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Abstract

In this thesis we introduce simultaneous substitution algebras as an abstraction of simultane-
ous substitution operations on terms and on functions. The class of simultaneous substitution
algebras is defined by a set of equations, and we prove that the equational theory generated
by this set is decidable and complete with the class of term simultaneous substitution algebras
and of polynomial simultaneous substitution algebras. We also prove that each simultaneous
substitution algebra can be represented as a quotient of a function simultaneous substitution
algebra, and each locally finite-dimensional one can be represented as a polynomial simultaneous
substitution algebra. Relevant results in singular substitution algebras can be derived from the
results in this thesis.
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Chapter 1

Introduction

Substitution is the operation which replaces the (free) occurrences of variables in an expression by
occurrences of other expressions in many formal systems, like propositional logic, first-order logic,
and lambda calculus. When we replace the occurrences of a single variable by the occurrences of
another expression, we call this operation singular substitution; when we replace the occurrences
of some variables (say z1,...,z,) by occurrences of expressions (say ei,...,e;,) respectively at
the same time, we call it simultaneous substitution.

In the study of the algebraization of formal systems, substitution operations can be defined
in algebras, for instance in cylindric algebras, algebraization of first-order logic (Henkin, Monk,
and Tarski [HMT71]), and in lambda abstraction algebras, algebraization of lambda calculus
(Pigozzi and Salibra [PS95]). Substitution can also be treated as basic operations in algebras;
in [Pin73], Pinter defines a class of Boolean algebras with substitution operations, and shows
that this class of algebras is definitionally equivalent to the class of cylindric algebras.

In [Fel82], a class of algebras where substitution operations are the only primitive operations,
called substitution algebras, is introduced by Feldman. It is an abstraction of singular substi-
tution on functions and on terms. Feldman proves that the first-order axioms of substitution
algebras and a non-first-order condition of local finiteness! characterize the class of polynomial
substitution algebras, a specific class of substitution algebras of functions. Furthermore, Feld-
man provides several equivalent conditions for a substitution algebra to be representable as a
function substitution algebra in [Fell5].

However, the discussion is based on singular substitution in [Fel82]. In many formal systems
we are familiar with, simultaneous substitution can be defined with singular substitution: since
the expressions in these formal systems are finite and there are infinitely many variables, we
can always use new variables not occurring in a given expression to simulate simultaneous
substitution with singular ones. In algebras, “local finite-dimensionality” is the name for a
similar phenomenon that only finitely many variables “matter to” each element, and the method
to simulate simultaneous substitution by singular substitution doesn’t always work without local
finite-dimensionality.

In our work, we follow the path taken by Feldman and introduce simultaneous substitu-
tion algebras, aiming to characterize the simultaneous substitution operation on terms and on

We call it local finite-dimensionality in our discussion.



operations over a set. The axiom schemas will be given in Chapter 2; we will also present
several classes of simultaneous substitution algebras we are interested in, namely the class of
term simultaneous substitution algebras (T'SSA), of function simultaneous substitution algebras
(FSSA), and of polynomial simultaneous substitution algebras (PSSA).

In Chapter 3 we will discuss the relation between simultaneous substitution algebras and
singular substitution algebras. It is natural to view simultaneous substitution as a complicated
version of singular substitution, and indeed we can show that every simultaneous substitution
algebra can be reduced to a singular substitution algebra. We will also show that each locally
finite-dimensional singular substitution algebra can be expanded to a simultaneous substitution
algebra.

In Chapter 4, we will prove a key property of simultaneous substitution: each term of the
type of simultaneous substitution algebras has a normal form. With the normal form theorem
for simultaneous substitution, we can arrive at the first important result in our study: the decid-
ability of the equational theory generated by our axioms of simultaneous substitution algebras,
and the completeness of it with respect to the class of TSSAs and of PSSAs.

The representation problem of simultaneous substitution algebras will be considered in Chap-
ter 5. We will prove that every simultaneous substitution algebra is isomorphic to a quotient
of a TSSA in a broader sense, and to a quotient of a FSSA. Moreover, we will pay special
attention to locally finite-dimensional simultaneous substitution algebras and demonstrate their
representability.

We will also derive relevant results (completeness and decidability of equational theory, and
representability as in [Fel82]) in locally finite-dimensional singular substitution algebras from
our main results in Chapter 4 and 5.



Chapter 2

Simultaneous substitution algebras

In this chapter we introduce simultaneous substitution algebras. We provide the axiom schemas,
several examples, and some basic definitions and lemmas we will use in the following chapters.

At the beginning we introduce some notations we will use throughout our discussion. We
write the set of all functions from a set B to a set A as AP. Let a; € A for each b € B, then we
also write the function f : B — A such that f(b) = a; for each b € B as {(ap)pep.

Finite sequences and permutations are defined as functions in our discussion. We define the
empty sequence (the sequence of length 0) as the empty function and denote it by (). For finite
sequences of length n, n > 0, we define them as functions with domain n = {0,...,n — 1};
for n elements ag,aq,...,a,—1, we use (ag,...,a,—1) to denote the finite sequence f : n —
{ao,...,an_1} such that f(i) = a; for all i € n. For each set A, we use A% to denote the set of
all finite sequences without repetitions of elements of A, i.e.,

A" ={()} U U {(a1,...,an) | a1,...,an € D,a; # a; for all i,j with 1 <14 < j < n};
neN+

we also use @ to denote sequences in A#.

For positive integers i, j,n with 1 <1i < j <n, we use [, j], to denote the permutation p of
{1,...,n} such that p(i) = j, p(j) = ¢, and p(x) = x for all x € {1,...,n} \ {i,j}; we also call
[, 7]n a transposition.

Let A be an arbitrary nonempty set; for each positive integer n, an n-ary operation on A is
a function from A™ to A. We generalize this definition and allow the arity to be any set: for
each set X, a X-ary operation on A is a function from AX to X. When X is a set of variables,
a X-ary operation can be viewed as an assignment of elements in A to variables; hence we also
call a X-ary operation an assignment to X.

2.1 Axiom schemas

Definition 2.1. Let D be a set (we also call elements in D dimensions in the following) and A be
a nonempty set. Let ¢g be an element in A for each d € D, and S be a (n+1)-ary operation on A

for each d € D# of length n. Then A = (A, (c4)dep, (S%) ) is a D-dimensional simultaneous

deD#
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substitution algebra (D-SSA) if for all n > 1, all pairwise distinct dimensions d,dy,...,d, € D,
and all elements a, a1, ...,a,,b1,...,b, € A,

diyed .
(d1,..., ”)(al,...,an,cdl) =aq;

_ q(dg,...d :
Cdyy A2 ., Qp, Q) = S§20n) (gy . ay, a);

(
(

(et (b1, by S D) 0y, a)) = §nt) (S (b b ),
(

(336) 1 <i<j<m,p=[i,jln = S@d)(ay,... an,a) = S0 bw)(a,, ... aym),a).

Some useful lemmas can be derived from the axiom schemas (ss1)-(ss6):

Lemma 2.1. Let A = (A, (¢q)dep, <Sd>JeD#> be a D-SSA. For all (dy,...,dy),(dy,...,d,,) €
D# and a,a1,...,an,b1,...,bym € A,

(a) S(dl""’d")(al, ce, Ay, Cdi) = a;, 1 S 7 S n;
(b) p a permutation of {1,...,n} = Sdn)(q) . .. a, a)= S(dPU)""’dP(”))(ap(l), s Ay, @);

() {ut,...,ug,v1,..., vt ={1,...,n}, ay, = cd,, for all i with 1 <i<n-—k =
Sldidn) (g1 ... a,,a) = S(d“17""d“k)(aul, ey Oy, @);

(d) {dy,...,d 3 \{d},...,d,} = {dv,,...,dy,} with pairwise distinct vy,..., v € {1,...,n} =
Sldidn) (qy o ay, S dn) (by, .. by, a)) =

Proof. (a) If i = 1, just take (ss2). Otherwise 1 < i < n; let p = [1,1],, we have

S(dl"“’d”)(al, eeyQp, Cd;) (=5) S(dp(l)"“7dp<n>)(ap(l), <y p(n)» Cd; )
= S(divdp(2)""dp(">)(ai, Ap(2) « - 5 (p(n)s Cdi)
(ss2)

=’ a;.

(b) Since each permutation p of {1,...,n} is a composition of transpositions, we can use (ss6)

several times to obtain this lemma.

(c) Assume that {u1,..., ug,v1,..., 05—k} = {1,...,n} and a,, = ¢y, foralli with 1 <i <n—F,
0) G(doy oy, oy severees du

then we have S(@d) (a1, ... an, a) = Sy n—k UL k)(avl,...,avn_k,aul,...,auk,a).

Using (ss3) n — k times, we get S04 (ay, ... ap,a) = Surdu) (qy, ... ay,,a).
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(d) Assume that {di,...,d,} \{d},...,d,} = {dv,,...,dy,} with pairwise distinct vy,..., v} €
{1,...,n}. Then {d},...,d,,}\{d1,...,d,} contains | = m+k —n different dimensions, and we
call them dpi1,...,dpiy. Let d = (di, ..., dny) and & = (d},..., d,, dy,, ..., dy); it is easy to
see that both d and d has no repetitions and {dv,....dpp} ={d},....d,,dy,,...,dy,}, hence

) m?
we can define a permutation p of {1,...,m + k} such that
d;, 1<i<m,
dy(i) = .
dy, ., m+1<i<m+k;
so we have (dp1),- - dpmsn) = (A1, -5 Ay dyys ooy dyy) = d'. Let an.; be cd,,; for all i with

1 <4<, then
St (qy o a, S dm) (by L by, a)
9 gidnit) gy apyy, SD ) by, . b, @)

©) G(dy,..d Aol e

2 Sdnit) (g1 ay g, S Doy “k)(bl,...,bm,cdvl,...,cdvk,a))

B a(dyeryy..rd A, eosdl oo

= Sl bomin) (ap gy, apgy, STttt (by by eq, e, @)
d d

= SY(apys - Ap(nyi), S (bl,...,bm,cdvl,...,cdvk,a))

= Sd/(Sd,(ap(l), ce ,ap(n+l), bl), ce ,Sdl(ap(l), ce ,ap(nH), bm),
ST (ap(1ys -+ -5 Ap(nt)s cdvl), e Sd,(ap(l), e Oyt Cduk)7 a).

For each b;, 1 < i < m, we have

Sd; (ap(l), -5 Ap(n4l)s b,) = S(dp(l)""’dp(”"'l))(ap(l), -5 Ap(n4l)s b) (i) Sj(al, ceey Qnyl, bz)

- S(dlv"-vdnﬂ)(al,...,an,cdn+1,.. Cdn+z>b) © G(di,d )(al,,..,an,bi).
Also, for each Cd,,, 1 <@ < k, we have SJ(ap(l), ce e Ap(ntl)s Cay, ) i (al, ey Al Cdvi) ®) Ay, -
Hence we get S(dl""vd")(ab...,an,S(dll"”dlm)(bl,...,b a)) = SJ(S(dl’ o )(al,...,an,bl),...,
SWdn) (g b))y Qo s - - - 5 Gy s @). O

2.2 Examples

Here are some examples of simultaneous substitution algebras.

