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Abstract

From different angles of science, there has been a growing interest in the abilities
of groups to track the truth. The Condorcet Jury Theorem (1785) states that
without communication, infinitely big groups will reach a correct majority opin-
ion with certainty. Coughlan (2000), meanwhile formulated a model in which all
agents communicate with each other, showing that majorities are only just as
good as fully-communicating individuals. In reality, communication is usually
between these two extremes: some agents communicate with some of the others,
but not with all others. We refer to this as partial communication. This thesis
provides a Bayesian framework to study the influence of partial communication
on individual as well as group accuracy, thereby generalising Condorcet’s as well
as Coughlan’s setting. We obtain results for individual and group accuracy in
three type of networks. Firstly, we study the extreme case where there is either
no communication or everyone communicates with everyone. Secondly, we de-
termine accuracy for regular networks, in which all agents communicate with
equally many other agents. Thirdly, we derive a formula to express the expected
accuracy in random networks, in which agents can communicate with various
numbers of other agents. The formula enables us to determine the effect of
various parameters on the individual and group accuracy in a random network
with partial communication. Finally, we show that in random networks, despite
correlation between agents, we can still obtain accurate majorities under some
constraints.
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Summary of Notation

We give an overview of the most commonly used notation in the thesis. We
remark that whenever we write a subscript, it concerns the property of a partic-
ular agent. For example, si is the signal of an agent i and δi is the degree of a
vertex i, where the vertex represents an agent. Meanwhile, when we use brack-
ets, it usually concerns a total amount. For example v(x) is the total amount of
votes that a signal x receives, and δ(x) is the total amount of times the signal
x is observed. Keeping this in mind might ease the reading of this thesis.

N = {1, ..., n} set of agents
A = {a, b} set of alternatives, where θ is the true alternative
θ true state of the world, where θ = a or θ = b
r, 1− r prior probability of a and b respectively
si signal of agent i where si ∈ {a, b}
p competence of an agent : P (si = x|θ = x) where x ∈ {a, b}
c probability that two agents are connected with each other
vi vote of agent i
v = (v1, ..., vn) voting profile
v(x) |{vi ∈ v|vi = x}|: total amount of votes for x ∈ {a, b}
h total amount of signals an agent receives
k, h− k amount of a-type signals that an agent receives
h− k amount of b-type signals an agent receives
π P (θ = a|k): posterior belief about a, given evidence k
t threshold such that an agent believes a iff π > t
δi degree of a vertex i
G(n, δ) regular network, size n, all vertices have degree δ
G(n, c) random network, size n, vertices linked with probability c
pn,h expected individual accuracy in regular network with δ = h
pn,c expected individual accuracy in a UCRN 〈N, c, p, r, t〉
pmaj(n) accuracy of a group N determined via majority rule
wi weight of agent’s i signal si
δ(x) total amount of times signal x is observed
w(x) total weight of all signals of type x
δ̄ mean degree
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Chapter 1

Introduction

In the overheated jury room of the New York County Courthouse, a jury pre-
pares to deliberate the case of a 19-year-old boy accused of stabbing his father
to death. The judge instructs them that if there is any reasonable doubt, the
jurors are to return a verdict of not guilty; if found guilty, the boy will receive a
death sentence. The verdict must be unanimous. This is the story of the movie
Twelve Angry Men by Lumet (1957) - a movie that beautifully illustrates the
power of communication and voting.

The jurors collectively have to track the truth. They have to decide whether
or not the boy is guilty. Everyone agrees on what decision is optimal in each
case: the boy should be acquitted if innocent and convicted if guilty. But of
course, no one knows what the true state of the world actually is. So, that is
exactly why this jury is put together, which, by communicating will collectively
try to make the best decision.

Initially, the group does not agree, as individuals composing the group have
different beliefs. If we assume that all jurors reveal their private information
truthfully and every other juror revises her belief correctly according to the
newly received information, then the probability that the group will arrive at
the correct conclusion will clearly increase as a result of communication. After
all, due to communication, the collective decision will be based on more correct
information than the decision of any individual could have been. However, in
reality things are not that simple. One important reason for this is the fact
that communication usually continues “outside office hours”, off the record and
unbridled by public scrutiny. As a result, information is not always publicly
shared. The question that we will consider in this thesis therefore is: what is
the probability that the group, as well as each individual that composes the
group, will arrive at the correct conclusion as a result of communication with
some but not all other group members?

We call the situation in which group members communicate with some but
not all other group members partial communication. The occurrence of partial
communication is beautifully illustrated in Twelve Angry Men. During the
break, some jurors go the bathroom, and the conversation about whether the
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boy is to be convicted or acquitted continues, as can be read in the following
passage from the movie.

#7 exits, letting the door slam. #8 slowly dries his face. A moment
later the door opens. We hear a loud laugh from outside. #6 enters
the bathroom. The door closes. #6 walks over to the sink, turns on
the water. During this next exchange he lets it run over his wrists.
#6(sarcastically): Nice bunch of guys. #8: I guess they’re the same
as any. #:6 That loud, heavy set guy, the one who was tellin’ us
about his kid...the way he was talking...boy, that was an embarassing
thing. #6(smiling): Yeah. What a murderous day. You think we’ll
be much longer? #8: I don’t know. #6: He’s guilty for sure. There’s
not a doubt in the whole world. We shoulda been done already. #8
doesn’t answer him. #6: Listen, I don’t care, ’y’ know. It beats
working’. He laughs and #8 smiles. Then #6 pointedly looks at
#8. His smile vanishes. #6: You think he’s not guilty? #8: I don’t
know. It’s possible. #6: I don’t know you, but I’m betting’ you’ve
never been wronger in your life. Y’ougta wrap it up. You’re wastin’
your time. #8: Supposing you were the one on trial?

Partial communication falls within two extremes: no communication and
public communication. Public communication occurs when all people in a group
talk to all other group members. There already exists a result for group accu-
racy under no communication, which is the famous Condorcet Jury Theorem by
de Condorcet (1785). Meanwhile, Coughlan (2000) modeled accuracy of indi-
vidual agents during public communication. Exactly because the models of the
two authors are on opposite ends - the former doesn’t allow for any, the latter
only for public communication - we will use both their frameworks to investigate
the case when communication is between these two extremes.

Group accuracy with no communication

The Condorcet Jury Theorem (henceforward denoted by ”CJT”) by de Con-
dorcet (1785) shows that large groups of people are better at finding the truth
than single individuals. The theorem consists of two components. Firstly, it
shows that the accuracy of the majority is at least as good as the average ac-
curacy of each individual agent. Secondly, it shows that as the group grows,
the accuracy of the majority approaches 1. In practice, this means that when
you ask a large group of people to give an answer regarding a certain factual
question, by taking the majority of all their answers, it is very likely that you
end up with the correct answer. The proof of the CJT theorem rests on some
assumptions, one of which is that voters must vote independently of each other.
This implies that people should not communicate with each other about what
they think is the correct answer.
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Accuracy with public communication

Coughlan (2000) formulated a formal model specifically adapted to jury trials.
His model is an extension of work by Feddersen and Pesendorfer (1998), who
model jury trials with the assumption that jurors do not communicate with each
other. Coughlan extends this model by incorporating limited communication
among jurors. In particular, he assumes that a jury takes a single nonbinding
straw vote before taking the final binding vote for conviction or acquittal. Since
the number of preliminary votes during the straw vote is publicly announced
prior to the final vote, this can be seen as a form of minimal communication
among jurors. Coughlan ultimately shows with his extended model that the
unanimous voting rule minimise the probability of convicting innocent defen-
dants and acquitting guilty ones. In this thesis, we will abstract away from
this specific setting. Instead, we will solely adopt Coughlan’s communication
and voting model and generalise this by studying settings in which the single
nonbinding straw vote is shared only with a subset of the agents.

Accuracy with partial communication

The goal of this thesis is to determine individual and group accuracy after
partial communication. As such, we will generalise Condorcet’s and Coughlan’s
models - the one for no communication and the other for public communication
- to the case in-between: partial communication. We will do so in two steps.
Firstly, we will determine individual and group accuracy in regular networks.
This means that agents talk with only a subset of agents in the network, but
every agent talks to a subset of agents of an equal size. In the second part, we
will generalise to random networks, thus allowing for cases where some agents
are more connected than others.

1.1 Contribution

The setting in which we will study individual and group accuracy is the follow-
ing. We assume agents are in a network where they observe individual signals.
The goal of agents is to track the true state of the world and signals represent
the information that agents receive about the state of the world. These sig-
nals have a given accuracy, which we assume to be the same for all signals. In
Condorcet’s scenario, agents vote based solely on the signal they observe. In
Coughlan’s scenario, agents exchange their signals with all other agents, and
then vote. The main goal of this thesis is to study the scenario in-between:
agents exchange their signals with some other agents, and then vote.

As a result of signal exchange, agents receive new information. We as-
sume that agents reveal their signals truthfully whenever they are matched
with another agent in the network. Furthermore, we will assume that agents
are Bayesian. Thus, they have a certain prior belief that they update using
Bayes’ rule and the incoming signals. We then assume agents are non-strategic
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and thus vote according to their posterior belief. We will determine the prob-
ability that an agent’s posterior belief is correct: this is the agent’s individual
accuracy. Furthermore, we will determine the probability that asymptotically,
the majority of agents is correct: this we will call the group accuracy.

Our contribution is a framework for individual and group accuracy as a result
of partial communication. Regarding individual accuracy, we derive a general
formula to determine the individual accuracy in any random network. This en-
ables us to determine the effect of various parameters on the individual accuracy
in a random network with partial communication. We show that as the size of
the network and the amount of communication increases, also the individual ac-
curacy increases, as one would intuitively expect. As the competence increases,
often the accuracy increases too, but this is not always the case. Furthermore,
we show that whenever the prior and threshold for belief are equal, then the
formula for individual accuracy, in which agents try to determine the truth via
Bayesian updating, reduces to a formula in which agents try to determine the
truth via maximum likelihood estimation. Finally, from our general formula of
individual accuracy, a formula for individual accuracy in regular networks can
be derived. Since we show that Condorcet’s and Coughlan’s models are special
cases of regular networks, it follows that the accuracy in these networks can be
determined using this formula too.

There are several ways communication can influence group accuracy. Our
focus in this thesis will be on the amount of communication connections agents
have in the network and how this affects group accuracy. Therefore, we first
study group accuracy in regular networks, in which each agent has equally
many connections. We show that for any regular network when competence is
uniformly distributed and above 0.5, in the limit we obtain a correct majority
with probability 1. We therefore determine, using Chernoff Bounds (1952),
the probability that in a random network, agents have close to equally many
communication connections.

1.2 Related literature

Modelling partial communication and its effect on individual as well as group
accuracy is the aim of this thesis. Our group accuracy result builds on the CJT
and its follow-up literature in which the assumption of dependence is relaxed.
We firstly discuss literature in this field. Our individual accuracy result builds
on the model of Coughlan (2000). This is an epistemic, Bayesian model. We will
therefore discuss literature related to this approach. Then, we discuss literature
related to the epistemic benefits and risks of communication. Finally, we discuss
some literature in the field of dynamic epistemic logic, as it also provides an
approach to formalise information exchange in groups.
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Literature on group accuracy and communication

The CJT is an example of the wisdom of the crowds, which is the idea that
in general big groups of people are better at guessing facts than a small group
of experts. It is for this reason that the CJT is often mentioned in one line
with the wisdom of the crowds. For a reading on the wisdom of the crowds, we
recommend the book The Wisdom of Crowds: Why the Many are Smarter than
the Few by Surowiecki (2004).

Jury theorems are at the heart of the idea of the wisdom of the crowds.
As Dietrich and Spiekermann (2019, p.386) formulate it: “A jury theorem is a
mathematical theorem about the probability of correctness of majority decisions
between two alternatives”. The CJT (1785) was the very first jury theorem. Be-
cause it assumes independence between agents, it has been argued by Anderson
(2006) that the CJT implies that communication might harm group accuracy.
Yet, communication and voting are often seen as two important characteristics
of information pooling in democratic decision making. Anderson (2006, p.11)
thus argues that “an adequate model should show how they work together”.

Several such models have been formulated. Dietrich and Spiekermann (2019)
for example argue that we should not assume that agents have a uniform compe-
tence above 0.5, but that they instead have tendency to competence, meaning
that the competence of voters tends to exceed 0.5, but is not always above
0.5. Furthermore, they argue that we should assume conditional independence
by holding the state fixed. Under these assumptions, Dietrich and Spiekermann
(2019) show that the group accuracy increases as the group size increases. More-
over, under these assumptions, they show that communication is beneficial as
it makes agents more competent.

Also Hahn et al. (2019) investigate how communication has an effect on
the accuracy of a group. In their Condorcet-like simulation model, the issue of
the voters is to decide on the truth or falsity of a proposition. At each time
step of the simulation, agents have a certain probability of receiving a signal
that supports the truth or falsity of the proposition. At every time step each
agent also has a probability of communicating with another agent. What agents
communicate to each other is their belief of the truth value of the proposition.
However, an agent only speaks when this belief exceeds a certain fixed threshold,
to simulate that agents express their belief only when they are convinced up to
a certain degree of what they think. Based on their simulation results, Hahn
et al. (2019) conclude that when a moderate degree of communication is allowed,
groups are better at tracking the truth than the individuals that composed
them. However, when they allowed a lot of communication among agents, the
accuracy of the group was significantly lower compared to groups with little or
no communication allowed.

These results are in line with the work of Ladha (1992), who showed that
when individuals in a group communicate with each other, the group can only
be good at making a decision as long as the average level of dependence does
not go too high and the mean competence of the individuals is good enough.

A closely related work that is also concerned with the truth-tracking po-
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tential of a group and also builds on the CJT is written by Michelini (2021).
Michelini’s goal is to investigate the effect on the truth-tracking ability of the
group if being competent is costly. This represent the fact that acquiring in-
formation may take effort for agents. Michilini mostly considers networks in
which each agent is connected with every other member of the group, but in
the last part of his thesis relaxes this assumption and studies networks in which
every agent is connected with a strict subset of the group. He therefore, like
us, introduces an underlying network that connects the agents. However, other
than us, he does not study regular or random graphs, but very specific cate-
gories of graphs: stars, rings and wheels. Our works can thus be considered
as supplements of each other: while Michelini studies group accuracy with par-
tial communication in specific categories of networks, we do so for regular and
random graphs, without looking at the specific network.

Literature on individual accuracy and communication

Coughlan’s model (2000) is an extension of work by Feddersen and Pesendorfer
(1998), who simulate jury trials with the assumption that jurors do not com-
municate with each other. Their model consists of a set of Bayesian agents
that have to decide on a binary issue - either the defendant is guilty or it is
innocent - based on private information only. The agents are assumed to vote
strategic, which means that they vote according to Nash equilibrium behav-
ior. This means that agents do not simply vote their signal, but also take into
account how to maximize utility. In this setting, Feddersen and Pesendorfer
(1998) show that when agents vote strategically, the unanimity rule results in a
strictly positive probability to acquit the guilty and convict the innocent.

By extending the model of Feddersen and Pesendorfer (1998) with commu-
nication, Coughlan (2000) claims that unanimity rule does not increase the risk
of faulty judgements. In particular, with this extended model, Coughlan shows
that the unanimity rule minimises the probability of convicting innocent de-
fendants and acquitting guilty ones. Our work will not built on this specific
result of Coughlan. Rather, we will adopt his Bayesian communication and
non-strategic voting model and study individual accuracy of agents.

