity only, not for local validity. An

M-formula for which the local and global notions do not coincide, cannot have a local I-equivalent
(cf. 1.5). We end with an example of such a formula.

5.8 Example. Let @,y and y be as in 3.8; let { be
M(=Qv-yYv—=yx=0vyvy) SM(=ev—yv—)).

Consider the frame A:={ao,...,as} in wich ag is covered by a; and a, , a; by ay and a4, and a, by
a3, a, and as (as in the diagram).
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2y

Then (A,aq)kL; but (A,a,)¥L, as may be seen by taking V(p)={a;,a4}, V(9)={a3.a5}, (cf. 3.8).
Since I-formulas valid in a should also be valid in @, , { is not locally equivalent to any I-formula.
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II. First order definability

We say of an I-formula ¢ that it is first order definable, or elementary, if there exists an
Lj-sentence o (for Ly, see 1.6) such that

for all frames A, Al¢ iff AFo.

In keeping with our use of = above, we shall abbreviate this to =a (¢ is equivalent to o). As
before, these notions can be relativized to any subclass K of the class of all frames. In particular, ¢
is elementary on K if p=ga (that is: VAe K (Al¢ iff AFa)) for some L-sentence o. We
denote by E(K) the class of those I-formulas that are elementary on K.

In this second part we study the classes E(K). Sections 6 and 7 are mostly about E(QO). In §6,
E(QO) is characterized by preservation properties (theorem 6.7.6); examples are presented of
I-formulas that are not elementary. Section 7 describes a method for finding first order equivalents
that works for I-formulas in which v does not occur in certain positions.

If K and K' are classes of frames, and K is a subclass of K', then it is immediate from the
definition of relativized equivalence that E(K') C E(K). In particular, if E(K)=I, then E(K') =I as
well. So the property 'E(K)=I' is inherited downwards in the hierarchy of classes of frames (see
1.9 for some sample classes). Section 8 explores conditions on frame classes that make E(K)=I:
first for KCDLO, establishing a procedure that produces I'Ioz-deﬁnitions; next, general restrictions
on width and height are considered.

Section 9 investigates E(TR), and refines some of the results of §8. Section 10 gives examples of
elements and nonelements of E(FPO).

Along the way, two sorts of observations are made on the complexity of E(K). Algorithmic
complexity is calculated in one nontrivial case: for K=TR, E(K) is shown to be recursive in §9.
As to quantifier complexity of first order definitions, the most sweeping result is at the end of §7,
where it is shown that I-formulas exist whose first order definitions essentially exceed 1'[02 —and
suggested that over all the complexity is unbounded.

The examples of nonelementary I-formulas in §6 have two notable syntactic features. One is that
they contain a certain sort of occurrences of v, which is shown to be necessary in §7. The other is
that our example of a formula outside E(DLO) contains two distinct proposition letters. This is
shown to be necessary in §11. The formulas in one proposition letter (the monadic formulas, as
we shall call them) are a special case anyway: we possess an exhaustive description of the
Lindenbaum algebra of monadic formulas (Rieger [1949]). This will enable us to give an
exhaustive classification of the monadic formulas as to first order definability on PO and FPO.
Sections 8 through 11 make extensive use of theorems of Doets. I will state these without proof,
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except when the proof is clearly within the scope of this dissertation. The interested reader is
referred to Doets [A],[B].
We end with an overview, and answers to straightforward syntactic questions, in §12.
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§6. Elementary I-formulas

At first sight , the properties of frames defined by I-formulas are second order (cf. 1.6). Often,
however, these properties are not essentially second order. In this section we give first order
definitions for a number of I-formulas that were introduced earlier, together with some new
examples. Next we prove a variant of a theorem of van Benthem (cf. his [1984], 2.2.10),
characterizing the I-formulas elementary on a given elementary class K. We use this in 6.8 to
establish that Scott's axiom SC and the 2-stability principle SP, are not elementary.

First of all, however, we consider whether our first order language should contain equality. As it
happens, the same consideration proves E(QO) = E(PO).

6.1 Equality
Let Ly[=] be the first order language obtained by expanding L, with the equality symbol =. With
~ defined as in 2.3.1, the defining condition of partial orderings, as a class of frames, may be
written

a~b iff a=b.

For an Ly[=]-formula ., let & be the L-formula obtained from o by replacing every subformula
of form u=v by usvav<u. Then the following clearly holds:

Lemma. If AePO, and a.is an Lg[=]-sentence, then Akot iff ARG
In combination with theorem 2.3.3, this supports the view that equality has no part to play in
intuitionistic correspondence theory. We say that a class K of frames is closed under

contraction if VAe K. C(A)eK.

Theorem: Let K be a class of frames, closed under contraction; ¢ an I-formula, and o an
Ly[=]-sentence. Then @=ga implies @=g&.

Proof: Let K, ¢ and a be as stated, and ¢=go. Then for AcK,

Al¢ iff C(A)l@, by theorem 2.3.3, and considering ¢ as an L,-formula;
iff C(A)Fa , since C(A)eK;
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iff C(A)kQ. , since C(A)e PO;
iff ARG, by theorem 2.3.3. 0

Thus, modulo closure under contraction, ]Lo[:]-definitions of I-formulas can be replaced by
L-definitions.

6.2 Another corollary of theorem 2.3.3 is

Theorem. E(PO) = E(QO).

Proof: if e E(PO), then ¢=p@ for some ae L. Then for Ae QO, Alr¢ iff C(A)I¢ (by 2.3.3)
iff C(A)IFa (since C(A)e PO) iff Alko (by 2.3.3). 0

6.3 Examples: some first order definitions

(a) pv—p =Vxy(x<y—>y<x). Suppose A¥Vxy(x<y—y<x) : say a,be A,a<b. Then with
V(p):=[b), alfp since b<a, and alf—p since a<bl-p. Conversely, if AFVxy(x<y—y<x) , then A
is atomic; and Al-pv—p by 2.5.

() P,=Vxg. . x, (N %55,12Vicn %i.15%), by 2.8.

6.4 Example: stability principles
Let ne Z*; take the least number & such that 2¥>n+1. Order {0,1}{%---%-1} lexicographically as
JorersFau-t» With O preceding 1. Let (=)°p;=p;, (=)'p;=—p;. Take for j<n, ¢;:=/; (~%p;. The
n-stability principle SP,, is the formula

v i< Y i<n® j)—’ Vv j<n™®;
We have met SP, on several occasions (1.9, 3.8). SP is

(—pv——p—pVv—p) >—pv—p,

which is logically equivalent to
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(=—p—op)—-pv—p.

SP,;=KC: for KC is logically equivalent to SP;[p:=—p], hence AIFSP, implies AFKC by 2.2;
and

F—pV——p— (——p—p)—=pv—p.

Thus by 1.6 (cf. 2.6), SP, is first order definable. In fact, SP, is the only member of the sequence
of stability principles that is first order definable. (See 6.8 below for a proof that SP, is not
elementary; it adapts to n>2 in a straightforward manner.)

The meaning of SP, is easily explained in terms of upwards closed sets: Alf SP, iff for some
aeA, [a), has a nonempty subset B such that [@)-B can be partitioned into n+1 upwards closed
blocks in such a way that every element of B has successors in each block. We shall see that this is
a proper second order statement — even on FPO (§10).

6.5 Example: the Kreisel-Putnam axiom
The Kreisel-Putnam axiom (short: KP) is the formula

(=p—=gvr)— (p—q)V (—p—1).
Van Benthem found an Ly-equivalent to KP; it will look better if we use some abbreviations. We
write x<y,z instead of x<yAx<z (similarly, x,y<z, etc.); Comp(x,y) stands for x<yvy<x (x and y
are comparable); we use bounded quantification Ix>y (for Ix(x2y A...)) and Vx=y (for
Vx(x2y—...)). Now take o=

Vxyz(x<y,zA—~Comp(y,2) = Ju2x[uy,zAV v2u3r2v(y<rvz<r)).
A diagram may help to clarify the meaning of —~a. Below, continuous lines correspond with

existential quantification, broken lines with universal quantification combined with implication, and
crosses represent types of points that are forbidden. (—ct is written out in (*) below.)
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KP has just one minimal refutation; it may be represented as follows (cf. 3.4, 3.7):

(ZO) T(=p—qvr),F(=pP—9),F(=pr),F-p

c) &y 3

We claim that a=KP.

If (A,V)IfKP, then there must be x,y,ze A with x<y,z, and xlFZg, yFZq, and zI-Z5 (for Z,, see
the diagram above). Then whenever x<u<y,z, ulkF—p, since ul—p—qvr and ulfqvr . So all
such u have a successor v with vIFZ,. Since ZITU EZT and ZjTU 212T are not realizable!, neither
v and y nor v and z have a successor in common. Thus

(*) AF3xyz(x<y,zA—~Comp(y,2)AV u2x[u<y,z—Iv2uV2v(—y<tA—z<r)]),

that is, AF—0L.
Conversely, if AF—a, pick suitable x,y,and z, and choose for every u such that x<u<y,z a

successor v, such that AFVe2 v (—y<ta—z<r) (we apparently need the axiom of choice). Now
define:

V(p)=U(lv)xsusy,?) ; V(g)=A-0] ; V(=A-(z].

It is straightforward to check that (4,V,x)KP.
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6.6 Terminology. We call a class K of structures for L[=] elementary if there exists a
sentence & of Lg[=] such that any Lg[=]-structure (A,R) belongs to K if and only if (A,R)Eq.

(Such K are called basic elementary in Chang& Keisler [1973].)

Obviously, the intersection of two elementary classes is again elementary. QO is elementary;
hence, if KCQO is such that a frame A belongs to K iff AFa, K is elementary. Therefore,
¢ E(QO) iff Fr(o) is elementary.

6.7 A characterization of E(K) for elementary classes K

Let (giliel) be a family of structures for some first order language, and U an ultrafilter over /. We
shall denote by f;, the equivalence class of f under the relation ~, induced by U in [ ;#;, and by
I1,,4; the reduced product of (&,);c; modulo U( the ultraproduct over U). If &, is the same

structure & for all i/, [1,,%,; is called an ultrapower of &, and may be written [T, ¥.

We shall state a few well-known facts without proof; proofs are in Chang & Keisler. The important
property of ultraproducts is expressed in

6.7.1 Lo$'s theorem: For any formula o of the first order language appropriate to (g,-liel), and
for any fi;(1),..., f;® in the domain of 4,

Iy, &FalfyD,..., fy ™1 iff {ie N FalfDG)... AD@)]}eU.
Since /e U, first order sentences true in every g‘- are true in Hugi. Hence ultraproducts of frames
are frames (Vxx<x and Vxyz(x<yA y<z—x<z) are preserved); of models, models (V(p) € U(A)
is expressed by Vxy(pxax<y—py)); and any structure & is elementarily equivalent to its

ultrapowers [T, &.

6.7.2 Lemma (Goldblatt). let (A ;) i b€ a family of frames, U an ultrafilter over /. Then HUAi is
isomorphic to a generated subframe of the ultrapower [1;,%, /A;.

Proof: Map fy; to ((i.f(i));e Py- ’

6.7.3 Corollary. Any class of frames closed under generated subframes, disjoint unions,
isomorphic images and ultrapowers is closed under ultraproducts.

For le-formulas , one half of Lo$'s theorem remains:

6.7.4 Lemma. Suppose a is a X!, -formula; (#ie]) is a family of structures, and U an ultrafilter
over I. Then
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{ie & FalfDG)... A7) }e U implies [Ty &ralfy,W,..., fM] .

6.7.5 Keisler's theorem: Let K be a class of structures for some first order language. Then K is
elementary iff both K and its complement are closed under ultraproducts and isomorphic images.

6.7.6 Theorem. Suppose K is an elementary class of frames , closed under disjoint unions and
generated subframes; and @e . Then @e E(K) iff Fri(¢) is closed under elementary equivalence
iff Fric(¢) is closed under ultrapowers.

Proof: Let B be a sentence of L[=] such that for L-structures A, Ae K iff AEB. (So in
particular, Ep—Vxx<x AVxyz(x<yA y<z—x<z) .)

The implications from left to right are obvious (cf. 6.7.1). To close the circle , assume Fr (o) is
closed under ultrapowers. Validity of ¢ is preserved under disjoint unions, generated subframes
and isomorphic images (2.2.4); K is closed under these operations; hence so is Fri(¢) .By 6.7.3,
Frg(¢) is closed under ultraproducts. Let py,...,p, be all the proposition letters in ¢@. The
complement of Fr () is defined by the 3! 1-sentence

3p1.- P ([N 1<icy VXY xSy AP x— py)ATx=St(9)]v—P)

(cf. 1.6); it is closed under isomorphism and, by 6.7.4, under ultraproducts. So Frg(¢) is
elementary by Keisler's theorem, that is, ¢ E(K) .

6.7.7 Remark. The fact that ¢ is not just an M-formula, and that frames are quasi-orderings, is of

no advantage in this proof. Thus, the theorem easily generalizes to modal logic; it then becomes a
simple generalization of a theorem of van Benthem ([1984] 2.2.10).

6.8 Examples. We use theorem 6.7.6 to establish that some I-formulas are not elementary.

(a) Scott's axiom. This is the formula
SC := [(=—p—p) Dpv—p] 5—pv——p

There is a diagram of its minimal refutation in 3.4 (c). Here we reproduce the induced frame:
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1

| 2
N/

(The points are named in accordance with §11; we shall refer to this frame as [8),,.)
Let A:={a}U{b,|lne N} U{c,|ne N}, ordered thus : a is the root; b

n’

neN, are the covers of a; b, is

covered by c,,c,,, 1-

A

Claim: AISC. Proof: let V be any valuation on A. If every c,, forces p, or every ¢, forces —p,
clearly (A,V )IFSC. Otherwise, since in each endpoint either p or —p is forced, there must be a pair
CpsCny1 Such that one forces p, the other —p. Then b, -——p—p; hence neither b, nor a forces
(=—p—p) -pv—p. Since b, IFSC for all k, (A,V )FSC.

Now take a nonprincipal ultrafilter U over N; consider the ultrapower [I;;A. By Los's theorem,
ITyA is rooted, has height 3, every cover of the root has exactly two covers — in fact, we may
picture [I;A as consisting of A with certain extra points, placed as the b,'s and c,'s in A, lying
far to the right.

For example, since singletons do not belong to U, (c,lneN),, is not identical with any (e lneN)y,
(for fixed k).
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Claim: [TA¥SC. Proof: define f: [1;A-[8),, by f(c,)=1, fib,)=4, fla)=8, and f(x)=2 for all
points x outside (the copy of) A. fis easily seen to be a surjective p-morphism. Since [8),,#SC,
[T A¥SC by lemma 2.4.2.
This shows that SC is not preserved under ultrapowers; so by theorem 6.7.6, SC¢ E(PO).
(b)The 2-stability principle. As before (3.8), we write

SPy = (m@v—yv—Y—20VYVvY)—QvV—-yv—y,

with 9=pAq, Yy=pA—q, Y=—pAq. We reproduce the induced frame B of its minimal refutation:

Let A be a downwards linear frame {a,,b,|neN} in which a,, is covered by a, and b,, and a,

and all points b,, are endpoints.
b

LN
LN\
N

We claim that AI-SP,. Proof: take any valuation V on A. Since @,y and ) are mutually exclusive,
b, F—@v—yv—y for every n, hence b, FSP,. Suppose g F—@v—yv—y —evyvy. Since q;
has only two strict successors, a; F—@v-yv-y ; soif k21, a;kevyvy. Consequently,
a,F—@v—oyv—y . Again, if k22, this gives a,F@vyvy. Continuing in this way, we get
a F—@v—-yv—y .We conclude that (A,V)I-SP,.

Now take a nonprincipal ultrafilter U over N, and consider [1;;A. By £.0§'s theorem, every point
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of I'IUA either is an endpoint, or has exactly two covers, one of which is an endpoint. Let j("),
gMe Al be defined as follows:

fMky=a,., , g™ (k)=b.,

(Here = stands for cut-off subtraction: k*n equals O if k<n, k-n otherwise.) So f(*+1) (k) and
gD (k) cover f™(k) for all k>n.

Since cofinite sets belong to U, f*+1);, and g**+1);; cover f);, by L.o§'s theorem. Then [T;;A may
be pictured as follows:

Claim: [T AWSP,. Proof: define h: [I;A—=B by

h(fy)=a if 3neN. fy<f®;

h(fy)=b if IneN. f;;=¢C";

h(fy)=c if IneN. fy=gCmD;

h(fy)=d if IneN. fy=gB"D, or VneN. f0, <f,.
h is a p-morphism, so as in (a) it follows that [I,AI£SP,.

Since DLO is elementary, SP,¢ E(DLO) by theorem 6.7.6.
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6.9 Remark. We employed the ultrapower criterion because it gives rather perspicuous proofs .
On inspection, however, one will see that, in either case, only a few first order properties and a
countably repeating simple pattern are used. Both times we could have relied on the compactness
theorem to produce a countable frame in which the I-formula under consideration is lost.
(Rodenburg [1982] in fact did this.)

From a proof that compactness always works, in proving I-formulas nonelementary, and that
countable frames suffice, one might hope to get estimates of the algorithmic complexity of E(K) for
elementary K2.

Footnotes:

1 A sequent  is realizable if there exists a model & and a point a of & such that (&,a)I-Z.
2 Doets has found a modal formula that is elementary on the countable M-frames, but not on all

M-frames. So if countable frames suffice for first order definability of I-formulas, this would be an
interesting difference between the modal case and the intuitionistic case.
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According to 3.12, Alf iff A can be projected onto a multirefutation of ¢; we have seen in the
preceding section that the existence of such a projection need not correspond with a first order
condition on frames. In this section we return to the idea of embedding semantic tableaux into
frames, that was briefly considered in 3.8. We define labeled frames; and consider, essentially,
embeddings of such frames. The existence of such an embedding is first order expressible;
moreover, for a large class of I-formulas, it guarantees refutability. The section ends with a
discussion of the quantifier complexity of first order definitions. Among other things, it is shown
that not all first order definitions can be found by means of labeled frames.

7.1 Partial projections

7.1.1 Notation. If f is a partial function from U to V, we write f: U-—V. The domain of f,
abbreviated dom f is the subset of U on which fis defined; the range of f, abbreviated ranf, is
fldom/]. If ranf=V, we write f:U——V. If domf Cdomf’, and for all ue domf, flu)=f(u), we write

fcr.

7.1.2 Definition, Let A be a frame; X=(X,&) a multitableau. A partial surjection g:A——X is a
partial projection of A onto X if g is a projection of domg, as a subframe of A, onto X.

We say g is a Z-projection if g is a partial projection onto a X-multitableau. If g and g’ are
Z-projections and gCg’, we shall say that g is a Z-subprojection of g".

The proof of the following lemma is basically Smoryfiski's proof for the finite submodel property.
7.1.3 Lemma. Let X be a sequent. Every Z-projection has a finite Z-subprojection.

Proof: Let g:A—X be a Z-projection; X=(X,8). We define a sequence

of finite subsets of domg, as follows.

Pick bye A such that ZCg(by); set By={bg}.

Suppose B, has been defined. For each be B,-B,_;, take for every x>xg(b) that belongs to g[b)
an element a, ,, in [b) with g(a, , )=x. Let
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B, .=B,Aa,, |beB,~B,_,, x>xg(b) and xe g[b)}.
Since chains in (X,<yx) are finite, there is a greatest N such that By=#B),_,. Set go=grBN; ie
domgy=By;, and for all be By, go(b)=g(b). Let X'= rang,. For xe X', S'CX’, let

S'e $'(x) iff IbeBy : x=g(b) and S'= g [b).

It is clear that g, is finite, and g, Cg. ZCg(bg)e X'; so to prove that g is a Z-projection, it
remains to show that (1) X":=(X",$") is a multitableau, and (2) g, a partial projection.

(1) If ye US'(x), then by the definition of &', there are a,be By, with a<b and x=g(a), y=g(b).
Then x<xy, hence ngyT, and the first condition of definition 3.9.1 is satisfied. As to the second,
suppose F(¢—Wy)e xe X’ and Tog x. Take any S’e &' (x); say §'=go[b), with x=gy(b). By
3.10(ii), &(x) contains some SCg[b). By 3.9.1(ii), S has an element y such that Te,Fyey or
F(¢—y)ey and yT#xT, so y>xx. Then y=go(aypeS".

(2) g trivially satisfies the conditions of definition 3.10, by the definition of " (cf. (b) in the
proof of 3.12).

7.2 Labeled frames.

7.2.1 Definition. Let A be a frame, and X an open X-multitableau. A Z-projection g:A—X is a
Z-labeled subframe of A if whenever a set BCdomg has an upper bound in A, U, Bg(b)T is
realizable.

7.2.2 Definition. If g and h are Z-labeled subframes of a given frame A, we write g<gh if

(i) domg C domh, and
(il)Vae domg. g(a) C h(a).

Observe that <y is a quasi-ordering.

It is immediate that a Z-subprojection of a Z-labeled subframe is again a Z-labeled subframe. Since
a finite Z-labeled subframe has only finitely many predecessors in <y, lemma 7.1.3 implies that the
class of Z-labeled subframes has minimal elements. These have some convenient properties.

7.2.3 Lemma. Suppose g:A——X is a minimal Z-labeled subframe of A. Then
(i) domg is a rooted subframe of A; the root is the only point ae domg such that
ZCg(a);
(i) if g(ap)=g(a;) and (aO]domg=("1]domg’ then ag=a, ;
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(iii) if ap<a, in domg, then g(ap)# g(a).

Proof: If g does not satisfy (i)-(iii), we shall get a proper Z-subprojection of g by discarding parts
of domg, making straightforward modifications in X — as follows. If (i) is not satisfied, seek for
asdomg with ZCg(a) and for all a’ >domg® I g(a’); restrict g to [a)domg. If ay, a; violate (ii) or
(iii), drop aj from domg. ]

7.2.4 Definition. We call Z-projections g and g’ equivalent if there exists a frame-isomorphism
f:domg=domg’ such that Vae domg:gf(a) = g(a).

Given an open X-multitableau X, the lemma above restricts the construction of representatives of
the equivalence classes of minimal Z-labeled subframes onto X in such a way that it is clear that
there are only finitely many such equivalence classes. Let us assume unique representatives of these
equivalence classes, and call them Z-labeled frames. Lemma 7.2.3 also implies that Z-labeled
frames are finite. In sum, we have:

7.2.5 Proposition. Let X be a sequent. The Z-labeled frames are finite, and finite in number.

A proper notion of subtableau for open multitableaux should imply that the minimal
Z-multitableaux are the ranges of Z-labeled frames.

7.3 Transparency

By theorem 3.12, if an I-formula ¢ is not valid in a frame A, there exists a projection g of A onto

an open {F¢}-multitableau. By 7.1.3, g has a finite Fo-subprojection 4 (we drop the curly
brackets). Since hCg, and g is a total projection, A is an Fo-labeled subframe of A. Now h has

finitely many predecessors in < Fg» SO We conclude

Lemma. Let A be a frame, @eL. If Alfo, then A has a minimal Fe-labeled subframe.

The converse is not generally true, as is shown by 3.8: the frame C in that example has an obvious
F(SP,)-labeled subframe, yet CI-SP,.

Definition. An I-formula @ is transparent if @ is refutable in every frame that has an Fo-labeled
subframe.

Suppose A is a frame. We denote by L[A] the expansion of Ly, by distinct, unique individual
constants for all elements of A. For elements of A and corresponding constants we shall use the
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same letter. A, is the expansion of A, obtained by interpreting constants a of L[A] by the
corresponding point ae A. The diagram of A is the set

{o]o is an atomic sentence of Ly[A] and A, Fa}u
{—BIB is an atomic sentence of Lj[A] and A4 ¥B}.
Theorem. Transparent formulas are first order definable.

Proof: Suppose ¢ is transparent. Let g,...,g, be the Fo-labeled frames (n>0). For 1<i<n, let ; be
the conjunction of the diagram of domg;. (By 7.2.5, the diagram of domg; is finite.) Let g; :=

3;AN(=3u Ny pb<u| B Cdomg; and Uy g g(b)T is not realizable).

Next, let €'; be the result of replacing the individual constants in €; by distinct new individual

variables. If vy,...,v, are all the free variables in V1 £, let o be

<i<n

—.Elvl...vmV ISiSnsli'
We will show that p=q.
If A¥a,, then for some i and ay,...,a,€A4,

(A, ay,....a,)FE;.

Let a; (1<j<m) be the interpretation of the constant bj of Ly[dom g;]. Define a partial function 4 of
Aby h(aj)=g(bj). Then h is an Fo-projection, because §; makes dom 4 =dom g;; and by the clauses
—Ju/Ab<u in €, h is an Fo-labeled subframe of A. Since ¢ is transparent, it follows that Allfp.
Conversely, if Alf¢, then by the lemma, A has a minimal F@-labeled subframe h. Say A is
equivalent to g; by an isomorphism f: domh=domg;. Let domh={a,,....a,}; then (A,a,,...,.a,,)F3;,
with a; interpreting f(aj) (1<j<m). The other conjuncts of €; hold in (A,ay,...,a,,) by definition
7.2.1. Thus (A,ay,...,.a,,)FE; hence ARv,...v, V €, that is, AF—aL. O

Corollary. Transparent formulas are equivalent to I'Ioz-sente:nces.1

Proof: The sentence o in the above proof is easily seen to be logically equivalent to a
l'loz-sentence. 0
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7.4 Deterministic formulas

Transparency is an abstract notion; we should like to know a property of I-formulas that implies
transparency, and that can be seen to hold. To find such a property, we consider the question how
an Fo-labeled frame may help us to define a valuation that refutes ¢.

