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0. INTRODUCTION

This thesis s concerned with constructive reasoning in descriptive set theory.

The venerable subject of descriptive set theory was odeveloped h the early
decades of this ceptury, mainly by French and Russian mathematicians.

It storted from the following observation:

once the class of continuous real functions has been established, one naturally
comes to think of the class of reol functions which ore limits of everywhere
convergent sequences Of continuous functions.

This wider class can be extended in its turn, by the same operation of
forming limits of everywhere convergent sequences.

This goes on and oh, even into the transfoute.

Thus a splendid structure arises, called: Baire’s hierarchy.

The same story may be told in terms of sets.

Looking at the subsets of Baire spoce “w which are forced into existence
when we allow for the clopen (= closed-and - open) neighbourhoods andl then
apply the operations Of countoble union and intersection again and again,
we may wonder once more, because there (s no end of it.

One ofter owother, the classes of Borel's hierarchy present themselves, each
containing subsets of “w not heard of before.

No Borel class exhausts the possible subsets of “w
This con be proved in a few lines: one shows that each class containg
a universal element and diagonalizes. (cf. chapter b, esp. b.1)

However, the very ease of the proof arouses suspicion.

People like Borel, Baire, Lebesgue, who were the first to raise and answer
many Questions (n this Subject, spent much thought on the plausibility of

thetr arguments.

Diagonalizing was felt as cheap reasoning, especially by Baire.

Avoiding the diagonal argument, only relying on methods , from practice;
one succeeded inh showing up members of the first three Or four classes
of Baire.

Diagonalizing, of course, was not the worst of all evils. In lusin’s catalogue,
to be found on page 55 of Lusin 1930, it comes immediotely after
,rormal constructive argument’ before such horrible things as: the use of
¥, as a wel-defined, completed mathematical set, or, ewen worse, the
essentially incomprehensible argument by which Zermelo established a

well- ordering of any set, from the axiom of choice.

Now, for heaven’s sake, what might be wrong with the diagonal argument?
From a classical point of view, one cannot bring up much against it.
In fact, as soon Qs we agree upon the meaning of neqation (P and P
cannct hold together, whatever be the proposition P) we have to accept it.
But n intutionism we may find an explanation for our uneasipess.
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Let us remark that, classically, we may buid up the Borel sets in “w from the
closed- and -open neighbourhoods, using only countable union and (ntersection.
Complementation can be missed as an operation for making new sets out of
already existing ones: as the complement of any closed- and-open set (s
closed- and- open, the complement of any set built from the closed- and- open
sets by countable uhion and (ntersection, (s such a set again.

This certainty (s given by such wonderful guardians of classical cymmetry
as are de Morgan's [ows.

De Morgan's laws are not acceptable, intuitionistically, apart from some very
simple situations, from which they were derived by o crude Qeneralization.

We connot explain away complementation, or, more generally, the analogue

of logical implication, as methods of constructing sets.

But we might try to do without them.

We will do so in this treatise.

When negation and implication are put aside, the posscbiity of diagonalizing
is taken from our hands, and the hierarchy problem is open again.

A solution is gwen n chapters 6-9.

There (s good reason to consider hegation and implication with some
caution.

Many unsettled questions in intuitionistic logic are connected with them.
(Compare the discussion in the appendix, chopter 17 We are not able to
decide how far the dwvergence between classical and intwitionistic logic goes.
Also, a curious role is played by negation i the recent discussion

of the intuitionistic completeness of intwitionistic predicate logic, cf

de Swart 1976, Veldman 1976).

The intuitonistic hierarchy has a very delicate structure.

The class of the closed subsets of Baire space, for instance, is no
longer closed under the operation of finte union. One has to distinguish
between closed sets, binary unions of closed sets, ternary whions of
closed sets, and so on.

This phenomenon (s discussed wn chapter k.

The productive force of disjunction and conjunction s explored further
in chapter 11.20-26 and chapter 12.0-%

Implication, although absent from chapters 6-9, is not completely forgotten,
and, we will see, in chapter 5 and chapter 12.8-9 that & shares in some
of the properties establishedl for disjunction and conjunction.

Distrust of diagonalization s one of many points on which early descriptive
set theorists and intutionists hove simdar views.

Their common basic concern might be described as: exploring the constructive
continuwm. :
Brouwer's rejection of classical logic (s, of course, @ major point of
difference.
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But one is tempted to ask if not the main theorem of this essay, which
establiches the intuitionistic hierarchy (chapter 9, theorems 9.3 and ¢.9) might
have delivered Baire from his scruples.

Since Addison 1955 it has become customary among logicians to consider
descriptive  set theory for is connection with recursion theory.

We wil bypass this deveiopment.

From an ntuitionistic point of view, recursion theory (s an ambiguous
branch on the tree of constructive mathematics.

The deep results of this theory depend on very serious applications of
classical logic.

And the classical continuum, which is a rother obscure thing, is accepted
without any comment, as a suitable domain of definition for effective
operations.

Nevertheless there (s an analogy between recursion theory and the theory
to be developed here:

Many paradoxical results of elementary recursion theory are due to thefact
that functions and functionals are fintte objects, and, therefore, of the
same type as natural numbers.

Now, functions from Baire space “w to Ww, being necessariy continuous,
are oletermined by o sequence of neighbourhood functions, and thus may
be seen to be themselves members of W,

Once more, we are in a situation where functions do not differ n type
from their arguments and values.

We also have to admit that,  there (s any elegance in these pages,

it partly is due to modern recursion theory.

For (nstance, the following concept of mamy- one reducibiity between subsets
of “Yw (s starring

A<B := 3f[f s @ continuous function from Wy to “w and Yet[oeA 2fix) e B]

This  so-called ,Wadge - reducibility’ was made the subject of classical study
by some students of Addison’s (cf Kechris and Moschovakis 1978

Their  methods, however, are very far from constructive.

We introduce this concept in chapter 2, after o short exposition of the
principles of intuitionistic analysis.

In the second part of this thesis (chapters 0-14) we turn to analytical sets,
and the projective hierarchy. (cf Note 3 on page 216).

Analytical sets, being close relatives of good old ,spreads"', get a chapter

of their own. % will be seen that the ‘classical duality between analytical
ond co- analytical sets is severely damaged. (chapter fo).

Some famous results of Souslin's are partly rescued by Brouwer’s

bar theorem, which we will present here under the name of Brouwer’s thesis.
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(This expression means o suggest an analogy to Church’s thesis in recursive
function theory, that all calculable functions from w to w are general recursive)
(chapter 13).

If we persist in excluding negation and implication, the projective hierarchy
does not exceed its Second level.(chapter ).

This is a consequence of the axiom AC, which has been introduced and
advocated in chapter L.

In chapter 11 we study the typically intuitionistic subject of “quantifying
over small spreads’

Rather surprisingly, quantifying over the very simpe spread ©,,,
leads to sets which are not hyperarithmetical

Like some sets (n chapter H, these sets twmn into more complex ones
when they are given a treatment by means of disjunction, conjunction or
implication.

In chapter 12 we find many other sets which have simiar properties.

" already

o]

The proper place of the last three chapters (15-17) is the margin.

In chapter 5 we ask ourselves what is the domain of wvalidity of the
principle of reasoning which we get from the axiom AC,, , introduced
in chapter 1, by ‘“constructive contraposition’

This principle is vital to many o classical discourse.

It moy be seen as a simple case of the axiom of determinocy.
Chopter 16 pursues this lne of thought a little further

In chopter I} we mention an annoying probem which we could not solve,
and some Quasi- solutions.

The synopsis is an analytical table of contents.

On the scene Of contemporary mathematical logic a fhmily reunion s

being held, at which the different branches of the discipline cooperate

ih seeking for a new understanding of the beoutifwl problemsg which

occupied our grandfathers.

Recent books like Hinman 1978 and Moschovakis 1980 report about it
to now, intwitionism has been absent.

Here & comes, at last, ignoring the question whether & has been missed,

or was (wited, and raises is voice, somewhat timidly, in the company of

so much learning.
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A SHORT APOLOGY FOR INTWITIONISTIC ANALYSIS

In this chapter, we want (o give @ sketch of the conception of intuitionistic
analysis that guides our thought

As may be expected, our logic wil be intwitionistic; nddrect arguments

are put into their proper place, and are seen to prove less than direct
Ones; we clearly distinquish -~ (PvQ) from PvQ, and -~-3n[A(n] from 3n[A(n)]
The main objects of our considerations will be: natural numbers and
infinite sequences of hafural numbers.

Let us take a closer ook at them.

w is the set of natural numbers, “w is the set of all infinite sequences

of natural numbers.

We (magine such sequences to be budt up step by step (n course of time,
there is no hecessity for their being completely described at some finite moment
One may restrict the future development of an (ndivicat sequence more or
less severely, from excluding some possible continuations, up to destroying

all freedom — such that the sequence follows a uniquely determined course
This idea, roughly the one Brouwer had n mind, (s our point of departure.

In recent expositions of intuitionism, like Troelstra (977, one sometimes
prefers another basic concept : that of sequences growing in Complete,
never to be restricted freedom.

These objects are supposed to satisfy a very sdd set of axioms.

We do not like them.

(Intwitionism is trying to give a precise and reasonable account of the continuum
as ik is known by the mathematician.

Lawless sequences are strange things which do not occur in dady life.
Although & (s possble to construct something like the continuum from them,
one somehow does hot like to be told that this is how real numbers really are)

!

We cling to the older tradition.
We introduce a Qquartet of axioms of choice and continuity and plead for
them.

ACOD let Ac%w
If Yndm[A(nm)] then oW [A(n,ox(n)]

(We use mn.. for members of w, and o\p,. for members of W),

We defend AC,, as follows:

Suppose: Yndm[A(n,m)], we then determine, one after another, furst,

a natural number n, such that A(O,n,), then a nalural number n,

such that A(4n,),.. and so on

Thcs (s nothing but creaking step-by-step xe%w such that Yn[A(nonll. B
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We emphasize that AC,, does not say the following:

If Yn3am[A(n,ml1, then we can give a Ffinke deseription of an oe “w such that
YnLA(n, o(n)]
Sometimes, (cf Troelstra 1977), & (s given this kind of interpretation by intwtionistic
mathematicians.

The set A (s then subject to the condition that &, too, shouwld admit of a finite
description.

12 In order to state the hext axiom, we need a pairing function on w.
In view of later developments, we do not go the shortest way.

let <> U *w > w bea fixed one-to-one mapping of the set of

ew
all finte sequences of natural numbers onto the set of natural numbers
< > (s a coding of the.finite sequences.

Every natwral number now stands for a finie sequence of natural numbers.

#: 2w 2w s the binary function on w which corresponds to concatenation,
ie. for all myne w:

mxn = the code humber of the finte sequence that one gets
by concatenating the finte Sequence coded by m and
the finite Sequence coded by n

We define, for all mnew
mean = the finite sequence coded by n is an intial part
of the finte sequence coded by m, ie.: Ip[ m=n*p]
We suppose that our coding fulfils the foliowing condition:
Vm¥n[ men > nem].
Therefore, the empty sequence is coded by the number O.

For all de*w and new we define "o and o" n “Yw by:
for all new: "ot(m) = o(nxm)

for all new: ant(m) = o(<n>xm)

13 /\:Co1 let Ac wx *w

If WYnix [A(n,«)] then Fa¥nL Aln,a)]

We defend AC,, as follows:

Suppose :  ¥n Jo[A(nal]

We first start the creation of an infinite sequence o, such that A(0,o,)
This job will ask for our active attention nfinitely many times.

This does not prevent our starting a seconcl nfinde project (n the
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meantime : the creation of an infinde sequence «, such that A(1,04)
From time to time we will have to look after the progress of work on o,
from time to time we will have to look after the progress of work on oy,
but, still this does not occupy all our mental powers: we can put more
kettles on the furnace.

Our program for constructing a sequence « such that Vn[A(no"] is
as follows:

% Start a project P, for creating an infintte sequence o, such that
A(O,a,). Continue work on P, forone step and define: «°(0):=«, (0

x Start & project P, for creating an infinite sequence «, such that
A(1,d,).Continue work on P, for one step and define: «°(1): = (1)
Continue work on P, for one step and define: «*(0) := «,(0)

xStart o project P, for creating an infinite sequence o, such that
A(2,o,). Contine...

Apparently we believe in our abilty to keep several infuite projects
going ot the same time. A good memory is useful in these circumstances.
X

Like AC,,, AC,, here has a meaning different from the one it has in Troelstra 977

14 The next two axioms usualy go under the flag of , principles of continuity”
Their introduction requires some more lechnical conventions.

We define a fiunction ig: wow an
for all mew: Ig(m):= the length of the finite sequence coded by m.
For all ae™w and new, we define:
an = <oo),....,etn-1]>
Remark that, for all xe%w: &0 = <> =0
We also write, for all xe%w and mew:
odem := In[an=m]

(ie.: the infinte sequence o passes through
the finite sequence coded by m)

for all e¥'w, ae“w, new, we defme:
Joorn = 3m[ Vplp<m > y(@p)=01 & d’(&m]:mi]

For all ye%w, we define:

g Yo s w (or: fun(y)) := Vainl Kztxl—;n]

Let ye“w be such that funly), and oe “w. We then write:

[ = the unique new such that y: xt>n



15 AC,, et Ac Yw x w
If Va3nLAle,nT, then 3yl fun(y) Va[A(u,((otn]]

We defend AC,, as follows:

Suppose :  VoIn[ A(ot,n)]

We have lo make a sequence y in Ww which fulfils certain conditions,
and, as one may quess, we wdl do so step by step, fixing only one value
of | at a time.

Suppose this work to have proceeded until stage n, ie.: y(0), {(1),._. up to y(n-1)
have been determined already.

We now consider the finde sequence of natwral numbers which s coded
by n, let us say: n=<ngn, ..., N>

This finte sequence’ may be thought of as being the initiol part of an
infinlte sequence o, which is disclosed to us 'step by step

While listening to the successively created values of o we are expected,
to find a natwural number p such that A(a,p)

We cannct wait indefinitely and have to act ot some time.

When p eventually (s determined, therefore, only a finte part of

will be known to us.

Some finite initial part of o« showd contain sufficient information, s to say,
for p to be calculated.

Looking at n, we may ask: is this finte sequence long enough as an
initial part of o so as to enoble us to find a natural number p such thot

Ao, p)?
If so, we determine: [(n):= pt1, where p is such a number
 not, we put: ji .= O

In this way the construction of | is f)el-ma contirued.

Now one moy have doubts whether VotInl {(an) $0]

After all, during the construction of { only such sequences o are
considered, as are growing Step by step (n freedom, not being subject
to any restriction gien beforehand, or coming to mind on the way.

This objection may be answered as follows:

Ahy sequence from “w, even a Completely determinate one , can be imagined
to be the outcome of a step- by- step - creation.

(We do not want to distinguish between sequences o, which fulfd
Ynlon = p(n)], although one may hove had different things i mind
when making them. .

Any sequence (s extensionally equal to some sequence growing in
complete freedom. '

Some modern opinion (cf Troelstra 1977) holds that this (s impossible,
as "l,eéma equal to some determinate sequence” would conflict wcth
‘being created in freedom!

Vexing questions on freedom may be asked now, but they are left

to the reader, or any philosopher, to muse upon)

R
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16 We now prepare the way for the last of our four axioms, which (s the most
debated one.

For all fe*w, we®w, pe“w, we define.

[roamp = VAl "o pm)

for all ye%w, we define:

f; Yw = “w  (or Fou\(x\\ c= Vr\L'Fun(x")] (cf. Note 2 on page 216)

Let ye“w fe such that Fun(y), and ote“w. We then write-
flov = the unique [;e‘“w such that Joep

13 AC, Let Ac®™w x “w
If Vaaf&[A(d,P)], then agl:ﬁm(() A \7’0([-/\(0(} “d)]]

AC,, wil be defended by a rather involved argument, which has features
th common with both the argument for AC,, and the argument for AC,,.

Suppose: Vdﬂp[A(o{,F)]

We have to make a sequence y in “w which satisfes @ certain
condition.
In foct, this condition on y is stated @« terms of its subsequences

o 1
u{/é {vcll budd up all subsequences (5§ step by step, bub simultapecusly,
ie: at stage n, all values y°(m, y'(n),... wil be determined

To be sure, only y%y*,...up to y*, properly get nto focus at stage n,
that s to say: YmVnlm>n — x”‘(n]=0]

Now suppose our work to have progressed so far, that all sequences
%)~ hove ther values fixed in all points 0,1,...up to n-1.

What about their values i n?

Let us look ab the finite sequence of hatural numbers coded by n,
Say: n= <Ny, Ng >

We consider this sequence together with tts predecessors: <>,
LNy>, <hg, N>, <ng,n,,... Ny > The values of (% yh-- at these
predecessors hove been fixed already.

We calcwate the smallest number p such that: Ym[(nemandm)- fPlml=0]
As YmI(nem A h#m) = ("(m) =01, this hwmber may be found.

We now imagine n=<n,,.,ng> to fe the initial part of an infinte
Sequence o, whose values are given to us ohe by one, successively.
We should be able to calculate B i Ww such that Ald,p)

We started already a project for creating such a sequence p, as
appears from the part of y which has been completed by now.
The finite Sequence n turned out to contain sufficient information
for deciding about plo), p(1), .-- up to plp-1)
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We now continue this same project for creating a suitable partner p
to the growing sequence o and ask ourselves: does n=<nyn,..n>
contain sufficient (nformation for deciding about [z.(P)'l

If so, we determine a number q which may serve as p-th value
of p and say: YP(n)= q+1

If not, we put: yPln= O

All other subsequences of y are left alone now, so: Ve[ &4p » yin)=0]

In this way the construction of | s being continued.

Now Suppose ae%w, o being given step by step.
By reflecting upon the construction of j, one reolizes successively:

Amlyo@m 401 A ImLy*(aum #0] n ImLy*(am)#0IA..

Hence : Vo YnIm[yn(am) #01, os any sequence o can be thought of
as beihg given step by step, and We see: Fun(y)

In the same way ohe persuades oneself about : Vo[ A(«,ylo)]
B

18 Sometimes, in expositions of intwitionistic analysis, the nsight which sustains
ACyy. (s given a less bold formulation, in the following continuity princile

cep let Ac “Yw x w
If Va 3n[A(a,n)], then Yo 3m3n\7’{5[ pm=3am - A( P,nl]

Formally, CP (s weaker than AC,o (cf Howard and Kreisel 1966)

As CP easily follows from AC,,, we need hot defend CP, after all that
has been said n favour of AC,,

19 let de¥w and pe“w. We define:
xep = Yn[p(an)=0]

let pe“w. [ is called a subspread of “Ww f it fulfds the following
conditions:
w (3(< >)=0

a ¥Yml[ p(m)=o 2 3Inl plme<n’)=0]]

If p is a subspread of Ww, we are interested in the set {ot|ae“w|aep)

which we, at the risk of some confusion, also denote by p, and call
a spread.

