Justification of Matching Outcomes

MSc Thesis (Afstudeerscriptie)

written by

Daniela Loustalot Knapp
(born February 27th, 1995 in Ciudad de México, México)

under the supervision of Prof. Dr. Ulle Endriss, and submitted to the Examinations

Board in partial fulfillment of the requirements for the degree of
MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
January 31st, 2022 Dr. Benno van den Berg (chair)
Arthur Boixel, MSc
Prof. Dr. Ulle Endriss (supervisor)
Dr. Ronald de Haan

nTa
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Abstract

This thesis is dedicated to the study of justifications of partial matching outcomes for
one-to-one matching problems with two-sided preferences. Matching theory studies the
problem of pairing agents from two groups while taking into account their preferences.
The idea is to provide non-experts with a step-by-step explanation of why the computed
assignment is a good compromise between all the agents’ preferences, grounded in a set
of principles that are appealing to them. The contribution of this thesis is twofold. Firstly,
we define a formal model for justifications. A justification consists of a normative basis
together with a step-by-step explanation grounded in the basis and the agents’ preferences.
Secondly, we show how to automate the search for justifications using SAT solvers. We
formally define a procedure to find a justification for a specific problem whenever one
exists. We transform the problem of finding a normative basis into a propositional sat-
isfiability problem, so that it can be solved automatically by a SAT solver and we show
how to extract an explanation from a minimal unsatisfiable subset. Finally, we present an

implementation in Python and some examples of interesting executions.

Acknowledgements

First, I would like to thank Ulle for all his lessons as a teacher and thesis supervisor. By
him as a teacher, I was brilliantly introduced to the world of collective decision making,
which kept me fascinated and shaped my path during the Master. From him as a supervisor
I received all the support. Thanks for all the time invested, the understanding, the honest
feedback and encouragement. The process of making this thesis was very enjoyable with
such a great supervisor. To the members of my thesis defense committee: Arthur Boixel,
Benno van den Berg and Ronald de Haan, thank you for reading my work and making the
defense an enriching experience.

Thanks to the matching mechanism that assigned Ronald de Haan as my academic
mentor. From day one of the program I felt fully accompanied and his guidance was
key during my studies. Thank you Ronald for listening to my ideas and interests and for
helping me find my way.

A special thanks goes to Tanja for being so caring and for solving so many of my
student problems.

To the friends I made in Amsterdam, thanks for all the shared moments: visiting
cafés from a book, going bouldering, eating burgers and facing unexpected situations,
enjoying all the music, walking home after the New Year’s Eve fireworks, having so many
passionate conversations, throwing frisbees all year long, going for workouts in the snow,
(hopefully) breaking a world record, enjoying home-made croissants and so much loving.
You really made me feel at home. To the friends at the other side of the world, thank you
for always staying connected, for keeping me as part of your lives and for being part of
mine no matter the distance.

Finally, I would like to thank my family for all the love and support. For being part of
every step I take in life, no matter in which direction. To my mom for being an example

of strength, courage and love; and for believing in me more than anyone else.

i1

Contents

1 Introduction

1.1 Matching e
1.2 Motivation v v v e e e e e e e e e e e e e
1.3 Thesis OVerview v v i e e e e e e e e e e,

2 Matching Theory

21 TheModel. e
2.2 AXIOMS . . . o o e e e e e e e e
2.3 RelevantResults
24 Summary ... e e e e e e e e e e

3 Justifications

3.1 Feature Language e
32 TheModel. e
3.3 Compatibility withthe Logic
3.4 Minimal Justifications Lo

3.4.1 Minimal Normative Bases

3.4.2 Minimal Explanations,
3.5 Summary ... e e e e e e e e

4 Automation via SAT Solving

4.1 SAT Solving in Computational Social Choice
4.2 The General Approach
4.3 Justification Search via SAT Solvers
43.1 Encoding e
43.2 TheAlgorithm
43.3 Implementation
44 Results. e
45 Discussion.
4.6 SUMMATY ot e e e e e e e e e e e e e

5 Conclusion

Bibliography

1

10
11

12
13
15
20
24
25
27
29

31
31
32
34
36
45
51
58
64
65

67

72

Listings

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

Python script encoding that a matching mechanism is well defined. 39
Python script encoding stability. 40
Python script encoding left-strategyproofness. 40
Python script encoding two-way strategyproofness. 41
Python script encoding left-swap-stability. 41
Encoding of the axiom left-swap-stability in DIMACS format for a prob-

lemofsizen =2.. e 42
Python script for the function isJustification 52
Python code to obtain all possible normative bases 53
Python implementation of BASIS-SEARCH 54

4.10 Normative bases found for the features corresponding to the 10 first profiles 63

v

1 | Introduction

In this chapter we present the main idea of this work. First, we give some background
on matching theory. Then, we motivate the ideas of justifying matching outcomes and of

automating the process. Finally, we give an overview of the thesis.

1.1 Matching

A matching problem is the task of pairing agents from two groups while taking into ac-
count their preferences. The study of these kinds of problems started with the seminal
work of Gale and Shapley (1962), where they proposed the deferred acceptance algo-
rithm for what they called the Stable Marriage Problem and showed how to extend it to
the College Admission Problem. The Stable Marriage Problem consists of a society with
the same number of men and women, each with preferences over those of the opposite
sex, where everyone must be married to someone of the other sex.! In the College Ad-
mission Problem, applicants need to be matched to schools, according to the applicants’
preferences and the colleges’ preferences and capacities. This problem has been further
studied and nowadays is called School Choice (Abdulkadiroglu and S6nmez, 2003; Ab-
dulkadiroglu, 2013). Other variations of matching problems can be found in the real world
and in the literature. An example is the assignation of residents to hospitals (Roth, 1984).
In the US, the National Resident Matching Program® matches doctors to hospitals for their
residencies. Further applications of matching are the assignment of tenants to houses in
a housing allocation situation, the assignation of organ donors to organ receivers (Roth
et al., 2004) and the matching of job applicants to vacancies in companies.

Different kinds of matching problems can be classified according to different param-

eters such as the number of groups of agents involved. Matching problems can consist

IThe abstract model for this problem is essential in the study of matching problems. For that reason, we
may still refer to it but we will instead make the story behind it about a mentorship program where we need
to match exactly one student to each mentor.

2https://www.nrmp.org/

https://www.nrmp.org/

CHAPTER 1. INTRODUCTION

of two groups of agents (bipartite) or of only one group (non-bipartite). An example of
a non-bipartite problem is the Stable Roommates Problem (Manlove, 2013). This prob-
lem consists of one group of agents that rank all of the others and it’s applied in campus
housing allocation, where students have to share a room with one other person (from the
same student group). Bipartite problems can be further classified depending on the kind
of agents and the type of assignment. We consider economic agents and objects. Eco-
nomic agents are considered to have preferences whereas objects are not. Thus, we can
have problems with one-sided preferences and two-sided preferences. The former means
that on one side of the market we have economic agents and on the other we have ob-
jects; and the latter means that we are dealing with economic agents on both sides. A
matching problem with two-sided preferences is, for example, the mentorship program,
whereas a problem with one-sided preferences would be the house allocation problem.
Finally, matching problems can be classified according to the type of matching. We can
have one-to-one matchings, where each agent from one group is matched to exactly one
agent from the other group. The mentorship program and the organ donor problem are
examples of one-to-one matching problems. On the other hand, we have one-to-many
matchings, where each agent from the left group is assigned to only one element from the
right group, but each element from the right group can accept many elements from the
left group. Usually in these kinds of problems, the left group is of economic agents and
the right group is of objects. Examples of one-to-many matching problems are the hos-
pital/residents problem and the school choice problem. In this work we will be restricted
to one-to-one matching problems with two-sided preferences, which correspond to the
mentorship program problem.

Different aspects of Matching Theory have been studied throughout the years in var-
ious disciplines such as economics, social choice theory and game theory. Some exam-
ples are algorithmic aspects like the complexity or feasibility of different mechanisms
(Manlove, 2013; Klaus et al., 2016). From an economic and game-theoretic perspective,
the strategic behavior of agents has been studied (Roth and Sotomayor, 1992). Moreover,
normative aspects have also been studied from an axiomatic perspective (Roth, 1982). We
will focus only on the axiomatic study of one-to-one matching problems with two-sided

preferences.

1.2 Motivation

Any collective decision making problem can be thought of as a process of aggregating

individual interests to arrive at a decision that is a compromise between all the agents’

CHAPTER 1. INTRODUCTION

preferences. As we know from social choice theory, there is no unique good way of doing
this and different mechanisms have their advantages and disadvantages, but what is clear
is that there is no perfect rule that satisfies every agent’s interests. Hence, it is often the
case that (some) agents are not happy with the outcome of a collective decision. Thus, it
is relevant to focus on the search for a way to extract an explanation of why an outcome of
a collective decision is good, for the agents to understand. By a good collective decision
we mean one that is aligned with some principles and depends on the concrete instance
of the collective decision, i.e., the other agents’ preferences. Some work has been done
regarding the justification of collective decisions in voting. For instance, Cailloux and
Endriss (2016) defined a language to reason about different voting rules with the aim that
it could help in automating the analysis of voting rules in a specific situation. Procaccia
(2019) argues that axioms should explain the outcomes to the agents involved, in voting.
Furthermore, Boixel and Endriss (2020) define a formal model for justifications in voting
and they automate the search for justifications using constraint solving. In this work we
bring these ideas to the matching setting.

Imagine that we have a set of axioms that we find relevant and (or) acceptable and an
instance of a one-to-one matching problem with two-sided preferences, i.e., two groups
of agents, each of them with preferences over all the agents from the opposite group.
Suppose that we are given a matching that was computed by some mechanism. Suppose
that we want to find an explanation for the outcome that is grounded in (some of) the
normative principles we selected. But for it to be easily understandable, we would like
it to only talk about the specific situation, i.e., we want an explanation that only uses
facts of the preference profile that we have. Intuitively, that is what we would want for a
justification.

In a matching problem the result of the preference aggregation is local in the sense
that it is not the same for all the agents. As a consequence, agents might be interested in
an explanation only of the part of the outcome that concerns them. For example, an agent
may be wondering why she was matched with her assignee, or why she was not matched
with, say, her top preference. In view of this, we will provide a model for the justification
of partial outcomes.

As an example, consider that in a university, a mentorship program will be held for
the new students at the start of a new academic year. The program consists of assigning a
member of the faculty staff as mentor for each student to guide them during their studies.
Both the students and the staff members have information on each other and thus, pref-
erences. Both groups submit their preferences and a matching is computed by a central

authority in the university. Then everyone is informed of the results. It is very likely that

CHAPTER 1. INTRODUCTION

not everybody will happy with their assignee. It is also likely that not everyone is familiar
with the axiomatic method and able to analyze why is it the case that their assignee can-
not be better. Furthermore, it is possible that there is a set of principles aligned with the
university values, to which both the students and staff members subscribe. In this case, it
might be useful to accompany the results of the matching with a personalized explanation,
grounded in (some of) these principles, for why each pair is in the outcome. Although,
it could be hard in practice to obtain a justification for each pair. In that case, a program
that automatically generates justifications, given a set of axioms and the problem instance,
would be useful.

In contexts where the axiomatic method is used, SAT solvers have been used for di-
verse purposes. They have mostly been used to prove impossibility results (Tang and Lin,
2009; Geist and Endriss, 2011) but they have also proved useful in other situations. For
instance, to discover theorems in game theory (Tang and Lin, 2011), or for the automated
mechanism design for facility location (Okada et al., 2019). Moreover, Endriss (2020)
used SAT solvers to prove impossibilities for one-to-one matching problems. Hence, we
decided to apply the ideas behind these techniques to automate the search for justifications

for partial matching outcomes.

1.3 Thesis Overview

This work is divided as follows. In Chapter 2, we present the basic definitions of one-
to-one matching problems, the axioms and some relevant (impossibility) results. Then,
in Chapter 3 we define a formal model for a justification of a part of an outcome. For
this, we first define a propositional language, the feature language, to express features
that define partial matchings. Then we prove that the model we defined behaves well with
respect to the feature language and we show how to construct justification from others,
using the logical structure of the features they justify. We also discuss the property of
minimality for normative bases and explanations. Chapter 4 is about the automatic search
for justification using SAT solvers. First, we give an overview of the general ideas behind
the SAT solving technique in the context of social choice. Then, we present the specific
approach we used. We show how to encode a justification problem as a propositional
formula; we describe an algorithm that, using this encoding, searches for a justification;
and we describe our implementation. Then, we report the results of the program, we
present an analysis of its performance and we illustrate how it can be used. Furthermore,
we discuss the approach: its advantages and disadvantages. We conclude the thesis in
Chapter 5.

2 | Matching Theory

In this chapter we introduce the preliminaries on matching theory. This work is restricted
to one-to-one matching problems with two-sided preferences. In the first section (Section
2.1), we introduce the model, which corresponds to the model first defined by Gale and
Shapley (1962) for their so-called Stable Marriage Problem. In Section 2.2 we define
several normative principles and finally, in Section 2.3 we present some existing (impos-

sibility) results for matching mechanisms.

2.1 The Model

In this section we define a model for one-to-one matching problems with two-sided pref-
erences. In a one-to-one matching problem with two-sided preferences we consider two
sets, of size n, of agents. We only consider the most basic variant of this problem and
thus we assume that agents have ordinal preferences. That is, they are able to state their
preferences in order but they don’t necessarily have a quantitative notion on how much
they like every agent from the other set. This model corresponds to the Stable Marriage
Problem introduced by Gale and Shapley (1962), where in a society with equal number
of men and women, everyone needs to get married to someone of the opposite sex. This
model can be applied in more relevant situations in real life, for example, in a mentorship
program where there are an equal number of junior and senior individuals and we need to
assign exactly one mentee to each mentor. Furthermore, it can be applied in a job market
where there are the same number of applicants and vacancies.

For the abstraction of these kind of matching problems, we refer to the sets of agents
as left agents and right agents, or sometimes in line with the game-theoretic perspective
we refer to them as left and right side of the market. We use £(.X) to denote the set of all
strict linear orders over a given set X.

The formal model is as follows. An instance of a one-to-one matching problem with
two-sided preferences Z is a tuple (n, L, R, p). The size or dimension of the problem Z

is n. Then we have a set L = {/{y,...,(,} of n left agents, and a set R = {ry,...,7,} of

CHAPTER 2. MATCHING THEORY

n right agents. Every left agent ¢ € L has a strict linear order >, € L(R) as preference
over the right agents; and every right agent » € R has a preference order >, € L(L)
over the left agents. For a given preference order, >, we use >~ to denote its reflexive
closure, i.e., the corresponding non-strict preference order. The preference orders of all
left and right agents constitute a preference profile p = (>4, ..., >0, ™rs- -y >r,) €
L(R)" x L(L)". We use P, to denote the set of all profiles for matching problems of size
n. Thatis, P, = L(R)" x L(L)".

For an agenta € L U R, we use p_, to denote the (partial) profile obtained from p by
removing agent a’s preference order. Moreover, (>, p_,) denotes the profile obtained
from p by replacing >, with /. If the context is unclear, we use >? to denote agent’s
a € L U R preference order in profile p. Furthermore, we use topp(a) to denote agent a’s
most preferred agent from the other side; and similarly bot,(a) denotes her least preferred
agent.

Then, a matching M is a subset of L x R such that |{r : ({,r) € M}| = 1 for every
¢e Land |{¢: ({,r) € M}| =1 forevery r € R. We use M, to denote the set of all
matchings for a matching problem of size n. When the context is clear we can omit the
subscript. Finally, a matching mechanism p is a function that takes a preference profile
and returns a matching:

p: LR x L(L)" - L xR

For an agent a € L U R, we use u(p)(a) to denote agent a’s match computed by
mechanism p under profile p.

One of the most relevant examples of a matching mechanisms is the deferred accep-
tance algorithm. This algorithm was the main contribution of the seminal paper of Gale

and Shapley (1962), which is considered the origin of matching theory.

Definition 2.1 (Deferred Acceptance Algorithm). The deferred acceptance algorithm for

a matching problem Z works in rounds.

(1) In round 1 all left agents propose to their most preferred right agent. Every right
agent chooses among the received proposals the one she likes the most and rejects
all the others.

(n) Inround n all left agents that remain unmatched propose to the right agent they like
the most and that they haven’t yet proposed to. All right agents choose among the
received proposals and their temporary match the one they like the most and reject
all the others.

The algorithm ends once all agents are matched.

6

CHAPTER 2. MATCHING THEORY

Example 2.1. Consider the following matching problem of size n = 3. The preference

profile p is represented in the table.

611T1>-7’2>-7’3 T12€3>-€1>-€2
6257’1>7’3>T2 T22€1>€2>‘A€3
by rg =19 =11 r3: by = U3 = 1

Now we illustrate a run of the deferred acceptance algorithm under profile p. In the
first round, both, agent ¢; and ¢, propose to r; and {3 proposes to r3; agent r; prefers
{1 over {5, so after the first round the pairs in the (temporary) outcome are (¢;,7;) and
(¢3,73). In the second round ¢, sends a proposal to 3 and as r3 prefers {5 over {3, now
the temporary outcome consists of the pairs(¢;,71) and (¢5,73). In the third round, /3
proposes to 7 and ro accepts this (her only) proposal. Now the matching is complete
and the algorithm terminates. The resulting matching under the deferred acceptance for
profile p is:

M = {(l1,11), (l2,73), (3,72) }

2.2 Axioms

The theory of matching has been studied from different perspectives. The one we will
focus on is the axiomatic method. This method consists of defining normative principles
of the objects of study in a formal way and analyzing their consequences. That is, we
study when those principles can be satisfied and which ones are compatible. In our case
those objects are matching mechanisms. In this section we formally define some of the
so-called axioms, or normative principles.

The notion of stability was first introduced by Gale and Shapley (1962). The idea
behind it is that no pair of agents will have the incentive to act on their own and deviate
from the resulting matching to pair up with each other. In this sense, a blocking pair is a
pair of agents from opposite sides of the market that prefer each other over their assigned

match.

Definition 2.2. A pair of agents ({;,7;) € L x R is a blocking pair for matching M and
profile p = (>¢,,..., >,) if there are ¢, € L and r;; € R such that:

° (Ei,’f’j/) € M and (&/,Tj) eM

CHAPTER 2. MATCHING THEORY

® T Ty
° gl >'rj gi’
A matching M is stable if there is no blocking pair for M.

Definition 2.3 (Stability). A matching mechanism p is stable if for every profile p, the

resulting matching, 1(p) is a stable matching.

The deferred acceptance algorithm is an example of a stable mechanism (Gale and
Shapley, 1962).

The axiom of stability can be weakened in order to obtain a different stability notion:
top-stability, stating that if two agents rank each other in their top preference, then they

should be matched to each other.

Definition 2.4 (Top-Stability). A matching mechanism p is fop-stable if for every profile
p, for every left agent ¢ € L and every right agent 7 € R if top,,(¢) = 7 and top,(1) = ¢

then (¢,r) € pu(p).

