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Preface

This dissertation contains results on classical first- and second-order
logic (parts I and II) and their intensional colleagues: modal—tense- and
intuitionistic (propositional) logic (part III).

One underlging theme is Ehrenfeucht's game and some of its variants.
Chapter 1 is an Hnroducuon to Ehrenfeucht ganmatheorg and us

relation with (quantifierrank-) on-equivalence in (infinitarg) logic. Section
1.0 intends to whet the appetite for the finite Ehrenfeucht game.

In chapter 2 the game is plaged on binarg trees. A characterisation is
obtained of all trees n—equivalent with the binarg tree Bm all of whose
branches have length m. In particular, it follows that B”, has infinite
n-equivalents when m) 2"—1.This has been applied bg Rodenburg [1986]
to solve a probleniin'HnuiUonisUc.correspondence theorg;the storgis
told in chapter 8.

Part II shows how to axiomatize certain monadic ll‘1-theories, most of
them dealing with well-foundedness. Chapter 3 is on linear orderings. One
of the nicer results is in 3.3 where the effects of the Suslin propertg for
the monadic Tl‘1-theorg of IR are isolated. Chapter 4 generalizes the
method of 3 to the case of trees.

In part III, chapter 5 discusses Lowenheim-Skolem tgpe problems in
modal correspondence theory. It is shown that most examples of
non-first—order definable modal formulas alreadg cannot be first-order
defined on finite frames. On the other hand, an example is given of a
non-first—order definable formula which is first-order definable on all
countable frames.

Chapter 6 modifies the Ehrenfeucht game for use in intensional logic;
exact Kripke models are constructed universal with respect to finite
partiallg ordered Kripke models.



(ix)

Chapter 7 presents our version of Z-completeness.
In chapter 9, games and the universal-exact Kripke model appropriate

for one-variable intuitionistic formulas are applied to solve some
problems in intuitionistic correspondence theorg left open bg Rodenburg
[19B2].

Appendix A constructs asgmmetric linear orderings with lots of
homogeneitg-properties in each uncountable cardinal.

Appendix B reduces all of higher-order logic to monadic second-order
logic - indicating the expressive possibilities of modal logic in the Kripke
semantics.

To help the reader find his wag, here is an indication what can be
omitted without loss of understanding of the rest. In chapter 1, sections
4, B and 9 are not needed for the other chapters. Also, not much will be
lost if, in the discussion of the oz-game, the reader alwags assumes ozto be
finite. Section 2.4 can be read independentlg from the rest of chapter 2.
Section 3.2 mag be omitted. In part III, all chapters can be read
individuallg (except for a couple of references where this is indicated.)

I am obliged to several people for different reasons; in particular I
wish to thank here prof. Specker for a lecture featuring Ehrenfeucht
games; Piet Rodenburg for the communication of his problems to which
chapters 2/8/9 are devoted and the elimination of numerous mistakes in a
previous version of this text; Anne Troelstra and Dick de Jongh for
scientific support and the software used to produce this text on the
Macintosh Plus.

However, above all, mg gratitude concerns mg thesis-advisor Johan van
Benthem whose determination and persuasiveness eventuallg turned out to
be irresistible.





Part I: DEFINABILITY

It were not best that we should all think alike; it is difference of

opinion that makes horse-races. - Pudd‘nhead Wilson's Calendar

1. Fraissé-Ehrenfeucht theorg for

Lamand some of its fragments.

1.0 Introduction.

This chapter introduces five guises of oi-equivalence between models,

where onis an arbitrarg ordinal.

For o:=oJ, this relation (called elementary equivalence and denoted bg

2) is a basic one in model theorg. For models of the same finite

similaritg-tgpe, AsB just means that A and B have the same true

(first-order) sentences. However, there are some uses for refinements, as

is argued below.

oi-Equivalence for finite 0: is explained game—theoreticallg as follows.

Suppose A and B are models (of the same similaritg tgpe) and nelN. The

n-game on A and B, G(A, B, n), has two plagers, I and II. Theg move

alternatelg. I is allowed the first move; each plager is allowed n moves. A

move consists of an element in either A or B. However, if plager I chooses
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an element in A (resp. B) then plager II has to counter in B (resp. A).

Therefore, a move of plager I and the following counter-move of plager II

form an ordered pair in A><B(where A and B are the universes of A and B

respectivelg).

when the game is over, the set of ordered pairs of moves is an at most

n-element relation hcA><B. II has won the plag bg definition if his a

partial isomorphism between A and B, that is, if his an injection on its

domain which preserves the structure of the models. Of course, the larger

n, the better I‘s chances to defeat II.

Here is an example: A consists of the neighbour-relation Flon the set of

integers 2 defined bg nFimiff In—m|=1; B is the quotient of this structure

modulo (9) - this can be visualized as a circle with 9 points. Now, plager

II can win each game of length 3 between these models; however, Ihas a

wag to win the 4-game: his first three moves are chosen at equal

distances in B; his fourth is in 2 not meeting ang of II‘s three moves

there. Now whatever the answer of IIin B=Z/(9), he cannot avoid one of

the moves of I.

To explain the "meaning" of the game somewhat, let me remark that

plager I, in order to win, tries to point to differences between the models

involved; while plager II on the other hand tries to argue that the models
are somehow similar.

Finallg, A and B are called n-equivalent if II has a winning

strategy for G(A, B, n), that is, a method bg which he can beat I no

matter the choice of moves bg I. So, in the example above, (Z,R) and

(Z,Fi)/(9) are 3-equivalent but not 4-equivalent.

An easg case where II has such a winning strategg no matter the length

of the game is when A and B are isomorphic: II then simply applies the

isomorphism (or its inverse) to the moves of I.

1.Fraissé-Ehrenfeucht theory



n-Equivalence of A and Bis denoted pg As”B.

The following well-known example will be used later on.

1.0.1 Proposition.Finite linear orderings A and B are n-equivalent

iff |A|=|B| UFIAI, IBI2 2”—1.

To prove 1.0.1, we emplog a simple

1.0.2. Lemma. Suppose that A=(A, <) and B=(B, <) are linear orderings.

Then Aa"*‘B iff (‘back") for all DEBthere exists am

such that aJ,5"bl and aTs"bT and ('forth") for all aeA

there exists 065 such that a1a"bl and aTs"bT.

(Here, a1={a'eAIa'< a} and aT={a'eAIa<a'} are identified with the ordered

models on these sets.)

Notice that, for the lemma to make sense in general, empty models

must be allowed explicitlg.

Proof of 1.0.1. Induction on n. For n=0 there is nothing to prove. Assume

the result for n and suppose that IAI,lB|> 2"*‘—1. Use 1.0.2. Suppose aeA.

Now, distinguish three cases. (i) |aiI<2"—1. Pick beB such that |b1I=|a1|.

Then a1z"b1. Furthermore, we must have laTI, IDTI22”—1; hence aTz"bT pg

the induction hgpothesis. (ii) IaTl<2"—1. This is similar to (1). (iii) |aJ,I,

|aT|> 2"-1. Pick DEBsucht that lbil, |bT|> 2"—1 (such a b necessarilg

exists) and applg the inductive hgpothesis. The other parts of the result
are left for the reader. El

1. Frai'ssé—Ehrenfeucht theory



In the sequel, identifg an ordinal with the well-ordered set of its

predecessors. to’ is the order-tgpe of (oJ,>) and t;=oJ'+r.o is the order

tgpe of the integers.

1.0.3 Example. (1) If m) 2"-1, then.-ms"o3+oJ".

(ii) For all n: to E”0J+C_,.

Proof. Induction on n, using 1.0.2. For (i), use 1.0.1. (ii) follows from (1). I81

Below we shall encounter several situations in which either 5 is too

fine or ordinarg model theorg is of no avail. In such cases, game theorg

provides a wag out.

As to the first tgpe, in part II we shall be confronted with models

which have n—equivalents with a certain propertg for all n, while

elementary equivalents with that propertg do not exist. As to the second,

much of part III is concerned with model theorg for finite models. In such

a non-elementary domain, compactness and Lowenheim-Skolem theorems

cannot be much of a help.

Chapter 1 is organized as follows. Section 1.1 fixes terminologg. 1.2

defines oi-equivalence for general 0: in the simplest of ways. (cf. Poizat's

admirable [1985] logic-introduction for a treatment based on such an

approach.) 1.3 is about games. For 0£>E:J,this is due to Barwise [1973]. 1.4

is Karp's [1965]—characterisation generalizing Fraissé's [1955] (one of the

oldest references in the subject, save for Fraissé's thesis). 1.5 gives the

connection with (infinitarg) logic and 1.6 finallg defines Scott-sentences

coding up the game-theoretic information on a sequence of elements.

Remarkablg, these were introduced at first for infinitarg logic onlg, cf.

1.Fraissé-Ehren feucht theory



Chang [196B]. 1.? specializes the discussion to (finite) first-order logic.

In 1.8, the ordinal parameter 0! approaches absolute infinitg. In game

theorg, this corresponds with not putting an upper bound on the length of

the game, which seems to be the obvious wag to "infinitize" games;

however, 1.3 showed this to be a verg crude step indeed. 1.9 finallg

collects some information on when 5°‘equals a°°.

1.1 Notation and terminology.

A model is a complex A=(A,...) consisting of a set A (which, contrarg

to usual logical convention, often is allowed to be emptg) together with

ang number of ("finitarg") relations. Thus, functions (and, often, constants

as well) are excluded from models.

A language (or similaritg-tgpe) is a set of relation—sgmbols,

together with a specification of the number of arguments (the aritg) for

each sgmbol in the set.

If L is a language, an L-model is a model together with a surjection of

L onto its set of relations such that arities are preserved. Thus, an

L-model can be considered as a couple A=(A, ') such that for each HeL, if

His n—argthen F»"cA".

h: A—>B is an isomorphism between the L-models A=(A, *) and

B=(B,°) if it is bijective and preserves corresponding relations, i.e., if

for each REL, if H is n-arg and a0,...,a,,_1EA then

R'(a0,...,a,,_1) iff H°(ha0,...,han_1).

If A=(A, *) is an L-model and BCA then B=AlB is the L-model (B,°)

where for each ReL, if F!is n-arg then F»'°=R"lB=H"nB".

1.Fraissé-Ehrenfeucht theory



1.2 oi—equivalence.

h: A—>Bis a partial isomorphism between the L-models A=(A, ")

and B=(B,°) if Domh is finite and h is an isomorphism between A|Domh

and B|Ran h. Notice that each finite part of an isomorphism is a partial

isomorphism but not everg partial isomorphism is part of an isomorphism.

The next definition is basic for this chapter.

1.2.1 Definition. For L-models A, B and ordinals oz,Ia(A,B) is a set of

partial isomorphisms between A and B defined as follows:

(i) I0(A,B) consists of all partial isomorphisms between A and B;

(ii) heIa,1(A,B) iff ("back") for all beB there is an aeA such that

hu{(a,b)}eIa(A,B) and ("forth") for all aeA there is a 13:55

such that hu{(a,b)}eIu(A,B);

(iii) for ora limit: Iu(A,B)=fl£<uI£(A,B).

Suppose a=(a0,...,ak_,)eA“ and b=(b0,...,bk_1)eB". a and b are called

on-equivalent (notation: as°'b or, more explicitlg, (A,8)5°‘(B,b)) iff the

correspondence (a,D)={(a,-,b,)|i<k} is in Ia(A,B). (co-equivalence usuallg is

called elementary equivalence.)

The main purpose of this chapter is to present four or five

characterisations of oz-equivalence, most of them connecting it with Loom

and one in terms of the Ehrenfeucht game. Before we introduce the last

one however, we give a simple lemma.

1.2.2 Lemma. If o:<[3 then IB(A,B)C Iu(A,B).

Proof. Induction on B. For limit [3,this is obvious, so assume [3=3+1. Let

1.Fraissé-E hrenfeucht theory



h e IB(A,B); we prove h e Iu(A,B) using induction on 0:. For oz=0 and limit

or this is clear. Thus, assume oz=b+1 and h e Ib(A,B). To see that

he Ib,,(A,B) we check the forth-condition onlg: let aeA be arbitrarg.

Since h e I5,1(A,B), there exists beB such that hu{(a, b)} e I6(A,B).

Now o:=b+1 <25, hence, bg induction-hgpothesis on 25,hu{(a,b)} e Ib(A,B). B1

1.3 Drdinal-bounded Ehrenfeucht games.

We now turn to the first characterisation of oz-equivalence. This is the

imaginative reformulation in terms of games, due to Ehrenfeucht, which,

in practical applications, seems to work best.

Suppose that A and B are models for the same language, that heI0(A, B)

and that onis some ordinal. G(A, B, h, 0!) is the following game for two

plagers I and II: I and II make moves alternatelg as follows. I begins. His

first move consists of three things: (i) an ordinal oz0<o:;(ii) one of the

models A, B; (iii) one element of the model chosen under (ii). II now is

allowed, as a counter-move, to choose one element from the model not

chosen bg I. Next, it is I's turn again. His second move again consists of

three things: (i) an ordinal oz1<oz0; (if) one of the models, and (iii) an

element of the model chosen. Again, II picks an element from the other

model. This goes on with the proviso that the sequence of ordinals picked

bigI must be strictlg descending. Of course, after a finite number of moves

and counter-moves in this fashion, plager I must pick the ordinal 0

eventuallg. Plager II is allowed one last counter—move,and this is where

the plag of the game ends. Suppose the moves of Ihave been as follows:

1.Fraissé-E hrenfeucht theory



c,—eBif (3,: B) and II has countered with the sequence d0,...,dk_, (thus,

d,.eA if C,.= Band d,eB if C,.= A). Let (a,, b,) = (c,., d,.) in case c,eA and

d,.eB; (a,, L7,)= (d,., c,) otherwise (i< k). We shall sag that plager II has

won the plag of the game when hu{(a,., b,.)l i<k} e I0(A,B). Otherwise,

plager I has won.

This description of the game is inadequate when one of the models is

emptg, or if o:=0. Therefore we agree that II wins the plag when oz=0 or

if both models are emptg; and I wins if II has no answer since the model

he has to choose from is emptg.

Again, the "meaning of the game" is explained somewhat bg noting that

it is the "intention" of I to show that A and B (more accuratelg,

(A, a)aED0m(,,)and (B, ha)aED0m(,,))are different in some sense, while it is

the "intention" of II to argue that theg are not.

Clearlg, the larger 0:, the easier the task of I, since the plag can be

somehow longer. Though each plag necessarilg must be finite, I can make

it last as long as he wants without telling II - at least some of the time.

Unlg if onis finite it is clear beforehand that the plag will end after 0:

moves for both plagers at worst. If o:=to, the first move of Ibetrags his

intentions as to the length of the plag. But if, sag, oz=co+3, I has three

moves to go for free before he must inform II how mang more he'll use,

etc.

Example: 1.0.3(ii) shows that coa‘°oo+C. However, wae°3*‘oJ+c. To see

this, let Istart with the move (oo,o3+c,0¢)(where bg 0, I mean the 0 of the
C-part of to+c). Now if II answers with new then I chooses

(n+1,oJ+C,—1c),starting a decreasing sequence of length n+1 in o3+c.

For finite 01,the game was invented bg Ehrenfeucht [1961] as a

reformulation of the Fra'issé characterisation (cf. below); for general 0:,

cf. Barwise [1973].
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1.3.1 Example. An ordinal is identified with the well-ordered set of its

predecessors. If [3<ozthen plager I has a method to win each play of

[3(0t, [3, (2),oz).Proof: the first move of Iis (B, 0:, B). If II answers with 25613,

Icopies this in his second move as (5, or,25).As 5 < [3,II will answer with

some b<z5 in [3 which is copied by I in his third move, and so on.

Eventuallg, II will pick 0 (his sequence of ordinals must be strictly

descending if he is not to lose: remember II has to take care that the

alternate moves build a partial isomorphism). This is copied pg 1- and II

now is without answer. El

A method for one of the players to win each plag of the game is called

a winning strategg for that plager. Morepreciselg, a winning strategg

for IIis a function 0 defined on sequences of odd length such that each

plag (a0, bO,...,ak_1,DH) of the game (where the successive moves of [are

a0,...,ak_1,-those of II being b0,...,bk_1) with the propertg that for all i</<:

b, = o(a0, b0,...,a,.), is a win for II. winning strategies for I are defined

similarlg.

1.3.2 Theorem. In each game [3(A, B, h, oz), one of the players has a

winning strategy.

Proof. Immediate from the Gale-Stewart theorem, since all plays have

finite length. However, here is the argument:

First, we define a position in GM, B, h, 0:) to be a finite set gc AxB

together with some [3<oz. By the phrase "I and II have reached the

position (g, B) after I<moves each in their play" we shall understand that

(i) g is the <l<-element set of pairs which consist of an element plaged pg

1.Fraissé-Ehrenfeucht theory
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I and the counter-move of II corresponding to this element (in the right

order) and that (ii) [3is the last ordinal plaged pg I.

A position (g, 3) now is defined to be a win for I obviouslg in case he

has a winning strategg for I3(A,B,hug,|3).

Now, we can prove 1.3.2 using these notions as follows.

Suppose that I has no winning strategg for GM, B, h, on).This clearlg

means that the initial position (¢, 0:) is no win for I. Let II plag according

to the following method: if possible he picks his moves in such a wag that

after each of his moves a position (g, B) remains which is no win for I. Bg

induction, we verifg that II alwags has a counter move which just

performs this: first, since (¢, 0:) is no win for I, whatever the first move

of I, II has an answer leaving no win for I. Similarlg, if in the plag a

position (g, 13)is reached which is no win for I then, whatever I does next,

II can counter leaving no win for I. Eventuallg (and this is where the

finiteness of the game comes into plag), this sequence of moves comes to

an end with a position (f,0). Being no win for I, we must have

fuhe I0(A,B). Hence, the method described is winning for II. El

Nowcomes the first characterisation of or-equivalence.

1.3.3 Theorem. For h E I0(A,B) and onan ordinal the following are

equivalent:

(1') h e I,,(A,B) ;

(ii) II has a winning strategy for GM, B, h, or).

Pf'00f.

(1) => (ii). Assume h e Iu(A,B).The strategg of II consists in II trging to

1.Fra issé-Ehrenf eucht theory
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pick his moves in such a fashion that in each position (g, B) of the plag he

has hug e IB(A,B). This is satisfied at the starting-position (91,oz) bg

assumption. If the plag ends with (f, 0) and huf e I0(A,B), then II has

won bg definition. Lastlg, II can keep this requirement during the plag:

Suppose a position (g,[3) has been reached with hug e IB(A,B) and I

chooses, sag, (25,A, a) as his next move, where 3<|3. Then 5+1 <13, hence

hu g 6 15,1 (A,B) bg 1.2.2. Therefore, be B exists such that

hugu{(a,b)} e I5(A,B) - and this will be the answer of II, of course.

(ii) =9 (i). Let o be a winning strategg for II in 13(A,B, h, or); we show

he Ia(A,B) og induction on 0::

If oz=0 there is nothing to prove since h e I0(A,B) bg hgpothesis. If onis a

limit, 0 wins everg plag in GM, B, h, 13)with [3<oz for II, therefore

he FlBwIB(A,B) = Ia(A,B). Finallg, assume oz=B+1. We check the

forth—condition: let aeA be arbitrarg. Consider ([3,A, a) as a first move of

I. Suppose 0 provides the answer DEBfor II. Clearlg, (a modification of) o

is a winning strategg for II in GM, B, hu{(a, b)}, B). Bg induction

hgpothesis then, hu{(a, 0)} e IB(A,B).El

1.3.4 Example. In 3.4.1 below, we re-prove Ehrenfeucht's result that com

is co-equivalent with the ordered structure 52of all ordinals. However, to”

is not (oo+1)-equivalent with this structure, which can be seen as follows.

According to Rosenstein [1982] corollarg 6.19 p.106, if o:<oJ"*‘ then

ozz2”*'~’oJ"*‘.(') Now, let I plag (oo,Q,oo‘°) as a first move. Suppose II

counters with o:<w"*‘. Then, bg ("), (2n+2,Q,o3"*‘) is a winning move for

I.

1.3.5 Example. Karp [1965] has shown (of. Rosenstein [1982] thm.14.29

p.35?) that if oo°=b then 52° 0+6-t for all (not necessarily well-ordered)

1.Fra issé-Ehrenf eucht theory
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order tgpes 1:.

Hence 2°‘ will never coincide with isomorphism on the ordinals as

there alwags are 62 oz(of the same power as 0:)such that oo°=b.

1.4 Fraissé-Karp sequences.

A Karp sequence for A, B, h, 0: is a sequence <I£|£<o:> of length

oz+1such that the following hold:

1. (1') I: C I0(A,B) for all 5 < 0:;

(ii) {<5 <0: => Ibclé;
(iii) n e 10,;

2. for all £< oz and ge 1,3,1:

("back") for all beB there exists aeA such that gu{(a,b)}eI€,­

("forth") for all aeA there exists beB such that gu{(a,b)}eI£.

Karp sequences for finite onare due to Fraissé [1955] which is one of

the oldest references in the subject. For general 0:, theg are due to Karp

[1965]. Theg provide a second characterisation:

1.4.1 Theorem. h e Iu(A,B) iff there is a Karp sequence for A, B, h, a.

Proof. If h e Ia(A,B) then obviouslg <I£(A,B) I E < oz) is the required

Karp sequence, pg 1.2.2. For the converse, assume < Iall-; g on> is a

sequence as required. Now, copg the proof of 1.3.3.(i) => (ii), replacing

I€(A,B) pg 1; (E,< 01)(notice that 1.22 has been built into the definition

of Karp sequence). This shows II to have a winning strategg in

1.Fraissé-Ehrenfeucht theory
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GM, B, h,ox),which suffices bg the other half of 1.3.3. El

1.5 Logic.

Now, it is time for logic.

