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Abstract

In this paper we present a topological epistemic logic, with
modalities for knowledge (modeled as the universal modal-
ity), knowability (represented by the topological interior op-
erator), and unknowability of the actual world. The last no-
tion has a non-self-referential reading (modeled by Cantor
derivative: the set of limit points of a given set) and a self-
referential one (modeled by Cantor’s perfect core of a given
set: its largest subset without isolated points). We com-
pletely axiomatize this logic, showing that it is decidable and
PSPACE-complete, and we apply it to the analysis of a famous
epistemic puzzle: the Surprise Exam Paradox.

1 Introduction
Epistemic logic has been formalized by Hintikka within
the framework of possible-world semantics in relational
(Kripke) models, and later rediscovered by game theorists
(Aumann 1995) in the setting of partitional models (corre-
sponding to the special case of S5 Kripke models, based on
equivalence relations). In these forms, it has been used in
Computer Science to reason about distributed systems, in AI
to reason about agent-based knowledge representation, and
in Philosophy to explore issues in formal epistemology.

An alternative interpretation of modal logic is based not
on Kripke frames, but on topological spaces. This semantics
can be traced back to (McKinsey and Tarski 1944). When
the modal ♦ is interpreted as topological closure Cl(A) and
the modal � as topological interior Int(A), one obtains a
semantics for the modal logic S4. McKinsey and Tarski also
suggested a second topological semantics, obtained by inter-
preting the modal ♦ as Cantor derivative d(A) (consisting of
all limit points of A). The modal logic of Cantor derivative
is semantically more expressive than the modal logic of the
interior/closure operators: the latter can be defined in terms
of derivative, but not vice-versa.

Since then, the usefulness of topological structures in
Computer Science and Knowledge Representation has been
well established. The notion of observability and its logic re-
quire a topological setting, cf. (Vickers 1989) and (Abram-
sky 1991). Abstract notions of computability also involve
topological structures, with a famous example being the
Scott topology. Research on spatial reasoning, in both
topological and metric incarnations, is also of significant
interest for AI. More recently, developments in Formal

Learning Theory (Kelly 1996; Brecht and Yamamoto 2010;
Baltag, Gierasimczuk, and Smets 2015) and Distributed
Computing (Goubault, Ledent, and Rausbaum 2020) have
taken a topological turn. Moreover, recent work in epistemic
logic (Baltag et al. 2016; Özgün 2017; Baltag et al. 2019b)
on modelling and reasoning about evidence and knowability
uses topological structures.

These applications are based mostly on the notion of topo-
logical interior. Our paper builds on this existing work,
but is the first to show the usefulness for Knowledge Rep-
resentation of other topological notions, such as Cantor
derivative. From a technical point of view, our formal-
ism is obtained by extending the logic of Cantor deriva-
tive (Esakia 2001) with a global modality (Goranko and
Passy 1992) that quantifies over all points, as well as an
operator capturing the perfect core d∞(A) of a set A (de-
fined as the largest subset of A that is equal to its own
derivative) and a dynamic update modality (that goes from
the original space to some definable subspace). Building
on our previous work on topological µ-calculus (Baltag,
Bezhanishvili, and Fernández-Duque 2021), we give a com-
plete axiomatization, as well as decidability and complex-
ity results. Our proof is natural and not difficult to grasp,
due in large part to subtle technical innovations which al-
low for a much more direct approach than that of related
results in the literature (see e.g. (Fernández-Duque 2011;
Goldblatt and Hodkinson 2017)).

From a conceptual point of view, the key contribution
of our paper is that we develop a logic of evidence-based
knowledge, knowability, and (un)knowability of the actual
world; and moreover, we apply it to the analysis of a famous
epistemic paradox: the Surprise Examination paradox.

We start by adopting the learning-theoretic reading of
topology (Kelly 1996; Baltag, Gierasimczuk, and Smets
2015; Baltag et al. 2019b), in which a topological space is a
way to represent the actual and potential evidence that some
(anonymous) agent may observe. The points of the space
represent possible worlds (or possible states of the world):
all the possibilities that are consistent with the agent’s cur-
rent knowledge. A proposition is known if it is true in all
possible worlds. The potential evidence (that might be ob-
served in the future) forms a topological basis B: if a world
x belongs to a basic open set x ∈ U ∈ B, then the agent may
observe proposition U in world x. The topological interior



operator Int(A) captures the knowability of proposition A
through observations U ∈ B. When the agent gains more
knowledge, some possibilities are eliminated (being ruled
out by the new information), and thus the space shrinks to
a subspace: this corresponds to performing a knowledge up-
date (described in our logic by dynamic update modalities).1

While each of the above epistemic readings of standard
topological notions are already known from the literature,
the epistemic meaning of Cantor’s derivative and the perfect
core is not so obvious. In this paper, we propose a novel
and very natural learning-theoretic interpretation of deriva-
tive, though somewhat related to an older work (Parikh
1992) (which assumes a different framework: multi-agent
S5 Kripke frames, seen as a special case of topological
spaces). Essentially, the derivative d(A) is the proposition
asserting that the actual world is unknowable (through ob-
servations), even if given (the additional information) A.
We derive this interpretation in a straightforward way, by
putting together the semantics of derivative and the knowa-
bility reading of the interior operator.2 Finally, we infer the
epistemic meaning of the perfect core d∞(A) from its fixed-
point definition: essentially, d∞(A) is the self-referential
version of Cantor’s derivative, i.e. the proposition assert-
ing that “A is true, but the actual world is unknowable
even given this information” (where ‘this’ refers to the very
proposition that we are defining).

The main motivation for the introduction of the perfect
core modality comes from our analysis of the Surprise Exam
Paradox. The Student knows for sure that there will be an
exam in one of the five (working) days of next week. But
he doesn’t know in which day. The Teacher (who is always
truthful) announces that the exam’s date will be a surprise:
even in the evening before the exam, the Student will still not
know for sure that the exam is tomorrow. Intuitively, the Stu-
dent can then prove (by backward induction, starting with
Friday) that the exam cannot take place in any day of the
week: if the exam is on Friday, then it wouldn’t be a surprise
(-since Friday is the last possible day, by Thursday evening
the Student would know it), contrary to the Teacher’s (true)
announcement; so the exam cannot take place on Friday. But
once Friday is eliminated, the Student can repeat the same
argument, until all days are eliminated. This is a contradic-
tion (since the Student knows there will be an exam).

1These dynamic operators are topological versions of the up-
date modalities of Public Announcement Logic and Dynamic Epis-
temic Logic (Plaza 1989), (Baltag, Moss, and Solecki 1998), (van
Ditmarsch, van der Hoek, and Kooi 2007), (van Benthem 2011).

2Prior to this paper, the dominant interpretation of derivative in
the epistemological literature was Steinsvold’s reading in terms of
“belief” (Steinsvold 2007). That interpretation has been criticized
as not correctly reflecting the intuitive properties of belief and its
relations to knowledge (Baltag et al. 2019a). Though new, our in-
terpretation is closer to (Parikh 1992), where derivative d(A) is
connected to ignorance (rather than to unknowability): the agent
does not know the actual world (even if given A). Still, our treat-
ment of the Surprise Exam Paradox using the perfect core and
the Cantor-Bendixson process was partially inspired from Parikh’s
treatment of classical epistemic scenarios (such as the Two Num-
bers’ dialogue) using the same topological tools.

In some versions of the puzzle, there is an even more
“paradoxical” follow-up: the assumption that the Teacher
never lies is weakened, to allow the Student some way out.
After deriving the above contradiction, he concludes that the
Teacher lied: the exam will not be a surprise. Confident that,
whenever the exams comes, he will somehow get to know
it an evening in advance (and thus be able to study in that
last evening), the Student parties every day. Then, when the
exam comes (say, on Wednesday), it will indeed be a com-
plete surprise! So the Teacher told the truth after all?!

In this paper, we give a full analysis of the paradox us-
ing our topological epistemic logic. We distinguish between
non-self-referential interpretations of Teacher’s announce-
ment (which can be formalized using Cantor derivative) and
self-referential interpretations (which are captured using the
perfect core modality). The first interpretation was pur-
sued (in a non-topological setting) in (Gerbrandy 2007), and
shown to be paradox-free: the only conclusion is that the
exam cannot be on Friday, but the elimination process can-
not be iterated. However, most logicians consider that the
most natural (and intended) interpretation is the second, self-
referential one. As in the above intuitive argumentation, this
does lead to a contradiction. The correct conclusion is that
a Teacher who is known to be always truthful cannot make
such an announcement (since if she did, it would be a lie).
In this, we agree with the verdict given in (Quine 1953).
However, we also show that the above contradiction is only
produced by the special evidential topology underlying the
Surprise Exam Story. By changing the topology, we ob-
tain “non-paradoxical” versions, in which the Teacher can
truthfully make similar future-oriented self-referential “sur-
prise” announcements. Our conclusion (against the opin-
ions of many philosophical logicians) is that epistemic self-
referentiality is not the cause of the apparent ‘paradoxical-
ity’ of the Surprise Exam Paradox.

2 The Evidential Topology
As preliminaries, we recall here some notions from Gen-
eral Topology. In the view of our epistemic applications,
we strengthen somewhat the standard notion of topological
base, obtaining a concept that we call “strong base”.

2.1 Topological preliminaries
Definition 2.1 (Topology, strong base, open and closed sets,
neighborhoods). A strong (topological) base on a set X
(called a space, and whose elements x ∈ X are called
points) is a family B ⊆ P(X) of subsets of X (called ba-
sic open sets), with the property that it is closed under fi-
nite intersections: if U ⊆ B is any finite subfamily, then⋂
U ∈ T . This is in fact equivalent to requiring that a base

is closed only under binary intersections (if U, V ∈ B, then
U ∩ V ∈ B) and contains the whole space (i.e. X ∈ B).3
A basic neighborhood of a point x ∈ X is a basic open set
U ∈ B with x ∈ U .

3This last condition follows from applying closure under finite
intersections to the empty family U = ∅ ⊆ B, since

⋂
∅ = X .



A topology on a set X is a strong base T ⊆ P(X), that
satisfies the additional requirement that: it is closed under
arbitrary (possibly infinite) unions: if U ⊆ T is any subfam-
ily, then

⋃
U ∈ T . The sets U ∈ T are called open sets.4

Their complements X − U (with U ∈ T ) are called closed,
and have dual closure properties to the opens. A neighbor-
hood of a point x ∈ X is an open set U ∈ T with x ∈ U .

Operators in a topological space [Interior, closure, deriva-
tive] An interior point of a set A ⊆ X is a point x ∈ X s.t.
there exists a neighborhood U ∈ T (of x) with x ∈ U ⊆ A.
Given a strong basis B for the topology T , it is easy to see
that x is an interior point of A iff there exists a basic neigh-
borhood U ∈ B (of x) s.t. x ∈ U ⊆ A. The interior Int(A)
of a set P ⊆ X is the set of all its interior points. A point
x ∈ X is close to a set A ⊆ X if all its (basic) neighbor-
hoods intersect A: for all U ∈ T (or equivalently, for all
U ∈ B) s.t. x ∈ U we have U ∩ A 6= ∅. The closure Cl(A)
of the setA is the set of all points that are close toA. A limit
point of a set A ⊆ X is a point x ∈ X s.t. every (basic)
neighborhood U of x contains a point y ∈ A with y 6= x;
equivalently, x is a limit point of A iff x ∈ Cl(A − {x}).
The (Cantor) derivative of a set A is the set of all the limit
points of A. It is easy to see that Cl(A) = A ∪ d(A). A
non-limit point x ∈ A− d(A) is called isolated in A.

It is important to note that operators Int, Cl and d are
monotonic operators, e.g. in particular A ⊆ B implies
d(a) ⊆ d(B).

Generated topology The topology generated by a strong
base B ⊆ P(X) is the smallest topology T ⊆ P(X) s.t.
B ⊆ T . We then say that B is a base for T . The generated
topology can be explicitly characterized as consisting of all
possible unions of basic opens: T = {

⋃
U : U ⊆ B}.

Subspace topology Every subset A ⊆ X of a topological
space (X, T ) is a subspace of the original space, when en-
dowed with the subspace topology TA = {A∩U : U ∈ T }.
Every strong base B for T induces a corresponding strong
base for TA, obtained by taking BA = {A ∩ U : U ∈ B}.
All the above topological notions can be relativized to a sub-
space: e.g. for any subset P ⊆ A, we can define its relative
interior IntA(P ) in A, closure ClA(P ) in A and derivative
dA(P ) in A, by applying the above definitions in the sub-
space A. It is easy to see that IntA(P ) = A∩ Int(P ∪ (X−
A)), ClA(P ) = A ∩ Cl(P ), and dP (A) = A ∩ d(P ).

