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Introduction and background





Chapter 1

Introduction

Verde embeloso de la vida humana,
loca esperanza, frenesi dorado,
suefio de los despiertos intrincado,
como de sueiios, de tesoros vana;

alma del mundo, senectud lozana,
decrépito verdor imaginado;
el hoy de los dichosos esperado
y de los desdichados el mafiana:

sigan tu sombra en busca de tu dia
los que, con verdes vidrios por anteojos,
todo lo ven pintado a su deseo;

que yo, mas cuerda en la fortuna mia,
tengo en entrambas manos ambos ojos
y solamente lo que toco veo.

(Sor Juana Inés de la Cruz,
seventeenth century, Mexico)

1.1

For more than a century now, mathematicians have been concerned with ways to transfer
proofs in which the existence of objects satisfying certain properties is claimed in such
a way as to enable us to find particular objects satisfying those properties. Stated in
modern terms, they wanted to find witnesses for provable existential statements in a
constructive way. They invented new constructive logics to accomodate their concern.
Thus, for example, if some statement of the form ‘v’a:ElyA(:z:,y) (“for all :1:there exists a y
such that A(:z:,y) holds”) is provable in intuitionistic Heyting Arithmetic, then its proof
provides a recursive algorithm to find for every :1:a witness y such that A(:z:,y) holds.
Moreover, we can assign a numerical code e to the recursive algorithm, for which Heyting
Arithmetic proves \7’:z:3yT1(e,2:,y). Here T1 is Kleene’s primitive recursive T-predicate for

What is efficiency?

Green allurement of our human life,
mad Hope, wild frenzy gold-encrusted,
sleep of the waking full of twists and turns
for neither dreams nor treasures to be trusted;

soul of the world, new burgeoning of the old,
fantasy of blighted greenery,
day awaited by the happy few,
morrow which the hapless long to see:

let those pursue your shadow’s beckoning
who put green lenses in their spectacles
and see the world in colors that appeal.

Myself, I’l1act more wisely toward the world:
I’ll place my eyes right at my fingertips
and only see what my two hands can feel.

(translation Alan S. Trueblood)

3
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recursive functions of one variable; T1(e,:z:,y) stands for “y is the numerical code of a
computation of the value of the function with associated code e on input 2:”.

If all quantifiers of A are bounded, then truth of ‘v’:z:3yA(:c,y)already provides a
recursive algorithm e for finding witnesses. As in the case of Heyting Arithmetic, we have
that if ‘v’:1:ElyA(:c,y)is not only true but also provable in Peano Arithmetic, then Peano
Arithmetic proves V:c3yT1(e,a:,y) (see [Kr 51, Kr 52, Kr 58]).

Parsons and Mints independently proved a similar result for IE1, the subsystem of
Peano Arithmetic in which induction is only allowed for formulas of the form ElzB(z)
where all quantifiers in B are bounded. If IE1 proves V:c3yA(:c,y) for bounded A, then
there is even a primitive recursive function that provides the witnesses (see [Pa 72, Mi 71]).

Since the rise of computer science the desire for constructivity has been growing more
and more stringent. It is no longer sufficient that the constructions to find the witnesses
are given by recursive, or even primitive recursive algorithms. The algorithms have to be
eflicient. For example algorithms that need a computation time exponential in the length
of the input are ruled out.

Unfortunately, the precise mathematical meaning of the noun “efficiency” is hard to
pinpoint. The dictionary definition does not offer much guidance:

efficiency [F., from L., efiiciens, -ntem, pres. p. of ejfficere, to EFFECT],
n. Adequate fitness; power to produce a desired result; (Eng) the ratio of the
output of energy to the input of energy [HS 84].

If we want to classify algorithms as to their efficiency in a mathematically fruitful way,
we should abstract as much as possible from highly specific factors like the programming
language and the size, kind and operating speed of the computer on which the program
is run. Cobham gave just such a classification in [Co 64]. He classified algorithms in
terms of the number of steps taken by a Turing Machine to complete the computation as
a function of the length of the input. For example, an algorithm runs in polynomial time
if there are fixed integers c and k such that for all n, the computation on inputs of length
n is completed in at most c - 71'‘steps.

Efficiency is thus a relative measure, not an absolute one. When I do abuse language
by using the adjective “efficient” in an absolute sense in this dissertation, it refers to
algorithms which run in (deterministic or sometimes non-deterministic) polynomial time.

In the literature, the word “fea.sz'ble”is used a little more precisely than “efficient”;
a feasible algorithm should run in time polynomial in the input. However, even for this
relatively young word non-standard uses abound (see e.g. de volume [BS 90]).

In 1986, Buss introduced systems of arithmetic that cater to the need for efficient
algorithms [Bu 86]. For example, if the best—knownof his systems proves a statement
of the form V:i:ElyA(:L',y)where A defines a predicate in NP (i.e. computable by a non­
deterministic polynomial time Turing machine), then there is a polynomial time algorithm
f that computes for every 3: a witness f(1:) such that A(:z:,f(1:)) holds. For syntactic
reasons Buss called his hierarchy of systems Bounded Arithmetic. Induction is not allowed
for all first order formulas, as in the standard system of arithmetic, Peano Arithmetic.
Instead, every system allows induction only for a specific class of bounded formulas, in
which all quantifiers are bounded by a term in the language of Bounded Arithmetic.
Because of the concern for efficiency behind his systems we can see them as an example of
efficient mathematics, and his most well-known system S; even as feasible mathematics.
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1.2 What is metamathematics?

In 1931, Godel proved his First and Second Incompleteness Theorems (see [G6 31,
Ho 79]). They are theorems about systems of mathematics. For example, the Second
Incompleteness Theorem says that every consistent theory that can, by some coding mech­
anism, express enough information about its syntax, cannot prove its own consistency.
Theories like Peano Arithmetic (PA) prove a formalization of the Second Incomplete­
ness Theorem, namely the arithmetical sentence that expresses “If PA is consistent, then
PA does not prove that PA is consistent”. In general, metamathematics is the study of
mathematical theories by mathematical methods like formalization.

Lob [L6 55] listed the properties of the formalized provability predicate that are
sufficient for proving the formalized version of G6del’s Second Incompleteness Theorem.
In the seventies, the conditions listed by L6b came into their own as the modal logic of
provability, where DA is read as “A is provable” (see e.g. [MS 73]). This provability
logic, which we call L after Lob, has proved to be very useful in the study of provability
predicates for theories like Peano Arithmetic. The outstanding result in this area was
attained by Solovay, who proved in 1976 that L exactly captures the modal properties
of the provability predicate of Peano Arithmetic. More precisely, he showed that for any
modal formula A, L proves A if and only if Peano Arithmetic proves all translations of A in
the language of arithmetic that interpret D as the formalized provability predicate [So 76].

1.3 Interpretability and its logics

As early as the 19th century, mathematicians sought a relative consistency proof in order
to show that the consistency of Euclidean geometry implies the consistency of Hyperbolic
geometry. A positive answer would show that the parallel postulate is not provable from
the other Euclidean axioms. One of the earliest proofs, by Poincaré, made use of an
interpretation, even though that concept was not formally defined at the time. We do not
give a precise definition here. Intuitively, the theory U interprets the theory V if there
exists a translation of the language of V into the language of U that enables us to “see” a
model of V inside every model of U. Interpretations have been used for various purposes,
at first mainly for relative consistency proofs as in Poincaré’s example (see also [Hi 1899]),
and later for proving theories to be undecidable (see e.g. [TMR 53]).

The study of interpretability picked up momentum in the seventies with papers by
Hajek and Solovay (see e.g. [Ha 71, Ha 72, So 76b]). Their results, which include the
Orey—Hajekcharacterization for interpretability over theories like Peano Arithmetic, gave
the study of interpretability its proper place as a part of metamathematics.

The eighties saw the development of modal logics for interpretability, first introduced
in [Sv 83] and [Vi 89]. Here D is a binary modal operator corresponding to interpretabil­
ity over a base theory T. In contrast to the case of provability logic, there are several
interpretability logics around, capturing the principles that govern interpretability over
various kinds of base theories (see e.g. [JV 90, Vi 90a]). For example, Berarducci and
Shavrukov independently proved by modified Solovayconstructions that the interpretabil­
ity logic ILM is the logic of interpretability over Peano Arithmetic (see [Ber 90, Sh 88]).
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1.4 Metamathematics of efficient mathematics

If we want to prove an analog of the formalized version of Godel’s Second Incompleteness
Theorem for systems of efficient mathematics like Bounded Arithmetic, we are forced to
make our metamathematics efficient, too.

First of all, we need efficient numerals. This is because S. . . S 0 has length exponentialg‘,._/
1: times

in the length of 1:written in binary; so we cannot prove in Bounded Arithmetic the totality
of the function that sends natural numbers It to the code of S . . . S 0. Thus we use numerals

that are based on the binary expansion of k and are of lerigtfhfllinearin the logarithm of
k.

Once we have made this move, it is not difficult to prove that L6b’s logic L is sound
with respect to Bounded Arithmetic (see subsection 2.33). Thus Godel’s Second Incom­
pleteness Theorem holds, and its formalized version is provable.

Rosser strengthened G6del’s First Incompleteness Theorem by constructing an arith­
metical sentence R that is independent of Peano Arithmetic, provided that Peano Arith­
metic is consistent [Ros 36]. In chapter 3, we prove the formalized version of Rosser’s
Theorem in Bounded Arithmetic. In more technical terms, we prove the arithmetical sen­
tence expressing “if Bounded Arithmetic is consistent, then neither R nor -R are provable
from it”. Here R is constructed by G6del’s method of diagonalization; informally, H says
“there is a proof of my negation which is smaller than any proof of myself”. The proof
of the formalized version of Rosser’s Theorem does not come cheaply. We use almost the
whole chapter in order to prove a “small reflection principle” on which the proof is based.

However, the real trouble only starts when we want to prove Solovay’s Complete­
ness Theorem for Bounded Arithmetic. As we mentioned, it is easy to prove that L is
sound with respect to Bounded Arithmetic, but as far as we know the provability logic of
Bounded Arithmetic might well be a proper extension of L. The problems we encounter
when we want to adapt Solovay’s construction to Bounded Arithmetic are discussed in
chapter 3 and chapter 4. They are related to open problems in complexity theory.

In chapter 5, we show that formulas having models on suitably simple Kripke trees can
be translated into arithmetical sentences that are consistent with Bounded Arithmetic.
We also show that the provability logic of Bounded Arithmetic cannot be the modal theory
of a class of Kripke trees. The general question ‘What is the provability logic of Bounded
Arithmetic’ is still left open for future research.

Because interpretability logics always include a provability logic (-=A > _Lbeing equiv­
alent to DA), we do not yet have enough material to find the interpretability logic of
Bounded Arithmetic.

1.5 Efficient metamathematics of inefficient mathe­
matics

What happens when the techniques from eflicient metamathematics of efficient mathe­
matics are turned loose on normal mathematics? We may study interpretability between
extensions of inefficient theories like Peano Arithmetic and Zermelo Fraenkel set theory.
For example, it has been known for a long time that in every model of Zermelo Fraenkel
set theory, we can see a model of Peano Arithmetic. Now we might ask: can we see it in
an efficient way? In other words, is there a translation from the language of arithmetic



1.6. WHAT TO EXPECT FROM THE REST OF THE DISSERTATION? 7

into the language of set theory such that set theory proves all axioms of Peano arithmetic
by proofs that are easy to compute given the original axioms? The answer turns out to
be yes.

In chapter 6 we ask a more general question: are all interpretations that we know
feasible? The answer is: yes and no! Yes, because well-known interpretations like that of
ZF plus the negation of the continuum hypothesis into ZF are feasible. No, because we
can use tricks like diagonalization to make some theories U, V such that U interprets V,
but not by any feasible interpretation.

We then restict our attention to feasible interpretability between finite extensions of
Peano Arithmetic. What is the logic of feasible interpretability over such theories? It
turns out to be ILM, the same interpretability logic that is arithmetically sound and
complete with respect to normal interpretability over Peano Arithmetic.

Finally, in chapter 7, we establish the intrinsic complexity of the formula “PA + A
feasibly interprets PA+B”. Feasible interpretability over PA turns out to be E3-complete,
contrasting with the fact that standard interpretability over PA is I13-complete. We also
prove that the formula “PA interprets PA + A but not by any feasible interpretation” is
I13-complete.

1.6 What to expect from the rest of the disserta­
tion?

The remainder of part I contains some preliminaries needed to read parts II and III of
the dissertation, as well as some material not covered in those chapters but interesting in
its own right.

Part II

Chapter 3 A small refiection principle for bounded arithmetic. This is based on
the paper [VV] written jointly with Albert Visser; which in its turn is based
on [Ve 88] and [Ve 89].

Chapter 4 Provable completenessfor Eysentences implies something funny, even
if it fails to smash the polynomial hierarchy. This is based on unpublished work
with Alexander Razborov. It is reproduced here with his permission.

Chapter 5 On the provability logic of bounded arithmetic. This is based on the
paper [BV 91]. Preliminary results can be found in [Ve 88].

Part III

Chapter 6 Feasible interpretability. This is based on [Ve93].

Chapter 7 The complexity of feasible interpretability. A previous version of this
chapter has been submitted to the book Feasible Mathematics 11,edited by J.
Remmel et al., to appear with Birkhauser.





Chapter 2

Background

2.1 Theories of arithmetic

Definition 2.1.1 The language of arithmetic contains 0, S, +, -, = and 3.

Definition 2.1.2 Robinson’s Arithmetic Q is a theory in the language of arithmetic given
by the following axioms:

Q1 \/2:(S:z:¢ 0);

Q2 V:I:,y(S:1: = Sy —>:1:= y);

Q3 \7’:I:(:1:75 0 —+3y 1: = Sy);

Q4 Va:(:c + 0 = 1:);

Q5 V33,y(:I: + Sy = S(:1: + 31));

Q6 V:1:(:I:- 0 = 0);

Q7 V:r,y(:r ~53/ = (1: - y) + Iv);

Q3 VI)!/(33 S y H 3Z(Z + I = 31));

Definition 2.1.3 Peano Arithmetic PA contains the theory Q plus the induction scheme

<p(0) /\ V~'c(<p(-'6)-> <p(5$)) -> V:w(1‘),

where cpmay be any first—orderformula in the language of arithmetic.

Remark 2.1.4 We presuppose familiarity with the arithmetical hierarchy (see a textbook
on recursion theory, e.g. [So 87]). We remind the reader that a formula in the language
of arithmetic is A8 = 28 = H8 if all its quantifiers are bounded, which means that they
are of the form V1:3 t where t is any term not involving :12.Z3?,+,—formulashave the form
Elxcpfor some cpin H2. Dually, H9,“-formulas have the form Vzccpfor some cp in 29,.

A8—formulasdefine primitive recursive relations of natural numbers, but not all prim­
itive recursive relations are A8 definable: only those from the so-called linear time hier­
archy (see [HP 93, Definition V.2.10, Theorem V.2.16]). X?-formulas define recursively
enumerable (r.e) relations, whereas l'I‘,’—formulasdefine co-r.e. relations.

We usually use A0 for A8, 2,, for E9, and IL, for H91.
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Definition 2.1.5 Let F be a class of formulas in the language of arithmetic. Then If‘
contains the theory Q and additionally the induction scheme

<p(0) A V=v(<.0(9~‘)—> sp(5-73)) -> V2=<p(-'6)

for cp E F.

Remark 2.1.6 Note that the induction axioms for A0-formulas can be written in H1­
form, namely as

V1/(<P(0) /\ V93 S 3/(<P(='~‘)-* <p(5$)) -* V1: S 1/<P(17=‘)l

fOI' (P 6 Ag.

Definition 2.1.7

0 LU1(0) = O;

0 w1(:z:)= 12"‘for x > 0; here = flog2(S:1:)l.

Definition 2.1.8

0 23 = 1:;

I 2':+1=

We sometimes write ea:p(:c)instead of 2‘.
Many mathematicians, most notably Bennett, Paris, and Pudlak [Ben 62, Di 80,

Pu 83] have constructed A0-formulas corresponding to the relation y = 2’. We refer
the reader to [HP 93, Section V.3] for a clear description of the construction of such a
formula.

Similarly, there exist A0-formulas defining the relation 3/ = 2:’, y = w1(a:) and even
to the graphs of most functions that we introduce in section 2.3. For those functions we
use “y = f(a':')” as shorthand for the appropriate Ao—formula. In IA0 we can prove the
recursive clauses for these functions, as well as some other useful facts, for example that
2‘ grows faster than wl.

Definition 2.1.9

0 EXP := V:c3y(“y= 2"’);

0 SUPEXP := ‘v’:1:3y(“y=2’”).

We have the following hierarchy of theories:

QQIAO§IAo+EXP§IAo+SUPEXP§I21§IZ2§...§PA.
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2.2 Provability logic
Definition 2.2.1 The language of modal logic contains a countable set of propositional
variables, the propositional constant J_, boolean connectives n, A, —+,and the unary
modal operator D. The modal provability logic L is axiomatized by all formulas having
the form of propositional tautologies (including those containing the D-operator) plus the
following axiom schemes:

1. Cl(A —>B) —» (DA —>DB)

2. D(ClA —->A) —+ DA

3. CIA —vDU/l

The rules of inference are:

1. If l- A —>B and l- A, then l- B (modus ponens)

2. If l- A, then I- DA (necessitation)

We suppose that the reader is familiar with Kripke frames and forcing relations on
them. For L, finite Kripke trees give a good semantics. To make this precise, we state a
definition and a theorem.

Definition 2.2.2 A Kripke tree is a frame (K, 4) in which

0 4 is a strict partial ordering, i.e. it is transitive and asymmetric;

o for every element of K, the set of its predecessors is finite and linearly ordered by
4;

0 there is one root which precedes all other elements.

L6b’s logic L is modally complete with respect to finite Kripke trees:

Theorem 2.2.3 For every modal sentence A, the following are equivalent:

1. L l- A;

2. for all finite trees (K, <) and points I: E K and for allforcing relations II—on (K, <),
we have It Il-A;

3. for all finite trees (K, -<) and for all forcing relations H—on (K, <), we have kg H-A
where k0 is the root of(K, 4).

Proof. See [Sm 85, Theorem 2.2.3] QED

Definition 2.2.4 Let T be a theory in the language of arithmetic. A T-interpretation *
is a function which assigns to each modal formula A a sentence A’ in the language of T,
and which satisfies the following requirements:

1. .L“ is the sentence 0 = 1.

2. ‘ distributes over the boolean connectives, i.e. (A —>B)‘ = A‘ —>B‘, etc.
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3. (DA)'‘ = Prov1~('A*").

Here ProvT("/1") is the formalization of “A‘ is provable from T” (see subsection 2.3.3).
Clearly ‘ is uniquely determined by its restriction to the propositional variables. The

presence in the modal language of the propositional constant .1.allows us to consider closed
modal formulas, i.e. modal formulas containing no propositional variables. If A is closed,
then A‘ does not depend on ", e.g. (DJ.)* is the arithmetical sentence Provq~("O= 1").

For arithmetical recursively enumerable theories T with IAO+ EXP Q T Q PA we
have for all modal formulas A:

L l- A <=> for all T-interpretations ‘, T l- A‘.

The soundness direction (=>) is not difficult to prove. It hinges on the observation that
for T Q IAO+ EXP the formalized version of L6b’s Theorem is provable:

T |- Prov1~("Provq~('-go") —>cp") —>Prov1~("cp_').

Incidentally, the formalized version of L6b’s Theorem immediately implies the formal­
ized version of G6del’s Second Incompleteness Theorem by taking _Lfor cp:

T l- Prov1~("ProvT('-J_") —>_L”) —+ProvT("_l_").

Solovay proved the completeness direction (<=) for PA in his landmark paper [So 76].
It was pushed down to IAO+ EXP in [JMM 91].

2.3 Bounded arithmetic

In this section we introduce classical arithmetical theories that are strictly weaker than
IAO+ EXP. It turns out that there are two salient theories of this kind: Paris and
Wilkie’s IAO + 91 [WP 87] and Buss’ S21[Bu 86], both of them satisfying L6b’s logic.

We will not state all the interesting results that appeared in the standard references
to the area of weak arithmetics (see [Bu 86, WP 87] and Chapter V of [HP 93]). Instead
we quickly review those concepts that we need in the sequel.

The principal feature distinguishing various theories of Bounded Arithmetic from
Peano Arithmetic is that in the former induction is restricted to bounded formulas.

2.3.1 IAO+ 91

Definition 2.3.1 The language of IAo+Q1 as introduced in [WP 87] contains 0, S, +, -,
= and 3, and additionally the logical symbols —=,—>and V, and variables 121,222,. . .. With
regard to logical axioms, we use a Hilbert-type system as in [WP 87], but other choices are
reasonable too. For example, a Gentzen style sequent calculus with cut rule or natural
deduction would do. However, we do not use a logic in which only direct proofs (i.e
tableau proofs or cut-free proofs) are allowed.

As non-logical axioms we consider a set containing the following:

o a finite number of universal formulas defining the basic properties of the function
and predicate symbols of the language:

1. ogo/\—.(50go);
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.V:1:(:r+O=:z:/\:£-0=O/\a:-S0=a:);

. \7’:z:Vy(S:z:=S'y—>:z:=y);

V:vVy(-"BS 53/"" (-72SyV:I== 3.74));

‘v’:z:‘v’y(:c+Sy=S(1:+y));

V2:Vy(a:-Sy=(1:-y)+x);.°°.°‘r“‘°°'°

o a formula V:1:Ely<p(x,y), where cpis the A0-formula defining the relation 3/= w1(1:) (=
:1:"l;see definition 2.1.7);

o the scheme of induction for A0-formulas.

2.3.2 Buss’ systems of bounded arithmetic and the polynomial
hierarchy

Definition 2.3.2 The language of Buss’ bounded arithmetic consists of O, S, +, -,
=, 3, (= l'log2(:z:+ 1)], the length of the binary representation of 2:), and
:1:#y (= 2l"'l""l,the smash function).

Remark 2.3.3 Note that the smash function # allowsus to express terms approximately
equal to 2P(l“"l)for any polynomial P. More precisely, for every 72,1: 2 2 the following
holds:

2'='" < a:# . . . #1; < 22"='"'2,_ _
n times

as is easily proved by induction. This property of # is useful when we want to define
polynomial time functions.

Definition 2.3.4 The hierarchy of bounded arithmetic formulas is defined as follows:

1. 28 = N3 = A8 is the set of formulas with only sharply bounded quantifiers V1:3 |t|,
3:1:3 |t| (where t is any term not involving 3:)

2. 231+, is defined inductively by:

0 2?,“ I_>Hi, and is closed under A, 32: 3 t and V2:3 |t|;

0 if B 6 1-1:“, then fiB E 2%“.

3. Iii“ is defined inductively by:

0 Hi“ Q 2:, and is closed under /\, ‘v’:c3 t and 33: 3 |t|;

0 if B E 2):“, then fiB 6 Hz“.

4. ELL, and Hf,“ are the smallest sets which satisfy 2,3.

Definition 2.3.5 If R is a theory and A a formula, we say that A is AL, with respect to
R iff there are formulas B 6 232+, and C’ 6 UL, such that R l- A <—+B and R l- A H C.
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We never leave out the superscripts b from the levels Elf, and Hf’,of Buss’ bounded
arithmetical hierarchy, so our use of 2,, for E9, and IL, for H9, should not give rise to
confusion.

The hierarchy of bounded arithmetic formulas is constructed in such a way that all
levels H? and 2? except E3 correspond to levels of the polynomial hierarchy, which is
well-known from structural complexity theory. Without defining all the basic notions of
complexity theory, for which the reader may turn to [BDG 87], we give one of the standard
definitions.

Definition 2.3.6 The polynomial hierarchy is defined as follows:

1. P = N1’is the set of predicates on the natural numbers which are recognized by a
deterministic polynomial time Turing machine;

2. NP = Elf is the set of predicates on the natural numbers which are recognized by a
nondeterministic polynomial time Turing machine;

3. {If is the set of predicates Q such that there is an R E A? and a polynomial P, such
that for all :3, Q(a':') <=> 3y 3 2P('3')R(:i:',y).

4. H? is the set of predicates Q such that there is an R E Elf, so that for all if,
Q(:E) <=> -R(:i~‘).

5. A?“ is the set of predicates which are recognized by a deterministic polynomial
time Turing machine with some oracle from Elf.

As usual we use the name co-NP for Hf. There are many open questions about the
polynomial hierarchy. The most important one is: is there a Is:such that 27; = E’,';+1,
in which case the hierarchy collapses? More particularly, does NP = co-NP? Or even
P = NP? It is also unknown whether for any k, A’ = Zfiflllfi, and in particular whether
P = NP 0 co-NP.

Definition 2.3.7 A is polynomially reducible to B if there is a polynomial time com­
putable function f such that V:r(:z:E A <—+f(:t:) E B).

Note that polynomial reducibility is analogous to many-one reducibility from ordinary
recursion theory.

Definition 2.3.8 B is NP-complete if all A E NP are polynomially reducible to B.
Similarly, B is co-NP-complete if all A E co-N P are polynomially reducible to B.

Remark 2.3.9 It is easy to see that for every N P-complete set B, the following holds:

0 If B E Co-NP, then NP = co-NP;

o IfB€P,thenP=NP.

Remark 2.3.10 From results of Stockmeyer, Wrathall, and Kent and Hodgson [St 76,
Wr 76, KH 82] it follows that the bounded arithmetical hierarchy is related to the poly­
nomial hierarchy in the following way: XiH is the class of predicates which are defined
by formulas in 25’,+1. In particular, NP is the class of predicates which are defined by
2'1’-formulas; similarly co-NP is the class of predicates defined by II'{-formulas. We refer
the reader to [Bu 86, Chapter 1] for proofs of these correspondences.
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Definition 2.3.11 The theory S; consists of BASIC, a finite list of axioms defining the
basic properties of symbols in the language of bounded arithmetic, plus the following
induction scheme PIND(2f):

A(0) /\ vx(A(L:xj) —»Am) —»‘v’:rA(:z:)

for A E 2?.

Definition 2.3.12 S2 := U,S;.

Definition 2.3.13 The theory T; consists of BASIC plus the followinginduction scheme:

A(0) /\ ‘v’x(A(:1:)—> A(S:1:)) —>V:rA(:1:)

for A E Elf.

Definition 2.3.14 T2 := U,«T;.

Buss proves that for each 2',S;“ F T; (see [Bu 86, Corollary 2.21]). It is clear that
also for each 2'Z 1, T; l- S;. Thus, T2 = S2.

One of the most important theorems about bounded arithmetic is Parikh’s Theorem.
It implies that every A0-definable provably total function of S2 can increase the length of
its input only polynomially.

Parikh originally proved his theorem for IA0, for which the A0-definable provably total
functions are even more severely limited than for S2: they can increase the length of the
input only linearly.

We state a version of Parikh’s Theorem for Buss’ theories S;.

Theorem 2.3.15 (Parikh’s Theorem) Lett 2 0. Suppose that «,0is a boundedformula
and that S; l- ‘v’1:Elyc,0(x,y).Then there is a term t(a:) such that S; l- \:/:z:Ely3 t(:c)cp(:z:,y).

Proof. Buss gives a proof-theoretic proof (see [Bu 86, Theorem 4.11]). However we
prefer to give a model—theoreticproof, because it is easier to understand and much shorter.
So suppose that there is a bounded formula upsuch that S; l- ‘v’:z:Elynp(a:,y), but for every
term t(:1:), S; l7’‘v’:r:3y5 t(a:)cp(:1:,y). Now if c is a fresh constant, the set of formulas

5$+{Vy S c#...#c-=s0(c.y) I /66w}

\
is finitely satisfiable. Thus by the Compactness Theorem there is a model

M l= 5%+ {Vy S c#...#c-'<p(c.y) I /9E w}­\__.‘,:/
1: times

Suppose that a is the interpretation of c in this model. Next, take the submodel M‘ of
M defined by:

M‘ := {b€M | 3nEw(b§c#...#c)}.
n times

It is easy to check that M‘ is closed under 0, S, +, -, S, |:z:|, [;:z:j, and #. Moreover the
induction axioms of S; can be written in H1-form, so they still hold in .M’s initial segment
./V1‘.Therefore M‘ l: S;, but M‘ bé 33/<p(a,y),contradicting our first assumption that
S; l- ‘v’:z:3ycp(:c,y). QED
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Definition 2.3.16 121',’-functionsare those computable by a polynomial time Turing ma­
chine. For i > 1, Elf’contains those functions computable by a polynomial time Turing
machine from finitely many oracles in 2',’-’_1.

Buss proved that the provably total 2'1’-definablefunctions of S; are exactly the func­
tions computable by a polynomial time Turing machine. More precisely, and at the same
time more generally, we have the following two theorems:

Theorem 2.3.17 Let i 2 1. Let g be an m—aryElf-function. Let t(a':') be a term so that
for all 5:’E cum, g(:z':')3 t(a':'). Then there is a E?-formula A such that:

1. S; l- V:i:'3y3 tA(:i:',y);

2. S; l- V/:i:',y,z(A(:i:',y) A A(:i:', z) —>y = z);

3. For all 5:’E w"‘, A(;i:',g(;i:’)) is true.

Proof. See [Bu 86, Theorem 3.1] QED

Theorem 2.3.18 (Buss’ Main Theorem) Leti 2 1. Suppose S; l- V:z':'ElyA(x,y)where
A(:c,y) is a Zf-formula with only :i:’,yfree. Then there is a term t(:i:'), a Sf-formula B
and a function g in Df’ such that

1. S; l- Va':'Vy(B(.7':',y) —>A(:z':',y)),'

2. S; l- V:i:"v’y,z(B(:f,y) A B(:E, z) —>y = z);

3. S; l- ‘v’:i:'3y3 tB(:i:',y);

4. For all ii, to ]= B(fi,g(n')).

Proof. See [Bu 86]. Buss uses methods well-known from proof theory. We give a short
sketch. Suppose S; l- V:i:'ElyA(:r,y),by a proof p. Then we can apply cut elimination to
obtain a term t and an S; proof p’ of ‘V/2':'3y3 tA(:z:,y) that only cuts Z?-formulas. Thus,
p’ contains only 2;’ and I1?-formulas. Next we can directly extract from p’ a Bf-algorithm
for computing a function g such that for all n’,w ]=A(r'i,

For an elegant model-theoretical argument, which is inspired by Visser’s unpublished
proof of Parson’s and Mints’ theorem [Pa 72, Mi 71] that the primitive recursive functions
are exactly the provably total functions of 121, see [Za 93]. QED

Remark 2.3.19 Note that, if for some Z?-formula A and some term t(:1':'),
\7’:i:'3y3 tA(:ic',y) is true but not necessarily provable in S;, then we know only that there
is a witnessing function in Bf“.

Corollary 2.3.20 Let A(a') be a formula such that S; proves that A is equivalent to a
E',’- and to a H’;-formula. Then A is a polynomial time predicate.

In other words, if S; proves that some predicate is in NP 0 co-NP, then it is already
in P. We remind the reader that it is an open question whether NP F1co-NP = P.

Even though we do not need it in the sequel of the dissertation, we cannot resist the
temptation to end this introduction to relations between complexity theory and bounded
arithmetic with the statement of a beautiful result by Krajicek, Pudlak and Takeuti.

Theorem 2.3.21 Fori 2 0, if T; F S;“, then 2?” = Hf”.

Proof. For the very ingenious argument, see [KPT 89]. QED
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2.3.3 Metamathematics for bounded arithmetic

In order to prove G6del’s Incompleteness Theorems for bounded arithmetic, Buss arith­
metized the usual notions of metamathematics (see [Bu 86, Chapter It turns out that
most predicates needed can be All’-defined (or sometimes ElA'1’—defined)in 5;. Moreover,
these definitions are intensionally correct in the sense of [Fe 60], which means that the
usual connections between them can be proved in S2}.

Here follows a list of predicates used in the sequel.

0 Seq(w) for “w encodes a sequence’’;

0 Len(w) = a for “if w encodes a sequence, then the length of that sequence is a;
otherwise a = 0”;

0 Term(v) for “v is the Godel number of a term”;

0 Fmla(v) for “v is the Godel number of a formula”;

0 PrfT(u, v) for Fmla(v)/\ “u is the Godel number of a proof in T of the formula with
Godel number 22”;when T is clear from the context, we drop the subscript.

o ProvT(v) := 3uPrfT(u,v); we sometimes abbreviate Prov(rg0") as Clap.

The predicates Seq, Len, Term, and Fmla are A‘{—definablein S, and so is Prfo, where
the formula a is A‘; with respect to 521. The condition on a is not a severe restriction.
To any recursively enumerable set one can associate a polynomial time function having
that set as its range, therefore one can suitably axiomatize any theory T which has a
recursively enumerable set of axioms including BASIC.

Notation 2.3.22 Instead of the usual numerals S“Oof Peano Arithmetic, we use canon­
ical numerals /icdefined inductively by:

0 U = 0;

. 27:71 = 216+ (50);

. §k’+i2 = (SSO) - (16191).

Note that the length of the term It is linear in the length of the binary representation
of k, a property that the S'°Oobviously do not satisfy. The shortness of canonical terms
plays a crucial role in many proofs, for example in Buss’ proof that S; enjoys provable
Z3‘;-completeness (see [Bu 86, Theorem 7.4]).

S; can ZI',’—definea function Num(:z:) such that Num(:c) stands for the Godel number of
the term ‘:5.For ease of reading, we will however abuse notation; thus if A(:z:)is a formula
with free variable 1:we write ’A(a)‘ instead of Sub(’/1", ':c",Num(a)). Sometimes we are
even more sloppy and leave out the numeral dashes altogether. In those cases the context
should provide enough material for the reader to know what is meant.

Lemma 2.3.23 (cf. Lemma 7.5 of [Bu 86])
Let t be any term with free variables a1, . . . ,a,,. Then

S21l- ‘v’a1,...,akProv("t(E,...,Zi;;) = t(Tczl1T,i...-,T(1_,,—)_‘).
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Proof. We use induction on the complexity of t.

o If t is 0, then the equality axioms immediately give us S; l- Prov('(7 = U“).

o Ift is a variable symbol :12,then the equality axioms give us S; l- V:::Prov('":E= E").

0 If t = Sr, then we have by induction hypothesis

S; l- ‘v’a1,...,a;.Prov(rr(fi,...,cfi) = r(a1, . . . ,ak)‘).

Therefore it suffices to show that S21l- VbProv("Sb = Q"). In order to be able
to apply the formalized version of PIND(Z3’1’)in S2‘, we need to find some fixed
polynomial P such that the proofs of Sb = ST)are of length 3 P(|b|), because then
there is a term t(:1:)for which we can prove S2‘l- \7’bEly3 t(b)Prf(y, "Sb = Sb“). The
polynomial that we need will be quadratic. We leave the exact computation to the
reader. Informally, the reasoning inside S; is as follows:

— We clearly have Prov('SU = S_O‘).

—Suppose that b > 0 is even. By the definition of efficient numerals and the
BASIC axioms we immediately have proofs of length linear in |b| of Sb =
5+ 30 = 37:.

—Suppose that b >Li_s odd. Thenle_have a proof from BASIC of length linear
in |b| of Sb: 2- Lgbl+2 =2-Slgbj.
By the induction hypothesis and th_e__BASI_C__ax_iomswe have a proof of length
quadratic in = |b| —1 of =g_S[$bj.Combined,these twogivea
proof of length quadratic in |b| of Sb = Sb.

0 We leave the cases for +, -,#, and | | to the reader.

QED

Theorem 2.3.24 (Provable 2'1’-completeness, Buss) Let A be any Z'1’—form'ula.Let
a1, . . .,ak be all the free variables of A. Then there is a term t(a1, . . . , ak) such that

S; l- ‘v’a1,...,ak(A(a1,...,a;,) —+Elw3 tPrf(w, rA(cT1‘,. . . ,a7;)‘)).

