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Preface

Monolithic this thesis is not. It is neatly divided in two parts. Each part consists
of two articles. The first part deals with theories of weak arithmetic. I.e., fragments of
Peano arithmetic that do not prove the totality of exponentiation. We hope to provide
sufficient evidence that both technically and heuristically it is useful to interpret these
fragments as second-order theories. The first article contains a general introduction and
a brief discussion on the ‘philosophical’ motivations. Both articles are meant to be rea­
sonably self-contained. Some general familiarity with (first-order) models of arithmetic
is the only prerequisite to part I. The reader can refresh her memory by consulting the
book of R. Kaye, Models of Peano Arithmetic. Oxford University Press, Oxford (1991).

Chapter 3 and 4 of the second part are reprints of D. Zambella, On the proofs of
arithmetical completeness for interpretability logic, Notre Dame Journal of Formal Logic,
vol. 35 (1992) pp.542-551 and of D. Zambella, Shavrukov’s theorem on the subalgebras of
diagonalizable algebras for theories containing I A0+ exp, Notre Dame Journal of Formal
Logic, vol. 35 (1994) pp. 147-157. Part II contains a short introduction to these articles.
Finally, for connections between the first and the second part of this thesis we would like
to refer the reader to R. Verbrugge, Eflicient Metamathematics, Ph.D. Thesis, Universiteit
van Amsterdam, ILLC Dissertation series, 1993-3, (1993).

Each chapter of this thesis may be read separately and contains a separate list
of references as well as scientific acknowledgements. My supervisors, Dick de Jongh and
Albert Visser have helped me in many different ways during the last four years. A thanks
is due also to Professor A. Troelstra who kindly areed to be my officialpromotor. Finally, I
want to express my gratitude to all colleagues who in one way or another have contributed
to create a fruitful atmosphere around me in the last few years. In particular I would like
to mention Dick, Albert, Michiel, Rineke, Volodya, Marc, Harry, Leen, Peter, Andreja,
Maarten, Erik, Martijn and Bas.



Part I. Boundedarithmetic

Chapter 1. Notes on polynomially
bounded arithmetic

Abstract

We characterize the collapse of Buss’ bounded arithmetic in terms of the prov­
able collapse of the polynomial time hierarchy. We include also some general
model-theoretical investigations on fragments of bounded arithmetic.
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2 POLYNOMIAL ARITHMETIC

0 Introduction and motivation.

In every model of I A0 numbers code finite sets. Sets coded by numbers are A0—definable.
In general, the converse is not true. Weak theories, which do not prove the totality of
exponentiation, do not prove the existence of a code for every finite A0-definable set. So, a
natural way of strengthening I A0 is by adding to the language second-order variables X, Y,
Z, etc. ranging over finite sets of numbers and introducing axioms of finite comprehension
ensuring the existence of sets of the form {:z:<a : for <p(a:)ranging over some class
of second-order formulas. Interesting theories arise when we restrict the schema of finite
comprehension t.obounded formulas. These are formulas where all quantifiers are of the form
Q:c<t or QX<t where t is a first-order term (i.e., a polynomial). Note that second-order
bounded quantifiers range over sets whose elements are bounded by t, so, by the absence
of exponentiation, their nature is radically different from that of first-order quantifiers. We
introduce the classes 2? and Ilf’ counting alternations of (polynomially) bounded second­
order quantifiers. Restricting the strength of the schema of finite comprehension to formulas
of a certain complexity one obtains the hierarchy of theories that we call 2? -comp. The union
of all these theories (i.e., finite comprehension for all bounded second-order formulas) is called
second-order bounded arithmetic BA. We study the relative strength of various fragments
of BA and in particular their provably total functions. Interestingly, all provably recursive
functions of BA are of polynomial growth. In this article we prove some theorems of partial
conservativity are proved for some of these theories and the connection with complexity
theory is briefly discussed.

In the last decades two subsystems of arithmetic, I A0 and 32, have been studied espe­
cially for their connections with complexity theory (see e.g., [17]and [3]or In particular,
Buss’ S2 is the most extensively studied. The theory 52 coincides with (an extension by def­
inition of) the equally well-known I A0+ 01. These theories are first-order strengthenings of
I A0. In the case of I Ag+Q1 or 52 the motivation for the strengthening is somehow technical;
it arises from metamathematical and/ or syntactical considerations. In fact, in order to have
a reasonable formalization of computation and/or syntax one needs to be able to perform
operations on strings such as the substitution of substrings. Such operations increases the
code of the string superpolynomially and so, this is not provably total in I A0. Adding to
[A0 an axiom (i.e., Q1) asserting the totality of this function one obtains a stronger theory
in which it is possible to formalize almost all basic notions of metamathematics. Buss in­
troduced a hierarchy of theories S’; whose union is S2. These theories are obtained by some
weakening of the axiom of induction (while introducing sufficiently many new primitives to
allow smooth bootstrapping).

It is not surprising that BA coincides with Buss’ S2, modulo an appropriate translation.
Namely, to each (first-order) model M’ of .5’;corresponds a (second-order) model M” of BA.
The first-order objects of M” are the logarithmic numbers of M’ (i.e., numbers belonging
to the domain of exponentiation). The smash function guarantees that these numbers are
closed under multiplication. The second-order objects of M’ are those finite sets which have
a code in M’. In this way, E?-formulas get transformed into 2?-formulas of Buss’ language
(see e.g., [3]or chapter V of in a very natural way,so, the constructed second-order model
verifies finite comprehension for all bounded formulas. Vice versa, from a model M” of BA
one obtains a (first-order) model M’ of 52 by the inverse procedure. As domain of M’ we
take the second-order objects of M”. In M” we define the primitives of 52 as set operations.
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Intuitively, we think of a finite set X as the numbers E26,‘ 2‘ and define operations lead
by this idea. We shall see that BA disposes over enough second-order recursion to formalize
these operations and to prove that the axioms of 5'2to hold in M’. Note, parenthetically,
that the cartesian product of two sets is mapped to a first-order function with the growth
rate of the smash function. This procedure actually maps models of E?-comp into models
of S2 and vice versa (for all 2'>0). A few details on this isomorphism (which was discovered
in different ways by many authors) are contained in Section 1.7. Readers who are mainly
interested in 5'; are advised to read that section first. In fact, afterwards they will be able to
translate most of the results reported here into theorems about fragments of $2. In particular,
Lemma 2.2 is a strengthening of the main theorem of Our proof is model-theoretic and
it is formally identical to an unpublished model-theoretic argument for the conservativity of
I 21 over PRA by Albert Visser. In fact, formal similarities between I 21 and E?-comp are
apparent when primitive recursive functions are replaced by polynomial time computable
functions. Other conservativity results are obtainable with the same method. The author’s
personal motivation for using a second-order framework is that this approach allows economy
of primitives, natural definitions and (again in the author's opinion) a clear heuristic.

In the hierarchy of fragments of BA very few inclusions are known to be strict. In
general the problem of proving inclusions to be strict seems to be a very difficult one.
A more realistic goal is to characterize the collapse of theories in terms of the provable
collapse of some complexity classes. A corollary of Lemma 2.2 is that, if ’P-def (i.e., the
\7’X3’1’fragment of Z3f(‘=‘ proves 2" = H2’,then all of BA collapses to ’P-def. So, a very
satisfactory result would be to prove the converse. One of the best known results in this
direction is the celebrated KPT theorem (see Theorem 3.4): in [12] Krajiéek, Pudlak and
Takeuti, proved that if 77-def proves Bf-comp, then in the standard model the polynomial
time hierarchy collapses to the second level. Unfortunately, it is still unclear whether their
proof is formalizable in BA, so, their result cannot be used to answer questions like: if "P-def
proves Elf-comp does BA collapse?

The main achievement of this paper is the following theorem. It gives a satisfactory
characterization of the collapse of BA in terms of the provable collapse of PH. (On the right
hand side we include the translation into Buss’ language. For uniformity, we set To := PV1.
For the definitionof BBB?“ see

Theorem. The followingare equivalent

(i) 79,--def|- E?“-comp T2 |- 52:“

(ii) Pi‘def l’ 2l,+1§H?+1/P059 T2‘l’ El’+1§Hl’+1/P019

(iii) 'P,--def |- BA T2 |- 32

(iv) 'P.-—def+ Z31,’-’+1-choice|- )3?“-comp T2 + BB2:-’+1 |- 0 S2“

The implicationfrom to (ii) is Theorem 3.3. The implicationfrom to (iii) can
be reconstructed from the proof of Theorem 3.2. (To read these two proofs the reader needs
only to rush through Section 1.) From Theorem 3.2 it actually followsthat (ii) implies (iii)
while in Corollary 2.3 is proved that (iv) implies
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1 Preliminaries.

Here we introduce the necessary definitions. Lemma 1.3 provides a smooth bootstrap­
ping. The class of polynomial time computable functions is concisely introduced in section 1.5
in a machine independent way. The (standard) comparison of strength of the various frag­
ments is sketched in Section 1.6. In Section 1.7 the relation with Buss’ S; is sketched.

1.1 The polynomially bounded hierarchy.

We define the analogue of the analytical hierarchy for finite sets. The language L2 is
the language of second-order arithmetic; it consists of two symbols for constants: O, 1, two
symbols for binary functions: +, - and two symbols for binary relations: <, 6. Moreover,
there are two sorts of variables: first and second-order. Lower case Latin letters 2:,y, z, ..
denote first-order variables and capital Latin letters X, Y, Z, .. second-order variables. First
and second-order variables are meant to range respectively over numbers and finite sets of
numbers. Terms are constructed from first-order variables only. The formula :c<y is to be
read “.7:is less than 3/”. The intended meaning of X <y is: “all elements of X are less than
y”. Let t be a term of L2 in which 3:does not occur. We adopt the following abbreviations
with the usual meaning

(Q—'0<t)<.0,(Q1736Y)90, (QX<t)S0,

where Q is either Vor 3. Quantifiers occurring in either of these contexts are called (polyno­
mially) bounded quantifiers. The classofbounded formulasis denoted by PH. Note that
first-order quantifiers range over elements of sets while second-order quantifiers range over
subsets of sets. Here, first-order bounded quantifiers play the role that sharply bounded
quantifiers have in first-order bounded arithmetic (see e.g., [3]or chapter V of

A formula is (polynomially) bounded if all of its quantifiers are. Counting alter­
nations of second-order quantifiers we classify bounded formulas in the (polynomially)
bounded hierarchy. We use either one of the symbols H5 or 23 for formulas contain­
ing only bounded first-order quantifiers. We define inductively )3?+1 as the minimal class
of formulas containing Hf, closed under disjunction, conjunction and bounded existential
quantification. The class Hf+1 is the minimal class of formulas containing 2? , closed under
disjunction, conjunction and bounded universal quantification. So, PH equals U,-Eu,Z? and
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Uiéw

The class 28()3f) is the smallest set of formulas containing 2?, closed under Boolean
operations and bounded first-order quantification. Sometimes we add to the language L2
some set .7 of new symbols for functions. We define the (relativized) classes of bounded
L2(.7-")-formulas: E? (.7-'),Hf’(.’F),etc. similarly to those of the language L2. (We allow terms
of L2(.7-')to occur in the bounds of the quantifiers.)

The domain of an L2 structure M is composed of two disjoint parts: the numbers and
the sets of M. Truth in M is defined as usual but first-order variables are restricted to

range over numbers while second order variables range over sets. To denote elements of a
model, we use the same convention as for variables, so, we write AEM for ‘A is a set of M’
and aEM for ‘a is a number of M’. For models we use bold face capitals, for the class of
first-order objects of a model M we use the corresponding lower case bold face letter In. The
disjoint union of w and ’P<,,,(w)constitutes the standard model, functions and relations
are interpreted in the natural way. We loosely denote the standard model by w.

Computational complexity theory and second-order arithmetic are our main sources
of inspiration, concrete intuition and terminology. For our digressions to computational
complexity theory it is convenient to think of finite sets as strings i.e., we identify ’P<,,,(w)
and 2<“’. So, sets of finite sets may be identified with languages. The actual form of the
isomorphism is immaterial. We stipulate that the length of the string associated to a finite
set X 9.42equals (up to some additive constant) the least upper bound of the set X which
we henceforth denote by |X To begin with, the reader may wish to check that 2'1’-formulas
define languages in NP, i.e., if <p(X)EEf then the language {X : w I: <p(X)} is in NP. Vice
versa for every language L§2<"’ in NP there is a formula <p(X)in Si’ such that L is {X : w |=
<p(X In the same way, Hf-formulas coincide with coNP languages and, in general, each
level of the bounded hierarchy coincides with one of the Meyer-Stockmeyer polynomial time
hierarchy (with the only exception of ground level 2'= 0 which corresponds to uniform-AC0
languages). When digressing to computational complexity theory, we identify each number
mew with the set of its predecessors and so, with a string of ones of length 2:. Therefore, a
formula <,0(2:)with one free first-order variable defines a tally language i.e., a language which
is contained in {1}<“’.

1.2 The axioms of second-order bounded arithmetic.

The theory 9 is axiomatized by the following formulas: (The expressions a 3 b, A = 0
and AQB stand for the usual abbreviations.)

hskip1cmO;£1 a.(b+1)=(a.b)+a

a+0=a a_<_b<——>a<b+1

a+1=b+1—>a=b a§b+1<—>a<b

a+(b+1)=(a+b)+1 A<b<—>(‘v’1:EA)a:<b

a7$0<—->(3a:<a):c+1=a A=B<—>A§B/\B§A

a.O = 0 A 75 0 —> (EIa:EA)(A<1: +1)
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These are the axioms of Robinson arithmetic plus the defining axioms for the relation
<, the axiom of extensionality, the least number principle and the axioms of finiteness (i.e.,
all sets have an upper bound). The theory E?-comp is axiomatized by (9 and the schema
of (finite) comprehension for 2?-formulas i.e., for all cpin X3?in which X does not occur
free,

Z3f—comp: (3X<a)(‘v’:c<a) [$EX <—>

The theory of second-order bounded arithmetic, BA, is the union of 2? -compfor iéw.
The theories Hf-comp and ESQ}:-’)-compare defined in a similar way and are easily seen to
be equivalent to )3?-comp.

1.3 Rudimentary functions.

In order to keep formulas to a readable size we need to introduce new function symbols.
To begin with, let us give some informal definitions. We write |A| for the least upper bound
of A and |c'1',/_l|for the least upper bound of {1, a1, .., an, |A1|,.., |A,,,|}. It should be clear
that 23-comp sufficesto prove the existence of |c'z', We call rudimentary those functions
which are obtained by 25 comprehension or by Z35minimalization, i.e., those functions
definable in either one of the two following ways:

F<P.P(‘-iv i: {$<laa Alp 3 ‘p($v6: f<P.P(‘-is :: Iu’z<|&‘,Z|P90(171612):

for some @628 and pew (in the definition of FW, and fw,, we have stressed that these
functions are polynomially bounded).

Let R be a set of new primitives, one for each (definition of a) rudimentary function. Let
"R.-defbe the theory axiomatized by 8 plus the (obvious) defining axioms for the functions in
72. Clearly, E8-comp suffices to prove every rudimentary function to be total. So, 7?.-def is a
conservative expansion of Z8-comp. The following lemma ensures us that there is no danger
in considering formulas of the expanded language L2(R) as abbreviations of L2-formulas. In
fact, the ‘translation’ does not increase the complexity of the formula. Namely, the following
lemma shows that E’ = 23 (R) provably in ’R.—def.

Lemma 1.3. For every 1,D€Z3f,’(’R.),there is 2,D"'€Z§ such that ’R.—def|- 1/2+—>¢"'.

Proof. The lemma is proved by a method which we believe to be well-known to the reader,
so, we do not need give it in full detail. One has to unfold the definitions of the rudimentary
functions inside the Z33(’R.)-formulaszp. We can assume that mphas only one occurrence of

a single rudimentary function FW,(Ez', (we also assume this function is a set function; the
case of a number function is similar). First, one must rewrite it to have all occurrences of
rudimentary set functions on the right of the symbol 6. Then replace each subformula of
the form :z:EF.p,,,(Ei, with

:c<|£i, .;l|” /\ <p(:c,Ii,

Finally, replace subformulas of the form :z:<|c'i,;l|” with an equivalent Z3-formula. The
defining axioms of Fm, ensure that the formula obtained is equivalent to the original 1p. In
the resulting formula no rudimentary set functions occur. I
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A noteworthy corollary of this lemma is that rudimentary functions are closed under
composition. From the Lemma it follows also that Bf-’(”R.)-comp+ 7?.-def is equivalent to
)3?-comp + 7?.-def and hence an extension by definitions of X3?-comp. Below, we list a few
rudimentary functions that we often use.

(a, b) := p, 2.2= (a + b)(a + b +1), the pairing function,

A X B := {(22,y) : a:€A /\ y€B}, the cartesian product,

Alb]:= {y : (b, y)€A}, the b-th row of the ‘matrix’ A,

A(b) := ,u, zEA“’], the value of the ‘function’ A at b,

[:13]:= {y : y<a:}, the set of predecessors of 2:,

{:5} := {y : :1:= y}, the singleton of 1:.

1.4 Other fragments.

In this section we present some other interesting axiomatizations of BA. In the next
sections we study the relative strength of their fragments. We agree that all theories we
introduce in this section contain, by definition, E8-comp. The theories Bf -ind, Bf -dc and
E?-coll (i.e., of induction, dependent choice and strong collection for Z?-formulas)are
axiomatized by the following schemas, for 9062?.

El’-ind 2 </9(0) /\ V='=[<p(1=)—><p(-'0+ 1)] -> </9(0),

Bf-dc: V2:(VX<b)(3Y<b)<p(:1:,X, Y) —>ElZ(\7’$<a)<,0(z,Z[’], Z[‘“])

E?-coll : HZ (V:r<a)[(ElY<b)<,0(:r, Y) —><,o(a:,Z[’l)]

(in the last two schemas Z should not occur free in (,0). The schema of dependent choices
is inspired by second-order arithmetic. We show (cf. Lemma 1.6) that dependent choice,
induction and strong collection are all equivalent to comprehension. A rather intriguing role
is played by the following schema of choice

X3?-choice: (‘v’:z:<a)(3X<b)<p(a:,X) —> E|Z(‘v’a:<a)(,0(:z;,Z[”]),

where (,0is in 2?. It asserts that the Ef—formulasare closed under first-order bounded
quantifications.

1.5 Polynomial time computable functions.

In this section we introduce the classes of functions 17,-. These correspond to classes
which have been intensively studied in computational complexity theory, i.e., the functions
which are polynomial time computable with an oracle for )3? (also denoted in the leterature
by D?+1). For expository reasons we prefer to introduce them in an axiomatic way avoiding
direct reference to any model of computation. Formally, our approach is self-contained. A
definition of rudimentary function has already been given in Section 1.3. We include here a
different one. It is easy to see that these two definitions define the same class of functions.
The reader may consult [7] for some details.
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To begin with, let us work in the standard model, i.e., natural numbers and finite sets
of natural numbers. The functions we introduce are of two sorts, number functions and set
functions, denoted respectively with lower case and capital letters. Functions take as inputs
tuples of numbers and sets and they output either a number (number functions) or a set
(set functions). Numbers, as input and/ or output, are introduced merely as a useful device
to express ‘logarithmically many iterations’.

The class 72 of rudimentary functions is the smallest set of functions closed under
composition and under the following schemas

1 (a 0—aryfunction),

F(a) = [0]

f(a1, .., a,,,A1, ..,A,,,) = a,-+ aj for O<i,j 3 n and 0 3 m,

f(a1, .., a,,,A1, ..,A,,,) = a,-- a, for O<i,j 3 n and 0 3 m,

F(a1, .., a,,,A1, ..,A,,,) = A,-U A, for 0 3 n and 0<z',j 3 m,

F(a1, .., an, A1, .., Am) = A, \ A, for O3 n and 0<i,j 3 m,

f(A) = p,,(:z:€A) (for A = 0 this is defined to be 0)

F(&', Y,A) = Uyey G(Ei,y,A) for G in R.

The functions defined by the first seven schemas are called basic rudimentary. We shall
refer to the last schema as rudimentary collection. The class ’P is, by definition, also
closedunder the followingschemaof second-order (polynomially bounded) recursion

F(0,:E,)-5) = G(:E,)?); F(y+1,5:',X') = [|y,a":,)'f|P] n H(y, :3, X, F(y,a:~',fr))

for any G, H in ’P and pew.

The recursion schema introduced above is polynomially bounded for two reasons. We
bound both the size of the output and the depth of the recursion. So, no more than polyno­
mially many nested iterations of functions are possible.

The class 79 is also denoted 730. In general, the classes ‘P; are obtained by adding to ’P
Turing oracles for E?-formulas and closing under rudimentary collection and second-order
recursion. Turing oracles for E?-formulas are functions of the form

{0} if <p(E,ii)

(0 otherwise,F(6,A) = {

for cpin 2?.

Now, going back to theories of second-order arithmetic, let us use 'P,- to indicate also
some sets of symbols for functions, a different symbol for each definition of a function in
the corresponding class. Let L2(’P,-)be the corresponding expansions of L2. Let ’P,--def be
the theories axiomatized by 9 and the defining axioms of the functions in 17,-.We choose
the obvious defining axioms of functions obtained by the basic schemas. Namely, for Turing
oracles the defining axioms are those given above. If F is (the symbol of the function)
obtained by rudimentary collection from G67?.we take as defining axiom of F
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V325’

0 171-def + E;-choice

<(LU M -u
2

E5-choice O O P1-def

O Bf-comp (E -ind E -dc E -colI)

65:5.3;M
IN'3

O ‘Po-def+ Bf-choice

<12 LU M 1:
1

2;’-choice O O 'Po-def/fl

org""3-comp

:::€F(&‘,Y,;1’) H (aye Y) zeG(a', y,;l).

If F is obtained by second-order recursion from G’,H677 and pew, then the defining axiom
is

-0

F(o,a',;1’) = c:(a,.?1') /\ F(y+1,&',A) =H(y, a, A‘,F(y,a,.I1’)) n [|y,a,;i)|r].

1.6 Relations among fragments.

We assume the reader to be familiar with fragments of first-order arithmetic (see e.g.,
[8]), so, we merely sketch proofs. It is easy to see that the comprehension schemas for E? ,
Hf and Z3§(Z3f)-formulasare equivalent. Also, we may contract quantifiers, so, Ef+1—dcand
E?+1-choice are respectively equivalent to Hf-dc and Hf-choice (these last two theories are
defined in the obvious way). The theory El-’+1-choiceproves that 2‘,-"+1-formulasare closed
under first-order bounded quantification. In the schemas of E?-choice, )3?-dc and Z3?-coll
we can in addition require the set Z to be a subset of [a + 1]X[b]without strengthening the
schema. The easy proofs of these facts are left to the reader.

The content of the Lemma we are going to prove in this section is summarized in
the picture below. An arrow means provability. Next to the arrow we write the partial
conservativity we shall prove in Sections 2.2 and 2.3.

Lemma 1.6. For all iew,

(i) Z:-’+1-ind=> Elf“-choice =:> E?-comp

(ii) Elf“-comp <=> Bf“-ind <=> Bf“-dc <=> Elf“-coll
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(iii) Bf“-comp ——->‘P,--def =—> E?-comp

We understand the first inclusion of (iii) as: every model of Z?“-comp has a unique expan­
sion to a model of 'P,~-def

Proof of For the first inclusion, it is sufficient to prove Hf-choice. This is proved in
a straightforward manner. By the observation above, the quantifier 3Z in the schema of
choice can be bounded. So, assuming the antecedent of the implication one can prove the
consequent by induction on the parameter a. The second implication is proved by induction
on i. Assume that Bf-’+1—choiceproves 21,-"—comp(this is true by definition if i = 0, for i>0 it

followsfrom our induction hypothesis), we show that E?”-choice proves Bf+1-comp. Reason
in a model of El,’-’+2-choice.Let c,o(:I:)€2f-’+1.For some b and some ¢€1'If the formula (,0is
equivalent to (3X<b)z,D(:z:,X). We have

(*) (\7’:z:<a)(3X<b)(\7’Y<b)[1,D(:c, X) V fi1,b(:z:,

We may apply the axiom of choice to get a set Z §[a] X[b] such that for all $<a, eiether
z,b(:1:,Zl’l)or (VY<b)-w¢(a:, Y). So, ¢(:z:,Zl"’l) is equivalent to Therefore, X3?-comp
suffices to prove the existence of the set {a:<a : <p(:z:)}.