Perfect sets and perfect core A setA ⊆ X is said to be per-
fect if A = d(A). The perfect core of a set A is a subset of
A denoted by d∞(A), and defined as the largest perfect sub-
set of A.5 The perfect core d∞(A) is the largest fixed point
of the relative derivative operator dA : P(A) → P(A), that
takes subsets P ⊆ A into their relative derivative dA(P ) =

4By applying closure under unions to the empty family U = ∅,
it is easy to see that ∅ is open (as well as closed, being the comple-
ment X −X of the open set X).

5Here, “largest” is used in the sense of inclusion: so the perfect
core d∞(A) is the unique set B satisfying the following three con-
ditions: (1) B ⊆ A; (2) B = d(B); (3) every set B′ satisfying
conditions (1) and (2) is included in B.

A ∩ d(P ) in A.6 This fixed point exists (by the Knaster-
Tarski fixed point theorem) because of the monotonicity of
the relative derivative operator dA (itself a consequence of
the monotonicity of derivative and intersection). Using stan-
dard µ-calculus notation for this largest fixed point, we can
thus write

d∞(A) = νP.A ∩ d(P ).

Cantor-Bendixson rank For any set A ⊆ X , we define a
transfinite sequence of subsets of A, by putting:

d0(A) = A, dα+1(A) = dA(dα(A)) = A ∩ dα(A),

dλ(A) =
⋂
α<λ

dα(A) for limit ordinals λ.

It is easy to check that this is a descending sequence

A = d0(A) ⊇ d(A) = d1(A) ⊇ . . . ⊇ dα(A) ⊇ . . . ,

which thus must reach a fixed point; i.e. there must exist
an ordinal α s.t. dα+1(A) = dα(A). The smallest such
ordinal is called the (Cantor-Bendixson) rank ofA, denoted
by rank(A). Moreover, the fixed point of the above iterative
process dα(A) is the perfect core:

drank(A)(A) = d∞(A).

2.2 The Epistemic Interpretation of Topology
We proceed now to explain the intended epistemic interpre-
tation of the above topological notions, in terms of observ-
able evidence and information updates.

Possible worlds, knowledge, observable evidence, eviden-
tial topology We think of the points x ∈ X as representing
possible worlds (or possible states of the world): all the pos-
sibilities that are consistent with some (anonymous) agent’s
information. Only one of these points represents the actual
world (the true state of affairs), but the agent may not know
which one: all she knows for certain is that it belongs to
the set X . Every subset P ⊆ X represents a “proposition”,
which may be “true” (i.e., hold) in a given world or not. A
proposition P is “known” for certain only if it is true in all
possible worlds that are consistent with the agent’s informa-
tion, i.e. ifP = X . A strong basisB ⊆ P(X) represents our
agent’s potential evidence: the properties of the world that
can in principle be directly observed by the agent. When
x ∈ U ∈ B, the agent may observe the truth of proposition
U in world x. Note that only the observable properties that
are true in a world x will be observed in x (i.e. we assume
observations to be sound or “correct”). So in world x the
observable evidence corresponds to basic neighborhoods of
the point x. Note also that this is not yet “evidence in hand”
(that the agent already possesses), but “evidence out there”
(that might observed in the future). The two conditions that
underlie our definition of strong basis have a clear epistemic
meaning: closure under binary intersections says that our
agent is able to accumulate observations: after observing
propositions U and V , the agent will in effect have observed
the truth of the conjunction U ∩ V (coming to know that

6Once again, “largest” is taken here in the sense of inclusion.



x ∈ U ∩ V ); while the condition X ∈ B says that the agent
can directly observe the truth of a tautology.

Knowability and Conditional Knowability Interior points
x ∈ Int(P ) represent worlds in which proposition P is
knowable (or “ verifiable”) based on direct observations: P
is true at x, and this fact can be known after some more
evidence about x is observed. This interpretation follows di-
rectly from the definition: x ∈ Int(P ) holds iff there exists
some observable evidence that entails P (i.e. U ∈ B with
x ∈ U ⊆ P ). So, as an epistemic proposition, Int(P ) says
that proposition P can be known from observations. More
generally, the proposition Int(A⇒ P ) = Int((X−A)∪P )
captures conditional knowability: it says that P can be
known (from observations) given A.

Unknowability and Falsifiability The complement X −
Int(P ) thus corresponds to “unknowability” of P , while the
closure Cl(P ) = X − Int(X − P ) corresponds to unfalsi-
fiability of P : x ∈ Cl(P ) means that, no matter what more
evidence about xwill be observed, P will never be known to
be false. Note though that our notion of unknowability is not
an absolute barrier to knowledge: it only expresses the fact
that P cannot be known by direct observations (of evidence
observable by the agent). Such an ‘unknowable’ P may still
become known based on information received from another
source (e.g. another agent).

Verifiable and falsifiable propositions The open sets U ∈
T represent (inherently) verifiable propositions: the ones
having the property that they are knowable/verifiable when-
ever they are true (cf. (Vickers 1989; Kelly 1996)). This
interpretation is backed by the following equivalence:

P ∈ T iff P ⊆ Int(P ).

Similarly, the closed sets represent (inherently) falsifiable
propositions: whenever they are false, they can become
known to be false after some more evidence is observed.

Knowledge updates The move from the original topology
on X to the subspace topology on some subset A ⊆ X cor-
responds to performing an update of the agent’s knowledge
base with the proposition A: the possible worlds not satis-
fying A are eliminated, so the agent comes to know A after
that. The update can be the result of a direct observation
A ∈ B; but it can also be the result of some communication
from some outside source of information (e.g. an announce-
ment from some other agent), in which case it is quite pos-
sible that A 6∈ B (i.e. A is not observable by our agent).
However, for this update-by-elimination to be justified, it is
essential that our agent knows for certain that the source of
the new information is absolutely reliable (e.g. the other, in-
forming agent is telling the truth).7 The relativized interior
IntA(P ) = A ∩ Int(P ∪ (X − A)) in the subspace topol-
ogy captures a notion of updated knowability (after updating
with P , the agent can come to know A based on further ob-
servations).

7When this is not the case, other forms of updating are to be
considered (in which the non-A worlds are not eliminated, but only
considered in some sense less plausible, or less probable, than the
A-worlds).

Examples of evidential topologies

• Complete ignorance: the trivial topology T = {∅, X}
on a set X;

• Omniscience (God’s topology): the discrete topology
T = P(X) = {Y |Y ⊆ X} on X;

• Knowledge based on measurements of a point on a line:
the standard topology of real numbersX = R, with the
topology T generated by the strong basis B = {(a, b) :
a, b ∈ Q, a < b} (open intervals with rational endpoints);

• Knowledge based on measurements in space: the stan-
dard topology on Rn, with state space X = Rn and
topology T = { countable unions of rational open balls},
i.e. A ⊆ Rn is open iff it is of the form A =

⋃∞
i=1{x ∈

Qn|d(x, ai) < bi}, where ai, bi ∈ Qn and d is the Eu-
clidean distance in n-dimensional space Rn. A strong ba-
sis for this topology consists of all finite intersections of
rational open balls.

Concrete Example: the policeman and the speeding car
(Parikh, Moss, and Steinsvold 2007) A policeman may use
radars with varying accuracy to determine whether a car is
speeding in a 50 mph speed-limit zone. Then the the set of
possible worlds is X = (0,∞) (since we assume the car is
known to be moving). The strong base

B = {(a, b) : a, b ∈ Q, 0 < a < b <∞}

consists of all possible measurement results by arbitrarily
accurate radars. The topology T generated by B is the stan-
dard topology on real numbers (restricted toX). “Speeding”
is the proposition S = (50,∞).

Suppose now that a radar with accuracy shows mph 51±2
mph. This induces an update: the original space X shrinks
to the subspace A = (49, 53). In this updated space, “textit-
Speeding” becomes SA = (50, 53). Still, even now (in the
subspace A, i.e. after the radar reading), the policeman does
not know that the car is speeding (since SA 6= A). However,
the property “the car is speeding” is in principle verifiable
(by the policeman): if the car is indeed speeding, then its
velocity must be some x ∈ SA = (50, 53). Given a more
accurate radar, the policeman can obtain a better measure-
ment (a, b) with x ∈ (a, b) ⊆ SA. This is reflected in the
fact that SA = (50, 53) is open in the standard topology.

In contrast, Not-Speeding NS = (0, 50] is in general not
verifiable (not open). This means that whether NS is know-
able or not depends on the actual speed! For instance, NS
is knowable in the world in which the speed is x = 49.
But it is not knowable in the world x = 50. On the other
hand, not-speeding NS is in general falsifiable (closed in
X): whenever it is false, it can be disproved by a sufficiently
accurate measurement of the speed.

The Epistemic Interpretation of Cantor Derivative To
understand the derivative, recall the equivalence:

x ∈ d(A) iff x ∈ Cl(A− {x}).

But note that Cl(A− {x}) = X − Int(X − (A− {x})) =
X− Int((X−A)∪{x}) = X− Int(A⇒ {x}). Using our



interpretation of X − P as negation of the proposition P ,
and of Int(A ⇒ P ) as conditional knowability (of P given
A), we conclude that

x ∈ d(A) iff x is not knowable given A.

So, as an epistemic proposition, Cantor’s derivative d(A)
says that “the actual world is unknowable given A”.

The Epistemic Meaning of the Perfect Core Looking now
at the perfect core d∞(A), we can infer its epistemic mean-
ing from the above fixed-point identity:

d∞(A) = νP.A ∩ d(P ).

The perfect core can thus be understood as the self-
referential version of Cantor’s derivative: d∞(A) captures
the epistemic proposition “A is true, but the actual world is
unknowable given this information” (where ‘this’ refers to
the very proposition that we are defining). As we’ll see, this
is precisely the kind of self-referential statement that plays a
key role in the Surprise Examination Paradox.

3 The logic of derivative and perfect core
In this section we introduce the formal syntax and semantics
of our logic. We begin by defining the formal languages L〈·〉
and L we will work with:

Syntax. The language L〈·〉 of dynamic-epistemic logic of
derivative and perfect core consists of formulas recursively
defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | K̂ϕ | 〈ϕ〉ϕ
The language L of (static) epistemic logic of derivative and
perfect core is the fragment of L〈·〉 obtained by eliminating
all dynamic modalities 〈ϕ〉.
Semantics. We interpret this language on epistemic topo-
models M = (X, T , ‖ · ‖): topological spaces (X, T ) with
a valuation function (mapping every atomic sentence p into
a subset ‖p‖ ⊆ X). The semantics is given by extending this
valuation recursively to all of L〈·〉, defining ‖ϕ‖M using the
usual clauses for Booleans, while

‖♦ϕ‖M = d(‖ϕ‖M)

is the Cantor derivative of ‖ϕ‖M wrt the topology T , and

‖�ϕ‖M = d∞‖ϕ‖M = νP.
(
‖ϕ‖M ∩ d(P )

)
is the perfect core of ‖ϕ‖M. The operator K̂ is just the
global existential modality, quantifying existentially over all
possible worlds: ‖K̂ϕ‖M = X if ‖ϕ‖M 6= ∅, otherwise
‖K̂ϕ‖M = ∅. Finally, 〈ϕ〉ψ is the dynamic modality for
epistemic updates, whose semantics is given by evaluating
ψ in the updated model: if, for any subset A ⊆ X , we put
M = (A, TA, ‖ · ‖A) for the updated model, with the sub-
space topology TA = {U ∩ A : U ∈ T } and relativized
valuation ‖p‖A = ‖p‖ ∩A, then we set

‖〈ϕ〉ψ‖M = ‖ψ‖‖ϕ‖,

where ‖ϕ‖ = ‖ϕ‖M is the valuation of ϕ in the original
model. As usual, we may write (M, x) |= ϕ iff x ∈ ‖ϕ‖M.

When the model M is clear from the context, we may skip
it, writing e.g. ‖ϕ‖ and x |= ϕ.

In an epistemic context, we read K̂ as epistemic possi-
bility: K̂ϕ says that “as far our agent knows, ϕ may be
true”, in the sense that ϕ is consistent with the agent’s in-
formation. We read ♦ϕ as saying that “the actual world is
unknowable (through observations) given ϕ”; we read �ϕ
as a self-referential statement, saying that “ϕ is true, but
the actual world is unknowable (through observation) given
this information” (where ‘this information’ refers to the very
proposition we are defining); finally, we read 〈ϕ〉ψ as saying
that “ϕ holds, and ψ will also hold after updating with ϕ”.

