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Chapter 1

Introduction

This thesis deals with several aspects of the dynamic interpretation of natural lan-
guage, a topic that, within the area of formal semantics, has become an established
issue the last five years or so. With this work I want to contribute to the transfor-
mation of referential theories of meaning into a dynamic, information based theory
of interpretation.

Background and scope

It may be useful to start with stressing the referential (truth-oriented, model-
theoretic) roots of the present work. In referential theories, meaning is explained
in terms of reference (or denotation) relations which hold between linguistic ex-
pressions and independent entities. Key notions are those of reference and truth,
and the primary goal of an adequate semantic theory is taken to be that of pre-
senting a theory of truth, or, rather, the characterization of the truth conditions of
(indicative) sentences. (With regards to imperatives and interrogatives truth and
entailment conditions are inappropriate, of course, and will have to be replaced by,
for instance, fulfilment and answerhood conditions.)

Referential theories of meaning have been regarded as opposed to mentalistic
theories of meaning. In the mentalistic view, meaning is primarily related to the
mental representations that accompany linguistic expressions. The meanings of ex-
pressions are conceived to be, first and foremost, the concepts and thoughts language
users associate with the expressions. The basic difference between the two types of
theories is that in the former meaning relates language to the outside world, and in
the latter to ‘the mental’.

In the area of model-theoretic semantics, the past ten years witness the emergence
of dynamic theories of meaning. The focus of attention shifts to the way in which

1



2 Chapter 1. Introduction

(expressions in) one sentence may change the context of interpretation of (expres-
sions in) other sentences. With this dynamic twist the perspective upon meaning
changes. Contexts of interpretation are viewed as information states, and the goal of
semantics is taken to be that of giving a characterization of the changes (utterances
of) sentences bring about in information states. Thus, the theory of meaning evolves
into a theory of information, of information update and information exchange.

This development not only exhibits the evolution of a more procedural outlook
upon meaning and interpretation, it also involves a move towards more mentalistic,
or representationalistic theories of meaning. The latter move is most evident in
Hans Kamp’s discourse representation theory where the meanings of sentences are
primarily defined in terms of the changes they bring about in so-called discourse
representation structures. In this theory truth is a notion which is not directly
related to sentences, but to discourse representation structures.

However, subsequent work of Groenendijk and Stokhof shows that the dynamic
twist in semantics need not necessarily involve such a departure from the more refer-
ential paradigm. It is shown that empirical results of discourse representation theory
can be obtained without employing intermediary representations. The upgrade of
the static referential notion of meaning into a dynamic referential one appears to be
sufficient for an account of intersentential (anaphoric) links in discourse.

In the different versions of dynamic semantics which come up in this thesis, the
referential view remains the point of departure and return. With Groenendijk and
Stokhof’s systems of dynamic predicate logic and dynamic Montague grammar,
the dynamics of interpretation remains confined to the enabling and disabling of
anaphoric coreference. The contents of sentences remain associated with truth con-
ditions. Also with Veltman’s update semantics the notion of information that is
changed and exchanged remains, basically, information about the world. Informa-
tion is characterized in terms of what are considered to be intersubjective conditions
on what the world is like, i.e., in fact, in terms of truth conditions.

One of the basic assumptions adopted is that language users are able to ex-
change information on the basis of acknowledged conventional links obtaining be-
tween descriptive lexical expressions and entities in the world ‘out there’. Roughly
speaking, what is considered to be dynamic is the use that is made of these expres-
sions, with their static denotations, in situations of information exchange.

This thesis belongs to the tradition in semantics in which natural language meaning
is approached from a formal perspective. Mathematical tools are employed in order
to provide precise definitions of truth, entailment, information and the like. One of
the key notions in such formal approaches is that of the principle of compositionality
of meaning. This principle is, if it can not be literally attributed to Frege, at least
inspired by Frege, and can be stated in the following way:

The meaning of a compound expression is built up from the meanings of its
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parts.

Although some have understood this principle as an empirical statement about
(natural language) semantics, it is better conceived of as a principle imposing re-
strictions on the description and formalization of the syntax and semantics of a
language. Quoting from Janssen [1986, p. 39], which devotes much attention to the
principle and to the formal statement of it, “(. . . ) the principle of compositional-
ity is not a principle of languages. It is a principle concerning the organization of
grammars dealing both with syntax and semantics.”

Janssen addresses several arguments for adopting the principle of composi-
tionality, among which we find the benefit of working within a mathematically pre-
cise framework, formal elegance and power of a compositional framework, general
applicability, heuristic value of the principle, and the fact that it enables a finite
statement of the interpretation of an infinite number of expressions. I would like to
add the observation that once one has gone through a thorough training in com-
positional semantics like the one I have experienced, one can hardly conceive of
a non-compositional semantics anymore. Of course, for some this observation may
constitute an argument against adopting the principle, but then it serves, at least,
to explain the role which the principle of compositionality plays in the proposals
put forward in this book.

The structure of this work

The first chapter of this thesis provides a general introduction to two frameworks in
the area of natural language semantics which have been proposed as an alternative
for and modification of classical Montague grammar: discourse representation theory
and dynamic Montague grammar.

Discourse representation theory and dynamic Montague grammar differ from
traditional Montague grammar in that they give a formal account of the dynamics of
natural language interpretation. The dynamics is concerned with the phenomenon
that (expressions in) one sentence change the context of interpretation of (expres-
sions in) another sentence. Dynamic Montague grammar is the basic framework
upon which the next three chapters elaborate. For expository reasons and historical
adequacy the exposition of the system of dynamic Montague grammar is preceded
by a sketch of the framework of discourse representation theory and of the system
of dynamic predicate logic.

The second chapter presents an extended dynamic system of interpretation. The sys-
tem of dynamic Montague grammar deals with the potential of sentence meanings to
‘pass on’ possible antecedents for subsequent pronouns. This potential is accounted
for, basically, by the adoption of dynamic interpretation of two of the three basic
sentential operators: that of conjunction and that of existential quantification. In
the second chapter also the remaining sentential operator, that of negation, is given
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a dynamic interpretation. First it is argued that a dynamic interpretation of this
operator is needed. There are certain anaphoric relationships, somewhat extraordi-
nary but systematically interrelated, that require a dynamic notion of negation, i.e.,
one that also allows antecedents for pronominal coreference in the scope of the nega-
tion operator to be passed on. Next an alternative dynamic Montague grammar is
developed which has dynamic notions of conjunction, existential quantification and
negation and which is shown to cover the data discussed.

The third chapter can be conceived of as an exercise in ‘statification’. In this chapter
it is shown that the results obtained in dynamic Montague grammar and in its
extended version presented in chapter 2 can also be obtained from a very simple
static Montague grammar if the latter is extended with a system of type change.
Moreover, it is shown that such a system of type change allows one to deal with much
more complicated and puzzling structures in discourse, and this in a compositional
fashion. However, the conclusion of the chapter is somewhat reserved. In view of
controlling the overgeneration that comes with the system of type change, it is finally
argued that a basic dynamic Montague grammar, supplemented with a properly
restricted system of type change, might give the right results in a more manageable
fashion.

Chapter 4 again elaborates upon the original dynamic Montague grammar of Groe-
nendijk and Stokhof. In this chapter it is shown that the dynamic view on meaning
can be successfully applied in a treatment of so-called implicit arguments. More
specifically, it is shown how a more procedural approach can be employed in a treat-
ment of relational nouns, extensional adverbs and tense in texts.

The final chapter 5 is concerned with more foundational notions in dynamic se-
mantics. The chapter sets out to give more intuitive content to the more or less
technical notion of information about the values of variables as it is employed in
dynamic predicate logic and dynamic Montague grammar. Dynamic predicate logic
is formulated into an update logic, in order to pave the way for the development
of more general systems of information update and information exchange. In this
chapter it is shown, furthermore, that the resulting update logic allows for an elegant
treatment of several kinds of quantifying adverbs and adnominal quantification. The
chapter concludes with a short study of the notion of a partial object.

Prerequisites

The main topic in this book is the formulation of the dynamics of natural language
interpretation within a formal semantic framework. Although the further aim is
to contribute to a formal theory of natural language interpretation, the central
occupation of the book is to find the logical/formal tools by means of which certain
generalizations can be accounted for appropriately. Substantial parts of this book
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will therefore be of a rather technical nature. And although I will try as much as
possible to motivate and explain the more technical parts, they may be difficult for
the less formally oriented reader. For this reason it seems appropriate to give an
indication of the presupposed skills of the reader.

It would be very convenient for the reader of this thesis to be familiar with
Montague grammar. (Excellent introductions can be found in Dowty, Wall and Pe-
ters [1981] and Gamut [1991].) A basic working knowledge of (extensional) type the-
ory is a prerequisite for understanding the first four chapters of this thesis. (Again,
Gamut [1991] provides a good introduction of the basics of extensional type theory.)
Acquaintance with set-theoretical notation is presupposed in the fifth chapter.

Chapter 2 presupposes that the reader is acquainted with the system of dy-
namic Montague grammar presented in the third section of this introductory chap-
ter. The third chapter builds on the first two chapters. The chapters 4 and 5 can be
read independently.

If one is not sure about meeting the sketched ‘requirements’, this introductory
chapter may serve as a test case. If the reader survives this chapter, he is certainly
able to survive the remainder of the book.

1 DRT and DPL

Montague grammar constitutes the paradigmatic framework for the formal approach
to the semantics of natural language in the seventies. The various fragments (Mon-
tague [1970a, 1970b] and, in particular, the so-called PTQ fragment in [1973]) are
developed by the logician Richard Montague against the background of a univer-
sal syntax and semantics within an algebraic framework, and “to comprehend the
syntax and semantics of both languages [natural and artifical, PD] within a single
natural and mathematically precise theory” ([1973]). The original ‘static’ Montago-
vian paradigm has some principled limitations, however, which can be overcome by
adopting a more procedural view on meaning, inspired by developments in cognitive
science. Such a more dynamic view can be found in Hans Kamp’s discourse represen-
tation theory and Irene Heim’s file change semantics, and these systems turn out to
be major competitors of the Montagovian framework in the eighties. More recently,
several compositional reformulations of discourse representation theory have been
given which show that discourse representational results can be obtained within a
Montagovian framework after all. In particular, Groenendijk and Stokhof [1990a]
presents a dynamic Montague grammar which adapts classical Montague grammar
in order to incorporate these results.

In this section I will give an outline of discourse representation theory (DRT),
and of Groenendijk and Stokhof’s system of dynamic predicate logic. The latter
can be conceived of as a reformulation of DRT which figures as a first step towards
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the construction of a system that gives a completely compositional treatment of
DRT results. In the third section of this chapter the fully compositional system of
dynamic Montague grammar is presented.

1.1 Discourse representation theory

The term discourse representation theory (DRT) is associated with the theory pro-
posed by Hans Kamp [1981] in the early eighties and the branch of theorizing that
originated from that paper. However, the term has also been applied to more or
less similar proposals independently developed by Irene Heim (file change seman-
tics, [1982, 1983]) and Pieter Seuren (discourse semantics, [1985]). The following
exposition of DRT will be based mainly on Kamp’s work, but can be understood as
a characterization of (some aspects of) the other theories as well.

One of the motivations for the development of DRT is to provide for a frame-
work in which pronominal anaphora can be dealt with appropriately, and I will
concentrate on this aspect in the sketch of DRT below. It may be pointed out,
however, that the coverage of DRT is more comprehensive. The theory has also
been used, with considerable success, to account for other intersentential semantic
relationships, tense and aspect, and propositional attitude reports. Furthermore,
the original paper by Kamp [1981] has the more general aim of bridging the gap
between two dominating conceptions of meaning, the one in which meaning is pri-
marily related to truth and reality, and the one in which it is related to the mental
representations of language users.

In this section I will first sketch the problems with anaphoric relationships that
arise in Montague grammar and next the representational solution to these problems
that DRT offers. Section 2.2 sketches Groenendijk and Stokhof’s system of dynamic
predicate logic which gives a compositional, non-representational reformulation of
DRT that accounts for the same phenomena.

Donkey sentences

One of the shortcomings of the PTQ fragment is that it only deals with isolated
sentences and cannot in general interpret anaphoric pronouns correctly. More in
particular, PTQ fails to give a proper account of certain anaphoric relationships
between pronouns and indefinite noun phrases, both within and across sentence
boundaries. The kind of problems with anaphoric relationships that the PTQ model
encounters can be illustrated by the following, paradigmatic, examples:

(1) A man walks in the park. He whistles.
(2) If a farmer owns a donkey, he beats it.
(3) Every farmer who owns a donkey beats it.

In these examples we find anaphoric relationships between anaphoric pronouns in
one sentential clause and indefinite noun phrases in another. The anaphoric rela-
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tionship in the first example might be accounted for by Montague quantification
rules, but at a high price. Such an account would require the sequence of sentences
to be obtained, syntactically, by an application of the quantification rule to the noun
phrase a man and the structure He walks in the park. He whistles. This, however,
would imply that the meaning of example 1 is not derived from that of its con-
stituent sentence A man walks in the park. The noun phrase a man would only be
taken to contribute, semantically, to the interpretation of the whole of example 1,
not to its first sentence.

This way of proceeding is at odds with the intuition that sentences have an
interpretation of their own, and that the interpretation of a discourse involves the
incremental, one by one, processing of the sentences in the discourse. But not only
is this approach counterintuitive, it also does not work for all noun phrases, and it
is misguided when we turn to the examples 2 and 3.

In the PTQ model the anaphoric relationships in example 2 can be dealt with by
quantifying the noun phrases a farmer and a donkey in the expression If he owns it
he beats it. The translation of example 2 that results will have as truth conditions
that there exist a farmer and a donkey such that if the farmer owns the donkey, then
the farmer beats the donkey. In other words, the sentence would already be verified
by the existence of a farmer and a donkey which is not owned by the farmer.

Intuitively, however, the sentence is associated with the stronger statement
that in any case in which a farmer owns a donkey, the farmer beats the donkey, i.e.,
that every farmer beats every donkey he owns.1 The problem for PTQ is how to get,
in a non-ad hoc way, such a universal interpretation of the noun phrases a farmer
and a donkey , which are normally interpreted in an existential way.

Similarly, the indefinite a donkey in example 3 is preferably read with universal
force. Normally, the sentence is also taken to state that every farmer beats every
donkey he owns. Here, too, the problem is that of finding a semantic way of dealing
with the indefinite terms which accounts for the fact that in one construction they
have existential import, and in another construction they have universal import.

Discourse referents

Already back in 1968, Karttunen [1968a] introduced the notion of a discourse refer-
ent in order to account for anaphoric relationships. Discourse referents are neither
individuals in the mind of the speaker, nor ‘real’ objects in the world, but they are
some kind of entities which can be introduced by indefinite noun phrases in the
domain of discourse and which can be referred to by means of pronouns or revived
by definite descriptions. Sometimes, an indefinite introduces a discourse referent

1. Other interpretations of examples like 2 have been proposed. These will be disregarded for the
moment, but they will be discussed in chapter 5.
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permanently, for instance, if the indefinite is not ‘flagged’ by a modal or a certain
non-factive verb. Sometimes, the discourse marker has a restricted ‘life expectancy’.

The following example illustrates both types of life-styles of discourse referents:

(4) A girl dreamt of being married to a rich man and living with him for the rest
of her life.

(4a) She always dreamt of matrimony.
(4b) ∗She never quarreled with him.

The indefinite a girl in example 4 introduces a permanent discourse referent in the
discourse, which appears from the fact that the girl can be referred back to by the
pronoun in the continuation with 4a. On the other hand, if the indefinite a rich man
is not read specifically, it only introduces a discourse referent for the interpretation
of living with him for the rest of her life. Clearly, in the context of such a girl’s
dreams, viz., a context in which she is married to a rich man, there is such a rich
man which can be referred back to by the pronoun him in that clause. However, out
of that context there need not be such a man, and the desires of the girl may always
remain what they are, only dreams. Consequently, with a continuation of 4 with
example 4b we are unable to refer back to such a man, that is, if we still assume the
non-specific interpretation of that indefinite.2

Discourse representation theory can be regarded as a formal elaboration of Kart-
tunen’s ideas about discourse referents, an elaboration that at the same time ac-
counts for the universal impact of indefinites in certain contexts. In DRT, discourse
referents (or, as we will call them in the sequel, discourse markers) figure in so-
called discourse representations which are built up in the processing of discourse.
They mark definite and indefinite objects mentioned in the discourse and are as it
were a stand in for real objects which satisfy the conditions associated with them.
Discourse markers are introduced in these representations by, among others, indef-
inite noun phrases, and, since they are definite objects, they can be picked up by
pronouns in subsequent discourse. In general it depends on the specific configura-
tion of these representations whether the discourse markers are a stand in for some
indefinite object that satisfies certain imposed conditions, or for all objects that do,
and thus both the existential and the universal impact of indefinites is accounted
for.

DRT architecture

The main characteristics of DRT can be deduced from its name. DRT focuses on
the semantic interpretation of discourse, i.e., on sequences of sentences, and in the

2. However, as Karttunen [1968a] already noticed, the context of the girl’s dreams can be ‘revived’
by subsequent modal operators and pronouns in the scope of such operators can happily refer to
the man dreamt of. So, for instance, after uttering example 4 we can properly continue with the
sentence She would never quarrel with him. Cf., also, Seuren [1985, Ch. 5] and Heim [1992].
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process of interpretation an intermediate level of representations is employed. In
these two respects DRT differs fundamentally from Montague grammar. The latter
focusses on the semantic interpretation of isolated sentences. Furthermore, although
in Montague’s PTQ model also an intermediary translation language is employed,
the intermediary language can in principle be dispensed with3, whereas the level of
discourse representation in DRT is considered to be an essential component of the
grammar in between the levels of syntactic analysis and semantic interpretation.

The idea underlying the level of discourse representation in DRT is that discourse
representations reflect the information conveyed by a discourse in the form of a
partial model of reality. The interpretation of a discourse involves the incremental,
sentence by sentence, construction of the representation of the discourse. Such a
representation reflects the contents of the discourse and it furthermore figures as a
context of interpretation for successive parts of discourse. So, the meaning of some
constituent sentence S of a discourse is taken to consist in the contribution that
S makes to the discourse representation which is constructed on the basis of the
sentences that precede S. Typically, (sentences containing) indefinite descriptions
introduce discourse markers at this intermediary level of discourse representation,
and anaphoric relationships between pronominal anaphors and indefinites are es-
tablished by associating the pronouns with the discourse markers introduced by the
indefinites.

In their turn, discourse representations are interpreted in a more familiar fash-
ion by means of a recursive model-theoretic truth definition for discourse represen-
tation. The truth of a discourse is defined in terms of the truth of the discourse
representation that results from interpreting the discourse.

A full statement of DRT comprises the following three parts:
1. a syntax for a fragment of English, including a rule of discourse formation
2. a definition of the way in which discourse representations can be derived from

syntactically analyzed (sequences of) sentences
3. a truth definition for discourse representations

In this informal sketch we will disregard the syntax of a DRT-fragment. The deriva-
tion of the discourse representation for a given sentence is governed by so-called
DRS-construction rules. The precise statements of these rules will also largely be
left implicit. (Cf., Kamp and Reyle [1993] for a full specification of such rules.) We
will for the most part consider fully analyzed discourse representation structures
constructed on the basis of some sample sentences.

3. Since the PTQ translation process and the interpretation of the language of translation both are
defined in a compositional fashion, the indirect interpretation of the fragment of natural language
can be replaced by a direct interpretation, viz., by the composition of the two processes. Actually,
Montague adopted such a method of direct interpretation in his ‘English as a formal language’
[1970a].
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DRS-construction

By means of the DRS-construction algorithm natural language discourse is converted
into discourse representation structures (henceforth, DRSs), which give a formal
representation of the content of the discourse. These DRSs consist of two parts: a
set of discourse markers, called the universe of a DRS, and a set of (occurrences of)
conditions. Intuitively, the universe of a DRS consists of the individuals introduced
in the course of a discourse, and the conditions are the ones imposed on the values of
these discourse markers in the discourse. A formal definition of a DRS is presented
below.

Given a discourse D consisting of the sequence of sentences S1, S2, . . . Sn, the
construction algorithm first constructs a DRS K1 for the first sentence S1. With
respect to K1 the second sentence S2 is processed, the result of which is an extended
DRS K2, and proceeding in this way the last sentence Sn will finally be analyzed
with respect to the DRS Kn−1 for the sequence of sentences S1, S2, . . . Sn−1. The
result of this is some DRS Kn which is the discourse representation for the discourse
D.

Normally the construction algorithm works top-down on (syntactically analyzed)
sentences. In order to give an idea of how the algorithm deals with sentences, consider
the construction of a DRS for the following example with respect to some initial
DRS Ki:

(5) John loves a girl who hates him.

When example 5 is processed, the DRS-construction algorithm dictates that first a
‘new’ discourse marker y is added to the universe of Ki, that is, a discourse marker
that has not already been used in Ki. Next the condition ‘y is John’ is added to
the conditions in Ki, and the algorithm proceeds with the phrase y loves a girl
who hates him. The processing of this phrase involves the introduction of another
new discourse marker z, and the conditions ‘z is a girl’ and ‘y loves z’. Finally, the
construction algorithm processes the clause z hates him. For the pronoun a ‘suitable’
member of the universe of the present DRS has to be chosen. The discourse marker
z is disqualified because it is associated with the wrong gender (and also because the
pronoun would have to be reflexive then). So, it will be either y, the discourse marker
associated with John, or some discourse marker already introduced by previous
discourse into the universe of Ki. If some such discourse marker x has been chosen,
where either x is y or x is some other discourse marker introduced before, the
condition ‘z hates x’ is added. Summing up, the processing of the sentence with
respect to some initial DRS Ki involves the addition to Ki of two ‘new’ discourse
markers y and z to the universe of Ki, and the addition of the conditions ‘y is John’,
‘z is a girl’, ‘y loves z’ and ‘z hates x’, where x is y or some other ‘familiar’ discourse
marker.
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A few remarks may be added about the ‘accessibility’ hierarchy, which determines
which discourse markers may be used for the interpretation of pronouns. As we
will see presently, DRSs may occur as constituents of conditions in other DRSs.
For instance, DRSs may contain conditions which consist in the negation of other
DRSs, or implicational conditions which connect an antecedent with a consequent
DRS. In case a DRS Ki contains the negation of a DRS Kj , then Kj is said to
be subordinate to Ki and to all other DRSs to which Ki is subordinate. And if an
implicational condition with antecedent DRS Kj and antecedent DRS Kk occurs in
Ki, then Kj is subordinate to Ki, Kk is subordinate to Kj and Ki, and Kj and Kk

are subordinate to all DRSs to which Ki is subordinate.
This subordination relation is relevant for the resolution of pronouns, or,

rather, the choice of discourse markers for the interpretation of pronouns. Disre-
garding gender and number, if a pronoun is interpreted with respect to some DRS
Ki, then it has to be associated with a discourse marker in the universe of Ki or in
the universe of any DRS to which Ki is subordinate. For instance, consider again
example 2, If a farmer owns a donkey, he beats it. The evaluation of this conditional
sentence introduces in the main DRS, the DRS of evaluation, an implicational con-
dition, where the antecedent DRS is generated from the interpretation of the clause
a farmer owns a donkey , and the consequent from the interpretation of the clause
he beats it. When interpreting the pronouns he and it relative to the consequent
DRS, they have be associated with discourse markers introduced in that DRS, or
in a superordinate DRS. In the present example they must be discourse markers
introduced in the antecedent DRS by the indefinite noun phrases a farmer and a
donkey , or discourse markers which have already been introduced in the main DRS.

Furthermore, if example 2 has been processed with respect to some DRS Ki,
the result of which is some DRS Kj which consists ofKi with the added implicational
condition, then the discourse markers introduced by the indefinites a farmer and a
donkey are not accessible anymore for subsequent anaphoric reference. The reason
is that subsequent sentences are evaluated with respect to Kj , and that pronouns
can not be associated with discourse markers in the universe of a DRS subordinate
to the DRS of evaluation. Notice that, thus, the subordination relation is used to
characterize the different life expectancies of discourse referents.

Discourse representation structures

In the original proposal by Kamp, DRSs are some kind of mixtures of natural
language expressions with ingredients of a logical language. They are set-theoretical
constructs built up from the lexical expressions of a natural language and discourse
markers of the intermediary DRS language.

For the sake of convenience, conditions like ‘y is John’, ‘z is a woman’, ‘y loves
z’ and ‘z hates x’ can be formulated as first order predicate logic atomic formulas
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y = j, Wz, Lyz and Hzx, respectively. Employing such a notation, we can give the
following simultaneous recursive definition of DRSs (terms are expressions which
are either individual constants or discourse markers):

Definition 1.1 (DRSs and conditions)
The set of conditions and the set of DRSs are the smallest sets such that:

1. if R is an n-place relational constant, and t1, . . . tn are terms then Rt1, . . . tn
is a condition

2. if t1 and t2 are terms then t1 = t2 is a condition
3. if K is a DRS then ¬K is a condition
4. if K1 and K2 are DRSs then K1 → K2 is a condition
5. if x1, . . . xn are discourse markers (0 ≤ n), and c1, . . . cm are conditions (0 ≤
m), then 〈x1, . . . xn: c1, . . . cm〉 is a DRS

Only the last clause specifies the format of a DRS. They must be conceived of as
pairs consisting of a set of discourse markers and a set of (occurrences of) conditions.
Conditions are either atomic conditions Rt1, . . . tn or t1 = t2, or they are conditions
consisting of the negation ¬K of a DRS K or implicational conditions K1 → K2

relating two DRSs K1 and K2.

As for an illustration, let us consider the result of processing example 5 in the
presently defined format of DRSs. Let Ki be a DRS 〈x1, . . . xn: c1, . . . cm〉 with
respect to which that example is processed. Then the result is the following DRS:

〈x1, . . . xn, y, z: c1, . . . cm, y = j,Wz,Lyz,Hzx〉

where y and z are not an element of {x1, . . . xn} and either x ∈ {x1, . . . xn} or x
is y. The discourse markers x1, . . . xn, y, z in the universe of the resulting DRS are
available as antecedents for future anaphoric coreference.

Truth in DRT

In the original paper by Kamp, [1981], DRSs are conceived of as partial models which
embody the conditions which the world must satisfy in order for the represented
discourse to be true. The satisfiability of a DRS K by a world or model is defined
in terms of the existence of a proper embedding of the universe of K into that of
the model which validates the conditions on discourse markers spelled out in K.

Like the formulas of first order predicate logic, DRSs are interpreted with re-
spect to a model and an assignment function, which is called an embedding in the
DRT framework. A model consists of a domain D of individuals and an interpre-
tation function F which maps the individual constants of the DRS language onto
individuals in D and n-ary relational constants onto sets of n-tuples of individuals.
An assignment function maps discourse markers onto individuals.

The truth of a DRS is defined employing the following two notions which are given
a simultaneous recursive definition:
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|=M,g c, condition c is true in model M under assignment g
h |=M,g K, assignment h is a verifying assignment of DRS K in model M with
respect to assignment g

The definition runs as follows (for any term t, [[t]]M,g is F (t) if t is an individual
constant, and g(t) if t is a discourse marker; g[x1, . . . , xn]h says that assignment g
is like h except, possibly, for the values assigned to x1, . . . , xn):

Definition 1.2 (DRS semantics)
1. |=M,g Rt1 . . . tn iff 〈[[t1]]M,g, . . . , [[tn]]M,g〉 ∈ F (R)
2. |=M,g t1 = t2 iff [[t1]]M,g = [[t2]]M,g

3. |=M,g ¬K iff for no h: h |=M,g K
4. |=M,g K1 → K2 iff for every h: h |=M,g K1, there is a k: k |=M,h K2

5. h |=M,g 〈x1, . . . xn: c1, . . . cm〉 iff g[x1, . . . , xn]h & |=M,h c1 & . . . |=M,h cn

A DRS K is true in model M with respect to assignment g iff there exists an
assignment h such that h |=M,g K.

An atomic formula Rx1 . . . xn is true in modelM under assignment g iff the sequence
of values of x1, . . . xn under g is in the extension of R in M . An identity statement
x1 = x2 is true under assignment g iff the values of x1 and xn under g are identical.
A negated DRS ¬K is true in model M under assignment g iff K is not true in
M with respect to g. And an implicational condition K1 → K2 is true in M with
respect to g if K2 is true in M with respect to every verifying assignment of K1 in M
with respect to g. Finally, h is a verifying assignment of K = 〈x1, . . . xn: c1, . . . cm〉
with respect to g iff h at most differs from g with respect to the values assigned to
x1, . . . xn and every condition ci (0 ≤ i ≤ m) is true in M under h.

The effect of this truth definition is that the values of the discourse markers in the
universe of a DRS Ki = 〈x1, . . . xn: c1, . . . cm〉 are quantified over in a way which
depends on the context of Ki. If we are concerned with the truth of Ki itself with
respect to assignment g, then these values are existentially quantified over, since the
truth of Ki requires there to be possible values of these discourse markers, encoded
in some assignment h: g[x1, . . . , xn]h, with respect to which all conditions in Ki are
true. However, if Ki is the antecedent representation of an implicational condition
Ki → Kj , then they are universally quantified over. The truth of the condition
Ki → Kj under an assignment g requires that Kj be true with respect to every
assignment h: g[x1, . . . , xn]h with respect to which the conditions in Ki are true,
that is, in effect, under all assignments of values to x1, . . . , xn with respect to which
these conditions are true.

Donkey sentences in DRT

I will now give an indication of how the donkey examples discussed above are treated
in DRT. Consider the following simplification of example 1:
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(1) A man walks. He whistles.

With respect to some initial DRS Ki = 〈x1, . . . xn: c1, . . . cm〉, the construction
algorithm applies first to the first sentence of example 1, and next to the second
sentence. The processing of the first sentence with respect toKi involves the addition
of a discourse marker y to the universe of Ki and the addition of the conditions that
y is a man and that y walks in the park, so we arrive at the following DRS Kj :

〈x1, . . . , xn, y: c1, . . . cm,My,Wy〉

The second sentence is processed with respect to this DRS. In this sentence we find
the pronoun he, which must be associated with a discourse marker in an accessible
universe. In the present example y is a suitable candidate, and if he is associated with
y, then the construction algorithm yields the following representation of example 1:

〈x1, . . . , xn, y: c1, . . . cm,My,Wy,WHy〉

The example is true with respect to some assignment g iff there is an assignment h:
g[x1, . . . , xn, y]h such that c1, . . . cm are true under h, and h(y) is a man who walks
and whistles. Truth-conditionally, this amounts to the requirement that Ki is true
and that there is man who walks and who whistles.

Next consider example 2:

(2) If a farmer owns a donkey, he beats it.

As has already been indicated, the application of the construction algorithm to
conditional sentences introduces implicational conditions. If the example is evaluated
with respect to some DRS K, K is extended with a condition Ki → Kj, where Ki is
a DRS for the antecedent clause a farmer owns a donkey , and Kj one for the clause
he beats it. More precisely, K is extended with the following condition:

〈x, y: Fx,Dy,Oxy〉 → 〈Bxy〉

If (with respect to some model and assignment) h is a verifying assignment of K,
then the addition of the above condition to K imposes a supplementary requirement
that the consequent DRS 〈Bxy〉 is true with respect to every assignment k which
is a verifying assignment of the antecedent DRS 〈x, y: Fx,Dy,Oxy〉 with respect to
h. More specifically, it is required that for every assignment k, if k at most differs
from h with respect to the values assigned to x and y, and if k(x) is a farmer and
k(y) a donkey which k(x) owns, then k(x) beats k(y). In fact, this comes down to
the requirement that every farmer beats every donkey he owns.

The application of the construction algorithm to example 3, finally, gives rise to the
same DRSs as the ones produced for example 2. Hence, the truth conditions of the
two examples are identical.

1.2 Dynamic predicate logic

We have seen that donkey-sentences, and intersentential anaphoric relationships,
while not accounted for in a Montague grammar, are successfully dealt with in
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DRT. However, the latter theory is a representational, non-compositional system of
interpretation. So, one might say, the latter system does not give a solution to the
problem of accounting for the phenomena in question in a compositional fashion.
For this reason, the basic architecture of DRT is not compatible with Montague
grammar and this obstructs comparison and unification.

Groenendijk and Stokhof [1991, (the original paper dates from 1987)] con-
stitutes a first step in the improvement of this situation.4 This paper presents
a system of predicate logic, called dynamic predicate logic (DPL), which obtains
the same results as Kamp’s original formulation of DRT (Kamp [1981]) in a non-
representational and more compositional fashion. The subsequently developed sys-
tem of DMG (Groenendijk and Stokhof [1990a]) finally incorporates the results of
DPL into a fully compositional Montague grammar (see section 3).

DRT has shown that certain differences between the roles of sentences in discourse
cannot be appropriately regarded as a difference in truth-conditional content. For
instance, compare the first sentence of the following two examples, which are truth-
conditionally equivalent:

(a) A man walks in the park. He whistles.
(b) Not every man does not walk in the park. ∗He whistles

The first sentence in the first example licenses subsequent anaphora whereas the first
sentence of the second example does not. In DRT this phenomenon is explained
in terms of the different representations associated with the two sentences. The
discourse representation for the first sentence has a discourse marker associated
with the subject noun phrase which is available for future anaphoric reference. The
discourse marker associated with the noun phrase every man in the representation
of the second sentence is not, since it is introduced in a DRS subordinate to the
main DRS.

Groenendijk and Stokhof accurately observe that what examples like the two
above show is not that a level of discourse representation is essential for an account
of the anaphoric relationships. What such examples show is that the meaning of
a sentence is not fully characterized in terms of its truth conditions. From the
definition of the interpretation of DRSs it appears that the most central notion
is not that of the truth of a DRS condition or of a DRS, but that of a verifying
assignment of a DRS. Simply by extending the notion of the meaning of a sentence
with that of assignments verifying the sentence, Groenendijk and Stokhof succeed
in getting a compositional, non-representational interpretation of the language of
first order predicate logic that covers the results of DRT.

4. Other compositional reformulations of DRT have been given, for instance, by Barwise [1987],
Rooth [1987], Asher and Wada [1988], Zeevat [1989], Groenendijk and Stokhof [1990a], Muskens
[1990].
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Relations between assignments

DPL takes as its starting point the view that the meaning of a sentence does not lie
in its truth conditions, but rather in the way it changes the information of the hearer.
Such information may involve, among others, truth-conditional information about
what the world is like, but also information about what are possible antecedents of
anaphoric pronouns. Since DPL in the first place aims to give a reformulation of
DRT, it focusses attention on the latter aspects of information.

As in certain approaches to the semantics of programming languages, the
meaning of a sentence (read: program) is captured in terms of a relation between
states. In DPL the states are assignment functions. The interpretation of a sentence
then constitutes a set of ordered pairs of assignments, each element of which con-
stitutes a possible ‘input–output’ pair. If the pair of assignments 〈g, h〉 is in the
interpretation of a sentence φ, then, one might say, the interpretation of φ in state
g may have the, possibly new, state h as a result.

Adopting such a procedural notion of meaning, it is relatively obvious what the
interpretation of conjunction must be. Conceiving of the interpretation of a discourse
as the sequential interpretation of its successive sentences, the interpretation of a
conjunction φ∧ψ is the composition of the interpretations of φ and ψ. With respect
to some initial assignment g, the result of interpreting φ ∧ ψ may be some state h
iff h may be the result of interpreting ψ with respect to some assignment k which
may result from interpreting φ with respect to g.

The most important action in DPL originates from occurrences of existen-
tial quantifiers. An existential quantifier ∃x has the effect of a random assignment
of a value to the variable x, which is like in ordinary predicate logic. However, in
contradistinction with predicate logic, the interpretation of an existentially quanti-
fied formula ∃xφ in DPL as it were ‘remembers’ the randomly assigned values of x
which satisfy the conditions imposed upon the value of x by φ. Since these values
are encoded in the possible output assignments, they can be referred back to.

Consider, for instance, the formula ∃xMx. Assuming that the extension of M is the
set of men, this formula is true with respect to some assignment g in ordinary predi-
cate logic iff for some assignment h, g[x]h and h(x) is a man. The same requirement
must be met in order for the formula to be true in DPL. However, the DPL inter-
pretation of the formula with respect to g will be any such assignment h. In other
words, the DPL interpretation of ∃xMx is that set of pairs 〈g, h〉 of assignments g
and h such that g[x]h and h(x) is a man.

Now consider the conjunction of ∃xMx with the formula Wx, where W de-
notes the set of walking individuals. The latter formula is true with respect to some
assignment h iff h(x) walks. Employing the interpretation of the conjunction of two
formulas indicated above, this conjunction will be true with respect to an assignment
g iff Wx is true with respect to some state h which may result from interpreting
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∃xMx with respect to g. Spelling these conditions out we find that the whole con-
junction is true with respect to g iff there is some assignment h such that g[x]h and
h(x) is a man and h(x) walks.

The above example illustrates the benefits of DPL interpretation. Employing the
independent interpretations of the two conjuncts ∃xMx and Wx, we can derive
the interpretation of their conjunction ∃xMx ∧ Wx which is associated with the
truth conditions that there is a man who walks. Furthermore, the interpretation
of ∃xMx ∧ Wx with respect to some state g ‘remembers’ that the value of x is a
man who walks. So, a subsequent use of the variable (‘discourse marker’) x can be
associated with the possible values of x which are introduced by the existentially
quantified formula ∃xMx.

DPL definitions

The language of DPL is that of ordinary predicate logic. It has individual constants
and variables (which make up the set of terms) and n-ary relational constants.
Atomic formulas are Rt1 . . . tn and t1 = t2, where R is an n-ary relational constant
and t1, . . . , tn are terms. Furthermore, if φ and ψ are formulas and x is a variable,
then ¬φ, ∃xφ and (φ ∧ ψ) are formulas.

Like in ordinary predicate logic and in DRT, DPL interpretation is defined
with respect to a model M = 〈D,F 〉 which consists of a domain D of individuals
and an interpretation function F assigning objects in D to the individual constants
and sets of n-tuples of individuals to n-ary relational constants. Again [[t]]M,g is g(t)
if t is a variable, and F (t) if t is a constant, and g[x]h says that assignment h is like
assignment g except possibly with respect to the value it assigns to x.

The interpretation of DPL formulas is defined as follows:

Definition 1.3 (DPL semantics)
1. [[Rt1 . . . tn]]M = {〈g, h〉 | h = g and 〈[[t1]]M,g, . . . , [[tn]]M,g〉 ∈ F (R)}
2. [[t1 = t2]]M = {〈g, h〉 | h = g and [[t1]]M,g = [[t2]]M,g}
3. [[¬φ]]M = {〈g, h〉 | h = g and ¬∃h: 〈g, h〉 ∈ [[φ]]M}
4. [[∃xφ]]M = {〈g, h〉 | ∃k: g[x]k and 〈k, h〉 ∈ [[φ]]M}
5. [[φ ∧ ψ]]M = {〈g, h〉 | ∃k: 〈g, k〉 ∈ [[φ]]M and 〈k, h〉 ∈ [[ψ]]M}

A formula is true with respect to a model M and assignment g iff there is an
assignment h such that 〈g, h〉 ∈ [[φ]]M .

Atomic formulas are interpreted as so-called ‘tests’. Given an input assignment g
the interpretation of such formulas either produces g, if the test succeeds, or has no
output, if the test fails. They accept as possible input the assignments with respect
to which the formulas are true in ordinary predicate logic and with respect to which
the corresponding DRT conditions are true. The interpretation of the negation ¬φ
of a formula φ also involves a test. It accepts as possible input those assignments g
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of which it holds that the interpretation of φ with respect to g has no output. The
interpretation of existentially quantified formulas and of conjunctions is defined as
sketched above.

As for a first comparison of DPL with DRT the following things may be observed.
In the first place, DRT and DPL completely agree on the interpretation of atomic
formulas and negations. The mere difference is that in DPL they are conceived of
as formulas (or DRSs, for that matter) in their own right, instead of as conditions,
as is the case in DRT. In the second place, DRT has implicational conditions, and a
rule of DRS formation, where DPL has operations of existential quantification and
conjunction.

It is relatively easy to see that a DRT implication K1 → K2 corresponds to a
DPL implication φ→ ψ where φ is the DPL-equivalent of K1 and ψ that of K2 and
where φ→ ψ is defined, as usual, as ¬(φ ∧ ¬ψ). Furthermore, the interpretation of
a DRS Ki = 〈x1, . . . xn: c1, . . . cm〉 is easily seen to be equivalent with the iterated
existential quantification in DPL over the values of x1, . . . xn in the conjunction of
the formulas φ1, . . . φm that correspond to the conditions c1, . . . cm.

On the other hand, DRT lacks an operation which corresponds to the DPL’s
conjunction. In fact, the presence of such an operation, with a well-defined (dynamic)
interpretation, enables DPL to give a more compositional translation of natural
language than DRT does.

Truth conditions of DPL formulas

In order to illustrate the semantic properties of DPL, it is elucidating to give a truth
conditions preserving translation into ordinary predicate logic. This translation of
a formula φ yields what Groenendijk and Stokhof call the ‘normal binding form’ of
φ. It is defined as follows:

Definition 1.4
1. (Rt1 . . . tn)♣ = Rt1 . . . tn
2. (¬φ)♣ = ¬(φ)♣

3. (∃xφ)♣ = ∃x(φ)♣

4. (Rt1 . . . tn ∧ ψ)♣ = (Rt1 . . . tn)♣ ∧ (ψ)♣

(¬φ ∧ ψ)♣ = (¬φ)♣ ∧ (ψ)♣

(∃xφ ∧ ψ)♣ = (∃x(φ ∧ ψ))♣

((φ ∧ ψ) ∧ χ)♣ = (φ ∧ (ψ ∧ χ))♣

A formula φ is true with respect to M and assignment g in DPL iff φ♣ is true with
respect to M and assignment g in predicate logic.

The translation ♣ clearly reveals the semantic properties of DPL. For as far as truth
conditions are concerned, atomic formulas and sentential operators behave in exactly
the same way in DPL as in predicate logic, with the following exception. In DPL, a
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formula (∃xφ∧ψ) is equivalent with the formula ∃x(φ∧ψ). It is exactly this distin-
guishing equivalence in which we recognize the (dynamic) account of establishing of
anaphoric relationships in DPL. For instance, consider again the sequence A man
walks. He whistles, which is most intuitively translated as ∃x(Mx∧Wx)∧WHx. In
DPL this formula is equivalent with the formula ∃x(Mx∧Wx∧WHx), which is the
natural translation of the sentence There is a man who walks and whistles. Notice,
moreover, that precisely because of the last mentioned equivalence, conjunction is
not in general commutative in DPL. The DPL truth conditions of ∃xMx∧Wx equal
the predicate logic truth conditions of ∃x(Mx ∧ Wx), which are different from the
DPL and predicate logic truth conditions of Wx ∧ ∃xMx.

DRT and DPL

DPL has been conceived of here as a reformulation of DRT. DPL provides for a
meaning-preserving restatement of the DRS language into the more familiar lan-
guage of predicate logic, which is given a recursively defined dynamic interpretation
basically similar to that of the DRS language. However, the difference between the
two is significant.

The meanings of natural language discourses can be expressed by DPL formulas
which more closely reflect the structure of these discourses than the corresponding
DRSs do. For instance, compare the DPL translation 1a of example 1 with the basic
DRS 1b for the example in DRT, viz., the DRS constructed with respect to the
‘empty’ input DRS 〈 〉:

(1) A man walks. He whistles.
(1a) ∃x(Mx ∧ Wx) ∧ WHx
(1b) 〈x: Mx,Wx,WHx〉

In formula 1a we can recognize the translations of the two sentences that make up
example 1. The translation of example 1 simply consists of the (DPL-)conjunction of
the translations of its constituent sentences. However, no constituent of the DRS 1b
can be conceived of as the basic DRT representation of the first (or second) sentence
of example 1, viz., 〈x: Mx,Wx〉 (〈WHx〉). The reason is that the DRT interpretation
of the second sentence in this example involves a modification of the representation
of the first sentence and not an operation that conjoins the DRSs associated with
the two constituent sentences.

Next, consider the DPL translation 3a of example 3 and the basic DRS 3b for the
example:

(3) Every farmer who owns a donkey beats it.
(3a) ∀x((Fx ∧ ∃y(Dy ∧ Oxy)) → Bxy)
(3b) 〈〈x, y: Fx,Dy,Oxy〉 → 〈 : Bxy〉〉
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In the DRS 3b for example 3 we find no representation of the constituent clause
who owns a donkey . However, the DPL translation 3a has a subformula which is
the translation of this relative clause, viz., ∃y(Dy ∧ Oxy). Examples like the above
motivate the conclusion that natural language expressions can be translated in a
more compositional fashion into the language of DPL, than in the representational
language of DRT.

Finally, notice that DPL still does not allow for a fully compositional translation
of, for instance, quantifying noun phrases, the reason being that DPL, like ordinary
predicate logic, is a simple first order logic. So, in order to develop a dynamic
Montague grammar, the DPL operations have to be lifted to a higher order logic.
The next section shows how this can be done. It presents Groenendijk and Stokhof’s
dynamic Montague grammar, which offers a compositional and dynamic semantics
of a fragment of natural language.

2 Dynamic Montague grammar

In the construction of a dynamic Montague grammar, the development of DPL can
only be a first step. DPL is just a first order logic and, therefore, it can not be used
to give a compositional account of the semantics of natural language at the subsen-
tential level. So, the next step is to define a typed logic that encompasses dynamic
interpretation. Groenendijk and Stokhof [1990a] define a dynamic Montague gram-
mar (DMG) in terms of a variant of intensional logic due to Janssen [1986]. They
show that this Montague grammar incorporates basic DRT results in a completely
compositional way. This section gives an exposition of Groenendijk and Stokhof’s
system. I start with an exposition of dynamic intensional logic (DIL), the variant of
IL that is used in DMG.

2.1 Dynamic intensional logic

In order to give a further compositionalization of the dynamic interpretation of
natural language, the natural way to go about is to resort to a typed logic. However,
not any typed logic will do. For instance, the logic must enable us to express the
ways in which the interpretations of pronouns may vary from context to context,
and the way in which certain expressions may change the context of interpretation
for other expressions. Given the fact that we can conceive of the meaning of a
pronoun as a function from contexts to individuals, a logic is preferred that has
a device which indicates abstraction over contexts. Furthermore, if the logic also
has a device indicating application to contexts, it may be able to express functions,
which, when applied to the meaning of a pronoun, involve the evaluation of the
pronoun with respect to a context different from the context with respect to which
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the function itself is evaluated, and, thus, express a notion of context change for the
interpretation of pronouns.

A logic that serves these purposes is dynamic intensional logic (DIL), a variant
of IL. In DIL, the set of states is made to behave like a set of assignments to so-called
discourse markers, special constants of type e which are used in the translations of
pronouns. Since the states behave like discourse marker assignments, the intension
operator ∧ indicates abstraction over discourse marker assignments. Furthermore,
the extension operator ∨ in that logic involves the evaluation of an expression with
respect to the current discourse marker assignment.

In this section I present the basic ingredients of DIL. For more details and discussion,
the reader is referred to Janssen [1986] and Groenendijk and Stokhof [1990a].

Dynamic intensionality

The language of DIL has a distinguished set of discourse markers d, d′, . . . among the
constants of type e, which figure in the translation of pronouns. Since the discourse
markers are constants, their interpretation depends on the index, or state, of evalu-
ation, not on an assignment function. However, by means of postulates these states
are made to behave like discourse marker assignments, and, thus, these discourse
markers themselves are made to act like variables.

The discourse markers are even more made to look like variables, since DIL
has so-called ‘state quantifiers’ ∃d,∃d′, . . . which in effect involve quantification over
the values of discourse markers.5 In fact, a state quantifier ∃d is a modal operator
that quantifies over states. By means of the postulates mentioned above this is
related to quantification over discourse marker assignments, and the interpretation
of a formula ∃dφ in effect involves a form of existential quantification over the values
of the discourse marker d.

So, apart from the ordinary variable binding devices, DIL has a modal ‘vari-
able’ binding device in terms of discourse markers and state quantifiers. (For moti-
vation and discussion, see Groenendijk and Stokhof [1990a].) Because of this modal
nature of discourse markers and state quantifiers, they interact in an interesting way
with the intension and extension operators ∧ and ∨. For instance, since states act like
assignment functions, the intension ∧d of a discourse marker d in DIL denotes the
function f from the domain of states (discourse marker assignments) to the domain
of individuals D the value of which for any state s is the value of d in s.

On the other hand, a state quantifier ∃d affects occurrences of the extension
operator ∨ in its scope. For instance, for the formula ∃d(man(d) ∧ ∨p) to be true,

5. Here I deviate from Janssen and Groenendijk and Stokhof who use so-called state switchers
{α/d}, {β/d′}. However, Groenendijk and Stokhof only use state switchers in combination with
existential quantifiers, the combined interpretation of which is expressed by the state quantifiers
employed here.
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the extension of p must be true, not necessarily in the state s with respect to which
interpretation of the entire formula takes place, but in a state s′ possibly differing
from s in that the value of d is a man in s′. So, if we substitute ∧whistle(d) for p in
the present example, we find that the resulting sentence is true in s iff there is state
s′ which differs from s at most in that the value of d is a man in s′ and such that
the value of d whistles in s′. In other words, in that case the formula whistle(d) is
in effect interpreted with respect to a state (assignment) in which d is a man.

Before turning to the definitions of DIL, it must be noticed that DIL, as it stands,
does not deal with IL’s intensionality. In the system presented below, all of the
intensionality is concerned with the interpretation of discourse markers. All other
constants are ‘rigid’, i.e., they have the same extension in each state. Intensionality
in the ordinary sense can be incorporated in DIL. However, for the present purposes
it suffices to stick to the ‘extensional’ system, the only intensionality of which is
the modal ‘variable’ binding device. It should be noticed, furthermore, that only
discourse markers of type e are used.6 I now turn to the definitions of DIL.

DIL: types and syntax

The system of dynamic intensional logic differs from intensional logic IL in three
respects. First, a distinguished set of discourse markers DM is recognized among the
constants of type e. Second, instead of IL’s modal and temporal operators, DIL has
state quantifiers ∃d, for any discourse marker d. Third, three postulates make the
states behave like discourse marker assignments. I start with the recursive definition
of the set of DIL types:

Definition 2.1 (DIL types)
The set of types T is the smallest set such that:

1. e, t ∈ T
2. If a, b ∈ T , then 〈a, b〉 ∈ T
3. If a ∈ T , then 〈s, a〉 ∈ T

The set T of DIL types contains the basic types e and t, the type of individuals (or
entities) and the type of truth values. Furthermore, it contains derived functional
types, 〈a, b〉 and 〈s, a〉. The first is the type of functions from objects of type a to
objects of type b, and the last is the intensional type of functions from states to
objects of type a.

6. The language of DIL can be extended with discourse markers of any extensional type with-
out complication. However, the introduction of discourse markers of intensional types involves a
foundational problem. Since states are postulated to behave as discourse marker assignments, the
interpretation of a discourse marker d of an intensional type 〈s, a〉, which is the type of functions
from states to objects of type a, would have to be defined for states that, by postulate, define the
interpetation of d. This problem can be gotten around in various ways. See Janssen [1986] and
[1990] for the introduction of discourse markers of types other than type e.
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Assuming for each type a a set CONa of constants of type a, with a distinguished
set DM of discourse markers among the constants of type e, and a set VARa of
variables of type a, the set of well-formed expressions of DIL is defined as follows:

Definition 2.2 (DIL syntax)
The set WEa of well-formed expressions of type a, for any type a ∈ T , is the smallest
set such that for all types a, b ∈ T :

1. If c ∈ CONa then c ∈ WEa

If x ∈ VARa then x ∈ WEa

2. If β ∈ WE〈a,b〉 and α ∈ WEa then β(α) ∈ WEb

If β ∈ WEb and x ∈ WEa then λx β ∈ WE〈a,b〉

3. If α ∈ WEa and β ∈ WEa then (α = β) ∈ WEt

4. If φ ∈ WEt then ¬φ ∈ WEt

If φ ∈ WEt and x ∈ VARa then ∃xφ ∈ WEt

If φ ∈ WEt and d ∈ DM, then ∃dφ ∈ WEt

If φ,ψ ∈ WEt then (φ ∧ ψ) ∈ WEt

5. If α ∈ WEa then ∧α ∈ WE〈s,a〉

If α ∈ WE〈s,a〉 then ∨α ∈ WEa

In what follows, ∀xφ, (φ → ψ), and (φ ∨ ψ) abbreviate ¬∃x¬φ, ¬(φ ∧ ¬ψ), and
(¬φ→ ψ) respectively.

So, the language of DIL consists of expressions built up from constants and variables
by means of functional application and λ-abstraction, identity, the usual connectives
and quantifiers, the intension and extension operators ∧ and ∨, and the state quan-
tifier.

DIL: domains and postulates

I now turn to the semantics of DIL. First the interpretation domains for expressions
of the various types are defined, on the basis of a set D of individuals and a set
I of states. If D and I are such sets, then for any type a the set Da of possible
denotations of (expressions of) type a is defined as follows:

Definition 2.3 (DIL domains)
1. De = D
Dt = {0, 1}

2. D〈a,b〉 = DDa
b

3. D〈s,a〉 = DI
a

Expressions of type e have a denotation in the domain of individuals and the possible
denotations of expressions of type t are the truth values 1 (true) and 0 (false). The
domain D〈a,b〉 is the set of functions with domain Da and values in Db. The domain
D〈s,a〉 is the set of functions from states to objects in Da.
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The semantics of DIL is defined with respect to a model M = 〈D, I, F 〉 where D and
I are as above, and F is an interpretation function for the constants of the language
such that for any constant c of type a, F (c) is a function from I to Da. A model M
is required to satisfy the following three postulates:

Postulate 1 (Rigidness postulate)
• For all c ∈ CON, if c 6∈ DM then for all s, s′ ∈ I: F (c)(s) = F (c)(s′)

This postulate guarantees that all of the intensionality of DIL resides in the in-
terpretation of discourse markers. As has been indicated above, the intensionality
phenomena that IL deals with are not dealt with here. (However, dropping this
postulate evidently gives us the resources of (classical) intensionality back again.)

Postulate 2 (Distinctness postulate)
• For all s, s′ ∈ I, if for all c ∈ CON: F (c)(s) = F (c)(s′) then s = s′

Postulate 3 (Update postulate)
• For all s ∈ I, d ∈ DM, z ∈ De there is an s′ ∈ I such that:

1. for all c ∈ CON, if c 6= d then F (c)(s) = F (c)(s′), and
2. F (d)(s′) = z

The last two postulates make the set of states correspond to discourse marker assign-
ments. Together with the first postulate they guarantee that every state uniquely
corresponds to a discourse marker assignment. A state s corresponds to the dis-
course marker assignment g such that ∀d ∈ DM: g(d) = F (d)(s).7 The postulates
imply, furthermore, that for very state s, discourse marker d and object z, there is
a unique state s′, such that in s′ the value of all constants except d is the same as
in s and such that the value of d in s′ is z. This state will be indicated by s[d/z],
which reflects the usual notation g[x/z] for the assignment h which at most differs
from g in that the value of x with respect to h is z.

DIL: interpretation

I now turn to the interpretation of well-formed DIL expressions. The interpretation
[[α]]M,s,g of an expression α with respect to a model M , state s ∈ I and assignment
g is defined as follows:

Definition 2.4 (DIL semantics)
1. [[c]]M,s,g = F (c)(s), for all constants c

[[x]]M,s,g = g(x), for all variables x
2. [[β(α)]]M,s,g = [[β]]M,s,g([[α]]M,s,g)

[[λxaβb]]M,s,g = the function h ∈ DDa
b : h(z) = [[β]]M,s,g[x/z] for all z ∈ Da

7. If, in order to re-introduce ordinary intensionality in DIL, the rigidness postulate is dropped,
then this correspondence will have to be relativized.
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3. [[α = β]]M,s,g = 1 iff [[α]]M,s,g = [[β]]M,s,g

4. [[¬φ]]M,s,g = 1 iff [[φ]]M,s,g = 0
[[∃xaφ]]M,s,g = 1 iff there is a z ∈ Da: [[φ]]M,s,g[x/z] = 1

[[∃dφ]]M,s,g = 1 iff there is a z ∈ De: [[φ]]M,s[d/z],g = 1

[[φ ∧ ψ]]M,s,g = 1 iff [[φ]]M,s,g = [[ψ]]M,s,g = 1
5. [[∧αa]]M,s,g = the function h ∈ DI

a: h(s
′) = [[α]]M,s′,g for all s′ ∈ I

[[∨α]]M,s,g = [[α]]M,s,g(s)

Like in IL, constants are assigned an interpretation relative to the state of eval-
uation. However, all constants which are not discourse markers receive the same
interpretation in every state. By the rigidness postulate, only the interpretation of
discourse markers may vary from state to state. Except for the clause dealing with
state quantifiers, all clauses in the definition of [[ ]] are as in IL.

A formula ∃dφ is defined to be true in a state s iff φ is true in a state s′ that is
like s except, possibly, for the value that d has in s′. Since the postulates guarantee
that for any object z there is an alternative state s′ in which the value of d is z,
the state quantifier in effect quantifies over possible values of d. In this respect, the
state quantifier behaves exactly like the ordinary existential quantifier.

Truth and entailment are defined as in IL:

Definition 2.5 (Truth, entailment and equivalence)
For all expressions φ and ψ of type t, and α and β of any type a,

• φ is true in M with respect to s and g, M |=s,g φ, iff [[φ]]M,s,g = 1
• φ entails ψ, φ |= ψ, iff for all M , s and g, if M |=s,g φ then M |=s,g ψ
• α and β are equivalent, α⇔ β, iff for all M , s and g: [[α]]M,s,g = [[β]]M,s,g

Intensionality and λ-conversion in DIL

The intension and extension operators ∧ and ∨ in DIL behave the same as in IL.
These operators involve abstraction over, and application onto, states of evaluation,
respectively. Of course, ∨∧-elimination remains valid:

Fact 2.1 (∨∧-elimination)
• ∨∧α⇔ α

However, since states play the part of discourse marker assignments in DIL, the
meaning of ∧ and ∨ in DIL is different from that in IL. The meaning of an expression
∧φ is no longer considered to be the set of worlds, or situations, in which φ is
true, but the set of (discourse marker) assignments with respect to which φ is true.
Furthermore, as was indicated above, an occurrence of the extension operator ∨ in
the scope of a state quantifier ∃d comes down to application to a state quantified
over by means of ∃d. These two facts are crucial for DIL’s account of the dynamic
binding of ‘free’ discourse markers, as we will see shortly. Before we see how such
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dynamic binding is realized, we first have to consider the conditions for λ-conversion
in DIL.

The conditions for λ-conversion in DIL are virtually the same as in IL, but the
definition of the relevant set of intensionally closed expressions is different:

Definition 2.6 (Intensionally closed expressions)
ICE, the set of intensionally closed expressions, is the smallest set such that:

1. c, x ∈ ICE for any constant c 6∈ DM and variable x
2. ∧α ∈ ICE for every well-formed expression α
3. β ∈ ICE if β is constructed from elements of ICE by means of application,

abstraction, identity, negation, quantification (both forms) and conjunction

Clearly, since the interpretation of constants that are not discourse markers is state
independent, by the rigidness postulate, these constants can be included among
the set of intensionally closed expressions. Discourse markers can only be part of
intensionally closed expressions if they are in the scope of the ∧-operator. Expressions
that are excluded from ICE are discourse markers and expressions fronted by the
∨-operator.

The following two facts are as in IL:

Fact 2.2
• If β is intensionally closed, then [[β]]M,s,g = [[β]]M,s′,g for all s, s′ ∈ I

Fact 2.3 (λ-conversion)
• (λxβ)(α) ⇔ [α/x]β if:

1. all free variables in α are free for x in β and
2. α is intensionally closed

Notice, however, that in fact 2.3 no conditions on discourse markers in α are imposed.
If all free variables in α are free for x in β, then the requirement that α is intensionally
closed is a sufficient (not necessary) condition for λ-conversion. So, if α is of the form
∧φ and φ contains free discourse markers, λ-conversion is allowed, since the discourse
markers in α are semantically bound by the operator ∧.

Mediated binding in DIL

The interplay between the λ-operator, the intension and extension operators and
the state quantifier gives rise to what may be called the ‘dynamic’ or ‘mediated’
binding of discourse markers. Consider the following example, where p is a variable
of type 〈s, t〉:

(6) (λp ∃d(man(d) ∧ ∨p))(∧(whistle(d))) ⇔ (fact 2.3)
∃d(man(d) ∧ ∨∧(whistle(d))) ⇔ (fact 2.1)
∃d(man(d) ∧ whistle(d))
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Clearly, the argument expression ∧(whistle(d)) in this example is intensionally
closed. The argument denotes the function f from states to truth values such that
f(s) = 1 iff the value of d in s whistles. The abstract λp ∃d(man(d) ∧ ∨p) denotes,
with respect to a state s, the function g from propositions to truth values such that
g(p) = 1 iff there is a state s′ such that s′ at most differs from s with respect to the
value that d has in s′, the value of d is a man in s′ and p holds of s′. Application of
the functional expression to the argument expression yields true if there is a state
s′ such that s′ at most differs from s with respect to the value that d has in s′, the
value of d is a man in s′ and the value of d whistles in s′. This is equivalent to the
statement that there is a man who whistles.

The above example shows a form of mediated binding, since the state quantifier
∃d turns out to bind, semantically, a discourse marker d in whistle(d) that does
not occur in the syntactic scope of the quantifier. This form of binding is essentially
mediated by the abstraction over the variable p in the scope of the state quantifier
∃d. The evaluation of the extension of p in the scope of ∃d, and the application of
the whole λ-term to the intension of whistle(d), makes that whistle(d) in this
example turns out to be evaluated as if it were in the scope of ∃d.

This example lays bare DIL’s potential to deal with anaphora in a completely
compositional way. In DIL, two expressions can be assigned a meaning of their own
and still, in the composition of the two, indefinites (state quantifiers) in the first
may bind pronouns (discourse markers) in the second by mediation. Groenendijk
and Stokhof elaborate such a treatment of anaphora in the framework of a dynamic
Montague grammar, which is presented in the next subsection. Before we turn to
their treatment, it is convenient to reflect a moment on the relation between the
state quantifier and the ordinary existential quantifier.

The state quantifier behaves more or less like the existential quantifier, but, as we
have seen, it behaves differently in interaction with the intension and extension
operators. I will now show in which cases a formula ∃dφ can be equated with an
ordinary existentially quantified formula. Let us first decide upon some terminology.
An occurrence of a discourse marker d in φ is free iff it is not in the scope of an
intension operator ∧ or of a state quantifier ∃d in φ. Furthermore, an occurrence of
∨ in φ is called free iff that occurrence is not in the scope of an intension operator ∧

in φ. Finally, [x/d]φ indicates the formula obtained from φ by substituting all free
occurrences of d in φ by x. The following fact tells us when a state quantifier can
be reduced to an ordinary existential quantifier:

Fact 2.4 (∃d-reduction)
• ∃dφ⇔ ∃x[x/d]φ if

1. x does not occur free in φ
2. x is free for d in φ
3. ∨ does not occur free in φ
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The first two conditions in this fact are standard conditions on substitution. The
third condition is needed because of the modal nature of the state quantifier. For
instance, the expression λp ∃d(man(d)∧∨p) in the above example can not be reduced
to λp ∃x(man(x) ∧ ∨p), since the state quantifier ∃d affects the interpretation of the
subformula ∨p, which the existential quantifier ∃x does not. On the other hand,
since there is no free occurrence of ∨ in ∃d(man(d) ∧ whistle(d)), this formula can
be reduced, namely to ∃x(man(x) ∧ whistle(x)).

2.2 Dynamic interpretation in DMG

As was said above, DIL takes the part of IL in the dynamic Montague grammar
proposed by Groenendijk and Stokhof. DIL has the expressive power that is required
for a formulation of the dynamics of DPL within a completely compositional setting.
However, DIL does not simply replace IL in DMG. In order to capture the dynamics
of natural language that DPL deals with, the sentences of natural language should
not be associated with the type t of truth values, as in MG (at least, not to start out
with). The dynamics of natural language sentences is dealt with at a different level
of types. In DMG, sentences are associated with the functional type of so-called
context change potentials, the type of expressions that may affect the interpretation
of other expressions.

In this section, I will first discuss the type of objects that serve as the denota-
tions of natural language sentences in DMG, i.e., the type of DMG’s context change
potentials. Then I discuss DMG’s (dynamic) counterparts of the usual (static) sen-
tential operations at this higher level of types. These operators will be conceived
of as belonging to another, fully typed, language, the semantics of which is stated
in terms of DIL expressions. This intermediary language, DFL, greatly facilitates
the study and exposition of DMG.8 After that, in section 3.3, Groenendijk and
Stokhof’s DMG, a small dynamic Montague-style fragment of English, is defined
and illustrated with some examples.

The type of context change potentials

DMG is a version of Montague grammar which accounts for the fact that the inter-
pretation of a sentence may change the context of interpretation of sentences that
follow it. Like in DPL, this is achieved by associating a sentence with a context
change potential which is realized by the conjunction of the sentence with subse-
quent sentences.

8. In fact, Groenendijk and Stokhof do not use such an intermediary language. They do use derived
notions of negation, existential quantification and conjunction (cf., below) but these are conceived
of as notational devices which abbreviate complex DIL expressions. I have reinterpreted these
abbreviatory devices as operators of a distinguished language for the purpose of generalization and
comparison. Eventually, this is only a shift of perspective which is not a principled one, since the
intermediary DFL language can be dispensed with, as the language of DIL can.
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In the exposition of DIL, we have already encountered an example of so-called
‘dynamic’ or ‘mediated’ binding. When we apply the expression λp ∃d(man(d)∧ ∨p)
to the intension of the DIL formula whistle(d), the state quantifier ∃d turns out to
bind the discourse marker d in whistle(d). In fact, the intension of the expression
λp ∃d(man(d)∧∨p) can be taken to denote a context change potential. It denotes the
function f from contexts (states) and propositions (sets of states) to truth values
which holds of a state s and a proposition p iff p is true in a state s′ which at most
differs from s with respect to the value d has in s and such that the value of d in
s′ is a man. Hence, such a function can be conceived of as changing the context of
interpretation for propositional expressions.

More in general, DIL expressions of the form ∧λp (. . . ∨p . . .) may involve a
change in the context of evaluation of propositional expressions to which they are
applied. The denoted functions, properties of propositions of type 〈s, 〈〈s, t〉, t〉〉, will
be called contexts change potentials from now on.9

In DMG, the sentences of a fragment of natural language are translated into ex-
pressions which denote such context change potentials and these context change
potentials are realized by applying their extensions to propositional expressions. For
example, the sentence A man walks is associated with the (reduced) translation
∧λp ∃d(man(d) ∧ walks(d) ∧ ∨p) and the sentence He whistles, with the transla-
tion ∧λp (whistle(d) ∧ ∨p). When the two sentences are conjoined, we take some
form of intensional functional composition of the extensions of the translations of
both sentences. This composition comes down to the application of λp ∃d(man(d) ∧
walks(d) ∧ ∨p) to the intension of (whistle(d) ∧ ∨p) and a subsequent abstraction
over the value of p. The result can be reduced to the expression λp ∃d(man(d) ∧
walks(d) ∧ whistle(d) ∧ ∨p). Here we see, first, that the occurrence of d in the for-
mula whistle(d) is bound by the state quantifier ∃d, and, second, that the result,
as well, denotes a context change potential.

DFL: type shift

Like I said, the dynamics of natural language is formulated in DMG by translating
expressions of a fragment into expressions of an intermediary language, DFL, the
semantics of which is defined in terms of DIL. So, the organization of DMG can be

9. It must be noted that such functions do not literally change the context of interpretation of
their argument expressions. The interpretation of the application a function f to some argument
expression a with respect to M , s and g, of course, remains the application of the interpretation
of f with respect to M , s and g to the interpretation of a with respect to M , s and g. However,
the particular functions which figure as the denotations of sentences in DMG can all be phrased
as functions which hold of a state s and a proposition p iff p is true in some state s′ possibly
different from s and such that so and so. For this reason it is appropriate to call them context
change potentials, and the type 〈s, 〈〈s, t〉, t〉〉 the type of context change potentials. (I just note that
context change potentials can be modeled in other types as well, as we will see in chapter 3.)



30 Chapter 1. Introduction

pictured as follows:

AT ; DFL =⇒ DIL → Models

Natural language expressions are translated into DFL expressions, the interpreta-
tions of which are defined in terms of DIL expressions which, in turn, are assigned a
model-theoretic interpretation.10 The intermediary system of DFL is some kind of
an extensional dynamic logic. The formulas of DFL denote context change poten-
tials and the system has notions of dynamic conjunction and dynamic existential
quantification which are operations on expressions of that type. In fact, the type of
context change potentials constitutes a basic type in DFL.

The set of DFL types TD, is constructed from the type of individual concepts
and from the type of context change potentials (i.e., the type of properties of
propositions)11:

Definition 2.7 (DFL types)
The set of DFL types, TD, is the smallest set such that:

1. 〈s, e〉 ∈ TD

2. 〈s, 〈〈s, t〉, t〉〉 ∈ TD

3. if a, b ∈ TD then 〈a, b〉 ∈ TD

In DFL, the types 〈s, e〉 and 〈s, 〈〈s, t〉, t〉〉 take the part of the types e and t from
extensional logics. In fact, the DFL types stand in a one-to-one corespondence with
the extensional DIL types. The following recursively defined type shift ↑ relates the
extensional types in T to TD

12:

Definition 2.8 (DFL type shift)
1. ↑e = 〈s, e〉

↑t = 〈s, 〈〈s, t〉, t〉〉
2. ↑〈a, b〉 = 〈↑a, ↑b〉, for a and b extensional types

So, in DFL, only types are used which are the lift ↑a of an extensional type a.

Associated with the above type shift are two operations ↑ and ↓ that mediate be-
tween the extensional DIL types and the corresponding DFL types. For any expres-
sion φ of an extensional type a in DIL, ↑φ is an expression of type ↑a, and for any
expression Φ of a DFL type ↑a, ↓Φ is an expression of type a again. The interpre-

10. Notice, however, that, as much as IL is dispensible in MG, DIL is dispensible in DMG, and so
is DFL.
11. With the present definition I deviate from Groenendijk and Stokhof, who use functional types
derived from the types e and 〈〈s, t〉, t〉, and, furthermore, employ derived types 〈s, a〉. The reason
for this deviation is that DFL, thus, can be conceived of as an extensional dynamic logic.
12. An extensional type is a type in which the type s does not occur. The set of extensional types
is defined as the set of types of extensional type theory, i.e., as the smallest set which contains the
types e and t and such that if a and b are in that set, then also is 〈a, b〉.
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tation of the type shifting operations is specified in terms of DIL expressions in the
following simultaneous recursive definition:

Definition 2.9 (DFL type shift (interpretation))
1. ↑φe = ∧φ

↓Φ↑e = ∨Φ
2. ↑φt = ∧λp (φ ∧ ∨p) (p not free in φ)

↓Φ↑t = ∨Φ(∧true)
3. ↑φ〈a,b〉 = λx↑a ↑(φ(↓x)) (x not free in φ)

↓Φ↑〈a,b〉 = λxa ↓(Φ(↑x)) (x not free in Φ)
where p is a variable of type 〈s, t〉, and true is a constant of type t that is assigned
the value 1 (in every state s).