Let L be ang language. Fix a countablg infinite set of variables. Atomic

formulas of L are all identities x0=x1 and expressions F?(x0,...,xk_1) where

REL is k-arg and X0,...,xk_1 are variables. The set Loomof (infinitarg)
formulas of L is the least one such that

1. all atomic formulas are in Low ,­

2. if I9 as Low then ‘up e Loom;

3. if Q c Loomis ang set then /\ti> and Vi» are in Loom;

4. if tp e Lam and x is a variable then Vxtp and Elxtp are in Loom.

I assume known the basic notions and semantics concerning these

objects.

The quantifier rank qr(Lp) of L96 Law is an ordinal recursivelg defined
as follows:

1. qr(Lp) = 0 if (9 is atomic;

2. qr(’ltp) = qr(tp);

3. qr(/\@) = qr(V@) = sup { qr(tp)| tpe in};

(4. qr Vxtp) = qr(ElxLp) = qr(Ip) + 1.

Here is the logical characterisation of oz-equivalence:

1.Fra issé-E hren feucht theory
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1.5.1 Theorem. heIa(A,B) iff for every tpeLwm with qr(tp)<oz

and every valuation f of the free variables of up into Domh:

A|=tp[f] iff Bl=Lp[hof] (i.e., h preserves satisfaction of

quantifier-rank < or- formulas).

Proof. I onlg give one half here —the other has to wait for the next (and

last) characterisations.

Suppose Lp has qr(tp) < or and L9,h do not satisfg the equivalence.

Sag, AI=tp[f], out Bl=‘1Lp[hof]. If tp is atomic, then h e I0(A,B). If tp =

/\T , there is a LIJET such that Ai=L|J[f] and Bi=‘IqJ[hof]. The same goes

when L9= VT. If tp = ‘up, then A|'=_‘L|J[f] and Bk L|J[hof]. Repeating

this, we find a quantified subformula, Vxtp sag, of tp, satisfied bg f resp.

hof in exactly one of the models, A sag. Hence, for some beB

Bl="llJ[(hof)u{(x,b)}]; on the other hand, for all aeA Al=qJ[fu{(x,a)}].

Now we can give the first move in a winning strategg for I in GM, B,h,oz):

I plags the triple (qr(qJ), B, b). whatever II's counter-move as A, I

proceeds to find a quantified suoformula of iv satisfied bg f and a (resp.

hof and b) in exactlg one of the models and repeats the procedure.

Ultimatelg, an atomic formula and a position (0, g) are reached such

that, necessarilg, hug a I0(A,B).

Summarizing: I can use Lp as a guide to find a winning sequence of

moves.

This gives one half of the theorem bg 1.3.3. 8

1. Frai'ssé—Ehren feucht theory
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1.6 Scott-sentences.

For the last couple of characterisations of oz-equivalence a definition

is needed which is due to Scott (cf. Chang [1966]).

1.6.1 Definition. Fix an enumeration V0,v1, v2, . .. of all variables.

For A = (A,...), a = (a0, ak_1) e A" and on an ordinal,

define the formula l[a]l°‘= l[(A, a)]l°‘ (the oz—characteristic of a

in A) as follows:

1. E3110 is the conjunction of all atomic or negated atomic

formulas in V0, vk_1satisfied pg 27in A ;

2. l[a1l°'*‘ = Am 3vkl[aa1l°‘ A vv,,v l[aa]l°‘;

3. l[a]l°' = /\,<aIra11€ when oz isalimit.

aeA

(Here, juxtaposition denotes prolongation: aa = (a0, ak_1,a) .)

To appreciate this definition, notice that it is (in a sense to be

explained) a formalisation of the definition of oz-equivalence, 1.2.1.

1.6.2 Lemma. lIa1l°‘has quantifier rank on, free variables v0, vk_1

and it is satisfied by a in A.

The following completes the sequence of theorems 1.3.3, 1.4.1, 1.5.1:

1.6.3 Theorem. For a e A" and b e 5'‘ the following are equivalent:

1. asap;
2. B r: l[a]l°‘[b] ;

3. l[bIl°' (= l[(B, D)]l°‘) = l[a]l°‘.

Proof, and proof second half of 1.5.1.

The condition from 1.5.1 in terms of sequences is:

1.Fraissé-Ehren feucht theory
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0. if qr(tp) < 0: and L9 has free variables v0,...,vk_1 at most

then: A l= £9 [3] <=> B l= £9 [£7].

Wearegoingtoshow 1=>0=>2=>3=> 1.

Using the Ehrenfeucht game-characterisation, 1=>0 has been proved above.

0 => 2 : this is an immediate consequence of 1.6.2.

2 => 3 : induction on or. For 0: = 0 and limit 0:, this is clear. Assume

the implication for onand all a and b. Now, let B l= I[a]l°”‘ [b]. (') In order

that i[a]l°‘*‘ = [[b]l°”‘ it suffices that {I[aa]l°‘|ae A} = {i[bbl]°‘|be B}.

c: let ae A. Bg ('), be B exists such that Bl=|Iaa]l°' [bb]. Bg induction

hgpothesis, I[aaII°‘ = IIbb]l°'. Hence, i[aa]l°' e { [[bb]l°‘I b e B}. The :)-part

is similar.

3 => 1 : induction on 0:.For oz=0 this is clear. For 0: limit, notice that if

l[a]l°‘ = [[b]l°' then lIa]l5 = IEDJI5 for all £<oz bg 1.6.2; now, applg the

induction-hgpothesis.

Lastlg, assume 3 => 1 for onand all a, band let |]Za]]°”‘ = I[b]l°”‘. To

see that a 50”‘ b, we check the forth-condition:

Pick aeA. Since i[aaIl°' is a quantifier rank—ozsubformula of l[a]1°‘*‘,

it must occur in l[b]]°”‘ as well; hence i[aa1l°' = [Ebml“ for some beB.

Bg induction hgpothesis then, aa 2°‘bb. El

Remark. The equivalent 1.6.3.3 shows that the oz-characteristics are

canonical objects associated with the o:—equivalenceclasses. If one does

not care about them being Loom-formulasat the same time, their definition

can be simplified, leaving out logic almost completely, bg

1.6.1.2‘. i[a]l"*‘ = {l[aa1l"|aeA}.

This remark is due to Shelah [19?5]. Of course, this can be extended

into the transfinite bg putting, for limits 3,

3' l[aII5 = U£<al[a]]5.

1. Fraisse’-Ehrenfeucht theory
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1.7 The finite case

Specializing to the finite fragment Law of Low, first-order logic,

there is a slight problem. Notice that, though each finite formula has

finite quantifier rank, not everg finite quantifier rank Lmw-formula is

finite. However, we have the (in the sequel, often used)

1.7.1 Lemma. If the language of A is finite then, for all k,nelN, there are

only finitely many n-characteristics belonging to sequences of length k.

Proof. Induction on n. when we have a finite language, there are onlg

finitely mang atomic formulas in V0, vk_1 for each k. If their number is

sk, it is clear that there are at most 23k possible formulas [[3110for a

of length k. Hence, there are < exp exp sk,1 formulas Iran‘, and so on. El

Therefore, we can specialize 1.5.1 to

1.7.2 Theorem. For models A, B of the same finite language, when

aeA“, beB", new, the following are equivalent:

1. a 5" b

2. for all finite formulas Lpof quantifier-rank én in the

appropriate number of free variables: AI=tp[a] <=>B l=Lp[b].

Proof. 1=>2 : bg 1.5.1. 2=>1 : if 2. holds then, bg 1.6.3 and 1.7.1,

B l= l[a]l" [D]. The result follows bg 1.6.3. El

1. Frai'ssé—Ehrenfeucht theory
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1.8 The unbounded case.

Suppose that A and B are models. Let us construct a Karp sequence for

A, B which is as long as possible: I0 3 I1 3 I2 :3 :) I0, 3 ; for

instance, we might have I0,= Ia(A,B). Bg a cardinalitg-argument (cf.

1.9.1), the sequence must become stationarg at some place 0!, i.e., I0,=

fl,1,. Now, 10,either is emptg, or it isn't. Either wag, it has the following

back-and—forth property: if heIu then (back) for all [765there is aeA

such that hu{(a,b)} e Ia, and (forth) for all aeA there is beB such that

hu{(a,b)} e Ia. This simplg is due to the fact that IO,= Ia”.

Io,can be looked at as the greatest fixed point of the monotone operator

defined on subsets of I0(A,B) which associates with each Xc:I0(A,B) the

set {gl VaeA3beB(gu{(a,b)} e X) A VbeBElaeA(gu{(a,b)} e X)}.

Now, A and B are called partiallg isomorphic if a non-empty set I

of partial isomorphisms exists with this back-and—forth propertg.

In the games [3(A, B, h, 0:), the ordinal onis a means to preserve

finiteness of all plags, without giving a fixed upper bound on their lengths

(at least when 0:) co). Somehow, the larger 0:, the longer plager I can keep

the plag going (and the better his chances to defeat II). The natural limit

is the game G(A, B, h) = t3(A, B, h, Q) where I can go on forever, and plags

have length on. Of course, if I is to win, this becomes apparent after a

finite number of moves alreadg. Hence, the Gale-Stewart determinacy

theorem still applies. We now have the following "limiting case" of our

characterisations, which is presented without parameters for simplicitg.

1.Frafssé-Ehrenfeucht theory
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1.8.1 Theorem. The following are equivalent:

1. ma Io,(A,B) 9-5 ¢,­

2. II has a winning strategy for GM, B, to) ;

3. A and B are partially isomorphic ,'

4. A sum B (i.e., they have the same Lmm-theory).

Proof.

1=>2. Suppose I (A,B) = Io,(A,B) ¢ to. II plays in such a way thatot+1

only positions h are reached for which some y e Io,(A,B)exists with hcg.

2=>3. The required set is the one of all positions h reached during

every possible play in which II uses his winning strategy.

3=>4. If I is a set witnessing 3., the constant sequence I, I, I, . .. of

length otis a Karp sequence. Apply 1.4.1/1.5.1.

4=>1. Let ot be such that Ia(A,B) = Fl, I,(A,B). By 1.5.1, ¢eI,,(A,B). lZl

1.8.2 Corollary. (Barwise [19?3]) Countable partially isomorphic

models are isomorphic.

Proof. In l3(A, B, 95),let I enumerate all elements of AUB. If II uses a

winning strategy, the result of the play is an isomorphism as required. El

1.8.3 Example. [In the ordinals, partial isomorphism coincides with

isomorphism.

1.Fraissé-Ehrenfeucht theory
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1.9 Basis results

As part of the above, we saw that, for all A and B, there is an onsuch

that A zoomB iff A 2“ B. As to how large such an ormust be

1.9.1 Theorem.

1. If IAI= n< on then A zoomBiff A 2 Biff A 5"” B,‘

2. If A and B are infinite then A zoomB iff A 2°‘ B , where onis

the least ordinal of power > IAI,IBI.

Proof. 1. In G(A, B, n+1), let I first enumerate A. If II uses a winning

strategg, the position reached must be surjective (otherwise, let I plag a

new element of B). 2. Notice that |I0(A,B)I = max (IAI, IBI). Furthermore,

the first onfor which Iu(A,B) = Iu.,(A,B) has loll < |I0(A,B)|, hence is

less than the first one of power > IAI,IBI.IZI

Of course, 1.9.1.2 is quite week. A much better result is NadeI's basis

theorem from Nadel [19?4]. Here, an admissible set is a transitive

model of the theorg KP, which is a weak version of ZF at least sufficient

to carrg out the proof of 1.9.2; cf. Barwise [19?5]. To see that the next

theorem strengthens 1.9.1, note that, bg the Lowenheim-Skolem theorem,
each transitive infinite set is a member of lots of admissibles of the same

power.

1.9.2 Theorem. Let /Abe an admissible set such that L, A, B e /A and

let 0:= /AnUR be the set of ordinals in /A.

If A s°B then A zoomB.

Proof. Since -=-mmcan be defined inductively, this is immediate from
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Gandg's theorem (see for instance Barwise [1975] chapter VI). However,

here is a direct proof:

Suppose that (90 is ang Loom-sentence such that, sag, A l= tpo but B i=

fitpo. Let [3 = qr(Lp0). We know that I has a winning strategg o for

i3(A,B,¢,B). Let T be the set of all positions ((a, b), 5:) (€<|3) which can

be reached in some plag where I uses his strategg 0.

Claim: for every ((a, b), g‘)E T there exists (,0E /AnLwwin the appropriate

number of free variables such that A l=(,o[a] and BI=‘ltp[bJ.

As ((¢, ¢),p) e T to begin with, this claim establishes the result. It is

proved bg induction on l; as follows:

If ((a, b), 0) e T, we cannot have aso b, since I was using a winning

strategg. Therefore there is a formula Lpas required which is either

atomic or negated atomic. Now, let ((a, b), 5) e T and £>0. (a e A“)

Suppose a prescribes the move (5, A, a) for Iin this position. Then b<£,

and, bg induction hgpothesis,

VbeBElLpe/A [A l= qJ[a,a] A B i="IqJ[b,b] ].

Bg 2-collection (cf. Barwise [1975] thm.4.4 p.17) on /A, obtain <IweAsuch

that

1. \'/beBElLpetI» [A i= qJ[a,a] A B l="IqJ[b,b] ], and

2. \7’L|JetI>ElbeB[A l= qJ[a,a] A Bi= ‘IqJ[b,b] ].

Now, L9= Exk /\tI> is the formula required. (When 0 prescribes a move in

B, a similar argument finds cpof the form ‘V/xkV@.)El

The Scott-rank sr(A) of A is the least ordinal 0: such that for all k

and a, b e A": if a 5°‘ b then a 5°” b. (Thus, A is co-homogeneous iff

sr(A) <00.)
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1.9.3 Theorem. If/A is admissible and A e /A then sr(A)< AADR.

(In particular, sr(A) exists.)

Proof. Applg 1.9.2 to (A, a), (A, D) e A El

For 0:= sr(A), the Scott—sentence of A is

oA= l[¢]l°‘/\ /\,vx(iia1i° —+I[a]J°‘*‘).

A one-sided version of 1.9.1 is part 3 of the theorem below:

1.9.4 Theorem. 1. qr(oA) = sr(A) + co ,­

2. A i= 0A ,­

3. Bl= 5,, iff BEWA.

Proof of 3.: <= by 1, 2. =>: If B l= 0A then in particular B |= i[¢]l°', hence

B 5°‘ A. (-) But also, B i= /\, vx (|IaII°‘ —> l[a]]°”‘ ),- therefore II can

win [3(A, B, (25,3) for each 5 as follows: he simplg moves in such a way that

onlg positions ((a, b), z;) are reached with a 5°‘b. Bg ('), this is right at

the initial position. If ((a, b), 5) is reached and as“ D, then Bl= i[a]l°‘[b]

and hence B l= l[a]l°‘*‘[b] pg assumption. Now if I plags, sag, aeA, there

is DEB with B I= I[aa]l°‘ [Db], etc. El
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2. Unn-equivalence of binarg trees.‘

2.1 Introduction

For m>O, Bmis the binarg tree all of whose branches have length m.

This chapter characterizes the binarg trees n-equivalent with Bm(for

each pair n, m). It grew out of corollarg 2.2.4 below which sags that

finiteness of binarg trees is not first-order expressible. This fact is used

in Rodenburg [1986] to solve a problem in correspondence theorg for

intuitionistic propositional calculus, cf. chapter 8 below. Section 2.4

contains the much stronger result that finiteness of binarg trees is not

even 211 —be it with a less informative proof. For an application of the

Ehrenfeucht game plaged on structures of trees, cf. Tiurgn [19Ei4].

Plaging on trees is appreciablg less easg than it was on finite linear

orderings, due to the fact that a handg decomposition lemma like 1.0.2 is

not available: decomposing a tree gields much more than just two

‘2.1-3 are reproduced from Doets [1987] (with slight changes).

2. n—equivaIenceof binary trees
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t|'98S.

Let me define the notions involved.

A tree is a non-empty partially ordered set T=(T, <) where, for each

as T, the set at = {XET|x< a} is linearly ordered by <; in this chapter,

moreover, it is required always that the sets at are finite.

A least element of a tree is called its root. The tree (T, <) is binarg

if it has a root and each non—emptyset ai = {xeTIa<x} (as T) has exactly

two minimal elements, in other words, each non—maximalaeT has exactly

two immediate successors. A branch through T is a maximal linearly

ordered subset. A branch above aeT is a branch in the subtree at of T.

The length of a branch is its order type; the order-type of at, denoted by

h(a), is called the height of a in T.

2.2 Playing in trees.

For each n21, define the class Q(n)of binary trees as follows.

2.2.1 Definition. Let n21. The binary tree Tsatisfies Q(n) iff the

following conditions are met:

Q.1(n) if n=2 then T has a maximal element; if n) 3, there is a

maximal element above any given one.

Q.2(n) every branch through Thas length 2 2"—2.

Q.3(n) some branch through T has length > 2"—1.

E].4(n)for all xeT and m<2"“—1: if some branch above x has

length m then every branch above x has length m.

2. n-equivalence of binary trees
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Notice that every binary tree satisfies 0(1): Q.1(n)—Q.3(n)only demand

something if n) 2; and [J.4(n)is non-trivial for n) 3 only.

The next theorem shows that Q(n) is included in an n-equivalence class.

In section 2.3 it is shown that Q(n) actually can be expressed by a

quantifier rank-n sentence; whence it can be used to characterize

n—equivalence with Bmfor any m.

2.2.2 Theorem. If the binary trees T‘ and T?satisfy Q(n), then T1a"7’3.

Proof. Induction on n.

The case n=1 is clear. Assuming 2.2.2 to hold for n we check it for n+1

using Ehrenfeucht-games. Thus, suppose teT‘ is the first move of player I

in the (n+1)-game between T‘ and T9.There are three cases to consider.

Case 1. h(t) < 2"—1.

Decompose T‘ in:

(1) two top-subtrees t‘ and ti’, final sections of T‘, the roots of which

are the two minimal elements of ti;

(ii) the linear ordering ti of type h(t);

(iii) the trees ta (where a< t), final sections of T‘; the root of ta being
the immediate successor of as ti which is not ét.

(The items under (ii) and (iii) are absent in case t is the root of T1.)

Since T‘ satisfies Q(n+1), it is clear that all trees in this decomposition

satisfy Q(n). For instance, Q.1(n) is inherited from Q.1(n+1) by final

sections (this is true even if n=1 or n=2). Q.4(n+1) implies [J.4(n),-and if

T‘ satisfies Q.4(n+1) then so do his final sections. By Q.2(n+1), each

branch in, say, t‘ has length >2"*‘—2—h(t)—1>2”*‘—2—(2"—1)—1 =

2"-2, i.e., has length 2 2"—1.Thus, t‘ has D.2(n) and Q.3(n). The same goes

2. n-equivalence of binary trees
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for the other subtrees.

Now plager II answers t with some seT’-2for which h(s) = h(t).

Let j be the isomorphism between ti and si. s induces a decomposition of

7'9 similar to the one described for tin which all trees satisfg Q(n). Bg

induction hgpothesis, corresponding trees in the decompositions are

n-equivalent. Therefore, II can win the remaining n—gameusing the

following strategg: above for 3 he uses winning strategies between t’ and

s’ (i=1, 2). Below t or s he answers using the isomorphism j. Finallg, a

move in some ta (a< t) bg I is answered using a winning strategg between

ta and sfla) and vice versa.

This strategg is clearlg winning for II since the union of partial

isomorphisms between corresponding substructures in the decompositions

is a partial isomorphism between T‘ an T2.

Case 2. There is no branch of length 2 2"-1 above t.

Bg Q.-4(n+1)there exists ué t such that all branches above u have length

2"—2. Hence, u is the root of a final section BUof T‘ in which all branches

have length 2"-1.

Since T’-9satisfies Q.1(n+1) (for, n+122) and Q.4(n+1), there exists veT’3

which is the root of a final section 8,, of T7 isomorphic with Bu. (1)

Bg Q.2(n+1), ui and vi have order tgpes 2 2"*‘—2—(2"—1) = 2"-1 ,-hence

ui 5” vi bg proposition 1.0.1. (2)

If a< u, branches above a containing u have length 22”—1; bg Q.4(n+1)

therefore, all branches above a have length 22"—1,- in particular, all

branches through ua have length 2 2"—1. Thus, ua (defined as under case

1.(iii)) satisfies Q(n).The same goes for the vb (b< v).

Bg induction hgpothesis, ua an vbwhenever a<u and [K v. (3)

Now II uses the following strategg. First, he answers 1 using the

2. n-equivalence of binary trees
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isomorphism (1). The remaining n—gameis dealt with as follows. Between

BUand BV,II goes on using the isomorphism (1). Below u or v he uses the

winning strategg (2). If I makes a move x in some ua (a< u) for the first

time while a has not been plaged get, I is granted the extra move a as

well. Then II answers a bg some b< v using (2) and next answers x bg

some ye vb using (3).

Of course, if a has been plaged before, b has been fixed alreadg and no

extra move is granted (this occurs in particular when x is not the first

move in uabg either plager).

Case 3. h(t)2 2"—1 and some branch above t has length 2 2"—1.

Bg Q.4(n+1) then, all branches above t have length) 2"—1. Hence, in the

decomposition described under 1. above, t‘ and ti’ satisfg Q(n). If a<t,

branches above a containing t and, hence, all branches above a, have

length) 2"—1;thus ta satisfies Q(n).

Since T9 satisfies Q.3(n+1) and 2""‘—1 = 2(2"—1)+1, II can find se T9

such that h(s) = 2"—1 while some branch above 3 has length 22"—1. It

follows that s‘, 5? and all sb (b<s) satisfg Q(n).

For the remaining n-game, II uses a strategg similar to the one used under

2. above; except that above 3 or the uses that s" 2" t’ (i=1, 2). El

2.2.3 Examples. The following trees satisfg Q(n).

1. The binarg tree Bmall of whose branches have length m) 2"-1.

2. Infinite binarg trees provided that, along everg infinite branch,

(i) there occur infinitelg mang side-trees, and (ii) all finite

side-trees occurring are of tgpe 1 (i.e., are of the form B”, for

some m2 2”-1).

