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1. Realizabilityz a survey

1.Realizability: a survey

Since Kleene coined the term "realizability" in 1945 to denote what was, at the time, the

first interpretation of intuitionistic arithmetic in a classical context, the word has been used by

many authors (including Kleene himself) to denote various modifications of the original
definition.

"Realizability" became a notion ; by now, there is quite a list of semantical or syntactical

interpretations going under this name. It is hard, however, to sift out what all these have in

common, or to define what a realizability interpretation ought to be. Let us therefore first have a
look at Kleene's definition. Kleene defined a relation between natural numbers and sentences of

intuitionistic first-order arithmetic (HA), by induction on the logical complexity of the sentences,

as follows. Let us write <>,( )0 and ( )1 for the pairing and unpairing functions, and 0for partial
recursive application. The relation is written "n realizes A".

n realizes an equation t=s iff it is a true equation and n is the numerical value of t;

n realizes AAB iff (n)0 realizes A and (n)1realizes B;

n realizes A vB iff ((n)0=Oand (n)1 realizes A) or ((n)0¢Oand (n)1 realizes B);
n realizes A-—>Biff for all m, if m realizes A then n-m is defined and realizes B;

n realizes EIxA(x) iff (n)1 realizes A((H)0);
n realizes Vx A(x) iff for all m, n-m is defined and realizes A(fn).

By the basic results of recursion theory (most of which were also developed by Kleene),

we now have that if HA proves a sentence A, then there is a natural number n that realizes A. So,

we have some kind of "truth definition" (defining as "true" the realizable sentences) for which

HA is sound. Since obviously the statement 0:1 has no realizer, the consistency of HA follows

(if you like this kind of argument). One cannot do the same for Peano arithmetic: consider a

sentence of the form Vx (A(x) V-1A(X)). A realizer of this sentence codes a total recursive

function which decides, for all m, whether A(m) has a realizer or not. It follows that not all such
sentences can be realized: Peano arithmetic is not sound for this definition.

The realizability notions I shall consider in this survey share the following features with

Kleene's (and I propose them as a loose "definition" of realizability):

Suppose we have aformal system T and a set S which serves as an interpretation of the range of

the variables of T (or more such sets S, if T has more than one sort). A relation ”d realizes A"

is defined between sentences of T[S] (i.e. T with constants for elements of S added) and

elements of a certain domain D, such that:
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i) if d realizes an implication A—>Bthen d codes one or more operations which

transform realizers of A into realizers of B;

ii) if d realizes an existential statement E|xA(x)then d codes information about one or

more elements se S as well as realizersfor the sentences A(s)for these s;

iii) if d realizes a universal statement VxA(x) then d codes one or more operations, each

transforming elements of D which code information about an se S into realizers of A(s).

Let us make some remarks. From i) and iii) it follows that elements of D can code partial

operations: D-—-D.If our realizability is to be sound, then there should be some connection with

combinatory logic. Important examples have partial combinatory algebras for D, but it would be

too strict to restrict the notion of realizability to these. In many cases an element d is said to

realize A—9Bif (1codes an operation which, besides transfonning realizers of A into realizers of

B, satisfies further conditions. For example, one may define an equivalence relation on realizers

of A and on realizers of B, and the operation encoded by dis required to respect this relation.

The way elements of D code information about elements of A should, of course, be

fixed. There are cases (for instance, analogues of Kleene's realizability for theories about sets)

where thisiis done trivially, in the sense that there is an element d of D which codes information

about every areA. In these cases, the dependence on this information is usually suppressed in the

presentation.

In this survey, I shall assume that D is nontrivial. This means that I don't consider the

various slash-operations in existence, as realizabilities. I shall also disregard the Dialectica inter

pretation and translations where the realizability relation is quantified away in the form "3d (d

realizes A)". My attitude will be that realizability is semantics and not a syntactical translation:

even a formalized version (see below) will be seen as a model, much in the same way as set

theory deals with inner models.

Research on various realizabilities, like with every truth definition, can be naturally
divided into four kinds:

1) Straightforward applications of the truth definition, in the sense: T is consistent, T does not

prove A, but also, for instance: normalization for a natural deduction-presentation of T (The

Curry-Feys isomorphism between natural deduction trees of intuitionistic implicational logic and

closed terms of the typed lambda calculus can also be regarded as a realizability interpretation).

2) Investigations of the truth definition itself. What formulas are realizable? What is the logic
which is realized?

3) Just like the use of inner models in set theory, internalization of realizability is an important

tool. Very often, realizability is defined entirely in terms of D. So any formalism which is capable
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of describing D, can express realizability. For instance, Kleene's definition can be fonnalized in

HA itself, or in PA. If we have formalized realizability of T by D in a formalism S, we may ask:

does S prove the soundness of T for this realizability? For what sentences A does S prove that A

has a realizer? Is there an axiom or axiom schema ‘I’ in the language of T such that T+‘I’proves

A iff S proves that A is realizable?

If S and T coincide, one may be interested in questions like: what is the relation (in T) between

the sentences A and 3d(d realizes A)? Is there a syntactical criterion by which you can tell

whether they are equivalent? What if you iterate the notion: 3d (d realizes 3d’(d' realizes A))?

Furthermore one may take a model of S and consider the notion: "d realizes A in the model".

4) The fourth line of research is more mathematical in nature and can be described as the start (as

yet) of a "model theory of realizability". Questions that arise are: what is the relation between

realizability and other semantics for intuitionistic systems, like Kripke models or sheaf models?

How can techniques from the logic of sheaves be applied to realizability? Category theory plays a

large role in this research, which has established that many realizabilities fit very well into

topos-semantics for higher-order systems. It is quite possible that from this quarter a more

rigorous definition emerges of what a realizability interpretation ought to be, and what would

constitute a "homomorphism" of realizabilities.

First, I shall concentrate on realizabilities designed for HA or systems containing

arithmetic; to do this, I present a sample of realizabilities. To avoid pages with inductive

definitions, I introduce the following shorthand notation: a realizability notion is presented by

specifying a set E (to be thought of as the set of possible sets of realizers), together with an

implication =>:Z><Z‘.—>E.These data almost characterize a realizability notion, by tripos-theoretic

considerations (see chapter 3), but for the moment the reader is not invited to worry about this.

For example, in Kleene's definition to each sentence 4)a set |I¢ll = {n In realizes (1))is

associated, such that [lq>—>wll= {n I Vxe |I¢ll (noxi & n-xe |I\|Ill)}. This suggests Z‘.and => in

example 1) below.

1) Kleene's realizability :

21 is P(N);

A=>1B is {e IVae A(e~a~Land e-ae B)}.

2) Kleene & Vesley'sfunction realizability :

:2 is P(NN);

A=>2B is {el vote A (Sloti and e|ote B)}. Here e|oti means that for all x there is an initial

segment 0 of onsuch that e(<x>*o)¢0; then (e|ot)(x) E e(<x>*0)—1for the minimal such 0'.

3) Lzfschz'tz'realizability :



1. Realizability: a survey

Let [e] be the finite set {xs(e)1| (e)0-xT}. Let J be [el [e] is nonempty} and B be total recursive

such that for all e, [[3(e)]={e}. Then

23 is {HQJ IVee J (ee H<=>Vfe [e] (B(f)e H))};

H=>3Gis {ee J IVhe Hvre [e] (fohi & f-he H) }.
4) Lzfschitzfunction realizability :

Let [ot] be the compact set {fie NNI Vn ([3(n)s(ot(n))1 & ot(Bn))0=O)}where Bn denotes the

initial segment of B of length 11;let K be {ote NNI [ot] is nonempty}, 7 such that Vot ([‘y1oL]={ot}).

Then 24 is {HQK I Vote K (ote H<=>\7’[3e[ct] (71136H)) };

H=>4G is [ote KI vpe H‘v"ye[(1](y|[3i & y1BeG)}.

5) E5 is {(A,=) IA;N =--is an equivalence relation on A};

(A,-—)=>5(B,*)is ({ee A=>1B IVa,a'e A (a=a' =>e-aé c-a‘) },=) where e=e' iff
Vae A (e-aé e‘-a).

6) 26 is {(A,=) IAgN & z is a partial equivalence relation on A};

(A,==)=>6(B,'a*=)is (A=>1B,=) where e=e' iff Va,a'e A (a=a' =>e-aé e‘-a‘).
I call 5) and 6) extensional realizabilities.

7) Kripke models of realizability :

Suppose (P,S,O)is a partial order with bottom element 0. Let for each pe P a partial combinatory

algebra AP be given and for each psq a map fpq:Ap—->Aqwhich preserves K,S and
application.'I'hen

Z7 is {(0Lp)pep'VP (0.p;Ap) & VpSq(fpq[oLp];ocq)};

((O.p)p=>7(Bp)p)pis {ee Apl Vqzpvae otq(e-ai & e-ae Bq)}.
8) Beth models of realizability :

Let (P,S,O), fpqas in 7); in addition, suppose a coverage is defined on’P; that is, for every
pe P a set J(p) of covers (or bars ) for p is defined, such that i) {p} is a bar for p; ii) if R is a

cover for p and qzp then T(R) (the upwards closure of R)nT({q}) contains a cover for q, and iii)

if S_c_T({p})and for some cover R for p, Vre R(Sr\T({r}) contains a cover for r), then S

contains a cover for p. Then

28 is [((Xp)pePE27 IVpe P‘v’aeAPVRE J(p) (Vre R fpr(a)e (II = as otp)};

((ozp)p=>3([3p)p)pis {es Ap Ivqzpvae otq3Re J(q)Vre R (fpr(e)-fqr(a)~L&

f,,<e)-fq,<a>e 13,)1.
9) HRO-modified realizability :

Let c, by the recursion theorem, be such that Vx (e-x=e).

29 is {(p*,Dp)e P(N)xP(N) Ip*gDp & ee DP};

(p*,Dp)=>9(q*,Dq) is ((p*=>1q*)n(Dp=1Dq),Dp=>1Dq).
10) Modified Lifschz'tz'realizability :

Let I and B as in 3) and e such that Vx(e-x=[3(e)).
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210 is {(p*,Dp)e £3x23| p*<;Dp & B(e)e Dp};

(p*,Dp)=>10(q*,Dq) is ((p*=>3q*)n(Dp=>3Dq),Dp=>3Dq).
11) q-realizability:

211 is {(p,x)| pg;N, x<;{0},p¢0=>0ex};

(p.x)=>1,(q.y)is (lae p=>1q|x:y}.{0| xcyl).

Of course this list is only an illustration. There are modified versions of function realizability,

q-versions of Lifschitz' realizability and extensional realizability, extensionalizations of modified

realizability etc. etc. The notion most thoroughly investigated is of course number 1). In the

following discussion I group results about realizability x (1sxs11) into 4 sections, numbered x.y

(1sy$4), according to the four types of results distinguished before.

1.1. The simplest applications of Kleene's definition are:

- consistency of HA+C’I‘0,where CT0 is the schema

CTO Vx3y A(x,y) —>3zVx3u(T(z,x,u) AA(x,U(u)))

- consistency of HA+w‘v’x(A(x) v—uA(x))for some formula A(x).

In these results, HA can be replaced by HA+MP, where MP is the schema:

MP Vx (A(x) v —lA(x)) A —r—:3xA(x) —)Ex A(x)

It is not hard to see that every instance of MP has a realizer. The initials CI‘ and MP stand for

Church's Thesis and Markov's Principle.

1.2. The class of almost negative formulas is the class of formulas built up from Z?-formulas

using only V, —>and A. Let A(xl,...,xn) be an almost negative formula with n free variables;

then there is a partial recursive function ¢A of n arguments, such that for all k1,...,kn, if

A(E1,...,lEn) is true then ¢A(k1,...,kn) is defined and realizes A(E1,...,En); conversely, if an
almost negative sentence has a realizer, then it is true. This can be used to show that a

strengthening of CT0 is realizable, the schema ECT0 (extended Church's Thesis):

ECTO Vx (A(x) —)ElyB(x,y))—>3zVx (A(x) —)3u(T(z,x,u) AB(x,U(u)))),

where A(x) must be an almost negative formula.

The "logic of realizability" is stronger than intuitionistic logic, as soon became known after

Kleene's definition. In 1953, G.F. Rose gave an example of a propositional schema, not

provable in the intuitionistic propositional calculus, yet every arithmetical instance of it being

realizable. The relation between realizability and predicate logic was studied very thoroughly by

V.E. Plisko (1977, 1978, 1983). He shows that "uniformly realizable" formulas of predicate

logic (i.e. formulas of which every arithmetical substitution instance is realizable, uniformly in

the Godel numbers of the substitutions) form a H11-complete logic.
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It should be pointed out that these results depend on classical logic. Gavrilenko (1981) shows

that it cannot be intuitionistically provable that the logic of realizability is stronger than

intuitionistic propositional logic; for predicate logic, see the remark made in 7-8.1.

1.3. D. Nelson (1947) carried through the internalization of realizability inside HA. In a

straightforward way, statements "n realises A" are taken as formulas of arithmetic. The

soundness theorem can be formalized as: HA|- A implies HA I-1'1realizes A, for some 11.Nelson

also observed that realizability is idempotent , i.e. that 3n (n realizes A) and Eln(n realizes Elm(m

realizes A)) are equivalent in HA. Several results from 1.2 hold in the internalized version: the

equivalence of almost negative formulas with their realizability (Kleene 1960), and the

realizability of ECT0 (Troelstra 1971). Idempotency is a direct consequence of the fact that all
formulas of the form "n realizes A" are equivalent to almost negative formulas.

It follows that the realizability of MP is not provable in HA, for MP implies the almost negative

axiom MPR: ‘v’e‘v’x(a—-ElzT(e,x,z) -—>3zT(e,x,z)). It can be shown by modified realizability that

MPRis not provable in HA. But the realizability of MP is provable in HA+MP.

ECT0 proves to be the key to an axiomatization over HA or HA+MP of the provably realizable

sentences. Troelstra (1971) showed that for any A, HA+ECT0|- A <—>Elx(x realizes A) and

HA+ECT0|- A iff HA\|-Elx(x realizes A). In both of these, HA may be replaced by HA+MP (in

fact, the axiomatization of realizability over HA+MP by a schema like ECT0 is already in

Dragalin 1969). ECT0 can often be applied to show that certain formulas are not realizable. For
instance, the schema IP: (—:A—>E|yB(y)) —>By (—.A—>B(y)) (y not free in A) was shown by

Beeson to be simply inconsistent with ECT0.

1.4. Well-known semantics for intuitionistic systems like Kripke models, Beth models or

topological models, are all special cases of Q-valued semantics for a complete Heyting algebra 9.

This semantics is described in great detail by Fourman and Scott (1979). Scott felt that

realizability should fit in somewhere; the equivalent of 9 should be the set 21. The idea was
worked out by J.M.E. Hyland (1982). The theory behind it was developed by A.M. Pitts (1981)

and part of it is presented in Hyland, Johnstone, Pitts 1980. We refer to a separate chapter of this

thesis for an introduction into this theory.

The "effective topos" generalizes Kleene's realizability in that it provides a uniform extension of

it to full higher order intuitionistic arithmetic. This is important not only for the study of

intuitionistic systems, but also for understanding the practice of much constructive mathematics,

as Hyland showed. Whether influenced by Kleene or not, the Russian school of recursive

mathematics (Markov, Shanin, Zaslavskij, Ceitin) used a logic closely related to realizability: "In

the overwhelming majority of papers on constructive mathematics, the underlying notion of truth
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is essentially equivalent to realizability" (Plisko 1977). This statement acquires a precise meaning

in the effective topos: there, Markov’s Principle (the "principle of constructive choice" for the

Russians) holds, as well as Church's Thesis in the form: all functions from N to N are recursive;

real numbers are recursive, etc.

The first extension of K1eene'sdefinition to a higher order system was defined by Troelstra (see

Troelstra 1973) for second order arithmetic HAS. It can be shown that Troelstra's definition

coincides with second order arithmetic in the effective topos. As a result, the Uniformity

Principle (UP) holds in it: VX3yA(X,y) —>E|yVX A(X,y) (The weaker form UP! is a

consequence of CT0 in higher order logic).
Apart from the construction of the effective topos out of a tripos, there are at least two other

presentations of it. One is via the category of "Assemblies" of Carboni, Freyd and Scedrov

(1987); the other one shows that the effective topos is obtained by first adjoining recursively

indexed non-empty coproducts to the category of sets, and then adding quotients of equivalence
relations (Robinson and Rosolini 1990). None of these two constructions seems to be

straightforwardly applicable to other realizabilities considered in this thesis, which is why I stick

to triposes. However, as regards our phenomenological question "What is realizability?",

especially the second one seems promising.

2.1. Function realizability as given here was defined in Kleene & Vesley 1965, but an equivalent

formulation in terms of numbers (using "recursive in") was already given in Kleene 1957. The

notion was meant to interpret the system of analysis defined there. A simpler description is in

Troelstra 1973 where the basic system is called EL. EL is an extension of HA in a language

with function variables, a recursion operator and an axiom of quantifier-free choice. The system

of Kleene & Vesley can then be rendered as EL+AC0l+CC+BID, where:

AC01 ‘v’xElotA(x,ot) —>Elocvx A(x,Ay.ot(<x,y>))

CC Voz.3B A(ot,[3) —->Ely‘:/on('y1otl A A(oL,'y1ot))

BID [Voflx P(Ex) A Vo (P(o) v ——.P(o))A Vo (P(o) -—>Q(o')) A

Vo(Vn Q(o*<n>) ——>Q(o))] —> Q(<>)

The results obtained by function-realizability are pretty analogous to those obtained by recursive

realizability. Of course, the system considered here is not so obviously consistent anymore (For

instance, dropping the decidability condition in BID makes it inconsistent).

2.2. The definition of almost negative formulas is the same as for HA, except that we also allow

Elotdirectly before quantifier-free formulas. The schema of "Generalized Continuity" GC is
realized:

GC Va (A(oc) —>El|3B(oL,[3))—>3’YVa(A((1)-)’Y|a~L /\ B(a,y1a)),
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for almost negative A(ot). This schema is very non-classical, but has no non-classical

consequences in the language of HA, since by an easy induction one sees that exactly the true

arithmetical formulas are realized. So, EL+GC+BID+(all true arithmetical sentences) is
consistent.

2.3. The formalization of function-realizability was carried out in Kleene 1969. All sentences

provable in Kleene's system of analysis are provably realized by some recursive on.In fact the

soundness proof can be carried out in EL+BID, for AC01 and CC are realized without assuming

them. BID is only necessary to prove its own realizability, so we can also regard this realizability

over EL. Then the role of ECT0 for recursive realizability is taken over by GC, which
axiomatizes realizability over EL (Troelstra 1973). It is known that EL (even EL+CC: Troelstra

1974) is conservative over HA, but it is an open conjecture that EL+GC is conservative over
HA.

2.4. Analogous to the effective topos construction, a realizability topos for function realizability

can be defined. One can show that function realizability (in a non-formalized version) is

equivalent to the theory of the function space INNin this topos. True second order arithmetic in

this topos can easily be formalized in a second order extension of EL, EL2. EL2 has variables
for sets of functions, and axioms:

Ext as X AVx (ot(x)=[3(x)) —->Be X

CA EIXVOL(one X <—>¢(0t)), for (1)not containing X free.

Let X—>X*be a 1-1 mapping of the set variables of HAS to the set variables of EL2. Define for
formulas (1)in the language of HAS the formula "otrealizes ¢" inductively by:

onrealizes (1)extends the definition on arithmetical formulas;

onrealizes te X E?\.y.<t,ot(y)>e X*;

onrealizes VXA(X) E VX* (otrealizes A(X));

ot realizes 3XA(X) E ElX*(ot realizes A(X)).

It is easy to see, that UP holds under this interpretation, so is valid in the function realizability

topos. As an immediate corollary, one sees that UP has no non-classical arithmetical

consequences, because the function realizability topos satisfies true classical arithmetic.

3.1. Lifschitz' realizability was defined in Lifschitz 1979. Lifschitz wanted to show that

Church's Thesis with uniqueness (CT0!) is strictly weaker than CT0.

3.2. The following principle is Lifschitz realizable:

B23-MP -.—ElxSyVz A(x,y,z) —>Elxsy Vz A(x,y,z),
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for primitive recursive A. MPRis also valid. Define the class of B27;-negativeformulas as those

built up from 2?-formulas and formulas of the form ElxsyVzA(x,y,z) with A primitive recursive,

by means of A, V and -—>.Like with the almost negative formulas, B23-negative formulas are

realizable iff true. Also, the following choice principle holds:

ECTL Vx (A(x) —->3yB(x,y)) —->3zVx (A(x) —>zoxl A3wS(z-x)lVuwT((z-x)0,w,u) A

AVwS(z0x)1(‘v’u—:T((z-x)0,w,u) —->B(x,w))),

for B23-negative formulas A.

3.3. Lifschitz' realizability can be formalized in HA+B)3§-MP+MPR. This was done in Van

Oosten 1990 (also in this thesis). ECTL axiomatizes Lifschitz' realizability over this theory.

3.4. A "Lifschitz topos" Lif can be constructed which,generalizes this realizability. In Lif, MP

and CT are valid, but AC00 fails. Lif is used in this thesis to show that a certain principle of
second order arithmetic:

RP VX (Vx (X(x) v —.X(x))AVY (Vy (Y(y) V—-uY(y))—>Vx(X(x) -9 Y(x)) v Vxw(X(x) AY(x))

—>3nVx (X(x) —>x=n))

is not derivable in HAH from MP+CT; in fact, the negation of RP is consistent with MP+CT,

although RP follows from MP+CT+ECT0. If the condition Vy (Y(y) vwY(y)) in RP is dropped,
the resulting statement will be true in Lif, because Lif satisfies UP.

4.1. Lifschitz' function realizability is defined in Van Oosten 1990. It is shown that CC!,

continuity for functions with uniqueness condition, is consistent. with quantifier-free Konig's
Lemma, which is the schema:

QF-KL VnElo(lth(o')=nA ‘v’i<n(6)151 AA(o)) —>30t‘v’n(ot(n)Sl AA(an)),

for quantifier-free formulas A. It is also shown that QF-KL conflicts in EL with Weak

Continuity for numbers:

WC-N \‘/0t3n A(a,n) —>Vot3x3yVB (By=ay—->A([3,x)).

4.2. The class of B22,-negativeformulas is analogously defined as in 3.2; built up from formulas

of the form 3otA(a) or 3otSBVnA(ot,B,n) with A quantifier-free, with A, -—>and V. The

following choice principle holds:

GCL Voc(A(ot) —>3[3B(a,B)) —>3‘YV(I(A(a)->’YIa~L/\3CE[‘YIO.]AVCE['YI(1]B((X,C)),

for B25-negative A.

4.3. Lifschitz function realizability can be formalized in EL+QF-KL+MP; GCL axiomatizes it
over this theory.
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5-6.1. Extensional realizability 5 is presented as realizability topos in Pitts 1981. An erroneous

inductive definition is given in Beeson 1985; a better one is given in Renardel de Lavalette 1984,

in the context of the theory APP. The name "extensional" derives from the analogy with

extensional versions of Martin-Lofs type theory. We present an inductive definition for HA,

which differs from Renardel's in the clauses for the quantifiers, and coincides with the logic of IN

in Pitts‘ topos.

5-6.2. We show that realizability 5 falsifies CT0; the proof is not entirely trivial (from the point of
view of higher order logic it is obvious that 5 falsifies CT since it is easy to see that 5 realizes

AC6; for all finite types 0,’: over N).But 5 realizes the following weakening of ECT0:

WECT0 Vx (A(x) —>E|yB(x,y)) -) -w—EIzVx(A(x) ——>Elu(T (z,x,u) /\ B(x,U(u))))

Realizability 6 does not satisfy CT0 but validates -u—:Aif A is the closure of an instance of CT0.
This is because the 6-realizable sentences are a subset of the Kleene-realizable ones.

5-6.3. Formalization is straightforward. Our disproof of CT0 for 5 and 6 has as a corollary that
these realizabilities, unlike those presented so far, are not "idempotent" in the sense that the

schema ¢——>EIx(x realizes (1))is realizable. Basically, all known axiomatizations of realizabilities

rely on the same trick, which presupposes this idempotency; this road is blocked for

realizabilities 5-6. To illustrate the difficulty: we cannot have an axiom schema ‘I’ such that for

5-realizability: HA+‘I’ I-A<——>3x (x realizes A) for every A. For in that case, the schema

A —)EIx(x realizes A) would be 5-realizable.

5-6.4. The fact that the 6-realizable sentences of arithmetic are a subset of the Kleene-realizable

ones extends to full HAH, because the effective topos is an open subtopos of the topos

generalizing 6-realizability, which I call Ext‘; this means that the inverse image functor of the

inclusion of Eff into Ext’ is a logical functor. So Ext’ satisfies —u—uCT,etc.

Ext, the topos for 5-realizability, refutes the continuity axiom which is, in the presence of choice

for finite types, equivalent to WC-N:

Cont VC: (N-—>N)—>NVf: N—>INElx: N Vg: N—>N (§x—-Ix—>§(f)=§(g)),

but satisfies the following weakening of it:

WCont VC: (N—9IN)—>NVf: N—>IN—mEIx:N Vg: IN—->IN(§x=f'x -9 §(f)=C(g)),

and also

WCI‘ Vot: IN—>IN—1—EIe:INVz: IN311:IN(T(e,z,u) /\ ot(z)=U(u))

7-8.1. The first Kripke model of realizability was constructed by De Jongh in 1969. His aim was

10



1. Realizability: a survey

to prove what is now known as De Jongh's Theorem : let ¢(p1,...,pn) be a non-provable formula

of intuitionistic propositional calculus. Then there are arithmetical sentences B1,...,Bn such that

q)(B1,...,Bn)is not provable in HA. The proof starts with a Kripke countermodel for q),a system

of partial combinatory algebras indexed by the tree of that model such that at every node of the

tree, the partial combinatory algebra there contains a decision function for some non-recursive

predicate associated with the propositional variable pi if and only if pi is forced at that node in the

model. De Jongh also proved by this method a weak version of such a theorem concerning

predicate logic. A Beth model for realizability was first presented by N. Goodman in 1978;

Goodman showed that HA“) with decidable equality plus AC is conservative over HA.

De Jongh's results have been strengthened by Leivant (1975), and, for the propositional case, by

Smorynski (1973); both use proof theory. In this thesis, De Jongh's original method is revived. I

construct a sheaf model for HA plus a partial application symbol 0, together with axioms saying

that we have a partial combinatory algebra. In this theory, HA1‘,we can do realizability with o,

and we have the theorem that whenever all arithmetical substitution instances of a predicate

logical formula A are, provably in HA‘“,realizable, then A is provable in the predicate calculus.

This gives an indication that the results of Plisko about the predicate logic of realizability depend

essentially on the classical metatheory used.

7-8.3. If the system of partial combinatory algebras is arithmetically definable (and HA proves

their necessary properties) these realizability notions can be formalized in HA. The model I give

is based on an essentially classical theorem of Kleene & Post, however, and I don't see how it
can be constructed inside HA.

7-8.4. These models have straightforward extensions to HAH (toposes), so we can extend the

maximality of predicate logic for HA to HAH.

9.1. Modified realizability was defined by Kreisel (1959) as interpretation of HA"’. The version I

give results from an interpretation of HA‘’’ in the model HRO of "hereditarily recursive

operations" and is due to Troelstra (1973); the presentation given above was found by Grayson

(1981B). (Think of Dp as a set of "potential realizers" of p, and p* as the set of actual realizers of

p). The most outstanding feature of this interpretation is that it falsifies MPR.It does satisfy CT0
and a schema which is called "independence of premiss":

IP (—.A —->Elx B) —>3x (—A —>B),

x not free in A. Since this schema is inconsistent with ECT0, we conclude that ECT0 is stronger

than CT0.

Kleene's "special realizability" (Kleene & Vesley 1965) is an interpretation of EL completely

II
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analogous to this notion, but based on partial continuous application (the application in 2)).

Moschovakis 1971 is a modification of special realizability, where each set of actual realizers

contains only total recursive functions. She shows the consistency of Kleene & Vesley's system

+ IP (replace ElxB by EloLB)+ CT’ where CT ' is:

CT’ ElotA(ot) —>3ot(GR(oL) AA(ot)),

where GR(oL)asserts that onis recursive, and 3otA(oc) is closed.

9.2. In contrast to the other realizabilities we have seen, modified realizability validates a purely

predicate logical schema (and a propositional one: (-1A—>BvC)—>((wA—>B)v(—1A—>C)))which

is not provable in the predicate (propositional) calculus; its logic is therefore stronger than

intuitionistic logic, even in an intuitionistic metatheory. Plisko 1990 claims the following result:

let M be a model of HA“) in which all objects of type O—>Oare computable functions. Let L(TM)

denote the modified realizability logic of M, i.e. the set of those formulas of predicate logic for

which every arithmetical substitution instance has a modified realizer in M. Then L(TM) is not
arithmetical (I am indebted to Professor V. Shehtman for this reference, as well as for a

translation of the abstract).

9.3. Kreisel's notion for HA“ is easily axiomatized over a version of HA“) with decidable prime

formulas (including equality at higher types) by the schemata 11>and AC:

AC Vx° 3y‘ A(x,y) —-)325"" Vx°A(x,zx)

(As observed by E.P. Alward, IP is not realized without decidability of equality at higher types;

Eggerz 1986 gives a modification of IP which is always modified realized). The notion we have

given above is not easily axiomatizable over HA: similar problems as with notions 5) and 6)
arise.

9.4. There is a topos for modified realizability; it was constructed by Grayson (l98lB). I fill in

some gaps in the construction, in this thesis. It will be shown that Troelstra's extension of

modified realizability to HAS coincides with second order arithmetic in this topos.

10. Modified Lifschitz' realizability was inspired by notion 9). It is defined in this thesis. It

satisfies IP but not ECTL. The higher order treatment is analogous to 9).

11.1. Kleene 1945 introduces a variation on his realizability: in the inductive definition given at

the beginning of this chapter, consider the following changes, calling the resulting relation

"l--realizability":

x I--realizes A——>Biff for all y, if (n-A and y 1--realizes A), then xoyi and x-y |—-realizes B;

12



1. Realizability: a survey

x |- -realizes ElyA(y) iff (x)1 I--realizes A((x)0) and |- A((x)0).

He established soundness for this realizability and used it to prove the "explicit definability for

numbers" property (EDN) for HA:

EDN If HAI- E|xA(x), then for some 11,HA I-A(fi).

In Kleene 1969, formalized q-realizability for functions is defined. The idea is the same, but I-A

is replaced by A. Troelstra 1973 works out the similar notion for numbers. What is awkward

about this notion is, that although one can prove soundness in the form HAl- A => HA I-n

q-realizes A for some n, it is not closed under deduction: it may be that for some A, HA I-A—>B

and HA|- n q-realizes A, without there being an m with HA l-m q-realizes B.

This blemish (from the semantical point of view) was removed by Grayson who changed the

definition of K1eene'srealizability in the following way:

x q-realizes A—->Biff A—>Band for all y, if y q-realizes A then x-yi and xoy q-realizes B;

the other clauses are the same as for Kleene's original realizability, replacing "realizes" by

"q-realizes". The resulting notion suffices for deriving the same proof-theoretical properties of

HA, besides having the advantage that it is closed under deduction.

11.2. Only true formulas of arithmetic are q-realized. This follows from the fact that one can

insert A (in the clause for "x q-realizes A") all along (instead of just doing it for the implication),

and get an equivalent definition.

11.3. Important proof-theoretical results are obtained using formalized q-realizability. Apart from
the mentioned EDN, one also has the "extended Church's rule":

ECR0 If HA l-Vx (A(x) -—>EiyB(x,y))and A is almost negative, then for some n,
HA n-vx (A(x) —>1'1-xiAB(x,fi-x))

and as a consequence (in combination with MRPR), Markov's Rule:
MR If HAI- Vx (A(x) vaA(x)) A —.—EIxA(x), then for some n, HA|- A(fi)

But there is a general method behind q-realizability, which can be applied to almost every

realizability notion considered so far. In the inductive definitions, it is: carrying truth along. In

the model theory, it is: glueing (see 11.4.). Consequently, there are many derived rules for HA

and systems containing it, that can be proved by q-realizability. q-realizability for HAS was

defined in Friedman 1977, establishing EDN, ECR0 and MR for HAS. Kleene's q-realizability
for functions gives for EL the rule of generalized continuity:

GCR If EL l-Va (A(ot) —>El[3B(ot,B)) with A almost negative, then for some recursive

function :11,EL|- ‘v’ot(A(ot) —>‘}’loci A B(oL,‘I’lot»

A q-variant of Lifschitz' realizability gives a derived rule for HA+B2‘,’-MP+MPR,analogous to

the axiom schema ECTL, and similar can be done for Lifschitz' function realizability. The

13



1. Realizability: a survey

Independence of Premiss Rule:

IPR If HA 1-Ve (—.A(e)—>ElfB(e,f))with f not free in A, then for some number n,

HAl- Ve (5-cl /\(—:A(e)—>B(c,I-1°e)))

can be obtained by applying the q-device to modified realizability. To conclude this enumeration,

a q—versionof realizability 5) gives the following strengthening of ECR0:

ECRC If HA 1-Ve (Vx3yBexy —>ElzCez)and B is almost negative, then there is a number n
such that:

HA I-Ve(noel Avr,r(vx(r-xlAr-xlAf-x=r-xABcxr-x) —>(n~e)-fiA (n~e)~f'i A

(n-e)-f=(noe)of' A Ce (noe)°f))

(This thesis; chapter 8. To derive ECR0, take x and y dummies)

11.4. The topos-theoretic approach to q-realizability was found by Grayson (1981A). He

showed that the construction underlying it is one that is very familiar to category-theorists,

namely glueing of toposes. This is the following: suppose 8 and 3' are toposes and F: 8 -—>57a

left exact functor. Then let Gl(F) be the comma category (?~LF).Gl(F) is a topos and 8 is an

open subtopos of it. Now q-realizability corresponds to glueing an appropriate realizability topos

along the inclusion from sets into it.

