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Abstract. This report describes the digital humanities project on music 
similarity. The project is a collaboration between the University of Amsterdam 
and audio software company Elephantcandy. The project’s aim was to 
investigate timbre and rhythm similarity and to develop an application that 
finds similar segments of music. In this report three models are described, one 
for structural segmentation, one for timbre similarity, and one for rhythm 
similarity of electronic dance music (EDM). The segmentation algorithm 
performs well on an EDM dataset as well as on a standard MIREX dataset. The 
timbre similarity algorithm has been tested in a pilot study and preliminary 
results are presented. Issues related to segmentation and similarity are 
discussed. 

 
 

1. Introduction 
 
Similarity in music is a fascinating though complicated concept. Although most people 
clearly understand when a piece of music is similar to another, a good formalization of the 
concept of music similarity does not yet exist. Present software applications in this field 
(recommendation, playlist generation) are often limited to a single outcome and cannot be 
influenced by the user.  
This report is a description of the project `Music Similarity app’, based at the Center for 
Digital Humanities1. The project is a collaboration between the University of Amsterdam 
and Elephantcandy, a company that develops audio applications for mobile devices. The 
project ran from May 2012 until March 2013. In this project, we have broken down the 
concept of similarity into sub-similarities, and focus on timbre- and rhythm-similarity, in the 
restricted domain of electronic dance music (EDM). We have developed an application that 
has as input a (segment of a) piece of music, and as output a (segment of a) similar piece of 
music, in accordance with the type of similarity that was specified.  
In the academic field of Music Information Retrieval, various systems have been developed 
that classify music according to a certain type of similarity (Perez-Sancho et al, 2009; 
Pollastri, and Simoncelli, 2001; Hillewaere et al, 2010; Cilibrasi, Vitanyi, and Wolf, 2004; 

                                                        
1 http://cdh.uva.nl/ 
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Wiggins, 2007; Chew, Volk, and Lee 2005; Honingh and Bod, 2011). On the other side, in 
industry, a number of tools have been released that can recommend similar music (Apple 
Genius, last.fm, Pandora). Such systems and tools, however, often (1) rely on metadata and 
not on the actual audio, (2) consider similarity as a holistic entity, and (3) consider only 
complete musical records. As a result, only limited functionality can be provided to the end 
user. 
Let us briefly go through the shortcomings of existing systems. 
Most existing music-recommendation systems use metadata (keywords tagged by the user 
which can include information about artist, title, genre and more), meaning that the music 
itself (the audio file) is not studied (Lamere 2008). Therefore, the amount of music that can 
be used as both input and output is limited, and the functionality is limited to finding 
matches that have the same label. This project focuses on content-based music information 
retrieval, in which the audio is studied. In this way, we can use any kind of music, and have 
access to all musical information contained in the audio.  
Musical similarity consists of many facets, for example, tempo, rhythm, meter, 
instrumentation and pitch contour. Current research and industrial tools often treat 
similarity as a monodimensional property, aiming for an arbitrary 'best match'. However, as 
will be argued later, similarity depends on context and it is therefore useful to expand the 
notion of similarity into sub-similarities.  
Most studies in the area of music similarity concentrate on the similarity of pieces of music 
or songs as a whole. We can, however, imagine that a piece of music is similar to only a part 
of another piece of music, for example its introduction. The overall similarity between the 
two pieces will be therefore not that high, while the similarity between the first song and 
the introduction of the second could be of great importance. Therefore, in this project, we 
will focus on the similarity of segments of music.  
Since the topic of music similarity, even when restricted to timbre and rhythm similarity of 
music segments, remains a broad subject, we decided to treat it in the restricted domain of 
electronic dance music (EDM). The choice for this genre was motivated by the collaboration 
with audio software company Elephantcandy, which identified a specific need for similarity 
tools in this genre. 
In this report, we will describe the different parts of the project. We start with an 
introduction in electronic dance music, the chosen domain of our application.  In section 3, 
we will describe the segmentation algorithm, and the evaluation thereof. Section 4 
describes the similarity algorithms for both timbre and rhythm. We end with concluding 
remarks and discussion in section 5. 
 

2. Electronic Dance Music 
 
Electronic Dance Music (EDM) is a label that defines a metagenre encompassing a 
heterogeneous group of musics made with computers and electronic instruments (McLeod, 
2001). Most EDM tracks are made with the expectation of being combined with other tracks 
and danced to. However, some genres, although drawing on the conventions of EDM, are 
not suitable for the dance floor or written intentionally for not dancing (Butler, 2006). 
EDM was until recently (with some sporadic exceptions) an underground culture, i.e. 
cultivated outside the view of the general public eye (Fikentscher, 2000), but it has risen to 
the mainstream charts of the music industry (Greenburg, 2012). Today it has become 
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common for established Top 40 artists and producers to infuse elements of popular EDM 
styles in their music. EDM “has broken free from the underground to become the driving 
beat behind pop music and product sales, the soundtrack of choice for a new generation" 
(Ferguson, 2012). In 2005, the Grammy Awards added a Best Electronic/Dance album 
category. In 2012, the American Music Awards added a Favourite Electronic Dance Music 
category. 
Almost all EDM share certain musical characteristics: (1) steady tempo, mostly in the range 
of 120-150 BPM (dependent of genre); (2) a repeating bass drum pattern is almost always 
present (Butler, 2006). 
EDM has numerous subgenres, like for example house, techno, trance or drum ’n’ bass. The 
subgenres can usually be divided into two different styles: “four-on-the-floor” and 
“breakbeat”. Each style is concerned with a specific type of rhythm. However, these two 
different rhythms share certain aspects of design: (1) they are presented in cycles; (2) the 
duration of a cycle is almost always duple, i.e. rhythms occur in groups of 2, 4, 8, 16, 32, and 
64 (Butler, 2006).  
Interviews with EDM specialists, conducted by Yenigun (2012) and Ryce (2012) revealed 
some new perspectives on EDM. For example, it was said that EDM can be divided into two 
tendencies: (1) a “trackier” tendency, where the focus is on the textures and rhythms, not 
on the melody - in the sense that there are no memorable riffs or hum-along-to tunes; (2) a 
“song oriented” tendency, with a structure resembling pop where vocals dominate. It has 
furthermore been suggested in these interviews that the focus on melodies and vocals turns 
EDM “accessible to people that may not have liked the looping styles of deeper stuff”. 
 
