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Abstract

Participatory Budgeting (PB) is a process of collective decision-making in which citizens
of a municipality have a direct say in the way public funds are spent. This has recently in-
spired a vast amount of mathematical and computational research into the way that public
funds are to be allocated given the preferences of the inhabitants. An important desider-
atum is that this allocation should be fair to everybody participating. In the currently
dominant mathematical models of PB – where PB is modelled as a one-shot process –
fair allocations cannot always be guaranteed to exist. This thesis is an investigation into
the extent to which fairer allocations can be guaranteed by taking into account previous
rounds of the PB process, thereby building on the recent model of Perpetual Participatory
Budgeting by Lackner, Maly, and Rey (2021).
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Chapter 1

Introduction

Participatory Budgeting (PB) is an exciting new method of public decision making (A.
Shah, 2007). The core idea of PB is that residents have a direct say in how public funds are
spent (Aziz and N. Shah, 2021). For example, a municipality may divide some amount
of money among several districts. The residents of these districts can think of several
different proposals for some projects they would like to see funded. After these project
proposals are made and after there has been some preliminary selection of the viable
projects, the people of the district go on to vote for their favourite projects. After the
voting, the ‘best’ set of projects is selected and these are then actually realised.

In practice PB is mainly applied to letting residents decide on the funding of public
projects. Typical examples of such public projects include building a playground in a
particular neighbourhood or planting more trees in specific streets. However, in theory
PB could be applied to any public spending. PB could, for example, also be applied to
more general funding issues, such as whether to allocate more money to improving a
country’s infrastructure or to improving a country’s healthcare system.

1.1 History of PB
PB started out as a radical democratic project in 1989 in Porto Allegre, Brazil (Cabannes,
2004). This was an initiative led by the Workers Party. Olı́vio Dutra, the mayor at that
time and one of the founding members of the Workers Party, initiated the process of PB
as a reaction to the non-transparent and non-democratic ways of decision making of the
previous twenty years (Abers, 1998).

Since its start in Porto Allegre, PB has spread rapidly to many municipalities across
the world (A. Shah, 2007). In total, more than 1500 municipalities are implementing PB
as a way of deciding how to spend public funds (Aziz and N. Shah, 2021). It has been
implemented by municipalities all across the world. In the US and Canada, for example,
PB has been implemented in more than 29 cities, with more than 300 million euro of
public funds being allocated to public projects. And in Paris, more than 100 million euro
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CHAPTER 1. INTRODUCTION

is spent via PB each year (Legendre, Madénian, and Scully, 2018). And new regions are
still joining. For example, Toronto, the state of New South Wales (Australia) (Aziz and
N. Shah, 2021) and also Amsterdam1 recently started with implementing PB.

1.2 Advantages of PB
PB has been considered to have many advantages compared to classical ways of deciding
on how to spend public funds (A. Shah, 2007). We’ll name three.

• First of all, PB is a way to empower groups previously excluded from power. Every
resident can participate in PB. In particular, then, also previously socially excluded
groups of people can participate. Moreover, PB can be a way to dedicate even more
power to these groups. After all, with PB the municipality does not have to spread
the total available budget evenly across all districts (A. Shah, 2007). Instead, it
can dedicate – relative to the number of residents of that district – more available
budget to low-income districts than to high-income districts. In this way previously
excluded groups, such as the poor, can execute more influence over the decision
making than the rich, in the sense that they have a say in how to allocate a relatively
larger budget.

• Secondly, PB makes for a more transparent decision-making process. Suppose
that a PB-round has taken place and that a set of projects has been selected. It
is then clear why the selected projects have been chosen: residents have voted on
the projects and these projects received (in some sense to be made precise later)
the ‘most’ votes. This is different from some other ways of decision making. For
example, when local administrators decide on what public projects to fund it can
be unclear why the administrators chose to fund those specific projects, instead of
others. This non-transparency opens the door for corruption and clientelism. For
example, this characterized the pre-PB situation in Porto Allegre (Abers, 1998).

• Thirdly, PB acts as a so-called ‘citizenship school’ (A. Shah, 2007). Due to PB, cit-
izens are actively involved in the decision-making process. They have to, amongst
other things, deliberate with other citizens and the municipality on how to spend
scarce resources, on the feasibility of projects and on practical considerations such
as the maintenance of the projects. In this way, citizens learn about local politics:
what kind of responsibilities the municipality has (and hence what they can expect
from the municipality) and what kind of rights they have as citizens. PB can thus
function as a citizenship school; a way of enhancing citizens’ knowledge about
local politics.

1See https://buurtbudget.amsterdam.nl.
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1.3 The Mathematical Study of PB
PB seems straightforward, but, in fact, it is not so straightforward to specify how exactly
it must be executed (Bhatnagar et al., 2003). For example, what is the best way of letting
people vote on projects, and how do you best pick a certain amount of projects based on
these votes? Since PB is still a new topic, it is important that these questions are settled
sooner rather than later: “Whatever the best approach to participatory budgeting is, now
is the time to identify it, before various heuristics become hopelessly ingrained” (Benadè
et al., 2021).

The need to answer these questions has recently initiated a large body of research in
the field of Computational Social Choice. Computational Social Choice is an interdis-
ciplinary research area at the intersection of social choice theory and computer science
(Brandt et al., 2016). Mainly, this entails the studying of social choice questions from a
mathematical and algorithmic perspective.

More precisely, this research strand within Computational Social Choice that studies
PB from a mathematical and algorithmic perspective is concerned with two main ques-
tions. Firstly: how to elicit the preferences of the residents? And secondly: given a
certain way of eliciting the preferences of the residents, how to select a set of projects
based on these preferences?

There are multiple ways of asking for the agents’ preferences. In this thesis we will
work with so-called ‘Approval Voting’, where the agents vote for the projects that they
approve of (Aziz and N. Shah, 2021). That is, for each of the projects, an agent can report
to either like or dislike the project. Later in this chapter we will consider this in more
detail. This thesis focuses primarily on giving an answer to the second question; given
the approval votes of the agents, what projects should we select?

To illustrate the gist of this question, consider Figure 1.1 below, which depicts a sim-
ple example of PB with approval votes.

From left to right the voters are: Jessy (approving of building a new park and a
swimming pool), Maureen (approving of building a new playground and a football field),
Paul (approving of building a park bench), John (approving of building a football field and
a playground with gymnastics equipment) and George (approving of building a football
field).

Note now three things about Figure 1.3. As can be seen from the figure, some voters
might ‘agree’ with each other on what to fund. For example, Maureen, Paul and John
agree on building a football field. Further, note that their preferences are not ordered:
in Approval Voting we do not know whether Jessy prefers building a park to building a
swimming pool, or vice versa. And finally note that not everybody needs to necessarily
approve of the same amount of projects. While Jessy, Maureen and John approve of two
projects, both Paul and George approve of only one project.

Now suppose that we can only afford to fund one project. There are several different
approaches that could be used in determining which set of projects to fund (Aziz and
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Figure 1.1: Five agents and their approval votes

N. Shah, 2021). For example, we could want to maximise the ‘welfare’ – roughly cor-
responding to the extent to which the voters are happy with a certain allocation – of the
voters. Though this is a natural objective, we should at least also want our allocation to
satisfy some notion of fairness. Otherwise, if welfare maximisation would be the only
desideratum, then the outcome might satisfy some voters much more than others, thereby
thwarting the democratic objective of PB. We will come back to this consideration later
in more detail.

Given that we do not have any information about what happened in previous rounds,
we should fund the football field, as this maximises the welfare and since there is not a
fairer alternative available. Note however that this is not a perfectly fair outcome: while
Maureen, John and George got a project that they approved of, Jessy and Paul got none
of their approved projects.

So suppose now that in the next year, given that we funded the football field, the votes
change as specified in Figure 1.2.

That is, since their football field has now been funded, Maureen, John and George
now approve of something else: a playground with gymnastics equipment. And Paul
changed his mind: instead of approving of a park bench, he now approves of a swimming
pool. Given these votes, and given that we can still only afford one project, the question
is what project to fund next.

Note that if we would only be interested in maximising welfare, we would select the
playground with gymnastics equipment. However, as mentioned above, we also want our
outcome to be ‘fair’ in some sense. Observe, then, that if we would select the swimming
pool, Jessy and Paul would get what they want. Hence, after 2 rounds of PB, every voter
got something of their liking, and we might therefore argue that this allocation is ‘fair’
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Figure 1.2: Five agents and their approval votes in a subsequent round

to everyone participating.
This example illustrates the main topic of the thesis. In PB we want our selection of

projects to be ‘fair’ in some sense. However, as the simple example above illustrates, it is
not always possible in single rounds to be perfectly fair to every voter. In the first round,
for example, both Jessy and Paul were dissatisfied, since they got none of their approved
projects funded. And we were not able to improve on this result: whatever project we
would choose, we would always leave some voters dissatisfied.

One possible solution to this problem is to try to guarantee fairness over time. We
cannot require that an allocation is always fair to each voter in every individual round,
but possibly we can be fair to every voter on the long run. That is, by dedicating more
budget to the voters that were previously left dissatisfied. This solution is illustrated
by the example given above: in the second round we dedicated more budget to Jessy
and Paul, who were dissatisfied in the previous round, thereby overruling the welfare
maximisation consideration.

This thesis is an investigation to the extent to which such a fair solution over time can
always be guaranteed to exist. The research question of the current thesis is therefore:
can fairness over time always be guaranteed in PB? We will show that this depends on the
way that ‘fairness’ and the related notion of ‘welfare’ are defined: for some definitions of
fairness and welfare we can always guarantee a fair outcome, while for others this cannot
be guaranteed.
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CHAPTER 1. INTRODUCTION

1.4 Perpetual Participatory Budgeting
The initial research into the possibilities of realising fairness over time in PB has only
recently been conducted, namely by Lackner, Maly, and Rey (2021). Their research
contributes in two ways to answering the fairness-question.

Firstly, they defined the formal (perpetual) framework needed to study whether fair-
ness in the long term can be realised. This framework is called ‘Perpetual Participatory
Budgeting’ (PPB) and will be adopted in this thesis. Secondly, they investigated for sev-
eral different notions of welfare and fairness whether fairness is possible in PPB.

Lackner, Maly, and Rey (2021) define three different notions of fairness, and three
different notions of welfare. A ‘fair’ outcome is an outcome with a certain distribution
of welfare among the voters. If fairness is taken to be an outcome that generates an
equal amount of welfare for each group of agents, then for none of the studied notions
of welfare such an outcome can always be guaranteed to exist. When fairness is taken
to be an outcome that minimises the inequality of welfare (as measured by the Gini-
coefficient), then such an outcome can – by definition – always be guaranteed to exist.
However, it is computationally hard to find this outcome. Finally, when fairness is taken
to be an outcome that, in the limit, generates an equal amount of welfare for each group
of agents, then such an outcome can for one notion of welfare be guaranteed to exist,
provided that there are at most two groups (or: ‘types’) of agents.

1.5 Thesis Contributions
In this thesis we will elaborate on the work already done by Lackner, Maly, and Rey
(2021) and extend their results. We show that when defining welfare as ‘satisfaction’
and fairness as convergence to equal welfare, even when there are only seven agents, we
cannot guarantee a fair outcome (Proposition 3.2.1). However, when there are at most
four agents and at most three types, a fair outcome can be guaranteed to exist (and we will
show how to compute this outcome) (Theorem 3.1.1). Further, we show that computing
a fair outcome (taken to be an outcome generating exactly the same amount of ‘share’ for
each group of agents) is computationally hard (Theorem 4.0.1). Finally, when we define
welfare as ‘relative satisfaction’ and fairness as convergence to equal welfare, we show
that we can guarantee, given some assumptions, the existence of a fair outcome for three
groups with an arbitrary amount of agents (Theorem 5.3.1).

In the rest of the chapter we will first give an informal description of the formal model
of PB that we will be using to study our main question (we will present the formal model
itself in the next chapter), discuss research done in different PB models alongside this
description and provide an overview of the chapters to come.
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1.6 Research Done in Different PB Models
The current research is a strand within the field of Computational Social Choice. For an
overview of this field we recommend the Handbook on Computational Social Choice by
Brandt et al. (2016).

For a historical and philosophical perspective on PB, we recommend the book on PB
which was published by the World Bank (A. Shah, 2007). In particular the first chapter
is relevant for this thesis.

The mathematical work on PB is: recent, vast and diverse. For example, there are
many different mathematical models that describe PB. In a recent overview article, Aziz
and N. Shah (2021) describe a general mathematical model that captures all the current
particular PB models as special cases. That is, the general model consists of certain
parameters and all the specific models are particular instantiations of these parameters.
For an overview of the current mathematical approaches to PB, we therefore recommend
this overview article by Aziz and N. Shah (2021).

We briefly describe the four main parameters – or design choices – and state the de-
sign choices that we make.

Decision space. The first design choice is the space of possible outcomes: it can
either be discrete – meaning that projects can be either fully funded or not funded at
all – or continuous or ‘divisible’, meaning that projects can be funded to some fractional
degree.2 In this thesis, we will assume that the decision space is discrete, which is the de-
fault choice in PB research (see e.g. the work by Legendre, Madénian, and Scully (2018),
Conitzer, Freeman, and N. Shah (2017) and Delort, Spanjaard, and Weng (2011)).

Work on fairness in divisible models has for example been done by Garg, Kulkarni,
and Murhekar (2021), which showed that a fair outcome – formalised as an outcome
that is ‘in the core’ – cannot always be guaranteed to exist, though can be approximated.
Fain, Goel, and Munagala (2016) have studied proportional representation in the divisi-
ble model.

Preference modelling and ballot design. As mentioned above, there are multiple
ways in which voters can vote. Since different voting mechanisms elicit different types of
information about the voters’ preferences, connected to the choice for a particular voting
mechanism is the choice for the type of information that one wants to elicit.

In this thesis, we will work with Approval Voting, where voters vote on projects that
they approve of. We therefore model agents’ preferences as dichotomous preferences,
which is a preference relation that divides the set of projects into two subsets: those

2For example, consider again our earlier Figure 1.1. Suppose that after funding the football field, we
still have some budget available to fund part of the gymnastics park. We might not be able to fund all of
the gymnastics equipment, but we can fund a few pieces of equipment. A mathematical PB model that
allows for this possibility is called continuous/divisible.
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which are liked and those which are disliked.
Approval Voting is the default way of eliciting preferences (Aziz and N. Shah, 2021),

and there are different ways of doing it. In the least restrictive version of Approval Voting,
voters can approve of any set of projects (see e.g. the work by Aziz, Brill, et al. (2017) and
Aziz, Lee, and Talmon (2018)). They might even approve of all of the available projects.
As we will later see, we will sometimes put some restrictions on the set of projects that
voters can approve of. For example, we might require that voters can only approve of
sets of projects whose total cost does not exceed the budget that is available. So-called
‘Knapsack Voting’ is a special case of this and has been studied in the context of PB for
example by Goel et al. (2020).

Work on PB where voters submit ranked ballots instead of approval ballots has for
example been done by Airiau et al. (2019). They studied several voting rules in this con-
text that maximise the social welfare, and showed that they also satisfy several notions of
fairness. In this work, preferences are modelled correspondingly as ordinal preferences,
which is a ranking over the set of available projects, stating which projects are preferred
to which other projects, though not specifying to what extent a project is preferred to
another project.

We work with approval ballots instead of ranked ballots for two reasons. First, rank-
ing projects gives relative but not absolute information: the fact that a voter ranked a
project last does not imply that the voter thinks this project is not a good project, only
that it is less preferred to the other projects. For example, a voter might think all of the
proposed projects are good projects. Second, asking agents for a full ranking of all of
the available projects can present agents with too many choices. It has been shown by
Iyengar and Lepper (2000) that a greater choice can decrease the agents’ subsequent sat-
isfaction of their choice.

Vote aggregation. The third design choice is on how to aggregate the votes into a
single set of chosen projects. As mentioned above, there are different goals that can steer
this choice.

One common goal in selecting a suitable set of projects is to maximise the welfare
of the voters. The work by Hershkowitz et al. (2021) and Fluschnik et al. (2019) are
examples.

In this thesis, however, our goal is not to maximise the welfare of the agents, but to
generate a fair outcome. The work most similar to this thesis is the work done by Lack-
ner, Maly, and Rey (2021).

Sequentiality. The last and most distinguishing design choice is whether PB is de-
scribed as a one-shot process, or as a sequential process (i.e., as a process in which agents
vote during multiple rounds). Almost all work on PB models PB as a one-shot process.

Only recently, Lackner (2020) introduced perpetual (sequential) voting in the context
of classical voting. It was then introduced to the context of PB by Lackner, Maly, and
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Rey (2021). The perpetual model is called ‘Perpetual Participatory Budgeting’ (PPB).
We will adopt this formal model.

Decision space Ballot design Vote aggregation Sequentiality

Divisible Approval Welfare maximisation Sequential
Discrete Ranked Fairness Non-sequential

Table 1.1: The design choices of the current thesis

Finally, in this thesis our main focus is on the welfare of groups of agents, instead
of on the welfare of individual agents. In particular, we are interested in the welfare of
districts – being a particular group of agents. Currently, PB is usually done per district,
as opposed to city-wide. Recent work by Hershkowitz et al. (2021) has demonstrated that
a city-wide PB is a Pareto-improvement on the district-level PB. This means that every
district would get at least as much welfare as in district-level PB and at least one district
gets strictly more welfare.

This work shares its point of departure with this thesis: PB should be done city-wide,
and subsequently the way of selecting projects should take the preferences of the districts
into account. The exact interpretation thereof, however, is different. While Hershkowitz
et al. (2021) focus on maximising the welfare of the districts, the current thesis puts the
focus on generating fairness for the separate districts.

1.7 Overview
In Chapter 2, we define (P)PB and formulate a fairness theory for PPB following Lack-
ner, Maly, and Rey (2021). In particular, we define three different notions of fairness and
three different ways of measuring welfare. Furthermore, we will highlight several recent
results about the extent to which fair outcomes can be achieved in PPB.

In Chapter 3, we extend these results by examining the extent to which solutions can
be guaranteed that converge to equal-satisfaction, which is one of the ways of defining
fairness and welfare. We show that this depends on the amount of agents that are involved.
If there are more than seven agents, a converging solution is not guaranteed to exist.
However, if there are less than four agents – divided into at most three types – a converging
solution can be guaranteed to exist.

Chapter 4 is an analysis of the computational complexity of determining whether a
fair outcome exists – where a fair outcome is defined as an outcome in which all types
get an equal share of the available budget. We show that we cannot always efficiently
compute an outcome that satisfies the property of equal-share.

In Chapter 5, we investigate the possibilities of achieving fair outcomes when these
outcomes are taken to be outcomes that converge to equal-relative satisfaction (which is
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also a way of defining fairness and welfare). We show that when there are three groups
of agents, we can guarantee that – given certain assumptions – such an outcome exists.
Not only do we show that such an outcome must exist, we also show how to compute it.

In the conclusion, we summarise all of the results (in particular, Table 6.1 summarises
all the results discussed in the thesis), discuss the implications of these results and present
some directions for future research.

12



Chapter 2

Preliminaries

In this chapter we will build the foundation that is necessary to understand the following
chapters and results. We will first define the formal model of Participatory Budgeting
(PB), followed by the formal model of Perpetual Participatory Budgeting (PPB). This
formal model – introduced by Lackner, Maly, and Rey (2021) – adds a “perpetual” di-
mension to the classical PB model. Perpetual voting had already been considered in the
context of classical voting by Lackner (2020). Since the notion of fairness is defined in
terms of the notion of welfare, we will – in the second part of the chapter – define sev-
eral notions of welfare that we will be using. Finally, we will give an overview of some
important results that apply to the framework of PPB.

In Chapter 4 we will prove a complexity result. This requires basic knowledge about
complexity theory, such as knowledge about the complexity classes P and NP, but since
this is not a core result, we will not elaborate on this here. For an introduction to com-
plexity theory we recommend the handbook by Arora and Barak (2009).

2.1 Participatory Budgeting
Let N be a finite set of n voters – also called agents – such that N = {1, . . . , n}. And
let P = {p1, . . . , pm} with m ∈ N be a finite set of projects on which the agents can
vote. Each agent i ∈ N approves of a set of projects, which is expressed by the approval
function:

Definition 2.1.1 (Approval function). The approval function is a function A : N →
2P\{∅} giving for every i ∈ N the set of projects A(i) ⊆ P the agent approves of.

Given these notions, the budgeting problem for PB can be defined as a tuple consisting
of the set of available projects, the available budget and the approval function. This is
called a budgeting problem, because it intuitively – almost completely – describes the
problem that a policy-maker faces when she has to decide on how to allocate the available
money among the available projects.

13
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However, another crucial part of the policy maker’s problem is the cost of the different
projects, while the cost function is not part of the formal definition. The (technical)
reason for this will become apparent later.

Definition 2.1.2 (Budgeting problem for PB). A budgeting problem I for PB, also called
a budgeting instance, is a tuple I = ⟨P , b, A⟩, where:

• P = {p1, . . . , pm} is the finite set of available projects,

• b ∈ N>0 is the available budget,

• A : N → 2P\{∅} is the approval function. For any i ∈ N , A(i) is called a
(approval) ballot.

All projects have an associated cost. This is expressed by the cost function, which is
a function that maps every available project to a natural number:

Definition 2.1.3 (Cost function). Given the set P = {p1, . . . , pm} of available projects,
a cost function is a function cPB : P → N that maps every available project to its
associated cost.

The outcome of a budgeting problem I is a budget allocation. A budget allocation
intuitively corresponds to a set of projects that could be selected after the voting pro-
cedure. A budget allocation can have different desirable properties. Two minimal ones
that we will usually require are that a budget allocation (1) is feasible – which intuitively
expresses that the budget allocation respects the available budget – and (2) is exhaus-
tive – which intuitively expresses that the budget allocation uses all the available budget,
though not more than that.

Definition 2.1.4 (Budget allocation, feasibility and exhaustiveness). Given a budgeting
problem I = ⟨P , b, A⟩ and a cost function cPB, a budget allocation is a set π ⊆ P\{∅}.
A budget allocation π is called:

• Feasible iff
∑

p∈π⊆P c(p) ≤ b,

• Infeasible iff π is not feasible, and

• Exhaustive iff π is feasible and there does not exist a project p ∈ P such that p ̸∈ π
and c(π ∪ {p}) ≤ b.