Proof of (ii). Since all three theories above prove Elf-’+1-choice,in the following proof we
use without explicit mention that )3?+1-formulas are closed under bounded first-order quan­
tification.

It is immediate that Z‘,-°+1—compcontains Z3:-’+1-ind.For the converse inclusion, reason
in a model of Bf“-ind; let <,o€Zf+1and choose a parameter a. We want a set X<a such
that :z:EX 4-» <,o(:c)for all :z:<a. We are done if we can find a set of maximal cardinality
among those such that :I:€X —><,o(a:)for all :2:<a. In fact, for such an X, also the converse
implication holds. Formally, we write Y 2 [c] <—>X for the E3’-formula saying that Y is an
injection of [c] into X or, in other words, that the cardinality of X is at least c. By Bf -ind,
there exists a largest c<a such that

(3X<a)(3Y<(c, a)) [(1/: [Cl%>X) /\ (\7’:z:€X)<,o(:r)l.

The X, witnessing the existential quantifier for c maximal, is the required set satisfying
:z:EX <—><,o(:r)for all :c<a. This completes the proof of the first equivalence.

To prove that E:-’+1-indimplies 2:-’+1-dcit is convenient to derive Hf-dc. This is done
by straightforward induction as for the schema of choice in previous lemma. The converse
implication is proved by induction on i. Reason in a model of Ef+1—dc.We show that for
every ¢EEf+1,

(*) 10(0) /\ (V-'B<a)l¢($) -> ¢($ + 1)] —>Ma)­

Without loss of generality, we may assume that '¢(:c) is equivalent to (3X <b) <p(a:,X) for
some <,o(:z:)in H? and some parameter b. Assume the antecedent of (*), then

(‘v':v<a)(‘v’X<b)(3Y<b)[<,o(:I:,X) —>(p(.’L‘+ 1,

The formula between square brackets is equivalent to a E‘,-"+1-formula,so, (after few a ma­
nipulations) one can apply 2?+1-dc to get a set Z _C_[a+ 1]x [b] such that

2"” = A A (va:<a)[so(:c, ZM) ~ <P(=v+1,zI=+”)1,
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where A is any set such that <p(O,A). Since E?-2'nd holds (by induction hypothesis if 2>0
or, by definition, if 2 = O), we can apply induction on :2:to the formula <p(a:,Z M) to prove
<,0(a,Z l“]) and hence 2,b(a). This completes the proof of the second equivalence.

We leave the proof that E? -comp is equivalent to E? -coll to the reader.

Proof of (iii). The second implication is true by definition if 2'= 0. For 2'>0 this holds
because 19,-contains 2? Turing oracles and is closed under rudimentary collection. For the
first implication, consider first the case 2'= 0. Given a model M of 2'1’-comp we show that
there is a unique way of defining new functions on M which satisfy the axioms of ’P-def.
We proceed by induction on the definition of F 673. The new primitives are added in order
to have that for some Elf-formula (,0

M ]= F(5,)?) = Y «—»<p(:s,}?, Y)

M ]= v5:',A?3!Y<p(:2:',,\“', Y)

The proof is actually standard and need not be reported here in detail. The key step is when
F is obtained by recursion. In this case 2'1"-dcis used. For 2'>0 let '1}be the set of Turing
oracles. Clearly there is a unique way to add to a model M new primitives for ’]}-functions
and having them satisfy their defining axioms. Now, it is easily seen that, if M models
2?+1-comp, then it models Ef(’ZI)-comp too. From this point on the proof proceeds as in
the case 2 = 0. I

1.7 Relations with Buss’ bounded arithmetic.

In the introduction we mentioned that 2? -comp coincides with Buss’ S; by a suitable
translation of formulas. This translation has been found independently by many authors
(see e.g., [15], [16], [11]). It is not necessary to include full details here, but, to give some
clue to the reader, we quickly show how to transform a model of S2‘into a model of X3?-comp
and vice versa.

Let M1 be a model of SQ. Let M2 be the second-order structure having as first-order
objects the elements a of M1 such that 2“ exists and as second-order objects those finite
subsets of M1 which are coded in the usual way by elements of M1. I.e., for every a€M1
we add the set A to M2 such that ­

Cl=$zeA2$

Functions and relations of M2 are defined in the natural way. Note that multiplication of
first-order elements is a total operation in M2. In fact if 2“ and 2" exist in M1 then 2'”
exists too, since it is equal to 2“#2b. It is easy to see that M2 models E?-comp. In fact,
it is sufficient to note that for every second-order formula <p(a:,X )EEf there is a first-order
formula <p"‘(z,y)EZ3[-’such that for every a, AEM2

M2 l: (p(a':A) ii’ M1 l: ‘p*(a2Z:I:€A

To see the other direction, we apply the inverse procedure. Let M2 be a model of
E?-comp. We think of sets of M2 as representing numbers, i.e., we think of the set X as the
number
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i: Z:c€X2:
Clearly, in general such a number need not exist in M2. Still, formalizing the natural
algorithm for addition and multiplication of binary numbers, we may define in M2 some set
functions X EBY and X ® Y such that

n(X€BY): n(X)+n(Y)and n(X®Y):
It is well known that such an algorithm is computable in polynomial time, so, X 63 Y and
X 8) Y are total functions in every model of 'P—def.Let X# Y be the set { |X| - |Y| } which
exists because M2 models E8-comp. Also, all other functions of the language of 52 can be
defined in a similar way. Now, one can construct a model of 3; having as its domain the
second-order elements of M2 and as functions and relations the ones just defined. The reader
may check that the 32 axioms of BASIC hold in M1. Because M2 is a model of Bf’-ind, it
is not difficult to see that M1 satisfies logarithmic inductions for Z3?-formulas. Hence M1 is
a model of 5;.

This first-second-order isomorphism tranforms models of ’P,--definto models of T;
for all positive 2'and vice versa. The first-order theory corresponding to ‘P0-def is known as

P V1. Second-order models of E?+1-choice correspond to first-order models of BB2:-’+1 (cf.
chapter V of [8]), i.e., models of S19and the schema

(\7’:c<|t|)(Ely<s)<p(a:,y) ——+3w(\7’:z:<|t|)<p(:z:,(w),).

where (,0is in 2?“.

2 Witnessing theorems and conservativity results.

Buss was the first to give an extensive characterization of complexity classes as classes
of functions definable and provably total in some weak fragment of arithmetic. However,
the very idea of the proofs we report here goes back to the Mints-Parsons’ famous partial
conservativity result of I 21 over PRA [13], [14]. Buss’, Parsons’ and Mints’ proofs are
proof-theoretical. Wilkie gave a model-theoretic proof (unpublished) of Buss’ theorem (see

Here we adapt a model-theoreticalproof of the Mints-Parsons’theorem givenby Albert
Visser (unpublished).

2.1 Closures

Let M be a model of E3-comp and let W be a subset of M. We say that W is closed
under 7?.-functions if F(5, C'),f(5, C')EW for every 8, CEW and F,fE'R. The 7Z—closureof
W in M is the minimal ’R—closedsubset of M containing W, i.e.,

«W», := {F(E,5),f(E,5') : E,5'eW and F,fe7z}.

We interpret 7?.-closedsubsets of M as substructures in the canonical way: the functions
and relations of N are the restriction of those of M. In the same way we define ’P,--closed
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sets in models of 'P.--def.

We say that NQM is a )3?-elementary substructure of M, if for every Z3?-formula(,0and
every ii, AEN

N |= M71) => M |= so(az2i>

We write N -<21}M if N is a Z3?-elementary substructure of M. A similar notation is used
also for other classes of formulas.

Lemma 2.1. {Definabilityof Skolemfunctions)

(i) 7?,-closedsubstructures of models of E£—compare E8-elementary (so, in particular, they
are modelsof E3-comp

(ii) ’P,-—closedsubstructures of models of 'P.--def are Z:-’(’P,-)-elementary (so, in particular,
they are models of 'P,-—def).

Proof. For (i), observe that first-order Skolem functions for E5-formulas are in R. The
proof of (ii) when i = 0 is obvious. For i>0 it suffices to show that among the ’P,--functions
there are Skolem functions for X3?('P,-)-formulas. I.e., for every 2? (’P,-)-formula (,0there is a
function F in 'P,-such that

3Y<Ia’JIP«.o(a',I1,Y>—» so(a,A‘,F<a,21‘)>.

To see this we shall define a function F that, by binary search, produces the minimal (in
the lexicographic order) set Y<|Ei, Al? satisfying <p(Ei,A, Y). Let us define the function G
by recursion in the following way (omitting parameters and bounds)

G(0, ii, 21) = (2)

2'1)if <3Y<Ia..1IP>[<G(y,a,21'>gY)Aso(a',A, Y>Ay ¢ Y]

.21‘

a s a

GU/+1, a’A) = { G(y ('1' )U {y} otherwise

(recall that ’P,-is closed under definition by E?('P,-)-casessince it contains the characteristic
functions of Z5-’—formulasand is closed under composition). Finally, we define

F(a,Z1) = a(|a,/1|? + 1).

We leave to the reader the verification that F produces a witness of 3 Y<|a',}4‘|”<p(c'1',;l,Y),
if one exists, and is 0 otherwise. I

The class of 73,--functionsis closed under E?-definition by cases, so, an easy compactness
argument proves the following witnessing theorem for ’P,--def.

Corollary 2.1. (Witnessing theoremfor ‘P,-def.) Each V32?“ sentence provable in ’P,--def
has a witnessing function in 77,-.

Proof. We have to prove that, for all <p€Ef-’+1, there is a function F in 73,-such that

’P,--def |—V56, :2’3Ygo(a':', 2?, Y) => ‘P,--def l- V56, 5: cp(:?, 2?, F(§:', 56)).

By contraction of quantifiers it suffices to show that the implication above holds for H?­



14 POLYNOMIAL ARITHMETIC

formulas. So, let cpbe a Hf-formula such that for no F 677.­

(*) ‘P.--def+ vi, 5; <p(5;',X, F(5, 2)).

Let E,5' be fresh constants and consider the theory

(**) ’P.--def + {w(a', 6*,F(E, (3)) : F679.-}

This theory is consistent. Otherwise by compactness, for a finite set of functions {F1,.., F,,}
in 'P.-,

P,--def I- vs, X [<p(i:',X, F1(§:’,J?)) v v <p(:f,X, F,,(:i', )?))].

So, since 'P,--functions are closed under definition by E?-cases, one can combine F1, .., F,,
together to find a function F 673,-satisfying Now, choose a model M of the theory (**)
and let N be the 79,--closureof E, 5'. By the previous lemma N is a model of ‘P,--def. The
same lemma excludes the possibility of having in N a set Y such that <p(E,5', Y). Thus
P,--def does not prove V5, X 3 Y<p(§:',X, Y) and the corollary follows. I

2.2 A model-theoretical version of Buss’ Witnessing theorem.

We derive our version of Buss’ witnessing theorem from the following lemma.

Lemma 2.2. Every model M of ‘P,--def has an 3X3f+1—elementaryextension to a model N
of X3?+1-comp such that for every Hf -formula (,0there is a function F 677,-with (undisplayed)
parameters from N such that (*) belowholds

{*) Nl=‘v’X 3Y<,o(X,Y)—>‘v’X <,o(X,F(X)).

Proof. We claim that, if we succeed in satisfying condition (*), we obtain also that N
models Elf-’+1-comp.To prove the claim it is sufficient to check that in N the schema of
dependent choices holds for Hf-formulas. Assume in N holds V:c‘v’XE|Y<p(a:,X, Y) where
a bound b on X and Y is implicit in (,0. Let a€N, we want to find a Z such that (‘v’:::<a)
<p(:z:,Z["’l,Z[’+1l). By (*), for some FEP; and for all a: and X, <p(:1:,X, F(x, Define the
following function G by second-order recursion (F can be bounded by b):

G(0) = Ql, G(:z:+ 1): F(a: + 1, G(.’II)).

Finally, Z is obtained by rudimentary collection: U,,<,,+1{a:}X G This proves our claim.

Now, let M be a model of 77,--def.The required model N is constructed as the union of
an 32f-’+1-elementary chain of models of 'P,-—def,

M= M < M
0 325;, 1 ‘<32f+, M2 '<32f+,

The chain is constructed by stages. Each link of the chain is constructed using a model W
as intermediate step, as in the following diagram
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33?+1 M 3535-21 335-11.9 5+1

Suppose M, has already been constructed. Let go,be the s-th Hf-formula of an enumeration
(to be specified below) of Hf-formulas with parameters in M,. Let (*), be (*) with (,0,for
(,0. We shall construct a model M,“ realizing (*), for some function F 673,-. Observe (*),
is a 3VI'If+1—formula,so, its truth is preserved upwards in the chain and finally inherited by
the union N. It is easy to choose the enumeration such that eventually all Hf-formulas with
parameters in N are considered. The details of the enumeration are as follows. At each
stage 3 we fix an arbitrary enumeration {¢;‘},ewof all Hf-formulas with parameters in M,.
Finally, let cpsbe 1/2,’for s = (r, t). To define M_.,+1proceed as follows. If (*), holds for 90,,
we do nothing, i.e., we define M,+1 := M5. Otherwise, we try to make the antecedent of
(*), false in M,+1. We construct M,+1 and C€M,+1 where ElY<,os(C',Y) fails. Since (*),
does not hold in M3, the following theory has a model W

Diag(M5) + {fi<,05(C,F(C)) : F€’P.- with parameters in M,},

where C is a fresh constant and Diag(M,) is the elementary diagram of M, (to check the
consistency, argue by compactness). W is elementarily equivalent to M,, so, in particular,
it is a model of ’P,--def. Define

M3+1I: 'l' C».p‘_

Closure to be taken in W. Clearly M,+1 is a Z?-elementary substructure of W which is ele­
mentary equivalent to Ms, so, every 32?+1-formulatrue in M,“ will be true in W and hence
in M,. In M,“ there is no witness of 3 Ycp,(C, Y). This completes the proof of the lemma. I

Corollary 2.2. (V3Zf+1-conservation and witnessing theorem for Z3:-’+1-comp.)Zf+1—c0mp
is V3Ef+1-conservative over ’P,--def, therefore every V325-’+1sentence provable in E?“-comp
has a witnessing function in ’P,~.

Proof. Immediate from the previous lemma and from Lemma 2.1. I

2.3 A model theoretical characterization of choice.

We now introduce the concept of 7?.-extension. This is an extension where all second­
order objects are constructible relative to the extended model. This notion may be viewed
also as a second-order generalization of cofinal extension. It will be used to give a model
theoretical characterization of 2?+1-choice over 2? -comp. An useful application of this notion
is given in the proof of the Corollary below. (The conservativity result in Corollary 2.3 (b)
will find applications in the following sections to characterize the collapse of BA.)

Let M and N be models of Z33-comp. Recall that their first-order parts are denoted
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respectively by In and n. We say that N is an R-extension of M if

(0) In is cofinal in n, i.e., for all aEN there is bEM, such that a<b.

(i) M <33 N.

(ii) N = ((M+n))R, i.e., for every AEN there are a€N such that N I: A = F(a) for some
F ER with parameters in M.

We write M -<7;N if N is an 7?,-extension of M.

Fact 2.3. Let N be an 7?.-extension of M.

(a) M -<32?N.

(b) M [2 Z?“-choice => M <32?” N.

(C) M l: Z3:-’—comp<=> N l: E?-comp.

(d) M I= P,--def 4=> N |= P,-—def.

Proof of (a). If N l: 3 Y<p(Y) for some E3-formula (,0with parameters in M, then for some
b€M, and some F 67?,with parameters in M

N |= (3$<b)<P(F($)),

so, by E3-elementarity, this holds in M too. This proves (a).

Proof of Let M be a model of Bf“-choice. Let GEMand 9062?with parameters in
M and suppose N |= ElY(VX <a)<p(X , Y). It suffices to show that the same formula holds in
M too. As induction hypothesis we assume 32:-’+1-elementarity. Since N is an 7?.-extension,
for some F E72 with parameters in M,

N I: Ely(3:r<y)(VX<a)<,0(X, F(:r)).

Then, clearly,

N |= 32/ (VZ§(a, y>)(3-'v<y)<p(Z“],F($))­

So, by 32:-’+1-elementarity,

M |= 33/ (VZ§(a, y))(3$<y)<P(Z[”], F(=v))­

Finally, by Elf-’+1-choice,

M |= 33/ (3:v<y)(VX<a)<p(X, F(=v))­

Thisproves

Proof of The ‘left to right’ direction of Fact (c) is true by definition when 2'= 0. For
i>O it follows from (b) and Lemma 1.6. In fact, these imply that N is an E|Ef’+1-elementary
extension of M. So, let gobe any E5’-formulawith parameters in N. By (ii), we can assume
that all second-order parameters 5 of (,0belong to M. Let aEN be arbitrary. Choose in M
a b>a, 5. Since M |= Z?-comp there is a set AEM such that

M |= (VI. 37<b)[(1=.37>€A H s0(=v.37)]
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where the variables 3']replace all first-order parameters of (,0. By 32?+1-elementarity, A
satisfies the same property in N_too. So, in N the set B := {:::<a : (22,E)€A} verifies,

N |= (\7’:c<a)[a:EB <—><p(2:, 8)]

This proves that N is a model of Elf-comp.

The converse direction (‘right to left’) is also true by definition when 2'= 0. So, assume
it true for 2'and let us prove it for i + 1. Let N be a model of E?+1-comp. By induction
hypothesis, M is a model of 2? —compand by Fact (b), a 32?“-elementary substructure of
N. Let <p(1:,Y) be a Hf’-formula with parameters in M and an implicit bound on Y. It
suflices to find in M a set A such that

(\7’:c<a)[:cEA4-»3Y<,o(a:,

By Lemma 1.6, N models 2?“-coll, so, for some set Z

N )= (\7’:1:<a)[3 Y<p(a:, Y) 4-» <p(:1:,Zl"’l)].

Then, for some bEN and function F EN with parameters in M,

N |= (V-"«‘<a)l3Y<P($. Y) H <p<z,F<b>I=1>1.

Consider, in M, the set A := {:c<a : Ely<p(:c,F(y)[’l)}. We claim this is the required one.
We only need to show that (\7’:c<a)[3Y<,o(:r,Y) —>:1:EA],because the converse implication
is obvious. If 3Y<p(a:,Y) holds in M for some :z:<a, then this will be also true in the 2?­
elementary extension N. Then Ely<p($,F(y)[""l) holds in N and, again by E?-elementarity,
is true in M too. Therefore :I:€A.

Proof of To prove the ‘left to right’ direction we use Lemma 2.2. This lemma char­
acterizes models of ‘P,--def as those having an 32?+1-elementary extension to a model M’
of 2?+1-comp. So, it suffices to show that there exists a model W satisfying the following
diagram of (restricted) elementary extensions

32f-’+1 I PM T’ M |=E,-+1—comp

R

N 32$-’+1

Consider the theory Dz'ag(M')+ Diagnpfl This theory has a model; otherwise, suppose
that for some 9062?,

(‘v’X<|E|1’)(,o(X,E)EDiagnf+l(N) and Diag(M') |- -w‘v’X<,0(X,E)

where we assume that a bound on X is implicit in cp. Also, since M -<7;N, we can assume
that all other parameters of (,0except 8 are in M. Let a€M be such that E<a. Replacing
the constants Z:'¢M'with variables and quantifying we obtain

M’ ;= (\7’."c'<a)3X-<p(X, 5:’).
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We may apply 2?+1-choice to get,

M’ p: 3z(v5;*<a)~<p(zl51, 5)

so, by E|Ef+1-elementarity,

M 1: 3Z(V:E<a)-1<p(Z[El, :2‘).

Recall that M models 2? -comp, so, by (b), 72-extensions of M are 311?-elementary. So,

N i: 3z(v5:*<a)—.,o(zl=“1,:z').

Therefore,

N I: (\7’:i:'<a)3Xfi<,0(X,:i:').

A contradiction since we assumed that ‘v’X<,0(X, E)EDiagnf+l(N).

Let W’ be a model of the theory above and let

W := {a, AEW' : a, A<b for some b€M}

Clearly W’ is a model of Ef+1—c0mpand consequently also W. To prove N 432? W, it
1+1

suffices to observe that N -<29“ W’, that W '<pH W’ and that N is cofinal in W. This
provesthe left to right directionof

For the converse, assume N is a model of ‘P,--def. By Lemma 2.2, there is a model N’
such that

7?. 323?“

32:-2,1 , ,N T’ N |=Z,-+1-comp

where the diagonal arrow follows from (b) since, by (c), M is a model of Elf. I

Lemma 2.3. Every modelM of E?-comp has an 7?.-extension to a model N of Ef+1—ch0z'ce.

Proof. The proof is similar to that of Theorem 2.2. The model N is constructed as the
union of a chain

M=M0 ‘<7;M1 '<1z_M2‘<1;

By the Fact above we have that we actually construct a 32?+1-elementary chain of
models of Elf—comp.Let {<,0,}_.,Ewbe an enumeration with infinitely many repetitions of all
formulas with parameters in N, such that all parameters of (,0,are in M, (see Theorem 2.2
for details on this enumeration). The chain is constructed so that for all <,05EHf, either (1)
or (2) below holds.

(1) For every aEM there is a ZEM such that M, I: (‘v’:1:<a)<,0,(:c,Z[”l).
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(2) There is a cEM,+1 such that M,+1 |= \7’Yfi<p,(c,Y).

Each link of the chain is constructed using a model W as intermediate step, as in the
following diagram

7?, R R
Ms Ms+1

Suppose M, has already been constructed. If (1) holds in M, then let M,+1 := M,.
Otherwise, let W be any model of

Dz'ag(M,)+ (c<a) + {-1<p,(c,F(c)) : FER with parameters in

Such a model exists, otherwise, for some n

M, I: (‘v’:z:<a) V',:,=0<,0,(:1:,F,,(:I:)).

Using Elf-comp one can define a set Z in M such that for all (a:<a),

Z["']= F,,,(a:) for the minimal m<n such that <,o,(:I:,F,,,(1:)) holds.

But we assumed such a set does not exist.

Clearly W is, up to isomorphism, an elementary superstructure of M,. Let M,“ 2:
((M + c)),,(closuresto be taken in To check that M, <7; M,+1 note that M,+1 is a
23 substructure of W. Also, observe that all elements of M,+1 are generated by elements
of M, and the first-order element c<a, so, conditions (0), and (ii) in the definition of
R-extension are fulfilled.

To check that (2) holds, suppose not, for a contradiction. If 3 Y<p,(c, Y) held in M,+1,
then we would have <p,(c,F for some F 67?,with parameters in M,. We will reach a
contradiction by showing that instead <p,(c,F must fail in M,. By construction, we
have fi<p,(c, F(c)) in M,+1. To pull this back to M, we reason as follows. Since M, is a
model of Z3?-comp,for some A€M,,

(V1:<a)[2:EA4-»<p,(a:,

So, by the elementary equivalences proved above, this holds also in W and in M,+1. In W
we have c¢A and, by 28 equivalence this holds in M,+1. So, -=<p,(c,F (c)), a contradiction.

Finally, N is a model of Bf+1-choice, since the truth of both formulas in (1) and in (2)
is preserved along the 32:-’+1-chain. I

Now we can easily prove the characterization announced above.

Theorem 2.3. For every M }=Z‘?-comp the following are equivalent

(i) M I: Bf-’+1-choice
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(ii) Every R-elementary extension of M is 3X3f+2—elementa1‘y.

Proof. That implies (ii) has already been observed in the fact above. For the converse,
let cpellf and suppose that (\7’a:<a)(3Y<b)<,0(:c,Y) holds in M. Let N be the 7?,-elementary
extension of M to a model of E?+1-choice as guaranteed by the Lemma above. Then,
by 32?”-elementarity, (\7’a:<a)(ElY<b)<p(:z:,Y) holds also in N. Let Z in N be such that
(\7’:I:<a)<p(:z:,Z [1]). By the definition of 7?,-extension,

N |= (3y<c)(V1=<a)s0(=v.F(y)['l)

for some CEM and some F ER with parameters in M. So, by 32?”-elementarity this for­
mula holds also in M. I

The following conservativity results are consequences of the lemma above.

Corollary 2.3.

(a) Ef-’+1-choiceis V32?“-conservative over E?-comp.

(b) 'P,--def+Zf+1-choice |- E:-’+1-comp :> ‘P,--def l- Ef+1—comp.

