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PREFACE

It has become a classical result that there exists a complete
duality between the theory of boolean algebras and the theory of
zero—dimensionalcompact Hausdorff spaces (M. H. Stone [32]). In
this duality, e.g. the maximal proper filters of a boolean algebra
correspond (in our approach) to the points of the corresponding
Stone space. In this thesis an exposition is given of a theory which
deals with a similar algebraization of the theory of arbitrary
compact Hausdorff spaces (all topological spaces considered will be
Hausdorff spaces). Though a complete duality has been achieved,
it has seemed more practicable not to adhere to such a bare duality
theory. The notion which supports the whole theory is that of a
so—called compingent (boolean) algebra, i.e. a boolean algebra
equipped with an additional relation satisfying a certain set of
axioms. A typical example of such a compingent algebra is met
in the boolean algebra B(C) of all regularly open sets of a compact
space C, with the compingent relation “<<” defined by: for a,b
E B(C), 61<< I) ¢> oi E b. The possibility of a duality theory as
indicated was suggested by J. de Groot; only later the close
connection with the theory of proximity spaces became appa­
rent to me.

The theory of compingent algebras can also be considered as a
topology without points; this approach to this kind of topology
seems more promising than that expounded by K. Menger [23].
However, this side of the theory is not further elaborated here.

The points of the compact space attached to a given compingent
algebra are obtained as so—calledmaximal concordant filters of the
compingent algebra. It appeared that essentially the same filters
had been used by P. S. Aleksandrov [2] and H. Freudenthal [12]
in more concrete cases for their respective compactification theories.
A more general theory of such filters in algebraic structures has
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been developed by J. G. Home [17], mainly in connection with the
theory of rings of continuous functions. In this thesis, it is shown
that the compactifications of completely regular spaces can be
completely described by means of certain compingent algebras.
The practicability of this point of view is illuminated by the proofs,
in the author’s opinion lucid and simple, of known theorems and
generalizations of them. Paradoxically speaking, our method is
often more topological than the methods employed in previous
proofs.

In the first chapter, the theory of compingent algebras is developed
in some detail. For instance, the notion of homomorphism is
defined, and its relation to the notion of continuous mapping is
studied. Here the relationship with the corresponding Stone theory
comes often to the fore.

In the second chapter, the compactification theory of completely
regular spaces is developed. The resemblance of the ideas used in
this work, and those used by P. S. Aleksandrov [2], H. Freudenthal
[12], P. Samuel [26], and J. G. Horne [17], should be noticed. The
fourth section gives briefly the connection of our theory with the
theory of proximity spaces as developed by V. A. Efremovic [8],
]u. M. Smirnov [30], and A Csaszar [5].

It turns out that compingent algebras are also adequate for the
description of the continuous mappings of a topological space into
compact spaces; the exposition can be found in section 3 of chapter 2.

The last two chapters deal mainly with applications of the
previously developed theory. The principal new results are con­
tained in sections 2 and 4 of the third, and section 3 of the fourth
chapter.

In chapter 3, § 1, theorems by C. Kuratowski and H. Freudenthal
on quasicomponent spaces are generalized. In chapter 3, §2, the
notion of percompactness is introduced, being a slight generalization
of the notion of peripheral compactness (or semi(bi)compactness).
In this more general light, known results on the compactifications
of peripherally compact spaces are derived in section 3. The last
section of the chapter deals with the problem posed by J. de Groot
[13] on the characterization of the complements of n-dimensional
sets in compacta. General compact spaces are considered. As main
results a sufficient condition is presented and it is shown that the
weight of the complement need not necessarily be less than the
weight of the compact space.



The first two sections of chapter 4 give generalizations of
theorems by E. G. Sklyarenko and C. Kuratowski on weight and
dimension preserving compactifications. In the final section, the
following two results are proved.

Firstly, if given a set (I)of continuous mappings of a completely
regular space T into a compact space D, such that the weight of D
and the potency of <1)do not exceed the weight of T, then T can be
compactified such that the compactification preserves the weight
and the dimension of T and the elements of (Dare continuously
extendible to the compactification.

Secondly, if given a completely regular space T and a set (Dof
continuous mappings of T into itself whose potency does not exceed
the weight of T, then there exists a weight and dimension preserving
compactification of T which allows continuous extension of the
elements of CD. Various special cases of this theorem have been
proved by several authors, e.g. the result without the condition
imposed on the dimensions (J. de Groot ([14, 15] and R. H.
McDowell [22]).
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CONVENTIONS

1. The empty set will be denoted by 0. If A and B are sets, then
“A E B” will mean that A is a subset B, whereas “A C B”
stands for: A is a proper subset of B. If the set A is considered
as a subset of a set S, then A0 or S \ A will denote the complement
of A in S.

Mappings will be considered as left operators, and written on the
left of the argument. If f is a mapping of S into T, and A E S,
B E T, then ;‘[A] = {]‘(a)la EA }, f‘1[B] = {s ES |f(s) EB}.
If S’ is a subset of S, then L,g’,,5'will be the injection mapping of
S’ into S.

2. All topological spaces considered will be Hausdorff spaces. A
neighbourhood of a point, or a subset, of a topological space will
be an open set containing the point, or the subset. The weight
w(T) of a topological space T is the minimal potency of a basis
for the topology of T.
The subsets A and B of a topological space T are functionally
separated if there exists a continuous real function f on T such
that:

peT=>O_§f(;l>)31; aeA :>f(a)=0; beB :>f(b):1.
If A is a subset of a topological space T, then A or A‘ will
denote the closure of A in T; the boundary of A will be
9iT(A) = 3i(A) = A m (T \ A)‘. A regularly open set of a
topological space is an open set 0 of the space such that
0—0"°= 0.

A topological space is compact if every open covering of it has a
finite subcovering. A conipactification of a topological space T
will be a pair (oc.C),where C is a compact space and ona map­
ping of T into C, such that oc[T]is dense in C, and oninduces
a topological mapping of T onto oc[T].
If T is a topological space, then dim T will denote its dimension
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defined by means of open coverings, ind T the small inductive
dimension of T (defined inductively by means of boundaries of
neighbourhoods of points), and Ind T the great inductive
dimension of T (defined by means of boundaries of neighbour­
hoods of closed sets).
For further topological concepts, see e.g. C. Kuratowski [20],
VV.Hurewicz and H. Wallman [18], and J. L. Kelley [19].

. A boolean algebra is a complemented distributive lattice. The
meet of the elements a,b of a boolean algebra B will be denoted
by a /\ b, the join by atv b, and the complement of a by a0;
agb willstandfor a/\b=a, and a<b for: agb,a7£b.
If V is a subset of the boolean algebra B, then /\ V, respectively
V V, will denote the meet of V, respectively the join of V,
whenever existent. The minimal element of a boolean algebra
will usually be denoted by O, the maximal element by 1; a
boolean algebra will contain at least two elements.
A boolean subalgebm of the boolean algebra B will be a non—empty
subset of B, containing the elements a /\ b, atv I)and a0, whenever
it contains a and b; a subboolecmsubalgebra of B will be a subset
of B which is a boolean algebra in the partial ordering inherited
from B.

For further information on boolean algebras see e.g. G. Birkhoff
[4], P. Dwinger [7], and R. Sikorski [27].



CHAPTER I. COMPINGENT BOOLEAN ALGEBRAS

I.I. Definitions.

I.I.I. Definition. A compingent boolean algebra B is a boolean
algebra in which there is defined a relation << satisfying the
following conditions:

P1. O<<0;
P2.a<<b:>a§b;
P3. a_~§a'<<b:>a<<b;
P4. a<<b,c<<d=>a/\c<<b/xd;
P5. a<<b:>b° <<a0;
P6. a<<b;éO:>3c#Osuchthata<<c<<b.

The relation “a <<I)” should be read as: “a is surrounded by b”,
or “a is not near to 19°”.The relation <<which makes the underlying
boolean algebra into a compingent boolean algebra is called the
compingent relation of B. For brevity we shall use the term
“compingent algebra” instead of “compingent boolean algebra”.

1.1.2. Theorem. Let T be a completely regular space, and B(T)
the boolean algebra of all regularly open sets of T. Then the
relation “<<” in B(T) defined by: for 01,02 E B(T),

01 <<02 <201 and 03 are functionally separated,
is a compingent relation.

The Verification is straightforward, and is left to the reader. In
the case where T is normal we have by Urysohn’s lemma, for
01,02 6 B(T),

01 << 02 <:>01 E 02.

In the sequel, B(T) will be considered as a compingent algebra
provided with the compingent relation defined in the theorem.
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1.1.3. Proposition. Let B be a compingent algebra. Then:

(i) the compingent relation << of B is transitive,
(ii a,b,b’ e B, a << 12’g b :> a << 6,
(iii) a,b,c,deB, a<<b,c<<d:>avc<<bvd,
(iv) aEB:>O<<a<<1.

LI

Proof.

(i) Let a,b,c EB, oz<< I), b <<c. Then oz g b by P2, whence
a << 0 by P3.

(ii) Let a,b,b’ E B, and 6; << b’ g I). Then b0 3 b’° << 610by P5;
hence ()0<< a0 by P3, and cl << b, again by P5.

(iii) Let a,b,c,d E B, and a << b, (2<<d. By using P5 and P4, we
obtain: b0 A d0 << a0 A c0, or, by De Morgan’s laws,
(6 v d)° < (a v c)°. Now the required result follows from P5.

(iv) Let a E B. By P5 it is sufficient to show that 0 <<a. This,
however, follows from P1 and (ii).

1.1.4. Theorem. Let B be a compingent algebra. Then for
a,beB, agb¢>: ceB, b<<c»a<<c.

Proof. The necessity of the condition follows from P3. So let
ceB, b<<c :>a<<c. Suppose a$b, i.e. a/\b°;é0. By P6,
there exists a c E B such that O < 0 << or/\ b0; hence (2<< b0 and

b <<c0, by proposition 1.1.3 (ii), and P5. By virtue of the hy­
pothesis, we obtain 61<<c0, whence a g c0; but this contradicts
O<c<<a/\b°ga. '

Remark. The present theorem shows the existence of an axiom
system for a compingent algebra involving the compingent relation
as the only fundamental notion.

1.1.5. Remark. If T is a connected, completely regular space, then
we have for a E B(T):

a<<a<:>a—_—Q5ora=T.

So if we remove the cases o <<Q5and T <<T from our relation
"<<”, we obtain a partial ordering in B(T) by proposition 1.1.3 (i).
It follows from theorem 1.1.4 that the compingent algebra B(T)
is in this case completely determined by a particular partial
ordering of the set B(T).
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1.2. Concordant filters.

1.2.1. Definition. Let B be a compingent algebra. A concordant
filter of B is a non-empty subset f of B such that:

F1. aef,agb =>-bef;
F2. a,bef:>3cefsuch that c<<aAb.

The concordant filter f is called proper if fgé B. A maximal
concordant filter is a proper concordant filter which is not contained
in any other proper concordant filter.

It follows, from Zorn’s lemma, that every proper concordant
filter is contained in at least one maximal concordant filter since
the set of proper concordant filters of a compingent algebra is
inductive.

Remark. In the terminology of J. G. Home [17], our concordant
filters are nothing else than >>-ideals. Both notions can be traced
in the compactification theory of topological spaces, cf. for instance
P. S. Aleksandrov [2] and H. Freudenthal [12].

1.2.2. Theorem. A proper concordant filter m of a compingent
algebra B is maximal if and only if the following condition is
satisfied:

a,bEB,a<<b =>bEmora°Em.

Proof. Firstly, assume the condition is satisfied by the proper
concordant filter m. Let m’ be a concordant filter of B, such that
m C m’, and take a E m, b E m’ \ m. Then there exists a c E m’
such that 0 << a A b. By the condition we get: a A b E m or c0 E m.
But from a A b E m we should obtain: b E m, by F1, which is not
so; hence c0 E m, which leads to c0 A c :-. O E m’, and m’ = B, by
F2 and F1; this proves the maximality of m.

Secondly, let 1’be a proper concordant filter of B which does not
satisfy the condition. We shall see that f is not maximal. There
exist elements a,b E B such that a <<I), and neither 1?ef nor
a0 E f. This implies in particular:

cef,a<<d:>cAd;éO.
Define: 9-: {cAd|cef,a<<a'}.
Then gCB, and also fcg, since beg\f.
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It is sufficient to show that g is a concordant filter of B. If 0 e f,
61<< d and c A cl g 6, then c v 6 6f and 6; << d v e, which implies:
(c v e) A (d v e) = e E g. If c1,c2 ef, 6; << d1,a << d2, then we can
choose an element 0 6f such that c <<cl Ac2, and an element
d E B such that 61<< d << 611A d2 (this by P4 and P6); this shows
that c A d e g, and also: 0 A d <<(c1 A c2) A (dl A d2) =­
= (cl A oil) A (c2A ($2). So F1 and F2 are both satisfied by g.

Remark. The theorem is a special case of results by J. G. Home
[17]. Namely, in his terminology, a compingent algebra is also a
>—semiring in 1.,with A as addition, and v as multiplication;
then the theorem follows from [17, 4.13 and 4.15].

1.2.3. Theorem. Let B be a compingent algebra, and a E B, a 750.
Then there exists a maximal concordant filter of B, which contains oz.

Proof. By P6 there exists an element a1 E B, such that 0 < al <2;6;;
by induction the existence follows of elements cl;E B = 1, 2,...)
such that a], < a and 0 < 6t/5+1<< Cl;(z' —_-.1, 2, ...). Now it is easily
seen that

{b E B | E|a,;such that a; g b}

is a proper concordant filter of B which contains oz. So there also
exists a maximal concordant filter of B which contains at.

1.3. Topological representation.

1.3.1. Notation. Let B be a compingent algebra. Then 9H3 will
denote its set of maximal concordant filters. Let cogbe the mapping
defined by:

coB(a) 2 {m | a E111E9113} (a E B).

1.3.2. Theorem. For any elements a and b of a compingent algebra
B, we ha,Ve:

(i) a 3 I) <2»coB(a) E coB(b),

ooB(a/\ = (s)B(6l)(WcoB(b).
Moreover: (iii) m3[B] is a basis for a topology on 37113.

Proof. By F1, it is evident that a g b _-:>coB(a) E coB(b). The
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converse implication follows from theorem 1.2.3: if a $ b, i.e.
a/\b0 7&0, and if a/\b0emefD“LB, then

m EcoB(a), m $o>B(b).

Since for m 6933:

a/\bEm :>aemandbem,

and a,bEm:>a/\bEm,

also (ii) is valid.
It is obvious that 033(1) :2 W3 and coB(0) := Q5. By (ii), oo3[B]

is a basis for a topology on my; however, since We consider only
Hausdorff spaces, we must show:

m1,m9 E 9373, ml :1: m2 2:»Ela1 E ml, a2 E m2 such that al /\ a2 = 0.

But if e.g. a eml 69111;, a 919m2 6 mg, we can choose a] eml
such that al <<a; then a? E ml by theorem 1.2.2, and we need
only take a2 -: afi’to prove the implication.

Remarks. 1. Henceforth 9113will be considered as a topological
space provided with the topology for which ooB[B]is a basis.

2. The topology of 9173is the dual Stone topology on the set 9113
of subsets of B (cf. J. G. Horne [17] and M. H. Stone [32]).

1.3.3. Definition. If B is a compingent algebra, and B’ a com­
pingent algebra with compingent relation <<’, then B’ is called a
subcompingent subalgebra of B if it is a subboolean subalgebra of B,
and if the following conditions are satisfi.ed:

S1. 0 E B’,

S2. a,beB’ =>aAbeB’,
S3. (1,?)E B’, a <<’ 1) =>a0’0 << b, where a0’ is the complement of

a in B’.

If, moreover, B’ is a boolean subalgebra of B, and

a,bEB’,a<<_b:>a<<’b,

then we shall call B’ a compivzgemfsubalgebra of B.
If B’ is a subcompingent subalgebra of B and the sets of B and

B’ coincide, then B’ will be said to be a sllbcompmgenl algebra of B.
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For convenience, we introduce the convention that the comple­
mentation operation and the join operation of a subcompingent
subalgebra will be provided with the same dash, subscript or
superscript as the compingent relation of the subcompingent sub­
algebra.

