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Chapter 1

Introduction: Enriching Linguistics
with Statistics

One of the most fundamental concepts in current linguistic theory is the
competence-performance dichotomy. A linguistic competence model aims to
characterize the set of grammatical sentences together with the possible analyses
that can be assigned to these sentences; a linguistic performance model aims to
describe the actual production and perception of natural language sentences in
specific situations (Chomsky, 1957, 1965). This dichotomy has become the
methodological paradigm for all formal linguistic theories. It is assumed that the
primary goal of linguistics is the development of a theory of language
competence. Linguistic theory seems to have given up on the problem of language
performance. It has adopted the formal languages of logic and mathematics as its
paradigm examples: a language is viewed as a set of sentence/meaning pairs that
is explicitly characterized by a complete and consistent system of recursive rules.
No attempt is made to specify how such a competence model might be
implemented or approximated by psychologically plausible processes of language
perception and production.
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We may illustrate this dichotomy by focussing on the problem of
disambiguation. Existing linguistic theories account very well for the fact that
most natural language sentences have an extremely large number of possible
analyses (and corresponding semantic interpretations). But they do not account
for the fact that human language comprehenders usually perceive only one or two
of these analyses.1 A performance theory of natural language, on the other hand,
should model the input-output properties of actual human perception. It should
not be satisfied with describing the space of possible analyses that input sentences
may get; it should predict which analyses comprehenders actually assign to their
input sentences.

It is the main goal of this dissertation to show how a statistical enrichment of a
linguistic competence theory can model the input-output properties of human
language perception. In doing so, we will concentrate on the problem of
disambiguation. We will start by motivating a statistical approach to linguistics,
after which we will deal with the question of what is involved in creating a
statistical performance model which can select from all possible analyses of a
sentence, the analysis which is actually perceived.

1.1 Motivations for a statistical approach to
linguistics

A long series of psychological investigations indicate that (1) people register
frequencies and differences in frequencies (e.g. Hasher and Chromiak, 1977;
Kausler and Puckett, 1980; Pearlmutter & MacDonald, 1992), (2) people prefer

1 The combinatorial explosion of syntactic analyses (and corresponding semantic
interpretations) of natural language sentences is often underestimated in linguistics. In the field
of psycholinguistics and language technology, it is a widely studied subject (e.g. Church &
Patil, 1983; Frazier, 1979, 1987;  MacDonald et al. 1994; Martin, Church & Patil, 1983;
Tanenhaus et al., 1979). The following example from (Martin, Church & Patil, 1983), shows
four sentences together with the number of different analyses. The ambiguity explosion due to
different possible attachments of prepositional phrases and relative clauses is enormous;
nevertheless these sentences do not appear to be difficult for people to understand.

List the sales of products in 1973 3
List the sales of products produced in 1973 10
List the sales of products in 1973 with the products in 1972 28
List the sales of products produced in 1973 with the products produced in 1972455
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analyses that have been experienced before: "old before new"  (e.g. Hasher and
Zacks, 1984; Jacoby & Brooks, 1984; Fenk-Oczlon, 1989), and (3) the
preference for "old before new" is influenced by the frequency of occurrence of
analyses: "more frequent before less frequent" (e.g. Fenk-Oczlon, 1989; Mitchell
et al., 1992; Juliano & Tanenhaus, 1993). We can summarize the above
statements by (4): the frequencies of previously perceived analyses bias the
analysis of a new input.

These statements form an important motivation for a frequency-based approach
to a model which aims to characterize human language performance. The use of
probability theory seems a straightforward step, since it models the notion of
frequency of occurrence in a mathematically precise way, offering a coherent and
well understood framework. We therefore rewrite the statements (1) through (4)
by (5): a comprehender tends to perceive the most probable analysis of a new
input on the basis of frequencies of previously perceived analyses.

Note that (5) does not say that other possible analyses of a sentence are "wrong".
An analysis is formally "correct" if it can be generated by the underlying linguistic
theory (the competence model). It is the task of a performance model to select
among all correct analyses the analysis which is actually perceived by a
comprehender. This does not mean that a comprehender is unable to perceive the
other analyses of an input. He/she has only a very strong tendency towards
perceiving a more probable analysis with respect to his/her previous language
experiences. What (5) does imply, is, that different linguistic experiences can
yield different perceived analyses of sentences. It is interesting to note that there is
some support for this implication (Mitchell, Cuetos & Corley, 1992). However,
in the absence of actual collections of individual language experiences, we will
abstract from these individual differences, and limit ourselves to actually available
collections of analyzed natural language utterances (see section 1.3).

Besides from a psychological point of view, it is also possible to motivate a
statistical approach from an engineering point of view. Statistical extensions of
linguistic theories have recently gained a vast popularity in the field of natural
language processing. In this field, it is widely recognized that purely rule-based
methods suffer from lack of robustness in solving uncertainty due to
overgeneration (if too many analyses are generated for a sentence) and
undergeneration (if no analysis is generated for a sentence). A statistical approach
is supposed to be more robust than a purely rule-based approach, since it allows
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for a best guess in case of uncertainty  (cf. Garside et al., 1987; Liberman, 1991;
Liberman & Schabes, 1993; Charniak, 1993). The succes of statistical methods in
the field of speech recognition has further reinforced this insight (cf. Church &
Mercer, 1993).