According to this definition, the lift of an expression of type e denotes the intension
of that expression. So, for any discourse marker d, [[↑d]]M = F (d). The lowering of
an expression of type ↑t gives the expression’s extension in the state of evaluation.

The most important clause in the above definition is the second one, which
sends a DIL formula, an expression of type t, to DFL formulas, expressions of the
type of context change potentials. The lift of a DIL formula φ denotes a property of
propositions, viz., the property of being true in conjunction with φ. The application
of the extension of ↑φ to the intension of a DIL formula ψ is equivalent with the
conjunction of φ with ψ:

(∨↑φ)(∧ψ) ⇔ (∨∧λp (φ ∧ ∨p))(∧ψ) ⇔ φ ∧ ψ

Clearly, the lift of a DIL formula φ denotes a vacuous context change potential. This
function holds of a state s and a proposition p iff φ is true in s and p holds of s.
So, this function involves no change in the context of interpretation of propositional
argument expressions. The operator ↑ merely serves to lift static expressions to the
level of types at which DMG context change obtains.

The lowering of an expression Φ of type ↑t consists in the application of its
extension to the necessarily true proposition. Since the kind of context change po-
tentials we will be dealing with all express the property of propositions of being true
in a state s′ satisfying certain further conditions, the closure ↓Φ of Φ simply asserts
that ∧true is true in such a state s′ and this comes down to the statement that a
state s′ of that kind exists. The closure thus gives us Φ’s truth conditions, and it
robs Φ of any dynamic impact it may have. More generally, if Φ is of any type ↑a,
then ↓Φ specifies the static content of Φ, and if Φ is of type ↑t and ↓Φ is true (with
respect to M , s, and g), then also Φ is said to be true (with respect to M , s and g).

An easy induction proves the following fact:

Fact 2.5 (↓↑-elimination)
• ↓↑φ⇔ φ
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Compare this with ∨∧-elimination. What does not hold in general is that ↑↓Φ ⇔ Φ,
as similarly ∧∨α ⇔ α does not hold in general. The lift ↑↓Φ of the lowering of Φ
deprives Φ of its context change potential, and it will therefore be referred to as the
static closure of Φ.

DFL: syntax and semantics

I now turn to the language of DFL, which is specified by the following definition13:

Definition 2.10 (DFL syntax)
For any extensional type a, the set WED,↑a of well-formed DFL-expressions of type
↑a is the smallest set such that for all extensional types a and b:

1. If α ∈ CONIL
a then ↑α ∈ WED,↑a

If α ∈ VARIL
↑a then α ∈ WED,↑a, where a is an extensional type

2. If β ∈ WED,↑〈a,b〉 and α ∈ WED,↑a then β(α) ∈ WED,↑b

If β ∈ WED,↑b and x ∈ VAR↑a then λx β ∈ WED,↑〈a,b〉

3. If α, β ∈ WED,↑a then (α =̃ β) ∈ WED,↑t

4. If Φ ∈ WED,↑t then ∼Φ ∈ WED,↑t

If Φ ∈ WED,↑t and d ∈ DM then Edβ ∈ WED,↑t (similarly for d ∈ VAR↑a)
If Φ,Ψ ∈ WED,↑t then [Φ ; Ψ] ∈ WED,↑t

In what follows, AdΦ, [Φ ⇒ Ψ] and [Φ or Ψ] abbreviate ∼Ed∼Φ, ∼[Φ ; ∼Ψ] and
[∼Φ ⇒ Ψ], respectively.)

The DFL language is built up from the lift of extensional DIL constants and from
variables of the DFL types by means of application, abstraction, and dynamic coun-
terparts of identity, negation, existential quantification and conjunction. So, virtually
this is a language of an extensional logic. The difference resides in the association of
the expressions of this language with raised types, and in the possibility to quantify
over the values of discourse markers.

As was already said above, the semantics of the DFL language is stated in terms of
the language of DIL.14 Variables, application structures and λ-terms are interpreted
as in DIL, and the interpretation of lifted DIL constants is specified in terms of DIL
expressions in definition 2.9. The interpretation of the DFL counterparts of identity,
negation, existential quantification and conjunction is defined as follows (again, p is
a variable of type 〈s, t〉):

Definition 2.11 (DFL semantics)
1. α =̃ β = ↑(↓α = ↓β)

13. As was indicated above, in Groenendijk and Stokhof’s presentation of DMG the operators ∼,
Ed and ; merely serve to abbreviate DIL expressions.
14. In the sequel I will also refer to the interpretation of DFL expressions by means of DIL terms.
This is not a strictly correct way to go about, but this way of talking about things simplifies matters
greatly, and it is not likely to give rise to confusion.
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2. ∼Φ = ↑¬↓Φ
3. EdΦ = ∧λp ∃d∨Φ(p) (p not free in Φ)
4. [Φ ; Ψ] = ∧λp (∨Φ(∧(∨Ψ(p)))) (p not free in Φ or Ψ)

In DFL =̃ does not denote strict identity. The truth of a DFL identity statement in
terms of =̃ merely requires identity of the static contents of the identified expressions,
not of their context change potential. The reason is that DMG (or DFL, for that
matter) is not concerned with statements about dynamic denotations, but with an
account of the realization of context change potentials in discourse. An identity
statement in DFL therefore states static identity, a statement which by means of
the lifting operation ↑ is transposed to the level of context change potentials.

Something similar goes for negation. The DFL negation of a DFL formula
Φ involves the classical negation ¬↓Φ of the truth-conditional content of Φ. This
classical negation is lifted to the level of context change potentials by means of ↑,
in order for ∼Φ to denote an object of the type of context change potentials again.
Notice that the DFL negation of Φ, thus, deprives Φ of any dynamic impact it
may have. This seems to accord with the observation that, in general, anaphoric
pronouns can not refer back to indefinite noun phrases (translated by means of
dynamic existential quantifiers), when the noun phrases stand in the scope of a
negation. For instance, consider the following examples:

?It is not the case that a man walks in the park. He whistles.
?No man walks in the park. He whistles.

It is hardly possible to interpret the pronouns in the second sentences of these two
examples as being anaphorically related to the noun phrases a man and no man
in the first sentences of the examples. (However, in chapter 2 we will come across
some examples in which indefinites in the scope of a negation remain available for
subsequent anaphoric reference.)

With the existential quantifier the dynamics comes in. A dynamic existentially
quantified formula involves abstraction over a propositional variable the value of
which can be evaluated in a context different from the context of evaluation. For
instance, consider the DFL formula Ed↑man(↑d). The embedded formula ↑man(↑d),
which is equivalent with ↑(man(d)) ⇔ ∧λp (man(d) ∧ ∨p), denotes the (vacuous)
context change potential which holds of a state s and a proposition p iff the value of
d in s is a man and p holds of s. By means of the dynamic existential quantifier, this
function can be turned into a genuine context change potential. The interpretation
of the formula Ed↑man(↑d) is defined to be ∧λp ∃d(∨↑man(↑d)(p)) which is equivalent
with ∧λp ∃d(man(d)∧∨p). This expression denotes the context change potential which
holds of a state s and a proposition p iff p holds of a state s′ which (at most) differs
from s with respect to the value of d and such that the value d in s′ is a man.

The dynamic conjunction of Φ and Ψ involves the intension of the intensional
composition of the extensions of the denoted context change potentials. So, consider
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the conjunction [Ed↑man(↑d) ; ↑whistle(↑d)] of the existentially quantified formula
above with the atomic formula ↑whistle(↑d) (which equals ↑(whistle(d))). The
interpretation of this DFL conjunction is given by the following DIL formula, and
subsequent reductions of it:

∧λp ∨Ed↑(man(d))(∧(∨↑(whistle(d))(p)))
∧λp ∨Ed↑(man(d))(∧(∨∧λp (whistle(d) ∧ ∨p)(p)))
∧λp ∨Ed↑(man(d))(∧(whistle(d) ∧ ∨p))
∧λp (∨∧λp ∃d(man(d) ∧ ∨p))(∧(whistle(d) ∧ ∨p))
∧λp ∃d(man(d) ∧ whistle(d) ∧ ∨p)

This formula denotes the context change potential which holds of a state s and a
proposition p iff p holds of a state s′ which (at most) differs from s with respect to
the value of d and such that the value d in s′ is a man who whistles.

DFL: semantic properties

The notion of dynamic conjunction defined above is associative. Furthermore, the
dynamic existential quantifier ‘associates’ with a conjunction sign to the right of it:

Fact 2.6 (Associativity (1))
• [[Φ ; Ψ] ; Υ] ⇔ [Φ ; [Ψ ; Υ]]
• [EdΦ ; Ψ] ⇔ Ed[Φ ; Ψ]

The fact that the existential quantifier in DFL associates with conjunction lies at the
heart of DMG’s treatment of intersentential anaphora. For instance (as we will see
in more detail below) the sequence of sentences A man walks. He talks is associated
with the following (reduced) translation:

[Ed[↑(man(d)) ; ↑(walk(d))] ; ↑(whistles(d))]

Using fact 2.6, this DFL formula is equivalent with the following formula:

Ed[↑(man(d)) ; [↑(walk(d)) ; ↑(whistles(d))]]

In other words, the sequence turns out equivalent with the sentence There is a man
who walks and whistles.

Another typically dynamic fact is that dynamic conjunction is not commutative:

Fact 2.7 (Non-commutativity)
• [Φ ; Ψ] 6⇔ [Ψ ; Φ]

For instance, the DMG translation [Ed[↑(man(d)) ; ↑(walk(d))] ; ↑(whistles(d))]
of a sequence A man walks. He whistles is not equivalent with the translation
[↑(whistles(d)) ; Ed[↑(man(d)) ; ↑(walk(d))]] of the sequence He whistles. A man
walks. The reason may be clear. In the first sequence the pronoun he is bound by
the indefinite noun phrase a man, whereas in the second it is not.
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By the definition of Ad and ⇒, and employing fact 2.6, the following facts are easily
proved:

Fact 2.8 (Associativity (2))
• [[Φ ; Ψ] ⇒ Υ] ⇔ [Φ ⇒ [Ψ ⇒ Υ]]
• [EdΦ ⇒ Ψ] ⇔ Ad[Φ ⇒ Ψ]

This fact shows that the DFL notion of implication is, what is adequately called,
internally dynamic. An existential quantifier in the antecedent of an implication may
bind discourse markers in the consequent, this, with universal force. Thus, DMG
is able to account for donkey sentences of the conditional variety. For instance,
the sentence If a farmer owns a donkey, he beats it has the following (reduced)
translation in DMG:

[Ed[↑(farm(d)) ; Ed′[↑(donk(d′)) ; ↑(own(d)(d′))]] ⇒ ↑(beat(d)(d′))]

Employing fact 2.8, this formula can be seen to be equivalent with the following
formula:

Ad[↑(farm(d)) ⇒ Ad′[↑(donk(d′)) ⇒ [↑(own(d)(d′)) ⇒ ↑(beat(d)(d′))]]]

This formula is true iff every farmer beats every donkey he owns. In fact, these are
the truth conditions associated with the donkey sentence within the framework of
DRT.

Implication in DFL, although internally dynamic, is externally static, as is DFL’s
universal quantifier. This is a consequence of the fact that [Φ ⇒ Ψ] and AdΦ are
defined as ∼[Φ ;∼Ψ] and ∼Ed∼Φ, respectively, and the fact that negation is static.
For this reason, indefinite noun phrases which figure in a conditional sentence or
which occur in a sentence in the scope of a universal quantifier are unable to bind
pronouns in subsequent sentences. Again, see chapter 2 for examples for which one
does need (externally) dynamic notions of implication and universal quantification.
Notice that the DFL disjunction [Φ or Ψ], which is defined as [∼Φ ⇒ Ψ], is both
internally and externally static, so no noun phrases in Φ or Ψ are available for
subsequent anaphoric coreference, nor can pronouns in Ψ be anaphorically related
to noun phrases in Φ.

The static nature of negation also blocks some standard equivalences. For
instance, EdΦ and ∼Ad∼Φ are not equivalent, neither are [Φ ; Ψ] and ∼[Φ ⇒ ∼Ψ].
However, as is to be expected, these formulas do have the same truth-conditional
content, i.e., ↓Ed∼Φ ⇔ ↓∼AdΦ and ↓[Φ ; Ψ] ⇔ ↓∼[Φ ⇒ ∼Ψ]. So, although the
formulas have different dynamic properties, as far as truth conditions are concerned
they are related in the usual way.

All DFL formulas denote properties of propositions, which, equivalently, can be con-
ceived of as functions from states to sets of sets of states. Adopting the terminology
of the theory of generalized quantifiers they denote functions from states to general-
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ized quantifiers over states. An important property of DFL is that the extensions of
all of its sentences (formulas without free variables) are so-called upward monotonic
quantifiers over states. A quantifier is called upward monotonic if it contains all
supersets of any set it contains:

Q is upward monotonic iff ∀P,Q if P ⊆ Q and P ∈ Q then Q ∈ Q

For any DFL sentence Φ, the extension of Φ is always upward monotonic. So, if
[[p]] ⊆ [[q]], that is, if ∀s′ if [[p]](s′) = 1 then [[q]](s′) = 1, then if [[∨Φ]]([[p]]) = 1 then
[[∨Φ]]([[q]]) = 1.

Since the extension of any DFL formula Φ is upward monotonic, sentence
sequencing always involves a strengthening of truth-conditions:

Fact 2.9
• ↓[Φ ; Ψ] entails ↓Φ if Φ is upward monotonic

The upward monotonicity of DFL accords with the intuition that the processing of
subsequent sentences in a discourse constitutes an ongoing process of information
update. This property will turn out to be of great importance when we turn to the
issue of dynamic negation in chapter 2.

DFL reductions

Before we turn to the DMG fragment of natural language, it is useful to state some
reduction facts. In the first place, λ-conversion is allowed under the conditions for
λ-conversion in an extensional logic:

Fact 2.10 (λ-conversion)
• (λx β)(α) ⇔ [α/x]β if all free variables in α are free for x in β

For λ-conversion to be allowed, it need not be separately required that α is inten-
sionally closed, since, as is easily seen, all DFL expressions are intensionally closed.

The following equivalences enable us to replace dynamic operators by their static
counterparts when we determine the static contents of (dynamically interpreted)
DFL expressions by means of ↓:

Fact 2.11 (Arrow elimination)
• ↓↑φ ⇔ φ
• (↑φ)(Ψ) ⇔ ↑(φ(↓Ψ))
• ↓(α =̃ β) ⇔ (↓α = ↓β)

↓∼Φ ⇔ ¬↓Φ
↓EdΦ ⇔ ∃d↓Φ
↓AdΦ ⇔ ∀d↓Φ

• ↓[↑φ ; Ψ] ⇔ φ ∧ ↓Ψ
↓[↑φ⇒ Ψ] ⇔ φ→ ↓Ψ
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↓[↑φ or Ψ] ⇔ φ ∨ ↓Ψ

The equivalences in fact 2.11 can be used to transform the closure of most dynamic
DMG formulas into DIL formulas. In many cases we may push the closure operator
↓ over DMG operators, which are replaced by their static counterparts then. The
closure operator collapses when it confronts a lifted atomic formula. (Notice that the
reduction rules in 2.11 do not enable us to reduce all DMG expressions. In section
3 of chapter 2 a complete reduction system is given.)

2.3 A DMG fragment of natural language

We may now turn to the construction of a dynamic Montague style fragment of
natural language. Compared to the original PTQ model (Montague [1973]) it is a
rather poor fragment, since the aim is only to show how dynamic interpetation fits
in.15 Furthermore, the following things change. First, of all (constituent-)expressions
the type is raised in accordance with the dynamic type shift. Second, the constants
are replaced by their raised counterparts and sentential operators by their dynamic
counterparts. Finally, in the translation of pronouns and quantifying noun phrases I
use indexed discourse markers. Indices are used to indicate anaphoric relationships
among constituents.

DMG syntax

The DMG syntax of a fragment of natural language is, basically, a categorial syn-
tax with has an additional set of syntactic operations. The syntax consists of the
following three components:

1. a set of categories, which is constructed from a limited set of basic categories
2. a specification of the basic expressions of each category
3. a set of construction rules by means of which compound expressions can be

formed

The set of categories is defined as follows:

Definition 2.12 (DMG categories)
The set of categories CAT is the smallest set such that:

1. S,CN, IV ∈ CAT
2. If B,A ∈ CAT then B/A ∈ CAT

15. The PTQ model deals with many interesting features of English, such as its apparatus of
quantification, intensional verbs and intensional prepositions, the function of the definite article, the
nature of ambiguity, and the role of adjectives and adverbs. Therse are disreagrded here. However,
some of these features will come up for discussion in due course. In chapter 3, for instance, we
will find an (alternative) treatment of quantifier scope due to Hendriks [1988, 1992], in chapter 4
adverbs and tense will be addressed from the dynamic perspective on meaning, and in chapter 5
intensionality is addressed from an epistemic perspective.
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In this definition S stands for the category of sentences, CN for that of common
noun phrases, and IV for that of intransitive verb phrases. Derived categories are
of the form B/A, where A and B can be any category. The category B/A is the
category of expressions which together with an expression of category A to their
right make up a (compound) expression of category B (modulo some possible syn-
tactic modifications which are neglected here). Some frequently employed derived
categories are abbreviated as follows: the category of noun phrases NP = S/IV, the
category of determiners Det = NP/CN, and the category of transitive verb phrases
TV = IV/NP.

Some categories A are associated with a non-empty set of basic expressions BA. The
following expressions will be employed:

Definition 2.13 (DMG basic expressions)
• BCN = {man, woman, donkey, house, . . . }
• BIV = {walk, whistle, . . . }
• BTV = {own, love, . . . }
• BDet = {ai, everyj , . . . }
• BNP = {Johni, Maryj , . . . , hei, hej, . . . }

Other expressions can be easily added, as long as they can, and are, treated in the
same way as the above expressions are treated below.

Compound expressions can be formed by means of the following construction rules:16

Definition 2.14 (DMG construction rules)
The set PA of compound expressions of category A, for any category A ∈ CAT, is
the smallest set such that for all categories A,B ∈ CAT:

• BA ⊆ PA

• if α is an expression of category A and β is an expression of category B/A,
then [β α] is an expression of category B (functional application)

• if φ is an expression of category S, then [Not φ] is an expression of category
S (sentence negation)

• if φ and ψ are expressions of category S, then [φ and ψ] is an expression of
category S (conjunction)

• if φ and ψ are expressions of category S, then [If φ, then ψ] is an expression
of category S (conditionals)

• if α is an expression of category CN and β is an expression of category IV ,
then [α who β] is an expression of category CN (relative clause formation)

16. With this definition all syntactic clauses having to do with gender, case, tense, and the like are
neglected. Thus, all Montague’s rules of application can be phrased in one rule.
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Apart from the rule of application, there are rules by means of which we can
construct negated sentences, conjunctions, conditionals and relative clauses.17 The
brackets enclosing compound expressions will be omitted whenever irrelevant (which
is most of the time).

DMG translation

I now turn to the semantics of the DMG fragment. As has already been said, the
interpretation of expressions of the fragment is given by their translation into ex-
pressions of the language of DFL. The semantics is spelled out in analogy with the
set-up of the syntax. I will define:

1. a function f mapping DMG categories to DFL types
2. the translation (of type f(A)) of the basic expressions of category A
3. the translation of compound expressions in terms of the translations of their

constituent expressions

The DMG category to type assignment differs from that in the PTQ model:

Definition 2.15 (DMG category to type assignment)
1. f(S) = ↑t
f(CN) = ↑〈e, t〉
f(IV) = ↑〈e, t〉

2. f(B/A) = 〈f(A), f(B)〉

The basic difference is that the type associated with the category of sentences is the
type of context change potentials.

I now give some examples of the translations of the basic expressions of the DMG
fragment above. The main difference with the PTQ model resides in the types of
the variables used, and in the fact that instead of IL operators, corresponding DFL
operators are used. In the following definition x and y are variables of type ↑e, P
and Q variables of type ↑〈e, t〉, and T of type ↑〈〈e, t〉, t〉; j is a constant of type e, man
and walk are constants of type 〈e, t〉, and love of type 〈e, 〈e, t〉〉; the di are discourse
markers:

Definition 2.16 (DMG basic expressions)
• manCN; ↑man
• walkIV; ↑walk
• ownTV; λTλx T (λy ↑own(y)(x))
• ai ; λPλQ Edi[P (↑di) ;Q(↑di)]
• everyj ; λPλQ Adi[P (↑di) ⇒ Q(↑di)]
• hei ; λQ Q(↑di)

17. It may be noticed that the rule of relative clause formation does not generate relative clauses
like man whom Mary loves. This is not a principled limitation, but one for simplicity’s sake only.



40 Chapter 1. Introduction

• Johni ; λQ Edi[(↑j =̃ ↑di) ;Q(↑di)]

I now turn to the definition of the translation of compound constructions. The
translation of compound expressions is completely determined by the construction
rules by means of which the compounds are constructed and the translations of
the constituent expressions from which they are formed. The translations are also
like the PTQ counterparts but for the use of TD-types and the occurrence of DFL
operators. In the following definition I have labelled the expressions with subscripts
indicating the category to which they belong. Furthermore, for any expression α I
use α′ to indicate the translation of α.

Definition 2.17 (DMG construction rules)
1. Functional application: (βB/A αA)B ; β′(α′)

2. Sentence negation: (Not σS)S ; ∼σ′

3. Sequencing: (σS . τS)S ; [σ′ ; τ ′]
4. Conditionals: (If σS , then τS)S ; [σ′ ⇒ τ ′]
5. Relative clauses: (αCN who βIV )CN ; λx [α′(x) ; β′(x)]

Interpretation in dynamic Montague grammar is illustrated by the DMG treatment
of three examples. I review three examples discussed in Groenendijk and Stokhof
[1990a]. As is said above, indices indicate intended anaphoric relationships.

Ai man walks. Hei talks.

This is a slightly simplified version of our earlier example. By means of functional
application we get the following translation of the first sentence:

(λPλQ Edi[P (↑di) ;Q(↑di)])(↑man)(↑walk) ⇔ (fact 2.10)
Edi[↑man(↑di) ; ↑walk(↑di)] ⇔ (fact 2.11)
Edi[↑(man(di)) ; ↑(walk(di))]

The second sentence is associated with the following translation:

(λQ Q(↑di))(↑talk) ⇔ (fact 2.10)
↑talk(↑di) ⇔ (fact 2.11)
↑(talk(di))

Employing the above translations, the sequence of the two sentences is translated
as follows:

[Edi[↑(man(di)) ; ↑(walk(di))] ; ↑(talk(di))]

This formula has the following truth conditions:

↓[Edi[↑(man(di)) ; ↑(walk(di))] ; ↑(talk(di))] ⇔ (fact 2.6)
↓Edi[↑(man(di)) ; [↑(walk(di)) ; ↑(talk(di))]] ⇔ (fact 2.11)
∃di(man(di) ∧ walk(di) ∧ talk(di)) ⇔ (fact 2.4)
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∃x(man(x) ∧ walk(x) ∧ talk(x))

Here we see that the pronoun hei is bound by the quantifying noun phrase ai man,
even though its translation does not occur in the immediate syntactic scope of the
translation of the noun phrase.

If ai man walks, hei talks

The second example is an implication built up from the two sentences the conjunc-
tion of which constitute the first example. Using the translation rule for conditional
sentences, we get the following translation of this example:

Edi[↑(man(di)) ; ↑(walk(di))] ⇒ ↑(talk(di))

The truth-conditions of this formula can be computed as follows:

↓[Edi[↑(man(di)) ; ↑(walk(di))] ⇒ ↑(talk(di))] ⇔ (fact 2.8)
↓Adi[[↑(man(di)) ; ↑(walk(di))] ⇒ ↑(talk(di))] ⇔ (fact 2.8)
↓Adi[↑(man(di)) ⇒ [↑(walk(di)) ⇒ ↑(talk(di))]] ⇔ (fact 2.11)
∀di(man(di) → (walk(di) → talk(di))) ⇔ (fact 2.4)
∀x(man(x) → (walk(x) → talk(x)))

By combining the two sentential clauses in a conditional sentence, the existential
quantifier in the antecedent turns out to bind the pronoun in the consequent, al-
though the two clauses are assigned a meaning of their own. Notice that the exis-
tential quantifier in this example has gained universal force.

Everyi farmer who owns aj donkey beats itj

Although the previous example has already shown how donkey-type anaphora are
dealt with in DMG, I shall also show how the classical donkey sentence Every farmer
who owns a donkey, beats it is derived. By means of application and λ-conversion,
the following translation of the intransitive verb phrase owns aj donkey results:

(λTλx T (λy↑own(y)(x)))(λPλQ Edj [P (↑dj) ;Q(↑dj)](↑donk)) ⇔
(λTλx T (λy↑own(y)(x)))(λQ Edj [↑donk(↑dj) ;Q(↑dj)]) ⇔
λx (λQ Edj [↑donk(↑dj) ;Q(↑dj)])(λy↑own(y)(x)) ⇔
λx Edj [↑donk(↑dj) ; ↑own(↑dj)(x)]

The compound common noun farmer who owns aj donkey has the following (re-
duced) translation:

λx [↑farm(x) ; Edj[↑donk(↑dj) ; ↑own(↑dj)(x)]]

The intransitive verb phrase beats itj gets the following translation, which can be
reduced again by means of λ-conversion:

(λTλx T (λy↑beat(y)(x)))(λQ Q(↑dj)) ⇔
λx (λQ Q(↑dj))(λy↑beat(y)(x)) ⇔
λx ↑beat(↑dj)(x)
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The determiner every i combines, first, with the common noun phrase farmer who
owns aj donkey , and, next, with the intransitive verb phrase beats itj . Two appli-
cations and some λ-conversions then give us the following translation of the whole
sentence:

Adi[[↑farm(↑di) ; Edj [↑donk(↑dj) ; ↑own(↑dj)(↑di)]] ⇒ ↑beat(↑dj)(↑di)]

The sentence is assigned the following truth-conditions:

↓Adi[[↑farm(↑di) ; Edj [↑donk(↑dj) ; ↑own(↑dj)(↑di)]] ⇒ ↑beat(↑dj)(↑di)] ⇔
↓Adi[[↑(farm(di)) ; Edj [↑(donk(dj)) ; ↑(own(dj)(di))]] ⇒ ↑(beat(dj)(di))] ⇔
↓Adi[↑(farm(di)) ⇒ [Edj [↑(donk(dj)) ; ↑(own(dj)(di))] ⇒ ↑(beat(dj)(di))]] ⇔
↓Adi[↑(farm(di)) ⇒ Adj[[↑(donk(dj)) ; ↑(own(dj)(di))] ⇒ ↑(beat(dj)(di))]] ⇔
↓Adi[↑(farm(di)) ⇒ Adj[↑(donk(dj)) ⇒ [↑(own(dj)(di)) ⇒ ↑(beat(dj)(di))]]]
⇔ ∀di(farm(di) → ∀di(donk(dj) → (own(dj)(di) → beat(dj)(di))))
⇔ ∀x(farm(x) → ∀y(donk(y) → (own(y)(x) → beat(y)(x))))

(By means of the facts 2.11, 2.8 (three times), 2.11 and 2.4, respectively.) The
example is in fact assigned the same truth conditions as in DRT but in a fully com-
positional fashion. Notice that the indefinite noun phrase a donkey in the restriction
of the universal quantifier every turns out to bind the pronoun it in the quantifier’s
nuclear scope, this with universal force.

The last example concludes the exposition of the DMG fragment. We have seen
that the phenomenon of cross-sentential anaphora as we find in donkey sentences
can be treated in DMG in an adequate and completely compositional way. In fact,
what distinguishes DMG from MG is, basically, the associativity of the dynamic
existential quantifier and the non-commutativity of conjunction. This means that
DMG is indeed a semantic theory that unifies important insights from MG and
DRT.



Chapter 2

Dynamic negation

In [1990a] Groenendijk and Stokhof reformulate basic aspects of discourse represen-
tation theory within dynamic Montague grammar and give a fully compositional
treatment of anaphoric relationships holding between pronouns and indefinite noun
phrases. Characteristic feature of the logic they use is that two of its three primitive
operators are dynamic. The existential quantifier is dynamic in the sense that it may
bind variables occurring beyond its syntactic scope and conjunction is dynamic since
it is associative (as is usual) but not commutative (which is unusual). On the other
hand, the third primitive operator, negation, is ‘static’. The negation of a formula
φ closes off the dynamic potential of quantifiers in φ and this seems to be the usual
effect of natural language negation.

Still, there is a class of examples that involve anaphoric relationships between
quantifying noun phrases within the scope of a negation and pronouns occurring
outside of it. Therefore, the question naturally arises what a system would or should
be like in which all three operators are dynamic.

At the end of [1990a] Groenendijk and Stokhof propose an alternative notion of
dynamic negation which serves to account for (some of) the anaphoric relationships
which obtain across the scope of a negation. In this chapter I discuss Groenendijk
and Stokhof’s proposal and argue that their notion of dynamic negation is not
completely satisfactory. Next I present an alternative system of dynamic Montague
grammar with a notion of dynamic negation and I show that the resulting system
of dynamic interpretation accounts for the anaphoric relationships studied.

I will proceed in the following way. First, in section 1.1, I discuss Groenendijk and
Stokhof’s motivation for introducing dynamic negation and the proposal they actu-
ally make. Next, in the sections 1.2 and 1.3, I discuss a fundamental problem with
the dynamic negation they propose and I formulate three plausible requirements
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that a notion of dynamic negation must satisfy. In section 2.1 I give an alternative
version of DMG, referred to as DMG(2), and extend it in section 2.2 with a notion of
dynamic negation that satisfies the requirements formulated in section 1.3. I study
the logical behaviour of this notion of dynamic negation in some detail and show
how it can be applied successfully to some natural language examples. Section 2.3,
finally, gives an overview of the distinctive features of DMG, DMG with dynamic
negation, and DMG(2) with dynamic negation.

1 Dynamic negation in DMG

In the last section of [1990a] Groenendijk and Stokhof point out that the framework
of DMG allows for a straightforward extension which enables them to cover a special
class of anaphoric dependencies. On the face of it, these dependencies involve a kind
of dynamic implication, dynamic universal quantification, or dynamic disjunction,
and in DMG a quite acceptable definition of these notions can be given in terms of
a notion of dynamic negation. The mere possibility of such an extension of DMG
serves to indicate, they claim, “. . . that, even restricting ourselves to the first-order
level of quantification and anaphoric reference, DMG is potentially more than just
the sum of MG and DRT” ([1990a, p. 33]). So much will remain beyond doubt.

However, I will argue in this section that a simple extension of DMG with
dynamic negation does not provide a principled account of some examples which
do not seem to be essentially different from the examples that Groenendijk and
Stokhof account for. For a proper analysis of all the examples something more is
needed, viz., a slight, but structural, modification of DMG. In section 2 I present
this modification of DMG, and give the required definition of dynamic negation.
Here I first consider the special examples that DMG can handle and the way in
which DMG accounts for them.

1.1 Extended dynamics in DMG

Groenendijk and Stokhof discuss the following examples:

(1) It is not the case that John does not own a car. It is red and it is parked in
front of the house.

(2) John owns a car. It is red and it is parked in front of the house.
(3) If a client comes in, you treat him politely. You offer him a cup of coffee.
(4) Every player chooses a pawn. He puts it on square one.
(5) Either there is no bathroom here, or it is in a funny place. In any case, it is

not on the ground floor.
(6) If there is a bathroom here, it is in a funny place. In any case, it is not on the

ground floor.
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(Examples like these date back to the seventies, and have been discussed by Gareth
Evans, Lauri Karttunen, Barbara Partee, Craige Roberts, Peter Sells, to name a
few.)

In example 1 we find a double negation of the sentence John owns a car. As
appears from the continuation It is red etc., the double negation not only preserves
the truth-conditional content of the sentence John owns a car, but also its context
change potential. The pronoun it seems to be bound by the quantifying noun phrase
a car, even though this noun phrase is in the scope of the double negation. So,
disregarding non-truth-conditional effects having to do with topic/focus, etc., the
most likely reading of 1 is equivalent to that of 2, without double negation. But,
as we saw in the introduction, DMG’s negation does not license the law of double
negation. The double negation of a formula Φ in DMG has the truth-conditions of
Φ, but not its context change potential.

Example 3 exhibits a dynamic implication. In this example, the quantifying
noun phrase a client in the antecedent of the implication not only binds a pronoun in
the consequent, with universal force, but also a pronoun in the sentence that follows
the implication, again with universal force. However, the DMG notion of implication
licenses the first kind of binding only. The static character of the negation in terms
of which the implication is defined blocks possible anaphoric relationships between
noun phrases inside an implication and pronouns outside of it.

Something similar goes for example 4. Since the universal quantifier is defined
in terms of the negation of the existential quantifier, it is (externally) static and the
noun phrase every player therefore has no dynamic potential in DMG. Furthermore,
for the very same reason the noun phrase every player closes off the dynamic po-
tential of the indefinite a pawn in its scope. Still, the pronouns he and it appear to
be bound by these two noun phrases.

In example 5 the two occurrences of the pronoun it are anaphorically related
to the noun phrase no bathroom, and these are unaccounted for as yet. In the first
place, the noun phrase no bathroom itself is static since it is the negation of the
noun phrase a bathroom. In the second place, even if the noun phrase no bathroom
had binding potential, the disjunction would block both anaphoric relationships.
Since the disjunction is defined in terms of the negation of both disjuncts, it blocks
anaphoric relationships between noun phrases in the first disjunct and pronouns
in the second, and between noun phrases figuring in any of the disjuncts and pro-
nouns in sentences following the disjunction. So, both anaphors in example 5 remain
unexplained.

The last example, 6, is intuitively equivalent to example 5 and also classically
equivalent according to the law: (φ → ψ) ⇔ (¬φ ∨ ψ). In DMG this example
is not equivalent to example 5. The difference is that in DMG indefinites in the
antecedent of a conditional sentence may bind pronouns in the consequent, whereas
a disjunction allows no internal bindings. Therefore DMG accounts for the first
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anaphoric relationship in 6, the one between the indefinite a bathroom and the
pronoun in the consequent of the first sentence. However, as in example 3, the
pronoun in the second sentence of 6 remains unaccounted for.

The observations concerning the examples 1–6 suggest that it is the notion of nega-
tion that is in need of revision. In the first place, if, as examples 1 and 2 suggest,
the double negation of a formula can be completely equivalent to the formula itself,
then the mere negation of the formula must retain the formula’s context change po-
tential, in some way or other, in order for the double negation of a formula to have
the same context change potential as the original formula. In the second place, hav-
ing a notion of dynamic negation automatically entails having dynamic implication,
disjunction and implication as well, that is, as long as these notions remain defined
in the usual way in terms of negation, conjunction and existential quantification. In
other words, with a notion of dynamic negation we might account for the anaphoric
dependencies in examples 3–6, although it remains to be seen, of course, whether
the examples are assigned proper truth-conditions in that case. In the third place,
if we have a notion of dynamic negation that obeys the law of double negation, the
(classical) equivalence of [Φ ⇒ Ψ] and [∼Φ or Ψ] is restored again, which seems to
be required in view of examples 5 and 6.1

Dynamic negation

Groenendijk and Stokhof propose an alternative notion of negation that meets the
desiderata we found so far. Interestingly, all that seems required is the standard
definition of negation as complementation:

Definition 1.1 (Dynamic negation)
• ∼Φ = ∧λp ¬∨Φ(p)

The old definition of static negation can be obtained from the dynamic one, by
taking the static closure of the dynamic negation: ↑↓∼Φ ⇔ ↑¬↓Φ = ∼sΦ, where ∼s

indicates static negation.
Being complementation, dynamic negation of course obeys the law of double

negation:

Fact 1.1 (Double negation)
• ∼∼Φ ⇔ Φ

From this fact it immediately follows that the notion of dynamic negation accounts
for the equivalence of the examples 1 and 2. Replacing DMG’s static notion of
negation by this dynamic one, example 1 is assigned in a completely compositional
way the truth-conditions that John does have a car, which is red and parked in front
of the house.

1. If Φ equals ∼∼Φ, [Φ ⇒ Ψ] equals [∼∼Φ ⇒ Ψ] which, by definition, equals [∼Φ or Ψ].
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Since the three primitive operations of negation, existential quantification and
conjunction are now dynamic, the derived operations of implication, disjunction
and universal quantification turn out (internally and externally) dynamic as well.
This has the following consequences. In the first place we have recovered the full
interdefinability of the quantifiers and of the implication and the disjunction:

Fact 1.2 (Interdefinability)
• Ed∼Φ ⇔ ∼AdΦ
• [Φ ⇒ Ψ] ⇔ [∼Φ or Ψ]

In the second place, the universal quantifier, implication, and disjunction associate
with conjunction:

Fact 1.3 (Extended associativity)
• [AdΦ ; Ψ] ⇔ Ad[Φ ; Ψ]
• [[Φ ⇒ Ψ] ; Υ] ⇔ [Φ ⇒ [Ψ ; Υ]]
• [[Φ or Ψ] ; Υ] ⇔ [Φ or [Ψ ; Υ]]

The above facts in fact express what is at issue in the examples 3–6. Since the
dynamic implication associates with conjunction, example 3 turns out to be equiv-
alent with the sentence If a client comes in, you treat him politely and offer him
coffee, and this sentence is interpreted appropriately in DMG. Likewise, given the
dynamics of the implication and of the universal quantificier, example 4 is equiv-
alent with Every player chooses a pawn which he puts on square one. Finally, the
full interdefinability of or and ⇒ makes examples 5 and 6 equivalent and by the
dynamics of the implication they get the same meaning as the sentence If there is a
bathroom here, it is in a funny place and not on the ground floor.

Some examples

I will now show, in a more detailed way, what truth-conditions are associated with
(slight simplifications of) the examples 3–5 (the treatment of 6 runs parallel to that
of 3).

If a client comes in, you pamper him. You offer him coffee

Example 3 is associated with the following translation:

[Edi[↑client(di) ; ↑come(di)] ⇒ ↑pamper(di)(y)] ; ↑offer(c)(di)(y)

This expression has the following truth-conditions:

↓[[Edi[↑client(di) ; ↑come(di)] ⇒ ↑pamper(di)(y)] ; ↑offer(c)(di)(y)] ⇔
↓[Edi[↑client(di) ; ↑come(di)] ⇒ [↑pamper(di)(y) ; ↑offer(c)(di)(y)]] ⇔
↓Adi[[↑client(di) ; ↑come(di)] ⇒ [↑pamper(di)(y) ; ↑offer(c)(di)(y)]] ⇔
↓Adi[↑client(di) ⇒ [↑come(di) ⇒ [↑pamper(di)(y) ; ↑offer(c)(di)(y)]]] ⇔
∀di(client(di) → (come(di) → (pamper(di)(y) ∧ offer(c)(di)(y)))) ⇔



48 Chapter 2. Dynamic negation

∀x(client(x) → (come(x) → (pamper(x)(y) ∧ offer(c)(x)(y))))

(By means of the associativity fact 1.3 and the associativity and reduction facts 2.8
(twice), 2.11 and 2.4 from chapter 1 respectively.) In other words, 3 will be true (or
satisfied) if any client that comes in is pampered and offered coffee (by you).2

Every player chooses a pawn. He puts it on square one

Functional application and some reductions yield the following translation of 4:

Adi[↑player(di) ⇒ Edj [↑pawn(dj) ; ↑choose(dj)(di)]] ; ↑put(1)(dj)(di)

The truth-conditions can be determined in the following way:

↓[Adi[↑player(di) ⇒ Edj [↑pawn(dj) ; ↑choose(dj)(di)]] ; ↑put(1)(dj)(di)] ⇔
↓Adi[[↑player(di) ⇒ Edj [↑pawn(dj) ; ↑choose(dj)(di)]] ; ↑put(1)(dj)(di)] ⇔
↓Adi[↑player(di) ⇒ [Edj [↑pawn(dj) ; ↑choose(dj)(di)] ; ↑put(1)(dj)(di)]] ⇔
↓Adi[↑player(di) ⇒ Edj[↑pawn(dj) ; [↑choose(dj)(di) ; ↑put(1)(dj)(di)]]] ⇔
∀di(player(di) → ∃dj(pawn(dj) ∧ (choose(dj)(di) ∧ put(1)(dj)(di)))) ⇔
∀x(player(x) → ∃y(pawn(y) ∧ (choose(y)(x) ∧ put(1)(y)(x))))

(By means of the associativity fact 1.3 (twice), and the associativity and reduction
facts 2.6, 2.11 and 2.4 from chapter 1 respectively.) So, this example is true in
DMG (or, again: satisfied) if every player chooses a pawn which he puts on square
one. Observe, once more, that these truth-conditions are the result of a completely
compositional interpretation procedure.

Either there is no bathroom here or it is upstairs. It is not downstairs

The translation of 5 reduces to the following formula:

[∼Edi[↑bathroom(di) ; ↑here(di)] or ↑up(di)] ; ∼↑down(di)

This formula has the following truth-conditions:

↓[[∼Edi[↑bathroom(di) ; ↑here(di)] or ↑up(di)] ; ∼↑down(di)] ⇔
↓[∼Edi[↑bathroom(di) ; ↑here(di)] or [↑up(di) ; ∼↑down(di)]] ⇔
↓[Edi[↑bathroom(di) ; ↑here(di)] ⇒ [↑up(di) ; ∼↑down(di)]] ⇔
↓Adi[↑bathroom(di) ⇒ [↑here(di) ⇒ [↑up(di) ; ∼↑down(di)]]] ⇔
∀di(bathroom(di) → (here(di) → (up(di) ∧ ¬down(di)))) ⇔
∀x(bathroom(x) → (here(x) → (up(x) ∧ ¬down(x))))

(By means of the associativity and interdefinability facts 1.3 and 1.2 and the asso-
ciativity and reduction facts 2.8, 2.11 and 2.4 from chapter 1 respectively.) In other
words, for example 5 to be true any bathroom that happens to be in this place
should be upstairs and not downstairs.

2. Instead of the truth-conditions, it might be more appropriate to speak of the satisfiability-
conditions of this example. As Groenendijk and Stokhof remark, this example (and also example
4) is most naturally interpreted as an instructive discourse. However, we are only concerned with
the external dynamics of a conditional here, be it a declarative conditional or an imperative one.
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1.2 Constraints on the extended dynamics

So far, it seems there is only reason to be glad. By just reformulating MG in order to
capture DRT results in a compositional way, we get a system that can be extended
in a natural way to a system that accounts for phenomena which it was not designed
to account for in the first place.

The DMG analysis of the anaphoric relationships at issue is reminiscent of what
Roberts [1987, 1989], in DRT, labels the “insertion approach”. On the insertion
approach, one gets results which are comparable to the extended dynamic equiva-
lences in fact 1.3 by inserting conditions expressed by sentences in a discourse into
representations which are embedded in the discourse representation structure that
constitutes the context. For instance, on the insertive approach a DRS for example
3 can be constructed by adding the condition expressed by You offer him coffee not,
as is usual, to the context’s main DRS, but to the embedded DRS for the clause
you pamper him which is a constituent of the DRS for If a client comes in, you
pamper him. The discourse representation that results from this is identical to the
one associated with the sentence If a client comes in you pamper him and offer him
coffee.

The major difference between the insertion approach and the extended dy-
namic analysis presented above is that the last gives a purely semantic account of
the phenomena, solely in terms of dynamic negation, existential quantification and
conjunction. The gain is that the semantic analysis of extended DMG lays bare
systematic semantic relationships and that it offers a uniform explanation of the
equivalence of the examples 1 and 2 and that of the examples 5 and 6. In particu-
lar, the successful treatment of Partee’s bathroom disjunction in example 5 (Either
there is no bathroom here or it is in a funny place) speaks in favour of the semantic
approach, since it remains unclear how one can cope with this sentence by means of
insertion only.3

It must be said that neither the extended dynamics of DMG, nor the insertion
approach in DRT, enables a treatment of all possible anaphoric relationships. Groe-
nendijk and Stokhof propose the analyses as “illustrations of the possibilities inher-
ent in DMG rather than as final analyses of the phenomena in question” and they
also indicate that it is a “restricted set of facts” being discussed. Not all pronouns
can be treated along these lines, by stretching the scope of the relevant operators
so to speak. Evans [1977] presents examples that do not seem to fit into the ex-
tended dynamic approach, nor into the insertion approach, and more examples can
be found in Roberts [1989] and Heim [1990]. However, extended DMG does give a
systematic account of the possible dynamics of the quantifiers and operators of first

3. Analyses of the bathroom disjunction have been offered within the framework of DRT, but not
in terms of insertion. For instance, Roberts [1987] uses the technique of accommodation in order to
account for example 5.
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order predicate logic in a uniform fashion. I take it that this constitutes motivation
enough for a further study.

A problem with dynamic negation

Groenendijk and Stokhof’s treatment of the extended dynamics raises two more
issues. In the first place it remains to be investigated what (contextual) factors
trigger a dynamic, rather than a static interpretation of the various operators. It is
certainly beyond doubt that it is undesirable to always use the dynamic variant of,
say, the implication (cf., also, the examples motivating the static negation in section
3 of chapter 1). I will not go into this issue here, but only point out that the static
interpretations of the operators are still available. They can be derived from the
dynamic interpretations using the closure operation ↑↓.

The second issue is much more pressing. As Groenendijk and Stokhof point
out themselves, the extended dynamics of DMG is based on a peculiar property of
dynamic negation, viz., that it associates with conjunction:

Fact 1.4 (Associative negation)
• [∼Φ ; Ψ] ⇔ ∼[Φ ; Ψ]

Notice, first, that it is this property of dynamic negation that makes it possible that
pronouns in Ψ get bound by quantifiers in Φ. However, it is a problematic property.
Fact 1.4 says that the scope of the negation of a sentence extends to sentences that
follow it in the discourse. This implies that, for instance, if John walks and is not
riding a horse, then, although John does not walk is false, the conjunction John does
not walk. He is riding a horse is true, since the conjunction is equivalent with the
(true) sentence It is not true that John walks and is riding a horse. This is absurd.
So, here we face a fundamental problem with dynamic negation and the remainder
of this chapter is devoted to solving it.4

Notice that the negation of a formula Φ, all by itself, is not that problematic. In the
first place, ∼Φ is true iff Φ is false, since ↓∼Φ ⇔ ¬↓Φ. In the second place, dynamic
negation gives rise to the classical equivalences ∼∼Φ ⇔ Φ, ∼AdΦ ⇔ Ed∼Φ and
∼[Φ ⇒ Ψ] ⇔ [Φ ; ∼Ψ]. So much seems fine. Problems only show up when the
dynamics of ∼Φ is applied, that is, when a formula ∼Φ is combined with another
formula Ψ by means of a sentential connective. Since dynamic conjunction is the
only primitive sentential connective, only (sub)formulas of the form [∼Φ ; Ψ] turn
out to be problematic, cf., fact 1.4.

Still, not every conjunction with a first conjunct of the form ∼Φ is analyzed

4. It should be noted that the insertion approach faces the same problem. If it is allowed to add the
conditions expressed by a sentence to a representation that is embedded in the main representation
that constitutes the context, then it is allowed to add them to a representation preceded by the
negation sign in the main representation. The semantic result is the same as in fact 1.4.
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inappropriately. For instance, the conjunction of the negation of a negated formula
∼Φ with Ψ turns out equivalent with the conjunction of Φ itself with Ψ, and this
is what we want in view of the examples 1 and 2. Furthermore, by the definition
of ⇒, Ad and or, the DFL analysis of the examples 3–5 also involves conjunctions
of the form [∼Φ ; Ψ]. As we saw, these examples are analyzed to our satisfaction.
So, one may wonder how a notion of negation that seems so ill-behaved in view of
fact 1.4, lies at the heart of the well-behaved extended dynamic interpretations of
the universal quantifier, implication and disjunction. As Groenendijk and Stokhof
show, this fact has a relatively straightforward semantic explanation in terms of the
monotonicity properties of DFL formulas.

Negation and monotonicity

In chapter 1 it was shown that all DFL sentences denote upward monotonic quanti-
fiers over states, and this, it was argued, appears to be in correspondence with the
intuition that sentence sequencing produces information update.

With the present notion of dynamic negation things change, since it introduces
downward monotonic quantifiers in DFL. A quantifier is called downward monotonic
if it contains all subsets of any set it contains:

Q is downward monotonic iff ∀P,Q if P ⊇ Q and Q(P ) = 1 then Q(Q) = 1

A well-known fact from the theory of generalized quantifiers is that the negation of
an upward monotonic quantifier, defined as its complementation, returns a down-
ward monotonic quantifier, and vice versa. So, since dynamic negation is comple-
mentation, it turns an upward monotonic DFL formula into a downward monotonic
one.5

Since dynamic negation introduces downward monotonic formulas in DFL,
not all conjunctions are updates anymore. Consider the following fact, intimately
related to fact 1.4:

Fact 1.5 (Downdate)
• ↓Φ entails ↓[Φ ; Ψ] if Φ is downward monotonic6

This fact tells us that if Φ is downward monotonic, then its conjunction with Ψ is
less informative then Φ itself is and, hence, conjunction with Ψ does not produce
information update, but information downdate. This, of course, is at odds with
intuition, and should not be allowed.

5. Again, this applies, literally, to the extensions of DFL formulas. So, suppose a formula Φ is
upward monotonic, i.e., if [[p]] ⊆ [[q]] and [[∨Φ]]([[p]]) = 1 then [[∨Φ]]([[q]]) = 1. Then ∼Φ is downward
monotonic, i.e., if [[p]] ⊇ [[q]] and [[∨∼Φ]]([[p]]) = 1 then [[∨∼Φ]]([[q]]) = 1.
6. Suppose [[↓Φ]] = 1, i.e., [[∨Φ(∧true)]] = [[∨Φ]]([[∧true]]) = 1. Clearly, [[∧(∨Ψ(∧true))]] ⊆ [[∧true]].
So, if Φ is downward monotonic, then also [[∨Φ]]([[∧(∨Ψ(∧true))]]) = [[∨[Φ ; Ψ](∧true)]] = 1, i.e.,
[[↓[Φ ; Ψ]]] = 1.
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The reason why a monotonicity reversing notion of dynamic negation does not pro-
duce wrong results for the examples 1–6 is that the respective analyses, even though
they are cast, among others, in terms of dynamic negation, do not involve down-
dates. In the translations of the examples, each occurrence of a conjunction [Φ ; Ψ]
has an upward monotonic formula Φ as its first conjunct and, therefore, each con-
junction of such a formula Φ with a formula Ψ produces an update of Φ. So, the
suspicious fact 1.4, or the terrible fact 1.5, are completely irrelevant for the analyses
of these examples. It is expedient to substantiate this claim by inspecting two of the
examples in terms of their monotonicity properties.

First consider example 1, It is not the case that John does not own a car. The
translation of this sentence has the form ∼∼Φ, where Φ says that John owns a
car. In this example the subformula Φ is upward monotonic, and, since dynamic
negation reverses monotonicity, ∼Φ is downward monotonic. However, since ∼Φ
is downward monotonic, ∼∼Φ is upward monotonic again, and it is this upward
monotonic formula ∼∼Φ that is conjoined with the translation of the sentence It is
red etc. We see that, although the translation of this example contains a downward
monotonic subformula, viz., ∼Φ, the conjunction as a whole does not contain a
downward monotonic formula as a first conjunct, i.e., it involves no downdate.

As for a second example, consider the extended bathroom disjunction 5, Either
there is no bathroom here, or it is in a funny place. In any case, it is not on the
ground floor. This example has a translation of the following form:

[[∼EdΦ or Ψ] ; Υ]

(Where Φ says that d is a bathroom here, Ψ that d is in a funny place, and Υ
that d is not on the ground floor.) Writing out the disjunction, we get the following
formula:

[∼[∼∼EdΦ ; ∼Ψ] ; Υ]

We find two conjunctions here. First, there is the conjunction of ∼∼EdΦ and ∼Ψ.
Since EdΦ is upward monotonic, its double negation ∼∼EdΦ is upward monotonic as
well. So, the conjunction of ∼∼EdΦ with ∼Ψ involves a genuine update of ∼∼EdΦ.
Notice, however, that the result of this conjunction itself is downward monotonic.
For, Ψ being upward monotonic, the second conjunct ∼Ψ is downward monotonic
and therefore its conjunction with the upward monotonic first conjunct ∼∼EdΦ
is also downward monotonic.7 The second conjunction has as its first conjunct the

7. The conjunction of a downward monotonic and an upward monotonic formula is downward
monotonic. Suppose Φ is upward monotonic and Ψ is downward monotonic and let [[p]] ⊇ [[q]]. Since
Ψ is downward monotonic, always if [[∨Ψ]]([[p]]) = 1 then [[∨Ψ]]([[q]]) = 1, so [[∧(∨Ψ(p))]] ⊆ [[∧(∨Ψ(q))]].
Now suppose [[∨[Φ ; Ψ]]]([[p]]) = 1, i.e., [[∨Φ(∧(∨Ψ(p)))]] = [[∨Φ]]([[∧(∨Ψ(p))]]) = 1. Since Φ is upward
monotonic, we find that [[∨Φ]]([[∧(∨Ψ(q))]]) = 1, and, hence, that [[∨[Φ;Ψ]]]([[q]]) = 1. By a completely
similar proof we find that if Φ is downward monotonic and Ψ is upward monotonic, then if [[p]] ⊇ [[q]]
and [[∨[Φ ; Ψ]]]([[p]]) = 1, then [[∨Φ ; Ψ]]]([[q]]) = 1.
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negation of the first conjunction. Since the first conjunction is downward monotonic,
its negation is upward monotonic, and therefore the conjunction of ∼[∼∼EdΦ ;∼Ψ]
with Υ also produces a real update of ∼[∼∼EdΦ ; ∼Ψ]. In other words, in the
processing of this example we encounter three downward monotonic subformulas,
viz., ∼EdΦ, ∼Ψ and [∼∼EdΦ ; ∼Ψ], but no (local) downdates.

A solution to the problem

The above considerations seem to motivate the conclusion that it is not (necessarily)
the presence of downward monotonic formulas in extended DFL that is problematic,
but their behaviour in conjunctions, as exemplified in fact 1.5 (but, cf. below). In
other words, the conclusion might be that the problem with negation can be solved,
not by adopting an alternative notion of negation, but simply by restricting the use
of conjunction. We can retain the notion of dynamic negation defined above, and
with that save the analysis of the examples 1–6, if only we exclude, in some way or
other, that generated downward monotonic sentence interpretations get conjoined,
and thus expel the possibility of downdate. This solution is the one proposed by
Groenendijk and Stokhof.

Groenendijk and Stokhof propose to exclude the possibility of downdate by
means of constraints on translations: “the translation of each sentence which con-
stitutes a separate step in the discourse should denote an upward monotonic quan-
tifier over states.” This constraint allows the presence of downward monotonic sen-
tences, except in certain constructions. Groenendijk and Stokhof mention discourse
sequencing, relative clause formation and the formation of conditional sentences as
constructions to which the constraint should apply. So, the translation of a sequence
σ.τ of two sentences σ and τ can be [σ′ ; τ ′] only if σ′ is upward monotonic. If σ′

is downward monotonic, then the translation [↑↓σ′ ; τ ′] has to be used, since, for
any formula Φ, ↑↓Φ is upward monotonic. In a similar way the antecedent of a con-
ditional is required to be upward monotonic, as is the restriction in a restrictive
relative clause.

The net effect of this general constraint is that every conjunction that occurs
in the translation of any DMG sentence has an upward monotonic first conjunct.8

8. Groenendijk and Stokhof’s constraint does not mention all conjunctions occurring in the DMG
fragment, but the following observation shows that also the conjunctions which are not mentioned
observe the monotonicitiy constraint. The constraint on the translation of relative clauses makes
that all common noun phrases in DMG denote functions from individuals to upward monotonic
quantifiers over states: for atomic common noun phrases this holds by definition, and it holds for
compound common nouns since they only allow upward monotonic restrictions, this by the con-
straint. From this it follows that the conjunction in the translation of an existentially quantified
structure anDET (ACN )(BIV ) (Ed[A′(↑d) ;B′(↑d)]) and the one implicit in the translation of a struc-
ture everyDET (ACN )(BIV ) (Ad[A′(↑d) ⇒ B′(↑d)] = ∼Ed[A′(↑d) ; ∼B′(↑d)]) also have an upward
monotonic first conjunct (viz., A′(↑d)). This exhausts the conjunctions not directly mentioned in
Groenendijk and Stokhof’s constraint.
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Groenendijk and Stokhof’s constraint thus preserves the good of the dynamic nega-
tion, the extended dynamics, and it excludes the bad, its misconduct as a first
conjunct.

However, the use of such constraints is not a very satisfactory solution to the problem
with dynamic negation. In medical terms, constraints do not combat the disease but
only its symptoms. Or, as Groenendijk and Stokhof remark: “one would prefer to
restrict the logical system itself rather than the use that is made of it” (p. 33). So, it
would be preferable to have a more principled solution of the problem in the form of
a system in which the operators themselves exclude the unwanted downdates, i.e.,
a system in which negation is dynamic and preserves (upward) monotonicity.

In section 2 I present such a solution, but first, in the remaining part of this
section, I argue that the present solution is also empirically unsatisfactory. I will dis-
cuss some examples which are structurally related to the examples which extended
DMG accounts for but which violate the stated monotonicity constraint. We will
see that in order to cope with these examples the constrained extended dynamics
can, again, be improved upon by associating with sentences both an upward and
a downward monotonic interpretation. However, since the required adjustment in-
volves complicating interpretation at a local level in order to be able to satisfy the
monotonicity constraints at a global level, it, in fact, illustrates the importance of
having a notion of dynamic negation that preserves monotonicity and that, hence,
enables us to do without constraints.

1.3 Limits to the constraints

Groenendijk and Stokhof’s ‘constrained extended dynamic approach’ to anaphora
excludes downward monotonic formulas from conjunction with a second conjunct.
So, if we want to conjoin a sentence, and if it has a downward monotonic translation,
we have to make it upward monotonic first. This is accomplished by taking the static
closure ↑↓ of the translation of the sentence, since the static closure ↑↓Φ of any
formula Φ is upward monotonic. (The same goes for the antecedent of a conditional
sentence and for the sentence that restricts a relative clause.) Notice that, although
the static closure of Φ preserves Φ’s truth-conditions, since ↓(↑↓Φ) ⇔ ↓Φ, it deprives
Φ of its dynamic potential.

However, this is only part of the story. In order to treat the bathroom dis-
junction, the extended DMG fragment must have a rule of disjunction formation.
In the statement of this rule too, of course, a monotonicity constraint has to apply,
be it a different one this time. Since [Φ or Ψ] = [∼Φ ⇒ Ψ], since the antecedent
of an implication must be upward monotonic, and since dynamic negation reverses
monotonicity, a disjunction’s first disjunct is required to be downward monotonic:
the translation of a disjunction σ or τ of two sentences σ and τ is [σ′ or τ ′] only if
σ′ is downward monotonic.
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The question now arises what to do if a first disjunct is upward monotonic.
In the case of sentence conjunction, we saw, a downward monotonic first conjunct
should be turned into a truth-conditionally equivalent upward monotonic one, by
taking the static closure of the formula. In the case of sentence disjunction we
now have to turn an upward monotonic first disjunct Φ into a truth-conditionally
equivalent downward monotonic one. For this we need the ‘dual’ of the static closure
of Φ: ∼↑↓∼Φ. Clearly, since for any formula Φ, ↑↓Φ is upward monotonic, ∼↑↓Φ
is downward monotonic and so is ∼↑↓∼Φ. Furthermore, the truth-conditions of the
dual of the static closure of Φ are those of Φ: ↓(∼↑↓∼Φ) ⇔ ¬↓↑¬↓Φ ⇔ ¬¬↓Φ ⇔ ↓Φ.
Notice that also the dual of the static closure of Φ, like the static closure of Φ,
deprives Φ of its dynamic potential.

The above observations imply that in the construction of compound sentences in
extended DMG, (sub)sentences that do not immediately comply with the mono-
tonicity contraint are deprived of their context change potential. This, however,
is not empirically motivated. Consider the following examples 7 and 8, which are
simple variants of 3 and 4:

(7) No player leaves the room. He stays were he is.
(8) No client that comes in is offered coffee. He is directly sent up to me.

On the expected interpretation of the determiner no, which is the dynamic negation
of the determiner a, the first sentences of these examples are downward monotonic.
So, in the respective conjunctions they have to be made upward monotonic by means
of the closure operator. However, this closure precludes the apparent anaphoric
relationships which obtain between the noun phrases in the first sentences and the
pronouns in the second ones.

Groenendijk and Stokhof remark that we get an adequate interpretation of the
examples 7 and 8, if we use the following alternative interpretation of the determiner
no:

λPλQ ∼Ed[P (↑d) ; ∼↑↓∼Q(↑d)]

This interpretation of the determiner no is dynamic, and it guarantees upward
monotonicity.9 So, if the determiner no is interpreted as indicated, the examples
7 and 8 comply with the monotonicity constraint and they turn out true iff every
player does not leave the room but stays where he is, and every client that comes
in is not offered coffee but sent up to me, respectively. We see that, using the dy-
namic interpretation of the determiner no above, the examples 7 and 8 are analyzed
appropriately.

9. This translation involves an embedded dual static closure over the second argument of no. This
closure makes the embedded clause Q(↑d) downward monotonic, but, since this clause is in the
scope of the main negation, the whole is upward monotonic again.
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However, notice that the determiner should not always be interpreted like that.
The upward monotonic interpretation of the determiner no is not appropriate for
a treatment of the bathroom disjunction. We saw above that a disjunction requires
a downward monotonic first disjunct. So, if we use the above interpretation of the
determiner no, the first disjunct in the bathroom disjunction there is no bathroom
here turns out upward monotonic and its dual static closure has to be used. But
then the noun phrase no bathroom can not bind the pronoun in the second disjunct
anymore.

It appears, then, that we need the upward monotonic interpretation of the
determiner no in some cases, viz., for a treatment of the examples 7 and 8, and in
other cases we need the downward monotonic interpretation, viz., for a treatment
of example 5. In other words, the determiner should be assumed to be ambiguous,
and, depending on the construction the determiner figures in, its downward or its
upward monotonic interpretation has to be selected.

Similar observations can be made with respect to disjunctions and conditional sen-
tences. We can find disjunctions and conditionals of which the first clause does not
have the required monotonicity properties, but nevertheless contains a noun phrase
that binds a pronoun in the second. The following examples are again simple vari-
ants of examples discussed above (example 9 is also discussed by Craige Roberts
and attributed to Steve Berman):

(9) Either there is a bathroom downstairs, or it is upstairs.
(10) If it is not the case that there is a bathroom downstairs, then it is upstairs.

Extended DMG assigns the first disjunct of example 9 an upward monotonic in-
terpretation. Since a first disjunct in extended DMG is required to be downward
monotonic, the dual static closure has to be used in example 9, but that precludes
the anaphoric relationship between the indefinite a bathroom in the first disjunct
and the pronoun in the second. Example 10 is the implicational counterpart of the
disjunction 9. The antecedent of this implication is the (dynamic) negation of the
first disjunct of 9. Since the monotonicity constraint requires the antecedent of an
implication to be upward monotonic, we have to use the static closure of the nega-
tion (or, equivalently, the static negation), but that leaves the pronominal anaphor
in the consequent unexplained.

In order to cope with the examples 9 and 10 we need a dynamic but downward
monotonic interpretation of the clause there is a bathroom downstairs. This can be
achieved by the following alternative interpretation of the determiner a in which, as
in the alternative upward monotonic interpretation of no, the dual static closure of
the determiner’s second argument is employed:

λPλQ Ed[P (↑d) ; ∼↑↓∼Q(↑d)]

Using this interpretation of the determiner a, both examples 9 and 10 turn out true
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iff there is a bathroom which is either downstairs or upstairs, which seems correct.
Notice that the downward monotonic interpretation of a and the upward monotonic
interpretation of no above are each other’s dynamic negation.

Of course, the downward monotonic interpretation of the determiner a should
not be used in all cases. We need a downward monotonic interpretation for a proper
analysis of examples like 9 and 10, and an upward monotonic interpretation for a
proper analysis of, for instance, example 6. So, like the determiner no, the deter-
miner a must be assumed to be ambiguous and its downward or upward monotonic
interpretation has to be selected according to the monotonicity requirements of the
compound structures in which the determiner occurs.

It appears that for a uniform treatment of the examples 1–6, which extends to
the similar examples 7–10, the DMG quantifiers should be assigned both an up-
ward and a downward monotonic interpretation. True, it need not necessarily be
the quantifiers from which the ambiguity originates, but what seems required at
least is that sentences which contain quantifiers get assigned both an upward and
a downward monotonic dynamic interpretation. The constraints on the construc-
tion of compound sentences then can be taken to select those interpretations of its
(quantified) constituent sentences that have the required monotonicity. Thus, such
constructions can always be interpreted dynamically and in compliance with the
monotonicity constraints.

In pursuit of an alternative negation

We see that DMG can be extended so as to cover the extended dynamics of the
first order quantifiers and operators by supplying it with a monotonicity reversing
notion of dynamic negation, a monotonicity constraint on dynamic conjunction and
a mechanism by means of which (quantified) sentences are assigned both upward and
downward monotonic dynamic interpretations. It must be noticed that the need to be
supplied with both up- and downward monotonic readings of sentences here in fact
follows from (i) the (intuitive) requirement that every first conjunct in a conjunction
is upward monotonic and (ii) the fact that negation reverses monotonicity. Only
by positing this ambiguity it is guaranteed that both [Φ ; Ψ] and [∼Φ ; Ψ] can be
interpreted dynamically and in compliance with the monotonicity constraint. (Recall
that the constraints on implication and disjunction follow from the constraint on
conjunction by their definition.)

The need to posit such an ambiguity stresses, once more, the desirability of
having a monotonicity preserving notion of dynamic negation. If we have such a
monotonicity preserving notion of dynamic negation then all DFL formulas are
guaranteed to be upward monotonic, the constraints on conjunctions will always be
satisfied, and, hence, no ambiguity needs to be posited. So, it appears, matters can
be greatly simplified if we find such a notion of negation.
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Now let us ask ourselves more specifically what a really adequate notion of dy-
namic negation should be like. In the first place, it should involve negation of truth-
conditional content, otherwise it could hardly be called a form of negation. In the
second place, it should be dynamic, of course. In the third place it should preserve
monotonicity. We can formalize these demands as follows:

1. ↓∼Φ ⇔ ¬↓Φ
2. ∼∼Φ ⇔ Φ
3. If Φ is upward monotonic, then ∼Φ is upward monotonic

According to the first requirement the dynamic negation of Φ must be true if Φ
is false, and vice versa. If this requirement is met then dynamic negation implies
negation of truth-conditional content. The second requirement, that negation sat-
isfies the law of double negation, lends negation a dynamic character. The third
requirement speaks for itself.

So we have three requirements that a notion of dynamic negation must satisfy.
The static negation of DMG obeys the first and the third requirement, but not the
second, and the dynamic negation of extended DMG obeys the first and the second
requirement, but not the third. The question now is whether there is an operation in
the framework of DMG that satisfies all three requirements, and the straightforward
answer to that question is that there is not:

Fact 1.6
In the framework of DMG no operation satisfies the above three requirements.

This fact is proved by contraposition. Suppose some function, denoted by ∼, satis-
fies the three requirements. Then take two closed formulas Φ and Ψ, both upward
monotonic, true with respect to all states s and such that [[Φ]] 6= [[Ψ]]. (For in-
stance, let Φ and Ψ be Ed(↑d =̃ ↑d) and Ed′(↑d′ =̃ ↑d′), respectively.) Then for
all s: [[↓Φ]]s = [[↓Ψ]]s = 1 and, hence, [[¬↓Φ]]s = [[¬↓Ψ]]s = 0. So, by 1, for all s:
[[↓∼Φ]]s = [[↓∼Ψ]]s = 0. Since Φ is upward monotonic, by 3, ∼Φ is upward monotonic,
and since [[↓∼Φ]]s = [[∼Φ]]s(s)(I) = 0, we find that for all s and p: [[∼Φ]]s(s)(p) = 0,
and, Φ being intensionally closed, for all s, s′ and p: [[∼Φ]]s′(s)(p) = 0. Completely
similarly we find that for all s, s′ and p: [[∼Ψ]]s′(s)(p) = 0. So, [[∼Φ]] = [[∼Ψ]], and,
hence, [[∼∼Φ]] = [[∼∼Ψ]]. But then, by 2, [[Φ]] = [[Ψ]]. This contradicts the assumption
that [[Φ]] and [[Ψ]] are different.

Where does that leave us? We have seen how DMG gives a truly compositional
reformulation of DRT, and we have observed DMG’s inherent possibility to extend
the dynamics by adopting a notion of dynamic negation. However, we have also seen
that DMG’s notion of dynamic negation undermines a most welcome property of
DMG, viz., that all DMG formulas are upward monotonic. Moreover, we have seen
that it is not possible to define an adequate alternative monotonicity preserving
notion of dynamic negation in the framework of DMG.
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A DMG treatment of all the examples discussed then seems to require us
to assign sentences both upward and downward monotonic interpretations. In case
of conjunction, implication or disjunction, constraints have to be used to select
an interpretation of the first constituent sentence of the connective which has the
required monotonicity (upward, upward or downward, respectively). In fact, the cost
of having a monotonicity reversing notion of negation is that we have to assume
ambiguity at a local level in order to arrive at an appropriate dynamic interpetation
at a global level.

In the next section I will show that we can improve upon this situation if we resort
to a higher level of types. In that section I present a system DMG(2) which is
equivalent with DMG, but in which it is possible to define a notion of dynamic
negation that satisfies the requirements that were set out in this section. Hence, in
DMG(2) no constraints need to apply, nor does it require us to assume ambiguous
interpretation.

2 Dynamic Montague grammar(2)

In this section I present an alternative dynamic Montague grammar, DMG(2), which
mainly differs from DMG with respect to the type assigned to DFL formulas. The
whole organization of DMG(2) is the same as that of DMG, and its first version, the
one without dynamic negation, is shown to be equivalent with DMG. However, the
higher typed system of interpretation used in DMG(2) leaves us just the amount of
elbow room needed to define an adequate notion of dynamic negation. This notion
of negation is presented and discussed in the section 2.2.

