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Abstract. Samson Abramsky has placed landmarks in the world of logic
and games that I have long admired. In this little piece, I discuss one
theme in the overlap of our interests, namely, logical systems for reason-
ing with strategies - in gentle exploratory mode. 1

1 Reasoning about strategies, a priori analysis or rather
logical fieldwork?

The notion of a strategy as a plan for interactive behavior is of crucial importance
at the interface of logic and games. Truth or validity of formulas corresponds to
existence of appropriate strategies in systems of game semantics, and in game
theory, it is strategies that describe multi-agent behavior interlocked in equilib-
ria. But strategies themselves are often implicit in logical systems, remaining
“unsung heroes” in the meta-language (5). To put them at centre stage, two
approaches suggest themselves. One is to assimilate strategies with existing ob-
jects whose theory we know, such as proofs or programs. This is the main line
in my new book (6). However, one can also drop all preconceptions and follow
a “quasi-empirical approach”. A traditional core business of logic is analyzing a
given reasoning practice to find striking patterns, as has happened with great
success in constructive mathematics or in formal semantics of natural language.
In this piece, I will analyze a few set pieces of strategic reasoning in basic results
about games, and just see where they lead. I restrict attention to two-player
games (players will be called i, j ), and usually, games of winning and losing
only. Also, given the limitations of size for this paper, I will just presuppose
many standard notions.

2 The Gale-Stewart theorem and its underlying temporal
logic of forcing

Two basic theorems Consider determined games, where one of the players
has a winning strategy. This is the area where basic mathematical results about
games and strategies started:

1 I thank the two readers of this paper, and also Chanjuan Liu and Prakash Panan-
gaden for their generous practical help.



Theorem 1 (Zermelo’s Theorem) Games with finite depth are determined.

Proof . The proof is essentially an algorithm computing positions where players
have winning strategies, a precursor to the game-theoretic method of Backward
Induction (16). Its key recursion defines predicates WINi (“player i has a winning
strategy from now on”) at nodes of the game tree in terms of auxiliary predicates
end (“endpoint”), turni (“it is player i’s turn to move”), movei (“the union of
all currently available moves for i”), and wini (“player i wins at this node”):

WINi ↔ ((end ∧wini) ∨ (turni ∧ 〈movei〉WINi) ∨ (turnj ∧ [movei]WINi))

Notice the different existential and universal modalities in the two cases.2

Now we move to infinite games. An open winning condition is a set X of histories
h with h ∈ X iff some initial segment of h has all its extensions in X. Call a
game “open” where at least one of the players has such a winning condition.
Here is another classical result:

Theorem 2 (Gale-Stewart Theorem) Open infinite games are determined.

Proof . The proof revolves around this property of all infinite games:

Weak Determinacy
Either player i has a winning strategy, or player j has a strategy ensuring that
player i never reaches a position in the game where i has a winning strategy.

If i has no winning strategy, then j has a “nuisance strategy” by Zermelo rea-
soning. At i ’s turns, no move for her can guarantee a win, and so j can “wait
and see”. If j is to move, there must be at least one successor state where i has
no winning strategy: otherwise, i has a winning strategy after all. Continuing
this way, j produces runs as described.

Next, without loss of generality, let i be the player with the open winning con-
dition. Then the nuisance strategy is winning for j. Consider any history r that
it produces. If r were winning for i, some initial segment r(n) would have all its
continuations winning. But then “play whatever” would be a winning strategy
for i at r(n): quod non.

A temporal logic of forcing powers Now we introduce some minimal ma-
chinery formalizing these arguments. Extensive games may be viewed as branch-
ing tree models M for time, with histories as complete branches h, and stages s
as points on these histories:

2 A correctness proof for the algorithm is essentially “excluded middle writ-large”:
either player i has a response to every move by j yielding ϕ, or player j has a move
such that each follow-up by i yields ¬ϕ.
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The bold-face line is the actual history, only known up to stage s so far. Points
can have local properties encoded, while total histories can also have global
properties such as Gale-Stewart winning conditions, or the total discounted pay-
offs used in evolutionary games.

