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Abstract

We analyse the computational complexity of three problems in judgment aggregation:
(1) computing a collective judgment from a profile of individual judgments (the winner
determination problem); (2) deciding whether a given agent can influence the outcome
of a judgment aggregation procedure in her favour by reporting insincere judgments (the
strategic manipulation problem); and (3) deciding whether a given judgment aggregation
scenario is guaranteed to result in a logically consistent outcome, independently from what
the judgments supplied by the individuals are (the problem of the safety of the agenda).
We provide results both for specific aggregation procedures (the quota rules, the premise-
based procedure, and a distance-based procedure) and for classes of aggregation procedures
characterised in terms of fundamental axioms.

1. Introduction

Judgment aggregation (JA) is a branch of social choice theory that studies the properties
of procedures for amalgamating several agents’ individual judgments regarding the truth or
falsity of a set of inter-related propositions into a collective judgment reflecting the views of
that group of agents as a whole (List & Pettit, 2002; List & Puppe, 2009). A by now classic
example is due to Kornhauser and Sager (1993): Suppose three judges have to decide on a
legal case involving a possible breach of contract. Two relevant propositions are that there
really has been a binding contract rather than just an informal promise (proposition p) and
that the defendant broke her promise (proposition q). The defendant should be pronounced
guilty if the conjunction of these two propositions is found to be true (p ∧ q). Our judges
take the following views on the matter:

p q p ∧ q
Judge 1 Yes Yes Yes
Judge 2 Yes No No
Judge 3 No Yes No

Majority Yes Yes No

Note that the position of each individual judge is logically consistent. However, if we
aggregate this information using the majority rule (i.e., if we accept a proposition if and
only if a strict majority of the judges do), then we arrive at a collective judgment set that
is inconsistent. This paradoxical outcome, variations of which are known as the doctrinal
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paradox (Kornhauser & Sager, 1993) or the discursive dilemma (Pettit, 2001), has inspired
an important and fast growing literature on JA, starting with the seminal contribution of
List and Pettit (2002), who showed that in fact no aggregation procedure satisfying certain
axioms encoding natural desiderata can avoid this kind of paradox.

The literature on JA has largely developed in outlets associated with Philosophy, Eco-
nomic Theory, Political Science, and Logic, but recently JA has also come to be recognised
as being relevant to AI, particularly to the design and analysis of multiagent systems. The
reasons are clear: in a multiagent system, different autonomous software agents may have
different “opinions” on the same issues (maybe due to a difference in access to the relevant
information, or due to different reasoning capabilities), and some joint course of action
needs to be extracted from these diverse views. Indeed, in AI, the related problem of belief
merging has been studied for some time (see, e.g., Konieczny & Pino Pérez, 2002; Maynard-
Zhang & Lehmann, 2003; Chopra, Ghose, & Meyer, 2006; Everaere, Konieczny, & Marquis,
2007), and there are interesting parallels between that literature and JA (Pigozzi, 2006).
JA has also been found to be relevant to the analysis of abstract argumentation frameworks
widely studied in AI (Caminada & Pigozzi, 2011; Rahwan & Tohmé, 2010).

Given the relevance of JA to AI, it is important to understand its computational aspects.
However, to date, these have only received relatively little attention in the literature. This
can of course be explained by the origins of the field in Law, Economics, and Philosophy.
In other domains of social choice, particularly voting and fair division, on the other hand,
the recent focus on computational aspects has been very successful and has given rise to the
field of computational social choice (Chevaleyre, Endriss, Lang, & Maudet, 2007; Brandt,
Conitzer, & Endriss, 2012).

To help bridge this gap, in this paper we shall analyse the computational complexity of
three important problems that arise in JA:

• Winner determination. The winner determination problem is the problem of com-
puting the result of applying a given aggregation procedure to a given profile of individ-
ual judgment sets. It is of immediate practical relevance to all applications of JA. We
obtain both positive and negative results: for two types of aggregation procedures,
namely the quota rules and the premise-based procedure, the winner determination
problem is easily seen to be polynomial, while for a certain distance-based procedure
we obtain an interesting intractability result, establishing completeness for parallel
access to NP that mirrors corresponding results in voting theory for the Dodgson rule
(Hemaspaandra, Hemaspaandra, & Rothe, 1997), the Young rule (Rothe, Spakowski,
& Vogel, 2003) and the Kemeny rule (Hemaspaandra, Spakowski, & Vogel, 2005).

• Strategic manipulation. An agent may try to influence the result of aggregation
in her favour by reporting a set of judgments that is different from her truthfully held
beliefs. The manipulation problem asks, for a given aggregation procedure, a given
profile of judgment sets, and a given agent, whether that agent has the opportunity to
manipulate successfully in this situation. For one natural way of defining preferences
on top of the JA framework (namely in terms of the Hamming distance) and for
aggregation procedures that are independent and monotonic, it is well-known that
agents will never have an incentive to manipulate (Dietrich & List, 2007c). In other
cases, it is interesting to explore how hard it is to solve the manipulation problem, as
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high complexity might signal a certain level of immunity against manipulation. In the
context of voting, this kind of question has lead to a series of interesting and important
results (Bartholdi, Tovey, & Trick, 1989; Faliszewski & Procaccia, 2010), even if we
have to be careful not to over-interpret theoretical intractability results as necessarily
providing protection in practice (Walsh, 2011). For one widely used procedure (with
an easy winner determination problem), namely the premise-based procedure, we are
able to show NP-completeness for the manipulation problem.

• Safety of the agenda. The paradox presented above shows that for some aggre-
gation procedures it is possible to obtain a collective judgment set that is logically
inconsistent, even though each of the judgment sets supplied by the individuals is
consistent. An important parameter determining the possibility of such a paradox is
the agenda, the set of propositions on which to pass judgment. For a given aggrega-
tion procedure, the problem of the safety of the agenda asks whether a given agenda
is safe in the sense that no profile of individual judgment sets that are consistent can
ever result in a collective judgment set that is inconsistent. For various classes of
aggregation procedures, defined in terms of classical axioms, we prove safety theorems
that fully characterise agendas that are safe in this sense and we relate our results
to known possibility theorems from the JA literature (List & Puppe, 2009). We then
study the complexity of deciding whether a given agenda meets the safety conditions
identified and we find that this is typically a highly intractable problem located at
the second level of the polynomial hierarchy.

These results build on and extend our earlier work on the complexity of judgment aggrega-
tion (Endriss, Grandi, & Porello, 2010a, 2010b).

The remainder of this paper is organised as follows. In Section 2 we introduce the formal
framework of JA, including several concrete aggregation procedures and the most important
axioms used to define desiderata for such procedures. Section 2 also includes proofs of
some simple representation results that characterise aggregation procedures that satisfy
certain combinations of these axioms. Section 3 is devoted to the study of the complexity
of the winner determination problem and Section 4 does the same for the manipulation
problem. In Section 5 we then introduce the problem of the safety of the agenda, prove
several agenda characterisation theorems establishing necessary and sufficient conditions for
safety, and finally study the complexity of deciding whether those conditions are satisfied.
Section 6 reviews related work on computational aspects of JA and Section 7 concludes
with a discussion of possible avenues for future work.

Throughout this paper, we shall assume familiarity with the basics of complexity the-
ory up to the notion of NP-completeness. Helpful introductions include the textbooks by
Papadimitriou (1994) and Arora and Barak (2009).

2. The Formal Framework of Judgment Aggregation

In this section we provide a succinct exposition of the formal framework of JA (List &
Puppe, 2009), which originally was laid down by List and Pettit (2002) and since then has
been further refined by a number of authors, notably Dietrich (2007). We also define three
concrete (families of) aggregation procedures and we discuss the most important axiomatic
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properties from the literature. Finally, we prove a number of representation results, which
have the status of folk theorems in the JA literature and often play a crucial role in the
proofs of more complex results, but which have rarely been stated explicitly.

2.1 Notation and Terminology

Let L be a set of propositional formulas built from a finite set of propositional variables
using the usual connectives ¬, ∧, ∨, →, ↔, and the constants ⊤ (“true”) and ⊥ (“false”).
For every formula α, define ∼α to be the complement of α, i.e., ∼α = ¬α if α is not
negated, and ∼α = β if α = ¬β for some formula β. We say that a set Φ is closed under
complementation if it is the case that ∼α ∈ Φ whenever α ∈ Φ.

Definition 1. An agenda is a finite nonempty set Φ ⊆ L that does not contain any
doubly-negated formulas and that is closed under complementation.

That is, in a slight departure from the common definition in the literature (List & Puppe,
2009), we allow for tautologies and contradictions in the agenda. The reason is that we want
to study the computational complexity of JA, and recognising a tautology or a contradiction
is itself a computationally intractable problem. We write Φ+ for the set of non-negated
formulas in Φ, i.e., Φ = Φ+ ∪ {¬ϕ | ϕ ∈ Φ+}.

Definition 2. A judgment set J for the agenda Φ is a subset J ⊆ Φ.

We call a judgment set J complete if α ∈ J or ∼α ∈ J for all α ∈ Φ; we call it complement-
free1 if for all α ∈ Φ it is not the case that both α and its complement are in J ; and we
call it consistent if there exists an assignment that makes all formulas in J true. Let J (Φ)
denote the set of all complete and consistent subsets of Φ.

We shall occasionally interpret a judgment set J as a (characteristic) function J : Φ →
{0, 1} with J(ϕ) = 1 if ϕ ∈ J and J(ϕ) = 0 if ϕ 6∈ J . The Hamming distance H(J, J ′)
between two (complete and complement-free) judgment sets J and J ′ is the number of
positive formulas on which they differ:

H(J, J ′) =
∑

ϕ∈Φ+

|J(ϕ)− J ′(ϕ)|

Given a set N = {1, . . . , n} of n > 1 individuals (or agents), we write J = (J1, . . . , Jn) ∈
J (Φ)n for a generic profile of judgment sets, one for each individual.2 For ease of exposition,
we shall assume that n is odd (i.e., n > 3). We write NJ

ϕ = {i ∈ N | ϕ ∈ Ji} for the set of
individuals accepting the formula ϕ under profile J .

Definition 3. A (resolute) judgment aggregation procedure for the agenda Φ and the
set of individuals N with n = |N | is a function F : J (Φ)n → 2Φ.

1. This property is called weak consistency by Dietrich (2007), and consistency by List and Pettit (2002).
Our choice of terminology is intended to emphasise the fact that it is a purely syntactic notion, not
involving any model-theoretic concept, a distinction we believe is worth stressing.

2. In previous work we have used the more general notation J (Φ)N (i.e., the set of functions from N to
J (Φ)) for the set of admissible profiles (Endriss et al., 2010a). This is useful when N might be infinite
or when we do not necessarily want to associate the set of individuals with a set of natural numbers, but
we do not require this level of generality here.
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That is, an aggregation procedure maps any profile of individual (complete and consistent)
judgment sets to a single collective judgment set (an element of the powerset of Φ). We
shall occasionally refer to the assumption of all individual judgment sets being complete
and consistent as individual rationality. Note that the collective judgment set need not
be complete and consistent (that is, “collective rationality” need not hold). The kind of
procedure defined above is called resolute, because it will return a single judgment set for
any profile. Later, we shall also discuss irresolute JA procedures, which may return a
nonempty set of judgment sets (that are tied for “winning”). Finally, note that, since F is
defined on the set of all profiles of consistent and complete judgment sets, we are implicitly
making a universal-domain assumption, which is sometimes stated as a separate property
(List & Pettit, 2002).

