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Chapter 1

Introduction

Originally, Combinatory logicand A-calculuswere designed to provide
a type-free foundation for mathematics. However, the original logical
systems of A. Church and H. B. Curry were proved inconsistent and
investigation turned to weaker systems.

Currently, CL and Aboth have the same purpose, namely to de­
scribe some of the most primitive and general properties of operators.
In doing so, they provide a basis for one of the more recent develop­
ments in mathematics, the systematic study of computations.

In these theories, functions are regarded as algorithms and not
as e.g. in analysis as graphs of mappings. Functions are no longer
equivalence classes of algorithms having the same graph but are dis­
tinguished in terms of their underlying rules. Thinking of computer
science, this is an evident and meaningful point of view: two programs
need not necessarily be regarded as being equivalent only because of
identical output production. Besides the input-output relation there
are other interesting properties such as the complexity of the elemen­
tary instructions involved, runtime and storage aspects, etc.

There are two further characteristics of these theories. First of all,
the basic operation on functions is not composition fog as in category
theory, but application Thinking again of computer science,
one can compare this particularity with von Neumann’s idea about
programs and data: programs and data are givenin the same language
and are handled equally, that is, programs can operate on and output
data that are programs themselves. There is no distinction between



objects functioning as operators and c-bjectsfunctioning as arguments.
This also means that selfapplication f (f ) is meaningful and does not
necessarily lead to antinomies as opposed to set theory, where :1:E :1:or
{:13| m ¢ :13}gives rise to Russel’s paradox. One is therefore not forced
to restrict the formation of new objects or to pursue a typed theory.
It is not contradictory to regard every applicative expression built
up from functions as a function itself. This is the usual algebraical
completeness.

Both theories are furthermore based on the principle of combina­
tory completeness. This is the principle that every algebraic function,
i.e. every function definable by an applicative expression, is repre­
sentable. For example, consider the three—placefunction h, defined
by

h(3-‘ay, 2) = 31(2)­

An instance of combinatory completeness, then, is the requirement
that h is representable.

The A-calculuswas invented in the 1930’sby A. Church It is
defined by using just variables and the abstraction operator A. Intu­
itively, A:I:.A(:c)denotes the function associating :1:with The x\­
notation can be extended to functions of more than one variable. For
example, A:1:yz.y(z)denotes the three-place function h, defined above.
However, one can avoid the need for a special notation for functions of
several variables by using functions whose values are again functions.
For example, instead of the three-place function h above, consider the
one-place function h’ denoted by Ax.(/\y.(/\z.y(z))).

This observation was first made and combined with the idea of
working without using variables by M. Schonfinkel [S] in the early
1920’s and rediscovered and turned into a workable technique by H.
Curry [Cu] a couple of years later. This system performs the same
tasks as the A-calculusand avoids technical complications with respect
to substitution and congruence. However,for this technical advantage
one has to sacrifice the intuitive clarity of the A-notation.

Schonfinkel and Curry made the observation that combinatory
completeness follows already from two of its instances. Requiring the
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following two functions

K (cc,y) = 3: ’Konstantsfunktion' (projection)
S'(:c,y,2)= 'Verschmelzungsfunktion'(substitution)

to be representable is sufficient to guarantee combinatory complete­
ness. This means that a structure (A,*) having the following two
properties:

(i) * is a binary operation on A (algebraical completeness);

(ii) there are objects K, S E A such that

(1) K*a*a’=a,
(2) S*a*a’*a"=a*a">I<(a'=I<a”),

for all a, a',a" E A;

is combinatory complete. For example, observe that S’* K is a repre­
sentation of the function h defined above:

S'*K>I<a>I<a'>I<a"=K*a'*(a=I<a’)*a"=a'*a".

Such structures are called combinatory algebras. But be warned: they
are in fact algebraically pathological in as much as they are, except
for the trivial one-point structures, never associative, never finite and
never commutative.

One can carefully weaken the requirement of algebraical complete­
ness while preserving combinatory completeness. This was first done
by S. Feferman In such a partial combinatoryalgebra,application
need not to be defined everywhere. It is even legitimate to consider
functions that may be undefined within their ’domain’. This feature
corresponds to the situation where a computation initialized with data
meeting the input specifications does not terminate.

When I started my research at the Mathematical Institute of the
University of Amsterdam my supervisor Anne S. Troelstra confronted
me with a puzzle concerning intuitionistic finite type arithmetic ­
‘a system which is embedded as a subsystem also in the type-free
theories of operators. I could not solve it then and I cannot solve it
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now. But going to and fro between fruitless attempts to construct
a structure meeting the requirements and equally fruitless attempts
to show the impossibility of such a phenomenon I came across some
new construction methods for (partial) combinatory algebras, some
pathologies and some answers to problems I had not thought of before
but which I found worth writing down.

This is the result. It is a collection of five loosely connected papers
preceded by chapter 2, a whirlwind survey of some of the basic notions
for combinatory algebras.

In chapter 3 we present a construction method for extensional
combinatory algebras based on probably the simplest known model
construction, apart from term models, the graph model DA. The ba­
sic idea for DA was circulated informally by Plotkin [P] in 1972 and
rediscovered by Scott‘ [Sc]and Engeler in 1975 and 1981, respec­
tively. DA itself is not extensional, but there is a standard procedure
for constructing from DA an extensional combinatory algebra M (A),
the extensional collapse of DA. This is shown in the first four pages of
chapter 3. The remainder of this chapter is devoted to the proof that
the extensional collapse technique does not produce any new models,
but that every model constructed in this way is in fact isomorphic with
a D00-model, the probably most complex known model construction.

Scott’s D00was the first ’concrete’ model (dating from 1969), and
the one whose influence on the semantics of A and CL has been the
greatest. Moreover, it has had an impact on abstract lattice theory,
having sparked off the study of a new class, the continuous lattices
(cf. Gierz et al. The frameworkin which Scott constructed his
nonsyntactical /\-models is that of the reflexive completepartial orders.
In chapter 4 we modify this approach in order to construct nontotal
extensional combinatory algebras. We introduce the notion of a p­
reflexivecpo and describe a construction method for such structures.
Unlike D00 this construction method is not a ’projective limit’ but
is again an extensional collapse technique working on graph models.
The final section of chapter 4 comprises some properties of the models
constructed in this way. Chapter 3 can be skipped without interfering
with the reader’s comprehension of chapter 4.

The word ’continuous’ suggests topology, and indeed every cpo has
a topology called the Scott topology, whose (strict) continuous func­
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tions are exactly those representable in a (p-)refiexive cpo. Chapter
5 deals with cardinality aspects of such topological(partial) combina­
tory algebras. It turns out that both reflexive and p-reflexive cpo’s
are uncountable and therefore essentially not effective. Chapter 3 and
4 can be skipped without interfering with the reader’s comprehension
of chapter 5.

As such, topological (partial) combinatory algebras are probably
the most accomplished known models. Engeler and Scott already
showed that every applicative structure can be embedded in such
a model. In chapter 6 we extend Engeler’s proof in order to show
that every applicative structure can be embedded into an extensional
topological (partial) combinatory algebra. The embedding results rely
heavily on the constructions introduced in chapter 3 and 4 and, al­
though we briefly recall the main ingredients involved, the reader is
advised to consult the earlier chapters.

Inside a (partial) combinatory algebra, there are ’internal’ versions
of the finite type structure over w, which form models of H A”. One
may well wonder which functionals of finite type belong to these struc­
tures. We tried to settle this question in chapter 7 for some known
models, including DA, P0,, T“’,Hw and D00-models derived from com­
plete lattices. It turns out that the intensional finite type functionals
coincide with the extensional finite type functionals in all these mod­
els and that, except for Hw, the type-2 functionals are precisely the
countable or continuous type-2 functionals of Kleene and Kreisel. This
is proved in section 3 and 4. The remainder of chapter 7 is devoted
to questions concerned with the compatibility and interdependency of
extensionality, weak extensionality and finite type extensionality. In
particular, we prove that extensionality does not imply finite type ex­
tensionality. Except for examples picked from the preceding chapters,
chapter 7 is totally selfcontained.



Chapter 2

Preliminaries: Theories,
Models and Methods

This chapter briefly reviews the basic definitions of the syntactic and
semantic properties of combinatory logic and A-calculus. They can be
found in any text book, e.g. [B], [H,S], and some of them will appear
once more in the chapters to follow.

2.1 CL, A,CL+A5,CL+EXT and A+EXT
CL is an equational theory formulated in the following language:

The alphabet of CL consists of two individual constants K and 5',
a fixed countably infinite set Vars of variables, a predicate constant
= for equality andthe improper symbols ( and ) for the formation of
terms. The set of CL-terms, C, is defined in the usual way by

(i) Vars Q C,

(ii) K,S E C,

(iii) t,t’ 6 C —> (tt’) 6 C.

One employs the usual convention of association to the left, i.e. one
just writes t1t2...t,, instead of (...((t1tg)t3)...t,,).
The formulae of CL are equations cf the form t = t’ with t,t’ E C.
Besides the standard axioms and rules for equality, CL has only two
further axioms, namely those for the combinators:
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(i) Ktt’ = t,

(ii) Stt’t” = tt”(t’t”).

The equational theory A has the following language:
The alphabet of A consists of a fixed countably infinite set Vars

of variables, an abstractor A,a predicate constant = for equality and
parentheses ( and ) for the formation of terms. The set of A—terms,A,
is defined inductively by

(i) Vars Q A,

(ii) t e A —> A:v.t E A,

(iii) t,t’ 6 A —_»(tt’) 6 A.

The syntactical conventions for A are like those for CL. Besides the
standard axioms and rules for equality, Ahas one further axiom, the
axiom of fl—conversion,and one further rule, the rule 5:

(A:z:.t)t' = t[:1::= t'],

t = t’

A:I:.t = A:I:.t’.

t[:I::= t’] denotes the result of substituting t’ for :1:in t.
There are standard translations from A to C and back. However,

Aand CL are not equational equivalent under these translations, i.e.
CL is essentially weaker. Curry extended CL by a finite set Ag of
closed equations such that CL+Ag is equivalent to A. We shall list
these five axioms below, but onlyin order to justify the notion of
a A-algebra in the following section. The reader is not supposed to
make any detailed sense of these axioms. He may be pleased to hear
that Weshall not use them in the remainder of this thesis. Now, the
axioms A5 are the following:

K = S(S(KS)(S(KK)K))(K(SKK)),



5 = S(S(KS)(S(K(S(KS)))(S(K(S(KK)))S)))(K(K(SKK))),

S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK),

S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK))),

S(K(5(K5)))(5(KS)(5(KS))) =

5(5(K5)(5(KK)(5iK5)(S(K(5(K5)))5))))(K5)­

Reverting to the idea about functions as graphs one can extend both
theories by extensionality principles. CL+EXT can be axiomatized
in a way quite similar to CL+Ag. However, for obvious reasons we
prefer to extend both the theories by the followingrule EXT:

ta: = t’:1:

t = t’,

provided :1:¢ Var.s(tt’) (in the case of A, this condition applies to free
variables only).
In extending CL by EXT one actually obtains a theory equivalent to
/\+EXT. One can thus summarize the proof theoretical strength of
the two basic systems and their extensions in the following way:

CL§CL+AgEA§/\+EXTECL+EXT.

2.2 Frorn applicative structures to exten­
sional ca’s

Corresponding to the hierarchy of theories above, there are in reverse
order not three but four classes of models.

Definition 2.2.1 M = (A,*) is an applicative structure if * is a bi­
nary operation on A. * is called application.

(i) An applicative structure M is extensional iff

Va" 6 A( aa" = a'a") ——->a = a’,

for all a, a’ E A.



(ii) A combinatory algebra (ca) is an applicative structure M =
(A, *, K, S) with distinguished elements satisfying

(1) K aa' = a,

(2) Saa'a" = aa”(a’a”),

for all a, a',a" E A. 13

Again, as in algebra, a *a’ is usually written as aa' and a1a2...a,, is an
abbreviation for (...((a1a2)a3)...a,,).
If M is a ca then M l: CL, and if M is an extensional ca then
M l: CL + EXT. One might expect that there is only one major
intermediate class of models, models for A. However, there are two,
distinguished in terms of the behaviour of K and S.

Definition 2.2.2 Let M be a ca.

(i) If M |=A,3 then M is called a A-algebra.

(ii) Define I = SKK and 1 = S(KI). A A-algebra M is a A-model
if

(MS) Va" E A( aa" = a'a") —> 1a = 1a’,

for all a, a’ E A. CI

The class of )\-models coincides with the class of weakly extensional
A-algebras. The Meyer-Scott condition (MS) is an algebraical formu­
lation of the rather syntactical condition of weak extensionality.
One thus has the following hierarchy of models:

extensional ca’s C_I_/\-models Q A-algebras Q ca’s.

From various examples in the literature it follows that the inclusions
are in fact proper.

2.3 Reflexive complete partial orders
Extensional ca’s and A—modelscan be obtained in a canonical way
from reflexive complete partial orders.

Definition 2.3.1 Let (A, E) be a partially ordered set.
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(i) D Q A is directed if D # (l and

Va, a’ e DE|a" e D( a Q a" /\ a’ I; a”).

(ii) (A, Q) is a complete partial order (cpo) if

(1) there is a _LEA such that

Va 6 A( _LQa

_Lis called bottom.

(2) supD exists in A, for every directed D Q A. D

Every cpo has a topology, the Scott topology (9, which is given by:
O E (9 iff

(i) aE0 /\ aQa’—+a’€0,

(ii) supD€ 0-+Dfl074(l, foralldirectedD.

For cpo’s A, A’, [A —>A’] denotes the continuous function space.
Avoiding the Scott topology one can also characterize [A —+A’] by: if
f : A —->A’ then ‘

f E [A —>A’] <———>Vdirected D Q A( f(supD) = sup{f(a) Ia E D}

[A —>A’] can be partially ordered pointwise by

f E9 *--*VaE A(f(a) E9(a))a

and if D Q [A —>A’] is a directed, then supD : A —+A’ defined by

(3uPD)(a) = 8uP{f(a) | f E D}

is continuous. [A —>A’] is therefore a cpo With bottom Aa. J_.

Definition 2.3.2 A cpo A is called reflexive if [A —>A] is a retract
of A, i.e. if there are

FE[A—>[A—>A]], G€[[A—>A]—>A]

such that F o G’ = id[A_,A]. Cl

10



Theorem 2.3.3 Let A be a reflexive cpo and define * by

a * a’ = F(a)(a').

Then

(i) (A, *) can be expanded to a A-model (by choosing K and 5);

(ii) (A, >I<)is extensional iff G o F = idA.

PROOF. Cf. e.g. [B], theorem 5.4.4. B

To give an idea of how a reflexive cpo can be constructed, we shall
finally describe the graph model Pu,introduced by Plotkin and Scott,
independently. The universe of P“, is the cpo ’P(w) partially ordered
by inclusion with bottom (0and supD = UD, for directed D (_:’P(w).
We let (e,,),,,Ewbe some standard coding of the finite subsets of w and
(n, m) be some standard coding of pairs of natural numbers. F and
G are then defined as follows:

F(X)(Y) = {m I36».Q Y((n,m) E X)},

G(f) = {(n,m) lm E f(6n)}­

It is easy to see that both F and G are continuous. Moreover, observe
that F(G(f))(X) =

= {m|36n E X((n»m) E G(f))}

= {m|3e.. E X(m E f(en))}

= {mlm 6 U{f(en)|e.. Q X}}

= {m | m E f (X )}, since f is continuous and {en | en <_IX} is directed

= f(X).

Thus F OG = id[p(w)_,p(w)].

11



Chapter 3

MATHEMATICS Proceedings A 89 (3), September 29, 1986

How to construct extensional combinatory algebras

ABSTRACT

We develop a slight modification of Engeler’s grap':I algebras, yielding extensional combinatory
algebras. It is shown that by this construction we get precisely the class of Scott's D0,,-models
generated by complete atomic Boolean algebras. In section 3 we construct extensional substructures
of graph-algebras and Pa)-models.

0. INTRODUCTION

0.1 DEFINITION

(i) A combinatory algebra (ca) is a structure (A, *,K, S) with =I=a binary
operation (‘application’) on A and two distinguished elements K,SeA
satisfying

AK VxeAVyeA Kxy=x

AS Vx<—:AVyeAVzeA Sxyz=xz(yz)

where xy is short for x=I=y.
(ii) Moreover, such a structure is extensional iff

EXT VxeAVyeA (VzeA xz=yz-*x=y) E}

In [E] Engeler introduced the notion of a graph algebra over an arbitrary
non-empty set. The construction starts with a non-empty carrier set A. Then
G(A) is the least set containing A such that for b e G(A) and finite B QG(A) the
pair (B,b) is in G(A), assuming that all aeA are not such pairs, that is

12



0.2 DEFINITION. Let A=#0 and G(A): = U{G,,(A)|nea)} where G,,(A) is
recursively defined by
(i) Go(A)i =24

(ii) G,,+,(A): =G,,(A)U{(B,b)|BQG,,(A), B finite, beG,,(A)}. Cl

A binary application operation 0 on the subsets of G(A) is then defined by

X0 Y: = {b|EIB§ Y((B,b)eX)}.

Engeler showed that the graph algebra (P(G(A)), 0) over a non-empty set A can
be made into a ca by isolating appropriate subsets K and S of G(A). These
structures are very elegant, since the notion of application is easy to grasp: the
result of applying X to Ydepends on the ‘elementary instructions’ (B,b) of X,
which give output b any time the input Y contains B. Since this construction
never yields extensional ca’s, we shall give:

1. A SLIGHTLY MODIFIED CONSTRUCTION FOR EXTENSIONAL CA’S

Again we start with an arbitrary non-empty set A. In the description below
we let small letters a, b, c, ..., x, y, z range over G(A) and capital letters
B, C, ..., X, Y,Z denote subsets of G(A). On P(G(A)) we define an application
operation by

1.1 DEFINITION.Xa=Y: ={b|3Bs Y (B,b)eX}U{aeA|aeX} where we
put ZsZ’<-> VxeZ£7yeZ’(xsG(,,,y) and x_<.G(,4,yholds if either

(i) x=y or
(ii) 3B3b (x=(B,b) &yeA & bsG(A,y) or

(iii) Eb (xeA &y=(0, b) & xsG(A,b) or
(iv) EIB,3B2EIb,3b2(x=(B,,b,) & y=(B2,b2) & B253, & b1sG(A)b2) D

REMARKS.Observe that for all X A °X=0=0°X, since we have assumed A
not to contain pairs of the form (B,b). So, if we want to construct an exten­
sional ca, while leaving the application operation unchanged, we are forced to
identify A with 0, which would have unpleasant consequences. Therefore
we consider the elements of A also to be elementary instructions needing no
input at all and producing themselves. Moreover, for all X {(fl,b)}°X=
= {(0,b), (B, b)} 0X . Hence {(0,b)} and {(0,b), (B, b)} represent the same
function and should therefore be considered as being equal. On the other hand
there is always a subset of G(A) which separates {(0,b)} from {(0,b), (B,b)}
if B¢0: for example, let D: = {({(B,b)},b)}. Then D°{(0,b)} =0 but
DO {(0,b), (B,b)} = {b}. Therefore we change normal set theoretical inclusion
into a relation Z SZ' which may be read as “Z’ contains at least as strong
instructions as Z”. y is at least as strong as x (xs G(A)y) is then defined by 4
clauses:

either x and y denote the same instruction (i)
or y needs no input to produce an output which is at least as strong as the

output of x (ii, iii)

13



or y needs at most as much input as x to produce an output at least as strong
as the output of x (iv).

1.2 PROPOSITION

(i) VXV)’ (X=)""X5 G(A))’)
(ii) VXVY (X; Y->Xs Y)

(iii) VxeAVyeA (x=y<->xsG(A,y)
(iv) VXQAVYQA (X; Y<-+XsY)
(V) VXJUEA (XSG(A)a)
(vi) VX(0sXsA)

PROOF. Easy. El

saw, and .<_are transitive relations on G(A) and P(G(A)) respectively:

1.3 PROPOSITION

(i) V0614 V)’ (0$O(A))’”(9,0)50(A))’)
(ii) V0614 V)’ O’5O(A)a**}’-<—G(A)(0.0))

(iii) Sam, is transitive
(iv) 5 is transitive

PROOF. (i) Let aeA and y be arbitrary. Then asG(A,y<->

a=y or 3c (y=(0,c) & asG(A,y}H

(ye/1 & a5G(A))’)or 36 (y=(0,c) & aSo(A)y)‘-*(0.a)So(,4)y­

(ii) similar. (iii) We prove with induction on n:

Vnecol/xeG,,(A)VyeG,,(A)VzeG,,(A) (xsowy &ysG(A,z-+xsG(A,z).

The transitivity of saw then follows from the observation that for all
{x, y, z} Q G(A) there is an n ea) with {x, y, 2:}Q G,,(A). If {x, y, z} Q G0(A) are

such that xsG(A)y, xsG(A,y then x=y=z. Hence XSG(A)Z. Suppose
{x,y, z} QG,,+1(A) are such that xsG(A,y, xsomy. Define

(0,u) if ueA

u otherwise
S(u): =

Then from (i), (ii) we get S(x)sG(A,S(y), S(y)sG(A,S(z). Hence there are finite
B,-gG,,(A), b,-eG,,(A) for i=l,2,3 such that S(x)=(B,,b,), S(y)=(B2,b2),
S(z)=(B3,b3), B3sB2_<_B, and b, sG(A,b2sG(A,b3. So from the induction
hypothesis it follows that B353, and b,sG(A)b3. Thus S(x)sG(A,S(z). Then
again from (i), (ii) we get xsG(A)z. (iv) follows immediately from (iii). El
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1.4 DEFINITION. Let A $0. Define M(A): =(P(G(A))/E, *, [K], [S]), where

X5 Y<->XsY & YSX

[X]: = {Y| YEX} and P(G(A))/"=' : = {[X]|XeP(G(A))}

[X]*[Y]I =[X*Y]

K: = {(3, (C,b))|beB}

S: = {(B,(C,(D,b)))|EIU(3D’sD (D’,(U, b))eB &

& Vue U.':Iu’2G(A,uE7D’_<_D(D’,u’)eC)} D

E is by definition symmetric, reflexive by 1.2(ii) and transitive by 1.3(iii).
Hence 2 is an equivalence relation.

1.5 PROPOSITION

(i) VXVY (X: Y-*XE Y)
(ii) VXEP(A)VYeP(A) (X: YHXE Y)

(iii) A E G(A)

PROOF. Easy. El

Before we show that M(A) is an extensional ca we prove

1.6 LEMMA(MONOTONICITY). ar is monotone wrt. s, i.e.
(i) VXVYVZ (X s Y—>ZXsZ Y)

(ii) VXVYVZ (X 5 Y—>XZ5 YZ)

PROOF. (i) Suppose XSY and let beZX. Then if be{aeA|aeZ} also
beZY. If b¢{aeA|aeZ} then (B,b)eZ for someBSX. Thus sinceXSY
also B: Y. Hence again beZY. (ii) Suppose X S)’ and let beXZ. If
be{aeA|aeX} then bsG(A,b’ for some b’e Y. Hence either b’eA
or b’=(0,b”) with bsG(A)b”. So there is a de YZ with bsomd. If
b¢{aeA|aeX} then (B,b)eX for some B52. Let b’eY be such that
(B,b)sG(A,b’. If b’eA then bsG(A)b’ and b’e YZ. If b’¢A then b’=(D,d)
with DsBsZ, bsG(A,d and de YZ. CI

1.7 LEMMA (EXTENSIONALITY)

(i) VXVY (VB finite (XBs YB)—>XsY)
(ii) VXVY (VB finite (X32 YB)->XE Y)

(iii) VXVY (VZ (XZ-=-YZ)->Xs Y)

PROOF. (i) Suppose for all finite B XBs YB and let beX. If beA then
beX0s Y0. Let b’e Y0be such that bsG(A)b’. Then either b’e {aeA|ae Y}
or (0,b’)e Y. SO bsG(A)b” for some b”e Y. If beEA then b=(C,c) and
ceXCs YC. Hence csG(A)c’for some c’e YC. Then either c’e {aeA|ae Y}
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or (D,c’)e Y for some Ds C. Thus again bsG(A,b” for some b”e Y. (ii) and
(iii) follow from (i) and (ii) respectively. CI

1.8 THEOREM. Let A $0. Then M(A) is a ca satisfying extensionality.

PROOF. P(G(A))/5 is clearly closed under * and from the monotonicity of
* it follows that VXVYVZ([X]=[Y]->[X][Z]=[Y][Z] & [Z][X]=[Z][Y]).
So * is a binary operation on P(G(A))/ 5. To prove AK let X, Ybe arbitrary.
Then

KXY={(C,b)|E(B_<_XbeB}Y

= {(C,b)|EIb’eX(bsG(A,b’)} Y= {b|L~7b’eX(bsG(A,b’)}ax.

Thus VXVY [K][X ][Y] = [X]. To prove AS let X, Y,Z be arbitrary and choose
X’aX and Y's Ysuch that all xeX' are of the form (D,(U,b)) and all ye Y’
of the form (D,b). Then [S][X][Y][Z] = [S][X’][Y’][Z] and [X][Z]([Y][Z])=
= [X’][Z]([Y’][Z])- We Will Show [S]IX’][Y’][Z] = [X’][Z]([Y’][Zl). i-e­
SX’Y’ZEX’Z(Y’Z). Now X’Z= {(U,b)|£IDsZ((D,(U,b))eX’)} and Y’Z=
= {b|EIDsZ((D, b) e Y’)}. Hence

X’Z(Y’Z)= {b|3Us Y’Z((U,b) eX’Z)} =

= {b|.EIUs Y’Z3DsZ((D, (U,b)) eX’)}

= {b|3U(3DsZ((D, (U,b))EX’) &

& Vu e UEIu’2 u.Z~IDsZ((D,u) e Y))}.

On the other hand

SX’Y’Z={b|EIDsZEICs Y’3BsX’3U(3D’sD((D’, (U,b))EB) &

& Vu e U£~7u’_>_G(A)uEID’sD((D’, u) e C))} =

= {b|EIb’2 G(A)b3U(3DsZ((D, (U,b’)) EX’) &

& Vu e UEIu’2G(A)uEIDsZ((D, u) e Y))}.

Thus SX’Y’ZEX’Z(Y’Z). Finally, we have to prove [K]=#[S]. As is well
known, it suffices to show [X]=#[Y] for some [X],[Y]eP(G(A))/ 5. So let
aeA (A#=fl!). Then [{a}],[{({a},a)}]eP(G(A))/E and 1 {a}s{({a},a)}.
Hence [{a}] at [{({a},a)}]. Thus M(A) is a ca and by lemma 1.7(iii) M(A) satis­
fies extensionality. D

2. THE GLOBAL STRUCTURE OF M(A)

Clearly all M(A)’s are up to isomorphism uniquely determined by the
cardinality of their carrier set A, but we also have the converse, i.e.
VAVA’ (M(A)sM(A’)->Card (A) =Card (A)). Before we prove this fact we
will state several properties of M(A). Notice that (M(A), 5) where

[X]s[Y]<-+X_<_Y
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is a complete lattice with bottom [0], top [A] and the supremum
sup F: [U {X|[X] e F}] for arbitrary Fg P(G(A))/E. We will show that some
of the lattice theoretic properties of M(A) can be expressed in M(A). First we
will prove that the binary SUP resp. INF operator is definable (in the language
of ca’s plus constants) in M(A).

2.1 LEMMA. There is a SUPA eM(A) such that
(i) VXVY([X]sSUPA[X][Y] & [Y]sSUPA[X][Y])

(ii) VXVYVZ([X]s[Z] & [Y]s[Z]—>SUPA[X][Y]s[Z])
(iii) VZ (VXVY (lZllX][0l=lXl=[Z][X][Xl & lZllXl[Y]=[ZllY][Xl)—’

—>[Z]=SUP,4)

PROOF. Define SUPA: =[{(B,(C,d))|{d} _<_BUC}].
Then SUPA[X][Y] = [{d|{d} sXU Y}]. From this (i) follows immediately.