Then, we have the strategyproofness notions for matching mechanisms. In general,
strategyproofness captures the idea that no agent is able to obtain a better outcome by
presenting untruthful preferences. As we have two disjoint sets of agents, it makes sense
to define one-way strategyproofness notions. First, we need to define when two profiles

are a-variant, for some agenta € L U R.

Definition 2.5. For an agent a € L U R, we say that profiles p and p’ are a-variant if
p_, = p",. That, is, if every agent except (possibly) a has the same preference order in
both profiles.

Definition 2.6 (One-Way Strategyproofness). A mechanism y is left-strategyproof if for
every left agent ¢ € L, for every profile p where =¥ represents the truthful preferences of

¢ and for every /-variant profile p/, it is the case that

pu(p) =7 n(p')
We define right-strategyproofness in an analogous way.

So, one-way strategyproofness says that every left (right) agent gets a match at least
as good when she tells the truth than when she lies. Strategyproofness is obtained in a

natural way by putting left and right strategyproofness together.

CHAPTER 2. MATCHING THEORY

Definition 2.7 (Strategyproofness). A matching mechanism y is strategyproof if it is left-
and right-strategyproof.

Then, we have fairness notions stating the equal treatment of agents. We can think
of fairness notions at different levels. For example, both groups of agents being treated
equally or agents within a group receiving equal treatment. This notions were defined by
Masarani and Gokturk (1989) in the context of the Stable Marriage Problem; this is why

they referred to the group-fairness notion as gender-indifference.

Definition 2.8 (Peer-indifference). A matching mechanism pu is peer-indifferent if for
every profile p, permutation of the left agents 7 : L — L, permutation of the right
agents mp : R — R, left agent ¢ € L and right agent r € R, the following holds

(¢,7) € u(p) if and only if (7., (¢), 7r(r)) € p((7L o wr)(P)),

where (7, o mr)(p) is the natural extension of the permutations to the profile.

Endriss (2020) formalized the group-fairness axiom' in the context of the model that
we are using. First, he defines swap-variant profiles. Profiles p and p’ are swap-variant
if for every 7, j, 7 € {1,...,n}, we have that ¢; prefers r; to r;; in p’ whenever r; prefers
¢; to £y in p and the corresponding when replacing left and right agents. Intuitively,
swap-variant profiles have the same structure but with the roles of left and right agents

swapped.

Definition 2.9 (Group-indifference). A matching mechanism p is group-indifferent if for

every pair of swap-variant profiles p and p’, and for every i, j € {1,...,n} we have that

(¢i,75) € p(p) if and only if (¢;,7;) € p(p’).

Next, we have some efficiency axioms. These notions formalize the idea of the re-
sulting matching being best (in some sense). But as it is natural, there is no one way of
formalizing goodness. So, now we define some properties that define different notions of
mechanisms that always return a good, or efficient matching.

The first axiom in this group states that at least one agent is matched to her most

preferred option. This principle can also be defined separately for left and right agents.

Definition 2.10 (Top-rewarding). A mechanism y is left top-rewarding if for every profile
p, there is a left agent ¢ € L such that (¢,top,(¢)) € u(p). The definition for right

'In the paper, the axiom is called gender-indifference.

CHAPTER 2. MATCHING THEORY

top-rewarding is analogous. We say that p is top-rewarding if it is both, left and right

top-rewarding.

The next axiom is inspired in the school choice problem (Abdulkadiroglu, 2013;
Mennle and Seuken, 2014). In the school choice problem it is a desirable property that
two students (left agents) are not assigned to schools such that they have an incentive
to swap. We call this property in the context of one-to-one matchings with two-sided

preferences, swap-stability.

Definition 2.11 (Swap-stability). A matching mechanism p is left swap-stable if for
every two left agents (1,0, € L, it is not the case that u(p)(f2) =, w(p)(¢1) and
w(p)(ly) =o, w(p)(ls). Right swap-stability is defined in an analogous way and we

say that a mechanism p is swap-stable if it 1s both left and right swap-stable.

Finally, we have a notion dual to top-stability, stating that if two agents rank each

other in their bottom preferences, they should not be matched together.

Definition 2.12 (No-Bottoms). A matching mechanism satisfies the axiom no-bottoms if
for every profile and every pair of agents ¢ € L and r € R, if bot,(¢) = r and bot,(r) = ¢
then it should not be the case that (¢,7) € u(p).

These are just some examples of relevant normative principles, but in the literature

about matching (Klaus et al., 2016; Manlove, 2013) many more can be found.

2.3 Relevant Results

Typically when using the axiomatic method, we try to study what kinds of properties do
different mechanisms satisfy and if sets of axioms are even satisfiable at the same time.
In this section we will review some of these results.

A matching mechanism can satisfy more than one axiom, and usually we would like
them to satisfy certain sets of them. Unfortunately, not every combination of axioms can
be satisfied by a mechanism. This kind of result is called an impossibility result. In that
sense, if there is a set A of axioms that cannot be satisfied by a mechanism at the same
time, we say that the set is trivial, or that the axioms in the set are incompatible. In that
sense, a set of axioms is non-trivial if there is at least one mechanism satisfying all of

them simultaneously. Some examples of impossibility results are the following.

Proposition 2.1. (Roth, 1982) There is no mechanism for a matching problem size n > 3

that is stable and strategyproof.

10

CHAPTER 2. MATCHING THEORY

Proposition 2.2. (Endriss, 2020) There is no mechanism for a matching problem size

n > 3 that is top-stable and strategyproof.

Thus, examples of sets of axioms that are trivial are {stability, strategyproofness} and

{top-stability, strategyproofness}, for n > 3.

2.4 Summary

In this chapter we laid out the basic theory of matching that will be useful for the rest of the
work. We defined the formal model of one-to-one matching with two-sided preferences.
Furthermore, we gave several examples of normative properties that we will use to base
the justifications on. And finally, we defined trivial sets of axioms and presented some

examples of impossibilities for the one-to-one matching model.

11

3 | Justifications

As we already discussed in Section 1.2, the outcome of a matching mechanism is likely to
be questioned at a local level, i.e., each agent might wonder why the part of the matching
that concerns her (e.g., her assignee) is a good result, or whether it is based on some
normative principles that are acceptable to her. Thus, we are interested in justifying a
feature that a matching outcome might possess. Such features will be formalizations
of statements of the sort: the pair (z,y) belongs to the outcome, or agent x has to be
matched either to y or to z. Given a profile, a justification for a feature will consist of
a set of normative principles and an explanation. The normative principles are desirable
properties of a matching mechanism, or the so-called axioms in social choice theory, that
agents would consider acceptable. The explanation is a set of concrete instances of the
normative principles that will constitute a logical argument for why, under the preference
profile and once the principles are accepted, the outcome must possess the feature. In this
chapter we will present a propositional language to express these kinds of features and
a formal model for a justification of a feature of a matching outcome. We will see that
the language is consistent with what one would expect from the justifications and we will
discuss how to obtain explanations that can arguably be more understandable than others.

Some recent work has been developed concerning justifications in the field of compu-
tational social choice for voting. In their paper, Boixel and Endriss (2020) define a model
for the justification of a voting outcome based on both normative principles and the spe-
cific election profile. In their model, a justification consists of a normative basis and an
explanation. In voting, the outcome of an election is one single subset of the alternatives
and it is global in the sense that the result is the same for all the agents. In the case of
matching, the explanation of a whole outcome may not be so relevant since an agent can
only be directly affected by her own assignee or it could even be the case that her match is
the only information she has on the whole outcome, in a situation with privacy concerns.
Hence, in this work we adapt the model for voting to matching by adding a language that
facilitates the expression of local features. The following is an example of what we would

want a justification to look like.

12

CHAPTER 3. JUSTIFICATIONS

Example 3.1. Suppose that in some institution there are three new junior members, so
three senior members are selected to mentor them. Both the junior and the senior members
have information on each other, so they have preferences over who they would like to
work with during the mentorship program. If we take the junior members as left agents

and the senior as right agents we can summarize their preferences in the following profile.

51 NNl STl) 1 2€1>-€Q>-£3
EQ T =T >~ T3 T9 2€2>€1>£3
U3 0 7r3 =Ty =11 ry 1l = ly = U3

Suppose that all participants of the mentorship program agree that top-stability (recall
Definition 2.4) is a desirable property for the matching process that will be used to pair
them up. Furthermore, suppose that some central authority in the institution collects
the agents’ preferences and computes a matching, claiming that is a good compromise

between them. The resulting matching is the following.

M = {(l1,73), (b2, 72), (€3,71)}

Observe that agent /3 is matched with her least preferred right-agent (r1). So she may
question the fairness of the process. In this case, we would want to be able to explain to
her that (¢3,7) € M must be the case given that she agreed with top-stability. We can
do that by stating the following. Observe that agents ¢; and r3 both rank each other as
their top preference, so by top-stability, they must be matched to each other. Similarly
with agents ¢, and r5. Thus, the only option left for agent /3 is to be assigned to ;. These
last sentences will constitute an explanation for the feature of the outcome expressing that
the pair (¢3,71) has to be in the result under the given profile. The normative basis will

consist only of the axiom of top-stability. -

Before presenting the formal model we have to define a language to formally express

the features of a matching that we are interested in.

3.1 Feature Language

In order to talk about parts of a matching, we introduce the notion of feature. Intuitively,
a feature is an expression of some characteristic of a matching that will naturally define
a subset of all the possible matchings possessing it. But formally, a feature will be a

formula in a propositional language.

13

CHAPTER 3. JUSTIFICATIONS

Given a dimension n, we define the feature language for problems of size n. This
feature language is a propositional language consisting of a set of propositional variables
Var, = {i & j|1 < 4,5 < n}. The formulas of this language are defined by the

following grammar:

pu=i2j|npleVe.

For two formulas ¢ and v, we define the formulas ¢ A ¥, ¢ — ¢ and ¢ < Y
as abbreviations for other formulas in the usual way. For instance, ¢ A v stands for
—(—¢p V 1)), and so on.

We define the semantics for the feature language as follows. For any matching M €
M.,,, we use M |= ¢ to denote that the formula ¢ is satisfied by matching M. The

satisfaction relation is defined as follows.

ME (12)) if and only if (¢;,7;) € M
M E —p if and only if it is not the case that M |= ¢
MEpVvy ifandonly if M =por M =1

The semantics extend to the rest of the formulas in the natural way. For example,
M = ¢ — 9 if and only if M | ¢ implies M = . For a formula ¢, we write
= ¢ to denote that every matching satisfies ¢, that is, for every M € M, it holds that
M = . We call such formulas rautologies. For example, if the dimension is n = 3, then
EFE(1=21)Vv(l=2)V(1=3)holds.

We define the set of models Mod(y) of a feature formula ¢ as the set of matchings that
satisfy the formula. That is, Mod(yp) = {M € M, | M |= ¢}. The models of a formula ¢
are exactly the matchings possessing the feature corresponding to the interpretation of (.
So, we say that a matching M has feature ¢ if M € Mod(yp), or if equivalently M |= .
Moreover, the set of models of a formula ¢ can be thought of as the set of matchings
possessing feature (.

We will say that two features ¢ and ¢/ are compatible if the set of matchings possessing
both features simultaneously is not empty, i.e., if Mod(¢) N Mod(¢)) # (.

Observation 3.1. For feature formulas ¢, 1, we have that

Mod(p) N Mod(¢)) = Mod(p A 1)

14

CHAPTER 3. JUSTIFICATIONS

Thus, if two formulas are incompatible it means that there is no model for the con-

junction.

Example 3.2. If we consider the feature formula ¢ = (1 = 3), we have that the matching
M = {(l1,r3), (ls,72), (l3,71)} of Example 3.1 is such that M = ¢. Furthermore, M
satisfies the formula (1 = 3) A (2 2 2) — (3 & 1). The set of models of ¢ is
Mod(yp) = {M, M'}, where M' = {({1,73), ({3,71), ({3,72)}. Lastly, we have that ¢
is compatible with the formula ¢» = (2 = 2) because Mod(¢ A) = {M} but it is
incompatible with y = (1 & 2) because there is no matching where ¢; is paired with r3

and r, at the same time, hence Mod (¢ A x) = 0. -

The purpose of the introduction of the feature language to the model is to express
partial features of the outcome. But notice that we are still able to talk about a specific
matching. That is, the original idea of a justification can still be realized under this model.
Indeed, given a matching M = {(¢;,,7},),..., (¢, rj,)}, we can express in the feature

language that a matching is exactly M with the following formula:

/\ Uk <—]k

Therefore, the language is expressive enough to talk about both complete and partial

matchings.

3.2 The Model

We have defined a language to express features of a matching that can be interpreted as
parts of it. So now we are able to express the object we want to justify. In this section we
define a formal model for a justification of a feature of a matching outcome.

We define the interpretation I(A) of an axiom A as the set of matching mechanisms
satisfying A. This extends to sets of axioms in the natural way. That is, the set I(.A) is
the interpretation of the set of axioms A4 if it consists exactly of all mechanisms satisfying
every axiom in A. Recall, from Section 2.2 that a set of axioms is non-trivial if all of
them can be satisfied at the same time by some mechanism. In that sense, whenever a set

of axioms A is non-trivial, we have that I(A) # (.

Observation 3.2. If 4; and A, are sets of axioms such that 4; C A, then I(Ay) C
I(.A;).This is because if a mechanism satisfies all the axioms in As, then it also satisfies

all the axioms in A;.

15

CHAPTER 3. JUSTIFICATIONS

Before defining the model of justification we need to define the notion of instance of
an axiom. In Example 3.1, two different instances of the axiom top-stability are used
to provide the desired explanation. In the explanation, no reference is made to the full
axiom, but only to those parts related both to the specific profile and the pairs that we
wanted to make a point about.

The notion of instance makes most sense when we can express the axioms in a formal
language. Moreover, a precise definition is dependent on the language. In their paper,
Boixel and Endriss (2020), provide a more general description of what an instance is. For

now that will be enough for us to work with. The conditions are the following.
(1) If A’ is an instance of an axiom A, then A’ must itself be an axiom.

(#7) The interpretation of an axiom is equal to the intersection of the interpretations of
its instances. This implies that if A’ is an instance of A, then I(A) C I(A").

(737) The number of instances of an axiom is finite.

We use A’ < A to denote that A’ is an instance of A. Similarly, if A" and A are sets
of axioms, we use A’ < A to denote that every axiom of A’ is an instance of some axiom

in A.

Observation 3.3. The conditions of being an instance imply that if A and A’ are sets of
axioms such that A’ < A, then I(A) C I(A).

We have defined all the notions that we will use for the justification model. The sit-
uation where we will be interested in obtaining a justification consists of the following.
First, a matching problem, defined by a preference profile, which is the specific situa-
tion the agents find themselves in. Then, the set of relevant normative principles for the
agent(s), which we will call a corpus. And finally, a formula in the feature language,
the interpretation of which will be the feature of the outcome that we are interested in

justifying. These elements will constitute a justification problem.

Definition 3.1 (Justification Problem). A justification problem is a tuple (A, p,), where
A is a corpus of axioms for matching mechanisms; p is a preference profile for the one-to-
one matching problem in question; and ¢ is a feature of matchings, or formally, a formula

in the feature language.

Given a justification problem, we formally define a justification for the resulting
matching possessing the feature in question. Intuitively, a justification will make it pos-
sible to understand why, given some principles and a certain situation, the outcome will

necessarily possess the relevant feature.

16

CHAPTER 3. JUSTIFICATIONS

Definition 3.2 (Justification). Given a justification problem (A, p,), we say that a pair
of sets of axioms (AN, AF) is a justification for the resulting matching under p having

feature o if the following conditions hold.

(i) Explanatoriness. A” can explain the resulting matching having feature :

u(p) = ¢, orequivalently p(p) € Mod(y), for every mechanism p € I(A").

(ii) Relevance. The explanation A” is an instance of the normative basis A" :
AP q AN

(iii) Adequacy. All the axioms in the normative basis belong to the corpus of axioms
provided:
AV C A

(iv) Non-triviality. The normative basis is non-trivial:

(AN £ 0.

Notice that in the definition, ¢ is a formula in the language, so strictly speaking the
justification is for the resulting matching having the feature that corresponds to the inter-
pretation of the feature formula. Furthermore, unlike Boixel and Endriss (2020) in their
definition of a justification for a voting outcome, we don’t require the explanation to be
minimal. That is, such that no proper subset of it is an explanation too. Moreover, we
don’t require the normative basis to be minimal, this is aligned with the definition for
justifications for voting outcomes.

In Section 3.4 we will discuss both design choices: not requiring neither the normative
basis nor the explanation to be minimal. We will explain why we decide to leave them
as properties of a justification instead of part of the definition. Furthermore, in the case
of explanations, we give a procedure to obtain a minimal explanation from an explana-
tion that need not be minimal, showing that not requiring minimality doesn’t make our

definition less precise.

Example 3.3. Consider the following profile p:

€12T1>-’f’2>-7‘3 7“12£3>-€1>-€2

17

CHAPTER 3. JUSTIFICATIONS

by : 11 =173 =19 ro: b1 = by = U3

by rg =179 =11 ry: by = U3 = {1

Suppose that agent /; has a very strong preference for her first option (agent r3)
over the rest, while she agrees that the principles of top-stability (TOPSTA) and left-
strategyproofness (LSP) are desirable properties for a matching mechanism. Then, we
would want to justify the fact that in every resulting matching computed by a mechanism
that satisfies at least those principles, agents ¢; and r3 cannot be paired together.

For, take A as any corpus of axioms that contains top-stability (Definition 2.4) and left
strategyproofness (Definition 2.6). Formally, take A as any corpus of axioms such that
{TOPSTA,LSP} C A.

Then, the pair (A", AF), is a justification for the feature formula p = — (1 = 3)
where AN = {TOPSTA, LSP} and the explanation A¥ is as follows. Consider the next
profile p’ where every agent but /; has the same preferences.

b : rg =11 > T3 r1: b3 =01 = Uy
€22T1>-7’3>-T‘2 T22€1>-£2>-€3

U313 =179 =11 r3: lo = U3 = {1

Then, the following is an instance of the axiom LSP when we fix profile p as the
original profile, agent ¢, as the manipulator and =) = 7, = 71 = 73 as her untruthful
preference. Notice that profile p’ is exactly the resulting profile of only agent ¢; reporting

untruthful preferences.

LSPl : If u(p) (61) =73, then ,u(p')(ﬁl) 7& 9

The following is an instance when fixing profile p’ of TOPSTA.
TOPSTA; : Iftop,(¢1) = 75 and top,, (r3) = {1, then ({1, 72) € u(p’)

Then, the explanation consists of these instances of TOPSTA and LSP. That is,
AP = {TOPSTA;, LSP;}. One can see that this set can indeed explain that the outcome
has to have feature . Suppose for the sake of a contradiction that the outcome need not
possess feature . That is, suppose that (¢1,73) can be part of the resulting matching.
Observe that in profile p’, agents ¢; and 7, have to be matched, by top-stability because
they are ranking each other in their top preferences. But if this is the case and , then

18

CHAPTER 3. JUSTIFICATIONS

in profile p, agent /; could manipulate to be matched to r, rather than to r3, which she
prefers. Hence, the resulting matching from a mechanism that is at least top-stable and
left strategyproof has to have feature . This proves the explanatoriness condition of
the justification (A", A¥). Relevance and adequacy hold because of the way we chose
AN and A¥. Non-triviality holds because there is at least one mechanism that satisfies
both top-stability and left-strategyproof. Thus, indeed (A", AF) is a justification for the
problem. -

Justifications are not unique. We can find justifications for the same problem based
on different sets of normative principles. It can even be the case that a problem is justi-
fied under normative bases conformed by axioms that are not compatible. This opens the
possibilities for offering completely different explanations. Such a thing could be useful
when agents have different views on which properties they value. Even if they find dif-
ferent axioms appealing, it would still be possible to provide them with a justification.
For instance, the problem from the previous example can also be justified with a different

normative basis.