2.2.1 Term simultaneous substitution algebras

First let us consider the simultaneous substitution algebras of terms. Let S be an arbitrary
similarity type and X be an arbitrary set of variables' such that SN X = () and SoU X # ) (So
is the set of all constant symbols in S). Let T's(X) be the set of terms of type S over variables
X; more precisely, T's(X) is the smallest set such that

Wariables play the same role as dimensions in the last section.
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(i) for each z € X, (z) € Ts(X);

(ii) if t1,...,t, € Ts(X) and @ € S is an n-ary operation symbol, then (Q, (¢1,...,t,)) €
Ts(X).

We usually omit the parentheses and commas, and represent (x) by = and (Q, (¢t1,...,t,)) by
Qty...t,.

Recall that X7 is the set of finite sequences without repetitions of elements of X. For () €
X#_let SO-T be the identical operation on Tis(X). For each sequence & = (x1,...,x,) € X# we
define S%T as the (n 4+ 1)-ary operation on Ts(X) such that for all terms t1, ..., t,1 € Ts(X),
STT(t1,...,tys1) is the term obtained by replacing all occurrences of x; in t, .1 by t; for all i
with 1 < 4 < n simultaneously; formally, for each & = (x1,...,7,) € X7, STT is defined by
recursion:

ti, r=ux; withl<i<n,
x, x#z;forall i with 1 <i<mn;

(i) S¥T(ty,... tn,z) = {

(i) STT(ty, ..o b, Q). ) = QSTT(ty, .t t)) . STT(ty, oy, ).

ny Ym

Then we call the algebra

TE(X) = (Ts(X), (@)aex, (57T zex)

the X-dimensional term simultaneous substitution algebra (X-TSSA) of type S. The “ss” in
superscript represents “simultaneous substitution”; we write T's(X) as T, TS (X) as T* or T,
and ST as ST when there is no confusion. It can be verified that T satisfies the axiom schemas
of X-SSAs. Take (ss3) as an example; we prove that for all pairwise distinct x1,...,z, € X,
and all to, ..., ty,t € T, S@ron) () ty, ... t,,t) = S@2¥0)(ty ... t..t) by induction on the
structure of ¢:

(1) t ==, x € X: if £ =z, then S@1) (zy ty, ... by, x) = 21 = S@2Z0)(ty, ... t,, x);
")(tg, .

else if z =z, 2 < i < n, then S@LT0)(xy to, ... ty, ) =t; = S@2 R A
else, x # x; for all ¢ with 1 < ¢ < n, then S(ml’“"m")(xl,tz, ceytn,T) = x = S(”’“'"E”)(tg,
ey tn, T);

(2) t =Qt]...t,, for some m-ary operation symbol @ and some t|,...,t/ €T:

S@Ln) ()t b, t) = ST (gt QUL E)
= QST (1 by, b, ) ST T (g byt )
T QS@ermrn)(ty Lty t)) . @) gyt t Y
= S@2mn) (b b, QL)

_ S(x2,~~~:xn)(t2, RV o t)'
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For convenience in later discussions, we also introduce term algebras here. For each n-
ary operation symbol Q € S, let QTs(X) be the n-ary operation on 7. 's(X) such that for all
ti,... ty € Ts(X),

QT (ty, .. tn) = Qt1 ...ty

Then Ts(X) = (Ts(X), (QTsX))ges) is the term algebra of type S over X. Notice that Ts(X)
is an algebra of type S.

2.2.2 Function simultaneous substitution algebras

The next example is a class of simultaneous substitution algebras of functions. Let D be an
arbitrary set of dimensions and A be an arbitrary nonempty set, then the functions we consider
are D-ary operations on A. Let Fp(A) = AA” " For each d € D, let ey € Fp(A) be the
d-th projection function, i.e., eg(a) = a(d) for every a : D — A. For each a : D — A,
d= (di,...,d,) € D¥ and @ = (a1,...,a,) € A", let a(cf, d) : D — A be the assignment such
that

i >(d)_ Qa;, d:diWithlgiSTl,
N\ a(d), d#d;foralli,1<i<n.

Then for each (dy,...,d,) € D#, let S(41-@)F he the (n + 1)-ary operation on Fp(A) such
that for all f1,..., fn,f € Fp(A) and all a: D — A,

Sldidn) E e ) @) = flal(d, ... dn), (fil), ..., fa(@)))).

Besides, let SOF be the identical function on Fp(A). Then we call

F3(A) = (Fp(A), (ea)aen: (S™F) g pa)

the full D-dimensional function simultaneous substitution algebra with base A. It can be checked
that F35(A) is a D-SSA. Subalgebras of F35(A) are called D-dimensional function simultaneous
substitution algebras (D-FSSA) with base A.

2.2.3 Polynomial simultaneous substitution algebras

Then we introduce a class of function simultaneous substitution algebras that are closely con-
nected with term simultaneous substitution algebras. Let S be an arbitrary similarity type such
that SN D =0 and Sy U D # (), and let A be an arbitrary algebra of type S. Then each term
t € Ts(D) can be interpreted as a term operation (also called polynomials in [Fel82]), which is
a D-ary operation t& over A (hence t* € Fp(A)). We define term operations recursively: for
each assignment to dimensions o : D — A,

d*(a) = a(d) for each d € D,
(Qt1...tn) 2 () = QA(tM (), ..., t2()) for each Qt; ...t, € T.



Lemma 2.2. t ~ t* is a homomorphism from T$(D) to F55(A).

Proof. First we show that for all d € D# of length n and all ¢y, ...,t,11 € Ts(D),
(SUT(ty, o b)) = SEF (L tA).

If d = (), then (SOT(t)A = th = SOF(tA) Else, assume that d = (dy,...,dy). Take

arbitrary o : D — A, we prove (S4T(t1, ..., tni1))2 (@) = SJ’F(t{*, ..., 1% )(@) by induction
on the structure of #,41. For convenience of expression, let o/ = a(d, (t2(a),...,t2())), then
we have SEF (1 ... 1A tA)(a) = tA(o/) for all t € T

(1) tn+1 :di, 1 SZSTL

(SET (11, .ty di))A (@) = t2(Q) = al(dy, - .., dn), (A (Q), . .., t2 (@) (d:)
= o/(d;) = dA(a/) = STEA A dA)(a) = STFEA A ) (a);

r¥n M

2) tpsr =d, d ¢ {di,... dn}:
(SET(ty, ...ty d)) 2 (@) = dA (@) = a(d) = al(dy, . .., dn), (t2(a), . .., t2(a)))(d)

= o'(d) = dA (o)) = STF(, . 12 M) (a) = STR(, ) (o);

YVn Y
(3) ot = Qt)... 1. :

(ST (1, Q) A (@)
— (QSET(ty, .t t)) . STy, ) A Q)

= QA((SET(t, . b, E))2(@)s -, (SET(E, - by )2 (@)
HQASTF@A, .t ) (@), STER, B 1A ()
= QA (a)),... .t ()

()
= SIF@A A Q) ...t )A)(a)

r¥n

= Sd’F(t?a s 7tnA+1)(a)‘

Thus (SCZT(tl,...,th))A(a) = SJ:F(tiA,...,t;?H)(a) for all @ : D — A, which means that
(Sd’T(tl, - ,tn+1))A = Sd’F(t‘ﬁ, L 7t$+1)'
Besides, for each d € D, d® is the d-th projection eq in Fp(A). Therefore, t + tA is a

homomorphism from TE (D) to FH5(A). O

Let Clop(A) be the least set of D-ary operations on A that contains the D-ary projection
operations and is closed under composition by the basic operations of A; it can be shown that
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Clop(A) = {tA | t € T}. By the lemma above, Clop(A) is a subuniverse of Fp(A). Let
Clo5(A) be the subalgebra of F5(A) taking Clop(A) as its universe, and we call it the D-
dimensional polynomial simultaneous substitution algebra (D-PSSA) induced by A. The next
theorem describes the connection between D-PSSAs and D-TSSAs.

Theorem 2.3. (a) Let ¢ : Ts(D) — Clop(A) be such that ¢(t) = tA for all t € Ts(D), then
TS (D) /ker(¢) is isomorphic to CloF5(A).

(b) T (D) is isomorphic to Clo%(Ts(D)).

Proof. (a) By Lemma 2.2, ¢ is a homomorphism from T% (D) onto Clo};(A), hence we have
TS (D) /ker(¢) = Clo}5(A) by the Homomorphism Theorem.

(b) Notice that the term algebra Ts(D) is of type S. Let ¢ : D — T be such that ¢ = (d)4ep,
then it is easy to check that tTS(D)(L) =t for all t € T. Hence t — tTs(P) is injective, then we
have TS (D) = Clo}(Ts(D)) by (a). O

2.2.4 Generalization of term simultaneous substitution algebras

Normally, the arities of operation symbols are natural numbers and the terms we have discussed
so far are all finitary. However, a broader definition of terms is in order, in view of the fact
that we are dealing with algebras of possibly infinitary character. For this purpose, we allow
the arity of an operation symbol to be any set and consider a sort of “generalized terms” in the
sequel. Let Z be a set of sets (we call sets in Z arities), F be a set of operation symbols, and
7 : F — I be the function associating each @@ € F with its arity 7(Q); we call F a generalized
type. Let X be a set of variables such that X N F =0 and X U{Q € F | n(Q) = 0} # 0.
Let Tx(X) be the least set such that

(i) for each x € X, (z) € Tr(X);
(ii) if Q € Fand f:7(Q) = Tr(X), then (Q, f) € Tr(X).

We call elements in T'7(X) (generalized) terms, and usually represent (z) by x and (Q, f) by
Qf. Let SO-T be the identical operation on T#(X). For each Z = (1, ...,2,) and t1, ..., t,41 €
Tr(X), we define ST(ty,...,t,41) by induction on the structure of t,1:

ti, x=x; withl <i<n,

x, x¢{x1,...,Tn};

(i) S¥T(ty,... tn,2) = {

(i) STT(t1, ... b, Qf) = Qf where f/ = (STT(t1, ... tn, f(a)))aen(q)-

Then we consider TS(X) = (Tr(X), (z)zex, (ST ze x#), and call it the full X -dimensional
term simultaneous substitution algebra of generalized type F, and subalgebras of T%(X) X-
dimensional term simultaneous substitution algebras (X-TSSA) of generalized type F. It can
be checked that X-TSSAs of generalized type F are X-SSAs. Notice that our definitions here
coincide with the definitions in 2.2.1 when F is a type of algebras, i.e., the set of arities 7 is
a subset of w; hence using the same notations for terms and term simultaneous substitution

10



algebras here is not troublesome. To make a distinction, we call the X-TSSAs in 2.2.1 (in
other words, the X-TSSAs of types in which the arities of operation symbols are all natural
numbers) X-TSSAs of type of algebras, or simply, X-TSSAs, and call X-TSSAs defined in this
subsection (in other words, X-TSSAs of arbitrary generalized type) X-TSSAs of generalized
type, or X-TSSAs in a broader sense.

Finally, we generalize Theorem 2.3(b) to show that every T2(X) is isomorphic to a X-FSSA
with base Tr(X). Let e, be the z-th projection function in Fx(Tx(X)) for each z € X. For
each assignment a : X — Tx(X) and ¢ € Tr(X), we define the (generalized) term operation
tT(a) by induction on the structure of #:

z¥(a) = a(x),

Qf*(a) = Qf', where [' = (f(a)"(0))acr(@)-
Then tT is a X-ary operation on T'#(X) for each t € Tr(X).
Lemma 2.4. t — tT is an injective homomorphism from T$(X) to F (T#(X)).