As mentioned in the introduction, our main interest is in the welfare of types of agents,
instead of in the welfare of individual agents. A type is defined as a subset of the set of
agents, and, accordingly, the set of types is a set of subsets of the set of agents.

Definition 2.1.5 (Type). Given a budgeting instance I = ⟨P , b, A⟩, a type t is a finite
subset t ⊆ N . We denote by T = {t1, . . . , tn} ⊆ 2N a set of n ∈ N types so that⋂

ti∈T ti = ∅.
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Similar to the approval function, the type function is a function that gives for every
agent its associated type.

Definition 2.1.6 (Type function). Given a set of agents N , a budgeting instance I =
⟨P , b, A⟩, and a set T ⊆ 2N of types, the type function is a function T : N → T that
maps every agent i ∈ N to its associated type.

Example 2.1.7. Consider the following scenario with a set of agents N = {1, 2, 3, 4},
a type function T (1) = T (2) = t1 and T (3) = T (4) = t2, and a budgeting problem
I = ⟨P , b, A⟩, with:

• P = {p1, p2, p3, p4},

• b = 10,

• A(1) = {p1}, A(2) = {p1, p2} and A(3) = {p3, p4} and A(4) = {p4}.

Suppose that we are given the following cost function: c(p1) = 5, c(p2) = 5, c(p3) =
3 and c(p4) = 5, and consider a budget allocation π = {p1, p3}. Note now that π∩A(1) =
A(1). That is, agents 1’s full ballot is funded, while significantly less projects are funded
of other agents’ approval ballots. For example, it holds that π ∩ A(4) = ∅. Intuitively,
then, the budget allocation π doesn’t seem to be ‘fair’ for individual agents participating.
Also on the level of types of agents, the budget allocation intuitively doesn’t seem fair.
For both agents 1, 2 ∈ t1 at least one project of their choice is funded, while this is only
the case for one of the agents of t2. We will later make this intuition about the fairness
of a budget allocation more precise.

Finally, note that the ballots of all the agents are feasible, since c({p1}) = c({p4}) =
5 ≤ b = 10, c({p3, p4}) = 8 ≤ b = 10 and c({p1, p2}) = 10 ≤ b = 10.

However, not all ballots are exhaustive. To illustrate, agent 2’s ballot is exhaustive, as
c({p1, p2} ∪ {p3}) > b and c({p1, p2} ∪ {p4}) > b. However, the ballot of agent 4 is not
exhaustive. For example, for agent 4 we have that c({p4} ∪ {p1}) = 10 ≤ b = 10. △

To conclude, one note about notation. In the following we will usually write a vector
x = (x1, . . . , xn) in boldface. We write – with minor abuse of notation – x ∈ x to
express that x is an element of the vector x.

2.2 Perpetual Participatory Budgeting
The model of Perpetual Participatory Budgeting (PPB) is an extension of the PB model.

In PPB, we consider a sequence I = (I1, . . . , Ik) of k budgeting problems with
k ∈ N ∪ {∞}, where Ij denotes the jth entry of I .

Definition 2.2.1 (k-PPB Instance). A k-PPB Instance I is a sequence
I = (I1, . . . , Ik) of k budgeting instances with k ∈ N ∪ {∞}, where Ij = ⟨Pj, bj, Aj⟩
denotes the jth entry of I .
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Formally, a k-PPB instance is any sequence of k budgeting instances. Intuitively, this
sequence is meant to represent a temporal sequence of budgeting instances. It is meant to
represent the fact that PB is a recurring process, in which agents vote on projects possibly
for several times in a row. Given such a sequence of budgeting problems, we denote by
a ‘round’ the place that a specific budgeting problem takes in that sequence:

Definition 2.2.2 (Rounds). Given a k-PPB Instance I = (I1, . . . , Ik), and given any
budgeting instance Ij ∈ I , j is called a round of I . If clear from the context, we will
omit the I of which j is a round.

We assume that the set N of agents stays the same in each round. And we denote by
A(Ij) the set of all feasible budget allocations for Ij .

As mentioned before, the PPB model is an extension of the PB model, in a way that
the PPB model should allow us to capture the recurring nature of PB instances. For
example, we require the notion of the set of projects available in a certain round, the
budget available in that round, and the approval function of that round. This allows for
the possibility that the set of available projects, the budget, and the approval function
differ per round. Nevertheless, it is sometimes useful to be able to denote all the projects
that occur during a k-PPB instance.

Definition 2.2.3 (The set of all projects). Given a k-PPB instance I = (I1, . . . , Ik) with
k ∈ N∪{∞}, and given a set of available projects Pj for each round j ∈ {1, . . . , k}, we
denote by P = {p1, . . . , pz} with z ∈ N the set of projects such that P =

⋃
j∈{1,...,k}Pj .

Example 2.2.4. Consider the 2-PPB instance I = (I1, I2). Then I1 = ⟨P1, b1, A1⟩ is the
budgeting instance of the first round and I2 = ⟨P2, b2, A2⟩ is the budgeting instance of
the second round.

By assumption, the set N of agents is the same in both rounds. The set of all projects
P equals the union of all the available projects in each round, so P = P1 ∪ P2. △

Furthermore, the cost function for PPB is an extension of the cost function for PB.
It now maps every possible project to its associated cost, as opposed to mapping merely
every available project to its associated cost.

Definition 2.2.5 (Cost function for PPB). Given the set P = {p1, . . . , pz} with z ∈ N
of possible projects, a cost function for PPB is a function c : P → N that maps every
possible project to its associated cost.

Given this definition, we can explain the aforementioned reason for not including the
cost function in the definition of a budgeting problem. The reason is that by excluding
the cost function from the definition of a budgeting problem, we want to stress that, while
the available projects, budget and approval function might differ per round, the cost of
the projects is the same in every round.
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Given the notion of a k-PPB instance, we are able to define the notion of a sequence
of budget allocations, which we refer to as a solution.

As mentioned in the introduction, our main interest lies with analysing the possible
welfare that can be guaranteed to agents if, in the choice for a budget allocation, the
budget allocations of previous rounds are taken into account. Hence, the definition of a
solution is a fundamental one, for it allows us exactly to reason about these sequences of
budget allocations.

Definition 2.2.6 (Solution). Given a k-PPB instance I = (I1, . . . , Ik)with k ∈ N∪{∞},
a cost function c, and given a budget allocation πj ⊆ Pj for any round j ∈ {1, . . . , k},
the vector π = (π1, . . . , πk) is called a solution for I . A solution π is called:

• Feasible iff all budget allocations πj ∈ π are feasible

• Infeasible iff π is not feasible.

• Exhaustive iff all budget allocations πj ∈ π are exhaustive.

The notions of feasibility, infeasibility and exhaustiveness also apply to ballots. Fea-
sibility and exhaustiveness express two properties that ballots can have. It will later turn
out to be useful to require ballots to have these properties. More precisely: some desir-
able results about solutions only hold if we require that the ballots satisfy feasibility and
exhaustiveness.

Definition 2.2.7 (Feasible, infeasible and exhaustive ballots). Given a k-PPB instance
I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, any Ij = ⟨Pj, bj, Aj⟩ ∈ I , a cost function c and a
solution π = (π1, . . . , πk) for I , then for any agent i ∈ N and any round j ∈ {1, . . . , k}
a ballot Aj(i) is called:

• Feasible iff
∑

p∈Aj(i)
c(p) ≤ bj ,

• Infeasible iff π is not feasible, and

• Exhaustive iff Aj(i) is feasible, and there does not exist a project p ∈ Pj such that
p ̸∈ Aj(i) and c(Aj(i) ∪ {p}) ≤ bj . Exhaustive ballots are also called knapsack
ballots (Goel et al., 2020).

Finally, note that while the available budget might differ per round, there will some-
times be a certain ‘bound’ such that the available budget will not be higher than that
bound:

Definition 2.2.8 (Budget bound). Given a set N of agents, a finite set P of possible
projects, a k-PPB instance I = (I1, . . . , Ik) with k ∈ N∪{∞}, a budget bound B∗ ∈ N
denotes a constant such that bj ≤ B∗ for all j ∈ {1, . . . , k}. We say that B∗ is a bound
for I .
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2.3 A Fairness Theory for PPB
In this section we will describe the work that has already been done on analysing the
extent to which fair solutions can be guaranteed in PPB. In the first part of the section we
will provide definitions of welfare and fairness. In the second part of the section we will
give several results about the guaranteed existence of fair solutions in this framework.

2.3.1 Definitions
In the first part of this section, we will consider several notions of fairness. These no-
tions are based on certain conceptualisations of welfare. We will therefore also present
different measures of welfare. These definitions are based on the work done by Lackner,
Maly, and Rey (2021).

First, we define the notion of a welfare measure. A welfare measure intuitively ex-
presses how much welfare a certain solution generates for a type. Formally, it is a function
that maps a k-PPB instance I , a solution π for I , a type t and a round j to a real number,
expressing the amount of welfare generated by an instance, with a solution, for a type
and in a specific round.

Definition 2.3.1 (Welfare measure). A welfare measureF is a function that takes as input
a k-PPB instance I , a solution π for I , a type t ∈ T and a round j ∈ {1, . . . , k}, and
outputs a welfare score F (I,π, t, j) ∈ R for type t of the solution π for the first j rounds
of I .

As mentioned above, there are different ways of measuring welfare, and we will con-
sider three of these later on in this section. Furthermore, aside from having a certain way
of measuring types’ welfare, we require a way of determining whether this distribution of
welfare is ‘fair’. There are several useful ‘fairness criteria’. First, consider the following
fairness criterion of Equal-F .

Definition 2.3.2 (Equal-F ). Given a k-PPB instance I = (I1, . . . , Ik)with k ∈ N∪{∞},
a solution π = (π1, . . . , πk) for I , a set of types T , a round j ∈ {1, . . . , k}, we say π
satisfies equal-F at round j if for every two types t, t′ ∈ T , we have:

F (I,π, t, j) = F (I,π, t′, j).

Moreover, a solution π satisfies equal-F if it satisfies equal-F at round j for all
rounds j ∈ {1, . . . , k}.

Example 2.3.3. Consider the 4-PPB instance I with four agents 1, 2, 3 and 4 and two
types t1 and t2, such that agents 1 and 2 are of type t1 and agents 3 and 4 are of type t2.
Given some solution π, consider the welfare measure F that generates a welfare score
of 2 for each type in the first round, a score of 4 in the second, a score of 6 in the third
and a score of 8 in the final (fourth) round. So, for example, F ((I1, I2), (π1, π2), t1, 2) =
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F ((I1, I2), (π1, π2), t2, 2) = 4. Clearly, the solution π satisfies equal-F at round j for all
j ∈ {1, 2, 3, 4}. △

We can show, however, that the fairness criterion of equal-F is an extremely de-
manding criterion. We show in Example 2.3.10 that there are k-PPB instances with only
a limited number of agents and projects that do not allow solutions that satisfy equal-F .

This forms the main motivation for introducing another fairness-criterion: conver-
gence to equal-F . While we might often not be able to find solutions that are perfectly
fair, in the sense of satisfying equal-F , we might be able to find solutions that converge to
equal-F on the long run. We will be mainly using the notion of convergence to equal-F
as our fairness criterion, because it is not too stringent, while still being an appealing
fairness criterion.

The definition intuitively states that a solution converges to equal-F if all the different
types have an equal amount of welfare when the amount of rounds that have taken place
tends to infinity.

Definition 2.3.4 (Convergence to equal-F ). Given a setN of agents, an∞-PPB instance
I , a solution π = (π1, π2 . . .) for I , a set of types T ⊆ 2N , a round j ∈ {1, 2, . . .} with
Ij = ⟨Pj, bj, Aj⟩, and a welfare measure F , we say that the solution π for I converges
to equal-F iff for any two types ti, ti′ ∈ T :

F (I,π, ti, k)

F (I,π, ti′ , k)
−−−−→
k→+∞

1.

Next to different fairness criteria, of which equal-F and convergence to equal-F are
examples, there are also many different possible welfare measures. Now consider the fol-
lowing three specific welfare measures that we will be mainly using: satisfaction, relative
satisfaction and share.

There are different ways of defining satisfaction, three of which can be found in the re-
cent article by Talmon and Faliszewski (2019). Given a budgeting problem I = ⟨P , b, A⟩,
a budget allocation π ⊆ P , and some agent i ∈ N , the satisfaction of agent i can for
example be defined as the amount of projects that are funded and which i approves of.
Satisfaction could also be defined as being 0 if none of i’s approved projects are funded,
and 1 otherwise (i.e., if at least one of agent i’s approved projects is funded).

In this thesis, we will define the satisfaction of agent i as the total cost of all the
projects that are funded and approved by i.

The intuitive reason behind defining satisfaction in this way, rather than in one of the
two ways above, is that there seems to be a positive correlation between the satisfaction of
an agent and the cost of the funded projects which are approved by the agent (Talmon and
Faliszewski, 2019). For example, if an agent approves of both building a new park bench,
and of building an entire swimming pool, than funding the swimming pool is intuitively
more likely to generate more satisfaction for the agent than building the bench.
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The formal definition starts with defining the marginal satisfaction of an agent for a
round. This definition closely resembles the intuitive reasoning above. This basic notion
is then extended to a welfare measure in a natural way.

Definition 2.3.5 (Satisfaction). Given a setN of agents, a finite setP of possible projects,
a k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution π = (π1, . . . , πk) for
I , a cost function c : P → N, a set of types T ⊆ 2N , a round j ∈ {1, . . . , k} with
Ij = ⟨Pj, bj, Aj⟩, we define the marginal satisfaction of agent i ∈ N as:

satmj (I, πj, i) = c(πj ∩ Aj(i)).

Moreover, the marginal satisfaction of a type t ∈ T for round j ∈ {1, . . . , k} is defined
as:

satmj (I, πj, t) =
1

|t|
∑
i∈t

satmj (I, πj, i).

And, finally, the satisfaction of a type t ∈ T for some round j ∈ {1, . . . , k} is defined
as:

satj(I,π, t) =
∑

1≤j∗≤j

satmj∗(I, πj∗ , t).

Another welfare measure is the notion of relative satisfaction. It intuitively expresses
an agents’ welfare – given a specific round and a budget allocation for that round – to be
equal to the amount of money spent on her preferences, relative to the amount of money
that could have been spend on her preferences. Then this notion is extended in a similar
way as above to a welfare measure.

Definition 2.3.6 (Relative satisfaction). Given a set N of agents, a finite set P of pos-
sible projects, a k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution
π = (π1, . . . , πk) for I , a cost function c : P → N, a set of types T ⊆ 2N , a round
j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩, we define the marginal relative satisfaction of
agent i ∈ N as:

rsatmj (I, πj, i) =
c(πj ∩ Aj(i))

max{c(A)|A ⊆ Aj(i) and c(A) ≤ bj}
.

Moreover, the marginal relative satisfaction of a type t ∈ T for round j ∈ {1, . . . , k} is
defined as:

rsatmj (I, πj, t) =
1

|t|
∑
i∈t

rsatmj (I, πj, i).

And, finally, the satisfaction of a type t ∈ T for some round j ∈ {1, . . . , k} is defined
as:

rsatj(I,π, t) =
∑

1≤j∗≤

rsatmj∗(I, πj∗ , t).
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Intuitively, both the notion of satisfaction and of relative satisfaction are intended as
ways to approximate agents’ underlying satisfaction functions (i.e., functions that take as
input an allocation and produce some level of satisfaction). Our notion of ‘satisfaction’,
for example, is an approximation that is based on the assumption that agents’ underlying
satisfaction functions depend on the cost of the projects that they approve of. It states
that the satisfaction generated for an agent due to an approved project is equal to the
cost of this project. This correlation is probably not perfect, and therefore our notion of
satisfaction is an approximation.

Nevertheless, two drawbacks of this approach are (1) that it is not clear what these
underlying satisfaction functions are (and that we therefore cannot know how good our
approximations are), and (2) that it might be the case that no such underlying satisfactions
functions exist at all.

Another approach is to refrain from approximating agents’ underlying satisfaction
functions and instead consider the amount of effort at satisfying the agents (not bothering
with the extent to which projects generate satisfaction). This conception of welfare is
formalised in the notion of ‘share’. The share of an agent i due to some allocation π
intuitively corresponds to the amount of effort that has been put – by selecting π – into
satisfying i. An agent’s share due to an approved project increases the fewer other agents
also approve of this project. For example, if an agent’s approved project is funded while
no other agent approves of this project, then this agent’s welfare should be high, since it
has received a large ‘share’ of the total budget.

Definition 2.3.7 (Share). Given a set N of agents, a finite set P of possible projects, a
k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution π = (π1, . . . , πk) for
I , a cost function c : P → N, a set of types T ⊆ 2N , a round j ∈ {1, . . . , k} with
Ij = ⟨Pj, bj, Aj⟩, we define the marginal share of agent i ∈ N as:

sharemj (I, πj, i) =
∑

p∈πj∩Aj(i)

c(p)

|{i′ ∈ N|p ∈ Aj(i′)}|

Moreover, the marginal share of a type t ∈ T for round j ∈ {1, . . . , k} is defined as:

sharemj (I, πj, t) =
1

|t|
∑
i∈t

sharemj (I, πj, i).

And, finally, the share of a type t ∈ T for some round j ∈ {1, . . . , k} is defined as:

sharej(I,π, t) =
∑

1≤j∗≤j

sharemj∗(I, πj∗ , t).

Now that we have defined the three welfare measures satisfaction, relative satisfaction
and share, we can make precise in what sense the allocation π of Example 2.1.7 is not
fair.
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Example 2.3.8 (Computing the (relative) satisfaction of Example 2.1.7). So consider
again Example 2.1.7. We have four agents, called 1, 2, 3, 4, so that agents 1 and 2 are of
type t1 and agents 3 and 4 are of type t2. And we have four available projects: p1, p2 and
p4 with a cost of 5, and p3 with a cost of 3. And suppose that we have a budget allocation
π = {p1, p3}.

Suppose w.l.o.g. that the budgeting problem I is the jth entry of a k-PPB instance
I with j = 1. We thus focus only on computing the welfare – and determining the
corresponding fairness – in the first round.

We can now compute the satisfaction and relative satisfaction scores for the agents
and the types (we will calculate the share scores in Example 2.3.9). First, we compute
the satisfaction scores.

First we compute the marginal satisfaction scores for the different agents.

• Agent 1. By definition of satisfaction, we have that satm1 (I, π, 1) = c(π∩A1(1)) =
c({p1, p3} ∩ {p1}) = c({p1}) = 5.

• Agent 2. By definition of satisfaction, we have that satm1 (I, π, 2) = c(π∩A1(2)) =
c({p1, p3} ∩ {p1, p2}) = c({p1}) = 5.

• Agent 3. By definition of satisfaction, we have that satm1 (I, π, 3) = c(π∩A1(3)) =
c({p1, p3} ∩ {p3, p4}) = c({p3}) = 3.

• Agent 4. By definition of satisfaction, we have that satm1 (I, π, 4) = c(π∩A1(4)) =
c({p1, p3} ∩ {p4}) = c(∅) = 0.

This allows us to compute the marginal satisfaction of a type t ∈ T for round 1 ∈
{1, . . . , k} as follows:

• Type 1. By definition of satisfaction, we have

satm1 (I, π, t1) =
1

|t1|
∑
i∈t1

satm1 (I, π, i) =
1

2
· 10 = 5.

Now, let π be any solution such that π = (π1, . . . , πk). Since j = 1 ∈ {1, . . . , k}
it follows that: sat1(I,π, t1) = satm1 (I, π, t1) = 5.

• Type 2. By definition of satisfaction, we have

satm1 (I, π, t2) =
1

|t2|
∑
i∈t2

satm1 (I, π, i) =
1

2
· 3 = 1.5.

Now, let π be any solution such that π = (π1, . . . , πk). Since j = 1 ∈ {1, . . . , k}
it follows that: sat1(I,π, t2) = satm1 (I, π, t2) = 1.5.
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Therefore, sat1(I,π, t1) ̸= sat1(I,π, t2). Hence, by definition, the solution π does
not satisfy equal-satisfaction at round 1. In this sense, then, the allocation π1 is not fair.

Next, we compute the relative satisfaction scores at round 1. First we compute the
marginal relative satisfaction scores for the different agents.

• Agent 1. By definition of relative satisfaction, we have that

rsatm1 (I, π, 1) =
c(π ∩ A1(1))

max{c(A)|A ⊆ A1(1) and c(A) ≤ b1}
=

5

5
= 1.

• Agent 2. By definition of relative satisfaction, we have that

rsatm1 (I, π, 2) =
c(π ∩ A1(2))

max{c(A)|A ⊆ A1(2) and c(A) ≤ b1}
=

5

10
=

1

2
.

• Agent 3. By definition of relative satisfaction, we have that

rsatm1 (I, π, 3) =
c(π ∩ A1(3))

max{c(A)|A ⊆ A1(3) and c(A) ≤ b1}
=

3

8
.

• Agent 4. By definition of relative satisfaction, we have that

rsatm1 (I, π, 4) =
c(π ∩ A1(4))

max{c(A)|A ⊆ A1(4) and c(A) ≤ b1}
=

0

5
= 0.

In a similar way to the case of satisfaction, this allows us to compute the relative
satisfaction of a type t ∈ T for round j ∈ {1, . . . , k}. We then get the following:

• Type 1. We get that rsat1(I,π, t1) =
1+ 1

2

2
= 0.75.

• Type 2. We get that rsat1(I,π, t2) =
3
8
+0

2
= 3

16
.

Therefore, rsat1(I,π, t1) ̸= rsat1(I,π, t2). Hence, by definition, the solution π
also does not satisfy equal-relative satisfaction at round 1. In this sense too, then, the
allocation π is not fair.

Note, however, that it is still possible to reach fairness in the long run. For example,
suppose that for every round i ∈ {1, . . . , k} we have that I1 = Ii. That is, we have
the k-PPB instance I = (I1, . . . , Ik) with I1 = Ii for each Ii ∈ I . Then define π =
(π1, . . . , πk) as follows. For each πi ∈ π, set:

πi =

{
{p1}, if i is odd
{p4}, if i is even.
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Figure 2.1: The satisfaction scores of types t1 and t2 of Example 2.1.7

Then, satmi (I,π, t1) = 5 (and satmi (I,π, t2) = 0) for each odd round i and
satmi∗(I,π, t2) = 5 (and satmi∗(I,π, t1) = 0) for each even round i∗.