(Of course, there are more complicated infinite binarg trees satisfging

2. n-equivalence of binary trees
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Q(n) as well.)

These examples make manifest the following

2.2.4 Corollary. Finiteness of trees is not a first-order property on the

class of all binary trees.

Noteworthy also is

2.2.5 Corollary. “Everybranch has length) 2"—1"and its negation

some branch has length<2"—2" (n> 1) cannot be expressed

by first-order sentences of quantifier-rank n on the class of

(finite) binary trees.

2.3 Characterizing n-equivalence with Bm.

By 2.2.3, Bmsatisfies Q(n) whenever m2 2"—1,-hence 2.2.2 gives one

half of the following

2.3.1 Theorem. Let m2 2"-1. A binary tree T satisfies Q(n) iff Ts"Bm.

The other half is established by propositions 2.3.2-4 below.

These results show that El(n) can be expressed by a first—order

sentence of quantifier rank n. And this can be used to construct a simple

quantifier rank-n logical equivalent of I[Bm]l"for m) 2"—1: the theory of

binary trees has a straightforward quantifier rank-4 axiomatisation

2. n-equivalence of binary trees
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(instead of finiteness of the X1,we onlg require discreteness with first

and last element of these orderings —to see this works, use chapter 4).

Notice that Q.1(n) can be expressed bg a first—order sentence of

quantifier rank én. Q.2(n)-lIJ.4(n)are dealt with by 2.3.4, 2.3.2 and 2.33,

respectively.

In the sequel, L9“ and L9“ denote the formulas obtained from L9bg

restricting quantifiers to the sets {yly<x} resp. {ylx<y} (and changing

bound veriables when necessarg).

2.3.2 Proposition. Define the sentences Lpnby:

L91 is Elx (x=x)

(-pn+1 is Elx( Lpn<"/\ Lp,,>").

Then Lpnhas quantifier rank n and it holds in a tree iff there is a

branch of length) 2"- 1.

Proof. Obvious. IZI

In view of 2.2.5, the next result is not entirely trivial.

2.3.3 Proposition. Let k be any integer>1 and T a binary tree such that

Tan” Bk.Then T satisfies Q.4(n+1).

Proof. we mag assume that n>1 since otherwise Q.4(n+1) is triviallg
satisfied.

Suppose that T fails to satisfg Q.4(n+1). Let m<2"—1 be minimal such

that for some teT and branches onand [3above t we have lozl=m and l|3l>m.

Bg minimalitg of m, om[3=¢.

Bg the same token, if u is the immediate successor of t which is the
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least element of on,then all branches through the top-tree t‘ of which uis

the root have length m.

Let ti’ be the other top-tree of T through which [3is a branch. Again bg

minimalitg of m, all branches through t? have length 2 m. Finallg, we mag

as well assume 3 to have finite length since n+1>3 and 111(3) is a

quantifier rank-3-sentence true in Bkand hence valid in T.

Now, choose xeBk with (T, u) 2" (Bk,x) (1).

Bg (a variation on) proposition 1.0.1 it follows that all branches

through Bx={x'eBklx<x'} have length m. Let yeBk be the element ;-exwith

yl=xl. Then all branches through By={_L/'eBk|y<y'}have length m too.

Notice that if se[3 and (T, u, 3) 5'7"‘ (Bk,x,z) then 2) y, since n—1>1

and and ‘lséu/\ \7’w<u(w< s) holds and has quantifier rank 1.

The proof is finished bg indicating how I can defeat II in the n-game

between (T, u) and (Bk, X), contradicting (1).

If m<2"”‘ then I, bg picking the largest element s of B, wins the

n-game: II has to answer with a maximal element 22 y, whence there

remain m—1<2"“‘—1 elements in {w<z|y<w} = {w<zI ‘lw<x} and I

can defeat IIin n—1 more moves bg plaging on [3below 3 (use 1.0.1 ).

If 2'7"‘ <m then 2""<|l3l and I picks see such that {ve[3|s< v} has

2"“-1 elements. [In penaltg of losing (cf. 2.3.2) II must answer with a

2) y above which there are branches of length 2 2"“—1. But then

{w<zly<w} has <m—2"“<2"—1 —2”" = 2"“—1 elements left and I

needs onlg n—1 more moves on 3 below s to defeat II. El

2.3.4 Proposition. Suppose that K2 2"” -2. Let T be a binary tree

such that T s”"1Bk. Then T satisfies Q.2(n+1).

Proof. Suppose that some branch ozthrough T has length m<2"*‘ -2.
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Since the quantifier rank—(n+1)-sentence

Vx( ‘1Lp,,<” —> Ely(x<y))

(tpn defined in 2.3.2) holds in Bk(for, 2"<2"*‘-2), onhas an element t of

height 2"—2.

Now {seal t<s} is a branch above t of length m—(2"-1) <

2"*‘—2—(2"—1) = 2"—1, hence, by 2.3.3, every branch above t has length

m—(2"—1).

But, the quantifier rank-(n+1)-sentence Vx ( Lp,,<"V Lp,,>") is

satisfied in Bk;on the other hand, x=t is a counter-example in T. El

2.3.5 Proposition. For each m< 2"—1 there is a sentence of

quantifier rank <n which is satisfied in a tree iff all of

its branches have length m.

Proof. Left to the reader. El

2.3.6 Corollary. If m<2"—1 and T is a binary tree such that T a"Bm

then T; Bm.

For the next corollarg, compare 1.0.1.

2.3.? Corollary. Bms"Bk iff m=k or m, k) 2"-1.

Hence, summarizing,

2.3.8 Theorem. The binary tree (T, <) is n-equivalent with B”, iff

either m<2"-1 and T; B”, or m) 2"" and T satisfies Q(n).
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2.4. Finiteness of pinarg trees is not 211.

Corollarg 2.2.4 sags that finiteness of pinarg trees is not a first-order

propertg. Dpviouslg, it is (monadicallg) N11: pg Konig's lemma, a pinarg

tree is infinite iff it has a pranch without endpoint. This section is

devoted to a proof of the

2.4.1 Theorem. Finiteness of binary trees is notmonadicallg

Z11-definable.

To prove this, gou need a simple

2.4.2 Lemma. For all /<,nelNthere are /J,QelNsuch that (i) p<q and (ii)

for all X1,..., Xkc:Bp there are S/1,..., S/kcBq with

(Bp,X1,...,Xk).=.'"(Bq, S/1,..., Yk).

Proof. Let Z pe the (pg 1.7.1, finite) set of n—characteristics of models

(T, <,X1, ...,Xk) where (T,<) is ang finite pinarg tree and define

h:lN—>P(Z) pg h(p)={teZIBpl=3X1...ElXk1:}.

Bg the pigeon—hole principle, there are ACE and an infinite ACIN such

that each peA has h,o=A. Now, choose p<q in A. El

Proof of 2.4.1. Suppose that the Z11-sentence ElX1...ElXk1:defines finiteness

of pinarg trees. Let n pe the quantifier rank of 1:.Let p<q pe given pg 2.4.2.

Choose X1,...,XkcBq such that (Bq,X1, ...,Xk)l=1:.

I shall construct an infinite n—equivalent of (B X1,...,Xk),ql

contradicting the assumption.

The construction involves a series of pairs (T0,0O),(T1,01), (T2122),
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where T, is a finite binarg tree (with k unarg relations) and 0,c T, is an

upward closed subset of T, , the ordering on which is an isomorph of Bq.

This is done as follows: first, T0= (B,,,X,, ...,Xk),' 00=T0. If (T,,0,) has

been constructed, choose p,, , e 0, such that the tree on

P,,, ={xeT,|p,,, éx} is an isomorph of Bp. Bg 2.4.2, choose an

n-equivalent 0,,, of P the tree on which is an isomorph of B,,. T,,, isi+1I

obtained from T, bg replacing PM bg 0,,,.

Put F,,, = T,\P,,, = T,,,\lJ,,, . Look at the picture to see how gou get as

far as T5:

I shall need the following three simple facts about this construction.

Claim 1. If all elements of the sequence a belong to F,,, then

(T,,a)s"(T,,,,a).
Proof. T,,, is obtained from T, bg exchanging P for 0-,, Now,i+1 I

C),+,z"P,,,; let 0 be a winning strategg for IIin the n-game between these

models. Consider the n-game between (T,,a) and (T,,,,a). II can win this

bg using 0 when Iplags in PM or 0,,, and copging Ion F,,,, . El

Claim 2. If j<Iand a belongs to F, then (T,,a) s"(T,,a).
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Proof. Induction on I using the argument of the proof of claim 1. I2!

Claim 3. If jg i , a belongs to F]. and (0j,a) 5"" (T,.\Fj,b) then

(Tj,a,a)s"“ (T,.,a,b).

Proof. T, can be considered as obtained from T].bg exchanging [.7].for T,.\Fj.

Argue again as in the proof of claim 1. El

To make the construction work, the selection of pm in 0, requires

some care. To explain how this is done, let 2 be the (finite) set of

(n—1)-characteristics of models (A, <, S/1,...,Yk,a) where (A, <) is a finite

tree. Choose an enumeration f:lN—>2xINsuch that for all (o,j)e2xiN there

is an i>j with f(i)=(o,j). (This happens for instance if f assumes each

value (o,j) an infinite number of times.) We now require that

[#1, if f(i)=(o,j), jg i and for some a‘eT,\Fj: o=l[(T,-\Fj,a‘)1I"", then

p,.,1 has been picked such that for some a’-’eT,\Fj:

o=lI(T,\Fj, a?)1i"-1 and '13?) p,.,, - i.e., a2eF,-,1.

(To see that this can be effected, act as follows. If a‘eF, or if a‘eU, and

{ye0,.la‘ <51} has height >p, then ang choice of pm will do. If a‘e0,- and

{ye0,la‘ éy} has height <p, pick x< a‘ in 0, such that {ylxgy} has height

p+1. Let pm be the immediate successor of Xwhich is not <81.)

Now, let T= U,F,.. Then T is an infinite binarg tree. I claim that Ta"T0.

To see this, consider the Ehrenfeucht n-game on these models. For IIto

win, it suffices that he chooses his counter moves in such a wag that after

his m-th move a position (a, b) is reached such that, if the elements of a

all belong to F}, then
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[-1, (r,..a)a~-m(r0,n).

This obviouslg is correct for the initial position (0,0) of the game,

since there, j=0.

Now, suppose that after m moves for each plager a position (a, D) has

been reached such that [']j holds. Since the game is plaged between T and

T0, plager I can choose his next move in either one of these models.

(i). Suppose that Iplags a next move as T. Since the F}.are cumulative,

we mag assume, without restricting the generalitg of the argument, that

aeF, for some I) j. Now, bg claim 2, ['], holds as well. Therefore, II can

find DETOsuch that (T,, a, a) s"'"’"‘ (T0,b,b) and ['], has been secured.

(ii). Now, suppose I plags be To. Bg [']j, as T}. exists with

(Tj,a,a)5"""“(T0,b,b). If aeFj, then II can use a as his answer,

obtaining ['1]. for the new position. So, suppose that aeTj\Fj= 0].. Let

o=[[(0j,a)1|""‘. Pick 1'2] with f(i)=(o,j).

Bg construction, 0ja"T,.\Fj; hence, a‘e T,.\Fj exists with
o = l[(T,.\Fj , a‘ )]l"“ 1. Bg [#],, there is an a'~’eF,” such that

o=l[(T,\Fj,a2)1l”“.
Now, notice that, bg claim 1, (T,.,1,a,a2)s"(T,.,a,a9) and, bg claim 3,

(T,-,a, a'~’)s"“(Tj,a, a). Therefore, combining, (T,-,1,8!82);"-1 a:
E”‘”"‘(T0,b,b) (bg choice of a above). Thus II, bg plaging a9, establishes

['],-,1 for the new position. I21
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PART II: CDMPLETENES5

We know all about the habits of the ant, we know all about the

habits of the bee, but we know nothing at all about the habits of the

ogster. It seems almost certain that we have been choosing the

wrong time for studging the ogster. - Pudd'nhead Wilson's Calendar

3. r1onadic Tl‘,-theories of 1111­

properties: linear orderings.

3.1 Introduction; co and finite orderings.

Natural axioms of a number of theories are of the second-order (1111-)

form \7’Fltp(H),where I9is first-order and His a second-order variable. For

instance, the induction principle of arithmetic, completeness of the reals,

Zermelo's Aussonderungsaxiom and the Fraenkel-Skolem replacement­

axiom in set theorg are of this tgpe.

As to first-order versions of these principles, the natural option is to

require Lp(R)not for all Flbut for parametrically first-order definable Fl

onlg, thus replacing the second-order axiom bg its corresponding
first-order schema.

Dbviouslg, the new theorg will have models not allowed bg the old one
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(by the Lowenheim-Skolem-Tarski theorem for instance) and hence it mag

turn out to be strictly weaker than its second-order companion. For

instance, second—order arithmetic is categorical, hence it implies

first-order sentences begond the scope of the first-order induction
schema.

On the other hand, if the language is restricted sufficiently,

conservation mag occur. This chapter contains a number of examples. Theg

all concern theories of linear orderings (but see chapter 4 below where

one of our examples is generalized to trees); conservation is proved with

respect to monadic ll‘,-sentences. The method of proof consists in

showing how to transfer counter-examples to a 111.,-sentence on a

"non-standard" model to a standard model. To illustrate this method, I

present the simplest case, the ordering of the natural numbers to, in what

follows.

It is clear what it means for an ordered set to satisfy complete

induction when there is a least element and every element has an

immediate successor. Definable induction requires that everg definable

set containing the least element and closed under immediate successors

contains everg element. Complete induction is the usual T111-instrument

transforming a suitable set of first-order quantifier rank <3 axioms into

a categorical description of the order tgpe co.Definable induction doesn't

come close to this (cf. example 1.0.3(ii)), but it suffices for the monadic

T111-theorg:

3.1.1 Theorem. If 1. (M,<) 23 (co, <) and

2. H = (M,<, X1, ,Xk) satisfies definable induction

then H has n-equivalents of order type to for every n.
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Proof. Bg the Lowenheim—Skolem theorem, we mag assume H to be

countable. Define X = {aeI‘1|Vb<a([b,a) has a finite n-equivalent)}.
(Notice that a subset is identified here with the submodel with that

universe.) Now, Xis a definable set: [b, a) has a finite n-equivalent iff it

satisfies an n-characteristic belonging to a finite model; and of these,

there are onlg finitelg mang (see 1.7.1). Hence, Xis defined bg the formula

Vy<xV{ t[W’lteZ}, where Z is the set of such characteristics and tfé/J‘)

denotes relativisation of quantifiers in 1:to the interval [y, X). Triviallg, X

contains the least element of M. Also, X is closed under immediate

successors: if Sis a finite n-equivalent of [b, a) and c is the immediate

successor of a then it is clear that the ordered sum 5+{a} is the required

finite n-equivalent of [b, c). Bg definable induction then, X=/"1.Let 30 be

the least element of Hand choose a0 < a1 < a2 <... cofinal in /‘1(which

we have assumed to be countablel). Choose a finite n-equivalent S, of

[a,.,a,-,1) for each i. Then S = 2,5,. is the required n-equivalent of order

tgpe to. (For the handling of ordered sums, cf. below, in particular 3.1.7.) 81

Virtuallg the same proof works for the class of finite ordered models.

Notice that a linear ordering (M, <) is finite if it contains a least and

a greatest element, everg non-maximal element has an immediate

successor and restricted induction is satisfied, which sags that everg

set containing the least element and closed under immediate successors

(insofar as theg exist) contains the greatest element as well. (Of course,

other characterisations work as well.) Restricted induction brings along

its first-order companion:definable restricted induction.
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3.1.2 Theorem. If the linearly ordered model M:

1. has least and greatest element and every non-maximal element

has an immediate successor;

2. satisfies definable restricted induction

then H has finite n-equivalents for all n.

Proof. Begin as in the proof of 3.1.1. Definaole restricted induction now

shows Xto contain the greatest element Dof H. Thus, [a, D) has a finite

n-equivalent and so does [a, D] = H, as required. 21

3.1.3 Examples. The following models show that we cannot strengthen

the conclusions of 3.1.1-2 to: Nhas an elementary equivalent (i.e., a model

n-equivalent with H for all n simultaneously) which has order-tgpe Lo

(resp. which is finite). For the second, let Mhave order tgpe l'.0+&J’and let

the X,be emptg (use 1.0.3(i) to see that this satisfies definable restricted

induction). For the first, consider I‘1+Nwhere His the previous model and

Nhas order tgpe co —but X0=Nthis time (again, use 1.0.3(i)). The bigger n,

the longer an n-equivalent of H has to be (namelg, at least 2"-1 pg 1.0.1.)

and hence the larger the first element of X0in an n-equivalent of l‘1+N.

3.1.4 Remark. The direct method of proof of 3.1.1—2works for the class

of well—ordered models too; instead, I shall derive that result from the

corresponding one for the order—complete models in section 3.3.

In the following basic theorem, 2 is a set of first-order sentences in a

language L and \7’RLp(R)is a lT‘1-sentence over L.

Let X1,...,Xkbe new unarg relation-sgmbols and Lk= Lu{X1, ,X,,}.
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(L,,-) definablg-Lp is, bg definition, the set of universal closures of

Lk-formulas obtained from L9bg replacing each occurrence R(t1,...,tm) bg

some fixed L,,-formula n(t1, ...,tm) (taking measures against clash of

variables). Thus, Lk-definablg—Lpintuitivelg requires tp(R) onlg when Flis

(parametricallg) first-order definable in the language Lk.
The union over all k of these schemata is the first-order schema

corresponding to V/FlLp(R).

3.1.5 Theorem. The following two conditions are equivalent:

(i) for each first-order formula qJ=l.|J(X1, ,X,,)in the language

L,,.~if >: + VF! tp(R) l= vx,...vx,,qJ, then

2 + Lk-definablg-tp l= qJ(X1,...,X,,) ,­

(ii) each model (M, U1, ,U,,) of Z + Lk-definablg-up has an

n-equivalent satisfying )2 + ‘W?Lp(H) for each n.

Proof. (i) => (ii): let (I‘1,U1,...,U,,)l=>Z + Lk-definablg-tp have the

n-characteristic lI¢]l" = 1:(X1,...,X,,). we want a model of E + VRLp(H) +

3X1...3Xk1:. If such a model does not exist, then 2 + VRtp(R) I=VX1...VX,,‘I1:,­

hence bg (i) I + Lk-definablg-tp l= ‘I1:(X1,...,Xk) , contradicting the

assumptions on (I‘1,U1,...,Uk).

(ii) => (i): assume )2 + VF? tp(R) l= VX1...VX,,Lp and let (M, U1,...,U,,) be

a model of 2 + Lk-definablg-Lp. Bg (ii), there is an n-equivalent satisfging

V/Rtp(H) + E where we take n to be the quantifier rank of Lp.Bg

assumption, this n-equivalent satisfies ‘v’X,...\7’X,,qJ,hence tp(X1,...,X,,)is

also satisfied, so (I‘1,U1,...,Uk)must satisfg this formula as well. E

Below, the Z of the theorem will alwags be finite. Therefore we mag

require that the n-equivalent of (ii) satisfies VRLp(R)onlg, without
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invalidating the truth of (ii) => (i): simplg let n be at least the maximum

of quantifier ranks of formulas in 2.

In what follows, results of tgpe (ii) are proved. According to the

theorem, this shows that, in the context of E, the first-order schema

corresponding to ‘c/F?£p(F?)suffices to prove all monadic ll’,-consequences

of this second-order statement. (Actuallg, theorem 3.3.9 below does a

little better.)

All models encountered here will have the form H = (M, <, U1,...,Uk),

where < linearlg orders /*1and U1,...,Uk c N. If Xc M, then X (and

sometimes Xas well) denotes the submodel of H with universe X,i.e., X =

HIX.ICM is an interval if x<y<z and X,z e I implg gel; notations like

(x,z) and [x,z) denote specific intervals as usual.

If I is an ordered set and m a function on I associating a model m(i)

with everg ie I, we mag form the ordered sum )2 m(i) , being theis!

model obtained from the m(i) bg glueing (disjoint copies of) them one

after the other according to the ordering of I. Formallg, Z m(i) can beis!

defined as the model with universe U,.E,(m(i) x {i}) with the ordering

defined bg: (a, i)<(b, j) iff i<,j, or: i=j and a<,-D (here, <, and <,

denote the orderings of m(i) resp. I); and if Un’is the n—thunarg relation

of m(i) (1 <n<k) then Un= U,E,(Un"x{i}) is the corresponding one of
the ordered sum.

A condensation of an ordered model M is a partition of H into

intervals. Ang condensation P of H inherits an ordering from H bg putting,

for p, qeP: p<q iff for some aep and beg (equivalentlg, iff for all aep and

beq): a<b. Hence, a condensation P of His nothing but a wag to write Has

an ordered sum I‘1=Zpepp.

If the condensation P is induced bg the equivalence ~ , (such
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equivalences are called congruences bg some) we write P = /*1/~.

3.1.6 Lemma. Let F!be any transitive binary relation on the ordered

model M.Define ~ = ~R by: a~b iff one of the following holds:

(i) a=o

(ii) a<b and for all c, d such that a<c<d<b: cRd

(iii) [K3 and for all c, d such that o<c<d<a: cF?d.

Then ~ induces a condensation.

Proof. Straightforward. El

All condensations used in the sequel are defined in this fashion.

3.1.? Lemma. If for all iel m(i) 2" m'(i), then Z,-“m(i) E” Z,E,m'(i).

Proof. It is straightforward to describe a winning strategy for the second

plager in the Ehrenfeucht n-game between these sums under the condition

given. E1

The following generalisation of 3.1.? is needed in section 3.3.

