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INTRODUCTION

This thesis consists of five independent syntactic studies, treating of

various systems of typed and untyped A—calculus. They have been

arranged into five chapters in the reverse order in which they were

written. Each of these chapters has its own introduction, with all the

essential information, and its own references; so they can be read

independently of this general introduction.
This introduction is divided into two parts. First, in order to set the

scene, we make a few general remarks on the relation between

Church-Rosser and strong normalization results, and in particular on

the use of strong normalization in Church-Rosser proofs. Thereafter the

respective papers are briefly sketched and provided with some

additional comment.
For the discussion we need some terminology. Suppose we have a

set T of terms with a one step reduction relation —> . Following Klop

[1980] the structure (T, ->) may be called an Abstract Reduction
System. By -» we denote the reflexive transitive closure of —>, and by

= the generated equivalence relation, called converszbn. A finite or

infinite sequence of terms to —> t1—> t2 —> . . . , is called a reduction

sequence (of to). If there exist no infinite reduction sequences of t,

then t is called strongly normalizing (SN). If all terms are SN, then
the reduction relation -’ itself is called strongly normalizing too.

Finally, —> is called Church-Rosser (CR) if

t—» s 8. t—»r= (at')(s—» t' & r—» t'),

and weakly Church-R055er (WCR) if
t—> s & t-> r=> (at')(s—»t' & r—»t‘).

In syntactic work on the A-calculus, Church-Rosser and strong

normalization are the best known type of result. The original

Church-Rosser theorem was the first method to establish the

consistency of the type free ?x-calculus. As a matter of fact, it

remained essentially the only way to prove consistency for several
decades, until the discovery of the lattice-theoretic models by Scott.

For the typed systems there is a natural set-theoretic semantics and
therefore the consistency is a priori unproblematic. In this case the

importance of the Church-Rosser theorem lies rather in the fact that,

when combined with a strong normalization result, it yields a decision

method for testing the convertibility of two typed terms.



We now turn to the employment of SN in Church-Rosser proofs. Let

us start considering those systems for which SN is already established

(as it will be the case with most of the typed systems). In general

their Church-Rosser problem is trivial, since it can be reduced to weak

Church-Rosser by the implication

SN+WCR => CR.

And usually WCR can be straightforwardly verified. The proof of the

implication is easy and standard; it can be found e.g. in 3.1.8 of

capter 1 below.

Note by the way that without SN the Church-Rosser property does

not follow from WCR. The following simple counterexample is by

Staples [1975].

r o+—©——>o u

Maybe a little surprisingly, the implication SN+WCR 2 CR can be

exploited also for type free systems, where SN generally does not hold.

We describe the procedure in an abstract setting.

LICENSED REDUCTION

The main step is devising some sort of Ifcensmg system that regulates

reduction. In effect, a license 11 attached to a term t has to contain
the information:

(a) which reduction steps are allowed from t;
(b) if the step t —> s is allowed by 9., which is the license

that s inherits.

If t —> s is allowed by II and 9.‘ is the license that s inherits under the
indicated reduction step, we denote this by (t,9.) —>' (5,2').
Furthermore we let -»' denote the reflexive transitive closure of ->'
and define —> 1 by the clause:

(i) t—qs a (32)(32')((t,£)-»' (5,2)).

Note that by these definitions the fo.lowing implications are obvious.

(ii) (t, II) —> ' (le') => t-> 5;
(iii) t->15 => t—»s.

Now, in order that the licensing system be appropriate for the

purpose of proving Church-Rosser for the original system, it is

sufficient that the following additional requirements are met.

(iv) t —> s=> (all) (32') ((t, II) -9 ' (s,II'));

(V) (t: £0) _»'(SVQ'U) 8‘ (t) 9'1) _».(r’9"1) =>

(311) (311') (39") ((t,R)—”'(5,Q') & (t, 11) "" (1'19);
(vi) —>' is WCR;
(Vii) —>' is SN.



Finding the appropriate licenses to satisfy (iv) and (v) is called
“lifting”, forgetting about the licenses in (ii) “projecting”.

CLAIM. If for —> a licensing system can be found such that (iv) to (vii)
are valid, then —> is Church-Rosser.

PROOF. (The argument is standard; it can be found e.g. in section

3.1 of chapter 1, where the above method is actually applied.) First

we establish the implication:

(*) t—91881 t—)11' =5 (3t')(s—>1t'&r->1t').

Assumet ->15 and t —>1r. Let £0,930 and £1,931 be such that
(t,flo)—»'(s,fl'g) and (t,9.1)-»'(r,.Q'1) (by (i)). Then by (v) there are
2,232", such that (t,ll)-»'(s,ll') and (t,Q)-»'(r,fl"). But by (vi) and
(vii) the relation —>' is CR, and hence there must be a common

-»'-reduct (t',ll*) of (5,2') and (r,9."). Consequently by (i) again we
haves —91t' and r —> 1t'. Thereby (x) is established. Now from (x) it
follows immediately that —>1 is CR. From this CR for -> can be

derived, since it follows by (i), (iii) and (iv) that the reflexive
transitive closures of —> and ->1 coincide. D

APPLICATIONS

We mention three well-known cases of licensing systems for the

A-calculus to which the above applies.

A. DEVELOPMENTS. The oldest example of such a system uses the sets of

redex occurrences in a term t as the licenses that can be attached to

it. A reduction step is allowed by II if it results from the contraction

of a redex in 9.. The inherited license is the set of residuals of the

redexes in II. The projections of the —> '-reduction sequences are usually

called developments and the required strong normalization result is

known as the Finite Developments theorem. We make use of the

concept of developments in chapter 1. In chapter 2 a new proof of the

Finite Developments theorem is given.

B. LABELLED REDUCTION. More recently, Hyland and Wadsworth, and

Lévy have defined systems of so called labelled reduction, which have,

apart from their use in proving CR, many other interesting

applications. Here we only give a cursory definition of the Hyland/

Wadsworth calculus, which was designed as a tool for studying the

lattice-theoretic models. A Hyland/Wadsworth license for a term t can
be represented as an assigment of natural numbers to all subterms of

t. Then the contraction rule for licensed 8-reduction is

(AX.t)n+1s -+ ' ((X:= sn)t)n.
In addition an improper reduction rule is required, to get rid of

multiple labels: (tn)m —> tmin(n,m), (More details can be found e.g. in
Barendregt [1981].)
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C . TYPES. One may even view the typed ?x-calculus IV as a licensing
system for the type free A-calculus. Its licenses would consist of the

typings and —>' becomes Just reduction within At. But, as reduction
steps from an untypable term cannot be lifted, we do not have (iv).
On the other hand, for typable terms t condition (iv) can be

strengthened to:

(W?) t -» 3 => (Elli) (32') ((t, 11) -»' (s,Jl')).

The other requirements of licensed reduction that were formulated

above do go through.

DEVIATING CASES

The above abstract method for prov;ng Church-Rosser does not work in

all situations, and as a matter of fact, two of the exceptions do play a

prominent role in this thesis.

A. AUTOMATH. In the first place there are the Automath systems with

n-reduction, of which the system M in chapter 5 is an example. The
problem is that whereas they are strongly normalizing all right, there

is no easy way to establish WCR. This is caused by the fact that in

these systems the types are themselves A-expressions, also liable to

reduction. Thus we have the following problematic example (in the

un—Automathlike usual notation).

Mrzo. ((Ay:B.y)X) ‘93 sza. X, and

Mrza. ((Ay:8.y) X) ~91, ?\y:f5.y.

By the assumption that the terms are well-formed it follows that o
and B are convertible into each other. But from this information a

common reduct cannot be derived (unless we know CR already of
course).

The Church-Rosser problem for Automath systems with n-reduction
was solved by van Daalen [1980]. The proof makes essential use of
strong normalization.

B. SURJECTIVE PAIRING. The second deviating case is the ?x—calculus
extended with surJective pairing, treated in chapter 1. In this case the

usual reduction rules are WCR. As a consequence it has proved to be

tempting to search for an appropriate licensing system. Such a system

cannot be found however, as it has been shown by Klop that the
A-calculus with surjective pairing is not Church-Rosser.

SUMMARIES OF THE CHAPTERS

CHAPTER 1. Surjective pairing in connection with the A-calculus was

first studied by Barendregt. He showed that in the A-calculus surjective

pairing is not definable (see appendix 1 of chapter 1). However, it was
Colin Mann who discovered in 1972 that there were difficulties in
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proving the Church-Rosser theorem for the extension of the A-calculus

with surjective pairing. What is meant here is the system (called MIC

in chapter 1) that is obtained by adding to the ?x-calculus constants 11,

110 and 111 and the extra contraction rules

110(11XY) —> X,
111(IIXY) -9 l", and

11(110X)(111X) —> X.

The Church—Rosser problem for lute remained the foremost open

problem in A-calculus, till in 1977 Klop found a counterexample. In the

meantime it had become clear that a Church-Rosser proof would not

be needed in order to establish the consistency: it is not difficult to

find within the Poo-model of the A-calculus elements that satisfy the

requisite equations (see appendix 2 of chapter 1).

Yet the situation was not fully clarified. For, a syntactic

consistency proof was in no way deemed impossible by the failure of

CR. Moreover, it was not settled by the model construction whether

surjective pairing is conservative over the A-calculus. And another

question arises: why stick to the reduction rules of MIC? Do they have

any intrinsic significance?

In chapter 1 we hope to put an end to all these questions by

proving the conservativity of surjective pairing over the A-calculus by

purely syntactic means. In the proof we do not employ the reduction

rules of MIC. Instead we make use of several other auxiliary reduction

relations. These were devised simply with the aim of making our proof
work and we do not claim any a priori computational significance for

them.

For an outline of the conservativity proof we refer to chapter 1,
which has an extensive introduction of its own. Here we only point out

some further connections.
It appears that interest in surjective pairing has for a good deal

been inspired by category theory. The original motivation of Mann was
the connection between category theory and proof theory. He didn’t

need the CR result he sought for after all, since he worked with typed
systems. In their recent monograph, Lambek & Scott [1986] again

study the connection between category theory and proof theory, and

their C-monoids do correspond exactly to the type free ?\n-calculus with

surJective pairing. Finally we should mention the work of Curien

[1986] on a system called “Strong Categorical Combinatory Logic”,
which is designed for the implementation of functional programming

languages. The system is also inspired by category theory and contains

A-calculus with surJective pairing.

CHAPTER 2. The Finite Developments theorem was already mentioned
above. The proof which we present in this chapter is based on a

seemingly naive attempt to produce an expression for the number of

steps in a development of maximal length of a term with respect to a
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specified set of redexes. One finds such an expression by trying to

imagine a reduction strategy that is as uneconomic as possible, never

allowing a short cut if a longer route could be taken as well. The

resulting strategy turns out to correspond to the so called “perpetual

strategy”, which in the ?x—calculus with the usual B-reduction always

finds an infinite reduction path if there is one. Besides that, there is

not much to say about the proof and that might well be its merit.

(This chapter has been published as de Vrijer [1985].)

CHAPTER 3. We prove strong normalization for typed A-calculus and

combinatory logic by a method similar to that of chapter 2, again by

employing a maximally uneconomic reduction strategy. In our

expression for the height h(t) of the reduction tree of a term t we
employ a new type of so called “labeled” functionals. Let t and 5 be

terms such that also the applicative term t5 is well-formed. Then the

labeled functional which is attached to t contains—apart from an

expression for the height of t—all the information that is required to

calculate the labeled functional of :5 given that for 5.

The expression for h(t) is presented as a valuation of the terms of
the typed A-calculus M. In fact two such valuations are given. The

first one only provides an upper bound for the height. But the

corresponding proof of strong normalizaton—called the “quick proof”—is

simple and transparent. Certainly more transparent than the ones

involving a computability predicate. As a matter of fact, the quick

proof provides some extra insight into the nature of the computability

proofs. The computability predicate :an be analyzed as abstracting

from all the information—still explicit in the labeled functionals—that

is not needed for a successful induction on the terms establishing strong

normalization.

The second valuation yields the exact estimates for the height of
reduction trees. Although the valuation itself is easily grasped, the

proof that it actually does its Job is rather complicated. This is
compensated, however, by the fact that it gives more information

than the known strong normalization proofs: viz. the uniformity result

that is described in 2.3.4 and 2.3.5 of chapter 3.
It should be pointed out here that there exists a connection between

our “quick proof”, and the proof in Gandy [1980] which proceeds by
way of an evaluation of the terms of M into a strictly monotonic

fragment (called A-I+) of an extension of the calculus M itself. Our
proof seems more perspicuous, since the valuation that is used in the

quick proof is immediately recognizable as estimating an upper bound

and the labeled functionals are tailor-made for that purpose. Another

difference in the proofs is more superficial than it may appear at first

sight, however. Instead of considering the monotonic functionals as

semantic objects, as we do, Gandy presents his evaluation as a

syntactic coding in the ?\-I+-calculus. In order to make sure that the

terms of type 0 in that calculus actJally convert to numerals, he then



assumes a normalization result. This difference in the proof is not a

substantial one though. The expressions we employ for labeled

functionals can be regarded as syntactic objects as well. We would
then have to define the resulting calculus explicitly, but that is

straightforward. Conversely, one could conceive Gandy’s A-I+-calculus

as Just a notational system for the class of strictly monotonic

functionals of finite type—instead of as a system of syntactic objects

on its own.

CHAPTER 4. We prove that the system N-HA‘I’p (i.e., typed A-calculus

or combinatory logic with a recursion operator and surjective pairing)

is strongly normalizing. The proof is by a computability argument.

This chapter is based on a privately circulated note, written in 1982 to

answer a question posed by Lambek & Scott. They needed the result

for their monograph [1986].

CHAPTER 5. This paper, published earlier as de Vrijer [1975], is a con-

tribution to the proof theory (“language theory" in Automath jargon)

of Automath, the family of languages for checking mathematical proofs

originated by de BruiJn [1970]. Before commenting on the paper itself,

we first make a few remarks on its background.

In the opinion of the author, the Automath languages should be

viewed in the first place as an analysis—aiming at a formalization—of

reasoning, more in particular: of the reasoning employed by

mathematicians to convince themselves and others of their results. In

this respect there is no big difference with similar projects of Leibniz,

Frege, and Russell and Whitehead.
In the Automath project much stress has always been laid on two

related aspects of feasibility:

(i) feasibility of the actual coding of reasoning;
(ii) feasibility of the checking of the code.
It is in realizing these requirements to a considerable extent that

Automath distinguishes itself from other formalizations of logic.

Its achievements in this respect seem to depend on two basic features:

(1) the employment of a concept that has become known under
the name “formulas as types”;

(ii) incorporating in the systems a mechanism for handling

abbreviations.

The formulas-as-types notion is explained in chapter 5. Anyway, it has
become quite familiar by now (the notion also forms the basis of the
systems of Martin-Lo'f [1975]). So there is no need to go into details
here.

We only comment on one distinctive feature of some of those
Automath languages that exploit the formulas/types analogy most

fully. An example is AUT-QE, the language that was employed by van

Benthem Jutting [1977] for his translation of Landau’s “Grundlagen der
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Analysis”. We use Martin-L'o'f’s set up as a comparison. (The notation

used is that of chapter 5.)
By contrast with AUT-QE, in Martin-L'o'f’s theories there is no com-

plete parallel between objects and types: objects can be in applicative

position, but types cannot. Accordingly, the rule of Martin-Lo'f that

introduces applicative terms can be formulated as:

tea, fe[x,a][3(x) I- <t>feB(t).
In Automath one reckons with the possibility that the type y of f is

available only in the form of an abbreviation, or even that it was

introduced as a mere parameter. In those cases there is no reason to

suppose that the functional character of f is reflected in the actual

syntactical form of y. Therefore the corresponding rule should be given
as:

tea, fey, ye[x,a]typ_e l- <t>fe<t>y.
Here the statement y e [x,oihsypg is to be interpreted as “'y is a type of
functions with domain a”.

As a matter of fact, the system AA of chapter 5 has an even less
restrictive rule:

1:601,ny l- <t>fe<t>y.

Then the extra requirement on the functional character of y is

included in the definition of the legitimate fragment M-Il of M (cf.

ch.V, 3.2.1 and 3.4.3).

Now, for a discussion of the results of chapter 5, we must say

something more on the language theory of Automath. Its principle
aims are:

(i) obtaining correct and tractable definitions of the various
Automath languages;

(ii) establishing their essential proof-theoretical properties,such as
SN, CR, closure of the well-formed expressions under the

reduction rules of the system (“closure” for short) and
decidability.

Historically, a first proof of normalization for an Automath system was
given in 1971 by van Benthem Jutting. The first comprehensive

treatment of an Automath system is given by Nederpelt [1973]. He
defines a system A and proves for it SN, CR and decidability. Two
questions were left open:

(i) closure for A;
(ii) CR for A extended with n-reduction.

It was already mentioned above that the second problem has been

solved by van Daalen [1980]. It turned out that the closure problem
for A could be reduced to another problem, viz. the well-foundedness

of the so called “big trees”. The big tree of a term is derived from its

reduction tree by allowing, apart from the usual ones, as (improper)
reduction steps also the following two operations:



(i) passing to the type of a term;
ii) passing to an arbitrary subterm.

A system is said to satisfy the property BT, if for all its terms the big

tree is well-founded (cf. section 1.3 of ch.5). The above mentioned

reduction of the closure problem for A can now be rendered as:

ET for A z) closure for A.

The system M introduced in the paper in chapter 5 is a variant of

AUT-QE, which was devised for the purpose of proof—theoretical study.

Strangely enough, by the very definition of M, its closure problem is

trivial. In spite of that ET is needed again, now for the decidability of

M and also to establish the soundness of the language definition

employed. This is an intriguing aspect of the language theory of

Automath: depending on how a system is defined, the problematic
aspects shift to a different place. (The “instability of language theory”

is discussed in van Daalen [1980]; there also different methods for

defining Automath languages are compared.) In consequence, the

problems of a particular Automath system cannot be considered to be
solved to full satisfaction, until all the desirable results, SN, CR,

closure and decidability, are established together. In chapter 5 this

aim is achieved for the system M. The essential technical problem

that had to be solved was BT.

It is claimed in chapter 5 that the method of proof employed for

BT, using bookkeeping pairs, can also be applied to Nederpelt’s system

A, thus solving its closure problem. This is actually accomplished in
van Daalen [1980], ch.VII. There he gives also another proof of BT.

ACKNOWLEDGEMENT. I would like to thank H.P. Barendregt, L.S. van

Benthem Jutting, D.I-I.J. de Jongh, W. Perernans and M. Pigge for the
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1
EXTENDING THE LAMBDA CALCULUS WITH SURJECTIVE
PAIRING IS CONSERVATIVE

§0. Preliminaries

This is a paper on extensions of pure Afl-calculus. The reader is assu-

med to have at least some elementary knowledge of the A-calculus and

some versedness in its basic syntactic techniques. As a reference

Barendregt [1981] may be used, especially chapters 3 and 11 and the
section on reduction diagrams in chapter 12. We will adopt the

notations and terminology which are used there whenever possible.

Acquaintance with the general theory of Combinatory Reduction
Systems (CRS’s) as developed in Klop [1980] will be useful.

In this preliminary section we briefly survey some basic notions and

terminology, and stipulate some further notations and conventions to

be used in the sequel.

0.1. The set of pure ?x-terms, A, is constructed from a set of

variables X, y, z, . .. by the term-forming operations abstraction

(MLM) and application (MN). In extensions certain constants or
function symbols of positive arity may be added.

Terms are considered modulo a-equivalence. The symbol E is used

for (syntactic) identity of terms (modulo a-equivalence). The result of

substituting M for X in N is denoted by (XI=M) IV. We shall always
assume the bound variables of IV to be chosen such that no free

variable of M becomes bound after the substitution. FV(M) denotes
the set of variables in M .

0.2. A context C[ ] is a term with an open place (colloquially: “the
hole”). C[M ] is the result of filling that open place with M.

With the help of contexts an exact representation can be given of

occurrences. If M occurs somewhere in N, then IV E C[M ] for some
context C[ ], where the hole in C[ ] indicates the position of this
particular occurrence of M in N (there may be more). Formally we
identify this occurrence with the pair 2 = <M,C[ ]>. In informal
discussion the second coordinate is most often suppressed and then one
speaks loosely of “the occurrence M Vice versa, we will sometimes
say 2 when we mean the occurring term M instead of the occurrence.

If [V E C[M] for some M, then C[ ] is called a subcontext of IV. And
C[M'] is called the result of replacing the occurrence M in N by M '.
It should be noted that there is a contrast here with substitution: free

variables in M ' may become bound in C[M'].
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The depth of the occurrence 2 = <M, C[ ]> is defined as the number
of symbols in C[ ].

0.3. Let r: M —>/V be a contraction rule, i.e. a relation between

terms. The one step reduction relation corresponding to r (usual

notation —> If) is the compatJb/e closure of r:

(M,N)e r => C[M] ->rC[/V].

Our starting point in this paper is the system A of pure ?\B—calculus.

There is but one contraction rule, namely that of B-reduction:

B: (AX.M)/V —> (X:=/V)M.
If M—>r/V by the contraction of a redex Z in M, then we may

indicate this by the notation 2: M—>r/V or M (2)..)1, IV. The reduction

sequence consisting of this single step is denoted by ()3). In case 2
coincides with the whole term M itself, 2 is called a main redex, and
the reduction step (2) a main reduction.

The reduction relation corresponding to r (denoted by *1.) is the

reflexive and transitive closure of —-) 1,. Many kinds of, mostly

auxiliary, reduction relations will be defined in the sequel, with

correspondingly more and less fancy notations. Always a version of 2*

will denote the reflexive closure of the corresponding version of ->, and

-» the reflexive and transitive closure. As usual we write 0: M -» 1V to

indicate that o is a —> -reduction sequence leading from M to 1V.

Finally, if -> a and ->b are relations on terms, then —> a,+ —>b will

denote the concatenated relation:

M—>a+—>b 1V 4: (3P)(M—>aP 8 P—>b/V)

The +-sign is also used for concatenation of reduction sequences;
o+p is defined, if the first term of p and the end term of o are the

same, as first 0 and then p.

0.4. Just as in Combinatory Reduction Systems, our contraction rules

induce ancestor/descendant relations between occurrences in an original

and a reduced term, which are taken to be understood without

further notice. Residuals are descendants of redexes.
Unfortunately not all extensions of A that will turn up in this paper

are CRS’s, and so the general theory of CRS’s cannot be applied

without further ado. There seems to be place here for yet some more

generalization .

The set of residuals of the redex 2 after reduction sequence p is
denoted as usual by E/p, and if p consists only of the contraction of

one redex A simply by E/A. If E and A are redexes in the same term

M, then the elementary diagram of 2 and A exists if the reductions

(2)+(A/2) and (A)+ (E/A) have the same end term— with the same
residuals of possible other redexes in M . (This is not quite accurate,

(A/E) may consist of several steps, the order of which is irrelevant,
however.)
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0.5. To facilitate reading we will as much as possible make use of

diagram language. A diagram which consists partly of drawn and

partly of interrupted lines stands for the conditional statement that if

some terms satisfy the drawn part, then there exist terms that stand

in such and such relations to these and to each other, as it is pictured

in the whole diagram. Often it is unnecessary to name all terms

figuring in a diagram. In such cases we prefer the variant without

parameters, or with only those displayed which are actually referred

to in the text.

0.6. Let 2 be a reduction relation and = the convertibility relation

which is generated by 2. Then there are two versions of the

Church-Rosser theorem which are easily seen to be equivalent.

0.6.1. CHURCH-ROSSER THEOREM VERSION 1. If MZN and M210, then

there exists a 0, such that N20 and P20.

0.6.2. CHURCH-ROSSER THEOREM VERSION 2. If M=1V, then there exists a

0, such that M20 and N2 0.

In diagram language:

0. 6. 1. 0. 6. 2.

 
 

IV IV

When referring to the Church-Rosser Theorem we will in general mean

the second version.

A set of contraction rules or a (one step) reduction relation are

called Church-Rosser if their compatible, reflexive and transitive

closure satisfies the Church-Rosser theorem.

0.7. Two relations ->a and —)b are said to commute if the diagram

 

_’a

—-> 5
b : _)b

—’a

holds. —> a has the dzamond property if it commutes with itself. Notice

that in this terminology the Church-Rosser property for a relation —-> a
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boils down to the diamond property of its reflexive transitive closure
_»a.

It appears that proofs of commutativity, Church-Rosser and the like

do often depend on a few elementary properties of relations. Some,

e.g. the Hindley-Rosen lemma and the "strip" lemma, have become

real A-calculus classics. We find it convenient to have the following

variant at our disposal.

0.7. 1. LEMMA. Let —>a and —>b be relations. Assume —9 'a and —> 'b to

be extensions of —> a and of -’b respectively, such that —> 'a g -*a and

—+ 'b; -»b. Moreover suppose that

 

Then -»a and "’b commute.

PROOF. First establish by successive inductions on ""11 and on ""21,

that -»'b and -» 'a commute. Then notice that -»a = -*'a and -»b = -» 'b.

[l

Noteworthy special cases are found by taking ->b itself for -> 'b and

either —>a or -»a for —> 'a.

0.7.2. LEMMA. If one of the diagrams (i) or (ii) holds, then -»a and

-*b commute.

 
 

(i) (11)
"’a "’a

_’b "’b _’b —”b

""""""-.->°,""' .1..

PROOF. Immediate by 0.7 .1. D

(i) is lemma 3.3.6 in Barendregt [1981], (ii) with —> a: —>b is the
so-called strip lemma. But most typically lemma 0.7.1 will be used in

the sequel with —> 'a some sort of simultaneous -> a-reduction.
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§1. Introduction

1.1. Let M! be the extension of the pure A-calculus, A (cf. 0.3), with
the constants it, no and 111 and with the following axioms, which

express that n, with the projections 110 and n1, is a surjective pairing:

110(11XY) = X

111(11XY) = Y
sur: u(noX)(n1X) = X

The set of Mt-terms will be denoted by An, the pure A-terms by A.

Reading the surjectivity axiom (sur) from right to left, it asserts
that (any) X can be written as a pair. It is equivalent to the rule of

11 -extensionality

fl-ext: fl0X=TIO Y, fl1X=TI1y 1' X: Y,

saying roughly that any term is determined by its respective

projections. The relation between axiom and rule is to be compared to

that between the axiom of n-conversion

n: MLMX = M, provided X does not occur free in M,

and the rule of (functional) extensionality:

ext: Mx=1VX I- M=/V (x not free in Mand IV).

It has been stressed by Scott (e.g. in [1975b]) that 1] does not
primarily express extensionality, but rather something that might be

called “functionality”: everything is a function. This is analogous to the

meaning of sur: everything is a pair.
ln pure A—calculus no surjective pairing is definable. That is, there

do not exist P, P0 and P1 in A, such that the above equations for

P, P0 and P1 instead of 11, no and 111 are derivable in h. This result is

due to Barendregt [1974]. We give a short proof in appendix 1.

Nevertheless, MI is consistent, as can be shown by the construction

of models. The very straightforward definition of a graph model will be

presented in appendix 2.
The question remains then, whether the consistency of Mt cannot

also be established by purely syntactic means. In the case of A, the

consistency follows from the Church—Rosser theorem. This road seems

here to be blocked, however, because the reduction relation on An

which results if one adds to usual B-reduction the contraction rules:

“02 110(1TXV) —) X,

111: 111(11XY) —> Y, and

11°: 110102001120 -> X,

is not Church—Rosser. An ingeneous counterexample was provided by

Klop [1980]. l baptize the system with this reduction relation MIC, for
“classical” MI, as it seems to be taken for granted in most of the

literature that 110, 111 and 11° are the natural derivatives of the

axioms for surJective pairing. (MIC is called A+ SP in Klop [1980] .)
We come back to this point in section 1.3.
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1.2. Results. The present paper aims at a syntactic consistency proof’

for Mt. In [1980] Scott remarks that proof theoretic results can be
very sensitive to the exact formulation of the rules of the system

under scrutiny. And with respect to Mic: is there not some modified

property of reduction relations that will imply that not all terms are

interconvertible, and so do the job for the failing Church-Rosser
property?

It may be noticed by the way that a candidate for such a property

would be that of two normal forms being convertible only if they are

syntactical identical. (In the presence of the Church-Rosser property a

triviality.) This property is called UN—for Unicity of Normal forms—in

Klop [1980]. Several systems that are not Church-Rosser, for example

the system A6 which is to be discussed in 1.3 below, are proved there

yet to satisfy UN. For MIC, however, UN is still an open problem.

Anyhow, we will in fact supply A1! with a somewhat modified

reduction relation, satisfying a different form of the Church-Rosser

property. The resulting syntactic consistency proof is of course of a

quite different nature than the model theoretic one. As one might

expect, the syntactic proof gives also some extra information. Thus it

will be an immediate corollary that M! is a conservative extension of

A.

The modified/reduction relation we equip Au with, is denoted by 2.

To contrast it with MIC, the resulting system (Amz) will be called
MIZ. In the defining rules the convertibility relation =, which was

already defined in the first lines of section 1.1, is assumed.

1.2.1. DEFINITION. The reduction relation 2 of MI? is the least

compatible, reflexive and transitive relation on An, satisfying:

B: (?\X.M)/V 2 (X:=/V)M;

“oi 110(TIXoX1) 2 X0;
“11 TI1(TIXO)(1) 2 X1;

1 : 1((11021’) Y 2 X, provided that 111X= I’;
r : nY(n1X) 2 X, provided that n0X= Y.

I and r stand for “left” and “right”. The conditions to which the
rules I and r are subjected are given in terms of = and so independent

of 2.
One readily verifies that the equivalence relation generated by 2

coincides with the convertibility relation = of MI. So there is in effect

no need to distinguish conversion in MI? (or MIC) from conversion in

Mt. Note that the rules I and r both imply the rule 11°:

a(noXMan) 2 X.



17

1.2.2. DEFINITION. By x we denote the least compatible equivalence

relation on An, satisfying the clause

X0=Yo, X1=Y1=> TIXoXleII/oyl.

EXAMPLES. One has e.g. 110(11((?\X. X) y)z) ’84 110(11yz), and
Ay.n((?\x.x)y)z % ?\y.nyz, but not (AX.flX2)y N nyz.

In effect, % disregards replacement of occurrences of subterms under

the influence of a T! by convertible ones. Since there are no It’s there,

on A the relation 8" is just syntactic identity (E).
Now the Church-Rosser property for Art? will be established modulo

x, that is, in the following form.

1.2.3. CLAIM. (CR/x). If MII- M=/V, then there exist z-equivalent
00 and 01, such that M 2 00 and 1V 2 01. (See the diagram.)

M ,_____‘./v

The proof is complicated and it occupies the bulk of this paper. Our

main results, the conservativity and hence the consistency of M! then
follow at once. For assume Put I M: N for M, N e A. Find 00 and

01 as in the theorem above. Then, as Z-reduction cannot introduce

constants which were not already present, all terms on the reduction

sequences M 2 00 and N 2 01 must be in A, in particular 00, 01 e A.

Hence 005 01 and the reductions M 2 00 and 1V 2 01 can only use 8.

So M and IV are convertible in A as well.
Thus we established as a corollary to 1. 2.3:

1.2.4. MAIN RESULTS. (i) Mt is a conservative extension of A, i.e. if
M,/VEA, then M! l- M=1V => A l- M=1V.
(ii) MI is consistent.

The proof of theorem 1.2.3 is not the straightforward type of

Church-Rosser proof, as 2.3. one which proceeds by defining and then
glueing together elementary diagrams. The traditional techniques do
play an indirect role though, in the analysis of some auxiliary
reduction systems.

The remainder of this introduction is meant to give some intuitive

insight into the ideas behind the actual proof, which then further

occupies the §§2, 3 and 4. The reader who prefers to do so may skip
the informal part and move on directly to §2, keeping this introduction
for casual reference. An outline of §§2 to 4 is presented in 1.9.
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1.3. Digression. It was already mentioned in section 1.1 that the

system A11° is not Church-Rosser. One of the complications that arises

in an attempted proof stems from the fact that the metavariable X

occurs twice in the 11°-redex 11(110X) (111X), thus causing the redex to

be unstable under reduction in one of the X ’s. In CRS jargon: 11° is

not left linear. Another complication lies in the ambiguity of the rules

of A11°: the rules 110 and 11°, and 111 and 11° overlap.

The factor of non-left linearity is diagnosed to be the most serious

one. In order to isolate this phenomenon, Hindley proposed in 1973 (cf.

the sections on open problems in Bo'nm [1975] or Staples [1975]) to
study the system A6 which results by extending A with a single

constant 6 and the following simplified form of the 11°—rule:

6: 6XX —> X.

This system was proved by Klop to be not Church-Rosser. As a matter

of fact the counterexample for Church-Rosser in A11° is a direct

translation of that for A6.

1.3.1. All the same, A8 can very well serve as a toy system for

illustrating some of the ideas which lie behind our main proof. Observe

that the contraction rule 5: 5XX —> X may be conceived of as a

restricted form of the more liberal rule:

13: X=Y+ 6XY-9X,

which, in contrast to 6, is stable under reduction (i.e., a descendant

of a l‘-redex is still a l‘-redex). It is easy to prove that 1‘, in
combination with B, does satisfy the Church-Rosser property. Now,
somewhat surprisingly, —> can, without the Church-Rosser property

being spoiled, be extended further by the rule,

r‘: X=YI- 6XY—>Y.