2.2 Axiomatic Properties

In Definition 3 we did not put any constraints on the collective judgment set, the outcome
of the aggregation process. This is the role of the following definition:

Definition 4. A judgment aggregation procedure F , defined on an agenda Φ, is said to be:

(i) complete if F (J) is complete for every J ∈ J (Φ)n;
(ii) complement-free if F (J) is complement-free for every J ∈ J (Φ)n;
(iii) consistent if F (J) is consistent for every J ∈ J (Φ)n.

We now present several axioms to provide a normative framework in which to state what
the desirable properties of an acceptable aggregation procedure should be. Note that not
every procedure has to satisfy every axiom. Rather, axioms model desiderata that some
procedures satisfy and others do not. The first axiom is a very basic requirement, restricting
possible aggregators F in terms of fundamental properties of the outcomes they produce.

Weak Rationality (WR): F is complete and complement-free.3

This condition differs from what has been called “collective rationality” in the literature on
JA (List & Puppe, 2009), as we do not require the collective judgment set to be consistent.
The first reason not to include consistency in our most basic notion of rationality is that the
requirements of (WR) are purely syntactic notions that can easily be checked automatically,
which is not the case for consistency. The second reason is that consistency is not intrinsic
to the aggregation function, but rather depends on the properties of the agenda. This point
will be made more precise in Section 5, where we will study the consistency of a class of
aggregators depending on the agenda.

The following are the most important axioms discussed in the literature on JA (List &
Pettit, 2002; Dietrich, 2007; List & Puppe, 2009; Nehring & Puppe, 2010):

Unanimity (U): If ϕ ∈ Ji for all agents i ∈ N , then ϕ ∈ F (J).

3. In our previous work (Endriss et al., 2010a), we used a definition of weak rationality that in addition
to completeness and complement-freeness also included the (very weak) technical requirement that no
contradictory formula should be universally accepted under all profiles. As a consequence, some of our
results later on are stated slightly differently.
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Anonymity (A): For any profile J in J (Φ)n and any permutation σ : N → N , we have
F (J1, . . . , Jn) = F (Jσ(1), . . . , Jσ(n)).

Neutrality (N): For any two formulas ϕ, ψ in the agenda Φ and any profile J in J (Φ)n,
if for all agents i ∈ N we have that ϕ ∈ Ji ⇔ ψ ∈ Ji, then ϕ ∈ F (J) ⇔ ψ ∈ F (J).

Independence (I): For any formula ϕ in the agenda Φ and any two profiles J , J ′ in
J (Φ)n, if ϕ ∈ Ji ⇔ ϕ ∈ J ′

i for all agents i ∈ N , then ϕ ∈ F (J) ⇔ ϕ ∈ F (J ′).

Systematicity (S): For any two formulas ϕ, ψ in the agenda Φ and any two profiles J ,
J ′ in J (Φ)n, if ϕ ∈ Ji ⇔ ψ ∈ J ′

i for all agents i ∈ N , then ϕ ∈ F (J) ⇔ ψ ∈ F (J ′).

Unanimity expresses the idea that if all individuals accept a given judgment, then so should
the collective.4 Anonymity states that aggregation should be symmetric with respect to
individuals, i.e., all individuals should be treated the same. Neutrality is a symmetry
requirement for propositions: if the same subgroup accepts two propositions, then either
both or neither should be collectively accepted. Independence says that if a proposition is
accepted by the same subgroup under two otherwise distinct profiles, then that proposition
should be accepted either under both or under neither profile. Systematicity is satisfied if
and only if both neutrality and independence are. While all of these axioms are intuitively
appealing, they are stronger than they may seem at first, and several impossibility theorems,
establishing inconsistencies between certain combinations of axioms with other desiderata,
have been proved in the literature. The original impossibility theorem of List and Pettit
(2002), for instance, shows that (under certain assumptions regarding the agenda) there
can be no complete and consistent aggregation procedure satisfying (A) and (S).

A further important property is monotonicity. We introduce two different axioms for
monotonicity. The first is the one commonly used in the literature (Dietrich & List, 2007a;
List & Puppe, 2009). It implicitly relies on the independence axiom. The second, introduced
in our previous work (Endriss et al., 2010a), is designed to be applied to neutral procedures.
For systematic procedures the two formulations are equivalent.

I-Monotonicity (MI): For any formula ϕ in the agenda Φ and any two profiles J , J ′ in
J (Φ)n, if ϕ ∈ Ji ⇒ ϕ ∈ J ′

i for all agents i ∈ N , and for some s ∈ N we have that
ϕ 6∈ Js and ϕ ∈ J ′

s, then ϕ ∈ F (J) ⇒ ϕ ∈ F (J ′).

N-Monotonicity (MN): For any two formulas ϕ, ψ in the agenda Φ and any profile J

in J (Φ)n, if ϕ ∈ Ji ⇒ ψ ∈ Ji for all agents i ∈ N and ϕ 6∈ Js and ψ ∈ Js for some
s ∈ N , then ϕ ∈ F (J) ⇒ ψ ∈ F (J).

That is, (MI) expresses that if ϕ is collectively accepted (in J) and receives additional
support (in J ′, from agent s), then it should continue to be collectively accepted. Axiom
(MN) says that if ϕ is collectively accepted and ψ is accepted by a strict superset of the
individuals accepting ϕ, then ψ should also be collectively accepted.

Axioms can be used to define different classes of aggregation procedures: Given an
agenda Φ and a list of desirable properties AX provided in the form of axioms, we define
FΦ[AX] to be the set of all procedures F : J (Φ)n → 2Φ that satisfy the axioms in AX.

4. This notion of unanimity is stronger than another common formulation only requiring J = (J, . . . , J) to
imply F (J) = J (List & Puppe, 2009), but the two are equivalent under the assumption of (I).
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2.3 Judgment Aggregation Procedures

Next, we define three concrete types of aggregation procedures.

2.3.1 Uniform Quota Rules and the Majority Rule

An aggregation procedure F for n = |N | individuals is a quota rule if for every formula ϕ
there exists a quota qϕ ∈ {0, . . . , n+1} such that ϕ ∈ F (J) if and only if |NJ

ϕ | > qϕ. The
class of quota rules has been studied in depth by Dietrich and List (2007a). In this paper,
we are interested in a particular class of quota rules:

Definition 5. Given some m ∈ {0, . . . , n+1} and an agenda Φ, the uniform quota rule

with quota m is the aggregation procedure Fm with ϕ ∈ Fm(J) ⇔ |NJ
ϕ | > m.

An aggregation procedure satisfies (A), (I), (MI), and (N) if and only if it is a uniform quota
rule; this fact follows immediately from a result by Dietrich and List (2007a), who use a
slightly more narrow definition of quota rule. Provided m 6= n+ 1, the uniform quota rule
Fm also satisfies (U).

A quota rule of special interest is the majority rule. The majority rule is the uniform
quota rule withm = n+1

2 ; it accepts a formula whenever there are more individuals accepting
it than there are rejecting it (recall that we did assume n to be odd). Clearly, the majority
rule is the only uniform quota rule that satisfies (WR).

2.3.2 The Premise-Based Procedure

As we have seen in the introduction, the majority rule may fail to produce a consistent
outcome. Two basic aggregation procedures that can be set up in a way so as to avoid
this problem have been discussed in the JA literature from the very beginning, namely
the premise-based and the conclusion-based procedure (Kornhauser & Sager, 1993; Dietrich
& Mongin, 2010). The basic idea is to divide the agenda into premises and conclusions.
Under the premise-based procedure, we apply the majority rule to the premises and then
infer which conclusions to accept given the collective judgments regarding the premises;5

under the conclusion-based procedure we directly ask the agents for their judgments on the
conclusions and leave the premises unspecified in the collective judgment set. That is, the
conclusion-based procedure does not result in complete outcomes (indeed, strictly speaking,
it does not conform to Definition 3), and we shall not consider it here. The premise-based
procedure, on the other hand, can be set up in a way that guarantees consistent and complete
outcomes, which provides a usable procedure of some practical interest.

For many JA problems, it may be natural to divide the agenda into premises and
conclusions. Let Φ = Φp ⊎ Φc be an agenda divided into a set of premises Φp and a set of
conclusions Φc, each of which is closed under complementation.

5. This is what is commonly understood by “premise-based procedure”. Dietrich and Mongin (2010), who
call this rule premise-based majority voting, have also investigated a more general class of premise-based
procedures in which the procedure used to decide upon the premises need not be the majority rule.
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Definition 6. The premise-based procedure PBP for Φp and Φc is the function mapping
each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following judgment set:

PBP(J) = ∆ ∪ {ϕ ∈ Φc | ∆ |= ϕ},

where ∆ = {ϕ ∈ Φp | |NJ

ϕ | >
n+ 1

2
}

That is, ∆ is the set of premises accepted by a (strict) majority; and the PBP will return
this set ∆ together with those conclusions ϕ that logically follow from ∆ (∆ |= ϕ).

If we want to ensure that the PBP always returns judgment sets that are consistent and
complete, then we have to impose certain restrictions:

• If we want to guarantee consistency, then we have to impose restrictions on the
premises. It is well-known that the majority rule is guaranteed to be consistent if
and only if the agenda Φ satisfies the so-called median property, i.e., if every inconsis-
tent subset of Φ has itself an inconsistent subset of size 6 2 (Nehring & Puppe, 2007;
List & Puppe, 2009).6 This result immediately transfers to the PBP: it is consistent
if and only if the set of premises satisfies the median property.

• If we want to guarantee completeness, then we have to impose restrictions on the
conclusions: for any assignment of truth values to the premises, the truth value of
each conclusion has to be fully determined.

We shall see in Section 5 that deciding whether a set of formulas satisfies the median
property is highly intractable. That is, in its most general form, deciding whether the
PBP is a consistent aggregation procedure for a given agenda is a complex problem. For a
meaningful analysis, we therefore make two additional assumptions. First, we assume that
the agenda Φ is closed under propositional variables: p ∈ Φ for any propositional variable p
occurring within any of the formulas in Φ. Second, we equate the set of premises with the
set of literals. Clearly, the above-mentioned conditions for consistency and completeness
are satisfied under these assumptions.

So, to summarise, the instance of the PBP we shall work with in this paper is defined as
follows: Under the assumption that the agenda is closed under propositional variables, the
PBP accepts a literal ℓ if and only if more individuals accept ℓ than do accept ∼ℓ; and the
PBP accepts a compound formula if and only if it is entailed by the accepted literals. For
consistent and complete input profiles, and assuming that n is odd, this leads to a resolute
JA procedure that is consistent and complete. On the downside, the PBP violates most of
the standard axioms typically considered, such as (N) and (I). It even violates (U):

p q r p ∨ q ∨ r
Agent 1 Yes No No Yes
Agent 2 No Yes No Yes
Agent 3 No No Yes Yes

PBP No No No No

In this example, all three agents unanimously accept p∨ q∨ r, but when we aggregate using
the PBP, then we end up rejecting p∨ q ∨ r, because each of the three premises is rejected.