If a subset B’ of a compingent algebra B is a subcompingent
subalgebra of B by means of the restriction of the compingent
relation of B to B’, then B’ will be considered as such.

1.3.4. Proposition. Let B’ be a subcompingent subalgebra of the
compingent algebra B, and <<' the compingent relation of B’.
Then:

a,beB’,a<<’b =>a<<b.

Proof. Let a,b E B’, a <<' I). Then a0’° << I), by S3. Since 0 E B’,
we have: a /\ a0’ = O, whence a0’ _<_610. Hence also: a 3 a°’°.
But then a <<b, by P3.

Remark. The proposition clearly implies that B’ is a compingent
subalgebra of B if and only if B’ is a boolean subalgebra of B, and
for a,b e B’:

a<<’b<:>a<<b.

1.3.5. Lemma. Let B be a compingent algebra. Then:

(i) coB[B] is a boolean subalgebra of BOIZ3).

(ii) a,b E B, a < b => (ooB(a))‘ E coB(b).

Proof. For any subset V of UIZB,we have:
I7 = {mE37lB|aEm =>Elm'EVflcoB(a)}

= {rneflfiglaem =>aEUV}
= {meffllglm 2 UV}.

Hence for 6;EB:

((oB(6l))_ = {m Emg l m E U coB(a)},
(¢°B(“))_°"c = {I1657373 | T1#4 U {III 657133 I 1" $ Uo>B(“)}}­

But for b EB:

b E U u>B(a) <:>3 m EEUIB such that a,b E m

<2 a /\ b 75 0 (by theorem 1.2.3).

18



So for m E9113:

mg: UcoB(a)<:>ElcemsuchthataAc=O,
whenceU{mef7IEB|m$Uo.>B(a)}={ceB|cAa°7£0},

using again theorem 1.2.3.

Hence for 1169173:

II E (o>B(6l))‘°‘° <:>Elcl E n such that d A a0 = 0

<:> II E (oB(6l);

in other words, (coB(a))—C—°= coB(a); this shows that (oB(a) E BOTLB)
Now it follows from theorem 1.3.2 (i), that coB[B]is a subboolean

subalgebra of BOIZB). By Virtue of theorem 1.3.2 (ii), for the first
assertion of the lemma we need only show that ((oB(a))“3= ooB(a.°)
for at E B (cf. R. Sikorski [27, §4]), since in BOITB):

01 A02 = 01 n 02, 00 = 0‘°.

Let a E B; since coB(0) = m3(a A a0) = coB(a) n ooB(a°), we have

wB(d°) E (wB(d))‘°:

but m E (coB(a))—0=>3 b E m such that a A b = 0 => a0 e m, which
shows the required converse inclusion.

The second assertion of the lemma follows from theorem 1.2.2:

let 41,!)E B, a << I) and m E (<oB(a))“; then m ¢ (coB(a))‘° = o)B(6l°),
whence a0 9%m and b E m; so (mB(a))‘ Q (03 (6).

1.3.6. Theorem. Let B be a compingent algebra. Then 9113 is
compact.

Remark. The theorem is contained in more general results of
J. G. Home [17, theorem 3.1 and theorem 3.10]; for completeness
we present a new proof for the theorem.

Proof. If m EETIEBand m E ooB(a), then there exists an element
b em such that b << 6;A a = a; so 111E o>B(b) Q (coB(b))‘ E coB(a)
by lemma 1.3.5. This shows that EIIIBis regular.

Let E be a set of closed sets of EHIBsatisfying:

o¢Z; F1,F2eE =>F1r\F2eZ.

To prove the compactness of 9173,it is necessary and sufficient to
show that H E 75 (/5.

Let f: {aeB|El FEE, beB such that F E o)3(b),[7<a}.
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Firstly, we shall see that f is a proper concordant filter of B. If
a E f, a g c, then c E f. Now let 6l1,6l2e f, and b1,b2E B, F1,F2 e 2
such that 5; << a,-, F,; E coB(b¢)(z'= 1,2); choose 0 E B such that
bl/\ b2<<c<< a1/\6l2; since F1 n F2 62 and F1 0 F2 E
E (oB(b1) m ooB(b2)= coB(b1A 192),we obtain that c e f; this shows
that f is a proper concordant filter.

Secondly, we shall show that m EH2, whence HE ;éQ5,if f E m E9113.
Indeed, suppose m 9.502, say m 9.5F E 2. Since EHZBis regular and
coB[B] a basis for the topology of 9173, there are elements a,b E m
such that:

6; << I), (mB(b))- n F = ya.

But then ()0<<a0 and F E (co3(b))"° = (oB(b°); hence a0 ef Q m,
in contradiction to a E m. This proves the theorem.

1.3.7. Definition. A subset B’ of a compingent algebra B is called
dense in B if for every a,b E B with a <<b there exists an element
0 E B’ such that d << 0 << 6.

1.3.8. Definition. The compingent algebras B1 and B2 are called
isomorphic if there exists a boolean isomorphism f of B1 onto B2
such that for a,b E B:

0’<<15 Qfla) <<2f(b)»

where <<7;is the compingent relation of B,; = 1, 2).

1.3.9. Theorem. Let B be a compingent algebra. Then:

(i) coB[B] is a dense compingent subalgebra of BCHT3),

(ii) (03 is an isomorphism of B onto (oB[B].

Proof. By lemma 1.3.5, coB[B] is a boolean subalgebra of BOTZB),
and by theorem 1.3.2 (i), (03 is a boolean isomorphism of B onto

coB[B]. _
Let 01,02 6 BOIIB), 01 E 02 (by theorem 1.3.6, this is equivalent

to 01 <<02). For every m E 01, choose cm, dm E m such that
cm <<dm and oo3(dm)E 02. Since 01 is compact, there exist elements
m1,m2, mn E9113,such that:

01 E G(;.)B(Cm¢-).i=1

20



Put c =\n/ cm,-,d = 6 cm).
'5: 1 1I= 1

Then (3<< d, and 01 E coB(c) E (coB(c))‘ E o3B(d) E 02 (using
lemma 1.3.5). In particular,

01<:®B@)<:0fi

so co3[B] is dense in BOIIB).

If We take 01 = ooB(a), 02 = (oB(b), for 65,?)E B, then we obtain:

a£c<d£h
whence a <<I). This shows that coB[B]is a compingent subalgebra
of B(f)1TB)(use the remark to proposition 1.3.4).

1.3.10. Definition. Let B be a compingent algebra. An element a
of B is called discrete if a <<6;; B is called discrete if all its elements
are discrete.

1.3.11. Theorem. Let B be a compingent algebra.

Then: (i) coB[B] contains all open—and—closedsets of 9173,

(ii) for a E B: a discrete <:>o.>B(a)open and closed,

(iii) B discrete <» coB[B] consists of all open—and—closed
sets of SD13.

Proof. (i) This assertion is an immediate consequence of theorem
1.3.9 (i).

(ii) Let a E B, a << 6;. Then, for any m 69113:

a E m or a0 E m (theorem 1.2.2).

So 9173 = (oB(a) u coB(a°), whence coB(a) is open and
closed. The converse implication follows from theorem
1.3.9 (i).
The last assertion is a consequence of the other two.

Remark. Theorem (iii) is well-known, since for discrete B, WEB
turns into the Stone space of the boolean algebra B (cf. M. H. Stone
lflh
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1.3.12. Theorem. If B is a compingent algebra, then the lattice of
the concordant filters of B is anti-isomorphic to the lattice of the
closed sets of 9173(both lattices in the set—theoreticpartial ordering).

Proof. For a concordant filter f of B, let us define:

F(f) = fl {¢=>B(d)I 6‘ Sf}­

Since for every a E f there exists an element 1)E f such that b < a,
whence ((oB(b))‘ E o)B(a), it follows that F(f) is a closed set of
WEB,being an intersection of closed sets. It is clear that

f9 9 =»F(f) 2 F(s),

if f and g are concordant filters of B.
For a closed set F of 9173,let us define:

f(F) = {a EB | F C; ooB(a)}.

It is easy to see that f(F) is a concordant filter of B.
Moreover, by conventional techniques, it is readily verified that

for any concordant filter f of B, and for any closed set F of 9273:

f(F(f)) = f. and F<f<F>>= F.

This proves the theorem.

1.4. Complete compingent algebras.

1.4.1. Definition. A compingent algebra is called complete if its
boolean algebra is complete.

1.4.2. Lemma. Let B be a compingent algebra, and A a subset
of B. Then:

VA exists in B =>(Uo)B[A])‘°‘C = coB(VA).

Proof. According to the proof of lemma 1.3.5, we have:

(U(oB[A])‘°‘° = {II EEHTBIn 9: U {m EEHZB| m 92 UUcoB[A]}}.

But

I) E UUooB[A] <:>Ela GA such that b/\a 7&0,

whence
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111$UUcoB[A]<:>E|cem such that c/\a=O for all aeA.

If VA exists, the last condition is equivalent to: E!c E m such that
c A (VA) = 0 (cf. R. Sikorski [27, Ch. II, §19]). The rest of the
proof is a repetition of the corresponding part of the proof of
lemma 1.3.5.

1.4.3. Theorem. If B is a complete compingent algebra, then (:33
is an isomorphism of B onto B (SR3).

Proof. In view of theorem 1.3.9, it needs only to be shown that
(03 is a mapping onto BOTEB).Let 0 be a regularly open set of
mg. Since coB[B]is a basis for the topology of 9173, there exists
a subset A of B such that

0 = U (oB[A].

However, B being complete, by lemma 1.4.2 and the regular
openness of 0:

0 = coB(VA).

Hence 0 E oo3[B].

1.4.4. Theorem. Let C be a compact space, and B a compingent
subalgebra of B(C), such that B is also a basis for the topology
of C. Then the mapping [J.B,defined by

uB(;b)= {aeB |j>ea} forpeC,

is a homeomorphism of C onto 9213having the following property:

p.B[a] = coB(a) (a E B).

Proof. Let [2 E C ; the verification of the fact that p.B(]§)is a proper
concordant filter of B, is immediate; uB(;b)is also maximal since
6a,?)6 B, 6; << 19implies that 12E b or 15 E a0 (because a << b means:
d E b). It is clear that the mapping p.B is one—to—oneinto. If
a EB, and 15ea, then uB(j)) emB(a); this shows that u3[C] is
dense in SR3. By the compactness of C, for [J.Bto be a homeo­
morphism of C onto EIIZB,it suffices to show that pig is continuous;
this is evident since

a E B :> u§1[ooB(a)] = a

and (oB[B] is a basis for the topology of EHIB.
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1.4.5. Theorem.

(i) Every compact space is homeomorphic to a space of the
type UIZB,where B is a complete compingent algebra.

(ii) If B1 and B2 are complete compingent algebras, then:
B1 isomorphic to B2 <:>EHIBIhomeomorphic to 93732.

(iii) If C1 and C2 are compact spaces, then:
C1 homeomorphic to C2 <=>B(C1) isomorphic to B(C2).

Proof. The first assertion is contained in theorem 1.4.4. Let B1
and B2 be complete compingent algebras. If they are isomorphic,
then, a fortiori, Sing, and EDTB2are homeomorphic. Since B] and
B2 are complete, B1 is isomorphic to BOTB1) and B2 is isomorphic
to B(E)TB2),by theorem 1.4.3. Since the homeomorphy of the
compact spaces C1 and C2 implies the isomorphy of B(C1) and
B(C2), the rest of the second assertion is obvious.

The third assertion is an immediate consequence of theorem
1.4.3.

1.5. Homomorphisms.

1.5.1. Definition. Let B1 and B2 be compingent algebras. A
mapping h of B1 into B2 is a homomorphism if the following three
conditions are satisfied for oz,b6 B1:

H1. h(O) = 0,

H2. h(a A b) = /’L(6l)/\ h(b),

H3. at << 19=> (h(a°))° << h(b).

The homomorphism h is called chary if:
H4. h(a) = V {h(c) | 0 << a} (a E B1).

The homomorphism h will be called full if:
H5. h(a) << h(b) :> El a’,b’ 6 B1 such that a’ << 6’ and

h(a’) = h(a), h(b’) = h(b) (a,b 6 B1).

1.5.2. Proposition. Let h be a homomorphism of the compingent
algebra B1 into the compingent algebra B2. Then:

(1) h(1) = 1.

(ii) a,b e B1, 6; g 1; :> h(a) g h(b),

(iii) a,b e B1, oz<< 5 2. h(a) << h(b).

24



Proof.

(i) Since 1 << 1, we have (h(10))° << h(1), by H3.
Hence (h(0))° = 1 <<h(1), and h(1) = 1.

(ii) Since a 3 b <:>a A b = a, the assertion follows from H2.

(iii) Let a,b 6 B1, oz<< I). Then

0 = h(O) = h(a A a0) = h(a) A h(a0) by H2,

whence h(a) 3 (h(a°))°.

But also (h(a°))0 <<h(b), by H3; hence h(a) <<h(b).

1.5.3. Theorem. If h is a homomorphism of the compingent algebra
B1 into the complete compingent algebra B2, then there exists a
canonical chary homomorphism h* of B1 into B2, defined by:

h*(a) = V {h(c) |c << oz,0 E B1} (a E B1).

Proof. It is obvious that h*(O)= 0. Further, let a,b 6 B1. It is
clear that h*(aA b) 3 h*(a) Ah*(b). Suppose h* (cm1))<h* (a) Ah*(b),
i.e. x = h*(a) A h*(b) A (h*(a A b))° 73 0. Since 0 < x 3 h*(a), there
exists an element c 6 B1, such that 0 <<a and x A h(c) 75 0. Since
0 < x Ah(c) 3 h*(b), there exists an element d 6 B1 such that
d << I)and x A h(c) A h(d) sé 0. Hence 0 A dis such that c A d << cm?)
and xA h(c Ad) yé 0; this is in contradiction to the assumption
x A h*(a A b) = 0. So axiom H2 is verified.

Now let a,b EB1, cl<<b. Choose c1,c2eB1 such that oz<01 <02 <17.
By the definition of h*, we have:

h(c2) 3 h*(b) and h(c‘1’)3 h*(a0).

Hence (h*(a°))0 3 (h(cf))0 <<h(c2) 3 h*(b), by H3;
so (h*(a0))0 3 h*(b). Therefore, axiom H3 is satisfied by h*.

Since for a 6 B1:

h*(a) = V {h(c) lc << oz,0 6 B1}

= V {h(c) |c << c’ << a, c,c’ E B1}

3 V {h*(c’) |c’ << 6;, c’ E B1},

also h*(a) = V {h*(c) | c << 6;, c 6 B1}; so h* is chary.

1.5.4. Proposition. Let B1,B2 and B3 be compingent algebras, and
k1 a homomorphism of B1 into B2, h2 a homomorphism of B2 into
B3. Then h2 ok1 is a homomorphism of B1 into B3. If both B2 and
B3 are complete, then (h2 o h1)* = (h;'‘ o h.’2“)*.
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Proof. The conditions H1 and H2 are trivially satisfied by k2oh].
If a,b E B1, 61<< I), then (h1(a°))° << h1(b); this implies:

(h2(h1(d°)))° << h2(h1(5);

hence h2 o kl satisfies H3.

Now let a E B1. Then:

(h2 o h1)*(a) = V {h2(h1(c)) I 0 << 6;},

whilst

(h;“ o h;“)*(a) = V {h2(b) | b E B2 such that 3 d E B] with

d << oz and b << V {h1(e) Ie << d, e 6 B1}}.

It is clear that (h;‘ohj‘)*(a) g (h2oh1)*(a), since if d E B1 and
b E B2, as indicated, then 112(1))3 h2(h1(d)) g (h2 o h1)*(a).

To show the converse inequality, let c 6 B1, c <<61. Choose
e,d 6 B1, such that c << 6 << d << 6;. Then

h2(h1(0)) S (h? ° hi")*(a);

this shows that

(k2 o h1>*<a> .<. (h: o h:=>*<a>.

1.5.5. Proposition. A homomorphism of a compingent algebra B1
into a compingent algebra B2 is an isomorphism if and only if it is
one—to—oneonto, and full.