Example 3.4. Take the justification problem from the previous example (Example 3.3).
That is, (A, p, ©) where p is the profile depicted there, ¢ = — (1 = 3) and the corpus A
is such that A C {TOPSTA, LSP}. Now suppose that the axiom no-bottoms (NBOT) is
the one contained in the corpus.

Thus, if we consider the normative basis AY = {NBOT} and the explanation AY =
{NBOT,}, where

NBOTl . If bOtp(fl) =T3 and bOtp(Tg) = fl then (El, 7’3) ¢ ,u(p),

then the pair (AL, A%) is a justification for the same problem. Observe that this time
the outcome not containing pair (¢1, 3) can be justified by the principle stating that if two
agents rank each other in their bottom preference they should not be matched together,

and the fact that agents ¢/; and r3 rank each other in their bottom preference. -

So, we know that it is possible to find several justifications for the same feature. Now
the opposite question arises, whether it is possible to justify two different features, in the
same situation, with the same normative basis. That would be undesirable in the case
where the features express conflicting characteristics of a matching. We prove that this
is not the case. Moreover, we prove that if the features are incompatible, they cannot be
justified with normative bases contained in each other. A similar result in the model for

voting is proven by Boixel and Endriss (2020). Theorem 1 in their paper states that it is

19

CHAPTER 3. JUSTIFICATIONS

impossible to give justifications grounded in the same normative basis for two different

election outcomes.

Proposition 3.1. It is not possible to have justifications for incompatible features under

the same profile grounded in normative bases AY and AY such that AN C ALY,

Proof. For the sake of a contradiction, suppose that there are justifications (AY, AF) and
(AN ALY for some problems (A, p, 1) and (A, p, ¢»), respectively, such that ; and @,
are incompatible. That is Mod (1) N Mod(ips) = 0.

We will first show that I(AF)NI(ALY) = 0. Proceeding by contradiction, suppose that
p € I(AEYNI(AF). Then p € I(AF). By explanatoriness, (p) € Mod(y;). Similarly,
p € I(AF) and thus 1 € Mod(y,). Hence, 1 € Mod(p1) N Mod(3). But we assumed
that ¢1 and ¢, are incompatible, i.e., that Mod(¢1) N Mod(p2) = (. Therefore, there
cannot be such p € I(A¥) NI(AF) and we conclude that T(AF) NT(AZ) = (.

Now by Observation 3.2 we have that AY C AY implies that I(A}) C I(.AY). Then,
by relevance we have that both A¥ 4 AN and AY < AY. This, by Observation 3.3 implies
that T(AY) C I(AF) and I(AY) C I(AF). Hence, I(AY) C I(AF) NI(AL).

But we had proven that I(A¥) N I(AF) = , so it must be the case that [(A}) = 0.
Which is in contradiction with the non-triviality condition for the justification for .

Hence, such justifications cannot exist. L]

We have defined the model for a justification for a feature, or a partial matching out-
come. In the following sections we will discuss how our definition of a justification be-
haves in comparison with the structure of the feature language (Section 3.3). Furthermore,
we will discuss the minimality properties for normative basis as well as for explanations
(Section 3.4).

3.3 Compatibility with the Logic

In this section we analyze the structure of the collection of all justifications, we show
how this structure is compatible with the feature language and that then we can obtain
justifications for certain features by the means of the logical structure of the feature. We
show how to obtain such justifications. Furthermore, we show what do some justifications
look like depending on the logical structure of the feature formula.

We start with the limit cases. We see what a justification looks like for trivial formulas
such as contradictions and tautologies. First we show that, as expected, there is no justifi-
cation for a contradiction. A contradiction is a formula that has no models. For example,

when n = 3, the feature formula ¢ = (1 = 1) A (1 & 2) is a contradiction because, by

20

CHAPTER 3. JUSTIFICATIONS

definition, a matching is such that every left agent is matched to at most (and exactly) one

right agent. So no matching would be a model for ¢.

Proposition 3.2. Let (A, p, ¢) be a justification problem such that ¢ is a contradiction.
That is, Mod() = (). Then no pair (A", AF) forms a justification for .

Proof. Notice that by non-triviality (I(AY) # 0) and relevance (A < A"), the set I(AF)
is non-empty. Then, for every p € I(A¥) we have that ;1 ¢ Mod() because Mod() = 0.
Hence, every choice of A" and A¥ cannot satisfy non-triviality, relevance and explana-

toriness at the same time and thus it cannot form an explanation for ¢. [

Proposition 3.2 is a nice soundness property of the justification model, it entails that
we can only justify features that at least some matching has.

On the contrary, every non-trivial set of axioms can justify a tautology. An example
of a tautology for a matching problem of dimension n, as mentioned in Section 3.1, is the
formula (1 = 1) V --- V (1 & n), interpretation of which is that left agent ¢; is matched

to at least one right agent.

Proposition 3.3. Let (A, p, ¢) be a justification problem such that ¢ is a tautology. That
is, Mod(¢) is the set of all matchings. Then for any non-trivial set A" C A and every set

AF of instances of A", the pair (A", AF) is a justification for ¢.

Proof. Every mechanism p € I(AF) is such that p(p) € Mod(p) because ¢ is a tautol-
ogy. Hence, the explanatoriness condition holds. Relevance, adequacy and non-triviality
hold by assumption. Therefore, (A", AF) is a justification for ¢. O

Proposition 3.3 implies that even the empty set can explain a tautology. This is appar-
ently a trivial property but it is nice to have. It can be interpreted as the fact that a feature
that every matching has, needs no further explanation. This implies that a minimal expla-
nation will only explain meaningful (non-trivial) features.

Now, we show how to obtain justifications for features from those for formulas that
are logically related. In a logical language we construct formulas from others by means
of logical connectives. Thus, we consider how a justification for a new formula can be
constructed from those for the original feature formulas, and if it is at all feasible. We will
consider feature formulas with different structures.

First we consider implication. A feature formula ¢/ is a logical consequence of a
formula ¢, or ¢ logically entails ¢ (in symbols = ¢ —) if for every matching M, it
is the case that if M |= ¢, then M = 1. An example of a feature ¢ that is a logical
consequence of another feature p, whenn = 3,is¢) = (1 =2 2)V (1 &2 3),ifp =~(1 =

1). A justification for a formula also justifies all its logical consequences.

21

CHAPTER 3. JUSTIFICATIONS

Proposition 3.4. If there are two feature formulas ¢ and v, such that = ¢ — ¢ and
there is a justification (A~ , AE) for (A, p,), then (AY, AF) also is a justification for

(A, p,).

Proof. We first prove that explanatoriness is satisfied. Let ;1 € I(A¥). By explanatoriness
of (AN, AF) as a justification for ¢, we know that u(p) = . Then, as = ¢ — o, it

follows that u(p) = 1.
Relevance, adequacy and non-triviality follow directly. Hence, (A", A) is a justifi-

cation for (A, p, ¥).]

Two formulas ¢ and 1) are logically equivalent if they are a logical consequence of
each other, i.e., if = ¢ — ¥ and =) — ¢. We denote logical equivalence by |= ¢ > 1.
Examples of logical equivalent features when the matching problem is of size 2, are p =
—(1 = 1)and ¢v» = (1 = 2). As a consequence of Proposition 3.4, a justification for a

feature formula justifies any logically equivalent feature.

Corollary 3.1. If there is a justification (AN | AP) for (A, p, ©) and) is a feature formula
equivalent to o i.e., such that = © < 1, then (AN, AF) is a justification for (A, p,1).

Then, we examine the conditions to construct a justification for the conjunction of fea-
ture formulas. The conjunction of feature formulas is an interesting case because joining
two features gives more information about the matching outcome. Thus, if we have jus-
tifications for two (compatible) features, we may be interested in obtaining a justification
for the conjunction. We show how to obtain such justifications, whenever it is possible.

First we consider the case where the justifications of both conjuncts are based on the
same normative principles. In this case we can just concatenate the explanations to obtain

a justification for the conjunction (of the features).

Proposition 3.5. Let ©; and 5 be features of matchings. Let A be a corpus of axioms
and let p be a preference profile for a matching problem Z. Suppose (AN, AF) is a
justification for (A, p, ¢;) and (A", AF) is a justification for (A, p, ;). That is, there
are justifications for ¢; and o, grounded in the same basis. Then (AN, AF U AF) is a

justification for (A, p, 1 A ¢2).
Proof. Let’s prove the conditions for a justification one by one.

(i) Explanatoriness. Let u € I(AF U AZ). By Observation 3.2 and because AY C
AP U AE and AY C AP U AP, we have that u € T(AF) and p € T(A¥). By
the explanatoriness condition on the original justifications, we have that u(p) €
Mod(¢;) and u(p) € Mod(y1). Hence, p(p) € Mod(y1) N Mod(y2) and by
Observation 3.1, it holds that p(p) € Mod(¢1 A ¢2).

22

CHAPTER 3. JUSTIFICATIONS

(ii) Relevance. As both A¥ and AY are instances of the normative basis A", so is their

union.
(iii) and (iv) Adequacy and Non-triviality are preserved by the normative basis. [

Observe that obtaining a justification for a conjunction in this situation is always pos-
sible. That is, if there are justifications for features ¢ and v and the same profile, re-
spectively, grounded in the same basis, then the features must be compatible and we can
provide a justification for the conjunction. This follows from Proposition 3.1. But more
generally, we can always justify a conjunction of compatible features by putting the two
justifications together as long as the union of the normative bases is non-trivial (Proposi-
tion 3.6).

Proposition 3.6. Let ¢; and 5 be compatible features of matchings. Let A be a corpus of
axioms and p be a preference profile for a matching problem Z. Suppose that (ALY, AF) is
a justification for (A, p, ¢y), that (ALY, AL) is a justification for (A, p, ©,) and that AY U
AY is a non-trivial set of axioms, i.e., that I(AY U.AY) # 0. Then (AN U AY, AP U AL)
is a justification for (A, p, p1 A p2).

Proof. We need to prove the conditions of the definition of justification. In this case we

prove relevance first, since we use it to prove explanatoriness.

(ii) Relevance. Let A € A¥ U AF. If A € A¥, then by relevance of the justification
for 1, there is a B € AY such that A < B. Analogously if A € A¥. So, for every
A e AFUAYL, thereisa B € AYUAY such that A<B. Thus, AP UAF <AV UAY.

(i) Explanatoriness. First, we have that I(AF U AF) #) because by assumption,
I(AY U AY) # 0 and by relevance, I(AY U AY) C I(AF U AF). So, let u €
I(AF U ALP). Then, pu € T(AF) because I(AF U AY) C 1(AF). By explanatoriness
of the first justification, we have that (p) = 1. By a similar argument it follows
that ;u(p) |= 2. Hence, u(p) = @1 A po.

(iii) Adequacy. We have that AY C A and AY C A. Thus, AY U AY C A.
(iv) Non-triviality. Holds by assumption. [

We turn our attention to the disjunction of feature formulas. The first thing we can
observe is that if there is a justification for a feature formula that is a disjunction, say
¢ V 1 and there is a justification for the negation of one of the disjuncts, say for —¢, we
can put them together to obtain a justification of ¢, as long as the disjunction and the

negation are compatible and the normative bases are compatible too.

23

CHAPTER 3. JUSTIFICATIONS

Observation 3.4. Assume that (AY, AF) is a justification for (A, p,» V ¢) and that
(AN, AFY is a justification for (A, p, ~¢). If there is a justification for (V1)) A =, then

it is a justification for).

This is a consequence of both Corollary 3.1 and Proposition 3.6. Notice that it is
nevertheless not the case that if there is a justification for a disjunction ¢ V 1), there need

be a justification either for ¢ or for).

Example 3.5. Recall Example 3.4 but consider the corpus of axioms being exactly the
set A = {NBOT}. Observe that this doesn’t change the argument of (AY AF) =
({NBOT}, {NBOT,}) being a justification for the formula ¢ = = (1 = 3).

Now consider the formula ¢y = (1 = 1) V (1 = 2). Observe that it is equivalent to .
That is, = ¢ <+ 9. Hence, by Corollary 3.1 (A" A%) is a justification for 1.

It is then easy to see that, with respect to the corpus A, there is no way of justifying
either the feature formula (1 = 1) nor the formula (1 = 2). Thus, this is a situation
where there exists a justification for a disjunction but there is no justification for either of

the disjuncts. -

We have seen when it is possible and how to obtain justifications for feature by only
looking at their logical structure. Furthermore, we saw how the model of a justification
that we defined in Section 3.2 behaves as one would expect in relation to the structure of
the feature formulas. That is, for example, that we are not able to justify contradictions
and that tautologies are trivially justifiable. This results will become important when we
automate the process for the search of justifications. In some cases, it will be easier to
for example, search for a justification for a feature that is equivalent to the one that we

originally wanted to justify.

3.4 Minimal Justifications

When defining a justification (Definition 3.2), we didn’t require either the normative basis
nor the explanation to be minimal. By minimal we mean that no proper subset is a nor-
mative basis or an explanation, respectively. These were design choices. Not requiring
minimality for the basis is aligned with the definition of Boixel and Endriss (2020) of
a justification for voting outcomes, while our choice of not requiring minimality for the
explanation is not. In this section we discuss why we decided not to force minimality for
neither of the parts of a justification. Furthermore, in the case of explanations, we present
a procedure to obtain a minimal explanation from one that might not be so.

First we formally define minimality for normative bases and explanations.

24

CHAPTER 3. JUSTIFICATIONS

Definition 3.3 (Minimal Normative Basis). Given a justification (A", A%) for a problem
(A, p,), we say that the normative basis A" is minimal if there is no proper subset
A C A" such that there exists a set of instances A’ <A such that the pair (A, A’) is a
justification for (A, p, ©).

Definition 3.4 (Minimal Explanation). Given a justification (A", A¥) for a problem
(A, p, p), we say that the explanation A” is minimal if for every proper subset A C A,

u(p) = ¢ for some p € T(A).

As we consider minimal normative bases and minimal explanations, we say that a jus-
tification (A", AE) for a problem (A, p,) is minimal if both, A" and A¥ are minimal.

3.4.1 Minimal Normative Bases

A smaller normative basis can be desirable because we may be interested in having a
weaker set of axioms the justifications are grounded in. It may also be easier for the agents
to keep in mind, or to understand a smaller number of normative principles. Nevertheless,
we decided not to require minimality for normative bases mainly for two reasons. Firstly,
as it is already known, many axioms are in conflict with each other, so it is unlikely that
in practice a basis of big size would be found. Secondly, in practice it can be the case that
an explanation is shorter if it involves more axioms, so if that’s the case, we may prefer
the justification with the bigger normative basis. We illustrate this with the next example
where the explanation for a feature becomes shorter and easier to understand if we add

one more axiom.

Example 3.6. Consider a matching problem of size 3 where the preference profile p is as

follows.

b : rg =11 = T3 ry: by = by = U3
by : 11 =179 > T3 ro i My = U3 = {1

€32T3>-’f’2>-7’1 T32£3>‘€2>‘€1

Let the feature formula be ¢ = —(1 = 1) and let the corpus A be such that it contains
the axioms of left swap-stability (LSS, Definition 2.11) and top-stability (Definition 2.4).
That is, {LSS, TOPSTA} C A. Consider the justification problem (A, p,).

First, we show that there is a justification for ¢ with normative basis {LSS}. Observe
that in profile p, left agent ¢, prefers ro over r; and /5 prefers agent r; over 5. So take

the instance, say LSS;, of left swap-stability, saying that either the pair (¢1,7;) or the pair

25

CHAPTER 3. JUSTIFICATIONS

(£5,75) is not in the matching computed under profile p." Let LSS, be the instance of left
swap-stability saying that under profile either the pair ({3, 75) or the pair ({5, r3) is not in
the resulting matching. Now, the explanation for this feature is the set {LSS;,LSS,}. And
the human-readable version of it would look like the following argument.

Recall that we want to explain the fact that the pair (¢;,7;) is not in the outcome.
We start from LSS;. As it is a disjunction, we will make a case distinction. One of the
disjuncts is the feature that we want to prove, so if that’s the case we are done. For the
other case, suppose that the pair (5, 72) is not in the matching outcome under profile p.
As the resulting matching is well defined, agent /5 has to be matched to some right agent.
There are two options, either she is assigned to r; or to r3. Assume the former, then agent
¢, cannot be matched to r; (because /5 already is), so we have proven that the pair (¢;,7)
is not in the resulting matching. Finally, if /5 is matched to 73, by LSSs, it should be the
case that the pair (¢3,77) is not in the resulting matching. But as /5 is matched to 7, then
also the pair (3, 73) is not in the outcome. Then, as /3 has to be matched to some right
agent, it should be that the pair (3, ;) is in the outcome. Therefore, /1 cannot be assigned
r1. We have then proven that in any case, the pair (¢1,71) is not in the outcome.

Observe that the argument, while logically valid is quite confusing. Moreover, using
only the axiom left swap-stability, there is no much better way to provide an explanation
for the feature. Now consider the normative basis {LSS, TOPSTA}. That is, now we
add the axiom of top-stability to the normative basis. Let TOPSTA; be the instance of
top-stability saying that agents /3 and r3 should be matched under profile p (because they
rank each other in their top preferences). For this justification, the explanation is the set
{LSS;, TOPSTA, }. The step-by-step argument is the following.

Again we start making a case distinction starting from LSS;. For the relevant case,
assume that the pair (f2,75) is not in the resulting matching. Now, by TOPSTA;, we
know that /5 and r3 are matched together. Then, ¢, cannot be assigned to r3 either. Thus,
the pair (¢, 71) must be in the resulting matching. Therefore, ¢; cannot be matched to r;.

The explanation based on {LSS, TOPSTA} is shorter and arguably more understand-
able than that one based on the set {LSS}. Moreover the normative basis {LSS} is mini-
mal, while {LSS, TOPSTA} is not. .

Observe that we can in principle, add more axioms to the normative basis, as it was
done in Example 3.6 but this doesn’t mean that instances of the added axioms will show

up in the explanation and make it shorter. In fact, every non-trivial superset of a normative

Because if both are in the resulting matching, then there would be two left agents (¢ and £5) that prefer
each other’s match.

26

CHAPTER 3. JUSTIFICATIONS

basis of a justification is also a normative basis for some justification of the same feature.

Observation 3.5. If (A", AF) is a justification for a problem (A, p,), then every non-
trivial superset A O A" is a normative basis for a justification for the same problem. In

fact, the pair (A, A”) is a justification for (A, p,).