Abbreviations: We will use the standard abbreviations for
propositional connectives ϕ ∨ ψ, ϕ ⇒ ψ, ϕ ⇔ ψ, > and
⊥, as well as the following additional ones: �ϕ := ¬♦¬ϕ,
Kϕ := ¬K̂¬ϕ, K̂ϕ := ϕ ∨ ♦ϕ, and Kϕ := ¬K̂¬ϕ.
To justify these notations, note that K is just the univer-
sal modality (quantifying universally over all worlds that
are possible according to our agent), ♦ is just the closure
modality and K is just the interior modality: ‖Kϕ‖ = X iff
‖ϕ‖ = X , and ‖Kϕ‖ = ∅ otherwise; ‖K̂ϕ‖ = Cl(‖ϕ‖);
and ‖Kϕ‖ = ‖ϕ ∧ �ϕ‖ = Int(‖ϕ‖). So, given our in-
terpretation of possible worlds, closure and interior, we can
read Kϕ as “ϕ is known” (to our agent), Kϕ as “ϕ is know-
able” (through observations by our agent), and read K̂ϕ as
“ϕ cannot be falsified” (by any observations by the agent).

Theorem 3.1. [Completeness for L〈·〉] The following sys-
tem is a sound and complete axiomatization of the dynamic-
epistemic logic of Cantor derivative and perfect core L〈·〉:
• Axioms and Rules of Propositional Logic.
• Necessitation Rule, and Distribution (=Kripke’s Axiom),

for the modalities K, � and [ϕ].8

• Positive and negative introspection for knowledge:

Kϕ⇒ KKϕ ¬Kϕ⇒ K¬Kϕ

• Positive Introspection of Knowability (if ϕ is knowable,
then it is knowable to be knowable): Kϕ ⇒ KKϕ

• Knowledge implies knowability: Kϕ⇒ Kϕ

• Monotonicity rule for the perfect core:
ϕ→ ψ

�ϕ→ �ψ
• Fixed Point Axiom: �ϕ ⇒ (ϕ ∧ ♦�ϕ)

• Induction Axiom: K(ϕ⇒ ♦ϕ) ⇒ (ϕ⇒ �ϕ)

• Reduction axioms for update modalities:

〈ϕ〉p ⇔ (ϕ ∧ p)

〈ϕ〉¬θ ⇔ (ϕ ∧ ¬〈ϕ〉θ)

〈ϕ〉K̂θ ⇔ (ϕ ∧ K̂〈ϕ〉θ)
〈ϕ〉♦θ ⇔ (ϕ ∧ ♦〈ϕ〉θ)
〈ϕ〉�θ ⇔ �〈ϕ〉θ

8In fact, Necessitation for � follows from Necessitation for K
and the axiom “Knowledge implies knowability”.



Proving soundness is an easy verification. Completeness
follows immediately from the following two results:

Theorem 3.2. [Provable Co-expressivity ofL〈·〉 andL] Ev-
ery formula in the language L〈·〉 is provably equivalent9 to
some formula in the static fragment L. Hence, the two logics
L〈·〉 and L have the same expressivity.10

Theorem 3.3. [Completeness for L] The system obtained
from the above axiomatic system for L〈·〉 by eliminating all
axioms and rules that refer to dynamic modalities (specif-
ically: eliminating Necessitation and Distribution for [ϕ],
as well as all the reduction axioms) is a sound and com-
plete axiomatization of the static epistemic logic of Cantor
derivative and perfect core L.

Proof Summary While the proof of Theorem 3.2 is an
easy induction (using the reduction axioms to gradually
push the dynamic modalities past other operators and then
eliminate them), the proof of Theorem 3.3 is highly non-
trivial, and uses methods that we developed in our recent
work on topological µ-calculus (Baltag, Bezhanishvili, and
Fernández-Duque 2021). Hence, we only give here a bird’s
eye overview of this proof (relegating the details ti the Ap-
pendix). Essentially, we start from the canonical model
Ω (comprising all maximally consistent theories accessible
from some fixed theory), a standard construction in modal
logic. But we should stress that Ω is not our intended
model.11 Indeed, the usual Truth Lemma fails for our logic
L in the canonical model: formulas are not necessarily sat-
isfied in Ω by the theories that contain them. Next, for any
given finite set of formulas Σ, we select a special submodel
of the canonical model ΩΣ (called the Σ-final model), con-
sists of “Σ-final theories”: essentially, these are the ones
whose cluster is locally definable by some formula in Σ. Our
strategy is to show that the Truth Lemma does hold in ΩΣ

for Σ-formulas. It is easy to check that ΩΣ satisfies the usual
Existential Witness Lemma for modalities ♦ and K̂ (and for-
mulas in Σ), but extending this to the perfect core modality
� requires some work. Another key ingredient is the fact
that ΩΣ is “essentially” a finite object: though possibly in-
finite in size, it has finite ‘depth’, and moreover it contains
only finitely many bisimilarity classes. As a consequence,
the largest fixed points of the operators P 7→ d‖ϕ‖(P ) (that
define ‖�ϕ‖) are all attained in ΩΣ below some fixed finite
stage of the Cantor-Bendixson process. These ingredients
are used to prove our Truth Lemma for the final model ΩΣ.

The full details are in the Appendix, where we also use
the selection method to obtain a finite submodel of ΩΣ that

9This means that the equivalence is provable in the above ax-
iomatic system for L〈·〉.

10But they differ in succinctness: formulas in L〈·〉 can be in gen-
eral exponentially more succinct than their translations in L. In
addition, they can capture the desired dynamic-epistemic scenarios
in a much more transparent and direct way than their translations.
This makes dynamic modalities very useful for applications, and
justifies our choice of the larger language L〈·〉.

11In fact, the notion of truth in the canonical model will play no
role in this paper: we never evaluate our formulas in it. Instead, we
only use a few basic syntactic properties of this model.

satisfies the same relevant formulas, and then analyzing the
complexity of the selection algorithm, thus proving:

Theorem 3.4. [FMP, Decidability and Complexity] The
(static and dynamic) logics of Cantor derivative and per-
fect core have the strong finite model property (and hence
they are decidable). Moreover, the satisfiability problem for
the static logic L is PSPACE-complete.

Some technical-historical connections. As mentioned in
the Introduction, McKinsey and Tarski were the first to
look at the modal logic of topological closure and topo-
logical interior (McKinsey and Tarski 1944). In our nota-
tions, these are captured by the knowability modalities K̂
and K. They showed that this is the same as the modal logic
S4 of reflexive-transitive frames. In our formalism, the ax-
iom 4 corresponds to our axiom of Positive Introspection for
knowability: Kϕ ⇒ KKϕ. We refer to (van Benthem and
Bezhanishvili 2007) for an overview of results on topologi-
cal completeness of modal logics above S4.

As also mentioned in the Introduction, McKinsey and
Tarski also considered the modal logic of Cantor deriva-
tive. Esakia showed that the derivative logic of all topo-
logical spaces is the same as the logic of weakly-transitive
frames (Esakia 2001; Esakia 2004), namely the modal logic
wK4 = K + w4, where w4 is the weak transitivity axiom:
♦♦p → ♦p ∨ p. In our formalism, this is easily seen to
be equivalent to the above-mentioned axiom of Positive In-
trospection for knowability. Indeed, given our definition of
knowability, the axiom Kϕ ⇒ KKϕ can be unfolded into

(ϕ ∧�ϕ) ⇒ ��ϕ.

This is a Sahlqvist formula (see e.g. (Chagrov and Za-
kharyaschev 1997)) corresponding to the weak-transitivity
condition on relational models, whose equivalent dual form
is Esakia’s weak transitivity axiom w4.

4 Surprise: non-self-referential version
There are many ‘solutions’ to the Surprise Exam Paradox in
the literature (Quine 1953; McLelland and Chihara 1975;
Wright and Sudbury 1977; Sorensen 1984; Chow 1998;
Hall 1999; Gerbrandy 2007; Levi 2009). Some of them con-
cern different versions of the puzzle, in which some of the
assumptions are suspended , e.g. the Student may not know
for sure (but only believe) that there will be an exam next
week, or that the Teacher always tells the truth. Though in-
teresting, these provide “easy” ways to avoid the contradic-
tion, so we will ignore these weakened versions, focusing on
the version in which these assumptions are granted. Even
so, most of the solutions proposed in the literature are un-
fortunately informal, or only half formalized. The approach
in (Gerbrandy 2007) is one of the few exceptions, and we
hereby briefly summarize it.

Gerbrandy’s Solution The setting used by Gerbrandy to
treat the paradox is the one of (non-topological) Public
Announcement Logic (Plaza 1989): an epistemic model
M = (X, ‖ · ‖) is simply given by a set of possible worlds
X together with a valuation map; the logic is restricted to



the fragment generated by atomic sentences, Boolean con-
nectives, the knowledge operator Kϕ (modeled as univer-
sal modality) and the dynamic update operators [ϕ]θ (also
called ‘public announcement’, and modeled by relativization
to the subset ‖ϕ‖, with no subspace topological structure).
Like our logic, this logic is single-agent: the Teacher is only
treated as an infallible source of truthful information, not as
an agent. So the knowledge operator K refers to the Stu-
dent’s knowledge. Knowability Kϕ, derivative modality ♦ϕ
and perfect core �ϕ do not belong to this language. But the
update modalities are still eliminable, via the reduction laws
for Booleans and knowledge.

More specifically, the set X = {x1, x2, x3, x4, x5} con-
sists of five possible worlds, with the obvious meaning: for
each 1 ≤ i ≤ 5, xi is the world in which the exam will come
in the corresponding ith day of the week. The language has
5 atomic sentences {pi : 1 ≤ i ≤ 5}, where pi means “the
exam will be in the ith day”. The valuation is again obvi-
ous: ‖pi‖ = {xi}. Clearly, this model satisfies K(

∨5
i=1 pi),

which captures one of the main assumptions of the puzzle:
the Student knows for sure there will be an exam in the next
week. Furthermore, for each 1 ≤ i ≤ 5, the passage of the
previous days without any exam can be ‘simulated’ in this
logic by an update with the sentence

∧i−1
j=1 ¬pj : indeed, this

is the information gained by the Student by the evening of
day i−1. Hence, Gerbrandy formalizes Teacher’s announce-
ment as the sentence

SURPRISE :=

5∧
i=1

[

i−1∧
j=1

¬pj ]¬Kpi.

This sentence says that, no matter in which day i will the
exam come, by the evening of day i− 1 the Student will not
know for sure that the exam will be the next day. Using the
reduction axioms, this formula can be simplified to

SURPRISE ⇔
5∧
i=1

¬K(

i∨
j=1

pj).

Finally, the assumption that the Student knows for sure that
the Teacher never lies is implemented by performing an up-
date with the sentence SURPRISE: all worlds in which the
sentence is false are eliminated, and the model shrinks to
‖SURPRISE‖. But, using the above static equivalent, it is
easy to see that, in the model X the sentence SURPRISE
is false only in world w5 (in which the exam is on Fri-
day) and true in all the others. Hence, the model shrinks
to ‖SURPRISE‖ = {x1, x2, x3, x4}.

Thus, according to Gerbrandy, the only valid conclusion
is that the exam cannot be on Friday: the first elimina-
tion step in the informal reasoning underlying the ‘para-
dox’ is the only correct one. All further elimination steps
are not justified: e.g., the second step (eliminating Thurs-
day) would require performing a second update with the
sentence SURPRISE. But the Teacher only announced the
sentence once! The sentence SURPRISE was true before be-
ing announced (assuming the exam won’t be on Friday), but
nothing guarantees that the sentence will still be true after
this announcement: the Teacher did not claim that! If say,

the exam will be on Thursday, then the sentence SURPRISE
changes its truth value (from true to false) after the Teacher’s
announcement: this does not in any way contradict the truth-
fulness of Teacher’s announcement (since it was true at the
moment when it was announced). So the apparent ‘paradox’
only points to the existence of sentences that change their
truth value after being announced.12

A first objection to the above approach is that it gives a
very “low level” formalization of the sentence SURPRISE,
that is highly dependent on irrelevant details (such as the
number of days in the week, the linear temporal order of the
observable evidence in the form of day-passing, etc). If we
change the story to cover 2 weeks, the sentence SURPRISE
changes. Even worse: we can build similar stories, to which
the above approach simply cannot be applied, since e.g. the
number of worlds is infinite, the potential observations are
also infinitely many, and they cannot be arranged in any
salient linear order. Let us look now at such an example.