Proof. The necessity of the conditions is obvious. So let it satisfy
the conditions. From proposition 1.5.2 (iii) and H5, it is clear that
for elements a,b E B1:

oz<<I)¢> h(a) <<

Hence, it need only be verified that h is a boolean isomorphism.
This follows from theorem 1.1.4.

1.5.6. Proposition. A compingent algebra B’, which is also a subset
of the compingent algebra B, is a subcompingent subalgebra of B
if and only if the injection mapping Lggg is a homomorphism of
B’ into B.
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Proof. If B’ is a subcompingent subalgebra of B, axioms S1-S3
imply the axioms H1—H3,respectively, for h = L3', 3.

Conversely, let L3',3 be a homomorphism of B’ into B. Then
again axioms S1—S3are implied by the axioms H1—H3,respectively.
It remains to be verified that B’ is a subboolean subalgebra of B.
But if 61,!)E B’, and a A’b the meet of a and bin B’, then a A’b =
:6; Ab, by H2 (where a Ab is the meet of a and b in B). This
implies that B’ is a subboolean subalgebra of B.

1.6. Continuous functions and homomorphisms.

1.6.1. Lemma. Let T be a topological space, and 01 and 02 open
sets of T. Then:

(01 n 02)-0-0 = 01-0-0 n 0-0-0.

Proof. Since (01 n 02)- E 01-n 0;, it is clear that

(01 n 02)-0-0 E 01-0-0 m 0;0-0.

However, both open sets 01 m 01-0-0n 020-0 and

02 n 01-0-0 m 020-0 being dense in 01-0-0 m 020-0, also

01 n 02 n 01-0-0 n 020-0 is dense in 01-0-0 n 020-0 ;

hence (01 m 02)-0-0 2 01-0-0 m 020-0

since 01-0-0n 0g0-0 is regularly open.

1.6.2. Theorem. Let B1 be a compingent algebra, and B2 a
complete compingent algebra. Then for any continuous mapping
cpof 31132into 91731 the mapping b(cp) of B1 into B2, defined by

0°32 (b(‘P) (“ll = ‘P—1l°0B1(“)l_C_C <5‘5 B1)»

is a chary homomorphism of B1 into B2.

Proof. Since B2 is complete, b(cp) is well defined on the whole of
B1, as follows from theorem 1.4.3. Let us check the axioms H1-H4.
Clearly, b(cp) (O) = 0. To show H2, let a,b E B1. Then:

oo31(a) n oo31(b) = co31(a A b) (theorem 1.3.2.),

whence <P“[wB1(a)l o <P“[coB1(b)]= <P“[wB1(d A 5)];

so, by lemma 1.6.1,

00B2(b(<P) (61)) F‘ wB2(b(<P) (5)) = <03 (b(<P) (0 A 0));

and by theorem 1.3.9: b(cp) (a) A b(cp (b) = b(cp) (a A b).
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For the Verification of axiom H3, assume a,b 6 B1, oz<< I).

Since 9373] = ooB1(a°) u (o31(b), also
93732 = <P‘1[¢0B1(5°)l U <P‘1[¢~>B1(5)l;

hence

91732 = <»B2(b(<P) (5°)) U ¢°B2(b(<P) (5))—

This implies:

(b(<P) (5°))° << W9) (5)­

It remains to show H4. If a 6 B1, then

o)31(a) = U {coB1(b) lb 6 B1, 6 << 61},
and

<P‘1[wB1(5)l = U {<P“‘[wB1(5)] I 5 6 B1» 5 << 5}­

This yields

b(<P) (5) = V {b(<P) (5) I 5 6 B1» 5 << 5}­

I.6.3. Theorem. Let h be a homomorphism of the compingent
algebra B1 into the compingent algebra B2. Then there exists a
canonical continuous mapping m(h) 2 cp of 91332 into TDTBI.
If h is chary, then:

((m(h))_1l¢°B1(“)])_C_c : ¢°B2(h(“)) (555 B1)­

If B2 is complete, then:

((m(5))'1[wB1(a)l)‘°‘° = wB2(5*(5)) (5 6 31)­

Proof. For n ESHIB2,let cp(n)be defined as:

<p(n) = {a E B] |El b E B1 such that b << 61and h(b) E n}.

It will be shown that cpmeets the requirements. From H1 it
follows that <p(I1)CB1. If a E cp(n), and at 3 ceB1, then also
c E cp(n). Now let a1,a2 E cp(n), b1,b2 E B] such that 61 < oz], 192<< a2

and h(b1),h(b2) E n. Then also h(b1 A b2) = h(b1) A h(b2) E n, and
171A b2 << al A a2; if we choose c 6 B1 such that bl A 192<< 0 << all A a2,

then c E <p(n); this proves that <p(n)is a proper concordant filter
of B1. Moreover, let a,b 6 B1, a << b. Choose c,d E B1, such that
6; << 0 << d << I). Then (h(c0))0 << h(d) by H3, whence h(d) E n or
h(c0) e n, and consequently also: 6 e cp(n) or a0 E cp(n), by the
definition of cp. This shows the maximality of cp(n).
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The mapping cp is also continuous: if n E EHIB2,and a E cp(n),
then there exists an element 1)6 B1 such that [9<<a and h(b) E n;
this implies: cp[wB2(h(b))]E wB1(a); this shows the continuity of cp,
since o)B1[cp(n)] is a local basis of 91131in cp(n).

Now let a 6 B1, and put

0 = (U {coB2(h(b)) | b e B1, 19<< a})‘°‘0.

If his chary, then, by lemma 1.4.2, 0 = (032(h(a)) ; if B2 is complete,
then 0 = mB2(h*(a)).

So we have to show that

(<P‘1[¢0B1(“)l)"°"° = 0­

It is an immediate consequence of the definitions of cpand 0,
that <p‘1[coB1(a)]Q 0. Since 0 is a regularly open set, we have also:

(<P‘1[<oB1(a)l)‘°‘° S 0­

For the converse inclusion it is sufficient to show that cp‘1[o)B1(a)]
is dense in 0. So let 0 E B2, such that 0 7EO, and (o)B2(C))‘E 0.
By the definition of 0, there exists an element b E B1, such that
19<< 6; and h(b) A c 7E 0; but if we choose 11E coB2(h(b) A c), then

<p(n)E coB](a) since Iz(b) A c E n and hence also h(b) e n; so

6032(0) F‘ <P“[wB1(d)l 75 Q5­

This ends the proof of the theorem.

1.6.4. Theorem. Let B1 be a compingent algebra, and B2 a
complete compingent algebra. Then the mapping m, restricted to
the set of all chary homomorphisms of B1 into B2, is a one-to-one
mapping of this set onto the set of all continuous mappings of
92732into 91331; the inverse of this restricted mapping is b.

Proof. To prove the theorem we need only verify:

(i) if h is a chary homomorphism of B1 into B2, then bm(h) = h;

(ii) if cp is a continuous mapping of 97132 into 9113,, then
mb(<P) = <9­

The first assertion follows from theorem 1.5.2 and theorem
1.6.3. For the second assertion, let n E SHTB2.Then:

mb(cp) (n) = {ozE B1 | El1)E B1 such that b < a and b(cp) (b) E n}
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= {aeB1|3beB1 suchthatb<<aand
11E (<P‘1[wB1(b)l)‘°‘°}­

But if a and b are as above, then

(‘P_1l‘~°B1(b)l)_c—c 9 <P_1l°°B1(“)l,

whence n e cp‘1[o)B1(6l)],and a E cp(n).

This shows that mb(<p)(n) 9 cp(n); but since both sets are maximal
concordant filters of B1, also mb(<p) (n) = cp(n).

1.6.5. Corollary. If B] is a compingent algebra, B2 a complete
compingent algebra, and h a homomorphism of B1 into B2, then
h*= bm(h),andm(h*)=

1.6.6. Theorem. Let B1, B2 and B3 be compingent algebras, and
k1 a homomorphism of B] into B2, h2 a homomorphism of B2 into
B3. Then:

ma». o k1) = mum o m<h.>.

Proof. Take 11691133. Then:

m(h2 oh1)(n) = {a E B1|El b E B1 such that 1)<<a and

(ha 0 hi) (5) E 11},

(m(h1) o m(h2)) (n) = {a 6 B1 | 3 b 6 B1, oi E B2 such that

1) << oz, d << h] (b), lz2(d) E n}.

This implies at once:

(m(h1) ° m(h2)) (II) E 1110120 hi) (11)­

Since both sets are elements of EH13],we also have:

(m(h1) ° m(ho)) (I1) = m(h2 0 hi) (11)­

Hence m(h.]) o m(h2) = m(h2 o kl).

1.6.7. Remark. If 93 is the category of all compingent algebras,
with homomorphisms as connecting morphisms, then the pair
(Slim) is a contravariant functor of 93 into the category (53of all
compact spaces, as follows from theorem 1.6.3 and theorem 1.6.6
(for the notion of category and functor, see S. Eilenberg and
S. MacLane [9], and e.g. A. G. Kurosh, A. Kh. Livshits and
E. G. Shu1’geifer [21]).
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If 23, is the category of all complete compingent algebras, the
restriction of (5m,m) to 931 maps non-isomorphic compingent
algebras onto non-homeomorphic compact spaces. Moreover, if
32 is the category of all complete compingent algebras, with only
chary homomorphisms as morphisms and the composition * being
defined by: h * g = (h og)*, then, in the terminology of the second
paper quoted, the categories 5232and C5,’are coextensive, as follows
from theorem 1.6.4 and corollary 1.6.5.

1.6.8. Example. Here we give an example of a product of two
chary homomorphisms which is not chary. Consider the following
three compact subspaces of the real line:

C, = [02], C, —_=[0,1] o [3,4], C3 = [0,2] u [3,4].

Define cp1ZC2—>C1by: cp1(x)= x (O 3 x g1),

<p1(x=x—2 (3gxg4);

(

(

(p2: C3——>C2by: (p2 x

)

)=x (0§x_<_1or3gx§4),
)cpzx 1(1§x§2).

Then cpland (p2are continuous. If we identify the spaces fmB(c,-)
with C,; = 1, 2, 3) in the natural way, we obtain chary homo­
morphisms b(‘P1) and b(‘P2)»Such that b(‘P1 ° ‘P2)= (b(‘P2) ° b(‘P1))*­
Applying b(cp1o (P2)and b(cp2) o b(cp1) to the element [O,l[ E B(C1),
we see that these two homomorphisms are different; so b(<p2)ob(<p1)
is not chary.

1.7. Some duality theorems.

1.7.1. Theorem. Let h be a homomorphism of the compingent
algebra B1 into the compingent algebra B2. Then:

h one-to-one into <:>m(h) onto.

Proof.

(i) Let h be one-to-one into. Taking an element m 6 W31, we
find that

f: {aeB2!Elbemsuchthath(b)ga}
is a proper concordant filter of B2. If f E n EEHIB2,then it
is obvious that m(h) (n) 2 m, whence m(h) (n) = m.
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(ii) Let m(h) be onto. Choose a1,cz2E B1 such that al 7Ea2, e.g.
at‘;A a2 6 m EETIIB1. Assume m = m(h) (11), where n is some
element of DTEB2.Then, evidently, b(a2) E11 and h(a(1’)En.
This implies b(a1) ¢ 11, since h(a1) A lz(a(_l,)= O gé11. Hence, in
particular, h(a1) 7Eh(a2).

1.7.2. Corollary. Any compact space C is a continuous image of
a zero—dimensionalcompact space of the same weight.

Proof. Firstly, we notice the following easily verified fact: every
infinite compact space C has a basis of potency w(C) which is a
compingent subalgebra of B(C). So let B be such a basis for the
topology of C (evidently, we may assume C to be infinite). If
B0 is the discrete compingent algebra whose boolean algebra
coincides with the boolean algebra of B, and if h is the identity
mapping of B into B0, then b is a homomorphism, and (LE1o m(h)
a continuous mapping of 92730onto C as required (use theorem
1.7.1, theorem 1.4.4 and theorem 1.3.11 (iii)).

1.7.3. Theorem. Let h be a homomorphism of the compingent
algebra B1 into the compingent algebra B9. Then:

h[B1] dense in B2, and h full <:>m(h) homeomorphic into.

Proof.

(i) Let h[B1] be dense in B2, and I1.full. Since W32 is compact,
it needs only to be shown that m(h) is one—to—oneinto. So
take 111,112EUIIB2 such that 11175 112. Using the hypothesis,
we can find elements a1,a2,b1,b2EB1, such that bl << al, b2 << a2,
h(a1), h(b1) enl, h(a2), h(b2) €112, h(a1) A h(a2) = 0. Then
a1 E m(h) (11,), 612 E m(h) (112). Since h(a1 A a2) :­

= h(a1) A h(a2) = 0, it follows that al A a2 9.9m(h) (111); so
“2 9?H10?) (111), and H101) (H1) 74‘ m(h) (I12)­

(ii) Let m(h) be homeomorphic into. Take 11E 31132, and cl E 11.
For every n’ E31732such that n’ 75 n, we can choose elements
an’, bu’ 6 B1 such that an’ em(/1.) (n), bu’ em(h) (n’), and
an’ << b3’. Since 91132\ coB2(d) is compact, there exist an
integer n and elements n,';EUIEB2 = 1, 2, ..., n), such that

9213. \ <»B.<d>2 C u>B.<h<bn'.>>.i=1
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Put a: /\ an',.,I)= V bug.
i=1 i=1

Then 6; << 60, a E m(h) (n) (whence h(a) E n), and

do << v h(bn'.-) S h(b).
12= 1

Using this result, it is easy to show that given e,d 6 B2 such
that e <<cl, there exist elements a,b 6 B1 such that

a << 120,e << h(a), d0 << h(b);

then, however, also: 6 <<h(a) <<d, since (h(b))° <<cl, and
h(a) g (h(b))0, because a A b = 0. So h[B1] is dense in B2.
Now assume in addition 6 = h(]b), d = /z(q), ]b,q 6 B1. Since
61<< 190, also 115A a << q v b0. Further we have: h(p A oz) =

= h(p) A /1(a) = 6 A h(a) = 6.

It is sufficient to show that h(q v 130)= h(q). Suppose
h(q v 190)> h(q), e.g. h(q v (90) E n E 91132, h(q) ¢ 11. Since

(h(b))0 << 613= h(q), we get h(b) E n, and also

h(b) /\ h(q V 190)= h(b /\ q) e n and h(q) e n.

This gives the required contradiction, and proves the fullness
of /7..

1.7.4. Corollary. Let B’ be a subcompingent subalgebra of the
compingent algebra B. Then m(LB/,3) is a homeomorphism of
9113onto 9113'if and only if B’ is a dense compingent subalgebra
of B.

1.7.5. Theorem. Let B be a complete compingent algebra. Then
the autohomeomorphism group of 9173 is isomorphic to the
automorphism group of B.

Proof. It is clear that to every automorphism f of B, the mapping
n(f) defined by:

1’1(I‘)(m) = ffml (m 69373)

is an autohomeomorphism of 9173,and that n is a homomorphism
of the automorphism group of B into the autohomeomorphism
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group of SR3. If fl and f2 are different automorphisms of B, then
there exist different elements a1,a2 E B, such that f1(a1)= f2(a2)
(consider ffl and fg-1); if eg. all E 11169173, a2 9%m, then obviously

n(f1) (ml 75 n(/(2) (m): whence n(f1) 7'5“(f2)­

S0 11is one-to—0ne. It is equally easy to prove that n is onto, using
the canonical isomorphy of B0373) and B.
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CHAPTER 2. COMPACTIFICATIONS

2.1. Basic subcompingent subalgebras.

2.1.1. Definition. Let T be a topological space. Then we define
B*(T) as to be the boolean algebra of all regularly open sets of T,
provided with the relation <<*defined by:

at <<* I) <:> of Q 1) (61,?) E B*(T)).

A subcompingent subalgebra B’ of B*(T) will be a compingent
algebra whose boolean algebra is a subboolean subalgebra of B*(T),
and which satisfies the following conditions:

S*1. ;2)“eB’;

S*2. a,beB’ =>a/\beB’;
S*3. a,b E B’, at <<’ (9 =>a0’° <<* I), where <<’ is the compingent

relation of B’.

The subcompingent subalgebra B’ of B*(T) will be called basic if:
75E0, 0 an open set of T =>3a,beB’ such thatgb ea <<’?)2 0.