To prove (ii) suppose [X]s[Z], [Y]_<_[Z].Then from the monotonicity
it follows that SUPA[X][Y]sSUPA[Z][Z]=[{dl{d}sZ}]=[Z]. Hence
SUPA[X][Y]s[Z]. (iii) Let Z be arbitrary such that VXVY ([Z][X][Ql]=
=lXl=[Zl[X][Xl & [Zl[X][Yl=[Zl[Y][X])- Then lXl=[Zl[X][0lS
s[Z][X][Y] and [Y]=[Z][Y][0]s[Z][Y][X]=[Z][X][Y]. Thus for arbitrary
X,Y we get from (ii) SUPA[X][Y]s[Z][X][Y]. Moreover, [Z][X][Y]s
5[Z](SUPA[X][Y])(SUPA[X][Y])=SUPA[X][Y]. Hence for all X, Y
[Z][X][Y] =SUPA[X][Y]. So [Z] =SUPA by extensionality. E]

2.2 LEMMA. There is a INFA eM(A) such that
(i) VXVY(INFA[X][Y]s[X] & INFA[X][Y]s[Y])

(ii) VXVYVZ ([Z];<.[X] & [Z]s[Y]—>[Z]sINFA[X][Y])
(iii) VZ (VXVY([ZllX]lAl=[X]=[Z][Xl[Xl &

& [Z][X][Y] =[Z]lY][Xl)—*lZ]=INFA)

PRooF. Define INFA=[{(B,(C,a'))|{d}sB& {d}sC}]. 1:]

Next we characterize top and bottom:

2.3 LEMMA.

VX [HYHZ([Y]¢[X] & [Z][X]=[X] & VX’$X[Z][X’]=[Y])

<-+([X]= [E] or ([X] = [A] & A_is finite)]

PROOF. ->: Let [Y]=#[X],[Z] be such that [Z][X]=[X] and VX’$X
[Z][X’] = [Y]. Suppose [X]#=[0] and [X] ¢[A]. Then since [0]s[X]s[A] we
get [Y]=[Z][0]~_<[Z][X]=[X] =[Z][X]s[Z][A] =[Y], i.e. [X] =[Y]. Contra­
diction. Thus [X] = [0] or [X] = [A]. Suppose [X]#=[fl] and A is infinite. We
will show A E Y. Clearly YsA. To prove As Y let aeA be arbitrary. Then
sinceAEZA asG(A,bfor some beZA. If be{aeA|aeZ} then belfls Y.
Hence asG(A)bsG(A,b’for some b’e Y. If be {aeA|aeZ} then (B,b)eZ for
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some finite BsA. Now since B is finite BaEA. So beZBs Y. Thus again
a_<_G(A,bsG(A,b’for some b’e Y. So AEY, i.e. [A]=[Y]. Contradiction.
Hence A is finite. *-: For [0] choose a0eA and define [Z]: = [{(B,a0)|B-/=fl}].
Then [Z][fl] = [0] and VX’$0 [Z][X’] = [{a0}]#=[0]. IfA is finite then choose
a0eA and define [Z]: =[{(A,a)|aeA}U{(0,({a0},a0))}]. Then [Z][A]=
=[AU{({a0},a0)}]=[A]. Moreover, if [X’]#=[A]then 'lAsX’. So [Z][X’]=
=[{({0o}:0o)}l¢lAl for all lX’l=#lAl- Cl

Observe that ({[X]|XeP(A)}, 5) is a complete sublattice of (M(A),5)
which is isomorphic to (P(A), C_:)by proposition 1.2(vi). We will finally show
that the elements of this sublattice are definable in M(A).

2.4 LEMMA. VZ (VX ([Z][X] = [X])<->3Ye P(A) ([2] = [Y]))

PROOF. ->: Suppose VX [Z][X]=[X] and define Y: ={aeA|3X
(X--_-Z& aeX)}. Clearly [Y]s[Z]. To prove [Z]_<_[Y]let beZ. IfbeA then
be Y. If b$A then b=(B,,...(B,,,a)...) for some aeA and finite B,-. So
bsG(A,aeZB,...B,,EZ. Thus bsG(A)ae Y. <—:Suppose [Z]=[Y] for some
YeP(A). Then for all X [Z][X]=[Y][X]=[YX]=[Y]=[Z]. El

Now we are ready to prove

2.5 THEOREM. VA VA’ (M(A)sM(A’)+->Card (A)=Card (A ’))

PROOF. ->: Suppose M(A)sM(A’) by some bijection 0:P(G(A,))/-=- -+
->P(G(A2))/E such that VXVY 0([X][Y]) = l9([X])6([Y]).Let BeP(A). Then
for all [X] eP(G(A))/E [B][X]= [B]. So for all [X] eP(G(A’))/E
6([B])[X] = 6([B]) and thus by lemma 2.4 6([B])= [C] for some CeP(A’). By
the same argument we also see that for all C eP(A ’) we have [C]=6([B])
for some BeP(A). So 6[{[X]|XeP(A)}] = {[X]|XeP(A’)}. Hence
Card ({[X]|XeP(A)})=Card ({[X]|XeP(A’)}) and thus by proposition
1.5(ii) Card (P(A))=Card (P(A’)). Then if A’ is finite Card (A)=Card (A’).
Suppose A’ is infinite. We shall prove that ({[X]|XeP(A)}, _<_)s
s({[X]|XeP(A’)}, 5). By lemma 2.3 there are [Y]=#[0] and [Z] eP(G(A))/E
such that [Z][0] = [0] and for all X ’aE0[Z][X ’]= [Y]. Then again by lemma 2.3
6([0]) = [0]. Now observe that for all [X], [Y] eP(G(A))/E we have
SUPA[X][fl]=[X] =SUPA[X][X] and SUPA[X][Y] =SUPA[Y][X]. Thus
for all [X], [Y] eP(G(A’))/E 6(SUPA)|.X][0]= [X] =6?(SUPA)[X][X] and
6(SUPA)[X][Y] =0(SUPA)[Y][X]. So by lemma 2.1(iii) 6(SUPA)=SUPAr.
Hence for all B,CeP(A)

[B] S ICIHSUPA [BHC] = lClHSLlPA’0(lB])6(lC]) = 9(lCl)**

‘‘’0([B])S9(lCl)­

30 ({lXl|X€P(/1)}, S)E({lXl|X€P(A’)}. 5). Hence (P(A), Q)-”=(P(A’).Q)
and Card (A)=Card (A’) follows immediately. 4-: Easy and left to the
reader. Cl
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Let (D1, 5 ,), (D2, 52) be complete partial orders (cpo), then [D,->D2] is the
set of continuous maps considered as a cpo by pointwise ordering. It is well
known that every cpo (D, 5’) with (D, s’)-.~=[D-+D] by some continuous
bijection can be made into an extensional ca. In [S1], [S2] Scott showed how
to construct complete lattices (D0,, 5 0,); [D,,->D0,]-starting with an arbitrary
complete lattice (D0,50). This construction can be done also for cpo’s rather
than complete lattices. Now, the question arises whether we get different ex­
tensional ca’s by the graph construction. The answer is no. We shall show that
for every A $0 and every cpo (D0, so) we have

M(A)E(Do.., *m.Km.5m)“(P(A). §)E(Do» 50)­

Hence the graph construction yields up to isomorphism exactly those ca’s
(D0,, =o=,,,K0,,S0,)with (D0, 50) a complete atomic Boolean algebra. We shall
first give a brief outline of the D0,—constructionand extract the properties of
D0, we will need in the proofs below. For a very thorough discussion see [B].

Let (D0,50) be a cpo and define inductively (D,,,,,, 5,“): =[D,,->D,,].
Then (D0,, 50,) is the cpo with

D0,: = {(x0,x,, )| Vnew(x,,eD,, & (p,,(x,,,,)=x,,} for certain fixed

projections (p,,E [D,,+1->D,,]

(;c)s0,(j») iff I/new x,,s,,y,,

sup F: = (sup {x,,|xeF}),,0w for directed FQD0,

J. 0,: =( J. ,,),,ew/ where J.,, is the bottom of (D,,, s,,).

Furthermore, there are projections P,, e [D0,-+D0,], such that (P,,[D0,], 5 0,) is
a sub-cpo of (D0,, 50,), and isomorphisms fun,,e [P,,[D0,]->D,,]. We will
abbreviate P,,(x) with x,,. Then the following laws of projection hold in
D0,: VxeD0,Vnecol/mea)

(L1) (xn)m =xmin{n,m}

(L2) nsm—>x,,s,,x,,,s0,x

(L3) x=sup {x,,|necu}

(L4) -1-n = -L on

(L5) (sup F ),,=sup {x,,|xeF} for arbitrary subsets F g D0, with existing
sup’s.

Moreover, a binary application operation =r,,is defined on D0, which satisfies
the below laws of application: Vx6 D0, Vy5 D0, Vn 6 cuVm e w

xn+l*ooy=xn+l*ooyn=(x*ooyn)n

(L7) xO*ooy=x0:(x*oo-Loo)0

(L8) (sup F) =I=0,x= sup {y =I=0,x|y e F} for arbitrary F g D0, with existing
sup’s
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(L9) x=I=o.,supF: sup {x=I=a,y|yeF} for directed FQDQ,

(L10) Vz (ys.,,z—>x=I=o,,ys.,,x*°.z&y*,,xs.,.,z*.,.,x) (monotonicity)

(L11) Vzx*.»zS....y*....z-*xs...y
(extensionality)

(L12) Vz x*o..z=y*....z-*x=y

(L13) fun,,(x,,+1*.,,y,,)=fun,, +,(x,,+1)(fun,,(y,,)).

We turn our attention now to the particufiar Do,-models which are generated
by algebraic lattices.

2.6 DEFINITION. Let (D, 5 ’) be a complete lattice. Then
(i) xeD is compact iff for every XQD c-nehas xs ’ sup X->xs ’ sup Y for

some finite Yg X.
(ii) C(D): = {xeD|x is compact}

(iii) (D, S ’) is algebraic iff for all xeD x=sup {y|ys ’x& ye C(D)} E1

The structure of an algebraic lattice is completely determined by the dense
subset C(D). Therefore we now characterize C(Do.,). It is easy to see that if
(D0, 50) is an algebraic lattice, then all (D,,, s,,) and (D0,, 50,) are algebraic
lattices. In the sequel we assume (D0, 50) to be an algebraic lattice.

2.7 PROPOSITION

(i) Vn e to Vm e co (n s m—>C(P,,[D.,..l)Q C-:P,,,[D,,])
(ii) C(D..) = U {C(P,.[D...])|" 6 0)}

PROOF. Easy and left to the reader. C]

2.8 PROPOSITION.For all new and for all y, y’eC(P,,[D°,]) there is a
unique xy,y’e C(P,,+,[D.,,]) such that for all zeD.,,

y’ if ysmz
xy.y’*°°z= . (T)

J. 0, otherwise

PROOF. Let n ew and y, y’e C(P,,[D.,,]) be arbitrary.
Then fun,,(y), fun,,(y’) e C(D,,).

Define f:D,,—>D,, by

fun,,(y’) if fun,,(y)s,,x
f(x): = ,

fun,,( _L,,) otherwise

Then fe[D,,—>D,,]=D,,+, and fe C(D,,+,):
Supposefs,,+ lsup F for some FQD,,+1. Then

funn(y,)=f(funn(y))-snsup {g(fur-n(y))|gE
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So since fun,,(y’)eC(D,,) there is a finite FOQF such that

funn(y’)Snsup {g(fun,.(y))|geFo}­

Thus for all zeD,, f(z)ssup {g(z)IgeF0},i.e. fs,,+,sup F0.
Now define xy,y,:=fun,jl,(f). Then xy_y»eC(P,,+,[Da,]) and (T) follows

from L1, L2, L4, L6 and L13. The uniqueness of xy.y, is due to the exten­
sionality of D,,,. CI

2.9 PROPOSITION. For all new and all xeD,,,

xe C(P,,+ 1[Do.,])<-+3me coVis m.EIy,-e C(P,,[Dc,,])3z,- e C(P,,[Do.,])

x=sup {xyhziiism}

paoop. Let xeC(P,,+,[D°,,]) and define X: ={xy,z|yazeC(P,,[D,,,]) &
& zsooxagny}. Then Xg P,,+1[Dm] and x=sup X. Hence there is a finite
XOQX such that x=sup X0, i.e. there is a mew and
yo, ...,y,,,, zo,..., z,,,eC(P,,[Dm]) such that x=sup {xy"zi|ism}. D

Before we prove the characterization theorem we shall show

(P(G(/1)), / E. *) 5 (Dow *oo)

with (D0, 50): (P(A), Q). As a first step in that direction we isolate a certain
subset of Decwhich corresponds to the set of ‘elementary instructions’ G(A).

2.10 DEFINITION. Let Elem(Dm): = U {Elem,,(Dm)|n E w} where Elem,,(D.,,)
is recursively defined by
(i) Elem0(Da,): = {fun0“({a})|aeA}

(ii) Elem,,+,(Da,): =Elem,,(D,,)U{xy,z|EI finite X§Elem,,(D,,) y=sup X&
& zeElem,,(Dc,,)} E]

2.1 1 PROPOSITION

(i) Vxe Elem(Da,) VX QElem(Da,) (xs oosup X->E7x0EX xs mxo)
(ii) Vxe C(Do°)EIfinite Xg Elem(Do°) x= sup X

(iii) Vx 6 Doc,x = sup {y e Elem(Do,,)| y s cox}

PROOF. (i) With induction on xeElem,,(Do°). Let xeElem0(Do°) and
suppose xsmsup X with X; Elem(Da,).Then for some aeA

x=fun0”'({a})5o,,sup X.

Hence fun0"({a})sq,(sup X)0=sup {x0|xeX} by LS. Thus

{a} c_:U {fun0(x0)|xeX},
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i.e. {a} Qfun0(x0) for some xeX. Hence fun0"({a})so,,x0smx by L2. Let
xy,zeElem,,+ ,(Da,) and suppose xy,Z5 ocsup X for X QElem(D.,.,). Then

z=xy,z*o.,yso.,sup X=I=o.,y=sup{x*,,.,y|xeX} =

=sup {fun0"({a}),z|fun0"({a})eX or 3y’s,,,y xyz,zeX}

QElem(Da,).

Thus from the induction hypothesis it follows that zsmfung ’({a})eX or
z_<.mz’ for some xy;z,eX with y’s.,, y. Then it follows from the monotonicity
of *0, that xmsmx for some xeX. (ii) With induction on xe C(P,,[Do,]). If
xeC(P0[D°.,]) then for some finite BQA x=sup {fun0"({a})|aeB}. Let
xeC(P,,+,[Da,]). Then by proposition 2.9 x=sup {xyi,zi|ism} for certain
mew and y,-,z,-eC(P,,[Do_,]).Thus from the induction hypothesis it follows
that y,-=sup Y,-,z,-=sup Z, with finite Y,-,Z,-QElem(D.,,). So

x=sup {xyhzi|ism} =sup {xyhzz€Z,- & ism}

and

{xyi,z|zeZ,-& ism} QElem(D,,).

(iii) follows from (ii) and the algebraic nature of (Dec,500). D

2.12 DEFINITION. For beG(A) define inductively
(i) (p(a):=fun0"({a}) if aeA

¢(Ba zxsup {(p(b)lbeB},(p(b)D

2.13 LEMMA

(i) Vb e G(A) (p(b)e Elem(Do,,)
E VC6 SG(/4)C‘_’(0(b)SG(A)(fl(C))

(iii) Vx e Elem(D°,,)3b e G(A) (0(b)= x

PROOF. (i) and (iii) follow immediately from definition 2.12. For (ii) we prove

with induction on n: Vn e cuV{b, C}QP(G,,(A))(bs G(A)c++(o(b)5 °.,(p(c)). For
n :0 this is trivial. Let {b,C}QP(G,,+ ,(A)). Define

(0, u) if u EA
S(u): =

u otherwise

Then if ueA (o(u)=fun0"({u}) and (o(S(u))=xL °°’fun(')“l({u}).So from propo­
sition 2.8 and L7 it follows that (p(u)=(o(S(u)) for all ueG(A). Suppose
bsgwc. Then S(b)sG(A,S(c). So there are D,-QG,,(A) and d,-eG,,(A) for
i: 1,2 such that S(b)=(D,,d,), S(c)=(D2,d2), D2sD, and d,sG(A,d2. Then
we get from the induction hypothesis sup {(p(d)|deD2} soosup {(p(d)|deD1}
and (p(d,)s,,,(p(d2). Hence

(0(b) = ¢(S(b)) = xsup {q2(d)|deD, },¢o(d,)S coxsup {(p(d)|deD2},go(d2)= (P(S(C)) = (0(C)­
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Suppose <0(b)so..¢(c). Then </2(D1.d1)s....<o(D2.d2)with S(b)=(D1.d1), S(c)=
=(D2,d2), D,-QG,,(A) and d,-eG,,(A) for i: 1,2. So

<p(d1)=<o(S(b))*...sup {r/>(d)ld<-ID1S....¢(S(c))*a.sup {¢(d)|d €D1}­

Thus dlsmdz and D2sD, by the induction hypothesis and proposition
2.11(i). D

Next we prove

2.14 THEOREM. VA M(A)s(D,,,, *.,,,K.,,,S.,,) with (Do, _<_0)=(P(A), Q).

PROOF. Define 6:P(G(A))/E ->D.,, by 0([X]): =sup {go(b)|beX}. Then 9 is
a monotone bijection by lemma 2.12 and proposition 2.11(iii). Moreover for all
[X1.[Y] 6 P(G(A))/ 5

9([Xl[Y])=9([XY])=SUP {f/>(b)|b€XY}=

=sup {(p(b)|be{b’|£7BsY(B,b)eX} U{aeA|aeX}} =
sup {fun0“({a}),z|(aeA & aeX) or

3I3lS[Yl3b (f/?(b)=Z& (B.b)€X)} =

=sup {funo“‘({a}),z|(aeA & aeX) or

3yso..0([Y]) xy,z€ {</2(b)|b€X}}=sup {<o(b)*o.0([Y1)|b€X} =

= SUP {(0(b)|b EX} *oo9([Y])= 9([X]) *m6([Y])­

Finally, since D“, is extensional 6([K])=K,,, and 0([S])=S.,.,. Cl

Now we are ready to prove

2.15 CHARACTERIZATIONTHEOREM. For all A 1:15and for all cpo’s (D050)

M(A)E(Doo. *o..,Koo,Soo)"’(1’(/1),§)E(Do. So)­

PROOF. -+2 Suppose M(A)s(Do,,, *°.,,K,,,S°.,) via some bijection

19:P(G(A))/E ->D.,,

such that for all [X],[Y]eP(G(A))/E 6([X][Y])=6([X])*.,,6([Y]). Then by
lemma 2.4 for all XeP(A) and xeD,,, 6([X])*.,,x=6([X]). Since in Dc, we
have

VxeD.,,(x=x0<->VyeD.,,x*a,y=x)

(cf. [8], 18.4.18) we get VXeP(A) 0([X])=(6([X]))0. Thus 0’:P(A)-+Do
defined by t9’(X): = fun0(6([X])) is a bijection. Now, since A $0 Card(D0)22.
Choose d0eD0 with d0=#J. 0 and define f :D0—>D0by

do xi .1.0
f(x): =

_L0 otherwise
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Then f 6 D1. Hence there is an yeDo., such that for all zeD.,, we have

funo" ‘((10)if zi J. 0.
y*mZ= _

J. 00 otherwise.

Thus by lemma 2.3 6“(J. 0°): [0] or 6“(J. 00): [A].
Assume 0([A]) = J. on.Then from lemma 2.2 it follows that for all x, yeDm

6(INFA)xJ. °,,=x=0(INFA)xx and 0(INFA)xy=6(INFA)yx. Then it is easy to
see that for all x,yeD.,,6(INFA)xy=sup {x,y}. So for all [X], [Y] eP(A) we
have

XQ Y“’1NFA[X][Y] = [X]**9(1NF.4)9([X])9([Y]) = 9([X])"*

“*9([Y]) -<-o..9([X])”9’( Y) 5o9'(X)­

Hence (P(A), Q)s(D0, so) via 6”:P(A)—>D0defined by 0”(X)=6’(A \ X).
Assume 6(0): J. 00.Then similarly we see that 6(SUPA)xy=sup {x,y}. So

for all X, YeP(A) we have

X; YHSUPA[X][Y] = [YlH9(SUPA)9([X])9([Yl) =9([Yl)**
**0([Xl) S o..0([Y])"*0'(X) S o9’(Y)­

Thus again (P(A), ;)5(D0,s0). 4-: If (P(A),g)§(D0,s0) then clearly
(D30,*....K....So.)E(D.....*...,Ko...S....)with (D6.so)=(P(A). 9). Hence from
theorem 2.12 it follows that M(A)s(D,,,, =I=.,,,Km,So.,).D

3. EXTENSIONAL SUBSTRUCTURES OF (P(G(A)), 0) AND Pa)

As already mentioned in the introduction Engeler’s graph algebra (P(G(A)), 0)
is never extensional. However, there is always a substructure which can be made
into an extensional ca, provided A $95. We will show this by embedding
(P(G(A))/ 5, *) isomorphically into (P(G(A)), 0).

3.1 THEOREM. VA (P(G(A))/2, a=)c.(P(G(A)). °).

PROOF. Define 9:P(G(A))/E —*P(G(A))by 0([X]): = U {ZIZEX} and Ob­
serve that U{Z|ZEX} EX. Then 6 is an injection. Moreover,

9([X])-0([Y]) = {bl3B ; 6([Y]) (B.b) e 0([X1)}=
= {b|EIBgu{z]zs Y} (B,b)e U-{Z|ZsX}} =
= {b|£~7BsY {(B,b)}sX} = U{Z|ZsXY} =6([XY])=9([X][Y]). D

As known from the literature the Pw"‘-models are non-extensional ca’s,
whose structures depend on the specific codings c of pairs of natural numbers
and e of finite subsets of w used in the construction. Given two bijections
czwz->a), e:w->{XeP(w)|X finite} Pw“ is the model (P(co),I) with the
application on P(cu) defined by

X: Y:= {mew|3new(e(n); Y& c(n,m)eX)}.
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In [S3] Scott presents a very elegant method to construct extensional sub­
structures of the Pa)“-models. Here we will give a more elementary technique
by embedding (P(G(Ac,e))/E, =I=)isomorphically into Pa)“ for a certain set
Ace. However, for rather ‘nice’ codings only this technique will yield non­
trivial extensional substructures.

3.2 DEFINITION. Let c:w2—>w, ezcu->{XeP(w)|X finite} be arbitrary.
(i) Define Age: = {necu|c(e”‘(fl),n)=n}

(ii) For be G(Ac,e) define inductively

(o(n):=n if neAc,e

¢(B,b): =c(e“({co(b)|beB}).<o(b))

(iii) Define 6:P(G(Ac,e))/E -w) by 6([X]): = {(0(b)|be U {Z|ZEX}} D

3.3 LEMMA. VIX] E P(G(Ac,e))/E V[Y] E P(G(Ac_e))/E
(i) 9([Xl) = 9([Yl)“’[Xl = [Y]
(ii) 9([X][Y])=9([X])l9([Yl)

PROOF. (i) +- is trivial. For -+, we prove with induction on n

V”6CU EG(/46,9)Vb,EG(Ac'e) = G(Am')b,& blg G(/4(_'e)b.

Then if 6([X]) = t9([Y]), we have X .=_Y and thus [X] = [Y]. Clearly, this holds
for n=O. Let b,b’eG,,+,(Ac,e) and define

(0,u) if u EA“

u otherwise.
S(u): =

Then if ueAc’e it follows from definition 3.2 that (p(S(u))=(p(u). Suppose
<o(b)= <o(b’).Then also <o(S(b))= <o(S(b’)). Hence c(e ’ ‘({¢(b)|b 6 D1}). ¢(d1)) =
=c(e‘ ‘({¢(b)|beD2}). ¢(d2)) where S(b)=(D1.di) and S(b’)=(D2.d2)- So
{cp(b)|beD,} = {q2(b)|beD2} and (o(d,)=(o(d2) and from the induction hypo­

thesis it follows that D1sD2 and a’,sG(Ac_e)d2,d2sG(Am,d,.Hence

S.G(A(_,'e)S(b’) and S G(A‘_,'e)S(b).

Thus

bSG(ACe)b, and b’SG(Ace)b.

(ii) By the proof of theorem 3.1 we have

U{Z|ZEXY}=U{Z|ZEX}°U{Z|ZEY}=

-—e{b!E1"B;U{Z|ZEY}(B,b)eU{z;’|ZEX}}.
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Hence

9([Xl[Yl)=9(lXY])= {w(b)lb€U{Z|ZEXY}} =

= {go(b)|3Bg U{Z|Z——.=Y}(B,b)e U{Z|ZEX}} = {(o(b)|3 finite

B QP(w)(B 9 9([Y]) & C(€”1(B).(0(b))€ 9([X]))} =

= {"76 w|3n €w(e(n) E 0([Y]) & CO1,in) E 9([X]))} = 9([X])I9([Yl)­

C]

3.4 THEOREM. For all bijections czcuz-rw, ezw-’{XeP(w)|X finite}

(P(G(Ac’e))/E, =I=)C»Pa)c"'°. C]

Thus if Ac,,_,¢fl,i.e. if for some n ecu c(e"(0),n)=n then Pw“ has a sub­
structure which can be made into an extensional ca.

EXAMPLES. Let e be the standard coding of finite subsets of to defined by

e(n)= {k0,...,k,,,_,} with k0< <k,,,_,<->n=2"°+ +2’<m«­

Then e(0)=O. Consider the two codings of pairs c and c’ given by

c(n,m)=%(n+m)(n+m+ 1)+m

c’(n,m)=%(n+m)(n+m+1)+n

Then Ac,e={0} and Ac/,3: {0, 1}. By theorem 2.5 M(Ac,e).=EM(Ac,,e).Hence
Pa)“ and Pw""* contain non-isomorphic extensional ca’s.
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Chapter 4

THE JOURNAL or SYMBOLIC LOGIC

Volume 52, Number 3, Sept. 1987

ON THE EXISTENCE OF EXTENSIONAL PARTIAL
COMBINATORY ALGEBRAS

Abstract. The principal aim of this paper is to present a construction method for nontotal
extensional combinatory algebras. This is done in §2. In §0 we give definitions of some basic
notions for partial combinatory algebras from which the corresponding notions for (total)
combinatory algebras are obtained as specializations. In §1 we discuss some properties of
nontotal extensional combinatory algebras in general. §2 describes a “partial” variant of
reflexivecomplete partial orders yielding nontotal extensional combinatory algebras. Finally,
§3deals with properties of the models constructed in §2, such as incompletability, having no
total submodel and the pathological behaviour with respect to the interpretation of
unsolvable A-terms.

§0. Introduction. Extensional combinatory algebras play an important role in the
semantics of the /l-calculus. They form a proper subclass of the so-called partial
applicative structures (pas). A pas is an untyped structure, where the objects may be
thought of as operations which can be applied to each other, though the result of an
application need not exist. In such a structure self-application is meaningful, but is
not necessarily everywhere defined.

0.1. DEFINITION.(i) M = (A, *) is a partial applicative structure ifl' * is a binary
operation on A, called application, which may be partial.

(ii) A pas M is total ill a * a’ is defined in M for all a, a’ e A. |:]
The pas’s are exactly the models of the theory LPT (logic of partial terms) as

described in [Be]. The language of LPT consists of a fixed countably infinite set
Vars of variables and a single binary operator AP for term formation, which
however will never appear explicitly: we let x, y, z, x0,x1, . .. range over Vars and
instead of AP(x, y) wejust write xy and employ the usual convention of association
to the left. Moreover, there is a predicate constant = for equality and the symbol
(not a predicate) 1 for being defined. The rules for the formation of terms and
formulae are as usual, except there is an additional rule: if t is a term, then ti is an
atomic formula.