6. We shall discuss this result in detail in Section 5.
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2.3.3 The Distance-Based Procedure

The basic idea of a distance-based approach to aggregation is to select an outcome that, in
some sense, minimises the distance to the input profile. This idea has been used extensively
in both preference aggregation (Kemeny, 1959) and belief merging (Konieczny & Pino Pérez,
2002). The first example of a JA procedure based on a notion of distance was introduced
by Pigozzi (2006), albeit under the restrictive assumption that the agenda is closed under
propositional variables and that each compound formula will either be unanimously accepted
or unanimously rejected by all agents. Most importantly, in Pigozzi’s approach the syntactic
information contained in the agenda was discarded by moving the aggregation from the
level of formulas to the level of models. A syntactic variant of this procedure has later been
defined by Miller and Osherson (2009), which these authors call the Prototype-Hamming
rule. This is the distance-based procedure we shall define and analyse here. It is an irresolute
procedure, returning a (nonempty) set of collective judgment sets.

Definition 7. Given an agenda Φ, the distance-based procedure DBP is the function
mapping each profile J = (J1, . . . , Jn) ∈ J (Φ)n to the following set of judgment sets:

DBP(J) = argmin
J∈J (Φ)

∑

i∈N

H(J, Ji)

A collective judgment set under the DBP minimises the amount of disagreement with the
individual judgment sets (i.e., it minimises the sum of the Hamming distances with all
individual judgment sets). Note that in cases where the majority rule leads to a consistent
outcome, the outcome of the DBP coincides with that of the majority rule (making it a
resolute procedure over these profiles). We can combine the DBP with a tie-breaking rule
to obtain a resolute procedure.

The DBP is complete and consistent by design: only judgment sets in J (Φ) are consid-
ered candidates when searching for a solution. However, it violates most of the standard
axiomatic properties when those are adapted to the case of irresolute JA procedures (Lang,
Pigozzi, Slavkovik, & van der Torre, 2011). In particular, the DBP is not independent; in-
deed, it is based on the very idea that correlations between propositions should be exploited
rather than neglected.

2.4 Representation Results

We now prove a number of representation results that characterise the aggregation pro-
cedures that satisfy certain combinations of axioms. All of the results in this section are
known results, but—despite being very useful—they have rarely been stated explicitly in
the literature.

Observe that an aggregation procedure F satisfies (I) if and only if there exists a family
of sets of winning coalitions Wϕ ⊆ 2N , one for each formula ϕ ∈ Φ, such that ϕ ∈ F (J) ⇔
NJ
ϕ ∈ Wϕ. Imposing additional axioms, on top of (I), forces some additional structure onto

the family of winning coalitions:

• F satisfies (I) and (U) if and only if the grand coalition belongs to every set of winning
coalitions: N ∈ Wϕ.
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• F satisfies (I) and (N), i.e., it satisfies (S), if and only if there exists a single set of
winning coalitions W ⊆ 2N such that ϕ ∈ F (J) ⇔ NJ

ϕ ∈ W.

• F satisfies (I) and (A) if and only if collective acceptance of a formula only depends
on the number of individuals accepting it: C ∈ Wϕ and |C| = |C ′| imply C ′ ∈ Wϕ.

One consequence of the latter two insights is that, if F satisfies (A) and (S), then
|NJ

ϕ | = |NJ
′

ψ | implies ϕ ∈ F (J) ⇔ ψ ∈ F (J ′). This is a well-known fact; List and Pettit
(2002), for instance, use it in the proof of their impossibility theorem (for the special case
of J = J ′). Note that a (somewhat surprising) consequence of this fact is that, in case n
is even, there exists no aggregation procedure that satisfies (A), (S), as well as (WR). To
see this, it suffices to consider a (single) profile J where exactly n

2 agents accept ϕ and n
2

agents accept ¬ϕ. Then |NJ
ϕ | = |NJ

¬ϕ|, i.e., either both ϕ and ¬ϕ must be in F (J), contra-
dicting complement-freeness, or neither ϕ nor ¬ϕ must be in F (J), this time contradicting
completeness. We emphasise that this basic impossibility result does not involve any notion
of logical consistency.

On the other hand, when n is odd (which we shall continue to assume), then these
axioms characterise a relevant class of aggregation procedures:

Proposition 1. F ∈ FΦ[WR,A, S] if and only if there exists a function h : {0, . . . , n} →
{0, 1} satisfying h(i) = 1− h(n− i) for all i ∈ N such that ϕ ∈ F (J) ⇔ h(|NJ

ϕ |) = 1.

Proof. We have already seen that when F satisfies (S) and (A), then |NJ
ϕ | = |NJ

′

ψ | implies

ϕ ∈ F (ϕ) ⇔ ψ ∈ F (J ′). The latter is equivalent to the existence of a function h :
{0, . . . , n} → {0, 1} with ϕ ∈ F (J) ⇔ h(|NJ

ϕ |) = 1. The additional requirement of h(i) =
1−h(n− i) then is a consequence of (WR). The other direction is immediate: as acceptance
of a formula under F only depends on the number of agents accepting it, F must be
anonymous, neutral and independent; the condition h(i) = 1−h(n− i) furthermore ensures
completeness and complement-freeness.

Dropping either neutrality or independence, we obtain the following representation results:

Proposition 2. F ∈ FΦ[WR,A, I] if and only if there exists a function hϕ : {0, . . . , n} →
{0, 1} for every formula ϕ ∈ Φ satisfying hϕ(i) = 1 − h∼ϕ(n − i) for all i ∈ N such that
ϕ ∈ F (J) ⇔ hϕ(|N

J
ϕ |) = 1.

Proof. As is clear from our characterisation of procedures satisfying (I) and (A) in terms
of winning coalitions given above, for such a procedure we can always decide whether ϕ
should be collectively accepted by only looking at the cardinality of the coalition accepting
ϕ. The rest of the proof proceeds just as for Proposition 1.

Proposition 3. F ∈ FΦ[WR,A,N] if and only if there exists a function hJ : {0, . . . , n} →
{0, 1} for every profile J ∈ J (Φ)n satisfying hJ (i) = 1− hJ (n− i) for all i ∈ N such that
ϕ ∈ F (J) ⇔ hJ (|N

J
ϕ |) = 1.

Proof. When we drop (I), then winning coalitions are not anymore associated with formulas,
but depend on the profile J we are in. (N) merely ensures that those winning coalitions do
not also depend on the formula in question. (WR) again forces the symmetry requirement
hJ (i) = 1− hJ (n− i). The opposite direction is once again immediate.
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For each of the three representation results above, if we add (U) to the list of axioms, then
this corresponds to requiring h(n) = 1 for each of the characteristic functions h.

Finally, recall that we have seen in Section 2.3.1, that F ∈ FΦ[A, S,M
I] if and only if

F is a uniform quota rule and that F ∈ FΦ[WR,A, S,MI] if and only if F is the majority
rule. That is, the representation results stated above all concern natural weakenings of
the combination of axioms characterising the majority rule. In particular, we chose never
to drop the anonymity axiom, because we find it very appealing and uncontroversial for
JA. We also consider unanimity and weak rationality very fundamental (although we make
exceptions for the class of quota rules). The independence and neutrality axioms, on the
other hand, are much more debatable, which is why we have considered the various options
of either including and not including them (although we always keep at least one of them,
to maintain a minimal amount of structure). That is, the classes of aggregation procedures
covered by the representation results above are all very natural to focus on.

3. Winner Determination

In this section we define the problem of winner determination of a given JA procedure as a
decision problem, and we study the computational complexity of this problem for each of
the procedures presented in Section 2.3.

3.1 Problem Definition

The problem of winner determination in voting theory is that of computing the election
winner given a profile of preferences supplied by the voters. The corresponding decision
problem asks, given a preference profile and a candidate, whether the given candidate is
the winner of the election. In JA, we want to compute F (J) for a given profile J . For a
resolute aggregation procedure F , we can formulate a corresponding decision problem by
asking, for a given formula, whether it belongs to F (J):

WinDet(F )
Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ.
Question: Is ϕ an element of F (J)?

By solving WinDet once for each formula in the agenda, we can compute the collective
judgment set from an input profile. Note that asking instead whether a given judgment set
J⋆ is equal to F (J) does not lead to an appropriate formulation of the winner determination
problem, because to actually compute the winner we would then have to solve our decision
problem an exponential number of times (once for each possible J⋆).

For the case of irresolute JA procedures F we can adapt the winner determination
problem in the following way:

WinDet⋆(F )
Instance: Agenda Φ, profile J ∈ J (Φ)n, subset L ⊆ Φ.
Question: Is there a J⋆ ⊆ Φ with L ⊆ J⋆ such that J⋆ ∈ F (J)?

To see that this is an appropriate formulation of a decision problem corresponding to the
task of computing some winning set, note that we can compute a winner using a polynomial
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number of queries to WinDet⋆ as follows. First, ask whether there exists a winning set
including an arbitrarily chosen first formula of the agenda ϕ1, i.e., L = {ϕ1}. In case the
answer is positive, consider a second formula ϕ2 and query WinDet⋆ with L = {ϕ1, ϕ2}.
Use subset L = {∼ϕ1, ϕ2} in case of a negative answer. Continue this process until all
formulas in the agenda have been covered.7

3.2 Winner Determination for Quota Rules and the Premise-Based Procedure

It is immediately clear that winner determination is a polynomial problem for any quota
rule, including the majority rule.

Fact 4. WinDet(Fm) is in P for any uniform quota rule Fm.

Winner determination is also tractable for the premise-based procedure:

Proposition 5. WinDet(PBP) is in P.

Proof. Counting the number of agents accepting each of the premises and checking for each
premise whether the positive or the negative instance has the majority is easy. This deter-
mines the collective judgment set as far as the premises are concerned. Deciding whether
a given conclusion should be accepted by the collective now amounts to a model checking
problem (is the conclusion ϕ true in the model induced by the accepted premises/literals?),
which can also be done in polynomial time.

3.3 Winner Determination for the Distance-Based Procedure

We now want to analyse the complexity of the winner determination problem for the
distance-based procedure. As the DBP is irresolute, we study the decision problem
WinDet⋆. As we shall see, WinDet⋆(DBP) is Θp

2-complete, thus showing that this rule
is very hard to compute. The class Θp

2 (also known as ∆p
2(O(logn)), PNP[log] or PNP

|| ) is
the class of problems that can be solved in polynomial time asking a logarithmic number
of queries to an NP oracle or, equivalently, that can be solved in polynomial time asking
a polynomial number of such queries in parallel (Wagner, 1987; Hemachandra, 1989). To
obtain our result, we first have to devise an NP oracle that will then be used in the proof
of Θp

2-membership. We shall use the following problem:

WinDet⋆K(DBP)
Instance: Agenda Φ, profile J ∈ J (Φ)n, subset L ⊆ Φ, K ∈ N.
Question: Is there a J⋆ ∈ J (Φ) with L ⊆ J⋆ such that

∑

i∈N H(J⋆, Ji) 6 K?

That is, we ask whether there exists a judgment set J⋆ with a Hamming distance to the
profile of at mostK that accepts all the formulas in L. In other words, rather than aiming at
computing a winning judgment set, this problem merely allows us to compute a judgment set

7. In line with recent work by Hemaspaandra, Hemaspaandra, and Menton (2012), we can therefore argue
that our formulation of the winner determination problem is the correct decision problem associated
with the search problem of actually computing a winning judgment set.
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of a certain minimal quality (where quality is measured in terms of the Hamming distance).
We now show that this problem lies in NP.8

Lemma 6. WinDet⋆K(DBP) is in NP.