Proof. First we show that ¢ — tT is a homomorphism. By definition, 2T = e, for each z € X.

For () € D# and each t € Tx(X), we have (SOT(#))T =T = SO.F(¢+T), Then we prove that for
all ¥ = (ml, ceey ) € X# and t1,...,tpy1 € T]:(X), (Sf’T(tl, e ,tn+1))T = Sf’F(t’lr, e ’tn-i-l)
by induction on the structure of ¢,,41:

(1) thy1 =x, 1 <i <

(STT(ty, ... tp, )T =tF = SEFT . 4T e,.) = STF(T, ... tT 2T);

r¥n 7TL7’L

(2) thy1 =z, & {x1,..., 20}

(STT(ty, . tp,a) T =aT =e, = STFET, .. tF ep) = STFGT, .. T, 2T);

yv¥n

(3) n+l — Qf let f/ <S§’T(tl7 ooy tn, f(a))>a€7r(Q)7 then SiT(tla oy tn, Qf) = Qf/ Take an
arbitrary assignment o : X — Tr(X),

(ST (1,1, Q)T (@) = QF T (0) = Q"
where f"(a) = f'(a)T(a) = (STT(ty,. .., tn, f(a)))T(a) = STEGT T f(a)T)(a) for all

a € 7(Q); meanwhile, we have

(STFET, . 47, Q) () = QfT<a<f, (@), 1R (@) = Q"

where " (a) = f(a)T(a(a_c', (tT(a),....t () = S‘”F(tT,...,tE,f( )T (a) for all a €
77(@) Therefore (S%T(ty,... tn,Qf)) ( ) = (STEUT, T QfT))(a) for all a, i.e.,
(STT(t1, s tn, Q)T :SIF(t st QFT).

Then we show that ¢ — tT is injective. Let ¢ : X — Tx(X) be such that ¢ = (x),cx, then
it’s easy to check that tT(v) =t for all t € Tr(X). So tX =t implies t, = tX (1) =t (1) = t;
for all t,,t, € Tr(X). Hence t — tT is injective. O
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Since t — tT is an injective homomorphism from T$(X) to Fx(Tx(X)), we have the fol-
lowing theorem:

Theorem 2.5. T5(X) is isomorphic to the subalgebra of Fx(Tx(X)) with {tT | t € T#(X)}
as its universe.

2.3 Dimension sets and local finite-dimensionality

In a term simultaneous substitution algebra, a variable x may not matter to a term ¢, that is to
say, © doesn’t occur in t. The following concept helps us to generalize this phenomenon to all
non-trivial simultaneous substitution algebras:

Definition 2.2. Let A = (A, (c4)qep, (S‘{>J€D#) be a non-trivial D-SSA. For each a € A, the
dimension set of a in A is

A%a={deD|3d €D S, a)# a}.
The superscript * will be omitted where it is clear which algebra is being discussed.

By the definition, d ¢ Aa iff SD(a’,a) = a for all ’ € A. The following lemmas are useful
in the proof of the representability of simultaneous substitution algebras in Chapter 5.

-

Lemma 2.6. Let D be a nonempty set and A = (A, (cq)dep, <Sd>d~€D#) be a non-trivial D-SSA.
For all (di,...,d,) € D¥ and a,a1,...,a, € A,
(a) di ¢ Aa = SW@dn)(ay, .. ap,a) = S @) (ay, ... an,a);
(b) {u1,...,ug,vi,...,op—k} ={1,...,n},dy,,...,dy, , ¢ Aa=
S(dl""’d")(al, ceeylp, Q) = S(dul""d“k)(aul, ey, Q).
) d1§§:Aa (ssl)

Proof. (a) If n = 1, then S)(a;,a
we have a = S(®)(cq,,a). Then

S0(a). Else, we have n > 2. Since d; ¢ Aa,

G d")(al,...,an,a) = Sdn) (g, an,S(dl)(ch,a))

d) o(ds,....d (d
= Gldi,dn) (glda,....d (al,...,an,ch),ag,...,an,a)

2.1(a)
=" §U1dn) (g gy ... ,p, @)

1(d S(d2 ) az, . anaS(dl)(cd2>a)>

")(
(
(
S(dsesdn) (Gl2dn) (g0 ay cq,) a0, ..., Gy, @)
(
(ag, Sy A, Q).

(b) By Lemma 2.1(b),
S(dlwwdn)(ala <o Ap, a) - S(dvl"“7dvn7k’du1’m’duk)(avl7 sy Qupy gy Qg y v vey oy CL)-

Apply (a) n — k times, then we get S(@--dn)(ay, ... a,,a) = S(dul""’duk)(aul, ceyy,,a). O
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-

Lemma 2.7. Let D be a nonempty set and A = (A, (cq)4ep, (Sd>J€D#) be a non-trivial D-SSA.

(a) For each d € D, Acy = {d}.

(b) For each (dy,...,d,) € D# and ay,...,an,a € A, ASW@dn)(q) . a,a) C (Aa\
{dla R dn}) U Ulgign Aai'

Proof. (a) Since A is non-trivial, we can take a € A such that a # cq, so S9(a, cq) (=2) a # cq,

hence d € Acy. For each d' € D\ {d}, S (a, cq) (4) cq for all a € A, so d' ¢ Acy. Therefore
ACd = {d}

(b) Let Dy = (Aa\ {d1,...,dn}) U U cic,, Aai. To see that AS@1dn)(ay ... a,,a) C Dy,
suppose d ¢ Dy. Then for each i with 1 < i < n, d ¢ Aay, ie., S (d,a;) = a; for all o’ € A.
There are two cases.

Case 1: d € {dy,...,d,}. Forall & € A,

SO (!, St (ay, ... ag, a)) Y St (SO ay), ..., 5D (d, a), )

Case 2: d ¢ {dy,...,dp}, sod ¢ Aa. For all ' € A,

S (o, §@dn) (1) an,a)) “RY §E@dnd) (S (! a1, .. SD(d ay), d', a)
S(dl,..-,dnad) (a17 ey a/TL7 a/’ a)
2.6(b) Sldn) (g1 an, a).

Sod ¢ AS@irdn)(ay, ... ay, a)for all d ¢ Dy. By contraposition, AS(@-dn)(ay ... a,,a)
C Dy. 0

Definition 2.3. Let D be an infinite set and A = (A, (ca)deD; <Sd>d~eD#) be a non-trivial
D-SSA. A is locally finite-dimensional if Aa is finite for all a € A.

It is easy to see that for each infinite D and each similarity type & of algebras such that
SND =0and SoUD # 0, TE(D) is locally finite-dimensional; it can also be shown that a
quotient algebra of a locally finite-dimensional D-SSA is still locally finite-dimensional, hence
for each algebra B of type S, Clo}(B) is locally finite-dimensional.

13



Chapter 3

Simultaneous substitution algebras
and (singular) substitution algebras

In this chapter we discuss the relation between simultaneous substitution algebras and singular
substitution algebras. We also say substitution algebras instead of singular substitution algebras
as in [Fel82] and [Fell5]. Intuitively, singular substitution is a simple version of simultaneous
substitution; a question is whether the complex version can be built up from the simple one,
and a partial answer will be given in our discussion. Our axiom schemas of substitution algebras
are based on the axiom schemas given by Feldman in [Fel82], but differ in the choice of (s6).

Definition 3.1. Let A, D be two nonempty sets; for each = € D, let ¢, € A be a distinguished
element, and S* be a binary operation of A; then A = (A, (c;, S%)zep) is a D-dimensional
substitution algebra (D-SA) if for all x,y € D and a,b,d € A,

x#y = 5%a,¢y) = ¢y;

In the following we will also write Sja instead of S*(b, a), and Sy a instead of S¥(cy, a). Again
we can think of algebras of terms as an example. Let & be an arbitrary type of algebras, then
Ts(D) is the set of all terms of type S over variables D. Remember that for each x € D, S@) ig
the binary operation over Tis(D) such that for all terms t and ¢/, S®)(#,t) is the term obtained by
replacing the occurrences of = by ¢’ in t. It can be verified that T%(D) = (Ts(D), (z, S®),ep)

1(s5) is equivalent to = # y = SY(S%(cy,d), S*(b,a)) = ST(SY(S(cy,d),b), S¥(S"(cy,d),a)) under (s3)(s4),
thus the class of D-SAs can be defined by a set of equations.
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is a D-SA, and we call this algebra the D-dimensional term substitution algebra (D-TSA) of
type S.

Similarly to the previous chapter, we can also define D-dimensional function substitution
algebras (D-FSA), D-dimensional polynomial substitution algebras (D-PSA), and D-TSAs in a
broader sense; we can verify they satisfy (s1)-(s6). Given an arbitrary nonempty set A and an
arbitrary algebra B of type S, we denote the full D-FSA with base A by F$,(A) and the D-PSA
induced by B by Clo},(B).

Notice that T%(D), F(A), Clo},(B) are reducts of TS (D), F$5(A), Clo}(B) respectively.
In fact, it can be shown that each D-SSA can be reduced to a D-SA:

Proposition 3.1. For each D-SSA A% = (A, (¢c4)daeD, <Sd>JeD#>’ the structure A® = (A, (cq,
S(d)>d€D> is a D-SA.

-

Proof. Let A® = (A, (cq)deD, (Sd>J€D#> be an arbitrary D-SSA. We can show that A® =

(A, (cg, 8D yep) satisfies the axiom schemas (s1)-(s6). We check (s6) as an example. For
all z,y € D and a,b € A, we have

2.1(d)

S(y) (b7 S(I) (Cy7 a)) = S(z,y) (S(y) (b, Cy)7 b, a) (SSZQ)

S (b, b, a);

similarly, S@ (b, S (c,,a)) = SW*)(b,b,a). Hence

(556)

SW (b, 8@ (c,,a)) =S¥ (b,b,a) =S¥ (b,b,a) = S@ (b, SW (c,,a)).

Therefore, A® is a D-SA. O

The next question is whether each D-SA can be expanded to a D-SSA. To start our discus-
sion, we need definitions of dimension sets and local finite-dimensionality, coming from [Fel82].

Definition 3.2. Let A = (A, (¢;, S"),ep) be a D-SA. For a € A, the dimension set of a in A
is

Ata={zreD|3be A Sfa+al.
The superscript will be omitted where it is clear which algebra is being discussed.

Notice that by this definition, a dimension z ¢ Aa iff Sfa = a for all b € A. This condition
can be weakened when there are at least two dimensions in D (in other words, x is not the only
dimension). The following lemma comes from Theorem 2.1 in [Fel82]:

Lemma 3.2. Let D be a set with |[D| > 2, A bea D-SA,a € A, and x € D. Then = ¢ Aa (i.e.,
Siya = a for all b € A) if and only if there exists y € D\ {z} such that Sja = a.

With this lemma we can change the antecedent in (s5):
(55) x4y ¢ Aa= S(a, 57(d,B) = S7(¥(a, ), S¥(a, 1))
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Definition 3.3. Let D be an infinite set and A = (A4, (¢, 5%)zep) be a D-SA.
(a) A is locally finite-dimensional if for all a € A, Aa is finite.
(b) A is dimension-complemented if for all finite A9 C A, D\ |U{Aa | a € Ap} is infinite.

It is easy to see that each locally finite-dimensional D-SA is also dimension-complemented.
Then we will show that a D-SA can expanded to a D-SSA under the conditions of local finite-
dimensionality (or dimension-complementedness). We prove some lemmas first. Part of the
following lemma is substantially the same as Theorem 2.2 in [Fell5].

