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Abstract

A paradefinite logic is a logic that is both paraconsistent and paracomplete. In
this thesis, we present a set theory in a four-valued paradefinite logic that can
be viewed as the result of enriching the standard von Neumann universe for
ZFC with various non-classical sets.

Our approach differs from most previous attempts at paraconsistent or para-
complete set theory in that we do not chase increasingly general comprehension
principles. Rather, we prioritise an intuitive treatment of non-classical sets so
as to make our set theory accessible to the classical mathematician who is used
to working in classical ZFC. Moreover, as we work in a paradefinite logic, we
provide a unified account of paraconsistent and paracomplete set theory.

We provide a natural model of our set theory starting from classical ZFC.
We also show that within our theory, we can construct a class that acts as a
model of classical ZFC. This allows us to translate back and forth between
our theory and classical ZFC. Finally, we will generalize the construction of
Boolean-valued models for classical set theory to obtain algebra-valued models
of our theory.
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Introduction

The principle of explosion states that from a proposition ϕ together with its
negation ∼ϕ, all other propositions follow. A logic is said to be paraconsistent
if it does not validate this principle [24]. Dually, a paracomplete logic rejects
the law of excluded middle, which states that for any given proposition ϕ, either
ϕ is true or ∼ϕ is true [18]. Finally, a logic is called paradefinite it is both
paraconsistent and paracomplete [2].

In [5, 6], Belnap motivates a four-valued paradefinite logic by envisioning a
computer having access to a database that contains possibly inconsistent and
incomplete information being asked by a user whether a given proposition is true
or false. He argues that the computer should start by organizing the information
available to it by marking any given atomic proposition with the sign ‘told
True’ if it has information saying that the proposition is true, and marking
the proposition with the sign ‘told False’ if it has information saying that the
proposition is false. It should then assign the proposition one of the truth values
only true (1), only false (0), both true and false (b) and neither true nor false
(n).1 The labels ‘told True’ and ‘told False’ are then assigned to compound
statements involving negation, conjunction and disjunction in a natural manner
and propositions get their truth value accordingly. When the user then asks the
computer about a particular statement, the computer responds by giving the
truth value of the statement. So if the database contains conflicting information
regarding the statement, the computer will reply something along the lines “I
have both been told that this statement is true and that this statement false.”

This idea has since been expanded upon by keeping the same basic setup, but
adding new connectives besides negation, conjunction and disjunction. In [3],
a natural implication connective is added, and in [23], the logic BS4 is given
by keeping the aforementioned implication and adding a so-called classicality
operator. This operator expresses that a proposition has the truth value 1 or 0.
A predicate version is also given.

The aim of this thesis is to develop an axiomatic set theory in the predicate
version of BS4 which allows us to represent both inconsistent and incomplete
information by allowing statement of the form a ∈ b to take any one of the truth
values 1, 0, b or n. So a ∈ b can be only true, only false, both true nor false, or
it can be neither true nor false.

1Belnap refers to them as told values and denotes them by T, F, Both and Neither.
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A bit of terminology: A set a will be called classical if the proposition x ∈ a
has the truth value 1 or 0 for every x. Similarly, a will be called consistent if
for all x, the truth value of x ∈ a is 1, 0 or n, and a will be called complete if
for all x, the truth value of x ∈ a is 1, 0 or b.2

The thesis is divided into three parts. Part I serves as an introduction to
the logic BS4. Chapter 1 contains an informal introduction to the logic, and
Chapter 2 covers the syntax and semantics of BS4 and introduces a few useful
defined connectives. In Chapter 3, we introduce algebraic semantics for BS4,
based on so called “twist-structures”, from [10] and [30], originally developed
for Nelson’s constructive logic with strong negation from [20].

Part II contains the main results of the thesis. In Chapter 4, we give two
axiomatic set theories in the the predicate version of the logic BS4 called PZFC
and BZFC. The theory PZFC is arrived at by giving natural versions of the
ZFC axioms in BS4, and the theory BZFC is then obtained by adding an
axiom called the anti-classicality axiom3, abbreviated as AClA, postulating
the existence of various non-classical sets. We can think of PZFC as ZFC
without the implicit assumption that all sets are classical. The theory BZFC
can, in turn, be thought of as ZFC with said assumption replaced with the
anti-classicality axiom.

In Chapter 5, we construct a natural model, which we will call W , of BZFC
within classical ZFC. This implies that BZFC is not trivial4, assuming that
ZFC is consistent. We also show that the classical universe V can be embedded
into W . So W can be seen as the result of extending V by adding various non-
classical sets. In Chapter 6, we reverse the situation, and show that the class
of hereditarily classical sets, abbreviated as HCl, is definible in PZFC and
that it satisfies the classical ZFC axioms. Here, a hereditarily classical set is a
classical set whose members are classical sets, and so forth. This implies that
ZFC consistent if PZFC is non-trivial. We then go on to show that a sentence
is a theorem of BZFC if and only if ZFC proves that it holds in W . Similarly,
a sentence is a theorem of ZFC if and only if BZFC proves that it holds in
HCl. So from the point of view of ZFC, BZFC is the theory of W , and from
the point of view of BZFC, ZFC is the theory of hereditarily classical sets.

Part III contains the Chapters 7 and 8. In Chapter 7, we give an application
of BZFC. We show that by taking advantage of non-classical sets, we can give
semantics for BS4 that are in a sense more natural than is possible in a classical
set theory. In Chapter 8, we briefly review the construction of Boolean-valued
models for set theory and go on to generalize said construction to get algebra-
valued models for the theories PZFC and BZFC. Our models will be similar
to the ones found in [19] and [8] for paraconsistent set theory. However, by
giving slightly different interpretation of the atomic formulas, we get models of
the full theories rather than just the negation-free fragments as was the case in
[19] and [8].

2All of these are expressible in BS4.
3The name is inspired by Aczel’s anti-foundation axiom from [1].
4Recall that a theory is said to be trivial if every sentence is derivable from it.
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Chapter 1

An Informal Introduction
to the Logic

In this chapter, we shall get acquainted with the four-valued logic BS4 from [23].
The logic BS4 with its four truth values and multiple implication connectives
can at times seem counter-intuitive to the classically inclined mathematician/
logician. In order to make our introduction to BS4 as seamless as possible, we
shall follow along a fictional character, Alice, as she gradually discovers BS4
when trying to organize all the information available to her while planning a
big celebration.

It should be noted that none of the material in this chapter is original.
However, notation and terminology has been used that is not standard in the
literature.

1.1 Simple partial logic

Our story begins in early December. Our protagonist, Alice, who is an ac-
claimed logician and is known for throwing grand parties, decides to throw an
extravagant New Year’s Eve celebration. She plans to have a dinner in the
evening, followed by a party that will go on long into the night. She sends out
invitations to her friends and colleagues. She realizes that someone might want
to have New Year’s Eve dinner at home with their families but still attend the
party. Conversely, someone might want to attend the dinner but not the party.
Therefore, she asks in the invitations that people reply letting her know whether
they will be attending, and to specify which they plan to attend.

As replies begin to arrive, Alice decides to organize the information contained
in them by making five lists: I, D+, D−, P+ and P−. In I, she writes the
names of everyone whom she has invited. She writes a name n in D+/P+ if
she has received a reply stating that n will attend the dinner/party, and she
writes n in D−/P− if she has received a reply stating that n will not attend the
dinner/party.
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In order to represent the information obtained from her lists, she introduces
the predicate symbols D and P . She will regard Q(n) to be true (T) if and
only if n appears on the list Q+ and regard Q(n) to be false (F) if and only if n
appears on the list Q−, where Q is either D or P . So, for example, saying that
D(Bob) is T means that Bob has replied saying that he will be attending the
dinner, while saying that D(Bob) is F means that Bob has replied that he will
not be attending the dinner.

Now, it is possible that a name is neither in D+ nor D− since someone might
not yet have replied, or forgotten to specify whether they will attend the dinner.
The same observation holds for P+ and P−. For the moment we shall assume,
and so does Alice, that no name is in both Q+ and Q−.

She quickly realizes that at some point she will want to represent information
more complex than just “is D(n) T?” or “is D(n) F?” For example, she might
want to know whether someone has replied that they will attend the dinner but
not the party. She therefore considers formulas of the form ∼ϕ, ϕ ∧ ψ, ϕ ∨ ψ,
∃xϕ(x) and ∀xϕ(x). These formulas are read as “not ϕ”, “ϕ and ψ”, “ϕ or ψ”,
“for all x, ϕ(x)” and “there exists x such that ϕ(x)”, respectively. She settles
on the following interpretations:1

∼ϕ is

{
T iff ϕ is F

F iff ϕ is T.

ϕ ∧ ψ is

{
T iff ϕ is T and ψ is T

F iff ϕ is F or ψ is F.

ϕ ∨ ψ is

{
T iff ϕ is T or ψ is T

F iff ϕ is F and ψ is F.

∃xϕ(x) is

{
T iff ϕ(x) is T for some x ∈ I
F iff ϕ(x) is F for all x ∈ I.

∀xϕ(x) is

{
T iff ϕ(x) is T for all x ∈ I
F iff ϕ(x) is F for some x ∈ I.

As an example the statement ∃x[D(x) ∧ ∼P (x)] gets evaluated as follows:

∃x[D(x) ∧ ∼P (x)] is

{
T iff D(x) is T and P (x) is F for some x ∈ I
F iff D(x) is F or P (x) is T for all x ∈ I.

So ∃x[D(x)∧∼P (x)] is T if someone has said that they will come to the dinner
but not the party, and it is F if everyone has either stated that they will not
come to the dinner or that they will come to the party.

1I am taking this way of introducing connectives from [7].
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Remark. It is important to note that “ϕ is T” should not be read as saying that
“ϕ is necessarily true” or “Alice knows ϕ”. Take, for example, the statement
“Bob will attend the party or Bob will not attend the party”. Clearly, this is
necessarily true, and Alice knows this. However, P (Bob)∨∼P (Bob) is T if and
only if Bob has replied and specified whether he will come to the party.

At this point she sees that every sentence ϕ she can write down so far can
be T, it can be F, or it can be neither T nor F. To keep track of the three
possibilities, she defines the truth value of ϕ, which she denotes as [[ϕ]], as
follows:

[[ϕ]] :=


1 if, ϕ is T

n if, ϕ is neither T nor F

0 if, ϕ is F.

She now has on her hands a three-valued logic with truth values 1, n and 0,
and with 1 as its only designated value. The value of the connectives are given
by the following truth tables:

∼
1 0
n n
0 1

∧ 1 n 0
1 1 n 0
n n n 0
0 0 0 0

∨ 1 n 0
1 1 1 1
n 1 n n
0 1 n 0

By ordering the truth values by 0 ≤ n ≤ 1, she gets a complete lattice where
the “meet” and “join” are given by the tables above. Moreover, [[∃xϕ(x)]] =∨
x∈I [[ϕ(x)]] and [[∀xϕ(x)]] =

∧
x∈I [[ϕ(x)]].

The logic she has now described is called Simple Partial Logic in [7]. It is
also a predicate version of Kleene’s Strong Three-Valued Logic K3 from [16].

1.2 Adding an implication

When trying to decide how to formalize the statement “if D(Bob), then P (Bob)”
or rather “D(Bob) implies P (Bob)”, she notices something strange. First she
imagines that it is New Year’s Eve and the party has already started. Then the
statements “Bob attended the dinner” and “Bob attended the party” have both
turned out to be either true or false. Moreover, the statement “if Bob attended
the dinner, then Bob attended the party” will have the same truth value as
“Bob did not come to the dinner or Bob came to the party.” Going back to the
present day, she arrives at “Bob will not attend the dinner or Bob will attend
the party.” She therefore defines a connective ⊃ by ϕ ⊃ ψ := ∼ϕ ∨ ψ. It has
the following truth table:

⊃ 1 n 0
1 1 n 0
n 1 n n
0 1 1 1

4



Even though Alice sees that ⊃ has an important role to play, she decides
against formalizing the implication this way. Her reason being that ⊃ does not
allow her to carry out much deductive reasoning. To see why, suppose for a
moment that Alice wants to know if she will, at all, see Bob on New Year’s Eve.
So she wants to evaluate D(Bob) ∨ P (Bob). By consulting the truth table for
∨, she sees that if D(Bob) is T, then so is D(Bob) ∨ P (Bob). She would like to
express this by saying that “if D(Bob), then D(Bob) ∨ P (Bob)” is T. However,
if Bob has not yet replied to the invitation, then D(Bob) ⊃ D(Bob) ∨ P (Bob)
is not T.

In order to remedy this, she decides to introduce a new connective → which
is designed to more closely represent the reasoning she, herself, can carry out.
So ϕ → ψ should correspond to something like “ψ, under the assumption that
ϕ.” She settles on the following interpretation for →:

ϕ→ ψ is

{
T iff (ϕ is T) implies (ψ is T)

F iff ϕ is T and ψ is F.

This gives the following truth table:

→ 1 n 0
1 1 n 0
n 1 1 1
0 1 1 1

The propositional fragment of this logic is called K3→ in [13].

Remark. Before moving on we should emphasize the following point: Formulas
such as P (Bob) → P (Carol) should not be read as “on New Years Eve it will
be the case that Bob is at the party implies that Carol is at the party.” To see
why, simply note that if Bob has not replied, then P (Bob) → P (Carol) is T
even though it is still possible that Bob actually comes to the party and Carol
stays at home.

1.3 Dealing with contradictions

The following day disaster strikes! Alice is working in her system when she
discovers that both D(Bob) and ∼D(Bob) are T. She realizes that from this
contradiction she can derive every sentence. This means that she cannot trust
anything she has derived so far.

Rather than giving up completely, she decides to call Bob and see what is
going on. Bob informs her that when he first saw the invitation, he decided
to attend both the dinner and the party. So he sent a reply stating as much.
Later, his parents invited him to have dinner with them on New Year’s Eve,
so he wrote a new reply stating that he would attend the party but not the
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dinner. What happened is that Alice wrote Bob’s name in D+ and P+ when
she received the first reply. When she received the second reply, she also wrote
his name in D− without removing it from D+. She was therefore able to derive
that both D(Bob) and ∼D(Bob) were T.

With this information at hand, Alice decides to remove Bob’s name from
D+, thereby eliminating the contradiction. She does, however, worry that this
was not the only contradiction in her lists. So she can no longer assume that
no name appears both on Q+ and Q−, where as usual Q is either D or P .

To account for this possibility she does not have to change much. She leaves
the T/F-conditions for D(n), P (n), ∼ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ , ∃xϕ(x) and
∀xϕ(x) unchanged. By doing so, she now gets four possibilities for each ϕ: ϕ
can be only T, only F, neither T nor F, or ϕ can be both T and F. She denotes
the four possibilities by [[ϕ]] = 1, [[ϕ]] = 0, [[ϕ]] = n and [[ϕ]] = b, respectively. She
therefore has on her hands a four-valued logic with 1, b, n, and 0 as truth values
and 1 and b as designated values. The connectives now have the following truth
tables:

∼
1 0
b b
n n
0 1

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

→ 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 1 1 1
0 1 1 1 1

She can now order the truth values by 0 ≤ n ≤ 1 and 0 ≤ b ≤ 1 and once
again get a complete lattice with join ∨ and meet ∧ and [[∃xϕ(x)]] =

∨
x∈I [[ϕ(x)]]

and [[∀xϕ(x)]] =
∧
x∈I [[ϕ(x)]]. This lattice is called L4 in [5] and the propositional

fragment of the logic is called 4CL in [2], B→4 in [21] and FDE→ in [13].
Alice can now handle receiving contradictory replies without trivializing her

system. For example, if Carol replied stating that she will attend the party and
replied stating that she will not attend the party, then the proposition P (Carol)
is both T and F, i.e., [[P (Carol)]] = b. This does not imply that every statement
is T. It simply means that Carol has provided contradictory replies.

Finally, in light of what happened with Bob, she decides to add a connective
to be able to express that a proposition has the truth value 1 or 0. She therefore
defines the unary connective ◦ by

◦ϕ is

{
T iff [[ϕ]] = 1 or 0

F iff [[ϕ]] = b or n.

It has the following truth table:

6



◦
1 1
b 0
n 0
0 1

As an example, ◦P (Carol) is T iff Carol has either replied that she will
attend the party or she has replied that she will not attend the party, but not
both. On the other hand, P (Carol) is F iff Carol has not provided a reply
concerning the party or she has provided contradictory replies.

Alice has now arrived at the predicate version of BS4 from [23] but without
equality.

7



Chapter 2

The Logic BS4

In this chapter, we make precise the logic BS4 outlined in Chapter 1. We
will also introduce a few concepts and connectives that will be of use in later
chapters.

Our presentation will differ slightly from [23], and notation and terminology
has been used that is not standard in the literature.

2.1 Syntax

Let us start by fixing the logical symbols we shall be working with. They are
the following:

1. A countable infinite set of variables;

2. the logical connectives ∼, ∧, ∨ and →;

3. the propositional constant ⊥;

4. the quantifiers ∃ and ∀;

5. the equality symbol =;

6. the brackets (, ), [ and ].

From here the syntax is defined exactly as usual per classical predicate logic.

Remark. For practical reasons, we opted to include the propositional constant
⊥ in our basic syntax, rather than the connective ◦ from Chapter 1. However,
it will become apparent that this results in an definitionally equivalent logic.

2.2 Semantics

While the syntax is the same as for classical predicate logic, the semantics is
very slightly different since we need to take into account the separation of truth
from falsity.

8



Definition 2.2.1. A T/F-structure or model M in a language L consists of

1. a non-empty set M , called the domain of M;

2. an element cM ∈M for every constant symbol c in L;

3. a function fM : Mn →M for every n-ary function symbols f from L;

4. a pair of n-ary relations R+
M ⊆Mn and R−M ⊆Mn for every n-ary relation

symbol R in L;

5. a pair of binary relations =+
M⊆M ×M and =−M⊆M ×M such that for

all m,n ∈M ,

(a) m =+
M n iff m = n, i.e., =+

M is the real equality on M , and

(b) m =−M n iff n =−M m.1

We let LM denote the language obtained by adding a new constant symbol
cm to L for each m ∈ M . We will regard M as a T/F-structure in LM with
(cm)M = m and usually just write m instead of cm.

Definition 2.2.2. Let M be a T/F-model and ϕ be a sentence in LM . We
recursively define what it means for ϕ to be true (T) or false (F) in M as
follows:

⊥ is

{
T never

F always.

t = s is

{
T iff tM =+

M sM

F iff tM =−M sM.

R(t1, ..., tn) is

{
T iff (tM1 , ..., tMn ) ∈ R+

M
F iff (tM1 , ..., tMn ) ∈ R−M.

∼ϕ is

{
T iff ϕ is F

F iff ϕ is T.

ϕ ∧ ψ is

{
T iff ϕ is T and ψ is T

F iff ϕ is F or ψ is F.

ϕ ∨ ψ is

{
T iff ϕ is T or ψ is T

F iff ϕ is F and ψ is F.

ϕ→ ψ is

{
T iff ϕ is T implies ψ is T

F iff ϕ is T and ψ is F.

∃xϕ(x) is

{
T iff ϕ(m) is T for some m ∈M
F iff ϕ(m) is F for all m ∈M.

1The condition (b) is not included in the original formulation from [23].
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∀xϕ(x) is

{
T iff ϕ(m) is T for all m ∈M
F iff ϕ(m) is F for some m ∈M.

We write M �4 ϕ, and say that M is a T/F-model of ϕ, if ϕ is true in M.

Definition 2.2.3. LetM be a T/F-model, and Σ and ∆ be theories. We write
M �4 Σ, and call M a T/F-model of Σ, if M �4 ϕ for all ϕ ∈ Σ. We write
Σ �4 ∆ if every T/F-model of Σ is a T/F-model of ∆. We say that Σ is trivial
if Σ �4 ⊥.

Definition 2.2.4. LetM be a T/F-model and ϕ be an LM -sentence. We define
the truth value [[ϕ]]M of ϕ in M by

[[ϕ]]M :=


1 if ϕ is T

b if ϕ is both T and F

n if ϕ is neither T nor F

0 if ϕ is F.

Now, [[⊥]]M = 0 and the truth value of ∼ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ → ψ are
obtained by the following truth tables:

∼
1 0
b b
n n
0 1

∧ 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨ 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

→ 1 b n 0
1 1 b n 0
b 1 b n 0
n 1 1 1 1
0 1 1 1 1

By ordering the truth values by 0 ≤ n ≤ 1 and 0 ≤ b ≤ 1, we get the complete
lattice L4 from [5]. It has the join ∨ and meet ∧ and [[∃xϕ(x)]] =

∨
x∈M [[ϕ(x)]]

and [[∀xϕ(x)]] =
∧
x∈M [[ϕ(x)]].