Proof. We show that WinDet⋆K(DBP) can be modelled as an integer program (without
objective function). This proves membership in NP (Papadimitriou, 1981). Suppose we
want to answer an instance ofWinDet⋆K(DBP). The number of subformulas of propositions
occurring in the agenda Φ is linear in the size (not cardinality) of Φ. We introduce a binary
decision variable for each of these subformulas: xi ∈ {0, 1} for the ith subformula.

We first write constraints that ensure that the chosen outcome will correspond to a
consistent judgment set (i.e., that J⋆ ∈ J (Φ)). Note that we can rewrite any formula in
terms of negation, conjunction, and bi-implication without resulting in a superpolynomial
(or even superlinear) increase in size. So we only need to show how to encode the constraints
for these connectives. The following table indicates how to write these constraints:

ϕ2 = ¬ϕ1 x2 = 1− x1
ϕ3 = ϕ1 ∧ ϕ2 x3 6 x1 and x3 6 x2 and x1 + x2 6 x3 + 1

ϕ3 = ϕ1 ↔ ϕ2 x1 + x2 6 x3 + 1 and x1 + x3 6 x2 + 1
and x2 + x3 6 x1 + 1 and 1 6 x1 + x2 + x3

Before we continue, consider the following way of rewriting the sum of distances featuring
in the definition of WinDet⋆K(DBP):

∑

i∈N

H(J⋆, Ji) =
n
∑

i=1

∑

ϕ∈Φ+

|J⋆(ϕ)− Ji(ϕ)|

=
1

2
·
∑

ϕ∈Φ

n
∑

i=1

|J⋆(ϕ)− Ji(ϕ)|

=
1

2
·
∑

ϕ∈Φ

|n · J⋆(ϕ)−
n
∑

i=1

Ji(ϕ)|

We will need to bound this sum from above. Now suppose that variables xi with indices
i ∈ {1, . . . ,m} with m = |Φ| are those that correspond to the propositions that are elements
of Φ. Let ai = |NJ

ϕi
| be the number of individuals that accept the ith proposition in Φ

(under J). To compute a winner under the DBP, we need to find a consistent judgment
set J⋆ (characterised by variables x1, . . . , xm) that minimises the sum |n · x1 − a1| + · · · +
|n · xm − am|. We do this by introducing an additional set of integer variables yi > 0 for
i = 1, . . . ,m. We can ensure that yi = |n · xi − ai| by adding the following constraints:9

(∀i 6 m) n · xi − ai 6 yi
(∀i 6 m) ai − n · xi 6 yi

8. Our proof not only establishes membership in NP, but also suggests how to implement a solver for this
difficult problem. As pointed out by one anonymous reviewer, it is also possible to prove NP-membership
more directly, using a certificate that consists of both J⋆ and a satisfying assignment for J⋆.

9. To be precise, these constraints only ensure |n ·xi − ai| 6 yi. However, our next constraint will force the
yi to be minimal.
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Now the sum 1
2 ·

∑m
i=1 yi corresponds to the Hamming distance between the winning set

and the profile. To ensure it does not exceed K, we can add the following constraint:

1

2
·
m
∑

i=1

yi 6 K

Finally, we need to ensure that all the formulas in the set L ⊆ Φ get accepted. We do this
by adding one last set of constraints:

(for all i such that ϕi ∈ L) xi = 1

Now, by construction, the integer program we have presented is feasible if and only if the
instance of WinDet⋆K(DBP) we have started out with should be answered in the positive.
This completes the proof.

To obtain an upper bound for the winner determination problem for the DBP, we can now
use a standard construction. This first involves identifying the “best” value for K, and then
deciding WinDet⋆K(DBP) for that value of K. The latter can be done with a logarithmic
number of queries to the problem the complexity of which we have analysed in Lemma 6.
Together, this yields the desired upper bound:

Lemma 7. WinDet⋆(DBP) is in Θp
2.

Proof. The problem WinDet⋆(DBP) asks whether there exists a winning judgment set
that accepts all formulas in a given subset L ⊆ Φ. Since the Hamming distance between
a judgment set and a profile is bounded from above by a polynomial figure, we can solve
this problem by performing a binary search over K using a logarithmic number of queries
to WinDet⋆K(DBP).

More precisely, since
∑

i∈N H(J⋆, Ji)) 6 K⋆ = |Φ|
2 · |N |, a figure that is polynomial

in the size of the problem description, we can ask a first query to WinDet⋆K(DBP) with
K = K⋆

2 and an empty subset of designated formulas. In case of a positive answer, we

can continue the search with a new K = K⋆

4 , otherwise we move to the higher half of the
interval querying WinDet⋆K(DBP) with K = 3

4 ·K
⋆. This process ends after a logarithmic

number of steps, providing the exact Hamming distance Kw of a winning candidate from
the profile J under consideration. It is now sufficient to run the problem WinDet⋆K(DBP)
with K = Kw and subset L as in the original instance of WinDet⋆(DBP) we wanted to
solve. In case the answer is positive, since there cannot be a winning judgment set with
Hamming distance strictly less than Kw, one of the winning judgment sets contains all
formulas in L. On the other hand, in case of a negative answer all judgment sets containing
L have Hamming distance bigger than Kw, and thus cannot belong to the winning set.

Next, we show that the upper bound established by Lemma 7 is tight. We exploit the
similarity of the DBP to the Kemeny rule in preference aggregation to build on a known
Θp

2-hardness result by Hemaspaandra et al. (2005).

Lemma 8. WinDet⋆(DBP) is Θp
2-hard.
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Proof. We build a reduction from the problem Kemeny Winner, as defined in the work of
Hemaspaandra et al. (2005).10 An instance of this problem consists of a set of candidates C,
a profile of linear preference orders P = (P1, . . . , Pn) over C, and a designated candidate c ∈
C. Define the Kemeny score of c as the following expression:

KemenyScore(c,P ) = min{
∑n

i=1 dist(Pi, Q) | Q is a linear order with top(Q) = c}

Here, dist(Pi, Q) is the Hamming distance between two linear orders (defined as the number
of ordered pairs of candidates on which they disagree) and top(Q) is the most preferred
candidate under preference order Q. Kemeny Winner asks whether the Kemeny score of
c is less than or equal to the Kemeny score of all other candidates d ∈ C.

We now build an instance of WinDet⋆(DBP) to decide this problem. Define an agenda
ΦC in the following way. First, add propositional variables pab for all ordered pairs of
distinct candidates a, b in C; these variables can encode a linear order over C as a binary
relation (where pab stands for a ≻ b). Now we can describe the properties of a linear order
by means of formulas of the form pab ∧ pbc → pac and pab ↔ ¬pba. We include all of these
formulas, for all a, b, c ∈ C, in ΦC . In fact, we include m2 + 1 syntactic variants (where
m = |C|) for each of them.11 The figure m2 + 1 is chosen to be higher than the maximal
Hamming distance between any two linear orders (which is m2).

Given a preference profile P , we can build a judgment profile JP by encoding each
order Pi over C in a judgment set JP

i over ΦC . For example, if agent 1’s preference order
is a ≻ b ≻ c, then JP

1 will include the set {pab,¬pba, pbc,¬pcb, pac,¬pca}. In addition, each
JP

i will include all of the syntactic copies of all of the formulas encoding linear orders.
Observe that we have dist(Pi, Pj) = H(JP

i , J
P

j ) by construction. It is therefore sufficient

to ask a query to WinDet⋆(DBP) using ΦC as the agenda, JP as the profile, and L =
{pcd | d ∈ C, c 6= d} as the set of propositions to accept for sure, to obtain an answer to
the initial Kemeny Winner instance with designated candidate c. If the winning ranking
features c as the top candidates (i.e., formulas pcd are accepted for all other candidates d),
then its Kemeny score will be lower than or equal to that of all other candidates, providing
a positive answer to the original problem. A key insight here is to notice that judgment
sets encoding relations that are not linear orders will not be considered in the minimisation
process, since every disagreement on one of the formulas encoding linear orders will cause
a much greater loss in the Hamming distance than what can be gained by modifying the
variables encoding the individual candidate rankings.

Putting Lemma 7 and 8 together yields a complete characterisation of the complexity of
winner determination under distance-based aggregation:

Theorem 9. WinDet⋆(DBP) is Θp
2-complete.

Theorem 9 shows that the DBP is highly intractable. However, by adapting efficient heuris-
tics developed for the Kemeny rule (which, as seen in the proof of Lemma 8, is closely related
to the DBP) it may be possible to obtain an implementation of the DBP that achieves an
acceptable performance in practice (Conitzer, Davenport, & Kalagnanam, 2006).

10. Hemaspaandra et al. (2005) work with preferences that are weak orders, but point out that their results
remain valid when linear orders are used instead. To simplify presentation, we work with linear orders.

11. For instance, for the formula ϕ we might use the syntactic variants ϕ, ϕ ∧ ⊤, ϕ ∧ ⊤ ∧ ⊤, and so forth.
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4. Strategic Manipulation

In the context of voting, an agent is said to be able to manipulate a voting rule when there
exists a situation in which voting in a manner that does not truthfully reflect her preferences
will result in an outcome that she prefers to the outcome that would be realised if she were
to vote truthfully (Gaertner, 2006). What would constitute an appropriate definition of
manipulation in the context of JA is not immediately clear, because in JA there is no
notion of preference. However, by fixing a suitable notion of “closeness” on judgment sets,
it is possible to build a preference ordering starting from an individual’s initial judgment
set. This is the approach followed by Dietrich and List (2007c) for JA and by Everaere
et al. (2007) in the related setting of belief merging. It builds on the assumption that an
agent’s individual judgment set is also her most preferred outcome and amongst any two
outcomes she will prefer the one that is “closer” to that most preferred outcome. We will
measure “closeness” using the Hamming distance and we will call an aggregation procedure
F manipulable if it permits a situation where an agent can change the outcome to get closer
to her truthful judgment by reporting untruthfully.

Our main interest will be the computational complexity of deciding whether a given
agent can successfully manipulate under a given profile. In this context, a result showing
that manipulation is computationally intractable would count as a positive result. Specif-
ically, we will study this problem for the premise-based procedure. We will not do so for
the family of quota rules, because (as we shall see) it is impossible to manipulate a quota
rule in the aforementioned sense. We will also not study the manipulation problem for
the distance-based procedure, because (as we have seen) even the much more basic winner
determination problem already is intractable for this procedure.

4.1 Problem Definition

We first need to define a preference ordering over judgment sets for each agent i ∈ N .
In principle, there are any number of ways of doing this, but one reasonable approach is
to assume that agent i’s judgment set Ji is also her most preferred outcome and that her
preferences over other outcomes depend on how close they are to Ji (Dietrich & List, 2007c).
We shall measure closeness using the Hamming distance, but other distances could also be
used to this end (Duddy & Piggins, 2012). So we will say that agent i prefers J to J ′ if
and only if H(Ji, J) < H(Ji, J

′).
Below we employ standard game-theoretical notation and denote by (J−i, J

′
i) the profile

that is like J , except that the judgment set of agent i has been replaced by J ′
i .