Such structures, assuming discrete time, interpret a standard branching temporal
language ((10) has a survey of flavours), in the format

M, h, s |= ϕ formula ϕ is true at stage s on history h

with formulas ϕ constructed using proposition letters, Boolean connectives, ex-
istential and universal temporal operators F, G, H, P, O (future and past on
branches, with O for “at the next moment”), as well as existential and univer-
sal modalities ♦, � over all branches at the current stage. Here are the truth
conditions for some major operators:

M, h, s |= Fϕ iff M, h, t |= ϕ for some point t ≥ s,
M, h, s |= Oϕ iff M, h, s+ 1 |= ϕ with s+ 1 the immediate successor of s on h,

M, h, s |= ♦ϕ iff M, h′, s |= ϕ for some h′ equal to h up to stage s.

To this description of the basic structure of the model, we now add a strategic
forcing modality {i}ϕ describing the powers of player i at the current stage of
the game:

M, h, s |= {i}ϕ player i has a strategy from s onward playing which ensures
that only histories h ′ result for which, at each stage t ≥ s,M, h′, t |= ϕ

While this looks local to stages s, ϕ can also be a global stage-independent
property of the histories h ′. Note that the condition does not imply that the
actual history h satisfies ϕ: any successful strategy may have to deviate from
the current “road to perdition”.

As an illustration of the perspicuity of this language, Weak Determinacy becomes
the following simple formula:

{i}ϕ ∨ {j}¬{i}ϕ

Valid principles Some obvious laws of reasoning for the resulting temporal
forcing logic are a combination of some well-known components:

Fact 3 The following principles are valid in temporal forcing logic:

(a) the standard laws of branching temporal logic,



(b) the standard logic of a monotonic neighborhood modality for {i}ϕ,
plus one for its strongly modalized character: {i}ϕ→ �{i}ϕ,

(c) three more specifically game-oriented principles:
(c1) {i}ϕ↔ ((end ∧ ϕ) ∨ (turni ∧ ♦O{i}ϕ) ∨ (turnj ∧�O{i}ϕ))

(c2) α ∧�G((turni ∧ α)→ ♦Oα) ∧ ((turnj ∧ α)→ �Oα)))→ {i}α

(c3) ({i}ϕ ∧ {j)}ϕ)→ ♦(ϕ ∧ ψ)

For the list of principles meant under (a), see (10). For those under (b), see (14).
The first law of (c) is the fixed-point recursion in the Zermelo argument, and the
second an introduction law reminiscent of the axiom for the universal iteration
modality in propositional dynamic logic.3 The third principle is a simple form of
independence of strategy choices for the two players that occurs in many logics
of simultaneous action.

Proving our basic results formally These laws allow us to derive our earlier
results. Here are the essential steps in the proof of Weak Determinacy:

– (turni ∧ ¬{i}ϕ)→ �O¬{i}ϕ from (c1)

– (turnj ∧ ¬{i}ϕ)→ ♦O¬{i}ϕ from (c1)

– ¬{i}ϕ→ {j}¬{i}ϕ) from (c2)

Now we can also derive the Gale-Stewart Theorem formally. Suppose that ϕ is
an open condition, i.e.:

ϕ→ F�Gϕ

Then it is easy to derive formally that {j}¬{i}ϕ → {j}¬ϕ, and combined with
Weak Determinacy, this makes the game determined:

{i}ϕ ∨ {j}¬ϕ

Zermelo’s Theorem follows as well, since “having an endpoint” is an open prop-
erty of branches, satisfying the implication

Fend→ F�GFend.

Temporal forcing logic Viewed as a system, temporal forcing logic on our
tree models has some familiar laws:

Fact 4 The modal K4-axiom {i}α→ {i}{i}α is valid in temporal forcing logic.

3 Note that the principle stated here is less strong than it may seem: to see this, just
apply it to a global winning condition.



This is not so much the usual “introspection” for knowledge-like modalities,
but a sort of “safety”: following a winning strategy never takes one outside of
the area where one has a winning strategy. But it is also interesting to look at
non-validities of the system:

Example 1. Some informative non-validities:

(a) The modal T -axiom {i}α→ α fails since the current history need not be the
one recommended by i ’s strategy forcing α. 4 (b) Also invalid is the implication
G{i}α→ Fα, that might look plausible as a principle of eventual success. How-
ever, it fails anywhere on the infinite ¬α branch in the following model, viewed
as a one-person game:

  

Even though we do not know a complete axiomatization for temporal forcing
logic, we do have the wind in our sails:

Fact 5 Temporal forcing logic is decidable.