Definition 2.2.5. LetM be a T/F-model and ϕ be a sentence. We say that ϕ
is classical in M if [[ϕ]]M ∈ {1, 0}. Similarly, we say that a sentence is consistent
in M if [[ϕ]]M 6= b and complete if [[ϕ]]M 6= n. A sentence is said to be classi-
cal/consistent/complete if it is classical/consistent/complete in all T/F-models.

2.3 Defined connectives

At this point we have become fairly well acquainted with the logic BS4. Now
we will examine a few additional connectives, defined in terms of the primitive
ones, that that will prove useful in our later treatment of set theory.

We define the bi-implication connective ↔ by letting

ϕ↔ ψ := ϕ→ ψ ∧ ψ → ϕ.
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Its T/F-conditions are given by

ϕ↔ ψ is

{
T iff (ϕ is T) if and only if (ψ is T)

F iff (ϕ is T and ψ is F) or (ϕ is F and ψ is T).

and it has the following truth table:

↔ 1 b n 0
1 1 b n 0
b b b n 0
n n n 1 1
0 0 0 1 1

We read ↔ as “if and only if”. The main appeal of ↔ is that if ϕ and ψ are
sentences and Γ �4 ϕ↔ ψ, then ϕ and ψ are true in precisely the same models
of Γ. Moreover, if χ is a sentence and χ′ is obtained from χ by replacing an
occurrence of ϕ in χ, that is not in the scope of a ∼-negation symbol, by ψ,
then χ and χ′ are true in precisely the same models of Γ.

In order to motivate our next pair of connectives, we first point out what the
connectives → and ↔ do not tell us: Consider a modelM and sentences ϕ and
ψ with [[ϕ]]M = 1 and [[ψ]]M = b. ThenM �4 ϕ→ ψ, butM 24 ∼ψ → ∼ϕ. So
we do not have contraposition for →, i.e.,

ϕ→ ψ 24 ∼ψ → ∼ϕ.

Moreover, M �4 ϕ↔ ψ, but M 24 ∼ψ ↔ ∼ϕ. Therefore,

ϕ↔ ψ 24 ∼ψ ↔ ∼ϕ.

This second point is particularly important. It tells us that even if M �4

ϕ↔ ψ andM �4 χ, we cannot concludeM �4 χ
′, where χ′ is obtained from χ

by replacing ϕ with ψ in the scope of a ∼-negation symbol. The connective ↔
is therefore not a good notion of equivalence.

With this in mind we introduce the connectives ⇒ and ⇔ by letting

ϕ⇒ ψ := ϕ→ ψ ∧ ∼ψ → ∼ϕ and ϕ⇔ ψ := ϕ⇒ ψ ∧ ψ ⇒ ϕ.2

Their T/F-conditions, for a given T/F-model M, are then given by

ϕ⇒ ψ is

{
T iff [[ϕ]]M ≤ [[ψ]]M

F iff ϕ is T and ψ is F.

2To the best of my knowledge, the connectives ⇔ and ⇒ first appeared in [25] and chapter
XII of [26], respectively.
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ϕ⇔ ψ is

{
T iff [[ϕ]]M = [[ψ]]M

F iff (ϕ is T and ψ is F) or (ϕ is F and ψ is T).

They have the following truth tables:

⇒ 1 b n 0
1 1 0 n 0
b 1 b n 0
n 1 n 1 n
0 1 1 1 1

⇔ 1 b n 0
1 1 0 n 0
b 0 b n 0
n n n 1 n
0 0 0 n 1

Now, if ϕ⇔ ψ is true inM, then ϕ and ψ have the same truth value inM.
We can therefore substitute instances of ϕ and ψ for each other in a sentence
without changing the truth value of that sentence. On the other hand, ϕ ⇔ ψ
is false in M iff one of ϕ and ψ is true and the other is false. We will ⇔ as “is
equivalent to”.

We define the classical negation ¬ by letting ¬ϕ := ϕ → ⊥. It has the
following truth table:

¬
1 0
b 0
n 1
0 1

The classical negation allows us to express the absence of truth, in the sense
that ¬ϕ is true in a modelM precisely when ϕ is not true inM, i.e.,M �4 ¬ϕ
iff M 24 ϕ. Similarly, ¬ϕ is false in M iff ϕ is true in M. This gives the
following T/F-conditions:

¬ϕ is

{
T iff ϕ is not T

F iff ϕ is T.

It follows that ¬ϕ is a classical sentence.
Now that we have the classical negation, we can introduce unary connectives

! and ? by letting
!ϕ := ∼¬ϕ and ?ϕ := ¬∼ϕ.3

Their T/F-conditions are

!ϕ is

{
T iff ϕ is T

F iff ϕ is not T.

?ϕ is

{
T iff ϕ is not F

F iff ϕ is F.

3I am taking the connectives ! and ? from linear logic. See, e.g., [29].
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So ! expresses the presence of truth, while ? expresses the absence of falsity.
They have the following truth tables:

!
1 1
b 1
n 0
0 0

?
1 1
b 0
n 1
0 0

A key feature of ! and ? is that !ϕ and ?ϕ are classical sentences. Moreover,
in a given T/F-model,

ϕ is T if and only if !ϕ is T, and

ϕ is F if and only if ?ϕ is F.

We are therefore able to completely describe the T/F-conditions of a sentence
in terms of a pair of classical sentences. That is, ϕ has the T-condition of !ϕ
and F-condition of ?ϕ. The following observation will also prove useful:

ϕ is classical in M iff [[!ϕ]]M = [[?ϕ]]M;

ϕ is consistent in M iff [[!ϕ]]M ≤ [[?ϕ]]M;

ϕ is complete in M iff [[?ϕ]]M ≤ [[!ϕ]]M.

Accordingly, we introduce the connectives ◦, ◦con and ◦com by letting

◦ϕ := !ϕ⇔ ?ϕ, ◦conϕ := !ϕ⇒ ?ϕ and ◦com ϕ := ?ϕ⇒ !ϕ.

They have the following truth tables:

◦
1 1
b 0
n 0
0 1

◦con
1 1
b 0
n 1
0 1

◦com
1 1
b 1
n 0
0 1

Remark. Before moving on, we should address the following point: Some might
find it distasteful to include the constant ⊥ when working in a paraconsistent
logic because it allows us to define the classical negation. However, if L is a
language with finitely many relation symbols, then we could just as well have
defined ⊥ by

⊥ = ∀x∀y(x = y ∧ x 6= y) ∧
∧
P∈L
∀x1, ..., xn(P (x1, ..., xn) ∧ ∼P (x1, ..., xn)).

Since we will focus on set theory, we do not have any reservations about ⊥.
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2.4 Proofs in BS4

Considering that the aim of this thesis is to develop an axiomatic set theory is
BS4, it stands to reason that we dedicate a little space discussing proofs BS4.
Here, we are going to provide a sound and complete Hilbert-style proof system
for BS4. The system is a slight modification on the one originally given in [23].

First, we notice that the T-conditions for the connectives ∧, ∨ and → are
just the ones we are used to from the semantics for classical logic. For example,
ϕ ∧ ψ is true in a particular T/F-model if and only if both ϕ and ψ are true
in said T/F-model. The same observation goes for the quantifiers, ⊥ and the
equality symbol. This tells us that we should expect the axioms and inference
rules that determine the behaviour of these symbols in classical logic to stay the
same in BS4. We therefore introduce our first batch of axioms and inference
rules.

• The first batch of axioms:

1. ϕ→ (ψ → ϕ)

2. (ϕ→ (ψ → χ))→
((ϕ→ ψ)→ (ϕ→ χ))

3. ϕ ∨ (ϕ→ ψ)

4. (ϕ ∧ ψ)→ ϕ

5. (ϕ ∧ ψ)→ ψ

6. ϕ→ (ψ → (ϕ ∧ ψ))

7. ϕ→ (ϕ ∨ ψ)

8. ψ → (ϕ ∨ ψ)

9. (ϕ→ χ)→ ((ψ → χ)→
((ϕ ∨ ψ)→ χ))

10. ⊥ → ϕ

11. ∀xϕ(x)→ ϕ(t)

12. ϕ(t)→ ∃xϕ(x)

13. x = x

14. x = y → [ϕ(x)→ ϕ(y)]

• The inference rules:

– From ϕ and ϕ→ ψ, infer ψ (modus ponens).

– Infer ϕ→ ∀xψ from ϕ→ ψ, provided x does not occur free in ϕ.

– Infer ∃xϕ→ ψ from ϕ→ ψ, provided x does not occur free in ψ.

We still need axioms that determine the behavior of the ∼-negation. These are
obtained by looking at the F-conditions for formulas, and noting that ∼ϕ should
be true iff ϕ is false.

• Additional axioms for BS4:

15. ∼∼ϕ↔ ϕ

16. ∼(ϕ ∧ ψ)↔ (∼ϕ ∨ ∼ψ)

17. ∼(ϕ ∨ ψ)↔ (∼ϕ ∧ ∼ψ)

18. ∼(ϕ→ ψ)↔ (ϕ ∧ ∼ψ)

19. ϕ→ ∼⊥
20. ∼∀xϕ↔ ∃x∼ϕ
21. ∼∃xϕ↔ ∀x∼ϕ
22. ∼(x = y)→ ∼(y = x).4

4Axiom 22. is not a part of the original formulation.
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If Σ ∪ {ϕ} is a set of formulas, then we write Σ `BS4 ϕ to indicate that ϕ is
derivable from Σ in this system.

Proposition 2.4.1. If Σ ∪ {ϕ,ψ} is a set of formulas, then

Σ, ϕ `BS4 ψ if and only if Σ `BS4 ϕ→ ψ.

Proof. This is established by the usual proof using axioms 1. and 2. together
with modus ponens.

The completeness of this system is a consequence of Corollary 5.15 from [27].

Theorem 2.4.2. If Σ ∪ {ϕ} is a set of sentences, then

Σ `BS4 ϕ if and only if Σ �4 ϕ.

Proposition 2.4.3. The following formulas are theorems of BS4:

i. ∼∼ϕ⇔ ϕ

ii. ∼(ϕ ∧ ψ)⇔ ∼ϕ ∨ ∼ψ

iii. ∼(ϕ ∨ ψ)⇔ ∼ϕ ∧ ∼ψ

iv. ∼∃xϕ⇔ ∀x∼ϕ

v. ∼∀xϕ⇔ ∃x∼ϕ

vi. x = y → [ϕ(x)⇔ ϕ(y)]

vii. (ϕ→ ψ)⇔ (¬ϕ ∨ ψ)

viii. ∼(ϕ⇒ ψ)↔ (ϕ ∧ ∼ψ)

ix. ∼(ϕ⇔ ψ)↔ [(ϕ∧∼ψ)∨(∼ϕ∧ψ)]

x. ϕ↔ !ϕ

xi. ∼ϕ↔ ∼?ϕ

xii. ¬ϕ⇔ ∼!ϕ

xiii. ϕ(x)⇔ ∃y[ϕ(y) ∧ !(x = y)].

Proof. We will only prove xiii. Just as in classical logic, we have

`BS4 ϕ(x)↔ ∃y[ϕ(y) ∧ x = y].

Using x, we get
`BS4 ϕ(x)↔ ∃y[ϕ(y) ∧ !(x = y)].

On the other hand

`BS4 ∼∃y[ϕ(y) ∧ !(x = y)]⇔ ∀y[∼ϕ(y) ∨ ∼!(x = y)]

⇔ ∀y[∼ϕ(y) ∨ ¬(x = y)]

⇔ ∀y[x = y → ∼ϕ(y)]

and
`BS4 ∼ϕ(x)↔ ∀y[x = y → ∼ϕ(y)].

Thus
`BS4 ϕ(x)⇔ ∃y[ϕ(y) ∧ !(x = y)].

15



Chapter 3

Algebraic Semantics

In this chapter, we will follow Fidel [10], Vakarelov [30] and Odinstov [22] and
introduce a class of algebras called twist-structures. We then go on to define
twist-valued models for BS4.

It should be noted that what we call a twist-structure is a special case of a
twist-structure from [22], and that our twist-valued models are a straightforward
generalization of similar models from [9].

3.1 Twist-structures

Let us suppose we have a T/F-structure M and a sentence ϕ. The truth value
[[ϕ]] of ϕ in M represents two things. First, it represents whether ϕ is true in
M, and second, it represents whether ϕ is false in M. We can therefore view
[[ϕ]] as a pair of bits ([[ϕ]]+, [[ϕ]]−) ∈ {0, 1}2, where [[ϕ]]+ = 1 if and only if ϕ is
true in M, and [[ϕ]]− = 1 if and only if ϕ is false in M. We can now represent
the four truth values 1, b, n and 0 as follows:

1 = (1, 0), b = (1, 1), n = (0, 0) and 0 = (0, 1).

Moreover, if we view {1, 0} as the two element Boolean algebra, we can calculate
the truth values of ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ and ∼ϕ as follows:

[[ϕ ∧ ψ]] = ([[ϕ]]+ ∧ [[ψ]]+, [[ϕ]]− ∨ [[ψ]]−)

[[ϕ ∨ ψ]] = ([[ϕ]]+ ∨ [[ψ]]+, [[ϕ]]− ∧ [[ψ]]−)

[[ϕ→ ψ]] = ([[ϕ]]+ → [[ψ]]+, [[ϕ]]+ ∧ [[ψ]]−)

[[∼ϕ]] = ([[ϕ]]−, [[ϕ]]+).

This leads us to the following definition.

Definition 3.1.1. Let B = (B,∧,∨,→, 1, 0) be a Boolean algebra. The full
twist-structure B./ over B is the algebra (B × B,∧,∨,→,∼, 1, 0), where 1 :=

16



(1, 0), 0 := (0, 1) and for all (a, b), (c, d) ∈ B ×B,

(a, b) ∧ (c, d) := (a ∧ c, b ∨ d)

(a, b) ∨ (c, d) := (a ∨ c, b ∧ d)

(a, b)→ (c, d) := (a→ c, a ∧ d)

∼(a, b) := (b, a).

A twist-structure over B is any subalgebra A = (A,∧,∨,→,∼, 1, 0) of B./ such
that π1[A] = B, where π1 : B×B → B is the projection onto the first coordinate.

Remark. Notice that π1[A] = π2[A] since A is closed under ∼. The condition
that π1[A] = B ensures that B is a subalgebra of A : We let B∗ be the twist-
structure over B given by

B∗ := {(x,¬x) : x ∈ B}.

Then it is easy to check that B∗ ∼= B and that B∗ is a subalgebra of A. We will
therefore identify B∗ with B and view any Boolean algebra as a twist structure
satisfying ¬a = ∼a, where ¬a is defined as a→ 0.

It is also worth noting that any subalgebra of a twist-structure is again a
twist structure. However, it need not be a twist-structure over the same Boolean
algebra.

Example 3.1.2. There are four twist structures over the two element Boolean
algebra {1, 0}. Namely, {1, 0} itself, {1, b, 0}, {1, n, 0} and the full twist structure
{1, 0}./ = {1, b, n, 0}.

Definition 3.1.3. Let A be a twist-structure over a Boolean algebra B and let
a ∈ A. We let a+ and a− be the elements of B such that

a = (a+, a−),

i.e., a+ := π1(a) and b− := π2(a). Moreover, we let

X+ := π1[X] and X− := π2[X]

for X ⊆ A.

Example 3.1.4. Twist-structures can often help us better understand defined
connectives. For example, if A is a twist-structure and a ∈ A, then

¬a = (¬a+, a+), !a = (a+,¬a+) and ?a = (¬a−, a−).

We can view any twist-structure A as a lattice with the ordering a ≤ b iff a∧
b = a. This gives

a ≤ b iff a+ ≤ b+ and b− ≤ a−

for all a, b ∈ A. Moreover, 1 and 0 are its top and bottom elements, respectively.
The following proposition is immediate.
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Proposition 3.1.5. If B is a complete Boolean algebra, then B./ is a complete
lattice with ∨

X =
(∨

X+,
∧
X−
)

and∧
X =

(∨
X+,

∧
X−
)

for all X ⊆ B ×B.

Definition 3.1.6. We say that a twist-structure A over a Boolen algebra B is
complete if B is a complete Boolean algebra and A is a complete sublattice of
B./.

Definition 3.1.7. Let A be a twist-structure over a Boolean algebra B. We
define the relations � and ≈ on A by letting

a � b iff a+ ≤ b+, and

a ≈ b iff a+ = b+

for all a, b ∈ A.

Proposition 3.1.8. If A is a twist-structure and a, b ∈ A, then

(a→ b) ≈ 1 iff a � b, and

(a⇒ b) ≈ 1 iff a ≤ b.

3.2 Twist-valued models

We can now generalize the notion of a T/F-model for BS4, where the truth value
of sentences are elements of the twist-structure {1, b, n, 0}, to models where
the truth value of sentences are elements any fixed complete twist-structure.
This also generalizes the notion of a Boolean-valued model since any complete
Boolean algebra is also a complete twist-structure.

Definition 3.2.1. An twist-valued model M in a language L consists of

1. a non-empty set M , called the domain of M;

2. a complete twist-structure A;

3. an element cM ∈M for every constant symbol c in L;

4. a function fM : Mn →M for every n-ary function symbols f from L;

5. an n-ary function RM : Mn → A for every n-ary relation symbol R in L;

6. a function eqM : M ×M → A such that for all a, b, c, a1, ..., an, b1, ..., bn ∈
M, and for every n-ary function symbol f and n-ary relation symbol R,

(a) eqM(a, a) ≈ 1;
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(b) eqM(a, b) = eqM(b, a);

(c) eqM(a, b) � eqM(a, c)⇔ eqM(b, c);

(d) eqM(a1, b1)∧ ...∧ eqM(an, bn) � eqM(fM(a1, ..., an), fM(b1, ..., bn));

(e) eqM(a1, b1) ∧ ... ∧ eqM(an, bn) � RM(a1, ..., an)⇔ RM(b1, ..., bn).

Definition 3.2.2. LetM be a twist-valued model and ϕ be a sentence in LM .
We recursively define the truth value [[ϕ]]M of ϕ in M by letting

1. [[⊥]]M := 0,

2. [[a = b]]M := eqM(a, b) for all a, b ∈M ;

3. [[R(a1, ..., an)]]M := RM(a1, ..., an) for all a1, ..., an ∈M,

4. [[∼ϕ]]M := ∼[[ϕ]]M;

5. [[ϕ ∗ ψ]]M := [[ϕ]]M ∗ [[ψ]]M for ∗ ∈ {∨,∧,→};

6. [[∃xϕ]]M :=
∨
x∈M [[ϕ]]M and [[∀xϕ]]M :=

∧
x∈M [[ϕ]]M.

We writeM �Tw ϕ and say that ϕ is true in M if [[ϕ]]M ≈ 1, i.e., ([[ϕ]]M)+ = 1.

Theorem 3.2.3. If Σ be a theory in a language L and ϕ is an L-sentence, then

Σ `BS4 ϕ iff Σ �Tw ϕ.

Proof. As soundness is routine to verify, we will only show that Σ �Tw ϕ implies
Σ `BS4 ϕ. By a standard argument it suffices to show that if Σ is non-trivial,
then it has a twist-valued model. Now, every non-trivial theory has a T/F-
model by the completeness theorem for BS4. Since every T/F-model is also a
twist-valued model, the result follows.
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Part II

Paradefinite
Zermelo–Fraenkel Set

Theory
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Chapter 4

The Axioms

We are now ready to begin begin our investigation of set theory in the logic
BS4. We should note that the aim of our set theory is not to solve any of the
paradoxes of naive set theory, or to allow the formation of paradoxical sets such
as the Russell set or the universal set.1 Rather, we aim to provide a set theory
that is able to represent both inconsistent and incomplete information in an
intuitive manner.

In this chapter, we will lay down the axioms of our set theory, introduce its
basic concepts and definitions, and derive a few of its consequences. Throughout
this chapter we will work in the logic BS4. We work in the language of set theory
which has the binary symbol ∈ as its only non-logical symbol. Our domain of
discourse will contain only sets, meaning that the variables will range over sets
only. Just as in classical set theory, we are going to use informal arguments,
formulated in English, which can be translated into BS4.

4.1 Extensionality

Let us begin by introducing our axiom of extensionality. Our axiom is inspired
by similar axioms from [11] and [14].

Axiom 1 (Extensionality).

∀u∀v[u = v ⇔ ∀x(x ∈ u⇔ x ∈ v)].