(C) E?“-choice |- 2?“-comp => E?-comp |- 2?“-comp.

Proof. (a) follows from the Lemma and Fact (b) above. The proof of (b) and (C) are
similar. Let us prove Assume 79,--def+ X3?“-choice proves Elf-’+1-comp.Let M be any
model of ’P,--def. In particular, M is a model of Bf-comp, so, by the Lemma above, it has an
72-extension N to a model of Z?“-choice. By Fact (d) above, N is also a model of 73,--def.
So, by our assumption, N models 2?+1-comp. By Fact (c) above, M is also a model of
E?+1-comp. I

2.4 Ultrapowers

In this section we present an ultrapower construction corresponding to the construction
in Lemma 2.3. Let M be a model of Z33-compand aEM. Let Ha be an ultrafilter on the set
{bEM : M |= b<a}. We define on M the following equivalence relations

A ~1 B iff {cEM: M I: c<a /\ A(c) = B(c)} 6 U4

A ~2 B iff {ceM: M 5: c<a A Al°l .—.Bl°l} e u,

The definitions of A(c) and AM are given in the end of Section 1.3. The ~1 equivalence
class of A is denoted by A/1, the ~2 equivalence class of A with A/2 (the filter L1,,is usu­
ally clear from the context). We shall systematically confuse equivalence classes with their
representatives. Let M/L1,, be the model whose first-order elements are the ~1 equivalence
classes and whose second-order elements the ~2 equivalence classes. The relations and the
functions of M/L1,, are defined in the canonical way. To every element c, C EM we associate
the elements id(c) and id(C') of M/L1,, in the usual way,

z'd(c) = U,.,<a{:c}X {c} and id(C') = U,<,,{:1:}x C.
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The map id is an embedding of M into M /Ma. So, as usual, we consider M as a substructure
of M/I/la.

Fact 2.4.

(a) If M is a model of E?-comp then for every 23(2)?)-formula cp

M/u. |=so<B/1,5/2) <=> {deM: M l=(d<a)/\s0(1§(d),(7‘“”)} e u...

(b) M/L1,, is an ‘R-extension of M.

Proof of (a). For atomic (,0the lemma holds by definition. The inductive step for the
Boolean connectives is immediate. We show that of the existential quantifiers. The =>
direction is again immediate. For the converse let us first consider first-order quantifiers.
Suppose the lemma holds for <,0EZl(’,’(Ef)and let us show that it holds also for Ely go,where
the bound on y is implicit in <p.Let us write (pmfor ¢(§($), (TM) and assume

{:v€M: M l: (:z:<a) A 3y<p$(y)} 6 Ma.

Then by E? comprehension there is a set A in M such that

M |= Vy (V=v<a)[<.0z(y) H (:0, 3/)€Al

so,

{2:€M: M I: (:c<a) /\ <,0,(A(.'c))}6 Ma,

and, by induction hypothesis, M/L1,, models <p(A/1)and hence 33,/<p(y).Now, let us consider
second-order quantifiers. The proof is similar; we can assume z'>0 otherwise there is nothing
to prove. Suppose the lemma holds for 9062? and let us show that it is holds also for 3 Y<p,
where the bound on Y is implicit in go. If

{:z:€M: M I: (:c<a) /\ 3Y<p¢(Y)} 6 Ha,

by 2? comprehension, (since i>0) there is a set A in M such that

M |= VY (V$<<1)[<.0=(Y) H <P:(A["'])l

so,

{:z:eM: M |= (a:<a) A <,o_.,,(A[“])}e u,,,

and, by induction hypothesis, M/I/la models cp(A/2)and hence 3Y<p(Y).

Proof of From (a) we have immediately that M/11,, <33 M. To check cofinality,
observethat A/1<id It remainsto checkcondition (ii) in the definitionof7?,-extension.
Let D/1 the diagonal element of M/Lla, i.e., D = {(3, 2:) : $<a}. All elements A/2 of M/L1,,
are such that

M/Ua l= A/2 = {$11(D/1, .1/)€id(A)}

In fact, observe that for all first-order elements B/1 of M/I/la,

(D/1,13/1) = {-''«‘<<1I (17,($,B($)))}/1.

so, by the definition of id(A), (D/1, B/1)€z'd(A) is equivalent to
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{2:<a : (:z:,B($))€A} 6 L1,.

But this is the same as

{:z:<a : B(:z:)€A[”]} 6 L1,,

which turns out to coincide, by definition, with B/16A/2. So, every second-order element A/2
of M /11, is X38-definableover the first-order element D/1 and the second-order element z'd(A).
The latter is identified with an element of M since it is the image of A via the canonical
embedding of M into M/Ha. Thus, also condition (ii) is fulfilled. I

Theorem 2.4. Every model M of E‘,-°—comphas an R-extension to a model of Bf“-choice.

Proof. We construct a chain of ‘R-extensions

M = M0 <7; M1 <7; M2 <7;

by means of ultrapowers. By Fact 2.3, the chain is automatically 25-’+1 and all models in it are
models of 2?+1-comp. Let {<p,},€wbe an enumeration with infinitely many repetitions of all
formulas with parameters in N, such that all parameters of (,0,are in M, (see Theorem 2.2
for details on this enumeration). The chain is constructed so that for all <p,€Ilf , either (1)
or (2) below holds.

(1) For every a€M there is a ZEM such that M, l: (\7’a:<a)<,o,(:z:,Zl’l).

(2) There is a c€M,+1 such that M,+1 |= VYfi<p,(c, Y).

Suppose M, has already been constructed. If (1) holds in M, then let M,“ := M,.
Otherwise let a€M, be any element witnessing the failure of (1). Consider the ultrafilter on
[a] generated by the sets

{2:<a : M, l: fi<p,(:z:,Z[“l)}

for Z in M. Since M, l: E?-comp, the sets above enjoy the finite intersection property, so,
such an ultrafilter actually exists. Let M,+1 := M,/U,.

To check that (2) holds, suppose not for a contradiction. Let D be the diagonal in
M,/L1,. If 3Y<,0,(D/1,Y) held in M,+1, then, by Fact (a) above, we would have that for
some Y in M,

{:r<a: M, l: <,0,(:r,Y[’l)} E 11,,

quod non since the complement of this set is, by construction, also in Ma.

Finally, N is a model of Ef+1—ch0z'ce,since the truth of both formulas in (1) and in (2)
is preserved along the the 32?+1-chain. I
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3 The collapse of BA versus the collapse of PH

It is not known whether BA collapses, i.e., whether it is equal to some of its fragments.
The only collapse that we are able to exclude is Elf-choice = ’P-def. In fact, rudimentary
functions 7?,are the only Elf provably total functions of Bi’-choice and a simple diagonaliza­
tion argument shows these are strictly included in the polynomial time computable functions
73. Actually one can also see that the V23 fragment of ’P—defstrictly includes that of E3-comp
(and, by conservativity, that of Eli’—choice).In fact, in [2] Ajtai has constructed a model M
of IA0(R) such that

M|=El:z:R:[a:]—>[:z:+1]

i.e., R is an injection of into [:5+ 1]. We can expand M to a model M’ of 28-comp taking
as sets of M’ the finite Ao(R)-definable sets of M. Then M’ falsifies the pigeonhole principle
i.e., the sentence

VX : Vx fiX:[:c+1]=>[a:].

while the sentence above is easily seen to be provable in ’P-def.

For stronger fragments we can only produce relativized results. The main result of this
section is to prove that the collapse of BA is equivalent to the provable collapse of PH.

3.1 An interpolation theorem

The following is the ‘bounded version’ of a general interpolation theorem for classical
predicate logic.

Theorem 3.1. Let (,0and 1bbe Vl'If+2-formulas and let T be a Vl'If+2—a:ciomatizedtheory. If
T |- go—>nib then there is a Boolean combination B of Elf-’+1-formulas such that, T |- go—>B
and T |- B —>-rib. Moreover all free variables ofB occur free in (p —>-rib.

Proof. Let goand 1bbe as above and suppose that the required interpolant does not exist.
We intend to show that T + (,0+ 1bis consistent. (When the context suggests it, the free
variables of cp——>-ab need to be replaced by fresh constants.) To show this, it is sufficient to

show that there are two \7’Hf’+2-theoriesUQT + (,0and VQT + 1/)such that U and V have
the same V2?-consequences (we say also that they are mutually VEf—conservative).In fact,
we claim that, for any pair U and V of mutually V2‘,-°-conservativetheories which are VHf'+2­
axiomatizable, U + V is consistent (and, actually, also has the same V2?-consequences). Let
us first prove this claim and then proceed to the construction of U and V. We construct a
E?-elementary chain of models,

M0 M1 ....,
such that M2, is a model of U and M2,“ is a model of V. It is possible to find M2,“ and
M2,” such that

M2,“ l= Diagnp(M2,) + V and M2,.” I: Diagn,,(M2,+1) + U.
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In fact, if we assume as induction hypothesis that M2, is a model of U, then Diagnp(M2,)+ V
is consistent, otherwise, for some 9611?

V l- va3X*—.9 and M2, |= 35)? 9

which contradicts the V2f—conservativityof V over U. The symmetric argument works for
odd stages. Finally, recall that both U and V are \7’l'If+2-theories(and hence conserved by
unions of Ef’—chains).So, the union of the chain

N 3: UsewMs : UséwM28 : UsewM23+1

is a model of both U and V. This proves the claim.

Now we construct U and V. Let I? be all free variables occurring in (,0-—>-wz/1.Let
B,-+1denote the class of formulas with free variables among )? of the form \7’Yfi and such
that VY<|}?|”fl is a Boolean combination of Ef+1—formulas(for pew). Let us say that two
theories U and V are B,-+1inseparable (in the following simply inseparable) if V+ Th5,+1(U)
is consistent. In other words, if there is no \7’YflEB,-+1such that U |- ‘v’Y,Band V l- -‘V/Yfi.
Let U0 2: T + (,0and V0 := T + 1,D.If no interpolant exists, U0 and V0 are inseparable. In
fact, suppose for a contradiction that

T+<,ol-\7’Yfi and T+zp|——=VYfi

where \7’Yflis in B,-+1. Since T is axiomatized by VPH sentences, we can apply a well—known
theorem of Parikh’s, to find a pew such that

T |- V)? [zp—»~vV<|)?|r;3].

Therefore ‘v’Y<|)-6|P,Bwould be an interpolant of (,0and IUof the required complexity. Now,
we show, by induction on s that the following theories are inseparable:

U,,, = U, + Th,,,+,(V,) and V,,, = V, + Th3 U,).i+1(

We have already shown the case 3 = 0. Suppose U, and V, are inseparable. If, for a
contradiction, for some VYfl in B,-+1,

U, + Th,,,+,(V,) I- VYfi and V, + Th3 (U,) |- av)’/3i+1

then, for some \7’Zfl'ETh3 V,),.-,,(

U, P V/Zfl’ —>‘v’Yfl.

Applying again Parikh’s theorem, for some pew,

U, l- VY [\7’Z<|Y|”fi’ —>,6].

therefore,

VY [\7’Z<|Y|"fi’ —+fl] E Th3,+1(U,).

But V, |- \7’Zfl’,so, V, + Th3,+,( U,) is inconsistent. This contradicts our induction hypoth­
esis. Finally, let U := U,€,,, U, and V := U,ew V,. Clearly,

Th3,+,(U) = Th3,+l(V).

So, in particular, U and V have the same \7’E§’—consequences. I
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3.2 Sufficient conditions for the collapse of BA

Let us introduce some terminology. We say that a theory proves H? = B? if every
1'If—formulais provably equivalent to a Bf-formula (with the same free variables). In this
case we also say that PH provably collapses to H? = 2?. We say that a theory proves
H?“ = Elf“/poly, if for every 662?“ there is a ¢€l'I‘,-"+1and a p€w such that, provably

(3W<c")(‘v’X<c)[6(X) «—»¢(X, w)].

(All variables are shown.) The W is usually called a (polinomial) advice. Observe that,
if H?+1 = Bf’+1/ poly, then every bounded formula of the form X <c /\ <p(X) is equivalent to
a Z?+1-formula depending on additional parameters. The following is an interesting conse­
quence of Lemma 2.2 and Lemma 2.3.

Theorem 3.2. The following are svfiicient conditions for ’P,--def|- BA

(a) ’P,--def + Bf“-choice |- Hf-’+2= Bf-’+2,

(b) 'P,--def+ Bf-'+1-choice |- H?“ = Bf“/poly.

Proof. By Corollary 2.3 (b), in both cases it is sufficient to show that 73,--def+ Bf-’+1-choice
proves BA. Let us prove (a). Every model M of 'P,--def+Bf+1-choice has an Bf-’+1-elementary
extension to a model of Z3‘:-’+1—comp.By the provable collapse of PH every bounded formula is
equivalent both to a Hf-’+2and to a Bf“-formula. Therefore every 2?+1-elementary extension
is actually PH -elementary. So M is a model of Bf-’+1-comptoo. By the interpolation lemma
above every PH -formula is equivalent to a Boolean combination of E?+1-formulas. For this
class of formulas comprehension is provable in Z’-’+1-comp.I

Let us prove We show that the choice schema holds for every bounded formula.
We may use Bf+1-choice. By Hf+1 = 2?+1/ poly, every bounded formula is equivalent to a
Bf’+1-formula depending on some additional parameters (i.e., the advices which transform
universal in existential quantifiers and vice versa). I

3.3 Necessary conditions for the collapse of BA

Here we show that if ’P,--def proves Bf+1-comp then it proves the collapse of PH and
BA reduces to ‘P,--def. We need the following lemma of [12] which is known as the KPT
witnessing theorem.

Lemma 3.3. For every 90611?if’P,--def proves \:/X3 Y\7’Z<p(X,Y, Z), then there are F0,..,F,,_1
in ‘P, such that 'P,-—defproves

' <P(X,Fo(X),Zo)

(p(X1F1(X7Z0)7Zl)

vX1Z07")Zn—l V i

\ Fn_1(X, Z0,. . . , Zn_2),Zn_1)
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Proof. Let {F,,},,Ew be an enumeration of all the functions in 'P,- with infinitely many
repetitions. Let C, {D,,},,E,,,be fresh constants. Consider the theory

-0

’P,--def+{—~<,0(C,F,,(C,D,,),D,,) : new}

where 15,, stands for D1, .., D,,_1. If this theory is inconsistent, our claim follows by com­
pactness. So, we suppose for a contradiction that this theory has a model. Let M be
the ’P,--closureof C, {D,,},,E,,,in the model of the theory above. By Lemma 2.1, M is a
E? (79.-)—elementarysubstructure, so,

M |= -so(0,F..(C,D..>.D..)
-0

But, in M, every possible witness of 3Y\7’Z<p(C,Y, Z) is of the form F,,(C, D,,). A contra­
diction. I

For the next theorem we use ideas of [9] as we learned them from Harry Buhrman.

Theorem 3.3. ’P,--defl- 25+,-comp => ’P,--def|- H?“ = Z?“/poly.

Proof. Consider an arbitrary formula of the form 3Z<,o(X, Z) for cpeflf where a bound on
Z is implicit in <p.We shall find a formula 1,b€Hf-’+1 such that ’P.--def proves

E|W(\7’X<c) [ElZ<p(X,z) ._. ¢(x, w)].

Since, by lemma 1.6, )3?+1-comp is equivalent to Z3?+1-coll, we can assume that 73-def
proves the following sentence

‘v’XElY(\7’2:<a) [3Z<p(X[’], z) _. cp(X["], W’-1)].

This sentence says that for every string of sets X [0],.., X [“‘1] there is a string Ylol,.., Y[°‘1]
coding witnesses, (if any exists) of 3Z<,0(Xl°],Z), .., 3Z<,0(X[“’1l,Z). So, assume this is prov­
able in ‘P,--def, move the quantifiers 3Z as far to the left as possible and apply the previous
lemma to this formula. Then fix a = n and, for better readability, let us suppose n = 2.

VXAB V <vx<2> [so<XI=LA> —» so<XI=1.Fl*‘<X>>]
(va:<2> [.o<Xl=1.B) - <P(X[”].F2"1(X. A>>]

We can replace universal quantification with conjunction. Also, to streamline notation, let
us use two variables X, Y in place of X [0]and X [1]and introduce the functions F, G and
H, K in place of the two components of F1 and F2. The formula above can be rewritten as
\7’X,Y,A 'y(X, Y,A) where

' A { «.o<X.A>- <p<X.F<X. Y»<p(Y./1) —*s0(Y. G(X. Y))

'y(X,Y,A) :E\/t

A{ 3B<p(X,B) _. ¢p(X,H(X, Y,A))_ ElB<,o(Y,B)_. (,o(Y,K(X, Y,A))

Let £ stand for the first disjunct of '7, i.e., for the formula
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s0(X,A)—><p(X»F(X,Y))

M’ M’ ‘E “i «AY.A) ~ <p(Y»G<X.Y»

Now, we define the formula ¢(X, W) to be

‘P(XvF(Xa
CEW A (VY<c) VA [-wE(Y,X,A) —-><p(X,K(Y,X,A))]

Recall that a polynomial bound for the quantifier VA is implicit in cp. So, 1,Z2(X,W) is a

l_If’+1-formula.To complete the proof we have to show that for every c there is an advice
W such that 3Y<p(X, Y) <—+1,b(X, W) for every X<c. Let c be given, we proceed in a
nonuniform way. We consider two possibilities.

(0) Suppose there is a Y<c such that £(X, Y, A) holds for every X<c and every A. Let
W = Y. From €(X, W,A) it follows that 3A<p(X,A) implies <,0(X,F(X, W)) and
so, 1,D(X, W). The converse is obvious since we have chosen a W<c, so the second
disjunct is always false.

(oo) Suppose case (0) does not obtain, i.e., (reversing the roles of X and Y) suppose for all
X, (ElY<c) 3A fi£(Y, X, A). We chose a W which informs us of this fact: W =
If 3A<p(X,A) does not hold then in particular <p(X,F(X, W)) and -v<,o(X,K( Y, X, A))
for all W, Y and A. So, for A and Y such that fi£( Y, X, A), 1b(X, W) fails. Vice versa,
assume 3B<p(X,B). For all Y and A such that fi£(Y, X, A), the second disjunct in
'y(Y, X, A) must be true. So, since 3B<p(X,B), we have <p(X,K(Y, X, Thus the
second disjunct of zb(X, W) holds.

This completes the proof under the condition 7:.= 2. The general case is similar. One
has to consider 17.cases in place of 2 and the advice W must inform of which case actually
obtains for a given c. Details are left to the reader. I

Corollary 3.3.

(a) 'P,--def |- Ef+1—comp => 'P.--def |- BA

(b) 'P,--def |- Elf-’+1-comp => ’P,--def |- Hf-’+3=Zf+3

Proof. (a) follows immediately from Theorem 3.2. To prove (b), we can assume that
6(A)€Hf'+3 has the form (‘v’X<c)(3Y<c)<,o(X, Y,A) for some <,0EHf+1.We want a E?”­
formula equivalent to 0. From Hf+1 = Elf’+1/poly we have that, provably in ’P,--def, for some
1/J62?+1, (omitting the bound on W)

3 W(‘v/X, Y, A<c) [,o(X, Y, A) H ’t/J(X,Y, W, A)]

Note that the formula saying that W is a good advice for all X , Y<c,

(VX, Y, A<c) [<,0(X,Y,A) H 2,b(X,Y,A, W)]

is 1'If’+2.So, let (( W, A) stand for this formula. Provably in P.--def,

(\7’X<c)(E|Y<c)<,o(X, Y, A) 4-)3w[¢( W, A) /\ (‘v’X<c)(3Y<c)v,b(X, Y, W, A)]. u
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3.4 Krajféek, Pudlék and Takeuti’s method

Krajicek, Pudlak and Takeuti have shown in [12] that if ’P,--defproves Bf+1-comp then
2?+1 = ’P,-/ poly in the standard model (and hence E?” = l'If+2). We show how their result
can be obtained by sharpening the reasoning of the previous section. The combinatoral
methods used in the following proof are of a more complex nature than those needed in the
previous section. It is still unknown whether this proof can be formalized in BA.

We say that 2?+1 = ’P.-/ poly if for every X3?+1-formula ElY<,0(X, Y) there is a ’P.--function
F such that for some pew,

(3 W<c7’)(\7’X<c) [3 Y<p(X, Y) —»<,0(X,F(X, w))].

Theorem 3.4. If 73,--def+ Z?“-choice |—X3?“-comp then in the standard model 2?“ =
’P/poly.

Proof. By Corollary 2.3 we can as well assume that "P,--defl- Z?“-comp. Let E|Y<,0(X,Y)
be in )3?+1. Reasoning as in the proof Theorem 3.3 (so, assuming again that the KPT
witnessing theorem holds with n = 2 for the formula under consideration) we obtain that
the formula VX, Y, A 7(X , Y, A) defined there is provable in 'P,--def. In particular, it holds
in the standard model. For the rest of the argument let us work in ca. We say that X has
information about Y if one of the following cases hold

(a) <p(Y.F(Y.X)),

(b) <,0(Y,K(X, Y, A)), for all A such that cp(X, A).

Observe that if X has information about Y, then knowing any witness of 3Ago(X, A) we
can compute a witness of E|A<p(Y, A). Now, we claim that for any pair of sets X, Y<c such
that 3A<p(X, A) and 3A<p(Y,A) either X has information about Y or vice versa. To prove
the claim, suppose X has no information about Y. In particular <,0(Y,F(Y, X does not
hold. Let A be any witness of 3A<p(Y,A) then, by 'y(Y,X, A), (the roles of X and Y are
interchanged) ElB<p(X,B) ——><,o(X,K(Y,X,A)) must hold. Therefore, <p(X,K(Y,X,A))
follows, so, by (b), Y has information about X.

Consider now the class Q = {X <c : E|A<p(X,A) } and reason in the standard model.
There is a X EQ such that X has information about at least half of the sets in Q. To see
this, let i(X, Y) be 1 if X has information about Y, -1 otherwise. Then, by our claim
above, ZXJEQ z'(X, Y) = 0, so, for some X in Q, Eyeq z'(X, Y) Z 0. Clearly such an X
has information about at least half of the Y in Q. Iterating the argument above, since Q
contains at most 2°-elements, we obtain W<(c, c) such that WM, .., W[°‘1lhave information
about all elements of Q. Let V be such that go(Wm, Vlfl) for 2'= O,.., c —1. Then, we have
that for all X <c

ElA<p(X,A) H (32:<c)[<,o(X, F(X, wl==1))v <p(X, K(wI=1, X, vI=1))].

That is, for some function F’ €”P.-and some W’ coding W and V,

<vX<c) [3Y<.0(X. Y) «—><.a<X,F'(X. W'>)].

Recall a bound on 3 Y is implicit in (,0so, the size of V can be bounded by some standard
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ower of c. Hence W’<cP for some pew.

The general case (for n>2) is similar. I
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Chapter 2. End extensions of models of
linearly bounded arithmetic

Abstract

We prove that every model of I A0 has an end extension to a model of a
theory extending Buss’ S2?in which all logspace computable function are for­
malizable. We also show the existence of an isomorphism between models of
I A0 and models of LA (i.e., second—orderPresburger arithmetic with finite
comprehension for bounded formulas).
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0 Introduction

When defining functions in bounded arithmetic, one often uses -more or less explicitly­
the following schema,

(Va:<a)(3y<a)<p(:z:, y) —>(‘v':z:<a)\7’b32 [(2)0 = :2:A (\7’w<|b|)<p((2),,,, (2),,,_,_1)],

where cp(:c,y, w) is a bounded formula and (2),, is the w-th value of the string 2 under
some reasonable coding of strings. This schema of dependent choices allows one to iterate
logarithmically many times functions which are definable by bounded formulas. In fact, if
we think of <,o(:v,y) as defining a function F (:5) = y, then the string 2 codes the values of the
iterations: F(:r), F2(:z:),. . . , F‘”(a:), . . . , F“’l(a:). The bound a in the schema takes care that
the final output remains bounded. This schema assumes the existence of 2l“l'“’l.In fact, this
is the typical size of a number coding a string of |b| numbers less than a. So, in general,
it is not true in models of I A0 unless 91 (see holds there. Anyhow, when a is not too
large, it is still possible to find a A0-function Z (:3,w) which produces the values F “’(a:) as
above. Actually if 2l“ll+°exists for some positive standard rational e the definition of Z may
be found by repeated applications of the divide and conquer method.