1.2 What should we demand from a statistical
enrichment of a linguistic theory?

What does a statistical extension of a linguistic theory, often referred to as a
"stochastic grammar", look like? In the literature, we can observe the following
recurrent theme: (1) take your favorite linguistic theory (a competence model), (2)
attach application probabilities to the productive units of this theory. Examples are
stochastic context-free grammar (Suppes, 1970; Fujisaki, 1984; Sampson, 1986),
stochastic tree-adjoining grammar (Resnik, 1992; Schabes, 1992), stochastic
unification-based grammar (Briscoe & Carroll, 1993). It would be easy to define,
in a similar way, stochastic lexical-functional grammar, stochastic categorial
grammar, etcetera.

Though they use different underlying competence models, these stochastic
grammars have in common that they do not fully satisfy statement (4) in section
1.1, saying that the frequencies of previously experienced analyses bias the
analysis of a new input. What these stochastic grammars take into account are
only the frequencies of the single linguistic units that make up analyses according
to the underlying competence model. As a consequence, these stochastic
grammars have only had a modest success in solving ambiguity in natural
language.

This brings us to a more fundamental point. If application probabilities are
assigned to the single productive units of an underlying competence model, it is
tacitly assumed that the statistical units coincide with the linguistic units. In other
words, it is assumed that there are no statistical dependencies that go beyond the
linguistic dependencies described by the competence theory. This assumption is
wrong. There can be many statistically interesting dependencies that do not
coincide with the linguistically interesting dependencies according to the
competence model (for examples, see chapter 3, section 4 and chapters 5, 6 and
7). Since we do not know beforehand which dependencies may be statistically
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interesting, we should not constrain or predefine the statistical units, but take all,
arbitrarily large (previously experienced) structures and interpretations as
possible statistical units. This will be the working hypothesis for this thesis.

1.3 The Data-Oriented Parsing framework:
performance models of natural language

What we ideally need in order to derive the probability of an analysis of a
sentence is a very large language corpus, that stands for a person's past language
experience, in which each sentence is annotated with a (syntactic, semantic,
pragmatic) analysis that seemed most appropriate for understanding the sentence
in the context in which it was uttered. The probability of an analysis of an input
sentence can then be derived by taking the relative frequency of this analysis in the
corpus. But how can we derive the probability of an analysis of an input sentence
which does not occur in the corpus? From our hypothesis that we should take any
arbitrarily large structure or interpretation as a possible statistical unit, we propose
that an analysis of a new sentence be constructed out of arbitrarily large sub-
analyses that occur in the corpus. By combining the probabilities of these sub-
analyses in a statistically adequate way, we can estimate the probability of a new
analysis. In order to actually accomplish this, the following parameters need to be
specified:

(1) definition of the sentence-analyses

(2) definition of the sub-analyses

(3) definition of the combination-operations between sub-analyses

(4) definition of the combination-probabilities between sub-analyses

The definition of the sentence-analyses follows from the competence model one
wishes to use for annotating the corpus sentences; each sentence must be
annotated with the analysis that is most appropriate for understanding the sentence
in the context in which it was uttered (that is, the perceived analysis). The
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definition of the sub-analyses specifies the space of (arbitrarily large) statistical
units which include the linguistic units. The combination-operations specify how
sub-analyses can be combined into new analyses; these operations may be equal
to the combination-operations of the competence model, though this need not
necessarily be so. The combination-probabilities define how the probability of
combining sub-analyses is calculated from the frequencies of occurrence of these
sub-analyses in the corpus of sentence-analyses.

The above parameters constitute the prerequisites of what we will call a
"performance model of natural language". This notion of performance model has
become known under the name of "Data-Oriented Parsing framework" or "DOP
framework", and was introduced in (Scha, 1990) and developed in (Bod, 1992a,
1993a). The predicate "Data-Oriented" refers to the use of actual corpus data,
while the word "Parsing" indicates the prime interest in (syntactic) language
perception. Note, however, that the DOP framework may as well be used for
language production.

It is evident that the above parameters can be instantiated in many different ways,
depending on the criteria used. The parameters indicate a framework by means of
which a wide range of performance models can be defined. In this thesis, we will
instantiate above parameters only in as far as the resulting performance models
can be implemented and tested with actually available corpora. Unfortunately,
current linguistic theories have not been very much concerned with creating a
corpus of analyzed sentences. The only corpora that are available now consist of
syntactically labeled phrase structure trees, such as the Nijmegen Corpus (van
Halteren & Oostdijk, 1988), the Lancaster Treebank (Black, Garside & Leech,
1993) and the Pennsylvania Treebank (Marcus et al., 1993). The underlying
competence models used for these sentence-analyses are thus very shallow,
which means that a performance model based on these corpora can at best
account for the syntactic dimension of language performance. Although the
creation of richer analyzed language corpora is under development (see chapter 8),
we will limit ourselves in this thesis to the corpora that are currently available.