Another Bayesian approach is provided by Ding and Pivato (2021), who
present a model of communication in which information sharing is costly. Like
our model, they consider Bayesian agents in an epistemic framework. That is,
there is a true state of the world that the agents collectively want to determine.
Although they do make a distinction between private and public information
of agents, there is no distinction between public and semi-public information
sharing. That is, once an agent decides to disclose some of their private in-
formation, it immediately becomes public. Furthermore, they solely focus on
group accuracy and not on individual accuracy.
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Literature on the benefits and risks of communication

Communication, and specifically deliberation, is nowadays often seen as a key
element in democratic decision making. Deliberation is form of communication
where the goal is to exchange arguments and possibly come to an agreement.
Proponents of deliberative democracy argue that deliberation and voting to-
gether justify collective decisions (see e.g. Chambers (2003)). As a result of this
deliberative turn, various models of deliberation have been put forward. For
example, Chung and Duggan (2020) recently modelled three different forms of
deliberation - myopic discussion, constructive discussion and debate. Hereby,
their focus was on the formal theory of arguments, rather than the structure of
information exchange. Goldbach (2015) combined a formal model of preference
formation with a model transformer that represents democratic deliberation.
This model transformer imposes that all agents share their information with
each other and thus we have public communication yet again. As we can see,
in the literature on deliberative democracy, the communication always happens
publicly, and in this respect the literature in this field thus differs from ours.

Next to the benefits of communication, there is also a field of study on the
risks of communication - sometimes called the madness of the crowds due to
Mackay (1962). Phenomena that can be related to this thesis are the ones that
arise due to an asymmetry in communication. In random networks, after all,
not everyone talks to the same number of other people and this can influence the
group accuracy. One phenomenon that is of particular interest for our purposes
is that of the majority illusion effect (see e.g. Lerman et al. (2016)). In this
phenomenon, a belief that is relatively rare in a network is over-represented in
the signals agents receive from other agents during communication. A related
phenomenon is the Friendship Paradox formulated by Feld (1991), which states
that most people have strictly fewer friends than their friends have.

Another phenomenon in which asymmetries can influence the flow of infor-
mation in a network is that of information gerrymandering, recently modelled by
Stewart et al. (2019). Information gerrymandering happens when the structure
of a social network influences the voting outcome towards one party, even when
both parties have equal sizes and each person communicates with equally many
other agents. Other than in the majority illusion effect, with information gerry-
mandering every person talks to the same number of other persons. However,
an asymmetry arises since people from one party are predominately exposed to
beliefs of members from their own party, whereas in the other party agents are
predominately exposed to beliefs of the members from the other party.

Literature on the logic of information exchange in groups

Another approach to study information exchange in groups and the conse-
quences thereof is provided by the field of dynamic epistemic logic (DEL). DEL
uses modal logics to describe knowledge change. A general introduction to the
field is given in the book by van Ditmarsch et al. (2008). Related to this the-
sis is the formalisation of public communication by public announcement logic
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(PAL) (van Ditmarsch et al., 2008, Chapter 4). PAL is used to reason about
knowledge and belief and the changes thereof due to public announcements: an
informational statement of an agent towards the whole group.

Another part of DEL that is related to this thesis are the logics that incorpo-
rate probabilistic updates. Standard DEL models belief qualitatively: an agent
either believes a proposition p, or it does not believe proposition p. In contrast,
probabilistic DEL, like the model that we formulate in this thesis, models belief
quantitatively: an agent attaches a certain probability to a proposition p, which
is interpreted as an agent’s degree of belief in p. For example, van Benthem
et al. (2009) generalize standard dynamic epistemic logics to a probabilistic set-
ting. They model three probabilistic aspects of incoming information: the prior
probability, the occurrence probability and the observation probability. Another
example of probabilistic DEL is the work of Baltag and Smets (2008), who have
developed a logic that connects DEL, belief revision theory and the Bayesian
approach. They define a probabilistic product update that permits updating on
events of probability zero, which is usually not possible in the Bayesian frame-
work. Finally, in the recent work by Baltag et al. (2021), a model is formulated
for forming and revising beliefs about unknown probabilities.

1.3 Overview

The goal of Chapter 2 is to determine individual accuracy and group accuracy
for agents in regular networks. To do so, we start off by introducing the formal
framework of this thesis in Section 2.1. We then formulate the Condorcet Jury
Theorem in this framework in Section 2.2 and Coughlan’s model in Section
2.3. We then introduce regular communication networks in Section 2.4 and
observe that both Condorcet’s as well as Coughlan’s model both apply to regular
networks. Therefore, in Section 2.5 we spell out a general formula to determine
the individual accuracy in a regular communication network and we show how
individual accuracy in the Condorcet’s and Coughlan’s model can be derived
from this. Finally, we generalise the asymptotic part of the CJT to regualar
communication networks of any size.

In Chapter 3 we shift our attention from regular networks to random net-
works and focus on individual accuracy. In Section 3.1 we give a brief intro-
duction to random networks. In Section 3.2 we then generalise our theorem for
individual accuracy in regular networks to random networks. The main part of
the remaining chapter will spell out the exact effect of each of the parameters
in our model on the individual accuracy. Section 3.2.1 discusses the influence
of the size of the network, Section 3.2.2 determines the effect of the amount of
communication, Section 3.2.3 spell out the effect of the competence of agents
and Section 3.2.4 handles the effect of the prior and the threshold value. Finally,
in Section 3.3 we show that in case the threshold value and the prior are equal,
our formula for individual accuracy that is Bayesian nature, boils down to the
more simple maximum likelihood estimation approach.

Chapter 4 is about group accuracy in random networks. This is non-trivial,
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because firstly, beliefs after communication are not independent anymore and
secondly, because in a random network the number of agents other agents talk
to is variable. We will therefore in Section 4.1 introduce weights as measures
of the spread of communication in random networks and show that if each
signal has the same weight, then asymptotically we reach a correct majority
with probability 1. Therefore, in Section 4.2 we discuss in which networks
communication is evenly spread. We show this is the case for the extreme
cases when there is either no or full communication, and for the case when the
number of agents tends to go to infinity. For all other cases, we propose to use
the Chernoff Bound to determine the spread of communication.
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Chapter 2

Individual and Group
Accuracy in Regular
Networks

This thesis will be a generalization of Condorcet’s and Coughlan’s work in two
respects. In this chapter we present the first aspect, which is a generalization to
regular networks. To do so, we proceed as follows. Section 2.1 sets out the formal
framework that we will use in this thesis. Section 2.2 introduces the formal
setting of the Condorcet Jury Theorem, while section 2.3 introduces the formal
setting of Coughlan’s work. In section 2.4 we will introduce regular networks and
show that, although at first sight very far apart, both theorems apply to regular
networks. Finally in section 2.5 we will generalize Coughlan’s and Condorcet’s
model to regular communication networks, in which each agent communicates
with an equal number of other agents and determine the individual accuracy as
well as the group accuracy in this general setting.

2.1 The formal framework

Let N = {1, . . . , n} be the set of agents with an individual agent denoted by i.
There is a set A = {a, b} of two alternatives, one of which is the true alternative,
denoted by θ. Thus either θ = a or θ = b. The prior probability of a is given by
r, and the prior probability of b is given by 1 − r. Before voting, each agent i
receives a private signal si ∈ {a, b}. The competence of an agent is given by p,
which is the conditional probability that the signal of an agent i is x given that
the state of the world is x. The competence expresses the probability that an
agent receives a correct signal. Since we will always assume that all agents are
equally competent, we do not need to use an index i to refer to the competence
p of a given agent i. For every agent i, let hi be the number of signals an agent
receives. Let ki be the number of a-type signals out of h signals that an agent i
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observes of other people. From this it follows that the number of b-type signals
an agent i receives is equal to hi − ki. For simplicity, we sometimes will omit
the subscript i in case it is clear from context which agent we are addressing.

On the basis of the newly acquired information, agents will update their
beliefs according to Bayes’ Theorem. Let θ = a be the event that the state of
the world is a and let k denote the event that agent receives k a-type signals out
of a total of h signals, such that P(k) 6= 0, then according to Bayes’ Theorem:

P(θ = a|k) =
P(k|θ = a)P(θ = a)

P(k)
(2.1)

In the context of beliefs, Bayes’ theorem describes what probability an agent
attaches to the event θ = a given new evidence k based on a prior belief in θ = a.
In particular, using Bayes’ Theorem and the notation just introduced, we can
calculate the posterior belief π in alternative a based on k a-type signals out of
a total of h signals as follows:

Observation 2.1.1. Let π = P(θ = a|k). Then:

π =
r · pk(1− p)h−k

r · pk(1− p)h−k + (1− r) · ph−k(1− p)k

Proof. By Bayes’ theorem it follows that the posterior π = P(θ = a|k) is given
by:

P(θ = a|k) =
P(θ = a)P(k|θ = a)

P(θ = a)P(k|θ = a) + P(θ = b)P(k|θ = b)

We fill in this equation as follows. P(θ = a) is the prior probability that an
agent attaches to a, we know this is given by r. Furthermore, P(k|θ = a) is
the probability of observing k signals in favour of a out of a total of h signals,
given that θ = a. This probability is given by the binomial distribution B(h, p),
where p refers to the competence of an agent. So, P(k|θ = a) =

(
h
k

)
pk(1−p)h−k.

In this way we have the numerator of the fraction.
The denominator contains the numerator, and we add P(θ = b), which is

the prior probability an agents attaches to b; we know this is equal to 1 − r.
Finally, P(k|θ = b) is the probability of observing k signals in favour of a out
of a total of h signals, given that θ = b. This probability is again given by the
binomial distribution such that P(k|θ = b) =

(
h
k

)
ph−k(1− p)k.

So, we get the following equation.

π =
r ·
(
h
k

)
pk(1− p)h−k

r ·
(
h
k

)
pk(1− p)h−k + (1− r) ·

(
h
k

)
ph−k(1− p)k

=
r · pk(1− p)h−k

r · pk(1− p)h−k + (1− r) · ph−k(1− p)k
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In words, π = P (θ = a|k) is the probability that an agent attaches to a
being the state of the world, given the evidence k signals in favour of a, out of
a total of h signals. Note that 1− π is now the posterior for an agent believing
b to be the true state of the world: the probability that b is the true state of
the world, given that an agent observes k signals in favour of a out of a total of
h signals.

Now, we have to determine when an agent is convinced that a is the true
state of the world. After all, so far we only worked out what probability an
agent attaches to a being the true state of the world. We have to determine
when an agent will actually believe a to be the state of the world. To do so,
we set a threshold t ≥ 1

2 for belief such that an agent i will believe a if and
only if πi > t, otherwise the agent believes b. That is, an agent will believe b
if and only if π ≤ t. In the literature, saying that a belief is equal to a degree
of belief bigger than some threshold is called the Lockean thesis (see e.g. Foley
(1993); Leitgeb (2014)). The Lockean thesis enables us to identify quantitative
belief with qualitative belief. 1 Note that letting an agent believe a if and only
if π > t and not π ≥ t is ultimately an arbitrary choice, that does imply a small
bias towards believing b. We will discuss the later in more detail. Depending on
the context though, it can be argued that π needs to be strictly bigger than t,
as for example in law it is common to convict someone only beyond reasonable
doubt.

After collecting information and updating the posterior belief - either by
communicating with other agents or sometimes only by consulting one’s own
private information - each agent i is asked to submit a vote vi ∈ A. We will
assume that agents always vote sincerely, meaning that agents vote according
to their belief. That is, an agent will vote for a if and only if π > t and an agent
will vote for b if and only if π ≤ t. Votes are gathered in a profile, which is a
vector v = (v1, ..., vn). We denote the number of times an alternative x ∈ {a, b}
is voted for by v(x) where v(x) = |{vi ∈ v|vi = x}|.

The collective opinion is obtained by applying a voting rule f that we de-
scribe by a threshold k̂, which is an integer between 0 and n:

f(v) = {x ∈ A|v(x) ≥ k̂}

We highlight two voting rules in particular. Firstly, the majority rule, which
selects the alternative that is voted on by a strict majority of the voters. That
is k̂ = bn2 c:

1There are some objections against the Lockean thesis of belief. In particular, no threshold
such that t 6= 1 will make the standard axioms for belief - KD45: seriality, transitivity,
Euclideanness - sound. More importantly, the Lockean thesis makes the conjuctivity of belief
fail. Leitgeb (2014) for example therefore argues that the Lockean thesis need to be expanded
with some extra conditions. In particular, he argues that an agent believes x if it has a stable
high probability in x under revision with any evidence that is consistent with x. Whether our
account is compatible with this approach will have to be determined by future work. Note,
however, that the fact that beliefs are not closed under conjunction is not a problem for this
framework, as we are concerned with solely two states of the world that are incompatible with
each other.
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majority(v) = {x ∈ A|v(x) ≥ bn
2
c}

Keep in mind that although we write majority(v), the majority rule is
dependent on more than just v. Furthermore, notice that the majority rule
allows for ties, in case the number of voters is even. For example, suppose we
have 20 votes in total, 10 for each alternative. Then as k̂ = 10, both alternatives
will satisfy the threshold and thus we have a tie. In that case we will break the
tie by a fair coin toss, so basically a (fair) random selection of a winner. The

second voting rule we highlight is the unanimity rule, in which k̂ = n:

unanimity(v) = {x ∈ A|v(x) ≥ n}

Again, we point out that the unanimity rule is dependent on more than
v, even though we denote it by unanimity(v). Finally, we let pmaj(n) be the
accuracy of a group N = {1, ..., n} where the collective choice is determined
via majority(v) and we let puna(n) be the accuracy of a group N = {1, ..., n}
where the collective choice is determined via unanimity(v).

2.2 Condorcet’s model

The Condorcet Jury Theorem (1785) shows that large groups of people are good
at finding the truth. In particular, the theorem consists of three statements,
explicated in the following theorem. The proof of this theorem is based on
Grofman et al. (1983) and (Dietrich and Spiekermann, 2013, Appendix C).

Theorem 2.2.1 (Condorcet’s Jury Theorem). Let v be a vector of n Bernoulli
trials with a fixed probability 0.5 < p ≤ 1, where n is odd. Then:

pmaj(n) ≤ pmaj(n+ 2) (2.2)

p ≤ pmaj(n) (2.3)

lim
n→∞ pmaj(n) = 1 (2.4)

Proof. We give a proof sketch of each claim one by one.

(2.2) This claim follows from the following formula:

pmaj(n+ 2) = pmaj(n) + (2p− 1) ·
(

n
n+1
2

)
· (p(1− p))

n+1
2 (2.5)

Let (2p− 1) ·
(
n

n+1
2

)
· (p(1− p))n+1

2 = φ. Since 0.5 < p ≤ 1, it follows that

φ ≥ 0. Consequently pmaj(n) ≤ pmaj(n+ 2) as desired. We give a sketch
of the derivation of formula 2.5. Let En+2 be the event that the majority
of the n+ 2 votes are correct and En be the event that a majority of the
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n votes are correct. Furthermore, let En+2 \En be the event the majority
of n + 2 are correct, but less than a majority of the n votes are correct.
Similarly, En+2 ∩ En is the event that a majority of the n+ 2 and of the
n votes are correct. We can then rewrite pmaj(n+ 2) as follows:

pmaj(n+ 2) = pmaj(n) + P(En+2 \ En)− P(En \ En+2) (2.6)

Now it can be derived that P(En+2 \ En) = p
(
n

n+1
2

)
(p(1− p))n+1

2 and

P(En \ En+2) = (1 − p)
(
n

n+1
2

)
(p(1 − p))

n+1
2 . Filling in these values in

equation 2.6 gives us equation 2.5 as desired.

(2.3) This follows from the previous claim 2.2 and the observation that p =
pmaj(1).

(2.4) As n approaches infinity, it follows by the weak law of large numbers that
the average number of correct votes converges to p. Now since p > 0.5 it
follows that the probability of a correct majority also approaches 1.