For under this further extension of -> the convertibility relation

generated remains the same. Hence the Church-Rosser result for M"

carries over immediately to Al‘r‘: a common reduct of Albr5-convertible
terms can be found already by using only 8— and lb-reduction.

There is a general principle at stake here:

1.3.2. PRINCIPLE. The Church-Rosser problem for a more extended

reduction relation can be reduced to a more restricted one, as long as

the restricted reduction is strong enough to generate the original

convertibility relation. Conversely: ;f addition of rules for reduction
does not result in an extended convertibility relation, then by this

extension the Church-Rosser property is conserved.

Our play system shows how this principle can be applied to an

actual Church—Rosser problem. The a priori unclear case of Al‘r‘ (how
to find a common reduct of X and Y under the in this respect rather
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uninforming assumption that X= 1’ ?) could be reduced to the trivial

one of M‘. Furthermore notice that we have here an illustration of

what can be attained by varying the rules of reduction. The systems

1‘6, 111‘, and M‘r‘ all have the same convertibility relation. Yet the

latter two are Church-Rosser, while the first is not.

1.4. Back to 1111. Cannot the same method be applied to 1‘11? Indeed

the rules I and r of A112 are to a certain extent stabilized versions of

the trouble causing contraction rule 11°: 11(110 X) (111 X) 2 X. Left
linearity is restored and the not quite unproblematic kind of overlap

which the 111-redex 111 (11 17) still has with the 11°-redex
11(110 (11 17)) (111(11 17)) no longer exists in 11(110 (11 17)) (111 (11 17))
considered as an l-redex. (Or, for that matter, in 11(110X)) (111 (11 17 ))

in case X =11 17. The conditions on the contraction rules I and r

guarantee that reduction does not lead across the borders of

convertibility classes, these being determined independently of reduction

by the definition of = in 1.1.)
In trying to establish Church-Rosser for A1!2 minus r, however,

there is still a problem, owing to another case of overlap. For assume

111X = Y and consider the following diagram.

111(11(110X)1’) 2 .111X
 

2

 YL.....................J9

Indeed 111(11(110X) Y) 2 111X by l and 111(11(110X)1’)2 1’ by 111. But
now it is in general not at all clear how to find a common reduct of

111X and 1". If we started by leaving out I instead of r, then the

same problem would arise of course, now with an r-redex under the

influence of a no-projection. As a matter of fact the problem we just

encountered forms a serious obstacle to the proof strategy we intend to

follow—which is based on the ideas indicated in the digression under

1.3.1 and 1.3.2. How it will be solved is described below in the

sections 1.5 ff.

It may be already pointed out here that the same sort of overlap

with the other projection rule, as in 110 (11(110X) 1"), is not quite so
problematic. Whichever reduction rule is used, 110 or I, the result is

X anyway. See further 1.8 below.

1.5. Tentative heuristics of the main proof. Recall that the rules

I and r are both liberalized variants of 11° and that therefore both
would do to generate the intended convertibility relation = of A11. Even

11° alone does that (with 0 and the projection rules of course). The
only reason why 11° can not altogether be replaced by say I, is the
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possibility of clashes with 111 of the kind described above. But can we

not both have the cake and eat it, by as a rule liberalizing 11° to I,

but in all cases that a 111-c1ash threatens \reinterpreting it as r’?

This rough proposal leads to a first approximation of our proof of the

Church-Rosser property for 2 of A112. Assume that M and N are

convertible. Then there exists a conversion of M and IV with, apart

from B, 110 and 111, only applications of the surJectivity rule 11°. (That

is, a conversion in A11°.) Now, for the purpose of finding a common

reduct of M and 1V, interpret applications of the surJ'ectivity rule to

redexes of which the residuals can be predicted to come under the

influence of a 111, as instances of r, other ones as instances of 1.

Matters are slightly more complicated, though. For, why would the

requisite choice between the rules 1 and r be uniform in the different

residuals of one and the same redex? It is even clear that in general

this is not the case; redexes and their residuals can be dispersed under

reduction, some ending under the influence of a 110, some under a 111,

some remaining “free” forever. To cope with this possibility of

underdeterminedness of required information, we introduce in an

extension of A11 a new device (viz. that of bookkeeping pair), that will
allow us to handle occurrences of redexes and their residuals simulta -

neously under different assumptions on the order in which projections

will eventually act on them. A brief description of this device will be

given in section 1.7. But first we need a formal tool that will enable

us to manage the kind of information at issue.

1.6. Labels. In the auxiliary modiiications of A11 that will be used in
the proof of the Church-Rosser property, each subterm occurrence

(and hence all redexes), E, of a given term M will be supplied with a
label, 1(2), which consists of a sequence of zeros and ones. Roughly, a
label represents partial information on the order in which the

projection constants 110 and 111 act on subterm occurrences, or can be

predicted to act on their descendants under reduction of M. Since the

kind of information we have in mind can be derived from the context

of the occurrence, the label of 2=<1'V,C[ ]> (i.e., the label of N in
C[JV]) will be defined completely in terms of C[ ] alone.

The partial information wich is coded in a label should be interpre-
ted according to the following heuris:ic principle:

1.6.1. HEURISTIC PRINCIPLE. If the n‘th digit of 11(2) is i, then the n’th
element of a sequence of projections, of length at least n, acting on

(any descendant of) 2, will allways be 111.

(NB. In C[110(110 (111110)] three projections—or a sequence of projections
of length three—are said to act on N, of which the first one is 111 and

the second and third ones are 110.)
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In case no sequence of projections of length n or more acts on 2 or

any of its descendants, it depends only on the first n-1 digits of 2’s

label whether it fulfills 1.6.1. This leaves room for some arbitrariness

in the actual definition of labels, while adhering to the heuristic

principle of interpretation. (E.g. for technical reasons we shall adopt

the convention to assign the label 000. . . to any occurrence which is

in applicative position.)
With this kind of information stored in the labels of subterm

occurrences, restrictions on the rules I and r will be stipulated with

the effect that problematic situations such as the one described in 1.4

above are avoided. E.g. an application of 1' will only be allowed to

occurrences of 11 1” (111X) with a label of the form ox = 101', this label

being a guarantee that no 110 will act on the actual occurrence or on

one of its descendants. (As a consequence of the above mentioned

convention, 11-redexes in applicative position are only liable to

contraction according to l.)

1.7. Bookkeeping pairs. Three kinds of contexts can be distinguished
according to the above, namely those admitting of rule 1 (label of the

form 00:), those admitting of rule r (label 10:), and those which do not
(yet) carry enough information to settle the issue. Now in order to

make sure that reduction is not necessarily obstructed in the latter

case, the systems Imp and Anp‘ will be defined, incorporating as a

formal device pairs of the form [M0, M1], with the stipulation that M0

and M1 are treated as if their context provided them respectively with

label 0 and with label 1. Formally: R(M0)=0 and R(M1)=1. In this
manner e.g. a contraction of the 11-redex 11(110X) (111X) can be
simultaneously dealt with as an instance of l and of r in the

respective left and right components of the “bookkeeping pair”

[11(110X) (111 X),11(110X) (111X)I. And when in the process of reduction

descendants of this pair end up in a context which is more

determined, the bookkeeping pair can be cancelled: only that

component is kept, of which the label is consistent with the extended

information carried by the new context.

For technical reasons the formation of bookkeeping pairs is still to be
generalized somewhat: in an a-context (label ox) the indexed

bookkeeping pair [M0, M110, is admitted, with the stipulations that

2(M0)=a0 and R(M1)=oi1.
Now the system A11p can be roughly characterized as based on the

extension of A11 with bookkeeping pairs, and incorporating the
reduction rules [5, 110, 111, l and r, along with a rule p which in an

oi—context allows an occurrence M to be replaced by the bookkeeping

pair [M, M 10,. The system MID" is derived from A11p by adding an

appropriate mechanism for the cancellation of bookkeeping pairs in

certain positions where they stand in the way rather than being of
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use.
Thereby we will have internalized, at a purely syntactic level, the

possibility to deal with occurrences simultaneously under the

alternative hypotheses of any finite amount of information concerning
their context, as it is coded into the binary tree of labels <L, $>. All

this luxury has its price though, consisting in a considerable growth of

the complexity of the systems of reduction that must be investigated.

More in particular, we will be confronted with the problem that the

bookkeeping pairs, once allowed into our system, may pop up in places

where they stand in the way rather than that they are much of a

help. Such is the case e.g. in a term like [?\X.X,?\X..1'Iy, in which the

potential redex (811.11) y is obstructed by the presence of the
bookkeeping pair.

1.8. Some further technicalities. In the systems Mp and ?\11p‘

two kinds of overlap between the intricately interwoven contraction

rules 1 and r on the one hand and 110 and 111 on the other, remain.

These are illustrated in the following two diagrams. The first one under

the provision that 111X = 1", the second by the restrictions on I only in

a Oa-context and under the provision that 111 (11X1’)=Z, that is,

Y :2 .

 
 

(1) 11001010210 1") 110X (ii) 11(110(11 XY)) Z “.17
-->1 : _)n0 .

_)“O
—>l

Tt0‘)(......................
’2

“X?................... 9

In both diagrams the indicated reductions result by contractions of two

overlapping redexes, the contraction of the one leaving no residual of
the other in the respective end terms. We now briefly comment on

the diagrams seperately.
(i) This type of overlap is quite unproblematic. For reducing

110 (11(110 X) 1") either with l or with 110, each time the reduct is 110 X .

In the theory of CRS’s, systems in which there is only this harmless

kind of overlap are called weakly non-ambiguous.

(ii) Here the situation seems to be more serious. How to find a
common reduct of the respective one step reducts 11X1" and 11XZ

under the single assumption that 1’ and Z are convertible? We are in
the same kind of deadlock that we met in 1.3.

Our solution is so drastic that it may look a bit too cheap: we

declare 11XY and 11XZ to be equivaLent (under the given assumptions)

and thereby Just stop worrying. In section 2.3 the equivalence relation

~ will be defined, which disregards .1p to convertibility the component

Xi of the pair 11X0X1 in contexts with label ja, 371i. Then in ?\11p and

Aflp‘ terms will be considered modulo ~.

Let it be just ascertained here that, just as in the case of l and r,
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the context restrictions give protection against the possibility of

interference of a wrong projection rule. (Matters would not work out

all right if we declared 111 (11X1’ ) to be ~-equivalent to 111(11XZ) on
the condition that 1’=Z, for reasons similar to those described in 1.4

and 1.5 above with respect to l and r.) Notice that ~ can be seen as

a refinement of the equivalence relation x on A11 defined in 1.2.2.

There is a parallel with the rules I and r again: in A11 we do not care

so much about contexts.
The decision to work modulo ~ could be debated. By considering

terms as equivalence classes they certainly become, so to speak,

heavier to carry around. On the other hand, one is to a certain

extent already accustomed to this kind of proceeding, as one normally

deals with a-equivalence in exactly the same way. The alternative

would be to incorporate ~ in the reduction rules. As a matter of fact

that is what one did with a-equivalence in some of the early A—calculus

papers. It had its drawbacks too. Anyway, by our choice the
reduction relations—already cumbersome enough—are not needlessly
complicated still further and kept as much as possible in line with

those of the more common systems (the paradigm being that of the

regular, or at least weakly regular, Combinatory Reduction Systems).

1.9. Outline. It will have become clear by now that two auxiliary

systems play an important role in this paper. Viz.

11112 = (A11,2), and

Anp‘ = (Anp‘, —> *).

Of these, the function of ?\112 has been pointed out already in section

1.2. There it was shown how the Church-Rosser theorem U”) for 11112
(claim 1.2.3) would enable us to derive our main results, the

conservativity of A11 over A and the consistency of A11 (cf. 1.2.4).
The system Anp‘ can best be accounted for by referring to our

digression in 1.3. In the above sections hnp‘ was arrived at in an

attempt to design a variant of A112 such that

(i) the modified reduction relation would be a restriction of

that of A112;

(ii) the conversion relation of R112 would be retained;
(iii) we would be able to prove Church-Rosser for the restricted

reduction relation.

This in order to be able to use the principle formulated in 1.3.2 for

deriving the Church-Rosser theorem for A112. Now, since we had to
introduce labels and bookkeeping pairs in Aflp‘, matters have become

more complicated than they were in the case of M3r‘ and M‘. Yet it
will turn out that the pattern of reasoning that was illustrated in

1.3.1 can be used for ?\112 and Anp‘ as well.
In order to translate terms from A11 into Anp‘ and back we make

use of an imbedding 11): A11 ->A1tp’ and a projection 41: A11p‘ —> A11.
Both can be defined in a straightforward and natural way. Further we
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let =* denote conversion in Anp‘. Then in the remainder of this paper
the following three statements will be established, matching in that

order with the requirements (i), (ii) and (iii) that were formulated
above.

1.9.1. CLAIM.

(i) If M6A11, then
Mtp‘l- ¢(M)—+*/V => (BN' 6110011? I- MZ/V' 8. N' ~¢(/V));

(11) A111 M: [V => Mtp‘l- ¢(M)=*q1(/V),
(iii) A11p‘ is Church-Rosser.

From these facts one easily derives CR/x for A11Z (claim 1.2.3) as
follows.

1.9.2. COROLLARY. A111 M=1V => tiaK'zK")(M2K'&/V2K").
PROOF. Suppose that A11!- M =/V. Then by 1.9.1(ii) also

Mp‘r ¢(M)=*1l1(/V) and it follows by 1.9.1(iii) that 1|)(M) and
MN) must have a common ->*-reduct K . We can then apply

1.9.1(i) (twice) to find X', 1("6A11, such that MZX', NZX" and
K'Wv/("%¢(X). U

A global outline of the actual proof of 1.2.3 can now be given, as

each of the §§2, 3 and 4 corresponds roughly with one of the three

propositions that together make up 1.9.1.

The principle object of §2 is defining the systems Imp and Anp‘.

After some preperation in the sections 2.1/4, these definitions are

finally accomplished in 2.5. Proposition 1.9.1(ii) will be an immediate
consequence (lemma 2. 5. 4) .

§3 is entirely devoted to proving the Church-Rosser theorem for
MID" (proposition 1.9.1(iii)). The structure of the proof is pointed out
at the beginning of that section.

In §4 proposition 1.9.1(i) is established. Roughly, what has to be
done is eliminating the bookkeeping pairs from the ->*-reduction

sequence. This involves essentially a postponement argument: we need
the fact that reduction steps that cnnsist in the contraction of a redex

lying completely within a bookkeeping pair, can be moved to the end

of a reduction sequence.
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§2. The systems with bookkeeping pairs: A11p and Aup‘

The definition of the sets of labelled terms A11p and Aflp‘, corres-
ponding to the theories A11p and hnp‘, proceeds in a number of

consecutive steps, departing from A11. We first point out the several

stages of the definition, by summing up the notions and the inter-
mediate sets of terms that will be met on the way.

(i) The set of pre-terms A°11q is defined as the extension of A11
with bookkeeping pairs and labels.

(ii) Ana is defined as A°11q/~, where the equivalence relation ~
is the refinement of x that was mentioned in 1.8.

(iii) Then, finally, A11p and Anp‘ can be obtained as subsets of

A11q, by putting restrictions on the positions where

bookkeeping pairs are allowed to occur, depending on their

index and the label of the context of occurrence.

As a matter of fact, the restrictions to A11p and A11p‘ will turn out

not to be affected by ~. That is, the situation that will have been

attained at the end of section 2.4 can be pictured in the following

commuting diagram.

LxAn g A°11p‘ g A°11p c A°11q

/~ /~ /~

Aup‘ g Anp g Auq

2.1. Pre-terms and labels

2.1.1. DEFINITION. The set L of labels consists of all finite sequences of

the symbols 0 and 1 (including the empty sequence), and the infinite

sequences that become eventually constant 0.

The empty sequence is denoted by <>, the symbol 00 is used for the
infinite constant sequence 000. . ., satisfying the recursion equation

00 = 000.

On L a partial order is defined by:

2.1.2. DEFINITION. 01 s 8 <= 33/. (3:83;.

a S B will sometimes be expressed by saying that [3 extends a. The

relation 1 is obviously reflexive and transitive and moreover one easily
verifies:

(i) <>s or, for every oz

(ii) 513 132 => 0131 S 0‘52
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The purpose of labels, coding partial information on contexts, was

explained in 1.6. The finite elements of L will also serve as indexes for

the bookkeeping pairs. These are introduced in the following definition.

2.1.3. DEFINITION. Consider the extension of A11 which is obtained by

adding to its rules of term formation, A-abstraction and application,

the extra rule to construct from MD and M1 for each finite label 01

(here called the 1110’eX), the bookkeepmg pair [M0, M11“. The empty
index is called neutral. We agree to use for neutral bookkeeping pairs

the notation [M0, M1] instead of [1%, M110.

Define the function 41, which maps terms with bookkeeping pairs

back to A11 by deleting all second coordinates, by induction:

¢(M) .=_ M, if M is a variable or a constant

¢(AX.M) E AX.¢(M)
¢(M/V) E ¢(M)¢(/V)

¢(IM01M1L) E ¢(Mo)
Then:

(i) the set of pre-terms is obtained by restricting the bookkeeping
pair forming rule to the condition that M1 |- ¢(Mo)=¢(M1);

(ii) the set A°11q of labelled pre-terms consists of the pairs
<81, M>, where 016 L is a label and M a pre-term.

Notation: a.M.

EXAMPLES. AXIX, XI,Jr , 111.111,,(?\y.;/).11'I,,r , [[11, XI“, (2\y.y)11'l,Jr and
AXIX, (Ay.y)[x, XIBIa are pre-terms. But IX, yIa and
(?\y.[X,}’]¢)X are not.

Note that 41 is idempotent and that A11 is the set of its fixed points.

11) can also be extended to the set of labelled pre-terms A°11q by simply
putting ¢(oi. M ) = ¢(M) Conversely the function 1|): A11 -) Aitq defined
by ¢(M)= <>, M is a natural embedding of A11 into A°11q.

2.1.4. DEFINITION. (i) The convertibility relation of A11 is extended to
the set of pre-terms by adding the rule:

IMO, M11“: MD (of course provided that IMO, M110, is a
well-formed pre—term).
(ii) Conversion in A‘uq Just neglects the labels, i.e. , we define

V110!- a.M = [3.1V :1 M=/V according to (i).

It is important to be aware that conversion is independent of labels.

Moreover we have for M, N 6 A11 that

1611111 a.M=B./V a 21111 M=/J.

In the sequel convertibility either in A11 or according to one of the
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clauses of definition 2.1.4 will be indicated by a mere equation M =/V.

I-Iere M and N can be terms either with or without bookkeeping pairs

or labels.

From the substitutivity of A11 follows that A°11q is closed under

substitution and that also conversion in A°11q is substitutive.

EXAMPLES. We have AX. IX, XL = AX. IX, (Ayy) XI“ = AX. X. Also

[y,yIa=y; but not (AX. Iy, XL),V =y, since the lefthand term is

not well-formed.

If C[ ] is a subcontext of M, then as a subcontext of a. M it is
officially denoted by a.C[ ]. However, we adopt the convention to omit
labels whenever this is possible without causing confusion, that is, both

when the label on is already known and when it is not relevant for the

discussion. So, we can without danger of being misunderstood refer to

a.C[ ] as the subcontext C[ ] of a. M.
The label 1(2) of the occurrence 2=<1V,C[ ]> of 1V in ox. M will

depend on a and C[ ] (not on N). Therefore we first define the func-
tion 1 which assigns to each subcontext C[ ] of ox. M a label 1(C[ ]),
indicating the position of the hole. Then 1(2) is simply identified with
1(C[ D. The notation C[ ]B is used if we want to indicate (implicitly)
that 1(C[ ]) =8. Such a context is called a B-context. (So a.C[ ]B is a
B- and not an a-context.)

It has been pointed out already that in a following step towards the

definition of Anp—terms, equivalence classes of pre-terms will be formed
by disregarding certain occurrences, depending on their position. For

these occurrences the label will remain undefined, and naturally the

same applies to the labels of the contexts related to the positions in

question. Undefined labels are indicated by the symbol T. Occurrences

without a defined label are called tranw'ewt.

2.1.5. DEFINITION. The label of the hole in a.C[ ], notation 1(C[ D, is
defined by induction on (the number of symbols in) C[ ]. In advance
we stipulate that subcontexts of contexts with undefined label also have

their label undefined: if 1(D[ ]) =1, then 1(D[E[ ]]) =1 as well. Other
cases are taken care of by the following clauses:

1(a.[ ]) = a
1(D[1\X.[ H) = <>
jNDII I01): 00

1(D[11i[ DB) = i8, for i=0 or 1

R(DITII 10h): 31, if 15:01!
T, ifB=1y
<> if [3=<>
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J1(13[110[II¢3)= y, if B=1y
T, if fl=Oy
<>, if fi=<>

1(D[0[ ]]) = <>, in other cases with the hole in argument

position

R(DIII 1,015])=BO
R(DIIO.[ 115]) =51

2.1.6. DEFINITION. Let 2=<P,C[ ]> be an occurrence of P in on. M.
The label of 2 is defined by 1(2)=1(C[ D.

If P occurs in a. M with label 1(P) =8, then [3. P can be viewed as

a labelled subterm of a. M and by abuse of language we will speak of
the occurrence [3. P.

With so many brackets definition 2.1.5 may look rather

unattractive. It can be rephrased in a direct definition of the label of

an occurrence by induction on its depth as follows.

2.1.7. ALTERNATIVE DEFINITION. In a. M the occurrence M itself of

course has label 1(M) =01. Other occurrences are always the direct

suboccurrence of an intermediate occurrence N of smaller depth, of

which the label can be assumed to be determined according to the

induction. In the table the relevant cases as to the form of N and

1(N) are distinguished. The occurrences of which the label is defined
are called P and, if two suboccurrences of N can be covered at once,

0. (It is assumed that [3711.)

 

 

 

 

 

1v 1(N) 1(P) 1(0)

C[P] 1 1
MLP [3 <>

It1P I3 113

I 013 I3 T
11P0 I 18 T 15

l <> <> <>

PR [3 00
RP (not one of 8 <>
the cases above)

IP, 0]), [3 y0 y1       
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EXAMPLE. In a. (Ax.110[111X,11 I’Z In) P one computes successively:

Q(G.—)=G, 1(P)=<>, £(KX.-)=m,Q(fl0[',']11)=<>, 1010):“),

1(I-,-111)=0, 1(111X)=110, 1(X)=1110, 1(1117)=111,
1(11)=1(11 1"): OO,1(1’)=T and 1(Z)=11.

CONVENTION. All relations ->a on labelled terms that will be met in the

sequel respect labels. That is, they satisfy te implication

oz.M—>a [S.N => 0:8

For convenience we will further write 01. M ->a N instead of ox. M ->a

d. N . This is in accordance with our policy to omit labels whenever

possible without danger of confusion. (In contrast the indexes of

bookkeeping pairs are always explicitly mentioned. The notation

IMO, M1] is used only as short for the neutral bookkeeping pair

The notion of compatibility which was mentioned in 0.3, has to be
adapted to the presence of labels. Since our new notion of compatibility

will in the sequel be used mainly for relations defined on the

restrictions A11p and A11p‘ of Auq, it has a parameter A for subsets of

A°11q.

2.1.8. DEFINITION. (i) Let A be a subset of A°11q. The relation —9a on

A is called compat1b/e [with respect to A), if
c[M],eA 8. or. M —>a IV = c[M]or —>a c[/v]

(ii) Moreover, —>a is called monotone, if

a.M—)aN 8. 0138 => [3.M—9al N

a

The following condition for the soundness of inductive definitions is
straightforward.

2.1.9. CLOSURE CONDITION. Let —>a be a relation on A. A necessary and

sufficient condition for the existence of a compatible relation on A
extending —> a is given by the implication:

C[MLGA & a. M-aaN => C[N]ae A.

Strictly speaking, whenever a relation is defined as the compatible

closure of -> a (or “the compatible relation generated by —> a”) this

condition should be verified. In most cases it will be obvious though.

2.2. Labels under replacement and substitution. The stability of

the several notions of reduction which are studied in the sequel, will
turn out to depend on the fact that labels of occurrences do not
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diminish in passing from ancestor to descendant. In the following

lemmas the ground is prepared by showing that labels are

non-diminishing under a number of operations involving replacement

and substitution.

It is here convenient to treat the value undefined (T) as if it were

itself a label. The partial order S may then be regarded as

incorporating T as maximal element: a $1 for every 01.

2.2.1. LEMMA. (1)8113: 1(a.C[ ]) $1(8.C[ ]).

(ii) 1(a-CI I) S MDICI ]]a)~
(iii) With the one exception that both C[ ]E11C'[ ] and
D1[ 15 D‘[[ ]X], we have

a :6 => R(DIICI 1]..) s £(D2ICI 115)-
PROOF. Induction on C[ ]. For (i) and (ii) it is all very

straightforward, one just follows definition 2.1.5. Here we only touch

on a few cases of (iii).
- C[ ] E AX.C'[ ]. Then, as 1(D1[1\X.[ ]]) = 1(Dg[1\x.[ ]])=<>, the
induction hypothesis can be used for C'[ ] with Di[?\x.[ ]], (i= 1, 2).
The exception does not interfere: regardless of the form of D1[ ], there
cannot exist a D'[] such that D1[?\1r.[ ]] E D‘[[ ]X].
- C[ ]E C"[ ]X, C"[ ] '1‘ 11C‘[ ]. Then the induction hypothesis can be
used for C"[ ] with Di[[ ]ooX ], (i = 1,2). The exception is taken care
of by the assumption on C"[ ].
- C[ ]E 11C'[ ]X, With definition 2.1.5 one easily checks that
1(D1[11[ ]X ]a) 1 1 (D2[11[ ]X ]13) Then the induction hypothesis can be
used for C'[ ]. D

EXAMPLE. An illustration of the exception is given by D1[ ] E 00.[ ]X,

D2[ ]=OO.[ ] and C[ ]E11[ ] Then 1(D1[ ]) =1(D2[ ])=OO, but

1(D1[C[ ]]) = 1(00.11[ ]X) = 0 and 1(D2[C[ ]])=1(OO.11[ ]) = <>, And
0 S <> does not hold.

An immediate consequence of the fact that 1(P) depends only on

the context of occurrence of P and not on any of the characteristics of

P itself, is that changing P in some way or another does not affect its

label. More precisely:

2.2.2. LEMMA. Let P occur in 01.11! with 1(P)=B and let M' be the
result of replacing P by 0 in M. Then in a. M ' we have still

1(0)=f3.

The reader may have noticed that in dealing with occurrences and

their labels we speak two languages. The official one, in terms of

contexts, was employed in definitions 2.1.5 and 2.1.6 and in lemma
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2.2.1 above; the loose one, in terms of subterms, in the alternative

definition 2.1.7 and in lemma 2.2.2. The former has the advantage of

precision; the latter, on the other hand, has greater flexibility and is

more in line with common usage. In opting for both advantages, we

accept the lack of uniformity that ensues.
In this line, parts (i) and (ii) of the following lemma are essentially

the same. But (i) is easier to prove, whereas (ii) is the form we
prefer for applications.

2.2.3. LEMMA. (i) Let 0 be an occurrence in C[ ]a, disjoint with the
hole. Let C'[ ]B be the result of replacing 0 by some 0'. Assume
further that 0 is not one of the terms 11, 11X, 110 or 111 in applicative

position. Then 01 s 8.
(ii) Let Pand 0 be disjoint occurrences in M, M ' the result of

replacing 0 by some 0'. Assume further that 0 is not one of the

terms 11, 11X, 110 or 111 in applicative position. Then 1(P) in M
s 1(P) in M '.
(iii) The same as (ii), only now several disjoint 0’s replaced, all

satisfying the condition.

(iv) As (iii), but now also P changed as in 2.2.2.
PROOF. (i) Induction on C[ ]. Distinguish cases according to the

shape of C[ ], following 2.1.5. The only interesting cases are
C[ ]E D[ni[ ]], D[11X[ ]] or D[11[ ]X]. Then if 0; X the label of the
hole is not affected by the replacement. Otherwise the induction

hypothesis can be used with D[ ].
(ii) M is of the form C[P]a, with 1(P) =01 and M' of the form
C'[P]B as in (1). Apply (1).
(iii) Just repeat (ii).
(iv) Combine (iii) and 2.2.2. [I

Notice that an increase of 1(P) results e.g. if X in C[XP] is
replaced by 110.

2.2.4. LEMMA. (i) Let P be an occurrence in M, and P' the
corresponding occurrence in (X:=N)M. Then 1(P) 11(P').
(ii) Let P occur in <>. N, and P' be a corresponding occurrence in
(X:=N)M, then 1(P) S 1(P').

PROOF. (i) follows from 2.2.3(iv) with OE 1r, not falling under the
exceptions; (ii) follows from 2.2.1(i) and (ii). [I

We conclude with two more immediate consequences of 2.1.5/7.

2.2.5(ii) is important for the next section.

2.2.5. LEMMA. (i) Replacement of an occurrence that is not in
applicative position (1 7: 00) does not affect the label of any disjoint

occurrence P.
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(ii) Replacement of a transient occurrence 0 does not affect the label

of any occurrence P that either ccntains or is disjoint with 0.

PROOF. (i) can easily be verified by inspection of the table in 2.1.7,
using induction on the depth of P.

(ii) If P contains 0, then use 2.2.2. For the case that P and C? are
disjoint, let P be the maximal transient occurrence containing 0. As

only the clause for 1(11X1’) can introduce the value T (for X or 1’),
P is not in applicative position. Then, if P contains P, P is transient

by that very fact, and if not, then (i) can be applied with P instead
of 0 as the occurrence being replaced. [I

2.3. ~~equivalence, the system Aflq. In this section we move on

from the stage of pre-terms, by abstracting from the transient occur-

rences in A°11q. This is done by first defining the equivalence relation

~, the refined version of x which was announced in 1.8, and then

defining A11q as A°11q/~. (After this, still one more step is required to
get at A11p. The q in A11q may be taken as mnemonic for “quasi”.)

2.3.1. DEFINITION. ~ is the monotone and compatible equivalence
relation on A°11q which is generated by the clauses:

1’: 1" => 0.11X1’~ 11X1",

Y: 1" => 1.11YX~ 11Y'X.

An equivalent characterization is: M~N 4: N can be obtained

from M by replacing a number of transient occurrences by terms that

are convertible to the original ones. (Cf. 2.1.8 for the definitions of

monotone and compatible.)

EXAMPLES.- 8.110(11X((1\y.y) 2)) ~ 110(11XZ);
- <>.11X((?\y.y)1").7 ~ 11X1’Z, since00=000;
- not c.110(11((?\y.y)1’)27)~ 110(111’2);
- 0.11XI11(110X)((1\y.y) (111X)), (?\y.y)X] ~ 11XIX, (Ay.y)X].

2.3.2. LEMMA. Let M,Ne A°11q, M~N. Then:

(i) M and N have the same form, in the sense that

- M E X :9 N E X,

- MENLMO => NEAX.N0 & <>.M0~N0, etc.

(but note especially the case:

- ME Oa.nMoM1 => NEOa.11N0/I/1, oi.M0~N0 8. M1=N1).

(ii) To each non-transient occurrence P in M there corresponds

naturally a unique ~-equiva1ent one, 0, in N of the same form and

with the same label.
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(iii) Let P and 0 be corresponding non-transient occurrences in M and

N, not falling under the exceptions of 2.2.3 and with label [3. Then, if

[3. R ~S, the results of replacing P by P in M and 0 by S in N

respectively, are ~-equivalent terms again.

(iv) G.M0~M1 & <>.N0~N1=> oz. (X:=N0)M0~(X:=N1)M1.
PROOF. (i) can easily be verified by induction on M. For (ii) the

corresponding occurrence 0 can then be defined by induction on the

depth of P, the label taken care of by 2.2.5(ii). As to (iii) it should
be observed that 2.2.3(ii) guarantees that the transient occurrences
which are disjoint with the ones being replaced remain transient after

the replacement. (iv) follows by repeated application of (iii). [1

These invariances make it possible to operate with ~-equivalence in

the same way as it is normally done with a-equivalence, that is, use

elements of A°1tq as representitives for their respective equivalence

classes. The latter will constitute the elements of Mn.

2.3.3. DEFINITION. A11q, the set of quasi terms, is defined by:

Ana = A°11q/~.

It remains then to be checked, that all relevant predicates and

operations on A°11q are respected by ~. As this is obviously not the

case with length (of the term), and with depth (of an occurrence),
these notions are adjusted to the new situation by simply not longer

counting the symbols within transient occurrences.

But besides that everything is all right so far. Convertibility is

respected because of the premisses 1’=Z in definition 2.3.1, as = is a

compatible relation. Non-transient occurrences and their labels were

covered already in 2.3.2. They will be called just occurrences, as of

course transient occurrences do not exist any more in A11q: they were

the ones abstracted from. Accordingly the contexts can in A110 only be

used to indicate positions with a defined label (1 (C[ ]) #1). Substitution
was already taken care of by 2.3.2(iv).