An Fo-labeled subframe g constitutes a finite grid, the points of which are associated, in a regular
fashion, with sequents in a multirefutation. If seems reasonable to expect that a valuation refuting ¢
is arrived at by associating sequents to the points outside the grid, and then extracting a valuation as
in 3.12. Let us try to form such new sequents.

The sequent X of a point a outside domg should contain all signed formulas Fy that are associated
to successors of a that belong to domg (in the resulting model, y is to be false in @), and all signed

formulas Ty that belong to predecessors of a in domg. Besides, £ must be full. Most of the
conditions for fullness are met automatically; e.g. if F(¢,v¢,) belongs to some successor, then
Fo, and Fo, will turn up as well.

In fact, there is only one source of difficulty: the implications signed T. If T(y—Y)e Z, it may be
that no predecessor of a has Ty, and no successor Fy. Apparently, we must add to X: either Fy, or
Ty. But here a major snag appears. Maybe one predecessor of a has brought up T(y—Y), and
another Ty. Then we must take Ty, or Z will certainly not be realizable. Now suppose X=Y;VX,:

for fullness we must add Ty, or T, to Z, and we cannot expect guidance from a's predecessors.

Worse yet, a's successors in domg may make either addition impossible. They all carry Ty; but

some may opt for Tx;, and others for Ty,. In such a case, either choice in a will destroy the

pattern.

The following definition singles out a class of I-formulas that cannot lead to awkward choices.

Definition.(i) An implication y—ye1 is determinate if Sf(Ty) contains no disjunctions signed T.
(ii) An I-formula ¢ is deterministic if in any signed subformula T(y—Y) of Fo, y—y

is determinate.

Determinism is a syntactic property, that can be effectively checked for. Note by way of example
that KC is deterministic; and that SC, SP, and KP are not.2

Lemma. Let A be a frame, and X a sequent. If g is a Z-labeled subframe of A, then there exists a
Z-labeled subframe h2Dg of A such that Vae A3a’ 2a.a’e domh.

Proof: Let X=(X,$) be an open Z-multitableau, and g:A——»X a Z-labeled subframe of A.
Abbreviate g[a)=gl[a’) to a=a’. The relation = is an equivalence. We shall denote the equivalence

class of a by a~. Let

Ay={acA|Va’2a. a'=a}.
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Since chains in X are finite, every element of A has successors in A,

By definition 7.2.1, U(g(a ')Tla'e (alndomg) is realizable, for every ae A. Thus
F—AuU(g(a’)la’e (alndomg); use corollary 4.7.4 to obtain for each a~ a classical model V=~ of
U(g(a’)gla’e (ajndomg). (It is important to do this by equivalence class, and not pointwise.) For
ae Ay- domg, define

h(a)={Tye SI(D)|V = Fy}U{Fxe SI()|V ~ F—x };

then for ae domg, h(a)=g(a).
Each h(a) is a full sequent. Define T: ranh—~PP(ranh)-{@} by

Te T(x) iff Jac domh[h(a)=x and T=h[a)].

Let P=(ranh,T). Observe that if ae domh—domg, then T(h(a))={{h(a)}}.

Claim: 2 is a Z-multitableau. Proof:

(i) If h(a)e Te T(x), then Ib<a:x=h(b). Then either h(a)=x; or ac domh—-domg and be domg, and
h(a)T2 h(b)T by definition of h and V ~; or h(a)=g(a), h(b)=g(b), g(a)2x g(b) by 3.10, and
g(@)T2 g()T since X is a multitableau.

(i) If F(y—Y)e x, then either x= h(a) for some ae domh-domg, in which case Tye x since V=~ is
classical; or xe X. In the latter case, if Tye x, each Se &(x) contains some y with Ty, Fxey or
F(y—yx)ey. Now if Te T(x), T=h[a)Dg[a) for some ae g~1{x}. By definition 3.10, some
Se $(x) is contained in g[a); so Iye T( F(y—y)ey or Ty, Fxey).

Since rank consists of sequents from X and sequents determined by classical models, 2 is open.
Trivially, h is a partial projection (cf. (b) in the proof of 3.12). To see that h is a Z-labeled

subframe of A, note that if a>ay,...,a,€ domh, and a;¢ domg, then U; h(aj)T=h(a[)T. o

j<n
Theorem. Deterministic formulas are transparent.
Proof: Suppose ¢ is deterministic, X a multirefutation of @, and g:A-—X an Fo-labeled subframe

of A. By the preceding lemma, we may assume that Vac Ada’ 2a. a’e domg.
For each a€ 4, let I, (a) be

u(g(a)T | a’e (a)n domg) U U(g(a)F | a’e [a)n domg).

Since g is a partial projection, Zy(a)=g(a) for ae domg. Let Z(a) be the closure of Z(a) under the
rules

(1) If T(y—yx)e X and Fye X, add Ty to Z.
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(2) If T(yAx)e Z, add Ty and Ty.

Since g(a) always is a full sequent, (a)=g(a) for ae domg.

As indicated above, Z(a) is full but for the decomposition of implications signed T, which is the
subject of rule (1). Therefore rule (1) is used in the first step of the derivation of any element of
Z(a)-Zy(a). Thus we can be sure that signed disjunctions T(yvY) in Z(a) already belonged to
Zy(a): new formulas signed T come from the (T-signed) succedents of determinate implications.
Since formulas signed F, and disjunctions signed T, are decomposed in Z(a), and the rest is
covered by rules (1) and (2), each sequent Z(a) is full.

If Tye Zy(a), then Tye g(a’) for some a’<a. It follows that Tye g(a”) for all a” 2a that belong to
domg - since a” 2a’ and g is a partial projection. If Ty is added to Z(a) by rule (1) or (2) because
some Ty’ belonged to Z(a), and Ty'e N(g(a”)| a” 2a and a”"e domg), then Tye N (g(a”)la” 2a
and a"e domg) as well. Conclusion:  (a)TCg(a")T for all a” 2a that belong to domg.

Now since [a)ndomg #{J, and Xis open, it follows that TL¢ X(a). Likewise, Tye Z(a) implies
Fye Z(a): for if Tye Z(a), Tye g(a”) for all a” 2a in domg, implying that Fye g(a”).

If a<b, then Zo(a)TQ )I.O(b)T since (a]JndomgC(b]JNdomg; and similarly ):O(a)FQ Zo(b)F.
Hence whenever rule (1) or (2) adds for a, it also adds for b. So Z(a)TC X(b)T.

Now let Y={Z(a)lac A}; and for ye Y and TCY,

Te T(y) iff Jac T Yy}. T=Z[a).

We want to show that B:=(Y,T) is a multitableau. For if it is , it is open, as shown above; Fy
belongs to some sequent in Y; and trivially, Z is a projection onto 12, whence Alifp by theorem

3.12.

Actually, only the second part of definition 3.9.1 remains to be checked. Suppose F(y—Y)ey, and
Tyey. Take any Te T(y); then T=Z[a) for some a € =" 1{y}. Then some y’e gla) contains
F(y—y). Say y'=g(a’), with a’2a. Since g is a partial projection, there exists a” 2a’ with
Ty, Fxe g(a”) or F(y—y)e g(a”) and g(a”)T# g(a)T. Then g(a”)=Z(a")e T, and g(a")T#yT since

yTC g(a)TC g@")T. 0

With corollary 7.3 we get
Corollary. Deterministic formulas are equivalent to I'Ioz-sentences.
7.5 Corollaries: (i) I[A,—,1l] C E(PO)

@i1) I[A,v,—] € E(PO)

Proof of (ii): Implications in I[A,v,—] have succedent L, hence are determinate. D
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7.6 Quantifier complexity. First order definitions produced by the method of 7.3 are I'Ioz. One
might wonder whether all elementary I-formulas are equivalent to I'I°2—sentences. We will now
show that KP is not; and construct a sequence of generalizations of KP whose first order
definitions seem to require an ever increasing number of quantifier changes.

7.6.1 In 6.5 we gave a I'I04 equivalent for KP. There may be simpler first order equivalents;
however, we will show that they cannot be as simple as I1%,, by exhibiting a chain

such that KP is valid in every A, but not in the union A=V, _n A, (cf. Chang & Keisler,
thm.3.2.3).

LetA, :={ai,bj|0siSn and 15j<n} U {c.d,e}, partially ordered in such a way that e and b, are
endpoints, ¢ and d are covered by e, a, is covered by c and d, and for i,j<n, bj is covered by bj +1

and g; is covered by a; ; and b; ;. The diagram below shows A,.

c / € \d
\02 /

| &
a~ |
|/b1

%9

If (A,,V)KP, some top node must force p, and another —p (this immediately excludes n=0).
Note that KP must hold in bj,c,d, and e. Now, if el-—p, and b, IFp, we must have a,F—p and
a,lF—p—qvr; hence a,l-q or a, lFr, and we would have a,IFKP. The other way round, with el-p
and b, F—p , b, is the only point where —p is forced, and again ayFKP. Since we obtained a
contradiction either way, A, IFKP.

Now consider A (see diagram on next page).
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Define a valuation V on A by V(p)=[b,), V(¢)=[d) and V(r)=[c). Then (A,V)I{KP.

7.6.2 Let p,, q,,, r, (neN) be infinitely many distinct proposition letters. We define a sequence
(KP,) e n of I-formulas as follows:

KPO:=J.;
KP,, :=[(p,—2KP,)—>q,vr,]=(—p,—q9,)V(—p,~r,).

For a corresponding sequence of L-formulas, let
Bo@):=T;
B4 1®):=3yz2x(=Comp(y,2) AV u2x(u<y,z—3v2u(B,(v)A—3Iw2v(yswvzw))));

and o, =—3xP, (x).

We claim that KP,=o,. For n=0 this is obvious; suppose it is true for n. Reasoning as in 6.5, we
find that a multirefutation of KP, , ; must begin as indicated on the next page:
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T((p,—KP,) -4, vr )F(—p, -4 ) F(-p, > 1)

TN

T-p,.Fg,Tr. T, ,FKP, T—p, .F,,Tq

(note that F—p,—(p,—KP,)). Analogous to 6.5, and using that (A,a)¥KP,, iff AFB [a], we see
thatKP, ;=a, ;.

As to quantifier complexity, By(x) is Aol, and B, is Zozn +2; hence the o, ; are 1'[02,, +2

7.7 On restricted classes of frames, more formulas may become first order. In extreme cases, every
I-formula is first order; we already know about one of these, vz. LO (by 4.8 and 7.5). This
phenomenon will be investigated further in the next section.

Footnotes

1.§17 (17.8) contains some further considerations on the syntactic form of Ly-equivalents of
transparent formulas.

2 Actually, deterministic formulas are equivalent to formulas in —, 1, as can be seen by a little
second order propositional logic. As argued in §4, A can be eliminated. Next, v to the left of — can
be eliminated by the logical equivalence FH@VY—Y)(@X)A(W—Y); the new A can be removed
without introducing new disjunctions (4.3.3). So only disjunctions to the right of — (and
disjunctions that are not subformulas of implications) can be problematic. Now in general, vy is
equivalent to the second order formula Vp((¢—p)—(y—p)—p) (p a new proposition letter);
moreover, (¢—>Vpy)eVp(@—V) is universally valid if p does not occur in ¢. A formula is
deterministic precisely when, after replacing the remaining disjunctions with quantifications over
distinct new proposition letters, we can move all the quantifiers to the front, using the equivalence
(9> Vpy)eVp(¢—V). Front universal quantifiers can be dropped: the definition of validity
involves universal closure anyway.
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first order definable

As was shown in 6.8(b), there exist I-formulas that are not first order definable on DLO. We now
consider a restriction additional to downward linearity, inverse wellfoundedness, under which
every I-formula becomes first order definable. We use a theorem of Doets [A] to indicate to what
extent a restriction of this sort is necessary (some further details will appear in §9).

Finally, we consider restrictions on width and on height for the larger class of partial orderings.

8.1 Definition. We call a frame A inversely well-founded if every subset of A has maximal
elements.

Clearly, A is inversely well-founded iff (A,>) is well-founded in the ordinary sense. Another
equivalent statement is: A does not contain an infinite ascending chain

ap<a;<...<a,<... (neN).

We shall denote the class of all inversely well-founded downward linear orderings by IWD.

8.2 Definition. Let A be a frame; BCA. We call B a subtree of A if B, with the ordering inherited
from A, is a tree; a strong subtree if, moreover, the canonical embedding B<A is strong.

By way of example, consider the binary tree T of the sequences of zeros and ones of length at most
2 ordered by initial segments:

N\
NS

T:={A,00,01,10} is a subtree of T, but not a strong subtree; T'U{0} is a strong subtree.
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8.3 We introduce a partial ordering < of sequents:

8.3.1 Definition. Let = and © be sequents. We write £<0 if £TC@T and @FCZF.

We write < for the related strict ordering: <@ iff Z<@ and Z#0.

8.3.2 Definition. A multitableau X=(X,%) is monotone if for all x,ye X, ye U (x) implies x<y.

Monotony is an attribute comparable to strictness (3.3). Its use is, that if we climb through a
monotone multitableau, passing from x to an element of U&(x) , we can take only a finite number
of steps.

8.4 Z-labeled trees

As in §7, we shall use partial projections to obtain first order equivalents of I-formulas. The
approach will be slightly different. In the definition of Z-labeled subframe, we had to ensure that
points with a common successor were assigned compatible sequents; for downwards linear
orderings this difficulty does not exist. Since points with a common successor are linearly ordered,
it is enough that each sequent is realizable. Instead we shall concentrate on difficulties caused by
points berween elements of the domain of a partial projection: points a such that there are a’,
a"edomg with a’<a<a”.

For a frame A, and a€ A, we denote by Cov4(a) the set of all covers of a in A.

Definition. Let Ae DLO, X a sequent, and X=(X,&) an open Z-multitableau. A partial surjection
g:A-—X is a Z-labeled subtree of A if

(i) domg is a tree;
(ii) for every ae domg, ngovdom 2 (a) is a bijection onto some Se §(g(a)).

We shall say g is strong if domg is a strong subtree of A; perfect if g is strong, X monotone, and
the root of domg is the only element of A such that ZCg(a).

By (ii) and 8.3 it is immediate that the domain of a perfect Z-labeled subtree is finite — an upper
bound for its size may be deduced from Z.

As in 7.2, we assume unique representatives of the equivalence classes of perfect Z-labeled
subtrees; call them X-labeled trees. Given a suitable T-multitableau X, it is clear from the definition
above how to construct Z-labeled trees with range X. These trees are finite, and there are finitely
many of them. Since there are finitely many Z-multitableaux, we have
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Lemma. For any sequent Z, there are only finitely many Z-labeled trees.

8.5 Lemma. Suppose Ae IWD, and @el. If Alf¢p, then A has a perfect Fp-labeled subtree.

Proof: Suppose (A4,V)Iif@. Clearly, a perfect labeled subtree of a generated subframe is a perfect

labeled subtree; we may therefore assume that A has a root a;. In addition, since Ae IWD, we may

assume that aj is the only point of (4,V) that does not force ¢. For each a€ A, let
@(a):=®(p(A'V)(a) (={oe Sf(Fo) | alo}).

We define a sequence

AgC A|C..CA,C.. (neN)

of finite subtrees of A, as follows. Aj={ay}. Suppose A, has been defined. For each ae A, -4, _;,
take a set C; of strict successors of a in A such that

(i) forevery b>a,3ceC,: O(c)< O(b);

(ii) if c,c' are distinct elements of C,, then ©(c)£O(c");

(iii) each ce C, is maximal in {be A| ©(b)=0(c)}.
Now let g be the restriction of © to U,A,,, X=rang, and for xe X,

Se H(x) iff Jae g‘l{x}. S=g[C,l.

Put X=(X,$). We shall establish a sequence of claims, culminating in (6): g is a perfect Fo-labeled
subtree of A.

(1) If ae domg, then ais maximal in {be A|O(b)=0(a)}.

ag is the only point that does not force @, so {ay}={be A[F € @(b)}. The other elements of domg
are maximal by construction.

(2) If ye US(x), then y>x.
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If ye U& (x), then there are a,ce A such that x=g(a), y=g(c), and c>a. Then ©(a)<O(c) is
immediate, and ©(a)#®(c) by (1).

(3) For each ae domg, C,=Covyo, (a).

Suppose ceC,, and a<b<c, with be domg. Then ©(a)# O(b) by (1), and O(b)< ©(c). By (i) in
the definition of C,, there exists c'eC,, with @(c')< ©(d); by (ii) and transitivity of <, c'=c.
Hence ©(b)=0(c), and b=c by (1).

(4) X is a multitableau.

By (2), ye US(x) implies x<y, whence xTCyT is immediate. If F(y—y)e x, Tye x, and Se $(x),
then S=g[C,] for some ae g 1{x}. Then alfy—y; so there exists b>a with by and blify. Since
alfy, b>a. So by (i), there is some ce C, with ©(c)< @(b); ©(a)# ©(c) by (1). Since
F(y—)e O(b), F(y—x)e O(c)=g(c)< S.

(5) X is a monotone multirefutation of @.
Since a ¢, Foe g(ay). By the nature of ®, X is open. Monotonicity is by (2).
(6) g is a perfect F@-labeled subtree of A.

By (3), (ii) and the definition of &, condition (ii) of definition 8.4 is satisfied. As for (i), it is
immediate that domg is a rooted downwards linear ordering. Since X is monotone, (3) and the
definition of & imply that chains in domg are finite; hence domg is a tree. Finally, to prove that g is
strong, we check condition (*) of lemma 2.11.6 for the canonical embedding of domg into A.
Suppose ¢, ¢’ are distinct covers of a in domg, and a<b<c,c’. Then O(b)< O(c), O(c"). By (ii),
this implies that @(b)< O(c), ®(c”). So by (i) and (ii), a<b is impossible; hence a=b. Therefore
bSCovdomg (a); so domg is a strong subtree of A. u]

8.6 Lemma. Suppose Ae IWD and ¢el. If A has a perfect Fp-labeled subtree, then Alfeg.
Proof: Suppose g:A——X is a perfect Fo-labeled subtree of A. Since g is a projection of domg onto

X, domg I by 3.12. Since the canonical embedding of domg into A is strong, and domg is finite,
there exists by 2.11.10(i) a p-retraction f:A-—»domg. Then Alfp by lemma 2.4.2. 8]
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8.7 Theorem. EAWD)=I.

Proof: Let ge I be given; we are to produce an L-equivalent on IWD. Suppose g;,...,g, are all
the Fo-labeled trees (by lemma 8.4, there are finitely many). Each g; is finite, as observed in 8.4.
Now let §; be the conjunction of the diagram of domg;. Next, for each i (1<i<n) and be domg;, let
¥;,» be the formula

AWSB'B'E CoV gy (B))-
Finally, for 1<i<n, let €; be
A /\(Vv(bSv<_bl,b2—)yi, p) | be domg; and b, ,b, are distinct elements of Covdom&_(b)).

Let €;' be the result of replacing the individual constants in €; by distinct new individual variables

(so ;'€ Ly). Suppose v,,...,v,, are all the variables that occur free in V., €;'; then let o be

—|3V1...va 1<i<n €

1
i

This o is a first order equivalent of . Indeed, A¥o iff some €; (1<i<n) is true in an expansion of
A, iff for some i, domg; is isomorphic to a subtree of A (by 8;) which is strong by the rest of €; and
lemma 2.11.6. Suppose A is a strong subtree of A, and f:Aj—domg; is an isomorphism. Then
g;°f is a perfect Fo-labeled subtree of A, so Alf¢ by lemma 8.6. Conversely, if Alf@, then A has
a perfect Fo-labeled subtree f by lemma 8.5, which is equivalent to some g; by assumption; so that
in particular domf=domg;. ]

8.8 Remark: Observe that, in contrast to theorem 7.3, the first order equivalent is entirely
determined by the domains of the Fo-labeled trees. In 7.3 we had to take the labeling into account.

8.9 Example. On IWD, SP, is equivalent to
—Iixyzw(x<y,z,WAVu[(xgu_Sy,z—)uSW) A (=Zuy,w—u<z) A (x<uz,w—usy))).

The only relevant tree consists of a root with three covers (cf. 3.8).

8.10 The above first order definitions would still work if we allowed frames that can be obtained
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from inversely well-founded downwards linear orderings by replacing some points by infinite
chains; with regard to a given formula ¢, such chains behave essentially as finite chains with as

many points as can be distinguished with subformulas of ¢. Still some small extensions are
possible (see §9); but soon, full first order definability is lost.

8.11 Definition: A binary tree A is full if every point in A has either two covers, or none.
The class of all full binary trees we denote by TR,

We will show that E(TR(Z));tI[. As noted in the introduction to part II, an immediate consequence is
that E(K)=I for all frame classes KD TR®.

8.12 Definition. The quantifier rank mk() of a first order formula o is defined inductively as
follows:

1. mk()=0 if o is atomic, a=T or o=_1;

2. mk(—B)=rnk(B), mk(BAy)=rk(Bvy)=rnk(B—y)=max (mk(B),mk(y));

3. rk @xB)=rnk(VxB)=rnk(B)+1.

Two structures & and 7B for the same first order language will be called n-equivalent (notation:
H="3B) if they satisfy the same first order sentences of quantifier rank ».

8.13 Definition. Let A be a frame. A path through A is a maximal chain in A.

8.14 Definition. Let n>1; then P(n) is the conjunction of the following three conditions on full
binary trees A:

P.1 Each point in A lies below a maximal point.
P.2(n) Each path through A has cardinality at least 2"-2.
P.3(n) For all ae A and m<2", if some path through [a) has cardinality m, then every

path through [a) has cardinality m.

8.15 Proposition (Doets [A]). If A and B are full binary trees, and both satisfy P(n), then A="B.
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8.16 Corollary. SP,e E(TR®@).
Proof: Suppose SP,=yp(, and mk(c)=n. Let B be a full binary tree all of whose paths have
cardinality 2"-1. Since BI-SP, by 8.9, and B satisfies P(n), & (and hence SP,) must hold in every

full binary tree that satisfies P(n). Now let A=NU(NxB), with <, extending the natural ordering
of N as follows:

n<(m,b) iff n<m;
(n,b)<(m,b") iff n=m and b<gb'.

{118 \2/
oa NS
N

Then A is a full binary tree satisfying P(n), hence Ako, and AFSP,. But setting
V(p)=\u({n}xB|n#2(mod 3)) and V(gq)=U({n}*Bln#1(mod 3)) (cf. 3.8) we find (AV)IfSP,: a
contradiction. ]

8.17 Width

The width of a frame A was defined in 2.9 as the least upper bound of the cardinalities of antichains
in rooted subframes of A. For neN, we shall denote the class of all partial orderings of width at
most n by PO,

Hardly any width is needed to get nonelementary I-formulas.

Example. The earlier example 6.8(b) can be adapted to show that E(PO )= Let y,:=pAgq,
Yy:=pA(g—r), and Yy:=(p—r)Ag; set

0:=(V14a3(Wi2n Vigaa¥) = Vi (W)

Note that SP,=@[r:=1]. In SP, we had Fy——y and the like; here
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(*) for 1<i#j<3, il s

Let A be as in 6.8(b), except that the ordering is supplemented by
b,<b, if m2n and m=n (mod 3).

The top of the resulting frame is shown in the diagram below.

b, b, bo

SRR

We want to show that Al-¢. Take any valuation V on A.

Suppose i, j are distinct, 1<i, j<3. Suppose some b, realizes {Ty;,Fr}. By (¥), bmlH-\yj ifb, <b;
and b, \rif b mtVj and b, 2 b,. Therefore b mt VT b, -V, (y;—r) for all neN; and a fortiori
b,Feo.

Now suppose some a; forces V(y;—r)— Vy;. We want to prove that a; - V(y;—r); then we may
conclude that (A,V)k. It will suffice to show that a,, I V; for all m<k, since +Vy;—V(y;—r)
is an easy consequence of (*) (assume any y;; then for j#l,\yj—)r by (*), hence V(\u‘—)r)) We have
ayl-V(y;—r) because V(y;—r) is a tautology and aj is an endpoint (cf. 2.5). Since q;<a,
ayl-Vy;. Now suppose m<k, and a,, I+ V;. Since b,V (y;—r), and a;<b,, b,_IF Vy; as well.
By (*), there is some / such that both @, y,—r and b, Fy,—r. Then a,, Fy;—r; or alhy,
and alifr for some a2a,, ., and then a=a, , since a,, and b,, are the covers of @, ;. In the first

case, a,, 1 FV(y;>r), hence a,, ,FVy;since a;<a,  ,; in the other case a,,_ kY, so
a,,,1FVy; is immediate.

As before, take a nonprincipal ultrafilter U over N, and consider [I;;A. The ultrapower can be
pictured clear enough with the help of £0§'s theorem. It has width 4, since it must satisfy the
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Ly-sentence
Vx xox3%4 V(xi.<_xj| 1<i,j<4).

It ends in an isomorphic copy of A. For the rest, it consists of pieces which are like A, except that
they have no endpoints. In a diagram (where the broken lines must suggest an infinity of points):

In particular, we can find c,, d, (neN) in [1;A such that each c, is covered by d, and ¢, ;, and
d, 3 covers d,. Let X=n,[c,).
Now we define a valuation V on [I,A by

V(p)=[d;)Uldy)X; V(g)=[dy)uld))UX; V(r)=X.