It would be nice if a general method for glueing of realizabilities existed; then we could expect

derived rules relating different realizabilities to each other. But I have not found it.

This concludes the discussion of my sample. Two realizability definitions for (extensions of) EL

that deserve mention, are Scarpellini 1977 and Krol 1983. It seems that Scarpellini combines

realizability with the elimination translation for choice sequences, but it is not clear to me what

this achieves. Krol's aim is to distinguish various continuity principles. However, in his

definition (entirely in terms of the "hardware" of 3—tapeTuring machines), evidently some wires

have been crossed, so I have been unable to check his proof.

Since this thesis deals primarily with extensions of arithmetic, I shall be more succinct about

realizabilities designed for other formalisms. I mentioned the Curry—Feysisomorphism between

natural deduction trees for intuitionistic implicational logic and closed terms of the typed

X-calculus. Since second-order propositional logic IPC2 can be presented with only V and ——>,

there is an obvious isomorphism between IPC2 and the polymorphic 7t—calculus,also known as

Girard's system F. System F has also been used for realizability purposes by Martin-Lof, in an

unpublished manuscript around 1970, to obtain a characterization of the provably total recursive

functions in second-order arithmetic. A realizability interpretation for second-order predicate

logic, using the untyped 7»-calculus,was given by Tait (1975). The idea in all these realizabilities
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1. Realizability: a survey

is the same: one uses normalization of the relevant calculus.

Quite different from the above is Lauchli's intriguing semantics for IQC (1970), which he calls

an "abstract notion of realizability". It remains a challenging problem to classify this conception

among better known semantics. At first sight, it reminds one of modified realizability, but I

believe the similarity is only superficial. Maybe there is a connection with J. Medvedev's

"calculus of finite problems" (Medvedev 1962,1963,1966) which is an attempt to formalize

Kolmogorov's interpretation of the intuitionistic connectives. However, the finite problems are

equivalent to some kind of Heyting-valued semantics (Medvedev 1966).

Among theories in first-order predicate logic which have been studied by means of realizability

the most prominent, apart from arithmetic, is intuitionistic set theory IZF. The first realizability

notion for an intuitionistic set theory was given by Tharp (1971); the most influential one is

Friedman's (1973). For a survey of Friedman's work on IZF the reader is referred to Scedrov

1985. Via realizability for IZF, much recursive mathematics can be obtained by using

intuitionistic set theoretical arguments; this is carried out in McCarty 1984. A modification of

Friedman's definition was given by Khakhayan (1988), who showed that in IZF, the uniformity

principle is not derivable from Church's Thesis.

A realizability interpretation for analysis in an abstract formalism containing the combinators K

and S was first defined by J. Staples (1973). Feferman 1974 describes such a formalism, later

called APP by Renardel de Lavalette. Feferman does not do realizability, but uses his system to

formalize set-theoretic constructions in a realizability-like way (which also resembles

Martin-Lof's type theory). Realizability for APP itself is done in Renardel de Lavalette 1984.

APP is an extension of a predicate logical version of combinatory logic, called (CL)i in

Barendregt 1973. Barendregt defines an analogue of Kleene's l--realizability for (CL)i and
obtains the usual results (closure under rule of choice; existence and disjunction properties).

The connection between realizability and the formulas-as-types notion is very apparent in the

whole structure of Martin-Lofs type theory ML. ML has a "built-in" realizability via the

interpretation of logic in it, and it is called a "calculus of realizability" by Eggerz (1986).

Conversely, realizability provides models for ML (e.g. Diller & Troelstra 1984; Swaen 1989).

Finally I should mention two realizability notions that have been given for systems based on

logics stronger than intuitionistic logic: Lifschitz' theory of "calculable natural numbers"

(Lifschitz 1985) and Flagg's realizability for arithmetic based on S4 (Flagg 1985). Lifschitz'
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formal system is arithmetic based on intuitionistic predicate logic without v and with the axiom

-.—.ElxA—>3x—u—-A.There is an extra predicate K(x) which somehow expresses the constructive

content of the number x: the K-free fragment is exactly Peano arithmetic, whereas relativizing all

quantifiers to K gives a translation of HA into this system which Lifschitz conjectures is faithful.

A notion of "solvability" is then given whose restriction to the embedded HA-formulae is just

Kleene's realizability.

Flagg's realizability for Epistemic Arithmetic was obtained by first developing an analogue of

Funayama's theorem for the effective tripos. One of his results is that an epistemic form of

Church's Thesis is consistent with this arithmetic. An explicit inductive definition for this

realizability has been given by Goodman (1986).

I finish this survey with a short philosophical discussion. Kleene explicitly denied that the

Heyting-Kolmogorov interpretation was an inspiration for the definition of realizability (Kleene

1973), but he certainly had in mind that realizability should mirror intuitionistic reasoning. It is

not quite correct to say that he saw existential statements as "incomplete communications", the

realizers of which would provide a completion. Existential statements as incomplete

communications was the view of Hilbert & Bemays. Kleene says: "Can we generalize this idea to

think of all (except, trivially, the simplest) intuitionistic statements as incomplete

communications?" (my italics). An implication is as incomplete as an existential statement, and

can be completed by giving a recipe for obtaining, out of a completion of the premiss, a

completion of the conclusion.

I must admit that I have always failed to understand why EIxAis more "incomplete" than VxA, so

I am inclined to agree with this point of view. However, implications and universal quantifiers

occur in the very definition of realizability (also existential quantifiers, but more innocently). This

has led to criticism: "(...) it [i.e.realizability] cannot be said to make the intended meaning of the

logical operators more precise. As a "philosophical reduction" of the interpretation of the logical

operators it is also moderately successful; e.g. negative formulae are essentially interpreted by

themselves" (Troelstra 1973, p.188).

This criticism seems to be valid only for formalized realizability, where the interpreting formula is

of the same type as the interpreted.

Nevertheless, it is a pity that non—forrna1izedrealizability simply does not represent intuitionistic

logic faithfully. And the result that it does , if you think intuitionistically, is of little help to those
who want to understand intuitionism.
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II. Lifschitz‘ realizability

Abstract. V. Lifschitz defined in 1979'a variant of realizability which validates Church‘s
thesis with uniqueness condition. but not the general form of Church's thesis. In this paper we
describe an extension of intuitionistic arithmetic in which the soundness of Lifschitz‘

realizability can be proved, and we give an axiomatic characterization of the Lifschitz
realizable formulas relative to this extension. By a “q-variant“ we obtain a new derived rule.
We also show how to extend Lifschitz‘ realizability to second—orderarithmetic. Finally we
describe an analogous development for elementary analysis, with partial continuous
application replacing partial recursive application.

§0. Introduction. In 1970, the Russian logician A. Dragalin raised the question
whether, relative to intuitionistic first-order arithmetic HA, the schema

CT0 VxElyA(x, y) -> ElzVx(z 0 xi & A(x, z 0 x)

is really stronger than the form in which, in the premiss, a unique y is required, i.e.

CT0! VxEl!yA(x, y) —>ElzVx(z 0 xi & A(x, z 0 x)

(we write 2 o x for {z}(x)). The question was answered affirmatively in 1979 by
Vladimir Lifschitz, who gave a modification of Kleene’s realizability that satisfies
CT0!, but refutes certain instances of CT0 (Lifschitz [1979]; there is also a good
exposition in Dragalin [1979] ).This paper is concerned with a further investigation
of Lifschitz’ realizability.

First an extension HA’ of HA is defined in which Lifschitz’ realizability can be
formalized. An axiom schema is given which characterizes Lifschitz’ realizability
over HA’, much in the same way as ECT0 characterizes formalized Kleene’s
realizability over HA (Troelstra [1973, 3.2.18]). As an application, a derived rule for
HA’, similar to the extended Church’s rule for HA, can be given.

It is shown that Lifschitz’ realizability has a straightforward extension to HAS.
Finally, a Lifschitz analogon to Kleene’s realizability for functions (Kleene

[1969]) is defined. We show soundness and characterize this realizability over an
extension of BL. It turns out that this interpretation satisfiesgeneral continuity with
uniqueness:

GC! Va(A(a) —->3!fiB(a:, [3)) —>3yVa(A(a) —>y |a1 & B(a, y | a))
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2. Lifschitz'realizabi1ity

(where A(cx)has to satisfy a certain condition), whereas it is incompatible with weak
continuity without uniqueness:

WC-N Voz3nA(a, n) —>\7’:zEln3mVBE o?nA(fl, m)

The reader will remember that GC (without uniqueness) is shown in Troelstra [1973,
(3.3.11)] to characterize Kleene’s realizability for functions.

It is also possible to extend Lifschitz’realizability to typed theories like HA“, and
develop “modified Lifschitz’ realizability”. Another interesting aspect of it is that
'Lifschitz’realizability appears as the internal logic of the natural number object in a
subtopos of the effectivetopos (the latter is described in Hyland [1982]). We hope to
expand on these aspects in a later publication.

§5 of this paper formed the core of my master’s thesis, which I wrote under
Professor A. S. Troelstra. I am very much indebted to him for suggesting the subject
to me, reading several successive versions and spotting a lot of mistakes. I am also
grateful to the referee for some corrections and suggestions.

§l. Definitions and notation. n, m, x, y, 2,... range over numbers: X, Y,. .. over
sets; oz,,8,y, . .. over functions; 0, ‘L’,. .. over finite sequences of numbers.

We assume a bijective primitive recursive pairing function j: N x N —>N and
inverses j 1and jz. The symbol 0 denotes partial recursive application, T is Kleene’s
predicate (so that x 0 yi ifi 3zT(x, y, 2), read x - y is defined), and U the result
extracting function. it is the minimalization operator.

in denotes the initial sequence of ozof length n. Recursively, 560=( ) (empty
sequence) and o’:(n+ 1) = in * (oz(n+ 1)) (* denotes concatenation of sequences).
B(a)1 means 3x(/3(o'zx) aé O) and B(a) = B(o’c(uz.B(c’iz)aé 0)) — 1 if it is defined; [3| ai

means Vx fi(<x) * oz)1,and /3| (1= }.x.,B((x) * at)if it is defined.
a 3 I means that 0 is an initial segment of I; ore 0 means that a is an initial

segment of or. at S [3 means Vi a(i) s [3(i). j,-oz= /”.x.j,-(a(x)) for i = 1, 2. (n)["'] will
stand for a sequence of m n’s, and [n] will stand for /'.x.n.

HA is taken to have function symbols and defining axioms for all primitive
recursive functions. HAS is an extension of HA with variables for sets, and as
extra axioms:

EXT X(t) & t = t’ -+ X(t'),

CA 3XVy(X(y) <—>¢>(y)),

for every formula 4)in the extended language (full impredicative comprehension).
EL is an extension of HA with variables for functions, abstraction operators }.x.

for every number variable x and a recursor R, with axioms

/1-CON (}.x.t)(t’)= t[t'/x] (}.-conversion),

R-ax R(t, ¢,O) = I,

R(t,¢,St') = 4>(R(t,¢,t'),t'),

for numerical terms t, t’ and function terms 45,and

QF-AC00 Vx-I1yA(x, y) -—>3oz\7’xA(x,a(x))

for quantifier-free formulas A.
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2. Lifschitz’ realizability

Some principles that are used frequently:

MFR -1-1 3xA(x) —->3xA(x)

for A primitive recursive (Markov’s principle),

BEE’-MP -1-: ElxS yVnA(x, n, e) —>Elxs yVnA(x, n, e)

for A primitive recursive (Markov’s principle for bounded Z3-formulas).
HA’ will stand for HA + MFR+ B22-MP.
MPQF is Markov’s principle with respect to quantifier-free formulas (in the

language of EL). ‘

KLQF VnEla(lth(a) = n & Vi < n(o',-S oz(i))& R(a))

-* 3l3Vn(l3(n) S 101) & R(l3n)),

for quantifier-free R, is quantifier-free Konig’s lemma.

FANQF VBg a3nR(En) —»azv/3 s can s zR(En)

(R quantifier-free) is the quantifier-free fan theorem.
EL’ will denote EL + MP0; + KLQF.
V, = {x S j2e|(j1e) 0 xT}. We will use the abbreviation V, 75Q for the formula

that says that V, is inhabited, i.e. Sly(y S jze &_Vn—1T( j 1e,y, n)).
V,= {,6sj2ac|j1a(B)T} = {/3s j2a|Vnj,a(fln) = O}, with the same convention

about V, 9’-'Q.

We will freely use the applications 0 and - | -as if they were part of the language of
HA and EL respectively; this is justified by the fact that addition of symbols for
definable partial functions with the corresponding defining axioms, gives a
definitional extension (Troelstra and van Dalen [1988, Chapter 2, §7]). We will
adopt the expressions “p-term” and “p-functor” (partially defined numerical term
and function term, respectively) from Kleene [I969].

§2. Lifschitz’ realizability: formalization, soundness. The crucial idea in proving
CT0!l>‘CT0 is to find a property P(e, y) such that i) there is an effective proce
dure which, given that there is a unique y with P(e, y), will find that y (recursively
in e), and ii) there is no such procedure if uniqueness is not required.

The property y S jze & Vn-'1T( jle, y, n) meets this requirement. For, if there
were a code g such that Ve;£Q=>g-e1&g-ee Ve,and W, and W,,are two
disjoint, recursively inseparable r.e. sets, find a recursive function F such that

Vx[F(x)°O:f-x&F(x)-lzh-x].

Then always I/J-(,(,,,1,aé E, so g 0 j(F (x), 1) e l/,-(,(,,,'1, and g serves to construct a
recursive separation between W, and W,,.If IQis a singleton, however, then one
simply waits until (jle) 0 x has been computed for all x S jze save one; the
remaining one must be the element of V8.Note that this same example shows that
the principle B22-MP cannot be Kleene-realizable (since the premiss is equivalent
to an almost negative formula, one derives a contradiction with ECT0).

Lifschitz’ realizability reads as follows: define for every formula (1)a for
mula xgdbwith x not occurring in <15and all free variables of xgdi contained in
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2. Lifschitz'realizabi1ity

{x} u {free variables of 4)}:

x5A _=_A for A atomic;

x5A & B E j1x5A & j2x;B;

x:A -> B E Vy(y:A ->x ° yl & x ° y:B);

x:3yA(.v) E Vxvé E & V9 6 Vxl29£A(.l19)§

xrVyA(y) E ‘v’n(x0 nl & x 0 n5A(n)).

PROPOSITION2.1. B23-MP.is in HA equivalent to ‘v’e'I’(e),where

'I’(e) ‘v’n—1[lth(n)= jze + 1& Vi S j2eT(j,e, i, (n),-)]—>EliS jzevnfi T(j1e, i, n).

(This can be read as: if there is no witness for V9= Q, then Vemust contain an element.)
PROOF.One has to show that

Vn—1(lth(n) = jze + 1& Vi S j2eT(j1e,i,(n),-)) <—>"I-1 EliS j2eVn—I T(j1e, i, n),

and use a standard Kleene normal form for II?-predicates.
Now +—is trivial because (lth(n) = jze + 1 & Vi S j2eT(j1e, i, (n),-))of course

implies fl 3i S j2eVn—1T(j1e, i, n).
For —>,suppose fiili S j2eVn—1T(j1e, i,n); then Vi S jzefivn-1 T(j1e, i, n), so

Vi S j2e“1—I3nT(j1e,i, n). And this implies

fi“1‘v’iS j2e3nT(j1e,i,n)

because of l-Vi S y—:—13'nT(z, i, n) —>-I“! Vi S y3nT(z, i, n) (induction on y). Now
—1—1ViSj2e3nT(j1e,i,n) gives at once —u—1ElnViSj2eT(j,e,i,(n),-), wherefore
-1Vn—:ViS j2eT( j ,e, i,(n),-),contradiction. Conclusion:

fifiili Sj2eVn“'IT(j1e,i,n).

In the sequel, one or the other of these two equivalent forms will be used whenever
convenient. It is easy to show that, with respect to EL, \7’e'I’(e)is a consequence of
KLQF(see §5). The proof that Lifschitz’ realizability is sound is a straightforward
formalization of Lifschitz’original proof and is given by the following lemmas.

LEMMA2.2. There is a total recursive function b such that

HA l- Va\7’y(ye Vb“,H y = a).

LEMMA2.3. There is a partial recursive function 45such that

HA + Mm l‘ Ve(3xVy(y 6 Ve*-*y = X) -> d>(e)l & ¢(e) 6 Va)‘

The proofs are easy.
LEMMA2.4. There is a partial recursive function <15such that

V9 6 V.(f ° 91) —><P(e,f)l

& W7015 Vo(e,f)H 39 E Ve(h= f °

PR00F- 39 6 Ve(h = f ° 9) E 39 S J'ze(Vn‘1T(j1e,9,n) & 3m(T(f,9,m) &
Um = h)), which is, given that Vg S j2e(‘v’n—iT( j,e, g, n) —>ElmT(f, g, m)), equiva
lent to

HA’ l-‘v’e,f[

39 S j2eVn[fi T(J'1e,9, n) & (T(f, 9, n) -* Un = h)],

or ElgS j2eVn—IT(x(e, h, f ),g, n) for a suitable primitive recursive x; by Ve'I’(e),
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2. Lifschitz'rea1izabi1ity

Slgs j2e\7’n—IT(x(e,h,f),g,n) is equivalent to Vn"1(lth(n) = jze + 1 & Vi s
j2eT(x(e, h, f), i, (n),-)),or to \7’n"1T(x’(e, f), h, n) for suitable )('(e,f); let <I>(e,f) be
j(1’(e,f), rc(e,f)) with K(e,f) 2 max{Un|n = minZ(T(j1e,l,z)v T(f,l,z)), lsjze}.
Note that this is defined, by MR.

LEMMA2.5. There is a total recursive function y such that

HA’ I—Ve\:/h(h e V,(,_,,<—>3g 6 Ve(h e Vg)).

In other words, V,.(e,= U(Vg|g 6 V9).
PROOF. 3g 6 Ve(h 6 V9) is

39 5 J.29(V"fi T(.l1ea9a")& h 3 jzg & vnfi T(.l19ah,"l)

or ElgS j 2evn—: T(7z(e,h), g, n) for suitable TI;which by Vell’(e) is equivalent to

Vn—1(lth(n) = jze + 1 & Vi S j2eT(7t(e, h), i, (n),-))

Or Vn—1T(1r’(e),h, n) for suitable 7:’;so if we take y(e) := j(n’(e), max{j2g Ig S j2e}),
then y satisfies the lemma.

LEMMA2.6. For every formula A in the language of HA there is a p-term ;(,,(x)
(which may contain variables occurring free in A) such that

HA’ l‘ Ve(V..»9'5E & Vf 6 Ve(f:A) -> XA(e)~l& X.4(e)£A)

LEMMA2.7. For every closed theorem A of HA there is a number n such that
HA’ I- n5A.

Lemmas 2.6 and 2.7 are immediate formalizations of Lifschitz’ Lemmas 5
and 6.

REMARK.It remains an open problem whether the soundness of Lifschitz’
realizability can be proved in HA. We have no proof of the impossibility of this,
although it seems highly doubtful to us.

§3. Characterization of Lifschitz’ realizability. The following lemma gives a
more uniform look to Lifschitz’ realizability.

LEMMA3.1. Define a realizability r’ by the following clauses:

1) xr’t=s2V,;éQ&‘v’yeV,,t=s (ynotint=s!),
2) XI’/1 & B E V..75 Q & Vy 6 Vx((J'1y)f'/1) & ((J'2y)I"B),

3) xr’A->BEV,,;éQ&VyeIQ)/w(wr’A->y-w1&y-wr’B),
4) xr’VzAz 5 V, 75$ & Vy e V, Vn(y 0 n1& y 0 nr’A(n)),

5) xr'3zAz E V, areQ & Vy e V,,j2yr’A(j1y).

Then for every formula A in the language of HA there are partial recursive
functions ¢Aand I//A(they may contain variables occurring free in A) such that

HA’ l” Ve(e£A -* ¢A(e)l & ¢>.4(e)l"A),

HA’ l- ‘v’e(er’A -v ¢A(e)1 & t,0A(e)[A).

(Note the form of the clauses: apart from a prefix V, aé Z & Vye V,, it is just the
Kleene clauses.)

PROOF.We define ¢>Aand 1/1,,and prove the lemma simultaneously by induction
on A. The notation is from the lemmas in §2. Following Lifschitz we write g*
for Af .d>(f, g), where <15is as in Lemma 2.4.
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2. Lifschitz'realizabi1ity

i) d>,=s(e) E b(e),

I//,=s(e) E 0;

ii) ¢A&B(e) E b(J'(¢.4(J'r€), ¢a(]2€))),

h[’A&B(e) 5 .l(XA((¢,4 ° .l1)* ' €)a XB((WB° .l2)* ' 9));

iii) ¢>A-»s(€)E b(/1'1-¢a(€ ' l//A(h))),

¢A-3(€) E ZA—»s(9"'' 9)» WM“? 9 E /if-/10-¢3(f ° ¢.4(0));

iv) ¢VxAx(e)E b A"-¢A[n/X:l(e ° '1»,

¢VxAx(e)EXVxAx(g*. e): wheregE .
V) ¢axAx(e 5 9* ' 9 with Q 5 Af-J'(J‘1f»¢A[l1f/x](.l2f)),

¢am(e) -3 9* ' 6 With9 E /1f-J'(J'1f,¢A[j1f/x](j2f))

We trust that the reader will be able to carry out the proof by himself.
Note that this reformulation makes Lemma 2.6superfluous; a trivial induction on

A shows that if Veat Q & Vf e Ve(fr’A), and y is as defined in Lemma 2.5, then
y(e)r’A.

DEFINITION.Let F be the class of formulas inductively generated by the clauses:
1) Z?-formulas are in F;
2) formulas of form 3x g y Ax, with A e 17?, are in F;
3) F is closed under V, —+and &.
As F will play a role similar to that of the “almost negative” formulas in §3.2

of Troelstra [1973], which could be termed Z?-negative, let us call F-formulas
“BZ‘2’-negative”.

LEMMA3.2 (of. Troelstra [1973, 3.2.11]). For every B23-negative formula A(a)
(with free variables a) there is a partial recursive function ¢Asatisfying

i) HA’ l- Elu(ur’A) —>A and
ii) HA’ l‘ Ala) " ll/Alall& ¢A(a)"'A(a)
PROOF.We prove i) and ii) simultaneously by induction on A.
1) Suppose A is 3yB_v, B prime; then ur’A is V; 75 Q & ‘vfe V,,(VJ-2f79 Q &

Vh E VJ-,fB(j1f)) which clearly implies A; for ii) take W 5 b(j(xB,b(O))) where
X32 ,ux.Bx. For then A implies x31 and b(0)r'B(xB), so ¢Ar’3xBx. The case of
arbitrary Z?-formulas follows by soundness.

2) Suppose A 2 Elx3 tBx, x not in t, B is 17?; say B E VyCxy. Then
ur’3x‘v’y(xg t & Cxy) is equivalent to

(t) V“;-éQ&‘v’he V,,(VJ-2,,;é®&Vke VJ-2,,\7’n[k°nl
& k 0 nr’(j1h S t& Cj,hn)])

which implies V,,;é Q & Vh e V,,(VJ-2,,79 Q & VnCj1hn), which implies A. For
ii) let e be such that A is equivalent to V9aé @, and let u be such that
V“= {j(j1h,b(An.b(O))) | h e Ve};then V, 75 E implies (:r) for u.

3) We will only do the case A _=_B —>C; the other cases are left to the reader. ur’A
is V“96Q & Vh e V,,Vx(xr'B—>h 0 xi & ' 0 xr’C). Now if B then wBr’B, so Vh e V,,

(h 0 $31 & h 0 :,vBr'C); so if X is such ;at VXM= {h 0 ¢B|h 6 Va} then y(x(u))r'C
(y from Lemma 2.5), so C. But if B —>C then b(Au.¢C)r’B —>C, for suppose ur'B,
then B, so C, so wCr’C.
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2. Lifschitz'rea1izabi1ity

REMARK.Thus the BEE’-negative formulas are the “self-realizing” formulas for
this realizability. As a quick glance reveals that formulas of form xr'A are B22
negative, this realizability is idempotent. Furthermore, since \7’e‘I’(e)is also B23
negative, as well as MFR, we see that the soundness theorem for HA for this
realizability can be extended to HA’.

We now introduce a principle analogous to ECT0. Consider

ECTL ‘v’x(Ax ——>3yBxy) —>3z\7’x(Ax -> z 0 xi & V2,, ;é Q & W1 6 V,,,,Bxh),

for A B23-negative (here “L” stands for “Lifschitz”).
LEMMA3.3 (cf. Troelstra [1973,‘3.2.l5]). ECTL is r’-realizable.
PROOF. Suppose ur’Vx(Ax —>3yBxy). This is:

V.,#Q&\7fe V,,Vn(f-n1& l§.,,¢®&Vhe l§,,,Vw(wr’An—>h-wl
& V;.....9* Q & Vk 6 V;..w(j2k|"Bnj1k)))

Let us simplify a bit. Let u’ be such that

Vn(u' ° "1 & V..v.,.= U(V;...|f '5 V..));

then

vh e V,,,,,Vw(wr’An —»h - w1& V,,,,,,9’:Q & Vk e V,,,,,(j2kr’Bnj,k)).

Put [3(h)E h - tpA(n),and choose u” such that V,,..,,,= U(V,(,,, | h e V,,,,,); then

Vw(wr’An—>u" 0 nl & 75Q & VkE V,,~,,,(j2kr'Bnj1k)).

It is clear that u” can be obtained recursively in u.
Now choose 2 with Vx(V,,x = j,[V,,~,,]), C’such that VC,(,,,,= {k |j(m, k) 6 V,,.,,},

and 5" such that I/§~(,,,)= {Ay.y(C’(m))}(y from Lemma 2.5). Then we have V§..(,,,,saéQ,
and if gr’(m e V,,,) then m 6 V2,, (since this is B23-negative), so V§,(,,,,aé Q &
Vk E V;,(,,,,kr’Bxm, so y(C'(m))r’Bxm, by the remark following the proof of
Lemma 3.1. Let Q5 b(Z,"')(b from Lemma 2.2), then

V; 9* Z & W 6‘ V;Vm(1° ml & V..... 96 fl & VP 6 V.....V9(9r'(m 6 Vm)

-> p ° 91 & p ° 9r’Bxm)),

which is {r’Vh(h e V,“ -> Bxh). The rest is easy.
THEOREM3.4 (cf. Troelstra [1973, 3.2.18]; characterization of r’-realizability).
i) HA’ + ECTL l- A 4-»3x(xr’A);
ii) HA’ l- Elx(xr’A) <=>HA’ + ECTL |—A.
PROOF.i) is proved by induction on A. As usual, the only nontrivial steps are

A 5 B —+C and (similar) A E VyBy.
Now

(B —->C) 4-» Vx(xl''B —>3y(yl"C))

<->3zVx(xr'B -+ 2 ° xi & Vm sé fl & Vy 6 V,.,.(yr’C))

+—>3z‘v’x(xr'B —>z 0 xi & z 0 xr’C) 4-» 3x(xr’(B —>C)).

We leave the other case to the reader.
The proof of ii) (using i)) is completely analogous to 3.2.18 of Troelstra [I973].
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2. Lifschitz’ realizability

REMARKSON ECTL. i) ECTL! is equivalent to a schema which resembles ECT0!
except for the condition that Acan be taken B23-negative. We see that this schema is
consistent relative to HA, whereas ECT0 with respect to BZ‘§—negativeformulas is
not: if Weand IV,are disjoint, recursively inseparable r.e. sets, let F be such that
Vx(F(x) 0 0 2 e - x & F(x)-1: f - x); then I/J-(F(,,_,,aéQ for all x, so let Ax 2
I/j(,(,,,_,, aé Q (B23-negative) and Bxy 2 y e l/,-(;(,,.,,. Any 2 as in the conclusion
of the schema will give a recursive separation between Weand

ii) The example

A E ElyTxxy v fiElyTxxy, B E ((z = O—+ElyTxxy) & (z = 1->—I Txxy)),

given in 3.2.20 of Troelstra [1973], shows that the restriction to B273-negative
formulas cannot be dropped.

iii) In analogy to Grayson’s modification of Kleene’s q-realizability (see exercises
4.4.7 and 4.4.8 of Troelstra and van Dalen [1988]), we can define a q’-realizability
corresponding to r’-realizability by:

xq’A—+BEVx¢Q&VyeVxVw(wq'A—>y-w1&y°wq’B)&A—+B,

the other clauses being the same as for r’-realizability (with r’ replaced by q’).
PROPOSITION3.5. i) If A is a closed formula, then HA’ l- A => HA’ l- nq’A for

some n.

ii) HA’ l—yq’A -—»A.

iii) HA’ l- A —>¢Aq’A for w,, as in Lemma 3.2, if A is BEE’-negative.
PROOF.The first statement is proved by a routine induction on lengths of

deductions in HA; the reader may wish to consult Theorem 3.2.4 of Troelstra
[I973]. The other two statements are proved by induction on A.

COROLLARY3.6. HA’ obeys the following rule:

l—\7’x(Ax—>3yBxy) => 3n F- ‘v’x(Ax —>710 xi & V,-,,,,¢ Q & Vh e Vi,,Bxh),

for A BZ3-negative. In particular, HA’ obeys the rule

I-Vx(Ax —>3!yBxy) => Elnl- Vx(Ax —->710 xi & B(x, r-10 x)),

for A B233-negative.

§4. Extension of Lifschitz’ realizability to HAS. The extension of Kleene’s
realizability to HAS, described in 3.2.29 of Troelstra [1973], is given by the simple
clauses

xr(t0,...,t,,_,) e X 2 (r0,.'..,t,,_,,x) e X*,
xrVXA(X) 2 VX*xrA(X),

xr3XA(X) E 3X*xrA(X),

where X -+ X * is an operation that assigns to each n—aryset variable X an (n + 1)
ary set variable X * from a fresh stock of variables.

This extension satisfies the uniformi’ rinciple:

UP VX3nA(X,n)—->3nVXA(X,n).

An extension of Lifschitz’realizability by the same clauses cannot work, because
in that case we would have all realizability clauses equal for both interpretations
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2. Lifschitz' realizability

except for the clause for the numerical existential quantifier; but this quantifier can
be eliminated in HAS, because of the equivalence

3yA(y) e-> VX(Vy(Ay —>X) —>X),

that holds in second-order logic with full comprehension. So then these two
interpretations would be the same, quod non. However, combined with Lemma 3.1,
this idea suggests the following extension:

6) xr’(t0,...,t,,_1)eX 5 V,;é Q &Vye V,(t0,...t,,_,,y)eX*,
7) xr’VXA(X) 2 V-,aé Q & Vy e V, VX*yr’A(X),

8) xr’ElXA(X) 2 V, areE & Vy e V, 3X*yr’A(X).

THEOREM4.1. r’ is a sound realizability for HAS + Ve'I’(e) + MPR.
PROOF.The verification of the rules for second-order predicate logic does not

pose any problem. For instance, if t//(y)r’A( y) —+B, y not in B, and xr’3 yAy, where
A and B are arbitrary formulas in the language of HAS, then V, at Q & Vye V,
J'2yr’A(j1y), so

V. 9* E & Vy 6 VxVh6 V¢I(j1y)(h° (J°2y)l & h ' (J'2y)r’B)

Let 1 be such that V, = {h 0 (j2y)|h e V,,(,-”.,,y e V,}; then ~,r(x(x))r'B, so
b(/1x.~,»(;((x)))r’3yAy—>B, where b and y are as defined in Lemmas 2.2 and 2.5.