3.1.8 Lemma. Suppose that I and J are ordered sets and that m and m‘

associate ordered models m(i) resp. m'(j) to each ieI resp.

j eJ such that:

(") (I, { il m(i) l= o } )0“ 5” (J,{j| m'(j) l= 6 } ),,E;

where Z is the set of n-characteristics.

Then 2,.€,m(i) 5" ZjeJm'(j).
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Proof. Use the Ehrenfeucht game-technique. If the first plager chooses,

sag, aeZ,.m(i), the second plager locates the ieI for which aem(i), then

uses (') to find a j corresponding to i; in particular, m'(j) 2" m(i), and a

counter move is readilg found; etc. El

3.1.9 Examples where 3.1.5(ii) fails.

1. (van Benthem.) Consider the ll‘,-statement VXl.p(X)in the language

of < where tp(X) sags: X and its complement cannot both be cofinal.

Obviouslg, everg ordered model of VXLp(X)has a greatest element. On the

other hand, the first-order schema corresponding to Lpdoes not implg this.

A counter-model is (co,<): notice that each definable set here is either

finite or cofinite. (Proof: Use 1.0.3(ii). Let qJ(x)be ang formula in the free

variable x. If no aeqsatisfies Lpin oJ+2; then 3g‘v’x(g<x —>74:) holds in

oo+§; therefore it holds in to pg 1.0.3(ii) and the set defined pg LPin to

must be finite. On the other hand, If some aeg satisfies Lpin oJ+§ then

every aeq satisfies iv in co+t,- this is because for each pair a, bet; there

is an automorphism h of po+§ such that ha=b. Hence, Elg‘v’x(g<x —>q.I)holds

in oJ+§,- therefore, it holds in to and the set defined pg Lpin DJ must be

cofinite. El)

2. In theories defining a pairing, the restriction to monadic languages

is onlg apparent and results like ours can fail badlg. We mentioned the

case of arithmetic; also, each model of set theorg certainlg is definaolg

well-founded, nevertheless such models need not have a well-founded

n—equivalent for n large enough: well-founded models have standard

integers, therefore theg are arithmeticallg correct; but, l3ddel—sentences
are arithmetical.
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3.1.10 Question. (van Benthem) Suppose that I‘1a(Vw,e) and (I‘1,U1,...,Uk)

satisfies definable well-foundedness (cf. chapter 4). Must it have a

well-founded n-equivalent for each n? (The method of chapter 4 does not

suffice; the objection of 31.92 does not applg.)

3.2 Monadic Ti‘1-theorg of scattered orderings.

A linear ordering M=(M, <) is called scattered if it does not embed

the ordering ([[J,<) of the rationals.

U3embeds every countable ordering; in particular, it embeds DJ’. It

follows that everg well—ordering is scattered. I shall need the

3.2.1 Lemma. A scattered ordered sum of scattered orderings is
scattered.

Proof. Suppose [DcZ,.E,.m(i). If some fDrim(i) contains at least two

rationals, it contains the interval between them and so m(i) cannot be

scattered. Hence, sending peflj to the is] for which pem(i) embeds [1]in I, a

contradiction. I21

There is more than one wag to formalize scatteredness into a

T111-statement and not everg formalisation is a good one from our point of
view.

3.2.2 Example. Let b express that < is a dense ordering containing at

least two elements. Lp(X)is the formula obtained from To bg relativizing
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quantifiers to membership in (the set) X.Clearlg, His scattered iff it

satisfies ‘v’Xtp(X).Here is an example of a model I'l=(/*1,<, X, Y, 2) which is

definably—Lpbut has no scattered 3-equivalent. Partition [13into dense

subsets R, S, T and put l‘1=ZqEuJ/‘lq, where /‘1q=(Z, <, X4, W, 24) and X‘7=2

if qeR,- X‘?is emptg otherwise; similarlg, W =2 or =¢ depending on

whether qe.‘3or not; and Z‘?= Z or =¢ depending on whether qe T. Notice

that each interval /‘lq of H is a set of indiscernibles of H (use

automorphisms of Mq)hence, if A is a definable set of H, either Ari/‘1q=¢

or l‘1qcA.Therefore, no non-emptg definable set of His denselg ordered
and it follows that His definably-tp. On the other hand, the fact that /‘1

satisfies sentences such as \'/xeX‘v’yeV(x<g —>3zeZ(x<z<y)) shows that

no 3—equivalent of Mcan be scattered. E!

A "good" formalisation of scatteredness should avoid this

counter-example.

3.2.3 Lemma. An ordering is scattered iff it has no densely ordered
condensation.

Proof. Only if: use the axiom of choice. If: suppose that [DC/‘1.Define ~ bg

wag of 3.1.6 where am) iff a<b and (a, b)n[D is finite. It is easg to see

that ~ induces a dense condensation. E1

The (dgadic!) T111-characterisation of scatteredness contained in the

lemma is a "good" one according to the following theorem, where we call a

model definablg scattered if no definable equivalence partitions H into

a dense ordering of intervals. Notice that the model of 3.2.2 is not

definablg scattered in this sense.
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3.2.4 Theorem. If H is definably scattered, then it has scattered

n-equivalents for each n.

Proof. I use what Rosenstein [1982] calls a condensation-argument,

originating with Hausdorff. Define ~ in the fashion of 3.1.6 with aFlb

meaning that (a, b) has a scattered n-equivalent (if a< b). Bg 3.2.1, F!is

transitive. Hence, ~ induces a condensation bg 3.1.6.

Also, ~ is definable (compare the proof of 3.1.1): there are onlg finitely

many n-characteristics; let I" be the (finite) set of n-characteristics

belonging to scattered models. Then (c, d) has a scattered n-equivalent iff

H l=Vt“. i:(C:") - where 1:(°»‘” is obtained from 1: bg relativizing

quantifiers to membership in (c, d). It is now clear that ~ can be defined
as well.

Claim 1: each equivalence class has a scattered n-equivalent.

Proof: let I be an equivalence class and aeI.

(i) Ihas a greatest element h.Then a~b and P3 = {xeIla<x} = [a, b]

has a scattered n-equivalent bg definition.

(ii) If not, choose a sequence a0 = a < a1 < <a£ < (£;<oz)cofinal

in 1.Each (ag, a€,1) and, hence, each [av a£,1) has a scattered n-equivalent

Ag. Hence I23 = EKG, [a€, a§,1) has the n-equivalent EKG, A5 bg 3.1.?

which, bg 3.2.1, is scattered.

Argue similarlg for I<3= {xeI|x<a}; so, I = I<3 + I33 has a

scattered n-equivalent. El

Claim 2: the induced ordering of the equivalence classes is dense.

Proof: suppose I<J are equivalence classes and no equivalence class is

between I and J. Let at:-Iand beJ,- suppose that a<c<d<b. Then (c, d) has
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a scattered n-equivalent: if c,deI or c,de../this is clear; and if ceI and deJ

we know from the argument above that PC and J<" have scattered

n-equivalents; but, ((3,d) = P‘ + .J<".Therefore, a~ b, a contradiction. El

Since H is definablg scattered, ~ cannot have more than one

equivalence class: M itself. Consequentlg, H must have a scattered

n-equivalent bg the first claim. El

3.2.5 Remark. Bg 3.2.2 and 3.2.3, we have two T111-formalisations of

scatteredness; however, the first-order schema corresponding to the

second one (definable scatteredness) is strictly stronger than the

first-order schema belonging to the first.

3.3. Honadic Tl‘1-theorg of complete orderings, of well­

orderings and of the reals.

The ordering (/*1,<) is complete if each non-emptg set with an upper

bound has a least upper bound (a sup). Hence, N is called definablg

complete if this holds for definable sets.

3.3.1 Theorem. If His definably complete, it has complete

n-equivalents for each n.

Before proving 3.3.1, here is an example and a corollarg.
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3.3.2 Example. The following model shows it is impossible to strengthen

the conclusion of 3.3.1 to requiring an elementarg equivalent of H.

Choose rationals qo < q1 < q2 < and r0 > r1 > r2 > such that

lim q, = limr, is irrational; take A = {q,- I ielN }u{r,. I few} and consider

H = (in, <, A). For each n, the models (IR, <, {1,...,m}) for m) 2"—1 are

n-equivalents of H (use 1.0.1). On the other hand, suppose that (N, <, B) is

a complete elementarg equivalent of M.It follows that B has order-tgpe

co+ozfor some 0!. N must contain a sup of the first to elements of 5.

However, Hlacks an element which is a limit of A's - a contradiction. IX]

His (definablg) well-ordered if each non-emptg subset of /*1(which

is parametricallg first-order definable on H) has a least element.

The following trivial lemma mag look surprising, as completeness

usuallg is considered onlg in the context of dense orderings.

3.3.3 Lemma. H is (definably) well-ordered iff it is (definably)

complete, has a least element, and every non-maximal element
has an immediate successor.

Proof. Suppose ¢¢Xc:/*1 and Xhas no minimum. Put S/={ye/‘1|‘v’xeX(y<x)}.

Vis definable if Xis definable. Since the least element of Hmust be in Y, Y

is non-emptg; moreover, everg xex is an upper bound of Y.Thus, Yhas a sup

g. If ye Y, the immediate successor of y is minimal in X.Hence, ye Y. But

then, y must be minimal in X, a contradiction. IZI

3.3.4 Corollarg. Ifr1 is definably well-ordered, it has well-ordered

n-equivalents for each n.
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Proof. Notice that 3.3.3 defines well-order as completeness plus a

quantifier rank 3-statement. Bg 3.3.3, His definablg complete. Thus, let

m=max(n, 3) and take N to be a complete m-equivalent of H bg 3.3.1. Bg

3.3.3 again, N is the model required. El

We sag that the sum >Z,E,m(i)is completely ordered if the ordering

of I is complete.

3.3.5 Lemma. (i) Completely ordered sums of complete orderings with

endpoints are complete.

(ii) Well-ordered sums of complete orderings with least

elements are complete.

Proof. (1): Let Xc E,-E,m(i) have an upper bound in m(iO). Then

J={j|Xnm(j);-e¢} has the upper bound i0. Let j=sup J. (a) je./. Then

max m(j) is an upper bound for Xnm(j) and supX= sup(Xnm(j)). (b) je J.

Then sup X= min m(j). (ii): similar. El

Proof of 3.3.1. Define ~ in the fashion of 3.1.6 with aRb meaning: a<b and

(a, b) has a complete n-equivalent.

Notice that F?is transitive. Hence, ~ induces a condensation bg 3.1.6.

(N.B.this would not have been so obvious in case we would have defined

x~y to mean that (x,g) had a complete n-equivalent onlg.)

Furthermore, ~ is definable: compare the proof of 3.2.4. Hence, the

equivalence classes are definable as well.

Claim 1: each equivalence class with an upper (lower) bound has a

greatest (resp. least) element and each equivalence class has a
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complete n-equivalent.

Proof: let I be an equivalence class and aeI.

If I has no upper bound,choose a0=a<a1<a2< <a£< (£<oz)

cofinal in I. Choose a complete n-equivalent N; of [a€,a£,1) for each £;<oz.

Then E£<uN£is a complete n-equivalent of 2£[a€,aE,1)={xeIIa<x}=
I? 3. If I has an upper bound, it must have a sup s bg definable

completeness. I claim that seI (and so, sis the maximum of I, I>3= [a, s]

and hence (a, s) and, therefore, P3 as well, have a complete n-equivalent

bg definition). For if not, choose a0=a< a1<a2< <a£< cofinal in I
again to show that (a,s) has a complete n-equivalent as before.

Muchthe same goes for the other half I<3= {xeIlx<a} of I, and so the

claim has been proved. El

Claim 2: the induced ordering on the class M/~ of equivalence classes is

dense.

Proof: suppose I<J are neighbours in /‘1/~.

Then a=sup I and b=inf J are neighbours in H; moreover, ael and be J.

Hence, (a,b) is emptg; therefore, a~b - a contradiction. E

If there is but one equivalence class, we are done. So, assume not. The

rest of the proof works towards a contradiction.

The following argument is taken from Rosenstein [1982] (thm.?.1?,

p.117). Choose a complete n-equivalent 1:(I) for each I with IeI‘1/~ in such

a wag that T= {1:(I)IIeI‘1/~} is finite (this is possible bg 17.1). Now, if

for some oeT, {Ie/‘1/~|t(I)=o} is not dense in the ordering of /‘1/~, there

must be a proper interval Coc/‘1/~ such that no Ie Cohas t(I)=c. Repeating

this argument (first with C0and T\{o} etc.) using induction on the finite

cardinal ITI,one ultimatelg arrives at the following
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Claim 3: there is a proper (open) interval D of /*1/~ and a set Zc T such

that (1')every IeD has 1:(I)eZ, and (ii) if oez then {IeD|1:(I)=o}

is dense in D.

The contradiction aimed for is contained in the next

Claim 4: D has but one element.

Proof: suppose that a, o 6 UD and a<b. We need to show that (a, D) has a

complete n-equivalent. Suppose that aeI, beJ. If I= J, there is nothing to

prove. Let E be the interval (I, J) in D. Now, (a,b) = I>3+ UE+ ./<0;

therefore it suffices to show that these components have complete

n-equivalents. For P3 and ./<0, this is known alreadg (cf. the proof of

claim 1). Therefore, it remains to show that UE has such an n-equivalent

as well.

First, notice that claim 3 remains valid if we replace Dby E.

Now, construct a complete n-equivalent Not the submodel UE = 2,651

of H as follows: let h:iFl—>':Z be ang partition of IR into IZI classes

{xelFlIh(x)=o} (062) each of which is dense in [Fland put N= 2x€,Rh(x).

Bg 3.3.5 and claim 1, N is completelg ordered. It remains to show that Nis

n-equivalent to UE.

First, notice that the models (E,<,{IeEl1:(I)=o}) andme:

(IFl,<,{xelRlh(x)=o})oEz (with IE]unarg relations each) are partiallg

isomorphic and a fortiori n-equivalent. (The argument for dense orderings

is well-known; the extra structure involved here - partitions into IZI-mang

dense sets - doesn't complicate it terriblg much.) The result now follows
from 3.1.8.81

This finishes the proof of 3.3.1. 81
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The most prominent type of (dense) complete ordering is >\, the order

type of the set of reals. The following example shows that we cannot

strengthen the conclusion of 3.3.1 bg requiring the n—equivalent to be of

type >\under the assumption that the ordering of His dense.

3.3.6 Example. For XEIR,let m(x) = ([0,1], <,¢) if x is rational, and

m(X)= ([0,1],<, [0,1]) otherwise. Consider r1= ZXE,Rm(x).

H has the complete order type (1 +>\+1)->\(cf. 3.3.5) - so it certainlg is

definablg complete. On the other hand, the proof of lemma 3.3.8 below

shows that it lacks a 5-equivalent of order—tgpe >\: each complete

5-equivalent of H has a definable equivalence splitting the model in an

uncountable number of proper intervals - contradicting the Suslin property

of IR. 81

Hence, the Suslin propertg of IF:contributes to its monadic Tl‘,-theory.

The following definition, suggested bg 3.3.6, isolates this contribution:

3.3.? Definition. Mhas property I if each denselg ordered

condensation of Hhas a dense set of singletons.

3.3.8 Lemma. Models of order type >\and, more generally, all complete

orderings with the Suslin property have property I.

Proof. Suppose that P is a denselg ordered condensation of a Suslin

ordering. Suppose that p<q in P but (p, q) does not contain a singleton. Bg

Suslinitg, (p, q) must be countable; hence, it has the order type of the

rationals. Therefore, (p, q) has as mang bounded sets without sup as there

are irrationals. Let K be such a set. Then UK is a bounded set in the
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original ordering without sup. El

3.3.9 Theorem. If H is definably-I, definably complete and densely

ordered without endpoints, then it has n-equivalents of

order type >\ for each n.

Proof. First, we follow the proof of 3.3.1 with some slight modifications.

To begin with, we may assume by the Lowenheim-Skolem theorem that H

is only countable.

Now, define ~ by the scheme of 3.1.6 with aFlbmeaning: a<b and (a, b) has

an n-equivalent of order type >\. Again, F?is transitive, so ~ induces a

condensation by 3.1.6.

Claim 1: each equivalence class has an n-equivalent of one of the

following types: 1, x+1 (if it begins H), 1+>\ (if it ends H), >\ (if it

does both) or 1+>\+1.

Proof: much as before. Notice that we need to form countable sums only

since His countable, thus preserving separability of the models involved —

thereby guaranteeing one of the order types required. lzl

Claim 2: M/~ is densely ordered.

Proof: use that the ordering of P1is dense! El

Again, it suffices to show that His the only class in H/~. Suppose it is

l’I0t.
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Claim 3: there is a proper (open) interval D of M/~ and a finite set E of

models of order type either 1 or 1+>\+1 such that

(i) every IeD has an n-equivalent in ‘Z;and

(ii) if oez then {IeDlIs"o} is dense in D.

Proof: as before. El

In order to reach the desired contradiction, and stepping over some

obvious details (cf. the proof of 3.3.1, claim 4), construct an n-equivalent

N of U0 of order tgpe >\as follows:

Since M is definablg-I, /*1/~ has a dense set of singletons; hence 2

contains a singleton model 1:0. Take h:lR—>Z partitioning IR into IZI

classes {xelFl|h(X)=o} (oez) each of which is dense and such that

{xelR|h(x)=t0} happens to be the set of irrationals.

Put N = ZXE,Rh(x).

By 3.3.5, N is complete as before and it is easg to see that N has a

countable dense set this time —whence N has the order type >\.

That N 2" Up follows as before, using 3.1.8.121

3.3.10 Corollarg. Every ordering which has I, is complete and is

densely ordered without endpoints satisfies the monadic

T111-theory of IR.

3.3.11 Example. For each ordinal oz, >\+(1+>\)-oz has the required

properties (and differs from >\for 0:) p31, since LL31is not <>\).

3.3.12 Remark. Kunen [1968] §1? contains a 1T‘1—characterization of

(rR,<).
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3.4. Appendix: strengthening 3.2.4 and 3.3.4.

Let No he the smallest class of order tgpes such that

(1)1er10
(2) oz,|3er10 => o:+|3er10

(3) ozerlo => oz-oJ,o:-w'er10.

Bg 3.2.1, all tgpes in MDare scattered.

Bg a theorem of Lauchli and Leonard (cf. Rosenstein [1982] thm.?.9

p.115) M0contains n-equivalents for each scattered ordering and for all n.

(Shelah [1975] notes that almost the same proof shows this to be the case

relative to the monadic second-order language as well.)

Their method of proof shows that the extra unarg relations of our

models do not spoil this situation:

3.2.4‘ Theorem. Ifl‘1 is definably scattered, it has (scattered)

n-equivalents with order type in M0for each n.

Proof. On M, define ~ bg wag of 3.1.6 with em) meaning: a<b and (a, D)has

an n-equivalent with order tgpe in M0.Bg (1), (2), R is transitive, so ~
induces a condensation.

Claim 1: each equivalence class has an n-equivalent with order type in

M0.

Proof: if the class I is unbounded,choose a<a0<a1<a2<... cofinal in I

(pg Lowenheim-Skolem, assume His countable). For i<j, let h(i,j) be the

n—characteristic of [a,.,aj). Bg Ramsey's theorem, there is an infinite set
ACIN and a 0 such that if i<j and i, jeA then h(i,j)=o. Let i=min A and
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choose N0 5" [a,a,.) and N I= o with order tgpes in M0. Then P3 5"

N0+ N03 and this model has order tgpe in M0bg (2), (3).

The same goes for I“, etc.IZ

As before, M/~ must either be dense or consist of one class onlg, since

the first alternative cannot obtain, the proof is finished. IZJ

Next, let K be the smallest class of order tgpes such that

(1)1eK
(2) oz,[3eK =9 oz+BeK

(3) ozeK => oz-ooeK.

Clearlg, KCM0. All tgpes in K are well-ordered and it is easg to see

(using Cantor normal forms) that ozeK iff 0<oz<oJ‘°.

K contains n—equivalents for each well—ordering and for all n (it is easg

to see that no smaller class has this propertg).

Again, extra unarg relations do not change this state of affairs:

3.3.4‘ Theorem. If H is definablg well-ordered, it has (well-ordered)

n—equivalents with order-type in K for each n.

Proof. Define X= {a|‘v’b<a[b, a) has an n-equivalent with order tgpe in K}.

Xis definable, hence if X;-srithen M\Xhas a least element a. Pick b<a such

that [b,a) has no n-equivalent with tgpe in K. Bg (1), (2), a cannot be a

successor. Now, choose b<b0<b1<... cofinal in [b, a) and argue as in the

previous proof. El
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3.4.1 Corollarg. (Ehrenfeucht - cf. Rosenstein [1982] thm.6.22 p.108)

com5 (DR, <) (where ORis the class of all ordinals).

Proof. If I starts an (n+1)-game with a move ozeDR,II answers with an

n-equivalent [3in com. (Notice that ozT~={lRand BTz&J°3.) E1

The classes M0and K were inductiveig defined pg closure properties

obtained pg looking at what it takes to prove 3.2.4 and 3.3.4. In the same

wag, one mag find, eg., a class C of order tgpes such that each compieteig

and denseig ordered model without endpoints has n-equivalents with tgpes

in C; closure properties needed here are

(1) >\ e C

(2) oz,|3eC : oz+1+[3eC

(3) one C => (o:+1)-on, (1+0i)-I10’ e C

(4) if h: IR —>C has h[iR] finite and all {xelRlh(x)=o} (oeh[IR])

dense in IR then ZXER(1 +h(x)+1) e C.
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4. Monadic 11‘,-theorg of
well-founded trees.

The previous chapter dealt with linearlg ordered models onlg; the scope
is widened here somewhat to the notion of a tree.

A partiallg ordered set I‘1=(/‘1,<) is called a tree iff, for each man, the

set ml={ m'el‘1lm'<m} is linearlg ordered.