2.3.4. DEFINITION. Mtq is the system based on A11q and with its

convertibility relation = derived from that of A°11q as indicated above.

Observe once more that in passing from system to system,

conversion is each time merely adapted to the latest version of terms,
staying essentially the same. Conversion in A'uq, from which A110 is
derived, was just that of A11 extended to terms with labels and

bookkeeping pairs. This line is pursued in the sequel. The systems Ann
and Aflp‘ will be obtained by putting restrictions on the set of terms
A11q and by defining new reduction relations, but as to convertibility
we will just keep with Auq.
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2.4. A11p and Anp‘. Our final step towards the generation of a

manageable system of terms which includes bookkeeping pairs, consists

in effectuating the restrictions on the positions which a bookkeeping

pair with a given index is allowed to occupy. As explained in 1.7, the

pair [M0, M110, belongs in an a-context.

2.4.1. DEFINITION. The set of cahom'ca/ terms, denoted by Anp', is

defined as the subset of A11q consisting of all terms which meet the

requirement that oi-bookkeeping pairs occur only in a-contexts:

2=<IM0,M1L,C[ ]> = 1(2)=a.

EXAMPLES. The terms a.?xx.110[[110y,110y100,110[y, ylooflo and
00.11Iy, y] are canonical. On the other hand e.g. 01.111Iy,y105 and

<>.[Iy,y],y1 are not. Note in particular that, although

<>. (Ay.yx)[y,yI€A11p’, we have <>. Iy,yIX¢A11p‘, the latter
term being a B-reduct of the former one.

From the example we see that the set A11p' will not be closed

under the reduction rules which are intended for the system A11p‘. (Of

which B—reduction is one.) Therefore we need yet another intermediate

system A11p over a broader set of terms A11p, being closed under
reduction all right.

2.4.2. DEFINITION. The set A11p is the subset of A11q wich results if

one weakens the condition on occurrences of bookkeeping pairs for
Aup' to:

z =<IM0, M11,,c[ ]> = a s 11(2).

EXAMPLES. We have Aflp‘ ; A110 ; A11q. As to the non—canonical terms

mentioned above, we still have 01.111I y, y 105 é A110, but

<>.I-[y1X-11Y] and <>.[Y1X-IX6Aflp

The counterparts of A11p’ and A11p in A°110 are called A°11p‘ and

A°1tp respectively. It is obvious by 2.3.2(ii) that A°11p’ and A°11p are

closed under ~ and hence that definitions 2.4.1 and 2.4.2 are in order

in this respect (cf. table 2.0.1).
Although, as said, performing a contraction in a A11p'-term may

lead outside of A11p‘, the result will always remain within A11p. (That

is, the worst thing that can happen is that an a-bookkeeping pair

shows up in a B-context with B>oz ) From there it can be projected
back to A11p' by ( )*. This operation will be defined via the auxiliary

reduction relation «—> on A11p. H is called cancelling, as it cancels

superfluous bookkeeping pairs by selecting that component which is still

consistent with the information presented by the actual context.
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2.4.3. DEFINITION. The one step reduction relation «-> on A11p, called

cancelling, is defined as the monotone and compatible closure of the

contraction rule:

can: aiIMo, M110, 1—9 Mi, for i=0 or 1.

EXAMPLES. <>.IIy,yI,yI H Day]; 01.14ny ._, yx;

0‘-M‘“1(1111II118)’.Tio)’]oo:flor)’,1"1001Io)H >\1’1’-111(flo(flor)’.1’1001)- The
monotonicity and compatibility amount to the same as the general

formulation C[[M0, M1Ia]aiB H C[Mi].

Conceived of as a relation on A°11p, it follows by lemma 2.3.2 (iii)
that 1-9 is respected by ~, as obviously

GI.[M0, M1Ia~ IND, N11“ => (11. Mi~ ”1'

Moreover, it is important to note that 1—1 preserves convertibility: «—-> c

=. Finally, that A11p is closed under «—-> and under substitution is

established, along with some other closure properties, in the following
lemmas. Observe, however, that Aup‘ is not closed under substi-

tution, as can be illustrated by the example: M51101? and

NE<>.[/V0, N116Aflp‘, but (XI=N)MEfl0[/V0,N1]¢Aflp'.

2.4.4. LEMMA. (1)8.M6A11p 8. OSfl => [3.MeA11p,
(ii) If C[P]BeA11p 8. a. 06A11p8. 818 8. P #11, 11X, 110 or 111 in

applicative position, C[ 0]B €A11p,
(iii) a.MeA11p 8. <>.N6A11p =~ a.(11:=N)Me/\11p,
(iv) If P is not of the form 11X in applicative position, then

C[P]aeA11p => a.Pe/\11p.
PROOF. (i) is an immediate corollary to 2.2.1(i). For (ii) assume

IXO, X113, occurs in C[0]B with label )7. We have to check that 6 s y.
Distinguish cases as to the position of 1X0, X115. If 1X0, X115 occurs
within 0, then 6 S y follows from the assumptions that or. 0 €A11p and

a w by 2.2.1(11). If 1X0, X115 and 0 are disjoint, then 2.2.3(ii) can
be used. If OCIX , X115, then the replacement did not affect the

context of the bookkeeping pair at all. (iii) follows from (ii), and (iv)
from 2.2.1(iii). (The indicated exception is the only case that
occurrences in P do not automatically obtain the same labels in C[P]a
and in a. P). [1

2.4.5. LEMMA. A110 is closed under «—>.

PROOF. Assume C[[X0, XIIaIaiBE A11p. Then by 2.4.4(iv) also
oi.Xi€A11p; since ai S 0118, it follows then by 2.4.4(ii) that

CIA’ilaiseAflD- D
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As each H-step reduces the length of the term, it is obvious that a

is strongly normalizing. Also the Church-Rosser property for H is easily

verified and hence each A11p -term 81. M has a unique «—»-normal form.

2.4.6. DEFINITION. (i) The canom‘ca/ form of a term a.MeA11p,
notation (or. M)*, is the (unique) H-normal form of a. M.
(ii) The relation on A11p which transforms M into M* in one step is
denoted by 9*: M «4* M*.

NOTATION. We slightly ambiguously use the notations a. M * and M "‘

for (a. M)*. This is convenient, but it must be observed that this way
* becomes context sensitive. E.g. we get 110(IM0, M1])*E 110M0“,
whereas 111([M0, M1])*E111A41*. And even nastier, the X*-s in

[X *, X *1“ are in general not the same. Sometimes we prefer to be

more precise, and then use the notation 1111M to denote M* in an
a-context.

EXAMPLES. oz. (AxIIy, (Ax.x)yl,yl)* a Ax.Iy,yI;

<>-(I,V.Iy. (?\X-X)yll)*5 1y. (?\X-lel; <>. (Iy.yIX)*EyX-

An a-bookkeeping pair in a 8-context with 8>oi, can always be

cancelled by '--1, so the H-normal forms must be all in A11p“.

Conversely A11p' is defined such as not to contain any superfluous

bookkeeping pairs, so that in Aflp‘ there is nothing to cancel.

Therefore Aup‘ can be characterized as the set of canonical forms and
9“ (; A11pXA11p‘) behaves as the identity relation on A11p‘. Put

more concisely: "‘ is a projection operation from A11p onto A11p'.
This section is concluded with some lemmas and definitions which

will prove to be of use in the sequel. It may be pointed out first, that

although it is shown in lemma 2.4.8 that H is substitutive, <—»* is not.
This is illustrated by the following trivial counterexample:

X[)/, y] 1—1“ xl-y, y] , as XIy, y] is itself canonical.
But, substituting 110 for X, we do not have

110l'y, y] 9* 110l'y, y], as 110”; y] is not canonical.
In 2.4.7 some properties of 1—1 and «—>* are summed up which should

be obvious by the above.

2.4.7. LEMMA. (1)4“ Q»
(11) 91-1-9“ = t—b“

(iii) The following diagrams hold.
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1_) h)

(N) (C[0D’“ E (C[0*])*.
PROOF. Straightforward. [I

2.4.8. LEMMA.

(1)0.M09M181 <>.N6Aflp =9 G.(XI=/V)M0‘—)(XI=N)M1.

(ii) <>.NoH N1 8. a.M€A11p :9 a.(X:=N0)M'—» (XI=/V1)M.
(III) G.M0L» M181 <>.N0‘-» N1: (1. (XI=N0)M0W (XI=/V1)M1.

(iv)((X:=N)M)*E((X:=N)M*)*E((X:=N*)M)*.=.((X:=N*)M*)*.
PROOF. For (i) use 2.2.4(i) on the bookkeeping pair in M0 which is

cancelled. For (ii) proceed in the same way with 2.2.4(ii). (iii) follows
from (i) and (ii), (iv) from (iii). El

2.4.9. DEFINITION. For a relation —>a on A11p we introduce the

notations —> a“ and —> aVZ, by defining:
(i) —>a* denotes the restriction to A11p' of —> a+“’*$

(ii) ->a'/2 denotes —9 a+"*-

NOTATION. The suggestive notation —>a‘/2 indicates that though some

cancellation may have been performed, the job is not necessarily

finished, thus leaving us somewhere halfway the canonical form.

In accordance with 0.3 the double arrow (-») with sub- and
superscripts is always meant to signify the reflexive transitive closure

of the whole. (The same can be said with respect to 2' .) In particular
—»a"‘ denotes always the reflexive transitive closure of —> a’“. Note that

as a consequence we do not have a special notation for the restriction
to A11p‘ of —»a+«—9*.

2.4.10. LEMMA.(1) —>a**= ->a*;

(ii) flay”! = _)a*'
PROOF. Straightforward. U

2.4.11. DEFINITION. Let ->a be a relation on A11p. Then —>a is called

(i) ar-proyectah/e if a. M—>aN :> a. M* ?a“ N*;

(ii) ,v-m0hoto11e if a.M—>aN 8. 01 SB => B. M’“ ?a“ N*;

(iii) x-companb/e if 01. M—>a N => C[M]: ?a“ C[N]*;
(iv) Ve-prQ/ectah/e if the following diagram holds
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(v) Ve-mon'otone if
a.M—>aN 8. G$B => (azv')(j8.M;>aA/'& B.N=»N');

(vi) Xe-compatJh/e if
a. M—aazv 8. 1(c[ ])=a => (3 0)(C[M]?a 0 8.C[N]u» 0).

All relations —> a C A11p'XA11p' are trivially x-projectable. As to the

connection between the different kinds of monotonicity'and

compatibility, observe that 1/2 -monotonicity and compatibility are

weaker properties than plain monotonicity and compatibility.

Furthermore it is obvious that for *-projectable relations monotonicity

implies x-monotonicity and compatibility *-compatibi1ity. The following

lemma provides a means for proving x-projectability etc.

2.4.12. LEMMA. (i) Let —>a be ‘/2-projectable. Then both —>a and -»a
are x-proJectable.

(ii) If -> a is 1/2-pro[jectable and 1/2-monotone, then -> a and —*a are

i-monotone as well.

(iii) -> a is ‘/2-projectable and 1/2-compatib1e :> —> a and -»a are
* -compatible.

PROOF. (i) First establish the diagrams a and 12.

Q IU
'

  
a Just by repeated application of the assumption, h as a consequence

of a because ~—)"‘ g L». Then the i-projectability of —>a follows by

combining h and 2.4.7(iii):

  

 

The property of -> a being 1/2-pro\jectable carries over to -+>a, since

“’aC —»a, and a series of diagrams of the form a can be linked
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together to the right. As a consequence also -»a is x-projectable.

(ii) Let 0:. M -) aN and on S 8. Then by the assumption that ->a is

1h-monotone and because —> a is already i-projectable by (i), in a
8-context the following diagram can be constructed.

 

 

The x-monotonicity of -> a can be concluded, since N L» N' implies that

N”“5 N*. Regarding -»a it now clearly suffices to verify that it is itself

1/2-monotone too—the 1/2-pro,jectability following Just as in (i). We leave
it as an exercise to derive the Vz-monotonicity of -*a from the

1/2-pro[jectability and 1/2-monotonicity of -> ,3.

(iii) The reasoning is completely analogous to that of (ii). 1]

2.4.13. LEMMA. (i) ->a is *-proJectable => —>a‘/2 is *-projectab1e.

(ii) If —>a is *-monotone (or *-compatible), then so is ->a"‘.
(iii) If —9 a’“ is *-monotone (or *-compatible), then so is -»a*.

(iv) If —> a is x-projectable, then

MeAnp‘ 8 M—»,+._.* 1v => M—»,* N.
PROOF. By now straightforward. For the *-compatibility part of (ii)

lemma 2.4.7(iv) can be used. [I

In the sequel the property of being both ‘/2-monotone and
1/2-compatib1e will be referred to efficiently by the short “ 1/2+‘/2". The
following fundamental fact is a consequence of definition 2.4.11.

2.4.14. LEMMA. If —>a is 1/2+‘/2, then

or. M—>aN 8 GSB => (30)(c[M]B—=+a08c[/v]~» 0).
PROOF. First use definition 2.4.11(v) to find a N ' such that

8. M?aN'8 8. Nu» N'. Subsequently 2.4.11(vi) yields a 0 such that
C[M]?a C? 8. C[N']°» 0. This 0 suffices because <—» is compatible and

transitive. I]
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2.5. A11p and A11p‘. We now first present the contraction rules of the

systems Mtp and 8110'. The one step reduction relation -> of A11p then

results at once. It is composed of two parts: —>,, an ->p. The reader is

warned in advance that the component —>p will deviate from the

customary, by being not at all monotone, and compatible only in a

restricted sense.

2.5.1. DEFINITION. (i) The one step reduction relation ->,, is the
compatible and monotone closure, in A11p, of the contraction rules:

8: <>.(?\X.M)/V —> (X:=N)M;
“oi <>.110(11X0X1) —’ X8;
“11 <>.TI1(T[X0X1) —) X1;

I: 0.11(110X) 1’ —> X, provided that 111X= 1’;
r: 1.111’(111X)-> X, provided that 110X= 1’.

(ii) The one step reduction relation —>p is the least relation on A11p
that satisfies the “contraction” rule:

0: C[X]¢ —) C[IX,XIG], provided that X is not already a
bookkeeping pair itself and a is finite.

(iii) Then —>, the one step reduction relation of A11p, is defined as the

union:

-—> ="’nU—’p-

EXAMPLES. Provided that 111X = 1’, an application of 1 yields

<>.I11(110X) 1’, XI —>,, IX, X], but not
<>.IX,11(110X)1’I—>,,IX,XI.

The relation —9p is not monotone: although

01.11121 —>, 1111 X, x1101 as well as
<>.111X ->p 111IX,XI1, we do not have

01an ->p 111IX, X11.
The relation —>p is not even quite compatible, for although

00.11X —>,, nIX,XI, not 08an —+, 11IX, XI 1’ (cf. the exception
to 2.2.1(iii)).

COMMENT. In accordance with what was said on the subject of

bookkeeping pairs in section 1.7, the purpose of the bookkeeping pair

creating rule p is to make it possible to generate extra (hypothetical)
information on the context of an occurrence X. Our motivation for not

making -1p monotone should be clear from that purpose. For suppose

e.g. that a step like

<>~“1(flo(fl1X))—’p “1(“0(“1[X: X111)
would be admitted. The labels of the two descendants X of X would

be respectively 10 and 11. Compare these to the label 101 of X in the
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original. It is then clear that the proposed p-step would not result in

growth of information: passing from the label 101 to 10 means a loss

of information, while the label 11 represents information that is even

inconsistent with the original 101.

The third cluster of examples above illustrates why we could not

make the relation —>p compatible either. It is almost compatible

though, in a sense that will be made precise in the next section (cf.

lemma 2.6.4).

The = in the conditions on I and r is Just that of Aflq. So the

definition is not circular (compare 1.2.1). Furthermore notice that

—> (.3 =, implying the stability of the conditions under reduction. That
—> behaves well with respect to ~ is proved in the following lemma.

2.5.2. LEMMA. Considering -> as a relation on A°11p, we have the

diagram:

 

PROOF. With 2.3.2(ii) and (iii) in mind, it suffices to verify that if
ox. P is an —-> -redex and or. P~ 0, and if P and .S' are the respective

contracta of P and 0, then 01.}? ~ 5'. Distinguish cases according to the

contraction rule used. Then the result follows from 2.3.2(ii) for the
rules 110 ,111, I and r (= is respected by ~), with in addition 2.3.2(iv)
for 8. For p the monotonicity of ~ is needed, as the context of X is

extended to 010 and to 011 in the respective components of the new

bookkeeping pair. [I

It is important to observe that A11p' is not closed under ->. Three

examples of reductions which start in A11p‘, but with a non-canonical

result are (with X, 1’ and Z appropriately chosen):

<>.‘111(1'I}1’TI'[0)[T[ZZ,)(I—3’1t 110I1IZZ,XI,
<>.(AX.X)I?\y.y,1’IZ —>,, [Ay.y,1’]Z, and
<>.110I1IZZ, x10 —9, [11011122, X10,110I1IZZ, X10].

In each of these examples the canonical form of the end term would
contain (or be itself) a redex, which is here, however, still obstructed

by the presence of a bookkeeping pair. These pairs appear to be super-
fluous though, as they somewhat misleadingly suggest an indetermina-

teness of context that does not really exist. In the system MID“ all

such disturbing and useless bookkeeping pairs will be automatically
cancelled.
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2.5.3. DEFINITION. 8110' is defined as the reduction system over the

set of terms Aflp‘ which has —>"‘ as its one step reduction relation.
(Recall that according to 2.4.9, —1" = —> +<—»*).

EXAMPLES. The three examples of w‘ -reductions above give rise to the

—>*-steps:

<>.111(11x110)I11.7.7, XI ->,,* 110(1122),
<>. (AX.X)I1\y.y, I’IZ —>,,*(1\y.y)Z, and
0.1100122, X10 —+,* [110(1122),110XI.

(Of course the X, 1’, and Z must be assumed to be chosen such that

actually everything is in A11p‘.)

The usefulness of 8110' for our original problem concerning A11 rests

on the fact that A11 can be seen as a subsystem of Anp‘. First, via

the embedding 11 which was defined after 2.1.3, A11 is included in
Aflp‘: terms without bookkeeping pairs are always canonical.

Moreover, conversion in 811 can be carried out, via the detour of -> *,

in A11p‘ as well. This in spite of the weakening of the reduction

relation by the context restrictions on the rules. The latter was in fact

the content of proposition 1.9.2(ii). We prove it now. The equivalence

relation generated by —>* is denoted by =*.

2.5.4. THEOREM. M,Ne A11 8. 1.11 !- M=N => <>.M=*N.

PROOF. Induction on deductions in 1x11 (cf. 1.1). The only interesting
deduction step is an application of the surjectivity axiom

11(110X) (111X) = X. The other axioms are already included in Aflp‘ as
the rules 110, 111 and 8, independent of context. So it suffices to prove

<>.C[11(110X) (111X)],I ="‘ C[X] for any C[] and X (in A11). Now if
a¢<>, this can be concluded simply by an application of I (if a: 001')
or r (if 01: 101‘). In case of a=<>, the =“-equivalence can be
established via the introduction of a bookkeeping pair:

C[n(floX)(n1X)I ->p"‘ C[IninoX)(n1X).n(floX)(111201]
—>,,* C[I.’r’,11(110X)(111X)I]

->..* C[IX.XII
*p<— C[X].

The rules used were respectively p, l, r, and again p. D

This is a good point to return for a moment to the sketch of proof

which was given in the ouline 1.9. After some more preliminaries on

A11p and A11p‘ in 2.6, in 53 the Church-Rosser theorem for 8110‘ will
be proved (cf. 1.9.1(iii)). By theorem 2.5.4 this implies that
?\n-convertible terms have a common ->*-reduct in A11p‘. It will then

be our final task to translate a —>"‘-reduction sequence starting from
<>. M with M 6A11 into a Z-sequence from M, in such a way that



43

the end term of the Z-sequence depends uniformly on the end term of

the —>*-sequence (cf. 1.9.2(i)).
This is accomplished in §4. Via a postponement result it is shown

there, that if A11p“ <>.M—>*N for terms MeA11 and Ne A11p',

then 11112!- M 2 ¢(N). (41 was defined in 2.1.3). As a matter of fact,
since in Anp‘ we work modulo ~, the end term ¢(N) is obtained only
up to ~. But by the obvious implication X ~ 1’ => ¢(X) ’85 ¢( 1’), claim
1.9.1(i) then follows; and as it was pointed out in 1.9, that suffices
for establishing CR/x for 1‘11 and thereby as a corollary the

conservativity of A11 over A.

2.6. Monotonicity and compatibility in Aflp‘. In this section we

establish some elementary facts concerning the compatibility and

monotonicity properties of the reduction relations of the systems Run

and A11p'. In effect it will be found that —1"‘ is both x-monotone and
*-compatible. What it all amounts to, is investigating the behaviour of

-> under cancelling. We start considering -> n seperately.

Recall that —>,r and «—» are compatible and monotone relations on

A11p by definition. But 1—1’“ lacks these properties, as witnessed by the
examples:

- 00.110 v-a’“ 110, but not <>.110[X, XI <—>"‘ IIOIX, X],

- <>. [X, X] <-+* [X, X], but not 0111,1119’“ [x,X].

Moreover, the following examples show that also —>,,* is neither

compatible nor monotone, even when considered with respect to Anp‘.

- OO.(AX.X)110 ->,,* 110, but not <>. (AX.X)110[X, XI -9,,* 110[X, XI;
- <>. (AX.X)[X,XI—>,,* [11,11], but not 0. (?\X.X)[X,X]—>fl* [11,11].

Nevertheless, we shall prove that —> u is * -projectable, from which

it then follows by the monotonicity/compatibility of -9fl that both ->,,

and ->,,* are *-monotone and *-compatible. The proof makes use of

lemma 2.4.12. The following lemma yields the requisite diagram.

2.6.1. LEMMA.
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PROOF. Distinguish cases according to the relative positions of 2 and

A. If they are disjoint then there is no problem. Lemma 2.2.3(ii)
guarantees that the residual of 2 in P and that of A in N are still

redexes. Contracting them yields (the same) 0. Distinguish further:

- 2: A. Without loss of generality assume M E C[IXO, Xl-IaLIOB and
P E C[Xo]. Then if 2; X1, just take OE P. If 2 9; X0 and 1’ is the
result of contracting 2 in X0, then let 0 E C[1’]. This is correct

because the label of X0 is not less in P than in M (010$ 0108).
- A C 2. Further cases have to be distinguished, now according to the

rule of 2.5.1 applied (i.e. the character of 2).

8 Use 2.4.8 and the monotonicity/compatibility of L».

1111 ME C[110(11X1’)]a, NE C[X]. If A; 1’ then just take OEN.
If A c; X and Z is the result of cancelling A in X , then let

0 E C[Z]. This is correct because, by 2.2.2, the label of X
in N remains or (and by the compatibility of H of course).

This should suffice. [1

Observe by the way that the only non-routine argument in the

proof was the checking of the labels of residuals. We can subsume this
under a more general statement.

2.6.2. LEMMA. If M—>N or M<—» N and 2' is a descendant in N of an

occurrence 2 in M, then 1(2')2 1(2).
PROOF. Checking the different cases is a now routine matter. U

With this lemma and the monotcnicity/compatibility of -->,r and H,

2.6.1 becomes Just an application of well-known theory on CRS’s: the
construction of elementary diagrams for left linear rules without over-

lap (Klop [1980]). (NB: The rules of A11p do have overlap mutually,
but not with c-p.)

Reduction relations which satisfy lemma 2.6.2 will be called

11011 -a’1'1111'11119h1'12g .

2.6.3. LEMMA. (1) ->,, and -»,, are *—projectable.

(ii) —>,,* and -»,,* are x-monotone and *-compatible.
(111) Me A11p' 8 M—»,,/v => M—»,,*1v*.

PROOF. (i) -->.,1r is 1/2-pro\jectable by lemma 2.6.1. So lemma

2.4.12(1) applies.
(ii) 6,, and -»,, are monotone, compatible and i-projectable. In order

to derive that they are x-monotone and *-compatible we do not even

need 2.4.12(ii) or (iii). For ->,,* and -»,,* apply 2.4.13(ii).
(iii) Since in A11p'l always M E M*, this is an immediate consequence
of (i) and lemma 2.4.13(iv). U
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We turn to p-reduction. Recall that a —+p*-reduction step is

composed of a -)p-step starting with a term in A11p', followed by a

H*-step which takes the result back into A11p‘. By the restrictions on

p (cf. 2.5.1), this rule can only introduce bookkeeping pairs in

contexts with finite label, that is, not in applicative position. It then

follows by lemma 2.2.5(i) that in order to get the canonical result no
cancelling is required outside the new bookkeeping pair. To bring out

this feature more clearly we recast the relation ->p* in a form

analogous to that of p, recapitulated here from definition 2.5.1(ii).

p: c[x],, —>, C[IX,XI,,],
p‘: C[X]cl —>p* C[[chxX,o:1*X]a],

(a a finite label and X not already a bookkeeping pair itself). Note the
contrast with ->,,*. Contracting a 11-redex can very well increase the

label of a disjoint occurrence, as a result of which some extra

cancelling is then required.

With the help of the above characterization of p- and p*-reduction

it is possible to indicate to which extent these relations are compatible.

We do it for ->p*.

2.6.4. LEMMA. Suppose we have M and D[] with D[M]6A11p' and
that there do not exist terms M ' and X and a context D'[] such that

both ME11M' and D[ ]ED'[[ ]X]. Then:
(i) 2: M—V‘N => D[M] —>p"‘ D[N];
(11) M—epw => D[M] —»,,* D[N].

PROOF. (i) By the characterization of 0' given above it suffices to
check that the label of the occurrence 2 that is doubled is the same in

M and in D[M]. This is immediate by lemma 2.2.1(iii).
(ii) If M and D[] satisfy the conditions of the lemma, then after the
p*-step D[M] —>p* D[N] this is still the case with N and D[ ]. So (i)
can be repeated. D

TERMINOLOGY. In satifying lemma 2.6.4 we call the relations ->0 and

->p* quasi compatzh/e with respect to A11p‘.

It should be kept in mind that neither p- nor and p*-reduction are

monotone. An a-bookkeeping pair is not allowed to be created by p in

a 8-context with 8>or. This is, however, less of a restriction than it
may seem. In Anp‘ the a-bookkeeping pair that is introduced in such

a 8—context would anyhow be cancelled at once by '—>*. As a matter of

fact, it will be shown (cf. lemma 2.6.6) that 40’“ is *-monotone. We

prove this along with the *-compatibility of —>p"‘ with the help of

lemma 2.4.12.



46

2.6.5. LEMMA. (i) —>p is 1/2-monotone.

(ii) —->p is ‘/2-compatible.

 

(iii)

(E)_,
M p 2 1V

(AL, 1,,

P -------------------------- 0
?p

PROOF. (1) Assume oz. MEC[2]B -*pC[[2,2]B] E N, and a S 01'. Then by
2.2.1(i) we have for 8'=1(cx'.C[ ]) that 8S 8'. Now it is easy to
specify an N ' such that 01'. M ?p N', distinguishing two subcases.

a. 8' > 8. Take N' E M, the new bookkeeping pair can be cancelled.
h. 8'=8. Take just N'EN.

(ii) This proof is similar, now with the help of lemma 2.2.1(ii).
(iii) As 2 cannot itself be a bookkeeping pair by the restriction on ->p,

the possibility of 2 EA is ruled out. The remaining cases are:

- AS; 2. Then, if MEC[2]G and A: a.2<—»2', by the monotonocity of
*—-) the diagram

‘11
 

 

c[z] ECIIEJLI

C[z] -------------L; ------------ C [12.21,]

holds.
- 2 c; A. Assume without loss of generality that

ME C[[X0, XIIBJBOB'T’ C[Xo] EP, and (the case 2 g X1 being trivial)
assume 2; X0. That is, NE C[I 1’0, 11115805. and 130.210 4,, Y0, Then,
since —99 is already 1/2+‘/2 by (i) and (ii), there exists by 2.4.14 a 0
such that C[Xo]?p0 and C[1’0]<-» 0. But then N<->C[1’0]'—» 0.
— 2 (111:0. As the p-redex 2 cannot be in applicative position, by

2.2.5(i) the label of A is invariant under contraction of 2. Moreover,

now by 2.2.3(ii), the label of 2 does not diminish under (A). So we
can reason analogous to the foregoing case, using the fact that —>p is

1/2+ 1/2. U

2.6.6. LEMMA. (1) ->p* and -»p"‘ are *-monotone and *—compatible.
(ii) ->* and -»* are both x-monotone and *—compatible.
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PROOF. (i) The *-monotonicity of ->p and -»p can by lemma 2.6.5
be concluded from 2.4.12(ii); the *-compatibility from 2.4.12(iii). In
order to derive the result for the starred versions, use 2.4.13(ii).

(ii) The results of clause (i) and lemma 2.6.3(ii) can be combined,
using 2.4.13(iii) for the transitive closure. D



48

§3. The Church-Rosser theorem for the system Imp“

All well known proofs of the Church-Rosser theorem have the same

global structure. An auxiliary one step reduction relation ->1 is

defined, which consists, instead of just contracting a single redex, in

an immediate jump to the complete development with respect to an

arbitrary set of redexes. One then proves that —>1 satisfies the

diamond property. From that the Church-Rosser property for -) can
be deduced at once. By lemma 0.7. 1 it suffices to verify the obvious

inclusions —> ; —>1 and —> 1 g -» .

The differences between the various proofs lie mainly in the way ->1

is arrived at—by a Tait/Martin-L'o'f type direct definition for example,

or via the finite developments theorem—and, correspondingly, in the
proof of the diamond property for --91.

It is essential in this kind of set up, that residuals of redexes are

redexes again, of the same type as the ancestor. We will see in section

3.2, however, that under ->"‘ this is not always the case. The

constants involved in an existing 11-redex may become separated by

the bookkeeping pair which is introduced in a —>p*—step.

We deal with this problem by segregating —>p*-reduction from the

other, substantial, reduction rules. Thus we exploit two complemen-

tary concepts of fast one step reduction. In the first place there is

—>1*, derived from ->,,* in a more or less standard way. In addition,

in section 3.2 a notion ->s of “simplifying” p*-reduction will be defined.

It is the restriction of -»p* obtained by requiring that in the end term

no redexes are disturbed by occurrences of bookkeeping pairs.
Then the role of the “one step” reduction relations in the traditional

Church-Rosser proofs is played here by the relation —>+ defined as the

sum —> 1*+ —>S. Accordingly we shall prove the diamond property for

->+. The structure of the proof is best described by way of the

following diagram.

3.0.1. DIAGRAM.

 

 

    

‘1 x "’5

71* —+, * 71* _)1 I

"s .-”p* —»p* “’5

—>1 * —>S

Establishing 3.0.1 is our main task for this section. It can be

divided into three parts, corresponding to the different rectangles in

the diagram. The first, left upper rectangle asks for a more or less

standard treatment, using the finite developments theorem. Some
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complications are caused by the ambiguity of the contraction rules (cf.

section 3.1). The fourth, the right downmost one, will be dealt with

in 3.2. Moreover, in that section the treatment of the identical second

and third rectangles is prepared by the introduction of the special

species of -»p*-reduction ->5. Subsequently these rectangles are attained

in section 3.3.
In 3.4 Church-Rosser for ->* can then be concluded. For, though we

do not have -9* g ->+, it will turn out that the convertibility relation

=+ which is generated by —>+, coincides with =*. As -> + g -»* does hold

all right, the second version of the Church-Rosser theorem, 0.6.2,

follows.

3.1. Marked —>fl -reduction. In this section we prove

-+,,*-Church-Rosser by the method which uses the finite developments

theorem to arrive at —> 1, and marked reduction in order to encode

developments with respect to sets of redexes (compare Barendregt

[1981], Ch.11, §2). Due to the ambiguity of the rules some
adjustments have to be made, however.

As a matter of fact, by considering terms in A11p modulo

~-equivalence, we tailored A110 minus p-reduction as a weakly regular

CRS with (stable) conditions. Church-Rosser for regular Term Rewriting

Systems with conditions of a certain kind (not the ones here

encountered) is proved in Bergstra 8. Klop [1982]. The authors express
the belief that their results will carry over to weakly regular TRS’s as

well. Quite in general, the opinion seems to prevail that the Church-

Rosser theorem and related results for regular CRS’s generalize easily
to the weakly regular case. Nevertheless, there appears to exist no

actual treatment of the weakly regular systems in print. Accordingly,

it may be worthwhile to call attention to the complications described in

3.1.1 below in defining a coherent notion of residual.

We sketch our proof of —>,,-Church-Rosser as an intermediate step

towards ->,,*—Church-Rosser. The key notion in the proof, that of

marked reduction, is needed also in section 3.3 treating of the

interference of —>,,* and —>p"‘, and in the final §4.

Generally the purpose of using some notion of marked (or
underlined) reduction is to save the trouble of having to be very

precise on residuals. Indeed, we could do without that also here. But,
the definition of —>,,- on its own being rather cumbersome, we will try

to facilitate understanding by relating it explicitly to the matter it is
meant to encode.