Proof . All temporal modalities, but also the forcing modality, can be defined
in monadic second-order logic MSOL on trees with successor relations. Histories
are maximal linearly ordered sets of nodes, and strategies can be identified with
subsets of the tree as well, in a manner shown in (7). Then Rabin’s Theorem on
decidability of MSOL tree logic applies.5

Remark A short piece like this cannot do justice to links with existing temporal
logics for games. Classics such as (2) come to mind as obvious comparisons. (6)
explores further connections between our forcing-based logic of strategies with
various game-related systems in computational logic.

3 Nondeterminacy, strategy stealing, and temporal
forcing logics of special games

Within our general logic of strategies, further properties come to light in spe-
cial models. Going beyond the Gale-Stewart Theorem, consider a standard non-
determined game.

4 But valid again in temporal forcing logic is the special instance {i}{i}α→ {i}α.
5 Many strategy-related modalities on trees are even bisimulation-invariant, so by the

main theorem in (15), they are also definable in the modal µ-calculus.



Example 2. The interval selection game. Take any free ultrafilter U on the nat-
ural numbers N. Two players pick successive closed initial segments of N of
arbitrary finite lengths, producing a sequence like this:

i : [0, n1], with n1 > 0, j : [n1 + 1, n2], with n2 > n1 + 1, etc.

Player i wins if the union of all intervals chosen by her is in U - otherwise,
j wins. Winning sets are not open, as sets in U are not determined by finite
initial segments. This interval game is not determined, by a so-called “strategy
stealing” argument:

Lemma 1. Player i has no winning strategy.

Proof . Suppose that player i had a winning strategy, then j could actually use
it with a delay of one step to copy i’s responses to her own moves, now disguised
as j -moves. Both resulting sets of intervals (disjoint up to some finite initial
segment) would have their unions in U : which cannot be, since U is free. Player
j has no winning strategy for similar reasons.

Analyzing this proof in detail reveals interesting logical structure. Let i start,
the other case is similar. The strategy σ gives i a first move σ(−). Now let
j play any move e. i’s response is σ(σ(−), e), after which it is j’s turn again.
Now crucially, in the interval game, the same sequence of events can be viewed
differently, as a move σ(−) played by i, followed by a move e; σ(σ(−), e) played
by j, after which it is i’s turn. What this presupposes is the following special,
but natural property of a game:

Composition Closure: Any player can play any concatenation of available suc-
cessive moves as one single move.6

Now the game tree has the following property. The two stages described here
start the same subgames in terms of available moves, but with all turn mark-
ings interchanged. Thus, one subgame is a “dual” of the other.7 The core of j’s
strategy is now that he uses i’s strategy in the other game to produce identical
runs in both subgames, except for the inverted turn marking. This leads to a
contradiction via the following logical Copy Law :

Fact 6 In games with composition closure, the following formula is valid:

{i}ϕ→ ♦OO{j}ϕd, where ϕd is the formula ϕ with all turn occurrences for
players i, j interchanged.

6 One could define this property formally in a modal-temporal action language suitably
extending our earlier formalism.

7 This is not the standard game-theoretic dual, since we do not interchange winning
conditions. See (6) for more discussion of different dualizations in games.



Many further questions make sense about powers of players in games with special
structure, but here, we only conclude that both general and special temporal
forcing logics have an interest of their own.8

4 Explicit logics of strategies as programs

Forcing modalities profess a general love for strategies without an interest in
any specific one. We now go one step further in our logical analysis, introducing
terms that define strategies, thus enabling us to reason explicitly about strategies
themselves. A wide array of motivations for taking this step can be found in
(5). Suitable languages can take various forms, but one obvious candidate is
propositional dynamic logic.