Definition 8. F is manipulable at profile J ∈ J (Φ)n by agent i ∈ N , if there exists an
alternative judgment set J ′

i ∈ J (Φ) such that H(Ji, F (J−i, J
′
i)) < H(Ji, F (J)).

That is, by reporting J ′
i rather than her truthful judgment set Ji, agent i can achieve the

outcome F (J−i, J
′
i) and that outcome is closer (in terms of the Hamming distance) to her

truthful (and most preferred) set Ji than the outcome F (J) that would get realised if she
were to truthfully report Ji. A procedure that is not manipulable at any profile by any
agent is called strategy-proof.

Dietrich and List (2007c) have shown that a JA procedure is strategy-proof if and only if
it satisfies (I) and (MI). Indeed, this follows immediately from our definitions: independence
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means that the would-be manipulator can consider one proposition at a time; monotonicity
then means that it is always in her best interest to drive up the support for formulas in her
judgment set and to reduce the support for those not in her judgment set, i.e., it is in her
best interest to report her judgment set truthfully.12

For aggregation procedures for which strategy-proofness cannot be guaranteed, we want
to study the algorithmic problem of computing a manipulating judgment set. To this end,
we formulate manipulation as a decision problem for an aggregation procedure F :

Manip(F )
Instance: Agenda Φ, profile J ∈ J (Φ)n, agent i ∈ N .
Question: Is there a J ′

i ∈ J (Φ) such that H(Ji, F (J−i, J
′
i)) < H(Ji, F (J))?

Note that we are asking whether an agent can manipulate successfully, rather than how.
That is, this problem does not immediately correspond to the practical (and potentially
harder) problem of computing an actual strategy for the manipulator. However, since the
interest here is in obtaining intractability results (to provide protection against manipula-
tion), we can safely concentrate on this formulation, which provides a lower bound for the
corresponding search problem.

As we have seen, the uniform quota rules (including the majority rule) are all inde-
pendent and monotonic, which means that they are also strategy-proof (so the algorithmic
problem of deciding Manip does not arise for these procedures). Of course, this comes at
the price of not always producing outcomes that are consistent.

4.2 Strategic Manipulation under the Premise-Based Procedure

We now prove that manipulating the premise-based procedure is intractable, thus show-
ing the existence of the kind of a “jump” in computational complexity between winner
determination and manipulation that is desirable in this context.

Theorem 10. Manip(PBP) is NP-complete.

Proof. We first establish NP-membership. An untruthful judgment set J ′
i yielding a pre-

ferred outcome can serve as a certificate. Checking the validity of such a certificate means
checking that (a) J ′

i is actually a complete and consistent judgment set and that (b) the
outcome produced by J ′

i is better than the outcome produced by the truthful set Ji. As
for (a), checking completeness is easy. Consistency can also be decided in polynomial time:
for every propositional variable p in the agenda, J ′

i must include either p or ¬p; this admits
only a single possible model; all that remains to be done is checking that all compound
formulas in J ′

i are satisfied by that model.13 As for (b), we need to compute the outcomes
for Ji and J

′
i (by Proposition 5, this is polynomial), compute their Hamming distances from

Ji, and compare those two distances.
Next, we prove NP-hardness by reducing Sat to Manip(PBP). Suppose we are given

a propositional formula ϕ and want to check whether it is satisfiable. We will build a

12. Note that this does not contradict the Gibbard-Satterthwaite Theorem in voting theory (Gaertner,
2006). That theorem involves a universal-domain assumption, while the manner in which we are using
the Hamming distance to induce preferences from judgment sets amounts to a domain restriction.

13. That is, at this point we crucially rely on our assumption that the PBP is only defined for agendas that
are closed under propositional variables.
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judgment profile for three agents such that the third agent can manipulate the aggregation
if and only if ϕ is satisfiable. Let p1, . . . , pm be the propositional variables occurring in ϕ,
and let q1, q2 be two additional propositional variables. Define an agenda Φ that contains
all atoms p1, . . . , pm, q1, q2 and their negation, as well as m + 2 syntactic variants of the
formula q1 ∨ (ϕ ∧ q2), as well as the complements of all of these formulas. For instance, if
ψ = q1 ∨ (ϕ ∧ q2), we might use the syntactic variants ψ, ψ ∧ ⊤, ψ ∧ ⊤ ∧ ⊤, and so forth.
Now consider the profile J below (with the rightmost column having a “weight” of m+2):

p1 p2 · · · pm q1 q2 q1 ∨ (ϕ ∧ q2)
J1 1 1 · · · 1 0 0 ?
J2 0 0 · · · 0 0 1 ?
J3 1 1 · · · 1 1 0 1

F (J) 1 1 · · · 1 0 0 0

The judgments of agents 1 and 2 regarding q1 ∨ (ϕ∧ q2) are irrelevant for our argument, so
they are indicated as “?” in the table (but note that they can be determined in polynomial
time; in particular, J1(q1 ∨ (ϕ ∧ q2)) = 0 for any ϕ).

If agent 3 reports her judgment set truthfully (as shown in the table), then the Hamming
distance between J3 and the collective judgment set will be 1+ (m+2) = m+3. Note that
agent 3 is decisive about all propositional variables (i.e., premises) except for q1 (which will
certainly get rejected). Now:

• If ϕ is satisfiable, then agent 3 can report judgments regarding p1, . . . , pm that corre-
spond to a satisfying assignment for ϕ. If she furthermore accepts q2, then all m+ 2
copies of q1 ∨ (ϕ ∧ q2) will get accepted in the collective judgment set. Thus, the
Hamming distance from J3 to this new outcome will be at most m + 2, i.e., agent 3
will have manipulated successfully.

• If ϕ is not satisfiable, then there is no way to get any of the m+2 copies of q1∨(ϕ∧q2)
accepted (and q1 will get rejected in any case). Thus, agent 3 has no means of
improving over the Hamming distance of m + 3 she can guarantee for herself by
reporting truthfully.

Hence, ϕ is satisfiable if and only if agent 3 can manipulate successfully, and our reduction
from Sat to Manip(PBP) is complete.

Thus, manipulating the PBP is significantly harder than using it, at least in terms of worst-
case complexity (and under the assumption that P 6= NP).

5. Safety of the Agenda

In this section, we introduce the concept of safety of the agenda: An agenda Φ is safe
for a given aggregation procedure F , if the collective judgment set returned by F will be
consistent for any (consistent) input profile. Of course, this question is only relevant for
aggregation procedures that are not always consistent to begin with, which is why we do
not consider the PBP and the DBP in this section. In fact, our main interest will be in
the safety of the agenda for entire classes of aggregation procedures, characterised by a set
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of axioms AX: Φ is safe for a class FΦ[AX] of aggregation procedures if it is safe for every
procedure F ∈ FΦ[AX].

After defining the problem and relating it to so-called agenda characterisation results (or
possibility theorems, as we shall call them) studied in the JA literature, we characterise safe
agendas for a number of natural combinations of axioms and we establish the computational
complexity of checking the safety of an agenda for these cases.

5.1 Problem Definition

When performing an aggregation of judgments, we would like to avoid paradoxical outcomes,
i.e., we would like to ensure that the collective judgment set will be consistent. Whether or
not this will indeed be the case depends on several factors: the aggregation procedure, the
agenda, and the individual judgment sets. We cannot control what choices the individuals
will make. We might not even know what aggregation procedure exactly they are going
to use; we might only know about some of its properties, i.e., we might only know that it
belongs to a certain class of procedures. Can we nevertheless guarantee that the collective
judgment set will be consistent? We formalise this question as follows:

Definition 9. An agenda Φ is safe with respect to a class of aggregation procedures F , if
every procedure in F is consistent when applied to profiles of judgment sets over Φ.

The example for a paradox presented in the introduction demonstrates the unsafety of the
agenda {p,¬p, q,¬q, p∧ q,¬(p∧ q)} with respect to the majority rule. The agenda {p,¬p},
on the other hand, is immediately seen to be safe with respect to the full class of all weakly
rational aggregation procedures.

The question of whether an agenda is safe is closely related to the rich literature on so-
called agenda characterisation results (see, e.g., Nehring & Puppe, 2007; Dokow & Holzman,
2010; Dietrich & List, 2007b; List & Puppe, 2009). These authors have asked the following
kind of question: for a given agenda and a given list of axiomatic requirements (always
including the requirement of consistency), is it possible to find an aggregation procedure
that meets those requirements on that agenda? We may rephrase this question as follows:
given an agenda Φ and a list of axioms AX (now excluding consistency), is it possible to
find a procedure in FΦ[AX] that is consistent? To distinguish results of this kind from our
safety theorems below (which are also agenda characterisations of a kind), we shall refer to
them as possibility theorems. To summarise: while a possibility theorem shows that there
is some consistent procedure in FΦ[AX], a safety theorem shows that all procedures in
FΦ[AX] are consistent.

Note that in case a “class” of aggregation procedures consists of just a single aggregation
procedure (e.g., FΦ[WR,A, S,MI] consists only of the majority rule), possibility and safety
results coincide.

Possibility theorems are important from the point of view of the mechanism designer:
given certain axioms that I would like to see satisfied, is it still possible to design an
aggregation procedure meeting them once I know certain characteristics of the kind of
agenda on which the procedure should be used? That is, this is a question we are likely to
ask in an “off-line” situation and only once. Safety theorems, on the other hand, are more
likely to play a role in an “on-line” situation and they arguably are of particular interest
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for applications. The reason is that actual users are more likely to want an assurance that
aggregation will be consistent (provided certain axioms are satisfied and the agenda has
certain properties) rather than to learn that there exists a consistent form of aggregation
(satisfying certain axioms). For instance, suppose we want to give certain guarantees for
the quality of operations of a multiagent system, but without full knowledge of the precise
specification of every individual agent and without full knowledge of all the interaction
protocols they are going to employ. We might nevertheless have sufficient information for a
safety theorem to apply, in which case we can check, for a given agenda, whether consistency
can be guaranteed. That is, deciding whether safety holds is a question we might have
to answer again and again, for many different agendas. This is why the computational
complexity of this problem is a relevant question.

5.2 Agenda Properties

As we shall see, if an agenda satisfies certain structural properties, then that might be a
sufficient condition to ensure safety with respect to certain aggregation rules. It turns out
that the types of agenda properties that are of help here are similar to those that feature in
known possibility theorems. Specifically, we shall make use of the so-called median property,
introduced by Nehring and Puppe (2007).14

Definition 10. We say that an agenda Φ satisfies the median property (MP), if every
inconsistent subset of Φ has itself an inconsistent subset of size at most 2.

In other words, Φ satisfies the MP if it has no minimally inconsistent subset (mi-subset)
with more than 2 elements. Note that in case Φ is known not to include any tautologies
(and thus no contradictions), this definition simplifies to requiring that any mi-subset must
be exactly of size 2. We can generalise the median property as follows:

Definition 11. Let k > 2. An agenda Φ satisfies the k-median property (kMP), if every
inconsistent subset of Φ has itself an inconsistent subset of size at most k.

That is, the MP and the 2MP are the same property. Agendas satisfying the MP are already
quite simple, but the restriction can be made tighter by requiring all inconsistent subsets to
have a particular form. In the sequel, we call an inconsistent set ∆ nontrivially inconsistent
if it does not contain any single formula that is a contradiction.