Lemma 3.3. Let D be a nonempty set and A = (A, (cq, S%)4ep) be a D-SA.
(a) For all z,y € D with x # vy, y ¢ Ac,.

(b) For all a,b,d € A and x,y € D with x # y, x ¢ Ad, and y ¢ Ab,

SY(d, S*(b,a)) = S*(b, SY(d,a)) (or S§Sya = S;SYa).

(c) For all a,b € A and z,y € D with 2 ¢ AaUAb, z ¢ AS}a.

(d) For all i,n € N with 1 < i < n, and for all pairwise distinct dimensions di,...,dy,d],
., dy,d* € Dandall a,ay,...,a, € Asuch that dj,...,d},d* ¢ Aa U Ulgjgn Aay,

dr, di g, d, _ gd;, i i gdn, d; dy
Sap -+ Sa1 Sgr ...Sdfa— Sar .. Sa; ...Salsdz...Sd;* ...Sdia
. o . : & ad; A od; .
(the expression on the right is obtained by replacing S, , Sg; with Sg Sj;* respectively).

(e) For all pairwise distinct dimensions dy, . ..,dy,d; ..., d}, d*,...,d* € D and a,ay,...,a, €

A such that df,..., d;,d7,...,d; ¢ AaU Ulgign Aaj,
* d* K d**
Sen .- Sal Sgr ... Sgta =S¢ ... Sa} S ... Sgha.
Proof. (a) For all z,y € D with z # y, we have Sic, = ¢, for all a € A by (s3), hence y ¢ Ac,.

(b) For all a,b,d € A and z,y € D with x # y, x ¢ Ad and y ¢ Ab,

(s5"),2#y,2¢ Ad

S¥(d, ST (b, a)) S7(SY(d,b), S¥(d, a)) Y22 52 (b, SY(d, a)).

(c) Take arbitrary a,b € A and x,y € D with x ¢ Aa U Ab. Then for all d € A,

(s6) (4)

S55va "EE s19YsTa D §rsEsYa 'S 57 (55, SYa)
" grova D gygra R gva,
Thus z ¢ AS}a.
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. . d¥ dy . . ..
(d) First concerning Sg" - - Sq} Sgg e S;l%a. Since dy,...,dn,d],...,d; are pairwise distinct,

we have dy, ..., dn ¢ Acg: for all j with 1 < j < n by (a), hence we can exchange 8% with
1
di : .
Sett, ., ij in turn by (b); because df, ..., d} ¢ U1<j<n Aaj, we can also exchange S,! with
1+1 n =)
T i f i £ formulati ite S% ... siiglion | gd ang
ai—1s---39q; 1N turn; for convenience of tormulation, we write Sg,; ... 9a; 1 Oa;_; - - - Oa; aN
d; di— .
Sgg .S d;::ll S 11 e Sfll,{l as S1, Ss respectively, then we have
1 11—

L SaiSer .. Sd%a = Slefsdisga.
Since df ¢ Aa and df ¢ {d} | 1 < j <n,j # i}, we have di ¢ ASsa by applying (c) n —1 times.
Then we have

(56) dr¢ASsa

S154: 59 Sza = 815855 Sha 5% Ssa.

d dy )
Hence S;" ... Sq; Sfllf .. Sgia = Slell?SQa.
n 1 ¢
.. dr, dr* di ; )
Similarly, we can show that Sg ... S, ...Sq Sfll" . .Sgi* . Sfilia = 8158% S5a. Thus the equa-
2 1 B

*
n

tion we want holds.

(e) Apply (d) n times. O

Lemma 3.4. Let D be an infinite set and A be a locally finite-dimensional D-SA. For all
di,....dp,dy, ....d;,dy*,...,d;F € D and a,a1,...,a, € A such that dy,...,d,, dj,...,d;
are pairwise distinct, di,...,dy,d}", ..., d;" are pairwise distinct, and dj,...,d},dj*, ..., d* ¢

AaUJy<;<,, Aa;, we have

* d* * % d**
San ... Sat Sgr ... Sgta = Sg ... Sai S ... Sgha.
n n

Qan 1

Proof. Notice that {dj,...,d}} and {d}*,...,d;*} can overlap. Take n different dimensions
i, ..., d;"* which are not in {d;,d;,d* | 1 < i < n} U Aa U J;<,;<,, Aa;; this can be done
because D is infinite and A is locally finite-dimensional. By Lemma 3.3(e), we have

d d} od dy _ qde* di** od dy _ qdrr di* od dy
Sag...SalSdg...Sd,{a—Sag e Sl Sdg**---Sds{**a—Sa: oS! Sdg*...SdT*a.

O]

Theorem 3.5. Let D be an infinite set and A = (A, (cg, S 4ep) be a locally finite-dimensional
D-SA, then A can be expanded to a D-SSA.

Proof. We show that simultaneous substitution can be defined in A. For each (dy,...,d,) € D#,
n > 0, we define §(@1:--dn) a5 the (n+ 1)-ary operation such that given arbitrary aq,...,a,,a €
A, Sudn) (qy o ay, a) is ;’;; e Sfllll Sjg e Sj,lla where d7, ..., d; are n different dimensions
outside {dy,...,dn} UAaUJ,<,, Aa; (there exist such dimensions because A is locally finite-

dimensional); Lemma 3.4 ensures that our choice of df,...,d} doesn’t affect the final result.
Besides, for the empty sequence () € D#, we define S 0 as the identical operation.
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-

It can be shown that the structure (A, (cq)dep, <Sd>J€D#> we have defined satisfies (ssl)-
(ss6). Take (ss2) as an example:

dy,...,d _ qd di od d
g(di n)(al,...,an,cdl)—Sag...SallSdg...Sd%cdl
_ qdf di od da
_S%...Salsdg...Sd;ch (sl)
— gdn Sdf A
=Ogr ... alcdi‘ (dQ,...,dn ¢ Cdf)
d d3

:SQZ...SQS(M (S )

1
5y .-y dr & Aay)
Hence each locally finite-dimensional D-SA can be expanded to a D-SSA. O

Remark 1. Notice that the proofs of Lemma 3.4 and Theorem 3.5 still hold if we replace local
finite-dimensionality by dimension-complementedness, which means we can relax the condition
to dimension-complementedness.

Remark 2. We provide two examples to show why we need the conditions that D is infinite
and the substitution algebra is local finite-dimensionality in Theorem 3.5.

Example 1: let D = {z,y} with « # y (hence D is finite) and S = {f} where f is a binary
operation symbol, then T%(D) is the D-TSA of type S. Consider the subalgebra of Ts(D)
generated by {fxy}; the term fyz is not in the universe of this subalgebra, while it can be
obtained by substituting y, x for x,y simultaneously in fzy.

Example 2: Let w be the set of variables and F = {Q} with 7(Q) = w. Then T%(w) is the
w-TSA of generalized type F. Let fo, f1 : w — w be such that fy(n) =n for all n € w, and

_07
fl(n): 0 n—l,
n n>2

Then Qfy and Qf; are in Tr(w), and AQ fo = AQfi = w. Consider the subalgebra of T (w)
generated by {Qfo}; it can be shown that @) f1 is not in the universe of this algebra, while @ f;
can be obtained by substituting 1,0 for 0,1 simultaneously in Q fj.

Notice that in both of these examples, the substitution algebra can be superexpanded to
a simultaneous subsitution algebra. The question whether every substitution algebra can be
superexpanded to a simultaneous subsitution algebra remains open.
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Chapter 4

Decidability and completeness

The goal of this chapter is to show our axiom schemas (ss1)-(ss6) actually characterize the class of
term simultaneous substitution algebras and of polynomial simultaneous substitution algebras;
what’s more, the equational theory generated by our set of axioms is decidable. These results
come from the normal form theorem for simultaneous substitution, which we will introduce in
the first section.

4.1 Normal form theorem for simultaneous substitution

For each d € D, let d be a corresponding constant symbol; for each de D# Of; length n, let S¢
be a corresponding (n + 1)-ary operation symbol. Let S = {d | d € D} U{S%| d € D#}, then
S} is the similarity type of D-SSAs; we omit the superscript when there is no confusion. Let X
be an arbitrary countable set which is disjoint with Sp, then Ts,(X), the set of terms of type
Sp over X, is the least set such that

(i) X € Tsp(X);
(ii) {d|d e D} C Ts, (X);
(i) If d € D# is of length n and ¢y, ... ty41 € Ts,(X), then St . ot € Ts, (X).

Among all the terms in Ts,(X), we say a term t is in normal form when t € NFs, (X),
where NFs, (X) C Ts,, (X) is the least set such that

(i) X C NFs,(X);
(i) {d|d € D} C NFs, (X);

(iii) If (d1,...,dn) € D¥, 2 € X, t1,...,t, € NFs,(X) and t; # d; for all i with 1 < i < n,
then §(@dn)ty .2 € NFs,(X).

Lemma 4.1. Let D, D’ be sets of dimensions and X, X’ be sets of variables such that D’ C D,
X' C X, and Sp N X =0, then NFs_,(X') = NFs,(X) N Ts,, (X').
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Proof. First we prove that for each t € NFs_,(X'), t € NFs,(X) by induction on the structure
of ¢:

(1) t=x,z€X ort=d,de D" t e NFs,(X) because X' C X and D' C D.

(2) t = SUdn)ty | tnx with (dy,...,dy) € D'#, t1,...,t, € NFs,,(X'), and t; # d; for all
i with 1 <4 < n: since D' C D, (dy,...,d,) € D¥; by IH, t; € NFs,(X) for all i; hence
t € NFs, (X).

As we also have NFs_,(X") C Ts,,(X'), NFs,,(X') € NFs,(X)NTs,, (X').
To show NFs,,(X') 2 NFs,(X)NTs,,(X'), we show that for each t € Ts_,(X'), if t €
NFs,(X) then t € NFs_,(X') by induction on the structure of ¢:

(1) t=z,z€ X" ort=d,de D": thent € NFs_,(X').

(2) t = Scztl ... tpy1 with d € D# of length n and t1,...,t,11 € Ts,, (X'): assume that t €
NFs,(X), then t; € NFs,(X) and t; # d; for all 4, 1 <i < n; by IH, t; € NFs_,(X') for
all 4, so we have t € NFs_,(X').

Therefore, NFs,_,(X') = NFs,(X)NTs,, (X'). O

With the observation in this lemma, we can say a term is in normal form without explicitly
stating the type and the set of variables we are talking about.

Let D-SSA be the set of equations corresponding to (ss1)-(ss6) in Chapter 2; it is the set of
axioms of D-SSAs. We will prove that every term in Ts, (X) is equivalent to a term in normal
form under D-SSA. We write Ts,(X), NFs,(X), D-SSA as T, NF, SSA respectively when

there is no confusion.

Theorem 4.2. For each term ¢ € Ts,(X), there exists a term ¢ € NFs,(X) such that D-
SSAFt=~t.

Proof. First we introduce two measurements of the number of substitution operators in a term,
called w; and ws. Definitions are given recursively:

(i) for all z € X and d € D, wi(z) = wa(x) = wi(d) = wa(d) = 0;
(ii) for all d € D# of length n and ¢4, ... Jtny1 €T,
wl(Sdtl - tn+1) = w1 (tn+1) +1,

- t 1, o
wa (S .. tng1) = wa(tn+1) + ,
max{ws(t1), ..., watn)} + waltns1) +1, n>1.