If p is a subspread of Ww, the corresponding subset of Ww may be
treated like wWw itself.
It makes sense, therefore, to introduce the following ,relativized” concepts:
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Let pe“w be o subspread of “w ond ye“w

We wrte: y:pw or: Funpq) (f Vu[ue(z-):'lnfx(an)gko]]
(If Fw\[!,(‘) ond aep, we define:

y (o = the unique new such that [ an)

We write: y:p-3%w or: Funyp) W[ fung, (¢"1]
(1If F“"{&(X) and dep, we defcne:
yloo == the unique e Ww such that fopp)

We are able, now, to enunciate some of our principles of choice and continwity
(n & more Qgenerol setting:

GAC,, Let Ac“w xw and pe“w be a subspread of “w
If VYa3n[A(x,n], then 3L Fu.np(x) A Voté(&[A(o(, lf("‘“]]

GAC,, Let Ac “w x%w and pe“w e a subspread of W
IP Yo IS[A(x,8)], then Iyl Funpcx) n Vorep[ Ay, xld)]]

GCP  let Ag Yw xw ond pe“w be a subspread of “w
If Vole(s In[A(,n)], then Voep Im In V5[ Em=am -5 A(8,n)]

We moy argue for these generalized principles (n exactly the same way
as we did for the ungeneralized ones.

Or, f we prefer so, we may formally derive GAC,, from AC,

GAC,, from AC,, and GCP from CP

We do not go into details.

140 The above presentation of the basic assumptions of intuitionistc analysis
owes much, if not al, to many discussions in Njmegen (h which J.J. de Iongh
and W. Gielen took the lead (cf Gielen, de Swort and Veldmon 1981, and
Gielen 1991) A
(This s not to make them responsible for any lack of clarity)

The oukcome of our considerations does not differ on any essential point
from the axiom system in kieene and Vesley 1965, commonly known as FIM
ACy, , for instance, corresponds to ¥272 i Kleene and Vesley 1965

The names we have given to the axioms are new, and differ from

the names used in Troelstra 1933, Troeldtra (977
We introduced them (n Gielen, de Swart and Veldman (98]
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AT THE BOTTOM OF THE HIERARCHY. A DISCUSSION OF BROUWER-KRIPKE'S AXIOM

For some time past, it is known, that AC,, (s inconsistent with a Qeneralized
form of Brouwer - Kripke's axiom.

We repeat the simple argument which shows this because the hierarchy
theorems that will appear in the following chapters may be viewed as
attempts to extend and Qgeneralize this fact.

We include a short discussion of the axiom itself

20 Theorem: -Vaﬂ(%[ Wn[ot(n)=0] 2 3n[[5(n)=0]]

2.

Proof - Su.pposa: VO(H(%[ Vnla(n)=01 2 3”[[&(")=O]]
Using AC,,, determine 8e*“w such that &: Yw = “w and.

Vol Yn[o(n) =01 2 3nl Bl)(n) = O]

Consider the special element O of “w which is defined by: Yn[ O(n)=0]
We know: 3Jn[ (8/0)(n)=0] and we determine mew, new such that:
&"(Cm)=1 ard Yp[p<m — 8" (O p)=0]

Then: Vo[ dm=0m - (8lo)(n)=0]

Therefore: VYa[a&m=0m - Vn[a(n=0]]

This, of course, is hot true.
|

BK let Ol fbe a mathematical proposition

(Brouwer- Kripke's axiom) Then: Jx[060 2 3Inlx(n)=01]

In order to see the truth Of this principle, I have to remember that, essentially,
I am alone in this world, doing mathematics.

A theorem (s proved only if I myself succeed in making the construction
in which (ts truth consists '

(External circumstances (meeting Brouwer, drinking coffee) may have influenced
me substantially, but they have no place in a picture of the essence of
mathematical truth)

A sequence o from “w May be built up step by step in the course of time,
and this may be done without any haste, although, having determined a(n),

I have to come with the next value of o, I am not to delay this indefinitely.
But why showd not L use the whole of my mathematical future for the
construction of ol

Then O, (f true, should fe experienced as such during the construction of «.
While numbering the stages of my mathematical life 0,1,2,... successdvely,

I define oln) to be O if I succeeded in proving Ol at stage n, and to e 1,
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if I did not.

(A difficulty is, in our opinion, that, sometimes, we want to perform transfinie
constructions. How do we schedule them in a future which (s only a
countable sequence of stages?

Bk in full generality conflicts with AC,, as is evident from theorem 20
The first published proof of theorem 20 s in Myhil 1967

Theorem 20 was a hindrance for people who tried to formalize wntwitionistic
analysis. Sometcmes, they decided to reject AC,, in fovour of BK.

This seemed to be in accordance with Brouwer’s own (ntentions, as,

in Brouwer 1949 , he used the axiom in the generalized form.

An alternative way out of the conflict was shown by IJ. de Iongh,

who suggested Lo restrict opplication of Bk to determinate propositions 0,
i.e. propositions about which all information has been given and which do
hot depend on objects whose construction has not yet been completed.

(We are not thinking of objects whose definition has stdl to be ,worked out]
but of objects in whose construction there is some freedom left.)

A more extensive discussion may be found in Gielen, de Swart and Veldman 199,
where BK has been used for guving intuitionistic parallels to classical
proofs Of the Contor-Bendixson theorem and its extension by Souslin.

BK does not figure in the following, except that it will sometimes, in a helpful
whisper, aid our (ntudtion cohcerning the truth or falsity of certain propositions.

(cp. uA).

2.2 Theorem: —'Vaﬂ[;[ In[a(n)=0] 2 Vn[{l(n\:O]]

Proof - Suppose: Ya3p[ In[a()=0]1 2 ¥n[p(nl= ol]
USan AC,,, determine 8e®%w suchthat §: “w - “w and.
Vo[ 3nla(n=0] 2 Wn[ Gla)(n)=07]
Consider the special element 1 of Ww which is defined by:¥n[L(n=1]
We claim:  Yn[ (§]1)(n =0]
For, suppose: new ana (lL)(n) 40
We determine mew such that: 8"(Im)40 a 8"(Im)41 A Yplpem— §"(1p)=0]
Then: VYo[am = Im — (§la)(n) = (§12)(n)]
ong: Yolagm = Im 5 ~¥n[({la)(n) =01]
so: Yolam = Iim > -.an[o((n)=o’.l] and this (s not so.
Therefore:  Vn[(§/4)(nj=0] oand: =3n[ 1 (n}=0]
&'s foilure (s obvious. @&
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One cannot escape the feeling that §, the protagonist of this last proof, is
being trapped i a base woy. One forces him to be careful about &1
and, later on, this caution (s held against him.

In comparison, the play was more fair in- theorem 20.

2.3 That theorem 20 is not an (solated fact and might herald the birth
of a hew theory, was suggested by J.J de Iongh.
We now prepare for this more general theory.

Let A,B fe subsets of “w. We define-

A<B = Vadp[Al) 2 B(M]
(A (s reducible to B)

(lsinq ACy,, we see that: A <B  and only f FS[Fun(8)n Yx[Alx) 2 B(8lx)7]
If we want to avoid the use of AC,, , we might define: A<B by:
I5[Fun(8) A Vo[ Alx) 2 B(Sln)] (cf Note 3 on page 216).

Intuitively, the meaning of ,A<B" might be described as:

We have a method for tramslating every question whether some clement
of “w belongs to ‘A into a question whether some other element of
belongs to B.

This reducibdity relation (s, obviously, reflexwe and transitive.

Classico.lly, this many- one-reducibiity -relation. is called Wadge- reducdb dity.
(Cf. Kechris and Moschovakis 1978, Moschovakis 1980, Mgg 1987?)

We wntroduce the subsets A, and E, of “w by:
for a" oe ‘*’w : A1 (d) r= Vn[d(ﬂ): O]
for all oe®w - E, () = Inlox(n=01

We have seen, in theorems 20 and 22 that -(A,4E,) and -(E,<£A,)

We also need the strict reducibilty relation:

et AB le subsets of Ww. We define:

A<B = ALB n 7 (B<A)
(A is strictly reducible to B)
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3 THE SECOND LEVEL OF THE ARITHMETICAL HIERARCHY

Two theorems will be proved which are a natural extension of the theorems
of the previous chopter.

The leading ideas of their proofs wil continue to (nspire us, up to chapters
* and 9.

3.0 We consider the subsets A, and E, of “Ww, which are defined by:
For all ae %w:
Al = ¥m In[o™(n) = O]
E, () := Im Yn[aa™(n)=0]

We leave i to the reader to prove the following easy facts:
Ab<A, , E«A, | AZE, and E<XE,

31 The Followi.nq s an (mPOrtaJ\t remark on A,:

According to AC,, - Vo[ A, () 2 3p¥mlo™(ym)=01]
For all

j€¢ “w and oe“w, we define ymo in “w by:
For all mew, ne w:
(Kmd\m(n) .= O ¢ n.-,x(m]

= o"™(n) o n y(m)
and : (yax) (O) := O

Remark that: Vol A,(x 2 IFyla=yreo]]

Let us moke 8e Ww such that Fun(§) and Vo[ §la = &°pa o'l
Observe that: VYalA,(x) 2 3plo=3lp]]
Let us define, for all se ww, a subset Ra(8) of “w by:
Ra(d) = fot|oteww | IpL & pral]
C,~" has been introduced (n 1.6)
We have seen: 3I8[ Fun(8) A A, =Ra(S)]

This s o wuseful property, which A, shares with many other sets.
(cf. 70 and 10.7).



32 Theorem: (A, £ E))
Proof: Suppose: A, 4 E,, ie: VoLEI(s[AZ(d\ 2 E,(p)
U.sénq AC,,, determine & in Ww such that: Fun(8) and Von[Az(ongz(SIa)]
Consider the intertwining finction »a, introduced in 31, and observe:
VyValE, (81 pa )]
Consider 0 in Ww, the sequence that (s defined by: ¥n[ O(n)=0]

U.S«'.nq CP determine pew, qew, mew such that :
¥y Vo[ (fp = Op A 3q=0q) — YnL (Slypaet)™ (n) =0O]]

Let us pause for & moment and imogine the situation:

We are assuming: Yol A, (02 E, (Slx]]

We think of "o" in this formua as being built up step by step by

a creative subject, whereas Sla (s being made by a less creative,

imitative Subject, who does not make @ sequence of his own, but

transcribes o, using the method coded into &.

The creative subject is not very fondl of the imitative one and

plays a trick on him, as follows:

He caleulates r= max(p,q) and defines a sequence o* n “w by:
¥ (0)=0 A Ynllhgr - @¥" =0) ~ (n>r 5 («*)" =11

(1 is the Sequence  (n “w that (s defined by: vnL 1(n) =07)

The creative subject will feed the (mitative one on o(*’ but

he does not tell him so.

The imitative subject never sees more than a finite (nitial part of a*

and,, therefore, he s kept between hope and fear.

His anxiety will grow with the number of 1's, but all the time,

he has to reckon with the possibility that things wdl inprove.

Thus, he (s forced to make all values of the sequence (8loct)™

equal to zero.
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For, suppose : kew and (§la*)™ (k) £0

Determine Lew such that Vol &l=a¥l - (8[@"‘(&): (8la¥)™ (k)]
Define o sequence of in Ww by:

aFl =¥l and ¥Ynln=l-oat(n=0]

We observe that: A,(a*) and Iylat=ypmor]

We can say more: as Valnsr - («*)" =07, olso:
Lyp=0p A at= [Rot]l A tq = 0q

Therefore: Yn[(8la)™(n=0] and: (8la*)™(kl40,

a contradiction.

The imitative subject has nho chowe and: Yn[(§lo*)™ (n) = O]
But his caution does not help him
We observe: -A,(at*) a E,(8la*) and: A,(*) 2 E,(Slu¥)

a contradiction

®

3.3 Theorem: = (E, £A,)

Proof: Suppose: E, <A, , ie: YodplE, () 2 A, (p)]
Using ACy,, determine 8§ in “w such that: Fun(8) and Vo[E (a1 2A,(8la)]
This time, the creative subject, in order to make the imitative subject
fall on his face, uses very foul means from the realm of darkness.
He plays the good boy for a whie, till the imitative subject,
being impressed, cannot refuse him any longer the first of his
countobly moany wishes. As soon as the imitative subject gives in,
the creative subject stops playing the good boy.
But not for long. He soon starts to play another good boy and
perseveres in it, till the imitative subject loses his firmness again,
and gramts him the second. of his wishes.
Ungratefully, the creatwe subject breaks off his good conduct,
but chooses, after a moment, a third saint to follow, (ntending to
follow him only so far as is required for getting his third wish
fulfilled.
And so on
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In the end, the creative subject turns ouwt to be no good boy at al,
but he has qot all he wanted.

In short, the creative subject makes a sequence o* such that
~E,(a% A A, (8la¥), perplexing the imitative subject, as follows:

First consider o, := Q
Remark: E, (ot,), and determine pew such that (Slot,)’(py)=0
Determine n,ew such that VYo[d n =&, - (8la)°( p,)=0]
Define o,e“w by:
for all new, ngn,: o, (n) = o« (n)
o, (<On,>) = 1
for all new, n>n, and n 4<0,0,> ¢ o, (n)=0
Remark: E,(o,), and determine p,ew such that (8Io(.)'(P4)=O
Determine n,ew such that n>n, and n,> <0,n;7 and.
Vo[ &0, =n, = (8la)*(p,)=01
Define o, e “w by:
for all hew, ns<n,: o, (n):= a,(n)
o,(<4,n) =1
for all new, n>n, and n4 <4 ny:  o(n):=0

Continue as before

(One may think of the following picture:
o
o P
Po

(Sla’|_(6k)

§lo

As soon as the Umitative subject 8lat puts O (n one of his columns,
the creative subject answers this move by putting 1 in the

corresponding one of his own columns)

In this way one creates successively o ,,d,,.. ihYw and

Pos Mg, Pys My Payny,.-. in W Such that:



o< N, <N, < ...
Vivil icj - ayn, = _z.'ni]
Viva[an; = dn; - (8l)* (p;) = O]
v [ (o(a-ﬂ)?(nj) =1]
ViVl icf = (oljpy) ;)= 1]
Define o*e W by: Vol o*ng = ,n;]
We observe: =E,(a% a A, (8lo¥] and: E(«f) 2 A, (8lu¥),

a contradiction.
X

34 Proofs of more general hierarchy theorems are now within our grasp.
We only have to look with some care into the proofs of this chapter

When we recongider the proof of theorem 32, that -(A,<E,), we are
struck by its likeness, from a certain moment on, to the proof of
theorem 22 (whose conclusion reads: =(E, <A,)).

To be more specific:

Suppose : 8c“w and Fun(d) and Y«[A, () 2 E, (8la)]
Construct numbers m and r, as (n the proof of theorem 3.2
Continue by mo.k(r\q € e Ww such that Fun(e) and:

Val Wnln¢r > (sip"=0] a (elp) = pl
Remark : V{;[E1((s) 2 A, (glp)]
and:  Vpl Ay(elp) 2 A, ((61E1p)™)]
Therefore : V(&[E,,({s) 2 A,l((SI(sl{s))m)], ie- E, <A

1= ™
Thus, the proof (s seen to reduce the supposition: A,<E, to: E, <A,

It is not difficult to find a general method for reducing the supposition:
ASn £ ESn to: E'\ LS An‘

This will be shown in chapter 7, when chapter & has given the necessary
definitions.

It takes more pains to get a similar conclusion from the converse swpposition:
Ecp £ Asp » but, again, when the work has been done, we See some resemblance
to the proof of theorem 33, that =(E, £A,)

To this proof of theorem 3.3, other useful observations may be made.
Perhaps its most memorable feature is, how i pictures the creative subject
as o cak bent upon its prey, the imitative subject, moving only in response
to moves of its mousy wctim.
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We understated the conclusion of this proof .

Given a Sequence & in Ww such that: Fun(8) A Vo [ E, () 2 Az(Blot)], we set
ourselves the aim of Fmounq o Sequence o* (n “w such that - z(a‘)AAZ(Sla*),
But the sequence o* which we constructed, had a more constructive
property than. —E,, we know that i shows wup a number different from zero

in each one of its subsequences.
We call this property: AZ.

Another important remark on the proof of theorem 33 is that we did not
use the full strength of the assumption.

Starting from: Fum(8) A Ya[E,(«) > A,(8lx)], we may reoch the same
conclusion.

A simdar U'\(.r\q can be said on the proof of theorem 32.

This sharper view of the constructivity of the arguments used wil enable
us to extend the theorems (nto the transfinite, in chapter 9.

We decided not to leave out the more clumsy method of chapler 7
although its results are properly contained (n those of chapter g.
This method held us captive for quite a long time, and ¢ deserves of
some attention, (f only for the sake of comparison.

3.5 We may picture the results of this chapter as follows:
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L SOME ACTIVITIES OF DISJUNCTION AND CONJUNCTION

Both classically ahd (ntu.cttonistcCo.(ly, the (ntersection of two open subsets
of R (s an open subset of R,

However, only by using classical logic, one may infer from this the oual
statement : the union of two closed subsets of R (s a closed subset of R.
It need not surprise, therefore, that this statement is not true, if
interpreted intuitionistically,

(Lo,1 01,21, for example, s hot a closed subset of R).

This well-known fact will be confirmed by the theorems of this chapter
We know from chapter 3, that E,, the subset of “w which we get from A,
by an existentiol projection, (s not reducible to A, or, for that matter, to A,
We will see now that the same holds true for the subset of Ww which we

get from A, by a disjunctive projection only: D?A,.

In the case of A,, finite disjunction suffices to ncrease complexity

No wonder, then, that the number of disjuncts is also important: the subset
which we get from A, by o triple disjunctive projection, is pot reducible

to the subset We get by a binary disjunctive projection, and so on
Between A, and E,, we may distinquish, in this manner, countably many
levels of complexity.

Conjunction, of course, is inactive, if applied to A, but & gets productive
as soon as we apply ¢ to D?A,, for example.

let us consider the class of all subsets of “w which originate from Ay,
when we apply the operations of finte disjunctive and conjunctive projection
again and Qgain.

How does the reducibility relation behave on this countable class?

We pa.rt(ally answer this nice question at the end of this chapter

4o We wtroduce, for all subsets Pgc“w and new, a subset D"P of “w by:
for all oe®w: D"P(a) := Iq<n[P(xQ)]

4l M’“ It s reckless lo assume. DlA1 ‘_(_A'

Proof: Suppose: D*A, £A,, ie.: ‘Vaﬂp[DzA1 () 2 A, (p)]
Remark : V@,[ - Vn[(&(n]:O] - Vn[[&(h]=0]]
Iherefore: Yol —= D*A,(a) - D?*A, (]
This enables us to decide a lot of questions
Let us turn to the decimal development Of T which earned itself
o reputation in providing counterexamples to all kinds of
dassically valid but constructively untrue statements.



22

Construct a sequence o« in Ww which fulfis the condition:
W[ a(n)=0 2 At place n in the decimal development of n stands

the last 9 of the furst block of ninety-nine 9's]
Remark: V¥mVn [(x(m)=O A o(N)=0) - m=n], therefore: «°40 - «'=0

al’\d'- 7 (O(O=Q v 0(1= Q)) le.: =" DZ'A,'(O()

The conclusion: D*A,(c), however, (s not empty as a communication on
the decimal development of n. We should be able to exclude either
all numbers <O,m> or all numbers <1,m> as a possible position of
the last 9 (n the first block of ninety-nine 9s n s decimal taul
But we are not able to do so.