2.1 DMG(2) interpretation

Like DPL and DRT, DMG gives an account of the fact that (indefinites in) a sentence
of natural language may bring about a change in the context of interpretation that
affects the interpretation of (pronouns in) successive sentences. In DMG this is
accounted for by interpreting sentences as context change potentials which have the
type of properties of propositions. In this section I will first give some motivation
for the adoption of a higher type of context change potentials and next I give an
alternative formulation of DMG in that higher type.

Context change potentials reconsidered

In DMG a sentence is interpreted as a function from contexts (states) and propo-
sitions (sets of states) to truth values. Such a function f can be conceived of as a
context change potential since f holds of a state s and a proposition p iff p is true
in a state s′ which may be different from s and such that certain further conditions
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associated with f are satisfied, cf., the remarks about context change potentials in
chapter 1, section 3. Notice that the realization of the context change potential of a
DMG sentence comes about by the application of its extension to some propositional
expression, typically the intension of a DIL formula.

The realization of the context change potential of a DFL formula is intimately
related to the DFL conjunction of that formula with another formula. Basically, the
dynamic conjunction of Φ and Ψ involves the application of the extension of Φ to the
proposition expressed by Ψ, this, with a supplementary application and abstraction
device that ensures that the result of the conjunction is a context change potential
again. As we just saw, the realization of Φ’s context change potential also consists
in the application of Φ’s extension to some proposition expression, which shows that
dynamic context change and conjunction go hand in hand in DMG.10

Clearly, such a link between context change and conjunction is anticipated by
the definition of the lift of DIL formulas to the level of context change potentials.
This lift turns a DIL formula φ into the function ∧λp (φ ∧ ∨p) which is associated
with the property of propositions of being true in conjunction with φ. Therefore, the
application of the extension of ↑φ to the intension of a formula ψ comes down to the
static conjunction of φ with ψ, and, consequently, the application of the extension of
DFL formulas more in general, i.e., the realization of their context change potentials,
always involves some form of conjunction of static content.

It seems relatively natural to assume a tight connection between (dynamic) context
change and (dynamic) conjunction if, first, we are dealing with the changes that
(expressions in) one sentence may bring about in the context of interpretation of
(expressions in) another sentence, and, second, if conjunction is the only (primitive)
sentential connective. But, of course, in natural language the context change poten-
tial of one sentence may be applied to that of another sentence which is related to
the first in a way other than can be defined in terms of conjunction (for instance, in
dialogues). And also if we keep to conjunction as the only primitive connective, the
tight connection between context change and conjunction becomes an obstacle when
we take into account the changes in the context brought about by the negation of a
formula Φ in the conjunction of ∼Φ with Ψ.

If in the dynamic conjunction of ∼Φ with Ψ the negation of Φ is dynamic, it
must be an operation that allows Φ’s context change potential to affect the inter-
pretation of the second conjunct Ψ. However, if Ψ is subject to the context change

10. We can indicate the link between context change and conjunction more precisely. Being subject
to the context change potential of a formula Φ in DMG involves, basically, occurring in a sen-
tential expression to the intension of which the extension of Φ gets applied, possibly after some
λ-conversions. So, if an expression α is subject to the context change potential of a formula Φ, it,
eventually, occurs in a sentential expression β to the intension of which the extension of Φ applies,
as in ∨Φ(∧β). Observe that ∨Φ(∧β) is equivalent with ∨[Φ ; ∧λp β](p). Here we see that α shows up
as part of an expression (λp β) which can be conceived to be (dynamically) conjoined with Φ.
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potential of Φ, and if, as appears to be the case in DMG, the realization of a context
change potential is tied up with some form of conjunction, then, it appears, the con-
junction of ∼Φ with Ψ involves, in some or other way, the negation of the conjunction
of Φ with Ψ. As we have already seen (cf., fact 1.4), on the most straightforward
definition of dynamic negation in DMG this is precisely what happens, that is, that
the conjunction of the negation of Φ with Ψ equals the negation of the conjunction
of Φ with Ψ.

These observations suggest that, for a generalization of the DMG dynamics of
interpretation, and for an extension of it with a proper notion of dynamic negation,
we have to loosen the too intimate relation between context change and conjunction
in the first place. That is, it seems a prerequisite to assign sentences a kind of context
change potentials the realization of which is not as tied up with conjunction as it is
in DMG. We then may see afterwards whether it is possible to define an adequate
notion of dynamic negation for context change potentials of such an alternative kind.
This is the strategy adopted in the sequel.

Aiming at dissociating context change from conjunction, it is important to observe
that the DMG type of context change potentials is not the only conceivable one. In
any DIL type a, there are context change potentials γ of type 〈〈s, a〉, t〉, which, when
applied to the intension of an expression α of type a, involve the evaluation of α in
a state possibly different from the state with respect to which γ is evaluated.11 So,
if we want sentences to denote context change potentials, a very legitimate question
is what kind of objects we want these context change potentials to apply to, or,
which is essentially the same question, for which type of expressions we want them
to change the context of interpretation.

The DMG answer to this question is that a sentence Φ denotes a context
change potential that gets applied to propositions, typically, the propositions ex-
pressed by the sentences with which Φ gets conjoined. We have just seen that, for
our present concerns, this kind of context change potentials seems to involve too
tight a link between context change and conjunction. In order to loosen this link, we
have to generalize over the several ways in which a sentence Φ may get combined,
and in the case of the conjunction of Φ with a propositional expression ψ, we have
to apply the context change potential of Φ, not to the proposition expressed by ψ,
but to the function expressed by the conjunction with ψ. Clearly, if context change
potentials apply to objects of this type then they may as well apply to functions
expressed by other coordinations, such as, for instance, a disjunction with Ψ.

The function expressed by the conjunction with a subsequent sentence ψ is
here conceived of as the property of propositions of being true in conjunction with
ψ, ∧λp (∨p ∧ ψ) of type 〈s, 〈〈s, t〉, t〉〉.12 Since we want context change potentials

11. For instance, if R is a variable of type 〈s, a〉, let γ be an expression of the form λR ∃d(. . . ∨R . . .).
12. Notice that this is the function denoted by the DFL lift ↑ψ of a DIL formula ψ. There is a slight
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to be objects the extensions of which get applied to these kinds of functions, they
will have to be properties of properties of propositions, i.e., objects of the type
〈s, 〈〈s, 〈〈s, t〉, t〉〉, t〉〉.

In the remainder of this section I will give a reformulation of DMG into a
system DMG(2) in which sentences are associated with context change potentials
of this type. In its first presentation, the system is shown to be equivalent to DMG.

DFL(2) type shift

The formulation of an alternative dynamic Montague grammar, DMG(2), in which
sentences are assigned meanings which are properties of properties of propositions,
requires only a reformulation of the type and interpretation of the DFL language.
The reinterpreted system will be referred to as DFL(2). I start with the definition
of the types of DFL(2).

The set of DFL(2) types TD(2) is defined as follows:

Definition 2.1 (DFL(2) types)
The set of DFL(2) types, TD(2), is the smallest set such that:

1. 〈s, e〉 ∈ TD(2)

2. 〈s, 〈〈s, 〈〈s, t〉, t〉〉, t〉〉 ∈ TD(2)

3. if a, b ∈ TD(2) then 〈a, b〉 ∈ TD(2)

The following type shift relates the extensional types in T to TD(2):

Definition 2.2 (DFL(2) type shift)
1. ↑e = 〈s, e〉
2. ↑t = 〈s, 〈〈s, 〈〈s, t〉, t〉〉, t〉〉
3. ↑〈a, b〉 = 〈↑a, ↑b〉

So, whereas in DFL every (sub)type t is replaced by 〈s, 〈〈s, t〉, t〉〉, the type of prop-
erties of propositions, in DFL(2) it is replaced by 〈s, 〈〈s, 〈〈s, t〉, t〉〉, t〉〉, the type of
properties of properties of propositions.

Like the DFL type shift, the DFL(2) type shift ↑ is associated with an interpretation.
The following definition simultaneously defines ↑, the interpretation of type shifts
into DFL(2) types, and ↓, the interpretation of shifts back into the original DIL
types:

Definition 2.3 (DFL(2) type shift (interpretation))
1. ↑φe = ∧φ

↓Φ↑e = ∨Φ

difference in the conception of the two, since in the formulation of the update with ψ, ψ, suggestively,
figures as the second conjunct, and in the lift ↑ψ, ψ figures as the first conjunct. However, since the
conjunction involved is classical, commutative, conjunction, this makes no difference semantically.
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2. ↑φt = ∧λR ∨R(∧φ) (R not free in φ)
↓Φ↑t = ∨Φ(∧λp ∨p)

3. ↑φ〈a,b〉 = λx↑a ↑(φ(↓x)) (x not free in φ)

↓Φ↑〈a,b〉 = λxa ↓(Φ(↑x)) (x not free in Φ)
where R is a variable of type 〈s, 〈〈s, t〉, t〉〉 and p a variable of type 〈s, t〉

The crucial clause in this definition is again the interpretation of the lift from ex-
pressions of type t. The lift of a DIL formula φ denotes the property of properties
of propositions of being a property that the proposition that φ has. So, a property
of propositions R has the property of properties of propositions denoted by ↑φ iff
the proposition that φ has the property R. This type shift corresponds to a familiar
‘raising’ type shift which lifts an object z to the set of sets of objects Z such that a
set of objects P is an element of Z iff z is an element of P . (Cf., Montague [1973],
Rooth and Partee [1983] and Hendriks [1992] among others. See also chapter 3).

When a property of propositions R is ascribed the property of properties of
propositions denoted by a DFL(2) formula Φ, i.e., when the extension of Φ is applied
to R, I will also say that Φ is ascribed the property R. In the lowering ↓Φ of Φ, then,
Φ is ascribed such a property, viz., the property ∧λp ∨p, which is the property of
being a true proposition. So, the lowering of Φ ascribes Φ the property of being true.
As we will see below, this is one of two kinds of properties of propositions which,
in DFL(2), a formula Φ may get ascribed. The other property that Φ may get
ascribed is that of being true in conjunction with some other proposition, typically,
the proposition expressed by the sentence with which Φ gets conjoined.

As is the case in DFL, the lowering ↓Φ of a formula Φ gives us Φ’s truth conditional
content. More in general, the lowering of any DFL(2) expression Φ of type ↑a returns
the static contents of Φ, of type a.

Like in DFL, the lowering of the lift of φ is equivalent with φ:

Fact 2.1 (↓↑-elimination(2))
• ↓↑φ⇔ φ

In case φ is of type t, then ↓↑φ says that the property of being a true proposition has
the property of being a property of the proposition that φ, i.e., that the property
of being a true proposition is a property that the proposition that φ has. In other
words, ↓↑φ simply says that the proposition that φ has the property of being true.

What still does not hold in general is that ↑↓Φ ⇔ Φ. The formula ↑↓Φ denotes
the property of properties of propositions of being a property of the proposition that
Φ has the property of being true. Like in DFL the lift of the lowering of Φ annihilates
the dynamic potential of Φ.
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DFL(2) semantics

The language of DFL(2) is the same as that of DFL, except for the associated types
and the fact that DFL(2) employs variables of types ↑a according to the DFL(2)
definition of the type shift ↑, where DFL employs variables of types ↑a according to
the DFL definition of the type shift ↑.

In the semantics, only the clauses for identity, negation, existential quantifica-
tion and conjunction have to be adjusted. In DFL(2) their interpretation is defined
as follows (again, R is a variable of type 〈s, 〈〈s, t〉, t〉〉, and p a variable of type 〈s, t〉):

Definition 2.4 (DFL(2) semantics)
1. α =̃ β = ↑(↓α = ↓β)
2. ∼Φ = ↑¬↓Φ
3. EdΦ = ∧λR ∃d(∨Φ(R)) (R not free in Φ)
4. [Φ ; Ψ] = ∧λR ∨Φ(∧λp (∨p ∧ ∨Ψ(R))) (R not free in Φ or Ψ)

Like in DFL, an identity statement α =̃ β in DFL(2) is interpreted as the lift of the
statement that α and β have the same static content. On its first definition negation
is static. Like in DFL, the negation of Φ is defined as the lift of the negation of Φ’s
truth-conditional content. The difference with DFL resides solely in the interpreta-
tion of ↑ and ↓, so ∼Φ now equals ∧λR ∨R(∧¬∨Φ(∧λp ∨p)). The formula ∼Φ denotes
the property of properties of propositions of being a property of the proposition that
Φ does not have the property of being true.

Existential quantification in DFL(2) is also very similar to existential quantifi-
cation in DFL. The formula EdΦ denotes the property of properties of propositions
to be a property of Φ in a state which at most differs from the state of evaluation
with respect to the value of d. The difference with DFL resides solely in the type of
objects abstracted over, i.e., properties of propositions in stead of propositions.

The DFL(2) notion of conjunction substantially differs from its DFL counterpart.
In DFL the dynamic conjunction of Φ with Ψ consists, basically, in the application
of Φ’s extension to the intension of Ψ. This application still involves a form of
conjunction of truth-conditional content because that has already been anticipated
upon in the interpretation of the lift of type t to the type of context change potentials.
In DFL(2) there is no notion of conjunction involved in the lift of a DIL formula,
and, therefore, a form of conjunction of truth-conditional content shows up in the
definition of dynamic conjunction. In the dynamic conjunction [Φ ; Ψ] Φ is ascribed
the property of being true in conjunction with Ψ, or, rather, the property of being
true in conjunction with the proposition that Ψ has the property R, a property
which is abstracted over. Since [Φ ; Ψ] is defined to be true iff it has the property
∧λp ∨p of propositions of being true, the conjunction of Φ with Ψ is true iff Φ has the
property of being true in conjunction with the proposition that Ψ has the property
of being true.
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This notion of dynamic conjunction apparently reflects the classical notion of
conjunction. In the classical case, one may say, what the conjunction of φ with ψ says
about the proposition that φ is that it has the property of being true in conjunction
with ψ, i.e., that the extension of ∧λp (∨p∧ψ) applies to the intension of φ. (Clearly,
∨(∧λp (∨p∧ψ))(∧φ) ⇔ (φ∧ψ).) With the present definition of dynamic conjunction
the function/argument structure is simply reversed. In the dynamic conjunction of Φ
with Ψ, the property of propositions of being true in conjunction with Ψ is ascribed
the property expressed by Φ, this, as is already indicated, under abstraction over
further updates of Ψ.

It is quite easy to see that DFL(2) retains associativity, and, consequently, that it
licenses the donkey equivalences. Furthermore DFL(2) displays the same monotonic-
ity properties as DFL does. All DFL(2) formulas denote upward monotonic quan-
tifiers, and this property guarantees that conjunction involves genuine update.13

DFL(2) also licenses the reduction equivalences in fact 2.11 from chapter 1 which
enable us to compute the contents of dynamically interpreted DFL expressions. As
we will see shortly, DFL and DFL(2) assign sentences the same truth-conditions.

DMG and DMG(2)

As was indicated at the start of this section, except for the types and interpretation
of the intermediary language DFL, the dynamic Montague grammar DMG(2) is
the same as DMG. The categories and the syncategorematic constructions of the
fragment remain the same. The function fD(2) from DMG(2) categories to DFL(2)
types differs only from the corresponding DMG function since the DFL(2) type shift
↑ is used, instead of the DFL type shift. The translations of basic expressions remain
(typographically) the same, the difference residing solely in the associated types
and the interpretation of the lift ↑, identity, negation, existential quantification and
conjunction. The same holds for the translations of syncategorematic constructions.

I will not give a demonstration of how DMG(2) works since such a demonstra-
tion would be completely analogous to the demonstration in chapter 1 of how DMG
works. As they are defined presently, DMG(2) and DMG are equivalent systems since
DFL and DFL(2) assign corresponding sentences corresponding truth-conditions.

Let Φ′ be the DFL(2) formula obtained from the DFL formula Φ by substitut-
ing every n-th variable T of the DFL type ↑a in Φ by the n-th variable T ′ of the
corresponding DFL(2) type ↑a. Moreover, let the superscript † denote the DFL in-
terpretation of expressions and operators, and ‡ their DFL(2) interpretation. Then:

13. In the DFL(2) type of formulas, if Φ is upward monotonic then if [[R]] ⊆ [[R′]] (i.e., if [[∨R]]([[p]]) = 1
then [[∨R′]]([[p]]) = 1) and [[∨Φ]]([[R]]) = 1 then [[∨Φ]]([[R′]]) = 1. Now assume that Φ is upward
monotonic and [Φ ; Ψ] is true, i.e., [[↓[Φ ; Ψ]]] = [[∨Φ]]([[∧λp (∨p ∧ ↓Ψ)]]) = 1. Clearly, if [[∨(∧λp (∨p ∧
↓Ψ))]]([[p]]) = 1 then [[∨(∧λp ∨p)]]([[p]]) = 1. So, by the monotonicity of Φ, [[∨Φ]]([[∧λp ∨p]]) = [[↓Φ]] = 1,
and, hence, Φ is true.
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Fact 2.2 (Static equivalence of DFL and DFL(2))
For every DFL sentence Φ:

• ↓‡Φ′‡ ⇔ ↓†Φ†

This fact implies that the DMG translation of a sentence in DFL has the same
truth-conditions as the sentence’s DMG(2) translation in DFL(2). (The proof of
this fact can be found in the appendix to this chapter.)

We can even prove something stronger. There is a function ⇓ that turns the DFL(2)
interpretation of a formula Φ′ (of type ↑‡a) into the DFL interpretation of Φ (of type
↑†a). This function is given by the following simultaneous recursive definition of ⇑,
the lift from DFL objects of type ↑a to DFL(2) objects of type ↑a, and ⇓, the shift
back from DFL(2) objects to DFL objects (R and p are as above, q is a variable of
type 〈s, t〉):

Definition 2.5 (Partial closure)
1. ⇑φ↑†e

= φ

⇓Φ↑‡e
= Φ

2. ⇑φ↑†t
= ∧λR ∨φ(∧ ∨R(∧true)) (R not free in φ)

⇓Φ↑‡t
= ∧λq ∨Φ(∧λp (∨p ∧ ∨q)) (q not free in Φ)

3. ⇑φ↑†〈a,b〉
= λx↑‡a

⇑(φ(⇓x)) (x not free in φ)

⇓Φ↑‡〈a,b〉
= λx↑†a

⇓(Φ(⇑x)) (x not free in Φ)

Again we have arrow elimination:

Fact 2.3 (⇓⇑-elimination)
• ⇓⇑Φ ⇔ Φ

Fact 2.4 shows that the partial closure ⇓Φ′ of a DFL(2) expression Φ′ in fact gives
Φ’s DFL interpretation:

Fact 2.4 (Dynamic equivalence of DFL and DFL(2))
For every DFL sentence Φ:

• ⇓Φ′‡ ⇔ Φ†

The proof of this fact can also be found in the appendix to this chapter.

So, the two systems DMG and DMG(2) work out in precisely the same way in prac-
tice. The mere difference is that DMG(2) has invested in higher types of translation.
In the following section (2.2) we will see that this investment pays off, since in this
higher type an appropriate definition of dynamic negation can be given.

2.2 Dynamic negation in DMG(2)

In DFL(2) (and DFL) the context change potential of a formula Φ is realized, ba-
sically, by means of the conjunction of Φ with another formula Ψ. We have seen
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that the conjunction of Φ with Ψ, in DFL(2), amounts to ascribing Φ the property
of propositions of being true in conjunction with the proposition that Ψ has some
property R which is abstracted over. Furthermore, we have seen that this notion
of dynamic conjunction can be conceived of as a classical form of conjunction with
a reversed function/argument structure. This analogy between DFL(2) conjunction
and classical conjunction can be used as a heuristic device to determine the pur-
ported effect of the DFL(2) conjunction of the dynamic negation of Φ with Ψ and,
consequently, to motivate the DFL(2) notion of dynamic negation, which is given
below.

When we turn to the issue of dynamic negation in DFL(2), it is expedient to focus on
the question what the conjunction of the dynamic negation ∼Φ of Φ with Ψ should
amount to, since context change potentials get realized in conjunctions, basically.
So, if negation is dynamic, i.e., if in the conjunction of ∼Φ with Ψ the latter is
subject to the context change potential of Φ, then the conjunction should involve
the application of Φ, in some or other way, to the property of propositions of being
true in conjunction with Ψ. Furthermore, if ∼Φ involves a genuine form of negation,
it should involve the negation of Φ’s truth conditional content, of course. Remind
that these are two of the three requirements imposed on negation in section 1.3.

So, it appears, the conjunction of ∼Φ with Ψ must involve the negation of
the result of applying Φ’s context change potential, in some or other way, to the
property of propositions of being true in conjunction with Ψ. Put differently, the
conjunction of the negation of Φ with Ψ should consist in denying Φ to have some
property of propositions which, in some or other way, is derived from the property
of propositions of being true in conjunction with Ψ.

Thus conceived, if we want to know what the dynamic negation of Φ should
be, we have to know, first, exactly what property of propositions Φ is denied to
have if its negation is conjoined with Ψ and, second, how this property relates to
the property of being true in conjunction with Ψ. Employing the analogy between
dynamic and classical conjunction there is a simple answer to these questions.

What property of propositions is the proposition that φ denied to have in the clas-
sical conjunction (¬φ∧ψ) of the negation of φ with ψ? As the following equivalence
shows, this is the property of propositions of being true in disjunction with the
negation of ψ, that is, the property ∧λp (∨p ∨ ¬ψ):

¬∨(∧λp (∨p ∨ ¬ψ))(∧φ) ⇔ ¬(φ ∨ ¬ψ) ⇔ (¬φ ∧ ψ)

Next, how is the property ∧λp (∨p ∧ ψ), which the proposition that φ is said to
have when it is conjoined with ψ, related to the property ∧λp (∨p ∨ ¬ψ), which the
proposition that φ is denied to have when its negation is conjoined with ψ? These
properties are each other’s dual.

The dual R∗ of a property of propositions R is defined as follows:
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Definition 2.6 (Dual)
• R∗ = ∧λp ¬∨R(∧ ¬∨p) (p not free in R)

The following equivalences show that the two properties of propositions ∧λp (∨p∧ψ)
and ∧λp (∨p ∨ ¬ψ) are indeed each other’s dual:

(∧λp (∨p ∧ ψ))∗ ⇔ ∧λp ¬(¬∨p ∧ ψ) ⇔ ∧λp (∨p ∨ ¬ψ)
(∧λp (∨p ∨ ¬ψ))∗ ⇔ ∧λp ¬(¬∨p ∨ ¬ψ) ⇔ ∧λp (∨p ∧ ψ)

Notice that, also more in general, the double dual of a property of propositions R
is R again:

Fact 2.5 (Double dual)
• R∗∗ ⇔ R14

To conclude this excurs, the (classical) conjunction of the (classical) negation of φ
with ψ can be conceived of as denying the proposition that φ to have the property
which is the dual of the property of being true in conjunction with ψ:

¬∨(∧λp (∨p ∧ ψ))∗(∧φ) ⇔ ¬∨(∧λp ¬(¬∨p ∧ ψ))(∧φ) ⇔ ¬¬(¬φ ∧ ψ) ⇔ ¬φ ∧ ψ

Returning now to our question what property of propositions Φ is denied to have
when the negation of Φ is conjoined with Ψ, the analogy between DFL(2) conjunc-
tion and classical conjunction suggests that it must be the dual of the property
of propositions of being true in conjunction with Ψ. Consequently, it appears, the
dynamic negation of Φ itself must be defined to denote the property of properties
of propositions of having a dual which Φ does not have. Here is its definition:

Definition 2.7 (Dynamic negation(2))
• ∼Φ = ∧λR ¬∨Φ(R∗) (R not free in Φ)

I will now show that the present notion of dynamic negation is the one we were look-
ing for. It is relatively easily observed that the present notion of dynamic negation
satisfies our initial demands (cf., section 1.3).

Dynamic negation was required, first, to involve negation of truth-conditional con-
tent, and on the present definition it does indeed:

Fact 2.6 (Truth-conditional effects of ∼)
• ↓∼Φ ⇔ ¬↓Φ15

This fact shows that the dynamic negation of Φ is true iff Φ is false. (Recall that this
also holds for the static and the dynamic negation of DFL.) Observe, furthermore,

14. R∗∗ = ∧λp ¬∨(∧λp ¬∨R(∧¬∨p))(∧¬∨p) ⇔ ∧λp ¬¬∨R(∧¬¬∨p) ⇔ ∧λp ∨R(∧∨p) ⇔ R.
15. Since (∧λp ∨p)∗ = ∧λp ¬∨(∧λp ∨p)(∧¬∨p) ⇔ ∧λp ¬¬∨p ⇔ ∧λp ∨p, we find that ↓∼Φ =
∨(∧λR ¬∨Φ(R∗))(∧λp ∨p) ⇔ ¬∨Φ(∧λp ∨p)∗ ⇔ ¬∨Φ(∧λp ∨p) = ¬↓Φ.
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that on the present definition the dynamic negation of the lift of a DIL formula φ
equals the lift of the negation of φ:

Fact 2.7
• ∼↑φ⇔ ↑¬φ16

The facts 2.6 and 2.7 show how intimately dynamic negation is related to static
negation. Notice that the last fact 2.7 also holds for DFL’s static negation, but not
for the dynamic negation of DFL.

In the second place, dynamic negation was required to be dynamic:

Fact 2.8 (Double negation)
• ∼∼Φ ⇔ Φ17

As was observed in section 1, if a notion of negation obeys the law of double negation
within a dynamic framework, then the notion of negation is truly dynamic. Fact 2.8
also implies that DMG(2), with dynamic negation, accounts for the equivalence
of the examples 1 and 2. The property of licensing the law of double negation
distinguishes the dynamic negation of DFL(2) (and that of DFL) from the static
negation of DFL (and that of DFL(2)).

In the third place, dynamic negation was required to preserve monotonicity:

Fact 2.9 (Monotonicity of ∼)
• If Φ is upward monotonic, then ∼Φ is upward monotonic18

Since the dynamic negation of DFL(2) preserves monotonicity, it follows that the
conjunction of Φ with Ψ always involves information update. This fact shows the
crucial difference between the dynamic negation of DFL(2) and that of DFL which
reverses monotonicity.

We have found the dynamic negation that satisfies our initial requirements. How
does it behave besides that? The following list of facts shows that it behaves as
desired. Sticking to the usual definitions of universal quantification, implication and
disjunction in terms of existential quantification, negation and conjunction, the as-
sociativity facts of extended DMG are retained:

Fact 2.10 (Extended associativity(2))
• [EdΦ ; Ψ] ⇔ Ed[Φ ; Ψ]

16. ∨R∗(∧φ) = ∨(∧λp ¬∨R(∧¬∨p))(∧φ) ⇔ ¬∨R(∧¬φ), so ∼↑φ = ∧λR ¬∨(∧λR ∨R(∧φ))(R∗) ⇔
∧λR ¬∨R∗(∧φ) ⇔ ∧λR ¬¬∨R(∧¬φ) ⇔ ∧λR ∨R(∧¬φ) = ↑¬φ.
17. ∼∼Φ = ∧λR ¬∨(∧λR ¬∨Φ(R∗))(R∗) ⇔ ∧λR ¬¬∨Φ(R∗∗) ⇔ ∧λR ∨Φ(R) ⇔ Φ (Φ is intensionally
closed, and R does not occur free in Φ).
18. Notice that if [[R]] ⊆ [[R′]], then [[R′∗]] ⊆ [[R∗]]. Now suppose that Φ is upward monotonic,
i.e., if [[R]] ⊆ [[R′]] and [[∨Φ]]([[R]]) = 1 then [[∨Φ]]([[R′]]) = 1. Next, suppose that [[∨∼Φ]]([[R]]) =
[[∨(∧λR ¬∨Φ(R∗))(R)]] = 1, i.e., that [[∨Φ(R∗)]] = 0. Since [[R]] ⊆ [[R′]] and, hence, [[R′∗]] ⊆ [[R∗]], by
the monotonicity of Φ, [[∨Φ(R′∗)]] = 0. So, [[∨(∧λR ¬∨Φ(R∗))(R′)]] = [[∨∼Φ]]([[R′]]) = 1.
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• [AdΦ ; Ψ] ⇔ Ad[Φ ; Ψ]
• [[Φ ; Ψ] ; Υ] ⇔ [Φ ; [Ψ ; Υ]]
• [[Φ ⇒ Ψ] ; Υ] ⇔ [Φ ⇒ [Ψ ; Υ]]
• [[Φ or Ψ] ; Υ] ⇔ [Φ or [Ψ ; Υ]]

Fact 2.10 implies that DMG(2), like extended DMG, gives a proper analysis of the
donkey sentences from chapter 1, as well as of the examples 3, 4 and 6.

The following fact shows that dynamic negation, like DFL’s dynamic negation, in-
teracts with the quantifiers and connectives in a classical way:

Fact 2.11 (Properties of ∼)
• ∼EdΦ ⇔ Ad∼Φ
• ∼AdΦ ⇔ Ed∼Φ
• ∼[Φ ; Ψ] ⇔ [Φ ⇒ ∼Ψ]
• ∼[Φ ⇒ Ψ] ⇔ [Φ ; ∼Ψ]
• ∼[Φ or Ψ] ⇔ [∼Φ ; ∼Ψ]

The facts 2.7, 2.6, 2.8 and 2.11 show in fact that the present notion of dynamic
negation behaves like its classical counterpart.

The next fact follows from the facts 2.8 and 2.11:

Fact 2.12 (Dual associativity)
• [∼Φ ; Ψ] ⇔ ∼[Φ or ∼Ψ] (6⇔ ∼[Φ ; Ψ])
• [∼Φ ⇒ Ψ] ⇔ [Φ or Ψ]
• [∼Φ or Ψ] ⇔ [Φ ⇒ Ψ]

These equivalences are classical as well. More important than the equivalence be-
tween [∼Φ ; Ψ] and ∼[Φ or ∼Ψ] is the non-equivalence of [∼Φ ; Ψ] and ∼[Φ ; Ψ].
Unlike DFL’s dynamic negation (cf., fact 1.4), DFL(2)’s dynamic negation does not
associate with conjunction. Notice that in DFL, too, [∼Φ ; Ψ] and ∼[Φ or ∼Ψ] are
equivalent, and, hence, that [Φ ;Ψ] ⇔ [Φ or ∼Ψ] (which is not the case in DFL(2)).

Using the facts 2.10 and 2.12 it can be seen that DMG(2) also gives a satisfac-
tory analysis of example 5 since this example is rendered equivalent with example
6. Finally, I simply note here that in DFL(2) the arrow elimination facts from DFL
remain valid, cf., chapter 1, fact 2.11.

Summarizing the findings, the DFL(2) notion of dynamic negation satisfies the orig-
inal requirements set out in section 1.3, it underlies the extended dynamic interpre-
tation which is required for an analysis of the examples 1–6, and, apart from that, it
behaves like classical negation. As we will see now, this same notion of negation also
underlies a proper analysis of the examples 7–10. I show, in some more detail, the
DMG(2) treatment of (simple variants of) these examples. I start with Groenendijk
and Stokhof’s example 7.
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No player leaves. He stays

Application and reduction yields the following translation of 7:

∼Edi[↑player(di) ; ↑leave(di)] ; ↑stay(di)

The truth-conditions of this formula are determined as follows:

↓[∼Edi[↑player(di) ; ↑leave(di)] ; ↑stay(di)] ⇔
↓[Adi∼[↑player(di) ; ↑leave(di)] ; ↑stay(di)] ⇔
↓[Adi[↑player(di) ⇒ ∼↑leave(di)] ; ↑stay(di)] ⇔
↓Adi[↑player(di) ⇒ [∼↑leave(di) ; ↑stay(di)]] ⇔
↓Adi[↑player(di) ⇒ [↑¬leave(di) ; ↑stay(di)]] ⇔
∀di(player(di) → (¬leave(di) ∧ stay(di))) ⇔
∀x(player(x) → (¬leave(x) ∧ stay(x)))

(By means of the facts 2.11 (twice), 2.10, 2.6, and the facts 2.11 and 2.4 from
chapter 1.) The example is true (or: satisfied) iff every player does not leave, but
stays. Example 8 is analysed in an essentially similar way.

Either there is a bathroom downstairs, or it is upstairs.

(Notice that this example 9 is equivalent to example 10, If it is not the case that
there is a bathroom downstairs, then it is upstairs.) In normal form, the translation
of example 9 reads as follows:

Edi[↑bathroom(di) ; ↑downstairs(di)] or ↑upstairs(di)

This formula has the following truth-conditions:

↓[Edi[↑bathroom(di) ; ↑downstairs(di)] or ↑upstairs(di)] ⇔
↓∼[∼Edi[↑bathroom(di) ; ↑downstairs(di)] ; ∼↑upstairs(di)] ⇔
↓∼[Adi[↑bathroom(di) ⇒ ∼↑downstairs(di)] ; ∼↑upstairs(di)] ⇔
↓∼Adi[↑bathroom(di) ⇒ [∼↑downstairs(di) ; ∼↑upstairs(di)]] ⇔
↓Edi[↑bathroom(di) ; ∼[∼↑downstairs(di) ; ∼↑upstairs(di)]] ⇔
↓Edi[↑bathroom(di) ; [↑downstairs(di) or ↑upstairs(di)]] ⇔
∃di(bathroom(di) ∧ (downstairs(di) ∨ upstairs(di))) ⇔
∃x(bathroom(x) ∧ (downstairs(x) ∨ upstairs(x)))

(By means of the definition of or, the facts 2.11, 2.10 and 2.11 again, the definition
of or, and the facts 2.11 and 2.4 from chapter 1.) The example is true iff there is a
bathroom which is either downstairs or upstairs.

If a chessbox doesn’t contain a spare pawn, it is taped on top of it.

The last example that I discuss has the following translation:

Edi[↑c box(di) ; ∼Edj [↑s pawn(dj) ; ↑in(di)(dj)]] ⇒ ↑on(di)(dj)

The truth-conditions of this formula are determined as follows:
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↓[Edi[↑c box(di) ; ∼Edj [↑s pawn(dj) ; ↑in(di)(dj)]] ⇒ ↑on(di)(dj)] ⇔
↓[Edi[↑c box(di) ; Adj [↑s pawn(dj) ⇒ ∼↑in(di)(dj)]] ⇒ ↑on(di)(dj)] ⇔
↓∼[Edi[↑c box(di) ; Adj [↑s pawn(dj) ⇒ ∼↑in(di)(dj)]] ; ∼↑on(di)(dj)] ⇔
↓∼Edi[↑c box(di) ; Adj[↑s pawn(dj) ⇒ [∼↑in(di)(dj) ; ∼↑on(di)(dj)]]] ⇔
↓Adi[↑c box(di) ⇒ ∼Adj [↑s pawn(dj) ⇒ [∼↑in(di)(dj) ; ∼↑on(di)(dj)]]] ⇔
↓Adi[↑c box(di) ⇒ Edj [↑s pawn(dj) ; ∼[∼↑in(di)(dj) ; ∼↑on(di)(dj)]]] ⇔
↓Adi[↑c box(di) ⇒ Edj [↑s pawn(dj) ; [↑in(di)(dj) or ↑on(di)(dj)]]] ⇔
∀di(c box(di) → ∃dj(s pawn(dj) ∧ (in(di)(dj) ∨ on(di)(dj)))) ⇔
∀x(c box(x) → ∃y(s pawn(y) ∧ (in(x)(y) ∨ on(x)(y))))

(By means of the fact 2.11, the definition of ⇒, fact 2.10, fact 2.11 again (twice), the
definition of or, and the facts 2.11 and 2.4 from chapter 1.) The example is true iff
every chessbox comes with a spare pawn which is either inside of the box, or taped
to the top of it.

To end this section, we may conclude that DMG(2) gives a uniform and compo-
sitional treatment of the anaphoric relationships in the examples 1–10 solely in
terms of the DFL(2) lift of DIL constants, application, abstraction and the dynamic
notions of negation, existential quantification and conjunction. Like in extended
DMG, the dynamic notion of negation brings along dynamic notions of universal
quantification, implication and disjunction in terms of which these examples are
satisfactorily analyzed. Unlike the extended DMG notion of dynamic negation, the
DMG(2) notion of negation preserves the upward monotonicity of all DFL formulas,
and, hence, ensures that the interpretation of successive sentences involves informa-
tion update. Consequently, the examples at issue are analyzed without a need for
the constraints which extended DMG imposes in order to guarantee sound inter-
pretation, and without making further adjustments (by introducing ambiguities) in
order to be able always to comply with these constraints.

2.3 DMG, extended DMG and DMG(2)

Let us take stock. In chapter 1, section 3.2 I have sketched Groenendijk and Stokhof’s
DMG and in section 2.1 of the present chapter I have proposed an alternative
but equivalent system DMG(2). Furthermore, I have considered Groenendijk and
Stokhof’s extended dynamic version of DMG (section 1.1 of this chapter), and,
finally, I have proposed my own extended dynamic version of DMG(2) (section 2.2
of this chapter). So, three different systems have passed in revue. In order to conclude
this chapter, I show the characteristic properties of the three systems concerned (i.e.,
DFL, extended DFL, and DFL(2)) in terms of the (different) ways in which closed
expressions in the three systems can be reduced to ordinary DIL expressions.

I will define three reduction algorithms ♦, ♥ and ♠ for DFL, extended DFL, and
DFL(2), respectively. For any DFL or DFL(2) expression Φ without free variables,



2. Dynamic Montague grammar(2) 73

these algorithms generate a DIL formula that specifies the static contents of Φ. I
represent the DFL (and DFL(2)) language here as having two primitive forms of
quantification (Ed and Ad) and two sentential connectives (; and ⇒). This gives
some redundancy in the definition of the algorithms, but it facilitates their practical
application.

I start with the reduction algorithm ♦ for DFL.

Definition 2.8 (DFL reduction)
1. (↑φ)♦ = φ
2. (β(α))♦ = ((β(α))◦)♦

3. (λT↑aβ)♦ = λT ′
a ([↑T ′/T ]β)♦ (T ′ not free in Φ)

4. (α =̃ β)♦ = (α♦ = β♦)
5. (∼Φ)♦ = ¬(Φ)♦

6. (EdΦ)♦ = ∃d(Φ)♦

(AdΦ)♦ = ∀d(Φ)♦

7. [↑φ ; Ψ]♦ = ((↑φ)♦ ∧ Ψ♦)
[↑φ⇒ Ψ]♦ = ((↑φ)♦ → Ψ♦)

8. [β(α) ; Ψ]♦ = [(β(α))◦ ; Ψ]♦

[β(α) ⇒ Ψ]♦ = [(β(α))◦ ⇒ Ψ]♦

9. [(α =̃ β) ; Ψ]♦ = ((α =̃ β)♦ ∧ Ψ♦)
[(α =̃ β) ⇒ Ψ]♦ = ((α =̃ β)♦ → Ψ♦)

10. [∼Φ ; Ψ]♦ = ((∼Φ)♦ ∧ Ψ♦)
[∼Φ ⇒ Ψ]♦ = ((∼Φ)♦ → Ψ♦)

11. [EdΦ ; Ψ]♦ = (Ed[Φ ; Ψ])♦

[EdΦ ⇒ Ψ]♦ = (Ad[Φ ⇒ Ψ])♦

12. [AdΦ ; Ψ]♦ = ((AdΦ)♦ ∧ Ψ♦)
[AdΦ ⇒ Ψ]♦ = ((AdΦ)♦ → Ψ♦)

13. [[Φ ; Ψ] ; Υ]♦ = [Φ ; [Ψ ; Υ]]♦

[[Φ ; Ψ] ⇒ Υ]♦ = [Φ ⇒ [Ψ ⇒ Υ]]♦

14. [[Φ ⇒ Ψ] ; Υ]♦ = ([Φ ⇒ Ψ]♦ ∧ Υ♦)
[[Φ ⇒ Ψ] ⇒ Υ]♦ = ([Φ ⇒ Ψ]♦ → Υ♦)

where ((↑β)(α))◦ = ↑(β(α♦))
((λT β)(α))◦ = [α/T ]β if all free variables in α are free for T in β
(β(α1)(α2))

◦ = ((β(α1))
◦(α2))

◦

The (simultaneously defined) auxiliary algorithm ◦ normalizes application structures
of the form β(α). In such application structures β is either a raised term (a raised
constant, variable or application structure), or a λ-term, or an application structure
itself. (β can not be a plain variable since we only consider the reduction of DFL
expressions without free variables. However, it can be a raised free variable ↑T which
is introduced in the reduction of λ-terms.)
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In the first case the application of the lift of β to α is replaced by the lift of
the application of β to the reduction of α. So, the lifting operator ↑ is exported,
and can be subject to subsequent ♦ reduction. In the second case λ-conversion takes
place. (If some free variables in α are not free for T in β, we may use an alphabetical
variant of β.) In the third case, the application structure β(α1) is normalized first,
and the application of this normalized structure to α2 is normalized next. Notice
that in any case the application of ◦ produces a normalized expression which is
subject to further ♦ reduction.

Inspecting the clauses of definition 2.8, we see that in cases of genuine reduction
either the lifting operator disappears (clause 1), or abstraction over objects of a
raised type ↑a is replaced by abstraction over objects of type a (clause 3), or dynamic
operators are replaced by their static counterparts (clauses 4–7, 9, 10, 12 and 14).
In the remaining clauses we either find a normalization of application structures by
means of the auxiliary algorithm ◦ (clauses 2 and 8), or applications of the DFL
associativity facts, which are used to put a formula in its so-called ‘normal binding
form’ (clauses 11 and 13).

The following facts tells us that the algorithm ♦ effectively determines the static
contents of the DFL expression which it is applied to:

Fact 2.13 (DFL closure)
For every DFL expression Φ without free variables:

• ↓Φ ⇔ Φ♦

I now turn to the reduction algorithm ♥ for extended DFL. Apart from three clauses
its definition equals that of the reduction algorithm for DFL.

Definition 2.9 (Extended DFL reduction)
♥ is like ♦ except for the clauses 10, 12 and 14:

10. [∼Φ ; Ψ]♥ = (∼[Φ ; Ψ])♥

[∼Φ ⇒ Ψ]♥ = (∼[Φ ⇒ Ψ])♥

12. [AdΦ ; Ψ]♥ = (Ad[Φ ; Ψ])♥

[AdΦ ⇒ Ψ]♥ = (Ed[Φ ⇒ Ψ])♥

14. [[Φ ⇒ Ψ] ; Υ]♥ = [Φ ⇒ [Ψ ; Υ]]♥

[[Φ ⇒ Ψ] ⇒ Υ]♥ = [Φ ; [Ψ ⇒ Υ]]♥

Fact 2.14 (Extended DFL closure)
For every extended DFL expression Φ without free variables:

• ↓Φ ⇔ Φ♥

So, the characteristic difference between DMG and extended DMG lies in the asso-
ciativity of negation, universal quantification and implication with conjunction and
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implication. As was argued in section 1, the associativity of the last two operators
(Ad and ⇒) is well-motivated, but that of the first (∼) is problematic.

I now turn to the reduction algorithm ♠ for extended DFL. Apart from the clause
for the reduction of the conjunction of the negation of a formula Φ with a formula
Ψ, its definition equals that of the reduction algorithm for extended DFL. The most
perspicuous reduction is obtained by employing an ∼-elimination scheme •:

Definition 2.10 (DFL(2) reduction)
♠ is like ♥ except for the following clause:

10. [∼Φ ; Ψ]♠ = ([(∼Φ)• ; Ψ])♠

[∼Φ ⇒ Ψ]♠ = ([(∼Φ)• ⇒ Ψ])♠

where
• (∼↑φ)• = ↑¬φ
• (∼β(α))• = (∼(β(α))⋆)•

• (∼(α =̃ β))• = ↑¬((α =̃ β)♠)
• (∼∼Φ)• = Φ
• (∼EdΦ)• = Ad(∼Φ)•

(∼AdΦ)• = Ed(∼Φ)•

• (∼[Φ ; Ψ])• = [Φ ⇒ (∼Ψ)•]
(∼[Φ ⇒ Ψ])• = [Φ ; (∼Ψ)•]

where ⋆ is like ◦ except that ((↑β)(α))⋆ = ↑(β(α♠)), of course.

Fact 2.15 (DFL(2) closure)
For every DFL(2) expression Φ without free variables:

• ↓Φ ⇔ Φ♠

Observe that the negation elimination scheme displays a classical pattern. So, char-
acteristic of DMG(2) are just the associativity facts (cf., clauses 11 in definition
2.8, preserved in definition 2.10) and the extended associativity facts (cf., clauses 12
and 14 in definition 2.9, also preserved in definition 2.10). The last, especially, are
validated without allowing negation to associate with conjunction.

***

We have seen that DMG gives a fully compositional reformulation of basic aspects
of DRT. For as far as donkey anaphora or, more in general, intersentential rela-
tionships between indefinite noun phrases and pronouns are concerned, DMG shows
there is no need to resort to an intermediary level of representation. Furthermore, in
DMG the topic of extended dynamic interpretation quite naturally arises, but, as is
argued in the section 1.2 and 1.3, the framework does not allow a fully satisfactory
treatment of it. The phenomena of extended dynamic interpretation at issue seem to
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require a notion of dynamic negation, but in DMG such a notion appears to gener-
ate unwanted monotonicity properties, and, as a consequence, it yields information
downdate in cases where information update would be appropriate. For that reason,
the resulting system has to be kept under control by constraints.

What I have shown is that, basically, a reformulation of DMG in a higher
type gives us just the amount of elbow room required for an adequate definition of
dynamic negation with the right monotonicity properties. The proposed notion of
negation has been studied to some extent and it has been shown that it generates
the purported dynamic interpretation of the other (derived) sentential operators.
Apart from that it appears to behave classically.

Of course we are not done yet. As already was indicated at the start of section
1.2, the extended dynamic interpretation of the derived operators is not their most
usual one, and it remains an issue what factors in fact trigger their extended dy-
namic interpretation. I also indicated there that for our present concerns we may
content ourselves with unraveling the logic of the extended dynamics, and, further-
more, with the fact that the classical, static interpretation of the logical operators
at issue remains definable in terms of their dynamic interpretation and the static
closure operation. Still, the triggering issue can not be neglected in a full-blown
extended dynamic semantics. Without going into much detail, I will conclude with
some examples where the issue is most pressing.

In DMG(2) we have recovered the classical interdefinability of the sentential
operators and quantifiers, and this, it seems, is well motivated by the interdefinability
phenomena in natural language which appear to be preserved also when extended
dynamic interpretation is concerned. For instance, this interdefinability correctly
predicts the equivalence between the bathroom disjunction 5 and the bathroom im-
plication 6 and it also serves to give a single explanation of the dynamics of the
natural language determiners no and every as displayed in, for instance, the exam-
ples 4 and 7 respectively. However, there appears to be a limit to this interdefinability
in natural language.

Consider the following examples:

(11) If there is no bathroom downstairs, then it is upstairs.
(12) If every bathroom is not downstairs, then it is upstairs.

In DMG(2), and in extended DMG, the two sentences are equivalent. Still, intu-
itively they do not seem (fully) equivalent. In example 11, the pronoun it appears to
trigger an extended dynamic interpretation of the antecedent of the conditional and
the example therefore entails the existence of a bathroom which, if it is not down-
stairs, is upstairs. However, example 12 does not seem to entail anything about the
existence of bathrooms. It even seems impossible to establish a sensible anaphoric
relationship in example 12.19 In other words, in examples such as 11 and 12, the

19. This has already been observed in Egli [1979, pp. 275-276]. Examples like these are also discussed
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classical interdefinability of the quantifiers seems not to be reflected by linguistic
facts.

Something similar goes for the following pair of examples:

(13) There is a boy who did not pass the exam. He failed on TEX-tronics.
(14) Not every boy passed the exam. He failed on TEX-tronics.

The first example of this pair displays an ordinary anaphoric relationship between
the pronoun he and the indefinite noun phrase a boy . However, in the second exam-
ple, which is predicted to be equivalent, the anaphoric relationship seems impossible.

It appears that the factors that trigger extended dynamic interpretation dis-
tinguish between quantified structures which are traditionally conceived of as equiv-
alent, or, alternatively, that allegedly equivalent quantified structures display differ-
ent extended dynamic behaviour. The factors which trigger or suppress (extended)
dynamic interpretation enable an anaphoric reading of the examples 11 and 13,
whereas they prohibit an equivalent reading of the examples 12 and 14, respectively.
So, in view of examples such as 11–14, the rigid interdefinability of the quantifiers
and operators may have to be relaxed, in some or other way. However, since, as is
already remarked, a treatment of the triggering issue falls beyond the scope of this
chapter, a further investigation of this topic must be left for another occasion.

***

As for a final conclusion, I think we may say that the extended dynamic enterprise
did pay its dividends. At least a principled and systematic semantic account has
been given of a range of phenomena that at first glance might seem considerably
intractable. Furthermore, if it were not inspired by the compositional treatment
of anaphoric relationships in Groenendijk and Stokhof’s DMG, I think we would
have had a hard time to run up against the systematic behaviour that the extended
dynamics does display.

Appendix

In the proofs of some facts stated in this chapter, I use the superscript † to indicate
the interpretation of an expression or operator in DFL and ‡ to refer to its interpre-
tation in DFL(2). In equivalences df means ‘by definition’, rd means ‘by reduction’
and ih means ‘by induction hypothesis’.

I start with a proof of the arrow elimination facts.

Facts 1.2.5, 2.1, 2.3
• ↓↑φ⇔ φ where ↓↑ is either ↓†↑†, ↓‡↑‡ or ⇓⇑

in Heim [1982, p. 58ff] and Roberts [1989, p. 703].
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These facts are proven by induction on the type of φ. Basic cases:

↓†↑†αe =df
∨∧α =df ↓‡↑‡αe =df ⇓⇑αe

↓†↑†φt =df
∨(∧λp(φ ∧ ∨p))(∧true) ⇔rd φ ∧ true ⇔rd φ

↓‡↑‡φt =df
∨(∧λR ∨R(∧φ))(∧λp ∨p) ⇔rd (λp ∨p)(∧φ) ⇔rd φ

⇓⇑φ↑†t
=df

∧λq∨(∧λR∨φ(∧∨R(∧true)))(∧λp(∨p ∧ ∨q)) ⇔rd
∧λq∨φ(∧∨q) ⇔∗ φ

(∗ φ is intensionally closed; q is not free in φ.)

The induction steps, the same in all three cases, look as follows:

↓↑φ〈a,b〉 =df λxa ↓↑(φ(↓↑x)) ⇔ih φ

The following fact is used in the proof of the equivalence of DFL and DFL(2):

Fact 2.16
• ⇓↑‡φ⇔ ↑†φ

↓‡⇑Φ ⇔ ↓†Φ

This fact is proved by simultaneous induction on the types a and ↑†a of φ and Φ,
respectively. Basic case for the types t and ↑†t (for the types e and ↑†e (= 〈s, e〉) the
proof is straightforward):

⇓↑‡φt =df
∧λq ∨∧(λR ∨R(∧φ))(∧λp (∨p ∧ ∨q)) ⇔rd

∧λq (φ ∧ ∨q) =df ↑†φ

↓‡⇑Φ↑†t
=df

∨(∧λR ∨Φ(∧ ∨R(∧true)))(∧λp ∨p) ⇔rd
∨Φ(∧true) =df ↓†Φ

Induction:

⇓↑‡φ〈a,b〉 =df λx ⇓↑‡(φ(↓‡⇑x)) ⇔ih λx ↑†(φ(↓†x)) =df ↑†φ

↓‡⇑Φ↑†〈a,b〉
=df λx ↓‡⇑(Φ(⇓↑‡x)) ⇔ih λx ↓†(Φ(↑†x)) =df ↓†Φ

Now I turn to the proof of the equivalence facts 2.2 and 2.4:

Facts 2.2, 2.4
For every DFL sentence Φ:

• ↓‡Φ′‡ ⇔ ↓†Φ†

• ⇓Φ′‡ ⇔ Φ†

where Φ′ is obtained from Φ by substituting every n-th variable T of type ↑†a in Φ
by the n-th variable T ′ of type ↑‡a

Although the facts are stated for sentences, they will be proved for arbitrary ex-
pressions without free variables. Furthermore, since free variables do appear in the
induction used in the proof, something even stronger has to be proved. What in fact
needs to be proved are the following equivalences:

• ↓‡Φ‘′‡ ⇔ ↓†Φ‘†

• ⇓Φ‘′‡ ⇔ Φ‘†

where Φ‘ is obtained from Φ by



2. Dynamic Montague grammar(2) 79

– substituting every n-th free variable V of type ↑†a in Φ by ↑U , where U
is the n-th variable of type a if n is odd

and where Φ‘′ is obtained from Φ‘ by
– substituting every n-th free variable T of type ↑†a in Φ‘ by ⇑T if n is even
– substituting every other n-th variable T of type ↑†a in Φ‘ by the n-th

variable T ′ of type ↑‡a
Typically, the inductive proof that ↓‡(λV Φ)‘′‡ ⇔ ↓†(λV Φ)‘† uses the induction hy-
pothesis that ↓‡Φ‘′‡ ⇔ ↓†Φ‘†, where free occurrences of the variable V in Φ are
replaced by ↑U in Φ‘† and Φ‘′‡. So, in that case V (and U) are assumed to be odd
numbered variables. In case they are even numbered, the proof proceeds by replacing
them by odd numbered variables first.

Similarly, the inductive proof that ⇓(λTΦ)‘′‡ ⇔ (λTΦ)‘† uses the induction
hypothesis that ⇓Φ‘′‡ ⇔ Φ‘†, where free occurrences of the variable T in Φ (and Φ‘†)
are replaced by ⇑T in Φ‘′‡. So, in that case T is assumed to be an even numbered
variable. In case it is odd numbered, the proof proceeds by replacing it by an even
numbered variable first.

The proof proceeds by (simultaneous) induction on the complexity of Φ. Basic cases
(the variable T is assumed to be even numbered; in case it is numbered odd, then
T ‘ is ↑T , and the proof is as in the case of a constant con):

↓‡(↑con)‘′‡ =df ↓‡↑‡con ⇔1.2.5,2.1 ↓†↑†con =df ↓†(↑con)‘†

⇓(↑con)‘′‡ =df ⇓↑‡con ⇔2.16 ↑†con =df (↑con)‘†

↓‡(T )‘′‡ =df ↓‡⇑T ⇔2.16 ↓†T =df ↓†(T )‘†

⇓(T )‘′‡ =df ⇓⇑T ⇔2.3 T =df (T )‘†

As concerns application structures, I assume that Φ is in normal form, i.e., that all
λ-conversions have been executed (possibly after renaming of variables). Therefore,
the head functor in an application structure is either a raised constant or a (raised)
variable. I restrict attention to singular application structures (having the form
β(α)) since the generalization to multiple application structures (having the form
β(α1) . . . (αn)) is straightforward. The variable T is assumed to be even numbered.
In case T is odd, (T (α))‘ = ↑T (α′). Induction for application structures:

↓‡(↑con(α))‘′‡ =df ↓‡↑‡con(↓‡α‘′‡) =ih ↓‡↑‡con(↓†α‘†) ⇔1.2.5,2.1

↓†↑†con(↓†α‘†) =df ↓†(↑con(α))‘†

⇓(↑con(α))‘′‡ =df ⇓↑‡(con(↓‡α‘′‡)) ⇔ih ⇓↑‡(con(↓†α‘†)) ⇔2.16

↑†(con(↓†α‘†)) =df (↑con(α))‘†

↓‡(T (α))‘′‡ =df ↓‡(⇑T (α‘′‡)) =df ↓‡⇑(T (⇓α‘′‡)) ⇔ih

↓‡⇑(T (α‘†)) ⇔1.2.5,2.1 ↓†T (α‘†) =df ↓†(T (α))‘†

⇓(T (α))‘′‡ =df ⇓(⇑T (α‘′‡)) =df ⇓⇑(T (⇓α‘′‡)) ⇔ih

⇓⇑(T (α‘†)) ⇔2.3 T (α‘†) =df (T (α))‘†
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In the induction for λ-terms, T is assumed to be numbered even and V odd. If V is
the n-th variable of type ↑†a, then U is the n-th variable of type a. Induction:

↓‡(λV Φ)‘′‡ ⇔1 λU ↓‡(Φ)‘′‡ ⇔ih λU ↓†(Φ)‘† ⇔2 ↓†(λV Φ)‘†

⇓(λT Φ)‘′‡ ⇔3 λT ⇓Φ‘′‡ ⇔ih λT Φ‘† ⇔4 (λT Φ)‘†

(1) If V ′ is the n-th variable of type ↑‡a, ↓‡(λV Φ)‘′‡ equals ↓‡(λV ′ ([V ′/V ]Φ)‘′‡) (by
the definition of ′), which equals λU ↓‡([↑U/V ′][V ′/V ]Φ)‘′‡) (by the definition of ↓
and λ-conversion) and this equals λU ↓‡Φ‘′‡ (by the definition of ‘; V is assumed to
be numbered odd). (2) Similarly, ↓†(λV Φ)‘† equals λU↓†([↑U/V ]Φ)‘† (definition of
↓ and λ-conversion) which equals λU ↓†(Φ)‘† (by the definition of ‘; V and U are
assumed to be numbered odd). (3) Furthermore, if T and T ′ are the n-th variables
of type ↑†a and ↑‡a, respectively, ⇓(λT Φ)‘′‡ equals ⇓λT ′ ([T ′/T ]Φ)‘′‡ (definition
of ′) which equals λT ⇓([⇑T/T ′][T ′/T ]Φ)‘′‡ (definition of ⇓ and λ-conversion) which
equals λT ⇓Φ‘′‡ (definition of ‘; T is assumed to be numbered even). (4) Finally,
λT Φ‘† equals (λT Φ)‘†. (T is assumed to be numbered even.)

Induction for the sentential operators:

↓‡(α =̃ β)‘′‡ ⇔df,rd (↓‡(α)‘′‡ = ↓‡(α)‘′‡) ⇔ih

(↓†(α)‘† = ↓†(α)‘†) ⇔df,rd ↓†(α =̃ β)‘†

⇓(α =̃ β)‘′‡ ⇔df,rd ⇓↑‡((↓α)‘′‡ = (↓β))‘′‡ ⇔2.16

↑†((↓α)‘′‡ = (↓β))‘′‡ ⇔ih

↑†((↓α)‘† = (↓β))‘† ⇔df,rd (α =̃ β)‘†

↓‡(∼Φ)‘′‡ ⇔df,rd ¬↓‡(Φ)‘′‡ ⇔ih ¬↓†(Φ)‘† ⇔df,rd ↓†(∼Φ)‘†

⇓(∼Φ)‘′‡ ⇔df,rd
∧λq (¬∨Φ‘′‡(∧λp ∨p) ∧ ∨q) ⇔df,rd
∧λq (¬∨⇓Φ‘′‡(∧true) ∧ ∨q) ⇔ih
∧λq (¬∨Φ‘†(∧true) ∧ ∨q) ⇔df,rd (∼Φ)‘†

↓‡(EdΦ)‘′‡ ⇔df,rd ∃d↓‡(Φ)‘′‡ ⇔ih ∃d↓†(Φ)‘† ⇔df,rd ↓†(EdΦ)‘†

⇓(EdΦ)‘′‡ ⇔df,rd
∧λq ∃d(∨Φ‘′‡(∧λp ∨p ∧ ∨q)) ⇔df,rd
∧λq ∃d(∨⇓Φ‘′‡(q)) ⇔ih

∧λq ∃d(∨Φ‘†(q)) ⇔df,rd (EdΦ)‘†

↓‡(Φ ; Ψ)‘′‡ ⇔df,rd
∨Φ‘′‡(∧λp ∨p ∧ ∨Ψ‘′‡(∧λp ∨p)) ⇔df,rd
∨⇓Φ‘′‡(∧ ∨⇓Ψ‘′‡(∧true)) ⇔ih
∨Φ‘†(∧ ∨Ψ‘†(∧true)) ⇔df,rd ↓†(Φ ; Ψ)‘†

⇓(Φ ; Ψ)‘′‡ ⇔df,rd
∧λq ∨Φ‘′‡(∧λp ∨p ∧ ∨Ψ‘′‡(∧λp ∨p ∧ ∨q)) ⇔df,rd
∧λq ∨⇓Φ‘′‡(∧ ∨⇓Ψ‘′‡(q)) ⇔ih
∧λq ∨Φ‘†(∧ ∨Ψ‘†(q)) ⇔df,rd (Φ ; Ψ)‘†

Fact 2.2 and 2.4 are proved as follows now. Since there are no free variables in Φ,
↓‡Φ′‡ is ↓‡Φ‘′‡, which by the above proof equals ↓†Φ‘† which is ↓†Φ†; for the same
reason ⇓Φ′‡ is ⇓Φ‘′‡, which by the above proof equals Φ‘† which is Φ†.



Chapter 3

Flexible and dynamic interpretation

In the preceding two chapters we have seen some sample systems which give a com-
positional treatment of (some of) the dynamics of natural language interpretation.
The dynamics is accounted for by translating the sentences of natural language into
sentences of a formal language (that of DPL, DFL, or DFL(2)) which has a genuinely
dynamic interpretation. The crucial notions in these systems are those of dynamic
conjunction, dynamic existential quantification, and, in DFL(2), dynamic negation.

An interesting question that comes to mind now is whether it is really nec-
essary to employ a dynamic formalism. Wouldn’t it be possible to obtain the same
results statically? This chapter aims to show that this is indeed possible within a
static classical system if we add a certain flexibility in interpretation.1 As we will see
in this chapter, the adoption of a version of Hendriks’ [1988, 1992] system of type
change on top of a relatively simple basic fragment of natural language, enables us
to account for the phenomena dealt with in the preceding two chapters, and for
much more.

A flexible approach to the phenomena involved seems a natural choice for two rea-
sons. In the first place, the DMG(2) type of sentence meanings turns out to be a
derived type of sentence meanings in several kinds of flexible categorial grammars,
and the DMG(2) lift ↑ of formulas corresponds to a rule of lifting or value raising
which is generally available in such grammars. So, DMG(2) and flexible systems
of interpretation already have something in common. In the second place, the dy-
namics of DMG and DMG(2) has to do, apparently, with the (extended) scope of
quantifiers and sentential operators. Since we are dealing with scope and shifting
scope configurations, it seems natural to try to apply a flexible account of quantifier
scope to the extended dynamic phenomena discussed in the preceding chapter.

1. Cf., Zeevat [1989, 1991] for an alternative static and compositional reformulation of DRT.
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In this chapter a flexible approach is adopted in order to account for the dynamics
of interpretation we have considered sofar. It may be expedient to indicate two
‘limitations’ of this enterprise first. Structures in discourse will be analyzed in terms
of the scope of quantifiers and (sentential) operators. There is no intention to treat
other quantifiers than the classical four, or to account for different ways to organize
discourse than by means of the classical connectives.

Furthermore, it will become clear presently that a flexible approach like the
one adopted here greatly overgenerates. Already in Hendriks’ original system, which
deals with scope phenomena at the sentential level, we find a vast landscape of
possible readings, not all of which are realized in natural languages, and the numbers
of readings greatly increase when the system is applied to scope phenomena at
the level of discourse. I will not have much to say about (the controlling of) the
numbers of readings. The main aim is simply to see to what extent dynamic aspects
of meaning can be accounted for statically.

We will proceed as follows. Section 1 presents a (restricted) version of Hendriks’
flexible Montague grammar (FMG) which gives a treatment of quantifier scope
phenomena within sentences. In section 2, the class of scope bearing elements is
extended with sentential connectives and the system of type change is applied at
the level of discourse. Some basic DMG(2) notions turn out to be derivable notions
and a first set of examples dealt with in DMG(2) (and DMG) is accounted for
flexibly. Section 3 addresses the issue of the extended scope of downward monotonic
expressions. Here I introduce a generalized notion of the dual of chapter 2 in the
system of type shifts. The incorporation of this dual in the type changing system
allows us to derive the other DFL(2) notions and to treat the remaining examples
dealt with in DMG(2). Section 4 finally discusses some remaining issues.

1 Flexible Montague grammar

Hendriks [1988, 1992] presents a flexible Montague grammar, FMG, in which the
lexical expressions of a fragment of natural language are associated with the simplest
types their meaning allows for.2 The complications brought along by phenomena of
quantifier scope, which led Montague to the association of natural language expres-
sions with interpretations in more involved types, are handled in Hendriks’ system
by means of the adoption of a flexible category-to-type assignment together with
a system of type shifting rules. The type changing system is presented as an alter-
native to and an improvement of other approaches to quantifier scope phenomena
(such as Cooper’s storage mechanism). Here, I will not discuss the relative merits of

2. Hendriks presents the first systematic elaboration of the adoption of semantic type flexibility
which has been argued for in, among others, Partee and Rooth [1983], van Benthem [1984] and
Groenendijk and Stokhof [1984, Ch. VI].
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different approaches to quantifier scope phenomena, but I present Hendriks’ system
right away (see Hendriks [1988, 1992] for extensive discussion). I first discuss (a part
of) the basic fragment and then show how the system of type shifts fits in.

The basic FMG fragment

In FMG, expressions of the fragment of natural language belong to the basic cat-
egories S (the category of sentences), CN (the category of common nouns), NP
(the category of noun phrases), or to derived categories of the form A/B and B\A.
Derived categories which are employed in the fragment are those of intransitive
verb phrases IV (= NP\S), of determiners DET (= NP/CN), and of transitive
verb phrases TV (= IV/NP). Each category is assigned a unique basic type by the
function f which is defined as follows:

Definition 1.1 (Basic category to type assignment)
• f(S) = t
f(NP) = e
f(CN) = 〈〈s, e〉, t〉

• f(A/B) = f(B\A) = 〈〈s, f(B)〉, f(A)〉

As appears from the definition of the basic category to type assignment, the basic
types which are assigned to syntactic categories are essentially simpler than in tra-
ditional Montague grammar. The basic type of NP’s is that of individuals, instead
of (generalized) quantifiers over individual concepts, and the basic type of TV ’s is
that of relations between individual concepts instead of relations between individual
concepts and quantifiers over individual concepts.

The lexical expressions in the fragment are associated with basic translations. A
basic translation of an expression of a certain category is of the basic type assigned
to that category, or of a type derivable from the basic type by the type shifts defined
below. For reasons of readibility, I will write â for the type 〈s, a〉. In the following
definition x and y are variables of type ê, and P and Q of type 〈̂̂ e, t〉, john and
mary are constants of type e, man and walk are constants of type 〈e, t〉, and love is
a constant of type 〈e, 〈e, t〉〉3:

Definition 1.2 (Basic translations)
• manCN ; λx man(∨x)
• walkIV ; λx walk(∨x)
• loveTV ; λyλx love(∨y)(∨x)
• aDET ; λPλQ ∃x(∨P (∧x) ∧ ∨Q(∧x))

3. In Hendriks’ translation of common nouns like man also the PTQ meaning postulate is encoded
that such common nouns only hold of constant individual concepts. However, as in DMG(2), inten-
sional types and expressions have nothing to do with ordinary intensionality, and, hence, matters
concerning individual concepts and the like can be disregarded.
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• everyDET ; λPλQ ∀x(∨P (∧x) → ∨Q(∧x))
• noDET ; λPλQ ¬∃x(∨P (∧x) ∧ ∨Q(∧x))
• MaryNP ; mary

• JohnNP ; john

Natural language expressions are assigned basic translations which are as simple as
can be. So, on its basic translation, the noun phrase Mary denotes an individual,
viz., the denotation of mary, and the transitive verb love denotes a relation which
holds of two individual concepts iff their extensions stand in the relation denoted
by the constant love.

In some simple cases, the types of the basic translations of a functor expression
and an argument expression ‘fit’. For instance, the transitive verb loves has a basic
translation which can be applied to the intensions of the basic translations of the
noun phrases Mary and John. The resulting sentence John loves Mary has a basic
translation which can be reduced as follows:

(λyλx love(∨y)(∨x))(∧mary)(∧john) ⇔ love(mary)(john)

However, the determiners a, every and no have a translation which is not of the
basic type associated with the category DET. Recall that this category is defined as
NP/CN and that the basic type of NP’s is the type e.4 However, the combination
of these determiners with a common noun does not have a translation of the type
e of individuals, but of the type 〈̂ 〈̂ e, t〉, t〉 of quantifiers over individual concepts.
For this reason, a noun phrase which consists of such a determiner and a common
noun cannot immediately combine with intransitive verb phrases like the proper
names Mary and John do. Here Hendriks’ system of type flexibility comes in. The
translations of functor expressions can be made applicable to quantifying argument
expressions by means of a system of type shifts (which, at the same time, determine
the scope of the quantifying expressions).

Type sets

In addition to their basic translations, expressions of the FMG fragment are assigned
translations derived from the basic translations by general type shifting rules. Hen-
driks uses three such rules, the rules of value raising, argument raising and argument
lowering. The rule of value raising lifts expressions of a type a into expressions of
the type of quantifiers over the intensions of objects of type a. The rule of argument
raising lifts functional expressions which can be applied to expressions of a type

4. As a matter of fact, Hendriks associates the category DET with a basic type which is the type
of the translations of these determiners. In other words, in Hendriks’ system the basic type of the
category of determiners is not the type of functions from the intensions of the basic type of common
nouns to objects of the basic type of noun phrases. However, in both Hendriks’ and in the above
presentation of FMG, the combination of a determiner with a common noun makes up a noun
phrase which has a basic translation of a type which is not the basic type of NP’s.
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a into expressions which can be applied to expressions of the type of quantifiers
over objects of type a. For the purposes of this chapter we may disregard argument
lowering.

Hendriks’ rules allow us to assign expressions of the fragment derived translations of
different types. For this reason, the expressions of a certain category are associated
not just with a unique basic type, but with a set of derivable types. Before we define
the type sets associated with the categories of the fragment, it is useful to introduce
some notation conventions:

Notation convention 1
• If ~a is a sequence of types a1 . . . an, then 〈~a, b〉 = 〈a1, . . . 〈an, b〉 . . .〉
• If ~a is a sequence of types a1 . . . an, ~x a sequence of variables x1 . . . xn with

types a1 . . . an, respectively, and φ an expression of type b, then
λ~xφ = λx1 . . . λxnφ (of type 〈~a, b〉)

• If ~a is a sequence of types a1 . . . an, ~x a sequence of variables x1 . . . xn with
types a1 . . . an, respectively, and φ an expression of type 〈~a, b〉, then
φ(~x) = φ(x1) . . . (xn) (of type b)

Each syntactic category C is associated with a set of types T (C), the type set of
C. This set contains the basic type assigned to C, and types derived from the basic
type as in the following definition:

Definition 1.3 (Type set)
The type set T (C) of category C is the smallest set such that:

1. f(C) ∈ T (C)
2. if 〈~a, b〉 ∈ T (C), then 〈~a, 〈̂ 〈̂ b, t〉, t〉〉 ∈ T (C)
3. if 〈~a, 〈b, 〈~c, t〉〉〉 ∈ T (C), then 〈~a, 〈̂ 〈̂ 〈b, t〉, t〉, 〈~c, t〉〉〉 ∈ T (C)

where ~a and ~c are arbitrary sequences of types, and b is an arbitrary type

According to the first clause the basic type associated with a category is in its type
set. The second clause in this definition is related to the rule of value raising which
will be defined presently. By this clause, the type set of the category of noun phrases
also contains the type of quantifiers over individual concepts. The third clause in the
definition corresponds to the rule of argument raising. By this clause, the category
of transitive verb phrases is associated with a type set which also includes the type
of expressions which can be successively applied to two expressions which denote
quantifiers over individual concepts.