Proof. We give only a small hint: the reader may look up the full proof in [Bu 86,
Theorem 7.4]. We use induction on the complexity of A. The most difficult step is the
one for the bounded universal quantifier. So suppose that A is Va:3 |s|B(a1, . . . ,a;,,:r:),
and that for all b 3 |s| we have proofs of length polynomial in max(|a1|, . . . , |a,,|, of
B(a1, . . . , a;., b). Then we can combine these |s| + 1 short proofs in order to construct a
proof of length polynomial in max(|a1|, . . . , |a;.|, |s(a1, . . . ,ak)|) of the formula
V3 3 |s|B(a1, . . . ,ak,:1:). QED

Using theorem 2.3.24, it is easy to see that L6b’s logic (see definition 2.2.1) is arith­
metically sound with respect to S2}.In particular this means that we can, in the standard
way, prove Godel’s Second Incompleteness Theorem and its formalized version for S21.

Theorem 2.3.25 (cf. Theorem 7.10 of [Bu 86])
S; if -vProv('J_") and S; l- Prov('—Prov(".l_") —>_L“) —>Pr0v(r.L").
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Proof. We leave the well-known proofs to the reader. QED

We refer the reader to section 2.6 for the proof of a much stronger result: IAo+EXP I7’
Con(Q).

By the way, Rosser’s strengthening of G6del’s Second Incompleteness Theorem is also
provable for theories like S2}and IAo+Q1. However, we use the “small reflection theorem”
to prove it. Thus the reader will have to wait for theorem 3.3.24 of Chapter 3 in order to
find Rosser’s Theorem as a corollary.

Sometimes, we will use the name IAO+ 91 for Buss’ theory S2 (see Definition 2.3.12),
in which induction for formulas from the hierarchy of bounded arithmetic formulas in
a language containing # and | | is allowed. Because S2 is a conservative extension of
IAO+ 91, the name change has no repercussions on results that do not hinge on the
details of formalization. More formally, we have the following:

Lemma 2.3.26 There is a A0-formula 1l2(:z:,y,z)such that w I: :z:#y = z 4-»1/2(a:,y,z),
IA0 + 01 proves the BASIC properties of# for zp, and

1. IAO + 91 l- V:1:,y3zw(a:,y, z) and

2- IA0 + Q1l_ V-73.3/aZ1aZ2(1l’(17a3/all) A 7“-73:?!»Z2) —+Z1: 22)‘

Similarly there is a A0-formula X(a:,y) defining | | in IA0 + 91, and there is a A0­
formula {(;z:,y)defining in IAO+ Q1.

Definition 2.3.27 A Ao(f1,...,f,,)-formula is a bounded formula in the language of
arithmetic to which the function symbols f1,. . . ,f,, are added.

Lemma 2.3.28

130 + 01+ V:ryz(($#y = 2 H w(1=,y,z))/\(|r| = y H x(1=.y))/\(l;’;IBl = y <->{(13.1/))
+ IA0(#, | |, Lgxj) /\ “BASIC”.

Proof. As [Bu 86, Theorem 2.2 and Corollary 2.3]. See also [PD 82] for a more general
lemma. QED

Definition 2.3.29 (see [Pu 85]). A theory T is sequential if it is a theory with equal­
ity, there is a distinguished provably non-empty domain N(:z:) that satisfies Robinson’s
Arithmetic Q, and there exists a formula fi(t, w, z) (“t is the w—thelement of the sequence
coded by 2'’) such that:

T l- \7’:I:,y,vElz‘v’t,w [N(v) /\ w 3 v
—>(B(t,w,z) H ((B(t,w,:r) Aw < 12)V (t = y Aw =

Examples of sequential theories are IAO,S; for i 2 1, PA, ZF, and GB.
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2.4 Interpretations
Tarski introduced the formal notion of interpretability in [TMR 53]. We give a variant of
his definition here.

Let U, V be two E’;-axiomatized theories in languages containing finitely many non­
logical symbols. Let the axioms of V be given by the 2'1’-formulaay. An interpretation
K of V into U is given by:

0 a formula 6(3) of LU defining the universe, such that U l- El:2:6(:z:);

o a function from the relation symbols of Ly to formulas of LU, respecting the original
arities;

0 a function from the function symbols f of Ly to formulas wf of LU, such that if f
is k-ary, then 1/), has k + 1 free variables and

U l- 6(J:1) A . . . A 6(:c;.) —+3!y(6(y) /\ 1pf(:r1,. . . ,:1:;,,y)).

We warn the reader that the image of = need not be =.
We can extend K in the obvious way to map all formulas cpof Ly into formulas cpKof

LU. To do this we relativize all quantifiers to 6 while we respect the Boolean connectives.
In fact we can, in an intensionally correct way, A’;-define in IAO + 01 a function K
corresponding to this mapping. For ease of reading, we will write a” even if a is a Godel
number. Thus U D V can be defined in as follows:

U D V :<—>ElK(“Kis an interpretation” /\ ‘v’a(ay(a) —>3pPrfU(p,a.K))). (2.1)

(By abuse of notation we denote by D both the arithmetization of the interpretability
predicate and the corresponding modal operator that we will introduce in section 2.5.)

It would be nice to be able to prove in the theories that we are interested in such as
IAO+ 91 that interpretability gives rise to relative consistency. However it seems that
one cannot do this straight—away,but one needs a collection principle:

Definition 2.4.1 B21 2: IA0 plus the scheme

Vu(\7’a: < u3y<p(:z:,y) —->3v‘v’:c < u3y < vcp(:z:,y))

for «,0E 21.

Indeed we have

BZ1+ Q1l- U D V —>(Con(U) —>Con(V)).

We leave the proof to the reader.
However, we prefer to make a definitional move. For the remainder of the dissertation,

we define U D V as smooth interpretability (discussed in [Vi 91a]):

U DV :<—->ElK(“Kis an z'nterpr.”/\‘v’u3v‘v’a< uflp < v(ay(a) —>PrfU(p,aK))).(2.2)

Now we do have

IA0+Q1l- U D V —+(Con(U) —>C'on(V)).



2.4. INTERPRETATIONS 21

For theories containing B21 + 01 the definitions of standard interpretability (2.1) and
smooth interpretability (2.2) collapse.

In Part III of this dissertation, we are concerned mostly with extensions of PA Z_>
B21 + 91, thus we may freely use the standard definition. Moreover, for extensions of
PA one can, and we will, without loss of generality assume the image of = to be =. This
restriction makes life easier, although it is not essential for most results.

We can view interpretability in a semantic way. An interpretation K of V into U
determines, in every model M of U, a new model MK with underlying set {a E M | M ]=
6(a)}. The reader may check that for every a1, . . . , a;. E M”, we have the following:

MK ]=<p(a1,...,a;,) <=> M ]=cp(a1,...,a,,)K.

For finitely axiomatized theories V, Montague in [M0 65] was the first to explicitly
relate the syntactic and semantic definitions of U D V.

It is interesting to note that many famous relative consistency proofs in the mathe­
matical literature arise from interpretations. Thus we have both ZF D ZF + CH and
ZFC DZFC + -CH.

For arithmetical theories extending PA, Hajek [Ha 71]gave an elegant characterization
of interpretability. Because the characterization was implicit already in Orey’s [Or 61],
many authors refer to it as the Orey-Hajek characterization. In order to describe it we
first need two definitions and a lemma.

Definition 2.4.2 Prov,,,~_r('A")stands for “there is a proof of A from T in which only
axioms with Godel number 5 k are used”.

C'on,,(T) := nProv;,,T('_L").

Definition 2.4.3 A theory T with T Q 121 in the language of arithmetic is essentially
reflexive if for all sentences A and for all k, T l- Prov;.,T('A") —>A.

Remark 2.4.4 In the literature, different definitions of essential reflexivity abound. For
example, [HP 93, Definition III-2.33] is as follows: A theory T with T Q 121 in the
language of arithmetic is essentially reflexive if for each theory T’ Q T and for all k,
T’ l- Con;.(T’).

Lemma 2.4.5 IfT is an extension of PA by a primitive recursive set of axioms in the
language of PA, then T is essentially reflexive.

Proof. See [Ber 90, Theorem 2.6]. A feasible version can be found as our lemma 7.2.5.
QED

Theorem 2.4.6 (Orey-Héjek, [Or 61], [Ha 71]) Let U and V be primitive recursive
extensions of PA in the language of PA. Then the following holds:

PA l- U D V 4-»‘V/lcProvu("Con,.( V)").

Proof. See [Ber 90, Theorem 2.9 and Remark 2.10]. For a feasible version, see
lemma 7.3.1 of this dissertation. QED

Definition 2.4.7 A theory V is II,-conservative over U if for all H1-sentences 7r,
V l- 7r é U l- 7r.
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We abbreviate the formalization of “V is H1-conservative over U” as U l>n, V.

Theorem 2.4.8 Let U and V beprimitive recursive extensions of PA in the language of
PA. Then the following holds:

PA l- U l>n, V 4-»VkProvU("C'on,.( V)").

Proof. See [HP 93, Theorem III-2.40]. A feasible version appears as lemma 7.3.2.
QED

Theorem 2.4.9 Let U and V be primitive recursive extensions of PA in the same lan­
guage. Then the following holds:

PAl-UI>V<—»UI>n,V.

Proof. Immediately from theorem 2.4.6 and theorem 2.4.8. See corollary 7.3.3 for a
feasible version. QED

Although the modal principle M (see section 2.5) corresponding to the following the­
orem was baptized ‘Montagna’s Principle’ in the eighties, the unformalized version of the
underlying theorem was proved by Lindstréim already in the seventies.

Theorem 2.4.10 (Lindstriim, [Li 79]) Let U and V beprimitive recursive extensions
of PA in the language of PA. Let S be a primitive recursive set of Z?-sentences. Then
the following holds:

PAl-Ul>V—»U+Sl>V+8.

Proof. We remind the reader that for interpretations between theories extending PA,
we take the image of = to be =.

A precise formal proof can be gleaned from the proof of theorem 6.3.10 in chapter 6.
Here we give a sketch with a more model-theoretic flavor. It is easy to see that the
following fact implies our theorem:

Let M be a model of U, and let K be an interpretation of V into the theory
of M; we call the interpreted structure MK. Then M can be embedded as
an initial segment of MK.

In order to prove this fact, we define pism(s) for “s is a partial isomorphism” and the
relation G(x,y) as follows:

pism(s) := seq(s) /\ (s)o = OKA Vi < lh(s) —1((s),-+1 = SK(s),~)
G(j, y) := 3s(pism(s) /\ lh(s) = j + 1 A (s),- = y)

By induction it follows that for every x E M there is a unique y E MK such that
M l= G'(x,y). Therefore, there is a function g corresponding to G. It is easy to see that
g is an embedding into MK and that it preserves 0, S, + and -.

Now we need only show that the image of M is an initial segment of MK. But
because V 2 PA, and M l: Vx(g(Sx) = SK(g(x))), this is not difficult: we have
M I: ‘v’x‘v’u(6(u)/\ u <K g(Sx) —-+u <K g(x) V u = g(x)). Now by induction on x E M
we find that for every u 6 MK such that M I: u <K g(x), there is a y E M such that
Ml=y<xandMl=u=g(y). QED
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For finitely axiomatized theories the situation is different. As reflexivity for such
theories would be in contradiction with G6del’s Second Incompleteness Theorem, the
Orey-Hajek characterization is not applicable (see however section 2.7).

Instead, we have Friedman’s characterization. Readers unfamiliar with tableau prov­
ability may find a description in definition 2.8.2. We define

Tabprovp(rcp") := -1Tabcon(T + mp).

Theorem 2.4.11 (Friedman’s characterization) SupposeU and V are sequentialthe­
ones and V is finitely axiomatized. Then

IA0 + EXP l- U D V 4-» Tabprov1A0+EXp(" Tabcon(U) —>Tabcon(V)-').

Proof. See [Vi 90a]. QED

It is also clear that for finitely axiomatized theories U, V, U D V is 3271’,so

1A0+o,+U >1/—.nQ(U DV).

Examples of finitely axiomatizable sequential theories are IAO+ EXP (even verifiably
in IAO + 01; see lemma 2.8.22), IAO + SUPEXP, and S._§_and III, for 2' 2 1. At the
moment of writing, as far as we heard nobody knows whether IA0 and 1A0 + 01 are
finitely axiomatizable.

2.5 Interpretability logic
Interpretability logic extends provability logic. The modal formulas A D B correspond to
arithmetical formulas T + A‘ D T + B‘, where T is an arithmetical theory.

Definition 2.5.1 IL contains the provability logic L (see definition 2.2.1) plus the fol­
lowing five axiom schemes:

J1 C1(A—>B) —>(A DB);

J2 (A DB)/‘\(B [>C)—-+(ADC);

J3 (A DC)/\(B I>C)—+(AVB DC);

J4 (A D B) —>(<>A —»<>B);

J5 <>A D A.

Definition 2.5.2 ILM = IL+M, where M is the axiom (A DB) —>(AADC DB/\ElC').

Definition 2.5.3 [LP = IL + P, where P is the axiom (A D B) —>C1(AD B).

Definition 2.5.4 An IL—frameis a frame (W, R), where R is a transitive conversely well­
founded relation on W, with additional relations S,,, for each 111E W, having the following
properties:

0 Su, is a relation on {w' E W | wRw’};

0 S.,, is reflexive and transitive;
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0 if wRw’, wRw” and w’Rw”, then w’Sww”.

Definition 2.5.5 An I LM-frame is an IL-frame satisfying the followingextra condition:

0 if uSwvRz, then uRz.

Definition 2.5.6 A simplified ILM-frame is a frame (W,R), where R is a transitive
conversely well-founded relation on W, with root b say, with one additional binary relation
S such that

0 S is reflexive and transitive and R Q S;

o if uSvRz, then uRz.

Definition 2.5.7 An IL—modelis given by an IL-frame (W, R, {Sw | w E W}) combined
with a forcing relation satisfying the following clauses:

o u H-DA if and only if Vv(uRv => 22|l~A);

o u II~A [> B if and only if Vv(uRv and v If A => 3w(vSuw and 21)Il—

In [JV 90], de Jongh and Veltman prove that IL is modally sound and complete with
respect to IL-models, and that ILM is modally sound and complete with respect to
IL-models on ILM-frames.

Visser showed that ILM is already complete with respect to models on simplified
ILM-frames; for a proof see [Ber 90].

Definition 2.5.8 A T-interpretation is a map “ which assigns to every propositional
variable p a sentence p‘ of the language of T, and which is extended to all modal formulas
as follows:

1. (A l>B)*=T+A“ I>T+B“

2. (ElA)* = Pr0vT(A*)

3. * commutes with the propositional connectives.

Here l> abbreviates the formalization of (smooth) interpretability.

IL is arithmetically sound with respect to sequential theories extending IAO+ Q1.
Smoryriski and Visser proved that ILP is arithmetically sound and complete with

respect to the finitely axiomatized theories GB and ACAO. Next Visser generalized the
result and proved arithmetical soundness of [LP with respect to finitely axiomatized
sequential theories extending IAO+ SUPEXP (see [Vi 90a]). This means that for such
theories T and for all modal formulas A,

ILP l- A <=> for all T-interpretations ", T l- A‘.

Berarducci [Ber 90] and Shavrukov [Sh 88] independently proved that ILM is arith­
metically complete with respect to interpretability over PA. It is also arithmetically
sound (see [Vi 90a]).
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2.6 Definable cuts

Because PA proves induction for all first order formulas, no proper cuts of models of PA
can be defined by formulas. In the context of weaker theories where induction is restricted
to a proper subset of all formulas, on the contrary, definable cuts have proved to be highly
useful tools.

For example, in weak theories like IA0, fast growing functions such as exp are not
provably total. For results that one normally derives using the totality of such functions,
one can find analogs in weak theories by constructing small cuts of numbers for which
some of the fast growing functions in question do have the necessary values. The reader
will find a formalization of this intuition in lemma 2.6.9, lemma 2.6.11 and theorem 2.6.12.

Moreover definable cuts provide very natural interpretations in which the domain is
restricted, but the original operations are left intact. We give examples of interpretations
by definable cuts in lemma 2.6.14 and theorem 2.6.16. Such interpretations in turn give
rise to relative consistency results which are provable in theories as weak as IAO+ 91.

It is time to give some formal definitions.

Definition 2.6.1 Let T Q Q be a XI'1’—axiomatizedtheory. A T-cut is a formula I such
that:

1. T r 1(0),

2. T l- V:z:Vy(I(y) /\ :1:3 y —>I(:c)),

3. T l- V;z:(I(:1:) —>I(S:c)).

Definition 2.6.2 Let T Q Q be a ZI'1’—axiomatizedtheory. A T-initial segment is a
formula J such that:

1. Tl- J(0),

2. T l- V.7:‘v’y(J(y) /\ as g y —»J(:z:)),

3. T l- V1:‘v’y(J(:c)/\ J(y) ——+(J(S2:) /\ J(:I: + y) /\ J(:I: -

Remark 2.6.3 Note that if J is a T-initial segment in an arithmetic language, it de­
termines an initial substructure in every model of T. Because J is T-provably closed
under 0, S, + and - and because the induction axioms of IA0 can be written in H?-form
(see remark 2.1.6), these substructures will themselves be models of IA0. Thus T-initial
segments provide interpretations of IA0 into T.

Remark 2.6.4 For cuts 1, wefrequentlywrite 1:E I instead of
The word cut is not used uniformly in the literature. For example, IAO+ Q1-cut

often refers to a IAO + Q1-initial segment which is even provably closed under wl (see
e.g. [Vi 90a]). The reason that in many applications such confusion is not harmful is
provided by lemma 2.6.6 and lemma 2.6.10.

Lemma 2.6.5 Suppose that T Q IAO and let I be a T-cut. Then there is a formula J
such that

1. T l- V:z:(J(:1:) —>I(:1:));
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2. J is a T-cut;

3. T l- V:cVy(J(:z:)/\ J(y) —+J(a: + y)), i.e. J is closed under +.

Proof. Take

J@)**KflAVMKw-*K$+wl
It is easy to see that T l- V:z:(J(a:)—>I(2:)) and that J is a T-cut.

For closure under +, reason in IA0 and suppose that $1,1226 J and that y E I. Then
by definition of J we have, first, 1:1+ :52 E I. Also y + 2:1 E I, thus y + ($1 + 1:2) =
(y + :1:1)+ 2:2 6 I. We may conclude that 171+ 21:26 J. QED

Lemma 2.6.6 (Solovay’s shortening lemma, [So 76b]) Suppose that T Q IAOand
let I be a T-cut. Then there is a formula K such that

1. T l- V:z:(K(:z:) —>I(:1:));

2. K is a T-initial segment;

Proof. First construct J from I as in lemma 2.6.5. Next, define

K@%HMflAWUm-Jwwfl
We leave it to the reader to prove that K is indeed the desired T-initial segment. QED

The following lemma 2.6.8 is used in almost all applications of cuts. Note that it is
essential that we use the efficient numerals 2‘:which are based on the binary expansion of
2:. First we introduce a notational convention.

Notation 2.6.7 As in Pudlak’s papers [Pu 86], we use the following notation:

TP¢
to denote that there exists a proof of cpin T whose length (to which the length of proof
lines contributes) is 3 n. Furthermore we use

Tgww
mm

to denote that for some polynomial P we have for all n, T l—)- <p(n). Par abus de
langage, we also use these abbreviations in formalized contexts whenever we think that
their use will not confuse the reader.

Lemma 2.6.8 (Pudlak) Suppose J is a T-initial segment. Then T l—|'_‘—| Also we
have IAO + 01 l- \7’1:Prov1~('J(:f)‘).

Proof. We give only a sketch, and leave the formal details to the reader. Essentially,
in the proof of J(:T:), we follow the |x| steps it takes to build E from 5. At every step we
instantiate either the proof of Vy(J(y) —>J(Sy)) or the proof of Vy(J(y) —->J(SSO -y))
with the appropriate efficient numeral. By using Modus Ponens a total of |:z;|times, we
finally derive .](T). The length of the proof can evidently be bounded by a polynomial in

By inspection of the proof we see that it can be formalized to get IAo + 91 l­
‘v’a:ProvT('J(:f)‘). Also it is useful to remark that in the proofs of J(:'zf),only formulas of
a fixed complexity depending only on J are used. QED
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Lemma 2.6.9 Suppose that T Q IA0. For every k and every T—cutI, there exists an
T-initial segment J such that T l- Va:(J(a:) —+I(2§)). (We use functional notation for
brevity, but we remind the reader that there are appropriate equivalents using the A0­
formulas that correspond to 21’= y.)

Proof. We define Io, . . . , 1;, and J0, . . . , J,. by recursion.

0 10(3) 5"" 1(3);

o for every i 5 lc, J,- is constructed from I,- by lemma 2.6.5;

° i+1($) 5” Ji(2I)­

We prove by induction on i that every I, is a T-cut such that T l- V:c(I,-(:5)—->I(2f)).
For i = 0 this is clear. Suppose as induction hypothesis that it holds for i, and reason
in T. First we show that \7’:z:(I,-+1(:z:)—>I(2f+1)). Suppose I E L“, then by definition
2’ E J,-, so because J,- E L we have 2?’ = 2?“ E 1. Next we show that I,-+1 is a T-cut.
Again, suppose that 1: E L“, thus 2’ 6 J,-. Since J, is closed under +, we also have
2’ + 2* = 2=+1e J,-, thus :1:+1 e 1.11.

To find the desired J, simply close Jk under - by lemma 2.6.6.
(Note that we do not have IA0 l- V:c(J(:z:) —>J(2fi).) QED

We remind the reader that col is defined in definition 2.1.7.

Lemma 2.6.10 Suppose that T 2 IAO and let I be a T-cut. Then there is a formula J
such that

1. T l- V:r(K(:z:) —>I(1:));

2. J is a T-initial segment;

3. T l- \7’:c(J(a:) —>J(w1(a:))).

Proof. First take J2 as defined in the proof of lemma 2.6.9, and close it off under - by
lemma 2.6.6 to get a T-initial segment K. Next define

~/(I) =+->31./(K(y) A as S 22").

We leave it to the reader to show that J is a T-initial segment such that T l- ‘v’:z:(J(:r:)—>
K(:c)).

For closure under wl, we reason in T and we use the fact, provable by induction, that
for n > 1, w1(22") 3 224'". Now suppose that 2: E J. Then for some y E K (where we
may take y > 1 without loss of generality), w1(:c) 3 w1(22") 3 224'". But because K is
closed under +, we have 4 - y E K, so by definition w1(:z:)E J. QED

Lemma 2.6.11 Let cpE A0(ea:p). Suppose IAo+ EXP |—V;2:cp(:1:).Then there is a lc such
that IAO l- ‘v’x(2fi 1-» go(2:)).
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Proof. The proof is reminiscent of Parikh’s Theorem (see theorem 2.3.15). Suppose,
in order to derive a contradiction, that there is no I: such that IAO l- V:c(2fi 1-» <p(:c)).
Then, for a fresh constant c and for all k, IA0 I7’2;‘, 1—+<p(c). By the compactness
theorem, there is a model M l: IAO+ {2,°,1 | k E w} + -cp(c). Next, we define M‘ :=
{b E M | Elk(M |= b < 2fi)}. Now M‘ l: IAO + EXP, so M‘ l= \7’:z:cp(a:),in particular
M‘ )= <p(c).But M‘ 9, M, so M l: cp(c). There we have our contradiction. QED

Wilkie and Paris proved that the 1'11-consequencesof IAO+ EXP can be characterized
using IA0-initial segments.

Theorem 2.6.12 (Wilkie and Paris [WP 87], Corollary 8.8)
Let (,0E A0(e:cp). Then the following two statements are equivalent:

1. IAO + EXP l- Va:<,0(:z:)

2. There is an IAO-initial segment J such that IA0 l- ‘v’:z:(J(:c)—>

Proof.

1 —+2 Suppose IAO + EXP l- ‘v’:z:c,o(:c).By lemma 2.6.11, there is a k such that IAO l­
Va:(2‘,'j1-» cp(:::)). By lemma 2.6.9, there is an IA0-initial segment such that IAO l­
‘v’:c(J(:z:)—>2‘; 1). Combining these two facts, we derive the desired conclusion
IAOl- V:z:(J(:1:)—+

2 —>1 For the other direction, we need lemma 2.8.10. Thus we refer the reader to Corol­
lary 2.8.11.

QED

Lemma 2.6.13 Let cpE Ao(e:z:p).If IAO+ EXP l- \7’:1:<p(:c),then IAO}@

Proof. Suppose IA0+ EXP l- \7’:c<p(:c).By theorem 2.6.12, there is an IAO-initial segment

such that IA0 r ‘v’:1:(J(a:)—»<p(:1:)).Moreover by lemma 2.6.8, we have IA0 H-1"J(n). Thus

IAO H-1".p(»r:). QED

We give the most famous examples of interpretations provided by initial segments. One
of them has an almost trivial proof, while the second one, on account of the weakness of
Robinson’s Arithmetic Q, needs a complicated argument.

Lemma 2.6.14 IAO l> IAO + 91 on an IAo—z'nz'tz'alsegment.

Proof. This is a particularly easy application of cuts. By lemma 2.6.10, we simply
construct an IAO-initial segment closed under wl. Remember that IAO is a U1 theory, so
IA0 l- (IAO+ 91)’ (see remark 2.6.3). QED

In order to prove that Q [>IAo on a Q-initial segment, we need a A0 “truth definition”
(with one extra parameter) for A0-formulas. Such a definition was provided by Paris and
Dimitracopoulos.



2.7. CUTS MAY HELP TO CHARACTERIZE INTERPRETABILITY 29

Lemma 2.6.15 (Paris and Dimitracopoulos) Thereis a A0-formulaI‘(a:,z,u) (“:3is
satisfied by the sequence of numbers 2, with bound u) and a constant k such that:

IA0 l- Z (max(z) + 2)""' —+
“ F(:r, z,u) satisfies Tarski’s conditions for 2:6 A0”

Proof. See [PD 82] or [HP 93, Theorem V.5.4] QED

Theorem 2.6.16 (Wilkie) Q D IAOon a Q-initial segment.

Proof. See [HP 93, Theorem V.5.7]. We give only the skeleton of the proof. There are
three steps:

1. Let Q’ be Q with three additional axioms: associativity of + and -, and left­
distributivity (i.e. 2: - (y + z) = I - y + :0 - 2). Nelson has shown that Q D Q’
on a Q-initial segment [Ne 86].

2. Every finite fragment of IA0 can be interpreted in Q’ via a Q’-initial segment.

3. We take a finite fragment T of IAOwhich is so strong that:

o T proves the properties of the exponentiation relation;

0 T proves Tarski’s conditions for the satisfaction formula I‘ for Ao—formulas;

o T proves the least number principle for F(:r, (y,p),u) with y as induction pa­
rameter.

Now to be able to prove the least number principle for all A0-formulas on an initial
segment, it is sufficient to construct by lemma 2.6.9 a T-initial segment J which is
so short that T l- V:z:(J(:z:)—>22' 1), so that we can replace the scheme by a single
axiom.

Finally, we combine all three interpretations. QED

2.7 Cuts may help to characterize interpretability
In this dissertation many theories that we consider are not extensions of PA. On the
other hand, they are almost all sequential.

For such sequential theories U and V that extend Robinson’s arithmetic Q, we can
still prove analogs of theorem 2.4.6 and theorem 2.4.9 using definable initial segments.

First we need a definition.

Definition 2.7.1 For V a theory the axioms of which are defined by the Ell’-formula
at/(y), let V[:z:]be the theory axiomatized by the formula av(y) /\ y 3 1:. Now we can
define local interpretability as follows:

U Dioc V : <=> ‘v’:z:3K[U D V[2:] by interpretation K].

Of course, if V is finitely axiomatized, U D V and U DamV are synonimic.
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For the sake of legibility we will use quasi-modal abbreviations DU and 0;] for Provo,”
and Conau, where ag is the 2'1’-formuladefining the axioms of U.

The following lemma has a proof analogous to the proof of theorem 2.4.10. Let Q+ be
Q plus the axioms expressing that _<_is a linear order.

Lemma 2.7.2 (Pudlék’s Theorem on cuts, see [Pu 85]) Suppose U is sequential,
V extends Q+, and U D V by interpretation K. Then for every V-initial segment I
there is a U-initial segment J such that there is a definable initial embeddingfrom J into
[K .

Proof. See [Vi 90a] and [Vi 93]. There it is also stated that the theorem is verifiable
in IAO+ 01. QED

In the sequel of this section we use some abbreviations to improve ease of reading.
3J E U-cuts stands for the formalization of “there is a U-initial segment J such that”.
By <>j’UTwe abbreviate the formalization of “J does not contain a proof of .1.using only
U-axioms with Godel number < x”.

Lemma 2.7.3 Let U be any sequential theory. Then we have

IAO+ EXP l- \7’x3J e U-cutsDU<>j_,,T.

Proof. See [Vi 93]. Partial truth predicates for formulas of limited complexity (see
section 3.3 and [Pu 86, Pu 87]) play a crucial role in the argument. QED

Theorem 2.7.4 (Visser, [Vi 93])
Let U and V be sequential theories extending 62*. Then we have

IA0 + EXP l- U >;.,,_.V 4-»‘v’x3J E U-cuts C1U<>i,vT.

Proof.

—>Work inside IAO + EXP and suppose U l>;ocV. By lemma 2.7.3, we know that

Vx':lI E V-cuts DVOLVT. For every x, we can apply theorem 2.7.2 to find a U­
initial segment J such that C1U<>i,VT.Thus we derive V:z:3J E U-cuts ClU<>j_VT,as
desired.

4- Work inside IAO + EXP and suppose ‘V/xElJE U-cuts ClU<>,J_.,VT.For every x we can
now carry out a Henkin-construction giving us the desired local interpretation.

QED

Theorem 2.7.5 (Visser, [Vi 93]) Let U and V be sequential theories extending Q+.
Then we have

IAO + EXP l- U l>;o,_.V 4-»VP 6 l'I1(3I E V-cuts Cl;/P’ —->EIJ E U-cuts EIUPJ).

Proof.

—>This follows by theorem 2.7.2 formalized in IAO+ EXP.
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+—This follows immediately from the 4--direction of theorem 2.7.4, when we note that
O,_vT is a H1-formula.

QED

In the next theorem, the quantifier 3K stands for “there is an interpretation K”.

Theorem 2.7.6 Suppose U and V are sequential theories extending Q+. We have the
following scheme of relationships (provable in IAo+EX P ) betweenthe various definitions
of interpretability. Both arrows pointing down are strict.

EU 6 U-cuts Va:DU<>i,VT <=> 3KV:z:DUO§VT
U

U D V

-U

U D;.,c V <=> ‘v’:c3J E U-cuts CIUOJKHVT <=> ‘v’:r3KE1U<>§vT

Proof.

o The =>-direction of SJ 6 U-cuts Va:ClUOi’vT <=> ElKV:cDU<>,’fVTis clear, be­
cause every U—initialsegment provides an interpretation; the 4:-direction follows
from theorem 2.7.2 as formalized in IAO+ EXP.

c To prove 3J E U-cuts \7’1:ElU<>iVT=> U D V, one uses a formalized Henkin con­
struction for a Feferman proof predicate; the argument is analogous to the proof of
theorem 6.5.11.

0 By definition we have U D V => U D;,,,:V.

c U D;,,,_.V <=> V/:z:3J E U-cuts DU<>;B’,vTis just theorem 2.7.4.

o V:c3J E U-cuts ElU<>i’VT <=> V:z:3KDU<>§vT is proved again by the fact that
initial segments provide interpretations and by theorem 2.7.2.

o The arrow EU 6 U-cuts V:cDU<>ivT => U D V is strict. For take U = V = IAo+Q1
and let J be any IAo+Q1-initial segment. Then we have of course IAo+Q1 DIAo+Q1,
but for big enough lc (with respect to IAo+Q1 and J) we have DIAo+Q1Oi'IA0+nlT—»
DIA0+m_l_,by Visser’s adaptation of L6b’s Theorem (see [Vi 93, Corollary 4.4]).

o The arrow U D V => U D;.,,_.V is strict. For take U = IAO + 91 and V = IAO +
(21+ {<>,,,UT | n 6 to}. Then U Dr“ V, but by [Vi 93, Corollary 4.5], U does not
interpret V.

QED
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2.8 Between IA0and IA0+ EXP

The results of this section are not needed in the subsequent chapters of the dissertation.
Instead they appear here to give the flavor of the model—theoreticmethods used by Wilkie
and Paris in [WP 87]. Also we hope that the reader will gain some understanding of the
difference in strength between the theories IA0 and IAO+ EXP.

For example, whereas IA0 interprets IAO+ 01, it does not interpret IAo+ EXP. Thus
IAO+ EXP is much stronger that 1A0 and IAO+ 01. Another advertisement for the
strength of IAO+ EXP is the fact that it proves tableau- consistency of IAO+ 91.

On the other hand, perhaps surprisingly, IAO+ EXP does not even prove consistency
of the extremely weak theory Q. This is caused essentially by the failure of IAo + EXP
to prove a formalization of Gentzen’s cut-elimination theorem.

Another interesting question is the following: when is EXP necessary to prove some
true H1-statement? A partial answer is given in subsection 2.8.2: in IAO+ EXP-proofs of
sufficiently simple H1-sentences, namely those of VII‘;-form,one can get by without EXP
and replace it by restricted consistency statements.

2.8.1 IA0+ EXP proves restricted consistency statements
Definition 2.8.1 A k-formula is a formula with g is:logical connectives. (Note that a
Ic-formulamay be arbitrarily long due to the presence of non-standard terms.)

A k-proof is a proof in which only k-formulas appear. Pr0vT(<p,It) means that there
is a k-proof of «,0from T. Similarly, Con(T,k) means that there is no k-proof of a
contradiction from T.

Definition 2.8.2 Let T be a set of sentences. We say that a sequence of sets of sets of
formulas F0, . . . , F, is a tableau proof of an inconsistency from T if the following conditions
hold:

0 For each X E I‘,, there is an atomic 6 such that 0 6 X and n0 6 X.

o X E To implies X Q T U the set of logical equality axioms.

o For each X E I“, with 2'< 3 one of the following holds:

1- X E F.'+1,

2. X U {0} E I“,-+1for some w-19 E X,

3. X U {fi01},X U {02} E 1”,“ for some (01 —+02) E X,

4. X U {61, -02} E 1“,-+1for some -r(01 —>62) E X,

5 . X U {6(t)} E I‘,-+1for some V:r0(:z:)E X and some term t which is free for :1:in
0(3),

6. X U {-=0(y)} E 1",“ for some 4:/:z:6(:::)E X and some variable y which does
not occur in any formula in X.

o For each Y E I‘,-+1with 2'< .9 there is an X E T‘, such that Y is obtained from X
by one of the rules 1-6.

We write Tabcon(T) if there is no tableau proof of an inconsistency from T.
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Definition 2.8.3 Let L‘ be the language of arithmetic where successor, addition and
multiplication are relation symbols. The only terms of L’ are variables and U. IA5 is
the reformulation of IA0 in L‘, with extra axioms expressing the totality of successor,
addition and multiplication. Similarly any formula cp has an obvious L*—translation go‘
with the same unbounded quantifier complexity.

Lemma 2.8.4 Suppose M l: IA0 + EXP. There is a A0(ea:p)formula Tr(a,y) such
that for every sentence (p E L‘ and every a E M,

a I: cp4:?» M l= Tr(a,r<p_').

(Here we have identified a with the substructure ofM that has universe {cc6 M I M l:
1: g a}. This presents no problem when we work in a relational language.)

Proof. See [PD 82], and cf. lemma 2.6.15. QED

Lemma 2.8.5

mo + EXP r vaviab [b= w§‘)(a)].

(Here w§i)(a) is defined informally as col appliedi times to a.)

