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Abstract

In this thesis we introduce simultaneous substitution algebras as an abstraction of simultane-
ous substitution operations on terms and on functions. The class of simultaneous substitution
algebras is defined by a set of equations, and we prove that the equational theory generated
by this set is decidable and complete with the class of term simultaneous substitution algebras
and of polynomial simultaneous substitution algebras. We also prove that each simultaneous
substitution algebra can be represented as a quotient of a function simultaneous substitution
algebra, and each locally finite-dimensional one can be represented as a polynomial simultaneous
substitution algebra. Relevant results in singular substitution algebras can be derived from the
results in this thesis.

2



Acknowledgements

Now it is finally near the end of this long long marathon. First and foremost, I would like
to thank my supervisor Piet Rodenburg, for all his guidance, encouragement, patience, and
innumerable advices. This piece of work, though naive and rough, cannot be done without his
emails and zoom-meetings from thousands of kilometres away, sometimes at day in Holland and
night in Beijing. It is really regrettable for me that we cannot have any face-to-face meeting
from the start to the end of the project initially due to the COVID-19 pandemic. I wish I could
make it to meet Piet again one day in the future.

I wish to thank Ekaterina Shutova, Nick Bezhanishvili, and Johannes Marti for serving as
members of the Thesis Committee, and for their inspiring questions that help me to review my
study in a new and broader vision.

I would also like to thank my parents for their support; all questions like “how is it going
with your thesis” helped with the completion of it. I owe my special thanks to Wei Lan Library;
weekly meetings with children at Nanqijia school replenished me with the warmth and energy
to get through the year. The past year is not a good year for me, however writing this thesis
under Piet’s supervision is one of a handful of good things I had.

3



Contents

1 Introduction 2

2 Simultaneous substitution algebras 4
2.1 Axiom schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Term simultaneous substitution algebras . . . . . . . . . . . . . . . . . . . 6
2.2.2 Function simultaneous substitution algebras . . . . . . . . . . . . . . . . . 8
2.2.3 Polynomial simultaneous substitution algebras . . . . . . . . . . . . . . . 8
2.2.4 Generalization of term simultaneous substitution algebras . . . . . . . . . 10

2.3 Dimension sets and local finite-dimensionality . . . . . . . . . . . . . . . . . . . . 12

3 Simultaneous substitution algebras and (singular) substitution algebras 14

4 Decidability and completeness 19
4.1 Normal form theorem for simultaneous substitution . . . . . . . . . . . . . . . . . 19
4.2 Decidability and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Representation of simultaneous substitution algebras 28
5.1 Representation of simultaneous substitution algebras . . . . . . . . . . . . . . . . 28
5.2 Representation of locally finite-dimensional simultaneous substitution algebras . 31

6 Conclusion and discussion 37

1



Chapter 1

Introduction

Substitution is the operation which replaces the (free) occurrences of variables in an expression by
occurrences of other expressions in many formal systems, like propositional logic, first-order logic,
and lambda calculus. When we replace the occurrences of a single variable by the occurrences of
another expression, we call this operation singular substitution; when we replace the occurrences
of some variables (say x1, . . . , xn) by occurrences of expressions (say e1, . . . , en) respectively at
the same time, we call it simultaneous substitution.

In the study of the algebraization of formal systems, substitution operations can be defined
in algebras, for instance in cylindric algebras, algebraization of first-order logic (Henkin, Monk,
and Tarski [HMT71]), and in lambda abstraction algebras, algebraization of lambda calculus
(Pigozzi and Salibra [PS95]). Substitution can also be treated as basic operations in algebras;
in [Pin73], Pinter defines a class of Boolean algebras with substitution operations, and shows
that this class of algebras is definitionally equivalent to the class of cylindric algebras.

In [Fel82], a class of algebras where substitution operations are the only primitive operations,
called substitution algebras, is introduced by Feldman. It is an abstraction of singular substi-
tution on functions and on terms. Feldman proves that the first-order axioms of substitution
algebras and a non-first-order condition of local finiteness1 characterize the class of polynomial
substitution algebras, a specific class of substitution algebras of functions. Furthermore, Feld-
man provides several equivalent conditions for a substitution algebra to be representable as a
function substitution algebra in [Fel15].

However, the discussion is based on singular substitution in [Fel82]. In many formal systems
we are familiar with, simultaneous substitution can be defined with singular substitution: since
the expressions in these formal systems are finite and there are infinitely many variables, we
can always use new variables not occurring in a given expression to simulate simultaneous
substitution with singular ones. In algebras, “local finite-dimensionality” is the name for a
similar phenomenon that only finitely many variables “matter to” each element, and the method
to simulate simultaneous substitution by singular substitution doesn’t always work without local
finite-dimensionality.

In our work, we follow the path taken by Feldman and introduce simultaneous substitu-
tion algebras, aiming to characterize the simultaneous substitution operation on terms and on

1We call it local finite-dimensionality in our discussion.
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operations over a set. The axiom schemas will be given in Chapter 2; we will also present
several classes of simultaneous substitution algebras we are interested in, namely the class of
term simultaneous substitution algebras (TSSA), of function simultaneous substitution algebras
(FSSA), and of polynomial simultaneous substitution algebras (PSSA).

In Chapter 3 we will discuss the relation between simultaneous substitution algebras and
singular substitution algebras. It is natural to view simultaneous substitution as a complicated
version of singular substitution, and indeed we can show that every simultaneous substitution
algebra can be reduced to a singular substitution algebra. We will also show that each locally
finite-dimensional singular substitution algebra can be expanded to a simultaneous substitution
algebra.

In Chapter 4, we will prove a key property of simultaneous substitution: each term of the
type of simultaneous substitution algebras has a normal form. With the normal form theorem
for simultaneous substitution, we can arrive at the first important result in our study: the decid-
ability of the equational theory generated by our axioms of simultaneous substitution algebras,
and the completeness of it with respect to the class of TSSAs and of PSSAs.

The representation problem of simultaneous substitution algebras will be considered in Chap-
ter 5. We will prove that every simultaneous substitution algebra is isomorphic to a quotient
of a TSSA in a broader sense, and to a quotient of a FSSA. Moreover, we will pay special
attention to locally finite-dimensional simultaneous substitution algebras and demonstrate their
representability.

We will also derive relevant results (completeness and decidability of equational theory, and
representability as in [Fel82]) in locally finite-dimensional singular substitution algebras from
our main results in Chapter 4 and 5.
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Chapter 2

Simultaneous substitution algebras

In this chapter we introduce simultaneous substitution algebras. We provide the axiom schemas,
several examples, and some basic definitions and lemmas we will use in the following chapters.

At the beginning we introduce some notations we will use throughout our discussion. We
write the set of all functions from a set B to a set A as AB. Let ab ∈ A for each b ∈ B, then we
also write the function f : B → A such that f(b) = ab for each b ∈ B as ⟨ab⟩b∈B.

Finite sequences and permutations are defined as functions in our discussion. We define the
empty sequence (the sequence of length 0) as the empty function and denote it by (). For finite
sequences of length n, n > 0, we define them as functions with domain n = {0, . . . , n − 1};
for n elements a0, a1, . . . , an−1, we use (a0, . . . , an−1) to denote the finite sequence f : n →
{a0, . . . , an−1} such that f(i) = ai for all i ∈ n. For each set A, we use A# to denote the set of
all finite sequences without repetitions of elements of A, i.e.,

A# = {()} ∪
⋃

n∈N+

{(a1, . . . , an) | a1, . . . , an ∈ D, ai ̸= aj for all i, j with 1 ≤ i < j ≤ n};

we also use a⃗ to denote sequences in A#.

For positive integers i, j, n with 1 ≤ i < j ≤ n, we use [i, j]n to denote the permutation p of
{1, . . . , n} such that p(i) = j, p(j) = i, and p(x) = x for all x ∈ {1, . . . , n} \ {i, j}; we also call
[i, j]n a transposition.

Let A be an arbitrary nonempty set; for each positive integer n, an n-ary operation on A is
a function from An to A. We generalize this definition and allow the arity to be any set: for
each set X, a X-ary operation on A is a function from AX to X. When X is a set of variables,
a X-ary operation can be viewed as an assignment of elements in A to variables; hence we also
call a X-ary operation an assignment to X.

2.1 Axiom schemas

Definition 2.1. Let D be a set (we also call elements in D dimensions in the following) and A be

a nonempty set. Let cd be an element in A for each d ∈ D, and Sd⃗ be a (n+1)-ary operation on A

for each d⃗ ∈ D# of length n. Then A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ is a D-dimensional simultaneous
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substitution algebra (D-SSA) if for all n ≥ 1, all pairwise distinct dimensions d, d1, . . . , dn ∈ D,
and all elements a, a1, . . . , an, b1, . . . , bn ∈ A,

(ss1) S()(a) = a;

(ss2) S(d1,...,dn)(a1, . . . , an, cd1) = a1;

(ss3) S(d1,...,dn)(cd1 , a2 . . . , an, a) = S(d2,...,dn)(a2, . . . , an, a);

(ss4) S(d1,...,dn)(a1, . . . , an, cd) = cd;

(ss5) S(d1,...,dn)(b1, . . . , bn, S
(d1,...,dn)(a1, . . . , an, a)) = S(d1,...,dn)(S(d1,...,dn)(b1, . . . , bn, a1), . . . ,

S(d1,...,dn)(b1, . . . , bn, an), a);

(ss6) 1 ≤ i < j ≤ n, p = [i, j]n ⇒ S(d1,...,dn)(a1, . . . , an, a) = S(dp(1),...,dp(n))(ap(1), . . . , ap(n), a).

Some useful lemmas can be derived from the axiom schemas (ss1)-(ss6):

Lemma 2.1. Let A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be a D-SSA. For all (d1, . . . , dn), (d

′
1, . . . , d

′
m) ∈

D# and a, a1, . . . , an, b1, . . . , bm ∈ A,

(a) S(d1,...,dn)(a1, . . . , an, cdi) = ai, 1 ≤ i ≤ n;

(b) p a permutation of {1, . . . , n} ⇒ S(d1,...,dn)(a1, . . . , an, a) = S(dp(1),...,dp(n))(ap(1), . . . , ap(n), a);

(c) {u1, . . . , uk, v1, . . . , vn−k} = {1, . . . , n}, avi = cdvi for all i with 1 ≤ i ≤ n− k ⇒
S(d1,...,dn)(a1 . . . , an, a) = S(du1 ,...,duk )(au1 , . . . , auk

, a);

(d) {d1, . . . , dn} \ {d′1, . . . , d′m} = {dv1 , . . . , dvk} with pairwise distinct v1, . . . , vk ∈ {1, . . . , n} ⇒
S(d1,...,dn)(a1, . . . , an, S

(d′1,...,d
′
m)(b1, . . . , bm, a)) =

S(d′1,...,d
′
m,dv1 ,...,dvk )

(
S(d1,...,dn)(a1, . . . , an, b1), . . . , S

(d1,...,dn)(a1, . . . , an, bm), av1 , . . . , avk , a
)
.

Proof. (a) If i = 1, just take (ss2). Otherwise 1 < i ≤ n; let p = [1, i]n, we have

S(d1,...,dn)(a1, . . . , an, cdi)
(ss6)
= S(dp(1),...,dp(n))(ap(1), . . . , ap(n), cdi)

= S(di,dp(2)...,dp(n))(ai, ap(2) . . . , ap(n), cdi)

(ss2)
= ai.

(b) Since each permutation p of {1, . . . , n} is a composition of transpositions, we can use (ss6)
several times to obtain this lemma.

(c) Assume that {u1, . . . , uk, v1, . . . , vn−k} = {1, . . . , n} and avi = cdvi for all i with 1 ≤ i ≤ n−k,

then we have S(d1,...,dn)(a1, . . . , an, a)
(b)
= S(dv1 ,...,dvn−k

,du1 ,...,...,duk )(av1 , . . . , avn−k
, au1 , . . . , auk

, a).

Using (ss3) n− k times, we get S(d1,...,dn)(a1, . . . , an, a) = S(du1 ,...,duk )(au1 , . . . , auk
, a).
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(d) Assume that {d1, . . . , dn} \ {d′1, . . . , d′m} = {dv1 , . . . , dvk} with pairwise distinct v1, . . . , vk ∈
{1, . . . , n}. Then {d′1, . . . , d′m}\{d1, . . . , dn} contains l = m+k−n different dimensions, and we

call them dn+1, . . . , dn+l. Let d⃗ = (d1, . . . , dn+l) and d⃗′ = (d′1, . . . , d
′
m, dv1 , . . . , dvk); it is easy to

see that both d⃗ and d⃗′ has no repetitions and {d1, . . . , dn+l} = {d′1, . . . , d′m, dv1 , . . . , dvk}, hence
we can define a permutation p of {1, . . . ,m+ k} such that

dp(i) =

{
d′i, 1 ≤ i ≤ m,

dvi−m , m+ 1 ≤ i ≤ m+ k;

so we have (dp(1), . . . , dp(n+l)) = (d′1, . . . , d
′
m, dv1 , . . . , dvk) = d⃗′. Let an+i be cdn+i

for all i with
1 ≤ i ≤ l, then

S(d1,...,dn)(a1, . . . , an, S
(d′1,...,d

′
m)(b1, . . . , bm, a))

(c)
= S(d1,...,dn+l)(a1, . . . , an+l, S

(d′1,...,d
′
m)(b1, . . . , bm, a))

(c)
= S(d1,...,dn+l)(a1, . . . , an+l, S

(d′1,...,d
′
m,dv1 ,...,dvk )(b1, . . . , bm, cdv1 , . . . , cdvk , a))

(b)
= S(dp(1),...,dp(n+l))(ap(1), . . . , ap(n+l), S

(d′1,...,d
′
m,dv1 ,...,dvk )(b1, . . . , bm, cdv1 , . . . , cdvk , a))

= Sd⃗′(ap(1), . . . , ap(n+l), S
d⃗′(b1, . . . , bm, cdv1 , . . . , cdvk , a))

(ss5)
= Sd⃗′(Sd⃗′(ap(1), . . . , ap(n+l), b1), . . . , S

d⃗′(ap(1), . . . , ap(n+l), bm),

Sd⃗′(ap(1), . . . , ap(n+l), cdv1 ), . . . , S
d⃗′(ap(1), . . . , ap(n+l), cdvk ), a).