Our motivation for this axiom is as follows: If u is a set, then it is natural
to think of u as the extension of the predicate x ∈ u. Moreover, if v is also a
set, then it is natural to interpret u = v as saying that the predicates x ∈ u and
x ∈ v have the same extensions. When we say that the predicates x ∈ u and
x ∈ v have the same extensions, we mean that they are equivalent for every x.
Since we use ⇔ to express equivalence, we get our axiom.

1I highly recommend [15] for an overview of set theories that go in this direction.
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Definition 4.1.1. Let a and b be sets. We say that a is a subset of b and write
a ⊆ b if ∀x(x ∈ a⇒ x ∈ b).

We easily obtain the following.

Proposition 4.1.2. For all u and v,

u = v ⇔ u ⊆ v ∧ v ⊆ u.

Definition 4.1.3. Let u and v be sets. We write u /∈ v, u 6= v and u * v as
abbreviations for ∼(u ∈ v), ∼(u = v) and ∼(u ⊆ v), respectively.

Proposition 4.1.4. For all u and v,

i. u * v ↔ ∃x(x ∈ u ∧ x /∈ v)

ii. u 6= v ↔ ∃x(x ∈ u ∧ x /∈ v) ∨ ∃x(x /∈ u ∧ x ∈ v).

Proof. We have

u * v ⇔ ∼∀x(x ∈ u⇒ x ∈ v)

⇔ ∃x∼(x ∈ u⇒ x ∈ v)

↔ ∃x(x ∈ u ∧ x /∈ v)

and

u 6= v ⇔ u * v ∨ v * u

↔ ∃x(x ∈ u ∧ x /∈ v) ∨ ∃x(x /∈ u ∧ x ∈ v).

Thus two sets are unequal if and only if one set contains an element that the
other does not.

4.2 Classes and separation

If u is a set and ϕ(x) is a formula such that ∀x[x ∈ u⇔ ϕ(x)], then we denote
u by the expression {x : ϕ(x)}. Now, the axiom of extensionality tells us that if
{x : ϕ(x)} denotes a set, then it is unique. However, the expression {x : ϕ(x)}
need not denote any set at all.

To see why, consider the class R := {x : ¬(x ∈ x)}, i.e., the Russell class
w.r.t. the classical negation. If R denotes a set, then either R ∈ R or ¬(R ∈ R).
If R ∈ R, then ¬(R ∈ R) and therefore ⊥. One the other hand, if ¬(R ∈ R),
then R ∈ R, so ⊥. In either case, we get ⊥.

With the above in mind we introduce the informal notion of a class. Given
a formula ϕ(x), we denote the class or collection of sets x such that ϕ(x) by
the expression {x : ϕ(x)}. We give the following definition to make this notion
formal.
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Definition 4.2.1. Let u be a set, and let ϕ(x) and ψ(x) be formulas with x as
a free variable. We introduce the following abbreviations:

u = {x : ϕ(x)} :⇔ ∀x[x ∈ u⇔ ϕ(x)]

{x : ϕ(x)} = u :⇔ ∀x[ϕ(x)⇔ x ∈ u]

{x : ϕ(x)} = {x : ψ(x)} :⇔ ∀x[ϕ(x)⇔ ψ(x)]

u ∈ {x : ϕ(x)} :⇔ ϕ(u)

{x : ϕ(x)} ∈ u :⇔ ∃y[y ∈ u ∧ !∀x(ϕ(x)⇔ x ∈ y)]

{x : ϕ(x)} ∈ {x : ψ(x)} :⇔ ∃y[ψ(y) ∧ !∀x(ϕ(x)⇔ x ∈ y)].

Remark. Recall from Proposition 2.4.3 that

`BS4 ψ(x)⇔ ∃y[ψ(y) ∧ !(x = y)].

This explains the appearance of the !-connective in the definition above.

Definition 4.2.2. We define the classes

V := {x : !(x = x)} and ∅ := {x : ¬(x = x)},

called the universe and the empty set, respectively.

We easily get the following proposition.

Proposition 4.2.3. For all x,

x ∈ V ⇔ > and x ∈ ∅ ⇔ ⊥.

Notice that given a class A, A ∈ V ⇔ ∃x!(x = A). We therefore give the
following definition.

Definition 4.2.4. We say that a class A is a set if ∃x!(x = A). A class is said
to be a proper class if it is not a set.

Let us now give our version of the axiom schema of separation.

Axiom 2 (Separation).

∀u∃v∀x[x ∈ v ⇔ x ∈ u ∧ ϕ(x)],

where v is not free in ϕ(x).

It follows that given a set u and a formula ϕ(x), the class {x ∈ u : ϕ(x)} is
a set. Here, {x ∈ u : ϕ(x)} is shorthand for {x : x ∈ u ∧ ϕ(x)}.
Remark. Strictly speaking, our axiom schema states that the class {x ∈ u :
ϕ(x)} is equal to a set, which is slightly different than saying that {x ∈ u : ϕ(x)}
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is a set according to Definition 4.2.4. If we wanted a axiom schema that directly
states that {x ∈ u : ϕ(x)} is a set, we could have taken

∀u∃v![v = {x : x ∈ u ∧ ϕ(x)}]

as our axiom schema. Writing this out explicitly gives

∀u∃v!∀x[x ∈ v ⇔ x ∈ u ∧ ϕ(x)].

This is true if and only if our separation axiom is true.

Proposition 4.2.5. The class ∅ is a set and V is a proper class.

Proof. By virtue of the logic alone, we know that some set u exists. Moreover,
⊥ ⇒ x ∈ u for all x, and therefore ∅ ⊆ u. By applying the axiom of separation,
we see that ∅ is indeed a set.

To see why V is a proper class, we note that if V is a set, then R = {x :
¬(x ∈ x)} is also a set. As we have already seen, this leads to ⊥.

Definition 4.2.6. We define the operations of union, intersection and compli-
ment on classes the classes A and B by letting

A ∪B := {x : x ∈ A ∨ x ∈ B};
A ∩B := {x : x ∈ A ∧ x ∈ B};
A \B := {x : x ∈ A ∧ x /∈ B},

respectively.

4.3 Classical sets

Recall from Section 2.3 that we can express that a formula is classical using the
connective ◦. That is to say, ◦ϕ is true iff ϕ is either true or false but not both.
Moreover, the formula ◦ϕ is itself classical, so ◦ϕ is false iff ϕ is both true and
false or ϕ is neither true nor false. We repeat the truth table for ◦ here for easy
reference.

◦
1 1
b 0
n 0
0 1

Definition 4.3.1. We say that a set u is classical and write Cl(u) if ∀x[◦(x ∈
u)].

The nice thing about classical sets is that we are already familiar with them
from classical set theory. As usual, we can represent a classical set u by drawing
a circle and declaring that the elements of u are the things appearing inside the
circle, and anything outside the circle is not an element of u. (See Figure 4.1.)
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u

V

1

0

Figure 4.1: The truth value of x ∈ u, where u is a classical set. Here, the circle
represents the classical set u. The number 1 inside the circle means that for
any element x inside the circle, the statement x ∈ u gets the truth value 1.
The 0 outside the circle means that for every element x outside the circle, the
statement x ∈ u gets the truth value 0.

An immediate example of a classical set is ∅, and V is a classical class.
The notion of a classical set allows us to use much of what we know from

classical set theory. As an example, we easily get the following proposition,
where ∼ is replaced by ¬, ⇒ is replaced by →, and ⇔ is replaced by ↔.

Proposition 4.3.2. For all classical sets u and v,

i. ∀x[x /∈ u⇔ ¬(x ∈ u)];

ii. u ⊆ v ⇔ ∀x(x ∈ u→ x ∈ v);

iii. u = v ⇔ ∀x(x ∈ u↔ x ∈ v);

iv. u 6= v ⇔ ¬(u = v).

Proof. The proof is left to the reader.

We introduce the following axiom in order to simplify our development of
set theory.

Axiom 3 (Classical supersets).

∀u∃v[Cl(v) ∧ u ⊆ v].
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The axiom states that each set has a classical superset. The main appeal is that
it will allow us to describe non-classical sets in terms of classical ones.

Recall from Section 2.3 that given a formula ϕ, we defined the pair of classical
formulas !ϕ and ?ϕ with the property that ϕ is true iff !ϕ is true, and ϕ is false
iff ?ϕ is false. As a reminder, their truth tables are the following:

!
1 1
b 1
n 0
0 0

?
1 1
b 0
n 1
0 0

Definition 4.3.3. Given a set u, we define the classes

u! := {x : !(x ∈ u)} and u? := {x : ?(x ∈ u)}.

Notice that both u! and u? are classical, and for all x,

x ∈ u↔ x ∈ u! and x /∈ u↔ x /∈ u?.

So u! and u? are classical classes that together completely describe u. (See Figure
4.2.)

u! u?

V

b 1 n

0

Figure 4.2: The truth value of x ∈ u. The left circle represents u!, while the
right circle represents u?. Notice that x ∈ u is true iff x is in the interior of the
left circle, while x ∈ u is false iff x is in the exterior of the right circle.

Proposition 4.3.4. For all u and v,
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i. Cl(u)⇔ u! = u?;

ii. u ⊆ v iff u! ⊆ v! and u? ⊆ v?;

iii. u * v iff u! * v?;

iv. u = v iff u! = v! and u? = v?;

v. u 6= v iff u! * v? or v! * u?.

Proof. i. Follows by definition of Cl(u).
ii. We have

u ⊆ v iff ∀x(x ∈ u→ x ∈ v) ∧ ∀x(x /∈ v → x /∈ u)

iff ∀x(x ∈ u! → x ∈ v!) ∧ ∀x(x /∈ v? → x /∈ u?)

iff ∀x(x ∈ u! → x ∈ v!) ∧ ∀x(¬(x ∈ v?)→ ¬(x ∈ u?))

iff ∀x(x ∈ u! → x ∈ v!) ∧ ∀x((x ∈ u? → x ∈ v?)

iff u! ⊆ v! ∧ u? ⊆ v?.

iii. We have

u * v iff ∃x(x ∈ u ∧ x /∈ v)

iff ∃x(x ∈ u! ∧ x /∈ v?)

iff u! * v?.

iv. and v. easily follow.

Definition 4.3.5. Fix a set u. We define the realm of u by

rlm(u) := u! ∪ u?.

The reason we care about rlm(u) is that it is the least classical class con-
taining u in the sense of the following proposition.

Lemma 4.3.6. For all u, the class rlm(u) is classical, and if X is a classical
class such that u ⊆ X, then rlm(u) ⊆ X.

Proof. That rlm(u) is classical follows from u! and u? being classical. Now, let
X be a classical class with u ⊆ X. We have X ! = X?, since X is classical, and
u! ⊆ X ! and u? ⊆ X?, since u ⊆ X. This gives u! ⊆ X and u? ⊆ X. Hence
rlm(u) ⊆ X.

Theorem 4.3.7. If u is a set, then the classes u!, u? and rlm(u) are sets.

Proof. By the axiom of classical supersets, there is a classical set v such that
u ⊆ v. We have rlm(u) ⊆ v by Lemma 4.3.6. The axiom of separation now tells
us that rlm(u) is a set. Clearly, u!, u? ⊆ rlm(u), so both u! and u? are sets.
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We can now see that every set u can be described in terms of the classical
sets u! and u?. We therefore introduce the following notation.

Definition 4.3.8. If u, v and w are sets such that w! = u and w? = v, then we
denote w by the expression 〈u, v〉.

So given classical sets u and v, 〈u, v〉 is the unique set with 〈u, v〉! = u and
〈u, v〉? = v if such a set exists. (See Figure 4.3.)

u v

V

b 1 n

0

Figure 4.3: The truth value of x ∈ 〈u, v〉.

There is another way to describe sets in terms of classical sets that is perhaps
slightly more intuitive than the one that we have given. However, it has the
drawback of requiring more classical sets to achieve the same goal. Suppose
that we are given a set u and a classical set X such that u ⊆ X. We can then
form the subsets

u+
X := {x ∈ X : !(x ∈ u)} and u−X := {x ∈ X : !(x /∈ u)}

of X. Now, both u+
X and u−X are classical sets, and for all x,

x ∈ u↔ x ∈ u+
X and x /∈ u↔ x ∈ u−X ∪ (V \X).

So the classical sets X, u+
X and u−X together completely describe u. (See Figure

4.4)
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X u−X

X

V

n 0
1 b 0

Figure 4.4: The truth value of x ∈ u.

4.4 Inconsistent and incomplete sets

For this section, we recall from Section 2.3 that we defined the connectives
◦con and ◦com that express that a given formula is consistent and complete,
respectively. As a reminder, their truth tables are the following:

◦con
1 1
b 0
n 1
0 1

◦com
1 1
b 1
n 0
0 1

Definition 4.4.1. We say that a set u is consistent and write Con(A) if
∀x[◦con(x ∈ u)]. We say that u is complete and write Com(u) if ∀x[◦com(x ∈ u)].
A set is said to be inconsistent if it is not consistent and incomplete if it is not
complete.

We easily get the following proposition.

Proposition 4.4.2. For all u,

Con(u)⇔ u! ⊆ u? and Com(u)⇔ u? ⊆ u!.
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u!
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0

u!

u?
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0

Figure 4.5: The truth value of x ∈ u. In the picture on the left, u is assumed
to be consistent, and u is assumed to be complete in the picture on the right.

Clearly, for each w, there are classical sets u and v such that w = 〈u, v〉,
namely u = w! and u = w?. A more interesting question is, given classical sets
u and v, when is there is a set w such that w = 〈u, v〉? The following theorem
essentially tells us that as soon as we know that there exists a single inconsistent
set and a single incomplete set, then we can conclude that 〈u, v〉 exists for all
classical u and v.

Theorem 4.4.3. Suppose that there exists both an inconsistent set and an in-
complete set. Then for all classical sets u and v, such that u ∪ v is a set, there
is a set w such that

w = 〈u, v〉,

i.e., for all x,
x ∈ w ↔ x ∈ u and x /∈ w ↔ x /∈ v.

Proof. Since there exist both an inconstant set and an incomplete set, there
are sets a, b, c and d such that a ∈ b ∧ a /∈ b and ¬(c ∈ d ∨ c /∈ d). We can
therefore enrich our language with the propositional constants ⊥b and ⊥n with
the property

⊥b ∧ ∼⊥b and ¬(⊥n ∨ ∼⊥n).

We let

w := {x ∈ u ∪ v : x ∈ u ∩ v ∨ (x ∈ u \ v ∧ ⊥b) ∨ (x ∈ v \ u ∧ ⊥n)}.

This gives

x ∈ w iff x ∈ u ∩ v ∨ (x ∈ u \ v ∧ ⊥b) ∨ (x ∈ v \ u ∧ ⊥n)

iff x ∈ u ∩ v ∨ x ∈ u \ v
iff x ∈ u

and

x /∈ w iff x /∈ u ∩ v ∧ (x /∈ u \ v ∨ ⊥b) ∧ (x /∈ v \ u ∨ ⊥n)
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iff x /∈ u ∩ v ∧ x /∈ v \ u
iff x /∈ v.

Remark. In the above theorem, we needed to add the caveat that u∪ v is a set.
This is because we have not yet introduced an axiom of union which guarantees
this. Of course, we will later add such an axiom, so this bit can be safely ignored.

Corollary 4.4.4. Let u, v and X be classical sets with u, v ⊆ X. If there there
exists an inconsistent set and an incomplete set, then there exists a set w ⊆ X
such that for all x,

x ∈ w ↔ x ∈ u and x /∈ w ↔ x ∈ v ∪ (V \X).

Proof. We let w := 〈u,X \ v〉 and apply Theorem 4.4.3.

4.5 Replacement

Definition 4.5.1. By an operation we mean a classical formula ϕ(x, y) with x
and y free such that

∀x∃y[ϕ(x, y) ∧ ∀z(ϕ(x, z)→ !(y = z))].

The intuition is that we think of an operation as a process that takes in an
input and produces an output. So if we have an operation given by the formula
ϕ(x, y), we think of ϕ(u, v) as saying that the operation outputs v on the input
u.

Remark. The reason we require an operation to be given by a classical formula
is that given any input, the operation should, in no uncertain terms, produce
a well-defined output. To see why we used the !-connective in our definition,
consider the formula ϕ(x, y) :⇔ !(x = x)∧ !(y = a), where a is some inconsistent
set. Now, ϕ(x, y) is a classical formula that is true iff y = a. So we can think
of ϕ(x, y) as representing the operation that always outputs a. However, since
a is inconsistent, we have that a 6= a. This means that the formula

∀x∃y[ϕ(x, y) ∧ ∀z(ϕ(x, z)→ y = z)]

is both true and false. So if we had not included the !-connective in our defi-
nition, the formula ϕ(x, y) would both be and not be an operation. This does
not seem right since ϕ(x, y) always produces a well defined output, and the fact
that said output happens to be an inconsistent set is irrelevant.

If ϕ(x, y) is an operation, then we can introduce a new function symbol Fϕ
via the defining axiom

∀xϕ(x, Fϕ(x)).
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Since ϕ(x, y) is a classical formula, we can easily show that

ψ(Fϕ(x))⇔ ∃y[ψ(y) ∧ ϕ(x, y)]

for all x and any formula ψ(y). This means that any formula containing the
symbol Fϕ can be rewritten as an equivalent formula without an occurrence of
Fϕ.

Definition 4.5.2. Let A be a class and F an operation defined by the classical
formula ϕ(x, y). We define the image {F (x) : x ∈ A} of A under F by

{F (x) : x ∈ A} := {y : ∃x ∈ Aϕ(x, y)}.

Now, y ∈ {F (x) : x ∈ A} can be read as saying that there is an x ∈ A such
that F maps x to y.

Remark. Someone might claim that {y : ∃x ∈ A[y = F (x)]} is a more natural
definition for {F (x) : x ∈ A}. To see why this definition does not work, consider
the identity operation id which maps each element to itself. Clearly, we want
{id(x) : x ∈ A} to be the same thing as {x : x ∈ A}, i.e., A itself. Now, if A
is the class {x : !(x = a)}, where a is some inconsistent set, then a 6= a. So
a /∈ {y : ∃x ∈ A[y = id(x)]}, but ¬(a /∈ A).

Axiom 4 (Replacement).

∀u∃v[v = {F (x) : x ∈ u}],

where F is an operation, and v is not a free variable in the formula defining
F .

4.6 Union

Let u be a set and ϕ be a formula. We introduce the abbreviations ∃x ∈ uϕ
and ∀x ∈ uϕ for ∃x(x ∈ u ∧ ϕ) and ∀x(x ∈ u→ ϕ), respectively.

Definition 4.6.1. Given a class A we define the union of A by⋃
A := {x : ∃y ∈ A(x ∈ y)}.

Moreover, if ∃x(x ∈ A), then we define the intersection of A by⋂
A := {x : ∀y ∈ A(x ∈ y)}.

Axiom 5 (Union).

∀u∃v∀x[x ∈ v ⇔ ∃y ∈ u(x ∈ y)].
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4.7 Pairing

Definition 4.7.1. Given sets u and v, we define the unordered pair {u, v} by

{u, v} := {x : !(x = u ∨ x = v)}.

Now, {u, v} is the classical set having u and v as elements. The reader might
be curious why we did not use the class {x : x = u ∨ x = v}. There are three
reasons for this: First, when specifying {u, v} we would simply like to point to
u and point to v and say that these are the elements of {u, v}. This is different
than pointing u and v and specifying the elements that are equal to one of these,
which would give the class {x : x = u ∨ x = v}. Second, {x : !(x = u ∨ x = v)}
tends to be much easier to work with than {x : x = u∨x = v}. The third reason,
which also plays into the second reason, is that if there exist an incomplete set,
then {x : x = u ∨ x = v} is always a proper class.

Proposition 4.7.2. If there exists an incomplete set, then for all u and v,
{x : x = u ∨ x = v} is a proper class.

Proof. We prove the special case where u = v and the general case easily follows.
Assume that {x : x = u} is a set. Then {x :?(x = u)} is also a set.

Since there exists an incomplete set, we have that for every classical set x,
〈∅, x〉 exists. That is, if x is classical set, then there is a set w such that w! = ∅
and w? = x. We have

u 6= 〈∅, x〉 iff ∃z[z ∈ u ∧ z /∈ 〈∅, x〉] ∨ ∃z[z /∈ u ∧ z ∈ 〈∅, x〉]
iff ∃z[z ∈ u! ∧ z /∈ 〈∅, x〉?] ∨ ∃z[z /∈ u? ∧ z ∈ 〈∅, x〉!]
iff ∃z[z ∈ u! ∧ z /∈ x] ∨ ∃z[z /∈ u? ∧ z ∈ ∅]
iff ∃z[z ∈ u! ∧ z /∈ x]

iff ¬∀z[z ∈ u! ⇒ z ∈ x]

iff ¬(u! ⊆ x).