Proof. Remember that there is a A0-formula cp(a,i, b) which expresses b = w§i)(a). The
lemma then follows easily by A0(ezp) induction, using an appropriate bound on w§')(a).
QED

Theorem 2.8.6 (Wilkie and Paris [WP 87], Lemma 8.10)

1. IAO + EXP l- Tabcon(IA5 + Q‘,‘).

2. Ifo E 22, then

IA0 + EXP + 0 |'- Tabcon(IA5+ Q; + 0').

Proof. We prove the second, more general, part of the theorem. Suppose that o =
3:z:Vy6(:z:,y), where 6 is a A0-formula, and reason in M l: IAO+ EXP+ 0. Let a be such
that Vy6(a,y). Suppose that F0, . . . ,1“, is a tableau proof in M of a contradiction from
IA5 + Q’;+ 0". Take b = w§‘+1)(a+ 2), as is justified by lemma 2.8.5.

Let hp,‘ I= F,‘ D ZHIUEI.

Define 4-»3f: Var(l‘,-) r——+{u I u < w§i+1)(a+ 2)} such that

b|= /\ Vcpf.
X91’; 6/DEX

Using the appropriate truth definition, P(i) can be expressed by a Ao(e$p) formula.
We will use Ao(ea:p)induction (which is available in IAo+EXP) to prove that Vi 3 sP(i).
This contradicts the fact that I‘, contains both 0 and n6 for some atomic 0.
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0 The base step relies on the observation that if B is a H1 axiom of IAO then b l: fl.
Suppose for example that fl is the induction axiom

V-'6,z(zb(=v,0) A Vy S z(w(9-‘.y) —»w(=r. 511)) -* Vy S 2 ¢(-'v,y))­

Let fl*(:2:o)be obtained from B by replacing 2/2with ‘:50l: 7,l2(:c,y)’(using the truth
definition from Lemma 2.8.4). Then M l: ‘v’:cofi‘(:z:o),so M |= fi*(b), hence b l: (3.

o The induction step from P(i) to P(i + 1) hinges on the fact that the only time an
unbounded quantifier 3 (i.e. wV-1)is to be eliminated in the tableau proof is on
a subformula beginning with 3 of IA; + Q‘;+ 0‘; but for the formula 3:cVy6(:z:,y)
we already know that b l: ‘v’y6(a,y); also the formulas 3y(y = 1: + 1),Ely(y =
:z:1+:z:2),3y(y = 1:1-2:2),and 33/(y = w1(a:)) present no problem, because by induction
hypothesis their free variables can be instantiated by parameters < w§i+1)(a+ 2).

QED

Domenico Zambella found the following generalization of Theorem 8.2 of [WP 87].

Theorem 2.8.7 Suppose T is a sentence, i Z 1 and M is a countable model satisfying

1. M l: IAO "l' Q1, and

2. for all k and for all Hf formulas (p with parameters a1, . . . ,a,, from M,

M l: Va1,. . . ,a,.(Prou1A0+,('cp(m,. . . ,E,{)",k) —>cp(a1, . . . ,a,,)).

Then there is a model M‘ |= IA0 + T such that M -<29M‘.

Proof. It is sufficient to find a model M‘ such that

M‘ l: Diag£i.(M) + IAO+ T,

where in Diaggi. new constants c, are used for elements a E M.
So, in order to derive a contradiction, suppose that Diag,3e_.(M)+IAo+Tis inconsistent.

Then there is a 2?-formula (p and there are a1, . . . ,a,. E M such that on the one hand
M l: cp(a1, . . . , an), but on the other hand IAO+ T l- —:go(c,,1,.. . ,c,,n) by a proof in which
all formulas have complexity is, for some standard k. This contradicts assumption
QED

Corollary 2.8.8 (Wilkie and Paris [WP 87], Theorem 8.2)
Suppose T is a sentence and M is a countable model satisfying

1. M l: IAO+ 91, and

2. for all k, M l: Con(IA0 + T,k).

Then there is a model M‘ l: IAO+ T such that M <21;M‘.
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Proof. In order to be able to apply theorem 2.8.7, it is sufficient to prove that assump­
tion 2 of theorem 2.8.7 is implied by the assumption that for all k, M l: C'on(IAa +'r, 1:).

So suppose in order to derive a contradiction that for some kl and for some Hf’formula
(p with parameters a1, . . . ,a,, from M,

M l= Pr0vIAo+-r(r(p(fia - - - ,6Tn)l.k1)a (2-3)

but

M l: -1<p(a1,. . . ,a.,,). (2.4)

Clearly mp(a1, . . . , an) is a 2',’-formula. By inspection of the proof of 2'1’-completeness
in IAo + 01 (cf. theorem 2.3.24), we conclude from (2.4) that there is a kg such that
M I: Proz21A0+,(’-=cp(fij,. . . ,Ei:)“,k2). Together with (2.3), this implies the existence of
a legsuch that M l: nCon(IAg + T,kg), contradicting the assumption that for all k,
M l= Con(IAg + 'r,k). QED

Remark 2.8.9 In assumption (2) of theorem 2.8.7, we may replace the formula
Prov1Ao+r(r¢P(f1T, . . . , E17)",k) by Tabprov1Ao+,('cp(cT1, . . . , cT,,')"). Similarly we may replace
Con(IA0, k) in assumption (2) of corollary 2.8.8 by Tabcon(IA0). (However, for the use
of corollary 2.8.8 and theorem 2.8.7 in theorem 2.8.13 and remark 2.8.14, we need the
original formulation.)

Also, the assumption that M l: IAO+ 01 is not needed for theorem 2.8.7, although
it is essential for its corollary 2.8.8.

Lemma 2.8.10 [fa is a E2-sentence, then

We(IAO+ EXP + 0 l- C'on(IA0 + {Z1+ 0,

Proof. By theorem 2.8.6, we know that

IAO+ EXP + 0 l- Tabcon(IAo+ 91+ 0).

We remind the reader that cut-free proofs can easily be converted into tableau proofs by
an algorithm that increases the length of the proofs only polynomially.

Now take some is:E w. From the formalization of the cut-elimination theorem given
in the appendix to [Vi 92], it follows that

IAO+ EXP l- Tabcon(IAo + 91+ 0) —>C0n(IAg + .01 + 0, 1:).

(Indeed every k-proof with code p can be converted into a cut-free proof, and thus also
into a tableau proof, whose Godel number is bounded by 2):; see definition 2.1.8 for an
inductive definition of 2fi.)

We may conclude IAO+ EXP + 0 l- Con(IAg + {Z1+ 0, k). QED

The above lemma is a strengthening of [WP 87, Proposition 8.5]. There it was proved
that if 0 is a I'll-sentence, then

Vk (IA0 + EXP + 0 1- C0n(IA0 + 0, k)).
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Remark 2.8.11 At this point we can provide the postponed proof of one direction of
theorem 2.6.12. Let (,0E Ao(e:rp), and suppose that there is an IAO-initial segment J such
that

IAOl- V;'l:(J(.’L‘)—v (2.5)

We want to prove IAO + EXP 1-‘v’z:cp(:z:).
When we inspect the usual proof of A0(e3:p)-completeness in IAO+ EXP, we note

that there is a k1 such that:

IAO + EXP l- V:1:(-vcp($)—>Prov1Ao(rficp(:f)", k1)). (2.6)

Also, because J is an IAO-cut, there is a kgsuch that IAo+EXP l- V1:Prov[A,,('J(f)", kg);
thus by (2.5), there is a k3 such that

IAO + EXP l- V:z:Prov1Ao("<p(T)",k3). (2.7)

Next, we combine (2.6 ) and (2.7) to find a k such that IAO + EXP l- \7’1:(-<p(:z:)—>
-wCon(IA0, k). By lemma 2.8.10 we finally conclude that indeed IAO+ EXP 1-V:rcp(:c).
(Note that we only needed the fact that J is an IA0-cut, not that it is an IA0-initial
segment.)

2.8.2 Conservativity
Wilkie and Paris characterize the VII’;-consequencesof IAO+ EXP by providing a basis
over IAO+ 01: if one adds the restricted consistency statements to IAO+ 01, one can
already derive all VH1?-consequencesof IAO+ EXP. We first need a definition.

Definition 2.8.12 A U,--formula is a formula of the form Vsccpwhere «,0is a Hf formula.
Note that all consistency statements for 2'1’-axiomatized theories can be written in U1
form.

Theorem 2.8.13 (Wilkie and Paris [WP 87], Theorem 8.6)
Let T be a H1-sentence. Then the following two theories have the same U1 consequences:0T12
0 T2 : lAo+Q1+{Con(lAg+T,k)|k€w}.

Proof. T1 l- T; follows from lemma 2.8.10. For the U1-conservativity of T1 over T2,
suppose that

M )= IAO+ Q1+{Con(IA0 + 7',k)|k E w} + fi\7’rcp(:z:),

where -wcp(x)E Elf. We want to find M’ with

M’ l: IAO + EXP + T + -vV1:cp(:z:).

First we construct, by corollary 2.8.8, a model M‘ >-Ea;M such that

M‘ l: IAO + T + -wV:z:cp(:c).

Then by a trick reminiscent of the proof of Parikh’s theorem, we let

M’ := {aeM*|3kew3beMM*|=a<2§’,}.
Note that 2)’,is defined in M‘ for all k E (.0and b E M. This depends on the following
fact which can be proved using Solovay’s cuts, more precisely by inspection of the proof
of lemma 2.6.8 and by lemma 2.6.9:
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For any standard Is there is a standard m such that

IAO+ n, |- vbo,,,,,,. (25;1).

Now M Q M’ and M’ I: IAO+ EXP. Since M’ is an initial segment of M‘, 7' is
preserved downwards hence M’ |= T.

Moreover there is a d E M such that M I: -w<p(d),so by corollary 2.8.8 part 2, since

M -<3: M‘, M‘ I: fi<p(d);and since M is an initial segment of M‘, M’ |= ficp(d), i.e.
M’ )= fi‘v’:1:<p(a:).QED

Remark 2.8.14 If we use the full strength of theorem 2.8.7 instead of its corollary 2.8.8,
we find that if T is a I'll-sentence, the following two theories have the same U, consequences:

0 T1:=IAo+EXP+'rand

. T2 := IA0 + 91 + {Pr0z)IAo+T(r(p(1Tl7' ' ' 11Tr1)-11k) -4 ‘P(~'51»-° - 7"-En) I k E (‘)7

cp E H? with variables among 3:1, . . . ,:r:,,}.

(In fact, by lemma 2.8.10, T1 |- T2.)

2.8.3 Non-conservativity and incompleteness
Theorem 2.8.15 (Wilkie and Paris [WP 87], Theorem 8.11)

1. IAo + EXP is not U1-conservative over IAO+ 01;

2. If 0 is a 22 sentence consistent with IAO+ EXP, then IAO+ EXP + 0 is not
U1-conservative over IAO+ 91 + 0.

Proof. We prove the second statement. Define T := IAO+ 01 + 0, and construct it
by diagonalization such that

IAO + 91 l- 112+—>-aTabc0n(T + 112).

It is easy to see that ~10 is U1. Now suppose that T l- -up. Then T F -Tabcon(T + 712),so
by definition T l- 1,12,contradicting the consistency of T. Thus

IAo+Q1+a|f-=1/2.

On the other hand, 0 /\ zpis 22, so by lemma 2.8.6,

1A0 + EXP + 0 + zb|- Tabcon(IAo + 91+ or+ 1,0).

Therefore by definition of ab,

IAo+EXP+al- -aw.

QED

Corollary 2.8.16 (Wilkie and Paris [WP 87], Corollary 8.13)

1. Vkiln IAO+ 91+ Con(IA0, 1:) I7’Con(IA0, n);
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2. Suppose 1r is a U1 sentence consistent with IAO+ EXP. Then

‘v’k3nIAO+ 01+ Con(IAg + 7r,1:)17’Con(IAg + 7r,

Proof. By theorem 2.8.15, there is a U1sentence it such that

IAO + EXP + 1r+ C'on(IAg + 7r,k) 1-1,0,

but

IAO + Q1+ 7r + C'on(IAg + 7r, 1:) 17’1,0.

On the other hand IAO + EXP + 1r 1- C'on(IA0 + 7r,1:), so IAO + EXP + 7r 1-112.
By theorem 2.8.13, there is an n such that IAO+ 01+ C'on(IAo + 1r,n) 1-zp. Therefore

IAO+ 01+ Con(IA0 + 7r,1:)17’Con(IAo + 7r,

QED

Corollary 2.8.17 (Wilkie and Paris [WP 87], Corollary 8.14)

1. IAO + EXP 17’C'on(IA0);

2. If7r is a U1 sentence, then IAO + EXP + 7r1/ C'on(IAg + 7r)

Proof. We prove the second statement. Suppose that IAo+EXP+7r 1-Con(IA0 +7r),
then by theorem 2.8.13, there is a k E no such that IAO + 91 + C'on(IAo + 7r,k) 1­
Con(IAg + 7r), contradicting theorem 2.8.16. QED

Corollary 2.8.18 IAO+ EXP 17’Con(Q), but IAO+ SUPEXP 1-Con(Q).

Proof. By theorem 2.6.16, Q D IAO on an initial segment. This can be verified in
IAO+ 91 (see [HP 93, Theorem V.5.12]). Therefore IAO+ Q1 1- Con(Q) +->C'on(IAg), so
by corollary 2.8.17, IAO+ EXP 17’Con(Q).

The fact that 1A0+ SUPEXP 1- C'on(Q) follows from theorem 2.8.6, the considera­
tion that as far as IAo+EXP is concerned, tableau provability and out free provability are
equivalent, and from the fact that the cut-elimination theorem for the predicate calculus
can be proved in IAO+ SUPEXP. QED

Lemma 2.8.19 Let U Q IAo+Q1. Then IAo+Q1 proves the following: ifU is consistent,
then U does not interpret IA0 + 01 + Con( U).

Proof. The argument is similar to the proof of [Vi 90a, Proposition 6.2.2.2] Reason in
IAO+ 01 and suppose that U D IAO+ D1 + Con( U) by the interpretation M. Define

Provw(:c) :<=> Prov;A0+g,+(;,,,,(U)(a:) A ProvU(:cM).

Because Provw can be written as an 32';-formula, the principles of L can be verified for
Dw. Moreover we have the IL-consequence

W D W + -rC'on( W).
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See section 2.5 for a definition of IL. The reader may enjoy to figure out how to prove
IL 1- T D D_L. Also we have by definition of Provw:

Provw(wC0n( W) —>-vCon(U)),

so

W DW+-wCon(U). (2.8)

But by definition of Provw, we have Provw(Con(U)), so (2.8) implies -Con( W). Again
by definition of Provw, we conclude that -wC'on(U). QED

Theorem 2.8.20 IAO+ 01+ C0n(IA0) I7’C0n(IAg + EXP).

Proof. Assume that IAO+ 91+ C'on(IA0) 1-Con(IAg + EXP).
In IAO+ EXP, one can prove that the set {:12| 2: 1} is closed under successor, so it

can be shortened to an IAO+ EXP-cut J closed under wl. Now

IAO+ EXP D IAO+ 01+ Con(IA0),

using the interpretation provided by J. Thus by our starting assumption IAO+ EXP D
IAO+ 01 + C'on(IA0 + EXP), contradicting lemma 2.8.19. QED

Remark 2.8.21 Wilkie and Paris [WP 87]showin their Theorem 8.19 that the statement
Con(IA0) is even more hopelessly weak than theorem 2.8.20 suggests, for adding EXP
makes no difference. That is,

IAO+ EXP + Con(IAg) +7’Con(IAg + EXP).

For the next theorem, we need one lemma.

Lemma 2.8.22 IAO+ EXP is finitely axiomatizable.

Proof. See [HP 93, Theorem V.5.6]. The proof uses a A0 truth definition for A0­
formulas (see lemma 2.6.15) and then follows the argument of step 3 from the proof
sketch of theorem 2.6.16. QED

Theorem 2.8.23 Q does not interpret IAO+ EXP.

Proof. Let EXP‘ be the finitely axiomatized version of IAO+ EXP, which exists
according to lemma 2.8.22. If Q D IAO+ EXP, then certainly Q D EXP‘.

Since both Q and EXP‘ are finitely axiomatized, we have IAO+ 91 1-Q D EXP‘, so
IAO+ 91 l- Con(Q) —>C'on(EXP‘), and a fortiori IAO+ Q, 1- Con(IA0) —>Con(EXP*),
contradicting theorem 2.8.20 QED
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Chapter 3

A small reflection principle for
bounded arithmetic

“What a curious feeling!” said Alice,
“I must be shutting up like a telescope!”
And so it was indeed: she was now only ten inches high, and her face brightened up at the
thought that she was now the right size for going through the little door into that lovelygarden.

(Lewis Carroll, Alice in Wonderland)

Abstract. We investigate the theory IAO+ 01, and strengthen [Bu 86, The­
orem 8.6] to the following: if NP aé co-NP, then E-completeness for witness
comparison formulas is not provable in bounded arithmetic, i.e.

IAO + 01 l7’‘v’bVc (Ela(Prf(a, c) /\ V2 3 afiPrf(z, b))
—+Prov('3a(Prf(a,c) /\ V2 3 a-wPrf(z,5))”)).

Next, we study a “small reflection principle” in bounded arithmetic. We
prove that for all sentences cp,

IAO + 01 l- \7’1:Prov('—\/y3 T(Prf(y, —>90)”)

The proof hinges on the use of definable cuts and partial satisfaction pred­
icates akin to those introduced by Pudlak in [Pu 86].

Finally we give some applications of the small reflection principle, showing
that the principle can sometimes be invoked in order to circumvent the use of
provable Z3-completeness for witness comparison formulas.

3.1 Introduction

A striking feature of Solovay’s Theorem that Lo'b’s logic is complete for arithmetical in­
terpretations is its amazing stability. If one sticks to the unimodal propositional language
and standard arithmetical interpretations, the result holds (modulo a trivial variation)
for any decently axiomatized extension of IAO+ EXP. Such stability is in some sense a

43
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weakness: unimodal propositional logic combined with the standard interpretation cannot
serve to classify or give information on specific theories in a broad range. Of course this
weakness disappears when we extend the modal language, but that is not our subject here
(however see [Vi 90a, Bek 91]; [Bek 89]).

Is there life outside the broad range of arithmetical theories satisfying Solovay’s Com­
pleteness Theorem? Clearly the question is only sensible if the theories under considera­
tion verify L6b’s logic, or perhaps some still interesting weakening of it.

Two directions of research come to mind. The first one is to weaken the logic of the
arithmetical theory. Specifically one can study theories like Heyting Arithmetic (HA),
the constructive version of Peano Arithmetic. It turns out that HA verifies the obvious
constructive version of L6b’s logic plus a wide variety of extra principles (see [Vi 81, Vi 82,
Vi 85]). The only definitive information that we have is a characterization of the closed
fragment of HA. For all we know the provability logic corresponding to HA itself could
be H3-complete. Moreover, extensions of HA have quite different provability logics. Note
by the way that provability logics need not be monotonic in their arithmetical theories.

The second direction of research is simply to look at classical arithmetical theories
that are strictly weaker than, or even incompatible with, IAO+ EXP. It turns out that
there are two salient theories of this kind: Paris and Wilkie’s IAO+01 and Buss’ S21,both
of them satisfying L6b’s logic (see [WP 87, Bu 86]). Does Solovay’s Theorem still hold
for them? At present nobody knows —or to be precise, we haven’t heard that anybody
knows.

This chapter is a first contribution to an understanding of the difficulties involved in
proving or disproving Solovay’s Theorem for theories like lAo+Q1 and S21.Solovay’s proof
involves Rosser methods. The problem for us resides in the instances of H’;-completeness
that occur in the proof. Two points are important.

a We do not know whether the instances of H‘;-completeness used in Solovay’s proof
are provable in our target theories. Buss proved that provability of H‘;-completeness
with parameters in 3%implies NP = co-NP (see [Bu 86]). In section 3.2 we elaborate
on this theme. To be specific, we prove that if NP 76 co-NP, then Z-completeness
for witness comparison formulas is not provable in bounded arithmetic, i.e.

IAO + 01 l7’VbVc (3a(Prf(a, c) A V2 3 anPrf(z, b))
—+Prov("3a.(Prf(a, E) /\ V2 3 a-uPrf(z,5))‘)).

o In many cases we can circumvent the use of instances of H‘;-completeness. Svejdar
discovered the first alternative argument when he surprisingly provided a proof of
Rosser’s Theorem that genuinely differed from Rosser’s own proof (see [SV83]).
To this end he introduced a principle which we have dubbed Svejdar’s principle.
In section 3.3 we prove a “small refiection principle” in our target theories from
which §vejdar’s principle immediately follows. More precisely, we show that for all
sentences cp,

IAO+ 91 l- V:cProv(r‘v’y3 f(Prf(y, —>cp)").

Svejdar’s principle is not sufficient to derive Solovay’s Theorem. However, it has
been fruitfully exploited in the dogged attempt to use Solovay-likemethods to embed
larger and larger classes of Kripke models for L6b’s logic in our weak arithmetical
theories. The state of this dogged art can be found in chapter 5 and [BV 93].

We end section 3.3 with some other applications of the small refiection principle.
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In section 3.4, we use the small reflection principle in order to extend Krajicek and
Pud1a’.k’sresult on the injection of inconsistencies into models of IAO+ EXP.

Theorem 3.2.7 and theorem 3.3.20, the main results of section 3.2 and section 3.3,
were published previously in the technical report [Ve 89], which in turn is based on my
master’s thesis [Ve 88].

We assume that the reader is familiar with [Bu 86] and [WP 87]. However, most of
the definitions we need can be found in section 2.3.

Remark 3.1.1 In cases where confusion seems unlikely, we will sloppily leave out some
numeral dashes, in particular deeper nested ones.

3.2 Z3-completenessand the NP=co-NP problem
In this section we will prove that, under the assumption that NP ;£ co-NP, the following
holds:

IA0 + Q1 l-,’\7’bVc (3a(Prf(a, c) /\ V2 3 a-wPrf(z, b)) H
—+Prov("3a(Prf(a,E)AV23 a-iPrf(z,

In the proofs of the lemmas leading up to this result we will frequently, often without
mention, make use of the following proposition and its corollary.

Proposition 3.2.1 ( [Bu 86]) Suppose A is a closed, boundedformula in the language
of S2}and let R be a consistent theory extending S21. Then R l- A ijfw ]= A.

Corollary 3.2.2 ( [Bu 86], Prop. 8.3) Suppose A(a') is a boundedformula in the lan­
guage of S21,and let R be a consistent theory extending S]. If R l- V:i:'A(:i:'),then w ]=
V:i:'A(1':').

In this section, we will use the name IA0+Q1 for Buss’ theory S2 (see Definition 2.3.12),
in which induction for formulas from the hierarchy of bounded arithmetic formulas in a
language containing I ], and # is allowed. Because S2 is conservative over IA0 + 91,
the name change has no repercussions on the results of this section. (In the next section,
where we need to construct formalized satisfaction predicates, we will be more careful.)

In order to prove the main theorem of this section, we need to prove a few seemingly far­
fetched lemmas. Their proofs borrow heavily from the formalization carried out in [Bu 86].
To make these lemmas understandable, we will give some details of the formalization of
the predicate Prf. Buss uses a sequent calculus akin to Takeuti’s (see [Ta 75]). He
considers a proof to be formalized as a tree, of which the root corresponds to the end
sequent, and the leaves to the initial sequents of the proof. Every node of the proof tree
is labeled by an ordered pair (a, b). The second member of this pair codes a sequent, and
the first member codes the rule of inference by which this sequent has been derived from
the sequents corresponding to the children of the node in question. For leaves, the first
member of the corresponding ordered pair codes the axiom of which the initial sequent is
an instantiation.

The only extra fact we need here is that logical axioms are all numbered 0; in particular,
for all terms t, the tree containing just one node labeled <0," —> t = t_‘) is a proof of
—> t = t. Because of a peculiarity in the encoding of trees, by which 0 and 1 are reserved
as codes for brackets, Buss encodes the proof just mentioned by (0, F ——>t = t") + 2.
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In the sequel, we will sometimes abuse Buss’ conventions in order to keep the formulas
legible. Thus, we will write (0, " —> d = d") for Buss’ (0, (0 * Arrow) an*('I,,‘ anEquals an
*"Id")) + 2.

Lemma 3.2.3 Let 1,l2(d,b) be the formula V2 3 (0, P —+ d = d")fiPrf(z, b). The predicate
represented by 1/2is co-NP-complete.

Proof. Straightforwardly, it is a H‘;-formula, hence it represents a co-NP predicate.
For the other side, viz. co-NP-hardness, begin by supposing A(a1, . . .,a;.) E co-NP. We
will polynomially reduce A to 1,b. (For definitions of the complexity theoretic concepts
that we mention, see definition 2.3.7 and definition 2.3.8; and see remark 2.3.10 or [Bu 86,
Thm 1.8]).

By provable )3‘;-completeness (see theorem 2.3.24), there is a term r(c'i‘)such that

IAO + 01 l- ~A(&‘) —»32 3 r(a‘)Prf(z, 'aA(a"1, . . . ,m)“)

and thus

in )= -A(&‘) —+Elz3 r(a')Prf(z,'fiA(cT1,... ,a;)“)

Because r(a') 3 'r—(a'—)"3 (0,' —> r ft’)= r 67)‘), we also have

in l: ~A(a) —>32 3 (O," ——>7T1’)= @")Pr_f(z,'-oA(a"1, . . .,a;)“). (3.1)

On the other hand, by Proposition 3.2.1 and the consistency of IAO+ 01, we have

w l= 3z S (07 —* 7% = 7‘ &'—)">P7‘f’(z.’-'A(<’z’I,- - - ,aI)") -+ -v4(5)- (3-2)

From (3.1) and (3.2), we conclude that

w l: A(a') «—»Vz 3 <0,“ ——+mt") = _(—a‘)“)fiPrf(z, 'wA(aj, . . . ,aT,.)‘).

This means by the definition of it that

w l= 24(5) <->¢(7'(5)ar”‘A(fT1,---,<Tk)1)­

As both "wA(a7, . . . , 6;)“ and r(a') can be computed from 6.’by polynomial time func­
tions, we have reduced the co-NP predicate A to w. QED

Lemma 3.2.4 Let B(a1, . . . ,a;,) be a llll’-formula representing a co-NP complete predi­
cate. If NP 79 co-NP, then

IAO + 01 l7’Va'(B(a') —->Prov('B(cT1’, . . .,fi)")).

Proof. An application of Parikh’s Theorem for IAO+ 91 (cf. theorem 2.3.15). We
leave the details, which are similar to part of the proof of [Bu 86, Theorem 8.6], to the
reader. QED

Lemma 3.2.5 If NP 94 co-NP, then

IAO+ 01 l/VbVd (V2 3 (O," —> d = d‘)-Prf(z, 5)
—>Prov('\7’z 3 (0, F ——>d = d")fiPrf(z, b)").
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Proof. Directly from Lemma 3.2.3 and Lemma 3.2.4. QED

Lemma 3.2.6 IA0 + 01 proves the following:

\7’bVd (Prov(F3a.(P7'j(a., F ——+cFl= 3-‘) A V2 3 a.-vPrf(z, l)))”)

—>Prov(F‘v’z 3 (0,F —> = c_l")fiPrf(z,5)F'))3

Proof. It is not difficult to see that for Buss’ formalization of Prf, we have the following:

IA0 + Q1l- VdVa(P7‘fla,F —> c—l= 31) —>a _>_(O,F —> ti = 37)),

and thus

IAO + 01 l- \7’b‘v’d(3a(Prf(a, F —> 3 = (T) A Vz 3 a-vPrf(z, b))
—>Vz 3 (0,F —> 3 = c_i")fiPrf(z,b)).

This in turn immediately implies our lemma. QED

Theorem 3.2.7 If NP 76co-NP, then

IA0 + 01 I/VbVc (3a(Prf(a, c) /\ V2 3 amPrf(z, b))
—»Prov(F3a(Prf(a, C) A V2 3 anPrf(z,l—)))"')).

Proof. Suppose that NP =;éco-NP, and suppose, in order to derive a contradiction,
that

IA0 + 91 l- ‘v’bVc (3a(Prf(a, c) /\ V2 3 afiPrf(z, b))
—>Prov(F3a(Prf(a,E)/\ V23 a-~Prf(z,

Then, in particular,

1A0 + 91+ Vb‘:/d (Prf((0,F -—» 3 = Em," —» E1= 8“)

/\‘v’z 3 (0,F ——+3 = d7)fiPrf(z,b)

——>Prov(F3a.(Pr_/’(a,F —> d = FdF')/\ V2 3 a-«Prf(z, (3.3)

We know that

IAO + Q1l- ‘v’d(Prf((0,F —-+if = T), F —> 3 = d"))

Combined with (3.3), this implies the following:

IAO + 91 l- Vb‘:/d (V2 3 (0, F —> 3 = c_l1)fiPrf(z, b)

—>Prov(F3a(Prf(a.,F —->3 = T) /\ V2:3 a-vPrf(z,

Now we apply Lemma 3.2.6 to derive

IAQ + 91 l‘ Vb)/d (‘v’z3 (0, F —> = T')'1P7‘_/(Z, b)

—>Pr0v(F\'/z 3 (0,F ——>d = c_iF‘)~Prf(z,5)")),

in contradiction with Lemma 3.2.5. QED



48 CHAPTER 3. A SMALL REFLECTION PRINCIPLE

Remark 3.2.8 We can prove that provable Z3?-completenessfails already for a much
simpler l'I‘1’-formula)((a, b, c) defined as follows:

x(a,b,c) := ‘v’a:§cVy§c(a-:1:2+b-y;£c).

The fact that Z3?-completenessfails for X follows immediately from Lemma 3.2.4 and the
following lemma, to which A. Wilkie attracted our attention.

Lemma 3.2.9 (Manders and Adleman, see [MA 78]) The set of equations of the
form (a -122+ b - y = c), solvable over the natural numbers, with a, b, c positive natural
numbers, is NP-complete.

Note that Lemma 3.2.9 implies that the formula Elcrg cily 3 c(a - 3:2+ b - y = c)
represents an NP-complete predicate, and thus that X as defined above represents a co­
NP complete predicate.

3.3 The small reflection principle
In this section, we will present a proof of the fact that IAO+ 01 proves the small reflection
principle, i.e. for all (,0:

IAQ + Q1l- V:CCl(Cl,_.;p—>gp),

where Dip is an abbreviation for Prou('cpI) and Clxcpis a formalization of the fact that qp
has a proof in IAO+ 01 of Gbdel number 3 :12.In fact, all arguments that we use can be
carried out already in Buss’ S5, as the reader may check for him/herself.

In the proof, we will use the existence of partial truth- (or satisfaction-) predicates
Sat" for formulas of length 3 n. The intended meaning of Sat,,(:c,w) will be “the formula
of length 3 n with Godel number I is satisfied by the assignment sequence coded by w”.
Pudlak [Pu 86] has constructed partial truth predicates much like the ones we need. (An
analogous construction, where Satn is related to quantifier depth instead of length, can
be found in [Pu 87].)

However, our construction departs from Pudlé.k’s in two ways. Firstly, whereas Pudlak
presents his results for theories in relational languages, we allow function symbols.

Secondly and more importantly, IAO+ Q1 is neither finitely nor sparsely axiomatized.
Regrettably we cannot even apply to IA0 + 91 a trick of Pudlak’s which turns some non­
sparse theories like PA and ZF into sparse ones (see Theorem 5.5. of [Pu 86]). Therefore
we introduce new satisfaction predicates Sat,,_A(:r,u2)with as intended meaning: “the
A0-formula of length 5 n with Godel number :1:is satisfied by the assignment sequence
coded by in”. Using these satisfaction predicates, we will be able to prove by short proofs
that the A0-induction axioms are true.

In order to start the construction of short satisfaction predicates, we need a few more
assumptions and definitions. First of all, when formalizing, we view IAo+Q1 in a restricted
way more akin to Paris and Wilkie [WP 87] than to Buss [Bu 86]: see definition 2.3.1.

For this system, we can define the appropriate Alf-predicates Term(v), Fmla(u),
Sent(u), Prf(u,u) in S}.

In Buss’ formalization of sequences, atstands for a function which adds a new element
to the end of a sequence; ** stands for a function which concatenates two sequences; and
B(t, w) stands for the function giving the value of the t-th place in the sequence coded by
w.
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In this chapter, we denote concatenation of sequences sloppily by juxtaposition, and
we leave out some outer parentheses; thus, for example, 3;" ——>"2 stands for Buss’s (0 =I=
LParen) at*(y atImplies) * *(z * RParen).

Definition 3.3.1 We formally define four concepts that we need in order to construct
truth predicates.

o w =,- w’ := Len(w) = Len(w’) A \7’t(t 3 Len(w) A t 55 2'-—>fl(t,w) = B(t,w')), i.e.
the only possible difference between the sequences coded by w and w’ is at the i-th
value;

0 Fmla,,(v) := Fmla(v) A Len(v) 3 n, i.e. v is the Godel number of a formula of
length 3 n;

0 Fmla,,,A(v) := Fmla,,(v) “and 22codes a Ao—formula”;

0 Evalseq(:c,w) will mean that the sequence coded by w is long enough to evaluate all
variables appearing in 2:, i.e.

Evalseq(:c, w) := Seq(w) A (Fmla(:r) V Term(:1:)) A Vz'(“the variable 12,­
occurs in the term or formula with Code! number 2:”
—>Len(w) Z 2').

Furthermore, we introduce the following two abbreviations:

0 Evalseq,,(a:,w) := Fmla,,(:z:) A Evalseq(:z:,w);

0 E'ualseq,,,A(:z;,w) := Fmla,,,A(:1:) A Evalseq(:1:,w);

Next we define, by Buss’ method of p-inductive definitions, a function Valsuch that,
if t(v,-,,...v,-n) is a term of the (restricted) language of IAO + 91 and w codes a se­
quence evaluating all variables v,-1,.. .v,- appearing in t, then Val('t",w) gives the value
of t[fi(z'1,w), . . . ,fi(i,,, w)].

Definition 3.3.2 Let Valsatisfy the followingconditions:

71

0 -nTerm(t) V -=Evalseq(t,w) —+Val(t,w) = 0;

o the p-inductive condition:

Ter'm(t) A Evalseq(t, w) —>
(t = '0" A Val(t,w) = 0)
V 311< t(t = "v," A Val(t, w) = fl(z',w))
V 3t1,t2 < TCT'7Tl(t1)/\ Te1'm(t2)
A ((t = "S'"t1 A Val(t,w) = S( Val(t1,w)))
V (t = t1' + "t; A Val(t, w) = Val(t1, w) + Val(t2, 112))
V (t = t1" - "tg A Val(t,w) = Val(t1,w)- Val(t2,w))))

By induction, we can show that t#w will be a bound for Val(t,w). Thus, by [Bu 86,
Theorem 7.3], Valis Al,’-definable (thus provably total) in S2‘;furthermore, the definition
of Val in S21is intensionally correct in that properties of Val can be proved in S21(and
thus also in IAO+ 01) by the use of induction.
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Remark 3.3.3 Note that we cannot construct in IAO+ 01 a correct valuation function
Val for a language that contains #. For, to any a we can associate a formalized term
f(a) given informally as 1#2# . . . #2 where the number of TS is |a|. A correctly defined
Valshould give Val(f(a), w) = exp(exp(|a| + 1) - 2) 2 exp(a) (cf. [Ta 88]). Therefore by
Parikh’s Theorem (cf. theorem 2.3.15), Valcould not be A0-definable and provably total
in IAQ + Q1.

In the sequel, we will freely make use of induction for Ao( Val)-formulas in IAO+ 01,
as is justified by the IAO+ Q1-analogs of Buss’ Theorem 2.2 and Corollary 2.3. We will
especially need the following lemma.