For each bi, 1 ≤ i ≤ m, we have

Sd⃗′(ap(1), . . . , ap(n+l), bi) = S(dp(1),...,dp(n+l))(ap(1), . . . , ap(n+l), bi)
(b)
= Sd⃗(a1, . . . , an+l, bi)

= S(d1,...,dn+l)(a1, . . . , an, cdn+1 , . . . , cdn+l
, bi)

(c)
= S(d1,...,dn)(a1, . . . , an, bi).

Also, for each cdvi , 1 ≤ i ≤ k, we have Sd⃗′(ap(1), . . . , ap(n+l), cdvi )
(b)
= Sd⃗(a1, . . . , an+l, cdvi )

(a)
= avi .

Hence we get S(d1,...,dn)(a1, . . . , an, S
(d′1,...,d

′
m)(b1, . . . , bm, a)) = Sd⃗′(S(d1,...,dn)(a1, . . . , an, b1), . . . ,

S(d1,...,dn)(a1, . . . , an, bm), av1 , . . . , avk , a).

2.2 Examples

Here are some examples of simultaneous substitution algebras.

2.2.1 Term simultaneous substitution algebras

First let us consider the simultaneous substitution algebras of terms. Let S be an arbitrary
similarity type and X be an arbitrary set of variables1 such that S ∩X = ∅ and S0 ∪X ̸= ∅ (S0

is the set of all constant symbols in S). Let TS(X) be the set of terms of type S over variables
X; more precisely, TS(X) is the smallest set such that

1Variables play the same role as dimensions in the last section.
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(i) for each x ∈ X, (x) ∈ TS(X);

(ii) if t1, . . . , tn ∈ TS(X) and Q ∈ S is an n-ary operation symbol, then (Q, (t1, . . . , tn)) ∈
TS(X).

We usually omit the parentheses and commas, and represent (x) by x and (Q, (t1, . . . , tn)) by
Qt1 . . . tn.

Recall that X# is the set of finite sequences without repetitions of elements of X. For () ∈
X#, let S(),T be the identical operation on TS(X). For each sequence x⃗ = (x1, . . . , xn) ∈ X#, we
define Sx⃗,T as the (n+ 1)-ary operation on TS(X) such that for all terms t1, . . . , tn+1 ∈ TS(X),
Sx⃗,T(t1, . . . , tn+1) is the term obtained by replacing all occurrences of xi in tn+1 by ti for all i
with 1 ≤ i ≤ n simultaneously; formally, for each x⃗ = (x1, . . . , xn) ∈ X#, Sx⃗,T is defined by
recursion:

(i) Sx⃗,T(t1, . . . , tn, x) =

{
ti, x = xi with 1 ≤ i ≤ n,

x, x ̸= xi for all i with 1 ≤ i ≤ n;

(ii) Sx⃗,T(t1, . . . , tn, Qt′1 . . . t
′
m) = QSx⃗,T(t1, . . . , tn, t

′
1) . . . S

x⃗,T(t1, . . . , tn, t
′
m).

Then we call the algebra

Tss
S (X) = ⟨TS(X), ⟨x⟩x∈X , ⟨Sx⃗,T⟩x⃗∈X#⟩

the X-dimensional term simultaneous substitution algebra (X-TSSA) of type S. The “ss” in
superscript represents “simultaneous substitution”; we write TS(X) as T , Tss

S (X) as Tss or T,
and Sx⃗,T as Sx⃗ when there is no confusion. It can be verified that T satisfies the axiom schemas
of X-SSAs. Take (ss3) as an example; we prove that for all pairwise distinct x1, . . . , xn ∈ X,
and all t2, . . . , tn, t ∈ T , S(x1,...,xn)(x1, t2, . . . , tn, t) = S(x2,...,xn)(t2, . . . , tn, t) by induction on the
structure of t:

(1) t = x, x ∈ X: if x = x1, then S(x1,...,xn)(x1, t2, . . . , tn, x) = x1 = S(x2,...,xn)(t2, . . . , tn, x);

else if x = xi, 2 ≤ i ≤ n, then S(x1,...,xn)(x1, t2, . . . , tn, x) = ti = S(x2,...,xn)(t2, . . . , tn, x);

else, x ̸= xi for all i with 1 ≤ i ≤ n, then S(x1,...,xn)(x1, t2, . . . , tn, x) = x = S(x2,...,xn)(t2,
. . . , tn, x);

(2) t = Qt′1 . . . t
′
m for some m-ary operation symbol Q and some t′1, . . . , t

′
m ∈ T :

S(x1,...,xn)(x1, t2, . . . , tn, t) = S(x1,...,xn)(x1, t2, . . . , tn, Qt′1 . . . t
′
m)

= QS(x1,...,xn)(x1, t2, . . . , tn, t
′
1) . . . S

(x1,...,xn)(x1, t2, . . . , tn, t
′
m)

IH
= QS(x2,...,xn)(t2, . . . , tn, t

′
1) . . . S

(x2,...,xn)(t2, . . . , tn, t
′
m)

= S(x2,...,xn)(t2, . . . , tn, Qt′1 . . . t
′
m)

= S(x2,...,xn)(t2, . . . , tn, t).
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For convenience in later discussions, we also introduce term algebras here. For each n-
ary operation symbol Q ∈ S, let QTS(X) be the n-ary operation on TS(X) such that for all
t1, . . . , tn ∈ TS(X),

QTS(X)(t1, . . . , tn) = Qt1 . . . tn.

Then TS(X) = ⟨TS(X), ⟨QTS(X)⟩Q∈S⟩ is the term algebra of type S over X. Notice that TS(X)
is an algebra of type S.

2.2.2 Function simultaneous substitution algebras

The next example is a class of simultaneous substitution algebras of functions. Let D be an
arbitrary set of dimensions and A be an arbitrary nonempty set, then the functions we consider
are D-ary operations on A. Let FD(A) = AAD

. For each d ∈ D, let ed ∈ FD(A) be the
d-th projection function, i.e., ed(α) = α(d) for every α : D → A. For each α : D → A,
d⃗ = (d1, . . . , dn) ∈ D# and a⃗ = (a1, . . . , an) ∈ An, let α⟨d⃗, a⃗⟩ : D → A be the assignment such
that

α⟨d⃗, a⃗⟩(d) =

{
ai, d = di with 1 ≤ i ≤ n,

α(d), d ̸= di for all i, 1 ≤ i ≤ n.

Then for each (d1, . . . , dn) ∈ D#, let S(d1,...,dn),F be the (n + 1)-ary operation on FD(A) such
that for all f1, . . . , fn, f ∈ FD(A) and all α : D → A,

S(d1,...,dn),F(f1, . . . , fn, f)(α) = f(α⟨(d1, . . . , dn), (f1(α), . . . , fn(α))⟩).

Besides, let S(),F be the identical function on FD(A). Then we call

Fss
D(A) = ⟨FD(A), ⟨ed⟩d∈D, ⟨Sd⃗,F⟩

d⃗∈D#⟩

the full D-dimensional function simultaneous substitution algebra with base A. It can be checked
that Fss

D(A) is a D-SSA. Subalgebras of Fss
D(A) are called D-dimensional function simultaneous

substitution algebras (D-FSSA) with base A.

2.2.3 Polynomial simultaneous substitution algebras

Then we introduce a class of function simultaneous substitution algebras that are closely con-
nected with term simultaneous substitution algebras. Let S be an arbitrary similarity type such
that S ∩D = ∅ and S0 ∪D ̸= ∅, and let A be an arbitrary algebra of type S. Then each term
t ∈ TS(D) can be interpreted as a term operation (also called polynomials in [Fel82]), which is
a D-ary operation tA over A (hence tA ∈ FD(A)). We define term operations recursively: for
each assignment to dimensions α : D → A,

dA(α) = α(d) for each d ∈ D,

(Qt1 . . . tn)
A(α) = QA(tA1 (α), . . . , tAn (α)) for each Qt1 . . . tn ∈ T.
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Lemma 2.2. t 7→ tA is a homomorphism from Tss
S (D) to Fss

D(A).

Proof. First we show that for all d⃗ ∈ D# of length n and all t1, . . . , tn+1 ∈ TS(D),

(Sd⃗,T(t1, . . . , tn+1))
A = Sd⃗,F(tA1 , . . . , tAn+1).

If d⃗ = (), then (S(),T(t1))
A = tA1 = S(),F(tA1 ). Else, assume that d⃗ = (d1, . . . , dn). Take

arbitrary α : D → A, we prove (Sd⃗,T(t1, . . . , tn+1))
A(α) = Sd⃗,F(tA1 , . . . , tAn+1)(α) by induction

on the structure of tn+1. For convenience of expression, let α′ = α⟨d⃗, (tA1 (α), . . . , tAn (α))⟩, then
we have Sd⃗,F(tA1 , . . . , tAn , tA)(α) = tA(α′) for all t ∈ T .

(1) tn+1 = di, 1 ≤ i ≤ n:

(Sd⃗,T(t1, . . . , tn, di))
A(α) = tAi (α) = α⟨(d1, . . . , dn), (tA1 (α), . . . , tAn (α))⟩(di)

= α′(di) = dAi (α′) = Sd⃗,F(tA1 , . . . , tAn , dAi )(α) = Sd⃗,F(tA1 , . . . , tAn+1)(α);

(2) tn+1 = d, d /∈ {d1, . . . , dn}:

(Sd⃗,T(t1, . . . , tn, d))
A(α) = dA(α) = α(d) = α⟨(d1, . . . , dn), (tA1 (α), . . . , tAn (α))⟩(d)

= α′(d) = dA(α′) = Sd⃗,F(tA1 , . . . , tAn , dA)(α) = Sd⃗,F(tA1 , . . . , tAn+1)(α);

(3) tn+1 = Qt′1 . . . t
′
m:

(Sd⃗,T(t1, . . . , tn, Qt′1 . . . t
′
m))A(α)

= (QSd⃗,T(t1, . . . , tn, t
′
1) . . . S

d⃗,T(t1, . . . , tn, t
′
m))A(α)

= QA((Sd⃗,T(t1, . . . , tn, t
′
1))

A(α), . . . , (Sd⃗,T(t1, . . . , tn, t
′
m))A(α))

IH
= QA(Sd⃗,F(tA1 , . . . , tAn , t′A1 )(α), . . . , Sd⃗,F(tA1 , . . . , tAn , t′Am )(α))

= QA(t′A1 (α′), . . . , t′Am (α′))

= (Qt′1 . . . t
′
m)A(α′)

= Sd⃗,F(tA1 , . . . , tAn , (Qt′1 . . . t
′
m)A)(α)

= Sd⃗,F(tA1 , . . . , tAn+1)(α).

Thus (Sd⃗,T(t1, . . . , tn+1))
A(α) = Sd⃗,F(tA1 , . . . , tAn+1)(α) for all α : D → A, which means that

(Sd⃗,T(t1, . . . , tn+1))
A = Sd⃗,F(tA1 , . . . , tAn+1).

Besides, for each d ∈ D, dA is the d-th projection ed in FD(A). Therefore, t 7→ tA is a
homomorphism from Tss

S (D) to Fss
D(A).

Let CloD(A) be the least set of D-ary operations on A that contains the D-ary projection
operations and is closed under composition by the basic operations of A; it can be shown that
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CloD(A) = {tA | t ∈ T}. By the lemma above, CloD(A) is a subuniverse of FD(A). Let
ClossD(A) be the subalgebra of Fss

D(A) taking CloD(A) as its universe, and we call it the D-
dimensional polynomial simultaneous substitution algebra (D-PSSA) induced by A. The next
theorem describes the connection between D-PSSAs and D-TSSAs.

Theorem 2.3. (a) Let ϕ : TS(D) → CloD(A) be such that ϕ(t) = tA for all t ∈ TS(D), then
Tss

S (D)/ker(ϕ) is isomorphic to ClossD(A).

(b) Tss
S (D) is isomorphic to ClossD(TS(D)).

Proof. (a) By Lemma 2.2, ϕ is a homomorphism from Tss
S (D) onto ClossD(A), hence we have

Tss
S (D)/ker(ϕ) ∼= ClossD(A) by the Homomorphism Theorem.

(b) Notice that the term algebra TS(D) is of type S. Let ι : D → T be such that ι = ⟨d⟩d∈D,
then it is easy to check that tTS(D)(ι) = t for all t ∈ T . Hence t 7→ tTS(D) is injective, then we
have Tss

S (D) ∼= ClossD(TS(D)) by (a).

2.2.4 Generalization of term simultaneous substitution algebras

Normally, the arities of operation symbols are natural numbers and the terms we have discussed
so far are all finitary. However, a broader definition of terms is in order, in view of the fact
that we are dealing with algebras of possibly infinitary character. For this purpose, we allow
the arity of an operation symbol to be any set and consider a sort of “generalized terms” in the
sequel. Let I be a set of sets (we call sets in I arities), F be a set of operation symbols, and
π : F → I be the function associating each Q ∈ F with its arity π(Q); we call F a generalized
type. Let X be a set of variables such that X ∩ F = ∅ and X ∪ {Q ∈ F | π(Q) = ∅} ≠ ∅.

Let TF (X) be the least set such that

(i) for each x ∈ X, (x) ∈ TF (X);

(ii) if Q ∈ F and f : π(Q) → TF (X), then (Q, f) ∈ TF (X).

We call elements in TF (X) (generalized) terms, and usually represent (x) by x and (Q, f) by
Qf . Let S(),T be the identical operation on TF (X). For each x⃗ = (x1, . . . , xn) and t1, . . . , tn+1 ∈
TF (X), we define Sx⃗,T(t1, . . . , tn+1) by induction on the structure of tn+1:

(i) Sx⃗,T(t1, . . . , tn, x) =

{
ti, x = xi with 1 ≤ i ≤ n,

x, x /∈ {x1, . . . , xn};

(ii) Sx⃗,T(t1, . . . , tn, Qf) = Qf ′ where f ′ = ⟨Sx⃗,T(t1, . . . , tn, f(a))⟩a∈π(Q).

Then we consider Tss
F (X) = ⟨TF (X), ⟨x⟩x∈X , ⟨Sx⃗,T⟩x⃗∈X#⟩, and call it the full X-dimensional

term simultaneous substitution algebra of generalized type F , and subalgebras of Tss
F (X) X-

dimensional term simultaneous substitution algebras (X-TSSA) of generalized type F . It can
be checked that X-TSSAs of generalized type F are X-SSAs. Notice that our definitions here
coincide with the definitions in 2.2.1 when F is a type of algebras, i.e., the set of arities I is
a subset of ω; hence using the same notations for terms and term simultaneous substitution
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algebras here is not troublesome. To make a distinction, we call the X-TSSAs in 2.2.1 (in
other words, the X-TSSAs of types in which the arities of operation symbols are all natural
numbers) X-TSSAs of type of algebras, or simply, X-TSSAs, and call X-TSSAs defined in this
subsection (in other words, X-TSSAs of arbitrary generalized type) X-TSSAs of generalized
type, or X-TSSAs in a broader sense.