3.1.1. Recall the diagrams of section 1.8, which served to illustrate

the cases of overlap between the contraction rules 110 and l (and 111

and r). Everything seemed all right there, as the end terms were
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either identical (in (i)), or at least ~-equivalent (in (ii)). Looking
closer though, one observes that the 110’s in the respective reducts 110X

in (i) descend from a different ancestor in the original term. The same

is true of the 11’s in 11X1’ and 11XZ in diagram (ii). This awkward

subtlety gives rise to a serious problem in tracing a possible third redex

in which one of these constants is involved.

We sketch the situation in the following two diagrams, closely

related to the ones in 1.8. (Only 110 and l are covered, again, but the

case of 111 and r is completely analogous.)

(i) C[Tt&(flz(fl§’(fl4XV))Z)l (ii) C[rr1 (118(13(1104X)Y))Zl
<23>_,fl

   
It must be assumed of course in (i) that 1’ = Z, and in (ii) that
111X = 1’ = Z .

We have attached numerals to the constants involved in the

reductions and for this occasion indicate a redex by the combination of

numerals attached to the constants that constitute the redex in

question. (That is, e.g. the redex 1103 (114 X1’ ) is indicated as 34.) So in

the original terms of both diagrams we can distinguish redexes 12, 23

and 34.
Now Just concentrate on diagram (1). It is clear that in the result

C[1103 (114X1’)] of reduction step (12) the redex 34 is residual of the
redex 34 in the original term, whereas in the result C[1101(114 XI’)] of

(23) no such residual exists. In the notation which was pointed out in
§0: 34/(12) = 34 and 34/(23) = 11. Hence it appears that the reduction
sequences (23) and (12)+(34) are both complete developments with
respect to the set of redexes {12,23,34}. But the end terms
C[110(11X1’)] and C[X] are not the same and as a consequence it
becomes apparent that FD! for —>,, fails.

Can it not be repaired? To this end we declare 1101(114 X1’ ) to be a

virtual residual of the redexes 12 and 34 under (23). In the same
way in diagram (ii) the redex 14 in C[111(114X)Z] is to be considered
as the virtual residual of 12 and 34 under (23).

3.1.2. TERMINOLOGY. Call the occurrences of constants that are

required to constitute a redex the critica/ constants of that redex.

(Hg. in 110 (11 111111) the critical constants are 110 and 11; in general the
critical constants are the ones that are displayed in the contraction



51

rules, cf. 2.5.1.) Notice that the redexes 2 and A in M overlap if

they share one critical constant. Now, given a set 91 of redex

occurrences in M, we define an 91-cha1'n to be a maximal set

{21, . . .,2n};91, n>0, such that for each i<n, 21 and 2111 overlap.

The Si-chains form a partition of 91. Since 8-redexes have no overlap,

they constitute an fi-chain each on their own. An inner redex of 91 is

one which overlaps with two other redexes in 91; these redexes will

then belong to the same 91-chain. As explicated in 3.1.1, contraction

of an inner redex of 91 leaves only a Vh'tua/ re51h’ua/ of its immediate

neighbour redexes.

3.1.3. DEFINITION. (i) Given a pair <M,91>, Me A110, 91 a set of

—>,,-redexes in M, and a term N such that 2: M—->fl N for a 2691,

the set 91/ (2) of residuals of 91 in N is defined to consist of:
a The residuals of the elements of 91 , that is, for each A691

the set A / (2),
and, if 2 was an inner redex of 91,

h the virtual residual of the immediate neighbours of 2.

(ii) Let M€A11p and 91 a set of ->,,-redex occurrences in M. Then a

development of <M,91> is a sequence <M0,910>,<M1,911>, . ..

<Mn,91n>, with M16A11p and 911 a set of redex occurrences in M1,

such that

(VKH) ((3216911) (M1 (20‘9“ M1+1)& 91m = 911/511) -
The sequence M0, M1, . . . Mn is called a development of M with

respect to 91. If moreover 91n=0, then the development is a complete

one.

Note that as a result of this definition, “set of residuals of ” is no

longer a distributive notion. The identity 91/ (2) = U{A/ (2) I A6 91} does
not hold in general.

We now give a formalization of all this by way of appropriate

concepts of marked term and marked reduction.

3.1.4. DEFINITION. The pair <M,91> is represented by the marked

term which is obtained by attaching primes ('), apostrophes () and
inverse apostrophes (‘) to 8’5 and critical constants occurring in M in
the following way.

(i) the initial 8 of a redex (AXNO) N1 in 91 is primed (result:

(A'X-No) 4’1).
(ii) the leftmost critical constant of each fi-chain gets

...11(i)‘...),

(iii) the rightmost critical constant of each Sl-chain gets an
(result: ...11(i)’. . .,)

( (result:
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(iv) all other critical constants of n-redexes in 91 are primed

(. - -11(1)'~ - -)-
The marked terms that are thus obtained as representing pairs

<M,9!>, constitute the set A'np. The restriction of A’11p to canonical

M's is denoted by A'11p“.

COMMENT. An Si—chain in M can be recognized in the representing

marked variant of M in A'up because all its critical constants are

marked. Such a chain of marked 11(0'5 is called a 11—chain. The

apostrophes play the role of begin (') and end (’) markers for
11-chains. This feature is necessary for marking the kind of difference

that exists e.g. between the marked terms 110‘ (11'(110'(11’X1’))Z) and
110‘ (11’(110‘ (11’X1’))Z), the first one representing one Si-chain of length
3, the second two Si-chains, each of length 1.

Observe that the “represent” relation between A'11p and the pairs

<M,91> is one-one. Hence the pair <M,91> and the marked variant of

M representing it can be identified.

The set A'11p could be given a direct inductive definition, without

reference to sets of redexes, in the following way.

3.1.5. ALTERNATIVE DEFINITION. A'11p is defined as the set of the

marked van'ants of terms Me A11p The marked variants of M are

defined by induction on the number of marks, according to the

following clauses.

(1) Me A11p :1 Me A'11p
(ii) a. C[(AX.N0)N1] e A'11p => C[(A'x.N0)N1] e A'11p

121. C[ni.11XY] e A'11p => C[n,‘.11’XY] e A'11p
2. C[111.11‘X1’]e A'11p => C[11{.11'X1’]e A'11p

21. C[11(110X)1’]0ae A'11p 8111X= 1’ => C[11‘(110’X) 1’] e A'11p
2. C[11(110‘X) V1086 A‘11p 8.111X= Y =>C[11‘(110'X)1’]e A'11p

81. C[11 Y(111X)]1a e A'11p 8.110X: Y 2‘» C[11‘ Y(111’X)] e A'11p
2. C[11 1"(111‘X)]1q e A'np 8.110X: 1’:> C[11‘ 11111310] 6 A'11p

The rules b5, :4, and d; are now redundant:

b5. C[111’.11XY] e A'11p => C[111'.11’XY] e A'11p
95. C[11’(110X)1’]0ae A'11p 8111X= 1’ => C[11‘(110’X) 1’] e A'11p

d3. C[11’ 141112011... 6 A'up 8.110X: 1’ => C[11'Y(111’X)] e A'np

If N e A'11p, then IN I is the corresponding term in A11p which is
obtained by deleting all marks. A'11p‘ = {N e A'11p] INI e A11p‘}.

Finally, developments are covered in A'flp by the concept of

marked reduction —->,,-. It can be defzned informally as follows. (In the
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line of 3.1.5 a less verbose formal inductive definition could be given.

We leave this to the diligent reader.)

3.1.6. DEFINITION. —>,,- is the one step reduction relation on A'11p

which is derived from —->,, by restricting:

- 8—contraction to redexes of which the initial A is primed:

(NAKNo) N1 ‘3“1(XI=/V1)N0, and

- the rules 110, 111, I and r to redexes of which the critical

constants are marked in that order by either ‘ and ', ' and ',

' and Z or‘ and i

If a leftmost (or rightmost) critical constant of a 11-chain of length at

least four is involved in the contraction, its mark ‘ (or ’) is passed on

to the leftmost (or rightmost) critical constant in the residual 11-chain.
If the original 11-chain contained only one or two redexes (two or three

critical constans respectively) no residuals remain. Hence in the case of

three critical constants, the mark of the single critical constant that is

not involved in the contraction (it must be either ‘ or ’) is cancelled in

the reduct.

EXAMPLES. 110‘ (11‘(110'(11’X1’ )) 1’) -9,,» 110‘ (11’X1’) (in three ways);
110‘ (11’(110‘ (11’X1’)) 1’) —>,t» 110‘ (11’X1’) (in two ways);
110‘ (11'(110’X)(111X)) —>,,' 110X (in two ways).

3.1.7. LEMMA. (i) A'up is closed under —>,,:.
(ii) A'11p is closed under H,» and 9*.

PROOF. Straightforward, the system is so designed. For 8-reduction

check first that A'11p is closed under substitution. [1

Any notion of reduction on A11p or A11p‘ we met so far can be

considered to be extended to marked terms, by allowing the

metavariables that occur in the contraction rules to carry marks.

Thus, if A: M—>a N, for M, N6A11p, then if IMOIEM, there exists

an N0 with I/Vo|5 N such that A0: M0 ->a No, where A0 is the redex
occurrence in No that corresponds to A. Passing from (A) to (A0) is
called 711711157. Conversely, passing from (A0) to (A) is called prQ/ectmg

(cf. Barendregt [1981], pp. 279/80). It should be noted though, that
A'11p is not a priori closed under any kind of reduction. (This is why I

speak here, somewhat loosely, of “marked terms”, rather than A'11p.)
As a matter of fact, it is easily seen that A'11p is not closed under

—>p. We return to this point in section 3.3.

If filgfiz, then each development of <M,911> with result <N,913>

can be lifted to a development of <M,912>, consisting of the same

reduction steps. For the result <N,914> we have 913g914. In particular

all developments of <M,911> and <M,912>, with 911 and 912 arbitrary
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sets of redex occurrences in M, can be lifted to developments of

<M,$1U9{2>.

If M1 and M2 €A'11p represent respectively <M,911> and <M,912>,

then the element of A'11p which represents <M,911U912>, denoted by

M1+M2, can be found as follows:

- the A’s that are primed in at least one of M1 and M2 are

primed in M1+M2 as well,

- the 11’s having the same mark in M1 and in M2 get that mark

in M1+M2 as well,

- the 11’s that are marked both in M1 and M2, but with a

different symbol in each, are primed in M1+M2.

3.1.8. THEOREM (FD!) For each MeA'np:
(i) the number of steps in an —>,,u-sequence is finite;
(ii) there exists a unique ->,,.-normal form N such that M-*,,1N.

PROOF. (i) It is not difficult to adapt the proof of the finite
developments theorem in de Vrijer [1985]. Primarily the definitions of
height (h) and multiplicity (mx) must be modified such that
- h counts also the reduction steps originating in a 11—chain

(= the entier of half the length of the 11-chain);
- both h and mx neglect transient occurrences.

The circumstance that some of the contraction rules are subject to
conditions can a priori only shorten complete reductions. In fact the

effect is nihil, since the conditions are stable.

(ii) This is an immediate consequence of —>,,--Church-Rosser, which we

now prove by a standard argument. Suppose M-»,,-N and M -»,,- P.

By induction on h(M), i.e. the maximal number of ->,,--steps from

M, we show that N and P have a common -»,,--reduct 0. If one of

the -»,,--reductions is empty, then the result follows trivially. So

assume terms N1 and P1 as indicated in the drawn part of the

diagram below. Then the diagram can be completed as shown.

—>. [V1 fl“. N
 

 

    

M 1‘

A—->fl _,, _,, .
_..» fl 1"

p 1"

1 _,,fl,
—»“| _»“' _»“l

P _» 1 -—» . 0
‘W 11

For, since the conditions on I and r are stable, A is just the routine

construction of an elementary diagram. The other squares are derived

by the induction hypothesis. El
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3.1.9. DEFINITION. (i) For MeA'np, the he1ghz h(M) is the number
of reduction steps in a —>.,,:-reduction sequence from M of maximal

length.

(ii) Denote the unique —>fl.-normal form of M6 A'11p by CD(M). Then
the one step reduction relation —> 1 on A11p is defined by

M—>1N c: (aM‘eA'np)(|M'|-=-M8.CD(M')EN).

3.1.10 LEMMA. (i) ->1 is self commuting.

(ii) —>1"‘ is self commuting.
PROOF. (i) Standard again. Suppose that M —>1 N and M —>1 P.

Then there are M0, M1 6 A'up such that IM0|2|M1|EM, and complete

developments 00: M0 -»,,- N and 01: M1-*“. P. Let M' E M0+M1.

Then 00 and 01 can be lifted to developments 00': M ' 4,1. N' and 01':

M' -»,,- P', with IN'IE N and IP'IE P. By FD! it follows that
CD(M') ECD(N') ECD(P') and hence CD(M') is a common —>1-reduct
of [V and P.

(ii) We have the following diagram

 

  

_)I h)"

—1 A -1
.........-’l . B —)1 1‘

H)! B Hg. 3

__)1 X

A is an application of (i). As to the rectangles marked B it is sufficient
to note that the complete development underlying a —)1-step is

*-projectable, by the same token as 4,, is x-projectable. U

3.1.11 COROLLARY. —>,,* satisfies the Church-Rosser property.

PROOF. In order to conclude the Church-Rosser property for ->,t*

from lemma 0.7.1 with 3.1.10(ii), it suffices to verify the inclusions

4,5“ C ->1* and -91* C —»,,*. Well, if M(Z)—>fl* N, then M—>1* N,
because N E CD(M') for the M ' which is obtained from M by

marking only 2. On the other hand, if M —>1* N, then of course

M -»,,+c-+* N , as in general any —>,,--sequence can be projected to a

—>fl-sequence by just deleting all the marks. But then by 2.6.3(iii)

also M —*fl* N. [I

For use in section 4 still note the following. It is by now a routine
matter to extend FD! to MID". Thus we obtain the height function h*,

assigning to each M €A'11p’ the length of the longest —>fl'*—sequence

from M and the function CD’“, assigning to M 6A'11p‘ its unique

—>fl-*-normal form. Of course one has h*(M) S h(M) and
CD*(M) E CD(M)‘.
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3.2. The p-part. The Church-Rosser property for —>p"‘ is relatively

easy to prove. It is done by the method indicated in section 0.7, using

an auxiliary relation —>p*" of simultaneous p*-reduction, which must

first be defined. In order to finish the fourth rectangle, we then still

need the concept of p-simplification. It is defined in the second part of

this section. There also some further properties of p—reduction will be

discussed as a preparation to section 3.3.

3.2.1. DEFINITION. 49*" is the relation on Aflp‘ which is generated by

the inductive clauses:

a. a.M?p*N =9 M-+p*"N,

p. 81X, —+,*" 1’1, for i=0,1 => c[IXo,X11,],—>,*" C[[1’b, 141,].

The definition satisfies the closure condition 2.1.9, because neither

introducing a bookkeeping pair nor changing the content of a

bookkeeping pair occurrence does affect the label and hence the

“cancellability” of disjoint bookkeeping pairs (cf. lemma 2.2.3(ii)). One
easily sees that ->p*" is quasi compatible for the same reasons as ->p*

(cf. 2.6.4).

3.2.2. LEMMA. (i) —>p*" is *-monotone;
(ii) —>p* g -—>p*", and ->p*" g —»p*.

PROOF. (i) The proof is by induc1ion on definition 3.2.1. Clause a is
taken care of by the x-monotonicity of ->p’". As to h, suppose that

8.C[IX0, 2131,], —>,*" C[I 1’0, 1’11“] follows from ai.X1 —>,*" 13. Let
8'>8. By the kind of reasoning we practiced in section 2.2, it is easily
seen that the context C[] is of such a character that the following
holds: there exists a context 8'.D[ ]a- (with a s a') such that regardless
of P one has 8'*C[P]a.=.D[o:'* P]a-. (Eg. lemma 2.2.5(i) can be used,
since in A11p“ bookkeeping pairs never occur in applicative position.)

By this fact—derived from the special form of C[ ]—an application of
the induction hypothesis is straightforward: for example if or'=o:001",
then 8'.D[a'at Xola' —>p*" D[a'* 1’0]an results at once from
(1'1‘ X0 ‘21)“ 0'11 Yo.

(ii) Easy. D

The diagram that is required for an applicaton of lemma 0.7.1 is
provided for by the next lemma.
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3.2.3. LEMMA.

 

-—) *'

M ° N

(A)_)px _»x

p --------------------------- 0
—> *'

PROOF. Induction on the definition of —>p"‘" (definition 3.2.1). Let 2

be the occurrence in M that is being doubled in N in case M —>p*" N

is a consequence of the base clause a of 3.2.1. (The case that M -)p*"

N consists of an empty step is trivial and can therefore be neglected.)

Otherwise let 2 be the maximal bookkeeping pair in M to which the

inductive clause 12 was applied. Distinguish cases as to the relative

position of 2 and A.

(i) 2 (1A = 0. This case is trivial by 2.2.5(i). The labels of 2 and A are
not at all affected by the disjoint reduction step.
(ii) Ag2. Depending on which clause of 3.2.1 was applied, there are
two subcases.

a. We have the drawn part of the diagram

_)*

 C[X]... ° , C[Iz*,z*1,]

A_)D1: 2 .,)»:

c[z] --.B --------------------- 3 C[Iz'*,2'*1,]
—>p*

with 01.2 —>p"‘ 2'. Then ai.ai*2 ?p’“ ai*2' by the *-monotonicity of ->p*

(2. 6.6(i)), and so A holds by the quasi compatibility of —>p*. B is a
straightforward —> p*-reduction step.

1;. ME C[[M0, M11,] —>,*" c[11v0, N11,] 21v, with GI.M1 a,“ N1.
Assume, without loss of generality, that AQMO and A: 010. Mo ->p* P0.

Apply the induction hypothesis to find a 00 such that

 

—)p*'

M0 ; ”0

_)p* i _.» K

P0 """"""""""""""' 00
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Then it follows by the quasi compatibility of —>,;" and —>,;"" that

CH 00, N1Ia] can be taken for the requisite common reduct 0.
(iii) 2; A. Let 2: 01A —>p*"A0. The result is given by the diagram

__:.*'

 cm] '0 : C[Ao]
E}

—>p"‘ —>p*

C[IA*,A*1,,] ---A -------------------- 3 C[IA0*.A0*1.]

Here A follows by the fi-monotonicity and the quasi compatibility of

—>p*". B is Just a single —>p"‘-step.

(iv) 2 E A. Then 2 must be the result of clause a of 3.2.1, because A

can not be a bookkeeping pair. Hence either N 5P or N EM, and

matters are trivialized. D

3.2.4. COROLLARY. ->p* is Church-Rosser.

PROOF. Lemma 0.7.1 can be used to deduce that -»p* is self

commuting. The conditions —>p* ; —}p"‘" and —>p*“g -»p* were already

verified in 3.2.2(ii). And the diagram needed is that of 3.2.3. [1

Even in canonical terms it is still possible that bookkeeping pairs

stand in the way and obstruct reduction. The pertinent cases are

covered in the following lemma, which shows in each case how to
clean up.

3.2.5. LEMMA. The following are derived rules in hflp‘.

CIflIX01Xila Vloa "p* CIITIXO Y: TIX1 5’108].
C[11 YIXO, 1111,11, 4,... cm: 1010,11 101111,],

C[111IX0, X01818 _)p* C[[fliX0»“iX1]8]-
PROOF. Each of the rules follows by Just doubling the whole

occurrence displayed and consequently cancelling the descendants of the

original bookkeeping pair. [I

The effect of these reduction steps is that the bookkeeping pair is as
it were opened to that part of the expression which acts upon it as a
function. That way a redex may be constituted of which the
ingredients were still separated before the simplification was performed.

(An example of this would be a simplifying p*-step

<>.fl0I1'IX0X1, YIO Hp)“ [110(IIX0X1),110 VI.)

Indeed the components of the bookkeeping pairs in the end terms are

all potential n-redexes, which were blocked in the original.

Normal forms under the derived rules of 3.2.5 are called p-51'171p/e.
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In p-simple terms no 11—redexes are blocked anymore.

It is easy to verify that for each Me Anp‘ a p-simple form can be

reached by performing a finite number of p*-steps of the above kind.

As a matter of fact this normal form is unique. This does not interest

us here, however. Rather, for the purpose of establishing

Church-Rosser for —>"‘, the following auxiliary one step reduction

relation of non-unique p-simplification will turn out to be very useful.

3.2.6. DEFINITION. The one step reduction relation —>s on A11p“ is

defined by:

M—>3 N c: M -»p"‘ N 8. N is p-simple.

3.2.7. LEMMA. For all M6 A11p‘ there exists a term N, such that

M —>3 N. This N is in general not unique.

PROOF. Easy. 0

3.2.8. LEMMA.

 

PROOF. The proof is given by the diagram

 

  

X

41>

111 A —»p._. I
—» : —>

p —»* P». B I S

B _)s"--..._I-- 0
—.)

S

A is —>p* -Church-Rosser. 0 is found from P by the existence of p-simple

forms. Then B follows (twice) because -»p*+ —>S = —>5. [1

The separate treatment of the “p-part” of the system Anp‘ in this

section is concluded with a few further technical lemmas on
p-reduction. The notions of “internal” and “external" occurrence, which

we first define, play an important role in §4.

3.2.9. DEFINITION. An occurrence is called internal, if it lies
completely inside a bookkeeping pair, otherwise external
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3.2.10. LEMMA. Let A: M—>p*N and suppose that 2=<P,C[ 13> is an
external occurrence in N. Then 2’s (unique) ancestor 0 in M is

external too and either

a AQO, in which case MEC[0]B and 8. 67-91;“ P, or
b A 00:0, in which case PE 0 and 1(0)=8.

PROOF. Since 2 is external the bookkeeping pair that is created by

(A) must be either part of or disjoint with 2. In the first case we
have for some D[ ]y that PED[[A*,A*]y] and OED[A]. For the second
case remind that by 2.2.5(i) the label 1(0) is not affected by (A).
[I

3.2.11. LEMMA. Let 0: oz. M-»p* N. Then we have one of the two

following cases.

a N contains no occurrences of bookkeeping pairs and ME N.

b N can be written in the form

.120. Y1la.- - IXz. Yzlaz ------ IXn. Ynlan- - -.
with n 2 1 and each external occurrence of a bookkeeping pair displayed

as one of the [X1, 1’1101’5, in which case M is of the form

.1.Z .Zz ...... Zn... ,

coinciding with N on the dots, and such that for each of the i ’:s

”(21): 01 and (11.1.71 —”p* [X1, I’i—Im.

PROOF. With the help of the foregoing lemma it is not difficult to

verify by induction on the length of o the slightly more general

statement that if

N:= . .P1. P2 ...... 17,...
all the P-’5being external occurrencesand 1(P1)= 011, then

M=. ..Z1...22 ...... 2n...,
coinciding with N on the dots, and such that for each i:

R(Zi)=<11 and (11.21 -»11”l 101. U

The content of the next lemma is that a so called “main”

p*-reduction, that is, a p"-step that doubles the whole term (cf. 0.3)

can always be moved to the front of a reduction sequence. The lemma

will be instrumental in the translation of —9*-sequences into
Z-sequences in §4.

3.2.12. LEMMA (on main p-reducticn).
(i) Let 0:. M *1,* 1%, N1]. Then either

a. M: [M0,DGM1I and ozi M--»p* N1, or
b. a. M—>p* IMO, M11“ with M = aixM and ai. M1-»p* N1.
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(ii) Let o. M—»* [N11, N11“. Then either

a. M 5 [M0, M11“ and oi. M1-*"‘ N1, or
p. a.M—ep* lM0,M1L as in (i) and oi.M1-»*N1.

PROOF. (i) If M is a bookkeeping pair, case ,a_ trivially applies. If
not, then of course o. M ->p* [M *, M*1“ by a main p*-step and
011. M’“ —»* ([No, N11,)“ 5 N1 follows from a.M-*p*lN0,/l/1]q by the
*-monotonicity of -»p"‘ (cf. 2.6.6(i)) and because oi. N1 is canonical, as
it occurs in an ai-context in the canonical [N0, N111.
(ii) The same reasoning, now with 2.6.6(ii). E]

3.3. Weaving —),, and -), . For the completion of the second and

third rectangles in the target diagram 3.0.1, we make use of a notion

—>.,1-- of simultaneous fl'-reduction. It may be compared to the relation

->p*", defined in 3.2.1.

3.3. 1. DEFINITION. —>,,» is the least monotone and compatible relation

on A'flp which satisfies the inductive clauses:

a. or.M-=->,,uN => M-—>“«N;

b. oi.X1 —>.,,» Y1, for i=0,1 => o.[X0,X1L 4,," I'VE), VJ“.

3.3.2. LEMMA. (i) —>,,-- is u-projectable;
(ii) clause 12 of 3.3.1 is also correct for —>“..‘/2, that is, that we have:

011. X1 —>,,u‘/2 Y1, for i=0,1 =9 a.[X0,X1L ->,,»V2 [Y1], VJ“;
(iii) —>,,-* <_: —>,,«* and —>,,..* <_: —»,,.*.

PROOF. (1) Use lemma 2.4.12(1). That —>,,u is ‘/2-projectable can be
easily verified by induction on definition 3.3.1.

(ii) is straightforward.
(iii) -9,,-* g —>.,,»* by clause a of 3.3.1. We derive —+,,n* g -»,,."‘ from
the more obvious —>,,u g -»,,-. Assume M —>fl--"‘ N, i.e., Me Aflp‘ and

M —>,,-- N'H’“ N for some N'. Then M-*,,-*N follows from

M 4’“: N ' «—1* N since -»,,- is *-projectable (cf. lemma 2.6.3(iii)). U

Observe that A'11p is not closed under the rule of bookkeeping pair
introduction 0 (cf. 2.5.1(ii)). A new bookkeeping pair might break a
fl-chain and thereby disturb a marked redex. An example would be
the p—step

a . 110‘ (11' XY) —>,, no‘Fn’XY,11’XY10a.

Therefore we work on A'11p with a restricted version —->p. of —>p. It

must be kept in mind then, that if IM'I E M, not Just any
p-reduction sequence from M can be lifted to a p'-sequence from M '.
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3.3.3. DEFINITION. For MeA'up we define:

Map. N :» M—+p/V & NeA'np.

Now the completion of the second and third rectangles of diagram

3.0.1 will be obtained in a series of lemmas. The first one establishes

what might be called the “1/2-substitutivity” of -)p.,

3.3.4. LEMMA. (i) Let M0 —>p. M1 and <>. N € A'up. Then there exists
a 0 such that

(X:=/V)M0 (X:=1V)M1_

0

(ii) Let <>.1V0 ->p-/V1, M€ A’up. Then for some 0:

(MOW …le
0

PROOF. (i) Suppose that M1 is obtained from M0 5 C[P]a by
doubling P. If (X:=/V)C[ ]aED[ ]8 and (XI=/V)PE R, then
(X:=/V) M0 E D[R]B and (Xi=/V)M15 DUB, Blah. Now there are
(according to 2.2.4(i)) two possibil'.ties for [3:
- B=a; then D[R]B ->p- BUR, RL ]5; take OE(X:=1V)M1
- B>a; then D[ÎR,RÌG]B—> D[R]B; take OE(X:=N)M0.
(ii) Again, the occurrences of P ir. (XI=/V0)M which stem from the

occurrence of P in N0 (label 9.(P)=or) doubled in IVO ->p- Nl, receive in
1V1 a label equal or greater than a (lemma 2.2.4(ii)). In all places
where the new label is greater, 0 has P; in the places where R(P) is

invariant under the substitution, 0 has [P, PL. Ü

3.3.5. LEMMA.

  (l) M _)n" _: N (ll) 411")“

(A) x *
_’p _»p' “’o' _”p'

p ........................... O ..........................
__)“‚‚ 1/2 —)_‚T #

PROOF. (i) We proceed as in the proof of 3.2.3, this time by

induction on the definition of —>„-°. Assume the step M —>„u IV to be
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non-empty and choose 2 in the same way as in 3.2.3 as either the
maximal bookkeeping pair to which clause 12 of definition 3.3.1 was

applied or the n-redex in M which was contracted to obtain N.

Distinguish cases as to the relative positions of A and Z.

- 2 0A = 0 Since —>p is non-diminishing (cf. 2.6.2) and 4,1"
monotone, the step (2) can also be performed from P. Let the result

be 01. Now, if MEC[A]O, then 012C1[|'A,A'|a]5 and N2c1[A]1,
where C1[ ] results from C[ ] by (2). Of course also 4,1" is
non-diminishing, so we can distinguish two subcases.

a [5:01; then N-»pu 01; take 05 01

b (Sm; then 019 N and consequently P ->,,»‘/3 N ; take 0 '=‘ N .
— 2 Q A. If M E C[A]a (2)411» C[Ao], by the montonicity of 4,," the
diagram

 
cw“ 7" : c[A0]

_)°' _’p'

C[lA,Ala] -------------------------- i C[fAsAolal

follows. That the p-step C[AOLI ->p C[le,Aola] is ->p., is an immediate

consequence of the assumption that C[A] ->p C[lA,Ala] is so.
- 2 E A. Just use the monotonicity of 4,1" again.

- A <_: 2. Let M E C[X]“. A further division in subcases must be made,
according to the character of 2. First we treat some cases where Z is

itself a —>fl'-redex.

[11 2 E (NXMO) N, A g M0 and M0 (A) —>p. M1. Then according to
lemma 3.3.4(i) a 0' can be found such that (X:=N) M0 2",» 0'
and (X:=N) M19“: 0'. The diagram is completed by the
1/2-compz:1tibility of —>pu.

 cuwmom ‘1' ......c[<x:=zv)M01
w ?,p.

C[(A'X.M1)N] 43' 1 9’ . "’ 
c[(x:=zv>M.] ci'o-i

[:2 Z E(A'X.M0) No, A g No. This case is analogous to the

foregoing one, now using 3.3.401).
fig 2 En0‘(n’X0 Y), AQXO. (NB: Ag Y is not allowed, because Y

is transient; A E n'Xo Y is not allowed, because the doubling
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would disturb a marked redex.) Now, since R(A) does not

diminish under contraction of Z, we get either diagram (i) or
diagram (ii); (i) if MA) is the same in C[Xo] as it is in

C[fl0‘(n’X0 Y)], (ii) if it is greater.

(0 (ii)

C[nam’Xoml end c[X0] C[fiéW’XOYH end C'[Xo]
  

O

o
. I"

 . —) .

I 11 ¢—)
.' 0 J

C[fla(n’X1Y)] ”ad c[X1] C[n5(n’X1V)] C[jfi] C[Xo]

If 2 is a 111-, l- or r-redex, the reasoning is the same. That leaves us

with the possibility that Z is not itself a n-redex, but a bookkeeping

pair ): le0,X1'|B, with 51.2(1 —>,,.. Y1 (for i= 0,1) and
N 5 CU Yo, Y1'IBL. Suppose without loss of generality that A g X0,
(A): X0 —>p~ Xo'. The induction hypothesis yields the following diagram.

   

 

  

Bo. X0 1 re
—)p. E —»p.

. - Y'
X0 —),r..1/3 0

Define 02C” Yo', Y1 ]BJ' Then N—Bp- 0 because -»p- is quasi
compatible. Moreover P afluV‘ 0 follows from Xo' ->.,,u‘/3 V0' and
X161," Y1 by lemma 3.3.2(ii).
(ii) The diagram

 

 

fl ‘—}

_, _,, :
p —) 111/2 D. :

........ 35.-."..J : _» X

L9"l 9* E

I
—)fl"

can be constructed using (1) and the *-projectability of both -»p- and

-»,1-'V2 (the latter follows by lemma 2.4.13(i) from 332(1)). D

3.3.6. LEMMA. —»flu* and -»p-* commute.

PROOF. Recall that by lemma 3.3.2(iii) we have the inclusions
4111* g 411"" and —>fl"* <_:,-»,1"". Then the lemma can be concluded from

3.3.5(ii) by an application of 0.7.1. U
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3.3.7. LEMMA. On A'np‘ we have ->5 C 41,9“.

PROOF. The proof will make use of the lemmas 3.2.11 and 3.2.12.