So for every classical x,

u! ⊆ x→ ¬(u 6= 〈∅, x, 〉),

i.e.,
u! ⊆ x→ ?(u = 〈∅, x〉).

Both {〈∅, x〉 : Cl(x) ∧ u! ⊆ x} and {x :?(x = u)} are classical, so

{〈∅, x〉 : Cl(x) ∧ u! ⊆ x} ⊆ {x :?(x = u)}.

This tells us that {〈∅, x〉 : Cl(x) ∧ u! ⊆ x} is a set. Using replacement, we get
that {x : Cl(x)∧u! ⊆ x} is a set. This last set is just {x∪u! : Cl(x)} and using
replacement one more time, we get that {x : Cl(x)} is a set. But this implies
that {x : Cl(x)∧¬(x ∈ x)} is a set. We leave it to the reader to show that this
implies ⊥.
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We now introduce our pairing axiom.

Axiom 6 (Pairing).

∀u∀v∃w∀x[x ∈ w ⇔ !(x = u ∨ x = v)].

It follows that {u, v} is a set for all u and v. Moreover, since u ∪ v =
⋃
{u, v},

u ∪ v is also a set.

4.8 Ordered pairs and relations

We now turn to the problem of defining the ordered pair (u, v). We would like
our notion of ordered pairs to satisfy

(u, v) = (z, w)⇔ u = z ∧ v = w.

This means that we cannot use the standard Kuratowski definition which de-
fines (u, v) as the pair {{u}, {u, v}} since {{u}, {u, v}} is a classical set. So
{{u}, {u, v}} = {{z}, {z, w}} is a classical formula, whereas u = z ∧ v = w can
be non-classical. We will therefore opt for a different definition. Said definition
comes from [28], and was originally formulated in classical set theory.

Definition 4.8.1. Let u and v be sets. We define the ordered pair (u, v) by

(u, v) := {{{x}} : x ∈ u} ∪ {{{x}, ∅} : x ∈ v}.

We put the proof that this definition satisfies our requirement in Appendix
A.

Definition 4.8.2. We recursively define the n-tuple, (u1, ..., un), by letting
(u1) := u1 and (u1, ..., un) := (u1, (u2, ..., un)) for n ≥ 2

Definition 4.8.3. Let A,A1, ..., An be sets. We define the n-ary product, A1×
...×An by

A1 × ...×An := {(x1, ..., xn) : x1 ∈ A1 ∧ ... ∧ xn ∈ An}

and let
An := A× ...×A︸ ︷︷ ︸

n times

.

Proposition 4.8.4. For all u and v, the product u× v is a set.

Proof. Using replacement, we see that for each y, the class {(x, y) : x ∈ u} is a
set. Now,

{(x, y) : x ∈ u ∧ y ∈ v} =
⋃
y∈v
{(x, y) : x ∈ u}.

The axiom of union now tells us that u× v is a set.

34



Definition 4.8.5. We say that a set R is a binary relation if

R ⊆ V × V.

The domain of R is given by

dom(R) := {x : ∃y[(x, y) ∈ R]}

and the range of R is given by

ran(R) := {y : ∃x[(x, y) ∈ R]}.

The inverse of R is
R−1 := {(y, x) : (x, y) ∈ R}.

Definition 4.8.6. Fix a set X. We say that a relation E ⊆ X × X is an
equivalence relation on X if the following holds for all x, y, z ∈ X:

1. (x, x) ∈ E,

2. (x, y) ∈ E ⇔ (y, x) ∈ E, and

3. (x, y) ∈ E → [(x, z) ∈ E ⇔ (y, z) ∈ E].

The equivalence class of x ∈ rlm(X) w.r.t E is given by

[x]E := {y : xEy}.

If X is a set, then we define the quotient of X by E by letting

X/E := {[x]E : x ∈ X}.

Proposition 4.8.7. Let E be an equivalence relation on the class X. Then for
all x, y ∈ rlm(X),

(x, y) ∈ E ⇔ [x]E = [y]E .

Proof. It follows from 3. that (x, y) ∈ E → [x]E = [y]E . If [x]E = [y]E , then
(y, y) ∈ E → (x, y) ∈ E. So 1. gives (x, y) ∈ E. We have (x, y) ∈ E ↔ [x]E =
[y]E .

Now, assume that (x, y) /∈ E, i.e., y /∈ [x]E . By 1., we have y ∈ [y]E and
therefore [x]E 6= [y]E . Finally, assume that [x]E 6= [y]E . There is then a z such
that (x, z) ∈ E ∧ (y, z) /∈ E or (x, z) /∈ E ∧ (y, z) ∈ E. If the former holds,
then (z, x) ∈ E and (z, y) /∈ E by 2. Using 3., we get (x, y) /∈ E. Similarly, if
(x, z) /∈ E ∧ (y, z) ∈ E, then (x, y) /∈ E. Hence (x, y) ∈ E ⇔ [x]E = [y]E .
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4.9 Functions

Let us now turn to finding a suitable notion of a function. There are many
possible definitions we could give; each having their own advantages and disad-
vantages. The definition we give here should therefore not be seen as the one
true definition of a function. Rather, it is simply the definition simply that I
have found the most useful.

We start by giving a preliminary definition.

Definition 4.9.1.

(a) By a classical function we mean a classical relation f such that

∀x, y, z[(x, y) ∈ f) ∧ (x, z) ∈ f → !(x = y)].

(b) If A and B are classical sets and f is a classical function, then we say that
f goes from A to B, and write f : A→ B, if

dom(f) = A and ran(f) ⊆ B.

(c) For x ∈ A, we let f(x) denote the the unique element such that (x, f(x)) ∈ f .

(d) The restriction of f to a set X ⊆ A is

f�X := {(x, f(x)) : x ∈ X}.

In short, classical functions are functions that behave as we would expect
from classical set theory. The intuition is that a classical function is a process
that takes an input from its domain and produces an output. Most of the
functions we will encounter in this thesis will be classical.

Now, suppose we have a classical function f with the domain A, and suppose
that X is a non-classical subset of A. We can then think of the restriction
g := f�X as a non-classical process with the domain X. We think of X as the
set of inputs for g, and we think of (x, y) ∈ g as saying that g maps x to y. Now,
if x ∈ X ∧ x /∈ X, then x both is and is not an input for g and, accordingly, g
both produces and does not produce an output for x.

Definition 4.9.2.

(a) A set f is said to be a function if rlm(f) is a classical function.

(b) If A and B are sets and f is a function, then we say that f goes from A to
B, and write f : A→ B, if

!(dom(f) = A) and ran(f) ⊆ B.

(c) For x ∈ rlm(A), we let f(x) denote the the unique element such that
(x, f(x)) ∈ rlm(f).
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(d) The restriction of f to a set X ⊆ A is

f�X := {(x, f(x)) : x ∈ X}.

Let us devote a little space to unpack the definition of the formula f : A→ B.
First, we note that if f , A and B are classical sets, then f = rlm(A) and
dom(f) = A⇔ !(dom(f) = A). So our definition of a function agrees with our
definition of a classical function.

Next, we notice that if f and A are sets, then

f : A→ V ⇔ ∃g[!(f = g�A) ∧ g : rlm(A)→ V ].

By Definition 4.5.2, we also have

f ∈ {g�A : g : rlm(a)→ V } ⇔ ∃g[!(f = g�A) ∧ g : rlm(A)→ V ].

Taking these two together, we get

f : A→ V ⇔ f ∈ {g�A : g : rlm(a)→ V }.

Now, {g�A : g : rlm(a) → V } is the class obtained by restricting the classical
functions from rlm(A) to A. So the formula f : A → V is saying that f is the
result of restricting some function from rlm(A) to A. That is to say, to get a
function from A, we take a classical function from rlm(A) and restrict it to A.
Similarly, the formula f : A→ B simply states that f is a function from A and
the range of f is a subset of B.

Definition 4.9.3. Let A and B be sets. We say that a set f is an injection
from A to B if

f : A→ B and f−1 is a function

and that f is a surjection from A to B if

f : A→ B and ran(F ) = B.

We say that f is an a bijection between A and B if

f : A→ B and f−1 : B → A.

4.10 Power set

Recall that we say that u is a subset of v, and write u ⊆ v, if ∀x(x ∈ u⇒ x ∈ u).

Definition 4.10.1. Given a set u, we let

P(u) := {x : x ⊆ u}.

Sadly, the following proposition will tell us that we cannot expect P(u) to
be a set.
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Proposition 4.10.2. If there exists an incomplete set, then P(u) is a proper
class for all u.

Proof. Assume that P(u) is a set. Then {x :?(x ⊆ u)} is also a set.
Since there exists an incomplete set, we have that for every classical set x,

〈∅, x〉 exists. Now,

u 6⊆ 〈∅, x〉 iff ∃z[z ∈ u ∧ z /∈ 〈∅, x〉]
iff ∃z[z ∈ u! ∧ z /∈ 〈∅, x〉?]

iff ∃z[z ∈ u! ∧ z /∈ x]

iff ¬∀z[z ∈ u! ⇒ z ∈ x]

iff ¬(u! ⊆ x).

It follows that for every classical x, u! ⊆ x implies ¬(u * 〈∅, x, 〉). In other
words, u! ⊆ x implies ?(u ⊆ 〈∅, x, 〉) for all classical x. Thus

{〈∅, x〉 : Cl(x) ∧ u! ⊆ x} ⊆ {x :?(x ⊆ u)}.

But, as we saw in the proof of Proposition 4.7, {〈∅, x〉 : Cl(x) ∧ u! ⊆ x} is a
proper class.

This means that we cannot add an axiom stating that P(u) is a set for all
u. What goes wrong is that if P(u) is a set, then P?(u) := {x : ?(x ⊆ u)}
would also be a set. But, P?(u) is to big to be a set assuming that there exist
an incomplete set. We will therefore have to settle for a weaker axiom.

Definition 4.10.3. Given a set u, we let

PCl(u) := {x : Cl(x) ∧ x ⊆ u}.

Axiom 7 (Classical power set).

∀u∃v∀x[x ∈ v ⇔ Cl(x) ∧ x ⊆ u].

Our motivation for this axiom is as follows: If u is a classical set, then surely
we expect the class of all classical subsets of u to be a set. Moreover, if u is any
set, then rlm(u) is a classical set. So we expect PCl(rlm(u)) to be a set. Since
u ⊆ rlm(u), we get that PCl(u) ⊆ PCl(rlm(u)). We therefore expect PCl(u) to
be a set for all u.

Definition 4.10.4. Given a set u, we let

P !(u) := {x : !(x ⊆ u)}.

Now, P !(u) is the classical class such that for all x, x ∈ P !(u)↔ x ⊆ u.

Proposition 4.10.5. For all u, the class P !(u) is a set.
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Proof. Fix a set u, and consider the class A := {(x!, x?) : !(x ⊆ u)}. Notice
that A ⊆ PCl(rlm(u)) × PCl(rlm(u)), so A is a set. We can define a bijection
f : P !(u)→ A by letting

f(x) := (x!, x?).

It follows that P !(u) is a set by replacement.

The set P !(u) will provide us with a suitable alternative to P(u) for most
applications.

4.11 Infinity and ordinals

In this section, we introduce the ordinal numbers. We will not embark on an
investigation of well ordered sets. Rather, we will simply recruit the classical
von Neumann ordinals and show that we can still give definitions by recursion
and carry out proofs by induction.

Axiom 8 (Infinity).

∃u[∅ ∈ u ∧ ∀x ∈ u(x ∪ {x} ∈ u)].

Let us call a set u inductive if ∅ ∈ u ∧ ∀x ∈ u[x ∪ {x} ∈ u]. We can now form
the first von Neumann ordinal ω by letting

ω := {x : Cl(x) ∧ x is inductive}.

As usual, we can encode the natural as elements of ω by letting 0 := ∅,
1 := {0}, 2 := {0, 1}, 3 := {0, 1, 2} and so on.

Before we give the next definition, recall that in classical set theory, an ordi-
nal can be defined as transitive set of transitive sets such that every nonempty
subset has a ∈-least element.

Definition 4.11.1. We say that a set u is transitive if ∀x ∈ u(x ⊆ u). An
ordinal is a classical transitive set u of classical transitive sets such that

∀X ∈ PCl(u)[X 6= ∅ → ∃x ∈ X¬∃y(y ∈ x ∧ x ∈ u)].

We denote the class of ordinals by Ord.

In short, an ordinal is a classical transitive set of classical transitive sets such
that every nonempty classical subset has a ∈-least element. There is nothing
strange going on here as we are only dealing with classical sets.

We easily obtain the following proposition.

Proposition 4.11.2.

i. The class of ordinals is classical.

ii. 0 = ∅ is an ordinal.
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iii. If α is a ordinal, then so is α+ 1 := α ∪ {α}.

iv. If X is a classical set of ordinals, then
⋃
X is an ordinal.

v. ω is an ordinal.

Theorem 4.11.3 (Induction). For every formula ϕ(x), we have

[∀α ∈ Ord(∀β ∈ αϕ(β)→ ϕ(α))]→ ∀α ∈ Ordϕ(α).

Proof. Suppose that ∀α ∈ Ord(∀β ∈ αϕ(β) → ϕ(α)), and assume that there
is an ordinal α such that ¬ϕ(α). Let X := {β ∈ α : ¬ϕ(β)}. Note that X
is a classical subset of α. If X = ∅, then ∀β ∈ αϕ(β), and therefore ϕ(α) by
assumption. This gives ⊥. On the other hand, if X 6= ∅, then there is β ∈ X
such that ¬ϕ(β) and ∀γ ∈ βϕ(γ). Once again, this gives ⊥. We can therefore
conclude that ∀αϕ(α).

The proof of the following theorem is entirely standard, and is therefore
omitted.

Theorem 4.11.4 (Recursion). For every class function G : V → V there is a
unique F : Ord→ V such that for every ordinal α,

F (α) = G(F �α).

Definition 4.11.5. We say that α ∈ Ord is a successor ordinal if α is of the
form β + 1 for some ordinal β. We say α a limit ordinal if α 6= 0 and α is not a
successor ordinal.

4.12 Foundation

We now introduce our axiom schema of foundation.

Axiom 9 (Foundation).

∀x[∀y ∈ rlm(x)ϕ(y)→ ϕ(x)]→ ∀xϕ(x),

where y is not a free variable of ϕ(x).

The purpose of foundation is to allow us to view the universe as being formed
in stages; one stage for each ordinal. The intuition is that if u is a set such that
each x ∈ rlm(u) has been formed at stage α, then u is formed at stage α+ 1.

Definition 4.12.1. We let

V0 :=∅
Vα+1 :={x : rlm(x) ⊆ Vα}

Vλ :=
⋃
α<λ

Vα, if λ is a limit ordinal.
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Definition 4.12.2. For u ∈
⋃
α Vα, we let rnk(u) be the least ordinal α such

that u ∈ Vα+1.

Theorem 4.12.3. V =
⋃
α Vα

Proof. Since
⋃
α Vα ⊆ V and both

⋃
α Vα and V are are classical, we need only

show that for every x, there is some ordinal α such that x ∈ Vα.
Suppose that x is a set such that ∀y ∈ rlm(x)∃α(y ∈ Vα). We let β :=⋃
{rnk(y) : y ∈ rlm(x)}. Since both rlm(x) and Vβ are classical, we get that

rlm(x) ⊆ Vβ , and therefore x ∈ Vβ+1. Foundation now tells us that ∀x∃α(x ∈
Vα).

Proposition 4.12.4. For all α, Vα+1 = P !(Vα).

Proof. Notice that both Vα+1 and P !(Vα) are classical, so we only need to show
that for all x, x ∈ Vα+1 ↔ x ∈ P !(Vα). If x ∈ Vα+1, then rlm(x) ⊆ Vα. So
x ⊆ Vα, and therefore x ∈ P !(Vα). Conversely, if x ∈ P !(Vα), then x ⊆ Vα.
Since rlm(x) is the least classical superset of x, and Vα is classical, we get
rlm(x) ⊆ Vα, i.e., x ∈ Vα+1.

4.13 Choice

Definition 4.13.1. We call a set u inhabited if ∃x(x ∈ u).

Definition 4.13.2. Let u be a set of inhabited sets. A choice function for u is
a function from u such that

∀x ∈ u(f(x) ∈ x).

Axiom 10 (Choice).

∀u[∀x ∈ u∃y(y ∈ x)→ (∃f : u→ V )∀x ∈ u(f(x) ∈ x)].

So our axiom of choice simply states that every set of inhabited sets has a choice
function.

Proposition 4.13.3. The axiom of choice holds if and only if every classical
set of inhabited sets has a choice function.

Proof. Assume that every classical set of inhabited sets has a choice function
and let u be an arbitrary set of inhabited sets. Then u! is a classical set of
inhabited sets, so there exists a choice function g for u!. We define f : u → V
by letting

f(x) :=

{
g(x) if x ∈ u!,

∅ if x ∈ rlm(u) \ u!.

Now f is a choice function for u.
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4.14 The anti-classicality axiom

In Section 4.4, we saw that from the assumption that there exists a single non-
classical set, we can generate a whole host of new non-classical sets. Since
we are interested in both inconsistent and incomplete sets, we introduce the
anti-classicality axiom which states that there exists an inconsistent set and an
incomplete set.

Axiom 11 (AClA).

∃u∼Con(u) ∧ ∃u∼Com(u).

Using Theorem 4.4.3, we see that for all classical sets u and v, there exists a set
w such that

w = 〈u, v〉.
In particular, this tells us that there are subsets b and n of 1 such that

∅ ∈ b ∧ ∅ /∈ b and ¬(∅ ∈ n ∨ ∅ /∈ n).

Recall that we defined 1 as {∅}.

Definition 4.14.1. We define the set of truth values by Ω := P !(1). Given a
sentence ϕ, we put {∅ : ϕ} := {x : !(x = ∅)∧ϕ}, and call {∅ : ϕ} the truth value
of ϕ.

The anti-classicality axiom now tells us that

Ω = {1, b, n, 0}.

Notice that ϕ ⇔ ∅ ∈ {∅ : ϕ}. So ϕ is true if and only if ∅ ∈ {∅ : ϕ},
and is false if and only if ∅ /∈ {∅ : ϕ}. Looking at this from the meta-theoretic
perspective for a moment, we see that [[ϕ]] = 1 iff {∅ : ϕ} = 1, [[ϕ]] = b iff
{∅ : ϕ} = b, [[ϕ]] = n iff {∅ : ϕ} = n, and [[ϕ]] = 0 iff {∅ : ϕ} = 0, justifying the
name ‘truth value of ϕ’ for {∅ : ϕ}.

Example 4.14.2. Recall from chapter 1 that Alice had made five lists con-
cerning the celebration: I, D+, D−, P+ and P−. By using the anti-classicality
axiom, she can now represent the same information by viewing I as a classical
set, and defining the sets D,P ⊆ I by

n ∈ D ↔ n ∈ D+ and n /∈ D ↔ n ∈ D−,

and
n ∈ P ↔ n ∈ P+ and n /∈ P ↔ n ∈ P−

for all n ∈ I. So, for example, if Bob provided contradictory replies whether
he will attend the dinner, then Bob ∈ D ∧ Bob /∈ D. So the truth value of
Bob ∈ D is b. Similarly, if Bob has not replied specifying whether he will attend
the dinner, then the sentence Bob ∈ D gets the truth value n. This can be
expressed internally using Definition 4.14.1.
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4.15 The theories PZFC and BZFC

The axioms we have given in this chapter are the following:

1. Extensionality: ∀u∀v[u = v ⇔ ∀x(x ∈ u⇔ x ∈ v)].

2. Separation: ∀u∃v∀x[x ∈ v ⇔ x ∈ u ∧ ϕ(x)],
where v is not a free variable in ϕ(x).

3. Classical supersets: ∀u∃v[Cl(v) ∧ u ⊆ v].

4. Replacement: ∀u∃v[v = {F (x) : x ∈ u}],
where F is an operation, and v is not a free variable in the formula defining
F .

5. Union: ∀u∃v∀x[x ∈ v ⇔ ∃y ∈ u(x ∈ y)].

6. Pairing: ∀u∀v∃w∀x[x ∈ w ⇔ !(x = u ∨ x = v)].

7. Classical power set: ∀u∃v∀x[x ∈ v ⇔ Cl(x) ∧ x ⊆ u].

8. Infinity: ∃u[∅ ∈ u ∧ ∀x ∈ u(x ∪ {x} ∈ u)].

9. Foundation: ∀x[∀y ∈ rlm(x)ϕ(y)→ ϕ(x)]→ ∀xϕ(x),
where y is not a free variable in ϕ(x).

10. Choice: ∀u[∀x ∈ u∃y(y ∈ x)→ ∃(f : u→ V )∀x ∈ u(f(x) ∈ x)].

11. AClA: ∃u∼Con(u) ∧ ∃u∼Com(u).

Definition 4.15.1. By paradefinite Zermelo–Fraenkel set theory PZF we mean
the theory given by the axioms 1.–9. and PZFC is PZF together with the
axiom of choice.