Finally, we generalize Theorem 2.3(b) to show that every Tss
F (X) is isomorphic to a X-FSSA

with base TF (X). Let ex be the x-th projection function in FX(TF (X)) for each x ∈ X. For
each assignment α : X → TF (X) and t ∈ TF (X), we define the (generalized) term operation
tT(α) by induction on the structure of t:

xT(α) = α(x),

QfT(α) = Qf ′, where f ′ = ⟨f(a)T(α)⟩a∈π(Q).

Then tT is a X-ary operation on TF (X) for each t ∈ TF (X).

Lemma 2.4. t 7→ tT is an injective homomorphism from Tss
F (X) to Fss

X(TF (X)).

Proof. First we show that t 7→ tT is a homomorphism. By definition, xT = ex for each x ∈ X.
For () ∈ D# and each t ∈ TF (X), we have (S(),T(t))T = tT = S(),F(tT). Then we prove that for
all x⃗ = (x1, . . . , xn) ∈ X# and t1, . . . , tn+1 ∈ TF (X), (Sx⃗,T(t1, . . . , tn+1))

T = Sx⃗,F(tT1 , . . . , t
T
n+1)

by induction on the structure of tn+1:

(1) tn+1 = xi, 1 ≤ i ≤ n:

(Sx⃗,T(t1, . . . , tn, xi))
T = tTi = Sx⃗,F(tT1 , . . . , t

T
n , exi) = Sx⃗,F(tT1 , . . . , t

T
n , x

T
i );

(2) tn+1 = x, x /∈ {x1, . . . , xn}:

(Sx⃗,T(t1, . . . , tn, x))
T = xT = ex = Sx⃗,F(tT1 , . . . , t

T
n , ex) = Sx⃗,F(tT1 , . . . , t

T
n , x

T);

(3) tn+1 = Qf : let f ′ = ⟨Sx⃗,T(t1, . . . , tn, f(a))⟩a∈π(Q), then Sx⃗,T(t1, . . . , tn, Qf) = Qf ′. Take an
arbitrary assignment α : X → TF (X),

(Sx⃗,T(t1, . . . , tn, Qf))T(α) = Qf ′T(α) = Qf ′′

where f ′′(a) = f ′(a)T(α) = (Sx⃗,T(t1, . . . , tn, f(a)))
T(α)

IH
= Sx⃗,F(tT1 , . . . , t

T
n , f(a)

T)(α) for all
a ∈ π(Q); meanwhile, we have

(Sx⃗,F(tT1 , . . . , t
T
n , QfT))(α) = QfT(α⟨x⃗, (tT1 (α), . . . , tTn (α))⟩) = Qf ′′′

where f ′′′(a) = f(a)T(α⟨x⃗, (tT1 (α), . . . , tTn (α))⟩) = (Sx⃗,F(tT1 , . . . , t
T
n , f(a)

T))(α) for all a ∈
π(Q). Therefore (Sx⃗,T(t1, . . . , tn, Qf))T(α) = (Sx⃗,F(tT1 , . . . , t

T
n , QfT))(α) for all α, i.e.,

(Sx⃗,T(t1, . . . , tn, Qf))T = Sx⃗,F(tT1 , . . . , t
T
n , QfT).

Then we show that t 7→ tT is injective. Let ι : X → TF (X) be such that ι = ⟨x⟩x∈X , then
it’s easy to check that tT(ι) = t for all t ∈ TF (X). So tTa = tTb implies ta = tTa (ι) = tTb (ι) = tb
for all ta, tb ∈ TF (X). Hence t 7→ tT is injective.
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Since t 7→ tT is an injective homomorphism from Tss
F (X) to FX(TF (X)), we have the fol-

lowing theorem:

Theorem 2.5. Tss
F (X) is isomorphic to the subalgebra of FX(TF (X)) with {tT | t ∈ TF (X)}

as its universe.

2.3 Dimension sets and local finite-dimensionality

In a term simultaneous substitution algebra, a variable x may not matter to a term t, that is to
say, x doesn’t occur in t. The following concept helps us to generalize this phenomenon to all
non-trivial simultaneous substitution algebras:

Definition 2.2. Let A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be a non-trivial D-SSA. For each a ∈ A, the

dimension set of a in A is

∆Aa = {d ∈ D | ∃a′ ∈ D S(d)(a′, a) ̸= a}.

The superscript A will be omitted where it is clear which algebra is being discussed.

By the definition, d /∈ ∆a iff S(d)(a′, a) = a for all a′ ∈ A. The following lemmas are useful
in the proof of the representability of simultaneous substitution algebras in Chapter 5.

Lemma 2.6. Let D be a nonempty set and A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be a non-trivial D-SSA.

For all (d1, . . . , dn) ∈ D# and a, a1, . . . , an ∈ A,

(a) d1 /∈ ∆a ⇒ S(d1,...,dn)(a1, . . . , an, a) = S(d2,...,dn)(a2, . . . , an, a);

(b) {u1, . . . , uk, v1, . . . , vn−k} = {1, . . . , n}, dv1 , . . . , dvn−k
/∈ ∆a ⇒

S(d1,...,dn)(a1, . . . , an, a) = S(du1 ,...,duk )(au1 , . . . , auk
, a).

Proof. (a) If n = 1, then S(d1)(a1, a)
d1 /∈∆a
= a

(ss1)
= S()(a). Else, we have n ≥ 2. Since d1 /∈ ∆a,

we have a = S(d1)(cd2 , a). Then

S(d1,...,dn)(a1, . . . , an, a) = S(d1,...,dn)(a1, . . . , an, S
(d1)(cd2 , a))

2.1(d)
= S(d1,...,dn)(S(d1,...,dn)(a1, . . . , an, cd2), a2, . . . , an, a)

2.1(a)
= S(d1,...,dn)(a2, a2, . . . , an, a)

2.1(a)
= S(d1,...,dn)(S(d2,...,dn)(a2, . . . , an, cd2), a2, . . . , an, a)

2.1(d)
= S(d2,...,dn)(a2, . . . , an, S

(d1)(cd2 , a))

= S(d2,...,dn)(a2, . . . , an, a).

(b) By Lemma 2.1(b),

S(d1,...,dn)(a1, . . . , an, a) = S(dv1 ,...,dvn−k
,du1 ,...,duk )(av1 , . . . , avn−k

, au1 , . . . , auk
, a).

Apply (a) n− k times, then we get S(d1,...,dn)(a1, . . . , an, a) = S(du1 ,...,duk )(au1 , . . . , auk
, a).
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Lemma 2.7. Let D be a nonempty set and A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be a non-trivial D-SSA.

(a) For each d ∈ D, ∆cd = {d}.

(b) For each (d1, . . . , dn) ∈ D# and a1, . . . , an, a ∈ A, ∆S(d1,...,dn)(a1, . . . , an, a) ⊆ (∆a \
{d1, . . . , dn}) ∪

⋃
1≤i≤n∆ai.

Proof. (a) Since A is non-trivial, we can take a ∈ A such that a ̸= cd, so S(d)(a, cd)
(ss2)
= a ̸= cd,

hence d ∈ ∆cd. For each d′ ∈ D \ {d}, S(d′)(a, cd)
(ss4)
= cd for all a ∈ A, so d′ /∈ ∆cd. Therefore

∆cd = {d}.
(b) Let D0 = (∆a \ {d1, . . . , dn}) ∪

⋃
1≤i≤n∆ai. To see that ∆S(d1,...,dn)(a1, . . . , an, a) ⊆ D0,

suppose d /∈ D0. Then for each i with 1 ≤ i ≤ n, d /∈ ∆ai, i.e., S
(d)(a′, ai) = ai for all a′ ∈ A.

There are two cases.
Case 1: d ∈ {d1, . . . , dn}. For all a′ ∈ A,

S(d)(a′, S(d1,...,dn)(a1, . . . , an, a))
2.1(d)
= S(d1,...,dn)(S(d)(a′, a1), . . . , S

(d)(a′, an), a)

= S(d1,...,dn)(a1, . . . , an, a).

Case 2: d /∈ {d1, . . . , dn}, so d /∈ ∆a. For all a′ ∈ A,

S(d)(a′, S(d1,...,dn)(a1, . . . , an, a))
2.1(d)
= S(d1,...,dn,d)(S(d)(a′, a1), . . . , S

(d)(a′, an), a
′, a)

= S(d1,...,dn,d)(a1, . . . , an, a
′, a)

2.6(b)
= S(d1,...,dn)(a1, . . . , an, a).

So d /∈ ∆S(d1,...,dn)(a1, . . . , an, a) for all d /∈ D0. By contraposition, ∆S(d1,...,dn)(a1, . . . , an, a)
⊆ D0.

Definition 2.3. Let D be an infinite set and A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be a non-trivial

D-SSA. A is locally finite-dimensional if ∆a is finite for all a ∈ A.

It is easy to see that for each infinite D and each similarity type S of algebras such that
S ∩ D = ∅ and S0 ∪ D ̸= ∅, Tss

S (D) is locally finite-dimensional; it can also be shown that a
quotient algebra of a locally finite-dimensional D-SSA is still locally finite-dimensional, hence
for each algebra B of type S, ClossD(B) is locally finite-dimensional.
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Chapter 3

Simultaneous substitution algebras
and (singular) substitution algebras

In this chapter we discuss the relation between simultaneous substitution algebras and singular
substitution algebras. We also say substitution algebras instead of singular substitution algebras
as in [Fel82] and [Fel15]. Intuitively, singular substitution is a simple version of simultaneous
substitution; a question is whether the complex version can be built up from the simple one,
and a partial answer will be given in our discussion. Our axiom schemas of substitution algebras
are based on the axiom schemas given by Feldman in [Fel82], but differ in the choice of (s6).

Definition 3.1. Let A,D be two nonempty sets; for each x ∈ D, let cx ∈ A be a distinguished
element, and Sx be a binary operation of A; then A = ⟨A, ⟨cx, Sx⟩x∈D⟩ is a D-dimensional
substitution algebra (D-SA) if for all x, y ∈ D and a, b, d ∈ A,

(s1) Sx(a, cx) = a;

(s2) Sx(cx, a) = a;

(s3) x ̸= y ⇒ Sx(a, cy) = cy;

(s4) Sx(d, Sx(b, a)) = Sx(Sx(d, b), a);

(s5) x ̸= y, Sx(cy, d) = d ⇒ Sy(d, Sx(b, a)) = Sx(Sy(d, b), Sy(d, a));

(s6) Sy(b, Sx(cy, a)) = Sx(b, Sy(cx, a)).
1

In the following we will also write Sx
b a instead of Sx(b, a), and Sx

ya instead of Sx(cy, a). Again
we can think of algebras of terms as an example. Let S be an arbitrary type of algebras, then
TS(D) is the set of all terms of type S over variables D. Remember that for each x ∈ D, S(x) is
the binary operation over TS(D) such that for all terms t and t′, S(x)(t′, t) is the term obtained by
replacing the occurrences of x by t′ in t. It can be verified that Ts

S(D) = ⟨TS(D), ⟨x, S(x)⟩x∈D⟩
1(s5) is equivalent to x ̸= y ⇒ Sy(Sx(cy, d), S

x(b, a)) = Sx(Sy(Sx(cy, d), b), S
y(Sx(cy, d), a)) under (s3)(s4),

thus the class of D-SAs can be defined by a set of equations.
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is a D-SA, and we call this algebra the D-dimensional term substitution algebra (D-TSA) of
type S.

Similarly to the previous chapter, we can also define D-dimensional function substitution
algebras (D-FSA), D-dimensional polynomial substitution algebras (D-PSA), and D-TSAs in a
broader sense; we can verify they satisfy (s1)-(s6). Given an arbitrary nonempty set A and an
arbitrary algebra B of type S, we denote the full D-FSA with base A by Fs

D(A) and the D-PSA
induced by B by ClosD(B).

Notice that Ts
S(D), Fs

D(A), ClosD(B) are reducts of Tss
S (D), Fss

D(A), ClossD(B) respectively.
In fact, it can be shown that each D-SSA can be reduced to a D-SA:

Proposition 3.1. For each D-SSA Ass = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩, the structure As = ⟨A, ⟨cd,

S(d)⟩d∈D⟩ is a D-SA.

Proof. Let Ass = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ be an arbitrary D-SSA. We can show that As =

⟨A, ⟨cd, S(d)⟩d∈D⟩ satisfies the axiom schemas (s1)-(s6). We check (s6) as an example. For
all x, y ∈ D and a, b ∈ A, we have

S(y)(b, S(x)(cy, a))
2.1(d)
= S(x,y)(S(y)(b, cy), b, a)

(ss2)
= S(x,y)(b, b, a);

similarly, S(x)(b, S(y)(cx, a)) = S(y,x)(b, b, a). Hence

S(y)(b, S(x)(cy, a)) = S(x,y)(b, b, a)
(ss6)
= S(y,x)(b, b, a) = S(x)(b, S(y)(cx, a)).

Therefore, As is a D-SA.

The next question is whether each D-SA can be expanded to a D-SSA. To start our discus-
sion, we need definitions of dimension sets and local finite-dimensionality, coming from [Fel82].

Definition 3.2. Let A = ⟨A, ⟨cx, Sx⟩x∈D⟩ be a D-SA. For a ∈ A, the dimension set of a in A
is

∆Aa = {x ∈ D | ∃b ∈ A Sx
b a ̸= a}.

The superscript will be omitted where it is clear which algebra is being discussed.

Notice that by this definition, a dimension x /∈ ∆a iff Sx
b a = a for all b ∈ A. This condition

can be weakened when there are at least two dimensions in D (in other words, x is not the only
dimension). The following lemma comes from Theorem 2.1 in [Fel82]:

Lemma 3.2. Let D be a set with |D| ≥ 2, A be a D-SA, a ∈ A, and x ∈ D. Then x /∈ ∆a (i.e.,
Sx
b a = a for all b ∈ A) if and only if there exists y ∈ D \ {x} such that Sx

ya = a.