Lemma 3.3.4 There exists a constant c such that for every term t with free variables
among v,-,,...,v,-m and for every n with Len('t") 3 n, we can prove the following by
proofs of length 3 c - n:

IA0 + 91 l- Evalseq(rt‘, w) —>Val('t1, w) = t[fl(i1, w), . . . ,B(im,

Proof. Straightforward by induction on the construction of t. QED

For the definition of satisfaction predicates, we need one more definition.

Definition 3.3.5 We formally define the following:

s(i,a:, w) := (Subseq(w, 1, i) =o=:13)4:*Subseq(w,i+1,Len(w)+1).

Thus, if w is a sequence of length 2 i, s(i, 1:,w) denotes the sequence which is identical
to w, except that asappears in the i-th place.

Definition 3.3.6 We say that Sat,.(:r,w) is a partial definition of truth for formulas of
length 3 n in IAO + 01 iff IAO + 01 l- Evalseq,,(:r,w) —>

{S'at,,(;z:,w) 4-»
[3t, t’ < a:(Term(t) A Term(t’) A :1:= tr = ‘t’ A Val(t,w) = Val(t’, w))
V Elt,t’ < :I:(Term(t) A Term(t’) A :1:= t" 3 ‘t’ A Val(t,w) 3 Val(t’,w))
V 3y < :I:(:z:= ‘F-‘y A -wSat,,(y, w))
V 3y, 2 < ;7:(:c= yr ——+“z A (Sat,,(y,w) —>Sat,,(z,w)))
V Ely,i < :r:(:z:= 'Vv,~"y A ‘v’w’(w =,- w’ —>Sat,,(y,w’)))
V 3y,i,t < :1:(Term(t) A 1: = '(‘v’v,-3 "t")"yA

Vw’ 3 s(i, Val(t,w),w)(w =,~w’ A B(i,w) 3 Val(t,w) —>Sat,,(y,w’)))]}

We denote the part between brackets on the right hand side of the equivalence by
Z(Sat,,; :z:,w);note that these are just Tarski’s conditions.

Similarly, we say that S'at,,,A(:c,w) is a partial definition of truth for A0-formulas of
length 3 n in IAO + 91 iff IAO + Q1 l- Evalseq,,,A(:1:, w) —>

{Sat,,_A(;r,w) 4-+
[3t, t’ < :c(Term(t) A Term(t’) A :1:= t" = ‘t’ A Val(t,w) = Val(t’,w))
V Elt,t’ < :1:(Term(t) A Term(t’) A :1:= t" 3 ‘t’ A Val(t,w) 3 Val(t’,w))
V Ely < :1:(a:= "—-"yA -Sat,,,A(y, w))
V 3y, z < :1:(:r= y’ —>"2 A (Sat,,,A(y,w) —>Sat,,,A(z,w)))
V 3y,i,t < a:(Term(t) A :2:= "(Vv,-3 "t')“yA

Vw’ 3 s(i, Val(t,w),w)(w =,- w’ A fi(i,w) 3 Val(t,w) —>Sat,,_A(y,w')))]}

We denote the part between brackets [ ] on the right hand side of the equivalence by
Z3A(Sat,.,A;2:,w). Note that the only difference between 2(Sat,,; :3,w) and Z3A(Sat,,,A;2:,w)
is that in the latter, the disjunct for the unbounded quantifier V is left out.
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In the proof of the main theorem of this section, we will reason inside IAo+Q1, and we
will need the existence of Godel numbers representing formulas Sat“ that provably satisfy
the conditions of the preceding definition. Therefore, in the unformalized proofs below,
we take care that the formulas Sat,, and the proofs that they have the right properties
be bounded by suitable terms. The following lemmas provide us with such formulas.
In [Pu 86, Pu 87] Pudlak proves similar lemmas for a language without function symbols.
Below, we sketch the adaptation of his method to our case. The parallel construction
of a Ao( Val, | |, |_,1,_:c_|,#)-formula .S'at,,,Awhich works for A0-formulas is particular to this
dissertation. We use the formula Sat,,,A only in our proof that S'at,, preserves the A0­
induction axioms, but there its use is essential.

Lemma 3.3.7 There exist formulas Sat,,(:1r:,'w)for n = 0,1,2,... of length linear in n,
and such that, by a proof of length linear in n,

IA0 + Q1 l- Evalseq,,+1(a:,w) —>(Sat,,+1(:1:,w) 4-»Z(Sat,,;:r,w)).

Proof. Sat." is constructed by recursion. We can define Sato arbitrarily, as there are
no formulas of length 3 0. If we have the formula Satk, we obtain Sat;,+1 by substituting
Satk for Sat” in the formula ZI(Sat.,,;a:,w) defined in Definition 3.3.6.

Remember that we have to ensure that the length of the formula Sat” grows linearly in
n. However, if we straightforwardly used E(Sat,,; 1:,w) as defined above, the length of Satn
would grow exponentially in n, because E(Sat,,;:z:,w) contains more than one occurrence
of Sat,,.

Ferrante and Rackoff (in [PR 79, Chapter 7]) describe a general technique for writ­
ing short formulas, due to Fischer and Rabin. Using these techniques, one can replace
E(Sat,,; 1:,w) by a formula Z3’(S'at,,;1:,in) which contains only one occurrence of Sat,,, and
which is equivalent to Z3(Sat,,;:c,w) in a very weak theory - say predicate logic plus the
axiom SO aé 0.

Ferrante and Rackoff use the inclusion of +—>in the language of the theory in an
essential way. However, Solovay sent us a different construction of short formulas which
circumvents the use of H. With his kind permission, we present a sketch of his proof.

Solovay’sbasic idea is to shift attention from sets to characteristic functions. Without
restriction of generality, we may assume that we work with unary predicates Sat,,(:c)
instead of S'at,,(;z:,w). Let

F,,(2:, y) := (y = 50 A Sat,,(:z:)) V (y = 0 /\ -Sat,,(:z:)).

If we can find a formula H,, equivalent to F,, of length proportional to n, it will be easy
to define using this formula our desired formula Sat,,+1.

Let L be the language of IAO+ 91 enriched with a new binary predicate letter C’. We
can find a formula <1)of L in prenex normal form, having only the variables 1: and y free,
such that if G is interpreted as F,,, then <1)is interpreted as F,,+1. We show how to find a
formula \IIwhich is equivalent to CDand which has only one occurrence of G. Assume that
<I>starts with the string of quantifiers (Qlxl) . . . (Q,:1:,), and that there are k occurrences
of G in the matrix of (D,say G(t1,m1), . . . , G(t,,,m;,). The formula ‘I1will have the form

(Q1221)---(Qr$r)(3y1)"'(3yk)lMA Sl­

Here yl, . . . ,y,, are fresh variables (for the moment —in the final definition we will be less
liberal with variables). The formula M is obtained from the matrix of (Dby replacing each
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occurrence of G'(t,-,m,-) by m,- = y,-. 5'’ job is to ensure that the y,-’sare chosen correctly.
It is defined as follows.

I:

S I: \7’u213w2[G(w1,w2)/\ A('l.U1=t,'—* ’U)2=
i=1

If we define H,,+1 from H,, using ‘II,we get a formula of length proportional to nlog n,
because at every step we introduce fresh variables in order to avoid clashes. There are
however tricks to get by with a finite set of variables, as the reader may enjoy to figure
out (or to look up in [PR 79, Chapter

We will write 2’(Sat,,;:z:,w) for the equivalent of 2(Sat,,;a:,w) resulting from an ap­
plication of the techniques described above. The length of Sat,, thus constructed via
iterated application of E3’to Sat) is indeed linear in n. Moreover, for all n, the shape
of the proof of )3(Sat,,;a:,u2) 4-»ZI’(Sat,,;:z:,u2)is the same for all n. Thus, the proofs of
2(Sat,,; :5,w) +-+E’(Sat,,;a:, w) grow linearly in n. Hence, as Sat,,+1(:c,w) E 2’(Sat,,; 11:,in),
we have the following by proofs of length linear in n:

IAO + 91 l- Sat,,+1(1:,u2) +—>E(Sat,,;:z:,u2) (3.4)

QED

Lemma 3.3.8 IAO+ 01 proves by a proof of length of the order of n2 that the formula
Satn as constructed in Lemma 3.3.7 is a partial definition of truth for formulas of length
3 n.

Proof. We want short proofs showing that Sat“ is a partial definition of truth for
formulas of length 3 n in 1A0+ 01, i.e.

IAO + Q1 l- Eualseq,,(:z:,u2) —>(Sat,,(:1:,u2) +—>Z(Sat,,;;z:,w)).

By (3.4), it suffices to show that, by proofs of length of the order n2,

IAO + 01 l- Eualseq,,(:r,w) ——>(Sat,,(:1:,u2) <—>Sat,,+1(:z:,u2)).

This can be proved by external induction on n. In fact, when we define

4),, := ‘v’:rVw(Evalseq,,(:z:,w) —>(Sat,,(a:,w) 4-»Sat,,+1(:1:,w))),

the proofs of <I>,,—+<I>,,+1in IAO + 01 will have a shape which does not depend on n. (We
refer those readers who seek elucidation by examples to [Pu 86, Lemma 5.1].) We can
observe that every proof in IAO + 91 of <I>,,—+<I>,,+1is the instantiation of a single proof
scheme. Thus, the length of the proofs of <I>,,—><I>,,+1increases only linearly in n, so that
the length of the proof in IAO+ Q1 of

\7’:z:Vw(Eualseq,,(:z:,w) —+(Sat,,(:c,w) 4-»Sat,,+1(:z:,u2))),

is of the order n2. QED

Lemma 3.3.9 There exist formulas Sat,._,A(:z:,u2)for n = 0,1,2,... of lengths linear in
n, and such that IAO + 01 proves by proofs of length linear in n that Sat,,+1,A(:z:,u2) +—+
EA(Sat,,,A;a:, w). The resulting formulas Sat,,,A(:t:,uJ) are Ao( Val)-formulas.
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Proof. Completely analogous to the proof of Lemma 3.3.7. Because 2A(Sat,,,A; :c,w)
contains only bounded quantifiers, and because all quantifiers introduced by the Solovay
method can be bounded, the resulting formulas are indeed Ao( Val). QED

Lemma 3.3.10 IAO+ 01 proves by a proof of length of the order of n2 that the formula
Sat,,_A(2:,w) as constructed in Lemma 3.3.9 is a partial definition of truth for A0-formulas
of length 3 n.

Proof. We adapt the proof of Lemma 3.3.8, incorporating the fact that we are con­
cerned with A0-formulas only. Thus instead of <I>,,,we define

<I>,,,A := ‘v’:z:Vw(Evalseq,,_A(:c,w) —+(S'at,,_A(a:,w) <—+Sat,,+1,A(:z:,w))).

The proof of <I>,,,A—><I>,,+1,Aruns along the same lines as the proof of <I>,,—+<I>,,+1,using
the extra fact that if :3 = y" —+“z and Fmla,,+1,A(a:), then Fmla,,,A(y) and Fmla,,_A(z),
etc. QED

We now show that the partial definitions of truth can, by proofs of quadratic length,
be proven to satisfy Tarski’s conditions, which justifies their name.

Lemma 3.3.11 (cf. [Pu 86, Pu 87]) There exists a constant c such that for everyfor­
mula cp with free variables among v,-1,. . . ,v,-m and for every n with Len('<p“) 3 n, we can
prove the following by proofs of length 3 c - n2:

IAO + 01 l- Vw(Evalseq('<p",w) —->(S'at,,("<p“,w) H ap[B(i1,w), . . . ,fi(im,w)])) (3.5)

and, ifcp is a A0-formula, we can also prove the following by proofs of length 3 c -n2:

IA0+Q1 l- Vw(Evalseq(r<p‘,w) —»(Sat,,,A("<p",w) <—>g0[B(i1,w), . . . ,B(i,,,,w)]))(3.6)

Proof. By cases. If «,0is an atomic formula t 3 t’ of length 3 n and with free variables
among v,-1,. . . ,v,-m, Lemma 3.3.8 implies that we can prove the following by proofs of
length linear in n:

IAO+ 01 l- Vw (Evalseq("t 3 t",w)
—>(Sat,,("t 3 t’“,w) 4-» Val("t“,w) 3 Val("t’",w)))

By Lemma 3.3.4, we can then conclude that we can prove the following by proofs of
length linear in n:

IAO+ 01 l- Vw (Evalseq('t 3 t'",w)
—+(Sat,,("t 3 t’",w) 4-»(t 3 t’)[fi(i1,w),. .. ,fi(i,,,,w)]))

The case for t = t’ is analogous.
For the non-atomic cases, we define

\I1;,(z,b):= Vw(Evalseq(rw_‘,w) —->(S'at,,(r1/2",w)4-»w[fi(i1,w), . . . ,fi(i,,,,w)])).

Every formula (,0of length 3 n is constructed from atomic formulas in at most n steps.
Therefore, we would like to prove the following in IA0 + 01 by proofs of length linear in
k:

1. \I';,_1(w) —>\II;,(fiw) for Len('-aw“) 3 k;
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2- ‘1’k—1(¢)A ‘pk-1(X) —*‘I’k(¢ -’ X) for L€n(r¢ -’ X") S k;

3. ‘I1,,_1(w) —>\I1;.(Vv,-1,0)for Len('Vv,-7,0") 3 k;

4. ‘Il,,-1(w) -v ‘Il;.((‘v’v.-< t)i,b) for Len("(‘v’v,-3 t)w") 3 k.

If we can find these short proofs, then we have for every formula goof length 3 n a proof
of ‘I',,(cp)of length of the order of n2, and we are done. We will leave the easy proofs of
the four cases to the reader. QED

Lemma 3.3.12 IAo+Q1 proves by a proof of length of the order ofnz that Sat“ preserves
the logical rules (Modus Ponens and Generalization) for formulas of length 3 n, i.e.

IAO + (21 l- Evalseq,,(y" -—>"z,w) /\ Sat,,(y, w) /\ Sat,,(y'- —>"2, w) —>S'at,,(z,w)

and

IAO + Q1 l- Evalseqn("‘v’v,-"y,w) /\ Vw'(w =,- w’ —>Sat,,(y,w')) —>Sat,,("\7’v,-"y,w)

Proof. Immediately from Lemma 3.3.8. QED

Lemma 3.3.13 IAo+Q1 proves by a proof of length of the order ofn2 that Sat” preserves
the logical axioms and the equality axioms for formulas of length 3 n, e.g. axiom scheme
(1) of [WP 87]:

PW1 IA0 + 01 l- Evalseq,,(y" —>("z' —+“y")",w) —->Sat,,(y' -—>(“zr —+"y")“,w)

Similarly, the other propositional schemes (2) and (3) are preserved. Corresponding to
axiom schemes (4), (5), and (6) we have the following:

PW4 (Corresponding to axiom (4) of [WP 87])

IAO + Q1 l- Evalseqn("‘v’v,-"y —>Sub(y, "vi", t), w) /\ SubOK(y, "vi", t)
—>Sat,.(”‘v’v,~"y —>Sub(y,"v,-", t),w),

where Sub0K(y, rv,-1,t) is Buss’formalization of “the term with Godel numbert is
free for the variable v,- in the (term or) formula with G'o'delnumber y”.

PW5 (Corresponding to axiom (5) of [WP 87/)

IA0 + 01 l- Evalseqn("Vv,-("yr —>72") —->(“yr —>Vv,~"z')",w)
A “v,~does not appear free in the formula with Gddel nr. 3)”
—>Sat,,("‘v’v,-("yr —>“zr) —>("yr —+Vv,-‘z")",w).

PW 6 (Corresponding to axiom (6) of [WP 87])

IAO + 91 l- Evalseqn(v1" = "v1,w) —>Sat,,(v1r = "'v1,w)

and

IAO + 91 l- Evalseq,.(v,-F = “v,-r —+("yr —>"z')l,w)
/\ Sub0K(y,"v,7,'vJ-1)/\ Somesub(z, y, "vi", rvj")
_’ Satn(,UI_r'= fivjr‘ _*(1yr __’ '1zr')'I,,w),

where Somesub(z, y, "v,-1,"v,-") is the formalization of “the formula with Godel num­
ber z is the result of substituting the term vj for some of the occurrences of v,-in the
formula with Godel number y”.
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Proof. For the propositional axiom schemes (PW1), (PW2) and (PW3), the results
follow almost immediately from Lemma 3.3.8. For (PW4), we need proofs in IAO+ 01 of
length of the order of n2 of the following “call by name = call by value” lemma:

Evalseqn("\7’v,-"y —>Sub(y, “vi”, t), w) A Sub0K(y, "v,-", t)
—>S'at,.(Sub(y,"v,-", t),w) <—+Sat,.(y, s(i, Val(t,w),w)).

This can be proved by induction on n, in a way similar to the proof of Lemma 3.3.8.
The rest of (PW4) then follows by Lemma 3.3.8 itself.

For (PW5), we need proofs in IA0 + 01 of length of the order of n2 of the following:

Evalseq,,("Vv,-("yr —>12") —>("y' —>Vv,-12')", iv)
A “v,- does not appear free in the formula with Go'del number y” A w =,- w
-* [5atn(y.w) H 5atn(y.w')l­

I

This can also be proved by induction on n; again, the rest of (PW5) follows by
Lemma 3.3.8.

The first equality axiom of (PW6) is proved immediately by Lemma 3.3.8. The second
one has a proof similar to that of (PW4). QED

Lemma 3.3.14 IA0+Q1 proves by a proof of length of the order ofnz that Satn preserves
the basic non-logical axioms for formulas of length 3 n, e.g.

IAO + 91 l- Evalseqn(rO 3 0 A -150 3 0",u2) —>Sat,,(r0 3 0 A p50 3 0",u2).

Similarly for the other five basic axioms relating the symbols 0,S,+, - and 3 of the
language.

Proof. Immediately by Lemma 3.3.8 and Lemma 3.3.4. QED

Lemma 3.3.15 IAO+ 01 proves by a proof of length of the order of n2 that Sat,,,A agrees
with Sat" on A0-formulas of length 3 n, i.e.

Evalseqn,A(x,w) —>[Sat,,,A(x,u2) <—>Sat,,(x,w)].

Proof. By induction on n as in the proof of Lemma 3.3.10. Here, we take

<I>,, := ‘v’x‘v’w(Evalseqn’A(x,u2) —+(Sat,,_A(x,w) <—+Sat,,(x,w))).

As in Lemma 3.3.10, we use the fact that if x = y" —>"z and Fmla,,+1,A(x), then
Fmla,,_A(y) and Fmla,,,A(z), etc. QED

Lemma 3.3.16 IAo+Q1 proves by a proof of length of the order of n2 that Satn preserves
the A0-induction axioms of length 3 n, i.e.

Fmla,.,A(y) A Evalseq,,(Sub(y, "v1", 0)" A Vv1("y' ——>"Sub(y, "v1", Sv1)') —>\7’v1“y,u2)
—>Sat,,(S'ub(y,"v1‘,0)" A ‘v’v1(“y"—v“Sub(y,'v1",Sv1)') —>‘v’v1“y,w).
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Proof. We work in IAO+ 01 and assume

Fmla,,,A(y) A Evalseq,,(Sub(y,rv1",0)" /\ ‘v’v1("yr —>1Sab(y, "U1",Sv1)r) —->‘v’v1”y,w).

Because Sat,, is a partial satisfaction predicate for formulas of length 3 n, we can, by
a proof of length of the order of n2, prove that the formula

Sat,,(Sub(y,"v1_‘, O)" A Vv1("y" —>"Sab(y, F121”,Sv1)") —>‘v’v1"y,w)

is equivalent to the following formula:

Sat,,(Sub(y,rv1", ),w) /\\7’w’(w’:1 w —>(Sat,,(y,w’) —+Sat,,(Sub(y,'v1",Sv1),w’)))
—+Vw’(w’ =1 w —>Sat,,(y,w’)).

This formula in turn is equivalent to:

Sat,,(Sub(y,'v1", ),w) /\Va:(Sat,.,(y,s(1,:1:,w)) —>Sat,,(Sub(y,'v1", Sv1),s(1,:1:,w)))
—>\7’:z:Sat,,(y, s(1,:r:, 212)),

where s(1, 1:,w) is as defined in Definition 3.3.5. This last formula is then, by a proof of
length of the order of n2 of a “call by name = call by value” lemma analogous to the one
proved in Lemma 3.3.13, equivalent to the following formula:

5atn(y.S(1,0,w)) AV1=(5atn(y.S(1.rI:,w))-+ 5atn(3/,3(1\ SI,w)))
—+V:cSat,,(y,s(1,:r:,w)).

This looks almost like an instance of induction. However, because Satn is not Ao,we

replace it by its A0( Val,#, | |, )-equivalent Sat,,,A,as is allowed by Lemma 3.3.15 and
the assumption Fmla,,,A(y), and we obtain the equivalent formula

Sat,,'A(y,s(1,0,w)) /\V:z:(Sat,,,A(y,s(1,:1:,w)) —>Sat,,,A(y,s(1, S:r:,w)))
—>\7’;r:Sat,,,A(y,s(1, :12,

As a true instance of A0( Val,#, | |, Lgxj)-induction, the formula above is at last prov­
able from the assumptions. QED

Now that we have the partial truth predicates in hand, we can proceed with the proof
proper of the main theorem of this chapter. We suppose that the reader is familiar with
IAo+Q1-cuts and IAo+Q1—initialsegments, and also with Solovay’s method of shortening
cuts (see definition 2.6.1, definition 2.6.2 and lemma 2.6.6).

We have the following:

Lemma 3.3.17 If K is an IAO+ Q1-initial segment, then

IA0 + 01 l- \:/a:Pr0v('_K(E)1),

where E stands for the “efiicient numeral” based on the binary expansion of 1:.



3.3. THE SMALL REFLECTION PRINCIPLE 57

Proof. See lemma 2.6.8. It is not difficult to see that the proofs of K(:f) are of length
oftheorder

However, in the formalized context in which we will use the result, the length of the
formula K and the length of the proof p1(K) of Vy(K(y) —>K(Sy)) and the proof p2(K)
of ‘v’y(K(y)-+ K(SSO -y)) also play a part in the computation of the length of the total
proof, thereby making the length of the total proof of the order |a:|2-|K|+|p1(K)|+|p2(K)|.

In fact, if we analyze the proof we find that

IA0+ 01 F VJ‘v’:1:(D(J“is an initial segment”) —>

QED

Definition 3.3.18 We formally define the following:

LPrf,,(u, "x") := “u codes a proof of xin IAO+ 91 involving only
formulas of length 3 v”.

Lemma 3.3.19 The following is provable in IAO+ 01:

V1=P7"0v(fVvS f(Prf(y, 7) H LP7‘f..;(y.’?l))‘)

Proof. Formalize the following observation: if a formula v occurs in a proof y where
y 3 :c, then Len(v)3 |v| 3 |y| 3 QED

Theorem 3.3.20 (Small reflection) For all sentences upthe following holds:

IAO+ 01 l- Va:Prov(r\7’y3 :f(Prf(y, —>cp)1)

Proof. By Lemma 3.3.19, it suffices to prove

IAO+ 91 l- \7’:cProv('\'/y3 f1:‘(LPrf|:|(y, —>cp)").

We reason inside IA0 + 91, and we take an :1:which we shall use to make a cut. The idea
behind the proof is to find a Gédel number KI standing for a formalized “Prov-initial
segment” such that we have

PT0v(Kz(f)r -> Vv S f(LPrf.=.(v, 7) -> <p)“)­

(By abuse of notation we write K,(f) for the Godel number that results by the appropriate
application of the substitution function to K3). In the construction of the Prov-initial
segment K3, we will need the formalized versions of the lemmas which we proved above
about the existence and the properties of partial satisfaction predicates for formulas of
length smaller than some standard numeral n. In our formalized context, plays the
role of “standard numeral”, as will become clear when we define KI. Again by abuse of
notation, we let Sat,,,|(v, w) stand for a Godel number instead of a formula; we will use the
appropriate formalizations of lemmas we proved about the formulas Sat,,(v, w) to derive
formalized facts about the Godel number Sat|,,|(v, w).

Keeping these cautionary remarks in mind, we start the proof by defining the Godel
number J, of a formalized “Prov-cut” (later to be shortened to the Provinitial segment
K3 that we need) as follows:

J_.,_.(s):= r\7’y,v 3 s(LPrf,,,l(y,v) —>Vw(Evalseq(v,w) —>"Sat|,,1(v,w)'))".
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By the formalized version of Lemma 3.3.7, we may assume that this Godel number exists,
because the length of Sat|,|(v,w) is linear in |:z:|. (Note that we are reasoning inside
IAO+ Q1 all the time!) It is not difficult to prove directly from the definition of J, (and
from the fact that J, is small enough) that the following holds:

Prov(J,(6)r A ‘v’y‘v’z("'J,(z)"/\ y 3 z —+"J_.,(y)")").

To prove that J, is closed under successor, we remark that

Prov("LPrf|,,(y,v)—>Len(v)3

Therefore, we can formalize Lemmas 3.3.12, 3.3.13, 3.3.14 and 3.3.16 to conclude by a
proof of length of the order |:r|2 that Sat|,|('u, w) is preserved by all logical and non-logical
axioms and rules for formulas of length 3 |:1r:|,and thus indeed,

P7‘0v('Vy(”J=(y)' -* “J=(5y)')“),

proving J, to be a Proucut.
By a formalization of the proof of Lemma 2.6.6, we can shorten the Proucut J; to a

Prov-initialsegment K, of length linear in The proof that K, is a Prouinitial segment
is of length polynomialin

Carefully analyzing the proof of Lemma 3.3.17 (see the remark at the end of that
proof), we find, by proofs of length polynomial in |2:|,

Prov(K:(i)) APr0v(K3(?)).

And thus, because we have Prov("\7’y(“K_.,(y)“—>"J,,(y)')“), we conclude that, by defini­
tion of J,,, we have the following:

Pr0v('—‘v’y3 _r:(LPrf...(y. -> Vw(Evalseq(?,w) —>1Sat|,|(Fg7,w)'-))‘).

Because we have Prov('Vy 3 f(LPrf|¢|(y,'7p_fi) ——+Fmla|,,(F?))‘), we can apply the for­
malized version of Lemma 3.3.11, taking note that cpis a sentence. Therefore,

Prov(rVy 3 f(LP1”f|z|(Z/» ~> ‘v’w(Evalseq(Fc?,w) —->cp))‘).

This in turn is equivalent to the desired

P7‘0v('Vy S f(LP7‘f:=|(y, '7/7) -+ <p)")—

Stepping out of IAO+ 91 again, we conclude that indeed

IAO + Q1 l- \7’:cPr0v(r‘v’y 3 iE(LPr_fl,_.|(y, "TE ) —>90)").

QED

Remark 3.3.21 Looking carefully at the proof of Theorem 3.3.20, we notice that it is
also possible to derive the following result, which is a little bit stronger:

IA0 + Q, l- ‘v’v(Sent(v) —>‘v’:1:Prov(rVy 3 :‘c'(LP7‘f|z|(2/.F13‘) —>‘v'')-').

Theorem 3.3.20 and its proof can also be adapted for the case that gois a formula
instead of a sentence (or in the stronger result mentioned above: Fmla(v) instead of
Sent(v)).
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Corollary 3.3.22 (Svejdar’s principle is provable in IAO+ Q1)
For all sentences (,0,ib, we have the following:

IAO + Q1 l‘ Clcp —> Cl(Cl1,D S Dtp ——>1p),

i.e.

IA0 + 91 l- 3$Prf(:1:, rap") —>Prov("E|y(Prf(y, F17) /\ V2:-5 y-wPrf(z, —>2,0‘).

Proof. We work inside IAo+Q1 and suppose Prf(:1:,rcp"). By provable 2',’-completeness,
this implies

Pr0v("Prf(f,

Hence, we have

P7“0v(r33/(P7‘f(y.F17) /\ V2 S 3/"1’?/(2.7/31)) -* 3y S f8P7“f(y.7)”)­

Theorem 3.3.20 gives

P7‘ov(r3y 3 EPr_f(y,Fip_") —>1/2.‘);

therefore, we have the following:

P7‘0v(r3y(P7‘f(y. '77") /\ V2 S y—~P7"f(Z.3.7)) —>1/7)­

Jumping outside IA0 + 91 again, we conclude that

IAO + Q1 l- 3:rPrfl:z:,rcp") —>Pr0v(r3y(Prf(y,F1:7) /\ V2 3 yfiPrf(z, 333)) —+1/2").

QED

Remark 3.3.23 Analogously to remark 3.3.21, we may strengthen §vejdar’s principle to
the following:

IAO + Q1 |- Sent(u) A Sent(v) /\ Prov(u) —>Prov(rProv(v) 3 Prov(u) —+1v).

Svejdar introduced a modal system in order to study generalized Rosser sentences,
and he derived the formalized version of Rosser’s Theorem in it [Sv 83]. Because of
Corollary 3.3.22, Svejdar’s system is sound with respect to IAo+Q1, and Rosser’s Theorem
holds in IAo + 91.

Below, we use an argument similar to §vejdar’s to derive a more general theorem. For
the case of PA, this theorem has been proved by Montagna and Bernardi (see [JM 87]).

Theorem 3.3.24 (Montagna-Bernardi in IAO+ 01) For every function h which is
Ell’-definablein IAo+Q1 and maps sentences to sentences, there is a sentence C such that

IA0 + Q1 |- Prov(rC") <—+Pro'u(h('—C")).
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Proof. Define C by diagonalization such that

IAO+ 01 l- C <->Prov(h('C")) 3 Prov("C").

Reason inside IAO+ 01 and assume first that Prov("C“). Then by definition,

Prov('Prov(h(rCfi)) 3 Prov("C")").

Meanwhile Corollary 3.3.22 gives

Prov("C-') —>Prov('_Prov(h("C")) 3 Prov("C") —>h("C")‘).

Combined, these two yield Prov("C") —+Prov( ("C")).
For the other side, we assume that Prov(h(’C")). This implies Prov('Prov(h('C"))“),

and thus

Prov('Pr0v(h("C-')) 3 Pro'u("C") V Prov('"C") 3 Pr0v(h(rC"))").

By definition of C, we derive

Prov("C V Prov('"Cfl) 3 Prov(h('PC”))").

Now we apply Corollary 3.3.22 to conclude that, because

Prov(h("C")) —+Prov(rProv("Cj) 3 Prov(h('C")) ——>C1),

indeed Prov(h('C")) —>Prov('C"). QED

Note that the formalized version of Rosser’s Theorem follows immediately from this
construction. If we take R such that

IAO + 91 l- R <—+Prov("-IR") 3 Prov(rR1),

we derive IAO + 91 l- Pr0v('R") <—>Prov("-wR”), and thus IAO + 91 l- Prov(rR“) —>
Prov('—.L")and IAO + 91 l- Prov('-wR") —>Prov('J_").

3.4 Injection of small (but not too small) inconsis­
tency proofs

Using the small reflection principle, we can strengthen Hajek’s, Solovay’s and Krajfcek
and Pudlak’s results on the injection of inconsistencies into models of IAo+EXP [Ha 83,
So 89, KP 89]. Instead of only injecting an inconsistency proof, we also take care to respect
a fair number of consistency statements. Moreover, we do not need full exponentiation in
our original model.

We cannot immediately apply the lemmas of [KP 89], but the essential steps in our
proof are the same as in their article. We first apply Pudlak’s version of G6del’s Second
Incompleteness Theorem (see [Pu 86, Theorem 3.6]) to show that we can indeed inject an
inconsistency proof; then we use the Omitting Types Theorem to prevent extra elements
from creeping into the lower part of the new model that contains our injected inconsistency
proof.
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Theorem 3.4.1 Let T Q IAO + 91 be a 2'1’-asciomatizedtheory for which the small
reflection principle (see Theorem 3.3.20) is provable in IAO + 01. Let Con»_r(2:)be a
formalization of the consistency of T up to proofs of length 2:. Let M be a nonstandard
countable model of IAo+Q1. Let a, c be nonstandard elements of M such that the following
conditions hold:

a exp(a°) E M,

o M I= C'onT(a’°) for all k < co.

Then there exists a countable model IC ofT such that a 6 IC and

1. M [ a = IC [ a,

2. M [exp(a“) Q ICfor all k < co,

3. IC |= -vConT(a°),

4. IC }= ConT(a") for all k < co,

5. IC |= 2°C 1.

Proof. Define N := {:5E Mla: < exp(a’°) for some k < co}. Then exp(a°) E M \/V’,
thus M is a proper end-extension of N. Therefore, by Theorem 1 of [WP 89], N I: B21.
(Remember that B21 is IAO + the scheme Vt(‘v’:z:< tElycp(a:,y) —»Ela‘v’:1:< t3y < a<p(:c,y))
for cp6 2?.) Also, it is easy to see that N |= 91.

On the other hand, one of our assumptions is that M I: ConT(a’°) for all k <
(.4). By A0-overspill we conclude that there is a nonstandard d < c in M such that
M }= ConT(a“'). Thus, by Theorem 3.6 of [Pu 86], there is a k < (.4)such that M |=

ConT+,Co,,T(aa)(ag), so certainly M l: ConT+-Co,,T(,,c)(alE). Indeed, because 3%is non­
standard, we even have N l= Con(U), where U := T + -=ConT(a°).

At this point we need some definitions analogous to the ones in [KP 89]. Let L(./V) be
the language of arithmetic expanded with domain constants for the elements of N. We
define a translation t from L(/\/) to N by t(A(a1, . . . , a,.)) := 'A(a;, . . . ,cT,;)",where a, is
the efficient numeral of a,-. We need one more definition:

U‘ ;= {A(a) e L(/\/)|/V 5: ProvU(t(A(a')))}.

It is easy to show that U‘ is closed under the rules of predicate logic; that U Q U‘; and
that Diag(/V) Q U‘. Also, because N l: Con(U), we can conclude that U‘ is consistent.

Moreover, by the small reflection principle for IA0 + 01, we have

N l: V:z:ProvU("C'onT(|f|)"),

thus for all k < co, ConT(a") E U‘.
Finally, using Solovay’s cuts, we can show that N l: \7’:z:ProvU('2‘1 “), thus 2°C16 U‘.
We construct the required model ICby the Omitting Types Theorem in order to take

care that ICwill contain no new elements below a. Let r be the type in L(/V’)defined by

7'(1:):={:c§a}U{a:-,£b|bEM[a}.

Claim 1: U‘ locally omits r.
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Proof. Take any A(:1:),and suppose that for all b 3 a in N we have U‘ l- -wA(b),and
that U‘ l- A(a:) —>:1:3 a. We want to show that U‘ l- -a3:z:A(:i:).By definition of U‘, it
is sufficient to prove the following:

N l: Vb 3 aProuU(r-A(b)") —>ProuU(r‘v’:z:3 anA(:f)").

So, suppose N I: Vb3 aProvU("-:A(b)"). By B21, there is a q E N such that

N l: Vb3 ailp < qPrfU(p, F-aA(b)").

Now we can use Ao(w1)-induction to show that we can combine these proofs for all b 3 a
into one proof p of Va:3 anA(:r), where |p| 3 a - (|q| + k - |a|) 3 a"‘ for some standard
k, n, m, thus 19E N. We conclude that indeed N l: ProvU('V:c 3 anA(:c)“). QED

At last we can construct a model }Cof U‘ omitting 7'. Using the facts that we proved
about U‘, we conclude that ICsatisfies all the properties that we want.

QED

In Theorem 3.4.1, we require that T Q IAO + 01 is a Z3‘;-axiomatized theory for
which the small reflection principle is provable in IAQ+ 01. Examples of such theories
are finite extensions of IA0 + Q1 itself, IA0 + EXP and PA. We hope to give an exact
characterization of theories amenable to methods analogous to those of section 3.3, [Pu 86]
and [Pu 87] in a later paper.

Theorem 3.4.1 is only a slight extension of [KP 89, Theorem 2.1]. We use the small
reflection principle only to show that the length of injected inconsistency proofs can be
bounded from below as well as from above.