The subcompingent subalgebra B’ of B*(T) will be called a
compingent subalgebra of B*(T) whenever, for a,b e B’,

a<<’b<:>a<<*b.

Remarks. Clearly, B*(T) = B(T) if and only if T is a normal space.
A subcompingent subalgebra of B(T) is also a subcompingent sub­
algebra of B*(T), provided, of course, that T is completely regular.

2.1.2. Theorem. Let T be a topological space, and B’ a sub­
compingent subalgebra of B*(T). Then there is a canonical
continuous mapping 513'of T into 9TLB'onto a dense subspace of it.
If, moreover, B” is a subcompingent subalgebra of B’, then B” is
a subcompingent subalgebra of B*(T), and:

“BM : (LB//,B/) 0 ‘LB/_
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Proof. Let <’ and <<” be the compingent relations of B’ and
B”, respectively. VVe define for 15E T:

p.B'(;/5) = {a E B’ | 3 b E B’ such that 15 E b <<’ 6;}.

Clearly, if p has been taken from T, p.B’(f))satisfies condition F1
for a concordant filter. For condition F2, let a1,a2 E uB'(15),
(71,132E B’, and 15 6 b1 <<’ a1,15 E 192<<’ a2. Choose (3E B’ such that

bl A 62 <<’ c <<’ al /\ a2; then c E {.LB’(15), and condition F2 is
satisfied. It is also clear that (3¢ mg’(15).

In order to show the maximality of p.B’(15),assume a, b E B’, a <’ b.
Choose c,d E B’, such that 6; <<’ c <<’ d <<’ b. If 15E d, then
I) E p.B'(]5); if 15¢d, then 1bECO’, since do <<* 00’; so, because of
c0’ <<’ a0’, a0’ E uB'(15). This shows that uB'(15) e9TB'.

If a E p.B’(]5), and if b E uB'(15) such that 1)<<’ at, then:
q E b :> a E uB'(q); hence uB'[b] E co3'(a); this shows the
continuity of [J.B’.

Since for every a E B’ such that a 7E95,there exists an element
1)E B’ with Q5< 1)<<’ oz, whence uB'[b] Q ooB'(a), it follows that
uB'[T] is dense in SITE’.

To show that B” is a subcompingent subalgebra of B*(T), we
need only verify axiom S*3. But if cz,bE B”, 6; <<’’b, then
a0”0’ <<’b, by axiom S3; hence (a°”°’)°’0 <<* I), by axiom S*3; in
other words, a0”° <<*I),which was to be proved.

For the last assertion, notice that:

(IT1(LB”,B’) o {J.B’) (15) = {a E B” | El 1) E B”, c E B’

such that 15 E (3 <<’ 6 <<’’ 61},

whereas

pig’/(15) = {a E B” | El1)E B” such that 15 E b <<’’ 6;};

this shows that (m(LB",B')opLB') (15)E yL3"(15); hence also the
equality holds.

2.1.3. Proposition. Let T be a completely regular space, and B’ a
subcompingent subalgebra of B*(T). Then B’ is a subcompingent
subalgebra of B(T).

Proof. Let <<’be the compingent relation of B’. Evidently, it is
sufficient to prove that:

6a,?)6 B’, a <<’ I) => a0’° << I).
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So assume a,b E B’, 61<<’6. Choose c,d,e,f E B’ such that

a<<’c<<’d<<’e<<’]‘<<’b.

Then:

ao’o <<=x<C, be <<>:<Io’, by S=z<3_

Further, it is clear that:

0 E HEl[wB’(d)l, f0’ 9 £Lis1'[c0B’(6°')l­

In 9213',coB'(d) and coB'(e°’) are functionally separated, since
d <’ 6. Hence p.'1'31,[(oB’(d)]and uj31,[coB/(e0’)] are functionally
separated in T, and then so are a°’° and b0,q.e.d..

2.1.4. Corollary. If T is a completely regular space, then the sub­
compingent subalgebras of B*(T) coincide with the subcompingent
subalgebras of B(T).

Remark. For this reason, a basic subcompingent subalgebra of
B*(T) will be called a basic subcompingent subalgebra of B(T).

2.1.5. Proposition. Let T be a topological space, and B’ a basic
subcompingent subalgebra of B*(T). Then:

(i) B’ is a boolean subalgebra of B*(T) ;

(ii) if B’ is complete, then the sets of B’ and B*(T) coincide.

Proof.

(i) We need only show: a E B’ =>a0 EB’. But by definition
2.1.1: at E B’, b eB*(T), O < b g a0 2 El0 E B’ such that
O < c g b 3 a0; this shows that a0 E B’.

(ii) Let B’ be complete, and a E B*(T). Then, by definition 2.1.1:

a=V{b|beB’,bga}.
Hence a’ = V’ {b | b E B’, b g a} 2 a, where “V”’ denotes

the join operation in B’.
Equally, a” = V’ {c | c E B’, c g a0} 2 a0. But a’ /\ a” = Q);

hence a’ = a, and a E B’, q.e.d..
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2.1.6. Theorem. Let C be a compact space, and B’ a boolean sub­
algebra of B(C). Then the following three conditions are equivalent:

(i) B’ is a basis for the topology of C;

(ii) B’ is a basic compingent subalgebra of B(C) °1
(iii) B’ is a dense compingent subalgebra of B(C).

Proof. The easy proof is omitted.

2.2. Compactification.

2.2.1. Theorem. Let T be a topological space, and B’ a sub­
compingent subalgebra of B*(T). Then:

(.LB’is homeomorphic into ¢> B’ is basic.

(In other words:

((1.B',f7IEB’) is a compactification of T ¢> B’ is basic.)

Proof. Take <<’to be the compingent relation of B’.

(i) Assume (LB’is homeomorphic into, and p E 0, where O is an
open set of T. Since [J.B’|:0:|is open in (LB’|:T:|,and coB'[B’] a
basis for the topology of 9113', there exists an element
1)E B’ such that

eLB’(15)E eLB'[T] 0 wB'(b) E eLB'[0l;

this implies that b E uB'(]b). Now, choose c,d e p.B'(;b), such
that 0 <<’ d <<’ I). Then

9 Ed 3 5 E v~B'(q)¢ HB’(q) E eLB’[0l 3 9 60;

hence 15E 0 <<’d E 0, which shows that B’ is basic.

(ii) Let B’ be basic. This implies immediately that p.B’ is
one—to-one into. Assume 6;EB’, and 15ea. Then we can
choose beB’, such that peb <<’a (by definition 2.1.1).
Therefore,

pL3'(]5) E (1)B’(6l), and pLB'[a] Q coB'(a).

It is obvious that p.B’[6l]2 uB'[T] m cog/(a); hence uB'[a] =
= uB'[T] n coB'(a).

This shows that p.B’is an open mapping of T onto uB'[T]
(because B’ is basic, it is also a basis for the topology of T).
Therefore, [.).B’is homeomorphic into.
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2.2.2. Corollary. For a topological space T we have:

T is completely regular ¢> B*(T) has a basic subcompingent
subalgebra.

2.2.3. Theorem. Let T1 and T2 be completely regular spaces, and
(p a continuous mapping of T1 into T2. If B2 is a subcompingent
subalgebra of B(T2), then there is a canonical homomorphism
g = g(cp,B2)of B2 into B(T]). If, moreover, B1 is a subcompingent
subalgebra of B(T1) such that g is a homomorphism of B2 into B1,
then:

m(g) ° HB1 = HB2 0 <9

(here g considered as a homomorphism of B2 into B1).

Proof. The mapping g will be defined by:

g(d) = (<P“[d])‘°‘° (0 E 32)­

It is easily Verified that the axioms H1 and H2 are Valid for g. Let
<<1and <<2be the compingent relations of B1 and B2, respectively.

Assume a,b E B2, oz<<2I). Then a°2° << I), or, in other words,
a°2° and b0 are functionally separated. This implies that (a°2°)“
and (b°)', and also

<P‘1[(a°2°)‘] and <P‘1[(b°)‘].

are functionally separated. However, it is easily seen that:

(g(d°2))° E <P“[(d°2°)‘]. (g(5))° E <P‘1[(5°)‘]:

hence (g(a°2))°and (g(b))0 are functionally separated too, whence

(§(d°2))° << g(5)­

This proves that g is a homomorphism of B2 into B(T1).
Further, let p ET. Then:

(n32 o cp) (12) =. {a E B2 | El19E B2 such that cp(]5) E 6 <2 6;},

whereas

(m(g) o p31) (15) = {a E B2 | El0 E B2 such that c <<2a and

8(0) 5 l*B1(P)}

= {aeB2 | ElceB2,deB1such thatc <<2a
and 15 E d <<1g(c)}.
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However, if a, 0, clare as in the latter equality, then we can choose
I) 6 B2 such that c <<2b <<2a; since p eg(c), and g(c) E cp‘1[b],
it follows that cp(]5)E b. This implies:

(m(8) ° UB1) (25) 9 (H32 0 <19)(15):

whence the equality, and m(g) o pt31 = W32o cp.

2.2.4. Theorem. Let T be a completely regular space. Then:

(i)

(ii)

any compactification of T is topologically equivalent to a
compactification (pLB,f)TZ3),where B is a basic subcompingent
algebra of B(T);

the following equivalence holds for basic subcompingent
algebras B’ and B” of B(T):

B” is a subcompingent algebra of B’ <:>
<3 (P~B”,9RB”) S (P~B’,9nB’)­

Proof.

(1)
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Let (cp,C) be a compactification of T. By theorem 2.2.3,
there exists a canonical homomorphism g of B(C) into B(T).
Since (cp,C) is a compactification of T, g is, in fact, an
isomorphism of B(C) onto a basic subcompingent algebra
B1 of B(T), as is easily verified. Hence m(g) is a homeo­
morphism of 91131onto 9113(0). But p.B(C) being a homeo­
morphism of C onto 3113(0), it follows that (m(g))—1o 5113(0)is
a homeomorphism of C onto EHZB1,which, by theorem 2.2.3,
satisfies the relation

((m(g))'1 0 HB<C>)° <P= H31­

This shows that (cp,C) is topologically equivalent to (p.31,31131).

The implication from the left to the right follows from
theorem 2.1.2. For the converse, let <1»be a continuous
mapping of SIRE’onto 9113" such that 42o 513' = 11.3". Then
b(dg)is a one—to—onehomomorphism of B” into B’ (theorems
1.7.1 and 1.6.4 (ii)). However, if a E B(T), then clearly

¢‘1[wB”(“)l E wB’(d) E (‘lJ“1l0>B”(6l)l)‘»

by the continuity of 4;, and the fact that pLB//[ct]is dense in
coB"(a), and uB'[a] dense in o)B’(a). Hence, by the definition
of b, b(<.I2)(a) = ct, so b(¢) is the identity mapping of B(T).
This proves the assertion, by proposition 1.5.6.



2.2.5. Corollary. If T is a completely regular space, then
(uB(T),9IiB(T)) is a greatest compactification of T, whence
topologically equivalent to the Cech—Stonecompactification of T.

2.2.6. Corollary. If cp is a continuous mapping of a completely
regular space T into a compact space C, then the mapping cpo u,'31(T./
of pLB(T)[T]into C can be extended to a continuous mapping 4; of
9IiB(T) into C (here uglmstands for the mapping of p.B(T)[T] onto
T defined byi Mislm((LB<T>(115))= P (15 ET))­

Broof. Apply theorem 2.2.3, taking T1 = T, T2 = C, B1 = B(T),
B2 -_- B(C); then ((2= pL31(C)o m(g) is the required extension.

2.3. Compaction.

2.3.1. Definition. Let T be a topological space. Generalizing the
notion of a compactification of T, we define a compaction of T to
be a pair (oc,C),where C is a compact space, and 0: a continuous
mapping of T into C onto a dense subspace of C.

In a way completely analogous to the case of compactifications,
a partial ordering and a topological equivalence relation are
introduced in the class of all compactions of T.

2.3.2. Theorem. Let T be a topological space. Then:

(i) for any subcompingent subalgebra B of B*(T), (uB,f)IiB) is
a compaction of T;

(ii) any compaction (oc,C)of T is topologically equivalent to a
compaction (u3,f)IiB),where B is a suitable subcompingent
subalgebra of B*(T).

P7001‘.

(i) This assertion is contained in theorem 2.1.2.

(ii) VVedefine the mapping g by:

gm) = <o«—1m>+c (a e B(C)).

It is easily Verified that g is a one—to-onemapping of B(C)
into B*(T), satisfying:

805) = 85»8(“ A 5) = 8(0) F) 8(5) (4.5 E B(C))­
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Moreover, if a,beB(C) and cl <<6, it easily follows that
(g(a°))° <<*g(b). Hence B’ =g[B(C)] is a subcompingent
subalgebra of B*(T) with compingent relation <<’, if we
define:

g(a) <<' g(b) ¢> 6l << 6 (a,b E B(C)).

In the same way as in the proof of theorem 2.2.3, it follows
that

m(§) 0 PB’ = v~B<C>° 0%

where g is considered as a mapping of B(C) into B’. In
other terms:

(lifslc) ° m(g)) 0 LLB’= on

where p.B(c)and m(g) are homeomorphisms; this shows that
(p.B',93TB')is topologically equivalent to (oc,C).

2.3.3. Theorem. Let T be a topological space, and B1 and B2
subcompingent subalgebras of B*(T). Then (uB1,f)IIB1)g (p.B2,$mB2)
if and only if the following condition is satisfied:

a1,b1 6 B1, 611<<1 bl :> 3 612,62E B2 such that al g a2 <<2 [)2 g bl

(here <<1 and <<2 are the compingent relations of B1 and B2,
respectively).

Proof.

(i)
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First we prove the necessity of the condition. So let cpbe a
continuous mapping of 91132onto 91131such that

‘P C’P~B2 = UB1­

Take 611,61E B1, with al <<1 bl.

a1 <<1 cl <<1 <<1 bl.

Theni (<P‘1lc«>B1(01)l)‘E <P'1lcoB1(b1)l;

“1 ‘-3 lL1§ll¢°B1(‘31)l C-351 (3 P~§ll°°B1(b)l 9 51­

Choose cl EB1 such that

Now we can choose a2,b2,d2 E B2 such that a2 <<2b2 <<2d2 and

(‘P_1l(°B1(C1)l)— 9 ¢°B2(“2)> ‘°B2(d2) 9 ‘P_1l°)B1(b1)l­



Then, taking the inverse images under p.32, applying the
relation cpo W32= p.31, and using the earlier derived in­
clusions, we obtain

fl Ifl“1 9 P~E}l(°B1(C1)l — l’~E:[°°B2(“2)l

b2 P1-3:[¢°B2(d2)l 9 l*13ll¢°B1(b1)l

This shows that al 3 a2 <<2b2 3 bl.

dz,

bl.lfl lfl

Assume the condition in the theorem is satisfied. Then we
define the mapping cpin the following manner:

<p(n)= {all E Bl | Elal E Bl, a2 6 n such that a2 3al << l al}

(11E92732).

It is clear that Q at <p(n),and:

“1 E ‘P(“)» “1 3 b1 5 B1 :> b1 5 CP(“)

91732).

If a2 3 al <<l al, b2 3 bl <<l bl, where a2,b2 E n, then we
choose cl E Bl such that al A bl <<cl <<l al A bl, which shows
that oil A b2 3 al A bl <<l cl and cl <<l al A bl, whilst
al A b2 6 n; hence cl 6 cp(n), and <p(n) is a proper concordant
filter of Bl.
We proceed to prove the maximality of cp(n).
al,bl 6 Bl, al <<lbl. Choose cl,dl,el 6 Bl such that

(having taken 11 from

So let

“1 <1 01 <1 d1 <1 31 <1 bl‘

Because of our condition, there are elements d2,e2E B2 such
that dl 3 dz <<262 3 el. Now 62 E n or dg2 En. If e2 E n,
then bl E cp(n); so assume dgz E 11. Since

dg2 3 d3 3 d<l3<<* c<l>1<<l alh,

whence

dgz S C(1)1<<l 6l(1)1,

it follows that af’ E cp(n),which had to be proved.

If 11691732, al 6 cp(n), and al 6 Bl, a2 6 B2 such that
oil 3 all <<l all, then it is clear that

‘Pl¢°B2(“2)l Q °3B1(“1) J

this shows the continuity of cp.