Transition relations and programs Strategies are functions defined on play-
ers’ turns, with typical instructions like “if she plays this, then I play that”. Plans
like this may allow more than one “best move”, so general relations make sense
as well, providing at least one move per turn. Thus, strategies are additional
relations on a game tree that can be defined by programs. Since we need one-
step actions only, normally, flat programs suffice using only atomic actions, tests,
sequence; and choice ∪ - often just unions of guarded actions of the form

?ϕ;α; ?ψ(9).9

However, consecutive moves become important when we think of forcing out-
comes. Using PDL programs, we now introduce a new forcing language with a
key modality:

{σ, i}ϕ, stating that σ is a strategy for player i forcing the game, against
any play of the others, to pass only through states satisfying ϕ.

While this notion is natural, it still has an explicit definition in more familiar
terms, viz. program modalities:

Fact 7 For any game program expression σ, PDL can define {σ, i}ϕ.

Proof . The formula [((?turni;σ)
⋃

(?turnj ;movej))
∗]ϕ is the required equiv-

alent, as is easy to see from its truth conditions. 10

8 Yet further questions would arise if we also introduce “intermediate” forcing modal-
ities {σ}∗ϕ saying that partial strategy σ guarantees reaching a barrier of interme-
diate positions in the game satisfying ϕ. This would connect with current modal
logics of barriers and “cut-sets”.

9 It is easy to see that, on “expressive” finite game trees (each node is uniquely defin-
able), each strategy is definable by our simplest flat PDL programs. But, if definitions
are to be uniform across models, fixed-point languages are needed (7).

10 In the same style, properties of the outcome of running joint strategies σ, τ , too,
can be described in PDL.



Still, working with an explicit forcing modality {σ, i}ϕ provides a natural no-
tation for strategic behavior, and it fits well with actual examples of reasoning
about games and interaction.

Remark PDL programs can even do a lot more, since they also model partial
strategies that can be combined. See (4), (11) for recent work on on propositional
dynamic logics of strategy combination, where the key operation is intersection
of relations. Laws of such systems mix our earlier forcing modalities with program
terms, as in the following implication:

({σ}ϕ ∧ {τ}ψ)→ {σ ∩ τ}(ϕ ∧ ψ)

Further benchmarks Our earlier “quasi-empirical” approach would now com-
pile a repertoire of ubiquitous strategies, and formalize basic reasoning about
their properties. We will not do so here. Also, PDL programs are geared toward
finite termination, whereas we also want to look at natural non-terminating
strategies such as “keep moving” – but we omit this extension as well.

5 Zoom, levels, invariants, and definability

Zooming in and out It now looks as if we have two competing approaches to
logics of strategies, one with existentially quantified forcing modalities, and one
with explicit program terms that define strategies. But in practice, both options
are natural. The fact of the matter is that logic provides different levels of “zoom”
on reasoning practices. Sometimes, we want to see underlying details, sometimes
we want the broad picture. That is precisely why logical languages come in
hierarchies of expressive power.

In the case of games, it may even be useful to combine our two formats. It
might look as if explicit forcing modalities {σ, i}ϕ are just more informative
than implicit {i}ϕ. But this is misleading. If we want to say that a player lacks
a strategy for achieving some purpose, then we need expressions ¬{i}ϕ, and no
natural explicit equivalent will do.

Even so, this combined language of forcing also has some surprises in store. Here
is a “triviality result” saying that implicit can always become explicit by means
of a strategy “be successful”:

σϕ,i =?turni;movei, ?{i}ϕ

Fact 8 The following equivalence is valid:

{i}ϕ↔ {σϕ,i, i}ϕ

The proof is easy and follows the earlier-mentioned valid recursion principles
that govern temporal forcing.



Definitions for strategies Here is how we view the preceding observation.
Most strategies have bite since they employ restricted tests on local assertions
about the present or the past of the current node, but not about the future (like
the above program did with the forward-looking test ?{i}ϕ).

This fine-structure suggests a study of formats for definability of strategies in
temporal tree models beyond what we have done in the above with our sim-
ple PDL approach. Key strategies with great power are often defined by finite
automata, with Samson’s beloved Copy-Cat as a pet example. As a still more
special case, memory-free strategies have turned out important in game seman-
tics (1), in the field of logics, games and tree automata (13), and interestingly
also, in the guise of Tit-for-Tat, in evolutionary game theory (16).