A variation on the proof of theorem 3.4.1 gives the following theorem. Its proof con­
tains a more surprising use of the small reflection theorem than the proof of theorem 3.4.1:
In theorem 3.4.3 we use it even in our application of the Omitting Types Theorem.

Recently, some papers (see [WP 89, Ad 90, Ad 93]) appeared that partially answer
the end extension problem, which was formulated by Kirby and Paris in 1977 as follows:
does every model of IAO+ B21 have a proper end extension to a model of IA0? The
theorem below gives a sufficient condition for a countable model of IAo + B21 to have a
proper end extension to a model of IAO: if the model additionally satisfies 01 + Con(IA0)
and provable completeness for H3-formulas, then it does have such an end extension.

First we need a definition.

Definition 3.4.2 Cl'I'2’(U)is the scheme

A(a1, . . . ,a,.) —>ProuU("A(m, . . . , aTk)‘)

for A(a1, . . . ,a;.) 6 H3.

Theorem 3.4.3 Let U Q Q be a Elf-aziomatized theory, and suppose N is a countable
model of B21 + 01+ CHg(U) + Con(U), then there exists a countable model IC ofU such
that IC is an end-extension of N.

Proof. Define U‘ from U,N exactly as in the proof of Theorem 3.4.1. Again, we
construct the required model ICof U‘ using the Omitting Types Theorem. This time, we
define for all a E N the type Ta in L(N) by:

'r.,(a:):= {a:3a}U{:1:;éb|bE.M ra}.
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Claim 2: U‘ locally omits Ta for all a E N.
Proof. Take any a E N and any formula As in the proof of Claim 1, it is

sufficient to show the following:

N l: Vb 3 aProvU('FA(l_7)") —>Pr0vU('\7’:z:3 do/1(E)“).

So, suppose

N l: Vb3 aProvU("fiA(l3)").

By B21, there is a q E N such that

N l: Vb 3 ailp < qPrfU(p, r-A(l_>)_').

Now by CHg(U), we derive

N l= 3qProvu(rVb S @310< ?lP7‘fU(P»"”'A(5)“)il­

Therefore by the small reflection principle,

N l: ProvU('_Vb 3 EL-vA(5)").

QED

We can now construct a countable model ICof U‘ omitting all Tafor a E ./V’.As before,
it is easy to see that U Q U‘ so [C l: U.

By the way, note that by the small reflection principle for IA0 + 91, or simply by the
isomorphism, we have ConU(|f|) E U‘ and thus IC |= ConU(|f|) for all 1:E N. QED





Chapter 4

Provable completeness for
Z1-sentences implies something
funny, even if it fails to smash the
polynomial hierarchy

But what’s so blessed-fair that fears no blot?
Thou mayst be false and yet I know it not.

Shakespeare, Sonnets, no. 92

4.1 Introduction

In chapter 3, we proved that, if NP 7éc0—NP,then Dcompleteness for witness comparison
formulas is not provable in bounded arithmetic, i.e.

IAO + 91 l7"v’b\7’c (Ela(Prf(a, c) /\ V2 _<_afiPrf(z, b)) v
——+Prov("3a(P'r_f(a,E)/\ V2 3 awPrf(z,

The above result does not give any information about Z31-sentences.If bounded arith­
metic would prove completeness for Z31-sentences, then we could adapt Solovay’s Com­
pleteness Theorem and prove that L is the provability logic of bounded arithmetic.

In this chapter we show that provable completeness for all Z31-sentencesis unlikely.
Unfortunately we have to work under an assumption (namely P aé NPr'1co-NP) in which
complexity theorists have less faith than in the assumption NP aéco-NP that we used in
chapter 3.
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4.2 If S; proves completeness for all Z1-sentences,
then NP (7co-NP=P

Theorem 4.2.1 Let k 2 1. If Al: 75 Efi 0 Hi, then there is a sentence 0 of the form
3:z:<p(:z:),where up is a Hi-forrnula, such that

S; l7’0 —>Prov5;("a‘).

Proof. We prove the theorem for k = 1. For k > 1 the proofs are analogous.
Suppose that P 76 NP 0 co —NP. Let the 2'1’-formula A(:1:)represent a predicate

in NP (1co —NP, but not in P. Thus there is a Z'1’—formulaB(:r) that represents the
complement of A. Now define C'(:2:,y) := (y = 0 A V (y = 1/\ B(:z:)).

It is easy to see that (.0l: V2333;g 1C(:r:,y). Now let 0 be the Z1 sentence defined by
0 := 3:z:‘v’y3 1fiC(:z:, y), and suppose that

S; l- 0 —>Pro'u("0"),

which is equivalent to

51}l- V1:(3y 3 1C(:z:,y) V 3yPrf(y, raj)).

Next, by Buss’ main theorem, we find a polynomial time function f such that

w l= V1=(C(-'6,f(I)) V P7"f(f(1=),"0l))­

But 0, being a false sentence, is not provable in S21,so we have actually

an l= V:cC(:z:,f(:z:)).

This means that f is the characteristic function of A, hence A is in P, contrary to our
assumption. QED



Chapter 5

On the provability logic of bounded
arithmetic

C noxaayeuocrn MLICOMr<panHnM— Happy furtherrnost cape of provability­

(Mapnna Llneraena, Honoroimee, 1925) (Marina Tsvetaeva, New Year’s Poem, 1925,
translation Joseph Brodsky)

Abstract. Let PLO be the provability logic of IA0 + $21. We prove some
containments of the form L Q PLQ C Th(C) where L is the provability logic
of PA and C is a suitable class of Kripke frames.

5.1 Introduction

In this chapter we develop techniques to build various sets of highly undecidable sentences
in IAo+Q1. Our results stem from an attempt to prove that the modal logic of provability
in IAO+ Q1, here called PLQ, is the same as the modal logic L of provability in PA. It
is already known that L Q PLQ. We prove here some strict containments of the form
PLQ C Th(C) where C is a class of Kripke frames.

Stated informally the problem is whether the provability predicates of IAQ+ 01 and
PA share the same modal properties. It turns out that while IAO+ 91 certainly satisfies
all the properties needed to carry out the proof of G6del’s second incompleteness theorem
(namely L Q PLQ), the question whether L = PLO might depend on difficult issues
of computational complexity. In fact if PLQ 7,45L, it would follow that IAO + Q1 does
not prove its completeness with respect to Z?-formulas, and a fortiori IA0 + 01 does not
prove the Matijasevic—Robinson—Davis—Putnamtheorem (every r.e. set is diophantine,
see [Ma 70], [DPR 61]). On the other hand if IA0 + 91 did prove its completeness with
respect to Z?-formulas, it would follow not only that L = PLQ, but also that NP =
co —NP. The possibility remains that L = PLO and that one could give a proof of
this fact without making use of provable XI?-completeness in its full generality. Such a
project is not without challenge due to the ubiquity of Z3?-completenessin the whole area
of provability logic.
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We begin by giving the definitions of PLQ. For the definitions of L and T-interpre­
tation, we refer the reader to section 2.2.

Definition 5.1.1 Let PLQ be the provability logic of IA0 + Q1, i.e. PLQ is the set of all
those modal formulas A such that for all IA0 + Q1-interpretations *, IAO+ 01 l- A‘.

It is easy to see that PLQ is deductively closed (with respect to modus ponens and
necessitation), so we can write PLQ l- A for A E PLQ. Our results arise from an attempt
to answer the following:

Question 5.1.2 Is PLQ = L? {Where we have identified L with the set of its theorems.)

The soundness side of the question, namely L Q PLQ, has already been answered
positively. This depends on the fact that any reasonable 2'1’-axiomatized theory which
is at least as strong as Buss’ theory S21satisfies the derivability conditions needed to
prove G6del’s incompleteness theorems (provided one uses efficient coding techniques and
employs binary numerals). For the completeness side of the question, namely PLO Q L,
we will investigate whether we can adapt Solovay’s proof that L is the provability logic
of PA.

We assume that the reader is familiar with the Kripke semantics for L (see defini­
tion 2.2.2) and with the method of Solovay’s proof as described in [So 76]. In particular
we need the following:

Theorem 5.1.3 L l- A ifl A is forced at the root of every finite tree-like Kripke model.
(It is easy to see that A will then be forced at every node of every finite tree-like Kripke
model.)

Solovay’s method is the following: if L if A, then the countermodel (K, 4, Il—)provided
by the above theorem is used to construct a PA-interpretation * for which PA l7’A‘.

The reason Solovay’s proof is difficult to adapt to IAO+ 01 is that it is not known
whether IAO+ Q1 satisfies provable Z3?-completeness (see definition 5.2.1) which is used
in an essential way in Solovay’s proof.

5.2 Arithmetical preliminaries
Definition 5.2.1 Let I‘ be a set of formulas. We say that a (Elf-axiomatized) theory
T satisfies provable I“-completeness, if for every formula o(:i:') E F, T l- o(;r1, . . . ,2:,,) —+
Prov1~('o(:z:’1,...,:T,)-‘).

It is known that PA, as well as any reasonable theory extending IAO+ EXP, satisfies
provable Z?-completeness.

De Jongh, Jumelet and Montagna [JMM 91] showed that Solovay’s result can be ex­
tended to all reasonable Z3?-soundtheories T satisfying provable X3?-completeness. More
precisely it is sufficient that the provability predicate of T provably satisfies the axioms
of Guaspari and Solovay’s modal witness comparison logic R‘. So Solovay’s result holds
for ZF, 12,, and IAO+ EXP.

On the other hand it is known that if NP 75co —NP, then IAO+ Q1 does not satisfy
provable E?-completeness or even provable A0-completeness. In chapter 3 we proved that,
if NP 75 co —NP, IAO+ 01 does not even satisfy provable completeness for the single
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)3?-formula a(u,v) E El:c(Prf;Ao+g,(x,u) A Vy < :1:-»Prf;,_«_0+n,(y,v)).(See also chapter 4
for a related result.)

In view of the above difficulties, we try to do without E?-completeness. In the rest of
this section we state some results about IAo+ D1 which in some cases allow us to dispense
with the use of E?-completeness. The following proposition is proved by [WP 87] (see also
theorem 2.3.24):

Theorem 5.2.2 IAO+ 91 satisfies provable 2'1’-completeness.

By abuse of notation we will denote by DA both the arithmetization of the provability
predicate of IAO+ 91 and the corresponding modal operator. 0A is defined as -DnA
and D+A as DA A A. If A(:z:) is an arithmetical formula, we will write ‘v’:z:D(A(:v))as an
abbreviation for the arithmetical sentence which formalizes the fact that for all 1:there is

a IAo+Q1-proof of A(.f), where E is the binary numeral for :13.If A and B are arithmetical
sentences, DA 3 DB denotes the witness comparison sentence

3;z:(Prf;A0+Q,(:c, FA") /\ Vy < :2:-=Prf;A0+g,(y, "B")).

Similarly DA < DB denotes

3r(PrfIAo+Q1($7 I-/1-‘)A S $—'PT.fIAo+Q1(yirB-l))­

D,,A is a formalization of the fact that A has a proof in IAO+ 91 of Godel number 3 k.
So DA < DB can be written as El:c(D,A/\ -wD,B). (Note that all the above definitions
are only abbreviations for some arithmetical formulas and are not meant to correspond
to an enrichment of the modal language.)

Remark 5.2.3 Since the proof predicate can be formalized by a Ell’-formula,we have
IAO + Q1l' GA —>DD/l and IAO + Q1 l‘ l'_-l_.,,A—>DD:/l.

We suppose that the reader is familiar with IAO+ Q1-initial segments (see defini­
tion 2.6.2). Given an IA0 + Q1-initial segment I, IAO+ Q1 can formalize the fact that I
defines a model of IAO+ 01. It follows that for any arithmetical sentence 6 we have:

Proposition 5.2.4 IAo+Q1 l—D(6l) —>D(6’), where 6’ is obtained from 0 by relativizing
all the quantifiers to 1.

Note that if a Z?-formula is witnessed in an initial segment, then it is witnessed in the
universe. Thus we have:

Remark 5.2.5 For every IA0+Q1-initial segment I, and every 2?-formula a(:c1, . . . ,:c,,),
IAo+Q1l-1:16 I/\.../\:z:,.€ I/\a’(:z:1,...,:z:,,) —>a(.z1,...,:z:,,).

The use of binary numerals is essential for the following proposition (see lemma 2.6.8
and [Pu 86]):

Proposition 5.2.6 For any IAO+ Q1-initial segment I, IAO+ 01 |- \7’:1:D(a:E 1).

Making use of an efficient truth predicate, we proved the following result in section 3.3:

Theorem 5.2.7 (Small reflection principle) IAO+ 01 |- VkD(D,,A—>A).
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An immediate corollary is the following principle (originally stated by Svejdar for PA;
see corollary 3.3.22 for a proof):

Corollary 5.2.8 (Svejdar’s principle) IAO+ Q1 l- DA —>Cl(ClB3 DA —>B).

Using Solovay’s technique of shortening of cuts, it is easy to prove the following:

Proposition 5.2.9 There is an IAo+Q1-initial segment J, such that for each Z‘1’—for7nula
a(a:1, . . . ,a:,,) we have: IAo+Q1l- J(:z:1)/\ . . . /\J(:z:,,)/\aJ(:c1, . . . ,a:,,) —>CJa(:r1,. . .,1:,,).

Proof. The proof is similar to the proof of provable El,’-completeness for IAO+ 91 (see
theorem 2.3.24 and [WP 87]). Therefore we only give a sketch of the proof. By induction
on the structure of the formula, one can prove that for each 130- formula A with free
variables :31,. . . ,;1:,,, there are k, l and m such that

IA0 + Q1l- ‘v’x‘v’1:1,...,:c,,3 a:(y = e2:p(e:cp(|'A“|’°- + m)
/\ A(x1, . . . ,:1:,,)—+Elz3 yPTf]A0+Q1(Z,rA(j1,...,j2)1)).

Now let J be the initial segment, which can be obtained by Solovay’s shortening
methods (cf. lemma 2.6.6, lemma 2.6.9), such that

o IAO + Q1l- V:::(J(;z:) —>3z(z = 23)) and

o IAO + Q1l- ‘v’:r,y(J(2:) A J(y) —»J(:I: + y) A J(1: - y) A J(2l”"'y')).

For this initial segment, we have for all A0-formulas A,

IA0+ Q1l- \7’a:1,...,:z:,,(J(:r1)/\ ... /\ J(:I:,,)
/\ /l(.’I31,...,.’En) —+3ZPTf[A0+Q1(Z,rA(j1,...,.T2)1)).

The result immediately follows. QED

In the sequel of this chapter ‘J’ will always refer to the initial segment of proposi­
tion 5.2.9.

Corollary 5.2.10 If S, = 1,. . . ,k) are XI?-sentences,then

IAO + 01 l‘ D(V —-*D(V l—_—l+S,').

Proof. Let J be as in proposition 5.2.9. Work in IA0+Q1 and suppose E1(V,-S,-)holds.
Since J (provably) defines a model of IAO+ 01, it follows Cl(V,- By proposition 5.2.9
and remark 5.2.5 D(S,.J ——+CJ+S,-) and the desired result follows. QED

The above corollary was originally proved by Albert Visser [Vi 91b] as a consequence
of the following more general result:

Theorem 5.2.11 (Visser’s principle) IfS and S,-(z'= 1,. . . ,k) are Z?-sentences, then
IA0 + 01 l‘ Cl(/\t-(Si —->D5,) -9 —>US,
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5.3 Trees of undecidable sentences

We will rephrase the problem of whether PLO = L as a problem concerning the existence
of suitable trees of undecidable senctences.

Let C be a class of finite tree-like strict partial orders. Without loss of generality we
assume that for all (K, <) E C, K = {1,...,n} for some n E w, and 1 is the root (i.e.
the least element of K By Th(C) we denote the set of all those modal formulas that are
forced at the root of every Kripke model whose underlying tree belongs to C. Let j be
the non-strict partial order associated to 4.

Definition 5.3.1 Given a tree (K,<) with root 1 and underlying set K = {1, . . . ,n},
we say that (K , <) can be embedded (or simulated) in IAO+ 91 if there are arithmetical
sentences L1, . . . , L,, (one for each node) such that, letting [3 denote formalized provability
from IAO+ 01, the conjunction of the following sentences is consistent with IAO+ 91:

1. L1

2. EJ‘‘

01 D + P‘ 1 DJF 6’ "1 x
K».

3 X

The following lemma is inspired by Solovay’sproof of the fact that L is the provability
logic of PA.

Lemma 5.3.2 In order for PLO Q Th(C) to be the case it sufiices that every tree
(K, <) E C can be embedded in IAO+ 91.

Proof. Suppose A ¢ Th(C). Then there is a Kripke model (K, 4, H»)such that
(K, -<) E C, K = {1, . . . ,n}, 1 is the least element of K, and 1Il—-»A. By our hypothesis
there exists a model M of IAO+ 01 and sentences L1, . . . , L,, satisfying, inside the model
M, the conditions 1 - 5 of definition 5.3.1. Define a IAO+ Qpinterpretation ‘ by setting,
for every atomic propositional letter p, p" E V,-,,,,L,-. It is then easy to verify by induction
on the complexity of the modal formula B, that for every 2'E K:

I ill-B=>Ml=D+(L,-—+B"');

. z'Il~a3 =;. M }= u:1+(L, —)—IB*)_

The induction step for Clis based on condition 4 and the following consequence of condi­
tions 2 and 5 of definition 5.3.1:

M e cm. ~ a<v L.>>.
j>z'

Since 1 II--aA, it follows that M l: -A‘, hence IAO + 01 l7’A‘ as desired. QED

Corollary 5.3.3 If every finite tree (K, <) can be embeddedin IAO+ 01, then PLQ = L.
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W X Y

Figure 5.1: The trees W, X, Y

Proof. Let C be the class of all finite trees. If our hypothesis is satisfied, then
L Q PLQ Q Th(C) = L. QED

It can be easily verified that the sufficient condition of lemma 5.3.2 is also necessary.
For, suppose that some tree (K, 4) E C with root 1 and underlying set K = {1, . . . ,n}
cannot be embedded in IAO+ 91. Then the negation of the conjunction of 1-5 (see
definition 5.3.1) is easily seen to be in PLQ \ Th(C).

Thus PLQ Q Th(C) iff every (K, 4) E C can be embedded in IAO+ 01 . Hence a very
natural question to ask is:

Question 5.3.4 Which finite trees can be embedded in IA11+ 01?

Note that a complete answer to the above question, although interesting by itself,
may not suffice to characterize PLO. In fact if C is the set of all finite trees that can be
embedded in IA0 + Q1, we can in general only conclude PLQ Q Th(C).

In order to describe the results proved in this chapter and in previous papers, we need
to define what it means for a tree to omit another tree.

Definition 5.3.5 Let (T1,41) and (T2,42) be (strict) partial orders. An homomorphic
embedding of (T1,41) into (T2,42) is an injective map f : T1 —>T2 such that for all
:z:,y 6 T1, :1:41 y 4-»f(:1:) 42 f(y). If there is no homomorphic embedding of T1 into T2
we say that T2 omits T1.

If we try to adapt Solovay’s proof to IAO+ 91 in the most straightforward manner,
the only trees that we can embed in IAO+ Q1 are the linear trees, namely trees omitting
(K, 4) where K = {1,2,3}, 1 4 2, 1 4 3 and 2 is incomparable with 3.

A first improvement can be achieved using Svejdar’s principle: let C1 be the class of
all trees that omit the tree W = (W, 4), the least strict partial order with underlying set
W = {1,2,3,4} such that 1 4 2, 1 4 3 4 4 (see Figure 1). In [Ve 88] it was proved that
for trees in C1 Solovay’s proof can be adapted using Svejdar’s principle. In other words,
PLO Q Th(C1). Moreover it was proved that the inclusion is a strict one.

In subsequent unpublished work I showed, using both Svejdar’s and Visser’s principles,
that PLQ is included in the modal theory of C2, the class of all trees of height g 3.

A new improvement [BV 91] was achieved by analogous techniques but using a different
definition of the Solovay constants. In this way it was proved that PLQ Q Th(C3), where
C3 is the class of all trees that omit the tree X = (X, 4), the least strict partial order
with underlying set X = {1,2,3,4,5} such that 1 4 2 4 4 4 5, 1 4 2 4 3.

Finally in Section 5.4 of the present chapter, we improve these earlier results, by
proving:



5.4. UPPER BOUNDS ON PL!) 73

Theorem 5.3.6 PLQ Q Th(C4), where C4 is the class of trees that omit the tree Y =
(Y,-<), the least strict partial order with underlying set Y = {1,2,3,4,5,6} such that
1<2<3<&1<2<4<&

In particular, theorem 5.3.6 implies that we can embed X. Note that the trees in
C4can have an arbitrarily large number of bifurcation points, but each bifurcation point
except the root can have at most one immediate successor which is not a leaf. The root
can have any number of immediate successors which are not leaves.

On the other hand, we prove in Section 5.5 that for many classes C of trees (and espe­
cially for the classes C1,. . . ,C4 defined above), we cannot have PLQ = Th(C). Therefore,
all inclusions mentioned above are strict. More precisely we prove that if PLQ = Th(C),
then every binary tree can be homomorphically embedded in some tree belonging to C.
So it is unlikely that PLO is the theory of a class of trees, unless PLQ = L.

5.4 Upper bounds on PLQ
Our task in this section will be to prove PLO Q Th(C4) using lemma 5.3.2.

Definition 5.4.1 Given (K, <) 6 C4, we say that i E K is a special node, iffi is a leaf,
and some brother ofi is not a leaf.

For example, in the tree X of Figure 1, the only special node is 3.

Definition 5.4.2 Let (K, <) 6 C4. Without loss of generality assume that
K = {1, . . . ,n} and 1 is the root. Let J be the initial segment of proposition 5.2.9. By a
self-referential construction based on the diagonal lemma, we can simultaneously define
sentences
L1, . . . , L,,, and auxiliary functions v,w, S, such that the following holds:

1. Ifi E K is not special, let = ,az:Cl,—=L,-(with the convention that = oo if
<>L,);ifi E K is special = pa: 6 JD_.,wL,-(with the conventionthat = 00
if <>"L,-).We agree that oo is a specific element greater than any integer. Note that
the definition of to can be formalized in IAO+ Q1.

2. Ifj is an immediate successorofi in (K, <), let v(i,j) = w(j); otherwise v(i,j) = oo.

3. S : K ——>K is defined as follows: S(i) = i if for noj E K we have v(i,j) < oo;
otherwise among all the j E K with v(i,j) < oo, pick one for which v(i,j) is
minimal, and set S(i) = S(j). (Note that there exists at most one suchj because if
w(j) = w(j’) < oo, then there is one single proof of both fiLJ- and fiLJ-»,so j = j’.)

4. IAO+ Q] l‘ 144-?E-114/\7l=

The important point to observe, is that the definition of S can be formalized in IAo+Q1
and that IAO+ Q1 proves that S(1) is always defined. This depends on the fact that,
although S is defined in a recursive way, to compute S(1) one only needs a standard
number of recursive calls, namely at most d where d is the height of the tree (K, <) (in
fact at each recursive call we climb one step up in the tree). Note also that S depends
self-referentially on L1, . . . , L,,. Finally note that, if a, b are distinct immediate successors
of i, then the statement v(i, a) < v(i, b) is equivalent to a witness comparison sentence in
which some quantifiers are relativised to J. In particular, if a and b are not special, then
v(i, a) < v(i, b) is equivalent to the 2‘1’—sentenceDaL,, < El—~Lb.
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Remark 5.4.3 The main differences with Solovay’sconstruction are the following: 1) we
do not use an extra node 0 (but this is a minor point since we could define L0 as <>L1).
2) In our construction we can only jump one step at a time, namely at each recursive
call 5 we can only move from one point to some immediate successor (but this is also an
inessential difference). 3) While Solovay employs a primitive recursive function from w
to K whose definition is not directly formalizable in IAO+ Q1, we use instead a function
S : K —>K which is provably total in IA0 + 01. 4) We jump to a special node i E K
only if we find a proof of nL, belonging to the initial segment J.

Given (K, <) as above, we will show that L1, . . . , L,, constitute an embedding of (K, <)
in IA0 + 01. We need the following lemma.

Lemma 5.4.4 Let L1, . . . , L,, and (K, <) be as in definition 5.4.2. Then:

1. |*-El-1L1—>L1V...VL,,.

2. l- L, —->fiL,- foriaéj in K;

3. l- L, —->CJ—aL,fori E K.

4. L1 is consistent with IA0 + 91;

5. Ifj,j’ E K are brothers, then l- Cl—»L,-<—+EHL,-I.

6. l-L,—-><>L,-fori<j inK.

7. l- L, —>D—aL,fori <j in K;

8. Ifi is above {i.e. :) a brother ofj, then l- L, —>El—=L,-;if moreoverj is a leaf, then
l" Lj —*D‘|L,'.

9. Letj > 1 be an immediate successor of the root 1. Then l- L, —>IZlCl(-L,~);

10. l- L, -—>E1+(L, ——>Cl—:L,-)whenever i,j are incomparable nodes of K;

where ‘ l- ’ stands for ’IAo + 01 l- ’.

Proof. It will be clear from the context at which places we reason inside IAO+ 01.

(1) and (2) are clear from the definition of the sentences L, and the fact that
S : K —> K is a total function.

(3). L, implies that Cl-L1 /\i = S(1). Ifi = 1, El-=L,follows immediately; otherwise
we have w(i) < oo, and therefore Cl-L,.

(4). If L1 is inconsistent with IAO+ 91, then El-L1 holds in the standard model, so
by (1), one of the sentences L, must hold in the standard model. This is absurd since
each of these sentences implies its own inconsistency.

(5). First note that l‘ ClpL,- —>El(:cE J A ClpL,-). Thus, regardless of whetherj
is special or not, l- CHL, —+D(w(j) = ,u:r:D,~L,-). Sincej and j’ are brothers, l- L,-«—>
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w(j’) < w(j) (because j’ = S(1) implies_w(j’) < w(j)). Therefore l- D—aL,-—->Cl(L,-I —>
Cl-1L,-2< El-»L,-). On the other hand by Svejdar’s principle

and we can conclude l—E]—uL,--2 Cl-L,-I.

(6). L6b’s logic L proves OA /\ C1(A—>OB) —>OB. Hence by arithmetical soundness
I- OL,, A D(L,, —->OL,,) —><>L,,. It follows that in the proof of (6) we can assume without
loss of generality that j is an immediate successor of 2. Working inside IAo+Q1, assume L,-.
Then i = S(1). Hence w(j) = oo. Now ifj is not a special node, then w(j) = oo <—->0L,­
and we are done. Ifj is a special node, from w(j) = oo we can only conclude OJLJ-, so
we need an additional argument. This is provided by point In fact by definition of
special node, 2 has certainly one immediate successor j’ which is not special. Hence from
L, we can derive <>LJ~rreasoning as above. By point (5), <>LJ~+—><>L,~vand we are done.

(7) can be derived through the chain of implications: L, —>CJwL,-—>ElElfiL,~ —>EHL,-,
wherethe last implicationuses point

(8). Let 2 be above a brother ofj. Then by (5), (7) and (3) l- L, —>D—aL,-as desired.
To prove the second part, assume further that j is a leaf. We need to show 1-L, —>CHL,-.
We can assume that 2 is strictly above a brother 3'’ofj (for ifi itself is a brother ofj the
desired result followsfrom (3) and But then j must be a special node, and therefore
w(j) = pa: 6 JD,-wLJ-. So w(j) < w(j’) is equivalent to a E?-formula relativized to J,
namely w(j) < w(j’) <-—+3:1: 6 J(Prf1A0+g1,(:r:,'fiLJ7)/\‘v’y 3 :21-Prf1110+g1,(y,r-1L,-21)).
Thus by the properties of the initial segment J (and by theorem 5.2.6),

*‘ WU) < WU’) -* DWU) < WU’)­

Now the desired result follows by observing that l- L, —+w(j) < w(j') (as 1-3’= 5(1) —+
WU) < WU')) and I‘ Li -+ WU’) < WU)­

(9). By (1) and (3), 1- L1 —>D(V,H L,-). So to prove I- L1 —+DD-«L,-, it suffices to
show that for each i > 1 we have l—D(L,- —»Cl—»LJ-).This follows from (8) , (3) and

(10). If the incomparable nodes i and j are in one of the situations covered by point
(8), then 1- L, —> D-1L,-, and a fortiori 1- L1 —+ El+(L,- —> D-1L]-) as desired. Since
(K, -<) omits Y, (8) can always be applied except when the largest node (with respect
to j) below i and j is 1 (the root). So assume that this is the case. By (2), we have
1- L1 —>(L, —>D-wLJ-). In order to show that also 1- L1 —>Cl(L,- —>Cl-IL,-), we will take
in account the properties of the initial segment J (see proposition 5.2.9). Let i’,j’ be the
least nodes with 1 4 i’ _<_2' and 1 < j’ j 3'. So 2" and j’ are brothers. It follows from
(9) that 1- L1 —>El(Cl-«L,-I). Therefore, by proposition 5.2.4, I- L1 —>D(E1J-L,~r). In the
presence of C1’-1L,-1,the sentence w(i’) < w(j’) is equivalent to a E?-sentence relativized
to J. Therefore, by proposition 5.2.9, l- L1 —>|Z1(w(i’) < w(j’) —»El(2u(2")< w(j’))). The
desired result now follows from the fact that L, provably implies i = S(1) which entails
w(i’) < w(j’), while L, provably implies w(j’) < w(2"). QED

Corollary 5.4.5 If(K, <) and L1, . . . , L,, are as above, then the conjunction of the fol­
lowing sentences is consistent with IAO+ 01:
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1. L1

+

+

(

(-—+-«L,-)f0ri;£j inK.

+(L,—><>L,-)fori-<j in K.

+(L,- —>Cl—aL,-)fori 74]’ in K.

Proof. By (1) and (3) of lemma 5.4.4, and noting that l- D—=L1—»UD—»L1,we derive
l- L1 —+Cl+(L1 V . . . V L,,). Next, (3) implies that l- L1 —>D+(L,- —>5L,-) for i aéj in K.
By (6) we have L1 —->C1+(L,-—>OL,-) for i <3’ in K. Finally the corollary follows by (10)and

Note that the derivation of corollary 5.4.5 from lemma 5.4.4 follows from a straight­
forward argument which can even be formalized in the decidable theory L“. (The axioms
of L“’are all the theorems of L and all the instances of DA —>A. The only rule is modus
ponens.) QED

We have thus shown that every tree of C4can be embedded in IAO+ 01. Thus:

Theorem 5.4.6 PLQ _C_Th(C4).

.n L1v...vL,,).

.::z L,

.Cl ­

.Cl
En-¢\C«ot\°:

5.5 Disjunction property
In this section we prove the following:

Theorem 5.5.1 If PLQ = Th(C), where C is a class of finite trees, then every binary
tree can be homomorphically embedded in some tree belonging to C.

In particular, since the binary tree Y cannot be embedded in any member of C4, it
will follow that the inclusion PLQ Q Th(C4) is strict.

We will use the fact that PLO has the ‘disjunction property’ as proved by Franco
Montagna (personal communication).

Definition 5.5.2 A modal theory P has the disjunction property if for every pair of
modal sentences A and B, if P l- DA V DB, then P l- A or P l- B.

It is known that L has the disjunction property.

Theorem 5.5.3 (Montagna) PLO has the disjunction property.

Proof. Suppose that for some IAo+Q1-interpretations ° and ' we have lAo+Q1 l7’A(p‘°)
and IAo+ 01 i7’B(p‘°), where p'contains all propositional variables occurring in the modal
formulas A and B. We have to prove that there is an IA11+ 01- interpretation * such that
IA11+ Q1l/(CIA V DB)‘

By multiple diagonalization, define for all p,-6 {fan arithmetical formula p; such that

me + 91* 193*-*(DA(I3"‘)S UB(1'>")/\ P?) V (DB(i>") < UAW) /\ PS)­

We will show that IA11+ 91 I7’(DA V DB)‘. So suppose, to derive a contradiction, that
[A0 + Q1l- lIlA(p°‘) V DB(p"‘). Then

1A0 + 91*‘ UA(15") S UB(1F')V 9305") < DA(I3"’)­

Thus, because IAO+ O1 is a true theory, either
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1. ClA(p'*) 3 DB(p"') and IA0 + Ql l- p; 4-»pf for all i (by definition of 13"), or

2. DB(fi") < DA(13'*) and IAO + Ql l- p; +—>pf for all i.

In case 1, we have IAo + Ql l--A(;')'*), so IAO+ Ql F A(;5'°), contradicting our assump­
tion. Similarly, case 2 contradicts the assumption IA0 + Ql I7’B(;5").

QED

In order to prove theorem 5.5.1 we need the following definition.

Definition 5.5.4 We define D,, by induction.

0 D0 = T

o D,-+l(;5',r) = <>(D,-(ff) A El+r) /\ <>(D,-(5) /\ D+-wr), where 15'is of length i, and all
propositional variables in (5, r) are different.

The main property of the formulas D,, is expressed by the following lemma.

Lemma 5.5.5 IfK is a finite tree-like Kripke model with root k such that k Il—D,,, then
we can homomorphically embed (see definition 5.3.5) the full binary tree T,, of height n
{and 2"“ —1 nodes) into K.

Proof. By induction on n.
Base case. Trivial: To contains only one point.
Induction step. Suppose that k It D,~+l(p',r), i.e.

k |l—<>(D,-(;5) A an) A <>(1),-(lr) A a+~7~).

Then there are nodes kl,kg such that k j kl,k j kg,kl ll- D,-(5) /\ El+r and kg Il­
D,-(ff) /\ Cl+<r. By the induction hypothesis, we can homomorphically embed a copy
of the full binary tree T, of bifurcation depth i into the subtree of K that consists of all
points : kl. Analogously, we can homomorphically embed a copy of T, into the subtree
of K of points : kg.

Because kl |l- C1+r and kg |l- D+—«r,we may conclude that kl and kg are incomparable
and that the two images of T, are disjoint. Therefore, we can combine both homomorphic
embeddings into one and subsequently map the root of T,-+l to k. Thus an homomorphic
embedding of T,-+l into K is produced.

QED

Theorem 5.5.1 is now an immediate consequence of the following:

Theorem 5.5.6 Let C be a class offinite trees such that Th(C) has the disjunction prop­
erty. Then for every n, Th(C) U {D,._}is consistent. Therefore every binary tree (thus
every tree) can be homomorphically embedded in some member of C.

Proof. Let P = Th(C). Note that P Q L. We prove by induction on n that P U {D,,}
is consistent.

Base case. Trivial.

Induction step. Suppose as induction hypothesis that for 13'consisting ofi different
propositional variables, P U {D,-(13 is consistent. In order to derive a contradiction,
suppose that P l- —.D,-+l(p‘,r), that is

P l—t:1(D+r —§~D,-(5)) v E](D+-Ir —+~D,-(5)).

Then by the disjunction property, either
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1. P l‘ D+r —->—1D,-([7) or

2. P |- Cl+-1r —>-1D,-([7).

We show that 1 cannot hold. By the induction hypothesis, P I7’wD,~(f)').Since r does
not appear in D,-(13),we can take r = T. But then P l- Cl+r, so P l7’D+r —>wD,-(5).

By an analogous proof, we can show that 2 cannot hold, which gives the desired
contradiction.

QED

Note that in the proof of the fact that Th(C)U{D,,} is consistent we have only used the
fact that Th(C) is a consistent modal theory extending L and satisfying the disjunction
property. The same proof can therefore be applied to PLQ, yielding:

Proposition 5.5.7 PLO U {D,,} is consistent.

Remark 5.5.8 For a strengthening of proposition 5.5.7 due to Berarducci, we refer the
reader to [BV 93].

We are now able to strengthen theorem 5.5.1 as follows:

Theorem 5.5.9 If there exists a binary tree H which cannot be homomorphically embed­
ded in any member of C, then Th(C) Q PLQ.