We want, however, to stress that our notion of performance model does not stand
in opposition to knowledge-based approaches to language processing. In the
literature, statistical approaches are usually opposed to knowledge-based
approaches (cf. Alshawi, 1994; Price, 1994). This is because statistical methods
have often been claimed to substitute for knowledge-based methods. We believe
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that in a fully analyzed language corpus,  the analyses must be enriched with a
maximum of pragmatic and world-knowledge information. But we also believe
that an adequate performance model should take the frequencies of these analyses
into account.

1.4 Evaluation of performance models: linguistics as
an experimental science

Before we go into the details of instantiations of performance models, we need to
say a word about the problem of evaluation. A performance model of natural
language may be evaluated in many ways: by testing the coverage of the model,
by testing the timing of finding the most probable analysis, by testing the
accuracy of the most probable analysis, etc. Since we focus on the problem of
language disambiguation in this thesis, we will put emphasis on testing the
adequacy of the input-output behavior of a performance model. This means that
we will concentrate first of all on the analysis results of a performance model and
not so much on the analysis process.

We believe that serious evaluations of analysis results of natural language
systems are still being neglected. There is no consensus on the kind of test
procedure, on the establishment of the appropriate or perceived analysis, on the
way of comparing two analyses. As a starter, let us look at a test procedure in the
field of natural language parsing. In this field, the following procedure has
traditionally been used: (1) select a set of test sentences, (2) let the parsing system
calculate the "best" analyses, and (3) let a linguist decide whether the "best"
analyses are "appropriate". This procedure has at least one drawback: if a linguist
decides whether an experimentally obtained analysis is "appropriate" (i.e.
corresponding to the perceived analysis), he is extremely biased by this analysis.
He may judge an analysis as appropriate, while he would have assigned a
completely different analysis to this sentence if he had not been confronted by the
experimentally generated analysis before. This phenomenon of being influenced
by experimental outcomes is well known; nevertheless, this evaluation procedure
is still being used by many parsing systems, which as a consequence report
unreliably high system accuracies (e.g. Simmons & Yu, 1992: 99.7%; Karlsson
et al., 1995: 99.9%).
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In order to exclude the influence of experimental outcomes on the appropriateness
judgments, we believe that it is of utmost importance to establish the appropriate
analyses of the test sentences beforehand and not afterwards. Moreover, the
appropriate analyses should preferably not be established by the experimenter
himself, but by a separate (group of) annotator(s). A test procedure which
incorporates these demands is known under the name of blind testing method.
This method, which has been advocated by the ARPA community (cf. (D)ARPA
Proceedings, 1989-1994), dictates that a manually analyzed language corpus is
randomly divided into a training set and a test set, where the analyses from the
test set are kept aside. The analyses from the training set may be used to train the
system, while the sentences of the test set are parsed by the system. The degree to
which the most probable analyses generated by the system match with the test set
analyses is a measure for the accuracy of the system.

The question is now as to what kind of accuracy metric is most adequate to
compare the most probable analyses generated by the system with the analyses in
the test set. In the ARPA community, the most popular accuracy metric is the so-
called bracketing accuracy, defined as the percentage of brackets of the analyses
that are not "crossing" the bracketings in the test set analyses (e.g. Black et al.,
1991; Harrison et al., 1991; Pereira & Schabes, 1992; Grishman et al., 1992;
Schabes et al., 1993; Magerman, 1995). A reason for the popularity  of this
metric lies in the fact that it allows for the evaluation of systems using different
grammar formalisms. We believe that the notion of bracketing accuracy is too
poor for measuring the accuracy of a performance model. In testing a
performance model, we are interested in whether the model is able to correctly
select the perceived analysis from the possible analyses of a test sentence.
Therefore we need a metric which demands an exact match between the most
probable analysis and the test set analysis. Such a metric is exemplified by the
notion of parse accuracy, which we define as the percentage of the test sentences
for which the most probable analysis (parse) is identical to the test set analysis.
Although we will also be concerned with a qualitative evaluation of parse results,
we believe that an accuracy which is based on an exact match is most adequate for
a quantitative evaluation.
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1.5 Overview of this thesis

In this chapter, we motivated a statistical approach to linguistics from both a
psychological and an engineering point of view. We have given the prerequisites
of a linguistic performance model which uses the frequencies of sub-analyses in a
corpus of sentence-analyses to predict the perceived analysis of a new input
sentence. We have proposed an objective method for evaluating performance
models, which is the blind testing method combined with an exact match
accuracy metric.

In the next chapter, we start with a first realization of a performance model that
allows for the use of available language corpora. This first instantiation of the
Data-Oriented Parsing framework, which we call DOP1, uses subtrees that occur
in the corpus as the "sub-analyses", and uses substitution as the "combination-
operation" between subtrees. In order to allow for an estimation of the
substitution probabilities of subtrees, two statistical assumptions are used: (1) the
subtrees are stochastically independent, and (2), the set of subtrees represents the
total population of subtrees. The most important feature of DOP1 is the
distinction between the probability of a derivation (of a sentence) and the
probability of a parse tree. The probability of a derivation is equal to the product
of the substitution probabilities of the subtrees involved, while the probability of a
tree is the sum of the probabilities of all distinct derivations generating this tree.

