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Introduction

This dissertation consists of three separate parts, each of which can be read inde
pendently. In each part, a theme in Logic Programming (or rather, the practice of
Logic Programming) is taken up and investigated from a logical point of view.

Part I is inspired by the observation that, although Logic Programming is based
on first order predicate logic, in many applications and implementations, such as
Prolog, meta-logic programming, and databases, a syntax is employed that stretches
far beyond first order predicate logic. Ambivalent Logic, essentially first order pred
icate logic with a very liberal syntax, is developed in Part I; a series of formal results
justify the current Logic Programming practice of using liberal versions of first order
predicate logic syntax.

In Part II, the focus is on Vanilla meta-programming, where the meta- program
takes object programs as input and imitates their execution. Typically, ambivalent
syntax is employed here. Various correctness proofs for the standard Vanilla meta
interpreter are discussed and compared.

Part III is based on the observation that in implementations of Logic Program
ming, the added control affects the procedural meaning of programs. In particular,
the standard top-down processing of program clauses induces substructural effects.
Substructural (Gentzen style) sequent calculi corresponding to various implementa
tion styles, among them standard Prolog, are investigated here.





Part I

Ambivalent Logic





Chapter 1
A Vademecum of Ambivalent Logic

Ambivalent Logic AL, first introduced in its full sense in J iang [Jia94a] is
obtained from first order predicate logic FOL by relaxing several restrictions
on its usual syntax. In particular, the usual distinctions between predicates,
functions, formulas and terms are not made in AL. We show that Ambivalent
Logic provides a general and flexible framework for various ambivalent syntac
tic phenomena that occur in Prolog, in meta-logic programming and in formal
isations of knowledge and belief. A series of formal results justifies the use of
syntaxes with ambivalent phenomena in these areas. We discuss a closed term
semantics for AL, and show that the standard derivational calculus for first
order predicate logic is sound and complete w.r.t. this semantics. A conserva
tivity result shows that AL should be considered as a conservative extension
of FOL. We define a version of the Martelli Montanari unification algorithm
for AL, and show it has the usual properties. In combination with various
other basic proof theoretic results, this shows that resolution is a complete
and sound inference method for AL. The results all relativise to subsystems
of AL, like Prolog’s syntax. We also discuss the relation with Hilog.
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A (mostly tacit) assumption in the syntax for first order predicate logic (FOL) is
that the sets of predicates, functions, and constants have mutually empty intersec
tions. As a consequence, the syntactic categories of formulas and terms are mutually
exclusive, as the Unique Reading Lemma for FOL witnesses. While Logic Program
ming is in principle based on FOL, in various of its application areas, syntaxes are
used which do not satisfy this property of the usual syntax for FOL.

A principal example, analysed in Apt and Teusink [AT95],is the syntax underly
ing Prolog. Prolog’s meta-variable facility allows for variables to occur both in terms
and in atoms positions. Two well-known examples are the cut-fail definition of nega
tion: neg(X) :—X, !, fail, and the definition of the solve-predicate as s0lve(X) :—X.
Clearly, this use of variables is not allowed in the standard syntax of FOL. Addi
tionally, queries which involve instantiations of the heads of the above clauses with
terms p(t), presuppose a syntax which allows for function symbols to be accepted
as predicate symbols. Conversely, an inductive definition of a predicate involving
its negation presupposes that Prolog’s syntax allows for predicate symbols to be
accepted as function symbols. Also, in Prolog’s syntax, predicates and functions do
not have fixed arities.

Another example of the use of a deviant syntax in (meta-)Logic Programming
practice is the untyped, non-ground Vanilla meta-interpreter which uses identity
naming for atoms and terms of the object level language (cf. Chapter 2). While in
this simple, unamalgamated case the (partial) correctness of Vanilla could still be
guaranteed by the possibility of renaming the object level predicates to meta-level
function symbols, this solution does not generalise to various interesting extensions
of Vanilla. For example, extending Vanilla with reflective clauses like demo(X) :—X
or instances of these clauses, eliminates the possibility of renaming and introduces
ambivalence between function and predicate symbols and variables and terms, sim
ilar to the ambivalences observed above in the case of Prolog’s syntax. A related
example is the formalisation of the Three Wise Man problem as an extension of
Vanilla in Kowalski and Kim [KK91]. This formalisation involves clauses of the form
demo('wise0,not demo('wise1,white1)) :— , in which the predicates demo and not
occur in function positions.

The above examples require only limited forms of ambivalence: atoms-as-terms
ambivalence (atoms occurring in term positions) and terms-as-atoms ambivalence
(terms occurring in atom positions). As observed in Chen et al. [CKW93] and Jiang
[Jia94a], more advanced ambivalent features are required to obtain a syntax which
allows for efficient formalisations of generic predicates. An example is the generic
closure predicate (cl(Z))(X , Y), which, given any binary predicate R, returns its
transitive closure cl(R). Its definition, ((cl(Z))(X, Y) 4-) Z(X, Y) V (Z(X, V) /\
(cl(Z))(V, Y)), presupposes a syntax which allows for predicates to occur in term
positions, and for variables and atoms to occur in predicate positions. Similar am
bivalent phenomena occur in languages which allow for data retrieval and schema
browsing. In databases, such forms of syntactic ambivalence are a desirable option,
allowing caching of data.

Other areas where ambivalent phenomena occur, are formalisations of knowledge



and belief. While the use of a real naming function, avoiding syntactic ambivalence
between terms and formulas, is often possible, it is not always desirable. Also, the
above atoms—termsambivalence is not always sufficient. In the predicate case, it is
desirable that a reflective axiom like :1:——>K can be instantiated with all formu
las, not just atomic formulas. This then supposes a syntax in which all formulas,
and not just atomic formulas, are allowed to occur as terms. While the quantifiers
could, in principle, be represented by functions, the effect of a functional repre
sentation does not in all cases give the desired effect. The obvious reason is that
quantifiers, in contrast to functions, bind variables. For example, consider the for
mula ‘v’a:.bel(John,(f7‘z'end(John,x) —)ea:z'sts(y,loves(a:,y))), which expresses the
proposition ‘John believes about all his friends that they are loved by somebody’.
Instantiation of both :1:and y with the same constant is possible, yielding unintended
statements like

bel(J0hn, (friend(J0hn, Mary) —>ea:ists(Mary, loves(Ma.7'y,Mary))).

In contrast, the use of a quantifier representation for the same proposition yields the
formula \7’:z:.bel(John,(f'rz'end(Joh'n., :12)—+Ely.loves(:v,y))). Here y is bound by the
existential quantifier, and cannot be instantiated. Thus, unintended instantiations
like the above are not possible.

In the present paper, we discuss Ambivalent Logic AL as a general framework
for first order logic with a syntax in which all of the above mentioned ambivalent
phenomena occur. AL has a fully ambivalent syntax, in which the usual distinctions
between the syntactic categories of terms, functions, predicates, and formulas, cannot
be made. While the part of Unique Reading that says that a well-formed string in
the language is either a formula or a term, but not both, does not hold for AL, these
syntactic distinctions do retain their usual contextual meaning.

AL has a standard (first order predicate logic) derivational calculus, and a (first
order) closed term semantics. We develop some basic proof theory for AL, including
soundness and completeness of the derivational calculus w.r.t. the semantics, an
s-equivalence theorem, and Herbrand’s theorem. We discuss unification for AL. In
particular, we show how the Martelli-Montanari unification algorithm can be adap
ted for AL. We prove that the appropriate AL version has the usual properties. In
combination with various other results discussed in this paper, this shows that reso
lution is a complete and sound inference method for AL. In addition, we show that
AL is a conservative extension of FOL. We also show how various known ambivalent

syntaxes (such as Prolog’s syntax and the syntax discussed in Kalsbeek [Kal95a] and
Chapter 2) can be obtained as special instances of the full ambivalent syntax of AL.
The proof theoretic results we obtain for AL also hold for the various specialisations
of AL. These results justify the use of AL and various of its subsystems as a basis for
(meta-) logic programming. In addition, we argue that AL provides an interesting
framework for formalisations of knowledge and belief.

AL was first introduced in Jiang [Jia94a] and [Jia94b]. Some of the results we
present are improvements of results announced in Jiang [Jia94a]. A proper subsystem
of AL, appropriate for amalgamated extensions of the Vanilla meta-interpreter, was
introduced in Kalsbeek [Kal93], and will be discussed in some detail in Chapter 2.
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There are various examples of logics which, like AL, have a syntax incorporating
ambivalent phenomena. Recently, Hilog was proposed by Chen et al. [CKW93] as
a basis for higher order logic programming. Both AL and Hilog combine a second
order syntax with a first order semantics. While the syntax of AL extends Hilog
syntax, Hilog is, in contrast to AL, not an extension of FOL. We will investigate
the differences between AL and Hilog in Section 1.6. Another example is the logic
proposed by Richards [Ric74], which is intended for formalisations of intensional
logics. For a comparison between AL and Richards’ logic, we refer to J iang [Jia94a].
The reader is also referred to Gabbay [Gab92], where other flexible meta-languages
are proposed.

Outline

In Section 1.1, We introduce the fully ambivalent syntax of AL and we show how
specialisations of it may be obtained. In Section 1.2 we develop a closed term
semantics for AL. In Section 1.3 we discuss how equality can be incorporated in AL.
Section 1.4 is devoted to various basic proof theoretic results for AL. In Section 1.5
we discuss the appropriate version of the Martelli-Montanari unification algorithm
for AL. In Section 1.6 we discuss the relations between Ambivalent Logic and Hilog.

1.1 Syntax for Ambivalent Logic
We define in Section 1.1.1, a syntax which is fully ambivalent, that is, in which
every well formed expression can act as a formula, as a term, as a function, and as
a predicate. Whether an expression is evaluated as a term, a formula, a function, or
a predicate will be determined by the context. We allow for free arity of predicates
and functions. This syntax generates a multi-purpose language.

The full ambivalent syntax extends the syntax for the Vanilla meta-interpreter
(cf. Chapter 2), in which can occur in term positions but not vice versa, and in which
predicates and functions are always symbols with a fixed arity. It also extends Pro
log’s syntax (cf. Apt and Teusink [AT95]), which shares with full ambivalent syntax
the full atoms-terms ambivalence, and the free arity of functions and predicates, but
in which predicates and functions are always parameters.

To obtain versions of ambivalent syntax which generate languages that are adap
ted to a particular purposes such as the above, the definitions for full ambivalent
syntax can be adapted and specialised. In Section 1.1.2 we discuss several of these
refinements.

1.1.1 Full ambivalent syntax
A fully ambivalent language Lg is generated by a set of non-logical constants (pa
rameters) Q, an infinite set of variables :13,y, 2, . . ., and the usual logical connectives
and quantifiers of first-order logic.

1.1.1. DEFINITION. (Expressions)
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1. The variables 2:,y, z, . . . and individual constants a, b, c, . . . E Q are expressions.
If t, t1, . . . ,t,, are expressions, then (t) (t1, . . . ,t,,) is an expression.

3. If A and B are expressions, then so are fiA, A /\ B, A V B, A 4- B, A —>B
and A (—>B.

4. If A is an expression and x is a variable, then \7’a:(A)and El:1:(A)are expressions.
C]

E9

The above ambivalent syntax thus extends standard syntax for first order predi
cate logic in several ways. The usual requirement is dropped which states that the
sets of predicate symbols and function symbols are disjoint. In addition, the usual
requirement is dropped that predicates and functions have a fixed arity. As an ex
ample, p(p(p, p)) is a well-formed ambivalent expression. In addition, variables may
occur in formula positions. As an example, the Prolog clause solve(a:) <—:1:is a well
formed expression in full ambivalent syntax. Also, ‘second order’ quantification is
allowed. That is, expressions like 3a:.:c(c) are well-formed in full ambivalent syntax.
(We will see in Section 1.2 that, semantically, quantification over predicates will not
be interpreted as second order quantification.) Moreover, not only parameters, but
also more complex expressions are allowed as predicates and functions. An example
is the generic closure predicate discussed in the introduction. This feature allows for
the formation of new predicates, which can be useful in databases. Other examples
are: p(:::) /\ q(:z:)—)(p/\ and ‘v’:z:\7’z(p(:1:,z) —>(Ely.p(y))(:c)). The latter example
shows that quantified expressions are allowed in predicate places.

In many cases, we will omit brackets if this does not lead to confusion. For
example, we will write c(a:) instead of (c) (:12),and Va:p(a:) (or also ‘v’:c.p(a:))instead
of In variouscases,however,bracketscannotbe omittedwithoutaltering
an expression. For instance, (p V q)(t, s) is an atomic expression, while 1)V q(t, s) is
a disjunctiveexpression.Similarly,wedistinguishbetweenthe expressionsp(
and In the former,the symbolp predicatesoverthe expression(x)(a),
while in the latter, p(:c) predicates over a.

1.1.2. DEFINITION. (Atomic expressions)
An atomic expression is either a constant, or a variable, or an expression of the form
(t)(t1, . . . ,t,,).
Atomic expressions of the form (t)(t1, . . . , t,,) are functional atoms. E]

The set F V(t) of free variables of an expression t is defined analogous to the
definition for standard syntax, except that it is additionally defined for expressions
in predicate and function places.

1.1.3. DEFINITION. (Free Variables) Let :1:be a variable, c E Q, and let A, B, and
(t)(t1, . . . ,t,,) be expressions. The set of free variables occurring in an expression is
defined as follows:

FV(a:) =
FV(c) = 0
FV((t) t1, . . . ,t,,)) = FV(t) U FV(t1) U .. U FV(t,,)
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FV(A /\ B) = FV(A) u FV(B)
FV(—»A)= FV(A)

FV(El:z:A)= FV(A) \{:1:}

Similarly for the other binary connectives and the universal quantifier.

A variable asoccurring in an expression t is bound in t if :12¢ F V(t); otherwise we
say :1:occurs free in t. We write A{a:/t} to denote the result of replacing every free
occurrence of :1:in A by t. D

1.1.4. DEFINITION. An expression t is closed (or a sentence) if FV(t) = (ll.

By Definition 1.1.3, :3occurs free in Also,-:1:is not free in p(E|a:p(:c))
because 3 is not free in the argument E|:I:p(:I:).In this sense, quantifiers in term
positions behave like ordinary quantifiers.

The above definition can be refined in a standard way to distinguish between
various occurrences. For example, in p(:I:) V 3:1:f(:1:), the first occurrence of asis free,
while the second occurrence is bound by the existential quantifier. The scope of
quantifiers can be defined in the usual way. For example, in El:1:q(p(:I:)A Elrztf
the first occurrence of :1:is bound by the outermost existential quantifier, while the
second occurrence is bound by the rightmost quantifier.

In Section 1.2 we will need the following standard notion.

1.1.5. DEFINITION. An expression t is free for a variable :1:in an expression A t
does not contain any free variable that is bound by some quantifier in A when every
free occurrence of 2: in A is replaced by t. E]

Due to the nature of full ambivalent syntax, the role of an expression can be de
termined only by the context of the expression. For example, consider the expression
(q(d))(a, q(a)) /\ q(c). It can be evaluated both as a term and as formula, depending
on the context. In the latter case, q(d) serves as a predicate, q(a) as a term, and
q(c) as a formula.

Clearly, the Unique Reading Lemma does not hold for ambivalent syntax, as
every AL expression can be both a formula and a term. We can, however, define
in some cases which role a subexpression assumes in the context of an expression
in which it appears. In some cases, it is trivial to determine the contextual role
of subexpressions. For example, a V b occurs as a term in a(a V b), independent of
whether the latter is evaluated as a term or as a formula. But we have the choice
Whether or not to consider a as a term in c(a V b). The choice we make is inspired
by the semantics we define in the next section. In this semantics, there will be no
connection between the interpretation of the ‘term’ a and the interpretation of the
‘term’ a V b. Therefore, we will not consider a as a subterm in c(a V b). Similar
considerations lead to the following definitions of the notions of subformula, term,
function, and predicate. The definition of the notion of subformula is standard.

1.1.6. DEFINITION. (Subformula)

1. Every expression is a subformula of itself.
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2. Let A be an expression. Then every subformula of A is a subformula of fiA,
3a:A, and ‘v’:1:A.

3. Let A and B be expressions. If E is a subformula of A or B, then E is a
subformulaofAVB,A/\B,A—>B,A<—B,andA<—>B. C!

By this definition, a does not occur as a subformula in c(a V b).

1.1.7. DEFINITION. (Occurrence as a term)

1. In an expression of the form (t)(t1, . . . , tn), t1, . . . ,tn occur as terms.
2. If t occurs as a term in A and A is a subformula of F, then t occurs as a term

in F.
3. If t occurs as a term in s and s occurs as a term in F, then t occurs as a term

in F. C1

By the above definition, a does not occur as a term in c(a V b), while a V b does.
Also, c does not occur as a term in c(a V b).

1.1.8. DEFINITION. (Occurrence as a function)

1. t occurs as a function in an expression (t)(t1, . . . ,tn).
2. If t occurs as a function in s and s occurs as a term in F, then t occurs as a

function in F. El

1.1.9. DEFINITION. (Occurrence as a predicate)

1. t occurs as a predicate in an expression (t)(t1, . . . , tn).
2. If t occurs as a predicate in A and A is a subformula of F, then t occurs as a

predicate in F. C]

By these definitions, t occurs both as a predicate and as a function in (t) (t1, . . . , tn).
In V:r(t(:I:)), t occurs as a predicate, but not as a function. In p(\7’:I:(t(:z:))),t occurs
neither as a predicate nor as a function.

All of the above definitions can be refined to distinguish between the various
occurrences. For example, in a(a.) Va., the first occurrence of a is as a predicate (but
not as a function), the second occurrence is as a term, while the third occurrence is
as a subformula.

It is useful to make the following distinction between two kinds of occurrences of
quantifiers. The first kind of quantifier, which we will call ‘outside quantifier’, occurs
in places where they are also allowed in FOL formulas. The second kind occurs only
in ‘ambivalent’ places.

1.1.10. DEFINITION. Let Q:z:.s,where Q is a quantifier V or 3, be an occurrence of a
subexpression of an AL expression t. Q is an outside quantifier if it is an occurrence
as a subformula of t. Otherwise, Q is an inside quantifier.
Inside and outside connectives are defined similarly. E]

For example, in V:z:.(:1:V3y.f (y)), the first quantifier is an outside quantifier, while
the second is an inside quantifier. Observe that both inside and outside quantifiers
do bind variables in their scope. In Section 1.2, where we discuss semantics for AL,
we will see that the outside quantifiers will be interpreted as real quantifiers, ranging
over elements of the domain; this in contrast to inside quantifiers.
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1.1.2 Refinements

For many purposes, the full ambivalent syntax defined in the previous subsection
admits too many expressions. Refined versions of ambivalent syntax, well-tuned to
particular domains of application, can be obtained by specialising one or more of
the clauses in Definition 1.1.1, and by the use of sets of special constants in addition
to the set of generating constants. In defining special versions of full ambivalent
syntax, it is sometimes useful to introduce new syntactic categories.

We will give some examples of specialisation and the use of special constant sets.

0 A version of ambivalent syntax which does not admit all its expressions to
occur as predicates and functions, but only its constants, can be obtained by
modifying clause (2) of Definition 1.1.1 as follows: If t1, . . . ,t,, are expressions
and c E Q, then c(t1, . . . ,t,,) is an expression. In this particular version, vari
ables and more complex expressions do not occur as predicates and functions,
and as a result there is no ‘second order’ quantification.

o It may be useful to select special roles for some of the parameters. As an
example, in some domains, it may be useful to have one or more symbols that
occur only as predicates. The negation predicate in Prolog is an example of
such a special predicate (see below). In that case, a set of special symbols 8
is added to the signature of the language, and an extra syntactic category is
introduced: special expressions. The following modification of Definition 1.1.1
is used:

1 Variables :1:and parameters c E Q are expressions.
2 If t, t1, . . . ,t,, are expressions, then (t)(t1, . . . , tn) is an expression.
2’ If p E S, and t1, . . .,t,, are expressions, then p(t1, . . .,t,,) is a special ex

pression.
3’ If A is an expression, then -IA is an expression; If A is a special expression,

then fiA is a special expression.
A V B is a special expression if both A and B are special expressions or
if one among them is a special expression and the other is an expression.
A V_Bis an expression if both A and B are expressions.
Similarly for the other binary connectives.

4’ V:c(A) is an expression if A is an expression; it is a special expression if A
is a special expression.

In particular, special expressions do not occur as terms, predicates, or func
tions, in expressions and special expressions. Special parameters only occur as
predicates in special expressions.
Special definitional clauses can also introduce parameter symbols which only
occur with fixed arities.

0 The syntax of Prolog is a specialisation of full ambivalent syntax, and shares
some of the properties of the above specialisations. In Prolog’s syntax, only
parameters are allowed in predicate and function positions. In addition, Pro
log has a special predicate not, which is only allowed to occur in predicate
positions. A representative part of Prolog’s syntax can be described as follows:
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1 variables :1:and parameters c E G’are expressions.
2 c(t1, . . . , tn) is an expression if c E G and t1, . . . , tn are expressions.
3 not(t) is a special expression if t is an expression.
4 fail and ! are special expressions.
5 every expression is a special expression.
6 t 4- t1,...,t,, is a Prolog clause if t is an expression and t1,...,t,, are

expressions.
7 every expression that is not a variable is a Prolog clause.

Other features of Prolog’s syntax can be incorporated in this framework, such
as the Prolog built in predicates assert and retract, which take Prolog clauses
as arguments.

o The ambivalent syntax described in Kalsbeek [Kal95a] and Chapter 2 is a
specialised version of full ambivalent syntax. It differs from full ambivalent
syntax in the following ways:
1. Only atomic expressions are allowed to occur in term positions.
2. Only parameters are allowed to occur as functions and predicates.
In particular, variables are not allowed to occur in formula positions. A full
description can be found in Chapter 2.

1.2 Semantics

We have chosen to develop a closed term semantics for AL for the purpose of this
paper. All of the definitions we give can be adapted to special versions of AL such
as Prolog’s syntax.

Formally, a structure M for an ambivalent language Lg (the underlying language
of M) is a tuple (D, T), where

1. D, the domain of M, is the set of closed expressions of Lg;
2. T, the truth set of M, is a subset of the set of closed atomic expressions of Lg.

The satisfiability relation for closed expressions in a structure M = (D,T) is
inductively defined as follows:

1.2.1. DEFINITION.

Ml=AL A iff A E T where A is a closed atomic expression
.A’ll=ALA /\ Biff./\/1l=AL A and A/1l=ALB
M|=,4L -1A iffMtEAL A
M|=_4L V:z:Aifi' for all d E D, M|=AL A{x/d}
Disjunction, implications, equivalence and existential quantification are defined in

the standard way. El

Several things are worth noting at this stage.

0 Closed expressions can be evaluated as sentences in a model. At the same
time, they constitute elements of the domain.
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0 A closed expression, evaluated as a sentence, in a model, has a unique truth
value. Thus, while there is syntactic ambivalence, there is no semantic ambi
guity.

o The truth values of atoms are, in principle, not related to the structure of
expressions which occur in them as subterms. That is, for example, the truth
value of an atom p(s/\v) is in principle not related to the respective truth values
ofp(s) and p(t). A similar distinction holds for the relation between outside and
inside quantifiers: The truth value of \7’:v.p(f is independent of the truth
value of p(\7’:c.f The latter is decided by a checking whether the atom
p(V:I:.f belongs to the truth set, while the former is decided by checking
whetherp(f belongsto the truth set, for each elementd in the domain. In
certain applications, such as formalisations of knowledge and belief, it might
be desirable to have explicit relations between inside and outside quantifiers,
or between outside and inside connectives such as the above. The soundness
and strong completeness theorem 1.4.1 that we will prove in Section 1.4 shows
that such relations may be implemented by axioms.

o It should be 1oted that ‘similar’ expressions like, for example, V:c.f and
Vy.f (y) constitute different, and unrelated, objects in the domains of models.
That is, the truth valuesof the closedexpressionst(\7’:c.f and t(\7’y.f
need not be the same. This may be counterintuitive, and even undesirable in
some applications. Extra assumptions on the truth sets T may impose that ex
pressions which are similar under appropriate renaming of the bound variables,
behave similarly as elements of the domain. This in its turn should then be
matched with an appropriate rule in the derivational calculus. In contrast, for
outside quantifiers the following relation, familiar from FOL, holds: M |= \7’:z:A
iff M |= \7’yA{:z:/y} , if y is free for :1:in A.

0 It should be observed that in the above interpretation of the quantifiers (the
substitution interpretation), there is no real semantic second order quantifi
cation: the quantifiers range over object in domains, and not over subsets of
domains. Thus, while syntactically AL allows for second order features such as
quantification over functions and predicates, its closed term semantics is first
order.

We will use the following standard notions.

1.2.2. DEFINITION. Let A be a closed expression and let S be a set of AL sentences.
S is satisfiable in AL iff there exists an interpretation M such that M|=AL q5for all
¢ 6 S. M is called a model of S in this case.
A is valid in AL, denoted by |=ALA, iff -1A is not satisfiable in AL.
We say that A is a logical consequence of S, denoted by S |=AL A, iff A is true in
every model of S. E]

1.2.3. DEFINITION. A structure M is a Herbrand model for a theory S (M I=’}1LS)
if M is a structure for S and the underlying language of M is the underlying language
of S (that is, if D coincides with the set of closed expressions of the full ambivalent
syntax generated by S E]
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In addition, we can define semantics for all expressions, using assignments (Definition
1.2.5). We need the following standard definitions.

1.2.4. DEFINITION. Let 0 be a substitution {$1/t1, . . . ,:1:,,/tn}. Then its domain
dom(0) and range ran(a) are defined as follows:
dom(0) = {$1, . . . ,:1:,,},
ran(0) = {t1, . . . , tn}
The 0-image of a variable as,denoted as 330,is given as follows:
1:,-0= t,-, for i E [1,n], and
3:0 = 2:, for :1:¢ dom(0).
For expressions t and substitutions 0, to is the result of replacing each free occurrence
of :1:in t by the 0-image of :12. D

1.2.5. DEFINITION.A substitution 0 is an assignment for an expression 3 and an
interpretation M = (D,T), if dom(0) Q FV(s) and ran(a) Q D. E]

1.2.6. DEFINITION.Let 0 be an assignment for t and M. We say that M satisfies
twitha(M,al=t)ifM|=ta. D

As a derivational calculus for Ambivalent Logic we take some standard system of
natural deduction. The resulting derivability relation will, as usual, be indicated by
I-. The deduction rules are defined in a standard way. Consider the usual elimination
rule for the universal quantifier, \7’a;.t/ t{:c/ s}. It has a side condition, which prevents
unintended bindings resulting from the substitution of s for 2:. In the case of AL,
unintended bindings can result, not only from quantifiers in standard places, but
also from inside quantifiers. As an example, ‘v’a:p(3yf (a:,y)) /p(3y f (y, y)) is not a
correct instance of the rule for elimination of the universal quantifier: y is not free
for as in p(3yf(:v. 21))

1.2.7. EXAMPLE.The ambivalent expression p(a) can, among others, be considered
as either a} or :1:(a){a:/p}.The formercorrespondsto the following(stan
dard) instanceofthe introductionruleforthe existentialquantifier:p(a)/
The latter in its turn corresponds to p(a)/El:z:(:z:(a)).

We remind the reader of the following two notions of completeness.

1.2.8. DEFINITION. Let L be a logic with semantic consequence relation |=L and
derivational consequence relation I-L.
L is weakly complete if, for any sentence B, |=L B implies |-,; B.
L strongly complete if, for any sentence B and any set of sentences S, S l=L B implies
S l‘L B. Cl

In the case of first order logic with standard syntax, a restriction to Herbrand
semantics results in the weakening of some of the standard results. A well-known
example is the loss of strong completeness in its full sense. While strong completeness
w.r.t. Herbrand models holds for finite and infinitely extendible theories, it does not
hold for theories in which every closed term of the underlying language occurs in
the theory. The same phenomenon occurs in the context of Ambivalent Logic, as
witnessed by the following proposition.
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1.2.9. PROPOSITION. AL is not strongly complete for infinite theories with respect
to the Herbrand semantics.

Proof: Let t1,t2,t3, . .. be an enumeration of all the closed expressions of an am
bivalent language L.
Then, by the definition of validity in Herbrand models, t1, t2, t3, . . . |=’},L‘v’:z:.:z:.How
ever, t1, t2, t3, . . . I7’‘v’:1:.a: Cl

While a restriction to Herbrand semantics is sensible in the case of logic pro
gramming (logic programs being finite theories), in a broader context it is, in view
of the above proposition, sensible to consider the more general closed term semantics
as the appropriate semantics for Ambivalent Logic.

A more general semantics for AL, with arbitrary domains and, consequently, non
identity interpretation functions, will not be considered in the context of the present
paper. The reason is that, (as remarked in Chen et al. [CKW93]) interpretation of
quantified terms using a non-identity interpretation function requires something like
lambda-abstraction, which considerably complicates the construction of models. In
the next section we argue that the restriction to closed term semantics is not a severe
limitation.

1.3 Equality and Identity
The usual semantics for FOL with standard syntax is different from the closed term
semantics we described above. In particular, in the semantics for FOL, any set
can in principle serve as the domain of a model, and the interpretation functions,
mapping closed terms of the language on elements of the domain, are not necessarily
identity functions. In this semantics, equality is usually interpreted as identity on the
domains, although the equality axioms in themselves do not force this interpretation.
In contrast, closed term models are not appropriate for the identity interpretation
of equality.

Closed term models, however, can be used to represent other models. Hence
they play an important, albeit hidden, role in FOL. Consider the usual proof of the
completeness theorem for FOL, using the Henkin method. The proof in fact consists
of two separate stages, each the proof of an independent lemma. In the first stage,
a consistent theory T is extended to a maximally consistent Henkin theory T*, for
which a Herbrand model H is constructed. H is a closed term model for the theory
T, and, in presence of equality in the language, equality is interpreted in H as an
equivalence relation which is also a congruence with respect to the predicates and
functions. The second stage of the proof is merely motivated by the convention to
interpret equality as identity. From H, a model M for T‘ is constructed, the domain
of which consists of the equivalence classes in H under equality. The valuation
function of M is ‘inherited’ from H. This second stage can be interpreted as the
proof of a representation lemma, which expresses that for every closed term model
H there exists an elementary equivalent model M in which equality is interpreted
as identity. This representation lemma can be reversed. Let M = (DM, VM) be a
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model. A closed term model H is now constructed as follows. Define a function

f from the closed terms of the language to be interpreted to the domain of M,
which is defined by f (t) := tM. Now define the valuation function VH as follows:
VH(P(?)) := VM(P(fi). Now H and M are elementary equivalent, and equality is
interpreted as just another binary predicate in H, satisfying properties dictated by
the equality axioms.

The two sides of this representation result together in fact show that there is a
bijection between the class of closed term models and the class of general models
(modulo isomorphism). It also shows that there is no inherent need to interpret
identity as equality. The interpretation of equality as identity forces the choice of
the usual semantics of FOL — if this restriction is abandoned, closed term models
are a sound and complete semantics for first order logic with equality, provided the
truth sets satisfy the properties dictated by the equality axioms. What we have
argued here are several things. First, the usual axioms for equality do in themselves
not force the identity interpretation. Second, if the usual identity interpretation
of equality is abandoned, we can restrict ourselves to consideration of closed term
models without loss of generality.

In particular, we can incorporate equality in Ambivalent Logic without changing
the style of the semantics for Ambivalent Logic. In the closed term semantics,
equality will not correspond to real identity on the domains.

Let us consider, in some more detail, the usual equality theory ET for FOL. It
can be axiomatised (abstracting from arities) as follows:

(I) V1222:= as

\7’:1:‘v’y(:z:= y —-+y = :3)

\7’:1:Vy‘v’z(:I:= y —> (y = z —) 2: = 2))

(II) Va:VyVt(a:= y —)t = t{:z:/y})
(III) \7’:1:‘v’y‘v’t(z= y —->(t —)

We obtain an appropriate closed term semantics for AL extended with these
equality axioms, by additionally restricting the truth sets to satisfy the corresponding
properties. In particular, ET(I) requires truth sets on which = is an equivalence
relation. ET(I,II) requires truth sets T (say, with underlying language Lg) which
additionally satisfy the following: if d = c E T, and t is an Lg-expression with only
:1:free, then t{a:/d} = t{:c/c} E T. ET as a whole requires truth sets T which in
addition also satisfies the following property: for all closed Lg-expressions d and c,
and for all Lg-expressions t with only :1:free, if d = c E T, then t{:r/d} E T iff
t{:z:/c} E T.

Observe that, in the context of the closed term semantics style, we are not com
mitted to ET as a whole. In particular, there are interesting differences between AL
+ ET(I,II) and AL + ET, which we will more closely consider in the next section.

In the sequel, when we consider AL, we explicitly mean AL without equality. If
we consider either of AL + ET(I), AL + ET(II), and AL + ET, we will implicitly
assume that the semantics satisfies the corresponding conditions mentioned above.
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1.4 Formal results

In the present section, we set out to develop some basic theory for Ambivalent Logic.
First, we prove soundness and completeness of AL w.r.t. the closed term semantics.

1.4.1. THEOREM.
AL is sound and strongly complete with respect to the closed term semantics;
AL is strongly complete for infinitely extendible theories with respect to Herbrand
semantics.

Proof: Soundness is left to the reader. The completeness proof followsthe standard
completeness proof for FOL.

Let S be a consistent AL theory with underlying language L = Lg. First extend
S to a Henkin theory S*, as follows.

Extend the set of generating constants Q with a new constant d, and let L’ = LgU{d}.
Let ¢1,¢2,¢3, . .. be an enumeration of all the expressions of L’ with only 1:

free. Let d1, d2,d3, . . . be an enumeration of all the closed expressions of L’ that are
not expressions of L. A carefully chosen subset of these expressions will serve as
Henkin constants. Define C" as the set of closed expressions that occur as terms in
d>1 A . . . /\ qbn.

Define
So I: ,
m1 := min{k|d;, ¢ C1},
S1 2: S0U —)¢1(dm1),
mn+1 3: minlk > mnldk Q’Cn+1},
Sn+1 3: Sn U {3$-¢n+1($) ") ¢n+1(dmn+1)a
S‘ := US”.

S* is a Henkin theory. Conservativity of S,,+1 over Sn can be proven in the usual
way. Therefore, S* is conservative over S and thus consistent.

Next, extend S*to a maximally consistent theory S”, by the Lindenbaum lemma.
The language of Sm is L’, and Sm is a Henkin theory. A model M = (D, T) for S”
is obtained as follows. Let D consist of all the closed expressions of L’. Let T consist
of the closed atomic expressions that belong to Sm. By induction on the complexity
of sentences, M is a Herbrand model for S”. By Conservativity of Sm over S, M is
a closed term model for S.

For infinitely extendible theories a model can be constructed in a slightly more
elegant way. The closed expressions of L that do not occur as terms in the theory
can be used as the Henkin constants. The resulting model is a Herbrand model for
the theory. C]

We leave it to the reader to check that the above result also goes through for AL
+ ET(I), AL + ET(I,II), and AL + ET.

1.4.1. PROPOSITION. Let S be a finite set of AL expressions, in which at least one
parameter occurs. Then S is infinitely extendible.

Proof: Let g be a parameter occurring in S. Then g, g(g), g(g(g)), . . . is an infinite
set of closed expressions in the language underlying S. In contrast, the number of
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closed expressions of this language that occur as terms in expressions of S, is finite,
as S is a finite set. D

An immediate consequence of the above theorem and proposition is the following.

1.4.2. COROLLARY.Every sattsfiable AL sentence has a Herbrand model.

The following notion of normal form is the appropriate version for AL.

1.4.3. DEFINITION. An expression F is in normal form if F E Q1:c1,. . .,Q,,a:,,.t,
where

1. The Q, are quantifiers ‘V’or 3.
2. t is built up from atomic expressions and the connectives n, V, and A; in

particular, in any subexpression of t of the form Qy.s, where Q is a quantifier,
Q is an inside quantifier.

3. The variables :3, are mutually distinct.
4. If Qy.s is a subexpression of t, where Q is an (inside) quantifier, then y is

distinct from any of the 1:,-. El

1.4.4. LEMMA. For every formula F there is an equivalent formula F’, such that F’
is in normal form.

Proof: By the usual methods. E1

The Skolem form F 3 of a normal form expression F can be obtained by the
usual methods (cf., for instance, Schoning [Sch89]for an algorithm to obtain Skolem
forms). Observe that Skolemisation does leave the inside quantifiers and connectives
intact.

Next we prove an AL version of the usual s-equivalence theorem. The proof
differs from the usual proof in a crucial aspect. In the usual proof, essential use
is made of the option to use non-trivial interpretation functions on domains. In
particular, a model M for a normal form formula F is extended to a model for its
Skolem form by extending the signature of M with functions on its domain that
interpret witnesses of the existential quantifiers. In the case of Ambivalent Logic,
this construction cannot be used, as we do not allow for non-trivial interpretation
functions. For clarity of this exposition, assume that M is a Herbrand model for F.
The introduction of the Skolem functions then results in a proper extension of the
domain of M. As a result, instead of obtaining a model M’ for the Skolem form by
a proper extension the interpretation valuation functions of M, a new model has to
be constructed. The upshot is that this new model M’ is a Herbrand model for the
Skolem form F ‘, in this sense the result below is stronger than the corresponding
usual result for FOL. However, the construction of M’ is a bit more involved in the
ambivalent case. The truth set T’ of M’ is obtained by projecting the expressions of
the extended language on the expressions of the original language, and by the taking
T’ as the pre-image of T under this projection. The projection (translation) is the
identity function on the original language.