Definition 12. An agenda Φ satisfies the simplified median property (SMP), if every
nontrivially inconsistent subset of Φ has a subset of the form {ϕ, ψ} with ϕ being logically
equivalent to ¬ψ.

A further simplification yields:

Definition 13. An agenda Φ satisfies the syntactic simplified median property

(SSMP), if every nontrivially inconsistent subset of Φ has a subset of the form {ϕ,¬ϕ}.

14. The name median property derives from the work of Nehring and Puppe (2007), who analyse social
choice functions for a class of vector spaces called median spaces.
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Agendas satisfying the SSMP are composed of uncorrelated formulas, i.e., they are essen-
tially equivalent to agendas composed of atoms alone. The SMP is less restrictive, allowing
for logically equivalent but syntactically different formulas.

Observe that every agenda that satisfies the SMP also satisfies the MP. The converse
is not true: Φ = {p,¬p, p∧ q,¬(p∧ q)} satisfies the MP, but not the SMP. Similarly, every
agenda that satisfies the SSMP also satisfies the SMP. Again, the converse is not true:
Φ = {p,¬p, p ∧ p,¬(p ∧ p)} satisfies the SMP, but not the SSMP.

5.3 Safety Theorems: Linking Agenda Properties and Axioms

We now prove several characterisation results for the safe aggregation of judgments, con-
centrating on classes of procedures defined by weakening the axiomatisation of the majority
rule. We begin with a safety theorem for the majority rule itself. In fact, this result is
familiar from the literature (Nehring & Puppe, 2007), although it is presented there in a
different form. Despite the fact that it is a known result, we still provide a proof, which
arguably is simpler than translating the result of Nehring and Puppe into our setting.

Theorem 11. An agenda Φ is safe for the majority rule if and only if Φ satisfies the MP.

Proof. Let F be the majority rule.
(⇐) First, suppose Φ satisfies the MP. We need to show that F (J) is consistent for

any J ∈ J (Φ)n. For the sake of contradiction, suppose it is not, and let ∆ be a mi-subset
of F (J). As F (J) ⊆ Φ, ∆ can have at most 2 elements. Clearly, it cannot be the case
that F (J) includes a contradiction ϕ⊥, as that would mean that a majority of the agents
would have accepted ϕ⊥. Hence, ∆ must be a set of exactly two formulas, say, ϕ and ψ.
This means that ϕ must have been accepted by n+1

2 or more agents and ψ must have been
accepted by n+1

2 or more agents. Hence, by the pigeon hole principle, at least one agent
must have accepted both of them, thereby contradicting individual rationality.

(⇒) For the other direction, suppose Φ does not satisfy the MP, i.e., Φ has a mi-subset
∆ of size k > 3. We need to show that there exists a profile J such that F (J) is inconsistent.
Let ϕ and ψ be two distinct formulas in ∆. Now consider a profile J with the following
properties (recall that we assume that n > 3): (1) the first n−1

2 agents accept all formulas
in ∆ except for ϕ; (2) the last n−1

2 agents accept all formulas in ∆ except for ψ; and (3) the
“middlemost” agent n+1

2 accepts ϕ and ψ and no other formula in ∆. That is, no individual
agent accepts all of the formulas in ∆, i.e., we really can build an individually rational
profile with these properties (note that any consistent subset of ∆ can always be extended
to a complete and consistent judgment set in Φ). However, under this profile each of the
formulas in ∆ has a majority and we get ∆ ⊆ F (J), i.e., F (J) is inconsistent.

The reason that in this case we were able to rely on a known result is the aforementioned fact
that for classes of aggregation procedures consisting of just a single procedure, safety and
possibility results coincide. Unfortunately, for larger classes of procedures, this approach of
exploiting known possibility results cannot be used.

We first establish two sufficient conditions for the safety of the agenda, for two different
(fairly large) classes of aggregation procedures:

Lemma 12. If an agenda Φ satisfies the SSMP, then Φ is safe for FΦ[WR,U].
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Proof. Consider an aggregation procedure that satisfies (WR) and (U). Let Φ be an agenda
that satisfies the SSMP. Hence, the only way to obtain an inconsistent outcome would be to
either accept an inconsistent formula or to accept a formula ϕ and its syntactic complement
¬ϕ. The latter possibility is excluded by (WR). So, for the sake of excluding also the
former possibility, suppose the inconsistent formula ϕ⊥ has been collectively accepted. By
individual rationality, ∼ϕ⊥ will get accepted by all agents. Hence, by (U), ∼ϕ⊥ will be
collectively accepted, and thus ϕ⊥ will be collectively rejected by (WR).

Lemma 13. If an agenda Φ satisfies the SMP, then Φ is safe for FΦ[WR,U,N].

Proof. Let F be an aggregation procedure that satisfies (WR), (U) and (N), and let Φ be an
agenda that satisfies the SMP. For the sake of contradiction, suppose there exists a profile
J ∈ J (Φ)n such that F (J) is inconsistent. We distinguish two cases:

(1) There exists a set {ϕ, ψ} ⊆ F (J) with ϕ being logically equivalent to ∼ψ. But given
that all individual judgment sets are assumed to be complete and consistent, ϕ being
logically equivalent to ∼ψ means that every agent who accepts ϕ will also accept ∼ψ,
and vice versa, i.e., NJ

ϕ = NJ

∼ψ. Together with (N) this entails ϕ ∈ F (J) ⇔ ∼ψ ∈
F (J). We already know that ϕ ∈ F (J); thus, we also get ∼ψ ∈ F (J). But as we also
have ψ ∈ F (J), we have obtained a contradiction to (WR).

(2) There exists an inconsistent formula ϕ⊥ ∈ F (J). By the same argument as used in
the proof of Lemma 12, this contradicts our assumption of F satisfying (U) and (WR).

That is, we obtain a contradiction in all possible cases.

Next, we prove two results concerning necessary conditions for the safety of the agenda
(now we aim for relatively narrowly defined classes of aggregation procedures):

Lemma 14. If an agenda Φ is safe for FΦ[WR,A,U, S], then Φ satisfies the SMP.

Proof. Let Φ be an agenda that violates the SMP. We need to provide an example for
an aggregation procedure F that satisfies (WR), (A), (U) and (S) that will produce an
inconsistent outcome for at least one input profile. We distinguish two cases:

(1) Suppose Φ violates the SMP by virtue of having a mi-subset of size greater than 2. In
this case Φ also violates the MP. Then Theorem 11 shows that Φ is not safe for the
majority rule. As the majority rule satisfies (WR), (A), (U) and (S), we are done.

(2) The only other possibility is for Φ to have a mi-subset consisting of two formulas
that are not logical complements, i.e., there exists a set of the form {ϕ, ψ} ⊆ Φ with
ϕ |= ∼ψ but ∼ψ 6|= ϕ.15 Consider then the following weakly rational, anonymous,
unanimous and systematic aggregation procedure Fh for 3 individuals, defined using
the notation of Proposition 1: h(0) = h(2) = 0 and h(1) = h(3) = 1. That is, Fh
accepts a proposition only if it is accepted by an odd number of individuals.16 Consider
the following profile, restricted to ϕ and ψ and their complements: J1 = {∼ϕ,∼ψ},

15. For example, ϕ might be p ∧ q and ψ might be ¬p.
16. This parity rule has also been used by Dokow and Holzman (2010) to provide a witness for one of their

possibility results.
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J2 = {ϕ,∼ψ}, J3 = {∼ϕ, ψ}. Note that each of these sets is consistent. However,
the profile (opportunely extended to a profile on the whole agenda) will generate an
inconsistent outcome, since both ϕ and ψ are accepted by exactly one individual.

Hence, in all cases Φ fails to be safe for at least one procedure in FΦ[WR,A,U, S].

Lemma 15. If an agenda Φ is safe for FΦ[WR,A,U, I], then Φ satisfies the SSMP.

Proof. Let Φ be an agenda that violates the SSMP. If it also violates the SMP, then
Lemma 14 applies and we are done.

Otherwise, there must be two formulas ϕ and ψ in Φ such that |= ϕ↔ ∼ψ but ϕ 6= ∼ψ,
i.e., they are logical but not syntactic complements. Let F be the procedure that accepts
ϕ (and rejects ∼ϕ) if at least one agent accepts ϕ, that accepts ψ (and rejects ∼ψ) if at
least one agent accepts ψ, and that behaves like the majority rule with respect to all other
propositions. F satisfies (WR), (A), (U) and (I), but Φ is not safe for F , because in case one
agent accepts ϕ and another ψ, the collective judgment set will include both ϕ and ψ.

We are now ready to state and prove our safety theorems:

Theorem 16. An agenda Φ is safe for FΦ[WR,A,U, S] if and only if Φ satisfies the SMP.

Proof. One direction is given by Lemma 14. The other follows from Lemma 13 together
with the observation that FΦ[WR,U,N] ⊃ FΦ[WR,A,U, S].

This characterisation of safe agendas remains intact when we widen the class of aggregation
procedures under consideration from systematic to neutral procedures:

Theorem 17. An agenda Φ is safe for FΦ[WR,A,U,N] if and only if Φ satisfies the SMP.

Proof. One direction follows from Lemma 14 together with the fact that FΦ[WR,A,U, S] ⊂
FΦ[WR,A,U,N]; the other from Lemma 13 and FΦ[WR,U,N] ⊃ FΦ[WR,A,U,N].

Indeed, while Theorems 16 and 17 state safety results for particularly natural classes of
aggregation procedures, by the same argument we can easily see that for any class F with
FΦ[WR,A,U, S] ⊆ F ⊆ FΦ[WR,U,N] it is the case that Φ is safe for F if and only if Φ
satisfies the SMP.

If we drop neutrality from FΦ[WR,A,U, S] rather than independence, then we obtain
an even more restrictive characterisation of safe agendas:

Theorem 18. An agenda Φ is safe for FΦ[WR,A,U, I] if and only if Φ satisfies the SSMP.

Proof. One direction is given by Lemma 15; the other follows from Lemma 12 together with
FΦ[WR,U] ⊃ FΦ[WR,A,U, I].

Again, we can generalise the above result to say that, for any class F with FΦ[WR,A,U, I] ⊆
F ⊆ FΦ[WR,U], it is the case that Φ is safe for F if and only if Φ satisfies the SSMP.

Finally, for uniform quota rules a characterisation result of the kind we seek is available
in the literature (albeit under a different name), at least for rules with certain bounds
imposed on the quota (Dietrich & List, 2007a). We state this interesting result as follows
(recall that n is the number of individuals):
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Theorem 19. Let k > 2. An agenda Φ is safe for the class of uniform quota rules Fm
satisfying the constraint m > n− n

k
if and only if Φ satisfies the kMP.

Theorem 19 is a reformulation of Corollary 2(a) in the work of Dietrich and List (2007a)
and we shall not prove it here.

Let us conclude this presentation of safety theorems with a remark on the role of the
axiom (U) in our results above. Recall that we have not made any assumption about the
agenda not including any contradictory formulas (or their complements, i.e., tautologies).
If we do make this assumption (which is very common in the JA literature and certainly
not unreasonable), then we can remove all mentionings of (U) in the safety results above.
Indeed, we only ever used (U) in our proofs to avoid situations where a contradiction gets
unanimously rejected yet collectively accepted. If we do not wish to make any assumption
regarding the absence of contradictory formulas from the agenda, then we can still remove
all mentionings of (U) from our safety results above, provided we replace all mentionings of
the SMP with the property of both satisfying the SMP and not including any contradictory
formulas (and accordingly for results involving the SSMP).