For the comprehension schema

CA 3XVy(yeX<—»Ay),

first note that the following holds:

(at) V, 99 Q & VI e V,-Ilk’(l e V,,.& k’r’A) —->kr’A.

(This is trivial from the definition of r’-realizability.) Now xr’3X Vy(y e X <—+Ay)
means

(0) V,;¢Q&Vfe V,3X*Vy[f-y1&Vk
(VI:96Q & We V..(y,I)eX* —>j1(f ° y) ° kl & 1'1(f ° y) ° kr’/1y

&kr’Ay->1 =j2(f ° y) ° kl & V.9*E&V1e V.(.v,l)6X*)].

NowletV,={f},withfsuchthatj,(f-y)0 k=j2(f-y)-k=k;andif

X* = {(y,I)|3k(kr’Ay &le V,,)},

then (0)is easily verified for f, x, and X *, using (at).The verification of extensionality

EXT Ay & y = x —->Ax

is completely trivial, which concludes the proof.

§5. A Lifschitz analogon to realizability for functions. This is based on the
following analogy between the sets V,and the sets V,:there is no function y such that
for all on,if V, ;é Q then 3'| :11& y | a e V,. However, if V, is a singleton, then we can
get its element continuously in at.

If we read the principle Ve'}’(e)from Proposition 2.1 as: ((there is no witness n for
V, = Q) —+V, ¢ Q), then the analogous principle in the situation of the sets V,
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2. Lifschitz'rea1izabi1ity

would be

Vn3o'[lth(o) = n & Vi < n(o',-S j2a(i))) & VI 3 a(j1a(r) = 0)]

" 35 S .l'2°‘V"J'1°‘(/3”)= 0»

a principle that is an instance of KLQF. Since we will need this principle, as well as
MPQF, we will work in the theory EL’ = EL + KLQF + MPQF.

Note that EL’ |- FANQF.
PROPOSITION 5.1.

EL + KLQF I-'—I—IElyVn(y(n)S a(n) & A(fi,y,z,n))

-+ 3"/Vn(v(n)S a(n) & A(li,v,z,n)),

for quantifier- free formulas A such that ordoes not occur in A.
PROOF. Let A’ be such that

Vn(V(n) S <10!)& A(l3,%Z, #1))<-*Vn(v(n) S 0101)& A'(B,?n,z))

If -1-: 3*/Vn(y(n)S a(n) & A(B,y,z, n)), then

Vnfi—I3a(lth(a) = n & Vi < n(o',-S oc(i))& A’([i, a,z)).

The quantifier 30 is bounded, so

VnElo'(lth(a) = n & Vi < n(a,- S a(i)) & A’([i, 0, 2)).

By KLQF, the conclusion follows.
A counterpart to Proposition 2.1 fails, of course: since KLQF is false in some

models of EL, it cannot be equivalent to a schema which is fi—I-valid.
PROPOSITION5.2. EL + KLQF l—KL,9.
PROOF.Suppose Vn3a[lth(cr) = n & Vi < n(a),-S a(i) & ElmR(o',m)] with R

quantifier-free, so

Vn3m3a[lth(o') = n & Vi < n(o'),-S cx(i)& R(a,m)],

so

(QF-AC00) E|a1a2Vn[lth(a1(n)) = n & Vi < n(oz1(n)),

S 010')& R(a1(n), a2(n))],

so

3a2VnElo'[1th(a)= n & Vi < n(a),-S a(i) & R(a,a2(n))],

which gives, with KLQF,

3‘1235V"[B(")s am) & R(Bn,az(n))],

so

3/3Vn[/i(n) g a(> Qt 3mR(Bn,m)].

DEFINITION.We define for every formula A a formula a5A with oz9%FV(A) and
FV(a5A) C {or}u FV(A) as follows:
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2. Lifschitz'rca1izability

j a5A 2 A for A atomic;)

2) otrA & B -=-j1a5A & j2arB;

3) ac/1 -> B E VB(fi:A —>onI[ll & orI /3513);

4) arVxAx E \7’n(aI[n]l & atI[n]rAn);

5) OIEEIXAX5 Va 9‘ Q & V)’ E Va(J'2)’£/4(J'1)’(0)));

6) a:Vl3A(fi) E V/3(a I[31 & aIB_r_A(l3));

7) a:3l3A(l3) E V. at @ & V3‘6 V..(j2r:A(j1“/)).

The proof that EL is sound for thisrealizability goes completely parallel to the proof
in §2, and is given in the following lemmas.

LEMMA5.3. There is a p-functor [3, such that

EL’ l- Va(Va is a singleton —+[3, Iai & [ii I0: 6 Va).

PROOF. Write Ba E {[iIB _<_jzot}.
If V, = {B} then for every n and m such that m s j2a(n) and m yéBln), a finite

computation suflices to _showthat j1a(y)1, for every y such that y 6 En * (m) and
y 6 B,,. For, {y e B, Iy E [in * <m)} is a finitely branching tree. (Here, of course, we
are using FAN.)

Now \/~,-e B,(;26 En * (m) => j1a(~,»)1)holds for every m S j2at(n) save one; a finite
computation shows this and the remaining m S j2a(n) must be equal to ,8(n).

LEMMA5.4. There is a p-functor /32, such that

EL’ l- Vot(fi2Ioil & VM, = {a}).

PROOF. Let y be such that Voc((*,'Ioz)(o) = 0 +—>at e 0); take [32 such that Va(fi2 Ia

= 10' I oz, 01))

The following sublemma, trivial as it may be, greatly simplifies the proofs of the
lemmas hereafter, and will be applied frequently.

SUBLEMMA5.5. Let AU?) and C(,B,y) be formulas such that:

1) there is a p-functor ll such that A(fl) l- w IM & V"/(C([3,y)—>y S WIB); and
2) A([i) I—C(B, y) +->VnD(B, y, n), where D is a prime formula.
Then there is a p-functor (Dsuch that

E1/F A03) -> ‘1’Ifil& Vv(“/6 VowH C(l3,7))

PROOF.If D is the prime formula from 2), there is a prime formula D’([i,a) such
that VnD(B,y,n) is equivalent to VnD’(B,7n).Now let Xbe defined as follows: 1(0) = 0
if D’([i,a); )((a) = 1 else. Now put <15:=A[i.j(x,¢), where ii is the functor from
condition 1).

LEMMA5.6. There is a p-functor B3such that

EL’l—Voz<B3Ia1&V,,3,,= I)veV.

PROOF.We apply Sublemma 5.5. It is easy to see that 3 E U,E,,_ V,—>
3 _<_max{j2yIy S jza}. Furthermore, the formula fl e U,,€,,_ V, is equivalent to

3) s j2avn<j.a<~7n>= 0 & 1302)s mm) & main) = 0)
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which is, modulo KL and MP, equivalent to

VnEla[lth(a) = n & j,a(a) = 0 & Vk < n(a,, s j2oz(k)& (fin), s j_.,(a,,)

& (Bk < '1-+j1(0at) = 0)],

which is a formula of the form required in condition 2) of the sublemma.
LEMMA5.7. There is a p-functor <15such that

EL’ l—Vqb,fi[\7’:x(a6 V5—>cf)I0:1)—>

& Va(oz E V,,W,_,,, 4-» 3y(y 6 V3 & or = d>|y)].

In other words: VI,9 dom(q5) —+(1)| [VB] = V,,,(¢_,,,.
In the following, for p-functors (1),we will use the abbreviation ¢* for the p-functor

/1B.<I>(d>,fi).

PROOF.Again, we check the conditions of Sublemma 5.5.

1) Suppose V:x(azE V‘,—>(M11). Then

VXVOIS j2fi(Vn(jl/3(5n) = 0) —>(<15Ia)(x)l),

which is equivalent to

VXV1 g _j2B"l‘l3)1(j1B(in) avé0 v qb(<x> * in) 75O),

which by MP is equivalent to

V.\'Voc 3 j2[5’3)1(_/'1B(cT)1)aé 0 v d)(<x) * o'm) aé 0),

which in turn, by FAN, is equivalent to

‘v’x3n‘v’:xS jz/33: S n(j1fl(o’cz) 79 0 v q5((x) * E2) 79 0).

Note that the part following Vxilnis actually quantifier-free, so we can define w by

up5 /'.x.;m.[‘v’a: S j2BEl: S n(j,,6(o'zz) ;é 0 v ¢(<x> * 072)75 0)].

Let d5(x,z) be up | -:x)(x)if d>(<x) * 07:)9'5O (and otherwise, for example, undefined).
Now put

r7(x) = max{d5(x,z) | z 3 ¢(x) & z witnesses ((1)| a)(x)],},

and v1(x)= 0 if this set is empty; then 1 -=-/”.x.n(x)is the required upper bound.
2) Now ~,'6 4)I[V3] is, modulo V,,E dom(¢), equivalent to a H?-formula; in fact,

35 e V,,(*;= <1)I5) is equivalent to

36Vn(5(n) s j,/3(n) & j, 3(5n) = 0 & 3z(\7’k< zq‘>((n) =~=Sk) = 0

& ¢>(<n> * 52) = v(n) + 1)),

which, modulo Va(a e V,,—»43| a1), is equivalent to

35vn[a(n) g j2,B(n) & j, [i(5n) = 0 & ‘v’z((Vk< z¢(<n> =-=Sk) = 0 & q5((n) * 52) > 0)

—>4>(<n> * 52) = ~/(n) + 1)],

and, in view of the boundedness of 6, this is in EL’ equivalent to a I7?-formula.
LEMMA5.8. For every formula A in the language of EL there is a p-functor 1,1,
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which may contain free variables occurring in A, such that

EL’)-Vl3[V,; aé Q & Va 6 V,;(a:A)->z,. Ifil & xAIB:A]

Proof. 1,, is defined by induction on the logical complexity of A:
1) 1,, 2 [1] if A and 1,, 2 [0] if —iA, for A atomic. Remember that [O] | on for

every oz.

2) -/_AE A[3.j(xB|j’,"[i,xC|j’§B) if A 2 B & C. For suppose VBaé Q and Va 6 VB

(:x5B& C); then jl | [VB] = Vm, (Lemma 5.7) at Q and Va 6 V,--1fl(ot5B),so xB|j’{‘,8i
and zB|j’{‘[35B;analogously for C.

3) 1,, E A,B.(/1*,'.(zC (i//3'.‘IB))), where tl, is such that Va.d1,.| at 2 at | *,i,if A E B —>C.

For suppose VBaé Q, Va 6 V,,(a;B -+ C), and y5B; then t/1,|[V,,] = VWB9'5E and
V6 6 V,,,._w,c55C,so Zc-I(lh;'.‘ |B)1 and 5C.

4) */_AE A/)’.(A*,'.(z,,(,,,[;~(0)/x] |(ihj'.‘ | B))), where 1/1,is such that Va.i,h,.Iat 2 at | [y(0)],

if A 2 VxA(x). For suppose VBat Q and Va 6 V,,(a5\‘/xA(x)),y arbitrary; then

90-,I = V¢;,|)39'5Q and V9‘5 V¢;,|p°5IA(x)I:"/(0)/x:I>50 X.4(x)I:7(0l/X] andKAI‘/I I).

5) -/‘AE the functor fi3 from Lemma 5.6, if A 2 3xB(x) or 3aB(a).

6) 1,4 .=_AB.(Ay.(;gB(,,[y/a] W3," I [3))), where 1/1.,is such that Vauh, Ior 2 at Iy, if A E

VaBat. For if V; 96Q and V6 e VB(6rVaBa),y arbitrary, then 1/1,| [V,,] = I/gm aé Q
and V5 6 V :_”3(3[B1[‘,v‘/1],so xB(,,[y/a] |(¢’," IB)rBa[y/at], etc.

LEMMA5.9. For every formula A in the language of EL such that EL I- A there
is a p-functor lhAsuch that EL’ I- ml & ¢A§A; ¢A may contain variables occurring
free in A.

PROOF.This goes by induction on proofs in EL. Since our realizability differs only
in the existential clauses from Kleene’s, we only have to check the lemma for those
rules and axioms of two-sorted predicate calculus that concern existential formulas,
as well as for QF-AC00.

It is clear that

/11-I32IJ'([I]. a)£A(I) -> 3XA(x),

/11-[32 IJ°(¢» 0!):/1(<l>)-* 30tA(a),

for [32from Lemma 5.4.

Now suppose oz5A(y) -+ C, y possibly in d, not in C. Then Ay.xC| (w* |y)53xA(x)
—>C, where 15 from Lemma 5.8 and upis such that t/1|]?2 a[j,/3(0)/y] Ijzfi. For
suppose *,v53xA(x),so V, 75 Q & W} e V,.(j, ,B_rA(j 113(0)).Then for [3e V,we have that
IllIBIC, S0 V5 6 t// I[V3] = V.)-.p(5:C), so xcI(IlI* Iv):C

The argument is completely analogous for (A(¢) —>C) —>(EIotA(cx)—>C).
The following sublemma will be useful for the proof that QF—AC00is realized.

Although we cannot expect, as will be seen further on, to obtain elements of
nonempty V,’scontinuously in the y, we can, if we restrict to a continuous image
of N.

SUBLEMMA5.10. There is a functor Xsuch that

EL'I—Ve[Vn(e|[n]I & I/,,”,,]aé E)

-> xlel & V,.. as $ & V7 6 V,...;Vn(7I[n]l & 'r I[n] 6 V.u,.;)]

PROOF.To apply Sublemma 5.5, we construct a bounded primitive recursive
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condition for sequences 0 which says that a is “for the time being” an initial segment
of a y such that Vn(y| [n]1 & y | [n] e V,,[,,]).Let a | [n] denote the maximal I such
that y | [n] e ‘L’for all y with y | [n]1 and y e a. (This is clearly primitive recursive in
n and 0.)

Our condition A(s,a) will be the conjunction of the following 4 (we apologise for
the somewhat heavy notation):

1) Vi < lth(a)(o',-S i) (we want A(e,0) to be a bounded condition);
2) Vn < a\7’i< lth(a|[n])(i < lth(E(lth(o')) | [n]) —>(a|[n]),- S j2((§(lth(a))|[n]),-))

(so if y E 0 then for the time being 32| [n] S j2(e | [n]);
3) Vn < o'\7’i< lth(§(lth(a)) | [n])[3k < o'j2(((€(lth(a)) | [n]),-) S f(i, n, k) < lth(a) —>

Elk< o'(a,(,-,,,_,,,aé 0)], where f (i, n, k) = (i) * (n)“" (we want to force, for every y
such that VnA(e, in), that y | [n] is defined, for all n; i.e., Vi3k~,‘(f (i, n, k)) aé 0. At the
same time, *,r(f (i, n, k)) — l (=(-,v| [n])(i)) 3 j2((8 | [n])(i)) should hold. But we cannot,
beforehand, exclude any value 3 j2((e | [n])(i)); and since am-,,,_,,,S f (i, n, k) by
condition 1),we cannot force am-,,,,,(,at 0 until f(i, n, k) is big enough); and, finally,

4) Vn < 0’V‘L’3 0 | [n](r < lth(5(lth(a)) | [n]) —>j1((§(lth(a)) | [n]), = 0) (so y E
V£,[,,]if VmA(e,)7m)).

Now let (Sublemma 5.5) 6 be such that ‘C/~/(y6 V6<—+VnA(e,?n)), and put 1 E Ae.5.

Now if \7’n(a| [n]i & I/,H,,]¢ Q), then there are arbitrarily long sequences 0 with
A(e,o'); with KL we conclude that V1,,95Q.

QF-AC00. Let F E Vx3yAxy —>Slot‘:/xA(x,ozx)be an instance of QF-ACOO, and
suppose 6 realizes the premiss. Then

W15 l & Vaun]5‘ Q & V)’5 I/¢5|[n](.l.2.l,EA(n9.l.l‘l’(0)))'

Let tp be such that up y 2 j([j1y(O)],j2*,'). Then, for all n, V,,,.,(,,”,,],= IflI[V,;,[,.]] 95Q
(Lemma 5.7), and Vye V¢,.,(,,,[,,],j2y5A(n,j1y(n)).Apply Sublemma 5.10 to find a x
such that

V") 6 VII 5Vn(*,' [n]l & 7’I ['1] 5 V¢«*|(a|[n])),

then this Xrealizes F.
This concludes the proof that EL is sound for 5.
We now get some lemmas that are analogous to Lemma 3.1 and following.
LEMMA5.1]. Define a realizability r’ by the clauses:

l) ar’A E Va,;éQ&V[3eV,A forAatomic;
2 otr'A&BE Va;£Q&V,3€V;j1fiI"A&j2[lI"B;
3 ar’A—>BsV,#Q.&\'/fie V,Vy(yr'A—>[3|y1&B|yr’B);
4) ar’VxAx 2 Va;é Q & VB6 V,Vn(B|[n]1 & B | [n]r’An);

5) °‘T'3x/43‘ —=—Va 9‘ Q & V5 5 Va J'2l3T'/1(J'1l3(0));

6) ar’VflA(l3) 5 Va9* Q & V/36 VaVv(B|*/1 & Ill‘/r’A(3’));

7) “'3/3A(/3) 5 Va?5Q & V.3 l‘; f25"'A(f15)

Then for all formulas in the language uy EL there are p-functors (1),,and !/IAsuch that

EL’ l—\7’cx(a;A —><,‘l>A| ai & (49,, | a)r’A),

EL’ l- \7’cx(ar’A —>tk, | 011 & (uh, I oz)5A).
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PROOF.For those who are not yet asleep, we give the definitions.

i) ¢,=s E /'.a.[32 Iat,

1/1,“ E }.oz.[O];

ii) ¢A&B E ’i~°‘-ii2I}i(¢AIJi1°‘s§bBI}i2°‘),

W431 B '2-9‘-J'(XA I((i/’A ° j1)* I 95)»X3 I ((1/’B ° j2)* I 95));

iii) ¢,4—+B5 2°‘-I52 I('i~)’- 473 I ('1 I (WA I7»),

ihA—-BE '1“-XA->3 (C* at), where C E /113-/iv-we I(I3 I(¢.4 I7));

iv) ¢VxAx E 105-132I(/in-<I>A[11/X] I('1 I ["])),

ll/vx.4x E /311-‘/.vx.4xI (C* I 05), Where C E /iii-(/in-1/44 [11/X] I(I3 I [11] I);

V) ¢3xAx 5 3°‘-5* I01 With C 5 /‘i'fi‘j(j1fi9¢A[jlB(0)[x] I(j2[i)),

Wamx-=—/‘~95-CW01WithC-5¢A[j1
Vi) ¢3-,-A-,-E /‘~51-‘:*0t WithC—=—¢A[jlfl[y]

¢3—,-A-,-E /A-9‘-i.«i*I 51 With C E /.~fl°j(jlfla ¢.4[Ji1I3/}’:I I(Ji2/3));

Vii) ¢v-,-A-,-E '19‘-I62IV-5-¢A [5/7] I5))»

¢V~,'A‘,'E 9-a»zv,.,...(é’* on), Where C E i~B.(/15-I/a[5/7] |(fl I6)).

We hope that it is clear by now how to transpose the rest of §2 to the case of EL;
therefore we state the following lemmas without proof.

DEFINITION.The class F of BE;-negative formulas is the smallest satisfying the
following 3 conditions:

i) Formulas of form 3cxA(:x)are in F, with A quantifier-free.
ii) Formulas of form 30:3 [iVnA(oz,n)are in F, with A quantifier-free.
iii) F is closed under —>,&. Vx, Va.
LEMMA5.12. For every BZ_’,_-negativeformula A(a) with free variables a there is a

p-functor {Asuch that

EL’ 1- 3oz(:xr’A) —>A,

EL’ 1- A(a) ——>6,, Ial & (5,, Ia)r’A(a).

COROLLARY5.13. EL’ is sound for r’.
For, KL and MP are BE;-negative.
DEFINITION.Let GCL be the following schema:

GCL Va(Aa —+ElI6Boz[i) -—>ElyVoz(Aa -+ y I 011 & VII, 75 Q & VC 6 VyI,BozZ_f),

with the restriction that A must be BZ§-negative.
LEMMA5.14. GCL is r’-realizable.
THEOREM 5.15. i) EL’ + GCL 1- A <—>E1a(ar’A).

ii) EL’ + GCL 1- E1a(ar’A) ¢> EL’ 1- A.
Asa minor application of r’-realizability we have that GCL!,so a fortiori not GC!,

is not sufficient to prove GC, the principle of generalized continuity:

GC Voz(A:x —+EIBBOI/3)—>ElyVa(Aoz -> y I ozi & Bay I at),

which is considered in Troelstra [1973] and is proven there to axiomatize Kleene’s
realizability based on partial continuous application.

We can do better, for the weakest well-known continuity principle without
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uniqueness condition in the premiss, the schema

WC-N Va3nA(:x, n) —>Va3n§lmVfl E o?nA([3,m)

(weak continuity for numbers), is already incompatible with KL:
PROPOSITION5.16. WC-N and KL are incompatible with respect to EL.
PROOF.Define a functor F as follows: F (< )) = 0, and

'= 0 if lth(a) > lth(n),

= 1 if lth(o') s lth(n) & Vi < lth(n)(n,- 3460 & n,- 9'51),

= 1 if lth(a) s lth(n) & Eli< lth(n)(n,- = O & Vj < inj at 1)

& Vi < lth(o')o',- = 0,

F(<a) * n) 4= 2 if lth(a) s lth(n) & Eli< lth(n)(n,- = 0 & Vj < inj aé 1)

& 31'< lth(a)a,- yé 0,

= 1 if lth(o') s lth(n) & Eli< lth(n)(n,- = 1 & Vj < in} 75 O)

& Vi < lth(o)o,- = 1,

= 2 if lth(a) 3 lth(n) & Eli< lth(n)(n, = 1 & Vj < in} 9’:0)

L & 3i < lth(o')a,- gt 1.

Then (F | cx)(a)= F((a> * éz'(lth(a)))— 1 is always defined.
Let y be such that Vary| on= j(F | at,[1]). Then we have

Vi < lth(a)0,- S 1 & (F | a)(a) = O& lth(a) = n)& VI 3 o(F|oz)(7:) = 0 & Vi,j _<_lth(a)a,- = aj ’

so with KL we conclude that

Va3B(Vnfin s 1 & Vn, mfin = /3m& Vn(F | axfin) = 0),

or, in other words, Va3n(n 3 1 & [n] 6 VW).Furthermore,

Va[Vnom > 1-» V[i(Vnfln s 1—+B 6 VW) &

3n(cxn= 0 & Vm S nam #1)—> Vm = {[0]} &

3n(om = 1& Vm s nozm 5:9O) —> N, = {[1]}].

VaVn3o'<

Now we cannot have

(at) Voz3n3mV[i E 6Em(nS 1 & [n] 6 V”).

For suppose so; let n and msatisfy(*)fora = [2]. Then if n = Oand B = (2)‘"" * [1]
we would have [0] 6 VW; if n = land /3’= (2)‘"'] * [0] then [1] 6 VM, which is a
contradiction in both cases.

§6. Bar induction. Decidable bar induction BID is the following schema:
[( 1) & (2) & (3) & (4)] -> (5), where

(1) Vot3xP(o?x),

(2) Va(P(a) v —.P(a)),

T3) V0(P(0) -‘ 2(0)),

(4) V0(VnQ(0 * <n>) -+ Q(0)),

C5) Q(< >)
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Full bar induction BI is [(1) & (3) & (4)] -v (5). The schema BID is often
considered when investigating systems based on EL, because of its importance in the
development of elementary constructive mathematics. The schema B1,on the other
hand, can be shown to imply 3-PEM (VB(Elx/3(x)= 0 v —I3xfl(x) = 0); see Exercise
4.8.1] of Troelstra and van Dalen [1988]), and this conflicts already with very
mild continuity schemata (for instance, it conflicts with GCL). In Kleene and Vesley
[1965] it is shown that BID is realizable, provably in EL + BID. Decidable bar
induction is also consistent with our interpretation:

PROPOSITION6.1. B1,, is 5-reaIizable,.provably in EL’ + BID.
PROOF.Let P’(a) :-: P(o) & VT3 o(r #9a -+-1P(1)); then P’ is decidable if P is,

and l-(2) —+(3xP(o':x) -+ 3!xP’(a‘zx)).Now it is not diflficult to show that for any -,°that
5-realizes 3xP(o':x) there is a y’, continuous in y, such that j2y’;P’(a'z(j ,y’(0))). Since
nowhere else does an existential quantifier appear in the schema, the formal
argument by Kleene and Vesleycan now be copied.

Finally, let us remark that EL’ + GC,_ proves FAN with respect to decidable
formulas; so bar induction with respect to bounded trees, which is in EL equivalent
to I-"AND,is 5-realizable without extra assumptions.
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III. Tripos-theoretic preliminaries

Part of this thesis deals with extensions of realizabilities to higher order intuitionistic logic.

This takes the form of the construction of toposes which generalize the realizability notions we

consider, in the following sense: say a realizability notion has been defined for HA, then this

realizability validates the same first-order sentences of arithmetic, as are valid for the natural

number object of the topos.

The vehicle for the construction of these toposes is an abstract framework described in

Hyland, Johnstone & Pitts 1980 (I-IJP1980 for short) and Pitts 1981: the theory of triposes

(tripos is an acronym for "topos-representing indexed pre-ordered set"); the most famous

example of a topos produced in this way is Hyland's "effective topos" Eff, which is worked out

in Hyland 1982. The aim of this chapter is to introduce the reader into this machinery; to provide

him with the basic definitions and theorems. We give proofs if they are short, and if they are not

easily accessible (it is a great pity that Pitts 1981 has never been published). To give the reader

some concrete feel, we develop, as an example, some basic facts about the effective topos as we

go along.

I . Definitions and examples

1.1. Definition. A Heyting pre-algebra is a preorder l- with finite meets A,joins v, top T,

bottom .Land Heyting implication =>, satisfying aAbl- c iff al- b=>c for all a,b,c. We will write

a-IFb for the conjuction of al- b and b 1-a. This notation will be extended to isomorphisms of

order-preservin g maps.

1.2. Definition. Let C be a category with finite products. A C-tripos 3’is the following
structure.

i) For every object a of C, a Heyting pre-algebra ?(a) is given;

ii) For every morphism f: a—>bin C, an order-preserving map ?(f): ?(b)—>?(a) is given, such
that:

a) ?(f) preserves all the Heyting structure;

b) ?(ida) is isomorphic to the identity on ?(a), and ?(gof) 4I-?(f)o?(g) for a composable
pair of morphisms g,f of C;

c) The maps ?(f) have left and right adjoints 3f and Vf respectively, satisfying the
Beck-condition : if

f

kl lg is a pullback square C, then Elfo?(k)-11-?(g)o3h (The dual condition,

_t_‘, involving V, then fOllOWSby adjointness);

iii) For every object a of C there is an object [a] of C and an element 6 a of .‘P(a><[a])(a

membership predicate for a) such that for every object b of C and any «inin ?(axb) there is a
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morphism [(1)]:b—>[a]in C with ?(ida><[q)])(ea) -||-4;in ?(axb) (The morphism [(1)]is not

required to be unique).

Condition iii) can often be simplified. Consider

iii)‘ There is an object 2 of C and an element 0 of P(2) (a generic predicate for 5’)such that for

every object a of C and every (1)in ?(a) there is a morphism {¢}: a—->2in C with

3’({¢})(0)‘"'¢ in ?(a).

1.3. Proposition. iii) implies iii)’; if C is a cartesian closed category, then the converse holds.

Proof. If iii) let 2 be [1] where 1 is the terminal object of C, and let 0' be e 1.Then 0' is a generic

predicate: if (1)6?(a)s?(1><a) there is [<|>]:a—)[1] such that ?(id1x[¢])(e 1)-11-q)in ?(a).

Conversely if C is cartesian closed and iii)‘holds, let [a] be 23 and e a be

?(ev)(o)e ?(ax[a]). Now if (1)6?(a><b) there is {(1)}:axb—)2‘.in C with ?({¢})(o) -11-(1);let ‘[¢]:

b-—>[a]be the exponential transpose of {(1)}.Then ?(ida><[¢])(e a) =

?(ida><[¢l)(?(eV)(6)) -||-?(ev°(ida><[¢]))(0) -||-?({¢l )(0) ‘W in 5°(a><b).

In many cases, C is sets and 5°has a simple form: ?(a) is the set of functions: a—>Zfor some set

E, and ?(f) is just composition with f. The identity on 2 as element of ?(E), is then clearly a

generic predicate ([a] is 23, and the membership predicate in ?(a><[a])is the evaluation map).

Examples of such 2 are:

a) 2‘.is a complete Heyting algebra. Readers who are familiar with the semantics of "Q-sets"

from Fourman & Scott 1979 or the last chapters of Troelstra & Van Dalen 1988 should keep this

example in mind since there is a close analogy between the construction of a topos out of a tripos

5°, and the topos of Q-sets.

b) A partial combinatory algebra is a set A equipped with a partial binary application 0and

elements K and S such that for all a,b,ce A:

i) Koa is defined (for short K-al) and (Koa)-bi and (K-a)-b=a;

ii) S-ai and (S°a)ob~Land ((S-a)-b)-ca (a-c)-(boc) (=-means: both or none are defined, and both

sides are equal if defined).

If A is a partial combinatory algebra (pca), let 2 be the powerset of A. For sets X, Ex is

preordered by: (1)1-utiff there is as A such that for all xe X and all be ¢(x), a-bl and a-be \|I(x).

There are definable pairing and divorcing functions <>,( )0,( )1 respectively (that is, represented

by elements of A) such that (<a,b>)O=aand (<a,b>)1=bfor all a,be A. The Heyting structure on

Ex is as follows: for ¢,\;Ie Ex

¢Aw(x) = {al <a>0e¢<x>& <a>,e w(x)}

¢v\|1(x) = {al (a)0=K & (a)1e ¢(x), or (a)0=S & (a)1e\|J(x)}
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¢=>\|J(x)= {al Vbe ¢(x) aobl & a-be \p(x)}

For functions f: Y—>Xthe adjoints Elfand Vf are defined by

3f(<l>)(x)= {al 3Y6 Y(f(y)=x & 36 ¢(y))]

\7’f(¢)(x)= {alVye Y(f(y)=x =>Vbe A(aobl & aobe ¢(y)))] (if f is a surjection, then Vf may be

dfiined by ‘v’f(¢)(x)= {alVye Y(f(y)=x :> ae ¢(y))]).

If A is the partial combinatory algebra N with partial recursive application, we get the "effective

tripos" which underlies the effective topos.

c) Suppose 8 is a Grothendieck topos and X is an object of 8 such that the assignment

Y---->8(Y,X) defines an 8—tripos.Then one can take 2‘.= 8(1,X), the set of global elements of X.

This follows from proposition 1.4 below. In the chapter "Kripke and Beth models of

realizability" we shall describe some triposes of this form.

(1)Other examples of such 2 will be given in this thesis; in the chapters on an extension of

Lifschitz' realizability, on modified realizability and on "extensional realizability".

But also when 5’is defined on another category than sets, there may be possibilities to look at 3’
as if it were defined on sets:

1.4. Proposition. Suppose C and D are categories with finite products and 3’is a C-tripos.

Suppose furthermore that F: D—>Cis a functor which preserves all pullbacks which exist in D,

and has a right adjoint G: C—>D.Then composition with F defines a D-tripos.

(This is a slight generalization of 3.12 in Pitts 1981)

Proof. Let us write 3i(a) for ?(Fa). The only nontrivial condition is iii). For objects a of D,

wn'te Pa for G([Fa]) and Bafor ?(1Fax£[Fa])(e 3) e ?(FaxFG([Fa])) 5 ffi(axPa), where £-:[Fa]:
FG([Fa])—>[Fa] is the counit of F-IG at [Fa].

Now if the fl1(a><b)E ?(Fa><Fb) then since iii) holds for ? there is [(1)]:Fb—>[Fa] such that

?(1Fa><[¢])(e Fa) -II-¢ e ?(FaxFb). Let {(1)}:b—>G([Fa]) be the transpose of [(1)]across F-I G.

Then m1,><{¢}><6,> = ?<1F,><F<{¢1>><3°<1F,xe[F,]>(e,» + t><1F,x<e[F,]oF<{¢}>>>(eF.) =

5’(1Fax[¢])(e Fa) -II-(1)e ?(FaxFb) E $B.(a><b).So Bae fPt(Pa) serves as a membership predicate for
a.

Proposition 1.4 can be applied, for instance, if 8 is a Grothendieck topos, and F: sets—><‘3is the

"constant objects" functor which assigns to a set a the sheaf associated to the constant presheaf a.

2. Tripos-semantics

We shall now define how to interpret intuitionistic many—sortedpredicate logic without

equality in a tripos. This is very basic, since the construction of a topos out of the tripos depends
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on it. In fact, most calculations about the topos are carried out in the underlying tripos. But, the

definition contains no surprises.