The 1111-propertg considered here is well-foundedness: H is
well-founded iff each non-emptg set has a minimal element;

equivalentlg, when ms a tree: iff each ml is well—ordered.

Definable well-foundedness, of course, restricts this to definable
sets.

The proof of theorem 4.1 below can be considered as a paradigm for a

method applicable in a varietg of situations where the models considered

belong to certain tgpes of partial orderings (trees being the simplest
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example) and the ll‘,-propertg involved can be either well-foundedness,

converse well-foundedness, or, more generallg, some kind of completeness

as in section 3.3. It did not seem useful however to aim for this greater

generalitg here, as a most general result probablg does not exist and the

generalizations obtained of the result below all appeared to be rather

arbitrarg.

4.1 Theorem. If H is a tree with finitely many extra unary relations

which is definably well-founded, then it has well-founded

n-equivalents for all n.

Before embarking on the proof, we need some surgical terminologg on
trees and three lemmas.

A component of His a maximal connected subset. An element of His

minimal iff it is the least element of its component. In particular,

components are (first—order parametricallg) definable.

Therefore, if His definablg well-founded, so are its components. I do not

know whether the converse of this holds, though - and this makes for some

complications in the formulation of the lemmas below.

If XCM is downward closed (ie, if a<beX implies aeX) then M\X is

upward closed, and vice versa.

I shall use the following notations. If XCM then (M,X) denotes the

expansion of H obtained bg adding Xas a new unarg relation.

Warning. If aeri then aT equals {cerilagc} in this chapter. Thus,

aeal, but aaal.
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4.2 Lemma. Suppose that the tree H is definablg well-founded.

If a<b in Mthen, for each n, ((aT)\(bT), [a,b)) has an n-equivalent

(N,i3) such that B is well-ordered and all components of MB are

definablg well-founded.

Thus, N can be used as a substitute (within n-equivalence) of the part

(aT)\(bT) of M, therebg exchanging [a,b) for the well-ordered [3and

preserving definable well-foundedness of the rest —component—wise. The

other two lemmas are similar in spirit. The proof of 4.1 finallg will show

how to carrg out such substitutions repeatedlg, therebg eventuallg

arriving at the desired well-founded n-equivalent. To see that such

substitutions actuallg work, the following remark is needed.

Remark. In what follows, a lot of cutting and pasting of trees has to be

performed. To see that in each case n-equivalence is preserved, the

Ehrenfeucht-game technique can be applied in much the same wag as in the

proof of claim 1 in the proof of theorem 2.4.1. The general procedure is as

follows. Suppose that H’ is obtained from H bg exchanging some part Nbg

an n-equivalent N‘. In all cases occurring, it will be clear how this

exchange-process has to be performed since the wag N is "attached" to

/‘1\Nwill be particuiarlg simple. Let f be the identitg-map on H\N. Now,

4 monadic 7777-theory of well-founded frees



61

suppose that, for each partial isomorphism h between N and N‘, the union

fuh is a partial isomorphism between H and H’. (In applications it alwags

will be rather obvious that this condition is satisfied.) Then it will be the

case that I‘15”I‘1'.Proof: Consider the n-game between H and H’. Plager II

wins this if, to answer moves bg I in either N or N’, he uses a winning

strategg for the n-game between these models, and if he copies the moves

of plager II on H\N.

Proof of 4.2. Let Xbe the set of be/‘1such that for all a< b, (aT\bT,[a,b))

has an n-equivalent of the tgpe desired. The lemma asserts that X=r1.

Suppose that X;-ell.Observe that Xis definable: bg 1.?.1, there are onlg

finitelg mang n-characteristics of models (N,[3) such that [3 is

well-ordered and all components of M13 are definablg well-founded;

moreover, that (aT\bT,[a,b)) satisfies a given characteristic is a

first-order propertg of (H,a,b). Bg definable well-foundedness, /‘1\X,

assumed to be non-emptg, has a minimal element b. Suppose a<b is such

that a corresponding n-equivalent of the required tgpe doesn't exist.

Ubviouslg, b cannot have an immediate predecessor. Choose

a0=a<a1<...<a€<...(£<oz) cofinal in bi. Bg minimalitg of b, choose

(N€,|35) 5" (aET\a£.,1T, [a€,a£+1)) such that 5,: is well-ordered and all

components of N£\|3€are definablg well—founded for each &;<oz.
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The model IKE, (N£,[3£),obtained pg glueing the I3;one after the other

now forms a counter-example to the choice of a and b: to see that this is

an n-equivalent of (aT\bT, [a, 0)), applg the remark to

(aT\bT,[a,o))=U£<a(a£T\a£,1T,[a£,a£,,,)) and 25“ (N€,|3£).XI

4.3 Corollary. Suppose the tree H is definaolg well-founded and bert.

Then, for each n, (P1,0) has an n-equivalent (r1',0') such that U1 is

well-ordered and all components of l‘1'\(b'L) are definably
wel I-founded.

Proof. If Dis minimal in M, then (r1,b) itself satisfies the stipulations.

Otherwise, let a be the least element of D1.(For a picture: look at the one

for 4.2; now, put a in the root of the tree.) Bg 4.2, (aT\oT,[a,o)) has an

n-equivalent (N,|3) with [3 well—orclered and all components of M13

definablg well—founcled.Replace (aT\bT,[a,b)) in r1bg(N,[3); the result is

H‘.In H’, b1=B. Thus, putting b'=b makes bl well-ordered. The components

of M‘\(o'1) are the ones of MB plus bl plus the I‘1—componentsdifferent

from the one containing [7(if ang); these are all definaolg well-founded.

Finally, (r1',o') 2" (I‘1,o)follows from the remark above. El
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The next lemma is the version of 4.3 with finitelg mang b's at the same

time:

4.4 Lemma. Suppose that the tree H is definably well-founded and ACM

is finite. Then, for each n, (M,a)aEA has an n-equivalent

(r1', a')aEAsuch that each at (aeA) is well-ordered and all

components of /‘1'\UaEA3'1 are definably well-founded.

Proof. Induction on the number of elements of A.

To start with, we have 4.3. For the induction-step, choose aeA and put

B=A\{a}. Applg the inductive hgpothesis to (I‘1,a) and B to obtain

(l‘1',a',b')bE5 with all Hi (DEB)well-ordered and /‘1'\UbEBb'l, definablg

well—founded- component-wise.

(i) Suppose that for some beB, a< b. Then a'<b', a'1 is well—ordered,

/*1\UaEAa'l = M\UbEBb't, and we are done.

(ii) If not, let C be the component of M'\UbEBbl containing a‘. Bg 4.3,

obtain (C',a") 2" (C,a') with a"1 well—ordered and C'\(a")i definablg

well—founded, component-wise. Replace (C,a') in I‘1'bg (C',a") to obtain

the desired model U1", a", b')bEB.B]

We are now readg for the

Proof of 4.1.

Define a sequence of models H0, l‘11,I‘12,... and sets T0, T1, T9,... such

that:

1. P10 = P1; T0 = 925;

2. T’ is a well—founded downward-closed part of M,and every component

of /‘1,\T" is definablg well—founded;
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3. T”" (considered as a submodel of I‘1’*‘)is an end-extension of T’

(considered as a submodel of H,-)(i.e., T’: T’*’, and for a, be T’*’, if

be T’ and a<b then as T’);

4. (H,-, t)u_.Ti E" (I1,-,1,t)tETi,'

5. for all ae/“1,.\T’there is beT’*’ such that (H,-, t, a),,_,T;'z"-1 (r1,.,,, t, D)t€Ti.

HM and T’*’ will be obtained from H, and T’ bg replacing I‘1,.\T’in H,

bg an n-equivalent with a well-founded initial part (namelg, T’*’\T’)

preserving definable well-foundedness component-wise. This will take

care of 2-4. However, T’*’ must be big enough so as to satisfg 5. This is

achieved in the following manner:

Let C be a component of M,.\T’.Choose ACC such that for each cec.‘there

is an aeA with (C,a) 5"" (C,c) and such that A is finite - this can be done

according to 1.7.1. Bg 4.4, (C, a)aEA has an n-equivalent (C', a')aEA with

everg a'1 well—ordered and C'\UaEA a'i definablg well-founded,
component-wise.

H,.,, is obtained from I‘1,.bg exchanging E.‘for C’ and making similar

replacements for everg other component of M,.\T’.T’*’ is T’ plus all the

UaeA(a'iu{a'}) so encountered.
It is now obvious that 2-5. are satisfied.

Now, put N = U,.T’.

Bg 2-3, N is well-founded. I claim that N is an n-equivalent of H.

Consider the Ehrenfeucht-n—game between these models. Notice that, as

T’c I‘1,.,in order to win, it suffices for the second plager to choose his

moves in such a wag that after his k-th move sequences a0,...,ak_1e Hand

t0,tk_1e Nhave beenplagedsuch that for all i, if t0,tk_1e T’then

(M,a0’...’ak_1) to’...’tk_1).
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Notice that igj and [*]i implg [:1]. pg condition 4. above.

Now, the second plager can keep up with this requirement:

First, if k=0 then [*]0 holds since r10=r1.

Next, suppose the plagers have arrived at a position where [*],.still is
satisfied.

(a) Let the first plager choose tkeN, sag, tkeTJ'. If jéi then [as],

provides the second player with an ake /*1 such that

(I‘1,a0,...,a,,)2"-""(I‘1i,t0,..., tk). If i<j, simplg use [*1].

(D) Assume the first player chooses akeM. Bg [*],., there is a ue/*1,such

that (P1,a0,...,ak) 5"-“-1 (Hi, to,..., tk_1,u). If, bu a stroke of luck, ueT’,

we are done. If not, og condition 5. there is tke T’*‘ such that

(I‘1,,1, t, t,(),eT;s"-1 (#1,,t, u),ETi , in particular, (I1,-,1,t0,...,tk) an-'<-1

(I‘1,,t0, tk_1,u). Hence, (I‘1,a0,..., ak)a""‘"‘(I‘1,,1,t0,...,tk); so the

second plager chooses tk- therebg ensuring [*]M to hold for the resulting

sequences. I21

4. monadic 7711-theory of well-founded trees



66

III Applications to intensional
and intuitionistic logic

Few things are harder to put up with than the annogance

of a good example. - Pudd'nhead Wilson's Calendar

5. Fine structure of modal

correspondence theorg.

For a given formula Lpof modal propositional logic, the condition on

frames W=(W,R) that Lpis valid on W is monadic 1111.(See below for the

necessarg definitions.) Correspondence theorg asks (among other things)

whether it can be expressed in first—order terms as well, ie., whether it

is first-order definable. This chapter presents some more information
about modal formulas known to be not first-order definable.

To begin with, a couple of examples of van Benthem [1985] is examined.

To prove first-order undefinabilitg, use was made there of compactness­

and Lowenheim-Skolem theorems. These results are strengthened here bg

showing non-first-order definabilitg on finite frames in all cases. (In one

5. modal correspondence theory



67

case, we show that even a monadic Z11-definition on finite frames does

not exist.) Of course, on the class of finite frames, other methods have to

be used, and so the Ehrenfeucht game has to come to the rescue once more.

Secondlg, an example is given of a non-first-order definable formula

which, however, is so definable on countable frames.

For readers unfamiliar with modal logic, let me recall the definitions

of the notions involved. The formulas of modal propositional logic are

generated from a set of variables bg means of the ordinarg connectives

plus the (unarg) modal operators El (necessity) and O (possibility). The

Kripke semantics for these objects relative to frames, i.e., models

W=(W,R) where RC 150,works as follows. Suppose that V is a valuation,

that is, a map assigning subsets of Wto variables. The triple (W,R,v) is

called a (Kripke) model. The forcing relation Il—connects elements of

W with formulas and is inductivelg defined bg the clauses: (i) wIl—Lpiff

we 1/(Lp) when Lpis a variable; (ii) wIl—fiLpiff W114Lp;(iii) wIl- Ip/up iff wll-tp

and wll-Lp; (iv) wll-Eltp iff for all vsuch that wRv: vll-tp; (v) wIl—<>Lpiff for

some v such that wRv: VII-(.9.we sag that L9is valid on W iff L9is forced at

everg we Wunder all possible valuations.

5.1 Theorem. validity of El(,I_7—>Clp)—>(Op—>[j/J)is not first-order on

finite frames.

Proof. This mag be seen as a modification of the proof of van Benthem

[1985] lemma 10.1. Consider the frame Ck=({0,...,/<—1},R) where F?is

defined bg: iFij 2 |i—j|=1 (mod /<).Cwkis obtained from this bg the addition

of one new element w which is R—connected with everg i< /<. Look at the

illustration on the next page.
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Claim: D(p—>Elp)—>(<>p—+Elp)is valid in every Cwk.

Proof of claim: suppose Op and D(p-—>Elp)are forced at i<I<. Bg the first,

either (i) wIl—por (ii) i—1ll—por (iii) i+1Il-p. Bg the second assumption

then, either (i) wIl—E]por (ii) i—1Il—Elpor (iii) i+1Il-Elp. In case (ii) it

follows that wll-p, hence again wll—Elp,and similarlg in case (iii). Thus,

w|l—Elp in all cases, whence ill-Elp follows. Next, suppose Op and

EJ(p-—>Elp)are forced at w. Then iIl—pfor some i< k; therefore, i—1Il-p,

i+1Il-p, i—2ll-p, i+2Il-p (evergthing mod /<)and so on - therefore, p is forced

at everg i<k; whence wll-Elp.E

Next, let 2CWkbe the frame obtained from the disjoint union of two

copies of Cwkbu identifging the respective nodes w.

Claim: D(p—>Elp)-—>(<>p—>Elp) is valid in no 2CWk_

For, let v(p) be one of the Cwk.Then lZl(p—>Elp)and Op are forced at w, but

Elp is not. IZI

Now, if El(p—->Clp)—>(<>p—>Elp)had a first-order equivalent, this would

have some quantifier rank n. Therefore, the following lemma establishes
the result. Bi

5.2 Lemma. If k) 2" then: CWk5”2CWk.
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The lemma is the result of a series of observations 5.3-5. Recall that

§=w'+w.

5.3 Lemma. g 5 z;+§.

Proof. Bg induction on n, check that t; 2" §+t; for all n, using 1.0.2,

1.0.3(ii) and its consequence, to’; §+oo'. El

Let L9be a quantifier rank—mformula in the free variables x0,...,xk_1. In

each frame A, to defines a relation LPA= {aeA"IA l=Lp[a]}C Akwhich can

serve as the interpretation of a new k-arg relation sgmbol. Now:

5.4 Lemma. If A s’"*"B, then: (A, L94)s"(B, (95).

Proof. Replacing the new k-arg relation sgmbol bg its definition L9in a

formula raises the quantifier rank of that formula with at most m. Bi

Now, let :7be the formula

[x<yA ‘13z(x<z/\ z<y)] V [y<xA ‘IElz(g<z/\ z<x)].

This is a quantifier rank-1 formula defining immediate neighoourship in

linear orderings. If A=(A, <) is a linear ordering, let A’?= (A,)7A).Bg 5.4,

in particular, if A an” B then A’?5"B’7.

In the following lemma, Cm+C,is the disjoint union of Emand C,.

5.5 Lemma. 1. If k,m> 2" then c,,a"cm,~

2. if k) 2" then Ck5"C_,’?

3. if /<,m,I> 2" then C,,s"Cm+C,.
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Proof. Induction on n. For n=1, the results are clear. Assume theg hold for

n and suppose now that /<,m,l2 2"”.

1. A first move ieCk bg I is answered with an arbitrarg jeCm pg II.

Now, notice the following. l<—1,m-1 2 2””-1, hence k—1s"*‘m—1 pg

1.0.1. Therefore, (k+1, 0,l<)5"” (m+1,0,m) as well and hence

((k+1)’l,0,l<) s"((m+1)’l,0,m). Now, identification of 0 and /<in (k+1)’7

produces an isomorph of (Ck,i) and the same goes for O, m, (m+1)’7 and Cm.

Therefore, a trick like the one of 5.4 (identification of 0 and k just means

re-interpreting = as: x=gv(X=OAy=l<)v(x=I</\y=O) - and this doesn't

need quantifiers) shows that (Ck,i) s"(Cm,j).

2. If k) 2"” then l<-1) 2"*‘—1,hence k—1s"*‘oJ+co' bg1.0.3(i).

Therefore, (k—1)’7.=_"(oJ+&J')’7.Adding endpoints,

((k+1)’l,0,/<) a"((o3+co')’l,0,0') (where 0' is the greatest element of

to‘). Identifging O and /<in (k+1)’7 produces (Ck, i) for ang i< l<,-likewise,

identifging 0 and 0' in (co+oo')’l produces (§’l,O). Hence, (Ck, i) 2" (t;’l,O),

etc.

3. cks" yrs" 2;v+gvs"cm+c, pg 2. and 5.3. :21

Remark. The bound 2" in 5.5 is not sharp. For instance, if l<,m> 7 then

Cks3Cm.

Finallg, 5.2 now follows from 5.5.3 noting that the addition of w cannot

spoil the winning strategg of II.

5.6 Theorem. The McKinsey formula E]<>p—>OC]/3is not

first-order definable on finite frames.

Proof. (Compare van Benthem [1985] Thm.10.2.) PZkis the following frame.
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Its universe is {w}u{0,...,k-1}u{O',...,(/(-1)'}; its relation R is defined bg:

aHb iff either a=w and be{O,...,I<-1} or ae{0,...,/<—1} and b is either a‘ or

(a+1)' (mod /<) or a=be{0',...,(I<-1)'}. Truth of l]<>p—><>Elp is

unproblematic at all nodes except w. There, it depends on whether k is

even or odd. Truth of El<>pat w means that for each i</< at least one of i‘

and (i+1)' (mod k) is in V(p). If k is odd, then for some i</< both 1"and

(i+1)' must be in V(,o),hence Do is forced at iand Oiilp is forced at w.

QQQQ
i><><><i

°\\f/Q,
However, when /<is even, set V(p)={ i‘li even} and the McKinseg formula

clearlg is not forced at w. If there is a first-order equivalent, this must

have a certain quantifier rank. Therefore, the result is an immediate

consequence of the following lemma. El

5.? Lemma. If /<,m> 2", then PZk.=."PZm.

Proof. Let Ck be the asgmmetric version of Ck, i.e., it is the frame

({0,...,k-1},R) where iHj iff j=i+1 (mod/<).Just like in 5.5.1, we have

C'k5"C'm for l<,m> 2" (applg 5.4 using the left disjunct of the formula 7)).

Ang winning strategg o for IIin l3(C'k,C'm,n) can now be transformed into

one for II in G(PZk,PZm,n):the move w og I in either frame is answered og
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win the other one; when Iplags i'(resp. i‘) in either frame, iis fed to o; if

0 prescribes j then II answers j (resp. j‘). El

Similar considerations gield the following results. Here, a formula L9is

called locallg defined bg qJ(x) if in each frame W, for each we W: wll—Lp

iff Wi=qJ[w]. (Definabilitg in 5.1 and 5.6 also is called global

definabilitg.)

5.8 Theorem. The following formulas are not locally first-order
definable on finite frames:

1. i3(L:ipvp)—><>(i:Jp/xp) (cf. van Benthem [1985] 10.3)

2. D(pVq)—><>(ElpvlZlq) (l.c. 10.4)

3. <>(I3/JVDW3)

4. D(El,oVp)—>O(<>pV/3) (l.c.10.6).

Remark. Several results on non—first—orderdefinabilitg are rather

unsatisfging in that theg show first-order expressibilitg to be so

forbiddinglg weak in the poor language given. In such circumstances, it

would be quite natural to look for a wider tgpe of definabilitg. A

possibilitg that suggests itself would be definabilitg using an infinitarg

language. Another one would be higher-order definabilitg. Now, modal

formulas are l'l‘1—definable bg nature. If such a principle is 211 as well, it

must be first-order bg the interpolation theorem. However, on

non-elementary model classes, this need not to be so. For instance, which

of the previous examples is A11on the finite models? The models used in

5.6 cannot be used to prove non—A‘1-definabilitg here since theg can be
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A11-distinguished. The same goes for the models used to prove 5.8: theg

too emplog the even/odd-indistinguishaoilitg pg first-order means. Onthe

other hand, this is not the case in 5.1, as the following theorem shows.

Therefore, that result can be strengthened to non—monadic

>Z‘1—definabilitg.

5.9 Theorem. Any monadic Z11-sentence valid in each Cpholds on some

Cq+C, as well.

Proof. Suppose that ElX1...3Xkoholds on each Cp. Let o have quantifier—rank

n. Choose a finite set '2 of finite linearlg ordered models o:=(A, <,X1,...,Xk)

such that each such model has an (n+1)-equivalent in Z. Bg the finite

Ramseg-theorem, there is a natural number p such that for each p-element

set P and each map h:[P]?—>Z there exists a 2"”-element set UCP

homogeneous for h, i.e., for some ore: we have h(x,g)=ot for all x,ge 0.

Now, consider a model (Cp,X1,...,Xk)l=o. Cut it open at some place; this

produces a linearlg ordered p-element model. We mag as well assume this

to have universe p={0,...,p—1}, where the elements have their natural

order. For i<j<p, let h(i,j) be an (n+1)-equivalent of [i,j) in Z - here,

[i,j) denotes the suomodel of p with universe {m<pl i<m<j}. Bg choice

of ,0,there is a 2””-element Ucp homogeneous for h; sag, h(i,j)=oz for all

i<j in 0. Put x=min 0 and g=max 0. Then [x,g) s"*7oa and, hence,

pan” (<—,x)+oz+[g,—>).Since 0 has 2"” elements, it divides [x,g) into

2"”-1 intervals, each (n+1)-equivalent with 0:.