Then ds, ;F{Ty;Fr}. Moreover, if u2c;, then u is some dj,,,; forcing \;, or ue X and ulFy, or
u=c, for some neN, and ulf(V¢;c3(y;—7); hence c1F(V4;3(W;=7r) -V 3¥;. We conclude
that ¢, If, and therefore [1;,Alf¢. Hence @ is not elementary on PO, by 6.7.6.

An open problem. Since LO\¢ iff PO, I-¢, E(PO,)=I by 7.5 and the logical equivalence in
4.8. There is a gap between this result and the example above, which I have not been able to fill in.

8.18 Height. As example 6.8(a) shows, not every I-formula is elementary on the class of all
frames of height at most 3. If we reduce the maximal height by one, the problem of first order
definability becomes trivial: take L, T, or an L-sentence stating that the number of strict
successors of any point does not exceed a suitable finite bound.
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We are going to show that E(TR) is decidable. The argument centers on binary trees (we establish
that E(TR®)= E(TRY)), and the difference between validity on all binary trees and validity on finite
binary trees.

9.1 Every I-formula that is not universally valid, can be refuted on a binary tree; but not necessarily
on a finite binary tree. The second of these well-known facts may be substantiated by SP,: example
8.9 implies that SP, is universally valid on the finite binary trees.

As to the first, suppose ¢, and let (X,S) be a minimal refutation of ¢, with root x,. Then build a
binary tree T of sequences of elements of X (ordered by initial segments) as follows: start with
(xg)- If (xq,...,x,) has been put into T, and does not yet have strict successors, and
S(xn)={x"+l,...,xk}, see if k—n<2. If it is, add nodes (xo,...,xn,xj) for n<j<k. If it is not, add
(X Qoo sX s X g 1)s (XQooesX psX )y wees (XQseeesX poeeesX s Xp) (with x, repeated k—n times) and
(xyer-sXpsee-X,) (With x,, repeated k—n+1 times). For example,

(x(yxo’xo,x Orx 1)

Eg*o*X2*4) EgXpX2*s) g -Xg) EpXgXgexs)

X4 Xs Ey* X2 (M)
I >< | may become 0\ /
B T T &gx,) &eXo)
N X,/
0

)

Mapping each sequence to its last element gives a projection of T onto (X,S).
By proposition 3.7.3, (X,S) is strict; so x, _; above contains more formulas signed T than x,,.
Since X is finite, it follows that every point of T belongs to a finite path. In all, we have proven:
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Lemma. If an I-formula is refutable, then it is refutable in a binary tree in which every point has
maximal successors.

9.2 Example. It is not so difficult to see that, for any tree C, SP, is refutable in C iff either some
point of C has three covers (or more), or C contains a copy of the 'infinite comb' A of 2.11.9. The
direction from right to left is standard: use 3.8, 2.11.10, and preservation under p-morphism
(lemma 2.4.2). For the converse one uses a projection of C onto the tableau of 3.8 — if no ce C has
three covers, there must be an infinite chain of points mapped to the root of the tableau, with side
branches. Such a projection must exist, since the tableau of 3.8 is essentially the only
multirefutation of SP,. (Similarly, for Ce DLO: CISP, iff some ce C branches into an antichain
of three elements, or C contains an infinite comb.)

Now we have an easy intuitive reason why SP, is not elementary: in a first order language, we can
say that some pattern recurs ad infinitum; but we have to give conditions under which it recurs, and
these conditions must be finite in some way. One cannot decide whether a point belongs to an
infinite comb by looking at patterns whose size remains below some fixed finite bound.

Some additional knowledge about a tree C may make all the difference. Suppose we know that C
does not contain a copy of the tree

(cf. T in 8.2). Assume for simplicity that C is binary. Now if SP, is not valid in some point ¢, with

two covers ¢ and ¢4, we know which one of ¢y, ¢, leads to an infinite comb: the one that has

incomparable successors. And indeed, with Comp(u,v)=(u<vvv<u) as before, CIfSP, iff
CkAx[Ju,v2x.~Comp(u,v)AVy2x(Ju,v2y.~Comp(4,v)—>Iz>yu,v2z.~Comp(u,v))].

To prove that the second conjunct of the above Lyy-sentence is necessary, one uses that C does not

contain a copy of T.

9.3 Definition. For each ne Z*, we fix a full binary tree F ,» in which every path has cardinality ».
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The class of all trees into which F, can not be embedded, we denote by T,

Observe that each T, is the intersection of TR with an elementary class. A defining axiom can be
constructed from the diagram of F, in a familiar way: let 8 be the conjunction of the diagram of F;
&' the result of replacing the individual constants in & by distinct variables v,...,v,,; then an
Ly-sentence defining T, is =3v,...v, 8"

9.4 The approach of example 9.2 can be generalized. Let us assume that we have proved E(T,)=I.
Let @e I be given; we are after a first order equivalent forgon T, ;. Let Ae T, ;. If [a)4€ T,, we
have a first order sentence o such that [a)Fa iff [a) -, by hypothesis. Now consider the points a
such that [@)e T,. Their disposition is constrained by

NN

hence:
Lemma. If Ae T, ;, then {ae Al{a)e T ,} is a chain.

Let us write F, for {ae A|[a)¢ T, }. F, may be finite or infinite.

(A) If F 4 is finite, then the difficult part of A is inversely wellfounded, and in view of §8, it seems
we are all set if we can combine refutations on separate parts of A (cf. 9.6 below).

(B) If F, if infinite, then it is a path in A. Again assuming that valuations can be properly
combined, we should be able to give a first order definition along the lines of the example.

9.5 Definition. Let X be a sequent. We abbreviate AZp— VI to yy.

The connection between Z and Yy is: for any model (A,V), for any ac A: alfyy iff Ja’ 2a.a'IFE.
Hence Alfyy iff T is realizable in A — that is, (A,V,a)I-Z for some a€ A and some valuation V on
A.
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9.6 We need a few lemmas to infer refutability from refutabilities on subframes. The first is an
obvious fact about restriction to signed subformulas of a given sequent.
9.6.1 Lemma. Let X=(X,$) be a multitableau, and X a sequent. Define for xe X:
o Z=xNSE(Z).
Now let X [Z be (X[=, $ [%), with
X[z={x[ZpeX};
Se(® [2)x[z) iff Jye XIATe S )y [2=x[Z & S={z[Zlze T}].

Then X [ £ is a multitableau; X [ is open if X is open. If g is a projection onto X, then g’,
defined by g'(a)=g(a) [%,isa projection onto X [z

9.6.2 Lemma. Suppose Ae DLO; and X is a sequent. If Alfyy, then there exists a projection of A
onto an open Z-multitableau with root containing .

Proof: If Ay, then by theorem 3.12 there exists a projection of A onto a multirefutation of Y.
By the preceding lemma, these can be turned into an open Z-multitableau X and a projection
g:A—»x. Let -*=(X,§); we regard X as a frame with ordering <.

Suppose ZCZye X. Fix a maximal successor =" of Zyin X. Let

Ap={ae AHa'<a.g(a)=%;}, and
A ={ae A-Aj|—Ta’ 2a.g(a")=Z}.

Obviously, A is upwards closed; and A; is upwards closed because A is downwards linear.
Define X'=(X",$") by

X'={xe X'|Zy<x};
for xe X', &' (x)={SNX'|Se H(x)}.
Clearly, X' is an open Z-multitableau. Define h: A~X’ by

h(a)=g(a) if ac A,
=" if aeA,,
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=X otherwise.

Then 4 is a projection of A onto X'. Since X, is the root of X', we shall be done once we have
proved this.

1° h is a homomorphism. Suppose a<,b. Since A is upwards closed, ae A, implies
h(a)=g(a)<g(b)=h(b). Since A, is upwards closed, ac A, implies h(a)=h(b). Otherwise h(a) is the
root of X".

2° h satisfies condition (ii) of definition 3.10 because g does. In particular, if ae A-(AjUA,), then
Ja’ 2a.g(a)=Zy; so if S'e H'(Zy), then S'Cgla)Cgla). a]

9.6.3 Lemma. Suppose Ae DLO and Z, Z,,..., £, are full realizable sequents such that
2Tcz T,.,Z,T, and whenever F(¢—y)e T and Toe Z, there is some Z; (1<i<n) such that
F(p—Wy)e Z;. Let CCA be a chain, BCA an antichain, such that CnB#@ and A=CUU,_g[b),.
Suppose there exists a partition {Bj,...,B,} of B such that

(i) Vi(1<i<n) Vbe B, [b) yy ;

(ii) Vce CVi(1<i<n) Jbe B;.b2c.

Then Alfysy.

Proof: By (i) and the preceding lemma, if be B; for some i (1<i<n), then there exists an open
%;-multitableau X,=(X,,$,) with root £, D%, and a projection g:[b)—»X,. Define X=(X,8) by

X={Z}0Upe pXps
for xe X, B (x)=U(Hy(x)|be B & xe X)) V{{Z,|lbe BN[c)}x=E & ce C}.
Then X is an open tableau. First, ZTgaT for all be B, since for some i (1<i<n), £,C%,. Second,
if F(9—Vy)e X and Toe Z, then F(¢—y) belongs to some Z;, hence, by (ii), for any ceC there

exist b2c with F(p—oy)e Z,.
Define a mapping g of A onto X by

g(a)=g,(a) if a=be B;
=X if ae C.

Then g is a projection; in particular, {Z,|be Bn[c)}Cg[c) for all ce C.

But for some straightforward emendations (some signed subformulas of yy may have to be
added), X is a multirefutation of 5. So Alfyy by 3.12. o
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9.6.4 Lemma. Suppose Be TR, and ACB is a strong subtree in which every point has maximal
successors. Let {a,lic/} be a set of endpoints of A. Let C:=AUU, /[a;)g. Then for all ¢, B¢
implies Cl-¢.

Proof: Let f be a p-retraction of B onto A such that
(1) Vbe B: {fib)}o([b)gnA)=[f(])).

(Such f exist by 2.11.8; cf. 2.11.9(b), 2.11.10.) Suppose Clf¢; let g be a projection onto a
multirefutation X=(X,&) of o, as in 3.12. Pick for each ic/ a maximal sequent x2xg(a;). Now
define h:B-X by

h(b)=g(b) if Jie I.b>a,,
=x; if b and g; are incomparable and f(b)=g;, for some i€l,
=g(f(b)) otherwise.

We will show that 4 is a projection; then by 3.12, Blfg.

1° Suppose b<pbh’; we want to prove h(b)<xh(b’). If b>a;, then b’ >a; as well, so
h(b)=g(b)<g(b")=h(b"). If f(b)=a; and b is not comparable with a;, then b’ is incomparable with a;
by transitivity of < and by downward linearity. Since f(b")2f(b) and q; is an endpoint, h(b")=h(b).
Otherwise, if b’ >a;, then b<a; by downward linearity, so f(b)<f(a;)=a;, whence
h(b)=g(f(b))<g(a;)<g(b’)=h(b"). If f(b')=a;, then f(b)<a;; so if h(b')=x,,
h(b)=g(f(b))<g(a;)<x=h(b"). Otherwise h(b)<h(b) because both fand g are homomorphisms.

2° We must show that A satisfies condition (ii) of definition 3.10; i.e.,

Vbe B3Se $(h(b)).SChI[b)g].

The only nontrivial case is the one in which h(b) is defined by the last clause of the definition of A.
So suppose h(b)=g(f(b)), and

(2) if f(b)=a,, then b<a,.
Since g is a projection, there exists Se &(h(b)) such that S Cgllfd)) ). It will suffice to show that
gl IChl[b)p].
Suppose c2f(b). If ce A, then by (1) either c=f(b) or c2b. If c¢ A, then c>a; for some i with

a2f(b). By (1), a;=f(b) or a2b; by (2), a;2b. So if c>a2f(b), then c>b. We conclude that

) cS{f(b)}ulb)g.
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Since f is the identity on A, h(c)=g(c) for all ce C. Therefore

8LIAB) c)=hLIAB)) ) Sh{f ) YU[b)gl=h{f(b) }Uh[[b)g]=RI[P)g],

since hf(b)=gf(b)=h(b). ]

9.7 To combine first order definitions, we must relativize L-sentences.
Definition. Let ae ]LO, and let u be an individual variable that does not occur bound in .. The
relativization a* of a is defined inductively as follows:

(i) a¥= o for atomic o and a=1,T;

(ii) (B-Y)“=p*—7Y*, and similarly for A, v, —;

(iii) (VvB)4=Vv(v2u—p%) and (IvB)“=Tv(v2usPY).

Observe that Aka[a] iff [a)4Fo.

9.8 Lemma. Let K be a class of frames, and F@ewAay. Then if y,xe E(K), e E(K) as well.

Proof: If y=ga and x=gB, then g=yoAP. ]

9.9 Theorem. For all ne Z*, E(T,)=I.
Proof: Induction over n. Since T =@, the basis is trivial.
Suppose that E(T )=I, and g 1. We want to prove that ¢ E(T,, ;).
Let S be the collection of all full realizable subsequents ZCSf(¢). S is partially ordered by the
relation < defined in 8.3.1. We shall prove
VZeS.yzeE(T,)
by induction on the number of strict successors of Z in (S,<). This will suffice by 9.8 and

(1) Let S'={Ze S|[Fpe L}. Then Fo> Ny gVs5.

This statement holds because for any model & and any point a in &, alfe iff 3Ze S'.al . (Take
2=®<pg(a).) Since if al-@ no a’2a realizes any Ze §', Fo— Ay gWy. Conversely, al Ay, sVYs
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implies that alfZ for all Ze S".
Now let Ze S. Let Sy,...,S; be all the subsets S" of S such that

@ Z<8";

(ii) if F(y—y)e X and Tye X, then some Z'e S" contains F(y—Y).
By our major induction hypothesis — E(T,) = I - we have an Ly-sentence [ such that

@ ﬂﬁETn‘I’z-
The second induction hypothesis is

(3) for all Z'e U, ,;;S,;, we have an L-sentence By such that <By=r . 5.
Let B, be an Lyy-sentence such that

(4) VAEeTR : Ak, iff AeT,.

Suppose §; = {}:i,l,...,z,.,m,}, 1<i<k. Using (3) we can construct L-sentences 8;=8,(u,vy,...,v,,)
such that

(5) VAeTR : AkSi[a,al,...,amt] iff a,,...,a,, are distinct covers of g,
1
and for 1<j<m;, [aj) 4FBs. .
“)

Take 8=
/\ISjSm, [u<vAVV(usv<vi—vsu) A

J
/\(—nvj Svjl 1<) 1#j,5m; ) A /\lsjgnt(ﬁz[f’j].
The formulas 8,- correspond with case (A) of 9.4.
Using (3) and (4) we can construct Ly-sentences €;=€,(u,v,...,v,,,), for 1<i<k, such that
(6) VAeTR :Ahei[a,al,...,aml] iff {a,al,...,am‘_} is an antichain,

[aj)':BzL’.for 1sj<m,, [a)A’:B,,,
and every a; (1<j<m;) covers a predecessor of a.
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Take €; =
/\(—|Comp(u,vj)l 1gj<m;) A A(=Comp vl 1gj<l<m)) A
N (Bzg,)vjl 1sj<m; ) A B“ A
A(v(vey—v<u) | 15j<m;).

The €; are meant for case (B) of 9.4.
Now let y be

Iw[-B,ABIY v
[BAV <<l Euvl,...,vmisi vV w( Bn—)auvl,...,vmiei o)

(The first disjunct of y deals with the possibility that ¢ is refutable in a subframe [a),4€T,.) Our
aim is to prove that

V=1, 07
LetAe T, ;and Fy={acA|[a)¢ T,}, as in 9.4.

(I) Suppose (A,V)iyy, and Ak—3w[— B,AB]¥. Then F,D{ac A |a Ify5}, by (2). Let F*:=
{aeAlalFX}. By 9.5, F* is a subset of F,. For ae 4, let

@(a)=®¢(A-V)(a)= {ce Sf(Fo)lato};
50 O(a)e S for all ae A. We distinguish two cases:
1. F* has a maximal element a*. Collect covers a,,...,a,, of a* such that
(a) if F(y—>Y)e Z and Tye Z, then for some a; (1gj<m), F(y—y)e @)(aj);
(b) if 1<l%/<m, then ©(a))#O(a)).

Then for some i between 1 and k, {©(aq,),...,O(a,,)}=S;, and since by (3) [aj)hBe(aI) for 1<j<m,
AKdfa*,ay,...,a,] by (b) and (5).

2. There is no maximal element in F*; then F* is an infinite upwards closed chain in A, by 9.4 and
since F*CF 4. Suppose byl-Z. Then a,,...,a,,& F* may be found satisfying (a) and (b) of case 1,
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and covering elements of F*N[ by). Then a,...,a,, are mutually incomparable; by 3), [aj)hBe(aj)
(1<j<m). Since F* is infinite and A is a tree, there exists be F* incomparable with a;;,...,a,,.
Again, for some i (1<i<k), {©(q,),...,0(a,,)}= §;. By (6), we have

AFg; [by,ay,.-,a,,)

This process may be repeated with b, instead of by, and so on ad infinitum. At least one S; must
recur infinitely often; then

AEVYwW(B, =3uv,..v, EJ*.
'

(I) Suppose AFy, we must show that Alfys.

If Ar3w [-B,AB]Y, then Alfyy by (2) and 2.4.1.

If Al=8i [a,al,....,amlj, then we can apply lemma 9.6.3 with C={a} and B={a1,...,a"li}, proving
{a}u U([a)|15j<m) W y5 . By lemma 2.11.6, {a,al,....,aml} is a strong subtree of A; hence by
lemma 9.6.4, Alfysy.

If AEB AVW(B,—3uv,,...,v, €)%, we can construct a strong subtree B of A as follows. Let b
be the root of A; then b'oe F,, and there are al(o),...,ami(o), b,;2b, such that
Akei[bl,al(o),...,amgo)]. Then By:=(b,] U{al(o),...,am'fo)} is a strong subtree of A, with endpoints
2/©,...a,\? and by, and by F 5. (The canonical embedding By>A is strong by lemma 2.11.6.)
Continuing with b;, and so on, we find (B,|ne N) such that B:=U,B,, is a strong subtree of 4, as
shown in the picture, with endpoints a,®,... am,f") (neN).

Since [aj("))szl., [aj(")) II;‘\yzl‘by (3). Since S; satisfies (i) and (ii) above, we get
j j
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BuU ([a{M) 4| neN, 15j<m)) Wy

by lemma 9.6.3. By lemma 9.6.4 we conclude that Alfysy. 0

9.10 Definition. The class of all finite binary trees will be denoted by FTR,.

9.11 Theorem. If TRACKCTR, then E(K)={¢eI| ¢ or FTR,lf¢}.

Proof: Let ®:={ ¢el|+¢ or FTR,f¢}. Suppose TR CKCTR. Then obviously
E(TR)CE(K)CE(TR®). We claim that (1) E(TR@)C®, and (2) ®CE(TR).

As to (1), let ye @, and suppose Y=yg@), with mk(a)=n; set m=2"-1. Since ify, by lemma 9.1
there is a binary tree A in which vy is not valid (since ye @, A must be infinite), and in which every
point has maximal successors. We may extend A to a full binary tree satisfying P(n) (cf 8.14); then
still B Iy, since A is a p-retract of B(2.11.12). Hence B¥a. Since F,, satisfies P(n), F, }fa. by
8.15. Consequently, F,, Wy, contradicting ye ®.

To settle (2), suppose @€ . If ¢, then 9=T. If FTR, {9, then for some m, F, ¢ (as before,
extending a given binary tree and using 2.11.12). By 9.9, there is some a.e L such that p=go.
Take B,,€Ly such that AFB, iff A¢T,, : then @=ggoA— B, For suppose Ak B, ;thenF,
is a p-morphic image of A by 2.11.12, hence Alfo. n}

9.12 Corollary. If TR@CKCTR, then E(K) is decidable.

Proof: We have seen in §3 how to decide whether @€l is universally valid. A related procedure
decides whether FTR,I-¢: try to construct a monotonic refutation of ¢ in which |S(x)|<2 for each
sequent x. If there is such a refutation, then the induced model can be unfolded to a finite binary
tree in the standard way. Conversely, if Ae FTR, and (A,V) Ifo, then a refutation as described
can be obtained from (4,V) by the method of §8. Begin with a maximal node a;lf¢, and let
@(a0)=€-)¢(A'V) (ag) be the root of the tableau. If a,,a, are the covers of a;, ©(ap)< O(a,),0(ay) is
guaranteed by the maximality of a, Set S(®(a;))={©(a,), ©(a,)}. Repeat this for maximal g;" with
©(a;)= ©(a)), for i=1,2 - for i=1 only if ®(a;)=0(a,). Continue in this way with new sequents
(-D(P(A'V)(a), up to the endpoints of A. Since in a simple tableau each sequent has just one successor
set, you need not look at successors of a if ©(a) has been processed earlier in the construction.
0
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9.13 Examples

(a) Recall the stability principles (6.4). Example 8.9 implies that FTR, I-SP,. By very similar
reasoning, FTR, ISP, for all n>1. Hence by 9.11 and 6.4, SP,e E( TR) iff n=1.

(b)Let pg,...,p, (n21) be distinct proposition letters. The n-ary branching restriction BR,, is the
formula

Nicn @iV )V jaip) > Vi pie
(De Jongh & Gabbay [1974]). It is known (and may be checked in a straightforward manner) that

BR,, is refutable in a finite tree A iff A is not n-ary. Consequently, BR, € E( TR) iff n=1.

9.14 One might have hoped that the above procedure would also work for DLO. It does not. In
particular, E(DDLO)# E(TR), and if we let D, be the class of those downwards linear orderings in
which F, cannot be embedded, E(D;)#I. (N.B.: E(D,)=E(LO)=L, since frames in D, are disjoint
unions of linear orderings.)
Example. Let ¢g:=(p——gv——q)v(—p——qv—-—q). We sketch a refutation of ¢
F(P\
Tp ,F—~q ,F—~—q T-p ,F—q ,F~—

T T—q.Fg

@ is deterministic. Projection of F5 onto the tableau above is the only F¢-labeled frame with
downwards linear domain. By lemma 7.3 and theorem 7.4, for Ae DLO we have

Alf@y iff A has a minimal Fo-labeled subframe iff F5 can be embedded in A

iff Ag D5,
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Hence FTR,lf@oASP,. By 9.11, ASP,e E(TR). But ¢oASP,2 E(D3): consider example
6.8(b). In the frame A in that example, ASP, is valid; D5 is elementary, and closed under
disjoint unions and generated subframes; so, since QyASP, is not valid the ultrapower [1 4,
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This section just contains a few examples. We show that the formulas BR,, of which only the first
belongs to E(DLO), are elementary on FPO. A theorem of Doets [B] (stated in 10.3) provides a
method to prove nonelementarity. We shall find that not only E(FPO)ZE(DLO), but E(DLO)¢
E(FPO) as well.

10.1 Branching restrictions
Let B, (u,vg,...,v,) (n21) be the Ly-formula
Nigp 4<v; A N\ (—v;Svj | ij<n and i) A

A

i<n

i<j<n Yw (uSvai,vj = Ny WSVp).

Then A k Bn[a,ao,...,an] iff {ag,...,a,} is an antichain and a branches into {ay,...,.a,}. Set
a, =Vuvy..v, =B,
Recall the formulas BR,, (n=1) of 9.13(b). Quite analogously to that example, it may be shown that

BR,, is refutable in a finite partial ordering A iff Ak Juv,...v, B,; thus BR, =gpg @, (Cf.
the remark below.)

Remark, On the class of all frames, the formulas BR,, are essentially second order. Yet in a way
they are not very complex. We can state a necessary and sufficient condition for BR,, to be
refutable, in terms of only points and the ordering:

*) A W BR, iff AF3uv,...v, B, or A contains an infinite comb.
(*) can be formulated in the infinitary language L, ;. We will show how to construct a valuation
refuting BR if A IF Ju Vg e Vp Bn; the other case is similar (cf. the treatment of SP, in 3.8).

Suppose A F Bn[a,ao,...,an]. We may assume that a is the root of A (2.4.1). We are to define a
valuation V on A such that

(A V,a) ¥ /\iSn (p;— Vj#pj) - Vj:sipj) - Vi, P;-

Fora' e A, let
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a'e V(p) iff Jj#iza’'< aj.

Then V(p;) is upwards closed, for if a’ ¢ V(p;), then a’ precedes some a; with j#i; then so does
every predecessor of a’.

It is easy to see that a If p;, for all i <n; and that g; I p;, while a; If p; for all j#i.

By Bn, any a’ € A either precedes all the a; (i<n), or precedes at most one a;. If a’< a;, then a’ If
pi— Vj#.pj. Hence if @’ < a,...,.a,,a’ If p; — Vj#pj for all i<n. If a’ precedes only a;, then

a’kp,soa’ V; i Pj for every i'#i. Finally, if a’ does not precede any of ay,...,a,, then a’ I p;

for all i<n. Therefore alk N, (p; = J*‘pj) - Vjﬁpj). Since @’ If V¢, p;a’ ¥ BR,.

10.2 For each n € Z* we define a sequence of frames A,, A,’, A,", ... as follows. A, consists
of nodes g; (i<n), b; (i<n) and c; c is the root, Cov(c) (the set of covers of ¢) is {bgs---sbp_13
Cov(d) = {ai,aj}, where j=i+1 (mod n), and the q; are endpoints. Below is a diagram of A,.