X

The axiom of Brouwer and Kripke (cf. chapter 2) increases our doubts concerning:
" D2A1 2 A1”
Let 01 be a determinate (cf 2.1), as yet undecided mathematical proposition

such that - =+61 - Q.
(One might think of Fermat’s conjecture, or of any other mathematical proposition

which can be brought into the form : Vn[F(n)], where F (s a determinate property
of natural numbers, such that. Yn[F(n) v = F(n)])

Glv0r (s also a determinate proposition, and, using (BK) and some
acrobatics, we determine o in Yw Such that:

Av-0l 2 3anfa(n)=0] and: O 2 In[x°(n=0] and:
-0 2 3nLo(n)=01 and: YmV¥n[(a(m=0 A a(n=0) - m=n]

Remark . = D?A, (), therefore: D*A (o) ; ie: x°=Q va'=Q, and: TV A,
therefore: = QlvQ(l

By , D*A, <A," we are oble to decide, in this way, any determinate, stable
proposition. (A proposition Ol is caled stoble, ¢ -=01 -0)
This (s a reckless agsumption.

We constructed @ ,weok” counterexample to. , D*A, <A (In Dulch:

,een vermetelheidstegenvoorbeeld ")

In many such coses, as in this one, we are- able to improve on the arqument
and to derive a contradiction.

This is on art which has been practized much by Wim Gielen.

The oxiom of Brouwer and kripke does not figure in the eventual arqument.
We also did not use ¢ (n proving theorem 4l
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42 We introduced, (n 12, a codc'n? function <> &U Lo v w
€

w
Thus, every notural number codes a finte sequence of natural humbers.

We also introduced a length function {g: w —w such that, for all new,
Bq('n) = the length of the finite sequence coded by m.

We mow define, for all mkew such that & <lg(m):

MR = Mg = the value which the finite sequence coded by n,
assumes in &

Therefore, for each new: n= <n(0), n(4), .-, n( g(n -1) »

We define a sequence T i “Yw such that:
Vn[ t(n=0 2 (VRL[&<igin) = n(k)<2] A VRV [(ke?(n),\ P< bg(n)n n(k)40 An(e)#0) - E=tD1

We remark that t is a subspread of “» (cf 19) and:
Val der 2 (VELa(k)<2] A VRVE[(a(R)#0 r(]40) - k=L])]

The set ©=[|oteWw | Vn[T(@Nn)=01] consists of those sequences of O'sond 1's

which hove in gt most one point a volue different from O,

The spread T is very similor lo the spread o,
Chapter 1.

o Which will come Lo the fore. in

43 Theorem:  ~(D*A, <A,)

Proof: Suppose: D*A, £ A, , ie. YxIpID*A,l) 2 A4(p)]
As in the proof of theorem 44, we observe: VYot[17D*A,(a)~» D*A,(x)]
Now: Voetl -~ D*A, ()], where T (s the subspread of “w which
we defined in 42
Therefore: Yoaet [ D2A,(x)]
Remark: Der ana, applying to the generalized continuity principle
GCP determine rew and Qe{o,ﬂ, such that: Yoet[ar=0r - o('<=9_]
But this is not so, as we may define o, in T such that:

—

o r =0r and: (u,)l(r)= 1

o]

™

We feel content that, in proving this theorem, we did not use AcC,, or AC
but GCP only.

o
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44 For all mnew we define [n]J™ to be the code number of the m-th subsequence
of the funite sequence coded by n
Therefore, for all kew, [nI™ (&) is defined  and only f <myxk <lgn)
and, (n that case: LnIM(R) = n<m>+ k)

For every mew we defne a sequence T, in Ww Such thak:
nlt,(n=0 2 0e[n™]

We remark that, for all mew, T,, is a subspread of “w (cf. 1.9) ond:
Vo[ xeT,, 2 «™M=0]

We also observe: VYmbol DMA o) =2 In<cmloxet, ]

45 Theorem: = (D3A, < D?A;)

Proof : Suppose: D®A, < D*A, ,ie: Va3p[D3A,(x) 2 D*A,(p)]
U,SU\% AC,,, we finot & in Ww such that:
Fun(8) and: Yx[ D?A,(x) 2 D*A,(8lx)]
We observe : V¥m<3 Yalaet, = (Slaet, v Slxert,)]
ond: Y¥Ym<3a[Oert,]
(The spreads T,, have been defined (n u4)

Applqu the generalized continuity principle GCP three times,
we find natural numbers p,p,p, and ,, k,, k, such that:
m<3 [& =0 v &, =11

and:  ¥Ym<3 Yuec, [Ip,,=0p, = Slae L
Without loss of generality, we may assume: k_=R,

Let p:= max (Po;Pn Pz)
We determine Z in Ww <uch that: Fun(z) and, for all ae“w, mhew:

(3l)™(n) = O f n¢p vm>2
c= o™(n-p) (f h=p aAm<2
= 1 tf n2p Am=2

Now, suppose: ote¥w and D*A,(a), then: Z|aetT, v Zlx e,

———

and : (Zla) p = Op, so: 8[(3]a) € T
Conversely, suppose o€ “w and 5|(Zlol)et'ko ; then D*A, (8] (Z]x))
So: D?’/’\1 (Zlo), and: D*A,(a)

Therefore: Vo[ D*A,(o) 2 A, (6I(3[)%)T, ie. DA, <A,
This contradicts theorem 4.3,
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We confess that, (n proving theorem 45, we did not succeed in avoiding AC,,
Without difficulty, we may extend theorem us to:

4b Theorem:  Vm[ = (D™**A, < D™A))]

43 We introduce, for all subsets Pg “w, a subset Un(P) of “w by:
for all ae%w: (Un(P)(e) := V¥Ym[P(x™)]

We now show that , choosing one-out-of-three' is not to be reduced
to , choosing one-out-of -two', even ¢ we are allowed to do the latter
infinitely many times.

48 Theorem. = (DA, < Un(D?A,))

Proof: Suppose: D3A, £ Un(D*A)), ie.: Vo(3f5[D3A1(o() 2 (Un(D*A ) (p)]
Using AC,,, we Find § in Ww such that:
Fun(8) and Yal DA,(a) 2 (Un(D*A,)(8lx)]

Let © be the spread which we introduced in 4.2:
Va[oet 2 (vkla(k)<2] a VEVAL (@(R)#0 A a(e)#0) = &=L1)]

We woant to show: Vaet W[ D*A, ((8lx)P)]
Let us assume, lo this end: «er and pew
We observe, as in the proof of us:
¥m<3 Vper, [ D*A,(p)]
and: ¥Ym<3[Qecx,]

(t,,T,,T,, . are the spreads which made their first oppearance
in 44: VYmVal aer, 2 o«m=071)

By a threefold invocation of the generalized continuity principle GCP
we find natural numberg Q0,9,,q2 and k,,k,, k, such that:
Ym<3 [ k,=0 v k, =11
and: VYme3 V{;e‘t’m[(‘sqm = qu - (8[{5)"6 t’m]
Without loss of generality, we may assume: k,=k,.
Lek q = max(qe,quqa).
We odlistinquish two cases:
Case 1 : &q# Qq
As. xe T, we may determine, in this case, m<3
such that : aet,, ,and, thus, we know: D*A, ((8la)P)
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Case 2: aq + Qq
We now turn up our trump card:
XET, therefore: a1 (aeT, VaeT,) and 1 ((8[:1\96 T )
so: (Slo)fe Ty and: DA, ((§]a)P)
In any case: D2A1((8|qu)

We have proved now: Yoet Vp[ D*A, ((8l)P)] ie.:

Vaet [ (un(DzA1))(8lol)]l and therefore: Voert [D3A1(0L)]

We observe: Q0 et, and, applying to GCP we determine rew
and ke (0,4,2] such that: Yxer(ar=0r - ok- 0]

But this is not so, .as we may define o, in T such that:

&or‘ = @V‘ and: ((xo)&(r) = i
R

The reader wil have remarked thok the proof of theorem 4.8 is slightly more
economical than the proof of theorem U5 and no longer leans on theorem 4.3
In the same way one may prove:

49 Theorem - Ym ([ "(D'"*iAi £ Un(D"A,]

We may sharpen the conclusion of theorem 4.3 also (n this manner:
Lo Theorem: a( D*A, £ A,)

Proof. Suppose : D*A, <A, , ie: Vudp[D*A,(«) @ A,(P)]
Using AC,,, we find & in “Ww such that: Fun(®) and Va[D'A,@I2A, (5la]

Let T de the spread which we introduced in 4.2.
Valoetr 2 (Vklo(R)<2] A VEVE[((B)#OAa(l140) - k=01)]

We want to show: Yaet[A,(Slo)]
Let us assume, to this end: aeT and pew
We observe: DZA, (Q), therefore: A,(5[0), and: E,((5I0)P)
We determine kew such that (§[0)P(&] =0
And we determine gew such that - Vp[§q=§q -5 (5|P)P(P<]=o]
We now distinquish two cases:
Case 1: &g + Oq
As cet, we may determine in this case, m<2 such that
«M =0, therefore: D*A,(ct) andl: A, (8l esp. E,((8la)P)
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Case 2: &q # Oq
Then: E,((8la)P)

In any case: E, ( (§]«)P)

We have proved, now: VYouet YpLE,((5l)P] ie: Ve[ A,(8lo)]
Therefore : Yaet [ D*A, (x)]

This will lead to a contradiction, as in the proof of theorem 43
®

The proofs of the theorems 48 and 4O are variations upon One theme,
the latter being the more simple of the two.

The conclusion of theorem 4i0 marks an improvement upon theorem 33,
which said: =(E, £A,).

In order lo see this, one observes, using theorem Y.b: Vn[D"A1<D"+'A,(Ez7
(We defined ,<" i 23. A<B 2 (A<B A -(B<A)

The reader’s task reduces to proving: anD"A1-_<EZ])_

4u We introduce, for all subsets Pc “w and hew, a subset C"P of “w by:
for all ae®w: CMP(«) := Vq<n[p(otq)]

iz Without difficulty, we establish the following facts: C*A,4A,, D’E,<E, and C'E,<E,
First, we determine 8e“w such that: Fun(6) and Vot [ (5lo)(2n)=a%n) n (Slot)(2n+1) = o ()]
Then: Yo [C2A, () 2 A,(8la)] and Vo[ D*E, () @ E,(8lo)]

Next, we determine §€“w such that: Fun(s) anct Yo¥n[(8k)(n=0 2 (bgln)=2 A o®(n(o))= &*(n(1))=0)]
Then: Yo[C*E () 2 E,(§|a]

This seems to be a good place to mention an (mportart difference between
the results of this chopter and the results of chopter 3.

When we set out to prove: -(A, <E,), we did not (ntend to prove as
much as we odlid, eventually,

Starting from a sequence §, fulpiling only. Fun(8) and: V[ A, () - E, (SlaY]
We were oble to point out @ Sequence o such that: A, (o¥) A E, (§la*)
When proving: ~(E, 2 A;), we olso exceeded our oOwn expectations.

(cf the discussion th 3.4)

There is no hope for a similar reinforcement of a conclusion like: - (D*A,2A,)
In order lo see this, we consider the subset E¥ of “w which is defined by:
for all ae%Ww: EX) := Inlaln)= 1]

We easily find 8e%Ww such that: Fun(8) and Yol C?Ef(x) 2 E.f(8lx)]
This same & also satisfies: Vol 71C*E¥(«) 2 ~EX(Sla)] and, therefore:
Vo[ 9= D*A (0 2 A,(5lo0)]
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Remark that Vel D"A,1 ) = A,(8lc)] and that i (s impossible to find o¥e “w
such that "DZA1(0(*) A A, (8la¥)

This phenomenon (s put (nto perspective when we recognize that there are
clagsical facts corresponding to the resuts of chapter 3 whereas, in this chapter,
truly (ntwitionistic idiosyncrasies come to the surface.

413 We introduce, for all hatural numbers mn, a finde subset Exp(mn) of w by:

Explmn) := [f|few| Q(f)=n A VR k<n —-)F(&)<m]}

(Exp(m,n) (s the set of all functions from n to m, where, following
set-theoretical habits, m and n are (dentified with the sets of their predecessors).

We define, for each few, a subset Ay of “w by:
for all oe “w: AF (@) == ¥Ynln <Q3(F) - (o(")F(") =07
We leave it to the reader to verdy: Vf[AféA,] and: YfLf4<> > A <AL

In this last sentence qood old A, s meant,which we met for the
first time n 2.3

We are quilty of o slight inoccuracy by having introduced, here, namesakes
for A, and A,, (cf 3.0}, but it will not harm us.

414 Theorem: VanfC"(DmA1] < DmnA1 1

Proof: Remark : for all oe “w.
CD"A () 2 Vh<anIlam [ k) = 0]
2 3IF[feExplmn) A Ap@]
Also observe that, for all few, we may define Bp € “w such that
Fun(8) and VYol Ag(e) 2 A, (&]«)]
As Exp(m;n) has m" members, the construction of a e “w such that
Fun(8) and Vx[C"D™A,(x) 2 D"‘"A1(810(]] (s now an easy molter
B

45 Theorem: Yn¥m Vq vp [ C"D™A, < C.qDPA4 - m"< p9]
Proof : (The reader has understood , probably, that , C"D™A," stands for-:
C"(D™A))
Suppose: m">p9 and. C"D™A, < CIDPA_,ie.. YaIp[C"D™A, () 2 CDPA,(pI]
U.s(ng AC,,, determine de“w such that Fun (§) anol Vol[C"DmAi(d)Z.’ CqDPA,(Sldﬂ



416 Theorem.

Proof .

24

For every fe Exp(mn), consider Ap, as defined n H.I3
Remark - Ve Exp(mn) Vo[ Ap(a) = C"D™A, (]
Therefore: VFe Exp(mn) Vo[ Ap (o) = CAapPA, (8l

and: Yf e Exp(mn) Vo[ A () IR[AeExplp,q) n Ay (Bla)T]
Observe that, for every fe Exp(m,n), Ag(Q), and: Ap (s a subspread
of Ww (cf 1.9) so that the generalized contiruity principle GCP applies.
Applying it for every feExp(mn) separately and keeping in mind
that m" > qP one finds fe Exp(m,n), geExp(m,n),ﬂe Exp(p,q) and rew
Such that: F:f.% r Ya[(ar= Or /\(Aféi)v A?(od)) - Ap‘ (8l)]
We now again have recourse to T, the subspreac of Ww which
we (ntroduced in 4.2 to serve us,in this chapter, as a true
Sorcerer’s apprentice. (T={ot|oae“w| VR [oi(k)<2] A YRVL(x(B1£O Aat(l)£0) k= l]})
As [+4g we may determine k<n such thot f(k)+4 q(B)
Tnerefore: VYaer[ == ( (d&){-‘(l\ =0 v (a¥3® _oY
Let us restrict our attention to T*.= {|act | V[ {#£ - €= 0T}
T* is again a subspread of “w and: Yaer*[ (A, (oL)VAg(oL]”
Thyefore: Voaet*[ar=0r - Ag\(sloll] ond:
Voaet*[ ar =0r - CDPA, (8lx)], and: Yaers[ar=0r >C"D™A, ()],
especially: Vaet*[ &ar=0r - D™MA, (m")]
We now proceed easily to the contradiction we wanted to reach,
following the pattern of the proof of theorem 8.
We observe: Qet* and, applying to GCP defermine sew such that
r¢s and lew such thak: VYoet*[as = 0s - (@®) =07
This is not so, for we may define o, in t* such that:
s = 0s ond: ((o®)Y)(s) = 1.
&)

¥mVp [ D™A, < Un(DPA)) - m<p]
This follows from theorem 4Jg.
Assume: m>p and D™A, < Un(DFPA,).
Remark. DPY'A < D™A, , therefore: DPY A, < Un(DPA,).
This (s not so, according (o theorem 49. [}
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w1z Lemma Va¥m[ D™A, £ C"™1D™A, < C"™2D"™A, < Un (D™A)]
Proof: Easy. B

4.18 Theorem: WnlinVq¥p[ C™*D™A, £ CDPA, - m<p]

Proof. Immediate, from H4l1b ond H.i?. [}

419 Many questions are answered by theorems H4M -8, but some nasty problems
remain to be solved.

Conjunctive power demonstrates tself w1 sequences like the following:
D*A, < C*p*A, < C3D*A,< ..
D*A, < C*D*A,< C’D*A, <.

We know that no set from the second sequence can be reduced to any set
from the Pirst sequence.

The converse thing sometimes happens, as Yn[C"D*A, < C"D3A,]

But what about the question § C*D*A, % C*D2A,?

No hegative answer may be read off from theorems 4.14-18.

Nevertheless, the answer is negative, as you will suspect after o - short woulk.
More generally, we may ask, for any set from the first sequence:

what (s the first set (n the Second Sequence to which & s reducible?
And : do you know if C3D3A, £C*DCA,, or, « C3D3A < CHYDYA ?

In order to handle these and simdor quest(br\s we (ntroduce a new notation.

We define, for eoch hew o subset (CD), A, of “w by:
for all ac%w: (CD),A, () = V[ k<bgl — D"®a, (a]

C3D2A1 reappears Qs (CD)<2)2,2>I-\‘I ~and C*D®A, s now called (CD)&’?'> A,
We make a few observations, without striving for completeness -

If the finite sequence codecl by n’ is a permutation of the fuite sequence
coded by n, thea. (CD),A, £ (CD),, A,

IF lg(nl= &9(n) and VE<lqm[ n(k] <n'(£)], then (CD),RA, £ (CD), R,
(CD)<P,q7 A, ¢ DP%p,

More generally, f n= <ny,n,,..,n,>,then: (CD),, , A4, < (CD) A

o1 T <n6n"nl,...,ne> 1

(The proofs of the last two statements are simiar lo the proof of theorem H.I4)

The following notion will also be useful:
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We define, for all fine w:
fen = fgF)=Lgin) n VR[ k<lgin) — P(R) <n(&)]

IP n= <MgyMy-y Ny >, then the number of elements of {F[FewlPEn} (S MM oo hp

We use square brackets [ 1 to denote the enter-function from QF to w,
which assigns to each positive rational hwmber s (ntegral port.