The propositional axioms and rules of inferenceare those of first-order predicate
calculus. The quantifier rules and axioms are as follows:

¢~w ¢+w
, '3— (XnotITCCIn
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Vxgo & ti —>a.p[x:= t],

cp[x:= t] & ti —>3x cp.

For the equality axioms we introduce the abbreviation t 2 s for (ti v si —>t = s):

x=x&(x=y—>y=x), t:s&go[x:=t]—>cp[x:=s].

In LPT = and AP are assumed to be strict (STR):

t=s-—>ti&si, tsi—>ti&si.

Finally, variables are assumed to be definecz xi for every x e Vars.
Throughout the above list of logical axioms and rules of LPT, t and 5 are

arbitrary terms, whereas x and y are variables. Moreover, (p[x := t] is the formula
obtained from (pby simultaneously replacing every free occurrence of x in (pby t.

The semantics of LPT are clearly partial structures M consisting of a set A and a
partial binary operation * interpreting AP. In formalizing logic with a binary partial
operation, i.e. logic permitting the formation of terms which do not necessarily
denote anything, one has to be careful. In particular the satisfaction relation M l= (p
between partial structures on the one hand and formulas cpof LPT on the other
needs careful attention. In the literature concerning this subject there seems to be
both an assumption that the definition is too obvious to need stating and a
disagreement about what the definition should be. To avoid misunderstanding we
emphasize that throughout this paper we use Definition 0.3.

Before we define satisfaction of a formula <9of LPT for such a partial structure M,
it is necessary to make clear what it means for the interpretation of a term t under a
given assignment Qof values to the variables to be defined in M.

0.2. DEFINITION.Let M = (A, *) and Q:Vars —>A be arbitrary.
(i) The set of terms over a pas M, denoted T(M), is inductively defined by

x e Vars —+x E T(M),

a e A —>ae T(M),

t,t’E T(M)—>t:'e T(M).

(ii) For t e T(M), [t]f," is defined inductively by

[x]§‘ := g(x) for every x e Vars,

[a],’,":= a for every a e A,

[”,]M____{[t]:," * [t']:," if [t]3’, [V]? and [I]? * [t']:l are defined,‘’ ° undefined otherwise. D

We now define the notion of satisfaction of a formula (pof LPT:
0.3. DEFINITION.Let M = (A, *) be arbitrary.
(i) For arbitrary assignments QM, Ql= gois defined inductively as follows:

(1) M,g |= ti ill" [t]f," is defined in M,

(2) M,g # t = t’ iff both [t]f,” and [t’]f," are defined in M and are equal.

The clauses for the connectives and negation are as usual, but bound variables refer
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to denoting terms only, i.e.

(3) M,g l= Elx(p iff there is an a e A such that M, g(x:= a) l= cp.

(4) M,gl=Vxgo iff for allaeA,M,g(x:= a)l=go.

Here Q(x:= a) is the assignment defined by

Q(x==a)(y) = a if y E x, e(x:= a)(y) = e(y) if y i x,

where E denotes syntactic identity.
(ii) M l= goill for all assignments Q, M, Ql= (p. E]
As such, pas’sare not our main interest. We shall restrict our attention to a proper

subclass. The property that distinguishes the members of this subclass from other
pas’s is the property of combinatory completeness, which states that every algebraic
function, i.e.every function definable by a term, is representable by an element. For a
total applicative structure M combinatory completeness is usually defined by

cc’: For every t e T(M) with variables among fc,M l= 3y\7'fc(yYc= t).
One then has the combinatory completeness theorem, proved by Schonfinkel [S],
which states that combinatory completeness follows already from two of its
instances, namely the well-known axioms for the combinators K and S. So M is cc’
if?" there are K, S E A such that M l= AK’ & AS’, where AK’: ‘v’xVy(Kxy= x)
and AS’:VxVyVz(Sxyz= xz(yz)). It is tempting to translate cc’ and the axioms
AK’ and AS’ into the partial context by simply replacing = by 2. However, this
translation does not preserve the validity of the above theorem, since there are com­
binatorial incomplete pas’s satisfying Vx\7'y(Kxy2 x) and ‘v’xVyVz(Sxyz2 xz(yz)).
We have relegated the proof of this pathology to an appendix. To get the desired
algebraic characterization of combinatory completeness one has in fact to
strengthen AS’ into

VxVyVz(Sxyi & Sxyz 2 xz(yz)).

But then cc’ also needs revision in the following way:
0.4. DEFINITION.(i) A pas M is called combinatory complete (cc) ill‘ for every

sequence xo, . . . , x,, and every t e T(M) with Vars(t) 9 {x0, . . . ,x,,}

Ml: 3yVxo"'Vx.,(yxo"'x,.-Ii&yxo"°x..=t)­

Here Vars(t) is the set of variables in t.
(ii) A partial combinatory algebra (pca) is a structure M = (A, *,K, S) with (A, *) a

pas and K, S e A such that M l= AK & AS, where

AK: VxVy(Kxy 2 x),’ AS: VxVy\7’z(Sxyl& Sxyz 2 xz(yz)). [3

Clearly, for total pas’s cc and cc’ are equivalent, and so are the notions of
combinatory algebra (cf. [B, p. 90]) and partial combinatory algebra.

The strength of a pca is that in it one can simulate the operation of /l-abstraction
by using only the two combinators K and S.

‘We leave it to the reader to verify that AK is in fact equivalent to AK’ for pca’s.
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0.5. DEFINITION.Let M be a pca. Define for all variables x a map (x): T(M)
—>T(M) inductively by

<x)x := SKK,

<x>t:= Kt if t E a e A or t 5 y for some variable y $ x,

<x>(tt’)== S(<x>t)(<x>t’)- E}

0.6. PROPOSITION.Let M = (A, *, K, S) be a pca. Then
(i) M l= Vx(Kxi & Sxl).
Moreover, for all variables x and t e T(M)
(ii) Vars((x>t) = Vars(t)\{x},
(iii) M l= (x>ti,
(iv) M l= (<x>t)x 2 t.
PROOF.(i) Let a e A. Then M l= Kaa 2 a by AK and so M l= Kaal. From AS we

get M l= Saai. Thus STR yields M l= Kai & Sal. (ii)—(iv)are proved by simulta­
neous induction on the complexity of t, using (i), AK and AS. [:1

In total pca’s we usually define <x>t := K1,if x atVars(t). In the partial context,
however, we have to make the above modification, since otherwise we cannot
prove O.6(iii).As a consequence (x) is less well-behaved with respect to substitution.
That is, for arbitrary t, t’ with x (5%Var(tt’) we do not have (<x>t)[y:= t’] E
(x>(t[y:= t’]). For example if t E y, then (<x)t)[y:= t’t”] E K(t't”), but
<x>(t[yI= t't"]) E S(<x>t')(<x>t")­

0.7. THEOREM.Let M be a pas. Then M is cc ifl M is a pca.
PROOF. —>is trivial.

4-. By induction on the length of the sequence xo, . . . x,,. For n = 0 let t be such
that Vars(t) 9 {x0}. Then by 0.6(ii) Vars((x;,>t) = Q. Apply both (iii) and (iv) of
Proposition 0.6 to x0, t. Then

M l: <xo>tl & Vxo((<xo>t)xo 1’ t)­

Hence M l= 3yVx0(yx0 2 t). Suppose Vars(t) 9 {x0, . . . ,x,,,. 1}.By 0.6(ii)

Vars(<x,,+1)t) E {x0,...,x,,}.

From the induction hypothesis it then follows that

M l= Ely‘v’x0~-Vx,,(yx0---x,, 2 <x,,+1)t).

Combining O.6(iii)and (iv) yields

Ml: 3yVxo"'VX,.+1(yxo"'x..l&yxo"'x..+12* )- E]

0.8. DEFINITION.A pca is extensional ifl"M l= EXT, where EXT

\7’xVy(\7’z(xz 2 yz) —ox = y). E]

Recall that by Definition 0.3 we quantify over denoting terms only. So EXT is the
principle that every denoting term uniquely represents a function. Clearly for total
pca’s M, EXT is equivalent to

T for all t, t’ e T(M),M l= \7’x(tx »_~_~t’x) -> t 2 t’.
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But this does not hold for nontotal pca’s. In fact 1‘is incompatible with nontotality
in pca’s. Thus suppose M is a pca with T and M l= Elx3y—1(xyl).Choose a, a’ e A
such that aa’ is not defined in M. Then by the combinatory completeness of M there
is an a” e A with M l= \'/x(a”x 2 aa’x). So from ‘l it follows that M l= a” 2 aa’,
contradicting the assumption that aa’ is not defined in M.

Total extensional pca’s are well known. The first model was D00constructed by
Scott [S1] as a projective limit of complete lattices. But what about nontotal
extensional pca’s? Before we show that they do exist, we shall discuss some of their
properties.

§1. Some properties of nontotal extensional pca’s.
1.1. DEFINITION.A pca M is called nontrivial iff M l= ElxEly(x75y). D
1.2. PROPOSITION.Let M be a nontotal pca. Then
(i) M l= Ely\7’x—I(yxi),
(ii) Ml= S 95K, and
(iii) M is nontrivial.
PROOF.Clearly (iii) follows from (ii).
(i) Let a, a’ e A be such that aa’ is not defined in M. By (iii) and (iv) of Proposition

0.6 one has M |==(x)(aa’)1 & ‘v’x((<x>(aa'))(x)2 aa’). Hence M l= Ely‘:/xfi(yxl).
(ii) Suppose M l= S = K. Define I := <x)x and let ae A be such that M l=

Vxfi (axl). By AK and AS,

M t= a 2 S(KI)(Ka)a 2 K(KI)(Ka)a 2 1.

Thus M l= aa 2 Ia 2 a, i.e. M l= aai. Contradiction. [:1
For extensional nontotal pca’s M the nowhere-defined function in Proposition

1.2(i) is uniquely represented by an element of A. Henceforth we will denote this
element J.M.

1.3. DEFINITION.(i) A pca M = (A, *, K, S) is completable iff there is a total pca
M’ = (A’,*’,K’,S’) and an injection (p:A —>A’ such that (p(K) = K’, (p(S) = S’ and

Va 6 A\7’a’E A(M l= aa’l —>M’ l= q)(aa’) = q)(a)(p(a')).

(ii) A pca M has unique head normal forms iff for all a, a’ e A the elements K, S, Ka,
Sa, Saa’ are pairwise distinct and M |= BA, where

BA VxVx’VyVy’(Sxy = Sx’y’ —>x = x’ & y = y’). D

In [K] Klop showed that having unique head normal forms is a sufficient
condition for pca’sto be completable. For example Kleene’srecursion-theoretic pca,
where application is defined by m * n := {m}(n),has unique head normal forms and
can thus be completed. However, this theorem does not increase our knowledge
about the completability of nontotal extensional pca’s: Barendregt’s axiom BA is
incompatible with extensionality in nontotal extensional pca’s.

1.4. PROPOSITION.Let M be a nontotal extensional pca. Then M #5 BA.
PROOF.SJ_MK = SK J_M,since SJ_MK and SK LM are both nowhere defined. But

clearly _LMaé K. [:1
In fact we have

1.5. THEOREM.Nontotal extensional pca’s are not completable.
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PROOF.Let M = (A,*,K, S) be a nontotal extensional pea and suppose M’
= (A’,*’,K’, S’) is a completion of M via some injective homomorphism (p.Define
a:= K(KK), a’ := K(KS). Then M l= SaJ_M= Sa’iM,, since M is extensional and
both SaJ_M. and Sa’lM are nowhere defined. So M’ l= S'q0(a)(p(_l_M)=
S’<p(a’)cp(LM).Then

M’ l: K’ = S'<P(a)</J(iM)K' = S'<P(a’)<P(iM)K' = 5'­

Hence M l= K = S, contradicting Propositicn 1.2(ii). [I
Having seen that nontotal extensional pca’s do not arise as submodels of total

pca’s, we turn our attention to the inside. None of the models we shall construct in
the next section possess a total submodel. This is probably merely a characteristic of
the construction given in §2 and not a property of nontotal extensional pca’s in
general. However, one can prove the following:

1.6. PROPOSITION.No nontotal pca has a total extensional submodel.
PROOF.Let M = (A, *, K, S) be a nontotal pea and suppose M’ = (A’,*, K, S) is an

extensional total submodel of M. Since M’ is total, one has M’ l= \7’x\7’y(SKxy
= Klxy), where I := (x)x. Thus from the extensionality of M’ it follows that
M’ l= SK = KI, hence M l= SK = KI. So M l= \7’xVy(y2 Klxy 2 SKxy 2
K y(xy)), i.e. M |= \7’xVy(Ky(xy)1). Then STR yields M l= Vx\7’y(xy1).
Contradiction. [:1

Hence a fortiori no extensional nontotal pca has a total extensional submodel.
Total extensional pca’son the other hand can have total extensional submodels. The
substructure of Do,generated by K and S, for example, is always a total extensional
submodel (cf. [B, p. 514, Theorem 20.1.5(ii)]}.

§2. A construction method for nontotal, extensional pca’s. Suitable structures,
which under certain circumstances can be made into total extensional pca’s, are the
complete partial orders (cpo). As is well known, a cpo which is isomorphic to its
continuous function space defines in a natural way an extensional }.-model or,
equivalently, an extensional total pca. We shall first prove an analogous result for
nontotal extensional pca’s.

2.1. DEFINITION.(i) Let (A, 3,.) be a partially ordered set. A D E A is directed ifi"
D ;£ Q and for all d, d’ e D there exists a d" e D such that d SAd” and d’ SAd”.

(ii) A = (A, SA, LA)is a complete partial order iff (A, 3,4) is a partially ordered set,
_L,,e A is the least element of A, and every directed set D E A has a supremum
sup AD e A.

(iii) Let A, B be cpo’s and f: A -+ B. f is continuous iff for all directed D E A
f(sup,,D) = supB{f(d) d e D}. Moreover, f is called strict iff f is continuous and
f(J—A) 1' J-B° E]

2.2. LEMMA.Let A, B be cpo’s. Then:

(i) [A —>B] := {f: A —+B | f continuous} is a cpo with

f SL4->319 Va5 A(f(a) 53 9(0)),

_.l_[A_,B]: E A._J_B,

sup D = }.ae A.sup{f(a)|fe D}.
[A-’B] B
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(ii) [A T»B] := {f: A —+B|f strict} is a subcpo of [A —>B].
(iii) A x B is a cpo with

<a,b>g,,,.B<a’,b’> ifl asAa’andbsBb’,
-LAXB = <-La: -I-B>9

sup D = <sup D’,sup D">,A X B A B

whereD’= {aeA|ElbeB(a,b> ED},D” = {beB|ElaeA<a,b) ED}.
PROOF. Routine. [:1
One might expect that if one lets LAplay the role of the “undefined” in A, A 3

[A —>A] could result in a nontotal extensional pca by taking A\{J_A} as a model.
But J_Acorresponds under the isomorphism to _L[AsA]= la 6 A.J_A,the nowhere
defined function, which by Proposition 1.2(i)has to be present in every nontotal pca.
Thus we should rather try A\{J_A} '5 [A —>A] as a starting point. But this attempt
will fail to satisfy extensionality, since two functions in [A —>A] which differ only in
_LAcorrespond under the isomorphism with two different operators having identical
applicative behaviour on A\{J_A}. We shall show that A\{_L,,} ’_‘—_'[A ? A] is a
sufficient condition for cpo’s to be successful candidates for nontotal extensional
pca’s.

2.3. DEFINITION.Let A be a cpo.
(i) A is called p-reflexive iff there are F e [A —>[A ? A]], G E [[A -5-»A] —+A]

such that range(G) E A\{J_A} and F - G = id[A?A].
(ii) Let A be p-reflexive via maps F and G. Define a partial application operation *

on A\{LA} x A\{_LA}by

* ,_ F<a)<a'> if F(a>(a'> as L...
a a '_ undefined otherwise.

(iii) PAS(A):= (A\{J_A}, *). E]
2.4. PROPOSITION.Let A be a p-reflexive cpo via maps F and G. Then PAS(A) is a

nontotal pas.
PROOF.Clearly PAS(A) is a pas. Moreover, by Definition 2.3(ii), G(/la e A._LA)

represents the nowhere defined operator in PAS(A). [:|
We can interpret 2.-termsover PAS(A) in PAS(A) in a way very similar to that for

the total case, with the obvious modification that this interpretation will now be
partial.

2.5. DEFINITION.Let A be a p-reflexive cpo via maps F and G.
(i) The set of }.-terms over PAS(A), denoted A(PAS(A)), is inductively defined by

x e Vars —+x e A(PAS(A)),

a e A\{iA} —+a e A(PAS(A)),

t, t’ e A(PAS(A)) —+tt’ 6 A(PAS(A)),

t e A(PAS(A)) —>}lx.t e A(PAS(A)).
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(ii) Let g:Vars—>A\{J_A} be arbitrary. For teA(PAS(A)) define [t]:,”"S""
inductively by

[x]:,”‘S"" := Q(x) for every x e Vars,

[a]§"S"” := a for every a e A\{LA},

|:t]:AS(A) * |:tI]£AS(A) |:t]:AS(A), |:tI]:AS(A)
[tt’]§"S"" := and [t]Z"S“’ * [t’]§"S"“ are defined,

undefined otherwise,

[Alx.t]§AS‘A’ := G(/la e A.[t] ,T(;,'f’_l‘§,‘,"’),

where

[t:|pAs()A) : {-LAPASM) if [t]",'(’:‘f§“,,’,is undefined or a = J_A,"'=“ [t] 90,1:0, otherwise. [:1

Notice that [ ]:,”‘S""behaves well with respect to substitution; that is, for all t, t’
e A(PAS(A)) if [t']§”‘S"" is defined, say a = [t’]Z"S“", and one of [t[x:= t’]]:AS"”
and [t] §f,‘f‘=“‘a’,is defined, then so is the other and they are equal.

2.6. PROPOSITION.la E A.[t] Z"('x",fi§‘,"’is strict: hence [/lx.t] Z”‘S""is well-defined.

PROOF. h:=/la e A.[t],_,T(',,"Q§‘,"’is clearly a total function with h(J_A) = LA. We
prove continuity by induction on the complexity of t. The only nontrivial cases are
t 2 tltz and t 2 ,ly.t’.

t E t1t2.Fori = 1,2 both f,-:= la 6 A.[t,-]g"(',fifi‘,"’are continuous by the induction
hypothesis. Hence

<f1>f2>-'= ?t<a,a'> E A X A-<f1(a),f2(a')> E [A X A -* A X A]­

Define F’:A x A—>Aby

J_A if J_Ae{a,a’},
F (a)(a’) otherwise.F'(<a,a’>)I= {

Then F’ is continuous and

F’([t1]QT(;.'T2?.‘)"’, [t2]._T(;.".2.S.‘)"’)= [t1t2].Z};.'?2?.‘)"’.

So

Aa e A.[r1r.Jz}..'f:%.3"’ = F’ ~<f1,f2> - A.

where A = /la e A.<a, a). Thus h is continuous.
t_=_,ly.t’. Put f (a,a’):= [t’]§},'T2§,‘,f‘,,’,=0,). By the induction hypothesis f is con­

tinuous in a and a’ separately. Hencef’ := la e A.,la’ e A.f(a, a’) e [A —+[A —>A]].
Moreover, [/ly.t’]:,’(’:‘f‘="‘,,’,= G(f ’(a)) for all a e A\{J.A}. Thus from the continuity of
G and f’ it follows that h is continuous. [:1

For the definition of the satisfaction of a formula goin the expansion of the
language of LPT formed by adding }.-termswe adapt Definition 0.3, using [ ]§As""
instead of [ ]Z,”.
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2.7. PROPOSITION.Let A be a p-reflexive cpo via F and G. Then for all t, t’
E A(PAS(A))

(i) PAS(A) l= /'tx.t1, and
(ii) PAS(A) l= V/x((}tx.t)x 2 t).
PROOF.(i) follows immediately from Proposition 2.6.
(ii) For all a e A\{LA}

F([/ix-t]§AS(A))(0) = [i]Zi}'i.—'i§.)A)a

since F - G = id[A?A]. So if [(}.x.t)a]§AS‘A’is defined for a E A\{J_A} then

_LAyé [(}.x.t)a]:A5W = [t]Z('x".’__‘§‘,’”.

That is, [(}.x.t)a]§”‘S"" = [t] Z(§S;(=A,,’,.

If [(/1x.t)a]§"S"" is undefined for a e A\{LA}, then

L. = F([lx.t]Z““’)(a) = [t].Z}s.'Ti‘?.‘,"’­

Thus [t] 335;‘),is undefined. E]
2.8. THEOREM. Let A be a p-reflexive cpo via F and G, and put

PCA(A):= (PAS(A), K, S), where K = [}.xy.x] PAS“),S = [/lxyz.xz(yz)] PAS(A).Then
(i) PCA(A) is a nontotal pca, and
(ii) PCA(A) is extensional ifl G - F = idA“LA}.
PROOF.(i) follows immediately from Propositions 2.4 and 2.7.

(ii) Suppose PCA(A) is extensional. Then, since F - G = id[A;,A],we have for all a,
a’ e A\{J_A}

F (G(F(a)))(a') = F(a)(a')­

So PCA(A)l= G(F(a)) = a, i.e. G - F = idA\{iA,.Conversely, suppose G - F = id,,\{“}.
Assume for a, a’ e A\{LA}

PCA(A) l= ‘v’x(ax2 a’x).

Then F(a)(a”) = F(a’)(a") for all a" e A\{iA}, and thus F(a) = F(a’). Hence a = a’,
applying G. [:1

As an example of how a p-reflexive cpo can be constructed, we shall describe a
modification of the free PSE-algebra ([P], [Sc2], [E]), generated by an arbitrary
poset A with bottom _LA.Here, we let G(A) be the least set containing A and all
ordered pairs consisting of a nonempty finite subset B E G(A) and an element b
e G(A),assuming that the elements of A are distinquishable from ordered pairs.

2.9. DEFINITION.Let A be a poset with bottom LA and G(A) := U {G,,(A)| n e on},
where G,,(A)is recursively defined by

(i) G0(A) := A, and
(ii) G,,+1(A):= G,,(A) L; {(B, b) | B E G,,(A), B finite, B yé E, b e G,,(A)}. E]
Usually in a graph algebra a pair (B,b)corresponds to an elementary instruction

giving output b whenever the input contains B. The reason why we exclude pairs of
the form (E, b) is to guarantee the strictness of the application operation which we
shall define in Definition 2.12. Another modification is made by forcing also all
a e A\{J_A}to act as elementary instructions. This is done by defining hereditarily
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relations $6“, and s..(G(,,,,on G(A) and P(G(A)) respectively, which will enable us
to identify every a e A\{iA} with ({l,,}, a).

2.10. DEFINITION.For all x, y e G(A), x 36“, y holds if either
(i) x = y, or
(ii) x = J_,,, or
(iii)xeA&yeA&xsAy,or
(iv) x e A & 3b(y = ({J_A},b)& x Sgmb), or
(v) y e A\{J_A} & 3b3B(x = (B,b) & b sgmy), or
(vi) 3BE|CElbElc(x = (B, b) & y = (C, c) & C Sp(G(A))B& b Sam c)

where we put for all X, Y e P(G(A))

X g,.(G(,,,, Y iff Vx e X3y e Y(x sow, y). [:1

2.11. LEMMA.For all x,y e G(A):

(i) x _<_G(A,J_AH x = J_A.

(ii)xeA&yeA—>(x s,,y+—>xsG(,,,y).
(iii) 3‘5 A\{iA} “’ (35Saw)’ H ({-LA}»x)Sonny)­
(iV) .VE A\{J—A} “’ (X SG(.4).V H 3‘ SG(A)({J-A}9y))­

(v) Sam is transitive.
(vi) S_p(G(A))is transitive.
PROOF.(i)—(iv)follow immediately from Definition 2.10; (vi) is a consequence of

(v). For (v) we prove by induction on n that

Vn\7’x\7’yVz({x,y,z} E G,,(A) & x Sgmy & y gG(,,,z ——>x _<_G(,,,z).

The transitivity of saw then follows from the observation that for all {x,y,z}
E G(A) there is an n e a) with {x,y, 2} S G,,(A).For n = 0, this follows immediately
from Suppose lxvyazi E Gn+ and x SG(A)y9y$G(A)Z‘ ‘LA6 {x3y9Z}’then
by (i) x = J.A. So x gm A)z. Assume LA 9%{x, y,z}. By (iii) and (iv) we can restrict
ourselves to the case where x = (B,b), y = (C, c) and z = (D,d). Then

D —<—P(G<A»C 5P(G(A»B and '3 $G(A)C 5G(A)d­

Notice that, since {x,y,z} £1.G,,+1(A), B, C,D e P(G,,(A)) and {b,c,d} S G,,(A). So
from the induction hypothesis it follows that D Sp(G(A))B and b SG(A)d, i.e
X SG(A) Z. D

S P(G(A))is not a partial ordering of P(G(A)), since it fails to be antisymmetric. For
example, if a e A\{_LA}then

{({J-A}»0)} 5P(G<A»{0} and la} SP<G<A»{({iA}»a)}»

but {a} 96{({J_,,},a)}. We therefore define an equivalence relation E on P(G(A)) by

X E Y 1"? X Sp(G(/4))Y & Y Sp(G(A))X

and take the quotient P(G(A))/ E as our new universe. Notice that (P(G(A))/ 2-, 3),
where [X] g [Y] <—+X Sp(G(A))Y, is a cpo (in fact a complete lattice) with bottom
[Q] and the supremum sup D = [U{X|[X] e D}] for arbitrary subsets D of
P(G(A))/5. We shall first prove that (P(G(A))/2, S) is p-reflexive.

2.12. DEFINITION.(i) For [X] e P(G(A))/2 let

F([X])== l[Y] 6 P(G(A))/E-[{b|3[B] S [Y] [{(B,b)}]S [X]}]­
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(ii) Let f e [P(G(A))/:- 7»P(G(A))/2]. Define

G(f)== [{(C.c)|[{C}] S f([C])} U {iA}]- D

2.13. LEMMA.(i) F E [P(G(A))/2 —+[P(G(A))/2 -5-»P(G(A))/2]].

(ii) G E [[P(G(/1))/E -5*P(G(/1))/E] -> P(G(A))/E]
(iii) range(G) E (P(G(/1))/-=-)\{-LP(G(A))/Ei‘

(M F ° G = ld[P<G<A>)/E:P<G<A))/s1- _
PROOF.Notice that F([X ])([Q]) = [Q], since we excluded pairs of the form

(E, b). So

F ([X ])( J—1>(G(A))/S)= —LP(G(A))/2 for all [X ] 6 P(G(/1))/E

Moreover, by Definition 2.12

[{iA}] S G(f) for all f E [P(G(A))/E :> P(G(/1))/E]

Thus range(G) E (P(G(A))/s)\{L,.(GW,, E The continuity properties of F and G
are proved straightforwardly.

(iv)Let f and [X] be arbitrary. Then

F(G(f))([X]) = [{b|3[B] S [X][{(B,b)}] S G(f)}]
= [{b|3[B] S [X][{(B,b)}] S [{(C,C)|[{C}]S f([C])}]}]

by 2.11(i)

= [{b|3C sé Q finite ([C] S [X] & [{5}] S f([C]))}]

= [U{{b|[{b}] S f([C])}|C 6*Q & C finite & [C] S [X]}]
= [U{Z|3C 96®(C finite & [C] S [X] & [Z] = f([C]))}]
= f ([X])­

Here, the last equality follows from the continuity and strictness of f and the
observation that, for all X 79Q the set D = {[C]| C aé Q & Cfinite & [C] _<_[X]}
is directed and [X ] = sup D. [:1

2.14. THEOREM.Let A be a poset with bottom LA. Then PCA(P(G(A))/:—:) is a
nontotal extensional pca.

PROOF.Since P(G(A))/ E is p-reflexive it is sufficient to prove that

G . F = ld(|’(G(A))/ E)\{J.I'(G(A))/E}

(Theorem 2.8). So let [X ] E P(G(A))/ E be such that X ;-‘EQ. Then

G(F([X])) = [{(C,c)|[{C}] S [{b|3[B] S [C] [{(B,b)}] S [X]}]} U {‘LA}]

= [{(C,c)|[{(C,c)}]s [X]} u {in} = [X]. :1
§3. More properties of PCA(P(G(A))/ 5).
3.1. PROPOSITION.],.CA(,.(G(A,,,E,= [{lA}].
PROOF.For all X

F([{i.4}])([X]) = [{b|3[B] S [X][{(B,b)}] S [{iA}]}] = [fl]­

Hence [{J_A}] represents the unique nowhere-defined function in the model
PCA(P(G(A))/E). E]
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First we shall prove that PCA(P(G(A))/5) l= —i(Q1),where Q is the famous ,1­
combinator (Ax.xx)(/lx.xx).To simplify our r.otation, in this section we shall write
interpretations of closed }.-termsin PCA(P(C-(A))/E) informally, e.g. we shall write
Ax.xx rather than [}.x.xx] P’‘S‘''‘G‘’‘”/5’.