Notice that PZFC does not prove the existence of any non-classical sets and
that PZFC together with ∀xCl(x) is just classical ZFC with two symbols for
the same negation. We now have the following theorem.

Theorem 4.15.2. If ZFC is consistent, then PZFC is non-trivial. (Recall
that a theory is said to be non-trivial if ⊥ is not derivable from it.)

Definition 4.15.3. We let BZF := PZF + AClA, and BZFC is the theory
BZF together with the axiom of choice, i.e., axioms 1.–11.

Remark. If the reader is only interested in inconsistent sets, then they can
consider the theory PZFC + ∃u∼Con(u) + ∀uCom(u). Similarly, if the reader
is only interested in incomplete sets, then they can consider the theory PZFC+
∀uCon(u) + ∃u∼Com(u). In either case, all the major results of this thesis will
have straightforward analogues for these theories.
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Chapter 5

A model of BZFC

In this chapter, we show that BZFC is not trivial, assuming that ZFC is
consistent. We do this by constructing a natural T/F-model W of BZFC.
Throughout this chapter we will work in classical ZFC.

5.1 T/F-models of set theory

We start by slightly broadening our definition of a T/F-model to allow for
models with domains that are proper classes.

Definition 5.1.1. A T/F-model M of set theory consists of

1. a non-empty class M , called the domain of M;

2. a pair of binary relations ∈+
M⊆M ×M and ∈−M⊆M ×M ;

3. a pair of binary relations =+
M⊆M ×M and =−M⊆M ×M such that for

all m,n ∈M,

(a) m =+
M n iff m = n, and

(b) m =−M n iff n =−M m.

Let M be a model of set theory and ϕ be a sentence with parameters from
M . We keep the T/F-conditions for ϕ from Definition 2.2.2. We again write
M �4 ϕ if ϕ is true inM, and if Σ is a set of sentences, then we writeM �4 Σ
if every sentence from Σ is true in M.

Remark. We should point out that we cannot formally define the class {ϕ :M �4

ϕ} within ZFC since that would contradict Tarski’s undefinability theorem. So
M �4 ϕ has to be defined in the metatheory. However, given a particular
sentence ϕ, the statementM �4 ϕ is definable within ZFC by recursion on the
complexity of ϕ.

The following definition is inspired by [17].
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Definition 5.1.2. Let M be a T/F-model of set theory and ϕ(x) a formula
in LM . We define the interpretation of the class A := {x : ϕ(x)} in M by
AM := (A+

M, A
−
M), where

A+
M := {x ∈M :M �4 ϕ(x)} and A−M := {x ∈M :M �4 ∼ϕ(x)}.

If A+
M = M \ A−M, then we identify AM with A+

M. Moreover, if a ∈ M such
that

M �4 ∀x(x ∈ a⇔ x ∈ A),

then we identify AM with a.

5.2 A T/F-model of BZFC

We now define our T/F-model W of BZFC. The basic idea behind W is that
every element a ∈ W is of the form (a1, a2), where a1 and a2 represent a! and
a?, respectively.

Definition 5.2.1. We recursively define the class W by

W0 := ∅
Wα+1 := P(Wα)× P(Wα)

Wλ :=
⋃
α<λ

Wα, if λ is a limit ordinal

W :=
⋃
α

Wα.

We define the relations ∈+
W , ∈

−
W , =+

W and =−W on W by letting

a ∈+
W b iff a ∈ b1,

a ∈−W b iff a /∈ b2,
a =+

W b iff a = b, and

a =−W b iff ∃x ∈W [(x ∈+
W a ∧ x ∈−W b) or (x ∈−W a ∧ x ∈+

W b)]

for a = (a1, a2) and b = (b1, b2).

Theorem 5.2.2. The axioms of BZFC are true in W.

Proof. We will only show that the axioms of extensionality, seperation, classical
power set and choice hold in W. The other axioms are left as an exercise.

Extensionality : Let a, b ∈W. We have

a = b iff a1 = b1 and a2 = b2

iff ∀x ∈W (x ∈ a1 iff x ∈ b1) and ∀x ∈W (x ∈ a2 iff x ∈ b2)

iff ∀x ∈W (x ∈ a1 iff x ∈ b1) and ∀x ∈W (x /∈ a2 iff x /∈ b2)
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iff ∀x ∈W (x ∈+
W a iff x ∈+

W b) and ∀x ∈W (x ∈−W a iff x ∈−W b)

iff W �4 ∀x(x ∈ a⇔ x ∈ b).

So
W �4 a = b↔ ∀x(x ∈ a⇔ x ∈ b).

Moreover,
W �4 a 6= b↔ ∼∀x(x ∈ a⇔ x ∈ b)

follows immediately from the definition of =−W .

Separation: Let a ∈W and ϕ(x) be a formula with x as its only free variable
and parameters from W . We let b1 := {x ∈ a1 : W �4 ϕ(x)} and
b2 := {x ∈ a2 : W 6�4 ∼ϕ(x)}. Now, for all x ∈W ,

W �4 x ∈ b iff x ∈ a1 and W �4 ϕ(x)

iff W �4 x ∈ a ∧ ϕ(x)

and

W �4 x /∈ b iff x /∈ b2
iff x /∈ a2 or W �4 ∼ϕ(x)

iff W �4 x /∈ a ∨ ∼ϕ(x),

Classical power set : It suffices to show that

W �4 ‘every classical set has a classical power set.’

Let a ∈W be such that W �4 Cl(a). Notice that a1 = a2, and for all x ∈W ,

W �4 Cl(x) ∧ x ⊆ a iff x1 = x2 ∧ x1 ⊆ a1.

We therefore let b1 := {(x, x) : x ⊆ a1} and b2 := b1, and get

W �4 ∀x[x ∈ b↔ Cl(x) ∧ x ⊆ a].

Since W �4 Cl(b) and the formula x ∈ b↔ Cl(x) ∧ x ⊆ a is classical in W , we
get

W �4 ∀x[x ∈ b⇔ Cl(x) ∧ x ⊆ a].

Choice: By Proposition 4.13.3, we only need to show that

W �4 ‘every classical set of inhabited sets has a choice function.’

Let a ∈W be such that W � Cl(a) ∧ ∀x ∈ a∃y(y ∈ x). Then a1 = a2 and
x1 6= ∅ for all x ∈ a1. By the axiom of choice for V, there is a function
g : a1 →W such that g(x) ∈ x1 for all x ∈ a1. We let

f1 := {(x, g(x))W : x ∈ a1}

and f2 := f1. Then W �4 f : a→ V and W �4 ∀x(f(x) ∈ x).

Theorem 5.2.3. If ZFC is consistent, then BZFC is not trivial.

Proof. Suppose we have a proof of ⊥ from the BZFC axioms. We can then
argue in ZFC that W �4 ⊥ and conclude ZFC `CL ⊥.
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5.3 Embedding V into W

We now show that W has a submodel that is, in a certain sense, isomorphic to
the classical universe of sets V . So W can be thought of as the result of adding
non-classical sets to V .

Definition 5.3.1. We define the map x 7→ x̌ by letting

x̌ := ({y̌ : y ∈ x}, {y̌ : y ∈ x})

for all x ∈ V. Moreover, we let

V̌ := {x̌ : x ∈ V }

and let ∈+
V̌
, ∈+

V̌
, =+

V̌
and =−

V̌
be the restrictions of ∈+

W , ∈
−
W , =+

W and =−W to V̌ ,
respectively.

Theorem 5.3.2. The map x 7→ x̌ is a bijection from V to V̌ , and for each
formula ϕ(x1, ..., xn) and all a1, ..., an ∈ V,

ϕ(a1, ..., an) iff V̌ �4 ϕ(ǎ1, ..., ǎn).

Proof. First we show that the map is injective: Fix x ∈ V and assume that for
all y with rank(y) < rank(x), ∀z(y̌ = ž implies y = z). Fix z such that x̌ = ž.
For all y ∈ x, we have y̌ ∈ x̌1 = ž1 = {w̌ : w ∈ z}. So y̌ = w̌ for some w ∈ z. Our
induction hypothesis therefore gives that y ∈ z. Conversely, if y ∈ z, then there
an w ∈ x such that y̌ = w̌, and therefore y ∈ x. We have that y = z and by
induction we get that the map is injective. It follows that x 7→ x̌ is a bijection
from V to V̌ .

Next we show that for all x, y ∈ V,

x ∈ y iff x̌ ∈+
W y̌, and

x /∈ y iff x̌ ∈−W y̌.

If x ∈ y, then x̌ ∈ y1 and therefore x̌ ∈+
W y̌. Conversely, if x̌ ∈+

W y̌, then x̌ = ž
for some z ∈ y, and therefore x ∈ y. Now suppose that x̌ ∈−W y̌. Then x̌ /∈ y̌2,
so x /∈ y. Lastly, if x /∈ y, then x̌ /∈ {x̌ : x ∈ y} = y̌2 and therefore x̌ ∈−W y̌.

Since x 7→ x̌ is injective, we get that for all x, y ∈ V,

x = y iff x̌ =+
W y̌.

For all x, y ∈ V , we have

x 6= y iff ∃z[(z ∈ x ∧ z /∈ y) or (z /∈ x ∧ z ∈ y)]

iff ∃ž ∈ V̌ [(ž ∈+
V̌
x̌ ∧ ž ∈−

V̌
y̌) or (ž ∈−

V̌
x̌ ∧ ž ∈+

V̌
y̌)]

iff x̌ =− y̌.

The result now follows by an induction on the complexity of ϕ.
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Chapter 6

Connection to Classical Set
Theory

In this chapter, we will see that in PZFC, we can define the class HCl of
hereditarily classical sets, and show that it interprets the classical ZFC axioms.
We will then go on to show that the class HCl defined in PZFC, together with
the T/F-model W defined in ZFC (see Section 5.2), act as a bridge between
the theories BZFC and ZFC, allowing us to translate from one theory into the
other.

6.1 Models of set theory within PZFC

We work in PZFC throughout this section.

Definition 6.1.1. A model of set theory is a pair (M,R) where M is a classical
class and R is a relation on M . Given a sentence ϕ with parameters from M,
we define (M,R) � ϕ by letting

(M,R) � a = b :⇔ a = b

(M,R) � a ∈ b :⇔ aRb

(M,R) � ∼ϕ :⇔ (M,R) 2 ϕ
(M,R) � ϕ ∧ ψ :⇔ (M,R) � ϕ and (M,R) � ψ

(M,R) � ϕ ∨ ψ :⇔ (M,R) � ϕ or (M,R) � ψ

(M,R) � ϕ→ ψ :⇔ (M,R) � ϕ implies (M,R) � ψ

(M,R) � ∃xϕ(x) :⇔ (∃x ∈M)(M,R) � ϕ(x)

(M,R) � ∀xϕ(x) :⇔ (∀x ∈M)(M,R) � ϕ(x)

(M,R) � ⊥ :⇔ ⊥.

If Γ is a set of sentences with parameters from M and (M,R) � ϕ for all ϕ ∈ Γ,
then we write (M,R) � Γ. Whenever R is clear from the context, we refer to
(M,R) by M.
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If A = {x : ϕ(x)} is a class where ϕ is formula with parameters from M,
then we define the interpretation A(M,R) of A in (M,R) by

A(M,R) := {x ∈M : (M,R) � ϕ(x)}.

If there is an a ∈ M such that (M,R) � ∀x[x ∈ a ⇔ ϕ(x)], then we identify
A(M,R) with a.

An ∈-model is a model of set theory of the form (M,∈ ∩ (M ×M)), and a
transitive model is an ∈-model such that M is transitive. Finally, we say that
M is an inner model of a set of sentences Γ if M is a transitive model of Γ and
Ord ⊆M.

Remark. The reason we require M to be classical, for a model (M,R) of set
theory, is that we want our models to behave like universes of sets. In particular,
we want V (M,R) to be classical. Since V (M,R) = M, we must require M to be
classical. This does not mean that R is a classical relation, however, as can be
seen by considering the model (V,∈).

It will also prove useful to keep our notion of T/F-models of set theory from
Chapter 5, with the added requirement that all the classes involved are classical.
That is to say, a T/F-model M of set theory is a non-empty classical class M
together with four classical relations ∈+

M, ∈−M, =+
M and =−M such that for all

a, b ∈M ,

a =+
M b iff a = b and

a =−M b iff b =−M a.

Notice that this implies that a =+
M b⇔ !(a = b).

6.2 Absoluteness

We will continue to work in in PZFC throughout this section.

Definition 6.2.1. Let M be a transitive model and ϕ(x1, ..., xn) be a formula
with the free variables x1, ..., xn and no constants. We say that ϕ is absolute
over M if

ϕ(a1, ..., an)⇔M � ϕ(a1, ..., an),

for all a1, ..., an ∈M. We say that ϕ is absolute upwards over M if

M � ϕ(a1, ..., an)⇒ ϕ(a1, ..., an),

for all a1, ..., an ∈M. Finally, ϕ is absolute downwards over M if

ϕ(a1, ..., an)⇒M � ϕ(a1, ..., an),

for all a1, ..., an ∈ M. The formula ϕ is absolute (upwards/downwards) if it is
absolute (upwards/downwards) over all transitive models. Classes and func-
tions are said to be absolute (upwards/downwards) over M if they are given by
formulas that are absolute (upwards/downwards) over M .
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Proposition 6.2.2. A formula ϕ is absolute (upwards/downwards) over a tran-
sitive model M if and only if the formulas !ϕ and ?ϕ are.

Proof. We have

ϕ is absolute over M iff ϕ⇔M � ϕ

iff !ϕ↔ ! (M � ϕ) and ?ϕ↔ ? (M � ϕ)

iff !ϕ⇔ ! (M � ϕ) and ?ϕ⇔ ? (M � ϕ)

iff !ϕ⇔M � !ϕ and ?ϕ⇔M � ?ϕ

iff !ϕ and ?ϕ are absolute over M.

The proofs of the upwards and downwards parts are similar.

Definition 6.2.3. A formula is said to be a ∆0-formula if it is formed by the
following rules:

1. The formulas x ∈ y, x = y and ⊥ are ∆0-formulas.

2. If ϕ and ψ are ∆0-formulas, then so are ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, and ∼ϕ. (It
follows that !ϕ and ?ϕ are ∆0.)

3. If ϕ is a ∆0-formula, then so are ∃x ∈ rlm(y)ϕ and ∀x ∈ rlm(y)ϕ. (Recall
that x ∈ rlm(y) is an abbreviation of !(x ∈ y) ∨ ?(x ∈ y).)

A formula is said to be a Σ1-formula if it is formed by the rules:

1. All ∆0-formulas are Σ1-formulas.

2. If ϕ and ψ are Σ1-formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, !ϕ and ?ϕ.

3. If ϕ is a Σ1-formula, then so is ∃xϕ.

4. If ϕ is a Σ1-formula, then so are ∃x ∈ rlm(y)ϕ and ∀x ∈ rlm(y)ϕ.

Notice that for any ϕ,

∃x ∈ yϕ⇔ ∃x ∈ rlm(y)(x ∈ y ∧ ϕ), and

∀x ∈ yϕ⇔ ∀x ∈ rlm(y)(x ∈ y → ϕ).

So if ϕ is a ∆0-formula (Σ1-formula), then the formulas ∃x ∈ yϕ and ∀x ∈ yϕ are
both equivalent to ∆0-formulas (Σ1-formulas). Similarly, the formulas ∃x ∈ y!ϕ,
∀x ∈ y!ϕ, ∃x ∈ y?ϕ, ∀x ∈ y?ϕ, ∀x(x ∈ y ⊃ ϕ) and ∀x(x ∈ y ⇒ ϕ) are all
equivalent to ∆0-formulas (Σ1-formulas).

Proposition 6.2.4. All ∆0-formulas are absolute and all Σ1-formulas are ab-
solute upwards.
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Proof. We will only show that if ϕ is absolute over a transitive model M , then
so is ∃x ∈ rlm(y)ϕ.

We have for b ∈M,

M � ∃x ∈ rlm(b)ϕ(x)⇔ ∃x ∈M
[
M � [!(x ∈ b) ∨ ?(x ∈ b)] ∧M � ϕ(x)

]
⇔ ∃x ∈M

[
[!(x ∈ b) ∨ ?(x ∈ b)] ∧ ϕ(x)

]
⇔ ∃x ∈M [x ∈ rlm(b) ∧ ϕ(x)].

Now, M is classical and transitive, so rlm(b) ⊆M. Hence

∃x ∈M [x ∈ rlm(x) ∧ ϕ(x)]⇔ ∃x[x ∈ rlm(b) ∧ ϕ(x)].

Proposition 6.2.5. Every transitive model satisfies extensionality.

Proof. The formula ∀x(x ∈ u ⇔ x ∈ v) is equivalent to a ∆0-formula and is
therefore absolute. So for a transitive model M and a, b ∈M, we get

a = b⇔ ∀x(x ∈ a⇔ x ∈ b)
⇔M � ∀x(x ∈ a⇔ x ∈ b).

6.3 Hereditarily classical sets

We will work in PZFC throughout this section.

Definition 6.3.1. We let

HCl0 :=∅
HClα+1 :=PCl(HClα)

HClλ :=
⋃
α<λ

HClα, if λ is a limit ordinal

HCl :=
⋃
α

HClα.

We say that a set x is hereditarily classical if x ∈ HCl and that a proper class
X is hereditarily classical if X is classical and X ⊆ HCl.

Theorem 6.3.2. The class HCl is an inner model of ZFC.

Proof. Cearly, HCl is a transitive class and Ord ⊆ HCl, so HCl is an inner
model. We will only show that the axioms of exensionality, seperation and
choice hold in HCl.

Extensionality : Follows from HCl being a transitive model.
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Separation: Let a ∈ HCl and ϕ(x) be a formula with parameters from HCl.
An easy induction on the complexity of ϕ(x) shows that it is a classical
formula for all x ∈ HCl. It follows that b := {x ∈ HCl : x ∈ a ∧HCl � ϕ(x)}
is a hereditarily classical set.

Choice: Let a ∈ HCl such that HCl � ∀x ∈ a(x 6= ∅). Then ∀x ∈ a(x 6= ∅) and
by the axiom of choice for V, there there is a function f from a such that
f(x) ∈ x for all x ∈ a. Now, both the domain and range of f are hereditarily
classical sets so it easy to check that f ∈ HCl. Since the formulas “x is a
function” and !(dom(x) = y) are both (equivalent to) ∆0-formulas, we get
HCl � ∀x ∈ u(f(x) ∈ x).

Theorem 6.3.3. If PFZC is not trivial, then classical ZFC is consistent.

Proof. If there is a proof of ⊥ from the ZFC axioms, then we argue in PZFC
that HCl � ⊥. Thus PZFC `BS4 ⊥.

6.4 Connecting ZFC and BZFC

In this section, we will provide translations between ZFC and BZFC. In
particular, we will show that given any sentence ϕ in the language of set theory,

ZFC ` ϕ if and only if BZFC ` HCl � ϕ

and
BZFC ` ϕ if and only if ZFC `W �4 ϕ.

Recall from Chapter 5 that when working in ZFC, we can define a T/F-
model W of BZFC and a map x 7→ x̌ that embeds V into W . It follows that
V̌ = {x̌ : x ∈ V } is a model of ZFC that is isomorphic to V . On the other hand,
we can internalize the construction of HCl to W and get the model HClW of
ZFC.

Theorem 6.4.1 (In ZFC). HClW = V̌

Proof. We start out by showing that OrdW = {α̌ : α ∈ Ord}. Let a = (a1, a2) ∈
W , and assume that for all x ∈ a1, x ∈ OrdW iff x ∈ {α̌ : α ∈ Ord}. We have

W �4 a ∈ Ord iff W �4 Cl(a) ∧ ∀x ∈ a[x ∈ Ord ∧ !(x ⊆ a)]

iff a1 = a2 ∧ ∀x ∈ a1(x ∈ {α̌ : α ∈ Ord} ∧ x1 ⊆ a1)

iff a ∈ {α̌ : α ∈ Ord}.