Hence, we have
satj(I,π, t1)

satj(I,π, t2)
−−−−→
j→+∞

1.

Thus, by definition, the solution π for I converges to equal-satisfaction. In this sense,
then, though we couldn’t acquire perfect fairness in the first round, there exists some
solution that converges to a fair situation in the long run. △

Figure 2.1 illustrates the concepts above. In the figure, the satisfaction scores of types
t1, t2 in round 1 are visualised, though since by definition all welfare measures output a
welfare score F (I,π, t, j) ∈ R, the figure could equally well be an illustration of any
other welfare measure. Conceptualising the welfare of types in such a visual way will be
useful later on.

We now also briefly illustrate the definition of share by computing some of the share-
scores of Example 2.1.7.

Example 2.3.9 (Computing the share of Example 2.1.7). We compute only the marginal
share of agents 1 and 2 for round 1 ∈ {1, . . . , k}, given the budget allocation π = π1 =
{p1, p3}. Suppose we’re given the same k-PPB instance I as in Example 2.3.8.

• Agent 1. By definition of share, we have:

sharem1 (I, {p1, p3}, 1) =
∑

p∈π1∩A1(1)

c(p)

|{i′ ∈ N|p ∈ A1(i′)}|
=

c(p1)

|{1, 2}|
=

5

2
= 2.5.
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• Agent 2. By definition of share, we have:

sharem1 (I, {p1, p3}, 2) =
∑

p∈π1∩A1(2)

c(p)

|{i′ ∈ N|p ∈ A1(i′)}|
=

c(p1)

|{1, 2}|
=

5

2
= 2.5.

△

As Example 2.3.8 shows, there are k-PPB instances that do not satisfy Equal-F in
some specific round, but that allow for a solution that converges to Equal-F in the long
run. As mentioned before, in general Equal-F is an extremely demanding criterion.
There are examples of k-PPB instances that allow no solution that satisfies equal-F at
any round.

The following k-PPB instance is one such example. It is based on an example given
by Lackner, Maly, and Rey (2021).

Example 2.3.10 (Equal-F is an extremely demanding criterion). Let N = {1, 2, 3, 4}
and let T (1) = T (2) = t1 and T (3) = T (4) = t2. Let P = {p1, p2, p3, p4}, with
c(p) = 1 for all p ∈ P. We define the k-PPB instance I as follows.

Let bi = 1 for each i ∈ {1, . . . , k}. In the first round, P = {p1, p2, p3, p4} and
A1(1) = {p1}, A2(2) = {p2}, A3(3) = {p3}, A4(4) = {p4}. In all other rounds j ̸= 1
we have Aj(n) = {p1} for each n ∈ N .
Suppose w.l.o.g. that π1 = {p1}. Then consider any arbitrary solution π = (π1, . . . , πk).

First we compute the satisfaction scores for the first round. For agent 1, we have
satm1 (I, π1, 1) = c(π1 ∩ A1(1)) = c({p1} ∩ {p1}) = 1. For all other agents i ∈ N with
i ̸= 1 we have that satm1 (I, π1, i) = c(π1 ∩ A1(i)) = c({p1} ∩ {pi}) = 0. Hence the
marginal satisfaction scores of the types for round 1 are:

satm1 (I, π1, t1) =
1

|t1|
∑
i∈t1

satm1 (I, {p1}, i) = 0.5,

and
satm1 (I, π1, t2) =

1

|t2|
∑
i∈t2

satm1 (I, {p1}, i) = 0.

Now we compute the satisfaction scores for the next rounds. Since Aj(i) = Aj(i
′)

for any round j ∈ {2, . . . , k} and for any agents i, i′ ∈ N , it holds that satj(I,π, t1) =
satj(I,π, t2)+ 0.5. Hence satj(I,π, t1) ̸= satj(I,π, t2) for any round j ∈ {2, . . . , k}.
Therefore, since π was arbitrary, it holds that there exists no solution for I that satisfies
equal-satisfaction.

The same result holds for relative satisfaction. To see this, note that for any round
j ∈ {1, . . . , k} and for any type t ∈ T , we have that – by definition of the approval
function Aj and the available budget bj – max{c(A)|A ⊆ Aj(i) and c(A) ≤ bj} = 1.
Thus, for any agent i ∈ t:
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c(πj ∩ Aj(i))

max{c(A)|A ⊆ Aj(i) and c(A) ≤ bj}
=

c(πj ∩ Aj(i))

1
= c(πj ∩ Aj(i)).

Therefore it follows that for any budget allocation πj ⊆ Pj , for any round j ∈ {1, . . . , k}
and for any type t ∈ {t1, t2}, we have satmj (I, πj, t) = rsatmj (I, πj, t). Hence it follows
that there exists no solution for I that satisfies equal-relative satisfaction. △

As will be apparent later on, in proofs it will be useful to be able to refer to the type
that, in some round, has the lowest, middle or highest welfare.

The definition of a middle type, though similar to those of the lowest and highest
type, is somewhat different, since it’s defined only if there are exactly three types.1

Definition 2.3.11 (Lowest, middle and highest welfare for types). Given a set N of
agents, a finite set P of possible projects, a k-PPB instance I = (I1, . . . , Ik) with
k ∈ N ∪ {∞}, a solution π = (π1, . . . , πk) for I , a cost function c : P → N, a set
of types T ⊆ 2N with t ∈ T , a round j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩, and a
welfare measure F : (I,π, t, j) → R, we define:

1. tj,F− to be the type t ∈ T such thatF (I,π, t, j) ≤ F (I,π, ti, j) for any type ti ∈ T .
We will omit the superscript F when F is clear from the context.

2. tj,F+ to be the type t ∈ T such thatF (I,π, t, j) ≥ F (I,π, ti, j) for any type ti ∈ T .
We will omit the superscript F when F is clear from the context.

3. If |T | = 3, then we define tj,F0 to be the type t ∈ T such that:

F (I,π, tj,F− , j) ≤ F (I,π, tj,F0 , j) ≤ F (I,π, tj,F+ , j).

We will omit the superscript F when F is clear from the context.

As mentioned above, one important desideratum for an optimal solution is that it
converges to equal-F . For this it is desired, if not necessary, that the difference between
any two types’ welfare doesn’t get arbitrarily large. Therefore, it is useful to be able
to directly refer to the difference in welfare, in some round, between the type with the
highest welfare and the type with the lowest welfare.

Definition 2.3.12 (The big difference). Given a set N of agents, a finite set P of pos-
sible projects, a k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution
π = (π1, . . . , πk) for I , a cost function c : P → N, a set of types T ⊆ 2N with t ∈ T ,
a round j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩, a welfare measure F : (I,π, t, j) → R,
a type tj,F− and a type tj,F+ we define the big, or total, difference DIFF

j as DIFF
j =

F (I,π, tj,F+ , j) − F (I,π, tj,F− , j). We will omit the superscript F when F is clear from
the context.

1We could relax this assumption. However, this would complicate the definition. And since for our
proofs this definition suffices, we stick to this definition.
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• Given a budget allocation π ⊆ Pj and π ∈ π, we define the marginal increase of
DIFF

j due to π as DIFπ,F
j = DIFF

j − DIFF
j−1.

Similarly, for sake of brevity, it will turn out to be useful to directly refer to the amount
of welfare that a specific type has gained during some sequence of rounds.

Definition 2.3.13 (Increase of a type). Given a set N of agents, a finite set P of pos-
sible projects, a k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution
π = (π1, . . . , πk) for I , a cost function c : P → N, a set of types T ⊆ 2N , a type
ti ∈ T , two rounds j, l ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩ and Il = ⟨Pl, bl, Al⟩, and a
welfare measure F : (I,π, ti, j) → R we define the increase of a type ti from round j
to l for welfare measure F as: Dti,F

j→l = F (I,π, ti, l) − F (I,π, ti, j). We will omit the
superscript F when F is clear from the context.

2.3.2 Results
As mentioned above, one of our main goals is analysing to what extent we can obtain
a fairer distribution of welfare by taking previous rounds into account. Work has been
done on this by Lackner, Maly, and Rey (2021). They found a mixture of positive and
negative results.

A first positive result states that with two agents, there will always exist a solution
that converges to equal-satisfaction. For two agents, there will also exist a solution that
converges to equal-relative satisfaction, but we can actually show the stronger result that
such a solution will exist for any two arbitrary types of agents. We will therefore consider
this as a separate result later on.

Proposition 2.3.14. Let I be any ∞-PPB instance with two agents and a bound B∗ ∈ N.
Furthermore, assume that for every round j ∈ {1, . . . , k} and both agents that there is
a project p with c(p) ≤ bj that the agent approves of. Then there exists a non-empty
feasible solution π = (π1, . . . , πk) that converges to equal-satisfaction.

However, this result cannot be generalised. Even for three agents we can find a k-PPB
instance for which there does not exist any solution that converges to equal-satisfaction.

Example 2.3.15 (No convergence to equal-satisfaction for three agents). Let I be a ∞-
PPB instance with three agents 1, 2, 3 where agent 1 has type t1 and agents 2 and 3 have
type t2. Assume bj = 1 for every round j ∈ {1, . . . , k} and c(p) = 1 for all projects
p ∈ P . In every round, there are two projects and agent 1 approves of both, 2 approves
of only one and 3 of the other one. Then, for every non-empty feasible solution π and
every round j, we have satj(I,π, t1) = j and satj(I,π, t2) = j

2
.

Hence
lim

j→+∞

(
satj(I,π, t2)

satj(I,π, t1)

)
=

1

2
̸= 1.
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Therefore, by definition of convergence to equal-F , it follows that there exists no
solution π such that π converges to equal-satisfaction. △

This example exploits the fact that if we don’t put any restrictions on agents’ ballots,
some ballots might be strict supersets of other ballots. In Example 2.3.15, for instance,
we have that Aj(2) ⊊ Aj(1) and Aj(3) ⊊ Aj(1) for any round j ∈ {1, . . . , k}. However,
given our definition of satisfaction, this implies that two agents’ full ballots might be
funded, while one agent is strictly more satisfied with this than the other agent.

There are several ways to limit the impact of this possibility. One of these is to con-
sider relative satisfaction, which we will do later. Another one is to restrict agents to sub-
mit knapsack (that is, exhaustive) ballots. In this way, intuitively, if we fund some agents’
full ballots, there might still be a difference between the satisfaction of the agents, but
this difference will not be ‘very big’. In particular, this avoids the possibility of ballots
being strict supersets of other ballots.

Indeed, if we restrict agents’ ballots to knapsack ballots, we find that for three agents
there always exists a solution that converges to equal-satisfaction.

Before we prove this, we first require a very useful result about the ballots of agents.

Lemma 2.3.16. Let I = (I1, . . . , Ik) be any k-PPB instance. Let N be the set of agents.
And let Ij = (Pj, bj, Aj) ∈ I , where Aj(i) is exhaustive for all i ∈ N . For any i, i′ ∈ N ,
if Aj(i) ̸= Aj(i

′), then there exist some projects p, p∗ ∈ Pj such that p ∈ Aj(i), p ̸∈
Aj(i

′), p∗ ∈ Aj(i
′) and p∗ ̸∈ Aj(i).

Proof. Suppose thatAj(i) ̸= Aj(i
′) and suppose for contradiction that there doesn’t exist

a project p ∈ Pj with p ∈ Aj(i) and p ̸∈ Aj(i
′). Thus for all projects p ∈ Pj we have

that if p ∈ Aj(i), then p ∈ Aj(i
′). Thus, by definition of ⊆, we have that Aj(i) ⊆ Aj(i

′).
Now there are two cases. Either Aj(i) = Aj(i

′), contradicting our earlier assumption
that Aj(i) ̸= Aj(i

′). Or Aj(i) ⊊ Aj(i
′), contradicting our assumption that ballots are

exhaustive. The other case is symmetric.

Lemma 2.3.16 now enables us to prove that when there are exactly three agents with
knapsack ballots, there exists a feasible solution that converges to equal-satisfaction. Be-
fore we prove this result, we will first give the main intuition behind the proof.

In order to show convergence, it suffices to show that the difference in satisfaction
between any two types cannot get arbitrarily large.

There are three agents, and they can - by definition - be divided into at least one and
at most three different types. The proof is structured according to the amount of types in
which the agents are divided. If there is only one type, the result follows immediately. If
there are two types, then we use Lemma 2.3.16 to pick an allocation that generates more
marginal satisfaction for the worst-off type, ensuring that the difference between the two
types does not get arbitrarily large. The final, and most complicated, case is when there
are three types (meaning that every type contains exactly one agent) and when the agent
of the worst-off type has exactly the same ballots as the best-off type’s agent.
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Figure 2.2: Ensuring a converging solution when there is a large difference between the
satisfaction of the middle type and the satisfaction of the best-off type

This case is complicated, because we cannot naively pick the allocation that gener-
ates the most marginal satisfaction for the worst-off type. Instead, we need to pick an
allocation by differentiating between two cases. If there is a relatively large difference
between the satisfaction of the middle type and the best-off type, then we can pick an al-
location that generates the most welfare for the middle type. This is illustrated by Figure
2.3.2. The transparant colours indicate the marginal satisfaction of the types, the opaque
colours indicate the satisfaction of the types in some round.

If, however, there is a relatively small difference between the satisfaction of the middle
type and the best-off type, then we can pick an allocation that generates no welfare for
the middle type, and most welfare for both the worst-off and best-off type (since the
ballots of their respective agents are identical). This is illustrated by Figure 2.3.2. In the
figure, satπt− , satπt0 and satπt+ are shorthands, indicating the marginal satisfaction for the
respective types t−, t0 and t+ in some round due to allocation π.

Proposition 2.3.17. Consider an ∞-PPB instance I = (I1, . . . , Ik) with three agents
where the ballot of each agent is exhaustive (i.e., is a knapsack ballot) in every round and
there is a bound B∗ ∈ N. Then, there is a non-empty feasible solution that converges to
equal-satisfaction.

Proof. Suppose w.l.o.g. that the agents are called 1,2 and 3. Since there are three agents,
there can possibly be at most three types: either there is only one, there are two, or there
are three. If there is only one type, then every agent belongs to the same type. In that
case, convergence to equal-satisfaction is trivially satisfied. So now we prove the two
other cases. First we prove the case in which there are only two types, then the case in
which there are 3.
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Figure 2.3: Ensuring a converging solution when there is a small difference between the
satisfaction of the middle type and the satisfaction of the best-off type

Case 1: two types. So suppose that there are only two types: t1 and t2. Further,
suppose w.l.o.g. that T (1) = t1 and T (2) = T (3) = t2. As for the general structure of the
proof, we first show that there exists a solution π such that the difference in satisfaction
between any two types is at most the bound B∗ in any round j ∈ {1, . . . , k}. After that
we show how this implies the fact that the solution π converges to equal-satisfaction.

More precisely, we will show first that for any round j ∈ {1, . . . , k}:

satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗. (2.1)

We prove this by induction on the number of rounds j. For the base case where j = 1,
by picking any allocation π ⊆ P1 at most B∗ is spend on projects, by definition of B∗.
Hence, by the definition of satj it holds that 0 ≤ sat1(I,π, t) ≤ B∗ for t ∈ {t1, t2}.
And therefore it follows that satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗.

Now consider an arbitrary round j-1 and suppose that (1) holds for round j-1. We
will show that it holds for round j too.

We have two cases: either satj−1(Ij−1,πj−1, t1) ≤ satj−1(Ij−1,πj−1, t2), or
satj−1(Ij−1,πj−1, t1) ≥ satj−1(Ij−1,πj−1, t2).

Suppose first that satj−1(Ij−1,πj−1, t1) ≤ satj−1(Ij−1,πj−1, t2), i.e., suppose that
in round j-1 type 1 has a lower satisfaction than type 2. Consider the budgeting problem
Ij = ⟨Pj, bj, Aj⟩ ∈ I for round j. Set πj = Aj(1). Note that this is possible since every
agent i ∈ N has an exhaustive ballot.

Note then that Aj(2)∩πj ⊆ Aj(1)∩πj = Aj(1) and that Aj(3)∩πj ⊆ Aj(1)∩πj =
Aj(1). Hence satmj (I, πj, 1) ≥ satmj (I, πj, 2) and satmj (I, πj, 1) ≥ satmj (I, πj, 2).
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Recall now the definition of the marginal satisfaction for a type t ∈ T for round
j ∈ {1, . . . , k}:

satmj (I, πj, t) =
1

|t|
∑
i∈t

satmj (I, πj, i).

From this definition and the inequalities above follows satmj (I, πj, t1) ≥ satmj (I, πj, t2).
Together with the assumption that satj−1(Ij−1,πj−1, t1) ≤ satj−1(Ij−1,πj−1, t2), it

follows that satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗.
Now suppose, for the other case, that satj−1(Ij−1,πj−1, t1) ≥ satj−1(Ij−1,πj−1, t2).

That is, suppose that in round j-1 type 1 has a higher satisfaction than type 2. Now con-
sider again the budgting problem Ij = ⟨P , bj, Aj⟩ for round j. Either Aj(1) = Aj(2) =
Aj(3), or not. If Aj(1) = Aj(2) = Aj(3), then clearly – regardless of what budget allo-
cation πj we select – the difference between the types’ satisfaction doesn’t change, so the
result holds by the IH. If it is not the case, then, by definition, it follows thatAj(1) ̸= Aj(i)
for some i ∈ t2. By Lemma 2.3.16 there exists a project p ∈ Aj(i) and p ̸∈ Aj(1) for
some i ∈ t2. Set πj = {p}. Then B∗ ≥ satmj (I, πj, t2) ≥ satmj (I, πj, t1) = 0. Together
with the assumption that satj−1(Ij−1,πj−1, t1) ≥ satj−1(Ij−1,πj−1, t2) it follows that
satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗.

So now we have a solution π such that for any round j ∈ {1, . . . , k}:

satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗.

Given this, it remains to be shown thatπ converges to equal-satisfaction. The intuitive
argument is as follows. For both types it holds that after a finite amount of rounds, the
type’s satisfaction increases. Therefore, the more rounds proceed, the higher the total
satisfaction for both types. However, the difference between both types is at most B∗ in
any round. So the difference in satisfaction between the two types does not increase the
more rounds proceed. Therefore, the more rounds proceed, the smaller the difference
in satisfaction becomes relative to the total satisfaction of both types. Thus when the
number of rounds tends to infinity, the solution π converges to equal-satisfaction.

First observe that satj(I,π, t1) + satj(I,π, t1) ≥
∑j

j′=1 c(πj′), by construction
of πj′ . Together with our earlier result that satj(I,π, t1) − B∗ ≤ satj(I,π, t2) ≤
satj(I,π, t1) +B∗ it follows that limj→+∞(satj(I,π, t1)) = +∞ and
limj→+∞(satj(I,π, t2)) = +∞. Hence we have

lim
j→+∞

(
satj(I,π, t1)−B∗

satj(I,π, t1)

)
= lim

j→+∞

(
satj(I,π, t2) +B∗

satj(I,π, t2)

)
= 1.

By our previous result we have:

satj(I,π, t1)−B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +B∗
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Dividing by satj(I,π, t1) we get:

satj(I,π, t1)−B∗

satj(I,π, t1)
≤ satj(I,π, t2)

satj(I,π, t1)
≤ satj(I,π, t1) +B∗

satj(I,π, t1)

Since the inequality above holds for any round j ∈ {1, . . . , k} it follows that

lim
j→+∞

(
satj(I,π, t2)

satj(I,π, t1)

)
= 1.

Case 2: three types. Now suppose that there are three types and suppose w.l.o.g.
that T (i) = ti for all i ∈ N . For this case we show that there exists some solution π
such that the difference between any two types in any round i ∈ {1, . . . , k} is at most
2 times the bound B∗. So we show that there exists some solution π such that for any
i, i∗ ∈ {1, 2, 3} we have that:

|satj(I,π, ti)− satj(I,π, ti∗)| ≤ 2B∗. (2.2)

From this fact, convergence to equal-satisfaction will follow in the same way as in the
previous case. Intuitively: if the difference between the satisfaction of the types remains
inside this bound, then the more rounds proceed, the higher the total satisfaction will
become, and the smaller the difference between the satisfaction of the types becomes
relative to the total satisfaction.

We again prove this claim by induction on the number of rounds j. For the base case,
suppose j=1. Then, as before, set π1 = π ⊆ P1 for any π ⊆ P1. Then there exists a
solution π = (π1) such that for any i, i∗ ∈ {1, 2, 3}: |sat1(I,π, ti)− sat1(I,π, ti∗)| ≤
2B∗.

For the induction hypothesis, consider any j− 1 ∈ {1, . . . , k} and suppose that there
exists a solution π such that
|satj−1(I,π, ti) − satj−1(I,π, ti∗)| ≤ 2B∗ for any i, i∗ ∈ {1, 2, 3}. We will show that
|satj(I,π, ti) − satj(I,π, ti∗)| ≤ 2B∗ for any i, i∗ ∈ {1, 2, 3}. Also suppose w.l.o.g.
that t1 = tj−1

− , t2 = tj−1
0 and t3 = tj−1

+ .
Now consider two cases. Either Aj(1) = Aj(3), or Aj(1) ̸= Aj(3). We show in

both cases that the result follows. Suppose first that Aj(1) = Aj(3). Now, in this case
we make a further sub-case distinction. Either

satj−1(I,π, t2) ≤ satj−1(I,π, t1) +B∗ (2.3)

or
satj−1(I,π, t3) ≤ satj−1(I,π, t2) +B∗ (2.4)

Intuitively, it might be the case that t2’s satisfaction is more or equal (the first case)
or less (the second case) than a full budget more than t1’s satisfaction.
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Suppose first that (2.3) holds, i.e. that satj−1(I,π, t2) ≤ satj−1(I,π, t1) + B∗,
and suppose that Aj(2) ̸= Aj(1) = Aj(3) (if Aj(1) = Aj(2) = Aj(3) the result
follows immediately by the IH). By Lemma 2.3.16, there exists some project p2 ∈ P
s.t. p2 ∈ Aj(2) and p2 ̸∈ Aj(1) = Aj(3). Then set πj = {p2}. By definition of
satmj it follows that satmj (I, πj, t2) ≥ satmj (I, πj, t1) = satmj (I, πj, t3) = 0. Possibly,
then t2 ‘overtakes’ t3, or not. If t2 = tj−1

0 = tj+ – i.e., if t2 overtakes – then from
our assumption that satj−1(I,π, t2) ≤ satj−1(I,π, t1) + B∗, we have that DIFj =
satj(I,π, tj−1

0 )− satj(I,π, tj−) ≤ 1B∗ + 1B∗ = 2B∗.
If t2 = tj−1

0 = tj0 - i.e., if t2 doesn’t overtake – then clearly DIFj = DIFj−1+DIFπ
j =

DIFj−1+0 = DIFj−1, thus it follows by the IH that |satj(I,π, ti)−−satj(I,π, ti∗)| ≤
2B∗.