Example 3.6 shows a situation where a justification with a minimal basis may not
be better than one with a bigger normative basis. Hence, requiring minimality of the

normative basis doesn’t necessarily make the justification better.

3.4.2 Minimal Explanations

Now we discuss minimal explanations. The main purpose of a justification is to provide
an explanation for humans (or the agents involved) to more easily understand why an
outcome, or a specific feature of it, is a good compromise given the agents’ preferences
and a set of potentially interesting normative principles. Thus, it makes sense to look
for explanations that are easier to understand than others. There is no unique way for an
explanation to be more understandable. For example, the length of the explanation or the
number of profiles involved can help in measuring how understandable the explanation is.

In this section we will propose a procedure to find a minimal explanation from a given
one. We will show that it is always possible to obtain one, i.e., that the process is correct
and always terminates.

In principle it is possible that for a justification problem (A, p,) there are different
justifications based on the same set of normative principles. The choice of not requiring
the explanation to be minimal for a justification to be well-defined makes it easier, for
example, to join justifications. However, having minimal explanations can be useful to
present the users with a step-by-step argument as clear as possible.

So, once we have a justification, we are interested in obtaining a short explanation.
More precisely, a short explanation is an explanation that is minimal in size, i.e., that if
we remove any of its elements, it can no longer explain the feature.

Given a justification problem (A, p,) and a justification (A", AF) for it, a way to
obtain a minimal explanation is to remove elements of the explanation one by one and
check if the set still has explanatory power. We formalize this procedure in an algorithm,
MIN-EXP.

MIN-EXP intuitively works as follows. It first creates two set variables: .4 in which
it will store the minimal explanation; and B, to keep track of the elements of the original
explanation that it has already checked. Then, it runs a while loop that will stop being

executed once A = AF. That is, it will run as long as there are elements of the original

27

CHAPTER 3. JUSTIFICATIONS

Algorithm 1 MIN-EXP
Input: A problem (A, p, ¢) and its justification (A", AF)
1: A=AF B:=0
2: while B # AF do
3: Choosea € A¥\ B
4 if u(p) = p forall p € I(A\ {a}) then
5 A=A\ {a}
6: end if
7
8:

B=BUf{a}
end while
return A

explanation set A that haven’t been checked. In one execution of the loop, it chooses
one element a from A¥ \ B, i.e., an element from the original set that hasn’t yet been
checked. The set A” \ B is never empty if the while loop is entered. After choosing an
element a, it verifies if the set A \ {a} is still an explanation for the feature. That is, if
eliminating a from the current explanation set, stills results in an explanation. If it does, it
updates the explanation set, by removing «a from it. Finally, it updates the set of checked
elements by adding a. When it has checked all the elements from the original explanation,

i.e., when B = AF it returns the updated explanation set .A.
Observation 3.6. The algorithm MIN-EXP always terminates.

This is because inside the while loop, there is always one element from .A” added to
B and the while loop stops being executed once these sets are equal. As there are a finite
number of elements in A, the loop runs only a finite number of times. Furthermore,

every step inside the loop is finite. Hence, the algorithm terminates.

Proposition 3.7 (Correctness of MIN-EXP). The algorithm MIN-EXP is correct, i.e.,

MIN-EXP always returns a minimal explanation.

Proof. First, notice that the starting set A” is already an explanation.Then, the set A,
when it is first defined, is an explanation for the feature . Furthermore, every time the
loop is executed, the set A is an explanation for ¢, regardless of whether it was updated
because of the check done inside the if clause.

Now, the explanation is minimal because once one element is removed, it still checks
if all the remaining elements can be removed (and removes them if possible). So the
set A is such that for every element a € A, the set A\ {a} is not an explanation, for
every a € A. This implies that every proper subset of .4 is not an explanation anymore.

Therefore, A is a minimal explanation. By Observation 3.6, MIN-EXP always terminates

28

CHAPTER 3. JUSTIFICATIONS

and thus it returns some set .A. We conclude that MIN-EXP always returns a minimal

explanation. 0
A limit case is when the feature ¢ is a tautology.
Observation 3.7. If the feature ¢ is a tautology, then MIN-EXP returns the empty set.

That is because the set I(()) includes all matching mechanisms and every matching is
a model for a tautology. So the algorithm will remove all the elements from the original
explanation. This is still correct since a minimal explanation for a tautology is the empty
set, as it was mentioned in the previous section (Section 3.3).

We have proven that the algorithm MIN-EXP always returns a minimal explanation.
However, it doesn’t always return the same explanation, or even an explanation of a cer-
tain size. Which explanation it returns depends on the order in which the elements of the

original explanation set A” are chosen. We illustrate this idea with Example 3.7.

Example 3.7. Suppose that the set AX = {ay, as, a3, a4} is the explanation set of a justi-
fication (A", A%) for a justification problem (A, p,). Furthermore, suppose that A” is
not minimal and that the minimal explanations for ¢ are {a;, as, a4} and {as, as}.
Notice that if the algorithm chooses the elements of A” in an order such that a; comes
before a, and a9, once it removes as from the set it will not be able to remove neither a;
nor as. In this case, MIN-EXP will return the set {a;, as,as}. This corresponds to the
path in blue in Figure 3.4.2. If on the contrary, we MIN-EXP chooses the elements of
A¥ in ascending order (a1, ay, as, ay), it will remove elements as it is shown in the purple

path in Figure 3.4.2. That is, it will remove a; first, then ay and it will return the set
{a3, CL4}. _|

3.5 Summary

In this chapter we defined a model for justifying partial outcomes of a matching mecha-
nism under a certain profile and grounded in a set of normative principles. To do that we
defined a propositional language to talk about partial matchings. Then, we showed that
the language together with the model, behave as we would expect them to in correspon-
dence with the interpretation of a justification. Furthermore, we showed how to obtain
justifications from others, under certain conditions, like the compatibility of the feature
or of the axioms in the normative bases. Finally, we discussed the property of minimality

for both normative bases and explanations. We showed that a minimal normative basis

29

CHAPTER 3. JUSTIFICATIONS

.AE

ay as
a2

{a2aa’37a/4} {alaa37a4} {alaa'Qva/ZL}

a2 a1

{as, as} {as, as}

Figure 3.1: Different runs of MIN-EXP with input A% as in Example 3.7. Each branch
corresponds to a different run of the algorithm depending on the order in which the ele-
ments of A” were chosen.

doesn’t always result in a better justification in terms of the understandability of the ex-
planation. For explanations, we described a process to obtain a minimal explanation and

we showed that it is always possible to apply it.

30

4 | Automation via SAT Solving

In this chapter we will present one possible approach for the automation of the justification
search. For this, we transform the problem into a propositional satisfiability problem and
use SAT solvers to automatically solve it to then translate it back into our setting. This
technique has been used in computational social choice for different purposes. First, we
give an overview on how this technique has been used in the field (Section 4.1). Then we
explain the general way in which it has been used (Section 4.2). After that, we explain
what the approach will consist of in our specific problem (Section 4.3). We describe
the outline of the program by explaining the encoding of the problem, the high level
algorithm it follows and an implementation. Then, we show some examples of usage of
the program and give an overview on its performance (Section 4.4). Finally, in Section
4.5, we discuss the approach, highlighting its advantages and proposing ideas to diminish

its disadvantages.

4.1 SAT Solving in Computational Social Choice

Recently in the field of computational social choice, computer-aided methods have been
used as tools for the further development of the theory of social choice. Some of the
applications of computer-aided methods are, for example, the production of new proofs
for known results or the search for new theorems. One of the tools used for these appli-
cations are SAT solvers. The technique of using SAT solvers to prove impossibilities in
social choice was first used by Tang and Lin (2009). They used this approach to offer a
new proof for Arrow’s Theorem (Arrow, 1951). Their technique consists of a few steps
that we will elaborate more on later. In their paper, Geist and Peters (2017) explain in
depth this approach through an example of an impossibility result in voting theory.

Since the paper of Tang and Lin (2009), the use of SAT solvers has been applied in
very diverse areas of computational social choice and game theory. Geist and Endriss
(2011) used this method to verify and discover new theorems in the context of preference

extensions. The approach was also used by Tang and Lin (2011) to discover theorems

31

CHAPTER 4. AUTOMATION VIA SAT SOLVING

in a special setting of game theory. Okada et al. (2019) used SAT solvers to discover
new mechanisms for the location of a public good in a 2-by-2 grid and for proving an
impossibility for the location of a public bad in a 2-by-3 grid. Brandl et al. (2015) prove
an impossibility concerning the no-show paradox for set-valued voting rules using SAT
solvers.

More related to this work, Endriss (2020), proves a preservation theorem, stating con-
ditions for an axiomatic result, for one-to-one matching problems, to carry over to any
setting with fewer agents. This means that one could prove an impossibility result by
proving the impossibility for a fixed number of agents, and then the impossibility would
automatically hold for any bigger number of agents (provided that the normative proper-
ties satisfy the conditions of the preservation theorem). Furthermore, Endriss proves two
impossibility results for one-to-one matchings using this approach. He proves a base case
with a small number of agents by means of a SAT solver and then uses the preservation

theorem to validate the result for any greater instance.

4.2 The General Approach

In computer science, SAT is the decision problem where, given a propositional formula
¢ in CNF,! it answers whether there exists a truth assignment for the variables of ¢ that
makes the formula true. SAT is known to be an NP-complete problem, which means that
it belongs to the class and it is as hard as the problems that once presented with a witness
for a “yes” answer, its correctness can be verified efficiently. In this particular case that
means that once presented with a truth assignment for the formula, it can be verified in
polynomial time that the assignment indeed makes the formula true. The problems in the
class NP are also characterized as the decision problems that can be solved in polynomial
time by a non-deterministic Turing machine. A good reference for this complexity class,
and many others, can be found in the book by Arora and Barak (2009). In any case,
problems in this class are know to be computationally hard. Nevertheless, nowadays
there are algorithms that can solve most instances of SAT in a fairly efficient way.

SAT solvers are implementations of algorithms to solve the SAT problem. For some
years now, the SAT Competition” has been taking place once a year. It is an event where

implementors submit their solvers to compete by comparing the efficiency and correctness

!Conjunctive Normal Form (CNF) is a particular structure of a formula. It consists of conjunctions of
clauses that are disjunctions of literals, where a literal is a variable or the negation of a variable. An example
of such a formulais ¢ = (x1 V x4) A (mx1 V 22 Va3) A (022 V —24).

Zhttp://www.satcompetition.org/

32

http://www.satcompetition.org/

CHAPTER 4. AUTOMATION VIA SAT SOLVING

of their solvers. These solvers keep improving by means of new algorithms, heuristics
and other kinds of optimizations. That is why the solving of some instances of SAT that
seemed out of reach a few years ago, can be done in a regular fashion in the present
day. For the interested reader in these topics, some of the algorithms and optimization
techniques are nicely presented in the Handbook of Satisfiability (Biere et al., 2009).

Social choice and game-theoretic problems are suitable to be thought about from a
computational point of view because the principles studied by the axiomatic method are
easily expressible in simple mathematical notions, and thus they can be expressed in a
formal language. Therefore, the SAT solving technique in these areas of study has been
successful, especially in proving and discovering impossibilities. Recall that an impossi-
bility result is a theorem stating that a mechanism for a collective decision cannot satisfy
a certain set of axioms at the same time. In other words, the set of axioms is incompatible.
For example, the Gibbard-Satterthwaite Theorem in voting (Gibbard, 1973; Satterthwaite,
1975) states that for an election with three or more voters, there is no voting rule that is
surjective, strategyproof and not a dictatorship. In matching, Roth (1982) proved an im-
possibility result stating that there is no matching mechanism for a problem of size three
or more that is both stable and strategyproof.

The approach, used by Tang and Lin (2009) and Geist and Endriss (2011), is based
on an inductive argument that can be broken down as the following procedure. The first
step is to encode a restricted version of the impossibility, with a small fixed number of
agents and alternatives, and prove the result for this restricted setting with the help of the
SAT solver. In other words, the first step consists of automatically proving a base case.
In the next step the base case has to be translated back into a human-readable proof. And
finally, it remains to prove an inductive lemma showing that the impossibility for the base
case would carry over to any larger instance. This last step has to be done manually, and
it usually represents the biggest challenge because it depends entirely on the particular
result and it usually requires creativity. Only in the context of preference extensions
(Geist and Endriss, 2011) and the context of matching (Endriss, 2020) meta-results have
been proven, stating that if the axioms satisfy certain conditions of the way in which they
can be expressed in a formal language, then any impossibility that can be proven for a
fixed dimension of the problem can be extended to any bigger dimension.

We will now explain the high level idea of the first step of the process, the automatic
part. Notice that this will apply to different social choice or game-theoretic settings where
the axiomatic method is used. The idea is to encode as a propositional formula in CNF,

« that the object in question® is well defined and that it satisfies the desired axioms. The

3The object can be, for example, a Social Choice Function in a voting setting; a coalition partition in a

33

CHAPTER 4. AUTOMATION VIA SAT SOLVING

encoding has to be done in such a way that the formula « is true if and only if there exists
such an object with the set of properties that were encoded. This kind of encoding can be
done because the axioms can be stated in a formal language. In his paper, Endriss (2020)
defines a first-order language for axioms for matching mechanisms. So for instance, in
a matching setting, once the dimension of the problem is fixed, the number of agents on
both sides is finite and so is the number of profiles, so we can replace universal quantifiers
by a big conjunction. This applies to other settings as well. Then, we can give « to a
SAT solver and it will either output a model (a truth assignment for the variables of the
formula) if « is satisfiable, or it will tell us that there doesn’t exist any such model.

Though, notice that the sole output of the SAT solver is arguably not a valid formal
mathematical proof of the statement even in the restricted case. Some arguments in favor
of this idea are that the encoding may be flawed or that the probability that the SAT solver
returns an incorrect answer is non-zero, maybe because of a mistake in the implementation
or because of an error in the execution. Because of these reasons, it is good to still produce
a human-readable proof of the base case. In the context of an impossibility theorem the
extraction of a human-readable proof has still to be done in a semi-automated fashion,
but once the proof is written in mathematical terms, it becomes more reliable. The semi-
automated process of obtaining a human-readable proof has been done appealing to the
concept of a minimal unsatisfiable subset (MUS). Given a set A of clauses, that are
originally the conjuncts of the formula «, an MUS is an unsatisfiable subset of A such that
all of its proper subsets are satisfiable. There exist computational tools that automatically
extract an MUS from a set of clauses. We will talk about it more in depth in the following
section. But then, for the proof of the base case of an impossibility, once we know that
the formula representing the statement « is unsatisfiable, we can automatically extract an
MUS and if it is small enough, it can be interpreted back and transformed into a human-
readable proof.

We will make use of this ideas for the automation of the process of searching for a

justification, but in a slightly different way.

4.3 Justification Search via SAT Solvers

In this section we will explain how to exploit the ideas presented and use SAT solvers to
semi-automatically obtain a justification for a certain problem. The approach we use is
not completely different to the one used to prove impossibilities. The encodings of both,

the matching problem and the axioms are practically done in the same way. We also check

hedonic game; or a matching mechanism in the setting that concerns this work.

34

CHAPTER 4. AUTOMATION VIA SAT SOLVING

for sets of axioms to be non-trivial but we go further by encoding (negations of) feature
formulas to search for normative basis and making use of MUSs to extract explanations.
We explain this process in Section 4.3.2. But first, in Section 4.3.1 we describe how
the encodings are done. Then, in Section 4.3.3 we explain how we implemented the
procedures described in Section 4.3.2.

The high-level idea of this process goes as follows. Given a justification problem
(A, p,), we will establish a correspondence between a CNF formula « and the existence
of a subset A C A such that there is a justification for ¢ with normative basis .A. Further-
more, we will see how an MUS from a set of unsatisfiable formulas will correspond to an
explanation set of a justification. We will also describe a procedure to semi-automatically
obtain such justifications and we will prove its correctness.

We know that axioms for matching mechanisms can be expressed in a formal first-
order language (Endriss, 2020). Furthermore, if the dimension of the matching problem
is fixed, then we can express the axioms as propositional formulas and moreover, we can
express them as CNF formulas.

For the automation of the justification search process one can use any SAT solver. We
chose to use PICOSAT (Biere, 2008). In general, SAT solvers require the input formula
to be in DIMACS format. In the DIMACS format, a formula in CNF corresponds to a
list of lists of integers. The small lists represent the clauses and each integer represents
a literal. Negative numbers are intended to represent negation. So for example, the list
[(11,2,31,0-2,-41,11,-3]1] isin DIMACS format and corresponds to the propo-
sitional formula in CNF (21 V 29 V 3) A (mx2 V —24) A (21 V —23). We use a Python
script to automatically generate the desired CNF formula in the correct format to be able
to give it as input to the SAT solver. When presented with a formula in CNF, the SAT
solver either returns UNSAT" if the formula is unsatisfiable, or it returns a model, i.e., a
truth assignment for the variables of the formula that make it true.

For the implementation of the justification search process, we were able to reuse some
of the code written by Endriss (2019). We assume this code is saved under the name
matchsat .py. The rest of the code that was written specifically for the search for

justifications® and it is assumed to be saved under the name just . py.

“https://github.com/DanLK/MatchingJustificationSearch/tree/main/OneDrive %20- %20UvA/Thesis/

Code/JustificationSearch

35

https://github.com/DanLK/MatchingJustificationSearch/tree/main/OneDrive%20-%20UvA/Thesis/Code/JustificationSearch
https://github.com/DanLK/MatchingJustificationSearch/tree/main/OneDrive%20-%20UvA/Thesis/Code/JustificationSearch

CHAPTER 4. AUTOMATION VIA SAT SOLVING

4.3.1 Encoding

Now we will see how we can encode in a formula the problem of whether a set of axioms
can be the normative basis for a justification for a feature of a matching outcome. We
will show how we constructed a Python script for automatic generation of the formulas.
The process of writing the program mainly consists of three parts. The first part is the
basic encoding of a matching problem in the Python script. The axioms we want to
encode are properties about matching mechanisms, so we have to be able to talk about
the elements that form a matching problem: the dimension n, the sets of agents L and
R, agents’ preference orders, possible profiles, among others. The second part is the
automatic generation of formulas in CNF expressing that a matching mechanism satisfies
a certain set of axioms. We will have the program generate one formula for every axiom
that we are interested in and when we want to express that a mechanism satisfies a certain
set of axioms we will take the conjunction of these formulas. The starting point for these
two first steps is the code implemented by Endriss (2019) in his paper (Endriss, 2020)
about the automatic proving of impossibility theorems in matching theory. There, he
encodes all the basic elements of the matching model, some useful functions and some
of the axioms that interest us. The code is used to prove impossibilities following the
approach that we explained in Section 4.2. The last part of the encoding for our program
consists of adding the information about the feature of a matching outcome (that we are
interested in justifying), to the formula that we will use to feed the SAT solver. In the
following we will describe the parts of the Python script that we used, the encoding of
the axioms as CNF formulas in the DIMACS format passing through the intermediate
step of expressing them in propositional logic, and the encoding of a feature. In the next
sections (Section 4.3.2 and Section 4.3.3) we will explain how all this comes together as
an implementation of a correct procedure for the search of a justification for a feature of
a matching outcome in a given situation.