IXXA
\

Let us write s for s with m primes. The frame A,(™ consists of m+1 copies of A,, with the
roots identified. Formally, we put A,(™ = {c} U {g;¥),b,®) | k<, i<n}. The order extends that on
Ay by Cov(c) = {50 | ksm, i<n}, Cov(6®) = {a¥), a®)} with j=i+1 (mod n); the a®) are
endpoints. Below is a diagram of A"

N
N 7
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10.3 Proposition (Doets). If / > 2%+2-3, then A, =" A,,".

10.4 Example (Doets). Recall from 6.8(a) that
SC=[(—p->p)opVv-pl>—pVv—p

The frame A in 6.8(a) is one half of an infinite version of the frames A; defined above. In
particular, A, I- SC for the same reason as A I SC: if (A,,V) Iif SC, then cl-(—~—p—p)—pv—p,
and there must be g;, a; with j = i+1 (mod I), one of which forces p, while the other forces —p.
Then b; F ——p — p, hence b; Fp v—p, so b;I-p or b;F—p. But whatever b; forces, a; and a;
must both force: which they fail to do.

On the other hand, it is easy to see that A" W SC: let V(p) = {g; | i<l}; then b; If =——p — p,
b/r—p, and ¢ F (-—p = p) > pVv —p,c f =p v ——p.

Now suppose that SC is elementary on FPO; say SC =gp( 0. Let rnk(at) = n and m>2n+2_3,
Then A, F a,s0 A,,'F o by 10.3; hence A,," F SC by the assumed equivalence, contrary to
what has just been shown. We conclude that SC ¢ E(FPO).

Remark: We will prove in the next section that SC € E(DLO) (11.4). Thus, the example shows
that E(DLO) ¢ E(FPO).

10.5 Further examples
The proof of proposition 10.3 consists of a consideration of Ehrenfeucht games. Roughly, as /
increases it takes longer (= takes more quantifiers) to tell that an g;’ is further removed from an a;
‘than any a;. This suggests the following, trivial, generalization:
Corollary, If 1> 2#+2-3, then A; =" A (™.
(@) Recall that SP, is

(2OVAYV=Y = OVYVY) — OV VY
with ¢ = pAq, Y = pA—q and ) = —pAg. Similarly to the example above, one can show that
A[FSP,: if ¢ IF m@v—yv—)x — @vyvy, then since each b; has only two strict successors,
bjrevyvy. If b; I @, and g, a; are the covers of b;, then q; and a; both force ¢; then bj must

force ¢ as well. Proceeding in this way, we find that all b; force ¢ (or all force W, or all force ¥).
So A; I SP,, and since A, I SP, (cf. 8.9), it follows that SP, ¢ E(FPO).
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(b) SP, was generalized to a sequence (SP,),cz+ in 6.4. It can be shown, by an argument
resembling that of (a), that A; F SP, for n>2; it is straightforward that A I SP,. Thus
SP,¢ E(FPO).
Recall that SP,, was defined as

(Van —9; = Van (pj) - Van —0j,
with ;= A, (—Yj® p,, where k is the least number such that 2%2n+1, f, ..., fok_; are the
functions from {0,...,k—1} into {0,1} in lexicographical order (O preceding 1), and (—.)Opi =p;

(—|)1p,- = —p;. A necessary and sufficient condition for SP, to be refutable in an arbitrary frame A
seems essentially harder to formulate than for BR,. The following would do:

for some a € A, there is a partition {A,...,A,,B} of [a), in which A,...,A, are
upwards closed, a € B, and every element of B has successors in each A ¥ @<n).

The idea is to make A ;= V((pj). This condition is more complex than (*) in 10.1 in that it involves

quantification over sets.

10.6 On DLO every I-formula has an equivalent in I[v,—] (theorem 4.7.6); on FPO this is not
true (cf. 4.5). Now the contrast between the formulas BR,, (first order definable by 10.1) and the
formulas SP, raises a question, which does not seem easy to answer:

are all I[v,A,—]-formulas in E(FPO)?

The answer might help to clarify the role of negation.

10.7 A-definability

Every subclass of FPO that is closed under isomorphism is A-elementary. For suppose K C FPO
is closed under isomorphism. For every A € FPO - K, we can take the conjunction 8, of the
diagram of A, and turn this into an Lj-sentence 84' by exchanging constants for variables and
quantifying existentially. For every n € N, there is an L-sentence x, such that, for A € FPO,

Akx, iff |Al=n.
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Then K is defined by {—(84' A X | A € FPO -K}.

It follows that on FPO every I-formula is A-elementary. So in FPO A-elementary I-formulas need
not be elementary; in contrast to the elementary frame classes (cf. 1.9).

95



§11. Monadic formulas

For a proposition letter p, we let I(p) be the set of all I-formulas that contain no proposition letters
other than p. The logical structure of these ‘'monadic’ formulas is completely known. Using this
structure, we prove that all monadic formulas are elementary on DLO (11.4), and establish for the

classes PO and FPO which monadic formulas are elementary on them. The results are tabulated in
11.9.

11.1 The Rieger-Nishimura Lattice

Let M,, | n € N) be the following sequence of I(p)-formulas:
MO=J.,M1 =p,M2=—|p;
forodd n>2, M, =M, ,vM, ;
forevenn>2,M, =M, , > M, ;.

T

NN
N
NN
AN
NNPZAN
N\,
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It may be shown, by patient induction, that every I(p)-formula is logically equivalent to some M, ,
or universally valid (logically equivalent to T). (This was first done by Rieger [1949], and
independently by Nishimura [1960]. An idea of the proof can also be gained from Gabbay [1981].)
Similarly it may be established that M, — M, precisely when this is (inductively) obvious from
the definition. We get the following neat picture of the Lindenbaum algebra of intuitionistic
propositional logic restricted to I(p) (the free Heyting algebra on one generator!, sometimes
referred to as the Rieger-Nishimura lattice). (On the previous page.)

There is a general method for turning complete Heyting algebras (= pseudo-Boolean algebras) such
as this into equivalent2 frames (Raney [1952]). It consists in selecting those elements of the
Heyting algebra that are not the join of all strictly lower elements, and inverting the ordering. The
above then becomes (observe that 0 = V@) the following frame M:

1 2

4

8 10
12 14
16 18

11.2 Examples. Several I(p)-formulas have appeared in earlier sections. The principle of excluded
middle, pv—p (6.3(a)) is M. By the rules for constructing the sequence (M,),, M would be
—p—p. Here, however, a simplification is in order: +(—p —p)¢<>——p, hence we may take M, =
——p. A more sweeping simplification is as follows: for odd n>5, M,=M,_;vM _,=
M, _3-M, y)vM, svM, 4 since M, 4 — M,,_3 o M,_4), we may reduce M,, to M, vM, ;.
Then Mg=—pv——p =KC (1.4, 2.6). Next, Mg would be =——p—p v—p; simplifying once more,
we let Mg=——p—p. In fact, for all even n26 we may take M,=M, ,—>M, s: for
M,=M, _,-M, 4vM, 5, and M, =M, ,—M, .. (To algebraists all these reductions may have
been clear from the diagram.) Then finally, SC = [(w—p—p)—p v—pl—=—p v——p =
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11.3 Minimal refutations.

There is an intimate connection between the frame M and the minimal refutations of the monadic
formulas.

Define a valuation V on M by V(p) = {1}. Then k& + M, iff + M, =& M,, as can be shown by
induction over the sequence (M,),.. Indeed, the cases n=0,1,2 are easily calculated. If n>2 and n is
odd, k+ M, iff k F M,_; ork F M, _,. So by induction hypothesis, k¥ + M, implies
FM—>M,_; or FtM;—>M, ,, hence + M; —» M,. Conversely, if -+ M;—M, , then by the
Rieger-Nishimura latice, k=1 and n>3, whence k I+ M, by k- M,; or k is even, and n=k+1 or
n>k+2. If n=k+1, M, = M, v M;_;, and k I+ M, by induction hypothesis. If n>k+2, then
FM;—M,,_,, and & I M by induction hypothesis.

Let M := (M,V). Define a refutation 36,1 = (X,,,S,) of M, as follows. Let k be the highest element
of M that does not force M, in M. Then let X,, be the image under emFM of [k)y; and x €
sn(emm(z)) iff x is the image of an immediate successor of /in [k),,. )

In fact, 36; is the unique minimal refutation of M,,. Note that k in the definition of X, is 1 if
ne {0,2}, n+1 if nis 0dd, and n-2 if n24 and n is even. The minimal refutation of My is presented
by

I F(pv —p),Fp ,F=p |

If n>4 is odd, then FM, decomposes to FM,_;, FM,,_3; which gives rise to distinct strict
successors {TM,_3, FM, 4} and (if n27) {TM,,_s, FM,_¢} ({Fp} if n=5). If n>4 is even, FM,
reduces to {TM,,_,, FM, 3}, with successors as for FM,_;. Clearly (X,, 536.) = (k)

Thus each M,, has a single minimal refutation 36” = (X,,, S,). Moreover, if x,y €X,, and xLc yT,
then x %Y therefore the induced ordering in any tableau (X, S) is S'% Now suppose f: A ——» X
is a minimal FM, -labeled subframe of a frame A. Then every component of X has 35,, as a
subtableau. By minimality, each component has the same sequents as xn (cf. definition 7.2.2).
Since Sx‘is maximal, the induced frames of X and 35,, must be the same.

Since every point of M has at most two covers, the result of unfolding a frame [k),, to a tree is
binary. Let us denote this tree by T). Now suppose A € DLO, ¢ € I(p), and A I¥ ¢. For some
neN,F 9> M,,s04A I M,. By lemma 7.3, A has a minimal FM, -labeled subframe f: A —— X
We have seen that we may assume X = X, . Now if [k), = X,,, domf= T}, since A € DLO. This
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proves:

Lemma: For each ¢ € I(p), there is some k € N such that for all A € DLO, A If ¢ only if T; can
be embedded in A.

11.4 As we have just seen, each formula M,, is refutable in a finite binary tree; so by theorem
9.11, M, is elementary on the class of trees. The above lemma allows something stronger,
however.

Theorem: I(p) C E(DLO).

Proof: Suppose ¢ € I(p); let k be as in the lemma. There is an L-sentence &, such that for
AeDLO, ArS, iff T;, can be embedded in A. We show that ¢ =p; o —8,.

(=) Suppose A € DLO, A F §;. Then by 2.11.12 there exists a p-morphism g: A —» T}. Since
T, it ¢, A lf ¢ by 2.4.2.

(<=)If Ae DLO and A I @, then by the lemma T, can be embedded in A; hence A F §,. 0

11.5 We know from 6.8 that M is not elementary on PO. Let us compare the frame A of 6.8(a)
with [8),, (in which, by 11.3, M, is not valid). We may picture [8),, thus:

1
4

/

8
8y

2

Now A may be regarded as an infinite series of copies of [8),, glued together, in which every time
between 8 and 2 a predecessor of 1 has been interpolated. As shown in 6.8(a), these interpolations
make it impossible to refute MlO in A. Now [10),,, like [8),, is not wholly trivial; we show that it
can be treated similarly. The germ of the construction is pictured below. (On the next page.)
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As the reader can check, extending the ordering of [10),, by 4 <2 (broken line) produces a frame
in which M, is valid.

Let B = {a,, bn, c,lne N}, ordered as follows: the covers of ag are bO and o and for n>0,
Cov(a,) = {a,_;, b,, c,}; by is a maximal element, and for n>0, Cov(b,) = {b,_;,c,_1}; every ¢,
is maximal. (See the diagram below.)

0
c
o NN
cI4 I b3 |
b4 I , — 4
|5 I/as/2
a/a4
_~9

We show that B - M,. Recall that M, is
([(=—p—>p)—>pv—p]l>—pV—pP)>—PpV (P P).

Suppose that (B,V) ¥ M;,. Then there must be a partial projection f of B onto the minimal
refutation of M,, — the induced frame of which is [10),, — with each b € domg realizing f(b). In
particular, there must be some a € B forcing M, (= [(+——p = p) 2 p v —p] & —p v ——p), and
some b>a forcing ——p and not forcing p. a must be some a,, since in [b,), b,<x<y&b, <x'<y’
implies that x and x’ are comparable — which excludes domfC[b,). a has successors forcing —p, so
b may be assumed minimal: if 5'<b, then b’lf——p. There exists a; <b with a;_;¢b; a<a;. Suppose
a;<xlF——p—p. Then x>a;, because of b; hence any maximal successor y of x succeeds b, so
ylkp. It follows that xI-——p, so xI-p. Therefore a;-(——p—p)—pv—p. Because a<a;, a;-M,;
$0 a;F—p v——p . Since a;<b, a;lf—p. So a;F—~—p, contradicting the minimality of b. We
conclude that BI-M,.

As in 6.8, take a nonprincipal ultrafilter U over N, and consider B’ = [;; B. Reasoning parallel to
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6.8(b), we see that B’ ends in an isomorphic copy of B, below which a set {a’,, b",, ¢’, | n€ N}

’

may be found such that Covgda’,) = {c’,, b',, @',

is maximal (as in the diagram below).

+1} Covgdb’) = {c’, 1, b1}, and each ¢’

N\
P

B'

Let a* € B’ be the element of the isomorphic copy of B that corresponds with aj € B. Define a
valuation V' on B’ by

for all b’e B’, b’e V'(p) iff b'#a* and forall ne N, b’#c'n.

We will show that (B',V",a’g) If M{,. We consider [a’y) only. Let W = {a’,, b’,, ¢’,},en- Then
¢’pk=p, for all ne N, and elements of [a’g)-W either precede a*, or force p. Since
a*IH{ T——p,Fp}, @’y ¥ ——p = p; by ¢’,F—p, a’glf——p. Similarly, b’, l}——p. It follows that
b’y if —=—p — p:if b’2b’, and b’ F ——p, then b’ ¢a*and b’e W, so b’ I p. Now suppose
b"2a’yand b” F (-—p = p) > pv —p. Then b" ¢b’,, forall n € N, since b’y k ——p - p

and b’ If pv —p. So b" is a ¢’,, and forces —p; or b” ¢ W and b" I ——p. Therefore a’y I+
[(=—p = p) = p v —p] > —p v ——p. We have shown that a’y I M.

We conclude by 6.7.6 that M, ¢ E(PO).

11.6 Theorem: For all n210, M, ¢ E(PO).

Proof: The cases n=10, n=12 have been dealt with, in 6.8(a) and 11.5 respectively. We will
assume that the frames A defined in 6.8(a) and M defined in 11.1 are disjoint.

Suppose n=11. Let Cy, = {1,2,6,12} U A, with the ordering inherited from M and A extended by
12 < A (see diagram on next page).
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\/
\/

Obviously, [b) F M;; we know from 6.8(a) that A IF M. Thus, by a consideration in 11.3,
CioFMy: for (Cqy, V, 12) ¥ My, requires that M, be not forced in a strict successor of 12.
Taking an ultrapower [];; C;, over a nonprincipal ultrafilter U over N is tantamount to replacing A
in C;, by Iy A, by Lof's theorem (6.7.1). Now, there exists a p-morphism f: [T;; A — [8), as
shown in 6.8(a). Extending f with the identity on C;,-A, we get a p-morphism [T, C1,—>[12)y,.
Since [12), ¥ My (as noted in 11.3), [T;; C;, ¥ My, as well (by 2.4.2).

For n=14, the same frames and p-morphism work: since M4=M,—>M;, and C;,FM,,,
C12FM,y; and [12),, I My, by 11.3.

For even k>12, let C;, := ([k)p, — {8}) U A, with the ordering inherited from M and A extended by:
m scf1 iff m <3, 8. The diagram below may help to visualize this frame:

A \ 10
il ’::e::.,_
12, . 14
sl

16., 18

Let C8 =A, Clo = [10)4. In Clo, M;, can be refuted, but Mlo is valid. As to the latter claim:
observe that Cg is isomorphic to [8),, with the interpolation mentioned in 11.5. If (Cy, V)II;‘MIO,
then 6 if —p v ——p and 6 I (——p — p) = p v —p. It is easily seen that 6 must force ——p — p,
from which a contradiction follows.

We may continue inductively. Let n=k-1 (so n is odd); suppose M;_4 is valid in C;_4 and C;_¢. As
noted in 11.3, k I M, implies that M, _5 is not forced in some strict successor of k. Since
n-3=k—4, C; + M,. Taking an ultrapower C;’ = [1;; C;, over a nonprincipal ultrafilter U over N
(that is, replacing A by I1;; A), and extending the p-morphism f: [1;; A—=[8),, by the identity on
C—A, we get a p-morphism C,'—»[k),,, so C,'W¥M,, by 2.4.2 and a remark in 11.3. Similarly,
C'WMy,o; while Cy M, 5 is immediate by C, M, (n=k-1; My ,=M;—>M,_,).

Thus no M,, with n210 is preserved under ultrapowers. By 6.7.6, M, ¢ E(PO) for n>10. O
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11.7 Theorem, For all <10, M, € E(PO).

Proof; This follows immediately from corollary 7.4 since, by 11.2, for n<10, M, may be written
as a deterministic formula.

11.8 First order definability of I(p)-formulas on FPO was investigated by Doets [B]. There
appears a difference of one formula. To begin with, we know from 10.4 that M, ¢ E(FPO).
Then the argument of 11.6 may be adapted to FPO, using frames A; and A;" from §10 instead of A
and [1;; A, and considerations of quantifier rank instead of the overall elementary equivalence of
frames to their ultrapowers. We state without further proof:

11.8.1 Theorem (Doets): If n210 and n#12, M, ¢ E(FPO).
11.8.2 Unlike A of 6.8(a), the frame B of 11.5 has infinite height. This difference proves essential.
Theorem (Doets): If n<10 or n=12, M, € E(FPO).

Proof: For n<10, the statement follows from 11.7. So only n=12 remains to be considered. As
before, u < v v v < u will be abbreviated to Comp(u,v); we also introduce CS(u,v) for Iw (u <w
A v <w) (4 and v have a common successor). Let B4, B,, B3, B4 be the following formulas:
By = X9 <Xg X4 AXg<X|AXg <X, X
By:=Vy (x19g<y<x x4 = ¥ <x0)
B‘j = Vy (xyg <y A Comp(y,xg) = —CSOxy)
B4 := Yy (xg <y A Comp(y,x;) = —CS(¥.xy)).
Let B := B A By A B3 A By; and B be the existential closure of B. We want to show that
M, =gpo—B.
(=) Suppose Ae FPO and A E B[alo, ag, ay, ay, ay, a;’] (a;q corresponding with x,, etc.).
Define f: [a;g)4 — [10),, by
fla)=10 ifa=a

=4 ifag<ac<ay;

=6 ifag<a<ag

=2 if a and a, have a common successor;

=1 otherwise.
Then fis a (surjective) p-morphism. First, f is a homomorphism by B, and since, by B, al,a4$a2,
and, by B, a]'$a2. Second, the p-morphism condition is satisfied: a; 2 a4, and fla)) = 1; a," 2ag,
and fla,) = 1; a, 2 a4, and f(a,) = 2. Since [10),, If M, by 11.3, A I M;, by 2.4.2.
(<) Suppose (A,V)II;‘Mlz. Choose a;oH{TM,; o, FM;} such that no a>a, realizes {TM,, FM,}.
Since by 11.3 there must be a partial projection g of [a() 4 onto the minimal refutation 3512=(X 129
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Slz) of M12, Bl is satisfied by alo and certain 06, a4, az, 01,01' Zalo Let us ldcntlfy (Xlz, Sx)

a
with [10),, (cf. 11.3), and assume g(a(?) = i. To check B,, note that a;, < a < a4, a, implies g(a)
S&ig(%), 8(ay), hence g(a) = g(a;p), and by maximality of ay9, @ = ay. For B3, note that a,I-—p,
a, + {T——p, Fp}, and a, < a implies a I ——p v (——p — p) by maximality of a,. Finally, B,
must hold since we may assume that a, is maximal among the points a > a;, that realize {T(——p
- p), F(p v —p)}; then Comp(a, al') implies a I+ p. ]

11.9 The table below sums up the results of this section. Plus means elementary, minus
nonelementary.

M'1 n=10,11

Classes n<l0| n=12 orn>12
PO + - -
FPO + + -
DLO + + +

Footnotes:
1 There will be more on Heyting algebras in §14 below.

2 In a sense to be explained in §14.
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§12. Syntactic closure properties and proper
inclusions of classes E(K)

In some respects, the results of the preceding sections are rather scattered and incomplete. We now
tie up some loose ends from two points of view: syntax of I-formulas (12.1-4) and proper
inclusions of E(K) for different classes K of frames (12.5).

12.1 Theorem: Let K be a class of frames. Then

@) if ¢, ¥ € E(K), oAy € E(K);

(b) if ¢ and y have no proposition letters in common and y € E(K), then -y € E(K);

(c) if ¢ and y belong to E(K) and have no proposition letters in common, then vy € E(K).

Proof:

(a) follows from 9.8.

(b) If F —@, then + @—V, so 9oy = T.If ¥ -0, then by 4.7.4, @ is classically satisfiable; say
Vo E ¢. It will suffice to show that y = ¢—.

(=) If A I y, then obviously A - ¢—V.

(«=) Suppose A I y; let V be a valuation such that (4,V) If y. Since ¢ and y do not have any
proposition letters in common, we may assume, using 2.1, that for each proposition letter p
occurring in @, V(p) = A or V(p) = @, according as V, F p or not. Then (4,V) I @, hence
AV oy

(c) If on A € K there exist valuations Vy, V, such that, for some a € A, (4,V,,a) ¥ ¢ and
(A,V,,a) ¥ y, we can combine V; and V,, by 2.1, to a valuation V such that (4,V,a) If ¢ and
(A,V,a) I y. Suppose that ¢ = a and y = P. Relativize o and B to a* and B¥ (as in 9.7). Then it
is easy to see that @vy = Vu (o v B¥). 0

12.2 Corollary: For any class K of frames and all ¢ € I, —~¢ € E(K).

Proof; Recall that —¢ = ¢— L. Since L contains no proposition letters, and may be considered to
belong to Ly;, we can apply (b) of the above theorem. O

12.3 Theorem; The following implications do not generally hold for ¢,y € I:
(@) ¢,y € EPO) = ¢-ye E(TR);
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(i) e E(PO) = o[r:=—r] € E(TR);
(iii) pay € E(PO) = ¢ € E(PO) or y € E(PO).

Proof:

(i) Consider SP, (see 1.9). It is not elementary on TR, by 8.16 and TR C TR; by corollary 7.4,
both its antecedent and its succedent are elementary on PO.

(i) Let @g = (——r—> r) A SP,, with r a proposition letter not occurring in SP,. If A I+ ——r — r,
then A I SP,; hence (cf. 6.3(a)) ¢y = Vxy (x<y — y<x). But ¢y[r:=—r] is logically equivalent to
SP,, which does not belong to E(TR).

(iii) By 11.1, My = M;yAM;,. By 11.6, M, and M, do not belong to E(PO); by 11.7, M,
does. 0

12.4 Remark: The implication (ii) above may be weakened to: if ¢ € E(PO), and ¢’ results from ¢
by replacing every proposition letter p in ¢ by its negation —p, then @' € E(PO). Even this weaker
version is not valid; as is shown by the same example ¢,. Let SP,' be SP,[p:=—p, g:=—q]. Since
FTR, I+ SP,, FTR, I SP,' by substitution (2.2). Now the proof of 8.16 may be seen to go
through, if we change V(p) to U({n}xB | n=2 (mod 3)) and V(g) to U({n}xB | n=1 (mod 3)).

12.5If K, K' are classes of frames, and K C K', then E(K") C E(K). In the preceding sections,
we have proved several noninclusions. Below we give a schema, in which a connecting line
represents a proper inclusion of the lower set in the higher. We denote the class of all frames of
height at most n by HT ..

I = EOWD) = E(FTR) = EMHT,) = E(LO)

EHT,)  E(PO)

E(TR)

E(FPO)  E(HT) E(POy

E( DLO)

-
R

E(PO) = E@QO)
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That E(IWD) = I is shown in §8 (theorem 8.7); for HT,, see 8.18. FTR is contained in IWD.
That E(LO) =1 is noted in 7.7. E(PO) = E(QO) by theorem 6.2. The other inclusions shown by
lines or broken lines in the diagram are obvious.

E(FPO) ¢ E(TR) by examples 9.13(b) and 10.1 (BR, € E(FPO) - E(TR)). By 11.4 and 104,
SC (= M) € E(DLO) - E(FPO).

It was noted in 8.18 that E(HT;) # L. To see that EHHT ;) # E(HT,) (n23), suppose the
proposition letter p does not occur in P, (2.8), and consider ¢, := P,vSC. By 2.8, HT r¢,;
¢,2E(HT, ) by a simple adaptation of the argument in 6.8(a) (add a chain of n~2 points under
the roots of the frames involved).

That E(PO,) #1 is shown in 8.17. A proof that E(PO,) # E(PO,,, ) (n24) runs parallel to the
above proof of E(HT,) # E(HT,, ), using ¢ of 8.17 and the formulas W, of 2.10 with wider
versions of the frame in 8.17 (where still every point has at most two covers).