2.1. Structure Analysis in EDM 
The fundamental unit of musical structure in EDM is the “loop”. As a fundamental structural 
idea of EDM, the cyclical repetition of rhythmic patterns manifests itself on multiple levels: 
not only in loops, but also in sequences, and ultimately within the structure of a complete 
track, as embodied in the form of a continuously revolving record (Butler, 2006). 
Particular instruments show characteristic rhythm patterns that shape the rhythmic and 
metrical profile of a track. It is often the bass drum pattern that listeners refer to when they 
describe “the beat” in EDM. Playing with the beat is essential to the metrical, textural, and 
formal processes that occur in EDM. The most common phenomenon is the removal of the 
bass drum - followed by its eventual return. The dynamic of removal and return is pervasive 
within EDM, appearing at some point in nearly every track (Butler, 2006). 
Timbre, often also referred to as ‘texture’, also stands out as a primary compositional 
parameter in EDM. Yeston (1976, as cited in Butler, 2006) stated that timbre is “the criterion 
by which rhythmic sub-patterns may be differentiated most easily”. Most of the timbral 
changes that occur in EDM involve an element either entering or leaving the mix. In Butler 
(2006), DJ Shiva and Stanley described a prototypical structure of EDM tracks. They based 
their descriptions mainly on timbral changes. 
Butler (2006) explains how EDM producers rely on sequences (for example a sequence of 
notes, possibly consisting of multiple voices) to create a track: they use only one or two 
sequences through the course of an entire track, creating textural variety by muting or 
unmuting selected parts as the sequence repeats; they form the track from a succession of 
many different sequences. These sequences usually consist of four or multiples of four 
measures of four beats. As the DJs Butler interviewed stated, in EDM “everything happens in 
four”, be it beats, measures, or hypermeasures. However, empirical analysis in the current 
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project showed it has become increasingly common for producers to introduce an element 
of surprise, typically by adding one measure at the end of some segments. 
 
3. Unsupervised Detection of Structural Changes in EDM 
 
The segmentation of time series into meaningful, coherent units by automatically detecting 
their boundaries is a challenge crossing several scientific domains (Serrà et al, 2012). A 
musical segment is a region with some internal similarity or consistency in a given feature 
space, such as timbre or instrumentation, implying that it has temporal boundaries at its 
start and end (Casey et al, 2008). Tzanetakis and Cook (2000) stress the importance of 
segmentation in MIR, where it is better to consider a song as a collection of distinct regions 
than as a whole with mixed statistics. Performance in audio similarity can benefit from 
segmenting the tracks beforehand (Casey et al, 2008). 
As pointed out in section 2.1, timbral changes are essential for EDM producers when 
considering structural changes. Aucouturier and Sandler (2001) argue that, to segment a 
song into its relevant sections, one should discard any pitch and harmonic information and 
focus only on timbre. Thus, to allow an efficient segmentation of the audio data, the same 
authors define how the ideal feature set should be: (1) a perceptually realistic measure of 
the similarity of timbres - similar textures must be represented by close “points” in the 
multi-dimensional feature space, and the other way round; (2) relatively independent of 
pitch, as we don’t want to segment the different notes or events within a single texture. 
Most recent algorithms for music structure segmentation use a combination of extracted 
features (usually chroma vectors and MFCCs), segmentation methods (which, following 
Paulus et al. (2010), can be divided into three main categories: repetition-based, novelty-
based, and homogeneity-based), and labelling/grouping techniques. We do not need the 
latter step, since, as explained in section 2.1, EDM tracks can be formed by juxtaposition of 
several different sequences. When this happens there is no repetition of segments in a track. 
Therefore, here we only need to (1) extract features, and (2) divide the music into segments, 
based on these features. In order to take into account the dynamic evolution of a feature, 
the analysis has to be carried out on a short-term window that moves chronologically along 
the temporal signal; each position of the window is called a frame (Lartillot and Toiviainen, 
2007). After extracting the relevant features on subsequent frames one has to calculate the 
distance between each frame and all the others, according to a certain distance measure. 
The largest calculated distances represent the segment boundaries. Once the algorithm 
estimates the boundaries, each segment in a track will be represented by a set of relevant 
features and their statistical analysis. 
Most of the algorithms run roughly real-time. Therefore, any very large-scale effort to 
automatically segment music audio will require significant computational resources 
(Ehmann et al, 2011). We will explain all steps of the segmentation algorithm below.  
 