The model. We start by explaining the basic objects that constitute a matching problem
that we need to represent in the program. Note that as the variables of a formula in
the DIMACS format are integers, we need to encode every part of our problem as an
integer. Notice that in a one-to-one matching problem with two-sided preferences (defined
in Section 2.1), the dimension n of the problem, completely determines the sets L of left
agents and R of right agents. This is because, abstractly, we only care about the size of
these sets, so L consists exactly of agents /1, ..., /¢, and a similarly, R consists of agents

ri,...,7,. Hence, in the encoding the agents will be identified by two integers: (i) their

36

CHAPTER 4. AUTOMATION VIA SAT SOLVING

type,” which will be 0 for left agents and 1 for right agents; and (ii) their index, which
goes from 0 ton — 1.

Then, each agent has to rank all the agents from the opposite group. As there are
n of them, each agent can have n! different preference orders. Then, all the different
preferences that an agent can have are encoded as integers ranging from 0 to n! — 1.

Once we have the preferences, we consider all different profiles. A preference profile
consists of one preference order for each agent of each group. Thus, we have (n!)Q”
different preference profiles. Hence, we encode them as integer numbers that range from
0to (n!)*" — 1.

In the program first the dimension n of the matching problem is fixed in a global
variable n and then comes the implementation of functions that return all the possible
indices for the agents (allIndices ()), all the preferences (al1Preferences ()),
and all the profiles (a11Profiles ()) as lists of integers, respectively. As an example,
we have the function that returns all the preferences.

def allPreferences () :
return range (factorial (n))

Here factorial is a built-in Python function that can be imported from the math
library, and it works as one would expect it to, in correspondence with the mathematical
factorial function.

In the case of a matching problem of size 3, we have 6 different preference orders, so
they are encoded with the numbers from 0 to 5; and the number of profiles is already quite
big: (3!)® = 46656; so profiles are encoded with integers ranging from 0 to 46655.

The variables. For a matching problem of size n, we can completely describe a function
that takes a preference profile and returns a subset of L x R by specifying, for every profile
p and for every pair of agents (¢;,7;) € L x R whether they are assigned together in the
outcome under p. Thus, in the encoding, we will have one variable z,; ; for every profile
p, every left agent ¢; € L and every right agent r; € 2 with the intended interpretation
that variable x,; ; will be true if and only if, under profile p, the mechanism returns a
matching that includes the pair (¢;, ;). Notice that when the matching problem dimension
is n, the number of variables is equal to the number of profiles times the number of
possible combinations of left and right agents. That is, (n!)*" - |L x R| = (n!)*" - n2.
For instance, the number of variables when the matching problem is of size 3 is equal to
46656 - 3% = 419904.

In the Python program literals are encoded as integers. Recall that a literal is either

a variable or a negation of a variable. So, it suffices to encode the variables as positive

SThe type will only appear in some functions where it is actually needed.

37

CHAPTER 4. AUTOMATION VIA SAT SOLVING

integers and then represent the negation of the variable as the negative number that corre-
sponds. For variable z,,; ; we assign the number p - (n - n) 4 (i - n) + j + 1. This is an
encoding choice that takes the variables in consecutive order corresponding to the profile,
and agents in lexicographic order by fixing with strongest priority the profile number, then
the left agent and then the right agent. It also adds one, shifting all the encodings by one
to avoid assigning number zero to the first variable, since we need the additive inverse of
all of them. Then, the negation of each variable is just encoded as the additive inverse
of the integer that represents the variable. We call a literal positive if it is a variable and
negative if it is the negation of a variable. Examples of some literals and their encodings

when the dimension of the problem is 3 are given in Table 4.1.

Literal | ... | =01 | 70,00 | 0,00 | T00,1 | To,02 | To1,0 | To11 |- | T100
Integer | ... -2 -1 1 2 3 4 5 .| 10

Table 4.1: Encoding of some literals as integers for a matching problem of size 3.

The functions that do the encoding of positive and negative literals in the Python script
look as follows.

def posLiteral(p, i, Jj):

return p * (n * n) + (1 * n) + j + 1
def negliteral(p, i, Jj):
return (-1) = posLiteral(p, i, 3J)

The function posLiteral (p, 1, j) returns the integer encoding literal x,, ; ;, while
the function negLiteral (p, i, J) returns the encoding of literal —x,,; ;.
The axioms. The program generates one formula expressing that a matching mechanism
satisfies each of the axioms that we are interested in. Since the variables we are using
completely describe a function that takes a profile and returns a subset of L X R by stating
for every profile p and every pair of agents (¢;, r;), whether they are matched under profile
p, we still need to put a constraint on the kind of function that we are interested in. We
only focus on matching mechanisms. That is, functions that return a proper matching. We
call this property of such functions well-definedness. Thus, before encoding the axioms,
we add a formula expressing the constraint that the function described by the variables is
well-defined, or is a matching mechanism. In other words, well-definedness means that
every left agent is matched with exactly one right agent and vice versa. This is equivalent
to saying that every left agent is assigned to at least one right agent and every right agent
is assigned to at most one left agent. This optimization of the encoding is done by Endriss
(2019). The propositional formula ¢vecq expressing this property of a function that takes

a profile and returns a matching is the following.

38

CHAPTER 4. AUTOMATION VIA SAT SOLVING

PMECH = /\ /\ \/ Tpij | A /\ /\ (FZpirg V Tping) 4.1)

PEPn l;eL TjER TjER éil erL,
i, €L
Notice that ¢omecy 1s in CNF. Now it is possible to use this formula to write a function
in the Python script that generates the equivalent in DIMACS format. The part of the
code that does this looks as in Listing 4.1.

def cnfMechanism() :
cnf = []
for p in allProfiles():
for i in allIndices{():
cnf.append([posliteral (p,1,J) for j in allIndices()])
for j in allIndices():
for il in allIndices():
for i2 in indices(lambda i2 : 11l < i2):
cnf.append([neglLiteral (p, 11, J),
negLiteral (p,1i2, 3) 1)
return cnf

Listing 4.1: Python script encoding that a matching mechanism is well defined.

In line 8 of Listing 4.1, the function indices (condition) isused. This function
returns all the indices that satisfy the condition given as a parameter. In the case of
how it’s used in Listing 4.1, it returns the indices 12 that are smaller than i1. In the
Python script there are also implementations of similar functions that return preferences
or profiles, given a certain condition. These are called preferences (condition)
and profiles (condition), respectively.

The process of encoding the axioms is similar. First, we express the axiom as a propo-
sitional formula in CNF and then it becomes easily translatable into a piece of code that
will generate all the clauses automatically. Notice that the number of clauses of the for-
mula ppvecy grows very large with the dimension of the problem. For a matching problem
of size 2, the formula consists of 64 clauses and when the size is 3, the formula already
has 559872 clauses. This will be the case for almost all of the formulas that we care about.

We will now show some examples of axiom encodings. First, the axiom of stability
(Definition 2.3), establishing that in the resulting matching there should be no blocking
pair. We can rephrase the axiom in the following way. We will say that if there are agents
¢y € L and r; € R such that there exist other agents /o € L and r, € R and {1 >, {5
and r; >y, 7o, then it cannot be the case that both ¢; is matched with 7, and r; is matched
with /5. Because then ¢; and r; would want to deviate from the matching to be together.

Then, the following formula ¢sta 1s in CNF and it expresses that a matching mechanism

39

CHAPTER 4. AUTOMATION VIA SAT SOLVING

is stable.

PSTA = /\ /\ /\ /\ /\ (mp12V " Tpai) 4.2)

pEPn £y €L 15, €ER Li,€Lst. rj,ERsL
iy mrj big Ti17 e Ti2

The Python code generating the formula in DIMACS format corresponding to ¢sta
is shown in Listing 4.2. For a problem of size n = 2 the encoding of stability consists of

16 clauses, whereas when n = 3 it has 419904 clauses.

def cnfStable():
cnf = []
for p in allProfiles{():
for il in allIndices{():
for jl1 in allIndices{():
for i2 in indices (lambda i2:prefers(l,3l,il,1i2,p)):
for j2 in indices (lambda j2:
prefers (0,11, J1,32,p)) :
cnf.append([negliteral (p,1il, j2),

negLiteral (p,12, 31) 1)

return cnf

Listing 4.2: Python script encoding stability.

Another interesting example is the encoding of strategyproofness. Recall that strat-
egyproofness can be defined as a one-way principle (Definition 2.6) for either side of
the market, or as a two-way principle (Definition 2.7) by taking both one-way principles
together. We first illustrate the encoding of left-strategyproofness. The axiom (equiva-
lently) states that for any left agent /; € L, and for every two preference profiles p; and
P, that are /;-variants (Definition 2.5), for every right agent r;, € R and every other right
agent 7, € I? such that r;, is preferred over r;, by £ in the truthful profile p,, then either
¢ and r;, should not be matched together under p, or ¢ and r;, should not be matched
together under profile p,. The following formula ¢, sp encodes that a mechanism is left-

strategyproof and it is in CNF.

PpLsp = /\ /\ /\ /\ /\ (_'xpﬂ}jl \% _'xp’viva) 4.3)

L;eLpeEPn p'st.pandp’ 75 ER rjERSsL
. vari P
are ¢; —variants T >_£i i

def cnfleftStrategyProof () :

cnf = []

for 1 in allIndices{():

for pl in allProfiles():
for p2 in ivVariants (0, i, pl):
for jl in allIndices():
for j2 in indices (lambda 3j2
prefers (0,1, 32,J1,pl)):
cnf.append([negliteral (pl,i, j1),
negLiteral (p2,1i,32)1)

40

CHAPTER 4. AUTOMATION VIA SAT SOLVING

return cnf

Listing 4.3: Python script encoding left-strategyproofness.

The code that generates the formula ¢ sp in DIMACS format is shown in Listing 4.3.
When the matching problem is of size 2, the encoding of left-strategyproofnes is a for-
mula with 32 clauses, and when the problem dimension is 3, the formula encoding it has
2099520 clauses. Then, for right-strategyproofness we can define a formula ¢rsp in an
analogous way. We can also generate the code in a similar fashion and with those two
formulas we define a formula (psp as the conjunction of ¢ sp and @grsp that encodes that
a matching mechanism is two-way strategyproof and as the two conjuncts are in CNF,
then pgp is also in CNF. In the program we can also just concatenate the two lists rep-
resenting each one-way strategyproof principles to obtain the encoding of two-way strat-
egyproofness. This is shown in Listing 4.4. The size of the formula encoding two-way
strategyproofness when n = 2, considering that it is the conjunction of left and right-
strategyproofness, is 64. Moreover, when the matching problem size is 3 the size of the
formula encoding two-way strategyproofness is 4199040.

def cnfTwoWayStrategyProof () :
return cnflLeftStrategyProof () + cnfRightStrategyProof ()

Listing 4.4: Python script encoding two-way strategyproofness.

As alast example of an encoding of an axiom, we take the axiom of left swap-stability
(Definition 2.11), saying that for every profile, there is no pair of left agents such that they
prefer each other’s match in the outcome. A logically equivalent way of expressing this
axiom is that for every profile p, for every two left agents /1, {5 € L and every two right
agents 71,7y € R, if 1 prefers (in profile p) ro over r; and /5 prefers r; over 73, then
either /; is not matched to r; or {5 is not matched to r,. A propositional formula that

expresses a statement equivalent to this axiom is (| ss, shown in Equation 4.4.

PLss = /\ /\ /\ /\ /\ (_'xp,il,jl v _'$p7i27j2) (4.4)

PEPn Zil eL ZiZEL T €R TjQER s.t.
. p .
Tjo >Z,L-1 L

R
and 7j; %ZQ Ty

The code that automatically generates formula ¢ ss in DIMACS format is shown in
Listing 4.5.

def cnflLeftSwapStable():
cnf = []
for p in matchsat.allProfiles():
for 11 in matchsat.allIndices{() :
for 12 in matchsat.indices (lambda i2 : i2 < il):
for j1 in matchsat.allIndices():
for 32 in matchsat.indices (lambda j2 :

matchsat.prefers (0,11, 32, jl,p) and
matchsat.prefers (0,12, j1,3j2,p)) :

41

CHAPTER 4. AUTOMATION VIA SAT SOLVING

cnf.append ([matchsat.negliteral (p,1i1, jl1),
matchsat.negLiteral (p,12,32)1])
return cnf

Listing 4.5: Python script encoding left-swap-stability.

Recall that a formula in DIMACS format is a list of lists of integers, where the integers
represent the literals and the small lists represent the clauses of the big conjunction. In
Listing 4.6 an example of an axiom encoding in DIMACS format is shown. The formula
corresponds to the axiom of left-swap-stability for a matching problem size of n = 2.
It consists of 8 clauses. We only show the actual encoding for this axiom because it is
quite small compared to the rest. However, when the problem size is 3, the encoding of
left-swap-stability has 209952 clauses, so for reasons of space we don’t show it.

>>> cnfleftSwapStable ()
((-8, -51, f[-11, -101, [-24, -211, [-27, -26],
[-40, -37], [-43, -42], [-56, =53], [-59, -58]]

Listing 4.6: Encoding of the axiom left-swap-stability in DIMACS format for a problem
of size n = 2.

The first clause, [-8, 517, is an instance of left-swap-stability making reference to
a profile p (encoded as number 1), where agent ¢; prefers agent r, over r1, and on the
contrary, agent /5 prefers agent r; over ry. Both right agents prefer {5 over ¢, but this is
irrelevant since the axiom only considers the preferences of left agents. Taking into ac-
count the encoding of the agents (with indices from 0 to n — 1), the literal —8 corresponds
to the variable =z ; ; and literal —5 corresponds to =z, 9 o. Hence, the clause [-8, —5]
corresponds to the instance of left-swap-stability saying that in profile p, it should not be
the case that agents ¢, and r; are matched and ¢, and r, are matched at the same time.
The rest of the clauses can be interpreted in a similar way.

In Table 4.2 a summary of the functions generating axiom encodings that were imple-
mented is provided. The first column corresponds to the name of the axiom, the second
to the name of the function that generates the encoding, and the third to the name of the
file in which the function was implemented.

Notice that when encoding the axioms as propositional formulas in CNF, we are ex-
pressing them in a formal language. Here the notion of instance discussed in Section 3.2
becomes more clear. We know that axioms for matching mechanisms can be expressed
as formulas in a first-order language (Endriss, 2020) and that the general procedure of
transforming them into propositional formulas consists of constructing a big conjunction

which conjuncts are instantiations of the variables that were in the scope of the quan-

®In the file matchsat.py the function is called cnfGenderIndifferent (), but to
make it consistent with our naming of the axiom, we use the same code but under the name

cnfGroupIndifferent () inthe file just.py.

42

CHAPTER 4. AUTOMATION VIA SAT SOLVING

AXIOM NAME FUNCTION NAME IN PYTHON SCRIPT FILE
Stability (STA) cnfStable () matchsat.py
Top-stability (TOPSTA) cnfTopStable () matchsat.py
Left-strategyproofness (LSP) cnfleftStrategyProof () matchsat.py
Right-strategyproofness (RSP) cnfRightStrategyProof () matchsat.py
Strategyproofness (SP) cnfTwoWayStrategyProof () matchsat.py

Group-indifference (Gl)

cnfGroupIndifferent ()

matchsat .py®

Peer-indifference (Gl) cnfPeerIndifferent () matchsat.py
Left top-rewarding (LTR) cnflLeftFavorite () Jjust.py
Right top-rewarding (RTR) cnfRightFavorite () just.py
Top-rewarding (TR) cnfTopRewarding () Jjust.py
Left-swap-stability (LSS) cnfleftSwapStable () just.py
Right-swap-stability (RSS) cnfRightSwapStable () just.py
Swap-stability (SS) cnfSwapStable () just.py
No bottoms (NBOT) cnfNoBottoms () just.py

Table 4.2: Names of the functions implemented to generate axiom encodings.

tifiers in the first-order formula. We know that this is feasible, i.e., that in results in a
well-formed formula, because once the dimension of the matching problem is fixed, the
objects over which we quantify become finite. These objects are, for example, agents or
profiles. For example, we can express a principle saying that some property that depends
on the profile holds for every profile, as the conjunction of one instance of the property
for each profile. In this sense, we can say that the encoding of an axiom in a propositional
formula can be seen as a collection of its instances, each instance being one conjunct of
the formula. After this first step, the propositional formula is already a conjunction of
formulas but at this point we cannot really say anything about the shape of the conjuncts;
in principle they could also be conjunctions. However, we know that any propositional
formula can be transformed into a formula in CNF. But in that process we could lose the
property that every conjunct (clause) of the formula corresponds exactly to one instance.
This correspondence between instances of an axiom and the clauses of its encoding as
a CNF formula is something desirable for the justification search, as we will see in the
following section.

We have seen how an axiom can be encoded as a formula in CNF. We also mentioned
that it is possible to encode that a mechanism satisfies a certain set of axioms as a CNF
formula by taking the conjunction of the encodings of each axiom of the set. As we will
be interested in whether these kinds of formulas are satisfiable, it is important to note that
a formula in CNF is satisfiable if and only if all of its clauses are satisfied by the same

truth assignment of its variables. This is why we will often only be interested in the set

43

CHAPTER 4. AUTOMATION VIA SAT SOLVING

of clauses of a formula. A set of propositional formulas is said to be satisfiable if all of
its formulas are satisfiable by the same truth assignment. Thus, we can identify a CNF
formula encoding that a mechanism satisfies a set of axioms with its set of clauses. In this
regard, for practicality and when the context is clear, for a set of axioms .4, we will often
refer to the set of clauses of the CNF formula encoding the axioms in A as its encoding
set and we will denote it by A.

As we have seen, it’s not necessarily the case that under the way we encoded the
axioms, we always obtain formulas which clauses correspond exactly to instances of the
axiom they are an encoding of. For example, consider the encoding for the principle of
being a well-defined matching mechanism pyecy (Formula 4.1). In this case, when the
matching problem is of size n = 2, an example of an encoding of an instance of this
principle would be

(Tp11 V Tp12) A(Tp11 V 2 Tp21)

when we fix some profile p, left agent /1, right agent 7, and pair of left agents ¢; and /5.
But this instance is clearly not expressed by a single clause. In contrast, take the encoding
wsTa of the axiom of stability. When the dimension of the matching problem is n = 2,

one instance of this axiom is encoded as the formula

(m2pi2 V 2 Tp21),

where the profile p consists of both left agents preferring agent ; over agent 5 and both
right agents preferring agent ¢; over {5, and the blocking pair being (¢1,71). So, in the
case of this axiom, there is a direct correspondence between its instances and the clauses
of its encoding.

Although it is not always the case that this correspondence exists, we can say that it
exists in most cases. For the axioms that we implemented, it is always the case except for
peer-indifference. As we saw, it also doesn’t hold for the principle of well-definedness.
The correspondence between clauses and instances will become important when we want
to extract an explanation for a justification. Ways to circumvent this issue will be dis-
cussed in the following section.