3.2. LEMMA.(i) ,lx.xx = [{(C,c)|[{c}] S F([C])([C])} u {L.,}].
(ii) Va 6 A\{_l_A}—|([{Cl}]S lx.xx).
PROOF.(i) follows immediately from Definition 2.5 and 2.12(ii).
(ii) Let a e A\{LA} and suppose [{a}] S /ix.xx. By Lemma 2.11(i), a SG(A,(C,c)

for some (C, c) with [{6}] S F([C])([C]). But by Definition 2.10, C = {LA}.So

3 F(l:{‘LA}:l)([{‘LAl:l)=
Contradiction. E]

3.3. PROPOSITION.PCA(P(G(A))/ E) l= -1(Q1).
PROOF.Suppose F (,ix.xx)(lx.xx) sé [Q]. T':Ien for some n e onthere exists a (B, b)

e G,,(A) such that [B] S lx.xx and [{(B,b)}] S /lx.xx. Let n be minimal. Since
[{(B,b)}] S Ax.xx it follows from the monotonicity of F that [{b}] S F([B])([B]).
Pick (D,d)such that [D] S [B] and [{(D,d)}] S [B]. By 3.2(ii),(D,d) SG(,,,(C,c)for
some (C,c) e B. Then [C] S [D] S [B] S /lx.xx and [{(C,c)}] S [B] S /lx.xx. But
(C, c) e G,,_1(A), since B E G,,(A).Contradiction. D

As a consequence of proposition 3.3 we now have
3.4. THEOREM.PCA(P(G(A))/ E) has neither a completion nor a total submodel.
PROOF.From Theorem 1.5 it follows that PCA(P(G(A))/ E) is not completable.

Suppose M E PCA(P(G(A))/2) is a total submodel. Then M l= SII(SII)1, where
I = SKK. Hence

PCA(P(G(A))/E) l= SII(SII)1.

But from the extensionality of PCA(P(G(A))/E) it follows that

PCA(P(G(A))/2) l= SII = }.x.xx.

So PCA(P(G(A))/E) is 91. Contradiction. lj
The A-calculusis defined by using just variables and the abstraction operator A.

The basic axiom schema is

().x.M)N= M[x:= N].

The basic rule is

M = N
lx.M = /lx.N'

The set of /1-termsA can be divided into two classes: the solvable and the unsolvable
1.-terms.

3.5. DEFINITION.(i) A closed M e A is solvable iff

3necoElN1EA---ElN,,eA(1l—MN1---N,,=11),

where I) = lx.x.
(ii) An arbitrary M e A is solvable iff there is a closed substitution instance of M

that is solvable.
(iii) M e A is unsolvable ifi"M is not solvable. [1
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EXAMPLES.Q and }.x.Q are both unsolvable /l-terms; this fact however does not
follow immediately from the definition but relies e.g. on the Church-Rosser theorem
[C-R].

The class of unsolvable }.-terms is often considered as the class of “meaningless”
terms in the /l-calculus. And indeed, as is shown in [B], the interpretations of
unsolvable }.-terms in Scott’s D00-modelsare all identified with the least element J. ,1,.
PCA(P(G(A))/2), however, behaves quite differently. From Propositions 3.4 and
2.7(i) it follows that

PCA(P(G(/1))/E) l= -1 (Q1)& lxfll.

Hence PCA(P(G(/-1))/E) l= ”1(Q 2 ,lx.Q). In the remainder of this section we shall
show that in PCA(P(G(/1))/E) we even have an a)-chain of denoting unsolvable IL­
terms.

3.6. DEFINITION.(i) To := /lx0.Q.
(ii) 7;u+13= j-xn+1-71:‘
(iii) T001: WW, where W :—:}.xy.xx. [:1
Clearly, since 9 is unsolvable, 7],is unsolvable for all n e co.Moreover, observe

that for N e A

J.l—TOON= (,lxy.xx)WN = (Ay.WW)N = WW = Tm.

Thus T00is also an unsolvable 1-term.
3.7. PROPOSITION.(i) Vn e a) PCA(P(G(A))/2) Is 7",) & '12,“ = K7}.
(ii) PCA(P(G(A))/5) l= T001& Ta, = KTOO.

(iii) Vi E a) u {oo}\7’jE to u {oO}(i sfi j —>PCA(P(G(A))/2) l= —I(T,-= 7}-)).
PROOF.(i) By Proposition 2.7(i), PCA(P(G(A))/ 5) l= ’Ij,1for all n e co.Hence, by

Proposition 2.7(ii), PCA(P(G(/1))/E)l= ‘v’x(7j,+1x = 7],= K7j,x). Thus extension­
ality yields PCA(P(G(A))/2) l= TH, = K7], for all n e co.

(ii) From 2.7(i), (ii) we get

PCA(P(G(A))/ 2) l= Toox2 (,ixy.xx)W 2 }.y.WW

Hence PCA(P(G(A))/E) l= T001.Moreover,

PCA(P(G(A))/E) l= Too2 (fi.y.WW)x 2 WW 2 Too2 KToox.

So PCA(P(G(A))/ E) l= Too2 KT“, by extensionality.
(iii) follows from the fact that by (i), (ii) and 3.3 we have

PCA(P(G(/1))/E) l= Vxo ' ' ' Vx..(77.xo' ' ' x..—ll

&fi(T..xo"'x,.l) & Tooxo°"x..l)- D

3.8. LEMMA.To 5 T1 3 g Too.
PROOF. By 3.7(iii), PCA(P(G(/1))/E)l= Vx—I(T0x1). Hence To = [{_LA}]. So

To 5 T, and To 3 Too.Suppose 7],S 7},“ and 7],3 Too.From 3.7(i), (ii) and the
monotonicity of F(K) it then follows that

T..+1= F(K)(T,.) S F(K)(T..+1) = 7I.+2,

77.+1= F(K)(T..) S F(K)Tw = T... [J

Finally we prove that T00is the supremum of {I,|n e w}.
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3.9. LEMMA.(i) Vn e w 7},“ = [{(B,b)}|[{b}] S T,,}].
(ii) W = [{(B,(C,C))|[{C}] S F([B])([B])} U {(3, J-A)l(B9in E G(/1)} U {iA}]­
(iii) Va 6 A\{iA}(‘I ([{a}] S W))­
(iv) Vn E co‘:/(B,b) E G,,(A)([{(B,b)}] _<_W& [B] S W —»[{b}] S T,,).
PROOF.(i) Observe that for all X ;é E

F([{(B,b)|[{b}] S T,.}])([X].| = Th= F(77.+1)([X])­

Hence extensionality yields [{(B,b)|[{b}] S 7I,}]= 71,“.
(ii) By 2.5(ii) and 2.12(ii) one has

W= [{(B,b)|[{b}] S [{(C,C)|[{C}] S F([B])([B])} U {J-A}]}U {iA}]

(iii) Let a e A\{i,,} be arbitrary and suppose [{a}] S W. Then [{a}] S
F([{ iA}])([{J_A}])= Q. Contradiction.

(iv) Trivially this holds for n = 0. Let (B,b) e G,,,.,(A) and suppose [{(B, b)}] S W
and [B] S W. If b = LAthen clearly [{b}] S 71,“. If b = c e A\{J_A}or b = (C,c)
then [{c}] S F([B])([B]). Pick D such that [D] S [B] and [{(D,c)}] S [B]. By (iii),
(D, c) SG(,,,(E,e) for some (E,e) e B. Then (E, e) e G,,(A),[{(E,e)}] S [B] S W and
[E] S [D] S [B] S W. Hence from the induction hypothesis it follows that
[{6}] s [{e}] s T. So by (i), [{(C.c)}] s Th+1- E]

3.10. PROPOSITION.T0,,= sup{T,,|n e w}.
PROOF.From Proposition 3.8 it follows that sup{T,,|n e co}S Too.Moreover, by

Definition 3.6(iii),

T...= F<W><W>= [{b|3[B] s W[{(B.b)}] s W}].

Let b be such that [{(B,b)}] S W and [B] S W for some finite B # Q. Then it
follows from Lemma 3.9 that [{b}] S '1},for some n e co. Thus Ta, S sup{'I;,|n
6 co}. [:1

3.11. THEOREM.There are unsolvable A-terms T0, T1, . . . , T0,,such that
(i) ToS T, SS Too= sup{T,,|ne w}and
(ii) Vie a) u {oo}‘v’je a) u {oo}(i yej —>PCA(P(G(A))/z)l= "I:-1& T}-1&‘fi(T,.

= T,-))- E]

Appendix. AK}, + AS},does not imply cc},. We shall construct a pas M = (A, *)
satisfying

AK}, VxVyKxy 2 x,

AS}, VxVy\7’zSxyz 2 xz(yz)

for some K, S e A and in addition

P1 Elxilyfi (xyi),

P2 Vxily xyl.

Then it is clear that cc},:

for every t e T(M) with variables among fc, M l==3yVfcyfc 9.»t

cannot hold for M. Thus suppose cc},holds for M and let a, a’ e A be such that
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M l= T1(aa'1)(P1). Then, by cc}, M l= Vxa"x 2 aa’ for some a” e A. That is, there is
an a” e A such that M l= Vx—I(a"x1), contradicting P2.

The construction is again a modification of the free PSE-algebra generated by the
one-point set {‘6}, i.e.

A.1. DEFINITION.Define G:= U{G,,|n e a)} with G0 := {<6}and

G,,,, := G,,U{(B,b)|Bi; G,,,B finite, b e G,,}. [I

A.2. DEFINITION.Define M := (P(G)\{Q}, *,K, S), where

X =«Y:.={b|Y¢$&3B; Y(B,b)eX} U {<g|Y¢Q&‘6eX},
K := {(3, (C, b))|b e B},

S:= {(3, (C, (D,b)))lb E B atD at(C at C]

Clearly, M is a pas.
A.3. PROPOSITION(P1&P2). (i) M h= E|x3y-1(xy1).
(ii) M l= Vxilyxyl.
PROOF.(i)LetX = Y = {({‘6},‘€)}.ThenX at Q ¢ Y.Moreover, sincc‘6 ¢ Xand

—1({‘6}E Y), X at Y = Q. Hence M l= 3x3y“I(xy1). '
(ii) Let X e P(G)\{Q}. If ‘66 X, then ‘6e X * If ‘6¢ X, then (B,b) e X for

some (B, b) e G. Hence b e X * (B u {‘6}). [j
A.4. PROPOSITION.(i) K, S e P(G)\{Q}.
(ii) M |= AK], & AS;,.
PROOF.(i) Observe that ({‘6}, ({‘6}, (6)) e K and ({‘6}, ({‘€}, ({‘6}, ‘€))) 6 S. So K, S

e P(G)\{Q (ii) is verified straightforwardly and is left to the reader. [:1
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Chapter 5

Topological PCA’s and CA’s

5.1 Introduction

Pca’s were defined as partial applicative structures in which the repre­
sentable functions are precisely the algebraic ones. This chapter deals
With yet another restriction on the models. Here Weshall only study
those structures Which are combinatory complete and are in addi­
tion equipped with a topology, such that the notions of representable
and continuous function coincide. Since there are total and nonto­
tal external continuous functions m shall define in fact two classes
of structures. The first class consists of those pca’s in which ev­
ery partial continuous function (With open domain) is representable.
These structures are nontotal and Weshall call them therefore topo­
logical pca’s. The second class, the class of topological ca’s, comprises
the total counterparts of topological pca’s. The additional condition
amounts for these structures merely to the fact that every total con­
tinuous function is representable. Topological ca’s can therefore not
be regarded as a special limit case of topological pca’s.

Definition 5.1.1 Let M = (A, >I<)be a partial applicative structure
provided with a topology.
(a) If f is a partial function from A"+1 to A, then

(i) f is algebraicover M if there is a term t E T(M) with Vars(t) Q
{$131,...,.’Bn+1} such that for all a1, ...,an+1 E A

f(a1, ...,an+1) 2 t[a:1,...,:1:n+1:= a1, ...,an+1].
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(ii) f is representable in M if there is an a E A such that for all
a1, ...,an+1 E A

a* a1* * anl A f(a1,...,a,,+1) 2 a * a1* * an+1.

(iii) f is continuous with open domain if domf is open in A”"'1 and
f : dom f —+A is continuous.

(b) M is a topological pca if

{f | f is algebraic over M} = {f | f is representable in M} =

= {f | f is continuouswith open domain

(c) M is a topological ca if

{f | f is algebraic over M} = {f If is representable in M} =

= {f If is total continuous }.El

Topological pca’s and ca’s seem to be quite incomparable with respect
to their cardinality, since there are ’fewer’representable functions on
a topological ca than on a topological pca. In the preceding two chap­
ters we have already encountered representatives of these classes. As is
readily checked, reflexive and p-reflexive cpo’s give rise to topological
ca’s and pca’s, respectively, when equipped with their Scott topology.
It is clear that the set P(G'(A)) underlying both our constructions is
uncountable. However, one might wonder how the extensional col­
lapse affects the cardinality of ’P(G(A)). This question will receive a
general answer in the next two sections.

5.2 Every topological pca is uncountable
Throughout this section we let M = (A, *) be some fixed topological
pca equipped with the topology C’)(A).To prove that A is uncountable
it is suflicient to prove that (9(A) is uncountable:

Lemma 5.2.1 If C’)(A)is uncountable then so is A.
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PROOF. For 0 E C’)(A),define the partial function fo from A to A
by:

a if a E 0,
undefined otherwise.row) = {

Then fo is representable, since f is partial continuous. Hence A is
uncountable if C’)(A)is so. [3

In the remainder of this section Weshall therefore focus on proving
that C’)(A)is uncountable. To this end recall that in any nontrivial
pea and hence in M one can develop the rudiments of recursion the­
ory. That is, one can isolate in M a copy N of ca , such that every
recursive function is numerically representable in M. We shall not
use the recursion-theoretic apparatus explicitly. We shall, however,
heavily rely on the existence in M of the copy N of w together with
a numerical definition-by-cases operator D.

Lemma 5.2.2 There is a D E A such that for all a, a’ E A and all
n,m E N

D*a*a'>I<n>I<n=a' /\ (n7ém——>D>I<a*a'*n*m=a).

PROOF. See proposition 7.1.2. B

We shall now distinguish two cases:

CASE I: card((’)(A)) = 2.

If card(C’9(A)) = 2, i.e. C’)(A)= {(0,A}, then every total function from
A to A is partial continuous and hence representable in M. Since A
contains a copy of w , A is infinite and the set of total functions from
A to A is uncountable. Thus M is uncountable.

CASE II: card((9(A)) > 2.

If card((9(A)) > 2 then N equipped with the subspace topology is
discrete, i.e.

Lemma 5.2.3 For all X Q N there is an 0 E C’)(A)such that

X Q 0 /\ 0 ON = X.
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PROOF. It is sufficient to prove that for every n E N there exists
an 0 E O(A) suchthat n E O andOflN = Solet n E Nbe
arbitrary and let 0 E O(A) be distinct from (0and A. Pick a, a’ E A
such that a E 0 and a’ ¢ 0 and define the partial function f from A
to A by

f(a"):D*a'*a*n>I<a".
Then f is algebraic over M and hence continuous. By lemma 5.2.2

= a. Thus n E f"1(O) E C’)(A).Now let m E N be such that
m 75n andsupposem E f‘1(0). Then E 0. But = a’,
by lemma5.2.2.Contradiction.Hencef‘1(0) DN =

Combining lemma 5.2.1 and lemma 5.2.3 one then has

Theorem 5.2.4 M is uncountable. D

5.3 Every countable topological ca is a
T1-space which is not regular

In [B,vM]Barendregt and van Mill raised the question whether count­
able topological ca’s do exist. Although we are not able to answer this
question, we shall try to locate countable topological ca’s - if they exist
at all - according to the axioms of topological separation.

Let M = (A, *) be some fixed topological ca equipped with the
topology (’)(A). As usual, we shall assume that M is nontrivial. We
shall first prove that M is a connected To-space. To this end recall
that any a E A has a fixed point, i.e.

Va 6 A3a' E A(a>o<a' = a’).

Thus any continuous function f : A —>A has a fixed point, i.e.

Vf : A ——>A( f is continuous ——->3a 6 A( f(a) = a)).

Lemma 5.3.1 M is a To-space,i.e. for everypair ofdistinct points
of A there exists an open subset containing exactly one of these points.
(ii) M is connected, i.e. A cannot be represented as the union of two
open, nonempty and disjoint subsets.
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PROOF. Let a, a’ E A be such that a 75a’ and define f : A —+A
by

f(a,,) :{ a 1fa 75a,a’ otherwise.

Then f has no fixed point and is therefore discontinuous, i.e. there is
an 0 E (9(A) such that f’1(0) Q’(’)(A). This 0 must clearly contain
exactly one of the points a, a’.

(ii) Assume A = 0 U0', where O, O’ are two open, nonempty and
disjoint subsets of A. Pick a E 0, a’ E O’ and define f : A —>A by

f(a,,) ={ a if a" E 0',a’ otherwise.

Then f is continuous,but has no fixed point. Contradiction with
Cl

If M is a proper To-space, i.e. a To-space which is not T1, We can
repeat the argument used in theorem 5.2.4 in order to show that M is
uncountable. To this end recall that for every pair of distinct points
a, a’ E A in a T1-space there exists an O E C’?(A)such that a E 0 and
0.’¢ 0. So, if M is a proper To-space, then there exist two distinct
points a, a’ E A such that

V0 6 (’)(A)(a E 0 ——>a’ E 0). (*)

Lemma 5.3.2 If M is a proper T0—spacethen M is uncountable.

PROOF. Since we have assumed that M is nontrivial we again have
the necessary items for a total version of lemma 5.2.3 inside M, viz.

0 a copy N of coand a numerical definition-by-cases operator D;

0 two points a,a' E A and, assuming that M is To, an open 0 E
(9(A) containing exactly one of these points.

Using the same argument as in lemma 5.2.3, one then shows that for
all X Q N there is an 0 E O(A) such that X C_I0 and 00 N = X.
Hence (’)(A) is uncountable. Now choose a,a' E A satisfying (*) and
define for 0 E C')(A) the function fo : A —>A by

f(a,,) = { a’ if a" E O,a otherwise.
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Then fo is continuous and thus representable. Hence A is uncount­
able. [3

Notice that this lemma covers‘the class of nontrivial reflexive com­
plete partial orders.

Corollary 5.3.3 Every nontrivial reflexivecpo is uncountable.

PROOF. A nontrivial cpo (D, Q) provided with its Scott topology is
proper To: one can separate two distinct points d, d’ E D by one of
the opens {d" E D | -1d” I; d}, {d" E D | n d” E d'}; however, the only
open containing the bottom element is the space D itself. I3

From lemma 5.3.1 and lemma 5.3.2 it now followsthat every count­
able topological ca is a connected T1-space. However, combining the
followingtwo well-knowntopologicalfacts (cf. e.g.

0 every connected nontrivial completely regular space is uncount­
able,

0 every countable regular space is normal,

we see that countable topological ca’s must be either proper T1 or
proper Hausdorff—spaces.Therefore

Theorem 5.3.4 Every countable topological ca is a T1-spacewhich
is not regular. III

The original question brought forward by Barendregt and van Mill
remains open.
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Chapter 6

Embedding Theorems

6.1 Introduction

This chapter deals with embeddings of partial applicative structures
into structures of increased richness.

Definition 6.1.1 Let (A, >I<),(A', at’)be two partial applicative struc­
tures.

(i) A mapping Q : A —->A’ is a morphism if for all a,a' E A

a >|<a'1—> Q(a * a’) = Q(a) *’ Q(a').

(ii) A morphism Q is an embedding if Q is injective. El

A-algebras arise as substructures of A-models, that is, as shown by
Barendregt and Koymans [B,K], for every /\-algebra (A, *, K , 5') there
exist a A-model (A' ,>I<’,K ', S’) together with an embedding Q such
that Q(K) = Q(K') and Q(S) = Q(S'). Going one step up or down
in the hierarchie of models, there is no similar correspondence: nei­
ther can x\-models in general be embedded into extensional ca’s nor
can ca’s in general be embedded into /\-algebra’s while preserving the
combinators (cf. [B,K]). The reason for this incompatibility is that
equations between interpretations of closed terms which necessarily
hold in structures of the more restricted classes need not to hold in
lower class structures. However, dropping the additional requirement
that combinators are preserved, the possibilities are less restricted.
The following result is due to Engeler.
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Theorem 6.1.2 Every pas can be embedded into a topological ca.

PROOF. Let (A, *) be a pas and DA be Engeler’s graph algebra with
underlying set A. Define the map (Eof A into ’P(G'(A)) recursively by

(I)0(a) : {G}:

Qn-l-1(a)= U{({a,}7 Ia * a"l A b E ¢'n(a * a”)}7

<I>(a) = Unew<I>n(a).

Note that <I>(a)0 A = {a} Hence a = a’, if <I>(a)= <I>(a’).Thus
<I>is injective. It remains to prove that <1)preserves application. For
this let a, a’ E A be such that a * a’ 1 and compute as follows:

‘I’(a)‘I’(a’) = {b I3B Q <1>(a')((Bib) E <1’(a))} =

= {b| 33 g <I>(a')E|n((B, b) e <1>,..,1(a))}, since B is finite

= {b|3n3a”(a" e <I>(a.')/\ a>I<a”l /\ b e <I>n(a*a”))},

= {b| 371(1)e <I>,,(a* a’) )}, using (*)

= u,,e.,<1>,,(a * a’) .—.<I>(a * a’). 1::

One can even go one step up in the hierarchie of models and can
show that pas’s are embeddable into extensional topological ca’s. This
embedding result is originally due to Scott who showed that every pas
is embeddable into a D00-model (cf. [B], 18.4.31). However, sticking
to graph algebras, we shall follow Engeler and show that every pas is
embeddable into an extensional collapse as described in chapter 3.

6.2 Embeddings into extensional topolog­
ical ca’s and pca’s

Recall that one can collapse DA onto the extensional topological ca
M (A) as follows: let I; be the reflexive and transitive relation on
?(G(A)) as defined in 3.1.1 and put

XEY+—>Xl;Y /\ YEX,
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[X]= {YWEX},
7’(G(A))/ E = {[Xl IX 6 7’(G(A))},

[X]* [Y]= [{b|E|B I; Y( (B,b) E X)} U(X D

The extensional collapse of DA, then, is

M(A) = (7’(G(A))/ 5, *, [K], [SD

Where K and S are chosen appropriately (cf. 3.1.4).
One can make ’P(G'(A))/ E into a cpo by defining

[X];[Y]<—>X§Y.

Bottom and supD are then given by [(0]and [U{X I[X] E D}], respec­
tively.

For the Embedding Theorem we now need the following properties
of Q :

Lemma 6.2.1 Let a E A, (B,b) E G(A) and X,Y Q G'(A). Then

(i) X E Y —-—>X E Y;

(ii) {a} QX <—+a E X V 3(0,b) E X( {a} I; {b});

(iii) {(B,b)} I; X .__. 3a 6 X n A( {5} I; {a}) v

El(C,c) E X(C I; B A {b} l_Z_{c}

PROOF. This follows immediately from definition 3.1.1. C1

The embedding will look pretty much the same as the one defined
in the previous theorem. However, since elements of A function in
the extensional collapse as elementary instructions, one cannot define
<I>0(a)= {a}. We therefore modify (I9in the following Way:

Definition 6.2.2 Let (A, *) be a pas. Fix ao E A and put for a E A
F(a) := ({a0}, a). Define the map (Dof A into ’P(G'(A)) recursively by

‘1’o(a)= {F00},

<I>,,+1(a)= <I>,,(a)U {({I‘(a')}, b) | a * a'l /\ b E <I>,,(a* a')},

<I>(a) = U.,,e,,,<I>,,(a). Cl
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Then

Lemma 6.2.3 For all a,a’ E A and n E w

(i) <I>(a) E <I>(a’) ——+a = a’;

(ii) ‘1* G’l“* l‘I’n+1(a)llq’n(a')l = lq’n(a * a')l­

PROOF. Notice that for all a firstly, <I>(a)DA = (lland secondly, that
<I>(a)does not contain any pair of the form ((0,b). It thus follows from
lemma 6.2.1(ii),(iii) that for all a, a’ one has

(1) {G} E ‘I’(a');

(2) if {I‘(a)} E <I>(a’),then

{F(a)} Q {I‘(a')} V 3a"( a’ * a"l /\ {a} E <I>(a'>|<a")

(i) Assume <I>(a)E <I>(a’).Then {I‘(a)} E <I>(a'),since {I‘(a)} E <I>(a).
Hence {I‘(a)} I; {I‘(a')}, by (1) and Thus a = a’, by (iii) and (ii)
of lemma 6.2.1.
For (ii) compute

{bl 33 I; <I>n(a')((3,5) 6 <I>n+1(a))} =

= {b I3a"( a * a"l /\ {I‘(a")} E <I>n(a') A b E <I>n(a* a") by (1)

= {'9 | 5 E <I>n(a* a')}, (*)

= <I>,.,(a* a’)

( (*): since {I‘(a")} I; <I>,,(a’)only if a” = a’ Thus

[‘I’n+1(a)ll‘I’n(a')l =

= [{b | 3B I; <I>n(a')((B, b) E <I>n+1(a) since <I>n_,_1(a)D A = (0

= [<I>n(a* a')].D

Now we are ready to prove

Theorem 6.2.4 Everypartial applicativestructure can be embedded
into an extensional topological ca.
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PROOF. Define 9 : A —>'P(G'(A))/' E by 9(a) = [<I>(a)].Observe
that 9(a) = .sup{[<D,,(a)]In 6 co}, since {[<I>,,(a)]In E w} is directed
by 6.2.1(i).

To prove that (9 is injective assume (')(a) = ®(a' Then <I>(a)E
<I>(a').Hence a = a’, by 6.2.3(i).

Now let a, a’ E A be such that a * a’ 1 . Then (9(a)@(a') =
sup{[<I>,,+1(a)][<I>,,(a' In E w}, since application is continuous. Hence
@(a)@(a’) = sup{[<I>,,(a* a’)] In 6 co} = @(a *a’), by lemma 6.2.3 (ii).
C]

This result may be puzzling at first sight in as much as even
nonextensional applicative structures can be embedded into exten­
sional ones. However, it is not puzzling at all once one observes
that the embedding is constructed in such a Way that distinct ele­
ments of A have different graphs under the embedding. Plunging
further into the hardware of the extensional collapse construction one
will for example discover that (-)(a)[{ao}]= sup{®(a >I<ao), 7E
sup{®(a' * a0),[{a'}]} = (9(a’)[{a0}], provided a aé a’. The puzzle
therefore reduces to the less surprising observation that having identi­
cal localgraphs is not enough to ensure that the globalgraphs coincide.
We shall come back to the issue of local versus global extensionality
in the next chapter.

In the case of (A, *) being a nontotal applicative structure, the
extensional collapse can reflect its applicative behaviour only to some
extent, since application is always defined. We shall therefore discuss
now embeddings into extensional topological pca’s.

In chapter 4 Weintroduced a construction method for extensional
topological pca’s using again essentially Engeler’s graph algebra’s. Let
us briefly recall the necessary ingredients.