5.4 Membership Results for Agenda Properties

Now that we have identified conditions under which we can guarantee the safety of a given
agenda, we want to know how difficult it is to decide whether those conditions are satisfied.
As we shall see, this problem is Πp2-complete for each of the classes of aggregation procedures
we have considered. Πp2 (also known as coNPNP or “coNP with an NP oracle”) is a complex-
ity class located at the second level of the polynomial hierarchy (Meyer & Stockmeyer, 1972;
Stockmeyer, 1976; Arora & Barak, 2009). This is the class of decision problems for which a
certificate for a negative answer can be verified in polynomial time by a machine that has
access to an oracle for answering queries to Sat (or any other NP-complete problem). To
prove a problem Πp2-complete, we have to prove both membership in Πp2 and Πp2-hardness.

We begin by proving membership in Πp2. To do so, we need to provide an algorithm
that, when provided with a certificate intended to establish a negative answer, can verify
the correctness of that certificate in polynomial time, if we assume that the algorithm has
access to a Sat oracle. In the sequel, we shall write MP both for the median property itself
and for the problem of deciding whether a given agenda Φ satisfies the median property,
and similarly for the SMP, SSMP and kMP.

Lemma 20. MP, SMP, SSMP, and kMP are all in Πp2.

Proof. We shall present the proof for kMP, which is intuitively the most difficult of the four
problems. The proofs for the other three problems are very similar.

We need to give an algorithm that decides the correctness of a certificate for the violation
of the kMP in polynomial time, assuming it has access to a Sat oracle. For a given agenda
Φ (withm = |Φ|), such a certificate is a set ∆ ⊆ Φ that (a) needs to be inconsistent and that
(b) must not have any inconsistent subsets of size 6 k. Inconsistency of ∆ can be checked

with a single query to the Sat oracle. If m′ = |∆|, then there are
∑k

i=1

(

m′

i

)

nonempty
subsets of ∆ of size 6 k, which is polynomial inm′ (and thus also inm).17 Hence, the second
condition can be checked by a further polynomial number of queries to the oracle.

17. This figure is not polynomial in k, but this does not affect the argument, as k is a constant.
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5.5 Hardness Results for Agenda Properties

Next, we want to show that MP, SMP, SSMP and kMP are all Πp2-hard. This can be done
by giving a polynomial-time reduction from a problem that is already known to be Πp2-hard
to the problem under investigation. For this purpose, we will make use of quantified boolean
formulas (QBFs). While QSat, the satisfiability problem18 for general QBFs, is PSPACE-
complete, by imposing suitable syntactic restrictions we can generate complete problems
for any level of the polynomial hierarchy. Consider a QBF of the following form:

∀x1 · · ·xr∃y1 · · · ys.ϕ(x1, . . . , xr, y1, . . . , ys)

Here ϕ is an arbitrary propositional formula and {x1, . . . , xr} ∪ {y1, . . . , ys} is the set of
all propositional variables occurring in ϕ (that is, the above could be any QBF for which
any existential quantifiers occur inside the scope of all universal quantifiers). The problem
of checking whether a formula of this form is satisfiable (i.e., true), which we shall denote
∀∃Sat, is known to be Πp2-complete (Arora & Barak, 2009). Below, we shall abbreviate
formulas of the above type by writing ∀x∃y.ϕ(x,y).

The basic intuition for why MP and related problems are Πp2-hard is that they share
some basic structure with ∀∃Sat, asking a question of the form “for all subsets of Φ that
are inconsistent, does there exist a subset with a certain property?” Indeed, embedding,
say, MP into ∀∃Sat is relatively straightforward. However, here we require the opposite:
we need to show that even though ∀∃Sat may appear to be more general than MP and our
other agenda problems, it actually can be reduced to each of these problems.

We first prove a technical lemma. Let ∀∃Sat2 be the problem of checking whether a
QBF of the following form is true, given that we already know that (i) ϕ is not a tautology,
(ii) ϕ is not a contradiction, and (iii) ϕ is not logically equivalent to a literal:

∀x∃y.ϕ(x,y) ∧ ∀x∃y.¬ϕ(x,y)

Lemma 21. ∀∃Sat2 is Πp2-hard.

Proof. By reduction from ∀∃Sat: Given any QBF of the form ∀x∃y.ϕ(x,y), we show
that checking its satisfiability is equivalent to running ∀∃Sat2 on (ϕ ∨ a) ∧ b with a being
universally and b being existentially quantified, for two new propositional variables a and b
not occurring in ϕ, i.e., to checking the satisfiability of the formula

∀x∀a∃y∃b.[(ϕ(x,y) ∨ a) ∧ b] ∧ ∀x∀a∃y∃b.¬[(ϕ(x,y) ∨ a) ∧ b].

First, note that (ϕ∨ a)∧ b cannot be a tautology, a contradiction, or equivalent to a literal;
so the side constraints specified in the definition of ∀∃Sat2 are satisfied. Also note that the
first conjunct above is true exactly when the original formula ∀x∃y.ϕ(x,y) is true. This is
because b can always be set to true, and the original formula has to be true whenever a is
set to false (a falls under the scope of a universal quantifier). Therefore, a positive answer
to the ∀∃Sat2 instance above entails a positive answer to the original ∀∃Sat instance. The
other direction is immediate, because the second of the above conjuncts is always satisfiable
(by making b false).

18. We shall speak of “satisfiability problems” for QBFs, even though strictly speaking for QBFs there is no
distinction between satisfiability, truth and validity, as every QBF is a closed formula.
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We are now able to prove Πp2-hardness for the SSMP:

Lemma 22. SSMP is Πp2-hard.

Proof. We shall give a polynomial-time reduction from ∀∃Sat2 to SSMP; the claim
then follows from Lemma 21. Take any instance of ∀∃Sat2, i.e., the question whether
∀x∃y.ϕ(x,y) ∧ ∀x∃y.¬ϕ(x,y) is true for some ϕ with 6|= ϕ, ϕ 6|= ⊥, and 6|= ϕ ↔ ℓ for
literals ℓ. Suppose x = 〈x1, . . . , xr〉, and define an agenda as follows:19

Φ = {x1,¬x1, x2,¬x2, . . . , xr,¬xr, (ϕ ∧ ⊤),¬(ϕ ∧ ⊤)}

We now prove that Φ violates the SSMP if and only if the answer to our ∀∃Sat2-question
is NO. To see this, consider the following facts. First, suppose Φ violates the SSMP. Under
what circumstances will this be the case? As ϕ is neither a tautology nor a contradiction, any
inconsistent subset of Φ must be nontrivially inconsistent. Furthermore, by construction
of Φ (consisting largely of literals), any inconsistent subset of Φ not including a pair of
syntactic complements must include either (ϕ ∧⊤) or ¬(ϕ ∧⊤), as well as a (complement-
free) subset of {x1,¬x1, . . . , xr,¬xr}. That is, the only way of violating the SSMP is to
find a subset of literals from {x1,¬x1, . . . , xr,¬xr} to make true that forces either (ϕ ∧ ⊤)
or ¬(ϕ∧⊤) to be false. But this is precisely the situation in which our instance of ∀∃Sat2

requires a negative answer.

For the other direction, suppose the answer to our ∀∃Sat2-question is NO. This means
that we are able to find an assignment ρ for the variables in x that makes either ϕ or ¬ϕ
unsatisfiable. W.l.o.g., suppose we are in the latter situation. Construct a subset of Φ,
containing ¬(ϕ∧⊤), that includes the literal xi if it is set to true by the assignment ρ, and
¬xi otherwise. This is an inconsistent subset of Φ, and since ϕ is neither a tautology nor a
contradiction, this falsifies the SSMP.

Proving hardness for the SMP works similarly:

Lemma 23. SMP is Πp2-hard.

Proof. The construction used is the same as for the proof of Lemma 22. The only additional
insight required is the observation that for the special kind of agenda constructed in that
proof, the SMP and the SSMP coincide: By excluding formulas ϕ that are equivalent to
literals, we ensure that the agenda Φ constructed in the previous proof does not contain
any pairs of logically equivalent formulas.

For the MP we give a proof using a reduction from the SSMP:

Lemma 24. MP is Πp2-hard.

Proof. We will show how to reduce the problem of deciding SSMP to an instance of MP.
Let Φ be an agenda on which we want to test the SSMP and let Φ+ = {ϕ1, . . . , ϕm} be
the set of non-negated formulas in Φ. Now build the set Ψ+ in the following way: copy all
formulas in Φ+ m times, every time renaming the variables occurring in ϕi, obtaining the

19. Using (ϕ ∧ ⊤) rather than ϕ ensures that the agenda Φ does not include doubly-negated formulas.
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formulas ϕji for 1 6 i, j 6 m. For every i substitute ϕii by ϕ
i
i∨p

i, where pi is a new variable

not occurring in any of the ϕji . Finally, add p
1, . . . , pm to Ψ+. We obtain the following set:

Ψ+ = {p1, ϕ1
1 ∨ p

1, . . . , ϕ1
m,

p2, ϕ2
1, ϕ

2
2 ∨ p

2, . . . , ϕ2
m,

...

pm, ϕm1 , . . . , ϕ
m
m ∨ pm}

Define Ψ = Ψ+ ∪ {¬ψ | ψ ∈ Ψ+}. We will now show that Φ satisfies the SSMP if and only
if Ψ satisfies the MP. One direction is immediate. Suppose Φ does not satisfy the SSMP.
Then Φ must have a mi-subset ∆ of size k > 2.20 Let ∆ = {ϕi1 , . . . , ϕik}. Then there exists
a subset of Ψ, namely ∆′ = {¬pi1 , ϕi1i1 ∨ p

i1 , ϕi1i2 , . . . , ϕ
i1
ik
}, that is a mi-set of size k + 1 > 3,

thereby falsifying the MP.
For the opposite direction, suppose that Ψ does not satisfy the MP. That is, Ψ has

a mi-subset ∆ of size > 3. By construction of Ψ, we know that such a subset must only
contain formulas with the same superscript or their complements (all other formulas having
different variables). If this subset does not contain any pi or ¬pi, then we can find a copy of
it in Φ, which then violates the SSMP, in which case we are done. Clearly, ∆ cannot include
both pi and ¬pi, as that would contradict |∆| > 3. So we are left with those cases where
∆ includes either pi or ¬pi for some i. Then, by minimality, also ϕii ∨ p

i or its negation
must be included. We can now reason by cases: (1) if both pi and ϕii ∨ p

i are in ∆, then
by dropping the disjunction we will still get an inconsistent subset, against the assumption
of minimality; (2) both ¬pi and ¬(ϕii ∨ p

i) cannot be in ∆ for the same reason; (3) finally,
pi together with the negation of ϕii ∨ p

i is already inconsistent. Therefore, we can conclude
that ∆ must be of the form {¬pi, ϕii∨p

i}∪∆i, where ∆i is a set of (one or more) formulas in
Ψ with the same superscript i. It is now easy to see that the set we obtain when we remove
the superscript from {ϕii} ∪∆i is a mi-subset of Φ that falsifies the SSMP. In particular,
¬ϕii 6∈ ∆i, because ¬ϕii 6∈ Ψ by construction, i.e., the mi-subset of Φ we obtain does not
consist of two formulas that are logical complements.