3.1. Downsampling 

 
We start by loading the audio file and downsampling it. We downsample the signal by a 
factor of four, reducing the sampling rate from 44100 Hz to 11025 Hz, thus reducing the size 
of the data four times. We do it for a practical reason, as it helps to run the algorithm faster. 
Systematic tests on the audio files show that the results of the novelty detection (explained 
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in section 3.6) do not change much up to a factor of four downsampling, which makes sense 
as most of the spectral information can be found below 5000 Hz. The sampling rate must be 
higher than two times this value to make sure the Nyquist-Shannon sampling theorem 
criterion is maintained (Shannon, 1949). 
 

3.2. Detection of first bass drum downbeat 

 
Many EDM tracks begin with beatless intros and culminate in “turning the beat around”, a 
phenomenon that happens when people perceive a certain metrical structure that is 
violated (usually by introducing a beat on the perceived off-beat) (Butler, 2006). For this 
reason, the entrance of the bass drum in an EDM track often results in a decisive metrical 
representation (Butler, 2006). In some cases, DJs may even skip beatless intros and start 
playing from the first bass drum beat, representing the start of the main structure of the 
track, which makes its detection a critical step for the performance of the segmentation 
algorithm. 
To detect the first bass drum downbeat, we start by applying a bandpass filter between 50 
and 150 Hz, which is the region where most of the energy of the kick-drum is usually found. 
We then compute the global energy of the filtered signal by taking the root average of the 
square of the amplitude, also called Root Mean Square (RMS), on non-overlapping windows 
of 30 seconds, in order to find in which part of the audio file is the beat likely to start 
(beatless intros usually have low-energy in the low-frequency region). An onset detection is 
then performed on the thirty seconds window where the energy rises abruptly, leaving us 
with candidates for the first downbeat. We select the first that exceeds a given threshold 
and save the previous part as the first segment. 
Figure 1 shows the audio waveform after downsampling and before filtering. Bandpass 
filtering between 50 and 150 Hz leads to the waveform depicted in Figure 2. Figure 3 
portrays the RMS energy curve on windows of 30 seconds. The onset curve is reproduced in 
Figure 4. 

 
Figure 1: Audio waveform after downsampling 
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Figure 2: Audio waveform after bandpass filtering 

 

 
Figure 3: RMS energy curve; red line corresponds to the threshold; in this track, the threshold is exceeded in 
the third instance, which means that the onset detection will be performed between 40 and 70 seconds 

 

 
Figure 4: Onset detection on 30 seconds window; red circles indicate detected onsets 
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3.3. Tempo estimation and confidence measure 

 
We perform tempo estimation in order to detect the duration of a beat. This is important 
because: (1) all features (for both the segmentation and the similarity tasks) are extracted 
on beat-related frame lengths; (2) musically informed rules (section 3.7) rely on the beat 
duration to improve the accuracy of the boundary estimation. 
Looking at local correlation between samples we can evaluate periodicities in a signal. This is 
called an autocorrelation function and it is obtained by multiplying point per point the signal 
with a shifted version of itself. When the shift difference corresponds to a period of the 
signal, the summation of both gives a very high value, as the two signals are highly 
correlated. An autocorrelation function is computed on the onset detection curve and 
translated into the frequency domain in order to be compared to a spectral decomposition 
of the onset detection curve, and the two curves are subsequently multiplied (Lartillot and 
Toiviainen, 2007). The result is a curve with peaks as indications of the most predominant 
periodicities found in the track. We then perform peak picking and select the highest peaks 
above a certain threshold. The highest peak is always selected as the tempo of the track. 
A binary confidence measure – telling us how certain the algorithm is that the detected 
tempo is correct – is then derived from the harmonic relation between the found peaks. 
When only one peak is detected or all the observed peaks are harmonically spaced (which 
would give alternative tempos that are for example two or three times as fast), the 
estimated confidence value is 1. It is not a problem if the detected tempo is in a harmonic 
relation with the ‘real’ tempo, since this would just refer to another tempo-level that can 
also be perceived (in the same way as one can tap along with music on different tempo-
levels). If there are several peaks with no harmonic relation between the spacing of the 
peaks, the estimated confidence value is 0. This measure determines whether the musically 
informed rules (section 3.7) are applied. Figures 5 and 6 show examples of tempo 
estimation. 
 

 
Figure 5: Tempo estimation with confidence = 1; as there is only one peak above the threshold, this is 
selected as the tempo of the track; the musically informed rules (explained in section 3.7) are applied 
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Figure 6: Tempo estimation with confidence = 0; as there are five peaks above the threshold and no 
harmonic relation between the peaks is found, the highest peak (indicated by the red circle) is selected as 
the tempo of the track, but the musically informed rules (explained in section 3.7) are not applied 

 

3.4. Magnitude spectrum 

 
After having the tempo score in beats per minute (BPM) and building a vector with all the 
probable beat positions, we compute the magnitude spectrum of each frame of the signal. 
This is a decomposition of the energy of the signal along frequencies and it can be 
performed using a Fast Fourier Transform (FFT). The frames are beat-aligned with 87.5% 
overlap so that we decompose the energy along frequencies for each beat of the track. To 
solve problems deriving from performing Fourier transforms on finite signals, generally a 
windowing technique is used; in our case, the Hamming window was chosen (Smith, 2011).  
 

3.5. Logarithm cepstrum 

 
Bogert, Healy, and Tukey (1963, as cited in Oppenheim and Schafer, 2004) termed the 
spectrum of the log of the spectrum a cepstrum. They chose to coin this term to avoid 
confusion while emphasizing connections to similar concepts. The domain represented in 
this operation is neither the frequency nor the time domain, but what they called the 
quefrency domain. 
To allow an additive separability of product components of the original spectrum a natural 
logarithm is performed on the magnitude spectrum. We then compute a FFT of the 
magnitude spectrum in order to convert from the frequency domain back to the time 
domain to find periodic sequences in the signal. We end up with a cepstrum and the results 
can be expressed in the quefrency domain. 
 