In words, the CJT tells us three things. Firstly, equation (2.2) tells us that
larger groups are better. More specifically, the larger the group, the higher the
probability that the majority gets it right. Secondly, equation (2.3) tells us that
groups are better than individuals. In particular, it says that the probability
that more than half of the voters get the right answer is greater than each
individual’s competence p. Finally, equation (2.4) says that asymptotically, the
accuracy of the group converges to 1. That is, in the limit, that is for very
big groups, the group will be correct for sure. Although this statement talks
about infinitely many agents, it is important to realize that the group size does
not even have to be very big to get a high probability of getting it right. For
example, for individuals with a competence p = 0.8, the probability that the
majority of a group of just 13 individuals getting the right answer is greater
than 0.99.

We point out that there are three main assumptions for the theorem to
hold, as stated formally in the theorem. The first, competence, states that each
individual should be more likely than a fair coin toss to get the right answer.
This means that pi > 0.5 for every voter i. The second assumption is that
individual competences must be homogeneous. Formally, pi = p, for some p and
for all voters i. The last assumption, independence, states that the probability
of one agent choosing one alternative does not affect any other agents’ choice.
This means that people should not communicate with each other. It is the last
assumption that will be of our concern in this thesis and that we will challenge.
We will investigate to what extent the CJT holds for networks in which agents
do communicate with each other.
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2.3 Coughlan’s model

At the other end of the spectrum, we have Coughlan (2000). The overall goal
of his paper is to determine under which voting rule jury trials perform best.
In this thesis, however, we will focus on a specific part of Coughlan’s work,
which is his communication model2. The formal framework is as introduced in
section 2.1. So, agents have to decide on a binary issue. In the communication
model, in contrast to in the CJT model, agents vote two times. Firstly, they
vote according to their own private signal. The signal is private in the sense
that they share it with no one else. The results of this voting round are publicly
announced. This can be compared to what is called a public announcement in
Dynamic Epistemic Logic (van Ditmarsch et al., 2008, Chapter 4). Secondly,
agents vote while taking into account the information of the previous voting
round. Since the results of the first voting round are publicly announced, we
will see that as a form of public communication.

It is easy to see that if all agents communicate with each other, meaning that
everyone discloses their signal to one another, then each agent receives the exact
same signals. Since all agents have the same prior and use the same update rule,
it follows that all agents will vote the same. In other words, agents will vote
unanimously. As a result, given that all signals are common knowledge, the
probability that the majority is correct is the same as the probability that the
unanimous decision is correct. We spell out this fact in the following observation.

Observation 2.3.1. Given a network N = {1, .., n} such that h = n for all
agents i ∈ N , after signal disclosure it follows that:

pmaj(n) = puna(n) (2.7)

Proof. Firstly, each agent will have the same posterior belief π. Namely, π is a
function of r, p, k, h. It is given that r, p are the same for all agents. Furthermore
h = n for all agents, which means that all agents observe the signals of all other
agents. As agents observe the whole network, it also means that all agents
observe the same number k a-type signals.

Since πi is the same for all agents i, and vi = a if πi > t and vi = b if π ≤ t
it follows that vi = vj for all i, j ∈ N . Consequently, pmaj(n) = puna(n).

Coughlan’s framework is designed specifically for jury trials, where a small
group of experts has to decide over the fate of a defendant. Therefore, it is
very important that as many individuals as possible get it right, in order for
the group to increase the chance of getting it right. So, we have very accurate
individuals, but that due to public communication are completely correlated
with each other. Consequently, as Observation 2.3.1 shows, a voting rule has
basically no effect. Whatever voting rule you use, agents all hold the same
belief, so any voting rule, as defined in section 2.1, will yield the same outcome.

2Coughlan makes a distinction between different strategies that agents can have while
voting. However, in this thesis we will focus only on the non-strategic element of Coughlan’s
work
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2.4 Regular communication networks

At first sight, Condorcet’s and Coughlan’s frameworks couldn’t be further apart.
Condorcet allows for no communication, and Coughlan assumes full information
exchange between agents. Yet, what Condorcet and Coughlan have in common
is that their networks can both be seen as regular graphs, as will be shown in
this section.

We will be using graphs as representations of communication networks.
Therefore, we will interpret vertices as agents and every edge as a connection
between agents that enables communication. Following van Steen (2010), we
set out the following formal concepts and notations from graph theory.

Definition 2.4.1 (Graph). A graph G = (V,E) consists of a collection of
vertices V and edges E. Each edge e ∈ E is said to join two vertices, which are
called its end points. If e joins i, j ∈ V we write e = 〈i, j〉. In this case, i, j are
adjacent and e is incident with i and j respectively.

The terms network and graph will be used interchangeably in the sequel,
as well as the terms vertex and node and the terms edge and link. What we
just defined as a graph is also called an undirected graph, because edges have no
direction. This is because we use graphs to represent communication networks,
and we assume that if there is a connection between two agents, information
flows in both ways. Thus, for the remainder of the thesis when we talk about
graphs we will always be talking about undirected graphs.

An important property of a vertex is the number of edges that are incident
with it. This number is called the degree of a vertex.

Definition 2.4.2 (Degree). The number of edges incident with a vertex i -
denoted δi- is called the degree of i.

Using only the definition of a graph and degree, we can define the following
special classes of graphs: empty graphs, complete graphs and regular graphs.

Definition 2.4.3 (Empty graph). A graph G = (V,E) such that δi = 0 for all
i ∈ V is called an empty graph of size |V |.

Definition 2.4.4 (Complete graph). A graph G = (V,E) such that δi = |V |−1
for all i ∈ V is called a complete graph of size |V | − 1.

Definition 2.4.5 (Regular Graph). A graph G is regular if all vertices have
the same degree δ. We denote by G(n, δ) a regular graph with n vertices that
all have degree δ.

An example of an empty graph and a complete with 4 vertices is given in
figure 2.1a and figure 2.1b respectively. An example of a regular graph in which
all vertices have degree 2 is given in figure 2.1c.

Note that there is no consistency in the literature when it comes to denoting
graphs without edges; they are also called null graphs and trivial graphs. The
concept is important for us though, since we know that the CJT does not allow
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# #

(a) Empty Graph

# #
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(b) Complete Graph

# #

# #

(c) Regular Graph

Figure 2.1: Examples of three types of graphs

for any links between agents in a network. This means that there are no edges
and the CJT thus applies to empty graphs only. In Coughlan’s framework, on
the other hand, all agents are connected with each other. Therefore, we will say
that Coughlan’s framework applies to complete graphs only. We chose to define
complete graphs as graphs in which δi = |V | − 1 for all vertices, rather than
δi = |V | for all vertices. It is true that each agent receives a signal from itself,
but since this is always the case - also in Condorcet’s model - we chose to leave
out these reflexive arrows for simplicity in this thesis. It is important to keep in
mind though that we assume that in every network - whether empty, complete
or regular - agents always receive a signal from themselves.

We can see that empty graphs and complete graphs are a special case of
regular graphs, one where the degree is 0 or |V | − 1 for all vertices respectively.
Thus regardless of the differences between the CJT and Coughlan’s model, they
have in common that they both apply to regular graphs.

2.5 Partial communication on regular networks

So far we have seen Condorcet’s model with no communication on the one hand,
and Coughlan’s model with full communication on the other hand. The main
goal of this thesis will be to generalise both theorems to partial communication
settings, that is, where some agents talk to some other agents, but not nec-
essarily to everyone. In the remainder of this chapter, we will look at partial
communication in regular networks. We will be interested in two main things:
the expected accuracy of an individual agent after communication and the ex-
pected accuracy of the majority of the group. We will determine them in this
respective order.

2.5.1 Partial communication and individual accuracy

In this section we will determine the probability that an agent is correct in a
regular network of a given degree. Since in this chapter we focus on h-regular
networks only, we know that each agent receives the same number h of signals
from other agents. In section 2.1 we introduced the posterior π and the threshold
t for belief such that an agent will believe a to be the correct alternative if and
only if the posterior belief π in a is strictly bigger than the threshold t. We now
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are going to determine when the posterior π is bigger than our threshold t and
express this in terms of the number of k a-signals that an agent has to receive.
In other words, how many signals of a does one have to receive, in order to
believe that a is the true state of the world? This question is answered by the
following lemma. Note that throughout the thesis we assume the base of log to
be 2.

Lemma 2.5.1. Let τ = h
2 + 1

2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

,

π > t if and only if k > τ

Proof. Using Observation 2.1.1 to fill in π:

π >t iff

rpk(1− p)(h−k)

rpk(1− p)(h−k) + (1− r)p(h−k)(1− p)k
>t iff

rpk(1− p)h

(1− p)k
>
trpk(1− p)h

(1− p)k
+
t(1− r)ph(1− p)k

pk
iff

rp2k(1− p)h >trp2k(1− p)h + t(1− r)ph(1− p)2k iff

p2k(r(1− p)h − tr(1− p)h) >t(1− r)ph(1− p)2k iff

p2kr(1− p)h(1− t) >t(1− r)ph(1− p)2k iff

p2k

(1− p)2k
>

t(1− r)ph

(1− t)r(1− p)h
iff(

p2

(1− p)2

)k
>

t(1− r)ph

(1− t)r(1− p)h
iff

k > log p2

(1−p)2

(
(t− tr)
(r − tr)

(
p

1− p

)h)

>
log( t−trr−tr ( p

1−p )h)

log p2

(1−p)2)

>
h

2
+

1

2

log( t
1−t )− log( r

1−r )

log( p
1−p )

Looking at τ , we make a few interesting observations of the influence of
the parameters on the value of τ . Firstly, we can see that the prior r and the
threshold t have a similar effect on the number of k signals an agent has to
receive such that π > t. If the prior is low, meaning that the agent has a strong
prior belief in b, or if the threshold is very high, then the agent needs relatively
many signals in favour of a to believe a. Meanwhile, if the prior for a is high
or the threshold is low, then the agent needs relatively few signals in favor of a
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to believe a. Intuitively, this is what we would expect. After all, a high prior
indicates that an agent already attaches a strong belief to a, and thus it makes
sense that it needs less evidence in favour of a to believe a. A low threshold
indicates that with a relatively low probability an agent will be convinced of a
and thus it will need few signals to believe a.

Secondly, we can see that τ increases linearly in h. This means that if
h becomes twice as big, then τ becomes twice as big. This intuitively makes
sense: assuming that the remaining parameter values stay fixed, then if an agent
receives double the number of h total signals, it also needs double the number
of k a-type signals for her posterior to cross the threshold.

Thirdly, the higher the value of p, the closer the value of τ to h
2 . Namely,

as p increases, the value of log( p
1−p ) increases. Consequently, the value of h

2 +

1
2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

decreases, bringing the value of τ closer to h
2 . As a result, the

prior r and the threshold t have less weight in determining the value k in the
case p is high. This is an interesting observation, as it implies that competent
agents attach more value to the signals they receive, while less competent agents
attach relatively more weight to their prior and the threshold.

The intuition behind this observation is that as competence increases, the
agent trusts the signals with higher confidence. During the Bayesian update,
the agent puts a weight on the signals she receives and then derives a poste-
rior. These weights depend on the informativeness of each signal. The more
informative a signal, the more weight it receives. An increase in p is essentially
an increase in the informativeness of the signal. In our model, a signal that is
correct with probability 0.5 is not informative it all. In this case an agent will
only trust its prior and discard the signal. A signal that is correct with proba-
bility 0.95 is very informative. Or more extremely, if p = 1 then no matter the
agent’s prior, it will trust the signal. Therefore, as p increases, the agent will
attach more weight to the signals and thus τ moves to h

2 .

Fourthly, we can observe that if t = r then k reduces to h
2 . This is stated in

the following corollary.

Corollary 2.5.1.1. If t = r then π > t if and only if k > h
2 .

Proof. If t = r then log( t
1−t )− log( r

1−r ) = 0 and thus k > h
2 .

This is a useful observation that we will use later on. In words it means that
if the prior and the threshold are equal, then for the agent to believe that the
state of the world is a, she must receive a majority of a-type signals. That is,
strictly more than half of the signals an agent receives has to be of the a-type
in order for her to believe that a is the state of the world. This is the set-up
of so-called maximum-likelihood estimation. We will focus on this setting in
section 3.3 in the next chapter.

It is worth mentioning already that although this result might come as a
surprise at first, it does make sense. After all, if r = t this means that the
prior belief in a of an agent is equal to the threshold to belief a. Consequently,
the agent is completely unbiased and therefore attaches equal weight to each

23



incoming signal. An example might illustrate this. Suppose r = t = 0.5. In this
case it is easy to see when it comes to the prior of the agent, it is completely
unbiased as to whether a or b is the state of the world. The threshold value of
0.5 indicates the same thing: it makes the agent unbiased as to whether a or b
is the true state of the world 3 Since the agent has no bias whatsoever, it makes
sense that it lets its belief be determined by the observed signals only. It does
so in an unbiased way by attaching equal weight to each signal by letting k be
equal to h

2 . Now in other cases that r = t, the agent is also unbiased. Of course,
looking only at the value r 6= 0.5 the agent has a bias, but the point is that this
biased is compensated or weighted out by letting r = t. What we can thus learn
from this observation, is that the parameters r and t are two different ways of
creating a bias towards one of the two alternatives. In the special case that
r = t the biases are balanced out such that the agent ends up being unbiased.

Lemma 2.5.1 gives us the probability that k is larger than a certain number.
Now, we calculate that probability for a given h, based on the distribution of
k given h and given that θ = a. So, we want to know, given a specific total
number of signals h and given that θ = a, the probability that the number
of a-type signals is big in enough to meet the threshold. This is given by the
following lemma.

Lemma 2.5.2. Let τ = h
2 + 1

2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

. The probability that the number

of k a-type signals exceeds the threshold t, given h and θ = a is:

P (k > τ |θ = a) =

h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k

Proof. The probability mass function of a Binomial distribution expresses the
probability of getting exactly k successes in n independent Bernoulli trials,
where the chance of getting a correct signal is given by p and the chance of
getting an incorrect signal is given by (1 − p). Now the probability of getting
k guilty signals follows a Binomial distribution, only we are interested in the
probability of getting more than τ many k successes, as proven in Lemma 2.5.1.
That is, we want to know the probability that an agent gets more than τ correct
signals. We will express this by k = bτc+ 1. The upper bound is of k is given
by h + 1, as an agent receives h many signals from other agents and always 1
signal from itself.

In sum, the formula expresses the probability of getting exactly k successes
in h+ 1 independent Bernoulli trials, where k ranges from bτc+ 1 till h+ 1.

Similarly, we calculate the probability of getting b right. That is, we want to
express the probability that the number of a-type signals is small enough such
that it does not exceed the threshold, given h and given that the b would be the
true state of the world.

3This is not completely true. There is a slight bias towards b as the threshold is strict, but
the effect is negligible for this intuitive explanation.
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Lemma 2.5.3. Let τ = h
2 + 1

2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

. The probability that the number

of k a-type signals does not meet the threshold t, given h and θ = b is:

P (k ≤ τ |θ = b) =

bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

Proof. As in the proof of Lemma 2.5.2, the probability of getting k a-type signals
follows a Binomial distribution. In this case, building on Lemma 2.5.1, we are
interested in the probability of getting less than or equal to τ many k a-type
signals. We will express this by k = bτc, which is now our upper bound of k.
The lower bound of k is given by 0: for an agent to believe that the θ = b, she
has to receive more than τ many signals. That means that for her to believe
θ = b, she can receive from 0 to τ many a-type signals. Since each agent will
always receive 1 signal from herself, we can see this as h+ 1 many trials.

In sum, the formula expresses the probability of getting exactly k a-type in
h+ 1 independent Bernoulli trials, where k ranges from 0 till bτc.