Notice that for each term ¢, we have
wi(t) =0 < wa(t) =0« t =z for some z € X or t = d for some d € D.

First we claim that
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(%) each term ¢ with wi(t) > 1 is equivalent to a term ¢ under SSA such that w(t') = 1 and
UJQ(t/) < wg(t).
We prove (x) by induction on w (¢):

(1) wy(t) = 1: take t' =t.

(2) Assume (x) holds for all terms ¢ with w;(t) = n > 1. Let t be an arbitrary term with
wlﬂ(t) =n+ 1. Since wi(t) > 2, t is of the form .S'Jtl ... tm+1 where t,,4+1 is of the form
STt . t;,, for some d € D* of length m and d’ € D# of length [.

It is easy to show that if m =0 or [ =0, i.e.,d = () or d = (), then ¢ is equivalent to some ¢’
with wi (') = 1 and wa(t') < wo(t) by IH. Then we consider the case that m # 0 and [ # 0.

Let d = (di,...,dp) and d' = (dy, ..., d;), then there exist t1, ..., tm,t],..., 1}, t,; € T such
that

t = 8Wndm)yy g, Syl

Take integers uq, ..., ug such that 1 <wuy < -+ <up <mand {dy,,...,dy,} ={di,...,dn}
\{d},....d;}. Take

’r_ d) ey d oy ey dag, ) 41! " /
t' = §Ulidpduysdu g et

where t/ = S(@dmlty ¢! for all i with 1 < i < I; by Lemma 2.1(d), we have SSA F

t ~ t'. Because wi(t) = n + 1, wi(t) = wy (ST 4t sty )+ 1 = wi(ty,) + 2, and

wi(t') = wi(ty, ;) + 1, we have w (t') = n.

Then we show that wa(t) = wa(t'). Let a = max{wsa(t1),...,wa(ty)} and b = max{ws(t}),
., wa(t))}. Then

wa(t) = max{ws(t1), . .., wa(tm)} + wa(SE9E i) ) +1
= a+ (max{wa(t}),...,wa(t]))} + wa(tyy) +1) +1
=a+b+watyy)+ 2.

For each i with 1 <4 <1, wa(t!) = wo(S @@ty .. t,t)) = max{ws(tr),. .., wa(tm)} +
wa(t)) + 1 =a+ wy(t;) + 1, hence

wa(t') = max{wa(t)), ..., wa(t]), wa(tuy), ..., walty,)} + wg(tfﬂ) +1

= max{a + way(t seey @+ wa(t)) + 1 wa(ty,), - - - s wa(ty,)} + wQ(t;_H) +1
vy at+wa(t)) + 1} +waltiq) + 1 (since wo(ty,) < a)
Swa(tp} 4+ 1+ wa(tyy) +1
2.

1
1

1)
= max{a + ws(t})
= a + max{ws(t}),
)

+
+
=a+b+ws(ty)+

Thus we(t') = ws(t). By IH, there exists a term ¢’ such that SSA+ ¢/ ~ t”, wi(t") =1 and
wa(t") < wo(t'). Thus we have SSAF ¢ ~ t” and wo(t") < wa(t).
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Then we prove that each term ¢ is equivalent to a term ' in normal form under SSA by

induction on ws(t):

(3)

(4)

wa(t) = 0: then ¢t = x for some z € X or t = d for some d € D, and in both cases we have
SSA F t ~ t where t itself is in normal form.

Assume that each term ¢ with 0 < wa(t) < n is equivalent to a term ¢’ in normal form under
SSA. Let t be an arbitrary term with wo(t) = n + 1; since wa(t) > 1, wi(t) > 1 as well,
hence there exists ¢’ such that SSAF ¢t ~ ¢/, w1 (t') = 1 and wa(t') < wa(t) = n+ 1 by (x).
Because wy () = 1, ¢/ starts with S? for some d € D#. If d = (), then ¢/ = S0¢; for some
t; € T with wy(t1) = 0, hence wa(t;) = 0, hence we have SSA + SO0t ~ ¢ by (ssl) and t;
is in normal form; hence ¢ is equivalent to a normal form.

Else, d is of length m, m > 1. Let d = (di,...,dn), then we have t' = Scztl e tmtmat
for some t1,...,tmy1 € T with wq(tm41) = 0. Since wa(t') = max{wa(t1),...,wa(tm)} +
w2 (tm+1) +1 =n+1, we have max{ws(t1),...,w2(tm)} = n, hence wy(t;) < n for all i with
1 <4 < m. We consider three cases with regard to t,,+1:

Case 1: ty+1 =z, x € X. By IH, for each ¢ with 1 <14 < m, there exists tg in normal form
such that SSA F t; ~ ¢, hence t' = Sldidm)g, 1 is equivalent to S(dl""’dm)t’1 St
under SSA. Take integers uq, ..., u; such that 1 <w; < -+ <w <mand {ug,...,u} = {i|
1 <i<mt,#d;}. By Lemma 2.1(c), SSA I §(dm)g) 4! 2 x §@urrndi)y! ¢! 2.
Since each . is in normal form and ¢, # du;, S (duy ey )y . - -ty is in normal form as
well. Because t is equivalent to ¢ = §(@-dm)tl ! 2 under SSA, t is also equivalent to
Sldurdu)yl ] x.

Case 2: tyy1 = d;, 1 < i < m. By Lemma 2.1(a), SSA I Sldidm)p, o di &t by IH,
there exists ¢; in normal form such that ¢; is equivalent to ¢;; hence SSA -t =~ t.

Case 3: t;41 = d for some d € D such that d # d; for all ¢, 1 < ¢ < m. Then SSA +
Sldidm)py . d =~ d by (ssd).

Therefore, for each term ¢, there exists a term ¢’ in normal form such that SSAFt~+¢. [

This proof not only shows the existence of an equivalent normal form, but also implies an

algorithm to compute such a normal form.

Proposition 4.3. There is an algorithm such that for each term ¢ € Ts,, (X), it outputs a term
t' in normal form such that SSAF ¢t ~ t'.

Proof. We sketch the basic idea here. For a term t of the form Sdisdn)g, tn+1, we can use the
method in Lemma 2.1(d) for at most wy(t) — 1 times to lower w; and obtain an equivalent term
t' of the form S dn)th 3 or S@rdn)th ! d: notice that wo(t)), ..., wa(t,,) < wa(t).
Repeat this procedure on t}, ..., ¢, and other new terms obtained in the loop, and simplify the
terms with (ssl), (ss4), Lemma 2.1(a) and Lemma 2.1(c) during the process, until a normal form
has been reached. O
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4.2 Decidability and completeness

To show the decidability and completeness of the equational theory generated by SSA, there is
still some work to be done. To see whether an equation is valid under SSA, i.e., whether the
two terms in the equation are equivalent, our idea is to use the normal form theorem and check
whether their normal forms are equivalent. Notice that this cannot be done by simply checking
whether two terms in normal form are identical, as a term can be equivalent to more than one
term in normal form under SSA. For example, take two different dimensions dy,ds € D and
three variables z,y,z € X (z,y,z can be the same), then S(1:d2) > and @24 yzz are two
different terms in normal form; at the same time, we have SSA F S(d1:42) 3y > ~ S(d2:d1) g
The problem is that elements in simultaneous substitution algebras stay the same after a rear-
rangement according to a permutation, while our definition of normal form distinguishes such
different arrangements. To solve it, we can define an equivalence relation on NF' to represent
the invariance under permutations. Let ~p C NF? be the least relation such that

(i) x ~p x for all z € X
(ii) d ~p d for all d € D;

iii) If n > 1, p is a permutation of {1,...,n}, t; ~p t; for all ¢ with 1 < ¢ < n, and
(]
Sldidn)gy o p g S‘dpuw-"vdp(n))t;(l) <t yT € NF, then

Slhtdnlpy . tyx op S0 b))t Lt

p(n)

Below are some basic properties of ~p:

Proposition 4.4. (a) ~p is an equivalence relation.
(b) For all to,t, € NF, if t, ~p tp then SSA F ¢, = tp.
(c) {(ta,ty) € NF? |ty ~p tp} is decidable.

Proof. (a) ~p is reflective: for each t € NF, we show ¢ ~,, ¢t by induction on the structure of ¢:
(1) t=z,z€ Xort=d,dec D: thent~ptby (i)(ii);

(2) t = Sldidn)g, ¢ox: since t € NF, each t; is in normal form, so t; ~p t; for each i,
1 <i < n by IH, hence S(@-dn)ty ¢ 2 ~p Sltndn)p ¢ 0 by (iii).

~p is symmetric: we prove that for all ¢,,t, € NF, if t, ~p t; then t;, ~p t, by induction on
the structure of ¢,:

(3) to=z,x € X or t, =d, d € D: by definition of ~p, t;, = t,, S0 to ~p tp;

(4) to = Sdidn)gy tox: then t, = S(dMl)’“"dp(n))t;(l) .. .t;(n)x for some permutation p of
{1,...,n} and some ¢},...,t,, such that t; ~p ¢; for all 4, 1 < i < n; by IH, t; ~p t; for all

i, 1 < i < n; since p~! is also a permutation, we have t, = S(dpﬂ)’“"dP("))t;(l) St

p(n)* ~P
S(divdn)ty oz =t, by (iii).
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~p is transitive: we prove that for all ¢4, ty,t. € NF, if t, ~p tp and t, ~p t., then t, ~p t., by
induction on the structure of ¢,:

(5) ta=x,x€ X or t, =d, d € D: then t, = t, = t., hence t, ~p t.;

(6) t, = Sldidn)gy 4oz then t, = S\ dpm)y/ )...t;)(n):c for some permutation p

p(1
of {1,...,n} and some t|,...,¢,, such that t; ~p t; for all 4, 1 < ¢ < n, and ¢, =
d seersly(n(n " " : "
S a1y dat( >>)tq(p(1)) L) T for some permutation ¢ of {1,...,n} and some to);

...,tg(n) such that t;(i) ~p tg(i) for all 4, 1 < i < m; since ¢ o p is also a permutation of
{1,...,n} and t; ~p t! for all i by IH, then t, ~p t..

Hence ~p is an equivalence relation.

(b) Induction on the structure of ¢,:
(1) t,=z,x € X ort, =d, d € D: then t, = t,, hence SSAF t, =~ ty.

(2) ty = SUdn)ty | tox: then t, = S(dP<1>""’dP(“))t;(1) .. .t;(n)x for some permutation p of
{1,...,n} and some t},...,t) such that t; ~p t; for all 4, 1 < i < n; by IH, SSA + ¢; ~ ¢!
for all 4, so SSA F Sdtwdn)ty o~ S(dp(lﬁ'"’dl’("))t;(l) . ..t;(n)az by the congruence rule

and Lemma 2.1(b).
(c) The algorithm is recursive:
(1) ta=z,x€ X ort, =d, d € D: if t, = t,, the algorithm outputs 1, otherwise it outputs 0;

(2) to = Sdn)ty | t,x: first the algorithm checks the first symbol of ¢, and outputs 0 if it
is not a S with m = n and {dy,...,d,} = {d,,...,d.,}; otherwise, t; is of the form
S(eodi)g) 4], then for each i with 1 <4 < n, it finds the j such that d) = d;, runs the
same algorithm with input (¢;, t;-), and outputs 0 if the result is 0. When all results are 1,
the algorithm outputs 1.