The FMG type shifts

Besides their basic translations, the lexical expressions of the FMG fragment are as-
signed translations derived from the basic translations by means of the rules of value
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raising and argument raising. Value raising is defined as follows (in this definition
n ≥ 1, derivability is indicated by the arrow ⇒):

Definition 1.4 (n-th Value raising)
If ~a is a sequence of types a1, . . . , an−1 and φ is an expression of type 〈~a, b〉, then

• φ⇒ λ~xλY ∨Y (∧φ(~x)) (~x and Y not free in φ)
where ~x is a sequence of variables of types a1, . . . , an−1 and Y is a variable of type
〈̂̂ b, t〉, all variables distinct5

If we raise the n-th value of φ, an expression results the application of which to
x1, . . . , xn−1 denotes the set of properties of the object denoted by the intension of
the application of φ to x1, . . . , xn−1. For instance, if we raise the first value of the
translation of the noun phrase Mary , we get the translation λP ∨P (∧mary), which
denotes the set of properties of the individual concept of Mary. Notice that this
is the translation of the proper name Mary in MG. In what follows I will write
[nVR](φ) to indicate the expression that results from raising the n-th value of φ.

Argument raising is defined as follows:

Definition 1.5 (n-th Argument raising)
If b is a type, ~a and ~c are sequences of types a1, . . . , an−1 and c1, . . . , cm and φ is an
expression of type 〈~a, 〈b, 〈~c, t〉〉〉, then

• φ⇒ λ~xλY λ~z ∨Y (∧λy φ(~x)(y)(~z)) (~x, Y , ~z and y not free in φ)
where ~x and ~z are sequences of variables of types a1, . . . , an−1 and c1, . . . , cm, and
y and Y are variables of type b and 〈̂̂ 〈b, t〉, t〉, all variables distinct

The result of raising the n-th argument of an expression φ will be indicated by
[nAR](φ). If the n-th argument of a function φ is of type b, then the n-th argu-
ment of the function [nAR](φ) is of the type of the intensions of quantifiers over
objects of the type b. So, if the first argument of the translation λyλx love(∨y)(∨x)
of the transitive verb love is raised, the resulting translation denotes the relation
between intensions of quantifiers over individual concepts and individual concepts
λTλx ∨T (∧λy love(∨y)(∨x)). Notice that this is the translation of the transitive
verb love in MG.

The FMG translation sets

Now that we have defined the basic translations of lexical expressions and the rules
to construct derived translations, we can define the sets of translations which are
assigned to FMG expressions. The translation set of a lexical expression consists of
its basic translation and translations derived from the basic translation by means of
value raising and argument raising:

5. Like Hendriks [1992], we might be more specific by requiring ~x to be the sequence of variables
x1, . . . , xn−1 where xi is the i-th variable of type ai. In what follows, I will pass over this subtlety.
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Definition 1.6 (Translation set)
The translation set α′′ of a lexical expression α is the smallest set such that:

• if α ; β, then β ∈ α′′

• if β ∈ α′′ and β ⇒ γ, then γ ∈ α′′

FMG finally has an adjusted rule of functional application. (For now I disregard
Hendriks’ rules for constructing conjunctions and disjunctions.) Since FMG has a
bidirectional grammar with two kinds of functor categories A\B and B/A, it has
two rules of application, right application and left application. Furthermore, since
expressions are assigned sets of translations, the application of an expression of a
functor category to an expression of the appropriate argument category also has a
set of translations, each element of which consists of the application of a translation
of the functor expression to the intension of a translation of the argument expression.
The translation sets of such constructions are defined as follows:

Definition 1.7 (Functional application)
The translation set (βB/A αA)′′B of a compound expression (βB/A αA)B is the smallest
set such that:

• if α′ ∈ α′′, β′ ∈ β′′, α′ has type a, and β′ type 〈̂ a, b〉 then β′(∧α′) ∈ (βB/A αA)′′B
(Similarly for (αA βA\B)B .)

An example

As was already said, FMG’s type shifting rules can be used to make mismatching
basic translations ‘fit’, and they serve to account for the different scope configura-
tions that may obtain between the quantifying noun phrases in a sentence. Consider
the following example:

(1) Every man loves a woman

This sentence has two readings, according to the respective scope of the two noun
phrases every man and a woman. On one of these readings every man has widest
scope, and on this reading the sentence is true iff for every man there is a woman
which he loves, possibly a different woman for each man. On the other reading a
woman has widest scope, and on that reading the sentence is true iff there is a
woman such that every man loves her. In FMG both readings are accounted for.

The noun phrases every man and a woman have basic translations which result
from applying the basic translations of every and a to the intensions of the basic
translations of man and woman, respectively. By λ-conversion and ∨∧-elimination
these translations can be reduced to the following expressions:

λQ ∀x(man(x) → ∨Q(∧x))
λQ ∃y(woman(y) ∧ ∨Q(∧y))
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Both expressions are of type 〈̂ 〈̂ e, t〉, t〉, which is not the type of the arguments of
the basic translation of the functor expression love, which is type ê. By means of
[1AR] and [2AR], the translation of the transitive verb love can be made applicable
to the translations of these two noun phrases. The two instances of [AR] can be
applied in two orders, and the order in which they are applied determines which of
the two noun phrases gets widest scope. If the first argument of the translation of
love is raised first, and next the second argument, then the second argument, viz,
the subject noun phrase every man, gets widest scope. If first the second argument
is raised, and next the first argument, then the first argument, i.e., the object noun
phrase a woman, gets widest scope.

So, the following two translations are in the translation set of love:

(i) [2AR]([1AR](λyλx love(∨y)(∨x))) ⇔
λV λU ∨U(∧λx ∨V (∧λy love(∨y)(∨x)))

(ii) [1AR]([2AR](λyλx love(∨y)(∨x))) ⇔
λV λU ∨V (∧λy ∨U(∧λx love∨(y)(∨x)))

If translation (i) is applied to the intension of the translation of a woman and to
the intension of the translation of every man, then we get the wide scope every man
translation of example 1, which can be reduced to the following formula:

∀x(man(x) → ∃y(woman(y) ∧ love(y)(x)))

If we use translation (ii) of the verb love, then we get the wide scope a woman
translation, which can be reduced to the following formula:

∃y(woman(y) ∧ ∀x(man(x) → love(y)(x)))

On deriving readings

Hendriks’ system of type change is very powerful. It allows one to generate all the
scope configurations between the quantifiers in a sentence that respect its applica-
tion structure. I conclude this section with an informal characterization of the way
in which specific scope configurations can be derived on the basis of the (syntac-
tic) application structure of an expression and the basic translations of its lexical
constituents. (The appendix to this chapter gives a more formal characterization of
the ‘lifting’ of quantifiers through application structures. See Hendriks [1992] for the
semantic properties of the type changing system.)

We may think of an application structure as a structure that consists of a lexical
expression of a functor category together with n argument expressions (n ≥ 0).
The arguments can be lexical expressions, too, but they may also be application
structures themselves (for example, embedded sentences, or compound relative noun
phrases). In the fragment of flexible Montague grammar, a functor may be applied to
an argument expression which has a basic translation of a type that does not match
with the type of the relevant argument place of the translation of the functor. For
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instance, the i-th argument place of the translation of a functor may be of type â,
whereas the i-th argument has a translation of the type of quantifiers over objects
of type â. In that case, I will say that the functor applies to a quantifying argument
in the i-th place.

In case a functor expression applies to a quantifying argument in the i-th place,
the type mismatch is resolved after applying [iAR] to the translation of the functor.
In that case the functor lands in the scope of the quantifying argument, together
with all of its arguments that do fit. If the functor has other quantifying arguments,
other instances of [AR] have to apply to the translation of the functor. A subsequent
application of [jAR] makes that the scope of a quantifying j-th argument comprises
the functor, of which the i-th argument is already raised, together with its ‘fitting’
arguments (among which is the quantifying i-th argument).

All basic type mismatches which are generated by the fragment above can be
resolved by means of argument raising only, and as long as the quantifying expres-
sions involved are arguments of the same functor, [AR] takes care of their scope
configurations, too. In order to extend the scope of quantifying arguments beyond
the application structure of which these arguments are immediate constituents, value
raising must be used. By first raising the value of a functor and after that of one
or more of its arguments, the quantifying arguments are lifted to a higher level in
an application structure. If the value of the functor is raised, then the functor with
its arguments constitutes a quantifying argument of a functor one level higher, and
[AR] has to apply to that functor in order to make it fit again. By applying the same
procedure to the functor of . . . the functor of a quantifying argument, the scope of
the argument can be made to comprise larger and larger bits of the application
structure in which it occurs.

Generally, in order to account for any conceivable scope configuration between
the quantifying expressions in a given application structure, we need zero or more
applications of [nVR] to the translations of functors which are applied to precisely
n − 1 arguments, and applications of [AR] to resolve basic type mismatches or to
resolve type mismatches which originate from applications of [VR].

2 Flexibility in discourse

Three adjustments must be made in order to turn FMG into a rudimentary flexible
discourse grammar that covers the results of DMG and DMG(2). In the first place, in
order to be able to account for the phenomenon of dynamic binding, natural language
expressions should be translated into DIL, instead of IL (cf., chapter 1).6 In what
follows this adjustment will simply be taken for granted, and the quantifiers ∃ and

6. As we have seen in chapter 1, DIL only provides for the prerequisites for a dynamic interpretation
of discourse markers. The system itself is not dynamic in an intuitive sense.
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∀ which occur in the translations of natural language expressions will be taken to
quantify over the values of discourse markers from now on. Pronouns are translated
as discourse markers and some suitable system of indexing is assumed.

The second adjustment consists in an extension of the class of (flexible) scope
bearing expressions. Not only quantifying noun phrases, but also sentential operators
turn out to be expressions with varying scope. Formally, this will be handled by
introducing these operators categorematically, as expressions of a syntactic functor
category, and by extending the type changing system with a rule that serves to
establish the varying scope of these operators.7 This adjustment will be carried out
in this section.

The third adjustment has to do with the lifting of downward monotonic ex-
pressions. This is the subject of section 3. In that section it will be argued that
an extension of the scope of such expressions requires an alternative interpretation
of the type shifts involved in the lifting. The required interpretation is based on a
generalization of the notion of a dual from chapter 2.

Extension of the basic FMG fragment

In order to extend a flexible sentence grammar to a flexible discourse grammar,
sentential connectives and modifiers are introduced categorematically. The operators
are associated with the following basic translations (p and q are variables of type t̂,
P and Q are variables of type 〈̂̂ e, t〉, and x is a variable of type ê):

Definition 2.1 (Basic translation of connectives and modifiers)
• notS/S ; λp ¬∨p

• .S\(S/S) ; λpλq (∨p ∧ ∨q)

• if(S/S)/S ; λpλq (∨p→ ∨q)

• orS\(S/S) ; λpλq (∨p ∨ ∨q)

• whoCN\(CN/IV ) ; λPλQλx (∨P (x) ∧ ∨Q(x))

The expression not is a sentence modifier which involves the negation of the sen-
tences to which it applies. The operator . is associated with an operation of sentence
sequencing. Semantically it involves the conjunction of any two sentences to which
it applies. With the lexical expression if conditional sentences if S, S′ can be con-
structed, with or disjunctions, and the relative pronoun who can be used to construct
adnominal relative clauses, like man who loves Mary .8

7. It must be pointed out here that Hendriks [1988, 1992] also deals with coordinations and with
their interaction with the scope of quantifiers, but in a syncategorematic way.
8. It is a deliberate limitation, not a principled one, that we don’t have relative clauses like man
whom Mary loves, cf., footnote 17 in chapter 1.
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As was already indicated, all these expressions will be treated as scope bearing
operators.9 More in particular, they will be considered to be operators which, like
quantifying noun phrases, can be assigned a variety of scopes. For instance, the scope
of the operator if will be subject to type changes which allow its nuclear scope to
extend to sentences which follow a conditional sentence in a discourse. Thus, we
will be able to account for sequences such as If a customer comes in he is offered
coffee. When he has finished his coffee, he is sent up to me, in which, apparently,
the second sentence is intended to stand in the scope of the if -clause.

For this reason the set of scope bearing expressions will be taken to consist
of all expressions of a type which ends in the type 〈̂ 〈~b, 〈~d, t〉〉〈~d, t〉〉, where ~b and ~d
are arbitrary sequences of types. This set includes expressions of the type 〈̂ 〈̂ b, t〉, t〉,
that is, expressions of the type of generalized quantifiers over objects of type b̂, but
it also includes modifying expressions of the type 〈̂ 〈~d, t〉, 〈~d, t〉〉.

The rule of division

The rules of [AR] and [VR] do not enable us to lift sentential modifiers and, thus,
extend the scope of these expressions. Therefore, some adaptation of the type chang-
ing system is called for. I will introduce a rule, that of division, which will enable us
to account for the varying scopes of both quantifying noun phrases and sentential
modifiers and operators. The rule is a generalization of a type shifting rule which
originates from Geach [1972]. The type shift, together with its interpretation, is
defined as follows:

Definition 2.2 (Type set (2))
The type set T (C) of category C is the smallest set such that:
1&2. as above

3. if 〈~a, 〈̂ 〈~b, 〈~d, t〉〉, 〈~d, t〉〉〉 ∈ T (C), then 〈~a, 〈̂ 〈~b, 〈c, 〈~d, t〉〉〉, 〈c, 〈~d, t〉〉〉〉 ∈ T (C)
where ~a, ~b and ~d are arbitrary sequences of types, c an arbitrary type

Definition 2.3 (Division of the n-th argument)
If ~a, ~b and ~d are sequences of types a1, . . . , an−1, b1, . . . , bm and d1, . . . , dk, c is a
type, and φ is an expression of type 〈~a, 〈̂ 〈~b, 〈~d, t〉〉, 〈~d, t〉〉〉, then

• φ⇒ λ~xλY λz φ(~x)(∧λ~y ∨Y (~y)(z)) (~x, Y and z not free in φ)
where ~x and ~y are sequences of variables of types a1, . . . , an−1 and b1, . . . , bm, and
z and Y are variables of type c and 〈̂~b, 〈c, 〈~d, t〉〉〉, all variables distinct

Let φ be a scope bearing expression of type 〈̂ 〈~b, 〈~d, t〉〉, 〈~d, t〉〉, which can be applied
to a function of type 〈̂~b, 〈~d, t〉〉. By means of division, φ can be made applicable
to a function of type 〈̂~b, 〈c, 〈~d, t〉〉〉 which has an additional argument slot of type

9. Such a conception of these operators fits in with the general scheme of quantification presented
in Partee [1991], cf., also Roberts [1992].
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c. The divided function ‘inherits’ this argument slot. So, by means of division, the
scope of an expression can be extended with additional arguments. Semantically, the
application of the divided expression to a function with such an additional argument
slot involves the (intensional) composition of both functions. The division of the n-th
argument of an expression φ into the type c will be indicated as [nGDc](φ).

Let us consider two examples. Let φ be the translation λQ ∀di(man(di) → ∨Q(∧di))
of the quantifying noun phrase every man. This translation can be applied to
the intension of the basic translation λx walk(∨x) of the intransitive verb phrase
walks. However, φ can be made to apply to the intension of the basic translation
λyλx hate(∨y)(∨x) of the transitive verb phrase hates as well. Since the latter has
an additional argument of type ê, φ has to be divided into the type ê, the result
of which can be reduced to the expression λSλx ∀di(man(di) → ∨S(∧di)(x)), where
S is a variable of type 〈̂̂ e, 〈̂ e, t〉〉. The application of this expression to the inten-
sion of the basic translation of the transitive verb hate reduces to the expression
λx ∀di(man(di) → hate(di)(∨x)), which denotes the set of individual concepts the
extensions of which hate every man. Notice that the same result can be obtained by
raising the first argument of the translation of the transitive verb, and applying that
translation to φ. (In fact, as we will see below, the adoption of the rule of division
allows us to do without [AR].)

The second example illustrates a central application of division. The same
expression φ can be made applicable to the intension of the raised translation
λxλR ∨R(∧walk(∨x)) of walks, where R has the type 〈̂̂ t, t〉. To this end φ has
to be divided into the type 〈̂̂ t, t〉 and the result of this can be reduced to the ex-
pression λPλR ∀di(man(di) → ∨P (∧di)(R)), with P a variable of type 〈̂̂ e, 〈̂ 〈̂ t, t〉, t〉〉.
The application of this expression to the intension of the raised translation of walk
can be reduced to the expression λR ∀di(man(di) → ∨R(∧walk(di))). Notice that
this expression equals the DFL(2) translation of the sentence Every man walks.

Before we turn to the flexible counterparts of some DMG and DMG(2) results, it
is useful to introduce two more notation conventions and to comment upon the
relation between [AR] and [GD].

The expression that results from dividing a scope bearing expression is always
a scope bearing expression. So, if the n-th argument of a function φ can be divided,
it can be divided several times. Such iterated division is abbreviated as follows:

Notation convention 2
If φ is an expression of type 〈~a, 〈̂ 〈~b, 〈~d, t〉〉, 〈~d, t〉〉〉, ~c a sequence of types c1, . . . , cm:

• [nGD~c](φ) = [nGDc1 ](. . . [nGDcm ](φ) . . .)

The division of φ into ~c yields an expression of the type 〈~a, 〈̂ 〈~b, 〈~c, 〈~d, t〉〉〉, 〈~c, 〈~d, t〉〉〉〉
which can be reduced to the expression λ~xλY λ~z φ(~x)(∧λ~y ∨Y (~y)(~z)), where ~z is a
sequence of variables of types c1, . . . , cm and Y is a variable of type 〈̂~b, 〈~c, 〈~d, t〉〉〉.
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Also, if the value of some expression is raised, the result is a scope bearing
expression. The iterated division of an expression of which the value is raised is
abbreviated as follows:

Notation convention 3
If φ is an expression of type 〈~a, b〉 and ~c a sequence of types c1, . . . , cm then:

• [nVR〈~c,t〉](φ) = [nGD~c]([nVR](φ))

If the n-th value of such an expression φ is raised, and the value is subsequently
divided into the sequence of types ~c, the resulting expression [nVR〈~c,t〉](φ) is of type
〈~a, 〈̂ 〈̂ b, 〈~c, t〉〉, 〈~c, t〉〉〉, and can be reduced to the expression λ~xλY λ~z ∨Y (∧φ(~x))(~z).

As was already noticed above, the rule of generalized division effectively overlaps
with the rule of argument raising. In fact, with just division and value raising, i.e.,
without argument raising, we can derive all scope configurations which may obtain
between the quantifiers in a piece of text. The following fact shows how applications
of [AR] can be replaced by applications of [VR] and [GD]:

Fact 2.1 ([nAR]-elimination)
If b is a type, ~a and ~c are sequences of types a1, . . . , an−1 and c1, . . . , cm and φ is

an expression of type 〈~a, 〈b, 〈~c, t〉〉〉, then
• ([nAR](φ))(~x)(T ) ⇔ ([nVR〈~c,t〉](φ))(~x)(∧[1GD~c](∨T ))

where ~x is a sequence of variables of types a1, . . . , an−1 and T is a variable of type
〈̂̂ 〈b, t〉, t〉, all variables distinct10

This fact shows that if the n-th argument of a functor expression is raised in order
to accomodate a quantifying argument expression, the same result can be obtained
by raising the functor to a divided value and by dividing the argument expression.
The possibility of replacing applications of [AR] by applications of [VR] and [GD]
makes [AR] in fact superfluous. (See the appendix for a more general statement of
the possibility of [AR]-elimination.) However, for the sake of simplicity we will keep
on using the rule of [AR].

A flexible account of DMG(2) results (1)

Given the categorematic treatment of connectives and modifiers, and the extension
of the set of flexible scope bearing expressions with expressions of these categories,
we can obtain some of the crucial DMG(2) results. In the first place the DMG(2)
lift ↑ corresponds to an instance of value raising (cf., chapter 2). If φ is of type t,
then:

10. Proof: If ~z is a sequence of variables with types ~c, and y is a variable of type b, then:

([nVR〈~c,t〉](φ))(~x)(∧[1GD~c](∨T )) ⇔ λ~z ([1GD~c](∨T ))(∧φ(~x))(~z) ⇔
λ~z ∨T (∧λy φ(~x)(y)(~z)) ⇔ ([nAR](φ))(~x)(T )
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Fact 2.2
• ↑φ⇔ ∧λR ∨R(∧φ) ⇔ ∧[1VR](φ) (R of type 〈̂̂ t, t〉

Also the DMG(2) notions of dynamic conjunction and dynamic disjunction can
be derived from the (static) basic translations of these connectives by means of
argument raising and division (p is a variable of type t̂, R a variable of type 〈̂̂ t, t〉
and Φ and Ψ are expressions of type 〈̂̂ 〈̂ t, t〉, t〉; A′ indicates the basic translation of
A):

Fact 2.3
• [Φ ; Ψ] ⇔ ∧λR ∨Φ(∧λp (∨p ∧ ∨Ψ(R))) ⇔ ∧[1AR]([2GD 〈̂ t̂,t〉](.

′))(Φ)(Ψ)
• [Φ or Ψ] ⇔ ∧λR ∨Φ(∧λp (∨p ∨ ∨Ψ(R))) ⇔ ∧[1AR]([2GD 〈̂ t̂,t〉](or

′))(Φ)(Ψ)

The applications of [GD] divide the connectives into the type of functions expressing
continuation with subsequent discourse, cf., the second example given under defini-
tion 2.3. Thus, the second argument of these connectives may come to range over
further discourse. The applications of [AR] enable the connectives to apply to a first
argument of a raised type. Thus, quantifiers in such a first conjunct or disjunct may
come to range over the second one, and, since these second arguments are divided,
also over further discourse. Notice that in the fragment as it has been presented sofar
the two sentential connectives . and or are the only fully upward monotonic senten-
tial operators, that is, upward monotonic in all of their arguments. Type changes of
downward monotonic expressions are the subject of the next section.11

The extended dynamic interpretations of some examples discussed in chapter 2
make up one of the readings of these examples in the flexible system. Consider, for
instance, example 2 (example 4 in chapter 2):

(2) Everyi player chooses aj pawn. Hei puts itj on square one.

The transitive verb chooses in this example is flanked by two quantifying noun
phrases. Therefore the first and second argument of its basic translation have to
be raised. The scope of the noun phrases is extended by raising the value of the
verb first. Since the verb has two arguments it is the third value that is raised. The
following translation is used:

[2AR]([1AR]([3VR](λyλx choose(∨y)(∨x)))) ⇔
λUλV λR ∨V (∧λx ∨U(∧λy ∨R(∧choose(∨y)(∨x))))

11. The DMG(2) notions of dynamic existential quantification and of dynamic universal quantifi-
cation can be derived if we introduce expressions like there is an individual such that and for every
individual it holds that, of the category S/S, with type 〈̂ t, t〉, and with basic translations λp ∃d(∨p)
and λp ∀d(∨p), respectively. On the basis of these expressions the DMG(2) notions of quantification
can be derived in the following way:

– EdΦ ⇔ ∧λR ∃d∨Φ(R) ⇔ ∧[1GD 〈̂ t̂,t〉](λp ∃d(∨p))(Φ)
– AdΦ ⇔ ∧λR ∀d∨Φ(R) ⇔ ∧[1GD 〈̂ t̂,t〉](λp ∀d(∨p))(Φ)
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If we apply this translation of the verb to the intensions of the basic translations
of aj pawn, λQ ∃dj(pawn(dj) ∧ ∨Q(∧dj)), and everyi player, λQ ∀di(player(di) →
∨Q(∧di)), we get a translation of the first sentence of example 2 which can be reduced
to the following expression:

λR ∀di(player(di) → ∃dj(pawn(dj) ∧ ∨R(∧choose(dj)(di))))

The intension of this expression is equivalent with the DMG(2) translation of the
first sentence of example 2.

The basic translation of the second sentence is put on(1)(dj)(di). The two
sentences, with these translations, can be combined by the sequencing operator if
the first argument of its basic translation is raised (P is a variable of type 〈̂̂ 〈̂ t, t〉, t〉):

[1AR](λpλq (∨p ∧ ∨q))) ⇔ λPλq ∨P (∧λp (∨p ∧ ∨q))

The application of this translation to the intensions of the translations of the first
and second sentence of example 2 can be reduced to the following formula:

∀di(player(di) → ∃dj(pawn(dj) ∧ choose(dj)(di) ∧ put on(1)(dj)(di)))

Under this translation example 2 has the same truth conditions as in extended DMG
and in DMG(2). The example also has a translation which has the same dynamic
potential as in DMG(2). This translation is obtained if we use a raised translation of
the second sentence of example 2, i.e., λR ∨R(∧put on(1)(dj)(di)), and the DMG(2)
translation of the sequencing operator which is obtained by means of [1AR] and a
division of the second argument into the type 〈̂̂ t, t〉.

In a completely similar fashion we can derive the dynamic interpretations of simple
donkey examples like 3 (example 1 in chapter 1) and internally dynamic disjunctions
like 4 (example 9 in chapter 2):

(3) Ai man walks in the park. Hei whistles.
(4) Either there is ai bathroom downstairs or iti is upstairs.

The DMG(2) interpretations of these examples are obtained by means of the trans-
lations: [1AR]([2VR](walk in the park ′)), [2VR](whistle′) and [1AR]([2GD 〈̂ t̂,t〉](.

′)),
and [1AR]([2VR](is downstairs′)), [2VR](is upstairs′) and [1AR]([2GD 〈̂ t̂,t〉](or

′)).
Employing the basic translations of the other lexical expressions in the examples
3 and 4, and by means of (intensional) functional application, we get the following
(reduced) translations of the examples:

λR ∃di(man(di) ∧ walk(di) ∧ ∨R(∧whistle(ddi)))
λR ∃di(bathroom(di) ∧ (down(di) ∨ ∨R(∧up(di))))

These expressions correspond to the DMG(2) interpretations of the examples.

Extended coverage

We see that some basic DMG and DMG(2) results can be obtained on the basis
of a relatively simple, static fragment of natural language which is extended with a
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system of type change. As is to be expected, the completely general nature of the
type shifting rules allows us to derive much more, and this extended coverage proves
to be useful for an account of certain complicated pieces of discourse.

Consider the following example:

(5) Everyi customer is offered coffee, that is, if hei looks wealthy. Hei is sent up
to me as quickly as possible. If hei doesn’t look wealthy, hei can wait.

Example 5 displays complicated semantic dependencies. On a natural reading of
this example the noun phrase everyi customer binds pronouns in all three sentences.
Furthermore, the verb phrase is offered coffee and the second sentence Hei is sent up
. . . should be read, apparently, as being qualified by the phrase if hei looks wealthy.
Finally, the third sentence If hei doesn’t . . . should not be read as being so qualified,
but it does stay within the scope of the quantifying noun phrase everyi customer.
The semantic structure of example 5 can be indicated in the following way:

Every customer
(if he looks wealthy

(is offered coffee and
he is sent up) and

if he doesn’t look wealthy he can wait)

However, the syntactically driven application structure is completely different:

((if he looks wealthyS\S

is offered coffeeNP\S

every customerNP) .S\(S/S)

he is sent upS) .S\(S/S)

if he doesn’t look wealthy he can waitS

Nevertheless, by means of the type changing system the semantic structure of exam-
ple 5 can be accounted for. The expressions customer, is offered coffee, look wealthy ,
is sent up to me as quickly as possible, and can wait can be associated with (sim-
plified) basic translations λx cu(∨x), λx co(∨x), λx we(∨x), λx su(∨x), λx wa(∨x),
all of type 〈̂ e, t〉. Furthermore, we can use the following derived translations:

(a) is offered coffee: [1AR]([2VR]([2VR](λx co(∨x))))
(b) if hei looks wealthy : [1AR]([2VR]([1GD 〈̂ t̂,t〉] (λq (we(di) → ∨q))))

(c) .1: [1AR]([3VR]([1AR](λpλq (∨p ∧ ∨q))))
(d) .2: [1AR](λpλq (∨p ∧ ∨q))

In (c) I have specified the translation of the sequencing operation which is used to
combine the first sentence of example 5 with the second sentence, and in (d) the
translation which is used to combine the result of that with the third sentence.

The application of [1AR] in (a) makes the verb phrase is offered coffee ap-
plicable to the quantifying noun phrase everyi customer. Since this application of
[1AR] is preceded by an application of [2VR], the scope of this quantifier is raised to
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a higher level in the application structure. To this (second) application of [2VR] in
(a) corresponds an application of [1AR] in (b) which, in its turn, is preceded by an
application of [2VR]. Thus, the scope of the quantifying noun phrase is raised higher
up again. To the application of [2VR] in (b) corresponds the last (outermost) appli-
cation of [1AR] in (c), which is also preceded by an application of [VR]. Hence, the
scope of the quantifiying noun phrase turns out to range over the whole of example
5, and it is finally fixed by the application of [1AR] in (d), which is not preceded by
an application of [VR].

By means of the three remaining type changes, the first (innermost) appli-
cation of [2VR] in (a), the application of [1GD] in (b) and the first application of
[1AR] in (c), the scope of the relativizing phrase if hei looks wealthy is made to
range over the conjunction with the second sentence. The first two type shifts lift
this operator, and its scope is fixed by the application of [1AR] to the sequencing
operation which combines the first two sentences of example 5.

Using the indicated translations, we arrive at the following, reduced, transla-
tion of example 5, which gives its intended interpretation (see the appendix for a
detailed derivation of this example):

∀di(cu(di) → ((we(di) → (co(di) ∧ su(di))) ∧
(¬we(di) → wa(di))))

On overgeneration

The last example may have given an idea of the strenghth of the flexible system.
Clearly, this strength has its drawbacks. It has already been indicated that Hendriks’
flexible Montague grammar derives all theoretically possible scope configurations
that may hold between the quantifiers in a sentence. In the present system the
set of scope bearing expressions is extended, and, furthermore, since the grammar
is extended to a (rudimentary) discourse grammar, all scope configurations can
be derived which hold between the scope bearing expressions in a complete text.
Clearly, we have a source of overgeneration here which has to be restricted.

For instance, if a scope bearing expression occurs in a sentence in the middle
of a piece of text, it is easily shown that the expression can be made to range over
the entire text. This is not as it should be. Although it may be the case that scope
bearing expressions in a sentence S may range over certain sentences which follow
S in a discourse, it seems unreasonable to extend their scope over sentences which
precede S. So, a first restriction that comes up quite naturally would be to exclude
such backwards binding.12

12. Of course, there exist cases of backwards binding or kataphora, cf., for instance, van Deemter
[1991, Ch. II] and the examples 12 and 13 in section 4. However, as van Deemter argues, there
do not seem to be examples of kataphoric relationships in which expressions in a sentence S bind
pronouns in a sentence which precedes S in a discourse. Kataphora appears to be an intrasentential
phenomenon.
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Overgeneralizations like the ones indicated can be eliminated by imposing restric-
tions upon the system of type change. For instance, we can restrict the translation
set associated with the sequencing operation by means of which the sentences in a
discourse are combined. If we exclude the use of [1GD], [2AR] and [2VR] in obtain-
ing derived translations of this operation, then the first argument (or value) of the
translation associated with this operation can only be raised, and the second argu-
ment can only be divided. As a consequence, scope bearing expressions in a sentence
S which constitutes the first argument of this operator may come to range over ex-
pressions in a sentence which follows S and which constitutes the second argument
of the operator, but not the other way around.13 So, by adopting such a restriction
we have a notion of sequencing which is flexible and directional, i.e., asymmetric,
since it allows expressions in a sentence to range over subsequent sentences, but not
over preceding ones.

3 Flexibility and monotonicity

In chapter 2 we have come across several examples in which downward monotonic
expressions appear to bind pronouns across sentence boundaries. However, it would
not do to account for these phenomena by simply lifting these expressions with the
system of type change at hand. If the type shifting rules operate as they stand, we
again face the problems we encountered with the notion of dynamic negation as
complementation in DMG and DMG(2). As the discussion in section 1 of chapter
2 may have shown it would give plainly wrong results if the scope of a downward
monotonic expression like no man is extended to other sentences in a discourse.

In this section I will show that the lifting of downward monotonic expressions
can be associated with an appropriate interpretation if we employ a suitable gener-
alization of the notion of the dual defined in chapter 2. We will see that, with such
a generalized notion of the dual, not only the examples discussed in chapter 2 can
be dealt with, but also some other examples which are even more puzzling.

13. Proof: Suppose and(∧P )(∧Q) is a translation of a sequence S.S′, where and is a translation
associated with the sequencing operation, and P and Q are translations of S and S′, respectively. I
will show that under the restrictions formulated above no subexpression of Q ranges over any subex-
pression of P . This proposition, which is abbreviated as (A), is proved by induction on the number
of type shifts used to derive and from the basic translation of the sequencing operation. In the basic
case, the basic translation of . is used. Then and(∧P )(∧Q) comes down to the conjunction of P and
Q and clearly (A) holds. Next, I show that if (induction hypothesis) (A) holds of and(∧P )(∧Q) for
arbitrary P and Q of appropriate types, then (A) holds of [nTC](and)(∧R)(∧S), for any allowed
type change [nTC] and for arbitrary R and S of appropriate types. Three cases can be distin-
guished. If n ≥ 3, and if (A) holds of and(∧P )(∧Q), then (A) holds of [(n−2)TC](and(∧P )(∧Q)) ⇔
[nTC](and)(∧P )(∧Q). If n = 2, then [nTC] must be [2GD], and, using the induction hypothesis,
(A) holds of λz and(∧P )(∧λ~y Q(~y)(z)) ⇔ [2GD](and)(∧P )(∧Q). Finally, if n = 1, then [nTC] is
not allowed to be [1GD], and it cannot be [1VR]. So, if n = 1, then [nTC] is [1AR], and, using the
induction hypothesis, (A) holds of λ~z P (∧λp (and)(p)(∧Q)(~z)) ⇔ [nTC](and)(∧P )(∧Q).
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Monotonicity and duality

Before we turn to the adapted interpretation of the lifting of downward monotonic
expressions, let me first give a general definition of monotonicity:

Definition 3.1 (Monotonicity)
If φ is an expression of type 〈~a, 〈〈~b, t〉, 〈~c, t〉〉〉, and ~a, ~b and ~c are sequences of types
a1, . . . , an−1, b1, . . . bk and c1, . . . cm, respectively, then

• φ is upward monotonic in its n-th argument iff
∀M,s, g ∀~x, p, q, ~z (p ⊆ q → ([[φ]]M,s,g(~x)(p)(~z) → [[φ]]M,s,g(~x)(q)(~z)))

• φ is downward monotonic in its n-th argument iff
∀M,s, g ∀~x, p, q, ~z (p ⊇ q → ([[φ]]M,s,g(~x)(p)(~z) → [[φ]]M,s,g(~x)(q)(~z)))

where ~x and ~z are sequences of meta-variables which range over objects of types
a1, . . . , an−1 and c1, . . . cm, respectively, and p and q are meta-variables which range
over objects of type 〈~b, t〉

Inspecting the fragment from the sections 1 and 2 we find four expressions with
downward monotonic basic translations. These expressions are every , which is down-
ward monotonic in its first argument; no, which is downward monotonic in its first
and in its second argument; and not and if , which are both downward monotonic
in their first argument.

When downward monotonic expressions are involved in type shifts the mono-
tonicity properties of these operators and of other expressions may be disturbed.
For instance, if a downward monotonic argument of some expression is raised it
becomes upward monotonic in that argument. Also, if a functor is upward mono-
tonic in its second argument, and if its first argument is raised and applied to a
downward monotonic argument expression, then the result is downward monotonic
in the argument in which the original expression was upward monotonic in the first
place.

Following the strategy adopted in chapter 2, the present goal is to find adapted
interpretations of type shifts which preserve monotonicity properties. To this end
I introduce a generalization of the notion of a dual which is employed in DMG(2).
This notion of a dual will be used in the interpretation of type shifts by means of
which downward monotonic expressions are lifted.14

14. Some remarks are in order here. If an expression is subject to type change, the choice of using an
ordinary or a dual type shift depends upon its semantic properties, viz., monotonicity properties.
This aspect of the proposed system of type change raises the question, which has not been properly
addressed as yet, whether the system of type shifts has to be conceived of as belonging to syntax
proper, or to semantics.
On the one hand, type shifts are operations upon translations, i.e., syntactic ((D)IL) operations.
On the other hand, the translations of natural language expressions merely serve to represent the
interpretations of these expressions. In PTQ the language of translation is used as a dispensible
device to formulate these interpretations. For these reasons, if one wants to give a rigourously
compositional map from the syntactic algebra of analyzed natural language expressions to the
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The generalized dual, an operation that can be applied to expressions of all types,
is given by the following recursive definition:

Definition 3.2 (Generalized dual)
• φ∗e = φ
φ∗t = ¬φ

• φ∗〈a,b〉 = λxa(φ(x)∗)∗ (x not free in φ)

• φ∗〈s,a〉 = ∧(∨φ)∗

This notion of a dual is a proper generalization of the notion of the dual in DMG(2),
of the classical notion of negation and of the DMG(2) notion of dynamic negation.
If φ is an expression of type t, φ∗ = ¬φ is the (classical) negation of φ. If an
expression R is of type 〈̂̂ t, t〉, then R∗ = ∧λp (∨R(p∗))∗ = ∧λp ¬∨R(∧¬∨p), which
is the dual of R in DMG(2). And if Φ is an expression of type 〈̂̂ 〈̂ t, t〉, t〉, then
Φ∗ = ∧λR (∨Φ(R∗))∗ = ∧λR ¬∨Φ(R∗), which is the DMG(2) dynamic negation of
Φ.

The present notion of duality also comprises the classical duality of ∧ and ∨
((λpλq (p∧ q))∗ ⇔ λpλq (p∨ q)) and the notion of duality as it is used in the theory
of generalized quantifiers (where the dual of a quantifier Q is defined as the set of
sets of individuals the complements of which are not in Q).

It is easily seen that the double generalized dual of any expression φ equals φ:

Fact 3.1 (Double dual)
• φ∗∗ ⇔ φ

Dual type changes

If type changing rules are applied to downward monotonic expressions they are asso-
ciated with the following interpretations (types and variables are as in the definitions
of [nVR], [nAR], and [nGD], respectively):

algebra of their possible interpretations there are two ways to proceed. One might take the system
of type shifts to belong to the syntax of natural language, and associate each application of a type
changing rule with a syntactic operation. Alternatively, one might take it to belong to the semantics,
and associate with each analyzed expression a set of interpretations.
In the present context we do not need to take a definite stand in this issue. It suffices to note three
things. First, the first option is intuitively less satisfactory, since it complicates the syntax for what
are semantic reasons intuitively speaking, but it probably turns out to be more tractable formally
speaking. Second, if semantic properties of expressions play a role in determining what are the
expression’s derived interpretations, then the type shifts are preferably conceived of as semantic.
But, third, also syntactic considerations may determine what are approppriate type shifts. For these
reasons, the ultimate choice betweeen the classification of the system of type shifts as belonging
either to syntax or to semantics will have to be guided by more far-reaching considerations than
can be dealt with here.
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Definition 3.3 (Dual type changes)
[n-th Value raising (dual)] Under the conditions in the definition of [nVR], if φ is
downward monotonic in its n-th argument and y is a variable of type b, then

• φ⇒ λ~xλY ∨Y ∗(∧λy φ(~x)(y∗))
[n-th Argument raising (dual)] Under the conditions in the definition of [nAR], if φ
is downward monotonic in its n-th argument, then

• φ⇒ λ~xλY λ~z ∨Y ∗(∧λy φ(~x)(y∗)(~z))
[Division of the n-th argument (dual)] Under the conditions in the definition of
[nGD], if φ is downward monotonic in its n-th argument, then

• φ⇒ λ~xλY λz φ(~x)(∧λ~y ∨Y (~y)(z∗))

The alternative type shifting rules, which will be indicated by [nDVR], [nDAR]
and [nDGD], respectively, only differ from the original rules in the use of duals of
arguments abstracted over. In the case of [nDVR] and [nDAR], both the dual of the
original downward monotonic n-th argument of φ is taken and the dual of the n-th
argument of the raised expression. In the case of [nDGD], the dual of the ‘inherited’
arguments is taken. An iterated dual division into a sequence of types ~c will be
indicated by [nDGD~c].

Employing the definition of ∗ the results of applying [nDVR] or [nDAR] can be
spelled out a little further. For instance, if φ is downward monotonic in its n-th
argument, then it is of some type 〈~a, 〈〈~b, t〉, 〈~c, t〉〉〉. The result of raising φ’s n-th
value by means of [nDVR] then can be reduced in the following way (variables are
typed as in the definition above, and if ~z is a sequence of variables zi, . . . , zj , then
~z∗ is a sequence z∗i , . . . , z

∗
j ):

λ~xλY ∨Y ∗(∧λy φ(~x)(y∗)) ⇔ λ~xλY ¬∨Y (∧λyλ~z ¬φ(~x)(y)(~z∗))

Furthermore, if φ is of type 〈~a, 〈b, 〈~c, t〉〉〉, then the result of raising φ’s n-th argument
by means of [nDAR] can be reduced in the following way:

λ~xλY λ~z ∨Y ∗(∧λy φ(~x)(y∗)(~z)) ⇔ λ~xλY λ~z ¬∨Y (∧λy ¬φ(~x)(y)(~z))

Here we see that the expression that results from applying [nDVR] or [nDAR] to φ
is also downward monotonic in its n-th argument. Of course, also a raised expression
[nDVR](φ) can be divided into a sequence of types ~c by means of [nDGD~c]. The
expression that results, λ~xλY λ~z ¬∨Y (∧λyλ~z ¬φ(~x)(y)(~z∗))(~z∗), will be indicated by
[nDVR〈~c,t〉](φ).

A flexible account of DMG(2) results (2)

Employing the dual type changes, two more DMG(2) notions, that of dynamic nega-
tion and that of dynamic implication, turn out to be derivable notions. In the fol-
lowing fact p is a variable of type t̂, R a variable of type 〈̂̂ t, t〉, and Φ and Ψ are
expressions of type 〈̂̂ 〈̂ t, t〉, t〉:



102 Chapter 3. Flexible and dynamic interpretation

Fact 3.2
• ∼Φ ⇔ ∧λR ¬∨Φ(R∗) ⇔ ∧[1DGD 〈̂ t̂,t〉](not′)(Φ)15

• [Φ ⇒ Ψ] ⇔ ∧λR ¬∨Φ(∧λp (∨p ∧¬∨Ψ(R))) ⇔ ∧[1DAR]([2GD 〈̂ t̂,t〉](if
′))(Φ)(Ψ)

So, with the present system of type change, in which we use the dual interpretation
of type shifts if they are applied to downward monotonic expressions, the DMG(2)
interpretations of dynamic sentential operators all are derivable from the static basic
translations of these operators in the fragment above.

I will now illustrate the dual type changing rules by showing how they can be used
to obtain the DMG(2) truth conditions of examples which are discussed in chapter
2. I first discuss example 6, which is example 1 in chapter 2:

(6) It is not the case that John owns noi car. Iti is standing in front of the house.

In order to account for the anaphoric relationship between the noun phrase noi

car and the pronoun iti the noun phrase is assigned scope over both sentences in
this example. This can be achieved by raising the third value of the translation
of the verb own first, and next adapt it to its quantifying argument expression by
raising its first value and dividing this raised value.16 The basic translation of the
quantifying noun phrase is also divided, and, since it is downward monotonic, the
dual interpretation of the rule of division is used. The following derived translations
result (again, R is a variable of type 〈̂̂ t, t〉, which is abbreviated as τ̂ , T is a variable
of type 〈̂̂ 〈̂ e, 〈̂ e, 〈̂ τ, t〉〉〉, 〈̂ e, 〈̂ τ, t〉〉〉, and Q is a variable of type 〈̂̂ e, 〈̂ e, 〈̂ τ, t〉〉〉):

[1VR〈 ê,〈 τ̂,t〉〉]([3VR](λyλx own(∨y)(∨x))) ⇔
λT λxλR ∨T (∧λyλxλR ∨R(∧own(∨y)(∨x)))(x)(R)

[1DGD ê, τ̂ ](λQ ¬∃di(car(di) ∧ ∨Q(∧di))) ⇔
λQλxλR ¬∃di(car(di) ∧ ∨Q(∧di)(x

∗)(R∗))

Application of the first translation to the intension of the second translation gives
a translation of the phrase owns no car, which can be reduced to the following
expression:

λxλR ¬∃di(car(di) ∧ ∨R∗(∧own(di)(∨x
∗))) ⇔

λxλR ¬∃di(car(di) ∧ ∨R∗(∧own(di)(∨x)))

Application of this expression to the intension of the basic translation of John gives
the following translation of the sentence John owns noi car:

λR ¬∃di(car(di) ∧ ∨R∗(∧own(di)(john)))

Notice that this translation is equivalent with the translation of the sentence John
owns noi car in DMG(2).

The basic translation λp ¬∨p of it is not the case that is divided in order to
be applicable to the intension of the above translation of John owns no car. The

15. Notice that [1DGD 〈̂ t̂,t〉](not′) ⇔ [1DAR][2VR](not′).
16. It is important not to use [1AR] to this end, cf., the argument against argument raising below.
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dual interpretation of this type shift results in the translation λPλR ¬∨P (R∗) and
after application we get the following (reduced) translation of the first sentence of
example 6:

λR ¬¬∃di(car(di) ∧ ∨R∗∗(∧own(di)(john))) ⇔
λR ∃di(car(di) ∧ ∨R(∧own(di)(john)))

In fact, this translation corresponds to the DMG(2) interpretation of the sentence
John owns a car. If we raise the first argument of the sequencing operator, apply
the result to the intension of the above translation of the first sentence of example 6
and apply the result of that to the intension of the translation before the house(d)
of the second sentence, we get a translation of the example which can be reduced to
the following expression:

∃d(car(d) ∧ own(d)(john) ∧ before the house(d))

This expression has the truth-conditions assigned to example 6 in DMG(2).

The second example is 7 (example 7 in chapter 2, R and τ are as above, T is
a variable of type 〈̂̂ 〈̂ e, 〈̂ τ, t〉〉, 〈̂ τ, t〉〉 this time, Q is a variable of type 〈̂̂ e, 〈̂ τ, t〉〉
now):

(7) Noi player leaves the room. Hei stays where hei is.

The noun phrase no playeri is made capable of binding the pronoun hei if we use
the following type shifts:

[1VR〈 τ̂,t〉]([2VR](λx leave(∨x))) ⇔
λT λR ∨T (∧λxλR ∨R(∧leave(∨x)))(R)
[1DGD τ̂ ](λQ ¬∃di(player(di) ∧ ∨Q(∧di))) ⇔
λQλR ¬∃di(player(di) ∧ ∨Q(∧di)(R

∗))

By means of functional application we get the following reduced translation of the
first sentence of example 7:

λR ¬∃di(player(di) ∧ ∨R∗(∧leave(di))) ⇔
λR ∀di(player(di) → ∨R(∧¬leave(di)))

Using the same translation of the sequencing operator as in the preceding example
and the basic translation stay(di) of Hei stays where hei is we get the following
(reduced) translation of example 7:

∀di(player(di) → (¬leave(di) ∧ stay(di)))

The truth conditions are, again, the same as in DMG(2).

The last example that I discuss here is example 8 (example 10 in chapter 2):

(8) If it is not the case that there is ai bathroom downstairs, then iti is upstairs.

In the translation set of the sentence there is ai bathroom downstairs we find the
following (reduced) expression (with R again a variable of type τ̂ = 〈̂̂ t, t〉):
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λR ∃di(bathroom(di) ∧ ∨R(∧downstairs(di))

The antecedent of example 8 consists of the negation of this sentence. Applying the
dually divided negation operator to the intension of the above translation we get
the following translation of the antecedent:

λR ¬∃di(bathroom(di) ∧ ∨R∗(∧downstairs(di))) ⇔
λR ¬∃di(bathroom(di) ∧ ¬∨R(∧¬downstairs(di)))

The first argument of the basic translation of if is raised. Since this translation is
downward monotonic in that argument, [1DAR] is used (P is a variable of type
〈̂̂ τ, t〉 = 〈̂̂ 〈̂ t, t〉, t〉):

[1DAR](λpλq (∨p→ ∨q)) ⇔
λPλq ¬∨P (∧λp ¬(∨p→ ∨q))

The application of this expression to the intension of the translation of the an-
tecedent of example 8 and to that of the consequent (upstairs(di)) yields the fol-
lowing (reduced) translation of the example:

¬¬∃di(bathroom(di) ∧ ¬¬(¬downstairs(di) → upstairs(di))) ⇔
∃di(bathroom(di) ∧ (¬downstairs(di) → upstairs(di)))

The other examples which are discussed in chapters 1 and 2 have translations which
assign them the same truth conditions as in DMG(2). The required type changes
are indicated in the appendix to this chapter.

An argument against argument raising

It may be noticed that the present system, with [AR] and [DAR], still allows also un-
modified extensions of the scope of downward monotonic expressions. For instance,
for a sequence No player leaves the room. He stays where he is we can derive the
reading that no player both leaves the room and stays where he is, by applying [3VR]
and [2AR] to the translation of the verb leave and raising the first argument of the
sequencing operator. Since the two translations which are raised are not downward
monotonic in the addressed arguments, no dual interpretation of the involved type
shifts has to be used. In other words, the scope of downward monotonic arguments
can be extended with argument raising, and without type shifts operating on the
arguments themselves. As has already been indicated, such extensions of the scope
of downward monotonic expressions do not generate appropriate readings.

This observation may in fact constitute an argument against using [AR] (or
[DAR], for that matter) in the present system of type change. The reason is that in a
system in which applications of [AR] are replaced by applications of [VR] and [GD],
the scope of quantifying expressions is determined by type shifts which operate both
on the functor expressions and on the (quantifying) argument expressions. The pay
off of this way of deriving scope configurations is that it can be made sensitive to
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the specific semantic properties of all the expressions in an application structure,
not just to those of the functor.

The conclusion of this may be that we have to dispose of all applications of [AR].
However, we need not be that forbidding. If the dual type changes are used appropri-
ately, then there will be no downward monotonic sentence translations. And for this
reason it does no harm to allow argument raising in the translation of expressions
of type S/S and S\S. More in specific, we may keep on using [1AR] to get derived
translations of the sequencing operation which do not allow monotonicity properties
to get mixed up. For this reason we can keep to the restrictions on the type shifts of
the sequencing operation which exclude the extensions of the scope of quantifying
expressions over preceding discourse, cf., the end of section 2.

Furthermore, the fact remains that in all cases in which [AR] accomodates
an (upward monotonic) function to an upward monotonic quantifying argument,
i.e., those applications of [AR] that do not disturb monotonicity properties, the
application of [AR] can be replaced by applications of [VR] and [GD]. Furthermore,
similar applications of [nDAR] can be eliminated by means of [nDVR] and [1GD],
as the following fact shows:

Fact 3.3 ([nDAR]-elimination)
Under the conditions stated in [nAR]-elimination:

• ([nDAR](φ))(~x)(T ) ⇔ ([nDVR〈~c,t〉](φ))(~x)(∧[1GD~c](∨T ))17

For this reason, and for ease of exposition, we can keep on using applications of [AR]
and [DAR] in the sequel, that is, if they accomodate functor expressions to upward
monotonic quantifying argument expressions and, hence, are eliminable.

More involved structures

It has been shown that we can obtain DMG(2) results by means of a system of
type change with an adapted interpretation of type shifts of downward monotonic
expressions. In the adapted system of type change, the DMG(2) notions of the lift of
expressions of type t, of dynamic negation, conjunction, disjunction and implication
all are derived notions. Furthermore, as the treatment of example 5 has already
shown, the type changing system enables a treatment of more intricate scope phe-
nomena than the rigid dynamic Montague grammars do. I will now discuss two more
examples. The interpretation of these examples crucially relies upon the duals of the
type changing rules.

The first example is example 9:

17. Proof: If ~z is a sequence of variables with types ~c, and y is a variable of type b, then:

([nDVR〈~c,t〉](φ))(~x)(∧[1GD~c](∨T )) ⇔ λ~z ¬([1GD~c](∨T ))(∧λyλ~z ¬φ(~x)(y)(~z∗))(~z∗) ⇔
λ~z ¬∨T (∧λy ¬φ(~x)(y)(~z∗∗)) ⇔ ([nDAR](φ))(~x)(T )
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(9) If ai farmer owns aj donkey, hei stones itj . If hei leases itj , hei pleases itj .

In this example the second conjunct if he leases it, he pleases it should not be read
as dependent upon the antecedent of the first conjunct a farmer owns a donkey , but,
nevertheless, the pronouns in the second conjunct are bound by the noun phrases
in the antecedent. Such a reading can be accounted for by simply ‘raising’ the two
noun phrases a farmer and a donkey and assigning them scope over the whole
conjunction. Since these noun phrases are raised out of a downward monotonic
context (the antecedent of the implication), we must use a dual type change. The
following translations are used:

[2AR]([1AR]([3VR](own′))); [1DAR]([3VR](if ′)); [1AR](.′)

If we employ these translations, we get the following (reduced) translation of example
9 (cf., the appendix for a detailed derivation):

∀di(farmer(di) → ∀dj(donkey(dj) → ((own(dj)(di) → stone(dj)(di)) ∧
(lease(dj)(di) → please(dj)(di)))))

This translation expresses a proper interpretation of example 9.

The second, really involved, example is the following:

(10) Noi farmer beats a donkey, if hei isn’t insane. Hei will not yell at it either. If
hei is insane, then hei might beat a donkey.

This example must be compared with example 5 which exhibits the same syntactic
structure. The main difference with example 5 is that the quantifying noun phrase
that has widest scope is not the upward monotonic noun phrase every customer, but
the downward monotonic noun phrase no farmer. This downward monotonic noun
phrase should not be lifted as such. But, as we will see, if we extend the scope of no
farmer by means of a dual type shift, we get an appropriate interpretation of the
example in which no farmer beats a donkey is read as every farmer does not beat a
donkey with every farmer having wide scope.

Crucial are the following type shifts (λx bad(∨x) abbreviates a basic transla-
tion of beats a donkey , the anaphoric relationship between a donkey and it is left
outside of consideration here; τ abbreviates the type 〈̂ 〈̂ 〈̂ t, t〉, t〉, t〉 now):

(11) beats a donkey: [1VR〈 τ̂,t〉]([2VR]([2VR](λx bad(∨x))))
noi farmer: [1DGD τ̂ ](λQ ¬∃di(cu(di) ∧ ∨Q(∧di)))

The difference with example 5 is that instead of the application of [1AR] on the raised
verb phrase, we find an application of [1VR] here, with a corresponding division
of the quantifying subject noun phrase. Now, if we shift the types of the other
expressions as in the treatment of example 5 above, we get the following (reduced)
translation of example 10 (cf., again the appendix):

∀d(farmer(d) → ((sane(d) → (¬bad(d) ∧ ¬yell at it(d))) ∧
(¬sane(d) → maybe bad(d))))
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This translation gives the right reading of the example.

The last two examples show that, although it would give awkward results to lift
downward monotonic expressions in discourse, a proper use of the notion of a gen-
eralized dual yields adequate results.

4 Remaining issues

We have seen that the dynamics of interpretation, to the extent that it is accounted
for in DMG and DMG(2), can also be handled by starting from a simple static frame-
work, and adding to that a system of type change, employing dual interpretations
of type shifts in order to cope with the lifting of downward monotonic expressions.
This result raises two questions. In the first place we may wonder which (different)
readings the system with dual type shifts derives for sentences which are also dealt
with in Hendriks’ system of type change, which is a system without such dual rules.
In the second place, the possibility of this flexible account of dynamic phenomena
asks for a reassesment of the concept of dynamic interpretation. These two issues
are briefly addressed in what follows.

Quantifier scope revisited

The dual interpretations of type shifts of downward monotonic expressions are moti-
vated by intuitions concerning the extra-sentential binding properties of downward
monotonic quantifiers. However, since it is assumed sofar that the dual interpre-
tations of type shifts always have to be used when they are applied to downward
monotonic expressions, lifts of downward monotonic expressions within sentences
are also executed by means of dual type shifts. So, with respect to the issue of wide
scope downward monotonic expressions within sentences the present system gen-
erates readings which differ from the readings derived in Hendriks’ system of type
change. I will now try to find support for any one of the two analyses. As we will
see, the results are rather inconclusive.

First consider the following pair of examples, both exhibiting a kataphoric relation-
ship:

(12) If hei is in danger, everyi man prays to God.
(13) If hei isn’t insane, noi man beats a donkey.

Both in a system with, and in one without dual type changes, sentence 12 has a
translation under which everyi man has wide scope. The sentence has the following
(reduced) translation18:

18. This translation results from applying [2VR] to the translation λx pray to God(∨x) of the in-
transitive verb phrase prays to God, by raising the first argument of the resulting expression, and
by applying [2AR] to the basic translation of if .
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∀di(man(di) → (in danger(di) → pray to God(di)))

However, it would give non-intuitive results if in the structurally similar example 13
the downward monotonic quantifying noun phrase noi man is assigned wide scope
in the same way. In that case a translation would result which can be reduced to
the following expression:

¬∃di(man(di) ∧ (¬insane(di) → bad(di)))

This formula is true iff it is both true that no man is insane and that no man beats
a donkey. Clearly, this formula does not express a genuine reading of example 13.
On my proposal the noun phrase noi man has to be subjected to a dual type shift,
since this noun phrase is downward monotonic. Employing such a dual type shift,
example 13 gets the following translation19:

∀di(man(di) → (¬ins(di) → ¬bad(di)))

On this reading sentence 13 is true iff it holds of every man that if the man is not
insane, then he does not beat a donkey. This is the proper reading of the example.

The second example concerns a ‘de re’ belief with a downward monotonic noun
phrase:

(14) John believes that no theory is sound.

If the quantifying noun phrase no theory is assigned wide scope without using a
dual interpretation of the type changes involved, the following translation results20:

¬∃d(theory(d) ∧ believe(∧sound(d))(john))

This formula is true iff there is no theory such that John believes it to be sound. I
am not really sure, but I am inclined to judge this not to be a genuine reading of the
example. With the dual type changes the following translation would be obtained:

∀d(theory(d) → believe(∧¬sound(d))(john))

This does constitute a genuine reading of the example. If John thinks of every theory
in some domain of discussion “This one is unsound”, the situation can be adequately
described by means of sentence 14. Notice that such a situation does not license the
conclusion that John believes (de dicto) that all theories are unsound.

These two examples seem to favour the dual interpretations of type shifts by means
of which downward monotonic quantifiers are assigned wide scope within sentences.
Notice that in these examples the quantifiers are raised out of a sentential clause,

19. Using the translation [1VR〈 〈̂ t̂,t〉,t〉]([2VR](λx bad(∨x))) of the verb phrase beats a donkey ,
where λx bad(∨x) abbreviates its basic translation, the translation [1DGD 〈̂ t̂,t〉](λQ ¬∃di(man(di)∧
∨Q(∧di))) of the noun phrase noi man, and the translation [2AR](λpλq(∨p→ ∨q)) of if .
20. It must be noted that an account of belief ascriptions requires us to re-introduce IL’s ordinary
intensionality. Clearly, beliefs cannot be represented adequately by means of states which are, or
behave like, discourse marker assignments. In order for the present discussion to proceed smoothly,
such an adaptation is simply assumed.
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viz., out of the consequent of a conditional in example 13, and out of a sentential
complement in example 14. So it remains to be seen how the dual type shifts behave
with respect to the most simple examples of wide scope readings, the cases in which
a downward monotonic object argument of a transitive verb gains scope over the
verb’s subject argument. As we will see presently, such examples are by and large
inconclusive with respect to the choice between the dual and the non-dual type
shifts.

First consider an example with an existentially quantifying subject argument:

(15) A Mac adorns no desk.

On the wide scope object reading of this example which is obtained without dual
type shifts this sentence states that there is no desk such that a Mac adorns it. This
is an acceptable reading of the example. However, if the object is assigned wide
scope using the dual type shifts, we get a translation stating that for every desk
there is a Mac that does not adorn it. Such a reading is out.

The second example has a universally quantified subject21:

(16) Every change is no improvement.

This time, the wide scope object reading obtained without dual type shifts is out. For
on that reading the sentence states that there is no improvement which is equal to
every change, and the sentence would turn out true on this reading if, for instance,
there are two changes. However, employing the dual type shifts, the wide scope
object reading states that every improvement is no change, and this reading is
equivalent with the (acceptable) narrow scope object reading.

Finally, consider the following two examples:

(17) No man lost no game.
(18) Not every man lost no game.

On its non-dual wide scope object reading example 17 states that every game is
such that a man lost it, which is also the dual wide scope object reading of example
18. The dual wide scope object reading of example 17 states that every game is
such that every man lost it, which is also the non-dual wide scope object reading of
example 18. For both sentences both derived readings are out.

The conclusion seems to be that the dual type shifts appear to behave well in an
account of complicated discourse phenomena, that they give acceptable interpreta-
tions of the raising of downward monotonic expressions out of sentential contexts,
but that they fail to do any better then the non-dual rules when we are concerned
with establishing the scope of quantifiers within one sentential clause. It appears
that sentences with downward monotonic object arguments do not have genuine
wide scope object readings, except example 15 which has an existentially quantified

21. This example is due to Herman Hendriks [p.c.].
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subject argument. In fact, for this sentence the wide scope object reading obtained
by Hendriks’ non-dual type shifts gives the right result.

Dynamic interpretation revisited

The system of type change presented in the sections 2 and 3 enables us to deal
with scope and binding phenomena in a way which significantly differs from the
way in which these phenomena are dealt with in DMG and DMG(2). DMG and
DMG(2) embrace a dynamic, directional notion of interpretation. In these sytems
the dynamics of interpretation is taken to consist in the way in which (expressions
in) sentences may change the context of interpretation of subsequent sentences and
such a notion of dynamic interpretation has a strong intuitive appeal. In this chapter
I have given an account of the same phenomena which starts from ordinary, static
interpretations. Scope extensions in this account might also be called dynamic, but
then they are dynamic in some non-directional sense. In principle, expressions in the
flexible system may change the (context of) interpretation of preceding discourse as
much as that of subsequent discourse.

Of course we are not forced to favour any one of the two approaches at the cost of the
other, since we also have the possibility of combining the two approaches. Instead of
adding a system of type change to a simple, static fragment like the one above, one
might add it to a dynamic fragment like DMG (or some fragment employing update
semantics, cf., Veltman [1990]). Thus, we might separate the treatment of the basic,
incremental, dynamics of natural language interpretation from the treatment of the
extended dynamics and of ‘deviating’ scope configurations and discourse structures.
Actually, such a division of labour can be argued for.

The basic dynamics of interpretation which is dealt with in DPL and DMG
is a pervasive phenomenon and it is not in need of any constraints. Indefinites that
do not occur in certain subordinate positions are always accessible as antecedents
for subsequent anaphoric reference. On the other hand, the extended dynamics of
DMG(2) and the discourse structures treated in this chapter exhibit rather excep-
tional features of interpretation. In general, the scope of an if -clause does not extend
to other sentences, in previous or in subsequent discourse, and, normally, negation
is not dynamic. If we were to separate the treatment of the two kinds of phenom-
ena, viz., the (pervasive) dynamics of indefinite noun phrases and the (exceptional)
scope extensions of other expressions, we might be in a better position to formulate
restrictions on scope extensions, or, rather, formulate the conditions under which
type shifts are invoked, without this affecting the (unconstrained) dynamics of in-
terpretation.

Clearly, the system of type change cannot be added to a dynamic fragment
like DMG just like that. The system (in particular the definition of the type shifts
and that of the dual) will have to be adapted to the type of sentence meanings and
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the specific sentential operators in such a fragment. However, there does not appear
to be any real obstacle to combining the kind of flexibility presented in this chapter
with the systems of dynamic interpretation mentioned.

5 Appendix

In the first section of this appendix I give a proof of the fact that by means of
the rules of value raising and argument raising any quantifier can be lifted over
any functor which has the quantifier in its syntactic scope. In the second section
I show that the same results can be obtained using just the rules of value raising
and division, i.e., without using argument raising. In the last section I show in more
detail the deriviation of certain readings of examples which are discussed above.

Scope configurations in the FMG fragment

In this section I want to show that all scope configuration can be derived in Hendriks’
system of type change. I will prove that the scope of any quantifying argument can
be lifted over functors, the type of which does not end in type e, by means of
applications of [VR] and [AR]. Some terminology must be developed first.

Definition 5.1 (Application structures)
The application structure ASss of a syntactic structure ss is built up from the lexical
expressions in ss and ‘(’ and ‘)’, such that:

1. if ss is a lexical expression b, then ASss = b
2. if ss is (βB/AαA) or (αAβA\B)B and if ASβ = b and ASα = a, then ASss = b(a)

I will omit reference to the syntactic structures from now on, and I will speak of
application structures simpliciter.

The following definition enables us to talk about the constituents of appli-
cation structures, which are called ‘functors’ and ‘arguments’. Notice that, strictly
speaking, we should talk about occurrences of functors (and arguments) in an appli-
cation structure. I will avoid this lengthy terminology, however, simply by using the
terms ‘functors’ and ‘arguments’ to refer to occurrences of functors and arguments.

Definition 5.2 (Functors, arguments and range)
If b is an application structure f(a1) . . . (an−1), where f is a lexical expression, then:

1. f is the functor of b
2. ai is the i-th argument of f in b (for 0 < i < n)
3. the functor of the i-th argument of f in b is the i-th daughter of f in b

An application structure a is an argument in b iff a is b or a is an argument in an
argument of the functor of b
A lexical expression f is a functor in b iff f is the functor of b or f is a functor in
an argument of b
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A functor has n−1 arguments in b iff it is the functor of an argument f(a1) . . . (an−1)
in b
A functor f in b ranges over a functor f ′ in b, f > f ′, iff:

1. for some i, f ′ is the i-th daughter of f in b or
2. there is a functor f ′′ such that f > f ′′ and f ′′ > f ′

I now turn to a definition of the possible translations of application structures and
of quantifying arguments. For the purposes of this section it is expedient not to
stick to the basic translations given in the sections 1 and 2, but to generalize over
certain possible translations. Quantifying arguments are equated with the arguments
which constitute type mismatches relative to a possible translation. In the following
definition I will say that an IL term has an n-th value b iff it has a type 〈~a, b〉, where
~a is a sequence of types a1, . . . , an−1.

Definition 5.3 (Possible translations and quantifying arguments)
If b is an application structure, then a possible translation for b is a function t from
functors to IL expressions such that for any functor f in b and any i-th daughter fi

of f in b:
1. if t(f) has an (i− 1)-th value 〈̂ a, c〉 and if fi has m− 1 arguments in b, then
t(fi) has an m-th value which is either a or 〈̂ 〈̂ a, t〉, t〉

A functor fi which is the i-th daughter of some functor f in b is a quantifying functor
in b under possible translation t iff

1. t(f) has an (i− 1)-th value 〈̂ a, c〉
2. t(fi) has an m-th value 〈̂ 〈̂ a, t〉, t〉, if fi has m− 1 arguments in b

A quantifying argument in b is an argument which has a quantifying functor in b.

Notice that the FMG basic translation constitutes a possible translation for the ap-
plication structure of any syntactic structure. Furthermore, under this basic transla-
tion an argument in b is a quantifying argument in b iff it is the application structure
of a quantifying noun phrase.22

By means of the rules of value raising and argument raising translations can
be derived which have ‘fitting’ types. Such translations are called normalizations:

Definition 5.4 (Normalization and translation)
If b is an application structure and t is a possible translation for b, then:

22. Under this ‘contextual’ definition of quantifying functors it depends upon the functor of which a
quantifying noun phrase makes up an argument whether the noun phrase constitutes a quantifying
argument. For instance, a quantifying noun phrase would not constitute a quantifying argument if
it is the first argument of Hendriks’ basic translation of the transitive verb seek. However, by means
of Hendriks’ rule of argument lowering the translation of such a functor can be ‘lowered’ to the
effect that a quantifying argument noun phrase constitutes a quantifying argument after all. I just
note that such an application of argument lowering is indeed a prerequisite in Hendriks’ system in
order for a quantifying noun phrase under those circumstances to take part in the play of varying
scope configurations.
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a possible translation t′ of b is a normalization of t for b iff:
1. for every functor f in b, if f has n − 1 arguments in b then t′(f) is derived

from t(f) by means of applications of [nVR] and [iAR], where 0 < i < n
2. there are no quantifying arguments in b under t′

the translation of b under normalization t′ is the IL-term [b]t′ such that:
[f(a1) . . . (an−1)]t′ = t′(f)(∧[a1]t′) . . . (∧[an−1]t′)

Now I want to show that for any application structure b and translation t, every
quantifying argument a in b can be raised to any functor f above a by a normalization
of t, provided that the type of the translation of f does not end in type e.23 In order
to prove this fact, I first define a lifting procedure which can be used to raise a single
quantifying argument a in b to the main functor f of b, and I show next that under
the lift of a to f , the application structure b (without a, of course) stands in the
scope of a.

Definition 5.5 (The lift of ai to fj in b)
Let b be an application structure with main functor f , t a possible translation for b
and ai the only quantifying argument in b under t with main functor fi. If the type
of t(f) does not end in type e, the lift of ai to f in b for t is the translation t′ which
at most differs from t in that:

1. t′(f) = [iAR](t(f)) if the i-th argument of f in b ranges over fi

2. for all f ′ in b if f > f ′ > fi, if f ′ has n − 1 arguments in b and the i-th
argument of f ′ in b ranges over fi, then t′(f ′) = [iAR][nVR](t(f ′))

The following fact shows that the lift of ai to f indeed establishes the scope of ai

at f . I will use t[a/y] to indicate the translation t′ which at most differs from t in
that [a]t′ = y. (In order to be more precise, if f is the functor of a and f has n− 1
arguments in a, then t′ at most differs from t in that t′(f) = λ~x y, where ~x is a
sequence of n− 1 variables of the types of the arguments of f in a under t.)