3.6. Novelty detection 

 
We then compute the cosine distance between each possible pair of frames from the 
cepstrum data to get a self-similarity matrix, which can be seen in figure 7. Convoluting 
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along the main diagonal of the similarity matrix using a Gaussian checkerboard kernel2 
yields a unidimensional linearly normalized novelty curve that indicates the temporal 
locations of significant textural changes. We use a kernel size of 128 frames, corresponding 
to approximately 30 seconds. 

 
Figure 7: Similarity matrix with kernel size of approximately 30 seconds 

Figure 8 shows the novelty curve. Positions corresponding to the above-threshold-peaks of 
this curve are selected as segment boundaries. 
 

 
Figure 8: Novelty curve 

 

3.7. Musically informed rules 

 
Butler (2006) categorizes sounds in EDM as “rhythmic”, “articulative”, or “atmospheric”. For 
the purpose of segmentation, articulative sounds, which are brief and intermittent, are very 
important. They usually appear before structural boundaries, such as the beginning of a 
measure or multimeasure group, in order to raise expectation for a segment boundary for 
the listener. Besides the removal or addition of the bass line or the bass drum, the use of 
articulative sounds is the most effective way to demarcate segments. 

                                                        
2 A kernel is a convolution matrix that is useful for several signal processing methods. In this case it consists of 
the diagonal with a certain width of a similarity matrix. 
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As the novelty detection is based on textural changes and the timbres of articulative sounds 
are frequently quite distinct from the neighbours’, novelty peaks are detected when these 
sounds occur. However, the relevant structural changes we want to detect are usually 
synchronous with the beginning of the aforementioned sequences (section 2.1). 
To overcome this displacement, we propose a set of heuristic rules to align the obtained 
novelty peaks with the most probable to be perceived by listeners - for the tracks on which 
the tempo was estimated with confidence. We analyze the distances between peaks and 
update them at each iteration, forming a dynamic structure. 
Furthermore, to account for the extra measure issue (explained in section 2.1), an 
asymmetric weight was applied, such that the gravitation toward the 8th or 16th measure 
mark is stronger when a boundary is detected before than when it is detected after that 
mark. Figure 9 shows the effect of the rules on a hypothetic track. 
 

 
Figure 9: Application of musically informed rules to detected boundaries. Timeline is shown in beats (0 
corresponds to the first detected beat; 4 beats = 1 measure). Heuristic rules dictate a dynamic and 
asymmetric weight towards the 8th and 16th measures. 

 
For the tracks that had a tempo estimation with confidence=0, the detected boundaries 
remain unchanged, as the changes would most probably result in a less precise estimation 
of the segment boundaries. However, for the tested datasets, more than 90% of the tracks 
had confidence=1. 

 

3.8. Evaluation 

 
We have implemented an algorithm for the detection of structural changes in EDM. We 
employed a novelty-based method with the help of cepstrum features in order to get the 
best possible performance. 
Table 1 shows the results obtained for different datasets using the same parameter settings. 
The datasets that have been used are: (1) EDM3, an in-house dataset specially created for 
this project, consisting of 35 tracks - annotated by the authors - from 19 artists; (2) RWC Pop, 

                                                        
3 The annotations are available for research purposes on request to the authors. 
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created by Goto et al. (2002), annotated by two groups of researchers – RWO corresponds 
to the annotations of the dataset creators and RWQ corresponds to the annotations that 
Bimbot et al. (2010) did for the Quaero4 project; (3) Eurovision dataset, annotated by 
Bimbot et al. (2011). Found segment boundaries are considered correct if they are within 
±0.5 seconds or ±3 seconds from a border in the ground truth annotations. Based on the 
matched hits, boundary retrieval recall rate, boundary retrieval precision rate, and boundary 
retrieval F-measure are calculated. These are some of the evaluation measures used in 
MIREX5, an annual evaluation contest for MIR algorithms. 
Precision and recall are defined as: 
 

fptp
tpprecision
+

=           Eq. (1) 

fntp
tprecall
+

=          Eq. (2) 

 
In these equations, tp= `true positives’, the number of correctly identified segment 
boundaries, fp = `false positives’, the number of indicated segment boundaries that do not 
correspond to true segment boundaries, and fn= `false negatives’, the number of segment 
boundaries that have not been identified by the algorithm. 
 
The F-score is given by: 
 

recallprecision
recallprecisionf

+
⋅

⋅= 2         Eq. (3) 

 
The algorithm performs well on the EDM dataset. As can be seen from table 1, the musically 
informed rules increased the F-score with around 10 points on the 0.5s tolerance-window 
level. Although this method was created specifically for EDM, results on the RWC Pop 
dataset would be in the top 3 of best performing algorithms submitted to MIREX 2012, with 
its best performing algorithm having F(3s) = 0.77 on RWQ and F(3s) = 0.71 on RWO. This 
suggests that structural changes in pop music might have the same periodicity as in EDM. 
This method performs poorly on the Eurovision dataset. An explanation for this might be 
that, in this song contest, pop music is usually mixed with traditional music from several 
European countries of which the structural boundaries may be quite distinct. 
  