With this lemma we can change the antecedent in (s5):

(s5’) x ̸= y, x /∈ ∆a ⇒ Sy(a, Sx(d, b)) = Sx(Sy(a, d), Sy(a, b)).
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Definition 3.3. Let D be an infinite set and A = ⟨A, ⟨cx, Sx⟩x∈D⟩ be a D-SA.
(a) A is locally finite-dimensional if for all a ∈ A, ∆a is finite.
(b) A is dimension-complemented if for all finite A0 ⊆ A, D \

⋃
{∆a | a ∈ A0} is infinite.

It is easy to see that each locally finite-dimensional D-SA is also dimension-complemented.
Then we will show that a D-SA can expanded to a D-SSA under the conditions of local finite-
dimensionality (or dimension-complementedness). We prove some lemmas first. Part of the
following lemma is substantially the same as Theorem 2.2 in [Fel15].

Lemma 3.3. Let D be a nonempty set and A = ⟨A, ⟨cd, Sd⟩d∈D⟩ be a D-SA.

(a) For all x, y ∈ D with x ̸= y, y /∈ ∆cx.

(b) For all a, b, d ∈ A and x, y ∈ D with x ̸= y, x /∈ ∆d, and y /∈ ∆b,

Sy(d, Sx(b, a)) = Sx(b, Sy(d, a)) (or Sy
dS

x
b a = Sx

b S
y
da).

(c) For all a, b ∈ A and x, y ∈ D with x /∈ ∆a ∪∆b, x /∈ ∆Sy
b a.

(d) For all i, n ∈ N with 1 ≤ i ≤ n, and for all pairwise distinct dimensions d1, . . . , dn, d
∗
1,

. . . , d∗n, d
∗∗
i ∈ D and all a, a1, . . . , an ∈ A such that d∗1, . . . , d

∗
n, d

∗∗
i /∈ ∆a ∪

⋃
1≤j≤n∆aj ,

Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = Sd∗n

an . . . S
d∗∗i
ai . . . S

d∗1
a1S

dn
d∗n

. . . Sdi
d∗∗i

. . . Sd1
d∗1
a

(the expression on the right is obtained by replacing S
d∗i
ai , S

di
d∗i

with S
d∗∗i
ai , Sdi

d∗∗i
respectively).

(e) For all pairwise distinct dimensions d1, . . . , dn, d
∗
1 . . . , d

∗
n, d

∗∗
1 , . . . , d∗∗n ∈ D and a, a1, . . . , an ∈

A such that d∗1, . . . , d
∗
n, d

∗∗
1 , . . . , d∗∗n /∈ ∆a ∪

⋃
1≤i≤n∆ai,

Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = Sd∗∗n

an . . . S
d∗∗1
a1 Sdn

d∗∗n
. . . Sd1

d∗∗1
a.

Proof. (a) For all x, y ∈ D with x ̸= y, we have Sy
acx = cx for all a ∈ A by (s3), hence y /∈ ∆cx.

(b) For all a, b, d ∈ A and x, y ∈ D with x ̸= y, x /∈ ∆d and y /∈ ∆b,

Sy(d, Sx(b, a))
(s5’),x ̸=y,x/∈∆d

= Sx(Sy(d, b), Sy(d, a))
y/∈∆b
= Sx(b, Sy(d, a)).

(c) Take arbitrary a, b ∈ A and x, y ∈ D with x /∈ ∆a ∪∆b. Then for all d ∈ A,

Sx
dS

y
b a

x/∈∆a
= Sx

dS
y
bS

x
ya

(s6)
= Sx

dS
x
b S

y
xa

(s4)
= Sx(Sx

d b, S
y
xa)

x/∈∆b
= Sx

b S
y
xa

(s6)
= Sy

bS
x
ya

x/∈∆a
= Sy

b a.

Thus x /∈ ∆Sy
b a.
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(d) First concerning S
d∗n
an · · ·Sd∗1

a1S
dn
d∗n

· · ·Sd1
d∗1
a. Since d1, . . . , dn, d

∗
1, . . . , d

∗
n are pairwise distinct,

we have d1, . . . , dn /∈ ∆cd∗j for all j with 1 ≤ j ≤ n by (a), hence we can exchange Sdi
d∗i

with

S
di+1

d∗i+1
, . . . , Sdn

d∗n
in turn by (b); because d∗1, . . . , d

∗
n /∈

⋃
1≤j≤n∆aj , we can also exchange S

d∗i
ai with

S
d∗i−1
ai−1 , . . . , S

d∗1
a1 in turn; for convenience of formulation, we write S

d∗n
an . . . S

d∗i+1
ai+1S

d∗i−1
ai−1 . . . S

d∗1
a1 and

Sdn
d∗n

. . . S
di+1

d∗i+1
S
di−1

d∗i−1
. . . Sd1

d∗1
as S1, S2 respectively, then we have

Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = S1S

d∗i
ai S

di
d∗i
S2a.

Since d∗i /∈ ∆a and d∗i /∈ {d∗j | 1 ≤ j ≤ n, j ̸= i}, we have d∗i /∈ ∆S2a by applying (c) n− 1 times.
Then we have

S1S
d∗i
ai S

di
d∗i
S2a

(s6)
= S1S

di
aiS

d∗i
di
S2a

d∗i /∈∆S2a
= S1S

di
aiS2a.

Hence S
d∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = S1S

di
aiS2a.

Similarly, we can show that S
d∗n
an . . . S

d∗∗i
ai . . . S

d∗1
a1S

dn
d∗n

. . . Sdi
d∗∗i

. . . Sd1
d∗1
a = S1S

di
aiS2a. Thus the equa-

tion we want holds.

(e) Apply (d) n times.

Lemma 3.4. Let D be an infinite set and A be a locally finite-dimensional D-SA. For all
d1, . . . , dn, d

∗
1, . . . , d∗n, d

∗∗
1 , . . . , d∗∗n ∈ D and a, a1, . . . , an ∈ A such that d1, . . . , dn, d∗1, . . . , d

∗
n

are pairwise distinct, d1, . . . , dn, d
∗∗
1 , . . . , d∗∗n are pairwise distinct, and d∗1, . . . , d

∗
n, d

∗∗
1 , . . . , d∗∗n /∈

∆a ∪
⋃

1≤i≤n∆ai, we have

Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = Sd∗∗n

an . . . S
d∗∗1
a1 Sdn

d∗∗n
. . . Sd1

d∗∗1
a.

Proof. Notice that {d∗1, . . . , d∗n} and {d∗∗1 , . . . , d∗∗n } can overlap. Take n different dimensions
d∗∗∗1 , . . . , d∗∗∗n which are not in {di, d∗i , d∗∗i | 1 ≤ i ≤ n} ∪ ∆a ∪

⋃
1≤i≤n∆ai; this can be done

because D is infinite and A is locally finite-dimensional. By Lemma 3.3(e), we have

Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a = Sd∗∗∗n

an · · ·Sd∗∗∗1
a1 Sdn

d∗∗∗n
· · ·Sd1

d∗∗∗1
a = Sd∗∗n

an . . . S
d∗∗1
a1 Sdn

d∗∗n
. . . Sd1

d∗∗1
a.

Theorem 3.5. Let D be an infinite set and A = ⟨A, ⟨cd, Sd⟩d∈D⟩ be a locally finite-dimensional
D-SA, then A can be expanded to a D-SSA.

Proof. We show that simultaneous substitution can be defined inA. For each (d1, . . . , dn) ∈ D#,
n > 0, we define S(d1,...,dn) as the (n+1)-ary operation such that given arbitrary a1, . . . , an, a ∈
A, S(d1,...,dn)(a1, . . . , an, a) is S

d∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
a where d∗1, . . . , d

∗
n are n different dimensions

outside {d1, . . . , dn} ∪∆a∪
⋃

1≤i≤n∆ai (there exist such dimensions because A is locally finite-
dimensional); Lemma 3.4 ensures that our choice of d∗1, . . . , d

∗
n doesn’t affect the final result.

Besides, for the empty sequence () ∈ D#, we define S() as the identical operation.
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It can be shown that the structure ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗⟩
d⃗∈D#⟩ we have defined satisfies (ss1)-

(ss6). Take (ss2) as an example:

S(d1,...,dn)(a1, . . . , an, cd1) = Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd1
d∗1
cd1

= Sd∗n
an . . . S

d∗1
a1S

dn
d∗n

. . . Sd2
d∗2
cd∗1 (s1)

= Sd∗n
an . . . S

d∗1
a1 cd∗1 (d2, . . . , dn /∈ ∆cd∗1)

= Sd∗n
an . . . S

d∗2
a2a1 (s1)

= a1. (d∗2, . . . , d
∗
n /∈ ∆a1)

Hence each locally finite-dimensional D-SA can be expanded to a D-SSA.

Remark 1. Notice that the proofs of Lemma 3.4 and Theorem 3.5 still hold if we replace local
finite-dimensionality by dimension-complementedness, which means we can relax the condition
to dimension-complementedness.

Remark 2. We provide two examples to show why we need the conditions that D is infinite
and the substitution algebra is local finite-dimensionality in Theorem 3.5.

Example 1: let D = {x, y} with x ̸= y (hence D is finite) and S = {f} where f is a binary
operation symbol, then Ts

S(D) is the D-TSA of type S. Consider the subalgebra of TS(D)
generated by {fxy}; the term fyx is not in the universe of this subalgebra, while it can be
obtained by substituting y, x for x, y simultaneously in fxy.

Example 2: Let ω be the set of variables and F = {Q} with π(Q) = ω. Then Ts
F (ω) is the

ω-TSA of generalized type F . Let f0, f1 : ω → ω be such that f0(n) = n for all n ∈ ω, and

f1(n) =


1 n = 0,

0 n = 1,

n n ≥ 2.

Then Qf0 and Qf1 are in TF (ω), and ∆Qf0 = ∆Qf1 = ω. Consider the subalgebra of Ts
F (ω)

generated by {Qf0}; it can be shown that Qf1 is not in the universe of this algebra, while Qf1
can be obtained by substituting 1,0 for 0,1 simultaneously in Qf0.

Notice that in both of these examples, the substitution algebra can be superexpanded to
a simultaneous subsitution algebra. The question whether every substitution algebra can be
superexpanded to a simultaneous subsitution algebra remains open.
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Chapter 4

Decidability and completeness

The goal of this chapter is to show our axiom schemas (ss1)-(ss6) actually characterize the class of
term simultaneous substitution algebras and of polynomial simultaneous substitution algebras;
what’s more, the equational theory generated by our set of axioms is decidable. These results
come from the normal form theorem for simultaneous substitution, which we will introduce in
the first section.

4.1 Normal form theorem for simultaneous substitution

For each d ∈ D, let d be a corresponding constant symbol; for each d⃗ ∈ D# of length n, let Sd⃗

be a corresponding (n+ 1)-ary operation symbol. Let Sss
D = {d | d ∈ D} ∪ {Sd⃗ | d⃗ ∈ D#}, then

Sss
D is the similarity type of D-SSAs; we omit the superscript when there is no confusion. Let X

be an arbitrary countable set which is disjoint with SD, then TSD
(X), the set of terms of type

SD over X, is the least set such that

(i) X ⊆ TSD
(X);

(ii) {d | d ∈ D} ⊆ TSD
(X);

(iii) If d⃗ ∈ D# is of length n and t1, . . . , tn+1 ∈ TSD
(X), then Sd⃗t1 . . . tn+1 ∈ TSD

(X).

Among all the terms in TSD
(X), we say a term t is in normal form when t ∈ NFSD

(X),
where NFSD

(X) ⊆ TSD
(X) is the least set such that

(i) X ⊆ NFSD
(X);

(ii) {d | d ∈ D} ⊆ NFSD
(X);

(iii) If (d1, . . . , dn) ∈ D#, x ∈ X, t1, . . . , tn ∈ NFSD
(X) and ti ̸= di for all i with 1 ≤ i ≤ n,

then S(d1,...,dn)t1 . . . tnx ∈ NFSD
(X).

Lemma 4.1. Let D,D′ be sets of dimensions and X,X ′ be sets of variables such that D′ ⊆ D,
X ′ ⊆ X, and SD ∩X = ∅, then NFSD′ (X

′) = NFSD
(X) ∩ TSD′ (X

′).
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Proof. First we prove that for each t ∈ NFSD′ (X
′), t ∈ NFSD

(X) by induction on the structure
of t:

(1) t = x, x ∈ X ′ or t = d, d ∈ D′: t ∈ NFSD
(X) because X ′ ⊆ X and D′ ⊆ D.

(2) t = S(d1,...,dn)t1 . . . tnx with (d1, . . . , dn) ∈ D′#, t1, . . . , tn ∈ NFSD′ (X
′), and ti ̸= di for all

i with 1 ≤ i ≤ n: since D′ ⊆ D, (d1, . . . , dn) ∈ D#; by IH, ti ∈ NFSD
(X) for all i; hence

t ∈ NFSD
(X).

As we also have NFSD′ (X
′) ⊆ TSD′ (X

′), NFSD′ (X
′) ⊆ NFSD

(X) ∩ TSD′ (X
′).

To show NFSD′ (X
′) ⊇ NFSD

(X) ∩ TSD′ (X
′), we show that for each t ∈ TSD′ (X

′), if t ∈
NFSD

(X) then t ∈ NFSD′ (X
′) by induction on the structure of t:

(1) t = x, x ∈ X ′ or t = d, d ∈ D′: then t ∈ NFSD′ (X
′).

(2) t = Sd⃗t1 . . . tn+1 with d⃗ ∈ D# of length n and t1, . . . , tn+1 ∈ TSD′ (X
′): assume that t ∈

NFSD
(X), then ti ∈ NFSD

(X) and ti ̸= di for all i, 1 ≤ i ≤ n; by IH, ti ∈ NFSD′ (X
′) for

all i, so we have t ∈ NFSD′ (X
′).

Therefore, NFSD′ (X
′) = NFSD

(X) ∩ TSD′ (X
′).

With the observation in this lemma, we can say a term is in normal form without explicitly
stating the type and the set of variables we are talking about.

Let D-SSA be the set of equations corresponding to (ss1)-(ss6) in Chapter 2; it is the set of
axioms of D-SSAs. We will prove that every term in TSD

(X) is equivalent to a term in normal
form under D-SSA. We write TSD

(X), NFSD
(X), D-SSA as T , NF , SSA respectively when

there is no confusion.