This time we start with an arbitrary poset (A, EA) with bottom
_LAand let G'(A) be the closure of A under ordered pairs of finite,
nonempty subsets and elements of G(A). Again Weconstruct a reflex­
ive and transitive relation E on ’P(G(A)) such that (’P(G(A))/ E, Q)
forms a cpo with bottom [(2)]and supD = [U{X| [X] E By defin­
1ng

F([Xl) = MY]-[{b| 3[B] E [Y] [{(Bab)}] E [Xl}]

G(f) = [{(B» 5) I [{5}] E f([Bl)} U {LA}]
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(’P(G(A))/ E, E) becomes p-reflexive (cf. 4.2.12). One can therefore
define a nontotal application operation on (’P(G(A))/ E)\[(ll]by

[X] * [Y] Z { F([X])([Y]) if F([X])[Y]) # [(0]undefined otherwise.

The nontotal extensional collapse, then, is

PCA(7’(G(A))/ 5) = ((7’(G(A))/ E)\[@l, *. K7 5)

Where K and S are again chosen appropriately (cf. 4.2.8).
PC'A(’P(G(A))/ E) is in fact an extensional topological pca, since F
and G satisfy G 0 F '2 id('p(G(A))/E)\[@](Cf. 4.2.14).
Let us first state the properties of l_:_needed for the Embedding The­
orem.

Lemma 6.2.5 Let a E A, (B,b) E G(A) and X,Y Q G'(A). Then

(i) XE_Y<——+V:BEX3yEY({a:}l;{y});

(ii)X§Y—>X§Y;
(iii) {a}|;X<———>((a=J_A/\X7é(ll)V

3a’ e X n A(a g,. a’) v 3({_LA},c)e X( {a} 1; {c}));

(iv) {(B,b)} i; X e—»(ae e XnA(a ee¢,. /\ {b}; {a}) v

3(C.c) 6 X(C EB /\ {5}E {c}))­

PROOF. This follows immediately from definition 4.2.10. :1

As often with quotient spaces, one can fiddle around with the
definitions such that representatives of equivalence classes appear in
a form which is more convenient. We shall first state application in a
form which is more suitable for our purpose.

Lemma 6.2.6 For all X,Y Q G(A)

F([Xl)([Yl) = [{b| 3B E Y((B,b) E X)}U{a E XflA\{iA} IY 750}]­
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PROOF. It is sufficient to prove that z 5 z’, Where

Z = {bl-=JB'2 Y({(B,b)} ';X)}

and

Z’: {b|3B ; Y((B,b) e X)} u {a e XflA\{J.A} IY 750}.

If Y = (Dthen Z = (D= Z’, since by 6.2.5(i) B I; (0only if B = 0, but
((0,b) ¢ G'(A). Now suppose Y 750. Then

2': {b|I-]B§Y((B,b)€X)}U(Xr1A\{J_A}).

To prove that Z I; Z’ let b E Z. Then {(B,b)} E X for some B |; Y.
Hence there is an .2:E X such that either :1:E A\{_LA} and {b} I; {a:},
or a:= (C, c) and C I; B, {b} I; In the first case one has asE Z’,
in the second c E Z’, since C I; B E Y. Thus Z E Z’, by 6.2.5(i).

For the converse Weshall prove that Z’ Q Z. Then also Z’ T; Z,
by 6.2.5(ii). First observe that {b|3B T; Y( (B,b) E X)} Q Z, by
6.2.5(ii). Now let I) E X F]A\{.l_,;}. Then {({_LA},b)} Q X, by
6.2.5(iv), and {.LA}E Y, by 6.2.5(iii). Hence I)E Z. [I

For practical reasons we shall work with this definition of appli­
cation rather than the original one. We shall moreover ’restrict’ our­
selves to monotone partial applicative structures.

Definition 6.2.7 An expanded pas (A, *, EA) is monotone if
(A, EA) is a poset and * is monotone in both its arguments, i.e. for
all a, a’,a” E A

ag/‘at A a*a//l_)aI*a//1/\a*a//;AaI*aI/,

al;Aa’ A a”*ai—>a”=I<a’1/\a”*al;Aa”=I<a’.
Cl

Notice that this does not mean a restriction at all, since every partial
applicative structure (A, *) trivially becomes monotone When A is
regarded to be partially ordered by AA, the diagonal relation on A.

Definition 6.2.8 Let (A, *, QA)be a monotone pas.
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(i) Extend (A, EA) to a poset with bottom by adding a least ele­
ment, i.e. let J_¢ A and put

A+=AU_L,

E/a+= {(i,:v) Iw E A+}U EA.

(ii) Fix a0 6 A and put for a E A I‘(a) := ({a0}, a). Define the map
(Pof A into 'P(G(A"')) recursively by

‘1’o(a)= {PW},

‘I’n+1(a)= ‘1’n(a)U{({T‘(a')},b)|a * 0'1 /\ b E ‘I’n(a* 65)},

<I>(a) = Un5w<I>,,(a). Cl

Then

Lemma 6.2.9 For all a, a’ E A and n E w

(i) <I>(a) I; <I>(a') <——>a EA a’;

(ii) a * a’ l—" [(pn+1(a)l[(I>n(aI)l: [(pn(a * a’)]i

(iii) [‘1’(a)l[‘1’(a')l l<—* a * a’ l­

PROOF. Notice again that for all a E A firstly, <I>(a)F1A+ = (Dand
secondly, that <I>(a)does not contain any pair of the form ({_LA+}, b).
It thus follows from lemma 6.2.5(iii),(iv) that for all a, a’ E A one has

(1) {0} Z ‘]?(a');

(2) if {F(a)} Q <I>(a’),then

{I‘(a)} E {F(a')} V 3a"( a’ * a"l A {a} I; <I>(a'* a")

(i) Left to right follows again from (1) and (2) applying 6.2.5(iii). For
the converse it is sufficient to prove for all n

‘1’n(a) E ‘I’n(a')»
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whenever a EA a’. This is done by induction. The basis case is given
by 6.2.5(iv),(iii). Let a EA a’. By induction hypothesis we can restrict
ourselves to showing that

‘I’n+1(a)\‘I’n(a) E ‘1’n+1(a')

in order to prove <I>n+1(a) _C_<I>n+1(a’).
So let ({I‘(a")}, b) E <I>n+1(a)\<I>n(a).Then a * a" i and b E <I>,,(a*a”).
Since (A, *, EA) is monotone, it follows that a’*a” 1 and by induction
hypothesis also q>,,(a>I<a")I; <I>n(a'=I<a").Thus by 6.2.5(i) ({I‘(a")}, b’) E
<D,,+1(a'),for some {b'}2 But

{({P(a")},b)} E {({F(a")}»b')}

by 6.2.5(iv),(ii).
For (ii) compute

{bl 3B Q q)n(a,)( (B: b) E (I)n+1(a) =

= {b | 3a"( a * a"l /\ {F(a")} L"<I’,,(a') /\ b E <I>n(a* a") by (1)

E {bl b E <I>n(a =-<a’)} (*)

= <I>,,(a* a’).

( (=o<): {I‘(a")} E <I>n(a') only if a" I; a’, but then <I>,,(a* a”) I;
<I>n(a* a’)} since (A, *) is monotone.) Thus

F(l‘I’n+1(a)l)(l‘1’n(a')l) =

= H5 I33 E ‘I’n(a')( (3,5) E <I’n+1(a))}la (*)

= l(I)n(a * dill 7e 0

( (>I<): apply lemma 6.2.6 and the fact that <I>,,+1H A = (0 Hence

l‘I’n+1(a)ll‘I’n(a')l = l‘I’n(a * a')l­

(iii) Right to left follows from (ii), since F is monotone and therefore

[(0]75 [‘I’n(a * a’)} = F ([<I>n+1(a)l)([‘1’n(a)]) E F ([‘I’(a)l)([‘I’(a)])­

For the converse suppose F([<I>(a)])([<I>(a)])se [0]. Then

{b|E|B E <I>(a’)((B, b: E <I>(a) # (0.

Hence {P(a”)} E <I>(a')for some a" e A such that a * a" 1. But then
a * a’ 1, since a” E a’ and (A, *) is monotone. D
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As an immediate consequence Wethen have

Theorem 6.2.10 Let (A, *, EA) be a monotone partial applicative
structure. Then there is a monotone embedding 9 from (A, *, EA)
into PC'A(’P(G(A"'))/ E) such that for all a, a’ E A

a * a’ i<-———+G)(a)@(a') 1 .

PROOF. To prove the theorem define 9(a) = [<I>(a)].Then 9 is a
monotone injection by 6.2.9(i). For the preservation of application
combine the continuity of F and 6.2.9(ii). The last claim followsfrom
6.2.9(iii) n

Cpo’s equipped Witha Scott-continuous application operation have
been considered as the most natural structures to interpret )\-terms.
We shall finally show that every monotone pca possessing a least ele­
ment arises as a dense (Wrt. to the Scott topology) submodel of such
a structure.

The closures needed for the embedding theorem can be constructed
in a canonical way using theorem 6.2.10. Throughout What follows
We let (-3be the embedding of (A, =I<’,_C_A)into PC'A(’P(G(A+))/ E)
as defined in theorem 6.2.10, * be the partial continuous application
operation defined on PCA(’P(G'(A+))/ =‘_:)and I; be the partial order
making PC'A(’P(G(A+))/ E) into a cpo.

Definition 6.2.11 Let M = (A, >I<’,K, S, J_A,EA) be a monotone
pca with bottom and define the closure, C'(M), of M by C(M) =
(C'(A), >|<,(9(K), 9(5), €)(_LA),E) Where

C(A) := {sup{C')(a) | a E D} ID Q A directed}.Cl

Then

Lemma 6.2.12 Let M = (A, =I<’,K, 5, _LA,EA) be a monotone pca
with bottom. Then

(i) (C(24): ®(-LA)» E) is a CPO;

(ii) (C'(A), *, (9(K), 9(5)) is a pca and * is continuous with respect
to the Scott topology.
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PROOF. For (ii) observe that if K, S satisfy the axioms of combi­
natory logic in (A, =I<’),then @(K), 3(5) do so in (C(A), *), since (9
preserves application and * is continuous.
(i) Clearly, (C(A), Q, ®(_LA))is a poset with bottom, since
(A, EA, _LA)is a poset with bottom and (*9is monotone. Before we
prove that C(A) is closed under sup’s of directed subsets, observe that
foraEA,D§Aonehas

9(a) I; sup{®(a’) |a’ E D} —> Ela’E D( 9(a) _C_®(a’)) :

Assume @(a) I; sup{@(a’) |a’ E D}, i.e. <I>(a)I; U{<I>(a’)|a’ E D}.
Then also {I‘(a)} I; U{<I>(a’)|a’ E D}. Hence {I‘(a)} E <I>(a’),for
some a’ E D. But this holds only if (2EA a’. Now apply the mono­
tonicity of 6).

Now let D Q C(A) be directed and define

D’ := {a | HE S;A(E directed /\ a E E /\ sup{®(a’)la’ 6 E} E

We shall first prove that D’ is directed:
Clearly D’ 7E (ll , since D =,é(0. Let a,a’ E D’. To prove that

a,a’ [_I_a” for some a” 6 D’ choose directed E,E’ Q A such that
sup{€-)(a”) |a” E E},sup{(9(a”) |a” E E’} E D and a,a’ E E. Let
d E D be such that sup{@(a”) la” 6 E},sup{@(a”) |a” E E’} E d.
Then ®(a),@(a’) I; d. But a’= sup{(-3(6)| e E E”} for some directed
E” Q A. So ®(a) Q 9(6), @(a’) Q @(e’) for certain e,e’ E E”. Now
choose 6” E E” such that e,e’ ;A 6''’. Then ®(a),€')(a’) L; (9(e”).
Hence a, a’ EA e”.
Now since D’ is directed, sup{@(a)|a E D’} E C'(A) and it follows
straightforwardly that sup{G)(a) la 6 D’} = supD. E]

Theorem 6.2.13 Let M’ = (A’,*’,K’, S’,J_A;,;AI) be a monotone
pca with bottom. Then there is a pca M = (A, >I<,K, 5, _LA,E_ZA),with
(A, _LA,EA) a cpo and * Scott-continuous, and a monotone embedding
G)such that

(i) 9(K') = K, 9(9) = 5;
(ii) Va,a’ E A’( a >l<’a’ i<——> >|<C-)(a’)

(iii) for all a:,y E A

\7'aEA’(:1:*®(a):y*G)(a))—+\/zEA(:1:*z2y*z).
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PROOF. Let M = C(M') and apply lemma 6.2.12. The last claim
follows from the continuity of *. D

In [Sa] Sanchis introduced a H}-variant of the well-known model
P0,, the so-called hypergmphmodel Hw, by defining on the universe
’P(w)a total application operation which is monotone with respect to
Q but hopelessly discontinuous with respect to the Scott topology on
(’P(w), (0,Q). By the preceding theorem one can embed Hw into the
ca C(Hw) where application is continuous. Notice, however, that con­
tinuity is merely half a way to weak extensionality. In [K0]Koymans
proved that Hw is not a /\-model. It therefore follows from 6.2.13(iii)
that C'(Hw) is not a /\-model either.

59



Chapter 7

Finite Type Structures
within PCA’s

7.1 Introduction

The principal aim of this chapter will be to study finite type struc­
tures Within pca’s. In order to do so, we shall define an expansion
pca,‘*'which is enriched with natural numbers, a successor operator, a
predecessor operator and a numerical definition-by-cases operator.

Definition 7.1.1 A pca+, is an expanded partial applicative struc­
ture (A, *, K, S, 0, SN, PN, D, N) such that

(i) (A, *, K, S) is a pca,

(ii) 0 E N /\ Va E N(SNa E N /\ PN(S'Na) =a /\ SNG-750),

(iii) Va 6 N(a -750 —->PNa E N /\ SN(PNa) = a),

(iv) \7’a,a’ E N‘v’b,b' E A( Dbb’aa = b’ /\ (a 3:5a’ —>Dbb'aa’ = b)).D

A common and important feature of nontrivial pca’s is, that in them
one can define the additional combinators 0, SN,PN and D with the
aid of the combinators K and 5'. These are standard tricks in com­
binatory logic, Whichhowever require some adaptation to the present
situation Whereapplication is partial. For the traditional treatment,
see for example [B], chap.6, sect.2.
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Proposition 7.1.2 Every nontrivial pca M = (A,*,K,S) can be
expanded to a pca+.

PROOF. First recall that for each variable :1?and every term t over
M, with variables among 2:,51:0,..., a:,,, there is a term < :1:> t over M
such that for all a, an, ...,an E A one has

(< :1:> t)[:z:0,...,:z:,, := a0, ...,a,,] 1, (1)

((< :3> t)*a)[:1:o,...,a:,, := a0, ...,a,,] 2 t[:1:,a:o,...,:r,, := a, a0, ...,a,,]. (2)

We now abbreviate (omitting *)

I := SKK, t := K, f := KI,

P :=< :1:>< y >< z > zcvy, P1:=< :1:> :1cK,P2 :=< 2: > :z:(KI).

Moreover, Welet

0 := I, SN :=< :1:> Pfa:, PN :=< :1:> P1III0(P2£I3)

N := {S}f,0|n Eco}

where 5%, := I, Sf,-+1:=< :1:> SN(S,’$,x). Using (1) and (2) above it
is readily checked that one then has

OEN /\ ‘V/a€N(S'Na€N /\ PN(SNa)=a /\ S'Na7é0),

VaEN(a7E0—+PNa€N /\ S'N(PNa)=a).

Note that nontriviality is essential for M in order to satisfy S'Na gé0
for all a E N.

To prove (iv) we shall use for t1t2t3 the suggestive notation t1
then t2 else 153,for if t1 E t (true) then tltgtg 2 t2, and if t1 _=_f (false)
then t1t2t3 2 t3. Now observe that by (1), (2) there exists the fixed
point operator FIX E< :1:> xx with X E< y >< z > :I:(yy)z,in M
satisfying

FIXaa’ 2 a(FIXa)a'
for all a, a’ E A. If Wethus put

7*:=< u >< v > Plv then Katv else < z > yz(u(PNz))v
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and REC :=< :1:>< y > FIX7‘ then REC’ behaves as a recursor, i.e.

REC'aa'0 = a,

a" E N /\ a" 750 —>REC'aa'a" 2 a'(REC'aa'(PNa"))a".

Hence on the set N of numerals Wehave explicit definition (via
< It >) and primitive recursion; Z := K0 represents the zero-function
and II? :=< 2:1 > < 23,,> :12;a projection. We thus have all
primitive recursive functions available and can therefore construct a
term t such that t(S}\‘,0)(.5'}(?0)= 51':-i—m|0,for all n,m E w. The
numerical definition-by-cases operator D can then be defined by

D :=< :1:>< y >< u >< v > P1(tuv) then :1:else y.Cl

The reason Why We define the expansion separately is that We
don’t Want to restrict ourselves in the choice of models by the special
relationship between the natural numbers, successor, etc. and the
combinators K, 5'.

Example 7.1.3 Engeler’s DA is a nontrivial pca and can thus be
expanded to a pca"'. Consider the special case Where A = w . Here
instead of appealing to the combinatorial construction in proposition
7.1.2 Wecan define N, 0, SN, PN and D directly by

N:= InEco},

0 := {O},

5N = {({n}an +1)|n E 01},

PN = {({" + 1}a“) l" E W},

D = {(B,(C, ({n},({m},b)))) E G00)

n,mEw /\ ((n=m /\ bec) v (n¢m /\ beB))}.

We leave the verification of 7.1.1 (ii)-(iv) to the reader. C1

Inside a pca+ M there are internal versions of finite type structures
over ca,Whichform models of various systems of finite type arithmetic.
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Definition 7.1.4 Let M = (A, *) be a partial applicative structure.
(i) The set of finite type symbols T is inductively generated by the
clauses

(a) 0 E T,

(b) 0, T E T —+(0)7 E T (function types).

(ii) A finite type structure over M, T(M), is a collection < A0.>057
such that for all 0,7’6 T

(a) A, Q A,

(b) there are equivalence relations =0, =., and =(0), on A0,A, and
AMT, respectively, such that A(,,).,is a collection of total map­
pings from A, to A, respecting the equalities, i.e.

a =(a), a’ —>Vb, b'( b :0 b’ ——>ab =, a'b'

(iii) T(M) =< A, >067 is called full iii"for all 0, T E T

Va 6 A(Vb,b' E A,(b =,, b’ ——>ab :7 ab’) —>a E A(,,),).

(iv) T(M) =< A, >057 is called extensional iff for all 0, 7' E T and
all a, a’ E A(,),.

Va" 6 A,( aa" :7 a'a") —+a =((,).,.a'.C|

Example 7.1.5 In this chapter Weshall only consider the following
standard finite type structures over a pca"' M :
(a) the full intensional type structure IT(M) =< ITO>057 Where

ITO = N,

IT(,,), = {a E A |Va' 6 IT, aa' E ITT}
and :0 is the identity on I To, for all 0 E T;
(b) the full extensional finite type structure ET(M) =< ET, >,,g7
Where

ET0 = N,

ET(,), = {a E A |Va', a"( a’ :0 a" —>aa' =, aa" )},
and

a=oa'<——+a,a'EN /\ a=a',

a =(,), a’ +———->a,a' 6 ET“), /\ Va" 6 ET,( aa" :7 a'a").Cl
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I T(M ) and ET(M) are both models of the basic system H A“ of
intuitionistic arithmetic in all finite types. ET(M) forms a model of
the extension HA“ + EXT of HA“ (cf. [T], 1.6).

The next proposition is originally due to Zucker [Z](see also Troel­
stra [T], 2.4.5). It states that every finite type structure over a partial
applicative structure can be collapsed onto an extensional one.

Proposition 7.1.6 Let M = (A, *) be a partial applicative struc­
ture. Then there is a standard procedure for constructing from a
finite type structure T(M) =< A0 >067 over M an extensional fi­
nite type structure T(M)E =< Af >067, the extensional collapseof
T(M), such that for all 0 6 T

(3') All Q Adv

(b) \‘/a,a' E A§(a :0 a’ —-+a =13 a’).

PROOF. Define
a=g7a'<—>a=oa',

a =f3a), a’ <———>a,a' E A(0)., /\ Vb, b'( b :5 b’ -—>ab =5 a'b’).

Now put A? := {a 6 A0 |a =53a}. Then =f is an equivalence relation
on A? and elements of A5), respect the equalities. Hence T(M)E
is a finite type structure. To prove that T(M)E is extensional, let
a, a’ 6 A5,), be such that aa" =,’:'7a’a”, for all a" 6 Ag. Assume
b :57 b’. Then ab :15 ab’, since a E A‘(i’;)T,and ab’ :13 a'b'. Thus
ab =5 a'b'. Therefore a =f”;)Ta’.
Clearly A? Q A0. (b) is proved by induction on 0’: for the induction
step let a,a' 6 A5,), be such that a =(0)., a’. Assume b :57 b’. Then
ab :0 a'b and ab, a'b 6 Ag. Hence ab :5? a'b, by the induction
hypothesis. Moreover, a’b :55 a’b’. Thus ab :5; a’b’. Therefore a :5”,
a’. Cl

Clearly, if a finite type structure is already extensional no more
identifications between functionals can be made by the extensional
collapse. Conversely, if a type structure coincides with its extensional
collapse then it is already extensional.

Proposition 7.1.7 Let M be a pca+ and T(M) =< A0 >067 be a
finite type structure over M. Then
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T(M) is extensional iff T(M) = T(M)E.

In particular

IT(M) = ET(M) <—-—+IT(M) = IT(M)E.Cl

The coincidence,or lack thereof, of the standard finite type structures
over a given pca+ is completely determined by the behaviour of the
functionals of type (0)0, so that we can concentrate on these types
for our further investigations.

Lemma 7.1.8 Let M be a pca+. Then
(i) if IT, = ETO,IT(,)o = ET(,)0 then

V7‘6 T( IT, = ET, —+ IT(a)r = ET(,,), );

(ii) if for all 0 E T

IT, = ET,, ———>IT(,)o C_IET(,)o,

thenIT(M)=
PROOF. We prove this by induction on the complexity of 7'. The
basis case is given. For T E (7")7"', assume I T(,:),4:= ET(,4),n. Then
ET(,)(,:),w Q I T(,)(,:),w. To prove the converse, let a E I T(,)(,:),w and
b, b’ 6 ET, be such that b =,, b’. Then ab, ab’ 6 ET(,4),u, by the
assumption. To prove ab =(,:),n ab” let furthermore c 6 ET,’ be
arbitrary. Then < m > accc E IT(,,).,u = ET(,),n, by the induction
hypothesis. Hence abc =,n ab'c. So ab =(,4),.uab’ and therefore a E
ET<a><«w­

(ii) One proves I To = ET, by induction on the complexity of 0 .
Clearly, ITO= ET0. Let 0 E (p)7' and assume ITp = ET,,, IT, = ETT.
Then ET(p)0Q I T(,,)oand therefore I T(,,)o= ET(,,)oby the assumption.
Thus IT(p),.= .ET(p),,.by CI

The finite type structures I T(M ), IT(M )E and ET(M) can be­
have quite differently inside a pca+ M. They may be distinct, iso­
morphic or even may coincide. Let us mention two examples.
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Example 7.1.9 PRO (’partial recursive operations’, cf. [T,vD]).
The objects are the natural numbers and application n * m is defined
as {n}(m), i.e. the nth partial recursive function applied to m. For N
we take to ; the interpretation of the various constants can be found by
the smn-theorem. Then IT(PRO) ET(PRO), since the identity
function is an element of I T((0)0)0;also I T(PRO)E 75ET(PRO) (cf.
[T] p. 127); but IT(PRO)E § E'T(PRO), as proved by Bezem [Bz].
Cl

Example 7.1.10 In the pca+-expansion of Du,as described in exam­
ple 7.1.3 one has IT(Dw) = IT(Dw)E = ET(Dw). In order to prove
this coincidence, observe first that every equivalence class in ET, is
closed under finite unions, i.e. for all X, X’

(*)X=,X’—>XUX’=aX:

For the induction step let X,X’ 6 ET(,), be such that X =(,,),, X’.
To prove that X UX’ 6 ET(,), let Y,Y’ be such that Y :0 Y’. Then
X Y :1, X ’Y. Moreover, from the definition of application in D‘, it
followsthat (XUX’)Y = XYUX’Y. Thus (XUX’)Y :7 XY, by the
induction hypothesis. Similarly one obtains (X UX ’)Y’ =, X Y’. But
XY =, XY’. So (X U X’)Y =T (X UX’)Y’. Hence X U X’ 6 ET(,,),.
X UX ’ =(,), X is proved similarly.
From (=I<)and the fact that application is monotone it now follows
that IT(Dw) = ET(Dw): By lemma 7.1.8(ii) it is sufficient to prove
I TWOQ ET(,,)0, whenever I T, = ETU. Thus assume I To = ET, and
let X E I T(,,)0be arbitrary and Y,Y’ be such that Y :0 Y’. Then
XY Q X(YUY’), XY' Q X(YUY’) and XY,XY’,X(YUY’) E N =

|n 6 cu HenceXY = XY’. ThereforeX E ET(,)0.D

Definition 7.1.11 A pca+ M is calledft-extensional (extensional on
finite types) iff

IT(M) = ET(M).EJ

In the next section we shall present sufficient conditions on pca""s in
order to be ft-extensional.
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7.2 FT-Connected pca+’s
The crux of the proof that D, is ft-extensional is threefold: firstly, D,
is monotone; secondly, every pair of equivalent extensional functionals
is connected by its union which is again an extensional functional;
thirdly, the numerals are consistent, i.e.

VX,Y€N(X§Y—>X=Y).

The latter property, however, is independent of the special choice of
N in D, and is shared by all monotone pca+’s, i.e. pca+’s which are
monotone as partial applicative structures (cf. definition 6.2.7).

Lemma 7.2.1 Let (M, E) be a monotone pca"'. Then M satisfies
the following consistency property

‘v’a,a'EN(a|;a'—+a=a').

PROOF. Let a, a’ E N be such that a E; a’. Assume a géa’. Then it
followsfrom the monotonicity of M that a’ = Daa'aa I; Daa’aa’ = a.
Hence a’ I; a and therefore a = a’, contradiction. D

We now generalize the notion of connectedness in the following
way:

Definition 7.2.2 Let (M, E) be a monotone pca+. Then
(i) a,a' 6 ET, are called 0-connected iff there exists a sequence
ao,...,a,,+1 in ET, such that a0 = a,a,,+1 = a’ and a,- I; a,-+1or
a,- Q a,-+1, for all 0 _<_i 3 n.

(ii) M is called ft-connected iff for all 0 E T and all a, a’ 6 ET,

if a =, a’ then a and a’ are o-connected. [3

Applying lemma 7.2.1 one then has

Theorem 7.2.3 Let (M, Q) be a ft—connectedpca"'. Then M is ft­
extensional.

PROOF. We invoke lemma 7.1.8(ii) in order to prove that M is ft­
extensional. So assume IT, = ET, and let a E I T(,)0 and b,b’be such
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that b :0 b’. Since M is ft—connected there is a sequence bo, ..., bn+16
ET‘, such that b = b0,b' = 1),.“ and b,- I; b,~+1or 13,-“ Z_]b,-, for all
0 g 2'_<_n. Then abo, ...,abn+1 E N and ab. E ab,-+1 or ab,-+1 Q ab,-, for
all 0 g i 3 77..Hence ab = abo = = abn+1 = ab’, by lemma 7.2.1.
Thus (I E ET(a)0. [1

Having seen that ft-connectedness is a sufficient condition on pca+ ’s
in order to be ft-extensional, we can also ask for sufficient conditions
for ft-connectedness. The one we shall give below is again inspired by
the algebraic structure of and the behaviour of application in D“, .