Infinite Surprise Let us denote the set of positive integers
by N. It is known that the Teacher chose a point x belonging
to the set

A = {0} ∪ {1/n : n ∈ N} ∪ {1/n(n+1) : n ∈ N}
and marked it on the real line drawn on a board. The Stu-
dent can perform observations, measuring the position of the
point, with any arbitrary precision ε > 0 (by building bet-
ter and better measurement devices); but obviously, he can
never measure the position with infinite precision (ε = 0)!
But the Teacher (who is known to be always truthful) tells
the Student: “No matter how good your measurement is, you
will never know the exact position of the point!”

Intuitively, the Student can reproduce the Surprise Exam
argument to conclude that x 6∈ A, obtaining a contradiction
(since he knows that x ∈ A). First, if the point is of the
form x = 1

n(n+1) for some n ∈ N, then he will eventually
be able to know its location exactly, if given precise enough
measurements: indeed, whenever he will reach a precision
ε < | 1

n(n+1)−
1

(n+1)(n+2) | =
1

n(n+1)(n+2) , his measurement
will yield an open interval of the form (a − ε, a + ε) 3 x,
whose intersection with A is the singleton {x} = { 1

n(n+1)}
consisting of the exact position. Since this contradicts the
Teacher’s announcement, all points of the form 1

n(n+1) are
ruled out, so x must belong to the set {0} ∪ {1/n : n ∈ N}.
By repeating the argument, the Student can rule out next
all points of the form x = 1

n (since in any such case he
will eventually be able to know its location exactly, when he
reaches a precision ε < | 1n −

1
(n)(n+1) | = 1

n(n+1) ), con-
cluding that x must belong to the singleton set {0}. So
now the Student knows the exact location x = 0 (without
even having had to do any measurement), again contradict-
ing Teacher’s announcement!

Though the argument is essentially identical to the Sur-
prise Exam, it cannot be treated using the above approach,

12Such examples are called ‘Moore sentences’ and are by now
well-understood as non-paradoxical utterings, easily dealt with
in the framework of Dynamic Epistemic Logic (van Ditmarsch,
van der Hoek, and Kooi 2007; van Benthem 2011).



due to the fact that both the possible worlds and the possible
observations (measurement intervals) are infinite.

This is where the topological approach comes to the res-
cue. By abstracting away from day-passing or measure-
ments, and considering them to be just special cases of fam-
ilies of observable evidence, given in the form of strong
topological bases, we can see the sentence SURPRISE simply
says that “the actual world is not knowable through observa-
tions”. Using our semantics, this is captured by the formula

SURPRISE := ♦>,

where ♦ is the derivative modality wrt the evidential topol-
ogy (generated by the basis B). In the case of our Infinite
Surprise, it is clear what the evidential topology is: the
standard topology on the set A, generated by the family
B = {(a, b) ∩ A : a, b ∈ Q, a < b} of (relativized) open in-
tervals with rational endpoints. Applying Gerbrandy’s anal-
ysis to this topological version, we see that ‖SURPRISE‖A =
‖♦>‖A = dA(A) = d(A) = {0} ∪ { 1

n : n ∈ N} (since all
other points are isolated inA), and we can thus conclude that
only this first elimination step is correct: the only informa-
tion that can be extracted from Teacher’s announcement is
that x ∈ { 1

n : n ∈ N}. Further elimination steps are not jus-
tified: though true when it was announced, the sentence ♦>
may have changed its truth value after the announcement.

Going back to the original Surprise Exam story, what is
the evidential topology in that scenario? Since “observa-
tions” correspond in that case to the passing of days without
exams, the relevant strong base is

B = {O1, O2, O3, O4, O5},

where Oi = X − {xj : j < i} = {xj : i ≤ j}. Here, O1 =
X corresponds to the background observation that the exam
will be in one of the 5 days of next week; O2 corresponds
to the negative observation after Monday morning: that the
exam was not on Monday; etc. The generated evidential
topology is T = {∅} ∪ B. Once again, as in Gerbrandy’s
analysis, ‖♦>‖ = X − {x5} = {x1, x2, x3, x4} (since x5

is the only isolated point in this topology).
We have thus obtained a uniform treatment of the puzzle,

that simplifies and generalizes Gerbrandy’s solution.

5 Surprise: self-referential version
While the above formalization of the sentence SURPRISE
seems natural at first sight, there is something profoundly
odd about it. The teacher announced that the exam’s date
will be a surprise: this seemed to point to the actual future,
as it will unfold after this announcement is made. How-
ever, the above formalization allows for the possibility that
the announcement was meant to be true only before the an-
nouncement (or counterfactually: if no such announcement
was made), but to possibly change its truth value to false af-
ter the announcement is made. In that case, in what sense
can one still claim that the Teacher was truthful in her an-
nouncement about “will” happen?

Looking at the sentence ♦> (or at Gerbrandy’s more com-
plicated non-topological counterpart), we can see that the

best way to describe it in natural language is a counterfac-
tual statement of the type: “the exam’s date would have been
a surprise, if I didn’t make this very announcement”. More-
over, this interpretation in terms of a counterfactual (instead
of the actual) future seems to be crucial for Gerbrandy’s ‘so-
lution’ of the paradox.

However, this is not what the Teacher said, and it does not
sound like the most natural interpretation of her statement.
When referring to the future in an announcement, it is typi-
cally implicitly assumed that the speaker factors in her own
announcement action: thus, she is expected to use the word
“will” to refer to what will happen after she makes the an-
nouncement. “It will be a surprise” means that it will be so,
not that it would have been so in some other possible future.

Thus, to understand the Teacher’s statement we need to
make explicit its implicit self-referentiality, reading it as
“You will not know in advance the exam day (i.e. after
hearing this very announcement)”. Most authors who wrote
about the paradox agree that this self-referential interpreta-
tion is the intended one.

Gerbrandy was aware of this interpretation (without for-
malizing it), but like many other logicians he thought that it
leads to a genuine, Liar-like paradox, because of its circu-
larity. In contrast, other logicians, such as Quine, argued in
older work (Quine 1953) that there is no real paradox, but
only an impossible assumption: the conclusion should only
be that a source who is known to always tell the truth can-
not make such a (future-oriented, implicitly self-referential)
announcement (since that would be a lie).

Using our derivative and dynamic modalities, we can
formalize the self-referential announcement as a ‘circular’
proposition P satisfying the equation

P = 〈P 〉♦>.
Moreover, this is all that is claimed in the Teacher’s an-
nouncement: there is no other implicit information in it.
This means that we are looking at the most general state-
ment satisfying the equation, i.e. the largest fixed point of
the operator P 7→ 〈P 〉♦>. Using standard µ-calculus no-
tation, we can write the statement as

SURPRISE∞ := νP.〈P 〉♦>,
and call it the self-referential surprise announcement. Al-
though the above formalization is not in our language L〈·〉
(but only in its fixed-point extension), it can be given an
equivalent formulation. Using our reduction laws, we can
see that 〈P 〉♦> is equivalent to P ∧ ♦〈P 〉>, which in turn
is equivalent to P ∧ ♦P . So the sentence SURPRISE∞ is
equivalent to any of the following formulas:

νP.P ∧ ♦P = νP.♦P = νP.(> ∧ ♦P ) = �>.
Thus, the formula �>, denoting the perfect core of our
space ‖�>‖X = d∞(X), captures the full self-referential
meaning of the surprise announcement SURPRISE∞. There
is nothing paradoxical with this type of self-referentiality:
the monotonicity of the derivative operator ensures the ex-
istence of the fixed point. If a Teacher who is known never
to lie made this announcement, that would induce an update
that shrinks the original space X to its perfect core X∞.



We can now recognize the successive eliminative steps
in the Student’s reasoning as corresponding to the Cantor-
Bendixson process of calculating the perfect core: the first
step eliminates the isolated point x5, calculating the Can-
tor derivative d1(X) = X − {x5}; the next step calculates
d2(X) = X − {x4, x5}; etc. After five steps, we reach a
fixed point d5(X) = d∞(X) = ∅. A similar remark ap-
plies to our above Infinite Surprise example: the first step
yields d1(A) = {0} ∪ { 1

n : n ∈ N}; the next step yields
d2(A) = {0}; finally, the third step reaches the fixed point
d3(A) = d∞(A) = ∅. And since in both cases the perfect
core is empty, a contradiction is actually reached!

But, in this self-referential interpretation, all the elimina-
tion steps are justified (unlike in Gerbrandy’s counterfac-
tual interpretation): the Student’s entire inductive elimina-
tive reasoning is correct! The contradiction obtained in the
end (‖SURPRISE∞‖ = d∞(X) = ∅) only shows that the
update with SURPRISE∞ cannot be truthfully performed in
this case: if it is known that the Teacher never lies, then the
statement SURPRISE∞ is false, and in fact known to be false,
regardless of the day of the exam.

Liar-like paradox? Not really. The sentence SURPRISE∞

has in any case a definite truth value, unlike the Liar sen-
tences. As already mentioned, one of the assumptions of the
story must simply be false: either it is not known for sure that
the Teacher always tells the truth, or else the Teacher cannot
make this self-referential announcement (since it would be a
lie). The appearance of paradox is due to the fact in this
specific example the only fixed point is the empty set. How-
ever, a proposition with empty extension is by definition not
paradoxical, but just false (in all possible worlds).

This doesn’t validate the Students’ ultimate conclusion
(in the follow-up story): partying every day is not justified.
That last follow-up step is the Student’s only mistake. If the
Student gives up the first assumption (that he knew that the
Teacher never lies), then the whole iterative elimination rea-
soning is blocked: even the first step is no longer justified!
So, in that case, the Student can no longer be sure that the
Teacher lies: she may be lying, or she may be telling the
truth. All bets are off, the exam might come any day. Study-
ing every day, instead of partying, is the only safe option.

Our diagnosis thus agrees with Quine’s: a Teacher who is
known not to lie cannot truthfully make the announcement
SURPRISE∞ in our two examples. But, contrary to Quine,
Gerbrandy and other philosophical logicians, we claim that
this impossibility result is not due to the self-referential char-
acter of the announcement. Self-referentiality is only dan-
gerous when applied to non-monotonic operators (such as
negation, e.g. the Liar). But derivative is monotonic, so the
type of self-referentiality involved in the Surprise story is in-
nocuous.13 In fact, the sentence SURPRISE∞ can even be

13In contrast, the Liar sentence requires a fixed point for nega-
tion/complementation, which doesn’t exist in a Boolean algebra.
Another possible source of the feeling of paradox given by the
Surprise Exam story might be the negative form of the Surprise
sentence, as expressed in natural language, which makes it superfi-
cially similar to the Liar sentence. Thus, its self-referentiality may
look dangerous at first sight. But looks are deceiving: in the expres-

true in some situations! To see this, let us consider a modi-
fied version of the above Infinite Surprise example.

Infinite Surprise with a Twist Everything goes as in the
Infinite Surprise story, except that this time the Teacher
choses a point x belonging to the set B = A ∪ [1, 2],
where A = {0} ∪ { 1

n : n ∈ N} ∪ { 1
n(n+1) : n ∈ N} is

the set in the previous (untwisted) version of Infinite Sur-
prise. The same Cantor-Bendixson inductive process of
elimination can be now used to show that the perfect core is
d4(B) = d∞(B) = [1, 2]. In this situation, an update with
the same self-referential sentence SURPRISE∞ shrinks the
set of possible points to the subspace [1, 2]. In other words,
an announcement of this sentence by a Teacher known to lie
simply conveys the information that the actual points satis-
fies x ∈ [1, 2]. A smart Student should be able to correctly
infer this information, by applying the same type of “para-
doxical” reasoning as in the above examples. But no contra-
diction is reached now: this scenario can happen, and if the
point really is in [1, 2] then the Teacher told the truth!14

In conclusion, the appearance of “paradoxicality” in the
Surprise Exam story is not due to self-referentiality, but only
to the fact that the perfect core happens to be empty. The ex-
istence of non-empty perfect sets is a topological fact, that
has important epistemic consequences: the self-referential
sentence involved in Surprise-like scenarios can in fact be
true (even if it is false in the standard version). The Sur-
prise Exam ‘Paradox’ is not a paradox at all, and the Stu-
dents’ inductive process of elimination is a correct logical
argument15: just a special case of the inductive Cantor-
Bendixson process of calculating the perfect core! Thus,
our solution reveals deep connections between the apparent
paradox and classical work in Analysis and Topology.