Theorem 4.2. For each term t ∈ TSD
(X), there exists a term t′ ∈ NFSD

(X) such that D-
SSA ⊢ t ≈ t′.

Proof. First we introduce two measurements of the number of substitution operators in a term,
called w1 and w2. Definitions are given recursively:

(i) for all x ∈ X and d ∈ D, w1(x) = w2(x) = w1(d) = w2(d) = 0;

(ii) for all d⃗ ∈ D# of length n and t1, . . . , tn+1 ∈ T ,

w1(S
d⃗t1 . . . tn+1) = w1(tn+1) + 1,

w2(S
d⃗t1 . . . tn+1) =

{
w2(tn+1) + 1, n = 0,

max{w2(t1), . . . , w2(tn)}+ w2(tn+1) + 1, n ≥ 1.

Notice that for each term t, we have

w1(t) = 0 ⇔ w2(t) = 0 ⇔ t = x for some x ∈ X or t = d for some d ∈ D.

First we claim that
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(∗) each term t with w1(t) ≥ 1 is equivalent to a term t′ under SSA such that w1(t
′) = 1 and

w2(t
′) ≤ w2(t).

We prove (∗) by induction on w1(t):

(1) w1(t) = 1: take t′ = t.

(2) Assume (∗) holds for all terms t with w1(t) = n ≥ 1. Let t be an arbitrary term with

w1(t) = n + 1. Since w1(t) ≥ 2, t is of the form Sd⃗t1 . . . tm+1 where tm+1 is of the form

Sd⃗′t′1 . . . t
′
l+1 for some d⃗ ∈ D# of length m and d⃗′ ∈ D# of length l.

It is easy to show that if m = 0 or l = 0, i.e., d⃗ = () or d⃗′ = (), then t is equivalent to some t′

with w1(t
′) = 1 and w2(t

′) ≤ w2(t) by IH. Then we consider the case that m ̸= 0 and l ̸= 0.
Let d⃗ = (d1, . . . , dm) and d⃗′ = (d′1, . . . , d

′
l), then there exist t1, . . . , tm, t′1, . . . , t

′
l, t

′
l+1 ∈ T such

that

t = S(d1,...,dm)t1 . . . tmS(d′1,...,d
′
l)t′1 . . . t

′
lt
′
l+1.

Take integers u1, . . . , uk such that 1 ≤ u1 < · · · < uk ≤ m and {du1 , . . . , duk
} = {d1, . . . , dm}

\{d′1, . . . , d′l}. Take

t′ = S(d′1,...,d
′
l,du1 ,...,duk )t′′1 . . . t

′′
l tu1 . . . tuk

t′l+1

where t′′i = S(d1,...,dm)t1 . . . tmt′i for all i with 1 ≤ i ≤ l; by Lemma 2.1(d), we have SSA ⊢
t ≈ t′. Because w1(t) = n + 1, w1(t) = w1(S

(d′1,...,d
′
l)t′1 . . . t

′
l+1) + 1 = w1(t

′
l+1) + 2, and

w1(t
′) = w1(t

′
l+1) + 1, we have w1(t

′) = n.

Then we show that w2(t) = w2(t
′). Let a = max{w2(t1), . . . , w2(tm)} and b = max{w2(t

′
1),

. . . , w2(t
′
l)}. Then

w2(t) = max{w2(t1), . . . , w2(tm)}+ w2(S
(d′1,...,d

′
l)t′1 . . . t

′
lt
′
l+1) + 1

= a+ (max{w2(t
′
1), . . . , w2(t

′
l)}+ w2(t

′
l+1) + 1) + 1

= a+ b+ w2(t
′
l+1) + 2.

For each i with 1 ≤ i ≤ l, w2(t
′′
i ) = w2(S

(d1,...,dm)t1 . . . tmt′i) = max{w2(t1), . . . , w2(tm)} +
w2(t

′
i) + 1 = a+ w2(t

′
i) + 1, hence

w2(t
′) = max{w2(t

′′
1), . . . , w2(t

′′
l ), w2(tu1), . . . , w2(tul

)}+ w2(t
′
l+1) + 1

= max{a+ w2(t
′
1) + 1, . . . , a+ w2(t

′
l) + 1, w2(tu1), . . . , w2(tuk

)}+ w2(t
′
l+1) + 1

= max{a+ w2(t
′
1) + 1, . . . , a+ w2(t

′
l) + 1}+ w2(t

′
l+1) + 1 (since w2(tui) ≤ a)

= a+max{w2(t
′
1), . . . , w2(t

′
l)}+ 1 + w2(t

′
l+1) + 1

= a+ b+ w2(t
′
l+1) + 2.

Thus w2(t
′) = w2(t). By IH, there exists a term t′′ such that SSA ⊢ t′ ≈ t′′, w1(t

′′) = 1 and
w2(t

′′) ≤ w2(t
′). Thus we have SSA ⊢ t ≈ t′′ and w2(t

′′) ≤ w2(t).
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Then we prove that each term t is equivalent to a term t′ in normal form under SSA by
induction on w2(t):

(3) w2(t) = 0: then t = x for some x ∈ X or t = d for some d ∈ D, and in both cases we have
SSA ⊢ t ≈ t where t itself is in normal form.

(4) Assume that each term t with 0 ≤ w2(t) ≤ n is equivalent to a term t′ in normal form under
SSA. Let t be an arbitrary term with w2(t) = n + 1; since w2(t) ≥ 1, w1(t) ≥ 1 as well,
hence there exists t′ such that SSA ⊢ t ≈ t′, w1(t

′) = 1 and w2(t
′) ≤ w2(t) = n + 1 by (∗).

Because w1(t
′) = 1, t′ starts with Sd⃗ for some d⃗ ∈ D#. If d⃗ = (), then t′ = S()t1 for some

t1 ∈ T with w1(t1) = 0, hence w2(t1) = 0, hence we have SSA ⊢ S()t1 ≈ t1 by (ss1) and t1
is in normal form; hence t is equivalent to a normal form.

Else, d⃗ is of length m, m ≥ 1. Let d⃗ = (d1, . . . , dm), then we have t′ = Sd⃗t1 . . . tmtm+1

for some t1, . . . , tm+1 ∈ T with w1(tm+1) = 0. Since w2(t
′) = max{w2(t1), . . . , w2(tm)} +

w2(tm+1)+1 = n+1, we have max{w2(t1), . . . , w2(tm)} = n, hence w2(ti) ≤ n for all i with
1 ≤ i ≤ m. We consider three cases with regard to tm+1:

Case 1: tm+1 = x, x ∈ X. By IH, for each i with 1 ≤ i ≤ m, there exists t′i in normal form
such that SSA ⊢ ti ≈ t′i, hence t′ = S(d1,...,dm)t1 . . . tmx is equivalent to S(d1,...,dm)t′1 . . . t

′
mx

under SSA. Take integers u1, . . . , ul such that 1 ≤ u1 < · · · < ul ≤ m and {u1, . . . , ul} = {i |
1 ≤ i ≤ m, t′i ̸= di}. By Lemma 2.1(c), SSA ⊢ S(d1,...,dm)t′1 . . . t

′
mx ≈ S(du1 ,...,dul )t′u1

. . . t′ul
x.

Since each t′ui
is in normal form and t′ui

̸= dui , S
(du1 ,...,dul )t′u1

. . . t′ul
x is in normal form as

well. Because t is equivalent to t′ = S(d1,...,dm)t′1 . . . t
′
mx under SSA, t is also equivalent to

S(du1 ,...,dul )t′u1
. . . t′ul

x.

Case 2: tm+1 = di, 1 ≤ i ≤ m. By Lemma 2.1(a), SSA ⊢ S(d1,...,dm)t1 . . . tmdi ≈ ti; by IH,
there exists t′i in normal form such that ti is equivalent to t′i; hence SSA ⊢ t ≈ t′i.

Case 3: tm+1 = d for some d ∈ D such that d ̸= di for all i, 1 ≤ i ≤ m. Then SSA ⊢
S(d1,...,dm)t1 . . . tmd ≈ d by (ss4).

Therefore, for each term t, there exists a term t′ in normal form such that SSA ⊢ t ≈ t′.

This proof not only shows the existence of an equivalent normal form, but also implies an
algorithm to compute such a normal form.

Proposition 4.3. There is an algorithm such that for each term t ∈ TSD
(X), it outputs a term

t′ in normal form such that SSA ⊢ t ≈ t′.

Proof. We sketch the basic idea here. For a term t of the form S(d1,...,dn)t1 . . . tn+1, we can use the
method in Lemma 2.1(d) for at most w1(t)− 1 times to lower w1 and obtain an equivalent term
t′ of the form S(d′1,...,d

′
m)t′1 . . . t

′
mx or S(d′1,...,d

′
m)t′1 . . . t

′
md; notice that w2(t

′
1), . . . , w2(t

′
m) < w2(t).

Repeat this procedure on t′1, . . . , t
′
m and other new terms obtained in the loop, and simplify the

terms with (ss1), (ss4), Lemma 2.1(a) and Lemma 2.1(c) during the process, until a normal form
has been reached.
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4.2 Decidability and completeness

To show the decidability and completeness of the equational theory generated by SSA, there is
still some work to be done. To see whether an equation is valid under SSA, i.e., whether the
two terms in the equation are equivalent, our idea is to use the normal form theorem and check
whether their normal forms are equivalent. Notice that this cannot be done by simply checking
whether two terms in normal form are identical, as a term can be equivalent to more than one
term in normal form under SSA. For example, take two different dimensions d1, d2 ∈ D and
three variables x, y, z ∈ X (x, y, z can be the same), then S(d1,d2)xyz and S(d2,d1)yxz are two
different terms in normal form; at the same time, we have SSA ⊢ S(d1,d2)xyz ≈ S(d2,d1)yxz.
The problem is that elements in simultaneous substitution algebras stay the same after a rear-
rangement according to a permutation, while our definition of normal form distinguishes such
different arrangements. To solve it, we can define an equivalence relation on NF to represent
the invariance under permutations. Let ∼P ⊆ NF 2 be the least relation such that

(i) x ∼P x for all x ∈ X;

(ii) d ∼P d for all d ∈ D;

(iii) If n ≥ 1, p is a permutation of {1, . . . , n}, ti ∼P t′i for all i with 1 ≤ i ≤ n, and
S(d1,...,dn)t1 . . . tnx, S

(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x ∈ NF , then

S(d1,...,dn)t1 . . . tnx ∼P S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x.

Below are some basic properties of ∼P :

Proposition 4.4. (a) ∼P is an equivalence relation.

(b) For all ta, tb ∈ NF , if ta ∼P tb then SSA ⊢ ta ≈ tb.

(c) {(ta, tb) ∈ NF 2 | ta ∼P tb} is decidable.

Proof. (a) ∼P is reflective: for each t ∈ NF , we show t ∼p t by induction on the structure of t:

(1) t = x, x ∈ X or t = d, d ∈ D: then t ∼P t by (i)(ii);

(2) t = S(d1,...,dn)t1 . . . tnx: since t ∈ NF , each ti is in normal form, so ti ∼P ti for each i,
1 ≤ i ≤ n by IH, hence S(d1,...,dn)t1 . . . tnx ∼P S(d1,...,dn)t1 . . . tnx by (iii).

∼P is symmetric: we prove that for all ta, tb ∈ NF , if ta ∼P tb then tb ∼P ta by induction on
the structure of ta:

(3) ta = x, x ∈ X or ta = d, d ∈ D: by definition of ∼P , tb = ta, so ta ∼P tb;

(4) ta = S(d1,...,dn)t1 . . . tnx: then tb = S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x for some permutation p of

{1, . . . , n} and some t′1, . . . , t
′
n such that ti ∼P t′i for all i, 1 ≤ i ≤ n; by IH, t′i ∼P ti for all

i, 1 ≤ i ≤ n; since p−1 is also a permutation, we have tb = S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x ∼P

S(d1,...,dn)t1 . . . tnx = ta by (iii).
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∼P is transitive: we prove that for all ta, tb, tc ∈ NF , if ta ∼P tb and tb ∼P tc, then ta ∼P tc, by
induction on the structure of ta:

(5) ta = x, x ∈ X or ta = d, d ∈ D: then ta = tb = tc, hence ta ∼P tc;

(6) ta = S(d1,...,dn)t1 . . . tnx: then tb = S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x for some permutation p

of {1, . . . , n} and some t′1, . . . , t
′
n such that ti ∼P t′i for all i, 1 ≤ i ≤ n, and tc =

S(dq(p(1)),...,dq(p(n)))t′′q(p(1)) . . . t
′′
q(p(n))x for some permutation q of {1, . . . , n} and some t′′p(1),

. . . , t′′p(n) such that t′p(i) ∼P t′′p(i) for all i, 1 ≤ i ≤ n; since q ◦ p is also a permutation of

{1, . . . , n} and ti ∼P t′′i for all i by IH, then ta ∼P tc.

Hence ∼P is an equivalence relation.

(b) Induction on the structure of ta:

(1) ta = x, x ∈ X or ta = d, d ∈ D: then tb = ta, hence SSA ⊢ ta ≈ tb.

(2) ta = S(d1,...,dn)t1 . . . tnx: then tb = S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x for some permutation p of

{1, . . . , n} and some t′1, . . . , t
′
n such that ti ∼P t′i for all i, 1 ≤ i ≤ n; by IH, SSA ⊢ ti ≈ t′i

for all i, so SSA ⊢ S(d1,...,dn)t1 . . . tnx ≈ S(dp(1),...,dp(n))t′p(1) . . . t
′
p(n)x by the congruence rule

and Lemma 2.1(b).

(c) The algorithm is recursive:

(1) ta = x, x ∈ X or ta = d, d ∈ D: if tb = ta, the algorithm outputs 1, otherwise it outputs 0;

(2) ta = S(d1,...,dn)t1 . . . tnx: first the algorithm checks the first symbol of tb, and outputs 0 if it
is not a S(d′1,...,d

′
m) with m = n and {d1, . . . , dn} = {d′1, . . . , d′m}; otherwise, tb is of the form

S(d′1,...,d
′
n)t′1 . . . t

′
nx, then for each i with 1 ≤ i ≤ n, it finds the j such that d′j = di, runs the

same algorithm with input (ti, t
′
j), and outputs 0 if the result is 0. When all results are 1,

the algorithm outputs 1.