The features. Features of a matching outcome under a certain profile can also be encoded
as propositional formulas using the same variables that we have defined and thus, they
can be transformed into formulas in DIMACS format. For instance, a basic feature such
as the pair (¢;,r;) being part of the outcome of the mechanism under certain profile p
corresponds exactly to the formula x,; ;. Then, as all the features we care about are

boolean combinations of these basic features, and every propositional formula can be

44

CHAPTER 4. AUTOMATION VIA SAT SOLVING

expressed as a CNF formula, we can be sure that any feature can be expressed as a CNF

formula with these variables and hence, written in DIMACS format.

So far we have seen how to encode axioms and features as propositional formulas and
transform those into formulas in the correct format for the input of a SAT solver, namely
formulas in DIMACS format.

4.3.2 The Algorithm

In this section we will layout a procedure to search for a justification for a feature in a
given situation. The correctness of this procedure relies on the fact that we can encode
axioms of matching mechanisms as CNF formulas and that we can do the same with
negations of feature formulas. Throughout this section we assume that the encoding of
an axiom is such that a clause corresponds to an instance (recall the discussion in Sec-
tion 4.3.1). The high level idea for the procedure is that, given a justification problem, we
will check for every subset of the corpus of axioms, whether it can constitute a normative
basis for a justification for the feature. Once a normative basis is found, we will extract
an explanation taking advantage of the concept of an MUS. This argument depends on
the specific way that we encoded the axioms and the features, so from now on when we
refer to an encoding, we assume that it is done in the way we explained in Section 4.3.1.
Before formally describing this procedure as an algorithm, we prove that there is a corre-
spondence between the satisfiability of a set of clauses and the existence of a normative
basis for a justification. We also prove how the concept of an MUS connects with an ex-
planation for a feature of a matching outcome. For this, we have to make a rather strong
assumption but we will discuss later why the procedure still works in most of the cases.
First we establish the correspondence between an unsatisfiable set of clauses and the
existence of a normative basis for a justification. Suppose that we have a justification
problem (A, p, ¢) and that there is a subset of axioms .A C A such that A U ® is unsatis-
fiable while A is satisfiable, where A is the encoding set of .4 and @ is the set of clauses
encoding the negation —¢ of the feature. Then, we can say that the set A is a norma-
tive basis of a justification for . Intuitively, this is because A being satisfiable means
that there is at least one mechanism satisfying the axioms in A, so the set of axioms is
non-trivial. And A U ® being unsatisfiable means that every mechanism that satisfies the
axioms in A cannot return an outcome that doesn’t have feature . We formally prove

this in Proposition 4.1.

Proposition 4.1. Let (A, p,) be a justification problem. Let A C A be a subset of the

corpus of axioms. Suppose that A is the set of clauses of the CNF formula encoding

45

CHAPTER 4. AUTOMATION VIA SAT SOLVING

the axioms in A. Furthermore, suppose that ® is the encoding as a CNF formula of the
negation —¢ of the feature. If the set A U @ is unsatisfiable while A is satisfiable, then .A

is the normative basis for a justification of the problem.

Proof. Tt suffices to prove that there exists an explanation A such that (A, AF) is a
justification for (A, p, ¢). To prove this, take .A” as the set of instances of all axioms in
A. We have to prove that (A, A”) is a justification for the problem (A, p,).

First we are going to prove that the explanatoriness condition is satisfied. Let p €
I(AF). Recall that we assumed that there is a correspondence between instances of ax-
ioms and clauses of their representation as formulas in CNF. So, the set of clauses encod-
ing the axiom instances in A” corresponds exactly with the encoding set A of A.

We know that A is satisfiable, so every truth assignment for the variables that makes
the clauses in A true, describes a mechanism in H(AE). So there is a truth assignment for
the variables describing .

As A U @ is unsatisfiable, there is no truth assignment for the variables that makes
true all the clauses in A and the clauses in ® at the same time. In particular, the truth
assignment that describes p, cannot make all the clauses in ® true. Then it must make
true the negation of the CNF encoding the negation —¢. So, the truth assignment should
make true the encoding of the feature . This means that the mechanism g is such that
under profile p, it returns a matching that has feature ¢. That is, (p) € Mod(p). Hence,
the set A can explain feature ¢ and explanatoriness holds.

The relevance condition holds because of the choice of A”. Adequacy holds by as-
sumption: A C A. And non-triviality follows from the fact that A is satisfiable.

Hence, there exists a justification grounded in the set .4 for the problem (A, p,). [

This means that with the encoding of the axioms and features that we described in
Section 4.3.1, we can automate the search, from a corpus of axioms, for a subset of
them that is a basis for a justification for the feature in question, if there exists one. We
formalize this procedure in Algorithm 2. The input for the algorithm is a justification
problem (A, p,). Recall that for a set of axioms A, we use A to denote the set of
clauses of the encoding of the axioms in .4; and we use ® to denote the set of clauses
encoding of the negation — of the feature.

Clearly, BASIS-SEARCH terminates, since the number of subsets of a set is finite.
Moreover, if there is a subset of the corpus that constitutes a normative basis for a justifi-
cation for the feature, then BASIS-SEARCH finds it. This follows from Proposition 4.1.
Therefore, the algorithm BASIS-SEARCH is correct.

46

CHAPTER 4. AUTOMATION VIA SAT SOLVING

Algorithm 2 BASIS-SEARCH
Input: A justification problem (A, p,)
Let @ be the encoding of —.
1: for A C A do
2 A := the encoding set of A
3: if A U @ is unsatisfiable while A is satisfiable then
4
5

return A
end if
6: end for
7: return “There is no justification based on axioms from A.”

This means that provided that we can automate the check of the condition in line 2
of Algorithm 2, we can also automate the search for a normative basis. But with the
encoding discussed in Section 4.3.1, we can check this automatically by just giving the
appropriate formula to a SAT solver. Notice that this is nevertheless not feasible for every
problem size, but we leave this discussion for later.

We have established a correspondence between a formula in CNF encoding a set of
axioms and the negation of the feature we are trying to justify, and the existence of such
justification. Furthermore, we know that it is possible to do this in an automatic fashion.
But in order to obtain a proper justification, we still need to extract an explanation, which
in practice is arguably the most important part of it. In the following we explain how
this is possible using the concept of an MUS of a set of unsatisfiable clauses. For this
procedure, we need to restrict the class of features to those for which the encoding is a

single clause. We make the following assumption.

Assumption 4.1. The negation of a feature can be encoded as a single clause. That
is, we only consider justification problems (A, p, ¢) such that - can be encoded as a

propositional formula with exactly one clause.

Suppose that we have a justification problem (A, p,) and that we have found a subset
of axioms A C A that is a normative basis for a justification for ¢. Again, we use A to
denote the set of clauses of the CNF formula encoding the axioms in .4, and this time
we use « for the encoding of the negation —¢ of the feature, since it is only one clause
(Assumption 4.1). Observe that the proof of Proposition 4.1 implies that the set of all
instances of A can already constitute an explanation, but as we discussed in Section 3.4.2,
we are interested in small explanations in practice, so it wouldn’t make sense to just take
the whole set of instances of .A. In any case, the key idea for A to be relevant as a
justification for ¢ is that the set A is satisfiable and A U {«} is unsatisfiable . Recall that

we supposed that the axioms in A are such that each clause of their encoding corresponds

47

CHAPTER 4. AUTOMATION VIA SAT SOLVING

to one instance. Thus, if we find a subset ¥ of A U {«} that is still unsatisfiable, then
Y\ {a} will correspond to an explanation for the justification. That is because first, as A is
satisfiable, any subset of it is still satisfiable, so for ¥ to be satisfiable it must contain {«}
and this, following the same reasoning as in the proof of the explanatoriness condition in
Proposition 4.1, implies that it can explain the feature ¢. And second, it will correspond
to a set of instances of the axioms in A because it is just a subset of the clauses and we
supposed that each clause is an instance of an axiom. This is where the concept of an
MUS comes in handy. Recall that an MUS is a set of clauses that is unsatisfiable and
every proper subset of it is still satisfiable. So if we take X to be an MUS of A U {«},
it will have the properties that we are looking for and it will usually be smaller than the
whole set A U {a}. Furthermore, there are tools to automatically compute an MUS from
a set of unsatisfiable clauses, so this helps achieve the goal of automating the process. We
will show how to do this in a semi-automatic way but first we prove that this argument is

indeed correct (Proposition 4.2).

Proposition 4.2. Given a justification problem (A, p, ¢), suppose that there is a set of
axioms A C A that is a normative basis for a justification for . Let A be the encoding
set of A and let v be the encoding of the negation —¢ of the feature. Assume that every
axiom A € A is such that a clause of its encoding as a CNF formula corresponds exactly
to an instance of A. Finally, consider Assumption 4.1. Then, if > is an MUS of the set
A U {a}, the following conditions hold:

(1) o € X;and
(ii) X\ {a} corresponds to an explanation for the matching outcome having feature .

Proof. First we prove (i). We know that ¥ C (AU {a}). Soif a Z X, then ¥ C A.
But A is satisfiable, so every subset of A is satisfiable too. Hence, > would be satisfiable,
which contradicts the fact that > is an MUS. Therefore {a} C X. Notice that here
Assumption 4.1 is essential because if the encoding of the negation of the feature consisted
of more than one clause, we could not guarantee all of them being part of the MUS.

Now we prove (ii). First notice that each clause in the set > \ {a} corresponds to an
instance of an axiom of .4. This holds by assumption. Let’s denote the set & \ {a} by ¥'.
Now let A* denote the set of instances of axioms represented by the clauses in Y. We
have to prove that (A, A™') is a justification for (A, p,).

We start by showing that the explanatoriness condition holds. Let p € I(A>). The
set Y is satisfiable because >’ C A. So, every truth assignment for the variables of the

clauses in X’ that makes all the clauses true at the same time, is such that it describes one

48

CHAPTER 4. AUTOMATION VIA SAT SOLVING

mechanism in JI(AE'). So, let v be a truth assignment for the variables of the formulas in
Y such that it defines the mechanism g (and makes true all the clauses in ¥’). Then v
cannot make true « because ¥ = ¥/ U {«} is unsatisfiable. So, v has to make true —,
which corresponds to the encoding of the feature ¢. Thus, y is such that it always returns
a matching with feature . Hence, 1« € Mod(p). Therefore, explanatoriness is satisfied.
Relevance is satisfied because we assumed that all the clauses in ¥’ correspond to
instances of the axioms in A. So, A* < A. Adequacy holds by assumption: A C A. And
finally, non-triviality follows from the assumption that A is satisfiable. Hence, (A, A™")

is a justification for the feature . 0

There are three main things to note about Proposition 4.2 that will be relevant when
we use it in practice. First, when we extract an MUS from a set of unsatisfiable formulas,
what we get is another set of formulas. In practice, an interpretation of the latter will
still need to be done. Second, in Proposition 4.2, we assumed that every axiom from the
normative basis was such that its instances had a direct correspondence with the clauses
of its encoding. This is arguably a strong assumption since we saw that this is not always
the case in the way that we encoded the axioms. Although we will see that in practice, this
is not so relevant since then we will obtain an explanation consisting of (possibly) weaker
logical statements. This could even be better than obtaining an explanation consisting
exactly of instances of axioms because the set of weaker logical statements can result
in an easier explanation for a human to understand. And moreover, we can always do
the translation from the MUS back to human-readable statements in such a way that if
the clauses appearing in the MUS are not complete instances of the axioms, we add the
missing part of the instance.

The third thing to note in Proposition 4.2 is regarding Assumption 4.1: the restric-
tion to the class of features which negation’s encoding consists exactly of one clause.
The encoding of the negation —¢ of the feature consisting of more than one clause, say
a1, ..., Qny, 1s problematic because if that were the case, we could not guarantee that the
extraction of an MUS will result in a proper explanation. In that case the source of un-
satisfiability of A U {aq, ..., a,,} would not necessarily be the whole set {a, ..., an,}.
Then, when extracting an MUS 2., it would not be guaranteed that all of these clauses are
part of it. This would break condition (i) of the Proposition. An MUS extracted in that
case would then correspond to an explanation of something that would not exactly be the
feature that we wanted to justify in the first place.

However, the restriction to this class of features is arguably not too bad after all.

Note that the features of which negations are encoded as CNFs with exactly one clause

49

CHAPTER 4. AUTOMATION VIA SAT SOLVING

are conjunctions of literals of the feature language (defined in Section 3.1). Recall that
the variables of the feature language are of the form (i = j), where 1 < 4,7 < n and
that a literal is either a variable or a negation of a variable. Hence, these are features
expressing that pairs of agents are or aren’t part of the outcome. This class of features
is still interesting and it covers many relevant cases. Nevertheless, there are still some
interesting cases that are in principle expressed, for instance, by a disjunction of literals.
For example, in a matching problem of dimension n = 4, if we wanted to search for a
justification for the feature p = (1 = 1)V(1 & 2), i.e., that left agent ¢, is either assigned
right agent r; or r5. In principle by Assumption 4.1, it would not be guaranteed that our
procedure for finding an explanation for ¢ works, even when we have found a normative
basis, because the encoding of the negation —¢ of the feature is =z, ;1 A =xp 1,2, Where p
is the profile of the justification problem we are working with. So, it consists of more than
one clause. But in cases like this we can take advantage of the feature language and take
an equivalent formula, say ¢y = — (1 2 3) A = (1 = 4). The encoding of the negation
—1) has the desired form: it consists of exactly one clause, namely x 13 V p 1,4, and by
Corollary 3.1, we can search for a justification for) because if we find one it would also
be a justification for . Thus, even though the result only holds for a restricted class of
features, in practice we can apply the procedure to (almost) all kinds of features.

Returning to the description of a procedure for the automatic search for a justification,
we have shown that once we have automatically found a normative basis, we can extract an
MUS that corresponds to an explanation of the justification and that is hopefully smaller
than the whole set of axioms forming the normative basis.

Now we bring Proposition 4.1 and Proposition 4.2 together to describe an algorithm
that, given a justification problem, will return a normative basis together with a set of
clauses corresponding to an explanation, that will form a justification for the input justi-
fication problem. This procedure is formalized in the algorithm JUST-SEARCH (Algo-
rithm 3). Notice that since we are making use of the fact proven in Proposition 4.2, we are
restricted to the class of features specified in Assumption 4.1. Algorithm JUST-SEARCH
takes as input a justification problem (A, p,). First the algorithm calls BASIS-SEARCH
with the same problem as input. That is, it first searches among the axioms in the cor-
pus for a normative basis for a justification for the problem. If it finds a basis .4, then
it extracts an MUS from its encoding set together with the encoding of the negation of
the feature, i.e., A U {a}. Finally, it returns the MUS together with the normative ba-
sis. If BASIS-SEARCH returns that there is no justification, JUST-SEARCH returns this
information too.

Not that the algorithm JUST-SEARCH always returns what corresponds to a justifi-

50

CHAPTER 4. AUTOMATION VIA SAT SOLVING

Algorithm 3 JUST-SEARCH

Input: A justification problem (A, p,)
Let a be the encoding of —p

1: if BASIS-SEARCH returns a normative basis A under the same input then
2 A := the encoding set of A

3 Extract MUS X from A U {a}

4: return A, 2
5
6

: end if
: return “There is no justification based on axioms from A.”

cation for a problem, if there exists one. It returns the normative basis A" and a set of
clauses that are the encoding of an explanation A” such that the pair (A", AF) is a justi-
fication for ¢. The correctness of the algorithm follows directly from Proposition 4.1 and
Proposition 4.2. We have proven that there is a correct procedure to find a justification for

a feature of a matching outcome, whenever one exists.

4.3.3 Implementation

We will now illustrate how the justification search can be performed semi-automatically
using SAT solvers. For this, we extend the Python script described in Section 4.3.1. Al-
though both, the procedure described as algorithm BASIS-SEARCH and the extraction
of the MUS can be fully automated, one last step for obtaining a human-readable expla-
nation remains to be done, namely the inspection and translation of the MUS, which is
mostly done manually.

The extension of the Python script only covers the process of searching for a normative
basis for a justification. The rest is done with assistance of the computer but requires more
involvement of the user. So first we explain the implementation of the algorithm BASIS-
SEARCH.

Recall that in the first part of the Python script we automated the generation of propo-
sitional formulas in CNF corresponding to axioms of matching mechanisms and features
of matching outcomes. We will use these encodings to generate the input of the imple-
mentation of the BASIS-SEARCH algorithm.

We will describe the implementations of two functions, called all1BasesSearch
and basisSearch, respectively. The function al1BasesSearch takes as input the
encodings of both a set of axioms and the negation of the feature and it returns all the pos-
sible subsets of the corpus that are normative bases for the justification we are searching
for; whereas the function basisSearch is the implementation of the algorithm BASIS-

SEARCH, i.e., returns the first normative basis that it finds for the justification. Actually,

51

CHAPTER 4. AUTOMATION VIA SAT SOLVING

basisSearch, takes the same input as al1BasesSearch plus a string that will be
the name of the file in which the formula produced will be saved. We present both func-
tions here because in practice, we are mostly interested in obtaining one normative basis
with the function basisSearch, but its code is actually an adaptation coming from the
more general version, al1BasesSearch.

Before explaining how the functions al1BasesSearch and basisSearch work,
we need an auxiliary function 1 sJustification, that checks, given the encoding of a
set of axioms and the encoding of the negation of a feature, whether exactly those axioms
are a normative basis for a justification for the feature. The definition of the function
isJustification is shown in Listing 4.7. The function takes a set A of encoded
axioms and the encoding of the negation of the feature and returns True if and only if
the axioms corresponding to A are a normative basis for a justification for the feature.

The input for the function 1 sJustification consists of axioms, alist of axioms
in DIMACS format and nfeature, the encoding of the negation of the feature, also in
DIMACS format.

def isJustification(axioms,nfeature) :

cnf = list (chain(*axioms)) + matchsat.cnfMechanism()
if solve(cnf) == ’'UNSAT’':

return False
else:

cnf += nfeature

return solve(cnf) == ’"UNSAT’

Listing 4.7: Python script for the function isJustification

The function isJustification first flattens the list of axioms, so that it gets
transformed into a list (cn) with all their clauses and it adds to this formula the constraint
that the mechanism is well-defined. Then it checks whether the set of axioms is satisfiable.
If it’s not, then it cannot be a normative basis. If the set of axioms together with the
constraint that the mechanism is well-defined is satisfiable, it includes in the set of clauses
the clause for the negation of the feature and finally, it checks whether the formula cnf
is satisfiable. Both satisfiability checks are done inside the function using the SAT solver
LINGELING’ that comes with a Python module, PYLGL, that allows to call the SAT
solver directly from Python via the function solve. The function solve works as one
would expect, it takes a list of lists, corresponding to a formula in CNF in DIMACS format
and it either returns ' UNSAT’, if the formula is unsatisfiable, or it returns a model, i.e.,
a truth assignment for the variables of the formula, that makes the formula true. So, the

function isJustification returns the value True if and only if the axioms are a

Thttp://fmv.jku.at/lingeling/

52

http://fmv.jku.at/lingeling/

CHAPTER 4. AUTOMATION VIA SAT SOLVING

normative basis for a justification of the feature.