Now suppose that (2.4) holds, i.e. that satj−1(I,π, t3) ≤ satj−1(I,π, t2) +B∗.
By Lemma 2.3.16 there exists some project p1 ∈ P such that p1 ̸∈ Aj(2) and p1 ∈
Aj(1) = Aj(3). Set πj = {p1}. Note that by assumption we have that Aj(1) = Aj(3).
Hence if tj−1

− = tj− it follows that DIFj−1 = DIFj and the result follows from the I.H..
So suppose that tj−1

− ̸= tj−. Since satj−1(I,π, t3) ≤ satj−1(I,π, t2) + B∗, we
have that satj−1(I,π, t3) − satj−1(I,π, t2) ≤ B∗. By definition of the marginal in-
crease of satisfaction we have that satmj (I, πj, t2) − satj−1(I, πj, t3) ≥ −1B∗. Since
by definition satj(I,π, t2) = satj−1(I,π, t2) + satmj (I, πj, t2) and satj(I,π, t3) =
satj−1(I,π, t3) + satmj (I, πj, t3) it follows that |satj(I,π, t3)− satj(I,π, t2)| ≤ 2B∗.

Now consider the case in which Aj(1) ̸= Aj(3). By Lemma 2.3.16, there exists some
project p ∈ Aj(1) s.t. p ̸∈ Aj(3). Set πj = {p}. Then, clearly satmj (Ij, πj, t1) ≥
satmj (Ij, πj, t2) and satmj (Ij, πj, t1) > satmj (Ij, πj, t3) = 0.

Since satmj (Ij, πj, t3) = 0, it follows that DIFj ≤ DIFj−1. By the IH it follows that
|satj(I,π, ti)− satj(I,π, ti∗)| ≤ 2B∗.

Through similar reasoning as for the case in which |T | = 2, we find that this means
that π satisfies convergence to equal-satisfaction.

Even with the restriction to knapsack ballots, however, some ballots might be strictly
more expensive than other ballots. By our definition of satisfaction, this implies again
that funding two agents’ full ballots might make one agent strictly more satisfied than the
other. This possibility is again exploited in the following example, which shows that for
eigth agents, there are k-PPB instances that, even when restricting the ballots to knapsack
ballots, do not allow for a solution that converges to equal-satisfaction.

Example 2.3.18. Let I be a ∞-PPB instance. In every round j, we have bj = 10,
there are eight agents 1, . . . , 8 such that 1,2,3 have type t1 and 4,5,6,7,8 have type t2.
Furthermore, there are six projects p1, . . . , p6 such that c(p1) = c(p2) = c(p3) = 5 and
c(p4) = c(p5) = c(p6) = 3. The ballots are such that, for every round j:
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Aj(i) =



{p1, p4}, if i = 1

{p2, p5}, if i = 2

{p3, p6}, if i = 3

{p1, p2}, if i = 4

{p1, p3}, if i = 5

{p2, p3}, if i = 6

{p4, p5, p6}, if i = 7

{p4, p5, p6}, if i = 8

As can be checked, at any round j and for each project p ∈ P, we have that the
marginal satisfaction for p for type t2 is higher than for type t1. This directly implies that
there can be no non-empty solution converging to equal-satisfaction. We will refrain
from giving the calculations here, since we will later prove the stronger result that even
for seven agents there exists a k-PPB instance for which no such solution exists. △

As mentioned before, the above counterexamples exploit the fact that some agents’
ballots are more expensive than other ballots. As a result, a budget allocation that funds
some agents’ full ballot might generate strictly more welfare for this agent than an-
other allocation would for another agent whose full ballot is funded. For instance, in
Example 2.3.18, agent 4’s full ballot is strictly more expensive than agent 3’s ballot:
c(Aj(4)) = 10, while c(Aj(3)) = 8. Restricting the ballots to knapsack ballots only
partially solved this problem, since all ballots in Example 2.3.18 are knapsack ballots.
Another possible solution is considering the notion of relative satisfaction, which makes
the welfare relative to the total cost of the ballot.

Indeed, this gives us more positive results. First of all, we can show that for two
arbitrary types of agents, there will always exist a solution π that converges to equal-
relative satisfaction.

Theorem 2.3.19 (Convergence to equal-relative satisfaction for two types). Assume that
I is an ∞-PPB-instance with non-empty knapsack ballots such that there are only two
types and a bound B∗ ∈ N. Then, there is a non-empty feasible solution for I that
converges to equal-relative satisfaction.

We refrain from giving the proof of Theorem 2.3.19 here and instead refer the reader
to the article of Lackner, Maly, and Rey (2021) for the proof.

2.4 Conclusions
In this chapter, we have layed the groundwork needed to understand the results in the
coming chapters. We defined PB in a standard way, and then presented PPB as an exten-
sion of this framework. We presented several ways of formalising welfare and fairness
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in PPB. Some – though not much – research has already been conducted on the extent
to which fair solutions can be guaranteed to exist and can be computed in PPB. We gave
several of the results that this research has yielded.

Some of these results are positive, others negative. The extent to which fair solutions
can be guaranteed to exist depends on the definitions of fairness and welfare that are used.
We saw in Example 2.3.10 that defining fairness as equal-F is too strict, as even when
there are four agents with knapsack ballots, a fair solution cannot be guaranteed to exist.

Defining fairness as convergence to equal-F yields more positive results. A solution
converging to equal-satisfaction can be guaranteed to exist when there are two agents
(Proposition 2.3.14), though this cannot be generalised to three agents (Example 2.3.15).
However, if we restrict the ballots to knapsack ballots, convergence to equal-satisfaction
is possible for three agents (Proposition 2.3.17), though not for more than eight agents
(Example 2.3.18). Convergence to equal relative satisfaction is even more promising,
since we can prove a fair solution always exists when there are at most two types (of
arbitrary size) and we restrict the ballots to knapsack ballots (Theorem 2.3.19). Table
6.1 summarises all the results.
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Chapter 3

Results about Satisfaction

In this chapter, we show two results about convergence to equal-satisfaction. As a first
result, we show that when there are only four agents who are divided into at most three
types, there always exists a solution that converges to equal-satisfaction. As was shown
before, equal-satisfaction cannot, however, be guaranteed for an arbitrary amount of
agents. As a second result, we show that even for seven agents it is not always possi-
ble to guarantee a solution that converges to equal-satisfaction.

3.1 Convergence to Equal-Satisfaction for Four Agents
and at most Three Types

As mentioned above, in this section we will prove that when there are only four agents,
who are divided in at most three different types, there always exists some non-empty
feasible solution π that converges to equal-satisfaction. More precisely, in Section 3.1.3,
we will prove the following theorem:

Theorem 3.1.1. Consider an ∞-PPB instance I = (I1, I2, . . .) with four agents where
the ballot of each agent is exhaustive in every round, |T | ≤ 3 and there exists a constant
B∗ ∈ N with bj ≤ B∗ for every round j. Then, there is a non-empty feasible solution that
converges to equal-satisfaction.

We will first sketch the higher-level structure of the proof. To show convergence, we
will show that the difference in satisfaction between any two types cannot get arbitrarily
large, which will imply convergence analogously to the way explicated in the proof of
Proposition 2.3.17. The proof of this fact consists in several case distinctions. The main
case distinction is based on the size of the set of types T . Based on this case distinction,
we then make the further sub-case distinction based on how the agents are divided among
the types.

In all of these cases we can show that there exists an allocation such that the total
difference doesn’t exceed 5 · B∗. In almost all cases, this can be shown by an induction
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Figure 3.1: Illustrating a critical case for satisfaction

on the rounds, which shows that in all these cases either the total difference decreases,
or – otherwise, if it increases – the total difference is extremely small (thereby certainly
satisfying the 5 ·B∗ bound).

There are, however, cases in which we cannot show this. In these cases, the total
difference can increase, while not being extremely small. We will now give an example
of such a ‘critical’ case.

Consider a k-PPB instance I = (I1, . . . , Ik) and some round j ∈ {1, . . . , k}, with
four agents and three types. And suppose that the best-off type tj+ in round j has size 2,
while the other types tj− and tj0 have size 1. Furthermore, suppose that satj(I,π, tj−) =
satj(I,π, t

j
0) = 10 · B∗, while satj(I,π, tj+) = 12 · B∗, i.e., types tj− and tj0 have a

satisfaction in round j of 10 ·B∗, while type tj+ has a satisfaction of 12 ·B∗. By definition
of DIFj , we have that DIFj = 2 ·B∗.

Now suppose that there are only two available projects p1 and p2, and that in round
j+1 the ballots are as follows: the agent of type tj− votes for p1, the agent of type tj0 votes
for p2 and the two agents of type tj+ vote mixed: one votes for p1, while the other votes
for p2. Now we’re forced to choose. We could either set πj+1 = {p1} or πj+1 = {p2}.
In both cases, however, one of the two lowest types gets 0 marginal satisfaction, and
hence its satisfaction in round j + 1 remains 10 · B∗. That is, either satj+1(I,π, t

j
−) =

satj(I,π, t
j
−) + satmj+1(I, πj+1, t

j
−) = 10 · B∗ or satj+1(I,π, t

j
0) = satj(I,π, t

j
0) +

satmj+1(I, πj+1, t
j
0) = 10 ·B∗. However, clearly, we have that, regardless of πj+1, tj+ gets

strictly more than 0 marginal satisfaction in round j+1. Hence satj+1(I,π, t
j
+) > 12·B∗.

Therefore, DIFj+1 > 2 · B∗ for all possible allocations πj+1. Figure 3.1 visualises this
example.

Thus, in such critical cases we cannot prevent the total difference from increasing,
while it neither is extremely small. In order to prove that in all cases the total difference
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is bounded by 5 ·B∗, we therefore need to ensure that a critical case cannot be a round j
in which the total difference DIFj is already 5 ·B∗, for this would possibly force the total
difference in the next round to be strictly higher: DIFj+1 > 5 · B∗, violating the bound
of 5 ·B∗.

Intuitively, we will show this as follows. We suppose, for contradiction, that such a
situation (which would force the total difference above the bound of 5 · B∗) is possible.
As mentioned above, in all cases except for these complicated cases, we can show that
either (1) the total difference decreases, or (2) it already is extremely small. This will
imply that we must have encountered, in an earlier round, a critical case in which the total
difference is close (or equal) to 2 ·B∗ (also to e.g. 3 ·B∗). We will prove two lemmas –
we require two (respectively Lemma 3.1.7 and Lemma 3.1.8), because the situations that
we require them for differ in the way the agents are divided among the three types – that
show that if we start in such a round, there will always exist a solution that prevents the
total difference from getting close to 5 ·B∗. This then contradicts our earlier assumption
that DIFj+1 > 5 · B∗. Hence we will always be able to avoid critical cases in which the
total difference is forced above the 5 ·B∗ bound.

However, in order to prove these lemmas, and ultimately the theorem, we first require
several definitions, which we give below.

3.1.1 Definitions
First, it will prove useful to be able to denote the difference in welfare between the middle
type and the worst-off type. Note that since our notion of tj,F0 is only defined for three
types, the notion of ΓF

j – which is defined in terms of tj,F0 – is likewise defined only for
three types.

Definition 3.1.2 (ΓF
j ). Given a set N of agents, a finite set P of possible projects, a k-

PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution π = (π1, . . . , πk) for I , a
cost function c : P → N, a set of types T ⊆ 2N of size 3, a round j ∈ {1, . . . , k} with
Ij = ⟨Pj, bj, Aj⟩, a welfare measure F : (I,π, t, j) → R, a type tj,F− and a type tj,F0 , let
ΓF
j := F (I,π, tj,F0 , j) − F (I,π, tj,F− , j). We drop the superscript F if F is clear from

the context.

• Given a budget allocation π ⊆ Pj , we define the marginal increase of ΓF,π
j due to

π as ΓF,π
j = ΓF

j − ΓF
j−1.

Similarly, it will prove useful to be able to denote the difference in welfare between
the best-off type and the middle type. This notion is defined for any amount of types.

Definition 3.1.3 (∆F
j ). Given a set N of agents, a finite set P of possible projects, a

k-PPB instance I = (I1, . . . , Ik) with k ∈ N ∪ {∞}, a solution π = (π1, . . . , πk) for
I , a cost function c : P → N, a set of types T ⊆ 2N , a round j ∈ {1, . . . , k} with

38



CHAPTER 3. RESULTS ABOUT SATISFACTION

Figure 3.2: Illustrating DIF, Γ and ∆

Ij = ⟨Pj, bj, Aj⟩, a welfare measure F : (I,π, t, j) → R, a type tj,F0 and a type tj,F+ , let
∆F

j := F (I,π, tj,F+ , j) − F (I,π, tj,F0 , j). We drop the superscript F if F is clear from
the context.

• Given a budget allocation π ⊆ Pj , we define the marginal increase of ∆F,π
j due to

π as ∆F,π
j = ∆F

j −∆F
j−1.

Figure 3.1.1 illustrates the concepts of DIF,Γ and ∆ for some specific round and for
the specific welfare function of relative satisfaction. Figure 3.3 illustrates the notions
describing the marginal increase of DIF,Γ and ∆. The darker coloured boxes indicate
the relative satisfaction of the three types in one specific round. The lighter coloured
boxes indicate the marginal relative satisfaction of the types for some allocation π in the
next round.

Note that by definition we have that DIFF
j = ∆F

j + ΓF
j . Next, we define the notion

of a ‘critical case’. A critical case intuitively refers to a case in which the total difference
possibly increases.

Definition 3.1.4 (Critical case). Given a k-PPB instance I = (I1, . . . , Ik) with k ∈
N ∪ {∞}, some round j ∈ {1, . . . , k}, a set of types T of size 3 and a bound B∗ ∈ N, a
round j is a critical case iff

1. |tj−| = 1, |tj0| = 1, |tj+| = 2 and F (I,π, tj,F0 , j)− F (I,π, tj,F− , j) < 1
2
·B∗, or

2. |tj−| = 2, |tj0| = 1, |tj+| = 1 and F (I,π, tj,F+ , j)− F (I,π, tj,F0 , j) < 1
2
·B∗.

Not only do we require the notion of a critical case, but we also require the notion of
a critical case which is safe for some bound. The intuition behind this definition is that,
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Figure 3.3: Marginal relative satisfaction

given some bound x · B∗ with x ∈ N, some critical cases are ‘good’ cases in the sense
that the total difference is small enough with respect to Γ. For these cases, we say that
they are ‘safe’ with respect to the bound.

Definition 3.1.5 (Critical case safe for some bound). Given a k-PPB instance I =
(I1, . . . , Ik) with k ∈ N∪ {∞}, some round j ∈ {1, . . . , k}, any natural number x ∈ N,
a set of types T of size 3 and any bound B∗ ∈ N, we say that round j is a critical case
safe for x ·B∗ iff j is a critical case and DIFj ≤ x+

Γj

2
.

3.1.2 Lemmas
We will now prove the lemmas that enable us to show the convergence-result.

As mentioned, in order to show convergence, we will show that there exists a way
of selecting allocations so that the total difference doesn’t exceed 5 · B∗. Recall that
the definition of the total difference is based on the marginal satisfaction of types (in
particular on the marginal satisfaction of the worst-off and best-off type). By definition,
the marginal satisfaction of types is dependent on the marginal satisfaction of the agents
of the type. And the marginal satisfaction of agents is, in its turn, dependent on the ballots
of the agents.

We therefore require a general way of reasoning about the ballots of different agents.
One of these ways is exemplified by Lemma 2.3.16, which we proved in the Preliminaries.
It states that when two exhaustive (or ‘knapsack’) ballots are different, there will always
be a project that is in one of the ballots, but not in the other, and vice versa. This will
prove to be useful, for by selecting this project as an allocation, we know that one agent
is not satisfied at all (i.e., gets 0 marginal satisfaction), which we can use to prevent – in
some round i – the best-off type ti+ from gaining too much satisfaction.
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Intuitively, Lemma 2.3.16 gives us information about the ballots of agents, and hence
about how much marginal satisfaction certain allocations generate for agents. However,
as mentioned above, we require information about how much marginal satisfaction allo-
cations generate for types of agents. Given the fact that our set of agents has a limited
size, Lemma 2.3.16 directly implies a fact about the marginal satisfaction for types of
agents. The following lemma formalises this fact.

Lemma 3.1.6. Let I = (I1, . . . , Ik) be any k-PPB instance with k ∈ N ∪ {∞} and
four agents. Let j ∈ {1, . . . , k} be any round with Ij = ⟨Pj, bj, Aj⟩ ∈ I , where Aj(i)
is exhaustive for all i ∈ N . Suppose that there are at most three types. Then for all
types ti, ti′ with i ∈ {1, 2, 3} and i ̸= i′: if there exists agents n ∈ ti and n′ ∈ ti′
such that Aj(n) ̸= Aj(n

′), then there exists some πj ⊆ P s.t. 1
2
· satmj (I, πj, ti) ≥

satmj (I, πj, ti′). Furthermore, if |ti| = 2 and |ti′| = 1, then there exists an allocation
πj ⊆ P s.t. satmj (I, πj, ti) ≥ 1

2
· c(πj) and satmj (I, πj, ti′) = 0.

Proof. Consider an arbitrary round j ∈ {1, . . . , k}, and consider two arbitrary types ti
and ti′ with i ∈ {1, 2, 3} and i ̸= i′. We proceed by cases.

1) |ti| = 1 and |ti′ | = 1. This case follows immediately from Lemma 2.3.16.

2) |ti| = 2 and |ti′ | = 1. Suppose that there exists some agents n ∈ ti and n′ ∈ ti′
such that Aj(n) ̸= Aj(n

′). By Lemma 2.3.16, there exists some project p∗ s.t.
p∗ ∈ Aj(n) and p∗ ̸∈ Aj(n

′). Set πj = {p∗}. Let n∗ be the agent n∗ ∈ ti such
that n∗ ̸= n. Either p∗ ∈ Aj(n

∗) or p∗ ̸∈ Aj(n
∗). Suppose first that p∗ ∈ Aj(n

∗).
Then satmj (I, {p∗}, ti) = c(p∗), and satmj (I, {p∗}, ti′) = 0. Hence there exists
some πj ⊆ P s.t. 1

2
·satmj (I, πj, ti) ≥ satmj (I, πj, ti′). And hence the claim holds.

Suppose then that p∗ ̸∈ Aj(n
∗). Then satmj (I, {p∗}, ti) = 1

2
· c(p). Since again, we

have that satmj (I, {p∗}, ti′) = 0, the claim follows.

3) |ti| = 1 and |ti′ | = 2. Suppose that there exists some agents n ∈ ti and n′ ∈ ti′
such that Aj(n) ̸= Aj(n

′). By Lemma 2.3.16, there exists some project p∗ s.t.
p∗ ∈ Aj(n) and p∗ ̸∈ Aj(n

′). Let n∗ be the agent n∗ ∈ ti′ such that n∗ ̸= n′.
We have that either p∗ ∈ Aj(n

∗), or not. Suppose first that p∗ ̸∈ Aj(n
∗). Then

satmj (I, {p∗}, ti′) = 0. Clearly, then, the claim follows. Suppose now that p∗ ∈
Aj(n

∗). Then satmj (I, {p∗}, ti′) = 1
2
· c({p∗}), by definition of satisfaction. Since

we have that satmj (I, {p∗}, ti) = c({p∗}) it follows that there exists some allocation
πj ⊆ Pj s.t. 1

2
· satmj (I, πj, ti) ≥ satmj (I, πj, ti′), and hence the claim holds.

As mentioned above, we require two lemmas that say that, given that we start in a
critical case in which the total difference is close to 2 · B∗, there exists a solution that
prevents the total difference from getting close to 5 ·B∗. Figure 3.1 visualises the round
in which we start, i.e., a critical case in which the total difference is close to 2 ·B∗. More
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precisely, we show that, given some round i, the total difference DIFi is bounded by the
following inequalities: DIFi ≤ 4 + Γi

2
and DIFi ≤ 4.5 ·B∗.

The reason that we require two lemmas is as follows. In the proof of the theorem
we make a case distinction based on the way that the four agents are spread among the
three types. As a result, there are two different cases (differing in the way the agents
are divided among the types) in which we’re forced to violate the 5 · B∗ bound, and
of which we therefore need to argue that they can be avoided. Hence, we require two
corresponding lemmas. The following lemma is the first of these two lemmas.

Lemma 3.1.7. Let I = (I1, . . . , Ik) be any k-PPB instance. Suppose that there are four
agents and three types. And let Ij = ⟨Pj, bj, Aj⟩ ∈ I , where Aj(i) is exhaustive for all
i ∈ N . Let B∗ be a bound for I , i.e., let B∗ ∈ N with bj ≤ B∗ for all j ∈ {1, . . . , k}.

Suppose that for some round j ∈ {1, . . . , k}, we have that the following holds:1

• satj(I,π, tj0) ≤ satj(I,π, t
j
−) +

1
2
·B∗,

• 1.5 ·B∗ < DIFj ≤ 2 ·B∗,

• |tj+| = 2, |tj0| = 1, |tj−| = 1.

Then there exists some solution π∗ = (πj, . . . , πk) for rounds j, . . . , k such that
DIFi ≤ 4, 5 ·B∗ for any i ∈ {j, . . . , k}.

Proof. We will prove by induction on the rounds that for any round i ∈ {j, . . . , k} the
following holds:

• DIFi ≤ 4 ·B∗ + Γi

2
, and

• DIFi ≤ 4, 5 ·B∗

Observe that we will prove a result that is strictly stronger than what we need to show.
Not only do we show for any round i ∈ {1, . . . , k} that DIFi ≤ 4, 5 · B∗ – which would
suffice for our purposes – but we also show that DIFi ≤ 4 ·B∗ + Γi

2
. The reason for this

is that this will be helpful during our induction.
So we prove this by induction on the rounds. Suppose w.l.o.g. that tj− = {a}, tj0 =

{b} and tj+ = {c, d}.
For the base case, we consider round j. By assumption, we have that 1.5 · B∗ <

DIFj ≤ 2 · B∗. Hence, it immediately follows that DIFj ≤ 4 · B∗ +
Γj

2
, and DIFj ≤

4, 5 ·B∗.
So consider an arbitrary round i ∈ {j, . . . , k} such that DIFi ≤ 4, 5 ·B∗ and DIFi ≤

4 ·B∗ + Γi

2
. We proceed by cases. Cases are coloured in blue.