Sufpiciently many preparations hoave been made now for:

420 Theorem: Let m,n be natural numbers, m=<m,,m, my> and n=<ngn,,...,ng»
let m,>0. Then:

(CD),;mmmn___,m&7 A, % (CD)MO.M,---,np A, o and only f
Al

,...,n17 4

Htsef m,<hg A (CD)<m”...,M&7 n1 £ (CD)<"O)-“)[nt]

[~

A

Proof:w First suppose: t<l a m,<n  a (CD)gy n LR T,
(-4

A moment’s reflection shows:

(CD)m A‘ = (CD)(M,,"\"--',M&> Ai 5 (CD)<m°,no)“_,[ ;‘Tto]r“’ne) A1 ﬁ

(CD)n,,..., M2 1, > Ay £ (CO)p,.,Ngs-,ng >Ry = (CDYA,

o) Now suppose: (CD),, A, £ (CD), A, ,ie: Vo(EI’%[ (CD)m(-li(ot);)(CD)n 91(@']
Apply to AC,, and determine Se“w such that: Fun() and
Vo[ (CD), Ryl 2 (CD), A, (Slot)]
Observe : Vo[ (CD)m A,‘ () 2 3fcml AF(o()]]
(We introcluced, in U3, for each few, the sek Ap = {o(lde“’wlVk?g(F)[(ul)F(L):Q]})
Coll to mind that, for every Few, A ¢ & a subspread of “w (cf.19) and: Af(g)
Remork: Yfcm VO([AF(OL) - 39[1\ [ A? (8lo)T].
Invoke the Qeneralized continwty principle GCP andl conclude:
Vpem Igoa IsVal(@s=0s aAg(ad) = Ay (Sloo)].
We may construct a function I: (fIfewlfrm} - {qlgew|qcn]
and a number sew such that:
Vf-‘cm Vo[ (3s=0s a AF(OL\) - AI(H(SIoO]
We venture the following
Claim = 3t <{g(n YPcm Yhc m[ Flol# Rio) = T(f)(t) # L(R(E)]

We prove this claim as follows:
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Suppose , to the contrary: Vt<lg(n) IfrmIhcmfE14hO) A (LE)E <R

In this difficult situation, we need owr friend from 4.2:
T = {ofae“w| VR[x(R)<2] A VEV@[(a(&)%voL(CHO)—-)&:8]}

With his help, we define a subset B of Wuw.
B := {o|oe%w| x°er » Vik>ol o ¥ < 0]
We remark: VoeB Yfcm Yhom[ flo)4 hlo) - -~ (AF[oL) v A&(d\)]
therefore: VYoer Vi<lgm 3fcm[&s= Os — ((8lx)t)@EE) _ o7
and: YoeB [ &s=0s - (CD), A,(8lx]
so: VYoep [ as=0s — (CD),, A, (0]
Also - VoeB [ &s# 0s - (cp),, A,(e)]
Therefore . Vae B (CD),, A, ()], especially: Ve[ D™OA (011, and:

VCXE'C[DM(O)A‘l (o()] This is not so, s we have seen on several
occasions (cf the end of the proof of Yy.s).

Our claim has been established, now, and the argument is

constructive, although it does not appear so because we are
dealing with finite disjunctions and conjunctions of decidable

propositions.

We calculate t<@g(n) such thot: YFrmYhcm[£0)4R(0) » TF)(E 4 (Z(R)()]
Remark thot this implies: m,<ng
We may profit, now, from our training (n combinatorics (if we had cny):
We define a mapping on {p|pew [p<my}:
p P {qlgew]| Ifcm[Ff(O=p AZIFNE = q]}
To different numbers, disjoint decidable subsets of w are associated.
We determine p such thak: p<m, anol the humber of elements of
{q] qewl Afcm [FO)=p » (I(F))(6)=q]} S at most: [,ﬂn%]

We define a subset E of “w . E = {af we“w| («°)P =0}

Without fear, we make o Second (laim: we may cohstruct Ze“y
such that: F(N’\(Z) and: VO(EE[(CD]MA1(°(-) 2 (CD)O\D.'\.)-“)[%E],---'\;?A1(%,°‘)]
We do not go into a detailed construction of Z but & should be
clear that Z may be obtained by a switable rearrangement of §.
Finally, we make n e “w such that Fun(n) and Yol (4a)°=0 A‘Vj‘[(ﬂld)jﬂ:o(iﬂ
Then: Yol nja€E A ((COlim,,. my>A () 2 (CD), Ay (nia))]
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Putting all things logether we see
W, A 2 (€0, (1], (G

m,§’
1.€.: (CD)<m4’_;.)m£> A1 £ CD("O)"‘)""[;%]"“’ ne> Ai
(-]
=

421 Theorem 420 delivers us from many problems.

It provides us with an olgorithm for the set {m,mewlhz(m);«’ A(CD)m(O)A1£(CD)M(1)A4}
We refrain from a general formulation of this algorithm, and
only calewlate some speciol cases:

Suppose  C3D?A, < C°D*A, ; ie.: (CD)<2,2,2> Ay 2 (CD) 535, A,

then. (cD),, ,, 8, £ (CD),, s> A, and H<3: contradiction.
Suppose C>D2A, < C*DbA,; ie: (CD)yyy,, A, 2 (CD)“",)A,

then (CD), ,, Ay £ (CD)yyq, Ay ;then: (CD)es5 Ay 4 (D), 4,
contradiction - there is no entry in <2,25 at least as big as 3.

then: (CD)y 55,35 Ar < (CD)yyy gy Ay, and BI=3 <4P=64:
contradiction.

We may prove, inductively : YmVn[ C™D*A, £ C"D*A, 2 ms<n]

Theorem 420 is a very Qeneral statement, which embraces earlier results
like theorem 4.13.

Ne might enter a new field of Qquestions now, by Forména » disjunctions” of sets
(CD), A, , and then again . cohjunctions' of these new disjunctions, and so on.

We could consider the class of all subsets of “w which are buit from A,
by a finite tree of disjunctions and conjunctions.

Bub we are getting tired and prefer to take the bus home.
There (s such a choice of playthings here, we cannct go and try them all.

Many problems will be left alone, for, tomorrow, we are visiting another
part of the country.

This (s a pity, but there are more things i heaven and eauth, tham
are dreamt of (n chapter 4. DA,

CiD*A,

422 Before leawing, howewer, we buy and send

JCeD*A C*D%A,
a postcard to owr dearest friend: 1

C*D*A,
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5. AN ASIDE ON IMPLICATION

We leave the main line of owr discourse and look @t some subsets of “w
which are built from A, and E, by means of (mplication.

As we amnounced in the introduction, we do comsider implication to be more
mystercous and less well understood than disjunction or Conjunction , and we
try to buid o hierarchy of subsets of “w without Uséng it

Someone might be inclinedl to say to this that logic really starts only when
umplication comes (.

This chapter offers him some consolation.

We Rrst show how to erect, by repeated use of mplication, some towers
OF subsets of Ww of ever increasing complexcty.

We then chortly discuss the diffcult Qquestion of how lo compare these new
Subsets with subsets of “w which are arithmetical h our restricted Rnse.

50 We define a sequence I, I, .. of Subsets of “w by:
1

[

For every oe “p . I (« .= {
For every pe w: B
For every oe Ww: -LSP(O() P= IP(O() - A1(°(P)
As usuol, S dlenctes the successor function on w.
I, for example, will tum out to be:

L) = (-2 - x'=2) 3 «¢=2) > wisg

5.1 Theorem: VP[IP 5ISP]

M- Determire §e Ww such that Fun(8) and Yo [(§|0)°=0 VP[(Sld)SP =o(Pﬂ
Then:  ¥pba [ Ip() 2 g, (3]
i}

As the reader may Suspect, we Qre going o prove : Vp [ - (ISp < IP)]
We wil do this inductively, and heed some auiliory  concepts.

52let A be a Subset of “w We define the subset Neg(A) of “w by:
For all ae%w. Neg(A) ) = —A()
let A be o subset of Ww. A is called a stoble subset of “w
Neq(N%(A)\cA , ie. YalAl) 2 —7Al]

53 Lemma . (without proof):
for ol subcets A,B of Ww . Ip A4B then Neg (A) £ Keg(s) Ad:
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Prcf

s

for all stoble subsets A8 of “w :  If Neg(A) < Neg(B), then A<B

Wl I, s o stable subset of “w]

It s a well-known fact from intuitionistic logic, that A, s a stable
subset of “w, and that the class of stable subsets of “w s

closed under the operations of (conjumction ond) umplication.
®

vp¥q [ Ig, < I — = (Neg (Ip) 4 Neg(Ig))]

Proof : 3u-ppose p,qew and I ﬁfsq , i-e. Vo(}{s [ISP («) 2 ng((%)]

U.scy.% AC,, , determine Se“w such that Fun(§) and. Va [ISP(O('Z') Isq(Slaﬂ
Consider oy € “w , where o, fudfils the condlitions:

Vj<P[o(2 - 0] and: of = 4
(1 is the sequence th “w which i dlefined by: ¥n [ 4(nl=1])
Remark : —‘IQP(O‘*) , therefore : ﬂlgq (8 lty), and: (§lo,)1# O
Assume now, for the sake of argument: 3In [ (5(d*)q('\) #0]
Determine new such that: (8log)? (nl £0
( Both oy ond. 6| « now have Q@ ‘ useless’ lask su!rSQquence,
of nesp. (g(d*)q, Keeping this i mind, one has no clifficulty
m Find.inQ the inductive step ;)
Determine lew such that - Ya[ al=F L — (Si(n) =(81x) () ]
(If we have to make oin “w satifying: &=L, owr options
ﬁ)r the F'-rst PsubSe(.?“-e'lCﬂS OF ot are almest open:)
Defire ne “w such that Fun(q] ond : for all ae W :

Vj<p[(r|[d)1=<_3¢* 4] and: (Vlld)P= L.

(For all me w and oaewy, meo denotes the sequence m Ww Which
One qq,tg by concatenating the FMLfe sequence coded {oy m and the

(nfnite sequence o) L
We hove encured that: Vol (nfll =, 4] and: Yol (810 Yl 4]

Moreover, [or all ae “w:

(Neq (IP“ (o] = 716 )
2
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2 Ig (8llni)
2 "I (8lta)
2 (MeqIq) (§l(nia)

Therefore.  Neg (Ip) £ Neg (Iq)
We reached this conclusion by asswming : In [(Sldx_)q(n]= o]

W\e_refore ; From-, -1 3?\[ (Slol*)q(hlfO] we. may Coime ‘?o;
7 (Neg (Tp) £ Neg(1g)
X

5.6 Theorem. Vo [ Ip < IQP]

In order to prowe: VP[" (Ig, 4 IP)],we, start from the obvious fadt.

"(LAT,), and proceed by (nduction, using lemmas 5.3-5
(Let us prowe : = (Lgg, £ Ig))  from. = (ISP < IP)

Suppose - Igg, < Ig; them, by 55. -1 (Neg (I5) < Neg(Lp),
therefore, by 53 and 54 . = (Igpﬁlp)_ Contrud,id:don)
X

5% We define a sequence J,,J; ... of subsets of “Ww by

For every o€ Yw : L) = 41=1

For ewvery pe w,

for every oe W I(P(oc) - B — E, (P)

58 Theorem : UP [T < fssp]

prDof.. Like the proof of 54. Determine §e “o such that Fun(3] and
Va [ (Slal°= £ & Yp[(81x)°P = PT]. Them VpVa[IP(d\ 2 JSP (5lx\]

B
We want to prove row: Yp [ = (Jg, 7,11, and, ogoin, we wil do <o by induction.

59 Lemma - Yp [Jsgy €Jp — —13q<Sp [ Jegp & J'q 1]
Proof - Suppose pew and Jog, < Jg, , ie. Yol 3pl Issp « & Ty (p)]
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Using ACy , determine e “w such that Fun(d) ancl Wx[ Joc, @) 22 Tsp(81]
Obser e : IssP(i)Z-""Jsp(.i,) and: "(ngp (1) 2 Jp (1)
Therefore: 6[4 + 4, and, to be more precise: < Yt<Sp Vn [ (11 (m#0]
Assume now, for the Sake of argument: It<Sp In[ 311)(n) = O]
Determine E new Such that GlLEm =0
Determine lew such that: Yaldl=TL - (8l (n =(812)E(m]
Define ne%w such thout Fun(n) , and, for all ae Ww:
vi<ss [ () = 10w od]
In tis way , we enswre: Vi [ (Wla)f =Tl] and: V(1) (n=0]
Moreover, for all ae “w:
ol 2 o, (nlal
= (Jgp(zl(q;a)) A (Sl(qla))"'(nlzo)
2 (- (E, ((BIolat*?) = E, ((loqedt) .. = E, (SlogiellP)

ﬁ\exe,fore-. JSSP £ JP—(: , and : gq<QP[IS§P ;(jq]
e reached. this Conclusion by assuming: 3It<Sp [ (812)tW=0]
But: = ve<Sp Yn [ (814 (n)#0] , ie. == FE<Sp In [ (8]1)E(n)= 0]
therefore: 7+ 3q<$p [Iggp £71q7.

)

59 lemmo. : VP[ “TSS‘P < J'S,P - Aan (‘ISP £ JP] ]

Proof:  Suppose pew ond ISYP-g ]'SP, By 5.3, we know: == 3q<§P[Jggp$Iq]
Assume only for a moment: 3q<Sp [T, £ Ig1 o deter mine
q<Sp such tRat Jesp < Tq. Remark:. I, < Jgg, LJqzTy, and:

Jop < T, Therefore, making no odditional assumptions, we hawe:

p
- (IS‘P £ JP)
R
5.10 Theorem . vp [ Jp < Jgp]

Proof - From 5.8 , we know: Yp[ ;rpg]‘g.P]
In order ko prove - bp [ —.(JSSP < J,)], we use induction,
starting from the obvious fact: = (J,<7T,), and applying to
59 for the inductive step. The argument (s simdar to the arqument
for 56 and wil not be given n detad. [



38

A clagsicat spectator might Quess that all participants i the two processcops
I, Iy, and %,T,,... are reducihle to both A, and E,-
Let us try and see  this & true.

514 Theorem: 3'2 £ Az

Proof. Note that, for all ae Wuw.

L 2 (E,(a®) = E (a")
2 (In[a°(m=0] — Inlat(n=0])
= vm [ x°m)=0 — Inla'n=0]]
= Vim 3n[ a®m=0 — o'(n)=0]

Define Se “w such that Fun(8) and:

VamWn[ (8" (=0 &2 (ot%m =0 = a'(n=0)]
Then: Y[ L() 2 A,(8l)], and. T, <A,

&

5.2 Theorem: A1 <7, and E, <73,

Proof: Define Ze “w such that Fun(z) and Vo[ Wnl(3]x)°(n)=020(m#0] A (Zla):1]
Then: YL A 2 J,(2(d] and: A <,
Defne ne Ww  Such that Fun () and: Yl (qal°=0 a (4(edt =]

Then. Vol E () 2 T, (1«11 and: E <7,
[

5.13 Theorem: 7 (DA, £ 1)

Proof. Suppose : D2A;<J, , ie: VaIp[D*Al) 2 L(pl), and, using ACy,

determine §e “w such tRat Fun(8) and: Ya[D%A,(«) 2 T, (Sld)]
We now dare to make the following clawn.

Vo [ D?A, () — ( =E,(¢8e)*)]
For, suppose : ae%w and DZA) and E, ( (5la)?)
Determine hew such tRat (Sla)*(nl=0, and also few such that
VpLpL =& = (8Ip)t(m=0]
Terefore: Vpl sl=al — E, (BT, and: YLEL=alo L(8lpY,
and: Yplpl=al — DZA,(F,\].
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As there are sequences (ke p= alx 1t , this (s contradictory

We howe proved now: VaLD*A(dl — (7E,((§l0*N],and may
Concludte: YLD, () @ = £, ((8(x1°)], and: Y« [DA, () 2 Vn[(sla)°(nl+o]]
Tais would meam: DA, <A, , which we have refuted wn theorem 4.3

)

5.4 Theorem: (A 2T

Proof. Suppose : A <,  ie. Yx plA. 4 2 L), and ,using  ACy,, determine

§e Yw such that Fun(8)l and: WalA,(n & I (3101
The proof now proceeds like the proof of theorem 5.13
We Ffirst remark that: Vo[ A (@) - - E, (Gl*)] and

then conclude: A, <A, which has been refuted w chapler 3.
R

As DA 2E, and - (D*A, %7,), also: = (E,<7,). Actualy, £, and J, are

(ncomparable:

515 Theorem : ~ (L £E)
Proof - This result reinforces theorem 32 and is proved in a similar way.
Remark that, for all oe “w :
L@ 2 VmIn [aom =0 = «%(n)=0]
&  H¥mlam0 - (Ingmlatl)=o] v ai(ymi=o)]

For all ye“w and oe“w we define [® m “w by
For all ate w:
(y®Nt (n = ot (n) f b4 1
G N = o) f (Im<nCylmsn A o=(m)=0]

and: = Im<n [l @)*(m=0])

ot *(n) otherwise

&) 0 = (0
(The definition of ((@ot)i apparently goes by induct ion).

We observe: Yol L« 2 Iy las= J@Nﬂ
Now Suppose: T, « Ez , e Vo(':'l(s[ L 2 Ez(r,\], and,
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using AC,,, determine §ec“w such tRat Fun (§) and . Ya [T, (x) 2 E, (lxl]
Remark: Ya Y [E, (81 y@a)], e Wux VJ' ImLA, (8ly@)™) ],

Using CP, determine mew, pew,qew such tRat
VKVO([(fP=?O_P /\aqz I_C') - A1 ((6(6’8)0(\"')]

(The creative Subject, still using UPOh hs exploits n chapler 3

now has o possbility of reviving his old  gloras)

Coleullate F := max (p,q) and defne a special sequence o¥ in Wy
such that: @*° =IrxQ and @M =1L and Fr = Ir

(Not suppressihg @ sober smie, the Creative subject points to the
(:Duowinq facts

Now: =+ (T,(«®) and. A, ((5l«*)")

For, suppose new and (&[ot¥)™(nl40.

Determine Lew such that: Y[ al=a%8 > (8l0)™ (n)= (§[a®)™(n]
Determine @ special Sequence p m Yw such that f&@: «*4
ard: por = (?r -fr=1r ond E4(p°) and: E,(ﬁi)
Remark that: L(p), ard , what is more : foipzﬁp A [5:{8{5]
From this, and : Bq= Iq , we infer: A ((8((5)"‘)) whereas,
fom. Bl oa® we know : (8Ip™(m £O. Contradiction.

Therefore . 2T, (%) and: E, (8la¥).
(The imitative subject bows his head apd qoes his way @ sience).
X

This  proof tempts us to pause ond, reflect a litte
It seems thot the distinction we proposed to mmake in 4.12  between ,strong"
results, which ate backed up by solid classical reality, ond ,weak”
results, characteristic of the Subtle irit of wtuitionsim, s not tenable,
since, if the logic were classical, 7, woudd he reducible to E,, and theorew
5.5 refutes thiS in the strongest possible way.
A second remark is, that it s the same ana fysis of the true nature of
which, on the one hand,, makes onhe see that it i¢ reducible to A,, and,
oh the other hand, that i is hot reducible to E,. One cannct howe it
both ways.
Thirdly ," as a special case of theorem 5.5, we hate that the fLﬂowim}
statement leads to @ contradiction:

Yot vp [ Anlalni=0] - E(n[f%(n\:o'l) — (Vnlam)40] v :Jn[[&(nhoj)-]
This need not swrprise, becawse, f we put a=p wn this ormula, we sea
that ¢t entolls:  Val ¥nLo(n#0] v In[a(=01], which, by CP (s obviously untrue
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We now turn to the task of Comparing I,, the subset of “w which we (ntroduced
h 5.0, with some other subsets of “w-
Remember that Vol L(«0 2 (Wnlo®lh)=0] — Ynlaiin=01)1

An implication whose antecedens is universal, is less accessible to understanding
than an implication whose antecedens is existential.