The proof we give here is given for the case of AL, but can be generalised to FOL
and intermediate cases.
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1.4.2. THEOREM. (s-equivalence) For every closed expression F in normal form,
F is satisfiable ifi its Skolemform is satisfiable.

Proof: Let F = V:z:1Ely1...Va:,,EIy,,.¢,where all outside quantifiers are indicated.
Let Lg be the underlying language of F.
Let fl, . . . , fn be new parameters not occurring in qb.
Let L’ = Lgu{f1....,r..}
Let F‘ = \7’:z:1...V:z:,,.¢{y1/f1(:z:1),...,y,,/f,,(:c1,...,:cn)}.
Let Q5’= <,b{y1/f1(:1:1),.. .,y,,/f,,(a:1,. . .,:1:,,)}, that is, F‘ = Va:1...V:1:,,.¢’.

The proof of the left-to-right direction is as usual. For the converse direction, let,
(by Corollary 1.4.2), M = (D,T) be a Herbrand model for F; here, D consists of
the closed expressions of Lg. We can now, as usual, by the axiom of choice, define
(external) functions 121,.. . , 12,,on D, such that for all d1, . . . , dn 6 D

My{$1[d17y1[v1(dl))' ' '1$n[dnaynlvn(d17-' °3 l:

We construct, using M and the functions v1,. ..,v,,, a Herbrand model M’ =
(D',T'), where D’ consists of all the closed expressions in L’, such that M’ |= F 3.
Observe that D is a strict subset of D’.

We will define the truth-set T’ using the following translation (or projection) (-)*
of expressions of L’ into expressions of Lg.

ForallcEQ,c*=c
For all variables 2;, let a:* = :1:
For f,-, choose a c,- E Q, and let f,-*= c,
Ift = f,- and n = i, let (t)(t1, . . .,t.,,)* = v,-(t‘1‘,. . . ,t’,-*);
Otherwise, (t)(t1, . . . ,t,,)* = (t*)(t’{, . . . ,t’,9‘).
(A V B)* = A‘ V B* and similarly for other binary connectives
(fiA)* : TA*

0 (V:z:(A))* = Va:(A*)
o (3a:(A))"‘ = El:r:(A*).

Now for all expressions t in Lg, t* = t. In particular, (¢)* = <1).Also, let t be an ex
pression in Lg, and let 0 = {zl/s1, . . . , 2;,/sk} be a substitution such that the s,-are
L’-expressions. We leave it to the reader to check that (to)* = t*{z1/s’{, . . . , zk/s,";} =
t{z1/s1‘,. . . , zk/ Therefore, the followingequation (II) holds:

(¢'{=v1/d1).- - wxn/d71})* =
= (¢{$1Ld1ay1L.f1(d1)a° ' ' 7xnldna ynL.fn(d1a ' ' ' 3dn)})*

¢*{-T1/dla yl/(f1(d1))*a - - - a-Tn/div 3/n[(fn(d1a - - - 7dn))*}
¢>{=v1/dI,y1/v1(di). - - - ,a=n/diuyn/vn(dl, - - -,d2;)}

Now define the truth set T’ as follows:

T'={t€L':t*€T}

By induction it follows that for all sentences A in Lg,

M’|=A iff M|=A“.
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In particular, by (I) and (II), M’ I: F 3. Cl

Another folklore result is Herbrand’s theorem:

1.4.3. THEOREM. A closed formula in Skolem form with matrix F is unsatisfiable
iff there is a finite subset of the Skolem expansion of F which is unsatisfiable.

The usual proof of the above theorem goes through, without modification, for Am
bivalent Logic.

All of the above results (1.4.1 to 1.4.3) also hold for extensions of AL with any
of the above-mentioned equality theories.

We have proven some of the essential ingredients to prove soundness and com
pleteness of resolution for Ambivalent Logic: the construction of Skolem forms, the
s-equivalence theorem and the Herbrand theorem. The missing ingredients for the
completeness of resolution are the lifting lemma (which allows a transformation of
resolution refutation on clauses in propositional logic to a resolution refutation on
clauses in predicate logic), and decidability of unification for Ambivalent Logic. The
traditional proof of the lifting lemma goes through, without modification, for Am
bivalent Logic. Unification theory for Ambivalent Logic will be discussed in Section
1.5. The traditional proof of soundness of resolution for FOL (see for instance
Schoning [Sch89]) goes through, without modification, for Ambivalent Logic. We
conclude that, modulo the results on unification in the next section, we have the
following result:

1.4.4. THEOREM. Resolution is a sound and complete inference method for AL.

We conclude this section by proving one more result. Given the fact that AL is a
syntactic extension of FOL, and has the same derivational calculus, the question of
conservativity of AL over FOL arises, that is: if a formula qfiin standard syntax is
derivable in AL, is it then also derivable in FOL — and vice versa? The answer, as the
following theorem shows, is affirmative. This result shows that AL is an extension of
FOL. The proof uses both directions of the above s-equivalence theorem 1.4.2. The
technique used in the proof is similar to that used in the proof of Theorem 1.4.2:
from a model, a new, ambivalent model is defined, the truth-set of which is a pre
image of a syntactic projection to the truth-set of the original model. In this case, a
Herbrand model for a language with standard syntax, is extended to an elementary
equivalent Herbrand model for the associated ambivalent language.

1.4.5. THEOREM. Let qbbe a formula in standard syntax. Then |=poL gt ifi" |=AL qb.

Proof: The left-to-right direction follows from the fact that every derivation in
FOL is also a derivation in AL, combined with completeness of FOL, and soundness
of AL. For the converse direction (conservativity of AL over FOL), it suffices, by
contraposition, to show that if gt)is satisfiable in FOL, then it is also satisfiable as
an AL formula.

So let 915be satisfiable in FOL. Without loss of generality we can assume that qb
is in normal form. By the s-equivalence theorem for FOL, the Skolem form qb‘is
also satisfiable. In particular, there is a Herbrand model M = (D, T) satisfying 43‘.
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Using M, we will construct an ambivalent Herbrand model M’ = (D’,T’) satisfying
<15‘

Let C’,F, and P be the set of constants, respectively functions, respectively
relation symbols occurring in d)’. Then the universe D of M is generated by (C, F
Let D’ be the ambivalent universe generated by the parameter set C U F U P. In
order to define the truth set T’, we will make use of a (total and surjective) function
(-)"'from D’ to D. (The definition of * is inspired by the abstraction function defined
in Chapter 2; here, we use, instead of fresh constants, some element of D.)

Choose an arbitrary d E D. Define * 2D’ —>D as follows:

1. Force CUFUP,
c* := c if c E C
c* := d otherwise.

2. for closed terms (t)(t1, . . . , tn),
((t)(t1, . . . ,t,,))* := t(t1*, . . . , t,,*) ift is an n-ary predicate in P
(t) (t1, . . . , t,,)“‘ := d otherwise.

3. For all other t E D’, t* := d.

Observe that, for every t E D, t* = t.
Using the function *, the truth set T’ of M’ can now be defined as follows:

T’={t€D’:t*€T}.

Now let gb’= V121. . .\7’a:,,.A,where A is a conjunctive normal form.

./Vt l=poL V1131. . .V.’12n.A

=> {by definition of the satisfaction relation}
fOI' all d1, . . .,dn 6 D ./A/ll=FOL A{$1[d1, . . .,.’I7n/dn}
=> {by definition of * and by the form of A}
for all d1, . . .,d,, 6 D’, M I=poL A{:z:1/d1*,. . .,:z:,,/d,,"‘}
=‘~ {by definition of T’}
for all d1, . . .,d,, E D’, M’ |=AL A{:1:1/d1,. . .,2:,,/dn}
=> {by definition of the satisfaction relation}
M’ |=ALVa:1...V:z:,,.A.

From the above implication and the easy side of the s-equivalence theorem 1.4.2, it
immediately follows that M’ is a closed term model satisfying <15. E]

The soundness direction of the above theorem generalises to AL + ET(I), AL +
ET(I,II), and AL + ET. The completeness side however, trivially does not hold for
either of AL + ET(I) and AL + ET(I,II), as FOL incorporates all of ET.

Although AL + EQ(I,II) is not conservative over FOL for formulas with equality,
this logic is of some interest in the context of intensional logic. By the soundness and
completeness w.r.t. the appropriate semantics, it does not satisfy ET(III) — there
fore, it is opaque w.r.t. substitutions of equal terms. In addition, by the ambivalent
syntax of AL, which allows for all expressions to occur in term positions, AL +
EQ(I,II) has identity naming, that is, expressions can be represented by themselves.
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In the domain of knowledge and belief this is a useful property. In contrast, AL +
ET is, by the above theorem, a conservative extension of FOL.

A language with ambivalent syntax was first defined by Richards [Ric74] in the
context of intensional predicate logics. Kowalski and Kim [KK91] advanced ambiva
lent language as appropriate for the Vanilla meta-interpreter, especially for exten
sions of it in the field of meta-logic programming for muti-agent knowledge, and
consequently, Richards [Ric74]has become a standard reference in the literature on
the Vanilla meta-interpreter. It should be observed however, that Richards’ syntax
was devised for a different purpose and has a calculus adapted to this goal. As a
result, standard first order logic with ambivalent syntax is unsound with respect to
the semantics proposed in Richards [Ric74], as the following example shows. Let E
be an ambivalent language with one binary relation symbol R, one unary function
symbolf, and oneconstantsymbolc. ThenVa:R(a:, —>Va:R(f(a:),
should be valid in every model. However, one can construct a model M according
to Richards’ definitions which validates the antecedent, and in which the consequent
is false. Take, according to the definitions in Richards [Ric74], as the domain of
M, DM = {c} U {gb : <156 CLFORM£}. The extension of Q can be taken arbi
trary. V(f ) is the identity function on DM. The extension of R is taken as follows:
V(R) = {(d,Q(d))|d 6 DM}. By Richards’ definition, the interpretation function
"‘ is the identity function on constants and closed formulas. Thus, M validates
V10R(-'v,Q(=v))- However, (f(C))"' = V(f)(C"‘) = 0» While (Q(f(C)))* = Q(f(C))- 30
((f(c))*, (Q(f(c)))*) = (c,Q(f(c))), which does not belong to V(R).

1.5 Unification

In the present section we show how the Martelli-Montanari unification algorithm can
be adapted to the case of ambivalent syntax. We show that the adapted algorithm
(which is defined on page 25) has all the desired properties, in particular, termination
and, in case of successful termination, generation of unifiers which are most general
within an appropriate class of unifiers. We follow the outlines of the theory for
unification as given in Doets [Doe94], to which we also refer the reader for the usual
definitions of unifier and most general unifier.

There are several differences between unification for standard syntax and unifi
cation for full ambivalent syntax.

1. In ambivalent syntax, functions and predicates are arityless. Unification of two
atoms with different arities has to be excluded. An extra action (9) is sufficient:
halt with failure on an equation (t)(t1, . . . , t,,) = s(s1, . . . , sm), if n ;£ m.

2. In the Martelli-Montanari algorithm for standard syntax, there are two actions
for functional atoms:
halting with failure on f(t1, . . . ,t,,) = g(s1, . ..,s,,), if f is unequal to g; re
placement with t1 = .91,. . . ,t,, = s,,, otherwise.
In ambivalent syntax, all expressions can occur in function positions. The
above two actions are replaced by one single action (8), accounting for the uni
fication of the expressions in the function positions as well as the arguments.
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An extra action (10) is needed to prevent unification of functional atoms with
expressions that are not functional atoms or variables. In addition, two extra
actions (6) and (7) deal with unification of parameters.

. In ambivalent syntax, conjunctive, disjunctive, implicational, and negated ex
pressions occur as terms and as subexpressions, thus they are candidates for
unification. For example, :1:V y and a. V c(z) are unified by {:13/a.,y/c(z)}.
This is accounted for in the unification algorithm by the actions (11) and (13).
Appropriate failure conditions are reflected by the actions (12) and (14).

. Likewise, quantified expressions have to be dealt with. For closed quantified
expressions, semantical identity coincides with syntactical identity. However,
quantified expressions in general are still liable for unification. First, they
can unifywith variables.For example,313(3)and y are unifiedby {y/
Further, quantified expressions can contain free variables, which are candidates
for unification. As an example, 3:I:(:I:(y))and 3a:(:1:(c))are unified by {y/c}. In
contrast, 3a:(:z:)and 33/(y) cannot be unified, as both are closed expressions.
Unification of quantified expressions is partly engineered by action (15), which
eliminates identical quantifiers: El:1:.t= 3:z:.sis repaced by t = s, and similarly
for the universal quantifier. In contrast, the semantic distinction between El$.t
and 33/.t{:z:/ y} is reflected in action (16), which halts with failure on equations
E|:I:.t= 3y.s, if :5and y are different (and likewise for the universal quantifier).
However, the (necessary) action (15) might lead to incorrect results, as it re
leases bound variables, which subsequently become, incorrectly, candidates for
non-trivial unification. As an example, action (15) replaces the unsolvable
equation 3:12.13= 3:1:.cwith the solved equation :5= c. (Below we will formally
define the notion of solved equation.) This problem is solved in two ways.
First, before the algorithm is run on a set of equations, all the bound variables
should be renamed to marked variants. An appropriate renaming function will
be given in Definition 1.5.1 below. This enables us to keep track of the origin
of variables during execution of the algorithm.
Second, the algorithm should treat marked and unmarked variables differently.
In particular, marked variables, which should be thought of as bound variables,
only unify with themselves and with unmarked variables. Trivial unification of
marked and unmarked variables is dealt with in action Non-trivial unifi
cation of marked variables with anything but unmarked variables is excluded
by action However,unification of unmarked variables with expressions in
which marked variables occur free, should be possible. For example, consider
the expressions 3a:(p(a:)V and El:z:(yV q(:c)), where y is an unmarked
variable.‘Theseexpressionsare unifiedby {y/ That is, unificationof un
marked variables with expressions in which marked variables occur free, should
be allowed. This is taken care of by action The usual actions (3) and (4)
only apply if the left-hand variables are unmarked.

The appropriate marking of bound variables is obtained by applying a marking
function (-)"‘, which replaces all occurrences of bound variables with marked copies
of these variables. The effect of the marking function is a renaming of the bound
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Martelli-Montanari unification algorithm for ambivalent syntax

:1:= :c where :1:is a (marked or unmarked) variable
remove

:1:’= t where 3:’is a marked variable,
t is not an unmarked variable,
and t is different from :1:’

halt with failure
:1:= t where :1:is unmarked, t is different from :1:,

and :1:occurs in t
halt with failure
= t where :5 is unmarked, t is different from :1:,

and :1:does not occur in t

replace :1:by t in all other equations
t = :1: where t is not an unmarked variable

replace by :1:=t
c = c where c is a parameter

remove

c = t where c is a parameter, t is not a variable
and c and t are different

halt with failure
(t)(t1, . . . ,t,,) = (s)(s1, . . .,sn)

replace by t = s,t1 = 31,. . .,t,, = 3,,
(t)(t1,...,t,,) = (s)(s1,...,sm) wheren=,ém

halt with failure
(t) (t1, . . . , tn) = s where s is not a variable or a functional atom

halt with failure
‘Wt = -13

replace by t = s
fit = s where s is not a variable or a negated expression

halt with failure
t1 0 t2 = s1 0 s2 where 0 is one of the binary connectives

replace by t1 = s1, t2 = s2
t1 0 t2 = s where s is not a variable or of the form s1 0 s2

halt with failure
622:’(t) = Q:1:’(s) where Q is one of the quantifiers 3 and V

replace by t = s
Qzv’(t) = s where Q is one of the quantifiers Eland V,

s is not a variable and s is not of the form Q13’('12)
halt with failure
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variables in an expression, with the effect that no variable occurs both bound and
free after marking.

Before we define the marking function, we introduce some notation. Recall that
(t) (t1, . . . , tn) is a functional atom with n-ary predicate (or function) t, and arguments
t,-. We will use the notation t(a:1, . . .,:1:n) to indicate an expression t for which
FV(t) Q {$1, . . . ,:1:n}.

1.5.1. DEFINITION. (Marking bound variables)

cm = c for parameters c,
23"‘= :1: for unmarked variables :12,
27"”= 1:’ for marked variables 2:’,
((t)(t1, . . .,t..))"‘ = (t’”)( I". -~- J?)

(3a:(t))"‘ -4-3:3’(t{:z:/:13’})"‘ where :1:is an unmarked variable,
(E|:1:’(t))"‘ = 3:12’(tm) where :12’is a marked variable,
and similarly for universally quantified expressions.
In addition, commutes with the logicalconnectives. E]

The unification algorithm for AL will only yield the desired results if applied to
terms in which all the bound variables are marked.

We will use the following terminology:

1.5.2. DEFINITION. An expression t is clean if t’” = t. A set of equations {t1 =
s1, . . . , tn = sn} is clean if all of the t,-and s,-are clean. A pair of sequents (t1, . . . ,tn),
(s1, . . . , sn) is clean if the associated set of equations {t1 = 31, . . . , tn = sn} is clean.
C!

In particular, marked variables can occur free in clean expressions, but in contrast,
the latter do not contain bound occurrences of unmarked variables.

In the correctness proof of the algorithm we need the following notions of am
bivalent substitution and ambivalent unifier:

1.5.3. DEFINITION.o is an ambivalent substitution if no marked variables occur in
the domain of o. E]

1.5.4. DEFINITION. Let t and s be expressions. 0 is an ambivalent unifier for t and
3, if 0 is an ambivalent substitution and to = so. El

Observe that not every unifier is also an ambivalent unifier. For example, while
{2:'/f unifies g(a:’)with g(f (y)), no ambivalent unifiers exist for this tuple. In
contrast, every ambivalent unifier is a unifier.

1.5.5. PROPOSITION. Let L = (t1, . . .,tn) and R = (31, . . .,sn) be two sequents of
clean expressions such that no marked variables occur free in any of the t,- and s,-.
Then L and R are unifiable ifi there is an ambivalent unifier for L and R.

Proof: Suppose a unifies L and R. Now let 7' be the restriction of o to F V(L) U
FV(R). Then, by assumption, 7 is an ambivalent unifier of L and R. For the other
direction, notice that every ambivalent unifier is a unifier. C]

We relativise the notion of most general unifier to the class of ambivalent unifiers.



1.5. Unification 27

1.5.6. DEFINITION. An ambivalent unifier 0 for a set of (clean) expressions E is
a most general ambivalent unifier for E (or, in short, an m.g.a.u.) if for every
ambivalent unifier 0 for E there is an ambivalent substitution 7' such that 0 = 07'.
An m.g.a.u. 0 for E is strong if for every ambivalent unifier o of E, 0 = 60. El

An m.g.a.u. is not necessarily an m.g.u., as the following counterexample witnesses.

1.5.1. COUNTEREXAMPLE.Let 0 = {y/f(:1:')}. It is easy to check that 6 is an
m.g.a.u. for E = {p(Elx’.f(:z:')) = p(3a:’.y)}. Also, 0 = {y/f(:1:’),:1:’/y} is a unifier
of E. However, suppose there is a substitution 7' such that o = 07. Then f (:1:’)*r=
f (a:'), and thus 51:’¢ dom('r). But this contradicts {a:'/y} E {y/f(:z:'

In addition, we need to adapt the notions of solved equation and equivalence
between sets of equations.

1.5.7. DEFINITION. A set of equations {t1 = s1, . . . , t,, = s,,} is solved if
1. the t,- are pairwise different, unmarked variables, and
2. no t,- occurs in any of the sj. C]

A solved set of equations E = {:51= s1, . . .,:v,, = s,,} determines a most general
ambivalent unifier {$1/s1, . . .,:z:,,/sn} for E (or, more precisely, for the associated
pair of sequences (171,. . . , 2:”) and (s1, . . . , s,,)). We need one more definition.

1.5.8. DEFINITION.Two sets of equations of ambivalent terms are equivalent if they
have the same ambivalent unifiers. C]

Now we are in position to prove correctness of the unification algorithm.

1.5.2. THEOREM. The Martelli—Montanariunification algorithm for ambivalent syn
tax, when applied to a finite set of clean equations, results in a solved set of equations,
determining a strong most general ambivalent unifier for the associated sequences in
case an ambivalent unifier exists, and terminates with failure otherwise.

Proof: The theorem follows from the following claims.

1. CLAIM. Every non-halting action applied to a set of clean equations produces an
equivalent set of clean equations.

Proof: None of the actions 1, 4, 5, 6, 8, 11, 13, and 15 introduces a bound, unmarked
variable. Therefore any of these actions transforms a set of clean equations into a
new set of clean equations.

Preservation of equivalence is trivial for the actions 1, 5, 6, 8, 11, and 13. For
action 4, preservation of equivalence is proven as usual.
For action 15, let a be an ambivalent substitution. Then the following holds:

(3a:'(t))o = (3:I:’(s))o‘<=> {:z:’¢ dom(a)}
E|a:'(ta) = 3:12’(so) <=> to = so. El

2. CLAIM. The algorithm terminates.

Proof: Consider the lexicographic order <3 on N3. That is,

(7l1,77«2,’"«3)<3 (m1,m2,m3)
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iff
n1<m1

or n1=m1&n2<m2
or n1=m1&n2=m2&n3<m3.

Given a set of equations E, we call an unmarked variable :1:solved in E if, for some
expression t, :1:= t E E, and this is the only free occurrence of :1:in E. We call a
variable :1:unsolved in E if :c is unmarked and asis not solved in E.

With each set of clean equations E we now associate the followingthree functions:

uns(E) := the number of unsolved variables in E,
lfun(E) := the total number of occurrences of parameter symbols on the left hand

side of the equations in E,
lsym(E) := the total number of symbols (including brackets) occurring on the left

hand side of equations of E.

We claim that each of the non-halting actions of the algorithm strictly reduces the
triple (uns(E),lfun(E),lsym(E)).

Indeed, action 4 decreases uns(E) by 1, while none of the successful actions
increaseuns(E Also,none of the other successfulactions increaselfun(E Action
5 decreases lfun(E) by 1 if t is a parameter, and decreases lsym(E) by at least 1
otherwise. The actions 1, 6, 8, 11, 13, and 15 all decrease lsym(E). Termination of
the algorithm now follows from the well-foundedness of <3.
U

3. CLAIM. If the algorithm terminates successfully on a set of clean equations, then
the final set of equations is solved.

Proof: Suppose the algorithm terminates successfully, resulting in a set of clean
equations E. Then none of the actions 5 —16 applies to E, so the left hand ex
pressions are all variables. Action 2 does not apply to E, so these are all unmarked
variables. Finally, actions 1, 3, and 4 do not apply to E, so none of these variables
occurs on the right hand side of any of the final equations. El

4. CLAIM. If the algorithm halts with failure on a clean set of equations, then this
set does not have an ambivalent unifier.

Proof: Suppose the algorithm halts on the clean set E. If failure is the result of
action 2, then the equation 2:’= t, where t is different from :12’and t is not a variable,
is a member of E. Clearly there are no ambivalent unifiers for :3’= t. If failure is
the result of action 3, then :1:= t is an element of E, and there is no unifier o for cc
and t, as $0 is a proper subterm of to. If failure is the result of action 7, then c = t
is an element of E, and there is no unifier o for c and t, because co = c, and to is
either a parameter different from c or an expression that is neither a variable nor a
parameter. In the other cases, similar arguments apply. El
This completes the proof of Theorem 1.5.2. [I]

Clearly, this result is less general than the corresponding result for the original
version of the unification algorithm. First of all, it applies only to those equations
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in which the sets of free and bound variables are distinct. It is an open question
whether this restriction can be dropped. Second, the unifiers generated are most
general only within the class of ambivalent unifiers, that is, those unifiers for which
the domain does not contain any variable that occurs bound in the original set of
equations. Counterexample 1.5.1 above suggests that this restriction can not be
dropped.

As a corollary of the above theorem we now have a decidable unification algorithm
for Prolog syntax. Clearly, in the Prolog case, where quantified expressions do not
occur in term positions, we do not have to deal with the renaming of bound variables.
The relevant actions in the Prolog version of the unification algorithm are the Prolog
actions 1, 3, 4, 5, 6, 7, 8, 9, and 10. We leave it to the reader to check that the
following holds.

1.5.3. THEOREM. The Martelli Montanari unification algorithm for Prolog’s syntax,
consisting of the Prolog actions 1, 3, 4, 5, 6, 7, 8, 9, and 10 results in a solved set
of equations, determining a strong most general unifier in case a unifier exists, and
terminates with failure otherwise.

1.6 Comparison with Hilog

Hilog (Chen et al. [CKW93]) was developed as a language for higher order Logic
Programming. In the discussion below, we assume that the reader is familiar with
Hilog. We will here mainly point out some of the differences and similarities between
Hilog and AL.

AL syntax is an extension of the syntax of Hilog. While the syntax of AL
is fully ambivalent, Hilog syntax is characterised by the occurrence of terms in
formula-, function- and predicate positions. (For example, (c(a))(c), :1:——>p(2:), and
\7’:t3y.(:z:(p))(y)are Hilog formulas.) Other than AL, Hilog does not admit quantified
expressions in any unusual positions. As an example, p(‘v’:z:p(:z:))is an AL expres
sion, but not a well-formed Hilog expression. In either syntax, the parameters are
arityless.

While syntactically AL can be considered an extension of Hilog, the two logics
differ considerably in semantics. The distinguishing feature of the (first-order) Hilog
semantics is that each parameter of the language has a unique intension—that is, the
interpretation function associates with each individual parameter (regardless of its
contextual role), exactly one object in the domain of a model. With each intension
then, several extensions are associated that capture the different contextual roles
of the parameter. This extends to general terms. As a consequence, the schema
V:1:\7’y.(a:= y —>q5(:c) +—>¢(y)) is true in Hilog’s semantics, and also \7’:1:VyVz.(a:=
y —) a:(z) <->3/(2)). In contrast, in the context of AL we have a choice between
validating the above schema or not, by either taking all of ET as the equality theory,
or restricting the equality to ET(I,II). Thus, unlike AL, Hilog is not appropriate for
intensional logics, where opaqueness is usually desirable. (In contrast, observe that
equivalence of terms does not imply their equality in neither Hilog nor AL.)
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Another difference between AL and Hilog is found in comparing their respective
relations to FOL. As we have seen, AL is a conservative extension of FOL without
equality, and AL with the usual equality theory ET is a conservative extension of FOL
with equality (Theorem 1.4.5). In Hilog, conservativity over FOL is restricted to the
classes of equality free formulas and definite clauses in which equality only occurs
in body-atoms. A standard derivational calculus for FOL is sound and complete
w.r.t. AL semantics (Theorem 1.4.1). In contrast, in accordance to the intension of
developing Hilog as basis for Logic Programming, paramodulation is introduced in
[CKW93] as a derivational calculus for Hilog, and its soundness and completeness
with respect to the Hilog semantics is proven. It is also shown that Hilog can be
encoded in FOL, and a standard derivational calculus for FOL can be soundly used
for the derivation of encoded Hilog formulas.

It should be noted that, despite the second order aspects of Hilog and AL syntax,
both are essentially first order theories. In higher order predicate logic, the second or
der variables range over all relations over the intended domain. That is, in higher or
der semantics, functions and predicates are identified with their domain. In contrast,
in Hilog and AL, the ‘second order’ variables range over elements of the intended do
main. As a result, relation comprehension does not generally hold in AL and Hilog.
That is, ElpVa:1. . .\7’$,,(p(:z:1,. . . ,:c,,) (—+¢(:z:1,. . . , :v,,)) is not generally valid in Hilog
and AL. For example, relation comprehension is not true in AL for 3zq(:I:,y, 2). But,
unlike in Hilog, both 3p\/:1:(p(:z:)4-)-=q(:I:))and ElpV:z:(p(:z:)(—> are valid
in AL.

A consequence of the identification of functions and predicates with their ex
tensions in higher-order logic, is that the undecidability of this extensional equality
carries over to the unification problem. Both for AL and Hilog however, unification
is decidable.

1.7 Conclusion

The results reported show that, with minor modifications, basic proof theoretic re
sults for first order predicate logic also go through for Ambivalent Logic. In partic
ular, unification for AL is decidable, and both a standard derivational calculus and
resolution are sound and complete inference methods for AL. A conservativity result
shows that AL should be considered as a (syntactic) extension of first order predicate
logic. All of the results reported relativise to subsystems of Ambivalent Logic that
are frequently used in practice, such as Prolog syntax and the syntax(es) used in
Vanilla meta-programming and data bases. In particular, our results justify the cur
rent practice of using ambivalent syntax in Prolog and Vanilla meta-programming.
In addition, various properties of AL, such as the optional opaqueness with respect to
equality and the flexibility of its syntax, suggest that AL may provide an interesting
format for the representation of knowledge and belief.
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Note

This chapter will appear as [KJ95] “A Vademecum of Ambivalent Logic”, M. Kals
beek and Y. Jiang, in: Meta-Logics and Logic Programming, Eds. K.R. Apt and F.
Turini, The MIT Press, 1995, pp. 27-56.
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Chapter 2
Correctness of the Vanilla

meta-interpreter

We discuss and compare various approaches to correctness of the Vanilla meta
interpreter (procedural, declarative, S-semantics). We compare the typed meta
interpreter with the untyped version, and argue that the procedural correctness proof
for the typed interpreter has great generality. We present a detailed proof of decla
rative correctness in the context of the ambivalent syntax, which is the appropriate
syntax underlying most amalgamated extensions of the Vanilla meta-interpreter.
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2.1 Introduction

In this chapter we study the simplest meta-interpreter for definite logic programs,
usually known as the Vanilla meta-interpreter. In particular, we focus on correctness
results for the Vanilla meta-interpreter. The Vanilla meta-interpreter is a definite
logic program which consists of two parts: a general part V, which consists of an
intensional formalisation of derivability by SLD-resolution from definite object pro
grams, and an object program specific part meta-P, which consists of a meta-level
description of the clauses of an object program P.

2.1.1. DEFINITION.The standard Vanilla meta-interpreter Vp for definite object
programs P.

V [M1] demo(empty) (
[M2] demo(:c&y) <—dem0(:z:), dem0(y)
[M3] demo(a:) <—clause(:z:, y), demo(y)

meta—P [M4] clause(A, B185. . . &B,,) <
for every clause A 4- B1, . . . , B,, in P

[M5] clause(A, empty) (
for every clause A <-—in P E]

In the above, B1& . . . &B,, is an abbreviation for

B1&(B2& ' ' ' (Bn_1&Bn) ' ' '), Tl.> 1,

Additionally, a meta-interpreter for normal programs is obtained by extending Vp
with the clause

[Mn] demo(not :z:)<—-1demo(:2:).

In the context of the present chapter however, we mainly concentrate on the inter
preter for definite object programs.

A correctness result for the Vanilla-meta interpreter establishes that its intended
behaviour is its observed behaviour. Basically, a correctness result for Vp is a
relation between Vp and P of the form

Vp |~ demo(A) iff P |~ A,

where |~ is a semantical consequence relation w.r.t. a preferred semantics (declara
tive correctness), or a relevant derivational consequence relation such as refutability
by SLD(NF)-resolution (procedural correctness). The two directions of the abstract
correctness relation are usually distinguished as soundness (from left to right) and
completeness (vice versa). Various correctness results and their proofs will be dis
cussed and compared in Section 2.2. In addition, we will present one specific cor
rectness proof in some detail in Section 2.4.

One of the problems involved in proving correctness results for the Vanilla meta
interpreter originates in the fact that this program is not well-typed. As an example,
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consider the following object program Q:

19(6) <

r(:z:) <
q($) +- p($)

The associated Vanilla meta-interpreter VQ is

demo(empty) (
demo(:z:&y) (—demo(:z:), demo(y)
demo(a:) <——clause(:c, y), demo(y)
clause(p(c), empty) (
cla/u.se(r(:c),empty) (
cla.use(q(:I:),p(a:)) (

Now consider the variables which occur in VQ above. The variables occurring in
the second and third clause are intended to range over (conjunctions of) object
level atoms, whereas the variables that occur in the last three clauses are meant to
range over the domain of the object program. Thus, intuitively, the Vanilla meta
interpreter is a typed program with two types: the variables occurring in the clauses
[M2] and [M3] are intended as meta-variables ranging over object level atoms; the
variables that occur in the part which represents the object level program, are meant
to be object level variables ranging over object level terms.

Motivated by the observation that the intuitive interpretation of the Vanillameta
interpreter is typed, Hill and Lloyd [HL88]advocate a typed version of the Vanilla
meta-interpreter and prove its (declarative and procedural) correctness. We will
discuss this correctness result for the typed version of Vp in some detail in Section
2.2. However, the untyped version of the Vanilla meta-interpreter, and extensions of
it, are frequently used in general Prolog practice and in applications (see, for instance,
programs discussed in Sterling and Shapiro [SS86]and Kowalski and Kim [KK91]).
Therefore, a correctness result for the untyped interpreter is of interest.

Typically, the untyped Vanilla meta-interpreter does not distinguish between
object- and meta-level variables and terms. As a result, the least Herbrand model of
VQ above contains ‘unrelated’ atoms like demo(r(empty)) and demo(r(r(c)&p(c))),
while the least Herbrand model of the object program Q does not contain the atoms
r(empty) and r(r(c)&p(c)). (Unrelated atoms are meta-level atoms of the form
demo(p(t)), where p is a predicate from the object program while t is a term which
does not belong to the language of the object program — therefore, they do not
correspond to an atom of the object level). This example illustrates that a declara
tive correctness result for the Vanilla meta-interpreter will, in general, not establish
a complete correlation between the least Herbrand models of meta- and object pro
grams. We will investigate in full detail, in Section 2.4, the exact correspondence
between these least Herbrand models. In particular, we will show that the unre
lated atoms occuring in the least Herbrand model of Vanilla can be given a useful
interpretation.

Another issue is the representation of object level predicates and function sym
bols in the meta-program. In principle, two options are available. First, the function
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symbols f and relation symbols p that occur in the object program can be repre
sented by function symbols f’ and p’ in the associated meta-program. Using this
functional representation, object level clauses A <—B1, . . . , Bn are represented in the
meta-program as clause(A’, Bi, . . . , B;,) <—. For a more detailed discussion of the
functional representation and a precise definition of the Vanilla meta-interpreter in
this context we refer to Martens and De Schreye [MS95a].

Second, the naive identity representation can be used. In that case, the clauses
of the object program are represented as in Definition 2.1.1 above. As long as the
Vanilla meta-interpreter is not combined with (clauses from) the object program or
extended with amalgamated clauses (in which atoms from both the object-level and
the meta-level occur), the identity representation we use in Definition 2.1.1 is just
a special case of the functional representation ——every symbol from the alphabet
of the object language being represented by itself. However, in the case of amalga
mated extensions, the underlying language of the meta-program is non-standard. As
an example, consider an extension of VQ above with the object program Q and the
clause demo(q(f +—q(:z:),demo(p(a:)). The non-standard syntax employed here
is characterised by the occurrence of atoms in term positions, obtained by allowing
predicates to occur in function positions (overloading). This is the only form of
ambivalence we will encounter in the context of the present chapter. The Vanilla
meta-interpreter of Definition 2.1.1, which uses the identity representation of the
object level language, is typically suitable for applications in which it is extended
with object clauses and amalgamated clauses such as the above. (Again, we refer to
Sterling and Shapiro [SS86]and Kowalski and Kim [KK91] for examples of applica
tions employing amalgamated extensions or modifications of Vanilla.) In contrast,
the version using a non-identity functional representation is obviously not suitable
for such extensions.

Given the interest of amalgamated extensions of the Vanilla meta-interpreter,
and in view of the fact that Prolog itself employs ambivalent, rather than standard
syntax, an account of meta-logic programming in the context of ambivalent syntax
is of interest. This chapter provides an exploration in this area.

Outline

Section 2.2 provides an overview of the various existing correctness results for the
Vanilla meta-interpreter. In addition, this section contains a proof sketch of the
procedural correctness of the untyped Vanilla meta-interpreter for normal object
programs.

In Section 2.4 we prove a satisfying declarative correctness result for the untyped
Vanilla meta-interpreter for definite object programs in the context of ambivalent
syntax. Section 2.3 provides some technical preliminaries for this correctness proof.

In Section 2.5 we discuss a simple amalgamation.
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Conventions

We will adhere to the following conventions regarding syntax and language of pro
grams.

The underlying language of an object program P is identified with LP, the lan
guage generated by (Rp, .7-'p,Cp)and standard syntax, where Rp, .7713,and Cp are,
respectively, the set of relation symbols, function symbols and constants occurring
in P.