Fact 5.1
If b is an application structure with main functor f , t a possible translation for b,
ai the only quantifying argument in b under t, and if t′ is the lift of ai to f in b for
t, then:

23. The scope of a quantifying noun phrase cannot be established at a functor with a translation
the type of which ends in type e. Suppose, for instance, that the definite article were translated as
some (partial?) function from properties of individual concepts to individuals. Then there still is
no sensible interpretation of type e of the noun phrase the mayor of every Italian city with every
Italian city read wide scope. Of course, there is a sensible wide scope every Italian city reading of
the sentence the mayor of every Italian city is an Italian. However, on the wide scope every Italian
city reading of that sentence the quantifying noun phrase is lifted, over the definite article, to the
main functor of the sentence, takes, the basic translation of which does have a type which ends in
type t.
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• [b]t′ ⇔ λ~z [ai]t(∧λy ([b]t[ai/ y̌](~z)))
where y is a variable of type â if [ai]t has a type 〈̂ 〈̂ a, t〉, t〉, and where ~z is a sequence
of variables of types ~c if the type of [b]t[ai/ y̌] is 〈~c, t〉

Fact 5.1 is proved by induction on the number l of functors f ′ such that f > f ′ > fi.
Basic case: l = 0. Take b, f , t, ai and t′ as in fact 5.1. Since l = 0, ai is the i-th

argument of f for some number i: 0 < i < n where n is the number of arguments of
f . In this case t′ at most differs from t in that t′(f) = [iAR](t(f)). The translation
of b under t′ is the following:

[b]t′ = [f( ~a1)(ai)(~a2)]t′ ⇔
([iAR]([f ]t))( ~α1)(∧[ai]t)( ~α2) ⇔
λ~z [ai]t(∧λy t(f)( ~α1)(y)( ~α2)(~z)) ⇔
λ~z [ai]t(∧λy ([b]t[ai/ y̌](~z)))

where ~a1 and ~a2 abbreviate a1, . . . , ai−1 and ai+1, . . . , an−1, respectively, and ~α1 and
~α2 abbreviate ∧[a1]t, . . . , ∧[ai−1]t and ∧[ai+1]t, . . . , ∧[an−1]t, respectively; y and ~z are
as in fact 5.1.

Induction: l > 0. Take b, f , t, ai and t′ as in fact 5.1. Since l > 0, ai is the i-th
argument of some functor f ′: f > f ′ for some number i: 0 < i < n where n is the
number of arguments of f ′. Now consider the translation t′′ which at most differs
from t in that t′′(f ′) = [iAR][nVR](t(f ′)). The application structure a′ of which f ′

is the main functor has the following translation under t′′:

[a′]t′′ = [f ′( ~a1)(ai)(~a2)]t′′ ⇔
([iAR]([nVR]([f ′]t)))( ~α1)(∧[ai]t)( ~α2) ⇔
λR [ai]t(∧λy ∨R(∧t(f ′)( ~α1)(y)( ~α2))) ⇔
λR [ai]t(∧λy ∨R(∧[a′]t[ai/ y̌]))

( ~a1 and ~a2, ~α1 and ~α2, and y as above.) Under this translation t′′ not ai, but a′ is
a quantifying argument in b. By the induction hypothesis, a′ can be raised to the
main functor f of b by the lift t′′′ of a′ to f in b for t′′, i.e.:

[b]t′′′ ⇔ λ~z [a′]t′′(∧λu ([b]t′′[a′/ ǔ](~z)))

where u is a variable of type ĉ if [a′]t′′ has a type 〈̂ 〈̂ c, t〉, t〉, and where ~z is a sequence
of variables of types ~c if the type of [b]t′′[a′/ ǔ] is 〈~c, t〉. Since the lift t′′′ of a′ to f in
b for t′′ equals the lift t′ of ai to f in b for t, and since [b]t′′[a′/ ǔ] equals [b]t[a′/ ǔ] we
find that:

[b]t′ ⇔ λ~z [a′]t′′(∧λu ([b]t[a′/ ǔ](~z))) ⇔
λ~z (λR [ai]t(∧λy ∨R(∧[a′]t[ai/ y̌])))(

∧λu ([b]t[a′/ ǔ](~z))) ⇔
λ~z [ai]t(∧λy ([b]t[a′/[a′]

t[ai/ y̌]
](~z))) ⇔

λ~z [ai]t(∧λy ([b]t[ai/ y̌](~z)))

That completes the proof of fact 5.1.
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In principle, all conceivable scope configurations can be derived by lifting quantifying
arguments one by one in the right order. (When any one quantifying argument a
is lifted for t, one may ‘neglect’ the other quantifying arguments by employing, for
the time being, some translation t′ which at most differs from t in that under t′ a
is the only quantifying argument.) A proper order of lifts is required for the cases
in which two or more quantifying arguments are lifted over the same functor. For
instance, if a quantifying argument ai is lifted over a functor fi to a functor f , and if
another quantifying argument aj is next lifted to fi, then aj is automatically raised
over ai, and, hence, over f . Of course, this does not mean that the scope of aj can
not be fixed at fi, only that it should be lifted before ai is. Furthermore, if aj is
a quantifying argument within a quantifying argument ai, then ai should be lifted
before aj is. In such a case, aj can only be lifted over functors which range over ai

if aj is lifted over (the main functor of) ai itself.

Division and argument raising

In this section I will show that any scope configuration that is derived by lifting
quantifiers in the way defined in the preceding section can also be derived using
[VR] and [GD] only. More in particular, I will show for any application structure
b, possible translation t and normalization t′ of t for b, that every application of
[AR] in the derivation of the translation of the functor f of b can be replaced by an
application of [VR] and a corresponding division of the translation of the functor of
an argument of f , preserving the meaning.

We will be concerned with application structures of the following form:

b = f(a1) . . . (ai−1)(ai)(ai+1) . . . (an−1), where 0 < n and for any i: 0 < i < n:
ai = fi(ai,1) . . . (ai,(m−1)) with 0 ≤ m

Let t be a possible translation for b and t′ a normalization of t for b. Let us assume
that the first application of [AR] in the derivation of t(f) is an application of [iAR]
to φ, where φ is derived from t(f) without [AR], and that t′(f) is obtained from
[iAR](φ) by the successive application of the type shifts [TC1], . . . , [TCk]. The re-
sulting translation t′(f) then can be indicated as [TCk...1][iAR](φ). Furthermore, let
t′(fi) be obtained from t(fi) by means of the successive application of the type shifts
[TCi,1], . . . , [TCi,l] to ψ, where ψ is derived from t(fi). The translation t′(fi) can be
indicated as [TCi,l...1](ψ). Under these assumptions, the translation of b above boils
down to the following formula:

([TCk...1][iAR](φ))( ~α1)(∧([TCi,l...1](ψ))(~ε))( ~α2)

where ~α1 and ~α2 indicate the sequences of the intensions of the translations of
(a1) . . . (ai−1) and (ai+1) . . . (an−1), respectively, and ~ε indicates the sequence of the
intensions of the translations of the arguments of fi.

Now it can be shown that, if t′ is a normalization of t for b, then the ap-
plication of [iAR] in the derivation of t′(f) can be meaning preservingly replaced
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by an application of [VR] and a corresponding application of [GD] to the transla-
tion of the main functor of the i-th argument. However, in order to show that in
fact all occurrences of [AR] in the derivation of t′ can be replaced in this way, we
will have to relax the assumption that t′ is a normalization. Among the type shifts
[TC1], . . . , [TCk], not only raisings [iAR] and [nVR] may occur, but also divisions
[nGD~e]. So, I will prove the following fact:

Fact 5.2
If

1. for all f : 1 ≤ f ≤ k, [TCf ] is [nVR] or [nGD~e] or [gAR] (0 < g < n)
2. for all f : 1 ≤ f ≤ l, [TCi,f ] is [mVR] or [gAR] (0 < g < m)
3. [iAR] occurs j times in [TC1], . . . , [TCk] and in [TCi,1], . . . , [TCi,l]

then

([TCk...1][iAR](φ))( ~α1)(∧([TCi,l...1](ψ))(~ε))( ~α2) ⇔
([TCk...2][iVR〈~c,t〉](φ))( ~α1)(∧([TCi,l...1][mGD~c](ψ))(~ε))( ~α2)

where if φ has a type 〈~a, 〈̂ b, 〈~c, t〉〉〉, ~a is the sequence of the types of the sequence
of translations ~α1 and b̂ is the m-th value of ψ

By means of this fact all applications of [AR] in the derivation of a normalization
t′ of a possible translation t for an application structure b can be replaced in the
following way. Starting with the first application of [AR] in the derivation of the
translation of the functor of b, one successively replaces all applications of [AR] by
[VR] in the derivation of the translation of this functor. When the applications of
[AR] to the main functor f have been replaced, the applications of [AR] to the
functors of the arguments of f can be replaced in the same way. Since we start
from a normalization of a possible translation for b, the three conditions upon the
replacement of applications of [AR] in the derivation of t′′ will always be satisfied
when the replacements are executed in the order indicated.

In the proof of fact 5.2 we need a device to refer to certain arbitrarily deeply em-
bedded applications of [GD]:

Embedded division
If b is a type, then

• b0 = b
• bn+1 = 〈̂ 〈̂ bn, t〉, t〉 (0 ≤ n)
• if φ is of type b1, and ~c a sequence of types, then

[1GD1
~c ](φ) = [1GD~c](φ)

• if φ is of type bn+1 (0 < n) and ~c a sequence of types, then
[1GDn+1

~c ](φ) = λR φ(∧λp ∨R(∧[1GDn
~c ](∨p)))

where p and R are variables of types b̂n and 〈̂̂ 〈̂ 〈̂ b, 〈~c, t〉〉, 〈~c, t〉〉n−1, t〉
• if φ is of type 〈~a, bn〉 (0 < n) and ~a is a sequence of types a1, . . . , am−1, then
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[mGDn
~c ](φ) = λ~x [1GDn

~c ](φ(~x))
where ~x is a sequence of variables of types a1, . . . , am−1

So, if φ is of type bn (0 < n), then [1GDn
~c ](φ) is of type 〈̂ 〈̂ b, 〈~c, t〉〉, 〈~c, t〉〉n−1.

Employing the notation device for embedded divisions we can prove the following
two propositions, which together entail fact 5.2:

Proposition 1
If

1. for all f : 1 ≤ f ≤ k, [TCf ] is [nVR] or [nGD~e] or [gAR] (0 < g < n)
2. [iAR] occurs j − 1 times in [TC1], . . . ,TCk] (0 < j)

then

([TCk...1][iAR](φ))(~x)(T ) ⇔ ([TCk...1][iVR〈~c,t〉](φ))(~x)(∧[1GDj
~c](

∨T ))

where ~x is a sequence of variables and T a variable, all of appropriate types

Proposition 2
If

1. for all f : 1 ≤ f ≤ l, [TCi,f ] is [mVR] or [gAR] (0 < g < m)
2. [iAR] occurs j − 1 times in [TCi,1], . . . ,TCi,l] (0 < j)

then

[1GDj
~c](([TCi,l...1](ψ))(~y)) ⇔ ([TCi,l...1][mGD~c](ψ))(~y)

where ~y is a sequence of variables of appropriate types

Proposition 1 is proved by induction on the number k of type changes applied to φ.
Basic case: k = 0. In that case [iAR] does not occur in [TC1], . . . , [TCk]. So, j = 1,
[1GDj

~c] is [1GD~c], and, by means of fact 2.1:

([iAR](φ))(~x)(T ) ⇔ ([iVR〈~c,t〉](φ))(~x)(∧[1GD~c](∨T ))

Induction: k > 0. Given the first requirement in proposition 1, four cases can be
distinguished. [TCk] is either [nVR] or [nGD~e] (i < n), or [fAR] (f < n and i 6= f),
or [iAR]. In the following equations ⇔∗ refers to the induction hypothesis.

1. [TCk] = [nVR].

([nVR][TC(k−1)...1][iAR](φ))(~x)(T ) ⇔
([nVR](λ~xλT ([TC(k−1)...1][iAR](φ))(~x)(T )))(~x)(T ) ⇔∗

([nVR](λ~xλT ([TC(k−1)...1][iVR〈~c,t〉](φ))(~x)([1GDj
~c ](

∨T ))))(~x)(T ) ⇔

([nVR][TC(k−1)...1][iVR〈~c,t〉](φ))(~x)([1GDj
~c](

∨T ))

2. [TCk] = [nGD~e]. Similar.
3. [TCk] = [fAR], where i 6= f . As in 1.
4. [TCk] = [iAR]. Since [iAR] occurs j − 1 times in [TC1], . . . , [TCk], 1 < j and

[iAR] occurs j − 2 times in [TC1], . . . , [TCk−1]. The induction hypothesis is:
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([TC(k−1)...2][iAR](φ))(~x)(T ) ⇔

([TC(k−1)...2][iVR〈~c,t〉](φ))(~x)(∧[1GDj−1
~c ](∨T ))

Now we find that:

([iAR][TC(k−1)...2][iAR](φ))(~x)(T ) ⇔
λ~z ∨T (∧λt ([TC(k−1)...2][iAR](φ))(~x)(t)(~z)) ⇔∗

λ~z ∨T (∧λt ([TC(k−1)...2][iVR〈~c,t〉](φ))(~x)(∧[1GDj−1
~c ](∨t))(~z)) ⇔†

λ~z ([1GDj
~c](

∨T ))(∧λt ([TC(k−1)...2][iVR〈~c,t〉](φ))(~x)(t)(~z))) ⇔

([iAR][TC(k−1)...2][iVR〈~c,t〉](φ))(~x)(∧[1GDj
~c](

∨T ))

where ~z is a sequence of variables and t a variable, all of appropriate types
† by the definition of [1GDj

~c]
That completes the proof of the first proposition.

Proof of the second proposition. Since ~y is a sequence of m− 1 variables:

[1GDj
~c](([TCi,l...1](ψ))(~y)) ⇔ ([mGDj

~c][TCi,l...1](ψ))(~y)

So, it suffices to prove the equivalence:

([mGDj
~c][TCi,l...1](ψ))(~y) ⇔ ([TCi,l...1][mGD~c](ψ))(~y)

which is proved by induction on the number l of type changes applied to ψ.
Basic case: l = 0. In that case [mVR] does not occur in [TCi,1], . . . , [TCi,l]. So,

j = 1, [mGDj
~c] is [mGD~c], and:

([mGDj
~c][TCi,l...1](ψ))(~y) ⇔ ([mGD~c](ψ))(~y) ⇔ ([TCi,l...1][mGD~c](ψ))(~y)

Induction: l > 0. Given the first requirement in proposition 2, there are only two
cases to be considered. [TCi,l] is either [fAR] (f < m), or [mVR].

1. [TCi,l] = [fAR].

([mGDj
~c][fAR][TCi,(l−1)...1](ψ))(~y) ⇔

([fAR][mGDj
~c][TCi,(l−1)...1](ψ))(~y) ⇔∗

([fAR][TCi,(l−1)...1][mGD~c](ψ))(~y)

2. [TCi,l] = [mVR]. Since [mVR] occurs j− 1 times in [TCi,1], . . . , [TCi,l], 1 < j
and [mVR] occurs j − 2 times in [TCi,1], . . . , [TCi,(l−1)]. So, the induction
hypothesis reads:

([mGDj−1
~c ]([TCi,(l−1)...1](ψ)))(~y) ⇔ ([TCi,(l−1)...1][mGD~c](ψ))(~y)

Since:

[mGDj
~c][mVR](φ) ⇔ λ~x [1GDj

~c][1VR](φ(~x)) ⇔

λ~xλR (λS ∨S(∧φ(~x)))(∧λp ∨R (∧[1GDj−1
~c ](∨p))) ⇔

λ~xλR ∨R (∧[1GDj−1
~c ](φ(~x))) ⇔ [mVR][mGDj−1

~c ](φ)

we find that:

([mGDj
~c][mVR][TCi,(l−1)...1](ψ))(~y) ⇔
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([mVR][mGDj−1
~c ][TCi,(l−1)...1](ψ))(~y) ⇔∗

([mVR][TCi,(l−1)...1][mGD~c](ψ))(~y)

That completes the proof of the second proposition, and, with the proof of proposi-
tion 1, of fact 5.2.

Derived translations

I will now show in more detail how certain readings of some sentence discussed in this
chapter are derived with the type changing system. I start with two examples which
are also discussed within the DMG framework. I only indicate the type shifts which
are required to obtain the DMG or DMG(2) truth conditions of these examples.

(I.2) If ai farmer owns aj donkey, hei beats itj .
[2AR]([1AR]([3VR](own′))) [1DAR](if ′)

(I.3) Every farmer who owns ai donkey beats iti.
[1AR]([2VR](own′)) [2AR]([3VR](who′)) [1DAR](every ′)

(3) If ai client comes in, you pamper himi. You offer himi a cup of coffee.
[1AR]([2VR](come in′)) [2VR](pamper himi

′)
[1DAR]([2GD 〈̂ t̂,t〉](if

′)) [1AR](.′)
(5) Either there is noi bathroom here, or iti is in a funny place. In any case, iti is

not on the ground floor.
[1VR〈 〈̂ t̂,t〉,t〉]([2VR](is here′)) [1DGD 〈̂ t̂,t〉](noi bathroom′)
[2VR](is in a funny place′) [1AR]([2GD 〈̂ t̂,t〉](or

′)) [1AR](.′)
(6) If there is a bathroom here, it is in a funny place. In any case, it is not on the

ground floor. (Like example 3.)
(8) No client that comes in is offered coffee. He is directly sent up to me. (Like

example 7.)

I now turn to a more detailed presentation of the flexible treatment of some com-
plicated examples. I start with example 5:

(5) Everyi customer is offered coffee, that is, if hei looks wealthy. Hei is sent up
to me as quickly as possible. If hei doesn’t look wealthy, hei can wait.

The expressions customer, is offered coffee, look wealthy , is sent up to me as quickly
as possible, and can wait are associated with the basic translations λx cu(∨x),
λx co(∨x), λx we(∨x), λx su(∨x), λx wa(∨x), all of type 〈̂ e, t〉. The main constituents
of example 5 have the following basic translations:

(a) everyi customer: λQ ∀di(cu(di) → ∨Q(∧di))
(b) is offered coffee: λx co(∨x)
(c) if hei looks wealthy: λq (we(di) → ∨q)
(d) hei is sent up to me as quickly as possible: su(di)
(e) if hei doesn’t look wealthy, hei can wait: (¬we(di) → wa(di))
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Furthermore, the following derived translations are used (variables are typed as
follows: R: 〈̂̂ t, t〉; R: 〈̂̂ 〈̂ 〈̂ t, t〉, t〉, t〉; T : 〈̂̂ 〈̂ e, t〉, t〉; P : 〈̂̂ 〈̂ t, t〉, t〉; P: 〈̂̂ 〈̂ 〈̂ 〈̂ t, t〉, t〉, t〉, t〉):

(b′) is offered coffee: [1AR]([2VR]([2VR](λx co(∨x)))) ⇔
λTλR ∨T (∧λx ∨R(∧λR ∨R(∧co(∨x))))

(c′) if hei looks wealthy: [1AR]([2VR]([1GD 〈̂ t̂,t〉](λq (we(di) → ∨q)))) ⇔
λPλR ∨P(∧λP ∨R(∧λR (we(di) → ∨P (R))))

Finally, we use the following derived translations of the sequencing operation:

(.′) [1AR]([3VR]([1AR](λpλq (∨p ∧ ∨q)))) ⇔
λPλqλR ∨P(∧λP ∨R(∧∨P (∧λp (∨p ∧ ∨q))))

(.′′) [1AR](λpλq (∨p ∧ ∨q)) ⇔
λPλq ∨P (∧λp (∨p ∧ ∨q))

Translation (b′) of is offered coffee is applied to the intension of translation (a) of
the noun phrase everyi customer. The resulting translation of everyi customer is
offered coffee can be reduced to the following expression:

(f) λR ∀di(cu(di) → ∨R(∧λR ∨R(∧co(di))))

The translation of the first sentence of example 5 is obtained by applying transla-
tion (c′) of the relativizing phrase if he looks wealthy to the intension of (f). This
translation can be reduced to the following expression:

(g) λR ∀di(cu(di) → ∨R(∧λR (we(di) → ∨R(∧co(di)))))

Translation (.′) of the sequencing operation can be applied, first, to the intension of
translation (g) of the first sentence of example 5, and, second, to the intension of
translation (d) of the second sentence. The result can be reduced to (h):

(h) λR ∀di(cu(di) → ∨R(∧(we(di) → (co(di) ∧ su(di)))))

Translation (.′′) of the sequencing operation can be applied, next, to the intension
of translation (h) of the first two sentences of example 5, and to the intension
of translation (e) of the third sentence. The result is the following translation of
example 5:

(i) ∀di(cu(di) → ((we(di) → (co(di) ∧ su(di))) ∧
(¬we(di) → wa(di))))

The next example is 9:

(9) If ai farmer owns aj donkey, hei stones itj . If hei leases itj , hei pleases itj .

The following translations of the main constituents are used (the variables intro-
duced by the type shifts are typed as follows: T,U : 〈̂̂ 〈̂ e, t〉, t〉; R: 〈̂̂ t, t〉; P : 〈̂̂ 〈̂ t, t〉, t〉):

(a) ai farmer: λQ ∃di(fa(di) ∧ ∨Q(∧di))
(b) aj donkey: λQ ∃dj(do(dj) ∧ ∨Q(∧dj))
(c) own: [2AR]([1AR]([3VR](λyλx own(∨y)(∨x)))) ⇔

λTλUλR ∨U(∧λx ∨T (∧λy ∨R(∧own(∨y)(∨x))))
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(d) hei stones itj : stone(dj)(di)
(e) if: [1DAR]([3VR](λpλq (∨p→ ∨q))) ⇔

λPλqλR ¬∨P (∧λp ¬∨R(∧(∨p→ ∨q)))
(f) if hei leases itj , hei pleases itj : lease(dj)(di) → please(dj)(di)

(.′′) [1AR](λpλq (∨p ∧ ∨q)) ⇔
λPλq ∨P (∧λp (∨p ∧ ∨q))

The translation of the antecedent of the first sentence of example 9 is obtained by
applying translation (c) to the intensions of translations (b) and (a). The result can
be reduced to the following expression:

(g) λR ∃di(fa(di) ∧ ∃dj(do(dj) ∧ ∨R(∧own(dj)(di))))

The translation of the first sentence of example 9 consists in the application of (e)
to the intensions of (g) and (d), which can be reduced to the following expression:

(h) λR ¬∃di(fa(di) ∧ ∃dj(do(dj) ∧ ¬∨R(∧own(dj)(di) → stone(dj)(di)))) ⇔
λR ∀di(fa(di) → ∀dj(do(dj) → ∨R(∧own(dj)(di) → stone(dj)(di))))

Finally, (.′′) is applied to the intensions of (h) and (f), the result of which gives us
the following formula as the translation of example 9:

(i) ∀di(farmer(di) → ∀dj(donkey(dj) → ((own(dj)(di) → stone(dj)(di)) ∧
(lease(dj)(di) → please(dj)(di)))))

The last example is 10:

(10) Noi farmer beats a donkey, if hei isn’t insane. Hei will not yell at it either. If
hei is insane, then hei might beat a donkey.

As was indicated in section 3, this example is structurally similar to example 5.
However, the example is treated differently, since the subject noun phrase noi farmer,
which has wide scope, is downward monotonic. I only show the part of the treatment
which deviates from the treatment of example 5.

The following translations are used (I use τ as an abbreviation of the type
〈̂ 〈̂ 〈̂ t, t〉, t〉, t〉; variables are typed as in the treatment of example 5, the type of T ,
moreover, is 〈̂̂ 〈̂ e, 〈̂ τ, t〉〉, 〈̂ τ, t〉〉 and the type of Q is 〈̂̂ e, 〈̂ τ, t〉〉):

(a) beats a donkey: [1VR〈 τ̂,t〉]([2VR]([2VR](λx bad(∨x)))) ⇔
λT λR ∨T (∧λxλR ∨R(∧λR ∨R(∧bad(∨x))))(R)

(b) noi farmer: [1DGD τ̂ ](λQ ¬∃di(fa(di) ∧ ∨Q(∧di))) ⇔
λQλR ¬∃di(fa(di) ∧ ∨Q(∧di)(R

∗))

The application of (a) to the intension of (b) gives the following translation of the
antecedent of the example:

(c) λR ∀di(fa(di) → ∨R(∧λR ∨R(∧¬bad(di))))
24

24. (λT λR ∨T (∧λxλR ∨R(∧λR ∨R(∧bad(∨x))))(R))(∧λQλR ¬∃di(fa(di) ∧ ∨Q(∧di)(R
∗))) ⇔

λR ¬∃di(fa(di) ∧ ∨R∗(∧λR ∨R(∧bad(di)))) ⇔
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Proceeding, next, as in the treatment of example 5, we get the following translation
of example 10:

(d) ∀d(farmer(d) → ((sane(d) → (¬bad(d) ∧ ¬yell at it(d))) ∧
(¬sane(d) → maybe bad(d))))

λR ¬∃di(fa(di) ∧ ¬∨R(∧λR ∨R(∧¬bad(di)))) ⇔
λR ∀di(fa(di) → ∨R(∧λR ∨R(∧¬bad(di))))



Chapter 4

Existential disclosure

The work of Kamp [1981] and Heim [1982] in the early eighties has started a new
branch of semantic theorizing within the format of discourse representation theory
(DRT). More recently, compositional, dynamic reformulations of the DRT frame-
work have been given that enhance comparison of DRT with more classical semantic
theories, in particular, Montague grammar, and that enable an integration of results
(Barwise [1987], Rooth [1987], Asher and Wada [1988], Zeevat [1989], Groenendijk
and Stokhof [1990a], Muskens [1990]). Groenendijk and Stokhof [1990a] in partic-
ular formulates a dynamic Montague grammar (DMG), in which the paradigmatic
Montague grammar of the seventies is adapted in order to incorporate DRT-results.

In this chapter I want to show how existing treatments of relational nouns,
adverbial modification and tense in discourse can be formulated within such dynamic
frameworks. The choice of these topics is not arbitrary. All three seem to involve
the notion of an implicit argument. Relational nouns appear to have implicit object
arguments which can be specified by complement phrases. Many adverbs can be
interpreted as predicates that range over events which are implicitly referred to by
verb phrases. And in temporal discourse reference times implicitly referred to in one
sentence get related to the ones referred to in subsequent sentences.

A dynamic semantics provides a natural framework for the treatment of these
phenomena. In a dynamic semantics nouns and verbs with implicit arguments can
be interpreted, on a par with nouns and verbs without implicit arguments, as func-
tions from individuals to sentence denotations, that is, to context change potentials.
The expressions which carry implicit arguments can be taken to introduce objects
to the context which are available for optional adnominal, adverbial or temporal
specification.

The proposals made in this chapter are programmatic, compositional refor-
mulations of existing treatments of relational nouns, adverbs and tense. The point

123
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is to show that a compositional system of dynamic interpretation provides a natural
framework for the description of the phenomena involved. Although the reformula-
tions are cast within the framework of DMG, such reformulations are not restricted
to this particular framework. As, I hope, the following sections show, a completely
parallel treatment of the phenomena at issue is possible in any compositional re-
formulation of original DRT. DMG is used exemplary here, but, also, because it is
relatively easy to use.

This chapter is organized as follows. In section 1, I review very shortly the rudi-
mentary but compositional dynamic reformulation of DRT into DMG proposed by
Groenendijk and Stokhof. In this section I show that dynamic interpretation comes
along with the possibility of what is called ‘existential disclosure’, the possibility
to address (dynamic) existentially closed (implicit) arguments as if they were free
variables after all. The subsequent sections 2–4 show how existential disclosure can
be employed to model the specification of implicit arguments of nouns and verbs by
means of adnominal modification, adverbial modification and temporal operators,
respectively.

1 Implicit arguments in dynamic semantics

Certain nouns and nominalized constructions come with implicit arguments which
can, but need not, be specified by complement phrases. For instance, the relational
noun sister may be used to denote a set of sisters without indicating the individuals
of which they are a sister. Still, these individuals may be specified by a complement
phrase as in sister of John. Similarly, we can talk about the destruction of the city
without explicitly mentioning the destructive agents, but the agents can be specified,
as in the destruction of the city by the extra-terrestrials.

Verbs, too, have been argued to come with implicit arguments which license
optional specification. For instance, the sentence The pigeon flew has been taken
to describe a certain event or change of location the source and goal of which can
be specified by (optional) adverbial phrases like from Sevilla and to Amsterdam.
Similarly, the time of such an event can be specified by a phrase like last month, or
referred back to, as in the continuation And it flew back to Sevilla afterwards.

Implicit arguments are indefinite objects, that is, they are assumed to be, eventually,
existentially closed arguments. So, a sister is supposed to be a sister of someone,
a destruction is conceived to be a destruction of something by someone (or some-
thing), and the statement that the pigeon flew appears to assert the ‘existence’ of
some event of flying with some source and goal location at some time. However,
we just saw that complement phrases, adverbial phrases or temporal anaphors may
give a further specification of these indefinite, implicit arguments or impose fur-
ther conditions on them. The question how to account for this does not have a
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straightforward answer in static theories.
In static theories of interpretation, an existentially closed argument is not

available for further specification. So, if it is stated that Mary is a sister of someone,
or if we consider the set of individuals which are a sister of somebody, then, in
classical theories, there is hardly any non-ad hoc means of referring back to the
individual(s) of which Mary is a sister, or which the previously mentioned set is
the set of sisters of. This is where a dynamic semantics comes in. In a dynamic
semantics, indefinites objects, that is, objects which are existentially quantified over,
are available for further specification.

In a dynamic semantics, a sentence like There is a thief in the house is as-
signed an interpretation which allows the indefinite thief to be specified further in
subsequent discourse. So, if this sentence is followed by the sentence He came in
through the window , the resulting interpretation is equivalent with that of There
is a thief in the house who came in through the window . Clearly, also if a noun or
verb comes with an implicit argument which is existentially quantified over, then,
in a dynamic semantics, the argument remains available for further specification or
restriction.

Before I show how a dynamic treatment can be given of the specification of implicit
arguments, I first give a sketch of some of the basic properties of such a dynamic
semantics, DMG, which is required for a proper understanding of the sequel. I
use a formulation of DMG which slightly, but not principally, differs from the one
presented by Groenendijk and Stokhof (cf., chapter 1).

Dynamic Montague grammar

Dynamic Montague grammar (DMG) is a version of Montague grammar (MG, Mon-
tague [1973]) which employs the formal apparatus of dynamic intensional logic (DIL,
cf., Janssen [1986]), a variant of Montague’s intensional logic IL. In DMG intension-
ality in the ordinary sense of the word is ignored. The apparatus of (dynamic)
intensional logic merely serves the purpose of giving a compositional formulation of
the dynamics of interpretation.

In DMG a proper subset of the types of DIL is used, the basic types ε = 〈s, e〉 and
τ = 〈s, 〈〈s, t〉, t〉〉, and functional types derived from these two types. Sentences are
assigned denotations in the type τ , which are functions from states (assignments)
and propositions (sets of assignments) to truth values. Such functions can be con-
ceived of as context change potentials. Typically, the denotation of a sentence S is
a function that holds of a state s and a proposition p if, in the terminology of DRT,
p contains a state (assignment) that verifies S with respect to state (assignment) s.

Like in MG, expressions of a fragment of natural language are translated into
expressions of some logical language which has a well-defined interpretation. This
language is built up from variables and from lifts ↑c of extensional DIL constants
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c. (The lift ↑c of such a constant c is of a type obtained from the type of c by
replacing all occurrences of e and t in that type by ε and τ , respectively.) Among
the lifted constants of type e a set of discourse markers d, d′, . . . is distinguished,
whose lift has type ε. The language employs λ-abstraction, application and dynamic
counterparts of identity (=̃), negation (∼), existential quantification (Ed, where d is
a discourse marker) and conjunction (;). I will also use lifted extensional variables
and existential quantification over the values of these variables.

Sentences in DMG are assigned dynamic translations with dynamic interpretations.
The static contents of the sentences are given by the closure operation ↓. In many
cases the static contents of a dynamic translation can be determined by turning the
dynamic translation into an ordinary DIL expression using the following equivalences
([α/x]β is obtained from β by substituting all free occurrences of x in β by α):

DMG reduction
1. (λ-conversion)

(λx β)(α) ⇔ [α/x]β (provided all free variables in α are free for x in β)
2. (↑-export)

(↑β)(α) ⇔ ↑(β(↓α))
α =̃ β ⇔ ↑(↓α = ↓β)
∼Φ ⇔ ↑¬↓Φ

3. (↓-import)
↓↑φ ⇔ φ
↓EdΦ ⇔ ∃d↓Φ
↓[↑φ ; Ψ] ⇔ (↓↑φ ∧ ↓Ψ)

4. (associativity)
[EdΦ ; Ψ] ⇔ Ed[Φ ; Ψ]
[[Φ ; Ψ] ; Υ] ⇔ [Φ ; [Ψ ; Υ]]

By means of λ-conversion an expression can be meaning-preservingly reduced under
the ordinary conditions of an extensional type theory. The application of the lift of
an expression β to a dynamic argument α involves the lift of the application of β to
the static content of α. The dynamic equation of α and β involves the equation of
the static content of α and β and the dynamic negation of Φ involves the negation of
Φ’s static content, i.e., of Φ’s truth conditions. The import equivalences allow us to
replace the other DMG operators by their static counterparts. The first associativity
equivalence is characteristic for the system of interpretation. The equivalence holds
without proviso. So [EdΦ ; Ψ] ⇔ Ed[Φ ; Ψ] also if d occurs free in Ψ. Of course, if t is
a variable (not a discourse marker) the equivalence between [EtΦ ; Ψ] and Et[Φ ; Ψ]
only holds if t does not occur free in Ψ.
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An example

Some basic aspects of DMG are illustrated by the DMG treatment of the following
example:

(1) A man walks in the park. He whistles.

The common noun man and the intransitive verbs walk and whistle translate into
the lift of the constants man, walk, and whistle, respectively. These constants are of
type 〈e, t〉, and their lifts are of type 〈ε, τ〉, which is also the type of the variables P
and Q. The pronoun hei is a noun phrase with an interpretation of type 〈〈ε, τ〉, τ〉.
The indefinite article ai belongs to the category of determiners which is associated
with the type 〈〈ε, τ〉, 〈〈ε, τ〉, τ〉〉, the category of expressions that make up a noun
phrase when combined with a common noun to their right. The combination of a
noun phrase with an intransitive verb makes up a sentence. The noun phrases a man
and he are coindexed in order to indicate their anaphoric relationship.

Basic fragment
• ai ; λPλQ Edi[P (↑di) ;Q(↑di)]
• man ; ↑man
• walks ; ↑walk
• hei ; λP P (↑di)
• whistles ; ↑whistle

Three standard applications yield the following translations of the two sentences in
example 1:

(λPλQ Edi[P (↑di) ;Q(↑di)])(↑man)(↑walk)
(λP P (↑di))(↑whistle)

These expressions can be reduced in the following way:

(λPλQ Edi[P (↑di) ;Q(↑di)])(↑man)(↑walk) ⇔ (λ-conversion)
Edi[↑man(↑di) ; ↑walk(↑di)] ⇔ (↑-export)
Edi[↑(man(↓↑di)) ; ↑(walk(↓↑di))] ⇔ (↓-import)
Edi[↑(man(di)) ; ↑(walk(di))]

(λP P (↑di))(↑whistle) ⇔ (λ-conversion)
↑whistle(↑di) ⇔ (↑-export)
↑(whistle(↓↑di)) ⇔ (↓-import)
↑(whistle(di))

The translation of a sequence of two sentences S.T consists in the dynamic con-
junction [S′ ; T ′] of the translations S′ and T ′ of the two sentences. The (reduced)
translation of example 1 therefore reads as follows:

[Edi[↑(man(di)) ; ↑(walk(di))] ; ↑(whistle(di))]

By associativity this equals:
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Edi[↑(man(di)) ; [↑(walk(di)) ; ↑(whistle(di))]]

The truth-conditions of example 1 are given by the closure of the above formula:

↓Edi[↑(man(di)) ; [↑(walk(di)) ; ↑(whistle(di))]]

Employing ↓-import, this equals the following formula:

∃di(man(di) ∧ (walk(di) ∧ whistle(di)))

The example turns out to mean that there is a man who walks and who whistles. We
see that the dynamic semantics accounts for the anaphoric relationship in example
1 which holds between the indefinite noun phrase a man, and the coindexed pro-
noun he. Notice that the anaphoric relationship in this example is accounted for by
assembling, by means of dynamic conjunction, the meanings of the independently
interpreted sentences A man walks in the park and He whistles. Thus, DMG gives a
truly compositional formulation of the phenomenon that indefinites in one sentence
may bind pronouns in subsequent ones.

This concludes the exposition of DMG.

Existential disclosure

In DMG the emphasis has been on the potential of indefinite and other noun phrases
to bind coindexed pronouns. However, the same phenomena can be described as the
potential of pronouns to refer to objects introduced in the context. By attaching a
certain index to a pronoun it is made to address a preceding coindexed existential
quantifier, if there is any. Clearly, the addressed existential quantifiers need not
be introduced by explicit noun phrases, since they also may come along with the
translations of (relational) nouns and (eventive) verbs.

It is expedient to elaborate a little more upon the ability to address previously
introduced arguments in DMG. Suppose that Φ contains an ‘active’ occurrence of
the quantifier Edi. (An occurrence of Edi is active in Φ if it is not followed by another
active occurrence of Edi in Φ and if it is not in the scope of a negation sign.) Then a
free variable x can be made to play the role of the bound discourse marker di in Φ
by conjoining Φ with the formula that asserts the identity of x and di. Let us write
{↑x/di}Φ for such a conjunction [Φ ; (↑x =̃ ↑di)]. The following example shows that
in the closure of {↑x/di}Φ the quantification over the value of di in effect disappears:

↓{↑x/di}Edi[↑man(↑di) ; ↑walk(↑di)] =
↓[Edi[↑man(↑di) ; ↑walk(↑di)] ; (↑x =̃ ↑di)] ⇔ (associativity)
↓Edi[↑man(↑di) ; [↑walk(↑di) ; (↑x =̃ ↑di)]] ⇔ (↑-export)
↓Edi[↑(man(↓↑di)) ; [↑(walk(↓↑di)) ; ↑(↓↑x =̃ ↓↑di)]] ⇔ (↓-import)
∃di(man(di) ∧ (walk(di) ∧ (x = di))) ⇔ (classically)
(man(x) ∧ walk(x))

Here we see that {x/di}Φ involves something like the reverse of an operation of
existential closure and I will therefore call it the existential disclosure of Edi in
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Φ. As the above example shows, DMG enables us to associate natural language
indefinites with free variables, like Lewis [1975] and Heim [1982] do, by translating
them using existential quantifiers in the first place.

It may be noticed that the disclosure of Edi in Φ not fully dissolves an active
quantification over the values of di, since if Φ contains an active occurrence of Edi,
this quantifier remains active in {↑x/di}Φ. So, if one really wants to make such a
quantifier vacuous, then one has to ‘reset’ the value of di after the disclosure of di

in Φ to the value di had before the processing of Φ. This can be done as follows:

Et[(↑t =̃ ↑di) ; {x/di}Φ ; Edi(↑t =̃ ↑di)]

provided t does not occur free in Φ.

In what follows, the possibility to address values existentially quantified over in
DMG, and, more in particular, existential disclosure, will be employed in a compo-
sitional treatment of the specification of implicit arguments. Adnominal and adver-
bial modifiers will be taken to address arguments which are implicitly added to the
context by the nouns and verbs on which they operate. These arguments of nouns
and verbs make their appearance in the translation of these nouns and verbs as
supplementary arguments which are (dynamic) existentially closed and they thus
remain available for further specification. It may be noticed that this way of storing
information about implicit arguments is comparable to the way in which such in-
formation is encoded in Bartsch’ [1987] lexical representations of nouns and verbs.
Bartsch presents a more comprising treatment of similar phenomena, but in a less
compositional way.

Of course, in order to guarantee proper results we have to make sure that adverbial
and adnominal modifiers address the right arguments. For this purpose I will employ
two slightly different methods. The first method is based on the assumption that
certain adnominal (and adverbial) phrases tend to address implicit arguments with
specific thematic roles or cases. A specific use of the preposition of addresses what
may be called the implicit object of relational nouns, as in sister of John, or captain
of the ship. Similarly, by-phrases appear to select implicit subjects, as in the de-
struction of the city by the enemy . In order to indicate the kinds of arguments that
are addressed by these phrases I will use distinguished discourse markers which each
‘label’ specific implicit thematic roles and which are referred to by the respective
ad-phrases. This way of establishing the connection between complement phrases
and addressed arguments is illustrated by the treatment of relational nouns below.

The second way of achieving the same aim consists in an extension of the in-
dexing procedure. For instance, (certain) verbs are assumed to come with argument
slots for events which are filled by arbitrary indexed discourse markers which range
over events. These events then are available for further specification by coindexed
adverbial phrases.
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It must be clear that we also have to make sure that the ad-phrases eventually
do address implicit arguments. For this purpose I assume a meta-rule that forbids
vacuous addressing, which prevents adnominals to combine with nouns which lack
the addressed argument and which makes sure that the indices on verbs and ad-
verbs coincide. Such a prohibition can be conceived of as a dynamic analogue of
Kratzer’s [1988] prohibition against vacuous quantification by means of adverbs of
quantification. Probably, such a rule can be implemented in a more compositional,
semantic fashion, but I will not attempt to do so here. The required restatement of
such a rule would be preferrably cast within a more general theory of indexing and
pronoun resolution, and the issue, therefore, is left for further research.

A final remark concerns possible anaphoric relationships with implicit arguments.
Although the noun captain, in certain contexts at least, comes with implicit ships
which the captains are captains of, we cannot refer back to such ships with a pronoun.
So, the pronoun it in A captain whistles. It is ready to leave seems to be not, or
hardly, acceptable. On the other hand, if a sentence describes an event, the event
can be referred back to, as in Mary hit John. He laughed about it. For this reason,
we will simply assume that discourse marker that are used to label thematic cases,
unlike those which refer to events, are not used in the translations of pronouns.

2 Relational nouns

Relational nouns, like mother and captain, are nouns that have been considered ‘un-
saturated’ semantically. Every mother is the mother of someone, and every captain
is the captain of some ship (in the default case). However, as is argued in de Bruyn
and Scha [1988], this does not imply that relational nouns should be treated syntac-
tically as being subcategorized for certain prepositional phrases. De Bruyn and Scha
point out that the syntactic behaviour of relational nouns is very similar to that of
‘ordinary’ nouns, and they claim that the “overt realization of the arguments of a
‘transitive’ noun is always optional” (p. 26). Therefore, they propose a treatment of
relational nouns which is on a par with that of ordinary nouns in the syntax, and
which accounts for the idiosyncratic properties of relational nouns in the semantics.
In this section, I subscribe to these general features of de Bruyn and Scha’s proposal
and give a more uniform elaboration of them in the format of DMG.

In de Bruyn and Scha’s proposal the complement phrases that combine with rela-
tional nouns are considered to be modifiers of the nouns syntactically. Semantically,
these complements address arguments of the relations expressed. The semantic part
of de Bruyn and Scha’s proposal comes down to the following. Relational nouns de-
note genuine relations, that is, sets of pairs of objects. The relational noun sisters,
for instance, denotes the set of pairs each pair in which consists of an individual
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and a sister of that individual. Expressions like Peter’s in Peter’s sisters, or of Pe-
ter in sisters of Peter, restrict such sets of pairs to the sets consisting of pairs of
which the first element is Peter. Notice that these phrases still denote sets of pairs
of individuals. So, in order to let these expressions combine properly with verbs and
other expressions, a meaning postulate is invoked that links up the semantic role of
a set of pairs of objects with a corresponding set of objects (a projection of the set
of pairs). In the example at hand, the set of all pairs consisting of Peter and a sister
of his is linked up with the set of individuals which are Peter’s sisters.

So, according to de Bruyn and Scha’s proposal, nouns may denote sets of in-
dividuals as well as relations between individuals, and verbal predicates are made
to apply both to plural noun phrases which denote sets of individuals, as well as
to relational noun phrases which denote relations between individuals. For the pur-
pose of giving an account of relational nouns, such complications can be avoided
within a dynamic framework. Restricting ourselves to (singular) relational nouns,
we can preserve both a uniform syntax, like de Bruyn and Scha, and a uniform,
compositional semantics.

Sketch of a dynamic treatment of relational nouns

In DMG all nouns can be assigned the type of dynamic properties (type 〈ε, τ〉), the
type of functions from individual concepts to context change potentials. Relational
nouns have interpretations in this type which contribute implicit arguments to the
context. Complement phrases simply address the contributed arguments and give it
a further specification. So, for instance, the relational noun sister can be interpreted
as the property of being the sister of somebody and the syntactic modifier of John
may turn this property into the property of being the sister of somebody who is John,
that is, into the property of being a sister of John. Clearly, since both the nouns
sister and sister of John denote dynamic properties, they may immediately combine
with a determiner to form a noun phrase without assuming type-polymorphism or
without the need of applying some operation of existential closure. So, within a
dynamic semantics like DMG we can treat the prepositional phrase of John as an
ordinary noun modifier syntactically, whereas it behaves semantically as a specifier
of an implicit argument of the noun.

A dynamic treatment of relational nouns can be developed further along the follow-
ing lines. The treatment of the noun captain exemplifies that of relational nouns
in general. The expressions ship and captain belong to the category of common
nouns (CN), associated with the type 〈ε, τ〉 of dynamic properties. The name the
SS. Enterprise belongs to the category of noun phrases (NP). We use two dynamic
determiners, ai and everyj . Finally, we have a complement preposition of2 which
belongs to the category (CN\CN)/NP, the category of expressions that, when com-
bined with a noun phrase to their right belong to the category of CN -modifiers.
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The translations of these expressions are the following (again, P and Q are
variables of type 〈ε, τ〉, x and y are variables of type ε, and T is a variable of type
〈〈ε, τ〉, τ〉; as usual, AdΦ is defined as ∼Ed∼Φ, and [Φ ⇒ Ψ] is defined as ∼[Φ;∼Ψ]):

Translations in a fragment with relational nouns
• ai ; λPλQ Edi[P (↑di) ;Q(↑di)]
• everyj ; λPλQ Adj [P (↑dj) ⇒ Q(↑dj)]
• ship ; ↑ship
• captain ; λx Ed2↑captain of(↑d2)(x)
• of2 ; λTλPλx ↑↓T (λy {y/d2}P (x))
• the SS. Enterprise ; λQ Q(↑ss.e)

This tiny fragment generates sentences like Every captain whistles, A captain of2
the SS. Enterprise whistles and Every captain of2 a ship whistles. The (reduced)
translations of these expressions are, respectively:

(2) Every captain whistles
Adj [Ed2↑(captain of(d2)(dj)) ⇒ ↑(whistle(dj))]

(3) A captain of2 the SS. Enterprise whistles
Edi[↑(captain of(ss.e)(di)) ; ↑(whistle(di))]

(4) Every captain of2 a ship whistles
Adj [↑∃di(ship(di) ∧ captain of(di)(dj)) ⇒ ↑(whistle(dj))]

I now show in some more detail how example 3 is dealt with.

The translation of the expression of2 the SS. Enterprise consists in the application
of the translation of of2 to that of the SS. Enterprise. By means of λ-conversion this
translation can be reduced as follows:

(λTλPλx ↑↓T (λy {y/d2}P (x)))(λQ Q(↑ss.e)) ⇔
λPλx ↑↓(λQ Q(↑ss.e))(λy {y/d2}P (x)) ⇔
λPλx ↑↓(λy {y/d2}P (x))(↑ss.e) ⇔
λPλx ↑↓{↑ss.e/d2}P (x)

If we apply this expression to the translation of captain we get the translation of
the complex common noun captain of2 the SS. Enterprise, which, again by means
of λ-conversion, can be reduced in the following way:

(λPλx ↑↓{↑ss.e/d2}P (x))(λx Ed2↑captain of(↑d2)(x)) ⇔
λx ↑↓{↑ss.e/d2}(λx Ed2↑captain of(↑d2)(x))(x) ⇔
λx ↑↓{↑ss.e/d2}Ed2↑captain of(↑d2)(x)

By the definition of existential disclosure, this expression is equivalent with the
following expression, and with the subsequent reductions of it:

λx ↑↓[Ed2↑captain of(↑d2)(x) ; ↑ss.e =̃ ↑d2] ⇔ (associativity)
λx ↑↓Ed2[↑captain of(↑d2)(x) ; ↑ss.e =̃ ↑d2] ⇔ (↑-export)
λx ↑↓Ed2[↑(captain of(d2)(↓x)) ; ↑(↓↑ss.e = ↓↑d2)] ⇔ (↓-import)
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λx ↑∃d2(captain of(d2)(↓x) ∧ ss.e = d2) ⇔
λx ↑(captain of(ss.e)(↓x))

The sentence A captain of2 the SS. Enterprise whistles has a (reduced) translation
which consists in the application of the translation of a to the translations of captain
of2 the SS. Enterprise and whistles, respectively. The translation of the sentence can
be reduced in the following way, again by means of λ-conversion:

(λPλQ Edi[P (↑di) ;Q(↑di)])(λx ↑(captain of(ss.e)(↓x)))(↑whistle) ⇔
Edi[(λx ↑(captain of(ss.e)(↓x)))(↑di) ; ↑whistle(↑di)] ⇔
Edi[↑(captain of(ss.e)(↓↑di)) ; ↑whistle(↑di)]

Using ↑-export and ↓-import, the translation of example 3 turns out to be equivalent
with the following expression:

Edi[↑(captain of(ss.e)(di)) ; ↑(whistle(di))]

This formula is true iff there is an object z such that the pair of z and the denotation
of ss.e are in the extension of captain of and z is in the extension of whistle.
Furthermore, under this dyanmic translation the captain who whistles can be re-
ferred back to by a pronoun as in a continuation of the example with the sentence
He is glad to leave.

The rudimentary fragment above shows how determiners may be combined with
ordinary common nouns, relational nouns and relational nouns with complement
phrases, this in a uniform fashion. The treatment of the adnominals crucially relies
on the possibility to address objects which are implicitly introduced by relational
nouns. As was argued above, however, it must have been made sure that these
phrases do not fail to address arguments, this, by means of the meta-rule which
prohibits vacuous addressing. A complement phrase like of2 John is only allowed to
apply to nouns that come with implicit object arguments, that is, to nouns whose
translations contain an active occurrence of the quantifier Ed2. This prohibition
against vacuous addressing expels anomalous constructions like, for instance, a ship
about syntax.

Notice that the above translation of the preposition of2 involves an operation
of static closure by means of ↑↓. This closure operation annihilates the dynamic
potential of implicit arguments and indefinite noun phrases which occur in con-
structions of the form CN of2 NP. There are two reasons for choosing to adopt
this closure. In the first place, an indefinite noun phrase a man in a construction
like sister of a man does not seem to be eligible as an antecedent for subsequent
pronominal coreference. In the second place, if an implicit argument of a relational
noun has been specified by an adnominal of2-phrase, the argument does not seem to
be available for further adnominal specification either. So, since in the translation
of the complex common noun brother of2 Mary no quantifiers are active, the rule
against vacuous addressing excludes the construction of a complex noun brother of2
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John of2 Mary . It must be noticed, however, that the translation of functionally used
prepositions with an operation of static closure may be too restrictive to account
for noun phrases such as the destruction of2 the city by the enemy and a letter from
John to Harry about this issue. Suitable adaptations have to be made in order to
deal with these examples, but going into the required amendations would lead us
too far from the (programmatic) purposes of this chapter.

3 Non-temporal adverbial phrases

The modification of verbs by adverbial phrases (among which I include prepositional
phrases for simplicity) is in some respects similar to the modification of nouns. In
contrast with direct and indirect object phrases, for which verbs may be subcatego-
rized, adverbial phrases behave syntactically like verb (phrase) modifiers. (I disre-
gard sentential adverbs, or ‘ad-sententials’, here.) However, many adverbial phrases
are not arbitrary modifiers semantically, but they appear to have a genuine contri-
bution to the information expressed by the verbs they modify.

Consider the following examples.

(5) Harry walks from Amsterdam to Budapest.
(6) Mary hits John with a hammer on his head.

In Montague [1970a] phrases like from Amsterdam and with a hammer express
functions from properties to properties. For instance, sentence 5 gets translated,
roughly, as to(b)(from(a)(walk))(h). Such an approach, however, does not validate
two inference schemes discussed in Parsons [1989], which seem to give a correct
characterization of the logical behaviour of many adverbial phrases:

Scope entailment
ADV 1(ADV 2(φ)) → ADV 2(ADV 1(φ))

Diamond entailment

ADV 1(ADV 2(φ))
ր

ADV 1(φ)
ց

ց
ADV 2(φ)

ր
φ

Adverbial phrases for which the scope entailment holds can be reordered in a sen-
tence without changing the sentence’s meaning. For instance, Harry walks to Bu-
dapest from Amsterdam and Mary hits John on the head with a hammer have the
same truth conditions as the examples 5 and 6 respectively. (That is, disregarding
other aspects of meaning, such as, for instance, that of topic/focus.) Likewise, the
deletion of adverbial phrases which respect to the diamond entailment weakens a
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sentence’s truth conditions. So, example 5 entails that Harry walked from Amster-
dam, that Harry walked to Budapest, and that Harry walked. (At first glance one
might think that all adverbial phrases respect these entailment schemes, but this is
not true. Montague [1970a] offers the example in a dream.)

Montague himself has observed this inferential behaviour of many ad-phrases,
and he proposes to account for it by assigning such phrases the ‘intersection-proper-
ty’ ([1970a, pp. 211–213]). This does not seem to be completely satisfactory. On the
intersective interpretation of an adverbial phrase, the phrase expresses a property of
the subject of the verb modified. But if the adverbial phrases in the examples above
express properties, then it can hardly be properties of the subject of the sentences.
For instance, if the intersection property were to hold for the adverbials in 6, then
6 together with the premiss that Mary sings would allow us to conclude that Mary
sings with a hammer on John’s head. This, of course, should not be.

Alternative analyses of adverbial modification have been given by, among others,
Davidson [1967], Bartsch [1972], Parsons [1989, 1991] and Dowty [1989]. In these
analyses (certain) verbs are taken to express properties of events (states, processes,
space/time regions, . . . ), or to express relations between events (. . . ) and some
number of other arguments. Adverbial phrases are taken to be verb phrase modifiers
which impose further restrictions on the events described by the verbs phrases to
which they apply.

For instance, the verb phrase hits John is interpreted as the relation between
individuals and events that holds of an individual x and an event e iff e is an event
of x’s hitting John. An adverbial phrase like with a hammer is analyzed as a verb
modifier that, roughly, requires the event associated with the verb to which it applies
to be with a hammer, or to be performed with a hammer. Similarly, the adverbial
phrase on the head is taken to impose the condition that the event of hitting is
a hitting on the head. Passing over details, the sentence Mary hits John with a
hammer on the head is eventually associated with the following translation:

∃e(hit(e)(j)(m) ∧ with a hammer(e) ∧ on the head(e))

which states that there is an event of Mary’s hitting John such that the hitting is
performed with a hammer and such that the hitting is on the head (of John).

It is easily seen that if adverbial phrases impose conditions on events in the
way sketched then they validate the aforementioned diamond and scope entailments.
These entailments correspond to conjunction reduction and conjunction commuta-
tion respectively.

Clearly, matters are simplified here and the authors mentioned above have
made many refinements, of course. To mention two, the condition that the event e
is ‘with a hammer’ has been further analyzed as the condition that the ‘instrument’
relation holds between e and a hammer. Furthermore, the condition that e is an
event of Mary’s hitting John has been analyzed as the condition that e is a hitting



136 Chapter 4. Existential disclosure

event, and that the relation ‘being the agent of’ holds of Mary and e and the
relation ‘being the direct object of’ holds of John and e. Complications like these,
and simplifications like mine, however, are not relevant for the present discussion.

It may be noticed that in these Davidsonian treatments of adverbial modifica-
tion an operation of existential closure has to apply at some stage in the process of
interpretation. In order for the events described by verbs phrases to be available for
adverbial modification they are indicated by free variables, the values of which may
be abstracted over in the translations of the verb phrases. However, a finite sentence
is generally taken to state the existence of an event of the kind described by the
sentence. For this reason an operation of existential closure has to apply somewhere
in the process of interpretation. In the proposals at issue, which are cast within
static frameworks, such a closure has drawbacks. The closure precludes the possibil-
ity of anaphoric reference to described events, despite the fact that such anaphors
to events make up one of the arguments for positing the existence of events in the
first place.

Sketch of a dynamic treatment of adverbial modification

Analogous to the preceding treatment of relational nouns and their complements,
the treatments of adverbial modification can be recast within the framework of
DMG, without the need to postulate an additional operation of existential closure.
As we have seen, such intermediary closures can be dispensed with in a dynamic
semantics, since the arguments involved can already be assumed to be existentially
closed in the translation of the (finite) verbs themselves. Due to the dynamics of
the system of interpretation, these arguments can still be addressed by adverbial
phrases.

We can adopt the analyses of adverbs sketched above within DMG, roughly,
in the following way. A finite form of the verb walk belongs to the category IV .
The prepositions from and to belong to the category (IV\IV)/NP, the category
of expressions that form an intransitive verb phrase when combined with a noun
phrase to their right and, next, with an intransitive verb phrase to their left. The
names Harry , Amsterdam and Budapest belong to the category of noun phrases.
The model is assumed to be extended with some appropriate domain of events, and
the translation language is extended with discourse markers ei, ej . . . which range
over events. The lexical expressions involved can be translated in the following way
(variables are typed as above; the ):

Translations in a fragment with adverbial phrases
• Harry ; λQ Q(↑h)
• walksi ; λx Eei↑walk(↑ei)(x)
• fromi ; λTλPλx T (λy [P (x) ; ↑from(y)(↑ei)])
• Amsterdam ; λQ Q(↑a)
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• toi ; λTλPλx T (λy [P (x) ; ↑to(y)(↑ei)])
• Budapest ; λQ Q(↑b)

The constant walk is interpreted as a relation between individuals and events, to be
understood as the relation which holds of an object x and an event e iff e is an event
of x’s walking. In the translation of the expression walks, the event argument slot of
walk is closed by a dynamic existential quantifier. A sentence like Harry walks thus
introduces an event of Harry’s walking which is available for subsequent anaphoric
reference and adverbial modification.

An adverbial phrase like from Amsterdam addresses the event introduced by
the verb to which the phrase applies. Recall that we have assumed a rule prohibiting
vacuous addressing. So, with regards to the verb phrase walks from Amsterdam, the
verb walks and the preposition from are required to be coindexed. The verb phrase
therefore denotes the dynamic property which can be paraphrased as the property
of being an object that figures in an event of walking which starts from Amsterdam
(A′ indicates the translation of A):

fromi
′(Amsterdam′)(walksi

′) =
λTλPλx T (λy [P (x) ; ↑from(y)(↑ei)])(λQ Q(↑a))(λx Eei↑walk(↑ei)(x)) ⇔
λx (λQ Q(↑a))(λy [(λx Eei↑walk(↑ei)(x))(x) ; ↑from(y)(↑ei)]) ⇔
λx (λy [Eei↑walk(↑ei)(x) ; ↑from(y)(↑ei)])(↑a) ⇔
λx [Eei↑walk(↑ei)(x) ; ↑from(↑a)(↑ei)] ⇔
λx Eei[↑walk(↑ei)(x) ; ↑from(↑a)(↑ei)]

The translation of the sentence Harry walksi fromi Amsterdam is obtained by ap-
plying the translation of Harry to that of walksi fromi Amsterdam, the result of
which reduces as follows:

(λQ Q(↑h))(λx Eei[↑walk(↑ei)(x) ; ↑from(↑a)(↑ei)]) ⇔
Eei[↑walk(↑ei)(↑h) ; ↑from(↑a)(↑ei)] ⇔
Eei[↑(walk(ei)(h)) ; ↑(from(a)(ei))]

The sentence turns out to mean that there is an event of Harry’s walking which is
from Amsterdam.

The event introduced by the verb walki remains available for further specifi-
cation or modification also after the adverbial phrase fromi Amsterdam has applied
to it. Hence, a second adverbial modifier toi Budapest, with the same index again,
may apply to the phrase walksi fromi Amsterdam, and a sentence like Harry walksi

fromi Amsterdam toi Budapest turns out to mean that there is an event of Harry’s
walking which is from Amsterdam and which is to Budapest:

[[Eei↑(walk(ei)(h)) ; ↑(from(a)(ei))] ; ↑(to(b)(ei))] ⇔
Eei[↑(walk(ei)(h)) ; [↑(from(a)(ei)) ; ↑(to(b)(ei))]]

Clearly, the sentences are assigned the truth-conditions argued for, this in a uniform
way. The present exposition may serve as an indication of how to give a straigh-
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forward reformulation in DMG of the analyses of adverbial modification referred to
above, whatever their details are.

McConnell-Ginet [1982] and Larson [1988] have presented alternative analyses in
which adverbial phrases express properties of objects that are derived from the
verb interpretation in some way or other. For instance, according to the proposal
of McConnell-Ginet the interpretation of the verb walks (a property) can be turned
into a two place relation which holds between walkers and walking rates. An adverb
like quickly can be applied to such an inflated interpretation of the verb, and impose
the condition that the ‘added’ rate is quick. In Larson’s proposal, which is cast within
a situation theoretic framework, a walking event is taken to ‘involve’ an event in
which an agent changes position. An adverbial like to Budapest then imposes the
condition that Budapest is the goal of the change of location which is involved by
the situation described by verb.

Again passing over all kinds of details, I think the essence of the last mentioned
treatments of adverbials can be wormed from their theoretical frameworks and cast
in the mould of a dynamic semantic framework. McConnell-Ginet says: “Ad-verbs
typically have a dual function: they augment the order of the verb on which they
operate, and they specify the value(s) of the added argument place(s)” (p. 168).
In the format of DMG we can restate this function of adverbial phrases as their
potential to disclose (and specify) implicit arguments in the verbs on which they
operate. So, where McConnell-Ginet would have an augmentation of a verb with an
added rate (manner, . . . ) argument place, we could propose an initial rate (manner,
. . . ) argument place that is existentially closed in the translation of the verb. The
essence of Larson’s proposal, as far as the semantics is concerned, may be clarified
if we take constraints to be meaning postulates (disregarding the fact that they
were not intended to be taken that way), and introduce the involved situations or
involved objects in the lexical translations of the involving verbs themselves.

It must be remarked, however, that it is not a trivial matter to elaborate a com-
prehensive treatment of adverbial phrases along these lines. The facts at issue are
much more entangling then appears from the present discussion, of course. Bartsch
[1972], in particular, presents a large number of observations which a full-blown
theory of adverbs should account for, about the kinds of objects which are available
for adverbial modification, and about the particular properties of all different kinds
of adverbial modification. The ways in which one extends the present treatments
of adverbial modification will probably depend on the ontological commitments one
wishes to make and on what one considers to be an economical way to account for
the semantic facts involved. For the present aims, however, it is immaterial how
one should want to proceed. What I merely aimed to demonstrate in this section is
that the treatments of adverbial modification discussed here can be perspicuously
formulated within the framework of a dynamic system of interpretation.
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4 Tense in discourse

The last application of existential disclosure concerns temporal adverbs and tense in
discourse. Since the syntactic category of (temporal) adverbs is most likely that of
verb (phrase) modifiers, one again might be tempted to treat them also as modifiers
at the semantic level. As regards tense one might think of a Priorian analysis of
temporal operators as operators that quantify over times of evaluation. We can
use the operator P of classical tense logic to translate verbs in the past tense.
A past-tensed sentence is then translated as P (φ), where P (φ) is true at some
time of evaluation iff φ is true at some earlier time of evaluation. Likewise, the
adverb yesterday can be translated as the operator Y which shifts back the time
of evaluation to the day before the original evaluation time. Dowty [1982] (among
others) has argued that this is not a tenable analysis.

Consider the following example:

(7) Bill left yesterday.

On a Priorian analysis this sentence translates either as Y (P (leave(b))) or as
P (Y (leave(b))). Neither translation gives the right truth conditions, since both
are verified if Bill did not leave yesterday, but, for instance, two days ago.

Reference time, speech time and event time

Alternative approaches to tense have been offered by Bäuerle [1979], Dowty [1982],
[1986], Kamp and Rohrer [1983], Hinrichs [1986] and Partee [1984], to name just a
few. Common to all of these approaches is that they elaborate upon Reichenbach’s
distinction between speech time, reference time and event time. This distinction can
be illustrated by the sentence Bill had gone. This sentence describes a state of affairs
at a reference time before the speech time such that at the reference time it holds
that Bill left at an event time before that (cf., Reichenbach [1947, pp. 287–298]).

In all the approaches mentioned, tenses express conditions on the ordering of
the three points or intervals of time, and temporal adverbs impose conditions on the
reference time. For instance, a simple past (future) indicates that the reference time
lies before (after) the speech time and the adverb yesterday imposes the condition
that the reference time is located the day before the speech time. The past perfect
furthermore locates the (current) reference time in the past, and assigns the tensed
verb a reference or event time before the current reference time.

Reference times also play an important role in the temporal connectedness of ‘tem-
poral’, or ‘narrative’, discourse. It is commonly assumed that narrative discourses
describe successions of events. A restatement of this is that the reference time in
such a discourse moves forward sentence by sentence. (We can take this to be the
default case. There are quite a lot of adjustments to be made here, but these need
not interfere with the present discussion.) Dowty [1986] formulates it as follows:
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“The reference time of a sentence is interpreted to be a time consistent with the def-
inite time adverbials, if there are any; otherwise, a time which immediately follows
the reference time of the previous sentence.” This is what he calls the ‘temporal
discourse interpretation principle (TDIP)’.

In the proposal of Kamp and Rohrer, Hinrichs and Partee, which are cast
within the framework of DRT, something like the TDIP is formulated in the dis-
course representation construction algorithm. The picture is a bit more involved
here, since the proposals make a distinction between eventive and stative sentences.
Eventive sentences are taken to describe events which occur at a time contained in
the current reference time. These sentences are supposed to move the reference time
forward within a discourse. Stative sentences, on the other hand, describe states
which obtain at a stretch of time which itself contains the reference time. These
sentences are assumed to keep the reference time the same.

There is one difference between the analyses of the last mentioned authors and
the one by Dowty which is worth mentioning. In the DRT proposals the reference
time is eventually existentially quantified over. In Dowty’s proposal, on the other
hand, reference times are definite parameters of interpretation. The adoption of a
definite reference time is, among others, motivated by Partee’s example I didn’t turn
of the stove. The idea is that if reference times are existentially quantified over, then
the example would mean either that there is a time in the past where the speaker
did not turn of the stove (and be trivially true under common circumstances), or
that there is no time in the past where she turned of the stove (and be trivially false
then). On Dowty’s account the example will be probably taken to mean that the
speaker did not turn off the stove at reference time. It appears to me that something
like Dowty’s interpretation can be also be attained by means of restricted existen-
tial quantification over reference times. If the reference time, which is existentially
quantified over, is required to be found within a restricted (temporal) domain of
quantification, then both analyses may turn out equivalent if the domain chosen in
the existential analysis coincides with the choice of the reference time in Dowty’s
analysis.

In the approaches mentioned, the interpretation of tensed verbs is in some way
or other related to (event) times. We need not go into the required ontology of
events and times here, but simply assume some suitable domain of events which
comes with a temporal order. Verbs can be taken to have argument slots for events
with associated event times, and temporal adverbs and tense operators are taken
to impose conditions on the times of the events that fill these slots, for instance, by
relating them in certain specific ways to the speech and/or reference time.

Again, the semantic contribution of the respective verbs, temporal adverbs
and temporal operators can be perspicuously formulated within the framework of
DMG. In what follows I will partly reformulate the proposals of Partee, which are
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by and large based upon the work of Hinrichs. I will pass over the details of the
proposals, and we will solely be concerned with stretches of simple, linear narrative
discourse.

Sketch of a dynamic treatment of tense

In the DMG treatment of tense and temporal predication it is expedient to have at
our disposal three distinguished discourse markers ds, da and db. The first one of
these (ds) is used to indicate the speech time. The two other discourse markers (da

and db) can be used to refer to the current reference time, and, if necessary, to reset
it. Initially, the reference time is existentially quantified over.

In the translation of a sentence with an eventive verb the current reference
time labeled by da is pushed forward by requiring it to precede the next reference
time labeled by db. As we will see presently, the value of db will figure as the reference
time for a subsequent sentence, since in the conjunction of two sentences S and T in a
temporal discourse the (input) reference time for T (i.e., the value of the occurrence
of da in T ) is equated with the (output) reference time delivered by S (i.e., the value
of the occurrence of db in S). The translation of a stative verb leaves the reference
time untouched by equating the ‘input’ reference time with the ‘output’ reference
time.

In the following fragment the translation of the intransitive verb arrive il-
lustrates the interpretation of eventive verbs, and the translation of sleep that of
stative verbs. The past tense affix –ed is defined as an operator that turns an un-
tensed intransitive verb into a tensed intransitive verb. I have added a temporal
sentential connective when and a sequencing operator ‘.t’ which is used in temporal
or narrative discourse. (Think of .t as the child’s connective And then . . . .)

Translations in a fragment with temporal operators
• arrivei ; λx EdaEdbEei [(↑ei ⊆̃ ↑da) ; [↑arrive(↑ei)(x) ; (↑ei <̃ ↑db)]]
• sleepi ; λx EdaEdbEei [(↑da ⊆̃ ↑ei) ; [↑sleep(↑ei)(x) ; (↑da =̃ ↑db)]]
• -ed ; λPλx [P (x) ; (↑da <̃ ↑ds)]
• S.tT ; Et [{↑t/db}S

′ ; {↑t/da}T
′]

• when S, T ; Et [{↑t/da}S
′ ; {↑t/da}T

′]

The temporal relation expressions ⊆̃ and <̃ are the DMG counterparts of DIL ex-
pressions ⊆ and < which express the relation of being temporally contained in and
that of temporal precedence, respectively. Formulas containing these operators ob-
serve the ↑-export equivalences which also apply to identity statements:

α ⊆̃ β ⇔ ↑(↓α ⊆ ↓β)
α <̃ β ⇔ ↑(↓α < ↓β)

The verb arrive holds of objects which arrive at an event time which is con-
tained in the reference time and the verb sleep holds of objects which are in a state
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of sleep at the reference time. When we use the past tense of a verb, the past tense
affix requires that the implicit reference time of the verb is located in the past. In
the temporal sequencing of two sentences S and T , the input reference time of the
second sentence T is equated with the output reference time of the first. If the two
sentences are combined by means of the connective when, then they are both evalu-
ated with respect to the current reference time. In both the sentential constructions
S.tT and when S, T the existential quantifier Et binds a variable, not a discourse
marker. These two instances of existential quantification, hence, are not dynamic.