Suppose 3°a C-tripos and I a many-sorted language. An interpretation [[1]of I in 5’consists

of the following:

i) For every sort 0' of I, |Io]]is an object of C;

ii) For every n-ary function symbol f of sort 0, which takes arguments of sorts 1:1,...,‘tn,llfllis a

morphism: Il'E1]]X...X|I’l3n]]—>|IG]]in C;

iii) For every n-ary relation symbol R which takes terms of sorts 1:1,...,'cn,IIRIIis an element of

?([[1:1]]><...><|Itn]l).

In ii) and iii) the case n=Ois not excluded: constants and propositions.

Given an interpretation III]of I in 3°,we can assign to any formula (1)of I with free variables

of sorts 'c1,...,'tn, an element lltbllof ?([[‘E1I|X...Xfl’l3n]]):the basic case is iii) above.

Extend ii) to all terms of I: if x is a variable of sort 0', Ilxllis the identity on I161].Inductively

then, [[f(t1,...,tn)]]= [[fI|°(Ilt1]lx...x|Itn]l)for function symbols f and t1,...,t.nof the right sorts.

Substitution of a term t for a variable x in a formula is now interpreted by the map ?(I[t]l):|I¢("/t)I|

= ?([[tll)(l[¢ll).

The propositional connectives are taken care of by the Heyting structure. One has to bring the

formulas on the same denominator: if a, b and c are respectively the product of the sorts of all

distinct variables occurring in (1),\|! and ¢/up, then if Ttatc—->aand 1th:c—>bare the obvious

projections, |I¢/xulll= ?(1ta)([[<|>I|)A?(rtb)(ll\V]l) in ?(c).

Quantification is interpreted using the adjoints V1:and 31:for a suitable projection it. The

Beck-condition ensures that substitution is well-behaved with respect to this interpretation.

We say that a formula 4)of I is valid under the interpretation [IIIin 5’(if [IIIis clear, we write

5°I-4)),iff M1]is isomorphic to the top element of the Heyting pre-algebra it belongs to.

A trivial, but important theorem (Lemma 2.1 in HJP 1980) asserts that many-sorted

intuitionistic predicate logic is sound for this interpretation. A good formulation of this logic to

work with, is the one using labelled sequents. These are sequents of the form I‘l-G4),where (1)is

a formula, I‘ a finite set of formulas, and 0 (the label of I‘I-64))a finite set of variables which
contains all the variables occurring free in I‘ or 4).One has the usual rules of the intuitionistic

sequent calculus, taking as label of the conclusion of a binary rule the union of the labels of the

premises (including the cut rule). There are only two ways of getting rid of the label: by .

substitution or by quantifying. The substitution rule says that if b a term substitutable for x in I‘,¢

then from I‘l-O¢ infer I‘[x/b] I-(o.\[x})UFV(b)¢["/b]; the quantifier rules say for instance: from

I‘I-6 ¢ infer I‘ I-CNX}Vx¢, with the obvious conditions. The reason for this fuss with labels is,
that one has to cope with the possibility of an empty sort (i.e. a sort 0' such that ?([[o]])is a trivial

Heyting pre-algebra).
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2.1. Example. Let 3’be the tripos as in example b) following proposition 1.3; for definiteness

we take the partial combinatory algebra N with partial recursive application, the effective tripos.

Sc, ?(X) is the set of functions X-—>P(N)for sets X. The top element T of ?(X) is the constant

function ?~.x.IN,and (1)l-w iff EleVx Vae q)(x)(e-ai and eoae \|I(x)), so (1)-II-T iff m{¢(x)l xe X} is

nonempty. Now if X is nonempty and (1)and q! are elements of ?(X) such that [[\‘/x(q>(x)V\.|J(X))]]

is ;somorphic to the top element of ?(1), this means that, according to the definitions of V and v

given, that there is an element e such that for all x, (e)0=0 and (e)1e ¢(x), or (e)0=1 and

(e)le \y(x). So, either [[Vx¢(x)I| or [[Vx\y(x)]]must be isomorphic to the top element. And since

ths can be decided recursively in e, 5’l-Vx (q>(x)v \[I(X))-9 Vx¢(x) v Vx\|J(x).

3. The topos represented by a tripos

3.1. Definition. Let 3°be a C-tripos. We define a category 3°-Cas follows:

Objects are pairs (a,=) where a is an object of C and = is an element of ?(a><a)such that

5’I-=x=x'—>x'=x and 5°|- (x=x'Ax'=x")—)x=x".

Morphisms : (a,=)——>(b,~)are equivalence classes of "functional relations". An element F of

5’(a><b)is a functional relation (with respect to = and z) iff:

5’F (Fxy Ax=x' Ay~y')—)Fx'y' (F is a relation ),

3°|=-Fxy -9 x=xAy~y (F is strict ),

3’I-(Fxy AFxy')—>y~y' (F is single—valued ) and

5°|- x=x —>3yFxy (F is total ).

Two functional relations F,Ge 5-“(axb)are equivalent (represent the same morphism) iff

5°|- Fxy -—>Gxy. This is symmetric (use soundness).

= itself represents a morphism: (a,=)-—>(a,=):the identity on (a,=). If F and G represent

mc-rphisms: (a,=)—>(b,~)and (b,~)—>(c,=)respectively, then Ely(FxyA Gyz) represents the

composition of [F] and [G]. Again, the soundness theorem is used to see that 3y (FxyAGyz) is a

functional relation, that composition so defined does not depend on the representatives F and G,
and that it is associative.

3.2. Theorem. ?-C is a topos.

This is proven in Pitts 1981 and, for the special case where C is sets, in HJP 1980. We give
some standard constructions.

Products. The product of (a,=) and (b,~) is (axb,=) with <x,y>=<x',y'>E x=x'Ay~y'.

Pullbacks. The pullback of two morphisms [F]: (a,=)——>(b,=--)and [G]: (a',=')—>(b,'r=)is the

object (axa',==)where = is given by: <x,y>=<x',y'>is x=x'Ay='y'A3w (FxwAGyw).

Exponentials. We do this for C cartesian closed. Let (a,=), (b,~) be objects of ?-C and let

0'6 ?(Z) be the generic predicate for 3’.Let Fxy be a predicate (in three variables F,x,y)
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interpreted by 5°(ev)(<5)in ?(‘£aXbxaxb). Let EFe ?(23Xb) be (the interpretation of) the universal

closure of "F is a functional relation". Then (a,=)(b'“) is (Zaxb,z) with

F=G 5 EF AEG AVxy (Fxy<——>Gxy).Let us briefly explain how this works: if Ge ?(c><EaXb)

represents a morphism [G]: (c,~)—>(a,=)(b’”)then Ge ?(cxa><b) given by G(z,x,y) E

3F(G(z,F) AFxy) represents its transpose: (c,~)x(b,z) —>(a,=). And if [I-I]e?(c><bxa)represents

[I-l]: (c,~)><(b,~) —>(a,=) there is by iii)‘ a morphism [H]: cxb><a—>2with ?({H})(G) 4l-H. Let

h: c-—>ZaXbbe the transpose of {H} in C, and define He 5°(c><2aXb)by H(z,F) EF=h(z) Az~z

(here we use a language with a function symbol h). F1is a functional relation and represents the

transpose of [H]. It is a nice exercise to show that the operations G----’Gand H-----»Hare, up to

equivalence, inverse to each other.

The subobject classifier of ?-C is the object (Z,<——>).

From these one can, of course, define power-objects but it is convenient to know that the

power—object of (a,=) is isomorphic to (233) where |IR—--Si]EER AVx (R(x) <—>S(x)),where ER

is the universal closure of "R is a strict relation".

3.3. Example. We return to the example of the effective tripos 5’.The topos ?-sets, the

efiective topos or Eff, has as objects pairs (X,=) with X a set, = a function: XxX—>P(N)such

that there are numbers e and f with the property that for all x,y,ze X: Vae [lx=y]](coal and

e-ae |Iy=x]])and Vae |Ix=y]]Vbe [[y=z]](fo<a,b>l and fo<a,b>e|Ix=z]l). Let us look at some special

objects: the objects 2A for A ;N with A nonempty. 2A is ([O,1},=A) with [[0=A01]EA,

l[l=AlI| EA, I10:Ali] is empty. If F: {0,1]2—>P(N)is a functional relation representing a

morphism: 2A—>2B,for every xe {O,1] there is exactly one ye [O,1} with F(x,y) nonempty, so
F determines a function f: [0,1 ]-9{0,1 }. Furthermore, since F is total and strict we have a

recursive function 4»with Vxe lI0=A01](¢(x)e [[f(O)=Bf(0)]])and Vxe [[1=A11](¢(x)e [lf(1)=Bf(1)]]).

So if f is the identity function, A is many-one reducible to B; and if A is more complex than B,

the only morphisms 2A—>2Bare constant.

The terminal object 1 in Eff is the object ({0} ,=) with |IO=0]]EN. A morphism l—>(X,=) is

(equivalent to) an Se ?(X) such that 5’I-3x(x=x A\7’y(S(y)e—>y=x)))(a singleton on (X,=)).

A natural numbers object in a topos is an object N together with morphisms U: l——>Nand

S: N—>N,such that for every object X and morphisms a: l—>Xand b: X-—>Xthere is a unique

g: N-—>Xwith goU=a and g°S=b°g. Consider the object N.=.(lN,=) where [[n=n]]is {n} and |In=m]] is

empty if natm. There are morphisms U:l—>Nand 3: N—>Ndefined by the predicates |In=O]]and

[ln=nAm=n+1l|, respectively; let us see that this defines a natural numbers object in Eff. So let

Se f°(X) represent a singleton on (X,=) and Fe ?(X><X)a functional relation. Define

G: IN><X—>P(N)recursively by:

G(0,X) E {<O,a>I ae S(X)}

G(n+l,x) E {<n+1,a>IElyeX ((a)0e F(y,x) & (a)1e G(n,y)) }.

Then G is obviously strict and relational for =; since S and F are strict for =, there are co and c1
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with eoe S(x)—>[[x=x]]for all x and ele Fyx—>|lx=x]]for all y,x; so if e is such that eoae-Ie0~(a)1 if

(a)0=O, and e1o((a)1)0 else, then ee G(n,x)—>[[x=xI|for all n,x, so G is strict for =. Since S and F

are relational for = there are f0 and flwith foe S(x)A[[x=x']]——>S(x') and fle Fyx/\[[x=x'I| ->Fyx'

for all x,x',y. Let f be such that foam <O,f0o<((a)0)1,(a)1>>if ((a)0)0=O, and

<((a)0)0,<flo<(((a)O)1)0,(a)1>,(((a)0)1)1>>else; then fe G(n,x)A[[x=x']] —>G(n,x') for all n,x,x', so

G is relational for =. To prove that G is single-valued, let hoe S(x)/\S (x') —>[[x=x']]for all x,x' by

the fact that S is a singleton, and hle Fyx/\Fy'x'A|Iy=y']] ——>[[x=x']]for all y,y',x,x' by the fact

that F is a relation and single-valued. Now by the recursion theorem, it is possible to find a code

e such that eo<a,b>=h0o<(a)1,(b)1>if (a)0=0, and hlo<((a)1)0,((b)1)0,eo<((a)1)1,((b)1)1» else. The

reader will be able to show by induction on n that ee G(n,x)AG(n,x') —->[[x=x']lfor all n,x,x'.

The proof that G is total is similar. We leave to the reader the useful exercise of showing that the

required commutation relation holds, as well as the uniqueness (up to equivalence) of G.

4. Tapas semantics reduced to tripos semantics

The interpretation of higher order intuitionistic type theory in toposes can be considered as

standard by now; several accounts are available, differing only in the presentation of the calculus,

and all these are essentially equivalent. Among others: Johnstone 1977 (Chapter 5), Boileau &

Joyal 1981, Lambek & Scott 1986, Bell 1988.

We don't want to redo this; but we shall sketch how, in a topos of the form ?-C, the

standard interpretation can be reduced to an interpretation of a many-sorted first-order language in

the tripos 3’,as defined in section 2. The topos semantics has two clauses:

i) types are interpreted by objects of the topos (respecting, of course, the type formation

operations: subobject classifier, exponentials, products);

ii) terms t(x) are interpreted by morphisms: X—>Yif X andY interpret the type of x and t,

respectively.

Formulas are terms of type Q, so a formula with free variable x of type interpreted by X is

interpreted by a morphism: X—>§2((2 denotes both the type of truth values and the subobject

classifier in the topos); equivalently, a subobject of X.

4.L Proposition. Let (X,=) be an object of ?-C and A(X,=) the set of all strict relations on X

(for =), considered as sub-preorder of ?(X). Then subobjects of (X,=) are in 1-1 correspondence

with isomorphism classes of A(X,=).

Proof. The reader is invited to check that a functional relation Fe ?(YxX) represents a

mcnomorphism: (Y,~)—>(X,=)in ?-C iff 5’I-Fyx /\Fy'x —>y~y'. Such a monomorphism induces

a strict relation on X given by E|yFyx,and if Ge ?(Z><X)represents another mono into (X,=)

then [G] factors through [F] iff 3’|-ElzGzx——>3yFyx.Conversely if Re ?(X) is a strict relation let
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='e ?(XxX) be the equality: x='x' E x=x’/\R(x).Then =e ?(XxX) represents a

monomorphism: (X,=')—>(X,=).

The set A(X,=) of strict relations on X for = is a Heyting prealgebra which inherits meets and

joins (including J., but the top element of A(X,=) is the relation x=x) from ?(X), but with

Heyting implication q>=>\yE x=x/\ (¢(x)—>\|1(x)).Now if (Y,~) is another object of ?-C and

=/w is the product equality on XxY, there is a map: A(X,=)—>A(XxY,=/W)which sends q>to

q>(x)/xyxy(this corresponds to pulling back the subobject of (X,=) represented by (1)along the

projection: (X,=)><(Y,~)—>(X,=)).This map preserves all Heyting structure and has a left and a

right adjoint Z‘.and H respectively, given by:

Z(¢) 5 3)'¢

H(¢) E x=x/\ Vy(y~y ->¢).

This discussion suggests the following translation. Let (¢)+ be defined by:

(¢)’' 2 4)for atomic ¢;

( )+ commutes with A, v and El;

(¢—>\V*' E x=x/\ ((¢)*->(\V)+);

(Vy¢)+ E x=x/x Vy(y—“v*y—>(¢)*).

In the last two clauses, x=x is meant to be the conjunction of the existence of all free variables

occurring in <|>——>\pand ‘v’y¢.Now if an interpretation of a language of intuitionistic type theory in

the topos ?-C has been given, assigning to atomic formulas subobjects of the object interpreting

the product of the types of all free variables, we can replace a type interpreted by (X,=) by a sort

interpreted by X, and apply the translation ( )*, interpreting = as the equality of the

corresponding type. We have:

4.2. Proposition. :1:holds in ?-C iff .‘PI-x=x-9(4))", where x=x stands for the conjunction of

the existence of all variables occurring free in (¢)+.

The translation ( )" can be given a more familiar look.

4.3. Proposition. Let ( )' be given by:

(¢)’ .=.(pfor atomic ¢;

( )' commutes with propositional connectives;

(E|y¢)' E 3y(y~y A(¢)');

(Vy¢)' E Vy(y~y -> (<l>)').

Then if all atomic formulas are interpreted by strict relations and x denotes all free variables

occurring in (D,x=x A ((1))'-||- (¢)"”.

This is proven by induction on (1).So: 3’I-x=x —>(¢)* iff 5’I=x=x —>(q>)'.We should add a word
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about substitution. Again, if we have interpreted function symbols as morphisms, we can extend
this to all terms.

The topos semantics interprets substitutions as pullbacks: if a term t(x) is interpreted by a

morphism [T]: (Y,»--)——>(X,=)and (1)a formula with free variable x of type (X,=), then ¢["/t] is the

subobject of (Y,==)obtained by pulling |I¢]]back along [T]. By the characterization of pullbacks in

?-C following Theorem 3.2, if R(x) is a strict relation on X interpreting <1)and Te f°(YxX) a

functional relation representing [T], then the pullback of |l¢llalong [T] is the strict relation

Elx(Tyx ARx) on Y.

Sometimes T has a special form: if there is a morphism t: Y—>Xin C such that yzy At(y)=x in

f’(Y><X)is a functional relation and represents [T], the pullback of R along [T] can be given as

yew AR(t(y)).

4.4 Remark. Since, by the above, in the case of a topos induced by a tripos, the topos

semantics can be reduced to tripos semantics, it would be perfectly possible to give a direct

interpretation of higher order intuitionistic logic in a tripos, without mentioning the topos at all.

Of course, the soundness proof for such an interpretation would contain a proof of Theorem 3.2,

and vice versa. I believe that such an interpretation would look rather ad hoc, however; it would

be difficult to justify the need for translations like ()‘.

4.5. Example. We pursue the example of the effective topos. We want to show that the

interpretation of second order arithmetic (HAS) in Eff coincides with an informal reading of

Troelstra's extension of Kleene's realizability to HAS. This fact is certainly known to several

people, but we have not found a decent proof in the literature.
Troe1stra's extension has the three clauses:

n r xe X E <n,x>eX*

n r VXA 5 VX*(n r A)

n r EIXA E 3X*(n r A),

where X-----»X*is a 1-1 operation assigning a fresh variable to any set variable X. Let (N,=)

denote the natural numbers object of Eff, defined in example 3.3. It is easy to see that for every

primitive recursive function t: N—+Nthe predicate [[n=nAm=t(n)]]represents a functional relation:

(|N,=)——>(N,=)in Eff.

In the effective topos, the power object of (N,=) is (P(N)N,~) with IIR~Sl] '=‘[[Vn(R(n)——>n=n)A

\7’r.m(R(n)An=m—> R(m) A ‘v’n(R(n)<—->S(n))]].But since Ax.(x)0 is an element of

|IVnm(R(n)Anm —>R(m)l]for every Re P(N)"', it is not hard to show that this object is

isc-morphic to (X,=) where X is [the P(N)N I \7’n,x(xe q>(n)——>(x)1=n)]and R=S is

Vr_(R(n)e—>S(n)).The element relation: 6 >—»(N,=)><(X,==)is represented by the restriction of the

evaluation map to XXN (note, that this is a strict relation).

Now (X,=) has the property that <Ax.x,Ax.x>is an element of [[RzR]]for every Re X; this means
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that for any predicate q)with a variable R of sort X the predicates VR (R=R—>¢(R))and VR ¢(R)

are isomorphic, as well as 3R (R=RA ¢(R)) and 3Rq)(R). We may forget the existence of

variables of sort X. So if we define a translation ( )’ from the language of HAS to a language

with two sorts N and X, symbols for all primitive recursive relations and functions, and an

element relation, such that ( )‘ is the identity on prime formulas, commutes with propositional

connectives and second-order quantifiers, and (\7’x¢)' = ‘v’x(x=x—9(¢)‘),(Elx¢)' = Elx(x=xA(¢)’),

then (1)holds in Eff iff x=x —>(<|>)'holds in the tripos underlying Eff, where x=x abbreviates the

existence of all free number-variables in (1).

We use the bijection X—>P(N)given by R 5 [ye N Iye R((y)1)} for Re X, with inverse A(n) =

{xe A I(x)1=n} for AQN.

For (1)in the language of HAS with free set variable X, and A;N we denote by <|>[X/A]the

interpretation of (1)in the standard model, A interpreting X.
Now we have:

4.5.1. Proposition. For every formula (1)in the language of HAS with free variables

x1,...,xk,X1,...,Xj there are two k-ary primitive recursive functions sq)and t4,such that for any

k-tuple n1,...,nk from N and j-tuples Al,...,Aj from P(N) and R1,...,Rj from X:

i) ee |I(¢)'(n1,...,nk,R1,...,Rj)ll => s¢(n1,...,nk)-el and

(s¢(n1,...,nk)~e r ¢(n1,...,nk,X1,...,Xj))[X‘*/Rl,...,Xj*/R5];

ii) (e r ¢(n1,...,nk,X1,...,Xj))[X1*/A1,...,X5*/Aj]=> t¢(n1,...,nk)-cl and

t¢(n1,...,nk)oe e l[(¢)'(n1,...,nk,A1,...,Aj)]].

Proof. Let us do this for :1:E xe X. Define sxex(n) E Ae.(e)O; txe x(n) E Ae.<e,n>.Then

ee R(n) => (e)1=n and ee R, so e=<(e)0,n>and ((e)0 r ne X)[X*/ii]; conversely if

(e r ne X)[x*/A] then <e,n>eA so <e,n>eA(n).

The other functions are now defined by induction on 4).

5. Relations between triposes and their toposes

5.1. Definition. Let 5’and 31be two C-triposes. A geometric morphism (D:?—>3iconsists of

a system of order-preserving maps <I>+(a):.’t°(a)—->iR(a)and <I>+(a):3i(a)—>5°(a)for every object a

of C, satisfying the following conditions:

i) <I>+(a)is left adjoint to <I>_,_(a)and preserves finite meets;

ii) For every morphism f: b—->ain C we have <I>+(a)°?(f)-||- iB.(f)°<I>+(b)and

<I>+(a)o3i(f)-ll-?(f)°<I>+(b) (One says that <I>+and 613*are C-indexedfunctors ).

5.2. Definition. A5,:C-9?-C denotes the following functor:

On objects a, A5,(a) is (a,El8(T)) where 8: a—->axais the diagonal embedding and T the top
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element in i°(a><a);on morphisms f: a—>b,A5,(f) is represented by El(ida><f)(T)eIr°(a><b).

A5,is a kind of "constant objects" functor. Indeed, if for instance 5°is defined on sets by
i°(a)=§23for some locale Q, the topos 5°-sets is equivalent to the topos of sheaves on $2and

A?(a) corresponds under this equivalence to the sheaf generated by the constant presheaf a. A5,
then has a right adjoint, and is inverse image of a geometric morphism. But when 5°is the

effective tripos defined on sets, A5,does not have a right adjoint. In this case A5,is direct image

of a geometric morphism. There are also examples where A? is not part of any geometric
morphism.

5.3. Example. Again, let 5°be the effective tripos. The objects Aj,(X) are (X,=) where [ix=y]]is

INif x=y, and 0 else. Note, that every Re .‘i°(X)is a strict relation with respect to this equality, so

the preorder reflection of 5°(X)is isomorphic to the lattice of subobjects of Aj,(X). This holds for

any tripos. Also, for any object (X,=) of 3°-C,there is a morphism: A5,(X)—>(X,=)iff

5°I-Vx(x=x). In the effective topos, one has that (X,=) is isomorphic to a subobject of some

A? (Y) iff 3°i-Vxy(x=x Ay=y /\—r—1X=y—>x=y) (One direction is clear; for the other, let Y be the

set {xe XI |Ix=x]]is nonempty}/= where x--x‘iff [[x=x']lis nonempty. Then the relation F(x,[y])

= u{[[x=y']]| y'e [y]} defines always a morphism (X,=) —>A5,(Y).This is a monomorphism iff
the given condition holds).

5.4. Theorem. Let 5°and 51be C-triposes and (D:i°—->31a geometric morphism of triposes.

Then there is a geometric morphism of toposes (<I>...,<I>*):3°-C—>ifl-C.The inverse image part CI>*

is given by: <1>*(a,=)is (a,<I>+(axa)(=)) and <I>*([F]) is [<I>+(a><b)(F)]:<I>*(a,=)—>ci>"'(b,~).

Moreover, <D*oA5,is naturally isomorphic to A3‘.

This is proven in Pitts 1981 (let us explain the terminology: a geometric morphism f: 8-)? of

toposes is a pair of functors f,..:8-)? and f”: 37->8 such that F“-I f...and f* preserves finite limits;

f* is called the inverse image part of f, f...the direct image ) and, for the case C = sets, in HJP

1980. Since we shall be interested in interpretations of arithmetic, an important fact for us is, that

inverse image functors preserve natural numbers objects (use f*-I f...and the definition of the

natural numbers object in example 3.3).

A special kind of geometric morphisms are inclusions , which are those geometric morphisms for

which the counit 8: f*f,..-aid of the adjunction f*-I f...is an isomorphism (equivalently: f...is full

and faithful, or: f,..preserves exponentials). 8 is then called a subtopos of 3”.There is also a

notion of inclusion of triposes: say (D:5°—>fliis an inclusion of triposes if for any object a of C,

<D+(a)o<D+(a)is isomorphic to the identity on i°(a) (this is equivalent to: (D+(a)preserves the

Heyting implication, or: <I>+(a)is full and faithful). 5°is a subtripos of fit.
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5.5. Proposition. If (D:?—>ffiis an inclusion of C-triposes, then the corresponding geometric

morphism (<I>...,<I>*):5°-C—>Ji-Cis an inclusion of toposes.

Proof. This is a consequence of the way CD...is constructed and is implicit in 3.3-3.5 of HJP

1980. There is no difficulty in extending this to the general case.

A special kind of tripos inclusions is defined by the following lemma, which is analogous to an

easy exercise in locale theory: suppose A is a locale and B<;A is closed under arbitrary meets and

satisfies: be B implies a->be B, for every ae A (—->being the Heyting implication in A). Then B

is a sublocale of A (Johnstone 1982, p. 50).

5.6. Lemma. Let 2 be a set such that the collection of sets 2x and maps 2f forms a sets-tripos
5’.Let 2';2 be a subset such that:

i) whenever qe 2', p=>qe 2';

ii) If the?(X) maps X into 2' and f:X—>Yis a function, then ‘v’f(¢)maps Y into 2'.

Then the collection of sets 2')‘ and maps 2'f forms a sets-subtripos 5°’of 5°(2'X inherits the

preorder of 2X).

Proof. In Theorem 1.4 of HJP 1980 it is shown that conditions, under which a system of sets

and maps is a tripos, can be given entirely in terms of 1-,=>, the maps Vf, and the generic

element. The generic element plays no role in these conditions except that there should be one.

Since 5°’inherits 1-,=> and Vf from 5’and 3’is a tripos, it follows immediately that 5°‘is a tripos.

Let I: ?'——>?be the sets-indexed functor induced by the inclusion 2'g2. I show that I has a

sets-indexed left adjoint, which preserves finite meets.

Consider ¢:2><2'—>2,given by ¢(p,q) = (p=>q)=>q, as element of ?(2x2'). Then :1)maps 2x2‘

into 2' by i); so by ii), Vq q>(p,q)maps 2 into 2'. Let J: 2—>2'denote this map. Then the

sets-indexed functor induced by J is left adjoint to I: if qe 2', p |- q, then I-p==.~q,so

‘v’q'(p=>q')=>q' 1-p,q(p=>q)=>q |- q. Conversely if Vq' (p=>q')=>q' l-p,qq then

p 1-‘v’q'(p=>q')=>q' 1-p’qq.The reader will verify that J preserves finite meets.

Another trivial analogue of a situation for locales says that existential quantification in a subtripos

of a tripos P can be derived from that of P (If B;A is a sublocale belonging to the j-operator

j:A—->A)and B';B, then VBB'=j(VAB')).

5.7. Lemma. Let (<I>+,<I>+):3°t—>?be an inclusion of triposes and let Elfdenote existential

quantification in 3°,so Elf:?(X)—>?(Y) is left adjoint to ?(f). Then existential quandfication in 3%

along f is isomorphic to <I>+(Y)(Elf(<l>+(X)(-))).
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Proof. For the $fi(X), we fR(Y): <I>+(Y)(3f(<I>+(X)(q>)))I-u! iff E|f(<I>+(X)(q>))I- (D+(Y)(\|I) iff

<I>_(X)(q>)l- ?(f)((I>+(Y)(\y)) iff <I>+(X)(q>)|- <I>+(X)(5Pt(f)(\y))(since <I>+is an indexed functor) iff

<1)I-§fi(f)(1y) (since (D+is full and faithful).

We conclude this chapter with a result of Pitts‘ on iteration . Given a C-tripos 3°and a

(?-C)-tripos 31,what does the topos iii-(?-C) look like?

5.8. Theorem (Pitts 1981, 6.2). If 51is such that A3‘:5°-C—>3i-(53-C)preserves epimorphisms,

then composing 31with A5,gives a C-tripos IK.Moreover, there is an equivalence

k:1B.-(.‘P-C)——>J<-Csuch that k°Afi°A? = Ax.

This theorem is particularly useful when we have to consider triposes on toposes other than sets:

if we can recognise such a topos as ?-sets for some sets-tripos 3’,then we can, equivalently,

work over sets, which often considerably simplifies computations.
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IV. A topos for Lifschitz' realizability
§0. Introduction

In this chapter a topos Lif is constructed which generalizes Lifschitz' realizability: a sentence of

first-order arithmetic is valid in this topos iff it is realized in Lifschitz‘ sense. The construction is

analogous to that of the effective topos in Hyland 1982.

It is shown that Lif is a subtopos of Eff. However, it is not one of the well-known subtoposes of

Eff of the form ‘recursive in A’ (studied e.g. in Phoa 1990) and it cannot be equivalent to a

realizability topos based on a partial combinatory algebra, since the axiom of countable choice
fails in it.

Nevertheless, Lif shares some features of Eff: it satisfies Church's Thesis, Markov's Principle

and the Uniformity Principle; and the (Dedekind) reals are the recursive real numbers.

Lif and Eff are neatly separated by a classically valid principle of second-order arithmetic, which

I call Richman's Principle because F. Richman raised the question whether it is intuitionistically

derivable from Church's Thesis and Markov's Principle. I show that the principle is valid in Eff,
but refuted in Lif.

The chapter ends with some trivialities concerning the internal topology k on Eff for which Lif is

equivalent to k-sheaves in Eff. When we look at Lif from the point of view of Eff, we retrieve the

original realizability definition of Lifschitz 1979.

Some notation. From now on I write [e] for Lifschitz' Vet [e] E [xS(e)1|(e)0oxT]. The letter [3
is reserved for a primitive recursive function such that [B(e)]={e] for all e, and 8 is a partial

recursive function such that if [e] is a singleton, then 8(e)i and 8(e)e [e] (lemma 2.3, chapter 2).

The functions F and ‘yfrom lemmas 2.4 and 2.5 of chapter 2 will not be used: I simply write

things like Ayw.U{ [goh] Ige [y],he [w]} by which is meant the partial recursive function

assigning a standard code for this set to y,w. I find this set notation more suggestive and I trust

the reader with the ability to construct such partial recursive functions with the help of lemmas

2.2-2.5 in chapter 2.

§I . Construction of Lif

1.1. Definition.

1) Put J 5 {ea INI[e]¢Q}. Let 2 consist of those Hg] that satisfy:

Vee J (ee H =>‘v’fe[e] ([3(f)e H)).

2) Define an implication =>: Ex2—->2‘.by

G=>H 2 {es J IVfe [e]Vge G (fogl & foge H)}

3) For any set X, define a binary relation I- on Ex by

¢I- w iff F\{¢(x)=>\|1(x) Ixe X] is nonempty.
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Note, that He 2. iff for some A_c_|N,H={ee J I [e]c_;A].In particular, if He 2 and ee J is such

that fe H for all fe [c], then U{ [f] Ife [e]}e H.

1.2. Proposition.

i) l- is a preorder on BX.

ii) There are operations A, v, T, J. on E that, together with =>, make EX (with the pointwise

operations) a Heyting pre-algebra (see chapter 3).

Proof. i) B(Ax.x)e fl{¢(x)=>¢(x) Ixe X}, so I- is reflexive. If ee fl{¢(x)=\}I(x) lxe X}

and f e rW{\;I(x)=¢x(x)Ixe X} then B(Aa.U{ [h-(g-a)] lge [e],he [f]]) is an element of

fl{¢(x)=>x(x) |xeX}, so I- is transitive.

ii) Let T E J, J. E Q, GAH .-—={eeJ IVfe [e] ((f)0eG & (f)1e H)},

GVH E {ee J IVfe [e] ((f)0=0 and (f)1e G, or (f)0¢0 and (f)1e H)}. The calculations showing

that EX is a Heyting pre-algebra are all straightforward. For instance, [3(Ax.U{[(a)0] lae [x]}) is
an element of fl{GAH=>G IG,He 2}. The rest is left to the reader.

1.3. Proposition. For f: X—>Yin sets, the map 2f: >:Y——>>:Xdefined by composition with f,

preserves all the Heyting structure and has both a left adjoint Elfand a right adjoint Vf, which

satisfy the Beck condition.

Proof. It is immediate that Ef preserves the Heyting structure since it is defined pointwise.

Define Vf(¢)(y) E {ee J |‘v’xeXVge J (f(x)=y =>Vhe [e] (h-gl & h-ge ¢(x)))}

3f(q>)(y)E {ee J |Vhe [e]EIxeX (f(x)=y & he ¢(x))]

By way of example, we show for the 2X and we 2:)’: >:f(xp)t—oin EX iff 1411-Vf(¢)in >:Y(In

particular, this will show that Vf is order-preserving). So let ee fl{\tI(f(x))=>¢(x) Ixe X} and

ye Y, ae \lI(y). If f(x)=y and he J, then U{ [goa] Ige [e] }e ¢(x) so for e'=B(Aa.B(Ah.U{ [g-a] I

ge [e]})) we have that e'e fl{\|J(y)=>Vf(¢)(y)| ye Y}; conversely, if e'e F\{\y(y)=>Vf(¢)(y)|

ye Y} and xe X, ae \|I(f(x)), then U{ [foa]Ife [e'] }e Vf(¢)(f(x)) so

U{ [(f°a)°l3(0)] | f6 [e'] }G<I>(X).