If we put Lemma 2.5.2 and Lemma 2.5.3 together, we obtain the probability
that an agent is correct in general after information exchange. We thus obtain
the following theorem, that expresses the expected accuracy of an agent in any
regular network of size h.

Theorem 2.5.4. Let p(n,h) be the expected individual accuracy in a regular
network G = (n, δ) where δ = h. Then for a regular network with n nodes in
which each δi = h, where h is fixed, p(n,h) is given by:

p(n,h) =P(π > t|θ = a) · P(θ = a) + P(π ≤ t|θ = b) · P(θ = b)

=

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k

 · r
+

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

 · (1− r)
where τ = h

2 + 1
2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

.

Proof. This follows from combining Lemma 2.5.1, Lemma 2.5.2 and Lemma
2.5.3 and the fact that the probability of being correct consists of the probability
of believing a in case θ = a and believing b in case θ = b.

Observe that since in a regular network the number of signals h an agent
receives is the same for each agent, it follows that the expected accuracy p(n,h)
will have the same value for each agent. We thus ended up with a way to
calculate the expected accuracy of an individual agent in any regular network.
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We will now show how Theorem 2.5.4 can capture both Coughlan’s as well as
Condorcet’s model. In Condorcet’s model, the network is empty, that is no
one communicates with each other. As a result, the accuracy p(n,h) reduces
to the accuracy p of an individual agent. This makes sense: since agents do
not communicate with each other, their accuracy cannot improve due to com-
munication and thus their accuracy remains unchanged. We prove this in the
following corollary.

Corollary 2.5.4.1. If h = 0 then p(n,h) = p.

Proof.

p(n,0) =

(
1∑
k=1

(
1

k

)
pk(1− p)1−k

)
· r +

(
0∑
k=0

(
1

k

)
p1−k(1− p)k

)
· (1− r)

=pr + p(1− r)
=p

In Coughlan’s model, the network is complete, that is, every agent commu-
nicates with every other agent. The resulting formula to calculate the accuracy
of each individual agent is stated in the following corollary.

Corollary 2.5.4.2. If h = n− 1 then

p(n,n−1) =

 n∑
k=bτc+1

(
n

k

)
pk(1− p)n−k

 · r +

 bτc∑
k=0

(
n

k

)
pn−k(1− p)k

 · (1− r)
Proof. We simply substitute h with n− 1.

We finally formulate a lemma that will be of importance in the next section.

Lemma 2.5.5. If p > 0.5 then p(n,h) ≥ p > 0.5.

Proof. This follows from the fact that p(n,0) = p and p(n,h+1) ≥ p(n,h). The
former follows from Corollary 2.5.4.1. The latter follows from the observation
that p(n,h+1) − p(n,h) is positive.

Corollary 2.5.5 states that if the competence of each agent is strictly bigger
than a half, that is, an agent is more likely than not to get it right, then the
expected accuracy of that agent will also be higher than a half. Moreover,
observe that since p(n,h+1) − p(n,h) ≥ 0, it follows that the larger h gets, the
better the accuracy.

26



2.5.2 Partial communication and group accuracy

In this final section of the chapter we will determine the probability that the
majority of agents is correct in a regular network for any degree. In particular,
we will generalize the asymptotic result of the CJT to regular networks for any
degree.

Theorem 2.5.6. Let k ∈ N. If δi = h for all v ∈ V and p > 0.5 then
lim
n→∞ pmaj(n) = 1.

Proof. Each agent receives h signals that each have an accuracy p > 0.5. By
equation 2.3 of the CJT (Theorem 2.2.1), the probability that the majority of
these k signals is correct is bigger or equal than p. Thus, the probability that the
majority of the k signals each agent receives is correct is strictly bigger than 0.5.
So, in expectation, strictly more than half of the agents have access to a majority
of correct signals. Then, by the Law of Large Numbers lim

n→∞ pmaj(n) = 1

We thus ended up with generalized version of the asymptotic result of the
CJT for regular networks with any degree. In particular, this means that that for
both Coughlan’s as well as Condorcet’s model, the probability that the majority
of agents is correct will be 1 as the size of the networks approaches infinity.

2.6 Summary

In this chapter we set out the framework of Condorcet and Coughlan. Con-
dorcet shows that without communication, groups are better at identifying the
truth than individuals. Coughlan formulated a model for public communication.
While the two models are at opposite ends when it comes to the form of com-
munication, the structure of the communication networks shares one thing: it is
a regular network, meaning that every agent is connected to the same number
of other agents.

We set out to determine what is left of the group accuracy and the individual
accuracy when partial communication takes place in a regular network. We
formulated Theorem 2.5.4 to calculate the expected accuracy of an individual
agent in any regular network. Furthermore, we showed in Theorem 2.5.6 that
the asymptotic result of the Condorcet Jury theorem remains intact in any
regular network.
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Chapter 3

Individual Accuracy in
Random Networks

In the previous chapter we became acquainted with Theorem 2.2.1 about group
accuracy under no information exchange and with Observation 2.3.1 about
group accuracy under full information exchange. We observed that both theo-
rems are only valid on regular networks. We already extended both the expected
individual’s accuracy as well as the accuracy of the group under majority rule to
regular networks with degrees of any number. The goal of the remainder of the
thesis will be to determine the individual accuracy as well as the group accuracy
for the class of random networks rather than the class of regular networks. In
this chapter we will look at the expected accuracy of an individual agent in a
random network.

We proceed as follows. In section 3.1 we introduce the formal definition of
a random network. In section 3.2 we formulate a theorem that expresses the
expected individual accuracy for any agent in a random network. Next, we will
determine the influence of various parameters on the expected individual accu-
racy. Finally, in section 3.3 we show that the expected individual accuracy that
is determined via Bayesian inference, becomes equal to the maximum likelihood
estimation approach in case the threshold is equal to the prior.

3.1 Random communication networks

Following van Steen (2010), we introduce the basic concept of a random network.
The basic idea of a random network is that we are given a graph with n vertices,
and every two vertices are connected with a probability c. Paul Erdös and Alfred
Rényi (1959) were the first to introduce random networks and hence the Erdös-
Rényi networks are now known as the classical random networks. Our definition
of a random network is what is called in the literature an Erdös-Rényi Random
Network.
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Definition 3.1.1 (Random Network). Let n ∈ N and 0 ≤ c ≤ 1. A random
network G(n, c) is graph G = (V,E) such that each two vertices are connected
by an edge with probability c.

A random graph induces a probability distribution over all possible graphs
on n. Therefore, for a given n and c, a graph G′(n, c) and another graph G′′(n, c)
can be very different. Although both graphs will have n vertices, there may be
edges in G′(n, c) that are not in G′′(n, c) and the other way around. Note that
in a random network G(n, c) there are no reflexive arrows and there is at most
one edge between two distinct vertices.

Among the graphs that that a random graph induces are all the regular
graphs on n. In particular, for any graph G the probability of obtaining G from

G(n, c) is P(G) = cm(1− c)(
n
2)−m where m is the number of edges in G.

We are interested in looking at random graphs rather than regular graphs
only, because the class of random graphs extends the class of regular graphs.
This implies that anything we say about random graphs, will also apply to
regular graphs. All that we said in the previous chapter, can thus be seen as
a kind of warm-up for a more general framework that will be laid out in the
remainder of the thesis.

The agents in the random networks that we study in this thesis always have
a certain competence and prior. Furthermore, there is always a given threshold
t that determines when an agent believes an alternative to be the state of the
world. We therefore introduce the following shorthand notation of a uniformly
competent random network.

Definition 3.1.2 (Uniformly competent random network (UCRN)). A uni-
formly competent random network is a tuple 〈N, c, p, r, t〉 with |N | = n, consist-
ing of a random network G(n, c) where each n has competence p, prior r and
threshold t.

UCRN’s are the networks that we will be concerned with. They are the most
general networks, as regular graphs as also among UCRN’s. In the next section,
we will define the expected accuracy of agents in an UCRN.

3.2 Individual accuracy in random networks

In the previous chapter we showed how to determine the expected accuracy of
an agent in a regular network. In a regular network, we are given how many
signals an agent receives. The only varying element in a regular network is thus
the ratio between correct and incorrect signals an agent receives. Meanwhile,
in a random network we add another varying element, namely the number of
signals an agent receives. To generalise the expected accuracy of an agent from
regular networks to random networks, we thus have to determine the probability
that an agent receives a certain number of signals.

We are given a random network G(n, c) and we are interested in the proba-
bility that an agent receives h signals from other agents. We say other agents,
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because we assume that each agent receives a signal from itself and thus the
only random factor is the number of links it has in the network. Then h is a
random variable that is determined by a binomial distribution. That is, we view
the process of creating links as n− 1 independent Bernoulli trials, where a link
is created with probability c. The probability that an agent receives h signals
from other agents is given by:

P(h) =

(
n− 1

h

)
ch(1− c)(n−1)−h (3.1)

Now we can update Theorem 2.5.4 with equation 3.1, to obtain the expected
accuracy of an agent in a random network.

Theorem 3.2.1. Let p(n,c) be expected individual accuracy in an UCRN 〈N, c, p, r, t〉,
then p(n,c) is given by:

p(n,c) =P(π > t|θ = a) · P(θ = a) + P(π ≤ t|θ = b) · P(θ = b)

=

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
where τ = h

2 + 1
2

log( t
1−t )−log(

r
1−r )

log( p
1−p )

Proof. Let us focus on the left-hand side of the equation. We saw in Lemma 2.5.1
that the probability that the number of k a-type signals exceeds the threshold
t, given h and θ = a is:

P (k > τ |θ = a) =

h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k

To get the probability of getting guilt correct for arbitrary h we add up all
the probabilities of k meeting the threshold for each specific h, where h can
range from 0 to n− 1. This is because we let h denote the number of signals an
agent gets from other agents, of which there are n− 1 many. We then multiply
these probabilities with the probability for each h to occur. This is given by
equation 3.1: (

n− 1

h

)
ch(1− c)(n−1)−h

Finally, we multiply this whole expression with the prior probability of a,
which is r. As such, we obtain that the probability of getting a correct, denoted
by pa, for arbitrary h is:
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pa =P(π > t|θ = a) · P(θ = a)

=

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
The right-hand side of the equation is obtained using similar reasoning. We

saw in Lemma 2.5.3 that the probability that the number of k a-type signals
does not exceed the threshold t, given h and θ = b is:

P(k ≤ τ |θ = b) =

bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

To get the probability of getting b correct for arbitrary h we add up all the
probabilities of k not meeting the threshold, where h ranges from 0 to n−1, and
multiply these probabilities with the probability for each h to occur. Finally we
multiply this whole expression with the prior probability of b, which is (1− r).
As such we obtain that the probability of getting b correct,denoted by pb, for
arbitrary h is given by:

pb =P(π ≤ t|θ = b) · P(θ = b)

=

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
So, now we have the probability of an agent believing a when a is the true

state of the world - P (π > t|θ = a) · P (θ = a) - and the probability of an agent
believing b when b is the true state of the world - P (π ≤ t|θ = b) · P (θ = b).
Since these two events are disjoint, we simply add them together to get the
probability of an agent to be correct.

Notice that due to the way we set up the threshold t, it is impossible for an
agent to be indecisive. That is, it will always believe that either a is the true
alternative, or that b is the true alternative. In particular, we determined that
an agent believes a if and only if its posterior belief in a is strictly bigger than the
threshold t. Obviously, this means that our model has a bias towards alternative
b. It is important to realise that this bias carries over to Theorem 3.2.1. Because
there is a slight bias towards believing b, this means that agents will have a
slightly higher probability to be correct in case b is the true alternative.

In the remainder of this section, we will determine the influence of each
single parameter on the equation given in Theorem 3.2.1. We will use methods
from comparative statics, which is a method used in economics to determine the
change in the outcome of a model as a result from changes in the parameters
of the model (see e.g. Kehoe (1989)). The method makes use of differential
calculus to analyse the impact of an infinitesimal change in the parameter of
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the model to its outcome - in our case the expected accuracy. In particular,
we will derive the first partial derivative of each parameter that appears in the
function for expected accuracy. The nature of this derivative - either positive or
negative - will then indicate whether an infinitesimal increase in the parameter
will increase or decrease the expected accuracy.

3.2.1 Influence on p(n,c) of the size n of the network

We will investigate what happens when there is one agent and when the number
of agents approaches infinity. Finally, we will determine what happens as the
number of agents grows in general.

50 100 150 200
n

0.2

0.4

0.6

0.8

1.0

p(n,c)

Figure 3.1: Influence of n on probability of correctness. Remaining parameter
values are fixed to c = 0.5, p = 0.6, r = 0.5, t = 0.5.

As a start, we plotted the influence of the size of the network on the expected
accuracy p(n,c) in figure 3.1. As can be seen, generally the accuracy increases as
the size of the networks grows. We prove this formally in the following theorem.

Theorem 3.2.2. As n increases, p(n,c) increases.

Proof. Since n is a discrete variable, taking only integer values, there is no
partial derivative of p(n,c) with respect to n. We therefore compute the value
for p((n+1),c) and compare it with the value for p(n,c) as follows.
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p((n+1),c) − p(n,c) =

(

n∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n

h

)
ch(1− c)n−h

 · r
+

n∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n

h

)
ch(1− c)n−h

 · (1− r))
−(

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)))
There are two differences between p((n+1),c) and p(n,c). Firstly, for p((n+1),c)

the parameter h is summed from 0 to n, whereas for p(n,c) parameter h is
summed from 0 to n − 1. Therefore, the first difference is that an extra value
for h, namely h = n is evaluated. The following formula expresses this:

 n+1∑
k=bτc+1

(
n+ 1

k

)
pk(1− p)n+1−k ·

(
n

n

)
cn(1− c)n−n

 · r
+

 bτc∑
k=0

(
n+ 1

k

)
pn+1−k(1− p)k ·

(
n

n

)
cn(1− c)n−n

 · (1− r)
(3.2)

Equation 3.2 positive, as n, k, p, c, r are all positive values. Furthermore the
domains of p and c are an open interval between 0 and 1, so (1− p) and (1− c)
cannot become a negative value.

The second difference is that in p((n+1),c) the summation is being multiplied
with (

n

h

)
ch(1− c)n−h

Meanwhile in p(n,c) the same summation is being multiplied with(
n− 1

h

)
ch(1− c)(n−1)−h

Now if the numerator in binomial coefficient increases, this will increase the
outcome.
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(
n

h

)
ch(1− c)n−h −

(
n− 1

h

)
ch(1− c)(n−1)−h

=
(1− c)n−hch

(
(n−1)!

(c−1)(n−h−1)! + n!
(n−h)!

)
h!

(3.3)

Again since c, n, h are all positive and the domain of c is an open interval
between 0 and 1, it follows that equation 3.3 is a positive expression.

Thus if we change the value from n to n + 1 two parts of the expression of
p(n,c) are affected. We have shown that these changes both result in p((n+1),c)

being bigger than p(n,c). Hence, this implies that p(n,c) grows as n grows.

In Theorem 3.2.3 we show that if there is only one agent, the probability
that she will be correct is equal to her competence.

Theorem 3.2.3. If n = 1 then p(n,c) = p

Proof.

p(n,c) =

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
(pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
=

0∑
h=0

 1∑
k=b 02 c+1

(
1

k

)
(pk(1− p)1−k

 · r
+

0∑
h=0

b 02 c∑
k=0

(
1

k

)
p1−k(1− p)k

 · (1− r)
=p · r + p · (1− r)
=p

In the last theorem of this subsection, we show that as the network size goes
to infinity, the expected accuracy goes to 1.