In the function isJustification, the part of the input corresponding to the ax-
ioms (axioms) consisted only of the axioms encoded, i.e., a list of lists of clauses. In the
case of al1BRasesSearch and basisSearch, we provide this part of the input with
some extra information. Notice that with the encoding of the axioms in formulas in DI-
MACS format, it would be very hard if the function returned a set of clauses, to figure out
exactly to which subset of axioms they correspond. So what we do is include the names
of the axioms in the input. So, axioms is now a list of two-element lists. Each of them
has as first element the name of the axiom and as second element the formula in DIMACS
encoding it. The other part of the input, nfeature is still the one-clause encoding of
the negation of the feature, so a list of one element which is also a list. The code for the

function allBasesSearch is shown in Listing 4.8.

def allBasesSearch (axioms, nfeature):

search_space = subsets (axioms)
search_space.remove ([])
bases = []
for set_of_axioms in search_space:
result = []
axioms = []
for axiom in set_of_ axioms:
axioms += [axiom[1l]]

if isJustification (axioms,nfeature) :
for axiom in set_of axioms:
result.append (axiom[Q0])
bases.append (result)
return bases

Listing 4.8: Python code to obtain all possible normative bases

The function al1BasesSearch searches over all subsets of the axioms and for each
set, it checks whether it is a normative basis using the function isJustification. If
it is, it appends the subset to the list bases, and when it finishes searching over all
the subsets, it returns the list bases, where all the normative bases were stored. Thus,
allBasesSearch indeed computes a list with all the subsets of the corpus that are a
normative basis.

Note that we use a function subsets to generate the search space. As it is expected,
it computes all the possible subsets® of the elements of a list. The search space grows
exponentially with the size of the corpus. Recall that for a set with k£ elements, the num-

ber of subsets is 2. So, if the corpus is too big, searching over all possible subsets of

8The data structures that the function generates are lists but we call them subsets because it is conceptu-
ally what they represent.

53

CHAPTER 4. AUTOMATION VIA SAT SOLVING

axioms may become infeasible. Hence, in practice we are only interested in obtaining
one normative basis.

Now, the function basisSearch corresponds to the implementation of the algo-
rithm BASIS-SEARCH (Algorithm 2) and the code is shown in Listing 4.9. This function
does the task of searching for a normative basis in the same way as al1BasesSearch
does but it differs in that basisSearch stops once it has found one basis and returns it.
The function basisSearch only has to search over all the subsets in case there is no
justification (so, it doesn’t stop earlier). Another difference is in the parameters it receives.
Similarly to al1BasesSearch, the function basisSearch receives a set of encoded
axioms with names and the encoding of the negation of a feature; but basisSearch
also receives a string £ilename, that will be the name for the file in which the CNF
formula corresponding to the encoding of the axioms is going to be saved. This last part
will be discussed later, but the formula is saved in a text file so we can extract the MUS
from there.

def basisSearch(axioms, nfeature, filename):
search_space = subsets (axioms)
search_space.remove ([])
for set_of_axioms in search_space:
result = []
cnf = matchsat.cnfMechanism()
axioms = []
for axiom in set_of axioms:
axioms += [axiom[1l]]
if isJustification (axioms,nfeature) :
for axiom in set_of_ axioms:
cnf += axiom[1]
result.append(axiom[0])
cnf += nfeature
matchsat.saveCNF (cnf, filename)

return result
r 4 3 4 o] 4 14
return ’'There_ is_no_justification_based _on these_axioms

Listing 4.9: Python implementation of BASIS-SEARCH

The function basisSearch searches over all the possible non-empty subsets of the
given axioms, whether they are a basis for a justification for the feature, using for this
check the function isJustification. Once it has found a set of axioms that corre-
spond to a normative basis for a justification, it recovers the names in a list (result),
saves their encoding together with the well-definedness constraint for the mechanism (in
cnf) and prints the set of names of the axioms. If it searches over all the subsets and
none of them is a normative basis for a justification, it returns a string stating it.

Observe that the implementation of the function subset s is relevant for the function

54

CHAPTER 4. AUTOMATION VIA SAT SOLVING

basisSearch because the basis it returns depends on the order of the subsets it searches
over; in the case that there is more than one. Furthermore, recall that every non-trivial
superset of a normative basis is also a normative basis (Observation 3.5). In general
it could be the case that we are interested in having minimal normative bases, if that’s
the case, it is important that the implementation of the function subsets allows that.
Our implementation of subsets doesn’t return a superset before any of its subsets.
Hence, the normative basis that it returns is always minimal. Other implementations of
the function subsets are possible.

The part of the code that we just explained corresponds to the procedure described in
the algorithm BASIS-SEARCH, i.e., to the search of a normative basis. We now illustrate

with an example what an execution would look like.

Example 4.1. Recall Example 3.3.

In the Python script we implemented a function getProfileThree that, when the
problem dimension is n = 3, given the agents’ preferences as tuples, it retrieves the
encoding of a profile as an integer. The profile from Example 3.3 can be represented as
in the matrix in Equation 4.5. Recall the encoding of the agents (Section 4.3.1), they
are encoded by the integers from 0 to n — 1, so in the matrix the left column represents
the preferences of the left agents over the right agents and similarly, the right column
represents the preferences of the right agents over the left agents. For instance, agent /1,

prefers agent r; over 75 over rs.

012 201
p=|021 012 (4.5)
210 120

So, the encoding of profile p is the number 24378. We can corroborate this thanks to
the function prefers that takes a profile (its integer representation), an index (for the
agent) and the type of agent (0 for left, 1 for right), and returns the preference order of the
agent under the profile.

Then, we need to generate the list of axioms that will correspond to the corpus A.
In Example 3.3, A is any superset of {LSP, TOPSTA}. So let’s take the corpus as A =
{LSP, TOPSTA, Gl}. The code to generate the list axioms that we will use as input is
the following.

axioms = [[’'TOPSTA’ ,matchsat.cnfTopStable()],
["GI’,cnfGroupIndifferent ()],
["LSP’, matchsat.cnfleftStrategyProof ()]]

Then, the feature ¢ from Example 3.3 is = (1 5 3). The negation — is (1 &= 3), the

55

CHAPTER 4. AUTOMATION VIA SAT SOLVING

encoding of which is the variable x, ;3. We generate this encoding automatically and
save it in a varibale nfeature in the script by executing the following.
nfeature = [matchsat.posLiteral (24378,0,2)]

Now we can execute the function basisSearch with input axioms, nfeature
and filename, with the file name being, for example, ' example33.dimacs’. Todo
this, we execute basisSearch (axioms, nfeature, 'example33.dimacs’).

Finally, the output of the execution is [TOPSTA’ , ' LSP’], which means that the
set A = {TOPSTA, LSP} is a basis for a justification for the feature (.

Furthermore, in the directory where we have the Python script, the CNF formula en-
coding the set A was saved under the name example33.dimacs. For the next step

towards obtaining the complete justification, we will make use of this file. -

If a normative basis is found by the function basisSearch, there are still some steps
remaining to obtain a proper justification. Ultimately, in practice we are more interested
in the explanation since that is what we can present the users with. The set of clauses
corresponding to A U {a} in the JUST-SEARCH algorithm (Algorithm 3), is exactly the
set of clauses (cnf) that were generated by the function basisSearch and stored in the
file which name we provided as part of the input for it. So the next step is the extraction
of an MUS from this set.

For the extraction of an MUS from a set of unsatisfiable clauses, we use the tool
PicoMUS, which is a SAT solver that generates an MUS using the library PICOSAT.
We do this separately from the Python script we used fro the previous steps.

Example 4.2. In this example we will explain how we extracted an MUS for the set of
unsatisfiable clauses saved in a file with name ‘example33.dimacs’ generated by
the function basisSearch in Example 4.1.

We run the following command assuming that PICOS AT and PICOMUS are installed
in a directory named solvers and that we want the MUS (in DIMACS format) to be
saved under the name example33MUS.dimacs.

~/solvers/picomus example33.dimacs example33MUS.dimacs

The output of the solver is the following.

s UNSATISFIABLE

c [picomus] computed MUS of size 3 out of 2146177 (0%)
v 365676

v 2123907

v 2146177

v O

This means that the given set of clauses was unsatisfiable and it was able to reduce

it from a set with 2146177 clauses to an MUS with only 3 clauses. This is now much

56

CHAPTER 4. AUTOMATION VIA SAT SOLVING

more manageable and it is very likely that we can interpret it and transform it into a
human-readable explanation.

The MUS is saved in a text file under the name example33MUS.dimacs and it
contains the following information.

p cnf 419904 3
-219405 -219422 0
219422 0

219405 0

The text file follows the DIMACS format. There is one clause in each line and the
line breaks are indicated by a 0. The two numbers in the first line (p cnf 419904 3)
indicate the number of variables and the number of clauses. Even though in this CNF there
only appear two different variables, there were 419904 variables in the original CNF. This
file format is automatically generated by the function saveCNF used in basisSearch
(Listing 4.9).

By Proposition 4.2, this MUS is equivalent to an explanation for the feature — (1 = 3).
But we still have to interpret the variables to present it as a logical and human-readable

argument. -

Now, we explain how the interpretation of an MUS in DIMACS format can be done.
For this we use an implementation of an interpretation function in the original Python
script (Endriss, 2019). The function is called interpretVariable and it takes as
input an integer £ and returns the number of profile p, the index of the left agent ¢, the
index of the right agent j and if the literal is a variable or a negation of a variable, for the
variable z, ; ; for which % is an encoding. This function can help with reconstructing the

instances of the axioms for which the clauses in the MUS are the encodings.

Example 4.3. An example of the execution of the function interpretvariable’ for
the variables of the first clause of the MUS in the previous example (Example 4.2) is as
follows.

>>> interpretVariable (-219405)
-> in profile number 24378 do not match 0/2
-> where profile 24378 = (0>1>2 0>2>1 2>1>01]2>0>1 0>1>2 1>2>0)

>>> interpretVariable (-219422)
-> in profile number 24380 do not match 0/1
-> where profile 24380 = (1>0>2 0>2>1 2>1>01]2>0>1 0>1>2 1>2>0)

9This function was re implemented in the file just.py. A version of it exists in the file
matchsat .py but it only works for positive literals. In just .py we extended it for any kind of lit-

erals, but only for matching problem sizes of 2 and 3.

57

CHAPTER 4. AUTOMATION VIA SAT SOLVING

By interpreting the rest of the variables, it is not hard to notice that the first clause
corresponds to an instance of left-strategyproofness, because if either of those situations
happened, then the left agent 0 could manipulate the situation in profile 24378 by re-
porting the untruthful preference that results in profile 24380. Furthermore, the second
clause of the MUS corresponds to an instance of top-stability and the last one is the one
corresponding to the feature, so we will remove it to construct the explanation.

Using this information, we can construct the following human-readable explanation.

If left agent 0 were to be matched with right agent 2 under profile 24378, then she
would be able to manipulate by reporting preference order 1 > 0 > 2 instead because
under profile 24380, left agent 0 and right agent 1 rank each other as their top alternatives.
Thus, by top-stability, they should be matched to each other and right agent 1 is a better
option for left agent 0 than right agent 2 under her true preference. Hence, grounded in
the principles of left-strategyproofness and top-stability, and under profile 24378, the only
option is that the pair (0, 2) is not included in the outcome. -

Note that given the MUS in DIMACS format, there is no general way to translate
it back into axioms. This step requires some dexterity. For some clauses, it is easily
verifiable once we interpret back the variables, but it can be that for some other clauses
it’s not clear to which axiom they belonged in the first place. However, we could, for
example, use the help of the computer to check, for each clause, of which axiom it’s an
instance. But in general, this part is not done fully automatically and hence, we say that

the whole process of producing a justification for a feature is semi-automatic.

4.4 Results

In this section we will take a closer look at the program, how well it performs and what
can we achieve by using it. We show some basic statistics of its performance and some
examples of usage.

The Python script was run in a regular computer with an 1.8GHz dual-core Intel Core
i5 processor and 8 GB of memory. We now give an overview of the time'” (in seconds) that
it took for this computer to generate the encodings of the axioms with matching problem
sizes of 2 and 3 and the number of clauses each encoding consisted of. This information
is summarized in Table 4.3.

Notice that both, the size of the encodings and the time it takes to compute them

grow exponentially. For a matching problem of size n = 4 it is not feasible for a regular

ONote that the computation time can differ per execution. The times shown in Table 4.3 are an example

of one specific execution. However, the encoding sizes never change.

58

CHAPTER 4. AUTOMATION VIA SAT SOLVING

AXIOM S1ZE (n = 2) | TIME (n = 2) | SIZE (n = 3) | TIME (n = 3)
Stability 16 0.00078 419904 10.17189
Top-stability 16 0.00028 46656 1.65555
Left-strategyproofness 32 0.00056 2099520 26.99045
Right-strategyproofness 32 0.00077 2099520 32.73899
Strategyproofness 64 0.00135 4199040 64.51469
Group-indifference 64 0.00012 419904 0.82161
Peer-indifference 128 0.00240 3359232 26.86091
Left top-rewarding 16 0.00012 46656 0.62262
Right top-rewarding 16 0.00011 46656 0.51550
Top-rewarding 32 0.00024 93312 0.99002
Left-swap-stability 8 0.00067 209952 6.76091
Right-swap-stability 8 0.00042 209952 7.19294
Swap-stability 16 0.00070 419904 12.81307
No-bottoms 16 0.00027 46656 1.48734
TOTAL 464 0.00897 13716864 196.14219
AVERAGE 33 0.00060 979776 12.01251

Table 4.3: Number of clauses and time in seconds to compute the axiom encodings for
matching problem sizes of 2 and 3.

computer to generate the encoding of any of the axioms in reasonable time. For example,
when n = 4, there are (4!)8 profiles, which is 110075314176 (more than 110 billion
profiles!). So, it is reasonable to assume that some axioms would have around that, but
very likely more than that, number of clauses. Hence, we were only able to run the
program for matching problem sizes of 3 or less.

As a first example of usage of the program, we computed all the normative bases for a
justification problem of size 3. Recall Example 3.3. We showed, together with Example
3.3 and Example 3.4, that the feature ¢ = —(1 &= 3) could be justified with two different
normative basis. It is then natural to ask whether there are more combinations of axioms
that could justify ¢ but to check this manually is a hard task. However, we can use the
program that we implemented to search for all the possible normative bases within a set
of axioms. It can be done with the function al1BasesSearch. Recall that the search
space when the corpus has size k is of size 2¥ — 1. So, if we include 14 axioms, the search
space would be of size 16384. This means that the function isJustification would
be executed that many times. Hence, for reasons of computational power, we chose a
subset of size 7 of these axioms as corpus. The corpus we chose included: stability,

top-stability, left strategyproofness, right strategyproofness,'! group-indifference, peer-

"Notice that by including both left and right strategyproofness, we are basically checking for strate-

59

CHAPTER 4. AUTOMATION VIA SAT SOLVING

indifference and no-bottoms. Then, A = {STA, TOPSTA, LSP, RSP, GI, PI, NBOT}.

We ran the function allBasesSearch for A, profile p as in Example 3.3, and
feature —(1 = 3). The summary of all the bases returned by the program is shown in
Table 4.4. Since the corpus consists of 7 axioms, the search space is of size 127. That is,
the function checked 127 times if a set formed a normative basis for the feature. It took

for the computer to execute the function approximately 10 minutes.

NUMBER BASIS
1 {STA}
2 {STA, TOPSTA}
3 {STA, LSP}
4 {TOPSTA, LSP}
5 {STA, TOPSTA, LSP}
6 {STA, RSP}
7 {TOPSTA, RSP}
8 {STA, TOPSTA, RSP}
9 {STA, PI}
10 {STA, TOPSTA, PI}
11 {STA,LSP, PI}
12 {TOPSTA, LSP, PI}
13 {STA, TOPSTA, LSP, PI}
14 {STA, RSP, PI}
15 {TOPSTA, RSP, PI}
16 | {STA, TOPSTA, RSP, PI}
17 {NBOT!
18 {LSP,NBOT}
19 {RSP,NBOT}
20 {LSP,RSP,NBOT}
21 {PI,NBOT}
22 {LSP, PI,NBOT}
23 {RSP,PI,NBOT}

Table 4.4: All normative bases for the justification problem from Example 3.3

The bases returned in places 4 and 17 of the table correspond to Example 3.3 and
Example 3.4, respectively. Indeed, there are many more sets of axioms that can form a
normative basis for a justification for ¢.

Observe that not all of the computed bases are minimal (Definition 3.3). For instance,

every set A" in the list such that {STA} C A" is not a minimal basis since {STA} forms

gyproofnes too. If a basis contains both one-sided versions of strategyproofness, we can replace it by
strategyproofness.
12This normative basis is actually equal to the set {SP,NBOT}.

60

CHAPTER 4. AUTOMATION VIA SAT SOLVING

a basis. It is nevertheless not necessarily the case that when extracting an explanation for
the feature grounded in one of the non-minimal normative bases, there are instances of
all the axioms in the explanation. However, a couple of disjoint normative bases were
obtained, which implies that we could obtain a number of different explanations for the
same feature. This can be useful in a situation where we want to justify the feature for
different agents. Each agent may find different principles appealing, so we could present
them with the justification that is closer to the axioms they are interested in.

In the next example, we illustrate how often a feature can be justified by at least one set
of axioms from the ones we defined. We ran 100 times the following process for matching
problems of size 3. First, randomly pick a profile. Then, compute the outcome with the
deferred acceptance algorithm (Definition 2.1). Finally, search for a normative basis for
each of the pairs in the computed outcome. For each of the 100 runs we registered: (i)
how many of the features were justifiable; (i1) with which axioms; and (iii) how long
the search for a normative basis took. Again, we had to restrict the set of axioms to
a small set for the computations. We used the same corpus in every run of the process:
{LSP,RTR,NBOT, TOPSTA, STA, LSS, PI}. The choice of this set was arbitrary. Notice
that the deferred acceptance algorithm does not satisfy the axiom of right top-rewarding
(Definition 2.10). Thus, no normative basis should include it.

In Figure 4.1 we show a graph that summarizes, for each profile, the number of fea-
tures for which a normative basis was found. On the x axis, we show the encoding of each
profile as an integer. The profiles are shown in the same order they were randomly drawn
throughout the 100 runs. For each profile, we searched for a basis for three features: the
ones corresponding to each pair of the matching outcome computed by the deferred ac-
ceptance algorithm. For example, if under a certain profile p the algorithm computes the
matching {(¢1,72), (¢2,73), (¢3,71)}, the features for which we searched for a justifica-
tion, for profile p, were: (1 = 2),(2 = 3) and (3 & 1). On the y axis we show for
how many of these features a normative basis was found, for each profile. Observe that
for almost every profile, the three pairs forming the matching outcome could be justified
with at least one normative basis. Furthermore, there was no profile for which none of the
pairs of the outcome could be justified.

In Figure 4.2 we show the time in seconds that the basis search took for every feature.
On the z axis of the graph we have the integers encoding the features. It can be observed

how for most of the features, it took less than 100 seconds to compute a normative basis

3Consider the profile where each left agent ¢; ranks r; at her top preference and each r; ranks /;
at her bottom preference, for i € {1,2,3}. The deferred acceptance algorithm returns the matching

{(€1,71), (¢2,72), (¢3,73)} in which no right agent is paired with her top option.