Next we show by induction that HClWα̌ = V̌α for all α. Fix an ordinal α and
assume that HClWβ̌ = V̌β for all β ∈ α. For all a = (a1, a2) ∈W, we have

a ∈ HClWα̌ iff W �4 ∃β ∈ α̌ [Cl(a) ∧ a ⊆ HClβ ]
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iff ∃β ∈ α
(
W �4

[
Cl(a) ∧ a ⊆ HClβ̌

])
iff ∃β ∈ α

(
a1 = a2 and W �4 ∀x

[
x ∈ a⇒ x ∈ HClβ̌

])
iff ∃β ∈ α

(
a1 = a2 and W �4 ∀x

[
x ∈ a→ x ∈ HClβ̌

])
iff ∃β ∈ α(a1 = a2 and a1 ⊆ HClWβ̌ )

iff ∃β ∈ α(a1 = a2 and a1 ⊆ V̌β)

iff a ∈ V̌β .

Finally,

a ∈ HClW iff W �4 a ∈ HCl
iff W �4 ∃α(a ∈ HClα)

iff ∃α
(
W �4 a ∈ HClα̌

)
iff ∃α

(
a ∈ V̌α

)
iff a ∈ V̌

for all a.

Theorem 6.4.2. Let ϕ be a sentence in the language of set theory. We have

ZFC ` ϕ if and only if BZFC ` HCl � ϕ.

Proof. Suppose that ZFC ` ϕ. Since BZFC ` HCl � ZFC, we get BZFC `
HCl � ϕ.

Now, suppose that BZFC ` HCl � ϕ. We have ZFC ` V̌ = HClW and
ZFC ` V ∼= V̌ , so ZFC `

(
ϕ↔ HClW � ϕ

)
. Hence ZFC ` HClW � ϕ.

We have seen that when working in BZFC, we obtain a model of ZFC by
restricting our attention to the class of hereditarily classical sets HCl. We can
then construct W in HCl to obtain the T/F-model WHCl of BZFC.

Lemma 6.4.3 (In BZFC). We have

WHCl
0 = ∅

WHCl
α+1 = PCl(WHCl

α )× PCl(WHCl
α )

WHCl
λ =

⋃
α<λ

WHCl
α , if λ is a limit ordinal

WHCl =
⋃
α

WHCl
α .

Proof. We only show that WHCl
α+1 = PCl(WHCl

α ) × PCl(WHCl
α ) and WHCl =⋃

αW
HCl
α .

For all a ∈ HCl, we have

a ∈WHCl
α+1 ⇔ HCl � a ∈Wα+1
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⇔ HCl � a ∈ P(Wα)× P(Wα)

⇔ HCl � ∃a1, a2[a1 ⊆Wα ∧ a2 ⊆Wα ∧ !(a = (a1, a2))]

⇔ ∃a1, a2 ∈ HCl
[
HCl � [a1 ⊆Wα ∧ a2 ⊆Wα ∧ !(a = (a1, a2))]

]
.

The formulas x ⊆ y and !(x = (y, z)) are absolute, so

a ∈WHCl
α+1 ⇔ ∃a1, a2 ∈ HCl[a1 ⊆WHCl

α ∧ a2 ⊆WHCl
α ∧ !(a = (a1, a2))].

Since WHCl
α is hereditarily classical, we get

a ∈WHCl
α+1 ⇔ ∃a1, a2[Cl(a1) ∧ Cl(a2) ∧ a1, a2 ⊆WHCl

α ∧ !(a = (a1, a2))]

⇔ a ∈ PCl(WHCl
α )× PCl(WHCl

α ).

Hence
WHCl
α+1 = PCl(WHCl

α )× PCl(WHCl
α ).

To see that WHCl =
⋃
αW

HCl
α , we first note that the class Ord is absolute,

and Ord ⊆ HCl. Therefore,

a ∈WHCl ⇔ HCl � (∃α ∈ Ord ∧ a ∈Wα)

⇔ ∃α ∈ Ord (HCl � a ∈Wy)

⇔ a ∈
⋃
α

WHCl
α

for all a ∈ HCl.

Theorem 6.4.4 (In BZFC). There is a bijection µ : V →WHCl such that

ϕ(u1, ..., un) iff WHCl �4 ϕ(µ(u1), ..., µ(un))

for all u1, ..., un ∈ V and every formula ϕ(x1, ..., xn).

Proof. We recursively define the function µ by letting

µ(u) := (µ[u!], µ[u?])

for all u ∈ V.
Let α ∈ Ord and assume that µ restricted to Vβ is a bijection to WHCl

β

for all β ∈ α. First we show that µ[Vα] ⊆ WHCl
α : We let u ∈ Vα. There is

a β ∈ α such that rlm(u) ⊆ Vβ , and therefore u! ⊆ Vβ and u? ⊆ Vβ . Now,
µ[u!] ⊆ µ[Vβ ] = WHCl

β , and similarly µ[u?] ⊆ WHCl
β . Since both u! and u? are

classical, we get

µ[u] = (µ[u!], µ[u?])

∈ PCl(WHCl
β )× PCl(WHCl

β )

= WHCl
β .
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Next we show that µ�Vα is an injection: Let u, v ∈ Vα be such that µ(u) =
µ(v). Then µ[u!] = µ[v!] and µ[u?] = µ[v?]. Now, u!, u?, v! and v? are elements
of Vα, so there is a β ∈ α such that they are all subsets of Vβ . Since µ is injective
on Vβ , we get u! = v! and u? = v?. Hence u = v.

Now we show that WHCl
α ⊆ µ[Vα]: Let (a1, a2) ∈ WHCl

α . There is a β ∈ α
such that a1, a2 ⊆ WHCl

β . By the induction hypothesis, we have that µ � Vβ is

a bijection from Vβ to WHCl
β . So µ−1[a1] ⊆ Vβ and µ−1[a2] ⊆ Vβ , and therefore

〈µ−1[a1], µ−1[a2]〉 ∈ Vα. We conclude that µ�Vα is a bijection between Vα and
WHCl
β . By induction, we get that µ is a bijection between V and WHCl.
For the second part, we have for all u, v ∈ V.

WHCl �4 µ(u) ∈ µ(v) iff µ(u) ∈ µ[v!]

iff u ∈ v!

iff u ∈ v

and

WHCl �4 µ(u) /∈ µ(v) iff µ(u) /∈ µ[v?]

iff u /∈ v?

iff u /∈ v,

An easy induction on the complexity of ϕ(x1, ..., xn) now gives that ϕ(u1, ..., un)
if and only if WHCl �4 ϕ(µ(u1), ..., µ(un)) for all u1, ..., un ∈ V and every
formula ϕ(x1, ..., xn).

Theorem 6.4.5. Let ϕ be a sentence in the language of set theory. We have

BZFC ` ϕ if and only if ZFC `W �4 ϕ.

Proof. Suppose we have a proof of ϕ from the BZFC axioms. We saw in
Chapter 5 that ZFC ` W �4 BZFC. We can therefore argue in ZFC that
W �4 ϕ and conclude ZFC `W �4 ϕ.

Now suppose that ZFC ` W �4 ϕ. We have seen that BZFC ` HCl �
ZFC, which gives BZFC ` WHCl � ϕ. Now, BZFC `

(
ϕ↔WHCl � ϕ

)
,

which allows us to conclude BZFC ` ϕ.

The main takeaway from this chapter is that we can view ZFC as the
theory of hereditarily finite sets, whereas BZFC describes a larger universe
that properly contains HCl. So we can think of classical mathematics as taking
place in HCl, which is described by ZFC. If we then encounter a phenomenon
we think is better described using incomplete or inconsistent sets, we can switch
to BZFC, and take full advantage of the anti-classicality axiom. Finally, if one
is determined to keep a classical metatheory, then the whole process can be
formalized in ZFC as statements about W .
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Part III

Topics in Paradefinite Set
Theory
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Chapter 7

Model Theory Within
BZFC

My original motivation for devising the set theory BZFC, which not only tol-
erates non-classical sets, but also has an axiom guaranteeing their existence,
was to be able to provide sound and complete semantics for BS4 closer to the
Tarskian semantics for classical logic. In particular, I wanted models such that
A � ϕ ∧ ∼ϕ would really mean that both A � ϕ and A 2 ϕ.

In this chapter, we will work in BZFC and assume that we have suitable
encodings for the notions of languages, terms, formulas, theories and proofs,
with the added caveat that they all are encoded as hereditarily classical sets.

Definition 7.0.1. A model A in a language L consists of

1. a non-empty classical set A, called the domain of A;

2. an element cA ∈ A for every constant symbol c in L;

3. a function fA : An → A for every n-ary function symbol f from L;

4. an n-ary relation RA ⊆ An for every n-ary relation symbol R in L.

Again, we let LA denote the language obtained by adding a new constant symbol
ca to L for each a ∈ A. We will regard A as a model in LA, with (ca)A = a and
write a instead of ca. The interpretation of a closed term is given in the usual
way.

Definition 7.0.2. Let A be a L-model and ϕ be a sentence in LA. We recur-
sively define A � ϕ as follows:

A � ⊥ :⇔ ⊥
A � a = b :⇔ a = b

A � R(a1, ..., an) :⇔ (a1, ..., an) ∈ RA
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A � ∼ϕ :⇔ A 2 ϕ
A � ϕ ∧ ψ :⇔ A � ϕ and A � ψ

A � ϕ ∨ ψ :⇔ A � ϕ or A � ψ

A � ϕ→ ψ :⇔ A � ϕ implies A � ψ

A � ∃xϕ(x) :⇔ (∃x ∈ A)A � ϕ(x)

A � ∀xϕ(x) :⇔ (∀x ∈ A)A � ϕ(x).

If Σ is a theory and A � ϕ for all ϕ ∈ Σ, then we write A � Σ. We write Σ � ϕ
if A � ϕ for every model A of Σ.

Before we show that BS4 is complete with respect to the above semantics,
let us compare our new models with the T/F-models from Chapter 2. When
working in BZFC we keep the definition of a T/F-model just as we did in Defini-
tion 2.2.1, with the added requirement that all the sets involved are hereditarily
classical. Let us for the moment consider the simpler situation of BS4 without
equality and in a language L which only contains a single binary relation symbol
R.

A T/F-modelM in L consists of a hereditarily classical set M together with
two classical subsets R+

M and R−M of M ×M . Since we are working in BZFC,
we can represent the information present in R+

M and R−M by a single (possibly
non-classical) set RA ⊆M ×M given by

(m,n) ∈ RA iff (m,n) ∈ R+
M, and

(m,n) /∈ RA iff (m,n) ∈ R−M.

We can then define a model A with the domain M and RA as the interpretation
of R. We see that for all m,n ∈M ,

A � R(m,n) iff (m,n) ∈ RA

iff (m,n) ∈ R+
M

iff M �4 R(m,n)

and

A � ∼R(m,n) iff A 2 R(m,n)

iff (m,n) /∈ RA

iff (m,n) ∈ R−M
iff M �4 ∼R(m,n).

Moreover, if ϕ is a sentence, then a simple induction on the complexity of ϕ
gives

A � ϕ if and only if M �4 ϕ.

Proposition 7.0.3 (In BZFC). If M is T/F-model in a language L, then
there is a model A in the same language such that for every L-sentence ϕ,

A � ϕ if and only if M �4 ϕ.
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Proof. For this proof, the reader is advised to review Definition 4.8.6 and Propo-
sition 4.8.7 for the notion of an equivalence relation.

By Theorem 4.4.3, we can define an equivalence relation E on M by letting

(m,n) ∈ E iff M �4 m = n, and

(m,n) /∈ E iff M �4 m 6= n.

We define the model A as follows:

1. A := M/E, i.e., A = {[m]E : m ∈M}

2. If c is a constant symbol, we let cA := [cM]

3. If f is an n-ary function symbol, then we put

fA([a1], ..., [an]) := [fM(a1, ..., an)]

4. If R is an n-ary relation symbol, we let RA be the n-ary relation on A
such that

([a1], ..., [an]) ∈ RA iff (a1, ..., an) ∈ R+
M, and

([a1], ..., [an]) /∈ RA iff (a1, ..., an) ∈ R−M.

The result is now proved by an induction on the complexity of ϕ.

Theorem 7.0.4 (In BZFC). If Σ is a theory and ϕ is a sentence, then

Σ `BS4 ϕ if and only if Σ � ϕ.

Proof. We will only show that Σ � ϕ implies Σ `BS4 ϕ, as soundness is easy to
verify. By a standard argument it suffices to show that every non-trivial theory
has a model. We therefore assume that Σ 0BS4 ⊥ and show that Σ has a model.

Since HCl is a model of classical ZFC, we can carry out the semantics from
Chapter 2 inside of HCl and show that there is a T/F-model of Σ. We can now
apply Proposition 7.0.3 to get a model of Σ.
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Chapter 8

Algebra-Valued Models for
Paradefinite Set Theory

We will work in classical ZFC throughout this chapter unless otherwise speci-
fied.

Boolean-valued models of set theory were introduced by Scott, Solovay and
Vopěnka in order to provide an intuitive framework for Cohen’s method of forc-
ing. The main idea is that given a complete Boolean algebra B, one can construct
a Boolean-valued model V (B) of ZF (C) which behaves much like V except that
propositions take their truth value in B, rather than {1, 0}.

The construction has since been adopted to provide models set theories in
various different logics. For example, in [12], Grayson shows that B can be
replaced by any complete Heyting algebra H to get a Heyting-valued model
V (H) of IZF . In [19], Löwe and Tarafder introduce a class of algebras called
reasonable implication algebras, and construct models that validate the axioms
of the negation-free fragment of Zermelo-Fraenkel set theory in a paraconsistent
logic.

In this chapter, we will generalize the notion of Boolean-valued models for
set theory by allowing any complete twist-structure A to take the place of the
complete Boolean algebra in the construction of the model. In doing so, we
will get a twist-valued model V (A) that validates all of the axioms of PZFC.
Moreover, if the twist structure happens to be full, then we get a model that
validates the axioms of BZFC. We will also see that if A is a twist structure
over a complete Boolean algebra B, then V (B) represents the class of hereditarily
classical sets in V (A) in a natural way.

The presentation of our construction will very closely follow the Boolean-
valued account as presented in [4]. The rest of this chapter depends heavily on
the material from Chapter 3, so the reader is advised to review the ideas from
that chapter before proceeding.
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8.1 Class-sized twist-valued models

Before we get into the meat of this chapter, we first need to slightly broaden
our definition of twist-valued model from Chapter 3 to allow for domains that
are proper classes. Here we will only consider the special case of models in the
language of set theory.

Definition 8.1.1. A twist-valued model M in the language of set theory consists
of

1. a non-empty class M , called the domain of M,

2. a complete twist-structure A,

3. a function [[· ∈ ·]]M : M ×M → A, and

4. a function [[· = ·]]M : M ×M → A such that for all a, b, c, d ∈M ,

(a) [[a = a]]M ≈ 1,

(b) [[a = b]]M = [[b = a]]M,

(c) [[a = b]]M � [[a = c]]M ⇔ [[b = c]]M, and

(d) [[a = b]]M ∧ [[c = d]]M � [[a ∈ b]]M ⇔ [[c ∈ d]]M.

IfM is a twist-valued model in the language of set theory, we let LM := {∈} ∪M
and regard M as a twist-valued model in LM , with each element of M being
its own interpretation.

For a, b ∈ M , we refer to [[a ∈ b]]M and [[a = b]]M as the truth values of the
sentences a ∈ b and a = b, respectively. Given a particular sentence ϕ of LM ,
we can define the truth value [[ϕ]]M of ϕ in M by letting

1. [[⊥]]M := 0,

2. [[∼ϕ]]M := ∼[[ϕ]]M,

3. [[ϕ ∗ ψ]]M := [[ϕ]]M ∗ [[ψ]]M for ∗ ∈ {∨,∧,→}, and

4. [[∃xϕ(x)]]M :=
∨
x∈M [[ϕ(x)]]M and [[∀xϕ(x)]]M :=

∧
x∈M [[ϕ(x)]]M.

Notice that
∨
x∈M [[ϕ(x)]]M and

∧
x∈M [[ϕ(x)]]M are well-defined. This is

because∨
x∈M

[[ϕ(x)]]M =
∨
{[[ϕ(x)]] : x ∈M} and

∧
x∈M

[[ϕ(x)]]M =
∧
{[[ϕ(x)]] : x ∈M}.

The definable class {[[ϕ(x)]] : x ∈M} is a subset of A, and is therefore a set.

Remark. We should point out that we cannot formally construct a map that
takes every LM sentence ϕ to its truth value [[ϕ]]M, since that would contradict
Tarski’s undefinability theorem. So the map ϕ 7→ [[ϕ]]M has to be defined in the
metatheory. Nevertheless, given a particular sentence ϕ, the truth value [[ϕ]]M

can still be calculated within ZFC as described above.
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Definition 8.1.2. We writeM �Tw ϕ and say that ϕ is true in M if [[ϕ]]M ≈ 1.
We will often write [[ϕ]] rather than [[ϕ]]M ifM is clear from the context. If Σ is
a set of sentences, then we write M �Tw Σ to indicate that M �Tw ϕ for each
ϕ ∈ Σ.

8.2 Boolean-valued models of set theory

In this section, we give a brief review of Boolean-valued models of set theory.
This review is by no means intended as a comprehensive introduction to the
topic. Rather, it is simply a summary of the standard motivation for the con-
struction of Boolean-valued models, which we can then use as a guide when
we construct our twist-valued models of set theory. For a more comprehensive
account of Boolean-valued models of set theory, see [4].

Recall that in classical set theory, a characteristic function χa of a set a is
a function such that a ⊆ dom(χa) and for all x ∈ dom(χa),

χa(x) =

{
1 if x ∈ a
0 else.

Now, the function χa completely describes a, so each set can be represented
by a function taking values in the Boolean algebra 2 = {1, 0}, or a two-valued
function for short. Similarly, the elements of a can themselves be represented by
two-valued functions. So a can be represented by a two-valued function whose
domain consists of two-valued functions.

By carrying out this process out to its extreme, we see that each set can be
represented by an element of the universe of two-valued sets V (2), where V (2)

is defined recursively as follows:

V
(2)
0 :=∅

V
(2)
α+1 :={u : fun(u) ∧ dom(u) ⊆ V (2)

α ∧ ran(u) ⊆ A}

V
(2)
λ :=

⋃
α∈λ

V (2)
α , if λ is a limit ordinal

V (2) :=
⋃
α

V (2)
α .

If we now take any complete Boolean algebra B, and let it play the role of
2 in the construction above, we get the universe of B-valued sets V (B), where
V (B) is given by

V
(B)
0 :=∅

V
(B)
α+1 :={u : fun(u) ∧ dom(u) ⊆ V (B)

α ∧ ran(u) ⊆ A}

V
(B)
λ :=

⋃
α∈λ

V (B)
α , if λ is a limit ordinal
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V (B) :=
⋃
α

V (B)
α .

In order to turn V (B) into a Boolean-valued model, we still have to specify
how it interprets sentences of the form u ∈ v and u = v, where u, v ∈ V (B). To
simplify our notation, we will denote the truth value of a sentence ϕ in V (B) by
[[ϕ]]B. Moreover, if B is understood from context, we will simply write [[ϕ]].

Before defining [[u ∈ v]]B and [[u = v]]B, we first consider some natural
requirements that the definition should satisfy.

First, we note that the formula u ∈ v ↔ ∃y ∈ v(u = v) is provable in
classical logic, which tells us that we should require

[[u ∈ v]]B = [[∃y ∈ v(u = y)]]B.

Moreover, we would like V (B) to satisfy the axiom of extensionality, which in
classical logic is ∀u, v[u = v ↔ ∀x(x ∈ u↔ x ∈ v)]. We must therefore have

[[u = v]]B = [[∀x(x ∈ u↔ x ∈ v)]]B.

Finally, suppose we have a formula ϕ(x). We would like to be able to assign
truth values to the sentences ∃x ∈ uϕ(x) and ∀x ∈ uϕ(x) by only allowing x to
range over elements from dom(u). We therefore require

[[∃x ∈ uϕ(x)]]B =
∨

x∈dom(u)

[
u(x) ∧ [[ϕ(x)]]B

]
and

[[∀x ∈ uϕ(x)]]B =
∧

x∈dom(u)

[
u(x)→ [[ϕ(x)]]B

]
.

These considerations require us to take

[[u ∈ v]]B :=
∨

y∈dom(v)

[
v(y) ∧ [[u = y]]B

]
and

[[u = v]]B :=
∧

x∈dom(u)

[
u(x)→ [[x ∈ v]]B

]
∧

∧
y∈dom(v)

[
v(y)→ [[y ∈ u]]B

]
.

This does indeed define [[u ∈ v]]B and [[u = v]]B via recursion on the well founded
relation

(x, y) < (u, v) iff (x ∈ dom(u) and y = v) or (y ∈ dom(v) and x = u).