Whereas we observe at a glance : A, <T,<T, , in studying the questmn of
whether E, is reducible fol,, we run up with a deep riddle of  intwitio niskic
analysis.

Consider the statement:. Ve[ =7 Inla(n)=0] — Inlaln)=07].
This stands for o very reckless assumption, indeed.

If we should occept & together with the restricted Brouwer- Kripke- axiom,
(cf 2.1), we woud be able to decide any determinate proposition, and,
probably, would be asked more questiors than we are now.

(Let OUL be a determinate proposition.
Thep. OLv-0L (s also a minate proposition, and we may
construct o€ “w such that. Olv-OL 22 Jn[ouln) =07

As = (le-v&)l also: =+ Jnlaln)=07 , therefore: AnLot(r) =0],
O-Vld B 01- V= 07.)

Nevertheless, we are not oble to prove this statement to be contradictory.
Brouwer himself once stumbled at this stone, using an unrestricted
Brouwer - Kripke- axiom in order to get absurdity.

(It is not difPicult to quess how he does thus.

As now oay proposition, not only a determinate ohe, may be
assumed to be decidable, we have, for wstance: Yyly=0 v“((=9n,
which, with help of CP, leads to o contradiction).

In the following we call: V[ -~ Infoln) =1 — In[uln)=0]] an enigma,,

and we reserve the same title for any proposition which we can prove
to be equivalent to & P

5.6 Theorem : . E < Neg(Neg(E))" s an enigma

Procf:  Suppose : Vo [ == Infa(l=0] — IAnlo(n=0T)
then: Vol Inlatln <01 2 =7 3n[atin=0T, and: E,< Neg (i)

Now suppose: E,< Neg (neg (E)), i.e: Ve 3[5[ E () 2 = E,,(F.)].
Let o€ “w and assume - E, (o). Determine p€ Ww Such that.
E o) 2 ~~ B (p) Then. —.-.E,,((s) , and: E, (o)

Therefore: Vo[ =+ Infa(n=0] - 3nClot(nl=07]

®

Remark that, in this proof, we did not hae recourse to ACy.
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Proof -

518 Theorem:

Proof -
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. Neg(Neg(Eq)) £ E,' is on enigma

SuppoSe= Vo[ =~3n La(n)=0]1 — 3In Cat(n=017]
then: Vo[ = In[a(n =07 2@ Tnlot(ni=0T], and: Negllieg () < E,

Now Suppose: Neq(Neq(E,,]‘) <E,,ie: VYa 3{;[—»1 E, (0 2 E"(P)]' and,
using AC,,, determine Se “w such thot: Fun (§) and:
Vo[ = E) 2 E,(§la)]

let «e “w and assume 11E,() ; then E,(5(«). Colculate ne w such
that : (8la)(nl=0 and determine lew such that-

V{)_,[ [EQ=612 - (5_([%)01): (8l)(n1]. Consider a* .= &L x4, and
remark . (8la¥)(n\ =0 , therefore : =11 E (o*), and: Im<l [oc*(m)=a(m =0]
ie.: E, ().

We proved!: W[ 71 3nLalni=0] = InLot(n)=0T).

'

L E 21 s an enigma.
Define Z € %w such that Fun(3) and: Ve ¥nl[ (3]a)(N=0 2 «(#£0]
Then: Vol (Neq(ENol 2 A4(ZI0)], and: Neg (E,) < A,
Define he “w such that Fun(n) and: Vol (Zlo)°=e¢ » (3l)'= 1]
Then: Vol (Meg(A) () 2 I, (nla], and. Neg (A) < I,
Therefore:  Neg (Neg (E,) < keg (A) < I, and: Neg (Ne?(Eﬂ)S I,.
Suppose : Vot [ =~ In[o(n)=071 — InLan)=01], then ,according to
theorem 5.16 : E, < Neg (Neg(f;)) and, Consequently : E LI,

Conversely, suppose: E < I, , ie.: Vot 3{;[ E,(« 2 Iz((a)]

let e Yw and assume : -7 E,(«). Determine pe “Ww such that
E, (0 2 Iz((s). Then: =17 I, (P), and, as we noted n lemma 5.4. Iz(F)~
Therefore: E ().

We proved: Vol =a In[aM=0T - Inl«n)=07].

X

AC, has been Circumvented once more.
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n

5.9 Theorem . 21 s an enigma

Proof Suppose : Ve[ =~ Infat(m=01 — Inlatin=o1]
Then: Yol (E,(@°) = £,«")) 2 (~E,(a®) » == E,(a"N]
and: Y [ (E,(«°) - E,(x") 2 (E, (") = = E,(«N]
As, obviously, Neg (E,) < A,, we conclude: J, <1,

Now, assume : J,<1,, remember fom 512: E, 47, therefore -

E,<I,, and, according to 518: Vo[ == Inf[a(n)=0] = 3nfo((n)=o]].
b}

520 Theorem : (I, £ E,)
Proof . We prove this by re-examining the proof of theorem 5.i5
The argument given there may be seen o show the following:
for all 3e“w, ¢ Fun(8) and Yol J,() = E, (8],
there is o*e Ww such that -, (x¥) and E, (8la¥)
Now, assume I, <E, ,ie.: Vo(ap [Iz(d) = Ez((s)], and, using AC,,
determine §e“w  such that Fum(s) amd: Vo[ I (02 E,(8l0]
Remark that Vol (Inlo{n)40] InLao()#01) - (Yh [a®(n)=0] - VLo (n)=01)]
ie.: Yol (Infa’(n40] — Inlx®(n40]) — I, (]
Therefore: Vo[ (Inlot’n) 401 —= Inle(#0]) 5 E, (8la)]
As in the proof of theorem 5.5, we may construct ol* m Ww
Such tRat:  ~( In[(a¥ n)40]> In[e*)°(M+0] ond: E,(8x¥)
her = 3n [@)°(Wgo] A Ynlad)°(W=0]) omd:E,(§lx*)
and: aI,(a¥ and: E, (5a¥).

This (s the he,qu_éred contradict won.
X

We are opproacking, how, the limits of our knowledge. Questions fike ,I,<7,"
or ,I,4A," also have a ring of impobability but seem to belong to
a different [ewvel of mysteriousness tham their predecessors.

Ne do not pursue this line of research any further

We do not see a reason why these annoying enigmas are true, ond, therefore,
we do not wont to make axioms Of them, although such things are
sometimes done, f only by way of experiment (cf. Troelstra 1973),
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We wont to conclude this chapter by o short comment on the subsets P and &
of “w, which are  defneodl by:

For al ae Yw-.

P) = E,(x°) — A, o)
RE@ = A, (] - E,)

We leove &t to the reader to verify: P=<A, In contrast to this, we have

521 Theorem : ,R2E" s an enigma

Proof . Suppose first: Vo[ == 3Infet(n=01 » Inlet(n)=OT]
Under this asswmption, for every ac wWw the following holds:
Qo) Ae) > €, ()
A, (@° = —-E, ()
~ (A (e®) = E, ()
~=3nLo’(n¢0 v o'(r=0]
In[«9n) +0 v a'(n) =0]

o

From this, we may conclude: Q<E,

Now assume : Q4E . By an argument somifor to the one given i
theorem 5.18 - Neg(Neq(Em £ Q, and, tke,rerore, Neq (Neq(E‘\\ £E1_
According to theorem 517, this implies: Yx[ =1 3n[a(n)=0] 2 Fnla(nl=0])
&

We should be careful, in future, not to get entamgled in this web of mysteras,

but occasionally, and especially m chapter 10 and in the [ast chapter, we will
have to refer to ik.

The following picture summoarizes the positive results of this chapler-
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ARITHMETICAL SETS |INTRODWCED.

Having plodded heawvily through the last pages of chapter 5 where we saw
much that we did not. really understand, we now eater o glade where
simplicity reigns and the sun (s shining.

The class of all subsets of “w which ore reduchle to E,, is introduced here
ond baptized X

Likewise T oppeaurs, the class of all subsets of ww which are reducible to A,
We verify thok these classes behowe as one should expect.

Both of them comain a universal <lement

The other classes of the arithmetical hierarchy, 229 N2 Z9, ng,.. are
infroduced in o straightforward way, and turn owut to behawe propery.
A short discussion explai.ns why the diaqonal orgument does not prove
that each of these classes (s Prope,rly included in one of the following
classes.

We define DEC to be the following dass of subsets of w-
DEC = (A [Acw( YnlneA v ~(rcAll

(Members of DEC are colled : decidoble subsets of w).

One might frown at this notion, as we do not hawe, in intuibionism , a set of
all subsets of w.

But with the help of AC,, we can get i into our grasp.

We may remark:

for all subsets A of w:
If AeDEC , then dJu¥nl neA 2 «(n=0]
and: If Fa¥nlheA 2 anl=01, then AcDEC

We have every reason to tecognize DEC, as soon as we accept “w,
or, for that mauter, G, (+= {ollo(e“’w' VYn [«(n) =0 va(n):i]j)

We dlefine Z9 to be the Pollow(nq class of subsets of “w.
%= [P|Pe%w| P<E}

1

Once more, one might fee| inclined to object. We are very far, indeed
from surveying oll possible Subsets of “w.

However, as in the case of DEC, we will be oble lo reassure ourselves
tih o moment.

Theorem: Let Pg %y
Pe 29 if and only if there exists a decidable subset A of w
such that Vx[P@) 2 ImlameAl]
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Proof: () Suppose P<Eg,, ie.: WHP[P(a)g}i-;(Pl Using ACy, determine Se “w
Such that: Fun(d) and: ValP@) 2 E,(8lx)]
Define a decidable subset A of w by:
For all e w:

BeA 2 -HMEMS&](H A Jalbca ab™a)=1a Vc[agc/\a#c—P sm(c)=cll]

Now, Vo[ 3Im[ (8la)(m=0] & 3dnlan eA]l
Therefore, A fulRls the requirements.

Gi) Let A le a decidable subset of w such that . Vo [Pl 2 ImLameA]]
Determine e Ww such that Fun(8) and:

For all «e%w and mew
(§lo) (m) = O § ameA
P = 1 oU\erWLSe
Remark: ValPl) 2 E,(8ld)] , therefore P<E,
]

6.3 Theorem: () Let Pand Q be subsets of “w.
If Pe Zi and, Q(—:Zi , then PaQ e ZZ

(i) Let P PP . be a Sec’u.ehce of subsets of “w

0) 1172,
If Vn[BeZ9], then U R €27

)

Proop (i) Using the foregoing theorem, determine decidable subsets A anol B of w,
such that: Vol P) 2 Im[ame A and: VY[ Q) 2 Im[ame 8]]
Define a Subset C of w by:
For al? &€ w:
keC 2 P Igllep A@Qq A peA rqeB]
Now: V4lbeCva(be)] ond: Va[PedrQ) 2 Im[ameCl]
Therefore: PnQ € %9.

(i) Using the Fpre?og,‘nq theorem | determine a sequence A A, .. of

077 °1)

decidable subsets of w, such that. YnYu«l P (cd 2 In[ameA,l]

Defihe a subset A of w by:
For all few:

bea & 3Indpl nslg(e—) A (’rgp A peAp]
Then: V& [beA v =(be ANl amnd: Yol I[P ()] 2 Imlam e ATl
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Therefore: nLe)w P eZy.
R®

We know, from theorem 32 that 29 is not closed under the operation of
countable intersection.

We need a pairing function on “w
In order to spare technical notions, we use our coding of fimde sequences of
hotural numbers (cf 1.2) and define < 5: Ww x“w —“w by:

For ol o(,{;e W

<o(,[5>°-.=o( and <o(/{s>1:=[s and Vn[n>i~>‘<o{,{5>"=g-]
and. <o(,(5>(<>) =0

This function has the disadvantage of ot beuq surjective , but this wil not do
any harm.

64 Defunition: Let 0§ le a class of subsets of Ww and U be a member of 1R
W is caled a universal element of M, { we are able to prove:

let Pc %w
If Pec R, then IpYulPle) 2 u(<d,P>)]

The carefid wording of this defintion is to make it apply even in cases where
Medonohcdetmtkﬂk Mmazj?rem:ewed. asa,:erﬁ

bs Theorem: 27 contains o wuniversal element.
Proof:  Define the subset U of Ww by:
for all «eWyw: W) 2 ImLot(x®m)=0]
and note that U belongs to 2
let P=®w and PeZ?

Following theorem 6.2, determine a decidlable subset A of w such that
Va[ P! 22 Im[ame A]]. Determine pe“w such tRat ‘~Vn[[é>(n)=02neA]

Them. Vo[ Plot) 2 ElmL'r.»(&'m)=Oﬂ, ie: Yol Pl 2 U(<ap].
X
We are itching to diagonalize.

Consider the subset U¥ of Ww which s defined b‘/‘
for all oe Ww - U-t () = Ym[ x(ami+0]

One easily verifies using theorem 65.: U¥ ¢ =9 .
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As U¥ <A, this confirms theorem 2.0, which said that -(A,<E,).

b6 We define MO (o be the following class of subsets of “w.
M= { PlPcw| DSA4}

Lke Z7, this class is manageable:

67 Theorem: Llet Pc “Yw
PeTS if and only f there exists a decidable subset A of w

such that Y[ Ple) 2 YmLame Al

Proof: () Suppose P<A,,ie: Vadp[PE) 2 A(p)). Using AC,,, determine e “w
such that : Fun(8) ona: Yal[Pu) 2 A,(810)]

Define a decidable subset A of w by:

for all bew:

beA 2 WYmbol(ms Qca(er) abca a8™@) 40 a Yellaccradcd)~ 8M(c)=01)- 5M(a)e1]

Now, Ve[ Vn[({§la)(nj=0] &2 VmlameAl]
Therefore, A [udfids the requirements.

Gi)let A le a decidable subset of w such that : Yu[Ple) 2 Vm [Sme AT]
Determine 5e Ww such that Fun(§) and:

For all ae%w and mew:

(Slet) (m) = O f ame A
=1 if amdA
Remork: VYal Pl @ A (8I0)] , therefore P<A,.

R

68 Theorem: Llet PP, P, .. be a sequence of subsets of W
If YhlPye T2l then N P eTE

Proof :  Using the foreqoing theorem, determine a Sequence A, A, A, of
decidable subsets of w, such that: Vn Vo [ R 2 Ymlame A,\ﬂ
Define 0 subset A of w by:
For all bew:
beA 2 YVmVal 6 ca A mg eg(er) - ae Am]
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Then: V&L beA v =(beA)] and: Ve[ Vn[P(«] 2 Ym[ame All
Therefore: 'prn <A,

X

We know, from theorem 43, that {o(lole‘”wl d°=9} U{O(lo(e“‘w |ol°=4} does not
belong to T9, and, hence, that it may eccwr thot a union of M9 -sete (s not
o ﬂ:’- set.

69 Theorem: T2 contains a universal element.
Proof . Define the subset U of “w by:
For all ae Ww: W) @ Ym[«'(F®m)=0]
and note that W belongs to TIY.
let Pc™w and Pe 9.

Following theorem 6.7, determine a decidable subset A of w such that.
Va[ Pl) 2@ Ym[&me AT] Defermine pe Wi such that . anp(n)zog nehl]

Then. Yo[ P(x) 2 Vm[[a(am)=o]], ie.. Yol Pl 2 u(<o(,{3>)].

X

let us try and dagonalize once more.
Consider the subset U} of “w which is defined by:

For all ae “w: W(et) = ImLax(am ¢0]

One easily verifies, using theorem b6.4.. ufqé ne
As Uy <E,, this confirms theorem 2.2, which saiol thot - (E, £A,).

b.lo Defnition: Let P be o subset of %w
We define the subsets Un(P) and Ex(P) of Ww by:

For all ae Ww -

Un(P) @) = YmIP(am)]
E<(P) (&) := Im[Pa™)]

6.1l Deftnition; We define a sequence  A,E, A E,, .. of subsets of “w by:

0 For all oe Wus: Al) = Ynla(n-O]
Eil += Fnlan) =0]
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i For all new: Ag = Un (E,)

We defne a sequence M9, 295, M2, T2 ,.. of classes of subsets of Wi

by:
Y For all new : m,. = {'plpgwwl PéAr\}

Zn = {PlPeuw | P2E,]

b.l2 Theorem Let Pc%w and new, nxl.
Pe Mg if and only § there exists a sequence Q,,Q,,- of subsets

of “w such that ¥m[Q, eZ%]1 and P=1 Q,.

Pe 3% & and ony & there exists a sequence Qp, Q.- of subsels
of “w such that Ym[Q,eM]] and P-U Q,

Proof: We prove the frst part.
Suppose : Pe 15, , and determine §e“w such that Fun (8) and:

Vol Ple) 2 Ag, (8la)]. Define, for each mew, a subset @, Of Yw
by:  Qui= (ol e Wos | En (Bl)™)) - and remark:

mlQ,eZS1 and - p‘*mQ.,»Qm

Now suppose: Q,,Q,, is @ sequence of members of 2° . and,
using AC,, and AC,, ,determine 8e“w such thak:

Y[ Fun (8" & Yal @, & E, (8"[a)]
Determine % e“w such that Fun(Z) and Vo im [ (3]o)™ = 8"[a]

and remark: Vo[ Vm[Q, (0] 2 Ag, (3l ie: P = yOer"‘ e Tlg .

X
Like 2% and 1719 oll classes 2.3, M are surveyahle :

6.3 Theorem: All classes Z3, M9, 7, T7,.. do possess @ universol element.
ProoF: Use theorems 6.5 and 6.9 and Cconstruct a universal element
Uyof Z7 and a wnversal element W, of O

We wil exhibt universal elements for the other classes by induckion.
let new and Suppose: Uy and U, are universal elements of
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ZS ond T2, respectively.
Define swbsets U,o, amd Ugg, of “w  by:

For all oe%w .
WUigpl) == Im[ Upm (<°‘°; qum))]

Upep) = Yml W (<as (@)"5)7

Upgp, and U, do (’don? o Zg, and T , respectively
We claim that they are wniversal elements im their classes

Let us prowe : W, & a universal element of 2%,

If P is any member of Z%, , then, using the R‘»"e?ou’nq
theorem and AC,,, we may find pe “w such that:

Va[Ple) @ ImLUpp (<ot, pm>)]] , e Yol Pl 2 Uyg, (< p>)]
K

Members of U Z wil be called: arithmetical subsets of Ww
(cf. Note 1 on po.ge 216)
An immediote consequence of theorem 642 is: Y[ ZRcMg, A M2 c Z2 1

Verc(!%mg : Vn[Zf\ S Z:n A n:g ”gn] s not dLPFv.Cuft

meoremg 6.5 and 6.9 gQNe rebirth o the resulls oF chapter 2.

e moy ask , whether theorem 6.13 s also Ferttle m  this sense, and.

(f k may be seen to confirm the conclusions of chapter 3, and,

ho {-\u.ll to leadl us on to new vistas.