It is easy to see that for each input (t4,%p), if the algorithm outputs 1 then ¢, ~p t;, and if
the algorithm outputs 0 then ¢, »p ¢, since ~p is the least relation satisfying (i)-(iii). Hence
{(ta,tp) € NF? |ty ~p tp} is decidable. O

We want to show that NF/ ~p expresses the inequivalence under SSA, i.e., if t, ~p t
then SSA ¥ t, =~ tp; we tackle this problem semantically, by providing a special D-SSA that
invalidates such equations. Let Sop = {f, | n,m € N} where each f], is a n-ary operation symbol
that is not in D; this type contains countable many n-ary operation symbols for each n € N.
The lemma below shows that T (D), the D-TSSA of type Sy, is the algebra we want:

Lemma 4.5. (a) For each finite set of dimensions D’ C D, each finite set of variables X’ C X
and each pair of terms t,,t, € NFs,_,(X') with t, «p ty, TS, (D) ¥ tq = ty.

(b) For all terms t,,t, € NFs, (X),
SSAkt,~t, & T:C’SSO(D) Ftorcty, < tg~ptp.
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Proof. (a) We abbreviate T% (D) to T in this proof. Let D’ be an arbitrary finite set of
dimensions and X’ be an arbitrary finite set of variables. Let di,...,d, be an enumeration of D’
without repetition, 1, ..., x,, be an enumeration of X’ without repetition, and o : X — T’s, (D)
be an assignment that maps each z; to f'di...d,, 1 < ¢ < m. Recall wy in the proof of
Theorem 4.2; we show that ¢ () # ¢} (@) for all t4,t, € NFs_,(X') with ¢, =p &, by induction
on max{ws(ty), wa(tp)}.

(1)

max{ws(ty), wa(tp)} = 0: since t, <p tp, tq # tp. There are four cases.

Case 1: t, = d;, t, = dj with 1 <i,j <n, and i # j. Then tX(a) = d; # d; = tF ().

Case 2: t, =d;, t, = xj with 1 <¢ <nand1<j<m. Then taT(a) =d; # f}ldl...dn =
ty ().

Case 3: tq = i, tp = dj with 1 <i <m and 1 < j <n. Similar as Case 2.

Case 4: t, = x4, tp = x; with 1 < 4,5 < m, and i # j. Then tT(a) = frdy...d, #
fidi ... dn = ty ().

max{wa(t,), wa(ty)} = h+ 1, h > 0: assume without loss of generality that wa(t,) = h + 1,

hence wa(tp) < h+ 1. Since wy(t,) > 1, there exist pairwise distinct ug,...,u; € {1,...,n},
ie€{l,...,m}, and ty,...,tx € NFp/(X') such that

tg = S(dul’""duk)tl R 7%

Then we have t1 (o) = S\ @udu) (1T (a), ..., 1T (a), 2T (@) = SEurdu) (1T (), ... T (),

' T
fidy ...dy). Notice that tT () is a term starting with f7.
If wa(tp) = 0, consider three cases with respect to t.
Case 1: t, = dj, 1 < j <n. Then t] (o) = d; # tX () since ¢ () starts with f7.
Case 2: t, = x;. Then t,rf(a) = fl'dy ...d,. Since t, is in normal form, ¢; is also in normal
form and t; # dy, ; besides, wa(t1) < h because wa(t,) = h+1, hence max{wa(t1), wa(du, )}
< h; by IH, we have t{ () # di. (o) = dy,. Since the ui-th argument of f/ in ¢ () is not
du,, 1T () £ f7ds .. . dp.
Case 3: t, = x;, 1 <j <mandi# j. Then t1(a) # t} (o) because T («) starts with f7
and tf () starts with fi
Else, wa(tp) > 0, then there are pairwise distinct vy,...,v; € {1,...,n}, j € {1,...,m} and
thats- -5tk € NFp/(X') such that

ty = S(d“lw"d”z)tk_’_l N T

Then th(a) = §vyes d”l)(tkTH(a), e ,tgﬂ(a), a:']r(oz)) = Sldvyss dvz)(tg+1(a), e ,tkTH(a),
fidy...dy), which is a term starting with f7'. If i # j, then tT () starts with f and ¢ (@)
starts with f7', hence tT(a) # tf(a). Else, i = j, there are two cases.

Case 1: {uy,...,ux} = {v1,...,v}. In this case, we have either {uy, ..., ur}\{v1,..., v} #0

or {vg, ..., \{ur,...,ur} #0. I {ug,...,upt \{v1,...,0} #0, take p € {1,...,k} such

25



that u, ¢ {v1,...,v}; since ¢, is in normal form, ¢, is also in normal form and ¢, # da,; as
we also have max(wa(tp), w2(du,)} = wa(ty) < wa(ts) = h+1, s0 tg(oz) # dy, by IH. While
both tT(a) and tf () are obtained by a simultaneous substitution on f'd; .. .d,, we need
to replace the d,,, to get ty (o) and keep d,,, unchanged to get ¢ (a). Thus ] (a) # ty ().
Otherwise, we have {v1,..., v} \ {u1,...,ux} # 0; similarly we can show tT (a) # tT ().

Case 2: {uy,...,ux} = {v1,...,u}. Because t, =p tp, there exist p,q € {1,...,k} and
r € {1,...,n} such that u, = vy, = r and t, ~p ty;, Notice that the r-th argu-
ments of fI* in tT(a),tf (a) are tpT(a),tEJrq(a) respectively. By definition of wq, we have
max{ws(tp), wa(triq)} < max{ws(ts),wa(ty)} = h + 1. By IH, t;f(oz) # tkTﬂ(a), hence

ty (@) # 15 (a).

Therefore for all ¢,,t, € NFs,, (X") with t, = p t, we have tX(a) # th(a), hence T ¥ t, ~ t.

(b) SSAFt, =t, = TFt, ~t: this holds because T is a D-SSA.

TEt, ~t, = t,~pty assume that T F t, =~ t;. Let D’ be the set of all dimensions
occurring in t4,t, and X’ be the set of all variables occurring in t,,t,. By Lemma 4.1, t,,t, €
NFs,,(X"). Because the length of a term is finite, D’ and X’ are also finite. Hence we have

ta ~p tb by (a)
ta ~pty = SSAF t, = tp: see Proposition 4.4(b). d

With all the preliminary work, now we are ready to prove the final results in this chapter:
Theorem 4.6 (Decidability of D-SSA). {(ta,t) € Tssss(D)? | D-SSA &= to ~ 3} is decidable.

Proof. We describe an algorithm as follows: given arbitrary (¢,,t,) € T2, first compute two terms
tl,,t;, € NF such that SSA F ¢, ~ t, and SSA I ¢, ~ t; as in Proposition 4.3. Then it uses the
algorithm in Proposition 4.4(c) and outputs the result (i.e., whether ¢/, ~p ¢}). By Lemma 4.5(b),
SSA ¢/, ~ t iff t, ~p t;, hence this is an algorithm deciding {(ts,t5) € T? | SSA b to = tp}. O

Theorem 4.7 (Completeness of D-SSA with D-TSSAs and with D-PSSAs). Let Kp.tgsa be
the class of all D-TSSAs and Kp_pgsa be the class of all D-PSSAs.

(a) D-SSA is complete with Kp TgsaA.
(b) D-SSA is complete with Kp_ pgsa.

Proof. (a) Let tq,t, be a pair of terms in 7. If D-SSA & t, ~ t;, then Kp.rssa F t, = t; since
every D-TSSA is a D-SSA. If D-SSA ¥ t, = tp, then D-SSA ¥ t,, ~ t; where t], is a normal
form of ¢, and ¢, is a normal form of #,, hence T (D) ¥ t;, ~ t; by Lemma 4.5(b), hence
Kp.rssa t; ~ tg); as Kp.rssa F ty ~ t:z and Kp.rssa F tp = tg), we have Kp_rsga F t, = tp.

(b) By Lemma 2.3(b), we have T (D) = Clo}5(Ts,(D)) where Clo}(Ts,(D)) € Kp-pssa,

then we can use the same argument as in (a). O

Finally, we show that some results in (singular) substitution algebras can be derived in light
of these results in simultaneous substitution algebras. Let S5, = {d | d € D}U{S@ | d € D}
be the type of D-SAs and D-SA be the set of equations corresponding to (s1)-(s6) in Chapter 3.
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Theorem 4.8. Let D be an infinite set and Kjsp.ga be the class of all locally finite-dimensional
D-SAs, Kp.tsa be the class of all D-TSAs, and Kp_psa be the class of all D-PSAs.

(a) Thx (Kitp-sa) = Thx (Kp-tsa) = Thx (Kp-psa).
(b) Thx (Kitp-sa) is decidable.

Proof. (a) First we show that Thx (Kip.gsa) = Thx(Kp-sa). Since each D-TSA is a locally
finite-dimensional D-SA, we have Thx (Kyip.sa) € Thx(Kp-Tsa).

For each t,,t) € Tss, (X)) such that Kjep.ga ¥ ta = tp, there exists a locally finite-dimensional
D-SA A°® such that A® ¥ t, = t;. By Theorem 3.5, A® can be expanded to a D-SSA A®, hence
A® F t, =~ t,. Thus SSA¥ t, ~ t;, so T (D) ¥ t, ~ t, by Lemma 4.5(b). Since T, (D) is the
reduct of T (D), we have Ty, (D) ¥ t, ~ ty, so Kp.rsa ¥ tq = ty.

As T (D) = Clo}(Ts, (D)), we can show Thx (Kitp.sa) = Thx(Kp.psa) with a similar
argument.

(b) By Theorem 4.6 and 4.7, Thx (K p.Tgsa) is the equational theory generated by D-SSA, hence

it is decidable. Since D-TSAs are just reducts of D-TSSAs, Thx(Kp.tsa) is also decidable.
Therefore Thx (Kjtp.sa) is decidable by (a). O

As aresult, we can check whether an equation t, = t; is valid for all locally finite-dimensional
D-SAs by finding normal forms t;,, ¢, of ¢, and t;, and checking whether ¢, ~p ¢;.

a
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Chapter 5

Representation of simultaneous
substitution algebras

In this chapter we will show that each simultaneous substitution algebra is isomorphic to a
quotient of a term simultaneous substitution algebra of generalized type and a quotient of a
function simultaneous substitution algebra. We will also show that under the condition of
local finite-dimensionality, a simultaneous substitution algebra is isomorphic to a polynomial
simultaneous substitution algebra and a quotient of a term simultaneous substitution algebra;
with this result we can provide another proof of the representation theorem of locally finite-
dimensional substitution algebras in [Fel82].

5.1 Representation of simultaneous substitution algebras

The representability of trivial D-SSAs is easy to see, so we only consider the non-trivial cases
in the following. Let A = (A4, (cq)deD, <S’d’A)d~€D#> be an arbitrary non-trivial D-SSA. We show
that A is isomorphic to a quotient of a term simultaneous substitution algebra of generalized
type, then a quotient of a function simultaneous substitution algebra.

For each a € A, let Q, be a corresponding symbol of arity Aa; we require that Q, # Qu
for all a,a’ € A with a # d/, and Q, # d for alla € A and d € D. Let F4 = {Q, | a € A}, then
Tr,(D) is the set of terms of type F4 over D. Consider the following sequence of sets of terms
defined by recursion:

Th =D,
T =Ty u{Quf |a € A, f: Aa— T4, f(d) # d for finitely many d € Aa}.