Theorem 3.2.4. lim
n→∞ p(n,c) = 1

Proof. As n → ∞, by the weak law of large numbers the average number of
correct signals converges to p. Since p > 0.5, it follows that p(n,c) → 1.
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3.2.2 Influence on p(n,c) of the connectednes c of the net-
work

In this section we investigate the influence of the probability that any two nodes
are connected on the expected accuracy. As a start, we plotted the influence of
c on p(n,c). As can be seen in figure 3.2, the accuracy increases as the value of
c increases. We prove this formally in the following theorem.

0.2 0.4 0.6 0.8 1.0
c

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p(n,c)

Figure 3.2: Influence of c on probability of correctness. Remaining parameter
values are fixed to n = 50, p = 0.6, r = 0.5, t = 0.5.

Theorem 3.2.5. If c increases, then p(n,c) increases.

Proof. The partial derivative of p(n,c) with respect to parameter c is:
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∂p(n,c)

∂c
=

∂

∂c

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+
∂

∂c

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
=

n−1∑
h=0

 h+1∑
k=bτc+1

∂

∂c

((
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· r


+

n−1∑
h=0

 bτc∑
k=0

∂

∂c

((
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· (1− r)


=

n−1∑
h=0

(

h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k

·
(
n− 1

h

)
ch((n− 1)− h)(1− c)(n−1)−h−1 + hch−1(1− c)(n−1)−h) · r

+

n−1∑
h=0

(

bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

·
(
n− 1

h

)
ch((n− 1)− h)(1− c)(n−1)−h−1 + hch−1(1− c)(n−1)−h) · (1− r)

=

n−1∑
h=0

(

h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k

·
(
n− 1

h

)
(1− c)n−h−2(ch(n− 1− h) + ch(1− c))) · r

+

n−1∑
h=0

(

bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

·
(
n− 1

h

)
(1− c)n−h−2(ch(n− 1− h) + ch(1− c))) · (1− r)

From the first to the second line we use the sum rule, from the second to
the third line we use the summation rule and from the third to fourth line we
use the product rule.

Note that h, k, p, n, τ, r, c can only take positive values. Furthermore 0 < p <
1 and 0 < c < 1 and thus (1− p) and (1− c) are positive too. Hence the partial

derivative with respect to c -
∂p(n,c)

∂c - is a positive formula. It thus follows that
p(n,c) increases as c increases.
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We make two further interesting observations. Firstly, we show that as c
goes to 0, then the accuracy goes to p. This makes sense, as when c → 0, this
means that the probability that a node has a link with another node is as good
as 0. Therefore, the accuracy of agent reduces to its own competence.

Theorem 3.2.6. If c→ 0 then p(n,c) → p

Proof. First of all, observe that in case h > 0 and c → 0 then ch = 0. As a
result,

n−1∑
h>0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 = 0

and

n−1∑
h>0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 = 0

Therefore, as c→ 0 the value of p(n,c) can be simplified for only evaluation

for h = 0. Observe that if h = 0 and c → 0 then ch = 00 = 1. p(n,c) thus can
be simplified to:

p(n,c) =

 1∑
k=bτc+1

(
1

k

)
pk(1− p)1−k ·

(
n− 1

0

)
c0(1− c)(n−1)

 · r
+

 bτc∑
k=0

(
1

k

)
p1−k(1− p)k ·

(
n− 1

0

)
c0(1− c)n−1

 · (1− r)
=

 1∑
k=bτc+1

(
1

k

)
pk(1− p)1−k · (1− c)(n−1)

 · r
+

 bτc∑
k=0

(
1

k

)
p1−k(1− p)k · (1− c)n−1

 · (1− r)
=

 1∑
k=bτc+1

(
1

k

)
pk(1− p)1−k

 · r
+

 bτc∑
k=0

(
1

k

)
p1−k(1− p)k

 · (1− r)
=rp+ (1− r)p
=p

37



The final interesting observation on the influence of c we make is that as
c→ 1, then the accuracy approaches that of a complete network. Observe that
this is a special case of Theorem 2.5.4, in which we use n instead of h+ 1. This
is because the Theorem 2.5.4 is suitable for any regular network, and the case
where c→ 1 we are looking at a regular, complete network in which every agent
receives n signals.

Theorem 3.2.7. If c→ 1 then

p(n,c) =

 n∑
k=bτc+1

(
n

k

)
pk(1− p)n−k

 · r +

 bτc∑
k=0

(
n

k

)
pn−k(1− p)k

 · (1− r)
Proof. First of all, observe that in case (n − 1) − h 6= 0 and c → 1 then (1 −
c)(n−1)−h = 0. Therefore, as c → 1 the value of p(n,c) can be simplified to
only evaluating for h = (n − 1). Note that this intuitively makes sense, as it
means that if the probability of being connected to any other agent goes to 1,
we evaluate p(n,c) only for when an agent receives signals from all other agents
(n− 1). Filling in h = (n− 1) we get:

p(n,c) =

 n∑
k=bτc+1

(
n

k

)
pk(1− p)n−k ·

(
n− 1

n− 1

)
cn−1(1− c)(n−1)−(n−1)

 · r
+

 bτc∑
k=0

(
n

k

)
pn−k(1− p)k ·

(
n− 1

n− 1

)
cn−1(1− c)(n−1)−(n−1)

 · (1− r)
=

 n∑
k=bτc+1

(
n

k

)
pk(1− p)n−k · cn−1

 · r
+

 bτc∑
k=0

(
n

k

)
pn−k(1− p)k · cn−1

 · (1− r)
As c→ 1 we can simplify to:

p(n,c) =

 n∑
k=bτc+1

(
n

k

)
pk(1− p)n−k

 · r +

 bτc∑
k=0

(
n

k

)
pn−k(1− p)k

 · (1− r)

In sum, we can conclude that as the probability of connectedness increases,
the expected accuracy of agents increases. Furthermore, if c → 0 then the
expected accuracy is equal to p and if c → 1 then the expected accuracy is
equal to the expected accuracy of an agent in a regular network.
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3.2.3 Influence on p(n,c) of the competence p of agents

The influence of an increase in competence p is not what one might expect.
Intuitively, we would expect that as the competence p increases, the expected
accuracy increases as well. Generally, that is by looking at a rather large increase
in p, this is indeed the case. However, a small increase in p turns out to be able
to decrease the expected accuracy. Visually, this can be seen in figure 3.3. We
see that the overall tendency is to grow, but there are drops in accuracy in
between. In this section we will explain why this is the case.

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

p(n,c)

Figure 3.3: Influence of p on probability of correctness. Remaining parameter
values are fixed to n = 50, c = 0.5, r = 0.5, t = 0.5

We cannot, as was the case for the derivative with respect to n and c before,
simply take the partial derivative of p(n,c), as p occurs both in the summation
as well as in τ . We will therefore first determine what happens to bτc with an
infinitesimal increase in p. Regarding the value of bτc there are two different
cases for an infinitesimal increase in p:

Case (1) the value of bτc remains the same

Case (2) the value of bτc becomes bτc − 1

To see that this is true, recall that

τ =
h

2
+

1

2

log( t
1−t )− log( r

1−r )

log( p
1−p )

We take the partial derivative of τ with respect to p:
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∂τ

∂p
=
h(1− p)

(
p

(1−p)2 + 1
1−p

)
p log

(
p2

(1−p)2

) −
(1− p)2

(
2p2

(1−p)3 + 2p
(1−p)2

)
log

(
(b−br)( p

1−p )
h

r−br

)
p2 log2

(
p2

(1−p)2

)

=−
h log

(
p2

(p−1)2

)
+ 2 log

(
b(r−1)( p

1−p )
h

(b−1)r

)
(p− 1)p log2

(
p2

(p−1)2

)
We see that the partial derivative of τ with respect to p is negative, thus

τ decreases as the value of p increases. As we take the floor of τ , there are
two possible cases. Firstly, τ decreases but bτc remains the same. Secondly, τ
decreases such that bτc becomes bτc − 1.

Now we will determine what happens to p(n,c) in both cases.
Case (1) Suppose the value of bτc remains the same. In this case we can

take the derivative p(n,c) and treat bτc as a constant.

∂p(n,c)

∂p
=

∂

∂p

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+
∂

∂p

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
=

n−1∑
h=0

 h+1∑
k=bτc+1

∂

∂p

((
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· r


+

n−1∑
h=0

 bτc∑
k=0

∂

∂p

((
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· (1− r)


=

n−1∑
h=0

 h+1∑
k=bτc+1

(
h+ 1

k

)
pk(h+ 1− k)(1− p)h+1−k−1 + kpk−1(1− p)h+1−k·

(
n− 1

h

)
ch(1− c)(n−1)−h · r

+

n−1∑
h=0

 bτc∑
k=0

(
h+ 1

k

)
ph+1−kk(1− p)k−1 + (h+ 1− k)ph+1−k(1− p)k·

(
n− 1

h

)
ch(1− c)(n−1)−h · (1− r)
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In the first line we use the sum rule, in the second line the summation rule
and in the third we use the product rule and the power rule

Note that h, k, p, n, τ, r, c can only take positive values. Furthermore 0 < p <
1 and 0 < c < 1 and thus (1− p) and (1− c) are positive too. Hence the partial

derivative with respect to p -
∂p(n,c)

∂p - is a positive formula. It thus follows that

p(n,c) increases as p increases and bτc stays constant.

Case (2) We will determine what happens to p(n,c) in case bτc becomes
bτc − 1. The difference between bτc and bτc − 1 is given by

n−1∑
h=0

((
h+ 1

bτc

)
pk(1− p)h+1−bτc ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· r

−
n−1∑
h=0

((
h+ 1

bτc

)
ph+1−bτc(1− p)bτc ·

(
n− 1

h

)
ch(1− c)(n−1)−h

)
· (1− r)

Looking at equation 3.2.3, it turns out that we cannot infer anything about
the in- or decrease of the expected accuracy. The reason is that if bτc becomes
bτc−1, the probability of getting a correct gets one more time evaluated, whereas
probability of getting b corrects gets one less time evaluated. Now recall that
we stipulated that an agent believes a is the state of the world if k > τ , and we
translated this to k = bτc+ 1. Meanwhile we stipulated that an agent believes
b if k ≤ τ , which translated to k = bτc. Now in the case that τ becomes τ − 1
this means that the threshold for believing a is lowered. That is, with a lower
number of a-type signals, an agent will believe a. This implies that up to a lower
number of a-type, an agent will believe b. For example, suppose that previously
bτc = 50, then with 50 a-type signals the agent believed b, whereas with the
situation that bτc = bτc − 1 = 49 the agent will believe a with 50 signals.

Hence, it turns out that there is no general thing to say here: if the value of
τ decreases, it can be that p(n,c) both increases as well as decreases, depending
on the prior probability of a. This is also what explain the drops as seen in
figure 3.3. However, we still see that the general tendency is that the accuracy
increases as p increases. We infer that it must be that the cases in which the
value of bτc changes are rare, so therefore it is generally the case that p(n,c)
increases as p increases. Proving this exactly is beyond the scope of this thesis.

3.2.4 Influence on p(n,c) of the prior r and the threshold t

In this section, we finally give an impression of the influence of the prior and
the threshold. Plots of both are given in figure 3.4 and figure 3.5. Regarding
the value of the prior, we see that the expected accuracy is lowest when r = 0.5.
Regarding the value of the threshold, we see that it the expected accuracy is
highest when t = 0.5. We do not give exact derivations for these results, as for
the remainder of the thesis we will assume value 0.5 for r and t.
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Figure 3.4: Influence of r on probability of correctness. Remaining parameter
values are fixed to n = 50, c = 0.5, p = 0.6, t = 0.5
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Figure 3.5: Influence of t on probability of correctness. Remaining parameter
values are fixed to n = 50, c = 0.5, p = 0.6, r = 0.5

3.3 Maximum Likelihood Estimation

In the chapter 2, we saw in Corollary 2.5.1.1 that in case the threshold and
prior are equal, an agent has to receive more than half a-type signals in order
to actually believe a. In this section, we will show that Theorem 3.2.1, which
represents the accuracy of an individual agent in a random network, in that case
reduces to the maximum likelihood estimation approach.

Maximum likelihood estimation (henceforward denoted by MLE ) is a method
in statistics of estimating the parameters of a probability distribution, given ob-
served data (Brandt et al., 2016, Chapter 8.3). In MLE, those parameters are
chosen that maximize the likelihood that the assumed model results in the ob-
served data. In our current setting, the observed data are the signals agents
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receive. The agents know that each signal is correct with a certain probability;
this is the probability distribution. It is the goal of the agents to determine
which parameter - alternative a or b - maximizes the likelihood of the observed
set of signals.

In our more general Bayesian setting when τ is not necessarily equal to h
2 ,

of course the agents are also trying to choose that alternative that maximises
the likelihood of their observed signals. Yet, there is a difference between the
Bayesian approach and the MLE approach. In the Bayesian approach, agents
calculate a posterior probability distribution: the posterior probability of alter-
native a given the observed signals. So, we have a probability that the agents
attaches to a and b. Meanwhile, the MLE approach returns a single fixed value,
namely that alternative that maximises the likelihood of the observed signals
given the state of the world. Unlike in the Bayesian approach, there is no prob-
ability attached to the value, it just returns whatever alternative is most likely.
In this sense, the Bayesian approach is thus more fine-grained.

The fine-grained information comes with a cost: the Bayesian method also
required more input parameters. In particular, it works with a prior probability
and a threshold t. The MLE approach always implicitly assumes equal priors,
and therefore in fact does not mention priors and posteriors. This can be seen
both as a benefit as well as a loss. On the one hand, the MLE approach is
simpler, on the other hand the Bayesian approach is more general and provides
more information. Either way, we thought it interesting to show that in the case
that the prior and the threshold value are equal, the Bayesian method boils down
to MLE. In particular, in Theorem 3.3.1 we show what the calculation of the
individual accuracy boils down to in case r = t.

Theorem 3.3.1. Given an UCRN 〈N, c, p, r, t〉, if t = r then the expected
accuracy p(n,c) of an agent can be simplified to:

p(n,c) =

n−1∑
h=0

(n− 1

h

)
ch(1− c)(n−1)−h

h+1∑
k=bh+1

2 c

(
h+ 1

k

)
pk(1− p)h+1−k


Proof. Recall that in case t = r then k > h

2 as shown in Corollary 2.5.1.1. So
p(n,c) then reduces to the following.

p(n,c) =

n−1∑
h=0

 h+1∑
k=bh2 c+1

(
h+ 1

k

)
pk(1− p)h+1−k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · r
+

n−1∑
h=0

bh2 c∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k ·

(
n− 1

h

)
ch(1− c)(n−1)−h

 · (1− r)
It then follows that:
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h+1∑
k=bh2 c+1

(
h+ 1

k

)
pk(1− p)h+1−k =

bh2 c∑
k=0

(
h+ 1

k

)
ph+1−k(1− p)k

And thus we can simplify the equation to 3.3.1.

Like in Theorem 3.2.1, Theorem 3.3.1 also has a bias towards b. Suppose an
agent receives an even number of signals, say 20. Then b 212 c = 11. As π > t if

and only if k > τ = bh+1
2 c it follows that in case of an even number of signals,

an agent believes a if strictly more than half of the signals is for a. In case of 20
signals, the agent will believe a if and only if it receives 11 a-type signals. If the
agent receives less tan 11 a-type signals, it believes b. Now suppose an agent
receives an odd number of signals, say 19. Then b 202 c = 10. This means again
that the agent will believe a if and only if it receives a strict majority of a-type
signals, namely 10. If it receives less than 10 a-type signals, it believes b.