Chapter 3 introduces a Formal Language Theory of Stochastic Grammars in
which different stochastic language models can be articulated and compared. We
describe DOP1 as a projection of a tree-set into a Stochastic Tree-Substitution
Grammar (STSG), and formally compare STSG with Stochastic Context-Free
Grammar (SCFG). An important result of this comparison is that SCFGs are
stochastically weaker than STSGs: the set of stochastic tree languages generated
by SCFGs is a proper subset of the set of stochastic tree languages generated by
STSGs. We also compare STSG with two other stochastic grammars that have
been proposed to overcome the statistical context-insensitiveness of SCFGs:
Stochastic History-Based Grammar and Stochastic Tree-Adjoining Grammar. It
turns out that these stochastic grammars do not capture the statistical dependences
that can be captured by STSG.
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In chapter 4, we deal with the problem of computing the most probable parse of a
sentence in DOP1. We distinguish between parsing and disambiguation, showing
that the problem does not lie in the creation of a parse forest for an input sentence,
but in the selection of the most probable parse from this forest. We show that a
so-called Viterbi optimization is not applicable to finding the most probable parse.
We propose an iterative Monte Carlo search which estimates the most probable
parse with an error that can be made arbitrarily small in polynomial time. Finally,
we go into some properties of Monte Carlo disambiguation that are of
psychological interest.

In chapter 5, we test the merits of DOP1 as a performance model for syntactic
disambiguation. Experiments on part-of-speech strings from the Air-Travel
Information System (ATIS) corpus report 96% parse accuracy. If the size of the
corpus-subtrees is constrained, the parse accuracy decreases to 52% at subtree-
depth one. It turns out that predictions based on the most probable parse are much
more accurate than predictions based on the parse generated by the most probable
derivation. We also test how much the elimation of once-occurring subtrees
affects parse accuracy, and how much the size of the training set affects parse
accuracy. Finally, it turns out that DOP1 reaches 100% parse accuracy if training
set and test set are united, while SCFG  achieves only 59% in that case.

Chapter 6 starts with an investigation of what is involved in extending DOP1 in
order to parse sentences that contain unknown words. The model DOP2 is
presented as a very simple extension of DOP1:  unknown words are labeled by
all lexical categories, after which DOP1 is used to generate a most probable parse.
Experiments with DOP2 on word strings from the ATIS corpus show, however,
a disappointing parse accuracy of 63%. A qualitative evaluation of the test
sentences with unknown words indicates that DOP2 has a bias towards using
smaller subtrees. The evaluation of the test sentences with only known words
leads to the notion of "unknown-category word": an ambiguous word which
occurs in the training set, but with a different category than is needed to correctly
parse the test sentence in which this word appears. It turns out that DOP2 is
inadequate for solving unknown-category words.

The outcome of chapter 6 triggers the performance model DOP3; the key insight
of DOP3 is that the notion of "unknown subtrees" may overcome the problems
with both unknown words and unknown-category words in DOP2. In order to
deal with unknown subtrees, we restrict ourselves to subtrees whose
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unknownness depends only on unknown terminals. The main problem turns out
to be the estimation of the frequencies of unknown subtrees. As a solution to this
problem, we abolish the assumption that all subtrees have been seen, and treat a
corpus as a sample of a larger population. We apply the Good-Turing method for
estimating the population probabilities of both unknown and known subtrees.
This leads to the definition of the performance model DOP3. Experiments show
that DOP3 can quite succesfully parse and disambiguate sentences with unknown
(-category) words, yielding 83% parse accuracy for subtree-depth ≤ 3, and that
DOP3 does not suffer from the bias towards using smaller subtrees as in DOP2.
The Good-Turing method is compared with the Add-k method, resulting in
DOP4, which turns out to have a worse parse accuracy than DOP3. In order to
get the best possible parse results, DOP3 is finally extended with an external
dictionary, yielding the hybrid model DOP5, which achieves an accuracy of 92%
(for subtree-depth ≤ 3).

The last chapter of this thesis investigates what is involved in extending a
syntactically analyzed corpus with semantic interpretations. We show that if we
assume "surface compositionality", the syntactic annotation problem generalizes
in a straightforward way to the problem of semantic annotation. However, for
analyzing naturally occurring text, partial annotations turn out to be more realistic.
We propose the performance model DOP6, in which any corpus-subtree can
function as a productive unit, even if its semantics is not yet completely specified,
provided that its semantics can be calculated in the end by employing the principle
of compositionality in one of two ways: (1) the meaning is constructed by simple
composition of the constituents or (2) the meaning is arrived at by abstracting out
the contribution(s) of the sister node(s) from the semantics of the node directly
governing it. The most important statistical feature of DOP6 is the probability of
an interpretation I of a sentence as the sum of the probabilities of all the parse
trees that have a top node semantics which is logically equivalent to I. Finally, as a
promise for future research, we go into the influence of discourse structure and
recency on the analysis of a new input sentence.
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Chapter 2

A First Realization of a Performance
Model: The Model DOP1

In this chapter, we describe a first realization of a performance model within the
Data-Oriented Parsing framework that allows for the use of currently available
corpora. As mentioned in chapter 1, these corpora consist of syntactically labeled
phrase structure trees. This means that our performance model will at best be able
to account for the syntactic dimension of language perception. Nevertheless, we
will see that this first realization of Data-Oriented Parsing, which we will call
DOP1, is far from trivial.