The Beck condition is trivial.

It is now immediate that the structure of the Heyting pre-algebras EX and the maps Zf forms a

tripos. We call the topos represented by it, Lif (the "Liffective topos").

1.4. Proposition. There is an inclusion of toposes: Lif—>Eff.

Proof. First we define a geometric morphism of triposes (def. 5.1 in chapter 3). Let

‘I’+{X):2X—->P(N)xbe defined by composition with the inclusion: ZgP(N). Let
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‘I’+(X): P(IN)X—>ZXbe defined by composition with the map: P(N)—92‘.which sends A to

{ee J I [e]c;A}. It is obvious that ‘I’+(X)is order-preserving. We show that ‘P+(X) is left

adjoint to ‘I’+(X).

Suppose (beP(N)X, we EX and ¢|-‘I’+(X)(\|I)in P(N)x , say for all x and all ae ¢(x), e-ai &

e-ae ‘I’+(X)(\y)(x)=w(x). Then if xe X and be ‘P+(X)(¢)(x), so [b]_C_¢(x),then

U{ [eoh] Ihe [b] }e \|J(x). So for all x, [3(Ab.U{ [eoh] Ihe [b] })e ‘I’+(X)(¢)(x)=>\y(x), so

‘I’+(X)(¢)I-uiin EX. Conversely, if for all x, ee ‘I’+(X)(¢)(x)=>\|I(x), then [e] is nonempty and

for every ge [e], for every xe X and ae ¢(x), goB(a)is defined and in ‘P+(X)(1|1)(x).So

<I>I'‘P+(X)(‘I!).

Now ‘I’+(X)obviously preserves T. Furthermore, if A,Be P(N) and ae ‘I‘+(AAB)then

Vee [a] ((e)0e A & (e)1e B) so {<[3((e)0),B((e)1)>Iee [a]]e ‘I“'(A)A‘I'+(B); if

a'e ‘I’+(A)A‘I’+(B)then {<g,h>Ige [(e)0],he [(f)1],e,fe [a'] ]e‘I‘+(AAB), and codes for these

elements can be obtained recursively in a and a'. So ‘I’+(X)preserves finite meets.

Moreover, if Ge 2 and ae G then B(a)e ‘I’+‘I’+(G)so ‘I’+(X)o‘I’+(X):2x—>Ex is isomorphic to

the identity map. So (‘I’+,‘I'+)determines an inclusion of triposes and by proposition 5.5 of
chapter 3 an inclusion of toposes.

1.5. Corollary. The natural numbers object (NNO) in Lif is up to isomorphism given by the

pair (IN,=)where IIn=mlIE {eeJ I [e]g{n}r\[m} ].

Proof. This follows from the characterization of the NNO in Eff (example 3.3 in chapter 3),

theorem 5.4 (chapter 3) and the fact that natural numbers objects are preserved by inverse image
functors.

§2. Some logical properties ofLif

2.1. Theorem. An arithmetical sentence is valid in Lif (interpreting the variables as ranging

over the NNO) iff it is Lifschitz realizable.

Proof. Use the definition of Lifschitz'realizabi1ity given in lemma 3.1 of chapter 2 and the

translation ()' of proposition 4.3 in chapter 3.

One defines, by an induction on the complexity of formulas (1)with free variables x1,...,xk

primitive recursive functions t4,and s¢ of k arguments, such that for all e,m1,...,mk:

i) if e r ¢>(m1,...,mk)then t¢(m1,...,mk)~e is defined and is an element of II(¢)']I(m1,...,mk);

ii) if ee II(¢)'I](m1,...,mk)then s¢(m1,...,mk)-e is defined and r ¢(m1,...,mk).
If (1)is a prime formula t=s, then |I(¢)'I](m1,...,mk) = [ee J I [e]={t] and t=s} so we can put:

t4, 2 Am1,...,mk.Ae.[3(t); sq) E Am1,...,mk.Ae.B(O).
The induction steps for the propositional connectives are trivial. If (I)is Vxw, then
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ll(¢-)'ll(m1,...,mk)= {ee JI Vfe [e] Vne N Vhe J (fohi & Vge [foh]Vw([w]={n] =>g-wi &

g-We ll(\|I)‘ll(m1,...,mk,n)))}. So if ee ll(¢)'ll(m1,...,mk) then Vfe [e] Vne N (f-B(0)i

&vge [fo[3(O)](g-[3(n)i & sW(m1,...,mk,n)- (g-[3(n)) r \y(m1,...,mk,n))). So if

e'=[3(An.U{ sw(m1,...,mk,n) 0(g-B(n)) Ige [f-B(O)],fe [e] }), then e’ r Vxty. Conversely, if
e r Vxu/(m1,...,mk) then [e]¢Q & Vfe [e]‘v’n(foni &

tv/(m1,...,mk,n)-(f~n)e l[(\|I)‘ll(m1,...,mk,n)).So if e' is such that [e'] = {Ah.[3(Aw.

t.q,(m1,...,mk,5(w))o(fo8(w)) Ife [e]}, then e'e ll(¢)'l](m1,...,mk) . In both cases, e' can evidently
be obtained recursively in e.

The induction step for the existential quantifier, equally tedious, is left to the reader.

2.2. Proposition. CT and MP are valid in Lif.

Proof. According to the characterization of exponentials given after Theorem 3.2 in chapter 3,

the function space N“ has as underlying set EN”‘‘.The equality is given by: l[F=Gl]is the

interpretation of E(F)/\E(G)AVxy(Fxy<—>Gxy)where E(F) is the universal closure of formula

(F(x,y)—>x=xAy='y) A (F(x,y)/\x=x'Ay='y'—>F(x',y') A (F(x,y)AF(x,y')—>y='y') A

(x=x—>ElyF(x,y)).Here of course = is interpreted as the equality on N given in 1.5. Now if

ee lE(F)ll then we can find, recursively in e, fe [[‘v’xy(F(x,y)AF(x,y')-—>y='y')ll,

ge |l‘v’x(x=x-—>3yF(x,y))]]and he llVxy (F(x,y)-—)x=xAy='y)ll. This means Vx(g'~x~l«& [g'-x]¢Q

& ‘Jne [g'ox]Ely(neFxy)) for some g. Using h, we can find a z such that Vx(z-xi & [zox]¢Q &

Vns [zox]Ely(neFxy/\y=y)). But then, using f, we know that for every x, {(n)1| ne [zox]} must
be a singleton. So, by lemma 2.3 of chapter 2, there is a w such that Vx(w-xi & Fx(w-x) is

nonempty)). This w then codes a total recursive function, w can be found recursively in e, and,

in Lif, F is the function coded by w.

Markov's Principle is easier: note that if ee llAv—1Al|then {(a)0| ae [e]] must be a singleton.

Now it is easy to see that ACO0cannot hold in Lif, because AC00+CT implies CT0 which by
theorem 2.1 and chapter 2 is not valid in Lif; the counterexample mentioned in chapter 2 is also a

counterexample to AC00 in Lif.
Note also that proposition 2.2 implies that Lif is not equivalent to a subtopos of Eff of the form

"recursive in A" (see Phoa 1990): in such toposes, the maps N——>Nare exactly the A—recursive
functions.

I shall now show that true second-order arithmetic in Lif is formalized by the extension of

Lifschitz' realizability to HAS defined in §4 of chapter 2. The whole treatment is analogous to

example 4.5 in chapter 3. By considerations similar to those in that example, we may identify the

power-object of N in Lif up to isomorphism as the pair (X,=), where

X '=' {(1):|N—>ZI Vn,x (xe ¢(n) —->Vye [x] ((y)0=n)) }, and
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R=S 5 [Wm (R(n) <—->S(n))l].

And again, just as in the example, we may forget about the existence of variables of sort X since

[3(<[3(Ax.x),[3(Ax.x)>)is an element of |lR=R]]for every Re X. So we use the translation ( )'

from the example, as well as the following bijection from X to P(N): for Re X put

R 5 {ye IN| B(y)e R((y)0)}

and inversely for A<;_|Nput

A(n) E {xe J IVye [x] (ye A & (y)O=n)].
Then

2.3. Proposition. For every formula (1)in the language of HAS with free variables

x1,...,xk,X1,...,Xj there are two k-ary primitive recursive functions sq,and t4,such that for any

k-tuple n1,...,nk from N and j-tuples A1,...,Aj from P(N),and R1,...,Rj from X:

i) ee |I(¢)’(n1,...,nk,R1,...,Rj)ll => s¢(n1,...,nk)~el« and

(s¢(n1,...,nk)-e r ¢(n1,...,nk,X1,...,Xj))[x‘*/gr...,Xj*/R5];

ii) (e r q)(n1,...,nk,X1,...,Xj))[Xl*/Al,...,X5*/A5]=> t¢(n1,...,nk)-ei and

t¢(n1,...,nk)-e e |l(¢)'(n1,...,nk,A1,...,Aj)l].

Proof. We only have to do this for (1)E xe X; the second-order quantifier clauses are trivial

(because we have a bijection from X onto P(N)), and the induction steps for the first-order

connectives are as in the proof of 2.1.

Let s¢(n) E Ae.{(f)1 I fe [e]}

t¢(n) 5 Ag.{<n,h> Ihe [g]}

For if ee |IR(n)l| then Vfe [e] ((f)0=n and B(f)e |IR(n)]l),(by definitions of X and 2), so

Vfe [e] (<n,(f)1>eR), so Vge {(01 Ife [e]} (<n,g>eR) which means

({(01 Ife [e]} r ne X)[X*/R]. The other one is left to the reader.

2.4. Corollary. The Uniformity Principle holds in Lif.

Proof. Easy, with the definition in §4 of chapter 2.

Now I want to show that the notions of Cauchy real and Dedekind real coincide in Lif.

Generally, this is a consequence of AC00, but we do not have that.

2.5. Proposition. Reals in Lif are recursive real numbers.

Proof. By CT, the Cauchy reals in Lif are the recursive reals. A Dedekind cut is a pair of
predicates (L,U) on Q, such that:

1) Vq (L(q) <->3q' (L(q') Aq<q'))
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2) Vq (U(q)H 3q' (U(q')Aq'<q))

3) V/q,q' (L(q) AU(q') -—>q<q')

4) Vn3q.q' (L(q) AU(q') An(q'-q)<1).

Call (L,U) a strong real if:

<*:» 3a: o2—>N vq,q' <q<q' —+<<oc<q,q'>=oAL<q>> v <a<q,q'>¢o AU<q'>>>

By proposition 5.5.10 of Troelstra & Van Dalen 1988, the object of strong reals is (order—)

isomorphic to the object of Cauchy reals (the definitions there are different, but equivalent); so I

show that every Dedekind cut is a strong real in Lif.

Suppose e realizes 4) which means:

Vge [e] Vn (g-ni & [g~n]¢¢ & Vfe [g-n]3q,q' (fe |Iq=qAq'=q' AL(q) AU(q') An(q'-q)<1]])).

Let rk be such that [rk] E {<a,b>|ae [(f)1], be [(03], fe [g-k], ge [e]};

let uk be such that [uk] 5 {<c,d>|cs [(02], de [(04], fe [g-k], ge [e]}.

Then if q<q', either 3kVpe [rk](qS(p)1—2‘k)or 3k‘v’pe[uk] ((p)1+2‘kSq'). Since both properties

are 2? in q,q' and from c.g. k such that Vpe [rk](qS(p)1—2‘k)we can, by 1), find a realizer for

L(q), it is now easy to construct otas in (*).

Now I want to discuss a principle of second-order arithmetic which separates Lif and Eff.

Consider the statement:
RP vdx (vdY (Xc_:_YvxnY=o) —>E|nVx(xe x -+ x=n))

where the quantifiers VdX and \7’dYmean that X and Y range over decidable subsets of N.

This principle is discussed in Blass & Scedrov 1986. F. Richman had raised the question

whether it is a valid principle of intuitionistic higher order logic, because he needed it for the

construction of divisible hulls of countable abelian groups; which is why I call it RP from

Richman's Principle.

Blass & Scedrov exhibit a topological model and a sheaf model in which RP is not valid;

however, w—1RPis valid in their models. Moreover they write: "Our models do not satisfy

further conditions imposed by Richman, namely Church's Thesis and Markov's Principle, so the

full conjecture remains an open problem". I show that in Lif, RP is false, whereas it is true in
Eff.

Dropping the decidability condition on Y gives a weakening of RP which still does not hold in

the models of Blass & Scedrov. But in the presence of UP, if VY (X<_;YvXr\Y=Q) then of

course VY (XQY) VVY (XnY=Q), and X must be the empty set.

In the presence of CT we can reduce RP to a first-order statement. For, decidable subsets of N

are sets of zeroes of functions: N—->N,and these are recursive. So, RP is equivalent to

RP0 Ve [VxElyTexy AV/f(Vx3yTfxy —>Vx (e-x=0—)f-x=0) v Vx—:(e-x=OAf-x=O))

—>3nVx (e°x=O —>x=n)]

Recall from chapter 2 that Lifschitz' realizability is axiomatized by the schema:

ECTL Vx (Ax—-:»3yBxy)—>E|zVx(Ax—>z-xi A3w(we [z-x]) AVwe [z-x] Bxw),
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where A must be B22-negative (definition before lemma 3.2 in chapter 2).

2.6. Proposition. HA+RP0+ECTL+MP is inconsistent.

Proof. Assuming ‘v’x3yTexy, Vf(VxElyTfxy —>Vx(e-x=O—>f-x=O)v Vx—t(e-x=OA f-x=0)) is

equivalent to:

C(e) ‘v’f(VxElyTfxy -—>‘v’xyz(Texy ATfxzA Uy=O -> Uz=O)

v ‘v’xyz—t(TexyAUy=O ATfxz AUz=O)),

which is equivalent to a B22-negative formula; we may apply ECTL to RP0 which would give a z
such that:

(1) Ve[‘v’xEIyTexyA C(e) —->z-cl A 3w(we [z~e]) A Vwe [z-e]Vx(e~x=0—>x=w)],
which means the existence of a z such that:

(2) Ve[‘v’x3yTexy A C(e) -9 z-ei A Elwsz-eVx(e°x=0—>x=w)],

and this is contradictory: suppose z as in (2). Let, by the recursion theorem, e be such that:
e-x ==-- 0 if Tzex

1 else.

Then z-e is defined. For if not, then ‘v’x(e~x=1)and C(e) clearly holds, so z-cl, contradiction; so

-m(z-e~L); apply MP. Furthermore, C(e) holds, for if f codes a total function, we only have to

look at f-(ux.Tzex) to decide which of the two possibilities holds. But Elwsz-eVx(eox=0—>x=w)

is obviously false, since if Tzex, then z-e<x (for any standard coding).

2.7. Proposition. HA+ECT0 l- RP0

Proof. We argue in HA+EQ_T0.Suppose \7'x3yTexy A Vf(VxE|yTfxy —-)Vx(e-x=O—>fox=O)v

vx—.(e-x=o A f-x=O)). By ECT0, there is a z such that, for all f, if Vx3yTfxy then z-fi and:
i) z-f=0 —>Vx(e-x=O—->f-x=0);

ii) z-f¢0 —>\7’x—t(e-x=0A f-x=0).

Moreover:

iii) a3xy (x¢y A e-x=O A e-y=O).
Use the recursion theorem to find a code f such that:

fox =- 1 if Vysx —tT(z,f,y)

0 if T(z,f,x) AUx=0

1 if 3y<x (T(z,f,y) A Uy=O))

0 if Eysx (T(z,f,y) AUy¢O)).

Then f codes a total function, so z-fl. Say T(z,f,x). Two possibilities:

a) Ux=0. Then by i), ‘v’y(e-y=O—>f-y=O).But the only zero of f is x. So Vy(e-y=O—->y=x).

b) Ux;-t0. Then by ii), Vy—1(e-y=OA f-y=0). But Vyzx (f-y=O). So Vy(e°y=0—>y<x).

In both cases, 3nVy (e-y=O—>y=n)(in case b, check e-y for all y<x. Use iii)).

53
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§3. Lif as k-sheaves of Efi‘

This section presumes some basic knowledge of topos theory. Since the results are far from

spectacular, I don't think it is worthwile to spell out the definitions; the reader may safely skip
this section.

Since Lif is a subtopos of Eff, Lif is equivalent to the topos of sheaves for an internal topology k

in Eff. Let us write U(G) for {ae J I [a];G}, and (‘I’*,‘I'*) for the inclusion: Lif-—>Effdefined
in 1.4.

3.1. Proposition. k is represented by K: P(N)><P(N)—>P(N)defined by

K(G,H) E I[H<——>U(G)II.

Proof. Let f: (X,=)—9(Y,z) be a morphism in Eff, represented by F: X><Y—>P(N).Then ‘I‘*(f)

is an epimorphism in Lif iff there is a number e such that:

VyveY‘v’feIIy=yII(e-fi & [e-f]¢Q & Vhe [e-f] ElxeX (he I[x=xAF(x,y)II)),

but this is the same as saying that Vye Y.U(EIxeX.F(x,y)) is valid in Eff.

Now the function U: P(N)—>P(N)is a strict relation for (-9; let L denote the subobject of Q (Q is

the subobject classifier in Eff) determined by U.
Then ‘I‘*(f) is an epimorphism iff Vye Y.U(3xe X.F(x,y)) is valid in Eff, but this is equivalent

to: the classifying map of the image of f factors through L. It follows that L is the generic

k-closed subobject of Q in Eff, and k classifies L.

3.2..Example. Let S(i,x,y) E T(x,x,y) /\U(y)=i for i=O,1,and RgNx2 be the subobject

defined by the relation

R(n,z) E |Iz=O—>—EIyS(O,n,y)A z=1——>wEIyS(1,n,y)I].Then the first projection: R—>Nis

k-almost epi in Eff (i.e. the ‘I’*-image of it is epi in Lif), but not epi.

3.3. Proposition. N is a k-sheaf.

Proof. The reader is invited to check that morphisms (X,=)—>Nin Eff are in 1-1 correspondence

with partial recursive functions (I):U{Ex Ixe X}—>N,such that:

(*) Vx,x' (|Ix=x'II¢Q => Vae Ex‘v’beEx‘ (¢(a)=<|)(b)))

The same is true for morphisms: (X,=)-—>Nin Lif.

Nc-wif q):U{Ex Ixe X}—>Nsatisfies (*) for (X,=) in Eff and xe X, [a];Ex, then

{¢(a') Ia'e [a]} is a singleton, so Aa.8({¢(a') I a'e [a]}): U{U(Ex) IxeX}—->N satisfies (*)

and so defines a morphism: ‘I’*((X,=))—>Nin Lif.

Conversely if <1):U{U(Ex) Ixe X}——>Nsatisfies (*) then ¢o[3:U{Ex I xeX}—>N satisfies (*).
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4. A topos for Lifschitz' realizability

So we have established a natural isomorphism: Eff((X,=),N) —"->Lif(‘I’*((X,=)),N); which

means that N is isomorphic to ‘I’*‘P*(N).

In a topos, an internal topology k can be used to interpret a modal operator E defined on the

internal language, with the additional axioms:

1) p->18 (p)

2) EH3!(P)->8! (P)

3) I2!(p/\q) <—>I2I(p)AE (q).

If N is a k-sheaf, validity of an arithmetical sentence q)in the topos of k-sheaves is equivalent to

validity of (¢)E in the original topos, where (-)E is the translation which is the identity on atomic

formulas, commutes with all the negative connectives and puts a la before 3 and v. Writing this

out for the topology k on Eff, one gets an inductive definition of realizabflity which is exactly

Lifschitz' original definition (the definition before proposition 2.1 in chapter 2).
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V. Modified realizability and modified Lifschitz realizability

§I. Introduction

In this chapter, triposes are presented that represent toposes for I-IRO-modified realizability and a

Lifschitz analogue of it. A tripos-theoretic account of HRO-modified realizability was given in

Grayson 1981B; I fill in a gap in this construction.

For a definition of abstract modified realizability and the system HA“) I refer to Troelstra 1973.

There, the following inductive definition of HRO—modifiedrealizability for HA is given:

1.1. Definition. Assign to every formula <|>two predicates D¢ and go, as follows:

D¢(x) E x=x; x go 5 q; if (1)is a prime formula;

D.,,A,,,<x>2 D.,<<x>0>A D.,,<<x>1>;xmr_¢A\V 2 (x)0m> A (x), rI_1r\v;

D,H.,,<x> 2 vy <D.,<y>—>x-y¢ AD.,,<x~y»; xr_r_1r¢—>w2 D.,H.,,<x>Avy (ym¢ —>x-y¢ A
X°yIr_L'\V);

D3,.,<x>2 D,<(x)1); X_IT£3Y¢s (x)1m¢[Y/mo];

Dvy¢(X)2 vy (x-y¢ AD.,<x-y»;xn_n:vy¢2 vy (x-y¢ /\X°ym¢["/yl).

The predicates D¢ depend on the logical structure of (1)only (this, however, is an inessential
feature). This inductive definition results from expressing in HA the interpretation of modified

realizability in the model HRO (more precisely: interpret the finite type functionals in abstract

modified realizability in HRO).

1.2. Proposition. Let, by the recursion theorem, e be such that for all x, eox=e. Suppose that

in the definition of D4,and go above, (x)0 and (x)1refer to a primitive recursive pairing function
which satisfies <e,e>=e. Then:

i) Vx (xgq) —>D¢(x))

ii) D¢ (e).

Proof. Trivial.

§2. Tripos-theoretic treatment of modified realizability

As is apparent from definition 1.1., modified realizability assigns two sets of "realizers" to each

formula, such that one is included in the other, and the largest one contains a fixed element e

(proposition 1.2).

In order to generalize this to a tripos, let us first have a look at the situation without the special
element e.

2.1. Notational convention. Write, for A,Bc_:_:N:
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5. Modified realizability and modified Lifschitz realizability

A-—>BE {ne NI Vae A (noai Anoae B)}

A&B 5 {msINI(n)0e A and (n)le B}

2.2. Definition. Let A be the set of all pairs p=(p1,p2)e P(IN)xP(N)such that plgpz. Define

=>: A><A——>Aby:

(p=>q)1 5 P1"’q1 r‘ P2—’q2

(p=>q)2 E p2—>q2.

For every set X, define a preorder on AXby putting

¢|"\|l iff fl{ (¢(x)=>\|I(x))1 Ixe X} is nonempty.

2.3. Proposition.

1) Let 5>(x) s (AX,I-);for f: X->Y 1et?(t) be Af. Then 52is a tripos, with the following logical
StI'L1Ct11I'C2

¢/\\V(X) = (¢(x)1&\If(X)1»¢(x)2&\lf(X)2)

¢V\If(X) E ({0}&¢(X)1U {1}&‘II(x)1.{0}&¢(X)2U I 1}&‘V(X)2)

¢=>\II(X) E ¢(X)=>W(X)

T(x) E (N,N)

J-(X) E (9.3)

3f(<l>)(y) E (U{¢(X)1 |f(X)=Y}.U{¢(X)2 I f(x)=y})

Vf(¢)(y) E (F){N->¢(X)1 If(X)=Y}f){N—’¢(X)2 If(x)=y})

(if f is surjectivc one may take (fl{¢(x)l If(x)=y},fl[¢(x)2 If(x)=y}) for Vf(q))(y));

2) There is a geometric morphism of triposes (<D+,<I>+):?-—>8,where 6 denotes the effective

tripos. This is induced by the first projection: A->P(N) and the diagonal embedding: P(N)—>A.

Proof. 1) is a special case of "Kripke models of realizability", to be treated in chapter 6, but the

reader may enjoy a direct verification which meets no difficulties. 2) is a not too difficult
verification.

2.4. Corollary. 1) The natural numbers in ?-sets are up to isomorphism given by (N,=)

where [[n=m]]E ({n}n{m},{n}n{m]);

2) ?-sets satisfies the same sentences of arithmetic as Eff.

Proof. 1) is immediate from 2.3; 2) follows from the observation that the functor CD":8-)?

preserves all first-order structure.

From Corollary 2.4 we see that f’ is not the right generalization of modified realizability, although

the implication looks the same. We need to use the special element e.

For the rest of this section I assume that primitive recursive pairing satisfies <e,e>=e.
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5. Modified realizability and modified Lifschitz realizability

2.5. Definition. Let E be the set of all pairs p=(p*,Ep)e P(N)xP(N) such that p*gEp and

ee Ep. Define => as in 2.2:

Ep___>qE Ep-—>Eq

(p=>q)* E Ep=,q 0 (p*—>q*).

Note, that ee Eq implies ee Ep:__>q;so => is well-defmed.
For every set X, a preorder |- on EX is defined exactly as on Ax in 2.2:

¢|'\|I iff fl{(¢(x)=>\|I(x))* Ixe X} is nonempty.

2.6. Proposition. Let fPt(X)be (ZXJ-); iR(f) is Ef. Then IRis a tripos, and the logical structure

on ifi.is the same as on 3’, except for .L, v and Elf.

Proof. One can verify directly that I-defines a preorder and that A, =>, T and Vf have the right

properties.

Of course (Q,@)is not an element of 2; the bottom element J. of ffi(X) is 7\.x.(Q,{e})(or,

isomorphically, 7»x.(Q,N)).

For the join v of two elements (1)and u! of iR(X) we may take

¢vw(x) 2 <{e}&¢<x>*u {e+1}&~4:<x>*.{e1&E.,,(,.,u {e+11&E,,,(,,>,
using that <e,e>=e.

The definition of existential quantification however, is not immediate. Grayson (198lB) defined

directly:

3f(¢)(y) E (U{¢(X)* If(x)=yl,[e}UU{E¢(x) | f(x)=Yl).
This is wrong, as the following example shows: let X={O,1 }, f:X—>Xbe 7Lx.1and ¢,\.|IE§fl(X)

be given by q>(0)=¢(1)=\|I(O)=({e},{e}),\y(l)=({e+1},{e,e+1}). Then ¢l- fB.(f)(\4/)via Ax.x+1,

but any element of (3f(q>)(O)=>\|I(O))*n (3f(¢)(1)=>\|I(1))* would send e at once to e and to

e+1, which is impossible; so Elf(¢)Hg!and 3f fails to have the required adjointness property. We

have to be slightly more sophisticated.

The solution is clear once we realize that 2‘.is a subset of A, satisfying:

i) pe A, qe 2 implies p=>qe E;

ii) If the?(X) maps X into 2 then for every function f:X—->Y,Vf(q))maps Y into 2.

These are the conditions of Lemma 5.6 of chapter 3; so by the lemma, 3%is a subtripos of 5°;and

by lemma 5.7 of chapter 3, we can derive existential quantification in flitfrom that in 5’.

Following lemma 5.6 we have to use the function J: A—>2‘.which is the interpretation of

Vq (p=>q)=>q, where q runs over )3.Now if pe A, p=(p1,p2), then

Exp) E fl{ (p2——>Eq)->EqIqe 2} and

J(p)* E E;(p)rY\{(p1—>q*)—>q* | qe 2}.
More explicitly, define maps V,W: P(N)—>P(N)by

'V(B) E {fe N Ivc (Vbe B (cob~L)=>f~cl and (f-c=e or ElbeB (f-c=c-b)))]

W(A) E {fe N IVc (Vae A (coal) = f-cl and 3ae A (foc=c-a))}.

Then the assiduous reader may like to show that
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5. Modified realizability and modified Lifschitz realizability

J(P) = (W(P1)flV(P2)»V(P2))

Accordingly, by lemma 5.7 in chapter 3, existential quantification in 31can be defined by:

3f(¢)(y) E (W(P1)F\V(P2).V(P2)), Where P1=U{¢(x)* | f(X)=y1 and P2=U{E¢(x) | f(X)=Y}
This still looks rather complicated; but if f is a surjection, Elfis (up to isomorphism) given by:

EIf<¢><y>= <u{¢<x>* I f<x>=y1, u{E.,(,, I f<x>=y}>.

This latter expression is all we need (concerning existential quantification) since we shall only

deal with projections from nonempty sets; however, the maps V and W will be used to

characterize the natural numbers in ffi—sets.From now on I call this topos Mod.

2.7. Corollary (of the proof of 2.6). In Mod, the natural numbers object N is given by (|N,=)

where lln=m]lE (W({n}n{m}),V({n}n[m])); V and W being as defined in the proof of 2.6.

Proof. Immediate from the inclusion: 171-)?in the proof of 2.6 and the characterization of N in
?-sets.

2.8. Remark. As we have seen in the proof of 2.6, existential quantification for numbers in IR

does not differ from that in 3’, since the projections: Nk+1—>Nkare all suijective. Nor is there any

difference in the other logical clauses (of course, it does not really matter whether you use 0 and

1 in the definition of v, or e and e+1; besides, v and .Lare defined notions in first-order

arithmetic). This means that if you write out the truth clauses for arithmetic for both toposes, you

get two inductive realizability definitions that only differ in the clause for atomic formulas and in

the quantifier clauses.

2.9. Proposition. Validity in Mod of sentences in the language of arithmetic is equivalent to

HRO-modified realizability.

Proof. Using the translation ()’ defined in proposition 4.3. of chapter 3, one constructs for

every formula (1)with free variables x1,...,xk two primitive recursive functions t4,and s¢ of k
arguments, such that for all n1,...,nk,ae N:

i) ae D¢(nb___,nk)=> t¢(n1,...,nk)oal and t¢(n1,...,nk)oae Em)-(nb_'_’nk)]];

ii) a g1r_q>(n1,...,nk)=>t¢(n1,...,nk)-ai and t¢(n1,...,nk)oae [l(¢)'(n1,...,nk)]l*;

iii) ae Efl(¢)-(nbm’nk)]]=> s¢(n1,...,nk)-al and s¢(n1,...,nk)-ae D¢(nb.__’nk);

iv) ae [l(¢)'(n1,...,nk)]]* =>s¢(n1,...,nk)-ai and s¢(n1,...,nk)-a_m_r¢(n1,...,nk).

The functions t¢ and sq,are defined by induction on (1).

For (1)E u=v(x1,...,xk) put t¢(nl,...,nk) .—-=Ag.[Af.f-u(n1,...,nk) if u=v(n1,...,nk); e else];

s¢(n1,...,nk) E Ag.Af.f.
The conjunction case is trivial.

If (1)E \|I—9x(x1,...,xk) put t¢(n1,...,nk) E Ae.Aa.tx(n1,...,nk)~(e-(sW(n1,...,nk)-a));

s¢(n1,...,nk) 2 Ae.Aa.sx(n1,...,nk)o(e-(tw(n1,...,nk)-a));
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The quantifier step is slightly less obvious. Let f be a code for 7\w.w+e+1.

If (1)E VX\|l define:

t¢(n1,...,nk) 2 Ag.Aa. [e if aof=e;

tW(w,n1,...,nk)-(gow) if a~f=w+e+1;
undefined else];

s¢(nl,...,nk) E Ag.An. sw(n,n1,...,nk)o(go(Au.uon)).

Recall E|I(vn‘V)-(nbm’nk)]]is F\[V({n})-9E|[(\V)-(n,nh.__’nk)]]I116 and

[[(Vn\|J)'(n1,...,nk)]]* is f\{ V({n})—>Efl(w)-(n,nb.__,nk)fln W({n})—>|I(\|I)'(n,n1,...,nk)I|* I ne N}.

Now suppose ge DvW(n,nl,___,nk),so Vn (gone D‘l,(n,nb___’nk)).Let ne N, as V({n}). Since f-ni,

a-fl and (a-f=e or a-f=fon =e+n+l). If a-f=e, then (t¢(n1,...,nk)og)-a=e so e EM’)-(n,nb___,nk)H;

and if a-f =e+n+1 then gone Dw(n,nlMnk), so (t¢(n1,...,nk)og)-a=e so e EM’)-(n’nh._.’nk)D.

So t¢(n1,...,nk)og is always an element of fl{V({n})—)Efl(‘V)-(n’nh._.’nk)]]I ne N] whenever

ge DvW(n’nb___’nk). Similarly, t¢(n1,...,nk)-ge W([n])—>|I(\|!)’(n,n1,...,nk)]]* whenever
g Q Vn\y(n,n1,...,nk)(if as W({n}) then a-f=e+n+1).