Proof. Under our assumption there is some n such that the full binary tree of height
n cannot be embedded in any member of C. Hence Th(C) U {D,,} is inconsistent. On the
other hand PL!) U {D,,} is consistent. QED
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Chapter 6

Feasible interpretability

Sometimes we see a cloud that’s dragonish:
A vapour sometime like a bear or lion,
A tower’d citadel, a pendent rock,
A forked mountain, or blue promontory
With trees upon’t, that nod unto the world
And mock our eyes with air...

Shakespeare, Anthony and Cleopatra

Abstract. In PA, or even in IA0+EXP, wecan define the concept of feasible
interpretability. Informally stated, U feasibly interprets V (notation U l>f V)
iff:

for some interpretation, U proves the interpretations of all axioms
of V by proofs of length polynomial in the length of those axioms.

Here both U and V are E’;-axiomatized theories.
Many interpretations encountered in everyday mathematics (e.g. the in­

terpretation of ZF + V = L into ZF) are feasible. However, by fixed point
constructions we can find theories that are interpretable in PA in the usual
sense but not by a feasible interpretation. By making polynomial analogs
of the usual proofs, we show that the bimodal interpretability logic ILM is
sound for feasible interpretability over the base theory PA. Here, A D B is
translated as PA + A‘ D; PA + B‘, where * is the translation. Moreover,
we can prove in PA a polynomial version of Orey’s theorem for feasible inter­
pretability. This paves the way for a polynomial adaptation of Berarducci’s
proof of arithmetical completeness of ILM with respect to PA. Thus, we
show that ILM is arithmetically sound and complete with respect to feasible
interpretability over PA.

6.1 Introduction

In this chapter, we investigate a novel concept of interpretability —we call it feasible inter­
pretability —in which the complexity of proofs associated to the interpretation is bounded.

81
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The concept was invented by Albert Visser, who called it effective interpretability in his
paper [Vi b].

In order to define this concept, we slightly change the usual definition of interpretability
(see section 2.4). First we give a half-formal definition of U l>f V (pronounced as “U
feasibly interprets V”:

U t>f V <-+3K3P(“Kis an interpretation and Pis a polynomial” /\

V0«(av(0«)-* 3P(“|P| S P(|a|)” /\ Prfu(p, aK)))) (6-1)

If we want to formalize this concept, we need an evaluation function for coded poly­
nomials and we need to be able to prove that the exp of this function is total. We remind
the reader that e:i:p(thevalues of polynomials in |:c|) corresponds to the values of #-terms
in 2:, where :c#y = e1:p(|a:|- |y|) as in definition 2.3.2. Thus, since there is an evaluation
function for formalized terms containing # that is provably total in IAO+ EXP, we see
that the formalization of feasible interpretability can be carried out in IA0 + EXP. We
will not carry out the details, and for ease of reading we will keep using the half-formal
definition (6.1).

However, it is clear that the formula U >; V is 22. As we know that, for reasonable
theories U extending PA, {A | U l> U + A} is a H3-complete predicate, it would be
interesting to find out whether {A | U I>f U + A} is Z3-complete. Chapter 7 provides a
positive answer to this question.

In [Vi b], Visser gave proof sketches to show that ILM is arithmetically sound with
respect to feasible interpretability over PA. Moreover, he gave an Orey-Hajek like char­
acterization for feasible interpretability over PA‘, where PA‘ is defined as follows:

C is an axiom of PA‘ iff C is the conjunction of the first n axioms of PA for
some n.

He then surmised that, using this characterization, Berarducci’s arguments from [Ber 90]
could be adapted to show that ILM is the modal interpretability logic for feasible inter­
pretability over PA‘.

In this chapter, we show that ILM is indeed arithmetically sound and complete with
respect to feasible interpretability over PA itself.

The rest of the chapter is organized as follows. In section 6.2, we show that some well­
known interpretations from the contexts of set theory and bounded arithmetic are feasible.
For the subsequent sections, the horizon is narrowed down to Peano Arithmetic. Thus we
prove in section 6.3 and section 6.5 that ILM is exactly the modal interpretability logic
for feasible interpretability over PA. Section 6.4, meanwhile, gives two counterexamples
to show that, for reasonable theories U extending PA, feasible interpretability over U is
a definitely stricter concept than normal interpretability.

6.2 Feasible interpretations in various settings
For an intuitive introduction to feasible interpretability, it is useful to define feasible
interpretability also for settings other than arithmetic. The informal definition is as
follows.

U l>fV if and only if there is an interpretation K of V into U which is feasible,
i.e. for which there is a polynomial P such that for all axioms cpof V, there
is a proof of length 3 P(|cp|) in U of cpK
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Here |cp| denotes the length of cp. In this section, we look at some well-known inter­
pretations from different settings and show that they are feasible. As a first remark, it
is clear that every interpretation of a finitely axiomatized theory into some other theory
is feasible: a constant polynomial, namely the maximum of the lengths of the proofs of
the interpreted axioms, suffices. We will prove an easy lemma which can be used to show
that many well-known interpretations are feasible. First we state some conditions on the
length of formulas and proofs.

Remark 6.2.1 Of course the definitions of |cp| and of the lengths of proofs depend on
the setting. For example, it is not always convenient to define |cp| as “the length of the
binary expression of the Godel number of p”. In all examples in the rest of the chapter,
the length measure is polynomially related to the length of the binary expression of the
Godel number.

In general, we have to keep in mind that a few conditions on the definition of the
lengths of formulas and proofs are necessary to make lemma 6.2.2 applicable.

The length of formulas should be defined in such a way that the following conditions
hold:

1- lnwl Z|10|+1,

3- |1b°X|Z|w|+|X|+11'0I‘ °€ {/\,V»—h*-*}.

3. |Q:cw| 2 [112]+ 1 for Q E {\7’,El}, and

4. for all formulas go, |cp| 2 2.

The last of these conditions is not necessary, but it just simplifies the computations by
allowing us to work with polynomials P(n) of the form n‘‘‘only.

Moreover, we suppose that the proof system and the corresponding length of a proof
is defined in such a way that applications of /\—rulesand Modus Ponens do not make the
proofs explode to gargantuan proportions; e.g. we suppose that we do not use a tableau
system or a sequent calculus. A sufficient condition is the following.

There is a constant c such that the following conditions hold:

1. if |A| 3 |B|, and we have a proof of length lA of the formula A, and a proof of length
lA_.Bof A —>B, then there is a proof of length 31,, + lA_.3 + c- |B| of the formula
B; and

2. if |A|,|B| 3 |C|, and we have a proof of length lA of A, a proof of length lg of
B and a proof of length lAA3_.C of A /\ B —>C’, then we have a proof of length
3 lA + l3 + lA,\3_.c + c - |C| of the formula C.

Lemma 6.2.2 Let L be a language and U a theory satisfying the conditions in Re­
mark 6.2.1. Let F be a function from L into LU such that

there is a polynomialP such that for all cpE L, |F(cp)| g (This is
always the case when L is finite.)

Moreover, suppose that the following four conditions hold:

1. U lfflffi F(cp) for all atomic gpE L;

2. U lfli’ Fw) —»Fwy) for all w e L;
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3. U l‘°—"‘MFe») A F(x) —»Fw o x) for an 1.0.xe L and o e {A. v. a, H};

4. U ljflw) —>F(Q:m,b)for allzbE L andQ E {V,3}.

Then there is a polynomial R such that for all go6 L, U l- F (cp) by a proof of length
5 R(|<p|)­

Proof. We do not need to find the smallest possible polynomial bound R, which makes
the proof quite simple. Take a constant d 2 2 such that

1. for all n 2 2, P(n) 3 nd and

2. for all cp E L, c- |F(<p)| 3 |<,o|",where c is as in Remark 6.2.1 in the condition on
the length of proofs.

Define the polynomial R(n) := n‘’'”. We will prove by induction on the construction
of gothat for all cpE L, U |- F(gp)by a proof of length 3

Basic step By the assumption we know that for atomic formulas cp,U l- F(<p)by a proof
of length 3 But by definitionof d, P(|cp|) 3 |<p|d3 |cp|“+2.

w-step Suppose as induction hypothesis that U l- F(w) by a proof of length 3 |zD|“’+’.By
assumption, U l- F(¢) —>F(-aw) by a proof of length 3 P(|-=1/2|)3 |fi1b|°'(where the
last inequality holds because of clause 1 of the definition of d). Therefore by the first
clause in the condition on the length of proofs in Remark 6.2.1, we have U l- F(~zp)
by a proof of length 3 |1,D|"+2+ I-it/Jld+ c- |F(-=w)| 3 |¢|d+2 + I-vzbld+ I-wzb|d(where
the last inequality holds by clause 2 of the definition of d). Since we assume that
|fi2/2|2 |w| + 1, we have |¢|“'+2 + |-nwld+ |-z,b|d 3 |<zp|“+’ by an easy computation
using the binomial theorem and the fact that d 2 2.

Connective step Let 0 E {/\,V,—+,<—>}.Suppose as induction hypothesis that U l­
F(1,b)by a proof of length 3 |1p|"+’, and U l- F(x) by a proof of length 3 |x|"+2. By
assumption, U l- F(1,D)/\F(x) —>F(zl)ox) by a proof of length 3 P(|wox|) 3 |1,Dox|d.

The second clause in the condition on the length of proofs in Remark 6.2.1 now
implies that U l- F(1,l2o X) by a proof of length 3 |1p|"'+2+ IxI"+2 + Ill)0 xld + c­
|F(2p o X)| g |¢»|°‘+2+ |X|°‘+"’+ |zpo X|d + |1j;o X|“ (where the last inequality holds by
clause 2 in the definition of d).

Since we assume that |z,[2o X| 2 lwl+ Ixl + 1, we can again use the binomial theorem
to show that I’!/J|d+2+ Ixld” + |2,bo X|“ + |w o )(|‘‘ 3 |w o X|“+2, as desired.

Quantifier step The quantifier steps are analogous to the n-step, so we leave them to
the reader.

QED

Remark 6.2.3 For applications of lemma 6.2.2, we usually take F(¢) to be a schema
involving ‘(Dand W‘, where K is an interpretation. When we want to prove that some
interpretation K of V into U is feasible, we can often use lemma 6.2.2 in the following
way. Suppose all but a finite number of axioms of V have the form <I>(w),where <I>is a
formula scheme. The feature we need in order to apply lemma 6.2.2 is the fact that both
|<I>(z,b)|and |1,l2K|are polynomial in
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An adapted version of lemma 6.2.2 works in case attention is restricted to A0-formulas.
An example of a function F for which the A0-version of lemma 6.2.2 could be applied is
the scheme F (w) := 1,04-»W‘ for 1,06 A0, where K is a fixed interpretation such that
|1,bK| is polynomial in |z,b|.

As a first example, in which we do not yet need lemma 6.2.2, we will show that the
usual interpretation of IAO+ 01 into IAO by a cut is feasible.

Theorem 6.2.4 IAO I>f IAO+ 01 by a cut.

Proof. Let J be a cut constructed by Solovay’smethods such that IA0 proves that J is a
cut closed under +,- , and wl (see lemma 2.6.10). Define cpJ to be the formula cpwith all
quantifiers restricted to J. It is well-known that J is an interpretation of IAo + 01 into
IA0; so to show that it is a feasible interpretation, it suffices to find a polynomial P such
that for all A0-formulas cp,the following holds: by proofs of length 3 P(|"cp‘|):

mo Mo) A V~'v(<p($)—»«p<s:c>>~» V:c<p(2=)l"­

First, it is easy to see that there is a polynomial P1 such that for all A0-formulas up,
IA0 ll) J(a) —>(<p(a)4-»cp(a)") and IA0 [Ii Vamp-—>(\7’:z:cp)".Second, there is
a polynomial P2 such that for all A0-formulas go,the following holds:

IA. va me) Avzsa (<p($)-» </>(51=))~ vxsa ¢<z>1.

In fact one uses only the induction axiom for V1:g a cp(:1:),the fact that VaV:z:(S:c3 a. —>
:1:3 a), and some predicate logic. Combining P1 with P2, we then find a polynomial P3
such that for all A0-formulas go,the following holds:

IA. (Va[<.0(0)AV-'vSa(<P($)~ <P(5$))—»vxsa <p(1=)l)’~

Now it is easy to find a polynomial P from P3 such that for all A0-formulas cp, the
following holds:

IA. mo) AV$(<P($)~ <P(5-Tl)~ vw<z>1’.

We use only the fact that Va(a _<_a.) and some predicate logic. Thus, J is a feasible
interpretation of IAO+ 01 into IA0. QED

Next, we will prove that the usual interpretation of ZF + V = L into ZF is feasi­
ble. Because Z F consists of a finite list of axioms plus the schemata of separation and
replacement, we can restrict our attention to feasibly proving these schemata relativized
to the universe L of constructible sets. We will first prove that the schema of separation
relativized to L follows feasibly from the reflection theorem for L, and then give a feasible
proof of the reflection theorem itself. Finally we give a proof of the schema of replacement
relativized to L. For the reflection schema, we will try to follow the elegant proof in terms
of closed unbounded collections, which unfortunately becomes much less elegant when
forced into the strait—jacket of the calculation of lengths. We will not stray far from the
straightforward presentation given in [Ku 80], where all details about the constructible
universe that we omit here can be found. The length |c,0|of a formula upof ZF is defined
as the number of appearances of symbols in cp;without loss of generality, we can take the
length of all variables to be 1. Likewise, we define the length of a proof in ZF to be the
total number of symbols appearing in the proof. In the following lemmas, quantifiers in
greek letters range over the ordinals, while those in roman letters range over all sets.

The next lemma corresponds to lemma IV.2.5 of [Ku 80].
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Lemma 6.2.5 ZF proves the followingbyproofs of lengthpolynomial in

V2,i'2'€L {$62 I cpL(a:,2,i'2')}€L -—>
V2,i7EL 3y€L [:0 E y 4-»:1:E 2/\ cpL(:z:,2,'D')]

Proof. Immediate; note that (:1:E y)L := 2: E y, so the succedent is feasibly equivalent to
the comprehension schema for cp,relativized to L. QED

The following lemma corresponds to a part of lemma VI.2.1 of [Ku 80].

Lemma 6.2.6 ZF proves the followingbyproofs of lengthpolynomial in

(Va 3[3>aV2,.7:,i')'ELg [<,oL(:c,2,27) +—>c,oLf’(:2:,2,i7)]) —>

V2,17EL{:I:E2 | cpL(a:,2,i7)} E L

Proof. It is easy to see that the usual proof in ZF is feasible: suppose

1. Va 3fi>a V2,:z:,z7E Lg [goL(a:, 2,17) 4-» 901‘/-"(:I:,2,z'2')]and

2. 2,17 6 L

From 2 it follows that there is an a such that 2,276 L0,. Now let H > a be such that
V1:6 L5 [<,oL(:I:,2,i7)+->cpL5($,2,i7)]. Then, using the fact that L is transitive and that
:1:E 2 is absolute for L3, L, we find that

{$62 | cpL(:z:,2,17)}= {:r€Lg | (:1:E 2 A <p(:z:,2,17))L"}E D6f(Lg) = L544,

so {$62 | goL(:c,2,27)}E L. QED

From lemma 6.2.5 and lemma 6.2.6, we conclude that in order to feasibly prove the
comprehension schema, we only need polynomial length proofs of

Va 3B>a V2, :3,176L3 [<,oL(:I:,2, 17)4-»4,oL”(1:,2,

For a proof of this reflection theorem, we need a few more definitions.

Definition 6.2.7 A collection C of ordinals is

o unbounded iff Va 3B>a (C E C);

0 closediffVa(a7E@/\a§C—>sup aEC);

0 closed unbounded (c.u.b.) iff C is both closed and unbounded.

Lemma 6.2.8 ZF l- “IfC and D are c.u.b., then C D D is c.u.b. as well”

Proof. An easy application of lemma 11.6.8 of [Ku 80]. QED

Definition 6.2.9 A collection C of ordinals is a closed unbounded ap-mirror iff

1. C is closed unbounded, and

2. La reflects cpfor all ordinals a E C, i.e.
Va (a E C —>V176 La [c,oL(i7) <—>cpL°('U)])
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Suppose cp is a formula and D is a first-order definable collection of ordinals. Using
definition 6.2.7, we are able to construct new first-order formulas CU B1), CUBp,,,, and
REFS, with the following intended meanings:

1. CUBD := “’Dis closed unbounded”

2. CUBp_,,, :=“D is a closed unbounded cp-mirror”

3. REF,,,:= “ there is some collection of ordinals that is a closed unbounded cp—mirror”

The next lemma roughly corresponds to theorem IV.7.5 of [Ku 80].

Lemma 6.2.10 (Reflection theorem) ZF proves thefollowingbyproofsof lengthpoly­
nomialin

Va 3B>a Vz,:z:,17€Lg [<pL(:r, 2,27) +—>cpL"(:r, z, 27)]

Proof. First we note that ZF proves (a < B —>LO,Q L5), “if 7 is a limit ordinal,
then L», = Uo.<-,La” and L = UQEORLa.

We will prove the reflection theorem by induction on the construction of cp. A straight­
forward application of lemma 6.2.2 implies that for the reflection theorem to have a proof
of length polynomial in |<,o|,it is sufficient to find a polynomial bounding the lengths
of the induction steps. Thus, we need to find a polynomial P such that by proofs of
length S P(|<p|)» resp. S P(|‘=d»|)a reSp- S P(|I/2 0 Xi)» reSp- S P(|Q:m/2|), ZF proves the
following:

1. for atomic cp:

Va Elfi>a Vz,1:€L5 [c,0L(:c,2) 4-DtpL5(:c, 2)] /\ C'UB0R,,,

2. the -w-step:

Va 35 > a we Lg [wL(z7)H zbL5(z'2')]A REF, H
Va 35 > a we Lg [~wL(z7) H -w15Ll’(17)]A REF_,)

3. the connective step, where o E {A, V, —>,+—>}:

Va 35 > a we L5 [wL(27)H 51-23(27)]A REF),/\
Va 35 > a we L5 [XL(1Zi)H XL5(u'i)]A REF, H
Va 35> a We I45 ['(/JL0 XL('[)',215)H we o xLv(z7,13)] A REFW

4. the quantifier step, where Q E {El,V} :

Va 35>a Vz,17ELg[1bL(Z,’l7)H zpLa(z,27)]A REF, H
Va Elfi>a V276Lg [Q2 6 L tpL(z,27) <—+Q2 6 L3 wLB(z,17)] /\REFQ,,),

Finding polynomials bounding the lengths of the proofs of 1, 2 and 3 is very easy:
we can use the feasibly provable fact that atomic formulas are absolute for any La, L,
some propositional reasoning independent on the specific 1/1,x, and an application of
lemma 6.2.8 for step 3. We will show how the proofs of the 3-case in step 4 can be
bounded by a polynomial; we can then find a bound for the V—stepby rewriting V as -13-:
and using the bounds for the -v—stepand the 3—step.

Define

D := {5 IV17€Ln [32 e L wL(z.«7) 3 azem wL<z,z7>1}.
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It is easy to see that Z F proves the following by proofs of length polynomial in |Elz1b|:

Va 30> a Vz,176 L1. [1/2L(z,17)H 1bLB(z,17)]ACUBCW /\ CUB1; -1
Va ElB>a V176 L1; [Elz6L 1,bL(z, 17) 4-» 326 L131bL(z, 17)]A C'UBc¢r1—D,32¢,

In fact, we only use lemma 6.2.8 and the fact that VB(L13C_ZL). Thus we need to find
a polynomial P such that Z F l- CU B1; by a proof of length 3 P(|Elz1b|). Immediately
from the definition, it is clear that ZF l- “D is closed’’ by a proof of length polynomial in
|3z1,b|. Thus, it suffices to show by a proof of length polynomial in |3z1,b|that Z F proves
that ’Dis unbounded, that is:

Va 3B>a V176L11[3z6L 1l2L(z,17)-> 3z6L11 1pL(z,17)],

Va 3B>oz V176 L13Elz6L13 [Elz6L 1,bL(z,17) —>1,bL(z,'l7)].

We will reason in ZF, taking care that all steps are applications of general ZF -theorem
schemas that do not depend on the specific formula 1b. Take any ordinal a. We know
using only predicate logic that

V17eL,, 3z€L [3z€L 1bL(z,17)-1 1bL(z,17)];

therefore,

VUELC,am, (013= fl{B>a|Elz6L13[3z e L 1bL(z,17)—.1bL(z,17)]}).

by the unrelativized replacement and union axioms, there is a B1such that B1= sup{ag|176
La}. Continuing in this way, we can define by recursion a sequence B,,,for p 6 cu, where
for all p 6 w,

VUeLfip 3z6Lgp+, [ElzeL 1,bL(z,17)-1 1bL(z,17)] (6.2)

Define B := sup{B, | p 6 cu}. Because a = Bo < B1 < B2 < ..., we infer that B is a limit
ordinal > a. Now using (6.2) and the fact that L1;= LJK1,L.,, we find that

v17eL,, 3-zeL,, [ElzeL 1bL(z,17)-1 1bL(z,17)],

as desired. QED

Lemma 6.2.11 For all «,0,ZF feasibly proves the comprehension schema for 1,0,relativized
to L; i.e. by proofs of length polynomial in |Lp|,ZF proves the following:

Vz,176L 3y6LV:2:6L [:136 y 4->:1:6 z /\ cpL(:z:,z,17)]

Proof. Combine lemmas 6.2.5, 6.2.6 and 6.2.10. QED

Lemma 6.2.12 For all go,ZF feasibly proves the replacement schema for 1,0,relativized
to L; i.e. by proofs of length polynomial in |cp|, ZF proves the following:

Va,176L [V:1:6a3!y6L<,oL(:z:,y,17) —+
3c€LVz/EL (y 6 c H 3-1:€as0“(r,y,17))l
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Proof. We already have feasible proofs of the relativized comprehension schema for
the formula 3/ E b A 32:E a cp(:c,y, 27). So we can (feasibly) prove that it suffices to show
the following by proofs of length polynomial in |go|:

ZF l- Va.,'z7EL [Vscea 3!yeL <pL(:z:,y,17)_. ElbeL (V:1:Ea 3yEb<,0L(:c,y,17))]

The last proof works, as in lemma 6.2.10, by general theorem schemas of ZF that do not
depend on the specific <,0.Work in ZF and suppose a.,17E L and V:1:Ea3!y€ L<,oL(:r:,y, 27).
Now

Vzea 3% (B: = flla I 3.1./EL...<pL(=v,y.I7)});

then by replacement and the union axiom we find 6 such that fi = U{fi, | :1:E a}, and we
let b be I43. Then

\7’a:Ea 33/Eb cpL(:z:,y,1'2').

QED

Theorem 6.2.13 ZF [>fZF+V = L

Proof. We take the usual interpretation L of ZF + V = L into ZF. Because ZF is
axiomatized by a finite list of axioms plus the schemata of comprehension and replacement,
the lemmas 6.2.11 and 6.2.12 immediately imply that L is a feasible interpretation. QED

Remark 6.2.14 Looking carefully at the proofs of the lemmas leading up to theo­
rem 6.2.13 and using an analog of lemma 6.2.2 for polynomial time instead of polynomial
length, one can observe that theorem 6.2.13 can be strengthened: the proofs in ZF of the
interpreted ZF + V = L—axiomscpl‘are not only of length polynomial in |cp|. There is
even a deterministic polynomial time Turing machine M such that if the input of M is
the code of an axiom (,0of ZF + V = L, then M outputs the code of a ZF-proof of cpl‘.

It is a known result that PRA l- Con(ZF) —>Con(ZF+V = L) (see [Sm 77, Corollary
5.2.4]). One of the referees suggested that by theorem 6.2.13 this could perhaps be
strengthened to IAO+ exp |- C0n(ZF) —>Con(ZF + V = L). The observation about the
polynomial time computability of the proofs of the interpreted axioms, however, even leads
to the conjecture that IA0 + Q1 l- \7’a(azp+v=L(a) —>ElpPrfzp(p, aL)), where (1zF+\/_—_L
is a Al,’-formula axiomatizing ZF + V = L (cf. [Bu 86, Theorem 5.6]). Then, by a
standard argument (involving Parikh’s Theorem), we would have IAO+ Q1 l- C'on(ZF) —-+
Con(ZF + V = L).

Contrary to our expectations, the usual interpretation of ZF + V 95L into ZF(M)
(by forcing with generic extensions), although much more complex, is still feasible. We
checked this following the lines of the proof in [Ku 80]. Our proof relies so heavily on
the many details of Kunen’s proof, that it would be incomprehensible to readers not
conversant with that book. Therefore, we do not give it here.

In the literature there are also proofsof ZF l>ZF+V 74L and ZF+AC I>ZF+AC+
-CH which entirely avoid the use of the transitive countable collection M. A sketch of
such a proof can be found in [Co 66, Section IV.11], and a completely different full proof



90 CHAPTER 6. FEASIBLE INTERPRETABILITY

in [VH 72, Ch. V, VI]. It appears that these proofs can also be analyzed to show that the
interpretations in question are feasible.

Other well-known interpretations, such as the one of PA into ZF, and those of
IAO+ 0,, into Q [HP 93, Section V.5] are also feasible, as the reader may check for
her/himself. All in all it seems that the only examples of theories U and V such that
U D V but not U Df V are contrived theories obtained by fixed-point constructions like
the ones in section 6.4. It would be nice to find a more natural counterexample.

It would also be interesting to investigate severely restricted kinds of interpretability
which do distinguish between interpretations used in everyday mathematics. For exam­
ple, one could restrict the complexity of formulas allowed to occur in the proofs of the
interpreted axioms.

Sam Buss suggested the following restricted definition of feasible interpretability to
us:

U Dfm V <—>3K3M(“Kis an interpretation and Mis a deterministic

polynomial time Turing Machine” /\ Va(av(a) ——>PrfU(M(a),aK))). (6.3)

This definition is more in line with the conventional use of the word “feasible” in

the context of polynomial time computability. The clause PrfU(M(a),aK) in (6.3) is
a P-like formula, while the clause 3p(“|p| 3 P(|a|)” /\ PrfU(p,aK)) in the definition of
feasible interpretability used in this chapter is an NP-like formula. However, all interpre­
tations considered in this section can also be shown to be feasible in Buss’ sense: as in
remark 6.2.14, we only need an easy analog of lemma 6.2.2.

6.3 Soundness of ILM for feasible interpretability
over PA

In this section, we restrict our attention to feasible interpretability over PA. We show
that the modal interpretability logic ILM is PA-sound even if the intended meaning of
A D B is “PA + A feasibly interprets PA + B”. The definition of ILM can be found in
section 2.5.

Definition 6.3.1 A feasibility interpretation is a map * which assigns to every proposi­
tional variable p a sentence p‘ of the language of PA, and which is extended to all modal
formulas as follows:

1. (A r>B)*=PA+A* 1>,PA+B*

2. (CIA)* = ProvpA(A")

3. * distributes over the boolean connectives.

Here D; abbreviates the formalization of feasible interpretability.

We will prove that ILM is arithmetically sound for feasible interpretability, i.e. that
for all modal formulas A, if ILM l- A, then for all feasibility interpretions *, PA l- A‘.
Thus, we have to check that the axioms J1 to J5 are valid in PA when A D B is read as
PA + A D; PA + B. Whenever possible, we will prove generalizations of these axioms to
theories U, V 2 PA. Also we prove a generalization of the property M, where an infinite
set of E‘1’—sentencescan be added on both sides instead of one Cl-sentence only.
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Lemma 6.3.2 PA proves all feasibility translations of J1 to J5.

Proof. The proofs for J1 through J4 can be found almost verbatim in [Vi b]. We
reason in PA.

J1 Suppose for some theory V and some p that Prf1/(p, 'A"). Then by the identity
interpretation and the polynomial bound P(n) = n + Ip|, V D; V + A. So in
particular, if EJp,1(A—>B), then PA + A D; PA + A + B, and surely PA + A D;
PA + B.

J2 Suppose

c U D; V by interpretation K1 and polynomial P1, and

a V D; W by the interpretation K11and polynomial P2.

As in the usual case, U D W by the interpretation K1 0 K2. We need to show that
there is a polynomial bound for the proofs of the translated axioms. So let b code
an axiom of W, and p a proof in V of b”? with |p| 3 P2(|b|).

If we take the K1—translations of all formulas appearing in the proof coded by
p, and add some intermediate steps, we can construct a U-proof of (bK’)K1from
K1—translations of axioms of V as assumptions; the number of steps in this proof
will be 3 k - |p|, where k is a constant depending on the translation K1. Now we
only have to add proofs of the translated V-axioms; the axioms themselves have
codes of length 3 |p|, so their K1—translations have proofs with codes of length
_<_P1(lPl) S P1(P2(lbl))­

All in all, even in the worst case where the U-proof of (bK’)K1 consists wholly of
assumptions, there is a q with |q| 3 k-P2(|b|)-P1(P2(|b|)) such that PrfU(q, (bK’)K‘).
In particular,if PA+A D;PA+B and PA+B D;PA+C, then PA+A D;PA+C.

J3 Suppose

a U + A D; V by interpretation K1 and polynomial P1, and

0 U + B D; V by interpretation K2 and polynomial P2.

As in the usual case, we have U+AVB DV by the disjunctive interpretation M which
equals K1 in case A holds and equals K2 in case -A holds. To find a polynomial
bound, we observe that for all C, l- A —>(CM 4-»CK‘) and l- -:A —>(CM 4-»CK’)
by proofs of length 3 P(|C|), where the polynomial P depends on K1 and K2.
Now suppose that c codes an axiom of V, that p1 codes a U + A-proof of ck‘ with
|p1| 3 P1(|c|), and that P2 codes a U + B—proofof CK’with |p2| 3 P2(|c|). But then
there is a constant k such that

0 we can find p'1such that PrfU(p'1,"A —>“cM)with 3 k-(|c|+P(|c|)+P1(|c|));
and

0 we can find p'2such that PrfU(p;,,'fiA/\B —>"cM)with 3 k-(|c| +P(|c|)+
P2(|C|))­

Combining p’, and pi‘,and their respective polynomial bounds, we find p and P’ such
that Prfu(p,"A V B —>"cM) with |p| 3 P’(|c|). Thus U + A V B D; V.

In particular, we have: if PA + A D; PA + C and PA + B D; PA + C, then
PA+AvB D;PA+C.
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J4 Because (PA + A D; PA + B) —>(PA + A D PA + B), we have by the soundness of
J4 for normal interpretability immediately (PA + A D; PA + B) —>(<>A—+OB).

J5 In an easier variation of lemma 6.5.11, we use a claim proved in [Vi 91b], which is
stated in our chapter as lemma 6.5.10. Suppose B is a 2'1’-formulaaxiomatizing
a subset U of a 2'1’-language L. We will prove that IAO + 91 + <>3T I>f U i.e.
IAo+Q1+<>UTDf
By lemma 6.5.10, there is a polynomial P1 such that

PA l‘ DIAo+Q1+Con(fi)0071(5) -* P
ElKVaE Sent(L)[IAo + 01+ Con(fi) lg ("Ugo —>"aK)].

Of course we also know that PA l- |3IA0+n1+C,,,,(5)Con(B),so

PA + 3KVa e Sent(L)[IAo + 91+ C'on(fi) y”‘—""fl("ow —.“a'‘)].

On the other hand, by provable 2'1’-completenessthere exists a polynomial P2 such
that

PA I- \7’a.(B(a.)_. [mo + 91 + Con(fi) ii) (ra,,a,‘)]).

Combining the last two results, we have a polynomial P3 such that

PA l- ElK\7’a(fi(a.)—.[mo + 01 + C'on(B) ii) (aK)]),

so PA I- (IAo + 01 + <>3T) >, U. In particular, we have for any sentence A:

PA l- (IAO + 01+ <>pAA) I>f PA + A,

thus

PA l- (PA + <>pAA) l>f PA + A.

QED

We want to prove that Montagna’s principle M holds for feasible interpretability over
PA in its general version, where we can add an infinite set of Z?-sentences on both sides.
In order to ensure that the usual arguments can indeed be polynomialized, we do not
formulate the proof in the usual model-theoretic way, and we give many details that are
not given in most proofs of Montagna’s property for normal interpretability over PA. The
example we give in theorem 6.4.1 of a set S of formulas such that PA l- PA l> PA + S
but w bé PA l>f PA + 8 also relies heavily on these details.

Suppose U Z_>PA, V 2 PA. Now suppose U t>fV by the interpretation K (preserving
=) with domain 6, and polynomial P. We want to find a polynomial Q such that for every
)3?-sentence 0 there is a U + 0-proof p of UK with |"p"| 3 Q(|"a‘|). First, we need some
definitions and lemmas. Fix U, V,K, P as given above.
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Definition 6.3.3 Define pism(s) for “s is a partial isomorphisrn” and the function G(j, y)
as follows:

pism(s) :- seq(s) A (3)0 = OK/\ Vi < lh(s) —1((S)i+1 = SK(s),—)
G’(j,y) := 3s(pism(s) /\ lh(s) = j + 1 /\ (s), = y)

Lemma 6.3.4 U l- Vj3!s(pism(s) /\lh(s) = j + 1) and thus U l- \7’jEl!yG(j,y). Therefore,
there is a function g corresponding to G’.

Proof. By induction. QED

Lemma 6.3.5 U proves that g is injective, and U l- VjVy(G(j,y) —+6(y)).

Proof. By induction. QED

Lemma 6.3.6 U proves that g preserves O,S, +, -, and g.

Proof. We will give some of the preservation proofs. It follows immediately from the
definition of pism(s) that U l- g(O) = OK and U l- \7’:r(g(S:1:)= SK(g(:c))).

We now prove by induction that g preserves +. (The proof for - is analogous, and in
the case of 3 we can use the fact that 3 is expressible via +.)

We have U l- g(:c + O) = g(:r:) = g($) +K OK = g(a:) +K g(O) and U l- g(:1:+ y) =
flfl+“g@)~9&H4w%=d5@+yD=5”@@+yD=5“@@O+”flw%=dfl+“

= g(:1:)+K g(Sy), So by induction on y, U P V:z:Vy(g(a:+ y) = g(1:)+K g(y)).

Lemma 6.3.7 The range ofg is ‘closed downwards’, i.e. U l- ‘v’3:\‘/u(6(v.)Au <K g(:c) —>
3y<flu=Mw»

Proof. Before we start the proof proper, we note a useful fact. V includes PA and K is
an interpretation of V into U. Thus, as

1. PAl-\7’:1:Vu(u<:I:+1—>u<:z:Vu=:z:) and

2. U l- V:c(g(:z:)+K1K = g(:c +1)), we also have

3. U l- V:z:\7’u(6(u)/\ u <K g(:z:+1) —>v. <K g(:c) V n =

Now we can start with the proof by induction on :1:that U l- ‘v’a:Vu(6(u)A u <K g(;z:) —>
3y<fiu=MwO

x = 0 We have U l- -wElu(6(u) A u <K g(O)), so U l- ‘v’u(6(u) /\ u <K g(O) —>Ely < O(v. =no»
Induction step Work in U and suppose ‘v’u(6(u)/\ u <K g(:c) —>3y < :z:(u = g(y)))

(induction hypothesis). Moreover, suppose 6(a) /\ u <K g(:1:+ 1). Then, by 3,
u <K g(:z:)Vu = So by the induction hypothesis 3y < 1:(u= g(y)) Vu = g(a:),
i.e. Ely< :c+1(u = g(y)).

QED
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Remark 6.3.8 Let I(:::) be the formula 33/(1:= g(y)). Note that if U I7’Va:6(a:), then
U does not prove that I defines a cut. For, suppose that U l- [(0) A \7’a:(I(:z:)—>[(13 +

Then induction gives U l- Vz:3y(;r = g(y)), thus, by lemma 6.3.5, U l- V:z:6(:r),
contradicting our assumption.