It is easy to see that for each input (ta, tb), if the algorithm outputs 1 then ta ∼P tb, and if
the algorithm outputs 0 then ta ≁P tb since ∼P is the least relation satisfying (i)-(iii). Hence
{(ta, tb) ∈ NF 2 | ta ∼P tb} is decidable.

We want to show that NF/ ∼P expresses the inequivalence under SSA, i.e., if ta ≁P tb
then SSA ⊬ ta ≈ tb; we tackle this problem semantically, by providing a special D-SSA that
invalidates such equations. Let S0 = {fn

m | n,m ∈ N} where each fn
m is a n-ary operation symbol

that is not in D; this type contains countable many n-ary operation symbols for each n ∈ N.
The lemma below shows that Tss

S0
(D), the D-TSSA of type S0, is the algebra we want:

Lemma 4.5. (a) For each finite set of dimensions D′ ⊆ D, each finite set of variables X ′ ⊆ X,
and each pair of terms ta, tb ∈ NFSD′ (X

′) with ta ≁P tb, T
ss
S0
(D) ⊭ ta ≈ tb.

(b) For all terms ta, tb ∈ NFSD
(X),

SSA ⊢ ta ≈ tb ⇔ Tss
S0
(D) ⊨ ta ≈ tb ⇔ ta ∼P tb.
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Proof. (a) We abbreviate Tss
S0
(D) to T in this proof. Let D′ be an arbitrary finite set of

dimensions and X ′ be an arbitrary finite set of variables. Let d1, . . . , dn be an enumeration of D′

without repetition, x1, . . . , xm be an enumeration of X ′ without repetition, and α : X → TS0(D)
be an assignment that maps each xi to fn

i d1 . . . dn, 1 ≤ i ≤ m. Recall w2 in the proof of
Theorem 4.2; we show that tTa (α) ̸= tTb (α) for all ta, tb ∈ NFSD′ (X

′) with ta ≁P tb by induction
on max{w2(ta), w2(tb)}.

(1) max{w2(ta), w2(tb)} = 0: since ta ≁P tb, ta ̸= tb. There are four cases.

Case 1: ta = di, ta = dj with 1 ≤ i, j ≤ n, and i ̸= j. Then tTa (α) = di ̸= dj = tTb (α).

Case 2: ta = di, ta = xj with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then tTa (α) = di ̸= fn
j d1 . . . dn =

tTb (α).

Case 3: ta = xi, tb = dj with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Similar as Case 2.

Case 4: ta = xi, tb = xj with 1 ≤ i, j ≤ m, and i ̸= j. Then tTa (α) = fn
i d1 . . . dn ̸=

fn
j d1 . . . dn = tTb (α).

(2) max{w2(ta), w2(tb)} = h+ 1, h ≥ 0: assume without loss of generality that w2(ta) = h+ 1,
hence w2(tb) ≤ h+1. Since w2(ta) ≥ 1, there exist pairwise distinct u1, . . . , uk ∈ {1, . . . , n},
i ∈ {1, . . . ,m}, and t1, . . . , tk ∈ NFD′(X ′) such that

ta = S(du1 ,...,duk )t1 . . . tkxi.

Then we have tTa (α) = S(du1 ,...,duk )(tT1 (α), . . . , t
T
k (α), x

T
i (α)) = S(du1 ,...,duk )(tT1 (α), . . . , t

T
k (α),

fn
i d1 . . . dn). Notice that tTa (α) is a term starting with fn

i .

If w2(tb) = 0, consider three cases with respect to tb.

Case 1: tb = dj , 1 ≤ j ≤ n. Then tTb (α) = dj ̸= tTa (α) since tTa (α) starts with fn
i .

Case 2: tb = xi. Then tTb (α) = fn
i d1 . . . dn. Since ta is in normal form, t1 is also in normal

form and t1 ̸= du1 ; besides, w2(t1) ≤ h because w2(ta) = h+1, hence max{w2(t1), w2(du1)}
≤ h; by IH, we have tT1 (α) ̸= dT

u1
(α) = du1 . Since the u1-th argument of fn

i in tTa (α) is not
du1 , t

T
a (α) ̸= fn

i d1 . . . dn.

Case 3: tb = xj , 1 ≤ j ≤ m and i ̸= j. Then tTa (α) ̸= tTb (α) because tTa (α) starts with fn
i

and tTb (α) starts with fn
j .

Else, w2(tb) > 0, then there are pairwise distinct v1, . . . , vl ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and
tk+1, . . . , tk+l ∈ NFD′(X ′) such that

tb = S(dv1 ,...,dvl )tk+1 . . . tk+lxj .

Then tTb (α) = S(dv1 ,...,dvl )(tTk+1(α), . . . , t
T
k+l(α), x

T
j (α)) = S(dv1 ,...,dvl )(tTk+1(α), . . . , t

T
k+l(α),

fn
j d1 . . . dn), which is a term starting with fn

j . If i ̸= j, then tTa (α) starts with fn
i and tTb (α)

starts with fn
j , hence tTa (α) ̸= tTb (α). Else, i = j, there are two cases.

Case 1: {u1, . . . , uk} = {v1, . . . , vl}. In this case, we have either {u1, . . . , uk}\{v1, . . . , vl} ≠ ∅
or {v1, . . . , vl} \ {u1, . . . , uk} ≠ ∅. If {u1, . . . , uk} \ {v1, . . . , vl} ≠ ∅, take p ∈ {1, . . . , k} such
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that up /∈ {v1, . . . , vl}; since ta is in normal form, tp is also in normal form and tp ̸= dup ; as
we also have max(w2(tp), w2(dup)} = w2(tp) < w2(ta) = h+1, so tTp (α) ̸= dup by IH. While

both tTa (α) and tTb (α) are obtained by a simultaneous substitution on fn
i d1 . . . dn, we need

to replace the dup to get tTa (α) and keep dup unchanged to get tTb (α). Thus t
T
a (α) ̸= tTb (α).

Otherwise, we have {v1, . . . , vl} \ {u1, . . . , uk} ≠ ∅; similarly we can show tTa (α) ̸= tTb (α).

Case 2: {u1, . . . , uk} = {v1, . . . , vl}. Because ta ≁P tb, there exist p, q ∈ {1, . . . , k} and
r ∈ {1, . . . , n} such that up = vq = r and tp ≁P tk+q. Notice that the r-th argu-
ments of fn

i in tTa (α), t
T
b (α) are tTp (α), t

T
k+q(α) respectively. By definition of w2, we have

max{w2(tp), w2(tk+q)} < max{w2(ta), w2(tb)} = h + 1. By IH, tTp (α) ̸= tTk+q(α), hence

tTa (α) ̸= tTb (α).

Therefore for all ta, tb ∈ NFSD′ (X
′) with ta ≁P tb, we have tTa (α) ̸= tTb (α), hence T ⊭ ta ≈ tb.

(b) SSA ⊢ ta ≈ tb ⇒ T ⊨ ta ≈ tb: this holds because T is a D-SSA.
T ⊨ ta ≈ tb ⇒ ta ∼P tb: assume that T ⊨ ta ≈ tb. Let D′ be the set of all dimensions

occurring in ta, tb and X ′ be the set of all variables occurring in ta, tb. By Lemma 4.1, ta, tb ∈
NFSD′ (X

′). Because the length of a term is finite, D′ and X ′ are also finite. Hence we have
ta ∼P tb by (a).

ta ∼P tb ⇒ SSA ⊢ ta ≈ tb: see Proposition 4.4(b).

With all the preliminary work, now we are ready to prove the final results in this chapter:

Theorem 4.6 (Decidability of D-SSA). {(ta, tb) ∈ TSss
D
(D)2 | D-SSA ⊢ ta ≈ tb} is decidable.

Proof. We describe an algorithm as follows: given arbitrary (ta, tb) ∈ T 2, first compute two terms
t′a, t

′
b ∈ NF such that SSA ⊢ ta ≈ t′a and SSA ⊢ tb ≈ t′b as in Proposition 4.3. Then it uses the

algorithm in Proposition 4.4(c) and outputs the result (i.e., whether t′a ∼P t′b). By Lemma 4.5(b),
SSA ⊢ t′a ≈ t′b iff t′a ∼P t′b, hence this is an algorithm deciding {(ta, tb) ∈ T 2 | SSA ⊢ ta ≈ tb}.

Theorem 4.7 (Completeness of D-SSA with D-TSSAs and with D-PSSAs). Let KD-TSSA be
the class of all D-TSSAs and KD-PSSA be the class of all D-PSSAs.

(a) D-SSA is complete with KD-TSSA.

(b) D-SSA is complete with KD-PSSA.

Proof. (a) Let ta, tb be a pair of terms in T . If D-SSA ⊢ ta ≈ tb, then KD-TSSA ⊨ ta ≈ tb since
every D-TSSA is a D-SSA. If D-SSA ⊬ ta ≈ tb, then D-SSA ⊬ t′a ≈ t′b where t′a is a normal
form of ta and t′b is a normal form of tb, hence Tss

S0
(D) ⊭ t′a ≈ t′b by Lemma 4.5(b), hence

KD-TSSA ⊭ t′a ≈ t′b; as KD-TSSA ⊨ ta ≈ t′a and KD-TSSA ⊨ tb ≈ t′b, we have KD-TSSA ⊭ ta ≈ tb.

(b) By Lemma 2.3(b), we have Tss
S0
(D) ∼= ClossD(TS0(D)) where ClossD(TS0(D)) ∈ KD-PSSA,

then we can use the same argument as in (a).

Finally, we show that some results in (singular) substitution algebras can be derived in light
of these results in simultaneous substitution algebras. Let Ss

D = {d | d ∈ D} ∪ {S(d) | d ∈ D}
be the type of D-SAs and D-SA be the set of equations corresponding to (s1)-(s6) in Chapter 3.
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Theorem 4.8. Let D be an infinite set and KlfD-SA be the class of all locally finite-dimensional
D-SAs, KD-TSA be the class of all D-TSAs, and KD-PSA be the class of all D-PSAs.

(a) ThX(KlfD-SA) = ThX(KD-TSA) = ThX(KD-PSA).

(b) ThX(KlfD-SA) is decidable.

Proof. (a) First we show that ThX(KlfD-SA) = ThX(KD-TSA). Since each D-TSA is a locally
finite-dimensional D-SA, we have ThX(KlfD-SA) ⊆ ThX(KD-TSA).

For each ta, tb ∈ TSs
D
(X) such that KlfD-SA ⊭ ta ≈ tb, there exists a locally finite-dimensional

D-SA As such that As ⊭ ta ≈ tb. By Theorem 3.5, As can be expanded to a D-SSA Ass, hence
Ass ⊭ ta ≈ tb. Thus SSA ⊬ ta ≈ tb, so Tss

S0
(D) ⊭ ta ≈ tb by Lemma 4.5(b). Since Ts

S0
(D) is the

reduct of Tss
S0
(D), we have Ts

S0
(D) ⊭ ta ≈ tb, so KD-TSA ⊭ ta ≈ tb.

As Tss
S0
(D) ∼= ClossD(TS0(D)), we can show ThX(KlfD-SA) = ThX(KD-PSA) with a similar

argument.

(b) By Theorem 4.6 and 4.7, ThX(KD-TSSA) is the equational theory generated by D-SSA, hence
it is decidable. Since D-TSAs are just reducts of D-TSSAs, ThX(KD-TSA) is also decidable.
Therefore ThX(KlfD-SA) is decidable by (a).

As a result, we can check whether an equation ta ≈ tb is valid for all locally finite-dimensional
D-SAs by finding normal forms t′a, t

′
b of ta and tb, and checking whether t′a ∼P t′b.
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Chapter 5

Representation of simultaneous
substitution algebras

In this chapter we will show that each simultaneous substitution algebra is isomorphic to a
quotient of a term simultaneous substitution algebra of generalized type and a quotient of a
function simultaneous substitution algebra. We will also show that under the condition of
local finite-dimensionality, a simultaneous substitution algebra is isomorphic to a polynomial
simultaneous substitution algebra and a quotient of a term simultaneous substitution algebra;
with this result we can provide another proof of the representation theorem of locally finite-
dimensional substitution algebras in [Fel82].

5.1 Representation of simultaneous substitution algebras

The representability of trivial D-SSAs is easy to see, so we only consider the non-trivial cases

in the following. Let A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗,A⟩
d⃗∈D#⟩ be an arbitrary non-trivial D-SSA. We show

that A is isomorphic to a quotient of a term simultaneous substitution algebra of generalized
type, then a quotient of a function simultaneous substitution algebra.

For each a ∈ A, let Qa be a corresponding symbol of arity ∆a; we require that Qa ̸= Qa′

for all a, a′ ∈ A with a ̸= a′, and Qa ̸= d for all a ∈ A and d ∈ D. Let FA = {Qa | a ∈ A}, then
TFA

(D) is the set of terms of type FA over D. Consider the following sequence of sets of terms
defined by recursion:

T 0
A = D,

Tn+1
A = Tn

A ∪ {Qaf | a ∈ A, f : ∆a → Tn
A, f(d) ̸= d for finitely many d ∈ ∆a}.

Let TA =
⋃

n<ω Tn
A. It is easy to see that T 0

A ⊆ T 1
A ⊆ · · · ⊆ Tn

A ⊆ · · · and TA ⊆ TFA
(D). For

each t ∈ TA, let depth(t) be the least natural number n such that t ∈ Tn
A. In the following

lemma we show that TA is a subuniverse of Tss
FA

(D) = ⟨TFA
(D), ⟨d⟩d∈D, ⟨Sd⃗,T⟩

d⃗∈D#⟩.

Lemma 5.1. (a) For all d⃗ = (d1, . . . , dn) ∈ D#, t1, . . . , tn ∈ Tm
A and t ∈ TA, S

d⃗,T(t1, . . . , tn, t) ∈
T
m+depth(t)
A .

28



(b) TA is a subuniverse of Tss
FA

(D).

Proof. (a) Assume that d⃗ = (d1, . . . , dn) ∈ D# and t1, . . . , tn ∈ Tm
A . We show Sd⃗(t1, . . . , tn, t) ∈

T
m+depth(t)
A for all t ∈ TA by induction on depth(t):

(1) depth(t) = 0: then t = d for some d ∈ D. If d = di for some i with 1 ≤ i ≤ n, then

Sd⃗(t1, . . . , tn, t) = ti ∈ Tm
A ; else, Sd⃗(t1, . . . , tn, t) = d ∈ T 0

A ⊆ Tm
A .