Let on. M—95 N (i.e. oz. M-»p"‘ N with N p-simple). We proceed by

induction on N. If there are no occurrences of bookkeeping pairs in N

at all, then N E M (case a of 3.2.11) and M -*>p.* N holds trivially. So
suppose that the situation is as described in 3.2.1112. Then on each of

the reductions 01: 011.21 -»p* TX“ Y1 1011 lemma 3.2.12(i) can be

applied, yielding reductions 010: 0110. Z10 -»p* X1 and

011: 0111. Z11 -»p"‘ Y1 , with either Z1 E L710, Z11la1 or
(Z1): Z1 49* [210, 2111011. Since X1 and Y1—both being subterms of

the p-simple term N —are p-simple, by the induction hypothesis we

may assume 010 and 011 to be in fact find—reduction sequences. Also, if

Z1 is not itself a bookkeeping pair, the p*-reduction step (21) is in fact
—>p.*. For if it would break up a marked redex '2, then the (external)

residual of Z in N would still be a broken redex, contradicting the

p-sirnplicity of N . The steps (Z1) and the sequences 010 and 011 can be

combined to constitute a -—>p*-reduction sequence from M to N, which

is easily seen to be in fact a ->p-"‘-reduction sequence since in the

above we already checked that the constituents were. [I

3.3.8. LEMMA.

 

__) X

M , 1 [V

—)S | _»p*

P --------------------------5 0
._) X

PROOF. If M -—)1"‘N, an M0 can be chosen such that IMOIEM and

M0 fifln“ N (cf. the proof of 3.1.11). Lift M —>s P to M0 ->s P0 (with
|P0|EP). By 3.3.7 then Mg —»p.* P0 holds too. So 3.3.6 can be applied
to find a 0 such that the diagram

 

—»“.*

X X

"’9' "”p

P0 -------------------------- 0
X

—-» .1r

holds. Since N has no marks (6 Aim"), neither has 0. So P0 -»,,-* 0

is a complete development and hence P —>1"‘ 0. D
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3.4. Completing the diagram. By now we have gathered all the

ingredients which are required to finish diagram 3.0.1. We proceed as

it was already indicated in the first paragraphs of §3.

3.4.1. DEFINITION. The one step reduction relation —>+ on Aup“ is

defined by
—->+ = —-)1* + _’s-

=+ is the equivalence relation which is generated by -n.

3.4.2. LEMMA. (1) —>+g —»*.

(ii) =+ and ="‘ coincide.

PROOF. (i) is trivial, since —91* g -»,,* and —>3 ; -»-p*. One half of
(ii), namely =+ g =*, is immediate by (1). Since =* is generated by
49* and —>,,"‘, it suffices for the other half to establish a and h below.

3. —>p* Q =+. For suppose M ->p"‘ N. By 3.2.7 there exists a p-simple

form N' of N, that is, N—->s N'. Since ->p* + ->S = —>s, we have also

M -—>s N '. Moreover —>s <_: —>+, because —>1* is reflexive. Then M =+ N

follows (via N ').
b. ->,,* ; =+. If M —>,1"‘ N then also M —>1* N, and M=+ N can be

established, with the same reasoning as in a, via an N' such that
N —95 N '. El

3.4.3. THEOREM. The system Aup‘ (i.e. (Aflp‘, ->*)) is Church—Rosser.
PROOF. By the lemmas 3.1.10(ii), 3.3.8 and 3.2.8, dealing

respectively with the first, the second and third, and the fourth
rectangles of diagram 3.0.1, it follows that —>+ is self commuting and

hence certainly Church-Rosser. So if M =+ N, then M and N have a

common ->+-reduct. But, since =* is the same as =+ (by 3.4.2(ii)),

and each —)+-sequence can be transformed into a ->*-sequence (by

3.4.2(i)), we have then also the diagram

:11:
 

This is the Curch-Rosser theorem for —>"‘ in the second version (0.6.2).

I]

With theorem 3.4.3 we have established claim 1.9.1(iii) and

thereby accomplished the first part of the program that was set out at

the end of section 2.5.
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£54. The Translation

Combining the results of the previous sections we know that if

MII- M=N for expressions M, N6 Au, then it follows by theorem

2.5.4 that also Mtp’l- M=*N. Hence by the Church-Rosser theorem

for Mtp’ (theorem 3.3.3) M and N have a common -»*-reduct in

Aflp‘. I.e. there exists a term [(6 Aflp‘ such that M—»"‘X and

N -» *K.
In this concluding section we will show that if Anp'r M —»"‘l( for

the terms MeAfl and [(6 Anp‘, then Mu M2¢(X) (cf.2.1.3 for
¢)- This result applied twice in the above situation yields ¢(K) as a
common reduct of M and N in Mt. (As a matter of fact the end

term ¢(K') is obtained only up to N. But this is sufficient for CR/fi as
it was claimed in 1.2.3.)

4.1. Internal and external reduction. In order to translate

reduction sequences of Imp" into MI, we first bring them in a special

form, reached by postponement of the reduction steps which consist in

the contraction of a redex that occurs within a bookkeeping pair. The

resulting notion of e/i—reduction sequence (definition 4.1.2) has some
resemblance with the concept of semi standardization, sometimes used

in proofs of the standardization theorem in combinatory logic and pure

?x-calculus (cf. Curry et a1. [1972] and Mitschke [1979]). This method
of proving standardization, originating with Rosser [1935], inspired our

proceeding in this section.

4.1.1. DEFINITION. Recall that by definition 3.2.9 a redex occurrence 2

in a term Me A11p lying completely inside a bookkeeping pair is called

internal. Accordingly, a reduction step ()3): M -9N is called internal if
the contracted redex 2 is internal; notation M —>iN. Other reduction

steps are called external (->€). Formally the relation -91 on Anp can

be defined as the monotone and compatible closure of the reduction
rule:

i: [M0, M11“ —91N, if IMO, M11“ —>N,

and —)e by —>e= —)\—ai

Derived notations such as —>i"‘, -»fl9"‘, —>,,-“‘, etc. are used in

accordance with established conventions. Moreover we use the notation

—>('e) for —9\—> “9. (Note that —> ('9) can be conceived of either as

->p U—>,,i or as —>1 U —>p9 at will.)
A marked term Me A‘up is called internal if all its marked redexes

are internal. Obviously, if M is internal and M —>,,u* N, then M

—>fl-i*N and also N is internal. We say that M —>11N, if N is the

complete development of M with respect to a set of internal redexes.
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EXAMPLES. - (AX. xy)ffl0 (flxy), Xl —>e lflo (11.17), X] y ->1 lx, le;
- (?\X. xy)lflo (flxy), xl 41* (Mr. 20/) IX, X] ->e"‘ xy;

- (M’- Xfllflo (MW), XI “’9'" TIo (nxy)y 69* X)’;
- 0. (AX.X)X ->pe (AX.X)[& Xl ~11?“ X.

Observe that by changing the order of reduction, an internal step

may become an external one (second and third example).

4.1.2. DEFINITION. A reduction sequence in Anp‘ is called e/J', if it

consists of a number of —>fle*-reduction steps, followed by a number of

-)('e)*-steps (i.e. ->pe*- and -)“‘-steps).

The rest of this section is devoted to proving that any -)*-reduction

sequence can be transformed into one that is e/i. It will become clear

in 4.2 that e/i sequences in Mtp’ can be easily translated into Mr.

Then the main results of this paper, announced in section 1.2, follow
at once.

4.1.3. LEMMA. M—>1*/V => (aL)(M—»,,e* L ->1i* N).
PROOF. Let MOEA'Itp‘ such that |M0|E M and CD*(M0) E N . We

use induction on h*(M0). If M0 is internal, then M —>1i* N and 1. E M
will do. Otherwise suppose M0 —>fl.ex M1. By the induction hypothesis

there exists an L such that IM1I *1,” Z. 4111* N. Since of course

M 6,,“ IM1I holds too, this 1. suffices. D

4.1.4. LEMMA.

(0 (ii)

 

PROOF. (i) As one easily sees, Z is the residual of a unique external

redex occurrence 21 in M. (The situation may be compared to that of

3.2.10.) Let MOEA'up‘ such that IMOIE Mand CD*(M0) E X. Then

by FD! we obtain CD*(M0+ <M,21>) E N. Therefore M—>1*N. Apply
lemma 4.1.3.

(ii) Repeat (i). E]
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4.1.5. LEMMA

(0 M (ii)

(A)—)p * a“?x —»p x —»fle *

X '12: L

(2)413,“ _»px _»flex _» 11:

1V
PROOF. (i) This time lemma 3.2.10 exactly applies. Again let 21 be

the external redex occurrence in M from which 2 descends and

suppose (21): M 6,," L. Assume furthermore that R(A) =0: in M,
that is, in the p*-step M —>p*l( the occurence A is replaced by

l-A’“,A*la. Now, as Z is external (and according to 3.2.10), either
A n 21 = w or A Q 21. In both cases the descendants of A in L

have—due to the fact that -> “9* is non-diminishing—a label which

extends to or. In those positions (in L) where 1(A) increased in passing

from M to L, the same happens with R(IA*,A’“L) under (2), thus

causing the bookkeeping pair to be cancelled in N . So N can be

obtained from L by doubling the descendants of A that in 1. still have
label ox.

(ii) Straightforward inductions from (i). [1

4.1.6. THEOREM. If 0: M-»"‘N, then there exists an e/i-reduction
sequence from M to N.

PROOF. Induction on the number of —>"‘-steps in o. If ME N there

is not much to prove. So assume an M0 which satisfies the drawn

part of the following diagram (0: (2) +01).

M.(Z)—)* M0 012—”* ’- N
 

....................

Then the triangle A can be found by the induction hypothesis. If E is
an external redex that suffices. Otherwise B can be constructed using
either lemma 4.1.4 or 4.1.5, dependent on the character of (2)

(either —> “1* or —>p*). U
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4.2. MI is Church-Rosser

4. 2. 1 LEMMA. Suppose Me An and M(p‘ I— o. M-»,,* N. Then

A1121 M2 K for some XEAII such that or. I(~N.

PROOF. Let Nup‘ be the system with as terms the set A°flp‘ and

as one step reduction relation ->"‘ considered as a relation on A°up‘

(the rules of 2.5.1 restricted to non-transient redex occurrences).
There obviously exists a X6A°flp‘ such that or. X ~ N and

A'stp‘ I- o. M -*,,* K. As “’1: does not create bookkeeping pairs, there

will be nothing to cancel for «—->"‘ during this reduction, and we have

a. M -»,, K and XeAu. It then suffices to remind that each of the

rules for —>,, (cf. 2.5.1(i)) is covered by one for 2 (cf. 1.2.1). In
particular both 1 and r are included in Mt? without context

restrictions. U

4.2.2. THEOREM. Suppose Me An and MID“ I- or. M-»* N. Then

Mu- M2 X for some XeAfl such that KN¢(N).
PROOF. The proof is by induction on N (considered as an element of

Anp‘). By theorem 4.1.6 there is a L such that Anp' b o. M -*,,9*L

and MID" I- a. L ”(W)“ N. Consequently lemma 4.2.1 can be used to

supply us with a XOEAJI such that o. Ko~ L and MII- M2 X0. Now, if

N is already an element of Au itself, then the (-e) -part of the e/i
sequence is empty and we have ¢(N) .=. N E L. So in this case K can

be taken just K0, as on An one has of course ~ g %. Otherwise N

contains one or more bookkeeping pairs and can thus be assumed to be

written as

...iX1, Y1101- - .in, Vzioz- -- ---[‘an Vnion- . -,
where each maximal occurrence of a bookkeeping pair is displayed as

one of the l-Xi, Yiiai's. Since ox. Ko~ L the second part of the

e/i-sequence from M to N may be rendered as well as

M(p' |~ on. X0 -»('e)* N. From the fact that this reduction proceeds

completely without external reduction steps one easily infers (analogous
to 2.7.11) that K0 must have a shape similar to that of N, that is

K05...Zl...22 ...... Zn...,

coinciding with N on the dots, and such that for each of the 1's:

R(Zi) =ozi and oi. 21 -»(’e)* [X1, Y1 iai-

A subterm 21 of XOEAfl being bookkeeping pairless, the lemma on

main p-reduction (3.2.12(ii)) can be applied, yielding for each i with
iSiSn a reduction 0:10. Zi—»"‘Xi. On these we can use the induction

hypothesis, and thereby obtain reductions 212 X1' in Mt, with

X1' ” ¢(X1)-
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It remains to combine the reductions we established so far. By the
compatibility of 2 it follows that

Afll’ X02...X1'...X2' ...... Xn'....

Define KE...X1'...X2' ...... Xn'... . Then X%¢(N) is an
immediate consequence of the above by the the definition of 4': (cf.

2.1.3) and the compatibility of x. Moreover, M 2 X via K0. So K
satisfies the requirements of the theorem. [I

At last everything is set to prove the Church-Rosser theorem

(modulo 3) for 2, already announced in 1.2.3. With ¢(M) E M, the
proof of theorem 4.2.3 is the one already given for 1.9.2.

4.2.3. THEOREM. In M! the following diagram holds.

M. 1v

2. 2

K0:................ K1

PROOF. By theorem 2.5.4 we know that if MII- M= N, then also

Aup‘ l- <>. M ="‘ N . The ChurchRosser theorem for MID" (theorem
3.4.3) then implies the existence of a KeAnp’ such that in ?\up‘ both

<>. M—»*/( and <>. N-»*X hold. Then by applying theorem 4.2.2 to

these reductions, terms [(0 and X1€An are found such that

X0”¢(X)”X1- U

Now the main results of this paper, the conservativity and

consistency of Mt, follow in the way which was indicated in 1.2.

4.2.4. COROLLARY. (i) MI is a conservative extension of A.

(ii) MI is consistent.
PROOF. The proof which was given in section 1.2, showing how to

derive 1.2.4 from CR/x (claim 1.2.3), can be employed. D
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APPENDIX 1: The undefinability of surjective pairing

A.1.1. It was proved by Barendregt [1974] that in A a surjective
pairing is not definable. I.e. in A cne can not find closed expressions

P, P0 and P1 such that for arbitrary M, N 6 A the equations

PU(PMN) = M, P1(PMN) = N and P(PON)(P1N) = M are derivable
in A. (Throughout this section by stating an equation or a reduction (1)

we mean A l- <|>.) Here we give a short proof of this fact, using theorem

A.1.2. In fact we prove the non-existence under a slightly weaker

condition: the equations are only required to hold for closed M and N.

A.1.2. THEOREM (“Barendregt’s lemma”). Let FM 2 N. Then there

exists an expression N ' such that F): 2 N ' and N can be obtained by

replacing in N ' certain (disjoint) subexpressions N1, . . . , Np (p2 0)

—respectively of the form M E XNli. . . N311 (J12 0) —by respective

reducts of (XZ=M)/Vi (1$iSp). I.e. each Ni is replaced in N' by an

expression M, such that (X:=M)M 2 M1).

This is not a very well-known, though quite useful theorem. It was

stated in a weaker form in an unpublished manuscript [1972] of

Barendregt, namely for weak combinatory logic and with the extra

condition that N is a normal form. A proof for the ?x-calculus and for

arbitrary N was given in de Boer [1975]. In his thesis [1980], van
Daalen provides the formal background for a more precise formulation

of the theorem, thus making possible a short and elegant proof. It is

included as exercise 15.4.8 in Barendregt [1981].

A.1.3. Let QEA be defined by Q E (KXXX) (AXXX). Then it is an easy
exercise to verify the following noteworthy “freezing" property of Q.

If M1,...,Mp, 26 A and QMl...Mp 2 2', then ZE QM1'...Mp'

for certain M' e A such that Mi 2 .Mi' (p 2 0, 1 S i S p). That is, Q
has order 0 (cf. Curry-Feys [1958], chapter 4F).

A.1.4. THEOREM. In A there do not exist closed expressions P, P0 and

P1 which satisfy for arbitrary closed M, N e A the equations

P0(PMN) = M, P1(PMN) = N and P(PON)(P1N)= M.

PROOF. Assume there were such P, P0 and P1. Define

F E AX. P(PoQ)(P1X). Then FQ = P(POQ)(P1Q) = Q and hence, by
the Church-Rosser theorem for A, the terms FQ and Q have a

common Z-reduct. By A.1.3 this can only be Q itself. So FQ 2 Q, and

we can apply theorem A.1.2 to yield an N ' with the there ascribed

properties (taking M E N a Q). Then again by A.1.3 one easily verifies
that there are but two possibilities for N ', namely either N'5 Q or

N ' E X. We investigate both cases.
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CASE 1: N ' E Q. Then FX 2 Q and so Far: Q and by substitutivity of
conversion FX=Q for any X e A. So in particular for any closed X6A

we have P1X =P1(P(P0Q) (P1X) = P1(FX) = PlQ. Now let
X0 E P(AX.X) (?\X.X) and X1 5 P(Axy.x) (AX)’.X). Then

P1(Xo) = P1(X1) = P1(Q), and by projection we arrive at the
conclusion that ?\X.X = Axyx, contradicting Church-Rosser.

CASE 2: N'EX. Then FX 2 X and so Fx=x and FX=X for any

X e A. So for any closed X e A we obtain the string of equations

P0X =P0(FX) = PU(P(P0Q) (P1X)) = PDQ. Now proceed further
as in case 1 to arrive at a contradiction. U

APPENDIX 2. The consistency of MI by a graph model

We now briefly indicate how to prove the consistency of Mt, using a

construction conceived by Scott [1975a] (p. 178). In the discussion
familiarity is assumed with the graph model for A. For details we

refer to Scott [1975a] and Barendregt [1981].

A.2.1. THE GRAPH MODEL.

Let Q) be the set of natural numbers {0,1,2, . . .} and let Pu) be the

powerset of co. Let e0,e1, . .. be some standard enumeration of the

finite subsets of co, such that e0 = 0 Finally assume a bijective pairing

function from ooXoo onto oo. In w the pair of n and m is denoted by

(17,172). Then the application of two elements A and B of Poo is
defined as follows:

A(B) = {ml(3e,,;B)((n,m) 6 A)}.

It turns out that using this definition of application an interpretation of

the closed terms of A into Poo can be defined, such that equality in A

is respected. (In fact, in Poo much more terms are equated than in

A.) Here we do not further describe this construction, but now

immediately turn to the introduction of a pairing in Po).

[1.2.2. PAIRING IN Po).

For A, B in Pu) we define the pair [A, B] as follows:

[A,B] = {2mlmeA} U {2n+1| 1265}.

Notice that this is a rather obvious procedure: coding two sets A and
B into one set C', by storing up A into the even members of C and
B into the odd ones. Furthermore, clearly any set C' decomposes
uniquely into two components according to this procedure. Viz.

(0)0 = {12] 21266} and
(C)1={nl217+160}.

Then one easily verifies the equations

([A.Bl)o= A, ([A,Bl)1= B and [(A)02(A)1] = A-
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The interesting point is now, that these pairing and projection

operations are themselves definable as elements of Poo (in agreement

with the above definition of application).

A.2.3. DEFINITION. We define P, Po and P16 Poo as follows:

p = {(11, (0,2m))| me ek}U{(0,(1,2n+1))ln 691};
P0 = {(m,n)|2n€em};

P1 = {(m,n)|2n+1€em}.
One easily verifies by the definition of application in Poo that for any

A, B E Pw,

P(A)(5) = [14,13], Fe(C) = ((7)0 and 101(0) = (5)1
and hence by the equations in A.2.2:

Fe(P(A)(B)) = A, P1(P(A)(B)) = B and
P(P0(A))(P1(A))= A.

Using these facts a model for Mt, extending the standard interpretation

of A in Poo, can be constructed, by interpreting Ito as P0, 111 as P1

and 11 as P. Then the consistency of Mt follows.
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A DIRECT PROOF OF THE FINITE DEVELOPMENTS THEOREM

§0. Introduction. Let M be a term of the type free }.-calculus and let @ be a set of

occurrences of redexes in M. A reduction sequence from M which first contracts a

member of 9? and afterwards only residuals 0f 9? is called a development (of M with

respect to 9?). The finite developments theorem says that developments are always

finite.

There are several proofs of this theorem in the literature. A plausible strategy is to
define some kind of measure for pairs (M37), which—if M ’ results from M by

contracting a redex occurrence in 9? and 37’ is the set of residuals of Q in M’—

decreases 111 passing from (M, 92) to (M’, 97’). This procedure is followed as a matter

of fact in the proofs in Hyland [4] and in Barendregt [1] (both are covered in

Klop [5]). If, as in the latter proof, the natural numbers'are used as measures, then

the measure of (M,9?) will actually denote an upper bound of the number of

reduction steps in a development of M with respect to 9?.

In the present proof we straightforwardly define for each pair (M,?/?) a natural

number, which can easily be seen to indicate the exact number of reduction steps in a

development of maximal length of M With respect to @.
Following Barendregt [1] we represent the pair (M, Q) by priming the initial 2. of

each redex occurrence of M that is in 3%. Then after any number of reduction steps,

the residuals of 9? are exactly the marked redex occurrences (}.’-redexes) in the

reduced term. Hence a development of M with respect to 32 is a reduction sequence

in which only ).’-redexes are contracted. This approach leads to a short and accurate

formulation of FD: it boils down to strong normalization for ).’-reduction.

§l. Lireduction. We restrict our atteniiOn here to the pure Z/i-calculus.

1.1. The set A of pure }.-terms is defined inductively from a set of variables x, y,

etc., by the clauses:

(i) x is a variable => x e A,

(ii) M, N e A =>(MN) e A,

(iii) M e A, x is a variable => ().x .M) e A.

The set A’ of ).’-terms is an extension 03/1, which is obtained by adding to (i)—(iii)

(with A’ for A):

(iv) M, N e A’, x is a variable => ((i.’x .M)N) e A’.

@1985. Association for Symbolic Logic

0022-48 I 2 '85, 5002-0005 $01.50
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Parentheses will be omitted in accordance with common usage. Terms are

considered modulo a-equivalence (i.e. change of bound variables).
By (x := M)N we denote the result of substituting M for x in N. We shall always

assume the bound variables to be chosen in such a way that no free variable of M

becomes bound after the substitution.

FV(M) denotes the set of free variables of M.

1.2. Note on subterms. Not every subterm of a term in A’ is itself in A’. The

implications lx.M e A’ => M e A’, MN 6 A’ =>N e A’ and (L’x.M)N e A’ =>

M e A’ hold as one might expect; but MN 6 A’ => M e A’ does not.

The one exception to this implication IS the case that M is of the form /I’x .P.
1.3. A’ is provided with a restricted reduction relation —>’, which allows only 11’-

redexes, i.e. subterm occurrences of the form (L’x.P)Q, to be contracted. So we

define:

M —>’ N 41> N results from M by replacing a part of the form

(L’x .P)Q by its contraction (x := Q)P.

A /I’-reduction sequence (—>’-sequence) from M is a finite or infinite sequence of
terms M0,M1,... such that M0 = M and M, —>’M,-+1.

The following lemma indicates that A’ is closed under substitution and under 11’-

reduction and that by substitution one cannot “create” new )I’-redexes.

1.4. LEMMA. (i) M,N e A’ =>(x:= N)M e A’.
(ii) MeA’, M—r’N=>N eA’.
(iii) M, N e A’, (x := N) M is a /l'-redex => either M = x or M is already itself a L’-

redex.

PROOF. The proofs of (i) and (ii) are by induction on M ; (i) is used in the proof of

(ii).
For (iii) assume that (x := N)M = ()I’y .PO)P1. It is clearly sufiicient to show that

if M = MOMI, then Mo = [I’y .Q for some Q. Suppose not. Then, according to 1.2,

M0 6 A’ and (x := N)M0 45 A’, contradicting (i).

§2. The proof of FD. In this section we prove that —>’ is strongly normalizable, i.e.

that for each M e A’ the length of its —>’-sequences is bounded.

First we define for each variable x the multiplicity function mx: A’ —>a), and

subsequently the function h: A’ —> a), depending on the multiplicities. Then h(M) is
shown to be the length of the longest —+’-sequence from M (i.e. the number of

reduction steps).

2.]. DEFINITION. For each M e A’ and variable x the multiplicity of x in M,

mx(M), is defined by induction on M. (In the definition the bound variables of M are
assumed to be chosen different from x.)

mx(x) = 1,

mx(y) = 0 if y 9'9 x,
mx((}t’y .M)N) = mx(M) + mx(N) .max(my(M),1),

mx(MN) = mx(M) + mx(N) if MN is not a l’-redex,

mx(,Iy .M) = mx(M).
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2.2. DEFINITION. For M e A’ the height h(M) is defined inductively:

h(x) = 0,

h((l’x .M)N) = h(M) + h(N) .max(mx(M), 1) + 1,

h(MN) = h(M) + h(N) if MN is not a l’-redex,

h(Lx .M) = h(M).

2.3. LEMMA. mx(M) > O¢>x e FV(M).

PROOF. Trivial induction on M.

2.4. LEMMA. If x 9e y, then my((x := N)M) = my(M) + my(N) .mx(M).

PROOF. (INDUCTION ON M). Let M be a variable 2. One easily verifies that the left-

hand and the right-hand side both equal respectively my(N) if z = x, 1 if z = y and 0

if 2 9e x, y.

Let M = (2’2 .P)Q (z chosen such that 2 ye x, y and z ¢ FV(N)). Using the

induction hypothesis for P (twice!) and Q and the fact that mz(N) = 0, one simply
calculates

my((x:= N)M) = my((/I’z.(x := N)P)(x:= N)Q)

= my((x := N)P) + my((x:= N)Q).max(mz((x := N)P), 1)

= mm + m.<N) mm + (my(Q) + m.(N> .m.(Q)) .max(m.(P), 1)
= my(M) + my(N) .mx(M).

Let M = PQ, not a L’-redex. Then by 1.4(iii) neither is (x := N)M a l'-redex. So

my((x := N)M) = my((x:= N)P) + my((x := N)Q),

from which, using the induction hypothesis for P and Q, one simply calculates the

result.

The remaining case, M = 22 .P, we leave to the reader.

2.5. LEMMA. h((x := N)M) = h(M) + h(N) .mx(M).

PROOF. Again induction on M and some calculation.

2.6. LEMMA. M —>’ N => mx(N) s mx(M).

PROOF (INDUCTION ON M). Distinguish cases as to the form of the reduction step.
Lemma 2.4 is used in the case that M =(21’y.P)Q and N = (y:= Q)P. If, with

the same M, P-+’P0 and N = (/l’y.P0)Q, the induction hypothesis yields both

mx(P0) s mx(P) and my(P0) s my(P), by which the result follows. Other cases are as

simple.

2.7. LEMMA. M —>’N 2 h(N) < h(M).

PROOF (INDUCTION ON M, AGAIN). The crucial case is M = (1’x.P)Q and N =

(x := Q)P. Then by 2.5, h(N) = h(P) + h(Q).mx(P) g h(M) — 1. The previous

lemma is used for M = (2’x.P)Q, P ——>‘ P0, N = (1’x.PO)Q. Then mx(P0) s mx(P)

and hence, by the induction hypothesis for P0,

h(N) = h(PO) + h(Q).max(mx(Po), 1) + 1 < h(M).

2.8. THEOREM. N0 —>’-sequence from M has more than h(M) steps.

PROOF. Induction on h(M), using 2.7.
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2.9. COROLLARY (FD). All developments are finite.

Now, in order to show that h(M) is an exact bound, we produce for each M with

h(M) > 0 a term M* such that M —>’ M* and h(M) = h(M*) + 1. The definition of
M* is reminiscent of the so-called perpetual reduction strategy in [1].

2.10. DEFINITION. For each M e A’ with h(M) > 0 we define M *, by induction on

M, as follows. (A clause for variables is not needed, since always h(x) = 0.)

((L’x.P) Q)** = (}.’x .P)Q* if mx(P)= O and h(Q) > 0,

= (x := Q)P otherwise.

If PQ is not a i.’-redex, then

(PQ)* = P*Q if h(P) > 0,

= PQ* otherwise.

(NB: h(PQ) > 0 => h(P) > 0 or h(Q) > 0 or both.) Finally,

(itx.P)* = i.x.P*.

(NB: h(}.x .P) > 0 => h(P) > 0.)
2.11. LEMMA. If h(M) > 0 then M —>’M* and h(M) = h(M*) + 1.

PROOF. Easy induction on M.

2.12. THEOREM. h(M) is exact!y the number of reduction steps in a —>’-sequence

from M of maximal length.

PROOF. Combine 2.8 and 2.11.

§3. Connection with Hihdley’s proof of FD. Our proof was inspired by a proof of
strong normalization for the theory of abbreviations LSP, due to N. G. de Bruijn

(presented in van Daalen [2]). There is also a proof of FD by R. Hindley [3], to

which the present one bears a casual connection. Hindley defines by induction on

M e A a number p(M), which is simultaneously proved to bound the length of M’s
developments (with respect to the set of all redex occurrences in M). The definition

of p runs parallel to our definition of h. except for the clause for (21x .M)N, where an

extra term mx(M) .p(M) .p(N) is added to the sum (our terminology). Accordingly,

the reasoning is along different lines and more involved than ours.

§4. Combinatory weak reduction. In [3] FD is generalized to systems incorporat-

ing a rather broad class of operators with defined reductions. Though it is not

mentioned there, for these operators the definition of p does yield an exact bound.

As such it can be added to our definition of h.
By way of example we consider the special case of combinatory logic with weak

reduction (CL). Its symbols are the variables and the constants S and K; the only

term-forming operation is application. In CL’ the constants S and K can be primed

when occurring as the “head” of a redex; that is to say, in the combinations SMNP

and KMN respectively. Then M —>’N holds if and only if N results from M by

replacing either a part of the form S’PQR by PR(QR) or a part K’PQ by P.

Define the function h by:

h(M) = 0 if M is a variable or a constant;
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h(MN) = h(M) + h(N) +1 if M = K’P,

h(M) + 2.h(N) + 1 if M = S’PQ,

h(M) + h(N) otherwise.

It is not difficult to show that h(M) is an exact bound on the length of the -+’-
sequences from M.
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3 EXACTLY ESTIMATING FUNCTIONALS AND STRONG NORMALIZATION

§0. INTRODUCTION

It is our aim in this paper to prove strong normalization

for the typed A-calculus (AT) by giving directly an expression

which for each term t determines the number h(t), indicating

the exact height of its reduction tree (i.e. the number of

reduction steps in a reduction sequence from t of maximal

length). Such an expression is also obtained in our proof of

the finite developments theorem for the pure A-calculus [A].

There it is easier to define, however, in virtue of the fact

that in a complete development all contracted redexes are

residuals of redexes already present in the original term.

In contrast, in a AT-reduction sequence redexes may be contract—

ed which are created at an earlier stage of that sequence.

0.1. To obtain the expression for the height we proceed rough-

ly as follows. By induction on its length, to each term t of

type (a)B we attach a pair <f,m> (denoted by [t]), consisting

of a functional f and a number m. The number m will turn out

to be the height: m = h(t); the functional f will be such that

it yields the pair attached to ts, when it is applied to a term

8 of type a: f[s] = [ts]. To terms of the ground type 0 just the

number indicating their height is attached, since they cannot be

applied.

The pairs we speak of here form a collection, much

resembling the well-known functionals of finite type. We call

them hereditarily labeled functionals of finite type or for

short labeled functionals.

0.2. Because of the additional task of providing the exact

estimates, the proof of strong normalization which resfilts is

more complicated than some of the existing proofs, in particular

those using a computability argument (see e.g. Troelstra ['73])

and Van Daalen's proof in ['80] (taken over in Barendregt ['81]).

In exchange some extra transparency seems to result: the

expression for the height follows directly from the idea ex-

plained in 0.1 and an easily understandable reduction strategy

for producing maximal reduction sequences.
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Moreover the proof may be considerably simplified by no

longer requesting exactness. This is the 'quick' proof, which

provides a looser upper bound for the height. It is reminiscent

of the use of finite type functionals in Gandy ['80].1)

0.3. OUTLINE. The hierarchy of labeled functionals L is

introduced in section 1. There only some elementary

definitions are given. More of the theory of the labeled

functionals then follows in sections 3 and 4, when it is

needed in the proofs.

In section 2 we first give a short sketch of the typed

A-calculus. Then we define and assess two valuations of terms

into L. The first, the exact valuation, yields the expression

[t]*, which is claimed to be exactly h(t). As a consequence

of this claim a uniformity result concerning h(t) is stated.

The second valuation, the so-called loose one, is used in

section 3 for the quick proof of strong normalization. There

we show that the valuations belong to a subhierarchy of L, the

collection of hereditarily <-monotone labeled

functionals M. It is to be compared to the hereditarily strict-

ly monotonic functionals used by Gandy.

In section 4 a more restricted subhierarchy C is used in

the proof of the claim h(t) = [t]*.

Finally in section 5 we make some observations on the

extension of the method to other systems.

0.4. ACKNOWLEDGEMENTS. I would like to thank D.H.J. de Jongh

and P.H. Rodenburg for their helpful suggestions for improving

the text.

§1 . LABELED FUNCTIONALS.

Types are as usual built up from the ground type 0 by

finite iterations of a single inductive clause: if d and B are

types, then (a)B is also a type. Then by induction on the type

a, we define the collection of labeled functionals of type a, L

L = w,
0

L(BH (LB T Ly) X w'
(Here w denotes the set of natural numbers, X cartesian product

and + function space.)

a.



83

1.1. NOTATION. We will use the same kind of metavariables

(f, 9, etc.) for members of La (pairs generally) and of LB+LY

(functionals) .. Let f = <f' ,m> €LIBIY' g ELB. We write f-k =m

and - par abus de langage - fg =f'g. For reasons of uniformity

the *-notation is extended to type 0: n*==n (nGELO). As a rule

we suppress type subscripts whenever it is possible without

giving rise to confusion. So f'EL means that f(ELa for some

type a. Of course L may be thought of more precisely as defined

by L =3La' The same convention we shall adopt tacitly for all

type-labeled predicates and operations yet to be defined. Also,

in writing down an expression like fg, we assume the types to

fit, that is: for certain types a and B, fELwL)B and gEELa.