Definition 7.2.4 Let M = (A, >I<,Q) be a monotone partial applica­
tive structure. M is called finitely additive in the first argument (fafa.)
iff for all a, a’, a" E A

(i) sup{a,a’} exists in (A, E),

(ii) aa” 1 A a'a”1—> (sup{a,a’})a” = sup{aa”,a’a"}.D

Proposition 7.2.5 Let M be fafa and M’ be a pca+-expansion of
M. Then M’ is ft-connected.

PROOF. One proves by induction on the complexity of 0 E T that

a =,, a’ ——>sup{a, a'} =, a.

For the induction step let a, a’ be such that a =(,)T a’. To prove
that .sup{a,a'} 6 ET(,,), let b,b’ be such that b :0 b’. Then ab :7
a’b. Thus (.sup{a,a’})b = sup{ab,a’b}, since M is fafa. Moreover,
.sup{ab,db} :7 ab by the induction hypothesis. So (sup{a, a’})b =7
ab. Similarly we see that (sup{a, a'})b' =¢ ab’. But ab :7 ab’. Hence
(sup{a, a'})b =7 (sup{a, a'})b', i.e. sup{a,a'} 6 ET(,,).. sup{a,a'} =(,).
a is proved similarly. El

Corollary 7.2.6 Let M be fafa and M’ be a pca+-expansion of M.
Then M’ is ft-extensional. El
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7.3 Examples.
In this section we shall discuss several examples of ft-extensional
pca+’s such as DA, PW,certain D00-models, HQ,and T”. Note that
these examples also show that ft-extensionality does neither imply
extensionality nor weak extensionality.

The Graphmodels DA. Every graphmodel DA is clearly fafa
and thus ft-extensional. Note that the union operator is in fact rep­
resentable in DA by the set

UA= {(B,(C,b)) E G(A)|b E BUC}.D

The Graphmodels P0,. The structure of these models, as has
been shown by Baeten and Boerboom [Ba,Bo], depends heavily on
the specific coding used in the construction. Although Pu,-modelsand
DA-models are never isomorphic as pca’s (see Longo [L]), they enjoy
the same sufficient properties in order to be ft-extensional: again Pu,
is closed under unions and application satisfies

(X u Y)Z = XZ u YZ.D

Extensional, Reflexive, Complete Lattices. Recallthat a
complete lattice is a poset (A, E) where every subset X Q A has a
supremum. It is reflexive, if there are continuous maps

F:A—>[A—+A], G':[A—>A]—>A

such that Fo G = id[A_,A],and extensional, if in addition G oF = idA.
These structures define in a natural way extensional, continuous A­
models where the total application operation * is given by

a * a’ = F(a)(a').

Now let M = (A, *, Q) be obtained in the canonical way from an
extensional, reflexive, complete lattice. To prove that (sup{a, a’})>I<b=
sup{a * b,a’* b}, observe first that [A —>A] is a complete lattice, since
A is a reflexive complete lattice. So sup{F(a), F(a')} E [A —>A]. But

sup{F(a), F(a')} = Aa".sup{F(a)(a"),F(a')(a")}.
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Thus
8UP{F(a)»F(</)}(a',') = S’uP{F(a)(a")»F(a')(a")},

for all a" E A. Since F(a), F(a’) Q .sup{F(a), F(a’)} we have

a = G(F(a)) I; G(8up{F(a)aF(a')})

and
G’= G(F(a')) E G(SuP{F(a), F(a')})~

Hence sup{a, a’} I; G'(sup{F(a), F(a’)}). Thus sup{a,a’} * b E

E G(3'uP{F(a), F(a')}) * 5 = F(G(SUP{F(a), F(a')}))(b)

= sup{F(a), F(a’)}(b) = sup{F(a)(b), F(a’)(b)}­

Hence .sup{a, a’} * b E sup{a * b, a’ * b}. Moreover, it follows from the
monotonicity of * that sup{a * b, a’ >|<b} E sup{a, a’} * I). So M is fafa
and therefore ft-extensional. D

In the proof above we only use the fact that (A, E) is closed under
sups of finite subsets. Note, however, that the classes of cpo’s which
are closed under finite sups and complete lattices coincide.

From the discussion above we can conclude that every Doo—model
constructed as a projective limit of complete lattices is ft-extensional.
Observe also, that the extensional collapse of Engeler’s graphmodels
as described in chapter 3 is ft-extensional.

Extensional, P-reflexive, Complete Lattices. Recallthat an
extensional, p-reflexive, complete lattice is a complete lattice (A, E)
equipped with two continuous maps

F:A——>[A——>sA], G:[A—>3A]——>A

such that 7°ange(G') _C_A\{_LA}, FOG = z'd[A_,8A]and GOF = z'dA\{_LA}.
As we have seen in chapter 4 one can define a nontotal application
operation * on A \ {LA} by

am, : { F(a)(a’) if F(a)(a') ;é_LAundefined otherwise
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such that (A \ {LA}, *) can be expanded to an extensional pca. In a
way which is quite similar to the method used in the previous ex­
ample one can then show that every partial applicative structure
M = (A, *, I;) obtained from an extensional, p-reflexive, complete
lattice is ft-extensional. D

All the examples Wehave discussed so far are complete lattices and
ft-extensional by virtue of corollary 7.2.6. The situation is slightly
more complicated with respect to the last two examples, the hyper­
graphmodel HQ,and the model T“’.

The Hypergraphmodel Hw. Recall that Sanchis’ Hg, is the
total, monotone applicative structure (’P(w), >|<,Q) where application
is defined by

X *Y := {m|\7’f3p3e,,C Y(< 7(p),n,m >6

Here, < ., ., . > is some bijective coding of triples of natural numbers,
{en | n 6 w} is some enumeration of the finite subsets of w and if f
is a function from L4)to ca, then is some code for the sequence
f(0), ...,f(p —1). Hw is a complete lattice but not fafa.

Proposition 7.3.1 H, is not fafa.

PROOF. Put (assuming co = (D)

X:= {< )\a:.f(:v)+1(1),0,0 > Ifzw —-ma},

Y := {< Xm(1),0,0 >}.

Then (X U Y)Z = {O},for every Z Q w:
Assume m 6 (X U Y)Z, i.e for every f there are p 6 w, en Q Z

such that < —f_(p),n, m >6 X U Y._Then m = 0. For the converse let
f : w —>w. If = 0, then < f(1),0,0 >6 If 750, then
< )\:1:.f’(:I:)+ 1(1),0,0 >6 X Where f’ : w ——>w is defined by

, _ —1 if :1:= 0
f _{ otherwise.

But )\:v.f’(:1:)+1(1) = Hence < ?(1),0,0 >6 X. Therefore
0 6 (X U Y)Z.
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But XZ = (D= YZ: XZ = (0,since < Aa:.0(p),n,m >¢ X, for every
en Q Z, p,m E w. Similarly, YZ = (0,since < /\:z:.1(p),n,m >¢ Y, for
every en Q Z, p,m 6 ca. C!

In H‘, there exists a sort of saturation operator 2 closing sub­
sets of caunder ’extensions’ of triples while preserving its applicative
behaviour.

Definition 7.3.2 Define

X3:= {< a,n,< B,m,l >> I37 j /336;,Q em(< 7,k,l >6 en)},

where we let 0:,3,7 range over codes of finite sequences and write
a j ,3 if ozcodes a sequence that is an initial segment of the sequence
coded by Cl

2 as defined above has the following properties:

Proposition 7.3.3 Let M be a pca+-expansion of Hw , X, Y,Z E
’P(w)andET(c,),,E Then

(i) EX = {< a,n,m > |3fl j 0136;,Q en(< fl,/c,m >6 X)},
(ii) X g EX,
(iii) EXY = XY,

(iv) X E ET(a)T —-—>EX =-(0),, X,

(V) (EX n 21/)2 = XZ n YZ.

PROOF. We leave and (ii) to the reader; (iv) followsfrom (iii).
For (iii) observe m E EXY <—>

<——>\7’f3p3e,, Q Y( < T(p),n,m >6 EX)

«_+ Vfflpflen g 1/35 _<_7(p)ae,.. 2 e,,,(< 5, 1;,m >e X)

<—>vfaqaek g Y( < 7(q), k, m >e X)

<——+m 6 XY.

(V) is proved in the following way: m E XZ fl YZ <——>
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<——>‘v’f3p,q3e,,, e; C_ZZ( < -]?(p),n,m >6 X /\ < ?(q), l,m >€ Y)

,__» Vf3r3e;, g z( 3p 3 736,,g e;,(< T(p),n,m >6 X)

A Elqs T3629 5k(< ?(p),n,m >6 Y) ) (*)

(——>Vfilrilek ; z( < fir), k, m >e 2x n 21/)

,_—»m e (EX n >3Y)z.

(*) For —>: take e.g. r = maa:(p, q) and ek = en U 61. CI

In the discussion of preceding examples we mentioned the exis­
tence of operators within the model connecting equivalent extensional
functionals: the operator UA 6 DA, for example, connects equivalent
extensional functionals X and X’ such that UAXX’ is an extensional
functional of the same type and X, X’ Q UAXX’.

For Hw we shall now define operators constructing for equivalent
extensional functionals X and X’ a finite sequence of extensional func­
tionals of the same type such that

o X and X’ are the first and last element of this sequence, respec­
tively,

0 every predecessor in the sequence is connected with its successor.

Since ’connected’ is a transitive relation it then follows that also X
and X’ are connected.

These operators will not depend on the choice of the numerals,
but can be applied appropriately in every pca"'-expansion of Hw. We
shall define them using only 2 and the fact that Hw is combinatory
complete.

Definition 7.3.4 For n, m E w define A"’'” E H“, as follows.
(i) If m 3 n then AM" is defined inductively by

A”'° :=< 33,,> :z:,,,

A” :=< 3:1>< yl > :c1y1,

An+2’m+1 :=< .’I7n+2 ym+1 > E(An+1’m(CCn+2ym+1)).

(ii) If m > n then A”’’” := A”'”. C!
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Proposition 7.3.5 Let M be a pca+-expansion of I-IL,, 0 E T and
ETa,ET(a)0E If 0'E (0'1)...(C'n)0,then

(1) vi e w AW"e ET(,,,,.

Moreover, if 0 < n, then

(ii) Vi E wVX E ET0. E(A”'iX) fl E(A"'i+1X) :0 X,

(iii) \7’X,X'E E'Ta(X :0 X’ —> X3(A”'”X)fl Z(A”'”X') :0 X

PROOF. We prove (i),(ii) and (iii) simultaneously by induction on 11.
If n = 0, then 0 E 0. Clearly holds, since A°'i=A°’0=< 3:0> 1:0,
the identity operator.

If n = 1, then 0 E (0'1)0. Clearly A” E ET(,,),,, since A”) =
< :31 > 3:1 and A1"+1=A1'1 =< 2:1 >< y1 > :I:1y1. To prove (ii) let
X 6 ET, , Y 6 ET“. Then

(E(A1’°X) fl 2(A1’1X))Y = ALOXYfl A1’1XY = XY fl XY = XY,

by 7.3.3(v), and

(Z(A1"+1X) fl E(A1"+2X))Y = AVHXY fl A1'i+2XY =

= AIJXY F1ALIXY = XY,

again by 7.3.3(v). Therefore E(A1'iX) fl Z3(A1"+1X)=,, X, for all

i5‘§ru(Jiii)let X =,, X’ and Y 6 ET“. Then XY = X'Y. Hence

(XJ(A1'1X)fl Z(A1’1X'))Y = A1’1XY fl A1’1X’Y =

= XY 0 X'Y = XY.

So X3(A1'1X)fl Z(A1*1X’) :0 X.
For n + 2 observe that 0 E (a1)...(0,,+2)0. Then clearly A"+2’° E

ET(a),. To prove for 2'= m + 1 let X =,, X’ and Y :01 Y’. Then

A"+2""+1XY = E(A”+1’"‘(XY)),

An+2,m+1XIYI= E(An+l,m(XIYI)),
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XY =(a2)...(a,,+2)0X'Y'­

Thus from the induction hypothesis for it followsthat

A”“""(XY) =<o2)...(a,.+2)oA"“’"‘(X’Y’)­

Hence also

2(An+l’m(X'Y')) =(a2)...(a,.+2)o2(An+1’m(X'Y’))

by 7.3.3(iv). So An+2»m+1X=, An+2»m+1X',i.e. A”+2'"‘“ e ETW.
To prove (ii) let X 6 ET, , Y 6 ET“. Then

(E(A"""2'°X) 0 Z(A”+2'1X))Y = A”+2'°XY D A”+2’1XY =

= XY 0 E(XY) = XY

by 7.3.3(v),(ii) and

(2(A"+2"+1X) fl X3(A""'2""'2X))Y=

= 2<A"+1~*<XY>>n 2<A"+‘»‘+‘<XY>> =(a2)...(a,,+2)0Xv

by 7.3.3(v) and the induction hypothesis for (ii). Therefore

}3(A”‘”"X) n :3(A"+2~*'+‘X)-_-,X,

for all i E w.

Finally for (iii) let X :0 X’ and Y 6 ET”. Then XY =(,,2)__,(,n+2)0
X'Y. Hence

(2(An+2,n+2X) n E(An+2,n+2XI))Y =

: 2(An+1,n+1(XY))n 2(An+1,n+1 ___(a2)m(an+2)O
by 7.3.3(v) and the induction hypothesis for (iii). Thus again

2(An+2,n+2X)mE(An+2,n+2XI)=0

From proposition 7.3.5 it now follows that for every pair of equiv­
alent functionals X , X ’ E ET(O.1)‘__(,n)0the sequence

X = A"’°X, ,A”'"X, A"'”X’, ,A"'°X’= X’

is a connected sequence of extensional functionals of the same type.
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Proposition 7.3.6 Let M be apca"'-expansion of I-IQ,, 0 E T, ET, 6
ET(M) and X, X’ 6 ET, be such that X :0 X’. If 0 E (a1)...(0,,)0,
then

(i) AWX and A""+1X are 0-connected, for all i E w,

(ii) A”'”X and A"'"X’ are O-connected.

PROOF. Define the o‘—connectionof AWX and A""+1X by

X0 := A"»"X, X1 :=. 2(A"»"X), X2 ;= 2(A"~"X) n Z(A”"+1X)

X3 := Z3(A”"+‘X), X4 := AW‘+1X.

Then X0, ,X4 6 ET, by 7.3.3(iv), 7.3.5(i) and 7.3.5(ii). Moreover,
X0 Q X1, X2 Q X1, X2 Q X3 and X4 Q X3­
(ii) Applying 7.3.5(iii) instead of 7.3.5(ii) we also see that

X0 := A”'"X, X1 := 2(A"~"X), X2 := Z3(A"'"X) n §3(A"'”X’),

X3 := Z(A"’"X), X4 := A”’”X'

is a 0-connection of A”'"X and A”'”X'. Cl

Theorem 7.3.7 Let M be a pca‘*'-expansionof Hw . Then M is
ft-extensional.

PROOF. We shall prove that M is ft-connected. Equivalent type-0­
objects are trivially O-connected. Let (0)7 E (c71)...(a,,+1)0and X, X’
be such that X :0 X’. Then every element in the sequence X =
A”'°X, , A”'"X, A”’"X’, , A"'°X’ is an extensional type-(0)7'-object
and is (0)7-connected with its successor in the sequence, by the pre­
vious proposition. Thus X and X’ are (0)7-connected. D

The Model T”. T” was first introduced by Plotkin [P1]. How­
ever, here we refer to the description given by Barendregt and Longo
in [B,L].

T” is a subset of ’P(w)2 equipped with a very special applica­
tion operation. The importance of this model lies in the effectiveness
properties of its semantics and the Wayits natural order matches the
partial order on B, the )\-model of Bohm-like trees. We shall neither
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use nor comment on these properties. The only reason for including
this model in our list of examples is that it is, as opposed to the first
four examples, not fafa but, as opposed to the preceding example, a
A-model. For a thorough investigation of T“’ Werefer the reader to
[BL]­

The universe of T” is {< A,B > |A,B E 77(w) A ADB = III}.
If a E T“ we Write a =< a_,a+ > and call a E T” finite if a_ Ua+ is
so. We let {en In E w} be some enumeration of the finite elements of
T“"and (., be some bijective coding of pairs of natural numbers.

On T” one can define a partial order by

a_II_b<-—>a_§b_anda+§b+.

It is readily checked that (T“’, E) forms a cpo with bottom < 9,0 >
and supD =< U{d_ |d E D}, U{d_,_|d E D} >, for directed D Q T“.

T” belongs to the class of reflexive cpo’s and defines therefore a A­
model. In order to define the appropriate retraction map, Barendregt
and Longo introduce the following notations: for n, m E w, put

nTm<—+3aET“’(e,,§a /\ emga),

D(,,,2m+1):= {(n',2m) | n’ T n A (n',2m) 3 (n, 2m + 1)},

D(,,,2m):= {(n',2m + 1) |n' T n /\ (n',2m + 1) _<_(n, 2m)}.

To prevent any misgivings as to the relationship between the sets D,,
and the numerical definition-by-cases operator D, let us stress that
there is none. We just keep close to the notations introduced in [B,L].

Definition 7.3.3 For a, b e T” and f <-:[T‘”—+T“’], define

(F(a)(b))— == {m I36,; E b( (7%3m) E 0- /\ -D(n,2m)E 0+ )l,

(F(a)(b))+ == {m I3% E b( (7%2m + 1) E 0- A D(n.2m+1)Q 0+ )},

(G(f))— == {(7%2m) Im E (f(6n))—} U {(",27'” + 1) Im E (f(€n))+},

(G(f))+ == {(7%27") I3l( 6n E 61 /\ m E (f(6z))+ )}

U{(n,2m + 1) IEIl(en E 61 /\ m E (f(e1))_ El
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Theorem 7.3.9 T“ is reflexivevia F and G.

PROOF. cf. [B,L], 1.5 to 1.7, section 1.

As usual one defines the total application operation * on T” by
a * b := F(a)(b), that is

(a * b)_ = {m I36,, E b( (n,2m) E a_ A D(,,,2,,,) Q a_,_)},

(a =l<b)+ = {m | 36,, I; b( (n,2m + 1) E a_ A D(,,,2m+1)Q a+

* is then continuous with respect to the Scott topology induced by
E . However, it is not fafa. First of all, T“’ is not closed under finite
sup’s: e.g. < 0, {0} >, < {0},@>6 T”, but if < (0,{0} >, < {0},@>;
a, then 0 E a_ 0 a+. But even if sup{a,b} does exist it does not
necessarily satisfy (sup{a, b})c = sup{ac, bc}. Observe, however, that
T” is closed under inf ’s of nonempty sets: for all (074X Q T“

infX =< fl{:1:_|:I:eX},n{a:+|a: EX} >6 T“.

But does not in generalsatisfy (inf{a, b})c= inf{ac, bc}either,
so that the whole enterprise is not merely a matter of reversing the
order. In order to increase the familiarity with respect to the defini­
tions involved, we shall give an example confirming the remarks on
sup and inf made above and already indicating, how we intend to
connect equivalent extensional functionals.

Example 7.3.10 We shall construct a, b,c E T“ such that sup{a, b} E
T” and

(inf{a, b})c E inf{ac, bc}1: .sup{ac,bc}C (sup{a, b})c.

Observe that < {0},Ql> and < (0,{1} >_are finite elements of T”, say
< {0},@ >= em and < @,{1} >= en. Put c :=< {0},{1} >. Then
c E T“ and en, em I; c. Now define a,b by

a- 3: {(77%0): ("'7 4)}:

0+ == D(n.o>= {(7131) In’ T n /\ (7181) S (n,0)},
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5- =={(m,0),(ma3)},

5+ ==D(m.o>UD(m.s)UD(n.4)= {(m’,1)|m’T m /\ (m’,1)S(m,0)}

U{(m’,2) Im’ T m A (m’,2) S (m,3)}

U{(n’,5)|n’Tn A (n',5) g (n,0)}.

Observe that a_ D a... = 0 = b_ D b.,., so that a,b E T“’. Observe
furthermore that
(1) inf{a, b} =< a_ H b_,a+ 0 12+>=< @,a_,.D b+ >. Hence

(inf{a, b})c=< 9,9 >,

since a_. = 0.
(2) ac =< {0},0 > and be =< {O},{1} >. Therefore

inf{ac,bc} =< (ac)- 0 (bc)_, (ac).,_fl bc+>=< {0},0 >,

sup{ac,bc} =< (ac)- U (bc)_,(ac)+ U bc+ >=< {O},{1} > .

(3) (a- U b.) D (a+ U b+) = (0, since every element of a_ U b- is a
pair of the form (I, 0), (l, 3) or (I, 4), but a+ U b...contains only pairs
of the form (I, 1),(l,2) or (I, 5). Thus sup{a, b} E T”. Finally, since
sup{a, b} =

=< {(7130): (nu 4)) (ma 0): (ma D(n,0) U D(n,4) U D(m,0)U D(m,3) >7

it follows that (sup{a,b})c =< {0,2}, {1} >.
Combining(1), (2) and (3) yields
a is a representation of the external function

< {0},(b> if enga:
< 0,0 > otherwise.mm) = {

However, a is certainly not the only way to represent fa in T”. To
envisage other representations of fa observe that the pair (72,4) does
not contribute to a’s applicative behaviour, since -:D(,,,4)Q a+. Hence

as Z=< {(n,0)},D(,,,o) >
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is a second representation of fa. ac represents fa in a minimal Way
and embodies a’s essence with respect to its applicative behaviour.
A third representation emerges once one observes that, Without any
modification of the intended applicative behaviour, one can close (ae)­
under pairs of the form (n’, 0) satisfying en E en: and, moreover, can
drop the boundary constraint on elements in (ae)_,..That is,

as :=< {(n',0) | en L; enr}, {(n', 1) | n’ T n} >

is another representation of fa and is a saturated version of the essence
of a. Finally observe that as connects a with as, i.e.

aQae;a,.Cl
In T“ there exist two operators: the first, which Weshall call the

essence operator, prunes those parts of an element of T” which do not
contribute to its applicative behaviour; the second, which is again a
sort of saturation operator, closes pruned elements under ’extensions’
of pairs. Both operators preserve again applicative behaviour.

Definition 7.3.11 For a E T”, define

fE(a) :=< {mlm e a- A Dm <_:a+},U{Dm |m e a_ /\ Dm Q a_,.}>,

fg(a) :=< {(n,m) IBe, I; e,,( (l,m) E a_ A Dam) Q a+ )},

U{Km |m e a_ /\ Dm Q a+} >,

Where Km is the unbounded version of Dm, i.e.

K(n.2m> == {(7132m + 1) In’ T n}

K(n,2m+1) == {(n', 2m) In’ T n}-D

Then

Lemma 7.3.12 fE, f3 6 [T“’—>T°"].

PROOF. We shall only prove that f3 and f3 are Well-defined. The
continuity of these functions is proved straightforwardly using the
finiteness of the sets Dm. Let a E T”. Then a_ Ha+ = (D
For fE, observe that fE(a) E (1. Thus (fE(a))_ fl (fE(a))+ = (0.
Therefore fE(a) E T“.

To prove that f): is Well—defined,observe first that
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(1) (mm) E Kk /\ 61E en ——+(l,m) E Kk,

(I, m) E Kk \ Dk —> [CE .D(1,m)Z

Say, k = (ko,k1). (1) follows from the fact that if n T kg and 61E_Zen,
then also I T kg. For (2) assume (I, m) E Kk \ Dk. Then

(m=2n+1—>k1=2n) /\ (m=2n——>k1=2n+1)

since (l,m) E Kk, and

lTk0 A —'(l7Tn)Sk7

since (l,m) ¢ Dk, but (I, m) E Kk. Thus kg T l and /c < (l,m). So
19E D((,m).

Now suppose that (n,m) E (fg(a))_ D(fg(a))+. Then there are l, k
such that

(3) e1; en /\ (l,m) E a_ /\ Dam) Q a.,_,

(4) (n,m) E Kk /\ k E a_ A Dk §a+.

Since e; _|;an, it follows from (1) and (4) that (l, m) E Kk. So

(5) (l,m) E a_ /\ D(;,m)Q a+,

(6) (l,m)EKk /\ kEa_ /\ Dk§a+.

We now can conclude that (l, m) ¢ Dk, since otherwise

(l,m) E a_ D a+.

Thus (l,m) E Kk \ Dk. Therefore 1::E D(;,m),by Hence

1::E D(;,m) Q a... A /c E a_,

by (5)and Contradictionwith Hence(fg(a))_fl(f}3(a))+= (0.
Cl

Lemma 7.3.13 In T” there exist operators E, 2 satisfying for all
a, b, c E T”

(i) Eaga /\ Eaf;Ea,
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(ii) Eab = ab /\ Bab = ab,

(iii) (inf{Ea, '2b})c= inf{ac, bc}.

Moreover, if M is a pca+-expansion of T” and ET(,)T E ET(M) then

(iv) a E ET(a.)T——>Ea =(,),, a =(,), Ea.

PROOF.Put E := and E := G'(fg). Then Ea = fE(a) and
Ba = f;;(a). is left to the reader and (iv) followsfrom (ii). For (ii)
and (iii), observe first that

61; en '—" -D(n,m)Q K(l,m) :

Suppose ez Q en and let (n’,m') E D(,,,m). Then m’ is appropriate
with respect to m and n’ T n. Then also n’ T l, since e; Q en. Hence
(n',m') E K(1,m).

(ii) Clearly Eab = ab, since Ea contains precisely those elements
which contribute to a’s applicative behaviour. To prove Bab = ab
observe that m E (Bab)- <—>

<——+36,, Q b( (n,2m) E (Ea)- /\ D(,,,-gm)Q (Ea)+ )

<——>36,, Q b3e; Q e,,( (l, 2m) 6 a_ /\ D(n,2m) Q a+) (*)

+——>36; Q b( (I, 2m) 6 a_ /\ D(,,,2m) Q a+) <———+m E (ab)_.

((*): for <—, observe that if (l,2m) E a_ and D(;,2m)Q a+, then
K(;,2m)Q (Ea)+. Hence by D(n,2m)Q (Ea)+, since c; Q en.)
(Zab)+ = (ab)+ is proved similarly.

(iii) Since application is monotone it follows from (ii) that

(z'nf{X3a,Eb})c Q inf{Eac, Ebc} = inf{ac, bc}.

For the converse, observe that m 6 {ac, bc})_ ———->

——>m 6 (ac). D (be)­

—> Eleme1 Q c( (n, 2m) E a- /\ D(,,,,2,,,)Q a+

/\ (1, 2m) 6 b_ /\ D(1,2m)Q b+)



——+13e,,,e;, eh I; c( (k,2m) E (Fla). 0 (Eb)- /\ eme; I; ck

/\ K(n,2m) F7K(l,2m) Q (Ea)+ “($319+ )

—>2 36k _C_c( (k,2m) E (inf{Ea, Eb})_ /\ D(k,2m)Q (inf{}3a, Eb})+)

—+ m E (z'nf{Ea, 2b}c)_.

For —*1,P11136k :=<. (€n)— U (€z)—a(€n_)+ U (€I)+ -_For —*2, apply (T)­
(znf{ac, bc})+ C;((znf{Z3a, Eb})c)+ ISproved similarly. D

We shall now proceed as in the preceding example and define op­
erators in T“’connecting equivalent extensional functionals by a finite
sequence of connected extensional functionals of the same type.

Definition 7.3.14 For n, m E w, define AW” 6 T” as follows.
(i) If m _<_n then A”''” is defined inductively by

A"’° :=< asn> xn,

Am :=< 3:1>< y1 > atlyl,

A"+2’m+1 ==< 5'/‘n+2>< ym+1 > 2(A"+1’m(-"«'n+23/m+1))­

(ii) If m > n then A"'"‘ := A"'“. I3

Then

Proposition 7.3.15 Let M be a pca+-expansionof T”, 0 E T and
ET,,ET(,),E If0 E (a1)...(0,,)O,then

(1) Vi e w AW‘ e ET(,),,.