On the other hand, by the previous lemma we do have U l- Va:‘v’u(6(u)/\ I(:1:)/\ u <K
:1: —> I(u.)).

Lemma 6.3.9 For all formulas go6 A0, U proves the following by proofs of length poly­
nomial z'n |"cp(:z:1,. . . ,:2:,,)"|:

Lp($17'--11:11)‘-’((pK)(g(x1)1"'

Proof. By induction on the construction of (,0.We will see below that the proofs for the
atomic formulae 1/}are obviously of length linear in |'"z/Fl, and that all induction steps
follow a given proof scheme in which the particular formulas at hand can be plugged in.
So, because every (,0has at most |"cp“| subformulas, there is a polynomial R such that
for all go, the U—proof of cp(:z:1,. . . ,a:,,) 4-» (cpK)(g(:c1), . . . ,g(:z:,,)) is of length 3 R(|'cp“|).
We will do the atomic step and the V1:3 t-step of the proof, and leave the others to the
reader.

Atomic step By lemma 6.3.6, we have for all terms t by proofs of length polynomial in
lf'tW':

U |- V1131,. . . ,:c,,(g(t(:c1, . . . ,a:,,)) = (tK)(g(:I:1), . . . ,g(:c,,))).

So suppose p is the formula t1(:r1, . . . ,:c,,) = t2(a:1, . . . ,:z:,._)where 1:], . . . ,:z:,, include
all variables appearing in t1 and t2. Then, because U proves that g is an injective
function,

Ul- t1(:z:1,...,:z:,,) = t2(:z:1,...,:1:,,)
+—>g(t1(:z:1,...,:c,,)) = g(t2(:r:1,...,a:,,))*6 = vg($n))

*4 ((t1 _ t2)K)(g($1)v vg($n))

Vx 3 t-step Suppose that <,0(x1,. . . ,:z:,,) = Va: 3 t(1:1,. . . ,:1:,,)w(:r,:r1,. . . ,:1:,,), and that
U l- w(:1:,:1:1,...,a:,,) 4-» (¢K)(g(2:),g(:r1),...,g(:z:,,)) (induction hypothesis). We
will use the fact that, because of lemmas 6.3.5, 6.3.6 and 6.3.7, by proofs of length
polynomial in |“t"|:

Ul-‘v’u,:z:1,...,:z:,, (3:z:[:z:3 t(.‘C1,...,.’13,,)/\'u
H 5('u) A u S” t"(9(-r1). . - . ,9(rn)))­

II
cc /5

H
1’.

Thus, we have the following equivalences by proofs of length polynomial in
|'cp(:t:1, . . . ,:c,,)"|:

U l- <,o(:r1,...,:c,,)
H V1: 3 t(2:1, . . . ,:z:,,)w(:c,:1:1, . . . ,:1:,,)

H V17S t($1, - - - ,rn)(11»")(9(-'E),9(r1), - - - ,9(:rn)) (by ind- hyp-)
H A11*SKtK(g($1)>' ' ' ag($n))_"¢K(Uag(I1)v' ' '
H (V1:3 t1[2)K(g(a:1), . . . ,g(:c,,)) (by def. of K)
H (‘p)K(g(1"1)v°"vg(xn))'
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Now we can finish the proof of the uniform version of Montagna’s property M for
feasible interpretability.

Theorem 6.3.10 Suppose

0 U satisfies full induction,

0 V extends PA in its language and

0 U D; V by interpretation K (preserving =) and polynomial P.

Then there is a polynomial Q such that for every EC,’-sentence0 there is a U + 0-proofp
of 0” with |'P‘l S Q(|'0’|)­

Thus, U + S D; V + 8 where S is a finite or infinite 2',’-set of Z?-sentences.

Proof. Suppose a E 8 is the E?-sentence Elx<p(x),where cp6 A0. By lemma 6.3.9, there
is a polynomial R such that we can prove the following by a proof of length 3 R(|ro‘l):

U l‘ 3:c<p(-'6) -* 3:w"(g(=r))
-+ 33/(5(y) /\ <p"(y))
-> (3w(:r))"­

Now we have U + S D; V + S by the interpretation K and polynomial Q := P + R.
QED

All results of this section also hold if we add the function symbol exp to the language
of U and V, which we need in theorem 6.4.1. Let g be as defined in lemma 6.3.4. We
will only give the result which needs some adaptation. The following preservation lemma
corresponds to lemma 6.3.6:

Lemma 6.3.11 Suppose exp 6 LU. Then U proves that g preserves 0, S’,+, -, 3, and exp.

Proof. We already have a preservation proof for - by lemma 6.3.6. Preservation of exp
then follows in the same way as preservation of + was proved from preservation of S in
lemma 6.3.6. QED

6.4 Interpretability does not imply feasible inter­
pretability

Theorem 6.4.1 There is a set S of Ao(exp)-sentences such that PA l- PA D PA + S,
butw béPA D; PA+S.

Proof. Define by Godel’s diagonalization theorem (or rather by the free variable version
as formulated by Montague) a Ao(exp)-formula ap(y)such that

PA F <p(y)H Vzsy -Prflrc. "<p(z7)")­

It is easy to see that if we diagonalize directly, there is a polynomial 0 such that for each
n, |n| < |'cp(n)"| 3 0(|n|). Moreover, if cp(1‘i)were false, then by definition we would
have a proof of the Ao(exp)-sentence cp(n); so t,o(7’i)must be true. But then, since L,0(7—'L)is
Ao(exp), we have the following:
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1. PA proves cp(fi), though

2. because <p(r‘t)is true, PA does not prove cp(n) by any proof whose Godel number is
of length 3 n.

Define S := {go(n)| n E w}. Then, by the identity interpretation, w l: PA D PA + 8.
Actually, as in [JM 88, section 6], we even have PA I- ‘v’yProv('cp(37)"),so PA l- PA D
PA + 8.

Now suppose, in order to derive a contradiction, that anl= PA Df PA + S by inter­
pretation K and polynomial P. Thus, for all n,

PA l- cp(r‘t)Kbya proof of length 3 P(|"<p(n)"|).

We also know by lemma 6.3.9 (with U = V = PA) that there is a polynomial R such
that for every n,

PA I- cp(7‘z)H cp(n)Kby a proof of length 3 R(|"cp(n)"|).

Now we can construct from R and P a polynomial Q such that for all n,

PA l- cp(n)by a proof of length 3 Q(|rcp('r‘z.)"|).

However,there willbe n suchthat n > 2 Q(|'cp(n)"|),and wehavea contra­
diction with 2. QED

A salient feature of the counterexample above is the trivial identity interpretation
by which PA interprets PA + 8. To prove that interpretability does not imply feasible
interpretability, it is not essential that the set of formulas added to PA be infinite like 8
above. In theorem 6.4.2 we show a counterexample where one sentence can be normally
but not feasibly interpreted over PA. Of course in this case the normal interpretation
cannot be the identity. The counterexample also shows that in general we cannot feasibly
merge two compatible cases of feasible interpretability; i.e. it is not true that if U D; V,
U DfBandU DV+B,thenU DfV+B(takeU=V=PA, B=A(n)orB=E* as
below in the proof of theorem 6.4.2).

Theorem 6.4.2 There is a sentence A such that w l: PA D PA + A, but cubé PA D;
PA + A.

In order to prove theorem 6.4.2, we need a well-known result and its proof, given in the­
orem 6.4.4 below. Solovay proved that the set {A | PA D PA+A} is 1'13-complete[So 76b].
This result inspired Hajek to prove that, for every n, the set {A | A is H9,+,—conservative
over PA} is also H3-complete [Ha 79b].

We have adapted the proof of theorem 6.4.4 from Visser’s unpublished rendition of an
alternative proof by Lindstrom of Hajek’s general result (see [Vi 90b]). First we need a
definition.

Definition 6.4.3 Define DWB for “there is a proof of the formula B which only uses
those axioms of U with Godel number 3 :13.”Then define D58 := El:cEJU,,B.

Theorem 6.4.4 Suppose U is a theory extending PA in the language of PA, such that
for all B, PA l- V:z:ElU(ElU,,B~> B) (reflection for U). Then for every H2-predicate P(:1:),
there is a formula A such that

PAl-OUT—>Vx((UDU+ H



6.4. INTERPRETABILITY AND FEASIBLE INTERPRETABILITY 97

Proof.

The proof is taken almost verbatim from [Vi 90b].
Let P(:1:) be any H2-predicate, say P(.7c)= V:z:S(z:,y), with S E 2?. Pick R by diago­

nalization such that PA I- R(:I:,y) 4-»S(a:,y) 5 EJUR(:z:,y). Let Q(:c,y) := DUR(:z:,y) j
S(a:, 3;). Now we can prove the following:

PA F VrvVy(DuR(x,y) H 3(:r, y) V Dull (6-4)

In order to prove (6.4), work inside PA and suppose ClUR(:c,y). Then either R(a:, y) or
Q(:::,y) holds. In case that R(2:, 3/)holds we have S(:::,y) by definition. In case that Q(a:, y)
holds we have ElUQ(.7:,y) by 2?-completeness, and hence by definition both ClUR(:z:,y) and
I:1U—»R(:c,y), thus DU_L.

For the other direction, suppose S'(:c,y). Again we have either R(:c,y) or Q(:z:,y).
From R(:c, y) we find ElUR(:c,y) by Z3?-completeness. From Q(:z:,y) we immediately derive
DUR(:c,y). Finally ElUJ_gives ClUR(a:,y) as well. This finishes the proof of (6.4).

Define A by diagonalization such that PA I- A(:r:) +—>C1,‘,-1A(2:)j 3yfiR(a:,y). Note
that by (6.4) we have PA I- OUT -—>V:z:[‘v’yDUR(:r:,y) —->P(:::)] and PA I- ‘v’:c[P(:c) —+
\7’yDUR(:z:,y). For this A, we can prove

PA l‘ OUT —>V.’II((UD U + +-—> (6.5)

First note that refiection for U allows us to apply the Orey—Hajektheorem in order
to conclude that PA 1-V:t:(VyCJU<>U,yA(a:)+—>(U l> U +

We start the proof proper of (6.5). Work in PA and suppose OUT.

—>-side Pick any :1:and suppose U [> U + A(:c). Then by the Orey-Hajek theorem
VylIlU<>U,yA(a:). We will prove ‘v’yEJUR(:1:,y). Pick any y. We have DU[Q(.'z:,y) -+
-=R(:c,y)]; therefore by definition of A,

‘3u[Q(-73.3/) -* "A($) V DU,y—'A($)]

and hence by reflection

DU[Q($»3/)" ‘A($)]­

But then there is a 1)such that

‘3U,vlQ(Il«‘,1/) —*“A($)]a

so by 29- completeness

C‘UDU.u[Q($,3/) —*“A($)l­

Also by 2?-completeness, there is a w such that

'3u[Q(1=.y) -’ DU,wQ($ay)]'

Combining the previous two facts, we find a u such that

C'u[Q(w,y) -> Du,..-'A(=B)l,
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and thus, by the assumption, CJUaQ(:z:,y). It follows that

I-—lU[DUR($vy) _’ R($v y)l:

hence by L6b’s theorem DUR(:z:,y). We may conclude VyClUR(:z:,y),thus, because
we have OUT, we conclude P(;z:).

4--side Pick an :1:and suppose Then VyClUR(:c,y) and thus VyClU(\'/z< yR(:z:,
It follows by definition of A that

V3/l3U(DU,y“A(17)-* A(I))­

On the other hand, we have

VyUu(Uu.y"'A(r) -> n/1(3))

by reflection, hence \'/yElU(<>U,yA(x)).But then by the Orey-Hajek theorem U D
U + A(:::).

This finishes the proof of (6.5), and thus of the theorem. QED

Proof of theorem 6.4.2. Let P(1:) be some I13-complete formula, say P(:z:) = VyS(:z:,y),
with S E 2?. Define the formulas R and A by diagonalization such that

PA F R(r,y) H 5(r,y) : DpAR(-my)

and

PA l- A(:c) +—>Cl};,pA(:r) j Ely-wR(a:,y),

where E1‘is as defined in definition 6.4.3.

Carrying out the proof of theorem 6.4.4 in True Arithmetic, and taking the theory U
mentioned there to be PA, we find the following result: if PA is consistent (as we believe
it to be), then

w l: ‘v’:c((PA D PA + A(:c)) 4-»P(:z:)).

Now suppose, to derive a contradiction, that

wl: V:c[(PADPA+ <—+(PA D;PA+

Then

w l: V:c[(PA D; PA + A(:r:))+—>

However, it is easy to see that PA Df PA + A(:1:)is a Z33-predicate, contradicting the
1'13-completenessof P. Therefore, there is an n E w such that

0 wl=PA DPA+A(fi) but

a wbéPA DfPA+A(fi).
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By this method we do not immediately find the value of a particular n that works, however.
A. Visser pointed out that we can make a specific counterexample in a more direct

way using the Lindstrom method. Because {e | e is the Godel number of a sentence E
such that -u(PA l>f PA + E 113,we can construct a formula A as in theorem 6.4.4
for which the following holds: for all sentences E,

w l: -w(PA [>f PA + E) 4-»PA > PA + A("E").

Now let E‘ be the sentence constructed by the fixed point theorem such that

PA F E‘ +—+A("E‘").

Then

w|=—~(PAi>,PA+E*)<—>PA r>PA+E*.

Therefore,

wl=PA l>PA+E* andwbéPA l>fPA+E‘.

Incidentally, such a specific counterexample can also be constructed by a straightfor­
ward adaptation to 113of a theorem of Myhill (see [Od 89, Proposition III.6.2]).

6.5 ILM is the logic of feasible interpretability over
PA

In this section, we will show that Berarducci’s proof of the arithmetic completeness of
ILM with respect to interpretability over PA can be adapted to prove that ILM is also
arithmetically complete with respect to feasible interpretability over PA.

We have already proved in section 6.3 that for all modal formulas in the language of
I LM we have:

if ILM l- «,0,then for all feasibility interpretations ', PA l- cp".

Therefore, we will only need to show the converse:

if ILM l7’(,0,then there is a feasibility interpretation ' such that PA I7’cp‘.

We suppose that the reader has a copy of [Ber 90] at hand in order to follow the original
proofs. For the lemmas 6.5.5 up to 6.5.7, knowledge of [Pu 86], [Pu 87] or chapter 3 will
be helpful to the reader. As in [Pu 87], we take the logical complexity of a formula to be
its quantifier depth. We can then adapt the results obtained in [Pu 87] to find for every
standard n a formula Satn, a satisfaction predicate for formulas of logical complexity 3 n,
such that Sat,, is of length linear in n. Subsequently, we can find proofs of length quadratic
in n of the Tarski conditions and of the truth lemma for these satisfaction predicates Satn.
Moreover, all these results can be formalized in PA. In the formalized case, we read Sat,,
and True” as Godel numbers found as function value in n. We will not go into the details
here but refer the reader to the papers by Pudlak and to chapter 3.

We apologize to the reader that in this chapter Fmlan, Sat" and True,, have different
meanings than in chapter 3: here the complexity measure is logical complexity, not length.

First, we (re)define some of the concepts that we use in the subsequent lemmas.
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Definition 6.5.1 Formally, we define the followingconcepts:

0 S'ent(a) for “a is the Godel number of a sentence”;

0 Fmla(a) for “a is the Godel number of a formula”;

Fmla,,(a) for “a is the Godel number of a formula of logical complexity 3 n”;

C'l(a) for “the Godel number of the universal closure of the formula with Godel
number a”; note that Cl denotes a function;

Indaz,,(b) for “b is the Godel number of an induction axiom of logical complexity
3 n”, i.e.

Inda:z:,,(b)<=> Fmla.,,(b) /\ 3y[Fmla(y)A
b = Sub(y, '"v1-', "0")" /\ \7’v1("y" —>”S'ub(y, "121","Sv1")") —>Vvfy.

We need to discriminate between a few different kinds of restricted provability, as
defined below. In this section, provability means provability in PA, unless we explicitly
state otherwise.

Definition 6.5.2 We formally define the following:

o BPrf,,(a:, y) for “:1:codes a proof of the formula coded by y, where only formulas of
logical complexity 3 71.appear in the proof”;

0 W |P—('il:1:for “:1:codes a formula that is provable in W by a proof of length 3 P(n)”
where P is a polynomial;

0 W l-l'_'—l for “there is a polynomial P such that” ‘v’nElp(|p|3 P(|n|) /\ Prfw(p,a:));

o Prov,,(:z:) for “:1:codes a formula that is provable by a proof which only uses those
F '1

axioms of PA with Godel number 3 n”; abbreviation Uncpfor Prov,,( cp );

o Provw,,,(:c) for “:1:codes a formula that is provable by a proof which only uses those
axioms of W with Godel number 3 n”; abbreviation Clwmcpfor Provw,,,("cp“).

In the context of satisfaction predicates Sat,,(;z:,212),we need a few more concepts.

Definition 6.5.3 We formally define the following:

o Evalseq(w,:c) for “w encodes an evaluation sequence for the formula or term with
Gédel number 2:; i.e. the length of the sequence w exceeds any 2'for which a variable
12,-occurs in the formula or term coded by 2:”;

o s‘(z',a:,w) for “the sequence which is identical to w, except that :1:appears in the
2'-th place”; note that s* denotes a function;

0 True,,(:z:) for Vw(Evalseq(w,:z:) —+Sat,,(:r,w)), where Satn is as in [Pu 87];

Remark 6.5.4 When we prove formalized results, we read Truen as a Godel number just
as Sat". So in that case the appropriate definition is as follows:

True,,(a:) for r\7’w(Evalseq(w,:c) —>”Sat,,(:c,w)’)"'.
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Lemma 6.5.5 (feasible subformula property) There are polynomialsP and Q such
that

PA I- \7’k‘v’a(Fmla(a)—»PA PER [Pmu,,(a) —+3q(BPrfQ(|k|+|a|)(q, a))])

Proof. In [Ta 75] Takeuti gives a proof of the free-cut elimination theorem for PA,
where PA is formulated as a Gentzen system. In order to be able to use Takeuti’s
method, we first transform Hilbert proofs that use only axioms of Godel number 3 k into
associated Gentzen proofs of length linear in the length of the original proofs, in which
all non-logical axioms have Godel number 3 k and the induction rule is only applied to
formulas of Godel number 3 Is.

Free cut-elimination then works in such a way that all principal formulas of induction
inferences in the new free cut-free proof are substitution instances of principal formulas
of induction inferences in the old proof. From this result one derives a proof of the corre­
sponding subformula property: all formulas in the free cut-free proof of a are substitution
instances of subformulas of either a principal formula of the induction rule for a formula
of length 3 Us],or an axiom of Q, or a itself.

At this point we can transform the Gentzen proof back into a Hilbert proof, again
with only a linear increase in the length of the proofs and of the axioms occuring. We
can then formalize the proof of the subformula property in PA: we find a polynomial Q
such that

PA l- ‘v’kVa(Pr0vk(a) —>3q(BPrfQ('k|+|a|)(q, a))).

But then it is easy to see that there is a polynomial P such that

PA l- \7’kVa(Fmla(a) —>PA |fl—"Ll—°l)—[Prov;.(a.) —>3q(BPrfQ(|k|+|a|)(q, a))]),

as desired. QED

Lemma 6.5.6 There is a polynomial P such that

PA l- \7’kVa(Fmla(a) —>PA lillal) [3qBPrf|,,,+lal(q, a) —>True|k|+,a,(a)])

Proof. First, we work informally by induction on the construction of q. We work in
PA, and we take any /4:and an a such that a is the Godel number of a formula. We have
to prove by polynomial length proofs (where the polynomial is fixed in advance) that
True|;,|+,a| preserves the axioms and rules as applied to formulas of logical complexity
S lkl + |a|­

As an example, we show how this works for the induction schema. We take 221as the
induction variable in all our instances of the induction axioms. So suppose b codes an
induction axiom of logical complexity 3 |k| + |a|, e.g. b = (Sub(y, P221‘,’0")' /\‘v’v1(-‘yr—>
-‘S'ub(y,"v1","Sv1“)") —>Vvfy). We have to prove the following by a proof of length
polynomial in n := Us]+ |a|:

True,,(Sub(y, F1217,"07)r /\ ‘v’v1(_'y'"—>"Sub(y, F211",rSv1")r) —+Vvlly). (6.6)

By a proof of length quadratic in n of the Tarski properties for Sat” and a proof of
length quadratic in n of a call by name / call by value lemma for Sat,, (cf. the proofs of
lemmas 3.3.12 and 3.3.16, but remember that a different complexity measure was used
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there), we can find a proof of length polynomial in n that (6.6) is equivalent to the
following:

\7’w[Sat,,(y, s*(1, O,w)) /\V:c(Sat,,(y, s"'(1,.'c,u2)) —>S'at,,(y, s*(1, Sa:,w))) —>

V:r:(Sat,,(y, s‘(1,:1:,u2))]. (6.7)

The formulas (6.7) are themselves instances of induction of length linear in n, so they
are provable by proofs of length linear in n. A polynomial of the form P(n) = c-n3 should
now suffice to carry out the proofs of (6.6).

Again, we can formalize the argument to derive the following:

PA I- Vk\:/a(Fmla(a) —»PA flfl [‘v’b(Inda:r|,,,+|,,,(b)—+True,,,,,.,,(b))]).

Similarly, we can show by polynomially short proofs that the other axioms of logical
complexity 3 |k| + |a| are true, and that the rules preserve truth. We leave these proofs
and their formalizations to the reader. QED

Lemma 6.5.7 There is a polynomial P such that

PA l- VkVa(Fmla(a) —>PA |—E(-lflflfl(True|;,|+|,,|(a)r —>7C'l(a))

Proof. By a formalized Tarski’s snowing lemma; cf. lemma 3.3.11. QED

The following theorem corresponds to the reflection theorem 1.6 in [Ber 90].

Theorem 6.5.8 (feasible reflection theorem)
There is a polynomial P such that

PA I- Vlc‘v’a(Sent(a)—»PA 51”“) (rProv;,(a) —»“a))

Proof. Combine lemmas 6.5.5, 6.5.6 and 6.5.7. QED

In the following lemmas and theorems, 3K abbreviates
ElK(“K codes an interpretation” /\ . .

The next lemma was proved by Albert Visser [Vi 91a, section 6, Claim 3] in the course
of a formalized Henkin construction in IAO+ 01.

Lemma 6.5.9 Suppose U Q IAO+ 01 and B aziomatizes some subset of a Elf-language
L. Then there is an r such that

IAO + 91 l- E1UCon(fi) —+3K\7’a E Sent(L)Elp < wj(a)Prfy(p,"Clga —>"aK).

Proof. See [Vi 91b]. QED

In remark 2.3.3, we pointed out that the values of an-terms in a correspond to ezp(the
values of polynomials in |a|). Therefore, lemma 6.5.9 implies the following lemma:

Lemma 6.5.10 Suppose U Z_>IA0 + 91 and B aziomatizes some subset of a El,’-language
L. Then there is a polynomial P such that

mo + Q1l- DUC0n(fl) —»3Kva e Sent(L)U |—”—"°—”("ofia —»M").
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The following theorem corresponds to Orey’s theorem; see for example [Ber 90, The­
orem 2.9]

Theorem 6.5.11 (feasible Orey’s theorem) Suppose that U 2 PA and W is given
by a set of axioms defined by the Ell’-forrnula a. Then

PA l- \/:c[U # (r<>.,,,,,T“)]-» U >, W.

Proof. Work in PA and suppose

Va:[U Mi ('<>,,,,T“)].

In U, we will do a Henkin construction for the Feferman proof predicate for W. First
define:

fi(:c) := a(:z:) A <>a,,+1T.

As in Feferman’s original proof, we can prove thatDU
(For, reason in U and suppose PT'fg(.’I,J_), then for the axiom of B coded by
the biggest Godel number y to appear in :1:we have a(y) /\ —u<>,,,_y+1T,thus
wfi(y): a contradiction.)

On the other hand, by provable 2'1’-completeness for a(a) and by the assumption
Va:[U}$ ("<>a,,T“)], we have a polynomial P1 given in advance such that:

va<a<a>~ [U (“am A<>......T“>>1.

So, by definition of B, we have the following for a polynomial P2 fixed in advance:

va<a<a>e [U <“a<a>“>1. (6.8)

But, using DUC'on(fi) we can apply lemma 6.5.10 to first derive, for a polynomial P3 fixed
in advance:

3mm 6 Sent(L)[U lfllfl ("mafia—+“a")],

and thus for a polynomial P4 fixed in advance:

3KVae Sent(L)[Uii) (ma) —»“am. (6.9)

Finally we can combine 6.8 and 6.9 to get the desired conclusion that there is a polynomial
P given in advance such that

3Kva<a<a>-+ {UM (a"))l.

i.e. U :>, W. QED

Now we can start the proof of the arithmetical completeness of ILM with respect to
feasible interpretations (cf. definition 6.3.1) over PA.

Theorem 6.5.12 If ILM l7’B, then there is a feasibility interpretation * such that PA |-/
B‘.
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The proof will in most places be identical to the one in [Ber 90]. First we will sketch
the outline of the proof, then we will prove the propositions that we need in the feasible
case but differ essentially from those used in [Ber 90].

Proof sketch. Suppose ILM I7’B, and take, by modal completeness of ILM with
respect to simplified models (see definition 2.5.6), a provably primitive recursive I LM ­
Kripke model V =< V, R, S, b, II->, with b = 1 and 1 IVB. Extend V with a new root 0
with 0R2: for all as6 V, as in definition 5.1 of [Ber 90]. Adapting definition 5.2 of [Ber 90],
we define a feasibility interpretation * such that for all propositional variables p,

p":= “3:1:EVU{0}:L=a:A:z:II-p”,

where L is defined as the limit of the Solovay function F, which is in turn defined in
definition 5.7 of [Ber 90]. We want to prove the following:

whenever 1 IVA, then PA if A‘, (6.10)

Then we will be done, as we have chosen V such that 1 IVB. To prove (6.10), we need
to prove in PA a few properties of F and its limit L. Subsequently we need to prove
by induction on the construction of the formula that for all formulas A, the feasibility
interpretation ‘ respects A, i.e.

PAl-V:I:EV(:z:II-A/\L=$—>A") and

PAl-V:cEV(:r:II--IA/\L=a:—+fiA").

It is clear from the definition of F that * is faithful on atomic formulas. Moreover, the
induction steps for the propositional connectives and D immediately followfrom the proofs
in [Ber 90]. Even the “negative” induction step for D has a straightforward proof:

Work in PA and suppose :1:E V, :1:II--=(A D B), and L = 2:; then by part 2 in
the proof of lemma 5.6 of [Ber 90] and by the induction hypothesis, -u(A* D
B’). But then surely fi(A" D, B‘), thus, as ‘ is a feasibility interpretation,
a(A D B)‘.

For the “positive” direction, we need two extra lemmas. First we will prove in PA
that F satisfies a feasible adaptation of Berarducci’s property 5 , which we then use to
finish the induction step for D.

For 1: E V, let rank(:1:,n), the rank of :1:at stage n, be defined as in definition 5.7
of [Ber 90]. The following proposition is an analog of proposition 5.14 in [Ber 90].

Proposition 6.5.13 (F has feasible property S) PA proves the following:

PAl- ‘v’:z:EVU{0}[L=:c—>
PA ll? ("v’y,z E VU{O}(L =y/\:I:Rz/\ySz —+<>kL= z)")]

Proof. We will prove the proposition by combining a few facts that are easy to check.
For brevity’s sake, we will leave out “E V U {0}” after quantifiers V:z:,Vy,Vz.

Fact 1 PA I- PA Hi,‘ ("vy(L = y —»<>;L = y)“)

Proof. Immediately from the refiection theorem 6.5.8. The formula L = y has a
fixed length, so the polynomial found in the proof of the reflection theorem in this
case depends only on |k|. QED
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Fact 2 PA l- PA ||—',f'("v’y(L = y —>‘v’n(I5< rank(y,n)))")

Proof. Immediately from fact 1 and the definition of rank. The appearance of k as
an efficient numeral keeps the length of the proof polynomial in |k|. (This is also
the case in the other facts below) QED

Fact 3 PA l- PA [LEI("Vz(Cl;L 75z —>ElmVn Z m(rank(z,n) S h))")

Proof. Immediately from the definition of rank. QED

Fact 4 PA l- PA l-"_°—'("‘v’y\7’z(L= y/\Cl;L 79z —>3n(F(n) = yAn codes y/\rank(z,n) 3
E /\ rank(z, n) < rank(y,n)))"))

Proof. From the definition of limit and fact 3: just take n big enough. We can
take care that n codes y because we have an infinitely repetitive primitive recursive
coding of the elements of V U Finally, to prove rank(z,n) < rank(y,n), we use
fact 2. QED

Fact 5 We have the following:

PAl- Va:(L=:z:—>PA [lid ("Vy‘v’z(L=y/\El;L7E z/\:r:Rz/\ySz—>
3n(n codes y A rank(z, n) < rank(y, n) /\ rank(z, n) 3 h
/\ F(rank(z, n))S:1:RzA F(rank(z, n))Rz))"))

Proof. For the part up to rank(z, n) 3 h, we use fact 4. For the last two conjuncts,
we use the S-monotonicity of F and the property corresponding to M of Veltman
ILM—frames. QED

Fact 6 We have the following:

PAI-‘v’a:(L=a:——+PA ll] ("\7’yVz(L=y/\El,;L# z/\:cRz/\ySz—>
3n(F(n) = y /\ F(n +1) = z))")

Proof. Immediate from fact 5 and the definition of the function F, clause 2. QED

Now we can wrap up the proof: we see that 3n(F(n) = y/\F(n+ 1) = 2) is inconsistent
with L = y, so in fact we have what we were looking for:

PA l- \7’:r[L= 2; —»PA # ('vyvz(L = y /\ $122 A ySz —»<>,;L= z)“)]

QED

The following proposition corresponds to part 1 of Lemma 5.6 of [Ber 90].

Proposition 6.5.14 (positive induction step for 1>) Let " bethefeasibilityinterpre­
tation defined in the proof sketch of theorem 6.5.12. Suppose as induction hypothesis that

PAl-‘v’y(L=y—>(yIl-A<—>A")) and

PAl-Vz(L=z—>(zIl-B4—>B‘)).

Then

PAl-‘v’:c(L=:::/\a:Il—A l>B—>(A l>B)').
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Proof. Let b be such that

PA l-Vy(L= y —+(y IFA 4-»A")) and

PA I-Vz(L= z—+ (zlk B +—>B")),

both by proofs that use axioms of Godel number up to b. Moreover suppose c is such that

PA l- Vz(z II—B —> Elc(z H—B));

for this, any c 2 the Godel number of the biggest axiom of Robinson’s arithmetic Q will
do. Define d := ma:z:(b,c). By theorem 6.5.11, the feasible version of Orey’s theorem, it
is sufficient to prove the following:

PAP-\7’:c(L=2:Aa:H-A 1>B—+Vk2dPAl'—',f'('A*—+<>,;B*‘).

Again, we will state a list of easily provable facts from which the result immediately
follows.

Fact 1 PA}-V:n(L=1:A;r:II—A DB—>Cl[A*—>3y(L=yA:cRyAyI|-AA:I:H—A DB)])

Proof. L = :1:——»EJEly(L = y A 22123;)by property (-R), Cl(A* A L = y —>3/ It A) by
the induction hypothesis, and D(:c H—A D B) by provable EC,’-completeness. QED

Fact2 PA l-‘v’:c(L=1:A:z:H- A DB —>D[A* ——>3y3z(L =yA:cRyAyH— AAa:Il—
A DBA:z:RzAySzAzIl—B)])

Proof. From fact 1 and the definition of 2: IFA D B. QED

Fact3 PAI—vzvk3dPAp",f—'(z:+B_.a,;zu—B)

Proof. From the definition of d, and the fact that k appears only as efficient numeral.
QED

Fact4 PA}-\/:c(L=a:Aa:H~A 1>B—>\7’k2dPA|'—',f‘(’A‘—+3y3z(L=yA:1:RyA
:z:RzAySzAO,;L=zAD,;zII— B)"))

Proof. From fact 2 for A‘ —>3yElz(L = y A 1:Ry A :1:Rz A 3/52 A z |I~B); fact 3 for a

proof of length polynomial in k of .2 H-B —>El,~czII—B), and proposition 6.5.13 for a
proof of length polynomial in |k| of L = y A :cRy A :r:Rz A 3132 —><>;L = z. QED

Fact5 PA}-‘v’2:(L=:z:A2:I+A>3-—»vk2dPAlfl:i('A-—»3z<>;(L=z/\z:+B)“))

Proof. If k is large enough (and k 2 d will do), then by an easily formalized
property of modus ponens, we have the following by proofs of length polynomial
in |k| : PA l- ‘v’z([D,,(z H- B —> L 79 2) A Dkz It B] —> Cl,,L 75 z), and thus

PA l- Vz(<>;.L = z A Dkz II—B —+<>,,(L = z A 2 ll- B)). This argument can be
formalized and combined with fact 4 to derive fact 5. QED
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Fact6 PAl-Va:(L=a:/\:rIl—A t>B——>Vk2dPA|—“f—'('A*—><>,;B"‘)

Proof. From fact 5 and the induction hypothesis; the fact that k 2 d is used at this
place. We also use that PA + Wk 2 d[PA piifl (3.-;<>;(L = z /\ 2 II-B) —»<>,;3z(L =
zA2Il-
QED

From fact 6 and the feasible version of Orey’s theorem, we may indeed derive

PAI-V:v(:cIl-A l>B/\L=a:—>(A I>B)*),

as desired.
QED

Proof sketch of theorem 6.5.12, continued. Concluding by induction that *
respects all formulas A, we have proved that ILM l7’B‘. Therefore, ILM is arithmetically
complete with respect to feasible interpretability over PA.

QED.





Chapter 7

The complexity of feasible
interpretability

How is it that life is orderly and you are content, a little cynical perhaps but on the whole just
so, and then without warning you find the solid floor is a trapdoor and you are now in another
place whose geography is uncertain and whose customs are strange?

(Jeanette Winterson, The Passion)

Abstract. We prove that there is a Eyformula f such that

{e | PA feasibly interprets PA + €(e)}

is Z2-complete. The method of proof that we use combines a recursion­
theoretical reduction and an adaptation of some lemmas from Lindstrom’s
paper [Li 84].

7.1 Introduction

In this chapter, we continue our investigation of feasible interpretability begun in chap­
ter 6. We remind the reader of the half-formal definition of feasible interpretability:

U D; V H ElK3P(“Kis an interpretation and P is a polynomial” A
Va(av(a) -* 3P(“|P| S P(|a|)” /\ P7‘fu(P,aK))))- (7-1)

Similarly, we define a concept of feasible H1-conservativity, given as

U Dn,f V <—>3P(“P is a polynomial” A ‘v’:I:‘v’y(Fmlan,(:1:)A Prfv(y,:z:)

—*3P(“|P| S P(|3/I)” /\ PTfu(P,I))))­

In section 6.2 we show that many interpretations encountered in everyday mathematics
are feasible. For example, we have both ZFC D; ZFC+ CH and ZFC Df ZFC + fiCH.
All in all it seems that the only examples of theories U and V such that U D V but not
U DfV are contrived sets of sentences obtained by fixed-point constructions. Moreover, D
and Df turn out to behave rather similarly with respect to their modal-logical properties.

109



110 CHAPTER 7. THE COMPLEXITY OF FEASIBLE INTERPRETABILITY

However, when we study the definitional complexity of feasible interpretability, the
difference with normal interpretability is striking. It is clear from (7.1) that the formula
U D; V is 22. On the other hand Solovay in [So 76b] proved that {A | PA l>PA + A} is
H2-complete. This result in turn inspired Hajek to prove that, for every n, the set {A | A
is H9,+1-conservative over PA} is Hg-complete [Ha 79b].