For the underlying language LVPof the associated meta-program Vp we take the
language generated by (”R.V,,,.7'V,,,CV,,),where "RV?= Rp U {demo(-),clause(-,
.7-"VP= .7-"pU and CVP= Cp U {empty}. In the case of the Vanilla meta
interpreter for normal programs, the set of function symbols .7-"VPis extended with
neg(-). Unless otherwise specified, we assume that the syntax of Vp is ambivalent.

In the present context, we do not need a fully ambivalent syntax. A level of am
bivalence allowing atoms to occur in term positions is appropriate for (amalgamated
extensions of) the Vanilla meta-interpreter. More precisely, we will be concerned

with ambivalent term-languages Lamb,for which the set of atoms ATOMcam and the
set of terms TERM3 b are given by the following definition. We assume that the
language is generatednby predicates RL, function symbols FL, and constants CL.

2.1.2. DEFINITION.

ATOMfiamb (1) p(t) 6 ATOMfiamb is an atom if p E R1, and t E TERMLamb;
(2) there are no other atoms.

TERM£amb (1) c E 'I‘ERM£amb if c 6 CL;

(2) x E TERMLamb if :1:is a variable;

(3) t E TERMLamb if t.€ ATOMEamb;
(4) f (t) E TERMfiamb If t E TERMLamb and f 6 FL;
(5) there are no other terms. [II

A justification of this variant on the usual syntax for first order predicate logic is
given in the previous chapter on Ambivalent Logic.

Other conventions regarding the language underlying the meta-program are pos
sible. For example, the logical connective & , which we choose to represent as a
function symbol in the language of the meta-programs, could also be represented as
a relation symbol. Also, more general levels of ambivalence can be allowed in the
syntax. It should be stressed that none of these particular choices affects the results
reported below.

We use some of the basic concepts and results of the theory of logic programs.
We adhere to the terminology used in Lloyd [Llo87]. In particular, Mp will indicate
the least Herbrand model of a program P, and Bp will indicate the Herbrand base.
The set of free variablesof a term t will be indicated by As observed
in Martens and De Schreye [MS95a] and witnessed by the results of the previous
chapter, the basic theory for definite programs as developed in Lloyd [Llo87]holds
without any restriction for programs with ambivalent language, and thus for the
Vanilla meta-interpreter, as long as all the relevant concepts are defined with respect
to the underlying ambivalent language.
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2.2 Correctness of the Vanilla meta-interpreter
In the present section and the two subsequent sections, we set out to investigate the
correctness of the untyped Vanilla meta-interpreter. In particular, we will consider
the meta-program with underlying ambivalent syntax allowing for atoms to occur
as terms. Two different correctness results will be discussed, respectively proved:
procedural correctness, which relates computed answer substitutions (via SLD(NF)
resolution) of the object program and the associated meta-program, and declara
tive correctness, which relates the intended interpretations (i.e., the least Herbrand
models, as we will mainly concern definite object programs) of object and meta
program. The procedural correctness of the untyped Vanilla meta-interpreter will
be shown to be a corollary of the procedural correctness result for the typed Vanilla
meta-interpreter, as proven by Hill and Lloyd [HL88] (2.2.1).. For the declarative
correctness (with respect to definite object object programs) we will present a direct
proof in Section 2.4. Other approaches to declarative correctness are discussed in the
Sections 2.2.2—2.2.3.In addition, we discuss the. alternative approach via S—semantics
in Section 2.2.4.

2.2.1 Procedural correctness

Hill and Lloyd [HL88] prove procedural correctness of the typed meta-interpreter
for normal programs. In their approach, a functional representation of the object
program is used. The procedural correctness of the untyped Vanilla meta-interpreter
(Theorem 2.2.1 below) can be obtained as a corollary of the proof given in Hill and
Lloyd [HL88]. To see this, the following observations suffice. The crucial step in
this proof is to consider, instead of the original typed meta-program Vp, a partial
evaluation V13‘with respect to the atom demo(:z:). More in particular, V; is obtained
by unfolding the atom clause(a:, y) in the (typed version of the) clause [M3], followed
by unfolding the atom demo(empty) in the resulting clauses. It can be easily shown
that, for any object level goal 4- Q, and any derivation d for V; LJ{<—demo(Q)}, any
variable occurring in d is of object type. As a consequence, although both Vp and
V; are typed, the typing plays a negligible role for the queries we are interested in
(demo(Q), where Q is an object level query). Thus, the procedural correctness result
of Hill and Lloyd immediately translates to the untyped Vanilla meta-interpreter for
normal object programs (and thus, by inclusion, for definite object programs). Simi
larly, the proof is insensitive to their particular choice of representation of the object
level language (functional representation), and goes through, without modification,
for the above approach with ambivalent syntax.

As a consequence of the above observations, we have the following result:

2.2.1. THEOREM. (Procedural correctness) Let P be a normal program and 4- Q a
normal goal. Let Vp be as in Definition 2.1.1, extendedwith the clause Then
the following hold:

1. 0 is a computed answer substitution for P U {<—Q} if?’
(9is a computed answer substitution for Vp U {<—demo(Q)}.
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2. P U {(—Q} has a finitely failed SLDNF-tree ifi Vp U {<—demo(Q)} has a
finitely failed SLDNF-tree.

2.2.2 Declarative correctness for normal object programs
In addition to their result on procedural correctness, Hill and Lloyd [HL88] prove
declarative correctness of the typed Vanilla meta-interpreter for normal object pro
grams. As the intended meaning of a normal program, the completion is taken. More
precisely, it is shown in Hill and Lloyd [HL88] that correct answers for comp(P) U
{(—Q} coincide with correct answers for comp(Vp) U {<—demo(Q)} for object level
queries Q. Unlike the proof of procedural correctness, Hill and Lloyd’s proof of
declarative correctness does not generalise to the case of the untyped Vanilla meta
interpreter. The reason for this failure is that ‘the sortedness of domains of models
for the completion of the meta-program plays an essential role in this proof.

The difficulty in getting a satisfactory result on declarative completeness for the
untyped case is illustrated by the restrictions on the results in Martens and De Schr
eye [MS95b]. There, the class of normal programs for which the associated Vanilla
meta-interpreter is shown to be complete, is the class of stratifiable, language in
dependent programs. The correctness result for this class of programs relates the
perfect Herbrand model of an object program with (a suitable subset of) the weakly
perfect Herbrand model of the associated meta-program. A functional representation
of the object programs is used. The results do not depend on this particular choice
of language, and also hold if ambivalent syntax is used as the underlying language
for the Vanilla meta-interpreter. It appears that the restriction to stratifiable object
programs in the results of Martens and De Schreye can be liberated somewhat to
local stratifiability and weak stratifiability. In contrast, the restriction of language
independence, which is closely linked to typing, seems to be crucial. At the same
time, the restriction to language independent programs seriously limits the applica
bility of the result. In practice, as language independence is undecidable, the result
applies to a syntactically defined subclass—the class of range restricted programs.
Range restriction, however, is the exception rather than the rule among the basic
logic programs; e.g., the programs set, list, and member are not range restricted.

Concluding, the declarative correctness result proven in Martens and De Schreye
[MS95b] applies only to a seriously limited class of programs, but it seems that it
defines the boundaries of what can be obtained with respect to the untyped Vanilla
meta-interpreter for normal programs.

2.2.3 Declarative correctness for definite object programs
For definite object programs, a satisfactory declarative correctness result can be
obtained in several ways. First, declarative correctness of the untyped version is a
corollary of the procedural correctness Theorem 2.2.1, by the soundness and (strong)
completeness of SLD-resolution. Again, this result holds both for the Vanilla meta
interpreter using ambivalent syntax and for the version using a functional repre
sentation of the object program. Second, a direct proof can be given, in which,
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by comparing different stages of the relevant fixpoint operators, the following re
lation between the least Herbrand models Mp en MVP of respectively the object
program and the associated meta-program is established: For all object level atoms
A, A E Mp iff dem0(A) E MVP. We will present a proof of this correctness result
(Theorem 2.4.1) in Section 2.4.

Typically, as observed in the introduction, this declarative correctness result for
definite object programs relates the least Herbrand model Mp of an object program
P to the subset of the least Herbrand model MVPof the associated meta-program,
not containing ‘unrelated’ atoms. In a corollary to the declarative correctness result
Theorem 2.4.1, we obtain a satisfactory interpretation of unrelated atoms: the met
alevel terms occurring in these atoms can be interpreted as variables ranging over
the object level terms (Corollary 2.4.7).

A stronger correlation between the least Herbrand models Mp and MVP is es
tablished in Martens and De Schreye [MS95a] for the class of language independent
definite object programs. A program is language independent if its least Herbrand
model is not affected by extensions of the underlying language. More practically, the
class of language independent programs can be characterised as the class of programs
for which every computed answer substitution is ground. For language independent
programs P, not only the above correctness result holds, but also the followingprop
erty. If demo(p(t) E MVP,and p is a predicate occurring in P then t must be a closed
term in the language .Cp underlying P. In other words, unrelated atoms do not occur
in MVP, provided the object program P is language independent.

The real interest of the Vanilla meta-interpreter lies in extensions. Enhanced
meta-interpreters are obtained from the Vanilla meta-interpreter by allowing extra
arguments in the demo-predicate and extra body atoms in the clauses of the general
part V. The resulting program is then extended with clauses defining the new pred
icates. In general, enhanced meta-interpreters can not be expected to be complete
w.r.t. object programs. In many applications, soundness rather than completeness is
desired. Martens and De Schreye [MS95a] prove declarative soundness for enhanced
meta-programs w.r.t. language independent programs. In addition, they obtain sev
eral correctness results for amalgamations of language independent object programs
and the "Vanillameta-interpreter. We generalise their correctness result for the tex
tual combination Vp + P of Vanilla with an object program P, to the class of all
object programs (Section 2.5).

2.2.4 S-semantics

A different approach to proving correctness of the Vanilla meta-interpreter for defi
nite programs is the use of S-semantics. The S-semantics was introduced by Falaschi
et al. [FLMP93] to close the gap between the procedural and the declarative inter
pretations of definite programs. Essentially, the (unique) least S-herbrand model
M15;of a program P consists, modulo renaming of variables, of those (not necessarily
closed) atoms Q(t) such that t = 230,where 0 is the computed answer substitu
tion for P U {<— Analogousto the usual least Herbrand models, the least
S-Herbrand models are the least fixed points of a proper version of the T-operator
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on subsets of the S-Herbrand base. Two properties are of interest in the present
context. First, as observed in Levi and Ramundo [LR93], the S-semantics is inde
pendent of the language. Second, while the S-semantics provides a declarative way
to express the procedural interpretation of a program, the least Herbrand model of
a program can be computed from its S-semantics (by taking all the ground instances
of its elements).

Independently, Levi and Ramundo [LR93] and Martens and De Schreye [MS95a]
proved the followingstrong correspondence between the S-semantics of a definite ob
ject program and the S-semantics of its related Vanilla meta-interpreter: demo(p(t)) 6
M3? iff t is an object level term and p(t) 6 Mi. As observed by Levi and Ra
mundo [LR93], both the procedural and the declarative correctness of the Vanilla
meta-interpreter for definite programs are a consequence of this correctness theo
rem w.r.t. the S-semantics. In particular, it subsumes the results proved in Section
2.4. It should be remarked that the approach via S-semantics only applies to the
case of definite programs, as an S-semantics for normal programs is not completely
developed.

The approach via S-semantics has various interesting applications. Brogi and
Turini [BT95] obtain in this context elegant equivalence proofs for the procedural
and the meta-logical definition of basic composition operators for the construction
of composite object programs. A binary demo-predicate is defined, the extra argu
ment of which explicitly denotes the interpreted object program as a term built up
from program constants and the composition operators. This predicate also differs
from the unary demo predicate defined in the Vanilla meta-interpreter in that it
represents the object clauses, so that an extra predicate clause is not used. The
above cited correctness result for the Vanilla meta-interpreter in the contex of S
semantics is a special case of the more general results in Brogi and Turini [BT95].
Levi and Ramundo [LR93]obtain a correctness result for enhanced meta-interpreters
defining inheritance mechanisms on structured object programs. In addition, they
show that the linear overhead of meta-computation via the Vanilla meta-interpreter
can be eliminated by specialising the meta-interpreter. In contrast, Martens and
De Schreye give a counterexample, showing that in the context of S-semantics even
soundness cannot be expected for the general class of enhanced meta-interpreters.
They prove that language independence of the object program is a sufficient condi
tion for soundness of enhanced versions of Vanilla.

2.3 Preliminaries on substitution

As we observed in Section 2.1, one of the problems involved in proving correctness of
the Vanilla meta-interpreter Vp results from in the fact that the £V,,, the language
underlying Vp, is in several ways an extension of the language £p underlying the
object program P. First, the ambivalent syntax of LV,, can be considerd as an
extension of the standard syntax of LP. Second, the sets of predicates RV},occurring
in Vp is a proper extension of the set of predicates “RP occurring in p. Similarly,
.71: C .7-"VP,and Cp C CVP. We will first formalise this notion of extension of a
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language.
For this purpose, we identify languages L with pairs (L, S), where L is a triple

(R,-,,FL,CL), indicating the non-logical constants of L, and where 5' indicates the
particular syntax of L (standard or ambivalent). We will only consider languages,
which, like Lp and LV,,,have no logical constants—that is, languages of which the set
of formulas consists of atoms only. This is not a necessary restriction, and the theory
developed below can be generalised to the case of languages with connectives and
quantifiers. In addition, we confine the discussion to atoms-as-terms ambivalence.
Again, this is not a necessary restriction. Also, the theory below easily generalises
to suit comparison of two languages with a different level of ambivalence. In the
remainder of this section, if we mention ambivalent syntax, we always intend atoms
as-terms ambivalence, as in Definition 2.1.2.

2.3.1. DEFINITION. For two languages L = (L, S) and L’ = (L’, S’), we say that L
is part of L’ (L Q L’) if

1- RL Q RU, FL Q FL’: and CL Q CL’;

2. S is standard syntax and S’ is ambivalent syntax. D

Typically, the underlying language of an object program P is part of the language
of the associated meta-interpreter Vp. An easy consequence of the above definition
is the following:

2.3.2. LEMMA.‘Let L and L’ be two languages such that L Q L’. Then TERM; Q
TERM[_r and ATOM; Q ATOM,;r.

In the remainder of the present section, we will always suppose L Q L’, as defined
above.

A crucial step in the correctness proof for the Vanilla meta-interpreter which we
present in Section 2.4, relies on a shift from (sub)terms of the language underlying
Vp to terms of the language underlying an object program P. In the remainder of the
present section we define and discuss the necessary transformation (Definition 2.3.3).

If one takes a closer look at the (tree-)structure of a term t of L’, one sees
that certain subterms of t are terms of L, while others are proper L’-terms. By
substituting in an L’-term t all of its subterms which are proper L’-terms by variables,
one can transform t into an L-term, as follows: One can descend in the term-tree
of t until one encounters a symbol s that is either a predicate, or a function symbol
or a constant in L’, but not a constant or function symbol of L; replace the subtree
starting with s with a fresh variable which does not occur in t. This procedure
yields a term of L. Moreover, this can be done in a systematic way, by replacing
equal terms by equal variables. The L’/L-abstraction, which formalises this idea,
thus transforms terms from L’ into terms from L (Definition 2.3.3). Moreover, the
transformation is reversible (Lemma 2.3.6).

2.3.3. DEFINITION. Let L Q L’, and let t be a term of L’. The L’/L -abstraction of
t, abs 5:/£(t), is inductively defined as follows:



2.3. Preliminaries on substitution 45

abs 5:/;(a:) = :1: if :1.‘is a variable;
absg/5(c) = C C6 CL;
absg/5(0) = zvc if'c 6 CL: \CL,
absg/5(f(t1,. . . , tn» = f(absg/£(t1),. . . , absg/£(t,,)) f 6 FL;
3-b5£’/£(f(t1a - - - 7tn» = 33f(t1,...,t,,)

iff E RLI U (FL! \ FL).

Here, me and a:f(t1,___,tn)are variables. El

2.3.4. EXAMPLE.Let L be the underlying (standard) language of an object program
P such that Rp‘= {p}, .7-"p= {f(-),g(-, and Cp = Let L’ be the underlying
(ambivalent) language of the associated meta-interpreter Vp. Then
absg/£(demo(f(c))) = .’13demo(f(c))
abs.’/.<r<c>> = f(c)
absw/c(P(f(C))) = $p(f(c))
absL’/L(.f(e7npty)) = .f($empty)
absL’/L(g(dem0($)! C» : g(absL’/L(dem0($))a absL’/13(6))= g(xdemo(a:)1C)' D

Implicitly we have assumed that we have extended the set of variables of L with a
set of fresh variables which are indexed by L’-terms. This means that, while our
purpose was to get a term of L as the result of an abstraction operation, we get a
term in a language which is in fact an extension of L. However, by renaming the
fresh variables in absg/£(t), we can get a term of L proper. The following lemma
immediately follows from the above definition:

2.3.5. LEMMA. Let t be a term of L. Then the following hold:

1. absg/£(t) is unique;
2. abs 5:/_,;(t)is, modulo renaming of variables, a term of L.

The abstraction operation is reversible, as the following lemma shows. We will
sometimes write the application of a substitution 0 to a term t as t -0, to increase
readability.

2.3.6. LEMMA. For every term t in L’, there is an L-substitution at, such that
t = absg/£(t) -at.
PROOF: Define at by induction on the term structure of t, as follows:

0,, = (D if c 6 CL;
0,, = 0 if :1:is a variable

without an index from TERM£1;
0% = {arc/c} if c 6 CL: \CL;
of(¢,,___,tn)= 0,, U . . . U at” if f 6 FL;

0',,f(t1.___’tn)= {$f(t1,___,tn)/f(t1,. . . , tn)} f E RLI U (FL! \ El

2.3.7. EXAMPLE. Let L and L’ be as in Example 2.3.4. Then
f (demo(c)) = f (a:demo(c)){xdemow/demo(c)}
g(f (demo(c)).empty) =

g(f($demo(c))a -Tempty){($demo(c)/dem0(C)a xempty/empty} D
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In the correctness proof, we will use not only the concept of abstraction of terms,
but also the more general concept of abstraction of a substitution. The abstraction
of a substitution is obtained by applying the abstraction function to its substituents.

2.3.8. DEFINITION.Let 0 be an L-substitution. The £’/L -abstraction of 0, written
as abs 5:/5(0), is defined as follows:

absg/5(0) = {a3/absg/£(t) : :1:/tE 0}.

The following lemma characterises the connection between the E’/L -abstraction of
an L’-ground term t and .C-terms s of which t is an instantiation.

2.3.9. LEMMA. Let s be a term of L, t a term of U, and 9 an .C'-substitution such
that s -0 = t. Then 3 - absg/5(6) = absg/£(t).

Lemma 2.3.9 can be read as follows, writing 0* for absg/5(0) and t* for abs 5;/£(t):
s-0*: (s-0)‘.
2.3.10. EXAMPLE. Let again E and .C’be as in Example 2.3.4. Then
g(f(empty), demo(c)) = g(f(a:), y){:z:/empty,y/demo(c)} and
g(.f($empty)a$demo(c)) = 'y){$/fvemptyay/$demo(c)} D

We extend the usual definition of ground substitution in the following way:

2.3.11. DEFINITION. A substitution 0 is .C-ground ifo = {:z:,-/t,-: i E [1,n]}, where
t,- is a ground term of L.

The following lemma is an application of a well-known fact about ground substitu
tions.

2.3.12. LEMMA. Let t be a ground term of L’. Let 0 be an £—gr0undsubstitution
such that dom(o) Q FV(absg/£(t)). Then abs;//£(t) -o is a ground term of £.

2.4 Declarative correctness

The present section is devoted to a proof of the declarative correctness of the un
typed Vanilla meta-interpreter using ambivalent syntax. This is basically a result
about the relation between the least Herbrand model of a definite program and the
least Herbrand model of its associated meta-program, and the proof we present pro
ceeds by comparing stages of the respective fixpoint-operators. Hence we will be
mainly concerned with ground versions of programs. As we remarked in Section 2.1,
variables occurring in the object-program specific part of the Vanilla interpreter,
the clauses [M4]and [M5],can be instantiated with terms from the meta-language.
Therefore, we need the followingextension of the usual concept of the ground version
of a program.

2.4.1. DEFINITION.Let P be a definite program. Let C be a language containing
Lp. With £-ground(P) we mean the set of all clauses that are L-ground instan
tiations of clauses of P. The natural ground version of P, £p—ground(P), will be
indicated simply as ground(P). El
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The next lemma is an immediate application of the Lemmas 2.3.9 and 2.3.12 to
clauses of definite programs. It establishes some simple relations between the natural
ground version ground(P) of P and the ground version obtained by instantiation
with terms from the meta-language, E;/P-ground(P). We will speak about P-ground
and Vp-ground substitutions to refer to Lp-ground and £1/P-groundsubstitutions,
respectively. We will also leave out indices of the abstraction operator, that is, we

will write abs(-) instead of abs LVP/£13.

2.4.2. LEMMA. Let C = p(s) 4- p1(s1), . . . ,p,,(s,,) be a clause of P.
Let C’ = p(t) <—p1(t1), . . . ,p,,(t,,) be in Vp-ground(P), and let 0 be an Vp-ground
substitution with dom(6) Q FV(C'), such that C -0 = C’. Then the following hold:

1. C - abs(0) = p(abs(t)) <—p1(abs(t1)), . . . ,p,,(abs(t,,));
2. for all Vp-ground substitutions 0' with dom(a) 2 ran(abs(0)),

C -abs(6) -0 is in Vp-ground(P);
3. for all P-ground substitutions 0 with dom(a) Z_)ran(abs(0)),

C - a.bs(0) -0 is in ground(P).

PROOF: (1) immediately follows from Lemma 2.3.9. (2) follows from the definitions,
and (3) follows from (1) and Lemma 2.3.12. II]

We will first establish some easy facts about MVP, the least Herbrand model of
Vp.

2.4.3. LEMMA. If demo(p(t1, . . . ,t,,)) E MVP, where p is not & andp is not empty,
then p 6 RP.

PROOF: Suppose p is not & or empty, and demo(p(t1, . . . , t,,)) E MVP. Then there is
a d such that demo(p(t1, . . . ,t,,)) 6 TV,,Td \ TVPT(d —1). Then demo(p(t1, . . . ,t,,))
must have entered by an application of the meta-clause [M3]. Therefore, for some E,
{clause(p(t1, . . . ,t,,),E), demo(E)} Q TV,,T(d —1). Thus p(t1, . . . ,t,,) <—E (or, in
the case that E is the constant empty, p(t1, . . . , tn) 4- ) belongs to Vp-ground(P).
So p must be a predicate in the underlying language of P. III

An immediate consequence of this lemma is that atoms of the form demo(demo(t))
and demo(clause(s, t)) do not occur in MVP,under the reasonable assumption that
{demo(-),clause(-, fl Rp = (ll. By a similar argument one sees that:

2.4.4. LEMMA. Let & ¢ 72;: and demo(A&B) E Tv,,Tn, for some n. Then there
are m, k < n such that demo(A) E Tv,,Tm and demo(B) E TV,,Tk.

PROOF: Under the assumption that & ¢ Rp, the only clause in Vp of which the
head unifies with demo(A&B) is [M2]. El

2.4.5. COROLLARY.Let & ¢ ‘RP and demo(A1&...&Ak) E TV,,Tn for some n.
Then, fori E [1, k—1], demo(A,-) E TV,,T(n —i), and demo(Ak) E TV,,T(n —k + 1).

In the remainder of this section, we will abstract from arities of predicates. That is,
we will only consider unary (object level) predicates. This simplifies notation, while
it does not affect the generality of proofs and results.
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The next lemma is crucial for the proof of the soundness part of the correctness
theorem. It expresses the main idea behind the soundness proof.

2.4.6. LEMMA. Let P be a program such that & and empty ¢ ’R,p. Let p 6 RP, and
let t be a closed term in £1/P. Suppose demo(p(t)) E TV,,Tn, for some n. Then, for
all Vp-ground substitutions 0 such that dom(o) Q FV(abs(t)), demo(p(abs(t) -0)) E
TVPT72.

PROOF: By induction on the stages of the TV?-operator.
Let P, t, p, and o be as in the formulation of the lemma. The lemma trivially
holds for n < 2. Let, for some n 2 2, demo(p(t)) E TVPTn, and suppose that the
lemma is true for all m < n. Then, by definition of the TVP-operator, there are
p1,. . . ,pk 6 ‘RP, £p-terms s, s1, . . . , sk, and an Vp-ground substitution 0 such that
(1) 19(3) *—191(31): - - - ,Pk(-9k) E P?

(2) 00(3) <- p1(s1).- --.10z.(sz.)) ' 9 = p('‘«)<—p1(t1), - - - ,pz.(tz.);
(3) clause(p(t),p1(t1)& . . .&pk(tk)) E TV,,T(n —1);
(4) demo(p1(t1)& . . . &pk(tk)) E TV,,T(n -1).
(For n = 2, the situation is slightly, but not essentially, different: the P-clause in (1)
has an empty body.)
Now let 7' be a P-ground substitution such that

dom(r) Q FV(abs(0)) and 7'|FV(abS(t)) = o.
By (1), (2), Lemma 2.4.2, and the definition of Vp, we see that
(a) clause(p(abs(t)r),p1(abs(t1)r)& . . . &p,,(abs(t,,)r)) 6 TV?T(n —1).
From (4) and Corollary 2.4.5, it follows that demo(p,-(t,-) E TV,,T(n —1 — for
i E [1,k — 1], and demo(pk(tk) E TV,,T(n— k). Thus, by inductive hypothe
ses, we have that demo(p.,-(abs(t,-)r)) E TV,,T(n— 1 — for i E [1,k — 1], and
demo(pk(abs(tk)r)) E TV,,T(n —k) . By k —1 applications of the meta-clause for
conjunction [M2], it follows that
(b) demo(p1(abs(t1)r)& . . . &p;.(abs(tk)r)) 6 TV?T(n —1).
By definition of the TVP-operator (using [M3], (a) and (b)), we conclude that
demo(p(abs(t)o)) = demo(p(abs(t)r)) 6 TV,,Tn. D

This lemma has the following obvious generalisation:

2.4.7. COROLLARY.Let P be a program such that & and empty ¢ RP.
Let pl, . . . ,pk 6 RP, and let t1, . . . ,tk be terms of .CV,,.
Suppose that demo(p1(t1)& . . . &pk(tk)) 6 TV?Tn, for some n.
Let 0 be a Vp-ground substitution such that dom(o) Q FV(abs(t1))U. . .UFV(abs(tk)).
Then demo(p1(abs(t1)o)& . . .&pk(abs(tk)o)) 6 TV,,Tn.

We are now in position to prove the correctness theorem. The proof of the sound
ness part heavily depends on Lemma 2.4.6 and its corollary. The proof of the com
pleteness lemma 2.4.9 is inspired by the corresponding proof in Martens and De
Schreye [MS95a].

2.4.8. LEMMA. (Soundness) Let P be a program such that & and empty ¢ 72p, and
let Vp be the associated Vanilla meta-interpreter.
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Then, for all p(t) E Bp,
Vn E N [demo(p(t)) E TV,,Tn -———>Elm E N. p(t) E TpTm].

PROOF: By induction on n. Let p(t) E B p. The lemma trivially holds for n < 2,
because empty ¢ Rp.

Suppose demo(p(t)) 6 TV,,T2. Then there must be a P-term s and an Vp-ground
instantiation 0 such that p(s) (— E P and s0 = t. However, by the assumption
that p(t) E Bp, (the relevant part of) 0 must be a P-ground substitution. So
p(t) (—E ground(P) and p(t) E TpT1.

Suppose that, for some n > 2, demo(p(t)) 6 TV,,Tn\TV,, T(n —1). Assume that
the lemma holds for all n’ < n. Then, by the assumption that & and empty ¢ RP,
the demo(p(t)) must have entered the Herbrand model by an application of [M3].
So there must be ground atoms p1(t1), . . . ,p;,(tk) E B MP such that
(1) clause(p(t),p1(t1)& . . .&pk(tk)) E TVPT1;
(2) demo(p1(t1)& . . .&pk(tk)) E TV,,T(n —1).
From the definition of Vp it followsthat pl, . . . ,p;. E Rp, and that there are P-terms
s1, . . . , sk, and an Vp-ground substitution 0 such that
(3) (p(t) <—p1(s1), . . . ,p;,(s;,)) -0 = p(t) 4- p1(t1), . . . ,p;,(t;,) E Vp—groand(P). Now
take a P-ground substitution 0 such that dom(0) = ran(abs(6l)). By Lemma 2.4.2,
p(t) 4- p1(s1 - abs(0) -0), . . . ,p,,(s,, - abs(6l) -0) E groand(P). [a]
From (2), the Corollaries 2.4.5 and 2.4.7, and the inductive hypothesis, we can
conclude that
Elm,G p,-(abs(t,-)' 0')E TpT7Tl,',fOI' E
Now from [a] and [b], we can conclude that there is an m such that p(t) E TpTm.El

2.4.9. LEMMA. (Completeness) Let P be a program and let Vp be the associated
Vanilla meta-interpreter. Then for all p(t) E Bp,
Va 6 N E TpTn => 3m 6 N. demo(p(t))G TV,,Tm].

PROOF: By course of values induction on n. The lemma trivially holds for n = 0.
Suppose p(t) E TpT1. Then clause(p(t),empty) <—E groand(Vp) and there

fore, clause(p(t), empty) 6 Tv,,T1. Also, demo(empty) E TVPT1, so, by [M3],
demo(p(t)) E TVPT2. Suppose that p(t) E TpTn \ TpT(n —1), for some n > 1,
and suppose that the lemma holds for all n’ < n. Then there are p1(s1), . . .p;,(sk) 6
BP, such that p(t) +—p1(s1),. . .pk(sk) E groand(P), and p,-(s,-)E TpT(n —1) for
i E [1,k]. Thus, by the inductive hypothesis, there are m,- such that demo(p,-(s,-)) E
TV,,Tm,-, for i E [1,k]. Thus, by repeated use of [M2], there is an m such that
demo(p1(s1)&...&pk(sk)) E TV,,Tm. Also, clause(p(t),p1(s1)&...&p;,(sk)) (—-E
groand(Vp). As a consequence, clause(p(t),p1(s1)& . . .&pk(sk)) 6 TV,,Tm.
We conclude that demo(p(t)) 6 TV?T(m + 1). El

2.4.1. THEOREM. (Correctness) Let P be a program such that & and empty ¢ Rp,
and let Vp bethe Vanilla meta-interpreter associated with P. Then for all p(t) E Bp,

p(t) E Mp ifi demo(p(t)) E MVP

As an immediate consequence of the correctness theorem and Lemma 2.4.6 is the
following corollary:
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2.4.10. COROLLARY.Let demo(p(t)) 6 MV,,, where p is a predicate in £p. Let 0
be an £p-ground substitution with dom(o) = var(abs(t)). Then p(abs(t) -0) E Mp.

The above corollary shows that the occurrence of unrelated atoms in the least Her
brand model of the Vanilla meta-program is less of a problem than usually thought:
the meta-level terms occurring in unrelated atoms can be interpreted as free vari
ables, ranging over the object level terms.

It should be observed that, by Lemma 2.4.3, the proof of the correctness theorem
above is also a proof of the correctness theorem for the Vanilla meta-interpreter
with a functional representation of the object program. The above corollary likewise
translates into the functional case.

Observe that, unlike for completeness, there are some syntactical conditions on
the object program in the soundness lemma, which ensure a. certain degree of dis
jointness of the language of the object program and the Vanilla meta-interpreter.
Violation of these coditions may destroy soundness of the Vanilla meta-interpreter.

First, observe that soundness is not guaranteed if & occurs as a predicate in the
object program.

2.4.2. COUNTEREXAMPLE.Consider the following object program P.

P(a) (
Q(a) 4- P(f(0«)), P(a)
:t:&y(

Now Q(a) ¢ Mp. In contrast, demo(P(f(a))&P(a)) E MVP, so demo(Q(a)) E
MVP. Thus Vp is not declaratively sound w.r.t. P. Cl

Similarly, soundness is not guaranteed if empty occurs as an atom in the language
of the object program.

2.4.3. COUNTEREXAMPLE.Consider the following object program Q.

A <—empty

Now A ¢ Mp, while demo(A) E MVP. E1

The above correctness theorem should be compared with the corresponding result
for the class of language independent programs (Theorem 13 of Martens and De
Schreye [MS95a].) The latter is stronger, in the sense that it additionally shows
that for language independent programs, no unrelated atoms can occur in the least
Herbrand model of the meta-program.

In the above, we have silently assumed that the language underlying the object
program has a non-empty set of constants Cp. Adopting the usual convention that,
in case Cp is empty, the Herbrand universe is built up using a generic constant *,

the following special case of the correctness theorem holds: for all p E RLP,

p(*) E Mp iff, for all t E CLTERM£P,demo(p(t))MV,,.

This follows easily from adaptations of the proofs of the lemma’s 2.4.8 and 2.4.9.
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The above completeness proof provides evidence of the linear overhead of meta
level computation. In particular, an explicit measure for this overhead (on the
declarative level) can be extracted from the proof. We need the followingdefinitions.

2.4.11. DEFINITION. Let P be a program consisting of the clauses C1, . . . , Ck.
The body depth of d(C) of a clause C is the number of its body atoms, i.e.,
d(C') = n ifC is a clauseA 4- B1,...,B,,, and
d(C) = O ifC is a fact clause A <—.
The body depth dp of P is the maximum of the depths of the clauses of P, i.e.,
dp = ma:c{d(C',-): i E [1, El

2.4.12. PROPOSITION. Let P be a program.
For n > O, ifp(t) E TpTn, then demo(p(t)) E TV,,T(2+ dp(n —

PROOF: The proof proceeds by induction, and follows the proof of Lemma 2.4.9.
Clearly, if p(t) E TpT1, the demo(p(t)) E TVPT2, so the proposition holds for n = 1.
Let n > 1, and suppose the proposition holds for n —1.
Let p(t) E TpTn \ TpT(n —1). Then there are p1(s1), . . .pk(sk) E Bp, such that
p(t) 4- p1(s1), . . .pk(sk) E ground(P), and p,-(s,-)E TpT(n —1) fori E [1,k]. By the
inductive hypothesis, demo(p,-(s,-)) E TvPT(2 + dp(n —2)), for i E [1,k]. Thus, by
19-1 applications of [M3], demo(p1(s1)& . . . &pk(sk)) E TVPT(2 + dp(n —2) + k —1).
Then, by an application of [M2], demo(p(t)) E TV,,T(2 + dp(n —2) + k). Observe
that k 3 dp. The proposition now follows from the monotonicity of the fixpoint
operator. E]

A similar linear relation between the length of object-level and meta-level SLD
derivations can be established. We refer for this result to Levi and Ramundo [LR93].

2.5 An amalgamation
The correctness of the Vanilla meta-interpreter in fact shows that it proves no more
nor less than the object program. It is extensions of the Vanilla meta-interpreter
where the real interest lies. The theory developed in the present chapter can be
used to obtain correctness results for those extensions. We mention the following
preliminary result on a simple amalgamation, the textual combination Vp U P of
Vp with P.

2.5.1. THEOREM. Let P be a program such that

empty,demo(-),clause(-, 0 72;:= 0. Then
for all (ground) A in LVP, demo(A) E MVP ifi demo(A) E MVPUp,'
for all (ground) A in £12, A E Mp ifiA E Mvpup.

PROOF: Along the same lines as the proof of Theorem 2.4.1, while using the fol
lowing observations: The underlying language of Vp U P is LVP;Clauses of P can
now be instantiated with ground terms from L;/P; Lemma 2.4.6 also holds for atoms
p(t) E MVP for which p E Rp; By the assumptions on P, atoms from the bodies of
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clauses of Vp do not unify with heads of clauses from P—and the converse. 13

Alternatively, another proof of the above theorem is obtained by examining prop
erties of the fixpoint operator T1/Pupof the amalgamated program. As observed in
Brogi and Turini [BT95], it is in general not true that the least Herbrand model
of the textual combination P U Q of two programs P and Q is the union of their
respective least Herbrand models. However, for certain pairs of programs, the least
Herbrand model of their union does equal the union of the respective least Herbrand
models w.r.t. the union of the languages. We will use the following notion:

2.5.1. DEFINITION. Two programs P and Q are non-connected if
none of the atoms occurring in the bodies of clauses of £pUQ—ground(P) occurs

as the head of a clause in £pUQ —ground(Q), and
( none of the atoms occurring in the bodies of clauses of £pUQ—ground(Q) occurs
as the head of a clause in £pUQ —ground(P). E1

We need the followinggeneralisation of the notion of Tp-operator and its fixed point.

2.5.2. DEFINITION. Let P be a program, and let L Q Lp.
Tp,£(I) := {A : A (—B1, . . .,B,, 6 £ —ground(P) and {B1, . . .,B,,} Q I}
Ti3,c(0) 3: U Ti=,c(@)- [3

In addition, we can, as usual, identify the least L-Herbrand model Mfg with T“1’s,£((ll).

