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0. INTRODIACTION

Thisthese; is concerned with constructive reasoning in descriptive set theory.

The venerable Subject of‘ descriptive set theory was developed in the early
decades of this century, mainly by French and Russian mathematicians.
It started from the following observation;
once the class of‘ continuous real Emotions has been established, one naturally
comes to think of‘ the class of‘ real Functions which are limits of? everywhere
convergent Sequences OF Continuous Functions.
This wide: class can be extended in its turn, by the same operation of-’
forming limits of everywhere convergent sequences.
This goes on and on, even into the transpinite.
Thus a splendid structure arises, called =' §aire’s hierarchy.

The same story may be told in terms of‘ sets.
Looking at the subsets oF Baire space ‘°w which are Forced into existence
when we allow For the clopen (= cJosed- and-open) neighbourhoods and then
apply the operations o(-‘countable union and intersection again and again,
we may wonder once More, because there is no end ol-‘it.
One aFl:er another, the classes oF Borel; hierarchy present themselves, each
Containing subsets of °"w not heard of‘ before,

No Borel class exhausts the possible subsets o[3 “’w
l7\is can be proved in a Few lines; one shows that each class contains
at universal elemgn_t and diagonalizes. (cf. chapter b, esp. blu)

However, the very ease of the proof-‘ arouses suspicion.
People like Borel, Baire, Lebesgue, who were the First to raise and answer
many questions in this Subject, spent much thought on the plausibility oF
their arguments.
Diagonalizing was Felt as cheap Pea-Sohing, especially by Baire.
Avoiding the diagonal argument, only relying on methods ,,From practice’:
one succeeded in showing up members of’ the first three 0'” Four classes
oF Baire.

DLaqona[[2£nq’ OF Coup-ge’ wag nolj the WOV’StOF €VtlS. Ifl l-USCHISCatalogue,
to be Round.on page 55 of I930, it comes immediatelyafter
,, normal constructive argument‘: before such horrible things as-. the use of
R1 as a well-defined, Completed mathematical set, or, even worse, the

essentially incomprehensible argument by, which Zermelo established o.
well- ordering of any set, from the axiom OF choice.

Now, For heanI?Jn’s sake, what might be wrong with the diagonal argument?
From a classical point of‘ view, one cannot bring up much against it.
In fact, as soon as we agree upon the meaning 0? negation (P and ‘'l’
cannot hold together, whatever be the proposition P) we have to accept it.
But in intuilzionisrn we may Find. an explanation for our uneasiness.
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Let us remark that, classically, we may build up the Borel sets in ‘”w From the
Closed-and-open neighbourhoods, using only countable union and intersection.
Complementationcan be missed 0.9 an operation For making new sets out of
already existing ones: as the complement of any closed—and-open set is
closed- and- open, the complement of any Set bull-t From the closed- oind- open
gets by countable union and intersection, is such a set again.
This certainty is given by such wonderful guardians of-‘classical symmetry
as are de Morgan's laws.

De Morgan's laws are not acceptable, intuitionistically, apart From Some V91)!
Qimplesituations, From which they were derived by 0. crude generalization.
Wecannot explain away complernentation, or, more qenerally, the analogue
of logical implication, as methods of‘ constructing sets.
But we might try to do without them.

We will do so in this treatise.

When negation and implication are put aside, the possibility of diagonalizing
is taken from our hands, and the hierarchy problem is open again.
A solution is given in chapters 6-9.

There is good reason to consider negation and implication with some
caution.
Many unsettled questions in Lntuitionistic loqic are connected with them.
(Compare the discussion in the appendix, chapter l7- We are not able to
decide how Far the divergence between classical and intuitionistic logic goes.
Also, at curious role is played. by negatibn in the recent discussion
of the intuitionistic completeness of‘intuitionistic predicate logic, cf.
de Swart l9'2‘6, Veldman I976)

The intuitionistic hierarchy has a very delicate structure.
The class of the closed Subsets of Baire space,For instance, is no
longer closed under the operation of Finite union. One has to distinguish
between closed sets, binary unions of closed. sets, ternary unions of
closed Sets, and So on.
This phenomenon is discussed in chapter 4.
The productive force of disjunction and conjunction is explored f-‘urther
in chapter 11.2.0-7.6 and chapter 120-}.
zlmplication, although absent From chapters 6-9, L9 "05 Completely lc°"9°tb€",
and, We will see, in chapter 5 and chapter l2.8‘9 that it Shares in some
of the properties established For disjunction and conjunotlbn.

Distrust of diaqonalization is one OF many points on which early descriptive
Set theorists and intuitionists have similar views.
Their common basic concern might be described as-. exploring the Constructive
CON-'-Uvuum. _

Brouwer’s rejection of classical logic is, of‘ course, a major point 0F
dif-‘Ference.
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But one is tempted to ask not the main theorem of this essay, which .
establishes the intuitionistic hierarchy (chapter 9, theorems 9.? and 9.9) Wqbt
have delivered Baire From his $¢WP'€9­

Since Addison 1955 it has become customary among logicians to Consider
descriptive set theory For its Connection with recursion theory.
We will bypass this development.
From an intuitionistic point of view, recursion theory is an ambiguous
branch on the tree of constructive mathematics.
The deep results OF this theory depend on very serious applications OP
classical logic,
And the classical continuum, which is 0. rather obscure thing, is accepted
without any comment, as a suitable domain of-‘deFi'nition For effective
operations.

Nevertheless, there is an analogy between recursion theory and the theory
to be developed here;
Many paradoxical results of elementary recursion theory are due to theFact
that Functions and functionals are Finite objects, and, therefore, of the
same type as natural numbers.
Now, Functions From Baire space “in to We», being necessarily continuous,
are determined by a se uence of neighbourhood Functions, and thus may
be seen to be themselves members of Wm,
Once more, we are in a. situation where Functions do not differ in type
from their arguments and values.

We also have to admit that, there is any elegance in these pages,
it partly is due to modern recursion theory.
For instance, the Following concept of many- one reducibility between subsets
of ‘*’u) is starring

A:<.B == Elfff‘ is a continuous Function From woo to “’w and Vo<[oieA2Pb<)eB]

This so—ca.lled ”li\/o.oige—reducibility" was made the subject of classical study
by some students of Addison's (cit Kechris and Moschovalg I978’
ht-_e9e. '98".).
Their methods, however, are very far fl-om constructive,
We introduce this concept in chapter 2, after a short gxpggitfon of‘ the
principles of intuitionistic analysis.

In the second part oi.‘ this thesis (chapters l0-l‘l) we turn to analytical sets,
and the prcwpctive hierarchy. (cf. Note 3 on page 216).
Analytical sets, being close relatives of good old "spreads", get a chapter
of their own. it will be seen that the classical duality between analytical
and co- analytical sets is severely damaged. (chapter 10).
Some Famous results OF Souslin’s are partly rescued by Brouweirg
bar theorem, which we will prpsent here under the name of Brouwer’s thesis.



(This expression means to suggest an analogy to Cl'\iLrch'sthesis in recursive
function theory, that all CO-lCU-lCl-ble.Functions from a) to U.) are, qengral reguy-give)
(c)\a.pter 13)­
1;‘?we persist in excluding negation and implication, the projective hierarchg
does not exceed it?» Second |evel.(chapter lh‘).
lhis is a cons uence of the axiom AC1, which has been introduced and
advocated in chapter 1.

In chapter 11 we study the typically intuitionistic Subject of‘ "quantifying
over small spreads."
Rather surprisingly, quantifying Over the Very Simple spread (72
lead; to sets which are not hyperarithmetical.
Like some sets in chapter ’-l, these sets turn into more complex ones
when they are given a treatment by means of‘ disjunction, Conjunction or
implication.
In chapter 42 We Find many other sets which have similar properties.

A al readyDYIO

The proper place of the last three chapters t|'5~l7) is the margin

In chapter l5 we ask ourselves n/not is the domain of validity of the
principle of reasoning which we get from the axiom AC0, , introduced,
in chapter 1, by “constructive contr0.pOsitL'on'3

lhis principle is vital to many a classical discourse.
It may be Seen as 0. simple case of the axiom OF determinoicy.
Chapter 46 pursues this line of thought 0. little fiirther.

In chapter if we mention an annoying problem which we could not solve,
and some quasi—solutions.

-lhe §ynQp_s_i_s_is an analytical table of‘ contents.

On the scene 0? contemporary mathematical logic 0 family reunion is
being held, at which the different branches 0? the discipline cooperate
in Seeking for 0. new understanding of the beau.tifu.l problems which ‘
occupied oiir grandfathers.
Recent books like HWHO-0“"373 and Moschovalcis lqso report about it

to now, intwitionism has been absent.
Here it comes, at last, ignoring the question Whether it has been missed,
or was invited, and raises its voice, somewhat timidly, in the company of
so much learning,
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4.0

1.1

5

A SHORT APOLOGV Foe lNTulTlONlSTlc AMALys|s

In this chapter, we want to give a. sketch OF the conception o? intuitconcstcc,
analysis that guides our thought
As may be expected, our l__Q_c3{£will -be intuitionistic; indirect arguments
are put into their proper place, and. are seen to prove less than direct:
ones; we clearly distinguish -- (P./a) From Pi/Q, and. -l-.Eln]_‘A(n)]from ?ln[A(nl]
The math objects o{-‘our considerations will be-. natural numbers and
infinite Sequemces oF natural numbers.
Let us take a closer look at them.

‘‘‘’ww is the set of natural numbers,
of natural numbers.
We imagine such sequences to be built up step by step in course of time-,,
there is no necessity for their being completely described at some Finitemoment
One may restrict the Future development of an individual seguence more or
less Severely, from excluding some possible continuations, up to destroying
all freedom .—such that the sequence follows a uniquely determined course
lhis idea) roughly the one Brouwer had in rnind,is our point of departure.

is the set of all infinite sequences

In recent expositions of lntuitionism, like lroelstra lgfi, one sometimes
pre[3ers another basic concept-. that of sequences growing in complete,
never to be restricted freedom.
These objects are supposed to satisfy a very odd Set of axioms.
We do not like them.

(lntwtionism is trying to give a precise and reasonable account of’the contimwm,
as it is known by the l‘r\O.l’heVncl:ician.

Lawless §_e_quences are strange things which do not occur in daily life.
Although it is possible to construct somethin like the continuum from them,
one somehow does not like to be told that this is how real numbers really are)

We cling to the older tradition.
We introduce a quartet ol-‘axioms
them.

choice andata-2-1:.of c_o_n_t&tyand plead For

Let A_C.ww

If b’nElml_'A(n,m)], then 3oi\7'nl-A(n,o<(nll‘.l

AC DO

(We use mm... for members OF ou, and oI,p,... {br members of ‘*’w).

We defend. ACOO as Follows;

Suppose: VnElmtA(n,ml], we then determine, one after another, First,
a natural number no such that A(O,n,,), then a natural number n,
such that A(i,n,),... and so on’.
we is notJ\ing but creating step-by-step our-.“’wsuch um Vn[A(m°l(nll]-El
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We emphasize that ACOO does n_q_tsay the following:
I? VnSlm[A(n,mlZl,then we can give Q description of an oneWw such that
\7’nEAin, dlnll3

Sometimes, (qt. Troelstra. lqfil, it is given this kind of interpretation by irxtuitionistie
mathematiciams.
‘me set A is then subject to the Condition that it, too, Should admit of a Ema
description.

1.2 In order to state the next axiom, we need. 0, pairing Function on u).
In Viewof‘ later developments, we do not go the shortest way

Let <>-. U Lou r-?> in te a (‘axed one—to-one mapping of‘ the set of

all Finite srfquuemcesof natural numbers onto the set of natural numbers.
< > is O. coding of the finite sequences.

Every natural number now stands for a Finite sequence of‘ natural numbers.
-1-:zua —-)W is the binary Function on to which corresponds to concatenation,
i.e. For all m,new:

mam == the Code number OF the Finite sequence that one gets
by concatenatinq the Pinite sequence coded by m and
the Finite sequence coded by n

We define, For all m,new

rnsn := the Finite Sequence coded by n is an initial part
OF the Finite sequence coded by m, i.e.= ilp[m=n*p]

We suppose that our coding Fu,lFils the following c.ond.il:ion:

VmVnC men —>nsm].

lherefisre, the empty sequence is coded. by the number 0.

For all ote°"w and. new we define "on and on” in ““w by.­

Por all new: "o((m_) =~ 0i(n*m)

l3or all new: a"(m) == oi(<n>*m)

1.3 ACO1 Let A<_: wx‘*’w‘

Ill‘ Vnfloi CA(n,o<)], then 3aLVnEA(n,o("l]

We del?end. AC0, as Follows;

Suppose: Vn 3oLtA(n,oLl]
We First start the creation OF 01‘ 0‘/l'3‘-"‘¢l‘<’—sequence do SUI‘-hthat A(O)°(o)

Tncs job will ask For our active atte/‘ntion infinitely many times.
This does not prevent our starting a second. Oxfinite P"0.l€¢t in the
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meantime: the creation of‘ an infinite Sequence cg such that A(l,ot.)
From time to time we will have to look after the progress of work on am
From time to time we will have to look al-‘ter the progress of work on oz“
but) still, this does not occupy all our mental powers: we can put more
kettles on the furnace.

Our program For constructing oi sequence oi such that \7’n[A(n,o:")]is
as Follows:

asStart a project B, For creating an inf-‘initesequence do such that
I’-\(0,ol.,l-Continue work on B, For one step and deFine= o<°(o)==ol°lO)

asStart on project P, For creating an inf-‘inite§equence oi, cuch that
A[1,o(4).COfll‘.tl'\lA-3 Nork on Po For one step and deFv.'ne- o<°(1) ==o(o(1)
Continue work on P,, For one step and define: o<‘(o)-==u,(0)

*9tO.rt a project P: for Creating an Lnf-liniteSequence OlzSuchthat
A(2,o£z). Continue...

Apparently, we believe in our ability to keep Several mfmite projects
going at the saune time. A good memory is usef-‘ulin these CU‘cu.mstanc,e5_
E

Like AC ACD1here has a. meaning different from the one it has in l lg};00’

Hi The next two axioms usually go under the Flag of I,principles ojf continuity"
Their introduction requires some more technical conventions.

We define a. Function 3?: u)—->u: 6.1,

for all mew: Q<3(m)==the eengu oi‘ the finite Sequence coded by m.

F0!’ all ote‘*’u: and ne LU, we define:

(in == < 0((O),_,..,ol(n-1])

Remark that, For all 043Wu“ ao -.—_< 7 =0

We also Write) Gar all ole:-:“’wand mew:

olem == Eln[5ln =01]

(l'.€.=- the infinite sequence ot passes through
the Finite sequence coded bx)m)

For all Xewuu, oie‘*’u», new, we defuse;

gzoir-an ::= amt Vp[p<m -e {lap}-=0] A 5(5lrn]:n+1]

For all Keww, We define-.

K: Wu.»-aw (or: Funlgfi '-= Vaflntjpotr-in]

LQJI (6 “to be such that l-‘unlgjl, and ole ‘*’w. We then write=

Kloq := the unique new such that K: on-‘rn



1.5 PiC4O Let A; Wu) x LU

IF Vot§ln[Aio<,n):l. the" Elgl: Funlgl A ‘V'ottA(ot,3/lotlljll

We defend. AC,o as Follows:

Suppose 2 Va Elnt Aloi,n)]
We have to make a sequence 5 in Wu) which fulfils Certain conditions,
and, as one may guess, we will do so step by step, fixing only one value
of I at a time.
Suppose this work to have proceeded. until stage n, ie.-. ((0), ((1),.-.up to ((n-1)
have been determined already.
We now consider the Finite sequence of natural numbers which is coded
by n, let us so.y- n-- <r\o,n,,...,n,,7
This Finite sequence‘ may ire thought of-‘as lreinq Ule initial part of an
infinite Sequence oi, which is disclosed to us step by step
While listening to the successively Created values of-’oi we are expected,
to Find. a natural number p Such that A(oi,p)
We cannot wait indefinitely and have to act at some time.
When [3 €V€J'\tuOlly is determined, therefore, only a Finite part ofoi
will be known to us,

Some Finite initial part of 04 Should contain suFFi'cie.nt inflgrrnation, so tosay,
for p to 66 calculated­
Looking at n, we may ask: is this finite sequence long enough as an
initial part oi oi so as to enable us to find a natural number p such that
A(oi,p)?

If’ so, we determine: (in) == p+1, where p is such a number
if not, we put: Jih)-= 0

In this way the construction of J is continued.

Now one may have doubts whether Vaflntgfiafll #0]
Al-‘ter all, during the construction of J only such sequences oi are
considered, as are growing step by step in freedom, "Oh be“? 5“bl€Ct
to any restriction given befbrehand, or coming to mind on the way.

This objection may be answered as Follows:
Any Sequence from “’uu,even 0. Completely determinate one , can be imagined
to lte the outcome OF0. Sl:ep-by-step- creation.
(We do not want to distinguish between sequences ogp. which Pull-‘il
Vr\toi(n}=f3(n)], although one may have had different things in mind
when making them '
Any Sequence is extensionally equal to some sequence growing in
complete Freedom. '
Some modern opinion (cf. Troelstra 16377)holds that this is impossible,
0.9 "beinq equ.o.Q to some determinate sequence" would COnFlict with
"toeinq created in freedom‘?
Vexinq questions on Freedom may be asked now, but they are left
to the reader, or any philosopher, to muse upon.)
13
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1.6 We now prepare the way for the last of‘ our four a><L'orns, when is the most
debated one.

For all geww, o<e‘*’w, pa Wu), we define-.

K: o<r—a[s == ‘c/n[ ({"=ozr—>pln)]

lBr all Keww, we define;

5: Web—->War (or: Fu.n("ll == Vnl.—Fu.n(X")] Note 2 on page 216)

Let Xe“’uu 6e Such that Funlgl, and o(e‘*’w. We then write-.

Klok == the unique p.e‘“au such that X: o(l--)/S

1.7 AC“ Let Aéwu) X ww

IF \/ol:'lp.l[A(ol,p)l, then :‘lK[Fun(6) A \7’ocl,'A(ol,Kloz)]]

AC“ will be def-‘ended by a rather involved argument, which has Features
in common with both the argument For AC0, and the argument For AC").

Suppose: Vol3p[A(ol,p)] .
We have to make a sequence X in “”w which satisfies a certam
Condition.

In lhct, thfis conditcon on X is stalled Ln terms OF its Subsequences
0 1

lll/QXv:/[llbuild up all subseqaences {°, gt... step by step, but simultaneously)
Le.-. at stage n, all values fin), K'(n),,,. will be deliermcned.
To be sure, only g°,U‘,... up to X”, properly get into Focus at stage n,
that is to Say: VmVn[m>n -9 ;"‘(n]=O]

Now suppose our work to have progressed so Far, that all sequences
°.K‘, have their Values Faxed in all pocnts O,1,.-.up to rl-1.

Whal: about their values in n?

Let us look at the FcnclaeSequence oF natural numbers coded by n,
§Q.y'- n : <l1°,...,l'l&>
We consider this sequence together with its predecessors: <>,

(no), <no,n1>,.-- <n°,n,,...,n&_1>. lhe values of K°,X‘,...at these
predecessors have been fixed already.
We calculate. the Smallest number p Such that Vm[U\Sml\“=/Ml‘)XP(ml=Ol
As Vm[(n§m A nqém)-) K"(m)=:O'l,thL's number may be Found.

We now imagine n=<no,...,n,L> to lye the Initial part of an énfcncte
sequence at, whose Values are given to us one by one, successively.
We should be able to calculate [5 in ‘*’w such that A(d,p)
We started already a. project for creating such a sequence [5,as
appears from the part of?’ which has been completed by now.
The Finite Sequence n turned out to contain sufficient information
for deciding about plo),pm, up to [scp~1l
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We ‘now continue this Qame project For creattng 0. suitable partner (5
to the qrowcnq sequence o( and ask ourselves-. does n=<"o,N.,---Np
contain Suffcccent information For decoding about PCP)?
If‘ so, we deliermcne a number q which may Serve as p-tla value
of‘ [5 and say; XP(y\)-,-.,q+1
IF not, we put: KP(n) -.= o
All other subsequences OF I are lell‘t alone now, So: l/€[2=;lp_; J90‘):-.0]

In this way the Construction of-‘J, Cs being contcnued.

Now Suppose o(e‘*’ou, at being given step by step.
By reFlectL'nq upon the construction OF 5, one r~eoJl‘z.essuccessively-.

Elm[{°(5lml¥O] l\ 3ml:x‘(6'Lml#0] I\ Elml:J‘(5l"‘l=/0:l’\--­

Hence: VotVn3mf5"(6'Lm):,+o], ow; -any sequence 0L can Ge thought OF
as becnq qcven step by step, and. we see: Funtgl

In the same way one persuades oneself about: Vot[A(o(,gl0l)]

U

1.8Sometimes, in exposétcons of-‘ cntu.Ltcom'.st£canalysis, the insight which sustains
AC“), is given 0, less bold f-‘ormulolcion, in the following conl:L'nuLty prCncgg'le=

CP Let A; wwxw

If Vol3nl._A(ot,n).-l,then \7'o(':'lm§ln\'/{5[{';m=am -9 A( p.,n)]

Formally) CP is weaker than AC“, (cf. Howard and Kl"€l.S€,lI966)

As CP easily Follows from AC“), we need not def-‘end CP, apter all that
has been said. in fhvour of-‘ AC“,

1.9 Let oteww and {;e‘*’w. We define;

oce-[5 == Vn[[3(5ml=0]

Let {5€“’w. (5 is called 0. subspread 9? ‘fig if‘ at Fulféls the Following
conditions;

0) [}.(<>)=O

an) Vmf {5(m)==O g2 Elnf [3(rn+'<n>)=O]]

IF [5 is 0. subspread. of‘ “’w, we are interested. in the set .[o<|o(e“’w[oze{a.}
which we, at the risk of‘ some c,onFuLsLon,also denote by [5, and. call
<2. spread.

IF [3 is O. Stkbspread. of’ Won) the corresponding subset of? “w may be
treated like Woo £ts9«lF­
It makes sense, thereFore, to introduce the following ,,relo.tcvczed" concepts:
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Let fse“Um 02 a subspread of “Jw and ye ‘*’w

We write: K=‘s—>w or: Fanplg) Cf Vot[o¢e(5->:'lnl'K(&n);£O]]

(If l:l.AJ1P(‘)and otep, we define;

{lot} =.-'. the unique new such that [=o<r—9n)

We write: K: (5% ‘*’w or: Funrbq) Cf Vnf l-‘un{5(x"l-l

(IF Funplx) and okefs) we define:

Xld =.-. the [2.e°"wSuch that you-)f5)

We are able, now, lio enu.ncdal'e some of our prL'r\C:Cplesof-' choice and contmwty
In 0. more qeneral setting:

GAG“) Lel: Ag wwxw and fseww lie (1 subspread of‘ “co

IF voa3n[A(oz,n)], then a,I:Pun,,,q) A \v’o<e{!»CAw, M1]

GACH Lei: AQ ww xww and peww le 0. subspread OP Wm

IF Von38[A(<x,8l], then 35[ Funpég) A Vote{!~l:A(o<,X1o<)]]

GCP Let A; (“w xuu and '36 ‘*’w 6e 0. subspread of’ Wm

IF Votep3nlAlol,n)], then VozepilmElnV5[ 7§m=3W‘ -9/V5,“l]

We may argue For lhese generalized principles Cn exactly the same way
as we did For the unqeneralized ones.
Or, if we pref-‘er so, we may Formally derive GAC“) From AC1O,
GACM From AC" and G-CP From CP.
We do not go into details.

1.40 We above presentation of the basic. CLC$u.mpfConsof-’ énlzuétéoncsticanalysis
owes mu.cl\, if not all, to many discussdons in Ngmeqen in whack II. de Iongh
and w. G’-ielen took the lead (cf. G_:|'§l__§_n,de 9uo.rt gLn9_l_Veldman l98l, and.
G-felon I987.) .

(Tncs cs not to make them responsdale For any lack of Clarity}
Tfie oultcome OF our eonscderatcons does not differ on any essential podnt
From the axiom system in l;le__e_r_\_eg_;1_g_1l_/_e_s_l§yI965, commonly known as FIM

AC", For instance, corresponds to *272 an Kleene c_y_\_c_1l_/§§_l_e_yI965

The names we have given to the axioms are new, and def-‘Fer from
the names used in Tfoelslrra. l9?3, Tr-oelgro. M77
We introduced them Cn Gielegg de Swart a_n_q_LVeldmam I981
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2_o Theorem:

Z.I

AT THE BOTTOM OF THE HIERARCHY. A DISCUSSION OF BROlkWER'KRlPKE'$ AXIOM

For Some time past, it is known, that AC” is inconsistent with <1 generalized
form of-‘ Brouwer-Kripke’s axiom.
We repeat the simple argument which shows this because the hierarchy
theorems that will appear in the Following chapters may be viewed as
attempts to extend and generalize this Fact
We include a Short discussion of? the axiom itself-‘.

-*\7’a3pl: Vn[oi(n)=O] 2 3nlf[%(n).-.03]

Voiilpl-Vn[oi(n)=O3 3 5ln[[3(n)=0]]

l,Lsihc3 AC“, determine 8e“’u: Such that 8: Wu; —->‘*’w and:

Voii Vr\[o((n)=O] 3nl:(5I0i)(h)=.Oll

Consider the special element 0 of “in which is del-‘ined by: Vnf Q(n}=O]

Proof -. Suppose:

2-’

We know: ElnL'(5lQ)(n‘)=O]and we determine mew, new such that:

5"(§ml = fl and Vptp<m -9 8"(§p)=0]

Them Voi[6lm= Qrn -9 (5loi](n)=O]

Therefore: \7’oi[&m=_5_m —) Vn[oi(n\=O]]

This, of course, is not true.
3

BK Let O1 lre a mathematical proposition

(Brouwer- Kripks/5 axiom) Then: 3o([O_, Z2 ;__,n[O,(n)=O:,]

In order to see the truth OF this principle, I have to remember that, essentially,
I am alone in this world, oloinq mathematics.
A theorem is proved only if I myself‘ succeed in making the construction
in which its truth consists '

(External circumstances (meeting
me substantially, but they
mathematical truth)

Brouwer, drinliincy coFf‘ee) may have influenced.
have no place in 0. picture of the essence OF

A sequence oi from ‘*’w may be built up step by step in the course OF time,
and this may be done without any haste, although, having determined am,
I haxe to come with the next value OFoi’, I am not to delay this indefinitely.

But why should not I use the whole 0? my mathematical Failure For the
construction of oil
Then 61, iF true, Should the experienced as such durin the construction of‘ex.
While numbering the stages of my mathematical life O,1,2,... successively,
I define oi(n)to be 0 if I succeeded in proving 61 at stage n, and to be 1,
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ill I did. not.

(A difficulty is, in our opinion, that, sometimes, we Want to perform transFincte
Constructions. How do We schedule them in 0. fiiture which is only a.
countable Sequence of stages 2)

BK in Full generality ConFlicts with AC“ , as is evident From theorem 2-0
'lTie First Published prooF of-‘ theorem 2.0 is in [’l_yh_il_lI967.

Theorem 2.0 was a hindrance For people who tried to formalize intuitionistic
analysis. Sometimes, they decided to reject AC“ in Favour of BK.
This seemed to te in accordance with Brouwer’s own intentions, as,
in Brouwer I949 , he used. the axiom in the generalized Form.

An alternative way out OF the conflict was shown by I]. de Ionqh,
who suggested to restrict application of BK to determinate propositions 01,
ie, propositions about which an information has been given and. which do
not depend. on object; whose construction has not yet been completed.
(we are not thinkmq of‘ objects whose definition has still to be ,,worked oui'.'
but of objects in whose construction there is some Freedom |eFt-)

A more extensive discussion may be found. in Gielen, gig Swart and VelolmanI991,
where BK has been used For giving intuitionistic parallels to classical
proofs OF the Contor-Bendixson theorem and its extension by Sou.slin.

BK does not Figure in the Following, except that it will sometimes, in a helpl-’ul
whisper, aid our intuition Concerning the truth or Palsity oF certain propositions.
up '-L1).

2.2 Theorem: “Vot3[3t 3n[oi(n).-.0] Z.’ \7’nl[5(n\=O7]

Er-_Q2f-.Suppose: vaapi an[o<(n)=o] gj Vn[[‘s(nl=01]

Using AC“, determine 5e‘*’w such that 8: woo—->‘*’cuand:

Voll: 3n[o1(nl=o] :2 \7’n[ (8|oi](n)=o]]

1 of Wu) which is defined by=Vn[.1_(hl=-ll1Consider the Special element

We claim: Vn[(5l_1,)(nl=O]

For, suppose-. new and (Sl1_.\(n)¥O

We determine mew Such that: 8"l1Inl+Dn5"(im)+1AVplp<m->8"(1p)=O]

Then: Vaiam = 1m —> (8loi)(nl = (Xl1)(n]:l

and-. Voi[6im = 1m —> —=Vn[(S|ot)lnl =01]

so: Voi[am = im _~, -.3n[oi(n)=0‘]] and this is not So.

Therefore: Vn[(8l$)(n\=O] and-. -Elnl: iinl-:0]
8's Failure is obvious. E
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One cannot escape the feeling that 5, the protagonist of-"this last proof‘, is
being trapped 0, Q base wag, One Forces him to be earel-‘ul about «SI;
0-5101,later on, this caution is held against him.
In comparison, the play was more Fair in theorem 20.

2.3 That theorem 2.0 is not an isolated RICE and might herald the birth
of a, new theory, was suggested by I)‘. de Iongh.
We now prepare For this m0l'€ qeneral theory.

Let A,B Ce subsets 0F “"w. We deFine-.

A43 ;-.- Vo<:‘lp[A(a) ;> B(p,)]
(A is reducible to B)

Using AC”, we See that: A 5 B if and only if 38[Fum(<S) A Vocl_'A(oLlZ3 B(5loL)7]
IF we want to avoid the use of/\C'1,, , we might define: A43 by-.
35[Fiu1(5) A \7’oL[A(o<)4'2 B(8|oL)] (cf; Note 3 on page 216).

Intwitively, the meaning of "A58" might be described as-.
We have a method For translating emery question whether some element
of ‘*’w belongs to A, into a guestion whether some other element of Wm
belongs to B.

This teducibility relation is, obviously, reFlexive and transitive,

Classically, this mo.ny—one-reducibility-rela1;ion- is called Wadge- reducdoility.
(Cf. Kechris and Moschovakis lq78, Moschovakis lqao, |A_@:g9§198?)

We introduce the subset; A1 and E1 of “on by:

for all ole ‘‘‘'w-. A, (oi) := t/n[o<(n)= O]

For all o(6 ""w = E,, (oil == 3n [am]: 0]

We have seen, in theorems 2.0 and 2.2 that “(A124,E1) and -*~(E,£A,)

We also need the strict reducibility relation:

Let A,B Ge subsets of‘ ‘*’w. We deFine=

A-(B := A "'(B:_<.A)
(A is strictly reducible to B)
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3 THE SECOND LEVEL OF THE ARITHMETICHL HlERARCH‘/

Two theorems will be proved which are 0. natural extension of’ the theorems
ol‘ the prevcous chapter.
The leading ideas of‘ their proof‘: willcontinue lb inspire us, up to chapters
7r and 9.

3.0 We consider the subsets A,_and, E2 of ‘*’w, which are defined by:

For all ote ‘*’oo=

A2(a\ :-.-. Vm§ln[a"‘(nl= 0]

Ez(oLl == Elm Vn[oL"‘(n).—.o]

We leave it to the reader to Prove the Following aasy Facts;

A15/X2 ) E1gA2 , A1-_<_E2_ and E1-5E2

3.1 We Followincj is an (mportaht remark on A1:

Aecordcng to ACOO= V0([A2_(oLl Z.’ 35 Vml:oL'"t{(m\l=0]l

For all 56 ‘*’w and ole won, We defcne ‘Not in “on by-.

For all mew, me lo:

(K:><:ac\m(n) -=- 0 '\=={("‘l

== o(”'(n) ([3 r\=fJ(m)

and: qua) (0) :=-0

Remark that: ‘v’o<[Az(oLl {.9 El5[oL=5I><no4]]

Let us make 8e ‘*’w such that Fu.n(8l and V/o<l:5l0< = °‘°l><| 0”]

Observe that: Votl:/\z(o(l Z’ 3l’>l.-04'-'“[5-ll

Let us define, For all 56 Wu), (1 Subset R0.(5l of ww by-.

R045) =-— {oL|o(e‘*’w I El[sE3= {Areal}

L” I-9" has been introduced in 1-9)

We have seen: 35[ Fu.n(5l A /\,_= RG(5Y.l

This is o. U.$eFu.l property, which A,_ shares with many other sets.
(cl-’. 7.0 and lO.7)_



3.1 Theorem =

Er2_°F=

"(A25 Ezl

Suppose: A14 E1, i.e.: VoiElp[A,_loil :2 Ezipll

using‘ AC“, determine 5 in Woo such that: Funlél and Voi[Az(oc)gE2(5|a)]

Consider the intertvvining function N) introduced in 3.1, and. observe-.

V5 Voif E2 (<Sl(gx><1o())]

Consider Q in Wu), the Sequence that is defined by: Vn[Q(nl=O]

Using CR determine pew, qew, mew Such that,

v,voiI:(gP=c:>p A aq-.-Qql ——>Vn[(8l(p<Ioi))m(n)=0]l

Let us pause for a moment and imagine the sitaationz

‘g-span-‘-l"l"*

We are assuming-. Vail:/\,_(oil§_‘lEz(8loill

We think of "oi" in this Formula as being built up step by step by

a creative subject, whereas Sla is being made by a less creative,

imitative subject) who does .not make a sequence of his own, but

transcribes oi, using the method coded into 5.

The creative Subject is not very Fond OF the imitative one and

plays a trick on him, as Follows:

He calculates r-.-.max(p,q) and dellines a sequence oil‘ in “"60 by:

oL*(O)=C> A Vn [(n§_r -9 (o(*)" =Q) A (n>r -9 (oi*)" = 1]

(1. is the Sequence in “’w that is defined by-. Vr\l_—i(hl-—-O3)

The creative subject will Feed the imitative one on oil") but

he does not tell him so.

lhe imitative subject never sees more than a llinilie Cnltlal P0-'5 Otdf

and, therefore) he (5 kept between hope and Fear.

His anxiety will grow with the number of 1's, but all the time,

he has to reckon with the possibility that things will improve.

Thus, he is Forced. to make all values of the sequence (5lo(*l"‘

equal to zero.



3.3 TF\€orem~:

1'7‘

For, suippose= View and. (8loi*)"‘ (ii) #0

Determineiew such that vat 5z2=a?i .9 (5;u)'"(g)= (sloi*)"'(lq]

Define 0. sequence oL*in Ww by:

¢T+'-2:332 and Vn[n>>€-:ot*("l=O_J

We observe that: A,_(oi*) and 3{[oi"=dvv<1oi*]

We can say more: as Vnfnsr --> LON)"=Q], also;

El[l.'jfp=_i§p /\ oz*=xv<1oi*II /\ 6<7q = Qq

Ther-eFore= vn[<5loi+)"‘zn1=o] and: i5m+l"‘(9«Ho,

a contradiction.

The imitative subject has no choice and: Vn[(5loi*l"‘(n]:0]

does not help him

We observe: -AZ(oi*) A E2 (6loi*)
0. contradiction

El

But his caution

Zand: A,_(oL*l E2(8loz*) ,

-»(Ez sA,_)

Suppose: E2£A2, i.e.-. Volflpf Ez(oi};_‘> A2C(!~Y.|

U.sing AC“, determine 8 in Wm such that: Fiin(5l and VoL[E2(o<lz.*A2(8loi)]

This time, the creative subject, in order to make the imitative subject

fall on his Face, uses Very foul means from the realm of-‘ darkness,

He Plays the good boy For 0. while, till the imitative subject,

b3"‘9 Cmpr€9Sad, cannot refuse him any longer the First OF N9

countably mam] wishes. As soon as the irnitative subject gives in,

the creative subject stops playing the good boy.

Bid: not for long. He soon starts to play another good. boy and.

perseveres in it, till the Unitative subject loses his Firmness again,

Ohd grants him the second OF his wishes.

Llngratefuilly) the creative subject breaks of-‘Fhis good. conduct,

but chooses, after 0. moment, 0. third saint to Follow, intending to

Follow him only So Far as is requ‘u'ed. (‘or getting his third wish

{—’u1f3illed.

And so on.
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In the Chd, the creative SlLbj€(Ltlzurng out to eye no good, bold at all,
but he has got all he wanted.

In short, the creative Subject makes a sequence o(* Such that

-1Ez(oi*) A A2(5la*)) perplexing the imitative subject, as follows:

First Consider do == 0

Remark: E7_(o¢o),and determine poeu: Such that (8lo(°)°(PD):O

Determine: noew such that VO<l:3t'°n°=5tn° —->(3loll°(p,,)=-0]

Del-‘ine o(,1€“’w by-.

For all new, nsno= o{,1(n)==o(°(nl

ot,(<O,nD>) := 1

F0’ 0“ new, n>no and n #<0,n°> = o11(nl==0

Remark: E2(o<,), and determine p.,ew such that (5lol.l‘lp4l-=0

Determine mew such that n,>,n, and n,>/<O,no7 and...

Vo<[a7,n,=an, -7 (aIa)‘(p.l=Ol

Del-‘inc olze ‘‘’u: by:

for all new, nsn,= o(z(nl:=oi,(n)

o(z(<1,n,>) == 1

For all new, n>n, and n=} <i,n47: o(,_(n)==O

Continue as before

(One may think of the following picture­

Slot

As soon as the imitative Subject old. puts O in one of his columns,

the creative subject answers this move by putting 1 in the

Corresponding one 0? his own columns)

In this way one creates successively o(o,o(,,,oI2,...in “um and

PO)no)p1;n1,P2_,nz,.-.Ln W



no<n1<nz<

V-L\13'[ i.<.3' ——>E,-_ni =5Fjm,-1='&-tni"9
3+1

vevjt is,‘ -9 (oza.H)‘°(,\i)=1]

Delline o(*e Wm by; vatarmi = Emil

we observe: -:E,_(ot*) A A2(8lot*l and-. E2(o¢*l;_‘>Az(tSlo(*l,

0. Contradiction.

E

sir Proofs of more general hierarchy theorems are now within our grasp.
We only have to look with some care into the proofs OF this chapter

When we reconsider the proof‘ of-‘ theorem 3.2, that -=(A2$152), We are
struck by its likeness, from a certain moment on, to the proof of
theorem 2.2 (whose conclusion reads: -=(E15A4\),

To be more specél-‘ac:
Suppose: 8<—:“’ouand, Fun(cS) and Votl.-A2(o() 41’ E2 (5l°ll-.l
Construct numbers in and r, as in the proof’ of theorem 3.2
Continue by making 2:e‘“uu such that Funle) and:

Vpt Vnl.'n+r -3 (aIpl"=Q] l\ (£|p)"== pl

Remark: V{5[E1((s) :2 Az(£|pYl

and: ‘c/pf A2(s.|[;) (-3 A1((&[(2Ip)Y"l]

Therefore: V‘3[E,'(f3) 3 A1((g[(£|f,))"‘)]’ Le.-. E1-$A1

Thus, the proof (5 seen to reduce the supposition: A,_$E2 to-- 515A,

It is not difficult to {-‘(nota general method For reducing the suppos£tL'on=
AS" 5 ES" [:01 En 5 A".

This will be shown Ln chapter 7, when chapter 6 has qcven the necessary
ole{3L'n(tLons.

It takes more pains to get a similar Conclusion from the Converse suppositton-.
Es,‘ -$A5n , but, again, when the work has been done, we See some resemblance
to the proof’ of theorem 3.3, that ‘1(E2_:$A,_).

To thcs proof‘ of’ theorem 3.3, other useful observatcons may be made,
Perhaps its most memorable feature is, how it pcotures the creative Subject
as 0. cat bent Upon Cts prey, the Crnttditve su-bjeclz, moving only in response
to moves of its mousy victim.
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We understated the conclusion of‘ this proof,
Given 0. Sequence 6 in Wu; such that-. Fu.n(5l A Vofltll;-zldl 4:’ Az(5l0‘l—.l,We Set

ourselves the aim of’ Finding an sequence o(* in Ww Such that " 2(o(*)I\AZ(5lo(*l_

But the sequence 00* which we constructed, had oi more constructive
property than: -vf-I2,we know that it shows up a number different from zero
in each one oF its subsequences.
W€ call this property: A:

Another important remark on the proof‘ of theorem 3.3 is that we did not
use the Full Strength of’ the assumption.
Starting From: Fum(6) A Vol[EZlOll‘) A2(5l0tl-.l, We may reach the same
conclusion.

A Similar thing can be Said on the proof of‘ theorem 3.2.

This Sharper View of the constructivity of‘ the arguments used will enable
us to extend the theorems into the l:ransFinil:e, in Chapter 9.

We decided not to leave out the more clumsy method oF chapter ‘r’,
although its results are properly contained in those of’ chapter 9.
This method held as captive For quite a long time, and it deserves of-‘
some attention, if only For the sake of-‘ comparison.

3.5 We may pictiire the results of this chapter as Follows:
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SOME ACTIVITIES OF DISIUNCTIDN AND CONIUNCTION

Both classically and intuitionistically, the (nljersection of‘ two open Subsets
of-‘ IR is an open subset of R,
However, only by using classical logic, one may inller From this the dual
Statement: the union OF two closed Subsets of H2 is a closed. subset of R.
It need not surprise, thereFore, that this statement is not true, if
interpreted intuitionistically.
([0,1] u [1,2] , For example, is not a closed subset of’ IR).

This well-known Fact will be confirmed. by the theorems of this chapter
We know From chapter 3, that E1, the subset OF °”uu which We get from A,
by an existential projection, is not reducible to A1 or, for that matter, to AZ.
We will See now that the same holds true For the subset of? “co which we
get From A, by a disjunctive projection only: D"A1.

In the case of A1, Finite disjunction suF[-‘ices to increase complexity
No wonder, then, that the number of disjuncts is also important: the subset
which we get From A, by a triple disjunctive projection, is not reducible
to the subset We qet by a binary disjunctive projection, and so on
Between A, and E2, we may distinguish, in this manner, countably many
levels olf complexity.

Conjunction, of‘ course, is inactive, if applied to A1, but it gets productive
as Soon as we apply it to D2A,, For example.
Let us consider the class oj.‘ all subsets of-‘Wu) which originate Prom A1,
when we apply the operations of-‘ Finite disjunctive and conjunctive projection
again and again.
How does the reducibility relation behave on this countable class?
We partially answer this nice question at the end of‘ this ChO.pter.

‘L0 We U\tl"OdUCe, for all subsets Pt; “'00 and new, a subset D"P OF Wu.)by=

l-l.l

For all oie°"w= D"P(oi) == -Ilq<n[P(o(Q)]

Theorem: It is reckless to assume-. D"A1 -.<.A,

[gall Suppose: D"A, -.<A,, Le.-.'Voi3p[D"A1(oi) Z A,(p)]

Remark: Vj_§,l:‘'1 Vn[js(n]=O] -9 Vn[j5(n]=O]]

W\ereFore= Voilf -r- D’A,,(oi) —> D’-A,(oil]

This enables us to decide a lot of questions

Let us turn to the decimal development of in which earned itself

0 reputation in providing counterexamples to all lands of

Classically valid but constructively untrue Statements.
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Construct a sequence oi in Wm which fulfils the condition:

Vnt a(nl=O 2 At place n in the decimal development of It stands

the last 9 of the first block of ninety-nine 9'5]

R€m0-l'l¢= VmVn [(oi(m)=O A o<U\l=O) ~—>m=n], therefore: o<°+_Q-7 oi'=Q

al‘\d-'- 7'' tOtO=Q V d1=Q)) |..€..= "1"D1A1(0t)

the conclusion= DzA1toL),however, is not empty as a communication on

the decimal development of n. We Should be able to axclude, either

all numbers <O,m> or all numbers <fl.,m> as a possible position of-‘

the last 9 in the First block of-‘ ninety-nine 9’s in TT'$ decimal tail
But we are not able to do so.

8

1716OLXCOMOF Brouwer and Kripke (CF.chapter 2) increase; our doubts concerning-.
II DZA1 5 A1”

Let 01 ta (1 determinate (CF.2.1), as yet undecided mathematical Proposition
Such that -. ‘N61 -> 61.

(One might think of Fermat’s conjecture, or of any other mathematical proposition
which can be brought into the Form= Vnt,-F(n)], Where F is 0. determinate property
of natural numbers, such that; t/nlfF(n) v -aF(n)])
o'iv~»o1 is also a determinate proposition, and, using (BK) and some
acrobatics, we determine oi in “’w Such that;

mV‘51 2.’ 3l’\[a(n)=O] unot-. Ulzfi_3h[a°(n)=O3 and-.

<01 3 :‘ln[o<'(n)=o7 and; VmVn[(oi(m)=o/~ot(nl=O)—->m=n]

Remark -1'1D2A».(°¢l, 5‘€r€t0"€= Dzpwlotl5 i-€.=o<°=Q Vot‘=Q. and; -161v-H61;
tZt'l€.f‘€.fOl"€: -361i/O1

By ,, DZA15 A," we are able to decide, in this way, any determinate, stable
proposition. (A proposition (Tl. is called Stable, if —:-:61-901)
This is a reckless assumption.

We constructed 0. ,, weak" counterexample to-. ” D"A,,£A,”. tln Dutch:
,,een vermetelheiolst eqen voorbeeld ")

In many Such cases, as in this one, we are’ able to improve on the argument
and to derive 0. contradiction.
This is an art which has been practiced. much by Wim G-ielen.

lhe axiom of Brouwer and Kripke does not Figure in the eventual argument,
We also did not use it in proving theorem ‘LI.
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14.2 We introduced, in 1.2, 0. coding Funcjzooyi < >-. EU &w >——»(,0ea)
Thus, every natural number Codes a Finite sequence o? natural numbers.

We also uqtrodueed a flength Function (9: w —>uu such thak, For all new,
Yam) -_- Ehe Qenqth of the Finite sequence coded by 41.

We now define, For all Mfllew such Ehat Q-<9c3(M=

Mq4;_._ ml ._= the value which the {-‘mitesequence coded by M,
Q$SU.mesin

There?ore, Ear each new-. n= <n(O\, n(1),..., n( €g(n\-4.) 7

We define a sequence ‘C’Ch ww such that:

\7’n[I-(n)=O 3 (viii &<2g(n)—>n(9.)<2.] A v2ve[(&<09(.q,i €<9g(n)n n(&Ho I\n(e)¥O) -9 mm

We remark l:haJ: t is 0. subspread OF “’w (q3.1.9) and-.

vat d-er ,;2 (v9.[o<(&)<2] A vIzve[to«(&)+o«o«u2)+o) 9 &=U)]

The set i‘={o<|oLe “’w I \7’n[I'(o'th)--0]} consists of those sequences of 0's and 1'5

Which "CW3 in 01: most one point (1 value diFFerenl: From 0,

The spread ‘C is very similar to the spread Gzmon which will Come (:0 {he {worein
chapter 11.

4.3 Theorem -=(D’-A1 -5 A,)

E5939. Suppose: D"A, 6. A, , Le. Vo<3p[D"A1(ot) :2 A,([?>)]

As in Ute pPoC>F OF theorem ‘M, we observe: Vo([-I'1DzA,,(d)—)D"A,,(od]

Now-. Vo(e1'[ -H D°'A,(ot)J I where ‘C’ is l:he subspreoiol OF ‘*’w which

we defined in H2

Fxereforez Vdet [D2A.,(o(\]

Remark: Qer and, applying to the generalized continuil:y principle

C-CP' determine hem and 9.e{o,1.} such that: Vote1.'[&r=Qr —->oL"-_-Q]

But this is not so, as we may define do Cn’C' Such that-.
gj
(X I‘ = QT and: (°(,)£(")= 10

12

We Feel content thalt, in provinq this theorem, we did not use AC” or AC“,
but GCP only.
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HH For all m,new’ we deFL'ne [n]"‘ to be the code number of‘ the m-lzh Subsequence
of-‘ the Fcmlte Sequence coded by n

lhereFore, For all Peeuo, [n]m(2,) is defined, Cf and only ([1 4m7,(.P¢ <€¢a(n)
and, uh that case-. [n‘,l"‘(9_) = r\(<m>x-9.)

For every mew we defcne a. sequence tm Ln Wuu Such that:
VnlCI'm(r\l=0 2 Q 6 [nJ"‘]

We remark that, For all mew, ‘cm Ls a sabspreacl of’ Woo (4.19) and;
Val."otetm ;) um: Q]

We also observe: ‘v’m\7’o<[D"‘A,loL) 5;) 3r\<m[o£e’C',,,’J]

1-1.5Theorem-. '~ (D3A1 -.<_D"A'1)

P_rc_>_c_>_{:Suppose: D3A1 :4. DZA4 , :‘.e.: Vocflfsf D3A1(o<) Z D7”/\, ((5)1

AC,1,we Find 5 in “w Suchthat ­
Funl5l and: VzxlfD3A4(o<l23 o‘A,(8lo<l]

We Observe-. Vm<3 l/o<l:0(€ ‘cm —-> (8|ot etc v Slot. e’c',)]

and: Vm<3[ Q etm]

(The Spreads Tm have been defined Ch41-!)

Applying the generalized continuity principle GCP three times,
we Féhol natural numbers P°,p,,p2 and lie, 9:1,it such that:

vm<3 [£m=o v A”: 1]

and: Vm<3 Vozetml:5(pm=: Qpm -9 Slot 6 tjlm ]
Wcthouls loss of generality, we may assume; lo: ll,

Let p== max (p°,p,,pz)

We determine L Ln Ww such that-. Funlz) and, Ear all o(e“’w,m,new;

(§loL)'“(r\) := 0 if n<p v m> Z

;=.- o('"(n-p) (jf h>,p A m<2

-.= 1 L} n>/p A m=2.

Now, suppose-. o(€.“"w and Dz/3:1(ct), then: Z,loLet° v Zloz 6171

and= (Zlot) p = §p, so= Slléldl 6 11,

Conversely, Suppose ole ""w and 5llZlol)é't'kO ; then D"A1(8l(g]od)
So: D3A1(Z,ld), and: D2/\1(ol)

Therefore: vom>=A,(o:) g A, ((8l(ZIot))"°)], ale.-. D"-A,/AA,
This conlzraolcctc theorem (-4.3, >41
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We confess that, Ch proving theorem 4.5, we did not succeed in avoiding AC“

Without dil-‘l»’icu.lty,we may extend theorem H5 to-.

l-Lb lheot-em= Vml: ‘I (DWHA, 5 DmA,‘ll

‘4.7We introduce, For all subsets P; ‘’‘’w, (1 subset l.tn(P) OF “w by:

For all o<e“’w= (lln(P))(o¢\ ;= Vm[P(o<""ll

We now show that ,, c.hoos4;ng one-ouJ:-oF- three’ is not to be reduced
to "choosing one—ou1:-oF—two",even if we are allowed to do the latter
infinitely many times.

‘L8 twee.r__.em= -' (0% 6 Unto’-An)

l_’_r;o_c>[-‘-.Suppose: DSA1 $ LUl(D"A,l, i.e.= Vo(':'lr3l:D3A,(oc) (-1 (un(D"A4l)lf:ll

Using AC“, we Find 8 in “cu suck that:

Fu.n(8) and voaio-°’A,(a) (-2 (Un(D"A.ll(5l0<l]

Let 1* be the spread which we introduced in 4.2.:
Vcxfotet g2 (v&[cx(l£)<2] A v&V!ii(<x(&)+on oue1¢o)—+&.-.e1)]

We want to show: Vo(€’C‘Vpf D2A,,((8ldlPll

Let us assume, to this end: (X61?and pew

We observe, as in the proof of ‘-L5:

Vm<3 Vpetm l: D3A,(’3)'l

and-. Vm<3[Qe'cm]
('t'o,'c',,,'t',_,...are the spreads which made their First appearance
Ln q_q.. Vmvotfdetm él) on“: Q1)

By a U\reeFo|d. invocation of the generalized continuity principle GCP

we Find natural numbers qolqnqz and l<.,,l<.,l<zsuch that-.

Vm<3[ l<m=O v _l(m=i]

and-, Vm<3 Vpetmffsqm = Qqm _; (8lr5lPe rm]

Without loss of generality, we may assume-. ko=l<,.

Lek q ‘= "‘a"(Clorqn9z).

We distinguish two Cases;

Case 1 = 5<q=} Qq

Asoce Z‘)we may determine, in this case, m<3
such that: oiet-m,and, thus, we know: D‘A, ((5:01)?)
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Case 2: aq =# Qq

We now turn up our trump card-.

one?) thereFore= -n-v(oLé'C'°Vo(€'C,,) and —.-.((8[oi\Pg 1-K)

so= (5lodPe TKO and: D‘A,, ((8|a)P)

In any case: D7'A1((8|a}P)

We have proved now: VoL€‘(‘:Vp[D2A,,((5|oi)P)],i.e,:

\7’otet‘[ (l1n(DZA,3)(8|oz)]) and therefore: V0i€1.'[D3A1(oL)]

We observe: Q61", and, applying to GCB we determine New

and !£e{O,1,27, such that: Votetfarzér -) oL"=Q]

But this is not so, as we may define do in ‘C such that:

act‘: Q?‘and: =1
W

The reader will have remarked that the proof oF theorem 4.8 is stiqhtly more
economical than the proof.‘ of theorem 14.5and no longer lecms on theorem LL3
In the same way one may prove:

14.9Theorem: Vmf "(D'""1A1 -5 Un(DmA,)H

We may sharpen the Conclusion OF theorem 4.3 also in this manner;

14110Theorem; -z( [)’-A4 5 A2)

Et:g§_>[-‘=Suppose: D7‘A1 $A2, i.e.; Vo(3[$[D2A1(o() 2-")A2((3)]

Using AC", we Find. :5 in ‘‘”w such that: Fuh(5} and Vot[D1A,(d\,;*AZ(5ld)]

Let 1:’ he the spread which We introduced in 14.2:
VoiL' 0161' g2 Lv9<[o<(9.)<Z] A VLVQE(o<(Q)+oAo<(l2)=,éo) -9 &.—.Q'.l)]

We want to Show: Vo(et[A,_(5lolH

Let us assume, to this end: oiet and pew

We Observe: DZA,(9), therefore: A2(5lQ), and: E1((8lQ)P)

We determine {em such that t5tQ)PtQt=O

And we determine qeiu such that: Vfsffiqzéq —>(5lf5)P(9<)=O]

We now distinguish two cases:

Case 1; aq +. (:)_'q

As otet, we may determine in this case, m<Z such that

o('"=Q, there]-ore: DzA1tOi)OJ‘|d.=Az(8|oLLesp. E,t(5t°0P)
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Case 2: «R0,4: fig

When: E,((8loL)P)

In any case- E4 ((8|oaP)

We l\Cl,Veproved, now: Vote't'Vpl:E,((5Iot)P:lI l.e.= Vo<et[Az(5lo<ll

Therefore = Valet’ [ D"A1(ol)]

This will lead to 0. contradiction, as in the proof of‘ theorem 4.3

M

The proofs of? the theorems H8 and two are variations upon one theme,
the latter being the more simple of’ the two.
lhe conclusion of theorem l-no marks an improvement upon Uleorem 3.3,
which said: ~(E,éA,_).
In order to see this, one observes, using theorem ‘L6: l/nl:D"A,,«(D"+'A,-<E,_‘.l
(we defined ,,<" in 2.3; A43 3 (A£BA "(B5All
The reader's task reduces to proving: Vnl.'D"A1-.<E2]).

H.IIWe introduce, For all subsets P; Wu; and new, <1 subset C"P of‘ ‘“w by;

For all ole“’uu- C’‘P(o¢) : Vq<n[P(ozql]

Luz Without diff-‘icu.lty, we establish the following Facts: CzA1éA4, D2E..éE, and C2E1$E,.

First, we determine 5e°"w Such that: Fu.n(5)anol Vail/n[(5loL)(2n)=o(°(r\)A (5ya)(2n+.)=,x*(m]

Then: Vo<[C"A,,(ol)2 A,,(8loil] and Votl:DzE1l°‘l 2 £,(sIo«lJ

Next, we determine 8e“’w such that: Funlsl and VoLVn[(5lotll'\l=Og2(€qln)=2 Ao<°(nloll=°&l(fl(1l)=Oll

Then: Votl:C2E1[oLl Z.’ E1(8lolYl

This seems to be 0. good place to mention an important diFF€rence between
the results oF this chapter and the results of’ chapter 3.
when we set out to prove: -lA,_sE2), we did not intend toprove as
much as we did , eventually,
Starting From 0. sequence 8, FulFillI'ng only-. Funl5l and-. Votl:A,_(0‘l‘>E2(8|oll:l
We were able to point out 0. sequence o(* such that: -vA2(o(*)n E2(8lol*l
when Provo‘ ., -.(Ez._<_Az), we also exceeded our own expectations.
(cf. the discussion in 31+)

There is no hope For a similar reinforcement of-‘a conclusion like= -(DZA,-.4.A.)

In order to see this, we consider the subset E,* of ‘’‘’(._owhich CS defined. by:

{or all oie‘*’w-. E,*(oL) == :'ln[°l('\)= 1]

We easily Find 5e‘*’w suck that; Fun(8l and Vot[C’E,*(oL)3 Eflslafl
This same 8 also $Q.ttSF£Qg: Volt -IC‘E1*(o_;)'4-) -:E,;‘(8lotl'.l and I therefore­
vat --D‘A,lo<) :2 Amen]
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Remark that Vat DZA1(oi) -9/\1l8loil‘_l and that it is impossible to Find. oI*e ‘*’u)
Such that ‘1DzA1(o(*) A A4 (5lo(*)

This phenomenon is put into perspective when we recognize that there are
classical Facts correspohdinca to the results of chapter 3 whereas, in this chapter,
truly inuutionistic idiosyncrasies come to the surface_

LLI3 We introduce, For all natural numbers m,n,,a Finite subset Exp(m,n) of as by:

Explm,n) == [FlFew| Qqll-’}=n A Vlt[9.<n —->F(hl<m]}

(Exp(m,n) is the set of all Functions From rt to m, where, Following
set—theoretieal habits, m and n are identified with the sets of‘ their predecessors).

We define, For each Fe w, a subset AF of? Wu» by:

For all ote ‘*’w~. AP“) ,= \’/nt n<l3?(f) -9 (o(")F(n) = Q7

We leave it to the reader to V€.l"CFy:v;L‘A,sA,] and-. b’ffFg£<> -2 A,:A,J
In this last Sentence good old A1 is meant,which we met For the
first time in 2.3.

We are guilty of‘ a slight inaccuracy by having introduced, here, namesakes
for A1 and A2, 3_o), but it will not harm us.

Luq lieorem-. Vnl/mEc"(D"‘A,] 4 D'"" A, 33

E53? Remark: F0!’ 0“ (X6 ‘*’u:-.

C"D"‘A,(oi) g vial 3l?<mHcxil‘ =9]

3 slpwe Exp(m,n)A A,,(un

Also observe that, For all Fe in, we may define 5Fé‘*’w Such that

Fumtsf) and Vat A,(a)-:2. A, (5,,lo<l7

As Explvn,n) has rn” members, the construction of’ a 56. ‘*’w Such that

Fun(8l and voi[C"D"‘A,.lal gz’ D"‘"A1(8loil] is now an easy matter

on

14.15ltleoremz VnVM Vq Vp E C"DmA1 $ Cq DPA4 -3 m" S Pq]

[’_[c_>_O_f:(The reader has understood, probably, that ,,C"D'"A,." Stands for
nCn(DmA1)'f’

Suppose: m">pq and C"DmA,5CqDPA1 ,l'.e.-.VoL§l{5[C"D'"A1(oll33 CqDPA1(f5l:l

using AC“, determine (36“’w Such that Funt5)a"d Volt-C"DmA‘(0llZ3CqDPA,(5td)l
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For every Fe Exp(m,n), consider AF, as def-‘(neat in ‘-H3

Remark: We Exp(m,n) Vo([ AF (0!) —-9C"D'"A,, (001

Wxeref-‘ore: \/Fe Exp(m,n) Val: AF (ot) 9 CQDP A1 (olotfl

and-. We Exp(m,n) VoL[AF(oL) —a~Elfiftte Exptplq) A Akt3|ot)]]

Observe that, For every Fe Exp(m,n), AF(Q), and-. Af Cs (1 subspread
of “go (cf. 1.9) SO that the generalized continwly principle GCP applies.

Applying it For every Fe Exp(m,n) separately and keepcnq in mind

that m" > qp’ one Fcnds Fe Exp(m,n), c3eExp{m,n),VxeExp(p,q) and few

Such um. H? A \/Mar: _<'2rA(AfmvA3(aw)) —>Ap(5t0‘fl
We now again have recourse to it, the subspreadz of ‘*’w whcck

we introduced. In ’-L2 to serve us,t‘ntkL's chapter, as a true

Sorcerer's apprentice. (‘L'={otlote “ml VIE[o<(9.)<2]AV2V€[(ot(E)#0A°lf9H°)->E=UP

As Fqéa we may determine E<n such that F(!L)=Lg(E)_

W\erefore= Vaetf ""( (o<")Fm=Q V toltflm =QW

Let us restrict our attention to 17*-.={otjaet | VEEH9. ao<e=C_>7}

‘c’* is again a subspread OF ‘*’ouand: V0l€'C’*t'1"(AFt00VAgt°‘tH

Therefore: \7'o(e't*[5zr=-C_-)_r~> /\p‘(8|o(}] and-.

Vocez-*[6u~=§r -—7CqDPA,(5l,0d],and: Vol€T."taT‘= C-_5r->C"D"'A., (001,

especially: Vo(e‘C’*[5U‘=(:)r -7 DmA1(ot")]

We now proceed eonscly to the contradiction We Wanted to reach,

Following the pattern of the proof‘ of’ theorem ‘*8:

We ob§erve-. Q et'*, and, applycnq to GCP, determine sew such that

rgg and flew suck that: Vot€‘C'*[5(S= [>9 —)Lott)‘ = Q]

TT\(sis not so, For we may define do in t* such that:

5109= Q5 and: t(d,&)£)(s) = 1.

El

vmvP[D"‘A,sun(DPA,) -9 rnsp]

T}-\CSfollows from theorem ‘-L9.

Assume: m>p and DMA45 Un(DPA1),

Remark-. DPHA1 5 DMA1 , tt\Q.f‘eFt:re: DP+iA1 é Un(DPA4).
N-[N9 Cs not so, according to theorem 14.9.
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LL17Lemma: VnVml__DmA‘, £C"H‘ DMA4 4 CMZDMA4 ‘_( Uh (D'"A,\l

P_rg<_>l= Easy. 3

I-H8 lheorem: Vn VmVq ‘C/pt C"+4D'"A1 é CQDPA, —* mspl

E;c_>_«_>[2=Immedcate, From 14.16 and Lu}. 3

Lug Many questions are answered by theorems ‘UH—l8, but some nasty problems
remacn to be solved.

Conjwnctcve power demonstrates (itself 0’! Sequences like the Followcngz

01A, 4 C‘1>'A, 4 C3D2A,<...

D3A, 4 C2133/A14 C*”D’/M4...

We know that no set from the second sequence can be reduced to any 321:
From the First sequence.
The converse thing sometimes happens, as Vn[C"D"A1 -5 C"D-”A,‘.l
But what about the questcon cf C-"D"/X45C’-D3A,?
No he attve answer may be read OFF From theorems ‘l.l‘l-la.
Nevert eless, the answer Cs neqattlve, as you will suspect after a.'Sl\O|’l3walk.
More generally, we may aslz, for any Set From the {ll-st:Sequence;
what is the first 521: cn the second Se uence .to which Ct Cs reducible?
And: do you. know if C-"D3A,s.c‘D6A,, 0* Cf C503/x, 4 c'*o‘*A,‘!I

In order to handle these and similar questions we introduce a new notation.

We def-‘Che, For each new 0. subset (CD)n A1 OF W00 b\/=

{Torall ot€‘*’w= (cmnnq (.,q =.—.v!L[lz<l?g(n) -9 D"""A,(a"ll

C3D2A1 reappears as (CD)<2)22>A1,anol CzD3’A1is now called (CD) A.(3,3)

We make a Few observations, without st|'iV£n<i F3? C0W\Pl€lZ€ne$S=

IF the finite sequence Coded by n’ is a permutation of‘ the l-‘unitesequence
eodeol. by n, them-. (CD),,A1 4 (CD)n,A,

IF t(3tl'\]= tab‘) and V&<Qca(n)['\t‘B~léhltfilj, then (CD)nA1 5 (CD),1.ll,

tCD)<P’q, A4 5 DMA‘

More generally, L; n- <n,,,n,,...,ne7,then-. (CD)<n n"___n€,R1s(CD) A< no-n“nz,..-, lie» 1.

Uhe proofs of the last two statements are similar to the proof ol theorem '-UH)

We Pollowflnq notlton O.lSObe USZFUJ-.



We deFL'ne, For all Rneuo;

Fun == 9g(H= Qg(n) A V2[Q<?9(n) -9 P(Q)<n(Q)]

IF n: <nmn,,...,n£>, then the number of elements of {F(FewlP1:n} ts no-n1-....-mg

We use square brackets E ] to denote the enh3?J'-Fw\CtC0'\ From 69.? to w,
whackassigns (‘.0each Posctcve ratconal number cts integral part.

Su.Ff‘£cL'e,nHymany prepaxatfions have been made now Foh

H.2o Wxegrem:Let m,n be natural numbers, M=<m,,m1,._,m,,_> and n'—.-<n°,n1,...,ne>

Lei: m,>O. Wen:

(CD)<mmm” A4 5 (co)<noM_..’n€7 A1 cf and only up

A]1...,m&7

MOS A(CD)<m"___’m&)A1:(.
O

A

Er*_o_fi=U)First Suppose; £412 A mosnk A (CD)<mh_ n°m[%o]mn‘) i“mi, R44 (CD)<

A moment's reFlec.(:£on shows:

(co),,. A1 = (co)<M”m1Mm&, A1 5 (cD)<,,,°,,,°,,._,,;:«%],___,,,e, /4, .4.

(<2D)<nO,...,mo-[%n£> A1 -.<.(CD)<n°,..,nt,...,npA1=(CD)nP\1

(ll) Now suppose: (CD)mA1 5 (CD)n 91 ,‘\/e.; Voz3!2.[ (CD)mQ1(d)§_7(CD)nQ1({z.fl

Apply to AC“ and determine 55 Wm suck that: Fu.n(6) and

V0*[ CCD)m F\,,(od 2 (CD),. A4 (5lol)]

Observe ~. VoL[ (CD),,, A,‘(ol\ ;7 SF 1: m E A? (oL)]]

(We Lntroduceol, Ln '-l.l3,For each Few, the sd: AF = {ado(e“’w|Vl<9<3(F)[(0t")Fm=Q]})

Call to mind that, (‘or every Fe w, AF is o. subspread of “"00(41.9) and-.Aflg)

Remark: VFI:m VoL[AF(oL) —>Egan [ A9 (8[oL)]]_
Invoke the generalized continwky prmecple G-CPand conclude:

Vfcm 39:41 3sVotf(5K€= Q9 /\A‘_~(ol))"> A (élocfl.

We may construct a. Functcon I: [?lF6wlF1:'m} -—)Qglcgewlqcn}
and a. number Sew suck that:

\7'f-‘cm Votl: (5(§=(§s A AF(oL\) -3 AI(§_)(8|o0]

We venture the Foflowing

Clacm = Ell:< €c3(n) \/Fcm Wu: ml: F(ol+ No) -9 I(F)(t) =f I(7J(t)]

We prove the clcum as Fo|iows=
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Suppose , to U12 contrary : Vt < ecgln)§lFE'm 3915'»![F(O)+ No) ACl-lFl)(f)=tIll~llltl:l

In this diff-‘icult Sétuakdon, We need.“our Frclenci From LL2:

2' = {o<lo<e°*'w] V&[o<(£)<2] A V£V€[(a(£)aéoAoL(e)aéc>)-91:41}

With his lxelp, we defcne a subset 8 OF ""00-.