Therefore: 0: 2"” oz-(2”*‘—1)

"*1 oz-(co+oJ*) (for, 2”*‘—1 s”*‘oJ+oJ* og1.0.3(i)—

use 3.1.8)

2 oz-(oo+§+oJ") (for, oJsoJ+t; pg 1.0.3(ii) - idem),­
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hence, ems" [oz-(oo+w')]'l+[o:-§]‘l (bg 5.4 —notice that, after applging n, the

ordering between co, co’ and Qdoesn't matter ang longer);

therefore, o:'ls"oz'l+[oz-§]‘l.

It follows that the original model (Cp,X1,...,Xk)is n-equivalent to its

disjoint sum with [oi-Q1".However, for m=2", §‘ls"Cm (bg 5.5.2). Hence,

[oz-t;]‘lis n-equivalent with a model (Cam,Y1,...,Yk) where a is the number of

elements of 0:.Therefore, ElX1...3Xkoholds in Cp+Cam.El

The examples given suggest the pattern: if a modal formula is not

first-order definable, then it is not first-order on finite frames alreadg;

converselg: if it is first-order on finite frames then it is first-order

generally.

However, this is not true.

5.10 Example. Lob's axiom Cl(Dp->D)—>Elp is first-order on finite

models but is not so generallg: it is not first-order on countable models.

For, the axiom is true in a frame W=(W,H) iff R is transitive and

converselg well-founded (if al-‘lb,bRc but not aRc, put v(p)= W\{b,c} and

notice that Cl(Elp—>p)holds at a but Clp doesn't; if Flis transitive, truth of

Lob's axiom just means that H is converselg well-founded on each set

{blaflb} —and so it is well-founded on W)- and this propertg is known to

be not first-order on countable models: a standard consequence of the

compactness and downward Lowenheim-Skolem theorems. However, the

axiom is first-order on finite frames since there, (converse)

well-foundedness reduces to mere irreflexivitg. I81

This example triggers the question: if a modal formula is first-order on

countable frames, must it be first-order generallg?

Again, the answer is negative.
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5.11 Example. Consider Fine's axiom in <>D(pVq)—*<>(ElpvI3q).

LIJ(X) is the first-order condition on frames (W,<) that

\7’y>X3_L/'>-X[‘v’z>y' (z>y) A VZ,2'>'_L/'(z= z')] (i.e., for each <-successor y

of Xthere is another one g’ which has at most one <-successor; moreover,

each z>-y‘ succeeds g as well). Bg the wag, \7’XLp(X)is the first-order

condition with respect to which Fine's axiom is complete, i.e., a modal

formula is modallg derivable from CI»iff it is valid on all frames satisfging

VxU,i(see van Benthem [1985] lemma 8.10).

Now, notice:

(i). For everg frame Wand XEW:if WI=Lp[X]then i» is true at X.

For, suppose that X-<yll-El(pv q). Since W|==Lp[X],there is an y'>X with at

most one successor such that y'<z=>_L/< 2. Clearlg then, either _L/'|i—Elpor

y'lI—E]q,therefore, y'Il—ElpvlZlq and XII-<>(Ei/JVDL7).El

(ii). For everg countable Wand XEW:if 1»is true at X then Wi=qJ[X].

To see this, put Xy={2eW|y-<2}, u={ XylX<y} and X=UU=UHyXy.
Assume XII-<5,‘we check that Wl=L|J[X]:let X4 y. There are two cases.

(a) There is a finite Xyc Xyin U. Let Xy.be one with a minimal number of

elements. If it is emptg, the rest is trivial. If Xy.={z}, we are done as

well. So it suffices to show that Xy.cannot have more than one element. If

it has, choose V(p) and V(q) non—emptg disjoint such that Xy.=V(p)u V(q).

Now, g'II-El(pV q), hence XIi—<)Cl(pvq). As XIl—cbbg assumption, y" exists

such that X'<y" and Xy..cv(p) or Xynr:v(q), contradicting the minimalitg of

Xy.

(b) Each Xyc Xyin U is infinite. Bg the countabilitg-assumption, let

X0,X1,X,_,,...be an enumeration of {XeU|Xr:Xy}. Inductivelg, choose a,.,b,.e X,

all different from one another. Put V(p)={ ail few} and V(q)=Xy\v(p). Then

yll—El(pvq), Xli-<>El(pv q) and hence y‘ exists such that X'<y‘, y'li-Elpvlilq;

thus, either Xyc V(p) or Xyn V(D)=¢. For some ieiN, Xy.=X,-.But, X,c v(p) is
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impossible as b,.eX,.\V(/3);and neither is X,n v(p)=¢ as a,eX,n V(p). El

(iii). If Cbwould be (locallg) first-order, upwould be a first-order

equivalent of <13:being an equivalent on countable frames bg (i) and (ii), it

must be an equivalent on all frames, bg the Lowenheim—Skolem theorem.

However:

(iv). There are uncountable frames Wsuch that 1»holds at some xew

but W,léL|J[x].For instance, let U be the collection of all infinite sets of

natural numbers; put W={U}uUulNand x<y iff gex. It is easg to see that

W=(W,<)J'5 llJ[U],because U does not contain singletons or the emptg set.

Next, choose ang valuation V(p), V(q) of p and q. If UIl-<>EI(pv q), this

means that for some XeU, Xc V(p)u V(q), hence X=(Xn v(p))u(Xn V(q)). Xis

infinite, therefore one of X0 v(p) and Xn V(q) must be infinite as well. If

this is Xn l/(D) then Xn l/(D) e U, Xn V(p)|l- Elp, Xn V(p)|l-ljpv E]q and

Ull-O(ClpVDq). Bi

(V). The above answers the question for global first-order definabilitg

as well. For clearlg, ‘v’xL|Jgloballg defines Q on countable models, and the

counter—example from (iv) can be transformed into a global one bg making

< reflexive on IN.El

(vi). (van Benthem) This example can be transformed into one for strict

partial orderings. Let Q be <>(<>TAEl(pvq))—><>(<>TA(ElpvEJq)) and Lp(x):

Vy>-x[3z(y-< 2)-—>Elg'>x(y'has exactlg one -<-successor; besides, this

successor succeeds y as well)]. Almost the same proofs show (i)-(iii) to

be the case for these formulas; the transitive closure of the frame of (iv)

shows that «I»can hold in an uncountable frame where q: is false.

5.12 Problem. Determine the least cardinal p such that: if a modal

formula is first-order definable on frames of power <11 then it is so

generallg.
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Here are some partial answers on this problem and its variant for tense

logic. Restricting to linear (irreflexive) orderings, van Benthem obtained

the following

5.13 Theorem. If a modal formula is first-order on the class of all

countable linear orderings then it is first—order on all linear orderings.

The theorem follows from the

5.14 Lemma. If the linearly ordered frame F is an elementary submodel

of G then each modal formula true on 8 holds on F as well.

Proof that 5.14 implies 5.13. Suppose that L9is a modal formula not

first—order on all linear orderings. Bg (a slight modification of) van

Benthem [1985] p.91 Theorem 8.6 (with the same proof), there are

elementarg equivalent linear orderings G1and (32such that 09holds on 132

but is false on 81. Since upis 1111,I31mag be taken to be countable, bg the

downward Lowenheim-Skolem theorem. Let F-<52 be countable. If (9 is

first-order on countable linear orderings, it must be false on F; according

to 5.14, this is a contradiction. E

Proof of 5.14. Suppose that F=(F,<)< l3=(G,<) and Vis a valuation on F

falsifging the modal formula tp. It suffices to construct a Lp-falsifging

valuation Won 13.This is done bg extending V to /3as follows. Let n be the

modal rank of L9.The object is to define W such that (F,V)<n(G,W), bg

which I mean that, for each modal formula upof rank <n: (i) for all aeF: a

forces qa in (F,V) iff a forces L]:in (G,W) and (ii) if L1:is forced somewhere

on (G,W)then it is forced somewhere on (F, V) as well.

5. model correspondence theory



78

The following needs the material from chapter 6 up to and including 5.4.

Define an equivalence ~ on Fbg x~y iff Ela<x,yElb> x,y:IIall"= l[b]l".

Dbviouslg, ~ is a condensation splitting F in a finite number of intervals

(since the number of n-characteristics l[a]l" is finite). Let ueG\F. To

decide how we shall define Won u, notice thet there are the following six

possibilities as regards the location of u compared to the ondensation ~.

1. u occurs in an interval, i.e., there are a<u and o>u with l[a1l"=ltbll".

2. u occurs between neighbouring intervals c1<u and c2>u in F/~.

Notice that either c1 has no maximum or c2 has no minimum, since F< B.

So, we have the subcases 2.1-2.3:

2.1. c, has a maximum; c2 has no minimum.

2.2. c1 has no maximum; c2 has a minimum.

2.3. c1 has no maximum; c2 has no minimum.

3. u is smaller than all xeF. Notice that F cannot have a least element in

this case, since F-<G.

4. Similarlg, u is greater that all xeF.

Call u,ve G\F equivalent iff theg are not separated bg some xeF. There

may be infinitelg mang equivalence classes; I shall extend Vstep bg step

to each equivalence class. To do so needs a possiblg transfinite iteration

which is handled bg the following version of the elementarg chain lemma:

5.15 Lemma. Let <A£|£<o:> be a sequence of Kripke models such that

A£<,,Abwhenever £<b<oz. Let A=U€<uA€,- then A€<,,A for all a<u.

Proof. That for all tp of rank én, all a<u and all aeA£: all-up (in Ag) iff

aIl—Lp(in A) is proved using induction on the rank of iv; the rest of the

theorem is an immediate consequence of this. El
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Now, constuct the sequence <A€I£;<oz>as follows. Aois the Kripke

model (F,V). Take unions at limits - this works bg 5.15. A5,, is obtained

from A5logthe addition of one equivalence class of G\F and extending the

valuation in the suitable fashion as indicated below, depending on whether

we have case 1, 2.1-2.3, 3 or 4.

Case 1. Suppose the equivalence class c of G\F has a<c and b>c in F

with l[a]l"= ltbll". Extend the valuation on the use bg copging its behaviour

on a (which is the same on 0). Let A=A£ (hence, l[a]l"=l[A,a]l") and

B=Auc=A£,1 with the valuation as indicated.

Claim 1. If uec and mén then l[B,u]l’"=l[A,al]’".

Proof. Induction on m. For m=0, this is immediate from the definition of

the valuation on B.For m+1: (i) if a'>a realizes the m-characteristic o in

A, there must be b'>b realizing o as well. But, u< 0'. (ii) if v>u realizes

the m-characteristic o in B and veA then, bg induction hgpothesis, v

realizes o in A as well and a< v. And if vec then, og induction hgpothesis,

l[A,b]l""=l[A,a]l’"=l[B,v1l’",so b>a realizes o in A. E

Claim 2. If xeA then lIA,x]l"=[[B,xIl”.

Proof. Immediate from 1. El

Case 2.1. c1<c< cg; c1,c2eF/~ are neighbours; c1 has a maximum, c2

has no minimum, c is an equivalence class of .f5\F. Again, let A be the

model A, constructed so far, B=Auc=A€,1. Choose an n—characteristic 0

which is realized in A og elements occurring initial in c2; extend the

valuation on c og copging from those elements.
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Claim 1. If use and mén then l[B,u]l”’=o’" (bg which I mean the

m-characteristic of any element having n—characteristic 0).

Proof. Induction on m. El

Again, we have a second claim as in case 1 as a consequence. Notice

that this argument also works for case 3.

Case 2.2. c1<c<c2; c1, c2eF/~ are neighbours; c1 has no maximum but

c2 has a minimum; c is an equivalence class of G\F. Let VARLPbe the set of

variables of Lp;aeA has shape XCVARQ,when X={xeVAR,PIae v(x)}. Now

define Won c such that each shape occurs cofinal in c1 iff it occurs cofinal

in c (since F< G, c cannot have a maximum). Emploging the Ehrenfeucht

game characterization, it is clear that we obtain the proper tgpe of

extension (i.e., n—characteristics are being preserved and no new
n—characteristic is realized).

Case 2.3. c1<c<c2; c1, c2eF/~ are neighbours; :31has no maximum and

C2has no minimum; c is an equivalence class of G\F. If c has no maximum,

the method of 2.2 mag be emploged. However, the method of 2.1 works in

all cases.

Case 3. This is handled the same wag as 2.1.

Case 4. Use the method of 2.2.

5.16 Remark. (van Benthem) The same procedure can be used for the logic

of time - except that there no solution can be obtained for the

extension-pattern 2.3 above. But, in some cases, we know that pattern
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cannot occur. For instance, if a tense logical formula is first—order on all

countable discrete linear orderings, it must be first—order on all discrete

orderings.
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6. Game theorg for intensional logics,

exact-universal Kripke models
and normal forms.

The Ehrenfeucht game technique can be modified for use in

investigations of intensional logics. Here, the case of modal logic is

considered onlg; the modifications needed for tense and intuitionistic

logic below are then more or less clear. Using the game characterization,
exact-universal models are built which can be used to construct normal

forms. This will be used extensivelg in a comparativelg simple case in

chapter 9.

6.1. Suppose then that A=(A,H) (HCA2) is ang frame and v:VAR—>P(A)is

a valuation mapping the set VARof propositional variables onto subsets of

A. The pair (A, V) is called a Kripke model. For a modal formula tp and

aeA, I9is forced at a (all-Lp)iff a satisfies the standard interpretation

ST(Lp) of L9in the associated model (A, V(p))pEVAR,where ST(Lp) is defined

5. game-theory for infensional Iogics



83

pg the following clauses:

1. ST(D) = D(V0)

(here, peVAR on the right-hand side of this equation is used as a unarg

relation-sgmool interpreted pg V(p) in (A, V(p))pEVAR)

2. (1') ST("ltp) = fiST(Lp)

(ii) ST((p/\qJ) = sT(Lp)A ST(qJ)

(and similarlg for the other connectives if present)

3. (1) ST(El£p) = vv, (H(v0,v1)—>ST(Lp)+)

(ii) ST(<>Lp)= Elv1(H(v0,v1)/\ ST(Lp)*)

Here, 41* is obtained from In pg raising indices of all variables in Lppg 1.

Clearlg, if the modal formula Lphas modal rank n (defined in the obvious

wag) then ST(Lp)is an R-restricted first-order formula with V0as onlg

free variable which has quantifier rank n.

6.2. The restricted Ehrenfeucht game of length n on Kripke models

(A, V) and (B, W) (A=(A,H), B=(B,.S)) with initial position (a0,b0)eA><B

is plaged og I and II as follows. First, I chooses either a1eA such that

a0Ha1 or D185 such that D0301.In the first case, II answers with some

D165 such that 130501.In the second, II chooses a1eA such that a0/?a1. A

position (a1,b1)eAxB results and the procedure is repeated until each

plager has had n moves. In so doing, theg have set up an n-element

sequence <(a,.,b,.)I i< n> in AXB; and we shall sag that II has won the

plag iff for each i<n and peVAR: a,.ev(p) iff b,.ev(p) - otherwise I has
won.

Of course, this game has its ordinal—bounded version. But somehow,

intensional logic never is considered in the context of an infinitarg

language. (But see dynamic logic.)
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5.3. Suppose now that VARis finite.

For (A, V) a Kripke model, aeA and nelN, define the modal formula

IIa1l"= l[(A, V,a)Il" as follows:

1. rant? = /\({peVARIaeV(p)}u{‘1p|peVAR/\ ae V(p)}),'

2. l[a]l””‘ = [[3110A El\/aRa.l[a']]"/\ /\ .<>l[a']J".

Clearlg, l[a]l" is a formula of modal rank n forced at a in (A, V). A

aRa

modification of the proofs of 1.5.1/1.6.3 will show that

6.4 Theorem. For (B, W)a Kripke model, MB and l[b]l"=l[(B, W,b)]]", the

following are equivalent:

1. II has a winning strategy for the restricted Ehrenfeucht game

of length n on (A, V), (B, W) with initial position (a, D);

2. for each modal formula Lpof ran/< <n: aII—Lpiff bll—Lp;

3. bIl— l[a1l",'

4. llbll" = l[a]]".

Suppose now that Kis a class of Kripke models.

6.5 Definition. The Kripke model (A, V) is called

(i) K—universal if for each (B, W)eK and [765 there is an aeA such

that for all nelN: l[a]l"=lIb]l".

(ii) exact if for all a1,a2eA: if for all new, l[a11l"= l[a2]l", then

I discuss one important case onlg.
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6.6 Theorem. There exists an (obviously: unique within isomorphism)

exact Kripke model which is universal with respect to all

Kripke models over finite (reflexive) partial orderings.

Proof. Let us denote the model to be constructed bg (U, <, V).

It will turn out that > is well-founded. Let pk be the rank of l<eUrelative

to > (i.e., gl<=sup{Ql+1ll>l<}). It will turn out that all ranks are finite.

Define Un={/<6U|Q/<=fl}(new) and ol<={peVARll<eV(p)}. It is now easg to

build the U" one after the other explicitlg bg recursion on n, defining <

and 0 along the wag, bg simplg imagining what possibilities mag occur in a

finite Kripke model over a partiallg ordered set.

First, U0=P(VAR),- olU0 is defined bg: o/<=/<.

Next, assume the U,constructed up to and including U”;o and < defined

on U,<nU,..Un,1 now consists of the following two tgpes of objects:

1. Each l<eUnhas predecessors (l<,j)eUn,,1 for each jeU0 such that j;éol<;

o is defined on these bg o(/<,j)=j.

2. For each anti-chain AC U,<nU,which intersects U”and has at least

two elements and each jeuo there is an element (A,j)eUn,1 which

precedes everg l<eA,-o is defined on these bg o(A,j)=j.

The picture gives a ting top-part of the model when VAFl={p}is a

VAR={p}U0:¢
U1 (¢,{D}) ({§Z5,{D}},¢) ({¢,{D}},{D}) ({D},¢)

U22 ({(¢,{D}),({¢,{D}},¢),({¢,{D}},{D})},¢)
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singleton. (Sehtman [1978] has a picture of this model with all 30

elements of U2 shown. The picture which goes with thm.9.1 below

represents an important submodel U’of Ufor VAR={p}.)This completes the

description of (U, V).That it works is seen below in 6.7/B. I21

From now on, K is the class of finite Kripke models over partiallg
ordered sets.

6.? Theorem. For each (B, W)e K, there is a canonical map h: B—+U such

that

(1') aéb =9 haéhb

(ii) ha<k =>302 a(hb=k)

(h is a p-morphism)

(iii) for all beB, nelN: i[b]l”= l[hb]l".

(hence, (U, V) is K-universal)

Proof. hb is defined bg recursion on go, the rank of MB with respect to

the relation >, where B=(B, <).

If gn=o, hb=ob ( ={D|be wall).

If QD>0, let C={hb'| b<b'},- let A be the set of minimal elements of C.

Then A is an anti-chain with at least one element of rank QD-1.

Distinguish three possibilities.

1. A={l<},ob=ok. Put hb=k.

2. A={I<},ob¢ok. Put hb=(k,ob).

3. |A|> 2. Put hb=(A,ob).

Now, (i)—(iii) are clear. Bi

6.8 Lemma. (U, V) is exact.
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Proof. Suppose that /<,leU and for all new, |Ik]l"= I[l1l".Applg induction on

gk. Let A={ xeU|/<<x} and B={xeU| l<x}. Bg induction hgpothesis and 6.9

below, it follows that A=B. Now, k=l is clear. El

6.9 Lemma. If a, b are elements of finite Kripke models in K and

l[a]l993"‘ = l[b1l993*‘then l[a]l"= ltbll" for all new.

Proof. Induction on ga. First, if ga=0, a is maximal and the result is

obvious. Next, assume Qa=n>0, lIa]l?"*‘=l[b]l1’"*‘and m is minimal such

that l[aII’"¢l[b]l”'. Let I use a winning strategg in the m-game on (a,b)

which alwags picks elements of minimal possible rank. If, using this

strategg, I starts picking a or D, II answers b resp. a and I "looses a

tempo": there are m-1 moves left for either plager and so II can win bg

choice of m. If I starts with a'>a, II picks b‘) b with l[b'1l2"=l[a'1l9"and

wins bigthe inductive hgpothesis. If I starts with b'>b, II picks a’) a

such that l[a']l'~’"=l[b']l2".There are two cases to distinguish.

(i) a‘;-ea.Then Qa'<9a and II wins bg the inductive hgpothesis.

(ii) a'=a. Consider the second move of I. This cannot be a‘ or b‘ for

tempo-loss will result. Also, it cannot be b">b' since I's strategg picks

elements of least rank, so it would have choosen b" as a first move

alreadg. Therefore, it will be some a">a' and II wins bg the inductive

hgpothesis. El

6.10 Problem. For each keU, we know bg 6.9 that l[k1l29"*‘defines k in

the sense that k is the only element of U at which the formula is forced.

Determine for each keU the least n such that III<1l”defines k (and give a

more manageable equivalent of II/<11”).(The construction of Sehtman [1976]

does not seem to satisfg this minimalitg-requirement.) A special case of
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this problem has a simple answer, of. chapter 9 below.

6.11 Lemma. For all keU and new there is an leU such that

1. l[lll"=l[k]l";

2. glén.
Proof. Similar to the one of 6.7. Induction on n. For n=0, this is clear.

Next, let C be the set of leU U. such that for some I<'>k, l[ l]l"=l[ /<11".ién I

Let A be the set of minimal elements of C.The required I is constructed

from A and ok. El

We now have the following corollarg:

6.12 On normal forms. Let L9 be a formula of modal rank n. Un

Kripke models in K, tp is equivalent with V{ II/<]l"IQkén A kIl-Lp}.
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7. Completeness for Z—time.

The theorem of this chapter, asserting completeness of a certain

sgstem of tense logic with respect to Z—time,is due to Segerperg [1970].

A different proof is in van Benthem [1983] (cf. 11.23.15) and another,

relativelg simple one is in de Jongh et al. [1986] Our proof is related to

the method of chapter‘ 3; however, the relationship is not that exact, due

to the fact that the tense logical formalism lacks first—order possibilities

such as quantifier relativization. This weakness also is responsible for

the fact that the Suslin propertg of IRhas no influence on the theorg of

lR—time;contrast this with 3.3.6/9. Nevertheless, we shall put to good use

tense logical versions of n—characteristics.