This shows that the inclusions in the vertical paths of the diagram are proper. We also noted some
relations between these paths. Here are some more: SC € E(DLO) - E(HT;); E(HT ) ¢ E(TR)
and E(HT ) C_;t E(FPO) for all n (use P, v SP,); E(PO,)) C E(FPO) for all n (use W, v SP,). It
may be that E(FPO) C E(HT,) and E(FPO) C E(PO,,) for all », but this would require further
analysis. We have not shown that E(DLO) Q E(PO4), though it seems rather likely.
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III. [-definability

This part contains results relating to the question complementary to that of part II: which first order
sentences correspond with I-formulas? Mostly, however, we will be concerned with a problem that
is, in a sense, preliminary, viz. to characterize I-definable classes of models and frames in terms of
closure under certain operations.
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Let @ be a set of I-formulas. We shall denote the class of all models & in which every formula in @
is valid (notation: & I ®) by Mod(®). We are going to characterize the classes Mod(®) in terms
of closure under certain operations known from modal correspondence theory.

13.1 Definition, Let & = (4,V) and &' = (A",V") be models. A p-relation between & and &' is a
relation R C A x A’ such that domR (= {a€ A|Ja’e A’ Raa’})=A and ranR (= {a’€ A|
Jda’eA. Raa'}) = A’, and moreover

(i) for all proposition letters p, Vae A,a’e A" Raa’ = (ae€ V(p) & a’ e V(p));
(i) if a; €4 a, and Ra,a’;, then Ja’y 24.a'|: Raya’y;
(iii) if @’y <4.a’, and Ra,a’|, then Ja, 2, a;: Raya’y.

It is clear from the definition that p-relations are symmetric: a p-relation between & and &' is also a
p-relation between &' and &.

13.2 Invariance. We say that a property P is invariant for an operation O if P can neither be
gained nor lost by applying O (equivalently, if P is preserved under both O and its inverse); we say
of a formula that it is invariant for O if the property of validating it (or forcing or satisfying it in a
fixed element, as the case requires) is thus invariant.

13.3 p-relations are cognate to p-morphisms. Indeed, we began the proof of lemma 2.4.2
(preservation of validity under p-morphic images) by defining, given a surjective p-morphism f:
A-B and a valuation V on B, a valuation V' on A such that (A,V") and (B,V) are p-related by the
graph of f. The rest of that proof can be generalized to show that I-formulas are invariant under
p-relations:

Lemma, If there exists a p-relation between a (=(AV)) and & (= (A",V")), then for any ¢ € [,
A9 & A Eo.
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Proof: A straightforward induction over I-formulas ¢ shows that for alla € A and @’ € A’, Raa’
implies that (g,a) I ¢ if and only if #'.a) ¢. Conditions (ii) and (iii) are used in the
implication step. Since ranR = A", & k ¢ then implies &' F @; and conversely, &' k¢ = &k ¢
because domR = A. ]

13.4 Definition, Let (&; | i € 1) be a family of models &; = (4,,V,). The disjoint union ¥, ; &;
is the model & = (4,V) in which A = YicrA; (2.4.3) and V is defined by V(p) = {(i,a) € A|
aeVyp)}.

Preservation of I-formulas under disjoint unions is straightforward:

Lemma, If (&; | i € I) is a family of models, g I and Vie I. &; I ¢, then 3,

i€l

4 Fo.

13.5 Lemma, Let & = (A,V) be a model. For each a € A, define a valuation V,on [a), by

Vpe PV (p)=V(p)Nla),,

and let ga = ([@)4, V,)- Then there is a p-relation between @ and Zae A ga.
Proof; Take R := {(a, (a,a)) |a<, a'}. ]

13.6 Ultraproducts. In 1.6, models are taken as structures for L. This identification fixes the
notion of ultraproducts for models: if gi =(A,Vy forie I,and U is an ultrafilter over /, then the
ultraproduct HU g,- is the model (HU A, V) withfi; e V(p)iff {ie I|f() e Vi(p)} € U (cf. 6.7).
We give translations of two lemmas of 6.7, in which (gi | i € I) and U are as above. Define St(T¢)
:= St(¢), St(Fo) := =St(p) (cf. 1.6).

13.6.1 Lemma, For all signed formulas o, (TT; &, ) ¥ o iff {ie I|(&,fi) Fc}e U.
Proof: By 1.6 and 6.7.1,

My &, fy) Fo iff T, &, ESto)fy

iff {iel|®& ESUO)NfD}e U

iff {iel|(®,f))ro}eU. o
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As before, we call IT;, &, an ultrapower if &; is the same model & for all i, and use the notation
Iy &. We call & an ultraroot of [Ty &. An immediate consequence of the last lemma is

13.6.2 Lemma, I-formulas are invariant for ultrapowers of models.
13.6.3 Lemma, [T, gt is isomorphic to a generated submodel of the ultrapower [1;; 2, ; gi'

Proof: Define F: [Ty &; — [Ty Z;c; &; by F(fy) = (D) )y- Let V" be the valuation on the
ultrapower; after 6.7.2, it remains only to show that f; € V(p) iff F(f) € V'(p). Both sides easily
reduce to {i € I |f(i)e V{(p)} € U. 0

13.7 Saturation. Let I" be a set of first order formulas in which a single individual variable v
may occur free. A structure & realizes I if there is an element a of the domain of & such that
Ary{a] for all ye T (short: & E I'(a)).

Suppose & is a structure for a given first order language L, with domain A. For a subset X C A,
L[X] is the language obtained by extending L with distinct constants x for all x € X, and gx the
expansion of & to a structure for L[X] in which each x is interpreted as x. & is countably
saturated if for every finite Ay C A, the expansion 4 Aorcalizes every set I'(v) of L[A]-formulas
(with only v occurring free) that is consistent with the first order theory of a4 As (T"(v) is consistent
with a theory T if T has a model that realizes I'(v).)

13.7.1 An ultrafilter is said to be countably incomplete if it is not closed under countable
intersections. In particular, a free ultrafilter over N is countably incomplete: it does not contain any
singleton {n}, so it contains all their complements; but it does not contain @ = N,y N - {n}).
We shall use the following fact (see Chang & Keisler [1973], Ch. 6):

Lemma. Let L be a countable first order language, U a countably incomplete ultrafilter over a set /,
and (gi | i € I) a family of structures for L. Then the ultraproduct HU gi is countably saturated.

13.7.2 Let & = (A,V) be a model, a € A, and ¢ € I. Then obviously (&,a) I Fo iff & F
—St()[a]. Thus, every signed formula may be written as an L;-formula; and if Z* is a (possibly
infinite) set of signed formulas, (g,a) - Z* (i.e. (&,a) I o for all 6 € T*, or a realizes I¥)iffa
realizes St{Z*] := {St(0) | 0 € Z*}. Accordingly, the above lemma may be specialized as follows:

Lemma, Let Z* be a set of signed formulas, (gn | n e N) a family of models, and U a free
ultrafilter over N. Let a be any point in [, gn. If every sequent £ C Z* is realized in a successor
of a, then some successor of a realizes T*.

Proof; By lemma 13.7.1. That every finite X C Z* is realized in a successor of a means that {a <x}
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U St[Z*] is finitely satisfiable in ([T, &,, a). )

13.8 Recall the notion of generated submodel (1.2.6). By the root of a model (A,V), we shall
mean the root of the underlying frame A.

Theorem. Let M be a class of models. There exists a set @ C I such that M = Mod(®) iff M is
closed under p-relations, generated submodels, disjoint unions, ultrapowers and ultraroots.

Proof; One direction is by lemmas 3, 1.2.6, 4 and 13.6.2. We concentrate on the other: suppose M
satisfies the stated closure conditions. Observe that by 13.6.3, M is also closed under
ultraproducts. Let

O:={pel|VBec MBI ¢}

Suppose & I @, & = (A,V). We want to show that & € M. By 1.2.6, given the closure
conditions on M, we may suppose that A has a root a,.
Let

Z*:= {o| o s a signed formula and q; I- 6}.

Every sequent X C X* is realized somewhere in some model in M, for if not, we would have M I
Y5 (= A Zp = V I, cf. 9.5), hence yy € @; since ag If yy, this would contradict Y
Using closure under generated submodels, we may take for every sequent £ C Z* a rooted
Mle M the root of which realizes E. We suppose My is the frame of .

Let S be the collection of all sequents contained in Z*. Let X5, for Z € S, be the set {L'e S| X'
2 X}. Since Xz Xgu = X5 5 # 9, the collection Uy := {X5 | Z € S} has the finite
intersection property. Consequently, there exists an ultrafilter U extending U,. Letfe [I5. g My
be such that for each Z, f(Z) is the root of My. Then by Lo§'s theorem (6.7.1), fy is the root of m
=TTy My; and by 13.6.1, (B, f)) I © for every 6 € T*, since, as {Z| My k 6} 2 Xy € U
C U, {Z| M I 6} € U. Moreover, ffl € M by closure under ultraproducts.

Take a free ultrafilter U’ over N, and consider the ultrapowers 1, g - By, V) and [Ty M=
(B,, V). By Lo§'s theorem, B, and B, are rooted, and both roots realize Z*. Define a relation R
C B, xByby

Rbib, iff Vo €L (B,Vyby) I @iff (By,Vy,by) I .

We show that R is a p-relation. First, 13.1(i) holds by definition. Second, for 13.1(ii), suppose b,
SBlb" and Rb;b,. Let ©* be the set of all signed formulas that are realized in b;. Then every
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sequent ® C ©@* is realized in a successor of b, for otherwise we have b, I yg, from which b,
F yg would follow — contradicting by < b’; IF®. By lemma 13.7.2, there exists b’ ZBI b,
realizing the entire set ©*; then Rb’;b’,. Condition 13.1(iii) is symmetric. Since the roots of B,
and B, are related, (ii) and (iii) imply that domR = B, and ranR = B,.

There remains only a walk around the diagram:

a M

I'[U, 4 — HU’ M

By closure under ultrapowers, [1;;- Ml € M. By closure under p-relations, [T U % M. By
closure under ultraroots, & € M. ]

13.9 An L,-structure is a model iff it satisfies the following axioms:
Vx. x<x
Vxyz x<yAy<z > x<2)
Vxy (pxAx<y — py),forallpe P.

Let us denote the first order 'theory of models' determined by these axioms by Mod. By the
completeness theorem for first order logic, an L-sentence o is true in all models iff Mod  a.. In
particular, two L,-sentences o and P are equivalent on models iff Mod I o & B.

The theory Mod is not finitely axiomatizable. So unlike the class of all frames, the class of all
models is not elementary. As a consequence of this, we must distinguish between elementary
classes of models (classes M such that for some L,-sentence o, for all models &: & e M iff @ra)
and elementary classes of L;-structures.

By the complement of a class M of models we shall mean the class of all models that do not belong
to M, not the complement in the universe of all L;-structures.

Lemma (Separation Theorem). If M; and M, are disjoint classes of structures for the same first

order language, both closed under ultraproducts and isomorphism, then there exists an elementary
class K O M, that is disjoint with M.
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Proof: see Chang & Keisler [1973], corollary 6.1.17. 0

Theorem, Let M be a class of models. There exists an I-formula ¢ such that M = Mod(¢) iff M is
closed under p-relations, generated submodels, disjoint unions and ultrapowers, and the
complement of M is closed under ultraproducts.

Proof: If M = Mod(¢), M is closed under the operations listed in theorem 8. The complement of
M is defined by Mod U {—Vx St(¢)}, hence closed under ultraproducts by $.0§'s theorem.

For the converse, suppose M and its complement satisfy the stated closure conditions. Since M is
closed under p-relations, it is closed under isomorphism (hence: so is its complement). By 13.6.3,
M is closed under ultraproducts. M and its complement are disjoint classes of L;-structures, so by
the separation theorem, there is an L;-sentence o such that for all models A A MiffAFa.
Since the complement of M is closed under ultraproducts, M is closed under ultraroots; so by
theorem 8, M = Mod(®) for some ® C I. So

Mod L {Vx St(¢p) |p e D} Fa,
by compactness, there exists a finite set @, C @ such that
Mod L {Vx St(@) | ¢ € Py} F .
Then Mod F a. & /\cpe <I,.‘v’x St(9), and M = Mod(A ). O

Corollary. Let o be an L;-sentence. There exists an I-formula ¢ such that Mod F o <> Vx St(¢)
iff o is preserved under p-relations, generated submodels and disjoint unions.

Proof: Let M be the class of all models & such that & F a. If Mod + o <> Vx St(), for some

¢€l, then M = Mod(9), hence M is closed under p-relations, generated submodels and disjoint
unions by the theorem above — so a is preserved under these operations. If, conversely, a is
preserved under p-relations, generated submodels and disjoint unions, then M is closed under these
operations. Since M and its complement are A-elementary classes of L;-structures, they are closed
under ultraproducts and isomorphism. By the theorem, there exists ¢ € I such that M = Mod(¢);
then Mod F o &> Vx St(p) by the completeness theorem. n]

Remark, The same argument was used for the modal case in an unpublished note by R. Woodrow.

It applies globally as well as locally; except that for local definability, invariance must be used
rather than preservation.
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For sets @ of I-formulas, let us denote the class of all frames A in which every formula in @ is
valid (in symbols: A F®) by Fr(®). A class K of frames is I-definable if K = Fr(®) for some
@ C I. We shall characterize the I-definable classes of frames in terms of closure under certain
operations on frames. We arrive at this characterization by way of Birkhoff's theorem from
universal algebra, using a generalized version of frames as intermediary between frames and
algebras.

Universal algebraic notions that I leave unexplained may be looked up in Gritzer's book [1968] or
in Balbes & Dwinger [1974]. Specific references for Heyting algebras are Rasiowa & Sikorski
[1963] and Balbes & Dwinger [1974].

14.1 Definition: A Heyting algebra is an algebra U=(U,A, v, L, >)of type (2,2,0,2) (i.e.
A,v and — are binary operations, and L is a nullary operation, on the set U), in which (U, A, v,
1) is a distributive lattice with least element L (we write <g, or <, for the lattice ordering on U;
1 <u for all ue U), and — is a relative pseudo-complement for <; i.e. for any u,v € U, u—v
satisfies

(*) Vxe U: xAru<v iff x<u—wv.
The class of all Heyting algebras we shall denote by Ha.

For any elements u,v of a Heyting algebra T, uav <v, hence by (*): u <v—v. So v—v is the
greatest element of T. We shall denote it by T (usually, Heyting algebras are introduced with T as
one more nullary operation). For a variable-free definition, take T := 1 —1 asin 1.2.1.

14.2 Examples. One very particular Heyting algebra has been diagrammed in 11.1.
Henceforward, I shall use R to denote it.

In general, for any frame A, U(A), the collection of upwards closed subsets of A, may be viewed
as a Heyting algebra. The operations of U(A) are N (intersection), U (union), @ (the empty set),
and an operation = defined by

**) X=>Y={aeA|la)nX CY}
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(cf. the evaluation of ¢—V in 1.2.4). To see that = is indeed a relative pseudocomplement for
(U(A),n,V), observe that (**) is equivalent to

X=Y=uU{Ze UQA)|ZNXCY},
which is a reformulation of (*) in 14.1.

Actually, our first example was a special case of this construction: B = U(M), for the frame M of
11.1.

14.3 Definition: The notions of subalgebra, homomorphism and product of Heyting algebras are
straightforward. When @,¥ € Ha, and T is a subalgebra of B, we write & C Y. The product of
(@, |ie D)is written as [T, U,

If LC Ha is a class of Heyting algebras, we shall write S(L) for the class of subalgebras of
elements of L, H(L) for the class of homomorphic images of such elements, and P(L) for the
class of products of subfamilies of L.

14.4 Equations. Heyting algebras may be considered as structures for a first order language Ly
with equality, and function symbols interpreted as A,v,L and —. Since we are only interested in
Ly for its atomic formulas, there will be no confusion if we just take A,v, L and — for function
symbols of Ly;. Another useful convention is that we shall let the proposition letters of I be the
individual variables of Ly;. This way, an atomic formula of Ly is an equation ¢=y, with ¢,y € L.
Terms ¢,y may be evaluated as usual (as before, we use notation from Chang & Keisler [1973]).
If the list py,...,p, contains all the proposition letters in @ and v, and u- U,A,v,L,>)isa
Heyting algebra, the equation @=y is valid in @ (notation: W k @=y) if for all Up,esliy € U,
011I=(p=\|l [uy...u,] GIf @luaq...10,] = Yluy...10,]).

If T is a set of equations, we write U E T for Vye I. U k1.

14.5 Definition; Let L be a class of algebras of the same type; that is, in model theoretic terms, a
class of structures for the same language L without relation symbols. Then L is called a variety
(or equational class) if there exists a set I" of equations of L such that for any algebra & of the
appropriate type, &k Tiff & e L.

14.6 Proposition: Ha is a variety.
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Proof: A set of equations defining Ha is obtained by adding to a set of equations defining the
distributive lattices:

pAl=1 (Listheleastelement)

pop=T (=1l-1)

PAPq9 =pArg

PAqor=p—(@Q-or)

P-oPrg=q o

14.7 Proposition (Birkhoff's Theorem): Let L be a class of algebras of the same type. Then
HSP(L) is a variety, and the smallest variety containing L.

A proof may be found in the standard texts. Observe that in particular, for a variety L, H(L) C L,
S(L) € L and P(L) C L. Thus, the proposition implies that validity of an equation is preserved
under H, S and P.

14.8 Varieties of Heyting algebras and I-definable classes of frames. There is a
simple connection between validity of I-formulas on a frame A and validity of equations in the
Heyting algebra U(A).

(a) Let py,...,p,, contain all the proposition letters in ¢. Let V be a valuation on a frame A. Observe
that definition 1.2.4 closely parallels the evaluation of terms in the Heyting algebra U(A); indeed, it
is immediate that V(¢) = ¢[V(p,)....V(p,)]. Thus

A - ¢ iff for every valuation VonA: (A,V) k¢
iff for every valuation Von A: V(¢) = A
iff forall X;,....X,, € U(A): ¢[X;...X,] = A
iff UA)Eo@=T.

(b) An equation need not have the form ¢=T. However, the relative pseudocomplement presents a
way to get around this difficulty. For elements u,v of any Heyting algebra, we have u <v iff
u—v=T (use (*) of 14.1: u = TAu, since T is the greatest element). Hence u=v iff (u—v) A(vou)
=T A T =T. As a consequence, we may assume equations to be of the form ¢ = T. Moreover, it

is clear by (a) that
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UQA)Fo=vy iff UA)E@e y=T (abbreviating (¢p—oY)A(W—9) as before)
iff AFpovy.

We conclude that a class K of frames is I-definable iff there exists a subvariety L C Ha such that
any frame A belongs to K iff U(A) € L.

14.9 To exploit Birkhoff's Theorem, we must find operators on classes of frames matching the
operators H, S and P. I shall give an example of the kind of parallel that we are looking for.

14.9.1 Recall the definition of the disjoint union of a family of frames (2.4.3).
Proposition. Let (4; | i € 1) be a family of frames. Then U(Z,; A;) = I1;.; U(A)).

Proof:; An upwards closed subset X of Zie 1 A; is uniquely determined as a union of sets {i} x X,
with X; € U(A;). The mapping X ~ (X);c, is the desired isomorphism. To see that — is

preserved, note that the ordering of the disjoint union is such that (i,a) € X=Y (where Y =
Vief{il xY))iffae X; =Y, O

14.9.2 It is far less simple to find analogues to H and S. In fact, at least for S, it is impossible. We
want a construction which, given a frame A and a subalgebra V C U(A), produces a frame B such
that U(B) = V. Let A be an infinite set, ordered by

a<a’ iff a=a'.

Then U(A) = P(A), and for X,)Y C A, X =Y = (A-X) U Y. (This is an instance of a general
fact: any Boolean algebra (U,A,v,L,—,T) gives rise to a Heyting algebra (U,A,v,1,—) with u—v
=—uUvv.)

Let V consist of all the finite and cofinite subsets of A, i.e. forX C A,

X e V iff either X is finite or A — X is finite.

Then V is a subalgebra of U(A), and |V| = |A|. If U(B) = V, then every singleton {a} € V must
correspond with a distinct singleton {b,} € U(B), since a set corresponding to {a} cannot have
proper nonempty subsets. As these b, must be maximal in B, we obtain, for distinct X,X* C A,
distinct sets {b,|a € X} and {b,.|a"€ X'} in U(B). Then [U(B)| 2 20Al contradicting the
assumption that U(B) = V.
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To accommodate this problem, we loosen the notion of frame.

14.10 Definition: A generalized frame is a pair A = (A,V) consisting of a frame A and a subset
V of U(A) which contains @ and is closed under N, and the relative pseudocomplement = of
U@).

In other words, we require that V is a subalgebra of U(A). This clearly is a sufficient adaptation to
the difficulty of 14.9.2.

Frames may be considered as generalized frames by identifying A with (A, U(A)). Accordingly,
we generalize our use of the symbol U: for any generalized frame A = (A,V), U(A) is the
collection V, considered as a Heyting algebra.

Having extended the notion of frame, we next adapt some concepts introduced in 1.2, 1.5 and 2.4.

14.11 Thus far, generalized frames have been motivated by mathematical expediency. A more
philosophical motivation might run as follows. In 1.2, every upwards closed set counted as a
proposition — in the down-to-earth sense that it could be selected as interpretation of a proposition
letter. One might not want to be so liberal. In that case, propositions would still be upwards closed
sets (as no information is ever lost); and the universe of propositions would have to be a subalgebra
of the collection of all upwards closed sets, to make sure that every formula could be interpreted. In
short, we shall have generalized frames A = (A,V), and valuations must give values in the
propositional domain V. 1

Definition, A valuation on a generalized frame A = (4,V) is a function V: P — V. (As before, P
is the set of proposition letters.)

By the closure properties of V, a valuation V may be extended to a map of I into V as in 1.2.4.
Validity is defined as in 1.5: with A = (A,V),

A ko iff (AV) I ¢ for every valuation V on A.
Obviously, if V =U(A), we have A I ¢ iff A I @ in the sense of 1.5.
In line with the notation introduced for frames at the beginning of this section, we shall write
Alr®, for ® C L, if Vo € ®. A IF ¢, and denote the class of all generalized frames in which

every formula belonging to @ is valid by Gfr(®). A class K of generalized frames is I-definable if
K = Gfr(®) for some ® C I. We may write K - if VAe K: A F ¢.
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The argument of 14.8 works just as well for generalized frames. We sum up the conclusions:
Proposition, (i) Let A be a generalized frame, and @,y € 1. Then

(@) A ¢ iff UA) F ¢=T;

(b) UA) F o=y iff A IF ey

(ii) A class K of generalized frames is I-definable iff there exists a subvariety L C Ha such that
any generalized frame A belongs to K iff U(A) belongs to L.

14.12 As shown in 14.9.1, disjoint unions of frames correspond with products of Heyting
algebras. Subsequently it turned out that no construction of frames can correspond to taking
subalgebras. In the opposite direction, however, a parallel can be found: there is an operation on
frames A which produces subalgebras of U(A) (modulo isomorphism), and one that produces
homomorphic images.

14.12.1 Proposition, Suppose f: A —» B is a surjective p-morphism. Then U(B) is isomorphic to a
subalgebra of U(A).

Proof: Consider the inverse function f~ 1 on U(B). Because fis a homomorphism, f"l maps U(B)
into U(A): if X e U(B),anda’2a € f‘l[X], then f(a") 2 fla) € ﬂ"l[X] = X; since X is upwards
closed, we get f(a) € X and a’ € f1[X].

As an inverse function, f-! preserves M, and @; ! is injective since fis surjective.

To show that f-1 preserves =>, we need the p-morphism condition. The crucial point is

(*) for ae A, and X,Y € U(B), [f(a)) N X C Y iff [a) nf1[X] Cf[Y].

Since f is a homomorphism, f{[a)] C [f(a)); hence [a) C f[a)] C f ! [[f(@))]. So if [fla)) N X
CY, [a) nf1[X] € fUAa)] N f1[X] C f1{Y]. For the converse, suppose [a) N f1[X] C
fY]. If b > Ra), then by the p-morphism condition there exists a’ > a such that f(a’) = b. So if
fla) £be X, we have a’ € [a) nf'l[X] with fla”) = b. Then @’ € f‘l[Y]; sob=fla")e
fFr=y.

Now,

acflX=7Y] iff la)e X=2Y
iff [fla)NXCY
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iff [a) NfU[X] C£UYD, by (%),
iff ae f1[x]=71Y]. u}

14.12.2 Proposition, Suppose A S B. Then U(A) is a homomorphic image of U(B).

Proof: Define f: U(B) - U(A) by fiX) = X N A. Since actually U(A) is a subset of U(B), fis
surjective. Preservation of N,U and @ is immediate.
Let =, denote the relative pseudocomplement in U(A), =g in U(B). Then for all X,Y € U(B)

X=2pgNNA=An{be B|[b))nX CY}
={aeA|lla)nXCY}
={ae A|lla)NnXNACYNA}
=XNA=,YNA

So f preserves = as well. 0

Thus we may hope that suitable generalizations of p-morphisms and generated subframes will do
the job.

14.13 Definition, (i) Let A = (A, V) and B = (B, W) be generalized frames. A p-morphism f:
A-B is a p-morphism from A to Bif VX e W.f1[X] e V.

(ii) Let A = (A, V) and B = (B, W) be generalized frames. A is a generated subframe of B
(notation: A GB)ifAGBandV={XNnA|Xe W}

(iii) Let A; = (4;, V,) be generalized frames, for all i € I. The disjoint union Eiel A; is the

generalized frame (Z;.; A;, V) in which X C ¥A; belongs to Viff Vie . XN ({i} xA) e V,.