This fact is the essential ingredient of the construction that we are going to present.
We construct an end extension conteining all numbers 2 which code functions like Z above.

The end extension we are going to construct is a model of a theory axiomatized by 529
plus an axiom which says that in every (coded) directed graph without terminating nodes
there is a (coded) path of arbitrary (but, clearly, logarithmic) length. This theory is one
of the weakest fragments for which the problem of whether it coincides or not with S2 is
non-triviall. Recall also that it is not known whether I Ao+Q1 is a conservative extension
of I A0 or whether every model of I A0 has an end extension to a model of I Ao+Q1.

For independent reasons we are also interested in giving a translation of I A0 into
the second-order theory of addition. The technical difficulties involved in constructing the
translation and in proving it correct will be circumvented by using the second-order version
of the end extension result mentioned above.

Acknowledgments. Discussionswith Mark Jumelet and Albert Visser have been fruitful.

1 Preliminaries

Our basic languages are L2(+, and L2(+), i.e., that of second-order arithmetic with
and respectively without the symbol of multiplication. Specifically, L2(+, consists of two
symbols for constants: O,1, two symbols for binary functions: +, - and two symbols for binary
relations: <, 6. Moreover, there are two sorts of variables: first and second-order. Lower

‘This theory, let us denote it by Logrec, is contained in PV1 (or, in the notation of [6], 'P-def We
know (see [6]and that if PV1 = S; then PV1 = S2 and P V1proves the collapse of the polynomial time
hierarchy. An intriguing question of Sam Buss is whether and what we can get more from the hypothesis
Logrec = S2.
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case Latin letters :0,y, z, . . . denote first-order variables and capital Latin letters X, Y, Z, . . .
second-order variables. The language L2(+) coincides with L2(+, but for the absence of
the symbol - of multiplication.

First and second-order variables are meant to range respectively over numbers and
finite sets of numbers. Terms are constructed from first-order variables only. The formula
a:<y is to be read “:1:is less than y”. The intended meaning of X <y is: “all elements of
X are less than y”. Let t be a term in which 2: does not occur. We adopt the following
abbreviations with the usual meaning

(Q=v<t)<p, (Qrve Y)<.0, (QX<t)<p,

where Q is either V or 3. Quantifiers occurring in one of these contexts are called bounded
quantifiers. Specifically,we shall speak about polynomial quantifiers or linear quan­
tifiers according to whether the bounding term t is in L2(+, or in L2(+). A formula is
polynomial, respectively linear, if all of its quantifiers are. The set of polynomial formulas
denoted by PH. The set of linear formulas by LH.

We classify bounded formulas of PH and LH in the polynomial hierarchy and
linear hierarchy by counting alternations of second-order quantifiers. We use one of the
symbols H5 or 23 for the class of polynomial formulas containing atomic formulas and closed
under Boolean connectives and polynomial first-order quantifiers. We define inductively
2?+1 as the minimal class of formulas containing Hf , closed under disjunction, conjunction
and polynomial existential quantification. The class Hf+1 is the minimal class of formulas
containing 2? , closed under disjunction, conjunction and polynomial universal quantification.
So, PH equals U,-EUBf and U,-Eu,Hf. The classes El and H: are defined analogously but
atomic formulas and all quantifiers are required to be linear. Clearly El and I'll coincide
with the intersections of E? and Hf with L2(+).

If P is a class of formulas we write E:-(F) for the class defined exactly as E: but staring
with I‘ in place of the open formulas. Similarly for E? .

1.1 Linearly and polynomially bounded arithmetic

Second-orderpolynomially bounded arithmetic (BA) is axiomatized by the fol­
lowing set of proper axioms plus the schema below where (,0is a polynomial formulas not
containing free occurrences of the variable X. This schema is called of finite comprehen­
sion. (The expressions a £ (9,A = 0 and AQB stand for the usual abbreviations.)
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0 #1 a-(b+1) = (a-b)+a

a+0=a a§b<——>a<b+1

a+1=b+1—+a=b a§b+1<—>a<b

a+(b+1) = (a+b)+1 A<b <—>(\7’:z:EA):z:<b

a7é0<———>(E|a:<a):c+1=a A=B<—>A§B/\B§A

a-0 = 0 A 75 (D —>- (El:cEA)(A<a:+1)

(3X<a)(\7’a:<a)- :vEX <——>

The set of proper axioms above is denoted by G’. The set of those axioms of 6'’ which
are formulas of the language L-2(+) is denoted by G’. The last axiom deserves some special
remark. It is the conjunction of a bounding axiom and a least number principle (it claims
the existence of the least upper bound of every set). The least upper bound of the set X
will be denoted by |X |; the largest element of a non-empty X is then IX|—1. The theory
of linearly bounded arithmetic (LA) is axiomatized by those axioms above which are
formulas of L2(+), i.e., 6' plus finite comprehension for linear formulas.

1.2 The first-second-order isomorphism

Second-order models are composed of two disjoint parts: the numbers and the sets.
The disjoint union of w and 73<,,,(w)constitutes the standard model. There, functions
and relations are interpreted in the natural way. Non-standard second-order models are
always denoted with boldface capital letters, first-order models (or the first-order parts of
second-order models) are denoted by (the respective) boldface lower-case letters. We often
identify second-order elements of M with their extensions, i.e., with actual subsets of m.
Given a first-order model m in which the usual notion of logarithm and of binary string are
formalizable, we construct a second-order model with a canonical procedure. Namely, let
loga: and Logm denote respectively the logarithm of :z:€m and the set

Loga: := {y<log:c : (22),,=1}

(where (:z:),,is the y-th digit in the binary expansion of The second-order model Log In
is defined

Logm:={log$,Log:1: : :1:€m}.

Relations and functions in Log m are defined in the natural way. It is routine to check that
if m is a model of I Ao+Q1 then Log In is a model of BA. In general, if m is only a first-order
model of I A0, Logm is a model of LA. In fact, the first-order sentence Q1 asserts exacly
the closure of the logarithmic cut under multiplication.

A natural question is whether every second-order model M of BA or of LA is the
Logarithm of some n model of I Ao+Q1 or, respectively, I A0. The answer is affermative.
For BA this is relatively simple to check. The domain of the model n consists of the second­
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order elements of M. They are interpreted as numbers, namely as the numbers

2 2*.
a:€X

One has to define O2, 12, +2, -2 and <2 in n := {X : XEM} in order that n satisfies all
axioms of I Ao+Q1. The definition of O2,12 and <2 is immediate

02;: 0, 12:={o}, X<2Y «ii» X75 Y/\|XAY|—1eY

(recall that |XA Y|—1 is the largest element which is in Y but not in X or vice versa). For
addition and multiplication one has to formalize more or less directly the primary school
algorithms for the arithmetical operations on numbers written in a binary base. In fact,
these can be easily translated in polynomial formulas and BA will prove both totality and
the recursive equations for the new second-order functions. Finally, we have to check (see
Section 2.3 below) that the <2-least number principle holds in n and that M is actually
(isomorphicto) Log11.Notethat for XEn, w1(X)is

In principle, a similar procedure works also for LA. But a direct formalization of the
school algorithms is not possible anymore. The absence of multiplication force us to repeated
use of divide and conquer techniques to formalize these algorithms. So, the final check of
the recursive equations cannot be fairly left to the reader. So, we shall avoid the use of the
first-second-order isomorphism for LA but obtain it indirectly from our main theorem.

The first-second-order isomorphism holds also for fragments of BA. Clearly the first­
order theory corresponding to these fragments will only be a subtheory of Buss’ S2 (see
One of the weakest fragments of BA that can still be interpreted as first-order theory is
Z5’-rec. It is axiomatized by E3-comp (i.e., 8? plus finite comprehension for Z8-formulas)
and an axiom which allows recursion on first-order E3—definablefunctions:

(‘v’:c<a)(Ely<a)<p(a:, y) —->(‘v’:1:<a)3Z [Z(O) = 2:A (Vw<b)<p(Z(w), Z(w+1))],

where (,0is $3 and Z (:12)is the value at 2:of the function coded by the set Z (in some natural
coding of functions as sets). This schema (that by X33-compmay also be given as a proper
axiom) says that given a directed graph without terminating nodes and given an arbitrary
node :3in the graph, there is a set Z which codes an arbitrary long path with starting node
1:. It is easy to prove that this schema follows from BA but it is not known whether these
two theories coincide. In the appendix we shall extensively comment on the more delicate
details connected with the first-second-order isomorphism for models of this theory.

The main result of this paper is that every model of LA has an end extension to a
model of E5—rec.The result announced in the abstract follows from the following easy (but
somewhat lengthy to check) considerations: transform any given model of I A0 into a model
of LA as explained above. Then end extend this to a model of X33-recand, finally, apply the
first-second-order isomorphism to it. Check that the first-order model obtained is actually
an end extention of the original model of I A0 and that it is a model of SE plus the following
schema (which is the obvious translation in a first-order language of the schema of recursion
given above)

(V1=<|a|)(3ly<|a|)<P(=r. 3/) -+ (V=1=<|a|)3Z [(2)0 = 2: /\ (Vw<lbl)<P((Z)w» (Z)w+1,

where (2),, is the w-th element of the string z and gois 28.
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The first-second-order isomorphism for LA follows also from the main theorem. Given
a model M of LA, we end extend it to a model of Eg—rec;this is isomorphic to some first­
order model 11;the restriction of this isomorphism to M is What we are looking for. In fact,
the image of M is an initial segment of n. The A0 least number principle holds in this
segment since it corresponds to the second-order number principle in M (see Section 2.3).

1.3 A digression on fragments and complexity theory

We shall not consider fragments of the form I‘-comp here, i.e., fragments obtained
by restricting the schema of comprehension to the formulas in some class F of LH, resp.,
PH, nor shall we study the relations between complexity theory and bounded arithmetic.
For fragments of BA we refer the reader to [6] for a brief introduction or to [3] for a more
comprehensive review. For fragments of LA such a systematic study is still lacking. We
conclude this preliminary section with some observations on the difficulties arising in this
field.

It is routine to show that classes definable by Bf-formulas coincide with NP languages
and that, in general, the levels of the Meyer-Stockmeyer polynomial time hierarchy coincide
with E5’+1 and H?+1. Clearly, one needs to interpret finite sets as binary strings in the
natural way. Linear formulas define sets recognisable by alternating linear time machines
and the converse is also true. Unfortunately it is not immediate that classes Elf“ and Hf-+1
correspond exactly to those of the linear time hierarchy. Observe that 2: +1 and Hf-+1are not
closed under bounded first-order quantification. When defining the polynomial hierarchy, to
close or not to close 2? and II? under first-order bounded quantification is merely a stylistic
question. Up to provable equivalence over the relative weak theory 2?+1-choice, this classes
turn out to be closed under first-order bounded quantification. In fact, we can code pairs
of numbers by first-order objects. So, a single set Z can code a whole sequence of sets
Z [0],. . . , Z [3]where Z [3] := {y : (:3,y)EZ Consequently, the alternations of quantifiers
Va: Ell’ <,0(:z:,Y) turns out to be equivalent to EIZ Va: <,o(a:,Z["’l) (where we omit bounds on

the quantifiers). In the linear hierarchy the situation is much less trivial. Let E:-,_be the
minimal class containing 2:. and closed under disjunction, conjunction, bounded existential
quantification and bounded first-order quantification. Even in the standard model, we do
not know whether 21., coincides, up to equivalence, with El. It would be interesting to

know Whether for some j, 2; contains E:-_.A connected problem is to find a j such that 2;­
contains )3f,(X3;-).These problems make the translation into complexity theory less smooth.
We believe, one could possibly adapt the definition of 2: +1 and II:-+1in order to have a
good coincidence with the classes of the linear time hierarchy but we consider this beyond
the scope of the present work. Anyhow the problems just mentioned seem to us to be
interesting. These problems have also an arithmetical version. It consists in the comparison
of the fragments of LA where the comprehension schema is restricted to the formulas in El,
2:, and, respectively, E(',(Z3f-).In BA the corresponding problem does not exist. Again the
presence of a definable pairing function makes these three theories coincide. Most of the
lemmas in the following sections are provable in E{,(2£)-comp (or some natural restriction
of them is provable). To formalise the whole construction in E: -if possible- should require
a more careful work.
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2 Bootstrapping

This section is dedicated to some routine work of bootstrapping. We shall show that
the graphs of multiplication and exponentiation are definable by linear formulas. They are
not provably total but their specific recursive equations are provable in LA. In particular
their inverse functions, division, roots and logarithms are total functions. In every model of
LA every number codes a set and, for small sets, also the converse holds.

Intervals and co-intervals are used to code functions or strings in sets. An interval is
a set of the form {:13: a 3 :I:<a+b} for some b>0 and is denoted by [a, a+b). b is called the
length of the interval. When a = 0 we write [b) for [0,b). An interval of Z is an interval
which is contained in Z and which is maximal, i.e., it is not properly contained in an interval
which is also a subset of Z. A co-interval of Z is an interval having empty intersection
with Z and which is maximal, i.e., it is not properly contained in any interval having empty
intersection with Z. Sometimes, when a set is clear from the context, we shall simply say
interval and co-interval. The formula expressing “[a, a+ b) is an interval of Z” is 26.

2.1 First-order multiplication

Definition 1 When a Z b>0, M(a, b, c) is the formula asserting the existence of a set Z
such that three conditions below are satisfied

(o) Z<c+b

(i) [0,2a) F1Z = {a}.

(ii) for every 2:,y<c such that O<$<y
[23,y) is an interval of Z ifi [:c+a, y+a+1) is an interval of Z

(iii) [c, c+b) is an interval of Z.

When b>a>0, M(a, b, c) assert the same but exchanging the roles of a and b. Finally if
either one of a and b is 0 then M(a, b, c) is simply c = 0. I

The formula M (a, b, c) claims the existence of a set that can be depicted as follows

I"! TH [_l_l_l _ _ _ , , , l_"—‘b"’—l

J I 1. 1.

Let b g a. It is immediate to check by induction on :1:that, if Z witnesses M (a, b, c),
then for every :1:g b there is a c’€Z such that [c’,c'+$) is an interval of Z and Z 0 [c’+a:)
witnesses M(a, 1:,c’).

Lemma 2 (LA) For every a, b there is at most one c such that M(a, b, c).



LINEAR ARITHMETIC 37

Proof. Assume a _>_b. Let Z’ and Z” witness respectively M(a, b, c’) and M(a, b, c”). Let 2:
the least element of Z’AZ” . Say, zEZ’ and z§ZZ” . Let [23,y) be the interval of Z’ containing
2. From it follows that there are 2:’,y’>0 such that :c’+a = :1:and y’+a+1 = y. By
(ii), [:r’,y’) is an interval of Z’ and, by the definition of interval, y’<:::. So, [:z:’,y’) is also an
interval of Z", otherwise z would not be the least of Z’AZ ”. Applying (ii) once again to
Z", we can conclude that [:z:’+a, y’+a+1) = [22,y) is an interval of Z”, a contradiction. I

Lemma 3 (LA) M(a,0,0) and if M(a, b, c) then M(a, b+1, c+a).

Proof. The first assertion is true by definition. Assume a 75 0 75 b, otherwise it is easy.
Let Z witness M (a, b, c). There are two cases. If a Z b+1, it is immediate to check that
Z U [c+a, c+a+b+1) witnesses M(a, b+1, c+a). Otherwise, if a<b+1, we construct a set
witnessing M (a, b+1, c+ a) stretching each co-interval of Z by one. In other words, we move
upwards every interval of Z: the y-th interval of Z has to be shifted by y units. This
operation is easy to define because the y—thinterval of Z has length y. So, it is easy to verify
that the set

Z’ := U {[a:+y,:c+2y) : [1:,2:+y) interval of Z},

witnesses M(a, b+1, c+a). I

Lemma 4 (LA) If M(a, b,c), then for all a’ 3 a and b’ 3 b there is a c’ g c such that
M(a’,b’,c’).

Proof. We suppose a 2 b and we shall prove the lemma for all a’ 2 b’. By the symmetry
of the definition, this is sufficient. For all b’ g b there is a c’ g c such that M (a, b’,c’ In
fact, let Z witness M(a, b, c). Let c’ 3 c be that element of Z such that [c’,c’+b’) is an
interval of Z. As observed above, Z’ := Z fl [c’+b’) witnesses M (a, b’, c’). Now, consider
arbitrary b’ 3 b and a’<a where a’ 2 b’. Suppose, to obtain a contradiction, that for no
c’<c, M (a’, b’,c’ Choose the least of such a’. So, by minimality, for some c”, there is a Z”
witnessing M(a’+1, b’,c” Consider the set

Z’ := U{[:z:,a:+y) : [:z:+y,:I:+2y) is an interval of Z”}.

Z’ is obtained by decreasing the length of all co-intervals of Z by one. It is easy to check
that Z’ is the witness of M(a’, b’,c’). I

We write and bi for the maximal q<b such that for some b’<b, M(a, g, b’), re­
spectively, M(q, q, b’ Analogously we define for every standard n, b%. We write a-b 1 for
3:17M(a, b, x) and a-b 1 GM for M 1: 3:1:M(a, b, 1:). Similarly for a" 1.

Lemma 5 (LA) If a" 1 then (a+1)" 1 (for n positive standard).

Proof. Use Lemma 3 to prove, by induction on n standard,

(a+1)"= Z a’. 'i<n



38 LINEAR ARITHMETIC

Lemma 6 Every model of LA + Va a2 1 has an expansion to a model of BA.

Proof. By Lemma 4, for all a, b there exists a e such that M(a, b, c). So we expand M to
a model M’ of signature L2(+, by defining a-b to be the unique e such that M (a, b, c).
By Lemma 3, (9? is satisfied in the expanded model. To verify that comprehension for all
polynomial formulas holds, fix a polynomial formula gowith parameters in M’ and a (large)
number b in M’. It suffices to set b = d“ where d is the largest parameter in goand n is the
number of syntactical symbols in go.Observe that every polynomial formula with parameters
in M is equivalent to one where each atomic subformula contains at most one occurrence of
- and where all quantifiers are bounded by b. Now, replacing atomic formulas of the form
r-s = t with M (r, s, t), we obtain a linear formula equivalent to the original one. So, in M’,
polynomial comprehension follows from linear comprehension. I

An immediate consequence of this lemma is that for every a model M of LA, the initial
segment of M with domain

{a:,X : ML |= :c"1/\|X|"i for all new}

is (expandable to) a model of BA. We note that, using with some more care the ideas
explained in the proof of Lemma 6 we would obtain the following lemma (cf. Lemma 1.30of
Lemma 7 For every polynomial formula <,o(:'c', there is a linear formula <,o’(q,it’, such
that LA + 9" proves

Va 3a (V5, J?<a)[<p(~'3. 3?) <—> </>’(q,fir‘,37)]­

Moreover, we can assume that there is some standard n depending on (,0such that, for all
q”, q’ 2 a" and for all :'c',X<a, <,o'(q’,:'E,X)is equivalent over LA to <,o'(q",§:',X). I

We shall refer to the formula go’in the lemma above as the linear translation of go.

2.2 First-order exponentiation

Definition 8 E(0, c) if)’c = 1. If b>0, E(b, c) holds ifi there exists a set Z such that the
four conditions beloware satisfied

(0) Z<c+b

(i) [0,4)DZ =

(ii) for every 3:,y<c such that 0<y
[:z:,:1:+y) is an interval of Z ifi’ [2a:,2:I:+y+1) is an interval of Z.

(iii) [c, c+b) is an interval of Z. I
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The formula E (b, c) claims the existence of the set depicted below

[_,Il7jl"|j:l CITY] . . . . . . . . . .. FWI

TM 1 1 lb

Lemma 9 (LA)

(i) For every b there is at most one c such that E(b, c) and the Z witnessing this formula
is unique.

(ii) For every b and c, if E(b, c) then E(b+1,2c).

(iii) For every b'<b, if E(b, c) there is a c'<c such that E(b’, c’).

Proof. The first statement is proved as in Lemma 2; the second assertion is evident. The
third statement follows since we can prove by induction on :3that, if Z witnesses E (b, c), for
every 2:g b there is a c’€Z such that [c’,c'+:r) is an interval of Z and Z 0 [c'+:r) witnesses
E(b,c'). I

The maximal b<c such that, for some c’<2c, E(b, c’) is denoted by log c (if a = Owe
agree that log a = 0). We define (c),, = 1 if

(Eld,b<c) E(a,5) /\ 2d+1= ,

(c),, = 0 otherwise. By linear comprehension, for every c there is a set the we denote by
Log c such that

Logc := {:z:<logc : (c), =1}.

The following lemma proves that small sets are coded by numbers and that this code
is unique.

Lemma 10 (LA) For every a and every C'<loga there is a c 3 a such that C’ = Log c.
Moreover this c is unique.

Proof. We prove the assertion by induction on a. If a = 0 then C = (D. It is easy to
see that 0 = Log c iff c = 0. Suppose the lemma holds for every C <log a and let prove it
for C<log (a+1). Clerly we may assume that log a<log (a+1) otherwise there is nothing to
prove. Clearly we have log a(a+1) = loga + 1 and E(log a, a). Fix such a C'<loga + 1. If
log a¢ C then C<log a and the claim follows by induction hypothesis. So, assume log aEC'.
Apply the induction hypothesis to C’\ {log a} and let c the unique number such that
C \ {log a} = Log c. The reader will easily verify that c+a is the code of C. For the unicity
suppose that c’ 79c+a is also a code of C’. We can check that

c7éc’—a and Logc=Log(c’—a)­

and that this contradicts the induction hypothesis. Details are left to the reader. I
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Lemma 11 (LA) For all a, there exists a c such that E(a, c), then for all standard n,
a" 1.

Proof. The proof, based on Lemma 5, is left to the reader. I

Lemma 12 Let M be a model of LA and let q€M be non-standard. Let X +2 Y and
X -2 Y be the polynomial functions formalizing second-order addition and multiplication (as
explained in Section 1). Let X +2’ Y and X -3 Y be their linear translations as in Lemma 7.
Then for all a, b and c<q such that M(a, b, c) we have

Loga +2’Logb = Log(a+b) and Loga -3 Logb = Logc.

Proof. The proof is lengthy. The idea is the following. We can work in the initial segment
of M where {(log c)"},,E,,,or, respectively, (log(a+b))"},,.5,,, is cofinal. This initial segment
exists by the previous lemma and is a model of BA by Lemma 6. For a sufficiently large n,
Log a +2’ Log b and Log a -‘2’Log b are equivalent to Log a +3’ Log b and Log a -3’Log b where
q’ := (log c)" (resp. q’ := (log(a+b))". By Lemma 7, Loga +3’ Logb and Loga -3’Logb
are equivalent to Log a +2 Log b and Log a -2Log b. Now the equality can be checked more
comfortably in BA. I

2.3 A well-ordering of the sets

The interpretation of sets as large numbers suggests the following definition

Y<2X A X75Y /\ |YAX|—1eX.

It is easy to prove that this relation is a discrete linear order. We shall use the abbreviation
(QY <2 X) with the usual meaning. Note that Y <2 X implies Y<|X I, so, the quantifiers
(QY <2 X) are essentially second-order linear quantifier. We are going to prove that for
every bounded formula the <2-least number principle is provable in LA. The <2-least number
principle is the schema

<p(A) -> (3X S2 A)</9/\ (VY <2 X)n<p(Y)­

Lemma 13 LA proves the <2-least number principle for every linear formula.

Proof. Let (,0be a linear formula. Assume <,o(A)and let :3be the least element of the set

{y g |A| : (EX $2 A)<p/\ (VY <2 X)[<,o(Y)—>|XAY|—1 <

(This set is non-empty because it contains If Wecan show that :1:= Owe are done. So,
assume at= y+1 and let X be such that

(*) (‘v’Y<2X)[<p(Y) —>|XAY|—1 < 3/+1].

By the minimality of y+1, there is a Y<2X such that
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(**) <,0(Y) /\ IXAYI-1 = y­

We shall contradict the minimality of y+1 by showing that

(\7’Z<2 Y)[<p(Z) —>|YAZ|—1 < y].

Let Z<2 Y be such that <p(Z). By transitivity, Z<2X and, by (*), |XAZ|—1 < y+1. The lat­
ter together with (**) implies |YAZ|—1<y+1. It remains to exclude |YAZ|—1 = y. From
Y<2X and (**) it follows that y¢Y but, by definition, Z <2 Y means |YAZ|—1 E Y. So,
|YAZ|—1 can not be y. The proof is complete. I

When sets are small, LA proves that <2 is actually the ordering induced by those of
the code of the sets. We ask the reader to prove by induction the following lemma.