2.5.3. LEMMA. Let P and Q be two non-connected programs, and let .C be the union
of their respectiveunderlying languages. Then MpUQ= MfgU

PROOF: By induction on the stages of the TPUQ-operator.
TPUQTO = Tp,£T0 U TQ,1;TO= (Z),by definition.
Suppose that for some n, TpUQTn = Tp,1;Tn U TQ,1;Tn. Then

TPUQTn + 1 =
{ by definition}

= TPuQ(TPuQT7?«)
{by the inductive hypothesis}

= TPUQ(TP,£Tn U To,cT’"«)
{ by definition of TPUQ}

= {A : A 4- B1, . . .,B;, E ground(PU Q)&{B1, . . .,Bk} Q Tp,1;Tn U TQ,;Tn}
{because ground(P U Q) = .C—ground(P) U £ —ground(Q)}

= {A : A <——B1, . . .,B;. E E —ground(P)&{B1, . . . , Bk} Q Tp,1;Tn U TQ,1;Tn}
I A (—-B1, . . . , B], E £ —ground(Q)&{B1, . . . , Bk} Q Tp,£T’n U TQ,£T'Tl.}

{because P and Q are non-connected }
= {A : A <-—B1, . . .,B;.., 6 £ —ground(P)&{B1, . . .,Bk} Q Tp,1;Tn}

U{A : A 4- B1, . . . , Bk 6 £ —ground(Q)&{B1, . . . , Bk} Q TQ,£Tn}
{by definition of Tp’£TTL+ 1 and TQ,£Tn + 1}

= Tp,5T(’n+ 1) UTQ,£T(Tl+

Thus,
MPUQ = Tliiauq = U TPLJQT71=
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= U(Tp,£TTl.UTQ,_/_-Tn)= UTPVCTRU UTQ,;Tn = Tat UTiéfi = LIJ U

The above general lemma in particular applies to the amalgation of object and
meta-program.

2.5.2. THEOREM. Let P be a program such that
empty,demo(-),cla'u.se(-, 0 ‘RP= (0.Then

M1/Pup = MVP U Mfg‘/P.

PROOF: We leave if to the reader to check that Vp and P are indeed non-connected.
(Essential here is the assumption on the language of the object program.) By the
fact that LVP2 £12,the theorem is now immediately follows from the above lemma.
Cl

As an immediate consequence of the above theorem and the completeness theorem
2.4.1, we have the following corollary.

2.5.4. COROLLARY.Let P be a program such that
{(-)&(-),empty,demo(-),clause(-, 0 72;:= (0. Let A be a closed term of Lp. The
following are equivalent."

demo(A) E M1/Pup
demo(A)E MVP
AEMp
A E My/Pup.

Other examples involving amalgamated and non-amalgamated extensions of the
Vanilla meta-interpreter can be found in Martens and De Schreye [MS95a]. A the
orem similar to the above (Theorem 15) is proven there for language independent
object programs P.

2.6 Conclusions

In the present chapter we have studied correctness of the untyped Vanilla meta
interpreter in the context of ambivalent syntax. Ambivalent syntax, characterised
by the occurrence of atoms as terms, is the proper underlying syntax of amalgamated
extensions of the Vanilla meta-interpreter.

We have shown that the proof of procedural correctness for the typed version of
the Vanilla meta-interpreter for normal programs has great generality, and implies
correctness for the (standard) untyped Vanilla meta-interpreter for normal programs.
In contrast, the declarative correctness result for the typed Vanilla meta-interpreter
does not translate into declarative correctness for the untyped version(s), due to
the essential role of types. Declarative correctness for the untyped Vanilla meta
interpreter has been proven for a limited class of normal programs, which excludes
most of the basic Prolog programs. For definite object programs however, a sat
isfying declarative correctness result can be obtained in two ways. By the usual
soundness and completeness of SLD-resolution, declarative correctness for definite
object programs is a consequence of the procedural correctness. We have presented
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a direct proof of declarative correctness for the Vanilla meta-interpreter for definite
object programs with ambivalent syntax as the underlying language. The proof
generalises to a corresponding proof of the correctness of the variant of the Vanilla
meta-interpreter that uses a functional representation of the object program. Finally,
we have presented two different proofs of the correctness of a simple amalgamation
of object and meta-program.

The interest of the reported results is two-fold. First, we have shown that various
correctness results (procedural correctness of the typed interpreter and declarative
correctness of the untyped interpreter using ambivalent syntax) have a great gener
ality. Second, we have shown that ambivalent syntax is useful and appropriate in
the context of meta-programming.

The strong similarities between the various correctness proofs discussed in this
chapter, suggest further research, investigating necessary and sufficient conditions
for soundness and completeness of Vanilla style demo-predicates. An open question
is whether the correctness results discussed are affected in the case of object pro
grams with ambivalent syntax, in particular with variables occurring as atoms in
bodies. In addition, a further investigation of sufficient conditions for soundness and
completeness of extended meta-interpreters may be of some practical importance.

Note

This chapter is a slightly modified version of [Kal95a], “Correctness of the Vanilla
meta-interpreter and Ambivalent Syntax”, in: Meta-Logics and Logic Programming,
Eds. K.R. Apt and F. Turini, The MIT Press, 1995, pp. 1-26.
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Introduction

While the classical soundness and completeness results for Logic Programming estab
lish a strong relation between the declarative (intended) and the procedural interpre
tations of programs, the effectsof the computation mechanism in implementations of
Logic Programming such as Prolog, are not accounted for by these results. That is,
in defiance of the Logic Programming theory, the procedural meaning of an imple
mented program need not coincide with its declarative meaning. Two examples serve
to illustrate the effect of the standard Prolog computation mechanism, processing
clauses in top-down order and processing goals in left-to-right order:

0 The goal A succeeds under SLDNF resolution from the program which consists
of the two clauses (1) A (—A,B and (2) A <-—. Under Prolog computation
however,the search for A will go into a loop via clause

0 Consider the program consisting of the single clause A (— B,A. The goal
notA succeeds from this program under Prolog computation with the standard
leftmost selection rule. In contrast, if a rightmost selection were used, the
search for notA would go into a loop.

This illustrates that both the search rule of a computation mechanism (the order in
which the clauses are processed) and the selection rule (the order in which composite
goals are processed) affect computational outcome. The objective of the subsequent
chapters is to capture the effects of fixed computation mechanisms in the format
of Gentzen style sequent calculi. The calculi we will discuss have as characteristic
expressions sequents [P] =>A, expressing success of A from the program P under
the intended computation style.

Typically, computation on a logic program with only definite clauses (that is, not
involving negation) via a fixed computation mechanism corresponds to a logic weaker
than classical logic. Reflecting this, (most of) the procedural calculi we study below,
omit or modify certain classical structural rules. Weakening of structural rules in
sequent calculi results in so-called ‘substructural’ logics. Well-known computational
examples of substructural systems are linear logics and nonmonotonic logics. The
following observations illustrate the fact that procedural aspects of Logic Program
ming can be successfully described in the context of substructural logic:
Unrestricted addition of clauses to a program can destroy successful search. For
instance, extension of a program P with a clause A <—A need not preserve the
success of a goal A. Some cautious forms of addition on the other hand preserve
derivability. As an example, let P, R, and Z be Horn clause programs, and let C
be a Horn clause. Using top-down clause processing, if a goal A succeeds from the
program P;C; R; Z then it also succeeds from P;C; R;C; Z, and vice versa. Thus
top-down clause processing—as used in Prolog computation—obeys structural rules
from sequent calculus like rightward extension and rightward contraction, while full
weakening (addition of clauses to a program) is not valid.

We will show for several computation mechanisms for Logic Programming that
they can be captured by suitable ‘substructural’ calculi in the Gentzen format. In
particular, we investigate depth first search, corresponding to top-down clause pro
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cessing. To avoid the extra complication of dealing with unification, we restrict our
attention to the propositional case.

Our approach, using Gentzen style sequent calculi for the characterisation of
Logic Programming styles, originates in a paper by van Benthem [vB92], who pro
posed a Gentzen style calculus for top-down clause processing combined with parallel
goal processing. We refine some of the results reported there. In particular, we pro
vide a formal computational semantics for the calculus proposed by van Benthem
and formalise the intuitive arguments for soundness and completeness. Also, we
show that several of the rules proposed in [vB92] are redundant. We will pay some
attention to proof theoretic properties of procedural calculi we define. We will also
study the effect of the addition of the classical structural rules and the cut rule. Fi
nally, we will show how negation as failure can be incorporated in the various calculi
in a natural way.

Next, we show how the calculus for parallel goal selection can be extended with in
troduction rules defining procedural versions of the usual connectives for disjunction
and conjunction. These connectives have a natural interpretation in the procedural
context: they effect local changes of the overall selection rule. In particular, restrict
ing our consideration to one of these procedural connectives, we propose a variant
of the usual Prolog computation procedure (frugal Prolog), which has less extensive
backtracking, and therefore travels through the searchspace faster than Prolog. This
alternative computation will be shown to be sound and complete w.r.t. standard
Prolog computation on a large class of propositional programs.

In Chapter 4 we focus on Gentzen style axiomatisations of standard Prolog search,
with top down clause processing and left-most goal selection. Due to Prolog’s ex
tensive backtracking, a correct axiomatisation of standard Prolog search requires an
extension of the Gentzen format appropriate for the more simple alternatives, with
sequents [P] =>*A expressing success of A and safety (non-divergence) during back
tracking. In Chapter 5, we show how the standard Prolog cut, allowing for control
of the search space, can be incorporated in the calculus for Prolog by the addition of
two rules reflecting the pruning behaviour of activated cuts. Variants of the standard
cut will also be discussed.

For all of the discussed calculi, correctness results will be proved using as a
straightforward procedural semantics relevant parts of the search trees appropriate
for the underlying search procedure.

The approach taken here differs from axiomatisations of the Prolog computation
procedure known from the literature, by its slightly dynamic nature. The alternative
approaches [Stéi.94],[Sta], [And93], [Cer92] are axiomatic in the sense that they
involve translations of programs into appropriate theories. The approach taken in
([Min90] and [She92],where in the course of a derivation an appropriate search tree
is built up, likewise involves derivations on a single program at a time. In contrast,
in the Gentzen calculi we discuss, programs are built up in the course of a derivation,
and derivations do not involve any translation of programs into theories.
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Notation and conventions

A, B, C, etc. (sometimes indexed) will indicate propositional atoms.
A, B, C, etc. will indicate clauses.
P, Q, R, Z, etc. will indicate programs.
P; R will indicate the concatenation of two programs P and R.
0 will indicate the empty program.
We extend the propositional language with a propositional atom T (verum),
which can be understood procedurally as an atom that by definition succeeds
immediately from every program. Alternatively, it can be interpreted as the
empty goal.

0 An atom A will be called a proper atom if it is not T.
o A is a (definite) clause if.A is A 4-—B1, .. . , B", where A is a proper atom and

the B; are atoms. In particular, T does not occur as the head of any clause.
Clauses of the form A <—T take the role of the usual fact-clauses A <-—,and
will sometimes be notated as A .
P is a definite program if P is a finite list of definite clauses.
We will use set inclusion P Q R for two programs P and R to indicate that
every clause of P occurs in R, regardless of the order of the clauses.





Chapter 3
Depth First Search

In the present chapter we will investigate the following computation mechanism,
proposed in [vB92]:

General Depth First Search
To prove a goal A from a program, first try the uppermost program
clause which has A for its head. The goal A succeeds via this clause if
all its body atoms recursively succeed. The goal A fails via this clause if
some body atom fails in finitely many steps, and none of the searches for
the body atoms gets stuck in a loop. In the latter case, the next lower
eligible program clause is tried. A fails from P if it fails consecutively
via all the clauses with head A. A succeeds from P if it succeeds via an
A-clause after failing via earlier A-clauses.

The general depth-first search inference mechanism is characterised by Prolog
search (depth-first) with a generalised selection rule, which we will refer to as parallel
selection. Parallel selection leads us to think of program clauses as being of the form
A <——{B1, . . .,B,,}; that is, the antecedents form a set, rather than a list. Note
that parallel selection is not a selection rule in the strict sense (cf. [Llo87] and
[Apt90]). Rather, it can be thought of as an unspecified selection rule: if, given a
clause A <—B1, . . . , B,, and an arbitrary distribution of success and (finite) failure
among the body atoms B,-, the goal A succeeds (respectively fails) via this clause
under parallel selection, then it will also succeed (respectively fail) under any specific
selection rule. Due to the generality of the parallel selection rule, the above inference
mechanism provides a good basis for the development of a general framework for the
axiomatisation of success and failure under various inference mechanisms.

3.1 A Gentzen Calculus for Depth-First Search
We will axiomatise the effects of general depth first search using the format of a
Gentzen style sequent calculus S. The characteristic expressions of S are sequents
of the form [P] =>B, where P is a (propositional, Horn clause) program and B is

61
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an atom. The intended interpretation is as follows: a sequent [P] => B is derivable
in the calculus S if and only if B succeeds from P under general depth-first search.

The deductive calculus S consists of the following axioms and rules:

S

Axioms

[P]=>T

Heterogeneous Permutation

[P; C;D; R] => A where D and C are clauses with different heads
[P;’D;C;R]=>A

Modus Ponens

[A<—A;P]=>B1 [A<—A;P]=>B,, MP

Prefixing

[P] =>A [A(—A;P;B1]=>B1 [A<——A;P;B,,]=>B,., PFX
[A<—B1,...,B,,;P]=>A

The axioms correspond to the fact that the empty goal immediately succeeds on any
program. The soundness of the various rules of S can be seen as follows:

0 The rule of heterogeneouspermutation HP expresses the fact that, with respect
to the relevant proof procedure, only the order of clauses with identical heads
is relevant.

0 To see the validity of the modus ponens rule MP, reason as follows. The pre
misses [A 4- A; P] => B,-express that the B, can be successfully computed from
A (—A; P-, using general depth-first search. Also, the prefix A <—A ensures
that the B, do not depend on A. (To see this, suppose that B,-does depend
on A, that is, at some stage in the search for B, from A <—A;P, the atom
A occurs as a goal. At that point, in contradiction to the success of B,- from
A (—A; P, the computation would get stuck in a loop because A (—A is the
‘uppermost’ A -clause.) An evaluation of A in the context of A 44-B1, . . . , B,,; P
, will start with a (parallel) evaluation of the B,-. As the B, do not depend on
A , these evaluations in the context of A <—B1, . . . , B,,; P amount to evalua
tions in the context of P — they will all succeed. Thus A will succeed from
A(—B1,...,Bn;P.

0 The soundness of the prefizing rule PFX depends on the following. First ob
serve that, for any program Q and goal B, if the search for B from Q fails in
finitely many steps, then the search for B from Q; B 4- will succeed. Also, if
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the computation of B in the context of Q is successful, it will similarly succeed
on Q; B 4-. Conversely, suppose that the goal B succeeds on Q; B <—.Then
either B already succeeds on a clause in Q with head B — that is, B succeeds
on Q — or it successively fails on all the Q-clauses in Q, and finally succeeds
via the fact clause B <——.To summarise, B succeeds on Q; B (— iff B either
succeeds or finitely fails on Q.
Thus the premisses [A <—A; P; B,-]=> B,- ensure that the search for any of the
B,-, in the context of P, either succeeds or ends in finite failure, while the B,
do not encounter A as a subgoal during this search. An evaluation of A via
the B,- in the context of P will thus either be successful (when all of the B,
succeed) or fail finitely (when some of the B,-fail finitely). In the latter case,
the computation proceeds by an evaluation of A via the next A—clause.The
assumption [P] =>A then ensures that the computation eventually succeeds.
Thus the clause A (—B1, . . . , B,, can be prefixed to the program P without
destroying the success of a search for A.

3.1.1. EXAMPLE. A derivation of the sequent [A <—B, C; A <—; B (—] => A in S:

[C'<—C';A<—A;A;B]=>T

[B<—B;A<—A;A;B]=>T [C';A<—A;A;B]=>C
[B;A(—A;A;B]=>B [A<—A;C;A;B]=>C

[A<—A;B]=>T [A<—A;B;A;B]=>B [A<——A;A;C';B]=>C'

[A;B]=>A [A<—A;A;B;B]=>B [A(—A;A;B;C']=>C
[A(—B,C';A;B]=>A

Here, the three subderivations all start with an axiom followedby an application of
the modus ponens rule, and applications of the permutation rule HP. The last rule
applied is PFX. El

Intuitively, the system S is also complete with respect to general depth-first
search:
Suppose an atom A succeeds via the intended search mechanism from a program R.
According to the inference mechanism, the ‘uppermost’ clause with head A, say A,
is tried first. The heterogenous permutation rule guarantees -that we can ‘reach’ this
clause. We distinguish two cases:

0 Suppose A succeeds via A. Then all the body atoms of A succeed in the
context of R; moreover, none of these atoms depend on A (otherwise, the
search for A would get stuck into a loop). Therefore, all the A-body atoms
must succeed in the context of the program in which the uppermost A-clause of
R is substituted by the reflexive A-clause A (—A . This is, modulo applications
of the heterogeneous permutation rule, precisely going from the conclusion of
the modus ponens rule to its assumptions.

0 Suppose now that A ‘failsvia’ A. Then, according to general depth-first search,
it must succeed from the program R if the leftmost occurrence of the clause
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A is deleted from it—this corresponds, modulo heterogeneous permutation,
to the leftmost assumption of the prefixing rule. Also, failure via the ‘upper
most’ A-clause implies that none of the A-body atoms goes into a loop — this
corresponds to the rightmost assumptions of the prefixing rule.

We will formalize the above soundness and completeness arguments in Section
3.3. In order to do this, we will provide S with a formal semantics in the next section.

3.2 A Formal Computational Semantics
In order to formalise the above arguments for the soundness and completeness of S,
we provide S with a formal semantics. The objects of this computation semantics are
closely related to the appropriate search trees for general depth first search. Thus
we will first have a look at these search trees.

Due to the parallellism in general depth-first search, the appropriate search trees
for this computation mechanism are and-or trees. (In contrast with this, the appro
priate search trees for Prolog computation are or-trees.) More specifically, and-or
trees for general depth-first search have the following properties:

0 the top node of the tree is an or-node, labelled with a proper atom, or a
terminal node labelled T;

0 children of or-nodes are and-nodes, labelled with pairs of proper atoms and
natural numbers, or terminal nodes 0;

0 children of and-nodes are or-nodes or terminal nodes T;
0 terminal nodes are labelled with T (corresponding to immediate success) or 0

(corresponding to immediate failure).

We define the search trees for general depth first search as follows:

3.2.1. DEFINITION.An and-or tree T for general depth first search is the search tree
for a goal A from a program P via general depth first search if it has the following
additional properties:

0 the top node of the tree is labelled with goal A;
o if an or-node has label B and there are n > O B-clauses in P, then it has n

children (and-nodes), with respective labels (B, 1), . . . , (B, n);
o if an or-node has label B different from T and there are no B-clauses in P,

then it has as single child a terminal node labelled O;
o if an or-node has label T, then it is terminal;
0 if an and-node has label (B, m), then it has is:children, where k is the number

of body-atoms of the m-th leftmost B-clause in P, say B <—D1, . . . , Dk, and
the labels of its children are D1, . . . , Dk, respectively. B

Observe that for every program P and every atom A there is exactly one associated
general depth-first search and-or tree.
As an example, we give the and-or search tree for the atom A and the program
A<—B,C;A<——;A<—D;C<—.
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(All) Call?/)
B C T D

1 .
T

The success or finite failure of a goal A from a program P is established by
traversing the appropriate search-tree as determined by the computation procedure.
For every goal A and program P there is a unique search-path which is traversed.
Observe that, by the parallel nature of the selection rule under investigation, this
path consists of parallel components. In order to determine success or finite failure
of a goal, we can, instead of considering complete search trees, concentrate on the
relevant part of the search-path needed to establish success or failure of a goal. If
a goal succeeds or fails finitely, the appropriate search-path is finite, even though
the search-tree itself need not be finite. As the success or finite failure of a goal is
witnessed by the relevant search path, we can use these search paths as a formal
semantics for the calculus S. For finite and completed search-paths we reserve the
term computation — successful computation if it witnesses the success of a goal,
failing computation if it witnesses finite failure. A computation will thus be the
relevant part of a search tree. Moreover, a computation is (by definiton) finite.
We will use the description of the computation mechanism to obtain an inductive
definition of the set of all computations. Before we can give the definition of the
computation semantics, we need an operator that, for each program P and each
atom A, erases all those clauses from P whose head is different from A.

3.2.2. DEFINITION. For atoms A , clauses C , and programs P and R:

(AA = 0

C _ { c ifC has head A,A _ 0 otherwise

(P;R)A = PA;RA
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We are now in a position to give the inductive definition of the notion of formal
computation.

3.2.3. DEFINITION.

1. E1is a successful computation for T from P .
2. A[O] is a failing computation for A from P if PA = (ll
3. Suppose that

Where R is a program (in which only clauses with head A occur), and let, for
1 3 i 3 n and 1 3 j 3 f H; be the (successfulor failing) computations for
B; from P.
Then

A[1‘[%|...|1'[}(1)] ... [1'y11|...|H'fI(n)]
is

o a successful computation for A from P if

Vi < n EU3 f such that H; is a failing computation,
While Vj 3 f H? is a successfulcomputation.

0 a failing computation for A from P if

R = (ll

and Vi 3 n 33'3 f H; is a failingcomputation.

4. H is a computation iff it is a successful computation or a failing computation.
Cl

3.2.4. EXAMPLE.

1. Consider the program P = A <—B, C’;A 4- ; B <—; A <—A. The (successful)
computationforA fromP willbe A[B[El]|C

2. Consider the program R = A <—A; A <——B, C; A <——; B <—. There is no com
putation for A from R. E!

The close connection between computations and the inference mechanism above
is expressed in the following lemma.

3.2.5. LEMMA. There exists a successful computation for A from P ifi’ a general
depth-first search for A from the program P succeeds. Existence of a failing compu
tation likewise corresponds to the finite failure of general depth-first search.

The remainder of the present section is devoted to the introduction of some
notions related to formal computations and to a short discussion of some relevant
properties of formal computations.

3.2.6. DEFINITION. (Subcomputations)

1. Every computation is a subcomputation of itself.
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2. If

1'1= A [H%I. . .|11}(1)] [Hf |. . .| Hrfm]

is a computation, then all subcomputations of H:-,for 1 g 2'3 11,13 j 3 f
are subcomputations of H .

3. Z is a proper subcomputation of H if it is a subcomputation of H and not equal
to H. El

3.2.7. DEFINITION. (Depth of a computation)

1. depth(El) = depth(A[<>]) := 1 ;
2. In all other cases, depth(H) is 1 + the maximum of the depths of the proper

subcomputations of H. C]

3.2.8. DEFINITION.For programs P and atoms A, P‘A is the program obtained by
deleting from P the leftmost clause with head A. Iterations of the deletion operator
are defined as follows:

P°"“ ;= P

P1’A := P'A

Pn+1,A :: .(Pn,A)—A D

We are now able to state some relevant properties of computations. We omit the
proofs.

o Uniqueness
There exists at most one computation for each program P and each atom A.
A failing computation is not a successful computation and vice versa.

Finiteness
Each computation is a finite object.

o Occurrence

If H is a computation for A from P, then A does not occur in any of the
proper subcomputations of H.

0 Transformation

1. If H is a successful computation for A from P, then H is a successful
computation for A from P; A <——.

2. If H is a failing computation for A from P, then H[El] is a successful
computation for A from P; A <—.

3. If H is a (successful) computation for A from P; A 4-, then
(a) H is a successful computation for A from P, or
(b) H = 2[Cl] and 2 is a failing computation for A from P.

Inessential Difference

If H is a computation for A from P, and R is a program such that, for every
atom B occurring in H, P3 = R3, then H is also a computation for A
from R.
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3.3 Soundness and Completeness

In the present section, we set out to prove the correctness of the calculus S for the
general depth first search procedure. We will first prove soundness and completeness
of S with respect to the computation semantics (Lemmas 3.3.1 and 3.3.2). The cor
rectness of S with respect to general depth first search is an immediate consequence
of these results and the correctness of the computation semantics with respect to the
search procedure (Lemma 3.2.5).

3.3.1. LEMMA. (Soundness) If S l- [P] => A then there exists a successful compu
tation for A from P.

PROOF. (By induction on the depth of derivations in S.)

o AXIOMS E1is a successful computation for T from P, while [P] : T is the
only possible derivation of depth 1.

o HETEROGENEOUS PERMUTATION The notion of successfulcompu
tation is by definition insensitive to heterogeneous permutation in programs.
Therefore this rule is trivially sound.

0 MODUS PONENS Suppose that the sequents [A <—A; P] => B; are deriv
able in S, for 1 3 i 3 n. By inductive hypothesis there are successful compu
tations H1for B,-from A <—-A; P. Observe that, by the finiteness property, the
atom A does not occur in any of the IL. Thus, by the inessential difference
property, the H, are successful computations for B;-from P. By definition of
successful computation, A[H1| - - - |l'l,,] is a successful computation for A from
the program A <—B1, . . . , B“; P.

0 PREFIXING Suppose that [P] => A and [A <—A; P; B,- <—]=> B,- (for 1 S_
i 3 n) are derivable in S. By inductive hypothesis there are 01, . . . , am such
that A[o1] - - - [am]is a successful computation for A from P. Also, there are suc
cessful computations H, for B, from A (—A; P; B,- <——.By the finiteness prop
erty, the inessential difference property and transformation property (3), the
IL can be transformed into (failing or successful) computations H; for B, from
A <—B1, . . . , B"; P. If all the H2‘are successful computations, then (by defini
tion) A[H{| - - - is a successful computation for A from A 4- B1, . . . , Bn; P.
Otherwise, again by definition, A[l'I1‘|~- - |l'I’,",][o1]- - - [am] is a successful compu
tation for A from A <—B1, . . . , B”; P. [3

3.3.2. LEMMA. (Completeness) If H is a successful computation for A from P, then
S l- [P] => A.

PROOF. (By induction on the depth of computations.)
There is only one successful computation of depth 1, E],which corresponds to deriv
ability of [P] => T.
Suppose the claim holds for every successful computation of depth < k.
Let

H 2 A [H] l. . .] mm] [H111l. . .] 1'yfz(n)]
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be a successful computation for A from P, such that depth(H) = k.
We distinguish two cases: A succeeds via the leftmost A-clause of P, that is, n = 1,
or A succeeds via some further A-clause in P, that is, n > 1.

. n = 1, that is, H = A [H1 |- ~.|H,(1,1.By definition, the IL are successfu computations, say for B; from P. Also,
PA = A <—B1,...,B,,;Rfor some R.
By the occurrence property for A and the inessential difference property, the H,
are successful computations for B, from A <—A; P"A. By inductive hypothesis,

we can conclude that, for all 2', [A <—A; P‘A] => B, is derivable. An applica

tion of Modus Ponens yields a derivation of [A <—B1, . . . , Bn; P"A] => A. An
extension, if necessary, with applications of the heterogeneous permutation rule
then results in a derivation of [P] => A .

0 n > 1.

We will show by induction on t that P“; :> A is derivable for all t < 77..First observe that, by definition of successfu computation and the inessential

difference properties, A[H’1‘ - H}‘(n)]is a successful computation for A from
P"‘1'A — in particular, A succeeds via the leftmost A-clause of P"’1’A. By

the above case, this implies that [P"‘1*A] => A is derivable.

Now suppose that for some 3 3 n —1, [P"A] => A is derivable. Now, by defi
nition, the Hf are (successful or failing) computations for, say Bf from P, for
1 3 1}3 f By the inessential difference property, they are also compu
tations for Bf from A +—A; P‘*A. By the transformation property, these can
be transformed into successful computations Ef for Bf from A <—A; P‘*A;Bf.

By inductive hypothesis, it follows that the sequents [A <—A; P’*A;Bf] => Bf

are derivable. Apply PFX to the derivable sequents [A <—A; P"A; Bf] => Bf

and [P"’‘‘] => A, and derivability of [P"‘1*A] => A follows (possibly after some
applications of Heterogeneous Permutation).
This concludes the proof of the theorem. [3

The correctness of S for the general depth first search is an immediate consequence of
the above soundness and completeness results and the correctness of the computation
semantics with respect to the search procedure (Lemma 3.2.5).

3.3.3. THEOREM.

S l- [P] => A if?" A succeeds on P via general depth first search.

3.4 Decidability
Decidability of S could be easily inferred from properties of computations and the
soundness and completeness result for S. Instead, we choose to prove decidability
using properties of derivations in S. The advantage of taking this route is that it
gives us some more insight in derivations in S. The section on normalisation is a
proof-theoretic preliminary for the decidability proof.
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3.4.1 Normalisation

A sequent derivable in S can have several derivations. While the rule for heteroge
neous permutation can cause obvious variation, more interesting are variations due
to applications of the prefixing rule. As an example, consider the derivable sequent
[A <——C; A <—B; C +——; B <——]=> A. The following are (the relevant parts of) two of
its possible derivations. The non-exhibited parts of the derivations consist of axioms
followed by one application of MP, and applications of HP.

0) M+mA+&am:o
[A+—C;A<—B;C';B]=>A

MP

(E A“mam‘Bhw M+mA+EQ&Q:C
[A<—C;A<—B;C;B]=>A

The difference between these two different derivations can be thought of as fol
lows. In the uppermost derivation (1), the clause A <——C is prefixed to the program
A 4- B ; C’(-—; B 4- by an application of Modus Ponens. In derivation (2), the
same clause is prefixed by an application of PFX, which is in its turn preceded by
the prefixing of the clause A (—B using Modus Ponens. As witnessed by derivation
(1), the application of the prefixing rule can be considered unnecessary, as it can be
‘replaced’ by an application of Modus Ponens. This example generalises to a notion
of normal derivations, that is, derivations without unnecessary applications of PFX.
There is a direct correspondence between this notion of normality for derivations
and the computational semantics: a computation is a direct translation of a nor
mal derivation and vice versa. The proof of the completeness theorem in fact gives
us an algorithm to construct normal derivations from a given successful computa
tion. Thus, as an immediate consequence of the soundness theorem, the proof of the
completeness theorem, and the uniqueness of successful computations, we have the
following result:

3.4.1. PROPOSITION.Every S-derivable sequent has a unique normal derivation (up
to applications of HP) and there is an algorithm that transforms every derivation into
a normal derivation, which is unique up to applications of HP.

3.4.2 Decidability
We will prove decidability of S via an analysis of possible derivations.

First of all, we can in fact restrict applications of the rules MP and PFX, by
adding a side condition to these rules. This follows from the following proposition.

3.4.2. PROPOSITION. If [P] => A is derivable in S, then A does not occur in the
body of the leftmost A-clause of P.
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PROOF. By induction on the depth of derivations. Let 6 be a derivation of depth 1.
Then 6 is an axiom [P] => T. By definition, T does not occur as the head of clauses
in P. So the consequent trivially holds in this case. Let 6 be a derivation of depth
77.,and suppose that the proposition is true for all derivations of depth < 72..
Suppose the last rule applied in 6 is HP,

[P;C;l3; R] .=>A

[P;B;C;R] =>A

By the inductive hypothesis, A does not occur in the body of the leftmost A-clause
A1 of P; C; B; R. But 3 and C have different heads. Consequently, the leftmost
A-clause of P; B; C ; R is also A1.
Suppose that the last rule applied in 5 is Modus Ponens,

[A(—A;P]=>B1 [A+—A;P]=>B,, MP
[A<——B1,...,B,,;P]=>A

Suppose, by contraposition, that A = B, for some i. Then the i-th assumption of
this instance of Modus Ponens reads:

[A<—A;P]=>A.

This contradicts the inductive hypothesis. The same argument applies if the last
rule applied is PFX. E]

The above proposition shows that in derivations in S, PFX and MP are only
applied if A ;£ B,-, for all i E [1,n]. Consequently, we can consider the following
modification of S. Add, to the rules MP and PFX, the side condition:

A ;£ B,-, for all i E [1,n]

Let now S’ be the calculus consisting of the axioms of S and the rule for Heterogenous
Permutation, and the rules MP and PFX with the above side condition.

Then, by the remarks above, the modified calculus S’ is equivalent to S in the
sense that a sequent is derivable in S iff it is derivable in S’. That is, the following
holds:

3.4.3. PROPOSITION. 6 is a derivation in S ifi 6 is a derivation in S ’.

Thus, we can restrict our considerations to S’.
Second, in S’-derivations of a sequent [P] => A , the number of applications of

MP and PFX in each branch is restricted by the number of non-reflective clauses in
P. This in fact follows from the restrictions on MP and PFX is S’. Observe that
the modified MP and PFX rules of S’ cannot prefix reflexive clauses A <—A.

Define the weight 'v(.A) of a clause A as follows:

v(A) = 0 iff A is a reflexive clause A <—A,
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v(A) = 1 otherwise.

Define the weight v(P) of a program P as the sum of the weights of the clauses in
P. Define the weight v([P] => A) of a sequent [P] => A as the weight of P.

For any instance of the MP rule in S’, the weight of the assumptions is strictly
smaller than the weight of the conclusion. (In contrast, this does not hold for S.)
Also, the weight of the left assumption of any instance of the PFX rule in S’ is
strictly smaller than the weight of the conclusion. In contrast, the weight of the right
assumptions of the S’-prefixing rule is equal to the weight of the conclusion. However,
going from conclusion to right assumptions in PFX, a clause A <—B1, . . .,B,, is
traded for a fact-clause B <—, and the latter can in its turn only have been introduced
by an application of MP. As a result of these observations, we have the following.

3.4.4. PROPOSITION. Let 6 be an S ’-derivation of the sequent [P] => A, and let d be
a branch in 6. Then the total number of applications of MP and PFX in d is smaller
than or equal to 2 - v([P] => A).

Third, we can restrict the depth of derivations, by restricting the number of
applications of the HP rule. We use the following proposition, whose proof is easy.

3.4.5. PROPOSITION. Let P be a program P = C1,. . .C,,, and let /9 be minimal such
that Ck is an A-clause.
Then [P] => A is derivable if?’the sequent [Ck,C1, . . . ,C;,_1,Ck+1, . . . ,C,,] => A
(a) is an instance of an axiom, or
(b) has a derivation ending in an application of MP or PFX.
Consequently, [P] => A is derivable ifi it has a derivation ending in at most k con
secutive applications of HP. Trivially, k 3 n.

Now define the sequent-length #([P] =>A) as the total number of clauses in P.
That is, if P is the program C1,. . .,C,,, then #([P] =>A) = n. Observe that the
number of clauses of the antecedents decreases by at most one in all S-rules — more
specifically, an application of the HP rule does not decrease the sequent-length, while
by applications of MP and PFX the sequent-length decreases with at most 1.

By the Propositions 3.4.4 and 3.4.5, we can conclude that a sequent [P] =>A
is derivable in S iff there is a derivation (in S’) of depth smaller than 2n2, where
n = #([P] =>A).

Fourth, the branching degree of possible derivations of a sequent is limited. In
particular, let m be the maximal length of the bodies of clauses in P. That is,
for every clause C 4- B1, . . .,B;, in P, k 3 m. (Observe that, in the course of a
derivation, this number increases.) Then the branching degree of a derivation of
[P] => A is at most m + 1 (due to applications of PFX).

In addition, suppose that s is a sequent occurring in a derivation of [P] =>A.
Then the sequent-length of s is at most 3n, where n = v([P] =>A). Also, the clauses
occurring in 3 either occur in P, or are of the form C <—C, where C occurs as the
head of a clause in P, or are of the form C <—,where C occurs in the body of a
clause of P.

We can conclude that
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3.4.6. THEOREM. S is decidable.

An open question is the structural complexity of S.

3.5 A Substructural Landscape
In the present and the subsequent section, we will investigate the substructural
nature of S. In particular, we will study the effect of extending the calculus S with
various structural rules and cut rules.

In general, we can distinguish two different outcomes of extending a calculus C
with a rule R. First, the extension C + R can be strictly stronger than the original
calculus C, that is, in C + R more sequents are derivable than in C. Second, the
extension with R can be equivalent to C with respect to derivability. In the latter
case, we call R sound with respect to C and C + R conservative over C; that is, for
allsequentss, C+R|-siffC|-s.

In Figure 3.1, we list the proper formulations of the classical structural rules
(Exchange EX, Contraction, and Weakening W) and the usual cut rule (Classical
Cut CC) in the context of S. As the antecedents of the sequents in S are lists
rather than multisets, the proper formulation of the usual contraction rule has to be
modified in the context of S. More precisely, in an order sensitive calculus like S, the
rule for contraction splits in two distinct versions Rightward Contraction RC and
Leftward Contraction LC. We will show that extending S with any of these classical
rules, with the exception of Rightward Contraction, results in a strictly stronger
calculus (Section 3.5.2 and 3.6).

In Section 3.5.1 and 3.6 we will discuss several weak versions of these classical

rules, listed in Figure 3.2. Rightward Extension RE and Atomic Monotonicity AM
are both special cases of the full Weakening rule W. Full Context Cut FCC and
Partial Context Cut PCC are special cases of Classical Cut CC. For any of the
weaker structural rules listed in Figure 3.2, we will show that they are sound with
respect to S.

In our discussion of sound rules, we will further distinguish admissible and deriv
able rules (cf. [Dos92]).