The verification that sq,works is left to the reader (Note, that Au.uon is an element of W({n})).
If (I)2 Elm]!define:

t¢(n1,...,nk) E Ag.<Af.f-(g)0,tW((g)0,n1,...,nk)>

s¢(n1,...,nk) E Ag.[e if (g)0of= e; (fis Aw.w+e+1)

s\V(n,n1,...,nk)o(g)1if (g)0-f=e+n+1;
undefined else]

Recall that Eflenw)-(nb___’nk)]]= U{V({n])&En(W)-(n’nb.__,nk)fl I ne N} and that |I(E|n\;I)’(n1,...,nk)]]*
is U{W({n})&[[( )'(n,n )]l*Ine N}. The proof is left to the reader.‘I’ 1 1:

2.10. Proposition. i) For every subobject A of NxN in Mod, we have

1-Vx:N 3y:N A(x,y) —>Z-|z:NVx:N 3y:N (T(z,x,y) AA(x,Uy))

ii) For every two objects X and Y, subobjects A of X and B of XXY in Mod:

l=-Vx:X [(—.A(x) —>3y:Y B(x,y)) -9 E|y:Y (—.A(x) ——>B(x,y))]

Proof. Straightforward.

Now we turn to second-order arithmetic in Mod. Consider the following extension of definition

1.1. to the language of HAS:

2.11. Definition. To every set variable X of HAS we suppose two set variables X* and DX

are associated, such that for different X,Y, the variables X, X, Dx, DY are all different. Now we

define predicates D4,and go for formulas <1)of the extended langT1age_asfollows:

Due X(a) E Vy Dx(<e,y>) —>DX(<a,n>)

a Q ne X E _X*<;:DKA _X*(<a,-11>)

Dvxcb E VDX (Vy D2(_(<e,y>)—-)D¢(a))
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a rr_1rVX¢ '5 VX*VDX Q$*<_:DKA Vy DX(<e.y>) —>a n_1r¢)

a rr_1r3X<1>E 3X*E|D3_ (_>£*;DK A Vy D3(<e.y>) A a U3 <1>)

The proof that 2.11 defines a realizability for which HAS is provably sound, is left to the reader.

I show that this definition formalizes true second-order arithmetic in Mod; the proof is similar to

the proof in example 4.5 of chapter 3. The power object of N in Mod is the pair (ZN,=),where

R=S is the interpretation of Vn (R(n) —>n=n) A Vnm (R(n) An=m —>R(m)) A Vn (R(n) <—>S(n)).

2.12. Proposition. (2N,=) is isomorphic to (X,--) where X is the set of all theZN which are

of the form q>(n)E \p(n) An=n, and ¢=\|I is the interpretation of Vn (q>(n)<->1y(n)).

Proof. There is a uniform realizer for Vnm (R(n) An=m —>R(m))for every Re 2“, i.e. an a such

that for all Re ZN,and all n,me N: as |IR(n)An=m —>R(m)]]*. For, let f be, again, a code for

7tx.e+x+1. Let <c,b>el[R(n)An=m]l. Then bofi. Send <c,b>to e if bof=e, and to c otherwise.

2.13. Definition. Define a 1-1 correspondence between the set X as defined in proposition

2.12 and the set of all pairs (A,B) which satisfy A;B and ‘tin(<e,n>eB), as follows:

for «vex 1etG<¢> 2 ({ye NI <<y>0.Af.f-<y>,>e¢<(y>,>*}.lye N I <<y>0.Ar.f~<y>1>eE.,,((,),)l>;

for (A,B) as above let H((A,B))(n)* -.={<(x)0,y>|xe A, (x)1=n, ye |In=nl]*} and

‘3 <(X)0,y)IXEB, (x)1=n,ye E|In=n]]}

2.14. Proposition. Let ()' be the translation as in 4.5 of chapter 3. Then for any formula (1)in

the language of HAS with free number variables x1,...,xnand set variables X1,...,Xk there are

primitive recursive functions sq)and t4,such that for all m1,...,mne N, (l1,...,(XkEX and
(A1,B1),...,(Ak,Bk)e P(N)xP(N) satisfying Aic_:Biand Vn (<e,n>eBi) for lsiskz

i) (e e D¢)(m1"°'*mn/x1,m,xn; (A131)/(X*1,D_X'),...,(A1<’Bk)/(_)£*k,D&))implies

S¢(m1’“"mn)°e‘l’ and S¢(m1’""mn)°eE EII(¢)'(m.,...,m,,,H(A,,B.),...,H(A,,,B.,))]l3

ii) (e mi ¢)(mv---emu/x1,___,xn;(A131)/(X*1,DL),...,(A1<*B1<)/(X*k,DXk)) implies

s¢(m1,...,mn)oe~Land s¢(m1,...,mn)-ee [[(¢)'(m1,...,mn,H(A1,B1),...,H(Ak,Bk))]]*;

iii) ee Efl(¢)-(mh___,mn,aMak)],implies t¢(m],...,mn)ve~L and

(t¢(m1,...,mn)°e (5 13¢)(ml,---»mn/xwxn; G(°‘1)/(x*1,DX_|),...,G(°‘k)/(X*k,D&));

iv) ee |I(¢)'(m1,...,rnn,oL1,...,ak)]]* implies t¢(m1,...,mn)oeJ«and

<t¢<m1.....m,,>-e rr_:r4»)(mt,-~-emu/Xwxn; G<°°0/cm,.DX,).....G<°‘k>/o<_*k,DXk));

Proof. We only have to do this for formulas of the form xe X; the first order induction steps are
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as in the proof of proposition 2.9, and the steps for the second order quantifiers are trivial from

the definition (e.g.sVx¢(m1,...,mk) = s¢(m1,...,mk)).

Put sxe X(n) E Aa.<a,Af.fon>. If (ae Due X)[(A,B)] then <a,n>eB, so <a,Af.fon>e EH(A BX“) ;
similarly, if (a in ne X)[(A,B)] then <a,n>eA and <a,Af.f-n>eH(A,B)(n)*.

Put txeX(n) E Aa.(a)0. If as E

<(a)0,Af.f°n>EBaal),

((a)0e Dxe X)[n,G(oL)].And similar for the case ae ot(n)*.

am) then because ot is of the form ?tn.|I[3(n)An=nl],

so <(a)0,n>eG((1)2 (the second component of G(ot)), which means

2.15. Remark. Let (f*,f*): 3°-sets—>Effbe the geometric morphism induced by the geometric

morphism of triposes defined in 2.3. Then the constant objects functor A5,:sets->5’-sets factors
through P“ (Theorem 5.4 in chapter 3). Now it follows from general tripos theory that for the

geometric morphism (g*,g*): Mod—>Eff,obtained by composing (f*,f*) with the inclusion

Mod——>5°—sets,every object of Mod is a subquotient of some g*(X), X an object of Eff. In

topos-theoretical language, (g*,g*) is bounded and by the Giraud-Mitchell-Diaconescu theorem

(see Johnstone 1977, theorem 4.46), Mod is a subtopos of the topos of internal presheaves on an

internal category in Eff. So it should be possible to express I-IRO—modifiedrealizability as forcing

over a site in the effective topos. I do not have an easy description of such a site; it might be

interesting to have one, though.

2.16. Remark. A tripos for q—modifiedrealizability can be defined, analogous to Grayson (see

example 11 of the list of realizabilities in chapter 1): truth-values are pairs (p,x) with pe E,

xc__:_{O}satisfying Eln(ne p*) =>Oe x; (p,x)—>(q,y) is defined as the pair (r,{0 |x;y}) where r is

({ae (p=>q)*Ix;y},Dp=,q) (Glueing of sets and Mod). Sets is an open subtopos of the topos
represented by this tripos, say q-Mod. Performing the construction of Mod and q-Mod over the

free topos yields another proof of the Independence of Prerniss Rule for intuitionistic type theory

(of. Lambek & Scott 1986, §21 of part H).

§3. Modified Lifschitz realizability

The treatment of modified Lifschitz realizability is quite analogous to that of §2. As in chapter 4,

let J be {el [e]¢¢} and let 2 consist of those Hg] that satisfy:

ee H iff for all fe [e], B(f)e H,

where Bis a primitive recursive function satisfying [B(e)]={e} for all e. Let, by the recursion

theorem, e be such that for all x, e~x= B(e). We assume a primitive recursive pairing function <>

satisfying <[3(e),[3(e)>=e. We write for the implication in Z:

H = {aeJ IVgeGVbe[a] (b-gi & b-ge H)}.

T is the set {p=(p0,p1)e EXZI pogpl} with implication p=>q=(p0-----»q0n pl-----»q1,p1-----»q1)

and 5°’is the tripos based on T.

G is the set {p=(p0,p1)e ZXZI pogpl and [3(e)e p1} and ii’ is the tripos based on 6*).Just as in
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the proof of proposition 2.6, there is an inclusion fR'—>?'given by j: T—>(-9defined by

j(q) = Vpe (-9[(q=p)=>p]. Just as in §2, existential quantification in 51'is defined by: first

compute it in 5°‘,then apply j.

We denote the topos represented by 31'Modlif.

3.1. Proposition. j is isomorphic (as element of ?'(T)) to the map which sends q to

(W(q0,q1),V(q1)), where V and W are defined as follows:

V(q1)2 {aeJ Ive (Vbe qle-bi =>‘v’a'e[a] (a'-cl & a‘-eeJ & [a'~e];[e}u{e~b|beq1})}

W(q0,q1) E V(q0)n{ae J IVe (\:/be qoe-bl =>‘v’a'e[a] (a'-ei & a'°ee J &

[a'~e];{eob Ibe q0]).

Proof. Straightforward.

Let us write [n=m]L for {as J I [a]={n] and n=m}; then by proposition 3.1, a natural numbers

object in Modlif is given by (N,=) where lln=mllE (W([n=m]L,[n=m]L),V([n=m]L)).

3.2. Definition. (Modified Lifschitz realizability) Assign to every formula (1)in the language of

arithmetic two predicates Ed,and QL (1),by induction on (1),as follows:

1) Et=S(x) E [x]¢@;

x n_1rLt=sE [x]¢Q and t=s is true;

2) E¢,.\,,(x) E [x]¢Q and W6 [X](E¢((y)0) and E.,,((y)1);
x nr_1rL¢/N! E [x]¢¢ and We [x] ((y)0 _rrnL¢and (301my, Iv);

3) E¢_)w(x) a mate and Vye [x]Vw (E¢(w) =>yowl and EW(y¢w));

x QL¢——>\p2 E¢_)w(x) and Vye [x] ‘v’w(wgun => yowi and yow n_1rL\|I);

4) EVy¢(y)(x)2 [x]¢¢ and Vye [x]vw (y-wi and E¢(w)(y~w));
x _nr_1rLVy¢(y) '5 [x]¢Q5and W6 [x] VW(y°W¢ and y°W mL¢(w));

5) E3y¢(y)(X) 5 [X]¢Q and Vye [X](E¢((y)o)((Y)1)§

x n_1rL3y¢(y) E [x]¢$ and We [X]((y)1 n_1_rL¢((y)0)).

3.3. Proposition. Validity of arithmetical sentences in Modlif is equivalent to

QL-realizability.

Proof. Let |l¢ll'5 (ll¢ll0,|l¢ll1)denote the canonical interpretation of 4)in the tripos iii‘,and ()‘ the

usual translation. Define primitive recursive functions sq)and t¢ of k arguments for each formula
(1)with k free variables, such that for all n1,...,nk and all e:

i) E¢(nb___’nk)(e)=> s¢(n1,...,nk)-el and s¢(n1,...,nk)oee |l(¢)‘(n1,...,nk)ll1;

ii) e n_nL<1>(n1,...,nk)=> s¢(n1,...,nk)oe~L and s¢(n1,...,nk)-ee |l(¢)‘(n1,...,nk)]]0;

iii) ee [l(¢)'(n1,...,nk)l|1 => t¢(n1,...,nk)-ei and E¢(nh__.’nk)(t¢(n1,...,nk)-e);

iv) ee ll(¢)'(n1,...,nk)ll0 => t¢(n1,...,nk)oe~L and t¢(n1,...,nk)~e _m_r_L¢(n1,...,nk).
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'Ihe definition of s4,and t¢ and the proof of i)-iv) is done simultaneously by induction on «p.

1) If (1)E t=s(x1,...,xk) let s¢(n1,...,nk) E Ax.B(Ae.F(e)), where F(e) is [3(e-[3(t(n1,...,nk))) if

t=s(n1,...,nk) and B(e) else. Now |I(¢)‘(n1,...,nk)lI1 is V([t=s]L) and [[(¢)‘(n1,...,nk)]]Ois

W([t=s]L,[t=s]L); suppose E¢(nb.__,nk)(x).Then s¢(n1,...,nk)-x is defined. Suppose e is such that
e-bi for all be [t=s]L. Now either t=s(n1,...,nk)or not; in both cases F(e)i and F(e)e J and

[F(e)];{e}u{e-bl be [t=s]L},so B(Ae.F(e))eV([t=s]L).The proof of ii) is similar.

Let t¢(n1,...,nk) E Ax.B(e). iii) and iv) are obvious.

2) Let s¢Aw(n1,...,nk) E Ae.B(<k,m>)where

k E U{[s¢(n1,...,nk)o(f)0] Ife [e]} and

15 U{ [sW(n1,...,nk)o(f)1]Ife [e] }; i) and ii) are clear. The definition of t¢Ml,(n1,...,nk) is
exactly the same (replacing s by t).

3) s¢_W(n1,...,nk) E Ae.B(Af.sw(n1,...,nk)~U{[f-(t¢(n1,...,nk)of)] Ife [e]}) and t results
from this by interchanging s and t. i)-iv) are left to the reader.

4) sVW(n1,...,nk) E Ax.B(Aa.U{ [§x(g)] Ige [a'~f],a'e [a] }), where
f 5 Ab.e+5(b)+1 (here 8 is such that if [b] is a singleton, then 8(b)e [b]), and

Cx(g)E undefined if g<e; b(e) if g=e; and sW(n,n1,...,nk)o(xon)if g=e+n+1.

Proof of i)-ii): suppose EvW(x), ae V([n=n]L).Then since fobl for all be [n=n]L, we have a’-fl
for all a'e [a], and Cx(g)l for all ge [a'of], and moreover §x(g)e |I(\|I)'(n,n1,...,nk)ll1.Etcetera.

Note that if x QL Vnut, ae W([n=n]L), a'e [a], ge [a'of],always g=e+n+1.

Put tvmV(n1,...,nk) E Ax.An.tW(n,n1,...,nk)~U[ [y-B(Af.B(fo[3(n)))] Iye [x] }. iii)-iv) are left to
the reader.

5) Let S3nw(n)(n1a°°°9nk)5 AX-{‘B(Af-B(f°B((Y)())))aSW((Y)()»n1»---»nk)°(Y)1’I Y5 [X]

i)-ii) left to the reader. _

Put t3W(n)(n1,...,nk) E Ax.U{U{[§y(a")] Ia"e [a'of],a'e [(y)0]} Iye [x]} where f, again, is
Ab.e+5(b)+l, and

§y(a") E undefined if a"<e; B(e) if a"=e; B(<n,tw(n,n1,...,nk)o(y)1>)if a"=e+n+1.
Now if xe l[(3n\.|I)']]1then Vye [x]E|n((y)0e V([n=n]L and (y)1e [[(\|!)']]1).Let ye [x]. Then for all

a' in [(y)0], a'of is defined and [a'~f]¢¢ and Va"e [a'°f] (a"2e, and if a"=e+n+1, then

(y)1e |I(\y)'(n,n1,...,nk)]]1).So for all a"e [a'-f], §y(a")i and [§y(a")]¢@, and for all ve [§y(a")],

Ew((v)mnb___nk)((v)1).So the same holds for U{ [C_,y(a")]I a"e [a'ofJ,a'e [(y)0]} which is
recursively obtained in y, etc.

I close this chapter with some results analogous to those about modified realizability.

3.4. Proposition. Independence of premiss holds in Modlif.

Proof. (For the arithmetical case). B(Az.z') QL (—.A—>ElxB(x))——)E|x(—1A—)B(X)),where 2‘

such that [z'] = {<(h')0,|3(Ax.(h')1>Ih'e [h-B(e)],he [z]}.
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3.5. Proposition. For every negative formula A of arithmetic with free variables x1,...,xn

there is a term tA such that:

i) EVx,...VxnA(tA);

ii) For all k1,...,kn: if A(k1,...,kn) is true then Vhe [tA](ho<k1,...,kn>QL A(k1,...,kn);

iii) For all k1,...,kn: if for some x, x QL A(k1,...,kn), then A(k1,...,kn) is true.

Proof. 1) Put tA E [3(e)if A is a prime formula.

2) tA‘AA25 B(Ae. {<h~e,h'oe> I he [IAI],h'e [tA2]});

3) tA‘_)A25 B(Ae.B(Ax.U{[hoe] I he [tA2]}));

4) tVnAE [3(Ax1,...,Axk.B(Au.U{ [ho<x1,...,xn,u>]Ihe [tA]])). The proofs of i)-iii) are left to
the reader.

3.6. Proposition. MPRis refuted in Modlif.

Proof. Suppose x QL Ve (—mEIyT(e,e,y)——>3yT(e,e,y)). Then [x]¢fl; let ye [x]. Then for all

e, y-ei and ye QL aaEIyT(e,e,y) -9EIyT(e,e,y).Let g E U{ [v-B(e)] Ive [y-e]] and F be

the primitive recursive function which sends h to 0 if —1T(e,e,(h)0),and to 1 otherwise.

Now if 3zT(e,e,z) then B(e) g_1rL—1—EIzT(e,e,z)so Vhe [g] T(e,e,(h)0); if -:3zT(e,e,z) then

certainly Vhe [g] —:T(e,e,(h)0).So —:—.({F(h)Ihe [g]] is a singleton), etc.

3.7. Conjecture. B23-MPis refuted in Modlif.

Motivation. Suppose a r_r_n-LVe (—1—1[e]¢Q—>[e]¢¢) (I use [e]¢Q as abbreviation for

3xs(e)1‘v’n—1T((e)0,x,n)).Let F be total recursive such that

[F(e)] = {(h)0 Ihe U{[b-B(e)] Ibe [a'-e],a'e [a]] }. Then [F(e)] is nonempty since

B(e)e E_1_‘[e]¢Q,. Suppose [e] is nonempty; then b(e) QL w—1[e]¢0,so for all a'e [a] and all

he U{ [b-[3(e)] Ibe [a'~e] }, (h)1 _rr_1rL((h)0e [e]). Since (h)0e [e] is a negative formula, by

proposition 3.5 it follows that (h)0e [e] is true. Summarizing: F is a total recursive function
which satisfies: Ve ([F(e)] is nonempty and ([e] is nonempty => [F(e)]g[e])). I believe that this is

impossible, although I do not have a proof at the moment.

3.8. Proposition. ECTL and IP are incompatible w.r.t. HA.

Proof. Let:

A(e) E —1fi3ZT6CZ—>3zTeez

B(e,y) ‘=‘w—EIzTeez —>Teey

Then A(e)—>EIyB(e,y)is an instance of IP; by ECTL (since A is B23;-negative) we have a z such
that

‘v’e(A(e) —->z°e~LA [z~e]¢QA‘v’we [zoe] B(e,w))
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Suppose zozla.Then A(z), so [zoz]¢QAVwe [z-z] T(z,z,w). But this means: if T(z,z,w) then

wS(U(w))1. This is contradictory for a standard coding, so —:(zoz~L).But then -.A(z), which is

also contradictory.

Proposition 3.8 is an analogue for the situation with ordinary modified realizability, which

satisfies CT0 but not ECT0. This raises the question whether CTL is rr_1rIJ-realized.It is rather

unsatisfactory that I do not know the answer. The problem with a direct verification is, that the

part Vwe [z-e] B(e,w) contains an implication.
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6. Kripke and Beth models of realizability

VI. Kripke and Beth models of realizability

§0. Introduction. In the next chapterl give a semantical proof of De Jongh's Theorem. This is

done via the construction of a "Beth model of realizability". In order to get some more insight

into what is going on there, as well as to substantiate certain claims that are made in that chapter

(in particular, that Beth realizability is part of a topos), in this chapter some generalities are

developed about these models and the relations between them.

In chapter 3, the example of a sets-tripos based on a partial combinatory algebra was given.

Now this can be carried out in any topos, provided we know what an "intemal partial

combinatory algebra" in a topos is.

The reader is referred to Troelstra & Van Dalen 1988 (Chapter 9, section 3) for an exposition of

the theory APP.

0.1. Definition. Let 8 be a topos. An internal partial combinatory algebra is a model of APP
in ('3.

0.2. Remark. The theory APP has, besides the axioms for application, K and S, also a unary

predicate for natural numbers as well as constants for successor, predecessor and definition by

numerical cases. Although these can be explicitly defined in any partial combinatory algebra, it is

convenient to have them because for realizability one seldom wishes to use these
"Church-numerals".

0.3. Linguistic intermezzo. Now the theory APP (being a theory of partial application) is

formulated in E+-logic (see Troelstra & Van Dalen 1988, chapter 2, section 2 for a treatment), so

a few words about interpreting El’-logic in a topos are in order.

APP has one partial binary application symbol *. This should be interpreted as a partial

map: AxA—»Ain 5, or a 3-ary predicate Ap, satisfying Ap(a,b,c)AAp(a,b,c')-9c=c' in the

internal logic of 6. In a topos, partial maps to A are equivalent to maps into A, where A (in the

internal language of 6) is {ot;A IVx,ye O.(x=y)] (A is the partial map classifier of A). Now

we can extend a partial map Ap: A><A—-Ato a map Ap: A xA—->Aby putting

Ap(ot,[3) 5 {CeA IBae otflbe BAp(a,b,c)}.

The existence predicate E is intepreted by the collection of inhabited oneA: i.e.

E(ot) E 3x(xe a). Note, that Ap is strict for this interpretation: E(Ap(ot,B))—>E(ot)AE(B).

Equality 2 is interpreted as: %B is Elx(xe atAxe B). Then (IE(1(—>E(ot);

Directed equality =-is interpreted as equality in A. Then ota-B<—>(E(ot)vE(B) -) GEB).

Let 1]: A-—>Abe defined by T](x)={x}. Then always E(T](x)) (this is the interpretation of: variables

exist ).

Now interpret every formula of the language of APP into the internal language of 6, such that all

terms become terms of type A (variables x are translated as n(x), K and S as 'n(K), 11(8)),
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whereas the quantifiers run only over A. So Vx (Sxi) translates into Vx:A. (E(Ap(n(S),n(x)))).

Let us see that E+-logic is sound for this translation. The axioms Ex translate into E(n(x)) which

are true; the rules VI and 3B are immediate; let us look at HIE:A["/t],E(t) =>ElxA.Suppose on

interprets t, then E(ot) implies Ely(ot:n(y)) (in the internal language), so 3yA[x/n(y)] which is
the interpretation of 3yA. Similarly for VEE: VxA,E(t) =>A["/t]: \7’xAtranslates into

VxA[X/n(x)] and if ozinterprets t, then Ely(0L=’r](y))as before, so A[x/a] which interprets A[x/I].
Now we have interpreted E+-logic into the internal language of 8, we may use the internal

language without appealing to this translation every time: I write in the language of APP, which I
find more convenient.

0.4. Proposition. Let A be an internal partial combinatory algebra in a topos 6. Let P(A)

denote the power-object of A in 6. Then the assignment ?(X) E 6(X,P(A)), and for morphisms

f:X—>Yin 8, ?(f) E 6(f,P(A)): 5(Y,P(A))—>5(X,P(A)) defines an 5-tripos.

Proof. All the definitions are the same as in example b) following proposition 1.3, chapter 3;

provided they are read in the internal language of 5.

0.5. Definition. A Kripke model of realizability is a tripos of the form given in 0.4, where ('3

is the topos setsp, P being a partial order with bottom element.

0.6. Proposition. Let 5 be a topos, j:Q—>Qan internal topology in 6, A an internal partial

combinatory algebra. Let P]-(A)be the object of j-closed subsets of A, i.e.

P]-(A)={Bc_;AIVxe A (i(xe B)—->xeB)]. Then the assignment ?(X) E 6(X,Pj(A)) defines an
5—tripos.

We shall see this in section 2.

0.7. Definition. A Beth model of realizability is a tripos of the form given in 0.6, 5 again of
the form setsp.

§I. Kripke models of realizability

It is easily verified that a model of the theory APP in the topos setsp, where P is a partial order

with bottom element po, is given by a P-indexed systemofpartial combinatory algebras , that is:

i) for every pe P a partial combinatory algebra AP;

ii) for every p.<.p'a map fppc Ap—>Ap.,satisfying:

a) fpp is the identity on A1),and fp.p..opp. pp»for every pSp'Sp";

b) if aobi in then fpp.(a)~fpp.(b)lin and fpp.(a)ofpp.(b)=fpp.(aob);
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c) the maps fpp.preserve the combinators K and S, the specified copy N of N, and
the combinators for successor, predecessor and definition by numerica.lcases.

Such a system <(Ap)pEP,(fpp.)pSp.>will be denoted A. It is clear that such A are just functors:
P——>pcafor a suitably defined category pca of partial combinatory algebras.

The power object of A in the topos setsp, denoted by P(A), is the P-indexed system of sets:

(P(A))p5 {(otp.)p.ZpI and fp.pn[ap.]g;otp..for all p'Sp"}.
Now one can work out the logical structure of the setsp-tripos based on A (I write ?A for this

tripos), from the internal language of sets‘). Let X be object of setsp, ¢,we ?A(X).

Then «pn-w iff Elae A.puVpePVxe Xpvbe fp(x) (fpop(a)~bl and fpop(a)~be\l!p(x)).
There is a map =: P(A)><P(A)-—>P(A)in sets? defined by:

(=>p((a.p.)p.2p,(Bp.)p2p))q= {as Aq I‘v’r2qVbea,(fq,(a)-bi and fqr(a)-be Br)1.
If f: X—>P(Y)is a morphism from X into a power-object, the intersection of the image of f,

r\{f(x) Ixe X}, is given by:

(F\{f(x) Ixe X })p = {ye Yp IVqzpvxe Xq (ye (fq(x))q)].
So for q>,uI:X—>P(A)we see that ¢l-w iff F\{¢(x)=>\y(x) Ixe X} has a global element (i.e., an

element at p0, in this case). I leave it to the reader to define the rest of the logical structure

belonging to ?A explicitly.

Let (I“,A)be the unique geometric morphism: setsP—->sets(F sends the presheaf X to Xpo,and
A sends a set X to the constant presheaf with value X). Applying proposition 1.4 of chapter 3 to

the tripos ?A, we get a sets-tripos I‘(?A). For a set X, I‘(?A)(X) = ?A(A(X)) =

setsP(A(X),P(A)) 5 sets(X,I‘(P(A))) = sets(X,P(A)po). Now P(A)pois the set

{(Clp)peP I otp<;Ap and fpq[ot.p]gotq}, and sets(X,P(A)po) is preordered by: ¢l- 1;;iff for some

ae Apo:Vxe xvpe Pvbe <p(x)p(fpop(a)-bl and fpop(a)-be\|1(x)p).

1.1. Proposition. Let 1 be the trivial system of partial combinatory algebras in setsp: lp =

{*} for all pe P. Then I‘(?1)-sets is equivalent to sets? by an equivalence k such that koAI~(5,1)is

equal to A (here A1—(5,Dis the functor: sets—>I‘(5°1)-sets defined in 5.2 of chapter 3).

Proof. Let X a set. I‘(?1)(X) = sets(X,I‘(P(1))) 5 sets(X,{ot<;P Ionis upwards closed}),

and (bl-1;!iff Vxe X (¢(x)<;\y(x)). So a l"(?1)-set is a pair (X,=) where X is a set and = is a

P-indexed set of partial equivalence relations (=p)peP on X, i.e.x=py and psq imply xzqy. This
defines an obvious presheaf k((X,==)).

A I‘(?1)—setin the image of AI-(9')is a pair (X,=) where all --p are the equality on X. So

k(A1—(5,1)(X))is A(X). And k is an equivalence, for define, for every presheaf

X = <(Xp)p€P,(fpq)p5q>,l(X) as (Y,=) where Y = [(x,p) Ixe Xp} and (x,p)=q(y,r) iff p,rSq

and fpq(x)=frq(y). Then 1kand kl are both naturally isomorphic to the identity.

The following proposition says that instead of the tripos ?A on sets? we may equivalently study
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the tripos I"(?A) on sets:

1.2. Proposition. Let 5’be a tripos defined on setsp. Then 3°-setspis equivalent to

I‘(?)-sets.

Proof. This is an application of Pitts‘ iteration lemma (Theorem 5.8 in chapter 3). By

proposition 1.1, setsp is equivalent to I‘(?1)-sets, so 1’A-sets? is equivalent to

?A-(l"(?1)-sets); by the iteration lemma, PA-(l‘(?1)-sets) is equivalent to 3°AoA°P—setswhich is

I‘(5°1)-sets.

1.3. Remark. It is worth to note that proposition 1.2 holds only for posets P; if C is an

arbitrary small category and (1",A)the geometric morphism: setsC—)sets, and 1 the trivial partial

combinatory algebra in setsc, then P1-setsc is of course equivalent to setsc but I‘(5°1)-setsis
equivalent to setsQ where Q is the partial order reflection of C.

1.4. Proposition. There is an inclusion of toposes: sets?-—>l“(5’A)-sets.

Proof. This is, in view of proposition 1.2, analogous to the inclusion: sets-—>Eff,discussed in

Hyland 1982.

Define Z: I‘(?A)—sets—>sets? by Z((X,=))p = {xe XI |lx=x]]pis nonempty}/2 where xxx‘ iff

[lx=x']]pis nonempty. Transition maps are induced by the identity. For morphisms

f:(X,=)—>(Y,=')represented by F:X><Y-9I‘(P(A)), define Z(f) by Z(f)p([x]) = [y] iff F(x,y)p is
nonempty.

Conversely define a functor E: setsP—)I‘(?A)-sets by E(G) = (Llpe PGp,=) with

lIxq=x',]]p= Ap if q,rsp and x1p=x'lp, and Q otherwise. For morphisms tt:G—>Hin setsP let

E(p.) be represented by M: Upe PGp><Llpe Pl-Ip—>F(P(A)) defined as follows: M(xq,yr)p = Ap if

q,r£p and |J.p(x1p)=uq(x)lp=ylp, and (3 else.
2 is left adjoint to E: if ll: Z((X,=))—->Gin setsp then its transpose it is represented by

M: Xxflpe ,,Gp—>I‘(P(A)) given by M(x,yq)p = llx=x A |.1p([x]p)=y1p]lpif qsp, and (25else. The
other direction is straightforward.

It is easy to see that Z preserves finite limits. Now ZE(G)p = [xqe Ups PGPIqsp}/z with xq~x'q.

iff x1p=x'1p.Clearly, this is GP. So (Z,E): setsP—>I‘(?A)-sets is an inclusion of toposesfl

On the other hand, sets in general is not a subtopos of I‘(?A)-sets. The constants object functor

A has a left adjoint 1j.moZ,explicitly: limoZ((X,=)) = X‘/~ where X'={xe XI 3p.|Ix=x]]pis

nonempty] and e~=is generated by: x==x'if Elp.|lx=x'IIpis nonempty. However, this functor does
not preserve finite products; this will only be the case when every p and q in P have an upper
bound in P.
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Combining propositions 1.2 and 1.4 there is an internal topology j in the topos ?A-setsp, the

sheaves for which are setsP. An object (x,=) of ?A-sets? is j-separated iff:

(ac) Vpe P Vxye Xp ([ix=pyIlpis nonempty => x=y)
holds, completely analogous to the characterization of the -H-separated objects of Eff in Hyland

1982. In setsp one can read (as)as Vxye X (|lx=yI|is inhabited = x=y). If furthermore we

require: Vxye X ([[x=yI|= Exr\Ey) (Ex abbreviates |Ix=xI|)and Vxe X (Ex is inhabited) we get

something like Hyland's "effective objects", or "modest functors:P—>sets".

In the particular case when A is a constant pca A(U) one might wonder about the relation between

I‘(5°A)-setsand (EffA)P(when P is finite, this is a topos). There is an obvious functor G:

I‘(5’A)-sets —>(Eff A)? given by G((X,=))p = (x,= ) where [[x=py]l= [[x=y]]p.Transition maps

G((X,=))p—>G((X,=))q are represented by H(x,y) = [[x=px A x=qy]]. If F:X><Y—>I‘(P(A(U)))

represents a morphism f in I‘(?A)-sets define a natural transformation G(f), represented at level

p by G(f)p(x,y) = F(x,y)p. I do not know whether G is faithful.

§2.Beth models of realizability

2.1. Definition. A Grothendieck topology on a poset P is an operation J that assigns to every

pe P a family J(p) of upwards closed subsets of T(p) (called covers of p; I write T(p) for

{q Iq2p}), such that:

i) T(p)e 1(1));

ii) if Re J(p) and s;T(p) is upwards closed and Vre R (snT(r)e J(r)), then Se J(p);

iii) if Re J(p) and qzp then RmT(q)e J(q).