B ;= [_o<|o(e“’aJI 0(°e't' A V!i>olIo<&=g]

We remark: Votee Vfcm Vlscml F(o)=,lHo) -9 -n (AF(oa) v A&(oc\)]

therefore: Vase Vt<€q(n) 3P1:m [&s=f:3s —>((5l0tlb)lIm)“‘l = Q]

and: Vote B [&s= c_’2s~+(CD)n A,(5lod]

so-. Vo(eB[5(s=(:)s —>LCD)mA1(oL)]

Also = W63 5 438% 5.33-9 (cmm A1(al]

lierepore-. vae3[(CD)mA1(oa], Q,-gpecdallyz\7'o(eB[D"‘l°lA4(oz°l:l, and:

Votet[D"'l°)AQ(ot)]. -|T*\£sis not so, as we have seen on several
occastbns (C9 the end 0? the P"00f 0? ‘1J‘5.).

Our claim has been eslzalnlished, now, and the argument Ls

constmctcve, although it does not appear so, because we are

dealing with Fémlte ddsjunctcons and conjunctdons of deccdalole

proposctcons.

We Calculate l:< Qg(n) such Utah: Vftm l/llL'.ml‘FlO)=,l1(0) -9 (Ill-‘llltlal llllllllfill

Remark that tlxts implies: mosnt

We may profct, now, From our traincnq in Combénutorécs (L?we hadany):

We define a mappéng on {p]pew[p<mO}=

p r—+fqlqeuol 3Fcm[F(O)=p A(I(Fl)(t)= 9]}

To c1£l3[3’erentnumbers, disjocnt decidable Subsets of w are Qssoccafed.

We delermcne P such that: p<mo anol the number of elements of

{q|qea>]:‘lFCm[F(o)=p r~(I(Flll6l=q]} L; at most: [$93].

We define 0. §uLb§el: E of ‘*’w-. E == {ad cue ‘*’wl (°<°)P = Q}

Witlxouls fear, we make 0. Second (_;_|_g;,_'_»l=we may construct geww

suck that: FtmlZ,) and: vae£[(co),,,A,(oL) <1’ (CDl¢n0,n,,...,[%E],___“£7A1(Zlu<)]

We do not go into a detacled conskmctcon of z ibwc ct sl\'ou.laLbe

clear that Z may be obtained by 0. Suitable rearrangement of 5.

Finally, We make 116. “flu suck that Fumlm and Va[(r\|oL)°=C_>A\7§ll?]ldll+1=o(3l]

17.2.».vat q|oteE A ((CD)<m“_'_,Mk,A1(on) (-3 (co)m A,(ruoa)]
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Putting all things bgether we See

Vat: (CD)<m,,...,m&> A1(°a 3 (CD)<no,n,,,...,["_t.],..., n17 A1 (Z-‘t('lt°0)]mo

l»/€.= (CD)<m““-Ilmg->A1 :4. CD<no’n”_._’ )___,n!) A18

11.9.}Theorem ‘-L20 delivers us From Many problems.

It Provides as with an algorithm For the set gmlmewllglml-=9 AtCD)m(0)A1£(CD)m(1lA4t
We rel-‘rain prom a general formulation of‘ EM; algorithm, and
only calculate some special cases:

Suppose C‘°’D2A4 5 C‘D3{-L, 3 .22.: (CD)a,2’Z> A4 5 (CD)<3,3/37 ll,

them tCD)<2)2>Q, 3 (CD)<,,)3>A1 and ‘-153: contradfetéon.

Suppose C3D3A, 5 Czbbfl", I-e.: (CD)<3,3)3, 91 —_<CCD)<6,6, A1

Ute": (CD)<3,37 A1 5 (CD)<2,6> A1 3H‘5"" (CD)<3> A1 "4'(CD)<2,2> Q1‘
contradiction —there as no entry in <2,2> at least as big as 3­

Suppcse csrDsA4 scupwn, 3 i.e.._ (CD)<3)3I3/ZWA1 4 (CD)<LWD A1

then-. (cD)<,,3’3/3, A, s (CD)<,Hq 4) Ahand g|___-59$.13, 64;
Contradietcon.

We may prove, inductively = Vm ‘v’n[ C"'DzA,, -4.Cnbah, Z3 msn].

Theorem 4.20 is a very general statement, whceh embraces earlier results
like theorem ‘H8.

We mcght enter 0. new Field. oF questions now, by Forming ,,d£S_ju.nct£on$"of sets
(CD),,l3\,, and then again ‘"conJ'unet(ons" of these new disjunetfons, and so on.
We could consider the class of all subsets of ‘”uu Whtchare built From A,
by a Fcncte tree of dxsjunctcons and conjanctcons.

But we are getting tired. and prefer to take the bus home.
There is such a choose of playthings here, We Cannot go and try them all.
Many problems will be left alone, For, tomorrow, we are wlsctinq Qnother
part of-‘the country.
This Cs a pcty, but there are more thcngs in heaven and earth, thaw

D°A1

are dreamt of Ln chapter ll, CHDzA‘

“-22 I-7>€l"0"6leowcng, however, we buy and send. C’D‘l\,
0. Postcard to our dearest friend;

C"D‘A1



34

5. AN ASIDE ON IMPLICATION

Kb leave the main line of our discourse and look at some subsets Of WW
WW-Ck 018 ‘Guilt? From A1 and E1 by mecms OFCmPl{c,a1c'on.
AS we announced Cm the introduction, we do cong(dey- cmplrcatcon to be more
mystercous and less well understood Uom dL'sjunct(on or conjunchbn) and we
try to buuld 0. ltéerarcky of subsets of’ “‘w without using it.
Someone might be inclined to Say to this Hull: log(c really Starts only when
Cmpflcotéon comes in.
This chapter oFF2»rSMm some consolqtcaa.
We F-LrS‘tshow how to erect, by repeated use of implication, some fowets
of Subsdfs of ‘"04 of ever i.ncrea$t'"9 Complexcty.
We then ghortly d(ScuL$S Hue dzf’f%cuP,£ question 0F how hp compare fhese new
subsets with subsets‘ of ‘*’uuwhack are arcékmetical 0: our restrccted Kensa

5.0 We defame, a sequence I,,,I,, OF Sufifizts of’ “co by:

For every oée “um ; I°(o(] ; -_-= 1 '1

For at/e/ry pe uu; _

For €/K/Grydé: Nu)-. -I-$P(°()‘= "9 A1(°(P)

AS usual, S denotes U12 successor Function on uu.
IL” For example, , will turn out to be:

I,_'(oL) =- ((o<°=2 -—>o<‘=Q) ~> o<‘=C_>) -9 «x3--<2

5.1 Tixeor-em: Vpflp 515?]

[_>r_Q9f~.Deterwune Se Ww suck that Fu.n(6) and Vot[(3l°1)°=Q A Vp[(8lon)SP=o<Pfl

T5\€»n= Vp Vot[ IP(o<) 2-" IgP(3l°<U.

31

AS U\e reader may suspzd: , we are qoénq to prote = Vpf-I (Igp .4 IP)]
We wd| do Hus cnotucxcveny,and need some azuuuowy concepts,

5.2 Let A be, a Subset of ‘”w_ We define the SU~bS®t N930‘) C’?W” bx/=

For all 0(6‘“uu-. N€q(A)(o() == -1A(oq

L91: A be 0. Subset of Wm. A is called. 0. stable Su-bfdi of ‘'”w

Nec3(Ne?(A)\=A , tie. V<xfA(o<J4-2 -1-vA(oo]

5'3 Le-mma-= Proof);

For all subsets M; of Wu» 1 1; A43) Uxen Ne9(A)£Ne?(3).An1-.
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For an stable subsets AJB o? “w: IF Neg(A)sNe3(8), then A58

Vpt IP is 0, stabte subset of 01.2]

It as O. well-known fact From Crttuitiomlstic Iogrc, that A, cs 0. stable

gugsa of “mi and that the class of gable Subsets of “w as

dosed under the opera.tC0r1s of tC0VljUMd:Coh and) L'Ir\p|I'c:c:tJ:L'orI.

E

VpVq E [SP s Isq -9 -1-w(Ne?(IP)5 !\}eq(Iq)\]

f:I1>_c3f3:Suppose, Pjqew and IS’) fifgq , -Le. Vo<3{s[ISP (at) Z.’ Igq((3)]

Uséng AC4, , determine Seww such that Fu,,\(5) and-. Va fIgP(od,g2Igtitfilafl

Consider o(*E Ww, where ot fldftls the conditions:

V2'<Pfo<,2 -- 91 a:d= 041 =- .4.

ti C5the Sequence UK.“go which (<3defined by-. Vn[_1_(n\= 1])

Remark: -—vIgP(o<*), therefore-. -11-Sq(5 toad, omd-. t8lo<*)q¢ Q

Assume now, Far the Sake of argument: 3n[ (5l°l*)qtM 740]
Detexmcne new sucht/\<1t= Cfilozfiqtnl 7&0

(Both o(* and 5[o<x_ now halve O. "useless" last mflrgequence,

«,5,hszsp.(aw teem we on ma. has no wmwty
M ‘noun the 1'ndu.ctCve St =)

DeLeFo:wu'neqte 0.2 such that :€PVo([ 6tt=?x'*t ——>t5lo<Wn) =(<3l°!*)qtr1)]

(IF We have to make olim °”w Sattkfiyvkg-. c7Q=a¥Q, our optéons

{Br He pS0.t)Se(?“-371035 OF 04 are almost Opens)

Define, qe °“’w suck that Funtq] 0U\d«= fir all axe Woo :

V3zp[ (r][o<)1=QM at] and: (Me)?= L.

(For all mew and ote wuu, m*oL denotes the sequence oh, Wu; wkzch

one (Pt; by concareruautcng the {bate Sequence coded by m amd tte

Cnfiwzte sequence 04) __

we have emwwt that: Val.’(qla)€=&‘,H and-. Vat (8l(qlot))q(nHO]

Moreover, (tar (LU ole ‘*’w=

(Nee? LIP“ tot] Z2

3
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£2 Igq (<SI(r1(o03

g" ‘liq (6((I]lod)

<1’ (N<7(Iqfi (5l('1lo<\)

Ther2fi>re=Neg(IP) :3 (I?)
We reached. this Cohdusiou by assuming: 3'1 [(8{°‘;<—]q('‘]=0]

Therefore , From-. -ww3'n[ (5[ot,Jq(“}#O] we may come 60:

'""'(Neq (IF) A Negclqy),
E

5.6 Theorem-. Vpl: Ip —<Igp]

PVOOE-.From5.1'- IS
In Or-dey‘to Prove: 5.. We, ROW!H‘€Ob‘/(CH5

-1[:[4‘$Io))(1ndProceed, Cnducfion) '€W\mQ§
(Let us prme = -'1(I.ggP 5. ISP) From-. —.(ISP 5 IP)

SN-PPOSC'- Iggp S ISP} them, 5.5 -. -1-1 5 N67(lpn)

U\e,r2Pore, by 5-3 and 5.44 -. —r-1(I3? $1P)_ Cohtrudickcon)
El

571‘We deF£ne a ccquence .[,,J',,... of Subsets of‘ “an by:

For 2»./em; cu’: °"w : J;(o<\-= '1=1

For €JV€xYy pe uu’

fiar eve/ry oxe Ww; I§P(o<) =- fP(<>L) ——>E1(o<P)

5'9 1-f1_%_0_"§»_m= UP[J -éjggp]

Proof. Lake the proof of 5.1. Determine, 6.; WW suck that Fun(5) and

Vaf (5loL)o___._1_ A Vp[(8lq\$p :dP]]_ Then: VpVot[.TP(o¢\ g2 JSP {Sled}

M

Wewank fo prove how: Vpf ~v(J$P5JP)], and, again, We will do So byindudion,

59 E_m1"_9_~= Vp [lggp 43;? ——> -m 3q<s‘P [ Jggp uq 1]

Proof-. Suppose pew and Jg'5‘P‘.$JS-P, lie. \7‘ol3(3[ Iggp (oi) £2 7gP({s)]
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using Ac“ , determine. as my Suck that Fum(8) and V0‘-[.TggP6>‘);__7IgP(5Ia)]

Ob$QI'\v?.? 4:; 0-Wd:"I(.T§-S-P fl Igp
Therefptez 8!; 744 , and, b be more precise: *rV£<§P Vn[(5lé)t(hHO]

Assume now, R» the Sake 0? argument: §H:<S‘p3n[(8|$.)t(f\\= 0]

Dexernune Lgneuu suck that CSIQECM=0

Detenyulne eew suck um; Vo<Eo’cfl=Z£ —> (5l°<)*(nI =(<¥l.1_)*(n)]

DQFine qeww Suck taut Fwn(q), and, For all ae Wm:E =19-)?
In this way, we ensure: Val: (WK)! = EU and: V/oLf(8l(r1!od)t(n);o]

Moreover, For all ole “’w=

J-$S‘P(-0!) 4:’ ISYP (VIM

4. (J5P(5|(q1a)) A (s:cqna1)‘(nl=o)
5’ (-~-( E, ((5lCnloL))“"1) —->E, ((8ICv1loc)\t”').---- -’ E, ((Wnldl}P)

Mb reached Hui; Conclusion by 0l.9s‘uw|,c'r\c3=3t<S‘P[(8l4.)t(nl=o7

But; -. ve<s,, vn E (8l41*(n)=.eoJ , ale. —.«s1e<9,, 3n [ (5L1_3t(n\= 0]

Hxerefbrez ‘I-u 3q<§p [.TggP 5 Iq].
B1

5-9 L:~w_°L= Vpf Jggpugp —> —.-(J§P5JPH

P_ro__of;Suppose pew and Tggp-$]gP, By 5.8, We knoW= —;-13q<§P[.T§5P£J'q]

Assume.’ only For 0. moment- 3q<S‘P[J'$-Spéfq] and determine

q<§p sucktllax IS-Spggfq.Remark: Jgpsfggpsfqslp, and:

3gp f I . Therefo re, making no odditéonal astwnptiong We have-.P

M

5.10 Theorem-. Vp E JP -4 Jgp]

Pflgf-. From 5.8, we know: Vp[Jpg]‘$P]

In order to prove -. Vpf -IUSSP :<.~TpU, we use induction,

starting (‘mm the obvious (‘act-. -. (1,510), and appflyinq to‘
5.9 For the Lndudive Step. The_c'.vqLLme/11:is szmjlax fo the cuqumeoct

For 5.6, and will not be qéven (n detail. 13
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A dassical S ‘ct ­pe cuzor W9“: _
Iml, ,... and J;)J.1. are r‘:°:iu$:iHe‘:'ka£tOall: parhccpants on fie fwo Process.3"
Let: Us try and. see CF tug (9 true“ CU‘ A2 ‘Md E2‘ '8

5“ 733222;‘ 32 5 A2

lirflz Note that: 93*‘ 0-“ ole wuu;

Jzcd-5 4:) (E1(do) __) E1(-dq)

‘~)

: (anhx (“E01 ‘-> 3n[ot‘(n):-O7)V 1: ° ­6 M 0‘ (“LO "’ 3"’-°“(nl=o7]

g) V” 3"[°‘°("\)=O -9 ol'(n)=o]

DeFine Sgu./bu suggam FM“) Q d

Vdvmvnf (8'°‘)m(")=O £1) (d°'‘(m;—O\) 4(
T .. ‘ °‘ “=0‘Na! Q‘? and:
57¢

5.12 ‘meorem.\______ '- A15 72 and E113;

I_>:9.9F"Deg-°"€ Z6 “"14; such H‘ h F

Then: Val: A4(oL]3 I2 (2105; (:)N:"d AV/°"EJ‘_7'"[(Zl0()°(n)=0Z3ot(n)%0]A(gM1: 4]

-DQFLKC Low S L‘ 1- 2up at Fum U1) and-. Votf (q|a£}o=_c_;A (,“aq1_=o(]
T“€m= VOKEE

E 10>‘)C) J2('“°‘H 0~P\d°- E133’;

5J3 T’ .- ‘1(D2-A1i Ia)

PTOOF-. D2A{J _—§ ' ~ 2. 2 - .: V

determine 861% Saueckt:a3tPh;z/\1(o«)<:>f¢<{g7, and, using AC")

We how dare to make the F2“ 2(6) and: VQL-D2A1(°q3 I203 1°13]OWO1 ' :

Votl: I32/‘1(o£) —> (~.E1((.:§?ld)C11;.]n

F . w . ­

1):; :::PPbSe. 0&6 w and D2.}\.,(oL)and E1((5|d)1)r me, new suck (:90; (5')1(n\:

VMM :54? -9 (5lNi(n)=O] at O) and “'50 few Suck that

° (5 (“=32 ") E1U5W5)13] and V [-1 ELQ-93'
~ _ z " = (SI 3],

and: Vf5l_-[s€= all .; DaA1([m_ F I‘ 2 P
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As there are Sequences (dag (3: Heat 3 , tkcs Cs Confrad.(<:(Tory

We kowe Provai now: b’o([D’*A.,(oL)—> (‘I E,,((8(oa)‘)H ,<1nd may

Copplude: Voccbz/men)g2 -vE1((8[o¢)°)7,and-. Voc[o‘A,,(oaz3vn[(6(oa°(nl+o]]

This would mean». DZA15A1 , which we have refuted “'4,theorem 4.3

Q

’5.IH Vaeormm-. _ "' ( A2 5 J2)

E:c_>_c3f-9<LPpoSe—= A2—£J;_ I I‘-e.-. Vo<‘:I(3[A2(o4 .;7 J;_({!>)7 , and , uséncg /«C11, determine

Se ‘*’w suck that Fw,.(5) and.-. \-/ozEA,_(oL]4? I,_(5m].

We promf how proceeds Like U\e Proof of theorem 5-'3

We First remark U\a1:: VotfA,_(ot) —) -«E1 ((SloL)1)], and

Hen conclude: AZ -_<.A,, wlubl» has been refuted vi» chapter 3.

[3

As I>’A, 5 E2 and —-(DZA, :12) , aflso-. —«(Ez£Jz5. Actually, E2 and J2 are
in co mparable =

515 Eeorem ; -. (32 ._<_51)

Proof -. Wuis result reinforces theorem 3.2 and is proved Ln 0. similar way.

Remark that) For all dc’: mu: .­

Jz(°0 " Vm 3n [oL°(n\).-.0 -5 cc‘ (n).—.O]4­

;) SK 17’m[o£°(m)=O —; (Snsm [o(‘(n]=o] Vd‘(g(M))=o)]

For all [e ‘‘’w and oze ‘Ugo we define K®o< Ln Won by,

For all h,€e 00­

(x®°*)‘(n\ == d*(n) i¥ 5151

L01]1;: O <n AO(°(M)-.0]
amt - am<,. [(5-®a)*(m1=o])

: = o¢“(n] otherwise.

Q{®oL) (01 == 0* (O)

(T56 de-fimlkioh of ((69001 Opparadzeg goes by mduchon).

We observe: Va(['f,_(o4 4'3 t3{fot—-— [@9047]

Now Suppose: .725 E2 J Le.-. \7’a(3(5[ 32 (at) 41’ E2((=,\], and,
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u.s<'.n(3 AC deter .

Remark 11‘:/“V Mme Sewgu g ck= ‘[5 (6! u ER“ Fans2 zr®o«)],3 Hana, H(6. ‘X~T2(oC)€>E2(8‘°d]" ‘ 5‘f®°0'"H.
(194,, CQ P: dekgrmine

V V ‘ mfiw) P6“)6' O([[ _. I G
(‘rheC!“€.CJI1?l:Ve Aaq§ : Szfck
now has Q leek. sun mm * ((6‘d'@>o<\"‘)]Posubiexty 0? r€VCVl?1 “PO.” Mg €JKPl°'1$ I/5t ck<3 ‘us old ggordzs). “P49; 3)

C°“°“9°“~'e r == ma

9<Lekum “P291 and d" (X*\° = I epche Q. g em-O1__r at-Q Cwd. (out-31:1 Sequence one‘-’"_WW‘- and 3'‘ ~‘-Ir.

Wot s“PPresS"

(zouowinq ?Q‘C::q:)Q Sobet Smdel the CJ“€O..tCV€ (Lb

3 [€106 .P°"‘ts to the

”°“‘ '1 U ox2 *n cud‘ A1((5lo<*)"‘)

For 9' “PPOSQ new an d.

Dae"""“" flew suck t9\at(.&‘o(*)m(")?‘O.

Daume Q Spam . VoLl.‘ae=0—7Le_>“mm

and.‘ ‘(Fr § F F Wu) Rat('\)=(8l(x})M{n]]RemQrk P-'(:r=IF E
F;-Om Ems 4hCf(P) , (1r\d’Wkqt is mo 4([;o)[ and: EJP1)’ : ‘ ‘ ‘ "e: ‘ ‘.f’-’°I $63, we “Fer: AI (J£‘-Qmp A "s=J8FJ1 5, Whereas’

From: M‘°71£ w I42 "°W = (5: M) (

(3
Therefibre ‘ ‘.7 at

(The Lmibfive O-hd-.E2 (8[d*).

M Jed’-' bOW$ ‘us Read’ d

GM 9 .oes ‘us W619 Cn science).

This Proof t
1‘: Seems temptg ‘LS E‘O1: the .0 P‘1lL9e

r€S‘u_Q_L . dLsl;.; - Cmd. .7‘

'“€°**9t'sS’Ssh? 2% b°°£ec<§W:P:9 P'°(;f>l:ta afomh
S. ‘I QCu_. e. y . _
5.7%’ 4 H“ '°9«‘c :5” °F ‘*8 Subfloud .°.‘Q99«°can .. "7 “'2 befiweer.
A5 VQMQS . eke Q'QgS{cQl Q gpuflt OF .€O..Q(_[_~yand u'$tr0n9uremarfih. Strongest) J2 Wow be h UL££OM§m:is noel)“/Cqku
wlucl‘, On EKQ LS’that it [S POSSCHQ [Na educible to ‘E te“0-ble,

E“ the °H‘91‘Rx: hand»; makes e mm °"Qy€9S' 1’ and U“3°"'eu.
199‘ lVO_yg. ; H01: (5 (S one see that it Of the true

mmuy, as Q spew not reducible tn LQErecétwible tO’\OAtu,reof J},
:ltQvmQMt t Cqgg OF the 2~ Re Cannot 2) and,

V 0 <1 Kt . ‘_’'‘em 5.15, “°W€ it:

{:15 need nqtvf [ (3n[oc(n::.o§QiQt§Qu; we kowe H101: Hue R,“01: Ct Qhbsqs '(‘u"P4'(:gQ be nE(3On=°]) OM/in?-. Vqtivhtolcal-fi , if WQPut —7 (Vn[q(n)*O]I"¥0]V3n[q(h)=:]3fl’W“:;\‘\ fbrmugqvI Q , S.J y P’ (9 °5WousIyQ:ntme
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We now lturn to the lZaSlL of comparing I2, the Subset 0? ‘‘''’w Wlu'cl\ we Cntroducagl,
in 5.0, with some other subsels of ‘”w.
Remember that veal?Izcoa ;> (VnCot°(h):dl _+ Vnrov(nl=o1)]
An implication wlcoseankecedens Cs universal , is less accessible to understanding
than an Lmplicatéon whose cualzecedens Cs em'sten€Co.f.

Whereas we observe at O. glance = A1.-SI, $12, in Studying like ql.(€S«lZCOP‘lOF
wl\e1;l\e,. E, is reducible 50.12, we run up with a. deep rcddle of Cnéuxtconcstcc
analysis.

Consider l'—l\e.statement; Val.’-w-v3n [o:(n|—.-0] —> Zlnl.’o:(nl=OIl.

This stands (Ear0. very reckless assumptton, indeed.

If’ we,should.accepl: Cl: Ute restricted. BrocLwer-KrCPke_an-Oml(cg?2.4), we would be e e ' any determinate Propogztcm and’
Probably, would be asked more questions than we are now. '

(Lee 01 be a determinate roposztcon.
We»: 51\’''07« ‘S C11900 mlnate proposzlcon, and we may(“CUW O-LV“OLQ ant-0(('\)
AS -1-I(61V751l, Cl-lSo: '1"! 3n[d(nl=O] , l',l\e,ref‘c;-Q, 3nfo((p\):Q],
O-“dz01V‘!

Nevertheless. we are not able to prove blurs statement to be conl:ra,d,(,ctor-y_
Brouwer lxcmself‘once stumbled at I-Ju;s stone, ugmq an any-egt)q:Cfed'
Brouuweo-—|(rt'plLe-axiom in order lzo get absurdity.

(It is not d.£Fl3Ccu1l:to guess l\ow he does this.
AS h0WO-flyPf'OPoS'Ll'.COfl,Holtonly a, one) may be
assumed lto be decidable, we have, For <'.hS{'C1.n.ce-.VIE’.-:Q v‘1(J=Q_n,
wlu;c_l1,wétk Help oF CP, leads lro a contradicflon).

In U\e Fallowcnq we call-. Vo(l:"“" 3nCot(r\) :6] —-> Eln [°g(n)=o]] an e_,_,_g_9,_!,2’
and we reserve the same title For any Propom which wecan rove
to be €qLu',va.lewt (co Uc. P

5.16 Waeorem: " E1—_<Nec3(Neg(_E,l)" is an enigma,

l:r_g__of=_SLLppo$e.= Va[ -1" 3n['oc(n).—.oZl ~> Eln l'ot(r\l=O'1]

U\€|‘\=Veil: 3l'|l:Ol(Hl‘-=C>']Q fi-13n[-o[(n]=o']l and: E1‘

Now suppose-. E15 Neg(Neq(E,l), Le: VatElpl: E,.(oll 5;? -1-. E4(F,)]_

Let 046 “’w Cmd assume -2-»E1(ol). Ddzermine {$6Wm suck that,

Eda) (:9 —.~E,,L,2..).-lien: —»-E,.((s), and: E,(a)

Tlxexefore-. Voll.-“" 3n [<x(nl=O] ~5 3nfol(n]=OT_l

E

Remark that, in tluls Proof, we. did not l\a.ve recourse to AC“.
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E:29F=

5.18 Wueoremz

E:<z_°F'­

‘+2

.. "ea twmatem s E.” is an enigma,

V0([ ‘V1 3n [ot(n]—_-O] ——93n ['o((n)=o]]

Voclf—.—.3,.[a(n) =0] 3 3,. [o4(,.;=o1], Qnd: Neg(lUe9(z-:,))_4_51

Suppose =
then:

Now suppose: N2<3(Neq(E,.l) 5 E1 , i.e.: Vo(3{5[~:-rE,,(o(]g__'?E4((;,)]’ and,

U.S«O\@A011: determine 56 “um Suck tint: Fun (5) and:

V°‘[ "‘ 5401) 3 E.,(8|o£\]

Let ole °”w and. assume ‘l1E1(o£); then E1(5‘ol]. Calcuflate new suds
U\o£'- (5ld)(I\)=O and determine 96¢» sud‘ Wat:

V[>;C,§Q=512-) (§l[%)(n): (8lot)(m]. Consider o(*: <'>'<Qxi, and.

remark; (8loz*)(n\=o, therefore: -1-: E4(o(*), and-. 3m<Q[0L*(m]=0\(m)=-O]

i.€.: E,,(o€).

We proved: Vazf -1-:3n [ot(n)=o] -> 3‘n[oL(nl=O7].

jj

El

., E. 5 I2” is an enigma.

Defime ge “L. suck that Fun(Z) and: Vo<Vn[(Alot)(n)=O<‘_’ ol(nl;éoY

17.e.... va[(we9c£,)3(on ;> A1(ZIoLY]Iand: Ne9(E,)5A1

Define qe was such wax: Fwn(q) and-. Vocf (;1a)°=o< A (Zlo<)‘=_1_]

Then: Votf (Ne<3(M)(o<)3 I2 ( rylod], and: Neg}(A1)-$12

Titer-e.foI-e: Iueg(Ne<3(£4\) 5 Meg (A1)5 I2 and-. Ne9(Nec3(E,))s I,

Suppose: Vol]:‘H 3n [o£(n)=O] -) 3n[°4(h]:O]], U\en,0.CCOr‘ding {:0

Uteorern 5.15: E15 M3 WZQCEJ) and, COhSequ€)llZ€\j= E, :€I,_

Conversely, Suppose: E,;<_IZ , I‘.e.= Votflpf E16!) 2’ I2({s)]

Let as ‘*’w and assume: '1"E4(°l3. Determine [$6 Wu: S0-CkU301:

E1(o<1;.+I2(P)- T5€n= '7"-I2((5), and, as we noted in lemma 5» Izqs).

Wwerefiare-. E1(oQ.

We Proved; Votf-1-I 3n [oi(!\}=O]' —) 3h’.-o<(n)=O]],

8

AC“ has been Ccr-cuunventeol once more.
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5.Iq Theorem -. ,, 3'2 -.4.I2" is an enigma.

El‘_o3F= Suppose: Voclf-n Eln[_'ol(n\=o'] —) 3nl.‘o<(n\=c>'.ll

l7~¢m= Vdf lE,(ot°) —>£,loul) ;> ("1'1E1(oL°l -2 -«-a E,,(oL'll]

ond= Vat (E,(<x°l-? E,,(o<‘))g2 (-.e,(..u) .,» "|E1(u°ll]

AS, obviously, Nec3(E4) 4 A,, we conclude: 3'2.5 I;

Now, assume-. Jzélz, hemember From 5.l2= E1-SJ}, Haexefore-.

E1512, and, according to 5.18; Vo(l:"I‘I3hfol(n)=O] -) 3rIl_-o((I\l=O]]_

R!

5.20 Theorem = -1 (I,_ _—_<E2)

I_3_r9_¢_>f.We prove this by re-examining the proof‘ of‘ Eheorem 5.!5'

The argument qcven there may be seen to Show Hie l‘0"°W"N9'­

For all 56, Wm) Fu/n(5l and Voll:~Tz(°4l"9 E2 (5l0‘l-1,

there is ol*e‘”uo Such that ‘V32(our) and Ez(8l<x*)

Now, assume 12 51:2 "leg Vast!»[I2(o() 4-_->E2q»,)], and, usmq AC",

de:-erme 8e“’uJ such ellae Funlél and: Vo([_T_2(oLlg."2,(5lo«)1

Remg um Vo:[(':ln[o<‘(n)+o]-93nt<x°ln)4o1)—+(vn [ol°(n)=oTl—>Vn[o(‘(nl=0.l)]

L2,: Val: (3nEoL‘(n\=,éO] —) 3r1Co<°(n)=}O]) -7 I2(oL]]

Thereflsre-. l7’o£[‘(3nl:o(4(nl+-‘O3 —) Eln[o£°(nl=fO-.l) *9 EZ(5lot\]

As Em.He proof op theorem ans, we may covstmct at‘ an Wm

Such ltllalc-. 1( Eln[(ol*)1(n)-/:o]—> Eln [(o<*)°(n]+0] and-. Ez(8[oz*)

Le-= '”"3“[él*)°(n3#o] A vnl'm°(n\=o3) a»~d=Ez(8la*)
0W1‘ "II2(o(*) and-. E,_(5|oL*),

This Csthe Fequflred cohtradichon.

lg

We are OpPY‘oQCh£r\q)how, the ll'm4'.tsof our knowledge, Queskiom wee "I253;
or” I24 A1" also have 0. ring of émprobabieéty but Seem to belong 50

a difllereoxlz level of mystercousness lzhaun.their predecessors.
We do not pursue Um‘; line 0|? research any fu.rH1€.r:
we do not See 0. reason why these annoying enigma; are true, and, therefore,
we do not want to make axioms OF them, although, such thlnqs are
sometime; done, only by way of‘experiment Troelstra I973),
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We W0-Ht t0 C0V‘dlLd€ UVS d‘°Pt€* by 0- Short Comment on the subset; Panda
OF °°w, which are defthed by:

For all on: Wu):

2: E4(“-0) —")A.1(a")

QM == A,(o<°)——>E,(<x')

We leave Cl‘.to the reader to verify; PéA1_ In contrast to EMS, We ‘tax/e,

5,2l Weorem: ,, Q.iE‘” (S cm Cniqma,

P_’_r_ggF=Suppose first: Vo<[-1-n 3n[<><(n)=O] -+ 3nEo£(n)-.—O]]

Under this O.SS4unp€Cor\) For even; on; W.» the Efllowihq holds:

Q(o<) A, (oL°) —>£4 (a‘)

A1 (d°) —-) -v-1E1(o<‘)

—.1(A,(o<°) -9 E1(o(‘))

—-a-a3n[oL°(n)3£o v ot*(n\-.-0]

3n [o<°(r\)+0 v o(‘(n) =07u’rLM‘HN

From Utés, We may conclude: Q5 E1

Now aggume: Q-5E4. By an argument séméear (:0 like one <]CV€"5"

Useorem 5.l8 ~. N€3(Neg(E,\} $ Q, and, H\e,reFore, Neg (N€q(E,\\ £5‘.
According to Hxeol-em 517) W; implies-. Vo£[~1-13n[o((n)=O] -) 3nCot(n]=o]]

Q

We ggoujol, be ca,r2.f.,J,, in Fu.tu.rve,not fo get Qhtamgled in Hué was of mysterézs,
but occasionally, and. especially (Mchapter 40 and. {M tkelast Ckapter, we will
howe. (to refer to 0(7­

Tie Rbllowcng pccture. summarizes Una posétive results of this O$\a.p1er-.

ijq
ih.
. 13 J

.A2

L2 \ \3

V‘
. I1.-.E1A1::,L
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ARITHM ETIC AL SETS INTRDDULCED.

Having ploddect t\6(1\/Ceythrough the last pages OF Chapter 5 where we saw
much that we did. not. many understand, we now enter 0, qlade where
S£mph'C<'tyreign; and the sun CS Shénthg.
The class of all Subsets of ‘”w which are reducible to E
and. baptized 23.
Likewise TI‘;
Weverify that these classes bfihoule 0.9 one Should expect.
Both of them coN:<=u-W0. unéversag element

The other classes of the aréthmetccal héerarchg, 2:, H2, Z2, 773,... are
introduced in o. straughtforward. way, and turn out to behouve properQy.
A short discussion explains why the diagonal argument does not prove
that each OFH1856classes is Properly included in one of the fbllowing
classes.

is introduced here1)

We define DEC to be the follovvihq class of Subsets of: 00-.

Dec == {A [A§;wl Vn[neA v -«(neA11}

(M€mb°"'$ °t DEC are Called-= €129‘-i_0§te subsets of us).

one might Frown at this notion , as we do not have, in Cntwltionism’ a_ Set of
all Subsets of on.

But wcth the help of A000 we can get it into our qp-agP_
We may T€h\OltL'­

For a.“ subset; A of an-.

IF AeDEC , then 3oLVn[neA {:7 o<(n):o]

and-. IF 3oLVn[neA ;) ot(n]=o], then As; DEC

We have Wary reason to '“€CogruIze DEC, as Soon as we accept

or) For ekat maxteru G; L’: {dldéwwl VH[°‘('\)=O \/o((I\]=-.115)

cuw’

We define Z‘: to be the Rallowdng class of’ Subsets of ww:

Z’: -.= {P|P.<:—_°°w] P_<.E4}

Once more, one might feel inclined to object. Weare very (cu-, Lndeeot
from Swveqalrxq all possible Subsets of “"w.
However, as an the case of DEC’ we wellbe able to reaggwn, Ousdvesl
in C1 Moment,

Lek Peww

PeZ‘j
Theorem:

there exists a dectdabte subset A o( 0.)

such that Vo([P(o£\£2 3m[6lmeA]]

it and only it

appears, the class of all Subsets of-‘Wu;which are reducible to AT
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BEEF: U) guppose P£E1’ ,-,3, \;4x3P[p(o¢);>£4(j9], usmg AC”, determme Sq woo
suck um: Fwqal a.nd.= Voc[P(o<)'.z_2E4(5lo03

Define a. decidable subset A of-‘w 5‘/=

For all (raw

95A -9 iamtmélelel A sum.-a /\5m(0-lr-1/\vcIaecna—T«c—>W=*=°7”(_ _.

Now, Vail: £lm[(5loll(ml=O] 2 Hnfane/fll

Wxerefore, A R,&FclsElxe requirements.

(as) Let A (re a decidable Subset: oFW Suck ”~°‘*= V°‘ [PM 3-’ 3"‘[&"‘€Afl

Determine Se “’w $u.cl\{'.2.a1:Fu/n(5l and‘

For QM oiéww O-Nd mew

(gld) (M) ==.— 0 5£mé.A

:5 1 otherwise

Remark: Vol[P(oQ:2 E,(5Ia)1 , therefore P5 E
a

6.5 Theorem: Li) Le}: Panel Q 19¢ $“b$d7$ 016 WW­

IF Pa 2: and. Q62‘: , lilxen PAQ 6 2:­

(ii) Let l3o,l>,,Pz,__.be asequence of subsets OF W0”

1;: Vnfpnezil them nkgwli 634..I

proof» 0) Llsmq the foregoing Uleorem, determine decidable Substifs Aand 3 OF00,

"‘” gu5l\tl~.g1:-.vdrpldyg Elm[ameA]] and: va[a(o<)z.> Elmlameall

Defmg a subset C OF w by:
For (192 grew:

llreC gl flpilqmrgp Apréq /\ peAAqeE’>l
Now: V{r[{reCV-:(CreC)] cm. va£(P(oaAo<a\):2 amfamedl

Therefbre-. P00. E 3:.

0.0 using the Fvreqomq tl\eorem,deJiermine a Sequence A A ofO’ 1)

decidable subsets oF cu, Such that; VnVeil: P,,(°‘l Z1) 3!" [a"‘eAn]]

Define O. Subset A of w by=
For all 6'ew­

€reA €227 3n3p[ nsigmr) A (:9-P A peA,,'J

Them V(r[6-eA v "(ere/¥l3 Ct/nd= V04:3"[P,,(°‘)3 Z3 3"‘[a”' EM”
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T*‘€"€F>re= U P e 2'’.
new V‘ ‘

E

We know firom the r .
Cotmtawe Mtergecegwem 3.2., that 3‘: LS not closed under the oPgm._t,_-0,,‘OF

tie ’:)€edd- °t- pairing Function on wwn r er ° ‘Pam technical not'on .
norms: mam (er. 1.42.)and deLFu.'n:’Zviiusfiw Z“£w°°:*_;gZoFbyPfu¢eSequences of

F07’ 0.09 o(,(;eWw._

<d,P>O==d <d,F>1:=F Vn[n>1*9.<°’)Pxn=Oj

O-nd <o1,{5> (<>) .-_—_O

7359Punctcon has the d/ladanta
any hatm. S V qe OF not 9‘*r}€°t5V€25U1IUtés MU not do

‘°-“ P€FL‘Iu£tCon- Lot [145 cc C;
U. is calledaa .:::er:f:Jmebu::.t:.¢°F wfl_%°'"°§(1 66 0. member of 09.OF 2 Hr We are able. to Prove-.

LQI: PQ ‘’‘’.,u

I? PEM,UIQH Z u(<d'F>)]

The Cafe“ “/ordinq O .
We do not (jet Know tkak Ms ma??? ,oL;wE>dm:£2aft @399 We“ M Cases where

E5 Th ._ o __ Z1 COP\-CO-U\SQ uncversal element.

P -. ..539? Define the subgd; U_ of (HUDby:

Er afl o<ewu,-. (Ma) :2 _._'Z]m[a1(°—;°m)=Oj

and “Ote u‘°“7 Uv belongs to 2,2

Lei: Pgwuu and P62‘:

Followcn H‘ A . _ _

vat PM‘? :€;>;€Enam e2’;\](¥e13e;o;:e ‘O.deccdgble subset A of uu Sad: U\C1l:-.. rmm € P€ w $(L(‘Jl -.VnE[3(n):O;)n€A]

"""/"=V°<fP(oz)"3 L’ - - —.

E 4. m [3(oun)~Ofl], ..e,. \7’oLfP(oL).{_7u(<d,,;>)]_

Ckfinwte itd‘é'k"9 to déaqoralize.Gder «­

Fe: :10“ wuo off“, NW‘ C‘ deF"€°‘ 5V=

One CCQ1 ‘F. We w: (L0 (oq ‘EL Vm[°‘(&m)‘/=0]Ly Verne}, usmg theorem 55. uh: ¢2.,. .. O 1 .
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As U: s A“ Utés COHFWMS theorem 2.0, which SOLLOLU\a.l: fi(A15E1).

6.6 We oleF£ne ll? lo be the fbllowéng class oF Subsets OF “’w=

Hf:-_-. l:PlP_c_‘”ou| P5/l4}

Like 2:, this class is manageable:

6.7 l7\eoIrem- L915P9 ww

Pen? if and only Uuereexists 0. decidable subset A ofw

Sueln that l:éx[P(u) ;_> vml:ameA‘1],

Er_o2$= 0) Suppose P$A1,i.e.= Vol-:I{3[P(o¢).,_-_>A,((;)1 use“, AC“, determine 5e‘*’au

suck thou: = Fem(5) O-not-. Voll:P(otl;‘7 A,(5lul]

Define a decidable Subset A of co by-.

For all lye ou­

lreA 5) VmVO.[(m$9q(6') Alrga. A3"‘(a) $0 A Vc[(a_c_:c/la+c)-7 5"‘(c)=oll-i 5'"(al=Ll

Now, Voll Vn [ (8|oL)(n)-_-O] 4:) Vml.-Elm 5 All

lllerefom, A F-AQFJSthe requirements.

(ii)l.€k A le 0. decidable Subset 0F no suck that: Vo([P(dlg2 Vm[&meA]l

Determine Se “’uu Suck that Funlfil and‘­

For all Oleww and meow

(8lolllml == 0 3(me A

== 1 Cl Elm 4 A

Rernarb Voll: Ploll 4:) A1(5loz)] , llaereflphe P-_<A,_

I21

5-3 T_l1§£€;W_‘=Let P°,l3.,,p,_,... lre CL Sequence of Sulrsets o? ‘“w.

Ip l7’nl:Pn6 mg], tken nQwP,, e 17:’.

U.$4'.nqlike flareqoinq Uxeorem, determine a Sequence A°,A,,A,,.. 0?

decidable subsets of m, such that-. Vn vocf mac) 4-.9 l/mtame Ann

Define 0. Subset A of Lu by:
For 8'6“):

QreA :7 Vml/a.l: 9:90. A msegler) --> as Am]
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lien, V€r[lreA v‘I(ereA)] and: Vo<CVn[B,(ot)].;> vmrameA]l

‘l7\€r€RDl‘€=rgwpn

El

We know, flowntheorem ‘£3, Uxat {°<l0l€""wl°l°-'9} U {o<lo<e“'w lol°:_:l_.} does not
belong to Tl?’ and, hence, ltlxat Cl?may qccur that a. union of Tl?-S219 (S not

0. Hf- 521'.

6.9 llxeoremz Tl‘: contaéns a universal element,

l_3_f_Q9F: Define Elle Subset ll of “lo by-.

For all olé ‘*’uu= llloq 4:? Vm[o<”lo7°m)=O7

and note lzkoul: ll. belongs lro Tl?­

l.€k Péww Qnd P6 llf.

Following Uxeorem 6.}, olelcerrmne a decidable $ub$e1: A oFuu suck that;

Voaf P(o(l;_? Vm[&meA]]_ Determcne (36 ‘*’wSuck that: E/nfF;(n):o<:2 neA].

Then-. Vo<[P(o<).;2 Vm[{a(am)=o]], I'.e.; Vo<[P(od;> u(<oe,{a>)7.
K4

Le}: us try and diaqonalize once more.
Consider lzlle Subset ll: of Wm which is delrflwed by:

For all ole Wm: Ufloil == §l”‘[°‘l5""l‘l’°]

One easily verifies, using theorem 6.9.-. ll?’ 9! 17‘:
As U3: -.<.E,, lckis confirms theorem 2.2, which said that «(E1 .5A1)_

640 1_>_2l‘='m‘uon=Let P Ge 0. Sulrset of Wu.

We define lzlle subsets lhx(P) and. EX(P) 0? won by:

For all ole Ww :

lLr\(P)lo\) == vmfP(.xm)]

E.<(P)lot) == 3m[P(ot"‘)]

E>.IlE€ We define 0. sequence A,,E,, A2,E,_,... oF Subsets of ww by:

G) For all o(€ Wm: A1(ol):- Vn [ot(r\l..O]

Egon l= 3nEoL(n)=o]
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(ii) For all new: Ag" == l,LnlE,\)

E5“ '-= Ex (An)

We oleFcne 0. sequence U2, 2.‘; , l'l‘,’_,Z: of classes of Subsets ofww
b -.

9 For all new: IT?‘ ==-.{Plpgwwl P£Anl

2:: ~=.[P|Ps“’wlP§E,\}

6.l2 Tlleorem Let Pc_:‘*’wand new, “Z1­

Pe l-lg" if and only l.l\er€ excsts 0. sequence Qo,Q,,,... of subsets

of w.» suck um vmEQ,,,e2:°;J and P=flw a,,,.

Pg 2;?" cf and OM if Uaere exists a. sequence Q0,Q,,... ofsubsels

0; w suck lzkat Vml.‘-Qmella] and P='l")€wQm.

Eiggfz We prove lzlae First part.

Suppose: Pe ll?“ , and determine 8e‘*’uu suck l:l\Clt Funlél and:

V0([ Plot) .51’ Ash (8lol\]. Define, for each mew, CLsulaswt Q", of “cu

by: Q,,,== {allele ‘*’uu|E,, l(<SlotY")l ~0md remO.rlL=

Vml.'Q,,,eZ“,’,:l and». P:-_ MQMQM

Now suppose: Qo,Q,,.-. is (1 Sequence ol3 members of 2°, and,

using AC" and. AC", ,del:erm£ne. 8e'*’u2 Suck Uxak:

Vmf Fum(6"‘) A VoLlQm(oL‘l[3 5,, l5'"lo<ll.

Determme Ze-;‘*’u» Suclx that Fuml-73) and Vo4Vm[l%ldlm=5"‘l°<l

and remo.rlc.- Vat Vmlllmlotl] : ASnlZ,,loz):l',:'.e.=P = pewem e n;’,,.

on

Like 2.?‘ and ll‘; CLll Classes 2:“ ll?‘ are $'u.rveyOJ>le;

6.13Theorem: All classes 2:, Hf, 2:, U2... do possess 0. universal element,

Proof: Ulse theorems 6.5 and 6.9 and construct a universal element
Ll,,o[-‘ Z1‘: and 0. universal element l.(,,,0F W1’.

We will exlubélz universal elements for the ollxer classes by Cnducl-con.

L91: new (Ind Suppo$e= U4" and lion’ CV6 WW/€'§al elements of
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2?» aV‘d- "(,3 , respectively

Sub§QtSgn aafld “OS” OP (“LU

For all ole Wm.

U«.;.,(otl== 3m[ uo,,(<a°,¢,u)'">)]

uosnldl ‘= V'"[ u4n (<0<", (o(‘l"'>)7

U49“ and (Lou do (mien? to Zgn and IT?" , respectively
WC H\€yare U-M',V€J'$a-Ielehleflts Qlaggeg

Let ‘*5 P"°V€'- U49“ 55 0. u.m;versa1 Qlement of ‘Z3’?
0

I? P CS O/Hy member OF 25“ , tflen, using U19, Rpregovh?

”‘€0*€m and N30,, we may Find.{as U.» such that

Vot[P(otl <1’ 3m[Uon (<o(‘Pm>)]] 7 L.e.= ‘v’oc[P(oLl2;? [L49 (<4,/;>)]

131

Members of "(god2?, will be called; aritlsmetical Subsets 0? ww
(C9. Nobe 1 on page 216),

An immediate consequence of tllec,-em 542 CS: vhf 2: gngn A [13 Q 22"]

Verillgincaz Vnfzfic; 2;‘ A US; Ugh] cg not dgppgcucg,

6.114Tl1€oremg 6.5 and, 6,9 gqye r-ebL°ra‘ to the rewcts OF Q‘ : N 2.

be ‘mall asks whether l'.l\€Of‘em 6.13 is also Fertile in flag senggi and
ll: U1 may be Seen l:o CohFa—m the concluséons of chapter 3 and,
l\Dpe1cu.ll\},to lead us on to new vistas. ’

fife féfiét’ '3?"e‘i;'eI;$Efe. “S "V °"“‘ °‘*" ““’- ¢‘°“<'cc=1capers in order to Pm

E:l:;°‘*;ro“:::2»ol“eu.:¢::<;:S:‘l.3W~*°Fwe do-ss 3: We ms be come
Times»,for all o/,{$e ww: lLu(<d’{5>) <-_-9am VnL'Fm(an)=O‘]
Delzéne Q SU-b$Q.C‘lit: OF way

F0? all o(€‘*’w- Ufa (oLl ==-. Vm an l.'oz"'(anl¢o]

I; 55 0bViou.$, now, that “:1 belongs to TT‘f,_,bU-17 is not so obvious U101-’
“oz @095 Rd? belong to 21m

3uppoSe- Utz e 2:. Determine [AgWu.) Sud! U101: Val: lltzlotl <1? l1Q(<o:,[3>)]

Assume: Utzqa.) , lzhen U42(<9, (37) , Le, Vm Eln[ {5"‘((';n)+o] and, 3mV,, [P'"({;,,)=o]

ContradiCh'.Ofl- -fi\€f‘eFD|'€= ‘Uta (P) Ond: '1 Um (<f5//;>) 5 lie.-.

'1Vm3n E l3"‘(f5n)$0] and: -*ElmVn [[3”‘(f'sn)-:0]

::.:::::G12%“? “Wee at ‘am“We W» but <5s s n we e ' - - ­

exclude Elle pofsfiailify of l1Sn€x£S«lZen:/e.‘kedasgcal mamemaimams to
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We are reminded 0? the mysteries which we encountered in ohapter 5.
If-‘ we assume the enigmaticat Vot[‘1‘lElnfotlnl=0] -9 3n[d(n)=O]], we may
Carry through the classical C1r9U.menl:­

-1Vm3n[l§'"(('inl #0] , l.e.: w Vm-r'13nl.’[3'"(lEnHo] , l'.e.: ‘r"3m Vn[{5”‘({3n)=O:l

The same turn OF thought would save us at all {ldure stages OF the,
arithmetical hierarchy;
In chapter 3, we circumvented the mystery, if only for the case of the Second
level,and qalve a truly Constructive argument.
we will have no peace till we have extended this to all levels of the
hierarchy.

We could have started the hierarchy with the Class 0F all decidable Subsets
Oh ww:

A: == { P lpg ‘ml voltplal v ‘P(oil]}

We mag def-‘me CL Speciall suhset D of “’u) by:

For all ole ‘“w= D(cx)== o<(o)=O

and remark; A‘; ==-. {P I P_c_‘*’ull P5D} and;

and: A, 5 unlo) 5 A, E, 5 Ex(D) -554

On the other hand, A‘; does not have 0. universal element, (tar, in that
case, we would not survive dIo.qonall'zation._
It is For this reason that we mention A‘: only now.

and-.

In this connection, we are brought to reconsider the classical Fact:
ll‘: AZ? A: Note‘-l on page 116).
This is improbable , a‘ view of the Following-.
Fermat's last theorem mag be written 01 the Form-.
is a prl'mil:l‘,ve~recursfive ftchction Gum w to lo, 1.}
But, lL9:',nq the Brouweo-—Krcpke~ axiom, we mac, construe; [3 From w to {Q1}
such that Fermat's last theorem is equivalent to: Elnl:l%(n)-.:O]
Consider CF ;= {oil ole“’un| t7’nl.‘{-‘(n).-.03}Qnd. assume: Ufa 23 = A‘:
Then-. CF is a decidable subset of‘ Wu,’ and Fermat's last: theorem has
been proved or refuted, a big surprise, indeed.

1j

Vn fl-’(nl=Ofl , where F

A related Chiesltion, which feems of Some interest ,
Both D and E, belong to Z‘; and: D-(E,
Is it possible to Find P523 such that:

refers to the Structure <Z°-<>1:‘

D-(P-<E1?

To be sure, We have no method (‘or deciding’ for all P/Qezf; P_/,QvQ$P
(Define D.-=CF and Q ==.CG ,where F) (1; ch 515 stands For Fe,rrnC1l2’s
last theorem, and G For some other unsolved proposition, which, as
Far as we know, has nothing to do with F, l-€. we do not know how
to Cmswe/r~. (Fl;-vl=)~; (G-V1 G) or (Gv'-G) -9 (Fv* F))
But we would like to See a. P from 233 Such that the statements
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"P5 D’ and. ,,E1$P" are both contradxlotory and not but reckless.

lie dual problem asks if lzhere masts Pe Tl‘; such that D-<P-<A,
Like l.l;s cornpanlon, this problem Seems rather inaccessible.

Classically , both questions have to be answered in the negative.

(at) Let us define, for an {ac-:“’w: EP -= [o<lote“’w l 3n[[3l<?ml=oJ}

According to llheorem 5.2 and A001: 2‘; ={l;F,|F.eww}

Remark that, Gar all (53 “’w=

E4 5 gr, (1') ElocVnf (3(3<n]¥o A Elm§3<rIl‘[3(m)=Ofll

5upp05€= -1(E,{,E{5) and conclude-. VoL5ln[{3l3ml=Ov Vmc;6<n[{5(m);lO77

l‘.e,: 38 [ Fu.n(8) A Voll: Eploq 3 ])(S|otlT.l, I'-€-= Ely‘-4 D

(me) Let us define, (ix all Peww, AF:= {ot|°té‘*’"°lVr\ l.-{5(ar~l=o‘J}

Accordinca to theorem 6.7 and A004; l-lg = l:A(5[(3e‘*’w}

Remark that, For all (see“'w

A‘ 4 AP 3 SlotVn[(s(6?nl=o A Elm§6tnl.'(2(,n)=,lo‘_l]afld
We did. not Succeed lJ'l proving Similar Conclusions by lntwilConl'slic means,
and the Seml'—classioa.l assumption-. Volf-n3n [ot(nl=03 -? 5lnfd(Hl=OY] also
did not bring any relief.

l>-l} We close this Chapte/r by two minor remarks.

The fast one is, that spreads, as they have been introduced in 1.9
do belong to Tl‘: ,bu,l: flux, conversely, not every element of-‘ Tl‘; cs a. spread.

The second one says, that, in correspondence to chapter 4, we might have
introduced a class like-.

{Pl P; ‘‘‘’wI P :4. D2/\-,l

and remarked, that 0. subset of ""00 belongs to this class if and only if
it is the union ol two sets, each belonging to H5’.

We cannot deny ,llnc1t in 6. lll~l6 , the sky has been clouded Sll'qhtQy.

Our first concern will he lo make the C1/rélzhmetical (ladder) now Q(d,_-Madam’

“““°‘ ‘‘l’‘ 2: 2: .2: .2: 42; 2;: .2‘;
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7. THE ARlTHMETlCF\L HIERARCH9 ESTABLISHED

We exhend Ute results of chapter .3, in which we learnt Ural? A2 Ofid E_,_

are incomparable, and we prove -. Vn["(An‘$E.».) A -(E,,:A,.11
Eu‘: conclusion _ may be Framed as R>l(owS: Vn E~(T!gg_Z<;) A ~r(Z'.° s. f7,‘§)]
lhe argument Ls an inductive one, and develop; ideas From chapter 3.

7-0 We wfll make use of the Fact U\a1Z each one OF tke sets AUEUAZ, Ev..­
Cs, - as we intend. to call (1: firom chO.pter’40 onwaz.»ds—; strécl-Qy analyticoji
|..2,:

Vn35[Fun(8\ AAn=Ra.(8)] A Vn35[Fu.n(3) /\E,,=R<1(5)]

In chapter 3, we saw Lkout A2 kas Hus property.
This is not (the Full tale.
we indeed construct {hr each A" (resp. E") a. special Sequence 5 such taut
Fu.n(5) and. An (resp. E”) = RCII5},
But He proof of the kierarcky theorem also uses other properties of Uxese
sequences 8.

Let: us not to.(k too much and. go working}.

We First recoil and extend some notofitbnal Conventéons which we introduced Ch
the chapters 1 and Lt. (CF.4.9.).

For all n,Qew suck that 2.<0<3(r\)-.

n(9c)—.=- n&=--—- Use value wluxzk We Fimfe sequence coded by n,
assumes Cn E

T7xere.{%;relFor each new-. n: < n(o), n(1),.-. , r~(F9(n)-4.))

For 0-" n,9.ew suck that gsecabx)
mg) == U\e code number of that Fcrmikesequence oF

Iengta E, wlu1’:JxC§an Cnxltcaflpart of the fiwre
sequence, coded by n.

mempom, for each he U0‘. fi(e<3(n\\ :51.

L91: {G Wu.)

Weintroduce two subsets ZIQ) and Zncx) OF w by:

21%) =—_—{n|V!k[23:+1.<_l<3('n] .9 «c224-.-;(~“~(2HH}

Zncn .-=- [nl v!2[29L+z «.1.-€c3(o»)—-> »n(2!2+a)=5(atLz&+1)l}

Wnese defbutcons do need some e»<p|anov.tdon­

Players 1. and E are doing on,game in which they choose, alternately,
on. noxuxall number.

Tfiws sequences of natural numbers represent possible positions [)1one
0? their plO.\/S.
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21“) is the $21: of positions whédx mm’ be reached, 43 player I 55 f‘D||ow;,‘g
the strategy given by J.

(J) is the Set of posifconc which mama be reached cf player I Cs Pollowdn?
the Strafegy given by
We remark-. V V631°: W C 5<r\eZ'I(5)nZ£L(«S)]
(Whenever both Player I and player II’. have decided upon Uuecrstrategies,
thereis a resultingplay),

For all new, and K,o(e°”w we define. X2" oé in “cu by:
For all pew:

W znot) (P) == 0 if Pe 21(5) and 9g(p) ==’rL

occp) if P 4! 21(3) or &}(p] =7‘.’V\

For Cl.“ no on, and. H,o(e°";,u we, d€FCh€ 3’I><lnoL in. wuu by:

\I

For P6 (L):

(X Mnd) (P) =.—=o if P e Znq) and 9r3(p)=n

; _-.-o((P) cf Pé EEC‘) or e?(P)=f’!L

APP€Ot‘(r\q repeatedly to ACM , 0.5 We (M 3.4 , W6 may venfy :

‘v‘n\/om[E,,(°‘) 4:) 36 fd = X Zholj]

and; VA Vat [A,,(oL) 2.? SK]: o(=K1><\no<'fl

The I'ntertw£m'nc3 fimdccon l><l,_ L's none other than the Function l><l whose,
acquaintance we made «)4 3.1.
To spare the reader and ourselves, we do not go into the trouble, 0?
giving a detailed. proof of the mentcbned Facts, which Should. go by Lndudion.

For 20.0% n, we may make. 5e°’uu suck tank Fu.n(8)ancL \7’o([5|0<=°‘°8,.°“7

We observe: Von[ En(°Q £3’ 3(5[o<= Sip]

and: 35 E Fun(8\ A E" = E'a(3l]

For each n, we may make, sew.» suck came Fu.n(8} and Voz[8Io«=o<°v<1,.o<‘J

We observe: VonC An (at) 4:’ 3[;[oL= SIN]

and: 38[F(m(‘6] A A,, = Ram]

-5856 “emu-H45 vindicate the Sfakement wlubh opened Ufls section, and.
conclude the preparatcbhs we had to make for:

7.1 Lemma: Vn>0[I[3 AS“ 5 ES" , the, Eh ._<An]

Suppose new, n>O and A5,,-.<..Eg,,

um? AC”, dexernune 5e‘”w such chow. FM(5) and-. vatA$,,(a)z>E,,,<8I«>1



56

Remdrk : \/X Von [ASn ({ l>qS,no(\]

T:eref0he= V; Va E E5” (.8l£(I><:$hom] and, Vdrvd3m[ An((g|(KNShd»m H
(the Camera. fbcuses on the creative subject whgck gs Suppgyma

X and °‘ Ste?’ by‘-9t€p, and then Switches to the Lmétaéive subj€d:,

which ts responsible For 8|([;>q$nd) and has to make a Choice

about it, notwékkstangunq the {suck that MS Lhowkdge about

{ and <1 CS,and is to remain, widely msufikcient. The Creative

subject, of cowse, can not but exp|oa5 this state of qff‘a(,.S:)

lL${r\9 CP, determine. n‘l,Pew Such that: VJ'Vo([ff): Qpaap _, A (“WM ommn

Determine$500 <8) > n 591

KM °L 5[Cxl><l$no<)

The °'e°“5‘V€«Wbiect 0'” "05 Phce ’"'msdFunder any owqatcon

for CE.

“We 3e ‘‘’w such Um Fum(z..) and: V{5[-Q|]3)S={5/\V(7,[e=FS->(§lf5)(=_9]]

L915 Pa 09¢) Ofld. SU.-PPOSQ:En(P), U\€A\‘- AS" (él['5),(]/Md,

in addlfibn-. 3J3ot[ (fP=&p:§P A ZIP: Jpq9”o(:'_

Therefore: An ( (8|(;|(3\‘)'"‘)

Conversziyu Suppose: An ((6lC%|p)\*v),than Egh(8|(g|{s,\),

U‘em’F°"3‘ ASH(GP): Q-"‘d" En([3\

We We 333"‘ VP “5n(p) 5’ An ((8Icz,I(s\)"‘)] ,:.e.= E, -_<A”.
E.

A Srya“ e‘ 1;r Fnemefl 0c the arqumem E” lemma 7"‘ ‘adds to the czonclustbm /\5n‘$A,..
(Define éeww Such that Fu.n(g ma.

"FMS Construction bang; out u\)atClH‘e- P\:EJ/eE"[(Lf<s -»_(?—£~l{%)‘=Q)ALZIP)‘ ‘_.,Pc]
the rope; A , - not dam. . 0' 9W3” 5:3 has
only P5-‘m;(:eltymoi: L; ‘t ubmvsked by My howled? Wh‘°“ "€f€'S to

But yd ‘,1 OF Wt 9 Sequences)N8 my 0 wctkout he, str | - - . .
An mdigpemabie element 0‘ ms 53:23; C.:r:\cuS4-onLn our u\d.u.cf:¢.vescheme,

7’2 léflmgz VA,‘-I? E9-n'5Asm Uxen A,‘-$E,\.]
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Suppose: new and E$n£Ag,.

U.§4',n9, AC“ . determine Se “'00 such U\aJ:= F0-filo) and: VoLl:Eg,.,(dlZ—)A§"l5ldl:l

we will Prove more than the theorem announces, viz. A,‘-$A”_1

(We assume: n:-1. We cases n=O, n=.d. have been taken care of-‘ in

theorems 2.2 a.nol.3.3, respectively, and will not be trealieol here,o.ll:l1ouqk,

wlllilx some precautions, they might be Subsumed under UV? more qeneral theorem).

In opdg, to avocd lzlaeSprouting of too many parentheses, we

will Sometimes write: o£'"'l‘ in Stead Of‘ l°<”‘l&

We are to construct Z6 ‘*’w Such that F<w(Z»),0-Nd, R9’ €C1<‘—l1[5,

319 looks as Follows;

5 5..,_,llPlrs° r>‘.._ 5 5..- llpz_r»° (5 r»... 6

The First -order— subsequences OF Zip are, all ol-‘fluent, very scmélar to the

Sequence (5; for each flew, Hue subsequences of (Zl{’.~)l‘are:

Fvhlzely mamy (“'2' Pk) ttmes Ute sequence 9., 0-fld, tl‘€l'€0-Fl7€»*‘,we

subsequences of [5, «indue order.

One observes: V(5[ A,,((5) (Z) Egn(-Zl{’>l..l

The numb”; P°,P1,___ depend on {5} For each lieu), like choice of-‘

pk well be made such that-. A,,l(!~l ——->E” llgllélpllkl

Moreover, when calculatcnca pk, we also determine (1 number mg

Suck that: Ancp -—+A,,-1(c8l(Z.l[s\)&'""«)

Carry mg out this program will bring us C1 rick harvest, and we
Hallows:

Anqg —., \7'lzlA,,_1((8l(Z|{=:l)l"'"”‘):l

will merrily go round as

A3" (8l(él{-A)

l
ES"(élpl

Therefore; A,,l(5\ ‘v’9.EA,.-4(~(8l(§lpl)Q’m9"]
This looks very much like l'he Cohclusléon We are Clusinq after.
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Construction o(3_§__

Let peww, 0. Sequence wktck is to be held. Fixed. during the rather

involved construction of Zip.

M will make a Sequence °(o,°(,,o(z,.-. of‘ $‘equ.ences,each depending

on [5, which converges, in Ute natural 501192of the word. Zip is deF£neol

as the limit of this Sequence.

L01: Io:-.-.—Q and do-. = Q

F_I°F_$_£_§k_€p_=Remark-. Egnqo ztsnozo) , and, using CP, deter-méne mmpoéw

suck um; VJ Vt:-(Ufpoz ‘Mo AaPo=?&°,>o)—+An_1((5ll{zShot)\°'"‘°)]

Now define 0!, as fbllows-.

(°‘4)o'e ‘= Q CF Q<Po

ca.)°»P°*‘;= (58 {Br and ea...

(darn ‘= Q if M? L

Pemarlu 3419,: cT<,,[>,,.

DQIQJ-mflneJ‘e""w Sud‘ J,,(< >).-—-:1.and VH,-t7L4>‘7J1(l:)-=0].

Remark-. oz, = X, Xgnot,

Suppose-. as “ea A 01°: (oz,)° A B'Lpo=Ez',,pol\ A,,((i~)

Then: A,,(oL°), and, what as more:

Hat Xp..=zm>.,A aPo:aoPo « zrzsnul

Therefore-. Ami ((5|o¢)°’"‘°)

we k€QP Hus ch mind:

Voz[(08 = my A ap°_..a,p° A An((;\) -9 A,,_1((5|a)°»"o)]

_S_EC_flVd__-__S_£_€p_R€mC1rk: ESRLU1 Xshog), (Ind, CP, dejernwue m,,p1ew,P1>,P°,

such tkal:-. V5\7'ot[(fp1 =f,p, A Sip, = ’,p,) ‘>An_1((5I(x8$noL))1’"')]

Now define dz (ls Fallows;

(ozz3° == (oz.\°

éota” == 9. éf “<P«

(dz)1'P'+£ ;- (59 for all few

9.(o(z)m 1: cf m>,7_

Remark.’ E2. P1 = -°74P1'
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Delermine he “cu suck Wat J,_(<7)='-Za"‘d VEu7=I('<7"’3’2m=O-7

Remark; (X2=.-.X, Zgnokz.

gu'PPOS¢~‘ aeww /\ “O3 (dz? I‘ 0(‘=(°lz}1/\ 3P1‘-‘a2.P1

Wen: An(d‘\ ,and, what Cs more;

36E ¥P1=f“P1 A RP‘:=T["P1 A (X: XZ$n°k-J

129,4.” A,,_,_( cston1m‘«)_
We keep ékés in mind:

A A,,({5)

v.x[ (ca; (.15 A on: (d,)‘ A &p'= 3% A A,,((s))~+An_1((8¢a)‘»"‘«)]

Remourlc-.Egn(M zsnocfl), and, uséncgCP,determinemk,pkiw,
Sud‘ “Qt P4.’/P9.-1 °”"d’ VJV°‘[(J‘Pk=7X1Pn"aPn‘7'ZLP:J‘> An-1(5'(8’3sn°‘)) M9]

Now defuse as?‘ 0.: Follows:

CotS,‘)° ===(ds.)° A (o<g,_)‘= (otg)‘ A A(o(gJ"‘:= (°qQ&'1

(°(sU&'£ ==Q ‘F “PL

lots“) e"PU(_,=P? For an gew

(o\$&_)"" ,= Q if m>, Sifi

R"""°”"‘ 599. P2 = ELF?‘­

Dexernr/5"eme ww su.d\ tkat m(o)=9£ amt VtEt¢<>+m(<»I=o1
Remark: 019,;= [gt ZS" ask.

Suppose-. o(e‘”uu A Vfeslf o(Q= (ol,,,_‘)£] A<':t'p,gL=3t;,,_p,LAA,,({5)

men, A,_(ou«), Ma, what is more-.