3.5.1. DEFINITION.
A rule R is admissible in a calculus C if the conclusion of R is derivable from C
when the assumptions of R are derivable from C.
A rule R is derivable in a calculus C if the conclusion of R is derivable from its
assumptions, using axioms and rules of C.

The relevance of derivability and admissibility is expressed in the following proposi
tion:

3.5.2. PROPOSITION. Let C be a calculus and R a rule. If R is derivable or admis
sible in C, then C + R is a conservative extension of C. Conversely, if C + R is a
conservative extension of C, then R is admissible in C.

The following proposition states some easy properties of these two concepts.
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Exchange Weakening

[P;l3;C;R]=>A [P;R]=>A
[P;C;B;R]=>A [P;l3;R]=>A

Contraction

[P;B;Q;l3;Rl=>A LC [P;B;Q;B;Rl=>A
[P;Q;B;R]=>A [P;B;Q_;R]=>A

Classical Cut

[Q]=>C [P;C(——;R]=>A CC
[P; Q; R] => A

Figure 3.1: Classical rules

Rightward Extension Atomic Monotonicity
[P;B;Q;R]=>A [P;R]=>A

[P;B;Q;B;R]=>A RE [P;B<—;R]=>A AM

Full Context Cut
[P;R]=>C [P;C(—;R]=>A

[p; R] => A FCC

Partial Context Cut
[P]=>C' [Q;C<——;R;Z]=>A

[Q; R; Z] => A
PCC where P Q Q; R and RC = (D.

Figure 3.2: Substructural rules
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3.5.3. PROPOSITION. Let C’ be a calculus and R a derivation rule. The following
hold:

(1) If R is derivable in C, then it is admissible in C’.
(2) If R is derivable in C, then it is derivable in every rule extension of C’.
(3) If R is derivable in C’, then it is admissible in any rule extension of C.

In contrast, admissibility does not imply derivabilility. In Section 3.5.1 we will see
some examples of rules that are admissible for S, but not derivable.

We also need the following related concepts, to compare the relative strength of
calculi:

3.5.4. DEFINITION. Let S and T be two Gentzen calculi.

1. SjTiffX|-s¢Tl-s, forallsequentss.
2. S < T iffS' j T and there is asequent s such that Tl- s, while S|7’s.
3.SETiffSjTandTjS.

3.5.1 Admissible rules for S

In [vB92], a calculus for general depth first search was discussed wich consisted of (a
minor variant of) the rules of S plus the rules Rightward Contraction and Rightward
Extension. Intuitive soundness and completeness proofs were given there. Using
the computation semantics we show that these rules are indeed admissible in S
(Proposition 3.5.6 and 3.5.7). That raises the question whether these rule are also
derivable in S. By giving rule-extensions of S in which they are not admissible, we
show that this is not the case.

We first extablish the following useful lemma.

3.5.5. LEMMA. Let H be the successful (failing) computation for B from the program
P = Q; B; R; B; Z, where B is a clause with head B. Then there is a successful
(failing) computation H’ for B from Q; B; R; Z.

PROOF. Let H satisfy the conditions of the lemma, and let H = B [61]- - - [cin].Also,
let the leftmost and rightmost exhibited B in the formulation of the lemma be the
m-th and k-th B-clause in H, respectively.

We distinguish the following cases:

1. n < is. Then H is also the (successful) computation for B from Q; B; R; Z. So
take H’ = H.

2. n > k. Then, by definition of computations, 5k consists of a list of par
allel computations, among which at least one is failed. So consider H’ =
B[61] - - - [6;,_1][6k+1]- - - [tin]. H’ is the computation for B from Q; B; R; Z, and
H’ is successful iff H is successful.

3. n = k. Observe that 6m = 6k. Therefore, H is a failing computation, and
H’ = B [61]- - - [6;,_1]is the failing computation for B from Q; B; R; Z. G

3.5.6. PROPOSITION. Rightward Contraction is admissible in S.
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PROOF. Let E be a successful computation for A from Q;B; R; B; Z, where B is
a clause with head B. Let H and H’ be the computations for B from respectively
Q; B; R; l3;Z and Q;l3; R; Z. By the above Lemma 3.5.5, H is successful iff H’ is
successful.

We distinguish the following two cases:
B does not occur in 2. Then, by the inessential difference property, 2 is also the
successful computation for A from Q; B; R; Z.
B does occur in E. Replacing all occurrences of H in E by H’ results in a successful
computation for A from Q; B; R; Z.
The proposition now follows from the definition of computations and by soundness
and completeness of S with respect to computations. C]

By similar arguments, we have the following.

3.5.7. PROPOSITION. Rightward Extension (RE) is admissible in S.

In contrast, the following holds.

3.5.8. PROPOSITION.Neither Rightward Extension nor Rightward Contraction are
derivable rules in S.

PROOF. By Proposition 3.5.3(3), it suffices to find rule extensions of S in which
Rightward Extension RE and Rightward Contraction RC are not admissible. In
particular, by Proposition 3.5.2 it suffices to find rules RE and RC and sequents TE
and Tc such that

1. s +RE +REl-TE,whileS + RE |7’TE;
2.S+R.C+RCFTC, +R.C

Ad 1). Take for RE the following rule:

[P] ¢ A

[A <—A; P] => A

RE
and take for TE the sequent [A +—A; A <—; A <—]=> A . The derivation of TE in S+
RE + RE is as follows:

[A<—A]=>T

[A<—:=>A E
[A(-A;A<-]=>A RE

[A<—A;A<——;A<——]=>A

To show that S + RE I7’TE, suppose that 6 is a derivation of TE in S + RE. TE is not
the conclusion of an application of RE or HP. Thus it must be the conclusion of either
MP or PFX. In the first case, the single assumption of this rule is TE itself, in the
latter case, one of the assumptions is the sequent [A <—A; A <—; A <—; A <——]=> A.
Either of these sequents can again only be the conclusion of MP or PFX. Thus 6
must contain an infinite branch.
This concludes the proof of 1).

MP
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Ad 2). Take for R0 the following rule:

[P]=>A
[A<—A;P]=>A

RC ifforsomeY,PA=Y;A<—A;A<——,

and let To be the sequent [A (—A; A <—]¢ A . Now To and R0 are as in (2),
providing a counterexample to derivability of Rightward Extension: We have the
following derivation of TC in S+ RC + RC:

[A<——A;A(—A;A<—]¢T MP
[A<—;A<—A;A<—]=>A RC

[A<—A;A<—;A<—A;A<—]=>A RC
[A<—A;A<—;A<—]=>A RC

[A<—A;A<—]=>A

The arguments used above in case 1) also apply here, to show that S+ RC I7’TC.
This concludes the proof of 2). El

Another sound but non-derivable rule is Atomic Monotonicity, which is obtained
by restricting Weakening to fact-clauses, see Figure 2. The intuitive argument for
the soundness of Atomic Monotonicity is the following: The addition of a clause to
a program only destroys success if the added clause introduces a loop; a fact-clause
does not introduce any loops. Again the rule RE and the clause TE defined above
serve as a counterexample to derivability of Atomic Monotonicity.

3.5.2 Exchange, Contraction, Weakening
Let us turn to the classical structural rules Exchange, Contraction (Leftward and
Rightward), and Weakening. Extension of S with any of these rules results in a
strictly stronger system:
3.5.9. PROPOSITION.

S < S+EX
S < S+LC+RC
S < S+W

PROOF. Consider the sequent S = [A <—A; A <—]=> A. S is derivable in any of
these three extensions of S, but not in S. D

The addition of Exchange to S corresponds to a shift from depth first search to
breadth first search. That is, S + EX corresponds to classical logic (CL) for Horn
clause theories. While it is not clear at first sight to what search procedure addition
of Contraction or Weakening corresponds, it turns out that Exchange, Contraction,
and Weakening are equivalent over S:

3.5.10. PROPOSITION. S + EX 5 S + LC + RC 5 S + W.
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PROOF. We will show that any of the three calculi S + EX, S + W, and S + LC
+ RC, corresponds to breadth-first search in and-or search-trees. More precisely, we
will show that a sequent [P] =>A is derivable in any the above calculi iff there exists
a successbranch in the and-or search tree for A from P. We will use the following
notion of formal breadth-first (bf) computations, which formalises the notion of
success-branch in and-or trees:

0 D is a bf-computation for T from P.
o A[H1| - - - |H,,] is a bf-computation for A from P if

1. there is a clause A 4- B1,...,B,, in P such that, for 2 6 [1,22],H, is a
bf-computation for B,-from P;

2. A does not occur in any of the H,-;
3. If E and I‘ are bf-computations for some C from P, such that both 2 and

I‘ are subcomputations (using the obvious notion of subcomputation) of
H, then 2 = F.

Clearly, there is a (not necessarily unique) bf-computation for A from P iff breadth
first search with parallel goal processing for A from P succeeds. By proving sound
ness and completeness of each of the above calculi with respect to the breadt-first
computation semantics, we show their mutual equivalence. Breadth-first computa
tions have the following properties, which will be useful for proving soundness and
completeness:
Let H be a bf-computation for A from P. Then there is a minimal program Q such
that

1- Q Q P;
2. Every atom 76T that occurs in Q, occurs exactly once as the head of a clause

in Q;
3. H is a bf-computation for every program R Q Q.
4. Q is unique modulo permutation of clauses.

Soundness
We show that each of the rules of S and W, EX, LC, and RC, are sound with respect
to bf-computations. Soundness of the axioms is immediate. Soundness of HP and
EX follows from the fact that the bf-computations are insensitive to the relative
order of clauses in a program. Soundness of PFX, W, LC, and RC follows easily
from the above properties of bf-computations. Consider MP,

[A<—A;P]=>B1 [A<—A;P]=>B,,
[A<——B1,...,B,,;P]=>A

MP

Suppose that for 2 E [1, 22],H, is a bf-computation for B, from A <—-A; P.
By the above properties of bf-computations, H, is a bf-computation for B,- from
A 4- B1, . . . , B,,; P, for 2 E [1, Without loss of generality we can assume that, if
)3, and 23,-are subcomputations of H, and H,-, respectively, for an atom C, then 23,-is
identical to 23-. Therefore, if A does not occur in any of the H,-,A[l'I1| . . . |H,,] is a bf
computation for A from A <—B1, . . . , B”; P. Suppose A occurs in H,-. That is, there
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is a subcomputation E of H, which is a bf-computation for A from P. By the above
properties of bf-computations, E is a bf-computation for A from A <—B1, . . . , B,,; P.

Completeness
By induction on the (natural) depth of bf-computations. Suppose that for all atoms
A, programs P, if there is a bf-computation for A from P of depth < n, then the
sequent [P] => A is derivable from any of the relevant calculi. Let H = A[H1| - - - |H,,]
be a bf-computation of depth 7:.for A from P. Let Q Q P be the minimal program
associated with H, and let QA be A 4- B1, . . . , B,,. Let Q’ be the result of deleting
QA from Q, and let P’ be the result of deleting the leftmost occurrence of QA from
P. Then, by the above properties of bf-computations, we find that, for i G [1,n], H,
is a bf-computation for B, from any of

1. A(——A;Q',
2. A+—A;P’, and
3. A<—A;P.

Therefore, by the inductive hypothesis, we find corresponding derivations U,-,6,-,and
0,-, in respectively S + W, S + EX, and S + LC + RC. Indicating consecutive
applications of a rule R by R*, we find the following derivations of the sequent
[P] => A , respecively in S + W, S + EX, and S + LC + RC.

U1 Un

[A<—A;Q']=>B1 [A<—A;Q'l=>Bn MP

[A <-—B1,...,B,,;Q’] => A HP*

[Q] : A W...
[P] => A

61 En

[A+—A;P’]=>B1 [A<—A;P’]=>B,, MP
[A4- B1,...,B,,;P'] =>A EX*

[P] => A

01 an

[A<—A;P]=>B1 [A(—A;P]=>B,, MP
[A(—B1,...,B,,;P] =>A LC

[P] => A

This concludes the completeness proof. E]

Observe that the above completeness proof shows that the PFX rule is redundant
in any of the three relevant extensions. The inductive step for S+ LC + RC shows
that RC is redundant in that calculus. In addition, HP is clearly redundant in S+
EX, as it is subsumed by the Exchange rule.

Combining the above propositions with the observation that S + EX corresponds
to Classical Logic CL, we find ourselves in the following substructural landscape:
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CLE S-l-EXE S+LC+RCE S+W

3.6 Cut rules

From a proof-theoretical point of View the question of the existence of admissible
cut rules for S arises, that is, the question whether we can derive sequents by use
of lemmas.1 Let us first investigate the classical notion of cut, which expresses that
the cut formula can be replaced by a set of clauses from which it is computable. Its
formulation can be found in Figure 1. Classical Cut is not admissible for S, as is
shown by the following counterexample:

Counterexample Consider the sequent [A <—C’;C <—D; C’ 4- ; D <—D] => A.
While this sequent is not derivable in S, in S + Classical Cut it has the following
derivation (we omit applications of HP and obvious subderivations):

[C]=>C [C<—C';C;D]=>D PFX [A<——A;C';D<—D]=>C
[C'<—D;C<—]=>C' [A<—C';C;D+—D]=>A CC

[A<—C;C<—D;C+—;D+—D]=>A

Cl

(Likewise, several simple variants of Classical Cut, obtained by permuting P, Y, and
Z in the conclusion, can be shown to be inadmissible for S.) Therefore, extending
S with Classical Cut results in a strictly stronger system. The following result, in
combination with Proposition 3.5.10, shows that S + Classical Cut is intermediary
between S and any of the extensions with Weakening, Contraction, or Exchange.

3.6.1. PROPOSITION. S + C0 < S + W.

PROOF. We first show that S + CC j S + W. By an easy substitution argument,
it can be shown that Classical Cut is sound with respect to the computation se
mantics defined above for S + W. The completeness of S + W w.r.t. to successful
computations thus gives the required inclusion of S + CC in S + W.

To prove that inequality holds, observe that

S +W|-[p+—p;p<—]=>p

1The procedural counterpart of this question is closely related to the following question con
cerning operators for combining programs: under which conditions is the computability of an atom
proserved after combining the original program with a new module. In the present paper we focus
on the proof-theoretic question, rather than on its procedural counterpart, for which work is in
progress.
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In contrast,
S + Classical Cut 57’[p <—p;p <—]=>p

For suppose that there is a derivation 6 in S + Classical Cut of [p <—p; p <—]=> p .
We show that 6 must contain an infinite branch [Po]=>p , [P1]=>p, ..., with the
following properties:

1. For all n, Pn is of the form p <—p; P,’, for some P,’, ,
2. For all n, the only clauses that occur in P” are p <—and p <—p .

Let P0 = p +—p;p <—.Then [P0] => p is the conclusion of 5, and (1) and (2) hold
for P0 . Suppose (I) and (2) hold for P,,_1. Then P,,_1 cannot be an instance of
an axiom or the conclusion of an application of HP. So one of the following cases
applies:

0 P,,_1 is the conclusion of an application of MP. Then P,, = P,,_1.
o ,,_1 is the conclusion of an application of PFX. In this case, take for P” the

right assumption of this application. Then P” = P,,_1;p <—, and clearly P,, are
satisfies(1)and

o P,,_1 is the conclusion of an application of Classical Cut, as follows:

[Y]=>C’ [T;C<—;Z]=>p
[T;Y;Zl=>p

where P,,_1 = T; Y; Z.
By assumption, (2) holds for P,,_1, so all the clauses in Y are of the form p <—p
or p +—. Thus C must be p.
If T = (D,then let P” = Y, otherwise let P,, = T;p (—; Z. In both cases, (1)
and (2) hold for Pn.

This contradicts the fact that derivations are finite. Thus, b) holds, and we conclude
that S + CC is ‘strictly weaker than S + W. El

Combining these results with those from the previous section, we find ourselves
in the followingsubstructural landscape:

CLE S+EXE S+LC+RCE S+W

S+CC

S

In contrast to Classical Cut, the weaker rules Full Context Cut and Partial Con
text Cut (cf. Figure 2) are sound with respect to S. Neither of these two rules is an
instance of the other. Both can be shown to be admissible rules for S.
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3.6.2. PROPOSITION. Full Context Cut is an admissible rule for S.

PROOF. Let H and 2 be successful computations for [P; R] ¢ C and
[P; C +—; R] => A, respectively. Now observe that, by the presence of the fact-clause
C <—in P; C <—; R, if 2 contains any subcomputation I‘ for C, I‘ must be successful.
Also, we know that C already succeeds from P; R. Therefore, substitution of H for
all subcomputations of E for C from P; C; R results in a (successful) computation
for A from P; R. El

As witnessed by the above counterexample, the substitution used in the proof of
the above proposition would not give the desired effect for Classical Cut: as success
of C from Q does not guarantee success of C from the extended program P; Q; R.

Observe that by the constructive nature of the soundness and completeness the
orems for S, this admissibility result has an algorithmic cut elimination result as a
corollary: there exists an effective procedure for the elimination of Full Context Cut.
Similar results hold for Partial Context Cut:

3.6.3. PROPOSlTION.Partial Context Cut is an admissible rule for S.

PROOF. Suppose that C succeeds from P and A succeeds from Q;C <—;R;Z,
where P Q Q;R and RC = 0. Let H be the successful computation for A from
Q; C 4- ;R; Z. If C does not occur in H, then by the inessential difference propo
erty, H is also the successful computation for Q; R; Z. So suppose C does oc
cur in H. By finiteness of computations, C either succeeds or finitely fails from
Q; C 4- ;R; Z. The occurrence of the fact-clause C <—excludes the latter possibil
ity. Let (Q;C (——)c= C1,. . . ,C;.. There is an n g k, such that for every m < n,
C finitely fails via Cm from Q; C (—; R; Z, while C succeeds via C,,. We claim that
n < k. To see this, observe that by the assumption P Q Q; R, every branch in the
search tree 8 for C from P can be permuted and consequently extended to a branch
in the search tree T for C from Q; C 4- ;R; Z. In particular, any successful branch
in 8 can be permuted to a successful branch in T. Thus, by the assumption that
C succeeds from P, there is a successbranch in T. Moreover, by the assumptions
P Q Q; R and RC = (2),this branch must start with resolving C using a C-clause
from Q. This proves the claim.
We can now conclude that C succeeds from Q;C <—;R;Z via a C-clause in Q.
Therefore, C also succeeds from Q; R; Z, and the successful computations for C
from Q; C +—; R; Z and for C from Q; R; Z are identical. As a consequence, H, the
successful computation for A from Q; C <-—; R; Z, is also the successful computation
for A from Q; R; Z. By soundness and completeness of S with respect to the formal
computational semantics, the theorem now follows immediately. El

3.6.4. COROLLARY.There exist effective procedures for the elimination of Full Con
text Cut and Partial Context Cut.

It is an open question whether Partial and Full Context Cut are derivable rules for
S.
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3.7 Negation as Failure
Negation as failure is procedurally defined by two rules which express a duality
between an atom and its negation:

The literal -1A succeeds if A fails; it fails if A succeeds. (NAF)

Here failure is interpreted as finite failure. The general depth first search computa
tion mechanism can be extended with the negation as failure rule. As a result we
get a computation mechanism that is suitable for querying normal programs, that
is, programs with negative literals ocurring in the bodies of clauses. In the present
section we extend the calculus S with rules and an axiom for negation. We show that
this extended system Sn correctly formalises general depth first search plus negation
as failure. Using the duality between success and failure, we can also extend the
notion of formal computation. This extended notion of computations will be used
in the correctness proof for Sn.

Notation and conventions

0 L is a literal if L is either A or -A, where A is an atom.
o L and K are (sometimes indexed) literals.
o The atomic part L+ of a literal L is defined as follows:

A+ := A

(fiA)+ := A
o The converse L‘ of a literal L is defined as follows:

A‘ := fiA
(m/l)— := A

o A is a (normal) clause if A is A <——L1, . . . , Ln , where A is a proper atom, and
the L; are literals.

o P is a (normal) program if P is a finite list of (normal) clauses.
0 Observe that general depth first search is insensitive to the order of literals

in the bodies of clauses. Thus a clause A 4- L1, . . .,L,, is computationally
equivalent with any of the clauses A +—L,,(1),. . . , L,,,(,,)if p is a permutation
of {1, . . . ,n}. This justifies the use of the set-notation A 4- {L1, . . . , Ln} to
indicate any of the clauses A <—Lpa), . . . , L,,(,,).

0 To save space in the notation of rules (and derivations), we use the ‘sum’
ELI =>L,-to indicate the list of n assumptions [P1]=>L1, . . .,
[Pn] => Ln.

3.7.1 Axiomatising negation as failure
We axiomatise depth first search with negation as failure in a deductive calculus S_.,
the rules of which are given in Figure 3.3. The soundness of S_.is almost immediate:
Clearly, the axioms AX and the heterogeneous permutation rule HP are sound with
respect to depth first search with negation as failure. Also the modus ponens rule MP
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S

Axioms

[P] => T (AX)

[P] => -IA if PA = (D (AX_,)

Heterogeneous Permutation

[P;C;D;R]=>L . .where D and C are clauses W1thdlfferent heads.
[P;D;C;R]=>L

Modus Ponens

[A<—A;P]=>L1 [A<—A;P]=>Ln MP
[A+—L1,...,L,,;P]=>A

Prefixing

[P]=>A 221:1[A<—A;P;L;'"J=>L:' PFX
[A<—L1,...,L,,;P]=>A

[P] => ~A 22; [A <—A; P; Ly] => L: [A 4- A; P] => L‘ PFXfl
[A <—{L1,...,L,,,L};P] => -1A

Figure 3.3: The calculus SA.
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and the prefixing rule PFX, both formulated for normal clauses, are sound. (Observe
that, by the duality of success and finite failure, sequents of the form [R; L+] => L+
express that the literal L either succeeds or finitely fails from R.) These rules and
axioms deal with success of atoms.

The new axiom AXT and the new rule PFX, deal with the success of negative
literals (i.e., by the duality principle, with the failure of atoms). AX- expresses the
immediate failure of undefined atoms. PFX_. deals with the failure of defined atoms,
as follows. Suppose the atom A fails from the program P. Then A will also fail from
the program A <—L1, . . . , Ln; P if at least one of the L,- finitely fails from P, while
the other body-literals either fail or succeed from P, and none of the L, has A as a
subgoal in the computation from P.

We will more formally investigate soundness and completeness of S.. in the next
section.

3.7.2 Computation Semantics
Using the duality principle for failure and success, we can extend the notion of formal
computation with the following two clauses, to obtain a proper semantics for S_.:

0 -all is a successful computation for fiA from P
iff

H is a failing computation for A from P;
o -:H is a failing computation for -IA from P

iff

H is a successful computation for A from P.

Example. Consider the program P = A <—B, -vD; B (—C; D +—E; C’<—.
The goal D finitely fails from P, and the associatedfailingcomputation is D[E
So fiD succeedsfrom P, and the associatedsuccessfulcomputation is -D[E
The successful computation for A from P is A[B [C[E]]]|—aD[E[OH], and A succeeds
from P. E]

The extended notion of formal computation inherits the uniqueness property,
the finiteness property and the inessential difference property of the original notion.
With an obvious extension of the notion of subcomputation, the occurrence property
can be formulated. Likewise, the transformation properties are inherited.

We are now in position to state and prove the main theorem of the present section,
the correctness theorem for S...

3.7.1. THEOREM. The following are equivalent, for normal programs P and literals
L:

S- I—[P] => L (1)
there exists a successful computation for L from P (2)
L succeeds from P via general depth first search + NAF (3)

PROOFSKETCH. The soundness of ST with respect to the computation semantics
is immediate from the definitions. Completeness is proved along the same lines as
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the completeness of S. The axiom for immediate failure, the new prefixing rule, and
the modified modus ponens and prefixing rules have enough power to reflect the
computational behaviour of negation as failure.

The correctness with respect to general depth first search plus NAF now follows
from the fact that the semantical objects formalise search through the relevant search
trees. [I]

With methods analogous to those used in Section 3.4, it can be shown that S_. is
decidable.

3.7.3 Substructural properties revisited

It is well-known that the interpretation of negation as finite failure destroys mono
tonicity. This is reflected in the following difference between S and S—'nAs we
have observed, Atomic Monotonicity is admissible for S. In contrast, Atomic Mono
tonicity is not an admissible rule for S... A simple counterexample is the following:
while ST l- [B 4-] => -A, it is obvious that the sequent [B 4——; A 4-] => 5A is not
derivable in S...

Another obvious property distinguishes S., from S. We have seen that Classical
Logic CL is stronger than S. However, it is well-known that in CL no negative
information can be derived from normal clauses. In contrast, clearly, negative literals
are derivable from normal programs by general depth first search plus negation as
failure. Thus, while S 4 CL, S.. is not included in CL.

In the context of S, we have seen that Rightward Extension and Rightward
Contraction are admissible, but not derivable rules, (Propositions 3.5.6 - 3.5.8). Not
surprisingly, these rules are again admissible (but not derivable) in the context of
S... The proofs and counterexamples given in the context of S immediately apply,
mutatis mutandis, to the context of Sq.

Classical Cut CC is not an admissible rule for S-; counterexamples are easily
constructed. Full Context Cut FCC is admissible for S... In contrast, Partial Context
Cut PCC is not sound for S-. As a counterexample, observe that the sequents
[C 4—--D] => C and [A 4- C; C 4- 5D; C; D] => A are derivable in S_,, while S.. does
not derive the sequent [A 4- C; C 4- -1D; D] => A.

Negation as failure can be incorporated in the semantics defined for S + EX
in Section 3.5.2. The extended semantics is correct for the extension of Sfi with
Exchange and for the extension with Rightward and Leftward Contraction. That
is, Exchange and the contraction rules are again equivalent in the context of S; an
addition of these rules corresponds to a shift from depth first search to breadth first
search. In contrast, Exchange is not equivalent to Weakening in the context of S.,:
while the sequent [B 4- ;A 4-] => 5A is derivable in S_. + W, it is not derivable in
S_. + EX. It is unclear whether the calculus S-1 + W corresponds to any sensible
computation procedure.
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3.8 Extending the language
The next natural step is to extend of the language of Sn with further connectives
and operators. Adding ‘logical’connectives in a logic programming context involves
a great number of options, that may be distinguished systematically.

First, connectives may be added at various levels:

1. Connectives on goals, inside bodies of clauses. This is the case we will concen
trate on in the present section. An interesting feature of an extension with goal
connectives is that they act as local implementations of computation rules, on
top of the basic processing mechanism.

2. Adding connectives in clause heads is another possibility. The procedural in
terpretation of goal-connectives in clause heads, however, is not at all obvious,
as witnessed by the literature on explicit negation. An interesting option is
the use of implication in the head of clauses, to implement the import of mod
ules in the style of [Mil89]. We will, in the present context, not pursue this
possibility.

3. At another level, connectives between clauses and on programs themselves are
possible. At the level of clauses, procedural connectives could implement vari
ous search rules on top of the basic processing mechanism. At the level of pro
grams, procedural versions of module operators would emerge (cf. [BMPT94]
and [BT95]). These possibilities remain to be investigated in greater detail.

A potential source of variation in procedural connectives is well-known from
substructural and many-valued logics. In a richer computational setting, classical
connectives usually ‘split’ into several natural variants — and even completely new
connectives may arise. In the present section, we study several such variants of the
classical connectives disjunction and conjunction added to the language of S- on the
level of goals in clauses. We extend the system S_.with (proof theoretic introduction)
rules to incorporate these procedural connectives.

3.8.1 Procedural connectives

Computational disjunction (choice) and conjunction (composition) are natural can
didates for connectives on goals. We will investigate several of the possible variants
of choice and composition, starting with choice. lntuitively, binary disjunction is
a choice between the two disjuncts. In a procedural setting, we may call a binary
disjunction computable from a program if one of the disjuncts is computable, while
failure of a disjunction corresponds to failure of both disjuncts. However, as failure
can be caused by either the occurrence of a loop or by finite failure of the search,
there is space for a variation in the success conditions as well as the failure condi
tions for disjunction. We will concentrate on variations in success conditions, and
interprete failure of a disjunction as the finite failure of both disjuncts. The simplest
possibility is nondeterministic choice A||B:

A search for A||B is successful if either the search for A or the search for
B is successful; it fails if the searches for both disjuncts end in failure.
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This translates immediately into a formal definition of computations:

(A||B)P is a successful computation for A||B if either AP is a successful
computation for A or BP is a successful computation for B; (A||B)P is
a failing computation for A||B if P is a tuple PA*PB, where APA is a
failing computation for A, and BPB is a failing computation for B.

Another natural possibility is left directed choice A/ B, which works as follows.
Start with a search for A. Success for A already gives success of A/ B, while (finite)
failure induces a further search for B. Success of B then gives success for A/ B , while
(finite) failure of B means failure of A/ B . All other possibilities induce a diverging
search for A/ B. A corresponding notion of formal computation may be defined as
above. Of the further interesting options for variants of choice, we want to mention
S-choice AVB. Success of an S-choice only occurs if one of the disjuncts succeeds
and neither loops, while failure occurs if both disjuncts (finitely) fail.

These three alternative procedural disjunctions are obviously related: for in
stance, observe that success of AVB implies that of A/ B, which again implies success
of A||B. Considering different failure conditions would again lead to other variants
of procedural disjunction, which we will not discuss.

Procedural-.conjunctions can be introduced via the failure negations of disjunc
tions. This gives us at least the following options:

CHOICE success COMPOSITION
NONDETERMINISTIC PARALLEL

PA PB AOBI= fi(fiA||fiB)
LEFT DIRECTED LEFT DIRECTED

A/B PA P,A*PB AzB := w(—uA/—»B)
S-CHOICE S-COMPOSITION

AVB PA*PB P'fiA*PB PA*PfiB APB I: “(fiAV-1B)

By interpreting TTA as A (which is in concordance with the interpretation of nega
tion as finite failure), this schema immediately gives the failure conditions of the
above three variants of conjunction.

Observe the resemblance to three-valued logic (see, f.i. [Urq86]), where connec
tives split into different versions as a result of the choices allowed by the truth-value
U (‘unknown’, here related to the possibility of the search going into a loop). This
three-valued analogy itself may generate further relevant connectives, (including two
clausal negations: a ‘weak’ and a ‘strong’ one) that we shall not explore here.

3.8.2 Extending Sfi with connectives on goals
An extension of the calculus SL with the above discussed procedural connectives
occurring in bodies of clauses can be obtained in several ways. One possibility is to
add side conditions to the original modus ponens and prefixing rules, which reflect
the procedural interpretation of the new connectives. The system thus obtained is
somewhat laborious, hence we concentrate on another, more classical approach to
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the procedural goal—connectives,via proof-theoretic introduction rules. The resulting
system S+ is an extension of Sn with introduction rules for double negation and
the above discussed procedural versions of disjunction and conjunction. Although
several more of the possible procedural connectives can be incorporated in the present
setting, we will restrict ourselves to the procedural connectives defined above.

We will use the notions of atom and literal as before, and the new notion of
extended literal for expressions built up from atoms using the new procedural con
nectives and the failure negation fl. Extended literals will be written as E, F. We
allow iterated occurrences of negation and nesting of the procedural binary connec
tives in extended literals. Observe that for any extended literal E, fifiE is equivalent
to E, by the duality of failure and succes. We adapt the notions of clause and pro
gram in the expected way: A is an (extended) clause if A is A 4- E1, . . . , En, where
the E,- are extended literals and A is a proper atom. A program is a finite list of
(extended) clauses.

The introduction rules for the procedural goal-connectives are determined by the
corresponding procedural interpretation. The success conditions for the procedural
disjunctions ||, / , and V, translate into the following introduction rules:

[P] => E [P] => F

[P] =>E||F [P] =>E||F

[P]=>E [P]=>fiE [P]=>F
[P] =>E/F [P] =>E/F

[P]=>E [P]=>F [P]=>aE [P]=>F [P]=>E [P]=>aF
[P] => EVF [P] => EVF [P] => EVF

The failure conditions for the various procedural disjunctions (failure of both dis
juncts) translate into the followingintroduction rules for negations:

[P] => wE [P] => -F [P] => wE [P] => wf‘

[P] =>n(E||F) [P] =>-(E/F)

[P] => <E [P] => wF

[P] =>fi(EVF)

The corresponding introduction rules for the three procedural conjunct ions and
their negations are easily derived:
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m:E[m:F ®:E[H:F m:E[m:F
[P] => EnF [P] => ELF [P] => E[>F

[P] => <E [P] => —wF

[P] => fi(EnF) [P] => —u(EnF)

[P] => -E [P] => E [P] => —»F
[P] => <(EzF) [P] =:»w(EzF)

[P] => -IE [P] => -~F [P] => fiE [P] => F [P] => E [P] => ~F
[P] => fi(El>F) [P] => -n(El>F) [P] => fi(El>F)

In addition, we need the following introduction rule for double negation, which is
justified by the duality for success and failure:

[P] => E

[P] => <fiE

In presence of the above introduction rules for procedural connectives on goals,
Modus Ponens and the prefixing rules can prefix clauses in which extended literals
occur in the body. Note that the formulation of the prefixing rules used previously
requires extended literals to occur in the head of (fact-)clauses, while we wish to re
strict the format to extended clauses, that is, clauses with an atomic head. Therefore
we will, in the remainder of this chapter, use alternative, equivalent formulations of
the prefixing rules. Consider the following assumption of the rule PFX:

2 [A +—A;P;L;*] => L,-+
i=1

As we have observed in Section 3.7, this assumption expresses that the L, either
succeed or fail on the program A <—A; P. Thus, using the duality between success
and finite failure and the option of using iterated negation, this assumption can
equivalently be replaced by the following set of assumptions:

1: n

Z:[A(—A;P]=>E,- Z [A<—A;P]=>fiE,- whereO§k§n
‘i=1 i=k+1

Thus, the following is an alternative formulation of the rule PFX:

[P] => A 2;, [A +—A; P] => E,» z;;,,,£, [A 4- A; P] => ~15,»
[A<—{E1,...,E,,};P] =>A

where 0 3 k 3 n.

Observe that the case k = n subsumes the rule MP. Thus we can, without los
of strength, eliminate this case2. Thus, in the remainder, we will use the following

2Observe that this restricts all derivations to normal derivations in the sense of Section 3.4.1.
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version of the rule PFX, in which at least one of the body literals of the prefix clause
fails:

PFX
[P] => A 2?; [A <—A; P] => E, Z3}; [A <—A; P] => wE,

[A<—{E1,...,E,,};P]=>A
where1 gkgn.

Similarly, we will use the following version of PFX- in the context of S+:

PFX
[P] => -:A :1;-,1 [A 4- A; P] => E,- 3:, [A 4- A; P] => —=E,

[A(—{E1,...,E,,};P] =>-1A
where1 gk fin.

In addition to the above prefixing rules and the introduction rules for the proce
dural connectives, S+ has the usual modus ponens rule, the rule for heterogeneous
permutation and the axioms of Sfi(now for extended programs). This completes the
description of S+.

The following proposition shows that for all derivable sequents [P] => E, all
clauses in P have proper atoms as heads:

3.8.1. PROPOSITION. If S+ |- P => L, then all clauses in P have atomic heads.

PROOF. By induction on the depth of derivations. E]

The connection between the extended notion of computations (discussed in Sec
tion 3.8.1) and the calculus S+ is as expected:

3.8.2. PROPOSITION.For all extended literals E and all programs P with only atoms
as heads, S+ |- P => E if?‘there exists a successful computation for E from P.

PROOF. By induction, along the same lines as the correctness proof for S... [3

3.8.3 Connectives and selection rules

There is a close connection between the above composition connectives and selection
rules. First of all, S-composition inside the body of a clause has the same effect
as the basic juxtaposition of body literals in general depth first search. This can
be shown on the level of formal computations, as follows. Let P be a program in
the language of S+, let L be a literal. Let P’ be the program obtained from P by
replacing S-conjunctions with juxtaposition comma’s. (For simplicity, assume that
the S-conjunctions do not occur under any other connective than S-conjunctions.)
Now let H be a succeeding (failing) S+-computation for L from P. A corresponding
succeeding (failing) computation H’ for L from P’ can be obtained by an obvious
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transformation of H (replace all subcomputations of the form (K I>L)Z*I‘ by juxta
positions K [E] |L Thus, it is seen that S—compositionl> locally implements the
S-computation rule.

Parallel composition in its turn, corresponds to a generalised selection rule which
is more liberal in the failure conditions than the S-selection rule: a goal A fails via
a clause as soon as one of the body atoms finitely fails.

Similarly, left directed composition locally implements Prolog’s left-first selection
rule. For example, a search for A via the clause A <—B1Z(B2ZB3) mimics compu
tation using Prolog’s leftmost selection rule. Observe however, that the underlying
search mechanism is basically parallel and does not have the involved backtracking
mechanism of standard Prolog. We will more closely investigate the relation beween
left directed composition in the context of S+ and Prolog in the next sections.

Several other selection rules can be implemented by means of other versions of
composition connectives. For instance, a rightmost selection rule can be implemented
using a right directed version of the procedural composition 1. We will however, in
the present context, not persue these possibilities.