1These assumptions are a lot more stringent than that is required for the result to hold. The result holds
for any round j that is safe for a bound of B∗ = 4. These specific assumptions on j create a round that is,
by definition, definitely safe for B∗ = 4, but we could have started with any other round safe for B∗ = 4
too. We make these extra stringent assumptions, because this is all that we need for Theorem 3.1.1.
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Suppose first that Ai+1(a) = Ai+1(b) = Ai+1(c) = Ai+1(d). By picking any π ⊆ P
with c(π) ≤ B∗ and π ̸= ∅, it immediately follows that DIFi = DIFi+1 and Γi = Γi+1.
Hence the claim follows by these facts and the IH.

As a second case, suppose that Ai+1(a) = Ai+1(c) = Ai+1(d) ̸= Ai+1(b). Now, in
this case we make a further sub-case distinction. Either we have

sati(I,π, t
i
0) ≤ sati(I,π, t

i
−) +B∗, (A)

or
sati(I,π, t

i
+) ≤ sati(I,π, t

i
0) +B∗, (B)

or

sati(I,π, t
i
0) > sati(I,π, t

i
−) +B∗ and sati(I,π, t

i
+) > sati(I,π, t

i
0) +B∗. (C)

1. Suppose (A) holds. Then by Lemma 2.3.16 there exists some project p∗ ∈ Ai+1(b)
and p∗ ̸∈ Ai+1(a) = Ai+1(c) = Ai+1(d). Set πi+1 = {p∗}. Then note that
satmi+1(I, {p∗}, ti+) = 0.

Now suppose that we have ti+ = ti+1
+ . Then, since ti+ = ti+1

+ andDti−
i→i+1 = Dti+

i→i+1,
we have that DIFi = DIFi+1. Hence we have that DIFi+1 ≤ 4 · B∗ + Γi+1

2
, which

follows from this fact, the fact that Γi+1 ≥ Γi and the IH. Since DIFi = DIFi+1

and DIFi ≤ 4, 5 ·B∗ (by the IH), it also follows that DIFi+1 ≤ 4, 5 ·B∗.
Suppose that ti+ ̸= ti+1

+ . By definition of B∗, satmi+1(I, {p∗}, ti0) ≤ B∗. By this
and our assumption sati(I,π, ti0) ≤ sati(I,π, t

i
−) +B∗, it follows that DIFi+1 ≤

4 ·B∗ ≤ 4 ·B∗ + Γi+1

2
.

2. Suppose now that (B) (sati(I,π, ti+) ≤ sati(I,π, t
i
0)+B∗) holds. Then by Lemma

2.3.16 there exists some project p∗ ∈ Ai+1(a) = Ai+1(c) = Ai+1(d) and p∗ ̸∈
Ai+1(b). Set πi+1 = {p∗}. Now we make a case distinction.

• First suppose that ti0 = ti+1
0 . We first show that DIFi+1 ≤ 4, 5 ·B∗. Since by

assumption Ai+1(a) = Ai+1(c) = Ai+1(d), it follows that satmi+1(I, πi+1, t
i
+)

= satmi+1(I, πi+1, t
i
−). Thus, it follows that ti− = ti+1

− and ti+ = ti+1
+ . Thus,

from this together with the fact that Dti−
i→i+1 = Dti+

i→i+1, it follows that DIFi =
DIFi+1. By this fact and the IH, we have that DIFi+1 ≤ 4, 5 ·B∗.
Now we make a further case distinction to show that DIFi+1 ≤ 4 ·B∗+ Γi+1

2
.

Suppose first that DIFi+1 < 4 · B∗. Then DIFi+1 ≤ 4 · B∗ + Γi+1

2
, since

Γi+1 ≥ 0, by definition. Now suppose that DIFi+1 ≥ 4 · B∗. Note that
∆i ≤ 1 · B∗, by assumption (i.e., sati(I,π, ti+) ≤ sati(I,π, t

i
0) + B∗).

Therefore ∆i+1 ≤ 2 ·B∗, since c(πi+1) ≤ 1 ·B∗ by definition of πi+1. Since
by definition of DIFi+1, DIFi+1 = ∆i+1+Γi+1, it follows that Γi+1 ≥ 2 ·B∗.
Hence, 4 ·B∗ + Γi+1

2
≥ 5 ≥ DIFi+1. Hence DIFi+1 ≤ 4 ·B∗ + Γi+1

2
.
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• Now suppose that ti0 ̸= ti+1
0 , i.e., ti0 = ti+1

− . It follows that Γi ≤ 1 · B∗

and Γi+1 ≤ 1 · B∗. But, by assumption, we have that ∆i ≤ 1 · B∗. Since
DIFi = Γi +∆i, we have that DIFi ≤ 2 ·B∗. Since by definition, DIFi+1 ≤
DIFi + 1 · B∗, we have that DIFi+1 ≤ 3 · B∗ ≤ 4, 5 · B∗. And hence it also
follows that DIFi+1 ≤ 4 ·B∗ + Γi+1

2
, since Γi+1 ≥ 0 by definition of Γi+1.

3. Finally, suppose that (C) holds. Select πi+1 = {p∗} with p∗ ∈ Ai+1(b) and p∗ ̸∈
Ai+1(a) = Ai+1(c) = Ai+1(d). Then note that this case is similar to the cases
above, except that it is impossible that ti0 ̸= ti+1

0 .

So suppose that ti0 = ti+1
0 . By definition of πi+1 it follows that DIFi = DIFi+1. By

this fact and the IH, we have that DIFi+1 ≤ 4, 5 ·B∗. But clearly, since Γi+1 ≥ Γi,
and DIFi+1 ≤ 4, 5 ·B∗, it follows that DIFi+1 ≤ 4 ·B∗ + Γi+1

2
.

It might also be the case that Ai+1(b) = Ai+1(c) = Ai+1(d) ̸= Ai+1(a). By Lemma
2.3.16 there exists some project p∗ ∈ Ai+1(a) and p∗ ̸∈ Ai+1(b) = Ai+1(c) = Ai+1(d).
Set πi+1 = {p∗}.

We again make a case distinction. First suppose that ti+ ̸= ti+1
+ . By definition of

πi+1 and the fact that c(πi+1) ≤ 1 · B∗, it follows that DIFi ≤ 1 · B∗, and hence that
DIFi+1 ≤ 2 ·B∗. But then it immediately follows that DIFi+1 ≤ 2 ·B∗ ≤ 4 ·B∗ + Γi+1

2
.

Now suppose that we have ti+ = ti+1
+ . But since Dti−

i→i+1 > Dti+
i→i+1 = 0, we have

that DIFi ≥ DIFi+1. So DIFi+1 ≤ 4, 5 · B∗ follows immediately. Now we show that
DIFi+1 ≤ 4 ·B∗ + Γi+1

2
.

To show this, first suppose that ti− = ti+1
− . By the IH we have that DIFi ≤ 4 ·B∗+ Γi

2
.

Let x = Dti−
i→i+1, and note that Dti0

i→i+1 = Dti+
i→i+1 = 0, by definition of πi+1. But then it

follows that DIFi − x ≤ 4 ·B∗ + Γi−x
2

for any x ∈ N. Note that DIFi+1 = DIFi − x and
Γi+1 = Γi − x. Hence DIFi+1 ≤ 4 ·B∗ + Γi+1

2
.

Next, suppose that ti− ̸= ti+1
− . So note now that ∆i ≥ ∆i+1. Note also that DIFi+1 =

DIFi − Γi. Hence DIFi+1 ≤ DIFi. By the IH it follows that DIFi+1 ≤ 4, 5 ·B∗. Hence,
remains to show that DIFi+1 ≤ 4 ·B∗+ Γi+1

2
. By the IH we have that DIFi ≤ 4 ·B∗+ Γi

2
.

Note that DIFi+1 = DIFi − Γi. We either have Γi+1 > Γi or Γi+1 ≤ Γi. Suppose first
that Γi+1 > Γi. The result that DIFi+1 ≤ 4 · B∗ + Γi+1

2
then follows by the IH, the fact

that DIFi+1 ≤ DIFi and the fact that Γi+1 > Γi.
So suppose that Γi+1 ≤ Γi. Then Γi+1 = Γi−x for some x ∈ N with 0 ≤ x ≤ 1 ·Γi,

forΓi ̸< 0, by definition ofΓi. But then note that it follows that DIFi−Γi ≤ 4·B∗+ Γi

2
− x

2

for x ∈ Nwith 0 ≤ x ≤ 1·Γi, sinceΓi ≥ x
2
. Hence we have DIFi−Γi ≤ 4·B∗+Γi−x

2
. But

since Γi+1 = Γi−x, and since DIFi+1 = DIFi−Γi, it follows that DIFi+1 ≤ 4·B∗+ Γi+1

2
.

As a final case, we have that for c, d ∈ ti+, it holds that both Ai+1(c) ̸= Ai+1(a) or
Ai+1(d) ̸= Ai+1(a), and Ai+1(d) ̸= Ai+1(b) or Ai+1(c) ̸= Ai+1(b). Now, by Lemma
3.1.6 there exists some {p∗} = π∗ s.t. 1

2
· satmi+1(I, π

∗, ti−) ≥ satmi+1(I, π
∗, ti+). Set

πi+1 = π∗ = {p∗}.
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• To show our result, first suppose that ti− = ti+1
− . There are two sub-cases.

– First suppose that ti+ ̸= ti+1
+ . Since ti− = ti+1

− , it follows that ti0 = ti+1
+ .

But since by definition of π∗ it follows that Dti+1
−
i→i+1 ≥ Dti0

i→i+1 = Dti+1
+

i→i+1,
we have DIFi+1 ≤ DIFi. Since DIFi+1 ≤ DIFi, by the IH it follows that
DIFi+1 ≤ 4, 5 ·B∗. Since ti+ ̸= ti+1

+ , it follows that ∆i ≤ 1 ·B∗ and ∆i+1 ≤
1 · B∗. Now either Γi+1 ≤ 3 · B∗ or Γi+1 > 3 · B∗. First suppose that
Γi+1 ≤ 3 ·B∗. Since DIFi+1 = Γi+1 +∆i+1, it follows that DIFi+1 ≤ 4 ·B∗.
Hence DIFi+1 ≤ 4·B∗+Γi+1

2
follows immediately, forΓi+1 ≥ 0, by definition

of Γi+1. Now suppose that Γi+1 > 3 ·B∗. Since DIFi+1 ≤ 4, 5 ·B∗, the result
follows immediately from the fact that 4, 5 ·B∗ ≤ 4 ·B∗ + 3

2
.

– Now suppose that ti+ = ti+1
+ . First note that from our choice of π∗ follows

Dti+1
−
i→i+1 ≥ Dti+1

+

i→i+1. By the IH then follows that DIFi+1 ≤ 4, 5 · B∗. So
remains to show that DIFi+1 ≤ 4 ·B∗+ Γi+1

2
. Observe that by the IH we have

that DIFi ≤ 4 · B∗ + Γi

2
. Note that from our choice of allocation π∗ = {p∗}

follows DIFπ∗

i+1 ≤ −1
2
· c({p∗}). And note that Γπ∗

i+1 ≥ −c({p∗}). Then

DIFi+1 = DIFi + DIFπ∗

i+1 ≤ 4 ·B∗ +
Γi+Γπ∗

i+1

2
= 4 ·B∗ + Γi+1

2
.

• Now suppose that ti− ̸= ti+1
− . There are again two sub-cases.

– ti+ = ti+1
+ . We first show that DIFi+1 ≤ 4 · B∗ + Γi+1

2
. By the IH we have

that DIFi ≤ 4 · B∗ + Γi

2
. Now we will show that from this fact and the fact

that DIFi = ∆i +Γi it follows that ∆i +
Γi

2
≤ 4 ·B∗, which we will later use

to show our result.

DIFi = ∆i + Γi

∆i + Γi ≤ 4 ·B∗ +
Γi

2

∆i + Γi −
Γi

2
≤ 4 ·B∗

∆i +
Γi

2
≤ 4 ·B∗.

Now, we first show that ∆i+1 ≤ ∆i +
Γi

2
+ Γi+1

2
− Γi+1. First note that by

assumption we have ti+1
0 ̸= ti−, ti+1

− ̸= ti0 and ti+1
+ = ti+. For sake of brevity,

let Dti−
i→i+1 = x, Dti0

i→i+1 = y and Dti+
i→i+1 = z. By definition of πi+1 we

have that x ≥ y and 1
2
x ≥ z. Note also that x ≥ Γi, since ti+1

− = ti0. By
definition, then, x = Γi + Γi+1. Hence z ≤ 1

2
x = 1

2
(Γi + Γi+1). Thus

z ≤ Γi

2
+ Γi+1

2
. Note that ∆i+1 = ∆i + z − Γi+1. Since z ≤ Γi

2
+ Γi+1

2
, we

have that ∆i+1 ≤ ∆i +
Γi

2
+ Γi+1

2
− Γi+1, which is what we needed to show.
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But now note that by definition we have that:

DIFi+1 = ∆i+1 + Γi+1

Hence by the result above and the above definition, the following inequality
holds:

∆i+1 + Γi+1 ≤ ∆i +
Γi

2
+

Γi+1

2
− Γi+1 + Γi+1

= ∆i +
Γi

2
− Γi+1

2
+ Γi+1

= ∆i +
Γi

2
+

Γi+1

2

And since, as shown above, ∆i +
Γi

2
≤ 4 · B∗, it follows that DIFi+1 ≤

4 · B∗ + Γi+1

2
. Remains to show that DIFi+1 ≤ 4, 5 · B∗. Suppose that

DIFi+1 ≥ DIFi, for if not then the result follows immediately by the IH.
To show that DIFi+1 ≤ 4, 5 · B∗, note that by assumption ti− ̸= ti+1

− and
ti+ = ti+1

+ , hence ti− = ti+1
0 . Therefore, it follows that Γi+1 ≤ 1 · B∗. Since

DIFi+1 ≤ 4 · B∗ + Γi+1

2
with Γi+1 ≤ 1 · B∗, it follows immediately that

DIFi+1 ≤ 4, 5 ·B∗.

– ti+ ̸= ti+1
+ . Since by assumption both ti+ ̸= ti+1

+ and ti− ̸= ti+1
− , we have that

either ti− = ti+1
0 or ti− = ti+1

+ . In both cases, we clearly have Γi,Γi+1,∆i,
∆i+1 ≤ 1·B∗. Therefore it follows that DIFi+1 ≤ 2·B∗. And since Γi+1 ≥ 0,
we also have DIFi+1 ≤ 4 + Γi+1

2
.

Lemma 3.1.7 is, as mentioned, designed to handle the first complicated scenario. It
states that while the total difference in this complicated scenario might increase, it will
never increase by an arbitarily high amount. More precisely, the total difference in some
round i is described by the following inequalities: DIFi ≤ 4 + Γi

2
and DIFi ≤ 4.5 · B∗.

As will be apparent in the proof of the result on convergence, there is another – though
closely related – complicated scenario. Lemma 3.1.8 is designed to handle this scenario.
Since these scenario’s are so closely related, we are able to use techniques in the proof of
Lemma 3.1.8 that are similar to those that we used in the proof of Lemma 3.1.7. Hence,
we refrain from writing out the exact same techniques again, and instead mention in what
cases techniques from Lemma 3.1.7 can be applied.

As mentioned, we require two lemmas because of the way the agents can be divided
among the three types. Figure 3.1 visualises the critical case that we started with in the
first lemma. Figure 3.1.2 visualises the critical case that we start with in the second
lemma.
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Figure 3.4: Illustrating a second critical case for satisfaction

Lemma 3.1.8. Let I = (I1, . . . , Ik) be any k-PPB instance. Suppose that there are four
agents and three types. And let Ij = ⟨Pj, bj, Aj⟩ ∈ I , where Aj(i) is exhaustive for all
i ∈ N . And let B∗ be the bound B∗ ∈ N with bj ≤ B∗ for all j ∈ {1, . . . , k}.

Suppose that for some round j ∈ {1, . . . , k}, we have that the following holds:

• |tj+| = 1, |tj0| = 1, |tj−| = 2

• 1.5 ·B∗ ≤ DIFj ≤ 2 ·B∗.

• satj(I,π, tj0) > satj(I,π, t
j
+)− 1

2
·B∗.

Then there exists some solution π∗ = (πj, . . . , πk) for rounds j, . . . , k such that
DIFi ≤ 4, 5 ·B∗ for any i ∈ {j, . . . , k}.

Proof. The proof is similar to the proof of Lemma 3.1.7. We briefly sketch the outlines
of the proof, but refrain from filling in the details for the sake of brevity.

Suppose w.l.o.g. that ti− = {a, b}, ti0 = {c}, ti+ = {d}.
We will again prove by induction on the rounds that for any round i ∈ {j, . . . , k} the

following holds:

• DIFi ≤ 4 ·B∗ + Γi

2
, and

• DIFi ≤ 4, 5 ·B∗

The base case is again trivial, so for the inductive step consider an arbitrary round
i ∈ {j, . . . , k} such that DIFi ≤ 4, 5 · B∗ and DIFi ≤ 4 · B∗ + Γi

2
. We again make the

same case distinction based on the similarity of the agents’ ballots.
If Ai+1(c) = Ai+1(d), the result follows straightforwardly. For suppose that there

exists some agents x, y ∈ ti− such that Ai+1(x) = Ai+1(c) = Ai+1(d) and Ai+1(y) ̸=
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Ai+1(c) = Ai+1(d). Then by Lemma 2.3.16 there exists a project p∗ ∈ Ai+1(y) such that
p∗ ̸∈ Ai+1(x) = Ai+1(c) = Ai+1(d). Set π∗ = {p∗}. Then by definition of sat, we have
that satmi+1(I, π

∗, ti−) =
1
2
c(π∗) and satmi+1(I, π

∗, ti0) = satmi+1(I, π
∗, ti+) = 0. The result

then follows analogously to the case in which Ai+1(b) = Ai+1(c) = Ai+1(d) ̸= Ai+1(a)
for Lemma 3.1.7.

And suppose that that there does not exist some agents x, y ∈ ti− such that Ai+1(x) =
Ai+1(c) = Ai+1(d) and Ai+1(y) ̸= Ai+1(c) = Ai+1(d). Then possibly Ai+1(x) =
Ai+1(y) = Ai+1(c) = Ai+1(d), in which case the result follows similarly to the case
when Ai+1(a) = Ai+1(b) = Ai+1(c) = Ai+1(d) from Lemma 3.1.7. Or Ai+1(x) =
Ai+1(y) ̸= Ai+1(c) = Ai+1(d), in which case the result follows analogously to the case
in which Ai+1(a) ̸= Ai+1(b) = Ai+1(c) = Ai+1(d).

And if Ai+1(x) ̸= Ai+1(y), then it follows that Ai+1(x) ̸= Ai+1(c) = Ai+1(d) and
Ai+1(y) ̸= Ai+1(c) = Ai+1(d). Then by Lemma 2.3.16 there exists a project p∗ ∈
Ai+1(y) such that p∗ ̸∈ Ai+1(c) = Ai+1(d). Set π∗ = {p∗}. Then by definition of sat, we
have that satmi+1(I, π

∗, ti−) ≥ 1
2
c(π∗) and satmi+1(I, π

∗, ti0) = satmi+1(I, π
∗, ti+) = 0. The

result then follows analogously to the case in which Ai+1(b) = Ai+1(c) = Ai+1(d) ̸=
Ai+1(a) for Lemma 3.1.7.

So suppose that Ai+1(c) ̸= Ai+1(d). We can again make a case distinction.
Suppose first that Ai+1(a) = Ai+1(b). Since Ai+1(c) ̸= Ai+1(d), possibly:

1. Ai+1(a) = Ai+1(b) = Ai+1(c) ̸= Ai+1(d)

2. Ai+1(a) = Ai+1(b) = Ai+1(d) ̸= Ai+1(c)

3. Ai+1(a) = Ai+1(b) ̸= Ai+1(c) and Ai+1(a) = Ai+1(b) ̸= Ai+1(d).

By assumption c ∈ ti0 and d ∈ ti+. If (2) holds and sati(I,π, ti0) ≤ sati(I,π, t
i
+)−

B∗, then set πi+1 = {p∗} for a project p∗ ∈ Ai+1(c) and p∗ ̸∈ Ai+1(a) = Ai+1(b) =
Ai+1(d), which exists by Lemma 2.3.16. The result follows then analogously to the case
when Ai+1(a) = Ai+1(c) = Ai+1(d) ̸= Ai+1(b) in Lemma 3.1.7.

If (2) holds and sati(I,π, ti0) > sati(I,π, t
i
+) − B∗, then set π∗ = {p} for some

project p ∈ Ai+1(a) = Ai+1(b). The result then follows analogously to the case when
Ai+1(a) = Ai+1(c) = Ai+1(d) ̸= Ai+1(b) in Lemma 3.1.7.

If (3) holds, then the result follows similarly to the case when Ai+1(a) ̸= Ai+1(b) =
Ai+1(c) = Ai+1(d) in Lemma 3.1.7. If (1) holds, the result follows analogously to the
final case of Lemma 3.1.7 in which Ai+1(c) ̸= Ai+1(a) or Ai+1(d) ̸= Ai+1(a), and
Ai+1(d) ̸= Ai+1(b) or Ai+1(c) ̸= Ai+1(b).

Now suppose that Ai+1(a) ̸= Ai+1(b). The most interesting case is the case in
which for each x ∈ ti− either Ai+1(x) = Ai+1(c) or Ai+1(x) = Ai+1(d). This case
follows analogously to the case in which Ai+1(c) ̸= Ai+1(a) or Ai+1(d) ̸= Ai+1(a), and
Ai+1(d) ̸= Ai+1(b) or Ai+1(c) ̸= Ai+1(b) for Lemma 3.1.7.
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3.1.3 Proof of the Theorem
Now that we have set up the appropriate definitions and that we have given the right
lemmas, we are able to prove the theorem.

Theorem 3.1.1. Consider an ∞-PPB instance I = (I1, I2, . . .) with four agents where
the ballot of each agent is exhaustive in every round, |T | ≤ 3 and there exists a constant
B∗ ∈ N with bj ≤ B∗ for every round j. Then, there is a non-empty feasible solution that
converges to equal-satisfaction.