3“ ?Pn"'f‘PKA6-‘PF=aKPk" °“[ 25nd]

Therefore: An-1 (($013 &'M‘)

We Keep this ih mind:

Vu[(Vf<S'& [o(‘= (ol5&)e]A b’tp9_=3t5,_P&/\An( P))-) An_1((5|d)£.M1)]

We, conclude the defunikioh Elf} 61; P?'OC4la(:n|_['\q;

vu (aw =- {amt}
We make Hme FDIIOWMC3obser-vatcons-.

VPwz t(o:$,fi - (dS~&+P)&])euaepye;

Vlf <Z$sP& = an pi] and: A,,({s\ —> V9~U’~,.-1((3|(%|p3\k’m")]

Tie numbers mm m“... do depend on P, Id: u.s wrLte,them 0,; m°(P)’.,‘((g__.
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We determine qe “cu suck that Fu,n(y') and;

v9, VM (']|f>\P‘ = (5I(eI(m9<.4"a<(s>7

Vp E Anqs) W [A,1_i(z.W»,.)‘)]], {.e.~.

VM Ange) :3 (un(A,,_13\(ym»..)], and-. A,,£Un(A,.-L)

8”‘ u"tAn-5_) $An__1, 0.5 may be Seen from the pr-Q/vc'ou.schapter

‘-)Rama/k : <_

(of. 6.12), and therefore; A" ;<_An__1.

K]

In retrospect, lemma 7.1 may be Seen to Rallow From lfimmo. 7-2

For, Suppose: Asné ES” ; Uxen E33" :15; and; ESSA ‘S AS$n> tW%Fc>t<°-= Asn ‘-A»,f1)

and Ens Agni 4”.
We ma,LM:ou;neotlemma. 7.4, because its Shatter proof might Serve to prepare
the reader (er the proof of lemma. 7.2.
And. here We Lt Standing (/4 all its glory:

nleorem-. (/~\r£U\metI'ccd Hierarchy

DYOO F

Tr\eorem)=

Vr\>O[ -1(/3."-_<_Ehj A -(EnéA,J]

Theorems 2.1 and 2.2 ta.A,gt\tZ us how to Put 0. First Root on the

l0Ldder.(‘J0U may Choose and. Start with your IQFCFoot or wétk your

Yfqtt ttbot).

Lemma; 7.1 and. 7.2 [taught us hour to pass the lept Foot on

to the next kiqker step, if we lean on the rcqkt one, and how

to P05; the Night fbot ontothe next hgqkgr step, if we team on

the left one.

And So we climb, and clcmb, and std! clfmt».

M

We Following picture visuulizes the result: OF our efforts;

And we dream of higher tttmgs



8 HYPERARITHMETICALsers wrreonuceo

we continue the considerations of-‘ the previous chapters, and. now enter
the domain of‘ the .tro.nsFinite.
We have to develop Something 0F 0. theory OF Countable Ord-CV\£1l9
We will identify coimtable orounals and their representations as well-Ordered
$£t.t_v_v~1>3 9" “W­

AP(:er this, we budol hgperatéthmetical Sets and prove their most obvious
properties.

8-0 F0’ WW9 "1600 (Md €A/cry S‘u.bsaz1, Asa», we define 0. 9u,bsQ1: rm!-A Ofw by:

mx—A '-= llmaepl pe/-\S

(46has been Cntroduced. in 4.2, and denotes concatenation).

We define, the $21: $ of-’ well- ordered Stumps M Wu: by tro.nsFL’niateindication‘­

U) 95 6 $

(n) I? A0, A,,A2,... is a §equ.ence of elements of $, then A belongs

t0 $ Wtle/I8 A:= {(7} U nu <n>*An’ Ea)

(III)IF any subsrzlc A of cu does belong to SF, it does so because OF(')0I‘0l t“)

It is d£Ff3£cullx to Judge, Ll‘the continually extending stock of well- ordered
Stu.n\.PS is o. tOto..Q.£ty which deserves of‘ being called» a. mathematical set,
on a. with an or “’w. §ome members 0F the French school of descriptive­
SQLtheorists shra/Alt back From dodn So.

Do we survey this totafldty So well, that proposiltionsi obtained. by quantifying
over it, are meancnqfidl?

(L.E.J'. B?‘0)u,N2rdid. not u.no.rnlot3uou.sly express himself on this poCWt+(CF-NOR 9 onPage 2|‘?!-).

he accept the definition) but lteep On. mind, that 39, although Q set, is
Very much a. set of its ourn. hind, markedly diFF0l"en.t From both in ou-at
""au.

Because. of the deFi'w.‘tion'5 second clause, members oF v'n enerall,
cannot be assumed to be d?IeJ'WI,£na_l?gobjects (lie. objects Which aotnvlt OF
(1 description,cf‘.2.4.).

Once it has been accepted, $ may be handled by the method of
tramsfimte induction, i.e.= relations amd. opuafions on $ may be do.Pined,and
general Statements about all members of El?may be Proved’ by ufoflowmg
the definition’-'

9.1% will use Greek letters 0,15,... to vary Over SF
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Eva’ ¢ . .5 35 ‘S <1 deadabue sum or w

Moreover R3,. an 0.’ = V V ’6 $ M nL(M€U‘ A mg") \’ H60]

OHC1: Vd3n[ an

We may verify the Se {acts by t"°”‘5F"”"°"€ induction

For 0'“ CV5 9: an at new, d .

"G ' we efme mbsetg '10-and om OFU) by:A {m I "*'v\ e Cr}

6'‘ _.=. <r\>cr = {nu [<,,>*m 50.}

These dfifimfions Co'\f°”" t0 Hie 0J‘l"o__y\Qelwewts ad '

One proveg egg‘-‘Y E) a“ S’; m e m 1.2. I’ (re and He“). and G"’ do Ogafn belo"9 +2» 19

we define O. bihdly 'P'*ed- ate _c. < on 4; by transflmte I'ndu.d::'on;

(I) For 05$: o_<¢ _) ¢_. 6 0.:

Ln) Fo II l\T‘(1 6,176$a(.*¢1 z_'_")
We make the fbllowzng Og,$e,,Vat.O‘- HS:

F0?‘ Ge $‘ o~<6‘

For all (r) -5 . _

For M .<pe$. (o*s1:A'cg(P) _) GK?0. G6 $, he on ; Q-n S0. A no. =(_(°_n°‘)n,,.-,)n(€3(..\-1))

L91: A and B “Q d .

we define: ecxdauo. subsets of w and. (re mm

K: A93 " V"”((n1\- (1 V(3 5 Q? \ "IVY![m§!1~>J(m]c_:J(n)] AVn[n€A_’JmeB]

(Om Sbuld Umk 0F

We also dafinef J as an attempt to embed A W0 33

A :*B == 3Jl_'J~.A i-—->B]

82 Vxeore‘ __i-. For<1" G’t€ ¢ U"S'C Q g~S-311.

E1021:" Remark: G‘!-¢ __$6‘.. Q = .

our roof WM be ... <’f.€fi>re. Val: o'~_<_¢Q G-Si-¢]

A P t 55' *'°”‘SFwte mduotaon.S‘S'ume, kerqflpre; 0.’

We know/= Vm3n [0~r::‘c$4\] andd0.£T)t+¢. we have t0 P'"0"€’°’$*7­- , CM! may S4Lppoc¢= Vm3n]_-g-m 5.y,tn]
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A000and ACO1: Wedd:erm,;ne rle Lu“ and E) ck

{me ‘”(.u suck Hot: r ea‘ mew O. Sequmca

Vmf [mac-"‘ e-2 1~n(m\]

We d2F3"€ 0. new Sequence Xe mm by:

(I) J(< >) := <)

(II) Far all mnew.I ° X(<m>*H) za <r'(m)>* J'm(“)

T5891-.51¢ H?’ and 0~S*..L_

Now assume- 0. act.' 5 cl - .

L9}: 56 “cu be Sudx than determme Ieww cud‘ that X‘0. 9“’T

R at Vm I: L¢r(<'">)= <5(m)>]emarki V"‘ I 0”" <* 1"8"")] and. use Ha duct- ’ e in 50" 0SSu.mph°on

to COhclud€ Vm‘- ['0-W‘ < 1. Sim] an‘ 1 dz 0‘

E St’

It is u_ [ to -d

sz{]:::r an c:n: er the correspond‘-,9 St”-CtOrder on, GSF o'<1~ .-= 3,,[o.S.C,.-J

WC "Ob Cf the knowing:

:-or all 0,1,-e$ 6-<1. _) o_<1_or ll , ’

F c1“0’,t,1>e$. (o'<t Arggp) ., U“?or
For :“ °3t2‘P€¢= (0‘.<_t A t<u?)_—; 0-“?

F l °31',1>6$: (0‘<'C'A T.‘<gP\-—+g‘<(?or 0.l °‘€$ ‘ 64*?‘ ‘*7 "1(o'<o')

0'9 Possible wa tv 0 re the - - .

S“PP°S€= cré SF and <7<Po:vebexgr-m‘;,£:Stn::"m:fl Ufiltd‘ I5 this one-.

feipeymg to blzheorem 8.2. date,-mme Xe ww Sud‘ Hut 0‘so~n 7 cuud,°‘é“’ ckU\aJc= v[ , _ ‘°‘?-W"
we may tstaafsiu by mduotqyni 5((:I:[ ;V'I17é:]{(!><n)], and assume; 64?, Contrary lzo-. 3"]: P“ ¢ 5-].

N9 59128 Hue 0 °[3 or(‘.u.mE . .

lzramsfindre Cnducfcon, whjfictfggo cg; :X£,gaEaStT)tem€'\t 0? Ute principle of’ 9 ea“ Pregefik E97‘ $05018lime already:

(9 A First FD“mula1Con.. Let Pg $

I10 and. VG'[Vn[P(5n)]__) UR“ vG_[P(I 5' _
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(N) A §econd. f}>rmu.lo.tion-. Let P_c_$‘

If‘ P(qS) and-:V<r [ l7’t[1‘<o ->P(t)l-i PM], then l7’<I[P(<T)]

8.’-lWe do not wO.r\t to devel ordinal Oritlsmetic-, l:l1l'ss‘tun\p Ulouqh inviting Subject
falls outside the Scope this treatise.
We will Prof-‘cl: by mtroducérlca 0. special kind of well-ordered. stumps.
Dcinca So, we l'\Ctve to use 0, Pairinca ficncjtdon-. 4 >: ‘go >——)>w

We define the Sex HI$ 0F l1eredLl:o.riQy iterative Stumps by trqngflcmi-Q mdugfion;

my >} e HI$

(ll) If A0, A, , A2,... is (1. sequence of elements 0F 'HI$, then A belongs

to HI§l;, where A== l.<>A} u U <4"/”l’7* An,
n/mew

Hereditarilg iterative stamps are as nice OSordinary Sl1LW-PSand they
Qhdoyone additional property:

For all Ge HI$ t/n_:.lml:m>'\ /\ 0"" =0"-J

We Wlll write: ® -'= {(7}

We define, by tranéllnite induction, fl)!‘ each 66 HI9; , 0~ Subset Ag. and. <1,
Subset E0- 0? Wm:

U) For all one ‘*’w= A@lO<\ == V" [0‘l<'l>l=Ol

EG)(o(\ := 3n[oc(<n>l=ofl

0.) For all are HI$ , suck that o7é@ Omd all dew“):

Awldl == t/nt EU" (omlfl

E0.(o() == 3n [Aqh (o("l]

One might ask why We did not include (P into Hlfli and introduce

D ==E¢ := Aqs by: For all oléww; Dbl} ;= o¢(<>)-.-C), but there
are dlsadvamkaqes lib Unis PFOCedw*€’as in the Case of the arithmetical
hierarchy. (Ci 5:5)

Kb define, R» each (Te HI<,l;, a class Hg and 0. class 2; of subsets
ol ‘*’w bv=

173:: {PI P§;‘”ou IPSAU}

2‘; :={P[ Pg mm [P5 EU}



65

Each one o( these classes is easy lo grasp as a whole,

85 Theorem: For all cre HI$ Tl‘; and 2; do have a wweygal egemeuh

P_r9c_£‘-.As fig = 11:’ and 28) = Z3‘: , where Tl‘: and Z? are our fhienols

gm ckaptu Q,’ We know from (,5 and 6.9 how to construct

universal elements For these classes.

We proceed by (Nd!-LCt50VL

Quppose, therefore -. we HI$) c>~=;l®and let (100,U U andon 021"‘

U10, l1,4,U,2,.-. lre two sequences of subsets of Wm sucl1l:.ha,t-.

Vmf Mom Cs a u.nLversoLleleynen/C of lTcC_’mand Um is a um’;/ersal element of Zgfm]

We define subsets U0 and ll, 0F Wu; by:

For all olé ‘*’w~.

llolotl == Vml ll4,,.l<o<°,(o<‘l"'>)l

l,l1lo£l == 3m [Mom (<o<", (ot‘l"' >)]

We Claim that lie and U1 are u.n£vers<J.lelements of U3. and

22., respectively, and Prove only half of this claim’ as the

other half my be egtabllshed in o. similcxr way

Let as First see to it that lie does belong to ll‘:

Using ACO1, we Find. (1 Sequence 5°,3,,...oF elements of Wu; such Uxotlzz

VmE F«ml5,,,)] and VmVotl. um (<ot",(d‘)"'>) :2 E0.,,, (8,,.]ot)]

Lela sew.» be such l'.l\O.13:FuM(5)aha; Vm vaf (£Io:)"‘=5m1cx]

Remarlzz Vat uom) : A¢(51a)]) .°.e.: uoe n;;_

L6 (Ls prove now, that lto cs 0L uncversal element of l'lZ..

Suppose-. P§‘”uu and-. P6 R2,, Deter-mole 8e‘”oo such that:

Fu,nl5) and-. Vozf Hal *4? Aq.(8loL)]

Consider, ll» eadn mew, the Set: fdlolewwl E6," ((81oo""ll

and remark lhal: l‘.lu’s32}: does belong to 2;",

As um is 0. tum/e:sal element of 2;,” We may determine

pe “’w Sud‘ Wit: Val EM. l(8Iod'"l Z2 u,,,,l<a,{5>)1

U.S4'.ncaAC0“ we Fwd {lewm gush that-.

VmVa[Ed", l(6loL\"‘) g." u,,,, (<o/,{s'">) ].

Therefore: Voll: Pld] 5:) lJlO(4o(‘F,>)],
Bl
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. - thThe Followifiq theorems brmq £°9a“e" some "me St"“Ct"*"a'[ Properhes OF 6
kgperarctkmetical hrerar city.

8 .b Tfieorem =

Egeef­

‘I-I'.\€O|"€.Ir\'.

PE

For all 03176 HI'$;

IF “T, um... ng.gIT‘§. and: Z;.c.Z‘i.

and;20 CW<t) H:-9Z: 0'—

one may Prove U\€ fifft $‘lOWCh?:
For out «me Hist eae..:Ao-Mr

TM; is done by trafl9F‘“‘te ""d"-°t°.°", M C°"F"‘"‘56Y with “'6

defmition of S.

For the second part, C‘: suffices (20 Show:

For ail re HI¢ and new: AL." '5.E3

L21: new and Zéww Wd‘ that‘ F“’"@) -and‘

Vo([ Glob)" = °‘ " V'"[’"‘r“h *9 (Zlflm = 4]} T"€"= V"[At"(°4‘-3 £L‘(%'°d]

Let new and neww suck (zkout:Fuwm) Md‘

‘dog[ (rl|oL)" .—.-ot /\ Vm Ema“! ->(V]l°qm = Qfl-_fi‘e"‘\7’°‘[EL~n(°q:AT(']‘°‘fl

The;-e,fore= Vnew E Afn 5 Er " E-ya ‘-5

El

Q‘g C’) afld‘ E0. 5 El­

and-. E?“ 4 At.

Let Pgww and 5‘eH1$, 6+®

pe ]'f<o>_ and 094’ cf. there exésts a. Sequence Qo,Q1,._, of Subsets.

0; Wmsunk that: Vm3r<G[Qme2‘.:.] 0l"d= p= "gnaw

Pg 2; and only Uxere 9/XCSIIS0. sequence Go,Q1,... OF subsets
ww suck that: Vm3t<¢[Qme V2,] O-n01=P: U QMmen)

of

we_Prove the second part­

Suppose: Pa 2:, and determine 56 ‘pm -WC‘! that '- FWW5) 09‘d’­

vaEP(a);:2 E“_(5|ot)]. Define, 5» eouck mew; Q,,,=- {o<lAqm((3|0‘\'")} and

remark: Vm[Qm€n;M /\U'"‘<0'—_( and: P: ”L'éwQ

Now suppose: Qo)Q“.., Cs (2, sequence of subsets of Wm Suck

Vm3'C<o'[Qmén$:]. U599 Uxed¢f"‘Lhb" of lI<l' 8'2) Cmd wear“

8.6, we infer: Vm3n[Qm€ ”:-n]

M
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Remembering now, that 0‘ cs lnereditarigy Clferoutéve,and usmq AC0‘),

we find. zeww cuck that-. Z(o)<Z(4)<Z(2)... and: Vml:Qmello:’zm:l.

We define a '$ecfu.ence 5O,81,.-.ol' elements of ‘”w Sucls Clout-.

VmlIFw~(<5m\1 and: vmVo«EQ,,,<oq;.+ A6.;(ml‘Sml°‘l].

l7'nal|\/, we make 0, sequence 86 ‘*’w $U.C.l\Clot; FUM(<5l °W0l=

VvnVal lalalm ....cs,,,(a1 and». Vlil:-1ElmlIQ.=Z(m)]-'>Vo<l:C5l°*l&=£ll

We easdy verify; Vail 3m[Qm(oL\] g E“, (8[oq]I Le,-. nk‘€}wQme 22..

The First purl: is Proved in a 9«Cm'la»r W0-<21.

El

Let us define, {Er eacln ole “’w = loll == [HI ol(n)=O}.
'lT\u.s, Iol| is o. decidable subset of co) whose C.l\<1I‘<1cl?erCS»l:£cfimctcon ls oc
We may observe tlxat, fi>r-eaclx o<e°"w and each 0'6 $=

locl 3* o- <3 vmEln[|oL"‘| .<_*6"]

We define , [Er each eye $2-. K0. := {oil l<x[$*o*} and remark:
K0. is Ryperaribbmeticfl-Q, libel}: is, it does belong (10 some class 2%, ‘re HI‘lI.

One would like to calculate from U the first 1' such that l<o-e2f__

But we do not Sludy q€l:u.rnp-ar(H«met£c",now, cmol. we lxowe lo abandon -{lugquefihbn

Another Problem arises, when we defllné a. partial orderincg 1; on El by:
For ollmteli; u*z_:_'t' =a kg.-,-;l<-C

and. ask (Sr 0. Comparison between L; and S.
Tug does nofi Seem to be an easy matter, exilluex,and. we leave ‘L6alone.

We may define a. llmctéon O: uo\{o} —; HI$
ED == [< >}

For all new: @ :- {mlQc}(m)£n}

We observe, without d£FFcz:u.lty,that: For all new. NEG: l-ls?" and Zczfa.-.2:

‘ll-«Is, l’-l\e arifbmetical lllerahclxy is seen to be part of the l\LA)eran.'Hsmelico,,0,
luerurclxg.

(Remark-. Vm Vnl: kg’) 5 ’<®])

Tie Stage has been set, now) (‘or one o(-‘ the lu'qk- pouwts uh our Icllle
drama: the resu.sccla.tCon of Use kgperarctkmexicafl lwlerarcky, which now
lies f’—la1:and lifeless, alflxouqll not all warmtlw l\0.S lept (ts Peel, as we
§aw in chapter
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9. THE H3PERARlTHMETlCPlL HIERARCHY ESTABLISHED

We want to proV€'- For every 6‘e HI$; -:(Ao—;<E0-) A -(Eo.$A0)
1712 thing one thénks of when facing this problemlcs some eo<lte«s4'omof the
inductive argument by which the arithmetical hierarchy theorem was proved.
But Cl:turned out be rather lioFind l:lm'€Qxtenston.
We were brou,gh.l:_to make some magor chancaes in the onyqcnal argument­
Férslc,we replaced the negative sta:eme:nts- -(A(,».<_E.,) anol= -(E¢£A¢) by
Stronger conclusions, in which neqoutioh does not FL‘are.
Secondly, the proof of the new theorem is no longer inductive on the ge,n5e_
that LE red“;-_e_.; the case 0' to all (laces ‘C, '(‘<G‘­

Rather, it consists uh. CL 9°h€VrIO—t45Ca.lConstruction which has to be carried
out From Start to Finisll, For any 0' Chew­
A minor change is that, henceforth) A2 and E2 will be Qongfdereol. as the
mogl: Simple hgperarcthvhetical sets’ and that A‘ and. E1 will be forgotten.
The germ OF the proof is to be ‘Found in chapter 9. (Chapter 7 had.
to mo-lte the same acknowledgement).
We have to reveal the true rcclrmess of the results OF chapter 3 O./fld,
For this purpose, We introduce some new techmcal notions.

9.0 L2}: fbeww be a __sp:c_>,__o_v.___d., Le.-. r, fL_Qf—’.-lsthe condition:

V0Ll:[5l0'-l=O £2 3n[[3(a*<n>)-=0] A [$(<>)=-O.

Spreads (SULb9preadS OF the universal Spreadz “’w) l‘a4/3 56¢" W’-V‘t‘°<>"€db°t5"¢
on 1.9. Let us recall the Following definition:

For all o(,[}.e ww;

(X6 ['5 := l/nl.-f5(8u\l=-O]

Whentalking about a. spread {3,we often are thmlcinq of the Set fozlozepl.

For all [56 ‘*’cu and 0.6:» we define 0. dgcgolalole subset Kg of uu by:

K2 == {H [new] {2»(a.aé<n>)-=0}

I? [5 («S <1 Spteaolv, the Following holds true:

Vat [3(a»3=0 :2 Elnlfne Kg 1]

Members of the spread fotlolep} may be bwltli U-P $l7€pby 9689’ M 000'”? OF
time. When during the construction of cud,‘ a member we have got 90 for as
the Fcmlte sequence a., the ,,cho«°ce Set" KO/L5displays the natural numbers
by whichwe may continue the, ge,qu.encea,

In the ltzllowing we will ol3ten meet with spreads whose members on
are thought of as defined. on FdnéteSequences of natural murtbers,
rather than oh noutu.roJ nuumbevs themselves.
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L915[56 ‘*’w 92¢ a Spread and aew.

We want to call the {-‘cnctesequence a {free in if‘ For every o<e{a,,
durcnq the step- by~sl:ep- constructcon of‘ o(, we did not rececve any
restrictcve Cnjunctcon From /5, as For as ad was concerned,
(we were leP(: Free to determcne a value of‘ o< at the Pcncte sequence a,
and at any continuation OF the Fcnite sequence a_)

This as lzhe exact definition;

Q is free Cn (5 ==

Vlr Vc[({5(lrl=O A €q{(’r)=€g(c)A l/M<€gll’rl[@lml¥C(m)-7mso.7l4 {s(cl=O]

We remark that 0. is Free an (3 if and only L'f=

Va Vfllotep A Vrn[ot(mH=1{(m)-a meal) -7 re (31

We observe that, if 0. is Free (In (5, then:

Vn Vmlleqlnlsm A rnga, A {3(n)=O)‘-3’ =00],

lhe converse of this Statement as not true (rt qeneral.

We define a binary predicate «l on w by:

For all a,€:-ecu-. a ‘Mr := -w(a_c,€r) A -I(€r_C.:a)

lNe remark that a is Free in [5 Cf and only (,9;

VolV‘ E (olép A Vmf (0. wlrm v a§m)—) o((ml=‘f(rn)'.l) fl (yep?

We also need lzhe Following Concept:
Let Peww le a spread and aew. Then.

o as almost Free in (5 -.= ElpVn[n>p -9 aaen is Freem/5]

q_1_We will prove 0. suitable refinement of theorem 3.2.
To this end, we Lntroduce the subsets A: and E: of’ ‘‘’u), by lhe l;>ll0WU19'­

For all ote°"w = /Clot) =2 Vm§ln[ot"‘(n) #0]

{hr all as ‘”w= E: (at) = Elm \/nl.'ot"‘(nl qéofl

We observe-. Val: ‘- (A2(ocl I\E:(OLll A " (E2 (00 A Ailotln

When , €°"w are spreads, (9 called 0. gcgpreaol OF (3
Va[Xlo.l=O -> {3(0.)=O], or, equivalently, if Voaeffozefb].
We will write-. a'c_‘.[3, occasconally

9.2 T_r1eg_r3_vp_=Let. peww lye a spread, allrew, 5e‘*’w Su.d\l’.l'\O1'.:Funlél and:

u) a. is almost Free on [3

an Vaept A,_(°‘oL) —->E2(8la)]

(nu) {I-(€rl=O
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we now may construct on Subspread P,’ 0F (5 Suck tl‘0JC'­

(I) [l’(erl=O

(J1) Vdep’ E E: (“ed A E,_(«Sloll]

(W Va [ (c~l—o, A c cs almost free mp) ——>(Cis almost Free On [5’\]_

lfi‘_<_>_QF=We have to relo-tévéze the proof OP theorem 3.2

We olehermcne Pew such H1012:Vn[n7p-a(axn is Free in {5} and: p> €<3(€r)

We assume our cooling of f-‘cnétesequences of natural numbers

(cf.1.2) to be such that Vn[ n< <n>]

Therefore, also the Following holds: Vn[n>p -9 (aat<n>) is Free in [Bl]

We now define Ea-“’w such that Fu-M7,) and-. For all 3/,ote‘*’w=

Z(X,oL) == Zl<[,oL7 l-‘ulfcls Uwese conditions:

For all mean:

7_,q{,o«)(m1= 040*‘) mla or aem, or m<€g(l’r)

For all n,meuJ=

;(3.,oq (o.*<n>* m)-.-o cf: <n7xm >p and-. ngp

ZLJ,oL) (asr<n>x<m7) =0 C§= n>p and m.—.5(n)

ZQ{,d) ((1 ae<n>x-<n\7)= o<(o. ae<n7ae<m>)

if-. h>p and W1-yédflnl

We remark: Vd’Vo<[o<e(5 ——>(Z([,oL)e{3 A A2(“g(J,odW

Therefore: VXVotepl: E2(6l;(5,ot\)]

We choose some o(*e(5 suck l:l\O.l: o£*ee lr (Le. 3(7(3q(€rll==lrl, CW1

Sbme 54' e ‘*’w

Appflyinca lo GCP (cf. 1.9), we determine qew, mew SwillaUuod:-.

q>p and VKVdepflfqzfiq A '5(q=-5<7ql '9 Vl'll:(8|zCa’,oL\\m(h]==C>:l]

Vléthen define <1 subcpreaol (‘J of [3 By gayma:
For Qll ole;-{3=

onef.’ if and only Cf: olélr ARC1: q /\a*<q)o(=_1_

A Vn<q[a4(—<n>oL:0.x-4n>g(X*’d,_)]

We have to snow that P,’ does evelyflxéng we wont ik to do_

Remark that Vo(€f!>'l: °‘*<q7o¢.-.- .i_], U\€l"€For~e= Vae I5’E E1’ (°‘o<)]

On lzke other hand-. Vo<e{5’f(8|a)'" =9] (and: Vo(e{5’[EZ(5|a)'])
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77.

We perfiarm our task in <1 number 0F steps

First, determine qoeoo such that o,ae<q°> (9 Free in [5 and q°>€9((r)

Determine ozoep such that: doe 6 A °**<9o>do = Q

Remark: E2(ado), and determéne Po Such U\O.b (5[o(o)°(p°).-.0

Also determine noeou such that: ‘v’o<e;s[Kano: Ezno->(<Slo4)°(p°\=o]

We now Construct moeuu, q,ew and (x15 [5 such tact,

3<4n,,= Qono A o(,éer

o11(a*<o>*<mo>) +0
0

av*<q‘7d4 =._‘_

Remark: E2(a.,.4\’ and determine p,,n,ew such that nmanot

Vo(e[%['&,n,= an, —-9 (5|o01(P.)=O],olnd~. n,>a*<o>*<m.,>

We continue Uxis piwcess For n Steps

In the end, we Fwd, Cl Sequence dn ep and 0. number lieuo
§U.C‘\

olneer/x V0‘6[?>[3in£='5(£-) LV£<r\[d(0.x<€>*<me>)¢O]
A wen E (ma)? (p¢)=oY)]

We define <1 subspread 9’ of [5 by saying;
For all deg:

aQ=a£
on-:6 A no(e (3,’ if and only if

It is no(: difficult (to See that {5’ FLLIFJISall requirements
54

In comparcson to theorem 9.7., Hweorem 9.3 does Seem to have <1 r‘0~H\€l"
weak eoncluséon. On the other hand, the Ptruize sequence a which Figures
in theorem 9.3, has been kept almost Free during drs It will be
po§S(bl€, For this reason, ‘to apply fheorem 9.3 Several times at Ehe
same phlce.

We now prepare (to O.H:qc~_kthe hyper arithmetical hierarchy.
We made its ac umhtance (M. ch 8, but we redefine [1-, because ('1:
Suilzsus to have (t on a stéqktly ‘P?erenA:

For each 'ceHI$, We define sub§ets Pt, Qt, P11‘,Q15‘ of “’w
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we do this by trunsfmte cnductcon.
As (A chapter 8, we will write 0? F0’ {< >5

For all oLe“’w=

Q90,“ :3 Az(,,().-=Vm3n[°‘m(")-=0]

P; (on) ;= Vm 3n[o<"‘(n\ +0]

am (on =-.= Ezax) = 3mvnEo<"‘(r~)=07

@_*(’D(oL\-..—= 3w\b’n Eo<"‘(n)¢OT

For all re HI$, 'c+@, for all we “’w=

pt (00 z__._ vn[Qtn [om] P,:(o<):= \7’r\[Q:,\ (oz"l]

Q, (ck) == an LP“ (own c32.§(o<l==3nEP.C*,, («"11

We remark: V’c‘eHISFVON:‘(P1-(00 A Q:(°‘\\) " " (Qt(°‘\ ’‘ p’g(°m]

W resume a line of Umouqkt which we Fbuowed 1" C“°‘Pte" 7'

We recognized An(o() and En(o() <19 boastful announcemgnts OF P‘Q9"<"5/

who were. involved in a game °" <1 tree °? ‘*'‘‘‘’°'”" “Q9” "" V 3)Likewise. P’c’(c-5)and Qt-(cc) may be w‘d€'S’€°°d *0 Saw 1-1( "‘*P­

am able [:0 wcn the quan\:Cf¢_d.r—goume. determined by Gt 0:‘ H‘?­
weu..OrdQfQd stump 17, whabowex the moves o? my opponent­

Thcs idea. lies‘ behind Hue, Followuiq d€FL°V‘*H°"'

Leg Jade “go, For each ‘re HI$ we will defihe 3€‘?u=€"<'—€'5{Mtd and

6,8,?“ 9,‘ w“,_ T“; C; done by tra.w;F:;m'te induction:

K°°a>°‘ ‘= Vdzu

x3@(X -.= JZZOL

[X1 and 2 are the 0\ber(',w('n(nc3{auctions wkcck we defined (In 7-01 2.

We know, from 70.: Va[ P©(o«\:2 35Eot=5P%.°"fl

am. Vot[Q©(ot) 2.’ 36[oL=3{Xz°<1]

Furdser, fiareack re HI§F Suck that 77¥’@» “'5 d"f'5“e‘

K pgtot by -, Vn Dqtdgn := Xng-In 01"

(1nd'- 3/ |><1t_o(_ (< )] -.=.- o< (< 7)

and 631: (X 61]-. ('xzt,o()" : «L»:K” p4rr\ OJ‘ I’!.='

z: DU‘ Cf H3‘
and: Kztcx (<>\ ==—o<(< >)
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Qne MOre exer Q(SQ fh mm

\7'q[ D SRNCQ ‘.

‘Ind. N00 \; "d‘*©tz‘o[QP (oz)C) at [q * k Dq:::]](e0.rn-_I [o(_\\ 6’Rtdl]

We Forge 0. third We°‘Pon f°*‘ (-4‘
€ gkeqt bqttle:

9.5. L. at ‘F

Lee E ”I$fietum ee’ Page)0* s Preqd. ’ 0.9% 1 (Sew In Suck Qt I FW5 ) QM

(1) Q ‘

(ll) Lg OJ»:V°(€{5[posfa Bee (3'L‘ O‘) S Q ‘'1’(Man

we (In) (ermay cfihsthl; 1.0
() 0' subI Mflk 0 spread (V o?

(3 and rhwleu) Suck “nu

(II) Q *<h> . L

“G: ~m§_M~s Free 6‘ (5,V°<e .

(V) Vc[Sufi Qt»: ((q°(\),‘)AC . %t P
9 almost Free t/‘n'tT(:;((8[,xyn)-J~> Q CS Q1 "‘0se Ree .I41 W]

Prbo~\\{I,. We “ere

M/Q (1 “NineQ .Pine PS“

Z( ZSW Suck M51°‘)=\ ‘U Sac\ §|< 1‘tkqk vhfKW‘) ’ PW,‘ n>P \)(

OMQIPQF §( (*3 FBI qhdz am“ (QRee .all ubhewz beds; 3 (F low“? Qohdpbr an bO<€:{&)] mu‘gqrmq (XQQ, “Zions: ‘-0 the
§( :§ 0((,,‘ Seqqehce

R (7:00 (Cw ) Ceynqrk. Q <'\>*h\ F M4‘
Q Vh<p X’ )(Q‘*<n> ) :§ 0 LFQ. oh Qh : \ V *5“ . ‘ Q51

‘ntekefoheV“$p E (:Em>.?_$\ ).§ :‘>*"1)P Q
Obswrve L VTV<x[ Pg(¢’°‘U" \ g((J’°‘)(o.*< t o()(<">i-;,,) “d "‘p) \ h ‘

M <>koosQoweVQ*»€hq:.(Q\:(*’°")7z:1bq'°q°“"]>W*<>3 'L¥">P

APP|Y5'\c3(: some case $Vq[N.$.Bh: V{V°([g(

Owfifau 0 QC“, w (g swam Wu) ‘r’°q°"°f*~>Q
We QQ‘CLdgteV(rVo(€{:[(detQ.I»m0le owe fl Q3] 't'(5(§(d,P(\n

(H ‘ \\ ’ 0‘erre We (1 new Q 3’9~hq A qimew Suctd some *0 need mqt 0(q§°.h?) X€k)w~Faq 1 "> \> P ‘Um C1 » A 1» (T CSkvp QM: ~. (8lg(MWh€V‘ed4:L_Q#”€y't"§ rm \ YCvg)
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We define a. subspread. ['5' OF (5 by Sayoiaca-.

For all one(5: mega’ and only if: aq-_-. Z(y*,o<*)q

dMd= Vefein -9 (“o<)e= (“Zlg*,d*)3e]
I

NobeU\a1:= [5'(G’)=O and-. Q-X-(H) cs Free «Ln [5

Moreover: \7’oLe(2,"W.=fin[ Qte ( (‘laden

§uppoSe= ate (3’ and-. Qt” ((‘1oc)"]. "lien: PT (act), but also-.

3J3ol*ef5[ Xq=Fq A E7-q=oT?q A oL= g({,at+)]

Wxerefipvez PM ( (s1z(,{,oL+))”‘) and: P,r.,.((8Ia)"‘).

Remark, finally) Ekat a member o(e{5, which has 0. wish to belong

to I5’, need. not restrédz seriously any of its subsequence; Cd’when ¢4,a_

This shows that {5’ realizes our great expectouféons,

El

Theorem 9.5‘ will rove its worth as part of our inductive argument,
Like theorem 9.2, (1: has a (dual) companion, but this Cs too easy to be
formulated as <1 theorem. If’ we are in a sztuatcon where Q.(.(“.,¢)—+PI.(8|oL\,
we immediately See: VAVmf PT“ ((°‘oc)"} —i arm ((8|on)”‘)]

9-‘: Were. are still 0. Few tec'J\m'caJ notions to be mentéoned.

LE1:aeu; and >0. (predecessor of 0.) CS to be U16code NLIMBZP
of the Fcw,'l:gggqugnce I wkidn we get by omitfiinq éke last number from Uxe.
fcwlz sequence whose code number is a.

TF0'r€f°*’€, RM"each 0. such that Qc3(o.)>o-. a= Pd(a) * <a£q@_1>

Pd(<>) = Pd(o) will be, uMdefi_°ned_

Lei: 'c'e $, and aet. We call CLCM emdpocnk of r if no proper extension
of 0. does belong to 1:, Le. ‘W -t’3nfa.x—<n> er]

For Cm Tie 19, the Collection falaewl 0. is an endpobitf Of T75 55 Q
deeidobe Subset of w.

One could defame Ute notion of uendpoaxt of C“ by transfmcte induction,
OS fi>|(ow$-.

(We write: End (’C\ 93? the collection of ehdpocnts of 1‘)

m Enol(cD) = EnoL({<>}) =[< >1, and: End (95! = <1?

(M) I? ’C'>(D-. EnoL(t') == hLe)wan) at End Cc")

This fcniskesour preparatcons. We take a (oyxq breath and Summon up our
COQIQQQ:
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9.?‘ Theorem-. (Hyperarilihmetical Hierarchy Theorem’ First Part)

Let I-e H1’.$and as we such mat: r.m(5) and: vo«[P,(a1—> armed].

we may construct Zeww such that: Q1_*.(z,)and Qtlslz).

Proof: The proof Cs divided. into several po.ragraphs_

We will spend. a. lol‘: of words on giving a, synopsis OF our Lnltehlzcons,

before going to Work

9.70 he plan lb oleftne 0. decédable subset W of ‘c’ such that,
(i)47 e

(II) W1l:(O.e’WA €q(a) is even A a is no endpoint OF T) 9 3!"[0l*<fl7 61471]

(In) Va. [(qeW A Q<3(o.)is addn a Cs no endpoint of 1:)—)Vn [o.ae<n>cU.7]]

The seJ: W represents 0. strabecay for Ehe Farsi: plqygr in a. qu.Qy\l:CFCer­

game on the well-ordered. stump 1'. Le will be the strategy which

the statement ,,Q’{.(Z.)”asserts to exist.

Al: the same time, we will bwild, Q. flxncééon H: W~>?, such Chat:
(1) H(< 7) = < >

cu) VaeW E at’ —_—Hie’:-1

gm Vae W[(€q(a) as even A 0. is no end-pocnt of t) —)

Snap [H(o.¥<n7l = Hlo.)*<P>]

(xv) Voué W[(e<3(G\ is add» A 0. is no endpoint OF Fl -9

Vn[H(o.x-<n7l = H(o.)+<n>]

The functcon H curries posétcohs of 1' Which belong to W, into strucl:u.ra.lly

e,quLVa.leVLl:posdtcons of ‘C’. (As 1' is heredifarcey iterative, there are,

all every turn, many such posétlons).

The ramqe of the Function H again represents 0. Fir$l:-playeru strategy

on ‘E’. This Strategy will speak Q» the l:ru.l:h o§: Qt. (8|Z,)_

(we acswned Familiarity with the logical convention Hm: ,,3'.‘ stands
for-. u there excsts exactly one.."),

9.?! In the Following we will haNe lto consider all natural numbers,

in their natural order, decoding them into Finite Cequenees of

natural numbers. (Cf.1.2).
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We assume our codmc} of Fmcte Sequences to be “regular”, 6%

the Following sense. o(3 Uxe word:

(I) Vm Vn Vpl: n<p -> (m*<n7 < m1e<p> A <n7x-m < <p>%-MY]

Cu) Vm Vn E on smeén]

The latter condztcon has already been menficoneol «in 4.2.

9.72 We seqwunce Z will be made step-by-steP_

We will Form a sequence [3o,[2~.,,-—.of sodospreaols of ‘*’w, Such that;

“cu= {$0apda
Each Eime, having defined fsvwe also defierwwne a nut value

Gar Z, viz. g(9.1, and €msuLre"- [54>,_(Z99.) -—-O

In the end, we have-. V12<[Zaé{39J

Q33 We conséruptcons of W, H and po,‘31,._. do connect,

They will be made such, that fibr all &,Q)r\euu-.

ml? 9,=<o>*Q. and aew and 9g(o.)is even and

0. is not an endpocwt of ‘<7, U\€A\-.

Votefqf wad) —>Qqt(”‘°’(sm)]

(N)If‘ !£=<o>xa and c1eW' and ?g(a) Csodd and

0. 69 not an emdpocnk of "c', then:

Votefakf: Qat (act) —-9 Pa_t_(H(a‘(5loL\r_[

cm) I? K = <o>*o. and cLeW and. 9z3(cL)is even and,

0. as an endpocnt of 1“, them-.

Votépl E E: (0-cc) A E?_(H(°«\(5(o¢\)]

(M I? 9. =<n>¥-Q,and. QGW and is odd and
0. is Cm endpoint OF ‘C’, (skew.

Vote p&[ C" E: (‘log A C" E1(H(°’)(5lot\)]

9.314 Once these things Come Eruz, we establish:

VaeW[(£<3(a) (9 even. -9 Q:t_(qZ_,) A Qat(Hm(8|Z,.\\) A

(Qcgm) is add -9 P*at_ (<44) A PaI_(”‘°°(5IZ,)3\]

and Uxerefore, 0.9 < > e W": Q§(7,\ A Qt. (512)
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Wis is done by l:ransfi,'n£be induction.

Tie principle sustaiunq this part of the argument, runs as Follows-.

Let ’te=.$ and R91.’

If’: Val: a is endpoint oft -9 9(0)]
and: Val: Vn[R(a¢<n>)] ——)E(a)]

liken: Va 61' [R(a)], especially -. R(< >)

935 The conslzruclrfon of W and H will not be done (,1 advance, 0,5

one Stroke, but wfll Proceed. stepwise , and Cnterliwcne with (he,

constraclréon of "$o,[},,.-.

We should be careficl Uaat, fbr any aer, Utedecision about
a‘s belonging to W’, and, if necessary, the determcnatéon of WI),

have been passed before we Come (to Stage 2: <o>*0L , on which

[Li 2115 to be Created.

We Settle these tkcncig, [hr each aet, cf €g(a) is add, at stage
<O>*Pd.(a.), and, if eqla-l is even, even earlier, viz. at 960-ge
<o> k Pd (Pd(all

9,7-6 In our construction, O-CW6Sta-geswilloccur along with inactive ones.

At an Cnactéve Stage lL+i, f$£+1 is simply Put equal to [$1.

Al: an active stage 3.4-1, one ol- the Followukq Cases applresz

(ll Ll-1: <O>x- Q, Where CIETAT,Qg(oL)is even, and (1 CS

not an endpollnt 0? 1‘­

Wle [hr-mo1:(',or\ OF Qifi CS left 60 H1€Ol"€m 9.5.

(N) [+1. =<O>xa, where aew, Qg(a) cs even, and 0. fs

an endpocnt of 'c

The fi;rma1:(or\ of {$k_,_i CS l€Ft to C‘l€OP‘€m 9.2.

(us) {+4 .-= <n>x-0. , where Qew, Qglo-l as odd, and. 0. C9

an endpoint of ‘C

We Formation o(3{3,u1 65 left to tlxeorem 93.

Turn and. again, the worlc ls lo be done by Uteorems 9.2,g.3

and 9.5. Wley will not object, Lf only we ensure that,
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lb?‘a.ll l<,a,new:
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(ll &+1= <n>«-a. is an actcve stage, then 0. as

almost Free CIA. (3%

-lhcs necessitates some ketrospection. CO.l"€_FLLlreading of theorems
Q1, 9.3 and 0.5 learns, that <1 cannol: howe lost (ts almost­

Prgedom OI any Stage <m>i-c < lb-4) where Q «ha.

In each ol the Uwee oloovementconed cases we <30 back to

0. crdztcafl pl-eceollrq stage:

(0-0!) l<+1: <O>*a., where 0.eT/V" and 9q(O~l (5 W94‘­

UM)’

Ll II)

The crctccal precedlha stage Cs= <o>+e Pol(PoL(0L))

We wlll See that, 0/5 this Stage, Pd (<1)6 W has been

chosen such that: Pd(o.) as Free I/n {!><o,*Pd(pd(o_3l

-lherefore, 0L itself’ engolaeci Freedom at éhcs Stage.

-We only possible stage at which 0. might have lost

its 0.lmost—Merl-3, Cs;

no activity, then.
<O>+<—Pd(<1l, but there was

£1-1 = <O>x-0., Where o.e W, Qqlo.) is add. and (1 CS

044 endpoint of 1,‘. We critical preceding stage is:

<O>*Pol(0»)~ Going back, we will have to Observe:

0.eW has been chosen Such that: 0. is Ree oh. {;<o>kPd(Q)

-lherelbre, CL skill is almost free in fig,

lL+.l. =<§n>*a, where new, 0.6T/U‘,663(0)Csoold and.

a as am emdpothb ol-’ 1'. The Critical preceding Shae Cs:

<n>*a. An examination of theorem 0.3 who made the

activctg at that Stage‘ allay; our Fears; 0. is almost­

free via (5<m*a, and. so it is in M.

We now describe the Construcxcon,

Al: each stage lc, [Si and KM) will be delvlned.

Moreover, if 9.: <o>x—a) and ae W and. 93(6)-lis even, and a. Cs

no endpoint O? T’, We decide, For all Finite Sequences c, Quch Chat:

C20. and. ll.g(cl.—. Qg(a.)+;L or; Q9(cl=.- l’q(a.l+2.) , whether

(: belongs lzoVAT,and, we define bhe flmclccon H For all finite



Sequences

$120.92 0 :

S/cage &+1..

(I)

80are
. H ==We Prodaémt Potzww and g(o).=o and <>eW'aMd (<7) <>

W k w \7’o<6f3C P4 ("ad ~—>Q<7c(H(°)(5|°‘n]H0 ‘ o 71'

We distcncauidu several cases‘

{+1 = <o>x-a, where we W, 99(0) 55?J\/€91(Md (155 "°t

an ewdpoéflt

We may assume

OF T.

(1) a is almost F733 9"’ P94

(U) VoLéPR[ Par (ad) "9 Q0.1.'(H(a)(6lom]

(iii) {s&( Z(&+1H=O

Aepewi Uxeorem 9.5 we construct a subsrread Pm °F ‘*1’
and n,mew SW1‘ H‘°“"

P&+1 1“=0
(ii) 0.*<n> £9 Free W Wu;

a.x<n> O~*<""'c’

mi) 4,, (H(a.)s<m>(5ld))]Liv) \7’o(e[;h_L[ Qa_,,<,,,,c, (wt )0‘) ” Pau—<n>,L.

(tr) VC[(C #0. A c c;aJmos¢F*€€"."Pi) "’ (C (Salmon: Freed‘ e£+'fl

1,’:

MbW1 or weWm Hw
go/C[(C§a_A Qqa) = Qcfia) +4) —) (¢eW.§_') C=0.x-<n7)]

and; H(a.x-<r\>)== H(a)*<"‘7

. tob said.IF a*<n> is on endpomt of 1', there as no more e

I15 not, We add‘

V [(c a A QCKC) (‘Ma-1+2)~> (CGWZ-+ ENC: QR") *<e>])]C 9. =­

oLv\d= H(Ctae<n> 4 <97) vj
A H(a) *<m7 *< 97­

. be ’Remark W may approve OF LESnew members, cause

in Arieur of (‘N3’­

Vc [ (C 901. A93(6) = Qq(°-HZ) "’ Vde Plat [ pct (CA —)Q°‘c(i-@(8M)]]

we Rush the agtévétths Of this Stage by deterwhdq Z.a(&1-1)

Suck Ekat: f2~g+1( Z-(&+2“-‘-0°
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(II) 9<+1= <O>&o., where aew, &3(o.) as even and 0. Cs QM

endpoint oF 1*.

NOW: QT.’=: H(aJT' 2 {(76 =.@ O.Hd= Pa_r=A2 and: Qat: E1
We may assume:

(1.) 0. is almost Free On [Bk

(it) VoteMC A1(“oc) -4 Ez(”‘°"(stodfl,

(iii) {3&( 7,(9<+1])=O.

Appfidmg theorem 9.2 we construct a. subspreaat phi 0? pk
suck Haul:-.

(1) {s&+1(Z(&+1))=0.

an we p,m[ E:(a.,a A Ez(”‘°’(a««n],

(£171)Vc[(C«l-or. A c Cs almost Free an (5%) -) (cal; almosé Bee oh {am )1.

We Finish by deternuhinq ZWLH) Suck that [3&+1(Z(Q+z])=O.

(In) 9:4-1= <n>-*0.) wkere aew, 2q(o.) is odd, and <1 is an

endpoint OF ‘C’.

We may assume ­

UL)o. is almost Free tin (5%,

an we pit E2(%;‘) ——>Az(“‘°’ (5lodH.

(iii) {2.&(Z(E+1l]=O.

Appeajcng theorem 9.2. we Construct a subspreqd. pmor pg
Suck that-.

(1) o. is almost free, u'n{59_+1

an m,,,(Z(L+1\\=o

(iii) Vo(e[;£+1[ C"Ef,"(°‘oc) /\C"E1(H(a](8loL]H

(ur) Vc [(c»l»-a, A C is almost Free M (5339 (C CSalmost Fee 95*[$9.1]

Our last activity cc to determine z(&+1) suck that [5m(i(k+2.\\=o,

(tv) I? we are not in Case U)-GI)-QM)’gtaqe 1+1 cs an inactive

Stage. In order not to RJJI agleala completely , we perfbrm

two Simple 0.Ch'ons= we put "5k_H;-_-PK and choose Z(k+1\

Such that: pk“ (Z(&+2n=o.
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. . ~ — 0!Was concludes the descnptcon of 004’ WJWI C0P\$tWC—“0“2 °"'d 9/“ S

the ppoo§ of-‘ theorem 9-?

El

9.8 We do not want to leave theorem _g'7 Odom 0" P°~"“°~d"5€' It Wm be ‘mt 0'
mmor Qffbrt to give Ct O. COY"-P<1V|L0W

we remark that, For QQCK176 HI$, Ute class T7? Csdgsed under the

opuauon of coumtable Cuter§eC.tCot4,.I'-2.: CF CQ,,,Q4,°.-. ~S.‘1$€0(‘*"-"CI: OFelements of 11%.then f\ Kim 990% b""°“9$ t0 "—¢-“*5 F°"°WS Om

theorem 8.7 by 0. nokmteouéd‘~'fG'C‘*'t a"'9“’"3"tI bamd 0“ AC0‘
Hm we 0;? able to pm, ear each Hm '1~’=‘*’wsuch that W”
and Vo([Vr\[P.L.(oL")] (:9 PZ.(qlo<)7­

We ¢;y\ky-gauge 0. S4LCC€S$OP'- ("u,notCon g CV‘ HI$ by

For all 'teHI$ Vn[ (§t)" = 7]­

Reperrm? wee more to the P,-evgougckaptq esp. theorem 8.6, we observe:
rt»<Stand O-Nd.Z%§.I‘[Sot/.

9.6} Tfieor-em-. (Hyperaxdiamefiical HI'€r0LrCJ\y TEQOVW". §€C0"d powt)’

Let 1:eHI$ and 86“’w such that: Fu41(5) and: V°‘[ Q'C(°‘)" Pt(3’°‘)7­

We may construct Zeww such U\OJ-‘I P;(Z_,) and P1. (312)­

B::o_()_f-;L91; ’C'€ HI$ 0U/xd. 5e“’w be such U\<1t= FU/M5}and: Vdfa-t'(°‘) "Pt'(8’°‘n

Remourk: Vok[ pS..t,(oL)-9 VVIEQ,-C(own, Q/rid, Uxerefbre-.

Va: [PS1_(oq ——aVn [Pt (5l0<")].

Loxnew.» be gm em: mam amd= W5 V"CPr(°<"”<‘-9Pt('I'°"1
Let 8'e “'00 be s4,LchUxo-1::Fwn(3') and: Vo<VnE (8’lo«\" = 5lo<"1

We observe : Votfpgz-(04) "’ Pt(']|(3"°‘m­

Le}:2 e W) be such that: Fume) 0"°l= WV" [("°‘)" = 'lWl°‘”
we observe = \7’oL[P$,_~(00-> Qst (“dw­

Applycng theorem 9.7 we Find Z'e Wu; suck that: Q:’U (Z3 and Q$‘c(£lZ-")

1)e;;e,m.;..gM aw such that P.g.*((;’)'") and remark: P1.(q|(8'|z’)),

tkarefomz VH1: pT((gI{;')"]]’ and: V,.[ P,C,(8|(Z,')"\J, Cspecially:

PT(5‘(Z’}"‘).

‘me gequeme g-_-.(z,')''' (5 Q good Sequence’ indeed.
El
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9.10 Theorems 9.7- and. 9.9 do solve many problems.

We may define a Ftwctéon *: w\.fo,1} -9 HI$ by:

2* -= @ = {0}
(SH)* :-= 301*)

We observe-. Vn>1[ Ané PM _<_A,‘ and E“ 5 Qh,—_<En1

In this way) the arcthmehcal hlerarchy theorem (theorem 7-.3) is Seem to
Follow From the hyperanthmetlcal hierarchy theorem, and proves to admit
OFG. stronger Formulation than it has been gcven (n Chapter 7­

We may define Subsets K,L 0F “'00 by:

For all ole “lo -. Klod == Vn [Ah(°‘")]

For all Olé W.»-. L(ok) -.= 3n [An(ou~)]

The question whether Komol L are reoluccble to each other, seemed one
of-‘the First problems to try one’s Force on, after the ourcfhme/cccodl
hderarchy had been established.
Aliter some rellleotion, one comes to Suspect: —n(|<-3L) and “U-‘-‘~5<l,
and, indeed, Lt cs not diFF«'CU9k to See U‘01== -v(‘<-S L)
On the other hamd, the proof OF: "(L‘$l<) 500k blood, sweat and tears.

Ad-uo.lly, it is a consequence of the hyperarcthmetical hierarchy theorem:
Lei: us define w* uh. HI$ by:

For all mm .5 cu: w*.‘$"v"‘7 =-‘-'54*

(4 9 is the pairing Puhotioh, introduced (In. 8.4)

Then: K -_<_Pw*—gK and: Lé Qw,,$L

As another Consequence of the hyperdrcthmexccal hierarchy theorem,
we have’ that, For each re Hit, H; is n_o_§Closed under the
operation of cowntable u.m'oh, and 2,}; Cs r_v._g_tdosed under the

Operation 0? Coumtable intersection.

I\.
(].ll This L§ where we Stand how:

K hi/\
Perhaps because of breathghg deeply the thcn aér oh higher mathematics,
we are Feelcng Slightly euphoric
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ANALYTICAL AND Co-AuALyTlcAl_ stars

Weintroduce Z‘, , the class of c1nalgtical_sets,O.nc1 verify that all
hyperarithmelical Sets are analytical).
We remark that the class of strcctly analyti_cg_1 sets‘, l.€. sets which are the

range 0? a l:c:ta.l (and. therefiare Continuous) ftmctcovl on Ww, is a. proper
Subclass ot Z1, 61$ not <24/enall hyperarcthmeiécal Seligare strictly amalyticafl.
This is 0. pity, because strictly analytical sets are the things people llkeot
to home OF old; indeed, they are none other than Brou.wer’s dressed Spreads.
In the definition of 11",, the class of co-amalyhcal sets, no reference is made
to negation.

lhe symmetry of the classical picture Ls utterly lost; 2: already Fails to
be included. in ll,
A Vefy annoying question remains, whether ll!‘ is included, «M Z’,
We are hot Ctble to Onswek this.

We define a subset E’, 0t ‘”w by-.
F0?‘ de (“ma

Ella)

We define (1 Class 2.7,, of Subsels of won by;

For Query subset P of woo-.

PeZ'.‘, fi P-5E‘,

33/ Vnl:ol((fr\]=O]

This last depcnttton one may Peel hesitant to accept, in the absence of
0. general notion o? ,.Subset ol: “’w"
But other characterizations Of 3‘, will Rzllow and enable us to survey the
whole of its members.
The difF:;culty then ev rates, like Cl:did. Ch the ease of‘ 21‘: and other
Classes of the lhgperlaréthmetlcol hierarchy, (Cf. 6.0 andi),

Let Pgww

P .2 2'1 if and only there exists 0. cleccdable Subset A of U0

Sud‘ that Vail: P(oL)23 Elxt/n[<6'ln’J7n>eA..ll

_P_rclo§;Q)Suppose-P5 E1 , Le.-. Vo<:l(3l: Plot] Q Ejtpfl. Using AC“ , determine

sew.» suchtha1:= Funlél and-. Vo<lIP(oc)fiE1(5loLl]

Define a decidable Subset A of to by:
For all né: cu:

HEA j -I-lo.§lcl_-n=<a,C7A tg(o\= Qg(c)n

Vat Vlr[(o.g_(r A cgol A 5dt?r)qéo /\Vel_-(t’reen3'#€)~> édl?-l=07)

-9 6dltr)=1ll
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Now, VoL[ SJ Vnl:($lol\ld7r\l-.-0] 42 ':}KVr\l: <5(n,fn> e/\—_ll

1716??-Pore, A fuLlPc'lsthe reqacrements.

(:1) Let A he a decidable subset of uu such that: Vdl:Plo(lé‘.‘):_1lA*Vhl-<o-(n,&'.n7eA:ll

Detierméne 5€"”w Such that FoLn(5)and;

For all o(e°"w and cew:

(8|oQ(c) =0 3 Vn<€?(c) I: (3th, Cn> EA]

(En CS lihe Code number of the Finite sequence of Qenqth n,

which is an Chcécal part of the finzlte sequence coded by C.

This notation has been established On 70).

Remark-. Val: P(oQ ;_9 E‘1(5la):lI therefore-. P¢E’:_

£4

'07- We aqaén ( as on 7.0) extend a hototconal convention whcch we introduceot
in chapter 1, From £nF£n£l‘e sequences by Fcnxlza sequences.

For all m,c ew=

c"‘ == the code number oF l‘-he m-th subsequence of Che

Finélte sequence coded. by c.

Therefibke, for all m)c, Qew

<m>*P4 < lZc3(c) and;

Cmlhl == c(<m>*h) fbr all h such that <m>xE<€g(c)

c"‘(%) Cs defined. if and only Ly!

lhcs notation could give rcse ko conficséon wcéh ordnncwy exponentcatton, but
we hope ct will nol: do so, as exponentcoutcon will not occupy us any more
(Having Figured in Chapter 3, £l: may Scnk Chto Ol::lCv(on).

We remcnal the reader of another definilxon which appeared in 7.0:

For all h,cew such lhal: ns Qq(c)

n= 50!] == the Code number ol-\ l:hdJ: Finite Sequence oh l.engl'hn

Whéc-lnC9 0M CHCHOQpurl? 0(-‘ the sequence Coded bye.

0|

[03 = Let P P P be 0. Sequence OF Subsets of ‘*’w.on 1) 21

IF vm[Pmez1] , Ehen: U Pmezi and H P E3;mew mew m
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P_Ij9_<_>F-.Using theorem 10.4, determdhe. 0. sequence A°,A“A2,__‘ OP (ieciaafl-ea,

Suflvsetsof w such that-. Vmh/o<[Pm(a] gj _~]3r\7’n[<Ein,(fn>eAm]

(I) Define 0. subset A of to em:

For 6'6 (L):

$5 A 3-‘) amah 3&3‘: [ (’= <a*<h>, <m>*C>/\ eq(0~l=e<3(ClA<oc>eA 72 m

Tie": V -'(()’€A)] and‘ VmV°([-Pm(°‘lé_—‘)33/[d’(0l=VhAVI1[<5zIlXIl>€A]H

lhereforez b’o<[3m[Pm(o<\] 3:’ §l(rl7’n[<an,X,,,6A]].
(Ind: U pm 6

mew

(u) Define a. subset A of (u
For 0.92 ereuw

eT€A £2 3a':3c[ 0r=<Q’c:> A ?g(0.)= e3(c)A VnVml:!l<&3(c'")-)<<‘i.n)C:fin>eAM]‘]

men: vM%eA v*1(@eA)l Cmd:

Vol‘:/(flVn[<5<n,Xn>eA] £2 VnVm[<an,37’Tn>eAm]]

W\eref?>re(by A630,): Val VmfP,,,(o<)fl £2 Sip/n[ <5zn,fn>eA]]
and.= O P €21.

mew '7'

13

'°-” The property of 23‘. which came. to 1.-gm;in theorem no.3 is a beautiful one, and
worthy 0? paraphrase,

L93 PS ww

We define subsets Ex(P) and UMP) oli Wu;

For all otewwz ExlPl(°<_)== 3m[P(ol."'l]
For all o(e“’w= LU\(P)(o(] ;_~. Vm[P(oc"‘)]_

P is called excstentéally saturatg er. Ex(P) 5 P

P is called universally saturated, cf: u,\(P) —_<P

Theorem lO.3 shows that E: (5 both excslzentially and universally ga_tu_rc1ted_

We may qather, fhom theorem 8.7, that, Par each 0'6 HI$, the set A.,. cs
universally saturated, and the set E0. is excstemtcolly saturated.
Imaqcne P to 33 a Sudrset of “'00 wlltch C9 goth umversally and excslnnlzially
so.h.u-outed. Such that A15 P and E,-_<P. Ihdudzfon shows, that, [bk even}

lhus we learn) from the hyperarclrhmetical hierarchy theorem (theorems 9.)‘ and
9.9), that, For each 0'6 HI$, the Sex A0. is l_1_gl_:excstzoflally §o¢u.ro.ted, and
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the set E ~ .

Moreover, 2,3 LSfi;:_£_teQCL:‘nLv€r$cfl‘Y$50U€u.routed.
t0Cu\ysqA 0~eI.Ao.-_<E‘ Qd_E
W9 is wow; 0:05? E4‘ is '53- k‘JP;**o.r"ékkmeo—tI'<£:fi.11)E1‘ “*4? as not reducible‘e”°~'"C“V theorem,

lo.s 17,80‘Lem’ 2: °°"t°“3“S0. universal element

Pm-. Define the gubget. LL F WO ‘U
For all aecuw '- (Mon) (3 3 KVHE q1(<°Th \o,d'n>)=O:(

rd(1 note Una); (L Mohs to 21

L91: Pcw 9 ‘_ w and pez-,4.

Following Uneorem 1 1

Vn‘:P(M~O;) He I "l>6' . FeWu)Such 2
I. _ ., 3 - ‘

me Vot[P(oL]Q u(<o(’?>\1 Q (Vrl[{5(<0lh'Jvn>)= 0]].

It is eqg
w y» Hm“-91‘ not Q -­

OW and :(°::e"‘f:S belong to qzuo aka“; Qrvdtaqonalizéng, Q Subs“: OF
may be F°“"d, Ch welxgsemgrg -by the qU€$tl'0M whetkeefimhon no mentcon [3 mode? Ufa set owtscde Z4negation 1

In 3.1 we de fined Er each2 56 (U

R015) == {dlogetuw I awe (1 Subs?!’ RCU5)0‘: Wu) by.F 8:‘3
31 mo.3 56 CR1}- .Qdektzgd fiflowsz

‘Q6: LQLpew_. cu.

P5 24 Q

P£gP:(l)ASu'PP°5€'- P621. U.S4'.ng U1U0 . €Ol"em 10_ ’ d _ .

Defefrmo sucgh that: Vo&[P(o() ;; 3; V" E>‘t:;°1cnf Q diindable Subsetthe eww S ‘‘ "..3’P'\)eA .

FOP QQQ "Vere ‘U: U.C 8(<>)=O and:

__ Icon‘._ )+1 _ . 0

) Q1?n<e3(61)

R : _,__ 0 (01-64),%1("1-07 6 A€W|C1|"k : Va [ 8 F OH\€I'WCS€.: l§)°( 5) °(=Fv°A Vn[<"‘6 ~_P‘ V‘, I34 rI>5A:”
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lberefiplre-. Vo(CP(oL)4;) 3[5[5={3r-)ot], lie-. P: Ra(5)

(:1) Let Xe ‘*’w and Consider P === Ea(5)

Remember, from 1.6, Ulout fbr all (5,ot6 way.

8: {sack : Vnflml 8"(f5ml= ot(Hl+1 A V»l’a<m[8"(fsl£) =—.0]]

Accordcncz lro ACOO, that is up saga, teat lb.» aflfl {;,o(e‘*w­

5=r.+—->o< <33 3; vn If 8"(‘f,(zz.,onll=a(n)+¢ A WK zcn)[5"({:Ll=o]]
llxerefore, lbr all ole WW;

oL6Po(5) 2 apagvnf
Define a Sullvsdr A 0? W
For am mew:

meA g Ela§lc[m= <a,c> AQ3(aJ=PcJ(c) A l7’n<€r3(cl[ (c‘(r~) and

(;°(c‘(n)+l) are bolzlxdefined) -—> (5"(c7’(c‘(nl]= a(n) +1.

A V9L<c‘(h)[3"(5—°3cl= 01)]

-lien: Wrl: QreA V "(Qre/H].

and: VolVail: Vn[<3tn,fn7é.A] -> (8: (°r-‘>0t\—.l.

1

Conversely , Suppose 5: PH) oL, and olebermcne Ze Wu) Suck final: VIII-1

Definmq x== < [5, -Z> , we observe: Vn l: < &nl fix) 6: A1

Tlwereforez Vo([ P(ot] 4;? SK Vn l:<E>'<n,fn>as An, and,

Following theorem 404 P6 21.

Kl

10.7 A Subset P of ‘*'w will be called g_ng_.ly§c__c_gJ_,if P52} , Enat cs,
Cl: 35[ P = Ralgl].
A Subset p of ww will be called Strictly anodye_;cg,cf §l3[Fom(5lAP=Pa(<$l]
[Cf Note 1. on page 216).

Every strfcltly a.noJyHCOtl Set Cs, trivially , 0.n<1lyh'coJ, and like converse CS
not true, as (S shown by lke example of H19, empty 3121:.
The bad. habit of reasonmc} classically arouses the Suspldon that
tkls is He only exceptcon.
Indeed, Cf we assume P to be analytical and ,, Fcnxtely de Fined‘; and
in possession of O1 l€Cl$t one €l€0nenl:_, we may follow John Burgess,
Ohd prove, by using Br0uuver- Kh.'pke’s axconc, that P is strcetl
a.no.lyh;eaQ. (cf. §_u_:;_gg§§I980, and also: G;e_|_e__.n,deSwcflg and \[e_lolma4q1930)

Restrcctcng oneself to ,f'£mLl:elyolef~lneol'', ” determinate” ObjeCtS,l1OW‘<"—V*’*/
(.5 like wearcn sanglasces against the dazzling light of
constructive truth­
We will See that the sappocction U101’.all inhabited l'la-Sets. are Sl:n‘.cl:Qy

analylicqlj already leads to a contradiction. _
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Let us define, For all Fe ‘“w= C(3== {call/nl:'€<n=§__>n v Vmsv\l:{5l'°7"‘l=O_l:ll

Remark Uxoli, F0?’ Clll [5e°”w= C95“? and Q.€C[5­

lO.8 Theorem: -1 VP SSE Fum(8] A Cf; = R0-(Sn

l)_r_9___of:Suppose: V[5'35l:FUl'll5l ’\ C(5=RCl(5l]

Ug4;n% AC“ , ddermine Zewuu Suck l3l013=

Fu,.«.(;) A V[»,[Fun(zI{;) A CP=Ra(z|p)1

Remark-. C9 = Wu), Ulerefore _'1;e C9 = Ro.(%lQ)

Determaqe ole“’w Sucln that: (;|<_>)|o< = _1_

Calculate mew suck lzlxat-. V»9<<ml: (ZIQY (Bill)--O] and:

(Zl<2)°(a~ml= _1.(o>+1=4+«=2.
Determine new suck tl«CLl;=

V[3,[ ‘(in = én —~> V£_<_M [ (z[fg,\°(a£) -= lglglo l‘5‘9~l]­

'lF<°m= V[5E['3n-=<‘2’n —>l(Zlr:)lo< 6Cp Allilpllodlol-=1)?

lfierehe: Vp E [‘3n=E_>_y.—; 3‘/Execfi A No): 1]]

Bring a blush to your opponent's cl\eek$ by POW“? to the

Sequence H e‘“uo which is defined by:
For all flew: [5*(l:) ==O CF &<n

== 1. ollxerwcse.