3.9 Frugal Prolog
In this section we take a closer look at left directed composition. As we have ob
served above in Section 3.8.3, left directed composition 1 corresponds to leftmost
goal selection. That is, in the context of S+, left directed composition locally imple
ments Prolog’s leftmost selection rule on top of the basic general depth first search
mechanism. Still, as we will show, there is a subtle difference between the standard
Prolog computation mechanism and the mechanism obtained by specialising the gen
eralised parallel selection rule in general depth first search to leftmost goal selection.
This difference is caused by the essentially different backtracking mechanisms em
ployed. We will first investigate the latter mechanism, which, for reasons later to be
discussed, we will call frugal Prolog. An indirect characterisation of frugal Prolog
can be obtained from S+. In addition, we will give a calculus Sfpr which directly
characterises frugal Prolog. A comparison between frugal and standard Prolog will
show that Sfp, is not sound with respect to the standard Prolog computation mech
anism. However, for a restricted class of programs, Prolog computation and frugal
Prolog computation coincide.

3.9.1 Frugal Prolog

To study the frugal Prolog computation mechanism, we first generalise left directed
composition to a version with free arity, as follows:

3.9.1. DEFINITION. (generalised left directed composition)
(L) := L
<L1,.L2) Z: LIZLQ
<L1,L2,...,Ln_) Z: L1Z<L2,...,Ln) El
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We will call a clause A in Prolog form if A is A <——(L1, . . . , Ln), where A is a proper
atom and the L,- are literals. A program is in Prolog form if all of its clauses are.
A sequent [P] => L is in Prolog form if the program P is in Prolog form and L is a
literal.

Now suppose a sequent [P] => L, which is in Prolog form, is derivable from S+.
Then the literal L succeeds from P via the followingcomputation mechanism:

Frugal Prolog computation
To prove a goal A from a program, first try the uppermost program clause
which has A for its head. A succeeds via a clause A +—<B1, . . . , Bn > if
all the B,-succeed successively. A fails finitely via this clause if, for some
2'3 n, B,-fails finitely, while for all j < 2',Bi succeeds. In the latter case,
try the next lower eligible program clause. The over-all computation
procedure involves backtracking to the last choice point. A goal -1A
succeeds iff A finitely fails and vice versa.

Thus we have the following

3.9.2. PROPOSITION. Let [P] => L be in Prolog form. Then S+ |- [P] => L if?’L
succeedsfrom P via the frugal Prolog computation mechanism.

While the frugal Prolog computation mechanism is close to the standard Prolog
computation mechanism, there is an essential difference. Consider the following
program P:

A <
A 4- A

B <—A, C’

A Prolog search for B will diverge: first, A succeeds, but, as C finitely fails, the
procedure backtracks and tries to solve A via the second A-clause, on which it goes
into loop. A frugal Prolog search however, will establish the finite failure of B, and
thus the success of -IB: upon the failure of C, the procedure does not backtrack on
the previously established success of A, but will, in the absence of further B-clauses,
conclude that B fails. This illustrates the essential difference between frugal and
standard Prolog.

Relative to standard Prolog, frugal Prolog search employs less extensive back
tracking. More in particular, frugal Prolog does not backtrack on goals for which
success has previously been established. This can be interpreted as pruning of the
relevant LDNF-trees during frugal Prolog search. In fact, frugal Prolog can be mim
icked in standard Prolog, by the use of commit operators on goals.

In the context of predicate logic, backtracking on successful goals has the effect
of generating alternative possible answer substitutions, on which the failing subgoal
might subsequently succeed. In the propositional case, backtracking on successful
goals (which can be interpreted as searching for alternative proofs) has no such
effect. Therefore, for propositional programs and goals, frugal Prolog is a reasonable
alternative for standard Prolog. In addition, less backtracking means less overhead,
so frugal Prolog travels through the search space faster than standard Prolog. Thus
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SfPr

AX

[P] => T where P is in Prolog form.

AX—.

[P] => -1A where P is in Prolog form and PA = (D.

Heterogeneous Permutation

[P; C;D; R] => A HP where ’D and C are clauses with different heads
[P; ‘D;C; R] => A

Modus Ponens

[A<—(A);P]=>L1 [A<—(A);P]=>L,, MP
[A<—(L1,...,L,,);P]=>A

Prefixing

[P1 => A 22:‘: [A e <A>;P1 => L: {A <—<A>;P1 => (Lk)_ PFX
[A<—(L1,...,L,,);P]=>A

wherelgkgn

[Pl => “A Z35-';11[A*—(A); P] => L? [A <- (A); P] => (Lk)' PFX
[A<—(L1,...,L,,);P]=>fiA

wherelgkgn

Figure 3.4: The calculus Sfp,..

excection via the frugal Prolog mechanism is more efficient than excecution via
standard Prolog. These observations justify a closer look at frugal Prolog.

3.9.2 Characterising frugal Prolog
We can do much better than the implicit characterisation of frugal Prolog in the
context of S+. The calculus S1:12,,given in Figure 3.4, correctly axiomatises frugal
Prolog, and, unlike S+, only derives sequents in Prolog form. Instead of introducing
left directed composition by proof theoretic introduction rules, the procedural inter
pretation of left directed composition is used to define appropriate Modus Ponens
and Prefixing rules.

We have the following correctness result.
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3.9.3. THEOREM. Let [P] => L be in Prolog form.
mms+ewpsLmsWmfiH:¢.
PROOF. From right to left. This is in fact a direct consequence of the considerations
that led to the definition of Sfp,. Observe that every instance of the axioms of Sfp,. is
an instance of an axiom of S+. Every instance of MP in Sfp,. is derivable in S+, using
n-1 consecutive applications of the introduction rule for left directed composition
followed by an application of MP. Similarly, every instance of PFX (PFXL) in Sfp,
is derivable in S"' by k —1 consecutive applications of the introduction rule for the
negation of left directed composition followedby an application of the S+-version of
PFX (PFX-).

We prove the other direction by induction on the depth of derivations in S+.
Consider an S+ derivation 6 of a sequent in Prolog form. Suppose that the last rule
applied was MP. The only instance of this rule of which the conclusion is in Prolog
form is the following:

MemH:E
M+EH:A

where E = (L1, . . . , Ln) . Then 5 must have the following form:

[A<—A;P]=>L,,_1 [A4—A;P]=>L,,

[A <-—A; P] => (L,,_1, Ln)

[A<—A;P]=>L1 [A<—A;P]=>(L2,...,L,,)
[A<—A;P]=>(L1,...,L,,)
[A+—(L1,...,L,,);P]=>A

MP

The exhibited part of 5 can be collapsed into one application of the modus ponens
rule Of Sfp,..

The prefixing rules of S+ are analogous. E]

A a direct consequence of Proposition 3.9.2 and Theorem 3.9.3, we have the
following Theorem.

3.9.4. THEOREM. Let [P] => L be a sequent in Prolog form. Then L succeeds from
P via the frugal Prolog computation mechanism if?’Sfp,|- [P] => L .

We have observed above that the difference in computational outcome between
standard and frugal Prolog is caused by possible divergence. Therefore, it is to be
expected that for programs on which no atom diverges via standard Prolog com
putation, the two computation mechanisms are equivalent. Indeed, this is true for
the class of left terminating programs [AP93]. A (propositional) program P is left
terminating if all LDNF-derivations on P are finite.
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3.9.5. THEOREM. Let P be a left terminating program. Then Sfp»,-l_[P] => L if} L
succeeds on P via standard Prolog search.

PROOF. Let P be left terminating. Then every LDNF-derivation from P is finite.
Thus every literal either succeeds or finitely fails on P via standard Prolog search.
The same is true for computation via frugal Prolog search. In addition, by a simple
inductive argument on the depth of formal computations, every successful (failing)
S+ computation for a literal L form P can be extended to a successful_(finitely failed)
LDNF-treeforP U D

We will return to the calculus Sfp, in Section 4.4.

3.10 Notes

0 This chapter is based on the ILLC research report CT-94-12 Gentzen Systems
for Logic Programming Styles, 1994 [Kal94]. The sections 3.1 —3.7 will appear
as [Kal95b] Gentzen Systems for Logic Programming Styles I: Substructural
Aspects in the Bulletin of the IGPL, in 1995. The remaining sections will
appear as the first part of [Kal95c] Gentzen Systems for Logic Programming
Styles II: Logicsfor Prolog in the same journal.

0 The approach we have used in the present paper, describing search mechanisms
for logic programs by means of Gentzen style sequent calculi, was proposed by
van Benthem [vB92]. In particular, van Benthem suggested that the calculus
S, extended with the rules Rightward Contraction and Rightward Extension,
is sound and complete w.r.t. the general depth first search mechanism, and
gave intuitive soundness and completeness arguments. In the Sections 3.2 and
3.3, we have provided the calculus S with a computational semantics and we
have formalised the soundness and completeness arguments. In particular,
this shows that the rules Rightward Contraction and Rightward Extension are
redundant in this setting. Moreover, in Section 3.5, we have shown that these
rules are not derivable in S.

0 The traditional concept of Tarskian consequence operator CT, which asso
ciates with every theory the set of its consequences in T, can be modified to
analyse meta-properties of procedural calculi like the above. While the usual
consequence operator is an algebraic operator acting on sets of formulas, the
corresponding notion for procedural logics acts on equivalence classes of finite
logic programs. The equivalence relation is induced by the heterogeneous per
mutation of clauses. For propositional Horn clause programs P, the (finite)
set of goals that succeed on P via a computation mechanism M can be inter
preted as a program (i.e., as an equivalence class of programs.) An analysis in
the vein of [Mak93] (also cf. [Isr92]) can be conducted for the calculus S (cf.
[Kal]). The appropriate consequence operator C; can be shown to be idem
potent and non-monotonic. In addition, Cg does not satisfy inclusion, ‘cut’,
and cautious monotonicity. Soundness (admissibility) of the derivation rules
atomic monotonicity, Full Context Cut, and Partial Cut for S reflect in (untra
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ditional) properties of Cg. Unlike most nonmonotonic consequence operators,
C; is not supranormal.

0 An interesting issue not addressed here is the so-called rule completeness for
S: an effective characterisation of the derivable and the admissible rules. Such

a characterisation would also answer the (obvious) question whether there are
other admissible cut rules for S besides Partial and Full Context Cut.

0 From a procedural point of view, the status of the various cut rules is unclear.
The context cut rules can be regarded as program transformation rules. In that
case, at least the practicality of FCC is questionable—although an aplication
of FCC reduces the size of the program, it possibly increases the time needed
to prove the cut formula from the program. The proof of admissibility of PCC
shows that for PCC this is not the case.

0 It is also an open question whether there is a sensible proof procedure that
corresponds to the system S + Classical Cut. In fact, this is an instance of
the following more general question, reversing the theme of the present chap
ters: Given a calculus, is there a search mechanism that corresponds to this
calculus? Some instances of this question have been answered in this chap
ter: extensions of the calculus S with Weakening, Exchange, and Leftward
Extension correspond to a breadth first search mechanism.





Chapter 4
Prolog

None of the calculi discussed in the previous chapter properly reflects standard Pro
log computation with leftmost goal selection and top down clause processing. The
results and counterexamples discussed in Section 3.9.1 suggest that in order to ob
tain a procedural calculus that is correct with respect to Prolog computation, a
modification or strengthening of the techniques used above is needed. In particular,
a proper approach has to account for Prolog’s intricate backtracking mechanism.

In the present section, we discuss the Gentzen calculus Sp,, which correctly re
flects computation via standard Prolog search. This calculus for Prolog uses, in
addition to the usual sequents [P] =>A, star-sequents [P] :* A. While the sequents
[P] => A express success of the atom A from the program P under Prolog compu
tation, the new star-sequents [P] =>*A express, in addition to success of A from P,
that the relevant search tree for P U {A} is finite. The latter property ensures that
backtracking on A, in the context of P, does not lead to divergence of the search.

In the present context, we restrict our attention to Prolog computation on definite
programs, that is, programs in which the bodies are lists of atoms rather than literals.
We do however need failure negation -1in the language of the calculus to express the
finite failure of atoms. That is, in addition to the expressions [P] => A and [P] =>*A,
the calculus Sp, has expressions [P] => -1A , which correspond to the finite failure
(via Prolog search) of the atom A on the (definite) program P. In the context of
Sp,, the failure negation p is only allowed as a connective on the consequents of
sequents.

The calculus Sp, also derives sequents with consequents Q and -Q, where Q is
a finite list of atoms. That is, the sequents [P] => Q, [P] =>*Q, and [P] => -Q cor
respond to the success, respectively finite success and finite failure of the composite
goal Q from P.

In the present chapter, we will reserve the capital Q to indicate atomic and
composite goals, i.e. finite lists of atoms. In addition, in the notation of the Sp,
rules for heterogeneous permutation, we will use L to indicate atoms, composite
goals, and their failure negations composite goals.

The relevant search trees for Prolog computation on definite programs are LD
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trees, that is, SLD-trees via the leftmost selection rule. We assume familiarity with
the concept of SLD-tree ([Llo87]), but because LD-trees will be used in the proof of
the correctness theorem for Sp-,.,we give an explicit definition of LD-trees.

4.0.1. DEFINITION.

0 An LD-tree for P U {B1, . . . , B,,} is an SLD-tree for P U {B1, . . . , Bn} via the
leftmost selection rule. The LD-tree for P U {B1, . . . , B,,} is unique.

0 For leaves C’ in LD-trees, there are two possibilities:

—C = T. Then C is marked as success. (Observe that, as before, T plays
the role of the empty query.)

- The selected atom of C (by leftmost selection, this is the leftmost atom) is
an atom which is undefined in the program. Then C is marked as failed.

A branch b in an LD-tree is a success branch if it ends in a leaf marked as
success.

A branch b in an LD-tree is a failed branch if it ends in a leaf marked as failed.
0 An LD-tree T is successful for depth-first search, or in short successful, if it

has a success branch such that all branches left of it end are failed.

0 An LD-tree T is finitely failed if (T is finite and) all its branches are fialed. CI

The following lemma expresses that successful (finitely failing) Prolog search corre
sponds to successful (finitely failed) LD-trees.

4.0.2. LEMMA.

(a) The LD-tree for P U {B1, . . . , B,,} is successful ifi the goal B1, . . . , Bn succeeds
from P via standard Prolog computation.
(b) The LD-tree for PU{B1, . . . , Bn} is finitely failed ifi the goal {B1, . . . , Bn} finitely
fails from P via standard Prolog computation.

4.1 A Gentzen Calculus for Prolog
The calculus for Prolog, Sp,., of which the complete list of rules can be found in
Figure 4.1, contains axioms expressing the immediate success of the empty goal
T and the immediate failure of undefined atoms. The HP rules express Prolog’s
insensitivity to the relative order of clauses with different heads.

The four rules for composition deal with success and failure of composite goals
B,Q where B is an atom and Q a composite goal, while the modus ponens and
prefixing rules deal with the success and finite failure of (defined) atoms.

For a motivation of the rules for composition, observe the following. A composite
goal B,Q succeeds if (a) the first component B succeeds, (b) the rest of the goal,
Q, also succeeds. This is expressed by the first composition rule C1. Under leftmost
goal selection, a composite goal can fail finitely in two different ways.

1. The first component B fails. This corresponds to the rule C3.
2. The first component, B, succeeds while the rest of the goal, Q, fails finitely.

Due to Prolog’s backtracking, after failure of Q has been established, the search
backtracks to B and starts a renewed search for B via possible further clauses
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Axioms

[P] => T (AX)

[P] =:»*T (AX*)

[m:~A um=0

HP/HP*

[P;’D;C;R]=>L [P;’D;C;R] =>"‘L
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ML)

[P;C;’D; R] => L HP [P;C;D;R] =>*L
HP*

if D and C are two clauses with different heads.

C1
[H¢B[H¢Q

W¢BQ
C3

[P] => wB[fleflfim
MP

[A<—A;P]=>Q
M+@m:A

mw
[H:m4M+AfkVQ

M+QH$%
MW
U%¥AM+mH#Q

M+@msA
Figure 4.1:

C2
[H#BLW#Q

=>*BaQ

C4
[H¢T3W¢fiQ

[H¢%R®

PFX1
[P]=>A [A<—A;P]=>wQ

M+@H:A

PFX2
[P]=>fiA [A(—A;P]=>fiQ

[A (—Q; P] => fiA

PFX3
Wfi¥A [A+mm:«Q

M+@H#A
The rules of Sp,
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for B. Divergence of this renewed search for B would imply divergence of
the search for B, Q instead of finite failure. Thus B must have a finite, suc
cessful search tree. This is expressed with a starsequent [P] =>*B. This case
corresponds to the rule C4.

Further, the rule C2 deals with the finite success of a composite query.
Observe that the composition connective defined with these rules is a version of

the left-directed composition Z defined in Section 3.8 and generalised in Section 3.9.
The modus ponens and prefixing rules of Sp, deal with the success and finite

failure of defined atoms A from a program R. It will be useful to assume (without
loss of generality, by heterogeneous permutation) that

R=A<—Q;P.

LetT be the LD-treeforR U
We distinguish two cases.

1. The atom A succeeds on the program R. (That is, T is successful.)
Two subcases can be distinguished.

(a) A succeeds via the leftmost A-clause in R. That is, Q succeeds while dur
ing the search for Q, A is not encountered as a subgoal. This corresponds
to a unary version of the usual modus ponens rule MP.

(b) A fails via the leftmost A-clause A 4- Q, but succeeds via some further A
clause in P. That is, first the search for Q fails, and A is not encountered
as a subgoal during that search, then A succeeds from P. The prefixing
rule corresponding to this case is PFX1.

2. The atom A fails finitely from R. That is, A fails via the leftmost A-clause
A <- Q, and subsequently also fails via the further A-clauses in P. As before,
the latter condition corresponds to an assumption [P] => -1A. The first con
dition corresponds, as in the case 1(b), to the unary prefixing assumption for
the failure of Q. The resulting prefixing rule is PFX2.

Furthermore, we need additional rules and axioms to derive star-sequents. Keeping
in mind the intended meaning of the star-sequents, the rules deriving star-sequents
cover the various cases in which the relevant LD-tree T is finite and successful. Sp,.
has a star-version of the axiom for the empty goal, and a star version HP* of the
rule for heterogeneous permutation. In analogy to the above motivation for the rules
MP, PFX1, and PFX2, which have as a consequent a non-star sequent [R] => A, we
can distinguish the following two cases.

1. A succeeds via the leftmost A-clause. This case corresponds to a strengthening
of the modus ponens rule.
First, the subtree generated by the composite query Q is finite and successful.
This is expressed by a starversion of the assumption of the modus ponens rule
MP: [A 4- A; P] =>* Q.
For the rest of T (corresponding to possible search for A via further A-clauses
in P), two cases can be distinguished: it either contains a success branch or it
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contains only failed branches.
The first case corresponds to success of A from P (with a finite LD-tree),
reflected in an extra assumption [P] =>*A. This results in the rule MP*.
The second case corresponds to finite failure of A from P, and is reflected in
an extra assumption [P] =>fiA . This results in the rule MP#.

2. A fails via the leftmost A-clause A <—Q, but succeeds via some further A-clause
in P. The first condition translates into an assumption [A <—A; P] => OQ, as in
the case 1(b). The second condition translates into the assumption [P] =>*A.
This results in the rule PFX3.

This completes the description and motivation of the rules of the calculus SP,-.
In the next section, we will formalise the above intuitive correctness arguments,

and provide a formal proof of the correctness of Sp, with respect to Prolog compu
tation.

The following simple property of Sp,. can be easily proved by induction on the
depth of derivations.

4.1.1. PROPOSITION.

For all queries Q, if Sp, |- [P] =>*Q then Sp, 1- [P] => Q.

4.2 Soundness and Completeness
In every LD-tree T, we can distinguish a minimal part that witnesses the success,
finite failure, or divergence of a Prolog depth first search on T. These relevant parts
of LD-trees, the search paths, will play a role in the soundness and completeness proof
which is comparable to the role played by computations in the previous soundness
and completeness results.

4.2.1. DEFINITION.Let T be an LD-tree. The search path of T is the following
part of T:
(1) If T is successful, then the search path consists of the leftmost success branch
and all (failed failed) branches to the left of it.
(2) If T is finitely failed, then the search path is T itself.
(3) Otherwise, the search path consists of the leftmost infinite branch and all (failed
failed) branches left of it. El

Observe that the search path of an LD-tree T is finite if and only if T is successful
or finitely failed.

The completeness proof will proceed by induction on the weight of LD-trees. The
weight is the tuple of the number of nodes of the tree proper and the number of nodes
of its search path.

4.2.2. DEFINITION.Let T be an LD-tree. The weight of T, w(T), is the tuple

w(7') =<l1(7'),8w(7')),

where
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fl(T) is the number (i.e. the cardinality) of nodes of T;
sw(T), the searchweight of T, is the number of nodes in its search path. El

Observe that both components of the weight can be infinite (indicated as oo). How
ever, in the completeness proof below, we will only be concerned with the weight
of successful and finitely failed LD-trees, that is, trees of which the searchweight is
finite. Thus, the range of the weight function on the relevant domain is (w+ 1) x to.
On the weight of LD-trees we impose a lexicographical order <0, as follows:

4.2.3. DEFINITION. (a, b) <0 (c, d) iff a < c, or a = c & b < d. D

The order type of this order on the intended range of the weight function is (w+ 1)w.
We will now state some useful lemmas, which establish relations between the

LD-tree for a composite goal, and the LD-trees for the components. We omit the
proofs.

4.2.4. LEMMA. Let T be the LD-tree for PU {B1, . . . , B,,}, where n > 1, and let for
i 6 [Ln], 7; be the LD-tree for P U {Bi}. Then
(a) IfT is successful, then, fori E [1,n], 7} is successful and w(T.-) <0 w(T).
(b) If, for all i E [1,n], 7} is successful, then T is successful.

4.2.5. LEMMA. Under the conditions of Lemma 4.2.4, the following hold:
(a) If T is successful and finite, then, fori E [1,n], 7; is successful and finite, and
w(7f)<0
(b) If 7} is successful and finite, for all i 6 [1,n], then T is successful and finite.

4.2.6. LEMMA. Under the assumptions of Lemma 4.2.4, the following hold:
T is finitely failed if?”there is a k 3 n (say k7) such that
(1) 770is finitely failed, and
(2) for all i < k, 7: is successful and finite.
If T is finitely failed, then w(7§)<0 w(T), fori g k7.

The following lemmas are the proper equivalents of the inessential difference and
occurrence properties of formal computations (cf. Section 3.2).

4.2.7. LEMMA. Let P and R be programs which only difier with respect to clauses
with head A. Let Q be a query. Let T be the LD-tree for P U {Q}, and let S be the
LD-treefor R U Then thefollowinghold.

1. Let b be a branch in T such that A is never selected on b. Then b is also a
branch in S.

2. If A is never selected in the search path of T, then the search path of T is
identical to the search path of 8.

3. If A is never selected in T then S is identical to T.

4.2.8. LEMMA.Let Q be a query, and let T be the LD-tree for A 4- A;P U

1. If T is finite, then A is never selected in T.
2. If T is successful, then A is never selected in the search path of T.

4.2.9. LEMMA.Let T bethe LD-treefor P U
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1. If T is finite, then A is never selected in Tezvceptin the root of T.
2. If T is successful, then A is never selected on the search path of T, except in

the root of T.

We are now in position to state and prove the main lemma of this section. The
correctness result for Sp, is an immediate consequence.

4.2.10. LEMMA.

1. Sp, |- [P] => Q ifi the LD-tree for P U {Q} is successful.
2. Sp, |- [P] =>*Q if?’ the LD-tree for P U {Q} is finite and successful.
3. Sp, |- [P] =>-1Q the LD-treefor P U is finitelyfailed.

PROOF. We first prove the soundness side of the claim (left-to-right), then the com
pleteness side (right-to-left).

SOUNDNESS

(By induction on the depth of derivations.) The base case, for derivations that are
axioms, is trivial.
(IH) Suppose the left-to-right side of the claim holds for derivations of depth < m.
Let 6 be a derivation of depth m. We distinguish several cases, according to the last
rule applied in 6.

Soundness of the rules for heterogeneous permutation followsfrom the fact that LD
trees are insensitive to heterogeneous permutation of clauses.

Soundness of the composition rules C1-C4 follows from the lemmas 4.2.4 —4.2.6.

Suppose that the last rule applied in 6 is MP. Then 6 has the following form:

[A<—A;.P]=>Q
[A<—Q;P]=>A

By the inductive hypothesis, the LD-tree for A <—A; P U {Q} is successful. Using
the Lemmas 4.2.8(2) and 4.2.7(2), we infer that the LD-tree for A 4- Q; P U {Q} is
successful. Thus the LD-tree for A <——Q; P U {A} is successful.

Suppose that the last rule applied in 6 is MP#. Then 5 has the following form:

[P] =§ m4 [A <—A;.P] =,* Q
[A<—Q;P]=>*A

Let T be the LD-tree for A <—Q; P U We will show that T is successfuland
finite.

Let L be the LD-tree for A <—Q ; PU{Q}. By the inductive hypothesis, the LD-tree
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for A 4- A; P U {Q} is finite and successful. Thus, from the Lemmas 4.2.8(1) and
4.2.7(3), it follows that L is successful and finite.
Let R be the LD-tree for P U By the inductivehypothesis,R is finitely failed.

It remains to show that T is finite.
Let b = b1,b2,. . ., with bl = A, be a branch of T. We will show that b is either
a branch of .C or a branch of R, and thus finite. Suppose b2 = Q. Then b2,b3,. ..
is a branch in E. Thus b is finite. So suppose b2 75 Q. If A is never selected on
b2,b3,. .. , then b is (by Lemma 4.2.7(1)) a branch in R, and thus b is finite in that
case. So suppose A is selected in b2,b3, . . .. Let k > 1 be minimal such that A is
selected in bk. Observe that b1,. . . ,bk must be an initial segment of a branch in
R. In particular, A is selected in a node of R different from the root. But that
contradicts Lemma 4.2.9(1). Thus A cannot be selected on b2,b3,. . .. We conclude
that b is finite. Thus T is finite.

Suppose that the last rule applied in 6 is PFX1. Then 6 has the following form:

[Pt=>A [A<—A;l°]=>wQ
[A<——Q;P]=>A

By the inductive hypothesis and the Lemmas 4.2.8(1) and 4.2.7(3), the LD-tree for
A <—Q; PU is finitely failed. By inductive hypothesis the LD-tree for PU {A} is
successful. The Lemmas 4.2.9(2) and 4.2.7 can be applied to show that the LD-tree
for A (—Q; P U {A} is successful.

The other cases go via similar arguments.
This concludes the proof of the soundness side of the claim.

COMPLETENESS

By induction on the weight of LD-trees. Observe that while the search path of a
successful or finitely failed LD-tree is finite, the number of nodes in a successful tree
might be infinite. As a result, we need transfinite induction.
The base case, w(T) = (1, 1), corresponds to the axioms for immediate failure and
to the axioms for immediate success of the empty goal.

(IH) Suppose that the completeness side of the claim holds for LD-trees T with
w(T) <0 (k,m).

Let T be the successful or finitely failed LD-tree with w(T) = (
two cases: (A) T is an LD-tree for a composite query, and (B
an atomic query.

k, m). We distinguish
) T is an LD-tree for

(A) Let T be the successful or finitely failed LD-tree for a composite query, i.e. for
P U {B , Q}.
If T is successful, we infer by Lemma 4.2.4 that the respective search trees for PU{B}
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and PU {Q} are successful, and that their respective weights are smaller than w(T).
Thus the inductive hypothesis applies, and the sequents [P] =>B and [P] =>Q are
derivable. By an application of the composition rule C1 we infer that [P] => B, Q is
derivable.
If T is successful and finite, we similarly infer, by Lemma 4.2.5, the inductive hy
pothesis, and an application of C2, that [P] =>"‘B, Q is derivable.
Similarly, if T is finitely failed, Lemma 4.2.6 applies, and either C3 or C4 is appli
cable to infer that [P] => fi(B, Q) is derivable.
This exhausts the possibilities in the case T is an LD-tree for a composite query.

(B) Let T be a finitely failed or successful LD-tree for P U{A}, with w(T) = (k, m).
If PA = (Dor A is T, we are in the base case. So, without loss of generality, we can
assume, by the HP and HP‘ rule that P = A (—Q; R for some R. Thus, the root A
of T has for its leftmost child the node Q.

We will split T in two relevant parts TL and TR, as follows:

TL is the subtree of T generated by the leftmost immediate descendant of the root.
TR is the result of deleting TL from T.

Note that TL is the LD-tree for R U Observe that TR is not necessarilyan
LD-tree.

In addition, we need the following two LD-trees L and R , which are closely
related to TL and TR:

1.’.is the LD-tree for A 4- A ; R U {Q};

’R.is the LD-treefor R U

We will use the following observations:

0 By assumption, T is successful or finitely failed. Therefore, by Lemma 4.2.9,
A is never selected on the search path of T, except in the root. The search
path of T extends the search path of TL. Consequently, A is never selected
on the search path of TL. Therefore, by Lemma 4.2.7, the search paths of TL
and L are identical. As a result

(1) sw(.C) = sw(TL)
(2) £ is finitely failed iff TL is finitely failed
(3) L is successful iff TL is successful.

0 Suppose that T is finite. Then A is never selected on T, except in the root
(Lemma 4.2.9(1)). Thus A is never selected in TL and A is only selected in
the root of TR. As a consequence, using Lemma 4.2.7,

(4) ‘R is identical to TR
(5) .Cis identical to TL.
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Additionally, from finiteness of T, it follows that tl(TR) < H(T) and fl(TL) <
Thusthe followinghold:

(6) w(73)<o'w(7')
(7) 10(5) <o'w(7')

(Note that in this case, if T is finite and Tgis successful, the search weight of
TR may be larger than the search weight of T. Because of that, induction on
the search weight is not appropriate.)

0 Suppose T is not finite. We distinguish the following cases:
- T1, is finitely failed. Then, by Lemma 4.2.7, TL is identical with L. Thus

fl(£) < fl(T) = oo. As a consequence,

(8) w(£) <0 w(T).

Also, by the Lemmas 4.2.7 and 4.2.9, the search path of R is equal to the
search path of T restricted to T3. Thus R is successful and sw(R) <
sw(R) + sw(£) = sw(T). Obviously fl(R) _<_U(T) = oo. So

(9) w(R) <0 w(T).

- TL is successful. Obviously, fl(.C) S fl(T) = oo. Also, s'w(TL) + 1 =
sw(T). So, by (1) above, it follows that (8) also holds in this case.

Using, the above observations, we distinguish the following cases:

0 T is successful but not finite. Using (2) and (3), we distinguish two subcases:
L is successful or L3is finitely failed. In the latter case, as we have seen above,
R is successful.

—L is successful. By (8) and the inductive hypothesis, we conclude that
there is an Spr-derivation of the sequent

[A <—-A; R] => Q (a)

An application of MP gives a derivation of

[P] => A (1)

—E is finitely failed, and R is successful. By (8) and the inductive hypoth
esis, the following sequent is derivable in SPT:

[A <—A; R] => -Q (b)

Also, by (9) and the inductive hypothesis, there is a derivation of

[R] => A (d)

An application of PFX1 givesa derivation of



4.2. Soundness and Completeness 109

o T is successful and finite. Using (4) and (5), we can distinguish three subcases:

—.C is successful (and finite) and R is (finitely) failed. By (6) and the in
ductive hypothesis, there is a derivation of

[R] => “A (6)

Also, by (8) and inductive hypothesis, there is a derivation of

[A<—A;R]=>* Q. (f)

An application of MP# gives a derivation of

[P] =>* A (II)

—L is finitely failed and R is finite and successful. Again, we get derivabil
ity of the sequent Also, by (6) and the inductive hypothesis, there is
a derivation of the sequent

[R] =>* A (g)

Thus by an application of PF X3, we can infer derivability of the sequent
(II).

—Both .Cand R are finite and successful. By an application of MP* we can
conclude derivability of (II).

o T is finitely failed. Then, by (4) and (5), both E and ‘R,are finitely failed.
Again, by (6) and the inductive hypothesis, we infer derivability of the sequent
(e). By (7) and the inductive hypothesis Weinfer that (b) is derivable. Thus,
by using PFX2, we conclude that the sequent

[P] => fiA (III)

is derivable.

This completes the proof of the correctness lemma. El

As a result, we have correctness of Sp-,-.

4.2.11. THEOREM. For all queries Q,
Sp,. |- [P] => Q if?’Q succeeds from P via standard Prolog computation.
Sp,. |- [P] => -Q ifl‘Q finitely fails from P via standard Prolog computation.

PROOF. The theorem immediately follows from the above correctness lemma and
Lemma 4.0.2. El
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4.3 Variants and Extensions

A variant of Sp,, which has only sequents with atomic consequents and their nega
tions, is obtained by omitting the composition rules C1 —C4 and incorporating the
composition in the modus ponens and prefixing rules. This alternative calculus SI?"
of which the modus ponens and prefixing rules are given in Figure 4.2, is less ex
pressive than Sp,, as it does not deal explicitly with success and failure of composite
queries. The equivalence of Sp, and S13,and thus the correctness of S13,w.r.t. Prolog
computation, can be proved along the same lines as Theorem 3.9.3.

Using the alternative calculus S13“it is now simple to establish the completeness
of the frugal Prolog computation mechanism with respect to Prolog computation.
The proof, which we omit, uses induction on S13,-derivations, the equivalence of Sp,
and S13” and the above Proposition 4.1.1.

4.3.1. THEOREM. If Sp, |- [P] => L then Sfp, I—[P] => L.

As we have observed in the previous section, Sfp, is not sound with respect to Prolog
computation. That is, the converse of Theorem 4.3.1 does not hold.

The original calculus Sp, is better suited for extensions with other procedural
connectives on goals. For the calculus S, we have studied these possibilities to some
extent in Section 3.8. A similar analysis could now be executed in the context of
Sp,. We will not pursue this possibility here.

The calculus Sp, can be easily generalised for normal programs. A completeness
proof for this extended calculus essentially follows the same lines as the above proof.
However, the relevant search trees for normal programs are LDNF-trees rather than
LD-trees, which complicates the correctness proof for that more general case. We
omit further details.

4.4 Linear Logic
Cerrito [Cer92] uses the framework of Linear Logic for a characterisation of Prolog
computation on propositional normal programs. We summarise her approach and
main result:

With each normal, propositional program P a set of one-sided linear
sequents LTp is associated, expressing the success and failure conditions
of the atoms occurring in P. An atom A Prolog-succeeds from P if and
only if the sequent |- A is derivable from the theory LTp in Linear Logic,
and the sequent l- Al is derivable in Linear Logic from LTp if and only if
A finitely fails from P via Prolog computation. By the duality of success
and finite failure, this result generalises from atoms to literals.

The soundness part of this result is essentially flawed. As a counterexample,
consider the following program P:

p (
Pf‘?

"'*—Paq
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MP

[A(—A;P]=>B1 [A(—A;P]=>B,,
[A<—B1,...,B,,;P]=>A

MP#

[P]=>fiA [A(—A;P]=>*B1 [A(—A;P]=>*Bn
[A<—B1,...,B,,;P]=>*A

MP*

[P]=>*A [A(—A;P]=>*B1 [A4-A;P]=>"‘Bn
[A<—B1,...,B,,;P]=>*A

PFX1

[P]=>A [A<—A;P]=>*B1 [A<—A;P]=>*B,, [A<—A;P]=>-1D
[A(—B1,...,Bn,D,C1,...,Cm;P]=>A

PFX2

[P]=>fiA [A(—A;P]=>*B1 [A<——A;P]=>"'B,, [A<—A;P]=>fiD
[A<—B1,...,B,,,D,C1,...,Cm;P]=>fiA

PFX3

[P]=>*A [A(—-A;P]=>"‘B1 [A<—A;P]=>*B,, [A4-—A;P]=>-ID
[A<-B1,...,B,,,D,C1,...,C,,,;P]=>*A

Figure 4.2: The modus ponens and prefixing rules of S13,
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The associated theory LTp contains the sequents

Pp
|-qJ'

|-p*,q,r*

Thus the sequent |- ri is a linear consequent of LTp. According to soundness, this
would correspond to the finite failure of r under Prolog computation. However, a
Prolog search for r will go into loop. Thus the theories LTp do not faithfully describe
the outcome of Prolog computation.

The success and failure conditions expressed in LTp do not account for the
standard Prolog backtracking mechanism. In fact, they correspond to the alternative
frugal backtracking mechanism discussed in Section 3.9.1:

4.4.1. THEOREM. The sequent 1- A is a linear consequent of the theory LTp ifi
Sfp, |- [P] => A. The sequent |- AL is a linear consequent of the theory LTp ifi
Sfpr l‘ =>OA.

PROOF. There is a strong correspondence between successful and failing computa
tions for a program P and sequents derivable from the theory LTp. This correspon
dence can be used to obtain an inductive proof. E]

The essentially substructural character of procedural logicseems to be illustrated
by Cerrito’s application of Linear Logic to obtain a logic characterising a Prolog
variant. However, the role of Linear Logic in Cerrito’s approach is negligible. This
can be seen by the following arguments:

1. Linear negation ‘Lis the only (linear) connective that occurs in the theories
LTp and in the consequences of interest in this context, |- A and |- Al. By
the subformula property for Linear Logic, this implies that the full strength
of Linear Logic is not needed—the correctness result (that is, the correctness
result with respect to frugal Prolog) is already true for the subsystem consisting
of the linear axioms, the cut rule, and the exchange rule.