Two-level views and invariants Our view of what is going on here com-
bines levels. Often we want two views together. Games have moves and internal
properties, such as marking of nodes as turns or wins. But there is also an ex-
ternal game board recording observable or other relevant behavior. An example
are the ubiquitous “graph games” of computational logic where the graph is the
board (19). Usually, there is an obvious reduction map ρ sending game states to
matching states on the game board satisfying a certain amount of back-and-forth
simulation ((6) has many examples). Now, strategies in a game often consist in
maintaining some invariant at the level of its board. Defining strategies then has
to do with defining such invariants. In fact, the forcing modalities in the above
triviality result may be seen as, somewhat bleak, invariants.

Excursion This perspective suggests interesting questions. One of the crucial
results about graph games is the Positional Determinacy Theorem (12) saying
that graph games with parity winning conditions are determined with positional
strategies whose moves depend only on the graph component of the current game
state of play. What this suggests is that the set of winning positions projects
via the reduction map to a set of board positions that can be definable. A
logical explanation of positional determinacy would then be the existence of
a translation from modal forcing statements in the game to equivalent modal
fixed-point assertions about associated graph states.

6 Strategy logics with operations on games

Finally, moving closer to Samson’s trademark compositional methodology, we
can go yet one step further in our formalizations. So far, we had forcing modalities
{i}ϕ, and when needed, we put in explicit terms for strategies {σ, i}ϕ. But all
this still takes place inside the setting of some game that is just given. However,
it also makes sense to add explicit descriptions of games to the logical language,
to obtain a notation, say,



{σ, i, G}ϕ, with a game term G, saying that following the strategy σ
forces ϕ-outcomes only for player i in game G.

Now we can reason about strategies in different games, and how they can be
combined. There are in fact several logical systems in the literature that treat
relevant operations on games that make sense here– such as choice, sequence,
dual, and parallel composition.

Dynamic game logic One available line is the dynamic logic of games in (17)
that extends our forcing modalities with game terms, where the formulas are
now interpreted, not inside games, but on their associated game boards. The
resulting system is a two-agent PDL on neighbourhood models, with typical
decomposition axioms such as the one for “choice games”:

{G ∪H, i}ϕ↔ {G, i}ϕ ∨ {H, i}ϕ.

whose validity can be established by an elementary soundness argument. Other
axioms proceed on analogies with PDL as well, except that for the game dual.

Such soundness arguments provide nice material for the logical fieldwork of this
paper, since we can tease out something that was left implicit in Parikh’s nota-
tion: the underlying calculus of strategies.

Example 3. Strategizing power logic.

Consider the above axiom for choice. Player i starts a game G ∪H by choosing
to play either G or H. If i has a strategy σ forcing ϕ-outcomes in G ∪ H, its
first step describes her choice, left or right, and the rest forces ϕ-outcomes in the
chosen game. Vice versa, if she has a strategy σ forcing ϕ in game G, prefixing
it with a move left gives her a strategy forcing ϕ in G ∪H.

Under the surface, a general strategy calculus is at work here. Our first argument
involved two operations: head(σ) gives the first move of strategy σ, and tail(σ)
the remaining strategy, in a way that validates

σ = (head(σ), tail(σ))

The second part of the argument prefixed an action a to a given strategy σ,
yielding α; σ satisfying obvious laws like

head(α;σ) = α, tail(α;σ) = σ.

Dynamic game logic encodes a natural notion of game equivalence based on equal
powers for players across games, and it has a literature of its own.11

Still, it is clear that the strategy calculus we just elicited does not look like our
earlier PDL programs. The basic operations of head and tail rather suggests a

11 The system has been extended to some kinds of parallel games in (8).



co-algebraic perspective of observing and then looking at the rest of the strat-
egy. This brings us to another line in logics with explicit game terms, namely,
the “game semantics” of Samson himself. It would be tedious to explain this
extensive research program in a brief paper like this, and so I will just make a
few points connecting with the above.