6 Concluding Remarks
In this paper, we developed a unified topological interpre-
tation of knowledge, observable evidence, knowability and
knowledge updates, and studied a notion of “epistemic sur-
prise” (expressing the unknowability of the actual world),
that comes in two flavors: a non-self-referential version (de-
scribed by Cantor derivative) and a self-referential one (de-
scribed by the perfect core). We applied these notions to

sion “the actual world can be known, given P ”, the proposition P
appears conditionally, and thus in a negative position; hence, when
we negate this expression (saying “the world cannot be known,
given P ”), P reverts to a positive position. This explains the mono-
tonicity of Cantor’s derivative (and relative derivative), and thus the
non-paradoxical nature of SURPRISE∞.

14Similar non-paradoxical processes of iterated elimination end-
ing in a non-empty fixed point occur elsewhere in epistemic logic:
knowledge dialogues (Parikh 1992), converting implicit knowledge
into common knowledge by publicly sharing information within a
group (van Benthem 2002), reaching equilibria in epistemic game
theory by repeated public announcements of substantive rationality
(van Benthem 2007).

15With the obvious exception of the follow-up story: as we ex-
plained above, going to party every day (after giving up on the
initial assumption that it was known that the Teacher never lies) is
the Student’s only mistake.



the analysis of the Surprise Exam Paradox, gave a complete
axiomatization of the associated logic, and proved that it is
decidable and that its static fragment is PSPACE-complete.

Some outstanding open questions still remain. First, what
is the complexity of our dynamic logic L〈·〉? Although the
reduction to L is exponential, we conjecture that L〈·〉 is still
PSPACE-complete. Second: developing a multi-agent ver-
sion of our logic would be of great value for studying epis-
temic dialogues, security protocols and other multi-agent
epistemic scenarios and puzzles. Third, our concepts of
knowability and unknowability are closely related to the
topo-logical account of learning given in (Dabrowski, Moss,
and Parikh 1996) in terms of observational effort. It would
be interesting to elucidate this relationship in more depth.

In future work, we plan to tackle these open problems and
their applications.
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Appendix

A Relational semantics
We start from a special case of the above topological se-
mantics: Alexandroff spaces (X, T ) are the ones in which
the topology T is closed under arbitrary intersections. It is
well-known such spaces admit a presentation as relational
Kripke frames.

Special Case: Standard Relational Models If we restrict
to the class of Alexandroff spaces, then we obtain as a spe-
cial case a relational semantics for the above logic. It is
well-known that Alexandroff spaces are the same as stan-
dard relational models (X,R, ‖ · ‖), with R irreflexive and
weakly transitive: i.e. if wRsRv, then either w = v or
wRv. The above topological semantics for ♦ simply cor-
responds in this case to the standard clause for existential
Kripke modalities, while the above topological semantics
for � amounts to putting w |= �ϕ iff there is an infinite
chain of (not necessarily distinct) worlds

w = w0 R w1 R w2 R . . . R wn R . . .

with wn |= ϕ for all n. Moreover, one can easily see that
K is in this case the (universal) Kripke modality for the re-
flexive closure Id∪R of R, which (due to weak transitivity)
coincides with its reflexive-transitive closure R∗.16

Non-standard Relational Models The above relational
clauses can give an interpretation of our syntax in any re-
lational model (X,R, ‖ · ‖) (not necessarily associated to an
Alexandroff topo-model). In particular, we’ll be interested
in dropping the irreflexivity condition, and thus interpret-
ing our syntax in models in which R is only required to be
weakly transitive.
Lemma A.1. The logic of weakly transitive relational mod-
els (for our syntax) is the same as the logic of irreflexive and
weakly transitive models.

Proof. Given any weakly transitive model M = (X,R, ‖ ·
‖), we associate to it an irreflexive and weakly transitive
model M̃ = (X̃, R̃, ‖ · ‖∼), by letting W i and W r be the
set of irreflexive and reflexive points of M, respectively, and
setting

X̃ :=
(
W i × {0}

)
∪
(
W r × {0, 1}

)
.

It is useful to consider a map π : X̃ → X , given by
π(x, i) := x. Using this, we can define the accessibility
relation on X̃ by putting

x̃ R ỹ if π(x̃) R π(ỹ) and x̃ 6= ỹ,

for all x̃, ỹ ∈ X̃; and we define the valuation on X̃ by

‖p‖∼ := {x̃ ∈ X̃ : π(x̃) ∈ ‖p‖}.

It is easy to see that M̃ is an irreflexive and weakly tran-
sitive relational model, and that the map π : X̃ → X is
a p-morphism with respect to both modalities ♦, K̂ of our
syntax. So the two models are modally equivalent wrt our
syntax.

16Here, Id is the identity relation on X .



B Proof of Completeness
We prove here our main completeness result (Theorem 3.1).
For this, we need to prove Theorem 3.2 (on the fact that L〈·〉
and L are provably co-expressive) and Theorem 3.3 (com-
pleteness for the static logic L).

Proof of Theorem 3.2 Let ϕ be any formula in L〈·〉. We
need to show that there exists some formula ϕ′ ∈ L, such
that ` ϕ⇔ ϕ′ is a theorem in our axiom system. The proof
uses the reduction axioms we have given, as well as the fol-
lowing two derivable reduction laws:

〈ϕ〉(ψ ∧ θ) ⇔ (〈ϕ〉ψ ∧ 〈ϕ〉θ),

〈ϕ〉> ⇔ ϕ.

The first follows from Necessitation and Distribution for [ϕ],
together with the laws of propositional logic. The second
follows the reduction axioms, together with the definition
of > := q ∨ ¬q (for some chosen atom q) and propositional
logic. Using all the reduction axioms and laws, we can grad-
ually push any innermost dynamic modality [ψ] occurring
in a subformula of ϕ of the form [ψ]θ (where θ contains
no dynamic modalities) past each next connective, until it is
pushed to the bottom and then eliminated, obtaining a for-
mula θ′ that is provably equivalent to [ψ]θ. This formula
θ′ may still have some occurrences of dynamic modalities
(coming fromψ, which now occurs ‘online’ in θ′, rather than
inside [ψ]), but their number will be at most one less than in
the original subformula [ψ]θ. By propositional logic, Neces-
sitation and Distribution (for the modalities K, � and [ϕ]),
together with the Mononoticity rule for�, it follows that we
can replace the subformula [ψ]θ with its equivalent θ′ within
our original formula ϕ, obtaining an equivalent formula ϕ′1
that has fewer dynamic modalities than ϕ. Repeating this
procedure n times (where n is at most the number of dy-
namic modalities occurring in the original formula ϕ), we
obtain a provably equivalent formula ϕ′ = ϕ′n, that has no
dynamic modalities, i.e. belongs to the fragment L.

The rest of this section will be dedicated to proving The-
orem 3.3 (completeness for the static logic L).

Canonical Model The standard ‘canonical model’ construc-
tion provides an (infinite) weakly-transitive model. This is a
non-standard relational model (since irreflexivity is not guar-
anteed). A theory is a maximally consistent set of formulas
(i.e. a set T that is consistent and has no proper consistent
extension). We can define a canonical equivalence relation
between theories, by putting

T ∼ T ′ iff ∀ϕ ( if Kϕ ∈ T then ϕ ∈ T ′) .

Similarly, the canonical accessibility relation −→ between
two theories T, T ′ is given as usual, by putting

T −→ T ′ iff ∀ϕ ( if �ϕ ∈ T then ϕ ∈ T ′) .

The axioms for K are Sahlquist, so that ∼ is an equivalence
relation and T −→ S implies that T ∼ S. To ensure that
the knowledge modality really quantifies over all possible
worlds, we need to restrict our model so that the relation ∼

becomes the universal relation. For this, we now fix a the-
ory T0, and we will restrict our canonical construction to the
generated submodel. Let Ω be the family of all theories T
s.t. T0 ∼ T . The canonical model for T0 is the structure
Ω = (Ω,−→, ‖ · ‖), where the canonical accessibility rela-
tions −→ are restricted here to Ω, and ‖ · ‖ is the canonical
valuation on Ω, given by

‖p‖ := {T ∈ Ω : p ∈ T}.
Since the weak-transitivity condition is Sahlquist, it imme-
diately follows that the canonical model (Ω,−→, ‖ · ‖) is
indeed weakly-transitive (though not irreflexive). As a con-
sequence, the reflexive-transitive closure−→∗ of the canon-
ical relation coincides with its reflexive closure −→∪ IdΩ.

We will make use of two other well-known properties of
the canonical model, given by the next two lemmas.
Lemma B.1 (Lindenbaum Lemma). Every consistent set Φ
of formulas has a maximally consistent extension (T ∈ Ω
s.t. Φ ⊆ T ).
Lemma B.2 (Canonical Witness Lemma). For every theory
T ∈ Ω and formula ϕ, we have:

1. ♦ϕ ∈ T iff there exists some theory T ′ ∈ Ω s.t. T −→
T ′ 3 ϕ.
We also have an equivalent statement in �-form:

�ϕ ∈ T iff ∀T ′ ∈ Ω ( if T −→ T ′ then ϕ ∈ T ′) .
2. K̂ϕ ∈ T iff there exists some theory T ′ ∈ Ω s.t. T ∼
T ′ 3 ϕ.
The statement in K-form is:

Kϕ ∈ T iff ∀T ′ ∈ Ω ( if T ∼ T ′ then ϕ ∈ T ′) .
The left-to-right implication in the first statement above is

known as the (Canonical) ♦-Existence Lemma. The proofs
are well-known, and these results imply that the so-called
Truth Lemma holds in the canonical model for the �-free
fragment of our logic.

We similarly obtain a Canonical K̂-Witness Lemma, us-
ing the following result.
Lemma B.3. For theories T, T ′ ∈ Ω, we have:

T −→∗ T ′ iff ∀ϕ( if Kϕ ∈ T then ϕ ∈ T ′),
where −→∗ = −→∪ IdΩ is the reflexive closure of −→.

Proof. The left-to-right implication: Assume that T −→∗
T ′. If T = T ′, then Kϕ ∈ T implies by definition that ϕ ∈
T = T ′, as desired. If T 6= T ′, then we must have T −→ T ′,
and then Kϕ ∈ T implies by definition that �ϕ ∈ T , which
implies that ϕ ∈ T ′ (by the Canonical ♦-Witness Lemma),
as desired.

The right-to-left implication: Assume that we have
∀ϕ(Kϕ ∈ T =⇒ ϕ ∈ T ′). To show that T −→∗ T ′, we
assume that T 6= T ′, and we need to prove that T −→ T ′.
Since T 6= T ′, there exists some formula θ ∈ T with θ 6∈ T ′.
To show the desired conclusion, let ϕ be any arbitrary for-
mula s.t. Kϕ ∈ T , and we need to prove that ϕ ∈ T ′. From
Kϕ ∈ T we infer that ϕ ∈ T , hence (ϕ ∨ θ) ∈ T ; similarly,
from Kϕ ∈ T we infer that �ϕ ∈ T , hence �(ϕ ∨ θ) ∈ T .
Putting these together, we obtain K(ϕ ∨ θ) ∈ T . By our as-
sumption, this implies that (ϕ ∨ θ) ∈ T ′, and since θ 6∈ T ′,
we conclude that ϕ ∈ T ′, as desired.



As a consequence, we immediately get:

Lemma B.4 (Canonical K̂-Witness Lemma). For every for-
mula ϕ and theory T ∈ Ω, we have K̂ϕ ∈ T iff there exists
some theory T ′ ∈ Ω s.t. T −→∗ T ′ 3 ϕ.

The proof is immediate, given Lemma B.3.

Interestingly enough, the analogue of the Existence
Lemma for � also holds in the canonical model:

If �ϕ ∈ T ∈ Ω, then there is an infinite chain T =
T0 −→ T1 −→ . . . −→ Tn −→ . . ., with ϕ ∈ Tn ∈ Ω
(and hence ϕ ∈ Tn) for all n.

We state this fact without proof, since we will not need
it. Unfortunately, the converse fails: there exist theories T
which are part of an infinite ϕ-chain as above, but �ϕ 6∈ T .

Example 1. Consider atoms (pn)n<ω and check that for
every n, the set Φn := {pn,¬�>} ∪ {K(pi ⇒ ♦pi+1) :
i < ω} is consistent (since all finite subsets are satisfiable).
Use the Canonical Truth Lemma for Basic Modal Logic (and
the fact that K is definable in it) to construct (Tn)n<ω with
Φn ⊆ Tn and T0 → T1 → . . . → Tn → . . .. Thus, T0 |=
�> although (¬�>) ∈ T0.

So we don’t have a full Canonical�-Witness Lemma, and
as a consequence the Truth Lemma fails in the canonical
model for the full language (with the perfect core modal-
ity �). Moreover, the filtration method (standardly used to
deal with this problem in the case of PDL) does not seem to
work here either. Surprisingly though, the older and simpler
‘selection’ method works: we will look at submodels of the
canonical model, obtained by selecting only a special kind
of theories, called ‘final’ theories.