1.2. THE +-OPERATION. Let n €111, for f EL0t we define f+an ELa by

induction on d.

n1+0n==m-+n

<Ag'EI..fg+Yn, f*+n>.“(BMW 8
Here the symbol A is used for functional abstraction in the meta-

language. So the definition of addition is recapitulated in the

equations (f+n)g = fg+n and (f+n)* = f*+n.

Notice that + =ng extends standard addition on w. By

induction over the types it is easily checked that

(i) f+0 =f and (ii) (f+m)+n==f+(m+n).

1.3. MINIMALLY CUMULATIVE FUNCTIONALS. By induction on awe
. . a

define for every n€1uthe minimally cumulattve functtonal CnGELa.

O _
C —n
n

CAB)Y=<Af 61. >.C n
B n+f*’

These functionals are cumulative in the sense that (type

subscripts omitted): (i) cnf1...f and hence
m = Cn+f1*+...+fm*

in particular (ii) (c0f1...fm)* = f1*+"'+fm*° Below, in section

4, a wider class of so-called cumulative functionals will be

defined and discussed.

For the moment we conclude with the characteristic equation:
a
n+m' It is readily verified by induction on a. For

... a
(111) cn+m = c
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o o
c +m = n+m = c and (c
n n+m

immediately from the definition. And.if f'ELB, then

(B)Y
n+m * follow+m)* *+m = n+m = c

(8)1! _ (8)1!
n — Cn

(césynm)f = CAB)Yf+m = cz+f*+m, which by the induction
. Y _ (BIYhypothe51s equals Cn+f*+m - cn+m f.

§2. THE SYSTEM AT OF TYPED X-CALCULUS AND THE VALUATIONS.

2.1. TERMS. AT-terms are built up from typed variables ma,

ya, etc. (for each type a) by :he inductive clauses: (i) ma is

a term of type a, (ii) if t and s are terms of type (d)B and a

respectively, then (ts) is a term of type 8, (iii) if t is a

term of type B, then (Axa.t) is a termcfiftype (a)B. We write

t Ed for t has type a.

We presuppose some acquaintance with l-calculus conventions,

e.g. concerning parentheses. The type superscripts of the

variables will be suppressed where possible (Viz. whenever the

type is either clear from the context or not essential). Terms

are regarded modulo d-equivalence (i.e. change of bound variables).

(x.=t)s denotes the result of substituting t for x in 3; here

the bound variables in s are tacitly assumed to be chosen in such

a way, that no free variable of t becomes bound after the

substitution. The notation x Et is used to express that x has at

least one free occurrence in t.

2.2. REDUCTION. We restrict attention to B-reduction. A term t

reduces to s (notation t-+s), if s is the result of replacing

a part of t of the form (1x.t0)t1 (a redex) by (x:=t1)t0.

If t does not contain any redex, it is said to be a normal form.

A reduction sequence of t is a, finite or infinite, sequence

of terms t0,t1,..., such that tc :t and ti-+t. A term t is

called weakly normalizable if at least one reéhltion sequence of

t terminates in a normal form; t is called strongly normalizable

if all of t's reduction sequences are finite. In the latter case,

by Konig's lemma, the number of reduction steps in a reduction

sequence of t is bounded; the maximum is denoted by h(t) (the

height of the reduction tree).
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2.3. THE EXACT VALUATION. Now in order to obtain the expression

for the height, terms are evaluated in L starting from an assign-

ment v, which gives a value V(xa) in La to each variable ma. As

is customary we vuitexflxfifl for the assignment which corresponds

with V everywhere except at x; v(x/f)(x) =f, V(x/f)(y) =V(y) if

y #ah

2.3.1. DEFINITION. Let t be a term of type a. The exact valuation

[t]V El. is defined for any assignment v, by induction on t.

'(i) [x]V = V(x)

(ii) [t0t1lv = [tolvit1lv

(iii) [1x“.t = <Af ELa.[t0]v+f*+1,[t0]v*> if a:£tb, and

<11]? €Lon'[t0]v(x/f)+1’[t0] 81)» if xEtO.
01V

V(x/c

Notice that if ar£tn then [t]V = [t]v(x/f)’ as can easily be

verified by induction on t. Let c be the assignment defined by

c(x“) = cg and put [t] = [t]c.

It may be instructive to calculate the following examples:

[1x°.x] = [1x°.y°] = <Am.m+1,0>,

[1x(°)°y°.x(xy)] = <Af.<Am.f(fm)+2,f(f0)+1>,0>,
[(1x(°)°y°.x(xy))iz°.z] = <Am.m+4,3>.

2.3.2. CLAIM. For any term t, h(t) =[t]*.

This will be proved in section 4. Here we first comment on the

definition of [t] and then call attention to some consequences

of 2.3.2.

2.3.3. COMMENTS ON 2.3.1. By the account given in the

introduction (0.1), clause (ii) is sufficiently motivated.

ad i. Observe that if 151, . . . , tm are strongly normalizable (of

the appropriate types), then so is xt1...tm and moreover the

height is given by the equation h(afifi...tm) = h(t1)+...h(tm).

This squares with the fact that (c

(1.3 (iii)).

ad iii. To get a grasp of this clause the reader should try to

0f1...fm)* = f1*+...fm*
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invent a strategy for constructing a reduction sequence

from t which is as long as possible. Clearly if x (to, then

in order to spoil no potential reduction steps a redex

(Xx.t0)t1 should not be contracted until t

form. On the other hand, if x 6:0,

before contracting (Ax.t0)t1,

1 is in normal

it is better not to

perform reductions inside t

for t1

turns out that the strategy we have in mind here corresponds

1

might get multiplied in to. As a matter of fact it

to the 'perpetual' reduction strategy for the pure A-calculus,

described in Barendregt ['81]. This strategy will be implicit

in the proof of 4.9.

2.3.4. CONSEQUENCES OF 2.3.2. Apart from establishing strong

normalization, the expression for h(t) in 2.3.2 allows us to

infer some extra information. Roughly it can be put as follows:

the height of a term depends uniformly on the valuations of

its constituent parts.

A typical consequence, immediate by using definition 2.3.1(ii),

is that for a fixed term t E(a)3, the height of ts, for 3 Ed,

depends uniformly on [s]. In particular, given a fixed

t E(o)8, h(ts) is determined by h(s) alone.

We now give an accurate and quite general formulation of

this uniformity result (from which the abovementioned

consequence is obtained by substituting tx for t).

2.3.5. RESULT. Let [s1] = [.92]. Then [(x:=s1)t] = [(33:32) t] and hence

h((x:=s1)t) =h((x:=82)t) .

PROOF. It is an immediate corollary to the following technical

lemma. 0

2.3.6. SUBSTITUTION LEMMA. [(x:=s)t]v==[t]v(x/[S] ).
V

PROOF. Induction on t. The only case which is not quite trivial

is t==Aya.t We may assume that y #x and.y £3.0.

Suppose y Eto- Then [(x:=s)1:]V = [Ay.(x:=s)tolv,=

<Af€ELa.[(x:=s)tO]V(y/f) +1,[(x:=s)t0]v(y/CO)*> which by the

induction hypothesis and because [3] v( /f) =18] is equal to
<Af€La.[t y Vo]v<y/f1<x/131V) +1’[t0]v(y/c0)(:c/[s]v)*> =
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= [Ay't0]v(x/[s]v)° For the case that y fito notice that then

also y £(x:=s)to. D

2.4. THE LOOSE VALUATION. If one is just interested in the

strong normalization result and not in the exact estimates,

then one may simplify the meticulus clause (iii) of definition

2.3.1.

2.4.1. DEFINITION. Let t be a term of type a. The loose

valuation {t}v ELa is defined for any assignment v, by induction

on t.

(i) {x}V==V(x)

(ii) 1t0t1lv= {tolvit1}v

(iii) {xxa.t0}V-= <Af ELa.{ } +f*-+1,{tto V(x/f) o}v(x/c3)*>

Once more it} is defined by {t} ={t}c. Clearly this valuation

is only intended to yield an upper bound for h(t). So our new

claim is less pretentious.

2.4.2. CLAIM. For any term t, h(t) §{t}*.

This will be the object of the quick proof of strong

normalization in section 3. In the proof the content of lemma

2.4.3 will be used.

2.4.3. LEMMA. (1) If xEt, then {t}v={t}

(ii) {(x:=8)t}V={t}
V(x/f)

V(x/ {8 IV)

PROOF. As in 2.3.6. B

§3. THE QUICK PROOF OF STRONG NORMALIZATION.

3,1 . HEREDITARILY <-MONOTONE FUNCTIONALS. By induction on 01 we

define simultaneouslytme classes Macha and the relations (a

on Ma'

(1) MO=LO; m<0n¢=m<n.

(ii) M(Q)B={f(:L(G)B | conditions (a) and (b) below are

fulfilled}.

(a) (V9 6 MOLHfg 5 MB) .

(b) (Vg,g' E MOLXg <01 9' =>fg <B fg') (f <-m0n0t0ne)

(iii) For f’g€M(a)B’ f<(01)Bg eIVhEMaHfh <th)& f* <g*.
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M==gMa is the class of hereditarily <-monotone functionals.

Evidently, by clause (iia), M is closed under application.

That < is transitive is verified by induction on the types.

By the following lemma, M is also closed under +.

3.2. LEMMA. (i) fEMOL=>f+m€Ma, (ii) f<ag=>f+m<ag+m,

(iii) m<n=f+m<f+n, (iv) m>0=>f<f+m.

PROOF. (i) and (ii) are simultaneously proved, by induction on

a. For a==o it is obvious. So let a =(B)y and suppose f(EMa.

For (i) we must check clauses (iia) and (iib) of 3.1. Well,

if h, h' EMS and h<Bh', then (f+m)h=fh+mEMB by induction

hypothesis (i), and (f-+m)h==fh-+m‘<fh'-+n1=(f-+m)h' by

induction hypothesis (ii). So f-rmtiMa (i).

If moreover f‘fixg, then (f-+m)h‘<(g-+m)h follows by

induction hypothesis (i) and (ii), and (f-+m)*‘<(g-+m)* by

mere calculation. So f‘+m<%xg-+m (ii).

(iii) is also easy to check by induction on the type of f,

and (iv) follows from (iii) because f =f-+0. D

3.3. LEMMA. (i) cgEZM for any a and n.

(ii) m1<n = c%‘<c%.

PROOF. (i) and (ii) are proved by simultaneous induction on a.

For d==o it is trivial. So let a =(8)Y.
, a ._ y . . .

If h, h 6MB, then cnh —Cn+h* €MY by induction hypothe51s

(i). If moreover h1< h', then h* <h'* and hence

Y Y
n+h* <Cn+h'*

proves (i).

cgh.=c =c:h' by induction hypothesis (ii). This

For (ii) suppose m1<n and let h(EM . Then cghi<cgh follows

because m-+h*‘<n-+h* and hence C%+h. <cY
a * n+h*

a 0 O I I

m* <cn* is immediate (m <n). This proves

(induction

hypothesis (ii)). and c

(ii). a

If the assignment V takes only values in M, v is calIed an

M-assignment. In particular c is an M-assignment by 3.3(i).
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3.4. MONOTONICITY LEMMA. (i) {tlv 6M, for any M-assignment v.

(ii) If xa'et, then {t}v(x/f1) ({t}v(x/f2)’ for any M-assignment

v and £1,152 EMOL such that f1<01f2'

PROOF. (i) and (ii) are proved by simultaneous induction on t.

- If t is a variable then (i) and (ii) clearly hold.

- Let t =t0t1 and assume (i) and (ii) to hold for to and t1.

Then {t}v EM because M is closed under application. To establish

(ii) observe that if x Et, then x must occur in to or in t1 or

in both. Distinguish cases accordingly.

Case 1. a: £750, x£t1. Then {t}V(x/fi) = {t0}v(x/fi){t1}v’ and

(11) follows from {t0}v(x/f1) ({t0}v(x/f2)'

Case 2. x fito, x Et1. Similar. Now (ii) follows because {t0}V

is <-monotone and {t1}v(x/f1) <{t1}v(x/f2)°

Case 3. x Et x 6t .
0’ 1

Apply induction hypothesis (ii) to to and t

the transitivity of <.

- Let t =Ay8.t0. (i) If h(EMB, then V(y/h) is an M-assignment;

1 in turn and use

so {t0}v(y/h)€ M by induction hypothesis (i), and hence

{tlvh = {t0}v(y/h) +h* +1 €M.because M is closed under +.

If moreover h <h', then {tlvh1<{t}vh' by applications of

induction hypothesis (ii) and lemma 3.2(ii) and (iii).

So {tlv EM.

To establish (ii) , suppose xo‘ e t, f1 <01 f2 and let h EMB.

We have to check that (a) {t}

*<{t}

11< {t} h and
V(x/f1) V(x/fz)

(b) {t} V(x/f2)*' Notice that if x 6t, then also
V(x/f1)

a:€t0. Then (a) follows by an application of induction

hypothesis (ii) to to with VIy/h) and lemma 3.2(ii), and (b) by an

application of induction hypothesis (ii) to to with V(y/CO)

(by lemma 3.3(i) this is an M-assignment). u
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3.5. REDUCTION LEMMA. If t+s, then {s}V< {tlv for any

M-assignment v.

PROOF. Induction on t.

- If t is a variable there is nothing to prove.

- Let t =(Ax.t0)t1, s =(x:=t1)t3. Then by the substitution lemma

(2.4.3(ii)) {slv =1 l and by 3.2(iv)to V(x/{t1}v)

{t0}v(x/{t1}V)<<{t0}v(x/{t1lv)'+{t1}v*l¥1' BUt this is {t}v'

- Let t =t0t1, t0+so and s =sot1. Then {s}V<{t}V follows

directly from {30}V<<{t0}V.

- Let t =t0t1, t1-+s1 and.s =t031. Then {s}V<<{t}V follows from

{81} v < {t1}V because {tolv EM.

- Let t =Axa.t

{ }

{ }

0, tO-+so and s==Ax.s

+f* +1 < {t0}

{ }

0' For fEMa,

+f*-+1 follows from

}

So V(x/f) v(x/f)

30 V(x/f) < t0 V(x/f) by lemma 3.2(ii); {30 *< {t0}

is immediate from {so}

V(x/co) V(x/CO)

v(x/c0) <{130]VUC/CO)’

So {S}Vf<<{t}vf and {S}V*‘<{t}V* and hence {8}V‘<{tlv.

The mentioned cases exhaust all possibilities for t-+s. u

3.6. THEOREM. No reduction sequence of t has more than

{t}* steps.

PROOF. Trivial induction on {t}*, using 3.5. D

3.7. COROLLARY. All terms t Of AT are strongly normalizable and

h(t)§ {t}*.

This finishes the quick proof of strong normalization.
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§4. THE MAIN PROOF

4.1. HEREDITARILY CUMULATIVE, MONOTONE FUNCTIONALS.

To establish the claim 2.3.2 we shall make use of the fact

that the functionals occurring as valuations of AT-terms

belong to an even more restricted class than M.

DEFINITION. The collections Ca are defined simultaneously

with the relations <a and go by induction on a.

(i) CO=LO;m<Onem<n;m§Onem§n.

(ii) C(a)B ={f‘EL(a)B |conditions (a), (b), (c) and (d)

below are fulfilled}

(a) (Vgeca ngCB)

(13) (Vg,g' ECOLNg <ag' => f9 <8 fg') (f <-m0n0t0ne)

(c) (Vg,g' ECOLHg éag' =, fg EB fg') (f é-monotone)

(d) (Vg E C01) ((fg) * 2 f* + 9*) (f cumulative)

(iii) For f,g€C(a)Br

(a) f ((008 g Mvh Eca)(fh <th)& f* < 9*

(b) f §(OL)Bg @(VhECOLHfh §th)& f* §g*

REMARKS. (1) C==3Ca is, just like M, closed under application

(condition (ii)(a)). (G and go are transitive relations on Ca’

(2) Notice that a new interpretation is given here to the sign

<a’ though in intention it is the same as that of the preceding

section.

(3) One might be tempted to think that f'gg'could be defined

simply as f1<g or f =g. This is of course the case on the

ground type, but not on the higher types. For a counterexample in

(o)o consider the functions An.n and An.n2. (Note that both

An.n and An.n2 are minimal with respect to <.)

(4) <-monotonicity and g-monotonicity are independent predicates,

neither implies the other. For counterexamples: constant functions

are g-monotone but not <-monotone; a functional of type ((o)o)(o)o

which is g-monotone but not <-monotone can be defined by

f(An.n2) =An.n’, fg =An.gn-+1 if g'#An.n2.

(5) We will often write fag for géf, and f>g for g<f.

(6) Many properties of the structure (M,<) hold also in (C,<) and

can be extended to g as well, as is shown in the following lemma.
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In the sequel we shall in general no longer explicitly

indicate applications of this lemma, as the reader is assumed

to have gained some experience in the calculus of labeled

functionals by now.

4.2. LEMMA. (i) C is closed under +, (ii) f <g'=>f-+m <g-+m,

fég =>f+m§g+m, (iii) m<n=>f+m<f+n, mén =>f+m§f+n,

(iv) m>0 =>f<f+m, f§f+m, (V) f<g=>f§g, féf,

(vi) f<g§h=>f<h, f§g<h=>f<h, (vii) f>g=>fzg+1,

(viii) f(g-+n) ng-rn.

PROOF. The reasoning for < in 3.2 remains valid and it applies

without change to 2. So (ii) to (iv) just carry over and for

(i) we only have to check additionally that f-+n is cumulative

in case f is. Suppose (fh)* Zf*-—h*.

Then ((f-+n)h)*'=(fh)*-+n ;f*-+h*-+n==(f-+n)*-+h* results by

simple calculation.

(v) to (vii) are straightforwardly proved by induction over

the types. (viii) follows from (vii) by induction on n. For

n.=0 it is trivially true. Assume as induction hypothesis

f(g-+n) ng-rn. Then, since g-+n-+1 >g-+n and f is <-monotone

f(g-+n-+1) >f(g-+n) and hence f(g-rn-+1) >fg-+n. Then (vii)

yields f(g-+n-+1) 2fg-+n-+1. D

4.3. LEMMA. (i) CEGEC for any a and n, (ii) m <n==cgi<c:,
... < a.( a

(111) m=n=>Cm=Cn.

PROOF. (i), (ii) and (iii) are simultaneously proved by

induction on a, just as in 3.3. We only have to check additional-

ly that c: is cumulative. This is trivially the case:

(cnf)*=(c )*=n+f*=cn*+f*. 1:1
n+f*

CI
4.4. LEMMA. fECa =9 fZCf*. O

PROOF. Induction on a. For a==o it is trivial: n==cn (and n*==n).

Let oi: (B)Y and suppose g €CB° Then fg;c(fg)* 2Cf*+g* =cf*g

follows from the induction hypothesis and by lemma 4.3(iii),

because (fg)*';f*-+g*. From this fgch* can be directly

concluded, since f*'=cf** by definition. 0

It is in this sense that the cn's are called minimally

cumulative. The really minimal elements are the co's of course:

f'ch for every fEECa. (Note that f :cf* does not generally
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hold for M.)

An assignment with all its values in C is called a

C—assignment. The assignment a defined in 2.3.1 (c(xa) =cg)

is a C-assignment by lemma 4.3.

4.5. C-LEMMA. (i)[t]v EC for any C-assignment v.

(ii) If x“ Et, and f,f' ecu, then

(a) [t]V(x/f) Z [t]V(x/C0) +f*

(b1 f<f' =1t1v(x/f)<1tiv(x/f.,

(C) féf' " [“vwfi g [t]V(x/f')
PROOF. (i) and (ii) are proved by simultaneous induction on

t. Since the reasoning for (ii)(b) and (c) and for the mono-

tonicity part of (i) (i.e. checking (ii)(b) and (c) of definition

4.1) is completely similar to that of 3.4, we here concentrate

on verifying (ii)(a) and for (i) on proving that [t]V is

cumulative (clause (ii)(d) of 4.1). Clause (ii)(a) of 4.1. is

left to the reader. Notice that in the cases t==x and t==t0 1,

(i) is trivial anyway, since v is a C-assignment and C is

closed under application.

- Let t==xa. Then application of lemma 4.4 yields:

_ 0L _ 0L _ . . ..[t]v(x/f) —f :cf*-— C0 [f*"[t]V(x/c0) +f*, establishing (ii)(a).

- Let t=tot1, mast.
To establish (ii)(a) we have to distinguish between three cases

as in 3.4.

Case 1. x’Eto, atftfi. Then [t] -+f* follows
V(x/f)2 [tlv(x/c )

from E0]v(x/f) ;[t0]v(x/c0)'[f* (induction hypothesis) by the

definitions of 2 and +.

Case 2. xfito, xEt

use lemma 4.2(viii).

Case 3. xEt

transitivity of g.

— Let t==AyB.t0, y ¢t0. We can directly calculate

([tlvg)*==(Itolv‘+g*'+1)* =Itolv*'+g* +1 =Itlv*'+9*'+1-

So [t]V is cumulative. For (ii)(a) suppose xGEEt and f(ECa.

1. Apply the induction hypothesis to t1 and

0' xr€t1. Combination of cases 1 and 2, use the

[t]V(.'L‘/If) =<Ag€LB.[t0]V(x/f) +g‘k +1’[t0]v(x/f)*>' AS also

ar€t0 application of the induction hypothesis gives

[t0]v(x/f) ;[t0]v(x/c0).[f*’ and consequently
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2<mg€LB.H: +f*)fi>=[t]v(x/f) _

[t]V(x/CO)
' Let t ==lyB-t0. y Eto- Now ([tlvg)*==([t0]v(y/g)-+1)* ;

([t0]v(y/CO)'+g*-+1)*==[t0]v(y/CO)*-+g*-+1==[t]v*-+g*-+1

+f*-+g*-+1,([t0]
O]v(x/c0) V(x/co)

+f*.

follows by induction hypothesis (ii)(a). So [flv is cumulative.

For (ii) (a) again suppose $01 6 t and f 6 Ca.

Then [t]V(x/f)==<Ag ELB'[tO]v(x/f)(y/g) +1, [t

Induction hypothesis (ii)(a) yields both

I l

[to]

[t]

([t

0]V(x/f)(y/co)*>'

;[t +f* and

21

t0 v(x/f)(y/g)

V(x/f)(y/c0)

V(x/f) ;<Ag ELBJiOLAx/CO)(y/g)I+f*.+1'

+f*)*>==[t] +f*. D

0]v(x/co)(y/g)

I *, and consequentlyto v<x/c01(y/c0)'+f

o]v(x/c0)(y/c0) V(x/co)

4.6. DEFINITION. Let t, s be terms, v an assignment.

Then ItlV em and |t,slV Ew are defined by:

_ E
'tlv "xEtV(x)*

= Z
It'slv xEt&x£sv(x)*

4.6.1. Properties. We mention without proof some obvious

properties of ltlV and |t,s|v.

(i) |x|v==v(x)*, (ii) |t0t1lV 1|v’

(iii) x,£t =1|Ax.tlv==|tlv, (iv) x €t=:IAx.t|v-+v(x)* =|tlv,

S +_|t0|V It

< - =(V) lt,slV =ltlv, (v1) t-+S==ltlv |8|V-+|t,8|v.

With respect to (vi) notice that if t-+s, then all free

variables of s are already free in t.

4.7. LEMMA. [t] for any t and C-assignment v.2c
V ‘ Itl

v

PROOF. Induction on t.

— Let t==x. According to 4.6.1(i) we have to check

V(x) 2c , which is the case by lemma 4.4.
V(x)*

— : ' ' ' >Let t t0t1' By the induction hypotheSis [t]V =C|tolvclt1lv

and some manipulation with the properties of the cn's gives
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c c =c . Hence [t] 20 follows since
ltolV |t1|V Itolv+|t1lV V ltlV

ltol +|t1| thlv (4.6.1(ii)).
V V

— Let t = kxa.t0, x¢t0. By 4.6.1(iii) it is sufficient to
> . .

show that [t]V.=c|t0|V. This ea51ly follows from [tolvgcltoIV

(induction hypothesis) and some calculation:

.ForhECa, [t]Vh=[t0]V+h*+1;cltl +h*+1>c|t I +h*=
0 v 0 v

c =c h.
ltolv+h* ltolV

. [t]v* = [t0]v* gc'tolv'k,

_ a ' =- Let t-—Ax .to, xEEtO. By 4.6.1(1v) |t0|v(x/h) Ith+h* and

ltOIVLac/co) :ltlv'+C0* zltlv’

This together with applications of the induction hypothesis

yields:

.Forh€C,[t]h=[t] +1>[t] ;c =
a v 0 V(x/h) 0 V(x/h) |t0|v(x/h)

C|th +h*=cltl h'
v v

.[t]*=[t] *gc *=C *. D
v 0 V(x/CO) lt0|v(x/c0) ltlV

>4.7.1. COROLLARY. [tlv*.=ltlv.

4.8. REDUCTION LEMMA. If t-+s, then for any C-assignment v,

17:1V >131V + lt,slv.

PROOF. Induction on t. Distinguish cases according to the actual

form of the reduction.

- Let t =(Ax.s)t1, atis.

Obviously lt,slv,§|t1l (only variables in t1 possibly dis-
V

appear) and hence [t1]vx :lt,slV by corollary 4.7.1. Then

calculate: [t]v==[s]V-+[t1]V*-+1 >[s]v-+[t1]vfi ;[s]v-+lt,slv.

- Let t==(Ax.t0)t1, 3:61: 3 =(x:=t1)t0. Now no variables0!

disappear at all, so lt,slv==0. So it is sufficient to prove

that [t]v,>[slv. Now [t]v_=[t0] +1 >[t. ] 4. 'V(x/[t1]v) 0 V(x/[v1lv)

but this is [SJV by the substitution lemma (2.3.6).
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t =t0t1, t0'*sor s==sot1- Then Hrslviiltorsolvr for a

variable can only disappear from t because of the reduction

tO-+so. This and the induction hypothesis [t0]V'>[30]v‘+|t0’30|v

are used in the calculation: [t]v:>([SO]V-+|t0,30lv)[t1]v =

[SO]V[t1]V+ ltorsolv= [S]V+ l‘t0v80lvg [S]V+ ltrslv°

t==t0t1p t1-+31, 3==t031. This case is like the preceding

one. Use 4.2(viii).

- t==Axa.t0, t0-+30, 3==Ax.so. There are three subcases. Case 1,

x ¢ t0, xtésoo Then ltrslvi=|t0rsolvy and [t]v.>[S]V'*ItISIV

follows by easy application of the induction hypothesis.

Case 2. a:€t0r a:€so- Then ltrslv.=|torsolv‘=ltorsolv(x/f)

for any f, and from this the result follows easily by the

induction hypothesis.

Case 3. ar€t0r x,£30. Then |t0'30|v(x/f)zzlt’slv‘+f* for any

f, and hence by the induction hypothesis one obtains:

[t]v=<AfELa'[t0]v(x/f) +1, [t0]V(x/CO)*> >

<Af ELa-[30]V(x/f)+|t0'solv(x/f)+1, ([80]v(x/C0) +

I1:0'30|v(x/c0))*> =

<AfeLa.[aflv+lt,mv+f*+1,[sohfi+|tfinv+0>=

[1x.soiv+ ltrslv- :1

4.8.1. COROLLARY. h(t) "
A [t]*.

4.9. THEOREM. If [t]* >0, then there exists an s with t-aS

and such that

(i) if t is not of the form Ax.t0, then [t]: [s]+ 1,

(ii) if t=Ax.t0, then [t]*= [s]*+1.

PROOF. Induction on t. Distingu;sh cases as to the form of t.

— t==x. This case is trivial, as [x]*:=c0* =0.

- t: (1x.t0)t1, arétb. Then [t]==[tO]-+[t1]* +1.

If [t1]* =0, then let.s =t0.

Otherwise by the induction hypothesis for some 31, t1 +31 and
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[t1]*-= [s1]* +‘1. Let s = (Ax.t0)s1.

- = (Ax.t0)t1, xEto. Then [73] = [t

(substitution lemma).

Let s==(x:=t1)to.

- t='t

Case 1. [t0]* >0. Then by the induction hypothesis tO-+So for

such that [to] =[sO] +1. Let s==sot1; [t]= ([80]+-1)[tfl=

0]c(x/[t1]) +1=[(x:=t1)t0]+1

0t1, to not of the form 1x.-. There are two subcases.

some 80

[3] +1.

Case 2. [t0]* =0. Then, by 4.8.1., to is in normal form and

consequently must have the form xtz...tn (with t2,...,tn in

normal form). As [x]==cg for a suitable d, [t0]==cn for some

n, and therefore, since [t0]*==0, [t0] =00. But then, as

([to][t1])* >0, certainly [t1]* >0 and hence, by the induction

hypothesis, t1-+s1 for a certain s such that [t1]*==[s1]* +1 .1

Let s==tos1, and calculate: [t]==c0[t1] =c [t11*=°1311*+1=
c0[s1] +1 = [s]+-1.

'- t= Ax.t0. Notice that, regardless of whether areto or not,

[t]*==[t0]*. By the induction hypothesis t0-+so for a certain 80

such that [t0]*==[so]*-+1. Let s==)x.so. 0

4.9.1. COROLLARY. h(t) = [t]*.

PROOF. By 4.9. h(t) ; [t]* and by 4.8.1. h(t) s [t]*. 0

4.9.2. REMARK. One may observe that the proof of 4.9 implicitly

contains a strategy for constructing a reduction sequence of

t of maximal length. The same reduction strategy is defined in

Barendregt ['81] (from Barendregt et al. ['76]), where it is

called the perpetual strategy Fm. It yields for any term t in

the type free AB—calculus an infinite reduction sequence, if

there is one.

§5. EVALUATING THE COMBINATORS.

5.1. In the combinatory variant of the typed A-calculus, the

system CLT (typed combinatory logic), the role of A-abstraction

is taken over by constants Ka,B E(a)(B)a and

Sa,B,Y E((a)(B)Y)((a)B)(a)Y, for all types a, B and 1.

From these, terms are built up with application as sole term

forming operation. In CLT, t-+s holds if 3 results from t by
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replacing a part of the form Ktot1 by to or a part Stot1t2 by

t0t2(t1t2).

Let the exact valuations for K and S be given by:

[K01,B] =<Af€La.<Ag€LB.f+g*+1, f*>,0>

[50,13,111 = <Af ELM) (B)Y'<Ag€L(3)B'<Ah CLa.fh(qh) +1, f*+g*>,f*>,0>

(NB: Quantification over assignments is not needed; if variables

are included one simply puts [x3] =cg.)

Then it can be established by the method of this paper that

[t] is exactly estimating again: h(t) =[t]*.

As a matter of fact it suffices to show that the valuations

of CLT-terms are in M, so that the proof becomes as simple as

the 'quick' proof in section 3.

5.2. Extension of our method to systems incorporating a

recursion operator, however, does complicate matters. The

uniformity result in 2.3.4 for example, will no longer

hold as stated there. In particular, given a fixed tEE(o)B,

h(ts) will depend not only on h(s), but on the numerical

value of s as well. As a consequence a more involved type

structure is needed, built up from wxw.

We intend to investigate this in another paper.

FOOTNOTE

1) The proof in Gandy ['80] is supposed to rest on the

assumption of weak normalization. This assumption is used to

ensure that every closed term of type 0 in the A—I+ calculus

reduces to a numerical term, denoting in a trivial way a

natural number. (As a matter of fact, for uniqueness a

Church-Rosser result would be required as well.) It seems,

however, that the assumption can be eliminated, because

under the standard interpretation each closed term of type

a already denotes an element of Ta: and in particular terms

of type 0 denote natural numbers.
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4
STRONG NORMALIZATION IN N-HAup

Introduction. The purpose of this note is to amend the notion of

computability employed in proofs of strong normalization, so as to

make it work also for systems which include a sunjective pairing. To

facilitate comparison with existing proofs (i.e. for systems without

surjective pairing), we work with the system N—HA'II’p as it is formu-

lated in Troelstra [1973], and rough'.y follow the set up of the proof of
strong normalization of N-HA° giver. there in the §§2.2.12-2.2.19 and
22.30-22.31. Notations, terminology, etc. not defined here are taken

from Troelstra [1973] (further referred to by [Tr]).
The new definition of computability has an extra clause for the

product types of course. But apart from that, it deviates from the
usual definitions in two more respects. First, the computable terms are

explicitly required to be strongly normalizing. Secondly, by the very
form of the computability conditions it is enforced at once that

computability is preserved under reduction.

The first deviation is not an essential feature, but merely a matter
of taste. The proof would not change much if one adopted the usual

strategy of requiring strong normalization only at the ground type 0,

and then seperately proving the implication

computable => strongly normalizable

for the higher types.
As to incorporating strong normalizability and closure under

reduction in the computability conditions, the notion of computability

employed here resembles that in de Vrijer [1975]. For the ?x-based
theory with surjective pairing, but without recursion, the method
used there can be adapted to yield a proof of strong normalization that

is simpler than the one given here. In an Automath setting such a
proof is presented in van Daalen [1980], p.294 ff.
We give our proof for the combinatory and the A-based versions of

N—HA'M'p together. Those who are only interested in one of both

versions can just leave either the combinators or the A’s out.