2.1 Specifications of DOP1

We make the following choices among the parameters of the DOP framework
(sentence-analyses, sub-analyses, combination-operations, combination-
probabilities):

(1) sentence-analyses
syntactically labeled phrase structure trees
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(2) sub-analyses
subtrees

(3) combination-operations
composition: the identification of the root-node of one
subtree with the leftmost non-terminal leaf node of another
subtree (in other words: the "substitution" of one subtree on
the leftmost non-terminal leaf node of another subtree)

(4) combination-probabilities
the probability of substituting a subtree on a leftmost non-
terminal leaf node of another subtree; this is defined as the
probability of selecting a subtree among all corpus-subtrees
that could be substituted on a certain non-terminal leaf node

We now give a further explanation of some of these parameters.

Ad (2)

A subtree of a tree T is a connected subgraph U of T such that, (1) for every node
in U holds that it has either zero daughter nodes or all the daughter nodes of the
corresponding node in T, and, (2) U consists of more than one node.

The following example clarifies this definition: in figure 2.1, U1 and U2 are
subtrees of T, whereas U3 is not. Note that T is also a subtree of itself.

V

NP VP

S

John

likes

NP

Mary

T
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V

NP VP

S

NP

V

VP

likes

NP NP VP

S

John NP

U U U1 2 3

figure 2.1

Ad (3)

The composition operation (also called leftmost substitution operation) is defined
as follows. The composition of subtrees t and u, t ° u, yields a copy of t in which
its leftmost nonterminal leaf node has been identified with the root node of u  (i.e.,
u is substituted on the leftmost nonterminal leaf node of t).

We may define several other combination operations between subtrees, but as a
first realization of DOP we will only use this one. Notice the analogy of the
substitution operation with rule-application in context-free grammars. The
addition of leftmost serves to make the composition for two subtrees unique, such
that we can speak of a (partial) function. The composition operation is illustrated
by figure 2.2:
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figure 2.2

We will write in the following (t ° u) ° v  as: t ° u ° v. Note, however, that
composition is not associative. This may be illustrated by figure 2.3.
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Ad (4)

For the calculation of the probability of substituting a subtree on a leftmost non-
terminal leaf node of another subtree, we use two statistical assumptions: (1) the
subtrees are stochastically independent, and (2), the space of corpus-subtrees
represents the total population of subtrees. It should be stressed that both
assumptions are wrong. However, we will see that assumption (1) is not very
harmful if we take into account all, arbitrarily large subtrees; while assumption (2)
will be dropped in chapter 7, where a language corpus is treated as a sample of a
larger population.

How can we define the probability of combining two subtrees by using the above
assumptions? First we observe that due to assumption (1), the probability of
substituting a subtree on a leftmost non-terminal node is independent of the
subtree in which this leftmost non-terminal node appears. This means that we can
simply talk about the substitution probability of a certain subtree given a node of a
certain category. Secondly, from our observations in chapter 1, it follows that we
need to define the substitution probability of a subtree in terms of its frequency of
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occurrence in the corpus of sentence-analyses. It is clear that it is not adequate to
define a substitution probability as the absolute probability of a subtree in the
corpus, but instead as the probability of a subtree within the space of corpus-
subtrees that could be substituted on the same node. Due to assumption (2), we
can compute the substitution probability of a subtree as the ratio between the
number of occurrences of this subtree and the total number of occurrences of
subtrees that have the same root-category as this subtree. (Note that this implies
that the probabilities of the subtrees with the same root-category sum up to one.)

In order to deal with the question as to how the probability of an analysis of an
input sentence can be computed from the substitution probabilities of the subtrees
that make up the analysis, it is convenient to illustrate DOP1 with an example.

2.2 Illustration of DOP1

We will illustrate DOP1 by means of an extremely simple imaginary example.
Suppose that a corpus of sentence-analyses consists of only two trees given in
figure 2.4.
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figure 2.4. A corpus of two trees

This means that we have the following multiset of subtrees (figure 2.5):
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By means of the substitution operation, a new input sentence "Mary likes Susan"
can be analyzed by combining, for instance, the following subtrees:
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figure 2.6

Such a combination of subtrees will be called a "derivation". We notice that other
derivations may yield the same parse tree; for instance:
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figure 2.7

Or:
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Thus, a parse tree can be generated by several derivations involving different
subtrees.1 How can we compute the probability of a derivation and that of a parse
tree from the substitution probabilities of the subtrees? Let us start with the
probability of a derivation, which is the probability that the subtrees are combined
by means of substitution. Since we assume that subtrees are stochastically
independent, the probability of a derivation is equal to the product of the
substitution probabilities of the subtrees.