Canonical Submodels Any subset X ′ ⊆ X of the set of
worlds of a relational model M = (X,−→, ‖ · ‖) deter-
mines a unique submodel, obtained by taking: X ′ as its set
of worlds; the restriction of −→ to X ′ as its accessibility
relation; and the valuation given by ‖p‖ ∩X ′. A canonical
submodel is a submodel of the canonical model.

Final Theories Given a formula θ, a theory T ∈ Ω is θ-final
if we have: θ ∈ T , and for all theories S ∈ Ω, if T −→ S
and θ ∈ S then S −→ T (hence T ←→ S). Given a set Σ of
formulas, a theory T ∈ Ω is Σ-final if it is θ-final for some
formula θ ∈ Σ.

Final Model Let Σ be any set of formulas. The Σ-final
model is the canonical submodel determined by the set
ΩΣ := {T ∈ Ω : T is Σ-final} of all Σ-final theories.

The final model may be infinite, but we can show that it
has finite ‘depth’ whenever Σ is finite. For this, we need the
following definition:
Depth of a point in a model Given a (weakly transitive,
not necessarily irreflexive) relational model M = (X,−→
,∼, ‖ · ‖), and a point x ∈ X , a strict (finite) x-chain is a
finite sequence of points of the form x = x0 −→ x1 −→
. . . xn with xi+1 6−→ xi for all i < n. The number n is

called the length of our finite chain. The depth dpt(x) of the
point x ∈ X is the supremum of the lengths of all x-chains:

dpt(x) := sup{n ∈ N : ∃ a strict x-chain of length n}.

In general, we have dpt(x) ≥ 0, with dpt(x) = 0 iff for
every y ∈ X , x −→ y implies y −→ x; and dpt(x) = ω
iff there exist x-chains of every length n ∈ N. The depth
dpt(M) of the model M is the supremum of the depths of
all points of the model:

dpt(M) := sup{dpt(x) : x ∈ X}.

Lemma B.5. Let M = (X,−→,∼, ‖ · ‖) be a relational
model, and x, y ∈ X be two points. Then we have the fol-
lowing:

1. if x −→∗ y, then dpt(x) ≥ dpt(y);
2. if x←→ y, then dpt(x) = dpt(y);
3. if x −→ y and dpt(x) = dpt(y), then x←→ y;
4. if x −→ y and y 6−→ x, then dpt(x) > dpt(y).

Proof. Easy verification.

Lemma B.6 (Finite Depth Lemma). Assume that Σ is a fi-
nite set of formulas of size |Σ|. Then the Σ-final model ΩΣ

has a finite depth bounded by |Σ| − 1:

dpt(M) ≤ |Σ| − 1.

In other words: for every strict chain of Σ-final theories
T0 −→ T1 −→ . . . Tn (satisfying Ti+1 6−→ Ti for all
i < n), we have that n ≤ |Σ| − 1.

Proof. Suppose, towards a contradiction, that T0 −→
T1 −→ . . . Tn is a strict chain of Σ-final theories of length
n ≥ |Σ|. Since all Ti are Σ-final, there exist formulas
θ0, . . . , θn ∈ Σ s.t. Ti is θi-final (and hence θi ∈ T ) for
all i ≤ n. But this is a sequence of n + 1 ≥ |Σ| + 1 > |Σ|
formulas in Σ, so some formula θ must be repeated. Let θ be
such a repeating formula in the enumeration, and let i and j
be indices such that i < j and θi = θj = θ.

So we have Ti −→ Ti+1 −→∗ Tj , with both Ti and Tj
being θ-final, and so also Ti −→∗ Tj . We have two cases:
either Ti −→ Tj or Ti = Tj . We claim that in both cases
we have Ti+1 −→∗ Ti. To show this, consider first the case
Ti −→ Tj . By θ-finality we get Ti ←→ Tj , hence Ti −→
Ti+1 −→∗ Tj ←→ Ti, and thus Ti −→ Ti+1 −→∗ Ti,
as desired. In the second case, we assume Ti = Tj , so we
immediately obtain Ti+1 −→∗ Tj = Ti, as desired.

So we showed that we have Ti −→ Ti+1 −→∗ Ti. There
are again two cases: either Ti −→ Ti+1 −→ Ti, or Ti −→
Ti+1 = Ti. In the first case, we immediately conclude that
Ti ←→ Ti+1, which contradicts the ‘strictness’ of our chain.
In the second case, we have Ti+1 = Ti −→ Ti+1 = Ti, so
we again conclude that Ti ←→ Ti+1, in contradiction with
our ‘strictness’ assumption.

In order to prove completeness with respect to the final
model, we first need to show that every consistent formula
belongs to some final theory. This is achieved by combining
the Lindenbaum Lemma with the following



Lemma B.7 (Final Lemma). If ϕ ∈ T ∈ Ω, then there
exists some ϕ-final theory T ∗ ∈ Ω such that T −→∗ T ∗
(and obviously, ϕ ∈ T ∗, by finality).

Proof. We will use a well-known variant of Zorn’s Lemma,
stated for preorders: a preordered set (S,≤) has a maximal
element if every chain has an upper bound. (Here, being
maximal in a preordered set means that there is no strictly
larger element.)

Let ϕ ∈ T ∈ Ω. Take S := {T ′ ∈ Ω : T −→∗ T ′ 3 ϕ},
with the relation−→∗ as its preorder. Let S ′ ⊆ S be a chain
of theories in S. To show that it has an upper bound, take
the set

Φ := {ϕ} ∪ {Kθ : Kθ ∈ T ′ for some T ′ ∈ S ′}

We show that Φ is consistent: suppose this is not the case.
Then there exists some finite such inconsistent subset Φ′ =
{ϕ} ∪ {Kθ1, . . . ,Kθn}, with Kθ1 ∈ T1, . . . ,Kθn ∈ Tn for
some theories T1, T2, . . . , Tn ∈ S ′. Since S ′ is a chain,
we can assume that T1, T2, . . . Tn−1 −→∗ Tn, and thus
Kθ1, . . . ,Kθn ∈ Tn. Since Tn ∈ S , we also have ϕ ∈ Tn,
so Φ′ ⊆ Tn, which contradicts the consistency of Tn.

Applying now Lindenbaum’s Lemma, there exists some
maximally consistent extension S ∈ Ω with Φ ⊆ S. By
construction (and using Lemma B.3), we have T ′ −→∗ S
for all T ′ ∈ S ′, so S is an upper bound for the chain S.
Applying Zorn’s lemma, we obtain a −→∗-maximal ele-
ment T ∗ ∈ S . In particular, this means that ϕ ∈ T ∗ and
T −→∗ T ∗, as desired. To prove that T ∗ is ϕ-final, suppose
that T ∗ −→ S 3 ϕ; we have to show that S −→ T ∗. By
the −→∗-maximality of T ∗, we must have S −→∗ T ∗, i.e.
either S −→ T ∗ or S = T ∗. If S −→ T ∗, then we are done.
If S = T ∗, then S = T ∗ −→ S = T ∗, so we get again
S −→ T ∗, as desired.

The next step is to establish an analogue of the ♦-Witness
Lemma for final theories:

Lemma B.8 (Final Witness Lemma). For any theory T ∈ Ω
and formula ϕ, we have:

1. ♦ϕ ∈ T iff there exists some ϕ-final theory T ′ such that
T −→ T ′.

2. K̂ϕ ∈ T iff there exists some ϕ-final theory T ′ such that
T ∼ T ′.

(Obviously, we have ϕ ∈ T ′ in both cases, by finality.)

Proof. We prove the first claim, as the second is analogous.
The left-to-right implication: by the Canonical ♦-Witness
Lemma B.2, ♦ϕ ∈ T implies the existence of some theory
S with T −→ S and ϕ ∈ S. By the Final Lemma B.7, there
exists some ϕ-final theory S∗ with S −→ S∗ and ϕ ∈ S∗.
If T −→ S∗, then we can take T ′ := S∗ and we are done
(since S∗ is ϕ-final and T −→ S 3 ϕ, as desired). If T 6−→
S∗, then from this and T −→ S −→ S∗ we get by weak
transitivity that T = S∗, and so T −→ S −→ S∗ = T . In
this case, we can take T ′ := S. Indeed, since we already
know that T −→ S 3 ϕ, to finish the proof we only need
to check that S is ϕ-final. For this, let U ∈ Ω be any theory
with S −→ U 3 ϕ; we need to show that U −→ S. From

S∗ = T −→ S −→ U , we obtain by weak transitivity that
either U = S∗ = T −→ S (and we are done), or S∗ −→
U 3 ϕ. In the second case, by the ϕ-finality of S∗, we have
U −→ S∗ = T −→ S; by weak transitivity, we obtain
either U −→ S (and we are done) or U = S −→ U = S.
So, in all cases, we concluded that U −→ S, as desired.

The converse follows directly from the Canonical ♦-
Witness Lemma B.2, as a special case.

Next, we will show that an analogue of the Witness
Lemma for � does hold in the Σ-final model (unlike in
the canonical model). In fact, for finite Σ, we will prove
a strong version of this lemma, in which we replace the in-
finite chain of φ-theories witnessing a formula of the form
�φ ∈ T (according to the semantic clause for �) with a
very special kind of infinite chain: a “witnessing cluster”
T −→ T ′ ←→ T ′′ with ϕ ∈ T ∩ T ′ ∩ T ′′. Our goal is to
prove a �-Witness Lemma for final theories, that uses the
witnessing-cluster condition. For this, we first need two fol-
lowing preliminary results.

Lemma B.9. If T ∈ Ω is θ-final, then it is also K̂θ-final.

Proof. Assume T is θ-final. To show that it is also K̂θ-final,
observe that we have K̂θ ∈ T (since θ =⇒ K̂θ is a theorem
in our logic). Second, let S ∈ Ω be s.t. T −→ S and
K̂θ ∈ S, and we need to prove that S −→ T . Since K̂θ ∈ S,
we have either θ ∈ S or ♦θ ∈ S. In the first case, from
T −→ S 3 θ and the fact that T is θ-final, we conclude that
S −→ T , as desired. In the second case, from ♦θ ∈ S we
infer (by the Canonical ♦-Witness Lemma) that there exists
S′ ∈ Ω, with S −→ S′ 3 θ. Since T −→ S −→ S′, by
weak transitivity we have either T = S′ or T −→ S′. If
T = S′, then we conclude S −→ S′ = T , and we are done.
If T −→ S′, then since T is θ-final and θ ∈ S′, we get
S′ −→ T . Thus we have S −→ S′ −→ T , hence by weak
transitivity we get that either S −→ T (and we are done) or
S = T (in which case S = T −→ S = T , so we again
obtain S −→ T , as desired).

Lemma B.10. Let T, T ′, T ′′ be theories, and ϕ, θ be for-
mulas, such that: T −→ T ′ ←→ T ′′, T ′ is θ-final, and
ϕ ∈ T ∩ T ′ ∩ T ′′. Then �ϕ ∈ T .

Proof. Since T ′ is θ-final, we have θ ∈ T ′, and so also K̂θ ∈
T ′. Note also that, by the Canonical ♦-Witness Lemma B.2,
T ′′ −→ T ′ 3 θ implies that ♦θ ∈ T ′′, hence also K̂θ ∈
T ′′. Putting these facts together with ϕ ∈ T ∩ T ′ ∩ T ′′, we
conclude that (K̂θ ∧ ϕ) ∈ T ′, T ′′.

To prove our lemma, we first show the following

Claim: K((K̂θ ∧ ϕ)⇒ ♦(K̂θ ∧ ϕ)) ∈ T ′.

To prove this claim, we need to show two facts: (1) ((K̂θ∧
ϕ) ⇒ ♦(K̂θ ∧ ϕ)) ∈ T ′; and (2) �((K̂θ ∧ ϕ) ⇒ ♦(K̂θ ∧
ϕ)) ∈ T ′.

Proof of fact (1): From (K̂θ ∧ ϕ) ∈ T ′′ and T ′ −→ T ′′, we
obtain ♦(K̂θ ∧ ϕ)) ∈ T ′ (by Lemma B.2), and the desired
conclusion follows by basic laws of propositional logic.



Proof of fact (2): by the Canonical ♦-Witness Lemma B.2,
it is enough to show that ∀S ∈ Ω, if T ′ −→ S and K̂(θ ∧
ϕ) ∈ S, then ♦(K̂θ ∧ ϕ) ∈ S. To check this, let S be s.t.
T ′ −→ S 3 (K̂θ ∧ ϕ). Since T ′ is θ-final, by Lemma B.9
it is also K̂θ-final; from this, together with T ′ −→ S 3 K̂θ,
we obtain that S −→ T ′. Using this together with the fact
that (K̂θ ∧ ϕ) ∈ T ′, and applying again the Canonical ♦-
Witness Lemma B.2, we conclude that ♦(K̂θ ∧ ϕ) ∈ S, as
desired.