The system N-HAwp. The types of N-HA'M'p are built up from the

ground type 0 by finite iterations of the operations of forming the

function type (008 and the product type oXB from the types oz and [3.
The terms of N-HA'I'p all have a unique type. The notation t6 0 is

used to indicate that t has type 0. The atomic terms are (with p,o,t
arbitrary types):
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- the variables X°,y°, 2°, . .. 60;

- the combinators 119,06 (0) (0)0 and 29,036 ((0) (0)1) ((0)0) (0)1;

- the constants 0 (zero) 6 0, S (successor) €(0)0 and the recursor

R0 6 (0) ((0) (0)0) (0)0;
~ the pairing and projection constants D036 (0) (1)0X1,
D'Ofle (0X1)o and D"0,1€ (0X1)1.

The term forming rules are:

- application: if 16 (0)1 and 560, then tSET;
- abstraction: if t[X°]€T, then AX°.t[X°]e (0)1.

Then N—HA‘I’p has the following contraction rules:

- I'Ip,ot1t2 contr t1; 29,0,1t1t2t3 contr t1t3(t2t3);

— Rat1t20 contr t1; Rot1t2(St3) contr t2 (Rot1t2t3) t3;

- D'o,t(Do,rt1t2) contr t1; D"O,T(DO,Tt1t2) contr t2;
D0,, (D'O’Tt) (D"O’Tt) contr t;

- (AX°.t[X°])s contr t[s].

As in [Tr] we use the notations >1 and Z for the one step reduction

relation which is generated by contr and for the reflexive and

transitive closure of >1 respectively.

Some extra terminology: a term t is called strongly normalizing

(SN) if all its reduction sequences are finite. If so, by h(t) is denoted
the length of a reduction sequence of t of maximal length (= the

height of the reduction tree); and by V(t) the maximum of the set
{ieNl (3t')(tzsit')}.

Computability and Strong Normalization. A notion of
computability, C, is defined for terms of N-HA‘”p by induction on the

typestructure. CO denotes the computable terms of type 0.

DEFINITION 1. Co(t) iff the following three clauses are satisfied.
(1) t is SN.
(ii) If 0 = (0)8 and tZt' and 56 Ca, then t'se CB'
(111) 11 0: 0X8 and tZDt't", then t‘e cc and t"€ CB.

In a series of lemmas we now establish some obvious closure

properties of C and list a few basic implications that can be used in
proving that certain terms are computable.

LEMMAS. (i) C(t) &t21' => C(t').
(ii) Any term which is formed by repeated application from

computable terms is computable.

(iii) If t6 0, then SN(t) => C(t).
(iv) If t'=' xtl...tn (n20), then SN(t) => C(t) (4: (ViSn)SN(ti)).
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(V) (V0)(X°€Co)-
(vi) If te (01) . . . (0n)1, then

(V1216 C0,). . . (th6 Can)C(t11. . .tn) => C(t).

(vii) Let either t6 0 or t€0X8. Then
(a) if tEDt't", then C(t‘) &C(t“) 8. (Vs) (t >15: C(s)) => C(t).
(b) if t not of the form Dt't", then (Vs) (t >15 => C(s)) => C(t).

(viii) Let t €0X8, then C(D't) &C(D't) => C(t).

PROOFS. (i), (ii) and (iii) are obvious (for (iii) just observe that
the clauses (ii) and (iii) of the definition of C do not apply).
(iv) Assume t€1 and apply induction on 1. We need only verify the

clauses (ii) and (iii) of definition 1. Observe that if tZt', then t' will
have the form xt'1. . .t'n with tiZt'i (1SiSn). So if.1=0X8, then
clause (iii) of the computability definition does not apply. That leaves
the case that 1: (0)8. Let 56 Ca. Then, as t'1. . .t'n and s are all SN
and t'sExt'1.. .t'ns, also t's is SN and hence C(t's) follows by the
induction hypothesis.

(v) For each type 0 we have X°€ Co.

(vi) This is proved by induction on n. Note that t is SN since

txlol. . . Xnon is, as C(tX101. . . Xnon) follows by (v) and the
assumption. For the case n=1, assume (W16 C01)C(tt1) and let tZt'

and 56 C01. Then also tsZt's and hence the computability of 1 follows

since C is closed under reduction by (i). The induction step is trivial.
(vii) Of course t is SN iff each s such that t>ls is SN. Furthermore

tZDs's" iff either tEDs‘s" or sZDs's" for some 5 such that t>1s.

(viii) SN (t) follows from SN (D't). Assume tZDt't". Then
D'tZD'(Dt't") >1t' and C(t“) follows from C(D't) becase C is closed
under application (lemma (ii)). Similarly C(t") follows from D"t. D

We now first prove that all terms that can be formed without

employing the rule of ?x-abstraction are computable. The terms that
include h-abstraction will be treated afterwards.

THEOREM 1. Any term t of N-HA‘II’p which does not contain

?x-abstraction is computable.

PROOF. We proceed as in [Tr] §2.2.19, by proving that all atomic

terms are computable. The theorem is then implied since C is closed

under application by lemma (ii).
(1)-(ii) C(0) and C(S) are immediate.
(iii) C0103). Let t1. . .tn be computable terms such that either
I'IO,Tt1...tne 0 or no,1t1- . .tne 0X8. By lemma (vi) it is sufficient to
prove C(I'lo,1t1. . .tn). This we do by induction on h(t1)+. . .+h(tn).
Assume that I'Io,Tt1. . .tn>1s. Again, by lemma (vii) (b), it is sufficient
to prove C(s). There are two cases :0 consider.
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- s: t1t3. . .tn. Then C(s) follows by lemma (ii).
- $5 110,131. . .5n and (Bi) (ti>1 5181 (VJSn) (j¢i=¢ sJ-EtJ)). Then C(s)
follows from the induction hypothesis.

(iv) C(Ep,o,n) is proved similarly.

(v) C(XO) was proved in lemma (iv).
(vi) By induction with respect to the ordered pair,
<v(t3),h(t1)+. . .+h(tn)> we prove that if t1. . .tn are computable
terms such that either Rotl. . .tn 6 0 or Rotl. . .tn 6 0X8, then

C(Rot1.. .tn). From this C(RO) follows by lemma (vi). Again it is, by
lemma (vii) (b), enough to prove that C(s) if R,,t1...tn >1 5. We
distinguish three cases.

- t3 E 0 and s E t1t4. . .tn. Then C(s) follows by lemma (ii).
- t3 5 Sta and s E 12(Rt1t2t0)t4. . .tn. As t2, t4, . . . ,tn are computable by
assumption, it will by lemma (ii) suffice to show C(Rtitzto). To that
purpose observe observe first that C(t3) implies SN (Sto), hence SN (t0),
hence C(to). Then, since v(t0) < v(St0), the induction hypothesis can be
applied to Rotltztot'4. . .t'n with t'4. . .t'n any computable terms of the

correct types, yielding C(Rotltztot'4. . .t'n). From this C(Rotitzto)
follows by lemma (vi).
- s E R051. . .5n and (31)(ti>151& (VJ S n) (j #1 :5 sj E tj)). Then,
regarding the fact that v(t3) cannot increase under reduction of t3,

C(s) follows from the induction hypothesis.
(vii) We show that C(Do,t). By lemma (vi) it is sufficient to prove
C(Dt't") for t' 6 CO and t" 6 CT. This is done by induction on
h(t')+h(t"). Now, as C(t‘) and C(t") already hold, by lemma (vii) (a)
we need only verify that C(s) if Dt't" >1 5. There are two cases.
- t' ED's and t" E D"s. Then C(s) follows by lemma (viii).
- s E Ds's" and either 5' E t' and t">1s“ or t‘ >1 5' and s" E t". Then

C(s) follows by the induction hypothesis.
(viii) C(D'Ojt). For let t1, . . . ,tn be computable terms such that either

D'O,Tt1. . .tne 0 or D'O,Tt1. . .tn 6 0X8. The computability of D'o,T can

then be concluded from C(D'O,Tt1. . .tn), which we prove by induction

on h(t1)+. . .h(tn). Assume D'O,Tt1. . .tl.1 >13 and distinguish two cases.
- t1 2 Dt't" and SE t'tz. . .tn. Then C(t') follows from C(t1) by clause
(iii) of the computability definition and hence C(s) by lemma (ii).
— s .=. D3351. . .sn etc. (see above).
(ix) C(D"a,t) is proved similarly. [I

Now for the treatment of A-terms we need the stronger notion of

computability under subsitution, C’“.
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DEFINITION 2. C’“(t) 4: for each substitution of computable terms of the
appropriate types for occurrences of variables free in t, the resulting

term is computable. (Cf. [Tr] §2.2.30.)

THEOREM 2. C*(t) for each term t of N—HAwp.

PROOF. Again it is appropriate to prove the theorem by induction on

the structure of t. It is obvious that C*(t) is closed under application,

since C is.

(i) For constants C“ and C mean the same, because there are no
variables for which to substitute. So we already know that 0, S,

Homp, 203,9, Ra, Don, D'OJ and D"c,,t are all C“.

(ii) Substituting a computable term t for the variable X0 in X0 results
in the computable term t. Substituting nothing for X0 in 11°, the

result is 21", already shown to be computable. Hence also variables are

C“.

(iii) Since, as we pointed out above, C"‘ is closed under application, it

remains to be shown that AX.t[X] E C“ can be derived from the
assumption that t[x] e C". Let ?\X.t‘[x] be obtained from ?\X.t[x] by
substituting some computable terms; and let t1, . . . ,tn be computable

terms such that either (?\X.t'[X])t;. . .tn 6 0 or
(Ax.t'[x])t1. . .tn 6 0X 8. Notice that t'[x] e C follows from our
assumption that t[x] e C’“. So we are allowed to apply induction on
h(t'[x])+h(t1)+. . .+h(tn) in order to prove that (?\X.t'[x])t1. . .tne C.
By lemma (vii) (b) it is sufficient to prove that C(s) if
(Ax.t'[x])t1. . .tn >1 5. There are three cases to be distinguished.
- s E t'[tl]t2. . .tn. Now observe that t'[t1] can be considered as the
result of substituting some computable terms for free variables in t[x]
(namely those which were substituted to obtain t'[X], plus t1). So our
assumption that t[X] e C" implies t'[t1] e C . Consequently C(s) follows
by lemma (ii).
- t'[x] E t"X, X does not occur free in t" and 52 t"t1. . .tn. Observe

that t"t1 can be obtained by substituting t1 for X in t'[x], so this case
reduces to the previous one.

- $5 (Ax.t"[x])t‘1...t'n, obtained from (Ax.t'[x])t1. . .tn by
performing one reduction step either within t'[X] or within one of the
ti’s. Then C(s) follows by the induCtion hypothesis. El

COROLLARY. In N-HAWp all terms are strongly normalizing.

PROOF. Immediate by theorem 2. [1

NOTE. In Troelstra [A] this result is obtained in a different way, viz.
by reducing it to strong normalization for N—HAm (i.e. N-HA‘“p

without pairing).
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5
BIG TREES IN A h-CALCULUS WITH A-EXPRESSIONS AS TYPES

§0. OUTLINE

The abstract term system AA studied in this paper is a close relative of the

Automath family of languages. In the investigation of normalization and decida-

bility properties of these languages, AA came up as a natural generalization of

AUT-QE, the language currently in use for mechanical proof checking at the

Automath project in Eindhoven. For introductory reference, see Van Daalen [4].

The introduction, section I, is an informal account of the system AA and its

relation to other systems.

The formal description of AA is given in the sections 2 and 3.

In 4 the main results are stated, mostly without proof.

Section 5 is devoted to proving that the big trees are well founded (BT).

§1. INTRODUCTION

1.1. Heuristic description

Before describing the main results of the paper we make a few heuristic com-

ments, eSpecially on the generalized typestructure involved. Here we use the

"formulas-as-types" notion for interpreting mathematical statements and proofs,

originated independently by De Bruijn [3] and Howard [6] (the term comes from

Howard). Further references are given in 1.4.

1.1.1. Type structure

To illustrate the transition from the type structure of traditional type theory,

e.g. the typed A-calculus-exhibited in Hindley et al. [5], to the types we have

here, we consider constructive versions of propositional and predicate logic

respectively. If we identify a proposition 0 with the type of its constructions

(or proofs), then the implication a + B will be the type of constructions that

map constructions of a to constructions of 8. That is, a + 8 corresponds essen-

tially to the Cartesian power 8“.

In predicate logic a construction c of Vx.P(x) will map any object t from the

domain of quantification a to a construction of the proposition P(t). Hence the

type of c(t) depends on the choice of t. The notion of power doesn't suffice

any longer; we need that of cartesian product: n P(x).
xea
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1.1.2. Abstraction and application, two interpretations

Automath exploits the formal similarity between two kinds of abstraction: func-

tional abstraction to form the functionlike construction Axea.c(x) and the pro-

duct construction n P(x). It is convenient to unify these principles in the
xea

notations [x,a]c(x) and [x,a]P(x), respectively. Observe that now functional

application in the former case corresponds to specification of coordinate axis

in the latter. Also here we use the same notations: <t>[x,a]c(x) and

<t>[x,a]P(x), which reduce to c(t) and P(t), reSpectively. Now this uniform

syntactical treatment of both kinds of abstraction, very convenient for our

purposes, may cause some confusion in interpretation. For example, vis a vis

the formula-type analogy it amounts to using the same notation for both the

predicate, i.e. "propositional function", Axea.P(x) and its universal quantifi-

cation Vxea.P(x).

1.1.3. Supertypes, type inclusion

We further introduce the constant £125_as a "supertype" of types. Then, e.g.

[x,altygg will be the supertype of all those types 8, such that whenever t e a,

<t>B is a meaningful type. Hence, carrying on the example from 1.1.2, we have

[x,a]P(x)e:[x,a]£zE_. Moreover, because of the possibility of interpreting

[x,a]P(x) as a proposition Vxea.P(x), we require that [x,u]P(x) e £z2_. This

motivates the facility in AA (and in AUT-QE) to pass here from [x,a]£ygg_to

£123, known as the principle of type inclusion: [x,a]£zgg_§.£zgg_ (cf. [3], [4]

and 3.5.2 below).

In order to clarify this slightly ambiguous situation one could for the product

construction introduce the H's again, and obtain flEx,a]P(x) 6 £123 for the pro-

duct and [x,a]P(x) e R[x,a]tyge for the type-valued function, reSpectively

(cf. [12]).

1.1.4. AA-theories

Expressions are built up by using the principles of abstraction and application

mentioned above, starting from variables, parameters and constants. A particular

choice of the constants and their (super) type assignments will depend on the

interpretation one has in mind. Such a choice is formally fixed by a base (cf.

3.1). Each base determines a specific AA-theory.

In informal mathematics new notions are always introduced in a context, possibly

indicated by the presence of certain parameters and assumptions. This observa-

tion is reflected in AA by the fact that constants are allowed to depend on

parameters. We now illustrate the treatment of constants in AA and the parameter

mechanism involved.
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Let Cl(a,8) be a type constant, to be interpreted as the proposition Sxea.<x>8,

where B is supposed to represent a predicate on the type a. Informally intro-

ducing Cl(a,8) one might stipulate:

(I) "Let P be a type, Q be a predicate on P. Theniwe will consider C](P,Q) as a

proposition."

In AA the (super) types of parameters are indicated by superscripts and hence

the corresponding axiom reads:

t P t<2) cl(1:-123,Q["’ 3122) .. .12..

The rule of existence introduction can now be formalized by adding another con-

stant C2(a,8) together with the axiom

(3) c2(P51P3-.Q["'P3-‘1P£) e [x,PJIy,<x>Q]CI(P,Q).

When actually given a 6 £123 and B e [x,aJEXEE, Cl(a,8) 6 £223 and

C2(G.B) e EX,a][y.<x>B]Cl(a,B) can now be obtained as instances of (2) and (3),

respectively. Moreover, for objects t e a and s e <t>8 applicatiOn and B-reduc-

tion yield: <s><t>C2(a,B) c Cl(a,8).

For further explanation on the subject of interpretation we refer to the treat-

ment of AUT-QE in [4] and to Van Benthem Jutting [2].

1.2. Applicability

Usually, in type theory as in the Automath languages, term application is sub-

jected to the applicability condition:<t>fis a term iff there are types a and

B such that t e a and f e [x,QJB. Now in typed A-calculus this condition is

easy to formulate. The type structure and the assignments of types to terms are

given in advance, i.e. all of the syntax precedes the generation of theorems.

In our case however, types depend on objects and the type assignments are them-

selves treated as theorems in AA. Hence here the applicability condition would

make derivability interfere with term formation. A common way of dealing with

this complication (cf. Automath, Martin-Lbf, etc.) is to generate the terms

(including the types) simultaneously with the theorems.

By contrast we take the approach of allowing unrestricted application in AA,

_but instead now subjecting the rule of B-reduction

(4) <t>[x,a]Z >l [x/tIZ

to the condition t e a. We can then formulate an applicability condition by

referring to derivability in AA and so define the set of legitimate terms. The

legitimate fragment AA - 2 of AA is the system one obtains by restricting AA to

the language containing only legitimate terms. Hence AA - i may be considered
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as the part of AA that is significant for interpretation. (Though, of course,

the illegitimate terms do have a computational interpretation in the term

model.) The justification for the above sketched procedure lies in the follow-

ing result:

(5) AA is a conservative extension of AA ' 1.

This property may be regarded as a soundness criterion for the notion of legit-

imacy as defined above, and hence for AA: if the equality of two significant

(read: legitimate) terms can be proved in AA, it can be done using only signi-

ficant terms. The proof of (5) uses the result on "big trees" described below.

1.3. Decidability, big trees

We now turn to a second desirable property of the systems:

(6) AA and hence AA - t are decidable.

Decidability of the typed A-calculus is an easy corollary of the strong norma-

lizability property (SN) and the Church-Rosser property (CR). Every term reducr

es effectively to its normal form (nf) and two terms are equal iff their nf's

are identical. However, although both SN and CR go through for AA, they are not

sufficient for the decidability, as we will now explain.

In the discussion we make use of an effective function 1, which assigns canon-

ically to every object a type such that t e 1(t). Then, since we have unique-

ness of types (cf. 3.3.5):

(7)teaw1(t)=a

(where by CR, = is equivalent to having the same nf).

So, in order to see if (4) holds, we must first determine if 1(t) and a have

the same nf (by (7)). Then in the process of reducing these terms questions of

the form (4) may-arise again, and so on.

To deal with this problem, we proceed as follows. Let + be the improper reduc-

tion relation generated by

(i) usual Bn-reduction,

(ii) applying 1.

(iii) taking proper subterms.

Call the tree of-+~reduction sequences of a term 2 the "big tree" of 2. Then we

prove instead of SN the stronger property:

(BT) big trees of terms in AA are well founded.

Together with CR this result easily implies the decidability. Further, as men-

tioned above, it is also used in the proof of (5).



110

In his thesis Nederpelt [8] stated as a conjecture for his system A, the closurt

pr0perty:

(8) Legitimate terms reduce to legitimate terms.

It turns out that ET (for A) implies (8). Further it seems that BT can be provec

for A by a method, similar to the one used here. (Note that by contrast (8) for

AA is a simple consequence of the formulation of the system and its proof does

not require BT.)

We feel that, apart from the applications described, BT may have some interest

on its own.

1.4. Historical remarks

The first proof of normalization of an Automath system was given in Van Benthem

Jutting [I]. Nederpelt [8] proved strong normalization for his system A. He

made two conjectures: the above mentioned closure property for A'and CR for the

system with n-reduction. The latter cnnjecture was proved by Van Daalen (to

appear in his thesis). The result is assumed in this paper.

Scott [10] suggested to use the ideas of De Bruijn [3] for the formalization of

an intuitionistic theory of constructions. At about the same time Howard [6]

came up with similar ideas. The line is pursued by Martin-th [7]. His theory

of types is claimed to be a natural formal framework for intuitionistic mathe-

matics. The different accents in motivation - Automath more practical, Martin-

Lbf more phi1050phical - might be restonsible for some of the differences in

the investigated systems.

§2. THE LANGUAGE, EXPRESSIONS

In this paragraph we specify the language of a AA-theory. This language is

affected by the choice of a base (cf. 3.1). A similarity type (defined below)

codes the information, which is relevant for the formation of expressions.

Hence for each similarity type 5 we define the language £5.

2.1. Alphabet

All formal symbols used are from the alphabet consisting of the symbols for

variables x,y,z,...

parameters P,Q,R,...

constants C],C2,C3,... and tyge

binary relations =,2,>,>l,e ,

and the auxiliary symbols[,].‘<.>. ( 1 ). .-

Variable symbols will be indexed by types to become (object-) variables, para-
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meter symbols by types and supertypes to become object- and type-parameters,

respectively. The set of variables is assumed to be such that whenever needed,

we are able to choose uniquely a "new" variable of the desired type, not yet

occurring in the context. The enumeration of the constant symbols is meant to

show the order in which they can be introduced in a particular interpretation

(cf. 1.1.4 and the notions of date and base). In Automath this would be the

order in which they appear in a "book" (cf. [4]).

2.2. Similarity type

A similarity type s is a triple (SO’SI’°>’ where S0 and S) are disjoint sets of

natural numbers and o is a function from 80 U S1 to {0,1}*, the set of finite

(possibly empty) sequences of zeros and ones.

Here 80 indicates the set of constant symbols used for object-constants, S] the

set of constant symbols used for type-constants and if i e 80 U 81’ then o(i) de-

termines the positions of object- and type-parameters of C1 (cf. 2.3.1 (ii)).

2.3. Expressions

The expressions fall into three sorts: objects, types and supertypes. These are

simultaneously defined in 2.3.1. In the definition we use already the notion of

closed expression, to be defined in 2.3.4. However, it is clear that the de-

finitions could have been given simultaneously.

2.3.1. Definition. Given a similarity type s, the sets of variables, parameters,

constants, objects, types and sypertypes, building together the set E3 of expres-

sions is defined by simultaneous induction.

(i) If x is a variable symbol, P a parameter symbol, a a type, B a closed

(cf. 2.3.4) type and 8* a closed supertype, then x9 is a variable, P8 is

an object-parameten and P3* is a type-parameter.

(ii) Let o(i) = 61""’6n and 2],...,Xn be expressions such that E. is an

object if Gj u 0 and 25 is a type if 65 = 1, then Ci(2l,...,£n) is an

object-constant if i 5 S0 and a type-constant if i 6 8].

(iii) Variables, object-parameters and object-constants are atomic objects.

Type-parameters and type-constants are atomic types and tyne is the only

atomic supertype.

(iv) If f and t are objects, a and B are types, 0* is a supertype and x“ a

variable, then <t>f and [xa,a]t are objects, <t>B and [x9,a]8 are types
”A" *

and <t>a and [xa,a]a are supertypes.



2. 3. 2. Convent ions. As syntactical variables we use 2 , T , . . . for expressions in general ,

f,g,t,s,... for objects, 0,8,... for types and 0*,B*,... for supertypes. The

symbols for variables, parameterS'and constants are used themselves as syntac-

tical variables for their reSpective categories as well.

As long as no confusion arises we will freely add and omit indexes. In particu-

lar the superscripts of variables and parameters are suppressed where possible,

e.g. we write [x,aJX instead of [xa,a]xa.

Vectorial notation is introduced for sequences of expressions; e.g. 3 is short

for the sequence 0],...,an, where the number n is either known or not essential.

As = is a symbol of the language we use 5 for syntactic equality between ex-

pressions.

Now follow some more technicalauuinotational definitions concerning expressions.

2.3.3. Complexity, length and date

According to definition 2.3.1 each expression has a construction, easily seen

to be unique, consisting of a finite number of applications of the rules (i) to

(iv).

The complexity c(Z) of an expression 2 is the number of steps in its construc-

tion.

By induction on c(Z) we define two more measures on 2: its length 2(2) and date

d(l).

1(2) 3 1 if 2 is either a variable, a parameter or tyEe;

£(C(Zl,...,£n)) . max(£(£l),...,£(£n)) + 1; z(<t>r) = max(£(t).£<r)) + 1;

L([X.alr) ‘ max(£(a),l(r)) + 1.

d(tyge) . o; d(x“) - d(a); d(Pr) - d(r); d(ci(zl,...,zn)) -

- max(i,d(£l),...,d(2n)); d(<t>F) = max(d(t),d(T)); d([x,a]P) ‘

= max(d(a),d(P)).

Notice that d(E) is the greatest natural number i, such that Ci appears in the

construction of 2.

2.3.4. Free variables, parameters, special variables

By induction of 1(2) we define the sets FV(E) of free variables and Par(£) of

parameters of 2‘..

FV(CZEG) = ¢ ; Par(tyEe) = 0

FV(X) = {X} ; Par(x) = ¢

FV(P) = fl ; Par(P) m {P}



FV(C(21,...,2n)) = .U FV(Zi) Par(C(2],...,2n)) = .u Par(ti)
iSn iSn

FV(<t>r) = FV(t) u FV(F) Par(<t>F) = Par(t) U Par(T)

.
0

FV([x,0]P) = FV(u) U (FV(P) \{x}) ; Par([x,a]T) = Par(a) u Par(I) .

The set SV(2) of special variables of 2 is defined as

SV(2) = U FV(a) .

xaéFV (E)

An expression 2 is called closed if FV(2) = ¢.

For a sequence 21,...,2n we introduce the notation'F(2) = U F(2i), F is FV,

iSn
SV or Par.

2.3.5. Proper subexpressions

The relation ) (contains as a proper subexpression) between expressions is the

smallest transitive relation such that C(2l,...,2n) )'2i; <t>r >’t; <t>I P F;

[x,e]P ) a and [x,a]P > P.

2.3.6. Simultaneous substitution

Let Pl""’Pm and xl,...,xn be sequences of distinct parameters and variables.

And let t1...%,tn be a sequence of objects and 2],...,2m a sequence of expres-

sions, such that 2i is of the Same sort (i.e. object or type) as Pi' Then the

result [P,i/2312 of simultaneous substitution of 2, ?for P, 3: is defined by in-

duction on 2(2). In the definition we abbreviate [¥,§/f,?]r by r'.

xi ti (1 S i S n) and x' x if x é {xl,...,xn}.

Pi E 2i (1 S i S m) and P' P if P d {P1""’Pm}'

(C(2],...,2k))' s C(2;,...,2£), cyge' tyne.

(&t>r)' E <t'>r'.

([x,a]r)' E [y,a']([x/ylr)', where y is a new variable.

By [P,;/2,?]T we denote the sequence P3,...,Pi.

2.3.7. a-equivalence

The relation z of a-equivalence between expressions is the smallest equivalence

relation such that, if 2 z T, t z s and Q ~ 8, then also 39 3 x8, P2 z Pr,

C(Al,...,2,...,An) ~ C(A],...,P,...,An), <t>2 ~ <s>T and if y d FV(P) also

[x,a]2 “ [y,a][x/y]ro

In the sequel we shall simply identify a-equivalent expressions. Formally one

might pass to a-equivalenhe classes, considering an expression as merely a name,

denoting the class it belongs to, and show that the preceding definitions behave

well with respect to 8.

In some places names of bound variables will be tacitly assumed to be chosen

such that no "clashes" arise.



114

+
2.3.8. Lemma. Let {Q]"°"Qm} n Par(2,?) = {y|,...,yn} n FV(2,?) = ¢.

+++++ ++ +++
Then [1%,I/IJc’it'c33/‘flzlz a [6,y/flP,x/2,t]{I',s)][P,x/2,t]2.

2.3.9. Lemma. Let 2 be closed and Par(2) g IQ]....,Qn}-

Then 1?,32/1’3116/1’12 s 111/11.18.1111:-

2.4. Formulas, language

Let s be a similarity type. Then the language £5 consists of the fbrmulas: 2 = I

(equals), 2 2 F (reduces to), 2 > P (properly reduces to), 2 >1 F (reduces in

one step to) and 2 e P (has type or has scpertype), where 2 and P are expres-

sions in Es.

If R is a relation symbol we write 2],...,2n R Fl....,Tn (2 R T) for the se-

quence of formulas 21 R P1,...,2n R Tn.

§3. Xh-THEORIES

3.1. Base

According to what has been said in 1.1.4, the set of axioms and rules of a AA-

theory can be divided into two parts.

(i) A set, characterizing the underlying system (the same for any AA-theory).

(ii) In addition the assignments of types and supertypes to the relevant con-

stants, determined by a base (defined below).

The situation may be compared to e.g. predicate logic, where one adds for each

particular theory a set of mathematical axioms to the fixed framework of logical

axioms and rules.

Now recall the example in 1.1.4. It involves an instance (1) of the general

assumption scheme:

(*) "Let Pl be a 2], let P2 be a 22, "

In such a scheme it is assumed that the 21's are well defined in the given con-

... and P be a 2 . Then ... .
n n

text, which leads to the requirement that 2i+l should not contain free varia-

bles or parameters other than P1""’Pi' This observation motivates the follow-

ing definition.
21 2
1 ,...,Pn3. 1. 1. Definition. A regular sequence of parameters (rsop) is a sequence P n

of distinct parameters, where the 21's are closed types or supertypes and for

0 S 1 < n, Par(2i+l) g {P1""’Pi}’
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We now proceed to the definition of a base. Notice the requirements on dates,

motivated by the remark made in 2.1.

3.1.2. Definition. A base Q is a triple <s,p,1'>, where

(i) s is a similarity type (SO’SI’O>‘

(ii) p issuieffective function from S0 U S to rsop's, such that for all

2 z I 2 2
. . . 1 n 1 n .
i 6 SO U S], if p(i) = P1 ,...,Pn ,1;henCi(Pl ,...,Pn ) 6 LS and

.max(d(2l),...,d(2n)) < i.

(iii) 1' is an effective function from S0 to closed types in Es and from S1 to

closed supertypes in Es, such that for i 6 S0 U S , if p(i) = Pl""’Pn’

then Par(1'(i)) S {Pl""’Pn} and d(1'(i)) < i.

3.2. Axioms and rules of AA[Q]

3.2.1. Given a base Q, the AA-theory AA[Q] is formulated in the language

£3. The axioms and rules of AA[Q] are the following.

I type assignment.

a) x“ e a; P2 e 2.

b) ci(zl,...,zn) e [P],...,Pn/21,...,2n]1'(i) if i 6 so 0 s1 and

p(i) = P1’°"’Pn'

c) a e £z£g_ (type inclusion).

d) 2 5 PP— [x,aJ2 e [x,oJI, provided x ¢ SV(2).

e) 2 e Fr— <t>2 c <t>F.

11 one step reduction.

B-reduction: t,e a1- <t>[x,a]2 >1 [x/tl2.

n-reduction: f e B. B e [x,a]a* P-[x,a]<x>f >l f, provided x d FV(f).

B e [x,a]a* 1--[x,a]<:c>8 > 8, provided x ¢ FV(B).
1

monotonicity rules:

a) 2 >1 FPC(£I,000,2,ooo,zn) >1 C(zl,coo,r’ooo,zn)o

b) 2 >l r F-<t>2 >l <t>r; t >1 8 h-<t>2 >l <s>2.

C) 2 >1 P P-EX,a]£ >1 [x,a]F, provided x t SV(2).

d) 0 >1 8'- [X,a]2 >1 [y,B][x/y]2, provided y t FV(2).

III proper reduction, reduction and equality.

a)2>lI‘1—2>I‘;2>I‘,I‘>A1—2>A.

b) 2 >'P k-Z 2 P; 2 2 2.

c) 2 2 P h-2 = T; 2 = T F-P = 2; 2 = r, P - A1— 2 B A.

d) 2 = F, A e 2 F-A e T; 2 = T, 2 e A k-P e A.
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3.2.2. Remarks

(i) It) amounts to the principle of type inclusion (cf. 1.1.3 and 3.5).

(ii) The motivation of the restriction in Id) is clear from following example.

C(x) e [x,a]C(x). Then for arbitrary t e a by ap-
C(x)

Suppose one had [x;a]y

plication and B-reduction y e C(t), which is obviously not intended.

(iii) The restriction in IIc) excludes the possibility of both

<t>[x,a]<yc(x)>[z,c(x)]z >l <t>[x,a]yc(x) >l yc(x) and

<t>[x.a]<yc(x)>[z,C(x)]z >l <yc(x)>[z,C(t)]z, both in nf, violating CR.

In the sequel we assume an arbitrary base 9 to be fixed. By just stating a

formula we mean that it is derivable in AAEQ], for convenience further referred

to as A1.

Syntactical variables for expressions are supposed to range over Es.

3.2.3. Lemma. The monotonicity rules IIa)-d) hold also with >l replaced by >, 2 or

3.2.4. Now follows a, rather technical, definition, auxiliary to the important sub-

stitution lemma 3.2.5. Compare also definition 3.1.] (rsop's).

Definition, Given an expression 2, a sequence
2 2 a1 m 1 a . . .

Pl ,...,Pm ,xl ,...,xnn/I‘l,...,I‘m,tl,...,tn is called a regular substttutton

sequence (rss) fbr 2, if the following conditions are satisfied:

(1) 11 e 115/Fl):i (1 s i s 111).

(ii) ti 6 [?,EE/iifc’iai (1 s i s n).