B will be called a p-morphic image of A if there exists a p-morphism from A to B that is a
surjection for the underlying frames.

Note that disjoint unions of frames are a special case of disjoint unions of generalized frames. Also,
if A S B, then UA) = {XNA|X e URB)}, so (A, U(A)) S (B, U(B)). As to p-morphisms: if f:
A-B is a homomorphism, f-1[X] is upwards closed for every X € U(B). So f: A—»B is a
p-morphism iff fis a p-morphism from (A4, U(A)) to (B, U(B)).

14.14 The proofs of propositions 14.9.1 and 14.12 are easily generalized. We get

Proposition, (i) If (A, | i € I) is a family of generalized frames, then U(X;.; A)) = I1;.; U(A)).
(ii) If A § B, then U(A) is a homomorphic image of U(B).
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(iii) If B is a p-morphic image of A, then U(B) is isomorphic to a subalgebra of U(A).

14.15 We have associated with every generalized frame A a Heyting algebra U(A). We also want
a construction in the opposite direction.

14.15.1 Definition. Let U = (U,A,v,L,—) be a Heyting algebra. A filter in @isaset V C U
such that

(i) v2u e Vimplies v e V (in other words, V is upwards closed);

(i) if uve V,thenuave V.
A filter V is prime if it is proper (i.e. equals neither U nor @) and satisfies

(iii) if uvve V,thenue Vorve V.

The following will be useful:

14.15.2 Lemma: Let @ = (U,A,v,L,—) and ¥ = (V,A,v,L,—) be Heyting algebras; £ U - Y a
homomorphism. Then, if V is a prime filter in ¥, £-1[V] is a prime filter in T.

Proof; Suppose V is a prime filter in ¥; we check (i) - (iii) above for f-1[V].

(i) Homomorphisms preserve <. So if u’ 2u e f~ V], we get f(u) 2 f(u) € V, hence (V being
upwards closed) f(u) € V.

(i) If u,u’ € UV, flunu’) = flu) Afw) e V; so uru’e vl

(iii) If uvu’ € f1[V], then flu) v fiu’) = fluvu’) € V. Hence flu) e Vorfu) e V; accordingly,
ue flVloru'e f1[v). 0

Stone [1937] used prime filters to obtain topological representations of distributive lattices, and a
fortiori of Heyting algebras. There is a natural ordering on the resulting spaces which makes them
into generalized frames, with certain open sets as propositions. Very roughly, the idea may be
formulated as follows. The points in a generalized frame (A4,V) determine prime filters V, :=
{XeV |ae X} inV. Then, if there are no points, we can at least take the prime filters and pretend
they are of form V.

14.15.3 Definition; Let U = (U,A,v,1,—) be a Heyting algebra. Let A be the set of all prime filters
of U, ordered by inclusion; and for each u € U, define X, CAbyX, :={ae Alue a}. Then
F(T), the prime filter representation of @, is (4, {X, | u e U}).

It is straightforward to check that F() is a generalized frame. An example may be of help.
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14.16 Example: Let B be the Heyting algebra pictured in 11.1. It is clear from the diagram that
every filter in R has a least element; thus, every filter can be written as [r), with r in the domain R
of R. A filter [r) is prime precisely if  cannot be decomposed as r = ry v ry withry, ry <r; and
[)C [r) iff r' < r. Since [L) = R, the frame of F(R) is isomorphic to the frame M of 11.1,
extended with a least element T. (Because T = V(R — {T}), it did not belong to M; but T cannot be
represented as a finite supremum of strictly less elements.)

Modulo an isomorphism, we may write F(R) = M’, V), with M’=M U {T} as above. Then V
almost equals U(M"): only M is missing. On the other hand, UM) = R.

The following theorem is proved in the literature on Heyting algebras.

14.17 Representation Theorem (Stone): Let U be a Heyting algebra; define Fgy: U-U-F(W)
by Fgy(«) = X, (in the notation of 14.15.3). Then Fg is an isomorphism.

We state the crucial lemma, for later reference. To do so, we need the duals of filters:

Definition: An ideal in a Heyting algebra @ = (U,A,v,L,>) is a downwards closed set closed
under finite joins, i.e. A C U is an ideal iff

() u'<ue Aimplies u’ € A;

(i) up, g € Aimplies ugvu; € A.

Lemma (prime filter theorem for Heyting algebras): Let U be a Heyting algebra, V a filter in U,
and A an ideal such that V. N A = @. Then there exists a prime filter V* of U such that V* D V
and V¥*NA=0.

(The proof uses Zorn's lemma; the prime filter theorem is equivalent to the prime ideal theorem for
Boolean algebras.)

14.18 Generalized frames are not so well-behaved: it is not generally true that FeU(A) = A. For
one, there may be too few sets in U(A) to localize every point of A: take for instance A = ({0,1},
{{0,1},@}). Here, U(A) is the two-element Boolean algebra (which we shall denote by 2), and 2
has only one prime filter, viz. {T}. A different example is in 14.11: M ¥ M". We thus have a
construction that may lead to genuinely new frames.

There is a nice special case. Since UcF(T) = U by the representation theorem, we have

14.18.1 Proposition; Let ¥ be a Heyting algebra. Then FoeUF(®)) = F(@).
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The isomorphism takes each prime filter V in UF(Z) to the prime filter {u | X » € V}. Itis arather
special feature of generalized frames of the form F(Q1): ordinarily, homomorphisms from FU(A)
to A involve an essential loss of information. E.g., homomorphisms from M’ to M have finite
range.

A generalized frame A will be called a descriptive frame if A = FU(A). If FU(A) = (B, V), I
shall call B the prime filter extension of A, in symbols: B = pe(A). Note that frames are
embedded in their prime filter extensions by the map a =V (with V, = {X € U(A) | a € X}).

14.18.2 Proposition, For all ¢ € I, A I+ ¢ iff FU(A) I ¢.

Proof: By proposition 14.11, since U(A) = U(F-U(A)). ]
In particular, valid formulas are preserved under FoU. This contrasts with taking prime filter
extensions of frames: we will show in the next example that valid formulas may be lost that way.
Here we note that anti-preservation remains:

14.18.3 Proposition: Let A be a generalized frame, and ¢ € I. Then pe(A) I ¢ implies A I @.

Proof: Suppose pe(A) I ¢. Then since UF-U(A)) C U(pe(A)), FeU(A) I ¢. By the corollary
above, A I ¢. 0

14.19 Example. Let A be the frame defined in 6.8(a). We reproduce the relevant diagram:

A

Let C := {c, | n € N}. We consider the prime filters of U(A).

First, then, there are the filters Vd ={X e U(A) |d e X}, for all d € A. Since every X in U(A)
not of form [d), can be decomposed as X = Y U Z with ¥,Z € U(A) proper subsets of X, the
filters V ; are the only principal prime filters. Since V; C V ;. iff d < d', A lies embedded in pe(A).
Now for the nonprincipal prime filters. Observe

(1) If a prime filter V contains a subset of C, V is maximal in pe(A).
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The reason is, that if a prime filter V contains X C C (hence contains C, by 14.15.1(i)), it must
contain either ¥ or C-Y for every Y C C, by (iii) of the definition. Suppose Ce€ V and V'is a
filter properly extending V.SayZ e V'-V.ThenZnCe V';sinceZ2ZNC,ZNnCe¢ V. So

C-Ze V,and @ = (C-Z) nZ e V'; that is, V' is not a proper filter.

(2) If V is a prime filter, V # {A}, and V' is a prime filter properly extending V, then V' is
maximal in pe(A).

Similarly to the case of (1), there will be an ultrafilter U over N such that
VXCN: U, y[b)e Viff Xe U.

So a proper filter extending V must contain a subset of C.
Thus, pe(A) is not as forbidding as it may have seemed: at least it is not higher than A. Now we
come to a crucial point:

(3) Let V4, V be maximal in pe(A); suppose V is not principal. Then if V' C V,;N V is a prime
filter, V' = {A}.

Suppose V' C V,; N Vis a filter, and A — {a} € V'. Say that d = ¢;. Let X = [b;_;) U [b)) (or just
by if k=0), and Y = U{[b,) | n#k-1,k}. Then A — {a} = X UY; so if V' is prime, Xe V' or

YeV'. Now X ¢ V: for then V would also contain either [b;_;) or [b;), and be principal. On the
other hand, d & Y,so Y ¢ V ;. It follows that V' is not a prime filter.

We have seen in 6.8(a) that A I+ SC (= [(—p — p) = pv—p] = —pv—p). For pe(A) we can
define a projection onto the frame [8),, (cf. 11.1, 6.8(a)) by putting:

f{AY = S’f(vb,,) =4forallne N,f(V)=1forallce C,
and V) = 2 for nonprincipal V.

Therefore pe(A) If SC.
14.20 The statement symmetric to 14.14(i) is: "if (011,- | i € I)is a family of Heyting algebras, then
F(IT,c; @) = 3, , F(W)". Unfortunately, this is false.

Example: Let 011” =2 (= the Boolean algebra { L,T}) for all n € N. Since [F2)| = 1, |Z"€NF(Q[1n)|
= R, But l'[n mn is isomorphic to the Boolean algebra P(N); the prime filters in P(N) are the
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ultrafilters over N, of which there are 22R° (Tarski; see e.g. Bell & Slomson [1969] Ch. 6, thm.
1.5); s0 [F([T, ©,)| = 22°°. Then obviously T, F(® ) # K(IT, T,).

This also shows that a disjoint union of descriptive frames need not be a descriptive frame: since
FU(Z, F(W,) =F(1, UF@,) =F(1, U,) £ £, FU,),

2, F(Qlin) is not descriptive. We do have, as a consequence of 14.14(i) and the representation
theorem,

Proposition. If (¥; | i € 1) is a family of Heyting algebras, then F(IT,; ¥,) = FUT, ; F(W)).

14.21 Lemma, Let U and Y be Heyting algebras, and £ U - Y a homomorphism. Define g on
the set of prime filters of ¥ by

g(V) =1V,

Then g is a p-morphism from F(¥) to F(Y).

Proof: Let & = (U,A,v,L,—), B = (V,A,v,1,-), A the frame of prime filters of U, and B the
same for Y. For every b e B, g(b) € A by lemma 14.15.2. g is a homomorphism by an
elementary property of inverse functions. In notation from 14.17, b € g'l[Fm(u)] iff g(b) € Fgy(u)
iff u e g(b) iff flu) € b iff b € Fy(f(w)); so g"l[Fm(u)] € Fy[V]. By definition 14.13, it will now
suffice to show that g:B—A satisfies the p-morphism condition .

So, suppose a2, g(by) (=f 1[bo]). We must find b 25 by, such that g(b) = a. Let V be the filter
generated by f[a] U b, and A the ideal generated by f]U - a]:

V={ve V|3ue advye by v2flu) Av{},

A={we V|Ju;..u, e U~-aw< VISjSmf(uj)}'
By the prime filter theorem, it suffices to show that V. N A = @: for then there is a prime filter 52V
withbNA =0, whencef'l[b] =a,and b D b (i.e. b 2p b)) by the definition of V.
Suppose v € V N A. Then there exist ue a,v; € bgs Uqseeosityy € U —a, with

soflu) Avy < Vlstnf(“j)' Consequently,
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2 Sf(u)—)Vf(uj) =flu— Vuj).
Since v € by, f(u—)Vuj) € by, and

u—Vu; € fllbgl Ca.

Since u € a, we get Vuj 2un(u —)Vuj) € a, so Vuj € a. Since a is prime, some u; must belong

to a: a contradiction. 8]

14.22 Proposition. If ¥ and W are Heyting algebras and & C Y, then F() is a p-morphic image
of F(®).

Proof; Let U be the domain of T, V that of Y; let A be the frame of prime filters of U, B that of V.
Define g on B by

gb)=bnNU.
Then g is the inverse of the canonical embedding i: @ < B. Since i is a homomorphism, g is a
p-morphism from F(®B) to F(¥) by the lemma above. So we need only prove that g is surjective.
Let a € A; we must find b € B such that a = g(b) (= b N U). Let V be the filter in Y generated by
a, and A the ideal in W generated by U - a:

V={veV|Jue av2u}

A={we V|3u.u,e U~a w< VISjSm“j}‘

As in the proof of the lemma, it will suffice to show that V. n A = @. Say that vy € V n A: then
we have u € a, uy,...,u,, € U ~a, with
usvgsV

1sj<mte

Since u € a, this implies V,

j<ml € @ which is impossible because a is prime. o

14.23 Proposition, If @ and W are Heyting algebras and Y is a homomorphic image of T, then
F(W) is isomorphic to a generated subframe of F(@).

Proof: Let /: @ — W be a surjective homomorphism of Heyting algebras. Define g as in lemma 21.
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Define A, B, U, V as before. By lemma 21 and proposition 2.4.2, g[B] S A. g is one-to-one: for
if b,b’eB and b <b’, i.e. b Cb’, then f-1[b] C f1[b7] since f is surjective. So B = g[B]. It
remains to show that

{g[FyM] v eV} ={g[BlNFy(w) |ucU}

(notation from 14.17).
Observe that, by surjectivity, every v € V is f(u) for some u € U. Thus it would suffice if Vu e U.
Fay(u) M g[B] = g[Fy(f(1))]. This equality is seen to hold by the following calculation:

b e Fy(fw) iff flu)e b iffu e 7] = g(b) iff g(b) € Fey(u).

14.24 Theorem. A class K of generalized frames is I-definable iff K and its complement are
closed under FoU, and K is closed under disjoint unions, generated subframes and p-morphic
images.

Proof:

(=) Suppose K is I-definable. By proposition 14.18.2, I-formulas are invariant under FU. By
proposition 14.11(ii), there exists a variety L of Heyting algebras such that any generalized frame
A belongs to K iff U(A) belongs to L. Suppose A; € K for all i € I. Then U(A)) € L, for all
iel; since L is a variety, this implies [, ; U(A;) € L. By 14.14(i), [1 U(A;) = U(ZA)). Since L,
as a variety, is closed under isomorphism, U(ZA,-) e L; hence ZA‘. e K. We conclude that K is
closed under disjoint unions. Closure under generated subframes and p-morphic images can be
proved similarly, with applications of the rest of 14.14 .2

(«<) Suppose K and its complement are closed under FU, and K is closed under disjoint unions,
generated subframes and p-morphic images. Let L be the closure of U[K] under isomorphism.
Suppose U(A) € L: then U(A) = U(B) for some B € K, hence FU(A) = FU(B); and
FU@B)e K by closure under FU. Since K is closed under isomorphism, FU(A) € K; and
because the complement of K is closed under FU, we must have A € K. We conclude that VA
(Ae Ko UA)e L).

Now it will suffice, by proposition 14.11(ii), to show that L is a variety. Suppose 011,. e L for all
iel. Say W, =U(A)), with A; € K. Then

Me; U =T, UA) = U, A)
by 14.14(i), and A, € K by closure under disjoint unions. So L is closed under products. If a

c Y =U(A), with A € K, then F(¥) is a p-morphic image of F(¥Y) (proposition 22), and, since
F(W) = FU(A), of FU(A). By closure of K under FU and p-morphic images, F(@) e K. Since
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U = FU(T) by the representation theorem, & € L. So L is closed under subalgebras. Finally,
suppose Y is a homomorphic image of @ e L; say W=U(A), A € K. Then F(Y) is isomorphic
to a generated subframe of F(Q) (proposition 23), and a fortiori of FU(A). By the closure
properties of K, F(W)e K, and as before, ¥ € L. So L = HSP(L); therefore L is a variety, by
Birkhoff's theorem. n}

14.25 Now we return to I-definable classes of frames. For a class K of frames, let Thy(K) :=
{¢e I| K I ¢}. We shall denote the least I-definable class of frames containing K by Fry(K) -
clearly, then, Fry(K) = Fr(Thy(K)).

Let A be a frame, and K a class of frames. Then

Ae FrI(K) iff A I+ Thy(K)
iff U(A) E {¢=T | K IF ¢} (by proposition 14.11(i))

iff U(A) k {o=y | U[K] F o=y} (by 14.8(b),
U[K] F o=y iff UK] F gy =T)

iff U(A) e HSP(U[K]), by Birkhoff's theorem.

So if A € Fry(K), there will be a family (B; | i € I) of frames in K, and a Heyting algebra Y, such
that U(A) is a homomorphic image of ¥, and ¥ a subalgebra of I1,.; U(B,). By proposition
14.14(i), we may suppose that ¥ is a subalgebra of U,/ B))-

14.26 The next step is to investigate the relation between A and F®), given that U(A) is a
homomorphic image of Y.

Lemma, Suppose U(A) is a homomorphic image of W; let C be the frame of prime filters in B, and
V the domain of ¥. Then A is isomorphic to a subframe B of C such that

U(B) = {BNFpy(v)|ve V}.

Proof: Let f: Y- U(A) be a surjective homomorphism. Define g: A~C by g(a) = f‘l[Va]. That

indeed g(a) € C follows from lemma 14.15.2. Because a <, a’ implies V, C V ,gisa
homomorphism. If a £, a’, then a’ ¢ [a), so [a) € Va -~V _.; suppose [a) = f(v), then v €

g(a)-g(a"), s0 g(a) £ g(a"). Take B = g[A].

Now if U € U(B), there is some u € V such that U = g[f(u)] = {f‘l[Va] | a € f(u)}. For any be B,

a”
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be U iff 3ae fu). b=ga)=f1[V,]
iff 3ae flu). Vve V(ve b & fivye V)
iff Jae flu). Vve V(ve b & ae f(v)

iff ue b (down: take v=u; up: take a=g‘1(b), thenue b=
ue gl@=ue flV,]=flu)e V,= ae flu); and b=g(a)=f"1[V,])

iff be Fyyu).

This shows that U = B N Fyy(u); we conclude that indeed U(B) = {B N Fy(v) |ve V}. 8]

14.27 The characterization of I-definable classes of frames uses generalized frames, as was to be
expected after the example in 14.9.2. The concept of generalized frame is hidden in the notion of
subalgebra-based (cf. Goldblatt & Thomason [1974]).

Definition. A frame A is subalgebra-based on a frame B if there exists a descriptive frame F(¥)
= (C, V) such that

(i) Y is a subalgebra of U(B);

(ii) A is a subframe of C;

(i) UA)={ANnX|Xe V}

Theorem. Let K be a class of frames, and A a frame. Then A € Fry(K) iff A is isomorphic to a
frame that is subalgebra-based on the disjoint union of a subfamily of K.

Proof: As noted in 14.25, A € Fry(K) iff there is a subfamily (B; | i € I) of K and a subalgebra Y
of U(Zi€ 1 B;) such that U(A) is a homomorphic image of V. Suppose FW®) = (V). By lemma
26, A is isomorphic to a subframe B of C such that U(B) = {X "B | X € V}. By the definition
above, B is subalgebra-based on XB;. 0

Corollary. A class K of frames is I-definable iff it is closed under isomorphism and disjoint
unions, and contains every frame subalgebra-based on some element of K.

14.28 We end with another consequence of 14.25, to be used in the next section. If ¥ is a
subalgebra of U(XB;), then F(Y) is isomorphic to a p-morphic image of FU(XB;), by proposition
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22. If U(A) is a homomorphic image of ¥, then FU(A) is isomorphic to a generated subframe of
F(Y) by proposition 23. Taking an isomorphic copy ¥’ of ¥ such that FU(A) S F(¥"), we get

Proposition, Let A be a frame, and K a class of frames. Then if A € Fry(K), there is a subfamily
(B; i eI of K such that FU(A) is a generated subframe of a p-morphic image of FU(Z;. B)).
Footnotes:

1 This move is comparable to the nonstandard interpretation of higher order logic (e.g. Henkin
[1950]). The parallel extends to completeness theory: intuitionistic propositional logic is complete
for generalized frames, in the sense that an I-formula ¢ can be deduced from the set of all

substitution instances of a set ¥ C I iff ¢ is valid in every generalized frame in which ¥ is valid.

2 One can also prove preservation theorems directly, on the pattern of 2.4.
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In this section we consider the question which L-sentences are I-definable — precisely, for which
Ly-sentences o there is a set @ of I-formulas such that for any frame A, AF® iff Aka. As in §14,
the answers are adaptations of results of modal correspondence theory: theorem 3 derives from
Goldblatt & Thomason [1974]; lemma 2 and the discussion in 4 are inspired by, respectively
copied from, van Benthem [1986].

15.1 Lemma 13.7.1 can be generalized to languages of arbitrary cardinality. The generalization
requires that the index set be sufficiently large and the ultrafilters of a special kind (see Chang &
Keisler, §6.1); but these conditions do not figure in the corollary that we shall use:

Lemma. Let & be a structure for some first order language. Then & has a countably saturated
ultrapower.

If & is a structure for the first order language L, we denote by Th(®) the first order theory of &,
i.e. the set of all L-sentences true in &. For L-structures & and 78, =78 will mean that & and 7B
are elementarily equivalent (that is, Th(#)=Th(38)).

15.2 Lemma. For any frame A, the prime filter extension pe(A) is a p-morphic image of an
ultrapower of A.

Proof. Let A be a frame. Add to L distinct unary predicate letters Py for all Xe U(A); expand A to
g-(A X xe U( Ay with X as the denotation of Py. Take a countably saturated ultrapower
B=(BX )y, vy of @ (with X’ as interpretation of Py), by the lemma above. Observe that = &
by L.o§'s Theorem. Define a function fon B by

fib)={XeU(A) | beX'}.

(Note that be X" iff ;BFPXb.) We shall prove that f is a surjective p-morphism from B to pe(A).
(1) f(b) is a prime filter in U(A), since for all X and Ye U(A),

XCY implies EEVx(Pyx—Pyx), hence BEVx(Pyx—Pyx),
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50 if Xef(b), equivalently BrPyb, we get BEPb, whence Yef(b);
BEVX(PyxAPyx— Py, ),

and X,Ye f(b) implies BEPybAP b, hence, since B==, BrPy b and XNYef(b); and
similarly

@EVx(Py yx—PyxvPyx)

makes XUYef(b) imply Xef(b) or Yef(b).
(2) fis a homomorphism. Suppose b<gb,. We have for all Xe U(A),

g#Vuv(PXVAVSu—)PXu);

consequently BrEPyb, — Pyb,, i.e. bje X’ implies b,eX’, and fib;)C fib,).
(3) f is onto, by the saturation of 7B. For, let V be any prime filter of U(A). Then

Ty:= {Pyv|XeV}U {~ Py | Ye V}

is consistent with Th(3B) — for suppose it is not, then since B=H we get Xe V and ¥;,....Y,,& V
such that

VPV 1P yV);

ie. X gquj, S0 ijﬁ V, and since V is prime, some YJ must belong to V: a contradiction. Since
7B is countably saturated, there exists b in B realizing I'y; and JBH“V[b] implies f(b)= V.
(4) f satisfies the p-morphism condition. Suppose Vzpe( A) f(by). Then
= {Pyv|XeV}U {= Py |YeV} U {b;<v}
is consistent with Th((?B,bl)). For, suppose not: then there are Xe V and Y,...,Y, & V such that
BEV2b, (Pyv—V1gienPr¥),
or, with Z:= X=>quj, and since b2b,,

BEP b,

Thus by the definition of £, Ze f{ib;). But since f(b;)CV, and Xe V, this implies quje V,and a
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contradiction as in (3).
So I is realized in 7B; and if 7B EI'[b,], we have b <b, and f(b,)=V. ]

15.3 Theorem. Let K be a A-elementary class of frames. Then K is I-definable iff K is closed
under disjoint unions, p-morphic images and generated subframes, and the complement of K is
closed under prime filter extensions.

Proof: (=) Suppose ®CI, and K=Fr(®) is A-elementary. Since AIf® implies pe(A)IfD, by
proposition 14.18.3, the complement of K is closed under prime filter extensions. I-formulas are
preserved under disjoint unions, p-morphic images and generated subframes by proposition 2.2.4;
since K is I-definable, it is closed under these operations.

(<) Suppose K is A-elementary, and K and its complement satisfy the closure conditions as
stated. Let Ae Fry(K). By proposition 14.28, FU(A) is a generated subframe of a p-morphic
image of FU(Z,. ;B;) for some family (B,lie /) of frames in K. Say

FUA)=(A"V)SB,W)—~—P™(C X)=FUZB)).

Since K is A-elementary, it is closed under ultrapowers; since it is also closed under p-morphic
images, K is closed under prime filter extensions, by lemma 2. Now, by closure under disjoint
unions, ¥B,e K; by closure under prime filter extensions, C=pe(XB;)€ K. By closure under
p-morphic images, Be K. By closure under generated subframes, A’ K (cf. definition 14.13).
Since A’=pe(A), and the complement of K is closed under prime filter extensions, Ae K. So
Fry(K)CK, and this implies that K is I-definable. O

15.4 The above theorem characterizes the I-definable L-sentences by their preservation properties:
an Ly-sentence is I-definable iff it is preserved under p-morphic images, generated subframes and
disjoint unions, and its negation is preserved under prime filter extensions. For some of these
preservation properties, syntactic criteria are known.