Using now the above Claim and the Induction Axiom, we
conclude that �(K̂θ ∧ ϕ) ∈ T ′. Using the Montonicity rule
we see that �ϕ ∈ T ′. Since T −→ T ′, we get ♦�ϕ ∈ T
(again by Lemma B.2), and since ϕ ∈ T , we have (ϕ ∧
♦�ϕ) ∈ T . Finally, using Induction and Monotonicity we
see that ` (ϕ ∧ ♦�ϕ) ⇒ �ϕ is a theorem in our system.
We conclude that �ϕ ∈ T , as desired.

Now we can prove the following (strong version of) �-
Witness Lemma:

Lemma B.11 (Final �-Witness Lemma). Let Σ be a finite
set of formulas, ϕ be a formula with ϕ ∈ Σ, and T be a Σ-
final theory such that ϕ ∈ T . The following are equivalent:

(1) �ϕ ∈ T ;
(2) there exist �ϕ-final theories T ′, T ′′, with T −→
T ′ ←→ T ′′;

(3) there exist Σ-final theories T ′, T ′′, with T −→ T ′ ←→
T ′′ and ϕ ∈ T ′, T ′′;

(4) there exists an infinite chain of Σ-final theories T =
T0 −→ T1 −→ . . . Tn −→ . . ., such that ϕ ∈ Tn for all
n.

Proof. (1) ⇒ (2): Assume �ϕ ∈ T . By the Final Lemma
B.7, there exists some �ϕ-final theory T ′ such that T −→
T ′ and �ϕ ∈ T ′. Since ` �ϕ =⇒ ♦�ϕ is a theorem of
our logic, we must have ♦�ϕ ∈ T ′. By the Final ♦-Witness
Lemma B.8, there exist some �ϕ-final theory T ′′ such that
T ′ −→ T ′′ and �ϕ ∈ T ′′. The fact that T ′ is �ϕ-final
ensures that T ′′ ←→ T ′, as desired.
(2)⇒ (3): It is obvious that (3) is a weaker statement.
(3) ⇒ (1): Assume given Σ-final theories T ′, T ′′, with
T −→ T ′ ←→ T ′′ and ϕ ∈ T ′, T ′′. Then there exists
some θ ∈ Σ such that T ′ is θ-final. Apply Lemma B.10 to
obtain the desired conclusion.
(3)⇒ (4): Obvious again. For all n ≥ 1, just take T2n−1 :=
T ′ and T2n := T ′′.
(4) ⇒ (3): Let T = T0 −→ T1 −→ . . . Tn −→ . . . be
an infinite chain of Σ-final theories, such that ϕ ∈ Tn for
all n. By the Finite Depth Lemma B.6, this cannot be a
strict chain (-in fact even its initial segment of length |Σ|−1
must be non-strict): so there exist indices n′ < m′ such that
T −→∗ Tn′ ←→ Tm′ . We need to prove now the stronger
statement (3). If we have T = Tn′ , then we get T = Tn′ −→
Tm′ −→ Tn′ = T , so by taking n := m′ and m := n′,
we obtain T −→ Tn ←→ Tm, as desired. If however we
have T 6= Tn′ , then we get T −→ Tn′ ←→ Tm′ , so by

taking n := n′ and m := m′, we reach again the desired
conclusion.

We have now all the ingredients to immediately prove a
Truth Lemma for the final model (and thus our completeness
result). But, for later use in the decidability proof, it is con-
venient to state a more general form of this Truth Lemma,
by abstracting the relevant properties of the final model into
a definition: we consider submodels of the final model sat-
isfying closure properties that are (the syntactic counterpart
of the existential parts of) the above Final ♦- and�-Witness
Lemmas.

Definition B.12 (Perfect Submodels). A submodel of the Σ-
final model ΩΣ is perfect if the underlying set M ⊆ ΩΣ

satisfies the following two conditions:

(1) for every theory T ∈M and every formula ♦ϕ ∈ T ∩Σ,
there exists some ϕ-final theory T ′ ∈M with T −→ T ′;

(2) for every theory T ∈M and every formula�ϕ ∈ T∩Σ,
there exist �ϕ-final theories T ′, T ′′ ∈ M with T −→
T ′ ←→ T ′′, and

(3) for every theory T ∈M and every formula K̂ϕ ∈ T∩Σ,
there exists some ϕ-final theory T ′ ∈M with T ∼ T ′.

Examples: Lemmas B.8 and B.11 show that the Σ-final
model is a perfect submodel (of itself). Later, for our decid-
ability proof, we will see examples of finite perfect models.

The key result underlying our completeness and decid-
ability proofs is the following.

Lemma B.13 (Truth Lemma). Let Σ be a finite set of formu-
las, closed under subformulas, and let M = (M,−→, ‖ · ‖)
be a perfect submodel of the Σ-final model ΩΣ. Then for all
formulas ϕ ∈ Σ, we have:

‖ϕ‖M = {T ∈M : ϕ ∈ T}

Proof. By structural induction on ϕ. The atomic case and
Boolean cases are standard, so we consider only the modal
cases.
The case ϕ := ♦ψ: For one direction, assume that ♦ψ ∈ T .
By condition (1) in the definition of perfect submodels, there
exists some theory T ′ ∈ M with T −→ T ′ and ψ ∈ T ′.
By the induction hypothesis, we get T ′ |=M ψ, and hence
T |=M ♦ψ, as desired.

For the converse, assume that T |=M ♦ψ. By the seman-
tics, there must exist T ′ ∈M with T −→ T ′ and T ′ |=M ψ.
By the induction hypothesis, we get ψ ∈ T ′, and so we con-
clude that ♦ψ ∈ T (by the Canonical ♦-Witness Lemma
B.2), as desired.

The case ϕ := K̂ψ: This case is analogous, but using the
K̂-Witness Lemma.
The case ϕ := �ψ: For one direction, assume that �ψ ∈
T . By condition (2) in the definition of perfect submodels,
there exist theories T ′, T ′′ ∈ M with T −→ T ′ ←→ T ′′

and �ψ ∈ T ′, T ′′. From �ψ ∈ T, T ′, T ′′, we obtain ψ ∈



T, T ′, T ′′ (by the Fixed Point Axiom), and hence (by the
induction hypothesis) we have that T , T ′ and T ′′ satisfy ψ in
the model M. But then the infinite sequence T −→ T ′ −→
T ′′ −→ T ′ −→ T ′′ −→ . . . shows that T |=M �ψ.

For the converse, assume that T |=M �ψ. By defini-
tion, there must exist an infinite chain T = T0 −→ T1 −→
. . . −→ Tn −→ . . ., with Tn ∈ M (hence, Tn is Σ-final)
and Tn |=M ψ for all n. By the induction hypothesis, we
get ψ ∈ Tn for all n. Applying the Final �-Witness Lemma
B.11, we conclude that �ψ ∈ T , as desired.

We can now finish our completeness proof.

Proof of Theorem 3.3 (Weak Completeness): Fix a con-
sistent formula θ, and let Σ be the (finite) set consisting
of θ as well as all subformulas of θ. Fix a Σ-final theory
T0 ∈ ΩΣ with θ ∈ T0 (-such a theory exists by the Lindem-
baum Lemma combined with the Final Lemma B.7), and
consider the canonical model Ω = (Ω,−→, ‖ · ‖) for T0.
Since θ ∈ T0 ∈ ΩΣ and the Σ-final model ΩΣ is perfect, we
can apply to it the Final Truth Lemma B.13 to conclude that
T0 |= θ in ΩΣ. Hence, our axiomatic system is complete for
the class of weakly-transitive relational models. By Lemma
A.1, we can add irreflexivity, so the system is also complete
for the class of irreflexive and weakly-transitive relational
models. But, as already mentioned, this class coincides with
the class of Alexandroff topo-models, so the system is also
complete for topo-models.

For decidability and FMP, we need to do a bit more work.

C Proof of decidability
Given Theorem 3.2, it is enough to prove the decidability of
the static logic L.

Definition C.1 (Defects and defect-depth). If a submodel
(determined by a set)M ⊆ ΩΣ is not perfect, then every pair
(T,♦ϕ) ∈M ×Σ providing a counterexample to the clause
(1) of the definition of perfect models is called a ♦-defect
of M . A correction of the defect (T,♦ϕ) is a ϕ-final theory
T ′ ∈ ΩΣ with T −→ T ′. Similarly, every counterexample
(T,�ϕ) ∈ M × Σ to the clause (2) of the same definition
is called a �-defect of M . A a correction-pair of the defect
(T,�ϕ) is a pair (T ′, T ′′) of �ϕ-final theories with T −→
T ′ ←→ T ′′.

The defect-depth ddpt(M) of the submodel (determined
by) M is the maximum depth of the defects of M , defined as

max{dpt(T ) : (T, ϕ) is a defect of M for some ϕ ∈ Σ}.
By the Finite Depth Lemma B.6, we have 0 ≤ ddpt(M) ≤
|Σ| − 1 (for all final submodels M ).

Obviously, M is perfect iff it has no defects (of any of
the two kinds). To prove FMP, it is clear that it is enough to
show the following:

Lemma C.2. Let Σ be a finite set of formulas closed under
subformulas and under the additional clause: if �ψ ∈ Σ
then ♦�ψ ∈ Σ. For any Σ-final theory T0, there exists a
finite perfect submodel M ⊆ ΩΣ with T0 ∈M .

Proof. We recursively construct an infinite sequence of fi-
nite submodels

M0,M1, . . . ,Mn, . . .

of the Σ-final model ΩΣ:

• For each K̂ϕ ∈ T0 ∩ Σ, choose Tϕ ∈ ΩΣ such that ϕ ∈
Tϕ. Put M0 := {T0} ∪ {Tϕ : K̂ϕ ∈ T0 ∩ Σ}.

• Given Mn, put Mn+1 := Mn if Mn is perfect. Other-
wise, for each defect (T,♦ϕ), choose a correction T ′ ∈
ΩΣ; we’ll refer to T ′ as the designated correction of
that defect. Similarly, for each defect (T,�ϕ), choose
a correction-pair (T ′, T ′′); we’ll refer to T ′ and T ′′ as the
designated corrections of that defect. Define ∆n to be the
set of all S ∈ ΩΣ which are a designated correction of
some defect of Mn. Then, let Mn+1 = Mn ∪∆n.

By induction, it is clear that all models Mn are finite (-
the induction step uses the fact that a finite model has only
finitely many defects, since Σ is finite).

Claim 1. If (S, ϕ) is a defect of Mn+1, then ϕ ∈ S ∈
Mn+1 \Mn, and S is a designated correction of some defect
(T, ψ) of Mn, with T −→ S.

Proof of Claim 1. Let (S, ϕ) be a defect of Mn+1. By defi-
nition, we then have ϕ ∈ S ∈ Mn+1. Suppose that we also
have S ∈ Mn. We consider two cases. Case 1: assume that
(S, ϕ) is also a defect of Mn. Then, by the construction of
Mn+1, this defect has a designated correction S′ ∈ Mn+1,
or else a correction-pair (S′, S′′) ∈Mn+1. But then the the-
ory S′, or the pair (S′, S′′), testify that (S, ϕ) is not a defect
of Mn+1, contradicting our initial premise. Case 2: assume
that (S, ϕ) is not a defect of Mn. In this case, there must
exist witnesses T ′ ∈Mn or (T ′, T ′′) ∈Mn ×Mn attesting
that (S, ϕ) is not a defect of Mn. But since Mn ⊆ Mn+1,
the same witnesses also attest that (S, ϕ) is not a defect of
Mn+1), again contradicting our initial premise.

So we must have S ∈ Mn+1 \ Mn. But then (by the
construction of Mn+1) S must be a designated correction
to some defect (T, ψ) of Mn. If (T, ψ) is a ♦-defect, then
(by the definition of its corrections) we have T −→ S, and
we are done. If (T, ψ) is a �-defect, then S is part of a
correction pair (S, S′) or (S′, S). In the first case (by the
definition of correction pairs) we have T −→ S, and we are
done; in the second case, we have T −→ S′ ←→ S, which
together with the fact that T 6= S (since T ∈ Mn and S ∈
Mn+1 \Mn) gives again T −→ S (by weak transitivity).