CV3; -_-,{9}} which Cg embarassing, tin a way.
E

The ap ltetweeh Slzrccteyanalylical and analytical sets is gaping wéde
and compllcalles our posztcon seriously.
To be Sure, E1 itself‘, Qike all the exemplary Clrdlzlv-mel:Ccaland
kyperayitkmetécal sets from previous chapters: EmAmE°.,Ao.,£s
§l:rl'.ctQy Onalylical.
(ToSee Unis’depaqe Séww So(LCl\ and;

For all one ‘“w and lrew=

l8lot)(lr\ ;- 0 cf Elmt lr.-.o—<7m]

:= o(°((r) other wise.

Remark: for all o(,(e“’w-. Ll \7'rIl:oL(d7r\)=O], Ulen o(=5l<o(,(>
'lRQ_r2—fore: E1: Ram)

Tiere is no reason wl\aI2Jl/er {or a set lwlwck Cs reduccble to a Shdctly
analytical set, to be itself’ Strictly analylicol.
This does not add to the reputation OF Strictly analyfical Sets.
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On the other hand, we should. never Forge; how mud‘ C,‘firmer endeavours
we IQCIN:on the Strict Qnqjyfiqty OF Certach Sag. Jqhapterg 3 if and Q) /

I0.9 We define <1 subset A1 of‘ ‘Uw by:

For CXQWu):

A1103‘) == Elm[o<(Xn)=O]

We deft“ 0- C‘<199 H: 0F Subsets of ‘*’w by;

For wary Su-beet P of Wu,

Pe H1 ;9 P./>A‘,

M€”"bQ”5 OF H1 Wi“ be called: Co-c1n0.|y{‘i<:a1 sets

IT} shares in mamg good. properfies oF?; 7­

[O-‘OTleorem: w“)

P 5 W1 4 CW1 ovdy if there exists a d2cc'dab[€ subset A of no

such that VoL[P(oq,;> V)/3n[<&n,f,,>5A]:(

Pfldsfl S“PP°Se P‘5A11v"e" V°‘3F'[ p(°<)Z—’A14(PU- USU‘? A611» d’~’iermcn2
8e“’w Such that: Fw/1(5\ (Ind: Vo<[P(cx) gj Augguy]

Define a. deccdabie subset A of‘ w by-.
For 0.“ new;

neA Z) 3a3c[ n= <C1,C> A 9301]: 9q(c) A
3d3€r[ ac.‘-G A cgd. A ¢Sd(0r)=1 A

V?-E(“rate A (late) —> 8°‘(e)-.-o]]]

D0 No‘?Shy at C10 these lexters and remark;

V0 VCI: <Q,C>e A —> Hdfcgd A \7'o<ea,[ (MOQC=o]]

Be quiet and condude;

V°([ Vg3h[W¢)(f"\=O] (:9 VJ3n[<6<h)}7n7c-_A]]

Eerefore, A Fv£9FL'lsthe requirement;

0:) Let Me ad cdabl ab
. 8:) es SQ! OFUU suchthotli Vo([P(o();’ Vx_]n[{o7n’f,‘,eA]]Determme 8e cu such that Fu,.(5) and;

For all oce‘*’w and. cew

(5|ot\(c)=O :2 3n< £?(c)[<5zn)En7 5 A]

Remark-. Vo([ PM gz) Auatax] ’ .;¢,. P5 A}.

!.'<



91

I0." Theorgmz n1 . _-x——— 1 conbams a uncvevsal ebment.

PIEF: Define U: 3U-5591: U. OF ww by-.or O.“ dew“). [Lax' )3 V3[ 1 - ­

and. |'\0t€ (L belongs to K n O((<0‘o'|/ d"\7)-.-O]
Let p9“’w and PeZ"..

FOHOWQ1 Igk9 €0V€m 10.40 dac - .

Vdfpm Z3 VJ3”[ <50 (frw :::"_ltmeD€£a~ademdqble subset A 0FW Suck that.I . mine fig cum Sud“ Wat. ’

Vn E - ._
[5(r\\—O <1? ne A]. (hen: Vo([P( __> V

Q2.: VOKE C) “(<09 Oi)$ (371 F>(<5(n’in>)=O]1

|O.I2. The_orem- Ld: P~“‘*‘. O7P1)P1 be, Q Sequence op sub at;
I 9 o W.{3Vm[Pmenz']} we": 0 P W P wmew"! 6 1'

__ - q theorem .0 ,0 deter ,' I mm

suflrsexs ofw Suck bank: vm€V:.[9:q‘:€;\Qe, AVA“ A1,... 0P dec¢da€;0g_ot ~) _ 'm 6 J3F|[Vah)Kn7eAm]]
Define a’ Subset A C’? Lu by;

For all 664;):

(’>eA 9 3 aka6- m azlcf fr: (Q-X<(77)<m>‘K'C>/\e3(0.)=Q?(c)A<Q’C>€Am].

T7~e«=vmrem mm*1 (d
m V[[3'(0]=m—)3n[<a,,~% ,Jn>eA]:”_

Therefbm‘ Vokf \7’m[P (003 '9 V 3 - ­

am mp ‘ ‘"[<«~mn
mew "1

E!

I" 1-“ -we ihtrod d

.-[E C§)€,Qsy to Seu:e thank’Subs-Q15fikn OF ww Suck ~)
TI’ m b . F‘*"*'="’ and ‘e ° F“”‘m*' VK3"[5("\H01]1 0y 2 charactergzed Qg ‘gallows: L (S not mfficugb to Vercfy “MK

Let Pgw

Qllckmq 59% F 2:
do‘€53 l:t;oF([tu:-nbrotli: weObserve do
Fun is f-‘u _ 9""; 49 FM -_<F " €S no(:

£9 not $tr('_"c’(\;|y)£7: |beJ:"9 0~ naturaf €.x<1mPT: Sub._ Y O—yh.COJ..(Tneorem 1o_3 did no‘: Proud 92}: of woo, which‘ 3 ‘*5 with such

an €,xQ”\P[e)_
One feels o, Ckddlg ­F? at arg ' tug .mg S’ S“PP°‘°' FM is strcctfly’
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analytical, and lei Zeww be Such final: F«Ln(g) and Fun: Ra(g)
S‘1u'‘9 0'‘ 9'0’-’dlhl3l\€!‘ C<1Hlor’$ knee, we construct qeww suck that Funap
and VON:qlol # (§lo()loCl (+1: denoteg the well-known apm-megs relation
Vo(V[5l:O(#!3Q-j3nEo((n):£{5(n)]]) I go in Search of-‘ peww such that
’]= gl{5> 0-"G, upon Finding it, we both start laughing, my grandllatlier and I.

Oirserve Hal: this argument does nol: settle the question whether Fun be analytical.

Are "1 anaz: <1 pair 0F identical twins?
1“ Cl Classical treatment, Tl} could Sl\ellZerbehind 84,, Qutomafically shay-(mg
Ll}.reputation, by dLLO.lCl?y.
But now is weaknesses are exposed.
Doubts Concerning ll’, may have been lingering since ltneorem 10.12, which
answered only one half‘ of theorem lO.3.

Recall, From chapter 3 : DZA1== { Oil oi°-.=C_) v ct‘:-Q}_

l0.|3 lneorem: DZA1 is nol: co- analytical

P_I_‘_<£>_F:The proof does not from lIl\€ proof‘ o€ tlxeomm q_;0_

Suppose: DZA,-5A‘, ,i.e.: Vo(§l{sl:D"A1(°<lé1A4,(p)1

using AC", we [bid 5:-:“’wsucklzlicit-. Fu,n(8) and-. Voiiomiocld A‘,(8la\].

Let '1‘ le Use spread. wliick we introduced in 4.2, Hat is:

1.‘: .l:o<[ Vll.[oclltl<2] A V9362 [(o((9zl#OAo<(Q).-,£o) —->l<=£'.l}

We want lio show: \/oieeiA1,(s|oin.

13 l'.l\CSend, let us assume: o(€’C' and. (6 “’w.

Weobservez D’A,l_Q), Uwerefore: AHSIQ) and §ln[(8lC_>)lfn):-O].

We determine new suck l:l\a.l:: (6|Q)(fn)=O.

And we determine qew suck that: Vpf /7.q=-T2q ~> (5l{s)(fn)=o]_

We now distin<3w;s9i_ two cases-.

I" W5 C056. we may Olefermine m<2 Such tlut oim:-.Q.

Therefore, D2/\1lo<l, and-. /\1(8loi), esp. Eln[(5lo0(57nl= 07.

We now immediately see: inf {<Sloil(fnl=O1

In any case: Eln[(5loLllg‘{nl=C>].

We have Proved; Vo(e'rVX-Ilnl: (8loll(fn)=o], i.e.: VoLet[Af| (8loi)]_

lT\ere{3ore.= Vote’?[ DzA1l°‘l:l, and liltis, following H3, is contraoliclory. E
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lhis theorem cleats at least two fatal blows to any thought of’ symmetry
between 22 and Tl}.

AS D2.A1already (5 not co- analytical, smiling is the proper answer at the1
Suqqestion that all arithmetical , Id: alone all hyperarithmetical Seats 5€lO'\q to n4
Secondly, as A1 itself is 0, plain member of H1,, Tl}, obviously, does not
make much of closure under the operation of Finite union.
And there is more to complain of’.
For the sake oF contrast, ne bring out another comfortable trait of-‘2}.

Let P.C_‘“u/.

We define subsets tE(l>) and UU3) of ‘”w by:

For all ote‘*’w:

lE(Pl ldl == 3;; [ P(<oi,g >)]

lLl(Pl (00 == Vgl P(<o<,;{>)],

E and [U will be referred. to as the operations of’ existential Onol universal
projection, respectively, and will be Studied in Chapter I’-l.
We will see, Onthat chapter, that Z} is closed under the operation of
existential projection, and W, under the Operation of universal projection,
as it should be.

A9 all llyperctrithmetical Seats are analytical, the existential projection oF
any hgperolrithrnetical set is also analyl-ical.
Again, U} fails to Follovv.
A witness to its tract irehaviour is the- set Q-'={o(lD1A1tO(°) A A1,(o(‘')} :­
(oL]V63nl:0(1(fn\=.O A (ot°°= (2 v o<°"-_-.Q)'_l}_
Q is the universal projection of an arithmetical set. On the other hand,
a is not co-analytical, as DZA,5Q and w (DZA,-5A1).

Theorem 10-13 also Cll-‘fbrds to observe that E: is not co-analytical’, .'.e,
not reducible to A‘, (as D‘A,5E‘,)_
This is a welcome result, and, in its simplicity, may be the envy of a
classical mathematician. In order to set his mind at ease on this point,
he would have to resort to diagonalizinq.
This is how his argument would run.

Suppose E16 lT:.
men also: {oil 3J'Vnl: o<(<&n,fn>)=ro]}el1I
Using theorem 10.40, and ACOO,we Find [35 “'00 Such that:

{oil3Kvn[oi(<a..,,fn>>=;o]} = {oil v,3,.[ (;(<an,,fn;)=o]}_
Specializing, we find-. 3JVr\[ [5(<f§n,j7ri>)=l=0] ,‘;? VK3n[{5(<{3n,J-'n>:o'.l

0"°‘,th€*¢h>re= "'3d'VnE[3(<{Zn,fn>){=O] A u v53n[[3(<{Xn,fn>=o]_

And this Sounds like a contradiction, undoubtedly So in the ears of a
Clo-S$4°.CO.lmdlhfimahlciqn. An intuitionist, however, may the sound
unpleasant, but he has no easy way of turning ix ofl-‘.
As in 6J4 Some Solace is offered by the enigmatical assumption
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Vo<["" 3n[ollnl=O] —->3n l.'ot(n);-.01], which enables us to conclude:

VJ Elnl: [3(< P3n,(‘fn>)-.-O] From: -1 SJ Vn[ {z,(<I"in,(fn>) 75O1

Eventually, l:l'\(s does nol: ol«'m£m‘sh the Pa(,._

We will reformulate the resull: that E1 is not co-analyffcal, So as to make
Ll: more a.l¢'ke l:o the hyfaerarithmetcbal hierarclxy theorem (theorems Q7 and 9.6))
In View of this, we Lntrodctce, subsexs (E",)* and (/\",)* o(-‘ W“, by:

For all ole W.»

sf (a) ;= Hp/n[a(fn),4oj
A1‘ (o() == VJ'3nl.-o<((fn);lo]

and remark: A14(1E7: = 915 and: Al1*nE?, =

10.14 ‘Theorem; Let Seww Such that; Fu,.(5) amd: Vo<EE‘!,(o()—;'A‘,(8lo<ll

We may Construct Z.e‘*’w such that: A11*.(z) anal A!,(5lZ).

_l1_>_r_2_o_f;Lela Xeww such that; Fuh(6) and: VoLl_'E1(oq —->A‘,(6lo<ll

Define (1 Sequence Zeww by:
For all cew;

Z(C) =-- 1 if 3ol[csol A 3m<c:[ 8d‘(Zm\-_-1

AV€<m[ 8d( Z2) =01]
.-- 0 otherwise.

The followéng remark sprung; From some reflectron on g:

VIE 3n[Z(fn)7Eo] :2 3n[(8lz)(fn)=o]].
A classical mathematician probably would leave the prbof at this.

Bul; we have Eo be a bit more ca.r~efu.l.

L91: us define, For each [e“’uu, 0. Sequence KI eww by;
For all (‘.6 w

Z), (c) := 0 CF (ac, l.€,-. 3nl.‘37n=-C7

:.-.- Z(c:) otherw£se,_

l.€l: Xeww and consider: Z,

Observe: Vnl Z: (fa): O], U~ereFore:E’, (Z5) ,0"0l= A'.(5lZxl

especially: _IIn[(5| zy) (gn)=o]. _

Dererménel:,meuu Such that: 85% ‘lg? m)=1 Awant SW Z;’€l=°1
and dCs»t£n?uL<.htwo cases:
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CaSe(I)-. Zm= Z M.

rm l8|Z)lf9.)~= (81 Zyllyliko Clr\d:3l'1l:(6lZ)(Y"l=O_l.

Case 0:): Zn ¢ “Z?” w».

Then; Eln l:Z(Xn\1l.O:l , and Uxereflpre , by lthe 0leF£m'l:1'ov\

of Z: Hnl l8lZ)(Xh) =0-_l.

In any case = §ln[(8|,7,)(X/n)] and we have lb admit: V3rEln[(8[g)(yn).—.o].

Tl_1€l“€.lbl"€:Allglll, (Md, 5) the cons/cructlbn of Z: A:*(;).

H

We now miss the lool<£ng—gla$s which once decorated our Study, but
has been removed on lnsl-iqatéon of certotfn Cnnovafors.
Holding up one of the O~bOvereasonings otinst ll, Cl Classicafl
mokhemaiccian would filnd. an argument establl'§lu'n that A1 is not
Ofiqlyl-_-¢'Ca_l)which we, however, know to be lame.

To l:ell the l:ruLlln, we did not Succeed On Finding CL cons/cructcve
argument refiutcng the analybiccly of A}.

A line of lhoughlz which Seemed to offer some hope, is to parallel the
Proof of: A2 is nof reducible to El. lliheorem 3,2).
‘file crealzcve Subject, having at his disposal a great many ways
of Qhsurcng, or seeming to ensure: A’:(ell, might be supposed to Qre
able lo delude like £m;.to.t£ve Subject.
But there is no easy method of surveldcng ,, all possdole ways of ensuring
Alloll", (15 there was in {he case of A2. TMS is lrecouue A1, Qilte Fum,
(cf. the Ol.4'.§cuS94'oh fbllowéng theorem 10.12) is not strictly C1nO.lyl'£cC1l.
Paradox is Fll°cl(erc'rlghere = as art of lhe lrulih is easy (A1 is
not Stflhltly analylical), the whole l:rutl\(A11 as not oln0Llyl’ico.l) Seems
bU’\O«lZl7C1Cr\CJ.ble,_

A laelilzezr U.r\der$ta.ndLr\c& of A1, wlu'C‘J\involves a better understanolm of
the set of well-ordered stumps, $, (cf. chapter 7), as we will see, the more
Clearly , alter Brc>awer’sthesis has entered into discussion (cf. chapter 13),
mtgk/c, <’Jl/9/ntually, lead l:o an answer to our problem.

A kask which bolas more scmfale, but still is above us, is lo refute that
A44 lle, ar£Ehlne1tCcq.l, or, better e/ven, hyperarllzhmextbal.

lO.l5Gloom and 'd‘-;O.PpoU\.l'.mey\tare upon us’ when conleynplahjng (jke nqgty

state of ’cl\u1gs-. Smcuy Q‘ Heal weQM. y 5

4

“*7 2?‘ 2:
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11. SOME MEMBERS OF THE ANAL\jTlCFlL FAIVHLY

E1, the subset of “’w wlu.°c‘J\played 0. leadihq part «inchapter 40, ol£Ff‘ers
from kyperwctkmexccal subsets of woo by cohtammql at its d€Fu.’nA'.l‘COld,an
enulsteutcal quantcliger over Um.
We,are Q-O01? to See some consequences of restricting l'.l\€ range, of lilds
e/xcskenlrcalquamtcluer to 0. Subspread of the universal spread, ww.
We mainly consider Ehe case of the so-called. monotonous fhns,
G2mom Gamon-'"

Thus the First sex whackofrm ccsalf is 921....fdlggmzm V,‘[o((fn):o]}

We Spend 0. lot of effbrt to prove the remarkable {hot that 8; LS
not lu,lperOr£l'.lsm?x<'ca.l.

According lzo ClClS9lCa.lopinion, Ute ‘RIMS crzmomqamom are countable,
and l:l\e re suiting SubSets of Wm all belong to 2;.
Intuifiohlsficallyl l‘0W°”0*‘,quantifying over a spread , ltowever small it
may be, comes to €«><QroCs4:n0. new art, obeycng cts own laws, bexng
altogellxer different From Uxalc of‘ quantifylinq over 0. countable get,
Such as us.

Watch“. lake new sequence; Q,,9z,.._ of subsets of Wu; and brcnqcnq at
under t e Oll'sc.£.pllneof the reduccbdéty Yelottcon, we Fund another lllerarclty,
A4 is a natural leader liar Ellis sequence, and certain peculiqrches, wlulcln
we first encolmcereol on chapter 4, when dealng w-1%A1, "€0-ppeou‘.

At the end of tlxe clxaplzer we study , l)l"t'2Fl\/,the case of the binary
Fa”: 02;

11.0We define a Sequence, Gzmon €.°"w by.

For all are ur­

(a) :30 if Vn fn<€9(o.) —>o.(n]e2'J

and: Vn l: n+1 < Qg(oL)-) 0t(h] s 0~(n+Ill
:—.-4. otherwise,

It Cs hol: duffccull: to verify Uak Gzmon is ULSubspread of ”"w (Cl-1-9)

will be Ekougu: oll as Hue Subset of wuu giver» b\}-.

0'‘zmon

6'
2 M031

For all (5 WW;

K5’Gzmon 3 V"EQemon = Cl

Tllls Picture, Par-ljrailjs o;_mon_
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“Q mflfie Q SubEek 92 0? mu) by.

For 04' de (aw .

9z(a\ '.= 3 I
J Kficfzmon A Vn[O(((fn)=O~fl

(In a

each o; Mos: PC:EtP:Jfty32 Cflfiimeg wake’ JC Q Q/x- ' 1: Ed‘Pourt - tsts For: $4 _S LS O~PPrOV€d, O? Q§4\Qe Kllmn ETO(({V\\:Q:‘I;d. Zmom

We

the §Ij1‘.ne eOF‘O' Wm does b‘\‘ 0‘ QlonZh'\OV\‘ 9 60 0

zknoh ) S ,

We F,-X °"‘ en

&M©ubh ‘ Lmwrquon O: ? t».w ‘mzmon b\)'- e owe’ branches F
o o’¢mo.,, dQ.F|,‘vu;,\? Q

Ew‘dl new 1 * ­

T}-\64'€fDre, V" ‘ Qh( ‘=0 2 K<'\'l.

Remark Haul: ,

tkerqbre‘ ,§:l:S%%:u|y 9P0kem-. VoL[3 (ed ~)

2 $ 0‘Sq V 3“[h*€oLj]; (Mad

:1:éengzxol the reader g d(U Omd Pew O q’)W3(7t'on- u): DnP' HO O‘ km“4={N W “B{Mh)l39c<n[ P(u{)]}. duced’ E»

11_1 ‘meohem\\‘"' V“ D"A.49,1

’ newDe‘
" me ~. “M51 0.

(Ski) _ W hd Suck Hxqt E)"O C? 3:;-3pm ' *
..___ <rL ._ ~ ‘1 °u‘Q"‘WC$e. A M‘ Q{* .1.P AR ‘­

P=Qp]

Make Hxe Folk) '

V‘ V°‘[ VPE c8::\?fp?b%"]”%cons=:0 __) 3 &<n[K=_g¥-:1]
v{<p\ Val: Q}

The'QF°"9= Vo([6Dfld 2 ‘XE=0]

Q A1(0(\ {:2 S ‘ .

2 (Slam.

We have 8ea‘) Ch fikeoreM thatI g ‘1 (Dn+1A 1 i D’\A :] _1) - Ike‘-Qilore:

“.2 c£'-nil’-H= Vn E .1(.9z< DNA‘ J3

C°'Dl(a.+
to cdxingg if fie!-“ally the Ple§hfiem%wWa:(MeH\01? Q 0‘: Q S‘€J'fe,2. ‘:5 3 OF Uxnot QA/an ‘uipeokevna uéiéck (5IL "1 (‘Cal
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H3 Theorem-. " ( Q2 5 E1)

R’_0_9l'-Sltpposez §,_$E, , I’-e.-.Va3{3[9,_(o<)g.? E,,(pT],and, usima AC“,
detu-male Se ww suck that: Fun(5l and: VOLl:9z(Ol);? E4(8|cx]]_

Remark: 32(9) and determine. p,qew Suck that (5lQ)lpl=‘-O

and .Vol.[aq=§Cf -2 (<SIo<)(p)=(5l9—)(p)=01.

Tl»'\eref‘ore: Votl: 5'16]: Qq —-9§2(o¢)']’ an abaud Cor\clu$4'on,aS IS

testified by a Sequence o<* wklclq satisfies: \7'nl.-oL*(¥\l=0{_’n<q1

3

We now prepare [pr provmq a converge to Useorem 44.3-7 Uxat E4 does not
reduce l:o 92, eétlaer.
'|T\e Clr\0.l\/QC; ol-‘ Q2 wkick we have be make in view of l:l\ls, will also be
use.fi.o.| for other purposes.

For all [5€ww and. aew we define a. decidable. subrek Kl; CF to l>y=

Kg =={ml neuol Plax-<n>)=0}, 9d

IF (5 is O. spread, we call it <1 F-.'m'l:an-5,gpr-ead , or (lag,

V/o.[(3(o.):o ——>Ki’ cs Penile],

Finilnvryspreads We Vemarkable as my are. Supposed.to Ute

[Q theorem‘ Le}:A 6: 0. decéolalole subset of w,an0l pe Woo Be o.f'c:m.

I? ‘v'olep,3n[A(anl’J, than Elmvocepflnfnsm A A(6mfl

In Elle case. o§ alam like l:l1e{CAIbinary spread (lies “’z), Uxis theorem
is proved by am appeal to Brouu»/er’; theses (cf. chapter 13), at halite!‘
deep and. much debated phhcxlple of Cnl:u,£l:ioMCSl'C<;analyses.
62 mo“ lxowovex, nimble like all lllzlzle fiplk, admits of a more easytreatment:

14.4 Tlxeoremz Mk A 0'9»a. decidable §u-bsd: 0} w,

(I) I? \/Jeoimon 3n [A(jfn\] , {ken Elm Vfiwgmon Elhl: Hem A Alfnfl.

(u) I? V6/ecrzmon-win [A(fn)],U\€/n —n-='-3mVgeu-zmon3n[ nsm A AC3’-"Tl

l?_t_—33§=(I) 9uppoSe~ A is a. dzcidable subset of w, and: VJec,_,,,,,,, 3n[A(X'\3_-l

Caflcuflate noew Suck Uxout Al§r\.,).

Covxsioler the inll°mh>, §e.qu.<’m.c.zs: 0*, 1*---- 010.4)‘

Determine noutuxallnumbers Q,,,9z“..- 2”” such lzlxak-.
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Valcno[ ACF
Let M ..= max {hm Rm", 2" _4}_ Then- Weczmon 3n[ nsm AAQ/'nfl

(uj Suppose: A_is ca decidable subset of w, and Vd’€G‘zmon"I‘IElan[ACf;\fl

Assume, For Hue sake. of argument: 3n[A(§_nfl.

COJcu.90.l‘2, no such Umu:-. A (5_5n,,).

Remark: V3'<n° —»-~3% [A(37 9.)].

As P>r all proposéfions P and Q-. (-MP/\ -1" Q} ~+ -1-1(PI\C§.)_

we may conclude: ~v~V3’<n°SUM A (37 9.)] , and. FuXth€m)

fifllowéng the mgmm 0n.(1): -.—»3m VdrecrzmonHnfns m l\ Acgml

Wuexeforez I? -v3m Vpeczmon 3n[n~.<..m A Afijfnfl, H1891:-13n[A (inn,

Omol-. -* V{€:6'zmov‘ ‘t‘13n [A(fnY],

OW Conclusion gbllows by contraposifion.
B

In 5.2 we defined, to each subset A OF “’w, 0. subset Nec3(A) of 0”“) by:

Anoflwer H1019 which We may learn From Hue proof of theorem 41.L|’ Cs:

11.5 Corollary: Ne?(Ne_<_3 (Sm ._<_A4_

PLggf= nae proof of theorem 11.‘-Imakes (1: clear that:

Vokl: -1-aS‘z(o4)3 \7’m3a[€9(0.)ém A o'2mo"(a)=O /~o<(a)=O3].
E

The next remark well be made use of an the sequel-.

14.6 Lemma: -:(Neca (E4) 5 Ne? (Nezp(E.,\),

P_|'c_>9f=3ULppo$e= Ne<3(E4)$ Neg(Neca(E,,\), and, using AC“, deternuhe 85 ‘‘’w

suck that-. Ftm(6‘\ and-. Vo(["|E1(oL] :1 —:-2E1(8|oLH.

R€h'\ClV'¢= "E1(3,) , (therefore: -1-: Sn}: (5l1_-_](n\=O1

A95U~W|€‘-3h [(M1) ('\)=O] and determine lgqeuu Suck U\Cd::

(5|$)(n]=.-O and-. VoL[ Ecqz lg -—>(8loL](n]=01

Eerefiye; VaL‘aq—.=Zq —a -.5404].
TMScontradiction makes us rejjrg.

We. conclude: —-inf (8l_1_\(n]=-.0], and have ()noU\€r Cohtmdiction.
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Th?-r€fi>r€= "'( Neg(E4) 5 Nec3(Nec3(E4\).

E

44.7 f'E9£€L'.“ ‘('54 ‘$92)

B;c£I§; §u.pPo§e: E1iS;_.

Using lemma. 5.3, conclude: Neg(E,)-_< Neg (S1).

As we observed in corollary 41.5‘; Ne3(Ne£3(§Z\)/.~A,, and

U\€/ref-‘ore,0.qain by lemma 5.3.: Ne? (31) $Ne9(A,,)’

But Le is not oufilccult eo see that: A, 4 Meq(E,,)»_<A, amd;

Ne9(A,) 5 Nec3(Neg(E4\).

Taking all Ekincas fioqdher, we Rave: Ne? (E4) 5 Neg (Neg (E43),

and Has, according Eo lemma 14.6, leads to 0. CoI\tra.dt'ctL'on.

E

The Fact that E1 is not beducdole E0 92 , deskro s all Hope Utak AWE“
or any otker 32}: 60 which E1 itself is I~ed..uov;b(e, should be so.
we turn to the queshbn, wkekher 912Cs reducible to AZ.

Like Vncvnysets we encountered Hus {-’cu,-S2 is Strictly atncdyticod (Cf.[Off]
In order GoSee this, we defche, For each «Xe""uu and areGama" , 0.
Sequence db, On ‘*’w by: '

F0.’ CL€uu-.

db (0.) :=o 4 (ea. (Le.-. X(€g(a.)\- Cl.)

-. __. o((a) cf ((-1 a

we remark: Vol}: S_,_(oL]<-__->Elxecrzmoh [o(= dfl].

(Tie some Conslzruucfioh serves to rove. U\e Street analyéiccty of E1“
C§. Uxe d(5CUSS¢0V\ F0"0WCnq on Uxeorem 40.8).

We wctml: (I: memtcon an (mporfmunk Consequence of Uxeorem 11.14:

L.PkAQr€QSufl9-setofq xwzmon

I? Vxecrzmon 3n CA(K,n]'], U\e,,. ElmVdreszmonQném [A({,n)]

It as not d(F€u:uJt be derive. Hus principle From U120!-em W4 and GCP (CF-*9)

We now State 0. refclnement of Uweorem 143;

11.8 L€mma.°- Suppose-. Seww and Fwn(6\, and: VotC§,_(oL)-) E1(8lol\]
Then: Vozf -.-—-s’z(oq.9 E4(g1.xfl.
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Lula}: guPPoSe__56 ww and, Fum(5\' and-. Vat [§,_(oz] -"}E1(5loL\]

LQLdeww and-. ‘V-1§2(0t)~

Remark: was-,_,,,O,‘tszmgn, Uxerefore: Vfewzmohfln[(6lo<,,)(n)=o1

Also -. Vgewzmoh 3q 3n \7‘{;,[ [3q=3Ld,q -9 (5l(5)(n1-=O'_l

using the above-mentioned. consequence of theorem 11.4, we
calculate mew suck that:

Vyc-.<i‘,_monElqsm Eln V:/(sf (Sq =§xO[ ~> (5l{5)(r\]=O].

1T\ere{ore= V{e¢,_mOn 3n Vfsf [Em = Elm —) ®l[5)(r\1=O‘J.
And tkis Cs usefid knowledge.

As ‘1‘!§z(oL\, we. ka/ve: El{eo',_mo,,[&'m==3(Jrn], and-. E40310‘)­

so we have to admit: vocE-:-9,,con —+E1(8‘d]]­

[23

A fiutke; remark Ls, that 92 is not a Stable. subset o§ ‘“w, I‘-€.=
-v Votf ~.-:S'2(oz] -) S2 (001

FOY‘,Suppose: Vol [ '11 S‘,_(oL)-) S‘2(oc)], i.e.~. N€g(N€c3(,Sz\\= 32.
171611,according to c:or~ouo.A—y14.5: S2-5A1, wuck Cs refuted by “-2

Sutff-lcienlcly mamg pr2.p0.rOJ:Con§ houve now been made. For:

11.g Tfieorem-. '1(§,_ £A,_)_

2 ‘ 2. I

Puma) and; Van]:9404 g? A2(8|oz\],

Tfiemforez vd [9,_(oq ., v2[E,((amH1], and, accordingto
lemma «.8 : Vo<[ —nSz(oc) —+A2 (Sled-]_

Pr_oc_>_f:Suppose-. S‘ -< A and, usmcg AC“, dekermcne, Se “'00 such that

But how: Vat]: -t'rS‘2_"(o()-) S‘z(ot)'] 1 and this Should. not be true.
3

The next Step does not Surprise:

11.10 TR€orem-- -: (S2 -_<_E3).

Proog-. Suppose: S2£_E3, and, AC1", ddiermine 56 ‘”w Suckthat

Fum(5] and-. Vot[S'2(on2 E3(8loLfl.

Remember how we defined, fio each [€°‘zmo,, a"d~ 016‘‘’w 0!­

Sequence (xx mww Suckfluat-. ‘ea; and= {eoL—->o(=o(r.
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(W6 Olid if just lrefore lemma 14.8).

Remark -. \7'{€Uzmon VolI:Sz(o(J]], Ulexefore: Vreozmon Vol3n l:A2((5|o(JY‘l

GCP,We n,qew Sw:l\l'l\ok=
l7’{<‘-‘TzmonVolf (f<1= Qq A 3<q=Qq)—> /\2((5lo<()"ll,

(Again the imitative Subject has been [breed CL dec‘L$4'.on)wl‘Q;ea5

lille creative subject did not oblige hlmself lo am.yl:lu)1q)_

De,fl'.ne qeww Suck Uxat-. Fum(y1) a,nd_:

for all Ole Woo-.

For all let»: Qsq -—-9(rl[.,{)((_‘)_Q)=0, and:

[bar all 0-em-. (rlloq (Qc1*O.] ~.= o<(a) and:

(W1) q 2: Qq, omd:

l-/jg amt lqlallfiml #0].

R9/mCM‘l<, U\Qt. For all 0(é (“our

S;_(o(].§7 3{€:G‘2monl:fqz A (5, (fllot)A (REM :

<1’ 3(;e<rz,,,,on[fq= Qq A 01101)‘: qlon A l-'[_l3lq=C:q]

Tiereforez V0kl:8z(o() Z3 A2((8l(qlo<))")], Le... 915/X2,

and EMS is contradidory, according to l'-l\€OV‘€h\11.9.
E

In an s¢'w;la/r W041, we might lxa./ve obtained the conduslon-. —:(§z:.<.Ez)
From: *(§z:<.A,,l_
l'lu's V2/ry Conclusion also Follows From lilleorem 11.10 itself, OLSE1-5E3
Looking forwaurd, l\oweJver, and. hoping For absurdity to Follow From the
assumptcon-. S2 5 A3, we want to arbcculote this lrrufla in 0. more refined,
manner.
(We reader should. remember low we blew up lilxeorem 11.3 lblCmma_11.8!
an order to prove Elxeorem 14.9).

We Lhtmduce a subset P of Wm by:

FOY‘ O-ll ole (“Wt

Plotl '-=- Vn l: Elaznl 3* eat] v Tlflgeczmonl: Xn=C_'5r\A re oJ.l.

lAsw ob cl," ll 11.: A.T P‘
aritkneetmaflagzt Au(:m?l;o:ag:A3)5 Ne9lN€q(€zll£ 1 herefole, LSan

Remark: 3 Q P 9 N29(N29(SA),2

Both inclusions are Proper , that is lo say: ei.lZl\€rone of He Qssumpfidtv
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N€glUe<3(§z))Q P and:

We first prove:

We are not waiting wild. accusatcbns but have
PQQZ O? bringing O.lpouL£2_C1bS‘urd.L°fy=

PS 92 , leads lb C1 Contr0.d('cl'IoH.

" (P992),

gobd. reasons Rnr $usped:irlg=

We Utihlc o(5 Uxe oleccmal dellelopmenlz of H, as (211‘H and M, rtlcular

of 9. ==. ftmf Al:Place m in the decimal development of n Stcmds like last 9
of a block of ninety-m'ne 9’: 7.

2 is sometimes called: the volatile number of n (,,hel: mcuqetal van n")
It is not 0- well-defuyed natural Mumloerof course) bwe {nlnew[n<9;l
L5 0, P2,¢fed:l\/clean; decidable Subset o w.

We l>w°ld. a. §pec£a.l seiuence o(€_°"uu, payin Qncclusive albemtéoh lio thevalues at assume; on alqeuul czmon(a) =-O}.

7716picture will llelp lb clarify our wicked Project
up till level «Q, the only sequences m crzmon wl\4'Cl«
laowe a. chance ol beloltgdug to 0/, Ole:

all Q/s<benS4'ohsof Q2 , and the we sequences-.
and 4*=<o>*;1_.

If‘ 2 appears, and. turns out lro Ge odd, 0* will be approved of byog
if 9. appears, and. turns out (to 6'6 QA/€41)l* will be the happy one,

In either case we oontcnue oL , above“ C22 («in Ute $llo.deoL Part 0F
the piciulel by Some sequence, (5 of which Ct (9 known Mat: *1‘-I9z(r5})
but not known l2l1oU6:§zC(5).

O".-4.

§lbppo$6'-S;(o<l, determine [€0;,,.O,, Sucla Hut {eon and comde» fz.
We now are able to Fwd out the fbllowléncaallrexnatfi/e:

(Q P/xists _; ll (seven) v. (Q onclsts-+QCsodol) v (Q Qj)((_'9l;s—+S‘z((3l)

lllus We commtlzd ourselves lb a reckless announcement.

Revnarlt, llowever, U\dk_ Pldl

llxe Followén roof shows that llxe <1SSu.mp€1'oV\=Va fP(0<l fl 32(0tl:l is
not but reckless and actually disostro us.

-1 l/oLl:P(o£l-'5 92-llteofemz

l3l_‘_D;0f'-Peconsiderillq oorollowy 44.5, we find that Neq (Neg (91)) is

not only a member of T1? , but (Ike 0. subspread of “cu.
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Mz may defihe at $eq"‘e"C€ 35”” 3”“ U‘°‘£‘

Vaf ..,—.g‘2(o¢) g) Vn[Z(3U1)=0:U.

and; Z (5 o_ s‘ubS‘prea,d of ‘“w- (Cf: 1.9)
. av W U‘Mzalgomaydefme a Maw“ Ft‘), w—) to suck at

1 - Raw-2,).

Ne3(N€q(SIn‘) der to d So we Frat define or fimctio" 19>‘‘*"’“’ by’0|’ 0 )

90(4)) ;= <7

and, For all 0160-’:"e“"' ) =0g(a*<n>) := Q(a)*<,,, QC§(C°(oJx<n>

._ ?(a)*<m7 gf ;(F°(a)*<n7)7‘O

.— o and M:/‘PL-g(FO(o_) ..<p>)=O]

we tken determine F0 by d€C‘°’5“‘5‘

Vo:Vn[ recon e £.,(6-fl

. . d
For an dew“, and new, the sequence cxln eww as 0|eFuta.
by: Vm[o(ln(,,q-.=<><(n+m)].

(One gas oqn From (X SU.PPr€.S4J\q fit“ H VG

we are going to define a fimcféon F‘ “"*’ " °’“’

Lu P, and’ & ,unr,sm+o3 be We V°‘°““"' "“"‘b" °f '5Eu)“, . :15

we define Fqa) Suck that

a) For all ne uo, n—<—9.= A

F({5)(.5.n)=F({s)(Cfr~) =- Fwfln) =0
»=cm(a?+(n+«>)=1 if "*0 W """

(M) For all new. "79-‘ .
F<{s)(55‘n)=0 3 "“ “dd
r=({=,) cm) =0 22‘

‘I: 1 r H =

(In) Q F([3) = Folfltu-1) le (F:(pS(§2a€oT)J=(§(F[&M))(<1)
. H‘ V [ P(F( n].

“F:r zdfigfiwwfland F"€U°and “ < 2 ’=l“PEP(P)#O]'
Distinguish fwo C<15<’—9=

:12
_ I? g Wm, um: v.«.suFqs1(§.n)=o3 <w‘=""9z‘° “P”
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'W\ere|’{:re- --. s;( -9”-"r-'qs)).

- I? Rdoes not e/x(st,i.e. -v3p[p(p\#oJ, Hen: Qc-.F({5)

ma‘ 32.(gm H90‘ (in

_ AS ..,—.(3p[P(P)+O'_l v-13p[I3(P)fO_]), we blot/V= ""§z(" F(F’\)'

Now, Suppose h) 2 == /J~p|:(5Cp)#O‘J.

I9 2 is add, Uxem 0* e Fqs).

I9 9. is ewe», H\Qn 4* e F([3).

'lTu>,refi>re= 33'<n E j*e: Fqafl.

We Proved: VP Vn [ 33'<n [31 e Fqsfl v ‘-1 S2 (gn F([2,)) , I’-6.:V{‘.~[P(F(p\]].

We also daém that-. -V[5[S‘,,(F([s3)].

For, suppose». Vf-5[ S; CF(p)Y.|.

Then-. VP 3a.3x[ €g(a)=2 A ‘ea. A fewzmon A {e FC[5U­

U.sL'ngCR we find qew, a Goo suck £kat=

97(0)-.—.2 A VP]: ‘fig: Qq «-> 3{l,-[ea/x Keczmon A re Fqifl]

We scrutinize O and dcstcmawsk three po9§4'bCla'tI'€S-.

Case(t)= oL=<4,17.

Then; V[2,.['(Sq=-.-(Sq _, 0* e Fqsfl.

T;‘6f€.fore-. VPE [‘iq.._z_5_q—)(anr{s(n)+o]-9 /mE{$(n)#o]«'sodd)].

Tide(5 contradictory, as we may d€F4"€ [’—>*5 “N

such that: Zq-_-.lun [(5*(n}=fO1

Case (u)~. o. = <o,47.

"Rem; V(5[ [§q= Qq —) 4* 6 F((5)].

There{:‘»e-. Vp[ Fq: gq —>(3nEp(n)+o1 ->/un[p(nH0] 55WW1

W3 is Contradlcfivrxj, as we may otefiu. 9* e“‘w

suck U\0Jc- 2q+1 =/(hf {5*(n}=fO1

Case (M): a = <O,o;.

he clam that, now : VoL[§,U”:, (OQW.

For, let oteww and consider [5"'==Qqae<4>*oL.

We know \7’{;[{Eq-.-Qq —->3{e¢zmn[fZ=§Z A(6 F((s)3].

Because of (Ike dafilnifioh of F, tkerefoye. S; (°<\\

But, em var -.-s;(o«) -+S;(od], and
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S: as g_c_)_(:a sbabb subset of ‘*’w, as we observed

Jbust Rrefore ékeorevn 14-9

We kaue Seew V{s[P(F(p\)] a"d= -* V[3[9zCFC{‘m­

Fxexeforez —.Vo([ W01)-) Sflotfl.

E

11.42 Lemma-. Suppose-. Seww and Fu,n(6] Cmd= Vo£[§Z(o<) —) E,_(5l0¢n.

7T\em- VotfP(o<] -3 E.,_(5|oL\].

13.2}. Suppose: 8e‘“w ma Fu,\(5) and: \7’o<[Sam -9 E2(5'otfl.
Let ol€°"w and P(ot)_

Remark-. VJ'eo;mn[S’2(o(bJ] and therefore: V[€0;mon[EzC5‘°‘5fl­

(Tie defxiuflon o{ ex, }\o.s been given Just (refiure 41,8).

Ob$Ql'VCnC3: (_) eo-zmoh and mm? GCP we Find q,"€w SUCKU‘°~f'°

Vaeczmonl: X9: QC‘ _, (8lo¢J]" -.-Q1

1T\e1ef'ore= awed /\ ,2,-.-§q1 —> (8ia)"=.c.>.

In View of-. P(oc], we may ddlstoquisk two cases:

C032(I): 3 [ fed].
Now-. Q2(o(\) and Uuerefixez E,,_(8lod.

case(M); -1‘n3X[JeoLA
-"I611:'1-1&lOl)n=Q_57 U\€ref}>re~.<8‘d)n.:Q

In either Case: E1(Slot).

Kb proved-. Voc[P(oi] -> E2(6lo&U,

3

IE is not Po$S£He to replace the COM-,|u5¢oy\ 0‘: lemma "42 G)“ V0‘[""S'2(°()"9Ez[5'°l)]

T56 WOW"-AC3€I><C1mple makes UNIS clear:

is one 9223 easily -. VoL[g‘Z(o(]_, (o*e°L V /-I-rflxfd/(0)=O A 5601])
lhe succedenc of this Ufiplicahlon Cs Cndeeol 2‘; (cf, 445),

Now Suppose,-. Vollf —u1§z(o() -9 (mean v 1~vEIJ'[K(o)-_-o ndreoffl.
Then, in particular -. Va [(o((<o,o>) = 4 A -,., (Died V 4150;“) -)(O*eo<v1’eot)]_

And U\L'S,Oxturn, leads rather Straigkfforwazraly to-. Vaf-n D"A,(o<\*) D‘A1(otU.
D‘A ,kowe4/er, is not (1 stable subset of ‘‘’w. (H ( gym ‘ redugcb|¢ to
A4,1afidD7_A‘ is e? W \ KS
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ms also establlslles-. -. Val:-v-vS'z(otl—~>P(oz)], a elacm whcch we mqde
oil: the Cnfiroductéon of P, just after theorem 44.40,bu€ left open uhhl now.

We Following, caraxéliymc} conclusdbn (3 the one We lo.»/e been Strivulg Ear-.

44.13 Tfieorem: 4 (€26. A3),

lfl'g>f= Suppose: S'2_;<_A3,and, using AC“ , olelermine 8€“’w suck llsat

Fwn(8l and: Vo<[§,_(oLl41’ A3 (éloafl.

Wierefow \7'ol[§2(oq —>vugz ((s1a)%n], and, according éo

lemma 44.42: Vo([P(o(] -9 A3(élodl

But how; Vol [ P(o(l -9 32 (olfl) and Has contradicts flueorem 44.14

El

As P belongs lo Tl_,‘f, the above proof shows that P is Uxe best: possible
l1‘3’—approxcmatz‘on to $2 ,' (2.: P: 0 {RI Re TTO3[ 9,53 R}.

Si"‘il°-'l9, We (92.ll, Wlublx belongs lro ll‘: , and l'.l\u.9lto T73 , CSScan
to 66 the lyest possible R3-opproxémakion to 92-.

N69 lN€c3($‘,\\=- “(Ill Re fig] §7__<_:R} tkegrem 14.9 and Cls proof).

l1.W l\é will generalize Uae method used in provénca - -a(S‘1:<.A_,,)’and prove
that 31 as not lngperarclfumetdczal.

Remark um». var S,(o<l 2 Vnl:'3j[J'*eoc] V (v&;<.n[ot(Ql£)=o]A9Z(§~,,())].

We defile 349, (1 class of lxyperuriflxmelical Oppmxémakfons Co 32 by the
Followénca Clauses:

(I) Ne9(Iuec3(S‘,_l)belongs to HR.

00 Whenemar 6l,,,Q.,, is 0. Sequence of elements of HR sucktlna/c
VHE Q,,,,4.:C9.,,]) then Qw belongsto H91, where Qw cs defwolby-.
FD?‘ (X6cum:

Qwldl ~"

0") Wl\€ne/vet 0. set Q belongs to )-(Q, «'1;does So because of‘
(I) and (II).

One obsexx/es,U\ak llareaek Qe)=(Q 92962.
We want to Show Utah like converse. is not true fiar any 616 H9­

vnf ~Il3'[3'*e,x] V cv£snEou§£)=o]r~ C.2,.(-7’:"ozll].
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41.15We First remark that all members G of HA are p__r9_ofgga_l_£Ag_(:pl’£cru§t(y\a[;(Q£|_
“Q Will €XPla/5" What we mean by that.

“b Want lo use the Fact tlxat, like §,, all members Q of 7=(fl ha/ve.
the fbllowénq Properfiy:

volvi £(a(§'Hx) Av..4l[a(§n)=oj) -9 am]
But: lilxeke (s more lfo CE liham this.

ms "move" is, that we may extend the range of H2’ lzo
volotcle MLmbPxs.

To acpress oUJ’$elve§Correctly, we l\O.ve lb Lnlirooluce another new notion.

L91: u.s Old-‘the. 0. prgcraskinatégg fLA<:xCon G-. Ww —) ‘*’w, as fbllowg-.

Lat [36 ‘*’w and lbs/.AnE[}.(n)q£O'1 ll;-e the volatile number of
kc define (Hp) suck l’J\a.t=

For all ne co, héfi -. G([’.>)((2:4)-=0 and G((3)(r'I7r(n+1])= 1,

For all Qeuu ~. G(f,) (§PL*oL) == (31% (0.).

l(5|LH is like sequence. which we gel from {A lly deletouz} (ls lgwytI:-H values,

cf. the Proof Ol Uxeorem 14.44),

We may refbrmulale lzle basic pfOP€"tC€€ OF G 0-3 l%>ll°W5‘

\7’{5Vll[ Q.-./unlf{3(n1+o] ——>(l7ln<Un*¢Gl[s)l A Vnslr.[Gl(5)l§n\=O]

“Gcp>- Pl£+1l].

A Subset Q 0} °"w is called p_r_g9l9,qQ~9\_S¢p

V‘; [ Vl<l:9.= }Lnl:(s(nl -'/-0'] --7 Q(r;]£+1)‘.l -) 62(G'(@>\l],

Our First observation is llxat Nec)(Neg(Sz\\ is proof against proCf'QS('inC1l?Cou
The Proof of this Rm: has been Part of the proof of lzheorem «.44, but perhaps
(L is useful to repeal: the arqumefl-E hem.

Suppose: Pam“, and VQ-[ K:/an [fS(n);£o] —) —-m§7_((3[&_H)]_
There are two po$S4'.bila'hh$=

- 3,«.[?,(,..)*oj’ then calculate Q:/MC[s(nl=,£o‘.l and remark-.
Vns l. E G(f.)(§n] =0] A "" S; (G(p)§P , tkerel‘ore'- ‘H9, (G((5ll.

" Vhl.-”&(n]=0], U194}:QC Qndi and: -n'1$(P)_

As-. —.-.(anEf.(n\+o] Vw. Cf,.(n)._.'oj), we ltnowz 1-. Q2ggqm

Now,assume that Q,,,Q,,... is o. $‘equ.enCeof subset; of “nu, wlack are, all of
them, proof against procmcéinatéoh, and suckthat: v..[QM§ Qn] Iand consider-.

Q“, ‘-' {ell Vn l:3a'l:j*eol] v(V&sn[Ok(QQ)a~O] A Q”(§'\d)]}_
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We first remark (;ha1:-. Vn[Qw§Q,J.
For, Id: as Qw and new.
Tfiere are two cases to conséder-.

(I) 3J'[j"‘eoC.I, then: §z(o()) and: Q,..(oL).
(H) Vlasnf o<(5J¢)=0] A 0,, (-5-"oz).

K/OW,Q,,(o(},as Q,‘ is proof against procrastindiéon.
In either case, (zherefore-. (S2,,(u).

Next, we show that Q“ itself‘ is proof against procrastination.
Suppose: (sewn: and: V&[ 3;.-./;PC{5(p)7‘.0] —->Qw({$|&+1)].

LQJC h w. gt ; f ()

1;u:n-. \:’¥csCC CL%r(p)((:Uf)P:Sce>],n<<£n’::t:P P ¥§2G’C[3) = G( I31“)
mark: H.’ L:/u-pf {5|n(p\¢o] ~_; 62w( {gm “)1

But Qt»; Qn aV‘d Q” (S proof against procrQ§hLnO.tL°o|a_

Therefore: Q” (G(p|n)) and-. Q" (in Gqm.

NOW Suppose h) /LPf(3(P)7£o‘]_
L913 9: ==/up E (MP)790] and consider {QILH, recalling-. Q.,,({3}Q+1

Were are two cases fo distinguish-.

0) 33.’-g1."6 {5|&+1]; co-lculate Jew such that 1'*e{5]gH, and,

mmoLrk= g'+l)* e Gqs).

an ant ([3[&fl)9-")_‘and: V{$rI[[5[Qu(§Q)=-.0]

BM: now: Q,‘ ( QJIG-({5}) as Q“ is Proof aga.(nSt

procrastination. o.nd= went G(p.)(QlZ)=o1

Therefore: \7'r\[ 33'].-j_*eG-(f_2~)] v ( V3.5n[C-([5)(§!i)-.-O] A Qn(Q'h61([5)))]1.2.: '
W may trust, now, that all members Q of HR are proof Qgamst
procrastcuatcon, as Neg(Meg(S,_\) has this property, and the property [,5
Preserved. MKthe rocess of making a new element of HR out of 0.
gequgnce of earlier. construcoed eleme.¢s_

11.46WC HOW OILFSQWQSto the lush Of proving no member Q of
coincides with 92. he will define, to each Qe)=({=\, o, fimcecon F;wu,..)Q
Such that « -:Vo¢[S‘2(F(ot\Y].

In the Cast Of N€€3W€q($;\\» this promise is 0. cheap one.
We "0~V€ 59% that N?-g( C92,“, b ‘ Cl Slpread, is Strictly anal £1‘al
{Ind we constructed 0. fzlnctcoufq FD-.WwQ:-rnfiw Such thou: Neg (Neg (51))=- 73ac(F°]
in U: Course of the proof of theorem 14.44.
Oh the other hand , we know, For some time. already, that-. -\7’oa|3aS,(od99;(041
(cf. the remark preceding theorem Mg)
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Now, Qggume Q0, Q“... is a Sequence of .5\\)p€rar(.Utmet(calapproxéfnatims tag;
Suck “at; V“ [QnflQQn'_[’ and I-3)F“..- LS CLsequence of Eunctcous From on
(‘,0 mm S(LCl‘\

Vn vat (1,, (F,,(an] A Vn- \7’ot[9.("7.(dM

We defame <1 new Emotion F: W.» -)“’w as Fallows:

Lab(53W“,and G8the VO|Ot‘.-‘CnumberOF
we define F((2.) such that:

(1) For all ma uu, 1159:: Hf) (Q-.")= F([‘*‘(5*") = F(I°’)H-1") ‘O’

(H) For all new, nsfl, M40, MM = F(p)( fi3(n+4)\= 1­

am For all new, rm 9.; F([5)(6"h)=0 Z-9 V‘‘S Odd

F(p)(1‘in)=o g: 1%as we»
1;IO!

(M Fql) -= Fg([¥-lkfl).

We claim that: \/{sf Q“, (F([3\W.

L91: [5e‘*’uo and new. ]
Fcrst sup ose: n < }/~P[[*(P)7‘0- ‘ ‘

affsequence [516cu“, b-9reiuurcng:

VQE Q =/up[!3(p)+o] -> ({5*(E+4)= [3(Ii+1) A {5*l£+1='.F,;({’IQH))]

Ag Vn[Q cQn]) Uxis Lmplfes:n+1‘­

VlE '_) Qn(F’*lR-i-1)];
and’ gznce Q,‘ Cs procbafagainst procrasfinattbn-. Qn (G(P-I1)
Remark, that: ’n F({%)= G((3*|n)
Almost the Same argument proves: ___Q,,(G(P*'nW­
T'hQ;-efore-. VI:-.<_n[ F(,e)(§&)=.o] AQn(9-"Fqs)).

Nbw Suppose: n > [up [p(p)a£o1 _ _ _

Co_[Cu|Of(,,? 2,; P[(;(P)¢o] and Seem wl_~.e3tk_er:1: LS odd or even,
we Find-. O*eF(p] V '1*eF(p), therefore». 33Lg*€ HP”­

- ~ 32
'[')',erg{gre=Vn[33‘[3'*eF(f5)] v (v!2.g..LFqs)9k -03 A GM "F‘l’>’)3

l‘.€.:Qw

We also damn that: - vp..[9,(F<{s)\].

Suppose: V9 [92 (F(p\\1.

1),?/,,., Vpgaalf eq(o_),z A (go, A Jeczmon A66 F(f’aH
UsénciCPI we qew, aew Sucktkoi-=

iz3(o.)=2A vpt (3q=§q -+ Rafxéw Kflzmom Ifé“P‘7]

We scrutinize 0., and. distinguish the F0“°WW} °°9‘5=
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TfiereforezVfsf(sq: Q0, -9 (3n[{?>(r\)'=fi0] ~) /unL—F~(H)#Ojis
TKCSis contradictory­

(H)a=<o,17. Now: VP]:pg: .9 I1*eF(p,fl
'|T1exefore~. vf;C‘r‘5q.-.§_c.~1—)(an[p.‘(m#o]-)/un[[3(rIHO]Cs evevd]
1155 (5 contradlctzpry.

(HI) (1: (0)07. Now: Vpf [.5q=§?_3_c[-)BJEXZ.-—C:D_-ZAgeczm

‘“<’mf°*e= "rsf<r"-?<1='C<=r A(=>(°1)=1)--> 9; (9~‘H=<,z>>3

And= Vp E (f5q=C__>q A p.(q)=1) ——>S’2( Fq(p]q+fl))]

T7\eIeF>re- ‘V/o<l:S‘2(I-:?(oL\H.

And times,according to our O.$SIunpfCon_S/Cs Contradictory.

nAr“W3

We put the blame far all these contradictions where it belongg and
Conolude: avpts; (F(p))].

To any Q 6 )=(€~\we may construct, by repeated 0-Pplfcottion of the above,
0, fiuscxion F-. W.” —-)Q suck that-: '1Vf5 [-32 (Wpfl 1
Therefore, no member 0. of H6 Cdinoides with 9,.

’|’|.|7-Let. Q6 HR and I?! Q* Qze U\e Set which V‘e§(.dt$ when we do apply
the genercvtulng operation to the ggquencc Q,Q,Q,_,_ __
Thus: Q={a| tin [aJ'Ej*eo<] vcc/&s,.[oc(o_&)=o'JA Q(9"o())]}
We have Seen, vi. the previous paragraph, that Q as proof against
procrastination, and that Q*gQ
M observe, how, “~01? Qf -14Q and that Q? is a. proper subset of G).

For, assume Q1’: Q

Wren: Vo([Q(ot}Z." Vn[il3'E3'*eoCl v(v2.sn[o<(§9d=O] A CQ(§"d))]],

E:T°§:"3~L.V:n[f(3.)J (0% " (°“‘°"=° A®<‘°’o<>>1.

We wébll construct Xe oimon Suck that {eat and we will do go8429- y~ §tep.

st“? (03-mw;*|:ucc:(w-.Q($enand(oc;l€sEa;gu1sk two Pogg(b(I(f[gg,

(ll) ol(<o>)LO A Q(<°>J(;() , then {(0) :=0 (and Q(X10<))_

95¢-p(9n\= 5(0),“... ‘(:0 have been defined already.

If’ x(n\= :1 , we define [E90 x=- ’.L.

JG’-£S2({Sth\=0, We k"0W'- €i(“"ot), 0016.1 we déslténauéslx two

(I) 0* e5’-$"0K, then [(3n):= 1.

<m7"‘oc(<o>)=o /\ 6l(’75"*“°’oc) , then rm)-.-o
Remark ,U\out, in the loutter case: Q(7Sg"oL)_
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It [6 easily verified that. VH[o((fnl=o]
Eereforez Vol[Q(ol) -7 S‘2(o(l], and-. Q $§2 , ano(- Q = $2
But this is tmposscblc, according to 14.44,

Remarkthat, fbr any Qe H9, and mew-.

Q*(oll ;9 ‘v’n>mE 33' [1‘*coCl v(V!isn[o1(§!£l=o] A Q(9"ozlll

This is, because Q is proof against procrastination

we we thés remark to make the Followihca ob§ervat(on-.
IF 620,621,... C; a Sequence o[3 hyperarcthmetccal approxcmatious to gz, such that
Vn[Qn+1C_2Q,,'],and Q0, cs the Se}: which we get: by apply:/ng the generating
operation to this Sequence, then:

Vr\[G2u,£Q,:'] and-. Vn[Qw4:Q,,'.l.

Thus, the process of qeneratinq new elements Ln )-(Fl is enolless,a Fact
which at once Surprises and. reassures.

A 1&1:remark on HR, which we will need. in the Sequel, is that H6 is closed
under the operoltéon of cntersectcon.

We will prove, for all Pe HR, that (brall Qe)=(H PnQe)=(fi,omol.
We willdo this inductively.

IF P: Ne<g(Neq(§2\l, we remark that-For all 625 HR . QepO-Nd?
NOW Suppose: l%,P1,l?z,... is 0. Sequence, of elements of HG’ sucl‘
that Vr\EPn+,_.C_Pn], and. such that any intersection of some 81

wcth any element of HR, belongs to H9 again.

We want to prove that: P“): [dlv,,[3J.[J~.Eu],,(v&£,.[u(§g)=o]A3‘(§nd))]}
has the same propertca,

To this end, aS§u.me Q5 HR, G_#Neq(Ne_<a(§‘,_\\)and
determine a sequence CQ°,Q1,.-. of elements From Hfigsuch that

Q:-. Qw .-= .fo(| Vnl:':'l3'[3'*eo<‘_lv(V£ér\l.‘o((t)_-ll.l=O'_l/~Q,,(§"ot))]}

Now consider A =={oc|vn[a3'r3'*eoq V(V&£l\l:0((§&)=O:lAB,(§"o()/\Qnl§"o()l:l}
we claim that A; PwnQw,

The proof (52 Straight Forward and mag be omctted,
As, by hypothesis, P,,nQ.,, P,nQ,,... is a decreasincg sequence
OF members of HR, this Shows that PwnQw itself belongs to HR.

The reader men! feel. anxlous about the hu. e quantcfié, .
"For all 62 e)=(:‘-’l' occurring Cn this proof. But he need not doso
We Could have been So economécal as to avoid. it, talking
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only about those members of-‘ HR, wkidw played 0; role

in the construction oF P and Q (cf we are engaged bu.
proving that the CKCBVSQCCCOHOF P and, Q belongs to

11.43The curtain rcses for the Penal act-. we prove that S1 is not kyperarétkmetfcal.

Let Q be a kyperarétkmetical approximation to 32 (Le: Qe)=(R) and C a
kyperurétkmeticol $212.
0. is called Q fl¢l[l_g._§_$o;ga_(nsl; Q 5}‘

V51:(Fun (6) A VoL[§2(ok)—) C(8|on\]) -9 Vol[Q,(oQ -9 C(5[o\fl]

If 0- CS 0. witness against C, 32 cannot be reducible to C, For, in U101:
case, 0. and 92 would cotnecde, whackdoes not happen, as we saw Ln we

IF 0. is a witness agacngt C, Q also witnesses Qgathst any Set D which
Ls reducible to C.

I? Q is 0. wetness aqamst C, the Following cg also true, For an mew:

V6[ ( Fum(5) A Votf §a("'a) -) C(8[ot)]) -> Va [Q("‘d) —-;C(8(o<)]]_

3“-ppose: 8e‘“uu A FU~n(5] A WIEWA Vol[§z('"cx)-) C(8|ot\]
Lek o(é“’w and Q('“ot‘),
Define 0- ¥¢wch‘on f]=“‘w -> “’w suck that:

Vrsf m(,m3)= (3 A.\7'n[-I(n§m)—>(q|{s,)(y.)=o((,.mand. consider Z: 5orl_

Rf'“°”k= V{5[92((5) —->C(ZIp)1 ’

'""—'€f°*€= \7‘(5[ Q(p\—> C(gl[a3]_

E9P¢°‘°“‘/. Since Q("‘od= C (Zl('"ot))
But: r\|("‘oz\=o( and Z[("‘d)= 51¢

1T~ereFore=Vufam) -9 canon].

We have Seen, éh lemma 14.9 and Uleolr-em 14.9 that Neg(Neq($z\] Cs
(1 witness acaainst E1 and. A2 , and, therefore, Qgamgt any get ‘D
W|\L'CJ\ belongs to Z‘: or Hf.

Starting from this Fact, we may Construct a witness aqamst am
hypU0.n'U\me1:{£.aJ set.

Suppose; C°,C,,Cz,... is a sequence of kypera/rfflxmetccal Subsets of °~’uu,and.
P.,,P., P1,... is a sequence o9 kx/peroxcthmetuical approxémottbns (to §,, such that

Vn[ P” is O. wikness against C" '1,

As HR is Closed. under intersection, we may assume: P°_:.P1gg__,
(We may Change Over to the sequence PNPOAP1,Q)nP,/Il?u,_. ,5; we do
feel any doubts).
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Consider‘ P,” = {o<[Vn:'i3'[j*eo( v (v£sn[a(§_&)=o] A P" (§"o< ))1},

We claim Uxal: Pw Cs 0. wctness against Qwcn and also against nk€JwC,,.

A; P e /\ 13,, we love no d;.'f’Fcc~.uLltyan verifyting UxulcLU new

Eu testifies qcaainst A C".R60.)

Now, Suppose: 5e Wu»and F(ut(<S)and: Vo<[§,_(°‘)A 3n[C,,(5lotU
LQ1: déww Qafld. PW (od­

RQMOJK: VJeo;mo,,[9z (ow, and U|€P'eFDVe:Vlecmofinl-C,,(5lo<6)].

(The def-‘tuition of o(J lxos been given before 11.8)

Observing-.gecrzm and mag GCP we Find q,n,e... suck am,

VJEO-2mon[(fq= ‘-9 C"o(8l?.LJ’)]°
T}-\€r€fDre: (Vfiéq [o((_5_Q.)-=0] A S;(Qqo( -—-)C,,°($lot).

Let m -.= max (q,no).

In View of: Pw(ol) we may distinciuisla two possdbcltties;

(I) 33'[3'*eoc], U\€4t: §2(o(), C1nd~. 3n L-C’n(3lod]

1,.) V£ém[o((§9.]=O]/x Pmflmdy.

Remark, kowever, um ..(View: mcm =o1 AS;(§"‘ou)->0" (Stu).

As P”, (Q PHD) wiknesses against CR0, H»u;scmplies-.

( Wcsm rowel)-o1A PM(QM) ->C,,°(a:a).
Tiereforez C,,°(6|o'~)

Wxerefbrez V8[(Fun(6\ A vatg (on-e an[c,‘as:.m) —>Voz[Pw(o<)-9 a»[C,,(<SIa)11]

‘:95 3,, '39 0- wctness aciainat n(éwC,,.

We have ho abandon euery hope‘ H1012C2 be kypwlriflxmettlco-Q, as
any kype,rc1IIlU\mQt£caJ591'. may be built up fiom $9125 which belong (Io 2',’
and T12, by repeated use of the operot12C0n9of countable wtéon and
intersection­

K? have Seen, in 14.16and I?,U\at very,very many hyperariflmetccql Set; are
intercalated between 31 and H€c3(Neq(_§,_)),

Vie r~esuJts of this paragraph make us See anew tkat ho hyperarwmxetéoal
set: can be both existentially and universally Saturated, 0. Fact
whack has been seen to follow From the kyperaxctkmekccal hierarchy
theorem. (cf. 9.1o)- . _ .
For, an that case, we would (laud an element Lh HR, WCth€§S01? (L630-U154?
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all hyperaréflxmetical $2125. This Cs impossible, accordznca £0 14.17,

1149 Let mew, m>O W b
We define O. Sequ-Qhce Vmmon 5 ‘“ V’

For all oLew=

0-mm" (Q) ._=0 cf Vn[n< Qc3(a.)-+ a(n)< M]

and: Wu[ n+1< flab.) -) C10‘)£O(n+l\]::'1
It cs not dLFf{cu,Q1;to verify that Gm on is 0. subspread c‘>F“'w(Cf'1-9a"°L
11,0)and that- Vmfcmmong Umfimofi.

Remark Hxat, Ear all (ye “’w=

Keg" -) VH1-0' (.J"’I\).—.O]mmon é- MMDPI

3 Vn[ X(n)s ;{(n+1\<m1

As with Gzmon, we do call Q the gm; of Wmmw.

Mledefoxeasubsek $1,, opww by
For all ote‘”w-.

S‘m(oL) == SK]: Kewmmon/x VHL-0((&7n]:O’.”.

(oLe Wm has Use property 9,, t} U12/re e/xccts CL seq:.L€r\C€ X 5"’ Wmmon
each o{i whose Chéhkzlparts (3 approved. of by oh).

%/Sm mow

Remark Ugh A1 5.3; -3A4.

Our [Zec‘Jxm'caJ 236 also observes Ute fz‘>|loWCnc5-.

0'
MM mo“ is 618 resale of Crxtertwdmlng Oh Whole Sequence of COpi€S 0F0',,,

L9}; us define O. f*: ""w —->“cu by:
For all oLe Ww-.

For all new-. (F*(od)(n\ == otln) 1- 1

Rzmark Um, Ear all mew-. + =

10 °'mmon '7 Um+1mon

We prove (L gene;-alizatéon of tkeorem 11.1 -.

Mon’
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11.20 T’-I-COTZVA: Vm>O l7’n>O E D"Sm A S 1M11.

p_l'_'22l:'- MJHELU, M70, n>O,

Define Se °"'w such Um: Fu,n(6l and-.

(I) For all as wwl For an qua ; (5|o()(C§c?) 2 0

Far all q>/n~. (6|o<)(C§q) 1.

(II) For all oléww, fbr all [6 “cu, Far all q<n, Ear all gem».