As an example, we calculate the substitution probabilities of the subtrees in figure
2.8 together with the probability of their resulting derivation. The subtree
S(NP,VP) occurs twice among a total of 20 subtrees rooted with an S (see figure
2.5). Thus, its substitution probability is 2/20.2 The subtree NP(Mary) occurs
once among a total of 4 subtrees that can be substituted on the category NP,
hence, its substitution probability is 1/4. The probability of selecting the subtree
VP(V(likes),NP) is 1/8, since there are 8 subtrees rooted with a VP, among which
this subtree occurs once. Finally, the probability of selecting NP(Susan) is equal
to 1/4. The probability of the resulting derivation is then equal to 2/20 ⋅ 1/4 ⋅ 1/8 ⋅
1/4  =  1/1280. The next table shows the probabilities of all three derivations given
above.

1 We might call this "spurious ambiguity". Note that in this imaginary example, the sentence
"Mary likes Suzan" is not structurally ambiguous.
2 The term substitution-probability may seem inappropriate for subtrees rooted with an S, since
these are not substituted on any other subtree. One should therefore assume a start-symbol S on
which the first subtree of a derivation is substituted. This will be made rigorous in chapter 3,
where we will describe DOP1 as a "stochastic tree-substitution grammar".
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P(figure 2.6) =  1/20 ⋅ 1/4 ⋅ 1/4 =  1/320

P(figure 2.7) =  1/20 ⋅ 1/4 ⋅ 1/2 =  1/160

P(figure 2.8) =  2/20 ⋅ 1/4 ⋅ 1/8 ⋅ 1/4   =  1/1280

table 2.1

This table shows that a model which defines probabilities over parse trees by
taking into account only one derivation, does not accommodate the frequencies of
all subtrees that may contribute to the generation of a parse tree. By taking into
account the probabilities of all derivations of a parse tree, no subtree that might
possibly be of statistical interest is ignored. How can we compute the probability
of a parse tree? The probability of a parse is equal to the probability that it is
generated by any of its derivations. Since these derivations are mutually exclusive,
the probability of a parse is the sum of the probabilities of all its derivations. (This
marks the difference with normal "stochastic grammars", where no distinction is
made between the probability of a parse tree and the probability of a derivation
which generates that tree; cf. §3.3-4). The calculation of the probability of the
above parse tree for "Mary likes Susan" is left to the reader. Finally, the
probability of a sentence or string is the sum of the probabilities of all its parses.

We want to conclude this chapter with an emerging property of DOP1, which
will turn out to be of interest for the rest of this thesis. In DOP1, the probability of
a parse depends on all derivations that generate that parse; therefore, the more
different ways in which a parse can be generated, the higher its probability tends
to be; this implies that a parse which can (also) be generated by relatively large
subtrees tends to be favored over a parse which can only be generated by
relatively small subtrees. Thus, given a sentence, there is a preference for the
parse which can be generated by the largest possible subtrees.
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Chapter 3

Towards a Formal Language Theory of
Stochastic Grammars

In this chapter, we develop a theory in which the properties of stochastic
grammars can be formally articulated and compared. We describe DOP1 as a
projection of a corpus of tree structures into a Stochastic Tree-Substitution
Grammar (STSG), and we formally compare STSG with other stochastic
grammars.

3.1 Formal Stochastic Language Theory

The notion of a stochastic grammar usually refers to a finite specification of
possibly infinitely many strings and their analyses together with their
probabilities. If we want to compare the formal properties of different stochastic
grammars, we need a Formal Stochastic Language Theory. In such a theory, we
are not so much concerned with weak and strong generative capacity (as is the
case in traditional Formal Language Theory), but with weak and strong stochastic
generative capacity. The following definitions are therefore convenient.
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Definitions:

The stochastic string language generated by a stochastic grammar G is the set
of pairs <x, p(x)> where x is a string from the string language generated by G and
p(x) the probability of that string.

The stochastic tree language generated by a stochastic grammar G is the set of
pairs <x, p(x)> where x is a tree from the tree language generated by G and p(x)
the probability of that tree.

In analogy to weak and strong equivalence, we define the following equivalences
for stochastic grammars:

Definitions:

Two stochastic grammars are called weakly stochastically equivalent1, iff they
generate the same stochastic string language.

Two stochastic grammars are called strongly stochastically equivalent2, iff they
generate the same stochastic tree language.

Note that if two stochastic grammars are weakly stochastically equivalent they are
also weakly equivalent (i.e. they generate the same string language). Moreover, if
two stochastic grammars are strongly stochastically equivalent they are also
strongly equivalent (i.e. they generate the same tree language) and weakly
stochastically equivalent.

1 What we call weak stochastic equivalence is called simply "stochastic equivalence" in (Fu,
1974).
2 In (Bod, 1993a), this type of equivalence is called "superstrong equivalence".
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Now that we have mathematical notions for comparing the generative capacities
of stochastic grammars, we want to exclude the pathological cases of improper
and infinitely ambiguous grammars.

Definition Properness of Grammars

A grammar is called proper iff only such nonterminals can be generated whose
further rewriting can eventually result in a string of terminals.

Example: the context free grammar <{S,A} , { a} , S, { S→Sa, S→a, S→aA} > is

not proper, since there is a generation S→aA which can never result in a string of
terminals.3

Definition Finite Ambiguity of Grammars

A grammar is called finitely ambiguous if there is no finite string that has
infinitely many derivations.

Example: the context free grammar <{ S} , { a} , S, { S→S, S→a} > is not finitely
ambiguous, since the string a has infinitely many derivations.