I(: is no(: however. Let us try and cut the classical copers in order to fnd
the cause of the trouble.

Consider WL,, the universal clement of the class 23 Which has been comstructed
in the proof of theorem 6.13

o, for ol c’1(*6 o Uy (<ap>) 2 Amnl pn(an)=0]

Dere_ a subset U, of “w by:
For all de‘“w U.# (*) = Ym ano‘mfah]#O]

It s obV(ou_s now, that w;z_ be(oy\qs bo T9 ,bwk s not so obvious thak
¥, does not belong to Zi,

Suppose - U*, e T2, Determine peWw such that: Yol U, () 2 U, (el
Assume: U5, (@) , then [y, (<p, ), e Vm 3In[ g"(@n)£0] and: ImYn [p™(@nl=0]
Contradiction. Therefore: = (* (p) ond: - U, (<pp>); ie:

“¥Ym3n ( (5"‘(('5n) #0] and: ~3ImVn [{s"‘(fsn)—O]

Meeting such o @ woud be a very memorable event, indeed, but, as
matters stamd now, we Ore not able, like classical maﬂ\emmams to
exclude the poss«.b:hl:y of its existence.
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We are reminded of the mysteries which we encountered (n chapler 5.
If we ossume the enigmatical VYol 71 3nlaln) =01 = Inla(n=0T], we may
carry through the classical argument:

“Ym InLR7(AN 40T, Qe ~ YmaaIn[p"(Bri4o], ie: 17 3m Vn [E(En)= 0]

The same turn of thought would save us at all futwre Stages of the
arithimetical hierarchy.

In chapter 3, we cicumvented the mystery, f only for the case of the second
level, and gowe o truly constructive awrgument.

We will hawe no peace til we have extended this to all levels of the

ha‘erarckg )

6.5 We could have started, the hierarchy with the class of al decidable Subsets
OF wu.l k]

A= [ P|Ps ™w| Vo([P(o()v*P(o{)]}
We may defne a special subset D of “w by:

For all oe%w - D) = o(0)=0
and remark: A := {P|Pc%w| P <D} and:
ard: A £ Un(D) <A,  and: E, S Ex(D)<E,

On the other hand, A3 does not hawe @ universal eement, for, in that
Case, we wouwd hot survive diagoralization.
It is for this reason that we mention A ony now:

In this connection, we are brought to reconsider the classical fact:

Mo nZe = A (cf. Note 4 on page 216).

This is Umprobable , (n view of the following:

Fermat’s last theorem may be written in the form- W (£ (n=07, where f

(s 0. primitive- recursive function from w to {o,1}

But, using the Brouwer - Kripke ~ axiom, we may Cohstruct p from w to {o.4
such that Fermak’s last theorem is equivalent to: Inlp(n)=o0]

Consider Cp := [ a|ae¥w|YnlfM=01} and assume: M2n 39 = A

Then: Cp s o decidable subset of Yw, and Fermat’s last theorem has
been proved or refuted , @ big surprise, indeed.

6.6 A Felaked QAQSMO’\, W’VC‘\ seems DF Some (Merest ) I‘Qfo‘S to the structure <Z?,‘_(>
Both D and E, beong to 3% and : D<E,
Is & possible to find PeZ9 such that: D<P<E, ?

To be sure, we have no method for deciding, for all P,ReZ2. P<Q v Q<P
(Define P:=C. and Q :=C, ,where F, as in 6.15 stands for Fermatt
last theorem , ond G for some other unsolved proposition, which, as

for as we know, has hothing to do with F, ie. we do not know how

to answer (Fv<F) 9 (GvaG) or (GvaG) = (FvF)

But we would like to see a P from 29 such thot the statements
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,P<D" and ,E,4P" owe both conradictory and hnot but reckless.

The duol problem asks f there exists PeT9 such that D<P<A,
Like its companion, this problem seems rather inaccessible.

Classically , both questions have to be answered in the negative.

@) let us deFine, ﬁ:r all Pe Yo E(’ = fo(lote“’uu | 3n[[3(&n)=o‘.l}
According to theorem 6.2 and AC,,: Z9 ,{gM pe w )
Remark that, for all pe L

E, < Ep 2 FaWn[p@En#0 ~ Ime &nfp(m)=o]]
Suppose: - (E,4E,) and conclude: Voudn [ planl=0 v Vmc_‘-é'(n[{‘S(m);éoﬂ
ie: 35 [ Fun(8) A Val Ep() 2 D(8l)T], e Eﬁsb

(%) Let us deﬁ;ne, For all Peww . AP::: {uldeww l ¥n [P(a’\]:o]}
According to theorem 6.7 and AC,. TI9 = (A(sl(se‘”w}
Remark that, for ol pe “w

Ain(; 2 EI'O(Vr\[(s(&nEo P {1 éanl.'(a(,n)#oﬂ
SU.PPOSC —i(A.'ﬁA(;) a'\d Fl:hd.i A(;ﬁ D.

We didl not succeed in proving similar Conclusions by intuitionistic meanms,
ond the semi-classical asumption: VYa[~-3nla(nl=0] = In[a(nl=01] alwo
did not bring amy relief.

6.!} We close this d\apter by two minor remarks.

The first one is, that spreads, as they have been introduced m 1.9
do belong to TS , but that, convercely, not every element of T9 is a spread.

The second one says, that, ih cofresponclence to chapter 4, we might hawe
ikroduced a class like :

[Pl Peww|P<L DA
and remarked |, that a subset of Ww belongs to this class  and only
it is the union of two sets, each belonging to TY.

Ne canmob deny , that in b.1-16 , the sky has been clouded clightdy.
Our furst concern will b o make the arithmetical ladder now 9‘4‘"9 dows,

Sand up go 5o 3o 3o g2 g g
A
ng ng ny myooong g I3
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7. THE ARITHMETICAL HIERARCHY ESTABLISHED

We extend the results of chopter 3, in which we learnt that A, ond E,
are incomparable, and we prowe . ¥h [~ (Ap2E,) A~ (E, <A\

Tais conclusion may be framed as follows: Wn [~ (mecze)a -(22 <o)l
lhe argument (s an (nductive one, and develops ideas from chqpter 3.

7.0 We will make use of the fact that each one of the sets A, ,E, A, E,, ..
is, - @s we intend to call & from chapter 10 onwawrds-: strictly analybical,
l‘.Q.:

¥n 38 [ Fun(s) AAn=Ra.(8)] A Yn3S[Fun(8) nE, =Ra(s8)]

In chopter 3, we saw that A, has this property.

This is not the full tale.

We indeedl construct for each A, (resp.E,) a special sequence & such that
Fun () and A, (resP_ Ep) = Ra.(8).

But the proof of the hierarchy theorem also uses other properties of these

sequ.ences 5.

Llet us not talk too much and qo work(nq.

We first recall and extend some nototional conveptions which we wnbroduced
the chapters L and 4 (Cf 4.2).

For all nkew such that £<fg(n).
n(B):= ng:= the value which the Rnite Sequence coded by n,
assumes n &

Therefore  for each new: n= < n(0),n4),..., h(%{n]—i)?

For ol n,f«.ew such thot Es&g(n)
(k) = the code number of that finte sequence of
length k, which s an iptiad part of the finite
sequence, coded by n.
Therefore, for each new:  A(lg(n) =n.

Let (e “o
We introduce two subsets Z (y) ond i (y) of w by
T = in|Vk[2k+et < lgim) o n(zk‘k{(n(zk\)]lf

Trql o= {n] VRL2k2 < g — n(2ked) = p(R@R]

These defmitions do need some explanation:
Plogers L and I Qre doing a qame in which they choose, alternately,
a naturald nwnber.

Tus finite sequences of hatural pumbers represent possible positions ur one
of their plays.
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S s the set of positions which mayy be reached f player I s following

the stroteqy given by y.

(f) i the set of positions wWhich may be reached & player I s Pollowdna}
the skrategy Qqiven by
We remark . VyVs 3laUn EE(neZ’I(J)an(S)]
(Whenewer both” player I and payer I have decided upon ther strategies,
there s a wnique resul(:inq play).

For all new, and pee%w we define y==, m “w by
For all pe w:
(y =0 =0 § peF () ond =1
:= a(p) of PéZI({) or &}(P] in
for al nec w, and yoae%w we define yo<, o i “w by
for oll pe w:
(fpRas)(p) = © f peZy) and eg(p)=n
=) f péd I or lg(pldn
Appectling repeatedly to AC,,, as we did in 341, we may verdy:
¥nVa LE (¢ 2 Fyla=y=,u1]

and: Yn Ya [An ) &2 Jy [ ol = qund]]
The intertwining function DA, (s hone other than the function P4 whose
acquaintance we made w34

To spare the reader ond owrselves, we do not go into the trouble of
giving a detadled proof of the just mentiohed facts, which should go by induckion.

for each n, we may make feww such that Fun(s) and Vo [ Sla == a']
We observe: Vx[E ) 2 Fpla= §ip]
and: 38 [ Fun(8) A E, = Ra(dl]

For each n, we may make Sec™w such that Fun(sl and Vot [ 8ot = o®pa,0']
Ne cbserve: Yo [ A («) 2 3[5[01;' SIP]]

and: IELFun(S) A A, = Ra (5)]

These remarks vindicate the statement which oPened. this section, and
conclude the preparations we had to make for:

71 Lemma: Vn>0[If Asy 2 Eg, , then E, <A,]

Proof-  Suppose new, n>0 and Ag,<Eg,
Using ACy, determine Sc®uw such thok: Fun(s) and: Val Ag )2 Eg(lal]
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Remark : Wy Vo [ Ag, (ypag )]

Therefore: Wy Vo [ Egy (81¢ppag o] and: YyVYaIm [ Ay ((lpeag o)™ )]
(The camera focuses on the creative subject which is supplying
yond o step- by- step, and then swilches to the imitalive subject,
which is responsible for 8l(yraga) and has to moke a choice
about i, notwithstanding the fact that his knowledge about

| ond o« is, and is to remain, widely nsufficient. The creative
subject, of course, can not but explodt this stote of affadrs:)

Using CP determine mpew such that: Wy Yox [ fp= QP=5‘P“’A“((8,‘JNS:‘»M)]
Determine se w  such that <s> > p.

|
{
S o 1 e d

Y& SICXNSno()

v
S

The creative subject clid not place himself uncler any ebligation
as regards the sequence of ; he stil may choose anything he likes
for ct.
Define Ze “w such that Fun(2) ond: V{;f(%lp)s=p/\\7’€[€#$-> (él@‘:g]]
leb pe“w and suppose: En(p), thea: Ag, (%l[‘&),amd,
in addition: 3‘301[ XP= Elpz__O_p A ZJP: JNQ"O(].
Therefore: A, ( (§1(zIp0™)
Conversely, suppose : Ay (BI(2Ip)™), then: E¢, (8I(ZIp),
therefore :  Ag, (31p), amd: En(p)
We howve seen: WpCE.(p) 2 An(BIGIAT)] e Ey £ Ay
®

A snall refrement of the argument for lemma, 7.1 leads to the conclusion: Ag %A,
(Define Ze“w such that Fun(z) and: V¥pve[l<s 5 (3/p)t=Q) A(zlpy‘*ﬁpq
ThiS Construction bn:nqs out that the problem (f o qiven Se has
the property Ag, , is not climinished by any knowledge which refers to
only fnitely mamy of its subsequences)
But we may do withowt the stronger conclusion in owr inductive scheme.
An Indispensable element (h this scheme is:

72 Lemma : Vn [ If Egn £ AS”, then Ap 2 EnJ
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Proof:  Suppose: mew and Eg <Ag,
\Lsinq AC,, . determine 8e“w such that: Fun(8) and VoL[Egn(ot]aAs"(SloL)]

We wil prove more than the theorem anmounces, viz. A <A, ,
(We acsume: ny1. The cases n=0, n=1 have been taken care of n
theorems 22 and 33, respectively, and will not be treated here although,

with some precautions, they might be subsumed under this more general theorem).

In order to avoid the Sprouting of too many parentheses, we
wil sometimes write : dm,& in stead of: [u”‘)p‘

We are to construct Ze Ww such that Fun(3), and, for each P,
3lp looks as follows:

1 P2

The first - order- subsequences of 2Ip are, all of them, very similar to the
Sequence f: for each kew, the subsequences of (;lp)p‘ are :
finitely mamy (viz. p,) times the sequence O, and, thereafter, the
subsequences of B, in due order

Ohe observes: Vp[ An(p) 2 Eg, (31p)]

The numbers p,, py,-- depend on for each kew, the choice of
P will be made such that: A ((5) — E, ((SI(Z((s) ")

Moreower, when calculating py, we Olso determine o number my
Such that:  An(p) — A, ((S1(3IpD kg )

Carrying out this program wil bring us Q@ rich harvest, and we
wil  merrily go round as follows:

Ap — VEDA,, (Glapbme)]

Ag, (81C31pY

b

Egn (31P)

Therefore:  Au(d 2 VECA,, ((si(glp)bm]
Ths  looks very much like the conclusion we are chasing after
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Construction of 2
Let pe“w, o sequence which s to be held fixed during the rather

involved, construction of ZIp.
We wil make a sequence o,,d,,a,, Of Sequences,each dependling
on p, which converges, m the natural Sense of the word. 3lp is definecl

as the limit of this Sequehce.
Let (ozzQ and o, = O
First step: Remark : Eey(fo gpoto) » and, using CP, determire o, p, € w

Such that . VJ Vot [(fPo= E)Po A aPo=a°Po) - An_i((surzsho(no:”‘o)]
Now define «, as follows:

@t =0  f t<p,
(o) OPotl _ (,JE for ol few
(qa]m = Q Cf mz 1

Remark: q,po= &opo.
Determine fo&“w such tRat yi(« =1 and W[t 4> fu(t)=0].

Remark . o, = N1 K™y

Su,PPose-. a€ Yw A % (,)° A _&Po=_°(-.,Po N An((i)

Then: A, (x°), and, what s more:

BJ[XPosz"Po A OGPy = &oPo A o= [and]

Therefore:  A,_, ((5la)%™o)

We keep this  mind:

Voo [(x° = (00)° A &p,=,p, A An((s\) - An_i((sl‘lo"")]
Second. Slep  Remark: ESn(U1 Xgno(1), and, USMCI CP, determine M4, PAEW, Py 2 Pss

Such that: VJ Vd[(fm:f,p' A olp, = -1P‘) —)An_i(((Sl(xxSnoL))i’m')]
Now defihe o, as folows:

(o)’ o= (@)

(dz)1'e = Q f  <p,
(of,) Lol (5¢ for all lew
(o(l)'“ =9 f m=>2
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Determine f,€ “w  such tRat J,_(<>)=2 and Ytlt4<> —93'2((:)—.:0]
Remark. : X, = J2 Zg, %z

Suppose : ate@w A x0= ()" A x'=(e) A Epy=T,p, & An(p)

Tren: A, (@) and, what is more:

36[ fp,l =Y‘P1 A 3P1 _—_&.P1 A X= ngno(]

Therefore: Ap_y ((Slo) 2ima).

We keep this in mind:

Val (o () o'= )" 2 = Eop, A An(p)> Ay, (5]

———-_—-S&’U\ StZP_ Remalf'k ESn( X& ZS;« d&_)l a!\d) U.SLI\? CP/ detel‘m‘:he mk, Pke w,
such that pg>pp_, and: VJ Yo I‘ZXPK= ];_PK_AapleLLPh) S>A n_1(8|(lr xSnu))&»M,&)]
Now define o g OS Pollows :

(ogp)” s= @g)° n (@Xsp)= (g A ... A(ag,f’ﬁs (oqg“
CR LAY I

(ats) P for ot few

(ageg)™ = Q f m>» St
Determine [sk € wy such tRok stl(o]:‘gz- and, VE[t:f.<> "J’s‘{,f"lzo]
Remark: ogy = fg, g, Ogy.

Suppose: atcw A Veshl ot = @)t ] aBpg=3yp, A An(p)
Then: An(o("), and, what (S more:
3L YPe=frpe N Xpe=0dip M x=f gl
Therefore: Ap_, ((8lod) &,m&)
We keep this (h mind:
VoL (VE<Sk [ = o) T Gpg= dsg ppn A n(P))-) Ay ((5@‘.'"4)]
We conclude the defwition of le by proc{aa,ng,,q:
VAL (zlpk = () ]
We make the Followénq observations :
Vp V& [(“S&)Q = ("‘Sh—p)&] , therefore:
VAT (Bidpy = g pe] ande A () o VELA, (SIGIRN™)]
The humbers m, m,,... do depend on P, let us write them as MG, m (..
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We determine he “w such that Fun(q) and:
v YR [ (qp)% = (slz1p) Bma(p ]
Remark: o [ A () 2 VL[An_i(o”f,)m], ie.:
e L An(p) 2 (Un(ap. ) (np)], and: Ay £Un(R, )
But . Un(a,_,) ﬁAn—i , @5 may be seen from the prewious chopler

f. 6.12), and therefore: A, <A, _,.
K

In retrospect, lemma 71 may be seen lo follow fom lemma 7.2

For, suppose: Ag, < Eg, ; then ESSn iEgn, and. Egg, % Ass, , therefore: Ag, 4A,
and E, 4 ASnﬁ A”,

We mointouned, lemma 7.1, because its shorter proof might serve to prepoue
the reader for the proof of lemma 7.2

And here we find it standing @ ol is glory:

73 Theorem. (Arithmeticol Hierarchy Theorem):

prooF

Vr\>o[ ﬁ(AnﬁEhj A —v(EniAn\]

Theorems 2.1 and 2.2 taught us how to put a Rrst fooct on the
ladder.(You may choose apd start with your left foot or with your

right foot).

Lemmos 7.4 and 7.2 taught us how o pase the left foot on
o the next higher steP‘ f we lean on the right one, and how
to pass the right foot on to the next higher step, (f we lean on

the left one.
And so we clinh, and climb, and ctil climb.
K

The following picture visualizes the result of our efforts:

And we dream of higher things ...
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8 HYPERARITHMETICAL SETS INTRODUCED

We continue the considerations of the previous choplers, and now emter

the domain of the transfinite.

We hawe to develop Something of a theory of countoble ordinals

We wil ideatify countoble ordinals and their represeatations as well-ordered
Sumps Y.

After this, we budd hyperarithmetical sets and prove their mock obvious
properties.

8.0 For every mew and ewery subset ASw, we define a subset mxA of w by
me A = gm*pl peA}
(¥ has been introduced i 12, and denotes coucatenation).

We define the set § of well-ordered stumps m “w by transfinite induction:

W ¢e$
W If Ag, A, A, & @ sequence of clements of $, thea A bdongs
to §, where A= [<>} U nU <n>xA,

EwW

ow If any subset A of w does belong to ¢, it does so because OF(‘)OJ‘C[ ()

Ie is difficutt o judge, i the continually extending steck of well- ordered
stumps is a totality which deserves of being caled o mathematical set

on a with w or “w. Some members of the French school of degeriptive-
set- theorists shramk back from doing so

Do we survey this totolity so well, "that propositions, obtained by quamtifying
over &, Qre mecmcnqﬁ,.u

(LETZ Bro)uwer did hot Lmamb(tiu_ously express himseJF on this Pocwt_(cf. Note 8 on
page 213).