The logic of time has operators [3and F with the same semantics as the

modal ones El and 0. Next to these, there is a dual pair: H (tll-Htp iff

\7’t'<t: t'Ii-tp) and P (tl|—Ptpiff Elt'<t: t'll—Lp).Of course, there is the tense
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logical version of the Ehrenfeucht game: plager I now is allowed to move

downward as well as upward in the ordering (which represents the time

structure) and II has to follow I in this respect. Also, there are the

n-characteristics l[a]l" coding the game-theoretic behaviour of a in the

n-game with respect to a finite set of variables.

Theorem. The tense logical theory of Z (integer time) is axiomatized

by the following principles:

trans i3p——>l3Gp

succ FT; PT (T the constant for true)

r-lin Fp—>l3(FpvpvPp)

I-lin Pp—+H(PpvpVFp)

modified Ldb G(Gp—9p)—->(F|3p—>G/J)

H(HD-*D)—->(PHl3—>H/3) .

For a precise definition of tense logical derivabilitg, cf. van Benthem

lc.pp167/B.

Proof. Suppose that the formula x cannot be derived using these principles.

I shall show how to construct a valuation V on 2 such that

(Z, <, V)l=‘1x[n] for some neZ.

As a first step, we need the Henkin construction for tense logic (cf. van

Benthem l.c. pp.1?0-173). This produces a model (M,R, V) such that

1. the axioms given all hold (universallg) in the model,‘

2. for some meM, (M,R, V) l=‘Ix[m].

In fact, /*1consists of all sets of formulas maximal consistent with the

given axioms, and H is defined pg

3. mg iff for all Lp,if Gtpex then Lpeg.
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The basic tense logical axioms now allow one to prove the following

truth lemma:

4. (M,R,V)l=Lp[X] iff tpex

on the basis of the following definition of V

5. X6Wp) iffpex.

Bg assumption, fix will be in some merl, so 2. follows from 4. Also, 1.

follows; as substitution is one of the derivation rules, substitution

instances of the axioms are satisfied as well. 6-B now investigate the

effect the axioms trans up to l—lin have on the structure of (/‘1,H);this is

standard procedure.

6. R is transitive.

Proof: suppose xRyRz. If Gtpex then bg 4., x satisfies GL9and hence l3l3Lp

(use trans). Hence, [3[3Lpexbg 4. again. Applging 3. twice, this gives Gtpey

and Lpez.Therefore, xRz bg 3. El

7. Mhas no R-minimum or R-maximum.

Proof: immediate from succ. El

E3.Every two elements with a common upper bound (resp.

lower bound) are comparable.

Proof: suppose that X,5/R2,X;-sg,“lxfly, fig/Rx. For instance, Lpex\y, Gtpex,

Lpey, Gney, nex. Now, 2 satisfies P(Lp/\Gl1J/\77)). Hence, bg l—lin, it

satisfies H[F(£p/\[3l.|J/\_lJ7)V(L9/\l'3L|J/\7i7)VP(Lp/\l3L|J/\7)))]as well.

Therefore, y satisfies one of F(Lp/\t3qJ/\‘Ir;), Lp/\I3Lp/\‘Ii7,P(Lp/\I3Lp/\‘Ii7).

But the first alternative contradicts y satisfging G7),the second Lpeyand

the third L|J¢£I.El

Define ~ on Mbg

x~y iff x=y or: both my and 5/Rx.

Bg 6., ~ is an equivalence.
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R induces a partial ordering F!/~ on the set of equivalence clases bg

IXIR/~ Iyl iff xFly.

Let m be the x-falsifging element (2.) then restricting to equivalence

classes lxlwith mm or x=m or mHxproduces a linear ordering pg 8.; since

F?is transitive, the model-theoretic properties of (/‘1,R,V) won't change bg

restricting to such x - hence we mag assume xHm or x=m or mRx for all

xerf to begin with.

Let VARXbe the (finite) set of variables in x. P(VARx) is the set of

shapes; x has SCVARX(5 occurs at x) iff .‘3=xnVARx.

Let A be an equivalence class of H under ~. If A={a} and ‘ia/-‘Ia then

A'=A. In all other cases, A’ denotes a model (2, <, VA)of order-tgpe Q
such that

(1) each shape occurring in it occurs in A;

(ii) if 5 occurs in A then the set {nezln has 3} has neither

lower nor upper bound.

Now, define N= ZAE,,,~A’.

9. Suppose that xeAe/‘1/~ and neA* have the same shape. Then for

all formulas LpoverVARx: /*1i=Lp[x] iff Nl= Lp[n].

Proof. Use the Ehrenfeucht game appropriate to tense logic. Notice that II

can alwags take care to leave a position (y,m) for I for which (i) for all

AeM/~: yeA iff meA' and (ii) y and m have the same shape. IZI

Therefore, we now have a counter-model to x of an order tgpe which is

a sum of §‘s and 1's. To finallg transform this into a counter-model of tgpe

C, I use the modified Lob-axioms.
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10. Suppose that up is a formula over VARX such that
Lp’V={neNlNi= tp[n]} is non-empty and upward (downward)

bounded. Then L9”has a maximum (minimum).

Proof. Let Ni= Lp[n] and m<n. Then m satisfies Ftp and F[3"|Lp. Since Ftp

amounts to 7G‘1Lp, bg the first modified Lfib-axiom (with fitp

substituted for p): Ni= 7l3(l3fitp—>'1Lp) [m]. Choose l<>m such that k

satisfies l3‘ILp and L9,‘k is the required maximum. I21

Let k be the rank of x. Put T= {l[x1l"|xeN} (l[x]]" codes the "behaviour"

of xin the game of length k). Define T+ ={1:eT|{xeN|1:=[[xIl"} has an

upper bound} and T‘ = {1:eTl{xeNI1:=i[x]l"} has a lower bound}. Bg 10., to

each teT* there is a maximal x=xt with i[x]l"=t and simiiarlg for T‘. Let

A0 be the set {xtlt e T*uT‘ }. Choose A*c N of order tgpe to such that

A0<A* and such that for a11i:eT\T",{xeA*|[[x]J"=t} is infinite.

Simiiarig, choose A‘c: N of order tgpe to’ such that A“<A0 and each

{xeA' |[[x1I"=i:} for 1:eT\T’ is infinite. Finaiig, A is the submodei of N

obtained bg restricting to A‘uA0uA*.

S0, A has order tgpe 2;;it suffices to prove

11. If the formula LIJover VARX has rank </< and xeA then
Ai=L|J[x] iff Ni=Lp[x].

Proof. Induction on w. There is but one interesting case. Suppose that

Ni= Fl|J[X]. Then y>x exists such that Ni= qJ[y]. Let t=IIy]l". Bg

construction, there is a z>x in A such that IIz]]"=t. But then, Ni=l.|J[Z]as

well. Bg induction hgpothesis A l=tp[z]. Hence, A |=FLp[x]. I2!
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B. Rodenburg's tree problem.

8.1 Introduction. Bg a suggestion of Troelstra, Rodenburg [1982]

continued the investigation of intuitionistic correspondence theorg which

was begun bg van Benthem (in a preliminary version of van Benthem

[19B4]). (For the latest developments, of. Rodenburg [19Ei6].) Part of this

asks for which intuitionistic formulas tp, validity of L9on intuitionistic

(i.e., partiallg ordered) frames - which is a ll‘,-condition to begin with ­

can be defined in first-order terms. This question is part of its modal

companion: bg the Godel translation, intuitionistic formulas can be

translated into modal terms, and this means that the intuitionistic

correspondence problem considers rather special modal formulas onlg. But

also, the class of frames is restricted to partial orderings, and in the

Tl‘,-condition, the second—orderquantifiers range over upward closed sets

onlg. And this makes for the rather different flavor of the subject. In
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1983, I solved two problems left open in Rodenburg [1982]. The first, on

whether validitg of a certain formula 82 (called SP2 in Rodenburg [1988])

is first—order definable on the class of (oinarg) trees, is dealt with in this

chapter. The second is the same problem for intuitionistic formulas in one

variable and the class of finite partial orderings. This is the content of

chapter 9.

8.2 Preliminaries. Consider a propositional language over a set VARof

propositional variables with a propositional constant J. for falsehood and

operations —>,A and V. Negation 8 can either be taken as a primitive or

else be explained as ‘up = (tp—>J.).Let A=(A, g) be a partiallg ordered set

and V:VAR—->P(A)a valuation; then (A, V) is the corresponding Kripke

model. The intuitionistic semantics of the formulas of the above

language on such a model can be explained simplg in modal terms as

follows: for aeA, Lpa formula, define all—Lp(intuitionisticallg) iff aIl—Lp""

(modallg), where the modal translation (pmof L9is defined as follows:

(i) for peVAR, p"'=p,- L"‘=L,­

(ii) '" preserves A and V;

(iii) (tP—>tlJ)'"=D(tp”‘—>LlJ'")

(hence, (‘|Lp)”‘=U‘itp’" ).

In Kripke models (A, V) for the intuitionistic language, A is alwags a

partiallg ordered set and V is such that each V(p) (peVAR) is upward

closed, i.e., as V(p) and aéb implg be V(p).

8.3. Rodenburg[1982] considers the intuitionistic formula

82: (—ILpv’1Lpv-Ix —>tpVqJVx) -9 '1Lpv'1Lpv‘Ix
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where: (p = p/\q

ll! = £7/\_‘qX:
and puts the question whether it is first-order definable on the class of

"rooted trees". The binarg trees of 2.1 form an elementarg subclass of this

collection. Therefore, a negative answer would be implied bg showing B2

not to be first-order on binarg trees. Now, Rodenburg's arguments show
that

8.4 Lemma. For binary trees T, B2 is valid on Tiff T is finite.

Hence, his problem is answered negativelg bg corollarg 2.2.4 above.

Notice, however, that 2.4.1 even shows 82 not to be 211 on binarg trees.

Proof of 8.4. First, let T be infinite. Bg Konig's lemma, it has an infinite

branch 0:. Suppose oz={t0, t1, t2,...} where t0< t1< t,_,<... and let s, be the

immediate successor of t, different from t,.,1. Define the following
valuation on T:

v(p)= {teT|Eli(s3,-<tV s3,.,, <t)}

V(q)= {teTl3i(s3,.,1<tv s3,.,2<t)}.

Clearlg, 33,-<t => tll—Lp

33,-,1<t => tll-Lp

S3,-,,2<t => tll-X;

hence, teT\o: => tll-Lpvnpvx (1).

Also, no teo: forces one of flip, ‘up, ‘ix, i.e.,

tea =9 tll‘ ‘lLpV‘lL|JV"lx (2).

In particular, to does not force ‘Itpv‘1I,UV‘Ix. Thus, to see that B2 is not

valid on (T, V), it suffices to see that toll-‘itpvfitpvfix -—>tpvqwx. Hence,
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suppose t0<uII—‘1LpV‘ILpv"Ix. Bg (2), U¢0t, therefore, pg (1), ull-Lpvtpvx,

and we're done.

Converselg, assume that Tis finite, but Tll-‘B2.So, there are a valuation

Vand ueTsuch that ull4B2.For instance, ué W0Il—‘1LpV‘1L|JV‘1x-9 cpvupvx

out W0Jl"1(.pV7L|JV7)(. Since T is finite, we mag assume W0is a maximal

element with these properties. Since Woli-<‘|Lp,there exists W1) W0with

W1Il—Lp,-similarlg, there are W2, W3) W0 such that W2|l- Lp, W3"-X. Now,

7W1< W2, for if not, then W2|l-Lp(a formula forced at some place W1

remains forced at everg W2) W1), hence W2II—q, contradicting W2Il-q.

In the same wag, it is seen that no two of W1,W2,W3 are comparable; in

particular, theg are all > W0.Let Wbe the greatest lower bound of W1and

W2. If W0<W then WIl—“ILpv‘1qJv’1x—~>Lpvqivx (since this is forced pg

W0) and WIl—7tpv"IqJV‘Ix (bg maximalitg of WO) thus WI}-LPVLPVX.

However, WJFEQ(if not, then W2Il-tp, but W2Il—qJ),Wll4qJ (else W1lI-Lp) and

WJFX(otherwise, W1ll—x)- a contradiction. Therefore, W=W0.But a similar

argument shows that Wis greatest lower bound of each two of W1, W2,W3

- an impossibilitg in a binary tree. El

Bg contrast, Rodenburg [1982] theorem 6.1.? sags that one-variable

formulas all are first-order on (general) trees. Compare this also with the

results discussed in the next chapter.
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Q. FOTITIUIBSin one variable.

A problem left open bg Rodenburg [1982] was to determine which
intuitionistic formulas in one variable are first-order definable on finite

partial orderings. This is solved below. First, however, I construct

universal-exact Kripke models for intuitionistic logic and present a

logical analgsis of the one-variable model using Ehrenfeucht's game. This

is applied subsequentlg to the problem of first-order definabilitg.

In the proof of 6.6, an exact Kripke model (U, V) universal with respect

to Kripke models (for modal logic) over finite partial orderings was

explicitlg constructed. In this model, no v(p) is upward closed. (Remember

this is required of intuitionistic models.) However, U has a maximal

upward closed subset U’such that v’(p) = v(p)nU’ is upward closed, this is

U’= {I<eU|VpeVARVmeU[k<mA ke v(p) => me V(p)]}.

9. one-variable formulas
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9.1 Theorem. 1. (U",V’) is (modallg) exact,­

2. (U’,V’) is universal with respect to finite

intuitionistic Kripke models.

Proof. 1. Obvious. 2. Modifg the proof of 6.6. E1

The structure of (U’,V’)for VAR={p}having one element is quite simple

and has been known for a long time. Let us have a short look at it.

{D} 0 0 ¢ U0

‘°'” C2 9 <u0,1) U1

({1,2},1) 4 6 (U1,1) U2

({3,4},1)3' 0 (u2,1) U3

The elements in the picture are named bg their codes from chapter 6 as

well as by natural numbers, the reason for which is explained bg 9.2 below.

There is but one element in V(p): O={p}. Also, there is but one element

(k,j) with keU’:2=(0,1)=(0,¢). An anti-chain has at most two elements;

since V(p)={0}, this means that everg other non—maximalelement has the

form (A, 1) with |A|=2. Problem 6.10 for this model is solved as follows.
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9.2 Lemma. I[n]l"= l[m]I" iff n, m>k or n=m.

In particular, n is the least number i such that l[n]l’ defines

n in (U’, V’).

Proof. Let us agree to denote the partial ordering of U’lag <"; < then can

be used for the usual ordering of IN(as is done in 9.2). Hence, n< 'm iff

m+2<n.

If, in the k-game on a position (i,j), plager I plags some I) ' i,j, II can

win pg just copging the moves of I. Therefore, the optimal strategg of I

alwags is to pick i—12 ‘j (if i<j) resp. j-1) 'i (if j<i): he must get at

the top of the model as fast as he can without losing, for, in order to win,

he has to take care that exactlg one of the plagers has to arrive at 0, the

onlg element in V(p). As long as II cannot copg I, his optimal strategg

consists in repeating one of the previous moves (namelg, iif I has chosen

i—1 in position (i,j) etc.): this surelg is the slowest wag to drag him to

the top of the model where O is lurking. Therefore, if n<m, the plag will

go like this if both plagers do their utmost; as long as kénz
I: n—1 n-2 n—3 n-k

II: n n—1 n—2 n-(k-1).

Dbviouslg then, Iwins iff K) n. El

As to defining (modal) formulas:

9.3 Lemma. (i) Lp0=pdefines0,­

(ii) Lp1=El‘Ipdefines1,­

(iii) (92= ‘1p A El<>p defines 2,­

(iv) if tpn, tpn,1, tpn,,_, define resp. n, n+1, n+2, then

cp,,,3= Otpn/\ OLpn,1 A ‘I<>Lpn,,_,defines n+3 (n) 0).
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Proof. Clear from the picture. El

It is easg to show pg induction that for intuitionistic formulas Lp,the

set {I<eU"|kIl-Lp}defined pg Lpalwags will be upward closed. Now, U’has

the following tgpes of upward closed sets:

1. ¢;

2. 0T={0};1T={1};2T={0,2};

3. (n+3)T={O,...,n+1,n+3} (n) 0);

4. nTU(n+1)T={0,...,n+1} (n2 0);

5. U’ = N.

9.4 Lemma on normal forms.

1. L defines ¢,­

2.(i) Lpo= p defines OT,­

(ii) ‘P1= ‘to defines 1T;

(iii) 412= 9 ‘Ip defines 21‘;

if Lpn,qJn,1, |.Pn+2define resp. nT, (n+1)T and (n+2)T then:

3. L|Jn,3= qJn,2 —>l1JnVl1Jn+1defines (n+3)T, and

4 Lp,,vL|Jn,1defines nTu(n+1)T;

5. p—->pdefines IN.

Proof. Notice that intuitionistic formulas are intended here. Therefore, a

given formula L|Jdefines XCU’ intuitionisticallg iff L|Jm(see 8.2) defines X

modally, and this is easilg checked in all cases. El

Remark. Notice that the L9,,from 9.3 has modal rank n - the least possible

rank for an n—defining formula according to 9.2. Also, L|Jnmhas rank n. The

connection between these two tgpes of formulas is given pg the
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9.5 Lemma. 0n intuitionistic Kripke models, Lp,,,1'"is forced at a node

in -i<>np,, is.

Proof. Semanticallg, this is clear on (U’,V’).But a sgntactic proof also is

possible. Bi

9.6 Lemma. Let tp, qi be intuitionistic one-variable formulas and k the

maximum of the modal ranks of L9” and l.|Jm.Then L9and q: are

equivalent (i.e., true on the same frames) iff
{m<l<+1Imli-tp}={m<k+1ImIi—Lp}.

Proof. Suppose this condition holds. Bg 9.2, l[n1l"= l[n']l" when n'>n> k.

Let a be ang element of ang model (F, V). Then IIa]l“ must be one of

i[0]l",...,IIk+1]l",- sag, IIa]lk=lIm]i“ with m<k+1. Hence, all-Lpiff mli-tp iff

mli-LP iff all-LP. E

9.? Remark. It is easg to extend the one-variable model to one that is

exact and universal with respect to all Kripke models: simplg add a least

element oo.To see that this suffices, let (A, V) be ang Kripke model and

aeA. If all-Lpnfor some n, then for all k, l[a]l"=i[ n11". And, if no L9,,is

forced at a then, bg induction on n, it follows that all-Otpnfor all n. But

then obviouslg, for all k, i[aIl"=l[ oo 11'‘.

Of course, one can do modal and intuitionistic propositional logic with

infinitarg connectives /\ and V and define formulas lIa]l°‘for all ordinals

0: relative to an element a in a Kripke model. The above amended model is

still universal with respect to such an extended formalism - bg the same

proof; this is because the plagers essentiallg have one optimal strategg

each (cf. 9.2) not depending on the bound ozof the game. (cf. also de Jongh
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[19B0]).

I now turn to correspondence theorg.

According to 9.4, each intuitionistic one-variable formula is (in the Kripke

model semantics) equivalent with a formula of one of the following

shapes: L, p—>p, tun, LpnvqJn,1.

Rodenburg [1982] has a complete classification of these formulas as to

first-order definabilitg on arbitrarg partial orderings as follows:

1., p—>p,qinfor n<4 and L|JnVL|J for n<3 are first-order; the rest isn+1

not.

He then put the question: what about first-order definabilitg of these

formulas on finite partiallg ordered sets’?

Elf course, onlg cases n>4 for the Lpnand n>3 for the LP”vqJn,1 remain to

be investigated.

The answer is given bg the

9.8 Theorem. 0n finite partial orderings, l.|J5, L|Jn for n2 7 and lpnv L|Jn+1

for n) 4 are not first-order (in fact, they are not

monadicallg 211); however, L116is.

Proof. Bg 6.7, each finite model is canonicallg mapped into U’.h alwags

will denote this map; so all—L9,,iff ha=n. A model realizes n iff ha=n for

some a; n is realizable in a frame iff it is realized under a suitable

valuation on that frame. As to the tpnfor n=5 and n2 7, notice that L|Jn

does not hold in a given model iff n—1 or some m2 n+1 is realizable in it

and this is true iff n—1 is realizable. In particular, q.-5does not hold iff 4

is realizable. I shall now show that 4-realizabilitg is not first—order on

finite partial orderings; using 5.9, it is easg to modifg this into a proof
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showing 4-realizabilitg not to be 211.The argument can be looked at as a

"finitisation" of Rodenburg's proof for arbitrarg partial orderings.

Consider the frame P2,, of theorem 5.6. Make it into a partial ordering

TPZkbg replacing the relation of P2,, bg its transitive closure.

Claim 1. 4 is not realizable in any TPZk.

Proof. Suppose 4 is realized under some valuation. If at all, this can

happen at the least element w onlg. There must be top-elements realizing

0 and 1; hence there are b> w and c, d>b with hc=0 and hd=1. But then,

hb=3, contradicting w<b and hw=4. El

Next, consider the frame 2TPZk obtained from two copies of TPZkbg

identifging their least elements.

Claim 2. 4 is realizable in each 2TPZk.

Proof. Just let v(p) be the set of top-elements of one of the TPZk-copies

in 2TPZk.lZl

Therefore, in order to see that 4-realizabilitg is not first-order on finite

frames, we need

Claim 3. If k) 2” then TPZk E” 2TPZk.

Proof. Compare the proof of 5.2. E!

Showing that LP6is first-order definable on finite frames amounts to

showing that 5-realizabilitg is so definable. This is the content of the

following
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Claim 4. 5 is realizable in a finite frame A iff there are X, X0,510,X1,X2

and X3such that:

(1) X< X2<X0; X< X3<y0, X1

(2) ‘1x2<X3

(3) \7’y( X<ycomp X2—>yVx1)

(4) Vy(X3<y compy0 —>yVX1).