In the current setting, agents get one noisy private signal and possibly some
noisy signals from agents with which they communicate. The signals are noisy
in the sense that they aim to say something about the true state of the world,
but they don’t do that perfectly. The goal of agents is to decide the true state
of the world θ and they know there are two options. Either θ = a or θ = b.
We know that each agent i receives a private signal that tells with probability
pi correctly which alternative is correct, where pi = pj for all i, j ∈ N . The
signals agents receives from other agents are correct with this same probability
p. We can think of each agent’s signal si as a random variable generated by the
probability distribution p. We assume that these signals are independent. Thus,
during communication, an agent receives a sequence of identically distributed
independent random variables that can take two values: a or b. The most likely
state of the world then is the one that has the highest likelihood of generating
the observed sequence of signals. Now it turns out that the way to determine
this most likely state of the world is by using the majority rule: an agent should
attach its belief to that alternative of which it receives a majority of signals.
This is proved in the CJT by de Condorcet (1785). And this is indeed what
Theorem 3.3.1 also tells us. Therefore, Theorem 3.3.1 shows that in case r = t,
agents are using MLE.

This should not come as a surprise, as we basically already proved the CJT in
Chapter 2. After all, the CJT states that a group under majority rule performs
equally well or better than any individual that composes the group. This is
because the majority rule is a voting rule that, given a voting profile, selects
the alternative that corresponds to the most likely correct alternative. The only
difference is that in the CJT setting, we are talking about a voting. In the
current setting, we are not (yet) interested in voting, but about forming beliefs
on an individual level. It turns out, however, that the exact same process takes
place, only on a different level: that of the individual rather than the group.

As a result, we can also transfer the three postulates of the CJT to the
individual level. Firstly, individuals become more accurate as they receive more
signals. Secondly, communicating agents are more accurate than agents that do
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not communicate. Thirdly, agents that communicate with infinitely many other
agents achieve perfect accuracy.

3.4 Summary

In this chapter we introduced random networks, in which agents are connected
with each other according to a probability c. We formulated Theorem 3.2.1
which provides a method to determine the expected accuracy of an agent in
any random network. We tested the influence of the size of the network, the
connectedness and the competence on the expected accuracy and obtained intu-
itive results. Furthermore, we showed that in case the threshold value is equal to
the prior, our Bayesian approach reduces to the maximum likelihood estimation
approach.

It is at this point interesting to look back on some of the related work we
discussed in the introduction. There we discussed the work of Hahn et al.
(2019) and Ladha (1992), who showed that with too much communication the
competence of a group decreases, because of too much correlation. The reader
might wonder how it can be that we showed individual accuracy increases as
a result of communication. This is because our result applies to individual
accuracy, where we assume that the signals agents receive are independent. The
result of Hahn et al. (2019) and Ladha (1992) applies to group accuracy, and
agents are not independent anymore after communication. In the next chapter,
we will explain how we will deal with correlation.
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Chapter 4

Group Accuracy in Random
Networks

In the previous chapter we have established a method to measure the individual
accuracy of agents that communicate with each other according to connections
in a random network. We now shift our attention from individual accuracy after
communication to group accuracy after communication in random networks. In
this way, we aim to provide an intermediate result between Condorcet’s model,
for which we have group accuracy after no communication, and Coughlan’s
model, for which we have group accuracy after full communication. Our goal
will be to determine the group accuracy via majority rule in random networks.
Note that this is non-trivial, because after communication agents’ beliefs and
therefore also votes are not independent anymore.

There are several ways in which communication can affect group accuracy
in random networks. We will focus on how the amount of communication con-
nections an agent has in a network influences group accuracy. We will refer
to this as the spread of communication. So, with spread of communication we
mean the difference in how much agents communicate in the network. Spread of
communication can influence the group accuracy. In particular, as we will show
in Section 4.1, if all agents communicate equally as much, then if a majority of
agents has a correct initial signal, it follows intuitively that the correct signal
is more often communicated. Moreover, we will show that if each signal has
the same weight, then asymptotically the group reaches a correct majority with
probability 1. Therefore, in Section 4.1.2 we will set out to determine under
which circumstances big differences in the amount of communication between
agents do not occur. Our results are twofold. Firstly, we will show that asymp-
totically, that is, as the number of agents approaches infinity, agents will all
communicate equally as much. Secondly, we will use Chernoff Bounds (Cher-
noff (1952)) to show that even with lower conditions on the number of agents,
under certain conditions there is a high probability that the agents in a random
network communicate equally as much.
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Figure 4.1: Process of belief updates and communication in a network in which
θ = a

4.1 Evenly spread communication

In this section we will show that if all agents communicate equally as much, a
correct majority of signals implies that the correct signals is communicated a
majority of times. To see why it is important that every agent communicates
equally as much, consider the following example.

In Figure 4.1 we are given three graphs that represent the process of com-
munication in a network. Figure 4.1a represent the initial signals, Figure 4.1b is
the network before communication and Figure 4.1c is the network after commu-
nication. Each graph represents a network with five nodes representing agents,
numbered from {1, ..., 5}. Next to each node, the alternative - a or b - is writ-
ten, which represents the private signal of the agent. Each arrow represents a
communication relation between the corresponding nodes. So, in Figure 4.1b
agent 1 is communicating with agent 4 and vice versa. If there is no arrow, then
agents are not communicating.

Suppose a is the true state of the world and r = t such that agents will
update their belief according to majority rule. We can see in Figure 4.1a that
a majority of the agents has a correct signal, namely agent 1,2 and 3. We
assume agents are in a random network and thus relations between agents are
established according to a probability c. Suppose Figure 4.1b is the resultant
network. We can see in this network that communication is not evenly spread.
All agents with a b signal communicate, whereas only one out of the three agents
that has an a signal communicates. In Figure 4.1c we show the network after
communication. Since all agent update their belief according to majority rule,
agent 1,4 and 5 will update their belief to b, the remaining agents 2 and 3 will
update their belief to a 4.1a. If the agents in Figure 4.1c would now vote, b
would be in the majority, even though a majority of agents had a correct signal.

In this example, a belief that is relatively rare in a network is over-represented
in the signals agents receive from other agents during communication. After all,
b is the signal that initially is received by a minority yet during communication
a majority of agents receives a majority of b-type signals. This phenomenon is
in the literature called the majority illusion effect (see Lerman et al. (2016)).
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As this example illustrates, the majority illusion effect can effect the accuracy
of the majority of the group.

Moreover, intuitively we can see in this example that if all agents would
communicate equally as much, then the signal that would have been most often
communicated would have been the correct signal a. In this section we will
make this intuition precise.

4.1.1 Weights and degrees as measures of communication

Recall that we have a random network G(n, c). Each agent j sends a signal sj
into the network. The signal can be either a or b. We would like to express
how much a certain type of signal is communicated in the network. For this
we introduce weights, which are expressed in terms of degrees. Recall that the
degree of a vertex j, denoted by δ(j), is the number of edges that are incident
to the vertex. Now the weight of a signal j is defined as follows.

Definition 4.1.1 (Weight of a signal). The weight wj of an agent’s j signal sj
is given by:

wj =
δ(j)∑

i∈N (δ(i))

Basically, the weight divides the number of times the signal of an agent j is
seen by the number of times all signals in the network are observed. As such it
expresses how often a signal relative to a network is observed.

When we defined the weight of a signal, we refrained from counting the fact
that each agent receives a signal from herself. We can do this, as weight is a
relative measure. Moreover, in random networks loops do not occur, so when we
talk about the degree of a vertex, we will never be counting a loop. In contrast,
when talking about expected accuracy, we do have to count the signal an agent
receives from itself, because this measure is not relative.

We introduce two further notions. Firstly, we define the notion of the degree
of a signal type that counts how often a certain type of signal is observed in
the network. Secondly, we introduce the related notion of the weight of a signal
type that expresses the total weight of a certain type of signal in the network.
This will enable us to express how much weight signal type has in the network.

Definition 4.1.2 (Degree of a signal type). Let x ∈ {a, b}. The number of
times the signal type x is observed, denoted by δ(x) is defined as:

δ(x) =
∑

{j∈N |sj=x}

δ(j)

Definition 4.1.3 (Weight of a signal type). Let x ∈ {a, b}. The total weight
of all x-type signals, w(x), is given by:
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w(x) =
δ(x)∑

j∈N (δ(j))

We will make a distinction between a weighted majority of signals, a majority
of signals and a majority of votes. The distinction corresponds to three steps in
the truth-tracking process. Firstly, agents receive signals. We say that we have a
majority of signals of a signal x ∈ {a, b} if

∑
{j∈N |sj=x}(sj) >

∑
{j∈N |sj=b}(sj),

where y ∈ {a, b} and x 6= y. Secondly, agents communicate and receive signals
from each other. We say that a signal x ∈ {a, b} has a weighted majority over
the other signal y ∈ {a, b} in case w(x) > w(y). In words, if a signal has
a weighted majority this means that it is communicated a majority of times.
Thirdly, agents update their beliefs according to the received signals and vote
according to their belief. Recall that majority(v) = {x ∈ A|v(x) ≥ bn2 c} where

v(x) = |{vi ∈ v|vi = x}| and k̂ is an integer between 0 and n. Recall furthermore
that in case of a tie, an alternative is chosen by a random coin toss. In this
case, we speak of a majority of votes for x ∈ {a, b} in case majority(v) = {x ∈
A|v(x) ≥ bn2 c}. We have a majority of votes for a if for a majority of agents it
is the case that π > t, while we have a majority of votes for b if for a majority
of agents it is the case that π ≤ t.

4.1.2 Correct majority and evenly spread communication

Using this new machinery, we will show in this section that if each signal has
the same weight, then if we have a majority of x-type signals then we have a
weighted majority for x. We will first show that if signals do not have the same
weight, then the implication doesn’t hold. That is, if we have a majority of
signals for x, it does not necessarily imply that we have a weighted majority for
x if communication is not evenly spread.

Observation 4.1.1. Let x, y ∈ A such that x 6= y. Given a random network
G(n, c), if

∑
{j∈N |sj=x}(sj) >

∑
{j∈N |sj=y}(sj) then it is not necessarily the

case that w(x) > w(y).

Proof. Consider the graph in Figure 4.2. The model should be read as explained
in Section 3.1, yet here we only show the model during communication. In Figure
4.2, we have that

∑
{j∈N |sj=b}(sj) >

∑
{j∈N |sj=a}(sj) yet w(a) > w(b).

If we impose that each signal has the same weight, however, then the im-
plication does hold. Note that if each signal has the same weight, this means
that each vertex has the same degree and thus we are dealing with a regular
network.

Lemma 4.1.1. Let x, y ∈ A such that x 6= y. Given a regular network G(n, δ),
if
∑
{j∈N |sj=x}(sj) >

∑
{j∈N |sj=y}(sj) then w(x) > w(y).
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#1,b #4,b #7,a

#2,b #5,b #6,a

#3,b #8,a

Figure 4.2: Model with weighted majority for a and majority of signals for b

Proof. Without loss of generality, given a regular network G(n, δ),
let
∑
{j∈N |sj=a}(sj) >

∑
{j∈N |sj=b}(sj). Assume by contradiction that w(b) >

w(a). This would imply that δ(b) > δ(a), which means that
∑
{j∈N |sj=b}(δ(j)) >∑

{j∈N |sj=a}(δ(j)). Since the network is regular, we know that δ(i) = δ(j) for

all i, j ∈ N . Therefore, we would have
∑
{j∈N |sj=b}(sj) >

∑
{j∈N |sj=a}(sj),

which is a contradiction. So we conclude w(a) > w(b).

Hence, Observation 4.1.1 implies that if all signals have the same weight,
then if we have a majority of signals for x then we have a weighted majority
for x. That is, if everyone communicates to equally many agents, then if the
correct signal is more prevalent, then the correct signal is also communicated a
majority of the time.

A correct weighted majority, does not necessarily imply a correct majority
of votes. For this we would also need to know to which agents the correct
signals are communicated. If the correct signals are communicated foremost to
the same agent, we still cannot guarantee that a majority of agents receives a
majority of correct signals. Figure 4.2 is a good illustration of this. In the figure,
we have a weighted majority for a. Yet, we can see that it is only a minority of
agents that receives a majority of a-type signals.

However, having a correct weighted majority does in a sense help reaching
a correct majority of votes. More precisely, it rules out situations such as illus-
trated in Figure 4.1. In this figure, we had a correct majority of signals, but
an incorrect weighted majority which led to an incorrect majority of votes. As
a result, a minority of agents ended up believing a. By focusing on situations
in which each signal has the same weight, we can reduce the chance of such a
phenomenon happening. Moreover, as we will prove in the following theorem,
we can guarantee a correct majority of votes asymptotically. That is, we show
that if t = r and all signals have the same weight, then a correct majority of
signals implies a correct majority of votes.

Theorem 4.1.2. If t = r and wj = 1
n for all sj such that j ∈ N , and p > 0.5

then lim
n→∞ pmaj → 1.

Proof. Since wj = 1
n for all sj such that j ∈ N this implies δ(j) = δ(i) = k

for all i, j ∈ N and some integer k. This means that each agent receives k
independent signals. We know each signal has the same accuracy p > 0.5. By
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equation 2.3 of the CJT (Theorem 2.2.1), the probability that the majority
of these k signals is correct is strictly bigger than 0.5. By lemma 4.1.1 this
means that in expectation we have a correct weighted majority. But we have
even something stronger, namely, strictly more than half of the agents receive
a majority of correct signals. Since t = r, this means that in expectation we
have a correct majority of beliefs and thus votes. By the Law of Large Numbers
lim
n→∞ pmaj(n) = 1.

Theorem 4.1.2 should not come as a surprise. In Chapter 2 we stated that in
regular networks, if p > 0.5 we will obtain a correct majority. Now if everyone
communicates equally as much, we basically have a regular network. So, the
reader might wonder why we added this extra step to measure communication.
This is because we want to know the group accuracy in random networks, and in
random networks communication is not necessarily evenly spread. In remainder
of this chapter we will therefore discuss methods to measure how far a random
network is from a regular network. The farther away a random network is from
a regular network, the higher the chance that incorrect minorities turn into
incorrect majorities and as a result the group accuracy decreases.

It is important to realize that the Theorem 4.1.2 depends on the assumption
that t = r. We need this assumption, because in this case we know that an agent
ends up believing the signal of which it receives a majority. As we discussed in
Chapter 2 section 2.5 however, the value of p can also bring τ close to h

2 . In
particular, we observed that the higher the value of p, the closer the value of
τ to h

2 . Moreover, the higher the value of p, the less influence the prior r and
the threshold t have in determining the value of τ . Thus, even if t 6= r, but we
have a rather high competence p, it is likely that an agents ends up believing
the signal of which it receives a majority.

4.2 Determining the spread of communication

So far we have results for the accuracy of the majority for the two extremes:
when c = 0 and c = 1. Our aim in this chapter is to determine this accuracy
for random networks where 0 < c < 1. To achieve this, we study the spread
of communication, since in the previous section we saw that if communication
is evenly spread and r = t, then a correct majority of signals implies a correct
majority of votes.

However, there is another important reason why we are interested in the
spread of communication. After all, the aim of this chapter is to show that
in random networks, despite correlation between agents, we can under some
constraints still obtain accurate majorities. Recall that in Condorcet’s model
(1785) there is not communication and thus also no correlation. In this case
majorities are better than non-communicating individuals. In Coughlan’s model
(2000), majorities are only just as good as fully-communication and therefore
fully correlated individuals. In Chapter 3 we already saw that partially com-
municating individuals are better than non-communicating individuals, but we
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want to know that happens to the accuracy of the majority since beliefs are now
partially correlated. Now the point is that when signals (tend to) have the same
weight, this means that all pieces of information are most likely seen a same
number of times. Therefore, in this case, correlation is also evenly spread. As
a result, correlation does not disturb the process because it happens ‘homoge-
neously’ throughout the group. Hence, studying the spread of weights therefore
also enables us to indirectly say something about the correlation. In particular,
when signals (tend to) have the same weight, we can ignore correlation, which
significantly simplifies obtaining results about the group accuracy.