(8lot)(C5.q» Elfin) = um)
lzemazrla U\al;=

VZeo'm+,,m E Z_,e5lol 4:’ Elq<nElJeo‘mmOnl._;=5.q*l‘*(g) A Jedqfl.

T7\€f€li>re=va[3q<n[§,,,(qcn] g2 §m+1(6lo(l:l

I'.e.= D"S'm 5 QM”.
E

IF tkés theorem Ls lo bear Hue same kind of‘ as Uveorem 41.4,we,
must prove First.

14.21 Tfieorem-. “(D291 5 S2)

liog:-. Suppose: D7‘§,_:§S;_ C14\d.,uS4lnq AC", determine, 5€‘”w Such U\O1'.

EMS) and = vo<[ (§,_(oz°) V §z(o(")) g S'2_(5loLYI.

Weclaim Um-. VoL['Qgd° _, 9 58:04

§uppose; o<e“’w and-. ‘v’n[ot°(E_5_n)=o]and: Eln[(5ld)(§n)¢O].

Calculake nmqew Suclx that-.

V[zslfrSq=‘5zq—-2(8|(3)(§ no): (8|zxll§n0),£ol

llxe Lrruitaxcvesubject llas squarely lirmteol Lts own,

possébilitfns, whereas Uxe.creotéve subject skill lxas all

its options open.

Define rl€“’uu such lZlaJ:- Fwnlrl) <1flC1=

FW all [Le ‘‘’w-.

(I) For all llsq: (rl|[5)°l§_lll=O

("J (lmoq =&q

Cm) for all 9.<q : Pf (l\|[bl°

(N) For all aewz (q|(s‘l°(§qxo.) = (Ma)

(v) -v 92 Clrmsli)
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(736 reader will be reminded o(»‘ the deFt'w'12(1<>nwkids has been given
immediately after Uxeorem 11.7).

We remark: VmVolI: 9101'") 2 3J’eo;moM[as o<{)m'11

11.27. Ti-reorem-. Vn70[ ~. (Dn+1.S~z 5 ])'''S2

Egggf-. Suppose: new’ n7 1, and-. D"“‘g’z A D"S7_, Le.-. Vo<3[5fD"*‘§2(ot);2 '_D"g(?)‘]

Uscnca AC,“ dexernune 8e‘*’w suck tka.t- Fun (6) and:

val: DM1S,_(oL} 2:’ 1>"s:2 (slafl.

Remark-. Vm<n+1 VOLVleczmon l:D"”‘ S‘: (o(X)m]].

Tiemfore; Vm<n+1 ‘v‘o<‘v‘J’eo'2mon E D"S’1(5Io({)mH

i.e.: Vm<n+1 Va ViecyzmonJP“. [ Q1“ g|dK’m)P)]_

Observing: Qevzmon and usénca GCP we determine

haturafl nwmbers q°,r,,P°,q4,rhp,,,.--. qmrmpw suck that:

Vm<rI+:LVatVieoimohf (&rm=@rm Afqm= —>32 ((8lo(J,m\P"‘]]

Tfierefiare-. Vm<n+1 Vol [ (arm: _5.rmA Syeogmohf fc7m=Q'¢]mAare cx"‘D-)S2 ((51.,qP-)]

As each of the numbers pmP“_,- P" belongs to {O,1,.-.,n-1}, we may

assume, wdikout loss of: q€ne.roJ£l:\}-.po=P,= O and We perceive,

puiitflnc} q=== max(qmq,) and r:=-. ma.x(ro,r1)-.

Vo([(5"= Cir A Elgeo-zmon[fq=§cg Mg‘?o<°\/Jeozifl) -9 9, ((8|oI)°)].

Once more, we have eaten too muck From the tree OF knowledge;

Let s == max(q,r) and define qe ww such tka4::Fu4\(q)

(Ind. For 0." [BE “’w:

(I) U'|I(5)S = (Es

on Wcssf qms)°(Q&) = (rma)‘(§.M=o]

0") F0” 0*“<16w=(']|[’JO(§<;t0)=[3°(Q) and (q|[a)‘(§s*a)={s‘(0)

(Iv) \7‘9z<s I 93¢ (q|[5)° A &*¢ (q|p)1]

(VJ Vm>1. [ '1 92((q|(%)"'1].

beam geww such um. mg) and: Vp,[zip-= (8l(q|(m°]_

Remark, thak For 0“ [Be ‘”u.)-.

D’9J(*>‘ e‘-’ ‘-'x€°;.......f2?‘=§SA<x€<nIr>>°v;<<nlrWAGR>\s=?>.9

2:’ S;(.>,:p).
Wxereforez D1Sz_-3S2, and the leadc to absurdity 11.21)

Webetter leave Paradise and keep cmma; Vn>1[«D’“"‘S;5D"SZ]. 2
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It is not difficult to establish-. Vn>O[D"9,_5 Dnflgzj, and, therefore; Vn7O[D”§z<Dn-H91],
Combining this with theorem 14.9.0 , we Find: Vn>o[ D"Sz—<D"*"S,_1
Now,the world, starts to move again.
Looking into the proof of theorem 1141, We See that it made us jumf;
Rom; Vn>O [D"A4 4 D"“A, -<§2_.| to-. Q14 D1S'z_ 2

Nothéhq prevents <1 Similar From-. Vn>oCD"S,_ .< D""‘Sz.<S‘3'_l to-. S;«<DS3

‘theorem 11.22 "auqht (L9 how to conclude: Vn>oED"5‘z< DVH-lS~2-‘Jfrom-. €24 D’$,_
Leaning on the‘: experience, we trust: that-. Vn>o E D"s .<D"*'§ ] will fouow
from-, §3-< D"S'3_ 3 3

Gradually, the {-‘allowing picture u.n{'?>ldsctgelf-.

A14 D‘/K14IPA, §,_.<I>‘9,< D-"S; §3< D"g3.<D’S’3..-S‘,_{<Dz5H

0:3 to Put the same into 0. learned, formula-.

\7’m>o\7'n>Ot/p>o t/q>o[ D"‘Sn 5 DPS}, (‘.2 (n<q v(n=q A mépfl]

It comes somewhat as (1 surprise, that much OF this game macd be
Pla. ed also with conjunction. We remind the reader of’ the easy fhct
thou:-. C’-A1 ~_4A,
(In de[‘x'm'tCon LL41 we (introduced, fin ecceh new and P_c_:_°”w=
Cw == {on v&<n t P(o«fin}).

In Contrast to this, we howe-.

11.23 Theorem; —u(C192 .5 S1)

PI_<_>_9}=The proof is at charming variation upon the proof’ of theorem 41.21

Suppose-3C2925 Q2 AC4.“ 36CULUSU-.Ch\
Fwn{5) and-. \7'ot[C7‘§2(00 Z3 32 (Elan , |'.e,: Vo<[(§'2(o(°)/\ §z(o(‘))g S‘1(5|d)]

We claim that: Vo([(Q E o(° A S‘1(o(‘]) —) Q 5 5|.,;]_

Suppose: o(e‘*’w and-. Vn[0l°(§h}=O] and: 92(o(‘) and-.

311[ (5hX)(§n) #0].

Calculate nmqeuu such that-.

\/(if [Sq-= 5U] ‘9 (5'f>)(Qn,,) =[5lo()©no\ 740]
With 0. sdqh, we point out to the Cmétatit/e Subject that

it Should not have made this overhasty Step:

Define qe ""w such thal’-= Fun(q) and;

For all [56 °"w-.

(I) (r]l[5)1 = a‘­C") =
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l...) For all l:£q= (ql[5)°(§&)=o

(Iv) For all ll<q: 9.*¢ (!]|{5l°

(V) [br all aew= (r]|f>)°(§q*a) = (3(o.).

Let Z__ewoo be suck Ella}:-. Fu.n(Zl and: la/[z.[Z‘,IJj;= 6l(q[(5\]

Remark that lbr all {se ww:

Q2((53 Q2 ((q|pl°l

C191(W A (TM =39

9z(8l(r]|{$l) A (5l(q|[1~3.(-§.ho#O

9z%(Zlpl " l%|p)”§"o #0

33'<no[fie zip]
l71era,f0re- 92¢ D"°A1, and Um‘:contradicts corollary 41.2

We retire and conclude:

va[ (Vn[d°lC.7_nl=o] A g,_(o(')l -> vn[(sIoa(<:n\=o1].

/N’‘KL‘ll’l‘J,‘ll

Now l‘.l\o.l’.our clcum has been Q$l'a.blI'Sl\ed, it remafns to see how

Ll:gels us into a further mess. But Ll?does so rather qucckly.

Define qe “’w such Uxalt-. F¢m(q) and, fbr all '36 ‘*’w-.

(I) (n|p)° = Q

N mw‘=9
Lek Zéww be suclxtlxak: mull) and: Vp[ZIp.—.5l(n|p>l.

Remark that fl)!‘ all (ye ‘*’w-.

9z<¢~\ 2 <c_>e<nlm° A 9zl(r1l{e>3‘l

;? Q e 6l(rm3)

(-3 Vn[(g|{$)(§n\ =01

llxerefore,-. Q2 '5 A1 , and this contradicts corollary 14.2

We have to bow our head: «(C232 5 92)

El

Pondering this lasl: PVOOF: We come to reFlec-.6 that For all mew, "U0, New.

For all ote‘*’w= 9m+1l°‘l A o¢((_3_nH=O g’ 3J'<n -3J’e0‘ml: §"ael3*(d*l ed]

We may construct therefore, Ze °"w suck Hut: Fur-(ll and‘

vaew.»[a(§_..)+o —>(S‘m+1(odg_" 1>"s,,,(zIoa],
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Thus, mimiclccng the proof of theorem 41.23 and u.s(nq the Fact u‘°t=

Vn l: D"Sm

Remark that, in doin

-< DWSM 4 S‘,,,+,l we Find that: Sm“ »<C"S’m+1.

so, we take advantage of prevcously acquired
knowledge on disjunction , rather than conjunction.

And now, dear and patient reader, we would like you to join as
and Climb the conjunctcve towers which are based on S,_,S‘3,-..
We have to warn you that the Steps are‘ and many) but the view
Ls 0, nice one...
An Lhdjcofcbn of conjunctive Vitality is given by-.

_l—l;l€OlV€m°­

P!_9_<2F =

\/m>1 Vn:-ill -I(C"S'm 5 § 3].m+n-2

Let m>i.

We prove: Vn>i["(C"§m vs 9m+n,,_)—l by induction on n

The case: n=2 has been disposed of On theorem 44.23 and

the subsequent discusscon.

$'u.ppo.<:e-.mi and; '1(C"S'm £Qm_,,n_7_)_

In order to lzake the next step, assume: C"”SM $Cm+n_,L

llstnca AC“, determtne cSe‘*’w suck thou;-. Fans) and:

vat c"+*9,,,coq :2 Sm,,__1 (5loLll

We Claim thak: Vocttl/p<n[Qeo(P".l A §m(oL"ll —> Q e éld].

§up ose: ote_‘:’wand: Vp<n[Qe°{P] anc1,Qm(ou‘] and; n
and: (8|oL)(Q_n,,) geo.

(Vie next argument, wlublnlooks rather technical, as to
bring out that now, by skdful grafting, one may
reduce C"§m to Sm+,l_2)_

Let [LS define a subset T of “’w by:

T=-{plpewwl \7’p<n+1l_'{32Pe o‘mmOn]},

We observe that ‘F is 0. 9uloSpread of Wm.

Let us deP-‘he, as we did on earlier occasions, to each
[5556 ‘*’w a sequence [31 6“’w bx}:

for all

De“)

O-ELU: := O {ea

Let us define a function F-. ‘Um —;wu, such that:

Vfiéww Vp<n+1 E (F({s)\P
jj

€r3’P“),,_3,. 1.

We observe than V[se‘l' 1: <:""‘Sm man and
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we determine he '1'‘ sad‘ that t H [5*)=o( and: VP“ [ (P*)2P=9].
Now: V{a.e'l"[Sm+n_1(51F([5))].

Especially: V(se'l'Elo.[ €<3(a)= no A 3J[Jea.A dr6.o'm+n_‘monA Xe 8lF((5)]]_

Applying GCP, we Find. aew, qew Suck that:

l9(a)=n° A V[se'P[f~q="[¥,q -7 ‘:'lJ[(eo. AJets'mM_mOnA A/e5| F(p)1l.

We define r]e.“’ou Suchtlwah-. Fun(r]l and:
For all Zewwz

(I) la’ all p<n : For all aew: (qlZ)P(§q*a)= ;P(a)

and: V’3rWq(?r)<q -1 (r]|z)P(2r) = oLP(€r)l

and: V6 [(llg(6'l=q I\ 9+ Qqla (r]lZlP(l'rl+o]

am 011;)"(Qql = 0.
on auz)" =o(" and: vm>n£ mIz,)’"= on"?

anon <q:zw<>> = o<r<>>.

V} rncglnf be called-. like grafting flmctéovl.

Remark lzlaat, For all Z5 “’w =

Chg," (Zl <1’ C"”§m ( ']lZl

<1->3[3e’|"[ (sq: [go A '1]; = Flfsll

[Ken A56 5l(V\lZl]
-9 3
Q" l€G—M+n-lmon

Loolulnca back, we realize that; o. ,4 Qua,

(As: (Slot)(§nO\+o and: 3Ke6,,H_,,-,,,,wL-{ea A(6 5l0Cl).
Suppose l:l\o1:~. o.(n°-1) = 1.

D€FL'ne a. fl.Lnc,l:£on fl: “’uu -) “’(,u Such that Vo(VnlKf'+(o(l)(I\l=°l(nl+1],

C“ 9,, (z) .2 3Ke¢,,,,_,,_2,,,WEa*F*((l e 8l(q|Zl]

Therefore. C"§m _-5 §m+n_2 , and Unis leads lio
a. contradiction, according to like induction l\ypol’.l\€S(.S.

IF a(n°-1)) 1 , we also Find ourselves in an «Impossible
situation, by a S(m(|<1rreasoning.

Tserefore-.varcvpmrigeavn I\§m(°‘"ll —+ vJE(8Ia)(c_‘>4‘)=o]]

It is now an easy matter ('0 bring the proof be its conclusion.
(The more so, cf we do remember the lask bars of the proof of l:hm.u.23)_

Define v[e“’uu such that, Fun(q) and, For all pe‘”w:

vp<n[ (n|fs)P= Q] and: Uma)"=9.
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Let gs ww be such that-. Puma) and: Vpli ZIP: 8|(q|[5)]
Remark that For 0-“ [56 ‘*’w:

§m({5) :2 (Vp<n[Qe(V]|[5)P] A 9," (('1|f>)"-D

<1’ 9. 6 5l(q|(!~)

4;’ V3‘[ (Zip) (Q1) =01

Wherefore: §m£A4, and, as 9159", (cf. the discussion
after Eheorem 41.22), thcs contradicts Corollary 41.2.

Adntétténc}-. 'r(C"+4§m :$ §m,m_4), We complete Ute induction Step

and, thereby, the proof of the theorem.

8

One of Ure consequences of this Uueorem is that: -1(C'7S’2 $9.9)
AS m increases, the complexcky OP C"‘S‘2 oulzqrows the complexity of any
qéven member of the Sequence S'2,S‘3,­
In retrospect, disjunction cud not behave half as wildly CLSConjunction.

Let us «Lntroduce, For all subsets pgww, Qgww, a. subset C(P,c1)0? Wonby:

For at! as “’w= C(P,Q\ (on ;= P(o(°) A G(o<‘),

M5 T;~e2_'1°—L~=Vp>i Vq>1[C(§,,,§q) s sP.,q-4_]_

E_rg_of= L91: (LS d€.FI'J1e O. F.LV|CtCOl’\ TT: ‘*’uux‘*'w --) Wm suck that;

For all o(Qhuw,P€ww; n(o/‘{5};<tx(0),or(0)+(3(O),ot(1)+f3(d,o:(1)+,3(4)’_,_

i.e.: n(or,p) (o)== °<(0) and: VrIf!T(0I,{%)(Zn+1)=o((n)+;3(n) A n(a,p)(2n+2)=oz(n+:)+p(m]_

(A9 ILSILOJ,m-'-n :.—.m-n m>,n) and m-n==O Cf M.<..n)_

L% (LS define 0. EAMCHOVI1: won "‘} woo Such that­
For all o(e‘“w-. 1(oq= <o((ol,oL(Z)-'-ot(4), ot(H)'- 01(3),...
Le.-. a.(q)(o) -.= ado) and-. vn[ 1(a)(n+1) =-- o<(?.h+2)4a(2n+n].

Let us define a Function pr ""w —IW.» such that
for all as Wm : Nag :_-<a((4]'—o((O], 0((s)'-01(2), «($3-'-ct!‘-1),.-.

i.e. ; Vn E pbt)(n\ ‘== °<(2h+|) -'- °*(2hY1.

Remark that: VetVp,_[ 9~(n(d,p\\=-ct A p(n(a,[s\\={s].

We (I150 WCU\l'.O. fiJl\C3fCOh L: w—-)u3 Suck

for al( Clem: 9g(L(0)\== pp[2p>/ €<a(o.)]and:
Ho) (0)= = 0(0) and: Vn E 2m-2 < 093:.) -—>L(o.)(n+:)=-_-a(2n+z]4 a(2n+I)]

TNS; L d°¢S *0 Finite Sequences what 1 does to Cnfi'nL'f.'eSequences.

Similarly, we introduce a. Fumctcon R: uu--}ULJsuch that-.

99" Oh“ 0L€-w= Q<3(R(a\\ ==}Ap[2p+4>/Qc3(cL)] <1nd=

\‘/n l.'2n+d. < Qqla) ——)R(o.)(n) -= a(2.a+I) '- a(2nYJ

Remark that-. Vote Rain) Vnf 17;) n = L(Et2n} A ‘SOT-oY)n=- R(5'tZn)],
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Let. pew, qew, p>1, qyi
Remark that-. VJVSE(Xe 7ASec-gm"

Let us def-me qeww suck that. Fw\(rn cud:
for all o(e Wm, For afl aew:

cf= a°(L(an--0 and.(qlawll =0
and o(‘(R(u\)

otherwise

\ ——> rr(K,8) e (TSpmon p+q-1 mom

(1-(an=0

(man =0
Upmon

:0 and Gqmon
: :1

We make two observations:

VoLVJV5[(K€O‘PmonA Jew: A 560(1)-)(n(y,8)e An(3r,8)eq|u)]

Va V6 [(JewP+q_,mon A ‘.5 (Hot)")(NJ)eQ;)mwANJ)eo(° A p(dr)eo;w°n APg) e.ot‘)]

TF\€l‘Q—fOre-.Vo([.(SP (o£°) A §q(o(’-)} :7 §P+q_, (qldfl

A8e.o­
qmon 0-p+q-anon

‘hen. ‘.<§P+q..j_
B

when makmq theorems 44.24 0nd,11.25 Join hands, we Find 0. result which
is worth remembering-.

14.26 T580 rem:

"L22?­

As we have no difficulty in seecng

\/m7-1 Vn>O[ ‘1(C"”‘§m «_<.C"S'm3-J,

§u.pPose,= m€w,m>1 and: new and-. C'H'1§m;4C"Sm,

Now: cmgm 5 c(s,,,,c"+1g*m) g C(§,,,,C"§,,,) 5 c"“s‘,,,, 4 c~s,_,,_

LA this way, we come (to See: Vp >/n [CPSM _<_C"S‘,,,]_

On the other hand, we may derive From theorem 14.25,as...A
Therefore. Vp>/nl: CPS",4 §"_m_n+i1
Wu‘; call; For a protege by theorem 11.24, wkzch says that,

W We Choose p large enough-. '1 CP§m 5 9,,“ 4+1)

TRereFore-. -1(C"+1§m .4.C"§,,.)_

E

that-.

that '. Vm>0 VH>OE Cngm '-<~Cn+1§m]I

we quxet down and relish {he ccgkt the Following towets:

S24 C’§z 4 C392 4.-.

93 .< C28;-< C38} {.-­

U.nULkethe disjunclzcve ones, these towers kave no easy upper b0UJ4d9, Old
are very much entangled Cnfo each OU\€r-.
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11.27 We define 0. Sequence G16 “'00 by:

For 0.“ 0.6 uuz

6,_(a.) ==O LI Vnf n< Qc}(o.)-9 a(n]<2]

== '1 otherwise.

G2 is 0. well-known example 0? 0. subspread 0F Wu;
0;, or the sex gal vn[<r,(;m)-.-oi} is called: the binary Fan.

We define a subset S‘ o? ‘“w by:

For all as ‘*’uu-.

S(o<) == 33'[ 5602 A ‘v’n[oz(Xn)=O]]_

We introduce a class B of subsets of Woo by-.

For every subset P of Wm;

Pe C 2:) P -53.

Other d€(3iru'L£on§of E may be given, wkidw avoid. quantcfycng over all
955918 0? ww. 10.0). Perhaps the most easy Solution, here and now,
as to restrict oneself to members P of Z},

We remark that Q is closed under the operations of Fincteunion and
countable intersection.

§u.ppose= Pand Q are subsets 0? “”w and: PeE3 and Q53
Determine Soewuu such that: Fun(8°) and, Vu[P(oq 5) g(5o|oq]
Determine 84e‘*’w Suck that: Fun(84) and: Va[Q(oq;> g(5"dfi
Define Xeww suck that: Fu.n(5) and: For all as Wu,’For an ae LU-.

(8lo<)(<O>*a) = (goloma)
0“d'- (5l<X)(<1> at-(1)= (34[OL)(Q) and-. (3lo()(<>) --O.

Pne has to allow that: VoL[(§(8°[d) V§(54'°‘)) <_—_)S(5l0d],
'-6* V0*F(PIo<>vQ(a));> Swan, and: pm 6 3.

Suppose: Po,P1, P,_,...Cs C1 Sequence ofgubsexg of Wu, such 00.1.,
Vm If Pme E],
Determcne a sequence 5°,8“&,_,... of elements of ‘*’w such that:
VmEFun(8,,,) A VotfPm(o(\ g2 gamloqj
Define aw“, Such U\oJc= FuLn(6)and-. for all mew,’ go, 0... am,

(8|o«)ta) ==o cg vm<€q¢a)v&[E<0q(am)—>(£m|oq(d?‘&)=o]
_ == 1 otherwise i

(‘he "°tC't£0'\5 03" and. 5.7‘ have been Mentioned in 1o.2)_

We observe tkab. Vocb’ewzf Ks Slot :2 Vmf [me Smlotfl
Wtereforez V04]:vm[g( amloq] g Saw],

0md= Vat Vmf Pmwq] gs §(8ld)], l'.e.~.m{é\wP e e.I11
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Recall that lseww is called a. gubfhn of “mo cf [5 (g Q gubgpread of cum
and». Val:[¥(0-l=O "7 (KCE={hH3(ax-<n>\-.-0'} Ls
(Cf. 9.0 and Uue discusmon Followcnq on meorem 41_3)_

To any subspread. of ‘*’w we may conscder a cor-reg ondznfi
Subset 9? of Wm wlzon, in analogy to g and e, is define by:

For all o(e°”w-.

§{£(oLl -= Hgl/nl:[3qhl:O A Ol(a7nl=Ol

We remark Uxat, RN‘ <>JV€Iy Subfom [5 of Woo, SP Qrebncas lot’.

A proof of l;lu.'s Fact is readily Found, Cf one realizes
l3l\C1.tany Subf-‘am {B of wow may be embedded "into Q.

'|Txerefore, E as a quite complicated. class of Subsexs of ‘*’w.

Many Subgeis of ‘”uu Nl\(Cl\ have been mentioned (I\ this
chapter, do belong to 8-, lilce §2,§5,.._ and all SQISwluda
we gel From them by applications of H12 operations of
l'l.'M'l:e(mean and countable ihtersectcon, for L'nSlC1nce;CzD'7g’§_

We remark Uxat S C; nol: lxyperarctlxmetgcalj as §,_._<9 and 8; already
is not lxyperarétlxmehcal. (Cf. 41,18)
Also: Vn l_‘Qn<§] , ag Vnlf Q" <§,,+1$§] (Cf. l-jxeorem14.22 and He

ensuing otcscusséon.)

We define. a. subset T’ 0f °"uJ by
For all o(e “flu:

fl-'(0‘l == VJ/66‘: :‘lnl.—o((J7n):_-O]­

We introduce 0. class .5 of Swbsexc of ‘”uu by:

For every Subggj P of wk,-.

P e 09 4:’ P51".

(In this defllwlliioh, we may reslcrcot our attention to memben P of H1).

According lo the {on Uxeorem, wlulclx We mentioned already 0-liter
theorem 14.3, [or every subfbun [3 ofww, and all ole woo:

\7’(re{53YIl_-o((37r1)=O:l (:3 3m V(re[5Elném[oz(A7nl=O]

Tl-tus, we find. that 09 _C.23, and, actually) U01 :3‘ E3.

As 92 ¢ 2:: (4, Hxeorem44.3), and 92 e e, also: _.(ec.:23)

There are n/(1:15of esliczblisltfhqUujs last trutlx.
(The use ol like fan lzneorem, wluck is a diffdcuflt prU'\c£1ol€.of
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intiulzionistizz Otnalygis, should be avoided as much as possible).

We may remark, U\o.l:, according to lzlxeolrevn/11.1, D7‘/\16 E, and,
according to tneohem 10.11, D7‘A1¢ l'l",, whereas :92 H‘,
Neiener one of these resu.lts depends on the Fan lrlieov-elm.

OI; our memory may go back lo theorem 10.12
We may cil'e its proof almost literally lio obtain the Followingconclusion.­

Let sew.» suck elm: Fu.nl5l and-. \7‘o<[S‘(oi)-+ wslon]
We may Construct Zeww Sixth lTl\O.t:

V556; Eln [o((Xhl#O:l C1nol= V/3'66; 3nl_—l8lo<l(Tf*\l'-‘O‘.l.

Like 24, and llln E Gun.D’ do Form CL mysterious Couple.
One is tempted l:o Covnpoure Elle two.

The reader will remember new we deplored, out U\€ end of Chapter 10)
not to lye <Ll>le lo prove Utah: e-(1111921)

Tllere is much more Unott we do noé know.

i-)J'.so9£—‘-.6? I; Z'f~;:_E?
iAi lrke acsu-mption of Elle Em Uteorevn, these two
questions Q16 uxlvoulent.
Remark that the proof of: '=(E1$§z) (theorem 11?)

depended on Uleoreim 11.11 (N)
ll: is not known wlletller 0‘,_ has tltis property)

C“)IS 8 closed under the operation of countable union?

(IF Sb’ all l\ypera.riU»meJ:i'ca.l Sets belong to 8).

gm) Is 2:: E 2

(Remark tkaut, on fine other hand, T114120, as H‘; _c_IT:

and, at the assumption of the Fa,” theorem) .. no_c_09:23:.
IS l‘.l\€f€(1. Proof tlM:SFact’ aso(ds (jg use
ol3 like Fan theorem?)

One would like Eo understand Wlu; lzkese questions are giving So much
trouble. A posilzive answer lb any one of Ekem would be very Surprisxng,
fooling c|a.;§ical opinion wlubln ltolds, for duality reasons, Usott H‘; and
E coincide.

While this new cloud of unknowing deccenols upon ugl we Feel that if is fime
to end lllxe clxapter.
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AN 0uTBuRs’T 0F Dlsfuucrwe, CONJuNCT|VE AND IMPLICATIVE PRODUCTH/lTy.

We still are under the spell of the theme which captivated us on the
Second hall-‘ of the previous chapter.
We have seen, there, that 92 is an upper bound to the increasin
Sequence A1, Dz/\,,,.-. ‘and, as Such, rivafl; E2 , although the two do not
admit of 0. Comparison.
‘flying to understand why 92 should be So rude as to disturb the peace
of the hyperarithmetical hierarchy, we might think of the fact that 32, itself,
is not 0. hyperarithmetllcal set.
It turns out, however, that agitators may be Found under our own roof:
92 has some hyperarithmefiical relatives that are e ual to similar mischief,
being Superior to all sets A“ D’-A1,... and, nevertheless, incomparable to E2_
Like S2, these sets also support disjunctive and. conjunctive towers.

A subset P of ‘”w, such as A“ or 92, lg.» which P4 D2P<D3P.., will be
called disjunctively productive.
General methods will be indicated, to assign to any disjunctively productive
set P 0. disjlulctively productive subset Q of no Such that l/mED”‘P—.<Qfl.
Fortunately, these methods assign to a set P which is hypcrarithmeticall,
(1 set 62 which is hyperarithmeticafl as well.
We will find, in this wag, that, for instance between A, and.’/K3,
uncountably many levels of complexity have to be distinguished.

A Similar game may be played. with conjunction.

N80, notions of impllcative productivity will be around, Carrying along,
in their development, 0. 92l\€l‘d.ll2al.‘i(]nof some theorems of chapter 5,

Consider, as an example of the type OF constructions which will occupy us]
the 39k:

R... {oil Vn[n.—./up[ol°(p);£O] -9 D"A1(o<9")l}.

Remark, that Rafi: , and So is arithmeticatlas R=[oc|Vn[n#/up[d°lp);€03VD"/\,ht5")]}.

Remark, that Vn[ D"A4:4.R1

Let new. ‘Define Seww such that: Fun(5l and: Vol[n=pP[(8].,q°(p)3&6]n(8loi)3"- oi]
Then-. Vokl.'D"A1iot) :2 lzlsloll] , l‘.e.: D"A1—$K_

Also observe, that 2 " (S; 5 R).

We may appeal to 44.48 where it is proved that S; is hot hyperarithmetical,
or men to theorem 44.13 which says only that 32 is not Hg

The Following argument resulted HOW‘an attempt at a direct proof:

Suppose: 925R, and, usin AC", determine 5€“’u) such that: Funl5l
and-. Voi[§,(oi).{_’R(8loll], l'.e.: Va f flpfaeogmmnpeaj .52 l2(8(oq]_



129

- 5 1}.- vmsnracm 0‘.—u [Vm.<.n[ot(9."‘)“'O] VCon€Cder°-" {alvn

We claim max: V<#€“"[R‘5‘°‘”'

x°< HOT

Let o<e’T' and W” and: vngf qp E>"1f5-:O(3Tr*£))°(n+«1=(?l7-T)°(n+"7­
£1‘ .. 2

D€t“'m‘“2lqéw EIO*:q[(<:(%’v)#°1We now CO-UV‘

c E O((§“') : 0]‘ E3,» ZEWW‘Suppose:V‘I»—qck that and,Defwe flew” 5“

0) W239 " go] 5 *o.)= 3(0)(10 fDr 0“ 05”‘ mIZ")(Pq
. 1(in) V'“‘? [ .L*¢ “Z

all “u ‘ /— —
fi§"'z£r —+Z&§:(n|z) A €nI‘%3°i=°‘q

at H

2 £3 1)" A, ((r1l%)g ) “Zn . k madicts U‘€°rem ' '

‘merefofe; S; 5 D A4 ; WNC CO A' H40] and, as o<€'r= V"‘[°‘(im)=
-merejcore; 3w.s3.[o((9_tL ;

|'.€.: 19°“ 0"" S1(:L()-. D"A1 ((5l0<)$")­Thergforez R(8[o4) 1 Q11

6[ol)gn)’ ,5ld)o(PHL0] ’7 D"/\1W roved-. Vn[N*}‘PE(

. Vo<e'|"[§2.(°‘fl'_ uuslafl, 0"“Vdérr‘
~ ub we of '7"

Consider the F)"('EwulKaoces’VISVn>o?1VH[°‘('fim]¥O]}'rr* == °<

“’ Vm[d(1.m‘=0fl­+[ vmIo<(Qml=0] V1 So: ‘I.2 -D2,‘
New V°<€."”'.“=(°“be Proved that "°“" "i‘:§°"a7d cts'pro°F’—From UWSIW‘: is not true. (Cf Uxeot-em ­wluick, 09 ’

F"¥\a“‘/Iremark that 2692‘ ) d fill‘ all ma ”’w­_. F 5 an 1

De?“ 86 w” 9”-d‘ that -§Mn(<2./‘P Eoc°CPHo'J0) (8ld)(Q'\} ‘:0 L’

. ,, . E ° H01

(5|o()C3J\\ “ 4 D; n 2 /‘T14 0/£*PqOCqolPl#0].(_u) (Slot) (F‘(r\+M ‘:1 4

Q0, fir Qllfewz. = Edocp) #01 ft‘)? 0“ I(m) 9% all new WC“ flax’ " /up
.. Snia K(5|d)(n*&)* (Me) _. o< ().
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nah, €07‘ C1“ o(e‘*’gu-.

RM 2. Vn[n=/up[o<°(pH0] -? D"A,,[ok9")]

2-) W: L-Zn: }1p[(8|ot)(_5_p)=o]-) 3K[ns ?«_<2nA P 6 Sled]

2.2" S'z(8|oL).

Therefbhe-. R. -5 92.

Apparently, R is (1 Smaller upper bound to the Sequence A,,D‘A1, U'\<1M(SS2_
and Lt has the advantage of being arithmetical.

We 9€"€"0~|"2€ the constructcon that has been sketched (in12.0 and.
discover nice properties of the §etS whéch are produced by it.

L91: P°,P4,-.. he a sequence of-‘ subsets of “Uw whéch the condition:
Vm3n|fPm-(PHI

Now define Q,==*—[on] Vn[n=/lLp[ol°Cp\=£O] ——>P,,(o<9")]}.

Remark that, by this definttlbh, o(° has to Play (‘he role of
a ggnallmg sequence I and, as such, may be compared to o(oQ,
tie. oz as behavi on the Spine of 0‘ we are studyih
Whethér ot has e Property 3;. 2mon , 9

Remark Ulakz V71E P" ‘<

Let new. Define 8e‘*h. rush that; FuM(5)and: Vd[fl=/Lp[(3|d)°(p)¥O]’~(5Id)S"=ot]
Then: \7’oL[Pn(oL]§.? R(5lotY.l , 116.: P,‘ is Q.

We make 0. minor assumption on the sequence E>,P1,-__namd\/,Uo1'.Vn3o([-E‘(0lU,
and prove: -1 (D‘Q £61).

The Proof is Cérnilar to the proof of U\eorem 41.2’! which stalieot
that: -«(D132 A92).

Suppose; DZQAQ and, usin AC” ,deJ:erm(lle <Se“’w such that:
Fum(6) Omd: Vcx[D‘Q(oqg_9 Q(5|.,¢)],

Determine 0. 9 «Lanes, 0, W.

Conséder T:= {ct I Vnf Vmsn [o(°z°J:.)=O'] v‘C/mSn [d"'°(ml=O],\Vn[ot°rS"= oL‘I$"=[z,"]}
We Claim that: Vo(e'T'I (5|ot)°= Q].

Suppose-. o<e‘T'and new a_hot n==/up[(5lo0°(p)
Determcne qew such that = VZE §c1.—.azq —>(3[_g—)'°(n+I)- (6la]°(n+t)]
Determine r>o, such that: P" -<Pr,
Eéthe/2 ol°2°r=§r er: Q-1T5,.__'5,—~
no harm to assume that = 010,0, _____C‘->,._

and it does

. of members of ‘”w, such that-. Vn[‘vB‘(‘;“]]_
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Define qeww suck that-. Fu.n(y1)and, Ear all Zéwwz

CI) l-fililq = 39

cu) r=,upE<qIzl°»°(p)+o1 and: (r1lZ)°'§’ =2

0.» P7. 2: /Ap[U]lZ)1’°(p):fo] and: (r1lZ)‘I“ = Fl.
73911, For all Zeww

P,.(;) ,3: Q(('1|Z)°l A cifiiilq =3<q

<2’ D’-®.<mz) A (Tf|'i)q=aq

5-’ R. (($l(r1lZ))S").

Vlereforez Pr 1‘ P" which ContraCU.C135= B, 4 P...I

‘|7\er2.[%:re-. Vote'T' [ (5loL)°=Q] and-. Vo(e'T'[Q(5loll-J (Ind:
‘v’cxe‘1‘[D‘Qcan] and-. Vo(e'l"[ Vm[ol°I°(m)=O] v \/mEoz'»°(m)=o‘J]
We are almost in the Same position 0.: Cu 12.0, and may
conclude, as we did Uxere-. Vocl_'-w---D2A,‘(oL)-; D7'A,(oLl] which
Still CS C.oM.tradl'Cl.‘ory_

We make another minor ascumption on U12 Sequence PO,P1,._,name[y,(:hat -(Q5A4)’
and prom: -I (C’Q 5 Q),

We proof is similar lb Ule Proof of theorem 14.23 which stated
U\0-1': ‘I (C192 '5. Q2)

3Upp0Se= CZQSQ and, KLSOAAC“, determine «Se“’w cud: (fiat;
FlM\l5l 0-ndz Vd [C’Q(o<) Z Q(5lo<ll

we claim that; Vol[(°‘o’o= Q A Q(o<1)) -9 (8loa)°= _Q]_

L21’.o(e°"w be S0-Ck Uxalzz o(°r°=Q and G621"), and. new,

'1 =/up l."(5l°<)°(pl #0]. _____ ____

Determine qew Cuclx lzkut VzfZq=6Lq —>(5|Zl°(n+1)=(5l°‘l°(r\+1)'l
Dzhermine r~>q Suck that P,,<P,.,

ne ‘*’w suck that-. Fuu\(r1)and, for all Ze‘”w-.
<0 (71T?>q =3’?

(-0 r = ppf<rxlz)°'°cpl+o7 and= (ql%)°’S"= z

(W) (r]|Z,,)1 = cx’:

Then, fiar all Z5 °"uu-. ,­

P,.(z) 2 Cam qlll A (r\lZ)q =5'<q

: P,.c(auAlz)l"‘).

TRQTEFDVC: E, 1‘.B" COl‘\tTQ.dCCtS: P" o(Pr..

TherebrezVGE(do’o3Q /\ -) = and
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we Rail into an abyss, as Follows»

Define Vle°"w Suck that: Funm) and, for all gas Ww.

(nlZ)°= Q 0md= (r1lZ)1=Z

Then, [Br all Ze Wu;-.

ea) 2 (ruz)"»°=<_>A Q((qIz)‘)

Z Vm [ (5l(v1|Z))°(M}=O]

Tfierefiprez QAA1 , which, by our rather weak a§sampt£on
is not true. '

Remark that the fecults of this paragraph apply to He see R) which We
defined in 12.0, so that R, u«deed,,seems to do very wefl as O. Sabstctule
for 92-. —:(1>?-125:2) and-. -:(CZR.5[2)_

lZ.2 Once more, let Po,P1,.. (we a sequence of gubgexg of Wu, whack fidfi-lg the
condition-. Vm3n[Pm4Pn1

Define Q* =.-.{cal E-InEn:/U~P[oL°(P);£o] A P" (oL§")]},

Q‘ ckallehges Q, as defined Ln t2.l, probably deserving as (good a record.

Remark that-. Vn[Ph.(Q*].

Let new. Define 8e""w Suck that: FuJ\(5} and-. Vot[n=}Lp[(5ldl°(p)=,lOA(8|o()§"=o(]
1T\€n- VoL[P,‘(o(]{I7 Q*(5lo(l], 5-9» P” ‘SQ?

We make an O.SSumpt(oh on Uxe sequence l%,P,,... namely that: \>bElo([o(eaA -vQ*(oz)]
(i.e.: Ne (Q*) Ls dense in Wu),
Observe that this holds, For Lnstance, if \/n VO.3oL[0(€o,A -. Pn(oq]_
We also assume that 30([E,(0<)] and Prove: " (D1Q*-562*).

Suppose: D203‘ _/aQ* and, U-Sinca AC“, determine 5e‘*’w suds that:
Fumla} and-. Vo([D2Q*(oL)2 awsyan,

Determine o(é"°ou such tka.t= oL°2°= Q and-. o(‘»°(O)¢O and-. po(°l"’1}.
Remark-. Q*(oz1), H\erePore-. D’Q,*(ol) and: Q*( 5101).

Determine n=/up E (8|d}°(p) 3401 _ ——o ———-o
Determine qe w such that-. Vgf 2,3: aq -9 (512) (n+0= (5'°‘5("+07­
Determéhe, [3e“’w <:u.ch that: fJ,q= oTTq and-. -Q*((5),
Determine r7q suck U\oJ'«= P" -< P,.,

Now oleFcne qe ‘*’uu such that: Funtq) and, For all Ze‘*’w=

<->fiflfm = '5“! 0(ll)r: (V]lZ\)O’O and’ )9‘=Z
(In) "-[5
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men, fbr all 36 wow

Rm :2 G2*((ru2,)°)A mzjqsaq
D7‘O.*(V\lZ,) A FITIZTQ =52?

Q*(5|<'1lZ>) A n: ,U~p|I($|(V1lZ,))°(p)=,éo]

R. ( (5Icm2.))“"),

T;‘e"€f°"€‘ Pr.4P“. and. this Cohtradjgtg; P" ,4 pP

’rLNM

9peocoJcz.' cm - ­

CL SubSum9R* $oFC—:v(:kr:c§Lc?M,we U\trodur.e., as (1 rival to the Set R (gom 12.0,

R‘ ‘= {°‘| 3nCn=,uP[o<°(p)+O‘] A I)"A1Ld9.\)];.

The general argument which W Uta ed
and shows that: -«(D2R* 4&5. O H a moment ago’ QPPWS to R‘­
Oh the 0U'\Q.r hand, LE fig true, (hat: Czkg. 5- Rf,

Lgt <>z°Uw,(ww __)¢A)“) 6e ., .

(Ne mehtcohed suck Q fikncfiow just :‘:fbre€‘“§:‘f:3n'2_H:v:‘6L+°)U

it) gegre €§E)'Q:;tt‘:'n*e- age: we lecuve Ct to the V‘e.ad;24—­W» W 0. ca uemce g ew Sud‘
F _ m , W Chat:

un(Z..‘./,,] and. Vo£\7’[&[(DA1(o(\ A ])nA1(P\)2 ;‘,:,‘.,,A1(zmnl<o( 87
Now define 8e “w suck um: Fum.(.8) and go, all New « 'P

. 3 (3 ° ’ “"

Cu) For all mew’ new‘

I?‘ "‘=/*P‘?°<°'°<p> +o1 A nfi/*PEQ,,«,o(Pl¥o1

u‘Q"“ """=}kP [(8lo0°Lp)7£o] A Lgmscm-aw: Z ‘<(xO,Smo‘1)S'nM,“ 9

O - , 2WW3Wm
we C°'"~P°u‘e R and R* and eskabiésh that; ., (Ré pg).

Rem-0. k-. R( , "' e ,,

Deterrtulne n0=L)./"‘P%n(O5L|d)of~i3;:zc§>']o.L)and. 3h[(8'°0 ("#01­
Dete. M. ‘ - "*"° -—-—-3

DQ1I€rrm‘3\:qf>u; :ffpf9=“9 “>03lZJ(n+=\=(5I<=<)(n+nl
Defilxe. rleww sunk tkotlc-. Fumhl) and for an gem

._._.— ) W:

(I) (qllbq =3lq
‘"’ ’‘= M13 C"\|Z.)°(p)=f0] A (n|;;<»~ =Z
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Then; fbr all Zewwz

P,.lZ,l e R(qlZ.l A cT2)q=aq

Z? R*<6|<nIzD A '\=/Al>H5'('1|zl)°(pl +o3
2? Pn ((8ImIzl)‘*"‘l.

Tnerefore -. Pr »_<P" and this contraoucts~. P“ A Pr
We have to admit; -1 (R-.<.R*).

It Cs seen at o. glance tllax-. E14. R*
‘Werefore-. -1(R*-_<§,_) because, accordin to Uxeovem 11.7 2 '1 (E,»$Sz)
Also-. -«(H5 R] , as, according to 12.0 .. R:(9,_.

AFter all, R Seems nearer (:0 S2 lnan Rf
But we destroyed any QlQ.(mgthat R rmlglxt put fbrward, (20be 0. least
upper bound to He sequence A,,, D‘/X4, D3A1,-..

(We did not sercously Conscder the question of least upper bounds with
respect to the redg__ccbucl:yrelation _»5_ It does not seem easy to final
0. nice example. the reader may try nés wits on finding a. least
upper boumi for A1 and E4).

|2.3 Let us return to the construction which we stuolieol lM. l2.1

Let P P 3e 0. Sequence of’ subsets of Wu; which fulfils Uue conditcowO, {,.-.

Vm391[Pm -<Pnj , and. define Q =-=[ct] Vn En:/uP[oLd(P):fiO] --9 la (q§r-3]}.

We have Seen, in :24, lzhat: if vnaoat-P,,(ontl, then w (Nasal.
We would like to Prove Ute Stronger Sbalevnent: Vnl ~»(Dg"G2 1SD"G2l-J.

we will do so, in two different wands, but, eacll lime, we have to extend
our O.S§u.mpl:ionS Concerning l:l\e sequence PMPU...

We observe, that, cf the sets Po,P1,... are, all of them, strictly
analylfical, then like resulting set Q as also strictly analytical.
(Strictly analytical sets have been discussed in |O.7).

Suppose: Vnl: P,‘ is strictly analybical]
Determine a Se uence 30,81”, of elements of ‘*’u) such that
Vn f Fun (6h\ /\ P": Ro.(8n\',l.'
Define Se “’w suck that: Funlél and, For all aewwz

(I) (5|oLl° == o(°

cu) For all me ur.

(8|otl9" == as” L} n + )LP[Ol°(Pl7€Oj

=:.- 8" |cL§" if n =);P[ o(°(p):fC>].

A moment's Hxougnt WI" Convince you, Uncut Q = Kalb}.
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In addition, 8 lxas the Following two properties:
(I) 8[Q = Q _

0|) Vq \1o([L5€q= A Q(°‘ll -) §1(5l."[-sq: Qq I\ oL=5|(3—_l-:l

More or less Cmilrlliing the prool‘ of 14.22, we

12.3.0 Theorem-.

Pm>F=

Lei‘ poap4r-­

sucklzkax-. Vman[P,,,.<P,,“.l and-. Vn§loc["P,,(otl1

Let G, -.= got‘ Vn[h=}Ap[oL°(p)4O] —-)Ph(o<9")‘]}_

Tienz Q as strictly analytical and-. \7’n>o[ D"Q 4 D"'”'Q]_

Ge a, Sequence ol3 strcctly analytical Subsets oF Wm,

It is easy to See that-. EloL[’IQ£od3,Qnd, therefore, that Vn>o[D"Q£D"*‘cQ]_

we also know, (‘mm the discusscon in 12.1, that-. -1(D1Q—$Q).

We build 0. Sequence 50,8“..- o¥ elements of Wm Suck tlxakz

Vial:Fu.n(8h) A P"=Ra(5,\]]' and’ From Lt, an element 5e‘*’uu Suck U\c11:­

Fbun(6)A Q=Ra(5l, like we did it jtuzt lJ€li>re embarking upon Unés proof.

Now, let new, n>o and Suppofie: D"”G. 4 D"Q.

Using AC“,we determine I16‘*’uu Suck that: l"un(V|l and Vo([D"*"Q(oL)é-_)D"Q(q]oL)]_

We also define, For each me w, an element em eww

Fun(£,,,\ and, For all ote“’w=

such that;

(I) (£m|o() (< >) = 0l(<>)

LII) (£m|oL)m := Slot”

(In) For all new, 11;!-m-. (zmlcfln =oL'_‘

We observe: ‘\'/m<n-5.1VoL[ Q( (gm|oz\"‘)]’ tl\€V'€fDf'€:

Vm<n+1VoL[D"”Q(£,,,|oz)] and: Vm<n+.-1Vo([D"Q(ql(£,,,loL)\l,

Using CP, we determine natural numbers q°,P°,...qmPn Suck that:

Vm<n+:L Val Rq‘m= Qqm —->G ((’1l(2M|ot))P"‘l].

Rumiruilng Uxe last remark which Preceded. this theorem, we conclude:

‘v’m<n+1 Va[(aqm = Qqm A Q(o("‘)) -a Q((qlo<)P"‘)].

FOP‘,let mew, m<rH-1 and, 0<é‘”uo and 3(qm=
Determine Ewuu such that: 2"] = 04 and-. F,qm= cjqm.

We then see-. Q(Lrll(£,,,J{5))P"‘) , :'.e,: G ((f}loL)Pm)_

AS VM<h+i[ Pm 01], We may assume, without loss of generality,

UIOJ3 Po =P5_. Cl== max ((1o,q‘)_
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Time.reader wdl sense how thcs is to end-. we oure able’ now,
by skclfulgrafting , to reduce. D"Q to 0..

First, we define Jreww suck that Vn[q<3/(nl<{(m-I) A 9,, i %(m]

men, we define <1 sequence Fo,(3“Cz’,,.o(-’elements of ""00 Suck that

Vn E Fun (9,) A V/O([Pn(oL)gi l>6m(9“loq]

Fcnally, we define Ze‘*’w such thou.--.Fu..n(Z,)and’ for all otéww;
0’lmq =5-?
on VnE(éIocl°»°(nl = 0 2-’in [°¢°'°(ml=-O A n=;c»'a)] amt Vnf(zIa)"»I"‘l= l; Iot";".l

V» I (glad ‘Pm =0 z.’ 3m EoL"°<»n=o A n=,(mlJ and: vn[(z1a)1»I"‘L pn;a'»"]
(nu Vn>:L [—«Q((z,1al"l'l.

lien, For all o<e‘“w= __
Nazca) :2 Dzocgroc) A (z,|odq=c_”>_q

2 Q((q|(%loL\lP”‘.).

-meizfbre '- D1625Q, and, as we know, Huls(9 not true.

-l7\e.refore= Vn[" (D"”Gl 5 D"Q) and: Vnl.-D"G2,.é D"‘*"621

Our hear‘: is Flooded with joy at this result.
To our regret, the underlying method did not help us to prove the Same
thing about Q* (as defined (in 12.3),or to Set up the conjunotéve tOW‘?J’0"
the base Q.
The reader will remember that, in connection with S2, we treated d4'sjunct-ion
and conjunotlon ratlner d4;F€erenl:l~/.CCf. theorems 41.21 and 44.26).
Rethinking theorem 12.3.0, we come to prove ct anew, on sugktly other
Conditions, thus Pavllnca the way For a sémilar lxanollinq of Conjunclzion.

l2."l Let (LS introduce, for all subsets P; “‘’w/ Qc_;‘*’.,u,a Subset; D(P/Q) of "”.,o bx}:

For all oteww-. D(P,Ql (OLI : = P(o;o) V Q(°(1)_

Let Po,P“P2,... lye a. gequence OF_$LLb$21;gof WW.

We CC1-llthis Sequence d£Sj y c_l§§_c_1,gf l7’mVn 32!: D(Pm)Pn) -$ P&]_

I2.‘-{.0 Wxeorem-. LeJ; P P P

P:_o_of ­

ol ” 7_'___(lg Q dLsJ‘w/lctcvely closed, sequence of subsets of °"cu
suck tkott: Vman [Pm.<P,,1 and, VA3o([‘Il2l(oLl].

Let Q -= {cc I Vn[n=/AplIo1°(_p),éo‘_l —=;Pn(o.»5")]}.

lien-. \7’n>0 [D"Q -<D"""Q‘J_

It as easy to See that-. 3o(['-1arm and, Uxeveforeflxat Vn>O[D"Q-.¢.D""'Ql.

This, of course, is a cheap observation.
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In View 0? the |aJ‘9e work at hand. We Sad R3" our dd R‘-ad’

Tzg Cod vmvn[Lo<(~n+o A ot(r~\+0) -+ m="T (cf “-2)

Observe {hat-. - Voter [ Ez(o0].

Suppose.-. Vo(e'C'[E,_(ol\].
Ag get and 1:’ Cs(1 Subspread OF ‘*’w (C}-H1), we
app” GCP and calculate new, qeuu suck Usodc-.
Votet'[6Lq= Q0‘ —=ro("- Q].
Tue (.5 not true, <13 we may d€F'*‘€ 0‘*"='° §“°k that

o—(7q=. éq and (oL*)"(q) gé0.

Tfiereforez -wVoter I E2(o<\].

Wehave’at theSame Vnyi‘1VdétED“
V1‘Vde-C [h’\lm<r\-1-ilCXME 7/"1

(Tie Symbol 1=1=has usual Function of denoting the COIOUJHO-1

number of <1finite set).

Determine a. sequence {so,[3‘,... of membeos of °”uu suck U\<1£=VnW,’,(f>,fl
Dept-he a Subset T 0; ww by '[u={o¢| \7’nVm[oc"5"‘={3m7}_

Remark that: Vo(e'|“Vn>O[ DnQ(°‘) .47) -’]""<"[ °‘m'o= QT]­

§uppose= new, n>O and: D"”Q £D"O.­

AC4«. determcne Se “cu suck UIOl1?=FW*(5}0—"d=V°‘[DWQ(°4)é’DnQ(5Id)l

Let us define’ For each as ‘‘’w and, lea)’ natural numbers Cd(&.]

and dd A67.‘

Cog“ == #{ "‘lm<rH-1| “"-‘ism: (:3-2}

(we Pronounce: the CFCCUCO-Qhun\b?I Of °‘ at Sta)“

dd (M ~.= H m] m<n I (8Ion"~°(H= 9%}­

(The number Cd(9.) represents, so to say, Uxe number of

atternoxives that (1 has left open, up W‘ 5470-96Q).

We claim Uxakz VP<n Voce"l‘[\7'R[c°L(9.}>p] ~> V&[du(U>[>]]

we Prove {-M; by mdqctfion’ and Start with the case p=0.
Suppose’ (._;‘€,efD,e'that dew" and-. eV!£[c.a(9-)>0] and;

3!i[ddV(K)=o]. mo
Co.lcuQabe, for eack em<n-. €m===/L&[ (5104 ' (947‘°]­
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Calculate qeou Such that-.

Vx [ jfq = ‘Sta -9 Vm<r\ I: (SI/flm’O(Qm+1) = (8lo<lm’O(9m+t)]].

Finally, remember lthot the g'e,qu,Q,9\C€Q), is dcgjunctively
closed and calculate New such that:

N >q and-. D( PeO,P(,4,____,Pew) 4 PM

(We mtg: "D(P°,P(,4,,_, pg“) For-. 1>(..-(o(r>,,l;31).--),l3"_,))

we may assume, without losg of generality, that BEEN=§N

We define rle °"w Suck that: Fumlrp, and, F5!“ all are‘*’.p-.(I) =
oo O/SN

(Ill N =/uh 1- ' U1)*0] a"d'- -‘-I

(In) For all 36 cu, }>Oi _§e
N > e:= ,u9<f(n|{ll'°(!i)#0l and Mlrl” =1».

(This last 436" is (‘he fixed sequence which f‘-L«.lFu‘ls-.—1Pg (P2)

-lhe third clause is to ensure that V!V3'>o[-1Q((«uX)’3)])

Then) fir all de ‘*’w-.

‘Mal <1’ D"”Q<'llll A Wl3q=5“l

2 peo( (3|(,Hmo,seo \,_,__VPeM((5llv1|()\

lh0refore= PM5 I>(P°,..-.,pQ_) and this con{>I.'ctswith
the Choice 0}: N.

h-l,§Qn_,]

Wu‘; Contradiction shows that: Vo(e“|‘[V?<[cd(9.l>0]-y V9.[ddl&)>01].

3u.pPO§e,now,that pew, p<n-1 amt:
‘v’o\e"P[V9.[cd(9.)>p] —;VUda(ll)>p]

We wish to prbve that voaelrr V2[c:d(9.)>P+1]—;v2[o&(a)>P+.1].

Assume, therefore: ote T and: V9.[Cd(9,) 7 p+-1] amok

Elpcl.-ddlh) =p+1]_

Calculate. Qoew such that ddlllzj=p+1.

Calculate qe cu Such that Vfl: fq=5lq -9Vm<n[-(5l;)”"°&,= (5l°‘)m'°&o1

We may assume, without loss of‘ generality

Vm<p+i[ oL'"'°q= fig] and: (g—l:'—:l-o??<o=§_9.o.

We define Zeww such that: Fumlél and, lbr all Jewwz

0) (W <1= 39
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(II) For all mew, m<p1-1: (ZlK)m’O= Qqx-K”

(m) For all mew, mew: (;|K)”‘2S" -_-.(3,.

(M For all mew, m>,p+1.-. ’IQ((V\lKlm).

Remark um. WE my em].

Also observe l:ltclL= VKE1:Vll<l: Cal‘

Therefore, l:a.k£ng Lnlo accounl. wlxobtwe proved at

the previous stage: v,a.- vs: I awll) >51
However, as: Vyevl (zlxl q = Seq], also:

V]/etl: Olglr(kl = dd(Qo\= p+fl, and:

Vxefl:l {o= &o =Qkol
Tl-\Qxefore: Vpst v&[W’7}fi"‘£s§%], <1nd= Vgetl Qlfil (z,11{l)°l3,

and: Wet l D"Q (5llZlglll, and: Wet [ D"”’Q (Z,l[l]

and: Valet’ [D"+4‘A1 lyl].

And this is nol: true, as we lxw/e seem (ll: ltlne beginning

0? this proof.

Tm; contradiction shows-. Vole'P[VQ[ca(ll.)>p+1]-)V2[dd(Q)>P+I]],

Tlnés €Sl‘.0.blI'$l1€€ our claim-. VP<n\7’¢xe’l‘[Vfi[Cd(Q)7P]-9 l7’£[ol°l(Ii)>p-ll

Thus, we know l:l\oJ:~. VoLe'l"[ Vfilcdlllcl an] —> V£[ddl9.)>/n3]

Viclory Cannot escape us any more.

We define Zeww suck lckat-. FuLn(Z) and: For all feww;

(I) ll)?’ all mew: lZl5'l""° = (M

(:1) [or all mew, mew: (ZlKlm'gn = (5,,

Remark. that: V{l;'Zl[e'l"_.l

Also Observe that: Vxei.‘ l: W-[cur (9.) >/nil]
And. llniék as follows, holding up your arms in triumph,

Vger VI! l'ol,j,K (ll >/n], therefore: l/Ker Vm<n [ l8l(Z;l[llm'o= Q]

and: V661’Vmcn l Q ((8ll-7;l(f)lm]l and-. Vxet D"Q( Sllfiltyll,

and so: V(et’[D"”Q @154], and; l/{et’[ D""’A1l3/l],
a Flat contradicfion, as we saw before.

Looking for a culprit, we c.onc1U.de-. Vn>o [ "(D"+1Q é D"Q]

and: Vn> 0 E D"Q < D"*‘ Q]. E!
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I25 Conjunction, anxcous to F(yat least as htqh as disjunclxon, now attracts our
attention.

we introduced, just before theorem 11.25, For all subsets P_c;.Wuu,Q.C_“’w,

Q. Sol-B921: C(P,Q) Of ww by:

For all CX6ww: C(QQ)(on) -.= P(o<°) A Q(cx‘).

Let Po,B,... Ce (1 Cequence of subsets of Wm.

We call this sequence ggnnjunctcvely closed if -. VmVy\3Q[C(PmPn) :3 P&

|2,5'.0 Wxeomma Let P07 P1,... 6e (1 conjwxctévely cbsed sequence of Subsets of Wu,

suck that-. Vm3n[Pm<Pn] and: 3,,[A‘ 5 pn]_

Lee (21: {o<1b’nfn=)Lp[oL°(p)=fO] -7» P,,(aS")1}.
Then-. Vn7O[C"Q <C"”Q].

Egfl It is easy to see that 3o<[Q(oc)]and,U«ere.fore,U.o.t Vn>C>[C"Q-$C"”‘Q1

1155 mmark serves to loose our tongue.

gupposes new, n>O and: C"“Q £ C"Q­

Usénci AC", determénc 5e Wm suck that Fcm(5)and: Va[C"*‘Q(a)gC"(;1(6lu)1

As in the proof of Uxeolrem l2H.o, we define, for each ol€“’w and.

{saw} so-called crctfcal numbers cd(F_)an(1 dd(9.)

cd(B.) ;- fiz {m|m<n+1] o_(_"_‘r-39.=

dd(9—) °-= 14: [MI m<n I (5[od""°3. = 729.},

Me clouim um: v,=<nv.x[(c"*‘QLa) V&[C.¢(9<)>p3)—> v!1[d,,.(£)>p]].

We prove this by induction and Start with the case= p=O.

$'upPose,there[bre: okeww and C""‘Q(oL) and V£[c:d(H>o]
and-. 3“: dd(&)=0].

Calculate, for each m<n= €,,,==;A3<[ (5l°0""O(94#O]­

Calculate qeuu Such that-. ’_____

v,r fq=6zq .+ vm<..r (a:K\":° (e,,,+1)=ca1oq'":°(e,,,+4.m]

Remember that the Sequence Fg)|>1,__, is conjuxctévely

dO$€d and Calculate. New suck Uxdb-.

N>q ond°- C(P(°.Pe4..-.- Pg“) 4 PM

(we Write; C(Pe°’pe4,___,PeH) gar-. C(...(C(P ,P(,4\-..),l>€”_.))



1'-I-1

We may assume, without losé Ol: 9€"€"Cl“h\}.U‘013 ;‘_°’~°"’=‘:3”­

We define r\e“’uu such that: Fu/M71}and, F0’ 0“ X€ww'­

U) l7\Tpq = 39

(u) N=;L9c[(q|gl°'°(VLl=0] and Ullll

on) For all jaw, P0 = (rm)? = old.

o,s~ __l

Than’ For all xeww:

PM 2-’ C"*‘Q(nIll ~ <71Vlrl9=3<a

2-’ P90((5l(r1lKll0‘$e°) A--- A Pen; ((5|lq|(lYH'§e"'

fierefore: P” —_<_CCPQ‘-’,---,-P2 A) and this COnFll'CtS with

the chofce of N­

lhcs cohtradéotéom shows that-.

Va l.”cc"*'a(oq A Vlifcdlfll >01) ~> \/H ola(El>o]].

Suppose, now, that pew, p<n-1 and:

VolI (C"*'(ilotl A V?zfcd(Rl>p]) —>V2 fddllll >p7]

We wish to prove that: Vot[(C'”1Q(otlA V!i[cd(9.)7p+I])~) \7‘Q[oldl?:)>p+1]]

A93lAW\€.therefore: Otéww and C"+‘Q(°‘) 0-"<1 V9-[COJ9-l>P+1]

and. EH ddl9:l= p+11

Calculate Vtoew such that dado] = p+;l..

he may assume, wéthowt loss 0F generality, that:

Vm<p+1[ tgfilj’ E02 @203 and: Vm[p+iém<n —7(:Y_l;l—"79,,=/:_(_§QO]_

Calculate, fl)!’ each mew such that p+i ém<n =QM-.=}A9LE L8loL)""°(9.)fol

Calculate qew such that: V]Em-.-aq -9 Vm<n[l6l;l""° to =L5l°‘lm‘°9o1

Remember, that the sequence Po,P1,... is cor\ju.hc¢CV€(yCl0$€d

and. that 3n[A1-.<p,,1 and calculate New suck that

N>q and: C(A1, pg?“ , peP+z,.--. Pen”) -( PM.

we again need. not fear to endanger the generality OF the

argument when CtSSum.£nr?= VmgP1-1 l: o(”‘.° N = §N].

We define Zeww such that: Fl}/fitz) and, (‘Br0.“ [e‘”uu=

(I) (-Z—,_l—{3q -.-. ‘&q

0:) N= /Jar (zI;l°'°(%H01 and lZlll°’S" =_a’
(nu For all jew such that 0<j-‘-P+1= (ZIXWO ‘-‘Q
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(W)For all Jew suchtl\a1: p+i<3'<n+:1_: =o(é.

We most pleasing PFOPPIE; of this flmctcon g is’

Ural: = V; Valcl CW (Q) >p-J, wlxccl», in view of what we

proved before like break, lxa; Elle flxrtlxer consequcnce,

l:l\0.k: l:dz”
Wxerefore, fbr each Je Ww;

PN(gl :2 C"*‘G2(zI5) A<‘ZE;'xq=°aq A VHC;.Illil>P3

zi C"62(8Il;lp) A v£7llo[a3,:(&)=d;,J(£o)]
2-’ (VM<p+i[(5ll?,|g)l""O= Q A

A Vm[p+1sm<n —a P3," c<8lczvp\""‘“*l])_

It is beyond doubt, how, that PN 5 C(A4,l}pH,.... QM)
and l’.l\i.S con{3ll'ctS witll lzlxe choice of N.

This contraouctcon shows that;

vat (C"“‘Q(od A\/3.[Cd(9.)>p+U) -9 V£[dal&)>p+fl],

Our claim obviously has been saved flow: all CnSl'.hlLCLlZiOhS

and-. t/pa. volt (C"”Q(oL) A \7’£[cd(9)>p])-> V&[ddlQ)>p]]_

Tfius, we know that: Volf (C"*1Q(o() A VK[Cd(l’<)>n])-7 Vl’<[dd(Ql>/"Tl.

Anal €l\£S knowledge clear; the way Ear 0. 9wCftand conclusion.

Remark l:l\OL‘: Votl: (Vm<n[o<"‘»°_—_Q] A Q(o('‘ll -? VM<n[l5Iat)""°:Q]

we define Zeww such that: Fum(Z,) and, [br all ye“'w=

(Z_,lJl" =—.{ and , fbr all mew Such that main: (.7,lJ/lm.-.-Q

TFIBH, For all Jeww-.

em :2 C"“‘Q(Zlgl A VHc;.,(l&)>/nl
-‘P Vm<n Vlll: (5l(zl5))""° (la) 2 O]4&­

Wlerefore; Q5 A1, and Hus CS not true, O.$= Elnl:/\1.J;Pn:l and:
W[&<Q]
Tired. as We may be, me write down, out of love of Erukk:

Vn>o[-. (C"*‘Q .gc"m] and: Vnyof c"a4 C"**Q],
M
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12.4, we Q .POlOg(_z_e We by‘’ 03 th -~ .F0!“ 6 dxéfimctcve ascenséon of’ the Set Q4
WhOSe Q

307g (1

l2‘6‘o:

EEL

‘fiance. we d ­
“Md time. ma 8 M 122' ‘Md “'5 Going to sin? our maracc,

P Ge - ~ .o: 1, Q d;_gJu_n t ‘

Sud‘ that: Vm3n[pm< P"c]L.v6‘fclosed Qequence of Subsets of 0%

Let Q* .- fa.... |3V\l:H=I“_P[do(P) #0] P Sn

‘c/o4EloL[o(ea,\ ~..Q4e(an. " M0‘ )3} and O.s§u,me:

EDna**‘< Dn.HQ*]

urn

Wen;

It is eo.gy to See Sat .7‘
That . ' ‘'9. (003 and therefo ,t_kqt V"9 "05 where éke shoe Pinclnes. I re n>O[DnQ*5D"*'6?"]

lfupposeg new’ ">0 C¢nd- D"*1Q* 4 D Q}Sin Ac . ' ~ "3 11: d-9J3€f'M(,ne éeww suck that: Fangs)and, "’°‘“>""'Q*(°4 :2 D"Q*(aIa\1

We deF”‘e; PD?‘€Q.C‘J\ qeouw and Q Lt6‘-U:Cp nU.h\bQ]g d

:Lq(Q\:§ {"‘|m<n1-L‘ ‘T’-“T5R=-C:3Q}°‘”"‘= {mIm<n|<EI2T'W.—.§a}
We clacm um V= vP<n o<[ VHC.¢(2.l>p] ~> vE[ad(g),P]]_

We Prove U16;by induction and start wu‘ u,

Suppose, Uxerefgre: qew L e case: p: O.

Cmcujate For and‘ M w and; V?<[cd(9.)>o‘Iand 39.[d (Q)~o]I <n: E i: Q o( '* .m /* f(8m'“-° 4:

(;:‘[C;:‘(:t§\qewsuckthat-. (= “C7" V"\<nI (SI)"':° V‘ _...._X (9+fl=@|~°
Remember that He M aq ' (em* 1}]’ Wine“ P P - . . .

and calcflate Ne w m:.C€u.a:'. ‘S d‘SJMct“’€‘9dosed

We may Qsmme Without logs of. 7‘? and D(P0,.--,Q._ ) -<p~

we define w’ qenera|cty,u,a£ 77' __necugwg%ww “’N=QN
m (____‘ - ‘ Fcu\(q),and {By an IewwzNH - “<1

(I!) M: Q I/‘ [(q]d')0o(H=O] and (Hqsu _
0“) For an 1.5”’. 0<j<n+1. .-‘Y

The”;fl)"0."K5“cu; ‘Q

PM!) <1’

3 Pfo ((8'(']|x3)°'ge°)v..

DPH-1Q*(r]lJ) A (mg = ac?

v ¢n_l ( (8I(y‘my|~1,S€u_,)
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Wrerehrez PM5 We ....-,«BzH), and this conmcts mu.
the choice o(-‘ N.