It can now be shown that V (B) is a Boolean-valued model [4, Theorem 1.17],
and that all of the ZFC axioms are true in V (B) [4, Theorem 1.33].

8.3 Twist-valued models of set theory

In this section, we will generalize the construction from the previous section to
allow for arbitrary complete twist structures. For the rest of this chapter we
will fix a complete Boolean algebra B and a complete twist-structure A over B.
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Definition 8.3.1. The universe of A-valued sets V (A) is defined as follows:

V
(A)
0 :=∅

V
(A)
α+1 :={u : fun(u) ∧ dom(u) ⊆ V (A)

α ∧ ran(u) ⊆ A}

V
(A)
λ :=

⋃
α∈λ

V (A)
α , if λ is a limit ordinal

V (A) :=
⋃
α

V (A)
α .

We still need to specify how V (A) interprets sentences of the form u ∈ v and
u = v. This time around we are constrained by the requirements that

[[u ∈ v]]A = [[∃y ∈ v[!(u = y)]]]A and

[[u = v]]A = [[∀x(x ∈ u⇔ x ∈ v)]]A.

The first requirement comes from the fact that `BS4 u ∈ v ⇔ ∃y ∈ v[!(u =
y)], and the second requirement comes from our desire for V (A) to satisfy our
extensionality axiom. We will also require that

[[∃x ∈ uϕ(x)]]A =
∨

x∈dom(u)

[
u(x) ∧ [[ϕ(x)]]A

]
and

[[∀x[x ∈ u⇒ ϕ(x)]]]A =
∧

x∈dom(u)

[
u(x)⇒ [[ϕ(x)]]A

]
.

We now arrive at the following definition.

Definition 8.3.2. We recursively define [[u = v]]A and [[u ∈ v]]A for u, v ∈ V (A)

by letting

[[u ∈ v]]A :=
∨

y∈dom(v)

[
v(y) ∧ ![[y = u]]A

]
and

[[u = v]]A :=
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ v]]A

]
∧

∧
y∈dom(v)

[
v(y)⇒ [[y ∈ u]]A

]
.

Remark. Notice that if A happens to be a Boolean algebra, then a ∧ !b = a ∧ b
and a ⇒ b = a → b for all a, b ∈ A. Our definition of V (A) is therefore a
generalization of the Boolean-valued case.

Theorem 8.3.3. V (A) is a twist-valued model.

Proof. We will show that for all u, v, w ∈ V (A),

i. [[u = u]] ≈ 1;

ii. u(x) ≤ [[x ∈ u]] for all x ∈ dom(u);

iii. [[u = v]] = [[v = u]];
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iv. [[u = v]] ∧ [[u = w]] � [[v = w]];

v. [[u = v]] ∧ [[u ∈ w]] � [[v ∈ w]];

vi. [[u = v]] ∧ [[w ∈ u]] � [[w ∈ v]];

vii. [[u = v]] ∧ [[u /∈ w]] � [[v /∈ w]];

viii. [[u = v]] ∧ [[w /∈ u]] � [[w /∈ v]];

ix. [[u = v]] ∧ [[u 6= w]] � [[v 6= w]].

i. Let u ∈ V (A), and assume that [[x = x]] ≈ 1 for all x ∈ dom(u). Then

[[x ∈ u]] =
∨

y∈dom(u)

[
u(y) ∧ ![[x = y]]

]
≥ u(x) ∧ ![[x = x]]

= u(x).

So
u(x) ≤ [[x ∈ u]],

and therefore

[[u = u]] =
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ u]]

]
≈ 1.

ii. We have

1 ≈ [[u = u]]

=
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ u]]

]
.

So (u(x)⇒ [[x ∈ u]]) ≈ 1 for all x ∈ dom(u).

iii. This holds by symmetry.

iv. Fix u ∈ V (A). We take as our induction hypothesis that for all x ∈
dom(u) and all v, w ∈ V (A),

[[x = v]] ∧ [[x = w]] � [[v = w]].

Let v, w ∈ V (A) and x ∈ dom(u), y ∈ dom(v) and z ∈ dom(w). We have

[[u = v]] ∧ v(y) ≤
∧

y∈dom(v)

[
v(y)⇒ [[y ∈ u]]

]
∧ v(y)
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� [[y ∈ u]],

and similarly
[[u = w]] ∧ u(x) � [[x ∈ w]].

This gives

[[u = w]] ∧ [[u = v]] ∧ v(y) � [[u = w]] ∧ [[y ∈ u]]

≈
∨

x∈dom(u)

[
[[u = w]] ∧ u(x) ∧ [[y = x]]

]
�

∨
x∈dom(u)

[
[[x ∈ w]] ∧ [[y = x]]

]
.

By the induction hypothesis, we have

[[x ∈ w]] ∧ [[y = x]] ≈
∨

z∈dom(w)

[
w(z) ∧ [[x = z]] ∧ [[y = x]]

]
�

∨
z∈dom(w)

[
w(z) ∧ [[y = z]]

]
≈ [[y ∈ w]].

We have
[[u = v]] ∧ [[u = w]] ∧ v(y) � [[y ∈ w]],

and therefore
[[u = v]] ∧ [[u = w]] � v(y)→ [[y ∈ w]]. (8.1)

A similar argument gives

[[u = v]] ∧ [[u = w]] � w(z)→ [[z ∈ v]]. (8.2)

We are now halfway there! We still need to show that

[[u = v]] ∧ [[u = w]] � [[y /∈ w]]→ ∼v(y) (8.3)

and
[[u = v]] ∧ [[u = w]] � [[z /∈ v]]→ ∼w(z). (8.4)

We only prove the former as the latter will follow by a similar argument.
By the induction hypothesis we have

[[x = y]] ∧ [[x = z]] ∧ [[y /∈ w]] � [[y = z]] ∧ [[y /∈ w]]

= [[y = z]] ∧
∧

z∈dom(w)

[
[[z = y]]→ ∼w(z)

]
� ∼w(z),

and therefore
[[x = y]] ∧ [[y /∈ w]] � [[x = z]]→ ∼w(z).
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Taking the infimum over z now gives

[[x = y]] ∧ [[y /∈ w]] � [[x /∈ w]].

Now,

[[x = y]] ∧ [[y /∈ w]] ∧ [[u = w]] � [[x /∈ w]] ∧
∧

x∈dom(u)

[
[[x /∈ w]]→ ∼u(x)

]
� ∼u(x),

and therefore
[[u = w]] ∧ [[y /∈ w]] � [[x = y]]→ ∼u(x).

Taking the infimum over x gives

[[u = w]] ∧ [[y /∈ w]] � [[y /∈ u]].

We have

[[u = v]] ∧ [[u = w]] ∧ [[y /∈ w]] � [[u = v]] ∧ [[y /∈ u]]

� [[[y /∈ u]]→ ∼v(y)] ∧ [[y /∈ u]]

� ∼v(y).

This establishes (8.3), and a similar argument gives (8.4). Taking (8.1)–(8.4)
together gives

[[u = v]] ∧ [[u = w]] � [[v = w]].

v. Let z ∈ dom(w). By iv., we have

[[u = v]] ∧ ![[u = z]] ∧ w(z) ≈ [[u = v]] ∧ [[u = z]] ∧ w(z)

� [[v = z]] ∧ w(z)

≈ ![[v = z]] ∧ w(z).

By taking the supremum over z, we get

[[u = v]] ∧ [[u ∈ w]] � [[v ∈ w]].

vi. Let x ∈ dom(u). By the definition of [[u = v]], we have

[[u = v]] ∧ u(x) � [[x ∈ v]].

This taken together with v. gives

[[u = v]] ∧ u(x) ∧ ![[w = x]] � [[x ∈ v]] ∧ ![[w = x]]

≈ [[x ∈ v]] ∧ [[w = x]]

� [[w ∈ v]].
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By taking the supremum over x, we get

[[u = v]] ∧ [[w ∈ u]] � [[w ∈ v]]

vii. For all z ∈ dom(w), we have

[[u = v]] ∧ [[u /∈ w]] ∧ [[z = v]] � [[z = u]] ∧ [[u /∈ w]]

≤ [[z = u]] ∧ ([[z = u]]→ ∼w(z))

� ∼w(z)

and therefore
[[u = v]] ∧ [[u /∈ w]] � [[z = u]]→ ∼w(z).

Thus
[[u = v]] ∧ [[u /∈ w]] � [[v /∈ w]].

viii. Fix y ∈ dom(v). By vii, we have

[[w /∈ u]] ∧ [[w = y]] � [[y /∈ u]],

and therefore

[[u = v]] ∧ [[w /∈ u]] ∧ [[w = y]] � [[u = v]] ∧ [[y /∈ u]]

�
∧

y′∈dom(v)

[
[[y′ /∈ u]]→ ∼v(y′)

]
∧ [[y /∈ u]]

� ∼v(y).

This gives
[[u = v]] ∧ [[w /∈ u]] � [[w = y]]→ ∼v(y).

By taking the infimum over y, we get

[[u = v]] ∧ [[w /∈ u]] � [[w /∈ v]].

ix. Fix x ∈ dom(u). We have

[[u = v]] ∧ u(x) ∧ [[x /∈ w]] � [[x ∈ v]] ∧ [[x /∈ w]]

≈
∨

y∈dom(v)

[
[[x = y]] ∧ v(y)

]
∧ [[x /∈ w]]

≈
∨

y∈dom(v)

[
v(y) ∧ [[x = y]] ∧ [[x /∈ w]]

]
�

∨
y∈dom(v)

[
v(y) ∧ [[y /∈ w]]

]
,
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and therefore

[[u = v]] ∧
∨

x∈dom(u)

[
u(x) ∧ [[x /∈ w]]

]
�

∨
y∈dom(v)

[
v(y) ∧ [[y /∈ w]]

]
.

Now notice that

[[u 6= w]] ≈
∨

y∈dom(u)

[
u(y) ∧ [[y /∈ w]]

]
∨

∨
z∈dom(w)

[
w(z) ∧ [[z /∈ u]]

]
and

[[v 6= w]] ≈
∨

y∈dom(v)

[
v(y) ∧ [[y /∈ w]]

]
∨

∨
z∈dom(w)

[
w(z) ∧ [[z /∈ v]]

]
.

Taking this together with the above gives

[[u = v]] ∧ [[u 6= w]] � [[v 6= w]].

Proposition 8.3.4. For every formula ϕ(x) and u ∈ V (A), the following holds:

i. [[∃x ∈ uϕ(x)]] =
∨
x∈dom(u)

[
u(x) ∧ [[ϕ(x)]]

]
ii. [[∀x ∈ uϕ(x)]] =

∧
x∈dom(u)

[
u(x)→ [[ϕ(x)]]

]
iii. [[∀x

(
ϕ(x)→ x /∈ u

)
]] =

∧
x∈dom(u)

[
[[ϕ(x)]]→ ∼u(x)

]
iv. [[∀x

(
x ∈ u⇒ ϕ(x)

)
]] =

∧
x∈dom(u)

[
u(x)⇒ [[ϕ(x)]]

]
.

Proof. i. We have

[[∃x ∈ uϕ(x)]] =
∨

v∈V (A)

[
[[v ∈ u]] ∧ [[ϕ(v)]]

]
=

∨
v∈V (A)

[ ∨
x∈dom(u)

(
u(x) ∧ ![[v = x]]

)
∧ [[ϕ(v)]]

]
=

∨
v∈V (A)

∨
x∈dom(u)

[(
u(x) ∧ ![[v = x]]

)
∧ [[ϕ(v)]]

]
=

∨
v∈V (A)

∨
x∈dom(u)

[
u(x) ∧

(
![[v = x]] ∧ [[ϕ(v)]]

)]
=

∨
x∈dom(u)

[
u(x) ∧

∨
v∈V (A)

(
![[v = x]] ∧ [[ϕ(v)]]

)]
=

∨
x∈dom(u)

[
u(x) ∧ [[ϕ(x)]]

]
.
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ii. We have∧
x∈dom(u)

[
u(x)→ [[ϕ(x)]]

]
=

∧
x∈dom(u)

[
u(x)→

∧
v∈V (A)

[
[[x = v]]→ [[ϕ(v)]]

]]
=

∧
x∈dom(u)

∧
v∈V (A)

[
u(x) ∧ [[x = v]]→ [[ϕ(v)]]

]
=

∧
v∈V (A)

∧
x∈dom(u)

[
u(x) ∧ [[x = v]]→ [[ϕ(v)]]

]
=

∧
v∈V (A)

[ ∨
x∈dom(u)

[
u(x) ∧ [[x = v]]

]
→ [[ϕ(v)]]

]
=

∧
v∈V (A)

[
[[v ∈ u]]→ [[ϕ(v)]]

]
= [[∀x ∈ uϕ(x)]]

iii. We have∧
x∈dom(u)

[
[[ϕ(x)]]→ ∼u(x)

]
=

∧
x∈dom(u)

[ ∨
v∈V (A)

[
[[ϕ(v)]] ∧ [[x = v]]

]
→ ∼u(x)

]
=

∧
x∈dom(u)

∧
v∈V (A)

[[
[[ϕ(v)]] ∧ [[x = v]]

]
→ ∼u(x)

]
=

∧
x∈dom(u)

∧
v∈V (A)

[
[[ϕ(v)]]→

[
[[x = v]]→ ∼u(x)

]]
=

∧
v∈V (A)

∧
x∈dom(u)

[
[[ϕ(v)]]→

[
[[x = v]]→ ∼u(x)

]]
=

∧
v∈V (A)

[
[[ϕ(v)]]→

∧
x∈dom(u)

[
[[x = v]]→ ∼u(x)

]]
=

∧
v∈V (A)

[
[[ϕ(v)]]→ [[v /∈ u]]

]
= [[∀x(ϕ(x)→ x /∈ u)]].

ix. follows from ii. and iii.

8.4 Models of subalgebras

In this section, we will see that if A′ is a complete subalgebra of A, then V (A′)

can be regarded as a submodel of V (A).

Recall that the formulas x ∈ y!, x ∈ y? and x ∈ rlm(y) are abbreviations
for !(x ∈ y), ?(x ∈ y) and !(x ∈ y) ∨ ?(x ∈ y), respectively. We note that if
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f : A → A is a function and u ∈ V (A), then f ◦ u is an element of V (A) with
the same domain as u. We will write !u instead of ! ◦ u and so forth.

Lemma 8.4.1. For all u, v ∈ V (A),

[[u ∈ v!]] =[[u ∈ !v]],

[[u ∈ v?]] =[[u ∈ ?v]], and

[[u ∈ rlm(v)]] =[[u ∈ (!v ∨ ?v)]].

Proof. We have

[[u ∈ v!]] = [[!(u ∈ v)]]

= ![[u ∈ v]]

= !
( ∨
y∈dom(v)

[
v(y) ∧ ![[u = y]]

])
=

∨
y∈dom(v)

[
!v(y) ∧ ![[u = y]]

]
= [[u ∈ !v]].

So [[u ∈ v!]] = [[u ∈ !v]], and similarly [[u ∈ v?]] = [[u ∈ ?v]]. The third point easily
follows.

In the following theorem, we are using Definition 6.2.3 for ∆0 and Σ1-
formulas.

Theorem 8.4.2. Let A′ be a complete subalgebra of A and u1, ..., un ∈ A′. If
ϕ(x1, ..., xn) is a ∆0-formula, then

[[ϕ(u1, ..., un)]]A
′

= [[ϕ(u1, ..., un)]]A,

and if ϕ(x1, ..., xn) is a Σ1-formula, then

[[ϕ(u1, ..., un)]]A
′
≤ [[ϕ(u1, ..., un)]]A.

Proof. First we show that for all u, v ∈ A′,

[[u ∈ v]]A
′

= [[u ∈ v]]A and [[u = v]]A
′

= [[u = v]]A.

We fix v ∈ V (A′) and take as our induction hypothesis that for all y ∈ dom(v)
and all u ∈ V (A′),

[[y ∈ u]]A
′

= [[y ∈ u]]A,

[[u ∈ y]]A
′

= [[u ∈ y]]A, and

[[u = y]]A
′

= [[u = y]]A.
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Now, for all u ∈ V (A′),

[[u ∈ v]]A
′

=
∨

y∈dom(v)

v(y) ∧ ![[u = y]]A
′

=
∨

y∈dom(v)

v(y) ∧ ![[u = y]]A

= [[u ∈ v]]A

and

[[u = v]]A
′

=
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ v]]A

′]
∧

∧
y∈dom(v)

[
v(y)⇒ [[y ∈ u]]A

′]
=

∧
x∈dom(u)

[
u(x)⇒ [[x ∈ v]]A

]
∧

∧
y∈dom(v)

[
v(y)⇒ [[y ∈ u]]A

]
= [[u = v]]A.

The proof now proceeds by an induction on the complexity of ϕ(x1, ..., xn).
We already have the base case. For the induction step we will only show that if
ψ(x) is a formula with parameters from V A

′
such that [[ψ(x)]]A

′ ≤ [[ψ(x)]]A for
all x ∈ V (A′), then

[[∃xψ(x)]]A
′
≤ [[∃xψ(x)]]A,

[[∃x ∈ uψ(x)]]A
′
≤ [[∃x ∈ uψ(x)]]A, and

[[∃x ∈ rlm(u)ψ(x)]]A
′
≤ [[∃x ∈ rlm(u)ψ(x)]]A

for all u ∈ V (A′). We have

[[∃xψ(x)]]A
′

=
∨

x∈V (A′)

[[ψ(x)]]A
′

≤
∨

x∈V (A′)

[[ψ(x)]]A

≤
∨

x∈V (A)

[[ψ(x)]]A

= [[∃xψ(x)]]A

and

[[∃x ∈ uψ(x)]]A
′

=
∨

x∈dom(u)

[
u(x) ∧ [[ψ(x)]]A

′]
≤

∨
x∈dom(u)

[
u(x) ∧ [[ψ(x)]]A

]
= [[∃x ∈ uψ(x)]]A.
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Finally, we note that (!u ∨ ?u) ∈ V (A′), and therefore

[[∃x ∈ rlm(u)ψ(x)]]A
′

= [[∃x ∈ (!u ∨ ?u)ψ(x)]]A
′

≤ [[∃x ∈ (!u ∨ ?u)ψ(x)]]A

≤ [[∃x ∈ rlm(u)ψ(x)]]A.

8.5 The BZF axioms in V (A)

In this section, we show that the PZF axioms are true in V (A) and that V (A)

is a model of BZF iff A is the full twist structure over B. We will postpone the
proof that V (A) satisfies the axiom of choice to a later section.

Theorem 8.5.1. The axioms of PZF are true in V (A).

Proof. Extensionality : Let u, v ∈ V (A). We have

[[∀x(x ∈ u⇔ x ∈ v)]] = [[∀x(x ∈ u⇒ x ∈ v)]] ∧ [[∀y(y ∈ v ⇒ y ∈ u)]]

=
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ v]]

]
∧

∧
y∈dom(v)

[
v(y)⇒ [[y ∈ u]]

]
= [[u = v]].

Hence
[[u = v ⇔ ∀x(x ∈ u⇔ x ∈ v)]] ≈ 1.

Seperation: Fix a u ∈ V (A) and let ϕ(x) be a formula with parameters from
V (A). We define v ∈ V (A) by letting dom(v) := dom(u) and

v(x) := u(x) ∧ [[ϕ(x)]]

for x ∈ dom(u). For all w ∈ V (A),

[[z ∈ u]] ∧ [[ϕ(z)]] =
∨

x∈dom(u)

[
u(x) ∧ ![[z = x]]

]
∧ [[ϕ(z)]]

=
∨

x∈dom(u)

[
u(x) ∧ [[ϕ(z)]] ∧ ![[z = x]]

]
=

∨
x∈dom(u)

[
u(x) ∧ [[ϕ(x)]] ∧ ![[z = x]]

]
= [[z ∈ v]].

Classical supersets: Fix u ∈ V (A). Notice that the sentence
∀y∀x[x ∈ y ⇒ !(x ∈ y) ∨ ?(x ∈ y)] is provable in BS4, so

V (A) �Tw ∀x[x ∈ u⇒ !(x ∈ u) ∨ ?(x ∈ u)].
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We let v := !u ∨ ?u and get [[z ∈ v]] = [[z ∈ rlm(u)]] for all z ∈ V (A). It follows
that

V (A) �Tw Cl(v) ∧ u ⊆ v.

Replacement : We will show that V (A) validates the schema

∀u[∀x ∈ u∃yϕ(x, y)→ ∃v∀x ∈ u∃y ∈ vϕ(x, y)],

and leave it as an exercise to show that this implies the axiom schema of
replacement.