We accept the de,F\'m'h'on) but keeP in mind, that §, although a set, (s

very much a set of its own kind, markedly different from both w awdl

Wy,

Because of the definction s second clause, members of $, w qgeneral,
cannot be assumed to be determinate objects (i.e. objects which admit of
a finite description, cf. 2.1).

Once it has been accepted, $ may be handled by the method of
tramsfinte (nduction, ie.: relations and operations on $ may be defined, and
QQMQVU-" statements QbOUk all mempers OF 4 may be PrOVQd, by “fD“DWQ\g
the dlefinition”

81 We wil use Greck letters ot,.. to vary ower §$
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Every e $ is a decidable subset of w

Moreover, for all ce ¢ . VYmbh[(mes A men) - nec]
and:  Yodn[ an o]

We may verfy these facts by transfinite induction

for al ce ¢ and new, we define cubsets "o and o" of w by:
"¢ = fm|nsmed)
6" = Ms = {m’<n>*m eG}

These o(e_Fim‘f(ons co:xﬁ;rm to the arrangements made m 1.2

One proves easily: for all e $ and new: "o and <" do agan bdon9b$‘

Me define a binary predicate < on ¢ by transfinite induction:
) For all 0’6$: O'Sd) 2 U=¢

w FPral cre $,T4¢: ost 2 YmIn[omMgTh]
We make the following observations:
For all ce ¢ =0

For all G‘,r,(pes;: (o<t AaT<q) - c<P

€g(n -
For all o€ $ new: L =(.(°_n°)n,...)n( g(m-1)

let A and B fe decidalle subsets of w and ye “w

[ AE> B = Vn H?(J(n)\s &J(m] A Ym¥h [men — fim < y(n] AVn[neA- yheB]

(Ore should think of y 0s an attempt to embed A into B)
We also define:

A <*B .= E(J[J:A & B]

82 Theorem: For all oTe $‘ osT & o<s¥tT

Proof . Remark: Voloc*¢p 2 o=¢] , therefore: VYs[ o ¢ 2 o<*d]
Owr proof wdl be by tramsfinite nduction.
Assume, therefore: o,t € $ and o<T,T#4¢ We hase to prove:0<*T.
We know: Ym3In[o™<z"] and moy Suppese: Ym3n[am <*¢n)
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[Ls(n? AC,, and AC,, , we determine ne “w and fz’zr each mew Sequence
fm€ “w  such that:
Vm [ fm: ™ T Nm]
Ne define a new sequence y€ “w by
My = <>
m fr al mnew: X(<m>*n) tm N> * [y (N)

Then: [}T T, and o <*T

Now asswme: os*T and delermie Je¥w  Such that poeot
let §e“w be such that VY[ p(<m>) = <5(m)>1]

Remark : Ym[ o™ <* TS(m)]’ and use the induction Qssumpbion
b conclude: VYmlom< t8m]  gud: ost

X

It is useful to consider the corresponding strict order on $-
for al o,te § o<t := 3nlo<tn]

We take note of the ft’)llowima-.

For all o,te $ 6<T — 0<T

for all g,t,pe$: (O<T AT = o<p
For all o‘)z:)¢Pe¢; (C<T & T<Q) > o <@
For all ij,?é$= (c<t A T<p) = o<9¢
For al oce ¢ : o+ - -(r<0)

One possibe woy to prove the last-mentioned fact s this one:
Suppose: o€ $ and o<o. Determine new such that o<on , and,
O’PPEY‘"? to theorem 8.2, determine ye€%w such that y: 6 e on

let oe®w be such thak: VYnL F(SM=<ny ¢ y(&M] and assume: 4 ¢

WNe may establish by induction: Yn[ &necl, contrary to: VP 3n[’[§n46].

he seize the opportunity for an explict  statement of the principle of
tramsfinite induction, which, o be sure, has been preseat for some time alreadly:

83 (Princple of tramsfuite induction)

O A first formuation. Let P<$
If P(@) and Y5 [Yn[P(s"]> P@)] (then Vo[ P(s)]
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(m A second formulation: Let Pc §
If P(@) and: Yo [ Ve [t<o 2P@]> P@®], then Yo [PE)]

84 We do not want to develop ordinal arithmetic; this stump though (viting Subject
falls owside the scope this treatise.

We will profit by (ntroducing @ special kind of wel-ordered stumps.

Doing so, we have to use a pairing function : < »: *w r» w

e dofre the set HI§ of heredifarity derative Stumps by transfute incluction

wi< >} e HI$
() If Ao, Ay A, s @ sequence of elements of HI§, then A belongs

to HI$, where A:.= {< >} v U <snms> x A,
nmew

Hereditarcly iterative ctumps are quile as nice 0s ordinary stumps omd they
enjoy Ohe additional property:
for all ce HI$ YwIm[ m>n A oM =gnr]

We wil write: (@ = {<»}

We defire, by transfnite induction, for each celI$, a subset Az ond a
W For al oe W - Ap e == ¥n[oa(<n>)=0]

E®(oq = Inlalcn>)=0]
() For all o€ HI$ , such that o4 @ and al yewy.

Agl) == Vn[EU,. ()]

Eo_(o() .= 3n [Aq-n (o(™)]

One might ask why we ckid not include @ into HI$ and introduce
D::E(b t= A¢ by EDP Cdl o(éww; Dé)(] r= O((<>)=O, bU«k U\ere
are disadwvamtages bo ths procedure as in the case of the Qrithmetical
h(erarcky. (&f. 615)

We defne, for each Oc HI$, a dass MG and a class Z2 of subsets
of “w by:
ms .= {P| Pe%w IPSAU}

Ee ={P| Pc®w [P« Ev}
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Eoch ohe of these classes is easy fo grasp as a whole,
85 Theorem: For all ge HI$ 1% and Z? do fave a universal element,

Prod:  As g = M2 and 22 = 29, where T and 59 awe our friends
fom chopter 6, we know from 6.5 and 6.9 how to comstruct
universal elements for these classes.

We Proceed, by (nduction.
Q(LPPoge’ therefoye . TE HI$) 6‘#@ ond let W U.. WU and

00? 01 o2
Wipy Uy, Uyg,-- be two sequences of subsets of “Ww such that:
W[ U,,, is o universal element of ”(?m ord U, s auniversal element of 22,
We define subsets Uy and U, of Ww by:
For al oe “w:
Up(e) i< VimL Uy (<%, G)™>) ]
U () = 3m LU, (<a5 (a')" >)]

We claim thot U, and U, are uniersal elememts of Mg and
Zg, respectively, and prove only half of this cloim, as the
other half may be egtablished i o similar way,

let us first see to it that U, does belong to Mg

Using ACoy, We find a squence &,,8,,..0f elements of “w such thot:
Ym [ Fun (5,)] and V¥ Vol U, (<o @)"5) @2 Egm (5]a)]
Let §cWw be such that: Fun(s) and: Ym Vol (§lo)™ =6, a]
Remark : Vol Up(a) 2 Ag (8lo)] ie: Uje TS

Let us prove now, that U, is o universal element of M3
Suppose-. Pc%w and. Pe T{:_, Determine §e“w such that.
Fun (5] and: Yul P(d) 2 Ag (§I0)]

Consider, for each mew, the Set: {ol[ o(e“’wl EG,,, ((Slo()m)}
and remark that this set does belong to Z;m.

As U, is o wiiersal element of g, , we may determine
pe “w Such that: Vol E p ((Sl0™ 2 Upm (<o, p>)]
U.Si.n? ACM, we F(nd ’leww such that:

VnVa [ E o (1)7) 2 Ugn (<o, p7>) T

Therefore: Vo[ Ple) 2 Uy (<o, p>)T.

R
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The &llowmq theorems bring foqexker Some nice structural properties of the
hyperarithmetical  hierowrchy.

8.6 Theorem :

Proof -

Proof -

For all o,T e HI§ .
If o<t, then: Tg <7 and: 27 ¢ 27

If o<t, then M2 2%  and Z2c M2

One may prove the first part by showcng:

For all o,ce HIS f ostT, then: A 4A. ond: Es <E.
This is done by trossfinite induction, in conormity with the
definition of <.

for the second part, &t suffices to show:

for all te HI$ and new: Acn <E. and: E.n <AL

let new and Ze€e%Yw such that: Fum(g) and.:

Val (2" <o & Yn[m#n 5 31" = 2]] Tren: W[ A, (el 2 E(31l]
let new and ne“w  such that: Fun(n) and:

Vo [ ((e)" = A ¥Ym[m#n = (nla)" = O] Then: VolE 00 2 A fy(o]
Trerefore: Ynew [ Arn £ EI_ A E.(_h £ At]-

®

let Pc®w and seHl$ K6 c£®

Pe T2 § and ony if there exists a sequence Q,, Q.. of subsets
of Yw such that: Vm3r<€[Qme 2?‘?] and: P= anQM

Pe Zz_ f and only  there exists a sequence Qo,Qy, .. of subsets
of Yw such that: Vm3r<¢[Q eﬂ°] and: P= U Q,,

mew

We prove the second part.
Suppose: Pe Z; and determine be Yw such that : Fun (8) and:
W[ Ped 2 E_(8l)]. Define, for each mew: Q,:= {o(\ Agm ((Slol\m)} ond

remark: Ym[Q,eT° A oM<o] and. P= Y Q,

Now suppose: Q,,Q,,.. & a sequence of subsets of “Ww Such that:
¥m3It<o [Q, e L] Using the definition of <" (cf-8.2) and theoran
86, we ifer: Ym3InlQ,el3,]



67

Remembering now, that & (s hereclitorily (teratie, and usmg AC,,
we find 3Ze€Ww cuch that. 2(0) < 3(4) < 4(2).. and.: vmlQ,, e n;zm]‘

We defre a Sequence 8,8 .- of elements of “w such taut:
Ym[Fun(6ml] amd: Y YalQu@ 2 Az, (dnle)].

Fﬁﬂall\/, we make a sequence 8w such that. fun(§) and:
Vin Yo [ (810039 = 5, [a] and. VA - 3mER=zm] — Yl (Bl0)%1]]

We easily verify: Vol 3mlQu] & Ep (8], ie: U Q, ¢ e
The fisk part s provecl (n @ simidar way.
K

let us define, Pr each oe®w : lal := [n]| o{(n):O}_
Tus, |a| s a decidable subset of w, whose charocteristic function (s o
We may observe that, for each xe%w ond each o€ $:

o] <* o 2 VmIn [ ja™| <¥on]

We defne, for each ce $. kg = [ot] lxl<*o} and remark:

Ko @ Ryperarithmetical, that i, it does belong to some class Z%, TeHI§.
One would like to colculate from o the first T such thot Kg e 22,

But we do not study IlctumP—ariﬂ\metcc",now, and we have to obandon this question

Another problem orises, when we defre a partial ordering L on $ by:
For al ;re §: vcocT = kex ke

and osk fr a comparson between £ and <.

This does hot Seem to be an easy matter, either, and we leave it alone.

We may define a chtéon 0. w\{o} — HI¢ dry:

® = {<}

For ol new: G := [ m|lg(m <n}
We observe, without difficulty, that. for oll ne w . Hé: n;h and ZCS?E:z:
Tus, the arithmetical hierarchy is seen to be part of the kperardhmetical

hierarchy.

(Remark: ¥YmYnl k@ £ |<®])

The stage has been set now, for one of the high-powmts th our little
drama: the resuscitation of the hyperarithmetical Werarchy, wkch now
lies Plat andl lfeless, although not oll warmth has left its feet, as we

Saw (h chapter 7.
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THE HYPERARITHMETICAL HIERARCHY  ESTABLISHED

We want to prove: for every e HI§. - (Ag2E5) r = (Ep<Ag)

The firsk thing one thinks of Wwhen facing this problem (s some extemsion of the
inductive argument by which the arithmetical herarchy theoram was proved.
But it twrned owt to be rather ifficult o find this extension.

We were brought to moke some mojor changes in the onginal argument.
Firsk, we replaced the hegative stctements: ~(Ag «Eg) and: “(Eg < Ag) by
stronger conclusions, in Which negation does not Figure.

Secondly, the proof of the new theorem (s no longer inductive wn the sense
that it reduces the case o to all caces T, T<&

Rather it consists i o schematical construction which has to be carried
out from stort to finisk for any o anew.

A minor change s that, henceforth, A, and E, wil be considered as the
most Simple hyperarithmetical sets and that A, and E, wil be forgotten.
Te germ Of the proof s to be found in chapter 9. (Chapter 7 had
to moke the same acknowledgement).

We hove to reveal the true richness of the results of chapter 3 omd,
for this purpose, we introduce Some hew technical notioks.

Let pe“w be a spread , ie.: p fulfils  the condition:
Valp(@ =0 2 Hn[F(a*<n>)=o] A [5(<>)=O.

Spreads (subspreads of the universal Spread: “w) have been mentioned bofore
m19. Let us recall the following definition:

For all o, pe Y.

o€ p p= anfs(&n\:O]
When talking about a spread p, we often are U\Mkihc] of the set {dldep}.

for all pe “w and gew we define a decicdlable subset K[ of w by:
k‘f:_ = {n |hew | {A(o.*<n>)=0}

If p is a spread, the following holds true:
val pl@=0 2 3nlne kP 1]

Members of the spread [ofaep] may be builf up step by sctep w Course of
time. When dun'ng the construction of such a member we have got so far as
the fnite sequence a., the ,choice set” Kﬁ displays the natwral numbers
by which we may contiue the finte sequence a.

In the Fol(ow(nq we will often meet with spreads whose members «
are thought of = as being defined on finite Sequences of natural nwnpers,
rather than on natural nwmbers themselves.
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Let pe “w fe o spread ond acw.

We want to call the finite sequence a free in R f for every XEMB,
during the step- by- step- construction of «, we did not recewe any
restrictive (njunction from p, as far as % was concerned.

(We were left free to determine a value of « ot the finite sequence a,
and at any continuation of the fuite sequence a)

This (s the exact definition:
QA (s free in p :=
Ve Vel (p6l=0 » €g(8)= tg(c)a deg((’r)[@(m)#(m)—amga'!h plel=0]
We remark that a is free in p & and only (f -
Vo VY[ (aep A YmLam) ¢ yim > mcal) = yepl

We observe that, (f a is free in g, then:
Yn Vm[(eqlh)=m Amca A p(n):o) - Kf =wl,

The converse of this statement (s not true in general.

We define a binary predicate + on w by:
for all a, bew: a +& := =(ach ~n ~(bca)

We remark that a s free inp  and only if-
Va ¥y [ (cep A Vm[ (a+m vacm)> ot(m\=lr(m)]) - yepl
We also need the following concept:
let pe“w be a spread and aew. Then.
a (s almost free in P = dp¥nln>p > axn is free 0\/3]

91. We will prove a suitoble refinement of theorem 3.2
To this end, we (ntroduce the subsets AF and EX of “w, by the folowing:

for all oe™w - AX (o) := Ym3In[a™(n) 401
for all oe “w: EX() := dm Yn[ a™(nl 401

We observe. Vol = (A, AEX() A = (E, () AX ()]

When y ne®w are spreads, y is called o subspread of p
Va[xla):O - (l(o.)=o], or, equivalently, (f Yueyloepl.
We will wrile: yep, occasionaly

9.2 Theorem: Let pe®w be a spread, abew, 8 “w such that: Fun(8) and.
o a is a.lmos(: free n b
w VYaep[ A,(%*x) — E,(8la)]
an) (%((’r)=o
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We now may construct o subspread p' of p such that :
o pE=0
( Voep [EX (%) & E,(8la)]
pny Ve[ (eda nc i almost free inp) —(C (s almost free in V1

Proof : We have to relativize the proof of theorem 32
We determine pew such thot: Yn[nop - (axn isfree in (5] and: p> qufr)

We assume our cooling of finite sequences of natural numbers
(cf. 1.2) to be such that WYn[ n< <n>]

Therefore, also the following holds: Yn[n>p - (ax<n>) is free in p)]
We now oefine 3€“w such that: Fun(z) and: for all pae“w:

Z2(y,d) = 3|<p,0> fulfds these conditions:

For all mew:
2(pdlml = alm)  §: mla or acm or m< g (6)
For all hmew:
Z(pa) (@ x<n> % m)=0  §: <n>¥m >p and: n<p
ZCJ,O‘) (ax<h>x<m>)=0 & n5>p and m= y(n)
2o (O % <> %<mo) = HK(O % <n>x<m>)

(f: n>p oand m#f(n)

We remark: VyYeloep = (Z(pdep n A, (3¢,
Therefore - vy Vaep( Ez(dlgq,d)ﬂ
We choose some akep such that o*e b (ie ¥ {g(6)) = {), and
Some r*e %w
Applying to GCP (cf 1.9), we Oletermine qew, mew such that:
q>p and ¥y Vc(ép[(fq:ﬁq A &q=3<7q\ = ¥n[(812¢a)™ (n =0OT]
We then define a subspreaol @' of p 8‘)’ sayihg:
For all aep:

xep’ if and only : sel A &g = Wq Aaﬂq’d=_1_

A Vn<q[°~*""cx =a*""g((*,a*j]

We have to show that p' does everything we want (& b do
Remark that VYoep [ *< o= L], Herefore. Yoe p' [ EF (2]
On the other handl: Yaep'[ (8i)" =07 (and: Voep [E, (8la)])
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In order to see this, one chould realize.

Vo[ p'@)=0 + Jy3cepl jg=fFq A Eq=a*q A 3(Aeal]
Therefore: Va[{%’(a):o — Juf aea A (Bl)™ - 0OT7]

Let aep’ and consider §lx

Remark: YwImVel Em =am - (8|e)(n)= (Slo)(n)]

and: Vaep Vnl (§1a)" (n] = O]

(As we put it in 32, it is the conscience- stricken nakure of

the imtative subject which brings triumph to the creatwe subject)

The remaining properties of p' are obvious.

B

We are qoing to prove a Similar counterpaxt to theorem 3.3
We introduce the subset EX of “w by:
For all ae “w.
EX(a) := 3In[ aln)#0]
We remind the reader of the conjunctive projection operakions which

hove been mentioned in chapter 4 (cf. u.11)
let Pc “w and new. The subset C"P of “w (s defined by

For all oe¥w

C*P(ol = Vq<n [P(«9)]

93 Theorem: Let pe“ be a spread, a,b,new , Se%w such that: Fun(§) and:
0 a s almost free wm p
W VYoepl E, (%x) = A,(8l)]
() (&(G):O
We now may construct a subspread p'of p such that:

0 o (s almost free m p

m p(kl<0

(m) Yoe iy [C"-E1*(ao()f\ C"E,(8ln)]

() Yc[(c¥a A c is almost free in p) = (c is almost free (,.{3’)]

Proof. We use the Same method as in the proof of theorem 33
The present situction is easier to hamdle, as we have
set ourselves a more Modest purpose.