We may trust, now, that Val: V£tCd(9«.)>O] -9 W11:dd(9.)>O]],

-gunppose, now, that pew, p<n-1 and: Vot[VQ[c,,((E)>p]-2 V2.1.-dd(9.))p-_]]_

We wish to prove that-. Vat V1’<[cd(9.)>p+1]—->\7’&[dd(9.)>p+fl],

Assume, therefore: 0(6‘*’w and V&[Co((H7P1-1]and 3!:[dd(l)=p+1-I.

Calculate hoew such that dd(ho)=p1-1..

Mkassume, and do not d thereby,the generality of the
argument, that-. Vm<n[ (6ld.\”"°¢o=§h,, (2 m<p+1].

Calculate, fbr each mew such that p+1£m<n-. €""==/IAJc[C5Io\\m'O(Q|,éo],

Calculale qe on such tha1:= VJ[J7q= 8cf.—>Vm<n[(8l’;)"°?io=C_5—l—otifif?<D]]_

Remember, that the sequence %,P1,.-.C$ diejunctively closed

and. calculate New such that-.

N>q and D(P{P+1,Iipn,..., PL-1) 4 PN.'1

Aqua, we do not expect to he accused of dirty tricks,

when assu.m£ng= Vm$[9+1[o—kW5N -.~fQN'_l.

We define Ze“’w such that: Fang) and, fbr all [6-:""w

W @W9=39
on N-=,uu (z:,)°I°m¢o1 and. (zm°:‘“ =3;

am For all Jew such that: 0<J'£p-1-1: [7,lJ)j’O :9

av) For all Jew Such that-. P1-.L<J'<n+1-. -uQ*((;1d«]1')_

Remark than vgvktcwtar >p] and, therehorervar/H a;.d(a)>p1.

Therefore, {hr each {e ‘“w-.

PN(5\ :2 D'”1O,*(g|J) A (—zTJ3q=5zo|

:3 Dn Q4? (g”Z)|[)) A Vm<P+1[ (8l(Z[mvn,o=__Q]

é-__-> FEP+1 ( (5 K4 x))Pw-1, s'£P+L) vm VBN1-((5l(Zl 3/))n-1,‘Sin-1)

For this reason: PN -< D( PeP+1,__, {Dew} and, mg gonfliotg
with the choice of N.

We are R99-cad. to conclude-. \/o([VQ[C,,((Q)>p+1]-) V2[dd(Q)>p+1]]_

Tie establfches our claim V94"var Vfifcd(2)>,>1-> V2[dd(h)7p]].
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Thus, we tnow that: Vat V2~l:CoLllil>/hl-3 Vhtddlhlznll,

Faster than ever, we are to receive the palm of honour.

We observe that; Vat Vm<n[ok'"'°=Q_l -> Vm<n[ t5lol)m'O=

Therefore= Vo\[ \7’yn<n[0i"‘;°=“.C_2] -9 -wD"Q* (Skill Ol'1Ol=

Voll: Vm-<nl:o(""0= Q] -9 '1 D"+1Q*(oQ:l.

lhis is Contradictory, becgilgel 0.9 3okl:Po(oLll/also-. El0ll:Q*(o<l:l,

and we may define o("‘e“’w such that: Vm<n[(x*)"‘z° =9]

and: O.‘((o<")"l, therefore D"+1Q" (o<*).

A new grain of wisdom may be added to our treasury.­
vmof -<l>"*‘a* 4 v"c2*)l and: l/n>O[ 1>"a*<I>"*‘e*]

E

The method underlying the proofs of theorems l2.’-l.O,l2.5.o and l2.6.0 ('5
<1 general one, admitting of appll'ca.tion under not too restrictive and
Varying Circumstances.
The proof of the last theorem, which Stated that= Vn>o[D"6?,*<D'”"'Q*].
shows more likeness to the proof of the conjunctive ascension of Q
(l'.e.: Vn>o[C"Q -<C"“Q],theorem l2.’5.0l than to the Proof of the
disjunctive ascension of Q (-'.e.=vn>oED"o <1>"+1o1 theorem: l2.u.ol
Some understancun of why this €houJd be so, is gained, Wl\€n,ohe
realizes, that the (tax or == {all antn.-./up[ol°lP)+o] A Pn(oz5")]
[SI ClO.S§lCQlly,parented to the set-. {oil -1 Vhfnz/uP[do(PHO]_., .,pn(dSn)]}
I‘-e. the Corn lemeht of the set which results from letter. loose
the operation which generated. 62, on the Sequence: Nec3(P.),Nec3iP,),..-­

ll-7 L915us rest Ourselves 0. little, and philosophize.

Let us call 0. Subset P of “co, gisjunctively productive, l/n>O[D"P<D""1P]

We know, From theorems ‘+6 and 14.29. respectively, that there are d[_gj(_u|c(j[vely
productive Subsets of “in, For instance A, and S2_.

Ami. now, theorem l7..l+.O,(0r, for that Matt?!) theorem l2.3.0) enables us to
Find. many more of them.

i"°:’§§':‘l KW:2‘: totheWe1 , We h 1,a ) ereo. , appytnq e same Operation

g(:olZCh\:S§e1:_/cicllencefiR‘é(D7-£214.“ , we R2, (Ind, continuing in this way,4- C y '. ‘< 4 a(,-,

But this Sequemcgle Ltlselfz is also an increasin (in the sense of-‘ the reducibility
retatcon -$5 and. d/Lsjuncxivelyclosed, Sequence. (We also may refer to the
fact that all its memloers are strictly anolyet-¢a1)_
Therefore, another appllcation of the generating operation gives birth to
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a dlsjunctively productive set R“, such that Vnl:l3,‘—<l2,,,:l.
C°"tt"“‘t"“}» we Fmd 0*‘ Wcowcable "‘“1t‘]7“d€ OF disjwctively productive sets.

The hyperarithmetical hierarchy theorem (theorem 9.7) showed as a very
dl,PFexent way to the truth that, with respect to the I-e,d4,LcLbLl(l:yrelation .5

W‘C0‘U‘l'0blVmany levels of complexity have to be d:.'stin<3u.L'Sh€d­

Here, we are Facing O. phenomenon of‘ a more local nalwe,
lhis is even more apparent ftom the conjunctive story,

Let us call 0. subset P of Wm c_onJ’unctivel9 prodwctivg,if V/n>0EC"P-<C"“P].

We already met with some conjunctively productive subsets of “’w, for example
D"A1 (cf. theorem 9.15) and 92 (cf. theorem 11.26).

We also know, fl-om theorem ‘-l.l‘l, that the Sequence A,,D‘A1_,.-. is Conjunctively

closed. According to theorem 12.5.0, then, Rah; :{o(l Vnlfnz/.Lp[ol°(p\;tO3-)D"A1(ol§")}
Cs 0. corljunctively produdive subset of Wu».

The Se u.QAr\Ce W0, CZTATO,C3V\f0,... CS, obviously, increasing} and conjundzively
closed, and theorem l2..5.o crowns it with a Conjuhctivelg productive Set
As in the disjunctive Case, 0. whole sequence W04 W14 W14... is,
Successively, called up, and. after it, applying the generating operation to this
Sequence, we find 0. conjunctively productive Set Wu, such that VnEw;‘/.Ww]
This process will never end.

Reflecting, now, that each one of the Sets Wo,Vl[,,...andM, and the whole
Of their yet unborn offspring (under the same generating operation) do belong
to ll‘; 1 we lose ourselves in wonder - Hg seem; to be rather complex.

The foregoing statement rests on two Observa-tl'.ons=
(1)IT‘; is closed under the operation of countable intersection

(cf. theorem 6.3).
(II) For all Su.bseJ'.s A,D of: ‘‘’w :

If‘ Aeflg and. D is a decidable subset ofww, then Aube Hg

(The Same is true we replace "Hg" 89 "Hz" or "2'.‘;")

We also remark that the sets l/\7o,V\74»---.W.,.,,and their ftllowmca,and
the $2134 Ro,R1,.-- Ru, and. their following, are, all of them, "€dU-Ctible to
S ={oL lfldrfaecz A Vn[ol(&'n\=o‘J] CInd,thuLs belong to the» Cla-$9 ; whet‘ We
d.(.SCu.S§eotLn 14,27, Tug is, cause 8, as we have seen, Ls closed under
the operations of finite union and countable intersection.
TKCS L's some new evidence for the Complexity oF 6.

Still in our sive mood, we turn to theorem l2.b.o. This theorem gives accasion
to similar conscderariong. We remark that, if we start again with the
Sequence A,,D‘A,,.--, tepealieol. application of the operahbn advertczed by
this theorem, keeps us within the bounds of 22. ‘Die Complexity of 23:.
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like that of? I13’, is almost beyond. imagination.

We mention only some of the many questions that remain to be asked.

Are all uuulvezrsal representatives from the hyperaréthmelrical hierarchy; '32-‘
the sets AW, as they have been Chtroduceot in 814, d.£SjunctiV€-lkj PFO0W~C‘35V€7­

We lcnow,From the hyperarithmetical hierarchy theorem (theorem 9.7),that
these sets Cue uexisteoxtially produ.ctive'):'.e.; Vce HI$ [AU-< Ea: (A0-\] (Cf.1014)

Wehave proved, in theorem 4.6, that A, is disjunctively productive, and
are prepared, on payment, to do the same lbr A, and A3.

We ConJ'ecture,thoJ: all sets A6 are disjunctively productive, but missa_.general argument.

I; there any subset A of’ ‘*’w which CS both ,, disjunctively saturated."
and ,,exL's«tehtio.llyproductive" I'.e.: D"A.-$A .cLnOt- A-<E7clAl7.

(Remark that E4 (Lsan ejxqmpb oF (1 Set whL'd«CS ,,Conju.ncl:ively saturated"
and. “u.V\CV2.rQO.llyprodu.cl=CV€"= C25, 5. E1 -4 A2)

I? so, we would be surprcsed, but we do not know.
A candidate C9 S’==[o<l3J[[eo-2 A \7’n[o<(gn)—.—oil}.

This l0J\°l‘5us into the qmckcands of 41.27. We have seen, there, that
S is dicjunctcvely saturated, and l\C1N€stressed, that we do not know how
to prove that 9 is Q.\<CSlI60\l’.CO.ll\}productive, although we would like to do so.

128 Implioalzion, like ccn impatient little brother, has been watching the performance;
OF dis junction and Conjunction,eager to Show its own abilities.

Negation plays an important part in the implrcational Show-.
Recall, how we defined) in 5.2, to each subset: P of Wu), (1 subset Ne?lP)
of Wm, by: Me? (O) : = l: oil —:P(oL)}_A Subcel: P of Wu, is called stable, if Mec3(Neq(Pll=-P.

IZB-° l.—.€_'I'_'!‘£'-Let ti, Ce 0. Sequence of stable subsets OF‘*’¢., Such that:

Vrn3n[ Pm: Pm] and \7’m5lntNe<3(Pm\L Pnl.

L91: Q ==- {oi [ Vn[n=p.p[a°(p)=fiO] —> Pn(oLS"),

Then: ‘1lNe<3(Ql:<.Ql.

l_)§<fl>_f=Suppose: Ne<i(Ql4Q, and, uscncj AC1,,detJermine 8e.‘*’w such that-.

Funlfil and Voif "Qlo4\ 2- Q (<S|otll.

Remark: mg), tkerelbre-. —wc2(5lo,)and -v-nElp[L8|Q\°lpl=l=O]_

Assume, lbr the sake of argument :‘lp[ (8lQ‘)°tpH=Oland

determine no ==./u-pl.‘(8[Q]°tPH=O].

Calculate qew such that: vat age Qq _,(5’|Z)7’(nO+4;=(5lQl°lno+1)l.

Calculate New such that: N>q and: Neca(P,‘°)»<P~.
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Finally, determine Zeww such UI01?°-FW\(Z,l and, For all Jeww:

0) gm q = Qq

on N-.-/uP[(;lX)0(p],eo1 and (;l[)“’:,.

Tnen, For all (6 “’w;

‘vpnlxl -Q(Zl(l A (Zl(7q=§q

Q tsllzgn A no =,up[ l5l(2,l,,)l°(p)#01

fi
«:3

23 8,0 ( <sI(za,»‘"o).

Tnerefore: Ne? LPN‘)-_gPno and, as PM and P“ are stable subsets.0

ol we», also; PN 5 Neca(Pno\ and this Conflicts "with Uxe clxoice o§ N_

l7\£s contradictcovl Shows that: "3p[(5lQ\°(p)4=O]_

And thus, the assumption: Me? (0,) ;<.Q

l:o absurdity.

[X

as Seen lo lead as

This lemma C5 at worthy sequel to lemma lilo which Slzzteol that: "(A1'.<N€cJ(A,.ll

17> be sure, we never and encounter a Subset: A of “’w suck Hut, A-$Na3(A)
and if anybody sees Ohe, lxe slxould warn us. '

Let R lle a subset of W , We define 0. sequence IoR,I,,R,,,. of subsotsofwwby,

(0 For all 0(6“"w -. I°Rl°<l == R(oa°)

(11)For all pew, For all o(eww= ISPR(o() -..= IPR(oL) a A1(og3P]

Remark: Neg U2) :5. LR
uscng Une l’£clm'\£qu.e of lemma. 12.8.0, we prove <1 R;:l:l\er result;

12.8.1Lemmar Let B,,R,... la a Sequence of‘ stable Subsets OF “’w suck that:

Vnn 3n [Pm.< P,‘ ]_

Let Q== goq \7'n[n=},LP[ot°(P]=fO-.l -9 P,,(ov>‘~)1}.

lies» —«(I,Q 5 Neq(Qll.

l_3C_o_9f-.Cupposm LQ §Neq(Q) and, using AC“, determine 8e“’w suck that-.
Fwn(5l and \/a[ (Q(ot°)-+ ot‘=-.-Q) :2 "62(5lotfl

We claim l’.l\(11Z= Vp[ (8lQ)°(p)==O].

Suppose-. Elp [ (8|p_):°(p)7lO] and calculate no-.=}Ap[ (25l9.l°(pl%0l.

Colculafg qgw suck U101:-.Val: 5lq=:2q -)l5loll°(no+1\=.(5lQ)°('\o1-1)].
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CoJcu..|aIe New suck U01: N>q O4'\d= Pn°'< PN­

Fchally, determine Z,.e“’w such thank: Fu—n(Z,)and, For 0-“ [e “’w:

(I)(-7:E3q = Qq
DO . 0:5”

(N) N=H>[(Z,l6) 2 (P\,eo] and (LIX) =X

cm) (2,|K\1(~) +0.

Wren, fipr all {e“’w=

..p~(p 2 (F;((z,:,)°»“’) .9 A.((ZJy)‘)\r~ —»A.((zn,\*))

é (Q((zm°) -9 A,((Zlx)’)) A WAJQIM)

E-'3 I4Q(Zl3) A (27% = Qq

:3 ~62 (6l(7;I(\) A ,,=,upH&I(2,Iy1)°lP\+o1

:3 '* 12,0((6 |(zIp)‘"°).

-‘TICV‘2fDr‘€ '. Ne? (PN

stable subsets of
like choice of N.

.5 Ne? (Pno) and, since P" and P0 aren

w: PN$Pn and this corxflccts withO

Sh—/

Wtcscontradxbtion shows that Vp [(5|Q)°(p|-.-O].

As (5]g\° .-. Q , we have: Q(6|Q_\,

We are in an impossible s£Eu.c11:£or\,because, just as well: I,Q (Q).

L21: us be wise and. give up the assumption: LQ 5 Net} (Q3­

Let R 3-: a. subset of Wm. We Say Uxodz R is -aLem9.<°2_9—_ ¢F=

Vn azt Puma) A voL£Cz..Ioan =€‘.>v~3A Vat N00 :3 R(Z‘°‘”­

Tits means, more or less, that (Br each new, Rnén. is as complicalzed
as R itself. (We might say! R-_<Rnfin).

IF you_ come to think upon it, Very many sets are wavering l5hQ­

We take U2 I08/C preparations before launching t'.mp||'ca1:i.on,a.nc1 CV9 £0 fi"‘0W
a [me of argumejtt which has been successful

E:29F=

in the past (cf. lemma 5.5).

La: 2 (re (1 subset of‘ “’w, which is wavering in Q )ay\d suck l:haJ:.-R(Q)

Way... vpvqt ISPR-glsqg —> —.-.(Nec3(1Pm«_<_Neca(IqRM

Suppose: p,qew and I§PR é I.gqR-­

lksinca AC“, determine Se ‘*’w Sud» Ekal’.=Fun(5\ and

Vatlgpmax 53 L5qR(8|°t)].
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Consider a. speccal sequence 0% an ww which Fu.lFv.'I§the Condifiohs:

V3SPEé><x)3=Q1 and (°‘x-)SP(O) = 1­

Remark-. « 1$PR(o<*_\, therefore- -«IgqR(8\o«*) and: (sla*)""‘ #9.
Assume now, For the Sake oF argument-. 3n[(<SIo(*\gq (n) #0],

and determine noew such that-. (5Io(*)Sq (no) 1&0.

Also determine flew such Uncut h?/ok[5(Q=5-E-‘Q-‘,9(5|oL\Sq(flo5=(5‘°hs\gq(nO\]

Remember, that R (5 waverinc} cm Q , and determine Ze‘*’ou

such um: Fmz) and-. VOLELZTQTQJam and: vat moo; r2<z,|oa]

Fcnally) determine qeww such that: Fu«n(v1),ahd For all are‘*’w-.

to Gfiw = SZJ and: (r]lpS"(o1= 1

00 €'1Izr>°= Z'zr°

an) \7’3'[O<J'_<_p ——>(W)? = §.€*yH.

Them, for all [e ‘*’w:

-uIPR (5) I.5PR(qm A GE)? = <28

Isq R (8l(q|g\) A (8|tq|m“* (no)+0

-wlq R ( 6|(r\I¢\).

Therefore: Neg}(IPR] N€q(Iq R).

M have proved, now, that: 3n[ (8|oL*\Sq(nH-O] “> (NQQUPR)-.4Neg(IqR\)]_

And. we know that: “"1 an [(8lo(*)9q(nHO],

'|7\erefore= -'—'(Ne<3(I,,R)é Negtlq RH.
54

UKN.H,H

Lemma 5.5 is a speccal case of-‘lemma 12.8.2: Consfder R:-A1

Implication now {3u|(3.-lg{ts Pr0WlCSeg and) reall )1, goes Far:

|2.8.3 Theorem: Let P°,P1,.,, 0. Sequence, of s.¢g.b|e subsets of ‘”uu such that:

Vim3n[Pm.<Pn7

Let Q-= {o(| V/n[n=/up[oL°-(p\+O] —=>|>n(o(9"H}

"-Bell: Vnl: InQ ‘( I.n+2Q]­

_P_ro__QF=L66 us First remark that Q, and likewise aJ| skis I,Q,IzQ,...

are Stable subsets of won, as they are built from the 821:; A“

B,,P1,,,., by Means of operations (countable U\02nect£on,0v\p|icaIcow)
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which preserve stability.

It is easily seen that, 99!’ each subset K of “’uu= Neqlk/eg(R\l‘$ I1Q.

And= Vn I I,,Q =.-Neg}(Neg (1,.62))], therefore; Vn[I,,Q s IMQO1.

Suppose, now: IZQ 5. Q, The/n: NeglI1Q) 5 IZQ-5Q, and,

as we have to do with stable subsets o$ “'w = I,.Q é Neqlal
This, however, has been refuted in lemma 12.8.1,

lllefelore: '1(I,_Q .40.}

Remark that: Q is WQVQ,TCrl%vn Q Olnd= GHQ)

Let new and deFine Zeww such that: Fum(2,l,cund,

For all 66 Na):

(I) (am n = c_‘>_n

L") lZl{l° = 511 *{°

Cm) For all Jew-. lzlgln-W7‘ —-J/€53.

"lien: l/if Qtgl 2 G(;larl:l.

Therefore: lemma l2.8.2 applies and, observing first that, again

because of stability, Vpl/ql: llVec}lIpQl-5 N€<3(IqQ))g(_T_PQ5 I_qQ)]’
We €§lZ(J.blls‘h,successively ‘(I3 Q i I1Ql , "lI.,,Q 5 IIQ) ,.-.

i.e.= Vnf-u(I,H1Q.<.I,\Q\-.l and; Viral:Int) 4Im_2Q],
8

Thus. we get an increasing sequence Q 4 I26? -4IHQ<.--­
We better leave out: 1,, Q, I3Q,.-.

It is an easy consequence of theorem 12.8.3 that: -w(I,Q-5 Q)
(For-. i if I, Q4. Q, then IZQ-s Q).
On Somewhat stricter conditions, the same conclusion Followsl-‘mmlemma !2.8.o.

It is doulol.ful, on. the other hand, whether Qg I,‘Q.
We observed earlier, just befbre theorem 5.2!, that I1E.,$A1,U\€.refore: —:(E1$I1E,)
We admit that this is not a very convincing example, as E, is not a
Slnble subset Of “’uu, lherelore: Vhl:"' (E16 1'.,,E.,l].

But We need not trouble ourselves with these questions, if We concentrate
upon the ascen sion of implical,-con.

It is clear, already, that, lllte its disjunctive and corylmotive P"€d€°€$90'$
12.4.0 and 12.5.0, theoreml2.8.3 is capable of repeated application.
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First, congfdej the sequence I1(==-.A‘), Iz(== I1A1), I3 (.= I2A1),... which we introduced
in 5.0 and, using 12.8.3, build a set (10.
R€J71O.rk:Vn>O[I,‘-<I,H_1<u]_

‘lien, consider the sequence: 1:,,u,,, Izuo, I.,uo,... and,us4’nc3 12.8.3 again
build. a :21: (1,. Remark: Vn[I2n(Ao 412"” ac .<u1j_

Similarly, From [1, build (12 , From U2 build (13 ,...

Trien,conscder the sequence: u°,u,,u1,... and, using. 12.8.3 aqaémbuild o.$eJ;aw

And So O91.

I29 Also the Szcohd. eonsérucuom of’ chapter 5, wludx led to theorem 5.10, may be
q€.l\€rO.I(2€d.

Let 53 Ce 0. Subset OF ‘*5 . We dQf£ne a Sequence LR,J;R,... of subsets of‘ ‘*’w by:

(I) For all as “’w= J°9(oL} := R(ot°)

(II) For 0.“ pew, Fbr all aewwz .T§pR(oL):== .TPR(o() -) E1(o(SP)_

Remark Hut, cf R:=[otIo<(O)=o}, tke sequence J.,,I,,.-. which cwtqkt our
attention in 5.7, reappears,

This tcme, we do without long preparations and we fake the truth by Surprise:

|2,9.o Let B,,P1,...66 a sequence of subsets of Wu,suckthat-.

V€Vp \7’qVn 3N E N>Q A "(JPPN A J'qPn)',l,

L21? Q* ==-{oil 3H[ n=/.LPfot°(p) ¢O1 A P,,(o\5"]3}.

Wen-. VPVqf (p+q is add) -7 ‘I(IP Q’ 5 Tq Q"’)]_

P!_92F'- 3U«ppose= pew,qew, p1-q is odd and: .TPQ* 5IqQ"5

Uscng AC“, ddfermcne sew... Suchéhatz E4/4(5)and-. \7'oL[]'Pa*(.,q;._->IqQ*(sm].

We call a. sequence age Wu, rLgqc_1__t£\_/53; o(°»°=Q a.nol-.V3'>o[otd.=_L].

obsexvefixot (hr all negaxcvcst o(e‘*’w-. -Q."(o«°) and: V350 E-£,(o<1°)].

Waerefore, F9? 0-ll heqalivést o(e“’w, For all new:

if n is add, User: 1,,Q*(o<\, and» n is even, them -J,.Q*(o<).

We see how that, as p+q ceodd: b’a[a£sneqatCvnL<1:—78|0\¢3SiOtneqahEv€$€]

More preccsely -. Vex[ o( Cs neq'a.tL‘vL'sl: ~; -113p.[_'(5[oL)°'°(nH:o v 3j[o<aéq;\(cSlaL)’(n}--0]] .

All the same, we announce, bo|dly,tho.l:-.Vot[oLL'$neqatcvist .; (5|oq°°= _o_’]_

Suppose: as ‘*’w, o( 1;;neqativcstl and-. Eln[(6|oL)‘%°(n)7&0].

Calculate no:-_—}m [(5loL)°»°M40].

Calculate {em such Um. Vet [‘s€=a{’.—7(5lp)9°(n°+;)= (5]o()°;°(nO+1)],
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Dzbzrmcne New such that: N>9 and -'(.TPPN‘-4Iqpno)

Finally,dehermine Zéww such that: Funté) and, For all XeWm:

(13(_Z_m€= a?

(II)N.-=/uni‘(Zlfl°’°(n) +0] and (Z|J)°I$~ '=[°

(III)for all jaw, O<j£p-. (Zlxfl = -18¢“

Observe that, For all JG ‘*’uo:

J;,PN(x) .;_-> IPQ*(Z.I3r) /~(zIx)€ -.-ac? M

,._-_—>:rqQ*(s:cz,:zp) A n,=;m[(aI(z,u,,))' (n\,eo]_

1-fiereforez JP P“ -_<_Jq PHD and, this conflrcts with tltechoiceofbl.
Thcs Contradxctcon shows that: Vnl.'(:Slod°’°(n)-0].

Going Ohe step Further, we assert-. Veda is neqatwssta ‘v:1'[O<J'sq-> vhf(6loc)5(nlf0]]],

Suppose-. Joew, O<3"O§.q and-. noew, (cS[dl3'°(ho)=-.0.

Calculate Qeuu such that-. v;s[p..€=ae., (snr..)a'o(..°)=(.sn¢)J°(non.

COJCU-toukN51» SUCkM: N>€ Qfldz "1 5 J-Sq

Remark that-. Jq_1 é Isq Po.

(Define qc “’w such that: Fun(_v])and, for all J’€“’w=

(f1lK)1::_0_A Vjsq-4. II (ql5)SS2I = (21

Then-. V51:I .,_(g) 2.’ Jsq P°(ql(r)]3.

Ag in the Previous paragraph, define, From 0!, (7,N,

(L sequence Zeww Suck that -. Fwn(2,) and.

Observe that For all Xe Wm: .

iT,.PN(g\ z.-> JqQ*(5!(Zl(\) A (<SI£zI;))*°(no)=0~

T9-\6refO?'e= JPRV '5. .Tq_a° '5. J-q_

and this Cor\{3li'cts with the choice o§ M.
1 ‘S Igq PO, theorem 5.8),

WW9contradiction shows that Vj[O<J'sq —a\/n[(5l°‘)d.t'\\7tO]].

The quarrelchg conclusions that we reached. we'llonly cease to

annoy ac, Ct we accept-. Vpt/q[(p+q is add} 9 "tIPGl*£T.;lQ‘)]
We do so.

Kl

Tu‘: theorem enables us, once more, to scrape the Cky:
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using theorem 6.10, we start with the sequence; Jo,J'1,JZ,.,, and, applying
|’2.g.O, Fund V0,

Tie», considermcg the cequence: Iolg
aqougn, and we F.'r\d V,.

In like Same woy, From V, we Fcnd V1, From V; we Find V3 and so on.D

We then consider the sequence: V M, X/;,... and we observe0)

Kg we See that l2.q.o applies1,J'4‘€» 3;

For all p,q,neuo-.

ENE-«(J9-JNV;, :4..TPVn)] and: VNEJNT/;‘ 5Vm1]

therefore: -(Jq I/"Hi 5 Ipvn)
Fllierel-‘ore: l2.q.O Oppliev; aqafln, and we welcome the new set Vw.

We may continue Cm this way f-Br quite (1 long time,

A strange property of this construction is that we do nol: gee , how
to prove, or to refute -. 3n>o[ V04 J" V")].

In 12.8, we established an Chcreaschg line (n ((0, IzL(mI,_‘uO’___"by means
0}‘ S‘:a.bu'lL'Ey",

Here, the sets V0, Jv;,, Izvo are like an omorder-able crowd, which we
only use to go up from V0 lo

Remark, before leaving this ckapfer, that we did our Lmpll'oo.tt'oV\ol
Clambercnq Wébhouzltraiscnq lzke complexity of the S(Lccedeng_/T‘ ‘ \ fix

C—¥;>2A {T
<«VL.\}2/ E

:9

We wanderénq we made is never to b6 F0" ' Kqottew
l-_h(,gwood of ladders, each of them reaclwiq lowards
heou/en, and we, looking {-‘or our Way between Uletl‘ ‘€93.
Where did. they all Come From?
13 Saint Peter asking us to clean his window?
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BROl1WElZ'$ THESIS‘, AND SOME OF ITS CONSEQUEIUCES

Having made, in the chapters 11 and 12, an excursion into typically
lntuitionistic henomena, we now come to some more classical uestions,
which it is natural to ask in connection with chapter 40, but which We
did, not ye}; mention.
One of the Famous, beautiful theorems that Qouslin proved [br classical
descriptive set theory, during its infanc , says that the class of all sets
whichare both analytical and co- anal/ytical, coincides with the class OF
all hyperarithmetical Sets. .
One half OF this theorem has gone lost in l0.I3 already, where it was shown
that it is rather exceptional, For a hy arithmetical Set, to be C0"0~"°lVl7“3°l­
We now turn to the other half’, and. prove, in this chapter, that every set,
which is both s_tfggt_lyanalytical and co-analytical, is hyperarithmetical,
indeed.
Qouslin was not completely wrong, therefore} (Ind. We Should perhaps be kind.
to him and not make too much of the difference between analytical and.
strictly analytical sets. (cf, 40,7-8).
In defending Souslin, We appeal to the bar theorem, a fimdamental tenet
of intuitionisiic analysis, and, probably, the most uestionalole one.
We put this theorem into a formulation , which slightly ol£FFers F-om the
usual ones, and reFer to it as ,,Brou.wer’$ thesis.‘
Brouwers thesis deserves our sympathy, For creating, in the midst 0F the
waste land into which the classical paradise has withered, under the blaze

his harsh criticisms, some things of’ beauty.
We will see that it also secures 0. Separation theorem fi>‘” Strictly
analytical sets, and a corollary thereof, saying that the range
OF 0. (strongly) tnjective function on ‘”w, is hyperarithmetl.Cal­
W8 “O98 to?‘ the t"wth OF Brou.wer's thesis, really, and we First try to
get clear in what way Brouwer Conquered his own doubts.

he recall, From 8.0, that the set $5 of well-ordered. stumps in “*0 505
been defined by l:ransFim'l7e induction, as Follows:

co <15 6 15

(ll) If‘ Ao,A,,A2,.,. is a sequence of elements OF 19, then A llelongs

to where A:-.-.{ea} U nte}w<n>*A,,

uh, If any subset A of w does belong to $, it0l0€SS0 b@C<11l$€of (I)and(u)_

We have observed, in 8.4, that every 66$ is o. decidable Subset of no, anal.

that lbr all Ue5l>= Vml7'nl:(mecr A meh)——>neol and: VoiEln[5<H éofl.

We now introduce-.
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Bron.»/er’s Thesis, General Version-.

Le/c Rew and-. vx 3n[R(gn)1

Then: 3o‘e$ ‘v’o.[ 0. etc‘ -> 39% 0.9% A Rlerll],

(In WOrd§, M/hdch go back to Brou.wer’s d,l.Scu,ssl'.on:

the Fcnite sequences which do not belong to 45, have to Ge past~ secured
with respect to 53) (CF. Note 5 on page 216).

To justify his thescs, Brouwer used a melzamathematécal argument, saycng
l'hoJ;, if we have some way of proving: VJ':ln[R(fnl]' we also have a.
Standardized. way of proving Lt.

We should start to break down-. VJElnl.'R(j'n)] into;

VJE {(0}--O ~9 3i’l[R(fhl]]I\ V({l.'J(o)=1 _; 3,, [_‘R(P.}]]A \'/K[J'{Ol=2-) 3n[E(&3rIl]]A.-­
and then do the Same with each of (he countaloly many proposctcohs which
we have before us, now; and continue the process, again and ago“-,,_

Sometime; we will strlke on an elementary fl_2_c_e_,l.€. a statement of‘ (‘heform:

Vdrfdrea -> 3nl_"R(fn)Tl which is obviously true, For the reason Uni:
3@[a;;€y A 9(6)] and which, U\ereFore, needs no further breaking down­
Brouwer says that this willhappen quzte oPten.
He claims that, if V 3n [R(fn)], them the truth of =Vf§ln[R(fnl] should admit
of reconstruction, by <1 strazghtfbrward organization of elementary Facts.

me $‘5W«CtUU’9OF this new proof is Csomorphic to the stump 0', which
Brouwefls thesis asserts to exist.

W5 Show Sketch 0F the argument should suffice, as we, in any case, are not
able to speak the last word. upon it.

We will not exploit the Full Strength of.’ Brouwerlg (j.Qg(;_

L913 (AS Cl’ltl’OdlLC€.,For each (Xeww, a, subgej; 'o([* of w by:

l0ll* == [<1] VGE ac;-Q7 e.» ot(l’rl#0]}

We how presehl:-.

Bl"OblW€l”S Thesis, Qpeccal lkrgcom

Let o(e“’uu and-. VJ3n[o((fh)=-O].

Them 3oe$ E 104*gs-],

(lol|* is 0. decidable $ubs‘eJ:of uu, which consists of‘ those sequences
OF natural numbers, that are w1§ec,uu-ed, wctk respect; to o(_)_

ThusI Brouwews lihesés ha; an Lmportanl: ljhcng to say about T741,
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V5.1 Let P Ge 0. one-to-one Functcon from wxw onto no, Le. a pacrinq Funclzéon on w.

Let 3 and. '1, Ce Functions from cu to to whdzh are leR;—- resp_ réghlz-inverse
to P, :'.e.; Vm E P(€(M),'t(m)) = M].

U.s4;n R we introduce a new pacrinca function on Ww, and Forget all earlier
remarks on pacrcnq fl/.nct£ons-.

L91?us define, fbr all O(€“’w,{5eww, a sequence éol,l39 in “cu l>y=

For‘ all new-. .$o(,{59 (n) == P(o<(n\, {5(n\l.

Obviously, 4 9 is a one-to—one flunctcon from “Uwx“’w ontoww, tie. a pacrcng
fu.nct£on on won.
its €ePt—and rcqht- chverses are called 5l,resp. 9 so that Val 6't\l0l, plot ?='-0<:l_

Finally,we introduce a. corresponding from {<a,9:>Ieq(0—)= to W,
as follows:

Le‘:aew, grew and gala]: Qq(Q;)_

Wedel-‘nine.<a,Qr9 in w such that €g(«$a’6)):{q(o,) and’

For all r\< Qqm) -. 4Sa,Qr~>(n) == P(a(nl,Qr(n))

we observe, bhak [hr each aew, there excsl: exactly one xe w and exactly one
egg such that a-_- <2, 9 and. call these numbers L(a), resp, RCO-).
Therefore-. Vat <~l.(a),R(a)§ = 0.].

Remark lzhalc-. ‘v’oLV{5Vnl: <o¢,fs9n = 4301, {M171­

13.2We defined, an 3.1, on binary predccate s on 15 by transfincte induction,
as Follows-.

(1) 45 S ¢

(II) For all 5,I'é $ ‘ 0-57 ‘= V'" anl-..0'm 5'5"]­

We also del-‘cneol,For all decidable subsets A,B 0? w­

A £*B == Sal Vn[(7z3(J(n\)=9901)] A VonVn[men -)x(m\sX(nl1AVnl:heA-)X(n]eg]]

And. we esl:ab|¢'shed., (.n 8.2 that for all Gfté $-. 6st :4’ <r_<.*'c'.

This completes our equipment fbr the next sl:ep= piling the wood. whéch will
be kindled by BrobLwer°’stheses­

13.1.0Lemma (B-oundedness lemma)

L21-, Se “’w Such tha/c; Fumlfi) and: Vo(l:Al,l8lotl:l

Them 5lp.»[A?,(r>l A \/o<[l8locl* 4." |[a.|* ll.
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(T712idea. oF this Proof is quzte SCWIPIC:we know Uxat

‘t/oLV’3n[(5|od(X’n)]=O, and, therefore have to do with 0. bar
Ch “Luxww. will Ge the product of translating Hus bow unto

(1. box in woo. A 801‘, of Course, is nothing but CL member of A4,)

We define a sequence [5 Ln Ww such that, For all aeuw

pm) ==o cf -3C3mHs&)(0-)Am:<.Q<3(°-) A 8"‘°"'"(£T'a)%)= 1 A

A vuea .-, 5§<"7""(zT(a)e)=o1]
==1 otherwfise,

Tixen, For all or-ew: IF f5(<1)=0, (then 3m<C<3(cL)VoLeL(0-H.~(5l0l) E-(;)M‘=O]

We claim Uuat: A‘,({’»).

SLLPPOSE: Kéww

We WTl:]'8:50:: Clnd. 64’: , H‘er€fi)r€'- J’: éxcwxa?

Determine m ew Such that (8lXO)(371m) = O.

netermcne 2 saw suchtkalz 5??"‘(j,;,e)...4 I\Vt<E [57I'~'"(g,,e3,.o1.
mtn:

‘AbU-U\d€f‘$b.|'1d,,how-. 0], Le’:

an
——

max(m,Q) and remark 2 [MXn)= [5(<Xon,f,n$v) :0

In addition, we dacm that: Votf 15lo<l*3* |{3I“],

L91:oteww.

Define a sequence ‘on “’w Suck that, for an cewz

5(0) 4 afiglc), c 9.

We observe, w£U\out diflliculfyl that Vol: @(x(c)\= Q<3(c)] Curd:

Vcva [c 9 a -> 5(a) 9 gain and vctVe.<.cg(c)[<5Ia)<'=t+01->Vts€9I<=>fr*<iF>t)+<fl]

i.e.-. Vcf ce |5|o1|* -9 5(c)e|{5I*].

Therefore; l5Io(I* s* IPIT

We kept our word.

81

u) Vo‘e$ Vo([ lot[* 910' -7 A}(o()1

cu) Va Vpf (A!,({s)A lo<I*3* |(2~l*)-9 A‘,(o<)],
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We Prove only the Second. part, as the First purl: is easy.

Suppose: o(e‘*’w, fgeww, A’;(p)O.nd= lot|* -_<l(%|* and determine

Ze ‘*’w Such that: Vc[39lZ(Cll=l’.q(c)]and: VcVol[cc_:oL-9 Z(c)gZ(d)]

and. Vc [ Vt$l’z3(c:)[o<(c‘:tHo] ——>lc/(:SQ%(o)[ {s('zTc')l:-)3£o]_

Determune qe Wu, such that-. F'um(q\ and: VJVH[ (Wm h = Zgfnl].

Lek few“, and determine, noew such that-. ;3(('rjfi3no3=--O.

-Wen: Zlfnofi =0, and, therefore: El&<no[oz(X'(:)=01

We see now, that: V5 9l7[o£(37t)=o], i.e.: A‘.(oz).
E

(Sou.Sl‘-ya»Brouwer) Note (, on Page 217)

L€l: P 62 O. subset of “’w CSGO-O-ncllykicnland strcctly analytccal

Wen P is hyperaritkmetlbal.

Dztermme 5e Wu; Such that ; Puma) and: vo([p(o(] gA11(5|a)]_

Determine zeww suck that-. mnlz) and P: Ra-.(;), .:e.=

Votf Well 4:’ 35 Ed: Z_.|X'.l].

Remark lzlrat-. \/(fl A‘, (5>l(ZlXll:l, and, applycnq the boundedness lemma

U3-2-0), determfine [5e‘*’w suck that A':({5) and= VX[l6l(ll3r)l*<."' l{3l*]

NOW,Brewer’; thesis (13.0) steps forward and Finds us on 0'6. 1;

suck that [If go­

We claim that: Vo<[ P(o() :2 ]5|oL|* s" O'‘]‘

First, suppose: o(6""w and Plot)

Determine 56 ‘‘’w suck that as Zly and remark;

|8lotl* = l5|(Zlg)|* s*l{3|*s<r
Therefore: ‘l:Slot|* «_<_*o:

C°'W€'S€lv, Suppose: o&e“’w and l5|<>zl* £*o'.

"men, according to lemma 13.2.!-. A: (Slot), O.nd)l:l\erefore,

by C.l\Oice of 8, P(u)_

RC5 establishes our claém.

We observed, at the end of-’ ckapter 3, that Hxe Se}: K°.=={o¢|ldl§’6'}

is hypexarctlxmetécal, and, as P-$KU.) P is hyperonrctkmetécal as well.
E
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It Follows From the boundedness lemma (13.2.0), Ch the proof‘ of whcch

Brootwer-/5 thesis did. not yd: Figure, that Al, itself‘, CS Holt Strccfly analytical:

Suppose: 5e°"w and: Fuhlo) and: VotfA‘1(cSlot)]

using 13.2.0, determine {sewuu such thout: A‘,,(p) and-. Volf lc3l<>ll*S*{$“]

DQFCHQa sequence Sp e Wm such that: 9p(< >)= 1 and b’n[ (S{1,)":[§]
(Cf. the defuatcon of sq, Fpr we $) .,',._gs)

me.“ vaf Islam‘ 3* l(9p.)°l*J and: A; (Sp)
Therefore-. Vokf Slq =/5

F01’,Suppose ote‘*’w and. Z==5|o(= §{%

Iiwem. AHZ) anon 121* s* |Z°l*.

Lee (awn, ee suchlthout-. vet? (Cl: €g(,(cn] and:VcVdlCC_1d.->5(c)sJ(a)]
and: Val: l/t<€?(c)[J(E6);lo] .7 \7q:<Q9(C)[goqfcjtl #01].
Consider the Followclhqsequence:
do.-=<>, d,--= <O> , dz“: <O>«3r(d,) d$n==<O>r{(dn),...

Remrk that: Vnl Q<3(d,.)=h A 613"gal"?­
Determéne the unique qeww Suck -‘:ho.t-. Vn[r'led,,].

Also observe, using Cnductéoh, that VhVtgh [ Z(d—;‘tl¥O]­
Th€l'€F0r€-' *3n[ Z(l7i"l‘O] and this contradicts-. A‘,(Zl

Therefire: Slot+ 9p.

Slfqhtly adapting this proof, we may use it to find , eff-‘ectively,
mew, such that: (3ldl(Ml ?‘ 9[‘=("‘l­

Let I] ee defined as above, and. determine pew such that
3[5(fip)=O. Then El(:<pl.'(8lon)(fik) ,4 $‘[s(fil;)]_

In any case: Mlgfal and: Val: r5lo<4S‘{?J.

We have seen, how:

\7’5[(Funl5l A VoL[A",(8loz)]) —>39 [ Afiqs) A Vat 510: + M]

-herefibre: A1 is not Sltricfly analytical.

To appease our gurprcse, our Uuouqhts go back to the short discussion Followém}
upon theorem 10.42,where we saw that Fun is not Strictly ahalyttcal

The l:wo arguments are worth of comparcson, leading to similar Conclusions
along, at leasl: at first séqlxt, rather different way;

l3/5 Lel: o'€
A well-ordered stump, like tr, may be used. as a skeleton For mathematical
proofs.

We may verify, by l')"O.l'\SFl'nibeinduction, Hue Following
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Principle of gtump induction.

L21: 0'6 $

Let Qgw and suppose-.

(I)Va[a¢w -9 (Na)?

LII) \7‘c1[ \7’n[Q(a.*<n>)] -> 3(0)}

Ken: Va[Q(o.)] and, especcally, &(< >)_

Combining this prcncqple wcth Brou.wer’s thesis (13.0), we are led to a

Principle of bar induction.

Let (1.6“’w %e such that: VK3n[[L(Xn)=o]_

Lek Qsw and suppose:

(I) VOT -]@[ac.: Q: A [3(€r)=o7 -> Q(a)]
on ‘v’oL[ l7'n[Q(o.ae<n>-)1 —aGtofl.

Wen: \/a£Q(oo] and, especially, cm >1

law As Ce:we|l~known, intuitionists like to consider, bestdes the negatively defcned.
Lnequalit relation, 0. Constructcve gpartness relontdon on Wm, whéch Cs
denoted by #= and defined by:

F0!’ 0-" o<e""w, Peww:

o( #[5 == :‘1n[o((n)a€{l~(n)].

We are not going (‘,0recike the litany OF qood. propertdzs of # and

My mentcon that: vdvpvfl ol#{3 —>(oak; v (r#{«>)].

Let P and Q Qre subsets .oF ‘*’w.

We. say that P is 9_e.pou-cute From Q, and wrgte; Sap (QQ) L};

'V0tV{>.»[(P(o() A Q({>.~))-9 ot#p].

L91: P,a,9ohd rr cg subsets 0; ww
we say that the pour <§,'P> separates the pair <P,Q> cf-.

P<_;,S A 6224" (land. $ep(§,'l")_

L91: Pond Q Ge subsets of wuu

We say that the pack <P,Q> Cs _I_\yp_er-c:v.r£th_rvlel:L'<:4c:t_‘|y_S_epa.roJole. (or:

P>Of‘€Q"9€po'-r0b\e)if there’ excsts a pacr <S,'I"> of hyperoucthmetécal

Sets, which separates the par <P,Q>.
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_ - Str' tl an I tccol stats "5
wewe qomg Provethat my t:>d£;;C1ketcsgmeapzeparo¢COV\S259Pgrarcthmefocauy SZPO-fab3 ,

DU
,3“ Q5 of subsets 0} wLQWMQ: AosA‘|7Az).._ BOIBB 6e two Sequ C1; 3-5"’

. . - Hy separable?Sud‘ u\a1;.. VmVn[<A,,,_B”> £9 ’\yP¢'”0”‘°H""et°°a
_ . - g fable.‘Rem-. < U An, U 3,. > LG WP€"°"‘t“"‘€t‘°a y 290new 7160

. ~ le ck rce, determine F0’ Cad‘ '’‘‘‘“’2 '‘€‘*’
Proof. Usmg cc.>u.v\(‘o.b. oat E and F Such that

}\ypzra.r‘LU\W\QI (CO-I S S m, V‘ "'1 "

Am 9-. Ewen A Bn 3 Fmn and SQP (Em/" ’ Fm")

..._.. /\ FConS(der the set; _E ===U H E and F U

new mew mm new mew mlfhat‘bk et‘c.a1 andand remonk that both E and P we ’WP”°’'‘ "' *
L) A Q E and U Bug-E
new I’! AGLU

Fatally, we Show fiat‘ §Q'P(E1F)

§U“PPose=oteww and E(oL),ma‘ [56ww and Fqt)

Dexermine noew Sud‘ Wat‘ ‘*5 n Emew “oi”

Dekermcne "1 5”’ 5“‘d‘ that‘ (56 ,0“, Fm,"«

Relyarkz O‘Q E" n and, [356 Fgolna alld g€»P(En°,n‘>E\mn1)

‘l7.e,r2fore '- OL# [3 .

Wese¢,|'\ov~/,that VaVprtam A PW-'°‘#P1 9%P“="")~

__ _ d -. S (E, F): Le‘:lhef-afar-eg nteju’An9. E Qfld . .C..-F ah 5?

. - ' M able.
U\€ PaLr:<r|(g.€.oAr\I,gg,Bp.> '5 WPe’°’”H‘me’tw'a y “Par

51

We introduce another notational convention-IL21: 8e‘*’uu Ge Suck Uxat-. Fu.n(5], and. ex (Lew
'fi:w- '

8“o. ==- {M 3°<€°~[5'°‘={”.}

__ ___ " (ax-.=.o. under£“o. (.3 the wage of the sex (1 ~-{°‘l°‘‘'-'“3 {°"°‘e‘3 }
the fiLnctCOh

Remark that Ro.(8) .—.8“<> (CF 3-‘)­
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(5.!-4,!‘lieoremz (§e_parat£on theorem of Lusén-Brouwer),

Let <P,O.> 9:20. pair of Separate, strcctly analytical subset; of ‘*’w

men: <P,Q_> Cs hyperaréthmettcally separable.

f_)_7_‘_29t=Dezerméne Se Wu; such Ehout: Fu_n(5} and-. VoL[P(°t\ C) 3X[o(=8lJ]]

Determine Z_,e‘*’w Cuch that-. Fw/1(z) and: V°<[Q(o(].;? 3J[o<= Z151]

We then know: \'/o(V[’>[5lot# Zip] and, Eherefore-.

VJ3n[ (5((?\l5))(n]+ (zl(pIp)(n1]

(Here, A and P are the Chverse fimctioms of-‘ the PQUCMC3fiuxctioh <9,

as they were defined cm 13.1).

Tfiug, we are offered 0. bar Ln Wu,’and we will reach our good

by an a.pplu'catCon of the princcple of bar Chductcon (cf. 13.3).

First, define 0. sequence [5 on ‘’‘’wsuch that, fbr ali aew'­

p,(O.);=O :'ln<€g(a.) 3P<€q(a) Hqz. (gm) 1: 5"(Z--(?) P) ?‘ 0 "

I\V(:<p[ 5"UTO—3(:)"O] A ZWEK:-0.-)q)*0 A

A Vt<q[Z"(§_(<:)t)=o] A 5" U-_(E)p) =1‘Z,"(§~(35q)A

A Vrn<n 3é<€q(a)[8‘”(L-L3'Ib)fO7 A

A Vm<n 3l:< Qgb.) E 3'” (§(‘<;)~(:)$0”
;: :1. otherwise.

(Here, Mal and 2(a) are Finite sequences of the Same length as eke

Finite sequence a, which result 9'0"‘ Cm“? 0- W0 W0. as M 3'7)­

Remark that, fbr all aew, if-‘ [$(0.)=0, 5513"’

39r3c[ Qf=I:c A Qg(€r)--eq(c) .<.egca) A

A VocéL(o.)[ cS|o(e(’>] A Vp,é.R(0.)[Zl[5e<:]].

Remark olsq that: V‘3n[[5(fn}-=0]

(cf. Note 6 on page 2I}).

Le}: (e ‘*’uu and determine noew such that: (5|(A(J})(flo)=/-(Zl(§>‘[n0\.‘l.

Determine poew Such that Vmsn, 3(:<pO[ 8"‘((TlJ_)l:)$0].

Ddzermcne qoeou Such that Vmsno'ElE4q,,[.' %"‘((-g3Tfll:)+0].

Let n== max(no,p,,q.) and observe: (MS/‘n)=O.

TVLSjustL\3ies Ehe remark.
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Next, we define 0. subset Q of w by;
For all Q5002

Q(0.) :.—.< 8“L(aI/ g“R(o.)> is kyperarétlxmetfccxlly sepou~aJole_

We claim that: VaE{5(a)=O —>Q(a.)]

Qupposez aeuu and [%(0J=-0

Ddiermihe Vrew, cew such that: &3(@rl-€c.3(c)g €c3(a) and,-,

Qrqéc and: b’oLeL(o.)[ 8loceGr] and-. V{’>€R(<1)[Ur» 53]

<er,c7 CS,Obviously, 0. pair of Ixyperarétkmetéccll subsets of Wu,’

wkcck separates < 5“L.(a\, Z“R(a)>

It is easily seen, now, that: Val: 3(rEas(’rA [5(@>):o] 9 Q(a3]
We also dam that: Val: l7’n[Q(a+e<n7H -9 52(0)]­

§uppose: ae Uu and: W [ (;)(a*<,, y)]

1719,“; Vm Vn [< 8“(L(a.] *<m>) , Z“ (R(CL)at 017)) LS

‘\yper<Ln'.l:kmQ1:£c.al(ysgpq;-able

U.s{r\<3 lemma I3,’-LO, we conclude that:
4 U 8“ (L(a.)a(-<n>)’ U Z“(R(a)+e<n>) > = < 8“L(a.),Z“l2(a)>

new new

is kypexarétkmetccally separable, s'.e.= 62(0)

Tics estabflskes our daim.

The prcnccple of bar induction (13.33now tells us: QL<))) Le, am pm,

4 5“L(<>), .Z“R(<>)> = < 3“< >, Z‘? > > = < Ra(5), Rc1(z)> = < P,Q)

is kyperaréflnmetically separable.

And this is the concluséon we Sought For-.

E

I“ U“? Ck’-95‘.C0~'Uneory, this QVOU/101Separation theorem, is fipreckadowed.
in more moolesfi statements, fbr which, kowex/2/r, there, is no obvious
cor\stru.cJ:u'.ve. equ.Lva,le.s~.l:_

For excunple, it is not true. that any pair 0F Se_Pa,ra..f'gmgmbgrs of 2‘:
ts separable by a. pair of deccdable subsets of “"w.

Lei: yew... and !z==,.m1:;;(n)...o] 6c the volatile number o; r (cf.H.1o)
L917 P:= {otl (o£(O)=O A Qnfhr-EA 2ln‘])V(o((O)=f-OA‘3n[n=f<A"(2lh)])}
Lek 9- '-=f0* I (“(0) =0 A E|nEr\=QA"'(2ln)])v (°4(0)+OA3n[:fl=&A2lh-J);
Remark that Panel Q belong to Z‘: and that: ­
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V°‘V[3[lPl°ll /\Q(p\l ~> ollol 1913(0)] , u'.e.: P is separate From Q

Suppose, now, that <§,'l_'> is O pair of’ separate, decidable
Subsets of ‘*’wand that: Pgs and Q9 '11
Consider the question whether J59.­

IF [63, than Vn[n=ll. -> Zln]
IF K¢§, they. Vnhnzh —) "(2lnY_l,

Both answers are reckless, and a general method to answer
this quesklbot, For each Xe“ho, d,oes not exist.

In 6.15, we have seen other Symptoms, lihat, at the lowest level of the
arithmetical hierarchy, disappointment may be waiting for u_is.

Another Feature of the classical theory is that, therein, theorem l3.2.2
(Souslih- Brouwer) may be derived from the separation theorem '3.‘-l.l
(LU.S4;n- Brouwek-).
We can not go this way, for two reasons: we do not lldentify a,n,alyl:i'co.l
and Strictly analytical sets and we distinquzsh between Co- clnoilyticql
Sets and sets whose complement is analytical.

0'19 SM-C—<1-lefiliF"lU3l7.however, is still hanging there, and. does not seem to 64:
Clll:?—°l'2°l-by the Sickness of unconstructivitg,
L91: us try and ecu: cl,-.

13.5.0 L€mm<:z.=Let A°,A1,Az,.., lac CLsequence of subsets of “in such that

V?"Vhl: "Vffl ‘-9 <Am,An> is hypexairithmetically separablel

Then there exists 0. sequence B,,,B,,B2,... OF hyperarilihmetical

subsets of “Ru Such tholcz

(I) Vn E An 9. 3"]

(II) VMVH l: M99?‘ -9 Bm is separate From 5,, 1

Proof: using countable choice, determine, for each mew, new such that m#-n,

hyperourilzhmeticoil sets E", n and FM,” such thc11:=

Am; Em," /\ An 9 Fm," anol: Sep(EM’h 1 Fm”)

Define, For each new, a subset Ba oll Wu: by:

Bn:=QnEn’m n fl PMmin ’

It is easily verified that the sequence BO,B,,B,_,...fulfils our

promises.
E
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Ge such um: Fu.n(<S)

We say that 8 Csstronqjy Qtjectllve if : Vo(Vfsfol #{3 ‘> 5'0! #' 5l(5]

'3.5.l Theorem: Let Seww ese Such that: Furt(5} and. 3 is strongly Lnjectéve.

'_’:92f=

Then-. Ra.(8) is 0. hyperarcflxmetical Subset of Ww,

L91: H€-LUO-V\d«COHSK.-def9" z: €g(o.)=n},

Remark um: Vo.e§nV9769" fa?‘-=6 .7 $Q,P(8“a, 5<%)],

Therefore, accordmq to theorem 13.4.1
V0.6 814Vere Q" [a + (7 -7 <5“o., 8“£7> L’;hyperarédxmetécully separable].

And, according to lemma 13.5.0, we may defcne a. system

(Bo.)aegn OF hyperardshmetécodsubsets of “’w such that

Vaesn C 8“o. c_:_Ba] and \’/aeSn V(re§n[0.14-Q: —)S‘eP(Ba_)BG)],

Doénca this fbr each new, we assign, to each a sou,

<1 hyperaréthmelzccal set Ba.

Next, we define, For each 0. e uu, a hyperaréthmeticol set Ca by:

Ca == n Baznm. n Ba.

Weobserve that: VaV6[' '1-(age: v ergo.) :2 C0/\CQ’=-.gl>].

hk clcu'.mthat = Vokl: Vn3ae§n['Ca(o<)] -? 35-Vnf C-'‘ (o()]]

(19682, = 30 n 351

Suppose-. one wuo and; VnElaeS,,[Ca(o£)].

U«9c'nL3ACOO,we determéne a sequence awauau...

of natural numbers such Ehcd:-. Vn[5q(o.,,]=n ACan(o¢)]

Remark that-. Vn Vmf ot eC‘annCam + C15]and,
therefore-. there exC9t; exactly one dveww such (‘hat

Vnfye an] and; W Efna an].
Thus,our claim is established.

Finally, we observe that: V‘ Val: Vn[Cfn(o()] -7 oc=—.SIJ/1
Therefore, {-br all o(e‘*’0_,:

oté R045) .52 35*[o(-_-SIX]

:2 Vn 3a.e§,,,[ Ca_(ot)]_

And: Ra(8)= O U C as hxjperaréthmelicol Cndeed. a.
new aesn 5‘

he classical com/arse o§3 13.5.1, does not survive constructive criticism.
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ll-l THE COLLAPSE OF THE PROIECTH/E HIERARCHY

l"l.O

Classically, A’, and E}, the sets we studied in chapter 10, walk at the head
of a long procession of-‘ subsets of ‘*’ . A‘,,E‘4,A'2,Ef,_, A'3.E’_,,;--­

The members of this procession are defined. rather straightforwardly,
by repeated use of the operations of existential and universal projection
with respect to ‘”u;.

In perfect analogy to the arllthmetical hierarchy, one Finds thdatz

Vn>O[A‘n .<E§l;n /\ El‘-<Al;n:l.

Intutionigtflcally) however} the axiom AC," disturbs this, dream, making, as we
will see in this chapter, that A1931 W0‘ A} 552.­

Tnis is a. serious applicoution of AC“.
(Many other applicoutiong in this treatise could have been avoideot
by 0. change in the definition of the reduoibility relation (Cl 3-3)»
but not this one).

lhus, the projective hierarchy breaks off at E;_.
This only happens by our refusal to recognize complementoution as 0­
blameless mejchod of building new subsets 0? °"u2. Complementa-tion
Lmmedcatgly enables one to male Subsels of WW which are not reducible
to E‘ by d4ZO.qoncI.|l'ZCng.2)

At the end of the ter we a.ga4',n have to face some nasty questions,
which resisted our attempts to answer them, Such as, Whether E: ‘$ A1­

We want to use! in this Chapter) the pairing functions on u: and. “’u:
which have been introduced in 13.4.

<. 9 is o. pairin Function on ‘“u: such that, {tar all aeww) awn,’ ne bu’
the value of the sequence «sogps at n is produced by gueing together
ot(n) and (n).
‘ma lgpg- and H-_gl.1;-inverse; o[3this pairing function are called R and

§ § also denoteg 0. function which p(1U‘$ sequences 0? CC’l-la-llellgfh
into a, Finite seguence of the same length, employing the Same method that
his namesake uses in air‘ infinite Sequences.
Remark that the domain of this Function is not the whole Of wxw, but

only { <0, tr->l <Ol,Qr>€ wwl eat‘?-l= Q‘3(e"l}

Its left and right -inverses are total functions, and are Called l. and l3.

The pail-an {hnction 4 9 on Wu: is dxil-’Ferent {Pom the one we introduced
in chapter 6, just before, deflgyvlion b.'—l‘.where we learned. What it Me_CmS,
if He is o. clasg of subsets ofww, and P belongs to IR, that P is a,
universal element 0F W.
This notion depends on the pairing fhnctcog. that we use, but in a rather
innocent way:



l‘l.l

168

Le):us assume that the class 34) is closed under redacéb(lity=
Le.;lbr all subsets Panel Q or cm-. if Pe lR,anoL asp, liken 0«<-:fl%.

In general, this is a dil’P¢‘cult notion, because of the huge quanl;i‘l-‘.;e4—,
,1fbr all Subsets P and Q of "“’w'.'
In practice, however, this uantifcer may be tamed often (cf, similar
rgmarkg (y\ 6.1, 6.5’ 3.4, 10.0) and we observe, easily, that all classes of the
hyperarithmetico-l hierarchy, and OISOZ‘, and U41, the COVldil‘-(Ol1­

Suppose, now, that Lie IR and U.isa universal element of 04 with respect to
we Pa_j_y-in fiinction < >.

Define U3":- {oil l.l.(<9«ltx,plo(>)} and observe: ll* is 0. universal
element of HQ» with respect to the pairing fhnotcon «S 9.

Converselx}, Suppose Uial: [Le [K and U. is 0- universal element of D4 with
respect to the painin con < >.
Define U°;=fo¢lu(4°z‘j oz‘~>l and observe: U.° is a universal
element oi 04 with respect to the pairing Function < >­

We may be convinced, now, that the new pairing fiinction Cs, (70 <1“ PW‘P0S€$,
quite as good as the old one, and we will See that it is technically sape»-cor.

We remind. the reader of 10.Q where we defined (1 subset E‘, of‘ “mg
by'- 5} == l:o<l3,rVnl.'oL(d7n)=o]}, and introduced the class 24, of
all subsets of WW that are reducible to El.

We also introduced, in the discussion lbllowinca upon theorem 16.13, for each
subset Pol “’ou, a Subset EU’) 0} “’uu by:

lE(P) == [cc] 33%|:P(<ol,J>)]}_

We now consider: E*(P) :=- gals, [P(<o¢,J>)Tl} and prove:

-lheor-em-.Let P be 0. Subset of “’u.: such that P62:

Then: E*(Pl e Z:

E[¢_>9l3=Using theorem 40.1, determine 0. decidable subset A of in such that:

bed: moo ,_z: Ella‘?/nl:<3(n,f§n> e A11

Remark l;l«al:-. Vo([E*lP)(o£l 41’ Elffllz Vnl,.<o§37:f>n,[-5n> 6A3]

Define. a subset A* oF w by:

For all new.­

ne A‘ 3 Elaflllrl: n=<Q,Q:> A 39(0)‘-=egl6') A <4a,Ll€»)9, l2l€r)>eA]_

Observe that A‘ is a decidable subset ofuu, and that:

VI; Vdl: Vn[<5€n,f,n7eA*:l Z Vn[ <éo(,9\ll5>n,Z;)'|-l?)n> 6 A]]_

We claim that Volf llZ*(Pl(ot)£2 :'ll5Vnl‘<6<n,f5n>eA*7],
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Suppose: o<e“’w and E*(P)(°4).

Delzermine{e“’w, Zeww suck that: Vr\[<é7.q7>n, Zn>eA].

Define {5==45,29 and remark-. Vn[<6'tn,f,n>eA*1

Now,Suppose: we ‘*’uuand {ac-:‘”uuand: Vn[<an, fan, 6 A+]_

Define-. do-;9\l{v, and Z:-_-.p[‘; and remark:

VH1:<6-EQ3-r\, Zn> e A1
Tiierefore: EE*(P)(ot)_

Using theorem 10.4again, we conclude -. P621,
8

It fiollows From Uteorem ll-Llthat, For each subset P ofww: if P6.2'2'U\€nE(P)eZ:
(It sumces to call up p*_.={o(| p(< Mu, p1o<>)}).

We operation E did. not Come alone.
We introduced, in the discussion Followincaupon theorem 40.13,for each
subset P o§ ‘”w, 0. subset M(P) of “’w=

amp) := {a1 V5'[P(<o(,J>)]}

Kb, now prefer to consioler QJ]*(P) ==.Yot| Vd’[P(<o(,{~>)]},

We define 0. Subset A12 oi? Wm by:

1412:: fdl VJSILVn[ol(<[;,(r> n) = 0]}

RQWQ-rk WC not A411:, b€C(1U.SeWe M
think this definition to Ge the most oonvémiemt one.

We define 0. class U‘: of subsets of ‘”w by-.

For every subset P of “’w-. Pen; 4:9 P5 A;

Like 24,, TI; has many nice properties.

We L"1t|'0duC€ <1 notational convention which is to help us in proving Unis:

L21: 5e‘”w and aeuu
We write 510. For the umiqu-3 P6 U0 such U\01Z=

ecgip)-5Qg(a,\ A Vb <Q?(P)3n<Q9(a.) [ 5"('5.h)=p(t}+1 A Vm<n[5e(5.m]-.-0'1]

A (€gLp)< cam) —» w.<egco.; [5“%‘P>+4(<m=o7)

Remark tho-t, i§ Fwnfél, than Va.Vo([o(e_O. —) 8loLecSla] and;

V0: Vm {Inf »€?(8|6m) >/m]



170

“L2 Freoremz Let Pc_:_""w

PE Tl: if and only if there exists. (1 decédabeo, subset A of no

such that: Vo([P(o():2 VJ~][a.Vnl:<&n,fin,Xn>eA]]

Proof: (1) §u.pPo$e: Pen; and, using AC“, determine «SeWw suck that: Fu4L{8)

and: Val.’P(a) 3 A‘7_(8loL)]’.'.e.= VaEP(od2 Vgapt/n[(5!ot)(<p,pn)=o]]

Define q decidable Subset A of U0 by-.
For all new:

neA ‘7 :'la,3{r3C 1: Cam): Qcalfl-3:-Q3(c)A n: <a.,?r,c> A

Vt< £g,caJ[..<o,c>t < egusta) -> (5|a)(.JcZ,’£9t)= 0]].

Remark U\OJ: = VonVfs VJ’[ V" [Wot] (61375 n) =0] 4.1‘? Vn f<c'>‘<n,f.n,J7n>e AH

-m9"'Q‘b"€‘ V“ E P(°‘) Z VgafivVH1:<3£n,(§n,(?n7 e

(II) Let A 92 (1 decidable subset of w Su.cJ'\.H\<1l::

Votf P(ot) [J VJ Elf; WI 1:<3(n,fSn,fn>e Aj].

Detarmcne 8e‘*’w such that Fum(5) and:

F0" all o(€“’w and (raw, cew sud«tha1_;; €%(G-\=€<3(<;)

(slcx) (< Qr,c~>)=0 4: <ae3(e~), Qr,C) e A.

Remark Uxatz Va \7’{2,VJC Vh[<6<n,f1n,J'z'n> 6A] 2 Vr\[(8Id)(«S_E,?;n);O]]

_|71erefor2,-. Vol[P(ol) 2.‘) \7'63{5Vr\ f (8lo()(473:}9h) :03],

Le» Vat P(o04:’ A;(5{a)] and: Pen;
B1

H3 ‘I‘Reorem= Lei: Péww.

Pe TI; and only if there exists a subset G. of “'09 such that

(1.32: and D: M179)

P_1_D9£=(u Fcrgt, Suppose,-. Pe rig, and, using Uxeorem HZ, determine. on

decidable subset A 0? w §u.d., (-j\g_1¢:\7’°([P(oL)g:>VJ3,5Vn [<5"",[-3-»"|;in7€A-I]

Determine 0. deadable subset A‘ of no such that:
For‘ all 0.6 w, Preuu

<<2,@>e A‘ 4:’ (€gca)= 69(6) A <L(a), ez;R(a.)> eA).

Define G.== [at I 3f; Vn [<5m,r.n> éA*]}, and, using fihcorem!o.1,

remark that; QeZ‘1_
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Also observe tkai, for all o(e‘*’o.:,dreWoo:

Q.(4d,A'$) " 3{$Vn[<éo<,{>n, fin) 5 A*]

2 3{5Vn[ <6<n,fin,fn>e A1

Fvzrefbre, for all oié ‘*’w-.