2. A careful analysis of the completeness proof however shows that both the linear
axioms and the exchange rule are redundant. Thus the correctness result can
be obtained for a system that is considerably weaker than Linear Logic: it has
no axioms, the only rule is cut, and the only connective is linear negation.

3. Cerrito remarks that the completeness result would no longer be true in the
presence of the contraction rule. (The reader should be aware that it is the
absence of the classical structural rules weakening and contraction that pri
marily distinguish Linear Logic from from classical logic—in the absence of
these rules, the classical connectives split into several alternatives.) However,
if the format of the ‘linear’ theories LTp is changed from one-sided sequents
into two-sided sequents, contraction can be eliminated (cf. [GLT90].) In fact,
it is only contraction with literals that correspond to the heads of clauses that
is harmful.
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4.5 Substructural Properties Revisited
Resuming some previous discussions on admissibility of (sub)structural rules, we re
mark the following (taking the literal formulation of the rules as given in Figure 3.1
and 3.2):
Obviously, Atomic Monotonicity is not an admissible rule for Sp,. An easy coun
terexample is the following: [A <—B, D; A; D <—D] => A is derivable in Sp,, while
[A 4- B, D; B; A; D 4- D] -—->A is not derivable in Sp,. Also, it is not surprising that
Rightward Extension and Rightward Contraction are admissible rules for Sp,, and
that the classical structural rules Weakening, Leftward Contraction, and Classical
Cut, are not admissible for Sp,.

However, while success of atoms is not preserved under exchange of clauses, finite
failure of atoms is preserved under exchange:

4.5.1. LEMMA. Let Sp, |- [P] => nA, and let R be a permutation of P. Then Sp, I
[R] => AA.

PROOF. Let Sp, l- [P] => -IA, and let, for some atom B, R be the result of a
permutation in, among the B-clauses of P. Let T be the (finitely failed) LD-tree for
P U If B is never selected on T, then T is also the finitely failed LD-tree for
R U So suppose B is selected, say in nodes B, N,-. As T is finitely failed, all
branches going through the nodes B, N, end in a leaf marked as failed. Now assume
that B is never selected in nodes below B, N,-. Applying the permutation 7n,to the
immediate descendents of all these nodes B, N, results in the LD-tree for R U
Otherwise, if B is selected below a node B, N,-,the permutation has to be executed
stepwise, bottom up in T. As all of the permuted branches are failed, the result is
again a finitely failed LD-tree.

The lemma immediately follows. E]

Also, finite failure (unlike success) of atoms is preserved under deletion of clauses.
Let R < P if R is the result of deleting clauses from P.

4.5.2. LEMMA. Let Sp, |- [P] => fiA, and let R < P. Then Sp, |- [R] => -1A.

PROOF. Let Sp, |- [P] => -IA, and let R < P. Let T be"the (finitely failed) LD-tree
for P U The LD-tree for R U{A} is obtained by removingthose branches from
T that correspond to deleted (occurrences of) clauses in P. In the resulting tree,
there may be some unmarked leaves, for atoms B such that R3 = (0.Mark these as
failed. The result is the finitely failed LD-tree for R U El

Combining the above lemmas:

4.5.3. LEMMA. Let Sp, |- [P] => -IA, and let R C_IP. Then Sp, |- [R] => -IA.

Using the above lemma, we can show that both Full Context Cut and Partial Context
Cut (cf. Figure 3.2) are admissible rules for Sp,. First, we prove a useful lemma.

4.5.4. LEMMA. Let Sp, l—[P; Q] => 0. Then

1.Sp,.l‘ =>C,



114 Chapter 4. Prolog

2. Sp, l—[P; C; Q] =>* C ifi Sp, I—[P;Q] =>* 0.

PROOF. Suppose [P; Q] ¢ C is derivable in Sp,..
Then C cannot fail from P; C; Q, as that would contradict Lemma 4.5.2. Suppose
that the search for C from P; C; Q diverges. Then the search for C must diverge via
one of the C-clauses in P. Again, this contradicts the assumption that [P; Q] =>C
is derivable. Therefore, C succeeds from P; C; Q. This proves 1).
Let, by 1), T and S be the successful LD-trees for P; C; Q U{C} respectively P; Q U
{C It is immediate that T is finite if and only if S is finite: S can be obtained from
T by deleting the (finite and successful) branch corresponding to the fact-clause C.
This proves 2). C]

Now we can prove that Full Context Cut is admissible for Sp,.. In fact, we will prove
admissibility of a stronger version of FCC, with, instead of just atomic consequents
A, literal consequents L, i.e. consequents of the form A or fiA.

4.5.5. LEMMA. Fall Context Cut is admissible for Sp,..

PROOF. Suppose that C succeeds on P;Q, and that L succeeds on P; C;Q. The
proof proceeds by induction on the weight of the seach tree T for P; C; Q U {L+}.

The base case, w(T) = (1,1), is trivial: either L = T or L+ is undefined in
P; C; Q, and thus also undefined in P; Q.

[IH] Suppose the lemma holds for search trees with weight <,, (k, m).
Suppose that w(T) = (k, m).

If L+ = C, the lemma trivially holds, so we can assume without loss of generality,
that L+ 75G.
Let N be a relevant descendant of the root of T, that is, an immediate descendant
that lies in T‘. Consider the substree 8 of T generated by N. S is the search tree for
P; C; QU{N}; observe that w(S) <0 w(T). Let S’ be the search tree for P; QU{N}.
By the inductive hypothesis and by the lemmas 4.2.4 —4.2.6, we have that
(*) S’ is successful (successful and finite; failed) iff S is successful (successful and
finite; failed).
The search path V‘ of the search tree V for P;Q U {L+} can be constructed as
follows:

Replace in T the subtrees 8 generated by the relevant descendants N of the
root, by the search paths 8''’ of the corresponding search trees 8’ for P; Q U {N}; in
addition, remove all non-relevant descendants of the root. Observe that, because by
assumption L+ 76C, the roots of T and V have the same relevant descendants.
By (*), V is successful (failed) if T is successful (failed). El

4.5.6. LEMMA. Partial Context Cut is admissible for Sp,-.

PROOF. Suppose Sp, l- [P] => C, and Sp, I- [Q; C; R; Z] => L, where P Q Q; R and
RC = (0.

Suppose that C fails from Q; C; R; Z. Then, by Lemma 4.5.3, it also fails from
P, which contradicts our assumptions. So C succeeds from Q; C; R; Z.

We claim that C also succeeds from Q; R; Z. Let Z‘ be the result of deleting all
C-clauses from Z. If C fails from Q; R; Z ‘, then, by Lemma 4.5.3, C would fail on



4.6. Notes 115

P, contradicting the assumption. If the search for C’from Q; R; Z‘ diverges, then C
would diverge via a C’-clause in Q, as RA; Z; = (D.But we have already established
that C succeeds from Q; C; R; Z, and this excludes divergence via a C-clause in Q.
Therefore, C succeeds on Q, R, Z. ,

Also, the (successful) LD-trees t and s for respectively Q;C;R;Z U {C} and
Q; R; Z U{C} are either both finite or both infinite, as s can be obtained by deleting
the finite successbranch corresponding to the fact clause C <—from t.

The lemma now follows by the same line of reasoning used in the proof of the
previous lemma 4.5.5. [3

4.6 Notes

0 The sections 4.1-4.5 are based on the ILLC research report CT-94-12 Gentzen
Systems for Logic Programming Styles, Amsterdam, 1994 [Ka194], and will
appear as the second part of [Kal95c] Gentzen Systems for Logic Programming
Styles II: Logics for Prolog in the Bulletin of the IGPL, in 1995.

o The Prolog built-in fail, defined in Prolog as the automatically failing atom,
can be defined in any of the above systems as the failure negation of the empty
goal, that is, fail := wT.





Chapter 5
Prolog’s cut

5.1 The Prolog Cut
An important non-declarative feature of Prolog is the cut operator ! , which allows for
dynamic pruning of the search tree and control of the extensive Prolog backtracking
mechanism. The Prolog cut has a non-declarative, dynamic flavour. It can change
the declarative meaning of programs. In practice, the Prolog cut ! is used for various
purposes. Efficiency of programs can be substantially improved by use of cut. The
negation as failure rule for logic programs is implemented in Prolog by the cut ! —
that is, it makes Prolog computation on normal programs possible. Further, various
other built-in’s are implemented by the use of cut.

The effect of the cut operator can be described as follows. Suppose a program P
contains the clause A <—B1, . . . , Bn, !, C1, . . . , Cm as part of the definition of A in P.
Suppose that during a search for the goal A this clause is encountered. As soon as
the cut operator is encountered as a goal, it succeeds and the search is committed
to all choices made between the time the ‘parent goal’ A was encountered as a goal
and the time this cut ! was activated. More specifically, as soon as ! is activated in
the context of the above A-clause,

1. all other ways of resolving A via further A-clauses are discarded, and
2. all other ways of resolving any of the B, are discarded.

It is important to observe that, while the cut prunes all the alternative solutions of
the conjunction of the goals to its left, it does not affect the goals to its right.

The effect of the Prolog cut can be illustrated by the standard cut-fail definition
of negation in Prolog:

(1) neg(X) <—-X, !,fai1
(2) neg(X) <

Observe that this definition employs Prolog’s meta-variable facility: the variable X
occurs as an atom in the body of the uppermost clause; as a result, the underlying
syntax is ambivalent (cf. Chapter 1). Further, it employs the built-in fail that
automatically fails.

117
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A search for the goal neg(X) will first try to establish X, via clause If
X fails, the search backtracks via the last choice point (neg(X)), proceeds via the
second clause in the definition of neg(X), and succeeds. Otherwise, if X succeeds,
the search proceeds via the goal !, which immediately succeeds and prevents eventual
backtracking via X or neg(X); finally, fail immediately fails, and as all backtracking
is prevented, neg(X) fails. Thus, neg(X) succeeds if X fails, while neg(X) fails if
X succeeds.

While ideally, in Prolog programming, the relative order of the clauses in a pro
gram is irrelevant, in definitions involving cut, this order can be crucial. For example,
if in the definition of the negation predicate above the order of the clauses were re
versed, neg(X) would automatically succeed.

Another typical example of the use of cut in Prolog is the if-then-else control
structure:

if_then-else(P, Q, R) <——P, !, Q
z'f_then_else(P, Q, R) <—R

The 2'f _then_else predicate implements the usual “if P then Q, else R” construct of
imperative programming languages. Declaratively, the relation holds if P and Q are
true or if P is false and R is true ((P /\ Q) V(-IP /\ Procedurally,first a search
for P is started. If P succeeds, a search for Q is started; if it fails, a search for R is
started. Observe that neg(X) can be defined as 2'f _then_else(P,fail, T).

The procedural behaviour of the cut operator can (partially) be restated as a
pruning operator on LD-trees, as follows. Let T be an LD-tree, and let Q be a node
in T with ! as the leftmost (selected) atom. Let Q’ be the origin of this cut, that
is, the (unique) node in T that corresponds to its parent goal. Then execution of
the cut atom involves pruning, from T, all branches that lie to the right of Q and
contain Q’.

However, in the context of LD-trees, which are built up breadth-first, different
cuts might interact. As an example, consider the following program, whose LD-tree
is given in Figure 5.1.

p<—q,!,t
p(—
q<—'r,!,t
q<—
'r(—

The LD-tree corresponding to the program P contains two nodes with a cut atom
as the selected atom, marked as a and b. Suppose they are processed from left to
right. Then the cut marked as b prunes the middle branch of the tree, including the
node with the cut marked as a. The resulting tree, consisting of the leftmost and
the rightmost branch of the original tree, is successful. In contrast, suppose that the
cuts are processed from right to left. Then the cut marked as a is processed first
and prunes the rightmost branch of the tree. The cut marked as b in its turn then
prunes the middle branch of the original tree, and the resulting tree is failed.

"Under Prolog’s depth-first strategy, the cuts are processed from left to right,
and the cut marked as a would be processed first. The above example shows that
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P/K
,!,t E!

(b)

I

r,!,t,!,t °*‘

!,t,l,t

t,!,t

Figure 5.1: cut-order in LD-trees

LD-trees are not the most efficient structures to account for Prolog’s computation
mechanism if the effect of cut is to be reflected properly. In Apt & Teusink [AT95]the
concept of P-trees was introduced as an elegant alternative to account for Prolog’s
computation mechanism incorporating cut. Unlike LD-trees, P-trees are built up
depth-first. In each stage of their construction, the only leaves that are generated are
the direct successors of the leftmost unmarked leaf. The involved Prolog backtracking
mechanism is automatically accounted for, and cut is incorporated in a natural way
as a simple pruning operator.

Due to the procedural nature of the Gentzen calculus Sp,. for Prolog, this calculus,
or rather its version S;,., provides a natural setting for the incorporation of the Prolog
cut. In the remainder of the present chapter we will discuss a modification of S},
which accounts for Prolog computation on programs with cut. This new calculus,
SP14,consists of a slight modification of the S}, rules, plus two extra rules, reflecting
the pruning due to activated cuts. Correctness of the calculus SPr! will be proved
using Apt & Teusink’s P-trees.

The Prolog cut operator consists in fact of two components, each corresponding
to a distinct pruning operator. The soft cut component causes pruning of all fur
ther clauses for the origin of the cut. The one solution component prunes further
alternative ways of solving subgoals before the activated cut. The usual Prolog cut
operator can be interpreted as the composition of these two operators. We will show
that both the soft cut and the one solution cut can be incorporated in the Gentzen
format, by appropriate and natural modifications of the cut-specific rules of SP14.

Notation and conventions

o The propositional language of the previous chapters is extended with the cut
atom !.

o (Prolog) atoms are either pure atoms A, B, C, . . ., or T, or !.
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0 A is a (Prolog) clause if A is A <——B1, . . . , B”, where A is a pure atom and the
B, are (Prolog) atoms.

0 A is a pure (Prolog) clause if A is A 4- B1, . . . , Bn , where all of the B,- are
pure atoms or T.

o P is a (Prolog) program if P is a finite list of (Prolog) clauses.
o P is a pure (Prolog) program if all the clauses in P are pure Prolog clauses.
0 To save space in the notation of rules (and derivations), we use the ‘sum’

ELI =>E, as a shorthand for the the list of n sequents [P1]=>E1, .
[P,,] => E,,.

0 We will distinguish queries and pure {Prolog} queries. We will use bod face
capitals B, C, E to indicate pure Prolog queries, that is, finite lists B1, . . . , Bn
etc. of atoms in which the cut 3does not occur. In contrast, queries in which
! possibly occur, will be indicated by a capital Q (or Q’, Q1, etc.) Thus we do
not use Q anymore to indicate programs.

It,

Observe that, by the above conventions, clauses never have ! as a head. We need an
additional definition for queries in which cuts occur.

5.1.1. DEFINITION.For a (possibly empty) list of atoms B, (B 4!) indicates the set
of lists that are ‘paddings’ of B with the Prolog cut ! . That is, the set (B 4!) is
defined as follows:

1. B 6 (B4!)
2. If Q1 and Q2 in (B 4!), then also Q1, !,Q2 6 (B 4!).

We will use the notation (B 4 !) to indicate any element of the padding of B.

5.2 Axiomatising cut
The Prolog cut can be incorporated in the calculus Sf.,., discussed in the previous
sections, as follows.

1. The (notation of) the original rules of S13,is slightly modified, to incorporate
possible cuts in bodies of clauses. Also,

2. Two rules (respectively a new version of a modus ponens and a prefixing rule)
are added, accounting for the specific pruning caused by the Prolog cut.

The result is a calculus SPA, given in the Figures 5.2 and 5.3, which is correct
for Prolog computation on Prolog programs. The present section is devoted to a
description and motivation of the various rules of SP14.

SPr! inherits, without any alterations, the axioms of S;,., expressing immediate
success of the empty goal and immediate failure of undefined atoms. It is useful to
observe here that there is no separate SPr! rule expressing the immediate success of
the cut.

SPr! inherits the rules for heterogeneous permutation HP and HP‘ from S;,.:
prunings due to the activation of a cut are independent of the relative order of
clauses with different heads.
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The rules MP# 1 and MP# 2 are respectively the S13,-rulesMP# and MP*.
Further, the rules PFX1g, PFX2g, and PFX31 are immediate generalisations of the
S},-rules PFX1, PFX2, and PFX3: the failing body atom D prevents a computation
for any of the body atoms to its right, so there may be cut atoms in these positions.

The various effects of the activation of a cut atom are in fact only reflected in
the three rules MP1, MP3‘,and PFX-2g.

0 MP1: ! succeeds immediately
Suppose B1,...,B,, succeed from A <—A; P. Then the B1,...,B,, succeed
from P and in the respective search-trees, A is never encountered as a goal.
Now prefix P with a clause A <—Q, where Q E (B<1!), and start a search for A
from the new program, via the added clause. The B,-all succeed from the new
program. Also, the cut atoms immediately succeed. Therefore, the composite
goal Q succeeds. So the search for A succeeds via the leftmost A-clause A <—Q.

0 MP3‘: ! prunes remaining alternative proofs for body atoms preceding it, and
also prunes remaining alternative proofs of its origin.
Suppose B1, . . . , B,, succeed from A <—A; P; also suppose that C1, . . . , Cm suc
ceed from A (—A; P, and that the respective search-trees are finite. Now prefix
the program P with a clause A <-—Q, where Q E (B <1!), and start a search
for A from the new program, that is, via the new A-clause. As in the above
case, the B,- succeed on the new program, by the assumptions, and the cut
atoms possibly present in Q succeed immediately. Finally, the last (explicit)
cut atom is reached. It succeeds, it deletes remaining alternative proofs for the
B,-, and it prunes all further A-clauses in P from the search tree. The search
then continues with a search for the C, in the context of the new program. By
the assumptions, the C, all succeed, and their search tree is finite. Thus A
succeeds, and, due to the pruning, the complete search tree is finite.

o PFX.,2g: ! prunes alternative proofs for body atoms preceding it, and also
prunes alternative proofs of its origin.
Suppose C1, . . . , (7,, succeed from A (—A; P. Suppose B1, . . . , Bm succeed from
A 4- A; P, and suppose that the respective search-trees for the B,-are finite.
Also suppose that D fails finitely from A <—A; P. Now prefix the program A
with a new clause A (——Q1, !, B, D, Q2. where where Q1 6 (C 4 !), and where
Q2 6 (E<l!). Start a search for A in the context of the new program, via the goal
Q1, !,B, D,Q2. Again, as in the above case, Q1, !,B succeeds, and its search
tree is finite. Then a search for D is started, which fails finitely. Backtracking
via the alternative clauses for the B, will eventually result in (finite) failure,
due to the assumption that the search trees for the B, are finite. There is no
backtracking via the C’,-,because of the pruning due to the cut atom preceding
B. Finally, there is no backtracking via the root A of the tree: as A is the
origin of the cut atom preceding B, alternative clauses for A (in P) cannot be
entered upon backtracking via the top of the search tree A. Thus the search
for A in the context of the new program fails finitely.

This completes the description of the rules of SPrg.
We can, in the set of rules of SP14,distinguish the following cases:
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0 success (AX and AX*, the modus ponens rules, PFX1g, PFX3g) versus failure
(AX.,, PFX2g, and PFXfi2g)

0 (possibly) infinite success (MP; and PFX1y)versus finite success (the remaining
modus ponens rules, and PFX3g)

0 success via leftmost clause (all of the modus ponens rules) versus success via
some further clause (PFX1g and PFX3!).

o finiteness due to an activated cut (MP’,"andPFXg2g) versus finiteness not due
to an activated cut (MP# 1, MP# 2, PFX2g, and PFX3g).

We will show that SPr! is correct with respect to Prolog computation, that is, we
will prove the following theorem:

5.2.1. THEOREM.

1. A succeeds via Prolog computation if?”SPT!I- [P] => A;
2. A finitely fails under Prolog computation ifi SPr! l- [P] => fiA.

The next few sections will be devoted to a proof of the above correctness theorem.

5.2.2. EXAMPLE. We give an example of a derivation in the calculus S
Consider the program P:

Pr!’

A<——B,!,D
A+—C
B<—
C(

A finitely fails from P. The derivation of the corresponding sequent, omitting obvious
subderivations, is the following:

[A(—A;A(—C;B;C]=>B [A<—A;A<—C';B;C']=>fiD
[A<—B,!,D;A<—C;B;C']=>-«A

PFXf2!

5.3 P-trees

We will prove the correctness of the calculus SPr! with respect to Prolog computation
using the concept of P-trees, introduced by Apt and Teusink [AT95]. As argued in
Section 5.1, P-trees are better suitable to model the computation process of Prolog,
including cut, than LD-trees. In our discussion of P-trees in the present section, we
follow the exposition of [AT95].

P-trees are defined as the limit of a sequence of pre-P-trees. Before we can
introduce the notion of pre-P-tree, we need the somewhat more liberal notion of
semi-P-tree.

5.3.1. DEFINITION.A semi-P-tree is an ordered tree whose nodes contain queries
and whose leaves are possibly marked as successful or failed.
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Sm!

Axioms

[P] => T (AX)

[P] =>* T (AX*)

[P] => —-A if PA = (2) (AXfi)

HP/HP*

[P;D;C;R]=>L [P;D;C;R]=>*L *
[P;C;’D;R]=>L [P;C;’D;R] =>*L

if ’Dand C are two clauses with different heads.

MP!

?=1[A*—A§P]=>Bz'

[A<—(B<1!);P]=>A

MP# 1

[P] =>* A 2;; [A <—A; P] =>* B,

[A <—B; P] =>* A

MP# 2

[P] => —=A 23;, [A <—A; P] =>* B,

[A <—B; P] =>* A

MP',"

§'=1[A<—A;P] =>B,- Zj}';1[A<—A;P] =>*0,.

[A<—(B<1!),!,C;P]=>*A

Figure 5.2: Axioms, Heterogeneous Permutation, Modus Ponens of SPT!
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PFX1!

[P]=>A Zj§‘=1[A+—A;P]=>*B,- [A<—A;P]=>wD

[A<—B,D,(E<!);P]=>A

PFX2!

[P] => ~A 233:1 [A <—A; P] =>* B,» [A <—A;P] => an

[A<—B,D,(E<1!);P] =>~A

PFXfi2!

?:1[A<——A;P]=>C',-Z§';1[A<—A;P]=>*B,- [A<—A;P]=>fiD

[A<—-(C<1!),!,B,D,(E<1!);P] =>~A

PFX3!

[P] =>* A 22:1 [A <—A;P] 5* B,» [A <—A; P] => -uD

[A<—B,D,(E<1!);P] =>*A

Figure 5.3: Prefixing rules of SPr!
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The above notion of semi-P-tree is slightly different from the notion defined in [AT95]:
as we deal here with propositional programs instead of predicate programs, compu
tations can in our case not end in error — therefore, we only need the markings
successful and failed.

In order to define the pruning behaviour of the cut operator on semi-P-trees,
we need the fact that, in ordered trees, there is a strict order among sibling nodes
(nodes with the same parent).

5.3.2. DEFINITION. Let n and m be two nodes in an ordered tree. n lies to the right
of m if there are predecessors n’ and m’ of n and m respectively, such that n’ and
m’ are siblings and m’ is strictly smaller (in the tree order) than n’.

Further, we need the notion of the origin of a cut atom in the context of semi-P-trees.

5.3.3. DEFINITION. Let b = Q1, . . .,Q,, be a branch in a semi-P-tree, and let Q1,
be a node in b with ! as the leftmost atom. The origin of this occurrence of ! is the
first predecessor of Q1,containing less atoms ! than Qk, if there is such a predecessor;
otherwise the origin of this occurrence of cut is the root Q1 of the tree.

We are now able to define the following pruning operator on trees, which effectuates
the pruning due to the Prolog cut !.

5.3.4. DEFINITION.Let T be a semi-P-tree, let Q be a node in T with ! as the
leftmost atom, and let Q’ be the origin of this occurrence of ! . The operator
cut('T,Q,Q’) removes all nodes from T that are descendants of Q’ and lie to the
right of Q.

We will be only interested in semi-P-trees that correspond to initial stages of a
Prolog computation with respect to a fixed (atomic Prolog) program. In fact, each
stage in such a computation corresponds to exactly one semi-P-tree. Of course, not
every semi-P-tree needs to correspond to a Prolog computation. Semi-P-trees that
do correspond to Prolog computations on a fixed program, are pre-P-trees. These
are defined inductively, using the following extension operator on semi-P-trees. In
fact, the application of this extension operator corresponds to doing one step in the
usual Prolog computation process.

5.3.5. DEFINITION.Let T be a semi-P-tree and let P be a Prolog program. Let Q
be the leftmost unmarked leaf of T.
The extension e:vtp(’T) of T w.r.t. P is obtained as follows:

1. If Q is the empty query or a list in which every element is T, mark Q as
successful.

2. Otherwise, let Q be of the form A, Q1.

(a) If A is an undefined pure atom in the program P, mark Q as failed.
(b) Otherwise, if A is a pure atom, add for every clause A <—B1, . . . , B1, in P,

a node B1,. . . , B1,,Q1 as a child of Q. Order these new nodes according
to the order of the A-clauses in P.

(c) Otherwise, if A is !, let Q’ be the origin of this occurrence of ! in Q. Apply
the operation cut('T, Q, Q’); then add, in the resulting tree, Q1 as a single
child to the node Q.
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(d) If T does not have unmarked leaves, then e:1:tp(T) = T.

Observe that, given a semi—P-treeT and a propositional Prolog program P, e:ctp(T)
is unique.

We are now in position to define the class of pre-P-trees.

5.3.6. DEFINITION.Let P be a Prolog program. The class of pre-P-trees u2.r.t. P
consists of the following semi-P-trees:

o For every query Q, the tree consisting of the single node Q is a pre-P-tree w.r.t.
P. In particular, these trees are initial pre-P-trees w.r.t. P.

o If T is a pre-P-tree w.r.t. P, then e:1:tp(T) is a pre-P-tree w.r.t. P.

P-trees, which model ‘completed’ Prolog computations on Prolog programs, are
limits of possibly infinite sequences of pre-P-trees. The usual notion of tree-extension
is not appropriate to define the limit involved in their definition: because of the
pruning due to cut, ea:tp(T) is not necessarily a tree extension of T in the usual
sense. We use the following notion of inclusion between semi-P-trees, due to [AT95].

5.3.7. DEFINITION.Let T and T’ be semi-P-trees.

1. T E T’ if T’ is the result of

(a) adding a finite number of children to a leaf of T, or
(b) removing a single subtree from T provided the root of this subtree is not

an only child.
2. ’Tl:7"if7'l;7"and7"Z7'.
3. Q is the reflexive and transitive closure of l'_'. E!

The following result is proven in [AT95].

5.3.8. LEMMA. Q is a partial order on the class of semi-P-trees.

Observe that the extensions follow the partial order:

5.3.9. LEMMA. Let T be a pre-P-tree for Q w.r.t. P. Then T Q e:I:tp(T).

By Lemma 5.3.8, the following notion of P-tree is well—defined.

5.3.10. DEFINITION. A P-tree for P U {Q}, where P is a Prolog program and Q is
a Prolog query, is the limit (in the sense of Q) of a sequence 76, 7], . . ., such that 76
is an initial P-tree consisting of the query Q, and for all i, 7§+1= eztp(7f).
In that case, 73, 7], . .. is the sequence of pre-P-trees associated to T. CI

Note that a P-tree can have unmarked leaves. In that case, the P-tree will have
exactly one infinite branch to the left of all unmarked leaves. These unmarked
leaves then correspond to resolvents the Prolog computation did not reach because
it got trapped in the infinite derivation corresponding to the infinite branch.

5.3.11. DEFINITION.

A P-tree for P U {Q} is successful if it contains a branch ending in a leaf marked as
successful.

A P-tree for P U{Q} is finitely failed if all its branches end in a leaf marked as failed.
Cl
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P-trees and Prolog computations are related, as expected, as follows:

5.3.12. LEMMA. Let P be a Prolog program, and Q a query.

1. Q succeeds via Prolog computation iff the P-tree for P U {Q} is successful;
2. Q fails finitely via Prolog computation ifi the P-tree for P U {Q} is finitely

failed.

The above lemma plays a crucial role in the coming sections, where we set out to
prove the correctness of SPr! with respect to Prolog computation, Theorem 5.2.1.
The above lemma enables us to reason on P-trees. It should be observed that in
general, P-trees and LD-trees do not coincide. However, in some special cases, the
P-tree is identical to the LD-tree.

5.3.13. PROPOSITION.Let T be the finite P-tree for P U {Q}, where Q is a pure
Prolog query, and P is a pure Prologprogram. Then T is the LD-treefor P U
In particular, T is successful {finitely failed) as a P-tree if?’T is successful (finitely
failed) as an LD-tree.

5.4 Some useful properties of P-trees
The present section is devoted to some preliminary results on P-trees, which we will
use the Sections 5.5 and 5.7, where we prove soundness, respectively completeness
of SPrg. First we define some useful concepts.

5.4.1. DEFINITION.Let T be a successfulP-tree for P U The successbranch
of T is the unique branch b7-such that
1) b7-ends in a leaf marked as successful
2) all branches left of b7-end in a leaf marked as failure.

5.4.2. DEFINITION.Let T be the successfulP-tree for P U Then T‘ is the
(unique) pre-P-tree in the associated sequence of pre-P-trees such that T’ contains
b7-and all branches left of the successbranch b7-,while the leaf of b7-is unmarked.

5.4.3. DEFINITION.Let N be a node in a pre-P-tree or a P-tree T. A is selected in
the node N if N = A, M for some M. A is selected on the tree T if T contains a
node N in which A is selected, such that N does not lie to the right of the leftmost
unmarked leaf of T.

Observe that, according to the above definition, it is not necessarily true that, if A
is not selected on a tree T, there are no nodes in T in which A is not selected. As
an example, let T be the P-tree for A <—B;B <—;B <—B;A <—-A U A is not
selected on T except in the root, but A is selected in the rightmost node of T. We
need this convention for an easy formulation of propositions like 5.4.6.

The following propositions express the proper equivalents of the earlier occur
rence, transformation, and inessential difference properties in the context of P-trees.

5.4.4. PROPOSITION.Let T be the successfulP-tree for P U

1. If T is successful, then A is never selected on T‘, except in the root of T.
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2. If T is finite, then A is never selected on T, except in the root of T.

5.4.5. PROPOSITION.Let T be the P-tree for A <——Q; P U Then

1. If T is successful, A is never selected on T’.
2. If T is finite, then A is never selected on T.

5.4.6. PROPOSITION. Let T be a successful P-tree for P U {Q}, and let A be a pure
atom such that A is never selected on T‘. Let R be a Prolog program such that P
and R differ only w.r. t. A-clauses. Then

1. T‘ is a pre-P-tree for R U {Q}, and
2. the P-tree for R U {Q} is successful.
3. If A is never selectedon T, then T is the P-tree for R U

5.4.7. PROPOSITION. Let T be a finitely failed P-tree for P U {Q}, and let A be a
pure atom such that A is never selected on T. Let R be a Prolog program such that
P and R differ only w.r.t. A-clauses. Then T is also the finitely failed P-tree for
R u {Q}.

5.4.8. PROPOSITION.Let T be the P-tree for A <—A;P U Then

1. If T is successful then A is never selected on T‘.
2. If T is finite, then A is never selected on T.

5.4.9. PROPOSITION.Let T be the P-tree for A <——A; P U Let S be the P-tree
forA4-Q;P U Then

1. If T is successful, then 8 is successful, and A is never selected on S‘.
2. If T is finite, then S = T,‘ in particular, if T is finitely failed, 8 is.

PROOF. This follows immediately from the above propositions 5.4.6 —5.4.8. El

5.4.10. DEFINITION. Let T be a semi-P-tree, and let A be an atom. A L+JT, the A
extension of T, denotes the semi-P-tree with root A and T as the subtree generated
by the only child of this root.

5.4.11. PROPOSITION.Let T be the successfulP-tree for A 4- Q; P U Then
the P-tree for A <—Q; P U {A} is successful.

PROOF. By Proposition 5.4.5, A is never selected on T’. By definition, the exten
sion step for T’ w.r.t. A <——Q; P consists in marking the leftmost unmarked leaf as
successful. Now consider A U T‘. A pre-P-tree S for A <—Q; P U {A} is obtained
by adding appropriate single children (corresponding to the bodies of the A-clauses
in P) to the root A of 8. Also, the extension step for S w.r.t. A <—Q; P consists in
marking the leftmost unmarked leaf of the subtree T‘ as successful. El

5.4.12. PROPOSITION.Let T be the finite P-tree for P U {Q}, where Q is a pure
Prolog query. Let A be an atom such that A is never selected on T, and let S be the
P-treeforP U Then

1. The P-tree V for A +—Q; P U {A} is obtained by adding, to every node in S in
which A is selected, a new leftmost child that generates T as a subtree.
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2. V is successful if

(a) T is successful or
(b) T is finitely failed and S is successful.

3. V is finite if S is finite.
4. V is finitely failed if both T and 8 are finitely failed.

5.4.13. DEFINITION.Let T be a semi-P-tree, and let R be a Prolog query. The
sum T 6BR is the result of replacing all nodes N of T by nodes N, R.

5.4.14. PROPOSITION. Let Q be a Prolog query, let R be a pure Prolog query, and
let T and S be successfulP-trees for respectivelyP U {Q} and P U Then the
P-tree for P U {Q, R} is successful.

PROOF. Let V be the P-tree for P U {C2,R}. Replace the leftmost unmarked leaf in
T‘ 63R by S‘. The resulting tree V‘. D

5.4.15. PROPOSITION.Let T be the successfulP-tree for P U Let R be a
pure Prolog query, and let S be the finite P-tree P U Let V be the P-tree for
P U {Q, R}. Then

1. V is successful if S is successful
2. V is finitely failed if S is finitely failed and T is finite
3. V is finite if both T and S are finite

PROOF. Replace every node N in T by N, R. In the resulting semi-P-tree T EBR,
replace every leaf marked as successful by the tree 8. The resulting semi-P-tree, V,
is the P-tree for P U {Q, R}. E]

Observe that in the above Propositions 5.4.14 and 5.4.15 it is crucial that R is a
pure Prolog query, i.e., R does not contain the Prolog cut !. Also, the construction
in the proof of Proposition 5.4.15 is allowed because 8 is finite.

5.4.16. PROPOSITION.Let T be a successfulP-tree for P U
Then e:z:t(e:z:t(T‘G3 is the finite and successful P-tree for P U {Q, l}.

5.4.17. PROPOSITION. Let B1, . . .,B,, be pure atoms, and let, fori E [1,n], 7} be
the successful P-tree for PU {B,-}. Let Q 6 (B1, . . . , Bn) <1!, and let T be the P-tree
forPU Then

1. T is successful.
2. If A is never selected on any of the 7;‘, then A is never selected on T‘.
3. If the 7,7are all finite then (a) T is finite, and (b) if A is not selected on any

of the 7:, then A is not selected on T.

PROOF. The lemma is an immediate consequence of the above propositions 5.4.15
and 5.4.16. El

5.4.18. PROPOSITION.Let T be the finitely failed P-tree for P U {Q}, and let R be
a query. Then the P-tree for P U {Q, R} is finitely failed.

PROOF. T 6BR is the finitely failed P-tree for P U {Q, R}. D
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5.4.19. PROPOSITION. Let T be the successful P-tree for A <—Q1, !,Q2; PU{Q1, !,Q2}.
Then P-tree for A 4- Q1, !,Q2;P U{A} is successful, and it is finite if /calT is finite.

PROOF. Let 8 be the semi-P-tree with root A and with e:1:t(T‘) as the subtree
generated by the only descendant of the root A. Observe that A is never selected in
T’. Thus 5 is a pre-P-tree for A <—Q1, !,Q2; P U {A}, and witnesses the success of
the P-tree for A <—Q1,!,Q2;P U
In case T is also finite, A is never selected on T. Let V be the tree with root A and
T as the subtree generated by the sole immediate descendant of this root. Then V
is the successfuland finite P-tree for A 4- Q1,!,Q2;P U El

5.4.20. PROPOSITION. Let the P-tree for A <—A; PU{Q1} be successful. Let the P
tree forA <—A; PU{Q2} befinitely failed. Then the P-tree fo'rA <—Q1, !,Q2; PU{A}
is finitely failed.

PROOF. Let 8 be the P-tree for A <—Q1, !,Q2; PU{Q1, !,Q2}. Under the conditions
of the proposition, 8 is finitely failed, by the propositions 5.4.8, 5.4.16, and 5.4.15(2).
Let T be the pre-P-tree with root A and S as the subtree generated by the unique
child of the root A. Then T is the finitely failed P-tree for A <—Q1, !,Q2;P U
C]

5.5 Soundness

Using the results of the previous section, we can now prove soundness of the SPr!
rules.