9.4

72
We perform owr task i a number of steps

First, determine g,ew such that ax<q.> is free in p and q°>€g(&)
Determine o, ep such that: oe & A ¥¥<Q>y =0
Remark: E,(%a,), and determme p, such thak (8[010)"(,)0):0
Mlso determne n,ew such that: Yocepl dn=an, > (81x)°(p,)=0]

We now construct m,ew, qew and «, e p such that.
Kynp = An, A oeb
o (@ %¥<o0>*<m,>) +0

O-*(q‘)o(" = O

Remark: E,(®w) and determine p,,n,ew such that non,and
Vue[&[&,n,= an, = (8lodt(p)=0] and. n, >ax<o>x<m>

V\}e continue this process For n steps

In the end, we find a Sequence o, €p and @ number kew
gu.C‘\ H'\O.t

ol el A Vae[&[anﬁzafc - (VLenl o(ax<t>x<my) # 0]
A V8an [ (8la)t (pg)=01)]

We define a subspread @' of p by say(hg:

For all xe€ p:

ae p’ f and only f cel A &nQ = &k

It is not difficult to see that @ fulfls all requirements

X

In comparison to theorem 9.2, theorem 93 does teem to have a rather
weak conclusion. On the other hand, the fimte sequemce a which fgures
i theorem 9.3, has been kept ahm&t free during s proof. It wil be

PoCS(ble for Ehis Feason, to apply theorem 93 several times Gk the
same Pa.CQ

We now prepare to attack the hyperarithmetical hierarchy.

We made s aequmnkance n ﬁ)f/e,r 8 buk we f‘edeﬁhe &, because &
Swts us to have & i a S(quﬂy F{’erem,t g

For cach teHI$, we define subsets Py, Q, Y, QY of Yw
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We do this by transfnite induction.
As (n chopter 8, we will write ® {’or {< >}

For all we%w.

Rp(e) := A(a) = YmIn[ a™(n)= 0]
Pé (¢) := Ym 3n Lo™(n) 401
Qp @) = E @ = Im¥n[(™(n)=O]

Qfp ™ : = ImYn[otM(n) £0]

For all te HI$, t4®, for all xe“w:
Polod := ¥nl[Qpn (a™] R (= Y@y, @]
Qv (@) == InL[P, (xM] Qp (@l := In[ Pk "]

We remark: VTe HI¢ Vo[ ~(Pp(o) n QF(x) & = (Qpl & PE(a)]

We resume o line of thought which we followed in chapter 7

We recognized A, () and E,(«) as boastful announcements of players,
who were involved (n a game on a tree of uniform heght n.

Likewse Pe(c) and Q_ () may be understood to say: , I (¥ resp. 3)
am oble to win the quantifer-game determined by o on the

well- ordered stump T, whakever the moves of my opponent!

This idea lies behind the ﬁa(lowuhq defenition.
Let poe “w. For each Te& HI$ we will define sequences ypdp o and
(Dot in Y. Tais s done by transfmite induction:

S SOl Satie

[mo% = I
>, and =2, are the O\tzr(:wM(ncz ﬁ;.nctcons which we deF\'ned m 70
We. know, from 7.0.: VYol P(D(al\ 2 JyLa=ypa,aT]

ard: Yo [Qg () & Fyla=y =]

Further, for each T e HI$ such that T #£#@, we define:

§ P by Unl (foape)” = y"=end
and: J et (<) = o(<)
and JX‘CO( {r\]: (xXt_a)'\ . = X" Mt'\o(ﬂ |:f I’\::{(O)
= AN Cf n # J«(o)

and: f T (K>) := (<)
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One more exercise in traomshnite induction wil learn:

Vol Prl) 2 Fylo=y pagadl
and: Vol Qp () @ Fyla= y Readl

We forge o third weapon for the great battle:

95 Theorem: Let Te HI$ , t4Q@
Let pe “w be a spread, a,bew, §e“w such that: Fun(§) and:

() a is almost free m p
aw Voep [ P (%) = Qo (5]

() p(&):O
We may comstruct a subspread of p and nmew such that.
) p(6=0

) ax<n> s free i p

am Th =T™

m  Veep [ Qu, (@)Y = Py, ((5l)")]

w)  Yelleta nc s almost free in p) = ¢ is almost free i p']

Proof : We determine pew such that Wnln>p — (axn s free tn ] Gﬂd'-p>eg(5')
We define Z€“w such thak: Fun(3) and: for all [,ae*w the Sequence
20l o= Z|<pa>  fudfils the following conditions:

2(pdl el , if oel
and, for all mnew: ;((,d‘) (m):= a(m)  § m+a or acm
;(J,o() (a%<n>%¥m) :=0 ¢ <n>%m >p ond n<p
Z(J’;"‘) (A% <n> % m) := (d’N.ro‘ot) (<n>em) , f n>p
Remark: Yn<p ¥YmIm>4 — 3(pe) (@x<ny ¥m) = o]
and: Yn>p [ (qu,d))” = (ypa "1
Therefore:  VyVal P (QU{:‘*)H/ and: YpYal Z(pedep - Qr (8(2¢l]
Observe, however  thot : VJ' VoL[o(ep, — Zpe) ep]
We choose some a*e(& such thot o¥e (', anol Some yreww.
Apply(nct to GCP, we determine q,mew Such that -
9> {g(8) ~ YyYaep [(Fq=*q + 5q=a%q) = Pu,, (120" ]
We calcuate hew Such that - n>q, n>p and: th=t"
(Here we do need the fact that T (s heredifarily (berat ive)
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We define a subspread [’ of p by saywg:
For all wep: oaep’ § and only i - &q = Z(y*,a*}q
and: YELe4n - (%a)t= (“Z(,y*,d*))e]

!

Note that : (B’(G’)—:O and: ax<n> (s Free m [5
Moreover: Vo(e(s" Ve¢n[ Q,Ce ((2?)]

Suppose : de (3’ and. - ch ((Qo()“). Then: Pq (aot)) but also:

Iy Iatepl Jq=7*q 4 aFq=oa¥q n x= Z(pot]

F\ere{bve: Pem ((BIZ(x,oL*))M) and: PBm ((B1)™).

Remark, F;nalI\)) that a member (e f, which has a wish to be(ong
to P, need not restrict seriously any of its subsequences <, where ci-a.
This chows that p' reclizes our great expectations.

2

Theorem 95 wil prove its worth as part of our (nductive aurgument.

Like theorem 9.2, & has a (duall companion, but thic s foo easy to be
formulated as a theorem. If we are i a situation where Qt(“d)—)Pt,(Xla\,
we immediotely see: ¥ ¥im[ P,th((aac)"] = Qom ((8la)™)]

96 There are stil a few technical notions to be mentioned.

let cew and Qq(a) >0. Po(al (predecessor of @) is to be the code number
of the fimte Sequence , which we get by omitting the lost humber from the
finite sequence whose code number s a.

Therefore, for each a such thot &3(0-) >0 . a= Pd(a) « <a£q(a)—i>

Pd (<> = Pd(0) will be undefined.

let Te $, and aer. We coll a on endpomnk of © i ho proper extension
of a does belong to v, ie. f —3Infaxr<n> et]

For any te $, the collection {a] aew| a is an endpowmt of Tt} s @
decidoble Subset of w.

One could deftne the nction of ,endpoint of t* by transfinite induction,
as fellows:
(We write: End (t\ fbr the collection of endpoints of t)

W End (@) = End ({<>}) =[<>} and: End (¢] =¢
Q) IP T>®: End.-(t') — h(ejw <n> ¥ Epdl (rh]

This finishes our preparokions. We take a long breath and summon up our
cowrage:
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(Hyperarithmetical Hierarchy Theorew, First Port)

let Te HI$ and &e“w such that: Fun@® and: Ve[ P (o) = Q. (8lall.
We may construct ZeWw such that : Q:(Z,) and Q—C(SIZ)_

The proof is divided into several paragrophs.
We will spend a lot of words on giving @ Synopsis of our intentions,
before going to work

We plan to define a decidable subset W of v such thak-
(il <> e W
) Yl (aeW a Cq(o.) is even A a is ho endpoint of ©) > 3tnlax<m eWT]
() Val(aeW A Qq(a.) is odd a a ¢s no endpoint of Ty VnlLaxwm>ew]

The set W represents a strateqy for the first player in a quantifier-
game on the well-ordered stump T. It will be the strateqy which
the stotement , QY (3) asserts to exist.
At the same time, we will bwild a ﬁmd:c'on H: W - T, such that:

W H>) = <>

() Yaew [ v = H@ ]

(w Yae Wl(lgla) is even A o is no endipoint of T) >

An3p [H(ax<nr) = Hio)«<p>]
(wv) Yae W[Uq(a) is sdd A @ s no endpoint of T) -
Vn[H(ax<ny) = H(@)x<n>]

The function H carries positions of T which belong to W, into structuraly
equivalent positions of T (As T is hereditarily iterative, there are,

ot every turn, many such positions).

The ramge of the function H again represents  first- playenr strategy
on T. Tnis strateqy Wil speak for the truth of: Q (312).

(We assumed famiiarty with the logical convention that |, 3" stands
for: , there exists exactly one..”).

In the following we will have to consider all hatural humbers,
in their natural order, decoding them o finite Cequences of

ratural humbers. (Cf.1.2).
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We assume our coding of fincte sequences to be , reqular”, i
the following sense of the word:

] Vim Wn Vp[ n<p = (m*<n> < ME<p> A N> KM < <P>*m\j

ay ¥m ¥a L m < mxn]

The latter condition has already been mentioned m 1.2.

q.372 The sequence Z will be made step-by- step,
We wil form o sequence Boiprs— Of Subspreads of *w, such thot:
“w = Po 2pa= -~
Each time, haan? defined [y, We also determine a. next value
G)\r Z, viz. %(3.\) and enswre : [5&( Z-,SL) =0
In the end, we have: V[ Zepyl

0.3 The constructions of W, H and po,B,,. .. do connect.
Tﬁe\) wil be made such, that for al Q,Q,r\ew;

If &=<o>xa and aeW and {g(a) s even and
a (s not an endpoint of v, then:
H(a)
V“éPk[ Pqt(aot) — Qat( H(81a)]
@ If k=<o>%a and aew and Qg(a) s odd and
a s not an endpoint of T, then:
VoLeM[ Qat (%a) — Par(H‘a‘(sla\]]
ay If k=<o>xa and aecw and &3(0.) is even andl
@ s an endpoink of T, then:
Voe py [ EY (%) n B, (H@ (5lal]
G If k =<n>¥a ond aeW and Qg(a) (s odd and

a s an endpoint of v, Cthen:
Vae pg [ CMEX (%) A C"E, (@ (51)]

9.3y Once these things come true, we eskablish:
VaeW[(lq(a) s wen —» Q:t(qz,) A Qat(H(Q)(SIZ)\\) A
(o) is ot — P%, () a Py (M (615))]
and therefore, as <> e W: QY (2) A Q (812)
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This is done by transfnite induction.
The principle sustaining this part of the argument, runs as follows:

let te$ and ReT
If: Yal a is endpomt of T — R(a]
and: Yal WWnlR(ax<n’1 — R@A)]

then: Yo ev [R(a)] especially : R(<>)

935 The construction of W and H will not be done in odvance, at
ohe stroke, but will proceed stepwise , and intertwine with the
construction of Pos rs---

We showld be careful that, for any aet, the decision about
a's belonging to W, and, if necessary, the determcnation of Hlal,
have been passed before we come to Stage R=<o>xa , m which
Pa Pas to be created.

We settle these things for each act, f 0q(a) is odd, at stage
<O> % Pd(@, and, Pq(al (s even, even earlier, viz. at stage
<0 > % Pd (Pd (a)

9.76 In our construction, active stages will occur along with inactive ones.
At on inactive stage k+4, LT ts sdmply put equal to P
At an active stage f+1 one of the [’olbww‘v.q cases applies:

) k+4= <O>xa, where aeWw, lg(a) is even, and a (s
not an endpomt of T

The P;rmo.t(,or\ of Bryy S left to theorem 95

Q) bt =<0>%xa, where QaeW, Qq(a) (s ewen, and a Is
an ek\dpo(wt of T
The formation of Prss S left to theorem 9.2.

() k+1 = <n>xa , where aew, {g(@) s odd, ond a (s
an endpoint of T
The formation of By, s lefe to theorem 9.3,

Turn and again, the work (s fto be done by theorems g.2, 9.3
ard 95, They wdl not object,  only we ensure that,
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for all kanew: ¢ k1= <nyxa (s an active stage, then a s
almost free wm 7%

This necessitates some retrospection. Careful read:.'y\g of theorems
92, 9.3 and 9.5 learns, that a cannot hawe lost its almost -
freedom Gk any stage <m>xc < ki1 where ¢ +a.

In eoch of the three ahovementioned cases we go back fo

a critical preceding stage:
()-0) k+1= <O>%a, where aeW and Pq(a) (s evep.
The critical Precedim, slage s:  <O>x Pol(Pol(an)
We will see that, at this stage, Pd(a) e W has been
chosen such that: Pd(a) s free m Pco> ¥ P (PL(0)
Therefore, @ itself enjoyed. freedom at this stage.
The only possible stage at which a mght have lost

(ks almost- bberky , is: <O>«*Pd(a), but there was
no octivity, then.

iy  k+1=<0>%a, where aeW, Qq(o.) is odd and a s
an endpoint of T The criical preceding stage is:
<0> % Pd(a). Go(’nq back, we wil have to observe:
0ecW has been chosen such that: a is free Possi(a)
Therefore, o skill is almost free w Pe.

um’ k+d =<Sn>xa, where new, aeW, {g(@) s odd and
a is on endpoint of . The critical preceding skuge is:
<n>%a. An examinakion of theorem 9.3 who made the
activity ot that stage, allays owr fears: a is almost -

free i Brpyyqr and so ik s in Py

We now describe the construction.

At each stage k, py and Z(%) will be defned.

Moreover, if k=<co>xa, and aeW and {9(a) is eren, and a s
ho endpoint of v, we decide, for all fumite sequences ¢, Such that:
cca and Ltq(o\: ch(a.H-i or: Qq(c):: (’q(a)+z) . Whether

¢ belongs to W, andl we define the function H for oll finde



80
Sequences Which are admitted ino W,

Stage 0:  We proclaim: P°:=“"w and Z(0):=0 and <>eW and H(<>) =<>
We know: Vo(eflo C P<7’C‘ (_()od - Q'<>c (H(<>1(8lo(n]

Stage k+1. We clistinguish seweral coases:

ket = <o>xa , where aeW, lg(a) i even and a is not
an endpoint of T
We may assume:
@ a i almost free m Py
@) Yaepgl Pa (%) o Q4 (T@(5[]
(1) pg (Zket))=0

Appﬁaim} theorem 9.5 we construct @ Subspread Bisa of pg,
and. nmew such that:

Q) phi(Z(bnho
@) ax<ny is free m By

(tti) O.£<n>,t, - a*(m’TI

dv) Ve fl‘&u[ Qa*""t (0¥no,) P““"’r (Hiadxemo (5o ))]
@) VYel(c ko A c isalimostfree inpg) = (¢ s alimost free in (’»;,“)‘]
We exterd the definitions of the set Wand, the function H fy:
VC[(CQO. A %(c) = Qq(a) +4 > (cew c=ax<n>)]
and: H(ax<n>):= H(@)x<m>

IP ax<n> is on endpont of T, there is no more to be said.
If not, we odd:

Vel(cea A lg@) = Q(@1+2) 5 (cew 2 Ftlc= ax<n> x<(>1)]

and: H(ax<n>x<l>) := HO)*<m>x< >

Remark that W may approve of cts new members, because,
n wiew of (AV):

Ve[ (ccanlgle)= lg@ls2) » Yacp,,, [ Pe, (&) - Qct(%)(mod)]]
We funish the activites of this stage by determinig 2(&+1)
Such that: pg . (Z(k+2))<0.
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() k+1 = <o>xa, where acW, ﬂq(a) s ewen and @ (s am
endpoint of T.
Now: Qv = H@q {<>} =(® and. P‘,‘1,=A2 and.: Qat=E7_
We may assume:
() & is almost free in pg.
(@) Yoepy [ A, (%) — E, (M (5(00)],
(i19) p&(Z(hf)FO.

APP%U‘? theorem 92 we CD'\S‘trU.Ct a S‘UbS‘PYQOd p&fi 0? [3&
such that:

(@) Pp,, (3(k+1) <0
() Voepy,, [ EF(Qa) & E, (H® (8],

(i) Yel(cka A ¢ is almost free in (5&) -+ (c is almost free Prs, ).

We finish by deter mining 3(k+() such that p, (3(k+2)=0.

() &+1 = <n>xa, where aeW, lg(a) is odd, and a is an
endpoint of T
We may assume:
@ a s almost free wm pp.
() Voe pg [ E, (%) = A, (N (sl)].
(119 py (Zkel=O.
Applying theorem 9.3 we corstruct a subspread py., of g
Such that:
@ a is almost free wm py .
(#)  Ppy, (B(ke)) =0
6ii) Veep,, [ CUEF(%) & CE, (M@ (31«l]]
@) Yel(cva a ¢ is almost free im pg) (Cis almost free w 1]

Our last activity @ bo determine Z(R+1) such that p,, (302)=0.

) If we are not (h case ()-()-@), stage k+1 s an (noctive
stage. In order not o fall asleep completely, we perform
two sumple actions: we put Py = Py Ond choose  Z(k+1)

Such that - (;k-ﬂ (Z(k+2)=0.
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This concludes the description of owr main construction , and emds
the proof of theorem 97%.

B

9.8 We do not want to leave theorem 9.7 aclone m paradise. It will be but a
minor effort to gwe (t a companion.

We remark that, for each te HI§, the class T2 (s closed under the
Operotion of cowntoble (wersection, i.e.: (f Qo, Q,,... & A Sequence of
elements of MY, then N Q,, a9aun bo.lov\95 to n;. Ths Follows From

me
theorem 8.7, by a nok koo difRcult argument, bosed on AC,,
Hence we are able to find, for each € HI$, neww such thoe Fum(n)
and Vo[ Yn (P (wn)] 2 PT'(’II“)]'

We introduce a successor- function S on HI§ by
For all teHI$ Wl (ST)" = Tl
ReFerrén? once more to the previous chapter, esp- theorem 3.6, we ob ser ve:

< St and ﬂggZ’.‘{. ownd, Z%gﬂs"t.

9.9 Theorem: (Hyperarithmetical Hierarchy Theorem, Second. Part):

let ve HI$ and §e%w such thok: Fun(§) and: Vol Qple) = B (8la)].
We moy construct Ze Yw such thot: P{f(%) and P_ (812)

Proof: Let Te HI$ and Se®w be such that: Fun(8) and. Ya[Qp(x) = Pr(8/d]

Remourk: WVl P (o) =& YnlQy (1, amd, therefre:
Vo [P (0 = Yn [P, (8],

let ne%w be such that: Fun(p) amd: Yol Yn(Pp(n] 2 Pr ()],
Let 8'e Ww be such thok: Fun(d') amd: Wx¥n [ (8'[0)" = §|n].
We observe : V[P () — Pr(n]E'1))].
Let € Ww be Such that: Fun(e) and : Yaln [ Ela)" = 0| (']
We observe : Vo[ Pop(o) = Qop (Ell].
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