Convention
We will only deal with grammars that are proper and finitely ambiguous.

3.2 Stochastic Tree-Substitution Grammar

The way DOP1 combines subtrees into new trees and computes probabilities of
derivations and parses may very well be described by what we will call a
"Stochastic Tree-Substitution Grammar" (STSG):

3 In (Jelinek et al., 1990), an algorithm is given that determines whether or not a grammar may
be made proper by the elimination of rules (p. 31).

33

Definition Stochastic Tree-Substitution Grammar

A Stochastic Tree-Substitution Grammar G is a five-tuple <VN, VT, S, R, P>
where

VN is a finite set of nonterminal symbols.

VT is a finite set of terminal symbols.

S ∈ VN is the distinguished symbol.

R is a finite set of elementary trees whose top nodes and interior nodes are labeled
by nonterminal symbols and whose yield nodes are labeled by terminal or
nonterminal symbols.

P is a function which assigns to every elementary tree t ∈ R a probability p(t). For

a tree t with a root α, p(t) is interpreted as the probability of substituting t on α.

We require, therefore, that  0 < p(t) ≤ 1 and Σt:root(t)=α p(t) = 1.

Substitution

If t1 and t2 are trees such that the leftmost nonterminal yield node of t1 is equal to
the root of t2, then t1°t2 is the tree that results from substituting t2 for this leftmost
nonterminal yield node in t1. The partial function ° is called leftmost substitution.
We will write (t1°t2)°t3  as t1°t2°t3, and in general (..((t1°t2)°t3)°..)°tn as
t1°t2°t3°...°tn. For reasons of conciseness we will use the term substitution for

leftmost substitution. Notice that the value p(t) for an elementary tree with root α
is the probability of substituting t for any nonterminal leaf node α  in any
elementary tree in R.

Derivation

A leftmost derivation generated by an STSG G is a tuple of trees <t 1,...,tn> such
that t1,...,tn are elements of R, the root of t1 is labeled by S and the yield of t1°...°tn
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is labeled by terminal symbols. The set of leftmost derivations generated by G is
thus given by Derivations(G) = {<t 1,...,tn> | t1,...,tn ∈  R  ∧ root(t1) = S ∧
yield(t1°...°tn) ∈ VT+ }. For convenience we will use the term derivation for
leftmost derivation. A derivation <t 1,...,tn>  is called a derivation of tree T, iff
t1°...°tn  = T. A derivation <t 1,...,tn>   is called a derivation of string s, iff

yield(t1°...°tn) = s. The probability of a derivation <t 1,...,tn> is defined as p(t1) ⋅ ...
⋅ p(tn).

Parse tree

A parse tree  generated by an STSG G is a tree T such that there is a derivation
<t 1,...,tn> ∈ Derivations(G) for which t1°...°tn  = T. The set of parse trees,
or tree language, generated by G  is given by Parses(G) =
{ T | ∃ <t 1,...,tn> ∈ Derivations(G) : t1°...°tn = T}. For reasons of conciseness we
will often use the terms parse or tree for a parse tree. A parse whose yield is
equal to string s, is called a parse of s. The probability of a parse is defined as the
sum of the probabilities of all its derivations.

String

A string generated by an STSG G is an element of VT+  such that there is a parse
generated by G  whose yield is equal to the string. The set of strings,
or string language, generated by G is given by Strings(G) =
{ s | ∃ T : T ∈ Parses(G) ∧ s = yield(T)}. The probability of a string is defined as
the sum of the probabilities of all its parses. This means that the probability of a
string is also equal to the sum of the probabilities of all its derivations.

It may be evident that STSG is a generalization over DOP1: the model DOP1
projects a corpus of tree structures into an STSG, where the subtrees of DOP1 are
the elementary trees of the STSG, and where the substitution probabilities of the
subtrees of DOP1 are the probabilities of the corresponding elementary trees of
the STSG.
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3.3 A Comparison between Stochastic Tree-
Substitution Grammar and Stochastic
Context-Free Grammar

The oldest and most well-known of all stochastic enrichments of context-free
grammars is the so-called "Stochastic Context-Free Grammar" or SCFG (Booth,
1969; Suppes, 1970). An SCFG enriches every rewrite rule of a CFG with a
probability which corresponds to the application probability of this rule. In an
SCFG, the stochastic dependences are limited to the scope of single rewrite rules.
It may be clear that SCFGs run into serious trouble if faced with solving
ambiguities that are beyond the scope of single rewrite rules. It is therefore almost
evident that SCFGs are stochastically weaker than STSGs. However, as an
example of how Formal Stochastic Language Theory may be used to formally
articulate this, we will compare SCFG and STSG in the context of this theory. Let
us start with the definition of SCFG4.

Definition Stochastic Context-Free Grammar

A Stochastic Context-Free Grammar G is a five-tuple <VN, VT, S, R, P> where

VN is a finite set of nonterminal symbols.

VT is a finite set of terminal symbols.

S ∈ VN is the distinguished symbol.

R is a finite set of productions each of which is of the form α→β, where α ∈ VN

and β ∈ (VN∪VT)+.