                                                        
4 http://www.quaero.org 

5 http://www.music-ir.org/mirex/wiki/2010:Structural_Segmentation 
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Dataset P0.5s R0.5s F0.5s P3s R3s F3s 

EDM 
no rules applied 

37.10 51.48 41.63 63.62 86.34 70.80 

EDM 
rules applied 46.52 62.87 51.67 62.15 84.83 69.38 

RWO 
no rules applied 30.12 27.07 27.81 70.71 64.64 65.81 

RWO 
rules applied 28.10 23.95 25.28 70.11 63.70 65.08 

RWQ 
no rules applied 27.58 25.67 26.05 67.48 62.01 63.28 

RWQ 
rules applied 31.40 27.86 28.99 66.74 61.25 62.59 

EUR 
no rules applied 8.80 8.59 8.37 43.55 42.93 41.92 

EUR 
rules applied 9.27 9.15 8.86 43.85 43.55 42.39 

Table 1: Boundary retrieval precision rate (P), recall rate (R) and F-score (F) with two tolerance windows: 
±0.5 seconds and ±3 seconds. Three annotated datasets were used: in-house (EDM), RWC (original (RWO) 
and Quaero (RWQ) annotations) and Eurovision (EUR) 

 

3.9. Case Study: Basement Jaxx – “Red Alert” 

 
This track from Basement Jaxx shows that, when the first downbeat is correctly detected 
and the tempo well estimated (see Table 2), applying the musical rules could lead the 
segmentation algorithm to achieve the same performance on the ±0.5 seconds tolerance 
measures as it does on the ±3 seconds measures (see Table 3). 
 
Red Alert First Downbeat Tempo (bpm) 
Annotated 7.9686 1276 
Estimated 8.0599 126.823 
Table 2: Annotated/estimated first downbeat/tempo for the song “Red Alert” by Basement Jaxx 

 
Red Alert P0.5s R0.5s F0.5s P3s R3s F3s 
no rules applied 40.00 28.57 33.33 93.33 66.67 77.78 
rules applied 93.33 66.67 77.78 93.33 66.67 77.78 
Table 3: Boundary retrieval precision rate (P), recall rate (R) and F-score (F) with two tolerance windows 
(±0.5 seconds and ±3 seconds) for the song “Red Alert” by Basement Jaxx 

 

 
                                                        
6 Annotation extracted from Beatport, an online music store specializing in EDM. 
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4. Similarity 
 
When are two things similar? Similarity is one of the most central theoretical constructs in 
psychology. An important Gestalt principle of perceptual organization is that similar things 
will tend to be grouped together (Medin, Goldstone, and Gentner, 1993), and similarity 
plays a crucial role in making predictions because similar things usually behave similarly 
(Goldstone and Son, 2005). 
Several models for similarity have been proposed. These models have had an impact on 
fields such as statistics, pattern recognition, or data mining, and are usually divided into four 
categories: geometrical (Shepard, 1962a, 1962b), feature based (Tversky, 1977), alignment 
based, and transformational – a comprehensive overview of the models can be found in 
Goldstone and Son (2005). 
 

4.1. Music Similarity 

 
In music information retrieval (MIR), the literature is rich in music similarity functions and 
algorithms (Pampalk, Dixon, and Widmer, 2003; Aucouturier and Pachet, 2004a; 
Aucouturier, Pachet, and Sandler, 2005; Berenzweig et al., 2004; Bogdanov et al., 2011). 
However, there is no comprehensive approach to similarity in the domain of music, thus the 
challenge of relating musical features to the listeners’ concept of similarity is a major 
problem in MIR (Volk, de Haas, and van Kranenburg, 2012). 
The starting point of this project’s method for timbre similarity is the combination of 
continuous dimensions and discrete features in a single model, as proposed by Navarro and 
Lee (2003). The method for rhythm similarity, besides dimensions and features, 
incorporates alignment (i.e. structure relationships between features; the order of the 
objects being compared is taken into account). 
Goldstone and Son (2005) describe two types of dimensions: the ones that are described as 
being more or less (e.g. loud is more sound than soft), which can be represented by 
sequences of nested feature sets; the ones defined by qualitative attributes (e.g. spectral 
shape), which can be represented by chains of features (imagine three polyphonic textures 
composed of two instruments each: (1) guitar and piano, (2) guitar and drums, (3) bass and 
drums; if an imaginary axis can be drawn in which (2) lies between the other two textures, 
then this can be featurally represented if (1) and (2) share features that (2) and (3) do not 
share). 
 
 

4.2. Timbre Similarity 

 
Studies in timbre perception have historically yielded results indicating that the 
phenomenon of timbre is multidimensional, with a number of factors interacting to produce 
the exact tone quality that is perceived by a listener (Fales, 2004). These factors have been 
identified to include, among others, spectral flux, spectral centroid, and attack time 
(McAdams et al, 1995; Burgoyne and McAdams, 2008; Peeters et al, 2011). These studies 
focused on monophonic timbres. On the contrary, here we want to describe polyphonic 
textures, which the aforementioned features cannot fully represent. 
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For our purposes, we have empirically made a selection of a small number of features to 
describe the timbre in EDM. We will now describe the three types of features that we 
believe capture the most relevant dimensions of a polyphonic texture for comparison with 
other textures. 
 