Definition. The set of restricted positive Lj-formulas is the least set I' of Ly-formulas such
that (i) atomic formulas belong to I';
(ii) Le T; and if o,Be T, then aAP and avf belong to T;
(iii) if ae T, and u and v are distinct individual variables, then v(usvaa) and
Vv(usv—a) belong to I

The following theorem is proved for modal frames in chapter 15 of van Benthem [1986]:
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Theorem (van Benthem). An ]Lo-sentcnce a is preserved under generated subframes, p-morphic
images and disjoint unions iff o is logically equivalent to an L-sentence Vuf with B a restricted
positive Ly-formula.

Our a priori restriction to quasi-orders corresponds with replacing the second occurrence of o by
AAVV.VSVAV W w(viw— V u(wsu—v<u)).

So if we had syntactic criteria for anti-preservation of L-formulas under prime filter extensions —
that is, necessary and sufficient criteria for pe(A)Fo to imply AFa — we would have syntactic
criteria for I-definability. As things are, we have neither.

15.5 As with L-definability for I-formulas, there are two sorts of limitation that can make the
I-definability problem easier: we can specialize to particular kinds of frames, and to particular kinds
of formulas. The concluding sections present an example of either sort.
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Let K be a class of frames — e.g., K=FPO or K=FTR. Suppose K'CK. We say K' is
I-definable in K if there is a set ® of I-formulas such that K'=Fr(®)nK, and strongly
I-definable if @ may be taken to consist of a single formula. We characterize in this section the
classes I-definable in, respectively, FPO and FTR, by means of operations on frames.

16.1 The salient fact about finite frames is Jankov's theorem [1968]. For the reader's convenience,
we present the proof that Gabbay gives in Chapter 4 §3 of his book.

Lemma (Jankov's theorem): If Ae FPO is rooted, there exists an I-formula y, such that for any
frame B, Blfy , iff for some be B, A is a p-morphic image of [b)g.

Proof: Let Ae FPO be given, with root aj,. Take distinct proposition letters p,, for all a>,a,. Define
a valuation V on A by V(p,)=[a). Let P:={p la>ay}, and P ;:={pe Plal-p}, for all ac A.
For each QCP, let \VQ=/\Q-—>V(P—Q). When a<,a’, let x,,- be

Aaa? AP Ve V(P-P,).
Now let y4:=9,—¢;, where

(p0:=/\(\yQ|—ElaeA.Q:Pa)A/\(xaa,la,a'eA and a<a’);
01:=Vaea Vp:

It is easy to see that ayl-@, and aylf¢;. Hence if A is a p-morphic image of [b)g, Bify, by 2.4.4.
For the converse, suppose (B,V",by)IF¢, and (B,V",b) Ib‘(pl. Define f:[by)g—A by

f(b)=a iff VpeP.bkpsalp.

This is a good definition: if f(b) is defined, it is unique, for the points of A are uniquely determined
by the pe P that they force. And fis defined everywhere on [b)p since, if QCP is not P, for any
acA, boll-\pQ, whence for b2b the set {pe P|bl-p} cannot equal Q. Also, a<a’iff P,CP ., which
makes fa homomorphism.

Since by, f is surjective: for each Ve, there must be some b2b,, with bI- AP, and bIif V(P-P ),
and no b can take care of more than one P,
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It remains to prove the p-morphism condition. Suppose a>f(b). Since bolkxf(b)a, and b+ /\Pf(b)»
bll—\pa - V(P—Pﬂb)). Now bIVV(P—Pﬂb)), so blfy B~ hence there must be some b’ >b with
b’k AP, and bWV (P-P,), i.e. f(b)=a. 0

16.2 Lemma: Let A be any frame, and (A licI) a family of generated subframes of A such that
Uje/Ai=A. Then A is a p-morphic image of 3, /A;.

Proof: Map (i,a) to a (similar to 13.5). n]

16.3 Theorem. A class K of finite partially ordered sets is I-definable in FPO iff K is closed under
p-morphic images, generated subframes and disjoint unions of finite families.

Proof: (=) Immediate from 2.4.4.

(<) Let K satisfy the above closure conditions. Set ®:=Thy(K). Suppose A€ FPO, and Al®.
We shall prove that Ae K. Since A=U,_ 4[a)4, A is a p-morphic image of Zae ala); so it suffices to
show that [a@)e K for each ac A.

Suppose [a)e K. Then the Jankov-formula V(4 belongs to @: for otherwise i, is not valid in
some BeK, and [a) is a p-morphic image of a subframe [b)pSB, hence [a)e K. But since Al+®,
this would mean Ay, which is impossible by 2.4.4 and Jankov's theorem. 0

16.4 We can improve on the above result by further restricting the class of frames under
consideration.

Let A and B be finite trees. We shall write A<B for: A is a p-morphic image of B. The relation < is
a quasi-ordering on the class FTR. If |A|=|B| and f:B—»A is a surjective p-morphism, then fis in
fact an isomorphism. Hence the equivalence relation "A<B and B<A" is isomorphism.

Lemma (De Jongh). Let A, Be FTR. Every surjective p-morphism f:A—»B is a p-retraction for
some strong embedding g:B>—A.

Proof: Suppose f:A—B is a surjective p-morphism. We define g:B—A in such a way that for any
be B, g(b) is a maximal element in f-![b], by induction up B. For the root by of B, g(by) is some
maximal element of f‘l[bo]. Now suppose b covers b’, and g(b") has been defined. Then since
fg(b")=b’, and f is a p-morphism, some a>g(b’) must belong to f-1[b]; take as g(b) a maximal such
a.

It is clear that g is an injective homomorphism. Suppose b branches into X CB. We must show that
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g(b) branches into g[X]: so suppose g(b)<a<g(x),g(x"), with x and x’ incomparable elements of X.
Then b<f(a)<x, x', since f is a homomorphism and fog=1p. So fla)<X by definition 2.11.3, and
a<g[X]. ]

Corollary: A<B iff there exists a strong embedding of A into B.

16.5 The following lemma is usually formulated in terms of strong embeddings. An elegant proof
may be found in Nash-Williams [1963].

Lemma (Kruskal's theorem): Any subclass of FTR has only finitely many <-minimal elements,
modulo isomorphism. (In other words, FTR is a well-quasi-ordering.)

Suppose K is a class of finite trees, downwards closed in the sense that A<Be K implies Ae K.
Then its complement FTR-K is upwards closed. Let {A,...,A, } be a maximal set of mutually
nonisomorphic minimal elements of FTR-K. Take their Jankov formulas y, , and consider

V= 1<icn¥a;

If Ae FTR, and Ay, then A;<A is impossible, for 1<i<n, by lemma 2.4.2 and Jankov's
theorem. So Ae K. On the other hand, if A€ K, then Alry; for all i (1<i<n), as AifA. So
K={Ae FTR|Ay}. In view of lemma 2.4.2, we have proved

Theorem: Let K be a class of finite trees. Then the following statements are equivalent:
(i) K is I-definable;
(ii) K is downwards closed in <;
(iii) K is strongly I-definable.

16.6 Limiting the class of frames as we have done has its price: characterizations such as we
invoked in 15.4 are lost. (This is not to say that they cannot be regained, but it would require a
different proof.) We know that the I-definable L,-formulas are equivalent, on FTR, to
Lo-formulas of a particular form: that of the L,-translations given in §8 (theorem 7). We should
like to prove that every Lj-formula that is I-definable in FTR is reducible to this form. The
reduction must be constructive in some sense; typically, one would expect it to be a proof of
equivalence in some first order theory. It is not self-evident that such reductions are possible.

The main difficulty here is that FTR is not A-elementary. A study of A-elementary classes, such as
DLO, might yield interesting results. I have not pursued this.
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transparent formulas

Let TCI be the class of transparent formulas, as defined in 7.3. We have shown in §7 that every
transparent formula is equivalent to an Ly-sentence; and that many I-formulas are transparent (in
particular the deterministic formulas of 7.4). In this section we derive closure conditions on classes
Fr(®) for sets ®CT - in other words, for T-definable classes of frames. We end with a syntactic
characterization of the L-formulas that are equivalent to a transparent formula.

17.1 Definition: Let A be a frame. A subframe B of A is a directed subframe of A if for finite
ByCB, if By has an upper bound in A, B, also has an upper bound in B. Notation: BC 4A.

For example, generated subframes are directed subframes.

Lemma: Let A, B, C be frames.
(i) AC4B C4C implies ACC (i.e., T is transitive).
(i)If ACB CC and AC4C , then AC4B.

17.2 Recall the definitions of partial projection and X-labeled subframe (7.1, 7.2). Observe that if
X is an open multitableau, BC4A , and g:B——X is a Z-projection, then g is a Z-labeled subframe
of A iff g is a X-labeled subframe of B.

Lemma: Suppose @€ T, and A is a frame. Then Alif iffo is refutable in a finite directed subframe
of A.

Proof: By definition 7.3,

Alife iff A has an Fo-labeled subframe.
Suppose Ao ; X=(X,&) is a multirefutation of ¢, and g:A-»>X a minimal Fo-labeled subframe of
A. As remarked in 7.2, domg is finite. Now consider the subsets UCdomg with the following

property:

U has an upper bound in A, and
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if U'Cdomg properly extends U, then U’ does not have an upper bound in A.
For each such U, pick an upper bound a;2U, and let

Ay:=domg U{a;} .
Then A, is a finite directed subframe of A. Since g is also an Fo-labeled subframe of A, Aglfo.
Conversely, suppose AgC4A and Aglf@. Then Aj has an Fo-labeled subframe g; this g is also an
Fe-labeled subframe of A. 8]

The last paragraph of the above proof also establishes:

Corollary. If BC 4A, then for each ¢eT: Al-¢ implies Bl-¢.

17.3 Definition: A set {A; | ie I} of frames is directed if

Vijel 3kel: A;CA, and Angk .
Soif {A;|iel} is a directed set of frames, elements of U;_ /A; are ordered in the same way in
every A; in which they occur together. Moreover, for every pair of elements there is some 4; in

which they occur together. Thus we may safely consider U, A; as a frame, the union of
{A,lie I}, ordered by

asb iff Jiel. a<yb.

If a class K of frames is closed under the operation of taking unions of directed subsets of K, we
shall say K is closed under directed unions.

17.4 Lemma. Let {A;|iel} be a directed set of frames, and @€ T. Then
Viel. A;r¢ implies U; A IF.

Proof. Suppose U, A;If¢. By lemma 2, ¢ is refutable in some finite BC 3 U;A;. By directedness,
there must be some i€/ such that BCA,. By lemma 1, BC 4 A;, 50 A; If¢ by lemma 2. u}
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17.5 Lemma For every rooted Be FPO there exists a formula ¢ge I[A,—,1] such that for every
frame A:

Alf@p iff B is a p-morphic image of a directed subframe of A.

Proof: Let a finite frame B be given, with root w. Take distinct proposition letters p,, q;, for every
beB.

We define for each be B a formula @,eIfA,—,1] with >-recursion. Assume ¢, has been defined
for every b’e Cov(b). Then @, :=

QoA Mgy | =3b". " 2b°bY A NPy A N Covi) PoP) Py

(recall that A@=T).
We take ¢p:=9,,. Note that @p is transparent, by theorem 7.4.
Define a valuation V on B by

V(py)= {b"| b'b} ; V(gy)=[b).

We shall prove that for all b and b’, (B,V,b) k@, iff b’ib, with >-induction on b. In particular, it
will follow that Blf@p; by lemma 2.4.2 and corollary 2, then, Alf@p if B is a p-morphic image of
a directed subframe of A.

If b’¢b, then b’Ip,, hence b'IF@,. For the converse it will suffice to prove blfg,. Observe that
blrqy; b"Wq,. if b'€b", so bl-—gq,. if b and b’ have no successors in common. If b’ #b, then
blrp,.. Thus if b’e Cov(d), b'Ip,; moreover bif@,. by induction hypothesis; so

bk /\b’e Cov(b)(q"b’_)p b)'

So b forces the antecedent of @,. Since bifp,, bif@y,.

It now remains to prove that Alf¢g implies that B is a p-morphic image of a directed subframe of
A. In the sequel we shall say that a point x, under a given valuation, refutes an implication y—Y
if xI-y and xIy.

Let B* be the tree of all sequences (v,...,v;) of elements of B (k20), with voj=w and
v;.1€ Cov(v)) (i<k), ordered by initial segments. e:B*-B is the projection to the last element.
Suppose (A,V)lf¢p. We define a function f: B*~A , with induction over B*, in such a way that
A...,b) refutes @, for all be B.

—flw) is an arbitrary element of A that refutes @p (under V).

- Suppose f(vy,...,;) has been defined, and Covg(v)={b,...,b,}. Suppose, moreover, that
f(vgs...,vy) refutes (pvk. Then f(vq,...,v) I}/pvk, S0 f(Vg,-.s V) I P> 1<i<n. Take
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a15..,8,2f(vg,...,vy) that refute (Pb,’-""Pb,, respectively, and define: f(vy,...,v;.b))=a;.

Now eof1 is a partial function from A onto B. For suppose a=f(...,b) and a’=f{(...,b") with b#b".
Then a refutes @, and a’ refutes @,.. Since Be FPO, b#b’ or b’¢b. In the first case al-p,,,
a’lfp,; the other case is symmetric. Hence a#a’.

We can extend ranf to a directed subframe of A, as we did with domg in the proof of lemma 2: for
each UCranf such that U has an upper bound in A, but not in ranf, and no U'Cranf that properly
extends U has an upper bound in A, we pick an upper bound a;€A. Let A'be the result of adding
these points a;; to ranf. Note that U»#U’ implies aj#a;,, and that every a;; is maximal in 4",
Choose for every a;; a maximal upper bound b; of eof~ 1[U]. Such upper bounds exist: suppose
b=e°f"1(a), b'=eof" L(a"). If {b,b’} does not have an upper bound, then, since a refutes @, and a’
refutes ¢, al-q, and a’lF—g,, ; this is impossible if a and a’ have a common successor.

Clearly A'C4A. Define g:A’~B by

gla)=e°f1(a) if acranf; g(ay)=by,.

By construction, g is surjective. We shall prove that g is a p-morphism. Recall that if aeranf, a
refutes Pea) (under V).
(i) g is a homomorphism. If a<4ay;, then ae U, hence

g(a) = eof(a) < by = glay).

If a<,.a’e ranf, and g(a)ig(a’), then (since a refutes (pg(a)) all-pg(a,); which would make it
impossible for a’ to refute ¢ e(@)

(ii)g satisfies the p-morphism condition. Suppose g(a)<b. If a is one of the additional upper bounds
ayy, then g(a) is maximal in B, and there is nothing to prove. Otherwise ae ranf. Suppose g(a)#b.
If be Covg(g(a)), g(a)=e(vy,...,v;) for some (v,...,v;) € B*, we may take a'=f (v,...,Vy.,b), and

find b=g(a’), a’ >a. In general, we shall find a’ >a with g(a)=>b in finitely many moves of this
kind. O

17.6 Corollary. For every rooted Be FPO there exists a formula yge I[—,1] such that for every
frame A:

Alfyp iff B is a p-morphic image of a directed subframe of A.

Proof: The conjunctions in yp may be eliminated by repeated applications of the logical
equivalence

HEAY-= ) (9= —Y). o
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17.7 The use of the above is analogous to that of Jankov's theorem in §16.

Theorem. Let K be a class of frames. The following statements are equivalent:
(i) KisI[—,l]-definable;
(ii) Kis T-definable ;
(iii) K is closed under p-morphic images, directed unions, directed subframes and
disjoint unions.

Proof:

(i) =(ii) since I[—,Ll]-formulas are transparent, by theorem 7.4.

(ii) =(iii) by 2.4.2, lemma 4, corollary 2 and 2.4.3.

(iii) =) : let K be closed under p-morphic images, directed unions, directed subframes and
disjoint unions. Set

®:={pel[>,1] | Ko}

We will show that K=Fr(®). Suppose AIF®: we are to prove that Ae K. Let A be the set of all
finite directed subframes of A. Let Be A, and suppose by,...,b, are the minimal elements of B.
Then [b;)p is a directed subframe of A, 1<i<n. Take formulas Vi€ I[-,1], by the corollary
above, such that for any frame C, C Ii/\u[b) iff [b;)p is a p-morphic image of a directed subframe of
C. Then Alb‘w[b;); since AIFD, Vis)® ®. So there are K,...,K,€ K with K, i"f‘l’[b,-)’ 1<i<n; by the
corollary , then, each [b;)p is a p-morphic image of a directed subframe of a frame in K, hence
[b,)g € K. Since B is a p-morphic image of ¥, [5,), by lemma 16.2, Be K. Thus ACK.
Finally, A is a directed set of frames, and A=UA. Since K is closed under directed unions, we
have Ae K. 0

Remark. This theorem implies that to every set of T-formulas there exists a set of
I[—,1]-formulas which is valid in the same frames.! I do not know whether something similar
holds for intermediate logics; to be precise, whether an intermediate logic axiomatized by
T-formulas (on top of a formal system for intuitionistic propositional logic, with substitution as a
provability rule) can always be axiomatized with I[—,1]-formulas , or even I[A,—,1]-formulas .

17.8 By theorem 7.3, every T-formula is equivalent to an Ly-formula. Indeed, 7.3 effectively
constructs a unique Ly-transtation Tr(¢) for each T-formula ¢. Let cs-formulas be formulas
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CSYypsesYyp)  Ax (SXA...AY,£X) (n>2)

with x a variable distinct from yy,...,y, (cf. 11.8.2). The translations defined in 7.3 are, modulo
logical equivalence, conjunctions of sentences —3y;...y, Bj, in which each Bj is a conjunction of
atomic formulas, negations of atomic formulas, and negations of cs-formulas; each [ ; describes an
Fo-labeled frame.

We can stylize Tr(¢), turning the descriptions Bj into descriptions of trees. Let g:A—»X be the
labeled frame that Bj describes. Let A* be the tree of finite sequences (ay,...,a,,) of elements of A
(n20) in which a) is the root of A and Vi<n. ;1€ Cov4(a;), ordered by initial segments; and
e:A*—»A the projection to the last element. Let ; be the Ly[A*]-sentence

N(asa’| a,a'e A* & a'e Covya(a)) A N(—asa’ le(a){,e(a))
A N(=CS@y,ay) | Uycirgoe(@)T is not realizable).

Let Bj* be the result of substituting distinct new variables for the constants in . Then it is easy to
see that Bj* is satisfiable in any frame in which Bj is satisfiable. So if Tr((p)=/\15jgn—|3yl...yk[3-,
then

Conversely, if Bj* is satisfiable in some frame B, say by points b,,...,b; corresponding with

elements ay,...,a; of A* in order, then we define an Fo-labeled subframe h:B——»X by h(b;)=g°¢e(a;)
(1<i<l). Since @€ T, Blfg. So we may take Tr(@) to be /\lst,nﬂElyl...yl Bj*.

Bj* begins with a sequence of atomic conjuncts. We may suppose that these are ordered in such a
way that there is only one variable whose first occurrence is at the left hand side of a <. (Make the
ordering from left to right agree with the ordering of the corresponding points in the tree.) Now we
can move some existential quantifiers to the right, rewriting Bj* in the form

existential quantifier — sequence of bounded existential quantifiers (Jv2u) —
conjunction of negations of atomic formulas and negations of cs-formulas.

Negating this, and rewriting, produces an L-sentence Vx Yj in which Y; consists of a sequence of
bounded universal quantifiers (Vv2u) followed by a disjunction of atomic formulas and
cs-formulas. We shall call a formula of this form, containing at most one variable x free, a
t-formula .

We have proven the following refinement of theorem 7.3:
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Theorem. For every transparent I-formula @, an Lg-equivalent Tr(¢) can be effectively
constructed. Tr(¢) is a conjunction /\lstmVx ¥, in which each Y is a t-formula.

17.9 Call an Lj-sentence o T-definable if there exists a set @CT such that for every frame A,
AEa iff AFD,
that is, if the class of quasi-ordered models of o is T-definable in the earlier sense.

Proposition. Let a be an  L-sentence. Then the following are equivalent:
(1) for some @el[—>,1], a=0;
(i) o is T-definable;
(iii) o is preserved under p-morphic images, directed unions, directed subframes
and disjoint unions.

Proof: (i)=(ii) since I[—,L]CT by theorem 7.4.

(ii)=(iii) since T-definable classes are closed under the operations of (iii) by theorem 7.

(iii)=(i): Let K be the class of quasi-ordered models of o. By theorem 7, K is I[—,1]-definable;
suppose K=Fr(®), with ®CI[—,1]. Let QO be the first order theory of quasi-order. We have
QOUT{®]Fa ; hence by compactness, QOFATr[®]—a for some finite @yCP. Then a=AD,
Since /\d)o is an I[A,—,1]-formula, eliminating negation produces an equivalent I[—,1]-formula
— as noted under 4.3.3. ]

17.10 Lemma. If Ly-sentences o and B are T-definable, then so is aap.

Proof: Suppose a=¢ and B=vy, with @,ye T. Then obviously aAB=@Ay. We may assume that ¢
and y belong to I[—,1], by the proposition above: then @Aye I[A,—,L]CT by theorem 7.4. 0O

17.11 Theorem. Suppose a=VxA,;..B;, with each B; a t-formula with free variable x. Then o is
T-definable.

Proof: By the lemma, it suffices to show that VxBi is T-definable, 1<i<m. We shall construct
T-formulas by a method resembling that of van Benthem [1986] lemma 14.5.

Let B; be a t-formula, consisting of a sequence of bounded universal quantifiers followed by a
disjunction . In 17.8 above, the bounded quantifiers were derived from a finite tree; we can
recover the form of this tree from the bounded quantifiers. Indeed, we shall construct trees T(y) for
all variables y occurring in 3;, by induction from right to left in the quantifier prefix.
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If for some variable y occurring in f;, there is no bounded quantifier of the form Vv2y preceding
v, we let the tree T(y) consist of a single point y. Otherwise, consider all the quantifiers
Vv2y,...,¥v,2y in the prefix: T(y) is the union of the trees T(v,),...,T(v,) (they happen to be
disjoint) with y added as a root.

For example, if B; is

VyIZxVyZZxVy32y2Vy42y2Vy52y4
O5SY1VY3SY4VY4SYV ¥2<x v CS(¥1,¥3.)5))

we get trees
ys yr Vs Ys Y, y/
)’4 )’3 )’4 )’3 )’4
VAR
Y2 1 Y2
\/
x

For each node y in the tree T(x), take a distinct proposition letter Py We define I-formulas vy by
induction down T(x), as follows. Let y be the disjunction of clauses

y,, for every cover z of y in T(x);
p,, for every clause u<y in y.

(As always, the empty disjunction is 1.) We take Vy=Py V.
So for our example we get, with p =p and py=4;

¥s: gs—L,

Y4 4495V,

y3: 3L,

Ya: 93G5V (44G5Vq3)Va,,

Y1: 4917955

x: p(41295)V(G>93V(94795Vq3)VG4)V ).

Finally, let i be the conjunction of the formulas —|(pul/\.../\p ) with CS(uy,...,u;) a clause of y;

and take @,=x—V,. It is straightforward to check that ¢, is deterministic — hence, by theorem 7.4,
¢,€ T. The T-equivalent of Vxf; is ¢;: since Ak—Vx; iff A has an Fo;-labeled subframe (as,
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hopefully, the example will help the reader to see), Vxf3,=¢; by transparency of ¢;.
With 17.8 above, this theorem implies that an Ly-sentence is T-definable iff it is equivalent, on
QO, to the universal closure of a conjunction of t-formulas.

Remark. Since the essentials of a rooted finite partial order can be put in a t-formula, one would
expect a greater similarity between the formulas @p of theorem 5 and the formulas ¢; constructed
here. There are two reasons for the difference. One is that @; contains v: eliminating it (cf. §7

footnote 2) might introduce a number of new proposition letters. The other is that @p is defined
locally, unlike @;. In the latter case, all the cs-constituents were dealt with at once.

Footnote

1 Equivalence is proved directly in §7, footnote 2.
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Beth semantics

There is another well-known semantics for intuitionistic logic, devised by E.W. Beth. As far as
propositional logic is concerned, the difference with Kripke semantics lies mainly in the treatment
of disjunction.

A1 Let frames and valuations be as usual: so in particular, if V is a valuation on a frame A, and
peP, V(p) is upwards closed in A. Recall that a path through A is a maximal chain CCA. A path
through a, for a point ae A, will be a path through A that contains a.

Definition: Let A be a frame, ae A and XCA. . Then X bars a if every path through a intersects
X.

A2 At first sight, Beth forcing will seem to model another notion of constructivity than Kripke
forcing. The definition below appears to distinguish between having calculated a proposition — that
is, being at a point within V(p) — and knowing that p is true, in the sense that, whichever way we
continue, p will come out true.

Definition: Let A be a frame, V a valuation on A, and a€ A. Then
(i) alp iff V(p) bars a;
(ii) alF@avy iff alk¢ and alhy;
(iii) aF@—oy iff Va’ 2a: if a’l-¢, then a’lFy;
(iv) alF@vy iff a is barred by a set X such that Vxe X: xI-¢ or xIhy;
(v) alfl.

All the same, ordinary intuitionistic logic is sound and complete for the Beth semantics. An
accessible proof, via Kripke semantics, is in Kripke [1965]. It turns finite Kripke models into Beth
models on finitely branching trees. A slight refinement of the transformation (almost as described in
9.1) will give binary trees, and more:

Proposition: Let @eI. Then +¢ iff ¢ is valid in the Beth semantics on all binary trees in which
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every point is succeeded by endpoints.