(2) Assume that our claim holds for all t ∈ TA with depth(t) ≤ k. Take arbitrary t ∈ TA with
depth(t) = k + 1, then t = Qaf where f : ∆a → T k

A and f(d) ̸= d for finitely many d ∈ ∆a.

Then Sd⃗(t1, . . . , tn, t) = Sd⃗(t1, . . . , tn,Qaf) = Qaf
′, where f ′ = ⟨Sd⃗(t1, . . . , tn, f(d))⟩d∈∆a.

For each d ∈ ∆a, we have f(d) ∈ T k
A, so depth(f(d)) ≤ k, hence f ′(d) = Sd⃗(t1, . . . , tn, f(d))

∈ T
m+depth(f(d))
A ⊆ Tm+k

A by our assumption. Thus f ′ is a function from ∆a to Tm+k
A .

Because f(d) ̸= d for finitely many d ∈ ∆a, {d1, . . . , dn} ∪ {d ∈ ∆a | f(d) ̸= d} is finite. For
each d in ∆a such that d /∈ {d1, . . . , dn} ∪ {d ∈ ∆a | f(d) ̸= d},

f ′(d) = Sd⃗(t1, . . . , tn, f(d))
f(d)=d
= Sd⃗(t1, . . . , tn, d)

d/∈{d1,...,dn}
= d.

By contraposition, we have {d ∈ ∆a | f ′(d) ̸= d} ⊆ {d1, . . . , dn} ∪ {d ∈ ∆a | f(d) ̸= d},
hence f ′(d) ̸= d for finitely many d ∈ ∆a.

Therefore Sd⃗(t1, . . . , tn, t) = Qaf
′ ∈ Tm+k+1

A .

(b) We need to show that TA is closed under the basic operations of Tss
FA

(D). For each d ∈ D,

we have d ∈ T 0
A ⊆ TA. Then we show that for all d⃗ ∈ D# of length n and all t1, . . . , tn+1 ∈ TA,

Sd⃗(t1, . . . , tn+1) ∈ TA. If n = 0, we have d⃗ = (), hence Sd⃗(t1) = t1 ∈ TA. If n > 0, let m =

max{depth(t1), . . . ,depth(tn)}, then t1, . . . , tn ∈ Tm
A , hence Sd⃗(t1, . . . , tn+1) ∈ T

m+depth(tn+1)
A ⊆

TA by (a).

Thus TA is closed under the basic operations of Tss
FA

(D), so TA is a subuniverse of Tss
FA

(D).

Let TA be the subalgebra of Tss
FA

(D) taking TA as its universe. We want to show that A is
isomorphic to a quotient of TA by giving a homomorphism from TA to A. Let ϕ : TA → A be
such that for all d,Qaf ∈ TA,

ϕ(d) = cd,

ϕ(Qaf) = S(d1,...,dn),A(ϕ(f(d1)), . . . , ϕ(f(dn)), a),

where {d1, . . . , dn} = {d ∈ ∆a | f(d) ̸= d}; notice that for each permutation p of {1, . . . , n},

S(d1,...,dn),A(ϕ(f(d1)), . . . , ϕ(f(dn)), a) = S(dp(1),...,dp(n)),A(ϕ(f(dp(1))), . . . , ϕ(f(dp(n))), a)

by Lemma 2.1(b), hence ϕ is well-defined. The following lemma shows that ϕ is the homomor-
phism we want:
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Lemma 5.2. (a) For all a ∈ A, (d1, . . . , dn) ∈ D# and t1, . . . , tn,Qaf ∈ TA such that {d ∈ ∆a |
f(d) ̸= d} ⊆ {d1, . . . , dn} ⊆ ∆a, S(d1,...,dn),A(ϕ(f(d1)), . . . , ϕ(f(dn)), a) = ϕ(Qaf).

(b) For all d⃗ ∈ D# of length n and t1, . . . , tn+1 ∈ TA, ϕ(S
d⃗,T(t1, . . . , tn+1)) = Sd⃗,A(ϕ(t1), . . . ,

ϕ(tn+1)).

(c) ϕ is a homomorphism from TA onto A.

Proof. (a) Take integers v1, . . . , vm such that 1 ≤ v1 < · · · < vm ≤ n and {dv1 , . . . , dvm} =
{d ∈ ∆a | f(d) ̸= d}; let u1, . . . , un−m be such that {du1 , . . . , dun−m} = {d1, . . . , dn} \ {d ∈ ∆a |
f(d) ̸= d}, then f(dui) = dui for all i, 1 ≤ i ≤ n−m. Then

S(d1,...,dn)(ϕ(f(d1)), . . . , ϕ(f(dn)), a)

2.1(b)
= S(dv1 ,...,dvm ,du1 ,...,dun−m )(ϕ(f(dv1)), . . . , ϕ(f(dvm)), ϕ(f(du1)), . . . , ϕ(f(dun−m)), a)

= S(dv1 ,...,dvm ,du1 ,...,dun−m )(ϕ(f(dv1)), . . . , ϕ(f(dvm)), ϕ(du1), . . . , ϕ(dun−m), a)

= S(dv1 ,...,dvm ,du1 ,...,dun−m )(ϕ(f(dv1)), . . . , ϕ(f(dvm)), cdu1 , . . . , cdun−m
, a)

2.1(c)
= S(dv1 ,...,dvm )(ϕ(f(dv1)), . . . , ϕ(f(dvm)), a)

= ϕ(Qaf).

(b) If n = 0, then d⃗ = (), hence ϕ(S(),T(t1)) = ϕ(t1) = S(),A(ϕ(t1)). Else we have n ≥ 0, then as-

sume that d⃗ = (d1, . . . , dn). We show ϕ(Sd⃗,T(t1, . . . , tn, tn+1)) = Sd⃗,A(ϕ(t1), . . . , ϕ(tn), ϕ(tn+1))
by induction on depth(tn+1):

(1) depth(tn+1) = 0: then tn+1 = d for some d ∈ D. If d = di for some i, 1 ≤ i ≤ n, then

ϕ(Sd⃗,T(t1, . . . , tn+1)) = ϕ(S(d1,...,dn),T(t1, . . . , tn, di)) = ϕ(ti)

= S(d1,...,dn),A(ϕ(t1), . . . , ϕ(tn), cdi) = S(d1,...,dn),A(ϕ(t1), . . . , ϕ(tn), ϕ(di)).

Else, d ̸= di for all i with 1 ≤ i ≤ n, then

ϕ(Sd⃗,T(t1, . . . , tn+1)) = ϕ(S(d1,...,dn),T(t1, . . . , tn, d)) = ϕ(d) = cd

= S(d1,...,dn),A(ϕ(t1), . . . , ϕ(tn), cd) = S(d1,...,dn),A(ϕ(t1), . . . , ϕ(tn), ϕ(d)).

(2) Assume that our claim holds for all tn+1 ∈ TA with depth(tn+1) ≤ m. Take arbitrary
tn+1 ∈ TA with depth(tn+1) = m+ 1, hence tn+1 = Qaf where f : ∆a → Tm

A and f(d) ̸= d

for finitely many d. Let f ′ = ⟨Sd⃗,T(t1, . . . , tn, f(d))⟩d∈∆a, then Sd⃗,T(t1, . . . , tn+1) = Qaf
′.

By Lemma 5.1, we have Qaf
′ ∈ TA, so f ′(d) ̸= d for finitely many d. Hence we can take

pairwise distinct d′1, . . . , d
′
l ∈ ∆a such that {d′1, . . . , d′l} = {d ∈ ∆a | f(d) ̸= d} ∪ {d ∈ ∆a |

f ′(d) ̸= d} ∪ ({d1, . . . , dn} ∩∆a).

Take integers v1, . . . , vk such that 1 ≤ v1 < · · · < vk ≤ n and {dv1 , . . . , dvk} = {d1, . . . , dn} \
{d′1, . . . , d′l}; since {d1, . . . , dn} ∩ ∆a ⊆ {d′1, . . . , d′l}, we have dv1 , . . . , dvk /∈ ∆a. Let d⃗′ =
(d′1, . . . , d

′
l). Then

ϕ(Sd⃗,T(t1, . . . , tn+1)) = ϕ(Qaf
′)
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(a)
= Sd⃗′,A(ϕ(f ′(d′1)), . . . , ϕ(f

′(d′l)), a)

= Sd⃗′,A(ϕ(Sd⃗,T(t1, . . . , tn, f(d
′
1))), . . . , ϕ(S

d⃗,T(t1, . . . , tn, f(d
′
l))), a)

IH
= Sd⃗′,A(Sd⃗,A(ϕ(t1), . . . , ϕ(tn), ϕ(f(d

′
1))), . . . , S

d⃗,A(ϕ(t1), . . . , ϕ(tn), ϕ(f(d
′
l))), a)

2.6(b)
= S(d′1,...,d

′
l,dv1 ,...,dvk ),A(Sd⃗,A(ϕ(t1), . . . , ϕ(tn), ϕ(f(d

′
1))), . . . , S

d⃗,A(ϕ(t1), . . . , ϕ(tn),

ϕ(f(d′l))), S
d⃗,A(ϕ(t1), . . . , ϕ(tn), cdv1 ), . . . , S

d⃗,A(ϕ(t1), . . . , ϕ(tn), cdvk ), a)

2.1(d)
= Sd⃗,A (ϕ(t1), . . . , ϕ(tn), S

(d′1,...,d
′
l,dv1 ,...,dvk ),A(ϕ(f(d′1)), . . . , ϕ(f(d

′
l)), cdv1 , . . . , cdvk , a))

2.1(c)
= Sd⃗,A(ϕ(t1), . . . , ϕ(tn), S

d⃗′,A(ϕ(f(d′1)), . . . , ϕ(f(d
′
l)), a))

(a)
= Sd⃗,A(ϕ(t1), . . . , ϕ(tn), ϕ(Qaf))

= Sd⃗,A(ϕ(t1), . . . , ϕ(tn+1)).

(c) First we show that ϕ is a homomorphism. For each d ∈ D, we have ϕ(d) = cd. For each d⃗ ∈
D# of length n, we have ϕ(Sd⃗,T(t1, . . . , tn+1)) = Sd⃗,A(ϕ(t1), . . . , ϕ(tn+1)) for all t1, . . . , tn+1 ∈ TA

by (b). Therefore, ϕ is a homomorphism.
Then we show that ϕ is surjective. For each a ∈ A, let fa : ∆a → T 0

A be such that fa(d) = d
for all d ∈ ∆a, and let τa = Qafa, then τa ∈ T 1

A; by definition of ϕ, ϕ(τa) = a. Thus ϕ is
surjective.

Theorem 5.3 (Representation of D-SSAs). Let A be a D-SSA.

(a) A is isomorphic to a quotient of a D-TSSA of generalized type.

(b) A is isomorphic to a quotient of a D-FSSA.

Proof. (a) If A is trivial, then A is isomorphic to a trivial D-TSSA. Else, A is non-trivial; by
Lemma 5.2(c), there is a homomorphism ϕ from TA onto A, hence we have TA/ker(ϕ) ∼= A by
the Homomorphism Theorem.

(b) If A is trivial, then A is isomorphic to a trivial D-FSSA. Else, A is non-trivial. By Theorem

2.5, TA is isomorphic to the D-FSSA with base TFA
(D) of which the universe is {tT

ss
FA

(D) | t ∈
TFA

(D)}, so A is isomorphic to a quotient of this D-FSSA by (a).

5.2 Representation of locally finite-dimensional simultaneous sub-
stitution algebras

We have already shown that each simultaneous substitution algebra can be represented as a
quotient of a function simultaneous substitution algebra. Moreover, with the condition of local
finite-dimensionality, we can improve the result a bit: each locally finite-dimensional simultane-
ous substitution algebra can be represented as a polynomial simultaneous substitution algebra.

First we will show that each non-trivial locally finite-dimensional simultaneous substitution
algebra can be represented as a quotient of simultaneous substitution algebra of finitary terms.
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We assume that D is infinite in this section. The proof is essentially the same as the proof in the
last section. As we want to represent elements in simultaneous substitution algebras by terms
in the narrow sense, it will help if we have a well-ordering of the set of dimensions beforehand.
Let κ = |D|, and {dλ | λ < κ} be an enumeration of D without repetition.

Let A = ⟨A, ⟨cd⟩d∈D, ⟨Sd⃗,A⟩
d⃗∈D#⟩ be an arbitrary non-trivial locally finite-dimensional D-

SSA. For each a ∈ A, let Qa be a corresponding operation symbol of arity |∆a|. Let SA = {Qa |
a ∈ A}, then TSA

(D) is the set of terms of type SA over D. For each element a, let n = |∆a|
and

τa = Qadλ1 . . . dλn , where λ1 < · · · < λn < κ and ∆a = {dλ1 , . . . , dλn};

our idea is to represent a by the term τa (more precisely, an equivalence class containing τa).
We define a mapping f : TSA

(D) → A by induction on the structure of terms:

(i) For each d ∈ D, f(d) = cd;

(ii) For each a ∈ A with |∆a| = n and t1, . . . , tn ∈ TSA
(D),

f(Qat1 . . . tn) = S(dλ1 ,...,dλn ),A(f(t1), . . . , f(tn), a)

where λ1 < · · · < λn < κ and ∆a = {dλ1 , . . . , dλn}.

Notice that f(τa) = a for each a ∈ A by this definition. Then we show that f is a homomor-
phism from Tss

SA
(D) onto A:

Lemma 5.4. f is a homomorphism from Tss
SA

(D) onto A.

Proof. First we show that f is a homomorphism from Tss
SA

(D) to A. For each d ∈ D, f(d) = cd

by definition of f . Then we need to show that for all d⃗ ∈ D# of length n and for all terms
t1, . . . , tn+1 ∈ TSA

(D),

f(Sd⃗,T(t1, . . . , tn+1)) = Sd⃗,A(f(t1), . . . , f(tn+1)).

If n = 0, we have d⃗ = (), so f(Sd⃗,T(t1)) = f(t1) = Sd⃗,A(f(t1)). Then assume that n > 0

and d⃗ = (dθ1 , . . . , dθn); we show f(Sd⃗,T(t1, . . . , tn+1)) = Sd⃗,A(f(t1), . . . , f(tn+1)) by induction
on the structure of tn+1.

(1) tn+1 = dθi , 1 ≤ i ≤ n: then f(Sd⃗,T(t1, . . . , tn+1)) = f(Sd⃗,T(t1, . . . , tn, dθi)) = f(ti) =

Sd⃗,A(f(t1), . . . , f(tn), cdθi ) = Sd⃗,A(f(t1), . . . , f(tn), f(dθi)).