5.5.1. LEMMA.

1. If SP?! |- [P] => A then the P-tree for P U {A} is successful.
2. If SP?! l- [P] =>*A then the P-tree for P U {A} successful and finite.
3. If SPT!I- [P] => fiA then the P-tree for P U {A} finitely failed.

PROOF. By induction on the length of derivations in SPT]. It is trivial to check
that the lemma hold for derivations of depth 1, that is, derivations consisting of the
axioms.

INDUCTIVEHYPOTHESISSuppose the lemma holds for sequents with SPr!-derivations
of depth < n.

Suppose 6 is a derivation of depth n. We distinguish the following cases, according
to the last rule applied in 6.

0 Suppose that the last rule applied in 6 is HP, and that 6 is of the following
form.

[P;D,C;.R] => A
[P;C,D; R] => A.

By the Inductive Hypothesis we can assume that there exists a successful P
tree, say T, for P;’D,C;R U From the definition of P-trees it follows
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that P-trees are insensitive to the relative order of clauses with different heads.
Thus T is also the successfulP-tree for P; C,D; R U
The other cases are similar.

0 The last rule applied is MP1, so 6 is of the following form:

[A4—A;.P]=>B1 [/14—A;.P]=>B,,
[A4—(B<1!);P]=>A

Let, by the Inductive Hypothesis, for 2' E [1,n], 7; be successful P-trees for
A 4——A;P U {B,-}, and let Q E (B1,...,B,,) <1!. By Proposition 5.4.17(1),
the P-tree T for A 4- A;P U is successful. By Proposition 5.4.8 and
5.417(2), A is never selected on T‘. By Proposition 5.4.9(1), the P-tree S for
A 4- Q; P U {Q} is successful, and A is never selected on 8‘. By Proposition
5.4.11, the P-tree for A 4- Q; P U {A} is successful.

0 The last rule applied is MP# 1, so 6 is of the following form:

[P] ='>* A 237:1 [A 4- .4; P] =;»* B,

[A 4- B; P] =>* A

Let, by the Inductive Hypothesis, for 2' E [1,n], 7; be successful and finite
P-trees for A 4- A;P U {B,-}. Let T be the P-tree for A 4- A;P U By
Proposition 5.4.8 and 5.4.17, T is successful and finite and A is not selected
on T. By Proposition 5.4.9, T is also the P-tree for A 4- B; P U Let V
be the P-tree for A 4- B; P U A. Let, by the assumptions and the inductive
hypothesis,W be the finite and successfulP-tree for P U By Proposition
5.4.12, V is successful and finite.

o The last rule applied is MP# 2. This case is proven similar to the above case
for MP# 1.

o The last rule applied is MP1",so 6 is of the following form:

Z?=1lA*_A§Pl=>Bi Zl:1lA*—A§Pl=>* C2’
[A4—(B<1!),!,(C<1!);P] =>*A

Let Q1 6 (B<1!), and let Q2 6 (C <1!). Let R = A 4- Q1, !,Q2;P.
Let, by the Inductive Hypothesis, the P-trees for B,-w.r.t. A 4- A; P be suc
cessful. By Proposition 5.4.9 and 5.4.17, the P-tree V for A 4- A; P U {Q1} is
successful and A is never selected on V‘.

By Proposition 5.4.6, the P-tree T for R U {Q1} is successful and A is never
selected on T‘.
Similarly, by the inductive hypothesis and the Propositions 5.4.8,5.4.17, and
5.4.6, the P-tree RU {Q2} is successful and finite and A is never selected on it.
By the Propositions 5.4.16 and 5.4.15, the P-tree for RU{Q1, !,Q2} is successful
and finite, and A is never selected on it.
Therefore, by Proposition 5.4.19, the P-tree for RU{A} is successful and finite.
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0 The last rule applied is PFX1g, so 6 is of the following form:

[P]=>A Z:f=1[A<——A;P]=>*Bi [A<—A;P]=>fiD
[A <—B,D,(E<1!);P] => A

Let R: A <—B,D,Q;P, where Q E (E<1!).
By derivability of the sequents [A <—A; P] =>*B,-, the inductive hypothesis
and Proposition 5.4.17, the P-tree for A <—A; P U {B} is finite and successful.
By derivability of the sequent [A <——A; P] => fiD and the Inductive Hypothesis,
the P-tree for A 4- A; P U {D} is finitely failed.
Thus, by Proposition 5.4.15, the P-tree for A <—A; P U{B, D} is finitely failed.
Therefore, by Proposition 5.4.18, the P-tree for A <——A; PU{B, D, Q} is finitely
failed.

By derivability of [P] =>A and the Inductive Hypothesis, the P-tree for PU{A}
is successful.

We can conclude, by Proposition 5.4.9 and 5.4.12(2), that the P-tree for
A +—B, D, Q; P U {A} is successful.
The last rule applied is PFX2g, so 6 is of the following form:

[P] :9 2A 22;. [A <—A; P] =>* B. [A <—A;'P] => an
[A<—B,D,(E<1!);P] =>—~A

Let Q E (E <1!).
This case is similar to the case PFX1g above.
{A <——B, D, Q} is finitely failed.
In the present case, by derivability of [P] ¢ fiA and the Inductive Hypothesis,
the P-tree for P U {A} is finitely failed.
By Proposition 5.4.12(4), the P-tree for A <—B, D, Q; PU {A} is finitely failed.
The last rule applied is PFXfi2g, so 6 is of the following form:

The P-tree for A <—A; P U

}‘=1[A<—.A;P] =>c. §j§’;1[A<——A;P]=>* B,- [A<—A;P] : -1D
[A<—(C<1!),!,B,D, (E<1!);P] => 4A

Let Q1 6 C<l!, and let Q2 6 E<1!.
Like in the above case, we can infer that

1. the P-tree for A 4- A; P U {Q1} is successful;
2. the P-tree for A <—A; P U {B, D, Q2} is finitely failed.

It follows from Proposition 5.4.20 that the P-tree for A <—Q1, B, !,D, Q2; P U
{A} is finitely failed.
The last rule applied is PFX3g. This case is similar to the above case of
PFX2g. Proposition 5.4.12(2) and (3) are now used to infer that the P-tree
for A <—Q1, B, !, D, Q2; P U {A} is finitely failed.

This concludes the proof of soundness of SP14. E]
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5.6 More useful properties of P-trees

We will prove completeness of SPr! by induction on a suitable measure on the class
of successful and finite P-trees. We will define the weight of a P-tree in this class
the tuple of its search weight and its construction weight, where the search weight
is the number of pre-P-trees in the associated sequence of pre-P-trees necessary to
constitute failure or success of the eventual limit-tree, and where the construction
weight is the length of the associated sequence of pre-P-trees.

5.6.1. DEFINITION. Let T be a P-tree. Let 71,73, . . . be the associated sequence of
pre-P-trees. The weightof T, w(T), is the tuple

<s'w(7').#(T)).

where

#(T) = n if n is minimal such that 7:, = T
= w otherwise

sw(T) = n if 7;, = ea:t(T‘) if T is successful
= #(T) otherwise [3

5.6.2. PROPOSITION.Let T be a P-tree. If T is successful, sw(T) is finite, and
sw(T)3 IfT isfinitelyfailed,#(T) = sw(T)< w.

Observe that both components of the weight can be infinite. However, in the com
pleteness proof below, we will only be concerned with the weight of P-trees that are
successful or finitely failed, that is, P-trees of which the search weight is finite. Thus
the range of the weight function on the relevant domain is w x (w+ 1). On the weight
of P-trees we impose a partial order 4, as follows:

5.6.3. DEFINITION. (a, b) < (c, d) ifi” a < c, or a = b < d < w.

The order type of this order on the intended range of the weight function is anX(w+1).
As a preparation to the completeness lemma, we now first state some useful

propositions, which will be crucial in the proof of the completeness lemma. We omit
most of the proofs.

5.6.4. PROPOSITION. Let B be a pure atom, and Q a query. Let V be the successful
P-tree for P U {Q,B}. Let T be the P-tree for P U Let S be the P-tree for
PU Then

1. T and 8 are successful
2. If A is never selected on V‘, then A is never selected on T‘ and S‘.
3. sw(T) < sw(V), and sw(3) < sw(V).
4. UV is finite, then T and S are finite and #(T) < #(V), and #(8) < #(V).
5. If V is finite and A is never selected on V, then A is never selected on S and

8.

5.6.5. PROPOSITION. Let T be the successful P-tree for P U {Q, l}. Let S be the
P-treeforP U Then
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1. T is finite
2. 8 is successful
3. If A is never selected on T, then A is never selected on S‘.
4. sw(S) < sw(T).

The above two propositions combine to the following more general case:

5.6.6. PROPOSITION. Let B1, . . . , B,, be pure atoms with n > 1, and let Q 6 (B1, . . . , B,,)<1
!. Let T be the successfulP-tree for P U Let, fori E [1,n], 7: be the P-tree for
P U {B,-}. Then

1. The 7} are all successful,
2. sw('7Z)< sw(T),
3. IfA is not selected on T‘, then A is not selected on any of the 7;‘.

5.6.7. PROPOSITION. Let Q be a query and let T be the successful and finite P-tree
for P U Then one of the followingcases applies.

1. There are atomic B1, . . .,B,, such that Q = B1, . . .,B,,. The P—trees7; for
P U {B,-} are successful and finite. Also, sw(7Z) 3 sw(T). If A is never
selected on T then A is never selected on any of the 7}.

2. There are atomic C1, . . . , C’,, and B1, . . . , Bm and a query Q’, such that Q1 6
((C1, . . .,C',,) <1l), and Q = Q1,!,B1,...,B,,,. The P-trees 7} for P U {C,-}
are successful and the P-trees S, for P U {B,-} are successful and finite. Also,
sw(7;) < sw(T), and s'w(8,-)3 #(S,-) < sw(T). IfA is never selected on T,
then A is never selected on any of the 7:‘ and S,-.

PROOF. By the above Propositions 5.6.4, 5.6.5, and 5.6.6. E]

5.6.8. PROPOSITION. Let Q be a query and let T be the finitely failed P-tree for
P U Then there are Q1,D, Q2 (with Q1 and Q2 possibly empty), such that

1' Q = Q1aD7Q2
2. The search tree 8 for P U {D} is finitely failed and sw(S) 3 sw(T).
3. The search tree V for P U {Q1} is successful and finite and sw(V) < sw(T).
4. If A is not selected on T then A is not selected on S and V.

The following construction will be used in the proof of the completeness lemma.

Let T be the successfulor finitely failed P-tree for A 4- Q;R U
We split T into two relevant semi-P-trees 7}, and 71:1,as follows:

T1,is the subtree of T generated by the leftmost immediate descendant of the root
A. Thus, 7},is the P-tree for P U

7}; is the result of deleting 7}, from T.

Observe that 7}; is not necessarily a P-tree.
We now prove some propositions which will be useful in the proof of the com

pleteness lemma. Again, we omit the proofs.
5.6.9. PROPOSITION.

1. 7}, is either successful or finitely failed.
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2. If T is finitely failed, then 7}, is finitely failed.
3. If T is finite, then 7}, and 7}; are finite.
4. su2(7},)< sw(T).

5.6.10. PROPOSITION.If T is successful but not finite, then one of the following
cases holds:

1. 7}, is successful, s'w(7},)< sw(T), and A is not selected on
2. 7}, is finitely failed, sw(7},) = #(7},) < sw(T), and A is not selected on 7},.

In addition, we need the followingtwo P-trees £ and R, which are closely related
to TL and 7}}.

£ is the P-tree for A <—A; R U {Q},
R is theP-treeforRU

5.6.11. PROPOSITION.

. .C is successful if?’TL is successful.

. L is finitely failed if?’7}, is finitely failed.

. If E is successful,then L‘ =

. If7}, is finite, then .C= 7},.
sw(.C) < sw(T).

PROOF. The left-to-right direction of both 1) and 2) follows from Proposition 5.4.9.
By Proposition 5.4.5, A is not selected on 7? if TLis successful, and A is not selected
on TL if 7}, is finitely failed. The right-to-left direction of both 1) and 2) now follows
from Proposition 5.4.6 and 5.4.7.
3) and 4) follow from Proposition 5.4.6 and 5.4.9. For 5), observe the following. By
Proposition 5.6.9(1), 7}, is either successful or finitely failed. Therefore, by Proposi
tion 5.6.10, sw(.C) 3 su2(7},). Thus, by 5.6.9(4), su)(.C) < sw(T). El

‘Q;-q-§CQl®V~x

5.7 Completeness

We are now in position to state and prove the completeness lemma for SPr].
5.7.1. LEMMA.

1. If the P-tree for P U {A} is successful then SP?! l- [P] => A.
2. If the P-tree for P U {A} successful and finite then SPr! |- [P] =>*A.
3. If the P-tree for P U {A} finitely failed then SPr! l- [P] => fiA.

PROOF. By induction on the weight of the relevant P-trees.
The base case, w(T) = (2, 2), corresponds to the axioms for immediate success

of the empty goal and the axiom for immediate failure of undefined atoms.

(IH) Suppose the lemma holds for P-trees T with w(T) <0 (k, m).
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Let T be a successful or finitely failed P-tree for P U {A}, with w(T) = (k,m).
If PA = (Dor A is the empty goal, we are in the base case. Thus, without loss of
generality we can assume, by the rules HP and HP"‘, that P = A <——Q; R for some
R.

Let T be a successful or finitely failed P-tree for A +—Q; R U We split T
into two relevant semi-P-trees 7L and 7}, as above in Section 5.6. Also, let [I and
R be as defined in Section 5.6.

We distinguish the following cases.

0 T is not finite.
Observe that T must be successful in this case.
By Proposition 5.4.4, A is not selected in T‘, except in the root.
Using Proposition 5.6.10, we distinguish the following cases.

—TL is successful. By Proposition 5.6.10 and 5.6.11(1) and (3), E is suc
cessful, sw(£) = sw(TL) < sw(T), and A is never selected on L‘.
Let Q E (B1,...,B,,) <1!. Let, for i E [1,n], £1 be the P-trees for
A(—A;RU
By Proposition 5.6.6 and 5.4.6, the L, are successful and s'w(.C,-)3 sw(.C).
Thus, sw(.C,-)< sw(T), and the Inductive Hypothesis applies to the L,-.
Therefore, the sequents [A <—A; R] => B, are derivable. Thus, by an ap
plication of MP1, the sequent [P] => A is derivable.

—TL is finitely failed. Because T is successful, T‘ properly extends A U 7],.
By Proposition 5.6.11(2),(4),and (5), TL = L, L is finitely failed, and
sw(.C) < sw(T). ,
By Proposition 5.6.8, there are queries Q1,Q2, and a pure atom D such
that Q = Q1,D, Q2, such that
a. the P-tree 8 for A <—A; RU{D} is finitely failed and sw(S) 3 sw(£) <
sw(T), and
b. the P-tree V for A +—A; RU{Q1} is successful and finite, and sw(V) <
s'w(£) < sw(T).
The Inductive Hypothesis applies to 5, so the sequent [A <—A; R] => HD
is derivable in SPA.
By Proposition 5.4.20, ! cannot occur in Q1, as T is successful. Thus,
Q1 = B1, . . . , B,,, where the B,- are pure atoms. By Proposition 5.6.7(1),
the P-trees V, for A <—A; R U B, are successful and finite, and sw(V,-) 3
s'w(V). Therefore, sw(V,-)< sw(T). The Inductive Hypothesis applies to
the V,-,so the sequents [A <—A; R] =>* B, are derivable in SP74.
Furthermore, consider the semi-P-tree R’, obtained by restricting T‘ to
7}. A is never selected on R’, except in the root, so by Proposition 5.4.6,
R‘ = R’. In particular, R is successful and sw(R) < sw(T). Thus the
Inductive Hypothesis applies to R, and we infer that the sequent [R] =>A
is derivable in SPA.
By an application of PF X11,[P] => A is derivable.
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o T is finite. By Proposition 5.4.4, A is not selected in T, except in the root. By
Proposition 5.6.9(3) 7}; and 7L are finite. Also, by Proposition 5.6.11, L = 7L.
We distinguish the following cases:

— TL is successful.
By Proposition 5.6.7, we can distinguish the following two cases:

* [C1] Q = B1, . . . , B,,, where the B, are pure atoms. By Proposition
5.6.7(1), 5.6.11(5), the starsequents [A 4- A; R] =>*B, are derivable
for i 6 [1, 72.].

Also, because the Prolog cut ! does not occur in Q, and because A is
never selected on T, 7}; = R. Thus R is finite. We distinguish two
cases:

- [Cla] R is successful. Observe that sw(R) 3 #(R) < #(T).
Thus the Inductive Hypothesis applies to R, so [R] =>"‘A is deriv
able.

By an application of MP# 1 the sequent [P] =>*A is derivable.
- [Clb] R is finitely failed. Observe that sw(R) = #(R) < #(T).

Thus the Inductive Hypothesis applies to R, and [R] => -A is
derivable.

By an application of MP# 2 the sequent [P] =>*A is derivable.
an:[C2] Q = Q1,!,C1,...,Cm, where Q1 6 (B1,...,B,, <1!), for pure

atoms C, and B,-.
By Proposition 5.6.11, 5.6.7, and the Inductive Hypothesis, it follows
that the sequents [A <—A; R] => B, are derivable for i 6 [Lu], and
the starsequents [A <——A; R] =>* C, are derivable for 2'E [1, m].
By an application of MP?‘the sequent [P] =>*A is derivable.

- TL is finitely failed.
By Proposition 5.6.8, there are Prolog queries Q'1and Q3, and a pure atom
D, such that Q = Q'1,D, Q5. Also, let S be the P-tree for A 4- A; RU{D}
and let V be the P-tree for A <—A;R U S is finitely failed and
sw(8) < sw(T), while V is successful and finite and sw(V) < sw(T).
Thus, the Inductive Hypothesis applies to 8, and we infer that
[A <- A; R] => -ID is derivable.
According to Proposition 5.6.7, we can distinguish the following two cases
for Q’1:

* Q’, = B1, . . . , B,,, where the B, are all atomic. As in this case [C1]
above, it follows that the starsequents [A <-—A; R] =>* B, are derivable
for i 6 [1, n].
Also, because the Prolog cut ! does not occur in Q’1,and because A
is never selected on T, 7}; = R. Again, we distinguish the following

' two cases:

- R is successful. As in the case [Cla], [R] =>*A is derivable. By
an application of PFX3g, the starsequent [P] =>*A is derivable.

- R is finitely failed. As in the case [Clb], [R] => fiA is derivable.
By an application of PFX2g the starsequent [P] =>"‘A is derivable.
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>I<Q’: Q1,!,B1,...,B,.,,, where Q1 6 (C1, . . .,C',, 4!), for pure atoms
C, and B,-.
Again, as in the case [C2], the sequents [A <—A; R] => B, are derivable
for 2' 6 [Ln], and the starsequents [A <—A; R] =>* C’, are derivable
for i E [1, m]. By an application of PFX_.2g, the sequent [P] => —-Ais
derivable.

This completes the proof of the completeness lemma. E]

The correctness theorem for SPr! (Theorem 5.2.1) now immediately follows from
Lemmas 5.3.12, 5.5.1, and 5.7.1.

It is not difficult to see that SPr]-derivations of sequents [P] => L, for pure Prolog
programs P, are in fact S13,-derivations. Conversely, every S},-derivation is also an
SPr!-derivation. By the equivalence of Sp,. and S13,we have the following, not very
surprising, result:

5.7.2. PROPOSITION. Let P be.a pure Prolog program. Then

1. s,,,_, I—[P] => A zfi sp. |- [P] => A.
2. sh] |—[P] => m4 2]?‘ sp, 1- [P] => m4.

5.8 Alternative versions of the Prolog cut
As observed in Section 5.1, the standard Prolog cut can be thought of as the compo
sition of two simpler pruning operators: the soft cut and the one solution operator.

The soft cut is a restricted version of the standard cut, which only prevents
backtracking on its origin. That is, a soft cut commits to the choices made for the
parent goal (the origin), but it does not commit to the choices made for body atoms
to its left.

The soft cut can be axiomatised in a variant of the calculus SPr], obtained by
replacing the cut-specific rules by appropriate variants.

To shorten notation, we write, in the rules below, [R] => B and [R] =>*B for,
respectively, ?=1[R] => B, and ELI [R] =>* B,-.

o the rule MP?‘ is replaced by the following rule MP’,'‘’‘:

[A <——A;P]:9‘ B [A<— A;P] =>* C

[A<—(B<1!),!,C;P] =>*A

0 In addition, the rule PFXfi2gis replaced by the following variant PFXfi2gh:

[A<-—A;P]=>*C [A<—A;P]=>*B [A(—-A;P]=>fiD

[A 4- (C<1!),!,B,D, (E<1!);P] => —-A

The rationale for these two variant rules is the following: As the soft cut does not
prevent backtracking on body atoms to its left, it is not sufficient that the respective
searches for these atoms succeed —during backtracking via these atoms, the search
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might still diverge. Thus, both in the modus ponens and in the prefixing rule specific
for the soft cut, the leftmost assumptions, dealing with the body atoms that lie to
the left of the cut, need to be starsequents instead of non—starsequents.

The one solution cut does not prevent backtracking on its origin, but instead, it
prevents backtracking via the earlier body atoms. That is, it does not prune on the
origin of the cut, but only below, between the origin and the activated cut.

This “body-cut” can also be axiomatised by a variant on SPA, again obtained
by modifying the cut-specific rules MP?‘and PFXfi2g:

o The rule MP3“is replaced by two variants:

[P] =>*A [A<—A;P] =>B [A<—A;P] =>*C

[A<—-(B<1!),!,C;P] =>*A

[P] é-IA [A<—A;P] =>B [A<—A;P] =>*C

[A+—(B<1!),!,C;P] =>*A

o The rule PFXfi2gis repaced by the following three variants:

[P]=>-IA [A<—A;P]=>C [A<—A;P]=>*B [A<—A;P]=>-1D

[A <—(C<1!),!,B,D, (E<1!);P] => fiA

[P]=>A [A<—A;P]=>C [A<—A;P]¢*B [A(—A;P]=>fiD
[A<—(C<1!),!,B,D,(E<1!);P] =>A

[P]=>*A [A<—A;P]=>C [A<—A;P]=>*B [A<——A;P]=>-1D

[A 4- (C<1!),!,B,D, (E<Jl);P] =>*A

The rationale for the three prefixing variants is the following: When the search for A
via the first A-clause fails, the search is continued via further A-clauses. A processed
one solution operator in the body of the first A-clause does not (unlike the standard
cut and the soft cut) prevent this backtracking. Then there are three possibilities:
the search for A eventually succeeds (finitely or not), or it fails finitely. Each of these
possibilities is refiected in a prefixing rule. The rationale for the two variants of the
modus ponens rule is similar.

While the standard Prolog cut is in fact the composition of the above two simpler
pruning operations, the calculus SPr! is clearly not the simple union of the above
two calculi corresponding to its two components. The reason is that (unlike the
connectives we discussed in Section 3.8) the pruning operators have a global, rather
than a local effect.

Several alternatives for the standard Prolog cut have been suggested and stud
ied, often motivated by the fact that the use of the Prolog cut may lead to a loss
of soundness and completeness with respect to the completion semantics. In partic
ular, a generalisation of the commit operators of the concurrent logic programming
languages has been studied extensively in [HLS90], which does not have this dis
advantage and which in addition, unlike the Prolog cut, behaves well under partial
evaluation. It is unclear whether any of these alternative pruning operators can,
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to the full extent, be incorporated in the Gentzen style format. Certainly simple
commit-operators on atoms (like commitl, pruning alternative solutions on just one
body atom in a clause) are amenable to our approach; however, we conjecture that
more involved versions, like those suggested in [HLS90], would lead to an explosion
of derivation rules.

5.9 Right monotonicity of cut

By inspection of the rules of SP14,it is clear that in some cases cuts can be added to
the clauses of a program without changing its procedural behaviour. In particular,
if the body of a clause contains a cut, any cuts can be added to its right side. That
is, the following rule (and also the star version) is admissible for SPA:

[PiA('_Q17!7Q27Q3;Rl =>L
iPiA+_Q1aiaQ2aiaQ3iR] =>-L

A proof of the soundness of the above rule, expressing the right monotonicity of the
Prolog cut, proceeds by induction on depth of derivations, and uses the following
fact:

5.9.1. LEMMA. If SP7! I—[P] =>* A then SP?! I—[P] => A.

In contrast, the reverse direction of this rule is not sound. That is, if the body
of a clause contains two cuts, the rightmost occurrence of the cut cannot be deleted
without altering the procedural behaviour of the program. A counterexample is the
following program P:

A 4- B, !, C, !, D
B <-—

C <——

C <—C

A finitely fails from P. However, if the first clause in P is replaced by the clause
A <—B, !, C’,D, then a Prolog search for A diverges via the reflexive clause C <—-C.

Also, the Prolog cut is not ‘left-monotonous’. That is, while cuts can be added
to the right side of an already present cut, they cannot safely be added to its left
side. A counterexample is the following program:

A<—B,D,!,C
A4
B<—

A succeeds on this program. In contrast, if the first clause is replaced by the clause
A (—B, !D, !,C‘, then A finitely fails from the resulting program.

A further analysis of the calculus SPr! might reveal other useful admissible rules
involving cut.
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5.10 Notes

0 Our approach and results should be compared with the Mints deductive cal
culus introduced in [Min90] and extended in [She92]. A difference between our
approach and the Mints calculus is that the Mints calculi directly axiomatise
the way in which an LD(NF) tree is built up for a single program. The pro
cedural Gentzen calculi have a slightly dynamic flavour; the program is built
up in the course of a derivation. Another difference is that the Gentzen cal
culus Sprg, other than the Mints calculus, is restricted to the propositional
case. This restriction is not necessary in principle: the calculi Sp, and SPr!
can be extended to deal with predicate programs, incorporating unification
and computed answer substitution. However, the predicate versions of these
calculi seem to require too many derivation rules (each a version however of
the original Sp, and SPr! rules) to be interesting. Nevertheless we want to
stress that the restriction to propositional programs is by no means essential
in the Gentzen format.

0 The standard interpretation of negation in Logic Programming, negation as
finite failure, is implemented in Prolog by the cut-fail definition. Apt and
Teusink [AT95]have shown, using P-trees to model the Prolog left to right and
top down, computation procedure, that this implementation is indeed correct
for left-terminating programs (programs for which every LDNF-derivation is
finite), in the sense that the cut-fail interpretation and the negation as failure
interpretation yield the same set of computed answer substitutions. This result
allows for transfer of various results on general logic programs to their Prolog
counterparts. In particular, it allows for the construction of the declarative
interpretation of pure Prolog programs involving negated body atoms and the
investigation of their correctness. Further investigations by Teusink have shown
that the results also hold for programs with possibly infinite LDNF—derivations.
An obvious question, which might be interesting for further research, is whether
these results (or rather, the propositional versions of these results) can also be
obtained by relating the Gentzen calculus SPr! to the version of Sp, appropriate
for normal programs.





Discussion

It is Logic Programming folklore that, although in theory the declarative and pro
cedural interpretation of logic programs coincide, this correspondence only holds for
abstract interpreters, while under execution of programs in practice, for instance
in Prolog, these two interpretations diverge. In the previous two chapters we have
studied the effects of computation styles, in particular of top-down clause processing.
Using a Gentzen style sequent calculus format, we have studied several computation
styles using top-down clause processing as substructural logics.

The analysis of search procedures as substructural logics reveals the following
general picture:

0 top-down clause processing is reflected in basic modus ponens and prefixing
rules, dealing with success via the top-most relevant clause (modus ponens
rules) and failure via the top-most relevant clause (prefixing rules);

0 selection rules, specifying the order of processing of composite goals, are re
flected in introduction rules for (procedural) connectives on goals — alterna
tively, introduction rules specifying a particular selection rule, can be incorpo
rated in the relevant modus ponens and prefixing rules;

0 extensive backtracking, such as in Prolog style computation, is reflected in
refined versions of the modus ponens and prefixing rules.

In addition, extra connectives on goals can be incorporated in any of the calculi,
effecting a local change in the overall selection rule. The axiomatisation of Prolog
with the Prolog cut shows that the format is also amenable to incorporation of
operators with a more global effect.

As logics, the above procedural calculi seem to form a deviant class of non
monotonic substructural logics: most non—monotoniclogics are supra-normal, deriv
ing more than classical logic, while the above calculi are infra-normal, deriving less
than classical logic. In this sense, the above procedural calculi are new and deviant
examples of substructural logics, with unusual substructural rules and illustrating
new substructural principles.

Unfortunately, our approach is rather isolated. There seem to be no obvious links
between these procedural calculi and other classes of non-standard logics, and the
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semantics used is not very abstract. Even a direct correspondence to the Mints cal
culi, which axiomatise Prolog computation, has not yet been established. However,
the robustness of several core-elements of the procedural calculi (modus ponens and
prefixing rules corresponding to top-down clause processing; connectives correspond
ing to selection rules) suggests that, eventually, a more general picture might arise.
Development of a more abstract semantics could be a useful part of future resaerch.

The issue of rule completeness was not addressed in the above two chapters. That
is: which class of rules are admissible or derivable for any of the procedural calculi.
It may very well be that any method appropriate to answer this question, also gives
some useful insight in the general character of these calculi.

A drawback of the above approach is the relative technicality. The various sound
ness and completeness proofs do not seem to give any additional insights over infor
mal correctness arguments. Still, the formal correctness proofs are not superfluous:
experience has shown that it is only too easy, in a procedural context, to overlook
cases.

An important issue in the evaluation of the above approach is its usefulness.
As derivations in the various calculi studied tend to be relatively long, they do not
seem to be very useful in establishing the outcome of computations on programs. In
addition, derivations in the respective calculi establish success of single atoms from
single programs, while in general the interest is in the correctness of a program with
respect to a set of atomic queries. Also, in many cases, in practice it seems to be more
easy to reason on search trees than on derivations in the relevant calculus. However,
there are some exceptions. The right-monotonicity of the Prolog cut, for example,
was established by inspection of the rules of the relevant calculus. The interest of the
procedural calculi developed is may well lay in their usefulness as tools for analysis
(witnessed for example by the alternatives for the Prolog cut, which naturally emerge
in the procedural format, and by the various results on calculus for frugal Prolog),
rather than in their use as alternative tools for computation.
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Samenvatting

In deze dissertatie worden enkele logische aspecten van het logisch programmeren
onderzocht. De drie delen waaruit dit proefschrift bestaat kunnen onafhankelijk van
elkaar gelezen Worden.

Ofschoon het logisch programmeren gebaseerd is op (een fragment van) de eerste orde
predicaatlogica (FOL) wordt in de praktijk veelal gewerkt in extensies van FOL
waarin het gebruikelijke syntactische onderscheid tussen predicaten, functies, for
mules en termen vervaagt of verdwijnt. Voorbeelden zijn Prolog, waar het voorkomen
van variabelen op atoom-posities is toegestaan, en meta-logisch programmeren met
de Vanilla meta-interpreter, waar atomen op term-posities Wordengebruikt. In het
eerste hoofdstuk rechtvaardigen we deze praktijk.

We definieren Ambivalente Logica AL, die verkregen wordt uit FOL door restric
ties op de standaard syntax te laten vervallen. AL kan beschouwd Worden als een
conservatieve extensie van FOL. Met een serie formele resultaten laten we zien dat
AL een flexibele omgeving vormt voor de verschillende syntactisch ambivalente talen
die gebruikt Wordenin Prolog, meta-logisch programmeren en formalisaties van ken
nis en geloof. We voorzien AL van een gesloten term semantiek, met betrekking tot
welke een standaard afleidings-calculus gezond en volledig is. Verder laten we zien
dat het gebruikelijke Martelli-Montanari algorithme aangepast kan Wordenvoor AL,
met behoud van de gewenste gebruikelijke eigenschappen. In combinatie met enkele
andere bewijstheoretische basisresultaten laat dit zien dat resolutie een gezonde en
volledige afleidingsstrategie is voor AL.

Het tweede hoofdstuk behandelt een klassiek probleem uit de grondslagen van het
meta-logisch programmeren: de rechtvaardiging van de formeel incorrecte (ongetype
erde) Vanilla meta-interpreter. Verschillende benaderingen van het probleem Worden
beschouwd en vergeleken: procedurele en declaratieve correctheid, het gebruik van S
semantiek, het gebruik van de correcte (getypeerde) versie, de restrictie tot language
independent object programma’s. We argumenteren dat Hill en Lloyd’s klassieke be
wijs van de procedurele correctheid van de getypeerde interpreter grote algemeenheid
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heeft. We geven een gedetailleerd bewijs voor de declaratieve correctheid van Vanilla
met ambivalente syntax als onderliggende taal — ambivalente syntax is de geeigende
syntax voor Vanilla, in het bijzonder voor de in de praktijk gangbare geamalgameerde
extensies. Dit bewijs generaliseert vrijwel onmiddelijk voor amalgamaties van object
programma met de gerelateerde Vanilla meta—interpreter.

In het derde deel Wordenprocedurele calculi ontwikkeld en bestudeerd, die de effecten
van diverse zoekmechanismen in implementaties van logisch programmeren, zoals
Prolog, karakteriseren. Ofschoon volgens de theorie van het logisch programmeren
de geintendeerde (declaratieve) betekenis van een programma overeenkomt met de
procedurele, hoeft dit niet het geval te zijn voor geimplementeerde programma’s.
Zowel de zoekregel van een implementatie (de volgorde waarin de regels van een
programma Worden gebruikt) als de backtracking en de selectieregel (de volgorde
waarin de onderdelen van een samengesteld doel worden behandeld) kunnen invloed
hebben op de computationele uitkomst. De effecten van zoekmechanismen blijken
gekarakteriseerd te kunnen Wordenmet behulp van substructurele calculi in Gentzen
formaat. Deze procedurele calculi hebben als karakteristieke expressies sequenten
van de vorm [P] =>A , die uitdrukken dat A slaagt uit het programma P onder het
bedoelde zoekmechanisme. Voor de onderhavige zoekmechanismen relevante delen
van de zoekbomen functioneren als semantiek voor de calculi en Worden gebruikt
voor het bewijzen van correctheidsresultaten.

In het derde hoofdstuk Wordt allereerst een calculus besproken die overeenkomt
met de standaard ‘top-down’ zoekregel en een ongespecificeerde selectieregel (depth
first search). Negation as failure kan in dit formaat op natuurlijk wijze geincor
poreerd Worden. De calculus Wordt uitgebreid met introductieregels voor procedurele
versies van de gewone connectieven voor conjunctie en disjunctie. In de procedurele
context hebben deze connectieven een natuurlijke interpretatie: ze implementeren
locaal een alternatieve selectieregel. Een beperking van de calculus tot een van deze
procedurele connectieven levert een calculus Voor een ‘snelle’ variant op de stan
daard Prolog computatie, die voor de klasse van links terminerende programma’s
equivalent is met Prolog.

Voor een correcte reflectie van de effecten van standaard Prolog computatie is een
uitbreiding van het Gentzen formaat voor depth first search nodig, die recht doet aan
de effecten van Prolog’s uitgebreide backtracking. Twee procedurele calculi voor Pro
log Worden besproken in the vierde hoofdstuk: een met expliciete introductieregels
voor een connectief dat Prolog’s meest linkse selectieregel reflecteert, en een variant
waarin dit connectief in de andere regels geincorporeerd is. In het vijfde hoofdstuk
laten we zien hoe de standaard Prolog ‘cut’ (waarmee de zoekboom gesnoeid kan
Worden) geincorporeerd kan Worden in deze laatste calculus, door toevoeging van
twee extra regels. Ook varianten op de Prolog cut Worden besproken.



Stellingen

behorende bij het proefschrift

Meta-Logics for Logic Programming

Marianne Kalsbeek

. There exists an Orey-sentence for IA0 + (21,that is: There is a sentence G and
two interpretations I and J, such that both IAO+ 91 F (IAO+ 91 + G)’ and
1A0+ H1l‘ + 91+ ’G)J.
Cf. Marianne Kalsbeek, An Orey-sentence for IAO+91, Masters Thesis, ILLC Pre
publication Series X-89-01.

. Modular reasoning in logics with Craig interpolation is complete in the case of
(hierarchical) bipartitions, but not in the case of tripartitions.
Cf. H. Andréka, I. Németi en I. Sain, Craig property of a logic and decomposability
of theories, in: Proceedings 9th Amsterdam Colloquium.

. A logic program P is language independent if and only if the associated Vanilla
meta-interpreter Vp is strongly correct w.r.t. P, in the following sense: for all
relation symbols R in the language of P and for all terms t, the followingholds:
Vp |= solve(R(t)) <=> P l: R(t).

. The declarative correctness of a solve-predicate with respect to terminating
object programs can be established without information on the least Her
brand model of such programs. Let P be a terminating program, and let
V define a predicate solvev. Then declarative correctness of solvev with re
spect to P is equivalent to the following property: for every ground atom in
the language of P, V |= solve(A) <=> 3A <— B1, . . .,B,, E ground(P) s.t.
V |= s0lve(B1), . . . , s0l'ue(Bn).

. Gegeven de huidige arbeidsmarkt moet het behalen van de doctorstitel eerder
beschouwd Wordenals afsluiting dan als begin van een wetenschappelijke carriére.
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