Lastly, we should verify that cpo (1.32= p.31.

43



So let 1) E T. Then:

((9 o #32) (15) = {a1 E B1|3 oil E B1, a2 6 B2, I226 B2 such

that j) E 172<<2 a2 3 6/1 <<1 a1},

whereas

uB1(;b) = {a1 E B1 | Ela; E B1 such that 115E a; <<1 al}.

Clearly, (<90 H32) (15) E eLB1(P), whence (<P0 HB2) (I5) =

= p.B1(p),q.e.d..

2.4. Connection with proximity spaces.

2.4.1. Definition. According to P. S. Aleksandrov and V. I. Pono­
marev [3], a proximity space can be defined as a topological space
T together with a proximity relation @ in the set of its subsets,
which satisfies the following conditions:

E1. ACC§B=>T\BC<§T\A;
E2. AC<§B:A§B;
E3. A1§AC<§B§B1:>A1@B1;
E4. A1@B1,A2@B2:>A1uA2@B1uB2,A1mA2@B1r\B2;
E5. AC<§B:>ElC§TsuchthatA@CC<§B;
E6. oéo;
E7. If 15E0, and 0 an open set of T, then {p} (C30;if 15ET and

{g5}CiA, then there exists a neighbourhood 0 of 15such that
O C: A.

The subsets A and B of T are called near if A C:T\B does
not hold.

2.4.2. Theorem. Let T be a topological space. Then there is a
canonical one—to-one correspondence between the proximity
relations on T and the basic subcompingent algebras of B*(T).

Proof. Indeed, given a proximity relation C on T, we define, for
a.,b E B*(T) :

a<<’b¢>a@b.
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If A and B are subsets of T such that A C:B, and 15ET, 15gtB,
then it follows from the consecutive application of axioms E1 and
E3, that {p} C<§T\A; hence, by axioms E7 and E2, 15$14; so
/I g B.

Using this result, the verification of the facts that <<’ is a
compingent relation and the compingent algebra with the relation
<<’is a basic subcompingent algebra of B*(T), is immediate.

On the other hand, given a basic subcompingent algebra B’ of
B*(T), with compingent relation <<’, a proximity relation CCon T
is obtained by the definition: for subsets A,B of T,

A@B¢>E|a,beB*(T)suchthatA §a<<’b E B.

The verification of axioms E1—E7is quite easy. Moreover, it is
obvious that the two operations defined above are each other’s
inverses. This proves the theorem.

2.4.3. Corollary. A topological space which admits a proximity
relation, is completely regular.

Proof. The corollary follows from theorem 2.4.2 and corollary 2.2.2.

2.4.4. Remark. It is well—knownthat there exists a natural one­
to-one correspondence between the proximity relations on a
completely regular space and the equivalence classes of topologically
equivalent compactifications of that space (]u. M. Smirnov [30];
cf. also P. Samuel [26] and A. Csaszar [5]). Another proof of the
same result is obtained by combining theorem 2.2.4 and theorem
2.4.2.
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CHAPTER 3. QUASICOMPONENT SPACES
AND PERIPHERAL COMPACTNESS

3.1. Quasicomponent spaces.

3.1.1. Definition. Let T be a topological space. Then we define:

(i) as the set of all quasicomponentsof T, provided with
the quotient topology;

(ii) K(T) as the set of all quasicomponents of T, provided with
the topology for which a basis is obtained by taking all those
sets of quasicomponents which are contained in an open—and­
closed set of T.

The following proposition is obvious.

3.1.2. Proposition. If T is a topological space, then the identity
mapping of the set of all quasicomponents of T is a one—to—one
continuous mapping of Q(T) onto K(T). Moreover, if T is compact
or Q(T) is compact, then this mapping is a homeomorphism, and
K(T) is compact too.

3.1.3. Definition. Let B be a compingent algebra. Then we define:

B‘1={aeB|a<<a}.
Clearly, B01is a discrete compingent subalgebra of B.

3.1.4. Theorem. If B is a compingent algebra, then EIIEBQis homeo­
morphic to KCHIB),by means of a canonical homeomorphism.

Proof. By theorem 1.3.11, o)B[Bq] consists of all open—and—closed
sets of SR3. Now, it follows from the definitions that the mapping

in —>D {coB(a) |a E m} (m E91339),

is a homeomorphism of 9213‘!onto K(f)TB).
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3.1.5. Theorem. Let T be a topological space, and B a sub­
compingent subalgebra of B*(T). Then the mapping :43,defined by

%B(Q) = {a E 3“ IQ 9- 61} (Q E K(T)),

is a continuous mapping of K(T) into 93730,yielding a dense sub­
space of THTBQas its image. As is obvious, x3 is one—to—oneinto if
and only if to every two quasicomponents of T, there exists an
element of Bq which contains exactly one of them.

Proof. First, we make the useful observation that a discrete
subcompingent subalgebra of B*(T) is necessarily a (discrete)
compingent subalgebra of B*(T). Hence, given any quasi­
component Q and any element a of Bq, it follows that either
Q C;a or Qg a0; this proves that indeed xB(Q) is an element of
911301,and mg a mapping of K(T) into EJIZBQ.If at 6 B01, then

%§1[<oB“(d)]= {Q E K(T) IQ E d}

is an open set of K(T). This shows that 14.3is continuous. If
(/57E a E B01, then 3 Q e K(T) such that Q E a, and then
xB(Q) E coB0l(a),which proves that x3[K(T)] is dense in EHIBQ.

3.1.6. Lemma. Let B be a compingent algebra and 5 an infinite
subset of B. Then there exists a compingent subalgebra B’ of B
suchthat |B’| =
Proof. Inductively we define a monotonously non-shrinking
sequence (Sn),,°;’1of subsets of B such that 51 = S. If 5,, has been
already defined, then we define 5 ,,,+1as follows.

To every 61,?)ES” with a << 1)7E0, choose c(a,b) E B such that
c(a,b) 75 O, and 6; << c(a,b) << I). Now put

Sn“ = {a /\ b, a v [7,a0, c(oz,b)|a,b 65”}.

Then it is easilyverifiedthat |Sn| = [S| (n = 1, 2, and that

B’ 1 U 571,
n 1

satisfies the lemma.

3.1.7. Lemma. If the topological space T has weight w(T) = ‘F,
then there exists a set S of open—and-closedsets of T- such that
|S| 3 ‘I.’and to every two quasicomponents of T, there exists an
element of S which contains exactly one of them.
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Proof. For finite spaces, the lemma is obvious. So let w(T) 2 80.
Let A be a basis for the topology of T such that |A| = T. To
every pair (01,02) E A X A, choose an open-and-closed set F of T
such that 01 Q P Q T \ 02, whenever this is possible. Define S as
to be the set of all such obtained open—and-closed sets; then
|S g ‘C.

Now, let Q1 and Q2 be two quasicomponents of T. Then Q] and
Q2 are separated by the empty set, i.e. there are open-and—closed
disjoint subspaces T1 and T2 of T, such that

T=T1uT2, Q1 Q T1, Q2 Q T2.

Since A is a basis, there are elements 01,02 E A, such that 0; Q T,-,
Q,-m0; 7£;25(z'= 1,2).

By the construction of 5, there exists an F ES such that

01 Q P Q T\02;

but then also Q1 Q F, Q2m F = 95.

3.1.8. Theorem. If T is a completely regular space of weight
1 2 80, then there exists a basic compingent subalgebra B of B(T)
such that x3 is one—to-oneinto and |B | = 1.

Hence, (p.B,9TtB)is a compactification of T such that WOIIB)= 1
and the canonical mapping of K(T) into KOTZB)is one—to-oneinto
(cf. theorem 3.1.4).

Proof. Let A be a basis for the topology of T, consisting of
regularly open sets, such that |A l = T; moreover, let S be as in
lemma 3.1.7. By lemma 3.1.6, there exists a compingent subalgebra
B of B(T) such that:

AuSQ B, |B|:-.1.
Since a compingent subalgebra of B(T) which also is a basis, is

necessarily basic, the theorem follows from theorem 3.1.5.

Rem-ark. For 1 = N0, the topological consequence of the theorem
is proved in C. Kuratowski [20, II, §41.V.4].

3.1.9. Corollary. If T is a completely regular space of weight 1,
then there exists a continuous mapping <12of T into the Cantor
space DT such that:

¢‘1(1l5) = 25or nI2’1(P) E K(T) (:156 Dr)­
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Proof. Let B be as in theorem 3.1.8. By R. Sikorski [27,14.4],
there exists a homomorphism h of B<1(DT)onto Bq. If v is the
canonical mapping of T onto K(T), we need only take

«I»= m§<1:<D.>0 m(h) 0 >43 0 v­

(Notice that m(h) is one—to-oneinto, by theorem 1.7.3, or by
[27, § 10]-)

Remark. The present corollary generalizes II, § 41.V.3 in [20].

3.1.10. Theorem. A completely regular space T has a compact­
ification (oc,C)such that K(T) is homeomorphic to K(C) under the
canonical mapping, if and only if K(T) is compact.

Proof. By proposition 3.1.2, the condition is necessary. Conversely,
if K(T) is compact, and B as in theorem 3.1.8, then

xB[K(T)] = 317301,by theorem 3.1.5,

and mg a homeomorphism of K(T) onto 311301.By theorem 3.1.4,
the present theorem follows.

Remark. For the purpose of the theorem, we could have taken
(pLB(T),9IIB(T))as the required compactification. But the proof
shows the following corollary.

3.1.11. Corollary. If T is a completely regular space such that
K(T) is compact, then there exists a compactification (o«.,C)of T
such that w(C) = w(T) and K(T) is homeomorphic to K(C) in a
natural way.

3.1.12. Theorem. Let T be a completely regular space such that
w(T) 2 N0and K(T) is compact. Then the potency of the set of
all open—and-closedsets of T is at most w(T).

Proof. Let B be as in theorem 3.1.8. Then, in particular,
|B‘1|gw(T). By theorem 1.3.11 (iii), (oBq[Bq] consists of all
open—and-closed sets of 91130. However, 911301is homeomorphic
to K(T), by the proof of theorem 3.1.10. Since there exists a
canonical one-to-one correspondence between the open—and-closed
sets of K(T) and those of T, the theorem follows.

49



Remark. The theorem is a generalization of the case in which
w(T) = N0,proved by H. Freudenthal [12].

3.1.13. Theorem. Let T be a topological space such that K(T) is
compact. Then, for any closed set F of T with compact boundary,
K(F) is compact.

Proof. In accordance with definition 3.1.3, Bq(T) is the discrete
compingent algebra of all open—and-closed sets of T. It is clear
that for any open set U of K(T), xB‘1(T)[U] is an open set of
xB<1(T)[K(T)], for any space T.

Applying this to F, we need only show that xB‘1(F)is not only
one-to-one, which it is by theorem 3.1.5, but also onto fHiBq(F). In
other words, given m EUIEBQQ2),it should be shown that flm # (6.

If a n 9i(F) # 9), for all 6:E111,then, by the compactness of
NP),

(Hm) n 75 (75,whence 011175 0’.

Now assume there exists an element ozE m such that a n 9i(F) =93
Then:

flm=fl{bEm|b§a}.
But clearly I)E Bq(T) for every I) e m with b g 6;. Hence,

1’: {cEB‘1(T)|3bEmWithb got/xc}

is a proper concordant filter of B‘l(T). So, if f E n EETFBQW),

H m = Fl f 2 H n 75 95,since K(T) is compact.

This proves the theorem.

Remark. Though H. Freudenthal [12] proved the theorem with
the acceptance of the second countability axiom, his proof is not
essentially different from ours and applies equally well to the
general case.

3.2. Percompactness.

3.2.1. Definition. A topological space is called jbercompaczfif every
two points of it are separated by a compact set.

The notion of percompactness is introduced as a slight general­
ization of the well—knownconcept of peripheral compactness, which
will be defined in the next section.
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3.2.2. Theorem. Let T be a percompact topological space, and C
and D disjoint closed sets of T with compact boundaries. Then
C and D have disjoint neighbourhoods with compact boundaries
(which neighbourhoods can, of course, be chosen to be regularly
open).

Proof. Let 115E 9?(C). By definition 3.2.1, for every q E ER(D) we
can choose disjoint open sets 01 and U1, containing p and g
respectively, such that ER(Oq)and 9?(U1) are compact. Since
9i(D) is compact, there exist an integer n and elements
q1,q2, q,, E ER(D),such that:

Put

Vp: ( fl QDc, Wp: ( U K}
1I=1 i=1

It is easily seen that V1,is a neighbourhood of p, W1,a neighbour­
hood of D, V1, n W1, = (J, and 9?(V1,) and 9‘i(W1,) are compact.

Take such sets V1, and W1, for every 15E ER(C). Since 9?(C) is
compact, there exist an integer m and elements 151,151,..., pm 6 fR(C)
such that:

smc) g ii V1,].i=1
Now

V=([l V1,].)uCandW=({1WnW1,j)r\C°1:1 1:1
are neighbourhoods of C and D respectively, as sought.

3.2.3. Theorem. Let T be a percompact topological space. Then

Bc(T) = {a E B*(T) | 9i(a) compact}

is a compingent subalgebra of B*(T).

Proof. If a,b E Bc(T), then ER(a/\ b), 9i(a v b) and ER(a°) are
closed subsets of the compact set E-)?(a)u 9i(b), whence
a /\ b, a v 6, a0 E Bc(T). So Bc(T) is a boolean subalgebra of B*(T).

Let a,b E Bc(T), and 61<<* I) (i.e. ci 2 b), b 72 Q5,e.g. ]b E b. By
theorem 3.2.2, there exists an element 0 E Bc(T) such that
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du {JD}2 c E 5 2 I). So at <<*c <<* I), and c 759). This shows
the theorem.

3.2.4. Definition. Let S be a subspace of a completely regular
space T. Then S is called (g 0)—Inductz'onallyembedded in T if
any two functionally separated sets of T are separated by a set
disjoint to S. (Then, in particular, ind S _<_O).

This definition is included in a more general definition which
will be given in the fourth section.

3.2.5. Theorem. Let T be a percompact topological space, and

N = 5mBc<T> \ eLBc<T>[Tl­

Then:

(i) N is (g 0)—Inductionally embedded in f)ITBc(T),

(ii) uBc(T) is one—to—oneinto.

Proof. Let us put B = Bc(T) for short.

(i) Let F be a closed set of 9273,and U a neighbourhood of F.
By theorem 2.1.6, and the normality of SD73,there exists
an element a E B such that

F C_icoB(d) E (coB(a))‘ E U.

So it suffices to show that 9‘i(coB(a))m N = Q);for this it is
sufficient to show that p.B[9i(a)] = 9i(coB(a)). Now let
m E 9i(coB(d)); this means:

bem=>bAa;éQ5,b/\d07E;J.

If I) m 9‘i(a) 7E (25for every I) E 9?, then, by the compactness
of R(a), there exists an element

15 E (Hm) m 9‘i(a).

Then, however, p.B(,/b)= m. So suppose there exists an
element b E m such that b n 9‘i(a) = Q. Choose (3e m such
that (3<<* I), i.e. 5 <_:I). Then it follows that

9i(c /\ oz) 9 9i(c) n d,

whence c A a <<* 01.
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So a E m or (c Aa)0 E m; but the first possibility contradicts
the implication above, whilst the second possibility is equally
absurd, since it would imply that (c A a)° A c = c A a0 E m,
and a0 E m.

(ii) Take ;b,q E T, such that p 75 q. Since T is percompact, there
exists an element a E B such that 15E a, q 9.5a. By theorem
3.2.2, there exists an element b E B such that 156?) E 5 E a.
This shows that a E uB(p). Since evidently a at uB(q), we
obtain:

sLB(P) 75 HB(9)­

3.2.6. Theorem. Let T be a percompact topological space. Then
([J.Bc(T),iTIT]3c(T))is a greatest compaction amongst those com­
pactions (oc,C)of T which have the following property: given any
disjoint closed sets 51 and S2 of C, there exists an open set 0 of T
which separates oc‘1[51]and oc‘1[S2],whilst 9i(0) is compact.