In this section, we will discuss three cases in which communication is evenly
spread: the extreme case, the asymptotic case and the approximate case.

4.2.1 Extreme case: Condorcet and Coughlan

There are two cases in which we are sure that all signals have the same weight.
This is when c = 0 and when c = 1.

Observation 4.2.1. If c = 0 or c = 1 then wj = 1
n for all sj where j ∈ N .

Proof. If c = 0 then for all vj ∈ V it is the case that δ(vj) = 0. Therefore
wj = 0∑

j∈N (0) = 1
n for all sj such that j ∈ N .

Similarly, if c = 1 then for all vj ∈ V it holds that δ(vj) = N . Therefore
wj = N∑

j∈N (N) = 1
n for all sj where j ∈ N .

Intuitively, observation 4.2.1 says that if agents are connected to nobody
or to everyone, then all signals have the same weight. This makes sense as in
both cases all the signals are observed by the same number of people: by no
one or by all agents respectively. It also makes sense, as we already knew that
Condorcet and Coughlan are both dealing with regular networks. Obviously, in
regular networks, all signals have the same weight since weight is determined
via degrees and all vertices in a regular network have the same degree.

As we already stated in Theorem 2.5.6 for both Coughlan’s as well as Con-
dorcet’s model, the probability that the majority of agents is correct will be
1 as the size of the networks approaches infinity. This now also follows from
Theorem 4.1.2.

4.2.2 Asymptotic result: infinitely large networks

The following lemma shows that if the size of the network approaches infinity,
then all vertices have the same weight.

Lemma 4.2.1. As n → ∞ and 0 ≤ c ≤ 1 then wj = 1
n for all sj such that

j ∈ N .

Proof. As n → ∞ it follows by the weak law of large numbers that average
number of connections an agent has converges to the mean, which is c(n−1). It

then follows that every signal has the same weight, namely c(n−1)∑n
1 (c(n−1))

= 1
n .
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Now, intuitively, if every signal has the same weight, and every signal is cor-
rect with probability bigger than 0.5, then as n approaches infinity, the prob-
ability that a majority of agents will form a correct belief should approach 1.
This is indeed what we showed in Theorem 4.1.2. So, combining Theorem 4.1.2
and lemma 4.2.1

Theorem 4.2.2. Given an UCRN 〈N, c, p, r, t〉 with r = t and p > 0.5 it follows
that lim

n→∞ pmaj(n) = 1.

Proof. From lemma 4.2.1 we know that as n → ∞ then wj = 1
n for all sj such

that j ∈ N . Since also t = r and p > 0.5 it then follows from Theorem 4.1.2
that lim

n→∞ pmaj(n) = 1.

Theorem 4.2.2 shows that asymptotically, a correct majority is guaranteed
on any random network, independently of the specific network G(n, c). So,
after generalising the asymptotic result from c = 0 to the whole class of regular
networks in Theorem 2.5.6, we now generalised the asymptotic result to the
class of random networks.

4.2.3 Approximate result: Chernoff Bounds

The asymptotic result is nice as it shows that as the number of agents approaches
infinity, the probability of a correct majority is certain. Yet, in real life we are
never dealing with infinite number of agents. So, this makes us wonder, what
can we say about the case when there is a finite number of agents? In this
section we will spell out the relation between the size of the network n and the
connectedness c of the network and the probability to reach a correct majority.

If 0 < c < 1 and n is finite, then obviously the possibility arises that signals
do not have the same weight. In fact, this is very likely. However, it is not the
case that the weights of all the signals are all over the place. This is because we
generate networks from a random process where agents are always connected
with each other with probability c. In particular, the degree of a vertex follows
a binomial distribution. This means there is a known mean degree and that the
degrees will be spread around the mean degree, with the probability of being
far away from the mean decreasing as the distance from the mean increases.

Before we make this precise, let’s look back at our example in Figure 4.2.
Although the network shows that a weighed majority does not necessarily imply
a majority of votes, the network has a low probability of being generated from
a random network with parameter c. After all, in the graph most nodes have
a degree that is far from the average degree of 7 · c, no matter what value we
attach to c. Assuming that the competence of each agent is higher than 0.5, it
is most likely that b is the right signal. This means that a would be an incorrect
weighted majority. If the correct b-nodes had some edges, then it would have
been likely that we obtained a correct weighted majority, since there are many
more b nodes. Intuitively, this graph is very unlikely to be generated from a
random process, and the goal of this subsection is to make this unlikeness precise
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by making use of Chernoff Bounds (Chernoff (1952)) and studying properties of
the variation of the degrees.

We start off with the latter: studying the properties of the variation of
degrees. As we are working on random graphs, edges between vertices occur
with probability c. We are thus given a distribution of degrees. The distribution
of degrees is given by the binomial distribution. Given a random network G(n, c)
the vertex degree is a random variable Xδ that follows the binomial distribution:

P (Xδ = k) =

(
n− 1

h

)
ch(1− c)n−1−h (4.1)

The Binomial Distribution can be considered as the distribution of the num-
ber of successes in a series of h trials with two possible outcomes in each trial: 1
(success) and 0 (failure). In our case, success can be seen as making a connection
and exchanging a signal, and a failure as not exchanging a signal.

Following known properties of the binomial distribution, the mean vertex
degree δ̄ is computed as as follows:

δ̄ = c(n− 1) (4.2)

Furthermore, the variance var(Xδ) is given by:

var(Xδ) = (n− 1)c(1− c) (4.3)

From the variance, we calculate the standard deviation σ as follows:

σ =
√
V ar(Xδ) =

√
(n− 1)c(1− c) (4.4)

Both the variance and the standard deviation are measures of the amount
of variation of a set of degrees. The variance is the expectation of the squared
difference of the random variable Xδ from the mean degree. The variance mea-
sures how far the set of degrees is spread out from the average mean degree. The
standard deviation is the square root of the variance. A low standard deviation
indicates that Xδ tends to be close to the mean degree, while a high standard
deviation indicates that Xδ is farther away from the mean. We will use the vari-
ance and standard deviation to determine in which case the expected variation
in degrees is maximal, as stated in the following observation.

Observation 4.2.2. For the vertex degree Xδ that follows a binomial distribu-
tion, we make the following observations.

(1) The variance and standard deviation are maximal when c = 0.5.

(2) The variance and standard deviation are minimal when c = 0 and c = 1.

(3) The variance and standard deviation decrease as they are farther away
from c = 0.5.
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Intuitively, Claim 1 in observation 4.2.2 tells us that we have the highest
chance of differences in weight if c = 0.5. So, distortions in group accuracy
due to weight differences are highest when c = 0.5. Claim 2 in observation
4.2.2 implies that distortions in group accuracy due to weight difference are
impossible when c = 0 or c = 1. Finally, Claim 3 in observation 4.2.2 implies
that that the farther c is away from 0.5, then with higher probability we get
small differences in weights between signals, thus bringing us closer to group
accuracy in the Condorcet and Coughlan setting.

The variation and standard deviation already give an indication of how the
parameter c influences the spread of communication in a network and thus
its influence on the group accuracy. However, we would like to say with more
precision what the chance is for certain weight differences to occur. In particular,
we would like to determine the probability of observing a degree within a given
distance from the mean degree. For this, we introduce the use of the Multiplicate
Chernoff Bound (Chernoff (1952)).

Definition 4.2.1 (Multiplicative Chernoff Bound). Suppose X1, ..., Xn are in-
dependent random variables taking values in {0, 1}. Let X denote their sum
and let µ = E[X] denote the sum’s expected value. Then for any d > 0 we have
the following.

P (X > (1 + d)µ) <

(
ed

(1 + d)1+d

)µ
(4.5)

P (X < (1− d)µ) <

(
e−d

(1− d)1−d

)µ
(4.6)

In words, the multiplicative Chernoff bound gives us an upper and lower
bound on the probability that the random variable X is a certain distance d
away from the mean.

We will use the Chernoff bound as follows. For every node we run n − 1
Bernoulli trials to determine the connections with other nodes. So we have
X1, ..., Xn−1 independent Bernoulli random variables. Each value either takes
value 1 or 0, depending on whether there is a connection or not. Then X =∑n−1

1 X1, ..., Xn−1 denotes the total number of connections a node has. In
other words, it denotes the degree. We already saw that the average degree is
δ̄ = c(n − 1). Then applying the Multiplicative Chernoff bound, we obtain in
the following theorem.

Theorem 4.2.3. Let G(n, c) be a random network. The probability that Xδ is
d > 0 away from the mean degree is determined by the following two bounds.

P (Xδ > (1 + d)(c(n− 1))) <

(
ed

(1 + d)1+d

)c(n−1)
(4.7)
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P (Xδ < (1− d)(c(n− 1))) <

(
e−d

(1− d)1−d

)c(n−1)
(4.8)

Proof. This follows from using the Multiplicative Chernoff bound and the fact
that the mean degree δ̄ is equal to c(n− 1).

In words, Theorem 4.2.3 bounds the probability that the degree of any node
is d away from the mean degree. We introduce the following shorthand notation
for the upper bound υ and the lower bound λ:

υ =

(
ed

(1 + d)1+d

)c(n−1)

λ =

(
e−d

(1− d)1−d

)c(n−1)
To get a feeling for Theorem 4.2.3, consider the following example. Suppose

n = 50, c = 0.3, d = 0.1. Firstly observe that in this case δ̄ = c(n − 1) = 15
and 1.1δ̄ = (1 +d)δ̄ = 16 and 0.9δ̄ = (1−d)δ̄ = 13. The Multiplicative Chernoff
bound then tells us that the probability that the degree is bigger than 16 is
at most 0.93 and the probability that the degree is smaller than 13 is also at
most 0.93. This means that possibly with a high probability, there might be a
difference of 3 degrees. This, on its turn, could change an incorrect minority
into a weighted majority and as such lower the group accuracy.

In the following lemma, we spell out the influence of the size of the network
n, the connectedness c and the distance d on the upper bound υ and the lower
bound λ.

Observation 4.2.3. υ and λ have the following properties:

(1) As n increases, υ and λ decrease.

(2) As c increases, υ and λ decrease.

(3) As d increases, υ and λ decrease.

Proof. We prove the claims one by one using partial derivatives.

(1)

∂υ

∂n
=c log

(
(d+ 1)−d−1ed

) (
(d+ 1)−d−1ed

)c(n−1)
∂λ

∂n
=c log

(
(1− d)d−1e−d

) (
(1− d)d−1e−d

)c(n−1)
The derivative with respect to n is negative and thus υ decreases as n
increases. Similarly for λ.
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(2)

∂υ

∂c
=(n− 1) log

(
(d+ 1)−d−1ed

) (
(d+ 1)−d−1ed

)c(n−1)

∂λ

∂c
=
(
(1− d)−1−de−d

)c(−1+n)p
(−1 + n)p log(e−d(1− d)−1+d)

The derivative with respect to c is negative and thus υ decreases as c
increases. Similarly for λ.

(3)

∂υ

∂d
=c(n− 1)

(
ed(d+ 1)−d−1 + ed(d+ 1)−d−1

(
−d− 1

d+ 1
− log(d+ 1)

))
(
(d+ 1)−d−1ed

)c(n−1)−1
∂λ

∂d
=c(n− 1)

(
(1− d)d−1e−d

(
log(1− d)− d− 1

1− d

)
− (1− d)d−1e−d

)
(
(1− d)d−1e−d

)c(n−1)−1
The derivative with respect to d is negative and thus υ decreases as d
increases. Similarly for λ.

From Observation 4.2.3 we can infer that in larger networks and more con-
nected networks, the upper and lower bounds become tighter. The latter is
in line with Observation 4.2.2, as we showed that the farther away c is from
0.5, the less variation in degrees there is. This intuitively makes sense. If any
connection between two agents is basically established by a random coin toss,
it makes sense that there occurs a lot of variation in the number of connections
agents have. The more unfair our coin toss, the less variation in the number
of connections between agents. The fact that in larger networks the upper and
lower bound become tighter is also intuitively understandable. The larger the
network, the more the degree can converge to the mean degree by following the
law of large numbers This result is in line with Lemma 4.1.2, according to which
in an infinitely large network, every signal has the same weight. Lemma 4.2.3
says that the bigger the network, the higher the probability that the weights
are similar.

Observation 4.2.3 also shows that with bigger distances, that is a greater
difference in degrees, the upper and lower bounds become tighter. This also
makes sense intuitively. After all, the bigger the difference, the higher the
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probability that the degree of a vertex will fall within the range of the mean
degree plus or minus the difference d.

What do these results imply for the group accuracy? From Theorem 4.1.2
we know that in a random network such that t = r and p > 0.5, in the limit
a correct majority is reached with probability 1. Theorem 4.2.3 gives a handle
to measure the probability that a random network is a certain distance away
from a regular network. The farther away a random network is from a regu-
lar network, the more chance on distortions in group accuracy due to unevenly
spread communication. There is then a higher chance that incorrect minorities
of signals turn into incorrect majorities of votes such as in Figure 4.1, with the
result that the expected group accuracy decreases. Observation 4.2.3 in partic-
ular shows implies that a decreased expected group accuracy due to unevenly
spread communication is is less likely in larger networks and in more connected
networks.

In the following subsections, we will describe some applications of Theorem
4.2.3 for specific distances, to give an impression on the probabilities of a random
network being close to a regular network.

Application Chernoff Bound: 1 degree distance

Suppose we allow the distance in number of signals to be at most 1. This means
that we allow agents to receive one more or one less signal than the mean. This
means that two agents can at most have a difference of two signals. This seems
the tightest bound we can have, rather than just demanding every agent to
have the exact same number of signals. The following lemma shows that for a
difference of at most 1 signals away from the mean, d should be less than or
equal to 1

c(n−1) .

Lemma 4.2.4. If (1 + d)δ̄ − δ̄ ≤ 1 then d ≤ 1
c(n−1) .

Proof.

(1 + d)((c(n− 1))− c(n− 1) = 1

cd(n− 1) = 1

d =
1

c(n− 1)

Observe that as we always allow for only one node of distance more or less
than the mean, the allowed distance becomes smaller and smaller the bigger
n and c get. This is because d is expressed in terms of percentage and not in
terms of an absolute value. As a result, demanding a distance of at most 1
degree makes most sense for relatively small networks.

Example 1. Let n = 10 and c = 0.5. Then d = 0.22 and P (Xδ > 1+0.22)δ̄ <
0.90 and P (Xδ < 1− 0.22)δ̄ < 0.89.
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If we decrease c to 0.2 then the probability decreases too. Namely, d = 0.56
and P (Xδ > 1 + 0.56)δ̄ < 0.79 and P (Xδ < 1− 0.56)δ̄ < 0.70.

The previous example indicates that if we allow for at most one degree
deviation from the mean, the Chernoff Bounds are high. This means that the
probability that the degree deviates more than one degree from the mean is
high. As the network size n increases, the allowed distance d ≤ 1

c(n−1)n will

only become smaller. Obviously, a smaller allowed distance is harder to meet.
In general, the requirement of a maximum of one degree deviation from the
mean thus seems hard to meet.