Bearing in mind Rogers’ observation in [Rog 67] that “almost all arithmetical sets with
intuitively simple definitions that have been studied . have proved to be Z9,-complete
or H9,-complete (for some n)”, we would like to know whether feasible interpretability is
complete for some level of the arithmetical hierarchy.

Indeed, it turns out that there is a Z3?-formula£ such that {e | PA I>f PA + £(é)}
is ‘E3-complete, as we prove in section 7.6. From our methods we immediately derive
that {e | PA I>PA + §(E) but not PA l>; PA + §(é)} is not only inhabited, but even
rather wildly so —to be explicit, it is Hg-complete. Thus the two completeness results
provide some precise evidence for the observation that normal interpretability and feasible
interpretability over PA have substantially different extensions.

The formula 5 that we use for the Z33-completeness results is as simple as possible.
More precisely, it is easy to show that for any H?-formula {(113),{e | PA l>f PA + §(é)} is
equal to {e | PA l- {(6)}, which is recursively enumerable.

The rest of the chapter is organized as follows. In section 7.2 we give some preliminaries
on partial truth definitions and some notational conventions. In section 7.3 we characterize
feasible interpretability in terms of feasible H1-conservativity. Section 7.4 contains the
main novelty of this chapter, namely a recursion-theoretical reduction by which we show
that the set of (possibly infinite) theories feasibly interpretable over PA is E3-complete.

Lindstrom provided in [Li 84] a general method by which one can replace every re­
cursively enumerable set Y of E9,-sentences by a single 2?,-sentence 0 such that PA + 0
has the same H9,-consequences as PA + Y. In section 7.5, we prove a feasible version of
Lindstr6m’s lemmas. The proofs in this section are fairly straightforward.

Finally, in section 7.6, we apply the methods of section 7.5 to the possibly infinite,
but still suitably simple, sets of formulas constructed in section 7.4. Thus, using the
characterization of feasible interpretability over PA as feasible H1-conservativity, we prove
that there is a Z3?-formula{(2) such that {e | PA l>f PA + {(5)} is Z3-complete.

The chapter is almost self-contained. However, for some details of proofs we refer the
reader to chapter 6, and we suppose that the reader is at least slightly familiar with the
terminology used in [Bu 86].

7.2 Preliminaries and notation

We use Pudlak’s notation T )1 4pand T # '.p(n) as discussed in notation 2.6.7.
We will also sloppily leave out some Godel brackets and numeral dots, in particular

deeper nested ones. We use efficient numerals 17.of length linear in
We suppose that all theories mentioned in the sequel are Elf-axiomatized.

Definition 7.2.1 Prov,.,q~(“A")stands for “there is a proof of A from T in which only
axioms with Godel number 3 I: are used”.

Con,.(T) := -Prov;,,T(r_l_").

In this chapter we use two kinds of partial truth predicates. Pudlak in [Pu 87] intro­
duced the first kind that we need. His True” are truth predicates of length linear in n
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which work for quantifier depth 3 n. Pudlak works with a relational language, whereas
in chapter 3, the standard language of arithmetic including function symbols was used.
In the present chapter, as in chapter 6, we use Pudlak’s complexity measure, namely the
logical complexity and not the length of formulas. We have the following Tarski lemma:

Lemma 7.2.2 There is a polynomial P such that for all sentences A of length 3 |k|,

PA |i"’ True,,.,(A)H A.

Proof. See [Pu 87]. (cf. chapter 3. Pudlak works with a relational language, whereas
in chapter 3, the standard language of arithmetic including function symbols was used.)

QED

Lemma 7.2.2 can be formalized to get:

Lemma 7.2.3

PA I- 3P‘v’kVa(Sent(a) —»PA |”—"“—"L"(True|;.,+|a|(a) «—»a)).

Definition 7.2.4 A theory T in the language of arithmetic is feasibly essentially reflexive
if there is a polynomial P such that for all sentences A and for all k,

T pflfl (Prou.,T("A‘)—+A).

Lemma 7.2.5 PA is feasibly essentially reflexive, even provably so, i.e. we have:

PA 1-3P\7’kVa(Sent(a)—»PA E (Prov;,,pA(a)—»True,,.,,.,.,(a))),

thus

PA 1- ElP‘v’kVa(S'ent(a) —->PA lflfilill (Prov;.,pA(a) —>a)).

Proof. See theorem 6.5.8 and lemma 7.2.3. QED

We will need a similar result in section 7.5. First we need two definitions.

Definition 7.2.6 We say that a set A is sparse if there exists a polynomial P such that
for every n the number of elementsof A having length 3 n is bounded by

Definition 7.2.7 A Z?-formula a defines a provably sparse relation if there is a polyno­
mial P such that for all q,

PAlfi)—‘v’z(a(z)/\z§g—> z=x).
1:3?)/\a(:|:)

Lemma 7.2.8 Let A be an extension of PA by a provably sparse set of axioms in the
language of PA. Then we have

A |iT—lVu, v 3 1_n(PrfA(v, u) —>True|,,,|(u)).
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Proof. Suppose the set of new axioms over PA is given by the 2'1’-formulaa. The
proof uses lemma 6.5.5 and lemma 6.5.6. In order to apply lemma 6.5.5, we work in PA
and first transform proofs with Godel number 3 m of u from A into PA,,,-proofs of (par
abus de langage)

( A 2:)!‘ _’ flu;
:r:$fi/\a(:l:)

this can be done polynomially in |m|.
Next we apply lemma 6.5.5 and lemma 6.5.6. Finally we note that, due to the provable

sparsity of the set of new axioms defined by a, we have

A # Truel,,,|( /\ 2:),
:I:SrT./\a(:t:)

Thus we derive the lemma. We leave the details, e.g. of formalization of /\,,,S,7,,,c,(¢)1:, to
the reader.

QED

The second kind of partial truth predicates that we use are the standard ones related
to the levels of the arithmetical hierarchy.

Lemma 7.2.9 For all i Z 1 there are partial truth definitions Trueg, and Truem such
that the Tarski lemmas have short proofs. More precisely, there is a polynomial P such
that:

0 for all 1'1,--sentences7r, PA [1 7r<-+Truem('7r"), and

0 for all Z3,--sentences0, PA lffl 0 4-»Trueg‘.("o").

Proof. Visser in [Vi 92] gives a Ao(e:rp) definition of satisfaction for A0-formulas. It
is easy to construct from this partial truth definitions Trueg, and Truen, of length linear
in i. We leave the reader the easy but tedious task of showing that the Tarski lemmas
indeed have short proofs. QED

We also need a result relating the two kinds of partial truth definitions.

Lemma 7.2.10 Let F, E {X},-,lI,-}.Then

PA |@ \7’u3 rTi[Fmlap‘.(u) A True|,,,|(u) —>Truep,(u)].

Proof. We leave the proof to the reader. QED

7.3 Characterizations of feasible interpretability
In section 7.6, we will use a characterization which says that, over suitable theories,
feasible interpretability is equivalent to feasible H1-conservativity. We prove a formalized
version of this equivalence in corollary 7.3.3.

Non-feasible versions of all three characterizations below are well-known. We proved
a feasible version of Orey’s Theorem in chapter 6.

We have the following Orey-Hé.jek—stylecharacterization of feasible interpretability.
(Provably sparse relations are defined in definition 7.2.7.)
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Lemma 7.3.1 (Feasible Orey-Héjek characterization) SupposeU 2 I 21 and V is
an extension of PA by a provably sparse set of axioms in the language of PA. Then

PA + [U ('4' Con,(U)] _. (U :>, v ._. [U ('4' Con,(V)]).

Proof.

—->We first state a useful fact. We axiomatize each PA;, using only one induction axiom.

To be precise, there is a function 2'r-+ "6,-", with |'"6,-“|polynomial in 2',definable in

IE1, and a 2',’-formulaa;’v (standing for the axiom set that contains the induction
axiom for 6w plus the sparse set of remaining axioms of V) such that

121% ‘v’a:,z(a;,V(z) —>z 3 ac)

and

1231 l- \7’:z:(Prov,,v(_L) —>Pr0v,,;'v(_L)).

Therefore we have, by instantiation,

PA l- [U llél Prov“/(_L) —>Provo,;‘v(_L)]. (7.2)

We now start our proof proper by reasoning in PA and assuming that

U }'i_'eon,(U). (7.3)

If U [>f V by interpretation K, then there is a polynomial R such that

V:z:Vz3 :z:(a;,v(z) —+U Ii 2K).

Because a;,,, singles out a provably sparse set, we have provable completeness, thus
we derive

U Hi,’ V2 g x(a;,,(z) —»U #*‘—"fl2"). (7.4)

Next we want to find a polynomial Q such that

U |$ PT‘0’Ua;'V(_l_)—->"'C0n2Q(|:;|)( (7.5)

So reason inside U and suppose Prfo,;‘v(q,J_). If we take K-translations of all
formulas in q and add some intermediate steps, we find a quasi-U-proof p of .1.that
still depends on some assumptions 2“ where a;’V(z). But, since 2 3 2:,we know by
(7.4) that these zK have U-proofsof length 3 We add these proofs to p in
order to find a U-proof p’ of _Lthat uses only U-axioms of length 3 Q(|:::|) for some
polynomial Q given in advance. Stepping out of U again, we find that indeed (7.5)
holds.

However, by (7.3) we have U # Con2Q(.:.)(U), so (7.5) gives U <Provo,;_V(_J_).
By (7.2) we finally conclude U @ Con,( V).
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+—For this direction, which is a feasible version of Orey’s Theorem, we do not need the

assumption U # Con,(U), nor do we need the provable sparsity of V over PA.
We make the desired interpretation by a feasible Henkin construction for a Feferman
proof predicate of V. For details of the proof we refer the reader to theorem 6.5.11.

QED

Lemma 7.3.2

PA + [v i'f—'Con,(V)] —.(U >,,,, v H [U (E4 Con,(V)]).
Proof.

—>Reason in PA and suppose that U [>n,f V and V llél C'on,( V). Because C'on,( V) is
a H1-sentence, this immediately gives us U [iii Con,( V).

4- This direction of the proof does not depend on the assumption V |—lf—'Con,( V).

So, reason in PA and suppose that U # Con,(V), Fmlan,(:1:)A PrfV(y,:z:). (We
will use without mention the fact that a: _<_y.) First we analyze the proof of 2'1’­
completeness, and we note that there is a fixed m — to be explicit, m is the Godel
number of the largest axiom of Robinson’s Arithmetic Q — for which we have the
following:

U |l—fl-Con,,,( V + 1:) —>2:. (7.6)

Because the axioms of V are recognized in a 2'1’-way,we can again invoke provable
Z?-completeness to show that Prfv(y, sc) implies

U Hi,‘-«con,( v + fix). (7.7)

By our assumption U ll? Con,( V) we have U l|i_l Con,,,,,,(,,,,,,)(V), which we may

combine with (7.7) to derive U ll—f_'lC'on,,,( V + 2:), thus by (7.6) U l'i_l 2:, as desired.

QED

Corollary 7.3.3 If U 2 I21 and V is an extension of PA by a provably sparse set of
axioms, then

PA l- [U 9? Con,(U)] /\[v +'f—'Con,(V)] —.(U :>, v H U :>,7,, V).

Proof.

——+By the —>-direction of lemma 7.3.1 and the 4--direction of lemma 7.3.2; we do not

need the assumption V [lid Con,( V).

<—By the —>-direction of lemma 7.3.2 and the 4--direction of lemma 7.3.1; we do not
need the assumption U )5,‘ Con,( U).

QED

Because PA is provably feasibly essentially reflexive, we have the following useful
characterization for feasible interpretability over PA:

Corollary 7.3.4 For all formulas A, B in the language of PA,

PA}-PA+A l>;PA+B+—>PA+Al>n,,PA+B.
Proof. Immediately from lemma 7.2.5 and corollary 7.3.3 QED
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7.4 The set of Elf-axiomatized theories feasibly in­
terpretable over PA is Z32-complete

In this section, we will prove that the set of theories that can be feasibly interpreted
in PA is E2-complete. We assume that each 2'1’-axiomatized theory is given by a code
of a non-deterministic polynomial time Turing machine that accepts exactly the Godel
numbers of axioms of the theory in question, and we suppose that the coding of Turing
machines is standard, e.g. as in [BDG 87].

By the way, the reduction that we use to prove theorem 7.4.1 can be easily adapted
to yield a slightly alternative proof of Hajek’s theorem that {e | the deterministic Turing
machine coded by e works in polynomial time} is E2-complete (cf. [Ha 79a]).

Let us turn to the technicalities. Take some Godel numbering which codes formulas
in the language of arithmetic (which for our purpose includes a function symbol exp) as
binary numbers. L, stands for the language accepted by the Turing machine with code
e. By writing out the definitions we see that E := {e | e codes a deterministic Turing
machine such that PA feasibly interprets PA+ the set of formulas whose codes are in
L,} = {e | 31K EIP Va:Vy(2:is an axiom of PA or y is an accepting computation of e on
:1:—>3z(|z| 3 P(|;2:|) A Prj(z,:z:K)))} is in 22.

It is well-known that {e | We finite} is Z32-complete (cf [So 87]). So in order to prove
that E is in fact Z32-complete,the following theorem suffices.

Theorem 7.4.1 There is a total recursive function F such that for all e:

We is finite
<=>F (e) codes a non-deterministic polynomial time Turing machine such

that PA feasibly interprets PA + the set of formulas whose codes are in Lp(e).

In order to prove this theorem, we first introduce a definition and prove a lemma.

Definition 7.4.2 Define by G6del’s diagonalization theorem (or rather by the free vari­
able version as formulated by Montague) a Ao(e:cp)-formula go(y)such that

PA l" <P(y) H V|$| S €IP(lyl)"P7‘f(117,rS0(37)1)­

This fixed point is a bounded analog to the fixed point that Godel used to prove his
First Incompleteness Theorem. Informally, every <,o(n)says “I am not provable by any
short proof”. Part of the proof of the following lemma is reminiscent of G6del’s argument.
It is almost identical to the proof of theorem 6.4.1.

Lemma 7.4.3 For any NP-subset X of the natural numbers defined by a Z3‘1’—formulaa,
we have

X is finite <=>PA [>f PA + {<p(fi)|a(n)}.

Proof.

0 It is easy to see that there is a polynomial 0 such that for each n, < |"<p(n‘)“|3
0(|n|)­

o If cp(n) were false, then by definition we would have a proof of the A0(ea:p)-sentence
cp('r’i);so cp('7"i)must be true. But then, since cp(7'i)is A0(e:rp), we have the following:
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1. PA proves cp(1‘z),though

2. because cp(7"z)is true, PA does not prove <p(1‘z)by any proof whose Géidel number
is of length 3 2"”.

o If X is finite, then it is obvious that PA [>f PA + {cp(7’z)|a(n)}.

0 Suppose X is infinite and PA l>f PA + {<p(7‘z)|a(n)}by interpretation K and poly­
nomial P. Thus, for all n E X,

PA IP(lrS"(fi)-'l)

Since cp is Ao(ea:p), we also know by lemma 3.10 of [Ve 93] (with U = V = PA)
that there is a polynomial R such that for every n E X,

PA <p(7'7«)«—»<p(T7)K­

Now can construct from R and P a polynomial Q such that for all n E X,

13,4| M,-,,)_

However, there will be n such that 2l"' > Q(O(|n|)) Z Q(|"<p(r‘z)“|),and we have a
contradiction with 2.

QED

Now we can prove the theorem by giving an appropriate reduction F.
Proof. For e,t given, we describe the behavior of the deterministic Turing machine

coded by F(e) on input t. In the rest of the proof we will sloppily mention the codes
instead of the machines or functions that they code. As usual, |s| stands for the number
of symbols that 3 consists of.

IF t is not of the form "cp(§)“ for any 3,

THEN we halt and reject t;
ELSE we find the 3 such that t is of the form "cp(§)‘;
first we simulate the behavior of e on inputs 1,. . . , |s|, for at

most |s| steps each.
IF |s| > Is — 1| AND

e halts on |s| within |s| steps, OR
there is an 2'3 |s| —1 such that

e halts on 2'within |s| steps AND
e does not halt on 2'within |s| —1 steps,

THEN we halt and accept t;
ELSE we halt and reject t.

We want to show that F is the required function. To this end, first define
.9e(i) := the smallest .3such that

0Island
0 e halts on 2'within |s| steps.
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Now we prove the theorem.
(2) Suppose We is finite, say We = {i1, . . . ,i,,}.
Then Lp(e) = {"<,o(se(i1))“,...,'cp(se(i,,))"}. By lemma 7.4.3 we know that PA I>f

PA + {‘P(3e(7;1))a - - - 290(3e(in))}°

(<=) Suppose We is infinite. We know that for all i 6 We, i 3 |se(i)|. So the set
Lp(e) = {"<p(W)" | i 6 We} is an infinite set, and by lemma 7.4.3 we do not have
PA [>; PA + {<p(se(i)) | i 6 We}.

QED

Corollary 7.4.4 There is a total recursive function F such that for all e:

We is infinite
<=>F (e) codes a non-deterministic polynomial time Turing machine such

that PA interprets PA + the set of formulas whose codes are in Lp(e), but
does not feasibly interpret this set.

Proof. We can take the reduction F as in the proof of theorem 7.4.1. The «--direction
follows immediately from the old proof. For the —>-direction,we only have to remember
the additional fact that PA 1-cp(n’)for every n. QED

In section 7.6, we will replace the possibly infinite sets Lp(e) by a single sentence {(6)
which is just as strong as far as feasible interpretability over PA is concerned. In order
to do this we make use of two properties of Lp(e) which make it suitable for replacement:

1. it is easy to compute whether y E Lp(e), thus, because we know already that PA is
Alf-axiomatized, PA + Lp(e) is All’-axiomatized as well; and

2. Lp(e) is only sparsely populated (see definition 7.2.6).

We now proceed to make these properties more precise and to prove them for our Lp(e).

Remark 7.4.5 Note that, if we take some standard coding of Turing machines (see
e.g. [BDG 87]), then to compute whether t E Lp(e) takes only time polynomial in |t| + |e|,
for:

o to compute whether t is of the form "cp(s)" and, if it is, to find this 3, takes time
polynomial in |t|;

0 to simulate the behavior of e on inputs 1, . . . , |s|, for at most |s| steps each takes
time polynomial in |s| + |e| 3 |t| + |e|;

0 to see whether |s| > |s —1| takes time linear in |s| 3 |t|;

0 to see whether e halts on some i 5 |s| within |s| but not within |s| —1 steps takes
time polynomial in |s| + |e| 5 |t| + |e|.

Remark 7.4.6 Note that for every e, the set Lp(e) is sparse. More precisely, all members
of Lp(e) are of the form "<p(§)” for some 3 such that |s| > |s —1| (i.e. there is a k such
that s = 2").

Generalizations of theorem 7.4.1 By some slight adaptations, the proof of theo­
rem 7.4.1 immediately gives rise to other results. We mention two directions of general­
ization.
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0 Sam Buss suggested the following restricted definition of feasible interpretability to
LISZ

U l>f,,,V 4-»3K3M(“Kis an interpretation and Mis a determ.

pol. time Turing Machine” AVa(av(a) —>PrfU(M(a),aK))).

This definition is more in line with the conventional use of the word “feasible” in

the context of polynomial time Computability. The clause PrfU(M(a), a“) is a P­
like formula, while the clause 3p(“|p| g P(|a|)” A PrfU(p,aK)) in the definition of
feasible interpretability used in this dissertation is an N P-like formula.

It is easily seen that under the new definition, E’ := {e | e codes a deterministic
Turing machine such that PA “feasibly” interprets PA + the set of formulas whose
codes are in L3} = {e | HK 3P-time polynomial Turing machine M V:z:Vy(:ris an
axiom of PA or y is an accepting computation of e on :1:—+Prf(M(:z:),:cK))} is in
22. Moreover, by inspection of the proofs of lemma 7.4.3 and theorem 7.4.1, we see
that E’ is in fact Z2-complete.

We could also define feasible interpretability by bounding the length of proofs used
in terms of other standard function classes than the polynomials; e.g. the linear
functions or the exponential functions would be a good choice. In the latter case
we have to adapt the fixed point of lemma 7.4.3 in order to diagonalize out of the
function class, but we still get Z2-completeness of the set of theories “feasibly”
interpretable over PA.

7.5 Lindstr6m’s general lemmas polynomialized
Let A be an extension of PA by a provably sparse set of axioms in the language of
PA, where the set of axioms of A is given by the Z‘1’—formu1aa. We give a definition
from [Li 84], and we adapt some of the lemmas from that paper.

Definition 7.5.1 Let P be either H or E. For every i 2 1, we define the following:

[I”,-],,,(:I:,y) := ‘v’u,v 3 y(Fmla1~‘(u) /\ Prfc,(,)V,:,(v,u) —>True1~[(u))

The following lemma corresponds to [Li 84, Lemma 1].

Lemma 7.5.2 Let F be either H or 2. Then [1",~]o,(:1:,y)is a F,~—formulasuch that

1. PA l- [1",-]a(:c,y) A z 3 y —>[I”,-]c,,(:1:,z);

2. For every e and every cp, A + cp(é) |-l”,:'—l[I“,-]o,("cp(e)‘,rn)

3. For every e and every cp, there is a polynomial P such that if?/J E I‘, and A+<,0(e) l- 212

via a proof coded by q, then A + [1“,-].,('«,p(e)‘,q)[13 1/2.

Proof.

1. See [Li 84, Lemma 1].
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2. By lemma 7.2.8, we have

A + me) 919-‘vu. v s fi(Prfa<z>v==w»<a>~(v,u> —»T7'“elm|(“ll­

Moreover, we have by lemma 7.2.10:

A ['4' ‘v’u(Fmlap,.('u) A True|m|(u) —>Truep_.(u)),

so indeed

A + we) l'.1' [r.1.<w>“,—m>.

3. Suppose 1,06 I‘; and A+g0(’é) l- 212,via a proof coded by q. Then there is a polynomial
P1 given in advance such that

A 1% Fmlar.-("ab") A Prfa(z)Vz='<p(E)‘(qarw1)a

thus by definition of [I“,-]o,,there is a polynomial P2 given in advance such that

A + [11-la("<p(é)".a) ifl Tmer.<"w“>.

So by lemma 7.2.9, there is a polynomial P given in advance such that

A + [11-]..(”so(é)‘,<7)rm 2».

QED

The fixed points that we define below in definition 7.5.3 were introduced by Lindstrom
in his paper [Li 84]. Our lemmas 7.5.4 and 7.5.5 are analogous to [Li 84, lemma 2]. The
difference is that we keep track of the lengths of the proofs.

Definition 7.5.3 Let i 2 1 and x E E,»be given. Define 5 by diagonalization such that

PA |" {(5) H 3y('*lHila(r€(E)".y) /\ V2 S y x(és 2))­

Dually, let i 2 1 and X 6 11,-be given. Define 0 by diagonalization such that

PA F 6<e>H vy<[>:.-1..<r6<e>“.in ~ x(é. in).

Lemma 7.5.4 If )((:::,y) is a ZI,~—formula,then {(23) is also 23,-and the following holds:

1. For all e, A + {(6) ill,‘ ‘dz 3 *rfix(e,z).

2. For every e, there is a polynomial P such that if 7r 6 IL and A + E(é) l- 7r via a

proof coded by q, then A + V2 3 6 )((E, .2) PW) 7r.

Proof.
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1. Take e fixed. By lemma 7.5.2(2) we have

A + ((7) # [H.-1..(’:(e)‘.772),

so by lemma 7.5.2(1), we have

A + ((7) ('4' vz s 7’n[1T.-lo.("€(é)“.z). (7.8)

Now by definition of {,

A + 5(7) )@ ay(~(H.1.(:(e). y) Avz s y x(e. 2)). (7.9)

From (7.8) and (7.9), we finally conclude that

A + {(6) V23 'Tn‘x(é,z).

2. Suppose 7r 6 1'I,-and

A + §(e) l- 77via a proof coded by q, (7.10)

then by lemma 7.5.2(3), we have a polynomial P1 given in advance such that

A+ [n.~1..(e(e):) vr. (7.11)

By definition of 5, we have a polynomial P2 fixed in advance such that

A + vz s 7)x(e. z) aw) v [IL-]a(€(é).q). (7.12)

From (7.10), (7.11) and (7.12) we conclude that there is a polynomial P given in
advance such that A + V2 3 Qx(e, 2) PW) 7r.

QED

We state the next lemma for reasons of symmetry only: it will not be used in the
sequel

Lemma 7.5.5 If x(:r,y) is a ll,--formula, then 0(:c) is also 11,-and the following holds:

1. For all e, A + 9(é) ll?‘ x(é,'r—n).

2. For every e, there is a polynomial P such that ifa E E. and A + 9(6) lfl 0, then
A + vz 5 <7x(é. 2) P""" 0.

Proof. We leave the proof, which is similar to the proof of lemma 7.5.4, to the dis­
trustful reader. QED
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7.6 Feasible interpretability is Z32-complete
The result of section 7.4 is not yet entirely satisfactory: we seek an elegant result that
corresponds more neatly to the idea that feasible interpretability is E2-complete. In order
to do this, we would like to be able to replace each possibly infinite set Lp(,) of codes of
axioms accepted by a Turing machine with code e by an instance £(é) of a single formula
5. Moreover, we would like this replacement to be such that LF(,) and §(é) have the same
status with respect to feasible interpretability over PA. Luckily, one of the fixed points
of section 7.5 can do our job.

Definition 7.6.1 Let a be a 2'1’-formuladefining the set of axioms of PA.
By remark 7.4.5, the relation y E Lp(e) is polynomial-time computable, so by [Bu 86,

Theorem 3.2] it is All’-definable in IAO + 01. This means that there are a 2'1’-formula
n(e,y) and a I'll,’-formula1/(e,y) that both correspond to the relation y 6 LF(,) and such
that IA0 + Q1 l- n(e,y) +—>z/(e,y).

Now we define x(e,y) := n(e,y) —>True~,;,(y). Clearly x is 2?. We define 5 as given
by definition 7.5.3 for z’= 1 and this X. To be explicit, 5 is defined by diagonalization
such that

PA l‘ 6(5) H 33/("lH1la(r€(é)",y) /\ V2 S 3/X(77(5a2) —’ T7"U€2:1(Z)))­

Definition 7.6.2 For every e, let Xe be the set of Ao(e:::p)-formulaswhose Godel numbers
are contained in LNG).

Lemma 7.6.3 For all e, the following holds:

1. PA + {(6) >, PA + X,;

2. PA + X. t>n,, PA + {(5).

Proof.

1. Suppose that cp E X... Because T)6 2'1’,we have

PA |'+" n(e, Hp“). (7.13)

Next, by lemma 7.5.4.1, we have

PA + so) #131n<e.*.o“> —»Tmez.<“«.o“>. (7.14)

Combining (7.13) and (7.14), we derive PA + {(6) )l—”,flTrue;;,('cp"). Thus by

lemma 7.2.9, PA + £(é) )'—‘f_°'Lp.So we certainly have PA + §(é) l>f PA + X...

2. Suppose 7r 6 H1 and PA + {(6) l- 7r by a proof with Godel number q. Then by
lemma 7.5.4(2), we have a polynomial P1 fixed in advance such that

PA + ‘v'z _<_(7x(é, 2) Plug‘) 7r. (7.15)

Also we have a polynomial P2 given in advance such that

PA + X...IE V2g q )((E,z) (7.16)
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The reason for this is as follows. By a formalized version of remark 7.4.6, Xe provably
contains only formulas 90(3) where 3 is a power of 2, i.e.

PA l- n(é, 2) —+ V 2 = '—<p(2'°)".
l=SlZ|

Moreover by All’-completeness (see [Bu 86]) we have a polynomial P3 such that for
all n (n ¢ Xe => PA + Xe lflu fin(é, 17)),so there is a polynomial P4 given in
advance such that

PA}-fflQ‘v’z(n(é,z)/\z§§—+ V z=.f).
:I:$q/\:I:EXe

A130, PA VA,‘Lp(fi) —. Tme,e,(',o(n)"), thus PA + Xe Hi,‘ V2 3 q(n(é,z) —»
Trueg,(z)).

From (7.15) and (7.16), we conclude that there is a polynomial P given in advance
such that PA + Xe lfli 7r,as desired.

QED

Corollary 7.6.4 For all e, the following holds:

1. PA + {(6) D PA + Xe;

2. PA + Xe l> PA + £(é).

Proof. Directly from lemma 7.6.3. Alternatively, see Lindstr6m’s original nonfeasible
argument in [Li 93, lemma 5]. QED

Theorem 7.6.5 {e | PA l>f PA + £(é)} is Z32-complete.

Proof. By theorem 7.4.1, we have for all e: We is finite <=> PA I>f PA + Xe. By
inspection of lemma 7.2.8 we see that for all e, PA + Xe is feasibly essentially reflexive.
Therefore corollary 7.3.3 gives for all e:

PA Df PA + Xe <=> PA Dnlf PA + Xe.

Combining this with lemma 7.6.3 finally gives us for all e:

WelSfinite <=> Dnlf + {(3),

thereby giving a reduction from the E2-complete set {e | We is finite} to the set {e | PA Df
PA + {(83)}. QED

Theorem 7.6.6 {e | PA > PA + 5(6) A -=(PA [>f PA + £(é))} is H2-complete.
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Proof. It is easy to see that PA I>PA+E(é)/\fi(PA l>fPA+€(é)), being a conjunction
of two H2-formulas, is again a H2-formula.

From corollary 7.4.4, we conclude that for all e, We is infinite if and only if

PA l>PA+X,/\w(PA l>,PA+X,).

But by lemma 7.6.3 and corollary 7.6.4, we find that Weis infinite if and only if PA l>PA+
{(5) A-1(PA I>fPA + §(é)). Thus we have reduced the H2-complete set {e I Weis infinite}
to {e | PA > PA + €(é) A w(PA >, PA + £(e))}. QED

Generalizations of theorem 7.6.5 We can generalize theorem 7.6.5 on lines suggested
at the end of section 7.4. However in this case it would not be a good choice to define
feasible interpretability by bounding the length of proofs by linear functions.
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Samenvatting

Dit proefschrift bevat een aantal resultaten over de metamathematica van eerste orde
rekenkunden. Het zwaartepunt ligt bij het bestuderen van bewijsbaarheid voor wbegrensde
rekenkunde en een alternatieve definitie van interpreteerbaarheid.

Deel I gaat vooraf aan de eigenlijke resultaten.
In het inleidende hoofdstuk 1 geven we een informele beschrijving van de rol van het

begrip “efficiéntie” in de wiskunde en de metamathematica. We introduceren ook de
belangrijkste begrippen die in het proefschrift aan de orde komen: complexiteitstheorie,
begrensde rekenkunde, bewijsbaarheidslogica en interpreteerbaarheidslogica.

Hoofdstuk 2 bevat de technische beschrijving van de in hoofdstuk 1 geintroduceerde
begrippen. Daarnaast geven we een beknopte opsomming van de stellingen uit de lite­
ratuur die we bij het bewijzen van onze resultaten gebruikt hebben. Zo geven we enkele
stellingen over definieerbare sneden en hun toepassingen in de rekenkunde. Het hoofd­
stuk eindigt met een paragraaf waarin resultaten uit de literatuur besproken worden die
de verschillen en overeenkomsten tussen enkele zwakke rekenkundige theorieén belichten.
Interpreteerbaarheid en conservativiteit voor bepaalde klassen formules worden hier ge­
bruikt om de kracht van de theorieén te vergelijken.

Deel II is gewijd aan de begrensde rekenkunde.
In hoofdstuk 3 bewijzen we eerst onder de cornplexiteitstheoretische aanname NP 75

co-N P dat de begrensde rekenkunde geen volledigheid bewijst voor alle formules voor
het vergelijken van getuigen. In de Peano Rekenkunde speelt bewijsbare volledigheid
voor zulke formules een belangrijke rol bij het bewijzen van de geformaliseerde versie van
Rossers Stelling en So1ovay’sVolledigheidsstelling.

Om toch 00k in de begrensde rekenkunde de geformaliseerde versie van Rossers Stelling
te kunnen afleiden, bewijzen we een reflectieprincipe voor “kleine” bewijzen. Het bewijs
daarvan maakt gebruik van partiéle waarheidspredicaten en definieerbare sneden.

Als toepassing van dit principe geven we een bewijs van een stelling van Bernardi en
Montagna voor de begrensde rekenkunde. Bovendien gebruiken we het “kleine” reflec­
tieprincipe voor een simpele versterking van een bekende stelling over het injecteren van
kleine bewijzen van inconsistentie. Tenslotte gebruiken we het principe, op een meer ver­
rassende manier, in het bewijs van een stelling over het bestaan van echte eindextensies
van modellen van de begrensde rekenkunde die aan een zware extra eis voldoen.

In hoofdstuk 4 keren we terug naar het probleem van bewijsbare volledigheid. We
bewijzen dat de cornplexiteitstheoretische aanname P 96 NP fl co-NP impliceert dat
Buss’ begrensde rekenkunde S; niet voor alle Z3?-zinnenvolledigheid bewijst.

In hoofdstuk 5 presenteren we partiéle antwoorden op de vraag: wat is de bewijs­
baarheidslogica van de begrensde rekenkunde? Omdat bewijsbare volledigheid voor zin­
nen voor het vergelijken van getuigen op grond van resultaten uit hoofdstuk 3 en 4 dubieus

131



132

is, kunnen we niet rechtstreeks So1ovay’smethode gebruiken.
Met behulp van het kleine reflectieprincipe uit hoofdstuk 3 en definieerbare sneden

passen we voor een geschikte klasse van Kripkeframes de methode van Solovay aan. We
geven een inbedding van modellen op zulke eenvoudige frames in de begrensde rekenkunde.

Ook bewijzen we dat de bewijsbaarheidslogica van de begrensde rekenkunde in ieder
geval niet de modale theorie van een klasse Kripkebomen kan zijn. De vraag wat de
bewijsbaarheidslogica van de begrensde rekenkunde dan wel is, is op het moment van
schrijven voor zover bekend nog open.

Deel III behandelt een alternatieve definitie van interpreteerbaarheid.
In hoofdstuk 6 definiéren we “uitvoerbare interpreteerbaarheid,” waarbij de lengte

van bewijzen van vertaalde axioma’s begrensd is door een polynoom in de lengte van
die axioma’s zelf. We laten zien dat een aantal bekende interpretaties, zoals die van
ZF + V = L in ZF, uitvoerbaar zijn. Aan de andere kant zijn niet alle interpretaties te
vervangen door uitvoerbare interpretaties. Met behulp van diagonalisatie construeren we
een theorie die weliswaar in de Peano Rekenkunde interpreteerbaar is, maar er niet op
uitvoerbare wijze in geinterpreteerd kan worden.

Verder laten we zien dat de interpreteerbaarheidslogica I LM arithmetisch correct en
volledig is voor uitvoerbare interpreteerbaarheid over de Peano Rekenkunde.

Hoofdstuk 7 behandelt de definitionele complexiteit van uitvoerbare interpreteerbaar­
heid over de Peano Rekenkunde. We bewijzen, door een recursie-theoretische reductie te
combineren met een aangepaste versie van een methode van Lindstrom waarin partiéle
waarheidsdefinities een belangrijke rol spelen, dat uitvoerbare interpreteerbaarheid over
de Peano Rekenkunde Z32-volledigis. En passant geven we een karakterisering van uit­
voerbare interpreteerbaarheid in de stijl van Orey en Hajek.

De 23-volledigheid van uitvoerbare interpreteerbaarheid over de Peano Rekenkunde
staat in contrast met de H2-volledigheidvan standaard interpreteerbaarheid over de Peano
Rekenkunde. Het blijkt dat standaard interpreteerbaarheid en uitvoerbare interpreteer­
baarheid substantieel verschillende extensies hebben. We bewijzen dat de verzameling zin­
nen die wel gewoon maar niet uitvoerbaar interpreteerbaar is over de Peano Rekenkunde,
zelfs H3-volledig is.