Proof. Let N = {1, 2, 3, 4}. Suppose in every round the agents submit non-empty knap-
sack ballots. In order to prove the theorem, we make the following case distinction, de-
pending on |T |. We first show the result for the case when |T | = 1, then |T | = 2 and
then |T | = 3.

Case 1: 1 type.

This case is trivial, for

lim
j→∞

satj(I,π, t)

satj(I,π, t)
= 1 (3.1)

for any solution π and for any type t ∈ T .

Case 2: two types.

Now suppose that |T | = 2.
We will show the following.

satj(I,π, t1)− 2B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) + 2B∗. (3.2)

We prove this by induction on the round j. For the base case where j = 1, at most B∗

is spend on projects. Hence, by the definition of satj it holds that 0 ≤ sat1(I,π, t) ≤ B∗

for t ∈ {t1, t2}. It follows that satj(I,π, t1)− 2B∗ ≤ satj(I,π, t2) ≤ satj(I,π, t1) +
2B∗.

Now suppose that (3.2) holds for round j-1. We will show that it holds for round j
too.

Suppose that there exists some agent x ∈ t1 and some agent y ∈ t2 such that
Aj(x) ̸= Aj(y) (If not, set any allocation πj = π∗ and the result follows immediately).
By Lemma 2.3.16, there exists some project p ⊆ Pj s.t. p ∈ Aj(x) and p ̸∈ Aj(y). Set
πj = {p}. The result then follows from the fact that satmj (I, {p}, t1) ≥ satmj (I, {p}, t2)
and the IH.

49



CHAPTER 3. RESULTS ABOUT SATISFACTION

Convergence follows from (3.2) analogously to the way explicated in the proof of
Proposition 2.3.17.

Case 3: three types

.
We show that for every round j ∈ {1, . . . , k} and for any two types ti, ti′ we have:

satj(I,π, ti)− 5 ·B∗ ≤ satj(I,π, ti′) ≤ satj(I,π, ti) + 5 ·B∗. (3.3)

We prove this by induction on the number of rounds j.
The base case is trivial.
So consider an arbitrary round j ∈ {1, . . . , k}. We suppose that there exists some

agents i ∈ tj− and i′ ∈ tj+ such that Aj+1(i) ̸= Aj+1(i
′). If not, then this means that

Aj+1(i) = Aj+1(i
′) for all i ∈ tj− and for all i′ ∈ tj+. But then there are only two

possibilities. Either Aj+1(i
′′) = Aj+1(i) for all i′′ ∈ tj0, or not.

If the former, then clearly DIFj+1 = DIFj for any allocation π ⊆ P . Hence DIFj+1 ≤
DIFj for any allocation π ⊆ P . And then the result follows from the IH.

If the latter, then there exists some i′′ ∈ tj0 such that Aj+1(i
′′) ̸= Aj+1(i) = Aj+1(i

′)
for all i ∈ tj− and i′ ∈ tj0. Distinguish then two cases. Either satj(I,π, tj0) ≥
satj(I,π, t

j
+)− 1 ·B∗, or satj(I,π, tj0) < satj(I,π, t

j
+)− 1 ·B∗.

• Suppose first that satj(I,π, tj0) ≥ satj(I,π, t
j
+)− 1 ·B∗. Then by Lemma 2.3.16

there exists some project p∗ ∈ Aj+1(i) = Aj+1(i
′) such that p∗ ̸∈ Aj+1(i

′′) for
all i ∈ tj− and i′ ∈ tj+. Then, set πj+1 = {p∗}. We can distinguish two cases.
If tj− = tj+1

− , then DIFj = DIFj+1. If tj− ̸= tj+1
− , then Γi ≤ 1 · B∗. Since

by assumption ∆i ≤ 1 · B∗, it follows that DIFi = Γi + ∆i ≤ 2 · B∗. Thus
DIFi+1 ≤ 3 ·B∗, hence the claim follows.

• Suppose now that satj(I,π, tj0) < satj(I,π, t
j
+) − 1 · B∗. Then, by Lemma

2.3.16 there exists some project p∗ ∈ Aj+1(i
′′) such that p∗ ̸∈ Aj+1(i) and p∗ ̸∈

Aj+1(i
′) for all i ∈ tj− and i′ ∈ tj+. Then, set πj+1 = {p∗}. Then we have

satmj+1(I, πj+1, t
j
−) = satmj+1(I, πj+1, t

j
+) = 0. By assumption ∆j > 1 · B∗, thus

tj+1
+ = tj+. From this fact and our assumption that Aj+1(i) = Aj+1(i

′) for all
i ∈ tj− and all i′ ∈ tj+, it follows that DIFj = DIFj+1. Hence the claim follows by
the IH.

So from now on we will assume that there exists some agents i ∈ tj− and i′ ∈ tj+ such
that Aj+1(i) ̸= Aj+1(i

′).
We make the following case distinction.

Case 1: |tj−| = 1, |tj0| = 1, |tj+| = 2. Suppose w.l.o.g. that tj− = {a}, tj0 = {b}, tj+ =
{c, d}.
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Sub-case 1: satj(I,π, tj0) > satj(I,π, t
j
−) +

1
2
· B∗. Then by our assumption that

there exists some agents i ∈ tj− and i′ ∈ tj+ such that Aj+1(i) ̸= Aj+1(i
′) and Lemma

3.1.6 there exists an allocation πj+1 s.t. 1
2
· satmj+1(I, πj+1, t

j
−) ≥ satmj+1(I, πj+1, t

j
+).

Now, distinguish again two cases.

• tj− = tj+1
− . Then, since Dtj−

j→j+1 > Dtj+
j→j+1, it follows that satj+1(I,π, t

j+1
− ) −

satj(I,π, t
j
−) > satj+1(I,π, t

j+1
+ ) − satj(I,π, t

j
+). Hence satj+1(I,π, t

j+1
+ ) −

satj+1(I,π, t
j+1
− ) ≤ satj(I,π, t

j
+) − satj(I,π, t

j
−). Hence DIFj+1 ≤ DIFj .

From this and the induction hypothesis the claim follows.

• tj− ̸= tj+1
− . Then satj+1(I,π, t

j
−) ≥ satj+1(I,π, t

j+1
− ) ≥ satj(I,π, t

j
−) +

1
2
· B∗.

Since Dtj+
j→j+1 ≤ 1

2
·B∗, we have that DIFj+1 ≤ DIFj . From this and the induction

hypothesis, the claim follows.

Sub-case 2: DIFj ≤ 4.5 · B∗. By Lemma 3.1.6 we have an allocation π∗ = {p∗}
s.t. Dtj+

j→j+1 ≤ 1
2
· B∗. Set πj+1 = π∗. We make a case distinction. Suppose that

tj+ = tj+1
+ . Then Dtj+

j→j+1 ≤ 1
2
· B∗ and satj+1(I,π, t

j+1
− ) − satj(I,π, t

j
−) ≥ 0. Hence

DIFj+1 ≤ DIFj +
1
2
·B∗. Thus DIFj+1 ≤ 5 ·B∗.

Suppose now that tj+ ̸= tj+1
+ . If satj+1(I,π, t

j
−) ≥ satj+1(I,π, t

j
+), then clearly

DIFj+1 ≤ 1 ·B∗ ≤ 5 ·B∗. If satj+1(I,π, t
j
−) < satj+1(I,π, t

j
+), then by our definition

of π∗ it follows that Dtj−
j→j+1 ≥ Dtj0

j→j+1, and hence DIFj+1 ≤ DIFj , and therefore since
DIFj ≤ 4, 5 ·B∗ we have that DIFj+1 ≤ 5 ·B∗.

Sub-case 3: So consider the final case in which 4.5 · B∗ < DIFj ≤ 5 · B∗, and in
which we have that satj(I,π, tj0) ≤ satj(I,π, t

j
−) +

1
2
· B∗. We call this the ‘critical

case’, and argue that this situation/case is impossible.
Suppose, for contradiction, that it is possible. Since, by assumption, we have that

DIFj > 4.5 · B∗, there must exist some round l + 1 ∈ {1, . . . , j} s.t. DIFl+1 ≥ 2 · B∗

and DIFi < 2 ·B∗ for all other rounds i ∈ {1, . . . , j} s.t. 1 ≤ i ≤ l. Consider this round.
Note that the only situation in which the difference DIFi can increase (i.e., in which

DIFi+1 > DIFi) is when DIFi > 1.5·B∗ and satj(I,π, tj0) ≤ sati(I,π, t
j
−)+

1
2
·B∗. This

follows by reasoning analogous to the cases above. Therefore, we know that 1.5 · B∗ <
DIFl ≤ 2 ·B∗ and satl(I,π, tl0) ≤ satl(I,π, t

l
−) +

1
2
·B∗.

Hence, we’re now in a position to apply Lemma 3.1.7 (i.e., the conditions for Lemma
3.1.7 apply now). According to Lemma 3.1.7 there exists some solutionπ∗ =(πl, . . . , πk)
for rounds l, . . . , k such that DIFi ≤ 4, 5 · B∗ for any i ∈ {l, . . . , k} and with j ∈
{l, . . . , k}. This contradicts the fact that DIFj > 4.5 ·B∗.

Case 2: |tj−| = 1, |tj0| = 2, |tj+| = 1. Suppose w.l.o.g. that tj− = {a}, tj0 =

{b, c}, tj+ = {d}.
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Sub-case 1: satj(I,π, tj0) < satj(I,π, t
j
+) − 1

2
· B∗. By Lemma 3.1.6, we have

an allocation π∗ = {p∗} s.t. satmj+1(I, π
∗, tj−) ≥ 1

2
· c(π∗) and satmj+1(I,π, t

j
+) = 0.

Set πj+1 = π∗. If tj+ = tj+1
+ , the result is immediate by our selection of π∗. If tj+ ̸=

tj+1
+ , then the result follows from the fact that satmj+1(I, π

∗, tj−) ≥ satmj+1(I, π
∗, tj0), that

satmj+1(I, π
∗, tj0) ≤ 1·B∗ and our assumption that satj(I,π, tj0) < satj(I,π, t

j
+)− 1

2
·B∗.

Sub-case 2: satj(I,π, tj0) ≥ satj(I,π, t
j
+) − 1

2
· B∗. By Lemma 3.1.6, we have

an allocation π∗ = {p∗} s.t. satmj+1(I, π
∗, tj−) = c(π∗) and satmj+1(I, π

∗, tj+) = 0. And
satmj+1(I, π

∗, tj0) ≤ c(π∗). Set πj+1 = π∗. Then, possibly tj+ ̸= tj+1
+ , or not. If the former,

then DIFj ≥ DIFj+1 follows from the fact that satmj+1(I,π, t
j
0) ≤ satmj+1(I,π, t

j
−). If the

latter, then DIFj ≥ DIFj+1 follows immediately. Hence, in both cases, the claim follows.

Case 3: |tj−| = 2, |tj0| = 1, |tj+| = 1. Suppose w.l.o.g. that tj− = {a, b}, tj0 =

{c}, tj+ = {d}.
Sub-case 1: satj(I,π, tj0) ≤ satj(I,π, t

j
+) − 1

2
· B∗. By Lemma 3.1.6, we have an

allocation π∗ = {p∗} s.t. satmj+1(I, π
∗, tj−) ≥ 1

2
· c(π∗) and satmj+1(I,π, t

j
+) = 0. Set

πj+1 = π∗. Since π∗ = {p∗}, by definition of π∗, we have possibly that p∗ ∈ Aj+1(c) for
c ∈ tj0, or p∗ ̸∈ Aj+1(c) for c ∈ tj0. Hence we have either that tj0 = tj+1

0 , or tj0 ̸= tj+1
0 .

Suppose that tj0 = tj+1
0 . Then together with the fact that Dtj+1

−
j→j+1 ≥ Dtj+

j→j+1, it follows
that DIFj > DIFj+1. Hence, together with the IH, the claim follows.

Now suppose, for the other case, that tj0 ̸= tj+1
0 . Consider then two cases. Either

tj0 = tj+1
− or tj0 = tj+1

+ . Suppose that tj0 = tj+1
+ . Hence, we have that satj+1(I,π, t

j
0) =

satj+1(I,π, t
j+1
+ ) ≤ satj+1(I,π, t

j
+)+

1
2
· c(π∗). However, we also have that Dtj−

j→j+1 =
c(π∗), by assumption. Hence DIFj ≥ DIFj+1, and then the claim follows from the IH.
Now suppose that tj0 = tj+1

− . Then clearly DIFj ≥ DIFj+1 and the result follows from
this fact and the IH.

Sub-case 2: DIFj ≤ 4.5 · B∗. Again, by Lemma 3.1.6, we have an allocation
π∗ = {p∗} s.t. satmj+1(I, π

∗, tj−) ≥ 1
2
· c(π∗) and satmj+1(I, π

∗, tj+) = 0. Set πj+1 = π∗.
Possibly, we have satmj+1(I, π

∗, tj0) = c(π∗) ≤ B∗. By analogous reasoning to sub-case
1, we have that DIFj > DIFj+1. Then, the claim again follows from the IH.

Sub-case 3: So we’re left with the final case in which DIFj > 4, 5 ·B∗ and
satj(I,π, tj0) > satj(I,π, t

j
+)− 1

2
· B∗. We call this again the ‘critical case’, and again

argue that this situation/case is impossible.
Suppose, for contradiction, that it is possible. Since, by assumption, we have that

DIFj > 4, 5 · B∗, there must exist some round l + 1 ∈ {1, . . . , j} s.t. DIFl+1 ≥ 2 · B∗

and DIFi < 2 ·B∗ for all other rounds i ∈ {1, . . . , j} s.t. 1 ≤ i ≤ l. Consider this round.
Note that the only situation in which the difference DIFl can increase (i.e., in which

DIFl+1 > DIFl) is when DIFl > 1.5 · B∗ and satl(I,π, tl0) > satl(I,π, t
l
+) − 1

2
· B∗.
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This follows by reasoning analogous to the cases above, which show that in all cases
DIFj > DIFj+1. Thus, suppose that 1.5 · B∗ < DIFl ≤ 2 · B∗ and satl(I,π, tl0) >
satl(I,π, t

l
+)− 1

2
·B∗.

Hence, we’re now in a position to apply Lemma 3.1.8 (i.e., the conditions for Lemma
3.1.8 apply now). According to Lemma 3.1.8 there exists some solutionπ∗ =(πl, . . . , πk)
such that DIFi ≤ 4, 5 ·B∗ for any i ∈ {l, . . . , k}. Note that j ∈ {l, . . . , k}.

This contradicts the fact that DIFj > 4.5 ·B∗.

From (3.3), the convergence result now follows analogously to the way explicated in the
proof of Proposition 2.3.17.

3.2 No Convergence for Seven Agents
Theorem 3.1.1 shows that if we have four agents, who are divided among at most three
types, there always exists some solution π that converges to equal-satisfaction. However,
as was already apparent from Example 2.3.18, this result cannot be generalised to an
arbitrary amount of agents. For example, the result fails when we have eigth agents. We
can prove the stronger result that even for seven agents, the result already fails.

Proposition 3.2.1 (No convergence for seven agents). There exists some k-PPB instance
I = (I1, . . . , Ik) with seven agents who submit knapsack ballots such that there exists
no solution π for I that converges to equal-satisfaction.

Proof. Let I = (I1, . . . Ik) be a ∞-PPB instance with seven agents N = {1, . . . , 7}
who submit knapsack ballots. In every round j, we have bj = 10. In every round we
have that agents 1 and 2 have type t1 and agents 3,4,5,6,7 have type t2. Furthermore,
there are six projects p1, . . . , p6 such that c(p1) = c(p2) = c(p3) = 1, c(p4) = 3 and
c(p5) = c(p6) = 5. The approval function A : N → 2P is such that, for every round j:

• Aj(1) = {p1, p2, p3, p4},

• Aj(2) = {p5, p6},

• Aj(3) = {p5, p1, p2, p4},

• Aj(4) = {p6, p1, p3, p4},

• Aj(5) = {p5, p2, p3, p4},

• Aj(6) = {p5, p6},

• Aj(7) = {p6, p1, p2, p3}.
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A graphical representation of the proof is provided immediately after the end of the proof.
We now check that for each project the marginal satisfaction for type t2 is higher

than for type t1. It then follows that for each round j with Ij = ⟨Pj, 10, Aj⟩ and for
any allocation πj ⊆ Pj the marginal satisfaction for type t2 is higher than for type t1.
This then directly implies that there can be no non-empty solution converging to equal-
satisfaction.

First, recall the definition of the marginal satisfaction for a voter. The marginal
satisfaction of agent i ∈ N for round j ∈ {1, . . . , k} is defined as satmj (I, πj, i) =
c(πj ∩ Aj(i)). The marginal satisfaction of a type t ∈ T is defined as: satmj (I, πj, t) =
1
|t|
∑

i∈t sat
m
j (I, πj, i).

We show that in every round j ∈ {1, . . . , k}, for some i ∈ N and for all projects
p ∈ P with P = {pi|1 ≤ i ≤ 7}, we have that satmj (I, p, t1) < satmj (I, p, t2).

(p1) By assumption c(p1) = 1. We have that p1 ∈ Aj(1), hence satmj (I, p1, 1) =
c({p1} ∩ Aj(1)) = c(p1) = 1. Since p1 ̸∈ Aj(2), we have that satmj (I, p1, 2) = 0.
Hence, by definition, we have satmj (I, p1, t1) = 1

2

∑
i∈t1 sat

m
j (I, p1, i) = 0.5.

We have that p1 ∈ Aj(3), p1 ∈ Aj(4) and p1 ∈ Aj(7). Hence satmj (I, p1, 3) =
satmj (I, p1, 4) = satmj (I, p1, 7) = c({p1}∩Aj(3)) = c({p1}∩Aj(4)) = c({p1}∩
Aj(7)) = c(p1) = 1. Since p1 ̸∈ Aj(5) and p1 ̸∈ Aj(6), we have that satmj (I, p1, 5)
= satmj (I, p1, 6) = 0. Hence, by definition, we have satmj (I, p1, t2) = 1

5

∑
i∈t2

satmj (I, p1, i) = 3
5
= 0.6 > 0.5. So the marginal satisfaction for project p1 for

type t2 is strictly higher than for type t1.

(p2) By assumption c(p2) = 1. We have that p2 ∈ Aj(1), hence satmj (I, p2, 1) =
c({p2} ∩ Aj(1)) = c(p2) = 1. Since p2 ̸∈ Aj(2), we have that satmj (I, p2, 2) = 0.
Hence, by definition, we have satmj (I, p2, t1) = 1

2

∑
i∈t1 sat

m
j (I, p2, i) = 0.5.

We have that p2 ∈ Aj(3), p2 ∈ Aj(5) and p2 ∈ Aj(7). Hence satmj (I, p2, 3) =
satmj (I, p2, 5) = satmj (I, p2, 7) = c({p2}∩Aj(3)) = c({p2}∩Aj(5)) = c({p2}∩
Aj(7)) = c(p2) = 1. Since p2 ̸∈ Aj(4) and p2 ̸∈ Aj(6), we have that satmj (I, p2, 4)
= satmj (I, p2, 6) = 0. Hence, by definition, we have satmj (I, p2, t2) = 1

5

∑
i∈t2

satmj (I, p2, i) = 3
5
= 0.6 > 0.5. So the marginal satisfaction for project p2 for

type t2 is strictly higher than for type t1.

(p3) By assumption c(p3) = 1. We have that p3 ∈ Aj(1), hence satmj (I, p3, 1) =
c({p3} ∩ Aj(1)) = c(p3) = 1. Since p3 ̸∈ Aj(2), we have that satmj (I, p3, 2) = 0.
Hence, by definition, we have satmj (I, p3, t1) = 1

2

∑
i∈t1 sat

m
j (I, p3, i) = 0.5.

We have that p3 ∈ Aj(4), p3 ∈ Aj(5) and p3 ∈ Aj(7). Hence satmj (I, p3, 4) =
satmj (I, p3, 5) = satmj (I, p3, 7) = c({p3}∩Aj(4)) = c({p3}∩Aj(5)) = c({p3}∩
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Aj(7)) = c(p3) = 1. Since p3 ̸∈ Aj(3) and p3 ̸∈ Aj(6), we have that satmj (I, p3, 3)
= satmj (I, p3, 6) = 0. Hence, by definition, we have satmj (I, p3, t2) = 1

5

∑
i∈t2

satmj (I, p3, i) = 3
5
= 0.6 > 0.5. So the marginal satisfaction for project p3 for

type t2 is strictly higher than for type t1.

(p4) By assumption c(p4) = 3. We have that p4 ∈ Aj(1), hence satmj (I, p4, 1) =
c({p4} ∩ Aj(1)) = c(p4) = 3. Since p4 ̸∈ Aj(2), we have that satmj (I, p4, 2) = 0.
Hence, by definition, we have satmj (I, p4, t1) = 1

2

∑
i∈t1 sat

m
j (I, p4, i) = 1.5.

We have that p4 ∈ Aj(3), p4 ∈ Aj(4) and p4 ∈ Aj(5). Hence satmj (I, p4, 3) =
satmj (I, p4, 4) = satmj (I, p4, 5) = c({p4}∩Aj(3)) = c({p4}∩Aj(4)) = c({p4}∩
Aj(5)) = c(p4) = 3. Since p4 ̸∈ Aj(6) and p4 ̸∈ Aj(7), we have that satmj (I, p4, 6)
= satmj (I, p4, 7) = 0. Hence, by definition, we have satmj (I, p4, t2) = 1

5

∑
i∈t2

satmj (I, p4, i) = 9
5
= 1.8 > 1.5. So the marginal satisfaction for project p4 for

type t2 is strictly higher than for type t1.

(p5) By assumption c(p5) = 5. We have that p5 ∈ Aj(2), hence satmj (I, p5, 2) =
c({p5} ∩ Aj(2)) = c(p5) = 5. Since p5 ̸∈ Aj(1), we have that satmj (I, p5, 1) = 0.
Hence, by definition, we have satmj (I, p5, t1) = 1

2

∑
i∈t1 sat

m
j (I, p5, i) = 2.5.