2.2. Example. Let P be a tree and

J(p)={SgT(p) IS is upwards closed and contains a bar for P}; then J is a Grothendieck

topology on P (I hope this example is helpful to the reader who is used to traditional

presentations of Beth forcing).

The subobject classifier in setsp, denoted by Q, is the P-indexed system of sets

Qp E {ot;T(p) Ia is upwards closed]; restriction: 9.p—->Qp.is intersection with T(p').
Let J be a Grothendieck topology on P. Then J determines the following morphism j: Q—)Qin

setsp: jp(O.)= {qzp IOLcontains a cover of q], The following proposition is standard.

2.3. Proposition.

1) The following hold in setspz

i) 0!->J' (<1)
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ii) jj(a)—+i(a)

iii) J'(0tAB) <->J'(0t)AJ°(B)

2) Let j: Q—>§2be a morphism such that i)-iii) of 1) hold in setsp. Then j is deterrrlined by a

unique Grothendieck topology on P.

(In any topos, a morphism j: Q-—)Qsatisfying i)-iii) is called an internal topology )

2.4. Proposition. Let A be an internal partial combinatory algebra in setsp. Let I-j be the

following binary relation on setsP(X,P(A)): ¢ I-jw iff (in setsp):
ElaeAvxe XVbe ¢(x)j(a-bi & aobe \lJ(x)).

Then the assignment .‘PAJ(X)E <setsP(X,P(A)),l-j >defines a setsp-tripos.

Proof. This is fairly straightforward: reason in sets? and use the properties i)-iii) of 2.3 (1). Let

I be Ax.x in A. Then Vxe XVbe ¢(x)j(I-bl & I-be ¢(x)) (use i)) so q>l-J-¢.

Suppose ¢l-jut via a, and wt-J-xvia e. Let d be Au.c-(aou).
Then Vxe xvbe ¢(x)j(aobl & a-be \|I(x)),so

Vxe X‘v’be¢(x)j(a-bi & j(c~(aob)i & c-(a-b)e )((x))) from which easily (with i)-iii)):

Vxe XVbe q>(x)j(d-bl & dobe x(x)), so oi-jx. So I-j is a preorder.
Define =>: P(A)xP(A)—-)P(A) in sets? by: ot=>B5 {CeA IVae otj(c-al & coae [3)]. Then

toI-jWin 33A,]-(X)iff in setsP: 3aVxe x (ae ¢(x)=\lI(x)).

If f: X—>Yis a morphism in setsp, ?AJ(f) is defined by composition with f, and its adjoints if
and Vf are defined by:

3f(¢)(y) s lae A Ij(3xe x <f<x>=y& ae ¢(x)))}

Vf(¢)(y) 2 {as A IVxe XVbe A (f(x)=y—>j(a-bi & a-be ¢(x)))}

2.5. Definition. Let J be a Grothendieck topology on P and j: 9-)!) in sets? the associated

internal topology. If X>->Yis a subobject, X is called closed w.r.t. j iff Vye Y (j(ye X)—>yeX)

holds. By extension, I call a morphism f: X->P(Y) from X into a power-object closed, iff

Vxe X\7’yeY (j(ye f(x))—>yef(x)) holds. For arbitrary f: X—>P(Y)define its closure

l(f)I X->P(Y) by i(f)(x) = [ye Y '.i()’€f(x))}.

2.6. Proposition.
i) =2 P(A)xP(A)—->P(A)is closed;

ii) if oe PAJ-(X) and f: X->Y then \7’f(¢):Y—)P(A) is closed;

iii) every (1)6PAJ-(X) is isomorphic (in ?AJ(X)) to its closure.

Proof. i) If j(Vbe ot(a~bJ«& a-be (5))then Vbe aj(a-bi & a-be 13).ii) is similar. For iii), if

aej(¢)(x) then j(ae ¢(x)) so j(I-ai & Ioae ¢(x)) (I is Ax.x), so j(¢) l-J-(1)via 1.The converse
inequality is likewise trivial.
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Now let ?'AJ(X) be the subset of ?AJ-(X) consisting of the j-closed (1),with the restricted

preorder. Then it follows from proposition 2.6 that closure w.r.t. j: ?AJ-(X)—>5°'AJ(X)defines a

setsp-indexed equivalence of preorders; in particular, ?'AJ is a setsp-tripos. Since ?'A,J-(X)is

simply the set of maps X—>Pj(A)as defined in 0.6, this proves proposition 0.6.

§3.Beth realizability and sheaves

We reserve the notation X for the partial map classifier of X. Let j be an internal topology in

setsp. A sheaf for j is an object X of setsp such that:

i) Vote X (j(3x.xe ot)—>Elx.xe(1) and

ii) Vx,ye X (j(x=y)—>x=y)
both hold.

I recall the following facts about sheaves, which can be found in any textbook:

1) Call Sh(P,j) the full subcategory of sets? generated by the j-sheaves. Then the

inclusion: Sh(P,j)—>setsPhas a left adjoint L (called sheafification ), which is left exact. Define

X+ as X/=, where X 5 {oneX Ij(E|x.xe 0.)] and ot=-—ot'iffj(ot=ot'). Then (-)"' is the object part

of a functor, and L results from applying (-)+ twice.

2) Sh(P,j) is a topos; the subobject classifier of Sh(P,j) is the object Qj 5 {oteQ Ij(ot)=0t].
3) If X is a sheaf, then XY is a sheaf for any object Y of setsp.

Now let A be an internal partial combinatory algebra in setsp. Since Pj(A) = (Q1-)A,P-(A) is a

sheaf, which means that the resniction of ?'Ad-to Sh(P,j) forms a Sh(P,j)-tripos. Let us write 31

for this tripos. Let us show that 31-Sh(P,j) is equivalent to ?'A_J--setsp.

3.1. Proposition.

i) ilioLOPand 5°'A,jare equivalent setsp-triposes;
ii) :rtoL°P-sets? is equivalent to 31-Sh(P,j).

Proof. i) There is an order-preserving isomorphism: setsP(X,Pj(A))*> setsP(X“',Pj(A)) as

follows: for (besetsP(X,PJ-(A)) let (V be induced by \|l((l) 5 [ae A Ij(Elxe ot.ae q>(x))}.Then

xvrespects = so ¢+ is well-defined. Conversely for diesetsP(X+,PJ-(A))let ¢'(x) 5 ¢([ {x]]).
Then ¢+'(x) = ¢+([{x}]) = {a6 A |J'(3y6 {x}.a€ ¢>(y))}= {a6 A 'J'(ae ¢(x))} = ¢(x). and

¢""([a]) = {ae A |j(3xe (x.ae¢'(x))} = {ae A IjE|xe ot.ae ¢([x})] = {ae A Ij(ae q>(0t))]

= q>([ot]).Let us show that this isomorphism is order-preserving: if ¢I-jut via a, then be ¢+([(1])
implies j(3xe a.be ¢(x)) so j(3xe ot.j(a-hi A a-be \V(x)))so j(3xe ot.j(a-bl Aa-be \|I+([(1])))

so j(a-bi A a-be \|l+([(1])). So ¢+ I-1441+via a. The other direction is easier.

ii) Let 3°be the setsp-tripos defined by 5>(x) = setsP(X,Qj). Then there is an
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equivalence k: 5°-setsP—->Sh(P,j)such that koA,, is L: setsP—>Sh(P,j). Now applying the

iteration lemma twice gives: 51-Sh(P,j)is equivalent to 3i°k°P-(?-sets?) which is equivalent to

siokopo(A,,)°P-sets? which is 3°t°L°P-setsp.

From proposition 3.1 we may conclude that the transition from ?A to ?AJ entails sheafification
on the index category setsp. But it does not entail sheafification of A. There is, of course, a

natural isomorphism of sets : setsP(X,Pj(A))—>setsP(L(X),Pj(L(A)))but this isomorphism does

not reflect the order, as from the definition of I-J.follows: it may be that
jC-laeAVxe XV/be¢(x) j(a-bi A a-be u/(x))) but not

Sae AVxe XVbe ¢(x)j(a-bl Aaobe w(x)); in which case ¢l-J-win setsP(L(X),Pj(L(A))), but

not in setsP(X,Pj(A)).
I now turn to some conditions on A from which some relations can be deduced between the

various triposes considered so far. Let:

(1) Va,be A (j(a-bi)->a~b~L)

(2) Vote A (j(3x.xe ot)—->3x.xeot)

3.2. Proposition. If A satisfies (1), then ?'AJ is a subtripos of 53A.

Proof. Let F: ?A—>5"AJbe closure w.r.t. j. I show that F is left adjoint to the inclusion

H: ?AJ—>.’PA(it is evident that F preserves finite meets). It is clear that if xi!is j—c1osedthen ¢l-141

implies j(¢) l-J-ty;conversely if j(¢) I-jw via a, then Vxe XVbe ¢(x)j(a-bl A a-be \V(x))(because
¢(x)gj(¢(x))), so because of (1), Vxe XV/be ¢(x) (aobl Aj(aobe \|I(x))), so (bl-1;!via a if 141is

j-closed.

Now if A is an internal partial combinatory algebra, then A+ can be made into a partial

combinatory algebra by putting on-Bas {x-y Ixe ot,ye B,xoyi in A} (This is defined iff

j(Elx,y.xe ot & ye [3& xoyi)). It is immediate that A+ satisfies (1), so ?'A+,j is a subtripos of
f°A+by proposition 3.2.

3.3. Proposition. If A satisfies (2), then ?AJ-is equivalent to ?A+J.

Proof. Define:

(D: ?AJ—)?A+J by <I>(X)(¢)5 7.x.{ae A+ I ac;¢(x)}

E: ?A+J-—>?A,jby E(X)(\|!) E 7Lx.{aeA I {a]e\;I(x)}.
The proof that these are functors and define an equivalence is a similar exercise in logic to the

propositions before.

3.4. Example. In Goodman 1978, P is a subtree of the tree of all partial functions r: N-—|N,

74



6. Kripke and Beth models of realizability

ordered by inclusion, and J is the -1-.-topology. A is the internal partial combinatory algebra with

AT=Nand application on ATis partial recursive application in r. It is easy to see that this A does

not satisfy (1), for if x is such that {x]P(y) ra-p(0),and 045dom(r), then not x-yi at r, yet

a—a(xoyi). So it is not immediately clear that Goodman's model is: realizability over an internal

partial combinatory algebra in the topos of -1-.-sheaves over P, as Pitts asserts (Pitts

198 1,p. 74).

To close this chapter I want to show that Sh(P,j) is a subtopos of ?'AJ--setsp. To do this I
present a purely topos-theoretical lemma which is doubtless known among topos-theorists

although I have not been able to find a reference for it. First, two definitions.

3.5. Definition. Let 8 be a topos, j an internal topology in 5.

i) An object X of 8 is called separated if Vx,ye X.j(x=y)—->x=yholds;

ii) A monomorphism o:X>->Y is dense if Vye Y.j(3xe X (o(x)=y)) holds.

3.6. Lemma. Let 5 be a topos, j an internal topology in 8. Then

i) a category 8-j can be defined, which has as objects the j-separated objects of 8, and as

morphisms X—->Y:j-closed subobjects A>-vXxY such that the composition 1t1a:A—->Xis a
j-dense monomorphism;

ii) 8-j is equivalent to Sh]-(8).

Proof. i) We have to define composition of morphisms. So suppose a:A>-vFxGand b:B>->GxH

represent morphisms F—->Gand G—>H.Form the pullback:

V1
W——> A

vzl 115203Tt1°b and consider <1t1av],1t2bV2>:W—>FxH.

B "—'-3’ G This is a monomorphism, for suppose it coequalises f,g:U—>W;

then 71213v1f= rtlavl g, 1'E2bV2f=rczbvzg. Since 11218is mono, v1f= vl g, and

TC1bV2f=1t2aV1f=1t2aV1g=1t1bV2gso (ttlb is mono) v2f=v2g. By the pullback property, f=g.

Furthermore, W—>FxH—>Fis a j-dense mono because this is TtlaV1,a composition of j-dense
monos. Define the composition ba as the closure of W in F><H.Then W—>Fis still mono because

of the following fact: if o':U-—>U'is a j-dense mono into a separated object and 1::U'->V is such

that to is mono, then 1:is mono (by internal logic: if 1:(x)=1:(y)then j(3zz'e U.o(z)=x A o(z')=y

A t(x)='c(y)) so j(x=y) because 1:0‘is mono, so x=y because U’ is separated).

Checking associativity is left to the reader. The diagonal X>-+X><X(which is closed if X is

separated) acts as identity.

ii) L’: 8-j—>Shj(8) is given on objects by sheafification L and on morphisms a:A—>FxGby
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L'(a)=L(7t2a)°(L(1t1a))'1.It is easy to check that L‘ commutes with composition, so L’ is a
functor.

I':ShJ-(8)—>8-jis given by the identity on objects and on morphisms by I'(f)=<idX,f>:X>—>XxY.

Clearly, L'I' is the identity in Sh]-(E).Moreover, if F is separated then the universal map 11F:
F-—>L(F)is a j-dense mono and <idF,'qF>:Fr->F><L(F)is closed because it is

nF*(5:L(F)>—»L(F)><L(F)),so represents a morphism F-9I'L'(F) in 8-j. This is an isomorphism,

because <'qF,idF>:FHL(F)><F is an inverse for it.

3.7. Proposition. Sh(P,j) is a subtopos of ?'AJ--setsp.

Proof. With 3.6 it is enough to show an inclusion: setsp-j—)?'AJ-setsp. Everything is very
similar to 1.4.

Define E: setsp-j-—>?'AJ-setsp on objects by E(X) = (X,=) where llx=yll= {as A Ix=y}.

Since X is separated, |l.=.ll is a map: XxX—>PJ-(A).

If f>—>X><Yis a morphism in setsp-j, 13(1):X><Y—+PJ-(A)defined by
E(f)(x,y) = {ae A I(x,y)e f} is well-defined because f is a closed subobject of XXY, and

represents a morphism: E(X)—-)E(Y) in ?'AJ-—setsP.

Conversely, define a functor Z: ?'AJ—setsP-—)setsP-jas follows.
Z((X,=)) = {xe X Ij(Elae |Ix=x]])]/-=,where x=x' iffj(3ae l[x=x'll).Then = is an equivalence

relation on {xe X Ij(3ae [[x=x]])},and since it is closed, the quotient is separated.

On morphisms (X,=)—>(Y,==-s)represented by F: X><Y—>PJ-(A),Z is defined as the following
subobject of Z((X,=))><Z((Y,=-)):Z(F) = {([x],[y]) Ij(Elae F(x,y))}. One should check that

this expression is well-defined, that it does not depend on the particular representative F, that it

defines a closed subobject, etc.

Now if F: X><Y—>PJ-(A)represents a morphism f: (X,=)—>E(Y) in ?'AJ--setsp, its transpose T’:
Z((X,=))—>Yin setsp-j is defined by i’: {([x],y) Ij(3ae F(x,y))}.

Conversely if f >—>Z((X,=))><Y represents a morphism in setsp-j its transpose T3(X,=)—>E(Y) in

?'AJ-sets? is represented by the map F(x,y) = {<a,a'>Ias Ilx=xl]& j(([x],y)e f)].
I leave it to the reader to verify that these transpositions are inverse to each other, that Z preserves

finite limits, and that ZE(X) is naturally isomorphic to x in setsp-j.
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VII. A semantical proof of De Jongh's Theorem

(This is the text of a paper accepted by the Archives for Mathematical Logic)

0. Introduction

In 1969, Dick de Jongh proved an interesting theorem. In order to state it, let us introduce the

following notation.

If A is a formula of intuitionistic predicate calculus IQC, and P a unary predicate symbol not

occurring in A, let Am be A with all quantifiers relativised to P (i.c. replace Vx by

Vx(P(x)—->...)and ElxbyElx(P(x)A...)), and A"=‘ElxP(x)—>A(P).HA denotes, as usual,

intuitionistic first order arithmetic.

Theorem 0.1. If HA proves every arithmetical substitution instance of A’, then A’ is

provable in IQC.

The proof was an ingenious combination of Kripke semantics and realisability. However, De

Jongh never published it and his method remained unknown until N. Goodman [1978]

presented a very similar semantics, for different purposes (A theorem similar to Theorem 0.1,

concerning HA and propositional logic, was also proved by De Jongh by the same method.

This theorem is given by Smorynski in Troelstra [1973] with a proof that uses only Kripke

models and some proof-theoretic facts).

By purely proof-theoretic means, D. Leivant was able to strengthen Theorem 0.1 considerably

(Leivant [1975]):

Theorem 0.2. There are 1'12-predicates {Aij]U-<0),such that Aij has j free variables and for

any formula Fof IQC with nj-ary predicate letters Pijnj,j=1,...,k, if HA I-F[Aml,...,Aiknk]

then IQC l-F[Pi‘nl,...,Piknk].

The aim of this paper is to give a semantical proof of a slightly weaker version of Theorem 0.2.

Throughout the rest of this paper, we assume that languages contain relation symbols only, and

furthermore, that they admit an enumeration (Ai)iENof their predicate symbols such that the

arity of the Ai is a primitive recursive function of i.

Theorem 0.3. Let T be a recursively enumerable theory,fonnulated in a language I in

IQC. Thenfor everyj-place predicate letter Aijof I there is a j-place number-theoretic

predicate BU,resulting in a translation (by substitution) (-)*: 1->I(I-IA) such that for every
sentence F of )2:Tl-F if and only if HA+(T)* I-F*.

Note that Theorem 0.3 is contained in Theorem 0.2, so we do not claim a new result. We
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believe, however, that our proof, which is a refinement of De Jongh's original one, has some

interest of its own, besides being much shorter than Leivant's.

The proof consists of the construction of a realisability model that "matches" the truth in an

appropriate Beth model: we will be using a "universal Beth model" for T.

We could, of course, have formulated Theorem 0.3 the same way as Theorem 0.2, without

reference to T (let T be the empty theory in a universal language); however, we would like to

point out that there is a mass of realisability models obtained in this way, one for each T, and

this is not immediately clear if one restricts attention to just the empty theory (if this paper has

any interest, it is the method , not the result).

The reader will have noted that we didn't mention the complexity of our substitutions in the

statement of Theorem 0.3. We cannot have 1'13-substitutionssince our models will satisfy

exactly the true H3-sentences, but classically they will be in H3.

It is possible to replace HA in Theorem 0.3 by certain extensions of HA. These

extensions will be easy corollaries of our proof and will be discussed in section 3. Section 1

gives preliminaries; the actual construction of the model will take up section 2.

Section 3 also contains a corollary of the proof of Theorem 0.3 that is, we think, a new

result. Consider an expansion of HA in a language that contains, besides the function symbols

of HA, a partial binary operation symbol 0 and constants K and S, as well as axioms saying

that (N,-,K,S) is a partial combinatory algebra (this can be done in a logic with partial terms).

Call this expansion HA+. Just as Kleene-realisability, one can define realisability w.r.t. 0, a

kind of "abstract realisability" over HA. Then if for a predicate formula A all its arithmetical

substitution instances are, provably in HA*, realisable in this sense, A is a provable formula of

the intuitionistic predicate calculus. This result is proposition 3.2 and it can be compared to

results, most notably Plisko's (see references) about the relationship between predicate logic

and realisability.

The author is grateful to D. de Jongh, A.S. Troelstra and I. Moerdijk for reading the

manuscript and for discussions.

§I . Beth models and realisability

Definition 1.l.A (fallible) Beth model for a language I in IQC consists of the following:

i) a tree P and a P-indexed collection of sets (this is, for every pe P a set Xp as well as a

collection of functions (fpp.:Xp—)Xp.)p,p.€Rpsp. such that fpp is the identity and fp.p..ofpp.=fpp..
whenever pSp'Sp");

ii) a specified upwards closed subset U of P such that for any pe P, if every path through p

meets U somewhere, then already pe U;

iii) for every n-ary relation symbol A of 3 an interpretation A*=(A*p)pEP with A*p;(Xp)“
such that:

a) (d1,...,d.n)e A*p and p_<.p'implies (fpp.(d]),...,fpp.(dn))e A*p.;
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b) If (d1,...,dn)e (Xp)“ is such that on every path through p there is a p‘ with

(fpp.(d1),...,fpp.(dn))e A*p., then (d1,...,dn)e A*p;

c) A*p=(Xp)“ for pe U.

Let us call a set R that is such that every path through p meets R eventually, a bar for p.

Given a fallible Beth model we can interpret, in any pe P, sentences of 1’.(Xp)(constants for

elements of Xp added) as follows:

p I-A(d1,...,dn) iff (d1,...,dn)e A*p;
pl-<1)/upiffpl-¢ and pl-ut;

pI- ¢v\y iff there is a bar R for p with Vre R (rl- q>or rl-w);

p I- ¢—9utiff for every p'2p, if p' |- 4)then p’I- Ill;

p I-3x¢(x) iff there is a bar R for p with Vre R3de Xr(rl- ¢(d));

p I- ‘v’x¢(x)iff for every p'Zp and for all de Xp., p'|- ¢(d).

Here, if q>E¢(d1,...,d.n)with d1,...,dne Xp and pSp', p' I-o is read as

p‘I-¢(fpp.(d1),...,fpp.(dn)). From the definition it follows immediately that if pe U, p I- (1)for
any formula :1»(we take the absurdity as a O-place predicate); this is why these models are called

fallible. A fallible Beth model is said to have a constant domain if all Xp are equal and the

maps fpp.are identities.
The main result about fallible Beth models is the following.

Theorem 1.2. Let T be a recursively enumerable theory in a language I in IQC. Then

there is a fallible Beth model it with constant domain N and as underlyingposet the binary tree

P (i.e. the tree of allfinite 01-sequences), such thatfor every sentence A in the language of I:

0 Il-A ifi’ Tl- A ( 13is called a universal Beth model for T). Moreover, there is an enumeration

(A) of I such that the relation pl-Ai(n1,...,nki)is 2? in p,i,n.

This result can be found in Troelstra & Van Dalen [1988], chapter 13. It is an adaptation by the

authors of a proof by Friedman.

Definition 1.3. A partial combinatory algebra (pca) consists of a set A and a partial binary

operation 0 on A, as well as elements K and S of A, for which hold:

i) For every x,ye A, Kox and (Kox)-y are defined and (K-x)-y is equal to x;

ii) For x,y,ze A, Sex and (Sox)-y are defined, and ((S-x)-y)~z is defined whenever

(x-z)o(yoz) is, and equal to it in that case.

The reader is referred to Barendregt [1981] for proofs of the following facts:

i) 7»-abstractioncan be defined in A;

ii) A contains a definable system of natural numbers {filne N}, such that for every partial

recursive function f there is a definable element Fof A which satisfies: f(n) is defined and equal
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7. A semantical proof of De Jongh's Theorem

to m <=>fen is defined and equal to in, for n,me N. Moreover, the smn- and recursion theorems

are satisfied in A by definable elements.

("definable" means roughly: in terms of K,S and -. More precisely, pca's are models of a

theory formulated in a logic with partial terms. See Beeson 1985 for details.)

Now suppose we have a tree P and a specified upwards closed subset U as in definition 1.1.

Consider a P-indexed system of pca's: that is, a pca A1)is attached to every pe P, and functions

fpp.:Ap—>Ap.are given for each inequality pSp' satisfying the same conditions as in definition
1.1, and furthermore:

i) the fpp.preserve the combinators K and S, and

ii) application:if a-b is definedin then fpp.(a)-fpp.(b)is definedin and equal to

fpp.(a-b)

(This ensures that every closed I.-tenn retains its meaning under the fpp.).
Furthermore we fix a X-definable choice of natural numbers, denoted {filne N}, as well as

7.-definable pairing and unpairing operators j, jl, j2. We will now define, for sentences A of

arithmetic, elements p of P, and a of Ap, what it means that a "p-realises A", by induction on
A. Let us call a set R such that RUU is a bar for p, a U-bar for p.

1) a p-realises t=s iff there is a U-bar R for p with Vre R (t=s is true and fpr(a)=t);
2) a p-realises AAB iffjla p-realises A and jza p-realises B;

3) a p-realises AvB iff there is a U-bar R for p with Vre R (i1(fp,(a))=(-)and j2(fpr(a))

r-realises A, or j1(fpr(a))=1 and j2(fpr(a)) r-realises B);

4) a p-realises A—->Biff for every p'2p and for every be Ap., if b p'—realisesA then there is

a U-bar R for p’ such that Vre R (fpr(a)~fp-r(b)is defined and r-realises B);

5) a p-realises EIxA(x)iff there is a U-bar R for p with Vre R3ne N (i1(fpr(a))=r'rand

j2(fpr(a)) r-realises A(n));

6) a p-realises VxA(x) iff for every 11there is a U-bar R for p with Vre R (fpr(a)-F1is
defined and r-realises A(n)).

When talking about t'and r'rwe mean, of course, their interpretations in the appropriate pca; but

since these are stable in the sense that, for psp', fpp.((Op)=(i)p.for every term t of I(HA), we
suppress the reference to p.

We say that a sentence A is p-realisable iff there is an as Ap that p-realises A. We say that A is
realisable iff A is .L-realisable,where J. denotes the bottom element of the tree P. A trivial

induction on A shows that:

i) A is always p-realisable when pe U;

ii) if a p-realises A then fpp.(a)p’-realises A, for pSp';

iii) if as AP and R is a U-bar for p such that for every re R, fpr(a) r-realises A, then a
p-realises A.
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Theorem 1.4.All axiomsand rules of HA are p-realisable, for every peP.

The reader is referred to Goodman [1978] for a proof (some obvious modifications have to be

made); people familiar with topos theory may be satisfied with the remark that we have just

defined the internal logic of the natural numbers object in an appropriate realisability topos

defined over the topos of sheaves on a closed subset of Cantor space. Finally, one may note

that a P-indexed system of pca's is just a Kripke model of an intuitionistic theory of pca's, and

that the normal soundness theorem is entirely constructive (note, however, that there is a

difference from the constructivist's point of view between worlcingwith U-bars and simply

cutting U out).

Definition 1.5. Let a system of pca's and functions be given as above. We say that this

system is a sheaf iff the following two conditions are satisfied:

i) For every p and every minimal U-bar R for p (meaning that no proper subset of R is a

U-bar for p), for every family (aTeAr)reR there is a unique ae Ap with Vre R (fpr(a)=ar);

ii) For every p, every a,be if there is a U-bar R for p with Vre R (fpr(a)ofpr(b)is
defined), then aob is defined.

The notion of sheaf defined here depends on the j-operator on the complete Heyting algebra of

upwards closed subsets of P given by j(A)=[pl A contains a U-bar for p}. Goodman's

realisability was defined using the -1-1-OpCI'8.tOI'2-1-n(A)={p| Vq2p3r2q(re A)], but his system

of pca's is not a sheaf. For more information about j-operators, sheaves and sheafification

(used below) the reader is referred to Fourman and Scott 1979.

Suppose the system of pca's given in the definition of realisability is a sheaf. Then the clauses

for implication and universal quantification in the realisability definition can be simplified into:

4') a p-realises A—>Biff for all p'.>_pand all be Ap., if b p‘-realises A then fpp.(a)-b is
defined and p‘-realises B;

6') a p-realises VxA(x) iff for all ne N, aofiis defined and p-realises A(n).

Furthermore, an induction on A shows that in this case, A has a p-realiser iff there is a U-bar R

for p with Vre R(A has an r-realiser).

Since a similar property holds for fallible Beth models (pl-A iff there is a U-bar R for p with

Vre R(rI-A)), and we are we are steering towards realisabilities that match the truth in certain

Beth models, it is clear that we need sheafs of pca's.

De Jongh's proof, which used Kripke models and (in a hidden way) a corresponding system

of pca's, suffered from the fact that Kripke models with constant domain are not complete (this

explains the need to restrict to formulas of the form A’in Theorem.0.1). Using sheaves, one

can work with fallible Beth models which are better in this respect. Furthermore, our system of

pca's was inspired by Goodman's.
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2. Construction of the model

The structure of the proof of Theorem 0.3 will be the following. Given a recursively

enumerable theory T, we have a universal Beth model for T (i.e. the model given by theorem

1.2); this model will be used to define a sheaf of pca's, as well as substitutions for the

predicates of I, such that the following will hold: for any formula A in the language I with,

say, 11free variables, for any pe P and for any n-tuple y1,...,yne N, A*(yl,...,yn) has a

p-realiser if and only if pl- A(y1,...,yn).
We start with a P-indexed system of pca's of the following form. Consider an acceptable

Godel-numbering (i.e., satisfying enumeration and smn-theorem, see Odifreddi[l989]) of

Turing machines that are enriched with two types of standard instructions, namely ask for

values of F and G at a certain argument, where F and G are abstract partial oracle functions. A

pca will be obtained by providing interpretations for F,G, i.e. concrete partial functions f and

g: N-—N.The interpretations f,g will vary with pe P and since we will declare a computation to

diverge whenever a value of F (or G) is asked at an argument not in the domain of f (resp. g),

in order to satisfy the conditions for a P-indexed system of pca's we must have f(p);f(p') and

g(p)gg(p') whenever pSp'.

Let Fp be the pca (N,{°}f(P)*3(P)('))where {x]f(p)v3(P)(y)will denote the outcome (if there is
any) of a computation of machine x with input y, and f(p) and g(p) interpreting F and G.

Transition maps:Fp—>Fp.are identities. This gives a system of pca's which is not a sheaf;

therefore we let the system (A.p)pePbe the sheafification of it : Ap consists of equivalence

classes of partial functions ot:T(p)—UqzpFq that satisfy:

i) qe dom(ot) =>ot(q)e Fq;

ii) qe dom(ot), q'2q => q'e dom(ot) and ot(q')=fqq.(ot(q));
iii) there is a U-bar R for p such that Rg;dom(ot)).

Two such functions are equivalent iff there is a U-bar for p at which they are both defined and

equal. In AP an application is defined by: [ot]-[B]is defined iff there is a U-bar R for p with
Vre R ({ot(r)}f(’)-3(’)(B(r))is defined in Fr), and in that case [ot]-[B] is the equivalence class of

the function that assigns {ot(r)}f(’)*g(’)(B(r))to r (note, that this does not depend on the choice

of representatives).

The idea behind the oracle functions is: the functions g(p) will provide "independent

enough" information, assuring that certain formulas can only be p-realised if the relevant

information is in g(p). The functions f(p) will be partial recursive and code some information
about the Beth model for T.

Now for the choice of the functions f(p) and g(p) we need a recursion-theoretic fact.

Theorem 2.1. Let u be a numericalfunction in 0', i.e. u is the characteristic function of some

non-recursive E?-predicate. Then there is a 2-place number-theoretic predicate D(x,y)e 0'' such

that (putting Dn(x)sD(x,n), D"'(x,n)ED(x,n+sg(n+1—m))), Dn is not recursive in u, D" (the
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7. A semantical proof of De Jongh's Theorem

sequence Dn is called recursively independent ).

This is Theorem 2 of Kleene & Post [195]]. We owe the use of this theorem to De

Jongh[l969].

Suppose B is a universal Beth model for T as given by theorem 1.2. Let (Ail i=O,l,...) be an

enumeration of I, such that for some primitive recursive b and #, R]-=AbG)and A1has exactly
#(i) free variables. Furthermore, we suppose that the enumeration (Ail i=O,1,...) is such that,

for instance, Ai/\Aj=A ) for primitive recursive g, etc. Then the function u defined by:g(iJ

u(p,i,y)=1 if y=<y1,...,y#(i)>and pl-Ai(y1,...,y#(i)), and 0 otherwise,
is in 0' by theorem 1.2. Let D be a 2-place predicate as given by theorem 2.1. For pe P define

the predicate D(P) by: D(P)(x,y) iff y=<i,y1,...,y#(i)>and u(p,i,y)=1 and D(x,y). Then D(P) is

obviously recursive in u,D; and if u(p,i,<w1,...,w#(i)>)=Othen D3’) is recursive in u,

D‘i~W1~---~“’#(i)’.So Dy is recursive in D0’) iff y=<i,y1,...,y#(i)> and u(p,i,<y1,...,y#(i)>)=1; for if

not (y=<i,y1,...,y#(i)>and u(p,i,<y1,...,y#(i)>)=1), then D03)is recursive in u,DY, and Dy is not.

We are now ready to define the partial functions f(p),g(p) and the substitutions (bjfor the

predicates R]-.

For the definition of f(p) let We be {<p,i,y>|y=<y1,...,y#(i)>& pl-Ai(y1,...,y#(i))}. Now f(p) is
the partial recursive function given by the following instructions:

f(p)(i,y) = undefined if Ai is not an existential formula or a disjunction, or if y is not

of the form <y1,...,y#(i)>;

If Ai is 3xAj(y1,...,y#(i),x), let w be the least z with T(e,(z)0,(z)1) &

(z)O=<q,j,v>for some initial sequence q of p and v of form <y1,...,y#(i),n>
for some n; undefined if w does not exist;

If w does exist, check whether there is a zsw with T(e,(z)0,(z)1) &

(z)0=<q,j,v>for some extension q of p and v of form <y1,...,y#(i),n>and n
is different from the corresponding n in w; undefined if such a 2 exists;
this n from w else.