Moreover, if 0 < n, then

(ii) Vi E w\7’a6 ET, z'nf{E(A""a), Z(A”"+1a)} :0 a,

(iii) Va,a’ E ETa( a :0 a’ ——>z'nf{2(A”'"a), Z(A”'”a’)} :0 a
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PROOF. and (iii) are proved as in proposition 7.3.5 applying
7.3.13(iii) instead of 7.3.3(v) and 7.3.13(iv) instead of 7.3.3(iv). For
(ii), however, Wehave to make a slight modification, since the proof of
7.3.5(ii) involves 7.3.3(ii), a fact for which there is no analogous result
in the present situation. The proof is again carried out by induction
on n.

If n = 1, then 0 E (01)0. Let X 6 ET, , Y 6 E'T,1. Then

(inf{Z(A1’°X), E(A1’1X)})Y = z'nf{A1’°XY,A1’1XY}=

= z'nf{XY,XY} = XY,

by 7.3.13(iii), and

(z'nf{::(A1~='+1X), E(A1v‘+2X)})Y = z'nf{A1"+1XY, A1»=’+2XY}=

= z'nf{A1'1XY,A1'1XY} = XY,

alglaineby7.3.13(iii). Therefore inf{Z(A1"X),Z3(A1"+1X)} =, X, for8. Z (.4).

For n + 2 observe that 0 E (c71)...(an+2)0. Let X 6 ET, and
Y 6 ET“. Then

(z'nf{E(A"+2'°X), E(A"+2'1X)})Y = z'nf{A”+2’°XY,A”+2'1XY} =

= inf{XY, Z3(XY)}

by 7.3.13(iii). To prove

i"«f{XYa E(XY)} =(02)...(<7n+2)0XY

it is clearly sufficient to prove

(inf{XY, 53(XY)})Z =(O’3)...(a,.,+2)0XYZ,

for all Z 6 ET”. To this end observe that by monotonicity and
7.3.13(i),(ii) one has

XYZ = E(XY)Z g (z'nf'h{XY,Z3(XY)})Z g XYZ.
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Hence (inf{XY, E(XY)})Z = XYZ. So

z'nf{Z(A"‘+2’°X), E(A"’+2’1X)} =, X.

Finally,
<z‘nf{2<A"+“+1X>,2<A“+WX>}>Y =

= z'nf{2(A"+1~*'(XY)),n2(A”+‘*‘+‘(XY))} =((,2,.,,(,m,0 XY

by 7.3.13(iii) and the induction hypothesis. Therefore also

inf{E(An+2,i+1X),2(An+2,i+2X):0 X3

Again it follows from proposition 7.3.15 that for every pair of
equivalent functionals a, a’ E ET(,1)__.(,n)0the sequence

a = A"’°a, ...,A"”"a, A"””a', ,A"’°a' = a’

is a connected sequence of extensional functionals of the same type.

Proposition 7.3.16 Let M be a pca+-expansionofT”, 0 E 7, ET, 6
ET(M) and a, a’ 6 ET, be such that a :0 a’. Ifa E (01)...(o‘n)0,then

(i) A""a and A""+1a are 0—connected,for all i E w,

(ii) A”'”a and A"'”a' are 0-connected.

PROOF. Define the 0-connection of A""a and A”"+1aby

a0 := A”’ia, a1 := E'(A"’ia), a2 := E(A""ia)

a3 := z'nf{E(A""-a), E(A"’i+1a)}

a4 := Z(A"’i+1a), a5 := E(A"’i+1a), as := A"’i+1a.

Then a0, ...,a6 6 ET, by 7.3.15(i), 7.3.13(iv), and 7.3.15(ii). More­
0Ve1'a <11E 00, 01 E 02, 03 E 02, 03 E 04» as E 04 and as l_:_as, by

7.3.13(i).
(ii) Applying 7.3.15(iii) instead of 7.3.15(ii) we also see that

a0 := A"’"a, a1 := E(A"’”a), a2 := E(A"’"a)

a3 := inf{X3(A”’"a), E(A”’"a')}

a4 := Z(A"’"’a'), a5 := E(A"’"a'), as := A"’"a'
is a 0-connection of A"'"a and A”'"'a’. Cl

Theorem 7.3.17 Let M be a pca+-expansion of T”. Then M is
ft-extensional. D
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7.4 The Countable Functionals CF.

The pure finite types (denoted by natural numbers) are 0 and with
n also 77.+ 1 := We have so far seen for various pca’s that, no
matter how these models are expanded to pca+’s, the intensional and
extensional finite type structures always coincide. We shall now iden­
tify the functionals of type 2 belonging to certain pca+-expansions.

CF =< CF” >nEwis known as the countable functionals [Kl] or
continuous functionals [Kr], and has been extensively investigated. It
is a finite type structure in which each functional is globally described
by a countable amount of information, coded in a type-1 object, and
is locally determined by a finite amount of information about its ar­
gument. We shall first give Kleene’s definition via associates:
Define

(i) CFO = w and Ass(n) = {n}, for all n E w.

(ii) CF1 = w“’and Ass(f) = for all f E w“’.

(iii) Let (P E wCF"+1.
f E Ass(<I’) iff f E w“’and for every ‘I’E CF,,+1, g E Ass(\I')

(1) 3m(f(§(m)) > 0),

(2) Vm( f(§(m)) > 0 —->f(§(m)) = ‘1’(‘1’)+ 1 )­

<I>E CF,,.,.2 iff Ass(<I>) =,é0.

Then CF =< CF” >,,,€w.As usual, ‘g'(m)is some code for the sequence
9(0):°--:g(m_

In order to interpret this definition within pca’s, we shall impose
a restriction on pca+-expansions. In this section we shall only con­
sider pca+-expansions which have standard integers, i.e. we require
N together with the successor operator SN to be isomorphic to the
usual structure of w and successor. Observe e.g. that both the com­
binatorial pca+-expansion as described in proposition 7.1.2 and the
pca+-expansion of Do, as described in example 7.1.3 have standard
integers. For such a pca+-expansion we shall write
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o E for the element of N corresponding to the natural number n;

0 'fl§‘fiz'(orfi<fi)ifn§m(orn<m);

o ifa E N, then a+ 1 for S'Na;

0 ifa E IT1, then < (16,...,afi > or E(m + 1) for the element of N
corresponding to < g(O),..., g(m) >, where g E w“’is such that
afi = g(n), for all n E w.

One can then interpret Kleene’s original definition in the following
way:

Definition 7.4.1 Let M be a pca+ having standard integers. Then
CF (M ) =< CF” >new is the followingfinite type structure over M:

(i) CFO= N and As.s(a) = {a}, for all a E N.

(ii) CF1 = IT1 and Ass(a) = {a}, for all a E IT1.

(iii) Let a be such that aa' 6 N, for all a’ E CF,,+1.
b E Ass(a) iff b E IT1 and for every a’ E C'F,,+1, b’ E Ass(a’)

(1) 3511 b(7‘7('TT7))> 5),

(2) VW( b(757('7Tz'))> 6 ——>b(§(fi)) = (aa’) + 1

a E C'F,,+2 iff Ass(a) 75 (0.

Equivalence is identity for all pure finite types. Cl

We shall now show for certain pca+-expansions M of DA, Pw, T” and
extensional, (p)-reflexive, complete lattices that CF; and I T2coincide.
In addition to having standard integers we shall require the numerals
to have some finite character. This constraint, as will become clearer
later on, ensures that the type-2 functionals in I T(M ) are locally
determined by a finite amount of information about their argument.
Let us first make the notion of pca+’s as decribed above more precise.

Definition 7.4.2 M = (A, *, K, S, 0, SN, PN, D, N, Q, .1.)is a CF­
pca+ iff

(i) (A, *, K, S, 0, SN, PN, D, N) is an ft-extensional pca+,
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(ii) (A, E, _L)is (p)-reflexive via F, G and =|<is the canonical appli­
cation operation based on F,

(iii) (A, E, L) is a cpo such that for every A’ Q A

E|aVa' E A’( a’ T; a) ——+supA' E A,

(iv) (A, *, K, S, 0, SN, PN, D, N) has standard integers,

(v) a is compact, for all a E N, i-e. for every a E N and every
directed A’ Q A one has

a§supA'——>al;a0

for some a0 6 A’. D

This is a long catalogue, but observe that any pca+-expansion of
the five model types mentioned above satisfies to (iii): Firstly,
any pca+-expansion of these models is ft-extensional. Secondly, every
model is a (p)-reflexive cpo and comes along with its canonical appli­
cation. Thirdly, every model, except for T“’, is a complete lattice and
therefore closed under arbitrary sup’s. T”, however, is closed under
sup’s of sets having an upper bound. Observe also that compactness
comes down to finite sets, in the case of DA and PW,and to finite
elements, in the case of T”. The pca+-expansion of Du, as described
in example 7.1.3 is therefore a CF -pca"".

We shall now prove for arbitrary CF —pca+’sthat every a E I T; is
indeed locally determined by a finite amount of information about its
argument. To these ends we shall define canonical approximations of
type—1functionals.

Definition 7.4.3 Let M be a CF—pc.a+.For a E IT1, finite X Q N
and a’ E A, define

fa,X(a') = sup{a:1: | :1:E X /\ as E a'}. El

Lemma 7.4.4 Let M be a CF-pca+ and a E IT1. Then

(i) \/finite X Q N( fa,X E [A —+A] ),

(ii) sup{fa,X |X C_ZN A X finite} E [A —>A],

88



(iii) G(sup{fa.,XIX Q N A X finite}) :1 a.

PROOF. Observe that {a:z:I:z:E X /\ :1:Q a’} Q aa’, since * is
monotone. Hence sup{aa; I:1:E X /\ :1:Q a’} E A, by 7.4.2(iii). Thus
fa,X : A —->A. Now let A’ Q A be directed. Then fa,X(supA’) =

= sup{aa:Ia: E X /\ :1:Q supA’)}

= .sup{aa: I:1:E X /\ :1:Q a’ /\ a’ E A'}, since as is compact

= .sup{sup{a:c I:1:E X :1:Q a’)} Ia’ E A'} = sup{fa,X(a’) Ia’ E A'}.

For (ii) observe that {fax IX Q N /\ X finite} is directed.
(iii) We have to prove that sup{fa,X IX Q N /\ X finite}(a’) = cm’,
for all a’ E N. So let a’ E N. Then

aa' = fa,{a:}(a') Q sup{fa,X IX Q N A X finite}(a').

The converse follows from the fact that fa,X(a’) Q aa’, for all X Q N.
Cl

These canonical approximations will now reveal the finite amount
of information needed by a type-2 functional to determine its value
for a given argument.

Proposition 7.4.5 Let M be a CF-pca+ and a E IT2, a’ E IT1.
Then there is a finite X Q N such that

Va" 6 IT1(Va: E X( dz: = a"a:) —> em’= aa").

PROOF. Let a E IT2 and recall that IT; = ET2, since M is ft­
extensional. Let a’ E I T1. Then aa’ =

= a(G'(sup{fa:,X IX Q N /\ X finite})), by 7.4.4(iii)

= a(sup{G(far,X) IX Q N A X finite}), since G is continuous

= .sup{a(G(far,x)) IX Q N /\ X finite}, since * is continuous.
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Hence, since cm’is compact, aa' = a(C-'(far,X))for some finite X Q N.
Now let a" 6 IT; be such that dz: = a”:I:,for all :1:E X. Then

fa:,X(a'") = sup{a':I: I3:‘E X /\ :3 E a'”} =

sup{a"a: Ia: E X /\ :1:E a'”} = fan,X(a'").

Thus far’); = fan’); and therefore G'(fa-,X) = G(fa~,X). So

aa' = a(G'(fa~,X)) _C_a(G'(sup{fau,X IX 6 N /\ X finite})) = aa".

Thus aa’ = aa”, since numerals are consistent. C!

The last step is the coding of the global description of a type-2
functional into a type-1 object. As a preliminary Weshall first show
that every f E w“’is numerically representable in every CF -pca+.

Lemma 7.4.6 Let M be a CF-pca+ and f 6 cu”. Then there is an
a E A such that

VnEw(afi=
PROOF. Let f E w“’. For a E A, finite X Q ca, define fX(a) by

fX(a) = sup{f(:v) I1!E X /\ E Q a}.

We shall first prove that fx : A -> A. This is done by induction
owe cardinality of X. Let a E A. If |X| 3 1 or |X| = l+ 2 but

E X /\ E E a}| 3 1, thisis obvious.If |X| = l+2 and
E X A E I; a}| Z 2, pick :c1,:1:2E X such that 231362:2and

33-1E a, T; I; a. By the induction hypothesis fX\{,,2}(a) E A. Then

fX\{x2}(a) = D fx\{:c2}(a) f(II72) T1 T2 E D fX\{a:2}(a) f(:I:2) 513-10,

.f($2)= D .fX\{:v2}(a) ?1T1E D .fX\{:c2}(a) fl av

since M is a monotonepca+. Thereforesup{fX\{,32}(a), E A,
by 7.4.2(iii). But

3UP{fx\{a.~.»}(a),f($2)} = SUP{-J‘(—-$)|$G X /\ 5 E 0}­

Hence fX(a) E A.
Then also fx 6 [A —>A], since fX is monotone and numerals are
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compact.
Now, since {fx |X Q cu /\ X finite} is directed, one has

sup{fX IX Q ca /\ X finite} E [A —+A]

and therefore

G(sup{fX |X Q to /\ X finite}) E A.

Finally, observe that

_ __ F77)" if n e X
fX(n) —{ J. otherwise,

since numerals are consistent. Thus G'(sup{fX | X Q a: /\ X finite})fi =

sup{fX(fi)|XQw /\ X finite})=

for all n E w. El

Theorem 7.4.7 Let M be a CF-pca+. Then CF; = IT2.

PROOF. By the definition one has, CF2 Q I T2. For the converse, let
a E I T2. Then aa' 6 N, for all a’ E CF1. We have to prove that a has
an associate. Since Ass(a’) = a’, for all a’ E CF1, this comes down to
the construction of a b E I T1 such that

(1) 3W( b(5_’(7n—))> 5),

(2) VW( b(5_’(T—n'))> 5 —-+ b(5_’(m)) = (aa') + 1 ),

for all a’ E CF1. To this end define f E w“’by

_ m+1 if <I>(k,m,a)
_ { 0 otherwise,

where

<I>(k,m,a) <———>3a’ 6 IT13l E w( aa’ = ‘F11’/\ 5(7) = F /\

Va” 6 IT1(?(l) = E ——+aa' = aa")).
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Then _ _ _
(1) Va’6 IT13k,l E w(a’(l')= k /\ > 0) :

Let a’ 6 IT}. By proposition 7.4.5 there is a finite X Q N such that
for all a" E I T1

Va:6 X( dz: = a":z:) —> aa' = aa".

We can thus pick I, k E w such that

F =< a'6, ...,a'l >

and l 2 :13,for all 5:’E X. Every a" E I T1 satisfying 7(7) = F, then,
has the same values on X as a’ has. Therefore aa' = aa". Hence
f(k)>0.
(2)\7’a'EIT1Vk,lEw(?(l)=E/\ f(k)>0—;?(k’)=aa'+1):

This follows immediately from the definition.
Now let b E A be any numerical representation of f. Then b is an

associate for a, by (1) and From the precedinglemma it therefore
follows that Ass(a) 96(0. Hence a E CF2. Cl

Corollary 7.4.8 Let M be a pca+ having standard integers. If M is
an expansion of

(i) DA or Pu, and N is a collection of finite sets, or

(ii) T” and N is a collection of finite elements, or

(iii) an extensional, (p)-reflexive, complete lattice and N is a collec­
tion of compact elements,

thenCF2= D
We conjecture that the argument used above can be extended to

all pure finite types, i.e. CF(M) =< IT,, >,.ew, for every CF-pca+
M.

Theorem 7.4.7 does not cover Hw, since it is not a reflexive cpo. It
is also unlikely that there is any pca"'-expansion of Hw in which ev­
ery type—2functional is countable, since application in Hw essentially
allows operators the values of which depend on an infinite amount of
information about the arguments involved. We shall illustrate this
phenomenon by an example.
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Proposition 7.4.9 There is a pca+-expansionM of H, having stan­
dard integers such that

(i) 77= {n}, for all n E LU,

(ii) CF2 74IT2.

PROOF. We assume some coding of finite sequences such that 0 is
the code of the empty sequence and let M be the expansion of H“,
such that

0 SN={<0,m,n+1> |m,nEw /\ emzfi},

o PN={<0,m,n> |m,nEw /\ em=n+1},

oD={<mh<0¢<0m%<Qnp>>>>|

k,l,m,n,oEw /\ 3p,qEw((em=1'9 /\ e,.,=§)/\

((p=q A 066:) V (paéq /\ 0€ek)))}­

We leave the verification that M is a pca+ to the reader. We shall
now show that there is an F E I T2 such that for all f E I T1 one has

(1) Ff=6<—>VnEw(ffi=6),(2)
Such an F does not belong to CF2, since
- f := i< 0, n, 0 > In E w} is the constant zero-function and thereforeFf=0,
- for every n E w,

fn := {< 0,l,0> |3m§n(e,=fii)}U{< 0,l,1 > |E|m>n(e,=fi)}
is a function such that

fm_{§ ifmgn1 otherwise.

Hence for every finite X Q N there is a fn E I T1 such that

\7’a:EX(fa:=fn:1:)A
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Thus F has no associate.

For the constructionof F WeshallWrite< n > for the code
of the sequencen,f(0), ...,f(p —1) and let be some coding of
pairs of natural numbers such that (.0,0) = 0. Then F is defined by
F = F1 U F2 where

F1:={<< n > *T(p),m,0 > lf 6 or“ A n,m,p 6w A

Eek 9 W(< 7(1)), /9,0 >6 em )},

F2 := {< 7(p),m,(n,l+ 1) > If 6 ca” /\ l,m,n,p 6 w /\

Elek§fiElp' 3 p(< 7(p’),k,l+ 1 >6 cm) A

Vr < n3ek Q F319’3 p( < ?(p'), k,0 >6 em

Now let g 6 IT1. Then 0 6 Fg +———+

*—->Vf3P36m Q 9( < 7(P)»m»0 >€ F)

<——->\7’f3p3em Q 9( < 7(p),m,0 >6 F.)

<——>Vn 6 wVfE|p3em Q 9( << n > *7{p),m,0 >6 F1)

<——>Vn 6 w\7’f3p3ek Q fi( < 7(p), k,0 >6 g)

<——>Vn6w(gfi=5).

Moreover, (n, l + 1) 6 Fg <—>

<—*Vf3p3em _C_g( < 7(p),m,(nJ+ 1) >6 F)

<—>VfE|pE|emQ g( < 7(p),m,(n,l+ 1) >6 F2)

<——»\7’f3p3e,n Q g( Elekg fi3p' g p( < 7’(p'), k, 1+ 1 >e cm)

A W < n3ek Q F3p' 3 p(7(p’),Ic, 0 >6 em))

<—>Vf3p3ek Q ‘n7(< 709), k,l+ 1 >6 9)
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/\ VT< nVf3p3ek Q ?( < 7(1)), 16,0>6 9) (*)

<:>gfi'=l 1/\\7’r<n(gF=5).

(*): For <——pick q,qo,...,qn_1 such that < 7(q),k,l + 1_>€ g, for
some ek Q ‘vi, and < f(q,-),k,-,0 >6 g, for some ck‘. Q 2'. Now let
p = ma:z:{q,qo, ...,q.n_1} and

em= {< k)I + 1 >7< ?(q0)ak0a0>7"-7< ?(qn-1))kn-170

Thus F satisfies (1) and (2) above. C1

The countably based functionals CbF =< CbF,, >,,6w were first
introduced by Hartley [Ha]. These functionals can be roughly charac­
terized by the fact that values are determined by a countable amount
of information about the argument. Moreover, they are globally de­
scribed by a continuum of information coded in an associate which
is now a type-2 object. Since every pca"'-expansion of Hw is ft­
extensional, we conjecture that in pca"'-expansions of Hwhaving stan­
dard integers the pure finite type functionals coincide with the count­
ably based functionals.

7.5 Extensionality, Weak Extensionality
and FT-Extensionality

Having reached a point Where Wetalk about three notions of exten­
sionality, the question about the interdependencies of these notions
arises. There is the Well-knownfact that extensionality implies weak
extensionality. This however - and showing this is the principal aim
of this section - is the only dependency. That is,

(1) extensionality does not imply ft—extensionality;

(2) Weakextensionality does not imply extensionality;

(3) weak extensionality does not imply ft-extensionality;

(4) ft-extensionality does not imply extensionality;
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(5) ft-extensionality does not imply weak extensionality.

(2) is known from the literature and in the previous section we have
already encountered examples for and (5): DAand Hware both ft­
extensional but neither is the first extensional nor is the second Weakly
extensional. In the remainder of this section we shall prove (1) and
(3) by constructing an extensional ca that is not ft-extensional.

The construction described below owes much to Plotkin’s and
Scott’s account and differs from their Pu,-models essentially only in
that the resulting model is not closed under arbitrary unions. Al­
though it may be interesting to investigate more closely the global
and local structure of this model, we shall restrict ourselves entirely
to proving that it is an extensional ca in which the extensional fi­
nite type structure and the intensional one do not coincide. Other
investigations are far beyond the scope of this section.

The construction is inspired by the followingdiagnosis. In D‘, with
the interpretation of the various constants defined as in example 7.1.3
there are two 0-functions of type 1 having different global behaviour:

' fl : {(@v0)}v

0 f2 = {({n}a0)|n E w}­

The global behaviour of these functions differs precisely at 0 where
fllll = {0} but _f20= (D.The reason for the absence of an operator in
Do, that takes this difference in the global behaviour of f1 and f2 into
account while mapping the functions of type 1 into N is threefold:
firstly, f3 := fl U f2 is also a function of type 1; secondly, application
is monotone; thirdly, the numerals are consistent. The third fact is
inevitable. Moreover, ever since Scott’s approach in 1969 it seems
hard to construct a ca that is not monotone. The basic idea for
the construction, then, is to exclude operators such as f3 from the
universe.

We shall work in Pa, rather than DA. The reason for taking the
coded graphmodel lies in one of our aims, namely in constructing an
extensional ca. The coded version, then, is less opposed to forcing
extensionality into the model, since every natural number functions
under the coding as an elementary instruction. Sticking to the well­
founded DA instead would mean an additional complication, since
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one also has to force elements of A to act. However, making this
choice also means that the construction is less transparent, since the
interesting properties of the model seem to be caused by the miracles
of coding.

Because of reasons of heredity, we shall not work in the whole of
w but shall restrict the carrier set to a proper subset. Prior to the
moment of being used, we shall not comment on the several clauses
of the definition of the universe given below. The patient reader
will discover, while following the proofs, that the definition resembles
precisely those conditions which need to be met in order to reach the
aim.

The construction can be carried out for arbitrary bijective codings
(n,m) and en. However, for reasons of simplicity, we shall fix the
following standard codings where (0,0) = 0, (1,0) = 1 and co = 9,
cl = {0}:

Definition 7.5.1 For n,m E w,

(i) let (n,m) = + m)(n + m + 1)+ m,
(ii) define the finite set an as follows:

6,, = {k0, ...,km_1} with kg < < km_1 <—+n = Z 2‘.Clz'<m

Definition7.5.2
(i) For all X, Y Q (.2,define

X>I<Y:= {mlflen Q1/'((n,m) €X)}.

(ii) Define M (w) Q w recursively by

(1) Mo = {0a 1};

(2) put

Pn(P) ‘—“’

\/(s,t), (s’,t) E e,,( 3(l, t’) E M,,(e1= es U esp) ——+s = .3’),

l——)v('S7t) G Mn3(l7t,) E Mn( 61= 6p* es )7

Mn+1 = Mn U {(p.q) I6p Q Mn /\ <16 Mn A 1‘..(p) /\ An(p)};
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=UnEwMn.D
It is easily seen that for all n

(p,q) E Mn+1 —* 6p 9 Mn /\ 9 5 Mn­

We shall first work towards a characterization of M (w) that is more
suitable for our purpose.

Lemma 7.5.3 For all n 6 ca, (p,q) 6 Mn

(i) “(O 6 er A 1 E 61>)?

(ii) V610’Q ep( (PI: 0) 5 Mn )3

(iii) Vm( 6,, Q Mn, ——>(p, 0) E M,n+1

PROOF. We prove (i)—(iii)by induction on n. First recall that

0 = (0,0), 1 = (1,0), 60= (0,61=

For n = 0, this is trivial.
Let (p, q) E Mn+1\Mn. Then en Q Mn and Fn(p), An(p) hold.

(i) Assume (0,0),(1,0) 6 en. Then co U 61 = <21and (1,0) = 1 6
Mo Q Mn. But 0 751, contradicting Pn(p).

(ii) Let en: Q en. To prove (p’, 0) 6 Mn“, we shall verify I‘n(p') and
An(p'). I‘n(p’) follows from I‘n(p). To prove An(p’), let (.s,t) 6 Mn
and put 6]!= epr*e3. By An(p), let (I, t) 6 Mn be such that e; = en>I<e,.
Then 6]!Q e1. Hence (I', 0) 6 Mn, by the induction hypothesis.

(iii) Suppose en Q Mm. If n S m, then (p, 0) E Mn+1 Q M,n+1.
Thus assume m < n. Ifm = 0, then anE {(0,{0},{1}}, by Clearly,
I‘0(p) holds. For A0(p) observe that for all (.3,t), e,,>I<e3E {(0, But
0,1 6 Mo. Hence also A0(p) holds. Therefore (p,0) 6 M1. Finally,
assume 0 < m < n. Then I‘,n(p) follows from I‘n(p), since M,n Q Mn.
To prove A,n(p), let (s,t) E Mm. Then also (s,t) 6 Mn. It thus
follows from An(p) that en * e, = e,, for some (I, t) E Mn. Observe
that c; Q M,n_1, since en Q M,n. Thus (I, 0) E Mm, by the induction
hypothesis. Hence also A,n(p) holds and therefore (p, 0) E M,n+1. Cl

It follows that membership of M (ca)is characterizable in terms of
the following two conditions, which we shall often use instead of the
original definition.
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Proposition 7.5.4 For all (p, q) E w, (p, q) E M(w) iff ep Q M(w),
q E M(w) and

(I) \7’(s,t),(s’,t) E e,,(3(l, t’) E 61= e, Uesr) ——>s = 3’),

(II) V(s,t)EM(w)3(l,t’)E e;= ep*es

PROOF. -—>:Assume(p,q) E
If (p, q) 6 Mo, then 6,,E {(0, Hence (I) holds trivially. For

(II) observethat e,,* 6, E {(0,{0}},for all (s,t) E But 0,1 6
MoQ M Hencealso (II) holds.

If (p, q) E M1\M0, then ep 6 {(0,{0},{1}}, by 7.5.3(i). Therefore
(I) holds. (II) follows again from the fact that e,,,* e, E {(0,{0}}, forall(s,t)E

Now suppose (p,q) E M,,+2\M,,+1. Then ep Q M,,+1 Q M(w),
q E M,,+1Q and I‘,,+1(p), A,,+1(p)hold.

To prove (I) let (s,t),(s',t) E 6,, be such that 6, U :23:= e; for
some (l,t') E Observe that 61Q Mn, since epQ M,,+1. Hence
(I, 0) 6 Mn“, by 7.5.3(iii). It then follows from I‘,,+1(p) that 3 = 3'.

Finally,for(II)let (s,t) E Put

es" = LJ{e,r Q e, IElm (.s',m) 6 ep}.

Then :2,"Q Mn, since ep Q M,,+1. Hence (s", 0) 6 Mn“, by 7.5.3.(iii).
It therefore follows from An“ (p) that ep * esn = e,, for some (I, t’) E
M,,+1. But ep* es" = ep*es. Thus ep* es = ez,for some (I, t’) E

4-: Assume ep Q M(w), q E M(w) and (I),(II) hold. Choose n + 1
such that e,, Q M,,+1 and q E M,,+1. We shall prove (p, q) E M.,,+2by
verifyingI‘,,.,.1(p) and An“ P,,+1(p) followsfrom For A,,+1(p)
let (s,t) 6 Mn“. Then ep* e, = e, for some (I, t’) E M(w), by (II).
But c; Q Mn, since ep Q Mn“. Hence (I, 0) E M,,_,_1,by 7.5.3(iii). D

We shall now define our universe. We shall not simply take the
wholeofP(M but restrict ourselvesto those setswhichessentially
share the properties (I) and (II) of the preceding proposition.