Lemma 14 (LA) If a<b then Loga <2 Logb

3 Proof of the main theorem

Theorem 15 Every model of LA has an end extension to a model of E3’-rec.

Proof. Let ML be a model of LA. Assume ML is not closed under first-order multiplication,
otherwise, by Lemma 6, ML is a model of BA and the theorem is trivial. Let Mp be the
maximal cut of ML which is closed under multiplication.

Mp := {:1:,XEML : ML I: :3" 1/\|X|"1 for all new}.

Let mo be the first-order model of I Ao+Q1 obtained from Mp via the first-second-order
isomorphism. I.e., mo := {X : X EMp}. We expand it to a second-order model M0. The
sets of Mo are all those bounded subsets of mo which are linearly definable over ML. I.e.,
the second-order elements of Mo are those subsets of mo of the form

Cpur) == {X = ML l= s0(X)};

where <p(X) is a linear formula depending on parameters in ML, with exactly one free variable
and such that for some AEM p, <,o(X)—+X <2A. The relation 62 is defined in the natural
way and we define C.,,(x)<2A iff for all X, <,o(X)—>X<2A.

M0 is a model of 9'’. For the first-order part of 8'’ this is clear since mo |= I A0.
For the rest, it is sufficient to observe that LA proves the <2-least number principle (see
Lemma 13) and that all sets of Mo are, by definition, bounded. From Lemma 17 it will
follow that M0 is a model of 23-comp. First we check that, up to isomorphism, M0 is an
end extension of ML.

Lemma 16 ML is isomorphic to an initial segment of Mo
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Proof. The embedding of ML into M0 sends numbers to sets and sets to bounded classes
in the following way

a +——>Loga,

A +—+ C.pA(x)1: {X : X<2A/\(3$eA)(X =Log2:)}.

The range of this map is actually in M0. This is evident for the second-order part while, for
the first—orderpart, it follows from lemma 11. Let us check that the image of ml, is an initial
segment of mo. If A<2Log b, in particular, A<logb (recall that, by definition, Loga:<log:r),
so, by Lemma 10, there is an a<b such that A = Log a. Therefore, A is the image of some
a<b under the embedding defined above. Now, consider a set of M0, i.e., a bounded linear

class C,,,(X).And suppose that for some BeMo, C¢(x)<2B, i.e., for all X, 2,b(X)-9 X<2B.
We have just proved that for some beML, B = Log b. Consider the set

A := {:v<b : 1/2(Log:z:) -—>Log2:<2Log b}­

By Lemma 10, for all X, <pA(X) <———>zb(X). S0, A is mapped to C¢,(X). I

From now on let us switch to the usual notations with capital/lower-case letters also
for elements of Mo. We define,

Mp := {:1:,XeMo : M0 |= :z:,X<p" for some new, peML}.

We are going to prove that M R is a model of E8-rec. Note that for any peML \ Mp

Mp := {:z:,XeMo : MO I: a:,X<p" for some new}.

Mp := {:z:,XeML : ML I: z,X<p% for all new}.

The situation is depicted in the figure.

We need a couple of lemmas. A polynomial formula with parameters in M0 is called
quasi-linear if all its second-order quantifiers are bounded by elements of M 1,.

Lemma 17 M0 satisfies comprehension for all quasi-linear formulas. Also, the <2—least
number principle holds in M0 for every quasi-linear formula <p(X) which holds for some X
in ML.

Proof. Consider a formula <p(:1:,Y) as above. We assume without loss of generality that all
the second-order quantifiers are bounded by some ceML \ Mp. We are going to write a
linear formula 1,b(X,Y) such that for all :ceMo and all Y<c,

(*) Mo |= <.0($aY) <=" M1. |= ¢(L0g=I=, Y)­

By the definition of the sets of M0, this is sufficient to have comprehension. We can assume
without loss of generality that <p(:z:)does not contain nested terms. Also we rename the
variables of cpso that the variables 22,-and V; do not both occur in (,0.We shall consider the
linear translation (as in Lemma 7 with c for q)

(X Y=Z), (X +§ Y=Z) and X<§Y.

such that for all X and Y in Mp these are equivalent to the polynomial formulas
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M0 |= Z33-comp

(1: MR I: E8-rec

0

310‘

..p3

ML 1: LA

Mp E Log mo }=BA

(X-2Y=Z) and (X+2Y=Z).

This is clearly possible since C€ML\Mp. Note that we can also assume that all second-order
quantifiers of (X -§ Y = Z) and (X +§ Y = Z) are bounded by c.

We proceed by induction on the complexity of the formula cp. If cpis an atomic formula
of the form t€S or S <t (Where t and S are either variable or constants) then let 1,0be

(3y€S)(T = Logy) and (33/<c)(S<y A T = logy).

where T is either the capital variable corresponding to t or, if t is a constant, T = Log t. If (,0
is an atomic formula of the form (t-s = 1'), (t+s = 1*)and t<s, replace it with, respectively,

(X -5Y=Z), (X +§ Y=Z) and X<2Y.

where, again, T, S and R are either the capital variable corresponding to t, 3, and r or
the Logarithms of the corresponding constant. It is clear that (*) hold for atomic formu­
las. The definition for boolean connectives is the natural one. If «,0is the translation of
(p than (Q:1:<t)<pis translated with (QX<2 T)1,b. (El:z:€T)<pand (\7’:cET)<ptranslated with,
respectively, (3X<c)[<p/\ (:56 T)’] and (\7’X<c)[(:z:ET)’ —>go]where ($6 T)’ is the translation
of (126T) given above. The reader may check that at each inductive step our translation
satisfies I

Quasi—linearfunctions are those defined as

-F(-T17° 11:11:X1) - 7X71) := {I/<l$1a ' 1$n1X17 ' aXfll : $11 ' 71:71?X17 ' 3X71)}7

where a is in M L and (,0is quasi-linear. As usual (see e.g., [6]), when zfiis a quasi-linear
formula and F is a quasi-linear function, the formula
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hb(y1)'7yn1Y1)‘;Yn7F($11'a$n7X17'1Xfl))

is considered as the abbreviation of the quasi-linear formula (in the language L2(+, ob­
tained by unfolding the definition of F inside w. So, the composition of quasi-linear functions
is again a quasi-linear function. We prove below that in M p quasi-linear functions are closed
under iterations, i.e. under recursion over a first-order variable, provided that their values
are not too large. Precisely we prove the following.

Lemma 18 For every quasi-linear formula <pand every a€ML such that for some standard
rational e>0, a”‘ 1 EM; the followingformula holds true in MR

(\7’X<a)(3Y<a)<,0(X, Y) —>(VX<a)Vb 3Z [Z[O]= X /\ (\7’w<b)<,o(Z[w],Z[w+1])],

where we abbreviated (Z (1[w-a, (w+1)-a)) \ [wa) by Z[w].

Proof. Fix an aEML such that a1+‘ 1 and let q be an arbitrary element of ML \ Mp.
If a belongs to ML \ Mp, let p be a‘, otherwise, let p be the largest element of the set
{x : a-.7:1 <q}. Clearly in both cases p is in M1, \ Mp and so, {p"},,e,,, is cofinal in Mp.
Also, in both cases a-p l EML. We shall prove, by induction on n standard, that for all
quasi-linear (,0,

(\7’X<a)(3Y<a)go(X, Y) —>(‘v’X<a)3Z [Z[O]= X /\ (‘v’w<p")<,0(Z[w],Z[w+1])],

By the cofinality of {p"},,e,, in Mp, this is sufficient. For n = 0 there is nothing to prove.
The case n = 1 has to be proved separately; it is a direct application of induction on r<p
to the quasi-linear formula,

(*) (VX<a)(3Y<a)<p(X, Y) —»(\7’X<a)(3Z<p-a) me] = X/\(Vw<r)<,0(Z[w],Z[w+1])],

Now we prove by induction on n>O that for every quasi-linear formula (,0there is a quasi­
linear function F,,(w, X) such that

(**) (\7’X<a)(ElY<a)<p(X,Y) _. (V/X<a)[F,,(O,X) = X/\(Vw<p")<,o(F,,(w,X), F,,(w+1,X))],

For n = 1 it is true. In fact, the set Z satisfying (*) is definible by a quasi-linear formula
(the formulaasserting that Z is the <2-least set Z satisfying and the function F1(w,X)
is trivially definible over this Z.

Now, assume there is a function F,, as in (**). We are going to show that there exists
a quasi-linear function F,,+1(w,X) such that (**) holds with n+1 for n. We apply the
induction hypothesis for n = 1 to the formula F,,(p", X) = Y. Since clearly

(VX<a)(3Y<a)(F,,(p",X) = Y),

we conclude that for some F1’

(\7’X<a)[F1'(O,X)= X /\ (\7'w<p)[F,,(0,F1'(w,X)) = F1’(w+1,

Hence we define F,,+1(w, X)



LINEAR ARITHMETIC 45

F.+1<w.X>==F. (w— .F;<[—“i].X>)pn

(this means: take large steps with F1’and do the fine tuning with F,,). We should check
that this definition will do. This is a straightforward induction and is left to the reader. I

Finally we show that from this last lemma follows that M R is a model of 28 -rec. Fix a
quasi-linear formula <p(:1:,y) (so, in particular, a Z3-formula), fix a, bEMR and :z:<a. Assume
that in MR holds (Vz<a)(3y<a)<p($, y). Define the formula

W. Y) «*4 (ax, y<q>[<X = Logs) A (Y = Log;/> A «p<a:,y>],

where q is an arbitrary element of M L\M;;. Observe that (VX<log a)(3 Y<log a)<,0’(X , Y).
We can apply the lemma above because, by Lemma 11, (log a)2 1 EML. Lemma 18 yields a
set Z such that

Z[0] = Loga: /\ (‘v’w<logb) <p’(Z[w],Z[w+1]).

We can go back from Logarithms to numbers and obtain a set Z’ such that

Z'(O) = :1:/\ (‘v’w<b)<,o(Z'(w), Z'(w)).

This completes the proof of the theorem. I

4 Appendix

The first-order theory corresponding to Z36-recis an extension of Buss’ S3. The theory
520is axiomatized by a set of 32 proper axioms called BASIC plus the schema Z8-PIND.
This is the schema

<p(0) AVX [<p(l%Xl) —><p(X)l —*VX s0(X),

where (,0is a E3-formula. The language of S9 is an extension of that of I Ao+Q1; the definition
of (the translations) of the new primitives IX|2, X #2 Y and EX]; is straightforward (e.g.,
[%Xj2 is X -1). Addition +2 and multiplication -2require more effort.

The following informal discussion should convince the reader that there is a more or
less direct way to define +2 and -2in models of E5-rec. The first-order part In of a model M
of E3-rec satisfies I A0 (this because of E3’-comp). So, we have a A0-definition of (first-order)
exponentiation and to every :1:one can associate a string of length loga: (see [3] Chapter 5
section 3). This makes it possible to formalize computation of a Turing machine whose space
resources are bounded by the logarithm of the length of the input. Let us associate each set
I with a binary string of length |I | (the least upper bound of I Our deterministic Turing
machine reads the input I in a read-only tape and writes the output 0 in a write-only tape.
The working space is bounded by the logarithm of |I | times some fixed constant n (that we
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think as a standard number). So, internal states of the Turing machine can be coded by first­
order elements a:<a. := II |". Only the working tape is coded in the internal state. We can
formalize by a E3-formula with I as parameter the next-state relation among states which
reads form I. Let (,0(:z:,y) be this formula. If we assume that the Turing machine never halts
but possibly loops in a state labeled as halting state, the antecedent of the schema above is
satisfied by the next-state formula (,0.The axiom above claims the existence of (the code of)
a.computation Z for this Turing machine. The output of the computation can be E3—defined
reading the write instructions of the interval states coded in the computation Z.

In this way one formalizes logspace computable functions. Natural algorithms for
addition and multiplication are in this class (up to some well-known trick: see [3]chapter 5
Section 2) and, when these are formalized, Z3-rec proves their recursive equations.

To check that the model constructed via the first-second-order isomorphism satisfies
E8—PINDis a delicate matter. We would like to proceed in the following way: assume for a
contradiction that for some A

(am) Avx [(o(L§XJ>~ (o(X>1Aw(A)

and show that the minimal :1:such that -~(,0(A-1:)cannot exist. Unfortunately E8 formulas
are translated via the isomorphism into Ef,’(Ef)-formulas. So, at first sight it seems that
one would need Sf -comp to prove E8-PIND. We can get around this problem. We observe
that +1 and -2, as well as all other primitives of 53, have both a 2'1’and a Hf definition.
So, 28 formulas are translated by the isomorphism into formulas which are both Elf, and
I'If_. (Recall that 2'1’, is the smallest class of formulas containing Ho and closed under
second-order polynomial existential quantification, conjunction, disjunction and first-order
polynomial quantification. l'If_ is the dual class.) The following two lemmas show that there
is a \7’3Ef,,conservative extension of E3’-rec where Elf, = Elf and Hf, = Hf and proving
comprehnsion for formulas which are both Elf and Hf. Recall from [6] that the theory
Elf—choiceis obtained by adding to Ef,’—c0mpthe following axioms for (,0varying in Elf,

(\7’$<a)(3Y<b)(,0(:z:, Y) —>HZ (‘v’2:<a)(,0(:c,Zl’l).

Lemma 19 Z8-rec+Ef-choice is a V321, conservative extension of E3—rec.

Proof. From Corollary 2.3 of [6] follows that every model of X38-comphas an V32?
elementary extension to a model of Ef-choice. So, if we start with a model of E5—rec,
the extension is also a model of E3-rec. From this we can conclude that Z33-rec+E’1’-choiceis
a V32’; conservative extension of E3’-rec. The lemma follows from the following claim. For
every Elf, formula (,0there is a Bf formula '(,Dsuch that

E8'C0mp l_ 1)b—) (pa

moreover, (,0and (,0are equivalent over 2'1’-choice. This is proved by induction on the syntax
of (,0. I

Lemma 20 For every Elf-formula (,0and every Hf -formula 1,0,Elf-choice proves

‘v’1:[(,0(:r:)<—-> 7,b(:z:)]—>(3X<a)(V:z:<a):z:EX <——>(,0(:r).
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Proof. Reason in a model of 2'1’-choice.Let tpellf and ¢EEf and suppose that for some
parameters a and b

(*) (‘v’:z:<a)- (3X<b)<p(:1:,X) <———>(‘v’X<b)1,b(:z:,X).

It suffices to prove the existence of the set {:z:<a : (3X<b)<p(:::,X)}. From (*) we have,
(EIX<b)[cp(:z:,X) V fi1,b(a:,X for all :n<a. Since the formula between square brackets is 2]’,
we may apply the axiom of choice to get a set Z§[a) x [b) such that

<vx<a>{<.o<x,2M) v «um, zI=1>1.

It follows immediately that <p(:I:,Z M) is equivalent to ¢(:z:,Z M) and hence to (EIX<b)<p(:v,X
So, E3-comp suffices to guarantee the existence of the set {$<a : (3X <b)<p(a:,X I
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Part II. Provability logic

Introduction

1 Interpretability logics

Part II of this thesis contributes to the genre known as provability logic. We con­
centrate on two different problems. Chapter 3 is devoted to the completeness theorems for
interpretability logic. Specifically,to Albert Visser’s theorem that ILP is the interpretability
logic of finitely axiomatizable theories which prove cut—eliminationand to Alessandro Be­
rarducci and Volodya Shavrukov’s theorem that ILM is the interpretability logic of Peano
Arithmetic (actually, of all full reflexive theories). The proofs given originally were not based
on the natural semantics of interpretability logic (i.e. Veltman models). We give more direct
completeness proofs of [LP and ILM based on Veltman models. We also provide a general
set up for arithmetical completeness proofs of interpretability logic which, we think, is more
in the style of Solovay’s arithmetical completeness proof of provability logic. Below, we re­
fresh the reader’s memory going briefly through the few prerequisites necessary for a smooth
understanding of Chapter 3. We shall omit proofs or give only quick sketches. For a more
comprehensive introduction we refer the reader to some introductory text such as [8]and to
the introduction of [1] and [11].

Fix a first-order theory T which is axiomatized by a recursively enumerable set of
axioms and which allows a reasonable formalization of the sentence ‘there is a proof of
cpfrom T’. Let ProvT("<p‘) be such a formalization. We shall mainly consider theories
expressed in the language of arithmetic (other possible alternatives are e.g., the languages of
ZF, of GB or of second-order arithmetic). An interpretation is map * from sentences of the
(propositional) modal language £(El) to sentences of the language of T which commute with
the Boolean connectives and which transforms DA into (DA)* 2: ProvT("A"‘). A modal
formula A is called a principle of the provability logic of T if, for every interpretation 1:,the
formula A"‘is provable in T. Remarkable examples of principles of provability logic are

1 U(A—>B)—>(UA—>DB)

2 DA —> L—_|l:l/l

3 U(DA—>A) —>DA

The first principle is the formalization of modus ponens. Traditionally, the second
principle is derived as a particular case of the following theorem1

‘This principle is known as formalized Z1 completeness. We shall only consider theories for which the
conclusion of Theorem 1 holds. Principle (2) is also derivable in a more direct manner and thus, it is true
also in many weak theories for which it is not known whether Theorem 1 holds or not. Provability logic of
these weak theories is not completely understood yet. See [10] and [2] for the best results on this topic.
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Theorem 1 Let T be a theory proving the totality of the function erponentiation. Then for
every 21 formula <p(:z:)

T F V-'v(<p(=v)-+ P7‘0v("<p(-'r=)‘))

where "<,o(:z:)‘is the formalization in the language of arithmetic of the function that given an
2 produces the Godel number of the sentence <p(.S" I

Principle (2) follows from this theorem. In fact, we always assume that a ‘reasonable’
formalization of the notion of provability has of complexity 212. The third principle is the
formalization of Lobs’ generalization of Godel’s incompleteness theorem.

It should be clear that other principles of provability logic can be derived just using
modal logic derivations. In fact, what can be derived from (1), (2) and (3) (viewed as axiom
schemas) by means of the rule of modus ponens and of necessitation is again a principle
of provability logic. The converse is also true: all other principles of provability logic can
be derived from (1), (2) and (3) (this modal logic is named L or, sometimes, G). This
remarkable fact is the starting point of modern provability logic. It is the content of Solovay’s
arithmetical completeness theorem In his famous article Solovay proved also a modal
completeness theorem for the logic L. That is: if a modal formula is not a consequence of (1),
(2) and (3), then there is a finite transitive Kripke model in which the formula does not hold
(the converse is easily seen to be true). The finiteness of the counter models is noteworthy. In
fact, the finite model property offers us a decision procedure to establish whether a principle
of provability logic is valid or not. Also, once we have a Kripke model falsifying a principle of
provability logic, the fixed point construction of [9]provides a standard procedure to obtain
an actual counter example.

Solovayproved his famous theorem with Peano Arithmetic for T. De Jongh, Montagna
and Jumelet in [5]observed that his theorem actually holds for all fragments of PA for which
the principle of Theorem 1 is valid. This amazing stability is generally understood as a
somewhat disappointing fact. It seems to exclude the possibility of classifying theories by
means of their formalized metamathematics.

A way out of this impasse is offered by the introduction of new modal operators to for­
malize other metamathematical concepts. We shall consider the operator of interpretability
and see that two different modal logics correspond to theories satisfying the full reflection
principle (see Theorem 4) and theories which are finitely axiomatized.

Let us, for simplicity, consider theories in the language arithmetic with, as primitives:
0, 1, +, - and <. Fix two theories T and S. We say that a theory T interprets the theory
5' if there are formulas which define - within T - the following objects:

1. a set D,

2. two elements 0’ and 1' in D,

3. two binary functions +' and -’,

4 . a binary relation <',

2The adjective ‘reasonable’ should be understood here as ‘traditional’. In fact, formalizations of higher
complexity are possible. Feferman’s predicate of provability is a. remarkable example. The provability logic
of Feferman’s predicate of provability is quite different from the traditional (Godel) one. However, it may
be investigated in the same modal framework. See [7] for the best known results on this field
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(speaking intuitively, together these objects constitute a model of 3 Moreover,we ask that
T proves all axioms of 5' when quantifiers are restricted to D and the functions + and - and
the relation < are replaced respectively by +' , -’ and <’.

The sentence ‘T+<p interprets T+1/J’is formalized in a natural way in the language of
T. Let IntT("<p","1,b")be such a formalization. For sufficiently strong theories, the notion of
interpretability is actually a generalization of the notion of provability. In fact, we have the
following.

Theorem 2 Let T be a theory containing [21 and let cpbe any sentence. Then T proves

ProvT("<,0") <—> IntT("fi<p‘, "O # 0“)­

Principles of interpretability logic are now formulas of the modal language .C(El,I>)
where > is a binary modal operator. The concept of arithmetical interpretation of modal
formulas is exactly the same as before. The interpretation of (A D B), (A I>B)* is now
Intg-("A*",VB”). Again, we call a modal formula A a principle of the interpretability logic
of T iff for every interpretation *, T proves A‘. Examples of principles of interpretability
logic are

4 Cl(A—+B)—>(Al>B)

(A1>B)/\(B1>C)——>(A1>C)

(A:>B)/\(C1>B)—>(AvCI>B)

(Al>B) —>(GA —+<)B)

oA>A
®\'IO3CJ'1

These principles hold for every theory T (see [1 Particularly remarkable principles
are: (7) - which formalizes the fact that relative interpretability implies relative consistency ­
and (8) - which is the formalized version of Godel’s completeness theorem for first-order logic.
I.e., it is the formalization of the following theorem. Let C'onsT("<,o‘)stand for -wProvT("-up‘)
and Cons(" T‘) for C'onsT("O= 0‘).

Theorem 3 (Arithmetized completeness theorem) Let T be a theory containing I 21. If
T |- C'onsT("<p")then T interprets T+<p.

The modal logic axiomatized by the schemas (1) to (8) (rules are again modus ponens
and necessitation) is known as IL.

Another principle is derivable when T is PA. This is known as Montagna’s principle

(M) (Al>B)—>(A/\DC)l>(B/\ClC)

We sketch the proofs of the main theorems which lead to the proof of Montagna’s
principle. Let us agree on some notation. For every is let PA,‘ be the conjunction of the first
k axioms in a fixed primitive recursive enumeration of the axioms of PA. Recall also that
for every n there is a formula Sat,,(:z:,37)such that for every 2,, formula <,o,

PA F V37 [<p(z7) +—> Satn(’<p(z7))]

So, for every standard 72,the formula ‘cpis a true 2,, sentence’ is formalizable in the language
of PA. With this in mind, we state the following.
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Theorem 4 (Reflection principle) For every n sentence a and every n and every k, PA
proves the formalization of the following statement. For every 2,, sentence (,0if PA,‘ proves
cp then go is true.

Proof. Suppose that the complexity of PA;,is 2,. (otherwise, choose a larger The usual
proof of the cut-elimination theorem is formalizable in PA (actually, it holds in every model
of I Ao+.S'UPEXP). So, we can assume that the derivation of gofrom PA,, uses only axioms
which are of complexity En. Now it is relatively easy to prove, by induction on the length
of the cut-free derivations, that all provable sentences are true. I

The following theorem of Orey is the formalized version of the compactness theorem
for first-order logic.

Theorem 5 (Orey) Let S be a theory with a recursively enumerable set of axioms. Let T
be a theory extending PA. Let S,, be the conjunction of those axioms of S that have been
enumerated up to stage n. If for all n, T proves Cons("o,,‘) then T interprets 5'.

Proof. See Theorem 8 below.

From this theorems we obtain the characterization of interpretability over PA which
is the main ingredient for the proof of the arithmetical completeness theorem.

Theorem 6 It is provable in PA that IntT("<,o","1/2“)ififor every 1:,PA+<,0proves Consmk (WV).

Proof. See Theorems 7 and 9 below.

The following two theorems are the model-theoretical analogues of Theorems 5 and 6.
They are not expressed in the language of PA but they are almost literally formalizable in
the language of second-order arithmetic. We sketch a proof of them. The reader may easily
check that the argument can be carried out in ACA0. This is the fragment of second-order
arithmetic with axioms,

1. the axioms of Robinson arithmetic Q (or, alternatively, the first 9 axioms of G in
Chapter 1 Section 1 of this thesis),

2. the least number principle as a single axiom:

A 750 .. 33,/(yeA /\ (vz<y).-.~¢A),

3. arithmetical comprehension, i.e., for every formula (,0possibly containing first or second­
order parameters different from X, but not containing any second order quantifier,

3X \7’x[x€X <—> <,o(x)].