Let Ta = U, T4 It is easy to see that Tg - T}l C..-CT} C--- and Ty C Tx, (D). For
each t € Ty, let depth(t) be the least natural number n such that ¢t € T%. In the following
lemma we show that T4 is a subuniverse of T%, (D) = (Tx,(D), (d)4ep, (Sd’T)JeD#>.

Lemma 5.1. (a) For all d= (dy,...,dy) € D¥ ty,... t, € TH and t € Ty, SJ’T(tl, cotn,t) €
Tm+depth(t)
A )
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(b) T4 is a subuniverse of T% (D).

Proof. (a) Assume that d = (dy,...,d,) € D# and ty,...,t, € T'. We show S‘"i(tl, coytn,t) €
TZHdepth(t) for all t € T4 by induction on depth(t):

(1) depth(t) = 0: then t = d for some d € D. If d = d; for some i with 1 < i < n, then

Sty ...ty t) = t; € T else, SUty, ... ty,t) =d €T C T

(2) Assume that our claim holds for all ¢ € T4 with depth(¢) < k. Take arbitrary ¢ € T4 with
depth(t) = k + 1, then t = Q, f where f : Aa — T% and f(d) # d for finitely many d € Aa.

- - -

Then S%(t1, ... tn,t) = SUt1,. .., ty, Quf) = Quf’, where f' = (S4(t1,... tn, f(d))acra
For each d € Aa, we have f(d) € T%, so depth(f(d)) < k, hence f'(d) = S%(t1, ..., tn, f(d))
c TXL—Fdepth(f(d))

Because f(d) # d for finitely many d € Aa, {d1,...,d,}U{d € Aa | f(d) # d} is finite. For
each d in Aa such that d ¢ {dy,...,d,} U{d € Aa | f(d) # d},

cT XLH“ by our assumption. Thus f’ is a function from Aa to T X”rk.

d)=d _.J ) d¢{da,...dn}

F(d) = Sty o, £(d) L Syt d d.

By contraposition, we have {d € Aa | f(d) # d} C {d1,...,d,} U{d € Aa | f(d) # d},
hence f’(d) # d for finitely many d € Aa.

Therefore Sd(tl, oty t) = Quf' € TZHkH'

(b) We need to show that T4 is closed under the basic operations of T% (D). For each d € D,

we have d € Tg C T4. Then we show that for all d € D¥ of length n and all ¢1,...,th+1 € T4,

Sj(tl,...,th) € Ts. If n = 0, we have d = (), hence S‘i(tl) =t €Ty Ifn>0,let m=

max{depth(¢1),...,depth(¢,)}, then ¢1,...,t, € T%", hence S‘Z(tl, coytng1) € TZLerepth(t"“) C
Tx by (a)

Thus T} is closed under the basic operations of T%, (D), so T is a subuniverse of T% (D).

U

Let T4 be the subalgebra of T%, (D) taking T4 as its universe. We want to show that A is
isomorphic to a quotient of T4 by giving a homomorphism from T4 to A. Let ¢ : T4 — A be
such that for all d, Q,f € Ta,

¢(d) = ca,
o(Qaf) = S IR (G(f(dr)), ., &(F(dn)), ),
where {di,...,d,} = {d € Aa | f(d) # d}; notice that for each permutation p of {1,...,n},
St @b A (G(f(dr)), -, d(f(dn)), @) = S Be A (G f(dyry)), -, O f (dpiny))s @)

by Lemma 2.1(b), hence ¢ is well-defined. The following lemma shows that ¢ is the homomor-
phism we want:
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Lemma 5.2. (a) Foralla € A, (di,...,d,) € D7 and t1,...,tn, Quf € T4 such that {d € Aa |
f(d) #d} C{dy,...,dy} C Aa, ST tA((f(dr)), ..., ¢(f(dn)), a) = H(Qaf).

(b) For all d € D# of length n and ¢1,...,th+1 € Ta, (b(S‘ZT(tl, ceytng1)) = SJ’A(¢(t1), ol
P(tnt1))-

(¢c) ¢ is a homomorphism from T4 onto A.

Proof. (a) Take integers v1,...,vy, such that 1 < v < -+ < vy, < n and {dy,,...,dy,} =

{d € Aa | f(d) # d}; let uy, ..., up—m be such that {dy,,...,dy, ..} ={di,...,dn} \ {d € Aa |
f(d) # d}, then f(dy,) = d,, for all i, 1 <i <n —m. Then

SUatn) (6(£(dy)), ..., d(f(dn)), a)
2.1(b)

=7 Gvreumtug o) (G(F(dyy)), -y S (dop))s S(F ()5 oo d(F () @)
= SUertomtiy o) (G F(dy,), o S (dup))s (duy)s o s () @)
= §nrtomturs o) (§(f(dyy)), .., S(f (o)), Cduys -+ Cdu, 5 @)

2L Gurom) (b F(duy)), -+ D(f (), a)
= ¢<Qaf)

(b) If n = 0, then d = (), hence qﬁ(SO’T(tl)) = ¢(t1) = SOA(4(t1)). Else we have n > 0, then as-

sume that d'= (dy......dy). We show o(STE (1, tstus1)) = STAG(L1). ... B(tn). (L)
by induction on depth(t,+1):

Un—m

(1) depth(t,41) = 0: then t,11 = d for some d € D. If d = d; for some i, 1 < i <mn, then

S(STT (1, b)) = S(S@ BTyt d)) = G(1)
= SUlrd) A (g(t1), L B(t), ca,) = SD IR (G(ty), L d(tn), B(di).
Else, d # d; for all ¢ with 1 < i < n, then

HSTT (b1, tgn)) = G(S @I T by, d)) = 6(d) = e
= S(dl’m’dn)’A(Qﬁ(tl)v s 7¢(tn)’ Cd) = S(dl’m’dn),A(d)(tl)? B ¢(tn)7 d)(d))

(2) Assume that our claim holds for all ¢,41 € T4 with depth(t,4+1) < m. Take arbitrary
tn+1 € T4 with depth(t,41) = m + 1, hence t,, 11 = Qo f where f: Aa — T} and f(d) #d
for finitely many d. Let f' = <S‘ZT(t1, ooy tn, f(d)))denq, then SJ:T(tl, cotng1) = Qaf’.
By Lemma 5.1, we have Q. f" € T4, so f/'(d) # d for finitely many d. Hence we can take
pairwise distinct df,...,d] € Aa such that {d},...,d;} ={d € Aa| f(d) #d} U{d € Aa |
fi(d) #£d} U ({dy,...,d,} N Aa).

Take integers vy, ..., v such that 1 <wv; <--- <wvp <mand {dy,,...,dy } = {d1,...,dp}\
(d),...,d}; since {dy,...,d,} N Aa C {d),...,d;}, we have dy,,...,dy, ¢ Aa. Let d =
(d},...,d;). Then

S(SET(t, .. tns1)) = (Qaf')
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f1(d)), -, ¢(f'(dp), a)
ot f(d), - 9(ST (bt f(d)), @
(

|
n

=

>
§\ —
n

8

H
~
’I‘

L STASEAG(0). - 6(ta) (7)), STAB(00), - B(n). SF (). )
P e ) A (STA(G(11), . G(t), (), ST B(E),
SU). SPA(B(E1). - 0ltn).€ay, ). ST D0, 6t i, ), 0)

(
STA(G(11), -, $ltn), S G i) AG(F(dh)), ..., S(F (D)), Cay s sy @)
> ”‘”sd%zs( 1), e, 0(ta), STAG(F (L)), .. 6(f(d)), )

Y STAG(t), ..., Bltn), H(Qaf)

= STAG(t), ..., Btas1))-

2.1(d)

—~

(c) First we show that ¢ is a homomorphism. For each d € D, we have ¢(d) = ¢4. For each d €

D7 of length n, we have qS(S‘zT(tl, otng1)) = SYA(P(), ..., P(tny1)) forall ty, ...ty 1 € Ta
by (b). Therefore, ¢ is a homomorphism.

Then we show that ¢ is surjective. For each a € A, let f, : Aa — Tg be such that f,(d) =d
for all d € Aa, and let 7, = Qufa, then 7, € T}; by definition of ¢, ¢(7,) = a. Thus ¢ is

surjective. ]

Theorem 5.3 (Representation of D-SSAs). Let A be a D-SSA.
(a) A is isomorphic to a quotient of a D-TSSA of generalized type.
(b) A is isomorphic to a quotient of a D-FSSA.

Proof. (a) If A is trivial, then A is isomorphic to a trivial D-TSSA. Else, A is non-trivial; by
Lemma 5.2(c), there is a homomorphism ¢ from T 4 onto A, hence we have T 4/ker(¢) = A by
the Homomorphism Theorem.

(b) If A is trivial, then A is isomorphic to a trivial D-FSSA. Else, A is non-trivial. By Theorem

2.5, T4 is isomorphic to the D-FSSA with base T, (D) of which the universe is {tTﬁA(D) |t e
Tr,(D)}, so A is isomorphic to a quotient of this D-FSSA by (a). O

5.2 Representation of locally finite-dimensional simultaneous sub-
stitution algebras

We have already shown that each simultaneous substitution algebra can be represented as a
quotient of a function simultaneous substitution algebra. Moreover, with the condition of local
finite-dimensionality, we can improve the result a bit: each locally finite-dimensional simultane-
ous substitution algebra can be represented as a polynomial simultaneous substitution algebra.

First we will show that each non-trivial locally finite-dimensional simultaneous substitution
algebra can be represented as a quotient of simultaneous substitution algebra of finitary terms.
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We assume that D is infinite in this section. The proof is essentially the same as the proof in the
last section. As we want to represent elements in simultaneous substitution algebras by terms
in the narrow sense, it will help if we have a well-ordering of the set of dimensions beforehand.
Let k = |D|, and {d) | A < k} be an enumeration of D without repetition.

Let A = (A, {(cq)aep, (S¥*) dep#) Pe an arbitrary non-trivial locally finite-dimensional D-
SSA. For each a € A, let Q, be a corresponding operation symbol of arity |Aal. Let Sy = {Q, |
a € A}, then Ts, (D) is the set of terms of type S4 over D. For each element a, let n = |Aq]
and

To = Qady, .. .dy,, where A\ <--- < A\, <k and Aa ={dy,,...,dy, };

our idea is to represent a by the term 7, (more precisely, an equivalence class containing 7).
We define a mapping f : Ts, (D) — A by induction on the structure of terms:

(i) For each d € D, f(d) = cg;

(ii) For each a € A with |Aa| =n and t1,...,t, € Ts, (D),

FQatr . tn) = S B B(f (1), .. f(tn), @)
where \; < -+ < A, <k and Aa = {d),,...,dy,}

Notice that f(7,) = a for each a € A by this definition. Then we show that f is a homomor-
phism from T, (D) onto A:

Lemma 5.4. f is a homomorphism from T, (D) onto A.

Proof. First we show that f is a homomorphism from T, (D) to A. For each d € D, f(d) = ¢4

by definition of f. Then we need to show that for all d € D# of length n and for all terms
[P thrl € TSA(D)7

-

FSTT(ty, . tag)) = STAF(), - Fltns)).

If n =0, we have d = (), so f(SCZT(tl)) = f(t1) = S“2(f(t1)). Then assume that n > 0
S

and d = (dg,,...,ds,):; we show f(SET(t1,... tas1)) = SEPA(f(t1), ..., f(tns1)) by induction
on the structure of ¢,,41.