Proof. Put Bc(T) = B. First, we show that (uB,f)TEB)has the
property mentioned. Let S1 and 52 be disjoint closed sets of 9313.
Then there are elements 6a,?)6 B such that

51 g u>B(a), 52 E coB(b°), u <<* I)

(remember that B is a compingent subalgebra of B*(T)). Then

eL§1[wB(d)] S 6% eL§1[<»>B(5°)l 9 5°;

it follows that a0 Ab is a separating set as required.
To prove the theorem, by theorem 2.3.2 we need only consider

an arbitrary compaction of T of the form (uB1,E)IIB1)having the
property of the theorem, where B1 is a subcompingent subalgebra
of B*(T). We shall apply theorem 2.3.3. So let a1,b16 B1, with
al <<1bl, where <<1 is the compingent relation of B1. Choose
c1,d1,e1 6 B1 such that al <<1cl <<1d1 <<1e1 <<1bl. Then:

“1 9 lL§11[¢°B1(C1)l 9 C1» bi) 9 eihg l’~1§,1[°°B1(di)1)l3

by our hypothesis, there exists an open set 0 of T separating
pLg11[(coB1(c1))‘]and p.§:[coB1(d‘1’1))‘];evidently, we may assume
0 E B. So there exists a disjoint union
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T=T1ucuT2,withT1mT2 Qc,and

E’~1§:l(‘°B1(C1))'l 9 T1» E11-3:l(°~‘B1(di)1))—l9 T2­

Now it is easy to show that the sets a = T343 and b = T1 u c are
regularly open, and that all g a <<*(9g bl.

3.2.7. Theorem. Let T be a percompact topological space such
that K(T) is compact. Then

W(5mBc<T>)S W(T)­

Proof. Assume w(T) 2 80. Take a basis A for the topology of T,
with minimal potency; we may assume that to any two elements
of A, A contains their union. To every pair (01,O2)EA X A,
choose an element a E Bc(T) such that 01 Q a Q oi Q T \ 02,
whenever this is possible. Let C be the boolean subalgebra of
Bc(T) generated by these elements of Bc(T). Then |C | g w(T).
Take D as to be the boolean subalgebra of Bc(T), generated by the
interiors in T of the open-and-closed sets of the closures of the
elements of C; using theorem 3.1.12 and theorem 3.1.13, we obtain:
|D| g w(T). It suffices to show that D is dense in Bc(T) (since
then coBC(T)[C]is a basis for the topology of E)TBC(_rp)).So take
a,b E Bc(T), such that 6; <<* I). By theorem 3.2.2, 9?(a) and 91(6)
have disjoint neighbourhoods a’ and b’respectively, with a’,b’eBc(T).
By the compactness of E}l(a)and 91(6), and the hypotheses on A,
there are elements 0a,0b E A, such that 9i(a) Q 0“ Q a’,
9i(b) Q 0;, Q I)’. Now, by the construction of C, there exists an
element c E C such that

0,, Q c Q 6 Q T\0b (e.g. 6;’might be in C).

Then, in particular, 9i(a) Q 0 Q 5 Q T \ 91(1)).

Since 91(6) m E)l(c)= Q, 6 m b is an open-and-closed set of 5, with
interior 0 m b, and since 9‘i(a) m 91(0) = (3, c0 m a is an open-and­
closed set of co“, with interior c0 m 6;. Hence

(c/xb) v(c0/xa) ED,

and 6; <<* (c /\ b) v (c0 /\ 6;) <<* I).

This proves the theorem.

54



Remark. The proof is an adaptation to the greater generality of
the theorem and to the application of our theory, of the analogous
proof by H. Freudenthal [12].

3.2.8. Problem. If T is as in theorem 3.2.7, can it ever happen
that w(9ITBC(T))< w(T)? For w(T) = No, it is not difficult to
show that w(9TZ}3c(T))= w(T).

3.3. Peripheral compactness.

3.3.1. Definition. A topological space is peripherally compact if
each point of it has arbitrarily small neighbourhoods with compact
boundaries.

3.3.2. Theorem. (K. Morita [24]). A peripherally compact space is
a percompact completely regular space.

Proof. Let T be a peripherally compact space. The percompactness
of T follows from the definitions (remember that only Hausdorff
spaces are being considered). Let p E0, where 0 is an open set
of T. Then there exists a neighbourhood a of p with a 9 O, and
a E Bc(T). By theorem 3.2.2, there exists a neighbourhood b of p
with p Eb <<*or. This shows that Bc(T) is a basic compingent
subalgebra of B*(T) ; hence, T is completely regular by corollary
2.2.2.

3.3.3. Theorem. Let T be a percompact topological space. Then
the following three conditions are equivalent.

(i) T is peripherally compact ;

(ii) Bc(T) is basic;

(iii) (pLBc(T),E7lTBC(r_p))is a compactification of T.

Proof. The equivalence of (ii) and (iii) is contained in theorem
2.2.1, whereas the equivalence of (i) and (ii) follows from the proof
of theorem 3.3.2, and the definitions.

3.3.4. Theorem. Let T be a completely regular space, and (oc,C)
a compactification of T such that C \ oc[T]is (3 O)—Inductionally
embedded in C. Then
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(i) T is peripherally compact;

(ii) (WC) S (lLBc<T>»5mBc<T>)(i-€- (MBc<T>fimBc<T>) is a greatest

compactification of T by means of an (3 0) —Inductiona1ly
embedded set).

Proof.

(i) Let ;5 E T, and U be a neighbourhood of 75; then there exists
a neighbourhood V of oc(]5)such that V n oc[T]= oc[U]. By
the hypothesis, there is a neighbourhood W of oc(p)such that
W E V and 9?(W) E oc[T]. Then, evidently, 15E oc‘1[W] E U
and 9i(oc‘1[W])is compact.

(ii) The assertion follows from (i) and a simple application of
theorem 3.2.6.

3.3.5. Theorem. (P. S. Aleksandrov —V. I. Ponomarév [3]). The
peripherally compact spaces are the complements of the (g 0)­
Inductionally embedded sets in compact spaces.

Proof. Indeed, by theorem 3.3.3 and theorem 3.2.5, every pe­
ripherally compact space is homeomorphically embedded in
9TLBC(T)with an (3 O)-Inductionally embedded complement; the
converse is proved as theorem 3.3.4 (i).

Remark. For the case in which the spaces considered satisfy the
second countability axiom, the theorem reduces to a theorem
proved by J. de Groot [13].

3.3.6. Theorem. (K. Morita [24]). To every peripherally compact
space T there exists a greatest amongst the compactifications of T
by means of an (3 O)-Inductionally embedded set.

Proof. The theorem follows from theorem 3.3.5 and theorem
3.3.4 (ii).

3.3.7. Theorem (E. G. Sklyarenko [28]). If T is a peripherally
compact space, then there is a compactification (o«.,C)of T by means
of an (g O)-Inductionally embedded set, such that w(C) = w(T).

Proof. Let w(T) 2 N0. Since Bc(T) is a basis for the topology of
T, there exists a subset S of Bc(T) such that S is a basis for the
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topology of T and |S| = w(T). (This useful potency lemma has
been communicated to me by J. de Groot.) By lemma 3.1.6, there
exists a compingent subalgebra B of Bc(T) such that [B] = w(T)
and S 2 B. Then B is a basic compingent subalgebra of B(T); so
(p.3,9TI3)is a compactification of T, and since o)B[B] is a basis for
the topology of $7113, w(fHi3) = w(T). The proof that the
complement of uB[T] in SR3 is (3 O)-Inductionally embedded in
EUEBis not different from the proof of theorem 3.2.5 (i).

3.3.8. Theorem. If T is a peripherally compact space such that
K(T) is compact, then

W(5mBc<T>)= W(T)­

Proof. The proof follows from theorem 3.2.7 and the observation
that w(E7IIBC(T))2 w(T), since mBc(T) contains a homeomorphic
image of T.

Remark. For the case where w(T) = R0 the theorem is due to
H. Freudenthal [12].

3.3.9. Remark. We have noticed that for an (g O)-Inductionally
embedded set S we necessarily have: incl 5 g 0. However, the
converse is not true, as is shown by an example of ]u. M. Smirnov
[31] of a non—peripherally compact space W such that
(3W\ W = 0, using theorem 3.3.5. It is not known to the author
whether there exists an example of a subspace S of a completely
regular space T such that Ind S = 0, but with 5 not being (g 0)­
Inductionally embedded in T. However, C. H. Dowker [6] has
given an example of a normal space N containing a subspace M
such that Ind N = O,Ind Ill = 1. Then, a fortiori, M is an example
of an (3 O)—Ind11ctionally(in N) embedded set with positive
Inductive dimension (the ambient space can be made even compact
by taking its Cech-Stone compactification).

3.4. Compactness deficiency.

3.4.1. Definition. Let T be a completely regular space, and T’ a
subspace of T. Then T’ is (—1)—Inductz'0mdlyembedded in T if T’ = Q3
(notation: IndTT’ = —1); T’ is called (3 n)—Inductz'0mdlyembedded
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in T (notation: IndTT’ 3 n) for a non—negatiVeinteger ‘ILif any
two functionally separated sets of T are separated by a set C such
that Indr_p(T’r\ C) g n — 1.

If IndTT’ gn, but not IndTT’ §rz—1, then we say that
Indr_pT’= ro; if there is no integer rt such that IndTT’ 3 1%,then
we put IndTT’ = oo.

3.4.2. Proposition. If T is a completely regular space, and T’ and
T” subsets of T, then:

(i) T" E T’ :> IndTT” g Indr_pT’,

(ii) ind T’ 3 IndTT’,

(iii) Ind T = IndTT if T is normal.

Proof. All three assertions follow directly from the definitions.

3.4.3. Proposition. Let T be a normal space, and T’ a subspace
of T. Then, for any closed set F of T:

Indp T’ n F 3 IndT T’.

Proof. Let F1 and F2 be two functionally separated sets of F.
Then, by the Tietze extension theorem, F1 and F2 are also
functionally separated in T. So, if IndTT’ = 71,there exists a set
C of T, separating F1 and F2 in T, such that Indqv C n T’ g rz.—-1
(we may assume that n 20). Using induction, we find that
Indp F m C m T’ g n —1. Since F m C separates F1 and F2 in
F, the proposition follows from the definition.

3.4.4. Proposition. Let T be a compact space, T’ E T and ’}’La
non—negativeinteger. Then:

IIldT T’ _<_r1,<:>3 a basic compingent subalgebra of B(T)
in which the set of elements 0 with

II1ClT9i(c) m T’ g n — 1 is dense.

Proof. The verification of both implications is straightforward.

3.4.5. Definition. Let T be a completely regular space. Then the
corrzpactrressdeficiency comp def T of T is defined as follows:
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comp def T g n <2 T has a compactification (oc,C)such that

Indc C \ oc[T] g 1%.

Obviously, we define:

comp defT = n <:>compdefT 3 n and comp defT $ n —1.

3.4.6. Lemma. Let C be a compact space, N a subset of C and
B0 a subset of B(C) such that [B0] = T 2 N0. Then there exists a
compingent subalgebra B of B(C) such that:

B0 _C_B, [Bl =1, IndmB 9]lB\(LB[C\N] glndc N.

Proof. We may assume that IndCN = n <oo. By means of
induction we shall define a monotonously non-shrinking sequence
(B,;)i:°0 of subsets of B(C).

Assume 2'2 O, and B7;already defined.

(i) If 0 g k g n, and c1,c2, ck E B,;such that:
k

Indg Fl 9i(c,-) m N g n — la,
y= 1

then choose for every 6a,!)6 B,; with a << I)an element d E B(C)

such that at << d << I) and
k

Indc9i(d)r\ Fl 9i(c,-)r\N_<_n—k—1;
7=1

this is possible by definition 3.4.1 and proposition 3.4.2 (i).

(ii) If 2 g k 3 n —|—1, c1,c2, ..., ck E B; such that
k

Indc fl 9i(Cj) F) N S 7%—/3,
7'=1

k

and 6a,!)6 B,; such that 6; << I) and b n Fl 9i(c,-) = 95, then
;=1

choose e,f E B(C) such that:
k—1

6<<f,do Fl SW02")9 e,1‘o9i(Czc)=0;
7'=1

this is possible by the normality of C.

(iii) Let B; be a compingent subalgebra of B(C) containing Bi,
and such that |B;.| = T; B; exists by lemma 3.1.6.
Now we define B2-+1as the union of B; and the set consisting
of all elements d,e,f chosen under (i) and (ii).
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60

Put B = (J0 B,;. It is clear that B is a compingent sub­
1.'= 1

algebra of B(C), with B0 E B and |B| = 1. There remains
the last assertion of the lemma to be shown. The rest of the
proof will be divided into two steps.

(a) Let 1 g k _<_n —|—1, and c1,c2, ...,ck EB be such that:
z

Indc fl 91(c,-)nN_<_n—l
i=1

(l=1,2,...,k).

It will be shown that this implies:
l l

p.B[_fl1 ='n1 91((:)B(C_7°))(Z= 1, 2, ...,7 = 7 =

Let us use induction with respect to k. For k = 1 the
assertion follows from the compactness of 9i(c1) (cf. the
proof of theorem 3.2.5 (i)).

Now assume 1 < k gm —|—1, and c1,c2, ...,ck EB as
in the hypotheses of the assertion. Using the induction
hypothesis, it is sufficient to show that:

k—1

weal fl 9i(02°)l 2 Mal (7 9?(0a')l F‘ HBl5R(0Ic)l.
;=1 ;=1

since the converse inclusion is obvious.

m ¢uB[ (ll 9i(c,-)].
7'=1

So, assume

m E9113,

k

By the compactness of F1 fR(c,-),it easily follows that
i=1

there are elements a,b em such that 6;<6 and
k

I) (W 0 3i(C_r;) = Q.
7': 1

Choose i such that a,b 6 Bi, c1, 02, ..., ck E B,-. By (ii),
there exist elements e,]‘e B such that 6 <<1‘and

k—1

Lin (1 9i(c,-)§e,fr\ER(c;,,-)=0.
j = 1

Since a A 6 << I) A f, we have: b A f E m or (a A (2)0E m.
Now notice that if F is a set of C, and n a maximal
concordant filter of B containing an element disjoint to
F, then 11¢ uB[F]. So, if b Af E m, then, because of the
relation (b A 1‘)m ER(c;g)= o, m gt uB[9{(ck)]. In the

other case, (ozA (3)0E m, whence a A (a A e)° = a A e0 E m.



k—1

But (a /\ 60) n H 9i(c,-) = Q5,so then
7'=1

k—1

"1 ¢s1B[ Fl 9i(02')l­
7‘ = 1

Hence in either case:
k—1

m 9-‘HBl U 9i(C2')l F‘ HB[9i(Ck)l­
7 = 1

This shows the required inclusion.

Let 1 g k 3% —|—1, and c1,c2, ck EB be such that:
z

Indg Fl fR(c,-)nN_<_n—l (l=
j=1

we shall see that this implies:
k

Ind3jnB Fl 9i(ooB(c,-)) n M g 71,— la,
7': 1

where M = mg \ uB[C\
with respect to M,— k.

We shall use induction

Let k = n + 1. Then by (a) we obtain at once:
n+1

fl 9{((9.)B(C_7'>)(W[W = (5,
j=1

Now assume the assertion true for “/2” replaced by
“la —|—1”, where 1 g k < n + 1, and assume
c1,c2...,ckeB as above. If a <<b, a,beB, then by
(i) there is an element d E B such that oz<<d << I), and

k

IndcfR(d)n fl 9i(c,-)r\Ngn—k—1.
7°=1

By the induction hypothesis,
k

IndfmB 9‘i(<oB(d)) m H fR(ooB(c,-)) n M g M,— k — 1.7'=1
k

This shows that Ind9TB fl 9i(coB(c,-))n M g n —k, usingj= 1

proposition 3.4.4, q.e.d..

Lastly, applying (b) for the case k = 1, we obtain:

deB, Indo ER(d)nN gn —1 ;» IndgmBE)?(<oB(d))m M gn—1.
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Since by (i) the elements d satisfying the hypothesis
of the implication form a dense subset of B, the lemma
follows from proposition 3.4.4 (applied to the space 9173).

3.4.7. Theorem. Let T be a completely regular space. Then there
exists a compactification (8,D) of T such that:

(i) Indp D \ 8[T] = comp def T,

(ii) w(D) = w(T).