These translations merely formalize the treatment of tense as it was described
above. As an illustration of the present fragment I indicate how it deals with an
example discussed in Partee [1984, pp. 258ff].

An example

Partee discusses the following example:

(8) Mary turned the corner. When John saw her, she crossed the street.

The three verbs in this example are assumed to be eventive. So, the first sentence in
this example, and the two constituent sentences of the second sentence are assigned
the following (simplified) translations (I have skipped the clauses which locate the
events in the past):

Mary turnedi the corner.
EdaEdbEei [(↑ei ⊆̃ ↑da) ; ↑turn(↑ei)(↑m) ; (↑ei <̃ ↑db)]

John sawj her.
EdaEdbEej [(↑ej ⊆̃ ↑da) ; ↑see(↑ej)(↑m)(↑j) ; (↑ej <̃ ↑db)]

She crossedk the street.
EdaEdbEek [(↑ek ⊆̃ ↑da) ; ↑cross(↑ek)(↑m) ; (↑ek <̃ ↑db)]

By means of ↑-export and ↓-import the translations of the three constituent sen-
tences can be reduced to the following formulas:

EdaEdbEei [↑(ei ⊆ da) ; ↑(turn(ei)(m)) ; ↑(ei < db)]
EdaEdbEej [↑(ej ⊆ da) ; ↑(see(ej)(m)(j)) ; ↑(ej < db)]
EdaEdbEek [↑(ek ⊆ da) ; ↑(cross(ek)(m)) ; ↑(ek < db)]

The last two sentences are combined with the connective when, and the result of this
is conjoined with the first sentence by means of the temporal sequencing operator .t.
Spelling out the involved existential disclosures, we arrive at the following translation
of example 8:

Et [EdaEdbEei [↑(ei ⊆ da) ; ↑(turn(ei)(m)) ; ↑(ei < db)] ; ↑(t = db) ;
Et′ [EdaEdbEej [↑(ej ⊆ da) ; ↑(see(ej)(m)(j)) ; ↑(ej < db)] ; ↑(t′ = da) ;
EdaEdbEek [↑(ek ⊆ da) ; ↑(cross(ek)(m)) ; ↑(ek < db)] ; ↑(t′ = da)] ; ↑(t = da)]

Using the associativity equivalences, this formula turns out equivalent with:
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EtEdaEdbEei [↑(ei ⊆ da) ; ↑(turn(ei)(m)) ; ↑(ei < db) ; ↑(t = db) ;
Et′EdaEdbEej [↑(ej ⊆ da) ; ↑(see(ej)(m)(j)) ; ↑(ej < db) ; ↑(t′ = da) ;
EdaEdbEek [↑(ek ⊆ da) ; ↑(cross(ek)(m)) ; ↑(ek < db) ; ↑(t′ = da) ; ↑(t = da)]]]

Applying the closure operator ↓ we get the truth conditions of example 8. By means
of ↓-import, the result can be reduced to the following formula:

∃t∃da∃db∃ei((ei ⊆ da) ∧ turn(ei)(m) ∧ (ei < db) ∧ (t = db) ∧
∃t′∃da∃db∃ej((ej ⊆ da) ∧ see(ej)(m)(j) ∧ (ej < db) ∧ (t′ = da) ∧
∃da∃db∃ek((ek ⊆ da) ∧ cross(ek)(m) ∧ (ek < db) ∧ (t′ = da) ∧ (t = da))))

Using some standard reductions, this is equivalent with the following formula:

∃t∃da∃ei(ei ⊆ da ∧ turn(ei)(m) ∧ ei < t ∧
∃db∃ej(ej ⊆ t ∧ see(ej)(m)(j) ∧ ej < db ∧
∃db∃ek(ek ⊆ t ∧ cross(ek)(m) ∧ ek < db)))

In other words, example 8 is true iff Mary turns the corner at an original reference
time (labeled by da), and if after Mary’s turning there is a reference time (t) at which
John sees her and at which she crosses the street. Together with the condition that all
three events are to be located before the speech time, these are the truth-conditions
that Partee ends up with. Furthermore, like in Partee, after example 8 has been
processed the reference time is located after the time of Mary’s crossing the street.

We see that the DRT treatment of tense can be formulated relatively perspicuously
within the DMG framework. The reformulation can even be argued to be an im-
provement. The following observation comes from Partee: “(. . . ) Hinrich’s rules refer
to ‘the current reference time rp’, which changes in the course of construction (. . . );
only the most recent of them is in effect at any given point in the construction of the
representation. (. . . ) The resulting DRS is in a sense then a dynamic representation
rather than a static one.” (Partee, [1984, p. 258]) This observation implies that for
a treatment of example 8 along the present lines, DRT is in need of further dynam-
ification. Notice that a compositional reformulation of DRT is not only seen to be
easily extended with a DRT-like treatment of tense, but that such an extension does
not require such a further dynamification.

5 Conclusions

Implicit arguments are generally assumed to be genuine semantic arguments of nouns
and verbs which need not be realized syntactically. The translations of such nouns
and verbs are conceived of as having an added argument slot, for complements,
events, or times, and these can, but need not, be addressed by optional comple-
ment or other adjoining phrases. In most existing proposals it is assumed that these
argument slots eventually are saturated and that, somewhere in the process of in-
terpretation, they are existentially closed.
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Within a dynamic Montague grammar the implicit arguments of nouns and
verbs can be assumed to be existentially quantified over right from the start, i.e., in
the translation of the nouns and verbs themselves. Since existential quantification in
DMG is dynamic, such closed arguments can still be addressed afterwards and made
subject to further adnominal or adverbial specification. Despite the programmatic
nature of the proposals made in this chapter, they demonstrate the usefulness of
a dynamic approach to interpretation also at the intrasentential level. The benefits
of using a dynamic framework is that it enables us to deal with implicit arguments
merely by lexical specification and not by complicating the syntax/semantics inter-
face with optional closure operations, and, furthermore, that it enables us to give a
uniform treatment of relational and non-relational nouns, and of verbs that do, and
verbs that do not describe events.

Of course, the present proposals may seem a bit laborious. In what is only a small
Montagovian fragment of natural language elaborated along the present lines, quite
some encoding (and concomitant technical book-keeping) has to be done in the
translation of the lexical items. I don’t think this is a real objection to the spirit
of the proposals. Whichever way one turns, when implicit arguments are addressed
they must somehow be there. Of course, one might choose to await their appear-
ance in a ‘context’ whose formulation is not expedient from a considered semantic
point of view. But one can also take them for what they appear to be, viz., ob-
jects brought to the fore by the linguistic context. Clearly, we may ask ourselves
whether the emergence of these objects had better be dealt with in some pragmatic
rather than in a purely semantic part of a theory of interpretation. However, the
semantics/pragmatics distinction has to be rethought within a theory of dynamic
interpretation anyhow, if it is eventually tenable at all. With the reformulations
above I just have tried not to be hampered by such a distinction.

The third point I want to make is that compositionality pays off.1 Adhering to this
(methodological) principle, one is forced to observe ultimate explicitness and gener-
ality when making proposals concerning the semantics of natural language expres-
sions and operators. This brought Groenendijk and Stokhof to their, at first glance
seemingly technical, but explicitly formalized, proposals concerning the meaning of
dynamic natural language noun phrases. The pay off of it is that their rigourous re-
formulation of DRT’s treatment of anaphoric relationships has shown to provide for
a framework broad enough to deal with other DRT results and with other, relatively
different, semantic phenomena.

Here, again, it must be emphasized that it is not just DMG that has this ex-
tended potential, but that any compositionalization of DRT probably equals DMG
in this expressive force. In the introduction I mentioned alternative compositional

1. This chapter is the written version of a talk held at the Third Symposium on Logic and Language,
the topic of which was “Compositionality, representationalism and dynamic theories of meaning”.
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reformulations, some of which are more faithful to original DRT, one that is more IL-
oid, and another TY2-ic. I cannot think of any substantial reason here for preferring
any one over the other. As for logical issues, Muskens’ [1990] TY2-like variant might
be preferable, since his language of translation is more explicit about what is going
on technically speaking. As a tool for describing natural language phenomena, on the
other hand, one might prefer DMG, since the translations of natural language ex-
pressions within the language of DFL have a structure which more closely resembles
the structure of the natural language expressions themselves. The choice between
anyone of these systems may be guided by personal preference and purposes. The
main point is that such a choice does not affect potential empirical coverage.

One last thing remains to be concluded. I argued that a compositional dynamic
semantics is quite powerful and that the adherence to compositionality pays off.
However, the major pay off is an integration and further compositionalization of
other, differently oriented, semantic proposals such as has been sketched in this
chapter. And in fact, what we have done in this chapter was nothing more than giv-
ing a programmatic, compositional reformulation of independently proposed partial
descriptions of the semantics of natural language phenomena. Our final conclusion,
therefore, cannot be other than that non-compositionality apparently pays off as
well (at least sometimes).
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Chapter 5

Updates in dynamic semantics

Groenendijk and Stokhof, in [1990b], characterize the meaning of a sentence in a
static semantics as the set of indices at which the sentence is true. Such a set of
indices, also called an information state, defines the information content of the sen-
tence. In a dynamic semantics, it is not the information content, but the information
change potential of a sentence that is regarded as constituting its meaning. In a dy-
namic semantics the meaning of a sentence is, or can be considered to be, a function
from information states to information states. Groenendijk and Stokhof compare
two examples of such a dynamic semantics, namely dynamic predicate logic (DPL,
Groenendijk and Stokhof [1991]) and update semantics (US, Veltman [1990]).

DPL and US constitute two different examples of a dynamic semantics. The
two systems formalize different aspects of the dynamics of discourse and in their
present formulations they have conflicting logical properties. DPL accounts for the
context change potential of indefinite noun phrases to set up discourse referents for
subsequent anaphoric pronouns, and US formalizes the update of information about
the world that results from interpreting successive sentences in a discourse. Further-
more, as Groenendijk and Stokhof point out, DPL interpretation is distributive and
non-eliminative and interpretation in US is eliminative and non-distributive. As
a result, the two systems employ different notions of truth and entailment which
should not be substituted for one another.

In this chapter, I will move towards an integration of the two systems, by
reformulating DPL as an update semantics. The resulting system, EDPL, defines
the meaning of the formulas of predicate logic as genuine update functions that
update information about the values of variables. Thus, the US notions of truth
and entailment become applicable to DPL, and this enhances the combination of
the two systems. Pay off of this reformulation of DPL is that it is easily extended
with a uniform and perspicuous treatment of nominal and adverbial quantification

147
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and, moreover, that it constitutes a substantial step towards the development of a
broader theory of information exchange that comprises both DPL and US.

I will proceed as follows. In the first section I sketch the two theories of dynamic
semantics at issue. I present DPL in its so-called functional formulation, and US is
sketched in its most rudimentary form. I then compare the two systems and argue
for the desirability of an update-style formulation of DPL. Section 2 presents and
discusses the reformulation of DPL as the update semantics EDPL, and in section
3 this system is extended with quantifiers. Finally, section 4 offers a more thorough
study of the notion of information in EDPL. This section introduces information
about the world, studies the structure of information states, and it offers some
observations concerning the modelling of phenomena of information exchange within
the framework of EDPL.

1 Two theories of dynamic semantics

1.1 Introduction

A dynamic semantics formalizes the insight that the meaning of a sentence is its
potential to change information, rather than to express it. As Veltman [1990] puts
it, the idea is that “you know the meaning of a sentence if you know the change
it brings about in the information state of anyone who accepts the news conveyed
by it”. The dynamic conception of meaning contrasts with the standard, static,
conception of meaning according to which “you know the meaning of a sentence if
you know the conditions under which it is true”. The dynamic notion of meaning
dates back to Stalnaker [1974] and is adopted by quite a number of authors.

That there is more to a truly dynamic semantics than complying with this
slogan can be observed as follows. It is easy to give static systems of interpretation
a dynamic twist. For instance, we can give the language of propositional logic the
following dynamic interpretation. Let I be a singleton set of indices {∅}, and let the
set of information states S be the powerset P(I) of I. There are two information
states then, {∅} and ∅, the true and the false state, respectively. Furthermore, let V
be a valuation function that assigns the proposition letters of the language sets of
indices as interpretation (i.e., truth values in the present case). The interpretation
function [[ ]] then assigns to each formula an update function on the set of information
states. It is defined as follows (s[[φ]]V indicates the result of updating an information
state s with φ with respect to V , that is, of applying the function [[φ]]V to s):

(1) s[[p]]V = {i ∈ s | i ∈ V (p)}

s[[¬φ]]V = s− s[[φ]]V

s[[φ ∧ ψ]]V = s[[φ]]V [[ψ]]V

(2) φ is true in s with respect to V iff s ⊆ s[[φ]]V
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Of course, what we find here is a completely trivial dynamic semantics, since it is
just propositional logic formulated in a more complicated way. A formula φ is true
in all s ∈ S with respect to V in this dynamic propositional logic iff φ is true with
respect to V in ordinary, static, propositional logic.

Nevertheless, this tiny exercise in dynamic semantics gives us a taste of systems
of dynamic interpretation and it may serve to figure as a more general leg up to the
two non-trivial examples of dynamic semantics which make up the subject of this
chapter, viz., DPL and US. Information states in dynamic propositional logic are
sets of indices (the present example is a borderline case, in the sense that there is only
one possibility, viz., truth) and the interpretation of a formula is a function on the
domain of information states. Atomic formulas are assigned an information content
that intersects with the input information state. Negation is associated with set or
state subtraction and sentence conjunction is associated with function composition.
If we interpret the conjunction of two formulas φ and ψ in a state s, we first interpret
φ in s and next interpret ψ in the state that results from the update with φ.

1.2 Dynamic predicate logic

DPL gives a dynamic interpretation of the language of first order predicate logic that
accounts, among other things, for intersentential anaphoric relationships as found
in A cowgirl meets a boy. She slaps him. Like in discourse representation theory and
file change semantics, in DPL natural language noun phrases are associated with
variables, or discourse markers, and information states determine what values they
can have given the conditions imposed on them in the course of a discourse.

For instance, if we interpret A cowgirl meets a boy and associate a cowgirl
with a variable x and a boy with a variable y, then we end up in a state which
contains the information that the value of x is a cowgirl who meets a boy who is the
value of y (if there is such a cowgirl, otherwise the sentence is just false). This state
is precisely the kind of state we need to interpret a continuation with She slaps him,
where she is associated with x again, and him with y. This second sentence then
adds the information that x slaps y, and the state that results from interpreting the
sequence of two sentences contains the information that the value of x is a cowgirl
who meets and slaps a boy who is the value of y.

DPL semantics

Since variable assignments are useful ways to carry around information about vari-
ables and their reference, information states in DPL are thought of as sets of variable
assignments. So if D is a domain of individuals, and V the set of variables we use,
then any subset s ⊆ DV of the set of variable assignments is an information state
and S, the set of all information states, is the powerset of the set of variable assign-
ments: S = P(DV ). The set of information states contains a minimal state s = DV ,
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in which all variable assignments are still possible, an absurd state s′ = ∅, which
excludes all possibilities, and maximal information states {i}, for i ∈ DV , which
completely determine the value of all variables.

The language of DPL is that of predicate logic, but for ease of exposition I
disregard individual constants. The semantics is defined with respect to a model
M = 〈D,F 〉 consisting of a non-empty set of individuals D and an interpretation
function F that assigns sets of n-tuples of objects to n-ary relation expressions. (I
omit reference to M whenever this does not lead to confusion.) The interpretation of
formulas is a function on the domain of information states (i[x/d] is the assignment
j such that j agrees with i on the values of all the variables except possibly x, and
such that j(x) = d):

Definition 1.1 (Semantics of DPL)
• s[[Rx1 . . . xn]] = {i ∈ s | 〈i(x1), . . . , i(xn)〉 ∈ F (R)}
• s[[x = y]] = {i ∈ s | i(x) = i(y)}
• s[[¬φ]] = s− ↓[[φ]]
• s[[φ ∧ ψ]] = s[[φ]][[ψ]]
• s[[∃xφ]] = s[x][[φ]]

where
↓[[φ]] = {i | {i}[[φ]] 6= ∅}
s[x] = {i[x/d] | i ∈ s & d ∈ D}

The interpretation of an atomic formula in a state s involves the intersection of s
with the set of assignments with respect to which the formula is true in a classical
sense. The negation of φ subtracts those i in s which constitute a context {i} with
respect to which the interpretation of φ does not produce the absurd state. Putting it
the other way around, the negation of φ preserves those i in s with respect to which
φ produces the absurd information state. Conjunction is just function composition.

The characteristic clause concerns the interpretation of the existential quanti-
fier. If we interpret a formula ∃xφ in a state s, we take into consideration all values
for x and then interpret φ. The mediating state s[x] contains the same information
as s about the values of all variables except x. About x, s[x] has no information
whatsoever: for each i in s (and for each d in D) there is a j in s[x] that is like i
except possibly with respect to the value assigned to x (and such that j(x) = d).

I will not work out the DPL interpretation of various examples here. (For
a detailed account the reader is referred to Groenendijk and Stokhof [1990b] and
[1991].) For the present purposes it suffices to point out some characteristic facts
about DPL interpretation.

Some characteristic facts

The interpretation of an existentially quantified formula ∃xφ can be conceived of
as involving the composition of two operations on states: [x] and [[φ]], respectively.



1. Two theories of dynamic semantics 151

As we saw, also conjunction amounts to function composition. Since composition is
an associative operation, the following equivalences hold in DPL. The first one is
a classical conjunction, but the second one distinguishes DPL from static theories
(the arrow ⇔ indicates identity of meaning):

Fact 1.1 (Donkey equivalences (1))
• ((φ ∧ ψ) ∧ χ) ⇔ (φ ∧ (ψ ∧ χ))
• (∃xφ ∧ ψ) ⇔ ∃x(φ ∧ ψ)

It is typical of DPL that the second equivalence also holds if the variable x is free
in ψ. These equivalences therefore allow DPL to deal with the following textbook
example (which explains the equivalences’ label):

(3) A farmer owns a donkey. He beats it.
(∃x(Fx ∧ ∃y(Dy ∧Oxy)) ∧Bxy) ⇔
∃x(Fx ∧ ∃y(Dy ∧ (Oxy ∧Bxy)))

This sequence of sentences turns out to be equivalent with the sentence A farmer
owns a donkey that he beats. So, although the two sentences A farmer owns a donkey
and He beats it are assigned an interpretation of their own, the intersentential
anaphoric relationships (between a farmer and he, and between a donkey and it)
get established when we combine the two in a conjunction.

The donkey equivalences have a nice corollary. Given the usual definitions
of universal quantification and implication in terms of existential quantification,
negation and disjunction, we also have the following facts (again, the first one is a
classical equivalence and the second one a typical DPL equivalence):

Fact 1.2 (Donkey equivalences (2))
• ((φ ∧ ψ) → χ) = ¬((φ ∧ ψ) ∧ ¬χ) ⇔ ¬(φ ∧ (ψ ∧ ¬χ)) = (φ→ (ψ → χ))
• (∃xφ→ ψ) = ¬(∃xφ ∧ ¬ψ) ⇔ ¬∃x(φ ∧ ¬ψ) = ∀x(φ→ ψ)

This enables DPL to deal with the museum piece donkey sentences:

(4) If a farmer owns a donkey he beats it.
(∃x(Fx ∧ ∃y(Dy ∧Oxy)) → Bxy) ⇔
∀x(Fx→ ∀y((Dy ∧Oxy) → Bxy))

(5) Every farmer who owns a donkey beats it.
∀x((Fx ∧ ∃y(Dy ∧Oxy)) → Bxy) ⇔
∀x(Fx→ ∀y((Dy ∧Oxy) → Bxy))

These sentences are assigned their so called ‘strong’ readings. Both sentences state
that every farmer beats every donkey he owns. It is the merit of DPL that it gives a
compositional treatment of these examples, which before, in DRT (see Kamp [1981]),
had supplied motivation for a representational and non-compositional treatment.

Another typical property of DPL is that it has a non-eliminative semantics. It is
not generally true that s[[φ]] ⊆ s. Interpretation in DPL does not merely involve
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the elimination of possibilities, but it may also involve the introduction of new
possibilities. For instance, the interpretation of a formula ∃xφ in a state s may
contain assignments that assign a cowgirl to x, whereas all assignments in s assign
a man to x. The existential quantifier ∃x sets up a new discourse referent, so to
speak, by resetting the value of a variable x, and it is precisely this sort of ‘act’ in
DPL, together with the fact that these acts affect the interpretation of variables in
successive formulas, that makes DPL distinct from static theories.

Related to its non-eliminativity is the fact that DPL conjunction is not com-
mutative (6⇔ indicates the possibility of non-identity of meaning):

Fact 1.3 (Non-commutativity)
• φ ∧ ψ 6⇔ ψ ∧ φ

An example of a non-commutative conjunction is ∃xMx∧Wx, a DPL paraphrase of
a sequence like A man walks in the park. He whistles. In DPL, and also intuitively,
the meaning of this formula differs from that of Wx ∧ ∃xMx, a paraphrase of He
whistles. A man walks in the park.

The last property of DPL that is discussed here is that the DPL interpretation of
any formula is a distributive function:

Fact 1.4 (Distributivity)
• s[[φ]] =

⋃
i∈s{i}[[φ]]

Distributivity means that in the update of a state s with a formula φ only properties
of the individual elements of s count, and not global properties of the state as a
whole. This implies that DPL interpretation can be given a definition in a lower
type, viz., as a relation between assignments instead of as a function on sets of
assignments. And indeed the original formulation of DPL in [1991] is the relational
one.

Notice that distributivity is, as it were, assumed in the clause that defines
the interpretation of the negation of a formula φ. Since the interpretation of φ in a
state s is completely characterized by the update of singleton subsets of s by φ, the
negation of φ in s can be defined appropriately in terms of the update by φ of each
of these singleton subsets.

Truth and entailment

I now turn to truth and entailment in DPL:

Definition 1.2 (Truth and entailment in DPL)
• φ is true in s with respect to M , s |=M φ, iff s ⊆ ↓[[φ]]M
• φ1, . . . , φn |= ψ iff ∀M,s: s[[φ1]]M . . . [[φn]]M |=M ψ
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A formula φ is true in a state s iff all possible variable assignments i ∈ s consitute a
state {i} which can be succesfully updated with φ (i.e., in which the interpretation
of φ does not produce the absurd state). A conclusion ψ follows from a sequence of
premises φ1, . . . φn if the update of any information state s with φ1, . . . , φn, succes-
sively, produces a state in which ψ is true.

DPL licenses the deduction theorem:

Fact 1.5
• φ1, . . . , φn |= ψ iff φ1, . . . , φn−1 |= φn → ψ

From the deduction theorem and the donkey equivalences it follows that entailment
in DPL is dynamic. For instance, ∃xFx entails Fx. This fact corresponds to the
following line of elementary reasoning:

(6) If a man comes from Rhodes, he likes pineapple-juice. A man I met yesterday
comes from Rhodes. So, he likes pineapple-juice.
∃x(Mx ∧Rx) → Lx,∃x(Mx ∧Rx) |= Lx

1.3 Update semantics

I now turn to Veltman’s first example of an update semantics in [1990]. It is a
(dynamic) propositional logic with an additional sentential operator 3. (In fact,
this system only gives the rudiments of a much more interesting system. However,
since the basic system of US already employs notions of truth and entailment which
are crucially different from the ones used in DPL, it seems natural to compare DPL
with the rudimentary system in the first place.)

The kind of information US deals with is information about the world. Information
states are modeled as subsets of the set of possible worlds W . For someone in
information state s, each world in s might correspond to the real world. (Veltman
doesn’t really use worlds, but sets of atomic sentences which “might give a correct
picture of reality”. I neglect this difference in what follows.) The minimal information
state is again the set of all possibilities, W this time, the absurd state is the empty
set, and a state of maximal information is any singleton subset of W .

An atomic sentence p in US updates an information state s by eliminating
the worlds in s which are inconsistent with p, and negation and conjunction are
interpreted as set subtraction and composition, respectively. So far the semantics of
US closely corresponds to the dynamic formulation of the semantics of propositional
logic given at the start of this section. The interesting bit comes in with the operator
3. In an information state s, 3φ tests whether φ is still consistent with s. Like
its natural language counterpart might, it reflects upon the present information
state and expresses that that state can be consistently updated with φ. So, if φ is
acceptable in a state s, then 3φ is true in that state; however, if you already have
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the information that φ is false, then 3φ has to be rejected and its interpretation
returns the absurd state.

The semantics of US is defined with respect to a model M = 〈W,V 〉 consisting
of a set of worlds W and an interpretation function V that assigns sets of worlds
to proposition letters. (Again, reference to M is omitted when that does not lead
to confusion.) The interpretation of a formula is defined as an update function on
states:

Definition 1.3 (Update semantics)
• s[[p]] = {i ∈ s | i ∈ V (p)}
• s[[¬φ]] = s− s[[φ]]
• s[[φ ∧ ψ]] = s[[φ]][[ψ]]
• s[[3φ]] = {i ∈ s | s[[φ]] 6= ∅}

As is evident from the semantics of US, the result of interpreting a formula in a
state s is always a subset of s. Interpretation can only eliminate possibilities:

Fact 1.6 (Eliminativity)
• s[[φ]] ⊆ s

The eliminativity of US interpretation implies that interpretation guarantees update
of information. In US, the interpretation of any formula in a state s always produces
a state which contains at least as specific information about the world as s.

The 3-operator reflects upon the current stage in the process of information growth.
The interpretation of 3φ in a state s returns s if φ is acceptable in s, and the absurd
state if φ is not acceptable in s. Since US interpretation is eliminative, a formula 3φ
is ‘unstable’, this in the sense that, in the gradual update of information, at some
stage 3φ may be true (if φ is not excluded at that stage), whereas at a later stage
it is false (if the possibility that φ has been excluded in the meantime).

The unstability of 3φ causes conjunction in US to be non-commutative:

Fact 1.7 (Non-commutativity)
• φ ∧ ψ 6⇔ ψ ∧ φ

An example of a non-commutative conjunction is 3p ∧ ¬p. This conjunction, with
this order of conjuncts, is consistent. For instance, let s be a state which is undecided
about the truth or falsity of p, i.e., a state in which both p and ¬p are acceptable.
In that case, the update of s with 3p is s, since p is acceptable in s, and further
update with ¬p is not unacceptable. On the other hand, the commutation ¬p ∧ 3p
of this conjunction is inconsistent. The interpretation of the formula ¬p produces
an information state in which p is false and, consequently, 3p unacceptable. So, we
see that ¬p ∧ 3p, which is inconsistent, is not equivalent with 3p ∧ ¬p, which is
consistent.
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The following pair of examples exemplifies this pattern (granted that we know
that John is not Mary):

(7) Somebody is knocking at the door. . . . . It might be John. . . . . It’s Mary.
(8) Somebody is knocking at the door. . . . . It’s Mary. . . . . ∗It might be John.

If somebody hears someone knocking at the door, he may of course be curious who
it is and not exclude the possibility that it is, say, John. Still, in that situation it
is perfectly possible for him to find out that it is Mary who is knocking, not John.
On the other hand, once he has found out that Mary is knocking on the door, it is
excluded that it is John, and then it is quite absurd to say that, as far as he knows,
it might be John who is knocking at that door. (Counterfactuals like But it might
have been John are not discussed in this chapter.)

Another property of US interpretation worth pointing out is that it is not (always)
distributive. A formula 3φ tests a global property of a state s, viz., its consistency
with φ, which does not need to hold of all singleton subsets of s. For instance,
suppose s = {i, j}, and {i}[[φ]] = {i} and {j}[[φ]] = ∅. Then s[[3φ]] = s. However,
{i}[[3φ]] = {i} and {j}[[3φ]] = ∅. So

⋃
i∈s{i}[[3φ]] = {i}, which is different from

s[[3φ]] = {i, j}.

I now turn to truth and entailment in US. In fact, Veltman does not speak of truth
but of acceptance. If, as I will say it, φ is true in a state s, Veltman would say that
φ is accepted in s. Truth and entailment are defined as follows (Veltman discusses
two alternative notions of entailment, but I neglect those here):

Definition 1.4 (Truth and entailment in update semantics)
• φ is true in s with respect to M , s |=M φ, iff s ⊆ s[[φ]]M
• φ1, . . . , φn |= ψ iff ∀M,s: s[[φ1]]M . . . [[φn]]M |=M ψ

A formula φ is true in s if after updating s with φ we still envisage the possibilities
we envisaged in state s, i.e., if s[[φ]] doesn’t contain more information than s. A
sequence of premises φ1, . . . , φn entail a conclusion ψ if always, if you update your
information with φ1 . . . φn, in that order, you arrive at a state of information to
which update with ψ adds no more information.

US licenses the deduction theorem:

Fact 1.8
• φ1, . . . , φn |= ψ iff φ1, . . . , φn−1 |= φn → ψ

I leave it at this exposition of basic properties of rudimentary US. For more details,
and for more interesting extensions of US, the reader is referred to Veltman [1990].

1.4 A comparison

DPL and US are genuinely dynamic systems as can be seen from the fact that in none



156 Chapter 5. Updates in dynamic semantics

of the two conjunction is commutative. The example 3φ ∧ ¬φ is a counterexample
to commutativity in US, and in DPL a counterexample is ∃xFx ∧Gx.

As Groenendijk and Stokhof observe, the respective properties of non-elimi-
nativity and non-distributivity serve to distinguish the two systems from classical
theories of interpretation. It is fairly easily shown that a dynamic semantics in which
all sentences are interpreted as eliminative and distributive updates is not really
dynamic after all.1 However, as we have seen above, DPL is non-eliminative, since
after interpreting an existentially quantified formula ∃xφ in a state s, the information
s has about the value of x is lost. Furthermore, US is non-distributive, since the
might-operator expresses global properties of an information state which do not need
to hold of all singleton subsets of that state. So, the respective properties of non-
eliminativity and non-distributivity distinguish DPL and US from static theories of
interpretation.

It is important to notice that distinct properties distinguish DPL and US
from static theories, non-eliminativity and non-distributivity respectively. These two
different ways in which DPL and US depart from the static paradigm are reflected
by a difference in the respective notions of truth (and, hence, of entailment). For
ψ to be true in s in DPL, each singleton subset s must allow update with ψ. This
notion of truth is that of a distributive system. Truth does not depend on inherently
global properties of s, but only on properties of each of the individual members of s.
On the other hand, the US notion of truth is that of an eliminative system. For ψ to
be true in s, US requires that the update of s with φ does not eliminate possibilities
in s. Given eliminativity, this says that ψ is true in s if s already contains the
information conveyed by ψ.

From these remarks it may already be clear that the two different notions
of truth and entailment should not be substituted for one another. US’ notion of
truth, which is that of an eliminative system, is adverse to DPL’s non-eliminativity,
and DPL’s distributive notion of truth is adverse to US’ non-distributivity. For
instance, if we adopt the US notion of truth in DPL, then the DPL-valid entailment
∃xPx |= ∃yPy would no longer be valid. The reason is that, on the US notion of
truth, ∃yPy is true in s iff Py is true in s, and, clearly, ∃xPx 6|= Py on any of the
two notions of entailment. On the other hand, if we adopt the (distributive) DPL
notion of truth in US, then the US-valid entailment 3p |= 3p would no longer go
through. The reason is that, on the DPL notion of truth, 3p is true in s iff p is true

1. If a function τ on a domain of sets is distributive and eliminative, then for all sets s, τ (s) = s∩↓τ ,
where ↓τ is the characteristic set {x | τ ({x}) = {x}} (cf., Groenendijk and Stokhof [1990b, p. 57]
and van Benthem [1986, p. 62] and [1991, p. 137]). Now suppose that two sentences φ and ψ are
interpreted as eliminative and distributive updates τ and τ ′ (with characteristic sets ↓τ and ↓τ ′,
respectively) and that sentence conjunction involves function composition. Then s[[φ∧ψ]] = s[[ψ∧φ]]
since τ ′(τ (s)) = τ (τ ′(s)) = s ∩ ↓τ ∩ ↓τ ′. So, in a distributive and eliminative system of dynamic
interpretation, conjunction amounts to (commutative) intersection.
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in s, and 3p 6|= p on any of the two notions of entailment.

We see that DPL and US are two really different systems of dynamic interpretation
with conflicting characteristic properties. This is not to say that the two are in-
compatible. As Groenendijk and Stokhof suggest, the two systems can be combined
within a system that preserves the characteristic features of both and that, to some
extent, gives a separate treatment of the two different kinds of (update or change
of) information that the two systems deal with.

However, in this chapter I want to show that it is worthwhile to remove one
of the differences between the two systems, by adapting the logic of one of the two
(DPL) to the format of that of the other (US). Doing so, a combination of the
two theories results which is more of an integration, since it allows us to employ
one elementary notion of truth (and entailment) instead of the product of two,
so to speak. Crucial to this reformulation is the development of a genuine notion
of update of information about the values of variables, for it is there that DPL’s
non-eliminativity resides.

Information about the values of variables

Both DPL and US formalize dynamic aspects of natural language interpretation
by interpreting formulas as functions that change or update information states.
(I use ‘update’ from now on to indicate, specifically, addition of information, not
arbitrary revision.) Basically, US models update of information about the world
brought about by processing sentences. Interpretation in US therefore involves a
process of information growth. If we accept a discourse, our information about the
world increases. This corresponds to the fact that interpretation in US is eliminative.
The state that results from interpreting a formula in a state s contains at least the
information that s contains, and maybe more.

The dynamics of DPL is of a quite different nature. “It [DPL, PD] (. . . ) re-
stricts the dynamics of interpretation to that aspect of the meaning of sentences that
concerns their potential to ‘pass on’ possible antecedents for subsequent anaphors
(. . . ).”(Groenendijk and Stokhof, [1991, p. 43–4]) The dynamics of DPL, basically,
serves to give a compositional account of the phenomenon that existential quanti-
fiers (indefinite noun phrases) may bind variables (pronouns) occurring outside their
proper scope. For this reason, the kind of information employed in DPL is only a
means to establish (the semantics of) anaphoric links. DPL’s information states en-
code the information that is required at a certain stage of interpretation to establish
the semantic relations between existential quantifiers that have occurred before and
free variables yet to come. Hence, if a discourse has been interpreted from beginning
to end, the information contained in the resulting state is superfluous information,
since no more anaphoric relationships will be established afterwards.

Significant in this respect is DPL’s definition of truth. In order to assess
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whether a discourse δ is true in a state s in DPL, we do not look at the state
s[[δ]] that results from interpreting δ in s, but we check whether the interpretation
of δ in all singleton subsets {i} of s yields non-absurd output. In other words, it does
not matter what information is contained in the state that results from interpreting
δ (in s or in the singleton subsets of s), all that matters is that the interpretation
of δ is possible in (all singleton subsets of) s.

Clearly, as it is used in DPL, the kind of information that DPL models should not be
confused with the kind of information language users typically aim to exchange by
uttering and interpreting sentences, this in contradistinction with US. Nevertheless,
such a notion of update and exchange of information about the values of variables has
some intuitive appeal. Human agents talk about ‘indefinite’ objects, objects which
they have partial knowledge of. These objects are talked about, they are ascribed
properties and people are informed about their existence. Typically, these ‘objects’
are not to be conceived of as classical objects. From the perspective of agents with
partial information the ultimate identity of such objects may be left unresolved
without this prohibiting their use as topics of information exchange. Such objects
can be taken to be partial objects, or ‘pegs’ in the sense of Landman [1986]. They are
things that don’t have properties, but to which properties are ascribed and, similarly,
things that don’t have identity conditions, but that have identity conditions ascribed
to them. As Landman puts it: “the essence of partial information is that it cannot
justify certain distinctions, and the decision about the identity of certain pegs is a
prime example of that” (Landman [1986, p. 126]). Crucial here is the idea that the
process of information exchange involves things (pegs in Landman’s data semantics,
(values of) variables in the subsequent section), which “are the objects we assume in
conversation, and which we follow through information growth” (Landman, [1986,
p. 128]).

What is relevant, furthermore, is that natural language indefinites typically
introduce new objects, or pegs, into the domain of objects we have information
about. This idea traces back, in rudimentary form, to Karttunen’s seminal papers
[1968a, 1968b]. Karttunen interprets indefinites as establishing discourse referents,
which are novel individuals in the discourse. This idea is further developed within
the frameworks of discourse representation theory (DRT, Kamp [1981]) and file
change semantics (FCS, Heim [1982, 1983]). In both DRT and FCS, indefinite noun
phrases induce a genuine update of the discourse representation (or file, respectively)
that constitutes the context of interpretation by the addition of a novel discourse
referent to its domain. Hence, disregarding DRT’s intermediary representations, the
information that is passed on when processing successive sentences in a discourse
determines, first, which variables are under discussion, and, second, what properties
these variables have. These two different aspects of information are associated with
two different kinds of information update. One way of updating one’s information
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consists in getting more informed about the objects (i.e., the values of variables) one
has information about. Another way consists in extending this domain of objects.

Update of information about the values of variables

The aim of section 3 below is to give a reformulation of DPL in terms of EDPL
that complies with the idea that sentence interpretation involves genuine update
of information. Like in DPL, information in EDPL remains confined to information
about the values of variables, but, in contradistinction with DPL, in EDPL this kind
of information is not a mere means of establishing anaphoric relationships, but is
understood to model a genuine form of information about partial objects which can
be exchanged by uttering and interpreting sentences. In section 5, I will give more
substance to this claim that the structure of information states employed in EDPL
may serve to model exchange of information about partial objects. Before that, in
sections 3 and 4, I will only focus on the formulation of a predicate logic update
semantics. Section 3 provides this reformulation of DPL which is seen to be easily
extended with quantifiers in section 4. The most striking properties of EDPL are
the following.

Like in DPL, information about the values of variables is encoded in EDPL
by sets of variable assignments. However, EDPL uses sets of partial variable as-
signments. For any subset X of the set of variables, an information state about the
values of X is a set of assignments of objects to the variables in X. An information
state in EDPL hence determines the two aspects of information addressed above. In
the first place such a state s determines a domain of variables whose values are at
issue, viz., the joint domain of the assignments in s. In the second place s contains
information about the values of variables in that domain.

Since information states in EDPL model two aspects of information about
variables, like in DRT and FCS, we can also distinguish two basic kinds of update
of information. Update of information consists either in getting more information
about the values of variables, or in getting information about the values of more
variables. In other words, update consists either in restricting the set of partial
variable assignments by elimination, or in extending the domain of partial variable
assignments, or, of course, in a mixture of both. A state t, then, is considered a
possible update of a state s, written as s ≤ t, if the domain of t comprises that of s
and if the assignments in t satisfy the restrictions s imposes on the values of variables
in the domain of s. Clearly, on such a notion of update, t is an update of s if t at least
contains the information that s has about the values of the variables in the domain
of s. But, of course, t may contain more information about more variables. As will
be seen in section 3.2, EDPL interpretation always yields information update.

Let us now turn to the details of EDPL.
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2 EDPL, an update semantics for DPL

In this section, I will first introduce the notions of information and of information
update in EDPL (section 3.1). In section 3.2 I define the semantics of EDPL as a
partial update function on the domain of information states and discuss some general
properties of EDPL interpretation. Section 3.3 discusses EDPL interpretation in
more detail, and section 3.4 introduces the EDPL notion of entailment and compares
EDPL with DPL.

2.1 Information states in EDPL

Following DPL I will define the interpretation of the language of predicate logic as
a function on a domain of information states. Like in DPL, in EDPL these infor-
mation states encode information about the values of variables in a discourse, but
contrary to what is the case in DPL, in EDPL these states are sets of partial variable
assignments.

If D is a domain of individuals and V the set of variables, then SX , the set
of information states about the values of X ⊆ V , and S, the set of all information
states, are defined as follows:

Definition 2.1 (Information states)
• SX = P(DX)
• S =

⋃
X⊆V S

X

An information state about the values of a set of variables X is a set of assignments
of individuals to the variables in X. Given such a state s ∈ SX , I will refer to X as
the domain of s, written as D(s). Information states contain information about the
values of the variables in their domain by restricting their valuations. An information
state s is a set of valuations of the variables in the domain of s which are conceived
possible in s, and, hence, excludes all other valuations to these variables. So, if x
and y are in the domain of s, then s contains the information that x is a man iff no
i in s maps x on an individual that is not a man, and s contains the information
that x sees y, iff for all i in s, i(x) sees i(y).

With respect to a fixed domain of variables, the notions of minimal and max-
imal information states are as in DPL and US. For any domain of variables X,
the minimal information state about the values of X is DX , referred to as ⊤X . A
minimal information state has no information about the values of the variables in
in its domain, since it considers all valuations of the variables possible. A maximal
information state about the values of X is {i} for any i ∈ DX . A maximal state
has total information about the values of the variables in its domain, since only one
valuation of them is conceived possible. Furthermore, for any domain X, the absurd
information state is ∅, referred to as ⊥X . An absurd information state excludes all
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assignments to the variables in its domain.2

A special set of information states is S∅, the possible states of information
about the values of no variables. There are only two such states: the set containing
the empty assignment, and the empty set. (In fact this is just the domain of truth
values on their set-theoretic definition.) Interestingly, with respect to the empty
domain the minimal information state and the maximal information state coincide.
This reflects the fact that one can have no substantial information about the values
of no variables. Notice, moreover, that SV is the set of (D)PL information states,
the set of sets of assignments to all variables. So, the set of states S encompasses the
states of propositional logic ({1, 0}) and those of (dynamic) predicate logic (P(DV )).

Since, in general, we will be dealing with assignments and states which may have
different domains, it is useful to have at our disposal two notions which can be
conceived to be generalizations of the notion of being an element of a set. These
notions are defined as follows (i ≤ j says that j extends i, i.e., for all x in the domain
D(i) of i, x is in the domain D(j) of j and i(x) = j(x)):

Definition 2.2 (Restriction and extension)
• i has a restriction in s, i >− s, iff D(s) ⊆ D(i) and ∃j ∈ s: j ≤ i
• i has an extension in t, i <− t, iff D(i) ⊆ D(t) and ∃j ∈ t: i ≤ j

Assignment i has a restriction in s if i is an extension of some element of s. Assign-
ment i has an extension in t if i is a restriction of some element of t. In the latter
case, I will also say that i survives in t. Clearly, if the domain of s equals the domain
of i, then i >− s iff i ∈ s iff i <− s.

The two notions of having a restriction and having an extension give rise to two
generalizations of the subset relation, the update relation and the substate relation
respectively. I start with the update relation.

The fact that a state t contains more information than a state s, or, in other
words, the fact that state t is an update of s is defined as follows:

Definition 2.3 (Update)
• t is an update of s, s ≤ t, iff D(s) ⊆ D(t) and ∀i ∈ t: i >− s

2. In an earlier version of this paper (Dekker [1992]) I have identified any two absurd states
regardless of their domain. In that paper I confined myself to giving an update formulation of DPL
and for that purpose there was no great use in distinguishing these states. The absurd states are
all states irrevocably deemed to contain impossible information.
However, strictly speaking we must distinguish two absurd states that contain impossible infor-
mation about the values of different sets of variables and I do so in this chapter. This amended
treatment of absurd states does not interfere with the semantics of EDPL presented below except
with respect to definedness phenomena, which turn out more perspicuous then in the former pa-
per (cf., section 3.2). On the other hand, the refinement is crucial for the use that is made of the
structure of information states in section 5.
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If t is an update of s, then every assignment in t is an extension of some assignment
in s. An update t of s contains only possible valuations of the variables inD(s) which
are possible in s. Hence, t contains at least the information that s contains about
the variables in D(s). Moreover, t may contain information about variables which
s is silent about. The assignments in t may be proper extensions of assignments in
s. So, the relation ≤ precisely captures the notion of update informally described in
section 2.3.

The update relation ≤ induces a partial order of information states:

Fact 2.1 〈S,≤〉 is a partial order, i.e., ≤ is
• reflexive (s ≤ s)
• transitive ( if s ≤ s′ and s′ ≤ s′′ then s ≤ s′′)
• antisymmetric ( if s ≤ s′ and s′ ≤ s then s = s′)

In fact, as we will see in section 5, the set of information states is a complete lattice.

The second generalization of the subset relation is the substate relation, which, in a
sense, is the dual of the update relation. The substate relation plays a part, chiefly,
in the semantics of EDPL, since it acts in the EDPL definition of the DPL-style
(and DRT-style) notions of truth and entailment. The relation is defined as follows:

Definition 2.4 (Substate)
• s is a substate of t, s ⊑ t, iff D(s) ⊆ D(t) and ∀i ∈ s: i <− t

State s is a substate of t iff all possibilities in s have an extension in t. This definition
says that if s ⊑ t then s contains at least as much information as t about the
variables in the domain of s. However, in contradistinction with the case in which s
is an update of t, if s is a substate of t, t may contain information about variables
which s is silent about. For s to be a substate of t, the crucial thing is that t does
not reject valuations of the variables in D(s) which are still possible in s.

The notions of update and substate are related to the notion of subset in the fol-
lowing way:

Fact 2.2
• If D(s) = D(t), then s ≤ t iff t ⊑ s iff t ⊆ s
• s ≤ t and t ⊑ s iff t ⊆ s

Like the update relation, the substate relation is a partial order:

Fact 2.3 〈S,⊑〉 is a partial order

As concerns the ordering of S by ⊑ and ≤ I note the following. The weakest in-
formation state in the sense of ⊑ (i.e., the state t such that ∀s: s ⊑ t) is ⊤V , the
state with no information about all variables. The strongest state in ⊑ is ⊥∅, the



2. EDPL, an update semantics for DPL 163

absurd state of information about no variables (∀s: ⊥∅ ⊑ s). The strongest state
in the sense of ≤ is ⊥V , the absurd state of information about all variables (∀s:
s ≤ ⊥V ). The weakest information state in ≤ (i.e., the state t such that ∀s: s ≤ t)
is ⊤∅, the state with no information about no variables. These observations can be
pictured as follows (the ordering relations ⊑ and ≤ should be read as if rotated 90o

anticlockwise):

⊑

⊤V

...

⊥∅

≤

⊥V

...

⊤∅

Notice that ⊑ (≤) ranges from the bottom (top) of propositional logic to the top
(bottom) of predicate logic.

2.2 Semantics of EDPL

We are now ready to turn to the semantics of EDPL. Like a DPL model, an EDPL
model is a pair M = 〈D,F 〉 consisting of a non-empty set of individuals D and an
interpretation function F that assigns sets of n-tuples of objects to n-ary relation
expressions. (Again, I will omit reference to M whenever this does not lead to
confusion.) In the definition of the semantics of EDPL the following abbreviations
are used (i ≤X j iff j ∈ DD(i)∪X and i ≤ j):

Definition 2.5 (State subtraction and domain extension)
• s− t = {i ∈ s | i <6− t}
• s[x] = {j | ∃i ∈ s: i ≤{x} j}

Subtracting state t from state s we get all those assignments in s which do not have
an extension in t. If the domain of s is a subset of the domain of t, which it is in
all cases of state subtraction below, then s− t is the set of assignments in s to the
variables in the domain of s which are excluded by t. So, state s − t contains the
information that s has about the variables in the domain of s supplemented with
the information excluded by t.

The state s[x] at most differs from s in that it is defined for x. About the
values of variables in the domain of s the new state s[x] contains precisely the same
information as s, and, if x is not in the domain of s, s[x] is completely impartial
about the value of x. In that case, for each i in s and for each z in D, there is an
extension j of i in s[x] that assigns z to x. What is added, one might say, is the
information that x has a value. Clearly, if x is already in the domain of s, then
s[x] = s. In the semantics of EDPL, however, it is excluded that [x] operates on
states s which are already defined for x (but, cf., section 5.2).

EDPL interpretation is defined as a partial update function on the domain of
information states. If a formula contains a free variable x, it must be interpreted in
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a state that is defined for x. Conversely, for an indefinite noun phrase (existential
quantifier) to extend the domain of a state s with a new variable x, x should not
be in the domain of s.3 In the following definition I only indicate the possibility of
undefinedness in these so-called ‘source’ cases. Of course, since the interpretation of
a compound formula is stated in terms of that of its constituent formulas, the inter-
pretation of the compound must be understood to be undefined if the interpretation
of one of its constituents is undefined. I will come back to this below.

The definition of the semantics of EDPL runs as follows:

Definition 2.6 (Semantics of EDPL)
• s[[Rx1 . . . xn]] = {i ∈ s | 〈i(x1), . . . , i(xn)〉 ∈ F (R)} if x1, . . . , xn ∈ D(s)
• s[[x = y]] = {i ∈ s | i(x) = i(y)} if x, y ∈ D(s)
• s[[¬φ]] = s− s[[φ]]
• s[[φ ∧ ψ]] = s[[φ]][[ψ]]
• s[[∃xφ]] = s[x][[φ]] if x 6∈ D(s)

The clauses in this definition correspond closely to those in the definitions of the
semantics of DPL and US. The interpretation of atomic formulas is the same as in
DPL, except for the use of partial, instead of total assignments. The interpretation of
Rx1 . . . xn in s preserves the assignments in s that map the variables x1, . . . , xn onto
individuals z1, . . . , zn that stand in the relation R, in that order. EDPL negation
combines features of negation in DPL and in US. The requirement that assignments
i in s[[¬φ]] do not have an extension in s[[φ]] in fact corresponds to the DPL require-
ment that {i}[[φ]] be empty. On the other hand, the result of interpreting ¬φ in s is
defined solely in terms of s and s[[φ]], like in US. Like in DPL and US, conjunction
is interpreted as function composition. Furthermore, like in DPL, the existential
quantifier ∃x introduces arbitrary valuations of x, the difference being that domain
extension is used, instead of reinstantiation. In section 3.3 below, it will be demon-
strated in more detail how these clauses work out in practice. Before that, I discuss
some general properties of EDPL interpretation in the remainder of this section.

Definedness conditions in EDPL

A major difference with DPL, and US, is the presence of side conditions, or defined-
ness conditions, on EDPL interpretation. As was already said above, the interpre-
tation of a formula can be undefined for certain states.

Undefinedness is generated by free variable and quantifier occurrences. If a
formula contains a free variable for which a state s is undefined, then the interpre-

3. In DRT, for this reason, the so-called discourse representation algorithm is used to ensure that
indefinites always associate with novel variables and pronouns with yet established ones, and in
FCS felicity-conditions serve the same purpose. EDPL makes the same requirements on pain of
undefinedness. In section 5 we will see that these requirements can be relaxed in certain cases.
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tation of the formula is undefined for that state s; similarly, the interpretation of
an existentially quantified formula ∃xφ is undefined for a state s which is already
defined for x. In particular this last requirement expels the possibility of reinstan-
tiation. Undefinedness persists in the following way. If (the interpretation of) φ is
undefined for s, then ¬φ and φ ∧ ψ are undefined for s. Furthermore, if φ is unde-
fined for s[x], then ∃xφ is undefined for s, and if ψ is undefined for s[[φ]], then φ∧ψ
is undefined for s. Notice that these restrictions on the states for which formulas
are defined are, basically, Heim’s felicity conditions in FCS, reformulated here as
definedness conditions. In fact, the semantics of EDPL closely resembles the version
of FCS in Heim [1983].

In section 5 we will see that the side conditions on EDPL interpretation can
be removed without allowing sentences to involve loss of information, and we will
also find reason to do so in certain cases. This will be discussed in due course.
However, for the present purpose of merely giving an update reformulation of DPL,
it is expedient to adopt the side conditions and to keep to the partial interpretation
function specified above.

The question whether the interpretation of an EDPL formula is defined for a state
s completely depends on the domain of s. In other words, EDPL formulas carry
presuppositions that restrict the domains of states with respect to which their in-
terpretation is defined. These presuppositions can be calculated by the following
function D, which for any formula φ defines the domains of information states for
which φ is defined, or, as I will also say, the domains of φ:

Definition 2.7 (Domains of a formula)
• D(Rx1 . . . xn) = {X | x1, . . . , xn ∈ X}
• D(∃xφ) = {X | x 6∈ X and X ∪ {x} ∈ D(φ)}
• D(¬φ) = D(φ)
• D(φ ∧ ψ) = D(φ) ∩ D(ψ) if φ is a test

D(∃xφ ∧ ψ) = D(∃x(φ ∧ ψ))
D((φ ∧ ψ) ∧ χ) = D(φ ∧ (ψ ∧ χ))

A formula φ is a test if φ is an atomic formula Rx1 . . . xn or x = y or a negation ¬ψ.

For any formula φ, D(φ) is a set of sets of variables, i.e., it is a generalized quantifier
over variables. Moreover, D(φ) is, typically, a quantifier with the following properties:

Fact 2.4
• For any formula φ, D(φ) is a continuous quantifier closed under ∩ and ∪

(A quantifier Q is continuous iff for any X and Y , if X ∈ Q and Y ∈ Q, then for
any Z, if X ⊆ Z ⊆ Y then Z ∈ Q.) Since D(φ) is continuous and closed under ∩
and ∪, there are sets of variables X and Y such that D(φ) = {Z | X ⊆ Z ⊆ Y }. So,
if D(φ) is not empty, it has a smallest element X and a greatest element Y and all
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elements bigger than X and smaller than Y .
If D(φ) is not empty, then the smallest element X in the domains D(φ) of φ is

the set of free variables in φ and the greatest element is the complement of the set of
variables quantified over in φ. In that case, if we let A abbreviate free variable in φ,
and B variable quantified over in φ, then D(φ) is denoted by the noun phrase Every
A and no B. (Notice that D(φ) may be empty, even if the denotation of Every A
and no B is not. This is the case if φ contains an existential quantifier to the right
of a still ‘active’ quantifier ranging over the same variable x in φ.)

The next fact shows that D is defined properly:

Fact 2.5
• D(s) ∈ D(φ) iff s[[φ]] is defined

So, on the basis of syntactic properties of φ we can compute the function D(φ) which
tells us for which states φ is defined. Furthermore, if D(φ) is non-empty, then we
find that φ is defined for s iff every free variable in φ and no variable quantified over
in φ is in the domain of s.

Update, truth and distributivity

The most important property of EDPL is that it is a genuine update semantics.
Interpretation in EDPL always yields update of information:

Fact 2.6 (Update)
• s ≤ s[[φ]], if defined

(Fact 2.6 is proved by a simple induction on the complexity of φ.) The fact that the
interpretation of any sentence in EDPL is an update function distinguishes EDPL
from DPL. In EDPL no established information about the values of variables gets
lost in the process of interpretation. The worst thing that can happen, one might
say, is that an attempt to initialize a variable which one has already information
about is encountered by an error message.

Like DPL, EDPL is not really eliminative. Update of information in EDPL not
only consists in getting more informed about the values of variables one has already
information about, but it may also consist in getting informed about the values
of more variables. Hence, EDPL interpretation not merely involves elimination of
assignments, it may also involve extension of assignments. However, as is expressed
by fact 2.6, even if the assignments in the state that results from updating a state
s with φ are not themselves elements of the original state s, as is the case in a real
eliminative semantics, all these assignments are at least extensions of assignments
in s.

The DPL definition of truth builds on fact 2.6 (the definition of entailment is post-
poned to section 3.4):
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Definition 2.8 (Truth in EDPL)
• φ is true in s with respect to M , s |=M φ, iff s ⊑ s[[φ]]M
φ is false in s with respect to M , s =|M φ, iff s[[φ]]M = ∅

A formula φ is true in a state s iff s is a substate of the update of s with φ, i.e., iff
the state s[[φ]] does not contain more information than s about the variables in the
domain of s. Notice that for the assessment of the truth of a formula φ in a state s
we only need to compare the states s and s[[φ]]. Since EDPL interpretation always
produces information update it is possible to define a proper notion of truth in this
way. It is excluded that φ is true in a state s while in the processing of φ in s we
acquire information not yet present in s and which is discarded afterwards. Given
fact 2.6, such information downdate is simply excluded.

Clearly, a formula is true in a state s iff its negation is false in s, and vice
versa. However, if a formula is defined for a state s, it need not be either true or
false in s. Since we are dealing with partial information in EDPL, a formula may
convey information about the values of variables that a state s does not yet have,
but that is neither excluded by s. On the other hand, in case we are dealing with a
maximal state of information {i}, then a formula is either true or false in {i}, that
is, if it is defined for {i}. If we have that maximal state {i} |= φ, then I will also say
that i satisfies φ.

Like DPL, EDPL has a distributive semantics:

Fact 2.7 (Distributivity)
• s[[φ]] =

⋃
i∈s{i}[[φ]], if defined

(The fact is again proved by a straightforward induction on the complexity of φ.)
In section 2.3, footnote 1, it is noticed that an eliminative and distributive dynamic
semantics is equivalent to a static semantics, since an eliminative and distributive
update of a state s corresponds to the intersection of s with a characteristic set. The
fact that EDPL, besides distributivity, only licenses update (and not pure elimina-
tivity) prevents it from collapsing into a static semantics.

Update and distributivity jointly do entail the following fact:

Fact 2.8
For all s, i ∈ s:

• {i} |= φ iff i <− s[[φ]]

Fact 2.8 tells us that an assignment i in s satisfies φ iff i survives in the update of
s with φ. So, the update of a state s with φ contains assignments that register, i.e.,
extend, the assignments in s that satisfy φ. Furthermore, by fact 2.6, s[[φ]] contains
only assignments which register assignments in s that satisfy φ. This fact shows,
once more, the crucial difference with interpretation in DPL, where we can not in
general conclude, considering the assignments in s[[φ]], which assignments in s satisfy
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φ.
With respect to the EDPL notion of truth, fact 2.8 tells us that φ is true in s

iff all assignments i in s satisfy φ: s |= φ iff (definition of |=) s ⊑ s[[φ]] iff (definition
of ⊑) ∀i ∈ s: i <− s[[φ]] iff (fact 2.8) ∀i ∈ s: {i} |= φ. In this respect the notion of
truth in EDPL is exactly like that in DPL, where s |= φ iff ∀i ∈ s: {i}[[φ]] 6= ∅. The
difference with DPL is that the truth of φ in a state s in EDPL is defined, basically,
in terms of s and s[[φ]] only, whereas in DPL it is, crucially, defined in terms of s
and the distribution of [[φ]] over the singleton subsets of s.

2.3 Applications of EDPL

I will now turn to the more specific characteristics of EDPL interpretation. In this
section I will simply assume definedness whenever this is unlikely to give rise to
confusion.

Existential quantification

Since, as in DPL, the interpretation of an existentially quantified formula in EDPL,
and that of a conjunction, involves the composition of two operations on states,
DPL’s characteristic donkey equivalences are retained:

Fact 2.9 (Donkey equivalences (1))
• (∃xφ ∧ ψ) ⇔ (∃x(φ ∧ ψ))
• ((φ ∧ ψ) ∧ χ) ⇔ (φ ∧ (ψ ∧ χ))

Like DPL, EDPL accounts for the fact that indefinite noun phrases (existential quan-
tifiers) in one sentence may bind pronouns (free variables) in a successive sentence.
Again, this is achieved in a completely compositional way. Both sentences A man
owns a donkey (translated as ∃x(Mx∧∃y(Dy ∧Oxy))) and He beats it (translated
as Bxy) get assigned an interpretation of their own, and in the conjunction of the
two into A man owns a donkey. He beats it (∃x(Mx ∧ ∃y(Dy ∧Oxy)) ∧ Bxy), the
respective anaphoric relationships get established.

Let us inspect the donkey example in a little more detail. The interpretation of
∃x(Mx∧∃y(Dy∧Oxy)) in a state s produces the state s[[∃x(Mx∧∃y(Dy∧Oxy))]],
which is s[x][[Mx]][y][[Dy]][[Oxy]]. If X is the domain of s, and Y = X ∪ {x, y}, this
is the following set of assignments:

(9) {j ∈ DY | ∃i ∈ s: i ≤ j & j(x) ∈ F (M) &
j(y) ∈ F (D) & 〈j(x), j(y)〉 ∈ F (O)}

This state, which will be referred to as state t for the time being, contains the
information that the value of x is a man and the value of y is a donkey and that
the value of x owns the value of y. Notice that for any i ∈ s and for any man z and
donkey z′ owned by z, there is an assignment j ∈ t such that i ≤ j, j(x) = z and
j(y) = z′.
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The formula ∃x(Mx ∧ ∃y(Dy ∧Oxy)) is true in s iff s ⊑ t, that is, iff, in the
model, there is a man who owns a donkey. Notice that the formula ∃x(Mx∧∃y(Dy∧
Oxy)) can only be true or false in a state s. The formula contains no free variables,
and, hence, conveys no information about the variables in the domain of s.

Now consider the update of t with Bxy, t[[Bxy]], which is the following set of
assignments:

(10) {j ∈ DY | ∃i ∈ s: i ≤ j & j(x) ∈ F (M) &
j(y) ∈ F (D) & 〈j(x), j(y)〉 ∈ F (O) & 〈j(x), j(y)〉 ∈ F (B)}

The state t[[Bxy]] contains the information that the value of x is a man and the
value of y is a donkey and that the value of x owns and beats the value of y. The
little discourse ∃x(Mx∧∃y(Dy ∧Oxy))∧Bxy then is true in s iff s ⊑ t[[Bxy]], that
is, iff, in the model, there is a man who owns and beats a donkey.

Notice that the formula Bxy is not in general true in a state t as described
above. If someone has the information that the value of x is a man and the value of
y a donkey the value of x owns, he need not have the information that the value of
x beats the value of y of course. This would only be the case if he already had the
information that if a man owns a donkey, he beats it.

In EDPL implication and universal quantification are defined, as usual, in terms of
existential quantification, negation and conjunction:

Definition 2.9
• φ→ ψ = ¬(φ ∧ ¬ψ)
• ∀xφ = ¬∃x¬φ

Like DPL, as a corollary of the first donkey equivalences EDPL validates the second
donkey equivalences:

Fact 2.10 (Donkey equivalences (2))
• (∃xφ→ ψ) ⇔ (∀x(φ→ ψ))
• ((φ ∧ ψ) → χ) ⇔ (φ→ (ψ → χ))

So, the sentence If a man owns a donkey he beats it (∃x(Mx∧∃y(Dy∧Oxy)) → Bxy)
turns out equivalent with the sentence Every man beats every donkey he owns
(∀x(Mx → ∀y((Dy ∧ Oxy) → Bxy))). Before I show in more detail how examples
like these are interpreted, it is expedient to take a closer look at EDPL negation.

Negation, universal quantification and implication

Like in US, the interpretation of ¬φ in a state s involves a form of ‘state subtraction’,
the subtraction of state s[[φ]] from state s. The subtraction of s[[φ]] from s in EDPL
involves the elimination of assignments in s that have an extension in s[[φ]]. The
difference with ordinary set subtraction, which is employed in US negation, is that
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s − s[[φ]] in EDPL is not the set of assignments in s which are not an element of
s[[φ]], but the set of assignments in s which do not survive in s[[φ]].

Fact 2.8 tells us that the interpretation of ¬φ in s in fact involves the elimina-
tion of assignments in s that satisfy φ. This is like in DPL. In DPL, s[[¬φ]] is the set
{i ∈ s | {i} 6|= φ}. In EDPL, s[[¬φ]] is the set {i ∈ s | i <6− s[[φ]]}, which, by fact 2.8,
also is {i ∈ s | {i} 6|= φ}. The difference with DPL is that s[[¬φ]] in EDPL is defined
in terms of s and the update of s with φ solely, whereas in DPL s[[¬φ]] is defined in
terms of s and the distribution of [[φ]] over the singleton subsets of s.

Let us consider one simple example:

(11) No man sees her.
¬∃y(My ∧ Syx)

The interpretation of this sentence in a state s yields the state s[[¬∃y(My ∧ Syx)]],
which is s − s[y][[My]][[Syx]]. The state s[y][[My]][[Syx]] that is subtracted from the
original state s is the following set of assignments (where X is the domain of s):

(12) {j ∈ DX∪{y} | ∃i ∈ s: i ≤{y} j & j(y) ∈ F (M) & 〈j(y), j(x)〉 ∈ F (S)}

The subtraction of this state from s, s − s[y][[My]][[Syx]], produces a state that
consists of the assignments in s that do not survive in s[y][[My]][[Syx]]:

(13) {i ∈ s | ¬∃j: i ≤{y} j & j(y) ∈ F (M) & 〈j(y), j(x)〉 ∈ F (S)}

In other words, the interpretation of ¬∃y(My ∧ Syx) in s produces a state that
contains the information that the value of x is an individual such that no other
individual can be found that is a man and sees her.

Since the interpretation of a formula ¬φ in a state s in EDPL is purely eliminative
it does not bring about an extension of the domain of s. This corresponds to the fact
that, usually, if a noun phrase stands in the scope of a negation it can not serve as an
antecedent for pronouns that occur outside the negation’s scope (but, for exceptions,
see Groenendijk and Stokhof [1990a] and chapter 2). As a consequence, the law of
double negation doesn’t hold in EDPL. The double negation of a formula involves
a form of state restriction:

Fact 2.11
• s[[¬¬φ]] = s− (s− s[[φ]]) = {i ∈ s | i <− s[[φ]]}

The interpretation of the double negation of φ in s preserves the assignments in s
which survive the update of s with φ. The state s[[¬¬φ]] consists of the assignments
in s which have an extension in s[[φ]], not the extensions themselves. So, ¬¬φ imposes
the same restrictions as φ imposes on the values of variables in the domain of a state
s, but it cancels possible extensions of the domain of s brought about by φ.

Something essentially similar holds in DPL, where the double negation of a
formula φ involves the same test on assignments in a state s as φ involves, but
discards the reinstantiation of variables induced by φ. Since the double negation of
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φ thus robs it of its context change potential, Groenendijk and Stokhof call it the
static closure of φ. In EDPL I also adopt this terminology and, like Groenendijk
and Stokhof, write ↓φ for the static closure ¬¬φ of φ.

Given the definition of universal quantification and implication above, the semantics
of ∀x and → turns out to be as follows:

Fact 2.12
• s[[∀xφ]] = s− (s[x] − s[x][[φ]])

= {i ∈ s | ∀j ∈ s[x]: if i ≤ j then j <− s[x][[φ]]}
• s[[φ→ ψ]] = s− (s[[φ]] − s[[φ]][[ψ]])

= {i ∈ s | ∀j ∈ s[[φ]]: if i ≤ j then j <− s[[φ]][[ψ]]}
• s[[∀x(φ→ ψ)]] = s− (s[x][[φ]] − s[x][[φ]][[ψ]])

= {i ∈ s | ∀j ∈ s[x][[φ]]: if i ≤ j then j <− s[x][[φ]][[ψ]]}

The interpretation of ∀xφ in a state s preserves all the assignments i in s such that
every extension of i to x survives in the update with φ. So, using fact 2.8, for any
assignment i in s[[∀xφ]] it holds that every extension of i to x satisfies φ.

Similarly, the interpretation of (φ → ψ) preserves the assignments i in s of
which every extension in s[[φ]] survives in the subsequent update with ψ. The inter-
pretation of ∀x(φ→ ψ) in a state s preserves the assignments i in s every extension
of which in s[x][[φ]] has an extension in s[x][[φ]][[ψ]]. Using fact 2.8 again, for any
assignment i in s[[∀x(φ → ψ)]] it holds that every extension of i in s[x][[φ]] satisfies
ψ.

Let us briefly consider two examples of universal quantification, the first one of
which contains a free variable:

(14) Every man sees her.
∀y(My → Syx)

The interpretation of this sentence in a state s yields the state s[[∀y(My → Syx)]],
which is s − (s[y][[My]] − s[y][[My]][[Syx]]). This state consists of the assignments i
in s such that on every extension of i to y such that the value of y is a man, the
value of y sees the values of x. So, the resulting state consists of those assignments
i in s which assign an individual to x which every man sees.

The second example is the universally quantified donkey sentence:

(15) Every man who owns a donkey beats it.
∀x((Mx ∧ ∃y(Dy ∧Oxy)) → Bxy)

The interpretation of this sentence in a state s yields the set of assignments i in
s such that every extension of i in s[x][[Fx]][y][[Dy]][[Oxy]] satisfies Bxy. So, the
resulting state contains an assignment i in s iff on every extension j of i to x and y
it holds that if the value of x is a man and the value of y is a donkey which the value
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of x owns, then the value of x beats the value of y. Clearly, this simply requires that
every man beats every donkey he owns.

Digression

It has been argued, for instance by Schubert and Pelletier [1988], that the strong
readings of donkey sentences are misguided, or, at least, are not the only readings
these sentences have. Schubert and Pelletier’s favourite example is the following
sentence, which I label the ‘dime implication’:

(16) If I have a dime in my pocket, I’ll put it in the parking meter.

On its most natural reading this sentence says that if I have one or more dimes
in my pocket, then I will throw one in the meter. However, if we interpret the
dime implication, like the donkey implication, as one of strong implication, then the
sentence would imply that I throw all the dimes I have in my pocket in the meter.
As concerns the present example, this strong reading seems quite odd.

It is possible to define a notion of weak implication that assigns conditional sentences
the weak truth conditions that Schubert and Pelletier argue for, and that preserves
the internal dynamics of the implication. This is, in fact, Chierchia’s [1992] definition
of implication. I use →֒ to indicate the weak notion of implication:

Definition 2.10 (Weak implication)
• φ →֒ ψ = ↓φ→ (φ ∧ ψ)

The interpretation of a weak implication φ →֒ ψ in a state s gives us those i ∈ s
such that if i has an extension in s[[φ]], then i has an extension in s[[φ]][[ψ]]. If we
interpret the dime implication employing this weak notion of implication, then the
sentence is true in a state s if I throw a dime I have in my pocket in the meter, that
is, if I have dimes in my pocket at all.

The contrast between the strong donkey and the weak dime implications consti-
tutes an argument, although some have argued that the strong donkey should be
read weakly. Now this is not the place to discuss in detail whether natural lan-
guage conditionals should be considered inherently ambiguous or whether we have
to choose for one of the two notions of implication. Still, unlike Schubert and Pel-
letier, I think that it would be misguided to unconditionally reject any one of the
two notions. Both the strong and the weak implication seem reasonable in certain
contexts.

Convincing arguments for the viability of both readings are obtained by slight
variations of apparent weak implications, in which their consequent clauses are
negated. For instance, consider the following variant of the dime implication:

(17) If I have a dime in my pocket, I won’t throw it in the meter.
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Interpreting this sentence as one of weak implication seems to give just as odd results
as the strong interpretation of the original dime sentence. On the weak reading of
the present sentence, its truth conditions would only require that if I have one or
more dimes in my pocket, I keep at least one dime but maybe throw all other dimes
I have in the parking meter. On the other hand, on the strong reading it is required
that I don’t throw any dime I might have in my pocket in the meter, and that, I
think, is as intuition would have it.