-

(1) tnjl = deia 1<t < then_‘f(SCZ:T(tlv"'vtn+1)) = f(Sd’T(tla"'vtnvdGi)) = f(tz) =
SEA(F(t1), -, f(tn), Cay,) = STA(F (1), -, f(tn), F(da,))-

(2) tas1 = dg, 0 € £\ {01,....00}: then F(SPT(t1, .. tas1)) = F(SPT(tr,... tn,dg)) =
f<d9) = Cdy = Sd7A(f(t1)v <o 7f(tn)7cd9) = Sd7A(f(t1)7 <o 7f(tn)a f(d9))

(3) tn+1 = Qa, |Aa| = 0: then dy,,...,dy, ¢ Aa, so we have
FOSET (b, b)) = FSTE(t, . 0, Qu)) = F(Qa) = a
SOV GEA(F (1), fltn)sa) = STACF(H), o F(tn), F(Qa))-
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(4) tht1 = Qqaty ...t with m > 0: then |Aa|] = m. Take ordinal numbers Aj,..., A, such
that A} < -+ < A, < k and Aa = {dy,,...,dy,}. Then take integers vy,...,v; such
that 1 < v; < -+- < v < n and {d9v17"‘7d0vk} = {d@l,...,dgn}\{d)\l,...,d)\m}. Let

d = (d)\l,...,d)\m) and d' = (dxryy---,dy,,,dp ..,ngk), then

vy ?

= SEAF(t1), s F(tn)s F(Qalh 1)
= SEA(f(t1), ..., F(ta), STAFEY), .. f(th), a))
2.1(d) 7 I !

LY GTASEAF(t1), . () D)o s STAC (), f(En)s F(Eh),

LA (bt th))s o FSTT (bt ), F(t), - () )
VG AFSET (1, b ), F(SET(t, .t ), a)

= F(QuSTT (1, ot ) . SET (b, )

= FSET(t, b, Qath L L)),

Therefore f is a homomorphism. Besides, it is easy to see that f(7,) = a for each a € A,
hence f is surjective. O

This lemma immediately implies that A is isomorphic to a quotient of T, (D). What’s
more, we want to show that A can also be represented as a polynomial simultaneous substitution

algebra.

From A, we define an algebra G(A) of type Sa: we take A as the universe; for each a € A,
with A%a = {dy,,...,dy,}, where \| < --- < A\, < K, let QQG(A) = g, where g, is the n-ary
operation that sends aq,...,a, € A to S(dkl’“"dkn)’A(al, ey lp, @),

Consider the D-PSSA induced by &(A): recall that Clop(S(A)) = {t5A) | t € Ts, (D)}
is a set of D-ary operations on A, the universe of G(A), and ey is the d-th projection oper-

ation for each d € D; besides we have defined simultaneous substitution operations SEF on
D-ary operations on A. Using the same notation for their restriction to Clop(&(A)), we define

Clo%5(6(A)) as (Clop(S(A)), (eq)deD, (SCEF>d~€D#>. Let ¢ : Ts, (D) — Clop(6(A)) be such
that ¢(t) = tA) for each t € Ts, (D).

Lemma 5.5. (a) For each t € Ts, (D), (Tf(t))S(A) =¢5(A),

(b) Let ¢ : D — A be such that ¢ = (cg)qep, then tSA) () = f(t) for each t € Ts, (D).

(¢) Fer() = ker(@).

Proof. (a) Notice that for each a € A and o : D — A,

(7)™ (@) = (Qudy, - -y, )@ (@) = QEM) (dF M (a), ..., dT ™ (a))
= St (a(dy,), ..., aldy,), a)
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where \; < --- < A\, and A%a = {d,,...,dy,}. Take arbitrary a : D — A, we prove that for
all t € Ts, (D), (Tf(t))G(A) (o) = t9(A) () by induction on the structure of ¢:
_ S(A) [\ _ S(A) () 273 g(a),A (ss2)
(1) t =d, d € D: then (74(g)) (@) = (7¢,) () =7 S (a(d),cq) =" a(d) = ( );
(2) t = Qut1...ty, a € A: since A is locally finite-dimensional, A%a U U1<Z<HA f( i) s
finite. Take ordmal numbers Aq, ..., Ay, such that A\; < --- < A\, < & and {dy,,...,dy,,} =
Alta U, <i<n AAf(t;). First we prove the following claim:
(%) for each i, 1 <17 < n, S(d*l"“’d*m)’A(a(d)\l), coaldy,), ft) = tiG(A)(a).
Since AAf(t;) C {dy,,...,dy,} = ABa U Ui<i<n AAf(t;), we can take integers vy, ...,

such that 1 < v < --- < vy <m and AAf(t;) = {dx,,:---.d, }, hence we have
(d)\ yeenydn ),A X 26_(b) (dA'u 7"'7d)\v )7A .
S Bl aldyy); - aldy,,), f(G) =7 ST aldy,, ), - eldy, ), Ft)
= (7)) M) £ tG<A>< ).

Let p be a permutation of {1,...,m} such that p(1) < --- < p(n) and A%a = {d)‘pu)’ ol
dr}- By Lemma 2.7(b), AAf(t) = AAS Do Pow) (f(t),..., f(tn),a) C (A%a\
{dr,ys -1 A D UU1<icn AL f(t) = Ui<i<n AAf(t;). Let q be a permutation of {1,...,

m} such that ¢(1) < --- < g(k) and AAf(t) = {dr,ays- -+ dry - Then we have
dy - d
()™ (a) = PP (ald,), - aldayg). F()
PL 5w B a(d )l £ (0)

(

s huatn)(a(dy,), ... aldy,,), f(1))
) -
(

21(b)

= i) (a(dy,), . aldy,), SO P (£(t), L f(ta), @)

210) gld, - 7d>‘P(m))(S e ,dxm)( (dxy)s .- a(dy,,), f(t1), . oy
Shamban) (a(dyy), ..., aldy,,), f( n)), U dryiny ) U ry ) 0)
®) S(d*p(n""’d*p(m>)(t16(A)(a), ot (@), aldy

A1

PO gl 0y (1S (g L 1SB) (4, q)
= 0.(t5M(@),...,15™)(a))
= (Qat1...t2)° ().

Therefore, given arbitrary o : D — A, (Tf(t))G(A)(a) = t9(A)(q) for all t. Hence (Tf(t))G(A) =
tSA) for all .

(b) We show that t54)(,) = £(¢) by induction on ¢:
(1) t =d, d € D: then t5A) () = dSA) () = 1(d) = ¢y = f(d) = f(2).
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(2) t=Qqut1...th, a € Awith A\; <--- <\, <k and {dy,,...,dy,} = Aa: then

5 (@) = (Qatr - 1) (1) = ga (1T (1), .. 1E® (W) E ga(f (1), .-, f(tn)
= S D) (f(1), ., f(ta),a) = f(Qatl Ctn) = f().

Nasy

16(A) (@) (a) H/6(A ( .

(c) Assume that f(t) = f(t'), then ¢(t) = (s OB = (74(41)) S
Assume that ¢(

) () =

) = (). nf(tﬂi)tG( (1) = B(t)(2) = B() (1) = 'SB) (1)

Hence f(t) = f(¢') iff ¢ ). Thus we have ker(f) = {(t,t) € T? | f(t) = f(t)}
(1) € T2 | (1) = p(t')} =

ker(d)) O
Combining these results, we can get the theorem:

B

/

Theorem 5.6. The following claims are equivalent:
(i) A is a locally finite-dimensional D-SSA;
(ii) A is isomorphic to Clo%(B) for some B;
(iii) A is isomorphic to a quotient of T§(D) for some type of algebras S.

Proof. (i) = (ii): assume that A is a locally finite-dimensional D-SSA. If A is trivial, then
it is easy to see that Clo}(A) is also trivial and A = Clo%(A). Else, A is not trivial,
then by Lemma 5.4 and the Homomorphism Theorem, A = T%, (D)/ker(f). We also have
TS, (D)/ker(¢) = Clo;(6(A)) by Theorem 2.3. Since ker(f) = ker(¢) by Lemma 5.5(c), we
have A = Cloj5(6(A)).

(ii) = (iii): assume that A is isomorphic to Clo}(B) for some B. Let S be the type of B and
¢ : Ts(D) — Clop(B) such that ¢(t) = B for all t. Then by Theorem 2.3, T(D) /ker(¢) =
Clo}5(B). Hence A = T%(D)/ker(¢).

(iii) = (i): assume that A is isomorphic to a quotient algebra of T (D) for some type of algebras
S. Since T (D) is locally finite-dimensional and a quotient algebra of a locally finite-dimensional
D-SSA is also locally finite-dimensional, A is locally finite-dimensional. O

Then we can give another proof of the representation theorem (Theorem 3.1) in [Fel82].
Corollary 5.7. The following claims are equivalent:
(i) A is a locally finite-dimensional D-SA;
(ii) A is isomorphic to Clo},(B) for some B;
(iii) A is isomorphic to a quotient algebra of T%(D) for some type of algebras S.

Proof. (i) = (ii): by Theorem 3.5, A can be expanded to a D-SSA A%. By Theorem 5.6,
A% =~ Clo}5(B) for some B, then we can take their reducts and get A = Clof,(B).

(ii) = (iii): by Theorem 2.3, we have Clo%;(B) is isomorphic to a quotient algebra of TS (D),
hence Clo},(B) is isomorphic to a quotient algebra of T%(D).
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(iii) = (i): it is easy to see that every D-TSA of type of algebras is locally finite-dimensional,
and every quotient algebra of a locally finite-dimensional D-SA is locally finite-dimensional, thus
the implication holds. ]
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Chapter 6

Conclusion and discussion

While the previous works in the study of substitution algebras treated singular substitution as
the footstone, we attempted to put simultaneous substitution in the central place and explored
what this perspective can bring us in this thesis. Given a set of dimensions D, we defined the
class of D-dimensional simultaneous substitution algebras by a set of equations, to characterize
simultaneous substitution operation on terms over variables from D and on D-ary operations
on a nonempty set. Comparing with singular substitution algebras, simultaneous substitution
algebras equip with more basic operations, which seem cumbersome at first glance. However,
rich with these simultaneous substitution operations, simultaneous substitution algebras seems
to be simpler in nature: without any additional condition like local finite-dimensionality, the
decidability and completeness of equational theory, and representability have been shown in
Chapter 4 and Chapter 5.

As we proved that every locally finite-dimensional substitution algebra can be expanded to a
simultaneous substitution algebra in Chapter 3, decidability, completeness, and representability
of locally finite-dimensional singular substitution algebras were easily derived. It is noticeable
that local finite-dimensionality remains a key condition in our study, and we still don’t know
whether each singular substitution algebra can be superexpanded to a simultaneous substitution
algebra.

We also point out a possible direction of future work here. In Introduction, we mentioned
substitution operation in cylindric algebras and lambda abstraction algebras; there is substan-
tial difference between substitution we have discussed and substitution in these two kinds of
algebras, since both cylindric algebras and lambda abstraction algebras are algebraizations of
formal systems which have free and bound variables, whereas variables (or dimensions) we have
discussed in this thesis are all free in this sense. It remains to be investigated that how to
characterize the substitution operations in formal systems containing bound variables uniformly
in algebras, and what the two perspectives (putting singular/simultaneous substitution at the
central place) might bring us in the new study.
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