Finally, we establish hardness for the kMP:

Lemma 25. kMP is Πp2-hard for every k > 2.

Proof. For k = 2, the claim has been established by Lemma 24. Now observe that we can
use exactly the same construction as in the proof of Lemma 24 to reduce any instance of
kMP for some k > 2 to an instance of the corresponding (k+1)MP. Hence, by a simple
inductive argument, kMP must be Πp2-hard for any finite k > 2.

5.6 Complexity of the Safety of the Agenda

We have shown that deciding whether a given agenda Φ satisfies the MP, the SMP, the
SSMP, or the kMP is both in Πp2 and Πp2-hard. Furthermore, in Section 5.3 we have linked
these properties to the safety of Φ for various combinations of axioms. As an immediate
corollary to all of these results, we obtain our theorem concerning the complexity of deciding
the safety of an agenda:

20. The fact that ∆ cannot contain two formulas that are logical complements is not relevant for our proof.
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Theorem 26. Deciding the problem of the safety of an agenda is Πp2-complete for any of
the following classes of aggregation procedures:

(i) FΦ[WR,A, S,MI], consisting only of the majority rule;
(ii) FΦ[WR,A,U, S], the systematic procedures;
(iii) FΦ[WR,A,U,N], the neutral procedures;
(iv) FΦ[WR,A,U, I], the independent procedures;
(v) any class of uniform quota rules Fm with m > n− n

k
for some k > 2.

Proof. Concerning Πp2-hardness, (i) is a direct consequence of Theorem 11 and Lemma 24.
In the same way, (ii) is derived from Theorem 16 and Lemma 23, (iii) from Theorem 17 and
Lemma 23, and (iv) from Theorem 18 and Lemma 22. Finally, (v) follows from Theorem 19
together with Lemma 25. Membership in Πp2 follows from Lemma 20 in all five cases.

That is, not only is it the case that the safety of the agenda can only be guaranteed for
structurally simple agendas, but deciding whether a given agenda meets those structural
constraints is highly intractable. This is a negative result in the sense that it concerns a
problem that we would like to be able to solve efficiently. We should stress that this does not
render the problem hopeless. Work on QBF solvers has seen a lot of progress in recent years
(see, e.g., Narizzano, Pulina, & Tacchella, 2006), and such tools could be deployed to check
whether an agenda satisfies a given type of median property.21 In any event, understanding
how a naturally arising question in JA relates to a difficult but well-studied algorithmic
problem such as ∀∃Sat is interesting and worthwhile in its own right.

6. Related Work: Computational Perspectives on Judgment Aggregation

Starting with the work of List and Pettit (2002), most research in JA has focussed either
on the philosophical implications of the fact that aggregation may result in an inconsistent
outcome or on the derivation of impossibility and characterisation results. The extensive
literature in this field has recently been reviewed by List and Puppe (2009). Some work
has also explored the links between JA and preference aggregation (Dietrich & List, 2007b;
Grossi, 2009; Porello, 2010; Grandi & Endriss, 2011) and several recent contributions have
furthermore focussed on the definition and analysis of specific aggregation procedures (Di-
etrich & List, 2007a; Dietrich & Mongin, 2010; Miller & Osherson, 2009; Lang et al., 2011).
Here we shall instead concentrate on contributions to JA that either have a computational
slant or that are otherwise relevant to AI.

Besides our own previous work on the subject of the present paper (Endriss et al., 2010a,
2010b), there have been a small number of contributions in computational social choice
taking a computational perspective on JA (Nehama, 2010; Slavkovik & Jamroga, 2011;
Baumeister, Erdélyi, & Rothe, 2011; Baumeister, Erdélyi, Erdélyi, & Rothe, 2012): The
first example is the work of Nehama (2010), who proposes a framework for approximate JA
in which the goal of finding an aggregation procedure that will never return an inconsistent

21. As pointed out by one anonymous reviewer, Answer Set Programming may also be a useful framework
in which to reason about safety problems. The DLV System, for instance, provides a flexible tool for
deciding arbitrary problems located at the second level of the polynomial hierarchy (Leone, Pfeifer,
Faber, Eiter, Gottlob, Perri, & Scarcello, 2006).
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judgment set is replaced by the goal of finding a procedure under which returning an
inconsistent set is highly unlikely. The (negative) result obtained for this framework is that
this does however not extend the range of available procedures in a significant way. Second,
Slavkovik and Jamroga (2011) extend the standard JA framework with weights (to model
differences in influence between individuals) and provide an upper bound on the complexity
of the winner determination problem for a family of distance-based aggregation procedures.
Third, Baumeister et al. (2011) provide the first study of the computational complexity of
the bribery problem in JA, asking whether it is possible to obtain a desired outcome if up to
k individual agents can be bribed so as to change their judgment set. Finally, Baumeister
et al. (2012) discuss the complexity of various forms of controlling judgment aggregation
processes, e.g., influencing the outcome by adding or removing judges.

The clearest example for work that explores the integration of ideas from JA with ideas
coming from a field traditionally studied in AI is the recent work on connections between
JA and abstract argumentation frameworks (Rahwan & Tohmé, 2010; Caminada & Pigozzi,
2011): A problem commonly studied in abstract argumentation is how to decide which
ones out of a set of arguments that mutually attack each other to accept, which to reject,
and on which to remain undecided. Rahwan and Tohmé (2010) study a variant of this
problem where a group of agents have to decide which status to award to which argument,
a problem that naturally lends itself to be viewed through the lens of JA. In related work,
Caminada and Pigozzi (2011) have proposed an approach to JA that involves a translation
into an abstract argumentation framework, which makes the tools and techniques of abstract
argumentation available to the aggregation of judgments.

A field of research within AI that is closely related to JA is belief merging (see, e.g.,
Konieczny & Pino Pérez, 2002; Maynard-Zhang & Lehmann, 2003; Chopra et al., 2006;
Everaere et al., 2007). The work of Konieczny and Pino Pérez (2002), in particular, has
inspired the distance-based procedure for JA we have used in this paper. JA and belief
merging as modelled by Konieczny and Pino Pérez share interesting features, but ultimately
study different problems. While in JA individuals are assumed to submit consistent judg-
ment sets, in belief merging this constraint is enforced only on the outcome. This reflects
the view that consistency in belief merging (modelled in terms of an integrity constraint) is
a feasibility requirement, while in JA it amounts to a rationality assumption.

7. Conclusions and Future Work

We have studied the computational complexity of three problems in JA: computing the
winning judgment set for a given aggregation procedure, deciding whether manipulation
would be beneficial for a given agent under a given aggregation procedure and for a given
profile, and deciding on the safety of the agenda for a given class of aggregation procedures.
We have also proven several safety theorems that link safety to simple structural properties
of the agenda and that provide an interesting counterpart to known possibility theorems.

Our results show that, while the winner determination problem is easy for all quota rules
and the premise-based procedure, it is intractable for the otherwise attractive distance-based
procedure. Regarding strategic manipulation, we have seen that manipulation is NP-hard
for the premise-based procedure, which is a positive result. We have also seen that for
quota rules the question of manipulation complexity does not arise, at least not for the
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model of preferences used here. For the distance-based procedure, we have not investigated
the complexity of the manipulation problem, because already the winner determination
problem was found to be intractable. In our work on the safety of the agenda, we have
derived characterisation results for a wide range of procedures, defined in terms of commonly
used axioms. We have seen that safety can only be guaranteed for relatively simple agendas
and we have also seen that deciding whether these simplicity conditions are met is highly
intractable.

While work on the computational aspects of JA has so far been limited to a small
number of interesting but scattered contributions, we strongly believe that JA should be
taken up as an important research topic in both AI and computational social choice. One
important direction to pursue concerns practical algorithms for the problems studied in this
paper (as well as for related problems naturally arising in JA). We have already mentioned
that existing work on algorithms for the winner determination problem for the Kemeny
rule in preference aggregation (Conitzer et al., 2006) may provide a starting point for a
working implementation of the distance-based procedure and that work on QBF solvers in
automated reasoning (Narizzano et al., 2006) or work on Answer Set Programming (Leone
et al., 2006) could prove helpful in tackling the challenges identified by our complexity
results regarding the safety of the agenda.

Alongside the development of practical algorithms, improving our understanding of the
algorithmic aspects of JA by studying it in the framework of parameterised complexity would
also be of great interest. In the context of voting, this approach has lead to a number of
insightful results (Betzler, 2010). Indeed, for JA, initial steps in this direction have already
been taken by Baumeister et al. (2011).

Studying the winner determination problem, both in complexity-theoretic and in practi-
cal terms, for the other distance-based procedures proposed by Miller and Osherson (2009)
and Lang et al. (2011) also constitutes a very worthwhile direction for future work.

Recall that we have analysed manipulation for one particular way of defining preferences,
namely in terms of the Hamming distance to an agent’s true set of judgments. Thus, it
would be interesting to investigate to what extent changing the definition of manipulation
(by altering the notion of induced preference) affects our complexity result. Indeed, other
notions of induced preference (and thus manipulation) are conceivable. For instance, a
would-be manipulator might only be interested in the status of specific propositions (e.g.,
the “conclusions”) or she might use a different notion of distance, e.g., one of those recently
proposed by Duddy and Piggins (2012).

Above we have justified our decision not to study the complexity of the manipulation
problem for the distance-based procedure with the fact that already the much more basic
winner determination problem is Θp

2-complete. An important question that we believe
requires discussion in the research community is whether this is indeed a valid argument.
In the context of voting, the initial idea of Bartholdi et al. (1989) had been that, say, an
NP-hardness result for the manipulation problem for a particular voting rule might suggest
that this rule is immune against manipulation in practice. Recent work very strongly
suggests that this is not the case (Faliszewski & Procaccia, 2010), and that for the kind
of NP-hard problems encountered in this context algorithms that perform well in practice
are relatively easy to design (Walsh, 2011). The question now arises whether the same will
still be true for hardness results with respect to higher complexity classes. For instance, it
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is conceivable that it will be possible to design algorithms that can efficiently solve most
“typical” instances of the winner determination problem for the distance-based procedure,
while it might turn out to be much more difficult to design a similarly successful algorithm
for the corresponding manipulation problem. That is, the question arises whether hardness-
of-manipulation studies need to be restricted to problems for which winner determination
is polynomial, or whether any “jump” in complexity is desirable in principle and might
provide some level of protection in practice.

Regarding the safety of the agenda, we have given results for the most natural combi-
nations of axioms that correspond to a weakening of the majority rule, but a similar study
could also be conducted for other combinations of axioms. Indeed, it would be interesting to
explore how robust our Πp2-completeness results are. That is, an open question that suggests
itself is whether there exists an interesting and relevant class of aggregation procedures for
which the safety problem falls into a different complexity class.

Generally speaking, we believe that much more work on exploring the obvious potential
of JA for AI and multiagent systems is needed. This should lead to both practical advances
and the definition of interesting new theoretical problems. Some steps in this direction have
recently been taken by Slavkovik (2012), concerning the modelling of collective decision
making in multiagent systems, and by Caminada and Pigozzi (2011) and Rahwan and
Tohmé (2010), concerning applications of JA to abstract argumentation.
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