What makes this alternative dime sentence an interesting example is that it
completely corresponds to the original dime sentence, that it can be uttered in pre-
cisely the same contexts as the original dime sentence, but that it, nevertheless,
seems to require the strong interpretation of the conditional, whereas the original
dime sentence requires the weak interpretation. In my opinion this supplies strong
evidence against Schubert and Pelletier’s claim about the strong reading of condi-
tionals, that “What makes it seem correct in certain cases is its confounding with a
‘generic’ or ‘habitual’ or ‘gnomic’ understanding of these sentences” ([1988, p. 201]).
There hardly seems to be any reason for assuming that the alternative dime implica-
tion (for which the strong reading has to be preferred) is in any sense more ‘generic’,
‘habitual’ or ‘gnomic’ then the original dime implication (the weak reading of which
is preferred).

In section 4 I will come back to this issue, and there I will show that the weak and
strong readings of conditionals in fact fit in a more general scheme of (universal)
adverbial quantification. Up untill then, I will only use the strong implication (→),
which is defined in the usual way in terms of negation and conjunction, and which
naturally corresponds to the notion of entailment given below.

This concludes the digression.

2.4 Entailment, DPL and EDPL

I conclude this section about EDPL’s semantics with a discussion about entailment
and about the relation between DPL and EDPL.

EDPL entailment is relativized to a domain of variables X. A sequence of
premises is defined to entail a conclusion with respect to a domain X, if the update
with the premises of any state of information about the values of X yields a state
in which the conclusion is true (the definition of truth is repeated for convenience):

Definition 2.11 (Truth and entailment in EDPL)
• s |=M φ, iff s ⊑ s[[φ]]M
• φ1, . . . , φn |=X ψ iff ∀M,s ∈ SX : s[[φ1]]M . . . [[φn]]M |=M ψ

If we, for the moment, pass over the restriction to states with a specific domain, the
EDPL notion of entailment combines features of DPL and US entailment. EDPL
entailment has the dynamics of DPL entailment. Free variables in the conclusion of
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an inference may refer back to objects introduced in the premises. So, like in DPL,
we find that ∃xFx→ Gx,∃xFx |= Gx, as in If a man comes from Rhodes, he likes
pineapple-juice. A man I met yesterday comes from Rhodes. So, he like pineapple-
juice. Like in US, EDPL entailment employs an update notion of truth. A sequence
of premises entails a conclusion if, relative to a certain domain, the update with the
premises of a state of information always produces a state containing information
about variables about which subsequent update with the conclusion adds no more
information.

The reason that entailment is defined relative to a domain of variables is that we
should not exclude the possibility of undefinedness. Many valid inferences may be
undefined for certain states of information and an inference may be valid even if,
for some domain X, the conclusion of the inference is undefined for the state that
results from the (defined) update of a state in SX with the premises of the inference.
For instance, for states with a domain Y such that x 6∈ Y , the interpretation of x = x
is undefined. However, we would want x = x to be valid with respect to any domain
X such that x ∈ X, and this indeed falls out of the present definition of entailment.
Similarly, for all states s ∈ SY , if x 6∈ Y , then ∃yFy is not necessarily defined in
state s[[∃xFx]]. However, the entailment ∃xFx |=X ∃yFy should come out valid for
any domain X such that x, y 6∈ X, and indeed it does.

So, disregarding undefinedness in some domains, an inference is judged valid
iff (i) there is at least a domain in which the update with the premises and the
conclusion of the inference is defined and (ii) the update with the premises of any
state with such a domain produces a state in which the conclusion is true.4

Since EDPL inferences are relativized to a domain of variables, in order to assess
whether an inference is valid relative to such a domain X, we only have to check for
states s in SX whether the conclusion is true in the update of s with the premises.
However, it is important to notice that this relativization, or restriction, only dis-
cards occurring undefinedness of such inferences and that it does not corrupt the
notion of entailment by discarding counterexamples to them. That is to say, if we
have that φ |=X ψ, then there is no state s such that s[[φ]][[ψ]] is defined and s[[φ]] 6|= ψ.
More generally we have the following fact:

Fact 2.13
• If φ1, . . . φn |=X ψ, then for all s: s[[φ1]] . . . [[φn]] |= ψ, if defined

4. In order to allow inferences to be undefined in some domains, we might, alternatively, have
required that every update with the premises, if defined, licenses the conclusion, if defined. However,
such a (weaker) notion of entailment would generate inferences that owe their validity to being
necessarily undefined, and this goes against the spirit of EDPL. For instance, in that case x = x
would entail ∃x(x 6= x), which is objectionable.
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In the proof of fact 2.13, I use the following lemma (i ≈ j says that for all x such
that i(x) and j(x) are defined i(x) = j(x)):

Lemma 1
• If i ≈ j then ∀k ∈ {i}[[φ]] ∃!l ∈ {j}[[φ]]: k ≈ l, if defined5

For reasons of readibility I show the proof of fact 2.13 for single premise entailments
only, that is, I show that if φ |=X ψ and s[[φ]][[ψ]] is defined, then s[[φ]] |= ψ, this by
contraposition.
Suppose (i) φ |=X ψ, (ii) s[[φ]][[ψ]] is defined, and (iii) s[[φ]] 6|= ψ. By assumptions (ii)
and (iii) there is an assignment j in s[[φ]] such that j <6− s[[φ]][[ψ]] and (by update and
distributivity) there is an assignment i in s such that j ∈ {i}[[φ]] and {j}[[ψ]] = ∅.
Clearly, there is an assignment i′ in DX such that i ≈ i′ and, using assumption (i),
{i′}[[φ]][[ψ]] is defined. Using lemma 1 we find that there is an assignment j′ in {i′}[[φ]]
such that j ≈ j′, and, using lemma 1 again, that {j′}[[ψ]] = ∅. But then {i′}[[φ]] 6|= ψ,
which contradicts assumption (i). So, by contraposition, if φ |=X ψ and s[[φ]][[ψ]] is
defined, then s[[φ]] |= ψ. That concludes the proof.

Fact 2.13 states that if an inference is a valid entailment with respect to a domain
of variables X, the inference is valid with respect to any domain, as long as it is
defined. So, if φ1, . . . , φn entail ψ with respect to a domain X, and if φ1, . . . , φn, ψ is
defined for states with domain Y , then φ1, . . . , φn entail ψ with respect to domain
Y . For this reason it is proper to say that φ1, . . . , φn |= ψ iff there is a domain X
such that φ1, . . . , φn |=X ψ, and I will do so below.

5. This lemma is proved by induction on the complexity of φ. The proof is simplified by treating
existentially quantified formulas as conjunctions: ∃xφ = ∃x ∧ φ where s[[∃x]] is s[x] if x 6∈ D(s).
Atomic formulas and existential quantifiers then constitute the basic cases of the induction.
1. For atomic formulas the proof of the lemma is straightforward.
2. Suppose that i ≈ j, that {i}[[∃x]], {j}[[∃x]] are defined and that k ∈ {i}[[∃x]], i.e., i ≤{x} k.

Clearly, there is an assignment l in {j}[[∃x]] (i.e., j ≤{x} l) such that k(x) = l(x). Since i ≈ j,
i ≤{x} k, j ≤{x} l and k(x) = l(x), we find that k ≈ l. Now suppose that an assignment l′ is
in {j}[[∃x]] and k ≈ l′. Then j ≤{x} l

′ and k(x) = l′(x) and, hence, l′ = l.
3. Suppose that i ≈ j, that {i}[[¬φ]], {j}[[¬φ]] are defined and that k ∈ {i}[[¬φ]], i.e., k = i and

{i}[[φ]] = ∅. Using the induction hypothesis, {j}[[φ]] = ∅. So, j ∈ {j}[[¬φ]], and, since i ≈ j and
k = i, k ≈ j. Now suppose j′ ∈ {j}[[¬φ]], then, automatically, j′ = j.

4. Suppose that i ≈ j, that {i}[[φ∧ψ]], {j}[[φ∧ψ]] are defined and that k ∈ {i}[[φ∧ψ]] = {i}[[φ]][[ψ]].
By distributivity there is an assignment f in {i}[[φ]] such that k ∈ {f}[[ψ]]. By induction there
is an assignment g in {j}[[φ]] such that g ≈ f , and, again by induction, there is an assignment
l ∈ {g}[[ψ]] such that k ≈ l. By distributivity again, such an l ≈ k is in {j}[[φ]][[ψ]] = {j}[[φ∧ψ]].
Now suppose that an assignment l′ ≈ k is in {j}[[φ]][[ψ]]. Then there is an assignment g′ ∈

{j}[[φ]] such that l′ ∈ {g′}[[ψ]]. Since (by update) f ≤ k, g ≤ l and g′ ≤ l′, and since l ≈ k
and l′ ≈ k, we find that f ≈ g and f ≈ g′. Since i ≈ j, by induction on φ, g = g′, and, by
induction on ψ, l = l′.
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Deduction and transitivity

The deduction theorem holds in EDPL :

Fact 2.14
• φ1, . . . , φn |= ψ iff φ1, . . . , φn−1 |= φn → ψ

This fact is proved in two steps.
(i) For any s, s[[φ1]] . . . [[φn]] |= ψ iff (fact 2.8) ∀j ∈ s[[φ1]] . . . [[φn]]: {j} |= ψ iff
(fact 2.7) ∀i ∈ s[[φ1]] . . . [[φn−1]] ∀j ∈ {i}[[φn]]: {j} |= ψ iff (by definition of →)
∀i ∈ s[[φ1]] . . . [[φn−1]]: {i} |= (φn → ψ) iff (fact 2.8) s[[φ1]] . . . [[φn−1]] |= (φn → ψ).
(ii) φ1, . . . , φn |= ψ iff there is an X such that φ1, . . . , φn |=X ψ iff there is an X
such that ∀s ∈ SX : s[[φ1]] . . . [[φn]] |= ψ iff (by (i)) there is an X such that ∀s ∈ SX :
s[[φ1]] . . . [[φn−1]] |= (φn → ψ) iff there is an X such that φ1, . . . , φn−1 |=X (φn → ψ).
iff φ1, . . . , φn−1 |= (φn → ψ). That concludes the proof.

Like DPL-entailment EDPL-entailment is not transitive. The counterexample in
DPL is also a counterexample in EDPL. Whereas ∃xFx (as usual) entails ∃yFy
and ∃yFy (dynamically) entails Fy, ∃xFx does not entail Fy. Transitivity fails
in this example because the goal conclusion Fy critically refers back to the object
introduced in the mediating formula ∃yFy. However, if we restrict ourselves to
inferences defined on a shared domain, transitivity does hold:

Fact 2.15 (Restricted transitivity)
If D(φ ∧ ψ) ∩ D(φ ∧ χ) 6= ∅ then:

• If φ |= ψ and ψ |= χ, then φ |= χ

For the proof of fact 2.15, notice that, as a corollary of lemma 1, if i ≈ j and {i}[[φ]],
{j}[[φ]] are defined, then ∀k ∈ {i}[[φ]]: k ≈ j. (Proof. Suppose i ≈ j, {j}[[φ]] is defined
and k ∈ {i}[[φ]]. By lemma 1, there is an assignment l in {j}[[φ]] such that k ≈ l. By
fact 2.6, j ≤ l, and, hence, k ≈ l.)

The proof of fact 2.15 then runs as follows. Suppose (i)X ∈ D(φ∧ψ)∩D(φ∧χ),
(ii) φ |= ψ and (iii) ψ |=Y χ. Using assumptions (i) and (ii) and fact 2.13, φ |=X ψ.
Now consider an assignment k in s[[φ]], for any s ∈ SX . Since φ |=X ψ, {k} |= ψ.
Next consider an assignment k′ in DY such that k ≈ k′. By lemma 1 and assumption
(iii), {k′} |= ψ and for any assignment l in {k′}[[ψ]]: {l} |= χ. By the corollary of
lemma 1, for any such l: k ≈ l, hence (by lemma 1) {k} |= χ, if defined. Since, by
assumption (i) {k}[[χ]] is defined, {k} |= χ. This shows that for any s ∈ SX for any
k ∈ s[[φ]]: {k} |= χ, and, hence, that s[[φ]] |= χ. So, s[[φ]] |=X χ, and, consequently,
s[[φ]] |= χ. That concludes the proof of fact 2.15.

Fact 2.15 implies that if φ entails ψ with respect to X, and ψ entails χ, then φ
entails χ with respect to X iff defined relative to X. The restriction on transitivity
effectively excludes cases where the mediating formula ψ introduces variables which
are free in χ, and it also guarantees definedness of the goal inference from φ to χ
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with respect to some domain X.

DPL and EDPL

I now turn to the relation between EDPL and DPL. Let sV be the total extension
of s, i.e., sV = {g ∈ DV | g >− s}, and let tX be the restriction of t to X, i.e.,
tX = {i ∈ DX | i <− t}. Then truth in DPL with respect to a model M and truth in
EDPL with respect to M are related in the following way:

Fact 2.16
If t ∈ SV and X,D(s) ∈ D(φ), then

1. t |=M,dpl φ iff tX |=M,edpl φ
2. s |=M,edpl φ iff sV |=M,dpl φ

So, if φ is true in t in DPL, then φ is true in EDPL in the restriction of t to a domain
for which φ is defined. Furthermore, if φ is true in s in EDPL, then φ is true in the
total extension of s in DPL.

To prove fact 2.16 I use the following lemma (g ≥t i iff g is a total extension of i):

Lemma 2
If {i}[[φ]] is defined and g ≥t i, then

• {i} |=M,edpl φ iff {g} |=M,dpl φ
6

Using this lemma, the two clauses of fact 2.16 are proved as follows. With respect to
the first clause, suppose t ∈ SV and X ∈ D(φ), i.e., tX [[φ]] is defined. Then t |=dpl φ
iff (definition of |=dpl) {g} |=dpl φ for all g in t iff (lemma) {i} |=edpl φ for all i in tX

iff (distributivity) tX |=edpl φ.
With respect to the second clause of fact 2.16, suppose D(s) ∈ D(φ), i.e., s[[φ]]

is defined. Then s |=edpl φ iff (distributivity) {i} |=edpl φ for all i in s iff (lemma)
{g} |=dpl φ for all g ∈ sV iff (definition of |=dpl) s

V |=dpl φ. That concludes the proof.

6. The lemma is proved by induction on the complexitity of the normal binding form of φ (the
normal binding form of a formula φ is obtained by substituting all occurences of subformulas of the
form (∃xφ1 ∧ φ2) and ((φ1 ∧ φ2) ∧ ψ3) in φ by (∃x(φ1 ∧ φ2)) and (φ1 ∧ (φ2 ∧ ψ3)) respectively):
– If {i}[[Rx1 . . . xn]] is defined and g ≥t i, then {i} |=M,edpl Rx1 . . . xn iff {g} |=M,dpl Rx1 . . . xn,

since i(x1) = g(x1), . . ., i(xn) = g(xn) and Fedpl(R) = Fdpl(R).
– If {i}[[¬φ]] is defined and g ≥t i, then {i}[[φ]] is defined and, hence, {i} |=edpl ¬φ iff {i} =|edpl φ

iff (by induction) {g} =|dpl φ iff {g} |=dpl ¬φ.
– If {i}[[∃xφ]] is defined and g ≥t i, then ∀j ≥{x} i: {j}[[φ]] is defined. Hence, {i} |=edpl ∃xφ iff

∃j ≥{x} i: {j} |=edpl φ iff ∃h[x]g ∃j: h ≥t j ≥{x} i and {j} |=edpl φ iff (by induction) ∃h[x]g:
{h} |=dpl φ iff {g} |=dpl ∃xφ.

– If {i}[[φ∧ψ]] is defined and g ≥t i, then (since φ is a test) {i}[[φ]] and {i}[[ψ]] are defined and,
furthermore, {i} |=edpl φ ∧ ψ iff {i} |=edpl φ and {i} |=edpl ψ iff (by induction) {g} |=dpl φ
and {g} |=dpl ψ iff {g} |=dpl φ ∧ ψ.
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3 Quantification in EDPL

In this section I introduce quantifiers in EDPL and show that we can give a perspic-
uous and uniform interpretation of adnominal and adverbial quantifiers, symmetric
as well as asymmetric. The quantifiers are assigned a so-called ‘internally dynamic’
interpretation, one that accounts for anaphoric relationships between antecedent
noun phrases in the restriction of the quantifiers and anaphoric pronouns in their
nuclear scope. I do not discuss ‘externally dynamic’ readings, in which antecedent
noun phrases in the restriction or in the scope of a quantifier license anaphora be-
yond the scope of the quantifier (cf., for instance, van den Berg [1990, 1991] and
chapter 2). I start with adverbs of quantification.

3.1 Adverbs of quantification (unselective)

Lewis [1975] argues that in many cases adverbs of quantification (like always, some-
times, usually) unselectively quantify over the values of ‘free variables’ (often stem-
ming from indefinite noun phrases) in their restrictive clause. The examples Lewis
discusses are of the form Sometimes/usually/always if x is a man, if y is a donkey,
and if x owns y, x beats y and, clearly, these are paraphrases in the logicians idiom
of sentences like:

(18) Sometimes/usually/always if a man owns a donkey, he beats it.

Lewis points out that the quantifying adverbs sometimes/usually/always in fact
quantify over the ‘cases’ that verify the restrictive clause. These cases are the ad-
missible assignments of values to the variables that are free in the restriction, or,
equivalently, the tuples of individuals that are possible values of these variables. So,
the cases that verify the restriction x is a man, y is a donkey and x owns y are the
maps from x to a farmer and from y to a donkey the farmer owns (i.e., the pairs
consisting of a farmer and a donkey he owns). The adverbial quantifier quantifies
over these cases, i.e., pairs of individuals in the examples above. If the head is some-
times, as in Sometimes, if a farmer owns a donkey, he beats it, the sentence says
that some pairs consisting of a farmer and a donkey owned, are pairs of which the
first element beats the second. If always is the head, it is said that every pair of a
farmer and a donkey he owns is a pair that stands in the beat relation. And with
usually , we get that most pairs that consist of a farmer and a donkey owned, stand
in the beat relation. (Clearly, if in a quantified construction A(φ)(ψ) the restriction
φ contains three (or n) free variables or indefinites, the unselective adverbs quantify
over triples (or n-tuples) of individuals.)

This part of the story about adverbs of quantification is formalized quite elegantly in
FCS, DRT and DPL. In these systems, unselective quantification about the values
of any number of free variables is cast in terms of quantification about verifying
(output) assignments. In DPL, for instance, the formula Always(φ)(ψ) tests, given
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an initial assignment g, whether all assignments that verify φ with respect to g also
satisfy ψ. Similarly, the formula Sometimes(φ)(ψ) tests whether some assignments
that verify φ with respect to g satisfy ψ, and the formula Never(φ)(ψ) tests whether
no assignment that verifies φ with respect to g satisfies ψ.

EDPL, too, allows a straightforward interpretation of unselectively quantifying ad-
verbs. We restrict ourselves to the adverbs (and determiners, cf., section 4.3) that
satisfy the constraints of extension, quantity and conservativity.7 For any such ad-
verb of quantification A, with its usual set-theoretic interpretation [A], the interpre-
tation is defined as follows:

Definition 3.1 (Adverbs of quantification (symmetric))
• s[[A(φ)(ψ)]] = {i ∈ s | [A]({j | i ≤ j & j ∈ s[[φ]]})({j | j <− s[[φ]][[ψ]]})}

In a state s, for each assignment i in s, a symmetric adverbial quantifier A tests
whether [A] applies, first, to the set of extensions of i in the update of s with the
restriction of the adverb, and, second, to the set of assignments that also verify the
nuclear scope of the adverb. In effect, the adverb quantifies over the values of the
variables introduced in the restriction.

So, if we interpret If a farmer owns a donkey he always beats it in a state
s in EDPL, we get s[[Always(∃x(Fx ∧ ∃y(Dy ∧ Oxy)))(Bxy)]]. This is the set of
assignments i in s such that on every extension of i to x and y, if the value of x
is a farmer who owns a donkey which is the value of y, then the value of x beats
the value of y. In other words, this formula tests whether all pairs of a farmer and
a donkey he owns are pairs of which the first element beats the second element.
A second example is If a man gives her a present, she usually thanks him for it,
formalized as Usually(∃y(My ∧ ∃z(Pz ∧ Gyzx)))(Txyz). Interpreted in a state s,
this example gives all those i in s that assign an individual to x that renders thanks
in most cases in which a man gives her a present.

There are some interesting correspondences between the sentential connectives of
EDPL and adverbs of quantification (as before, ↓φ indicates the static closure ¬¬φ
of φ):

Fact 3.1
• Sometimes(φ)(ψ) ⇔ ↓(φ ∧ ψ)

7. Let Q be a quantifier that assigns any domain of individuals E a binary relation QE between
subsets of E. Then Q satisfies extension iff for all E,E′ and for all A,B ⊆ E ⊆ E′: QE(A)(B)
iff QE′(A)(B). Q satisfies quantity iff for all E,E′, if π is a bijection from E to E′, then for all
A,B ⊆ E: QE(A)(B) iff QE′({π(a) | a ∈ A})({π(b) | b ∈ B}). Q is conservative iff for all E and
A,B ⊆ E, QE(A)(B) iff QE(A)(A ∩ B. Van Benthem [1986, Ch. 1,2] uses these constraints to
single out the determiners that qualify as ‘(logical) quantifiers’. Adverbs and determiners that do
not observe all three constraints can be treated within the EDPL framework, but they deserve a
special treatment.
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• Always(φ)(ψ) ⇔ (φ→ ψ)
• Never(φ)(ψ) ⇔ ¬(φ ∧ ψ)

Conjunction (disregarding its external dynamics) and implication appear to fit in
the more general scheme of adverbial quantification. A sentence Sometimes, if a
farmer owns a donkey he beats it has the same truth conditions as the conjunction
A farmer owns a donkey. He beats it.8 Furthermore, the sentence Always, if a farmer
owns a donkey he beats it turns out equivalent with the sentence Every farmer beats
every donkey he owns, and the sentence If a farmer owns a donkey he never beats
it turns out equivalent with the sentence No farmer who owns a donkey beats it.

3.2 Adverbs of quantification (asymmetric)

Adverbs of quantification do not always unselectively quantify over the values of all
variables introduced in their restriction. Several authors (Bäuerle and Egli [1985],
Root [1986], Rooth [1987] and Kadmon [1987, 1990], see also Heim [1990] and Chier-
chia [1992]) have discussed examples in which adverbial quantifiers involve quantifi-
cation over the values of a proper subset of the introduced variables. Following
Rooth and Kadmon, I call this kind of quantification asymmetric. We find it in the
following sentences:

(19) If a farmer owns a donkey, he is usually rich.
(20) If a drummer lives in an apartment complex, it is usually half empty.
(21) If a drummer lives in an apartment complex, it is usually half empty.

On its most natural reading, the adverb usually in the first example quantifies
over farmers who own a donkey and not over farmer-donkey pairs. The sentence says
that most farmers who own a donkey are rich. (If the adverb is taken to quantify
unselectively, we get the different reading that for most pairs consisting of a farmer
and a donkey he owns, it holds that the farmer is rich.) The second and third
example are different for a similar reason. In the second example, with focal stress
on drummer, we (may) find quantification over apartment complexes in which a
drummer houses. The example then states that most apartment complexes where
a drummer lives are usually half-empty. In the third example, where we find focal
stress on apartment complex, the adverb may be taken to quantify over drummers.
On this reading, the sentence says that most drummers that live in an apartment
complex live in an half empty apartment complex.

8. Some features of the adverbially quantified sentence and of the indefinite donkey conjunction are
neglected here. Intuitively, an adverbially quantified sentence Sometimes(φ)(ψ) requires more than
one of the cases that verify φ to satisfy ψ, a plurality condition that is absent from the (singular)
donkey conjunction. On the other hand, such a singular donkey conjunction may have a ‘specific’
flavour, in the sense that it may be taken to talk about a specific farmer and donkey known to
the speaker. The adverbially quantified sentence lacks such a reading. In section 5.2 I will slightly
address specific indefinites. Plurals fall beyond the scope of this chapter.
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Examples like these pose a problem for the DRT and DPL analysis of adverbs
of quantification, a problem dubbed the ‘proportion problem’ by Kadmon [1987].
Of course, it is easy to annul the introduction of certain variables in a restriction
and to quantify over the values of the remaining variables. So, the sentence If a
man owns a donkey he is usually rich can be (successfully) interpreted by means
of the translation Usually(∃x(Mx ∧ ↓∃y(Dy ∧Oxy)))(Rx). However, this approach
runs into problems when a pronoun in the nuclear scope is anaphorically related to
an indefinite description in the restrictive clause that does not participate in the
adverbial quantification. For instance, if we want the example If a drummer lives in
an apartment complex, it is usually half empty to quantify over drummers, and
if, therefore, the interpretation of the restriction only yields assignments varying
with respect to the drummers, then the pronoun it in the nuclear scope remains
unbound.

Of course, in case of asymmetric quantification we don’t really want to annul
the introduction of certain variables in the restriction of a quantifying adverb. When
the values of other variables are selected for quantification, we just want the adverb
to neglect the (possibly different) values of the other ones. For this reason, Root
[1986] suggests that asymmetric adverbial quantifiers do not discriminate between
assignments that only differ from one another in their assignment to unselected
variables. This implies that asymmetric quantifiers in fact quantify over equivalence
classes of assignments, each one of which consists of assignments that agree on the
values of the selected variables. For instance, in the example If a drummer lives in
an apartment complex, it is usually half empty , the adverb usually selects (the
variable associated with) a drummer, and in effect quantifies over a set of sets of
cases, each element of which is a set of pairs any first element of which is one and
the same drummer and any second element any apartment complex the drummer
lives in.

In EDPL, asymmetric adverbs more naturally fit into the general scheme of adverbial
quantification. Since EDPL has the update property, we can (unselectively) quantify
over the assignments that satisfy the restriction φ of an adverb by considering all
extensions of i in s[[φ]], for any assignment i in an input state s. Now, in case of
asymmetric quantification, we only need to take into account extensions of i that
survive in s[[φ]], and test whether these extensions also survive in further update
with the nuclear scope of the adverb.

For instance, if we interpret If a man owns a donkey he is usually rich asym-
metrically in a state s, s[[Usually{x}(∃x(Mx∧∃y(Dy∧Oxy)))(Bxy)]], we test, for any
i ∈ s whether most assignments j: i ≤{x} j that survive in s[[∃x(Mx∧∃y(Dy∧Oxy))]]
also survive in s[[∃x(Mx∧∃y(Dy∧Oxy))]][[Rx]]. In fact this tests whether most don-
key owning man are rich. Notice that in the present example the nuclear scope Rx
of the adverb is interpreted with respect to a state that is not only defined for x,
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the values of which are quantified over, but also for y, the possibly different values
of which do not interfere with the quantification. In other words, we can quantify in
EDPL over the values of some variables introduced in the restriction of an adverb,
neglect the valuation of others, without denying the others the ability to serve as
an antecedent for anaphoric pronouns in the nuclear scope.

So, assume that an asymmetric adverb of quantification comes with a set of selection
indices X the values of which the adverb quantifies over. Its interpretation then is
defined as follows:

Definition 3.2 (Adverbs of quantification (asymmetric))
If X ⊆ (D(s[[φ]]) −D(s))

• s[[AX(φ)(ψ)]] = {i ∈ s | [A]({j | i ≤X j & j <− s[[φ]]})({j | j <− s[[φ]][[ψ]]})}

The side condition that X ⊆ (D(s[[φ]]) − D(s)) guarantees that an asymmetric
adverbial quantifier AX effectively quantifies over the values of all the variables in
X, this, again, on pain of undefinedness.

Let us briefly consider two mutually related examples.

(22) If a man gives her a present, she usually thanks him for it
Usually{y}(∃y(My ∧ ∃z(Pz ∧Gyzx)))(Txyz)

This sentence requires of an assignment i in a state of evaluation s that most ex-
tensions j of i with a valuation for y such that j(y) gives i(x) a present, are also
valuations such that i(x) thanks j(y) for a present j(y) gives to her. So, interpreted
in a state s, this example returns all those i in s that assign x an individual that
renders thanks to most men that give her a present, irrespective of the number of
presents given.

(23) If a man gives her a present, she usually thanks him for it
Usually{z}(∃y(My ∧ ∃z(Pz ∧Gyzx)))(Txyz)

When interpreted in a state s, this example returns all those i in s that assign x an
individual that renders thanks for most presents given by a man, irrespective of the
number of men that give it.

Strong, weak and mixed implication

The preceding discussion shows that EDPL treats unselective and asymmetric ad-
verbs of quantification in a uniform way. We find the following equivalences:

Fact 3.2
If defined,

• SometimesX(φ)(ψ) ⇔ Sometimes(φ)(ψ)
• NeverX (φ)(ψ) ⇔ Never(φ)(ψ)
• Always∅(φ)(ψ) ⇔ (φ →֒ ψ)
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So, for the adverbs sometimes and never it makes no difference whether or not they
quantify over a selection of the variables introduced in their restriction. This is as
it should be, since there seems to be no evidence whatsoever that there are distinct
asymmetric readings of these adverbs.

On the other hand, for the adverbs usually and always, it does make a difference
whether or not they select variables for asymmetric quantification, and which vari-
ables they select. Furthermore, we see that the weak implication (→֒) addressed in
the digression of section 3.2, now appears to be a borderline case of asymmetric ad-
verbial quantification, i.e., universal quantification over the values of an empty set
of selection indices. So, this weak implication does not constitute a really different
notion of implication of its own, but it fits into the more general scheme of adverbial
quantification as one of the many forms of asymmetric quantification.

This claim about weak implication can be further substantiated by slightly
varying the dime implication again:

(24) If I have a dime in my pocket, I throw it in the parking meter.
(∃y(Dy ∧ Piy) →֒ T iy) ⇔ Always∅(∃y(Dy ∧ Piy))(T iy)

(25) If a man has a dime in his pocket, he throws it in the parking meter.
Always{x}(∃x(Mx ∧ ∃y(Dy ∧ Pxy)))(Txy)

On its most natural reading, the first example was argued to state that if I have
a dime in my pocket, then I throw one in the meter, and this reading is captured
by interpreting the conditional sentence as one of weak implication (or of universal
quantification over the values of an empty set of selection indices). However, the
second example, which is a minor variation of the first, is most likely interpreted
as stating that every man who has a dime, throws one in the meter.9 Neither the
weak, nor the strong, reading of the implication gives us this. In fact, this example
has a mixed strong and weak reading: strong with respect to the men who are faced
with a parking meter and who have a dime in their pocket; weak with respect to
the number of dimes they throw in. Now, if the weak implication is supposed to
constitute a form of implication of its own and if it is used to account for the first
example, we still need an explanation of this second, related, example, which, on
the preferred reading, does not exemplify a purely weak or strong implication. If, on
the other hand, we fit both these sentences into the scheme of asymmetric adverbial
quantification, both get assigned proper readings in a uniform way.

9. Of course, these sentences will have to be understood as restricted to men faced with a parking
meter they are obliged to throw a dime in. Furthermore, the analysis will have to be supplemented
with a proper interpretation of the definite noun phrase the parking meter. However, these two
issues do not concern us here. Relevant in the present discussion is the quantificational force of the
indefinites in the dime implications.
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3.3 Adnominal quantifiers

EDPL is also easily extended with adnominal (binary) quantifiers. Basically, the
treatment of these quantifiers offered below is that of Chierchia [1988, 1992], also
proposed in van Eijck and de Vries [1992]. As is the case with the adverbial quan-
tifiers, the adnominal quantifiers are interpreted as ‘internally dynamic’, i.e., their
analysis accounts for anaphoric relationships between indefinites occurring in the
restriction of such quantifiers and anaphoric pronouns in their nuclear scope. I will
not present an analysis of the external dynamics of such quantified structures, that
is, the anaphoric relationships that may obtain between the noun phrases in quan-
tified structures and pronouns in successive sentences. As is argued in van de Berg
[1990], for a treatment of the external dynamics of adnominal quantifiers we need to
extend (E)DPL so as to deal with plural noun phrases, more in particular with plural
pronouns, and such an enterprise falls beyond the scope of the present chapter.

Internally dynamic adnominal quantifiers neatly fit in the general scheme of
quantification in EDPL. Let D be a binary quantifier which has [D] as its usual
set-theoretic interpretation, then:

Definition 3.3 (Binary quantifiers)
If x 6∈ D(s)
• s[[Dx(φ)(ψ)]] = {i ∈ s | [D]({j | i ≤{x} j & j <− s[x][[φ]]})({j | j <− s[x][[φ]][[ψ]]})}

On the present definition of adnominal quantification, a binary quantifier Dx quan-
tifies over the possible valuations of a single variable x and, hence, over the individ-
uals in D (that is, if we again assume that the quantifier satisfies the constraints of
extension, quantity and conservativity, cf., the remarks in section 4.1).

Let us consider one example:

(26) Most men who gave her a present had packed it up
Most y(∃z(Pz ∧Gyzx)(Uyz)

The interpretation of this example in a state s yields a state consisting of assignments
i ∈ s such that most extensions of i to y under which the value of y is a man who
gave a present to the value of x, are extensions under which the value of y has packed
up a present he gave to the value of x. Put more simple, the interpretation of this
example in a state s returns those assignments i in s which assign an individual z to
x such that most men who gave a present to z gave her a present they had packed
up.

We find the following correspondences between binary and unary quantifiers in
EDPL:

Fact 3.3
• Anx(φ)(ψ) ⇔ ↓∃x(φ ∧ ψ)
• Nox(φ)(ψ) ⇔ ¬∃x(φ ∧ ψ)
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• Every x(φ)(ψ) ⇔ ∀x(φ →֒ ψ)

We see that the binary determiners a(n) and no have the same truth-conditional
content as their usual first order paraphrases. Moreover, observe that EDPL licenses
a weak and a strong reading of the quantifier every , both of which are intuitively
motivated. If we treat every as a binary quantifier, the weak reading results. This
reading is appropriate for the sentence Every man who has a dime puts in the
parking meter. On the other hand, if we translate every by means of the first order
universal quantifier, as ∀x(φ → ψ), then the strong reading results, and this gives
the proper reading of the (strong) donkey sentence.

Of course, the ambivalence of every also shows in its negation not every .
In case every is read strongly, a quantified structure Not every A B translates as
¬∀x(A′x→ B′x) ⇔ ↓∃x(A′x∧¬B′x). This seems appropriate for the negation of the
strong donkey sentence. The sentence Not every man who owns a donkey beats it has
the truth conditions that there is a man who owns a donkey which he does not beat.
On the other hand, if every is read weakly, as a binary determiner, then Not every
A B translates as Not every x(φ)(ψ), which is equivalent with ↓∃x(↓A′x ∧ (A′x →
¬B′x)). This seems appropriate for the negation of the weak dime sentence. The
sentence Not every man who has a dime throws it in the meter then has the truth
conditions that there is a man who has a dime and who does not throw any dime
he has in the meter.

To conclude, we find two traditional but non-equivalent ways to translate natural
language every in the language of EDPL, both with intuitively motivated readings.
Notice that it is especially the determiner every which has been associated with
both weak and strong readings in the literature. Now it need not be so much of
a merit of EDPL that it accounts for both kinds of readings in a principled way,
but it is a relative merit that it does do so without entailing ambiguity of all other
quantifiers.

A last observation concerns the relation between determiners and quantifying ad-
verbs. The uniform analysis of determiners and adverbs of quantification shows in the
following equivalence. If adverb A and determiner D have the same set-theoretical
interpretation, then:

Fact 3.4
• A{x}(∃xφ)(ψ) ⇔ Dx(φ)(ψ)

Consider the sentence If a man owns a donkey, he is usually rich on its asymmet-
ric construal in which usually selects donkey owning men for quantification. The
translation of the sentence then is (Usually{x}(∃x(Mx∧∃y(Dy∧Oxy)))(Rx)), and,
under this translation, the sentence is equivalent with the sentence Most men that
own a donkey are rich, translated as Most x(Mx ∧ ∃y(Dy ∧Oxy))(Rx).
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Infelicitous indices

As was stated at the start of this section, the present analysis of adnominal quantifi-
cation is basically that of Chierchia and van Eijck and de Vries. The most significant
difference with these two approaches is that EDPL explicitly expels the reinstan-
tiation of variables which are already in use. It can be argued that, in particular,
the treatment of quantifiers in Chierchia and van Eijck and de Vries calls for such a
novelty constraint on indices (which, by the way, is also Chierchia’s conclusion).

Consider the following example, in which an indefinite in the restriction of a deter-
miner is coindexed with the determiner:

(27) Everyx man that has ay kid who owns a donkeyx is happy.
Every x(Mx ∧ ∃y(Ky ∧ ∃x(Dx ∧Oyx) ∧Hxy))(Hx)

With respect to this translation notice, first, that the head determiner every has a
restriction Mx ∧ ∃y(Ky ∧ ∃x(Dx ∧ Oyx) ∧ Hxy) in which the quantifier ∃x asso-
ciated with the noun phrase a donkey binds the variable x in Hxy. So, under this
translation the head determiner every quantifies, not over men that have a kid who
own a donkey, but over men such that there is a kid who owns a donkey which has
the kid, i.e., over men such that there is a donkey which has a kid who owns it.

Second, it appears that also the occurrence of x in the nuclear scope Hx gets
bound by the quantifier ∃x in the restriction of the head determiner every . The
reading that results then is that, for every man, if there is a donkey which has a kid
that owns it, then there is a happy donkey which has a kid that owns it. Clearly,
this is not at all a sensible reading of the original example Every man that has a
kid who owns a donkey is happy , but if we assume a standard translation procedure
and a free indexing mechanism it is predicted to be one.

In Chierchia [1992] the problem just sketched is circumvented by the use of λ-recipes
in the translation of quantified structures, this in a way that need not concern us
here. Still, Chierchia as well finds reason to require indefinites always to introduce
fresh variables. However, the motivation he gives for this is slightly misguided.

Chierchia [1992, pp. 141 ff] proposes a conservativity constraint on determiners
D to the effect that D(A)(B) ⇔ D(A)(A & B). Next he argues that if in the
restriction A of the determiner a free variable in the restriction is reinstantiated,
then his theory would predict wrong readings. Consider, for instance, the sentence
Every man who knows herx and marries anx Italian is happy . Chierchia argues that
if conservativity holds then this sentence is equivalent with the sentence Every man
who knows herx and marries anx Italian is a man who knows herx and marries
anx Italian and who is happy , which, in its turn, is equivalent with Every man
who knows herx and marries anx Italian is a man who knows herx and marries anx

Italian and is a man who knows herx and marries anx Italian and who is happy .
Observe that in the nuclear scope of the last sentence the first occurrence of anx
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Italian binds the second, coindexed, occurrence of herx and, hence, that sentence
means that every man that knows her and marries an Italian is a man who marries
an Italian he knows and who is happy.

Chierchia concludes from this that also the original sentence Every man that
knows herx and marries anx Italian is happy has a reading that every man that knows
her and marries an Italian is a happy man who marries an Italian he knows. However,
this is not what the argument shows, since the original sentence, on Chierchia’s
proposal, simply does not have that reading. So, what the argument does show is
that the original sentence is not equivalent with the sentence derived from it by
conservativity, and, hence, that quantifiers in Chierchia’s system are not in general
conservative in the indicated sense.

Although the argument is somewhat misguided, its conclusion may, nevertheless,
remain the same. Chierchia concludes that reinstantiation has to be expelled and
this will also be the conclusion if, as Chierchia apparently wants, a dynamic variant
of conservativity is to be retained as a general constraint on natural language deter-
miners. The argument shows clearly that if a form of conservativity in Chierchia’s
sense is to be retained, it should at least be required that indefinites always intro-
duce novel variables. To that same end, then, Chierchia [1992, appendix v] suggests
the adoption of partial assignments and partial interpretation, and this chapter can
be taken to show how such a suggestion may work out in detail.10

Final issues

To conclude this section, I will briefly reconsider some of the facts from section 3.2
and 3.4 in view of the extension of EDPL with quantifiers.

It is easily shown that update and distributivity (facts 2.6 and 2.7) remain
valid when EDPL is extended with quantifiers. (To prove distributivity, use the
conservativity of the quantifiers used.) To prove that also the facts 2.13, 2.14 and
2.15 remain valid it suffices to prove lemma 1 for the extended system. In order to
prove lemma 1 in the extended system, the induction in section 3.4 only needs to
be extended with a clause dealing with asymmetric adverbs, since unselective ad-
verbial quantification and adnominal quantification is subsumed under asymmetric
quantification.

To facilitate exposition, I use the following abbreviatons:

10. It must be noticed that also the notion of conservativity should be subject to further scrutiny.
As things stand, Chierchia’s notion of dynamic conservativity is incompatible with the novelty
conditon he proposes. If the restriction A of a quantifier contains an existential quantifier ∃x, then
the conservative copy of A into the nuclear scope B always yields an undefined formula, that is, on
the novelty condition that Chierchia proposes to adopt. A simple solution to this problem consists
in restricting dynamic conservativity to the unindexed quantified structures in natural language.
The novelty condition then may be taken to apply to the indexing of their conservative paraphrases.
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si = {k | i ≤X k & k <− {i}[[φ]]},
ti = {k | i ≤X k & k <− {i}[[φ]][[ψ]]},
sj = {l | j ≤X l & l <− {j}[[φ]]} and
tj = {l | j ≤X l & l <− {j}[[φ]][[ψ]]}.

The inductive proof of lemma 1 for quantified structures employs the corollary of
lemma 1 that if i ≈ j and X ∩D(i) = X ∩D(j) = ∅, then for all k such that i ≤X k
and k <− {i}[[φ]] there is one l such that j ≤X l, l <− {j}[[φ]] and k ≈ l, if defined.
So, if, by the induction hypothesis lemma 1 holds for [[φ]] and [[ψ]], then there is a
bijection from si to sj, the restriction of which to ti, moreover, is a bijection from
ti to tj .
Suppose that i ≈ j, that {i}[[AX (φ)(ψ)]], {j}[[AX (φ)(ψ)]] are defined and that
f ∈ {i}[[AX (φ)(ψ)]], i.e., f = i and i ∈ {i}[[AX (φ)(ψ)]]. Since [A] is conservative
[A](si)(ti) is true, and since [A] satisfies extension [A]si(si)(ti) is true. By induc-
tion, the corollary of lemma 1 entails the existence of a bijection from si (and ti)
to sj (and tj). Hence, since [A] satisfies quantity, [A]sj (sj)(tj) is true. By extension
again we have that [A](sj)(tj) is true, and, using conservativity, j ∈ {j}[[AX (φ)(ψ)]].
Since f = i, f ≈ j. Furthermore, for any j′ ∈ {j}[[AX (φ)(ψ)]], by definition,
j′ = j. So, if i ≈ j and {i}[[AX (φ)(ψ)]], {j}[[AX (φ)(ψ)]] are defined, then for any
f ∈ {i}[[AX (φ)(ψ)]] there is one f ′ ∈ {j}[[AX (φ)(ψ)]] such that f ≈ f ′.

3.4 On situations

Instead of Lewisian cases, ‘situations’ (or ‘occasions’, or ‘events’) have been argued
to be needed in order to deal with symmetric and asymmetric readings of donkey
sentences (Berman [1987], Kadmon [1987, 1990], Chierchia [1988], Heim [1990], van
Eijck and de Vries [1992], among others). Like Chierchia [1992], I think that, al-
though the notion of a situation will probably be useful for the semantics of natural
language, such entities do not basically contribute to the understanding of symmetric
and asymmetric adverbial quantification. In this section I point out some limitations
of the approaches proposed, which I will dub ‘situation-based approaches’, and argue
that they neither refute, nor improve upon the Lewisian analysis adopted above.

I first discuss the two most recent situation-based accounts of adverbial quan-
tification and next discuss some general objections that have been raised against
such proposals.

Situations and asymmetric quantification

The most recent situation-based account of adverbial quantification, and the one
that most clearly expresses its intuitive appeal, can be found in van Eijck and
de Vries [1992]. The basic idea in this approach, which is essentially similar to
that of Chierchia [1988], is twofold. In the first place predicates are assigned an
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argument slot for situations (‘occassions’ in Chierchia and van Eijck and de Vries).11

In the second place adverbial quantifiers are interpreted as quantifying over such
situations.12

To get an idea, the predicate put in, for instance, is conceived of as a qua-
ternary relation which holds of three individuals z, z′, z′′ and a situation s iff in s
z puts z′ in z′′. The sentence If a man has a dime, he puts it in the parking me-
ter is conceived of as asserting that for all situations s, if a man has a dime in s,
then in s a man puts a dime in the parking meter. Van Eijck and de Vries: “We
can paraphrase the semantic condition imposed by (56) [the interpretation of the
dime sentence, PD] as follows: every occasion where there is a man with a dime is
an occasion where there is a man who puts a dime in the parking meter. This is
intuitively acceptable.” Indeed, this paraphrase is very intuitive, and quite correctly
it may be taken to predict truth conditions that do not require all men to throw all
the dimes they have in the parking meter. That is to say, the sentence is predicted
to have these weak truth conditions if we assume that if in a certain situation a man
has any two dimes d and d′ in his pocket, then there are no ‘sub-situations’ in which
he has d in his pocket, but not d′. This assumption, as well, seems quite acceptable.

It is also suggested that this situation-based approach is able to give an account
of an asymmetric reading of the following sentence:

(28) If a girl has a boyfriend, she usually teases him.

Van Eijck and de Vries point out that this sentence at least has a reading in which
the adverb usually quantifies over girls who have a boyfriend and not over girl–
boyfriend pairs. The sentence is taken to state that the quantifier relation Most
holds of the set of situations in which a girl has a boyfriend and the set of situations
in which a girl has a boyfriend which she teases. Van Eijck and de Vries add: “As
soon as we have a model where occasions are fully individuated, our quantificational
analysis gives the right meanings.” (p. 14)

The last claim is highly disputable. Let us just assume that we have a model where
situations are individuated in a way that makes the adverb in the sentence at issue
in effect quantify over girls who have a boyfriend, and not over girl–boyfriend pairs
nor over boyfriends of a girl. Then, on van Eijck and de Vries’ analysis two things
immediately follow. In the first place, the sentence then lacks a symmetric reading.
Adverbial quantification remains to be analyzed in terms of quantification over situ-
ations, and since it is assumed that quantification over situations in which a girl has
a boyfriend amounts to quantification over girls who have a boyfriend, the above

11. See Davidson [1967], Parsons [1985, 1989, 1991], Dowty [1989], for independent motivation for
assigning verbs a situation (or event) argument slot.
12. Stump [1981], Rooth [1987], Kadmon [1987, 1990], Berman [1987], Kratzer [1988], Heim [1990],
de Swart [1991] also analyze quantifying adverbs as quantifiers that range over situations (events,
occasions).
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sentence can only be read as quantifying over girls who have a boyfriend. More in
general, van Eijck and de Vries’ proposal excludes the, undisputed, coexistence of
various symmetric and asymmetric readings that adverbially quantified sentences
may have.

In the second place, let us furthermore adopt the quite natural assumption
that a boy is the boyfriend of a girl iff the girl is a girlfriend of the boy. Then assume
again that If a girl has a boyfriend she usually teases him amounts to quantification
over girls who have a boyfriend. The last assumption then precludes the possibility
that the structurally completely parallel sentence If a boy has a girlfriend, he usually
teases her amounts to quantification over boys who have a girlfriend. This is quite
an unwanted result. Moreover, on the same assumptions the sentence Always if a
boy has a girlfriend, he is happy would be predicted only to have a reading saying
that every girl that has one or more boyfriends has at least one happy boyfriend.
Clearly, this is one of the least plausible readings of this sentence, if it is a reading
at all.

Several authors (Bäuerle and Egli [1985], Kadmon [1987, 1990], Kratzer [1988],
Heim [1990], among others) have discussed some, perhaps not always tenable, but
certainly valuable empirical observations about linguistic factors that favour certain
symmetric or asymmetric readings of adverbially quantified sentences. These obser-
vations all presuppose that there is a variable individuation of the objects quantified
over, whether these are situations, cases, assignments or whatever. If, as in van Ei-
jck and de Vries’ proposal, it remains entirely up to the individuation of situations
in the model what adverbial quantification amounts to, the analysis is too rigid to
properly account for the variability of symmetric and asymmetric quantification,
let alone to even raise the issue what linguistic factors favour or disfavour certain
readings.

Situations and E-type pronouns

An alternative and very elaborate treatment of donkey sentences that critically
employs situations can be found in Heim [1990]. Heim builds on proposals in Berman
[1987] and Kadmon [1987, 1990] and adopts Evans’ [1977, 1980] E-type analysis of
pronouns within a situation based model.

Basically, the idea is this. In the first place, predicates and nouns are inter-
preted relative to situations. Heim here employs the situations from Kratzer [1989],
which are considered parts of the world partially ordered by a part-of relation. Sec-
ond, as above, adverbial quantifiers are taken to quantify over situations. Finally,
donkey pronouns are interpreted as definite descriptions which identify a referent by
means of a description which is retrieved from the linguistic context by a transforma-
tional copying rule. These descriptions are interpreted relative to certain (minimal)
situations, and, therefore, they do not, in general, raise overly objectionable unique-
ness presuppositions. In order to illustrate Heim’s theory, I sketch the analysis of
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two prototypical examples.

First, the sentence If a man owns a donkey, he is happy is given the following
interpretation: Every minimal situation s in which there is a man and a donkey
owned by the man is part of a situation in which the (unique) man in s is happy .
Since quantification is over minimal situations in which a man owns a donkey, and
under the assumption that there is only one man in any minimal situation in which
a man owns a donkey, the definite the man is defined in each situation satisfying
the restriction. Moreover, under the same assumption, the sentence turns out true
iff every man who owns a donkey is happy.

The second example is If a man owns a donkey, he is usually rich, where the
adverb usually is interpreted as quantifying over donkey owning men. This sentence
is interpreted as follows: Most minimal situations s in which there is a man z and
which are part of a situation in which z owns a donkey, are part of a situation in
which the (unique) man in s is rich. So, under an assumption similar to the one in
the former example, since quantification here is over minimal situations in which
there is a man and which are part of a situation where he has a donkey, it comes
down to quantification over men who own a donkey.

I will now argue that Heim’s (and Kadmon’s) analysis, as it stands, still makes too
strong uniqueness predictions. The relevant examples here are adverbially quantified
sentences in which two indefinites in the restrictive clause are both referred back to
by pronouns in the nuclear scope.13

Consider the following example:

(29) If a man has a pet, he usually treats it well.

Let us suppose that usually quantifies, asymmetrically, over men which have a pet.
Heim’s analysis yields an interpretation which can be phrased as follows:

(30) Most minimal situations s in which there is a man z and which are part of a
situation in which z has a pet, are part of a situation s′ in which the man in
s treats the pet the man in s owns well.

Under an assumption similar to the ones in the former two examples, the pronoun
he in this example is given a well-defined interpretation, but the interpretation of

13. Strictly speaking, even the pronouns in a donkey implication If a farmer owns a donkey he beats
it are not fully analyzed. In Heims final proposal, a transformational copying rule associates such
pronouns with a description that is employed to identify their referents. For the donkey implication
this rule generates one of two possible logical forms which can be phrased as follows: If ax farmer
owns ay donkey, the farmer who owns a donkey beats the donkey x owns, and If ax farmer owns
ay donkey, the farmer who owns y beats the donkey a farmer owns. In both logical forms, the
induced definite description contains a free variable (x and y, respectively) which cannot be dealt
with by other applications of the transformation rule as it is stated. Clearly, in order to treat the
donkey implication the analysis has to be extended. In what follows, I will simply assume some
such extension and use the paraphrases of occurring pronouns which Heim herself uses.
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the pronoun it is problematic. On Heim’s analysis, for this example to be defined,
it is required that every men who owns a pet owns only one pet.14 For this reason,
Heim concludes that a sentence like the above requires us either to ‘accomodate’
the uniqueness assumption that no man owns more than one pet, or, otherwise, to
be forced to interpret the sentence symmetrically (Heim [1990, p. 156]).15

I think that this is very unsatisfactory. I have not seen convincing, theory inde-
pendent, motivation for assuming asymmetric quantifiers to involve such uniqueness
effects. The dime implication discussed above in fact points to the contrary:

(31) If a man has a dime, he always throws it in the parking meter.

As is argued above, the symmetric interpretation of this sentence is highly im-
plausible. But the alternative that Heim and Kadmon leave us is to accomodate
the assumption that every man has at most one dime. This is just as implausible.
Clearly, on its most intuitive reading this example is not symmetric nor does it
involve such a uniqueness requirement. Sentences like these, then, fall beyond the
scope of Heim’s and Kadmon’s analysis of adverbial quantification.

Adverbial quantification over situations

I will now turn to two general objections that have been raised against attempts to
treat adverbial quantifiers, uniformly, as quantifiers over situations.

Already in Lewis [1975] it is acknowledged that situations, or, rather, events
and moments or stretches of time, may be (involved in) the objects over which ad-
verbial quantification takes place. However, the primary claim in that article is that
events and times do not in general provide for the objects over which adverbs of
quantification can be taken to quantify. Clear-cut exceptions are adverbially quan-
tified structures in which the restriction and nuclear scope are interpreted indepen-
dently of any situational context. Mathematical statements are a case in point, since
mathematical predicates do not seem to express time or event bound properties in
a sensible sense of times and events. Lewis discusses the following example:

14. In fact, this is the kind of uniqueness ‘effect’ Kadmon [1987, 1990] argues for. I think that
Kadmon’s observations concerning the uniqueness/maximality of plural pronouns are highly valu-
able, but the specific uniqueness effects of singular pronouns which she predicts are disputable and
seem quite theory dependent. Unfortunately, it would take us too far if I were to revive the whole
discussion here.
15. Notice, that if the assumption is accomodated, the asymmetric interpretation of the example is
equivalent with the symmetric one. As soon as we assume that no man owns more than one pet,
then it makes no difference whether we quantify over minimal situations in which a man has a
pet or over minimal situations in which there is a man and which are part of a situation in which
there is also the man’s unique pet, that is, on the assumptions Heim and Kadmon apparently make
about the individuation of situations and on the assumption that the quantifiers at issue satisfy the
constraints of extension, quantity and conservativity. So, on these assumptions, Heim’s asymmetric
reading of the above sentence only differs from its symmetric reading in that it has the indicated
uniqueness presuppositions.
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(32) A quadratic equation never has more than two solutions.

Under no sensible notion of situations (events, times), it seems, can statements like
these be properly conceived of as quantifying over situations (events, times).

Other examples can be made up from what Kratzer [1988] calls ‘individual-
level’ (or ‘stative’) predicates. In contradistinction with so-called ‘stage-level’ (or
‘event’) predicates, individual-level predicates lack an argument position for events
or spatiotemporal location. Still, sentences with only individual level predicates do
occur in adverbially quantified structures:

(33) When a Moroccan knows French, she usually knows it well.

It does not seem to make good sense to interpret this example as stating that most
situations in which a Moroccan knows French, are situations in which he or she
knows it well.

Another argument raised against situation-based approaches to adverbial quantifi-
cation has to do with the so-called cases of the indistinguishable participants.16

Consider the following example:

(34) If a bishop meets another man he blesses him.

This sentence is generally read as expressing that every bishop blesses any man he
meets. As several people have shown, a situation-based treatment of this example
runs into troubles when we consider cases where two bishops meet. On Kadmon’s
and Heim’s analysis the pronoun he is associated with the definite description the
bishop, and would fail to identify a referent in situations in which two bishops meet.
Therefore, if there are such bishop-bishop encounters, the sentence must be taken to
quantify, asymmetrically, over minimal situations which contain a bishop and which
are part of a situation where that bishop meets another man (possibly a bishop).
Furthermore, since the second pronoun is associated with the description the man
the bishop meets, for the pronoun to be defined it would have to be presupposed
that every bishop meets at most one man. So, if there are bishops who meet other
bishops, an example like the above is predicted to display uniqueness effects.

It is hard to make out whether these predictions are realistic in the present
case, since it can be argued that the symmetric predicate meet in example 34 applies
to two person encounters only, and, thus, renders the uniqueness presuppositions
trivially satisfied, i.e., irrefutable. Still, Heim expresses her doubts whether the pre-
dictions are fulfilled in other, related, cases. ([1990, p. 157-8]) In my opinion, the
following two examples show that they are not, at least not in general:

(35) If a Dutchman has quarrels with a neighbour, he always/usually detests his
political taste.

16. This label is Heim’s, the example is attributed to Kamp, and a basically similar example comes
from van Eijck. Heim moreover credits Kamp for having stressed the significance of this example
at several occasions and Chierchia credits Kamp and Rooth. Since what follows mainly reports
existing observations, I will be on the safe side if I just credit them all.
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(36) If a soccer player competes with another player for a place in the A-team, he
usually thwarts him whenever he can.

Dutchmen normally have at least two neighbours all of whom they can have quarrels
with. Also, several soccer players may be in the running for one and the same
place in the A-team. Nevertheless, these examples seem fine and the quantifying
adverbs do not seem to be restricted to quantify only over the cases in which a
Dutchman quarrels with only one neighbour, or over the cases where only two soccer
players fight for a place in the A-team, respectively. So, at least the prediction of a
uniqueness effect is not corroborated.

Example 34 also poses a problem for the situation-based proposals of Chierchia
[1988] and van Eijck and de Vries. On these proposals, the sentence would be true
if every situation where a bishop meets another man is a situation where a bishop
blesses another man he meets. Now consider again a situation in which two bishops
meet. On the sketched analysis it would only be required that at least one bishop
blesses the other. This is too weak a requirement, since on the generally accepted
interpretation of example 34 it is required that every bishop blesses every man
(including every bishop) he meets.17

The point here is that, intuitively, every meeting corresponds to one (minimal)
situation. However, example 34 does not seem to quantify over such situations. On
the generally accepted analysis example 34 says that that for any b and b′, if b is
a bishop, b′ a man, possibly a bishop, and if b meets b′, then b blesses b′. So, the
adverbial quantifier every appears to discriminate the case in which a bishop b meets
a bishop b′ from the case in which bishop b′ meets b, and of both b and b′ example
34 says that they bless b′ and b, respectively. Notice that this is precisely what the
Lewisian analysis gives us.

Chierchia concludes from this that, if the adverb in example 34 requires us to
distinguish the case where b meets b′ from the case where b′ meets b, then “what
follows under the present account is that occasions have to be more finely struc-
tured than what we have been assuming. Perhaps as fine grained as assignments to
sequences of variables, which is of course the idea that DRT is built on.” ([1988,
p. 72]). And, in fact, Chierchia [1992] drops the hypothesis that quantifying adverbs
uniformly quantify over situations. In the latter paper such adverbs quantify over
variable assignments, or, more precisely, over tuples of variable values. It may be

17. Notice that on the analysis of Chierchia [1988] and van Eijck and de Vries the following sentences
can both be true:

(37) Always if a bishop meets another man he blesses him.
(38) Always if a bishop meets another man he does not bless him.

For instance, if only bishops meet bishops and if on every meeting of bishops at least one bishop
blesses another bishop and at least one does not bless another one, then these sentences would come
out both true. This seems mistaken. Intuitively, both sentences should come out false then.



3. Quantification in EDPL 195

noted here that, like in Lewis paper [1975], situations may be included among the
objects quantified over.

***

The above discussion shows that, concerning the relatively intuitive notion of a sit-
uation that has been adopted for an analysis of adverbially quantified donkey sen-
tences, situations are irrelevant in some cases (with respect to situation independent
clauses), and too coarsely grained in others (unable to discriminate ‘indistinguish-
able’ participants).

The proposals to treat adverbs as quantifiers over situations also do not seem
to be particularly useful for a general analysis of asymmetric quantification. As we
saw above, in van Eijck and de Vries the notion of situation used is too rigid and ex-
cludes the coexistence of symmetric and asymmetric readings of sentences. Clearly,
if adverbs may be taken to quantify symmetrically and asymmetrically, and if ad-
verbs quantify over situations, then situations need to be quantified over flexibly.
For asymmetric readings of an adverb, Heim then uses sub-minimal situations, situ-
ations which are part of a minimal situation in which the restriction of the adverb is
true. However, this approach does not go together well with the adopted E-type ap-
proach, since the use of subminimal situations generates what I take to be unwanted
uniqueness presuppositions.

Berman [1987] and Chierchia [1988] propose accounting for asymmetric quan-
tification by appealing to contextual factors that are assumed to restrict the domain
of situations quantified over. For instance, one can obtain an asymmetric reading of
If a man owns a donkey, he is usually rich by restricting the quantifier usually to a
domain of situations which do not distinguish between the several donkeys a man
may have. As is the case with Heim’s subminimal situations, each situation in such a
domain then can be assumed to correspond uniquely to a man who owns a donkey,
and quantification over situations in that domain then amounts to quantification
over donkey owning men. However, this can hardly be called an analysis of asym-
metric quantification as long as it is unclear what contextual factors are supposed
to affect the delimitation of the domain and with what effect. Clearly, something
must be added here, if only to exclude a restriction of the domain of situations, say,
to that of situations in which no man beats a donkey.

As is argued in section 4.2, Root has proposed an effective way to deal with asym-
metric readings by shifting from a domain of assignments to a domain of equivalence
classes of assignments. For as far as the asymmetric reading of If a farmer owns a
donkey he is usually happy is concerned, the quantifier is restricted to a domain of
sets of assigments, each set in which uniquely determines a farmer who owns one or
more donkeys together with all donkeys he owns. This approach gives a plausible
and clear-cut treament of asymmetrically quantified donkey sentences. Moreover, in
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the update approach of EDPL it appears that asymmetric quantifiers do not even
require us to resort to a different level of objects (classes of assignments instead of
assignments), since the Rootian equivalence classes of assignments can be taken to
be partial assignments, which are the kind of entities in terms of which the semantics
of EDPL itself is defined.

To conclude this section, a situation based approach, in the present state of the art,
does not refute, nor improve upon the Lewisian treatment of adverbial quantifiers
as quantifiers over cases. Like Lewis and Chierchia, I think that situations (events,
occasions, time intervals) may be properly included in the things, i.e., the tuples,
quantifying adverbs quantify over, but the use of situations has not been shown
to enhance a fully general analysis of symmetric and asymmetric quantification.
On the contrary, it appears that if unselectivity is dissociated from the Lewisian
approach, this approach fares best in dealing with both symmetric and asymmetric
quantification. Adverbs of quantification need not quantify over the ‘complete’ tuples
of individuals addressed in their restriction, it may be over parts of them. As is shown
in the preceding section, both forms of quantification can be dealt with, uniformly,
in terms of quantification over partial assignments.

4 The notion of information about variables

This last section treats four loose ends, which are tied together since they are all
concerned with elucidating the notion of information about the values of variables.
In section 4.1 the extensional system of EDPL is turned into an intensional system in
which information states also contain information about the world and restrict the
values of variables relative to the worlds which are still considered possible in such
states. The resulting system of interpretation, MDPL, properly comprises EDPL
and US interpretation.

The next three sections build on MDPL, but all the results stated carry over
to EDPL. Section 4.2 states some further logical properties of the MDPL structure
of information states and of the MDPL interpretation in that structure. It is shown
that all MDPL updates can be characterized in terms of an (associative) prod-
uct operation on the domain of information states and that it is only definedness
conditions, that is, in fact, the felicity conditions on the introduction of discourse
referents, that prevents MDPL from collapsing into a static semantics.

In section 4.3 it is argued that the use of Veltman’s epistemic operators can
be best characterized at a semantic/pragmatic level of information exchange, rather
than on the purely semantic level of information update. The MDPL structure of
information states is then used in an extension of MDPL to a rudimentary model of
information exchange. The epistemic operators, with their original Veltman seman-
tics, are shown to be analyzed reasonably well in this extended model.
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Section 4.4, finally, studies the notion ‘the value of a variable’, which MDPL’s
information states are claimed to contain information about. In that section I give
a precise definition of this notion and I show that, on this definition, the notion of
the value of a variable has the properties of a, maybe more intuitive, notion of a
partial object. MDPL’s information states, thus, can be properly conceived of as
partial worlds inhabited by partial objects.

Unfortunately, lack of space prohibits the presentation of a comparison with
related frameworks such as data semantics (Veltman [1981, 1985], Landman [1986])
and versions of situation semantics (Barwise and Perry [1983], Kratzer [1988] and
Muskens [1989]). This, then, must be left for another occasion.

4.1 Intensional MDPL

The EDPL notion of information about the values of variables is an extensional one.
The models for EDPL are extensional, i.e., the predicates and relation expressions
are interpreted as sets of (tuples of) individuals, and, similarly, information about
the values of (sequences of) variables is cast in terms of the sets of (tuples of)
individuals that are their possible values. This notion of information is somewhat
unsatisfactory.

In the first place, an EDPL formula without free variables still behaves classically
in the sense that it is either true or false in an information state s, that is, if it is
defined for s of course. Apart from the introduction of new objects to its domain,
such a formula does not give a genuine update of the information contained in s.
The interpretation of such a formula in s either preserves all the assignments to the
variables in s, if the formula is true in s, or rejects them all, if the formula is false in
s. However, from the epistemic perspective upon interpretation adopted here, one
would expect, at least, that contingent formulas do give rise to genuine information
updates.

Related to the above is the fact that the extensionality of EDPL offers no room
for a sensible interpretation of epistemic operators such as, for instance, Veltman
epistemic operator might.

Consider the following example:

(39) A man is raking the leaves over there in the park. Maybe he found your
bracelet. . . . . He did not find your bracelet.

Assuming that 3φ in s expresses consistency of s with φ, as in Veltman’s update
semantics, this sentence is consistent, which is as it should be. As long as one does
not have the information that if a man is raking the leaves in the park he never
finds your bracelet, it is consistent to say that a man who is raking the leaves in
the park might have found your bracelet, also if you later learn he did not find
it. However, in every extensional model of EDPL either every information state
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contains the information that if a man is raking the leaves in the park he never finds
your bracelet, or every information state contains information to the contrary. The
models themselves decide whether a man who is raking the leaves may have found
your bracelet.

As a consequence, for any state s, if s is updated with A man is raking the
leaves over there in the park then it is either inconsistent to add Maybe he found
your bracelet, or it is consistent, and in that case you know that there is a man who
is raking the leaves who has found your bracelet. Hence, A man who is raking the
leaves in the park might have found your bracelet entails A man who is raking the
leaves in the park has found your bracelet. This should not be the case.

Notice that it is precisely the extensionality of EDPL that troubles us here. Since
predicates are assigned a fixed extension, and since information states only contain
information about the extensions of variables, it is the model that decides, if the
value of a variable x is required to be in the set of men who rake the leaves in the
park, whether there is a value of a variable x which is also in the set of individuals
who have found your bracelet. The conclusion then is that, in order to improve upon
this situation, we have to adopt a more intensional notion of information.

The subject of this section is to show how EDPL can be intensionalized. The
intensional version of EDPL will be referred to as MDPL.

The world as a subject

Basically, EDPL can be turned into a modal dynamic predicate logic, MDPL, by
means of the following two adjustments. The first adjustment consists in the adop-
tion of intensional models. An intensional model M for MDPL is a modal predicate
logic model, i.e., a triple 〈D,W,F 〉, consisting of a non-empty set D of individuals,
a distinct non-empty set W of possible worlds, and an intensional interpretation
function F for the non-logical constants. The function F assigns the predicate and
relation expressions an extension relative to possible worlds, that is, F maps each
n-ary relation expression to a function from worlds to sets of n-tuples of objects.

The second adjustment intensionalizes the EDPL notion of information. Like
the interpretation of the non-logical constants of the language, the possible valua-
tions of variables are relativized to possible worlds. Information about the values of
variables in MDPL is cast in terms of the possible assignments to variables relative
to the worlds which are considered possible. Thus, information about the values of a
sequence of variables can be conceived of as a function which assigns to any possible
world the possible values of the variables in that world and, hence, it encodes the
requirement that the variables stand in a certain relation.

I will elaborate upon the second adjustment first, and then show how inten-
sional model are employed in the semantics of MDPL.

MDPL relates information about the values of variables to possible worlds by intro-
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ducing the world as a subject, labeled by a distinguished variable v. The possible
valuations of v characterize the possible ways the world is considered to be like. The
indices in MDPL, i.e., the elements of information states, are assignments which
have v in their domain. An assignment i to the variables x1, . . . , xn and v must be
understood to register that the variables have possible values i(x1), . . . i(xn) in world
i(v).18

So, for any domain of variables X ⊆ V , we will be concerned with the assignments
in the set {i ∪ j | i ∈ W {v} & j ∈ DX} which I refer to as DX

W . DX
W contains all the

assignments which assign individuals to the variables in X and a world to v. SX
W ,

the set of intensional information states about the values of X is the set of subsets
of DX

W :

Definition 4.1 (MDPL information states)
• SX

W = P(DX
W )

• SW =
⋃

X⊆V S
X
W

An MDPL information state about the values of a set of variables is a set of as-
signments assigning possible values of X relative to possible worlds, i.e., possible
values of v. These information states integrate EDPL information about the values
of variables and US information about the world.

If we fix a world w, which can be conceived of as an EDPL model, an MDPL
information state s ∈ SX

W characterizes an EDPL information state. The possible
assignments to X in w conforming to s are {i ∈ DX | ∃j ∈ s: i ≤{v} j and j(v) = w}.
So, MDPL information states in fact associate EDPL information with worlds.

On the other hand, if we fix a possible assignment i ∈ DX , then an MDPL in-
formation state s ∈ SX

W characterizes a set of worlds, a US information state. Relative
to i, s restricts the set of possible worlds to the set of worlds in which i is considered
to be a possible assignment to the variables in X: {j(v) | j ∈ s and i ≤{v} j}. So,
MDPL information states also associate US information with variable assignments.

The set of assignments to no variables D∅
W (= W {v}) in MDPL uniquely corresponds

with the set of possible worlds. (The function ι from D∅
W to W such that ι(i) = i(v)

is a bijection.) Therefore, the set of information states about no variables S∅
W (=

P(W {v})) in MDPL is isomorphic to the set of sets of worlds (P(W )). Recall that
the set of information states about no variables in EDPL only consists of a true
state and an absurd state. So, in contradistinction with EDPL, information states

18. Of course, we might as well use as indices pairs consisting of a world and an assignment, as in
Heim [1982, 1983]. This comes down to the very same thing, since the set of pairs consisting of a
world and an assignment of individuals to the variables in X is isomorphic to the set of assignments
which assign individuals to the variables in X and a world to v. I have no principled reason for
using assignments of worlds to the variable v instead of the worlds themselves, only an economic
one. By introducing the world as a subject, we can retain all facts and definitions from the sections
3 and 4 in unaltered form.
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about the values of no variables in MDPL may contain substantial information, that
is, they may contain information about the world.

The notions of minimal, maximal and absurd information remain the same as
in EDPL.

The information that MDPL information states contain about the values of variables
is of an intensional nature. MDPL information requires not so much that the values
of variables are in certain sets, but that they have certain properties. In MDPL, the
information that a state s has about the values of a sequence of variables is that they
stand in a certain relation, where relation is conceived to be, what Montague calls,
a relation in intension, i.e., a function from possible worlds to relation extensions.