Claim 2. If Mn+2 is not perfect, then ddpt(Mn+2) <
ddpt(Mn).

Proof of Claim 2. Let (Tn+2, ϕn+2) be a defect of Mn+2.
Then, by applying Claim 1 twice, there must exist some de-
fect (Tn, ϕn) ofMn (with Tn ∈Mn), as well as some defect
(Tn+1, ϕn+1) ofMn+1, s.t. Tn+2 ∈Mn+2 \Mn+1 is a des-
ignated correction of (Tn+1, ϕn+1) (and hence Tn+1 −→
Tn+2), and similarly Tn+1 ∈ Mn+1 \Mn is a designated
correction of (Tn, ϕn) (hence Tn −→ Tn+1)). Also, from
Tn+2 ∈Mn+2 \Mn+1, Tn+1 ∈Mn+1 \Mn and Tn ∈Mn,
we infer that Tn+2 6= Tn+1 6= Tn 6= Tn+2.



By Lemma B.5, from Tn −→ Tn+1 −→ Tn+2 we obtain
that dpt(Tn) ≥ dpt(Tn+1) ≥ dpt(Tn+2), with one of the
inequalities being strict if either Tn+1 6−→ Tn or Tn+2 6−→
Tn+1, in which case we get ddpt(Mn+2) < ddpt(Mn),
hence ddpt(Mn+2) < ddpt(Mn), and we are done. So
from now on we can assume that Tn ←→ Tn+1 ←→ Tn+2,
which together with Tn 6= Tn+2 gives us Tn ←→ Tn+2 (by
weak transitivity).

To prove Claim 2, we look at the shape of the defect
(Tn+2, ϕn+2), considering the two possible cases:

Case 1: (Tn+2, ϕn+2) is a ♦-defect, say ϕn+2 = ♦θ ∈
Tn+2. Since Tn ←→ Tn+2, we have ♦♦θ ∈ Tn. By our
axioms, we have either θ ∈ Tn, or ♦θ ∈ Tn. In the first
case, we have Tn+2 −→ Tn 3 θ and T ∈ Mn ⊆ Mn+2,
which gives a witness in Mn+2 for clause (1) applied to
ϕn+2 = ♦θ ∈ Tn+2, contradicting the assumption that
(Tn+2, ϕn+2) is a defect of Mn+2. In the second case, if
♦θ ∈ Tn ∈ Mn, then by our construction there must exist
some Sn+1 ∈ Mn+1 with Tn −→ Sn+1 3 θ (either be-
cause (Tn,♦θ) was not a defect of Mn hence such a the-
ory Sn+1 already existed in Mn, or else because the de-
fect (Tn,♦θ) has a designated correction in Mn+1). But
Tn+2 ←→ Tn −→ Sn+1 implies that Tn+2 −→∗ Sn+1,
which together with the fact that Tn+2 6= Sn+1 (since
Sn+1 ∈ Mn+1 while Tn+2 ∈ Mn+2 \ Tn+1) gives us that
Tn+2 −→ Sn+1 (by weak transitivity). So we again con-
clude that θ ∈ Sn+1 ∈ Mn+1 ⊆ Mn+2 is a witness in
Mn+2 for clause (1) applied to ϕn+2 = ♦θ ∈ Tn+2, contra-
dicting the assumption that (Tn+2, ϕn+2) is a defect.

Case 2: (Tn+2, ϕn+2) is a �-defect, say ϕn+2 = �θ ∈
Tn+2. Since Tn ←→ Tn+2, we have ♦�θ ∈ Tn ∈ Mn.
Since �θ ∈ Σ (because this is a defect of Mn+2), we
also have ♦�θ ∈ Σ (by the additional closure require-
ment of our lemma). By construction, there must exist
some Sn+1 ∈ Mn+1 with Tn −→ Sn+1 3 �θ (again
either because (Tn,♦�θ) was not a defect so that such
a theory Sn+1 already existed in Mn, or because the de-
fect (Tn,♦�θ) has a designated correction in Mn+1). But
then we can repeat this argument on (Sn+1,�θ); by con-
struction, there must exist �θ-final S′n+2, S

′′
n+2 ∈ Mn+2,

with Sn+1 −→ S′n+2 ←→ S′′n+2 (again either because
such theories already existed in Mn+1, or because the de-
fect (Sn+1,�θ) has designated corrections in Mn+2). From
Tn+2 ←→ Tn −→ Sn+1 −→ S′n+2, we obtain that
Tn+2 −→∗ S′n+2 ←→ S′′n+2. If Tn+2 −→ S′n+2, then
the pair (S′n+2, S

′′
n+2) gives witnesses in Mn+2 for clause

(2) applied to ϕn+2 = �θ ∈ Tn+2, thus contradicting the
assumption that (Tn+2, ϕn+2) is a defect of Mn+2. On the
other hand, if Tn+2 6−→ S′n+2, then by weak transitivity we
must have Tn+2 = S′n+2 −→ S′′n+2 ←→ S′n+2, and so the
pair (S′′n+2, S

′
n+2) gives again witnesses inMn+2 for clause

(2) applied to ϕn+2 = �θ ∈ Tn+2, again in contradiction
with the assumption that (Tn+2, ϕn+2) is a defect of Mn+2.

Given Claim 2, let now N := 2 · |Σ|, where |Σ| is the size
of Σ.17 We claim that MN is a perfect submodel.

17We can lower this bound somewhat, taking instead the size of
the set {ϕ : ♦ϕ ∈ Σ or �ϕ ∈ Σ}.

To show this, assume that this is not the case. Then of
course none of the submodels Mn with n ≤ N are perfect.
By repeatedly applying Claim 2, we have

ddpt(M0) > ddpt(M2) > . . . > ddpt(MN ).

This contradicts the fact that 0 ≤ ddpt(M0) ≤ dpt(M0) ≤
|Σ| − 1 (by the Finite Depth Lemma B.6): the set
{0, 1, . . . , |Σ| − 1} has cardinal |Σ|, so it cannot contain
N
2 + 1 = |Σ|+ 1 distinct natural numbers.

Proof of FMP and Decidability: Fix a consistent formula
θ, and let Σ be a finite set containing θ, and closed under
subformulas and under the additional clause in the previous
lemma (if �ψ ∈ Σ then ♦�ψ ∈ Σ). Fix as before a Σ-
final theory T0 ∈ ΩΣ with θ ∈ T , and let M be the finite
perfect submodel constructed in the above Lemma. Since
θ ∈ T0 ∈M and M is perfect, we can apply the Final Truth
Lemma B.13 to conclude that T0 |= θ in M. Our submodel
M is a finite weakly transitive relational model, but by the
technique in the proof of Lemma A.1, we can convert it into
an equivalent model, that is finite, irreflexive and weakly-
transitive. But this is nothing but a finite topo-model, so
we have proved (strong) FMP for the topological semantics.
Decidability immediately follows.

To finish the proof of Theorem 3.4, we need to look at the
complexity of the decision problem for the static logic.

D PSPACE completeness
We may obtain a PSPACE complexity bound for the static
logic from our decidability proof. First note that the validity
problem for L is PSPACE-hard, as it embeds S4, which is
PSPACE-complete (Chagrov and Zakharyaschev 1997). So
we focus on the upper bound.

We begin with a PSPACE algorithm for satisfiability in the
K-free fragment L�♦ . First, some preliminary definitions.
We work with a set of formulas Σ closed under subformulas,
single negations and such that if �ϕ ∈ Σ, then ♦�ϕ ∈
Σ. For a formula ϕ, the size of such a Σ containing ϕ is
polynomial on the length of ϕ. A Σ-type is a subset Φ ⊆ Σ
such that ψ∧θ ∈ Φ implies that ψ ∈ Φ and θ ∈ Φ, ψ∨θ ∈ Φ
implies that ψ ∈ Φ or θ ∈ Φ, and ¬ψ ∈ Φ if and only if
ψ /∈ Φ. A Σ cluster-type is a multiset C of Σ-types where
each type can occur at most twice and such that if Φ,Ψ ∈ C
are such that Φ 6= Ψ:

1. if ψ ∈ Φ then ♦ψ ∈ Ψ,
2. if ♦ψ ∈ Φ and ψ /∈ Φ′ for any Φ′ ∈ C with Φ′ 6= Φ, then

♦ψ ∈ Ψ,
3. if �ψ ∈ Φ then �ψ ∈ Ψ, and
4. if ψ,¬�ψ ∈ Φ then �¬�ψ ∈ Φ.

A defect of C is either any formula ♦ψ ∈ Φ ∈ C such that
ψ /∈ Φ′ for any Φ′ ∈ C with Φ′ 6= Φ, or a formula �ψ ∈
Φ ∈ C such that there is at most one Φ′ ∈ C with ψ ∈ Φ′.
Note that Σ cluster-types represent irreflexive clusters.

We will define a generalization of satisfiability whose use
of space is easier to control. An instance is a sequence



(ϕ, b,Σ,Kψ1, . . . ,Kψm, n), whereϕ,�ψi ∈ Σ, b ∈ {1, 2},
and n ∈ N. We want to check if ϕ ∧ Kψ1 ∧ . . . ∧ Kψm is
satisfiable in a model of depth n, whose root cluster has b
instantces of ϕ (so that if b = 2, the root cluster witnesses
�ϕ). The original satisfiability problem can be reduced to
(ϕ, 1,Σ, |Σ|), where Σ is the least set containing ϕ with the
required closure properties.

We solve an instance (ϕ, b,Σ,Kψ1, . . . ,Kψm, n) using
the following steps:

1. Choose a cluster type C such that ϕ occurs at least b times
in C, and every Ψ ∈ C has ψi,�ψi ∈ Ψ for all i =
1, . . . ,m. Accept if C has no defects, and reject if no such
C exists.

2. If n = 0, reject. Otherwise, let ψ′1, . . . , ψ
′
m′ be all formu-

las such that �ψ′i ∈
⋃
C.

(a) For every defect of C of the form ♦θ, solve the instance
(θ, 1,Σ,Kψ′1, . . . ,Kψ′m′ , n− 1).

(b) For every defect of C of the form�θ, solve the instance
(θ, 2,Σ,Kψ′1, . . . ,Kψ′m′ , n− 1).

3. Reject if any of the above instances rejects, otherwise ac-
cept.

It can be verified by induction on n that
(ϕ, b,Σ,Kψ1, . . . ,Kψm, n) has an accepting computa-
tion iff ϕ ∧ Kψ1 ∧ . . . ∧ Kψm is satisfiable on a model
of depth ≤ n where ϕ occurs at least b times on the root;
indeed, we are simply building a model step-by-step. So it
remains to check that the algorithm can be implemented in
polynomial space.

First observe that we may restrict the size of each cluster C
to have at most 2|Σ| elements. This is because each formula
needs to occur at most twice, and removing additional Σ-
types from C will not create new defects. Since each Σ-type
is O(|Σ|) in size, we need O(2|Σ| · |Σ|) = O(|Σ|2) space
to store C. With this in mind, we may prove by induction on
n that the algorithm requires O(n|Σ|2): each recursive call
in Step 2 uses O

(
(n− 1)|Σ|2

)
, and we may reuse the same

space so we do not need additional space for the multiple
calls. In addition, we need to store C, which takes O(|Σ|2)
space. We may also store the list of defects that have been
processed (O(|Σ|) space, but this can be avoided if we sim-
ply treat defects in some pre-established order). Thus we
need O(|Σ|2 + (n− 1)|Σ|2) = O(n|Σ|2) space, as claimed.

Finally, we extend the algorithm to the full static lan-
guage L. This is done as follows: first, let ΣK be the set
of formulas ψ such that Kψ ∈ Σ. We non-deterministically
choose a set Π = {ψ1, . . . , ψm} ⊆ ΣK such that ¬ϕ /∈ Π;
these will be the formulas of the form Kψ true in our tar-
get model. For each θ ∈ Σ \ Π, we solve the instance
(θ, 1,Σ,Kψ1, . . . ,Kψm, |Σ|), and accept if all such in-
stances are accepted, otherwise reject. This algorithm is cor-
rect since we can amalgamate each model of θ∧Kψ1∧ . . .∧
Kψm to obtain a model of

(∧
ψ/∈Π K̂ψ

)
∧
(∧

ψ∈ΠKψ
)
; this

amalgamated model will be a model of ϕ. It is a PSPACE al-
gorithm, since we only need to store the set Π and the list of
θ ∈ Σ \Π that have to be treated, which takes O(|Σ|) space,

in addition to the space already required to solve each in-
stance (θ, 1,Σ,Kψ1, . . . ,Kψm, |Σ|), which as we have seen
is polynomial.

This finishes the proof of Theorem 3.4.
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