a) Mel-Frequency Cepstral Coefficients 
 
Mel-Frequency Cepstral Coefficients (MFCCs) (Davis and Mermelstein, 1980) are extensively 
used in MIR algorithms to represent the spectral envelope of a given sound, which is one of 
the most salient components of timbre. We calculate them by first computing the power 
spectrum successively on frames with the duration of a beat, followed by logarithmically 
positioning the frequency bands on the Mel scale, and finally performing a discrete cosine 
transform on the bands (Lartillot and Toiviainen, 2007). 
MFCCs fall into the second category of dimensions referred by Goldstone and Son (2005), as 
it is impossible to set a hierarchy of spectral envelope. The number of MFCCs that well 
represent a spectral envelope is a matter of great discussion. The low order MFCCs account 
for the slowly changing spectral envelope, while the higher order ones describe the fast 
variations of the spectrum (Aucouturier and Pachet, 2002). Therefore, while it is true that 
the more MFCCs we compute, the more precise the approximation of the signal’s spectrum 
is, a large number of MFCCs may not be appropriate, as we are only interested in the 
spectral envelope and not in the finer details of the spectrum (Aucouturier, Pachet, and 
Sandler, 2005). The same authors reported an ideal value of 20 coefficients, which we 
implemented. 
For the computation of these features, we frame the signal into half-overlapping windows 
with duration of a beat and calculate the mean of each coefficient for each segment, ending 
up with twenty values per segment. 
 
b) Spectral Flatness 
 
Facing the problem of audio matching (i.e. finding in a database the audio that matches a 
given example), Herre, Allamanche, and Hellmuth (2001) searched for features that, while 
being perceptually meaningful, are independent of absolute level and coarse spectral 
envelope. This led the authors to examine features relating to the tonal character (the 
notion of tonality as used in the perceptual audio coding field, cf. Hellman, 1972) of the 
signal within particular frequency bands. 
As known from coding theory, the maximum gain that can be recovered by redundancy 
reduction using predictive coding methods or transform coding is determined by the 
flatness of the signal’s power spectral density and is related to the so-called Spectral 
Flatness (Jayant and Noll, 1984, as cited in Herre et al., 2001). Spectral flatness measures the 
sinusoidality of a spectrum (Peeters, 2004). It indicates whether the distribution of the 
spectrum is smooth or spiky, and results from the simple ratio between the geometric mean 
and the arithmetic mean (Lartillot and Toiviainen, 2007): 
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For the computation of these features, we first split the spectrum in four bands7 - 20 to 200 
Hz, 200 to 800 Hz, 800 to 3200 Hz, and 3200 to 5512.5 Hz (half of the sampling rate, 11025 
Hz). Then we frame the signal into half-overlapping windows with the duration of a beat. 
Finally we calculate the mean spectral flatness for each band, ending up with four values per 
segment. 
 
c) Dirtiness 
 
Helmholtz (1863/1954) introduced the term “auditory roughness”, also referred to as 
sensory dissonance, in the psychoacoustics literature. It is related to the beating 
phenomenon that occurs whenever a pair of sinusoids is close in frequency in a short period 
of time (Plomp and Levelt, 1965). It can be considered as an attribute of timbre, as it is 
usually described as a function of a signal’s amplitude envelope and corresponding spectral 
distribution (Vassilakis and Kendall, 2010). 
Sethares (1998) proposed a method for the estimation of roughness. For each pair of 
spectral peaks, the corresponding elementary roughness is obtained by multiplying the two 
peak amplitudes altogether, and by weighting the results with the corresponding factor 
given on the dissonance curve. The summation of all these values is the total roughness 
(Sethares, 1998). Vassilakis (2001) developed a variant of Sethares’ model with a more 
complex weighting, adding a term to the equation that accounts more reliably for the 
dependence of roughness on sound pressure level and amplitude fluctuation (Vassilakis, 
2001, Eq. 6.23). 
We took the notion of roughness and approached it from a different perspective. “Dirtiness” 
is a concept applied by EDM listeners and producers when referring to a particular sound 
quality that is pervasive in EDM synthesizers – there is even a subgenre of EDM called “Dirty 
Dutch” (“Styles of House Music”, 2013) and numerous online videos teach how to achieve a 
“dirty” synth8 sound. 
This phenomenon of dirtiness in EDM is parallel to ''heaviness'' in heavy metal as heavy 
metal listeners use the concept of “heaviness” to describe a range of instrumental timbres, 
particularly guitars (Fales, 2004). Both dirtiness and heaviness are concepts born from the 
musicians and fans. We tried to use Fales approach of linking a verbal description of a tone 
quality to acoustic features, rather than searching for agreement among listeners that a 
specific sound is characterized by a given descriptor. Spectral analysis revealed that dirtiness 
might be partly explained by the detuning that producers apply to their synth sounds. This 
detuning is characterized by a varying stream of frequencies very close to the harmonics of 
the fundamental frequency we perceive as the pitch of the played sound, which can 
therefore be described using the concept of roughness. 

                                                        
7 These four bands are the same for dirtiness, event density, and onset patterns 

8 Synth is a common abbreviation of synthesizer. 
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We are not interested in the value of roughness at each instance but in its value over a 
larger period of time with a very high frequency resolution. For this reason, we compute 
roughness values in half-overlapping windows of 8 beats. For the computation of roughness 
we use Vassilakis’ (2010) model, mentioned before. Dividing the spectrum into four bands, 
we then calculate the mean for each band, ending up with four values per segment. 
The aforementioned features (20 MFCCs, 4 Spectral Flatness values, and 4 Dirtiness values) 
together make a feature vector that describes the timbre of a segment. The similarity 
between two different timbres is then described by calculating the Euclidian distance 
between the two associated feature vectors. 
 