It is easy to see that ACAOis a conservative extension of PA. In fact, every model of
PA can be expanded to a model of A0140by adding to it all (first-order) definable sets. In
this model theoretical setting we shall derive Montagna’s principle. In Chapter 3 we shall
follow [1] and work in ACA0.

Theorem 7 PA+a interprets PA+fi if every model of PA+a has an end extension to a
model of PA+fi.

Proofsketch. For the direction ‘ => ’, consider the formula 6 which define inside a model
M of PA+oz a model N of PA+fl. Let 0’ and 1’ be the elements of M which interprets the
constants 0 and 1. Let +' be the interpretation of addition. We can define a function from M
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to N inductively: 0 is mapped to O’and if x is mapped to x’ then x+1 is mapped to x’+’1’.
It is not difficult to see that this function preserves addition and multiplication and that
the range of this map is an initial segment of N. This initial segment will be isomorphic to
M. So, the direction ‘ => ’ of the theorem follows. For the converse we use Orey’s theorem.
If PA+oz does not interpret PA+fi, then for some 72.,PA does not prove C'0nspAn("fl"). So,
there is a model M of PA+cr where ProvpA,,("—~fl‘)holds. This model cannot have an
end extension to a model of PA+[3 because, by the preservation of E1 formulas under end
extensions this would be a model of Pr0vp,4,,('-wfl“)contradicting the reflection principle. I

Theorem 8 Let M be a model of PA and let, for every k, Tk be a set of 2,,-f0r"mulas which
is definable in M (possibly non-uniformly in k). Let T := Uk Tk. Assume that for all k,
M l: ConsQ(r T1,‘). Then there is an end extension ofM to a model of T.
Proof. Let D be the set of Z30-formulaswhich are true in M. This set is definable in M.
Clearly, for every cpin D, ProvQ(<,o).Therefore, for every k, M l: C0nsQ("D+Tk‘). Expand
the language with an infinite set C of constants. Working outside M construct a sequence
of theories T,’,in the expanded language such that (writing T’ for Uk Tk),

0 M I: C0nsQ(T,’,)

0 T+D§ T’

o T’ is complete.

0 for every (,0in T’ there is a constant e such that the formula 3x<p(x) —><,0(c)is in T’.

Let N be the canonical model of T’ (as in the usual Henkin construction). It is clear that
N is an end extension of M. In fact, the formula

(\7'x<S'°0) V x = Sb0
b<a

is in D, so, it must hold in N. I

Note that the theorem above is formalizable in ACAOwhenever T1,is definable there.
For our application, the following immediate corollary is important.

Theorem 9 Let M be a model of PA and let a be an element of M. The following are
equivalent

1. for all k, M I: ConspAk("fl(a)")

2. there is an end extension ofM to a model of PA+fl(a).
Proof. The direction from (2) to (1) is easy. It is a corollary of the reflection principle 4 and
of the fact that U1 formulas are preserved in initial segments. Clearly, we can assume that
for sufficiently large k, PA;.+fi(a) has complexity Elk and Q§PAk. So, from the previous
theoremfollowsthat (1) implies I

Though not used in this thesis, it is worthwhile to observe that the following classical
theorem of MacDowe1l and Specker follows from Theorem 8.

Theorem 10 (MacDoWelland Specker 1961) Every model of PA has an elementary end
extension.
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Proof. The set Tk of true 2;,-formulas is (non-uniformly) definable in M. We also have
that, by Theorem 4 for every k, M l: C’onsQ(Tk). So we may apply Theorem 8. The model
N obtained in this way is clearly an elementary extension of M. I

We can now derive Montagna’s principle from Theorem 7. In fact, suppose that
IntT("a‘, ",B"). Then, reasoning in ACA0, every model of PA+a has an end extension to a
model of PA+fi. Let 0 be an arbitrary E1 formula (so, 0 may be of the form Prov("<p")).
In particular, every model of PA+oz+o has an end extension to a model of PA+fl. This end
extension is also a model of 0 simply because 21 formulas are preserved under end exten­
sions. So, IntT('oz+o‘, ",B+cr"). Montagna’s principle follows by the conservativity of ACAO
over PA.

A different principle holds for finitely axiomatized theories:

(P) Al>B—>Cl(AI>B).

This principle followsimmediately from the syntactical complexity that the formula IntT(1:, y)
has when T is finitely axiomatized. The formula Intr_r("<p‘,"z,b"')claims the existence of an
interpretation and the existence of a (single) proof in T+<p of the conjunction of all the
translated axioms of T+1,b. So, this principle follows from theorem 1.

Let ILM and ILP be the modal logic axiomatized by the axioms (1) to (8) plus (M)
and, respectively The inference rules are again modus ponens and necessitation. The
two main theorems of interpretability logic are the following generalizations of Solovay’s
Theorem.

Theorem 11 (Berarducci-Shavrukov) A modal formula A of the modal language .C(C],|>)is
a principle of interpretability logic of PA if?’it is derivable in ILM.

Theorem 12 (Visser) A modal formula A of the modal language £(El,I>) is a principle
of interpretability logic of a finitely axiomatized theory containing IAg+.S'UPEXP if?“it is
derivable in ILP.

These theorems are strengthened by the presence of a good semantics for these two
modal logics. The modal completeness theorems of De Jongh and Veltman prove that a
formula of the modal language .C(D,>) is provable in ILM (resp. ILP) iff it holds in every
finite model in a certain class (see below). So, again, it is decidable whether or not a given
modal formula is or is not a principle of interpretability logic. So, the combined proofs of
the modal and arithmetical completeness theorems provide us with a method that can be
used to produce, given a principle of interpretability logic, either a proof of it or an actual
counter example.

A Veltman frame consists of a set W of possible worlds, a transitive and conversely
well-founded relation R on W, a reflexive and transitive relation 5,” for every world we W
such that the following properties hold for every 212,v and v in W

1 if uSu,u, then wRu A wRv,

2 if wRuRv, then uS',,,v,

A Veltman model is a Veltman frame together with a forcing relation ll-. This is a
subset of P x W where P is the set of propositional letters of the modal language. The
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forcing relation is then extended in the usual way to all formulas of £(D, D). This extension
is the usual one for the propositional connectives and for the modal operator D. For the
modal operator Dthe recursive definition is as follows

w II—A D B ¢> \7’v(uRv A v |l- A => 3w(vS,,w A w Il—

We state precisely the modal completeness theorems mentioned above.

Theorem 13 (D. de Jongh and F. Veltman)

1. A modal formula of £(D,D) is provable in IL ijf it is true in all finite Veltman models.

2. A modalformula of £(D, D) is provable in ILM it is true in allfinite Veltman models
which enjoy the following property

M if uS,,,vRz, then uRz.

3. A modal formula of £(El, D) is provable in ILP if it is true in allfinite Veltman models
which enjoy the following property

P if :z:S,,,yRz then a:Ry.

Veltman’s semantics for interpretability logic is very natural but it seemed at first sight
not easy to prove an arithmetical completeness based on it. So, the (independent) proofs
of Berarducci and of Shavrukov were based on a different semantics: the so-called ‘Visser’s

simplified models’.

Visser simplified models are Veltman models where the relations S',,,are all a subset of a
global relation 5'. Precisely, a Veltman model is a Visser simplified model if there is a binary
relation S on W such that, for every we W, S", = {(u, v)€S : wRu /\ wRv}. The modal
completeness theorem holds also for Visser simplifies models. The toll to be paid for having
a global relation S is the failure of the finite model property. There are formulas which are
not derivable in ILM which have no finite Visser counter-model. Visser’s completeness proof
is based on De Jongh and Veltman’s. In fact, he constructs a bisimulation between Veltman
and Visser models.

2 H1-conservativity logic.

In this thesis we shall not consider the logic of H1 conservativity. But this subject is
so closely connected with interpretability logic that a few words are probably due here.

The following notion can be naturally formalized in the language of the arithmetic:
‘every H1 sentence provable in T is provable in 5'’. Principles of H1-conservativity logic are
formulas of the modal language £(CJ,D). The binary modal operator ADB is now interpreted
as T+B* is H1-conservative over T+A*. For all theories proving E1 induction ILM is the
provability logic of H1-conservativity. This was proved by Hajek and Montagna with a
proof based on Berarducci’s proof of the arithmetical completeness for interpretability logic.
Later the proof was simplified by Albert Visser (unpublished). For an elegant proof of this
theorem the reader is referred to a forthcoming review paper of Dick de Jongh and Georgi
Dzhaparidze There proof is based on (finite) Veltman models with the same Solovay
function that we use in Chapter 3 to reproduce the Berarducci-Shavrukov result.
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Albert Visser noted that the soundness of the principles of ILM holds also for weaker
theories than I 21 while the completeness proof seems to need 21 induction. The problem
seems at first sight somewhat technical but it is worth to take a closer look at it by it because
it could lead to the discovery of new principles for H1-conservativity logic of weaker theories.

The technical problem consists in the impossibility of proving in, e.g., PRA (i.e.,
I A0 plus the recursive equations for all primitive recursive functions) or I Ao+e:rp that
the Berarducci—Shavrukov(or the Dzhaparidze function) has a limit. It is noteworthy that
the weakness of the theories in this context is of a different nature than that studied in the
Part I of this thesis. In fact, the same difficulties would arise in theories which are strong
in the sense of their provably recursive functions, e.g., the theory axiomatized by the set of
the H2 consequences of PA (or any other sound r.e. set of H2 sentences).

The technical problem can be explained as follows. The relations Sw in the Veltman
model are, in general, not well-founded, therefore, if no 21 least number principle is available
in the theory, the function could loop forever taking S-jumps (see Chapter 3 of this thesis).
So, if new principles of H1-conservativity logic hold for weaker theories these are likely to
tell us something about sentences of the form A DB A B l>A.

For instance, a sound principle could be inspired by the following lemma.

Lemma 14 Let T and S be two theories aasiomatized by H2 axioms. If T and 5 have the
same II1 consequences then T+S is consistent and has no more II1 consequences than T or
S.

Proof. Assume that T and 5 have the same II1 consequences. Model-theoretically this
means that every model of T has a E0-equivalent extension to a model of S and vice versa.
It suffices to prove that every model of T has a 2o—elementaryextension to a model of T+S'.
Choose an arbitrary model Mo of T. There is a E0-chain

Mo -<2, M1 <30 M2 <20

such that all the M2,-’sare models of T and the M2,-+1’sare models of .5’.Consider the union
of the chain N. Clearly, N coincides with the union of the sub-chain {M2,-},-Eu,and with the
union of the sub-chain {M2,-+1},-e,,,.Since II2 theories are preserved under 20-chains, N is a
model both of S and T. I

The formalization of this theorem in PRA would lead to new principles for the H1­
conservativity logic of this theory (recall that (AI>B)*is a H2 sentence). Unfortunately, such
a formalization seems non-trivial. In general, model—theoreticalarguments are formalizable
in theories which are at least strong enough to prove E1 induction. To the best of our
knowledge not much is known about model theory inside PRA. In our opinion, this subject
deserves attention for its own sake.

3 Diagonalizable algebras

Recently, Volodya Shavrukov pioneered the study of subalgebras of diagonalizable al­
gebras of theories of arithmetic. He almost completely classified them. His results hold for
every theory containing I 21. Experience shows that results involving only the formalized
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notion of provability are valid for all theories containing I Ao+ exp (more precisely, theories
which prove the formalized Z31completeness principle). This seems to be a sort of “physical
boundary” for the field. So, it is natural to ask whether Shavrukov’s result makes us face a
new physical boundary or whether we can surmount the limit using some technical improve­
ment. Actually, the technical improvements needed are provided in Chapter 4. There we
show that all the results of Shavrukov hold for theories containing I Ao+ exp.

We refer the readers to [7]for anything they might want to know about diagonalizable
algebras.
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Chapter 3. On the proofs of arithmetical completeness

for interpretability logic.

Abstract

Visser proved that ILP is the interpretability logic of any finitely axiomatizable theory
containing IAo+SUPEXP. Berarducci and Shavrukov that ILM is the interpretability
logic of PA. All these proof are not based directly on the natural semantics of
interpretability logic (i.e. Veltman models). We give simpler alternative proofs of the
arithmetical completeness of ILP and ILM directly based on finite Veltman models.
We will provide a general set up for arithmetical completeness proofs of
interpretability logic which is in the style of Solovay's arithmetical completeness proof
of provability logic.

0. Introduction.

Visser [7] introduced the binary modal logic IL (interpretability logic) and its extensions
ILM (interpretability logic with Montagna's axiom) and ILP (interpretability logic with a persistent
relation in its models) to describe the interpretability logic of PA and the interpretability logic of
any sufficiently strong theory T which is finitely axiomatizable and 2] sound. The modal
completeness of IL, ILP and ILM was provided by de Jongh and Veltman [3] using so called
Veltman models. These are a very natural generalization of Kripke models. Visser [8] obtained
the arithmetical completeness for ILP and more recently, Berarducci [1] and Shavrukov [5] have
shown ILM to be complete for arithmetical interpretation over PA . All these proofs of
arithmetical completeness do not directly use the Veltman models. Using a bisimulation Visser [8]
showed ILP to be modal complete with respect to his so called Friedman models and then used
these to prove arithmetical completeness. Berarducci and Shavrukov also used a bisimulation due
to Visser [7] showing that ILM is modal complete with respect to the so called simplified models
to prove arithmetical completeness. The use of simplified models in proving arithmetical
completeness for ILM adds an additional complication due to the fact that in general these cannot
be taken to be finite.

Our aim is to provide simpler and more natural proofs of arithmetical completeness for ILP
and ILM . For both we shall use the original Veltman models. As all proofs of arithmetical
completeness known so far, ours are based on the ideas exposed in the pioneering work of
Solovay [6] and made explicit in [4].

Ths paper is organized as follows: in the next section we recall the axioms of ILM and ILP
and the corresponding classes of Veltman frames. We shall not give any details. We refer the
reader to the literature (see e.g. [7], [3] and [I]) both for details and comments as well as for the
proofs of soundness of the axioms. In section 2 we present a general technique inspired by
Solovay 's work to obtain arithmetical completeness for theories containing IL, provided that we
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already have modal completeness w.r.t. a certain class of finite frames. The preparatory work of
section 2 is used in the last two sections for the two arithmetical completeness proofs.

I would like to thank Albert Visser for correcting and simplifying some of my arguments,
Dick de Jongh and Rineke Verbrugge for their continuous and patient help.

1. Interpretability logics.

The language of the logic of interpretability contains (atomic) propositional letters p0,pl,...,
logical connectives -9, fl and a binary modal operator - l> -. All other connectives, as A ,V and
<—>are defined in the usual way. We use J. for falsum and T for true. The unary modal operator
El- is defined as - l> J.. The axiom of IL are:

(L0) All tautologies of the propositional calculus.
(L1) El(A—>B)—->(DA-—>DB).

(L2) ElA—>DUA.
(L3) U(ClA—>A)—>ElA.
(J1) EJ(A—>B)—>Al>B.
(J2) (ADB/\Bl>C)—>Al>C.
(J3) Al> B—>(<>A—><>B).
(M) OADA

The deduction rules of IL are modus ponens and necessitation The following two other axioms are
the characteristic axioms of ILP and ILM.

(P) A|>B—>E|(Al>B).
(M) AI>B—>(A/\ElCl>BAElC).

A Veltman frame is a triple <W,S,R> where W is a set called universe , R and S are
respectively a binary and a ternary relation on W. The elements of W are called nodes . We shall
write xRy for <x,y>e R and ySxz for <x,y,z>e S. It is further required that R is transitive and
conversely well founded and that for every xe W, Sx is a reflexive and transitive relation on
{y I xRy} (2W. Moreover for every x,y,ze W, xRyRz implies ySxz.

A Veltman model is a Veltman frame together with aforcing relation ||- between elements
of W and the formulas of IL commuting with the logical connectives and satisfying the following:

x|l- CIA iff Vy (xRy=> y||- A),
x|F Al> B iff Vy [(xRy & y|l- A)=> (32 ySxz & z||- B)].

As usual we shall improperly use the same letter W both for the model, the frame and the
underlying universe. If W is a frame we write W|= A iff for all forcing relations on W and all
nodes of W, x|l- A.

We shall consider two other possible properties of Veltman frames:
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P: If xSwy then xSzy for every 2 such that wRzRx.
M: If xSwyRz then xRz.

We call W a P-Veltman model (resp. M-Veltman model ) if the underlying frame satisfies P

(resp. M).
The modal completeness of IL, ILP and ILM has been proved by de Jongh and Veltman.

In particular, they proved the following three theorems:

(1) ILl- A iff for every finite Veltman frame W, Wl=A.
(2) H.Pl- A iff for every finite P-Veltman frame W, Wl=A.
(3) ILM |- A iff for every finite M-Veltman frame W, Wl=A.

2.A Solovay style strategy.

We want to find a general strategy for proving the arithmetical completeness of the
interpretability logic for various arithmetical theories. Let T be a theory in the language of the
arithmetic which is 21 sound and 21 complete and enough strong to formalize syntax. Given two
arithmetical sentences 0t and B we shall write oLl>B to mean the arithmetical formalization of the
statement: "T+a interprets T+fi" . It will be always clear from the context to which theory T we
refer. We will use Latin letters for modal formulas and Greek letters for arithmetical formulas so

that no confusion will arise from the fact that we are using the same symbols D and Cl both for
the modal and for the arithmetical operators.

An interpretation is a mapping 1 from modal formulas to sentences of the language of the
arithmetic such that:

(1) t(A->B)=t(A)->1(B)
(2) t(“A)= "t(A)
(3) 1(A|>B)=1(A)D1(B)

Let us write IL(T) for the set of modal formulas which are provable in T for every interpretation 1,
i.e. IL(T)={A IV1 Tl-t(A)}. Let ILX be a modal theory in the language of IL containing IL.
We say that ILX is arithmetically sound for T if for every modal formula A if ILX|- A, then for
every interpretation 1,TI- t(A), i.e. if IL(T)? EX. We say that ILX is arithmetically complete
for T if the reverse inclusion also holds, i.e. whenever A is not a theorem of ILX then there is an

interpretation 1such that 1(A) is not provable in T.

Claim. Let us suppose there is a class of finite Veltman frames X with respect to which we have
modal completeness for the theory ILX. Let us suppose also that IL(T)i_3IL. If for any frame
We X, there is a set {XxI xe W} of arithmetical sentences such that if (o)-(iv) below are satisfied,
then IL(T)§ILX.
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(o) for every x,ye W if x¢y then T |- '1(Kx AKy)
(i) for every xe W, T+Kx is consistent.

(ii) for every xe W, T|- Kx—>C|\/xRy Ky.

(iii) for every x,y,ze W such that ySxz, T l- Kx—>KyD K;

(iv) for every x,ye W such that xRy, T|- Kx—>7 (KyD fl Vysxz Kz)

Proof of the claim. We assume ILXJ‘C and define an interpretation 1 such that T,l‘1(C). By
the modal completeness there is a finite model W with frame in X such that W)5 C. Let {KxI

xe W] be a set of arithmetical sentences satisfying conditions (o)—(iv). Let 1 the interpretation
which maps the atomic proposition p occurring in C to 1(p):=\/{Kx Ix||- p}. We shall show by
induction on the complexity of the modal formula A that for every xe W:

(a) X"‘A => Tl-Kx->1(A)
(b) xl-FA => Tl-Kx-> 7t(A).

This will suffice to prove the arithmetical completeness, because if WJ5C then for some forcing
relation on W and some xe W, xll‘ C, from which then by (b), T|- Kx—>‘It(C). By (i), Kx is
consistent with T, as is therefore ‘It(C). Hence T,l‘t(C).

It remains only to prove (a) and (b) by induction on the complexity of the formula A. By
condition (0) it is clear that (a) and (b) hold for atomic sentences. The inductive step for —>and
‘I are straightforward, so let us consider just the inductive steps for D .

Let us prove first (a). Assume x|l- A D B. Then for every y such that xRy, if y||- A, there is
a node 2 such that ySxz||- B. By the induction hypothesis we can write: for every y such that xRy,
if y||- A, there is a node z such that ySxz and TI- Kz—>1(B). Using (iii) and Z1 completeness and

the soundness of IL (i.e. making a few deductions in IL) we get Tl- Kx-9 /\ xRyu—A (Ky|>l(B))

and finally T|- Kx—->(\/xRy". A Kyp t(B)) . On the other hand, by (ii) and using the induction
hypothesis (b) we obtain T|- 1(A) -> fl V yuzA Ky, from which, since we assumed
Tl- Kx—>D\/xRy Ky, we get T|- Kx—>El(t(A)—>\/xRy“. A Ky). Again by the soundness of IL,

T|- Kx-> 1(A)D \/xRy". A Ky.Thus the proof of (a) follows.
We prove now (b). Assume xll"-AD B. Then there is a y such that xRy and y||- A and for

every node 2 such that ySxz, zll‘ B. Thus, for some y such that xRy we have: y||- A

A /\ ys xz z ll‘ B. By the inductive hypotheses we have Tl- Ky -> t( A)
and Tl- VysxzKz—> ‘1 1(B). By 21 completeness we have T|- El [Ky-—>1(A)] and
TI- El [t(B)—>‘I Vy5xzKz], from which by the soundness of IL we get T|- KyD l(A) and
TI- 1(B)D ‘1Vy3xzKz. Reason in T and assume Kx. Assume for a contradiction that
t(A) D 1(B). By the soundness of IL we would have KyD fivysxz Kz, so from (iv) we obtain
the desired contradiction. This completes the proof of the claim.

We conclude this section by remarking that conditions (o)-(iv) are not in general necessary;
we believe that with a little additional work one can obtain more general, sufficient and necessary,

conditions as is done in [2] for the case of provability logic.
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3. The interpretability logic of finitely axiomatizable theories.

In this section T can be any finitely axiomatizable 2] sound theory extending
IAo+SUPEXP. The main property which distinguishes interpretability over these theories is that
the interpretability predicate in T is 21 from which the soundness of the modal axiom P follows
immediately. In T it is possible to characterize interpretability as follows. Let Agxp be tableaux
provability in IAo+EXP, A tableaux provably in T and V=‘1A ‘I , i.e. the tableaux consistency in
T. According to the Friedman-Visser characterization [8], oninterprets [3iff AExp(V0t—>VB).

We want to prove that IL(T)=ILP. We leave, as usual, the proof of soundness to the reader
and we shall prove only IL(T)Q ILP. We shall find sentences (0)-(iv) as in the previous section.
The method is as in Solovay [6]. We define a function F using the fixed point theorem and let the
XXbe some limit statements concerning F.

Assume for convenience W has been given as a finite set of non zero natural numbers. We
shall use the symbols x,y and z only for elements of W. Let Xxbe the sentence limnF(n)=x and
7\0:=VnF(n)=O. Together with the function F we will define also an auxiliary function G which
will aid us in book keeping. The function G will always "follow" the function F, i.e. if for some
n, F(n)=x then G(n)=F(m) for some msn. Speaking informally, G(n);tF(n) will warn us of the

fact that there is no proof of code less then n of fl lp(n). This has to be considered as a
"dangerous signal" since we would like in the end to have Xx-> El ‘Ilx. When such a situation
occurs then only "safe" moves are allowed, i.e. F as well as G will move only to a node y for

which there is a proof of ‘lky.

The definition of F and G is the following:

(a) F(O)=G(0)=O. If F(n)=O and for some xe W, n witnesses A 7 7Lx,then F(n+1)=G(n+1)=x.

(b) If F(n)=G(n)=xe W and for some node y such that xRy, n witnesses

AExp(V>.,-> V wv,_.,x,x,), then F(n+1)=y and G(n+1)=G(n).
(c) If F(n)=y and G(n)=x, for some 2, ySxz and n witnesses A ‘Ill, then F(n+l)=G(n+1)=z.
(d) In all other cases F(n+1)=F(n) and G(n+1)=G(n).

Let ux be the sentence limn G(n)=x. We shall eventually prove that the two functions have
the same limit, i.e. ux<-—>Xx, but for proving this we need the cut elimination theorem. The
formalization of the cut elimination theorem is provable in T since T contains SUPEXP but is
surely not provable in EXP. To carry on with our proof we need to know what IA0+EXP proves
about the functions F and G, hence the following:

Lemma 1. IA0+EXP proves the following:

For every we W, uw -—>AVWRX Xx.