If Ai is A]-vAklet ylj, ylk be the subsequences of y that occur in Aj and

Ak, respectively; let w be the least 2 such that T(e,(z)0,(z)1) and either (2)0

is <q,j,y|j>for some initial sequence q of p, or (z)0 is <q,k,ylk>for some

initial sequence q of p; undefined if w does not exist;

If w does exist, again check if there is zsw doing this for some extension

q of p and such that ((z)0)]:t((w)0)1; undefined if such a z exists;

else: 0 if ((w)0)1=j; 1 if ((w)0)1=k.

undefined if y is not of form <i,y1,...,y#(i)>or y=<i,y1,...,y#(i)>and

PFAi(Y1a~-sY#(i));

= 1 if y=<i,y1,...,y#(i)>,pl-Ai(y1,...,y#(i)) and D(x,y);

Put g(p)(y,x)
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= O y=(i,y1,...,y#(i)>, andn0t

The reader is invited to check that f(p);f(q) whenever p is an initial segment of q; also, that if

Ai is a disjunction or an existential formula and pl-A1-(y1,...,y#(i))then there is a U-bar R for p

such that for every re R, f(r)(i,<y1,...,y#(i)>)is defined.

For j=1,... let CJ-(x,y1,...,y#(b0)))be a negative formula, expressing D(x,<b(i),y1,...,y#(bG))>),

and put (DJ-(y1,...,y#(bO)))2Vx(Cj(x,y1,...,y#(bU)))v—-. Cj(x,y1,...,y#(bG)))).

By a partial term we mean something that is built up from: free variables, primitive recursive

functions, %.-abstraction, and [-}F~G(-).If t is a partial term we denote by tp its (possibly

undefined) meaning in PP, interpreting F,G by f(p),g(p) respectively. t represents an element

of AP if t is defined on a U-bar for p. We express this by "te Ap".

Lemma 2.2. For every negative formula C(x1,...,xk)of l(HA) there is a partial term t(C),

whose free variables are contained in {x1,...,xk], such that for all pe P and all n1,...,nk:

i) C(n1,...,nk) is true in N = (t(C)(fi1,...,fik))pe AP and (t(C)(fi1,...,fik))pp-realises
C(n1,...,nk);

ii) C(n1,...,nk) has a p-realiser and pe U => C(n1,...,nk) is true in N.

Proof. Standard. E

The translation (-)*: I-—>)‘.(HA)is given by substituting cpjfor R]-.Theorem 0.3 will now follow
from the following lemma:

Lemma 2.3. For every formula A of I there is a partial tenn tA with the same number k of

free variables, such that the following holds: for every p and all y1,...,yke N,

i) pl-A(y1,...,yk) =9 tA(y1,...,yk)pe A.p& tA(y1,...,yk)pp-realises A*(y1,...,yk);
ii) A*(y1,...,yk) has a p-realiser =>pl-A(y1,...,yk).

Proof. By induction on A. We define tA and prove i) and ii) simultaneously. The main step is

the one for prime formulas.

IfA—=- let bcXx. y1,...,y#(-b(j))),X)'-'1

here the expressions t(CJ-)and t(—wCj)are as defined in lemma 2.2.
Then i) is immediate; for ii), suppose [ct] p-realises
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Vx (CJ-(x,y1,...,y#(b(j)))v—»Cj(x,y1,...,y#(bG))))and plv‘Rj(y1,...,y#(b(j))). There is a U-bar R

for p such that R gdom(ot) and for at least one re R, rl-‘Rj(y1,...,y#(bG))),so we may as well
assume pe dom(ot). Then for all n, [ot]~nis defined and [0t]~r"1p-realises

C]-(n,y1,...,y#(bG»)vwCj(n,y1,...,y#(bG))),so for all n there is a U-bar Rn for p with Vre Rn& I"I'Ca.liSCS 01' & I"I'Ca.1iSCS
But since Cj is negative and p92U (because ple Rj(y1,...,y#(b(j)))), exactly one of C]-,aCj is

realised at p, according to whether Cj is true or not. So if BE7kn.j1(ot~fi),then [3is a decision

function for D<b(j),yb__.,y#b(j)>.But if [3needs G(<b(j),y,,...,y#bG)>,n) for some n then Bofican
never be defined (because the interpretation g(p) of the oracle function G at p is undefined at

this argument, since pl-‘Rj(y1,...,y#(bG»)). So D<bG),yh”_,y#bG)>is recursive in D‘b(.l)aYi»---»Y#bU)’,
contradiction.

2) If AEB1/\B2 put tAs j(tBl,tB2).

3) puttAEA.X.tB2.
4) If A=Ai is a disjunction, say A is AnvAk, let tA(y1,...,y#(i))be j(O,tAn(y|n))if

F(i,<y1,...,y#(i)>)=0and j(1,tAk(ylk)) if F(i,<y1,...,y#(i)>)=1(Here yln denotes the subsequence

of y: <y1,...,y#(i)>that occurs in An, and similar for ylk). (i) follows by the definition of f(p).
For ii) suppose onp-realises Ak*vA1*. Pick a U-bar R for p such that Vre R (ot(r)~l«&

(i1(ot(r))=U —>jzot r-realises Ak*) & (j1((1(1'))=T—>jzot r-realises A1*)). Then Vre R (Ak* has

a r-realiser or Al* has a r-realiser), so by induction hypothesis p I-AkvA1.
5) AEVxB(x). Similar to 3).6) is let be
j(F(i,(y1,...,y#(i))),tAj((y1,...,y#(i)>,F(i,(y1,...,y#(i)>)).Again, and follow from the
construction of f(p) and the induction hypothesis. El

To conclude the proof of the theorem: =>is obvious. Suppose HA+('I‘)*|- A*, then A* has a

<>—realiser,so by lemma 2.3 o l- A, which means T|- A by the property of a universal Beth
modelfl

§3. Extensions of HA; some corollaries

A casual glance at the model will convince the reader that it satisfies all true 1'12-sentences;

moreover, we have remarked that our model is part of a topos (this has not been explained, but

since this is a general phenomenon we prefer to leave this for a separate treatment). So it is

immediate that HA, in theorem 0.3, can be replaced by HAH+all true Hg-sentences,where

HAH is Higher Order Heyting Arithmetic.

We now want to show that transfinite induction over all primitive recursive well-orderings

holds in our model. Let HA+ be the expansion of HA in a language that contains an extra

partial function symbol 0, and with additional axioms asserting that (N,~)is a partial
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combinatory algebra. Since the sheaf of pca's constructed in the model has the sheafification of

INas underlying sheaf, it is an ordinary sheaf model of HA+. Moreover, the realisability

definition in our model is the sheaf model interpretation of Kleene realisability with o. So if F is

some arithmetical principle or schema that holds in the model, and we have, for every instance

A of F, a proof in HA+F that A is Kleene-realisable such that the proof doesn't use any

particular property of the pea of partial recursive application, then the proof can be carried out

in HA+, doing realisability with o,and consequently the principle will be realised in our

model, if it is valid in it.

Let us apply this to the transfmite induction schema TI<, which is:
Vu ( Vv<u A(v) —)A(u)) —>VuA(u),

where < is a primitive recursive well-ordering. It is easy to convince oneself that this schema is

valid in a sheaf model, so what remains to prove is the following:

Proposition 3.1. For every instance F of TI< , HA++TI< |- Eln(n r F), where r means
realisability with o.

Proof. This is a slight adaptation of the proof given in Troelstra [1973], 3.2.23. Let F be

Vu (Vv<u A(v) —>A(u))—>VuA(u)for some formula A, and suppose w realises the premiss.
This means: ‘

(G3)\7’uVw' (Vv (v<u —>Vk (w'ov)ok r A(v)) —>(wou)ow' r A(u)).

We want a g that realises \7’uA(u)or Vu (gou r A(u)) or, with TI< ,

Vu (‘v’v<u gov r A(v) —>gou r A(u)).

Take a number G such that for all g,u:

Go<g,u>at (wou)o(Av. Ak. gov),

and find with the recursion theorem for o, a number g such that for all u:

gou ==G0<g,u>.

Now Vv<u gov r A(v) implies Vv<u Vk ((Av. Ak. gov)ov)ok r A(v), so with (63):

(wou)o(Av. Ak. gov) r A(u), which is gou r A(u). Note, that HA"' need not prove anything
about < ! I3!

Proposition 3.2. Let A be aformula of IQC such thatfor all arithmetical substitution

instances A* of A, HA+|- 3n (n r A*). Then IQC |- A.

Proposition 3.2 follows immediately from the considerations preceding proposition 3.1 and the

proof of theorem 0.3. This corollary is interesting in view of the research done, mainly by

V.E. Plisko (see Plisko 1978 and 1984), on the logic of realisability: i.e. those formulas of

predicate logic all of whose arithmetical substitution instances are realisable. Plisko shows that

this logic is quite complicated: it is H11-complete. Proposition 3.2 shows that this feature
depends on the metamathemathics used.
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VIII. Two versions of "extensional realizability"

Jaap van Oosten

In this chapter I shall consider two realizability interpretations for arithmetic that are

"extensionalisations" of Kleene's 1945-realizability, much in the same way as the models HROE

and HEO are extensionalisations of HRO (See Troelstra 1973). These realizabilities will be

denoted Qand _e'.Q-Realizability was erroneously defined in Beeson 1985; another definition can

be found in Renardel de Lavalette 1984, in an abstract setting. The topos corresponding to

e-realizability, discussed in section 3, was already defined in Pitts 1981; some of its internal logic

was explained by Hyland in a talk in 1982 (I am indebted to Professor A.S. Troelstra for notes of

this talk). I thought it worth-wile to present the matter in some more detail and to complete some

of the arguments.

§1. Definition and some basic properties

1.1. Definition.

1) Define, inductively, for any formula A of arithmetic, a partial equivalence relation on the set of

all Kleene-realizers (r) of A, as follows:

x ~Ax' E =x' A DA(x) for A atomic

X"A,\B"' E (‘)0 “A (’‘')0 A (“)1 “B (‘)1

x ~A__)Bx' E x ; A—>BA x’ ;' A—>BA Vyy'(y ~Ay' => xoy ~Bx'oy')

x ~VyAyx' E Vn (xoni A x'onJ«A xon ~A(n)x'-n)

X"3yAyX' E (")o=("')o A (")1 "A((x),)("')1

2) Define predicates EA and =A simultaneously by induction on A:

EA(x) E x=x A A for A atomic; x=Ax' E x=x'AA

EA,\B(X) E EA((x)0) A EB((X)1); x=AABx' E (X)0=A(X')0 A (X)1=B(X')1

EA_,B(x) E Vyy'(y=Ay' => x°yi A x°y'i A x°y=Bx°y');

x=A_)Bx' E EA__)B(x)A EA_)B(x') A Vy(EA(y) => xoy=Bx'oy)

EVyAy(x) E Vn (xonl A EA(n)(x~n); x=vyAyx' E Vn (xon=A(n)x'on)

E3yAy(X) 5 EA((x)o)((X)1)§ X=3yAyX' 5 (X)0=(X')0 A (X)1=A((x)o)(X')1

Note, that x ~Ax implies x g A, and that ~A is symmetric and transitive. We say that x Q’A iff

X“-AX.

EA(x) is equivalent to x=Ax and =A is symmetric and transitive. We say that x QA iff x=Ax.

1.2. Proposition. HA I-A =>for some n,m, HA I-n g A A m §'A

Proof. A routine induction on HA I--A.
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The difference between these two notions of realizability that presents itself immediately is in the

implication (and consequently the negation) clauses. For Q-realizability it is evident that, with

classical logic, Av—wAis realizable for sentences A; for Q’-realizability this is not the case, but one

sees from the remarks following definition 1.1 that classically AvaAv—.-‘A is g’-realizable for

sentences A: if A and aA are not g'—realizablethen A must be Kleene-realizable, so ~_1Amust be

the empty relation and any number Q’-realizes-1-‘A. Let us see that all three possibilities occur.
First a trivial remark:

1.3. Proposition. Let, for almost negative formulas A, VA be the p-term from Troelstra 1973,

3.2.11, i.e. satisfying |- A(x)—->\|IA(x); A(x). Then:

+A<x>-+ wA(x) e Am A wA(x) 9' Am

I-3y(y QA v y g’ A)—>A

Proof. Trivial. Note, that the formulas x g A and x Q'A are equivalent to almost negative
formulas.

1.4. Proposition. The following instance of the open schema CT0 is not Q-realizableor
Q‘-realizable:

A Ve[Vx3y(-1—:3zTexz—>Texy)—)ElvVx3u(Tvxu A (-mE|yTexy—-)TexUu))]

Proof. We reason informally; the proof can be formalized in HA+MPR. Since the proofs are
similar, we give it for Q-realizability. Suppose w g-realizes A (we will derive a contradiction).
Some remarks:

i) If e codes the empty function, then Af.((w-e)-f)0 is an effective operation of type 2, for every
total function will realize VxE|y(—.—E|zTexz——>Texy),and equal functions are equivalent realizers.

ii) If k realizes Vx3y(—.—:3zTexz—)Texy),then ((w~e)-k)1 realizes VxE|u(T ((w-e)ok)0 xu A

(w—ElyTexy—>TexUu)).This is equivalent to an almost negative formula, so we always have:

‘v’x[((w~e)-k)0-x is defined and (—:—nElyTexy—>Tex((w~e)-k)0ox))]

Using the recursion theorem, we pick a code e for a partial recursive function of three variables
such that:
eo(k,n,x) as undefined if not Tnnx

if Tnnx:
undefined if ((w-S21(e,k,n))-Ax.O) ox is undefined;
0 if (woS2 (e,k,n))-Ax.0) ox is degned and not
T(S 1(e,k,n]),x, ((w-S2 (e,l%,n))-Ax.0)0-x);
U[((w~S21(e,k,n))-Ax.b)0ox)]+1 else.

Some remarks:
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8. Two versions of "extensional realizability"

iii) If Tnnx, then ((woS21(e,k,n))~Ax.0)0-xis always defined. Otherwise S21(e,k,n) would code

the empty function, and see i)-ii).

iv) If Tnnx, then never T(S21(e,k,n),x, ((woS21(e,k,n))~Ax.O)0~x).For then we would have

S21(e,k,n)-x = U[((w°S21(e,k,n))0Ax.0)00x)] ¢ U[((w°S21(e,k,n))oAx.0)0~x)]+l = e°(k,n,x);
contradiction.

Again using the recursion theorem, with e as just defined, we take a code k for a partial recursive

function of two variables, such that:
k-(n,x) = 0 if not Tnnx;

<pz.T(S21(e,S11(k,n),n),x,z), Ax.0> else.

Then S11(k,n) always realizes

VxEly(—t—t3zT(S21(e,S11(k,n),n),x,z)—>T(S21(e,S11(k,n),n),x,y)).
Furthermore:

If non is undefined then S11(k,n) codes Ax.0 and S21(e,S11(k,n),n) the empty function, so

((w-S21(e,S11(k,n),n))~S11(k,n))0 = ((w0S21(e,S11(k,n),n))°Ax.0)0.

If non is defined, say Tnnx, then (see remark ii) ((w-S21(e,S11(k,n),n))-S11(k,n))0oxis defined

and T(S21(e,S11(k,n),n),x, ((w~S21(e,S11(k,n),n))oS11(1t,n))0-x).By remarks iii)-iv) we have

that ((w-S21(e,S11(k,n),n))oAx.0)0oxis defined and not

T(S21(e,S11(k,n),n),x, ((w~S21(e,S11(k,n),n))-Ax.0)0ox). So then:

((w°S21(e,S11(k,n),n))oS11(k,n))0 as((w-S21(e,S11(k,n),n))°Ax.O)0.
(Note, that both sides are always defined!)

The conclusion is that non defined? is decidable, contradiction.

1.5. Corollary. _e_-and Q’-realizability are not equivalent.

Proof. For, since A (from 1.4) is Kleene-realizable, -1-tA must be _e'-realizable.

1.6. Corollary. The open schema A—->Elx(xQA) is not Q-realizable.

Proof. Take for A the formula Vx3y(—t—ElzTexz—->Texy). Then Elx(xg A) is equivalent to

E|vVx3u (Tvxu /\(-1-13ZTCXZ—>TexUu)), and apply proposition 1.4.

1.7. Proposition. Let WECT0 (Weak Extended Church's Thesis) denote the schema:

Vx (Ax->ElyBxy) —>—.-—Elz‘v’x(Ax —>Elu(Tzxu ABxUu)) with A almost negative. Then WECT0 is

9-realizable, provably in HA.

Proof. Note that for Q-realizability two realizers of a negation are always equivalent. So Ax.0

realizes every instance of the schema.

§2. A q-variant of g-realizability; strengthening of ECR0
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8. Two versions of "extensional realizability"

2.1. Definition. Define predicates QA, =A as follows:

QA(x) E x=x A A for A atomic; x=Ax' .=. x=x'AA

QA,\B(X) 5 ’\ QB((X)1)§ X-'-AABX'E (X)0=A(X')()A (X)1=B(X')1

QA_)B(x) E ‘v’yy'(y=Ay' => x-yl A x~y'~LA x-y=Bx~y') A A—)B;

X=A_,BX' 5 QA_,B(X) /\ QA__,B(X')A V)’(QA(Y) => X°Y=Bx'°Y)

QVyAy(x) '=' Vn (xoni A QA(n)(x-n); x=VyAyx' E Vn (x~n=A(n)x'on)

Q_=_1yAy(X) ‘5 QA((x)o)((X)1)§ X=3yAyX' E (X)0=(X')() A (X)1=A((x)o)(X')1

2.2. Proposition. i) I-x=Ax'——>QA(x)AQA(x')

ii) I- Q A(x)—>x=Ax

iii) |- QA(x)—>A

iv) l-A :9 I-QA(n) for some 11

Proof. Straightforward.

2.3. Proposition. Let \|1Abe as in proposition 1.3, for almost negative A. Then I-QA(\|lA).

Proof. Trivial.

2.4. Proposition. Suppose HA I-Ve (\7’xElyBexy—>E|zCez) and B is almost negative. Then
there is a number n such that:

HAI- ‘v’e(n-el A vf,r(vx(r~xtAr-x¢Afox=r~xABexfox) —>(noe)~fl A (n-e)or¢ A

(n-e)-f=(n~e)~f' A Ce (n-e)°f)).

In particular, HA satisfies ECR0 (take x and y dummy variables).

Proof. Let A beVe (VxElyBexy—>3zCez);suppose HAl- A. Let m such that HAl- QA(m). Then

HAl- \7’e(m-ei) A Vf,f'(f=Vx3yBexyf’—>(m-e)-f=3zCcz(m-e)-f’). If Vx(f~x=f'~x A Bef-x) then,

since B is almost negative, Ax.<fox,\|IB(e,x,f-x)>=Vx3yBexyAx.<f‘ox,\|JB(e,x,fox)>,so

ya([(m-e)°Ax.<f-x,\|IB(e,x,f-x)>])0= ([(m°e)°Ax.<f'ox,\yB(e,x,f'ox)>])0and

QCey(([(m-e)-Ax.<f~x,\|JB(e,x,f~x)>])1).By 2.2 iii), Cey. So n aAf.y satisfies the proposition.

§3. Higher-order extension of g- and Q’-realizabilities

The following, up to 3.6, can also be found in Pitts 1981. We define a tripos ‘Ras follows. Let

E’be the set of all pairs (p,~) with pgN and ~ an equivalence relation on p. A binary operation

——>on 2' is defined by (p,~)—>(q,~') = ([n| Va,be p (noai & nobi & (a~b => noa~'nob))},=),

with nzm iff Vae p (n-a~'moa). For sets X, 9i(X) is the collection of all maps: X—>E',

preordered by putting ¢|-xpiff there is an e such that for all xe X, e is in the underlying set of
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8. Two versions of "extensional realizability"

q>(x)——>\y(x).We define logical operators in 9i(X):

3.1. Definition. i) If (I),we <.R(x),¢(x)=(px,~x). \V(x)=(qx,~'x):

q)/\uI(x) 2 ({<a,b>Iaepx, be qx},=) with <a,b>=<a',b'>iff a~xa' and b~'xb'

¢—>\V(x) E ¢(X)->\V(x)

q)vuI(x) E ({<O,c>,<1,d>|ce px & de qx},=) with <n,c>=<m,d>iff (n=m=0 and c~xd) or

(n=m=1 & c~'xd)
ii) If f:X—>Yis function, then:

\7’f¢(y) 5 ({cl Vxe X(f(x)=y =>Vne N(c-nl & cone px))},=) with czc' iff Vxe X(f(x)=y

=> Vne N(c°n~xc'~n))

Elf¢>(y) ({c| ElxeX(f(x)=y & Cepx)}.=) where c=c' is the transitive closure of:

ElxeX(f(x)=y & c~xc')

3.2. Proposition. 91is a tripos, with the operations defined in 3.1.

Let 50be the tripos underlying the effective topos.

3.3. Definition. i) <I>+(X):K3_(X)—>9i(X)is the order-preserving map given by:

<D+(X)(¢) Ax.(¢(x),T) where T is the maximal equivalence relation on q>(x)

ii) CI>+(X):9?(X)—>f9(X)is the order-preserving map given by:

<D+(X)(¢) AX-PX»if ¢(X)=(Px,~x).

3.4. Proposition. The pair (<1)+,<I>*)constitutes a geometric morphism: $’—>9i,which is an

inclusion of triposes.

3.5. Definition. i) ‘I‘+(X): 9i(X)—-)K3(X)is <I>+(X)

ii) ‘I’+(X): 5°(X)—>9i(X)is given by

‘I’+(X)(¢) E Ax.(¢(x),A) where A is the minimal equivalence relation on ¢(x).

3.6. Proposition. The pair (‘I’+,‘P+)constitutes a geometric morphism: SR-—>$’,which is a

right inverse to ((1)+,<I>+).

Let us call the topos represented by 9?, Ext. Propositions 3.5 and 3.6 show that there is an

inclusion ((I>,..,<I>*):Eff-—>Extand a geometric morphism (‘I’,..,‘P*):Ext—->Eff,making Eff a retract

of Ext. I shall use this to compute the finite-type structure (i.e. the structure generated from INby

exponentials and products) in Ext. The natural number object in Ext is the set N with equality

[[n=m]]= ({n| n=m} ,~), ~ the unique equivalence relation. From this:

3.7. Proposition. The internal logic of INin Ext coincides with Q-realizability.
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8. Two versions of "extensional realizability"

Proof. Use definition 3.1.

Recall (Hyland 1982) that an object (X,=) of Eff is canonically separated iff |Ix=x']lis nonempty

implies x=x'.

In general, (D...is not given by: (I>*((X,=))= (X,(D+(=)). But this holds when (X,=) is

canonically separated:

3.8. Proposition. Let (X,=) be a canonically separated object of Eff. Then <I>,..((X,=))is

isomorphic to (X,<I>+(=)).

Proof. First observe that for sets X,Y, a function f:X——>Yand the 60(X), <I>+(Y)(Elf(¢))is

isomorphic to Elf(<I>+(X)(¢))if for all x,x'e X, ye Y, n,me N: if ne ¢(x), me ¢(x') and

f(x)=f(x')=y then there are x=x1,...,xk+1=x',n1,...,nkwith f(x1)=...=f(xk+1) and

nie ¢(xi)m¢(xi +1) for i=1,...,k. Clearly, this condition holds if f is a projection: Y><X—>X,(X,=)

is a canonically separated object and (be6°(YxX) represents a functional relation for (Y,=') and

(X,=). So if Fe @(Y><X)represents a morphism in Eff into a canonically separated object (X,=),

<I>+(YxX)(F) represents a morphism in Ext: (Y,(I>+(='))—+(X,<l>+(=)).

Now there is a natural isomorphism K: Eff((Z,(I>+(='),(X,=))—>Ext((Z,='),(X,<I>+(=))for

canonically separated (X,=), given by K(F)=(D+(F)/\EZ,with inverse L given by L(G)=<I>+(G):

LK(F) = (D+(D+(F)A(D+(EZ)-lI-F/\(D+(EZ) -II-F, since (I>+<I>+is the identity and F is functional for

CI>+(Ez);furthermore GI-KL(G) and both are functional relations, so they must be isomorphic.

3.9. Proposition. The finite type structure in Ext is given by: the object of type 0 has as

underlying set the hereditarilyeffective operations of type 0', and as equality lIot=oL']]=
({n| 11codes ot},T) if ot=ot', and (0,0) else.

Proof. This follows directly from proposition 3.8, taking into account that the finite type objects

in Eff are canonically separated and that <I>...,being direct image of an inclusion, preserves

exponents.

3.10. Corollary. (Hyland) ExtI-AC6; and Extl--‘CT.

Proof. Immediate.

3.11. Corollary. Define:

WCT Vf:IN—>Nw—Elz:NVx:N E|u:N (Tzxu/\Uu=f(x))

WC-N Vf:N—>N Elx:N A(f,x) —>Vf:N—>N 3x,y:N Vg:N——>N(f'y='gy—>A(x,g))

Then Ext |-WCT and Ext Iv‘WC-N.
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8. Two versions of "extensional realizability"

Proof. The first statement is analogous to proposition 1.7; as to the second, it can be proven in

E-HA‘° that WC-N is incompatible with AC2’0(see Troelstra 1977). Informally: there is no
effective operation of type 3 sending an object of type 2 to its modulus of continuity at Ax.O.

In the presence of AC, the schema WC-N is equivalent to the continuity axiom:

Cont VC:(N—>IN)—->N‘v'f:N—>N3x:N Vg:N—)N (§x=fx—> g(t)=§(g))

The following weakening of this axiom is valid in Ext:

WCont ‘v’C:(N—>|N)—>N‘v’f:N—>lN—-.—u3x:NVg:N—>N(§x=i'x —>§(t)=§(g))

which follows from the Kreise1—Lacombe—Shoenfieldtheorem. I conclude:

3.12. Proposition. E-HA‘°+AC+WCT+—.CT+WContis consistent.

I now sketch an analogous treatment for Q‘-realizability.Let E" be the set of all pairs (p,~) with

p;IN and ~ a partial equivalence relation on p. An implication is defined by (p,~)—->(q,~')=

{alVxe p (a-xi & a-xe q)} with partial equivalence relation a-~'a'iff ‘v’x,x'ep (x~x' =>a-x~'a'-x‘).

Let fK(X)denote the set of maps X—>2",preordered by: if ¢,\ye 3<(X),then q>|-uriff there is an a

such that for all xe X, a=a in <|>(x)—>\tI(x).The proof that IRis a tripos is very similar to the case

of 9? and will be omitted. The topos represented by X will be denoted Ext‘.

3.13. Proposition. The inclusion (<I>...,<l>*):Eff—>Extfactors through an open inclusion:
Eff—>Ext'.

Proof. Define V+(X): K9(X)—>fK(X) by V+(X)(¢)(x)=(¢(x),T); V+(X) is defined by forgetting

the partial equivalence relation. Let H+: fK—>ERbe induced by (A,~)—>({aeAI a~a] ,~) and

H+:9i—>3<by the inclusion: E';2". Then (I>+=V+°H+.

Now Eff is clearly equivalent to the full subcategory of Ext’whose objects have equalities of the

form [[x=x']l= (p,0). But this is an open subtopos of Ext‘ because it is equivalent to the slice

category Ext./U, where U>-»1is ({*},|l*=*]]=(N,Q)). And "forgetting": Ext’-—>Efffactors

through the pullback functor U*.

The effect of proposition 3.13 is that the statement "A is g’-realizable implies that it is

Kleene-realizable" extends to sentences of full HAH, since inverse image parts of open

geometric morphisms are logical functors.

3.14. Corollary. Ext'I- —.—.CTA -.—:Cont,but Ext’ refutes instances of WC-N and AC.
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§4. Direct treatment of HAS.

e-Realizability for HAS can be derived from the considerations in section 3. However,

power objects in realizability toposes are clumsy to work with, so a direct definition (forrnalizable

in the language of HAS) seems desirable. The definition is quite straightforward.

For sets X and Y let Eq(Y,X) be the formula expressing that Y is an equivalence relation on

X. Assign to every set variable X two set variables X3and X9 such that for different X,Y the

variables XS,X°,YS,Y°,Xand Y are all different For convenience, we work in a version of HAS

with only unary set variables. We extend the relation =Ato formulas in the language of HAS as
follows:

x=x(t)x' E X3(<x,t>) AXS(<x',t>) A (Eq(X°,XS)—>X°(<<x,t>,<x',t>>))

X=vXA(X)X' E VXSVXC (X=A(x)X')

X=3XA(X)X'E 36 A(0)0-_-X/\ =X'/\ EIXSXC

The reader sees that the relation =Ais symmetric and transitive for every formula A in the

extended language. Again, we say that xeA if x=Ax.

4.1. Proposition. HAS is sound for the given interpretation.

Proof. We check some rules of the second-order predicate calculus and the comprehension

axiom. Suppose xe‘v’X(A(X)—>B)with X not free in B, and y=3xA(x)y'. Then by induction on

lth(o') x°y=Bx°y' so xe3XA(X)—>B. Conversely if xe3XA(X)—>B and y=A(x)y' then

y=3xA(X)y' and xoy=Bx-y‘, so x eVX(A(X)—>B). Analogously for the equivalence
VX(A—>B(X)) with A——>VXB(X).

The axiom X(t)/\t=S-)X(S) is trivially realized. For the comprehension scheme

3XVy (X(y) <——>A(y), take XS={ <w,y>| w 5;A(y)} and X°={ <<w,y>,<w',y>>|w=A(y)w' }, let
x=Ay.<Aw.w,Aw.w>. Then xevy (X(y)(—>A(y))for the given XS,X°, so

xeE|XVy (X(y)<->A(y)).

4.2. Proposition. The Uniformity Principle is Q-realizable.

Proof. The identity realizes every instance of it.

4.3. Corollary. CT is independent (in HAH) of the Uniformity Principle.
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Samenvatting

Samenvatting

"Realiseerbaarheid" is een verzamelnaam voor verschillende interpretaties van intuitionistische

formalismen (in dit proefschrift beschouw ik alleen uitbreidingen van de rekenkunde); in a1deze

interpretaties staat het begrip operatie centraal. Men defmieert inductief een relatie "d realiseert q)"

tussen elementen (1van een domein D en zinnen (1)van een taal L, en een zin heet realiseerbaar als

er een de D is die hem realiseert. Het domein D zit zo in elkaar dat elementeneervan een of meer

partiele functies van D naar D coderen, en anders dan in de gewone modeltheorie, wordt een

implicatie q>——>\|Jdoor (1gerealiseerd, als alle partiele functies door d gecodeerd, alle realisatoren

van (1)naar realisatoren van 1;!sturen.

Het oervoorbeeld van zo'n waarheidsdefinitie is K1eene's realiseerbaarheid uit 1945; in wezen

zijn alle andere interpretaties varianten op dit idee.

Aanvankelijk was het nut van realiseerbaarheid beperkt tot het leveren van consistentie- en

onafhankelijkheidsbewijzen; van betrekkelijk recente datum dateert het onderzoek van
realiseerbaarheid vanuit modeltheoretisch oogpunt. Men zoekt een goede kategorie van
realiseerbaarheids"mode1len" en morfismen tussen deze. Hyland heeft in 1979 ontdekt dat de

realiseerbaarheid van Kleene beschreven kan worden als de interpretatie van rekenkunde in een

elementaire topos, de zogenaamde "effectieve topos".

In dit proefschrift wordt een aantal realiseerbaarheidsdefmities onderzocht, waarbij ook dit topos

theoretische gezichtspunt aan de orde komt: topossen worden geconstrueerd die de betreffende

realiseerbaarheidsbegrippen generaliseren. Tevens worden deze interpretaties syntactisch behan

deld, en worden bewijstheoretische eigenschappen van (uitbreidingen van) de rekenkunde

afgeleid. In hoofdstuk 7 wordt een "abstracte" notie van realiseerbaarheid, geformaliseerd in een

rekenkundige theorie, gedefinieerd waarvoor de intuitionistische predicatenlogica maximaal is:

een predicaatlogische fonnule is bewijsbaar dan en slechts dan als a1 zijn rekenkundige

substitutie-instanties, bewijsbaar in deze theorie, een realisator hebben. Dit suggereert dat

realiseerbaarheid een correcte interpretatie van de intu'1'tionistischelogische connectieven geeft,

zoals ook K1eene'soorspronkelijke bedoeling was; mits men intuitionistisch redeneert (Klassiek

redenerend kan men aantonen, dat dit niet het geval is).

Al met a1 hoop ik dat dit proefschrift een redelijk beeld geeft van wat met behulp van
realiseerbaarheid kan worden bereikt.
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