 

4.3. Evaluation of Timbre Similarity 

 
The evaluation of similarity ratings is problematic since virtually no ground truth corpora 
exist for these tasks, let alone for the even more specified task of timbre similarity of 
musical EDM segments. We have chosen here, as a preliminary attempt for evaluation, to 
evaluate the algorithm by testing an application based on it. We have developed an 
application that returns, based on an input segment of music, three other segments of 
music, in the order from most similar to least similar. This application can possibly be used 
by DJs to help them to mix music. A screenshot of the rating app is displayed in Figure 10. 
To evaluate this application, we set up an experiment. We have asked subjects to, given one 
input segment of music, and three output segments, to order the output segments from 
most similar to least similar. We have averaged the ratings of the subjects and compared 
those to the ordering of the algorithm. We have counted the number of full ratings (the 
order of most to least similar) that were correctly predicted by the algorithm, as well as the 
number of correctly predicted most similar segments and correctly predicted least similar 
segments. The results can be found in table 4. 
 
Correctness Full order Most similar segment Least similar segment 
Results 38 % 60 % 59 % 
Chance level 16.7 % 33.3 % 33.3% 
Table 4. Evaluation of timbre similarity algorithm. The similarity order was compared to a similarity ordering 
that subjects came up with. 

 
In the experiment, 100 similarity tests have been done, by a total of five subjects. Only 38% 
of the full ratings were correctly predicted. A percentage of 60% correctness was obtained 
for scoring the most similar segment, meaning that in 22% of the cases, the least similar and 
‘middle’ similar segment had been switched. Comparing to the level of obtaining a correct 
result by chance, the algorithm performed above chance level. Various reasons may exist for 
the fact that the performance of the algorithm does not reach high percentages. No overlap 
of songs over subjects was present, which means that we received only one similarity 
ordering per set of three output segments. Because of this last factor, validity of the created 
ground truth for the algorithm may be questionable. We will come back to this and other 
issues in the discussion section. 
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Figure 10: Screenshot of the rating iPad app 

 
4.4. Rhythm Similarity 
 
The MIR community has produced a lot of research on rhythm- description and similarity in 
the last years (Dixon, Gouyon, and Widmer, 2004; Dixon, Pampalk, and Widmer, 2003, 2004; 
Holzapfel, Flexer, and Widmer, 2011; Pampalk, 2006; Pampalk, Dixon, and Widmer, 2003; 
Pohle et al., 2009). Below we present some of the most common features in rhythm 
similarity. 
 
a) Event Density 
 
Event density is the average frequency of events, i.e. the number of onsets per second 
(Lartillot and Toiviainen, 2007). We compute the event density in four frequency bands, 
ending up with four features. 
 
b) Fluctuation Patterns Summary 
 
Fluctuation strength is, in principle, similar to roughness, except it quantifies subjective 
perception of slower (up to 20Hz) amplitude modulation of a sound (Cox, 2013). The 
loudness modulation has different effects on our sensation depending on the frequency. 
The sensation of fluctuation strength is most intense around 4Hz and gradually decreases up 
to a modulation frequency of 15Hz (Fastl, 1982). Fluctuation patterns describe the 
amplitude modulation of the loudness per frequency band (Pampalk, 2006). 
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We computed the fluctuation patterns using MIR Toolbox’s implementation (Lartillot and 
Toiviainen, 2007). First the spectrogram is computed on frames of 23ms and half 
overlapping, then the Terhardt outer ear modeling is computed, with Bark band 
redistribution of the energy, and estimation of the masking effects, and finally the 
amplitudes are computed in dB scale. Then a FFT is computed on each Bark band, from 0 to 
10 Hz, with a resolution of 0.01 Hz. The amplitude modulation coefficients are weighted 
based on the psychoacoustic model of the fluctuation strength (Fastl, 1982). The resulting 
spectrum is subsequently summed across bands, leading to a spectrum summary, showing 
the global repartition of rhythmic periodicities. 
 
c) Rhythm Patterns 
 
Pohle et al. (2009) suggested several changes to the computation of fluctuation patterns. 
Following one of their suggestions, we reduced the signal to the likely onsets, and created 
some new patterns that are robust to tempo variability, a desirable characteristic of 
features for computation of rhythmic similarity (Holzapfel and Stylianou, 2009). 
To compute these rhythm patterns we start by dividing the audible frequency range into 
four bands and performing onset detection on each band. Using the tempo information 
estimated before, we then divide each beat into 12 bins (1 measure = 48 bins). 
Then we look for onsets that repeat every measure, every two measures and every four 
measures. Consider for example the onset sequence that is visualized in the 4-measure 
pattern in figure 11, in which the vertical lines present onsets. Counting the onsets within 
these four measures, if we superpose the 3rd and 4th measures on the 1st and 2nd, we end 
up with the onset sequence that is displayed in the 2-measure pattern. If we superpose the 
2nd, 3rd, and 4th measures on the 1st, we end up with the 1-measure pattern.  
  
 

 
Figure 11: Rhythm patterns. Vertical lines represent onsets. On the horizontal axis are the bins (48 per 
measure). Numbers below the vertical lines correspond to the onsets per bin. 
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We repeat this process for the four frequency bands and we end up with 16 rhythm 
patterns for each segment. For example, the 1-measure pattern is characterized by a vector 
with 48 numbers from 0 to N (N = number of measures in segment) where 0 means no 
onsets for that bin in any measure of the segment, while N means there are onsets for that 
bin in all measures of the segment. 
The aforementioned features (4 Event Density values, Fluctuation Pattern Summary, and 16 
Rhythm Patterns) together make a feature vector that describes the rhythm of a segment. 
The rhythm features have not been tested nor implemented in the final application of this 
project. We hope to continue the project such as to be able to work further on this.  
 