Even with only a one degree deviation from the mean, an incorrect minority
of signals could change into an incorrect majority of votes. However, given a
specific network, Theorem 4.2.3 can express that this might be unlikely. For
example, suppose we have a UCRN 〈N, c, p, r, t〉 with n = 5 and c = 0.25. In
this UCRN the mean degree is 1. Applying the Chernoff Bounds in Theorem
4.2.3, the probability that a vertex has a degree of 2 is at most 0.68, and the
probability that a vertex has a degree of 0 is at most 0.39. Based on this
information, we can say that the network in Figure 4.3 has thus not a very
high probability of occurring from our UCRN. After all, in the figure, agents
1 and 3 have a degree equal to the mean degree. Agent 2 has a degree that is
one less than the mean degree, which has a probability of occurring of at most
0.39. Agent 4 and 5 have a degree that is one more than the mean, which, for
each agent independently, has a probability of occurring of at most 0.68. In this
network, a is the majority signal, while b has a weighted majority. If a would be
the correct signal, this could potentially lead to an incorrect majority of votes.

What is more, we can see that there is also an asymmetry when it comes to
the type of signals that are communicated: b is much more often communicated
than a, even though each node has a degree close to the mean degree. This is a
factor that we do not express wit Theorem 4.2.3, but intuitively we can say that
an asymmetry in the distribution of types is less likely than a symmetry. All in
all, the network in Figure 4.3 in total seems not to have a very high probably
of occurring from our given UCRN, and Theorem 4.2.3 helps expressing this
probability. So, even though it is possible to obtain an incorrect majority due
to 1 degree deviations from the mean, given a specific UCRN, we can bound
this probability using Theorem 4.2.3.

#1,a #4,b

#2,a

#3,a #5,b

Figure 4.3: Network in which all degrees deviate at most 1 degree from the
mean degree δ̄ = 2
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(a) Upper Chernoff bound υ
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(b) Lower Chernoff bound λ

Figure 4.4: Upper and Lower Chernoff bound while d = 0.1 and c = 0.5

Application Chernoff Bound: percentage

Instead of looking at a specific value that we allow the degrees to deviate from
the mean, we can also look at a percentage that we allow degrees to deviate from
the mean. The advantage of this method is that this requirement will differ per
size of the network. If the network is small, the maximum number degrees are
allowed to deviate from the mean is relatively small. Meanwhile, if the network
is large, the maximum number of degrees a node is allowed to deviate from the
mean is relatively large.

Example 2. Suppose d = 0.1. Then if δ̄ = 10 we allow for δ = 9 and δ = 11.
Meanwhile if δ̄ = 100 then we allow for δ = 90 and δ = 110.

Observe furthermore that if we let d ≤ 0.1 this implies that weight difference
will also be less than or equal to 10%.

Observation 4.2.4. If d ≤ 0.1 then any w(j) of any signal sj of an agent j is
10% bigger or smaller than δ̄.

Proof. Recall wj = δ(j)∑
i∈N δ(i) . The denominator

∑
i∈N δ(i) stays the same in

each calculation, yet if d ≤ 0.1 then δ(j) can be at most dδ(j) · 1.1 and at least
δ(j) · 0.9. In the first case wj = 1.1 · δ̄ while in the latter wj = 0.9 · δ̄.

It turns out that a distance of 0.1 still has high bounds. The network has to
be very large for there to be a low probability that degrees deviate a maximum of
10% from the mean. This is illustrated by Figure 4.4a and 4.4b below, showing
the upper- and lowerbounds of the probability to exceed the maximum of 10%
deviation. As we can see in both figures, a distance of 0.1 is bounded by a
relatively low probability only for networks with about 500 nodes or more. In
those cases we can say that there is only a 30% probability that nodes deviate
more than 10% from the mean degree.

It makes sense though that for very small networks a distance of 0.1 is
bounded by a high probability. Suppose we have a network of 10 nodes with
c = 0.3 and d = 0.1. Then the mean degree δ̄ = 3 and d· δ̄ = 3.3 while d· δ̄ = 2.7.
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Figure 4.5: Upper and Lower Chernoff bound while d = 0.5 and c = 0.5

So basically, in this case we are asking what the probability is that a node is
not even one full degree away from the mean degree. It is sensible that this
probability is low and thus the bounds are very high.

The smaller the network becomes, the higher the probability that the degree
will be more than 0.1 distance away more the mean degree. We therefore also
studied distances of 0.5. The results are shown in figure 4.5a and 4.5b.We see
that networks of about 30 nodes or more can stay below this bound with a
probability of more than 70%.

Like in the case where we investigated a distance of 1 degree from the mean,
with a distance of 0.5, it is also possible that an incorrect minority of signals
could change into an incorrect majority of votes. Again Theorem 4.2.3 can help
in expressing the likeliness of this event for a specific network. For example,
suppose we have a UCRN 〈N, c, p, r, t〉 with n = 10 and c = 0.3 and d = 0.5.
The mean degree in this case is 3. Applying the Chernoff Bounds in Theorem
4.2.3, the probability that a vertex has a degree of 1.5 ·3 = 4 is at most 0.74, and
the probability that a vertex has a degree of 0.5 ·4 = 1 is at most 0.66. Based on
this information, we can say that the network in Figure 4.6 has thus a moderate
probability of occurring from our UCRN. In the figure, all agents, except for
agent 4 and 6, have a degree equal to the mean degree. Agent 4 has a degree of
2, which occurs with a probability of at most 0.66. Agent 6 has a degree of 4,
which occurs with a probability of at most 0.74. In this network of Figure 4.6,
both signals occur equally often. Due to the spread of communication, δ(b) = 16
and δ(a) = 14 and thus b has a weighted majority. If a would be the correct
signal, this could potentially lead to an incorrect majority of votes. With the
use of Theorem 4.2.3, we can express that this network has a probability of
at most 0.78 of occurring. This is an upper bound, and thus most likely the
probability of such a network occurring is actually much lower. So like before,
even though it is possible to obtain an incorrect majority due to 50% percent
deviations from the mean, given a specific UCRN, we can bound this probability
using Theorem 4.2.3.
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Figure 4.6: Network in which all degrees deviate at most 0.5 percent from the
mean degree δ̄ = 3

4.3 Summary

In this chapter, we focused on determining the group accuracy in random net-
works. One of the factors that can influence group accuracy in random net-
works it the spread of communication. As the majority illusion effect shows,
an asymmetry in communication can lead the group astray. Therefore, we have
introduced weights to measure the spread of communication that takes place in
a random network. This weight represents the influence due to communication
of an agent in a network. We set out three reasons to study networks in which
signals (tend to) have the same weight. Firstly, evenly spread communication
implies that correlation is also homogeneously spread in the network. Secondly,
Lemma 4.1.1 shows that if each signal has the same weight, a correct majority
of signals implies a correct weighted majority. Thirdly, Lemma 4.1.2 states that
if every signal has the same weight, then asymptotically, the group reaches a
correct majority with probability 1. This implies that on random networks, de-
spite correlation between agents, we can still obtain accurate majorities under
some constrains, even as accurate as in Condorcet’s or Coughlan’s model.

In second half of the chapter we set out to determine under what circum-
stances signals in a network have a high probability to have the same weight.
We first showed that this is the case when there is either no communication at
all or when everyone communicates with everyone. However, we are mostly in-
terested in what happens between those two extreme cases. For this our results
were twofold. We derived one asymptotic result, showing that as the network
size approached infinity, every agent has the same weight. For an approximate,
yet, more realistic result, using the Multiplicative Chernoff Bound, we formu-
lated Theorem 4.2.3 that bounds the probability that the weight of a signal in
the network is a given distance away from the mean weight. We gave a general
impression on the bounds for certain distances. Furthermore, we showed how
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to use Theorem 4.2.3 to determine the probability for a given network to occur
given an UCRN, thereby being able to tell the probability that asymmetries in
spread of communication might lead the group accuracy astray. Finally, using
properties of the variance and standard deviation, we showed that weight dif-
ferences are most likely when c = 0.5 and decrease the farther away c is from
0.5. And the less differences in weight, the less likely group accuracy will be
distorted due to unevenly spread communication.

In this chapter we only studied the effect of the amount of communication
connections on the group accuracy. This is, however, only one factor that can
influence the group accuracy. Other than the amount, it is also important to
whom agents are connected. In particular, as Stewart et al. (2019) show, even
when each person communications with equally many other agents and the num-
ber of agents supporting each alternative a or b is equally many, the structure of
the network can be such that the voting outcome is swayed towards one alter-
native. To get a better grip on the group accuracy in random networks, future
research should thus not only determine the probability of differences in amount
of communication, but also study the specific structure of the communication
networks.
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Chapter 5

Conclusion

5.1 Summary of results

This thesis has provided a middle ground between to existing models. On
the one hand, Condorcet’s model (1785) allows for fairly inaccurate agents to
vote on an epistemic issue that will be decided by majority rule. There is no
communication and thus no correlation between votes. As a result, the majority
rule ensures a high group accuracy in this case. On the other hand, Coughlan’s
model (2000) is set up for rather accurate agents that share all their information
with each other. As a result there is full correlation between votes, and the
individual accuracy will be equal to the group accuracy.

The middle ground is the situation in which communication is not fully
public, nor completely absent. Our aim was to study both individual accuracy
as well as group accuracy under majority rule for partial communication. And
we did so for both regular as well as random networks. In Chapter 2 we studied
regular communication networks, in which agents talk to a (strict) subset of the
other agents, but the size of this subset is the same for all agents in the network.
We derived Theorem 2.5.4 to determine the expected individual accuracy of
an agent in a regular network. We observed that both Coughlan’s as well as
Condorcet’s model are regular networks, and thus the expected accuracy of an
individual agent can be derived from Theorem 2.5.4. Furthermore, we stated
that asymptotically, if p > 0.5 the probability of a correct majority is 1 for
any regular network. Again, since Coughlan’s as well as Condorcet’s models
are regular networks, it follows from this theorem that in their models Theorem
2.5.4 applies too.

In Chapter 3 we studied individual accuracy in random networks. We intro-
duced universally competent random networks (UCRN): a random network with
n agents, all with the same competence p > 0.5, that are connected with each
other with probability c. Each agent has a prior probability r about the state
of the world and a threshold t for belief. We formulated Theorem 3.2.1 that
expresses the expected individual accuracy in an UCRN. As the class of regular
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networks in contained in the class of random networks, it follows that Theorem
3.2.1 is a generalisation of Theorem 2.5.4. We spelled out the influence on the
expected individual accuracy of the size of the network n, the connectedness
c and the competence p. We finally observed that if the prior is equal to the
threshold for belief, then the Bayesian approach coincides with the maximum
likelihood estimation approach.

In Chapter 4 we studied group accuracy in random networks. More pre-
cisely, we studied how unevenly spread communication can influence the group
accuracy. We introduced weights to measure the spread of communication. The
first half of Chapter 4 consisted of arguing why it is important for the group
accuracy that signals (tend to) have the same weight and the second half of
Chapter 4 consisted of determining the probability that signals in a random
network (tend to) have the same weight. Regarding the first half, we gave three
reasons. Firstly, evenly spread communication implies that correlation is also
homogeneously spread in the network. Secondly, Lemma 4.1.1 shows that if
each signal has the same weight, a correct majority of signals implies a correct
weighted majority. Having a correct weighted majority reduces the chance of
scenarios such as the majority illusion effect (Lerman et al. (2016)), in which an
asymmetry in communication can lead the group astray. Thirdly, Lemma 4.1.2
states that if every signal has the same weight, then asymptotically, the group
reaches a correct majority with probability 1. This implies that on random
networks, despite correlation between agents, we can still obtain accurate ma-
jorities under some constrains, even as accurate as in Condorcet’s or Coughlan’s
model. Regarding the second half, we discussed three scenarios for determining
the probability that signals in a random network have the same weight. Firstly,
we showed that signals have the same weight if c = 0 or c = 1. Secondly, signals
have the same weight if the network approached infinity. Thirdly, we formulated
Theorem 4.2.3 that bounds the probability that the weight of a signal in the
network is a given distance away from the mean weight.

An overview of the main results we discussed in this thesis is given in Table
5.1. Our main results concern both expressions for expected individual accu-
racy as well as group accuracy, as shown in the rows of Table 5.1. The type of
networks for which we determined accuracy are divided in four. Firstly, there
is Condorcet’s network in which c = 0. Secondly, there is Coughlan’s network
in which c = 1. Thirdly, we discussed regular networks in which all agents
are connected with the same number of other agents. Thirdly, there are ran-
dom networks in which each two agents are connected with each other with a
probability c.

5.2 Future work

We believe that this thesis provides a good framework to study the influence
of communication on the accuracy of a group, as well as of the individual that
compose the group. Yet, there are still many ways in which our framework can
be expanded and has opened up a new area for various research questions.

65



Condorcet Coughlan Regular Random
Individual Accuracy Corollary 2.5.4.1 Corollary 2.5.4.2 Theorem 2.5.4 Theorem 3.2.1

Group Accuracy Theorem 2.2.1 Observation 2.3.1 Theorem 2.5.6
Lemma 4.1.2
Theorem 4.2.3

Table 5.1: Summary of results for expected individual accuracy and group ac-
curacy, in four types of networks: Condorcet’s and Coughlan’s network, regular
networks and random networks.

Firstly, we made various observations on the influence of the parameters
on the individual accuracy as well as group accuracy of a communication net-
work, but more work on the exact influence of the parameters would benefit a
better understanding of the agent’s accuracy in communication networks. For
instance, we only shortly discussed the influence of the prior and the threshold
on the expected individual accuracy in Chapter 3, but we do not have a pre-
cise understanding of these parameters yet. What is more, we only studied the
influence of each parameter separately. It would be interesting to see how cer-
tain parameters together influence the expected accuracy. We already observed
for example that in case the prior is equal to the threshold, then the Bayesian
approach coincides with the maximum likelihood estimation approach.

Secondly, it is important to realise that in this thesis, we constantly have
talked about expected accuracy. This is because we studied a given class of
networks with some given parameters, but we never studied particular networks
themselves. It is thus important to realise that the actual accuracy in a given
network can be very different than our given expected accuracy. What is nice
about our approach, is that it enables us to say something about a very big
and general class of networks. The drawback, however, is that it is therefore
not very sensitive to specific network structures. This was for example visible in
Chapter 4. Theorem 4.2.3 enables us, given an UCRN, to bound the probability
that group accuracy is distorted as a result of unevenly spread communication.
However, this probability is merely a bound and could be made more precise if
we had more information about the specific structure of the network.

In line with this remark, more work can still be done on the group accuracy
in random networks. As we already pointed out, determining group accuracy
after communication is non trivial, as after communication, beliefs are not in-
dependent anymore. What is more, since we are dealing with random networks,
we do not know the exact structure of the network. This makes it in the current
framework hard to derive a precise result on the expected group accuracy in a
random network. Our path has been to focus on the influence of the number of
connections agents have in a network. However, other than number of connec-
tions, also the type of signals an agent receives will influence the group accuracy.
This plays a role not only in random networks, but also in regular networks.
To fully study the influence of communication on the accuracy of agents, future
research could determine the spread of types of signals throughout networks.

Thirdly, we only focused on group accuracy with infinitely many agents,
stating that the likelihood of a correct majority tends to certainty as the group
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becomes infinitely big. One might argue that this assumption makes our group
accuracy result not applicable to real-world applications. One way to go about
this would be to generalise the growing-reliability claim of the CJT to regular
and random networks, according to which larger groups are better at finding the
truth than smaller groups of individuals, without assuming there are infinitely
many agents. Indeed, as Dietrich and Spiekermann (2019) argue, this claim
would be better applicable to real applications. Thus, generalising also this
claim of the CJT to random networks would benefit the applicibality of our
framework.

Fourthly, it would be interesting to extent the current synchronic process
to a diachronic process. Right now, we study a setting in which agents receive
signals, share them with each other, update their belief and vote. Now assume
that this voting outcome is publicly announced, and then the same process starts
over again. How will the accuracy be influenced if we iterate this process? A
challenge for this approach will be to determine the posterior probability after
the public voting outcome. Since communication took place before the voting
round, the votes are not independent and thus one would need to determine the
expected correlation.
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