Let us call such a relation the relation ascribed to a tuple of variables x1, . . . , xn

in a state s:

Definition 4.2
If x1, . . . , xn ∈ D(s),

• the relation ascribed to x1, . . . , xn in s, Rs
x1,...,xn , is the function f : W → 2Dn

such that ∀w ∈ W : f(w) = {〈i(x1), . . . , i(xn)〉 | i ∈ s & i(v) = w}

Information about the values of x1, . . . , xn is a function which assigns to a possible
world the set of possible values of x1, . . . , xn in that world.

So, if P is the property of being a walking man, i.e., the function that assigns
to every world the set of walking men in that world, then a state s can be said to
contain the information that x has the property P , i.e., that x has the property of
being a walking man, iff ∀w ∈ W : Rs

x(w) ⊆ F (P )(w).

Interpretation in MDPL

Since information states in MDPL are sets of assignments, like the states in EDPL,
the definitions (and facts) of EDPL may be adopted without amendments, that
is, except for the clause that defines the interpretation of atomic formulas. The
interpretation of atomic formulas in MDPL is defined as follows:

Definition 4.3 (MDPL semantics (atomic formulas))
• s[[Rx1 . . . xn]] = {i ∈ s | 〈i(x1), . . . , i(xn)〉 ∈ F (R)(i(v))} if x1, . . . xn ∈ D(s)

Notice that the MDPL interpretation of an atomic formula is not defined relative
to a possible world. The information state s itself is updated with the information
that the values of x1, . . . xn stand in the relation R in the world assigned to v. The
interpretation of an atomic formula Rx1 . . . xn in s in MDPL retains those i ∈ s that
assign the variables x1 . . . xn a value that is in the extension of R in i(v).

So, update with Rx1 . . . xn rejects a possible assignment to the variables
x1, . . . , xn if it is part of an assignment i ∈ s such that the values of x1, . . . xn

are not in the extension of R in i(v), and the assignment to the variables is retained
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as part of an assignment j ∈ s if the values of x1, . . . xn are in the extension of R in
j(v). So, in MDPL, a valuation of the variables x1, . . . xn may survive with respect
to some associated worlds, and be rejected in relation to others.

In EDPL, formulas without free variables are either true or false in a state s,
that is, if they are defined of course. This is different in MDPL. Like information
states about the values of no variables, formulas without free variables may convey
contingent information. Consider an atomic formula consisting of a 0-place predicate,
i.e., a proposition letter, p. The valuation of p, V (p), is a function from worlds to
sets of 0-tuple of individuals. For any world w, V (p)(w) is either {∅} (i.e., true) or
∅ (i.e., false). The update s[[p]] of a state s with p then consists of the assignments
i in s such that p is true in i(v). Clearly, this may involve a genuine update of s
without turning it into the absurd state.

Let us briefly go through some examples. First, consider A man walks, translated
as ∃x(Mx ∧ Wx). Interpreted in a state s, this sentence gives us extensions j of
assignments i in s with a valuation for x such that j(x) is a man who walks in
j(v) (= i(v)). Like in extensional (E)DPL, the introduction of x in the domain of
discourse makes x available as an antecedent for future anaphoric reference, and,
clearly, the resulting state entails that x is a man who walks. (If s′ is the state
that results from the update, then s′ ascribes x a property Rs′

x which is such that
∀w ∈ W : Rs′

x (w) ⊆ (F (M)(w) ∩ F (W )(w)).)
Next, consider the sentence No man walks, translated as ¬∃x(Mx ∧Wx). If

we interpret this sentence in a state s, we keep the assignments i ∈ s that cannot
be extended with a valuation j for x such that j(x) is a man in i(v) who walks in
i(v). In other words, we keep those i ∈ s such that in i(v) no men walk. Another
example is the donkey sentence If a farmer owns a donkey he beats it, translated
as ∃x(Fx ∧ ∃y(Dy ∧Oxy)) → Bxy. The interpretation of this sentence in a state s
preserves the assignments i ∈ s such that for every extension j of i with a valuation
for x and y such that j(x) is a farmer in i(v) and j(y) a donkey that j(x) owns in
i(v), j(x) beats j(y) in i(v). So, these are those i ∈ s that assign a world i(v) to v
in which every farmer beats every donkey he owns.

As a last example, consider a sentence with a binary quantifier: Most boys
who have met her like her, Most y(By ∧Myx)(Lyx). Interpreted in a state s this
sentence gives in return all those i ∈ s such that most extensions of i with a valuation
for y that is a boy who has met i(x) in i(v), assign y an individual that also likes
i(x) in i(v). In other words, the update preserves the assignments i ∈ s such that in
i(v) most boys who have met i(x) like her.

In order to conclude the exposition of MDPL, let us consider the relation between
the information a state s has about the values of a sequence of variables x1, . . . , xn

and the truth of atomic formulas with free variables x1, . . . , xn (the definition of
truth remains that of section 3):
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Fact 4.1
For all relation expressions R:

• s |= Rx1 . . . xn iff ∀w ∈ W : Rs
x1,...,xn(w) ⊆ F (R)(w)

A state s ascribes the tuple of variables x1, . . . , xn an intensional relation Rs
x1,...,xn

which is at least as specific as the interpretation of an n-ary relation expression R
which is true of x1, . . . , xn in s.

Epistemic modalities

Having turned (extensional) EDPL into intensional MDPL, we can properly in-
troduce Veltman’s epistemic operator 3 (‘might’). I add an epistemic operator 2

(‘must’), which is the dual of 3, and an epistemic connective ⇒ (‘if . . . then surely
. . . ’).19 The interpretation of these operators is defined as follows:

Definition 4.4 (Epistemic operators)
• s[[3φ]] = {i ∈ s | s[[φ]] 6= ∅}
• s[[2φ]] = {i ∈ s | s |= φ}
• s[[φ⇒ ψ]] = {i ∈ s | s[[φ]] |= ψ}

A formula 3φ tests whether update with φ is still possible in a state s. If update
with φ does not produce the absurd state, then s accepts 3φ, that is, s[[3φ]] is s
then. If φ is false in s, then 3φ is rejected, and the absurd state results. A formula
2φ tests whether φ is already true in s. If φ is true in s, then s[[2φ]] (= s) is true in
s, and if it is not, s[[2φ]] is false in s. A formula φ ⇒ ψ tests whether ψ turns out
true if we update with φ. If ψ is true in the update of s with φ then φ⇒ ψ is true
in s, false otherwise.

I will not expand upon these epistemic operators and their behaviour here.20

I refer to Veltman [1981, 1985] and Landman [1986] for an extensive discussion
of the epistemic operators, alternative definitions and potential deficiencies of the
analyses. In this section I will only discuss some examples involving might and state
some characteristic facts. In section 4.3 the use of these operators is reassessed.

On the present definition of might, which is Veltman’s definition cast in the frame-
work of MDPL, might typically serves to express the partiality of the information
we may have about the values of variables and the ways in which our information
may increase. Consider the following examples:

19. As we will see below, these natural language paraphrases are not very satisfactory, but they will
do for the moment.
20. But is is appropriate to warn the reader that, for the time being, it is better to disregard
embedded use of the epistemic operators. The embedded use presents typical problems which can
only be properly addressed after we have more fully appreciated the use of these operators in section
4.3.
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(40) A man is raking the leaves over there in the park. Maybe he found your
bracelet. . . . . He did not find your bracelet.
∃x(Mx ∧Rx) ∧ 3Fxy ∧ ¬Fxy

(41) Somebody is knocking at the door. . . . It might be John. . . . It’s Mary.
∃xKx ∧ 3(x = j) ∧ x = m

(42) Somebody is knocking at the door. . . . It’s Mary. . . . ∗It might be John.
∃xKx ∧ x = m ∧ 3(x = j)

The interpretation of the first sentence in the first example yields a state which
ascribes x the property of being a man who is raking the leaves in the park. If we
have no information to the contrary, this is consistent with the property of finding
your bracelet, so Maybe he found your bracelet is acceptable (true) in that state. Of
course, this does not preclude that one may find out later that he did not find your
bracelet and the whole example, therefore, is consistent. Notice that this example
does not allow us to conclude that a man who is raking the leaves in the park did
find your bracelet, as it was shown to do in EDPL. What it implies at most is that
we consider it a possibility that a man who rakes the leaves finds your bracelet, but
we may also consider the possibility that no such man finds it.

The other two examples can now be more fully analyzed then in US, since
MDPL also accounts for the anaphoric relationships involved.21 The first sentence
in both examples presents an object which has the property of knocking at the door.
Without information to the contrary, we may record that, as far as we know, this
object might be John, even though we later may get informed that it is Mary. On
the other hand, as soon as we are informed that it is Mary, we can not, of course,
say that it might be John (that is, assuming that we know that Mary is not John).

As the following fact shows, the three epistemic operators are closely related:

Fact 4.2
• 3φ⇔ ¬2¬φ

2φ⇔ ¬3¬φ
• (φ⇒ ψ) ⇔ 2(φ→ ψ)

As indicated above, 3 (might) and 2 (must) are duals. An epistemic implication
φ⇒ ψ (If A then surely B) is equivalent with 2(φ→ ψ) (It must be that if A then
B). However, it is not equivalent with φ → 2ψ (If A then it must be that B). In a
state s in which φ→ ψ is not true, and, hence, φ⇒ ψ is false, it is still possible to
update with φ → 2ψ. The update of such a state with φ → 2ψ equals its update
with ¬¬φ.

21. The analysis is not complete of course, since proper names have not been introduced. Notice
that it makes no difference for this example whether proper names are treated as rigid or non-rigid
designators.
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The following fact shows that iterations of epistemic operators are always
redundant:

Fact 4.3
• 33φ⇔ 3φ⇔ 23φ

32φ⇔ 2φ⇔ 22φ

That concludes the elementary exposition of MDPL. We have seen that EDPL is
easily made intensional. In the resulting system of MDPL the values of variables
are ascribed properties by information states and information states contain the
information that tuples of them stand in certain relations, intensionally conceived.
Furthermore, Veltman’s epistemic operators are interpreted in an intuitively satis-
factory way. They are readdressed in section 4.3.

4.2 The lattice of information states

This section and the following ones may serve to substantiate the claim in section 2.3
that the notion of information employed in MDPL is of a more ambitious nature than
that of a mere means to account for anaphoric relationships. This section pays closer
attention to the MDPL structure of information states and to some fundamental
properties of MDPL interpretation in that structure. We will see that this structure
is a lattice and that information update corresponds to a meet operation on that
lattice.

The results from this section are employed in section 4.3, in which it is shown
that the structure of information states may serve to model the information that
language users have and exchange, and in section 4.4, which shows that the kind of
information employed in MDPL can be properly conceived of as information about
partial objects.

I start reviewing the structure of information states. This structure is shown
to be a non-distributive lattice. Next we will see that the interpretation function [[ ]]
does distribute over the lattice. We will see, moreover, that MDPL interpretation
can be defined in terms of the lattice’s meet operation (which is labeled the product
operation) and separately defined denotations of MDPL formulas. MDPL’s dynamics
then appears only to consist in its (asymmetric) definedness conditions.

The information lattice

In section 3.1, it was observed that the structure 〈S,≤〉 is a partial order. In fact the
structure is a lattice, that is, for every two states s and t there is a unique weakest
state t′ such that s ≤ t′ and t ≤ t′ and a unique strongest state s′ such that s′ ≤ s
and s′ ≤ t. The weakest common update of s and t I will call their (information)
product, and the strongest common ‘downdate’ of s and t I will call their common
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ground. These two states can be defined as follows (the definition of ≤ is repeated
here for convenience):

Definition 2.3 (Update)
• s ≤ t, iff D(s) ⊆ D(t) and ∀i ∈ t: i >− s

Definition 4.5 (State product and common ground)
• s ∧ t = {i ∈ DD(s)∪D(t) | i >− s and i >− t}
• s ∨ t = {i ∈ DD(s)∩D(t) | i <− s or i <− t}

The product of two states s and t contains the combined information contained in
s and t. It contains information about the values of all the variables s or t contain
information about, and it excludes valuations of these variables which are excluded
by s or t. So, s ∧ t contains the information that s or t has about the values of the
variables in their combined domain. The common ground of s and t contains just
the information s and t agree upon. It contains only information about the values of
variables both s and t contain information about, and it only excludes assignments
which are excluded by s and t. So, s ∨ t contains the information that both s and t
have about the values of the variables in their shared domain.

The following fact shows that the product s∧ t is the weakest common update
of s and t, and that the common ground of s and t is the strongest common downdate:

Fact 4.4
1. (s ∨ t) ≤ s ≤ (s ∧ t) and (s ∨ t) ≤ t ≤ (s ∧ t)
2. ∀s′: if s′ ≤ s and s′ ≤ t then s′ ≤ (s ∨ t)

∀s′: if s ≤ s′ and t ≤ s′ then (s ∧ t) ≤ s′22

So, the information product of s and t can be properly conceived of as indicating
the joint information of s and t, the weakest state they might both arrive at by
information update. Similarly, the common ground of s and t contains the informa-
tion s and t agree upon. It is the strongest state of which both are an update. The
information product and common ground of two states is depicted by the following
snapshot of the lattice of information states:

22. Proof of the first clause: By the definition of ∧, ∀i ∈ (s ∧ t): i >− s and i >− t, so s ≤ (s ∧ t) and
t ≤ (s ∧ t). By the definition of ∨, for all j ∈ s or j ∈ t: j >− (s ∨ t), so (s ∨ t) ≤ s and (s ∨ t) ≤ t.
Proof of the second clause: (i) Let s′ ≤ s and s′ ≤ t. Then D(s′) ⊆ D(s) and D(s′) ⊆ D(t), so
D(s′) ⊆ D(s ∨ t). Now consider an i ∈ (s ∨ t), i.e., D(i) = D(s) ∩D(t) and i <− s or i <− t. If i <− s,
then, since s′ ≤ s and D(s′) ⊆ D(i), i >− s′. If i <− t, then, since s′ ≤ t and D(s′) ⊆ D(i), i >− s′. So,
for any i ∈ (s∨ t): i >− s′, and, hence, s′ ≤ (s∨ t). (ii) Let s ≤ s′ and t ≤ s′. Then D(s) ⊆ D(s′) and
D(t) ⊆ D(s′), so D(s ∧ t) ⊆ D(s′). Now consider a j ∈ s′ and the restriction i of j to D(s ∧ t), i.e.,
D(i) = D(s ∧ t) and i ≤ j. Since D(s) ⊆ D(i) and s ≤ s′, i >− s. Similarly, since D(t) ⊆ D(i) and
t ≤ s′, i >− t. So, for any i ∈ s′: i >− (s ∧ t), and, hence, (s ∧ t) ≤ s′.
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Interpretation in the information lattice

The lattice 〈S,≤〉 is not distributive, that is, s ∧ (t ∨ t′) and (s ∧ t) ∨ (s ∧ t′) are
not in general the same, nor are s ∨ (t ∧ t′) and (s ∨ t) ∧ (s ∨ t′).23 However, the
MDPL interpretation function does distribute over ∧ and ∨ (I only assume the
interpretation of the basic language of EDPL here; for simplicity’s sake quantifiers
are disregarded here and epistemic modals are reintroduced below):

Fact 4.5 (Distributivity in 〈S,≤〉)
If defined,

• s[[φ]] ∧ t[[φ]] = (s ∧ t)[[φ]]
• s[[φ]] ∨ t[[φ]] = (s ∨ t)[[φ]]24

In a snapshot:

23. Let s, t ∈ S{x}, s = {i}, t = {j}, i(x) 6= j(x) and t′ = ⊥∅. Then (s∧ t)∨ (s∧ t′) = ⊥{x}∨⊥{x} =
⊥{x}, while s∧(t∨t′) = {i}∧⊤∅ = {i}. Furthermore, in that case (s∨t)∧(s∨t′) = {i, j}∧⊤∅ = {i, j},
while s ∨ (t ∧ t′) = {i} ∨ ⊥{x} = {i}.
24. Proof. First observe that s[[φ]] and t[[φ]] are defined iff D(s) and D(t) are in D(φ) iff (since D(φ)
is continuous and closed under ∩ and ∪) D(s∧t) and D(s∨t) are in D(φ) iff (s∧t)[[φ]] and (s∨t)[[φ]]
are defined. So, assuming that s[[φ]] and t[[φ]] are defined, we know that (s∨ t)[[φ]] and (s∧ t)[[φ]] are
defined. (This assumption is indicated by ∗ in the proof below.)
That s[[φ]] ∨ t[[φ]] = (s∨ t)[[φ]] and s[[φ]] ∧ t[[φ]] = (s∧ t)[[φ]], if defined, is proved by induction on the
complexity of φ. I give the outlines of the proof of the distribution over ∨. (Again, an existentially
quantified formula ∃xφ is conceived of as the conjunction ∃x ∧ φ, where s[[∃x]] = s[x], if defined.)

s[[Rx1 . . . xn]] ∨ t[[Rx1 . . . xn]] = {i ∈ DD(s)∩D(t) | i <− s[[Rx1 . . . xn]] or i <− t[[Rx1 . . . xn]]} =∗

{i ∈ DD(s)∩D(t) | i <− s and {i} |= Rx1 . . . xn or i <− t and {i} |= Rx1 . . . xn} =
{i ∈ DD(s)∩D(t) | i ∈ (s ∨ t) and {i} |= Rx1 . . . xn} = (s ∨ t)[[Rx1 . . . xn]]

s[[∃x]] ∨ t[[∃x]] = s[x] ∨ t[x] = {i ∈ D(D(s)∩D(t))∪{x} | i <− s[x] or i <− t[x]} =∗

{i ∈ D(D(s)∩D(t))∪{x} | ∃j ≤{x} i: j <− s or ∃j ≤{x} i: j <− t} =

{i ∈ D(D(s)∩D(t))∪{x} | ∃j ≤{x} i: j ∈ (s ∨ t)} = (s ∨ t)[x] = (s ∨ t)[[∃x]]

s[[¬φ]] ∨ t[[¬φ]] = {i ∈ DD(s)∩D(t) | ∃j ≥ i: j ∈ s and {j} =| φ or ∃j ≥ i: j ∈ t and {j} =| φ} =∗

{i ∈ DD(s)∩D(t) | ∃j ≥ i: j ∈ s and {i} =| φ or ∃j ≥ i: j ∈ t and {i} =| φ} =
{i ∈ DD(s)∩D(t) | i <− s or i <− t and {i} =| φ} = (s ∨ t)[[¬φ]]

s[[φ ∧ ψ]] ∨ t[[φ ∧ ψ]] = s[[φ]][[ψ]] ∨ t[[φ]][[ψ]] =ih (s[[φ]] ∨ t[[φ]])[[ψ]] =ih (s ∨ t)[[φ]][[ψ]] = (s ∨ t)[[φ ∧ ψ]]
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(s ∧ t)[[φ]]

(s ∨ t)[[φ]]

s[[φ]] t[[φ]]

��AA

AA��
if defined

The distributivity of [[ ]] in 〈S,≤〉 shows that the contents of a formula φ in MDPL
are, in a certain sense, state independent. The product (ground) of the update of two
states with φ contains precisely the same information as the update of the product
(ground) itself. As we will see presently, we can even define these contents separately.

Static MDPL denotations

As we have seen above, an existentially quantified formula ∃xφ can be conceived of
as the conjunction of ∃x with φ, where s[[∃x]] = s[x] (if x 6∈ D(s)). Using the label
(MDPL) atom for both atomic formulas and such ‘wild’ quantifiers, we can associate
with the MDPL atoms states which can be conceived of as their denotations:

Definition 4.6 (Denotation of MDPL atoms)

• [Rx1 . . . xn] = {i ∈ D
{x1,...,xn}
W | 〈i(x1), . . . , i(xn)〉 ∈ F (R)(i(v))}

• [∃x] = ⊤{x}

(Remember that DX
W = {i∪ j | i ∈ W {v} & j ∈ DX}.) An atomic formula Rx1 . . . xn

denotes a state with a domain consisting of x1, . . . , xn, and which consists of as-
signments i such that i(v) is a world where i(x1), . . . , i(xn) stand in the relation R.
The quantifier ∃x simply denotes the state of no information about x. In terms of
these denotations, the MDPL interpretation of atomic and existentially quantified
formulas can be (equivalently) stated as follows:

Fact 4.6
• s[[Rx1 . . . xn]] = s ∧ [Rx1 . . . xn] if x1, . . . , xn ∈ D(s)
• s[[∃x]] = s ∧ [∃x] if x 6∈ D(s)

So, the MDPL interpretation of an atom a (an atomic MDPL act) is in fact a
product operation, i.e., the operation that for any input information state s yields
the product of s and the denotation of a.25

Also compound formulas can be associated with specific contents. First, let, for any
s ∈ SX , the complement s of s be {i ∈ DX | i 6∈ s}. Next, let Xφ be the smallest

25. We can give similar definitions of PL and DPL existential quantification. Let s be the interpre-
tation [[φ]] of a formula φ in PL, i.e., the set of (total) assignments verifying φ in PL. Then [[∃xφ]]
in PL is (⊥V \{x} ∨ s)∧⊤{x}, which is also the DPL result s[x] of reinstantiating x in s. This result
is obtained by, first, removing x from the domain of s by means of ⊥V \{x} ∨ s, and, next, adding x
again by taking the product with ⊤{x}. Thus conceived, the PL and DPL quantifier ∃x is associated
with the instruction “forget about x, and take an x”.
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set of variables in the domain D(φ) of φ, if there is such a set. (If D(φ) is empty,
we may as well use the empty set.). Then the denotation of compound formulas can
be defined in terms of the denotations of their atoms in the following way (we may
disregard [∃xφ] now, which is [∃x ∧ φ]):

Definition 4.7 (Denotation of MDPL compounds)

• [¬φ] = ⊥Xφ ∨ [φ]
• [φ ∧ ψ] = [φ] ∧ [ψ]

We then get the following fact:

Fact 4.7
If defined,

• s[[φ]] = s ∧ [φ]26

It appears that MDPL is almost a static semantics, since the MDPL update of a
state with a formula φ can be cast in terms of the (static) denotation of φ and the
(associative) product operation. All that prevents it from collapsing into a com-
pletely static semantics are the definedness conditions. These ensure that variables
are introduced before they are referred back to.

Digression

Since the product operation is defined for all pairs of states, and since all MDPL
atoms have a defined denotation, it is possible to speculate about adopting the
definition of [[ ]] in terms of [ ] and ∧ and dropping the definedness conditions. This
would have, among others, the following effects:

In the first place ∃xjRx1 . . . xj . . . xn and Rx1 . . . xj . . . xn would turn out to
be fully equivalent then (if x ∈ D(s), s[x] = s∧⊤{x} = s). So, in that case indefinites
would really be free variables, which is reminiscent of “Lewis’ philosophy”. In the
second place, update would be preserved (clearly, s ≤ (s ∧ [φ])), but [[ ]] no longer
distributes over ∨. (If x ∈ D(s) and x 6∈ D(t), then s[x] ∨ t[x] = s ∨ t[x] 6= (s ∨ t)[x].
Still, (s ∨ t)[x] ≤ s ∨ t[x].)

However, I do not think that such a total (i.e., non-partial) semantics would be

26. Proof: by induction on the complexity of φ. The only non-trivial step in the proof concerns
negation. The inductive proof that s[[¬φ]] = s ∧ [¬φ] uses the fact that Xφ, the smallest domain
of φ, if defined, is a subset of the domain D([φ]) of [φ]. (Proof: by induction on the complexity of
the normal binding form of φ. (i) XRx1...xn = {x1, . . . , xn} = D([Rx1 . . . xn]); (ii) X¬φ = Xφ =ih

Xφ ∩D([φ]) = D([¬φ]); (iii) X∃xφ = Xφ\{x} ⊆ih {x} ∪D([φ]) = D([∃xφ]); (iv) X(φ∧ψ) = (normal
binding form; continuity of D) Xφ ∪Xψ ⊆ih D([φ])∪D([ψ]) = D([φ∧ ψ]).) So, if s[[¬φ]] is defined,

Xφ ⊆ D([φ]) and ⊥Xφ ∨ [φ] = {i ∈ DXφ | i <− [φ]}. Hence, [¬φ] = ⊥Xφ ∨ [φ] = {i ∈ DXφ | i <6− [φ]} =
{i ∈ DXφ | i <6− ({i} ∧ [φ])} =ih {i ∈ DXφ | i <6− {i}[[φ]]} = {i ∈ DXφ | {i} =| φ}. Since, by definedness,
Xφ ⊆ D(s), s∧ [¬φ] = {i ∈ s | i >− [¬φ]} = {i ∈ s | ∃j ≤ i: j ∈ DXφ & j =| φ}, which, by lemma 1, is
{i ∈ s | i =| φ}, which, by fact 2.8, is s[[¬φ]].
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a viable alternative. Notice that the denotation of ¬φ is not ‘properly’ defined in
terms of that of φ, since this definition critically refers to syntactic properties of φ,
i.e., to the (syntactically defined) domains of φ. (Notice, as well, that the domains of
φ can not be determined semantically anymore when the definedness conditions are
dropped.) I do not think that it is possible to improve upon this definition. Notice,
first, that it is crucial for a proper analysis of negation to distinguish embedded
free variables occurrences from existentially bound ones, just in order to properly
distinguish the meaning of, for instance, ¬∃xFx and ¬Fx. Now, if the definedness
conditions are dropped and, hence, ∃xFx is fully equivalent with Fx, then there is
no hope of giving a proper, purely semantic, interpretation of negation.

End of digression.

To sum up the results, MDPL’s structure of information states, and, hence, that of
EDPL, is a non-distributive lattice. The meet of two states is labeled the information
product of these states and the join their common ground. Next, we saw that the
MDPL interpretation of a formula φ in a state s can be stated as the product of s
and the separately defined denotation of φ. Still, MDPL is not a static semantics
after all, because of the presence of the definedness conditions.

4.3 Aspects of a theory of information exchange

In this section I will argue that Veltman’s epistemic operators can be understood
better within a system of information exchange, a system which properly extends
the recipient oriented update semantics by taking the speaker and the information
exchange between speaker and recipient into account. I will sketch the rudiments of
such an extended system and show how the epistemic operators may be analyzed in
that system in a relatively satisfactory way.

Interactive aspects of epistemic operators

MDPL and US describe the information that people may have about the world and
about the values of variables and give an account of how this information is updated
by interpreting sentences. If we focus on this goal of information update, epistemic
modals appear to play a very marginal role. They do not incite any genuine update
of information about the world or about the values of variables. The operators serve
to express global properties of information states and they can only be either true
or false in such information states. As Veltman puts it: “If you learn a sentence φ
of LA

0 [the language without might, PD], you learn that the real world is one of the
worlds in which the proposition expressed by φ holds: the real world is a φ-world.
But it would be nonsense to speak of ‘might φ-worlds’. If φ might be true, this is
not a property of the world but of your knowledge of the world.” ([1990, p. 12])

Veltman’s observation raises the question of what intuitive sense it makes to hear or
‘learn’ that it might be the case that φ. On the present, and Veltman’s, definition,
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if someone hears that it might be that φ, he is being told, so to speak, that his
information is consistent with the information conveyed by φ. However, this can at
most be part of the analysis of a statement that it might be the case that φ. If might φ
says something about a state of information, then, it seems, it says something about
the speaker’s state of information in the first place. When Veltman describes the
interpretation of might φ, he says: “. . . , all you can do when told that it might
be the case that φ is to agree or to disagree.” (Veltman, [1990, p. 8]) Clearly, if
in view of the statement that it might be the case that φ there is anything to
agree or disagree upon, then what has to be agreed or disagreed upon is whether
the state of the hearer, like the state of the speaker, can be consistently updated
with φ. Thus conceived, the statement that it might be the case that φ serves to
establish agreement between speaker and hearer about the possibility of φ, that is,
it aims to establish that both consider the proposition expressed by φ possible. Such
a statement makes sense of course. However, such an interpretation of might goes
beyond the scope of the purely recipient oriented update semantics which we have
presented sofar, and it should be cast within some model of information exchange.

Something similar holds for the operator 2. Restricting ourselves to the hear-
er’s interpretation of a formula 2φ, it only tells him, one might say, that he has the
information that φ, something which is either true or false and not particularly useful
when update of information about the world is at issue. However, if a statement that
2φ, like 3φ, is understood within the context of information exchange, it can be
conceived of as testing whether the hearer, like the speaker, agrees that φ is the case,
which does make sense. (Thus conceived, the 2 operator may be better paraphrased
by means of the sentential operator ‘of course’, instead of ‘must’.)

It appears, then, that we can make more sense of the epistemic operators 3

and 2 by conceiving of them as interactive operators which are used to establish
agreement between speaker and hearer about the possibility or truth of certain
propositions. However, with this conception of the meaning of these operators we
have left the realm of interpretation simpliciter, which is that of pure information
update, and we have got involved in the analysis of information exchange.

In the remainder of this section I will give an outline of a system of information
exchange which is a proper extension of MDPL, and I will show how some of the
interactive aspects of the epistemic modals can be accounted for in that system.
Furthermore, I will present a solution to some problems, already alluded to above,
which pertain to the embedded use of the modals. The aims, however, will remain
relatively modest. For one thing, the system does not allow a speaker to convey
information which conflicts with information the hearer has. In order to solve such
disagreement, some kind of belief revision seems to be required and revision falls
beyond the scope of the present undertaking. Furthermore I will not attempt to
model ((ex-)change of) information about the information of others or about the
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exchange situation itself. So, the facts established about exchange situations by
means of epistemic statements are not reflected in the states of the exchanging
participants. For these reasons, then, the implications the ensueing discussion has
may be best conceived of as implications for a theory of information exchange which
is yet to be developed.

Proper information exchange

In what follows, the MDPL information states will be used to model the information
of agents which are involved in situations of information exchange. I will restrict
attention to two agent situations, typically that of a speaker and a hearer, but the
models can be easily extended to cover situations with a larger number of agents.
First, I describe the results of information exchange brought about by the utterance
of MDPL formulas without epistemic operators.

What we will be dealing with are, basically, situations which are pairs of
states, s and t, both non-absurd, which will be written as 〈s t〉. If not indicated
otherwise, it is assumed that s is the state of the speaker, and t that of the hearer.
The information the two participants have together is contained in the product s∧ t
of their information states, but, of course, it is not required that one (or both) of
them has this information. The idealization I make is that the agents in an exchange
situation aim at sharing one another’s information, and, thus, to profit both from
the information both have together.

If 〈s t〉 is an (initial) exchange situation, then 〈s t〉[[φ]] is the situation that results
from accepting φ in that situation. This situation will be defined to be the situation
consisting of the states that result from updating s and t with φ respectively, that is,
the situation 〈s[[φ]] t[[φ]]〉. Clearly, not any update of an exchange situation will count
as a genuine case of information exchange. For a proper exchange of information it
is required, in the first place, that the speaker conveys information she actually has.
This is, of course, Grice’s maxim of quality. So, since it is assumed that the state s in
〈s t〉 is that of the speaker, for 〈s t〉[[φ]] to constitute a case of information exchange
it is required that s |= φ.

In the second place, for an update of an exchange situation to constitute a
proper case of information exchange it is furthermore required that the hearer does
not accept information inconsistent with the information he has. This restriction,
in fact, indicates a limit of the present first order exchange model. If the speaker
attempts to exchange the information that φ, and the hearer has information to the
contrary, then the exchange is simply taken to come to a halt. For the exchange
to proceed in such a situation, a higher order discussion may be required about
evidence for information and justification of evidence, as well as some method of
belief revision. Since, as I indicated above, such issues of higher order information
and belief revision fall beyond the scope of the present undertaking, we just have to
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settle for expelling the occurrence of inconsistency of information.

Putting things together, the notion of proper information exchange is defined as
follows:

Definition 4.8 (Proper information exchange (1))
If φ contains no epistemic operators, then

• 〈s t〉[[φ]] = 〈s[[φ]] t[[φ]]〉 if s |= φ and t 6=| φ

Like I said, the first side condition, that s |= φ, captures Grice’s maxim of quality
within the present framework. The second side condition, that t 6=| φ, requires φ to
be consistent with the state of the hearer. If this condition is not satisfied, we will
assume that the hearer objects and that, for instance, a discussion starts which falls
beyond the present framework.

The above definition of proper information exchange validates the following fact.

Fact 4.8
If 〈s t〉[[φ]] is defined, then:

• s ∧ t ⊑ s[[φ]] ∧ t[[φ]]27

This fact says that after a proper information exchange, speaker and hearer together
have information that is licensed by the information they had together before the
exchange. In order words, proper information exchange does not involve addition
of information ‘out of the blue’. In my opinion, fact 4.8 expresses a requirement
which any theory of information exchange should observe, that is, as long as it does
not take second order information and information about the exchange situation
into account. Disregarding these kinds of information, proper information exchange
should not, and in the present framework does not, license jumping to conclusions.

Digression

If we assume that the side conditions on proper information exchange apply to each
exchange act, that is, to each separate utterance, then the exchange of information
brought about by means of ∃xφ and ψ is not fully equivalent with an exchange by
means of ∃x(φ ∧ ψ). Let us write φ. ψ for the successive utterance of φ and ψ, and
define 〈s t〉[[φ. ψ]] to be 〈s t〉[[φ]][[ψ]]. Then we find that:

Fact 4.9
• 〈s t〉[[∃xφ. ψ]] 6⇔ 〈s t〉[[∃x(φ ∧ ψ)]]

The reason is that, for the first exchange 〈s t〉[[∃xφ. ψ]] to be proper, it is required
that s |= ∃xφ and s[[∃xφ]] |= ψ (i.e., s |= ∃xφ → ψ). However, for the second
exchange 〈s t〉[[∃x(φ ∧ ψ)]] to be proper it is only required that s |= ∃x(φ ∧ ψ).

27. Proof. By fact 4.5 s[[φ]] ∧ t[[φ]] is (s ∧ t)[[φ]]. Since s |= φ (proper information exchange), and
using fact 2.7, we find that s ∧ t |= (s ∧ t)[[φ]].
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The difference between ∃xφ. ψ and ∃x(φ∧ψ) in situations of information exchange
may be used to explain a difference observed between the following examples (cf.,
Evans [1977, 1980], Kadmon [1987, 1990], among others):

(43) There is a doctor in London. He is Welsh.
(44) There is a doctor in London who is Welsh.

Within the present framework there is no difference between the situations that
result from a proper use of these examples, but there is a difference in the side
conditions on the speaker’s state. For an utterance of example 43 to constitute a
case of proper information exchange, the speaker is required to have the information
that if somebody is a doctor in London, he is Welsh. There is no such requirement
for a proper use of example 44.

Of course, under normal circumstances, it is quite unlikely that people have
information that if somebody is a doctor in London then he is Welsh. In fact, if
someone says that there is a doctor in London and next tells us that he is Welsh,
we are inclined to assume that the speaker is not talking about some arbitrary
doctor in London, nor that she has the information that any arbitrary doctor in
London is Welsh, but that she has some specific doctor in London in mind. Whereas
the indefinite a doctor introduces a new discourse referent to the hearer, like other
indefinites do, in this example it is taken to refer to a discourse referent which is
already familiar to the speaker. In other words, the speaker appears to inform the
hearer about the value of a variable about which she has the information that it is
a Welsh doctor in London, but which is new to the hearer.28

The MDPL exchange model can be extended with such specific uses of main
clause indefinites simply by relaxing the definedness conditions. If an exchange sit-
uation 〈s t〉 is updated with a formula ∃xφ, we may require that the variable x is
not in the domain of the hearer’s state t, but leave out a similar requirement on
the speaker’s state. It then depends on the speaker’s state whether the quantifier is
used specifically or non-specifically. In case x is not in the domain of her state s,
then the quantifier ∃x is used non-specifically. Otherwise, if x is in the domain of
her state s, then the quantifier is used specifically.29

Clearly, the present proposal remains far from a full-blown treatment of the
specific/non-specific contrast, and I will not elaborate on it here. Suffice it to note
that the unlikeliness that the side condition associated with a non-specific reading

28. Notice that, in contradistinction with the proposals of Evans and Kadmon, on such a specific
interpretation of the indefinite a doctor, the hearer need not associate any uniqueness implications
with the anaphorically related pronoun. If there is any difference on the hearer’s part between a
specific or a non-specific interpretation of example 43, it must be taken to reside on a different level
of information, viz., that of information about the information of the speaker.
29. Groenendijk and Stokhof [1981], cf., also [1984, Ch. 5, App. 1] presents an epistemic/pragmatic
treatment of specificity. It would be very interesting to compare their notion of an epistemic model
with the MDPL notion of an information state, but this must be left for another occasion.
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of example 43 is satisfied correctly predicts the likeliness of a specific reading of the
example.

That concludes the digression.

Epistemic modals in information exchange

I now turn to the use of the epistemic operators 3 and 2 in the exchange model.
On the definition of proper information exchange, a use of 3φ and 2φ implies a
symmetric test of the speaker’s and hearer’s state (it is still assumed that φ does
not contain embedded occurences of epistemic operators):

Fact 4.10 (Epistemic operators in exchange)
• 〈s t〉[[3φ]] = 〈s t〉 if s |= 3φ and t |= 3φ
• 〈s t〉[[2φ]] = 〈s t〉 if s |= φ and t |= φ30

In an exchange situation, a proper use of 3φ (2φ) tests whether both speaker and
hearer agree on the possibility (truth) of the proposition expressed by φ. We might
say that the operators 3 and 2 test the common ground.31 In case of disagreement,
we can again expect the hearer to object. For instance, if on the present definition
of information exchange an utterance of 3φ is unacceptable to the hearer, this is
because he has information inconsistent with φ and he can convey this information
to the speaker. Similarly, if the hearer does not agree with 2φ this is because he
does not have the information that φ. The speaker then may react to the hearer’s
objection simply by informing him, yet, that φ.

So, if on hearing somebody knocking on the door the speaker says It is John
(x = j), the hearer is expected to update his information accordingly if he has no
information to the contrary. On the other hand, if the speaker says Maybe it is John
(3(x = j)), the hearer is expected to agree, or, if his information excludes that it is
John, to disagree and object that it can’t be John. And, if in the same situation the
speaker says This is John of course (2(x = j)), the hearer is expected to agree if
he also thinks that it is John, or, if he is not convinced that it is John, to disagree,
and ask, for instance, what makes the speaker think so.

We see that the epistemic modals, at least when they are not embedded, behave
fine in information exchange. Let us now consider what happens when we allow
embedded uses of the epistemic operators.32 We saw above that proper information

30. By the definition of proper information exchange, 〈s t〉[[3φ]] = 〈s[[3φ]] t[[3φ]]〉 if s |= 3φ and
t 6=| 3φ, that is, if s |= 3φ and t |= 3φ. Furthermore, if s |= 3φ and t |= 3φ then s[[3φ]] = s and
t[[3φ]] = t, so 〈s t〉[[3φ]] = 〈s t〉 then. Similarly for 2φ.
31. If s |= φ and t |= φ, then (s ∨ t) |= φ and if s |= 3φ and t |= 3φ, then (s ∨ t) |= 3φ. On the
other hand, although the fact that s |= φ (or t |= φ) implies that (s ∧ t) |= φ, from s |= 3φ and
t |= 3φ it does not follow, and, of course, should not follow, that (s ∧ t) |= 3φ.
32. Veltman explicitly excludes embedded use of modals because, he says, they threaten idempo-
tence. The inference φ |= φ would no longer be valid and is not easily restored. Notice, however,
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exchange does not license jumping to conclusions, that is, that exchange of informa-
tion does not generate information which speaker and hearer did not already have,
together. Now, if we use embedded modals it does. Here are some examples:

(45) Let s |= ¬p, t |= 3p and (s ∧ t) |= 3¬q;
then s[[3p→ q]] ∧ t[[3p→ q]] |= q

(46) Let s |= 3¬p, t |= p and (s ∧ t) |= 3¬q;
then s[[2p→ q]] ∧ t[[2p→ q]] |= q

(47) Let s |= 3(p ∧ q), t |= ¬(p ∧ q) and (s ∧ t) |= 3p;
then s[[p→ 3q]] ∧ t[[p→ 3q]] |= ¬p

(48) Let s |= (p→ q), t |= 3(p ∧ ¬q) and (s ∧ t) |= 3p;
then s[[p→ 2q]] ∧ t[[p→ 2q]] |= ¬p

In the first example, the statement that if it might be that p, then q is true in the
speaker’s state, simply because she has information that p is false, and, hence, 3p is
false in her state. However, the hearer, who still considers it possible that p, concludes
from 3p→ q that q is the case. Hence, the product of information that results from
the exchange contains the information that q, which, however, is not information
which is entailed by the original product of s and t. Similar observations show
that in the other examples, which also satisfy the conditions on proper information
exchange, the exchange also generates information that is not licensed by the product
of information the participants start with. This is problematic.

Notice that there is every reason to expect that 3 and 2 ill-behave in the
present framework. Basically, the semantic framework models update of information
about the world and about the values of variables induced by the interpretation of
sentences. As Veltman observes, the modals do not express information about the
world, but about states of information about the world. As we have seen, such opera-
tors can be properly used, given motivated side-conditions on information exchange,
if they stand on their own, so to speak, that is, if they are not embedded. However,
as soon as the operators are embedded, they get related to propositions expressing
information about the world, and in that case the information they convey about
the world is made dependent upon properties of the state in which interpretation
takes place. So, what such a sentence says about the world may differ according to
the state it is interpreted in.

Still there is a rigid and adequate way to expel jumping to conclusions within the
MDPL exchange framework. We argued above that we should not conceive of epis-
temic statements 3φ and 2φ as statements which are used to exchange information,
that is, factual information, but as statements that serve to establish agreement

that, as Veltman also observes, idempotence does not hold in DPL, and neither does it hold in
M/EDPL. So, the loss of idempotence is not a reason to exclude embedded modals from MDPL.
The point to be made here is that there are other reasons to be at least cautious with embedded
modals.
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about the possibility or truth of certain propositions in the first place. Now, if we
do allow sentences which contain embedded occurrences of these operators, we may
conceive of these sentences as well as sentences which serve to establish such kinds
of agreement. So, if a sentence φ contains an embedded occurrence of an epistemic
operator, then, the idea is that on hearing that φ the hearer does not update his
state with φ, but tests whether he agrees with the speaker about the truth of φ.

We can elaborate this by distinguishing, like Veltman, two levels of sentence
construction. At the first level the language L0 of predicate logic is generated without
epistemic operators and at the second level the language L1 is generated which is
L0 with epistemic operators. The interpretation of L1 (and L0) remains defined
as above. The distinction between L0 and L1 sentences becomes relevant only in
information exchange. In an exchange situation it is required that any sentence
φ 6∈ L0 is true in the hearer’s state.

Definition 4.9 (Proper information exchange (2))
If φ contains epistemic operators, i.e., if φ 6∈ L0, then

• 〈s t〉[[φ]] = 〈s t〉 if s |= φ and t |= φ

So, a sentence φ with epistemic operators is now used, solely, to test whether speaker
and hearer agree about the truth of φ. Clearly, this treatment of such sentences
effectively excludes jumping to conclusions, since these sentences are disabled to
contribute any factual information. So we may ask ourselves now whether it also
does so in an adequate way. The following discussion aims to show that it does.

First notice that in this refined exchange model, which has separate side conditions
for L0 sentences and L1 sentences which are not in L0, all sentences without em-
bedded modals behave as they did in the original model. Furthermore, if φ is an L0

sentence, also the side conditions associated with an utterance of 3φ or 2φ remain
to be that s |= 3φ and t |= 3φ or that s |= φ and t |= φ, respectively. Moreover,
formulas with embedded modals are predicted to be rejected precisely in cases where
one might expect a hearer to object.

Let us consider the four examples which did license jumping to conclusions
above. Suppose the speaker says If might p then q. The speaker is licensed to this
statement iff her state s is such that s |= ¬p or s |= q. Since this is an L1 statement,
the hearer tests whether 3p→ q is true in his state t. Now, 3p→ q is not true in t
iff t |= 3p∧3¬q. In other words, the hearer either accepts the speaker’s statement,
or he may be expected to reply with No, it might be that p and it might be that
not q. The speaker then may be expected to reply, in her turn, that ¬p, if s |= ¬p,
or that q, if s |= q.

The other three examples can be worked out in a similar way. If the speaker
says If it must be that p, then q then her state s has to be such that either s |= 3¬p
or s |= q. If the statement is unacceptable for the hearer, then his state t must be
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such that t |= p ∧ 3¬q, and he may protest that p, but maybe not q. In that case,
the speaker learns that p, if s |= 3¬p, or she objects to the hearer’s objection by
countering that q.

If the speaker is licensed to state If p then it might be that q then s |= ¬p or
s |= 3(p∧q). If the statement is unacceptable for the hearer, then t |= 3p∧(p→ ¬q).
So he may be expected to protest that, as far as he knows, it might be that p, but if
p, then not q. The speaker may answer that objection by informing the hearer that
¬p or she herself learns that p→ ¬q.

Finally, if the speaker justifiedly utters If p then it must be that q, then s |= ¬p
or s |= p → q. The hearer rejects this if t |= 3(p ∧ ¬q). His objection that it might
be that p and not q then can be properly responded to by the speaker by stating
that ¬p or that p→ q.

We see that the refined exchange model not only expels jumping to conclusions, but,
moreover, associates plausible side conditions with sentences containing embedded
modals.33 Of course, the analysis presented here is incomplete. The effects of vio-
lating side conditions, prosaically described above, are not formally predicted. The
present framework only predicts in which specific cases a hearer may be expected
to object, not what his objection will be. But notice that these predictions do seem
correct. The above sketched cases in which the side conditions are violated, I think,
correspond to cases where one, intuitively, would feel forced to object.

Notice, furthermore, that we have not paid attention to the interaction be-
tween epistemic operators and quantifiers, and I will not do so here. Let me only
note that the quantifiers and the epistemic operators, as they are defined now, do
not seem to interact as intuition might want to have it. For instance, ∀x3φ turns out
equivalent with 3∃xφ, which seems quite undesirable indeed. Sensible adjustments
can be made, however. But, as yet it is not fully clear to me what information is to
be expressed, or what agreement is aimed to be established, when someone utters
a quantified statement containing epistemic operators and, therefore, it would be
premature to start improving upon the analysis presented here. For this reason, this
issue too will be left for future research.

4.4 Partial objects in partial worlds

This final section aims to give more substance to the notion ‘the value of a variable’,
i.e., the kind of things which MDPL’s information states contain information about.
I will give this notion a precise definition and show that the defined objects have
properties which are traditionally associated with partial objects.

So, what then is a partial object? Landman [1986] gives the following char-
acterizations. A partial object is something we assume in conversation and which

33. The question may remain, of course, whether the epistemic operators should be allowed to occur
embedded in the first place.
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we ascribe properties to and which can be followed through information growth,
something that can be, or can be not identical to another partial object, something
that can grow into a less partial object and that can turn out to be or to be not
identical with another partial object and something that can be shared by different
information states. In what follows I will show that such a notion of partial object
is already implicit in MDPL’s notion of information. A partial object in MDPL is
the value of a variable in a state of partial information.

In the following exposition I will not try to fully explain and motivate all
definitions. They merely serve to show that the notion of the value of a variable can
be conceived of as that of a partial object.

Partial objects

An information state contains information about the world, labeled by a variable
v, and about individuals, labeled by ordinary variables. Such an information state
determines what are the possible values of the variables in its domain. Therefore,
a subject of an information state s we may think of as a variable x in its domain,
and we can take an object of s to be the value [x]s of that variable in a state s, a
notion which will be defined shortly. The values in a state s of s’ subjects may be
thought of as the objects of s since s contains information about the values of its
subjects. Moreover, these values are partial objects since states, generally, contain
only partial information about the values of subjects.

So, the question now is what the value of a variable is. Normally the question
what the value (or denotation) of a variable is is given a conditional answer, since it
depends on an assignment. The value of x is i(x) under assignment i. The answer can
be made unconditional by phrasing it as a function from assignments to assignment
values. Hence, the meaning of a variable x can be equated with the function h from
variable assignments to variable values such that for any assignment g: h(g) = g(x).
This is relatively standard. In MDPL this notion of the meaning of a variable is
relativized again to information states. The value of a variable x in a state s, which
I will label the denotation of x in s, is just the restriction of the meaning of x to the
assignments considered possible in s34:

Definition 4.10 (The denotation of variables)
If x is a subject of s, i.e., if x ∈ D(s),

• the denotation of x in s, [x]s, is the function f : s→ D such that for all i ∈ s:
f(i) = i(x)

34. I am not so happy about the adopted term ‘denotation’, but I couldn’t come up with something
better. As appears from the definition of the denotation of x in s, it would be misleading to refer to
it as ‘the meaning of x’ or ‘x’s intension’, since these terms may be reserved for the function that
assigns each state the denotation of x in that state. Also, using the term ‘value’ would be confusing,
since that would render this term ambiguous.
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The value of x in s may depend on the values of other variables. So, its denotation
in s is a function that assigns the value i(x) of x to each assignment i in s. Notice
that the denotation of a variable in a state s, as it were, carries the state s of which
it is an object with it: s is its function domain.

The objects of a state s are the denotations of the subjects of s:

Definition 4.11 (Partial objects)
• The set of partial objects of a state s, E(s), is {[x]s | x ∈ D(s)}
• The set of partial objects, E , is

⋃
s∈S E(s)

An object d ∈ E(s) will be called a total object iff it is a constant function: ∀i, j ∈ s:
d(i) = d(j). So, if [x]s is a total object, then according to s the identity of the value
of x is fixed. An object d ∈ E(s) is called impossible iff s is absurd. If a state contains
contradictory information about the value of a variable, i.e., if it is an absurd state,
then, for any subject x, the denotation of x in s is impossible.

If a state s is updated with an atomic formula Rx1 . . . xn, the variables x1, . . . , xn

can be taken to refer to their denotations in s:

Fact 4.11
• s[[Rx1 . . . xn]] = {i ∈ s | 〈[x1]s(i), . . . [xn]s(i)〉 ∈ F (R)(i(v))}

Of course, given the definition of the denotation of a variable in s this fact is quite
trivial indeed. The remainder of this section then is intended to show that the notion
of the denotation of a variable itself is not that trivial after all. These denotations
can be ascribed identity conditions which are typical of partial objects, they can be
taken to grow into less partial objects, that is, they can be followed under information
growth, and they can be shared by different information states, that is, agents can
be taken to exchange information about shared objects.

Identity

On the present notion of partial objects they have standard identity conditions, but
non-standard non-identity conditions:

Fact 4.12
• [x]s = [y]s iff s |= x = y
• [x]s 6= [y]s 6⇒ s |= x 6= y

An identity statement x = y is true in a state s iff the denotations of x and y in s
are identical. On the other hand, the fact that two partial objects [x]s and [y]s are
not identical in a state s should not, and does not, imply that x 6= y is true in s,
it only says that x = y is not true in s. However, if [x]s 6= [y]s, what does follow is
that s |= 3(x 6= y).
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For two objects in a state s to be distinct something more is required, viz.,
that their values cannot coincide. Let us say that d and d′ in E(s) are distinct iff
there is no i in s such that d(i) = d′(i). Then [x]s and [y]s are distinct iff s |= x 6= y.

So, if we consider two variables x and y in D(s), they may be assigned the same
denotation and this is the case iff s |= x = y. However, they may also be assigned
different denotations. In that case they are either distinct, if s |= x 6= y, or their
relative identity is unresolved in s. In the latter case they might be identical but they
might as well be non-identical, i.e., in that case s |= 3(x = y) and s |= 3(x 6= y).

Approximation

It should have been noticed that a partial object can not be an object of two different
information states, simply because partial objects are tied to their states. They
‘live’ in their partial world, so to speak. Still, partial objects can be followed under
information update. If a state s′ is an update of state s, then for any partial object
d in E(s) there is one, less or equally partial, object d′ in E(s′) such that, as I will
call it, d approximates d′. Approximation is defined as follows:

Definition 4.12 (Approximation)
If d ∈ E(s) and d′ ∈ E(s′), then

• d approximates d′, d ≤ d′ iff D(s) ⊆ D(s′) and ∀j ∈ s′ ∃i ∈ s : i ≤
j and d(i) = d′(j)

Notice the following fact.

Fact 4.13
If x ∈ D(s), y ∈ D(s′), then

• [x]s ≤ [y]s′ iff s ≤ s′ and [x]s′ = [y]s′
35

Approximation is intimately connected with update and identity. An object d′ is
approximated by an object d if d′ lives in an update of the state which d lives in and
d′ is the denotation of a variable which is identified in s′ with a variable which has
a denotation d in s. Hence, clearly, if s ≤ s′ then [x]s ≤ [x]s′ , that is, the denotation
of a variable in s approximates its denotation in an update of s. Furthermore, if s′

is an update of s, then the denotation of x in s approximates the denotation of y in
s′ if x = y is true in s′.

The following fact shows that a partial object can be followed under information
growth:

Fact 4.14
• If d ∈ E(s) and s ≤ s′, then there is one d′ ∈ E(s′): d ≤ d′36

35. Proof: by the definition of the denotation of variables, update and approximation.
36. Proof: Let d be the denotation of some variable x in s. Then d approximates the denotation of x
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In the process of information update partial objects do not remain the same all
the time, because they get more and more properties ascribed to them. Still, they
always have a unique follow-up which they grow into.

Notice that two partial objects in a state s are distinct iff they can not both
grow into one and the same possible object: for any d and d′ in E(s), d and d′ are
distinct iff for all d′′ if d ≤ d′′ and d′ ≤ d′′ then d′′ is impossible.

Approximation defines a partial order on the universe of partial objects:

Fact 4.15
• 〈E ,≤〉 is a partial order

This corresponds to intuition. Of course a partial object approximates itself (reflex-
ivity of ≤). Furthermore, if d can grow into d′ and d′ can grow into d′′, then d can
grow into d′′ (transitivity). Finally, if d and d′ can grow into each other, they are
identical (≤ is antisymmetric).

In fact 〈E ,≤〉 is a meet semilattice. The meet of two objects is the mere
identification of the two.37 However, there is not in general a join of two partial
objects d and d′ in 〈E ,≤〉. For instance, if d ∈ E(s), d′ ∈ E(s′), s ∈ S{x} and
s′ ∈ S{y} then there is no d′′ such that d′′ ≤ d and d′′ ≤ d′. However, if two objects
do have a common approximator, they are what I call a shared object.

Shared objects

Using the notion of approximation, we can also define what it means for two different
states to contain information about the ‘same’ object. Two objects may be called a
shared object if there is an object that approximates both:

Definition 4.13 (Sharing)
• d and d′ are a shared object iff ∃d′′: d′′ ≤ d and d′′ ≤ d′

The strongest approximating object can be found in the common ground:

Fact 4.16
• If d ∈ E(s) and d′ ∈ E(s′) are a shared object then ∃d′′ ∈ E(s ∨ s′): d′′ ≤

d and d′′ ≤ d′38

Shared subjects always denote shared objects:

in s′. Next assume that d approximates d
′. Then ∀j ∈ s′ ∃i ∈ s : i ≤ j and d

′(j) = d(i) = i(x) = j(x)
and, hence, d

′ is the denotation of x in s′.
37. The meet [x]s ◦ [y]s′ of [x]s and [y]s′ can be defined as [x](s∧s′)[[x=y]] = [y](s∧s′)[[x=y]] .
38. Let d be the denotation of a variable x in s, and d

′ the value of a variable y in s′. If there is
an object d

′′ such that d
′′ ≤ d and d

′′ ≤ d
′, then d

′′ is the value of a variable z in a state s′′ such
that s′′ ≤ s and s′′ ≤ s′ and d = [z]s and d

′ = [z]s′ . But then z ∈ D(s) and z ∈ D(t). Hence,
z ∈ D(s ∨ t) and [z]s∨s′ ≤ [z]s = d and [z]s∨s′ ≤ [z]s′ = d

′.
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Fact 4.17
• ∀x ∈ D(s) ∩D(s′): [x]s and [x]s′ are a shared object

Shared objects can be followed under information growth:

Fact 4.18
• If [x]s∨s′ = [y]s∨s′ then [x]s and [y]s′ are a shared object
• If [x]s and [y]s′ are a shared object then [x]s∧s′ = [y]s∧s′

So, for any object d in the common ground of s and s′, the follow-ups of d in s and
s′ are shared objects. Furthermore, if x in s and y in s′ denote a shared object, then
they denote one and the same object in the product of s and s′.

Let us finally see in what sense exchange of information about the values of variables
is related to partial objects. It must be clear that, normally, the object which a
variable x refers to is not literally the same object in the state of the speaker as the
object referred to in the state of the hearer. Still, such a variable always refers to a
shared object, if it is defined in both states. So, agents exchange information about
shared objects, that is, about the follow-ups in their respective states of objects in
their common ground.

To conclude, the notion of information in MDPL implicitly contains a notion of
partial objects which can be introduced in an information state, which can grow
into another, less partial, object, and which may turn out to be identical or distinct
in the process of information update. These objects live in their state and they are
completely dressed with the properties ascribed to them by the information state
which they live in. Still, different information states may share objects and exchange
information about them.

MDPL’s partial objects share some characteristic properties with Landman’s
pegs [1986, pp. 124 ff]. But there are also differences. The fundamental difference is
that the notion of a partial object in MDPL is a derived notion, whereas Landman’s
pegs are primitive objects. In MDPL a partial object only ‘exists’ in its own infor-
mation state and has no status besides that. In Landman’s theory pegs are some
kind of objects which are assumed to be there from the start and whose main role
is that of getting properties ascribed to them by information states.

In fact, Landman’s pegs are more like MDPL’s variables, about the values of
which MDPL’s information states contain information, and, hence, ascribe proper-
ties to. For instance, in Landman’s theory two different pegs can be identical on the
basis of a state s. Something similar may hold of two different variables in MDPL
whose denotations in a state s can be identical. However, in MDPL no two different
partial objects in a state s can be identical in s (although, of course, it is possible
that they grow into one object after information update). Notice that in MDPL it is
completely decided whether the values of two variables in the domain of s are iden-
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tical in s. In Landman’s theory the question of whether two pegs are identical on
the basis of a state s depends on the possible extensions of s in a given information
structure.

Furthermore, in Landman’s theory two different pegs may be identical on the
basis of a total information state, as, similarly, the values of two different variables
can be identical in a total, or maximal, information state in MDPL. For this reason,
in Landman’s theory the ‘real objects’ in such a total state s are equated with
equivalence classes of pegs which are indiscernable in s. In MDPL, on the other
hand, the set of partial objects of a total information state constitutes a classical
domain of objects by itself. The partial objects of a total information state in MDPL
are total objects, and two non-identical objects of such a state s are distinct in s.

In Landman’s theory, information states contain ‘facts about pegs’. These pegs
can be conceived of as some kind of constants to which properties are attributed by
different information states and which can be followed through information growth.
In MDPL, one might say, the constants in information update and exchange are
variables, whereas the information that gets exchanged is information about the
values of these variables. It may be worthwhile to note, finally, that Landman only
offers a static semantics. Landman restricts himself to defining the eventual truth
or falsity of statements in states which an agent may arrive at after information
growth. MDPL, on the other hand, offers a dynamic update semantics, and defines
the growth of information itself that results from accepting such statements.

The role of variables

The reader will have noticed that, when compared to ordinary predicate logic, the
role of variables has increased to a large extent. Variables not only serve to indicate
which arguments are bound by which quantifiers, in MDPL they are also the one
and only means to refer to the partial objects information is exchanged about. Still,
they remain artefacts, of course. So, the desire to eliminate the variables may have
increased accordingly.

It is compelling to speculate about ways to eliminate variables. Sometimes I
have the feeling that there is a small switch which has to be turned in order to col-
lapse the MDPL domain of partial objects into something much more simple and, by
means of some adequate postulates, preserve all the results. Maybe one might start
from a primitive lattice of information states appropriately related to a primitive
meet semilattice of partial objects, together with a device that enables agents in an
exchange situation to determine which shared objects are spoken about. It seems
compelling to try out such an approach, because, besides enabling a simplification,
in the end it might enable us to free ourselves from the definedness conditions, which,
as argued, solely derive from the need to expel unfortunate indexing.

However, I will not speculate any further about such a possible development
here. Before TEX’s capacity exceeds, I only want to note that every chapter must
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come to an end and that, if a chapter has an end, only once it is here.
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lag
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Samenvatting

Dit proefschrift is gewijd aan enige onderwerpen in de dynamische semantiek. In
tegenstelling tot in de klassieke, statische, semantiek, wordt in de dynamische se-
mantiek de betekenis van zinnen niet primair gesteld in termen van wat zinnen
in isolatie betekenen, maar in termen van een vermogen om zekere toestanden te
veranderen. Daarbij wordt uitgegaan van de observatie dat de betekenis van een
indicatieve zin doorgaans meer behelst dan alleen de assertie dat een zekere stand
van zaken het geval is en dat zulke andere aspecten van de interpretatie van zinnen
in de semantiek verantwoord dienen te worden. Men denke hierbij aan semantische
relaties die er tussen kunnen bestaan, zoals, bijvoorbeeld, anaforische relaties tussen
uitdrukkingen in verschillende zinnen.

Het onderzoek waarvan dit proefschrift verslag doet bouwt voor een goed deel
voort op Groenendijk en Stokhof’s dynamische Montague grammatica en het eerste
hoofdstuk bevat daarom een uitgebreide presentatie van dit systeem, die dient als
een inleiding op de volgende drie hoofdstukken.

De dynamische Montague grammatica (DMG) geeft, onder meer, een verantwoord-
ing van anaforische relaties tussen onbepaalde termen (zoals iemand en een man die
in het park loopt) en anaforische voornaamwoorden (zoals hij, zij en het). Zoals te
doen gebruikelijk is, worden semantische verschijnselen hierbij verantwoord in een
logisch systeem en is zo’n verantwoording met terugwerkende kracht van toepassing
op (een fragment van) de natuurlijke taal, de uitdrukkingen waarvan op een min of
meer standaard wijze vertaald worden in uitdrukkingen van het logische systeem.

Het in DMG gehanteerde systeem bevat drie primitieve zinsvormende ope-
raties, die van existentiële kwantificatie (gebruikt in de vertaling van onbepaalde
termen), negatie en conjunctie. Andere operaties, zoals universele kwantificatie, con-
ditionalisering en disjunctie worden op een standaard wijze in termen van de eerstge-
noemde drie gedefinieerd. Kenmerkend voor DMG nu is dat het alleen anaforische
relaties verantwoordt tussen onbepaalde termen en anaforische voornaamwoorden
als niet tegelijkertijd de onbepaalde term in het bereik staat van een negatie en het
voornaamwoord daarbuiten.

Nu is het waar dat, naast namen, onbepaalde termen die niet in het bereik
van een negatie staan de enige termen lijken te zijn die zich ervoor lenen om als
antecedent in een anaforische relatie te staan. Dit is echter lang niet altijd het geval.
Reeds in Groenendijk en Stokhof’s artikel worden andere voorbeelden gegeven en
deze lijken verantwoord te kunnen worden met een notie van ‘dynamische negatie’.
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In hoofdstuk twee van dit proefschrift worden deze en soortgelijke voorbeelden nader
onderzocht.

Het tweede hoofdstuk opent met een discussie over de voorbeelden de analyse waar-
van een notie van dynamische negatie lijkt te behoeven. Vervolgens wordt beargu-
menteerd dat de notie van dynamische negatie die is voorgesteld door Groenendijk
en Stokhof wel geschikt lijkt voor een goed deel van deze voorbeelden, maar dat
deze toch ook structureel te kort schiet. Voorts wordt aangetoond dat een notie van
dynamische negatie die aan drie tamelijk plausibele voorwaarden voldoet binnen het
kader van Groenendijk en Stokhof’s framework niet gevonden kan worden.

In de tweede helft van dit hoofdstuk wordt vervolgens een alternatieve dy-
namische Montague grammatica ontwikkeld, en wordt bewezen dat deze in eerste
opzet equivalent is met de dynamische Montague grammatica van Groenendijk en
Stokhof. Echter, de alternatieve grammatica biedt juist de ‘logische ruimte’ die nodig
is om een adequate notie van dynamische negatie te formuleren. De werking van de
alternieve notie van dynamische negatie wordt tenslotte gëıllusteerd aan de hand
van de voorbeelden die in dit hoofdstuk aan de orde zijn gekomen.

De ontwikkeling van Groenendijk en Stokhof’s dynamische Montague grammatica,
en vervolgens van het alternatief daarvoor in hoofdstuk twee, kan gekenschetst als
een proces dat een vorm van ‘type-ophoging’ behelst. In klassieke theoriën worden
zinsbetekenissen geassociëerd met proposities, in DMG zijn dat eigenschappen van
proposities, en in het in hoofdstuk twee ontwikkelde systeem zijn dat eigenschappen
van eigenschappen van proposities. Een interessante observatie is nu dat de stap van
zekere soorten van objecten (proposities) naar eigenschappen van eigenschappen van
die objecten (of, gebruikelijker, verzamelingen van verzamelingen van die objecten)
een ophoging is die veelvuldig wordt gebruikt in zekere flexibele syntactische en se-
mantische systemen. In hoofdstuk drie wordt onder meer om die reden onderzocht
of, en in hoeverre, met behulp van principes uit zulke flexibele calculi dezelfde re-
sultaten bereikt kunnen worden als in de alternatieve Montague grammatica uit
hoofdstuk twee.

In dit hoofdstuk wordt een flexibele Montague grammatica voorgesteld, waar-
in, uitgaande van een heel simpel, statisch interpretatiemodel, dynamische fenome-
nen verantwoorden worden middels algemene en welgedefiniëerde type-veranderende
regels. Daarbij wordt in beginsel gebruik gemaakt van Hendriks’ stelsel van type-
verandering. Met een relatief simpele wijziging blijkt dit stelsel in staat een verant-
woording te geven van intersentiële anaforische verbanden, en van andere vormen
van tekst-structurering, voor zover die zogeheten monotoon stijgende uitdrukkin-
gen behelzen (grof gesteld, uitdrukkingen die niet direct of indirect een vorm van
(dynamische) negatie veronderstellen).

Om ook de dynamiek van monotoon dalende uitdrukkingen te verantwoor-
den, wordt de notie van een gegeneraliseerde duale gëıntroduceerd. Deze inductief
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gedefiniëerde operatie omvat zowel de klassieke, statische negatie, als de dynamische
negatie uit hoofdstuk twee, als noties van een duale zoals die gebruikt worden in de
propositie logica en in de theorie van gegeneraliseerde kwantoren. De duale wordt
vervolgens gebruikt in de interpretatie van type-veranderingen van monotoon dal-
ende uitdrukkingen, en daarmee blijken de overige resultaten van hoofdstuk twee
afleidbaar te zijn geworden.

Zoals dit hoofdstuk voorts aantoont, is het flexibele systeem, met de duale,
een bijzonder krachtig instrument. Het systeem kan met succes toegepast worden in
de analyse van nog veel complexere voorbeelden. Echter, zoals wel vaker het geval
is met flexibele stelsels, het systeem leidt ook tot ontoelaatbare overgeneratie. Het
hoofdstuk besluit met de conclusie dat het krachtige systeem van type-veranderende
regels wellicht beter tot zijn recht zou komen als het met de nodige restricties zou
worden toegepast op een dynamisch systeem.

Hoofdstuk vier grijpt weer terug op de originele dynamische Montague grammatica.
In dit hoofdstuk wordt aangetoond dat de door Groenendijk en Stokhof ontwikkelde
techniek voor het correct analyseren van intersententiële anaforische relaties met
succes kan worden toegepast bij de verantwoording van op het eerste gezicht tamelijk
andersoortige verschijnselen. Enige bestaande analyses van relationele naamwoorden
(zoals zuster), van bijwoordelijke bepalingen en van temporele relaties in teksten
blijken op een eenvoudige en uniforme manier geherformuleerd te kunnen worden in
een dynamische Montague grammatica.

Het idee achter dit hoofdstuk is simpel. Zoals in de dynamische Montague
grammatica als het ware onthouden wordt welke ‘objecten’ door een zin geintro-
duceerd worden, objecten waarnaar door voornaamwoorden terugverwezen kan wor-
den, evenzo kunnen bepaalde lexicale uitdrukkingen geacht worden bepaalde impli-
ciete argumenten aan te dragen, die door andere uitdrukkingen nader gespecificeerd
kunnen worden. Bijvoorbeeld, een naamwoord als zuster kan opgevat worden als
een (dynamisch) predicaat dat van toepassing is op een individu x als x een zuster
is van een individu y, waarbij ‘onthouden’ wordt van welke individuen y zo’n x een
zuster is. Zo’n analyse stelt ons in staat het naamwoord op uniforme wijze zon-
der verdere specificaties te gebruiken, als in Elke zuster gaat aan het werk, en met
nadere specificaties, als in De zuster van Jan rijdt naar huis.

Op vergelijkbare wijze kan de semantische bijdrage van zekere bijwoordeli-
jke bepalingen opgevat worden als een nadere specificatie van door werkwoorden
aangedragen impliciete argumenten (bijvoorbeeld Davisoniaanse ‘events’) en kunnen
temporele relaties in eenvoudige narratieve teksten verantwoord worden als relaties
tussen de mogelijk events waarnaar de werkwoorden in een tekst kunnen verwijzen.

In het vijfde en laatste hoofdstuk wordt Groenendijk en Stokhof’s dynamische
predicaat logica bezien vanuit een ‘update’ perspectief. In dit hoofdstuk worden
de in de dynamische predicaat logica verantwoorde anaforische relaties bestudeerd



234 Summary in Dutch

vanuit het perspectief van groei van informatie over partiële objecten. Daartoe
wordt eerst een herformulering gegeven van de dynamische predicaat logica die ge-
bruik maakt van partiële, in plaats van totale, interpretatiefuncties. Een karakte-
ristiek verschil met dynamische predicaat logica is dat het resulterende systeem, op
straffe van ongedefiniëerdheid, niet toestaat dat objecten die door indefiniete termen
gëıntroduceerd zijn weer verdwijnen door ongelukkige indicering.

Het systeem wordt vervolgens uitgebreid met kwantificerende uitdrukkingen,
adnominale zowel als adverbiale (symmetrisch en asymmetrisch), die op eenvoudige
wijze behandeld blijken te kunnen worden. In het laatste deel wordt de gehanteerde
notie van ‘informatie over de waarden van variabelen’ aan een nadere studie onder-
worpen. De gebruikte structuur van informatie (-toestanden) wordt onderzocht op
zijn formele eigenschappen, er volgt een uitweiding over informatie-uitwisseling, en
tenslotte toon ik enige overeenkomsten aan tussen de gehanteerde notie van ‘waarde
van een variabele’ en dat van een partiëel object. Informatie-toestanden blijken te
kunnen worden opgevat als door partiële objecten bewoonde partiële werelden.