61

CHAPTER 4. AUTOMATION VIA SAT SOLVING

Number of features that could be justified for each profile

Number of features

Figure 4.1: Number of features for which a normative basis was found per profile.

Computation times for basis searches

700 +

2
8

Time (in seconds)
]
e

300
.
B . . * .
. .
200
. .
PR ¢ .
1 . . <
3 . PEY
. . 0 . PR R
100 . . Fl .o e 1) I g
¢ B - ,ov o . 1!
. .
B T R A BT PO i , ot TR T g
o =] [~ =]
IS S S S S S S S
S S < S S =3 S S
5 S S S g S S 3
2 2 &g 5 & ¢

Figure 4.2: Time (in seconds) that it took for for the program to find (or say that there
were none) a normative basis for each feature.

62

CHAPTER 4. AUTOMATION VIA SAT SOLVING

for a justification. Then, there is a second group for which it took between 100 and 300
seconds. And there are a few features for which it took much longer (around 11 minutes).
Those features are exactly the ones for which no basis could be found among the axioms
in the corpus. That is because for those features, the program had to check all the non-
empty subsets of the corpus. It took around 9.5 hours for all the runs to execute on a
regular computer.

In Listing 4.10 we show part of the output of the experiments run. The first number in
each line is the profile under which the deferred algorithm computed the matching. Then
there is a list with three elements, each of which consists of a number, encoding a feature,
and the basis found for a justification for this feature, or the indication that no basis was
found. For instance, in the first run (first line of Listing 4.10) the randomly chosen profile

was the one encoded as the number 45147, which corresponds to the following:

6117’2>-T3>-7”1 T12€3>-£2>-€1

£21T1>-7’2>-7’3 7"22€3>'€1>'£0

l3: 11 =179 = T3 ry: f3 = Uy = {1

The deferred acceptance algorithm returns the following matching for this profile.

M = {(¢1,73), (la,73), (£3,71)}

—

L

L

The features (1 = 2), (2 = 3) and (3 = 1) are encoded as the numbers 406325,
406329 and 406330, respectively. As shown in the first line of the output (Listing 4.10),

normative bases to justify these features are {STA}, {STA} and { TOPSTA}, respectively.

45147 [[[406325], ['STA’]], [[406329], [’STA’]1],
[[406330], ["TOPSTA’]11]

35529 [[[319764], [’No_basis’]], [[319766], ['STA’]],
[[319768], ['No _basis’]]]

19405 [[[174648], [’STA’]]1, [[174649], ['LSpP’, ’'TOPSTA’, 'LSS’']],
[[174653], ['No_basis’]]]

21400 [[[192603], [’'LSp’, '"TOPSTA’]], [[192605], [’'LSs’]1],
[[192607], ['LSS’11]

9078 [[[81703], [’'TOPSTA’]], [[81708], [’'STA']l],
[[81710], [’STA’']11]

18513 [[[166619], [’STA’]]1, [[l166621], ['"LSS’"1], [[166626], ['LSS’']1]1]

63

CHAPTER 4. AUTOMATION VIA SAT SOLVING

12547 [[[112926], [’'TOPSTA’]]

, [[112928], [’'TOPSTA’]],
[[112930], ['TOPSTA’]]]

40330 [[[362971], [’'Lsp’, 'TOPSTA’]1], [[362975], ['LSp’, ’"TOPSTA']],
[[362979], ['TOPSTA’]]]

16217 [[[145956], [’STA’]1]1, [[145958], ['STA’"]], [[145960], ['STA']]]

14633 [[[131700], [’TOPSTA’]]l, [[131702], [’'STA’']1],
[[131704], [’STA’']]]

Listing 4.10: Normative bases found for the features corresponding to the 10 first profiles

The bases found throughout the computations of the deferred acceptance algorithm
under different profiles were quite diverse. Although, as it was expected, the axiom right
top-rewarding didn’t show up in any basis. This example shows how, for outcomes com-
puted by a common matching mechanism such as the deferred acceptance algorithm, we
can almost always find a normative basis to justify each of the pairs forming them. Fur-
thermore, it shows that different parts of an outcome can indeed be justified by different
normative bases.

A single run of this process can be useful in a situation where a central authority com-
putes a matching using a mechanism, say like in the example, the deferred acceptance
algorithm. Recall Example 3.1, where a matching is to be computed for a mentorship
program. In that case, the central authority may be interested in accompanying the com-
munication of the pairing results with an explanation for each agent of why it is the case
that they got their assignation.

A final observation on the results obtained with the last example is that once we ob-
tained a normative basis that can justify each of the pairs belonging to the outcome, one
could apply the results from Section 3.3 and bring together those justifications to get a
justification of the whole outcome or a bigger part of it.

These examples illustrate some situations where the program that we implemented

can be useful. Furthermore, they give an idea of the performance of the program.

4.5 Discussion

In this section we present an analysis of the approach and the implementation of the
justification search. We discuss advantages, disadvantages and give some pointers on
how it could be improved.

SAT solvers are powerful tools, we saw how to transform the problem of normative
bases search into a propositional satisfiability problem and with the help of a SAT solver,

check the satisfiability of relatively big formulas in a matter of seconds. However, this

64

CHAPTER 4. AUTOMATION VIA SAT SOLVING

was only feasible, for a regular computer, for matching problems of at most size 3. This is
the greatest limitation of our approach, since in many real-world situations, there would
be more than three agents in each group. On the other hand, the reliability of the approach
could also be questioned. In Section 4.2, we discussed how a procedure that is executed
by a computer can be subject to errors and could not be considered formally valid. Al-
though the bases search is left to the computer, as we showed, most of the times we are
able to obtain an MUS and manually transform it into a human-readable argument. This
argument then becomes a reliable proof that the normative basis found by the program
can indeed be part of a justification. Nevertheless, we can say that the program can be
reliable enough since the encoding is done in such a way that it is clear that the formulas
generated by the program are indeed encoding the principles that they are supposed to.

Regarding the computational power limitations, there are a few things that can be
improved in the implementation that could make it significantly faster. We could make use
of some kind of heuristics. For instance, the search space in the functions basisSearch
and allBasesSearch was the whole power set of the corpus (without the empty set).
That is, for every non-empty subset of axioms of the corpus, the functions'* executed the
sub-routine i sJustification, that verified if a set of axioms could form a normative
basis for a justification. But by the definition of a justification (Definition 3.2) we know
that a trivial set of axioms cannot constitute a normative basis. We also know that some
impossibilities (Section 2.3) hold for certain dimensions n. Hence, we could remove all
the sets that correspond to these impossibilities, together with all its supersets from the
search space to make it smaller.

Although the approach that we presented proved to be powerful and useful in various
situations, it has some limitations and its reliability can be questioned. However, we

presented some ideas on how these problems could be minimized.

4.6 Summary

In this chapter we presented and analyzed an approach to automate the justification search
using SAT solvers. We gave an overview of the general method and how it has been used
in the field of computational social choice. Then, we explained how to apply the basic
ideas of this technique to our problem of automatically generating a justification. To do

this, we first laid out the process of encoding a justification problem as a propositional

“The function al1BasesSearch did check for every non-empty subsets, while basisSearch only
did it until it found one. Only in the case where there is no normative basis, it would search over all the

non-empty subsets.

65

CHAPTER 4. AUTOMATION VIA SAT SOLVING

formula. Then we formalized the process in the algorithm JUST-SEARCH and prove its
correctness. We presented our implementation of the basis search in a Python script and
explained how to semi-automatically extract a justification.

Moreover, we showed some examples of how the program could be used. Firstly, an
example where we obtained several different normative basis for a justification problem.
Secondly, an example that shows that we can indeed justify most of the parts of a matching
outcome, computed by the deferred acceptance algorithm, even when taking a restricted
corpus of axioms. Finally, we discussed the usefulness and limits of this approach and we

hinted at some ways of improving it.

66

5 | Conclusion

We have defined a formal model for the justification of partial matching outcomes. Fur-
thermore, we have presented an approach to automate the search for such justifications
using SAT solvers. We saw that it can often be the case that agents are not happy with the
pair assigned to them by a matching mechanism. Also, they might not be interested or
able to learn all the theory that could clarify why, if we respect certain normative princi-
ples, there is no other option for them to be matched with. In these situations justifications
are useful. The idea of providing the agents involved in a collective decision with a jus-
tification of the outcome is fairly recent. It has been mostly developed in the context of
voting, but in fact, it gives a whole new twist to social choice theory. After all, if we are
interested in studying collective decisions, we should also try to make it easier for the
agents to come to this decisions. Hence the interest in bringing these ideas to another
setting: matching. The main difference with the voting setting is that in matching it is
not so interesting in practice to justify the whole outcome. Matching outcomes consist of
various pairs that can be seen as “local outcomes”. Thus, we were interested in providing
justifications for these smaller entities.

In the first part of the thesis, we successfully defined a model for the justification of
partial outcomes with the help of the feature language. Moreover, we proved that the
justification model behaves as one would expect it to in relation to the kinds of feature
formulas that are being justified. We also showed under which conditions it is possible to
construct a justification from others. This becomes useful, for example, when we want to
justify a partial outcome consisting of various pairs and we have a justification for each of
them, in which case we wouldn’t need to search for a justification from scratch. Another
difference with the justification model for voting is that we didn’t require minimality for
the explanation in a justification. We discussed this property both for normative bases
and for explanations. In the case of normative bases, minimality does not always make
the justification more understandable. For explanations, minimality is usually a desirable
property but requiring it in the definition imposed some limits for putting justifications

together. Nevertheless, we described a process to make an explanation minimal and we

67

CHAPTER 5. CONCLUSION

showed that it is always possible to do so. This completed the theoretical analysis of the
model.

The second part of the thesis was concerned with the automation of the process of
searching for a justification. We defined an algorithm to search for a justification and
proved its correctness. The idea behind the algorithm was to transform a justification
problem into a propositional satisfiability problem to search for a normative basis and
generate an explanation using a minimal unsatisfiable subset. The encoding of the axioms
and the matching problem were done as in the classic technique to search (and prove)
impossibility results. We presented the implementation of a program that automatically
searched for a normative basis for a justification and showed how to extract an explanation
using SAT solvers. Our approach for the extraction of an explanation only worked when
the negation of the feature could be encoded in a propositional formula with a single
clause. However, we discussed how to circumvent this issue. We could find an equivalent
feature formula and search for a justification for that one instead, since a justification for a
feature formula also justifies all its logically equivalent formulas. We showed examples of
interesting ways in which the program could be used. First, we obtained all the possible
normative bases for the justification for a feature that we knew could be justified by at least
two different bases. This was interesting because we were only able to find two of them
by hand and in only 10 minutes, the computer could find all 23 of them. Second, we ran a
small experiment that showed that very often we can find a justification for every pair in a
matching outcome computed by the deferred acceptance algorithm, grounded in a limited
corpus of axioms. In sum, we managed to define a relevant model for justifications for
partial one-to-one matching outcomes and we took some steps towards the automation
of the justification search. The program we implemented served its purpose but as we
discussed, it only worked for small matching instances.

There are still some directions to explore for the further development of this topic.
First, we only worked with one-to-one matchings with two-sided preferences and al-
though this model already has many applications, it is the simplest one and there are
many others that have important real-world applications. Then, a first direction to ex-
plore would be the generalization of the justification model for other matching problems.
A first natural generalization of one-to-one matchings with two-sided preferences is the
hospital/residents problem. In fact the latter is a one-to-many generalization of the for-
mer. For any generalization, the feature language must be adapted in such a way that it
captures the corresponding notion of a well-defined matching. In our case, a matching
was a pairing such that every left agent was matched to exactly one right agent and vice

versa. In the case of the hospital/residents problem, it would be a pairing such that every

68

CHAPTER 5. CONCLUSION

left agent is matched to at most one right agent and every right agent is matched to at
most a number of left agents equal to its capacity. Once a justification model is defined
for other matching problems, we will be able to use it in practice for real-world issues,
such as the school choice problem in Amsterdam (de Haan, 2017). Every year, when stu-
dents apply for secondary schools, since there are schools more popular than others and
the spots are limited on every school, some students are not accepted in their top choices.
The normative properties and the performance in practice of different algorithms have
been analyzed (de Haan et al., 2015; Mennle and Seuken, 2014) and the system has been
adapted several times, but every year some parents bring their cases to the courts arguing
that their children have not been treated fairly. This is an example in which we would
want to provide them with a justification for their assignation to a certain school.

The main drawback of our approach for the automation of the justification search and
its implementation is the computational power it needs and that it only works for small
instances of a matching problem. This is only expected to get worse when applying it
to more general problems. Optimizing the algorithm and the code produced is another
line of future work. We already hinted at one way of reducing the search space for a
normative basis. We can remove some trivial sets of axioms and all its supersets from
the search space. An optimized algorithm for the justification search for voting has been
proposed, together with some heuristics (Nardi, 2021).

We didn’t analyze the complexity of the justification search problem. A complexity
analysis has been done for the justification search problem in the voting context. Boixel
and de Haan (2021) proved general results for both the problem of finding and the problem
of verifying a justification for an election outcome with two different ways of expressing
the axioms. In every case they found that these are computationally hard tasks. As match-
ing instances are bigger in relation to the number of agents than election instances, we
expect the complexity of the justification search (and verification) problem to be at least
as high. This is another direction for future work, since the application in real-world
situations of justification models depends on the feasibility of their computation.

Even though there is still much work to do to further develop this model, we took solid
steps towards the definition and automation of a justification model for partial matching
outcomes. More generally, we made some progress in the development of models for
justifications in different collective decision making settings, which is a growing area in

computational social choice.

69

Bibliography

Abdulkadiroglu, A. (2013). School choice. In Vulkan, N., Roth, A. E., and Neeman, Z.,
editors, Handbook of Market Design, pages 138—169. Oxford University Press.

Abdulkadiroglu, A. and Sonmez, T. (2003). School choice: A mechanism design ap-
proach. American Economic Review, 93(3):729-747.

Arora, S. and Barak, B. (2009). Computational complexity: A modern approach. Cam-
bridge University Press.

Arrow, K. (1951). Social choice and individual values. New Haven, CT: Cowles Foun-

dation.

Biere, A. (2008). PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4):75-97.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., editors (2009). Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, v. 185. IOS Press, Ams-
terdam, The Netherlands.

Boixel, A. and de Haan, R. (2021). On the complexity of finding justifications for col-
lective decisions. Proceedings of the 35th AAAI Conference on Artificial Intelligence,
35(6):5194-5201.

Boixel, A. and Endriss, U. (2020). Automated Justification of Collective Decisions via
Constraint Solving. Proceedings of the 19th International Conference on Autonomus
Agents and Multiagent Systems (AAMAS-2020).

Brandl, F., Brandt, F., Geist, C., and Hofbauer, J. (2015). Strategic abstention based on
preference extensions: Positive results and computer-generated impossibilities. In Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-
2015).

70

BIBLIOGRAPHY

Cailloux, O. and Endriss, U. (2016). Arguing about voting rules. Proceedings of the 15th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2016).

de Haan, M., Gautier, P. A., Oosterbeek, H., and Van der Klaauw, B. (2015). The perfor-
mance of school assignment mechanisms in practice. In IZA Discussion Papers 9118.
Institute of Labor Economics (IZA).

de Haan, R. (2017). Why a Dutch court stopped high school students from swapping
schools. Medium.com. Available at https://tinyurl.com/3tv5c88b. Site visited on 7
January 2022.

Endriss, U. (2019). Software and data for “Analysis of one-to-one matching mechanisms
via SAT solving: Impossibilities for universal axioms". Zenodo. https://doi.org/10.
5281/zenodo.3547826.

Endriss, U. (2020). Analysis of one-to-one matching mechanisms via SAT solving: Im-
possibilities for universal axioms. In Proceedings of the 34th AAI Conference on Arti-
ficial Intelligence (AAAI-2020).

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9-15.

Geist, C. and Endriss, U. (2011). Automated search for impossibility theorems in social
choice theory: Ranking sets of objects. Journal of Artificial Intelligence Research,
40:143-174.

Geist, C. and Peters, D. (2017). Computer-Aided Methods for Social Choice Theory. In
Endriss, U., editor, Trends in Computational Social Choice, chapter 13, pages 249-267.
AI Access.

Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica:
Journal of the Econometric Society, 41:587-601.

Klaus, B., Manlove, D. F,, and Rossi, F. (2016). Handbook of Computational Social
Choice, chapter 14, pages 333-355. Cambridge University Press.

Manlove, D. (2013). Algorithmics of matching under preferences. World Scientific.

Masarani, F. and Gokturk, S. S. (1989). On the existence of fair matching algorithms.
Theory and Decision, 26(3):305-322.

71

https://tinyurl.com/3tv5c88b
https://doi.org/10.5281/zenodo.3547826
https://doi.org/10.5281/zenodo.3547826

BIBLIOGRAPHY

Mennle, T. and Seuken, S. (2014). Trade-offs in school choice: Comparing deferred ac-

ceptance, the naive and the classic Boston mechanism. arXiv preprint arXiv:1406.3327.

Nardi, O. (2021). A graph-based algorithm for the automated justification of collective

decisions. Master’s thesis, University of Amsterdam.

Okada, N., Todo, T., and Yokoo, M. (2019). SAT-Based automated mechanism design for
false-name-proof facility location. In Baldoni, M., Dastani, M., Liao, B., Sakurai, Y.,
and Zalila-Wenkstern, R., editors, In Proceedings of the 22nd International Conference
on Principles and Practice of Multi-Agent Systems (PRIMA-2019), volume 11873 of
Lecture Notes in Computer Science, pages 321-337. Springer.

Procaccia, A. D. (2019). Axioms should explain solutions. In The Future of Economic

Design, pages 195-199. Springer.

Roth, A. E. (1982). The economics of matching: Stability and incentives. Mathematics
of Operations Research, 7(4):617-628.

Roth, A. E. (1984). The evolution of the labor market for medical interns and residents:
A case study in game theory. Journal of Political Economy, 92(6):991-1016.

Roth, A. E., Sénmez, T., and Unver, M. U. (2004). Kidney exchange. The Quarterly
Journal of Economics, 119(2):457-488.

Roth, A. E. and Sotomayor, M. (1992). Two-sided matching, volume 1 of Handbook of
Game Theory with Economic Applications, chapter 16, pages 485-541. Elsevier.

Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and
correspondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory, 10(2):187-217.

Tang, P. and Lin, F. (2009). Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041-1053.

Tang, P. and Lin, F. (2011). Discovering theorems in game theory: Two-person games
with unique pure Nash equilibrium payoffs. Artificial Intelligence, 175(14):2010-2020.

72

	Introduction
	Matching
	Motivation
	Thesis Overview

	Matching Theory
	The Model
	Axioms
	Relevant Results
	Summary

	Justifications
	Feature Language
	The Model
	Compatibility with the Logic
	Minimal Justifications
	Minimal Normative Bases
	Minimal Explanations

	Summary

	Automation via SAT Solving
	SAT Solving in Computational Social Choice
	The General Approach
	Justification Search via SAT Solvers
	Encoding
	The Algorithm
	Implementation

	Results
	Discussion
	Summary

	Conclusion
	Bibliography