Proof. We may assume that w(T) = 1:2 N0, and that comp def
T = n < oo. By definition 3.4.5, and theorem 2.2.4, there exists
a basic subcompingent algebra B’ of B(T) such that:

IndgmlyN = n, where N = 933' \ uB'[T].

Let B0 be a basis for the topology of T such that |B0| = -r and
B0 2 B(T). By lemma 3.4.6, there exists a compingent subalgebra
B of B’ such that coB'[B0] C; oo3'[B], B] = T and

lndfH;B* [M g n, where M = 933* \ pLB*[fmB'\ N],

and where B* is the isomorphic image of B under the mapping
(s.)B’restricted to B; this isomorphism will be denoted by e. It is
easily verified that B is a basic subcompingent subalgebra of B(T)
and that:

eLB*0 #3’ = m(6‘1) 0 em

Hence (p.B* o {LB/,f)IIB>x=)is a compactification of T (topologically
equivalent to (iLB,:mB)),which satisfies all requirements of the
theorem.

3.4.8. Remark. The property of completely regular spaces of
having a certain given compactness deficiency, might be called an
external property since its definition involves the consideration of
relationships of the set space to other spaces. It follows from
theorem 3.3.5 that the property “comp def T g O”is equivalent to
the internal property “T is peripherally compact”. For separable
metrizable spaces, the compactness deficiency coincides with the
compactification degree as defined by J. de Groot [13], if only
metrizable compactifications are admitted. By J. de Groot, l.c.,
the problem has been posed to find internal characterizations of
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separable metrizable spaces with given compactification degrees.
In our more general setting, his conjecture becomes: for 14,Z O, the
completely regular spaces with compactness deficiency g n are
those completely regular spaces in which every point has arbitrarily
small neighbourhoods whose boundaries have compactness
deficiencies 3 n —1. The restricted conjecture, and so the more
the general conjecture, remains as yet unproved. In the rest of
this section we shall give a sufficient condition for a space to have
a compactness deficiency g n.

3.4.9. Definition. Let T be a normal space. We shall say that T
has property P_1 if Tis compact. Inductively, we define for a non­
negative integer n, that T has property P” if every closed set of T
has arbitrarily small neighbourhoods of which the boundaries have
property P,,_1.

3.4.10. Lemma. If T is a normal space having property P” and F
is a closed set of T, then F has property Pn.

Proof. The lemma will be proved by induction. For ’}’L= -1, the
lemma is obvious. So assume n > —1. Let A be a closed set of F,
and U a neighbourhood in F of A. Then there exists a neighbour­
hood U’ in T of A such that U’ n F = U. Since T has property
P,,, and ’}’L> —1, there exists a neighbourhood V in T of A such
that V E U’ and 9i(V) has property P,,_1. Since 9?p(V r\ F) is a
closed subset of ER(V),and V n F is a neighbourhood in F of A
contained in U, the lemma follows from the induction hypothesis.

3.4.11. Lemma. Let T be a normal space, and c1,02, ck E B(T).
Then:

(l*B(T)l Fl 9i(Ca°)l>" =
i=1 7

k

(eLB<T>[9i(0a°)l)‘ = fl 9?(¢°B<T>(0a°))­
1 ;'=1l|.D=="

Proof. Let us call the consecutive closed sets in the lemma F, G
and H. Then it is obvious that F E G E H (notice that for a set
A of T:

II’IE(p.]3(T)[/1])“ <:>a m A ;é o (all a E m)).

So we need only prove: F 2 H. This will be done by induction.
Let k = 1, and m ¢F, i.e. 3 a Em such that a m fR(c]) = so’.
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Choose b E m such that 1)<< 61. Then 6 A c1 << cl, whence cl 6 m or
(b A c1)° E m (and also I) A (b A c1)0 = b A of E m, and c(]’E m); in

either case m at9i(coB(T)(c1)). Now assume k > 1, and m $ F, e.g.
k

a E m such that a n Fl 3i(c,-) = (3. Choose 1)e m such that 1)<< oz.
j=1

By the normality of T, we can choose e,]‘E B(T) such that:
k—1

f<< e, 5 n 9?(ck) E f, e n H S)?(c,-)= o.
7': 1

Because of bAf<<aA e, we have: a/\ e em or (bAf)0 Em. In the
k—1

first case m¢(uB(T)[ Fl 9i(c,-)])—, and in the second case

m ¢<uBm[92<ck>1>-.so

m ¢ (eLB<T>[kF_l9i(02')l)“ F‘ (eLB<T>[9i(CIc)l)‘ =
i=1

k—1

= fl 9‘i(¢°B<T) (01)) F‘ 9i(wB<T> (C1)),
7': 1

by the induction hypothesis and the case /2= 1. This proves the
lemma.

3.4.12. Theorem. Let T be a completely normal space with
property P”. Then:

1nd:mBm5mB<T> \ {J-B(T)[T] S %:

so, in particular, comp def T 3 n.

Proof. If 0 g k g n, and c1,c2, ck E B(T) such that
k

H 9i(c,-)has property Pn_k,
7' = 1

then to every cz,bE B(T) with 6;<<I)there exists an element d E B(T)
such that a <<d << I), and

k

9i(d) n Fl 9‘i(c,-)has property Pn_k_1.
i=1

k

Indeed, put F -_- fl 9?(c,~). Then aim F has a neighbourhood
i=1

U in P such that (7 E b and

9ip(U) has property P,,-;C_1.
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Since T is completely normal, oiu U has a neighbourhood d E B(T)
in T such that

5—Zfl((F\U)Ubc)=Q.

So a <<d << I), and E7i(d)n F E 9ip(U); hence, f}i(d) n F also has
property Pn_k_1, by lemma 3.4.10.

Now let 1 g la 3 n —|—1, and c1,c2, ck e B(T) be such that
1

fl 9i(c,-)has property Pn_; (l = 1, 2, k). We shall show that
7': 1

this implies:
k

Indfm Fl 9‘i(coB(T)(c,-)) n M g n — k,
Bm _,-= 1

where M = f)TiB(T)\ p.Bm[T]. VVe shall use induction with
respect to n — 12.

For k = 7L—|—1, the assertion follows from the compactness of
n+1
fl 9i(c,-) and lemma 3.4.11. Now assume the assertion true for

7' = 1

“k” replaced by “k + 1”, where 1 3 k < n —|—1, and assume
c1,c2, ck eB(T) as above. If 61,?)eB(T), and 6;<<6, then by
what we proved first, there is an element d eB(T) such that
a << d << I) and

k

9i(d) n Fl ER(c,-)has property Pn_;,,--1.
7' = 1

Hence, by the induction hypothesis,
k

Indgnmn 9i(coB(T) n Fl 9i(c1>B(T)(c,-))m M g n —k — 1.7‘: 1

This shows that
k

Indfm fl 9‘i(coB(T)(0,-)) m M g n — la.
Ba“) ,.=1

Lastly, applying this for the case k = 1, we obtain: d E B(T),

ER(d) has property Pn--1 :> Ind9fB(T) fR(coB(T)(d)) n 111g n — 1.
Since these elements d form a dense subset of B(T), the theorem
follows from proposition 3.4.4.

65



CHAPTER 4. COMPACTIFICATIONS,
PRESERVING DIMENSION AND CONTINUOUS MAPPINGS

4.1. On a theorem of E. G. Sklyarenko.

4.1.1. Lemma. Let B be a compingent algebra, and a1,a2,...,
ak E B. Then:

EH13:
1'

coB(a,-)¢> Elbi E B such that b,; << 61,; = 1,2, ..., /2)
1||Ca­

k

and 1 = V b,;.
1. 1

Proof. To prove the sufficiency, let b; (17= 1,2, ..., k) be as in
the lemma. Let m E9113, and suppose a; ¢ m (i = 1,2, la).
Then b?Em = 1, 2, /2),whence

||>:u­

<:u­b?=(
1 15

b7;)0=10=OEl'II,
1' 1

which is a contradiction.
To prove the necessity, we shall define b; (l = 1,2, ..., la) by

induction, such that the following conditions are satisfied:
k

U( U <oB(a7;)).
1 1.'=l+1

Cs.bi <<a,;(z'= 1,2, ...,l),fHlB=(

Let Z< k, and b; be defined. Put

F=( £1 coB(b»,-))°F\( El coB(a,;))°.1' 1 1§=l+2

It is clear that F is a closed set contained in oa3(a;+1).Then there
exists an element b;+1 e B such that bz+1<<a;+1 and F E coB(b;+1).
Then b;+1is as required. This proves the lemma.
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4.1.2. Definition. Let u be a finite open covering of a topological
space T. A strong refinement of u is an open covering 12of T, such
that there exists a mapping f of u onto 1)with:

0eu=>f(0) E0.

4.1.3. Lemma. Let T be a normal space and M a finite open
covering of T. Then there exists a regularly open, strong refinement
of M.

The easy proof of this lemma and the next is left to the reader
(cf. P. Alexandroff und H. Hopf [1, I, §6.8]).

4.1.4. Lemma. Let T be a compact space, B a basic compingent
subalgebra of T, and M a finite open covering of T. Then there
exists a strong refinement of Mwhich consists of elements of B.

4.1.5. Theorem. Let T be a normal space of weight T, and Z a set
of closed sets of T such that [E | g 1. Then there exists a compact­
ification (oc,C)of T such that:

(i) W(C) = T;

(ii) dim (a[F])- = dim F (all P e 2).

Proof. Assume 1 2 80. Take F e 2. If dim F < oo, then we
choose a finite open covering {Uri},-__’f1of the subspace F which
does not admit an open refinement of order dim F. Then
{Ui U F 0 ifl is a finite open covering of T. By lemma 4.1.3, there
exists a regularly open, strong refinement v = vp of {U,;U F C ,-:1.
It is clear that {a r\ F | a E v} is a finite open covering of F which
does not admit an open refinement of order dim F. If dim F = oo,
then, in a similar way, we can find finite regularly open coverings
'00") = v§’,3')of T such that {a n F | a 6 MW} is a finite open
covering of F which does not admit an open refinement of order m
(m = 1, 2, Let w = wp, or mm) = w§_.’,3‘),be a regularly open,
strong refinement of 12,or vfm)(m = 1, 2, according to whether
dimF <ooor dimF=oo. Put

5 = U {vp,wF | FEE, dim F <oo} U U U {v"”),w(,fI‘)| FEE,
“:1 dimF =
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Then, obviously, |S | 3 1. Let B0 be a basis for the topology of T,
such that:

We shall define a monotonously non—shrinking sequence (B7,) °°

S; B0<_:B(T).

n=0

of subsets of B(T).
Assume n _>_O,and B”, already defined. Then Bn+1 will be

determined in two steps.

(i)
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Let F E Z, and dim F < oo. Let Mbe any finite open covering
of T by elements of B7,. Then {a n F | a e M}is a finite open
covering of the subspace F, which has a finite open refinement
{Vi ,-:1 of order g dim F + 1. We may assume:
igéj :> V; 75 V,-. To every z’: 1, 2, k, choose a; Eu
such that V; E 61,-.Then V,; u (at, n F C) is an open set of T
(7!= 1, 2, ..., la) . Now

u’=1//F={V,-u(a,-mFC),:1u{ar\F°|aEu}
is a finite open refinement of M. Let 74*= M3‘;be a regularly
open, strong refinement of M’(which exists by lemma 4.1.3).
Notice that {a n F | a eu*} is a finite open covering of F
of order g dim F —|—1, and 74*is a refinement of u. In its
turn, 74*has a regularly open, strong refinement u** = u}§*.
Put

B; = U {uj§,u}',i*| Ma finite covering of T by
elements of B”, F E 23,dim F < oo}.

Clearly, g ‘C,under the assumption |Bn| = 1.

Let B: be a compingent subalgebra of B(T), such that:

B7,, E B;,’, IB; :1;

B; exists by lemma 3.1.6.

Now we define: B/n+1= B; u and B = U B”. It is
1’l«=O

clear that B is a basic compingent subalgebra of B(T) of
potency T; hence WOIIB) = 1. We shall show that (uB,9IT3)
also satisfies the second assertion of the theorem.
Let F 62, dim F <oo. Let 2 = {W2-},.=‘1be a finite open
covering of the subspace (p.B[F])'. Then:

2' = {Wt U (HBlFl)_°}¢:1



is a finite open covering of 9113. By lemma 4.1.4, 2’ admits
a strong refinement by elements of (oB[B], say

{coB(b,;)},.j1,where 6»;E B = 1,2, ..., 3).

Obviously, u = {bi},-:1is a covering of T.
Let n be chosen in such a way that b1,b2, ..., ()3E B”. By
the construction (i), we have found u* and u**. If
u* = {oi},-:1, then, by lemma 4.1.1, {co3(c»,;)},-:1 is a covering
of 9113. VVe may assume: £757‘ =>C175 c,-. By the con­
struction of u*, we have:

dim F+2fl CgkflF=$lfk7$l
k=1

dim F+2

Hence fl coB(C,;k)m u3[F] = Q5,under the same
’°=1 condition ;

dim F+2

and then fl mB(c¢,,)n (uB[F])— = Q5.
k=1

So the order of y = {o)B(c7;)u (uB[F])*},.=‘1 is at most
dim F —|—1. Since y is a refinement of 2, it follows that

dim (uB[F])— _<_dim F.

However, if F 52, by the construction of B0 we have:
{wB(d) F‘ (HBlFl)‘ | 01E U}, 0f {0>B(d) F‘ (MB[Fl)’ l 615 Wm},
according to whether dim F < oo, or dim F = oo, is a finite
open covering of (p.B[F])—,which does not admit an open
refinement of order dim F —|—1, or m (m = 1,2, re­
spectively.
This shows that dim F = dim (uB[F])— (F E 2).

Remark. E. G. Sklyarenko [29] proved the theorem for the case
in which |Z| 3 N0.

4.1.6. Corollary. If T is a normal space, then there exists a
compactification (oc,C)of T such that:

(i) W(C) = W(T);

(m mmC=mmr

4.1.7. Remark. One might wonder whether a peripherally compact
normal space can always be compactified by means of an (3 O)­
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Inductionally embedded set, such that the dimension of the space
is not raised. However, it follows from connected separable metric
examples of L. Zippin [33] and T. Nishiura [25], that this is not
always possible.

4.2. On a theorem of C. Kuratowski.

4.2.1. Theorem. Let T be a normal space of weight 1, and Z a set
of closed sets of T with l2 | 3: 1. Then there exists a compactification
(oc,C)of T such that:

(i) W(C) = ‘E;

(ii) Jae: (i: 1,2, ...,m) :>

(at F.~1>-= <oc[I~‘.-1>-(m = 1. 2, ...>.1._

Proof. Assume T 2 N0,and:

F; GE = 1,2, ..., m) :> H F; 62 (m= 1,2,
i=1

Let B0 be a basis for the topology of T which consists of regularly
open sets, and is such that lB0| = 1-.

VVe shall define a monotonously non—shrinking sequence (Bn),,°=°0
of subsets of B(T).

Assume ’l’L2 O, and B” already defined. Then B,,,+1 will be
determined in two steps.

(i) Let a,b E B”, F1,F2 E E, and a << I), b m F1 m F2 = (3. Then,
by the normality of T, we can choose elements c,d E B(T)
such that d n F1 2 c <<d and d 0 F2 = o. Let B;, be the
set of all elements c,d E B(T) so chosen. Clearly, |B;,| g T,
under the assumption |B,,,| = ‘E.

(ii) Let B; be a compingent subalgebra of B(T), such that:

00

Now, put Bn+1 = B; L; B”; and B = U B”.
1. 1

It is obvious that B is a basic compingent subalgebra of
B(T) of potency 1; hence w(i71TB)= 1. Let us verify that
(uB,9TLB)also satisfies the second assertion of the theorem.
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Because of the condition we have imposed on 2, we need
only take 1%= 2. The proof that for F1,F2 E E:

m ¢ (uB[F1 F‘ F21)“ e m ¢(eLBfF11)‘ 0 (eLB[F21)‘,

follows the same pattern as the corresponding part of the
proof of lemma 3.4.11 or lemma 3.4.6.