For every w,xe W, if x¢w then uw A Xx —>Avxswy Ky.
For every w,ye W if wRy then uw/\ kw —->Vky.
For every x,y,we W, if xSwy then pw/\ Ax —>Vky.1I>'u.>'toZ_.



62 INTERPRE TABILITY LOGIC

Proof. Directly from the definition of F, IAo+EXPproves that if, for some n, G(n)=w then after
stage n the function F remains either in w or in the upper cone above w. Thus the limit of F is
either w or is some node above w. If G(n)=w then by provable Z1 completeness, AExp(G(n)=w)
and a fortiori A(G(n)=w). The proof of (.1) follows by combining all this with the fact that
G(n)=w implies A 'IKw. To prove (.2) assume that for some x¢w we have uw/\ Kx.Then for
some n A Exp(G(I'l)=W/\F(n)=x). Again, using the definition of the functions F and G, it is easy
to argue that whenever G(n)=w/\ F(n)=x for some w¢x, the function F never leaves the set of
nodes which are in SWrelation with x. This gives (.2). To prove (.3) assume wRy, Kwand uw

and let n be such that for all m>n, F(m)=G(m)=w. If fl Kywhere cut free provable, then some
m>n would witness A ‘I Ky. (Here and in the following, it is assumed that a cut free provable

theorem has infinitely many cut free proofs.) So A5xp(VKy—>V ‘IVysxZKz) and then at stage
m+1, F would move to y, against our assumption that at stage n F has already reached is limit.
To prove (.4) assume Kx,my and xSwy. Then wRy, and therefore warty.Let n be such that for all

m>n, F(m)=x and G(m)=w. Suppose, by contradiction, that A ‘IKy. Let m>n a witness of
A fiKy. Then at stage m+1 both F and G move to y, by condition (c). This contradicts our
assumption that at stage n G has already reached its limit. (Note that clearly y¢w since xSwy and
then wRy.)

For the following lemma we need that the formula (Va/\ ot[> B)-—>VB) is provable in T.
It is easy to check that T (or even IAo+EXP) proves (Oct/\ OLDB)—>OB), and since in T the
formalization of the cut elimination theorem is provable, we can substitute tableaux consistency
with normal consistency, so also the former formula is derivable in T. We can prove the
following:

Lemma 2. For every xe W, T|- ux <—>Kx.
Proof. Reason in T and assume for a contradiction that Kx/\ fl 1.1,.Then for some wRx we have
p.w. This implies VKX,for otherwise the function G would have jump to x. Since x¢w the last

move of the function F has been from w to x using condition (b) and therefore KxD '1\/XS y Ky.
By the remark above we get immediately fiA\/xswy Ky. From lemma 1.2 we get also A xswy
Ky. Thus we have the desired contradiction.

Lemma 3. For every x,y,ze W such that ySxz, Tl- Kx-> KyI> K2.
Proof. Reason in T and assume Kx.We want to show that for every y,z such that ySxz, Ky[> Kz,

i.e. A5xp(VKy —>VKZ). By lemma 2 we have |J.xand by provable E1 completeness we have that

for some k, AExp(G(k)=X). Reason in IA0+EXP. Assume VKy and let w be the limit of the
function G. Since G(k)=x, the limit w is either x or is above x. By lemma 1.1, from VKy we
know that w has to be strictly below y. Thus either x=wRy or xRwRy and, by the characteristic
property of the P-Veltman frames, from ySxz we get ySwz. Let u be the limit of F. If u=w from
wRz and lemma 1.3 the lemma follows immediately. Otherwise by lemma 1.2 and VKy one has
uSwy. By the transitivity of SWwe obtain uSwz and thus finally, by lemma 1.4, VKZ.

Lemma 4. For every xe W, Tl- Kx—>AV xRyKy
Proof. Immediate by lemmas 1.1 and 2.
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We can now easily check that the set of sentences {XxI xe W} satisfies (o)-(iv). In fact (0)

is trivial, the proof of (i) is completely standard, (ii) derives from lemma 4 and the provability in
T of the cut elimination theorem. Condition (iii) is lemma 3 and (iv) is obvious by the definition of

F and lemma 2. This concludes the proof of the completeness theorem.

4. The interpretability logic of PA.

In this section we want to prove that IL(PA)=ILM. The main characteristic of the
interpretability in Peano arithmetic is the Orey-Hajek characterization: let ClkB be the for­
malization of the sentence "there is a proof of [3which uses only the first k axioms of PA" , let
Oks *1Clkfi , then it is provable in PA that ot interprets [3iff VkE|(0t-> <>kB). Another
characteristic property of PA is that it proves full reflection for any of its finite subtheories, more­
over this is formalizable in PA, namely: for every ot, PAl- VkCl(Elkot—>ot). These facts would
be sufficient to carry out the following proof, but for sake of better readability we shall, following
Berarducci, work in ACA0 rather then in PA. The second order theory ACAOis a conservative
extension of PA; in ACA0 we can speak of models of PA and easy theorems of basic model
theory are formalizable and provable in ACA0. In particular in ACA0 we have the following
characterization of the interpretability over PA: "PA+ot interprets PA+fi if)‘every model of PA+0t
has an end extension to a model of PA+/3”. In ACAOthe standard model is the set {x Ix=x} with

the obvious choice of operations, any other non-standard model has an initial segment which is
isomorphic to it. Numbers belonging to this initial segment are called as usual standard numbers .
Full reflection translates in ACA0 in the following manner: ’for every model Yof PA and every
standard number k, Yl= Clkot-> on".

As in the previous section we shall prove only that IL(PA)§ ILM, leaving the converse to
the reader. The sentences which are meant to satisfy (o)-(iv) are defined as limits of a recursive
function F exactly as in the previous proof . Define, as in [1] for every xe W, rank(x,n):="the
minimal k such that there is a witness Sn of Elk‘I7tx" . If k is a number, x,ye W, xRy then we

define the sentence (1x_y(l()as ‘v’j2k[F(j)=xV F(j)=y]. Our definition of the function F resembles
Berarducci's as far as it is concerned with the S—jumpsbut it differs in the R-jumps. Roughly
speaking we allow the function F to make an R—jumpif there is a proof that this will not be the
last move. We assume for convenience that W has been coded as a finite set of non zero natural

numbers, we shall use the symbols w,x,y,...etc. only for elements of W.

(a) Let F(O)=Oand if F(n)=O and for some xe W, n witnesses Cl‘Ikx, then F(n+1)=x.

(b) If F(n)=x and for some ye W and some k<n such that Vje [k,n] F(j)=x and xRy, n witnesses

El ‘1otx,y(k) (k is the numeral of k), then F(n+1)=y.
(c) If F(n)=x and for some nodes y and z, xSzy and Elisn[rank(y,n)Si<rank(x,n)A F(i)=z], then
F(n+1)=y. (If this condition obtains for two different nodes, choose the one with minimal code.)
(d) In all the other cases F(n+1)=F(n).

Note that any two points in the orbit of F are connected by an S-and/or R—arrow.We shall
write Yl= ...x...y if, according to the model Y the function F goes from x to y (possibly in a non­
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standard number of steps). We write Yl= ...xRy... (resp. Yl= ...xSzy...) if, in the model Y, F

moves in one step from x to y and xRy (resp. xSzy). If in a model Y the function F moves at stage
n from x to y, then we say F moves with an R-step (resp. with S-step) if at stage n condition (b)

(resp. condition (c)) has been applied. If, at stage n, F moves from Oto some node x, we say that
F moves with an (a)-step.

Lemma 1. In PA it is provable that the function F has a limit.
Proof. This is not obvious since the S-relations are in general not well founded. It is clear that if
h is the height of the frame the function cannot make more than h consecutive R-moves. By the
property M of the M-frame F cannot make more than h R—moves,whether they are consecutive or
not. Thus eventually F is allowed only to make S-moves. If S would not have a limit we could
construct a definable infinite decreasing sequence of ranks. This is provably false in PA.

We are eventually going to prove Kx-—>El fl Kx, but to achieve this goal we need to prove
first a weaker form of it.

Lemma 2. For every xe W and for every ke co,PAl- F(k)=x-—>ElElj>k F(j)¢x.
Proof. Assume F(k)=x. Reasoning in ACAg we claim that for every model Y of PA,
Yl=3j>k F(j)¢x. If F moved to x with an (a)-step or with an S-step we would have C]‘IKXand
then Yl= ‘IKXso our claim would hold trivially. So, assume that the last move of F has been an
R-step, and that say at stage h, the function F moves from z to x. Then for some i<h such that

Vje [i,h] F(j)=z, h codes a proof of _‘U.z_x(i).So, Yl= Eljzi [F(j)¢z/\ F(j)¢x]. We have assumed
Vje [i,k] [F(j)=zVF(x)], this is a 21 statement so, by provable 21 completeness, it is true also in
Y. Thus Yl=3j>k F(j)¢x and our claim is proved.

Lemma 3. For every xe W, PAl- Kx-—>El\/xRy Ky.
Proof. It is sufficient to prove that for every x and y, if fixRy then PA|- Kx—>Cl‘|Ky. Reason
in ACAOand assume for a contradiction that Kx,<>Kyand fixRy. Choose k such that F(k)=x and

let Y be a model of Ky.By provable 211completeness we have that Yl=F(k)=x. Now, in Y, let z
be the last node that the function passes through before arriving to y. The last step must be an
S-step otherwise zRy and by the M property of the M-Veltman frames we would have xRy. We
shall picture the situation as Yl= ...x...zSwy. (We recall that either z or y might be equal to x, the
previous lemma guarantees only that after stage k the function has moved at least once.) We
assumed '7 xRy thus, since zSwy implies wRy, we have that w¢x. By the definition of F we have
that at some stage n, for some isn, rank(y,n)Si<rank(z,n) and F(i)=w. By the reflection principle
rank(y,n) has to be non-standard in Y, and since we have chosen k standard, rank(y,n)2k. Thus
also i2k and so Yl= ...F(k)....F(i) and therefore Yl= ...x...w...zSwy. By the M property of the
M-Veltman frames from wRy we get xRy. Contradiction.

Lemma 4. For every x,y,ze W such that ySxz, PA|- Kx-—>Kyl> Kz.
Proof. Assume Kxand ySxz. We shall prove in ACAOthat, for arbitrary large k, in any model

Y of PA, Ky—>Ck Kz. Let k be such that F(k)=x. Suppose for a contradiction that there exists a
model Yl= Ky/\ Elk-1 Kz.Then for n large enough we have Yl=rank(z,n)Sk<n. Suppose n is also
large enough so that (in Y) F has already reached its limit. By the reflection principle rank(y,n)
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must be non-standard in Y. Then Y|= rank(z,n)Sk<rank(y,n)/\ F(k)=x. So, Y|=F(n+l)=z which
contradicts the fact that F has already reached its limit.

Lemma 5. for every x,ye W such that xRy, PAl- Xx-—>‘1(?ty[> fivysxz 7L2).

Proof. Reason in ACA0 and assume Xx.To prove fl (Ky[> ‘lvysxz K2)it will suffice to find a

model Y of Ky which has no end extension to a model of '1 Vysxz kl. Let fix k such that
Vjzk F(j)=x, since xRy we have: (>0Lx,y(k)otherwise the function would jump from x to y
contradicting Xx.Then we can choose our model Y such that Y|= Vj>k[F(j)=x VF(j)=y]; since we

have assumed Xxand therefore (by lemma 3) Y|= "Ikx, we can conclude that Y|= Ky. Let Z be any
end extension of such a model Y and let z such that Z|= K2. The proof is complete if we can show
that ySxz. Let n be the minimal number in Z such that such that Z|= F(n+l)=z. By provable E;
completeness and the fact that 21 formulas are conserved by end extensions, we have
Z |= ...xRy.....z. Let w be the last node reached with an R-step i.e. for some u,
Z|= ...xRy...uRw...z and between w and z only S-steps occur. Then the rank of all the steps
between w and z is larger than rank(z,n). By the reflection principle rank(z,n) is a non-standard
number in Z. If all the steps between w and z are Sx-steps, we are done, otherwise let St be the
last non Sx-step between w and z i.e. Zl= ...xRy...uRw...Stv Sx....Sxz. Let i2rank(z,n), be such
that F(i)=t. Since rank(z,n) is non-standard in Z, t cannot occur in the orbit of F before x, so
either t=y or Z|= ...xRy...t...S,vSx....Sxz. In both cases one can conclude that yRv and hence
ySxz.

We can now easily check that the set of sentences {XxIxe W} satisfies (o)-(iv). In Fact
(0) is trivial, the proof of (i) is completely standard, (ii) is lemma 3, (iii) is lemma 4 and (iv) is
lemma 5. This concludes the proof of the completeness theorem.
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Chapter 4. Shavrukov's theorem on the subalgebras of

diagonalizable algebras for theories

containing IAO+exp.

Abstract.

Recently Volodya Shavrukov [1] pioneered the study of subalgebras of diagonalizable
algebras of theories of arithmetic. We show that his results extend to weaker theories
(namely to theories containing IA0+exp).

0. Introduction.

A diagonalizable algebra [2,3,4,5,6] is a Boolean algebra (Q),—>,J.) with an additional
operator C]which satisfies the axioms:

Vx,y El(x—>y)—>(E]x—>l'_'ly)=T, Vx El(Clx—>x)—>Elx=T, CIT =T.

Let T be a sufficiently strong axiomatized theory in the language of arithmetic. The
predicate of provability of T generates in a natural way an operator on the Lindenbaum algebra of
T. The resulting diagonalizable algebra Dr is called the diagonalizable algebra of T. The
subalgebras of QT have been studied in [1], in particular the general problem of when a
diagonalizable algebra Dis embeddable in (Drhas been considered there. We intend to present a
modification of Shavrukov's construction that allows us to prove these results for a wider class of
theories (all those containing IAo+exp).

We will translate questions about subalgebras into problems of provability logic. For this
we need some notation. Let L be the set of modal formulas generated by the language
(—>,D,J.,{pi}ie 0,). We write B|= A if A can be derived using modus ponens and necessitation
from the formula B and L6b's axioms (hence |=A means that A is a theorem of L6b's logic and
Bl= A means |=ElB—>A, where BB is BAEIB), we write BII-A iff l=B—>A. When $71is a set of

modal formulas in the language L we write /‘?l|=A and /‘7l|I-A if for some conjunction B of

formulas in }’l,B|= A, resp. B|I-A. Given a set /'71,consider the equivalence relation on L: A =,qB

iff /’?li=A<—>B, and let L/ fllbe the sets of =,q-equivalence classes. The operator which maps the

equivalence class of A to that of CIAis a well defined operator on L/ 54which turns it into a
diagonalizable algebra. For every (denumerable) diagonalizable algebra 1) there is a set fll such
that Q)is isomorphic to L/ JZL

Let T be an axiomatized theory in the language of the arithmetic and let Thm(.) be the
provability predicate of T. A T-interpretation is a map 1 which maps formulas of Lto sentences
of the language of arithmetic such that T proves:
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(i) t(DA)<->Thrn["t(A)‘]; (ii) "'t(i); (iii) t(A->B)<-+ (t(A)—>1(B)).

(In the following we shall simply say an interpretation since the theory T will be fixed.) If for

every formula A in L, }’ll=A iff Tl- 1(A) we say that 1 interprets /'71in T. We say that Fl is

interpretable in T if there exists an interpretation which interprets flin T.
Given an interpretation of fllin T one can construct in a natural way an embedding of L/ 54

in Dr and vice versa: from an embedding one can easily construct an interpretation. So, for any

given theory T, the problem of classifying the subalgebras of Dr reduces to classifying the sets of
modal formulas 571which are interpretable in T.

We write as usual [301 for I and El"*‘J. for ElEl"J.; the minimal n such that ,’?ll=D"J. is

called the height of 571.If such an n does not exist, we say that /'71has infinite height . We say that

571has the strong disjunction property (s.d.p.) or, equivalently, that 571is strongly disjunctive
(s.d.) iff fll is consistent and for all formulas A and B if /‘7ll=ElAvI'_'lBthen }’lI=A or fllt= B. The

same classification is, mutatis mutandis, applied to diagonalizable algebras. In the following T
will be a fixed axiomatized theory (i.e. the theory is given along with a Kalmar elementary
axiomatization of it). The language of T contains the language of arithmetic and -only for the sake
of convenience- a symbol for exponentiation. Thm(.) is the provability predicate of T. We write
Thm°(J.) for the sentence O¢0 and Thm”*'(i) for Thm(Thm"(J.)) (in the following we shall
always omit the Godel-number symbols ' " ). The minimal n such that Tl-Thm"(J.) is called the
height of T. If such an n does not exist we say that T has infinite height . The height of T is in
fact the height of its diagonalizable algebra Dr. If all 21-sentences provable in T are true in the
standard model, then T is E1-sound , otherwise T is E;-ill . Shavrukov proved that every r.e.
set of modal formulas is interpretable in the diagonalizable algebra of every (sufficiently strong)
21-ill theory provided it has the same height as the theory. Moreover an r.e. set of modal
formulas is interpretable in the diagonalizable algebra of every (sufficiently strong) Z1-sound
theory if and only if it is s.d.. Recall that the Godel numbering of arithmetical sentences gives a
natural recursive enumeration of a set Fl such that [/54 is isomorphic to Q);-.So, an interesting
consequence is that diagonalizable algebras of 21-sound theories are mutually embeddable. The
same holds for 21-ill theories of any fixed height.

The results mentioned above have been proved in [1] for theories which contain
221-induction. In fact, the construction makes use of a Solovay function which ranges over a
Kripke model. In the case of infinite height theories the models used have nonstandard height so
21-induction is needed to guarantee the existence of the limit. In section 2 we show in Theorem 1
and 2 that the use of E1-induction is inessential and the result is valid for all theories containing
IA0+exp. (Actually Theorems 1 and 2 only consider theories of infinite height. In fact, in the
case of finite height the proof in [1] goes through for IA0+exp with minor modifications. )

For Z1-ill theories a stronger result holds. In [1] it has been proved that a diagonalizable
algebra is embeddable in the diagonalizable algebra of a 21-ill theory provided it has the same
height as the theory. Also this theorem holds for weaker theories then those considered in [1].
We shall not give a proof of this fact since it is easily derivable from Shavrukov's as follows. To
embed D in the diagonalizable algebra of some "weak" theory T, first apply the result of [1] to
embed Q)in the diagonalizable algebra of some sufficiently "strong" theory T*. Finally embed
Dr. in Dr. Composing the two embeddings one obtains the desired subalgebra.
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I wish to thank Volodya Shavrukov for numerous suggestions and corrections. I owe very
much also to the stimulating criticisms and friendly encouragements of Lev Beklemishev.
Comments of Dick de Jongh and Alessandro Berarducci have helped to make this paper more
readable.

1. A lemma.

In this section we prove a lemma which will be used to characterize the r.e. sets of modal
formulas interpretable in a theory TQIA0+exp. We assume the reader to be familiar with the
techniques introduced in [7].

A finite tree-like Kripke model k (in the sequel simply a model ) is a triple (W,R,Il-) where
(W,R) is a finite tree with nodes we W strictly ordered by the relation R and Il—is a finite subset of

Wx (0. We call W the universe of k and (W,R) the frame of k . We write wII-pi if (w,i)e II-. The
relation wll-A (wforces A) is then extended to all the formulas of L in the usual way. We say
that k'=(W',R',|I-' ) is a generated submodel (in the sequel simply a submodel ) of k=(W,R,|l-) if
the universe of k’ is W'={w} U {u I wRu} for some node w of k, R‘ and Il-' are the restrictions of

R and II-. We write k|l-A (kforces A ) iff the formula A is forced at the root of the model coded
by k, we write kI=A (k is a model of A ) if every node of k forces A. Then we have that k is a

model of A iff k forces EIA. If E is a finite set of formulas we write kII-E (resp. kl=E) if for
every Ae E, kll-A (resp. kI=A). Then it easy to check that, if E is finite, then E|= A iff every
model of E is a model of A, and E|I- A iff every model which forces E forces A (if E is infinite
this may not be the case since we will deal only with finite models).

In a first-order formula an occurrence of a quantifier is said to be bounded if it is of the form
Vx<t or Elx<t where t is a term of the language of T. The A0-formulas of T are the formulas
provably equivalent to formulas with only bounded quantifiers (having assumed exponentiation as
a primitive function of the language we should properly write Ao(exp) but in the present paper
there will be no risk of confusion). The 21-formulas are those equivalent to a A0-formula
preceded by an existential quantifier. The theory whose axioms are those of Robinson arithmetic
plus the characteristic axioms for exponentiation and the induction schema for A0-formulas is
called IA0+exp; the theory which contains also the schema of 21—inductionis called 121.We refer
the reader to [8] for more details on these theories.

We fix a natural coding of modal formulas and of models in arithmetic; we shall use the
same symbol both for a formula (resp. model) and its code. We require that the coding assigns to
proper submodels of k a smaller code than to k itself. Having exponentiation as a primitive
function, we may require without loss of generality that kll-A and k|=A translate into A0—formulas.

We also use in the following that the completeness theorem of L6b's logic with respect to (finite)
models is formalizable in IAo+exp. Given an r.e. set E of modal formulas we may find,
formalizing in the language of arithmetic the algorithm enumerating E, a A0—formula"Ae E,x"
(here A and x are the free variables of the formula) such that for every A6 L, Ae E iff Ene 0),

TI- Ae E_n. We also require that (provably in T) if Ae E,x then A<x i.e., the code of A is less
then x. We call such a formula a description of E (in T). We may formalize in T also the notion

of L6b's derivability so that we can use the expression E,,,l=A both when arguing in the real
world and in the theory. Formalizing the proof of the completeness theorem for L6b's logic in
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IAo+exp one can find a A0-formula describing the relation /‘7l,nl=A. We shall also use the

expression "/‘7ll=A" when reasoning in T; this stands for Elx(/‘7l,xl=A).

Once we fix a description of 54, it makes perfect sense to say "T proves that /'71is s.d. " .

This simply means:

TI- -I(5r‘u=J.)/\\7’A,B (:2u= ElAvlIlB)—> (flr= A v ;?n= B).

Obviously, an r.e. set of formulas Fl may have different descriptions and for one
description the theory T may prove that 571is s.d. while for another description it may not. Note
also that possibly the "opinion" of T about fllmay be incorrect. In fact, when T is 21-ill, there are
descriptions of J?!which do not satisfy: A6 571iff TI—Elx(Ae }’l_x).So, it may happen that T proves
/'4is s.d. while this fails to reflect real life. We essentially use this fact in the next section; for the

moment we keep the description fixed and assume T proves that /'71is s.d..

Lemma 1. Let T be an axiomatized theory of infinite height containing IA0-t-expand 571an r.e. set

of modal formulas. If there is a description of ii in T such that T proves that 54is s.d. then Fl is
interpretable in T.

Proof. Let T be an axiomatized theory and "Ae film" be a description of an r.e. set of modal
formulas as in the hypothesis of the lemma. We shall define a Solovay function h(n) whose value

is either 0 or the code of a model of }7l_mfor some msn. We agree that Oll-A is some fixed
provably false sentence (e.g. O¢O),so the expression h(n)Il-A will always have a meaning. The
Solovay function is defined, simultaneously with the formulas M)and 1,9,,by an arithmetical fixed
point. The definition is the following.

Let K0be the sentence Vn h(n)=O.We order the modal formulas by increasing code and let A; be
the i-th formula in this order (this enumeration of formulas is redundant, since here formulas are
actually codes, but we introduce it for better readability). For every i and every string 66 2i
define a formula:

A5 :=/\ {AnIn<i and o(n)=1}/\/\{ fiAn |n<i and o(n)=0}.

The formula XA(with free variable A) is:

7% := Eloe 2i+‘[o(i)=1Aa°°n h(n)ll- Ag AVTE 2i+' (1:<o—>\7’°°nh(n)Jl‘A¢)],

where i is such that A=Ai and 1:<o'has to be read as 12precedes 0' in the lexicographic order. El°°n
is an abbreviation of VmEln>m and V°°n of o 3°°n"|.