Linear game logic In this case, the logical formulas are just game terms, and
systems of linear logic encode game equivalence or inclusion. There is no ex-
plicit forcing modality–though one might say that the precise notion of validity
associates statements about winning powers with game terms. Still, game se-
mantics takes place in the same temporal models that we have used so far, so it
can be analyzed by earlier techniques. In particular, we could add a description
language for what goes on inside Samson’s games, with forcing modalities and
names of specific strategies. I have ideas on how to do such a two-level logic, but
these would transcend the boundary of this paper.

A concrete “quasi-empirical” challenge for such systems is similar to what we
suggested for dynamic game logic. Begin with the absolute basics, look at the
soundness arguments for linear logic in game semantics, and extract the mini-
mum needed to make its reasoning about game constructions work. This reason-
ing will be more sophisticated than what we have considered before. In partic-
ular, parallel games involve “shadow arguments” (say for the soundness of the
Cut Rule) about what can take place in subgames, and I am not sure how to
represent these minimally.12 13

7 Knowledge, preference, and game theory

Many topics in the above are reminiscent of real game theory. Strategy stealing
proofs and copy-cat behavior are reminiscent of the central role in game theory
for simple strategies like Tit-for-Tat in infinite evolutionary games (3). I end
with mentioning just two points about new structure that should enter if we
want to engage with real games.

Knowledge In the background of many arguments about strategies is what
players know. I can hardly “copy” or “steal” a strategy if I do not know what
it looks like. Now in many standard arguments for existence of strategies, the
talk of knowledge is just didactical wrapping. But it is of interest to take it
seriously, merging strategy logics with epistemic logics or other ways of repre-
senting information. Next on this road are imperfect information games, where

12 More sophisticated arguments about “shadow matches”, copying strategies in games,
and representing parallel by sequential play, occur in the theory of graph games (19).

13 But we could also start our fieldwork in this area with minimal logical specification
calculi for effects of basic strategies, such as Copy Cat.



players need not know exactly where they are in the game tree. Such games,
even when finite, are notoriously non-determined, and analyzing them might
throw new light on game logics. Finally, strategies in this case will typically have
knowledge-dependent instructions, and what also becomes essential is the infor-
mational nature of players: endowed with perfect memory, observation-driven,
or yet otherwise. Even their beliefs and policies for belief revision become impor-
tant in the usual foundations of strategic behavior in game theory. (6) explores
this area in detail, but at the end of it all, an overall strategy calculus remains
to be found.

Preference Another obvious feature of real games is the much more sophisti-
cated dynamics of evaluation that drives behavior and mathematical equilibrium
theory. The balance of available moves, beliefs, and preference is what drives ra-
tional play in the usual sense. Players can have any preferences between outcomes
of a game (whether endpoints or infinite histories), and again this structure re-
quires extending our logics of strategies. Issues this time include new notions of
game equivalence, perhaps dependent on rationality types of players, but also
just the analysis of basic game-theoretic arguments about solution methods. In
particular, (6) has an extensive study of the typical algorithm of Backward In-
duction that already poses many challenges to the above. For one, while it does
have a natural definition in the first-order fixed-point logic LFP(FO), it does
not seem to have an obvious program definition in the above PDL terms. For
another, the current game-theoretic discussion between Backward Induction, a
purely future-looking reasoning style, and “Forward Induction”, a way of factor-
ing in the past of the game so far (see (18)), seems to connect with choices in
logical modeling at many points.

I believe that merging the best of computational logics of games and of game the-
ory has a great future, but as will be amply clear, a lot remains to be done.

8 Conclusion

Logical analysis of strategic reasoning is a rich topic that unifies across the
study of computation and social interaction. I have looked at a number of ways
of pursuing this, in consecutive steps of explicitly defining forcing, strategies, and
games. I believe that my interests in doing so are close to Samson’s, but there
is a caveat. Samson is a type theorist or category theorist at heart, while I am
a model theorist. We may be looking at the very same things, and Samson sees
a rabbit, while I see a deer. Proof theory versus model theory is a major divide
in logic, but it is also a constructive case of complementarity, as has been shown
again and again. This mixture of shared interests and different inclinations leads
me to a conclusion whose phrasing I borrow from Immanuel Kant: I can know
that Samson and I are allies, but I may hope that we are friends.
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