4.2.2. Theorem. Let T be a normal space of weight T, and 2 a
set of closed sets of T with |Z| g 1-. Then there exists a com­
pactification (oc,C)of T such that:

(1) W(C)=r;

(ii) F,;eZ(i=1,2,...,m):>

dim 3 (a[F.;])- -_—dim Fi F.» (m = 1, 2, ...).
1.—1 z=1

Proof. Assume ‘I.’2 N0, and:

F462 (z'= 1,2, ...,m) => (1 F,;eZ‘.(m= 1, 2, ...).
i=1

By combining the constructions of the proofs of theorem 4.1.5 and
theorem 4.2.1, a basic compingent subalgebra B of B(T) is obtained
such that (u3,5HiB)is a compactification of T, possessing the
properties of both theorem 4.1.5 and theorem 4.2.1.. Then, obviously,
(p.B,fHZB)has the properties required in the present theorem too.

Remark. For the case T = N0 the result can be found in
C. Kuratowski [20, § 40, VII.5].

4.3. The extension of continuous mappings to compactifications.

4.3.1. Lemma. Let T be a normal space of weight T 2 N0,and S
a subset of B(T) such that |S| g T. Then there exists a basic
compingent subalgebra B of B(T) such that:

S E B, |B| =1, dim9TL3=dimT.

Proof. Taking E = {T} in theorem 4.1.5, we merely need take
care that in the proof of theorem 415,5 2 BO.Then the compingent
subalgebra B of B(T), obtained in the proof of that theorem,
satisfies the lemma.
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4.3.2. Theorem. Let T be a normal space of weight 1, and CDa set
of continuous mappings of T into a compact space D, where
]CD|gr and w(D) 3:. Then there exists a compactification
(oc,C)of T such that:

(i) W(C) = T,

(ii) dim C = dim T,

(iii) cpo oc‘1can be extended to a continuous mapping of C into
D (all cp E (D).

(Here ail stands for the mapping of oc[T]onto T defined by:

<><'1(<><(P))= I5 (15 E T)-)

Proof. Assume T 2 80. Let B2 be a basic compingent subalgebra
of B(D) of potency at most 1. By theorem 2.2.3, there exists a
canonical homomorphism g(cp) = g(cp,B2) of B2 into B(T) (cpE (D).
Put

5 = U {g(<P) [32] I <964>};

clearly, |S | 3 1-. By lemma 4.3.1, there exists a basic compingent
subalgebra B1 of B(T) such that

S Q B1, |B1| = T,CllI1’19ItB1= dim T.

Then, by theorem 2.2.3,

m(g(‘P)) ° UB1 = l’~B2° ‘P (‘P E (D)­

Since B2 is basic and D compact, p.32is a homeomorphism of D
onto UIIB2. So

lL1_912°m(g(<P)) 0 HB1 = <9,

and pg: o m(g(cp)) is a continuous extension of cpo ogll (cpE (D),
which shows that (p.31,91?31) is a compactification of T as required.

Remark. A. B. Forge [11] proved the specialization of the theorem
which is obtained by itp-mittin-gecondition-»—(ii);\taking 1 = N0, and D
equal to the closed unit interval.

4.3.3. Theorem. Let B” be subcompingent subalgebras of a
compingent algebra B, such that their boolean algebras are boolean
subalgebras of B, whilst B”, is a subcompingent subalgebra of

Bn_1 (14,: 1,2, Then B00: S B” is made into a sub­
n=1
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compingent subalgebra of B, containing every B,,, as a subco­
compingent subalgebra, by the followingdefinition of its compingent
relation <<oo: for 6a,?)6 B00,

a <<oo b <::>El’}’Lsuch that a,b E B,,,, a <<,, I)

(here “<<n”denotes the compingent relation of B", ii = 1, 2,
We shall call Boothe unification of (Bn),,:_’1.

Proof. As a union of a monotonously non-shrinking sequence of
boolean subalgebras of B, B00is a boolean subalgebra of B. The
further Verification of the fact that B00is a compingent algebra is
straightforward, and the same applies to the remaining assertions
of the theorem.

4.3.4. Theorem. Let B, B” (ii = 1,2, ...), Boobe as in theorem
4.3.3. Then:

dim 9113003 lim inf dim 9173,.
n—)oo

Proof. If lim inf dim fHT3,,-—-oo,nothing has to be proved.
n—)oo

So assume /3= lim inf dim 9H3” < oo.
n—)oo

Let it be a finite open covering of EDTBOO.By Virtue of lemma 4.1.4,
there exists a finite refinement {coB°°(a,;)},-:1 of it, where 01,;E Boo
(i = 1, 2, 3). By lemma 4.1.1, there are elements 1),;6 B00such
that:

1: \; biandbz-<<°oai(i=1,2,...,s).
1. 1

Now there exists a positive integer ii such that:

6l7;,b»,;EBn, bi <<n dz‘ = 1,2, ...,S).

Choose m 2; ’}’Lsuch that k = dim 57113,”. Since B”, is a sub­
compingent subalgebra of Bm, we also have:

d7;,b7;E Bm, <<m 6L7; = 1, 2, ..., 8).

Hence, by lemma 4.1.1, {(oBm(a7;)},~:1is a covering of fHiB,,,.
Using the definition of dimension, and lemma 4.1.4, Wefind that

there exists a finite refinement

v = {o)B,',;(C,-)}7-=t1of {coBm(a,-)},-=51,where c1, c2 Cj E Bm,

and where the order of v is at most k —|—1.
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Again by lemma 4.1.1, there are elements d1,d2, dt eBm
such that

t

1 = V oi’;and dj <<mc,- (j =: 1, 2,
1:1

Then, the more, Cj,dj6 B00 and dj <<o°Cj (j = 1.,2, t). Hence
by the same lemma 4.1.1, 20 = {o)Bo°(c,-)},.=‘1is a covering of 917300.
It is obvious that w is a refinement of u. Since the order of w is

equal to the order of 12, it is at most /2 —|—1; this proves that
dim UIEBOO3 k, q.e.d..

4.3.5. Theorem. Let T be a normal space of weight 1-,and (I)a set
of continuous mappings of T into T such that |<D| g T. Then there
exists a compactification (oc,C)of T such that:

(1) WC) = W(T),

m mmC=mmT
(iii) oco cpo oc‘1can be extended to a continuous mapping $ of C

into C (for every cpE CD),

(iv) if cpE (D, and cpan autohomeomorphism of T, then cfiis an
autohomeomorphism of C.

Proof. Assume 1 2 No. We may also assume that CDcontains cp‘1
whenever cpis an autohomeomorphism of T.

Let B0 be a basis for the topology of T, as determined in the
proof of theorem 4.1.5 for the case 2 = {T}. As shown in the
proof of that theorem, this entails

dim $71132 dim T,

for any basic compingent subalgebra B of B(T) containing B0.
VVe shall construct a monotonously non—shrinking sequence

(Bn),,°="1of basic compingent subalgebras of B(T) such that, in
addition to other properties, B0 E B1, |B,,| = 1, dim 9113,,=
= dim T (n = 1, 2, ...).

B1 is defined such that the conditions mentioned are satisfied
(B1 exists by lemma 4.3.1). Now assume n 2 1, and B”, already
defined. Then Bn+1will be determined as follows.

According to theorem 2.2.3, every cpECDinduces a canonical
homomorphism g(cp,B”) of B,,,into B(T). It is clear that IS" I = Tif

Sn = B72 U U {8(<P»Bn) [B721 l ‘P 5(1)}­
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By lemma 4.3.1, we can choose Bn+1to be a compingent subalgebra
of B(T) containing 5”.

VVe shall see that the unification B00 of (B,,),,°=°1(which in this
case is merely the union of the sequence with compingent relation
inherited from B(T)), is such that (p.300,f)IIB00)is a compactification
of T as required.

It is clear that |B00| = T, whence WOITB00)= 1. By theorem
4.3.4, and the condition imposed on B0, we also have:

dim 91130 = dim T.

Let cp6613. From the construction of B00, it is clear that cp
induces a homomorphism g(cp) = g(cp,B00) of B00 into B00. Hence
by theorem 2.2.3,

m(g(<P)) 0 H300 = PB.» 0 <9,

and

m(g(<P)) I eLB....[Tl == we... 0 <90 #21..­

This shows that m(g(cp)) is the required extension c_pof cp. If,

moreover, cpis an autohomeomorphism, then cp‘1oFpis the identity
mapping of 917300since it induces the identity mapping of its dense

subspace p.B00[T]. Hence E1 = ($)‘1, and $ is an autohomeo­
morphism of 911300.

Remark. J. de Groot and R. H. McDowell [16], omitting condition
(ii), except for the case dim T = 0, proved the theorem under the
assumption: 1 = N0. Later R. Engelking [10] gave a proof of the
theorem for the case 1 = 80, whilst R. H. McDowell (cf. [22]) and
J. de Groot [14, 15] proved the theorem omitting condition (ii).

4.3.6. Remark. It is easily verified that the proofs of theorem
4.1.5 and theorem 4.3.5 can be combined in order to obtain a
compactification possessing the properties mentioned in either
theorem, if, of course, the hypotheses of both theorems are taken
together.
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SAMENVATTING

Er bestaat een Volledige dualiteit tussen de theorie der boo1e—
algebra’s en de theorie Van de nuldimensionale compacte hausdorff­
ruimten (M. H. Stone [32]). In dit proefschrift wordt o.a. een
soortgelijke algebraizering van de theorie Vanwillekeurige compacte
ruimten uitgevoerd (alleen hausdorffruimten worden beschouwd).
Het begrip, dat de hele theorie ten grondslag ligt, is dat van een
zogenaamde compingente algebra. Een karakteristiek voorbeeld
Van zo’n compingente algebra wordt gevonden in de boolealgebra
B(C) Van alle regulair open Verzamelingen Van een compacte ruimte
C, Voorzien Van de relatie ,,<<” gedefinieerd door: Voor a,b E B(C),
at < b <:>ciE b. Een Volledige dualiteit wordt Verkregen door
slechts dergelijke, d.z. volledige, compingente algebra’s in aan­
merking te nemen. De mogelijkheid Van zo’n dualiteit werd ge­
suggereerd door J. de Groot. Compingente a1gebra’s kunnen
bijvoorbeeld ook gebruikt Worden om de compactificaties Van
Volledig reguliere ruimten te beschrijven.

Ofschoon de theorie der compingente a1gebra’s ook opgevat kan
Wcrden als een puntloze topologie (vgl. K. Menger [23]), wordt dit
aspect hier niet verder bekeken.

In het eerste hoofdstuk Worden de compingente algebra’s als
zodanig bestudeerd, terwijl ook het Verband met de bijbehorende
compacte ruimten opgehelderd wordt.

In het tweede hoofdstuk wordt de compactificatietheorie van
Volledig reguliere ruimten behandeld, waarbij op de gelijkenis met
bestaande compactificatiemethoden gewezen wordt. Ook wordt
de Verwantschap met de theorie der nabijheidsruimten, Vooral als
ontwikkeld door J. M. Smirnow [30], aangegeven.

De laatste twee hoofdstukken handelen over de toepassingen Van
de Voordien ontwikkelde theorie. Eerst Worden o.a. stellingen Van
C. Kuratowski en H. Freudenthal over quasicomponentenruimten
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en eindpuntcompactificaties enigszins Veralgemeend, waarna een
tweetal stellingen bewezen wordt over het Vraagstuk van de
karakterizering Van de complementen Van n-dimensionale ruimten
in compacte ruimten, dat afkomstig is van J. de Groot [13]. De
eerste twee paragrafen Van hoofdstuk 4 geven veralgemeningen Van
stellingen Van E. G. Sklyarenko en C. Kuratowski over gewicht- en
dimensiebewarende compactificaties. Ten slotte Worden stellingen
bewezen over het bestaan Van compactificaties die niet alleen het
gewicht en de dimensie bewaren, maar ook de Voortzetting Van
gegeven continue afbeeldingen toestaan. Hierbij wordt aangesloten
bij resultaten die Verkregen zijn door J. de Groot, R. H. McDowell
en R. Engelking.
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STE LLINGEN

I

Er zijn torsievrije abelse groepen Van rang 2, waarvan de automor­
fismengroep een cyclische groep Van de orde 4 is.

Lit. H. de Vries and A. B. de Miranda,
Math. Zeitschr. 68 (1958), 450-464.

II

Voor iedere eindige groep G is er een eindige primaire groep P
waarvan de nilpotentieklasse 2 is, terwijl

A(P) / Z g G,
als A(P) de automorfismengroep van P is en Z bestaat uit de
centrale automorfismen van P die de centrumelementen in Vari­
ant laten.

III

Zij G een eindige groep, die Voor elke priemdeler 15van zijn orde
precies 15+ 1 1>—sy1ow0ndergroepenheeft. Dan geldt:

15 l | G | =>15= 2 of 15is een priemgetal Van Mersenne.

IV

Zij G een eindige groep, die VOOI‘elke priemdeler 15Van zijn orde
precies 15+ 1 15-sylowondergroepen heeft.
Zij Verder C57,,opvolgend 917,,de symmetrische, opvolgend alter­
nerende, groep van 7; objecten, en L2, een splijtuitbreiding Van een
elementair abelse groep Van orde 15+ 1 als normaaldeler, met
behulp Van een automorfisme van orde p, waarbij 15een priemgetal
Van Mersenne is. Stel

A = X {Lp| 25HGLJ5 >3}­
Dan geldtz G heeft een zodanige nilpotente normaaldeler N, dat:

G/NgC54 X A of G/Ng9I4 X (53 X A.



V

Er zijn meta—abe1segroepen met exponent 6 en continue machtig­
heid, waarvan alle sylowondergroepen aftelbaar zijn.

Lit. L. G. Kovécs, B. H. Neumann F.R.S.
and H. de Vries,
Proc. Roy. Soc. A, 260 (1961),
304-316.

VI

Zij G een abelse topologische groep, die elementen van oneindige
orde bevat. Dan is de t0pologische-automorfismengroep van G
niet isomorf met een diédergroep waarvan de orde ten minste 6 is.

VII

Iedere oneindige, lokaal compacte, periodieke, topologische groep
heeft oneindig veel topologische automorfismen.

VIII

Iedere compact voortgebrachte topologische groep, waarvan dc
conjugatieklassen eindig zijn en waarin de verzameling der perio­
dieke elementen dicht ligt, is compact.

IX

Als V een Verzameling van continue machtigheid is en f een een­
duidige afbeelding van V op zichzelf, dan bestaat er, onder aanname
van de continuiimhypothese, een topologie voor V, waardoor V tot
een compactum wordt en 1‘tot een autohomeomorfisme van dat
compactum.

Lit. H. de Vries, Bull. Acad. Polon.
Sci. Cl. III, 5 (1957), 943-945.

X

Als H een hausdorffruimte is, dan geldt, de notatie van het proef—
schrift gebruikende:

O(H)= K(H)<> perifeercompact.Iv



XI

Als S een semiconvexe deelverzameling is van de n-dimensionale
projectieve ruimte en 5 geen lijn omvat, dan omvat het complement
van 5 een (n — 1)-dimensionale deelruimte (n 2 1).

Lit. J. de Groot and H. de Vries,
Comp. Math. 13 (1957), 113-118.

XII

In het bewijs, dat C. Lech geeft van een uitbreiding van stellingen
van K. Mahler en Th. Skolem over het op de duur periodiek
voorkomen van de nulwaarden van de taylorcoéfficiénten van een
rationale functie, wordt een niet geheel gerechtvaardigd beroep
gedaan op resultaten van K. Hensel.

Lit. C. Lech, Arkiv fér Math. 2 (1954),
417-421.
K. Hensel, Theorie der algebraischen
Zahlen I, Leipzig und Berlin, 1908.

XIII

Uit velerlei overwegingen blijkt het gewenst en mogelijk, dat een
gelijkvormig schrift voor de talen der wereld ingevoerd wordt, en
dat tevens spellingen gebruikt worden die bij voldoende benadering
fonetisch zijn.

XIV

Bij de inrichting van het onderwijs zoals deze in de zogenaamde
,,mammoetwet” wordt voorgesteld, is het ongewenst de cursus
h.b.s.—bzesjarig te maken, tenzij hieraan een wezenlijke Verdieping
van het programma gepaard gaat.
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