Fix u ∈ V (A) and let ϕ(x, y) be a formula with parameters from V (A). For
each x ∈ dom(u), the definable class Dx := {[[ϕ(x, y)]] : y ∈ V (A)} is a subset of
A and is therefore a set. For all a ∈ Dx, there is a y ∈ V (A) such that
a = [[ϕ(x, y)]]. There is therefore an ordinal αx such that for all a ∈ Dx, there

is a y ∈ V (A)
αx with a = [[ϕ(x, y)]]. In particular, this means that∨

y∈V (A)

[[ϕ(x, y)]] =
∨

y∈V (A)
αx

[[ϕ(x, y)]].

Taking α :=
⋃
{αx : x ∈ dom(u)} we get that for all x ∈ dom(u),∨

y∈V (A)

[[ϕ(x, y)]] =
∨

y∈V (A)
α

[[ϕ(x, y)]].

We define v ∈ V (A) by letting dom(v) := V
(A)
α and v(y) := 1 for all y ∈ V (A)

α .
Now,

[[∀x ∈ u∃yϕ(x, y)]] =
∧

x∈dom(u)

[
u(x)→

∨
y∈V (A)

[[ϕ(x, y)]]
]

=
∧

x∈dom(u)

[
u(x)→

∨
y∈V (A)

α

[[ϕ(x, y)]]
]

=
∧

x∈dom(u)

[
u(x)→

∨
y∈dom(v)

v(y) ∧ [[ϕ(x, y)]]
]

= [[∀x ∈ u∃y ∈ vϕ(x, y)]]

≤ [[∃v∀x ∈ u∃y ∈ vϕ(x, y)]].

Union: Fix u ∈ V (A). We define v ∈ V (A) by letting
dom(v) :=

⋃
y∈dom(u) dom(y) and v(x) := 1 for all x ∈ dom(v). Then

[[∀x[∃y(x ∈ y ∧ y ∈ u)→ x ∈ v]]] = [[∀y ∈ u∀x ∈ y(x ∈ v)]]

=
∧

y∈dom(u)

∧
x∈dom(y)

[
u(y) ∧ y(x)→ [[x ∈ v]]

]
≥

∧
y∈dom(u)

∧
x∈dom(y)

[
u(y) ∧ y(x)→ v(x)]]

]
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= 1.

We have
V (A) �Tw ∀u∃v∀x[∃y(x ∈ y ∧ y ∈ u)→ x ∈ v].

Using the axioms of classical supersets, replacement and seperation, we get

V (A) �Tw “
⋃
{rlm(x) : x ∈ rlm(u)} is a set for all u.”

Finally, separation gives

V (A) �Tw ∀u∃v∀x[x ∈ v ⇔ ∃y ∈ u(x ∈ y)].

Pairing : For u, v ∈ V (A), we let w := {u, v} × {1}. Clearly,

[[u ∈ w ∧ v ∈ w]] = 1.

Classical power set : We will show that

V (A) �Tw ∀u∃v∀x[x ⊆ u→ x ∈ v],

and leave it as an exercise to show that this implies the axiom of classical
power set.

Fix u ∈ V (A). We define v ∈ V (A) by letting
dom(v) := {x ∈ V (A) : dom(x) = dom(u)} and v(x) := 1 for x ∈ dom(v).
Let x ∈ V (A). Our goal is to show that

[[x ⊆ u]] � [[x ∈ v]].

We let x′ ∈ V (A) be given by dom(x′) := dom(u) and x′(y) := [[y ∈ x]] for all
y ∈ dom(u). We easily see that

[[x′ ∈ v]] = 1 and [[x′ ⊆ x]] ≈ 1.

We also have

[[y ∈ u ∧ y ∈ x]] =
∨

z∈dom(u)

[
[[y = z]]&u(z)

]
∧ [[y ∈ x]]

=
∨

z∈dom(u)

[
![[y = z]] ∧ u(z)

]
∧ [[y ∈ x]]

≤
∨

z∈dom(u)

[
![[y = z]]

]
∧ [[y ∈ x]]

=
∨

z∈dom(u)

[
![[y = z]] ∧ [[z ∈ x]]

]
= [[y ∈ x′]]

and therefore
[[u ∩ x ⊆ x′]] ≈ 1.
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Finally,

[[x ⊆ u]] � [[x = x′]] ∧ [[x′ ∈ v]]

� [[x ∈ v]].

Foundation: Let ϕ(x) be a formula with parameters from V (A) and put

a := [[∀x[∀y ∈ rlm(x)ϕ(y)→ ϕ(x)]]].

We want to show that
a � [[ϕ(x)]]

for all x ∈ V (A). Fix x and assume that a � [[ϕ(y)]] for all y ∈ dom(x). Then

a �
∧

y∈dom(x)

[[ϕ(y)]]

≤
∧

y∈dom(x)

[
(!x(y) ∨ ?x(y))→ [[ϕ(y)]]

]
= [[∀y ∈ rlm(x)ϕ(y)]].

We also have
a ≤ [[∀y ∈ rlm(x)ϕ(y)]]→ [[ϕ(x)]]

by the definition of a. Hence
a � [[ϕ(x)]].

Infinity : Note that the sentence ∃u[∅ ∈ u ∧ ∀x ∈ u∃y ∈ u(x ∈ y)] is a
Σ1-formula. Since B is a complete subalgebra of A and
V (B) �Tw ∃u[∅ ∈ u ∧ ∀x ∈ u∃y ∈ u(x ∈ y)], we get

V (A) �Tw ∃u[∅ ∈ u ∧ ∀x ∈ u∃y ∈ u(x ∈ y)].

Now that we have seen that the PZF axioms hold in V (A), the question
becomes: what about the BZF axioms? In other words, when does the AClA
hold in V (A)? Clearly, we cannot expect it to hold for every twist structure
since it fails in V (B). On the other hand, it should be just as clear that if A is
the full twist structure over B, then the AClA is true in V (A). The following
theorem tells us that the AClA holds in V (A) just in the case that A is the full
twist structure over B.

Theorem 8.5.2. V (A) �Tw AClA iff A = B./.

Proof. We only show that V (A) �Tw AClA implies A = B./.
Assume that V (A) �Tw AClA, and let

ϕ := ∃x, y[Com(y) ∧ x ∈ y ∧ x /∈ y] and

ψ := ∀x, y[Con(y)→ (x ∈ y ∨ x /∈ y)].
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It is then straightforward to show BZF `BS4 ϕ∧∼ϕ and BZF `BS4 ¬(ψ∨∼ψ).
It follows that [[ϕ]]A = b and [[ϕ]]A = n, and therefore b, n ∈ A.

Now, for all (x, y) ∈ B ×B,

(x, y) = (x, 1) ∨ (0, y)

= [(x,¬x) ∧ b] ∨ [(¬y, y) ∧ n]

∈ A.

Hence A = B./.

8.6 Standard elements and the ordinals in V (A)

Definition 8.6.1. For each x ∈ V, we let

x̂ := {(ŷ, 1)}.

The elements of the form x̂ are called the standard elements of V (A).

It can be shown (see [4, Theorem 1.23]) that the map x 7→ x̂ is an injection
from V into V (2), and for each formula ϕ(x1, ..., xn) and all a1, ..., an,

ϕ(a1, ..., an) iff V (2) �Tw ϕ(â1, ..., ân).

It follows that x 7→ x̂ is an injection from V to V (A) and that for all x, y ∈ V,
both [[x̂ ∈ ŷ]]A and [[x̂ = ŷ]]A are elements of the Boolean algebra 2.

Proposition 8.6.2. For all x ∈ V and u ∈ V (A),

[[u ∈ x̂]] =
∨
y∈x

![[u = ŷ]].

Proof. We have

[[u ∈ x̂]] =
∨
y∈x

x̂(ŷ) ∧ ![[u = ŷ]]

=
∨
y∈x

![[u = ŷ]].

The following proposition tells us that the class {α̂ : α ∈ Ord} ⊆ V (2)

represents the class of ordinals in V (A) in a natural way.

Proposition 8.6.3. For all u ∈ V (A),

[[u ∈ Ord]] =
∨

α∈Ord

![[u = α̂]].
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Proof. We have ∨
α∈Ord

![[u = α̂]] =
∨

α∈Ord

[[α̂ ∈ Ord]] ∧ ![[u = α̂]]

≤
∨

α∈Ord

[[u ∈ Ord]]

= [[u ∈ Ord]].

For each x ∈ dom(u), we let

Dx := {β ∈ Ord : ![[β̂ = x]] 6= 0}.

Let us for a moment fix some x ∈ dom(u). We define a function f : Dx → A by
letting

f(β) := [[β̂ = x]].

I claim that f is an injection: Suppose that β1, β2 ∈ Dx such that f(β1) = f(β2).
Then

0 6= ![[β̂1 = x]]

= ![[β̂1 = x]] ∧ ![[β̂2 = x]]

≤ ![[β̂1 = β̂2]]

= [[β̂1 = β̂2]].

Since [[β̂1 = β̂2]] ∈ {0, 1}, we can conclude that β1 = β2. We have shown that
f : Dx → A is an injection, so Dx is a set for all x ∈ dom(u).

We let β be an ordinal not in
⋃
x∈dom(u)Dx, and see that [[β̂ = x]] = 0 for

all x ∈ dom(u). Hence

[[β̂ ∈ u]] =
∨

x∈dom(u)

[
u(x) ∧ ![[β̂ = x]]

]
= 0.

It is easy to check that

PZF `BS4 ∀x, y (x ∈ Ord ∧ y ∈ Ord⇒ !(x ∈ y) ∨ !(x = y) ∨ !(y ∈ x)) .

Thus

[[u ∈ Ord]] ≤ ![[u ∈ β̂]] ∨ ![[u = β̂]] ∨ ![[β̂ ∈ u]]

= ![[u = β̂]] ∨ ![[u = β̂]]

=
∨
α∈β

![[u ∈ α̂]] ∨ ![[u = β̂]]

≤
∨

α∈Ord

![[u = α̂]].
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Proposition 8.6.4. If ϕ(x) is formula, then

[[∃α ∈ Ord ϕ(α)]] =
∨

α∈Ord

[[ϕ(α̂)]], and

[[∀α ∈ Ord ϕ(α)]] =
∧

α∈Ord

[[ϕ(α̂)]].

Proof. We have

[[∃α ∈ Ord ϕ(α)]] =
∨

u∈V (A)

[
[[u ∈ Ord]] ∧ [[ϕ(u)]]

]
=

∨
u∈V (A)

∨
α∈Ord

[
![[u = α̂]] ∧ [[ϕ(u)]]

]
=

∨
α∈Ord

[[∃u(ϕ(u) ∧ !(u = α̂))]]

=
∨

α∈Ord

[[ϕ(α̂)]].

The proof of the second equality is similar.

8.7 Hereditarily classical sets in V (A)

In Section 8.4, we saw that if A′ is a complete subalgebra of A, then V (A′)

can be regarded as a submodel of V (A). In particular, this tells us that we can
regard V (B) as a submodel of V (A). The following theorem tells us that V (B)

represents HCl in V (A) in natural way.

Theorem 8.7.1. For all u ∈ V (A),

[[u ∈ HCl]]A =
∨

v∈V (B)

![[u = v]]A.

Proof. We let Φ(α) be the property

[[u ∈ HClα̂]]A =
∨

v∈V (B)
α̂

![[u = v]]A

and show by induction that Φ(α) for all α ∈ Ord.
For Φ(0), we have

[[u ∈ HCl0̂]]A = 0 =
∨

v∈V (B)

0̂

![[u = v]]A.

Let λ be a limit ordinal such that such that Φ(α) for all α ∈ λ. Since the
statement “x is a limit ordinal” is ∆0, we get

[[u ∈ HClλ̂]] = [[∃α ∈ λ̂(u ∈ HClα)]]
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=
∨
α∈λ

[[u ∈ HClα̂]]

=
∨
α∈λ

∨
v∈V (B)

α

![[u = v]]

=
∨

v∈V (B)
α

![[u = v]].

We now let α ∈ Ord such that Φ(α) and wish to show that Φ(α + 1). We

define w ∈ V (B)
α+1 by letting dom(w) := V

(B)
α and for all v ∈ V (B)

α ,

w(v) := ![[v ∈ u]]A.

We note that the formula x ∈ Ord ∧ y ∈ Ord ∧ y = x+ 1 is ∆0 and PZF `BS4

∀x(Cl(x)⇒ x = x!). This gives

[[u ∈ HCl
α̂+1

]] = [[u ∈ HClα̂+1]]

and
[[Cl(u)]] ≤ [[u = u!]].

Now,

[[u ∈ HClα̂+1]] = [[Cl(u) ∧ u ⊆ HClα̂]]

≤ [[u = u!]] ∧ [[u ⊆ HClα̂]]

= [[u = u!]] ∧
∧

x∈dom(u)

[
u(x)⇒ [[x ∈ HClα̂]]

]
= [[u = u!]] ∧

∧
x∈dom(u)

[
u(x)⇒

∨
v∈V (B)

α

![[x = v]]
]

= [[u! ⊆ u]] ∧ [[u ⊆ u!]] ∧
∧

x∈dom(u)

[
u(x)⇒

∨
v∈V (B)

α

![[x = v]]
]

= [[u! ⊆ u]] ∧
∧

x∈dom(u)

[
u(x)⇒

∨
v∈V (B)

α

[
![[x ∈ u]] ∧ ![[x = v]]

]]
= [[u! ⊆ u]] ∧

∧
x∈dom(u)

[
u(x)⇒

∨
v∈V (B)

α

[
![[v ∈ u]] ∧ ![[x = v]]

]]
= [[u! ⊆ u]] ∧ [[u ⊆ w]]

=
∧

v∈V (A)

[
![[v ∈ u]]⇒ [[v ∈ u]]

]
∧ [[u ⊆ w]]

≤
∧

v∈V (B)
α̂

[
![[v ∈ u]]⇒ [[v ∈ u]]

]
∧ [[u ⊆ w]]

= [[u = w]].
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Since PZF `BS4 Cl(HClβ) for all β ∈ Ord, we also get

[[u ∈ HClα̂+1]] = ![[u ∈ HClα̂+1]]

≤ ![[u = w]].

Thus
[[u ∈ HClα̂+1]] ≤

∨
v∈V (B)

α+1

![[u = v]].

For the reverse inequality, we note that for all v ∈ V (B)
α+1,

[[v ∈ HClα̂+1]] = [[Cl(v)]] ∧ [[v ⊆ HClα̂]]

= [[v ⊆ HClα̂]]

=
∧

y∈dom(v)

[
v(y)⇒

∨
v′∈V (B)

α

![[y = v′]]
]

= 1

and

![[u = v]] = ![[u = v]] ∧ [[w ∈ HClα̂+1]]

≤ [[u ∈ HClα̂+1]].

We conclude that ∨
v∈V (B)

α+1

![[u = v]] ≤ [[u ∈ HClα̂+1]].

Proposition 8.7.2. If ϕ(x) is formula, then

[[∃u ∈ HCl ϕ(u)]]A =
∨

u∈V (B)

[[ϕ(u)]]A, and

[[∀u ∈ HCl ϕ(u)]]A =
∧

u∈V (B)

[[ϕ(u)]]A.

Proof. Similar to the proof of Proposition 8.6.4.

8.8 The axiom of choice holds in V (A)

The work done in the previous section will help to give a relatively simple proof
that the axiom of choice holds in V (A). But first, we need one more result of
PZF.

Lemma 8.8.1 (In PZF ). If every hereditarily classical set of non-empty sets
has a choice function, then the axiom of choice is true.
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Proof. We will show that for each classical set a, there is a hereditarily classical
set b and a bijection from a to b. The result will then follow by Proposition
4.13.3.

Just as in the proof of Theorem 6.4.4, we can define a function µ : V → HCl
by letting

µ(x) := (µ[x!], µ[x?])

for all x ∈ V. By a simple induction on the rank of sets, we see that that µ is
an injection. It follows that if a is classical set, then µ�a is a bijection from a
to µ[a] ∈ HCl.

Theorem 8.8.2. The axiom of choice is true in V (A).

Proof. We let ϕ(x) be the formula

∀y ∈ x∃z(z ∈ y)→ ∃(f : x→ V )∀y ∈ x(f(y) ∈ y).

By the previous lemma, it suffices to show

V (A) �Tw ∀u ∈ HCl ϕ(u).

Notice that the formula ∀y ∈ x∃z(z ∈ y) is ∆0, and the formula ∃(f : x →
V )∀y ∈ x(f(y) ∈ y) is Σ1. So [[ϕ(u)]]B ≤ [[ϕ(u)]]A for all u ∈ V (B). Now,

[[∀u ∈ HCl ϕ(u)]]A =
∧

u∈V (B)

[[ϕ(u)]]A

≥
∧

u∈V (B)

[[ϕ(u)]]B

= [[∀uϕ(u)]]B

= 1.
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Conclusion

In this thesis, we developed a set theory that is able to represent both incon-
sistent and incomplete information in an intuitive way. We reformulated the
familiar ZFC axioms in the four-valued paradefinite logic BS4 to obtain the
theory PZFC. We then added the powerful anti-classically axiom to get the
theory BZFC, which allows us represent both inconsistent and incomplete in-
formation by using inconsistent and incomplete sets.

We provided a T/F-model W of BZFC starting from the classical ZFC
axioms, and showed that a sentence is a theorem of BZFC if and only if it
holds in W . On the other hand, starting from the PZFC axioms, we provided
the class HCl of hereditarily classical sets, which interprets the classical ZFC
axioms, and showed that sentence is a theorem of ZFC if and only if it holds
in HCl. These two results allow us to translate back and forth between the
theories ZFC and BZFC.

As an application of BZFC, we used non-classical sets to give natural se-
mantics for BS4.

Finally, we generalized the construction of Boolean-valued models for ZFC
to obtain algebra-valued models of the theories PZFC and BZFC.
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Appendix A

Ordered Pairs

We work in PZF throughot this appendix. Our aim is to show that for all
u, v, z and w,

(u, v) = (z, w)⇔ u = z ∧ v = w.

Definition A.0.1. We say that an operation ϕ(x, y) is an injective operation
if

∀x, x′, y[ϕ(x, y) ∧ ϕ(x′, y)→ !(x = x′)].

Our strategy will be to show tha show that if F1 and F2 are injective oper-
ations such that F1[V ]∩ F2[V ] = ∅, then defining (u, v) as F1[u]∪ F2[v] satisfies
our requirement.

Lemma A.0.2. If F is an injective operation, then for all u and v

u = v ⇔ F[u] = F[v].

Proof. First note that F being injective implies that for all x,

x ∈ u⇔ F(x) ∈ F[u]

and
x ∈ v ⇔ F(x) ∈ F[v].

That F is injective also implies

F[u] = F[v]⇔ ∀x(F(x) ∈ F[u]⇔ F(x) ∈ F[v]).

We now have

u = v ⇔ ∀x(x ∈ u⇔ x ∈ v)

⇔ ∀x(F(x) ∈ F[u]⇔ F(x) ∈ F[v])

⇔ F[u] = F[v].
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Lemma A.0.3. If F1 and F2 are definable injective operations such that F1[V ]∩
F2[V ] = ∅, then for all u, v, z and w,

F1[u] ∪ F2[v] = F1[z] ∪ F2[w]⇔ u = z ∧ v = w.

Proof. If u = z and v = w, then, clearly, F1[u] ∪ F2[v] = F1[z] ∪ F2[w].
If F1[u] ∪ F2[v] = F1[z] ∪ F2[w], then

F1[u] = F1[V ] ∩ (F1[u] ∪ F2[v])

= F1[V ] ∩ (F1[z] ∪ F2[w])

= F1[z].

So u = z, and similarly v = w.
Now, suppose that F1[u] ∪ F2[v] 6= F1[z] ∪ F2[w]. We can then also assume,

w.l.o.g., that
∃y(y ∈ F1[u] ∧ y /∈ F1[z] ∧ y /∈ F2[w]).

It follows that
∃x(x ∈ u ∧ x /∈ z ∧ x /∈ w),

and therefore u 6= z.
Finally, suppose that u 6= z or v 6= w. We will assume, w.l.o.g., that

∃x(x ∈ u ∧ x /∈ z).

Then
∃x(F1(x) ∈ F1[u] ∧ F1(x) /∈ F1[z]).

Using that F1[u] ∩ F2[w] = ∅, we get

∃x(x ∈ F1[u] ∪ F2[v] ∧ x /∈ F1[z] ∪ F2[w]).

Proposition A.0.4. For all u, v, z and w,

(u, v) = (z, w)⇔ u = z ∧ v = w.

Proof. We let F1(x) := {{x}} and F2(x) := {{x}, ∅} and apply Lemma A.0.3.
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