(Validity in a frame is defined formally as in 1.4, with Beth's forcing instead of Kripke's.)

A3 The correspondence theory is very different from that for Kripke semantics. In order to show
how, we begin by deriving some consequences of the truth definition.

Lemma: Let A be a frame, ae A, and suppose XCA bars a.
(i) Let every xe X be barred by a set Y,. Then U, _xY bars a.
(ii) If X is upwards closed and a<b, then X bars b.

Proof: (i) Let C be a path through a. C intersects X; thus for some xe X, C is a path through x, and
must intersect Y.

(ii) Let C be a path through b. There must be a path C’ through a and b that coincides with C from
b upwards. Since X bars a, C'"X#@. Suppose ¢ € C'"X. Then if c<b, be X since X is upwards
closed; thus in any case, X bars b. ]

A4 In the following lemma, and everywhere below, the forcing sign "I-" will stand for Beth
forcing, as defined in A2, and validity based on that definition.

Lemma: Let (A,V) be a model; a,be A.
(i) If a<b, and al-@, then bi-¢.

(ii) alt¢ iff a is barred by a set of points forcing ¢.

Proof: By induction on the complexity of ¢, with lemma 3. (ii) from left to right is trivial, since {a}
bars a. The other direction uses (i). O
AS By a tautology we understand, as before, a propositional formula valid in classical logic. Beth
semantics emphatically lacks the finite model property:

Theorem: In finite frames every tautology is valid.

Proof: For maximal points a, definition 2 is just the truth definition of classical logic. So in

endpoints every tautology is valid. But in a finite frame every point is barred by the endpoints:
hence the tautologies hold everywhere. 0
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The proof allows a stronger statement:
Corollary: In frames in which the set of endpoints bars every point, every tautology is valid.

Anyway, this shows that there is no interesting correspondence theory for finite frames — T and L
are the only relevant first order definitions.

A6 The same holds for linear frames. They are equivalent to one-point frames: if V(p)#@, then it
bars every node, hence p is forced everywhere.

A7 The next class in complexity is TR®, the class of full binary trees. (By A6, infinite branches
without side-branches are equivalent to endpoints.) As to correspondence with first order logic, it is
the last class as well:

Theorem: For I-formulas @, either
(i) ¢ is not a tautology, and @=qp(2)L; or
(ii) @ is a tautology that is not valid intuitionistically, and ¢ has no first order equivalent on
TR®; or
(iii) F@, and Q=g T.

Proof: The one point that is not trivial is that refutable tautologies have no first order equivalents on
TR®), j.e. that the first part of (ii) implies the second.

Suppose ¢ is a tautology, and {f¢. By AS, ¢ is valid on all finite trees. If ¢ has a first order
equivalent a of quantifier rank mk(a)=n, then by theorem 8.15, o holds in all full binary trees
satisfying P(n). So ¢ is valid in all full binary trees satisfying P(n).

By proposition 2, ¢ is Beth-refutable in some binary tree A in which every point is succeeded by
endpoints. Then A can be extended to a full binary tree A’ in which P(n) holds and ¢ is still
refutable. (If a has just one cover a’, replace [a") by two copies {0}x[a") and {1} x[a"), putting
(i,a")e V(p) iff a"e V(p); repeat this process level by level, starting at the root of A. Replace some
endpoints by finite full binary trees, to satisfy P.2(n) and P.3(n).) This contradicts the conclusion
of the previous paragraph: so ¢ cannot be equivalent to a first order formula on TR®. O

As with the Kripke semantics, if @=go, under the Beth semantics, and K'CK, then 9=y .a. as
well. So we have
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Corollary: Let @€, and suppose K is a class of frames containing all full binary trees. Then if F¢
and f¢, ¢ has no first order equivalent on K.

This means that the conclusion of AS holds generally: for Beth semantics, correspondence with
Ly-formulas is a non-subject.

A8 We can try to get around this difficulty by modifying Beth semantics or extending L,;. We shall
discuss both possibilities, and a combination of the two.

A9 Though refuting any at all interesting formula in the Beth semantics requires an infinite model,
such a model will exhibit a pattern that can be finitely described. As an example, take =——p—p. To
refute it, we need a point a forcing ——p and not forcing p. Then alf—p, so there must be b>a
forcing p. We have:

b Fp

1)

a lfp

This cannot be all, for a would be barred by V(p), and consequently force p. So a must have
another successor a’, forcing —p and not forcing p, and not preceding b. Next, a’ will give rise to
new successors b”and a”, like b and a respectively, and so on ad infinitum. This process may be
taken to generate an infinite comb:

blu

N
NS
d' \ | /b
N/

@

Nonetheless, almost all points in (2) are the same. In fact, we can represent the a's and b's and
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their arrangement by a finite graph:

b

o

The paths through (3) correspond with the paths through (2): either one takes a finite number of a's
and finishes with a b, or one loops through a forever — corresponding with the spine of (2).

Such finite graphs resemble the finite models that Kripke used to construct Beth models from. They
are not exactly the same, though: Kripke would have had a loop at b as well. It might be attempted
to do Beth semantics with frames in which the ordering need not be reflexive — we shall not pursue
this now.

A10 The truth definition in A2 contains second order clauses: (i) and (iv) quantify over certain
subsets of the frame. As a consequence, we would be hard put even to define first order
equivalents of I-formulas on Beth models, parallel to the standard translations of §1.1 When we
abstract from valuations, we add another layer of second order quantifiers, this time over upwards
closed sets (cf. 1.6). It would be something already if we knew to what extent the second layer can
be eliminated.

We propose to take a look at the correspondence on Beth frames between I-formulas and formulas
of L, with the set variables ranging over paths. We shall use &,p as informal variables over paths.
In the formal language L,, we write X, Y, Z etc. for sets, instead of proposition letters as in 1.6.

A11 In fact, we have no real business with the second order theory of paths. We can easily
generalize Beth frames to two-sorted structures, consisting of an ordinary frame A and an explicit
domain of paths in A. From now on

A Beth frame is a pair A=(A,IT) of a frame A and a collection IT of paths through A satisfying the
following existence axioms:

(i) In.oaexw (there are paths through every point)

(ii) b2ae © = Ip(be p & Vce n(c<a = ce p))
(iii)p<aent = Ip(bep & Vcen(c2a = cep))
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L, will be regarded as a two-sorted first order language; structures for L, have two sorts, one of
which (the first, say) is a frame. Of course, it cannot be guaranteed that the second sort actually is a
collection of paths through the first; but we can make sure that it is isomorphic to a set of paths by a
few additional axioms:

(iv) Va(ae t & aep) = n=p (extensionality: paths are subsets of the
frame)

(v)a,bet = a<b v bza (paths are linearly ordered)

(vi) bg t = Jae r (bfa & bia) (paths are maximal)

A12 With valuations as before, we get the following truth definition:

Definition: Let A=(A,IT) be a Beth frame, V a valuation on A, and a€ A. Then
(i) altp iff Vre [I(ae 1 = Ibe n. be V(p));
(ii) alF@Ay iff al-¢ and aly;
(iii) alk@—o iff Va’' 2a: if a’l-¢, then a’lky;
(@iv) alrovy iff VreIl(ae n = Ibew (bI-¢ or biFy));
(v) alfl.
Note that (ii), (iii) and (v) are the same as in A2.

A13 The results of A3-5 hold for generalized Beth frames. In particular, the path construction for
3(ii) can be carried through by axiom (iv). By a straightforward verification, intuitionistic
propositional logic is sound for the generalized Beth semantics. Since ordinary Beth models qualify
as generalized Beth models, completeness is a trivial consequence of completeness for ordinary
Beth semantics.

We conclude with two examples of correspondence on generalized Beth frames. Since the standard
frames are a subclass of the generalized frames, the correspondences hold for the standard frames
as well.

Al4 Example: Let A=(A,IT) be a Beth frame. Then
Alr——p-op iff Ak VX3Ix(Xx A Vy2xdz2yXz)

The proof is by contraposition, in both directions.
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(=) Suppose A¥VXIx(XxAVy=2xdz2yXz), i.e. for some ne II,
(*) Vae n3b2a.[b)Nn=0.

Let V(p)={be A|l[b)"1=0}. Take ae «. Then al-——p: for if a’ 2a, then either [a)N=0, and
a'lFp; or 3a"” 2a’.a"e m, and then by (*) for some b2aq, bl-p; so in either case a’lf—p. On the other
hand, alp; for ae &, and & does not intersect V(p).

(<) Suppose (A,V,a)lF——p and (A,V,a)lifp. By the truth definition, there must be some path &t
through a that does not intersect V(p), but every point of which is followed by elements of V(p).
Elements of V(p), of course, cannot have successors on . Winding up:

AFIXVx(Xx—Jy2xV z2y.—Xz).

A15 The above example may give the impression that (generalized) Beth correspondence is more
complicated than Kripke correspondence. This is not a correct impression, as will appear from the
next, and last, example.

The essence of deterministic formulas comes out in the proof of theorem 7.4 at the point where it is
argued that, if T(yvy)e O(a), T(yvy) cannot have been added by the closure conditions. The
difficulty in the construction of that proof, avoided by determinism, is this: in some point a, we
may be forced to make some formula ¢;—@,v@; true. Furthermore, it may be that in some
successors of a, @, is true and @4 false; while in other successors @5 is true and ¢, false; and no
provision has been made, above a, for making ¢, false. Then ¢, must be true in g, and the Kripke
semantics would have us choose in @ whether ¢, is true or ¢;. We obviously cannot choose either,
and that is why the proof does not work for all formulas. In Beth semantics, however, there is no
problem: in the situation just sketched, a may still be barred by points forcing either ¢, or @5, and
thus force @,v¢3. We shall illustrate this with SP, (recall: SP, is

(FQVYVY=OVYVY) D@V vy,
with =pAgq, Y=pA—q and x=—pAq) on DLO.
Example: Let A=(A4,IT) be a Beth frame, with A€ DLO. Then
AIFSP, iff A E VXIx[ Xx A Vy1y2y32x(V,-¢jyiSij Vi<iciXy)]

The proof is, as always, by contraposition.
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(<) Suppose (A,V)ISP,. Then somewhere in A, ~@v—yv—y is not forced. So there is a path
e IT on which —@, —y and — are never forced. Thus if ae T, then alf—¢@, alf—y, and alf—y.
So every ae m has successors bl-@, clky and di), and since ¢, ¥ and ) are mutually
incompatible (that is, p——yA—Y, etc.), b, ¢ and d must be mutually incomparable and off =.

(=) Suppose ne IT is such that each ae &t has successors b, ¢ and d that are pairwise incomparable
and off . Then there are pairwise disjoint upwards closed sets U, V and W not intersecting =,
such that every point of © is succeeded by elements of all three. Their construction is
straightforward, but it does require some bookkeeping. Note that & has no greatest element: if ae x,
then there exists b>a with b¢ T, so T must have elements incomparable with b (axiom (vi) in A11);
these must be higher than a.

(a) Take age . Choose by, ¢, dye [ag)-T pairwise incomparable.

(b) Suppose ag, bg, ct and dg have been chosen, for some ordinal &, with aem and bg, ct and
dée 7. With axiom (vi) of All, we can find ag, €T such that a§+1$b§, a§+1$cé and a§+1$d§.
Choose bg +10 CE4 1> dg +1€ [ag R’ pairwise incomparable.

(c) Suppose a, bg, cg and dg have been chosen for all £ less than some limit ordinal A, with aem,
bg, ces dge [ag)—n, and all bg, cg and dg pairwise incomparable. Then if {a¢|§<3\.} is cofinal in T, the
construction is finished. Otherwise we continue with a;> {a§|§<l} on m, and pairwise
incomparable by, ¢y and d, in [q,)-T.

Since A is a set, the construction finishes at some ordinal A; and then we may take U=u§ <;\[b,;),
V=u§ <;~[c§) and W=u§ <}‘[d,;). By downward linearity, U, V and W are disjoint.

Now for a€ A, let a belong to V(p) unless a has successors in W, and to V(q) unless a has
successors in V. Then for all ve V, vipa—g (=v); for all we W, wik—pAq (=)); and for all u
without successors in V or W, ul-paq (=¢). Moreover, no point of & forces —¢ (because of U),
—V (because of V), or —y (because of W); so if ae T, then alf—~@v—yv—y.

We shall be done once we have shown that some ae &t forces ~@v—yv—-y—-Qvyvy; since Vae .
alf—@v—-yv-y, it is sufficient to show that every a'e¢ n forces @vyvy. So take a'¢ , and
consider any path p through a’. We have seen above that the cg force pA—q, and dglk-‘p/\q. We
shall prove that if p does not contain any cg or d};: there is an a” on p without successors in V or W.
Then a"lFpAq; and it follows that a’ is barred by points forcing ¢, ¥ or ¥, so that a’lFevyvy.
Suppose that p does not pass through points cg or dg. Suppose that a’<c§. Then there must be some
xe p that is not comparable with Ce- Then x>a’. Now suppose that x<cg. Then since x¢ m, x>ag: by
downward linearity. Likewise, since a'e T, we know that a’ >ag. Since x>a’, ag<cg. So E<E' by
construction. But then a§'<a’<c¢ since a’ and ag; both precede x and a'¢ n; whereas agfce by
construction. Thus, x has no successors cg and by downward linearity, no successors in V. If
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necessary, we can repeat this argument with di's, and x instead of a’. We end up with a” as
desired. O

The reader will have noticed that not all of SP,, was employed in the first part of the above proof.
Let us abbreviate VXElx(XxAVylyzy@x(Vi#yiSijVISiS3Xyi)) to o.. We have in fact shown:

if A¥a, then AI¥SP,, and
if Alf—Qv—yv—y, then A¥a;

and observed in passing that AWSP, implies Alf—~@v—yv—y. Thus we have established an
equivalence between I-formulas:

Corollary: With ¢, y and Y as above, SP, is equivalent with ~@v—yv—y on downwards linear
Beth frames.

This contrasts sharply with Kripke validity (4.6): the expressive power of disjunction has become
quite different. With Kripke validity, disjunction without implication was fairly trivial, whereas
with implication it soon became unmanageable; under Beth's definition, it would seem that
disjunction is already complex with — and A, but does not react so violently to implication.

A16 So there may be an interesting correspondence theory for Beth semantics after all. Inspection
of the above example gives rise to the following conjectures: with set variables interpreted as paths,
either in a predetermined domain of paths, or ranging over all paths in the frame,

I on DLO, every I-formula is equivalent to an L,-formula;

II on PO, SP, is not equivalent to an L,-formula.

Footnote

1 In one rather natural class of Beth models, the quantification over bars (or paths) can be replaced
by quantification over numbers. Consider the models on finitely branching trees (i.e. in which
Cov(a) is finite for all a): a point a in such a tree is barred by an upwards closed set X iff for some
neN, all successors of a that can be reached from a in n steps, from a point to one of its covers,

belong to X. The nontrivial direction in this equivalence is proved by an application of Konig's
Lemma.
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Antichain
n-ary
atomic

Bar
binary
boxed
branching

Cause

chain

close(d)

comparable

completeness (strong)
(weak)

component

consistent (set of first order

formulas)

contraction

countably incomplete

countably saturated

cover

cs-formula

Definable (first order -)
{-)
(...in K)
(strongly I-)
(T-)
(...Ly-sentence)
degree

2.9
2.11.9
2.5

Al
2.11.9
5.7
2.11.3

1.8

2.7

1.8, 23
2.9

1.3

1.9
3.9.2

13.7
232
13.7.1
13.7
2.11.4
17.8

I

§14, 14.11
§16

§16

§17

17.9

5.7

descriptive frame

determinate

deterministic

diagram

directed: set of frames
subframe
union

disjoint union (of frames)

(of models)

(of generalized frames)

downwards linear ordering

Elementary (class)
(a-)
(I-formula)
equivalent (on frames)
(on K, logically)
(Z-projections)

(n-)

Filter (proper, prime)
prime filter extension
representation
theorem
finite model property
forcing
fragment
frame
(generalized -)
full (sequent)
(binary tree)

14.18.1
7.4
7.4
7.3
17.3
17.1
17.3
243
13.4
14.13
1.9

§1 note 6, 6.6
1.9

I

42,55

4.2

7.2.4

8.12

14.15.1
14.18.1
14.15.1
14.17
3.13
1.2.5
4.1

1.1
14.10
3.2
8.11
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Generated (subframe,
submodel, ... by)
... subframe of a

1.2.6

generalized frame 14.13

Height
Heyting algebra

homomorphism (of frames)

Ideal
induced model
invariant

inversely well-founded

X-Labeled subframe

frame

2.7
14.1
242

14.17
3.5
13.2
8.1

7.2.1
7.2.4

(sub)tree (strong -, perfect -) 8.4

Minimal Z-tableau, refutation 3.7.2

model

(modal, M-)
monadic
monotone
multitableau

Open

Path

through a point

piecewise directed
p-morphic image

p-morphism (condition)
(of generalized frames)

p-relation
preservation

p-retraction, p-retract

1.2.4
5.3
§11
8.3.2
3.9.1

1.8, 3.3

8.13

Al

2.6

242, 14.13
242

14.13

13.1

244

2.11.1

projection

Z-, partial -, Z-sub-

Quantifier rank

Realize, realizable

(set of ]I_.O-formulas)
(set of signed formulas)

refute, refutable
refutation
... pattern
restricted positive
root (of frame)
(of model)

Scott's axiom

sequent

signed formula
subformula

stability principles

standard translation

strict (quasi-ordering,
successor, chain)

(tableau)
(multitableau)
strong embedding
subtableau
(strong) subtree
subalgebra-based

Tableau (semantic ...)

(020
tautology
t-formula
transparent
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7.1.2

8.12

1.8, 3.1,
§6 note 1
13.7
13.7.2
1.5
3.6.2

1.8

15.4
2.11.4
13.8

3.4(c)
1.8, 3.1
1.8, 3.1
3.6.1
6.4

1.6

2.7
3.3
3.9
2.11.3
3.7.1
8.2
14.27

1.8, 33
3.6.2
2.5

17.8
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tree

Ultrapower
ultraproduct
ultraroot
union (of multitableaux)
upward closure
upwards closed

linear

1.9

6.7, 13.6.1
6.7, 13.6
13.6.1
3.9.3

52

1.2.1

1.5

Valid (in model)
(on frame)
(on generalized frame)
(equation)
valuation
(modal, M-)
variety

Width
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1.5

14.11

14.4

1.2.3, 14.11
5.3

14.5
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Samenvatting

De Kripke-semantiek voor de intuitionistische logika induceert een verband tussen intermediaire
axioma's en quasi-ordeningen (frames): men kan een intermediair axioma opvatten als een
bewering over een frame, die geldt voor een gegeven frame juist als het axioma daarin geldig is.
Daarmee wordt de taal van de propositielogika een medium voor de beschrijving van frames. De
vraag rijst nu wat voor eigenschappen van frames op deze manier uitdrukbaar zijn. In het bijzonder
kan men onderzoeken of formules van de propositielogika "corresponderen” met formules van een
andere logische taal (met bijbehorende semantiek), in de zin dat ze dezelfde eigenschap van frames
uitdrukken.

Dit proefschrift handelt voornamelijk over correspondenties tussen formules van de taal I van de
intuitionistische propositielogika en klassiek geinterpreteerde formules van een predikaatlogische
taal Ly met €én binaire relatie. In deel Il wordt bewezen dat er I-formules bestaan die niet eerste
orde definieerbaar zijn (i.e. niet corresponderen met Lyformules). Uit resultaten van Doets volgt dat
sommige [-formules zelfs niet eerste orde definieerbaar zijn op relatief overzichtelijke klassen van
frames, zoals bomen (met alle paden van type <w), of eindige parti€le ordeningen. De grenzen van
de eerste orde definieerbaarheid worden in twee opzichten onderzocht: zekere beperkingen op de
vorm van [-formules garanderen dat men een corresponderende Lo-formule kan vinden; aan de
andere kant worden langs verschillende wegen frameklassen afgebakend waarop elke I-formule
eerste orde definieerbaar is. De I-formules in één propositieletter worden geclassificeerd naar eerste
orde definieerbaarheid (§11). Er wordt aangegeven hoe men kan beslissen of een I-formule eerste
orde definieerbaar is op de klasse der bomen.

Deel I1I onderzoekt de afsluitingseigenschappen van I-definieerbare klassen van frames; en welke
L,-formules corresponderen met I-formules. Bekende resultaten van de modale
correspondentietheorie worden overgezet naar het intuitionistische geval.

In twee uitweidingen in deel I worden fragmenten van de taal I bestudeerd, en enige opmerkingen
gemaakt over correspondentie tussen I-formules en formules van de modale propositielogika.

Een alternatieve interpretatie van I-formules in frames gaat terug op Beth. Voor de Beth-semantick
kan men dezelfde soort vragen stellen als hier is aangeduid met betrekking tot de semantiek van
Kripke. De appendix bespreekt de vraag naar eerste orde definieerbaarheid. L-definieerbare
eigenschappen geven geen inzicht in de 'klassieke' Beth-interpretatie. Er bestaat echter een
redelijke, meer handelbare variant van de Beth-semantiek.
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STELLINGEN

bij het proefschrift

Intuitionistic Correspondence Theory
van P.H. Rodenburg.

L. Laat voor algebra's &=(A;F), S(&) de collectie zijn van alle deelverzamelingen van A die
gesloten zijn onder de operaties in F; noem twee algebra's (A;F) en (A;F’) equivalent als ze
dezelfde polynomen in >0 variabelen hebben; en definieer S+(#) als

N(S@E") | &' is equivalent met 4.

Dan bestaat er, voor een niet-lege verzameling A en een algebraisch afsluitingssysteem S over A,
een algebra & met drager A waarvoor S=S*(#) desda A oneindig is, of @S, of | (\(S—{D}}1.
(Zie P. Rodenburg, Characterization of the algebraic closure systems that can be represented by
S+, Algebra Universalis 14 (1982) pp.263-4.)

IL. Zij L de taal van de infinitaire modale propositielogika, waarin conjuncties zijn toegestaan van
willekeurig grote verzamelingen formules. De collectie van equivalentieklassen modulo S4.3 van
formules van L in één propositionele variabele p is geen verzameling.

(Cf. D.H.J. de Jongh, A class of intuitionistic connectives, in: J. Barwise, H.J. Keisler and K.
Kunen, eds., The Kleene Symposium, Amsterdam 1980.)

III. In een klasse van eindige frames waarvan de breedte een vaste eindige bovengrens heeft, is elke
I-formule elementair.

(Zulks in contrast met §10 van dit proefschrift.)

IV. De intermediaire logika geaxiomatiseerd door SP,, is beslisbaar, voor elke n€Z*.
(Zie voorbeeld 6.4 in dit proefschrift voor de definitie van SP,.)

V. Zij Q®Q de structuur der paren van rationale getallen, strict geordend door
(g,r) < (q',r) desda g<q’enr<r’.
Definieer
XyXoxy 1= Vi (U] A U<xy — U<xy )

en voor elke n>3,

XX Xn 1% = N\ 1gigF 1 Xic1Xis 1 %p -

~

Zij T de universele theorie van Q®Q. Dan wordt T geaxiomatiseerd door een stel axioma's voor de
theorie der stricte halfordeningen, met toegevoegd de axioma's



Vx,..x, V(xp(l)...xp(n) | p is een permutatie van {1,...,n} )

voor alle n23.
(Dit beantwoordt een vraag in: J.F.A K. van Benthem, The logic of time, Dordrecht 1983 — z. 1.c.
p-28.)

VI. Een halfordening Q is splitsend als er voor elke a€Q elementen g en a” zijn zo dat

Q = (@]U[a) = [a)U(a"], en
(alNlay) =[a)N@"]=0.

Noem een splitsende halfordening Q van type (iii) als Q niet bestaat uit twee onderling ongeordende
elementen (type (i)) en niet isomorf is met Z (type (ii)), en O geen deelordening heeft die een
lineaire som is van twee of meer splitsende verzamelingen. Definieer voor functies ¢:0-Q :
0%0)=x; 0"+1(x)=0(0"(x)).
Een splitsende halfordening Q is van type (iii) desda er een familie (Q|i€Z) bestaat van paarsgewijs
disjuncte deelordeningen van Q, met isomorfismen ¢,:0.=0; |, zo dat Q=) ;0; en Vi€Z
Vx,y€Q;:

(@) xp0,0) & yéox'

(ii) Vj22: x<6/(y) .
(Dit beantwoordt een vraag in: Ph. Dwinger, Unary operations on completely distributive complete

lattices, z. Stephen D. Comer ed., Universal Algebra and Lattice Theory, Charleston 1984 (Berlijn
1985), p.73.)



Erratain Intuitionistic Correspondence Theory

p. 5, regel 8 van boven (kort: +8): voor p, lees ¢ (bis)
p. 7, regel 15 van beneden (kort: —15): occurrence
p. 7, regel 10 van beneden (kort: —10): St(WOx)

p. 8, +14: not a"<a' and not a'<a"

p. 9, —12: seeif the result

p. 10, +16: refute (see

p. 11, —4: elearhy;

p. 13, +13: BHK

p. 19, —6: digunction, and

p. 37,-1: ¢;

p.39, 2. 1[4, =F

p. 41, +3: -4,

p. 50, —6: 4 ()i

p. 55, —6: Los's theorem

p. 98, +9: lattice

p. 126, —8: generated by f[a] [since by U fa]]

p. 136, —2: for each l.|Jpa,

p. 145, —13: eliminating conjunction produces