(2) tn+1 = dθ, θ ∈ κ \ {θ1, . . . , θn}: then f(Sd⃗,T(t1, . . . , tn+1)) = f(Sd⃗,T(t1, . . . , tn, dθ)) =

f(dθ) = cdθ = Sd⃗,A(f(t1), . . . , f(tn), cdθ) = Sd⃗,A(f(t1), . . . , f(tn), f(dθ)).

(3) tn+1 = Qa, |∆a| = 0: then dθ1 , . . . , dθn /∈ ∆a, so we have

f(Sd⃗,T(t1, . . . , tn+1)) = f(Sd⃗,T(t1, . . . , tn,Qa)) = f(Qa) = a

2.6(b)
= Sd⃗,A(f(t1), . . . , f(tn), a) = Sd⃗,A(f(t1), . . . , f(tn), f(Qa)).
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(4) tn+1 = Qat
′
1 . . . t

′
m with m > 0: then |∆a| = m. Take ordinal numbers λ1, . . . , λm such

that λ1 < · · · < λm < κ and ∆a = {dλ1 , . . . , dλm}. Then take integers v1, . . . , vk such
that 1 ≤ v1 < · · · < vk ≤ n and {dθv1 , . . . , dθvk} = {dθ1 , . . . , dθn} \ {dλ1 , . . . , dλm}. Let

d⃗′ = (dλ1 , . . . , dλm) and d⃗′′ = (dλ1 , . . . , dλm , dθv1 , . . . , dθvk ), then

Sd⃗,A(f(t1), . . . , f(tn+1))

= Sd⃗,A(f(t1), . . . , f(tn), f(Qat
′
1 . . . t

′
m))

= Sd⃗,A(f(t1), . . . , f(tn), S
d⃗′,A(f(t′1), . . . , f(t

′
m), a))

2.1(d)
= Sd⃗′′,A(Sd⃗,A(f(t1), . . . , f(tn), f(t

′
1)), . . . , S

d⃗,A(f(t1), . . . , f(tn), f(t
′
m)),

f(tv1), . . . , f(tvk), a)

IH
= Sd⃗′′,A(f(Sd⃗,T(t1, . . . , tn, t

′
1)), . . . , f(S

d⃗,T(t1, . . . , tn, t
′
m)), f(tv1), . . . , f(tvk), a)

2.6(b)
= Sd⃗′,A(f(Sd⃗,T(t1, . . . , tn, t

′
1)), . . . , f(S

d⃗,T(t1, . . . , tn, t
′
m)), a)

= f(QaS
d⃗,T(t1, . . . , tn, t

′
1) . . . S

d⃗,T(t1, . . . , tn, t
′
m))

= f(Sd⃗,T(t1, . . . , tn,Qat
′
1 . . . t

′
m)).

Therefore f is a homomorphism. Besides, it is easy to see that f(τa) = a for each a ∈ A,
hence f is surjective.

This lemma immediately implies that A is isomorphic to a quotient of Tss
SA

(D). What’s
more, we want to show that A can also be represented as a polynomial simultaneous substitution
algebra.

From A, we define an algebra S(A) of type SA: we take A as the universe; for each a ∈ A,

with ∆Aa = {dλ1 , . . . , dλn}, where λ1 < · · · < λn < κ, let Q
S(A)
a = ga where ga is the n-ary

operation that sends a1, . . . , an ∈ A to S(dλ1 ,...,dλn ),A(a1, . . . , an, a).
Consider the D-PSSA induced by S(A): recall that CloD(S(A)) = {tS(A) | t ∈ TSA

(D)}
is a set of D-ary operations on A, the universe of S(A), and ed is the d-th projection oper-

ation for each d ∈ D; besides we have defined simultaneous substitution operations Sd⃗,F on
D-ary operations on A. Using the same notation for their restriction to CloD(S(A)), we define

ClossD(S(A)) as ⟨CloD(S(A)), ⟨ed⟩d∈D, ⟨Sd⃗,F⟩
d⃗∈D#⟩. Let ϕ : TSA

(D) → CloD(S(A)) be such

that ϕ(t) = tS(A) for each t ∈ TSA
(D).

Lemma 5.5. (a) For each t ∈ TSA
(D), (τf(t))

S(A) = tS(A).

(b) Let ι : D → A be such that ι = ⟨cd⟩d∈D, then tS(A)(ι) = f(t) for each t ∈ TSA
(D).

(c) ker(f) = ker(ϕ).

Proof. (a) Notice that for each a ∈ A and α : D → A,

(τa)
S(A)(α) = (Qadλ1 . . . dλn)

S(A)(α) = QS(A)
a (d

S(A)
λ1

(α), . . . , d
S(A)
λn

(α))

= S(dλ1 ,...,dλn )(α(dλ1), . . . , α(dλn), a)
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where λ1 < · · · < λn and ∆Aa = {dλ1 , . . . , dλn}. Take arbitrary α : D → A, we prove that for
all t ∈ TSA

(D), (τf(t))
S(A)(α) = tS(A)(α) by induction on the structure of t:

(1) t = d, d ∈ D: then (τf(d))
S(A)(α) = (τcd)

S(A)(α)
2.7(a)
= S(d),A(α(d), cd)

(ss2)
= α(d) = dS(A)(α);

(2) t = Qat1 . . . tn, a ∈ A: since A is locally finite-dimensional, ∆Aa ∪
⋃

1≤i≤n∆
Af(ti) is

finite. Take ordinal numbers λ1, . . . , λm such that λ1 < · · · < λm < κ and {dλ1 , . . . , dλm} =
∆Aa ∪

⋃
1≤i≤n∆

Af(ti). First we prove the following claim:

(∗) for each i, 1 ≤ i ≤ n, S(dλ1 ,...,dλm ),A(α(dλ1), . . . , α(dλm), f(ti)) = t
S(A)
i (α).

Since ∆Af(ti) ⊆ {dλ1 , . . . , dλm} = ∆Aa ∪
⋃

1≤i≤n∆
Af(ti), we can take integers v1, . . . , vl

such that 1 ≤ v1 < · · · < vl ≤ m and ∆Af(ti) = {dλv1
, . . . , dλvl

}, hence we have

S(dλ1 ,...,dλm ),A(α(dλ1), . . . , α(dλm), f(ti))
2.6(b)
= S

(dλv1
,...,dλvl

),A
(α(dλv1

), . . . , α(dλvl
), f(ti))

= (τf(ti))
S(A)(α)

IH
= t

S(A)
i (α).

Let p be a permutation of {1, . . . ,m} such that p(1) < · · · < p(n) and ∆Aa = {dλp(1)
, . . . ,

dλp(n)
}. By Lemma 2.7(b), ∆Af(t) = ∆AS

(dλp(1) ,...,dλp(n)
)
(f(t1), . . . , f(tn), a) ⊆ (∆Aa \

{dλp(1)
, . . . , dλp(n)

})∪
⋃

1≤i≤n∆
Af(ti) =

⋃
1≤i≤n∆

Af(ti). Let q be a permutation of {1, . . . ,
m} such that q(1) < · · · < q(k) and ∆Af(t) = {dλq(1)

, . . . , dλq(k)
}. Then we have

(τf(t))
S(A)(α) = S

(dλq(1) ,...,dλq(k) )(α(dλq(1)
), . . . , α(dλq(k)

), f(t))

2.6(b)
= S

(dλq(1) ,...,dλq(m)
)
(α(dλq(1)

), . . . , α(dλq(m)
), f(t))

2.1(b)
= S(dλ1 ,...,dλm )(α(dλ1), . . . , α(dλm), f(t))

= S(dλ1 ,...,dλm )(α(dλ1), . . . , α(dλm), S
(dλp(1) ,...,dλp(n)

)
(f(t1), . . . , f(tn), a))

2.1(d)
= S

(dλp(1) ,...,dλp(m)
)
(S(dλ1 ,...,dλm )(α(dλ1), . . . , α(dλm), f(t1)), . . . ,

S(dλ1 ,...,dλm )(α(dλ1), . . . , α(dλm), f(tn)), α(dλp(n+1)
), . . . , α(dλp(n+m)

), a)

(∗)
= S

(dλp(1) ,...,dλp(m)
)
(t

S(A)
1 (α), . . . , tS(A)

n (α), α(dλp(n+1)
), . . . , α(dλp(n+m)

), a)

2.6(b)
= S

(dλp(1) ,...,dλp(n)
)
(t

S(A)
1 (α), . . . , tS(A)

n (α), a)

= ga(t
S(A)
1 (α), . . . , tS(A)

n (α))

= (Qat1 . . . tn)
S(A)(α).

Therefore, given arbitrary α : D → A, (τf(t))
S(A)(α) = tS(A)(α) for all t. Hence (τf(t))

S(A) =

tS(A) for all t.

(b) We show that tS(A)(ι) = f(t) by induction on t:

(1) t = d, d ∈ D: then tS(A)(ι) = dS(A)(ι) = ι(d) = cd = f(d) = f(t).
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(2) t = Qat1 . . . tn, a ∈ A with λ1 < · · · < λn < κ and {dλ1 , . . . , dλn} = ∆a: then

tS(A)(ι) = (Qat1 . . . tn)
S(A)(ι) = ga(t

S(A)
1 (ι), . . . , tS(A)

n (ι))
IH
= ga(f(t1), . . . , f(tn))

= S(dλ1 ,...,dλn )(f(t1), . . . , f(tn), a) = f(Qat1 . . . tn) = f(t).

(c) Assume that f(t) = f(t′), then ϕ(t) = tS(A) (a)
= (τf(t))

S(A) = (τf(t′))
S(A) (a)

= t′S(A) = ϕ(t′).

Assume that ϕ(t) = ϕ(t′), then f(t)
(b)
= tS(A)(ι) = ϕ(t)(ι) = ϕ(t′)(ι) = t′S(A)(ι)

(b)
= f(t′).

Hence f(t) = f(t′) iff ϕ(t) = ϕ(t′). Thus we have ker(f) = {(t, t′) ∈ T 2 | f(t) = f(t′)} =
{(t, t′) ∈ T 2 | ϕ(t) = ϕ(t′)} = ker(ϕ).

Combining these results, we can get the theorem:

Theorem 5.6. The following claims are equivalent:

(i) A is a locally finite-dimensional D-SSA;

(ii) A is isomorphic to ClossD(B) for some B;

(iii) A is isomorphic to a quotient of Tss
S (D) for some type of algebras S.

Proof. (i) ⇒ (ii): assume that A is a locally finite-dimensional D-SSA. If A is trivial, then
it is easy to see that ClossD(A) is also trivial and A ∼= ClossD(A). Else, A is not trivial,
then by Lemma 5.4 and the Homomorphism Theorem, A ∼= Tss

SA
(D)/ker(f). We also have

Tss
SA

(D)/ker(ϕ) ∼= ClossD(S(A)) by Theorem 2.3. Since ker(f) = ker(ϕ) by Lemma 5.5(c), we
have A ∼= ClossD(S(A)).

(ii) ⇒ (iii): assume that A is isomorphic to ClossD(B) for some B. Let S be the type of B and
ϕ : TS(D) → CloD(B) such that ϕ(t) = tB for all t. Then by Theorem 2.3, Tss

S (D)/ker(ϕ) ∼=
ClossD(B). Hence A ∼= Tss

S (D)/ker(ϕ).

(iii) ⇒ (i): assume that A is isomorphic to a quotient algebra of Tss
S (D) for some type of algebras

S. SinceTss
S (D) is locally finite-dimensional and a quotient algebra of a locally finite-dimensional

D-SSA is also locally finite-dimensional, A is locally finite-dimensional.

Then we can give another proof of the representation theorem (Theorem 3.1) in [Fel82].

Corollary 5.7. The following claims are equivalent:

(i) A is a locally finite-dimensional D-SA;

(ii) A is isomorphic to ClosD(B) for some B;

(iii) A is isomorphic to a quotient algebra of Ts
S(D) for some type of algebras S.

Proof. (i) ⇒ (ii): by Theorem 3.5, A can be expanded to a D-SSA Ass. By Theorem 5.6,
Ass ∼= ClossD(B) for some B, then we can take their reducts and get A ∼= ClosD(B).

(ii) ⇒ (iii): by Theorem 2.3, we have ClossD(B) is isomorphic to a quotient algebra of Tss
S (D),

hence ClosD(B) is isomorphic to a quotient algebra of Ts
S(D).
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(iii) ⇒ (i): it is easy to see that every D-TSA of type of algebras is locally finite-dimensional,
and every quotient algebra of a locally finite-dimensional D-SA is locally finite-dimensional, thus
the implication holds.
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Chapter 6

Conclusion and discussion

While the previous works in the study of substitution algebras treated singular substitution as
the footstone, we attempted to put simultaneous substitution in the central place and explored
what this perspective can bring us in this thesis. Given a set of dimensions D, we defined the
class of D-dimensional simultaneous substitution algebras by a set of equations, to characterize
simultaneous substitution operation on terms over variables from D and on D-ary operations
on a nonempty set. Comparing with singular substitution algebras, simultaneous substitution
algebras equip with more basic operations, which seem cumbersome at first glance. However,
rich with these simultaneous substitution operations, simultaneous substitution algebras seems
to be simpler in nature: without any additional condition like local finite-dimensionality, the
decidability and completeness of equational theory, and representability have been shown in
Chapter 4 and Chapter 5.

As we proved that every locally finite-dimensional substitution algebra can be expanded to a
simultaneous substitution algebra in Chapter 3, decidability, completeness, and representability
of locally finite-dimensional singular substitution algebras were easily derived. It is noticeable
that local finite-dimensionality remains a key condition in our study, and we still don’t know
whether each singular substitution algebra can be superexpanded to a simultaneous substitution
algebra.

We also point out a possible direction of future work here. In Introduction, we mentioned
substitution operation in cylindric algebras and lambda abstraction algebras; there is substan-
tial difference between substitution we have discussed and substitution in these two kinds of
algebras, since both cylindric algebras and lambda abstraction algebras are algebraizations of
formal systems which have free and bound variables, whereas variables (or dimensions) we have
discussed in this thesis are all free in this sense. It remains to be investigated that how to
characterize the substitution operations in formal systems containing bound variables uniformly
in algebras, and what the two perspectives (putting singular/simultaneous substitution at the
central place) might bring us in the new study.
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