 
5. Conclusions and Discussion 
 
We have presented our model for structural segmentation and timbre similarity for 
electronic dance music. The segmentation algorithm was evaluated on various corpora, and 
performed best on an in-house dataset of EDM. Although this method was created 
specifically for EDM, results on the RWC Pop dataset can compete with the best performing 
algorithms submitted to MIREX 2012, suggesting that the structural boundaries underlying 
EDM follow the same principles as the boundaries in pop music. The timbre similarity 
algorithm has been subject to a preliminary evaluation. Since no generally accepted ground 
truth exists for this specific task, we have initiated a pilot experiment for this end. Although 
the algorithm performed above chance level, the overall performance could be improved 
enormously. The rhythm similarity features have not been implemented in the application 
and have not been tested. We plan to do this is future research. Issues related to the 
evaluation of segmentation and similarity will be discussed below. 
In the literature, the topic of segmentation has been approached from different angles, and 
can be interpreted as phrasing/grouping (Bod, 2002; Lerdahl and Jackendoff, 1983), or 
structural segmentation (Bruderer, McKinney, and Kohlrausch, 2006; Levy and Sandler, 
2008). Structural segmentation is described as to identify the key structural sections in 
musical audio as for example verse and chorus, and should be accessible to everybody 
(needing no particular musical knowledge) (“Structural Segmentation”, 2012). The question 
however here is, whether there is indeed consensus on the concept of structural 
segmentation. One issue that we came across, for example, is the question whether it is 
necessary for a segment boundary to coincide with a downbeat. We found this to be the 
case for EDM, and in this case the “preference” for perceiving a new segment starting on a 
downbeat overruled the concept of timbral change that was underlying our algorithm, 
hence the introduction of the musically informed rules. One can wonder whether this is the 
case for other genres as well. 
An issue related to this is how far phrase-segmentation and structural segmentation merge. 
If a phrase, starting with an upbeat, introduces the start of new structural segment, does 
the structural segment start with the start of the phrase (on the upbeat) or does it start on 
the downbeat following the upbeat? 
The evaluation process of segmentation algorithms is important to consider as well. Several 
studies use only a ± 3s tolerance window for evaluation. The question is whether this 
window is not too large to be able to assess algorithms in a detailed way. If the large 
window is used to cover up misalignments like ones caused by issues that we outlined above 
(e.g. boundaries on upbeats or downbeats), then these are the issues that we should consult 
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instead of hiding them with large tolerance windows. Problems like these have been 
discussed before (Rocha et al., 2012) and we feel it is important to continue this discussion. 
With respect to similarity in music, we argued that similarity should always have a context. 
Therefore we have broken the total concept of similarity into sub-similarities of which 
timbre similarity is one. The most common method is to evaluate a model against a 
manually annotated ground truth. Here the question is whether it makes sense to ask 
subjects to rate timbre similarity. Is it possible to assess only timbre similarity, leaving all 
other sub-similarities, such as melodic-similarity, rhythmic-similarity, etc. out? Although we 
argued that timbre is the primary compositional parameter for EDM, analysis of the results 
of our experiment suggests that this is probably a hard thing to do. As Aucouturier and 
Pachet (2002) point out, people's similarity judgments are simultaneously influenced by 
other factors. 
Besides the question whether it is possible to assess timbre similarity alone, another 
question is whether it is possible to perceive a total concept of timbre. If we think of a piece 
of music consisting of, for example, simultaneous saxophone-, drum- and piano-parts, we 
most probably perceive three different streams (cf. Cambouropoulos, 2008). So if we 
perceive three different timbres, is it possible as well to perceive one overarching timbre 
that covers the three timbres? And if not, how do we compare the timbre of a piece of 
music to another piece of music? It is known that timbre is a multidimensional concept 
(McAdams et al., 1995) and the question is whether it should be assessed in this way as well. 
With respect to the evaluation of the timbre similarity algorithm in this paper, there are a 
number of additional issues. In this report, only a preliminary evaluation of the algorithm is 
presented, and we plan to follow up on this in a future study. A ground truth was created by 
five people who rated a total of 100 sets of segments, from most to least similar with 
respect to a query-segment. No overlap existed between the music that the five people 
rated, which means that each set of segments was rated by only one person. Therefore, the 
confidence of every rating is rather low.   
Another issue is that of the temporal evolution of the timbre over a segment. The 
motivation for segmenting the music was that timbres could change a lot over the course of 
a whole song. However, it is possible as well for the timbre to change within a segment. 
Imagine the following typical scenario: a segment is composed of 8 measures, of which the 
last 2 have no bass or kick drum; computing the average low-frequency energy of the 
segment will give us a value that is not representing well the feeling of the segment. The 
present algorithm is computing an average timbre over a segment, but we plan to take into 
account the temporal evolution of the timbre over a segment in future research. 
The algorithm in its present form computes a similarity rating based on different timbral 
features with equal weighting. One might expect that some features may be more 
important than others and that the optimal weighting scheme is different from the one we 
have used here. We plan to do a full evaluation of this similarity measure by creating a 
bigger ground truth corpus in the near future. This evaluation will also include statistical 
tests involving other features, optimization of feature weighting, and comparisons between 
MFCC-only approaches (e.g. Terasawa et al., 2005) and ours. 
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