(iii) If QA e Par(2) \{Pl,...,Pm}, then Par(A) n {Pl,...,Pm} = ¢.

(iv) If ya 6 FV(Z) \{xl,...,xn}, then FV(B) n {x1,...,xn} =

= Par(B) n {P1,...,Pm} = ¢.

It is easily verified that the conditions (iii) and (iv) are fulfilled if in

particular:

. m = 0 and {xl,...,xn} n SV(2) ° 0, or

. Par(2) _ {P1"'°’Pm} and FV(2) g {xl,...,xn}, and hence if

. Par(2) g {P1,...,Pm} and 2 is closed.

n

+ -> +
3.2.5. Lemma. Let P,x/2,t be both an rss for Z and for T', and let 2 R I‘, where R is

-> + + ->
>1, >, 2, . or 5. Then also [P,x/z,?]£ R [§,§/z,?]r.
Proof. Simultaneous induction on the length of deduction of 2 R P.

3.3. Canonical type assignment, uniqueness of types

The assignment function 1' generates a function 1, which assigns canonically to

each object a type and to each type a supertype, such that always 2 6 1(2).
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3.3.1. Definition. T(Z) is defined by induction on 2(2).

'1(xa) E o; 1(Pr) P.

+ + . . .T(Ci(21’°'°’zn)) [P/2]1'(i) for i 6 S0 U 81’ where p(i) = Pl"'°’Pn‘

1(<t>F) E <t>1(P); 1([x,a]F) E [x,a]1(r), where x is chosen such that x ( SV(F).

3.3.2. Lemma. 2 6 1(2) holds for any object or type 2.

Proof. Induction on 2(2).

3.3.3. Lemma. [§/?]r(c(1:’)) zucai/‘c’frfn.

Proof. Immediate by lemma 2.3.9 and the definition of T.

3.3.4. Lemma. Let ;/E be an rss for 2, then 1([;/?]2) = [§/?]1(2).

Proof. Induction on 2(2). Use lemma 3.3.3 in case 2 is a constant.

3.3.5. Theorem (uniqueness of types). t e a «'0 = 1(t).

Proof; One side is implied by lemma 3.3.2. For the other side, prove by simul-

taneous induction on the length of deduction of t e a and t = s, re5pectively,

the two statements t e 3 =10 = 1(t) and t = s s'1(t) = 1(5). The proof makes

use of the previous lemma.

3.3.6. Remark. The analogous result for supertypes does not hold (cf. 3.5).

However, in AX without rule 10) one would obtain theorem 3 .3 . 5 for supertypes as well .

3.4. Legitimacy

In this section we define the set L of legitimate expressions. Then the legiti-

mate fragment AA - 2 of AA is the theory obtained by restricting the axioms and

rules of AA, to use only expressions from L.

3 . 4. 1. Remark that L depends on the choice of Q. We might call Q a legitimate base if

o O ' O O

{Ci(p(1)) Ii 6 S0 U SI} U {1 (1) I1 6 S0 U 81} g L.

.3.4.2. For the sake of the characterization of the legitimate expressions we now

introduce a function 1*, assigning canonically to each expression a supertype.

Definition.
* * * *

1 (a ) E a for supertypes a .

1*(0) 5 1(0) for types a.

1*(t) E 1(1(t)) for objects t.

Remark. 1* may be compared to Typ* in Nederpelt [8].
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3.4.3. Definition. The set L of legitimate expressions is specified by defining by in-

duction on (d(2),c(2)) (i.e. w.d(2) + c(2), cf. 5.2), what it means for an ex-

pression 2 to be legitimate.

x“ e L iff a e L; P2 e L iff 2 e L.

aid?) 6 L iff 1:1,...,1:n, 1'(i)e 1. and p(i) 135 is an rss for Ni).
<t>r e L iff t,r e L and for some a, 0*: t c a and 1*(2) = [x,a]a*.

[x,aJF e L iff a,r e L, provided x d SV(P).

+ + + + + +
3.4.4. Lemma. Let P,x/I",t be an rss for 21 , . . . .2n, respectively, and let Q/Z be an rss

"-> -> + + + + ,
for the closed expression 2, Then also Q/[P,x/r,t]2 is an rss for 2.

Proof. Apply lema 3.2.5.

+ +. +
3.4.5. Lemma. Let 2,1"1, . . . ’Fm’tl’ . . . ,tnE L and let P,x/T,t be an rss for 2, then

[3.2/1,212 e 1..
Proof. Induction 0n 2(2). Use lemmas 3.2.5 and 3.4.4.

3.4.6. Theorem (Extended Closure) . Let 2 E L and let either 2 2 I‘, or Z 31’ T or

1(2)-:1". ThenalsoI‘eL (i.e.2ELand2->I‘-OI‘€L)-

3.5. Type inclusion, uniqueness of domains

The analogue of the uniqueness of types theorem for supertypes does not hold.

E.g. we have both [x,a]8 e [x,aJtyBe and [x,aJB e tyEe (cf. 1.1.3). However,

one does obtain a weaker result, viz. uniqueness of domains:

* *

a e [x,BJB and a e [x,y]y w’B = y .

This property is important as a justification for the above characterization of

legitimate expressions.

We state here without proof:

3.5.1. Theorem. a E [x,8]8* iff for some supertype A*, T(a) = [x,B]A*.

In order to say something more on the structure of snpertypes in AA - l, we

define the relation g of type inclusion between supertypes in L.

3.5.2. Definition. First define the relation C between supertypes in L

inductively by

(i) 0* C type for any supertype 0*.

i *

(ii) If 0* C 8*, then also [x,a]a* c [x,a]B* and <t>a c <t>8 .



Then 5 is the smallest transitive relation in L extending = and c.

3.5.3. Theorem. Let a,8,a*,8* G L. Then

* *. t t t *
(i) aeoandaeB-Oagfioraga.
.. t

(11) 0150 »1(01) ga*.

So I assigns to a legitimate type its minimal legitimate supertype. Note that a

supertype in L, which is in nf, is always of the form [xl,al] ... [xk,ak]tyge.

§4. DECIDABILITY AND CONSERVATIVITY

4.1. Sequences, trees

We use 0,0,... to range over, finite or infinite, sequences of expressions. We

define £h(o) to be the length of 0 if a is finite, 2h(o) - a if 0 is infinite.

2 will also stand for the sequence of length one, consisting of 2 only. If

£h(o) < m, then 0,p stands for the concatenation of 0 and p. We define: a s p (p

extends 0) iff there exists a sequence 1, such that 0,1 = 0.

4.1.1; Definition. A sequence 20.21,... is called a

(1) redactton sequence of 20 iff 2i >l 21+],

(11) rs-sequence of 20 iff either 2i >l 25‘” or 21 > £i+1’

(iii) +—sequence of 20 iff either 2i >l 2i+l or 2i } 2i+l or 1(2i) : zi+1°

4. 1. 2. Definition. The finite reduction sequences of a term 2 form under the partial

order < a tree, the reduction tree of 2. Analogously we have the rs-tree and

the +-tree of 2. The latter is called the big tree of 2. The set of-+-sequences

of. 2 is denoted by 3(2). 11(2) = {1| 2 + 1"].

4.1.3. Definition. h(2) will be the height of the reduction tree of 2:

h(2) = max({2h(0) I o is a reduction sequence of 2}).

Analogously, h(2) = max({£h(o) I o 6 S(2)}) is the height of the big tree of 2.

4.2. Normal forms, strong normalization

An eXpression 2 is in normal fbrm (nf) if there does not exist an expression T

such that 2 >1 T.

An expression 2 is called strongly normalizable if h(2) < w, i.e., if the re-

duction tree of 2 is well founded.
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4.3. Results

We now state the main results of the paper. The details of proofs are generally

omitted. However, section 5 will be devoted to sketching the proof of BT

(theorem 4.3.2).

4.3.1. Theorem (CR). If 2 = P, then there exists an expression A, such

that 2 2 A and T 2 A.

A proof shall not be given here. Let it suffice to remark that in AA without

the rule of n-reduction the property follows easily from the strong normaliza-

bility of AA. In the present situation, where n-reduction is included, the

proof is more complicated. It was proved by Van Daalen (cf. 1.4).

4.3.2. Theorem (BT). For every expression 2, h(2) < m. I.e., big trees in

AA are well founded.

This result implies that every expression is strongly normalizable (SN). More-

over, by CR one obtains that for each 2, there exists a unique nf r, such that

2 - P. (In contrast to its use in "uniqueness of types", uniqueness is here to

be understood with respect to E.) This unique expression will be denoted by

nf(2).

4.3. 3. Corollary. Given an expression )3 , its big tree can be effectively constructed.

Proof. Given the big trees of an object t and a type a, one can decide if

t e a; viz. by merely checking if nf(1(t)) E nf(a). By this observation it is

easy to devise an algorithm, which, when applied to an expression 2, constructs

the big tree of 2, and which can be proved to be correct by induction on h(2).

4.3.4. Corollagz. AA is decidable.

4.3.5. Let (2,?) h-A R A' assert the existence of a deduction of A R A' in AA, in

which occur only expressions from B(2) U B(F).

Lemma (transitivity). If 2',T' e B(2) U BIF) and (2',F') k-A = A', then

(2,1‘) 1- A = 11'.

4.3.6. Definition. A new measure n(T) is defined by induction on h(P):

n(F) = ( Z n(A)) + 1, where S‘(r) = {p c g(r) | gh(p) > 1}.

(OsA)€S' (r)

4.3.7. Theorem. Let Z R P, where R is =, 3,>, >1, or 8.

Then (Z,P) F—Z R T.

Proof. Induction on n(2) + n(r). Let us restrict attention to equalities. If 2

and T are both in nf, then by CR, 2 E P and we are done. So assume that 2 >1 2'.
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Then by the induction hypothesis and transitivity, (2,F) h-2' = F. Hence it is

enough to show that (2,?) b—2 = 2'. Now distinguish cases as to the last rule

applied in a deduction of 2 > 2'. We treat only one case.

Let 2 E [X,o]<x>f >l f E 2' ahd 1*(f) = [x,a]a*. It must be shown that

(E,F)1- 1*(f) = [x,a]8* for some 6* (cf. the rule of n-reduction and theorem

3.5.1). By CR, 1*(f) and [x,a]a* have a common reduct [y,y]y*. Now

n(a) + n(y) < h(2) and n(1*(f)) + n([y,y]y*) < h(2) imply that (2,T) F'a = Y

and (2,F) F—1*(f) = [y,y]y*, respectively, and consequently (2,F) F-1*(f) =

= EX,e]y*.

4.3.8. Corollary. AA is a conservative extension of AA - 2.

Proof. By theorem 4.3.7 and the closure theorem 3.4.6.

§5. PROOF OF THE BIG TREE THEOREM

The strategy of the proof of BT (theorem 4.3.2) will be to define an extension

AA - p of AA, by adding an extra rule of term formation for ordered pairs: if

T(E) = F, then (2,?) is an expression. A pair (2,2) may be considered as just a

copy of 2, F being present only for bookkeeping reasons. The reduction relation

2 and (2,1) >is extended to include the projections (2,P‘ > F. Strong norm-

alization of expressions in AA - p is proved b; using a compuiability argument.

Subsequently a map a is defined, embedding AA in 11 - p such that +-sequences

in AA give rise to longer rs-sequences in AA - p. Termination of rs-sequences

is an easy corollary of SN. Hence we may conclude that +-sequences in AA do

terminate.

5.1. Introduction of AA - p

The base 0, which was fixed under 3.2.2, is still assumed here. So AA - p will

be in fact an extension.of AAEQ].

The definition of the set E-p of expressions of AA - p involves a "forget

function" p from expressibns of AA - p to expressions of AA, consistently des

leting the second coordinates of pairs. (Hence p acts as the identity on ex-

pressions of AA.) The next two definitions should be taken as simultaneously

defining the set E-p and the function p.

5.1.1. Definition. For the definition of E - p take clauses (1) to (iv) of

the inductive definition of E (2.3.1.) and add a fifth clause:

(v) If 2 and T are in E-joand 1(p(2)) = p(F) is deducible in AA, then (2,T‘

is an object if 2 is an object and a type if 2 is a type, respectively.
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5.1.2. Definition. The function p: E«-p + E is defined inductively.

“£119 5 tzge; p(PZ) a PP”); p(x“) 5 x9“);
P(C(£l..-o.£n)) E C(p(£,)...-.p(£n)).

p(<t>2) ' <p(t)>p(2); p([x,a]2) E [x.P(u}]p(Z).

p(’2.r‘) pm.

5. 1.3. The definitions, notations and conventions from section 2. 3. are generalized"

toE-p. In particular,z(‘z.r)) =max<1<z).1(r>) + 1; d(’z.r)) = max(d(z).d(r>);
Par({2,r)) = Par(2) u Par(r); FV(Iz,rl) = FV(2) u FV(r); (2.1) > z, (2.1) > r.
[§.;/A,?]{2,T) E r[P,Ei/AJH ,[P,;/A,?]F). Substitution is only admitted if the

substitution result is in E-p again, i.e., if the substitution does not vio-

late the restriction in 5.1.1 (v). A sufficient condition for this requirement

is given in 5.1.6 below.

5.1.4. The formulas of AA - p are defined as in 2.4.

5.1.5. The axioms and rules of AA - p are those of AA (cf. 3.2.1) and additionally

II projection: (2,1) >l 2; (2,1) >1 1.

e) 2 >1 Al— (2,1) >l (11,1"); 1 >1 A -'2,r‘ >l (2,11.

Remark that now, by projection, an expression may reduce to an expression of a

different sort, i.e. an object to a type and a type to a supertype, respective-

ly. For that reason a few obvious restrictions are to be made in some of the

rules. In 11a) and IIId) we require 2 and F to be of the same sort. In IIb), t

and s have to be both objects; in IId), a and B have to be both types.

5. 1.6. The definitions and results of sections 3. 2 and 3 .3 are generalized to AA - p.
, -> -+ + + ,

Remark in particular that by lemma 3.2.5 we obtain: If P,x/F,t is an rss for 2

. + + + + . . . . . .
1n E-p, then [P,x/T,t]2 is in E-p again, and hence an admitted substitution.

Add to definition 3.3.1 the clause: 1((2,I)) 5 1(2).

5.2. Norms

The proof of SN for AA - p is essentially based on the method of proof orginat-

ed by Tait [11], and used e.g. by Prawitz [9, Appendix A] for a system of

natural deduction. The key notion of this method, computability (alternative

terminologies: convertability, validity, reductibilité), could be defined by

induction on the length of type in [11] and on the length of the end formula of

a deduction in [9]. Here it is essential that the type of a term and the end

formula of a deduction do not change under reduction of the term and the deduc-

tion, respectively. In our proof their task will be fulfilled by a norm on ex-
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pressions 7(2). Auxiliary to its definition we first introduce the measure m(2).

Note. Pairs of natural numbers are supposed to be ordered lexicographically.

5.2.1. Definition. m(Z) is defined by induction on (d(2),c(2)).

m(tyflg) = 0; m(Pr) = m(P) + 1; m(xa) = m(a) + 1;

m(Ci(2l,...,2n)) = max(m(2]),...,m(2n)) + m(1'(i)) + 1;

m(<t>P) = max(m(t),m(F)); m([x,a]F) = max(m(a),m(T)) and

m((F,A)) = max(m(F),m(A)).

5.2.2. I_.e_mLa.
(i) If 2 is an atomic expression (not 5123), then m(1(2)) < m(2)-

(ii) For all objects and types 2, m(1(2)) S m(2).

(iii) If 2 > F, then m(T) S m(2).

5. 2. 3. The norm y(Z) is going to be a, possibly empty, string of the brackets [ and 1.

Let G,H,... range over such strings. They are well ordered by <: C < H iff the

number of brackets in G is less then the number of brackets in H. A denotes the

empty string.

Definition. y(2) is defined by induction on (m(2),2(2)).

y(tyge) a A; y(2) = y(1(2)) for other atomic 2's;

1(Ex.alr) =[Y(a)]Y(I‘); ((4.11) = 1(1);

y(<t>r) = {‘6 if Y(P) = [Y(t)]G,

A otherwise.

5.2.4. Lemma.
——-—- a a. 1 n .

If y(ti) = y(ai) (1 S i S n), then y([xl ,...,xn /t1""’tn]£ 7(2).

5.2.5. Lemma.

(i) If t e a, then y(t) - 7(a).

(ii) If 2 = F, then 1(2) = 7(2).

Proof. Prove (i) and (ii) simultaneously by induction on the length of deduc-

tion in AA - p. Use lemma 5.2.4.

5.3. Computability

The notion of computability can now be defined by induction on y(2).

5.3.1. Definition. An expression 2 is campuzabfle if both

(i) 2 is strongly normalizable;

(ii) whenever 2 2 [x,a]? and t e a and t is comp, then also [x/tlr is comp.
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The definition is correct. For if 2 2 [x,a]F and t e a, then

y(t) = 7(a) < [Y(a)JY(I‘) = 7(2) and 7([x/tlI‘) = 70‘) < NE)-

5.3.2. £3225.

(i) If 2 2 F and 2 is comp, then so is F.

(ii) Let 2 not have the form [x,GJP. Then 2 is comp iff all 21 such that

2 >I 21 are comp.

Proof. Immediate by inSpection of the definiticn.

5.3.3. 22225. If 21,...,Zn are comp, then so is C(E).

Proof. Induction on h(2l) + ... + h(2n).

5.3.4. Lemma. If both 2 and t are comp, then so is <t>£.

Proof. Induction on h(2) + h(t). Assuming that <t>2 >1 2, prove that T is comp,

and apply lemma 5.3.2 (ii). Distinguish two cases:

(1) Either t > t1 and F E <t >2 or 2 > 2 and P E <t>£l' Then T is comp by
l l l l

the induction hypothesis.

(ii) 2 E [x,o]A and F E [x/tlA. Then F is comp by clause (ii) of the computa-

bility definition 5.3.1.

5.3.5. Lemma. If 2 and F are comp, then so is {Z,F\.

Proof. Again prove by induction on h(2) + h(r),that r2,1‘1 >I A implies that A

is comp.

5.3.6. Definition. 2 is called computable under substitution, (cus) if for all comp
. . + + .

expreSSions tl’°"’tn and variables x1....,xn, such that x/t is an rss for 2,

[;/?]2 is comp.

5.3.7. Theorem. A11 expressions 2 of E-p are cus.

Proof. Induction on 1(2). Let §l? be an arbitrary rss for 2, such that

tl’°"’tn are comp. Throughout the proof we abbreviate A' E [?ltlA.

The only case which is not immediate by the lemmas 5.3.3-5 and the induction

hypothesis is 2 E [x,QJP, 2' E [x,a'JF', where a' and r' are comp by the in-

duction hypothesis. We check (i) and (ii) of definition 5.3.].

(i) Suppose a - 20.21,... is a nonterminating reduction sequence of 2'. Dis-

tinguish two cases:

a) There exist finite reduction sequences 00.[x,a1]<x>fo of 2', and 01,01

of a', and 02,<x>f of P', such that o = 00.[x,ol]<x>fo,fo,fl,... .
0

Then 02,<x>fo,<x>fl,... would be a nonterminating reduction sequence

of P', contradicting the computability of F'.
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b) Case a) does not apply, i.e., no outer n-reductions are performed in

0. Then a would induce reduction sequences 00 of a' and al of P', such

that either 00 or 01 or both are nonterminating, contradicting the

fact that o' andar' are both comp.

(ii) Suppose 2' 2 [x,oIJPI. Again distinguish two cases:

a) a' 2 a2, T' 2 <x>f, x d FV(f), and so 2' 2 [x,o2]<x>f > f and
l

f 2 [X’GIJPI' Let t 8 a1 be comp. Then
+ +

[x/tll“ 2 [x/t](<x>£) a <t>f 2 <t>[x,al]I‘l >1 [x/tlI‘l. Further x,x/t,t

is an rss for P and [x/tlf' E [;,x/t,tlf. Hence by the induction

hYPOChGSiS [x/tlr' is comp and by lemma 5.3.2 (i) so is [x/t]21.
0' I

b) Case a) does not apply. Then o' 2 a1 and P' 2 [x l/xa ]TI- Hence, if

t E 0], 3180 [x/tlr' 2 [x/tll‘l and repeating the argument in a) we

find that for comp t 5 a1, [x/tll‘l is comp.

5.3.8. Corollary. A11 expressions of E-p are strongly normalizable.

5.3.9. Corollary. If 2 is an expression in E-p, then every rs-sequence

of E terminates.

Proof. Induction on (h(2),2(2)), observing that if 2 P’T, then h(P) S h(2).

5.4. Embedding AX in AK - p.

We now define a map o: E + E-p, such that to each-+-scquence of an expression

2 in AA corresponds a longer rs~sequcnce of ¢(2) in AA - p. Then corollary

5.3.9 guarantees the well foundedness of big trees in AA.

5.4.1. Definition. m(X) is defined by induction on (m(2),£(2)).

Mac“) a 'x°‘.¢(a>‘; wt) 2 r1>’3.qp<x>‘;
¢<C(z,.....zn>> s 'C(¢(z,>.....¢<2n>>.¢(x(C(f)>)‘;
¢(<t>r) : <¢(t)>¢(r) and o([x,a]P) 5 [Y.¢(a)JIX/Yl¢(r)o

5-4-2- Lemma. If 2 e B, then 2 = ¢(2) (in AA - p).

Proof. By induction on 1(2), check that m(Z) Z 2.

5.4.3. Corollagy. If 2 c P in AA, then o(2) e y(r).

5.4.4. Lemma. If t e a in AA, 2 e E, then [x9/960]¢(2) 2 9([x/tlt).

Proof. Induction on (m(2),£(2)). We show only three cases.

(i) lx/mnux) a [xmowmcam a (¢(t).w(a)‘ >l 9(t).
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(ii) [X/¢(t)l ¢(C(F)) 5 (C([x/¢(tflo(2)),[x/o(t)]¢(t(C(F)))\ 2

2 (C(o([x/tlr)),o([x/t]I(C(F))‘ E ¢(Ix/t]C(F)). Here we applied the in-

duction hypothesis on P',...,Pn and 1(C(?)) and we used lemma 3.3.3.

(iii) [x/¢(t)]¢([Y.B]P) E [z.[x/¢(t)]¢(8)][y/ZlflX/¢(t)l¢(r) 2

2 [U.Q([X/t18)3fly/UI¢([x/tlr) E ¢([x/t]Zy,8]F). (Apply induction hypo-

thesis on B and F.)

5.4.5. Lemma. If 2 >1 T in XX, then ¢(Z) > w(?).

Proof. Induction on the length of deduction of 2 > F. We show only one case.
I

Let 2 E <t>[x,a]A >l [x/tlA E F and t e a (B-reduction). Then

20;) E <¢(t)>[y.¢(a)JIX/y]¢(l\) >I [x/o(t)]o(l\) 2 ¢(r). by lemmas 5.4.3 and

. .4.

5.4.6. Lemma. If 2 E E, then @(2) > m(1(2)) -(2 either object or type).

Proof. Induction on 2(2). Two examples are:

(i) ¢(xa) s rx“.¢(a>‘ >l ¢(a) a ¢(r<x°>);

(ii) ¢(<t>F) E (o(t)>¢(P) > <¢(t)>¢(T(P)) E ¢(1(<t>r)). by the induction

hypothesis for F.

5.4.7. Ling. If 2 1» 1‘ in M, then «2) 1 «p(1‘) in M - p.

5.4.8. Corollary.If 20,...,2n is a-+-sequence in AA, then there exists

an rsEsequence from m(Zo) to ¢(Zn) in AA - p of equal or greater length.

Proof. Induction on n, using the lemmas 5.4.527.

5.4.9. Theorem. If 2 e E, then every-+-sequence of 2 terminates.

Proof. Immediate from the corollaries 5.3.9. and 5.4.8.
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SAMENVATTING

In dit proefschrift worden een aantal verschillende formele systemen
onderzocht, die alle opgevat kunnen worden als varianten van de

?x-calculus. Het bestaat uit vijf onafhankelijke artikelen, voorafgegaan

door een algemene inleiding. De artikelen zijn opgenomen in de

omgekeerde volgorde van die waarin ze werden geschreven.

In de inleiding wordt de zogenaamde sterke normalisatie-eigenschap,
één van de twee in de titel van dit proefschrift genoemde thema’s,

besproken met het oog op mogelijke toepassingen in Church-Rosser

bewijzen.

Het eerste en meest omvangrijke hoofdstuk gaat over het systeem

Mt, de uitbreiding van de zuivere ongetypeerde ?x-calculus met

constanten en axioma’s voor sunjectieve paring. Volgens het

zogenaamde surjectiviteitsaxioma kunnen alle termen van de A-calculus

worden opgevat als een paar. Hoewel door het aangeven van een model

de consistentie van Mt eenvoudig is vast te stellen, was tot dusverre

niet bekend of er door deze uitbreiding aan de bewijsbare betrekkingen

tussen de pure A-termen nieuwe toegevoegd worden. Deze vraag wordt

in hoofdstuk 1 ontkennend beantwoord.

In hoofdstuk 2 wordt een klassiek sterk normaliseringsresultaat uit

de ongetypeerde A-calculus, waarvan de betekenis in de algemene
inleiding is toegelicht, van een nieuw en eenvoudig bewijs voorzien.

Het idee uit hoofdstuk 2 om voor het afschatten van een
reductieboom gebruik te maken van een “maximaal oneconomische”

reductiestrategie wordt in hoofdstuk 3 toegepast in de getypeerde

A-calculus. Er worden twee bewijzen van sterke normalisatie gegeven,

een kort bewijs dat zeer inzichtelijk is en een gecompliceerder bewiJ's,

dat als compensatie echter extra informatie oplevert over de

structurele eigenschappen van reductiebomen.

In hoofdstuk 4 wordt in een concreet geval aangetoond dat onder de
toevoeging van surjectieve paring aan een getypeerd systeem sterke

normalisatie behouden blijft. Hieruit blijkt volgens een in de algemene
inleiding aangegeven methode dot in een zo verkregen systeem in het

algemeen ook de Church-Rosser eigenschap zal gelden. Hierdoor is het in
een dergeliJk getypeerd systeem niet nodig gebruik te maken van de
gecompliceerde methoden van hoofdstuk 1.
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Hoofdstuk 5 is een gepubliceerd artikel, dat een essentiéle bijdrage
levert aan de bewijstheorie (de zogenaamde “taaltheorie”) van

Automath-systemen. Deze systemen werden door de Nederlandse

wiskundige N.G. de Bruijn ontworpen met het doel tot een zodanige

formalisering van de wiskundige betoogtrant te komen dat
(i) het daadwerkelijk formaliseren van wiskunde uivoerbaar is;
(ii) de gecodeerde redeneringen mechanisch gecontroleerd kunnen

worden.

Aan dit project ligt een natuurlijke, logische analyse van redeneren ten

grondslag, die gebruik maakt van principes uit de A-calculus.



STELLINGEN behorende bij het proefschrift ‘Surjective pairing and
strong normalization: two themes in lambda calculus’.

Roel de Vrijer, 7 Januari 1987.

I

Laat -> de eenstapsreductie in de gelabelde A-calculus van
Hyland/Wadsworth mm (in de versie van Barendregt, zie ook blz. 3
van dit proefschrift), uitgebreid met de reductieregel

<2 MP -> Mq als q<p.

Definieer nu met inductie naar n: Mn is computable als aan de
hieronder geformuleerde voorwaarden (i) en (ii) is voldaan.

(i) Mn is sterk normaliserend;
(ii) wanneer Mn-* (AXMODRH en [Vk computable, dam is ook

((Xi = NR) M0)k computable.

(Vergelijk definitie 5.3.1 op blz. 123 van dit proefschrift.)
Analoog aan het bewijs van stelling 5.3.7 in hoofdstuk 5 van dit

proefschrift kan worden bewezen dat alle termen van de vorm Mn
computable zijn. Dat dan alle termen sterk normaliseren volgt
hieruit met een eenvoudige inductie naar de opbouw. Sterke nor-
malisatie voor Hyland/Wadsworth gelabelde reductie is een onmid-
dellijk gevolg.

Lit.: H.P. Barendregt, The Lambda Calculus, North Holland 1981.

II

Laat -) a de eenstapsreductie in de gelabelde A-calculus van

Hyland/Wadsworth zijn (in de versie van Barendregt), echter zon-
der de regel label. Wanneer men «-+ interpreteert als "’Iabel: overal

ALN leest voor Aup, en vocr Aup' de verzameling filabel-normaal-

vormen in A1N neemt, dan gaan onder deze nieuwe interpretatie
de definities en lemma’s 2.4.5-10 en 2.411(1) en (iv) uit hoofdstuk
1 van dit proefschrift zondermeer door. De relatie -) a is dan '/2- en
derhalve, vanwege lemma 2.4.120), ook x-projecteerbaar. De ge-
projecteerde relatie -> a" is precies de gelabelde reductie van Hyland

en Wadsworth in de oorspronkelijke versie.

Lit.: H.P. Barendregt, The Lambda Calculus, North Holland 1981.

J .M.E. Hyland, ‘A syntactic characterization of the equality in some

models of the A-calculus’, J. London Math. Soc. 12 (!976), p. 361-370.

C.P. Wadsworth, ‘The relation between computational and denotational

properties for Scott’s DOO-models of the lambda-calculus’, SIAM J.

Comput. 5 (!976) p. 488-521.
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Ben term t in de A-calculus heeft de range property als één van de
volgende uitspraken geldt (= tussen termen staat voor conversie).

(a) tX=tY voor alle gesloten termen X en Y;
(b) Er zijn oneindig veel gesloten termen X0,X1, . .. , zodanig dat

tXi¢tXJ~ als i¢J.

Voor termen met een normaalvorm is de range property te bewij-
zen met een eenvoudige inductie over normaalvormen. Dezelfde re-
denering kan worden toegepast om aan te tonen dat in de zuivere
getypeerde A-calculus over een basistype met oneindig veel constan-
ten alle termen de range property bezitten.

IV

De procedure die gevolgd wordt biJ' het verifieren van Automath-
teksten maakt essentieel gebruik van een principe dat—overigens
geheel onafhankelijk—door Yessenin Volpin is beschreven als
structure/e Identzfz'catz'e. Door de wijze waarop dit gebeurt lijkt de
theoretische beslisbaarheid van Automath-talen van relatief onder—
geschikt belang.

Lit.: D.'I‘. van Daalen, The language theory of Automath, dissertation

Technische Hogeschool Eindhoven (1980), p. 13,14.
A.S. Yessenin Volpin, ‘The ultra-intuitionistic criticism and the anti-

traditional program for the foundations of mathematics’. In

Intuz'tz‘om'sm and proof theory, ed. Kino, Myhill and Vesley, North

Holland (1970).

V

In de recursietheoretische literatuur is het niet ongebruikelijk om
ter verkorting van redeneringen een beroep te doen op het intuitie-
ve inzicht van de lezer dat een bepaald algoritme geformaliseerd zal
kunnen worden. Daar is op zichzelf niets tegen. Het is echter mis-
leidend dit voor te stellen als een beroep op de these van Church.
De strenge opbouw van de recursietheorie maakt een dergelijk
gebrwk van Church' these—met zijn verderstrekkende filosofische
betekenis—overbodig.



VI

Het gelijkheidsbegrip is fundamenteel en onafhankelijk van de aard
van de objecten waarop het wordt toegepast. Uit dit oogpunt is het
onwenselijk dit begrip in een specifieke context (bijvoorbeeld voor
verzamelingen, functies of keuzerijen) te definieren. De opvatting
van ondermeer Bishop en Martin-Lb‘f dat een verzameling pas is ge-
geven door de elementen en een bijbehorende “gelijkheidsrelatie” is

filosofisch twijfelachtig.
Lit.: E. Bishop, Foundations of constructive analysis, McGraw-Hill (1967).

P. Martin-Lb‘f, Intujtmm'stz'c type theory, Bibliopolis, Napels (1984).

VII

De sorites—paradox leert dat uit de aanwezigheid van recursiemecha-
nismen in natuurlijke taal niet dwingend volgt dat een adequate
grammatica voor natuurlijke taal een oneindig aantal zinnen moet
genereren.

VIII

Het conversationeel minimum bestaat niet.

Lit.: F.H. van Eemeren en R. Grotendorst, Regels vvor redelzflre discussies,

Foris (1982).
R.C. de Vrijer, ‘Ontbrekende premissen’, in Taalbelzeersmg 1'12 theon'e

en praktzjflr, red. W. Koning, Foris (1985).

IX

Het dilemma van Protagoras, ook wel bekend onder de naam
Euathlos, kan worden opgevat als een variant van de leugenaars-
paradox die is toegesneden op een procedureel waarheidsbegrip.

X

Een intuitie kan worden gedacht als opgebouwd uit twee elementen.
Het eerste is een niet volledig gearticuleerde voorstelling van hoe het
zit. Het tweede kan negatief worden omschreven als een onvermo-
gen Je voor te stellen hoe de werkelijkheid toch nog 81f zou kunnen
wijken. In de subjectieve zekerheidsbeleving speelt het tweede ele-
ment een belangrijke r01. Voor een objectieve bepaling van de
waarde van het intuitieve inzicht gaat het om het eerste.
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