Definition 7.5.5 DefineU Q 77(M(w))by

X E U <———>‘v’e,,QXE|mE E M(w)).El
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Lemma 7.5.6 U is closed under subsets, i.e.

VX e UVX’g X(X’ e U).

Moreover, for all (n,m) E M(w), en E U.

PROOF. The first claim follows immediately from definition 7.5.5.
For the second apply lemma 7.5.3(ii). D

Proposition 7.5.7 For all X Q M(w), X E U if]?

(I) V(s,t),(s’,t) EX(e,Ue,r E U—>s =3’),
(II) VYEU(X>I<YEU).

PROOF. —+:Assume X E U. To prove (I) let (s,t),(s’,t) E X be
such that 6, U 6,: E U. Put 6:;= e, U 63!. Then (I, t) E M(w), for some
t E Put, moreover,6,,= {(s,t),(s',t)}. Then(n,t') E M(w),
for some t’ E M(w), since en Q X E U. Hence 3 = 3', by 7.5.4(I).

For (II) let Y E U and 6,, Q X*Y. We have to prove that (n, m) E
M(w), for some m E M To this end observethat one can choose
6,, Q X, c, Q Y such that en = ep*Y and e, = U{e,r | Elm(s’,m) 6 ep}.
Then (p,t),(s,t’) E M(w), for some t,t’ 6 M(w), since U is closed
under subsets. Hence e,,*e, = cl, for some (I, t") E M(w), by 7.5.4(II).
Buten= e1.Thus(n,t")E

4-: Assume X Q M(w) and (I),(II) hold. Let en Q X. We have
to provethat (n,m) E M(w), for somem E We shall show
that (n, 0) E M by applying proposition 7.5.4. Clearly, en Q M(w)
and 0 E 7.5.4(I)followsfrom (I) and 7.5.6. For 7.5.4(II) let
(s,t) E Then 63E U, by 7.5.6. HenceX* 6, E U, by (II). Now
put 61= en * es. Then e; Q X * e,. Therefore 61E U, since U is closed
under subsets. Thus for some t’ E M (w) (l, t’) E M (w), by definition
7.5.5. [I

Next, we shall show that (U, *) is a nontrivial, total, extensional
applicative structure.

Proposition 7.5.8 For all n E M(w), E U. Moreover,for all
X, Y E U

(i) X*YEU,
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(ii) \7’Z€U(X*Z=Y=I<Z)—->X=Y.

PROOF. One proves by induction on m

VnE M,,,( E U),

by applying proposition 7.5.7. Clearly, 7.5.7(I) holds for all singletons.
If m = 0, then n = 0 or n = 1. Hence * Y E {(0,{O}}. But
since 0, 1 E M(w), it follows from lemma 7.5.6 that (0,{0} E U. The
induction step is left to the reader.

(i) follows from proposition 7.5.7(II). To prove (ii) let X, Y E U be
such that X * Z = Y * Z, for all Z 6 U. We shall only prove X Q Y.
The converse follows by symmetry. Let n E X. Say, n = (I, m). Then
e; E U. Hence m E X * e1: Y * e1. Thus (p,m) E Y, for some
6,, Q e1. Therefore also m E Y * e,,,= X * ep. So (q,m) E X, for some
6,, Q 6,, Q ez. Then 6,,U e1: e; and (q,m), (l, m) E X. Therfore q = l,
by 7.5.7(I). Hence also p = l, i.e. (I, m) E Y. C!

It remains to show that the universe is not too restricted, i.e.
we have to prove, firstly, that (U, *) is combinatory complete and
secondly, that the additional constants can be defined in a way such
that the finite type structures do not coincide. To these ends we shall
first characterize the representable functions.

Observe firstly, that U is a cpo with bottom (0and supD = UD,
for directed D. U is not a complete lattice, since both {0}, {1} E
U, by the preceding proposition, but {0, 1} ¢ U, by lemma 7.5.3(i).
We thus have already achieved one aim, namely the exclusion of the
coded version of the operator f3 mentioned in the beginning of this
section. Secondly, observe that * is continuous with respect to the
Scott topology on U. It follows that every representable function is
continuous. The converse, however, is not true.

Lemma 7.5.9 Vn,m E w( en E U /\ m E M(w) ——>(n,m) E M(w)

PROOF. Let 6,,E U and m E Then (n,t) E M(w), for some
t E Thus (n, t) satisfies(I) and (II) ofproposition7.5.4. Hence
also(n,m)E El.
Proposition 7.5.10 There is an f E [U —>U] such that f is not
representable in U.
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PROOF. Define f : U —>U by

(ll if X = (ll

f(X) : { {0} otherwise.

Clearly, f E [U —>U Suppose f is representable, i.e. there is an
X; E U such that Xf *0 = (Dand X, *Y = {O},for all Y E U\{0}.
From the existenceof such an Xf it followsthat for all en,en:E U

e,,Ue,,:€U———>e,,fle,,:7é(?l:

Observe that (0,0) ¢ Xf, since Xf * I3= (ll. Now let e,,,enr E U\{(ll}.
Then X; * e,, = {0} = X; * enr. Hence there are (s,0),(s’,0) E X;
such that e, Q e,, and es: Q e,,r. Assume en U en: E U. Then e, U 6,: Q
en U en: E U. Thus e, U 6,: E U, since U is closed under subsets.
Therefore 3 = 3’, i.e. c, Q e,, F]e,,:. But e, 75 (ll.

We shall now derive a contradiction by constructing two nonempty
sets e,,,e,,: E U with 6,, U en: E U and en 0 en: = (ll. Put en =
Then 6,, E U, by proposition 7.5.8. Hence also en: := {(n, 1)} E U, by
7.5.9 and 7.5.8. Clearly, 6,, 0 e,,: = (D.To prove that e,, U en: E U we
shall apply proposition 7.5.7. Recall that 1 = (1,0). Hence (I) holds.
For (II) let Y E U. Assume (en U en’) * Y = {0, 1}. Then (:1,en Q Y,
i.e. {0,1} Q Y. Contradiction with 7.5.3(i). Thus (en U enr) * Y E
{@,{0},{1}} Q U. D

As shown above not every continuous function preserves F1for
consistent sets, i.e. continuous functic-ns do not satisfy in general

Y u Y’ e U —. f(Y) n f(Y’) = f(Y n Y’).

*, however, is distributive over D in both arguments for consistent
sets, that is

Lemma 7.5.11 For all n E w and all X0 U Yb,...,X,,+1 U Y,,.,.1E U

(X0* *Xn+1)D * *Yn+1)1' fl * *(Xn+1FlYn+1).

PROOF. By induction on n.
For n = 0, observe that (X0flY0)*('X1flY1) Q (X0*X1) fl(Y{,*Y1),

since * is monotone. For the converse let t E (X0*X1)fl(Y},*Y1). Then
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there are c, Q X1, es: C_IY1 such that (s,t) 6 X0 and (s’,t) 6 Yb. But
e3Uesr E U, since e3Ues: _C_X1 UY1 E U and U is closed under subsets.
Moreover, (s,t),(s’,t) E X0 U Y0 E U. Therefore 3 = 3’, by 7.5.7(I).
Hence es Q Xlfll/'1 and (s,t) E Xofll/0. Thus ifE (X0flY0)*(X1flY1).

Now let X0 U Y0,...,Xn+1 U Yn+1,Xn+2 U l/“+2 E U. Then

(X0 0 * * (Xn+10 Yn+1)* (Xn+2fl Yn+2)=

= * *Xn+1)fl * *Yn+1))*(Xn+2fl Yn+2).

In order to apply the induction hypothesis a second time we have to
show that (X0 * * Xn+1) U (Y0* * Yn+1)E U. To this end observe
that

(X0* *Xn+1)U * * Yn+1)Q (X0U * * (Xn+1UYn+1),

since application is monotone. Thus (X0*...*X,,+1)U(Y},*...*Y,,+1)E U
and therefore ((X0 * =1:X,,+1) 0 (Y0 * * Y,,+1)) * (X,,+2 F1Yn_,_2)=

(X0 * * Xn+2)H * ... * Yn+2).

E]

It follows that the representable functions can be characterized in
the following way:

Definition 7.5.12 Define

(i) for n E w,

Repn+1(U) = {f E [U'"‘” —>U] IVXO,...,X,,,Y0,...,Yn E U

(XoUYo,...,X,,UYn E U ——>

f(Xo, ...,X,,) n f(Yo, ...,Y,,) = f(x0 n 1/2,,...,Xn n Yn))},

(ii) for f E Rep1(U),

G(f) = {(-Sat)I636 U /\ t E f(es) /\ V63’C es(t ¢ f(es’))}°D

Lemma 7.5.13 For all f E Rep1(U)
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(i) VXEU(G(f)*X=f(X)),
(ii) G(f)eU.

PROOF. Let f E Rep1(U).
(i) Let X E U andt E G(f)>I<X. Thent E f(e3), for some es Q X.

Hencet Ef(X), sincef ismonotone.Therefore *X Q
For the converselet t E Then t E U{f(e,,)|e.,, Q X},

since f is continuous. Fix en Q X such that t E f (en) and put
3 = mz'n{s’|e3: Q en A t E f(e,r)}. Then es Q X, t E f(e3) and
t ¢ f(e3:), for all es:C e,. Sothere is an 63E X suchthat (s,t) E
Thereforet E *X.Hencealso Q *X.

(ii) Q M(w),by lemma7.5.9.Toprovethat E U we
shall invokeproposition7.5.7. For (I) let (s,t), (s’,t) E be such
that e, U es: E U. Then 25E f(e_.,), t E f(e3r). Now put e; = e, D esr.
Then t E f(e,) fl f(e,:) = f(e,), since f E Rep1(U). Hence -( e; C es)
and -1(e1 C e,: But c, Q e, and c; Q est. Therefore e, = e; = est, i.e.
3 = 3'. (II) followsfrom D

We leave it to the reader to check that Rep1(U) is in fact a cpo.
Defining as usual for X,Y E U, F(X)(Y) = X * Y one then has F E
[U —+Rep1(U)], since application is continuous in both its arguments
and distributive over 0 for consistent sets. Then F o G = idRep,(U)
and moreover, G o F = idy, since (U, *) is extensional. Hence U '5
Rep1(U We shall now extend this result to continuous, distributive
functions with arbitrary arity.

Proposition 7.5.14 For all n E w and all f : U”‘” —>U

f is representable in U iff f E Repn+1(U
PROOF: -—>follows from the fact that * is continuous and distributive
over F}for consistent sets.

<—:By induction on n. The basis case is given by lemma 7.5.13.
Let f E Rep,,+2(U). For X0, ...,Xn E U define fX0,_,,,X,,: U —-+U by

fX0,,__,Xn(X)= f(X.3, ...,X,,,X).

Then fx0,.,,,X,,E Rep1(U By the induction hypothesis we can pick
for all X0, ...,X,, E U an Yf,X0,m_,X,,E U representing fX0,__.,Xn.Then

(1) Yf,Xo,...,X,. U Yf,zo,...,z,. E U,
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for all X0 U Z0, ...,X,, U Zn 6 U: We shall invoke proposition 7.5.7.
For (I) let (s,t), (s’,t) E Yf,X0,.__,XnUYf,z0,_,_,Znbe such that esUesr E

U. If (s,t),(3',t) E Yf,Xo,___,Xnor (s,t),(s’,t) E Yf,z0,,__,znthen .9 = 3’.
Thus assume (s,t) E Yf,X0,__,,Xnand (s',t) E Yf’Z0’___’Zn.Then

t€ Yf,Xo,...,X,.* 63 = f(Xo, °°'7Xn7es)

and

t6 Yf,Zo,...,Zn* es’ : ,f(Z07 “'7 Zn: 63’)­

Hence

t E f(X0, ...,X,,,e3) fl f(Zo, ...,Z,,,e3:) =

= f(X0 fl Z0, ...,X,, 0 Zn, 6, F1esa) _C_f(X0, ...,X,,, e, D esr) =

= Yf,Xo,...,X,. * (6.9 U 63'),

since f is distributive and monotone. Thus (r, t) E Yf’Xo,___’Xn,for
some c, Q (es 0 e3:). Since (3, t) E Yf,X0,_,,,Xnand 6,.U es = 6, E U, one
has r = 3. So c, Q (e, 0 esa) C_Ie,r. Therefore 3 3 3’. Similarly, one
shows that s’ g 3. Hence 3 = 3'.
For (II) observe that (Yf,xo,_,_,X,,U Y;,z0,,_,,Zn)* X =

= (Yf,Xo’___,Xn=1:X) U (Yf,zo,._,,zn * X), by the definition of *

= f(X0, ...,Xn,X) U_f(Z0,...,ZMX) Q UZ0,...,Xn UZMX),

since f is montone. Thus (Yf,Xo,.__’XnU Yf,zo_,__,zn)* X E U, since U is
closed under subsets.
From (1) it now follows that for all X0 U Z0, ...,Xn U Zn 6 U,

(2) Yf,Xo,...,X,. (7 Yf,Zo,...,Z,. = Yf,xonzo,...,X,.nz,. I

Let X E Then (Yf’X0,___,Xn0 Yf,z0,___,Zn)* X =

= (Yf,X0,___,Xn* F1(Yf,Z0’.__,Zn* X), by and

= f(Xo,...,X,,,X)r1f(Z0,...,Z,,,X)

= f(Xo F7Z0, °°°7Xn (7 ZMX) = Yj,Xonzo,...,X,.nz,.* X­
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Thus Yf,X0,___,Xn0 Y_;,z0,_“,gn= Yf,X0nZ0,__,,Xnnzn,by extensionality.
Now define h : U"+1 ——>U by

h(X0, ..., Xn) =' Yf,X0,__.,Xn.

We shall show that h E Repn+1(U The distributivity of h for consis­
tent sets follows from In order to prove that h E [U“+1 ——>U] it
is sufficient to prove that h is continuous in its arguments separately.
Let 0 3 i 3 n and D Q U be directed. Then for all X E D,

h(Xo, ...,X,-_1,X,X,-+1,...,X,,) =

= h(X0, ...,X,--1,X fl (UD),X,-+1,...,X,,)

= h(Xo, ...,X,-_1,X,X,-+1, ...,Xn) fl h(X0, ...,X,--1, UD,X,-+1,...,Xn)

Q h(Xo, ...,X.-_1,UD,X,-+1, ...,Xn).

Hence U{h(Xo,...,X,-_1,X,X,-+1,...,Xn)IX E D} E U, since U is
closed under subsets. Now let Z 6 U. Then

(U{h(Xo, ...,X,-_1,X,X,-+1,...,X,,) IX 6 D}) * Z =

= U{h(X0, ...,X,-_1,X,X,-+1,...,Xn) * Z |X E D}

= U{f(X0, ...,X,--1,X,X,-+1, ...,Xn, Z) | X E D}

= f(Xo,...,X,-_1,UD,X,-+1,...,X,_,Z), since f is continuous

= h(X0, ...,X,--1, UD,X,-+1,...,Xn) * Z.

Thus

U{h(Xo,...,X,-_1,X,X,-+1,...,X,,)IXE D}:

= h-(X0,...,X,-_1,UD,X,-+1, ...,Xn),

by extensionality.
This proves that h E Repn+1(U By the induction hypothesis there
is an Xh E U representing h. Then

X},* X0 * * Xn * Xn+1 = h(X0, ...,X,,) * Xn_,.1= f(Xo, ...,Xn,X,,+1),

for all X0, ...,Xn,Xn+1. Thus f is representable. El
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Theorem 7.5.15 There are K,S' E U such that (U, *, K, S) is an
extensional ca.

PROOF. (U, *) is an extensional applicative structure by proposition
7.5.8. Define fK : U2 —>U and f3 : U3 ——>U by

9fS(XaY7Z):X*Z*(Y*Z)v
for all X, Y,Z 6 U. Clearly, fK E Rep2(U f5 is continuous, since *
is so. For the distributivity let X UX’, Y U Y’, Z U Z’ 6 U. Then

(Y>I<Z)U(Y'>I<Z')_(;(YUY')*(ZUZ'),

since * is monotone. Therefore also (Y * Z) U (Y' * Z’) 6 U. Thus

f3(X, Y,Z)nf_g(X’,Y’,Z’) = ((X*Z*(Y*Z))r)((X’*Z’*(Y’*Z’)) =

(Xr1X’)*(Zr)Z’)*((Y*Z)fl(Y’*Z’)) =
= (Xr)X’)*(ZflZ’)*((YflY’)*(Z’flZ’)) = f5(XnX’,YnY’, ZOZ’),

by 7.5.11. Hence also f5 6 Rep3(U). Now let K,S E U be the
representations of fK and f5, respectively. D

We shall now define an appropriate pca+-expansion. The numerals
will be singletons which have pairwise no upper bound. They differ
from the numerals in the standard pca+-expansion of P‘, where N =
{{n} In E w}­

Definition 7.5.16 For n GLa,define H = {(tb(n),0)} where

€¢(n) == {(2¢("‘), ¢(m)) Im S 71}

and <13: w —+w is defined by

(i) ¢(0) = 0,

(ii) ¢(n + 1) = (2"’(”),0)- '3

Lemma 7.5.17 <13is injective and rangecbQ M Moreover,for all
n, m E w

(i) emu) 5 U»
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(ii) H e U,

(iii) 'r'z'U'7fiEU—>n=m.

PROOF. First recallthat 2"‘is the codefor the singleton Clearly,
qfiis injective, since (., is injective. One proves rangegb Q M (cu) by
induction on n. q$(0)E M (w) by definition 7.5.2. The induction step
follows from lemma 7.5.9.
For we shall invoke 7.5.7. Clearly, (I) holds. To prove (II) observe
that

e,,,(.,,)*X = {q5(m)|m 3 n /\ q5(m)E X} Q X,
for all X E U.
(ii) follows from and lemma 7.5.9. For (iii) let h'U 777E U, i.e.
{(2,b(n),0),(v,b(m),0)} E U. Observe that either e,p(,,) Q e¢,(m)or
e¢(m) Q e¢(,,). Hence e./,(,,)U e¢(m) E U. Thus = 2/2(m), by
7.5.7(I). Therefore 72= m. C)

Proposition 7.5.18 There is a pca"'-expansionof (U,*) such that

N = {H | n E w}.

PROOF. For X E U define fgN(X),fpN(X) by

_ n + 1 if H Q X
f3” (X) _ { (D otherwise

and
_ H if n + 1 Q X

fP”(X) _ { 0 otherwise.

Then f5N E Rep1(U): f5N(X) is well-defined by 7.5.17(iii). Moreover,
f5N is continuous, since the numerals are singletons. Thus f5N E
[U —+U]. For the distributivity let X U X’ E U. If f5N(X) = (llor
f5N(X’) = (3)then

f5N(X) n .fSN(X’): 0 : f5N(X n X’)'

Thus assume fgN(X) = n+ 1 and f5-N(X’)= m+ 1. Then E Q X
and W Q X’ and therefore HUW Q XUX' E U. Hence n = m and
E Q Xfl X’. So

f5N(X) D .fSN<X,)= n + 1 : fSN(X nX,)°
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Similarly fpN E Rep1(U
For X, Y, Z1, Z2 6 U define

fD(X,Y,Z1,Z2)= X ifE|n,m€w(n#m /\ fi_§Z1 /\ Tfi§Z2)
(0 otherwise.

Then fp E Rep4(U): Observe that fD(X, Y,Z1,Z2) is well-defined by
7.5.17. Thus fp : U4 —+U. To prove that fp is continuous it is
sufficient to prove that fly is continuous in its arguments separately.
Clearly, fl) is continuous in X and Y. For Z1 observe that fl) is
monotone. Hence

U{fp(X,Y, Z, Z2) | Z G U'} E fp(X,Y,UU',Z2),

for directed U’ Q U. The converse follows from the fact that the
numerals are singletons. By symmetry, fp is also continuous in Z2.
So fp E [U4 —>U]. Now let XUX’,YUY',Z1 U1/V1,Z2UW} E U.
Again one has

fD(XnX’,YnY’,Z1 nVV1,Z2rWIQ)= (0,

if fD(X, Y, Z1,Z2) = 0 or fD(X',Y',W'1,W}) = (0. Thus assume
fD(X, Y, Z1,Z2) 7E(0aé fD(X',Y',W'1,W2). We we shall distinguish
four cases.

(1) fD(X, Y, Z1, Z2) = Y and fD(X’, Y’, VV1,W2) = Y’. Then there are
n,m E nosuch that h’_C_Z1 0 Z2 andfi Q W] D W}. Hence

'fiUfi§(Z1flZ2)U(VV1flVV2)§Z1UW'1.

So 72= m and therefore

ThusfD(XflX',YflY’,Z1flW'1,Z2flW})=YflY'.
(2) fD(X,Y,Z1,Z2) = Y and fD(X',Y’,W'1,W2) = X’. Then there
aren,m,l€wsuchthatfi_C_Z1flZ2,Tn‘§W},l§W}andm=,-él.
Then

'fiU7'fi§(Z1flZ2)UI/V1 QZIUW].
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Hence n = 777..Moreover,

fiUl§ (Z1 DZ2) UW} Q Z2 U W2.

Hence n = I. So m = l. Contradiction.
(3) fD(X, Y,Z1,Z2)= X and fD(X',Y’,l/V1,Wg)= Y’. As
(4) fD(X, Y,Z1,Z2) = X and fD(X’,Y’,l/V1,W2) = X’. Then there
are l,m,n,p E to such that l Q Z1, W <_IZ2, E Q W}, 1-)_C_W2 and
I75 777,,n #1). Hence

iu H g Z1 U W1.

Hence I = n and therefore l <_IZ1 F1VV1.Similarly, W Q Z2 F1VV2.Thus
fD(XflX’,YflY’,Z1 fll/V1,Z2flW2)=XflX'.
This proves that fp E Rep4(U). Now let SN, PN, D E U be the
representations of f3N,fpN and fp, respectively. I3

Finally, we shall show that the finite type structures do not co­
incide in any pca+-expansionof (U,*) having E w} as its set
of numerals. The reason for this disagreement is twofold: firstly, the
type-2 functional

_ fl if f * (Z)yé (Z)

H(f)"{T iff*(Z)=(D

is representable in such a pca+-expansion and secondly, there are
equivalent type—1 functions f1, f2 with fl * (Z)= (Dand f2 * (Z);é (0.

Proposition 7.5.19 Let M be a pca+—eXpansionof (U, *) such that
N= Ew}.ThenIT(M)75
PROOF. FOIXEU, define

6 if3nEw(fiC_IX>+=(b)
T if3n€w(fi§X*U /\ -w(fi<_IX*(Z)))
(ll otherwise.fH(X)={

Let us first prove that fH(X) is well-defined. Suppose there are n, m E
w withfi§X*(D,'fi1’§X*6and -w(fi§X*Q)). Thenalso

fi§X*(b§X*U.
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Hence HU W Q X * 6. Therefore 12.= m and thus '17Q X * @.Contra­
diction.
So fH : U ——>U. In order to prove that ff; 6 Rep1(U) We shall first
show that fH is monotone. So let X Q X’ E U. If fH(X) = 0
or fH(X) = U then clearly fH(X) Q fH(X’). Assume fH(X) =
T. Then R Q X *5 and -(H Q X>I<(0), for some n E w. Thus
(2("’(°)'°),(v,b(n),0)) E X Q X’. Therefore (0,(7,b(n),0)) ¢_X’, by
7.5.7(I). Hence fi Q X’ * 5 and fi(fi Q X’ * 0), i.e. fH(X’) = 1.
From the monotonicity it now follows that

U{fH(X) IX 6 U'} Q fH(UU'),

for directed U’ Q U. The converse is proved by combining the
continuity of * and the fact that the numerals are singletons. So
fr; 6 [U -—>U]. For the distributivity let X U X’ E U. If fH(X) = 0
or fH(X’) = (Dthen clearly

fH(X) V7fH(X’) = 0 = fH(X V7X’)­

The remaining four cases are:
(1) fH(X) = 5 and fH(X’) = 6. Then there are n,m E to such that
fiQX*0 andfiQX’*(D. Thus

'fiLJmg(X*(b)U(X’*(b)§(XuX')*(b.

Hence n = m and therefore "ifQ (X * (0)F1(X’* (0)= (XflX’) * (0. So

fH(XflX’) =_0. _
(2) fy-(X) = 0 and fH(X’) = 1. Then there are mm 6 nosuch that
HQX*(0,fiQX’*Uand-1(Tn'QX’*(0). Thus

fiQX*(0QX*UQ(XUX’)*U

and

fiQX’*l)-Q(XUX’)>I=U.

Hence n = m and therefore

WQ(X*0)fl(X’*5)=(XflX’)*((0fl5)=(XflX’)*(Z)QX’*(Z).
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Contradiction.
(3) fH(X) = T and fH(X') = 6. As (2).
(4) fH(X) = T and fH(X’) = T. Then there are n,m E to such that
‘fi§X*5, fi§X’*5, -v(?z’§X*(?)) and fi(fiC_:X’>I<(Z)).Thus

mJm‘g(X*6)u(X'*U);(XuX')*6.

Hence n = m and therefore E C_:(X x5) 0 (X’ * -(3)= (X D X’) * 5.
Moreover, -n(fi Q (XflX’)=u<@), since XflX' Q X. So fH(XflX’) = T.
This proves that fly E Repl(U Nowlet H E U be the representation
of fly. Clearly H E IT2. Define fl,f2 : U —>U by fl = AX.6 and

6 ifE|nEw(fi§X)
(0 otherwise.f2(X) = {

Then fl, f2 6 Repl(U Let Xl,X2 E U be the representations of fl
and f2, respectively, and observe that Xl =l X2 andH*X1 Cl
Corollary 7.5.20 There is an extensional pca+ M such that

IT(M) la ET(M). a
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Samenvatting
Dit proefschrift bevat een vijftal artikelen over verschillende on­

derwerpen binnen het raamwerk van de zogenaamde combinatorische
algebra’s, dwz. modellen van de combinatorische logica. De artikelen
Worden voorafgegaan door een algemene inleiding en een korte op­
somming van uit de literatuur bekende definities en feiten die voor
het vervolg van belang zijn.

In hoofdstuk 3 laten we zien hoe uitgaande van een van de een­
voudigste model-constructies, het graph-model, een extensioneel mo­
del kan Wordengeconstrueerd. Deze constructie berust op de techniek
van de extensionele collaps.

Hoofdstuk 4 modificeert deze techniek voor de verkrijging van niet­
totale extensionele modellen. De beschrijving van deze standaardme­
thode wordt voorafgegaan door een belichting van enkele eigenschap­
pen van niet-totale extensionele modellen en de invoering van p-reflexi­
ve volledige partiéle ordeningen, die een raamwerk vormen voor niet­
totale topologische modellen, dwz. modellen Waarin iedere continue
functie representeerbaar is.

Hoofdstuk 5 behandelt cardinaliteitsaspecten van topologische mo­
dellen; in het bijzonder wordt aangetoond, dat niet-totale topologische
combinatorische algebra’s overaftelbaar zijn.

In hoofdstuk 6 laten Wijzien, dat iedere partiéle applicative struc­
tuur kan Worden ingebed in een extensioneel topologisch model. Hier­
bij maken Wijgebruik van de constructies uit hoofdstuk 3 en 4.

Het laatste en meest omvangrijke hoofdstuk gaat over eindige
typenstructuren binnen combinatorische algebra’s. Het centrale theme.
is hierbij finite-type-extensionaliteit, dwz. extensionaliteit op eindige
types. Er Wordenbekende modellen op deze eigenschap heen getoetst.
Aangetoond wordt, dat de meeste voorbeelden uit de literatuur ft­
extensioneel zijn ongeacht hun graad van globale extensionaliteit. Om
te laten zien, dat er geen verband bestaat tussen locale en globale ex­
tensionaliteit wordt een extensioneel model geconstrueerd, dat niet
ft-extensioneel is.
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