We have that p5 ∈ Aj(3), p5 ∈ Aj(5) and p5 ∈ Aj(6). Hence satmj (I, p5, 3) =
satmj (I, p5, 5) = satmj (I, p5, 6) = c({p5}∩Aj(3)) = c({p5}∩Aj(5)) = c({p5}∩
Aj(6)) = c(p5) = 5. Since p5 ̸∈ Aj(4) and p5 ̸∈ Aj(7), we have that satmj (I, p5, 4)
= satmj (I, p5, 7) = 0. Hence, by definition, we have satmj (I, p5, t2) = 1

5

∑
i∈t2

satmj (I, p5, i) =
15
5
= 3 > 2.5. So the marginal satisfaction for project p5 for type

t2 is strictly higher than for type t1.

(p6) By assumption c(p6) = 5. We have that p6 ∈ Aj(2), hence satmj (I, p6, 2) =
c({p6} ∩ Aj(2)) = c(p6) = 5. Since p6 ̸∈ Aj(1), we have that satmj (I, p6, 1) = 0.
Hence, by definition, we have satmj (I, p6, t1) = 1

2

∑
i∈t1 sat

m
j (I, p6, i) = 2.5.

We have that p6 ∈ Aj(4), p6 ∈ Aj(6) and p6 ∈ Aj(7). Hence satmj (I, p6, 4) =
satmj (I, p6, 6) = satmj (I, p6, 7) = c({p6}∩Aj(4)) = c({p6}∩Aj(6)) = c({p6}∩
Aj(7)) = c(p6) = 5. Since p6 ̸∈ Aj(3) and p6 ̸∈ Aj(5), we have that satmj (I, p6, 3)
= satmj (I, p6, 5) = 0. Hence, by definition, we have satmj (I, p6, t2) = 1

5

∑
i∈t2

satmj (I, p6, i) =
15
5
= 3 > 2.5. So the marginal satisfaction for project p6 for type

t2 is strictly higher than for type t1.

The following is a graphical representation of the proof of Proposition 3.2.1. We can
represent the defined approval function A : N → 2P as follows, where the ith column
indicates the projects that are approved by agent i ∈ N .
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p1

p2

p3

p4

p5

p6 p2

p3

p4

p5p6 p6p5

p2p3p2

p4 p4

p1 p1 p1

p5

p6

p3

t1 t2

Our claim is that for each project p ∈ P the marginal satisfaction is higher for type t2
than for type t1. The marginal satisfaction of a type is defined to be the average marginal
satisfaction of the type’s agents. To prove our claim, we only need to look at the marginal
satisfaction of agents due to some singleton allocation {p} ⊆ P . Hence it suffices to
check for each project whether – on average – it is contained in strictly more approval
sets of agents in t2 than in those of agents in t1. This implies that no project p can occur
in all approval sets of t1’s agents, for this would imply that strictly more agents of t2
approve of p than that t2 has agents, which is impossible. Hence all projects must be
approved by at most one agent of type t1. The claim is then implied by the fact that all
projects occur in at least three of t2’s agents’ approval sets, which can easily be seen by
re-ordering the representation above to the one below.

p1

p2

p3

p4

p5

p6

p2

p3

p4

p5

p6 p6

p5

p2

p3

p2

p4 p4

p1 p1p1

p5

p6

p3

t1 t2

3.3 Discussion
In this chapter we examined the extent to which we can guarantee fair solutions when
we define a fair solution to be a solution that converges to equal-satisfaction. We can
guarantee a converging solution to exist when there at most four agents (divided into at
most three types), though we cannot do this when there are more than seven agents.

As mentioned before, intuitively, one main reason for why we cannot guarantee a
solution that converges to equal-satisfaction when there are seven agents (or more) is that
some agents’ ballots have a strictly higher cost than other agents’ ballots. For example,

56



CHAPTER 3. RESULTS ABOUT SATISFACTION

the cost of agent 1’s ballot is strictly lower than agents 4’s ballot (i.e., c(Aj(1)) = 6 <
c(Aj(4)) = 10). In this sense, less projects ‘fit’ in the ballots of type 1’s agents than in
the ballots of type 2’s agents. In Example 3.2.1, this fact explains why it is possible that
all projects generate a higher marginal satisfaction for t2 than for t1.

Hence, in general, in order to guarantee converging solutions for more than seven
agents, we should at least diminish the possible discrepancy in the cost of agents’ full
ballots. One promising way to do this is to consider the welfare measure of relative
satisfaction, in which the satisfaction of an agent is made relative to her maximal possible
satisfaction. This, indeed, yields more positive results. We will prove a main result in
Chapter 5.
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Chapter 4

Complexity of Equal-Share

As was mentioned before, there are multiple ways to define the welfare of agents. In
the results above, we defined the welfare of a type as satisfaction, which intuitively cor-
responds to how much budget is spent on average on the preferences of the agents of
the type. There are, however, other possible welfare measures. In the preliminaries, we
identified share as another possible conception of welfare, corresponding roughly to the
amount of effort that has been made to satisfy agents’ preferences.

We cannot always guarantee, even in limited circumstances, that an outcome exists
that fairly divides the share among the agents – let alone one that fairly divides the share
among the types (Lackner, Maly, and Rey, 2021). Sometimes such a fair outcome exists,
but sometimes it doesn’t. In this chapter we will show that we cannot efficiently compute
whether or not an outcome satisfying equal-share exists.

Lackner, Maly, and Rey (2021) already proved that the Equal-Share problem, which
we will define below, is weakly NP-complete. We will show that the Equal-Share prob-
lem is strongly NP-complete. First, we give a definition of the Equal-Share problem
and the X3C problem, as we will show that X3C reduces to Equal-Share.

X3C
Input: A set X with |X| = 3q with q ∈ N. A collection C ⊆ P(X) of

3-element subsets of X .
Question: Is there a subset C ′ ⊆ C where every element of X occurs in exactly

one member of C ′?

Equal-Share
Input: A k-PPB instance I = (I1, . . . , Ik) and a solution π = (π1, . . . , πk−1).
Question: Is there a non-empty and feasible budget allocation πk for Ik such that

(π1, . . . , πk−1, πk) provides equal-share at round k?

Theorem 4.0.1. Equal-Share is strongly NP-complete.

Proof. Membership of Equal-Share in NP is clear, the certificate being the solution
itself. Hence, we only need to show that Equal-Share is NP-hard. We do this by reduc-
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ing from X3C, which is known to be strongly NP-complete (Garey and Johnson, 1979).

Let X3C = {⟨X,C⟩ : C ′ ⊆ C is an exact cover of X} and let Equal-Share =
{⟨I,π⟩ : πk provides equal-share at round k} with I = (I1, . . . , Ik) and π =
(π1, . . . , πk−1).

Consider any set X with |X| = 3q with q ∈ N, and a collection C ⊆ P(X) of 3-
element subsets of X . We show a way to map every collection C ⊆ P(X) into a k-PPB
instance I such that there exists an exact cover C ′ ⊆ C of X iff there exists a budget
allocation πk for Ik that provides equal-share at round k.

We construct a 1-PPB instance I = (I) with I = ⟨P , b, A⟩ as follows.

• Firstly, we define the set of agents. Let N be the set of agents such that N = {ix :
x ∈ X} ∪ {i∗, i∗∗, i∗∗∗}. I.e., |N | = |X| + 3. We thus associate an agent with
each x ∈ X , and in addition we have three ‘special’ agents. Each agent has its own
unique type.

• Next, we define the set of available projects P . Let P = {py : y ∈ C}∪ {p∗}, i.e.,
with each element y = {u, v, w} ∈ C with u, v, w ∈ X , which is by definition a
3-element subset of X , we associate a project py = p{u,v,w}. In addition, we have
a ‘special project’ p∗. Let c(p) = 1 for all p ∈ P .

• Let our budget limit b = |X|
3

+ 1.

• Finally, we define the approval function A. First we define the approval sets of
the non-special agents, then we define the approval sets of the special agents. Let
A(ix) = {py : x ∈ y} for all agents ix ̸∈ {i∗, i∗∗, i∗∗∗}. That is, we define the
approval sets of the non-special agents as follows. Each agent ix is associated
with an element x of X . Every project is associated with a 3-element subset y =
{u, v, w} ∈ C of X . We say that an agent ix approves of y = {u, v, w} if the
element x of X that the agent is associated with is an element of the 3-element
subset y that the project is associated with.
Next, we define the approval sets of the three special agents. Let A(i∗) = A(i∗∗) =
A(i∗∗∗) = {p∗}. We thus say that each special agent approves of a special project
p∗ such that no other agent approves of that project.

This reduction can clearly be done in polynomial time.
Next we show that there exists an exact cover C ′ ⊆ C of X iff there exists a budget allo-
cation πk for Ik that provides equal-share at round k.

⟨X,C⟩ ∈ X3C ⇐= ⟨I,π⟩ ∈ Equal-Share.
Suppose that there exists a non-empty and feasible budget allocation π for I = (I)

that satisfies equal-share. Note that π is non-empty. Thus, there exists some project
p ∈ P s.t. p ∈ π. By our definition of A it follows that p ∈ A(i) for some i ∈ N . By
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definition of share, that means that sharem1 (I, π, i) > 0. From equal-share, this implies
that every agent must have strictly more than 0 share.

It thus follows also that the three special agents i∗, i∗∗ and i∗∗∗ must have strictly more
than 0 share. Note now that the special agents approve of only one project. By definition
of share, it follows that

sharem1 (I, π, i
∗) =

∑
p∈π∩A(i∗)

c(p)

|{i′ ∈ N|p ∈ A(i′)}|
=

1

3
.

By equal-share it follows that all types have a share of 1
3
. Since each agent has its

unique type, it follows by definition of the marginal share of a type in a round that all
agents have share 1

3
. By construction it follows that all projects p ∈ π are approved by

exactly three agents.
But then it follows that every agent approves of only one project p ∈ π of the budget

allocation. For suppose not. Either there exists an agent i that approves of no project of
π, or there exists an agent i that approves of more than one project of π. If i approves
of no project p ∈ π, then sharem1 (I, π, i) = 0, which contradicts the fact that each agent
has 1

3
share. So suppose the agent approves of more than one project p ∈ π. Since every

project is approved by exactly three agents, it follows that:

sharem1 (I, π, i) =
∑

p∈π∩A(i)

c(p)

|{i′ ∈ N|p ∈ A(i′)}|
=

1

3
· x

with x ∈ N and x ≥ 2, which contradicts the fact that each agent has 1
3

share.
Thus, for every agent i ∈ N it holds that |A(i) ∩ π| = 1.
Now we pick as exact cover C ′ all the sets y ∈ C such that py ∈ π, i.e., C ′ = {y ∈

C : py ∈ π}. It follows from the fact that |A(i) ∩ π| = 1 for all i ∈ N and the fact that
every p ∈ P is approved by exactly three agents that C ′ is an exact cover of X .

⟨X,C⟩ ∈ X3C =⇒ ⟨I,π⟩ ∈ Equal-Share.
Suppose that there exists an exact cover C ′ ⊆ C of X . We show that there exists a

budget allocation π for I = (I) that satisfies equal-share. By definition of an exact cover,
we have that for all x ∈ X , x ∈ y for some y ∈ C ′ ⊆ C and x ̸∈ y′ for any y′ such
that y′ ̸= y and y′ ∈ C ′. Hence, by construction, by setting π = {py : y ∈ C ′}, all the
non-special agents have share 1

3
. To satisfy equal-share, we need to in addition ensure 1

3

share for the special agents, which we do by including p∗ in the allocation. Hence, the
allocation π = {py : y ∈ C ′} ∪ {p∗} for I = (I) satisfies equal-share.
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Chapter 5

Results about Convergence to
Equal-Relative Satisfaction

In the previous chapter, we have seen results on two of the three ways of defining welfare
that we stated in the preliminaries: satisfaction and share. In this chapter, we focus on the
third definition of welfare, which is relative satisfaction. We have seen that this definition
of welfare allows for more positive results with respect to realising fair solutions. For
example, Theorem 2.3.19 entails that if there are at most 2 types of agents, then a solution
converging to equal-relative satisfaction can always be guaranteed to exist.

In this chapter, we will show that – given some additional assumptions – we can
always guarantee the existence of a solution that converges to equal-relative satisfaction
when there are three types of agents. The proof of this fact will be constructive, meaning
that the proof does not only show that a fair solution exists, but also provides a way of
computing this solution.

The rest of the chapter is structured as follows. We will first make some assump-
tions about the input of the PPB-instance. They differ in how stringent they are. These
assumptions give rise to a symmetry in the ballots of the agents, which we explicate in
the subsequent section. This symmetry-result then allows us to prove the guaranteed
existence of a converging solution in the next section.

5.1 Assumptions
First, we explicate the assumptions that we will make during this chapter. We make
these assumptions so that it is mathematically and conceptually easier to reason about
convergence for three types of agents. More precisely, we make three assumptions: we
will assume that the three types have an equal size, that there are 2 candidates in each
round and that each agent votes for one candidate.
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Remark 5.1.1. Given a k-PPB instance I , a solution π for I , a set of three types T with
tj−, t

j
0, t

j
+ ∈ T for any j ∈ {1, . . . , k}, we suppose:

1. that the types have equal size: |tj−| = |tj0| = |tj+| for each j ∈ {1, . . . , k}.

2. that there are only 2 candidates in each round: |Pj| = 2 for each j ∈ {1, . . . , k}.
Possibly, however, Pj ̸= Pi for some rounds j, i ∈ {1, . . . , k},

3. that each agent votes for one candidate: |Aj(i)| = 1 for each j ∈ {1, . . . , k} and
for each agent i ∈ N .

We will in the following sometimes refer to k-PPB instances that satisfy these as-
sumptions as restricted k-PPB instances.

5.2 Symmetry
In order to prove the theorem, we will show that due to the Assumptions 5.1.1, there exists
a symmetry in the marginal Γ,DIF and ∆. This symmetry is caused by the structure of
the ballots. We require the notions of multisets and multiplicity to reason about this
structure. Given some round j, the multiset that we define intuitively corresponds to
the collection of all projects that the agents of some type approve of in j, where each
project is treated as a unique element. That is, if project p is approved of by two agents,
then p will be in the collection twice. Given a multiset, the multiplicity of p corresponds
to the amount of times that it appears in the multiset. Hence, if all agents of a type t
vote unanimously for p, then the multiset will contain the singleton {p}, of which the
multiplicity is equal to |t|.

Definition 5.2.1 (Multisets and multiplicity). Given a restricted k-PPB instance I with
k ∈ N∪{∞}, a solution π for I , a type t ∈ T with t = {l, . . . , n} for some agents l, n ∈
N , a round j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩, and given two projects p1, p2 ∈ Pj ,
we define the multiset X t

j of type t in round j to be X
t

j = [Aj(l), . . . , Aj(n)]. Further,
we denote by A

t

j(p1) the multiplicity of {p1} in X
t

j , and refer to it as the multiplicity of
p1 if the type and the round are clear from the context.

This definition now enables us to prove the following lemma.

Lemma 5.2.2 (Symmetry). Given a restricted k-PPB instance I , a set of types T with
|T | = 3, some round j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩, then there are two budget
allocations π1, π2 ⊆ Pj such that:

• Γπ1
j = −Γπ2

j , and

• DIFπ1
j = −DIFπ2

j .
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Proof. Let I = (I1, . . . , Ik) be a restricted k-PPB instance. Suppose that we have three
types t1, t2, t3. Consider an arbitrary round j ∈ {1, . . . , k} with Ij = ⟨Pj, bj, Aj⟩. By
assumption |Pj| = 2. Suppose w.l.o.g. that Pj = {A,B}. We then have three possible
allocations: π1 = {A}, π2 = {B}, π3 = {A,B}.

First note that since, by assumption, we have |tj−| = |tj0| = |tj+| and Aj(i) = {A}
or Aj(i) = {B}, it follows that the multiplicity of A can be defined in terms of the
multiplicity of B. That is: At

j(A) = |t| − A
t

j(B), for any type t ∈ T . And, similarly:
A

t

j(B) = |t| − A
t

j(A), for any type t ∈ T .
First, we show that DIFπ1

j = −DIFπ2
j . By definition of DIF{A}

j , we have: DIF{A}
j =

z − x with x = Dtj−
j−1→j and z = Dtj+

j−1→j . By definition of relative satisfaction and the

assumptions of 5.1.1 it follows that x = Dtj−
j−1→j =

A
t
j
−
j (A)

|t| and z = Dtj+
j−1→j =

A
t
j
+
j (A)

|t| .

Hence, DIF{A}
j can be written as: DIF{A}

j = z − x =
A

t
j
+
j (A)

|t| − A
t
j
−
j (A)

|t| .

By substituting A
t

j(A) for |t| − A
t

j(B) we get:

DIF{A}
j =

|t| − A
tj+
j (B)− |t|+ A

tj−
j (B)

|t|
=

A
tj−
j (B)− A

tj+
j (B)

|t|

Hence

−DIF{A}
j = −

A
tj−
j (B)− A

tj+
j (B)

|t|
=

A
tj+
j (B)− A

tj−
j (B)

|t|

=
A

tj+
j (B)

|t|
−

A
tj−
j (B)

|t|
= DIF{B}

j .

Next we show that Γπ1
j = −Γπ2

j . By definition, we have that Γ{A}
j = y − x with

Dtj0
j−1→j = y and Dtj−

j−1→j = x. From the assumptions of 5.1.1 and the definition of

relative satisfaction it follows that x =
A

t
j
−
j (A)

|t| and y =
A

t
j
0
j (A)

|t| . Hence we have:

Γ
{A}
j =

A
tj0
j (A)

|t|
−

A
tj−
j (A)

|t|
=

A
tj0
j (A)− A

tj−
j (A)

|t|
.

Substituting |t| − A
tj

j (B) for Atj

j (A), we get:

Γ
{A}
j =

(|t| − A
tj0
j (B))− (|t| − A

tj−
j (B))

|t|
=

|t| − A
tj0
j (B)− |t|+ A

tj−
j (B)

|t|
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=
A

tj−
j (B)− A

tj0
j (B)

|t|
.

Thus

−Γ
{A}
j =

A
tj0
j (B)− A

tj−
j (B)

|t|
= Γ

{B}
j .

5.3 Proving Convergence for Three Types
In this section, we prove the following theorem that states that, given our assumption, we
can guarantee the existence of a solution that converges to equal-relative satisfaction:

Theorem 5.3.1. Given a restricted ∞-PPB instance I and a bound B∗ ∈ N, there is a
non-empty feasible solution for I that converges to equal-relative satisfaction.

Proof. The high-level structure of the proof is as follows. In order to show that we can
always guarantee the existence of a converging solution, we show – as we did before – that
the total difference is bounded. This implies convergence in the way that we explicated
in the proof of Proposition 2.3.17. In particular, we will show that the total difference
is bounded by a specific step-function f , which has a maximum. This step-function is
based on a certain sequence, which we call the step-sequence, which we can construct
based on the size of the types.

In the order of which they occur in the proof, the proof consists of four steps:

1. Constructing a ‘step’-sequence

2. Constructing a ‘step’-function based on the step-sequence

3. Showing that PPB-instances are bounded by the step-function

4. Showing that the step-function has a maximum, and concluding that there is there-
fore convergence.

5.3.1 Constructing a ‘Step’-Sequence
We generate an infinite sequence (x0, . . .) which we call a step-sequence. We will show
that it satisfies the following property.

For any entry xk ∈ (x0, . . .), we have that:

n∑
i=0

xk−i ≤ 1 implies
n∑

i=0

xk+i ≤
n∑

i=0

xk−1−i +
1

|t|
.
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First, let k =

{
|t|
2
, if k is even

|t|+1
2

, if k is odd.
Then set xi = 2 · 1

|t| for each i ∈ {x0, . . . , xk}.

• If (xj, . . . , xl) is a sub-sequence s.t.
∑l

i=j xi ≥ 1 and xi = xi′ for each xi, xi′ ∈
(xj, . . . , xl), then set xl+1 = xl +

1
|t| .

• Let (xz, . . . , xz′) be the first further sub-sequence that satisfies this condition, i.e.,
s.t. z > l,

∑z′

i=z xi ≥ 1 and xi = xi′ for each xi, xi′ ∈ (xz, . . . , xz′) and there
exists no xl′ s.t. xl < xl′ < xz.

• Call any xi ∈ (xl, . . . , xz′) s.t. xi = xl and l ≤ i ≤ z′ ‘non-raised’ and any xi s.t.
xi = xl +

1
|t| | = xl+1 and l ≤ i ≤ z′ ‘raised’.

• For all raised xr ∈ (xl, . . . , xz′) and for each k s.t.
∑k

i=1 xr−i ≤ 1, set xr+k =
xr−1−k. Call this process ‘forcing’. We say that an entry xr+k is forced by xr iff
xr+k is non-raised, xr+k = xr−1−k and

∑k
i=1 xr−k ≤ 1. Set xr+k+1 = xl+1 (i.e.,

raise xr+k+1) when xr+k+1 is not forced.

• Exception.1 If for some raised entry xr there exists some entry xr−1−i∗ s.t. xr−1−i∗

is raised and
∑i∗

i=1 xr−i ≤ 1, while xr+i∗ was forced (by some entry xb with b < r),
then set xr+i∗ to be non-raised. That is, set xr+i∗ = xl. Let xr+f be the first entry
with r+ f > r+ i∗ that is not forced and s.t.

∑f
i=1 xr−f ≤ 1. Then set xr+f to be

raised. That is, set xr+f = xl +
1
|t| .

• When you reach the sub-sequence xz, . . . , xz′ , iterate this procedure.

• Whenever xn = 1 and xn−i < 1 for all 1 ≤ i ≤ n, set xn+l = 1 for all l ∈ N.

To see why this sequence satisfies the desired property, consider any entry xk ∈
(x0, . . .) and some n ∈ N such that

∑n
i=1 xk−i ≤ 1. By construction, there is at most

one entry xk+i ∈ (xk, . . . , xk+n) that is forced, while xk−i ∈ (xk−1, . . . , xk−1−n) is not
forced. Hence it immediately follows that the property is satisfied.

We will now illustrate the algorithm generating the right sequence.

Example 5.3.2 (Illustrating the step-sequence). We will illustrate the way that the al-
gorithm above generates the step-sequence based on the size of the types, and why this
sequence satisfies our desired property.

1The intuition is the following. You copy and paste in the naieve way specified above. But sometimes
an earlier raised entry already forced some number. Then we clearly cannot raise these numbers anymore.
We should leave them the way they are, but this leaves you with the opportunity to raise the next un-raised
(and unforced) entry.