VII: Q(4 o/19)] g2 VJ’:'lf'.»Vn [<5tn,/in J7n>e/U
‘9 H00.6­

P= wia).I.-€,:

(ll)Convergely, $upp0Se: Q6 21 , and, using theorem 10.1,determine

a decidable Su.bS‘2tA ofw such that Vd[Q(ot]z;’ 3{;Vn[<61n,{7.n>eA]]

Wen: Vot[U1*(Q)(ot)£2 V[El(2.Vn[< 57,") fin) €A]]

Ddermine a decidable subset A‘ of LU suck thout:

For all aeuu, {rew crew-.
-)<C1,(r,C)é 6.. (eo(a.)= 93(6): 9538:)/\<< a,C ?, 6 7 6 A )

Remark that-. \7’oL[[L—[l*(6l)(o<\4-2 V3/Elf;Vn[ <&n,r;n’J7n>e. A‘ II].

and therefore, according to theorem H2-. P = (‘:fl*(Q)6 TH.
E

H; contains 0. universal element.

Define the Subset U. of mm by-.

For all oie Wm; (Hot) ,3:

and note tkak LL belongs to W;

Let P5-‘-.“’w and P6115.

V‘ Sip Vn [ (§>IoI)(<rl—oi)n,fin,fn7) = 0]]

Following theorem H2, determine a decidable subset A ofw sucJF1HtaJ:-.

var P(oq;2 wag. vn[<an,,:n,;n,eA]], DetermineSeww suck that:

vnf 8(v\)=o (-2 néA]_ ‘lien: Vot[P(o<)52 v;3pVn[8(<an,{:n,d7n>)=o]],

Vot[P(oi) g2 bL(éoi,8>)].l..€.:

A very minor change in this argument would have given a. universal element­
with respect lb any ofiker pairing fundzion.

Like 2}, U; is one of 0. pair of twins.
Re time has Come, now, (:0consider its brother 2'1.
Our speculations on 11; will be mirrored,
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We remind the reader of 40.9, where we defined. (1 SubS’dI M OF ‘”w by:
A1=={oil l/[Sn l.'ol((fn)=o]}, and Cntroduced the class Tl: of all subsets of Wm
that are reducdble lroA1.

l’-{,5 Tl-xeoremz Let P 36 0. subset of Wm such that Pe Tl}.

W'ell= E
El2c_>[l-. U.§4'.nqUleorem 10.10, delermihe (1 decidable subset A of at such that:

Vail: plot) (1) Vpilnf <3(n,[-An7eA:l_l.

Remark U101: Val: lEll*(Pl(otl [2 V5V(53nl: <é—&:J7~>n,(-5n> e M].
Define a $7U»bSeJ:A* of w by:

For Oll new-.

m.;A* ; flo.:‘lQr[n=<o,I2n A Qg(a)=€g(€r)A <4a,L(lr)-7, R(6)> e A]

Observe that A* is a. deecdclble subset of w and that-.

\7'($Voll:an <an,,:n>eA* 4-2 ;lnE<é“ol,2I,s>n,(,;g“f;'1n> gm]

We Clam‘ l«l‘C1"'=V0”: l5ll*lPll0ll Z3 V{’.>3n[4E>‘(n,{1h>elA*:l:l.

Suppose: o<e‘*’uuand l‘:ll*(Pl(o<l.

Lel:[5Q“’w and. otetermcne new such that:

($01, 9ll[5)r\, l-9Tl%_lV1> e A, and, U\Q—r‘€FDl"€: <<'>?n,{7.»n7e A*.

We $ee,now, V{>.3n[<<3?n,[‘Sn>eA*].

Nowlsuppose: ole ‘*’w and: Vpilrx ['<&n,F,n>e A*].

Let 66“’w and Zéww and determine new gud‘ that

<6(n, 6Y,Z,>l’\>€A*)and, therefbre; <<o(,J>n, irw 6A.

We see, now, that; VKVZ3nl:<<ol,{~>n’ Zn> EA],I’-8.:
B

We define a subset E1 of ‘“uu by:

511;: {all 35 v{;3nlio<(<‘§,f>n)=o]},

‘lids deflmlccon parallels exactly lzlxe defuxilséon of A‘;

We define a class 2'1 051 subsets of ‘*’uuby:

For every Subset P of ‘*’uu= Pezigj P-.sE;

When Ll:comes to pleasant propertiec, Z}; does nok yield lo rt; 1
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we Tneorem= Lee P»;.‘*’«.,.

Pa 2; and only if were exists a decidable subset A ofw

Such tnat Vo([P(ot) :2 3; V(53n[<3tn,'r’,n,fn>eA]].

Efggf-. (I) Suppose-. Pe Z; and, uséng AC“, determine 8e‘*’w such that: Fu,n(5).

and: \7'ocfP(o<) zl E‘z(8lot)], :'.e.: Vot[P(oL)g2 3(]vV[53n[(8|oL)(<T3:‘7>n)=O]]

Define a. decidable subset A of on by-.
For all new:

neA :2 3a.3?r3c[ 9g(a)= 09(%)=€g(c) A n..~.<o.,Qr,c> A

EH:<eg(a.\[Z€{Z;e <69 (ma) A(aIa)(ZC~3e)- 0].

(The notation ,, Slo." has been t'.ntrodu.ced just: erefipre U1€orem|L(_2).

Remark that; VocVPVa/[ Hnl: (5loL)(<[;,J/>n)=O'IZ—.’3n[<an,f§n,fn>e/U]

'|T\er0-fore:Vat P(o<)g.>agvfs-]n[<an,§n,p>eA].

(H)Let: A ere. 0. decidable subset of m such that:

Votf PM E3 35 Vfsin E <&n,('5",fn> eA]]
Determine 5c-:“’w Such that Fu.n(&) and:

For all oce“’w cud grew, cew suck that flaw?)-=eg(C)

(5|o() (4 Qy)c~;)=0 5;) < 399(6), 8-,c > E A­

Remark Umab-. VatVp Vgl: 3n[<5Zn, fin, fny 6“ 2 Sn}: (_5[oL)(«$_[3T§I\)=Ofl

1;.mf.,re= Vocf PM gz ax vp Vn1:(Slot)(«W9 n)=0].

Le.-. ‘v’oL[ Hot) 4;‘) E‘,_(231001 and: PeZ;.

E

-W\€Ol“e|_/[1-. L21: P _C_wou­

PeZ‘,_ if and only if there excsts a subset G. of “"00 Such tnclt
O.e TI‘, and P: E"(Q-)­

P_r;c_>_9f=(ll Fcrst, suppose: Pe2}_ and, using tkeorem I46, determine a decédafiga.

SubsetA of w suck that: Varpmqg 3, vpan[<an,fs»,yn7eA].
Determine a. deu;daQ79o. sue:-set A* of uu such that:

For all aew, Grew:

<a,9ne ’A* gz (€g(q.)=€g(6) A <L(a),€r, R(a)>e A)

WW6 Q=- {ot|Vp3n[<6<n,I3n>eA*]}.l o.nd.,uscng U\€0"€m ‘°- 40,
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remark that ®.elT‘1

Also observe that, fi>r all ate “’w, {e Wu):

Q(<oz,p] Z.’ Vfsinlf <<~o<,J>»n,PM as A*]

fi ‘v’{53n[ <5<n,{‘sn,fn>e A']

TV-\€r€fi>re, (Br all o(e,“’w-.

3dr[Q(4o<,pH (1) EarVI;3n[<6<n,fih,('fn7 6 A]
2 PM

I'.e,: P = EVQ),

(M)Conversely, Su.ppO$e.'-Gen: and, usuxcg theorem 4010, detefmlhe

a decidable subset A of on such that-. vatamyg Vffln [<&n,,“sn>eA1]

Tfien: Vat’: EEf(Q)(oL)(:3 3(V{53n[<<o(,d’9n,r§n7eA]—_l
Debermine O. decidable "subset /\* of 1» such that:

F0!” 0-“ dew, Qrew, cew-.

<0’ er, c: > e A* 2 (€9(a).-.(7?U.’r)=Q<3(c)A <<a,<2~>, 92> e A).

Remark that; Val.’ lE"(a)(oc):3 3,yV{5Eln[<5<n,f.n,fn>eA‘2l].

and therefore, accor-dxng to theorem 14.6: P: E "(GD e 2'2.
E

H8 Tfieorem; 242 Contains a tuxcversal element.

P_rg_o[1: Define the subset U. of ‘*’w by:

For all ote‘”w= um g 3JrVp3n[(plol)(<(1T<)n,['§n,Xn>)=O]]

and note Hack U. belongs to 2;

Let Ps“’w and Peg;
Following U\eorem we, determine a deccdable subset A ofw suck Hob.

Vot[P(ot) 4:2 35 Vpinf <6?n,'F.n,fn>e Afl. Delzermme 8e‘*3w Suck that:

VH1:3(h\=O <2 neA], Wren: Vo£[P(00.;1’ 3{V(53h[5(<5<h,fl~n,fn>)=O]]
i.e.= Vocf P(ot);2 U[<or,39)]__

3

In Unis last; Proof, any po.a'.r£ngHmctcou, other than 4 <7, would do as well.

UN’-dNOW,our narrabcve has been Straightforward, and almost boring.

But the fbllowéng, simple remark Ls s‘urpn'sm9.,
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lllq -l7\<z.orem= ll; 9. 2'2.

E'_‘_9_(_)F:It is Su.FFC<:('ent to Show that NZ belongs to Z;

AC", observe, Uxak For all o(e‘*’.,o;

A',_(o<) £2‘ VK§l"5VV|l__O((é[3,J’>‘*rl)=O:l

gl’ El6[ Fu.n(5lA ‘o’{Vn[o<(é8lK,J'9r\l =01]

:3 35[FUMl5lA vc[o:c4g|c,ae<3zs1cM=o1]

(We notation , cS[c" has been €.SCc1blfsl\ed,just before theorem l4(,2)

Recall) fromchapter lq that Funelllw and remark thou;

{<$o(,8~>[Va l:ot(43lc'E Qcal5l¢l")= Ol} belongs to lT°~:—_U}

A9 TI‘, is closed. under the operation :3? FL‘m'1:e.intersedzcon

(cf. theorem 10.12) we may conclude’ using theorem 14.7, that

A'7_belongs‘ to 2;.

l3

We now prepare lo ckal a Final blow to any remacncnq llope of 0. projective
l\£2rarcl\y.

We define O. Subset A's of ""w by:

A; == {cal V83JVp3n[a(.$7fi,{9,S7 n): 0]}

We define a. clacs ll} of subsets of "~’wby-.

For every Subset P of “"00: P6 .14) P:.<A'3

The reader may trust, or else, for one time, go For himself into the treadmill of
patient calculation, that:

For en/ery subset P of “’w=

Pe Tl; 3 there exists a decrolablc subset A ol ‘*’uu suck that

VoL[P(cx) V8 if VF,Sn [< o’<n,[1n(fn’Sn) .5 AT]

and; P5 TI; 4;) lilxere excsts a SU-bsefi Q OF ""w Suck U10-l1:

Q6 2'1 and P =u=lll(G.).

"H0 Tiorewv IT; .-.

Weleave (1: Forthe reader to prove that Z’ Ell’,

As to Use converse, if is sul-‘flzzéenlt lzo show that N3 belonq; to 2/2.
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Using AC" , observe, that For all o(e‘“w:

A'3(o<lZ.’ V535 VpElnCot (é é[5,J?,8‘9 n)= O]

3?, F Funlz) A V8V{3,3nEoc(4.s,2.,z:5»,5 5,.) =0]2-"

Z3 3Z[Fun(Z) A V5Vf33nEla.t8eo. A 83 (ZlCl.)=n A o(tééF>",Z.»l0t§,§ns)=<5l],

llhe notatton nzlo." has been eslzoblished just before theorem H2.
In the last line, 4 x) denotes a Function whcch pacrs Finite seguehces
of" equal length, cf. Ho)

Recall, from chapter lq that Funefl}, and remark that

.{«so(,Z 9] V5V{53hElo.[8ea A Qg(Zla)=n A o((4<f7»h,Zlcz>,§n$l=oll

belongs to Tl}.

As H} is closed. under the operatclon oF Finite £nter9ect(0n(cf.10.42l,

we may conclude, using theorem H7, that A; bdohgs to 2;.

N

Puttlng together theorems ll-L?and ltuo, we see, that For all Subsets P of “to:
If P.:.2;,then both F*(P)and wan belongto 2;
It is hot ditficult to vercfy that the operations of countable umon and
ihtersectcon are but Special cases of E’, resp. C901‘

It ls Unpossible, therefim-e, to go beyond 2'2 by any one of these methods.

I? we are so obstcnalie as not to use negation, or cmplrcatconfand. so dull as
not bo invent dcfferent methods of budding subsets of ‘Ow, Z’; is the end.

From a classical point of vcew, theorems 19.9 and 14.10are strange Uqdged
WeStill may learn something fiom attempting the good old diagonal argument;

Let us consider Du-.—.fa] \7’K3{:_.Vn[o((<&n,{§n,Yn>) #03}

D (9 €Q9l}ly Seem to be 0. member of Tlé, Qnd may be called:
the diagonal member of ll;
According to theorem m.q , D Ol9o belongc to 2;’ and, using
theorem H6’ we determine 0. decidable subset A 0? W 9”-C‘‘U‘°‘t‘

Vo<[D(d) (:1 35 Vfsilnf <6m,{'5rI,fn>eA]].

llstng ACO1, we Feud, 550°“, such that:

Val: D01141'’ 3; Vflilnl: 5(<Rn,7f,n,fn>)=Oll

We observe, how, that

13(5) 4:’ Vgflp Vnf M311, finjfn) ato]

4-__-> HI Vfs fln l: 8 (in, (in, in) -.=0].
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W\ereFore- "' 13(8), a'.e.=

-v{3{svn[5¢§n,f;n,gn) +0] A -. a,v,»,an[5(En,-,;,,;n)=o]

Such a. 8 Cs worth on prize: Ct embodies the nonsense of’ classical logic.
Looking for a Place where to lodge it in our zoo, we choose a. cage next:
to this animal:

M claim Uxat: - Vo(3hVm[o((n)==O—9ot(m)=o]A -13oLVn3m[ot(nl=OAa(mHo]

First, suppose: Votflh VmEoL(nl=o —;o<(m)—_.o1

llsénq CP (cf-11.8), we determine new,qew such that:

Vfsll {Sq .-. Egg -9 \/ml: [3(n)=o —=»fa-(m)=OTI.

Let N== max(q,n1-1)

men: \'/{5[{—’.>N=b_:N ‘> {5‘-79.], and Huls Cg rot 5o_

Therefore: -w\7’oc3nVm[o((n)=-.0 -> oc(m).-.07

Next, Suppose: 3o( Vn '3m[o<(n)=O A oL(m}-3&0].

Choose suck on oz, an observe: o(=Q A-v(ot—.=Q).1

TKerefore= ‘1 30¢ Vn Elm C o<(h)=O I\ oc(m\¥O1

This harmless Creature Seems to 3e the most gimpjg reipresentative,
OF its species which perhaps might be collects the species 0(­
de Mor'qClr\'§ Ildqktma;-es.
(We do not know if Here are any de Morgan’; nightmares around, tkar
Cause panic: about the qua.IAtéfCer~comb(na1Zbn:uvotfln")

We cannot conceal our fiqnorance concernalng some important‘ points any ‘onqer.

At the end. 0F chapter 40, Ive mentioned our Cnabilcty to settle the question
whether AT,-$13.?“or-,ea1u.ivalently) 17:92},

I{3 it should be so that A}: E}, nothmq remains of the once, proud.
projective hcerarcky, as 2; 9,23,}

Otherwcse, not: A‘,$Ej, Haen also not. 2392}, as lT}.C.:.Z;.

In this case there is another problem to ho.w\.(:us, namely, whether

E;-_<,A'2_ /_.. - 4»
~» JS~°¥‘\

dear par-enfzs, ‘L /5
‘\

XC

the b‘0Ck§ Cure very nice.

but if I Ery ‘to build. a­
tower from Hxew, Ute one sinks info Ute other.

Kfihis I deplore. your son.
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IS. A CONTRAPOSITION or COU-IJTABLE CHOlCE

This chapter presupposes Some love oF the Fan theorem
A {3cmis used to bring dcgtraction and a moderate breeze, during the
unimportant chatberings which may occur when the heat of‘ the day is over.

Leani on the axiom AC0“ we were able to prove, in chapter 10, that
all hyperorithmetico-l set; are analytical.
We are. not able to prove that all hy rarilzhmetioal sets are co-analytical,
for, as we have seen, the arithmetical Set D"A, is not Co-analytical.

In this respect we Rxll behind a classical mathematician, who willstand on his
head and then, making the movements required for analyticity, Soothe his conscience.

To Carry through the claSSlc’aJargument, we need a. constructive contrapocguon
of ACo1,. the second of‘ the tn/o principles OF countable choice that We admitted
(cf. 1.3)

The resulting principle OF l'<’—O-SOVICVIQ. therefore, cannot be valid in full generality.

Once, walfchbwgthe classical circus in the company of‘ some good. friends,
we discussed the question, what is the range of-’Validity of AC0; turned.­
upside- down.
This question, though not too serious in itself‘, could be given a, simple and.
glegant answer, which Willbe the subject of this chapter:

Contraposition might be another method of‘ constructing hierarchical
structures 0F (neo-)classical beauty.
We mention this poccibililiy at the end of the chapter, but are not
elaborating it
‘lie Following lines are dedicated.,Ln friendship, to Io Gielen and MervynIansen.
(Cf. Note 9 on page 2l'f)_

15.0We remind the reader of’ the axiom ACO1,that has been introduced and
defended in 1.3.:

ACOL A9 lA))<ww­

IF vn3oL[A(h’oL)—_l’ then 3oLVnl:A(n,oL"l]_

Dancing to the piping of‘ A. de Morgan, we are led on to the Following
Crazy principle:

CRP Let A 9. w x “’uo.

If Von3n [ A(n,o1"l], then 3n Va [A(n'afl_

As we are entertaining already some grave suspicions aqaingt CR3 (1;seems
wise to consider also 0. relativized version of Lt.
For each Subspread. 0' of ‘"09 which Falfils the condition-.
Votfoteo’ 4?.’ Vnfd"eU], it makes Sense to study:
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Let A 9 aux “’w.

IF ‘v’o<eo'§lnl:/\(n,oL"l.l, then 3nVoiecrtA(n,oi)]_

one.

We remark that the above- mentconed, condition is met by the binary Fan
0* whose acquaintance we made in 14.27.21

More generally, we may ‘introduce, For each pew) the p—a.rg Fan 6‘ , by:

For all aeu»;

;.—.1

.;[.‘ \7’n[n<Qg(a) a a(n)<pl

otherw ise,

Weremark that, for each pew, <3‘ meets the above-mentioned condition.P

lhe arguments given in the preface to this chapter may have convinced.
the reader that CRP leads to a contradiction.
Perhaps because of’ a morbid trait in our character, we Followit once
More on its way to absurdity.
We First introduce a consequence of‘ it, which, at the sight of‘ it, is
somewhat less disturbing-.

Let AS wxw.

IF Va Elnt A(n,oz(nll-l , then Eln Vmt A(n,mll_

cnp*

(The attentive reader may observe that CRl>* is AC°D—turned-upside--down,
just as CRP is nothing but AC0; turned~ upside- down).

We claim that CRP implies CRli>,*

Let A; wxio 3e such that l7'oi3nl:A(n,oi(nlll_

Define A‘; u.n<‘*’u2 by:

For all new, oie“’w

A*(n,oL) *= A(n,ol(0ll

We claim that-. Voi':ln[A*(n,0l"ll,

Let oieww and determine cx*e°’w such that W [-o("(nl=oz"(o)]

Determine noew such that: A(nmoi*tn,,\l and

observe that A*tl'\°,oi'°l.

such that Va[ A*(n,, all

Therefore-. Vm[A(n1,mfl, and thus, our claim proves harmless.

Applying CRP we Find. mew
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The danger 0F ClZP* glimmers through the following consideration;

§u.ppoSe: J6 ‘”w and. let 9.:=};nl._J'(n)=,éO_lhe the Volatile number of;
(we discussed this notion just after theorem 14.10)

L911(LS define O. Subset A of‘ wxou by-.

For all neugmew:
A(n,m) == (Ash/xmsh) v n>,Q

A is pretty close to having the property mentioned in the Conclusion
0? CRP*, EN’. (F K exists, then Vm[A(h,mY.l,and,if not, then Vmlr/\(0,mll

Q;////// lhe reader will see for himgelf’that still, in some
Q Cases, it may be ‘reckless to assert that 3r1Vm[A(n,m)]

l l And. he will observe that, on the other hand,
the premise of CRP* goes through.

And. now, 0. Rib contradiction, unable to hide itself‘ any longer, creeps from
the bushes behind CRP*;

Let (LS define, For each Ieww, O. subset AI of wxw by:

For all new, mew:

Alllgm) := V€.<.mf{(€)-_-.0] v -3€_<_nl:X(€)+D]

We claim that: V; Vat3n [Ab,(n,ot(nl\]_

Suppose ye Wu’ one“’«u and. consider oclol
We distinguish two cqses=

' It VtSol(O)l.'5l€)==O3, then: A‘(o, o((Ol)

- IF Elt£<x(Ol[((Q):/0], then: Allalol, oclotloll)

In either case, l’«h€r2lbre-3nl:A‘ln,oL(n)l]

Applying Cl2P"‘, we Find that: V‘ flnVmf A (n,cxYl_

Therefore-. VJElnf 50!)=0 -9 Vm[;lm)=0]].

And this is easily seen to lle contradictory-.

Using CP, the principle oF continuity mentioned in 1,3,

we determine qew, new such that:

V/(Mfg: Qq A;ln)=O) *9 Vmfglm)-=01]

What about 0. member {* of “flu such that

max(n,q) < /U.P[dr*(p]7‘-O] ‘Z fil



181

l5-7-vxt mentioned the Fan theorem just before theorem NH and repeat 51;’now:

Let A66 a decidable Subset of’ w and Pew“) ge a Fan.

It V3’él53'\[A(.fn)], then 3mVJe{s:‘In[nsmnA(Yn)]_

Recau U‘°'£ I5‘:-ww C5 C1 100" '3? the set of finite sequences determined by it
is, everywhere, finitely» Splitting , i'.e,:

V0L[[’:(0-)=o -9 Kg = {n|new] {3(aae<n>)=.-o}is Finite]

We Fan theorem [5 Ci most Famous consequence of‘ Brouwertg theggg whfick
has been presented in 13.0 and, in its special version, reads as {-‘ouows:

Let dew.» and v,3n[u<;n)=o]
Tnen: 306 $ t 104"’§U‘]­

Tne valuable set it is the set of well-ordered stumps in ‘”w, ois we know
it From 13.0 and 8_Q

We proof of‘ the fan theorem qoes by showing, by transf-‘indie induction,
that For each [55“’w and each ere ­

IF [3 is oi Rxnl then, 110.] ago’/\ [3(0L).-=0}is finite

Once this ob§erv0.ti'on has been made, we quickly enter the promised land:

Let A te 0. decildabte subset of to and. [56“’w (re 0. Fan,

suck that V[e(s3ntA(Xn)].
Determine o(€""w such that Vat ode.)--so ._:.3’(as A v[5(G.H.O)]

Observe that VJ:'1n[o<((fn)=o'1 (Cf N°t€ 7 0" P°9€ 25‘)­

Using Br~ou.wer’5 thesis, we determine We $‘ Such tbatz

loil* :=={ a| V6 E 0.6.1‘-.tv-> oi(€r)¢o]} Q0‘

We remark that: {QIQEG A [5(a.)-.-.0} is finite, and

Calculate mew suck that VQ-[(3.63/\ [5(o\=O)-—>?<3(a.]sm]

We finish by noticing that: VJ'ef53r\[ngm+1 A A((fn)]_

Combining the axiom AC“, (cf. 1.5) and. the fan theorem, we Find the
following principle o(-‘ reasoning, which we want to appiy freely in the Sequel:

Let Aeww xw and. [5e“’w Ge on Ram15.2.0

IF V(e{5-3n[A({,nfl, then 3m V559 Elnf Item A Atpnl]

Tire Cohtzflt-S OF this Sectton will not Surprise Someone who is acquainted



182

with an Lntroduclzion to Lntuitconistlc. analysis, For cnstance, Kleene a_;g_c_i_.Vesley 1965,

15.3 We will prove, For each ‘Ce "°u:, which Cs a P0?‘ ‘Md twpds the °°"d‘t‘°"‘

Votfotet :2 Vn[oz"e'C'l], that CRP1..

We first make a simple observation:

;5.3_o L__e_y_._1_n_n_g=Let Agwxww and te“’u2 tre 01 PO" 9&0“ that V°‘[°‘€’C’1L—"V"[°‘"€TT.t,

and ‘v’oLe'c'3n [ A(n,o<"l],

Then: Vole? 3n [ A(n,d)]­

E__r~9_9f=Lel: ole’? and. determine {set such that Vnl:[5"=0l1

Defiermme noeu: such that A(no»l5n°) Md C0hCl“d€= A('1,,,ol).
E

The next observatcon is more than twice as dimifildh

|'5.3l| Lemmou Let Agwxww and fire ""u: ta (1 Fan such that Vafaetzl VrI[oL"e'c—fl)

and Valet Elml:A(n‘ol"l]

Wlen: Valet‘ Vpet Elnl: Alma) A A(h,{5)],

P_r_c>_c_>F=Let oust, [set

We need. the assistance of the binary Rm Gang‘ Vnf {(n]<2]].
(cf. 15.0 and 14.27).

We determine Ze Wu: such that; Fun(;) and,

For all (562, For all new:

- gf.‘ fin) = 0, then (ZlJ')“ _—_o(

_ 5; Jpn)= 1, then lzlg)" =

Thug, we have 0, mappcng From 62 onto the set of all members

of 1* whose only subsequeuces are on and (2,,

We, know; l/(ea: 3n[ Mn, (Z,l{l"l], and, applying 52.0, We
calculate Mew Such that

t/gee, 3n[ ns M A A(n,(Zl;l"l]

Let us assume, For a. moment only, that M=2.
We then know, how to Final, For each ‘ea, , a natural number n,

Such that‘ ns9. A A(n,(.7,I;l"),:.e.: A(o,(zIgl°) vA(1,lzI¢l')vA(2,(zIg1‘)



I83

In determmmg the triple (Z|gl°, (ZIKV,(Zlylz we have to choose one

out of ecght posscbilitces, from o<,o(,o( up to P45,

Thus, we are offered eight pieces of‘ truth) lp wit,

A(0.<>0 V A(i,°ll V A(2,oll

and-. A(O,ol) v A(1/x) v A(9,[sl

and: A(t),[;] v A(1,f,) v A(9.,P).

Each of’ these eéght statements produces at least one true Fact

of the Form: A({)5), where {e{‘o,1,2} and. 5<-:[ot,f,}.

Now, either: A(o,a:) and A(o,f;) are both among 5'68 0"“ t°Ct‘=‘,

or: A(1,o<) and A(1,p) are both among W896 “(*6 Fads, 6“

A(2,oz)and A(2,{>,) are both among these true Facts.

For‘, Cf, E» instance A(O,f.~), A(1’oL) and. A(2,f5) QR, 0" “V33

of them, not among these true Pacts, this conflicts wéth our

havénct} found true: A(0,p,) v A(1,oz) v A(2,[s).

Therefore: 3n[A(n,oL) A A(n,[>,)]

lncs wordy argument has been necessary, as we do not know

that A is a decédabta subset of wxww, 0. subtlety which
eludes the classical maflnematcccan,

We close the proof by expressmg our confidence that, Should

M have been some other number Utah 2, we could have playect

a sirrullar game.
8

Lemma I5.3.1 has an obvcous generalization:

15.3.7. L_g_rn_mg=Lel: Ag 1» x“’ou and. ‘C6 ‘*’uo the (1 Ram such that VoL[o(e1:g_*Vn[oL"e't'Jl,

and Va€‘t'3n[A(l\,oL"l_I.

Let pea), p> 0.

men: Vqoet Vol‘e'C’,,,. ‘V/o(Pe'c'Slnt A(P\,o(O)AAtn,o!,,ln._. A A(n,o(Pfl_

P_V3_C_>_f-=Lat oL°et,a,et,...,ocp€'c'

We need. help from the p—cm, Fan o“P=={K|Vnl:d'(n\<p7f. (cf. 15.0)
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Weedeterméne Zeww such U\O.lZ=Fumlz), and-.

For all [e GP, For all ne w, for all mew, m<p-.

-([.‘ 5/(n)=m, than (gl,)" = ozm

Time, We lxave a mapping from (YP onto the set of <1" m€mb2I‘$

of 1:‘ all whose sulosequences are chosen from {o1°,o(,,...up}.

We regl; of the proof is also quite Similar to Clueproof OF

lemma 1613.1 and will be omélted.

E

Without Further delay, we close our eyes, and jump:

I5,3,3 Weorem: Let A: wx‘*’w and ‘r:e“’w (re a Ram Sada that Vo([ole't;> Vn[ot"e'r7],

and. Vo(€-LT’Elnl: A(n,o<“)],

Ttien; 3n Voter F A(n,o<)].

P_Fo_(_>_F="ll-mewater is colder than we lilxouglxt, But never mmd.

Suppose: Voter 3n[A(n,o(")].

Wen, accordfng to GCP (cf 1.9)-T

Valet’3h 3m V[3e‘C'[Em=am -9 A(n,

7FuereFore= Voter Elnflm Vper [ [_!7‘m= 6!-7"m —->A(n,{s")]_

We define a. subset A* of‘ wx w by:

For 0.” new, aewz:

A*(n,a) ;=. Vaealdet-9 A(n,ot)]

Observe Utolz: Vote‘r 3n Elml:A*( n,o7m)]

llsinca l5.9..O, we determine M e ou Sack that-.
Voter Eln3m .<.M[A*(n,ol"m)],

and we remark that, how: Voter3n[ 1\*(n,

We define a Subset A” of box ‘”w by:

F0?‘ 0.11 M. w, ole ‘*’w

A**(n,oq == A*(n, 61M)

Observe that: Vol€‘t' Elnf A**(n,o<")]

he now consider SM=={o.ll.c}(al=M A 't(a)=o}



185

As 1.‘ is 0. Run, SM as o, {Rnite Set.

To each ae§M we determcne a sequence ozae“’w suc:htl\a1:=

o(aM.=O./\
We apply lemma. l5.3.2 and Find. new sucln lzl-at

Va e SM [ A**(n, o(a)]_

Retranslatlng, we See U\CI£:

Va .2 9M [ A* ("I Z,fa1v1)], |'.e.= Vae §n[A* (n,o<)]

ilierefore-. Vaé §M [ Volea role’? -3 A(n,ol)]]
and-. Vole t [A(n,o<l],

3

ISH W3 W“ prove O. Converse to Uleorem l5.3.3.

We first treat the reader to a small technicality.

Let 'Cé“’w?re0.spread,wl\CCl\ fmllas the condition: vocfaer :2 Vn[o<"ez~1l
Let us define’ as in 9.0, for each aew, Q decidable subset K‘: of u: by:

K5 == frllnéwl 'c(ax<n>)=-O}

We clacm that Vaf 't(a)=O —> K: .-_K?<> 1

12»Justify this clam, we reflect on Ute coding flmctcon (cf.1.2)
Remarkthat: Vaf 0.>O ‘-7 Slnflfrl-l><a A a=<n>x(’;]]

_ll'1erefore= Va [(0.>OA 't(aJ==O) 9 Ellvf (mo. A ‘C'(G)=OAK5: Kg 11

Hencefortlx, ’L’e°"u)l'.s<1SPreo.d suck U012: Vo([o(€‘C' g? Vr1[o("€‘C':l]’

we write KT ~= IQ;
‘E may be thought oF as Uxe set “’(l<t‘)

'6’ is 0. Ram L? and only if K‘ as o. finite set of natural numbers.

Next, we lake 0. look of something which almost is a fan:
Consider 0. spread ’te“’w such that: Vafaetgz \7’nlIo<"e'c~3]and
l<t.-.-. { O, Q} where Q is a volatile number (CF. lake dL'scussA.'0n following
on theorem 11.40), and O. FCU‘one.

It is reckless to assert; that 7:’ is a Fan, lzkéscomes down to £ln[n=H

It also (5 dangerous to claim that 1.” f‘u|Fds the Fan Uxeorem (cl-‘.15-7.),
fol», as Vaetflmf o((o)=m3, U\e fan theorem would Cmply
3n Voter’E o((o)$n]I l.e.: 3h[ Qgnl

Finally) we ad;/(Se the reader against Preachcnq that ‘t fulfils
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the crazy prénccple CRPt.
We have our reasons [br doing so:

We deFL'ne a. subset A of-‘ Udxwou by:

For all new, o(e “’w=

A(n,<x) :=» o<(o)=o v n=Q.

We claérn knot: Vcxet-3n[ A(n,o(")].

Let o(e’c’ and. Consider oc°(o).

-IF oL°(O)-_-O, then: A(O,o<°).

—If‘ o(°(o)7£O, then: :‘ln[n=K] and: E|n[n=9~/\A(n,ol")].

In any case, therefore: 3n[A(n,o£")1

Applycnc} CEP? , we would find: 3n Vo(€‘C'[ A(n,oLfl_

If Vo£€'C'[A((5,o()]’ then E is a nallucxnation.

IF ah‘.-I'\¥OA Vo<et[A(n,ot)]], then :'lnfn=Q], Le.-.
2 nus green caught.

Both asserttbns are overhasty.

It Seems wise, therefore, not to claim: CRPT:

Taking to heart the lesson that this example fbrces upon us, we

|5.H-0Lemma: Let 'te‘“w (we 0. spread such that VoL[oUE1‘.';> Vn[o("e't]]

and. CRPT
Wen-. ’v’m[ \7‘£[’t(<€7)=O—=,-Qsm] V 3€[€>mA 'c(<?>)=o'J]

(Tnat is to say; the flclxocce sex’ K1": K}; as,

in a Sense, perspicuous. We may Find out, Ear each mew,

Lf there is ct member of K‘:greater than m, or not),

Let me uu.

We deféhe O. Subset A OF wxww by-.

For all new, as “’w:

A (mat) == 01(0) ém v (fl>n\ A ’C’(<n>)-.-O)

We claim Uxakz Vo(€’C'3nl_'A(n,oc")].

Let o(€‘t.' and. consider o(°(o).
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—-IF oc°(o\sm, then: A(o,o<°)

- If o(°(O)>h\) then: t(<o<°(ol>)=O,

therefore’ Putécng n=—_-ol°(o), A(n’o(n)

In any case, Elmer-eforez3nfA(n,o<"l].

Applylyq CRPIH we calculate new suck that VoLet[A(r\,oLYl.

We then dcstcnquisk two cases.

(I) n.<.m, then: Valet-[o<(O)£rn] Clad:

WE t‘(<2>)==O ——>ism]

(H) mm, then ‘c'(<n>)=O and-.

an cm A 1-(<Q>)=o],
8

Now that we lave placed U\e la.dd.es; we have he kesétatcon to pick the apple,
and eat Cc:

I5-‘H Tfieoremz Let 'ce“’w Ce 0. spread. suck that VoL[oLe'c4:.->b$\[o<"e1-'1],

and CRPT.

lien: 3m WE 'c(<€>)=O—>9-.<m], and, U\€I'eFore.~. t‘ is a Fan.

P__r_o_9F=We define 0. subset A of"wx°~’u.: by-.

For all ole “’uu=

A(o,o<) := ENE €>o<(o3 A z~(<Q>)-=0]

For all o(e‘*’w, for all ne: “’w, (1)0:

A (ma) : 2. ve [ ’t(<{>).—.o —-7kn].

We claim l:l1o.l:=Vote't3n[A(n,o<"]1

Let otet and consider o(°(o)

Applyinglemma I5.‘-Lo,we two Cases:
(0 3€fe>oz°l0) A t‘(<€>)==0]

-Wen: A(O,oz°l

(M) Vel: 'L‘(<€>)-=0 -9 €.<.ol°(0)]

-men, Putting n==-oz°(o)+1, A(n'ot").

llsinca CRPT, we calculate new suck that Vo<€‘l.'E A(nIa)],
Agam, there are two possibilities:
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(I) n=O

Then: \7'o(e'c3t[t>o<lO) A 1r(<0>)=Ol

Therefore: Vne K1"ENE t>n A he K7].

Ag Eln[neKT], this shows that KT is an Lhfihtfe

and decidable Subset OF 00.

ms, there as no important dlrrerence between 1*’and Wm

According to l‘3,l, then, ‘L’does not fL.lFil CRP.c..

This case has to be excluded, and we are led to:

(In) two

|—hen; Vlllf t(<Q>l=-O -=2QSHJ

Therefore: K‘ is a finite set and o is a Fan.

We reached our goal.

E

The theorems l5'.3.3 and lS.H.1 complement each other and. characterize
the Fans among the spreads ‘t Uxat Fulfil the "condition Voi[ot6'C;2Vnl.7x"e'i'll
as those Spreads 1' that obey the crazy principle C:£P1~­

This is a. new occasion to throw the ranks of the classical army
into disorder.

For, upon classical reading of the quahtifiers, CRP1. CS Valid 90"
all spreads 'c' satisfy‘ the C1bo\/e-mentioned condition, especially for ‘*’witselfi
find. the {bin theorem is not.

I55 In COI\clug4]or\of this chapter we invite the reader {or an exercise
in the cli(’Fccult art o( Counterpoint.
Do not the Sweet melodies of chapter 7 and 9 deS6've of a counterpart?

Consider A1:-.=foil VnElml:oi"(m)=o‘]], write A1 - {O('g6’Vr|l:o("(J(hll=()]}

and tfy Es: { oil V6334l:ol"(J(hl) -=0]}.

Consider AH== [oil Vn flmlf A1(o¢"»"‘)]}, write A,_'={oil3{Vnl:A,_(oL"»~ll"l):l}

‘Md ("7 P4‘-‘{0‘l V}3r\[ E'ioL"'l('"ll}.

Or, write: A.,={oi]aJas vnvpt o(~,gm,r(s(<n,p>)=o]} and

llfy Qq:= 3P[O(ll,K(nLP (8(<n)p))::O:l}_

What is there lio Say on the behaviour of thiS l<moL of sets under the
reducibility relation :5 2

We did. not expbre this question and. it does not look easy.
A1 probably would like it to have some more Sets to bogs-,_
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lb THE TRuTH ABOLLT DEl‘ERMlNACy

The axiom of’ determinacy is playing First Fiddle in recent discussions
on the Subject OF descriptive Set theory. (cf. Moschovakig I980)
At the next audition, we want to hear if it is able to play 0, constructive
tune.
Our expecta.t£Ohs are low.
Its Style of playing is that 0? A. de Morgan, and O? the two notes he
produced, only ON? WQ9 "‘39H?­

Music aside, it is clear that we do not have a method to decide
which one oF two players is to win a one-move- game, if the number oF
alternatives at this one move is inFinite.
The axiom of delterminacy makes this claim and ventures to extend it
to games where there are infinitely many moves.

It seems that the Statement of‘ the axiom of delzerminacy =
under such-cu1d- such circumstances, either player I is bound to have
a winning Strategy, or player II is, expresses an idle hope.

We improve its chances by not taking it on its disjunctive Face value,
and testing instead the lollowing hypothesis-.

Suppose player I has an answer to each strategy player I,
might Follow.
Then player I has 0, Winning strategy.

Observe that, when the game is being played, player I does not know
which strategy player It is following.
In calculating his moves, he has, to reckon with all POSStblltl'.C€$.

This formulation of the determinacy problem, is reminiscent of situations
in daily “Fe, llke Playing Chess with a clever uncle.
Suppose that player I is able to win the game, if, at each move, he
is allowed access to any Finite tnlbrmation on the answer; which player IE
will give, whatever be the outcome of this information. Then he Should be
able to Find the right moves without asking questions as well.

The device of robbing classical statements of their disjunctive Structure (and,
thereby, of blatant falsity) by making the constructive contraposition of one
of the two disjuncts into a condition From which the other one should
follow, hag been successfull in Other cases.
lhe continuum hypothesis, to mention only one e¥Cw\ple, comes true, by this
treatment. (er. o_.l_el5_;_n,de Swarli 922 lislerzzee I980.

Having made this first and. Sensible Step, we have to {one another
disappointment: two-move- games still need not be determined.
To be sure, we proved that in the previous chapter. .
We have seen, in ls.4, that the Following step, in general, is not permitted-.

CRp* Lek Ac._=_wxw

Il-‘ Vatan [A(n,oi(nlYl, then 3H Vm l.‘/-\(n,ml’l

Here, o( should be interpreted as 0. possible strategy For the second player
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The first player, though having an answer to each possible strategy of his
opponent, may not know how to move.

Thus, we are forced back to a more restricted situation, where, at
each move, a player Faces 0. Finite Choice. As the number of move; is
still infinite, counting does not suffice and we have to think.

Now, the fan theorem Comes to our aid and saves the honour of determinacy.
The story of it will be told in this chapter.

We First reconsider the determinacy of Finite games as we cannot trust
A. de Morgan with this task.
we then go on to some not tbo d.i.Ff‘CC.U.ltinfinitary games which are
enacted in the monotonous fans that we know from chapter 11.

Finally, we solve the problem For fans in general.

The conclusion of this chapter is, therefore, that, from 0. constructive point
of view, determinacy is a compactness phenomenon.
(cf. Note 10 on page 2|?)

lt.0 We first have to coin some terms

Let ‘re ‘"00 he a spread, and S he a subset of “’w

Together, '6' and 9 deliermine the Following game G('i', 3)

Players I and 1: co-operate in producing some are’:

Player I chooses oi(O), then player IT chooses oi(1l, then playerI

chooses oi(2.l, etc.

lhese Choices are restricted. by the condition that Vn[I'(&n]=o]

(‘c Geing a spread, the game is not Frustrated at any Finite
Stage).

Player I wins the game if oie§.

Player It may be said to win if oid§= his interest is in

preventing player It from winning.

We already had an occasion lb use game—theoretic terminology, viz. in
chapter 7, and we will build on what we have laid down there.

Let e‘”w. 5 may be interpreted, as ‘a Function defined on Finite sequences
of natural numbers, and therel-‘ore, as a strategy for either one of
the two players I and Ii, which says him, out each possible position,
how he has to move.

We introduce two subsets 21(5) and Zncx) of U.) by:
21(5) as {al VliE2&+lSeaiafl ., out) =--yiaiztlll
Zmcp) == {al V9. E2Q+2 s €q(o.)] ~> o.(2E—Hl= l’(01tZh+lll]
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Elm’ {,5the set of-‘positions which may be reached if player I llzeeps
to the strategy given by 5
gflq) as the sex of posctcons which may be reached if playerl Keeps
to the strateay cpiven by I.

Let Teww be 0. spread. We olefcne Stratl (17), the Set 0? strate ties for
player I whéch keep hum wcthlh the spread 71', provided that his opponent
oloes not leave it, €!U\€r, by

S'tratI(_‘C’l == { X I Va.[((oLe 2;I(p) A him is even A t’(a)=-Ol-) 'l7tO.x-<K(a.l>):o)

I\((a¢ 21(5) v tc3(a) LSodd. v 'C'(0-HO) "’ [(0-l‘-*-Cl.-l}.

The corresponding} set §tral:n(’t') cs defined by-.

Stra.tI[ c'c'l== g yl Vatttae Zn_(xl Agata] L; cold. Ae(a1=ol—> 'r(oue<;ca:>)=ol

A(lael zit‘) vQq(a.)is em Vz-(a.l+o)—+ g(o~l=-OH}.

It is easy to see that Stra1:It'C’l and Stratum‘) themselves are spreads.

We also introduce the notion 0? ,obeyLnc3 to a Stfoieayn
For all o(e‘”w, (6 “’w we define;

oLEI( ;__ Vntéinez-Ityltl
(l'.e.: the sequence o( «is the result of‘ some play,
on whioh player I obeys to the Strategy given by Kl.

o(EEK2:: Vhtan
(Le.-. the se aence on is the result of some play
an whceh player It obeys to the Strategy C3iV€l\by (l.

The following property (9 to be the object 0? our Cnuestcqauong:

Le}: ‘t'e‘”uu be a. spread and S be a subset o(3 ‘*’uu.

We define-. Det(t'y9) (tie.-. S‘ as determined. in tl, by-.

Del:('L',9) -.= We Stratflttl 3oLl:o(En._K/\ Stall —9

355 §(;rQtI(1;)VoL[ o(E1K -9 3(otl].

In the Lntroduetfon to this Chapter we have given some explanatlon,
as to why we prefer this formulation above other possible ones.

I64 Before losmq ourselves in Lnfcncte qames, we have ,0. careful look at
Finite ones. We will treat them along similar) but shorter lines.

Leg '1' he a flmte subset of U) such that Va\'I’€r[tC’L€'T"“1‘7-@l$tre'l':l
Let 9 he a subset oF w.
Together, ‘P and.S deter-mme the lbllowinq qame G-(,‘l’,S‘l=
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Players I and. I Co-operate in producinq some as ‘T’
Player I chooses alol, then player TI chooses all), then player I

chooses a(9.), etc.

These choices are subjeet to the condition tha/c, at each staqe,

the (‘mite sequence produced until then, belonqs to ‘P.

The play ends, and ends only, if there is no Continualzion of the

finite sequence within ‘l’, and player I. wins, i? the Final Fimte

sequence belonqs to S‘-,othern/Cse, player TL, whose interest is

in preventing player I From winning, may be said to win.

(1e'T‘ is called Flucomplete i§ - '=3nl:aae<n7 67']

L65 Cew. c may be interpretgoi as a finite Sequence, and also as a
function whose domain is a finite set of‘ finite Sequences, and therefore,
as 0. Strateqy For either one of the two players in some game G('l’,S).

A natural number c is Called 0. strateqy For player I in 'T' if:

eqlc) = max('l'l -r 1 A Vo.l:(°|-€'l1 A 19(0) 5? evemx 3n[0Lx<n>e‘T'])-> a»e<cézl>€'T].

The set of all strategies fbr player I én'l" is a Fcmte Subset 0F on, which
is called-. so-ax.~IL'P)

Likewise, a natural number c is called a strateqy For p|o.yer IL in ‘T’if:

%(c) =-. lnax('l‘)+;L A Val: (aET' Al(}(0-l C§0'di1 A :‘ln[o.*<n7érP]l" O‘*<C(°’)"=T'].

lhe set of‘ all strategies for playe, ]_T_in ‘T’ is a Finite subset of us, which is
caJled-. §4:rd1:l Ur).

Finally, we introduce the notion OF,,obeyinq to 0- Strategy‘
For all aew, Cew, we define; '

(1 51¢ ;. VG ag tr Aagéer A liqlirl is even)-)(tr<eq(c) AQgerx-<c((r)>)]

Li.e.= the Finite sequence a is the result of some Finite play,
in which player I obeys to the strategy given by C).

O. EEC ==- VG [(09-.Qr A (later A Qq(G) is o-dd.)-> (tr<eg(c:)A GL9Q’*<C((7l>l]

(y,6~~.the finite sequence a is the result of some flhilb Play,
in which player T1 obey; to the strateqy given by c:)_

We had. to go through all these definitions fbr the sale of the Followinqtruth:
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Ib.I.o Theorem: (Determtnacy OF Finite games)

Let ‘T’ he a. (‘mate subset of’ on such that VaV(’r|.'(ae‘T'/xactfla @e‘T']

Let: 3 6e 0. subset o? w.

Suppose: Vce.S‘tro.1:n(’P) Hat 0. is 'T’—completeA o.Enc A S(a\]_

Then: ice Stro.tI('|") V0. [(0. is r|_'-Complete A Q 51c) —->S‘(O.)7.

Proof: The proof? goes by induction on ma.x{9c}(a)[a.e'l"}_

Determine Few Such that €90?) -——mo.x(Stro.tE(’T'}) +1 and:

Vce Strata ('I‘)[ F(c) cs '7‘-Complete A Hcyeflc A s‘(F(cM

A strategy c. For player 11 may be dévideol cnto dL'FFerent

parts, each part answering one oF the possible Fast moves OF

the First player-_

Let u: consider the Pcncte set Kg: ==={ 11] <1'> e 7'}

A9 tn lO.7., we define, For each cew and tea», Such that £<€c3(<-.),

C‘ == the code number 0F the 1'-th subsequence

OF “*6 htincte sequence, coded by c.

We claim that: Bie K3: VceStrotE('F)3deStratn_(_’P) E Ci’-=d~1.'A(f(<11)(<>\=i1
/
5 ¢ (Le.-. there C; a subtree 0F '1‘ such that’

whateverplayer 11 is schemingon this subtree,

player 1‘. knows how to answer hem)

For, suppose not

(Remark that the statement wh'ch we want to prove

is a decidable one)

We now determine, For each fie KT) , C1-ie Stratn (‘T’)

such that: vaexg‘, \7’d.eStra1:n('T')['c‘=d"—7(F(dv(<>)7£i]

It is clear that, bucldmo Ce gtraen (’T') such that;

\7'ic:-.K;", Cc‘=(c,-_]i] , we fend, V¢eK::_ [(F(c))(<>)1L «L1,
Le. : <1 contradiction.

We °'<’—*€""‘i'|€ioe KT, such that Vce9trat,L('m3deccmt[(-r)[c‘o=o1“o,1f(d))(<>)=iJ

11, is a Safe first move for Player L

L3‘:us consider, For each Je K3) == {jl<i,,3'>é'P} the game



19’-r

G_(q1£-)3-I)’where rl-:*:= <i.zJ>'F -.-..-.(0.1 <1'°,3'>+a e'l‘}

and S‘? :§ (‘inlay/9 ‘-135{Q [<'i°,j>*Q. E

(We relativéze tlae game G'(‘l',S) to the Posction <1'°,3'>)

By our choice cl‘ to, we know that

VCE-Stra-tI[('P*) 30. [ O. is ’l'*-complete AQEEC A 9*(a)]

and, as max «l9c3(0.)lae:'l"*l < max {9q(o.)lo.e':'l’}’ we may oletermcne

Ca‘ (-3Strait: CW”) suclx that Valla Cs’l‘*—complete A QEI <2)—a9‘(a)']
Putting all these things together, we F0\d. ce ST:ra1:IC‘T‘lsuck thug

CC<>) z'''—'’1:0

and, (‘or out ge kfio, , cor all ae <‘«»:>,,. I

C( <1'.°,j> *0.) == Ca‘(0)

W2 6Q.SCl~}observe Uxak Val,-(a, is '11-complete, A (LEIQ) -3 9(a)?

We skoulol complele this prool-‘ lay treating, separabell/I the Case-.

maxg QCi(Q)lO.eT} <2
But Unis will be left to the reader.

8

R9-marlt tlxat, Ln Uxeolrem 16.1.0’ we dxld not impose any condition on the set S.
In case 9 £9 a deccolalole Subset of N, we may of Course. Prove Ule,
Uleorem by classical joqglinq with quantcliiers.
This is an easy method, bu]: not very promising For the kind of problems
We, are Studytlrlg.

'52 A Simple example of a spread cs cr (cf. 11.0)ZWIOH

It 63 in We Spread that we want to play our -First cn€cncl~egameg_
Strong nerves will kelp you, wken Playghq in 5-zmow

Tfiere is one decisive move, vC2..mentdoncnq the 1- 5" like SCQUEHCQ
ol nllubln the players I and H. are norlcina u.pon_ ‘
‘lids move my be done by either one ol- the two players as long as
kcs opponent has not yet made Ct. '
ll: (.9 possible, in case both players like Suspense, that nolfiinq l\QpPe_;[g_
We then are witnessing an endlessly’ protrqgted cold Wm,’ M wmch
the First strike Cs, necessarily, the last one.

We Willl>'”°V6“at. 5" “imam QVWVGame is determined.

Before doing so, we reflect, for O. moment, on Stratl (Q-amen)
This is another simple spread, not very diFFerent from omen itself;
remark tkot = Vge Strut]; lczmonl VmVnlflglm){O A5(n]:,£o) .3 m=n]_
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For elementary reasons, therefbre, Stratl (o‘,_,,,o,,) 9<1fC€FC€9the C0hClwSi0h 0F
the Fan theorem (c{‘.11.‘l-l

We want to use the following corollary 0? the Fan theorem (cf. 15.2.);

Let ‘t'€“’w be a Fan and 8e‘*’w Ge "suchthat: sac-aw (ell-9)

men, A,=._{.n,,..=_wl 3.,(€t—[s(a)=n3} is a. finite Subset of w,
especially: Vn[neA v-v(neAlTl

We now redeem our word»

|6.2.o Theorem; Let 5 Ge a subset of? “w.

Tie»: Detlcrzmow 9).

Proof: Suppose: V[eSl:ratE(6‘2,,,o,.)3otl:o<En_6 ’\ g(°‘l]

Llgzma GAG" (eff 1.9), determine 8e“’w such that cS:§trakn(0;,m,)->‘”w

and: \7'{éStratI[(U2mon)[ SIJ EH1 A $(tSlJl]

we now describe a strategy Z For player I.

What will be his First move?

He considers A== {(5l3'll0ll re stratgioamonll
As we remarked. just before theorem lb.2.o, this is

0. decidable Subset of in.

Player I distinquiches two possibilities:

If 16A, then Z(<>):-= :1.

IF 14A, then Z(< 7) ‘='-0

Now suppose that the game has been played, For some time, and

players I and II have reached, in co-operation, the position
Qzn = <o,o,. . . o.> (Zn times)

Player I still has <1 choice.

He considers A == {('5Efi(2n+:)l pa Stratn i<r,,,,o,,1}

This is, again, a decidable subset oF in

Player 1’, discern; two possibilities:

If-‘ §_2n at-<17 6A, then. Z(Q2n) ===1

If-‘ Q:2r\ we<4) ¢A, then Z,,(i‘_5_2n]'-=0

lhis completes the description of a strategy for player I, <19,
in all other cases, he has no choice.
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We have to Show that Uacs strategy Z which We d€$C"ib€d. , £9

a winning strategy for player I, u'.e.= that \/o<eG'2mo,,[o(EIZ —=2S'(ot\]

We will do Uxcs by proving; Voleozmon[yell-w3[eS‘tratn(_0;mon)Co(=8lJ]]

(We have to reason in this Carefw Way, 0.9 we do not know

how comp|n‘c.o.ted S (S as a. subset of ‘”w)­

Lct ones‘ and oéEIZ,Zmon

Fcrst, we establish Enat;

Vn[ n =,up Eodp) 4 0] -a {fie Strata (Simon) EVm<n[{(C:>m)=o]A5|J=oL]].

Suppose new and n=).Lp [oL(p)#0].

We déstintaunssh two posscbditéesz

Case (1): n Ls o'd-Ci. Player I has made Hue decisive move.

AS player I has been following the strategy Z, we know

that: we Stratl (o'zmo,,)[ CST?n .-. C-in],

Let Joe Stroll (ezmon) be such that : o<Eng,­

Remark: (El;-,~)n = Qn and: SIXOEm X0.

Therefore: (5|3r,)(n) = o<(n)==i and: SIJO =- on.

Observe (-.kat.= xo(_5_n\=i and: Vm<n[(r°((f)_m]=o‘_(.

Case at): n is even. Player I has made the deccscve move.

As be is Followcng Hie SEPO-liegyZ, be bus done so

for the reason Uwotr

3J’€ §trCIl:£ (o'zmo,,)|: (5-iF(h~I-1) =—:Qn*<i> -- 'i<(n+1)]

We now determcne Je Sftratn (0'zmon} Suck that SI‘-_-on

Ond. observe U101‘?(15 5Zn=§,\ cud, o(EnK,0JSo: Vm<n[-J(§m\.-.0]

We now descrcbe how to find) §1:ep-by- step, [6 StrutE(0}_mo,,)such Um

o(=81dr.

For Ga“ new} We say:

- cf r\<};.p[o((p) +07, then: Vm<n 1i,(c_3_m)=o1

-if n=}LP[ot(p)=,eO], Chen K may be determcngd,

Completely Such that Vm<n [X(§m)=o] A 5|3’=ok.

Observe UK113)For this K: V" [C-§—'|p"\=-‘.5041, {-6.1 8%: 0i.

El
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I63 The reader may suspect that theorem |t>.7..Ogeneralizes to the other
monotonous spreads Ogmon, U‘,_‘mon,...(c{‘.11.4g) and it does so, indeed.

BeFore proving it, we First establish a lemma which is also useful for other
purposes,

Recall, how we defined, an 9.0, For all ’L°e‘*’u»and aew, Q. decidable

3“b$?t K‘: of w by: K: -.= fnlneurl t'(a*<n>)=o}

If‘ Te “’w is a spread and. 't(a)-=0, the set K: is the set of’
natural numbers by which the Finite sequence 0. may be continued withint'.

[b.3.0 Lemma: Let ’C'e ‘*’u2 the a Fan and S tre 0. subset of ww such that;

Vge St:-al:n('c’) hoist f OIEEX A S'(o()]

l7\€n= 31'-6K: Vie Stratlttfl 3ou=.'c’t «EEK AStotl A 0c(0l=i].7

E;_o_ol?= ago? GAC“, determine Se wu. such that 5: 3l7rC1l3n(t')—9“’wand:

\7’KeS4:raltE(_t’)l:f>l5e't A 5lgEn1f A §(5l5l].

Remark that, as I" is a Fan, Stral7l1('C'l is also a Fan.

Using the fan theorem (cf. V3.2), we calculate mew such that;

VKEStrata CI“)VZ_,€S/cratfi (I'll: fm= Zm —=r(5l(l(Dl=- (5lZ)(Ol]

Let ge Stralzfl tr). I is a strategy for player It in 7: and naturally

falls apart into dL'{—’Perenl:ports 3'‘, ie K3, , each part answering

one 0? the first moves that are open to player I,

As Km already C9 s‘uH—‘L'cCentto decide about (6lJ)(O), we

may reason as in the proof oF the determinalcy of Finite

games, (theorem lb.I.o) and we olairn that:

Q g ‘zliekf; \7'J’eS€ra12Et'Cl3Z€§t.rat1[(t’)l:f7*m=.-Z71»n(5lZl(0l=il
"..-‘ (5-€.= one of the First-level gubfahs of 1:‘ has the

property that, whatever player It plans (n this

sublhn, player I knows some answer I50C5.)

For, suppose not.

(Remark Ulalz the statement which we want to prove is a.

decidable one; we have to examine only ffmlge §l:ral:n(t‘l})

We now determine) For each 115Kg’ age §trol:K(1r)

such that: Vie ac}; VZeStral:I[(T-‘ll:pm: Tim ~a (8lZ)(o);L1]

It is clear thalz, building KeS‘tra1'.n»_(‘C’lSuch that:
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Vie Icf, E X‘: cpl“, we Find.-. vie K; It (8I5)(o) #1
[_e_; a contradiction

We determine ice K3, such that VJ’eStrod:H('C)3;eS‘l:ratn(t)[YE:>m=-27amA (6lZ)(D)=iO]

We observe that Va’€S‘(Iral7]I(t'l§lo(€"C'l.-o(EE({ A S‘(oc]A o((O)= £0]

and sigh our relief.

El

Lei: 'i'e‘“iu 36 o. sptiead and aew lre Such that t(a)=O
men at (cf.1,2.) is also 0. Spread.) consistinci of those Cnl-‘initeSequences
on for which ax-oz at’.
(ass on is the infinite Sequence which we 92!: by concatenating the Finites u.enc:.
a and the infmil-e sequence oz, i.e.; O.*o< eoi A Vnfaeai (o.)+n\-_oz(.q])
The spreouot at is the result of relativizine Ute spread ‘C’bo the position :1.

Suppose, in addition, that S is a Subset of Woo such that;
V66 9tra.tn(‘C'l floterf otEn{ A S(oll].

Let us call aew such that rialeo C1,poSCl:Conwhich is 9-safe-for-Player-I

CF: tq(o.) i; even A V[e§krata(°‘1“)§loteQ'c'[o<EI,_g{ A 3(O.*oz)]_

We llcwe Seen, in lemma. 16.3.0, that:

3i.e|(<T’; V3'eK:£7 E <£,3'> is 3-so.fe- {-‘or-pla\)er-I]_

We easily generalize this to the Following Conclusion:

Va.[(’C’(0~)==OA 0. C9 S~9a.fe-{hr-pla.yer~ I] ——>

3 ‘£6 K: Vie KT I: Q%<1:,J'> is S1so,[3e-F>r-plQ)l€"fl:l­ax-<i>

I6.‘-1l—heorem=Let S lye a. subset of “bu and. mew, m>,2_

Then: Dek (WM S)."1001 ’

Er_o_o_{i=Suppose: l/Je Stratn (crmmon) 3o(€G'mmOn[o(En(f A S(on]

llsincg GAC“ 1.9), determine 5e‘*’w suchthat 8:S'truI:]I(u*,,,,m]-9“'w

and: V(eStrr.1tn(c',,,,,,,O,‘)l:8|ye<rm,0nA Stfsfl A §(8lgl1

Let S*=={ o( |oLeG’mmDhl 3{e §tra1:E(¢Mmon)[_'Oi=5l(]}
Remark that 3*<_:S.

he advise player I to go, each time, to the rightmost S*—sr.-eye­

position, but we will refine this advice in 0. moment.

The proof that such a. strategy will bring victory to player I,

£5 by induction to m.
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Suppose, therelbre, that m>2 and that the theorem has been proved
lbr all m’, m’<m

(The case m-_-7.has been taken care of m theorem 16.2.0).

Let us make a start with the descrcptcon OF the strategy g, which
we want to commend to player I_

Using the fan theorem (which is an elementary theorem, in the

ease of these monotonous Fans, cf. theorem NH) we Find keuu

Such that: V6eS‘tratfl(Gmm°n)VZ€9t'ra1n(0‘Mm0,,)l:f2=Zl< -9 (8lJll0l= (8lz)(0)]

Following the proof of lemma |l,.3.o, we dcstcncyucsh two cases:

Case (I): £l«;>o Va’€Stra1.n(G‘mmo”)3Ze'Stra.tn(o‘mMon)[ fig: 21‘ p Argmlopi]

In this case, we choose such a. number, say 1'0,and. we

determcne: Z(<>) == £0

Remark that, al-‘ter the answermq move by player If we

reach a posctéon <i°,y‘> Such that

Vtestratfl (<£p\a.,Gmmo”) ade £‘|:a7J‘75' l:o(EKbrI\§(<i°,J')x-o():(MMDH

Observe that <';°'J->6mm” cs esomorphcc to some
C5‘m’mon 9 m’<m

Applying the Lnductdon hypothesis weltnow how to Complete

the constructéoh of-‘ Z as a winning strategy for player I.

caseau - Casem

Now, it Seems that player I need not hesitate very long:

We determine; Z(<>) ==O

From lemma lb.3.o we know that:

we StrabE(o‘mmon) 3 gs Stral:E(o‘mmw)l:Fl; :27’ Q A(8[;](o)=0]

It is cleanr that player [I has made a senscble Fast move.

But he does Something more.

He Cs (1 very human being and. he wants to know what

player It would lave done, Should ltés (player I’s) First
Move have been different,

Not catching player I’; Cntentconsl player ]I does not want

lb tell, estflmatcnq that, in any case, a bit of mystery
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will add. l:o kcs reputation

Player I, tlterelbre, has lio make a conjecture

Chewing on the proof-‘ of lemma I{o.3.0, he Fcnds F0 In

§l:ral:F_(<T,,,,,‘o,\) Suck that:

voo \7’Jestratfl(o-mMoh)[ 5*’: (/up)‘ —» (8l(r)(o],£ 1:]
and, therefore:

V56Strain-_ (¢,,.,,.,,,,)[ Vu;>olI(yi=()4°)‘] -7 l8l;)(o):o]

Player I now suspects lzlxat player l—Lwould. have

answered 0. possible move to <1l>, (>0, by Following

llxe stfategj (#0)?
In reality, ltowever, kc’; Pérst move is to <O>.

AFl:er l,l\e answering move by player K we Peach (1.

position <O,3’>.

Lee fie scrarI:<‘°’l’o-M...)

Delsermcne. Xe S‘t.ro.t1I(o'mmon) 5‘uch.(:ka,t:

V1.->O[fL'-"9‘(o)tl A {(<>)=j I\ <°2J’(r.-.A

and. remark: (:Sl{)EnJ’ A 8l([ 6 <o,1'>

Let us define;

3(0)’) == {o< | o( E <°»J’o'm Mon] Elxestrakfl (o*mmon)[

E J(<>)=3' A Vi:-Ol."J"= (/toll] A 5l()'==<O,3'> 7(-01]}
We observe that:

V,1e9tra1:E (<°'5’ o;nmon) 3oLe<°'1"o‘Monl:o<all A§<o’J->(oL):l

We, of—’course, do underslicmd. what Player I is aiming at,

as we WCl'.hQ€$‘€d kc; wrestling in theorem 16.2.0.

He wants 60 ensure Hxat) if oi Cs 0. game played, according

lo lxcs strategy Z, we are able to find. ye Stral:E(0’m,,,o,\],sucl\

lzlnakz 0(= Sly. ‘

He will be successful if lie continues his strategy in like

way he has begun Lt.

While making Z, he chooses’ fiat’ each new such Uxal: §l2n+l)

belongs to Z: (A), a strategy ft, from Zn (am cud‘ that.MOVE) I
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u) j)_(2n+u) e §3E(;A.\l

on As 0. conjecture about “'3 5t'°~l5€‘?‘/“Sad by Play” E’

F" extemdg Fm‘ , Le.-. - Q
va[(u*mMO"(al=o A €c3(a.l<ZnA Qfilal "3 a/“A” /‘H-1]

(lu) v(l'é5tr0l71[(°'mmonl[ V0-[(0-mmonlalzo A eglalsznfi AQ ¢al -9

_9aJ___0~/An] —-—> (8lJ)(Zn+ll ='Q(2"+‘ll

(Player I has made the move From 9-’-1"5° Q‘2"*'l' 0"”

because lne had. no other 5'a.[5e P0€SCbCl°'&V-‘W9 cs Why he

may determine /un 3“d'‘ that U“) holds)

We €01“each new {Eu} such (:l1al3'-§(Z"*'l*<j’ 5 Zia’) Ze, 2

S §(2n+1l+<3°7O,
== {dl 015 mlnon lflge StrUJ:E(,G‘mM0,\)[

['va[(g-mmon A S2l‘l+LAgfol 9 ad’=q)‘n]
A 51‘ = Q(2n+t)+<f>*o¢]}.

Q'(zn1-I) as-<37

And, we observe that:

Vie Strd-tn (§(2"+l)*<<l>6’ lilolé mzmll *<‘l.)°’mmon """° '6‘mml *4)

We now See lxow player I CS 90”‘? t0 W‘’‘'
, sstble.He is tryinq to leave H\e.$Ptne of as $00" as P0cmmon

While building, On. Co-operation wcth player J1, :b jzqutehriece

d 6 Gmmon, he cpnjectures more and more to 8'. . -, a: _

- e O 0When arriving at ‘&?.n he °°"le°tM€$ 8 Va lk

least an pos£l:L'ons of length 52% _ U‘A§ Soon as the Pla‘/: 5'1“?-" by MS own choice’ or by 6

- 1 I knows,command, of Flo‘/Er Ill, leaves the 9P”‘5 Df °-MMON P aver

usU‘GJ the Lnducttbn lvpollesés, low to Complete on and /u.

~ - -st and,
In any case] both o( and /L are growmfl/‘Step .l77 €961”observwq them, we establish: Vhl: 5"‘=L5l}‘l":l/ "Q" ‘X:

. - - that
we abgtadn From a formal defnmhon Z, and. we Guess
the reader M“ not dgpbre tluc; oleccswn.

El

h [o(EI'l A 9 (0(l:l
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16.5Player I, having lost his Fear of player II, is brooding on tactics to be used.
in Fans other than the monotonous Fans, which, now that he has Seen through
them, do not attract him any more.