Here, Xcompy means: Xéyvyéx; and XVystands for ‘I3z(X<zA 5/<2).

Proof. To see this, first suppose that V(p)cA and XeAare such that hX=5.

We mag assume that X is a maximal element with this propertg. Choose

X3>X maximal with hX3=3 Finallg, choose X0,g0, X1,X2with h-values 0,

0, 1 and 2 respectivelg such that (1) holds. Now, (2) holds as well. As to

(3): if X<ycomp X2then, bg maximalitg of X,hy=2 or =0; hence yVX1. As

to (4): if X3<ycompy0 then, pg maximalitg of X3,hy=0,- hence yVX1.

Converselg, assume that X,X0,g0, X1,X2,X3satisfg (1 )-(4).

Define V(p)= {aeA| fia<X2A ‘ia<X3 A aVX1}.

Notice that V(p) is upward closed. Now:

hX0=0: "IX0<X2; "IX2<X3 and X2< X0 hence ‘IX0<X3; big (3), X0VX1. So

X0eV(p), i.e., hX0=0.

hy0 =0: "5/0 <X3; “X3<X2 and X3<y0, hence ‘|y0<X2,- pg (4), y0Vx1.

So, g0 eV(p).

hX1=1: Suppose X1<2. Ubviouslg, ‘IzVX1. Thus, 26!V(p).

hX2=2: X2¢V(p) is clear. Suppose X2<y. If y=X2 then y<X0EV(p). If X2<y

then pg (3), yVX1; furthermore, ‘iyé X3, since if yé X3 then

X2<X3. Hence, ye V(p).

hX3=3: First, X3<y0, X1.Second, suppose X3<z and hz=2. Then za V(p),

-Iz<x3, ‘Iz<X2, thus bg definition of v(p), fizVx1. But then,
hz=2 is impossible.

Finallg, it suffices to show that hX=5,-and for this, it suffices to show
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that no z>x has hz=4. Suppose not. Then ‘|z<x3. Suppose z<x2. Then

zVx1 bg (3). Choose 21>2 with hz1=1.Then ‘z1<x2, X3and z1¢ V(p), hence

fiz1Vx1 bg definition of i/(p); therefore ‘1zVx1 - a contradiction. Hence,

‘1z<x2. Choose z2>z with hz2=2. Then ‘|z2<x2 and ‘1z2<x3. Since

22¢ V(p), we have that fiz2Vx1 bg definition of V(p) - contradicting hz2=2

and hx1=1. E!

For the rest of the proof, I need a

Trivial remark. Suppose that V is any valuation on U’different from V’.

Then under it, no as U’ obtains a canonical value >3 in

ufl,vU.

Now, modifg the frame U’ bg disconnecting the element 4 from its

successors 0, 1 and 2. Consider the frames obtained from this bg

identifging the now successor-less element 4 with the least node w of a

model TPZk or 2TPZk,-cf. the picture below where TPZ4 is attached at the

U’-node nr. 4.

TPZ4
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Bg the trivial remark and bg what we know about the (2)TPZk, for n) 6,

the resulting frame can realize the canonical value n iff it realizes this

value at n iff a model 2TPZkis attached at 4. Therefore, final segments of

these models (from n upward) can be used to show that tpn is not

first-order definable on finite partial orderings for n) 7.

As to the t|JnVqJn,1, finallg, a frame can be made into a

counter—example to this formula iff under a suitable valuation a canonical

value 2 n+2 is realized, and this happens iff one of n+2, n+3 is realized.

To see this is not a first-order condition when n) 4, the model classes

constructed for L|Jn,4can be used.

For instance, take the case n=4.

Look at the partial ordering used to construct the we-model classes.

Whatever the valuation on such a model, h5=4 is impossible bg the trivial

remark. Therefore, the model realizes a value n26 iff it does so at

element 7 iff h4=4. (In fact, if h4=4 then h7=? iff h5=5 and h?=6 iff

h5=3.) But we know this to be not first-order on the given partial

orderings. This finishes the proof of 9.8. El

To contrast the LpnvL|J,,,1-case with that of the qin, let us call ACIN
realizable on a model iff some element obtains a value in A under a

suitable valuation. Then notice that bigRodenburg [1982], realizabilitg for

{-4,5}and {5,6} is first-order definable while this is not the case for 4, 5

and 6 separatelg (and it is so for 5 onlg if we restrict attention to finite

partial orderings).
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Appendix A: can time be directional?

Van Benthem [1983] contains a list of properties which the

time-structure (T, <) mag have:

SYN :

SYN’:

HUM:

HUM’:

REF:

(T, <) (T, 2).IR

each teT splits T into order-isomorphic halves
(<—,t)={ t'<-:T|t'< t} and (t, —->)={t'eT| t< t'}.

for all t, t'eT there is an automorphism moving t to t‘.

for all t1< t2, t3< t4, if |(t,, t2)l=|(t3, t4)l then some

automorphism maps (t1, t2) onto (t3, t4).

each interval (t1, t2) is isomorphic with (T, <).

On p.45, the question is posed as to whether REF implies SYN. Below, I

answer this negativelg og constructing, for each uncountable power, a
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linear ordering of that power which has every propertg listed above ­

except the first one.

Another solution to this problem is given bg Droste [19B?].

Given an uncountable initial number, let Q be a well—ordering of that

tgpe. Define the increasing sequence of linear orderings A0cA1cA,_,c... as
follows:

(i) A0=Q;

(ii) A1 is obtained from A0 bg inserting, for each aeA0, a copg

Q(a) of 9 between a and its predecessors in A0;

(iii) A,.,2is obtained from AM bg inserting a copg 51(3) of Q

between a and its predecessors for each as A,,1\A, (i2 0).

Q” is the union UnAn.

Clearlg, Q” has the same power as Q.

Bg induction on nit follows that each Anis well-ordered (it has the order

tgpe 9"”). Suppose Xc Q” has order tgpe Q’ (the reversal of Q). Then

each set XnAn, being both well-ordered and converselg well-ordered, must

be finite. Therefore, X=Un(XriAn) is at most countable —a contradiction.

Since QC 9”, $2” does not satisfg SW1.

We are going to prove the

Lemma. If as Q” then (<—,a) and (a, —>)are both isomorphic with 5'2”.

From this, SW1’ and HUMeasilg follow. As to REF, if t,< t2 then

(t1, -9) is isomorphic with Q” bg the lemma. Since 5'2” is isomorphic with

each of its initials (<—,a), so is (t1,——>).In particular then, (t1, t2) z (t1, -—>)

g Q_°.H0r1' now is a trivial consequence.
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Proof of lemma.

I use the following notations. f2,,=A,,\U,-<,,A,.. a<—bmeans that a is an

element of the copg 9(0) of Q inserted immediatelg in front of b. For

Xcflm, C(X)=XuUx€XQ(x). C" is the n-th iterate of C. Hence, A,,=C"(S'2).

Now, suppose that as Q”. Sag, aefzn.

For i<n, let a, be the least element of (a,——>)nS'2,.

Then an<—a,,_,<—...<——a0and (a, a,.)n$'2,=¢,- if n>0 then a<—an_1as well.

Dealing with the second half of the lemma first: since Q has initial

tgpe, [a0,—>)ns'2s Q. Let h be the isomorphism.

h extends to an isomorphism n1: [a1,—>)nC($'2) —>C(51) which maps

[a,,—>)nQ(a0) onto Q(ha0) and, for aO<b, Q(b) onto §2(hD).

Repeating this extension-procedure, ultimatelg an isomorphism hn

between [an,—>)nC"($'2)and C"(Q) is obtained.

Going further one more step but this time using $'2(a,,)2 Q(b) (b least

element of C"(Q) ), we get (a,—>)nC"*‘(Q) s C”“(S'2).

Proceeding, we finallg find (a,—>); Q“, as desired.

Turning to (<—,a),define

X0 = (<—,a)nQ0

XM = (<—,a)nQ(a,) (i<n)

Then X,.c$'2,.andX0<X1<X2<...<Xn<Q(a)<a.

Situation for as Q2:

5'20; X0 [ emptg ] ao

Q1: $‘2(a0): X1 [ emptg ] a1...

3'22: Q(a1): X2 [emptg] a a2...

Q3: Q(a)
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Because X0 is bounded bg a in Q and X,.,1 is bounded bg am in Q(a,)

(i< n), these well-ordered sets all have cardinal<Q. Therefore, UKHX,

has cardinal<Q; hence X = UKHX, U 52(3) 2' Q bg some isomorphism h.

Extend h to an isomorphism: C(X) —>C(S'2), using $'2(x) 2 S'2(hx) for each xeX,

and repeat this procedure; eventuallg, obtain UnC"(X)g Q”.

It remains to show that (<—,a)= U,,c"(x).

One inclusion is clear. So, assume /3< a. Suppose that

b=bm<—bm_1<—...<—b0ES'20.

Now, a0<b0 is impossible since then a0<b,-for all i, in particular, a0<b.

If b0<a0 then, since (a, a0)nQ0=¢, DOEXO,and we are done. The remaining

possibility is b0=a0. But then, m>O. Consider b1. a1<b1 is impossible and

b1<a1 leads to b1<a and b,eX1 since (a, a1)nQ1=¢. So, assume b1=a1. Then

m>1. Repeating this argument, we arrive at the case b,,=an and m>n. But

then, a<b hence a<b - a contradiction. Eln+1;
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Appendix B:

reduction of higher-order logic.

In 1975, S.K.Thomason gave a reduction of second-order logic to modal

logic. Van Benthem [1985] pp.23-24 added interest to this bg explaining

how all of higher—order logic could then be reduced as well. For the

reduction of higher-order to second-order logic, he referred to an old

unpublished note of mine. However, it appeared that such a reduction was

given bg at least two people alreadg, viz. Hintikka [1955] and Montague

[1955].

These authors use rather different methods. Hintikka emploged a

rather straightforward direct translation into monadic second-order logic,

of which a modern presentation occurs in van Benthem and Doets [1983].

Montague's paper was based on a translation into the language of set

theory, as was mg note.

For completeness’ sake, this is presented below.
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(Montague goes on to transfinite tgpe theorg and has applications to

spectra besides.)

B.1 Definition. The (ZF) model A=(A,E) is called absolute

for powers if for each aeA and Xc{ xeA|xEa} there exists

DEAsuch that X={xeAlxEb}.

Power absoluteness obviouslg is a l'l‘1-propertg which is expressed bg

the Tl‘1-form of Zermelo's Aussonderung-axiom. (Notice however that it is

first-order on finite models.)

Let Va= UB<aP(VB) be the on-th level of the cumulative hierarchy.

Natural models have the form (Va,6). Clearlg, these are power absolute.

Converselg:

B.2 Lemma. If A=(A,E) is a power absolute model of ZF, then E is

well-founded and the isomorph (B6) of A where B is transitive is

a natural model.

Proof. Suppose that XCA is a non-emptg set without E-minimal element.

Since ZF proves the existence of transitive closures, there is an aeA such

that Xn{xeA|xEa} is non—emptgand has no E-minimal element (simplg let

a be the "transitive closure" of an element of X).Bg power absoluteness,

choose DEAsuch that {xeA|xEb}=Xri{ xeAIxEa}. Now, [7contradicts the

regularitg axiom of ZF. Next, let B=(B,e) be the isomorph of A with B

transitive. Suppose that onis the set of ordinals in B. Bg transfinite

induction on Beat, it follows that vBB= Bn vB= VB, using power

vBB=UB<u v =vu. :21absoluteness. Hence, B=UB<a

App.B: reduction of higher-order logic
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Suppose that L is a (finite) language; L“ is the set of formulas of finite

tgpe theorg over L. Without loss of generalitg we mag suppose that

L‘°c Vw. Let " " be an effective operation mapping L” into the set of

ZF-terms such that for each transitive ZF-model B=(B, e) and each tpeL‘°:

"tp‘5= Lp.(Such an operation exists if the identification of formulas with

hereditarilg finite sets is a reasonable one.) Let T(x,_L/)be a set-theoretic

formula obtained as a straightforward translation of the definition of "L9

is true in A" (tpeL‘°,A ang L-model) in set-theoretic terms.

B.3 Lemma. For any natural ZF-model (Va, 6), if He Va is an L-model

and tpeL‘°, then: (Vu,e)l=T("tp‘,/*1) iffr1l=tp.

Proof. Being a ZF-model, Va must contain the ("full") tgpe—structure /‘P’

over the model Mas soon as it contains M.Now T can be read as expressing

ordinarg (mang-sorted) first-order truth with respect to M“.Angadvanced

set theorg book (e.g., Drake [1974]) explains how this is done in a wag

absolute for transitive models. 8

The above holds for power absolute transitive models of Zermelo set

theorg as well. If B=(B, e) is such a model and F168, then M“ need not be in

B of course; however, ang particular (9refers onlg to tgpes below a certain

level n=nLPand the tgpe-structure on /*1up to and including n will be in B.

Now, let L-mod(y) be a set-theoretic formula expressing being an

L-model which is absolute for transitive models. The reduction is given

now bg the following

B.4 Theorem. For tp e L”: up is valid iff for each power absolute

ZF-model A: Al= Vt/[L-mod(y) —>T("Lp‘,g)].

App.B: reduction of higher-order logic
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Proof. (<=) If Mis an L-model, let A be a natural model containing Mand

use B3. (=:-) Let A=(A, E) be power absolute. Bg B.2, we mag suppose it is

natural. Let MEA be such that Al=L-mod(/‘1). Hence, /*1actuallg is an

L-model, whence /‘1l=upbg assumption. Therefore, Al=T(" tp‘,I‘1) bg 8.3. B1

Lastlg, since power absoluteness is a monadic Tl‘1-condition, B.-4

reduces higher—order truth to truth for monadic >111-sentences in a

language with one binarg relation (6).

B.5. Power absoluteness of the r1cKinseg axiom.

Let A be ang set, l“cP(A), W={l"}uFuAu(A><{0,1}), < is the relation

on Wgiven bg van Benthem [1984] p.19? in somewhat different terms:

(i) l"<Bfor all Bel“

(ii) B<(a,i) iff aeB and i=0, or: a¢B and i=1

(iii) l‘<a for all aeA

(iv) a<(a,i) for all aeA, i<2

(v) (a,i)<(a,i) for all aeA, i<2.

Van Benthem l.c. shows that, for l‘=P(A), the McKinseg axiom

El<>p—><>Elpholds in (W,-<) but (if A is infinite) it does not hold in ang

proper elementarg submodel. Nowactuallg, he proves something better: for

general l‘cZP(A), the axiom holds in the corresponding model iffF=P(A).

Therefore, it can be used to express power absoluteness, and the previous

theorem indicates what this mag mean.

Van Benthem [1985] has more examples of this phenomenon.

App.B: reduction of higher-order logic
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Samenvatting

Dit proefschrift bevat resuitaten over eerste- en tweede-orde iogica
(deien I en 11)en modaie—tijds- en intuitionistische (propositie-) iogica
(deei III).

Een veroindend thema is Ehrenfeuoht's spei en enkeie varianten
daarvan.

Hoofdstuk 1 is een inieiding in Ehrenfeuoht-speitheorie en zijn reiatie
met (quantorrang-) oz—equiva1entiein (infinitaire) iogica. Seotie 1.0
bedoeit een smaakmaker voor het eindige spei te zijn.

In hoofdstuk 2 wordt het spei gespeeid op binaire oomen. Er wordt een
karakterisering verkregen van alie bomen die n—equivaient zijn met de
binaire boom Bmwaarvan aile takken Iengte m hebben. In het bizonder voigt
dat Bmoneindige n-equivaienten heeft ais m> 2"—1. Dit werd toegepast
door Rodenourg [1986] I31] het oplossen van een probleem uit de
intuitionistisohe oorresponoentie-theorie; het verhaai staat in hoofdstuk
Ei.

Dee] II iaat zien hoe sommige monadische TT‘1—theorieen kunnen
worden geaxiomatizeerd (de meesten gaan over gefundeerdheid). Hoofdstuk
3 heeft betrekking op Iineaire orcieningen. Sectie 3.3 isoieert net effect
van de Susiin-eigenschap op de monadische Ti‘1—theorievan IR.Hoofdstuk 4
generaiiseert de methocie van 3 naar het gevai van bomen.

In deel III bespreekt hoofdstuk 5 Lowenheim-Skoiem-tgpe probiemen
in modaie correspondentie-theorie. Aangetoond wordt oat de meeste
vooroeeioen van niet—eerste-orde—oefinieerbare formuies at niet
eerste-orde zijn op eindige strukturen. Aan de andere kant wordt een
voorbeeld gegeven van een niet-eerste-orde definieerbare formuie die wei
eerste-orde is op aiie aftelbare strukturen.

Hoofdstuk 6 modificeert het Ehrenfeuoht-spei voor georuik in
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intensionele logica; exacte Kripke—modeHenworden geconstrueerd die
universeel zijn met betrekking tot eindige partieei geordende
Kripke-modelien.

Hoofdstuk 7 geeft pnze versie van het bewijs van de Z-vpHedigheids­
steliing.

In hoofdstuk 9 worden spelen en het universeei—exacte Kripke-model
adekwaat voor één-variabeie—intuitipnistische formuies toegepast bij het
oplossen van enkeie prppiemen in intuitionistische c0rresp0ndentie—
theprie die open bleven in Rodenburg[19B2].

Appendix A construeert asgmmetrische iineaire ordeningen met veei
hompgeniteitseigenschappen in ieder overafteibaar kardinaaigetai.

Appendix B reduceert hogere—0rdelogica tot mpnadische tweede-orde
Iogica —dit geeft een indruk van de expressie-mogelijkheden van modaie
logica onder de Kripke-semantiek.
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STELLINGEN

behorend bij het proefschrift
"Completeness and Definability"
van Kees Doets.

1

Er is een uniforme bewijsmethode voor resultaten zoals het
ordenings-extensie-principe en de boolese priemideaalstelling (die
zeggen dat een model een expansie heeft die zekere universele
eerste-orde condities vervult) zonder gebruik van Iogica. (H.C.Doets: A
theorem on the existence of expansions. Bull.de l'Ac.Pol. des Sci. XIX
(No.1) 1971, pp.1-3.)

2

Het verzamelingstheoretisch reflectie-principe is zeer eenvoudig te
bewijzen in de volgende gedaante: Iaat Z een eindige verzameling van
formules zijn die gesloten is onder subformules. Dan is in ZF afleidbaarz

als A= UMURA(oz)een cumulatieve, continue hierarchie van
verzamelingen is dan is de collectie

{o:eOFi| AME ‘v’aeA(o:) [@’“°‘)(a) <——><§A(a)]}

gesloten en onbegrensd.

3

ZF bewijst een klasse-vorm van de kleinste-dekpuntstelling voor
monotone operatoren H die voldoen aan de conditie:
H(X)cU{ H(x)IXCXA x is een verzameling}; bovendien bestaat een
"aIgebra'isch" bewijs hiervoor (m.b.v. het collectie-principe) dat
ordinalen en transfiniete recursie vermijdt.

4

"Simpele" consistentie-bewijzen voor verzamelingentheorieén (m.b.v.
"natuurIijke"en andere super-transitieve modellen) onderscheiden zich
van hun niet-simpele soortgenoten (via OD, L, forcing) daardoor dat ze
tevens voor de corresponderende tweede-orde theorie werken.



5

Verzamelingstheoretisch forceren gaat even gemakkelijk met het
infinitairetoelaatbare fragment dat door het basismodel wordt
bepaald.

6

Voor de basisresultaten van infinitaire Iogica zijn "consistency—
properties" niet nodig. (H.C.Doets: Notes on admissible model
theory. Rapport 83-10, Universiteitvan Amsterdam 1983.)

7

De constructie van de construeerbare hierarchie boven een model

(J.Ban~ise: Admissible Sets and Structures, Springer 1975) kan
aanzienlijk worden vereenvoudigd door het gebruik van een
niet-standaard definitie van n-tupel van Scott. (Doets, Notes on
admissible model theory, l.c.)

8

Het gebruik van recursief verzadigde modellen maakt een kort bewijs
mogelijk van Lindstr6m's karakterisering van eerste-orde Iogica in
termen van compactheid en de neenrvaartse Lowenheim-Skolem
eigenschap.

9

co+§ is een model van de monadische Z‘1-theorie van 00(maar er
bestaan verzamelingen Xc cozodat geen expansie van on+§ elementair
equivalent is met (oJ,X) ).

10

Kampeerders worden in ons land gediscrimineerd ten opzichte van
andere gebruikers van verplaatsbare reoreatie-accomodaties.



Errata, remarks

page 11
Replace the last two sentences on lines -5 — -3 by:

Suppose that II counters with fl < w”+1. Then (272.+ 2, Q,w”+1) is a Winning
move for I: II has to answer this move with some a < fl; by we have that
oz§é2”"‘2w”+1 and I wins.

page 19
In the proof of Theorem 1.8.1, replace part 2=>3 by:

The required set consists of all positions that can be reached in a play where II
uses his winning strategy.

page 53
Theorem 3.3.9 was obtained earlier by John P. Burgess and Yuri Gurevich,

cf. The decision problem for linear temporal logic. Notre Dame J. of
Formal Logic 26 (2) 1985 pp 115—128.

page 59
Lines -9 — -8 hints at the question wether component-Wisedefinable well­

foundedness implies definable well-foundedness. The answer is affirmative.
(P. Rodenburg, private communication, march 1987.)

page 61
In line +7, replace ‘II’ by ‘I’.

page 72
To Theorem 5.8.1—4, add

5. <>Ij(I:Ip —>p) (l.c. 10.5).
(P. Rodenburg, private communication.)

page 73
Theorem 5.9 was obtained earlier by R. Fagin: Monadic Generalized

Spectra. Zeitschrift fiir Math. Logik u. Gr.d.M. 21 (1975) pp 89—96.