65



CHAPTER 5. RESULTS ABOUT CONVERGENCE TO EQUAL-RELATIVE
SATISFACTION

Suppose that the three types have size 10, i.e. that |t| = 10. Now consider the
following sub-sequence:

(0.3, 0.3, 0.3, 0.3) (5.1)

This is a sub-sequence (xj, . . . , xl) s.t.
∑l

i=j xi ≥ 1 and xi = xi′ for each xi, xi′ ∈
(xj, . . . , xl), and hence is an appropriate sub-sequence for the first step of the algorithm.

In the algorithm, we also consider the ‘first further sub-sequence that satisfies this
condition’. It is the sub-sequence (xz, . . . , xz′) s.t. z > l,

∑z′

i=z xi ≥ 1 and xi = xi′ for
each xi, xi′ ∈ (xz, . . . , xz′) and there exists no xl′ s.t. xl < xl′ < xz. The sub-sequence
satisfying these conditions is (0.4, 0.4, 0.4). Intuitively, it corresponds to the next sub-
sequence of length more than 1 in which all the entries are exactly 1

|t| higher than in the
previous sub-sequence.

Starting with (0.3, 0.3, 0.3, 0.3), the algorithm then tells us: set xl+1 = xl+
1
|t| . Hence

we now get the sub-sequence:

(0.3, 0.3, 0.3, 0.3, 0.4) (5.2)

where the entry xl+1 = 0.3 + 1
10

= 0.4. We call the entries with value 0.3 ‘non-raised’
and the entries with value 0.4 ‘raised’.

The 5th entry in our sub-sequence is raised. The algorithm then tells us to force the
further entries. It states that for each k ∈ N and some raised entry xr s.t.

∑k
i=1 xr−i ≤ 1,

we should set xr+k = xr−1−k. For example, if we denote the 5th entry in our sub-
sequence by x5, we set x5+1 = x5−1−1. Since x5−1−1 = x3 = 0.3, we set x6 = 0.3.
Similarly, x5+2 = x5−3 = 0.3 and x5+3 = x5−4 = 0.3. We don’t force the 4 + 4 = 8’th
entry, for

∑4
i=1 x5−i > 1.

Hence we get the following sub-sequence:

(0.3, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3) (5.3)

Since the 8’th entry of Sequence 5.3 is not forced, we raise it. Hence we get:

(0.3, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3, 0.4) (5.4)

Since the 8th entry is raised, the algorithm again tells us to force the further entries
as follows: x8+1 = x8−1−1 = x6 = 0.3, x8+2 = x8−1−2 = x5 = 0.4. We don’t force the
11th entry, since

∑4
i=1 x8−i > 1.

Hence we get
(0.3, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3, 0.4, 0.3, 0.4) (5.5)

Similarly, the 10th entry forces:

(0.3, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3, 0.4, 0.3, 0.4, 0.4, 0.3) (5.6)

And finally we get:

(0.3, 0.3, 0.3, 0.3, 0.4, 0.3, 0.3, 0.4, 0.3, 0.4, 0.4, 0.3, 0.4, 0.4, 0.4) (5.7)
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Now we’ve reached the sub-sequence (0.4, 0.4, 0.4), which is again a sub-sequence
which has a length that is larger than 1 and in which all the entries have the same length.
Then we can iterate the same procedure starting from this sub-sequence. △

The specified sequence clearly always exists. Furthermore, it satisfies the property
mentioned above, i.e., if

∑n
i=1 xk−i ≤ 1, then:

∑n
i=0 xk+i ≤

∑n
i=0 xk−1−i +

1
|t| .

5.3.2 Constructing a ‘Step’-Function Based on the Step-Sequence
We now define a function f(Γ) based on the step-sequence (x0, . . .). We say

f(Γ) =
y

|t|
iff

y−1∑
i=0

xi ≤ Γ <

y∑
i=0

xi.

The step-function is illustrated below. The idea behind the function is to take the
value of the entries of the step-sequence as the lengths of the steps in the function. Note
that this is a specific fragment of the sequence given in Example 5.3.2.

0.3

0.4

0.3

0.4

0.4

0.3

. . .

. . .

+1 · Γ

−1 · Γ

5.3.3 Showing that PPB-instances are Bounded by the Step Function
Given some restricted k-PPB instance I = (I1, . . . , Ik) and some round j ∈ {1, . . . , k},
we claim that

f(Γj) ≥ DIFj.

By induction on the rounds. The base case is trivial. So consider any round j and
suppose that:

f(Γj) ≥ DIFj. (5.8)

We show that f(Γj+1) ≥ DIFj+1. By definition, DIFj = x
|t| for some x ∈ N and

Γj = y
|t| for some y ∈ N (similar for the marginal increase in Γπ

j+1 and DIFπ
j+1). By
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Assumptions 5.1.1, we have two allocations π1 and π2. We assume w.l.o.g. that π1

increases Γj (i.e., that Γπ1
j+1 ≥ 0), while π2 decreases Γj (see Symmetry 5.2.2).

Now, let X = f(Γj+Γπ1
j+1)−f(Γj) and let Y = f(Γj)−f(Γj−Γπ1

j+1). By definition
of f , we have that

y−1∑
i=0

xi ≤ Γj <

y∑
i=0

xi (5.9)

for some y ∈ N.
By definition of Γπ1

j+1 it follows that:

k∑
i=0

xy−1+i ≤ Γπ1
j+1 <

k∑
i=0

xy+i (5.10)

for some k ∈ N.
Similarly, for π2 we have that:

k∗∑
i=0

xy−1−i ≤ Γπ2
j+1 <

k∗∑
i=0

xy−i (5.11)

for some k∗ ∈ N.
We will first show that Y ≤ X + 1

|t| if
∑k

i=1 xy−i ≤ 1.
By (5.10) we have that Γπ1

j+1 <
∑k

i=0 xy+i. Note that by definition of Γ and DIF we
have that Γj =

x
|t| and DIFj =

y
|t| for some x, y ∈ N (and similarly for Γπ

j+1 and DIFπ
j+1).

Furthermore
∑k

i=0 xy+i =
z
|t| for some z ∈ N, by definition of the step-sequence. Hence,

from Γπ1
j+1 <

∑k
i=0 xy+i it follows that:

Γπ1
j+1 ≤

k∑
i=0

xy+i −
1

|t|
. (5.12)

By assumption, we have that
∑k

i=1 xy−i ≤ 1. From the property of the step-sequence
it then follows that:

k∑
i=0

xy+i ≤
k∑

i=0

xy−1−i +
1

|t|
(5.13)

Subtracting 1
|t| on both sides of the equation of (5.13) gives:

∑k
i=0 xy+i − 1

|t| ≤∑k
i=0 xy−1−i. From (5.12) we have that Γπ1

j+1 ≤
∑k

i=0 xy+i − 1
|t| . Hence we get Γπ1

j+1 ≤∑k
i=0 xy+i − 1

|t| ≤
∑k

i=0 xy−1−i. Thus Γπ1
j+1 ≤

∑k
i=0 xy−1−i. By Symmetry 5.2.2 it

follows that Γπ2
j+1 = −Γπ1

j+1 ≥ −
∑k

i=0 xy−1−i.
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Therefore we have that Γj − Γπ1
j+1 ≥

∑y−1
i=0 xi −

∑k
i=0 xy−1−i =

∑y−2−k
i=0 xi. By

definition of f , we have that f(Γj−Γπ1
j+1) = f(Γj+Γπ2

j+1) ≥
y−2−k

|t| . Since by assumption
f(Γj) =

y−1
|t| , it follows that:

Y = f(Γj)− f(Γj − Γπ1
j+1)

Y ≤ (y − 1)− (y − 2− k)

|t|

Y ≤ y − 1− y + 2 + k

|t|

Y ≤ k + 1

|t|

Y ≤ k

|t|
+

1

|t|
.

And since by (5.10) we have that f(Γπ1
j+1) =

y−1−k
|t| , it follows that:

X = f(Γj + Γπ1
j+1)− f(Γj)

X =
(y − 1 + k)− (y − 1)

|t|

X =
y − 1 + k − y + 1

|t|

X =
k

|t|
.

Hence Y ≤ X + 1
|t| follows if

∑k
i=1 xy−i ≤ 1.

Now suppose that
∑k

i=1 xy−i > 1. By definition of relative satisfaction, it follows
that Γπ1

j ≤ 1, hence
∑k−1

i=1 xy−i ≤ 1. Consider any Γπ′
j+1 s.t.

∑k−1
i=0 xy−1+i ≤ Γπ′

j+1 <∑k−1
i=0 xy+i.
By the proof of the claim above, it follows that Γj − Γπ′

j+1 ≥
∑y−1−k

i=0 xi and Γj +

Γπ′
j+1 ≥

∑y+k−2
i=0 xi. But now it follows by definition of Γπ′

j+1 that Γj−Γπ1
j+1 ≥

∑y−2−k
i=0 xi

and Γj + Γπ1
j+1 ≥

∑y+k−1
i=0 xi. And now the result follows similarly to the case above.

Thus we get that Y ≤ X + 1
|t| . We will now show how our result follows from this fact.

First note that f(Γj) ≥ DIFj , by the I.H..
Consider now 2 cases. Either

f(Γj + Γπ1
j+1) ≥ DIFj + DIFπ1

j+1 , or (5.14)

f(Γj + Γπ1
j+1) < DIFj + DIFπ1

j+1. (5.15)
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If (5.14) holds, then we are done. So suppose that f(Γj + Γπ1
j+1) < DIFj + DIFπ1

j+1. By
definition of f , it follows that f(Γj + Γπ1

j+1) ≤ DIFj − DIFπ1
j+1 − 1

|t| .
By definition of X , we have that

X = f(Γj + Γπ1
j+1)− f(Γj) . Hence

f(Γj) +X = f(Γj + Γπ1
j+1).

Thus, by (5.14): f(Γj) +X = f(Γj + Γπ1
j+1) ≤ DIFj − DIFπ1

j+1 −
1

|t|
.

Since by the I.H. we have DIFj ≤ f(Γj), it follows that

DIFj +X ≤ f(Γj) +X = f(Γj + Γπ1
j+1) ≤ DIFj − DIFπ1

j+1 −
1

|t|
.

Thus DIFj +X ≤ DIFj + DIFπ1
j+1 − 1

|t| , and hence

X ≤ DIFπ1
j+1 −

1

|t|
(5.16)

But now note that since Y ≤ X + 1
|t| , we have Y − 1

|t| ≤ X . By (5.16), we have
Y − 1

|t| ≤ X ≤ DIFπ1
j+1 − 1

|t| . Note that by Symmetry 5.2.2 and by definition of Y we
have that

f(Γj + Γπ2
j+1) = f(Γj − Γπ1

j+1) = f(Γj)− Y. (5.17)

We know that f(Γj) − Y ≥ DIFj − DIFπ1
j+1 +

1
|t| = DIFj + DIFπ2

j+1 +
1
|t| . Hence by

(5.17):
f(Γj + Γπ2

j+1) ≥ DIFj + DIFπ2
j+1.

Since by definition of Γ and DIF we have that Γj+1 = Γj + Γπ2
j+1 and DIFj+1 = DIFj +

DIFπ2
j+1, it follows that f(Γj+1) ≥ DIFj+1.

The property of the step-function that we proved above is illustrated by Figure 5.1,
considering again the case in which |t| = 10. The intuitive idea is as follows. Start at
any place on the step-function. By Symmetry 5.2.2 there are two allocations π1 and π2

that either increase or decrease Γ and the DIF. Suppose – the other cases are easier –
that the allocation π that increases Γ is also the allocation increasing the DIF (as is the
case in the figure). Suppose w.l.o.g. that π1 is the allocation increasing Γ and the DIF.
By definition, any increase in Γ by π1 ensures a difference of at least 1

|t| from the next
step.

This is illustrated by Figure 5.1: the green and black arrows indicate four possible
allocations (black arrows indicate one pair of allocations, green arrows indicate another).
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0.3

0.4

0.3

0.4

0.4

0.3

. . .

. . .

+1 · Γ → +0.2 ·DIF π1

−1 · Γ → −0.3 ·DIF π2

−0.7 · Γ → −0.2 ·DIF π2

+0.7 · Γ →+0.1 ·DIF π1

f(Γ)

f
(
Γj + Γπ2

j+1

)
≤ f

(
Γj + Γπ1

j+1

)
+ 1

|t|

Figure 5.1: f(Γ) bounds PPB-instances

Consider for example the green ‘up’-arrow (increasing Γ). The next step begins at exactly
8
10

from the starting point and there is 0.7 increase in Γ. So the difference to the next step
is exactly 1

|t| .
Together with the way the sequence was constructed, this fact guarantees that the

same decrease in Γ by π2 prevents us from ‘falling from the step’. To illustrate, consider
again the green arrows. As the figure shows, we increase Γ by 0.7. From our starting
point, the two subsequent steps both have a length of 0.4. Therefore, we ‘climb one
step’. The two preceding steps, however, are a bit shorter; being respectively of length
0.3 and 0.4. The step-sequence now guarantees us that this difference in length is at most
1
|t| = 0.1. Therefore, by going backwards, we ‘do not fall off the step’, and thus fall at
most one more step than we climb.

That is, every time we decrease Γ, we decrease the DIF by at most 1
|t| more than we

increase the DIF by increasing Γ.

5.3.4 Showing that the Step Function has a Maximum, and Conclud-
ing that there is Therefore Convergence Possible

By definition of the step-function, the step-function has a maximum value. Hence the to-
tal difference is bounded. Therefore convergence follows similarly to the way explicated
in Proposition 2.3.17.

5.4 Discussion
We end with two small notes on this chapter.
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First, as was mentioned before, the proof of Theorem 5.3.1 is constructive, mean-
ing that it does not only show that a converging solution exists, but also shows how to
compute this solution.

Second, Theorem 5.3.1 restricts the PB setting to a setting that is resemblant to that
of multi-winner voting, as the projects do not have a different cost and the voters ap-
prove of only one project. It is not immediately clear how the current proof could be
generalised to the case in which these assumptions are dropped. The final assumption,
however, which states that the size of the types should be equal, is easier to drop. The
main reason for introducing this assumption is that it makes it conceptually easier to
reason about convergence. However, the proof does not rely on this assumption to any
essential degree.
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Conclusion

6.1 Summary of Results
This thesis analysed the extent to which fair solutions can be realised in PPB. In Table
6.1 all the results that we have discussed are summarised. In general, we found that the
extent to which fair solutions can be realised depends heavily on the used definitions
of welfare and fairness, as also on the amount of agents and types that are involved in
the PPB process. In Chapter 2, we analysed several of the results on realising fairness
in PPB that have been found in recent work (in particular by Lackner, Maly, and Rey
(2021)). We saw, for example, that equal-F is a stringent notion of fairness. Given
some intuitive welfare measures, there exist k-PPB instances for which no solution exists
that satisfies equal-F , even for a small amount of agents voting with knapsack ballots
(Example 2.3.15). Convergence to equal-F seemed more promising, as we can guarantee
the existence of solutions that converge to equal-F , even for two arbitrary types of agents
(Theorem 2.3.19).

In Chapter 3, we found that one reason for the impossibility of guaranteeing solutions
satisfying (convergence to) equal-F is the fact that some agents’ ballots can be signif-
icantly more expensive than those of other agents. Restricting the ballots to knapsack
ballots is one way to limit the size of this possible dissimilarity. This allowed us to prove
a positive result for equal-F , stating that for 4 agents with knapsack ballots, we can guar-
antee the existence of a solution converging to equal-satisfaction (Theorem 3.1.1). How-
ever, we showed that we could not generalise this result to an arbitrary amount of agents,
as for seven agents with knapsack ballots, a converging solution cannot be guaranteed to
exist (Proposition 3.2.1).

In Chapter 4, we found that computing whether a solution exists that satisfies equal-
share is strongly NP-complete. And, finally, in Chapter 5, we found that given several as-
sumptions (Assumptions 5.1.1), we can guarantee a solution converging to equal-relative
satisfaction (Theorem 5.3.1) for three types of arbitrary size.
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Convergence
to equal-sat

≤ 2 agents
✓(Prop.
2.3.14)

> 3 agents ✗

(Ex. 2.3.15)
4 agents
(knapsack)
✓(Thm.
3.1.1)

> 7 agents
(knapsack) ✗

(Prop. 3.2.1)

Convergence
to equal-
rsat

Two types
✓(Thm.
2.3.19)

Three types
(Ass. 5.1.1)
✓(Thm.
5.3.1)

Equal-share Strongly
NP-
complete
(Thm. 4.0.1)

Equal-
sat/rsat

> 3 agents ✗

(Ex. 2.3.10)

Table 6.1: Summary of the results discussed in the current thesis

6.2 Discussion of Possible Applications
We will now discuss some implications and possible applications of the results of the
thesis.

First of all, note that the PPB model and the results that we have found to apply in it
are more general than the way that we have so far interpreted the model and the results.
We interpreted them to be about the real-world process of participatory budgeting. For
example, we stated that in the model there are agents who vote on some public projects,
such that these projects have a specific cost. And in each round (usually corresponding
to a year), we dedicate some of the available budget to realising some of the projects.
These are all specific interpretations that are not forced by the model itself. The model
itself is more general than this. For example, it does not necessarily describe ‘agents hav-
ing preferences over public projects’, but, instead, merely describes ‘some things having
preferences over some other things.’

This generality of the model (and therefore of the results that pertain to it) opens
possibilities for other real-world applications than participatory budgeting. We’ll briefly
sketch two of these.

Everyday collective decision-making. First of all, these results could be used in
mundane everyday life decision-making. For example, consider a family with two par-
ents and two children who have to decide every evening on what Netflix-show to watch.
The family wants to choose the shows in a fair way. Example 2.3.10 shows that we cannot
guarantee a perfectly fair solution every single night. However, Theorem 3.1.1 provides
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us with an algorithm that generates a fair solution on the long run.1 A simple implemen-
tation of this algorithm would tell them every night what show to watch. This even holds
when the preferences of the family members change, as also when the available shows
differ per night.

Political decision making. Secondly, consider a student council with members from
three different political student parties. Each year, they can vote for the thing in which
the university should, according to them, invest some amount of money. After initial
shortlisting, they can choose from two available options. The university wants to select
options that are fair with respect to the three parties. Note that these parties might have
any number of members and that these members might vote in any possible way (i.e., the
members of a party do not have to vote unanimously for the same option). Theorem 5.3.1
provides us with an algorithm that tells the university, for any given year, what option to
invest in to ensure a fair solution on the long run.

One final note on the practical application of these results: they are useful whenever
making a collective decision is primarily a matter of personal preference (or ‘taste’),
but not so much when the issue at hand is complicated, bearing on many factual con-
siderations. This interesting point can be illustrated by considering Example 1.3 again.
Suppose that we do not let Jessy, Maureen, Paul, John and George vote on some public
projects, but that we let them vote on certain thematic issues. For example, we could
let them vote – each year – on issues ranging from the way to reform the council tax to
the way that the municipality should shape its sustainability policy. Then we apply the
results of the current thesis to generate a solution that is fair: in year one the municipality
might adopt aspects of a sustainability policy that is in line with the preferences of Jessy
and Maureen, while in year two it adopts a reform of the council tax that is in line with
the preferences of Paul, and so on and so forth.

This system, where agents vote on thematic issues (also called ‘thematic PB’ (A.
Shah, 2007)), seems inadequate because the citizens might not be fully informed about
all of the factual considerations that are involved in these issues (A. Shah, 2007). For
example, Paul might not be aware of the need for a sustainability policy in the first place,
or might not know what the current policy is and how that currently works out. However,
information about these questions is important in order to make the ‘right’ decision.

To conclude, whenever we make a collective decision, we aim to make the ‘right’
decision. Sometimes, what is the right decision depends only (or mostly) on the personal
preferences of the agents involved, as is the case, for example, in the Netflix-situation
discussed above. To a large extent, this also holds when citizens need to decide on what
public projects to fund (as is the case in participatory budgeting). However, in some other
scenario’s, making the right decision depends not only on people’s preferences, but also
on the facts that people believe to hold. While people’s preferences should be considered

1We model the children as having their own unique type, while the parents share their type.
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to be equally valuable, people’s factual estimates are not equally valuable. After all,
some people have more expertise (are more well-informed) than others on certain topics.
Therefore, the results of the current thesis – aiming to satisfy everybody’s preferences to
the same extent – do not naturally extend to collective decisions on issues that concern
many factual considerations, since we should not want to satisfy everybody’s factual
considerations equally much.

6.3 Future Work
Since the work on perpetual voting in general, and on PPB in particular, is recent, there
are a lot of opportunities for future research. First, one could investigate whether more
general convergence results can be attained for convergence to equal-relative satisfaction
(being a particularly suitable notion of fairness and welfare). For example, it would be
interesting to investigate whether the proof of Theorem 5.3.1 can be adapted so as to drop
the assumptions of the theorem. Furthermore, it would be interesting to see whether a
converging solution is guaranteed to exist (using Assumptions 5.1.1, or not) for more than
three types of agents. Finally, one could try to prove an upper bound on the amount of
types for which you can guarantee a solution that converges to equal-relative satisfaction.
For example, can such a solution always be guaranteed for twenty types? Clearly, the
more types that such a solution can be guaranteed for, the more practical relevance these
results have.

Second, one could investigate the used notions of welfare and fairness from a philo-
sophical and psychological perspective. For example, is satisfaction a correct way of
measuring the welfare that an allocation generates for an agent? As mentioned, this mea-
sure is based on the assumption that there is a correlation between the cost of the project
and the happiness that funding this project generates for an agent. However, one could
wonder whether this assumption is correct and, if it is correct, how strong this correlation
is. One could also wonder whether the fairness notion of convergence to equal-F is in
line with our intuitions about fairness. Though a solution converging to equal-F is fair
in the limit, there might still be situations in this process in which the total difference is
large.

Third, and related to the remark above, one could investigate new notions of fairness
and welfare and analyse the extent to which fair solutions can be guaranteed to exist w.r.t.
these notions. As mentioned above, the extent to which we can realise fair solutions
depends heavily on the notions of fairness and welfare that are used.

Lastly, in the current thesis we mainly investigated the extent to which solutions ex-
ist that converge to equal-F . However, as stated above, a converging solution does not
guarantee that the total difference is small during all rounds. This is especially relevant
from a practical perspective, since – for example in participatory budgeting – people will
not be involved in the process for an infinite amount of rounds. It would therefore be
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interesting to investigate tight upper bounds on the total difference.
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