Let h(0)=O. For n+1, if n codes a proof of AOVKAfor some formula A, then:

(a) if h(n)=0 and fil,n.léA, then choose the minimal model k of /'71,“which forces ‘IA and
define h(n+l)=k.
(b) if h(n)=h¢O and the root of some submodel of h forces ‘WAthen let k be the minimal

such submodel and define h(n+l)=k.
(c) in all other cases let h(n+1)=h(n).
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Note that (provably in T) the graph of h is A0. A straightforward formalization of the
completeness theorem for Lob's modal logic shows that h(n) is (roughly) bounded by 22" (h
increases only if at stage n case (a) obtains; at that stage the code of ‘IA and of all the formulas in

An is bounded by 11).So, A0 induction shows that h is a total function.

If the theory T is strong enough, one can use for AAsimply the formula ElmVn>m h(n)II-A. Then

KOVAAsimply means that the limit of h is either 0 or a model which forces the formula A, in

particular, if h moved to h(n+1) because n codes a proof of XOVXA,there will be a proof that
h(n+1) is not the limit of the function (in fact h(n+1) is chosen so that h(n+1)|I- ‘I A). But in

IAo+exp we do not know how to prove that the limit of the Solovay function exists (one needs
21-induction). In particular it cannot be excluded that for some formula A both h(n)||- A and
h(n)|l- "1 A occurs for infinitely many n; thus one would not have as desired, 7»-1A<—>‘IXA. To

help the reader's intuition we present the following semi-formal description of RAwhich should
clarify the definition above. To each formula A we attach an infinite set C(A) such that either
Vne C(A) h(n)||- A or Vne C(A) h(n)||- -1 A. The set C(A) is defined in the following way. Let
C(A0) = {n I h(n)|l- -1 A0} if this is infinite, C(A0)={n I h(n)||- A0} otherwise. Let C(Ai+1) =
{ne C(Ai) I h(n)||- 7 Ai.H} if this is infinite, C(A;.H) = {ne C(A;) I h(n)||- A;+1} otherwise.

Finally, let ?»Abe Vne C(A) h(n) ||- A.

Claim 1. T proves Vn [ h(n);tO—>Thm[Elm h(m) is a proper submodel of h(n)] ].
Proof. In fact if h(n);tO then at some stage s<n for some formula A, s codes a proof MVXAand
h(s+1)=h(n)|l- 7 A. By provable Z. completeness Thm[7 X0].This together with Thm[X0v?tA]
yields Thm[?tA] and in particular Thm[El°°n h(n)Il-A] . From h(n)|I—fiA we get Thm[h(n)|I-‘1A]

by provable 21 completeness, thus the claim follows.

Claim 2.Vne 0) Elme on such that T proves h(n)¢O-—>Thm'“(i). (So, since T has infinite
height, for every standard 11,h(n)=O.)

Proof. This is an easy corollary of the previous claim.

To define t(A) we need to assign "ad hoc" a model to 0. Following Shavrukov we shall
construct a formula ‘I in such a way that for all standard formulas A and B the following
properties are provable in T.

(1) ‘1T(.L) (3) /’zl|=A —>T(A).

(2) T(A-—>B) <—>(’f(A) —>T(B)) (4) 'T(ElA)—> fll|= A.

(Roughly speaking the formula ’I(A) says that A belongs to some maximal consistent set ‘T
containing fllU {‘IDA I fll)éI:1A}. Such a set ‘I exists (within T) since otherwise for some
A0,...,A,, such that }7LH:1A0,...,/’7lJéDAn we would have /’7ll=ElA0v....vl:1A,,. This contradicts

the provable s.d.p. of Fl .) For the proof of the lemma only (1)-(4) are needed, so we prefer to
postpone the definition of ‘I and the proof of (1)-(4) after the proof of the lemma.
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We define ‘CAas K0/\T(A), and finally define: 1(A):= KAVIA,i.e. ?tAv[}\0A’J'(A)].We shall prove

that 1 is an interpretation (claim 5) and that Linterprets fllin T (claim 6).

Claim 3. For every A6 L, T proves (\7’°°n h(n)Il- A )—> KA.

Proof. Since A is standard we can replace in the definition of AAthe quantifications over strings
by finite conjunctions and disjunctions. So the claim is trivial.

Claim 4. For every A6 L, T proves Vn [h(n)=O /\ /’4,nl=A —->1(A)].

Proof. Assume h(n)=O and fll,,,|=A. Reasoning in T we want to show KAVIA.Since h(n)=O and

/‘7l,nl=A, the function can leave 0 only to a model of A and eventually move to some submodel of
it. So ‘IN; implies ‘V'°°nh(n)l=A. By the previous claim, this implies AA. On the other hand, by
(3), we have T (A), so, 10 implies TA.

Claim 5. The function 1 is an interpretation (i.e. properties (i)-(iii) are provable in T.)
Proof. We have to prove that for every standard formula A properties (i)-(iii) are provable in T,
i.e. 1(ElA) <—>Thm[t(A)], fl 1(1) and 1(A-> B) <—>(1(A) —>1(B)). The proof is more readable if

we derive them both from T+M and from T+7 M. In fact under the hypothesis M the sentence
1(A) is equivalent to T (A) (by our convention that 01!‘A), while, under the hypothesis ‘I10, 1(A)
is equivalent to AA.

T+7t0 l- 1(ElA)—>Thm[1(A)]. Assume 1(ClA) and X0 and reason in T. As we just remarked,

under the assumption M, 1(DA) reduces to ’I(ElA). By (4) we obtain /‘?ll=A, so, for some n,

}’l,nl=A. Since we assumed M, h(n)=O. Both /‘7l_,,|=A and h(n)=O are Z1-formulas, so by provable
21-completeness we have Thm[fll,°1l=A] and Thm[h(n)=O]. By claim 4 we have Thm[1(A)].

T+}t0 I- Thm[t(A)] —>1(ElA). Assume Thm[7tAv TA] and M. It suffices to show, reasoning in T,

that ‘ZZEJA). Since Thm[)tAv TA], a fortiori Thm[ KQVKA]. Let n be the code of a proof of

KOVKA;Since we assumed K0, h(n)=O. Then /’?l,nl=A, otherwise the function would leave 0 at
stage n+1, contradicting 2.0.Then /‘?l|=DA and so, by (3), ’I(ElA).

T+?\0 l- "I1(J.). Irmnediate from (1).

T+?\0 l- 1(A—>B)<—>(1(A) —>t(B)). Immediate from (2).

T+‘I}\o I- t(DA)—>Thm[t(A)]. Assume 1(ElA) and ‘I20. It suffices to prove Thm[ WA]in T. By

our assumption kg)», holds, in particular for some n, h(n)ll-BA. The latter is a 21-formula so
Thm[h(n)ll- BA]. Since h(n)¢O, by claim 1 we have Thm["Elm h(m) is a submodel of h(i1)"],
thus Thm[V°°n h(n)|I-A]. By claim 3, Thm[ AA]follows.

T+‘I?t0l- Thm[1(A)]-9 1(ElA). Assume Thm[?tAv TA] and '17\.().It suffices to derive M3,,

reasoning in T. Since Thm[?»Av1:A], a fortiori Thm[ XOVAA].Let n be a code of a proof of
AOVKAwhich is large enough to have h(n)¢O. (Such an n exists since we assumed fl M and any
provable sentence has arbitrary large proofs.) If h(n)|l-DA then h(n+1)=h(n), otherwise; h(n+1)
will be the least submodel of h(n) forcing fl A. In both cases h(n+1)ll—DA (recall that the code of
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a model is larger than the code of its proper submodels). Afterwards, h remains confined in a
submodel of h(n+1) so, we can conclude that V°°n h(n)II-CIA. Thus KQAfollows by claim 3.

T+77\0l- fit(J.). Immediate.

T+‘1 ?\0l- t(A —>B) <—>(t(A) —>t(B)). Is left to the reader.

Claim 6. For every A6 L, /‘7ll=A iff TI- l(A).

Proof. (=> ) Assume /’7l|=A. Then for some fll,,,|= A. Since n is standard h(n)=O and, by
Zrcompleteness, Tl-h(n)=O/\/’3l,,,l=A. So t(A) by claim 4. Vice versa, (<= ), if Tl- 1(A) we have
in particular that TI- KOVXA.Assume for a contradiction that flué A and let n be the code of the

proof of AOVXA.In particular we have that /‘7l,n.léA then h(n+l)¢0. This n is a standard number,
so this contradicts the fact that h will spend all of its standard life in O.

The proof of the lemma is complete but for the definition of the predicate ‘T. We introduce the
formula W0) which roughly says: AC,is El-conservative over fll, namely

V(o) :=\-/A [ (52u=A.,—> DA) —»(/‘?tl=DA) ].

Assume strings have been coded into numbers in some natural way, (e.g. choose 2G(;)t=1 2i as
code of 0') so that on strings of equal length the relation "<" coincides with the relation "precedes
1exicographically" or, when strings are thought of as nodes of a binary tree, "is to the left of". Let
U(o) be the formula which says that 0' is the leftmost string satisfying V(o'),

U(o'):=V(o')AVIe 2i+'(r<o—>w v(r))].

If A=A; let ’I(A) hold if there is 66 2”‘ such that U(o') and o'(i)=l. We have to show that for
every standard formula properties (1) to (4) of ‘Tare provable in T. As a first thing let us remark
that for all standard i, T proves 306 2”‘ U(o), i.e. i.e. there exists a leftmost string 0'
satisfying V(o). Reason in T. A string satisfying V(o) must exist, otherwise for every 06 2”‘

there would be a modal formula Co’ such that /‘7lJ=Ao—->EICG and /‘?lJéElC5. Since V06 2i+1Ac, is a

tautology, one would have /‘7I|=V06 2i+l EICO. By the s.d.p. of 571(provable in T) /‘7ll=EICO for
some 0', a contradiction. Now, once we know that one string 0' exists satisfying V(o), the
existence of the minimal one is again a consequence of the standardness of i since the quantifiers
over strings in 2”‘ may be transformed in finite conjunctions and disjunctions. This proves our
remark. Now we check in turn that the properties (1) to (4) which we required for Tare provable
in T.

(1) ‘1T(J.) (3) /‘?tl=A—>’I(A).

(2) ’T(A—>B) 6-) (’I(A) -> 7(3)) (4) 'T(ElA) —>5?u=A.

We reason in T. It is obvious that for no string 0 such that V(0), o(J.)=1, so (1) holds. (We
write o(A) for o(i) where A=A;.) To prove (2) assume first that ‘RA-—>B) and ‘I (A). Let G be a

sufficiently long string such that U(o) and o(A—>B)=o(A)=1. Then o(B)=1 otherwise A5 <—>J.
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and surely could not satisfy V(o). The converse is similar. Property (3) is also a direct
consequence of the existence of an arbitrary (standard) long string satisfying U(o). For such a
string we must have o'(A)=l otherwise 57ll=A0‘ —>J. and, by the definition of V(O'), /‘7ll=.L. Last,

to prove (4) assume that ‘I (D A). Let 0' be a sufficiently long string such that U(o) and
O'(ClA)=1. Then /’?ll=Ao—>DA, so, by the definition of V(o'), fll|=IIIA. By the s.d.p. of fllwe get
/‘Zll=A.

This completes the proof of lemma l.Cl

2. The theorems.

We shall use lemma 1 to prove the two theorems announced in the introduction. They
characterize the r.e. sets interpretable in a theory of infinite height.

Theorem 1. If 531is an r.e. set of modal formulas and T is a 21 sound theory containing
IA0+exp, then 571is interpretable in T iff Fl is s.d..

Theorem 2. If }’lis an r.e. set of modal formulas and T is a 21 ill theory of infinite height
containing IA0+exp, then fllis interpretable in T iff /‘7lhas infinite height .

The "only if" part of both theorems is trivial. To prove the first theorem we show that, if 571
is an r.e. set with the s.d.p. and T is a Z1-sound theory, then we can find a description of 571in T
such that T proves the s.d.p. of 54. Analogously for the second theorem. For the sake of
readability we shall give these proofs in an informal style, namely we shall merely describe
algorithms and take for granted their formalization in the language of T.

Suppose /'71is an r.e. set of modal formulas and let A6 A5 be any description of fll. To this
description we associate in a natural way the algorithm {/‘7l_s}s._;menumerating 571,i.e. an

increasing recursive sequence of finite sets {/‘?l,5}se(0such that /’7l=U5eS. We shall construct a
new algorithm {’l/,s}se0, enumerating the same set 171such that the canonical translation of
{'1/,s}se0, in the language of the arithmetic yields a description with the desired properties.

The proofs of theorems 1 and 2 need two modal lemmas, respectively lemma 2 and 3.
These are the adaptations of some lemmas of [1]. We shall present them in a form which is easily
formalized and proved in IA0+exp. Their proofs are moved to the end of this section.

A finite set C of formulas is said to be adequate if it is closed under subformulas and (up to
provable equivalence) closed under Boolean connectives. Namely, if: (i) is C, (ii) all
subformulas of every Be C are in C, (iii) for every B,Ce C there exists De C such that
ll-D<—>(B—>C).

Lemma 2. Let Cbe a finite adequate set and let 349 C The following are equivalent:

(a) 571is s.d. (b) FLH. and VB,Ce C /‘7lI=EIBVEIC =>fllI= B or }’ll=C.El
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Proof of theorem 1. We are now ready to present the algorithm required to prove theorem 1.
Without loss of generality we may assume that if /’7ll=A then Ae El. We may code finite sets of
formulas with natural numbers. The property "s codes an adequate set" is A0. Consider the
followingalgorithm {s}se 0,.

(Stage 0) ‘V_o= @.

(Stage s+l) Let A be the minimal formula (if such exists) such that Ae }’l,s-‘l/,5.If for some
adequate set C of code less than s, Ae C, 5 9 53150C, and condition (b) of lemma 2 holds for
E50 Cthen, let ’V,s+1= 515 0 C. Otherwise let ‘V,s+1= ‘I/,5.

We check by induction on the code of the (standard) formula A that Ae flliff Ae Use (,,‘l/,5.Since
‘I/5.9 As, only one implication needs to be proved. Suppose for a contradiction there is a formula
such that AG515-S for all large enough se 00. Fix A and s such that for all rzs, A is the least
formula in 51,- ,. Fix an adequate set C, such that {A}U SE C (such an adequate set exists
since A and s are standard). Let n>s be larger than the code of C and such that 540 C 9; /’?l,nflC.

Clearly Sgfllmfi C. Since 91is s.d. and we assumed it closed under I=, condition (b) of lemma
2 holds for fll_,,n C. So, ’V,n+1= J-’l_n('1 C, a contradiction. It remains to be checked that T

proves the s.d.p. of U 5'1/,5. For this we need a formalized version of lemma 2 in IA0+exp so we
invite the reader to check that all models used in the proof given below are bounded by a few
nested exponentiations of the code of the given adequate set C Consequently, the theorem holds
in any model of IA0+exp. From lemma 2 it follows that for all stages s the sets 5 are s.d.,
which clearly suffices.U

Lemma 3. Let Cbe a finite adequate set containing /'4.The following are equivalent:

(1) }’lhas infinite height (2) there exists Be C such that B is s.d. and Bl= /\/‘U3

Proof of theorem 2. Given a Z1-ill theory T choose a A0—formulao(x) such that Tl- Elxo’(x)
and (o|=Vx‘Io(x). In every model of T there is a A0definable nonstandard number n, namely the
minimal witness of Elxo(x). The idea of the proof is the following: given any algorithm As
enumerating /'4we construct a new algorithm which simulates 2,5 until the nonstandard stage n,
but once this stage is reached we stop the simulation and enumerate some arbitrary s.d. set
containing film.In the real world this stage n is never reached, so this new algorithm enumerates
the same set as the old one. But in any model of T this algorithm enumerates a nonstandard finite

s.d. set. Lemma 3 is used to guarantee that some s.d. formula B|= AS always exists.

(Stage 0) ‘V0 = @.

(Stage s+l) Let A be the minimal formula (if such exists) such that Ae As-‘I/,5. If for some
adequate set Cof code less than s, Ae C, S 9 A50 C, for some Be Ccondition (b) of Lemma 2
holds and Bl=57150C, then

case 1: if Vxss ’1o(x) let "1/,s+1=fll,sflC,

case 2: if E-lx<so'(x) let ‘I/,5+1={B] for some s.d. formula Be Csuch that Bl=/‘7l_sflC.

Otherwise let s+1=‘l/,5.
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We check by induction on the code of the formula A that Ae flliff Ae Usellfl/ls. Since 5; As,
only one implication needs to be proved. We need consider only standard stages (recall that a
description of 531should verify: A6 571iff Else (0, TI-Ae 5 ), so case 2 never obtain. Suppose
for a contradiction there is a formula such that A6 515-S for all se 00. Fix A and s such that for
all r2s, A is the least formula in 531,,-‘I/ll.Fix an adequate set C, such that {A}U 5; C (such an
adequate set exists since A is standard). Let n>s be larger than the code of C and such that
540 C Q /‘7l_,lflC. Clearly sc;5?t,,,n C and, since fll has infinite height, so does fllmfi C. Thus,
condition (2) of lemma 3 holds for fll_.,n C. We may conclude that '1/_,,+l=fll,,,n C, a
contradiction. To check that T proves the s.d.p. of U57/,5 recall that in every model of T,
Us?/,s=Us<n+lS, where n is the least number such that o(n) and Us<n+lS is equivalent to a
single s.d. formula B.D

Proof of lemma 2. The direction (a)=> (b) is trivial. For the converse, assume (b). Fix a set
flit Q C such that:

/’2lt:={GeCl VCE Ceither Gll-C or GII-"IC}.

The elements of flit are called atoms ; roughly, they are conjunctions of maximal consistent
subsets of C. By the adequacy of C, for every Ce C, if ll‘‘IC then there is some atom G|I—C.

Also, ll-Vfllt, otherwise, for some atoms G, GII-TV/‘7lt quod non. Let 'y={Ge Flt I 54%fiG }.
From Il-Vfllt and /’?lJ5J.we can conclude Yatfl . We claim that there is a model of Flu {<>G I

Ge 7}. In fact, if not, then /‘7ll=VGEYDfiG. By (b), there is Gey such that /‘7ll=fiG quod non.
This proves the claim.

Suppose now that for some formulas Bl, Bg both /‘7LléBland /’7Ll£Bg,so we may assume
that there are two models kl and kg of F1forcing respectively ‘!Bl and _‘B2. We shall show that
/qJ‘5UB]VUB2by constructing a model k‘ of ii which contains kl and kg as proper submodels.
The s.d.p. of /'71will follow.

Let k be a model of EU {<>GIGey}. Let r, rl and rg be the roots of respectively k,kl and
kg. Let R,Rl and Rg be the respective accessibility relations. Let k' be the model obtained grafting
kl and kg above the root of k. More precisely, the universe of k’ is the disjoint union of the
universes of k,kl and kg and the accessibility relation of k' is the transitive closure of the relation
RU Rl URgU {(r,rl),(r,rg)}. The forcing relation of k' is the union of the forcing relations of
k,kl and kg.

We claim that k‘ is a model of }’l and k'|I- fl ElBl/xfi DBg. Obviously k' forces
fl DBlA‘1 ElBgbecause kl and kg are submodels of k' forcing respectively "IBl and "IBg. To
show that k' is a model of /'71,we prove by induction on the complexity of subformulas Ce C that
k'II-C iff k|I-C. The basis step is trivial as well as the induction for Boolean connectives. We
prove the induction step for El. Assume k'lI—7 EIC. Then for some proper submodel w‘ of k',

w'II-‘IC. The model w’ is a submodel of kl or of kg or is a proper submodel of k. If w‘ is a
proper submodel of k, then kI|- ‘I EJC follows. Otherwise, let G be the atom forced in w'; since
Ce C, by the definition of atom, either Gll-C or GIl- ‘IC. But GII-C leads immediately to
contradiction so, G|l- ‘1C. Since both kl and kg are models of /‘7LGe 7. By our choice of k,

kII-/\Ge 70 G, so there is a proper submodel w of k which forces G. Hence wIl- ‘1C and
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kIl—fl DC. Vice versa if kIl- ‘I DC, then for some proper submodel w of k, wl|- ‘I C. Since w is
also a proper submodel of k’, k'Il-fl DC follows. This completes the proof of the lemma.U

Proof of lemma 3. (1 <= 2) is immediate. (1 => 2) List the formulas of C={Ci,...,C,i}. Define

}’l0:=/‘Z1and for all isn let /’2l.i+i:=/’2l.iU{Ci} if this has infinite height, /‘7li+i:=}’liotherwise. Finally

choose in C a formula B equivalent to /\fll,i+i. If Bl= lZICivDCjthen B/\Ci or B/\Ci has infinite
height. (For suppose for some n both B/\Cil= Cl“J. and B/\Cjl‘-'U“J. then Bl=ElCi—>CI“"‘J. and

BI=DC]-—>El"+'.L. Thus B|= Cl"*'J., quod non.) So, one of Ci and C-, say Ci, has been
enumerated in Fin“, so Bl=Ci. By lemma 2, B is s.d..Cl
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Samenvatting

Dit Proefschrift bestaat uit twee delen. Het eerste deel is aan de begrensde rekenkunde
gewijd. Het eerste hoofdstuk daarvan bevat een inleidende paragraaf waarin ook op de moti­
vatie van het onderzoek wordt ingegaan. Ik bestudeer uitbreidingen van zwakke fragmenten
van de Peano—rekenkunde tot tweede—ordetheorieén. Tweede orde variabelen staan voor
eindige verzamelingen van natuurlijke getallen. Ik beperk me tot zwakke fragmenten van
de Peano—rekenkunded.w.z. theorieén die niet kunnen bewijzen dat de exponentiatiefunctie
totaal is. Dat houdt in dat er eindige verzamelingen zijn die, hoewel ze te definiéren zijn met
begrensde formules, niet gecodeerd kunnen worden door natuurlijke getallen. Dat maakt
deze tweede—ordetaal echt expressiever. Ik definiéer een hiérarchie van begrensde formules
door het tellen van de wisselingen van tweede—ordebegrensde kwantoren. Daarna wordt een
hiérarchie van theorieén gedefinieerd door het introduceren van comprehensie—axioma’svoor
formules in deze klassen.

Het is niet bekend of de bovengenoemde hi'e'rarchievan begrensde formules een echte hiérarchie
is; ook niet als we ons beperken tot het standaardmodel. Dit blijkt een uiterst moeilijk prob­
leem want het is equivalent met de vraag of de polynomiale hiérarchie instort. Een ermee
verbonden vraag is of de hiérarchie van fragmenten van de begrensde rekenkunde ook in­
stort. Hoewel dit tweede probleem sterk op het eerste lijkt is de relatie ertussen nog niet
volledig begrepen. Ik laat zien dat, als de begrensde rekenkunde gelijk is aan een van haar
fragmenten, dan is het bewijsbaar (in de begrensde rekenkunde) dat de polynomia1e—tijd—
hiérarchie instort.

In het tweede hoofdstuk behandel ik een fragment van de begrensde rekenkunde van een
andere soort. Hier wordt het comprehensie—axiomavoor alle begrensde formules aangenomen
maar de vermenigvuldigingsfunctie wordt uit de taal weggelaten. Ik noem deze theorie
lineaire (begrensde) rekenkunde omdat de termen van de taal lineair zijn. Ik bewijs dat elk
model van de lineaire rekenkunde een eindextensie heeft tot een fragment van de begrensde
rekenkunde waarin vermenigvuldiging totaal is. Dat gaat echter ten koste van comprehensie.

Het tweede deel van dit proefschrift is gewijd aan de bewijsbaarheidslogica. De grondbegrip­
pen van dit vak zijn in een korte inleiding samengevat. In hoofdstuk drie geven we nieuwe
bewijzen van de aritmetische volledigheid van I LP and I LM . Albert Visser bewees dat
I LP de modale logica voor de interpreteerbaarheid over eindig geaxiomatiseerde theorieén
is. Volodya Shavrukov en Alessandro Berarducci hebben (onafhankelijk van elkaar) laten zien
dat I LM de interpreteerbaarheidslogica van essentieel reflexieve theorieén is. Mijn bewijs
van deze twee stellingen onthult de gemeenschappelijke aspecten van deze twee stellingen.

Het vierde hoofdstuk gaat over diagonaliseerbare a1gebra’s,met name over subalgebra’s van
de diagonaliseerbare algebra van aritmetische theorieén. Naar aanleiding van een stelling
van Volodya Shavrukov behandel ik de vraag of zijn resultaten ook voor zwakkere theorieén
geldig zijn. Ik laat zien dat het bewijs van Volodya Shavrukov kan Worden aangepast om de
stelling ook voor deze zwakkere theorieén te bewijzen.
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