It does not seem easy to generalize Hweproof-' OF theorem I6.’-l

Player I was successful in the monotonous fans, because, while playih
a run oz in Such a. fan, he was able to guess large parts oF the
strategy which player 11 appeared to follow­

As he only Conjectured. on the possible behaviour of-‘player 11: an Parts
of the monolfonouisFan that they Could not enter any more’ during the
present play, his dreams would. never be disturbed by reality.

In general) however, he. has to base his moves on a supposition
concermnq the Future doings of player II) also at some positions
which they still might come to pass, in the further course of the game.

Player I might be mistaken, therelone, in his assumptcohs regarding player IL’,
the more so, as player I[ will try to thwart his expectations.

Thus, we have to go 0. new way.
Happily,we learnt a lesson from the classical adventures of the axiom
of determinacy.

Wefirst try to prove it, in case the payoff-set 9 is rather simple
((,n the sense, of the hyperarithmetical hierarchy).

In this section, we will come aheaot with @315 c_t_r_\_g_:lStewart I953,and, prove,
9),. fan; in general, the determinacy of open and of closed sets,

16.50 Theorem:Let we was he 0. Fan and 3 {re a. subset of ‘*’w such that Se 2‘;

flog: U.S42nqtheorem 6.2, determine 0. decidable subset A of w $U.C‘1u‘lG.£':

Votl:S‘(0tl £2 :'lm[6‘<meA]l.

Suppose that: Vye Stralzn (‘L’)30(e‘C'[ o(EI{ A §(al]_

Then: l/Jr: Stratnlt) Sore‘: Elmt olEEJ A 5011eA-I:
Remark, as in the proof of lemma 16.3.0, that, 05 77 CS(1 fill‘,

Stral,-fl._('t)is also 0.
nlsing the Fan theorem (£19..15.2.0) we calculate Mew such that:

We Stratum") 301+:-:1?’Elm l: as!” A 3tm€A A m_<.M]

We define: 'T':={o.| ’t'(o.)=OA llqialsml and:

A*=={O-I Eltrfasztr A treA7}

We observe: Vce Strata (T)Elaf a is 'P.complebeAmale A agA¥]
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The Finite game G('P,A*) is determined, according to theorem 16.!-0,

and. we calculate ceStra!:I('P) such that

Va[(o. is ’|"-complete A asIc) -9 aeA*]

Remark that for all (ye S‘tratI(t) which agree with c on ‘T’:

VoLe,‘C'[OiEIX -9 am eA”‘], and: ‘obietfotelg -7 S(oa)],
E

16.5.! Wworem: Let T6 ‘*’w the a {-‘on and S be a subset of-’ "~’w such that Se W1’.

When: Det (139).

U.si.nq theorem 6.7, determine a decidable subset A oF us: such that

Voifstoil :2 ‘v’m[c'x‘meA].

Suppose that: V54;$(:ra.tH_('c')3ot€‘C'[0(EE[ A 9(a)]

Let us call aew such that ‘t[a)=O on position which is §—Safe-Fan

player I, i{= tq(a) is even A V{eStrat1I("**r)Eio<e“t[otEE[ A §(a*ot)].

Using lemma 16.3.0 and the Subsequent discussion, we Find [6 Strut1(t')

guch that Va.[ ’L“(a)=-OA 33(0) is even AaeZI(J4)—> a is 9- safe-fob“ player-17

Remark that: Va[(t'(a\=OA 0. is S-so.f‘e-For-player-I)-9Vtr[a£tv-9(’r€A]]

and, therefore-. Voze'i~[o(EIK -9 Vmfame A3] and:

Voi€’t' fo<EIa’ -—>Siufl.

B

'5-5 The gods are smiling upon us, at our next undertaking.

The determinacy of-' H3; and Z:-sets has to be Conquered) now.

16.6.0 Theorem:Let 'c'e “’uu Q:-2.a fan and S be a subset of’ ""w such that Se Hf,

Then-. Detcc; S)­

EEQP‘ U-S4'N3theorems b.l2 and 6.2, we determine a sequence Ao,A”...

of decidable subsets of in such that; Vol[S(o£)g2 \-/n3m[ 6<meA,,’H

Suppose t.hC1t'- V(eStratn-_(’c') 3ote‘c'[o(En_X A S(od],

U541? GAC", we determine 8e‘*’u-I such that: 5-. Strain (“L”)--) Wu;

and V(estm1:H._('c)[8lJet A SIJEIJ A S(5l,)],

As 17 is a fan, 3tratm(I') CS 0-'50 0- F0". 9~"d; °‘PP'YC"9 the

fan theorem (ChiI51) we determine 0. Sequence mmm“... o§ nahual
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7\(Ul'\b€f‘SSUCH V71V&’€§U"CJJ‘-n:(‘C’)amtmgmn A Wm e_An']

Next, We define C1 subset: 9* 0? ‘*’w by:

9*’: {°‘| Vn3m[msm,, A 6lme;A,,_J}.

W6 ObS€J'Ve 8* Qg Olld U‘l0.1’nVI€€tfQtn(f)3d€‘t[dEnKA

A9 C“ “"5 P"0°F OF theorem !6.5.1 we Find. [5 §tro.l:I('C) such that

Va[(t'(O-)=O A CSOven A aezl Q [S S-1-_Sa‘Fe_fi>r__P‘qyQr__I].

Recall that aew such that ‘t(o.)=0 L; Caued g¢_SO_pe_fDr__PlQyer_I

((3: 29(0) is even A VJ/eS‘tra1:n(0..C.)3a€a.(.[o(EnJ A §+[a*oQ].

Remark that:

E7/“l-Val: (‘C'(Cl)‘-‘O A 0. CS S*—$ClE-fair‘-PlQ\)Q,r—I A ?q(a.)>,mn) -9 36-[age-,4eyeA';fl

m‘3T2FD"€= V015-?'[0(EI3’ -9 Vnflmfmsmn A6£meAn'fl.

and: V°<€‘C[o£EIJ -7 9(a)].

We mcgkt have Concluded fike Proof 3190 by Percewmq that 3+6]-[o_

Gad. U\Qn re.§err£ng (:0 theorem (6.521.

B

T“? P"°°F 0F the deferminacv 0? 2‘; -s2!:s well be in two Steps.
Fcrst, we make (1 remark wkcdx improves on lemma |b.3,o,

Let 1:e“’w (re (1 spread 0-red 8 6e o. subset of Wm.
We define a subset w,(s:) of 0., by

WT’ (S) P”.{al I-(a')=0 ACq(0) CSeven I\ V56 Stra1:nv_(.at)3o(e°"t[°<Efl;x /\§(Q*°i)]}

W.c.(S) is the set of all positions in ‘t’ which are OF even length and
§~SO-F€-Ft>r— plC!\)er- I__

I6.é>.: I__e_r,1n_ag=Let teww be a fan and gmghm

929.9%

Be (1 Sequence of-‘ Qubgets OF ww

suck that‘ VIE§Cl"O17E(‘C’)30(6'C'[(XEn[A

Fer-= VJ€S’crot,1(t~)3a[ 'c(a)-.-o A as znm A 3n[a5Wt,(§n}]]_

lkscnq G-AC“,determine Seww sad. that 5; gtrotftn.) _> Law and

VJeStrO1:H_(t)[ Slyer A 815EEK A Eln[g‘n(g[J)]

Remark Utah, as ‘C is a final St-;a1-,l(-r) ‘L50150 Q R1“

Let re Stratl (1'),

Using U\€ Fan U\e0reml(c§_l5.2) we calculate mew’ new Sud, got,

v;eStrat,,(r)[ g'm=Zm a §n(8lZ,)]
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We consider jfmv

fm is a Finite initial part 0F(1 strategy fiar player I.

We define O. Subset B o[-‘ so by.­

|3;={ 0,] ‘t(a)=-O A Qq(a.) is even A 07130.

AV6-[(agQr AQ¥-QTA €g(€r) is even) —>(lr<m A as l}*<3r((,);)]l_

(When arriving at 0. position in B, player I[ has to make up

lxismind, because, From now on, his moves are not determined any

moreby
when we choose, For any member a oF the Finite set E, 0. 9‘-Ta!-"egg

Za in Sltratl (QT), Uvere exists exactly one strategy Z in

Stratnltl Su.cl'\that Zm=fm A Vaeef “z=za1

Remark thank: Vzestratnltll Zm-=37m—*:laeBC 5l% 6&1].

U.$4'J1qUte ‘Fan tlleorem, we calculate pew such U101: p>m and;

\7‘Z,eStratmhr) Vr|e§tra1:E(‘t')[(Zm=fim=fmI\ Zp=ypl -» Vaeg[5lzeqgsl.,ea]]

(i.e.= for any Ze Stratmitl such that Zm=37m, U: is sufficient

ho know Zp, in Order to decide Wlticlxmember of B BIZ, will

pass through)

Let ge Stratnm suck thal: Zm =.—fm

V /QEB Zhaturally Falls apart into dL'FFeren€parts
o'Z,o.eB, each one Vepresentinca0. Continuoution

OF fm from the position vimB '10 Which

player I likes to go.

Reasoning exactly as On Ute proof of lemma 16.3.0, we conclude;

Elo.eBVZeStrotlLtl[ 2'»...fm —; Hqestratllflffimsfm A

A 371;»=aZp /\ Slq ea].

Calculatinca Such a Rumba; (2, we observe:

VZeStrox1(°t-)-3o<e°‘t-[ o( Eng A Siaaeoill
i.e.; 0. e Wt(§n)_
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lb.6.2 Theorem: Let ‘be ""04 be 0. Fan and. S eve <1 Subset OF ‘”w Such that 362:.

E20? =

Them: Dex (13 9).

Using theorem b.l2 we determine 0. sequence 90,8}... of subsets

of Wuu Such that Vnl.'§nelT‘::l and, §.~. "helmS?"

Suppose that-. VJ’€S'CfC11:E(t’}3ote’i‘[o< EEK A §(o¢)]

l'.e.: Vpe Stra1;E(t') floletfolemp A 3r\[S,.(od].
Using lemma, 16.5.1) we observe that:

V[eSl:ra1:E (‘tl Sal.-'i'(0.)=-O A aezfl (K) A Eln[Q6 Wt (§nYll

Reading bltrough the proof of’ lheorem lb.S.O we See Uuak we

may use Cl: l:o find. Xe S‘tral:1.(t) such tlat:

Vole‘t'l-o(EI(J'l -9 Elm Elnf Stmel/\/7; (§,,)]l

(We never used the lad: that the Subset A Of "0, Wkid‘ ‘TCCW-9

in that proof, is a decidable subset of w)

Assuming the grateful role of player I, we obey to this

strategy 3?. and call the play that now develops: o(_

Quietly, we Make our moves, but when we Come up to (1 position

am, such that :_lr\[&mel/'\7,L.(S,,l]", we ask some time For ref-’lection.

We calculate new Such lzhal: Kime W, (9,) and we observe

U101? V[e§tr(1l:E(am't')3[3ea'"‘t’ [ pen?‘ A §n(amai-p,\‘_l_

As 3" e lT‘1’,we recall theorem Ib.5.I and Find 0. strategy

7,eStro.l:I (amt) Cuch that V{s€3"""t'l: IEEIZ -9 Sn (5'<m*[’.>Yl

It seems wise to be obeolienlz,from now on, in this strategy Z,
and. We do So.

Continuing the play, we are sure thcd: o( will belong fo 9,, £3,

and. this is happiness.

IE

16.}The reader who is ClGS9"°<1"yeducated, will expect 0. long series of-‘
?url:her adventures in determinacy.
Bathe will be disappointed.
A slight extension of Uwe method used in lheorem 16.52, solves the problem
Once and For all.
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16.7.0Theorem-. Let ‘(:6 “am ea 0. FCMand Q eyea, subset of ‘‘’w Such that 96 2:,

P_reof=

Fxen'. (T7,

lLsc'_nqtheorem |o.l we determine 0. decidable Subset A OFcu

suck that vo<[s(oq gl 3pvm[<am,,;m7eA]]_

§U.pp0Se that: Vie Stratmk) 30(et'[o(EI{ A S(ol)]_

We again Unagéne ourselves to be player I, for we do not Hke
games that we do not win.

We def-‘Che, For each new, (1 subset 9" of “’w by-.

3,, == «f °< I 3?» Vmf <'o7m,{'sm>eA A p.»(O)=n]}.

and we observe that S = U S".new

Applymc} lemma I6.6.I, we remark Utah;

v,c.;scratILu~)3a['t(a)=O Aa.eZE(3r) A 3n[ one w.,(s..)]]_

and, using the method. of the proof of theorem 16.5.0, we Find.

0. strategy {GeStr-akI(1:\ suck that-.

vozerli o<EI X0 —>am 3n[ameWt.(S,,)‘.|].

We now start the game, producing, (Lnco-operation with player II)

a play o(,while keeping to Ute strategy (0,

When we come up to 0. position Ema such that 3n[am°e wr(Sn)]
We ask for 0. break,

Remark that we may assume that mo»0.

Tics Follows by a short reFlec-Lion on U18 proof? of-‘lemma.16.6.!

We may slightly modify Ute defCm‘1:£onof the set 8,

mentioned there, to ensure that all numbers «ZnB have

a. positive (enqU\ _

We calculate no Suck U101: 6zm,e Wt (SRO) and. we Observe that

’t’(6zn4}=O I\ mots even A V5eStratE(5"o.L.)3Z€3<"'a,t,[Z5115Ag(amO,Z)]l‘

Tfierefore: V56 Stratfl (5‘"‘o«;;)3ZJe5""o'p; 3f3[ ZJEEX A

Aver < a*-mga, rub e A] A (5(0)=n.;3.
Especially .- <<oc(o) >,< no» 5 A_

We get it Mb our head’ to Produce‘ whileot develops, a sequence

[$e“’w suck that; VmC<'o'(m"'(;m7eA].
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We start this Projed: by putléhgz [5(o)-= no­

We deFU1e, For each lreuo, <1 subset 9(9) oF “’m by:

3(0)‘: {Oi l 3{5Vm[<6Lm,{Zm>eA A (seal:->]}

Remark l‘.l\CZI-l'.°-Vnl:§(<n>)—--S,,_l and: VQ>[S((7r)=nlgw§(lr*<n>l]

It will be clear that we have to repeat ourselves.

Arguing lllte we did before we started the play oz,we Find. a

strategy K.,eStrul:I(a"‘-t) such tlatz

VZea’*‘°t' E £51 51 —-V93m3nl.' Etmoar2m 5 W,c,l§(<n°>x<n>)ll]

We continue the play o() keepmq ourselves to this strategy 5, , lzillme

read,’ in co-ope,rat£on with player I[, a position Elm, such that

m1>mo 0.nd= Eln['o'(m1 5 Wr(§(<n°>*<n>))]

We calculate In‘ such tlxalz 50711e W1. (§(<n°>*<n1>)), observe

that < <ol(o),ol(1)>, <{s(o), n,>> 62A and, conftdenlzly, put [’.~l1l=-‘-"1

And thus we go on.

While playing o(, we find 0. Sequence mo, Qro,m1,Qr,,,....
of natural numbers such that:

(I) Vlcl mQH>m& l\l),(3((!'£\=91‘l'1A em”; all

us) amgé Wt(SClf&)ll

In order lb move From am,‘ lzo amgfl, we use a strategy

“+1 which we fwd. by om appllcouffon of lemma. l6.6.l

Finally, we consider the sequence [Beww that Full-‘dS=

V“: (Ell.-+1}: Q11] and We observe l'.l'lO.t=Vn[<5<fl, l-571)6A1 I73.‘ 3(4)

We llold. a small reception, to celebrate our victory.

E

ACWOLN)/,we have nothing leFl: to wish For.­

16--f-l (D€l’.2Fm0\O.cyoF games Ln fimiaxy spr-e,O.d9'l

Let teww ere O. Pam and. S 978O. Subset oF ww.

F\?Jn=
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ttsihg GAC", determine sew... such that 3: Strobntl-‘l-> Wu»Omot

\7'{e§tro.tEt7-"ll: 8l,reT: A 81551:; A Sifilgll.

DePine 0. subset 8* of ‘*’w by:

9* :=' {cal Elle Stratmfcl E 8l,r-_=oflt

Observe that S*c_:§ anal: Vie Sl:rol:fi(T') Elmer l:o<EE'C' A S*(ol)].

Moreover, §* is strictly analytical and, therefore, belongs toZ4,(cf.l0.‘-f)

Applying theorem 16.7.0 we find XeStratltfl such that

Vaiewrl: o(EIK av S*(o£l].

This satis(?ies as.

E

ll>.8Theorem 16.7.1 admits OF C. minor extension.

Suppose that Te ‘*’w is a spread which Falfils the condition-.

Val: (’c'(0-)=O A tg(o.) is add) -7 K; is {3cncte]_

’t need not be a Fan.
when a game Gm’,S) is enacted in the spread 1', a move by player I
is always the result OF 0- Choice among finitely many possibilities, whereas
Player I may be ol-‘{~‘er€d,now and then, an infinite list of alternatives
to choose From.

It is easy to see that Qtrotml’!-‘l is a. Fimtary SPreqd_

Assume that S is (1 Subset of ‘‘’w such that V(eSUat1[('i’l30<€:’C'fotEE{ A S(otY]

As usual, we determine, with the help OF GAG“, 36 "*’w such that:

8: Strotflttl -9 Wu, and We Stra.tn(‘C]l: Elle’: A BIJEEJ A SCSIKH
llsing the Fan theorem, we observe that, For each new;

.[(_8T6-ln lKeStro.l:E(’i”l} is 0. finite 821:.

Therefore, the range of‘ the function 8 is but a limited part of the spreaolxr,
Working steadily, we Find 'C'*6‘“w such that:

(I)‘t'* is 0. spread.
(H) ‘t'* is a Subspnead of ‘C’

(In) Vaf (’i‘*(o.)=O A Qg(a.) is odd-) -9 K:* = K

(IV) ll/6€3l'J’G1?n—_t’C’)[ Slfe 17*]

J'C'0

Player 1'. is able to ensure, that any play in 'c- is actually in 't*, and,

ot Course, he resolves to do So.
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L» 1 1:

This restraint pays CtSdFI be°a‘*'5e; "OW;tl\€.OJ\em l6.7.1Fmg{:plh Omd Pa‘/3’

Fcnall‘) we ask ourselves pl/' like above—mer\liCon€d COlf1dClZCOP1is necessary:

Suppose ts ww CSa spread SW ‘FCDV Subsets g 0‘:W3):

Dams) (IF the Mac ‘Mmtcl-‘«'er.l*r>rall subsets s 0F‘"00" W°“"““/°“'
you may safelyreplace I’POT g€Q1‘I

Are we allowed to infer that V0-[(7-'l0l=O " 29(0) C‘”°l‘d)‘7 KE ‘LSFcrutclz

. I h ch ' , '—e.=We are hot‘ 9),. example, m the extreme case U101:player never as on owe I
cf vamtax-.—.o A lqla) as even) -9 '2: has €*°"=“V °""- ‘*“"”“""”'

But Ll:seems feasonable to ?‘€q“”"e Rom T that Itva_[ 1,-(a)-_-o-9 Kg has at least lzwo elemenlzsj, So Unere are o
compulsory moves (M T'­

_ , . - - u 1Now) Concjusl-on U‘ question may be }(1.S't(.¥l.€d,,05 PO OWS

We treol: an exemplar)’ Case-'°

Suppose that; OeKf, . .1_5k<t>
we Prove Uqaj;kg’ cs alhmte set.

Le; Keozmorr we del-‘me a subset SJ of.’ “’w by;

9J:=__£d Hd[O)=__O A VPgo((1)[J(P]=o]) v (oL(O)=;1. A flpl-JlPl‘fO’.l)]

Remark tl1o!:= Vrlégtratlllfl Ede? [dell A §(O()]:

Let qe stratum
Determine: otlol --—’-O ‘l: VP5 ’l KO’) [<l(P):O]

-memfore’ we may F‘-Ad Z6 gtmg;I(t) such that: Vd€t'l:o(EIZ -3 S’(<x)]

Cons‘-vder Z(<>), and distinguish two Cases:

0) ZR?) :0 then,‘ Vqe Kg» psq -9 flPl=O:l
an Z(<,)=4l they 3p[J(p)=[=O]

We are able to make this deccscon fiat“every 16°:
using GCQ we co_lcuLld.l'e New Suck U\<:u.-;

MOH­

\/gewmn E X“= Q” *3 V‘?€"fo}VPl:P5°l -7 lf‘P""°] . . )alcematcve so i:?f"?.~1?.:‘:‘iZf”‘
we remark that: Vqe lC;to>l:Q5 N], and‘ <07

Observe that the sets 9 , which "°°““'°d 5“ this Proof’ are only 2:

_. . . . ' "’ ° I51

“,2 resuts of Uus sectwn Lmprgve upen Qmlgefcxmtem of CRP mand. may be related to the chscusscon U1 - ­
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I7 /-\PPENDlX= STRANGE LIGHTS lN A DARK ALLEj.

We met with Ignorance, during our long travel, on more than one occasion.
Living in the modern age, we should ask ourselves, if our failure to Fight
it down is not explained by the poorness OF our equupment.
It might be that the axioms OF ihtuitiohistic analysis, a; we paraded. them
in Chapter 1, do not decide some of‘ the questions that l<€€P LLSawake.
we should jump into rnetamoithematics.

Much work has been done on the metamathematics 0F intuitiohistic analysis,
but, mostly, classical interpretations of intuitionistic Formal Systems were looked (by,
and Found.
Therefore, the results of this discipline howe to be welcomed with caution,
approximately, like the {Endings of a Japanese professor in Netherlandic studies,
on heading closely 0. Dutch poem,

Intwlltionism should. develop its own metamathematics, but, until now, perhaps
because of its famous distrust of logic, it hag doneso only with great reluctance,
and very partially.

Great things will not be done in this chapter.
We meditate, brieFly, on an aqonizinq problem that we are carrying with us
since Chapter lo, vi2., whether A1, -_<E;

lhe classical devil is prepared to Sell as Q NO to this question if we
only give up some very tiny part of our Soul , it does not seemto matter

07?.

We try not to listen to him.

-lhe light that comes From adding semi- classical assumptions to the axioms
of intuitionistic analysis, is artificial light, and, personally, we Prefer to
Stumbk under the twinkling of the stars, although there are but few of them,

17.0We fgrst consider a generalized form of Marl<ov's principle;

'‘'-'3h[d(n)=O-_.l%an

We discussed GMP already, just after theorem 515, and have Seen, im.
theorems 5.|b-2| other possible formulations of‘ it.

GNP also occurs as the last fbrmula of Kleene and Vesley l965
and l-3the Subject of that book's Section E. 18.2

Many (weaker) versionsof it, and their relation to. i.ntw.'l:ionistic.arithmetic
have bee" 5t”‘dl€°l, "‘°~t"l§l BV ClGSSl°C0ll methods, <‘—f-Foelstra I973.

We remarked, in 6.5, that acceptance of GMP would have saved us the
trouble of establishing the arithmetical hierarchy the way We did it ‘Mb
Chapter 7.
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Even the proud hyperarcthmetécal hierarchy shrcvels — when touched by GMP~
into 0. rather obvious phenomenon.

17-0-0 EE.'£9_'L’ I? ALSE: ,U1?/A '1 GNP

PL92f‘ Quppose A11iE'1 , 1'.e.= A‘, 6 2:

Then also: [oz] Var3n [o<(<5<n,J3n>) ,£o'.l} e Z‘,

Uscng theorem 10.1 and ACOOWe Fénd pa ‘*’u.: Such that:

{-o(| VJ'3n[o<(<&h,Xn>)+o']§ = {oil 36' Vn[ [3(<5zn,Xn>)= 0]}

Speccalizcng, we Ftnolz V5fln[ (s(<f.»n,fn7HO] 3 3d'Vn[[3(<(En,Xn>)=o]

and, therefore 2. 1 V33n[ [3(<[§n)d7n>)¢o'_1A ‘I 3XVn[(3(<f§n,in 7)=o]

USCHC3 GNP, we observe: ‘IVJ’ —1‘IEln[r!.(<{§n’a7,,>)=,LO] I Otnolz

'1'1 -35 V?‘ [[3 (<{Sn, a7n>)= O].
"lit; (9 a contraouctcon.

I2

I11 Another Fancy, which may attract some half -hearted Cntuxtionistsl (9 the
fouowéng scheme, proposed by Ku.rod.0. |95|. (Cf Note 11 on page 217)

KUR Let P _c_ w.

I? W [‘=" P(n)] then -1-v Vn[PM].I

An Unmediute consequence of ‘(UR is, that F0? W917 $UbS€t P of W‘
"" Vn CPtn) v w PM]

17.4.0 Remark-. If’ A: 1 E1, then -= Kur-2

Proof=S‘u1opos¢-. A215},

US4'.nq theorem 10.4 we determine a decidable subset A o? w

Such that: Votlf A‘1(oL) 23 SJ Vn [ <<3m,37n> e A7].

Now, we define a Subset A* of ou b\/=

For all ne w:

neA* 2 Ba-Hct n=<O,c>‘* A eq(o.)= Qcafc),\

Hot33 tolea A(rec /\ Vp[<&'p,fp>e A31]

(Here, 4 9 Lt the Gmctcon, cntroduced in l3.I, which Fuses
two {-‘cncte Sequences of-‘ equal length into one Finite

S'e(fuLenoe of the Same. fenqth, operating téke its namesake,
a. pairing fimctcon on “’uu),
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Using Kurod.a's scheme KLLQ,we observe that: ‘W Vn[r\eA* V "(I16 A*ll

Let us assume, H» the sake oF argument, that: Vnfne A‘ v -1(neA‘l:l,

Remark that: \7’n[he A* (:2 £lp[n*<p> eA*]].

The 591:: {ml \7’n[ fine A*]} (S, therefiyre, 0. Subspread of wuu,

and, 0.9 suclx, a strictly analytical subset of ‘*’w. (cf. 40.7).

(Lel: {seww l’:e a subspread of Wm (cf. 1.9}, I’-e.=
[3(4>)= 0 and; Vnf[3(n)-_~O g2 Elpf [501-x<P>)=O7]

DeFcne 55 ‘*’w such that; fimla) and, Forall o<e%u,
for all new-.

(8lo<l(n\ == o<(nl Cf {5((fi;ln*<o<Ln)>l=o.

:= P( n*<P7)=O]’ hot.
Observe that {5_._\{q| vn[‘[5(an)=o]§ -_-)Ra(5](= l:o( l ElJ[o(=5l5]}l

and, Uxoul‘,ljkerelbre [3 cc strictly analytlbull.

Observe, that, fbr all o(6°°w‘­

A‘,(oz] 4:’ 5X Vnf <6ln,'fn>eA:l

z? ElgVr\l: <o1,J~7n eA*l

2 (X5{Mg} Vn[ZneA*l}

(K C; the l€Ft—.~u1verseof the pairing flmctfon <<9 on ‘”w,
cf. Ho).

Therefore, A‘, is a strictly analytical subset of ‘*’w, and we have seen

that this is not true, in the digcusscon {bllowcnqalter theorem 13.22

(cf. also: the remarks Concerncng Fun, just after theorem l0.l2).

we conclude: ‘*Vnfne A‘ v -r(ne A*l] and, thereby, bring shame

upon Kuroda’s schema. KUR.

B

Our thought; go back to theorem 10,8, where we have seen that the assumption
that all analytical subsets of “’w are strictly analytécal, leads to a
cor\l:rad4Lc:t£on.

If‘ we assume that A41is analytical, we may add A14, being an example
of an g_no,l\_;tccalsubset of Wm which, surely, is not Strictly analytical, to our
Collecttlon of c.un°.o$I'l'.£e£.

17.2In 10.7 we mentioned that one may prove, u.$4Lnqthe restricted principle
of Brouuver and Krcpke,owb-oduced in chapter 2, that every finitely defmed,
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analytlbol subset of.’ °"u2 is strictly analytical, indeed.
We need not be surprised, therefore, by the f-‘allowing

17.2.0 Remark: If A'gE1, than «BK, (7)

E[c_>_oF('?)=TF\ereis (at least) one questionable step in this proof

guppose A4 ‘SE1

using theorem 10.1 we determine <1 decidable subset A of to

such that va[A1(a) :2 a5vn[<a2n,p>aA]]

We like to assume I now, and this is the moot point, that A is 0!.

determinate subset of?in, arguing this, if urged, by saying that

A’, itself’ is a determinate subset of’ we.

Does not it sound reasonable that an object which is created to

full-‘ilcertain needs of other determinate objects, may be constructed

in Such 0. way that it is itself determinate?

As in the proof of remark 17.1.0 we define a subset A* of u) by:

A*== {n | :‘la3e[ n—-—<a,c7 A @g(a)= Qc3(c)A 3o(‘3J[o(€O.A xecn\1p[<5tp,fp7eAm}

Like A itself‘, A* is a determinate subset of w, at least, we h0pe$0—

Usinq BK and AC0“ We determine [3.»€‘*’wsuch that:

Vnfne A* <:’ Elm[l3"(n\) = 0]]

We claim that the see gal vnranem; is 0. strictly analytical subset
oF Wm.

(Remark that Vn[neA* {:3 §lp[ n*(P) eA*]]=
Define 5e “cu Such that- Funl5) and,For all oLe‘*’u;For 0-“ new‘­

(8lo<](n]=-.4ifiloxllnl .1: ‘£123.. «ma)ou7 ((plo0(n\l=0

== p where Full-‘ds= (‘8—|<-=t‘l(n)*<p> «2 A*,

if not

Observe that var v,.[(§l7),. e A*]]

On the other hand: suppose ale “w and: \/n[-5meA‘].

Determine a sequence Jeww such that VnC l’>a("+”lgln\lso]

and remark: ol= 5|<ol,I’9

We conclude, as in the proof‘ of 17.1.0 that A‘,, itself L‘;a, gtnbuy anmytccag

subset: 0F “’w, aha, as we know, it is not
8
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The argument in this proof , showing that, on the assumption of BK, every
(finitely defined) analytical Subset of °"w ll-50 Strictly 0l"°-lY“C°‘l $“bS€t OF ‘*’w,
is due to John Burgess. (cf. B_gL_rgg_$_'§_l99°)­

HE “Seal. the axiom OF Brouwer and kripke in a more general form and. did
not restrict himsell-‘ to Finitely defined analytical subsets of ‘”w.

To be honest, we deny support to the conjecture, made in the course OF this
proof, that 0. Construction made in behalf‘ of-‘determinate Objects, may be
expected to yield a determinate object.

lhis conjedure would extend to the sequences themselves whichare claimed
to exist by the axiom of‘ Brouwer and Kripke.

But, given 0. determinate proposition 6!, the making of‘ a sequence as ‘‘’w
such that 61 g_93n Eot(nl=07 requires an unbounded stretch of-’creative attention.

A similar remark has been made Ln G-ielen,de Swart and. Veldman lq8l,secl-ion3.3.

17.3We remind the reader of the set 9, introduced in "-27: 3=f0<l:'lJl:5e0;AVr\[0‘(37hl=0]]}

One of the problems we have in connection with S is the question whether E1_-gS_

'13-0 E2—_m_qr_l<=If 515s, then -» GMP

E£°_.°F= We may indulge in Some sweet memories from Chapter 11.

the en theorem. (cf. the discussion aPter 14.3, and I52)

Assuming GMP we Find, that for every decidable subset A of cu:

[[3 VJQG; on 3n [A(XnT.l , then "" Elm V645-0'2Elnl: nsm A Atfnfl

Repeating the argument, set Forth in 115-?’ we conclude that: -'r(E1«_<§).

E

'7-‘l PF0b0~l>l\/,Other theorems, of the same kind as I7.o.o- r7.3.o, may be [brmulateal
and proved.
We are not interested in them.
In our ears, they sound like as many stanzas in an old ballad on lost and
Faraway classical truth.
19 we surrender ourselves to these d£stressFul thoughts, we may overlook
theorems like those of Chaplet 7 and 9.

The axiom of Brouwer and loripke keeps bad company. l?“ W5 Cl‘0*Pl3'?*­
Sometimes, also this axiom seems the invention 0Fa nasty child, Wanting to
make life easier than it is.
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[:41 (of. pages 3, 51,88)
We have to warn the reader: oar terminology is somewhat COr\Fu.s4'ng_

In recursion theory, the ,,eF{-‘ective Versions" of Borel—set9—OF­
{-‘inite-order, general Bore! sets, and projective sets, are called,
arithmetical, hyperarithmetical and analytical sets, respectively.
(It is not diFFicult to understand how these eFFective notions
are made: for instance-. a subset P of ‘*’w is eFPe<:tc'v€lyopen
if there exists 0, reggsive Function .,w_,w sud, that
Vat Plal 2 ilmi lamleoll, (of. theorem 5.2 on page 45))
,,Analytic Sets" is the classical name for Members OF Z44.
(cf. ljloschovalcis I980, page 157 and notice the distinction
between "analytic" and ,,analytical")
Oar notions are not effective in the recu.rsion- theoretic sense,
and, perhaps, We would have done better in using the classical
terminology.
On the other hand, our notions are not to be identified. with
the classical ones, either.

[1] (Cf. page 9)
Remark that-. VIE x(<>)=—.O~> (Funix) £3 Fcinixlll

l-3] page l’-l,Section 2.3, page 39, theorem l0.8, Page l75, theorem Hg)

[5]

The axiom AC“ plays an important part only in theorems I08
and ll-l.q,O.nd. in many theorems of ‘chapter 16.
By a change in the delinition of ,,Det('i*,S)" in section lao
on page l9|, similar to the one proposed For-. "A18" in section 2%
we may reduce its role Still Further.

page 57-)
Remark thal: this Constructive
ctoes not use negation.
We might also consider the question, if, for all Subsets Peww,
if P62‘: and Ne9](P)e 2.3, then P62?.
This is a stronger statement than ours, and it is easil seen
to be an enigma, i.e. e utivalent to the generalized Markov Principle
GMP= var '1‘: 3n[ot(n)=O] -7 :‘lnio<(v~)=o‘_l],
(cf. Luckhamii lens),

Qflmalaliion OF ,,Posl;’s theorem"

l,C.l-‘. Page l5é)

lhis Version 0|? Brow/uer’S thesis avoids a d.iFFccuilty which is
touched upon in Kleene gig l/esley M365,sections 6.8 and 7.14
lhere is no parent intuitive reason, why, in the bar theorem as
it is Formulated there, only effective predicates should be
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considered, and, for thcs reason, our version might be preferable.

[6] (CF Page 159, theorem 13.2.2, and page 163, theorem 13.4.1)

The names ,, Souslin - Brouweowtheorem" and , LusCn-Brouwer- theorem"
may be mcsleadznq.
Brouwer have: proved these theorems, but the classical arguments
are ,,rescued'' by his bar theorem.
Sou.slI'n’Stheorem has been announced in Souslin I917, and proofs
may be Found. in Lusgn gnd S’Cer-pgglgg IQI8 and 1923.

The bar theorem may be Found in Brouwer I927, and (ISa central
topic in the Cr\tLu‘.t.2om'stiClI'tcratu.re (cf. note E51)

EH (c$. page 19:)

We are reasoncng rather quickly, at this place,
First, build. 8<-:‘*’wsuch that Fun(6) and Vcxf51¢ 59] and
Vote E Slot = <17

This may be done by defcning, For each o(€‘*’uJand new:
(8|ot\(n) cxm cr= p>((75|77(")*<o<<n)>)=o

m C(3((-3_|Z\n as<m>) g-.0] , otherwise

Remark: Votflnl A (WU n)] and-. Vo(Vr\[ A((_5r]n) g2(A(b'zn)v f5(5u\]:f.OX_

[8] (Cf. page 61)

Brouwer’s ambivalent attctude towards N, appears firom B;-ouwe,1g75,
Page 133, which, however, Seems to contradict loc_¢¢(;,,Page 333,
where he, mentions -. die Spezies O oler Ordcnalzahlen."II

:91 (cf. Page I78)

In Kleene I955, Kleene admits that he is, sometimes, standing on
his head.

[Io] (cf. page 19o)

As (1 foundational problem) determfnacy made Cts appearance
LIA flycielski l<]é,L¢_Further reference; may be found. an
Mgschovakgg 1980.

En] (cf. page 212).

A scmdar questcon has been discussed (in V_a_nDantzig lgqz,
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7.7.3

SYNOPSIS

I A short apology For tntuttionistic analysis. 5

We describe our point of‘ departure and establish some notations.
we express our confidence an an Qx.;oma,tizo.tion of-‘ intwitionistic
analysis as proposed by Kleene gggt gsjgy lqbs
Nothing very new is to be Found. in this Chapter.
Its contents Coincéde roughly with section :1. of
Grielen, ole Qwart, Veldmcul |98l

2 At the bottom 0F the hierarchy. A dtscussion of‘ Brouwer- lCripl<e’saxiom. I2

We introduce the central concept of‘ reducibility between subsets
of ‘*’w: P—_<Q.--.= Voiilp [ P(o() 3 Q(p)]

We also introduce two subsets, A1 and E1, ot “’w by:
A,== {oil Vn[oL(n)=o]} and 121:: [04 Eln[oz(nl=o]}

we prove: ~(A,sE,) and; -.(5,5A,)

We l3L"’St one o(-‘ these two theorems is a well—l<nown result,
showing the inconsistency between the principle of Brouwer and
Kr-iplze,in its general form, and Brouweo-’s principle For Functions,
ic§. Kleene g._n_o_ll_/§§|_e_yI965, wt) or Ac", as we and call it
in chapter 1.

me never use Brouwer- lCr(pl<e’saxiom in this treatise, not even
in its restricted fi>rmu.la.tion
lip to chapter ‘l3, AC” is not very important eitller. (cf-,Note3, p.216)
It only M0ll<€$P-3Q equivalent to: 35[ Fun(5l A V0<l:P(0<)Z2Q(8loLl].
(F u.n(zS)means: 8 codes 0. (continuous) Function from “an to ‘*’co,and
Slot is the value of this function at 0!, of‘. 1.6)

If AC“ should fail us, we defc'ne= P-sQ == 38[Fu.n(8ln...]

3 lhe second level of the arithmetical hierarchy, I5

We introduce two subsets, A, and E2, of “’w by:
A2:-.—.{ell vman [um(..)=o1§ and E2=-.- gal am vn[oun(n)=o]]

(According lo a convention from chapter 1, every Sequence ol
is divided into countably many Subsequences ot°, oi‘,...)

We prove: -1(A,_5Ez) and -.(E2._<A2)

We PVOOFSare given slowly and. are discussed at some length, as
from these little seeds, big trees will grow.

The First result uses AC“, and is, therefore, classically lulaccephble.
(AC0 (’1f.<‘—l~a.pter1) corresponds with Brouwers principle For numbers
in Kleene 0.__n_<_iVesley lqbs)
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4 Some qctivtlies of disjunction and Conjunction. 1;

We introduce, For every Subset Pof ‘*’w and new, subsets D"P ard
C"P, Eztpl and UMP) of Wu) by:

Dnp .-= {a1 3q<n[P(ozQl]} E2e(Pl-={oq3q[p(e¢q)}}

C"P == {otl Vq<n rP(o<4n} UJ\(Pl== {O4 Vq[_'P(o¢Q)}}
We define, for all subsets RQ of""w.- P-<Q := P-_<Q A -I (Q_{P)

We prove ; \7’n[D"A1 4 D"“A1] (theorem 45), -r(D3A15 un(DzA,))
(theorem LLB], W(D‘A1) .4 Un(E,)) (theorem 4.10) and:

VnVmVPVQ[C"+1 D"‘A1 -3 CQDPA1 «>m"” s P‘? /\ mgpj
(theorems 14.45 and 44.18)

Theorem H20 provides us with an algorithm to decade which
quadruples <n+1, m,q,p> satcs{»\)= C"*'D"‘A1 4 CQDPA1

In order to solve this problem, we consider 0. Wéder Class OF

subsetsof Wm) Viz. For each me w, readmg m as a Sequence
of natural numbers =

(00),, A, == LCD)“ A, == {oq1>'"°A,(o<<>)A..-Ao"‘tA,,(o<t)}Mt)01'")

In hcndsiqht, Some OF the eotrlier theorems may be Seen to follow
from theorem 14.20

5 An aside on trnpllcahlon. 3’-I

We (ntroduce a sequence I°,I,,,... of subsets OF “’u: by:

I ==“’w and, For €<1Ch pew: ISP ==.{oklIp(oL) -9 A1(o{P)t0

We prove: Vp[ IP -<ISP] (theorem 5.6)

We Lntroduce a sequence J°,J.,,... of subsets of Wm by:

10-.‘ aim and, {or each pew. {TSP == {o<| J’P(oL)-9 E,(ozPl}

We prove-. VPEIP 4 JSP] (theorem 5.10)

Some minor results (5.11-:5)are added which try to locate subsets
of Wu), built by means of cmplicahbn, with respect to other ones.

Theorems 5.lb~20 collect a number of 80- Called. Q-_I'\Cqm_<_1_s,Le.

statements equivalent to the generalized Markov prcncLple=
vd[ -n-1E1(oll —) E,(ozl]

6 Artfhmetical Sets Chtroduceol. 45

Starting from A, and E1, we define a Sequence. A2,Ez,A_,”E3,...
of subsets of Wm by: for all new: A$n=un(En) and ESn=E:e(A,,)
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We introduce classes W1’, 2?, "2, Z:,... of Subsets cl‘ woo l>\}'­FDV new,"70:
These classes behave as one would expect; [lor instance:
TF3 is closed under the operation of countable intersection (union),

TT‘;(and similarly. 2.2‘) possesses 0. universal element; ate. there

exists 0. member U of Hf, such that U‘; = sup] [3e‘*’w} where

u,, == {oil bll<oi,[s>)} ‘ ‘
(4 > denotes a suitable pairing Function on “‘-’w)

We easily Find, by diagonalizing, 0. subset of Wu; which does not
belong to TT° but this Set cannot be said to belong toZ?16_lq)HI

Most of the results 0? this Chapter conl-‘orm with the reg alts of
classico-J descriptive 8217theory

We introduce D:={°('d(O):O} and shortly discuss two questions-.
in b.Is' if for all gubggfs Pof “nu: (P5121 /\P5A4) —>P£D
In lo.|b: do there exist Subsets P ol1‘*’w such that

D4 P<£1 or D<P«<A,?

7 The arithmetical hierarchy estabhshed, 54

We prove: Vn>O[ If‘ AS" :4 ES" , then Eh 4 An] (lemma 7.1)
and: Vn>o[ If ES,‘ -.<Agn , then A" _-5En (lemma 7.2)

The proofs extend the methods of chapter 3.

fie arithmetical hierarchy theorem (theorem 7.3) follows easily:
Vn>o[‘1(A,\-_<E,,) A ‘-(En-5 Anfl

8 Hyperarithmetical sets introduced. (9.

We deFine the set HI$ of hereditarily iterative stumps by trangflcmte
induction -.(every element of‘ HI$ is O. (decidable) subset of w and.

w is identified with the set of finite sequences of natural numbers)
(I) {<>} 5 H.[$

(u) If Ao,A1,Az,... is 0. sequence of elements of HI$, then
A belongs to HI$ where A==.[<>}u U <én,m$~>* An

n,mei.o

ti otenotes the operation of concatenation of {3i,ni1*eseque,nc,es_
It Aébu, then r\*A== {mim|meA}.
4 9 denotes some pairing function on u).
If we H121. and ne uu) then o"-.= [ml <n>'*m ecrl)

We define, by transfinite induction, for each o-eH1:$' gubsgtg AWand

E0. of “’w by: AM := {a|vn[oz(<m)=o]} A¢==[o<|vn[EU,,(ou~)]‘}

E W == [oil 3nioc(<n>)=o1} E‘, z: {oil ElntAq,. M1}
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Weintroduce, For each are HI$, classec N3.and 2; ol subsets of won by:
ngle { P] P; win] P5/XV} and 2; 1: { P 1Pgwwl P-_gl-20.}

We introduce 0. Strict and O. rel-‘lexiveQrolering relation,<,é,P€speCtively,
on Hléli (which is a subclass of the class ‘I; of stump9,pre§ented in 80)
such that-. for all (>‘,'ceH1$= (3'_<_'i'52 V/m[o‘"‘<'c‘_l and: o-<'c' 4-_>3n[o'sr:"]

We rove, in theorem 8.7, that, for each ¢eHI$ , and P‘; °"w-.
P2 11;’.if and it there exists a sequence Q0, Q4,... of subsets
of “’uu such that Vm3t<cr[Qme2‘%_] and P_—_H Qm

M60)

An analogous result holds for 20¢ Furthermore, H3 and 2;’.
do possess univereal elements and remarks, similar to those in
chapter 6, apply

9 The hyperqriljhmetical hierarchy €St’.O.lJtiSl\ed, 58

We introduce subsets A: and E: of ‘*’uu by:

A: ==-{oi l VmEln[o(""(n) #03} and E: ==.[o(l 3mVh[ol'"(nl:fiO]]
We introduce, by transfinite induction, for each as H14, subsets
Po-,Qq, P: am‘ Q; 0t w‘*’ bY=

P{<>} A2 cw 2,. P5,‘, = A: al::., = E:
Po. == .[o<| \7’nlfQ¢,. lol")]} Q°.==[ol| Slnf P6,, (o<"l]}

P; =={o<lVnEQ*:,,.(a~11} Q; =={o<l3nrP;,,lou~n}

We observe that for each ‘re HI$; Ptn Q: —.-Pg (IQ? = C15

We prove the hyperarithmetieaj hierarchy theorem (theorem 9?);
Let te HI$ and Sewuu such that: Funtéland Vo<[P.c(dl"Q«,(5ld\]
We may construct, now, ge ‘*’..usuch that Q§.(;) and, (>2t.(8l;)

(This result is complemented by its corollary’ theorem 9.3l
The formulation of the theorem shows that we had b reason
more carefully than in the case of the arithmetical hierarchy
theorem in chapter 7.
We Ft'r$t'. strengthen the results of chapter 3, concernincg A, and E2
(lemmas 9.2 and 9.3).
Theorem 9.5 is a basic tool in the inductive construction

lo Analytical and co- analytical Sells. gq

We introduce <1 subset E1‘ of now by: E4 := gal 3 VHL-u(.M:Oj
We 'ntr duce ‘ th ° 1 J K

i L o 2,, e class of all ggglyticaj subsets of wu_,)by:

Wevenq-‘y,m theorem |0.3, that Z} is closed under the operations of
Countable union and intersection and, therefore, Contains 0]:
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hyperarithmetical sets. 2.‘, also has a universal element (theorem l0.5l­
We call a subset Po? “’w s_t_1:ig_tlya___nglyl;C_0l__ 35[Fun(5] A P: l30(5l1
(lie.-. P is the range of a total (and therefore continuous) function on ‘“w.
We Show that the supposition that all analytical inhabited (1‘.e.:
congtructively non-empty) subsets of “‘’ware Strictly analytical, is
contradictory (theorem 10.3).

We introduce a subset A‘, of “’w by: A‘1=={o([V,:'ln[o1(d7n)=oY}
We introduce lT’,’,the class 0? all co-analytical subsets of ‘*’w, by:
lT1=={P|P§‘*’w|PsA1}.
IT!’ is closed under the operation OF countable intersection, but DZA,
is not co-analytical (theorem l0-I3},and, therefore U1 is not closed
under the operation of countable union.
We give a constructive Version 0? the result that E1, is not
co—analytical (theorem lO.lL1)and have to admit that we do not know
whether A‘, is analytical. It is easy to prove that Fan and A1
Ore not strictly analytical.

11 Some members of the analytical Family. gg,

We study the effect of restricting the range of the existential
quantzlluer which occurs in the definition of 1-2;, to some subspread of ww.

FCl‘Sl3,We C0'\$Cd€" °' n == { ell Vhtotlnl S o1(n+1l s 1]; and introducezmo

31 == {ell Elgewzmon Vnl.'o<(&7nl=07}

We establish the following-. l7’n[D"A1«<S2] (in11.2)’ -1(§2-_<_E4)
(CH4-3) and -1(E,ss,) (in 11.7)

Refining the proofs of these facts, we Find that -.($‘z-_<A2)
(‘N ll-9)," _t52,:$E3) U!‘ 11.10) and, a(-‘ter some effort: -:(§Z_/,A3) (in 11.43)
We 90 Further, how, and. prove that 32 is not hyperarcthmetical.
This is a big task which engages us up to 11.18.
While perfbrming it, we obserie that uncountably many
hyperaréthmetccal sets may be fnteroalated between 92 and the
arithmetical set Ne<a(hleg(Sz]] .= {oil -.192(o<)} (cf, 1111,)

we introduce, in 11.19, pm each me . 0- ,= 1,/[ ( (

and §m== {Dd aiewmmon V" [d(J__n;L:,:O]}"lIVD'l N 0("lS.(XI\+l)<m]}

We find that , Vnt D"S,_ 4 D"*‘S2 -1S3] (theorems 1120, 11.22),
and remark that it is easy to generalize this to-.
‘v’n\7’mE D"Sm <D'""Sm -<Sm+l]

Vymq to do stmclar was For Conjunction, We have to work harder
but Find-. Vm>.1 Vn>o[C"Sm -< C"+‘Sm] (theorem 11.26)
Remark, however, that, {br instance: ~.(C2S»l 5 gs) (cf. theorem ll.2‘+)

IV‘ “-2? We consider the binary Fan 0,; == {oil Vn[o1(n)s1]} and
introduce 9-.= {oi I3J'eo‘,_Vn [o1(Xn)=o]f_
We make Some observations on the class E-.={ Plpe-‘*’w| Pé 9}
and. formulate di(-‘Ftcult questions.
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2 An outburst OF dxsjuhcttve, conjunctwe and t'mplrcatcve productcvcty. I28

We introduce a subset R of’ “tu by: R-= {edVn[n=/u.p[o(°(p)=/:0]->D"A1(o(9")]}
and prove) an 12.0, that Vn[D"A1-<R]and R492 and Rang.

Let P P . (re a Sequence oF subsets of‘ ‘*’w such that Vm3nl:Pm-<P,.,]O) 1)"

We define: Q5‘-={OtlVr\t.—t'l=}1pl.-0(°tP)=ltO] —-7Pn(o(9"')]}

ttsdng methods from chapter 11 we prove, in l2.4, that:
cf VnEla[—1I>,,(cxn,then -(D*Qsc;>), and: if -v(Q-.<A,), then -»(c‘QsQ)

Starting from the Same sequence Po-,P,,..,we def-’cne=

Q*== {o(|Eln[n=,u.p[o<°(p)-#0] A Pn(q9")]} and we prove, in l2.2, that-.
if Q* is dense Ln Ww, than -1(1)?-Q*._<Q*)

We introduce a subset 2* of “’w by R"==[o<|3n[n=,up[°<°tPl#°]/\D"/\,t°‘g")]t
and we observe that: —.(:>’-22*-_<.2*) but, on the other hand; C2R*-52*

We prove, in two different ways, that: Vn[D"Q-( DMLQ]
The Fcrsl: ttme’ Ln I2.3, We require that each One OF the S€tS B,,P,,.-.
is strictly analytical.

We define, For all subsets P and Q of ‘*’w, (1. subset D(P,Q) of may by;
D(P,Q) := {o(| P(o(°) v QM}
We call the sequence P P (__i_£sJ'unct£velyclosed cf VmVn39:[D(Pm,P,‘)£P&].o; 12'"

We call 0. subset P o(3 “’w qL_'_sjunctt've|yproductive if t/n[D"P -<D'”'P].

Vkeprove, in l2.’-I: if the sequence P P is otcsjuncttvely closed and
Vnflotf "l3,(o£l] , then Q is disjancttvefy, Bl’-ooluctive.

Similarly, We prove, in l2.5, having made the obvious defcmtions-.
if the gQqd.€I'\C€ l%,P1,... is conjunctcvely closed and SinFA15 P,,], then
Q is c.onjunc.tc\/ely productive.

Thtrolly, we prove, in 12.6: if the sequence l?,,P,,... ts d.£Sjw\CtiV€lyd°9Qd,
and Q* is dense in “to, then Q* is Ot4'.Sju.nCttV€lyproductive.

These results Lmply that Uthcoutntably many levels of complexity may
be distcnquushect in 173, and even on 2: (cf. the dggcuggcon tn I271

Let R Ge 0. subset OFwuu: Mb tntroduce a sequence I°E',I,E,...
of subsets of ‘*’w by-. IoR== {oL|Rtu°)] and,’ For each pew.­

I§Pl2 -.= {oL| IPR(o<) -3 A1(o(5P)}_
We prove, in 12.8, {-‘or the very set Q we introduced in 12.1, that:
Vnf I,,,Q -<IM1 G].

Let R tze a Subset of “’uu. We introduce a sequence I°B,J,R,.-.
of‘ subsets ot ‘‘’a: by: JOE -.= {oq R(o<°l} and, for each pe w;

ISPR -.= {on 1 JPRM —->E1 {(139)}.

We prove, tn I29, that, if the Sequence B,,P1,... {tdfizls the Conditnbn:
VeVp Vq Vn 3N I: N>€ A ‘1(J;,PN$ I Pnl] and’ as an I22’
Q*:—,—{d‘3f\t.-h=}1Pfq(°(P)¥O] A P"(uSn)}) t},e,.._

VP‘:/q E (p+q is odd) ~> —:(IPQ* —_<Jq Q*)]_
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I3 Bro‘uwer’s thesis, and some OF (its consequences "35

We discuss, brdzl-‘lg,Brouwers thesis, and Formulate nt in a way
which suits our purposes.
We introduce, for each o<e‘*’co,a. subset l°tl* of 1» bY=
|o<l*== {al Vtrfagt» —->o<(l’r);éo7}_
('0. 96" means that the Finite Sequence of natural numbers (2.
extends the finite Seq (Lance 9r
We define, For all decédable Subsets A, B of w:

A 2* B =-= 3,)’Vnltc3(,f(n\l= tci(n) Al/MVl'\l.-l'7lQl’\"){(l7|l§J'(l1l__‘lAlVh[neA—;{(n]e 8]]

( tc3(/m) denotes the Pength of the Fimte sequence /M)
and we observe that For all stumps 031-; 0-51“ 4:) o~s*'c'

We prove the boundedness lemma 13.2.2:
Let Seww be such that: Fuml8) and VoLtAl,(8lall
‘lien: Elp[A‘,(p) A Vocf l8loL|* £* lpl*l

We prove the SoU.slIn-Brouwer theorem 13.2.2-.
A subset OF ”’w WlulC'J\(.9 both Co-analytical and Strictly analytical,
is hyperarithmetical.

Let Pand Q be subsets of Ww. We say that <l3Q> is 0. separate

pair of Subsets of ww if-. voivpf P(oLlAQ(p) —>o(7tl-{$3
(=H=denotes the usual apartness relotttbn on ‘U
we say that <P,Q> is hyperarithmeticallv separable if there are
hyperarithmetical Sets S,'l" such that: PQS and Q.C_’l"and Sep(S, '1"),

We prove the separation theorem of Lusin and Brouwer 8.4.1:
A separate pair of‘ strictly analytical Subsets of ‘*’w,is
hyperarithmetically separable.
Let Se “”w 6e such um: Fu.n(8l We call 5 Strongly fnjective if:

VoLVp.[o<#p -3 Slot # Slp]

We prove, in t-l\€OV€m |3.S.l, that the range OF 0. strongly (njective
and Q/Uerywhexedefined function from ‘‘’wto “cu, is hyperarithmetical.

ll-l The Collapse of the projeottve hierarchy. [57

We introduce, for each subset P of Wm, Subsets H?(P) and tl«ll(P) “lg by:

HP) := {on I 35 [P(<o:,,p)]} and l'=ll(P)=={oil V,f[P(<oz,d'>)]}
(< > denotes a pairing function on Wm)

We prove, in theorem I‘-LI,that Z‘, is closed under the operation IE

We oi subset ,A‘,_of "’w by: A’2==l,'o<[V,fElp.Vn[o<(<1'("z.X9-n)=o]l
(4 ~> denotes a pairing function on “’uu.
For aJl ole “’w and new: Etn:= <o((O),.-..,ol(n-I)>)
We introduce a. class lT;_ of subsets of ‘”w- by: l'l‘,_=={P]Pg“’...»|P5A;t

We prove, in theorem I43, that ll; == {M(P)|PeZ1} and, in theorem
HH that IT; has (1 universal element.
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W6 Vepeat the story, dellnén E’ aml2' in the obvious wa and.(3 2 2 Y

proving their (by howl obvious properties, ll-L6-9)

We then Prove that, by «intervention of AC“: lT;.C_Z;_and l'l'3—=2;
(theorems lll.9—lOl

These are strange results, From 0. Classical point of vbeud,and,
they Fasccnate us.

l‘3-A eontraposition OF countable choice W8

We consider the Following crazy prcncéple, For any subspread 0' of “’w-.
CRPOJ Lei: Asww

19 Voted-Eln[A(n,o("):l, then 3n ’olxeo’tA(n,0‘l]

(The Cntuitéonlstic notions OF I:Subspread. of Wu," and, "few" have
been mentioned in section 1.9 and just l>€l3>retheorem l1.’—l,respectL'vely
The Fan theorem is recalled in l5,2).

ttséng the Fan theorem, we prove, in theorem I5.3.3, that CRPo—holds, _
for any $u,bF(1,1\6' Of “’w Full-‘ClSthe COhdLt(bH: Volt-O‘€O',§)V!"|l..0‘n5°':l:l

We also prove, in theorem l5.’-l.|, that every subspread. 0- of Wu;
Such that CRPG holds and, Voc[oLecrz_>Vn[ot"ec]] is a Fan.
The proof of this theorem develops a line of-‘thought from Sectlbn "5-l,
where we made sure that CRPO.as not true 0‘.-.‘*’w,the uncversul spread.

lb The truth about determinacy I99

For any subspreaot T of “"w and any subset S of °"w, we introduce
the usual Lnfcnctegame for players I and K, and. we delline Sl:r<1l:It’C'l.
Stratnc l, the set of strategies Ln ‘c’ For players I and ]I,respect£vely.
These two sets are Spread-9.
We say that the game associated with “c and S is determined, and
W”.-kt ('(?,§)
V65 gtratfl ('r)§]o(5-¢«[o(obeysto X/\ S(otl] -3-:‘lJeStra£l(t)Vo<€‘l-' [01 obeys tog -9 9(o<l]

Adapting these olel-‘m(l:a)nsto the cage of f-‘.;m'tegames’ we prove,
Ln 15.1, that (weary Fcnite qoune is oletermaaeot.

We then prove, in theorem lé.2.o, tholi, for any subset S of “L,-.Detlogmonfl)
we extend thés result and prove, Ln theorem (6.!-4.0, that, For all mew,
for all Subsets 5 OF ‘*’cu-. Dr2;t,(0'­ S)_mmon I

We leave the domain of the monotonous Poms and. prove, (n theorems
lb.5.0-I, that, For all subl-‘ans T of Wu), and all Subsets S oF “’uu which
belong £022 or ng : De1:(t',€)
In section lbb we extend this result to subsets S whéch ti‘?-long
to 2: or Tl:
In Section 16.7, we conclude, to our own Surprise, that, for all
subfcuas -r of (U0) and all subsets S of “’w which belong to2,', Det(t',S)
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Therefipre, by AC", lbr a.ll Subpans 'c' of ‘”w, l-or all Su.bS€t$ 9 of Wm: Del:C133)
(theorem lb.‘-7.!)

Actually, theorem |6.7.[ embraces the earlier results on monotonous F0./ns,
but we Iel-‘t those on their own, «'11order not to deny the reader
the Fun of‘ discovery.

In 16.8 we remark that the result 16.7.1 may be extended to subspreads
‘L’ol-‘ ‘*’cu which of-‘Per only Pthitely many alternatives at any move by
player II, laull,possibly, infinitely many at some moves by player I
Conversely, if a gubspread ‘C 0F ‘‘‘’wis Such that for all Su.bSe£SS 0?
Wu): Dex Ct,S) and c'to(-‘Fug,at each move by either player I. or

player It) at least two o.lterna,l',Lv€§, then 1" offers only f—‘c'm'telymany
alternatives, at any move by player 11.

I7. Appendix: strange lights Ch a dark alley. 7-"

Wecould not answer the questcon whether Al,5-5‘, , W chapter 13
Weobserve that. assumén A1591, we would have to abandon
various schemes whichhowe been proposed as addition; to the
axioms of Lntuxtioncstéc analysts‘ Such as-. the generalized Markov
pr-Lnccple GMP, Sayéhq that: \7’otl.'--1Eln[o<(hl=Ol -9 Eln[o((n)=oIl,
or l(uroda’s scheme KUR,sayénq that, For all subsets P of an
cf Vnlf-r"P(hU, than -'-Vn[r>(nn.
A somewhat dubiow; argument which Forces us, on the assumption
of: A‘ -.<E‘,, to gLve up the restricted prihccple of Brouwer and mphg
BK, is also given.
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and then, between parentheses, the number of’ the page.
Thus, 2.1(12) means-. in section 2.1, on page 12.

Analytical sets
strietly analytical sets

Aparthess relation on Wu.)

Arithmetical sets
arithmetical hierarchy theorem

Bar; principle OF bar induction

Boundedness lemma

10.7 (88)
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Hyperarétkmetécal sets
hyperarcthmetdeal fiéerarcky theorem

Implication

I-njeotiver strongly Cnjectéve Fundzéon
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Investigations in Lhtuttiontstcc hierarchy theory.
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De opmerkinqen die k. Menqer Ln I928 maakte over de qelgkems tussen
Sommige Lhtutttoncstcsche beqrcppen en beqréppen Lat de klassieke
beschrgvende verzamelihgsleer hebben, tot nu toe, met de Clclndanht
gekreqen die 26; verdiehden.
Hg redeneerde We! klassfek, en dus, voor een o‘\tu.'£tL'om'st,met zorqvuloug
qenoeqz 0FSChOOhnauw verwant, moeten spreéoléngen en analgtcsche
verzamehrlgen todn van elkaur onderscheiden Worden.

Vql.-. Karl Menqer _
Selected Papers in Logic and Foundations, Dtldactécs, Economics
D. Reidel Publ. Co.’ Dordrecht 197"]
i.h.b. blz. 79-87, blz. 2%

Olit proefschrLFt, hooFolstuk 10

2

E. B£€hOp en P. Ma.rtLn—Lo? bespreken becolen de vraag, hoe de
Borel- Verzamelmqen Lnde Constructceve Wis‘-kuthde moeten Worden ihgevoerd.
Onathahkelqk van elkqar, komen becden er toe, de betekenis van
het: beqrcp "complement" zo te veromderen dot hum bouwwerken
klassceke Symmetriz vertonen.
Ze qaom voorbg aan helc algehtgke hLé;rarch(e- probleem-. OF deze
bouwwerken nu ook bewoond agn
De oplossmg die Ch dct proefschrcpt worclt geboden, berust Op eeh
tgpisch mtultéonéstisch Contcnultectsbeginsel, eh is 1/oor hen vermoedelqk
Net aaru/acxrdbotonr.

Vql.-. Errett Bishop
Foundations of Constructive Aflalyscs
Mc. Graw Hill, New york I967
i.h.t>. blz. (>6-69

Per Martcm L'o'f
Notes on Constructive Mathematics
Almqvist dc Wéksell, Stockholm |9?O
i.h.b. blz. 7‘9~8’+

dd: proefschrift, hooFdstuk 9
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In de CNSU-'CtC0f\£StCSCh€Feélz analyse kan de contmuiéect Van (overal op
IRqedefhnééerde) FeéJe Fomcttles bewezen Worden met behulp van alleen
hat Zwakke contcnuiteétsbeqcnsel. (In 1.9 van dét proefschrcpt worolt dét
beginsel CP qenoemd).
Gebrutk makend Van het Sterke conténulteétsbeqcnsel (AC1O01 lg van
dtt proeFsckrLft), kan men bewgzen-.

09) AIS IR-HR en mew, dan besfnat er een Fuxdzce = IE-HR

zodatz Vxélk 1:god >0] en: Vxenz Vgenzf Ix-«jl<g(><) —->IF'(><)-F(<d)I<'2""]

Ook hcerbg is de waacerstellcng met nodcg.
Het vermoeden, uitgesproken door Charles Parsons, Ln zgn Lnleéding by
de herwélzqave van Brou.wer’s artékej: HUeber Defcnitconsberefiehe von
FuLnkt£onen", is dus niet juést.
De bewercng die aan dct vermo eden voorafgacxt, club (as)qelgkwagrmg
Zou zgn met; Fig locaal uniform eontinu, is onwaar.

Vql.: Jean van Heijenoorf:
From Freqe to G-édel
Harvard uncverscty Press, Cambridge, Mass. I967
i.k.b. biz. ’-H48,Voetnoot, lautste zén.

1+

Bi; de Lntultconéstische behandeling van de volledighefd van de
predékatenrekencng, behoeven geen bgzondere strueturen 01$
Beth- en kr£pke- modellen ter sprake be komen.
Aileen voor het verkrggen van een klczssfeke volledcghecdsstellcng
Voor de cntwctéonistésche predtkatenrekencng — een oud, maar
wonderlgk verlangen— Cs hel: nodiq een omdere dun de voor de hand
liggende L'nterpreta.t(e van hex begrip "geldéghecol" fie bedenken.

5

H81: volgende Speciale geval van het lemma. van Tecckmilller en T(1key
Ls constructthf bewijsbaom

Zg ’C'een waafler (in B Gen deebdabele deelverzamelfng van
de collecfie van de eéndige deelverzamelmgen van ‘t’
Dan besbaot er een deelwaaéer van T5, die maximqaj 1'5
ondex de deelverzamelmgen van ‘U,waarvan alle eéndtqe
deelverzamelingen to(: B behoren.
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De becole R.r.nc.cl'es,die Brouwer zlet Voor de taal in verband met het
wcskundiq denken- hel: vasthouden van wcslcundfqe eonstructces an heé
geheuqen, eh llek Suqqereren van WCSlLu.ndcge Constructces Clan anderen,
vertonen qelg'l<enL's=Ole denlcer is een leraar die agn ecgen leerlmg Ls.

ll—\i.r\lLLnqand Q21?-teaching
Rice university Studies 58, no.3, lqyz

00k in: Gilbert Ryle, On Uwflnkéng
Blackwell, Oxford I979
biz. l>5~?9

7

Versclxcllende Outiomcfls van de verzamelmgsleer, kunnen met, in de termen
van 8. Nceuwenégt (lb5H-l?18l, qekensclsetst worden 01$:

uodqemene Bekenbenisse, aansbonts ldaqr Qan ymqnl;
die de woor-den versto.oJ:"

Eerder zgn hat ,, hypotheses of onderstell{nqen") dit Cs=,, door onclervmdzng
bekomen denlcbe,eldem."
Zgh de veraamelinqstheoretccc qeen ,, suyve/re W:’skundx.'qem,die,
Waarheden soeken en bewgsen, omlzrent lxaxe enkele of blote Denkbeelden”
en bestuderen zg ,, Sotken, die budzen lxaow verstomt en Denlcbeelden
wesentlyk besliaan " 2

Vql. Bernard Nleuwentgt
Gronden vam Zekerlmd of de regle betoogwgse der wislwndigen
Johannes Pauli, Amsterdam 1739
um. l)lz.1l, 512.1, blz. 27

Kurt Giiolel)
What is CO1MtOF’$Continuum problem?
Amer. Math. Monthly 5Ll(1gL+3c)515-525

Yiotnnur. Mosdnovakés

Descriptive Sel: llleory
North Holland Publ. Co., Amslerdam I980
i.h.b. blz. bot-1-en
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De Nederlandse, man van Wetenschap zou zcck moeten uitdrukken

,, Ln plat Neerduytsch Sonder vermengénq van quade Barbarisdae
woorden, die HQ in sgns moederstael beter heeFt."

Hat (.5jammer olat de Neolerlcmdse waarschgnlgkheidsrekenaars bet woord
Hstockastéek" meer qebruiken dam hec‘: woord n9iskcu\de'.'

VgL: Simon S‘tevin, de Sterc-Jcenbouwing,
Lecolen 1594, L.h.b. biz. 91

ook Ln: TV-xeprincipal works OF §L'mon Stevin, Vol E,
§wets 5: Zectungeg Amsterdam lqet-4, L'.h.b.Hz 230

Ngmegen, 2o ma I98!
Wim Veldman.