P is a function which assigns to every production α→β   ∈ R a probability

p(α→β), for which holds that 0 < p(α→β) ≤ 1 and Σx p(α→x) = 1.

4 This definition follows (Booth, 1969), (Fu, 1974), (Levelt, 1974), (Wetherell, 1980),
(Fujisaki et al., 1989), (Jelinek et al. 1990).
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The probability of a leftmost derivation (and its corresponding parse tree)
generated by an SCFG is equal to the product of the probabilities associated with
the productions applied. Note that, contrary to STSG, every parse tree is generated
by exactly one leftmost derivation. The probability of a string generated by an
SCFG is equal to the sum of the probabilities of all its derivations.

We will now compare STSG with SCFG in terms of respectively weak and
strong stochastic equivalence.

Proposition 1
For every STSG there exists a weakly stochastically equivalent SCFG.

Proof of Proposition 1
Given an STSG G, we convert every elementary tree t ∈ R into a context-free

production root(t)→ yield(t). This may lead to multiple occurrences of the same
production, since different elementary trees may have the same root and yield. To
every such production a probability is assigned which is equal to the probability
of the tree from which the production is derived. In order to eliminate multiple
occurrences of productions, we collapse equivalent productions and add up their
probabilities. The resulting SCFG G' generates the same string language as G. It
is now easy to see that the sum of the probabilities of all derivations of a string in
G is equal to the sum of the probabilities of all derivations of this string in G'.
This means that G and G' assign the same probability to every string in their
string language. Thus, G and G' are weakly stochastically equivalent.

Proposition 2
For every SCFG there exists a weakly stochastically equivalent STSG.

Proof of Proposition 2
Given an SCFG G, we convert every production α→β ∈  R into a unique

elementary tree t of depth one such that root(t) = α and yield(t) = β. To every
such tree a probability is assigned which is equal to the probability of the
production from which the tree is derived. The resulting STSG G' generates the
same string language and tree language as G. Now it is easy to see that for every
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derivation in G there is a unique derivation in G' with the same probability. Thus,
the sum of the probabilities of all derivations of a string in G is equal to the sum
of the probabilities of all derivations of this string in G'. This means that G and G'
assign the same probability to every string in their string language. Thus, G and
G' are weakly stochastically equivalent.

From the propositions 1 and 2 the following corollary can be deduced.

Corollary 1
The set of stochastic string languages generated by STSGs is equal to the set of
stochastic string languages generated by SCFGs.

Corrollary 1 is significant in the sense that if we were only interested in the strings
and not in the trees (for instance for the task of string prediction in speech
recognition output), we might convert an STSG (and thus a DOP1 model) into a
more succinct SCFG.

Proposition 3
For every SCFG there exists a strongly stochastically equivalent STSG.

Proof of Proposition 3
Consider the proof of proposition 2. Since G and G' generate the same tree
language and every derivation in G corresponds to a unique derivation in G' with
the same probability, G and G'  are strongly stochastically equivalent.

Proposition 4
There exists an STSG for which there is no strongly equivalent SCFG.

Proof of Proposition 4
Consider the following STSG G consisting of one elementary tree with a
probability equal to 1:
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The tree language generated by G is equal to the set containing only the above
elementary tree. An SCFG is strongly equivalent with G if it generates only the
above tree. An SCFG which generates the above tree should consist of the
productions S → Sb and S → a. But such an SCFG generates more than just the
above tree. Contradiction.

Proposition 5
There exists an STSG for which there is no strongly stochastically equivalent
SCFG.

Proof of Proposition 5
Consider the proof of proposition 4. Since strong stochastic equivalence implies
strong equivalence there is no SCFG which is strongly stochastically equivalent
with G.

From the propositions 3 and 5 the following corollary can be deduced.

Corollary 2
The set of stochastic tree languages generated by SCFGs is a proper subset of
the set of stochastic tree languages generated by STSGs.

Though corollary 2 may seem a significant result, it mainly follows from the
property that STSGs are not always strongly equivalent with SCFGs. In the
context of stochastic language theory, however, we are not so much interested in
tree languages as in stochastic tree languages. Thus, it is more interesting to
compare stochastic tree languages of strongly equivalent grammars.
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Proposition 6
There exists an STSG for which there is a strongly equivalent SCFG but no
strongly stochastically equivalent SCFG.

Proof of Proposition 6
Consider the following STSG G consisting of three elementary trees that are all
assigned with a probability of 1/3.5

b

a

S

S b

S

S a

S

     t1            t2         t3

figure 3.2

The string language generated by G is { ab* }. The only (proper) SCFG G' which
is strongly equivalent with G consists of the following productions.

S → Sb (1)

S → a (2)

G' is strongly stochastically equivalent with G iff it assigns the same probabilities
to the parse trees in the tree language as assigned by G. Let us consider the
probabilities of two trees generated by G, i.e. the trees represented by t1  and t3.6

The tree represented by t3 has exactly one derivation: by selecting the elementary
tree t3. The probability of generating this tree is hence equal to 1/3. The tree
represented by t1 has two derivations: by selecting elementary tree t1, or by
combining the elementary trees t2 and t3. The probability of generating this tree is

5 This STSG is also interesting because it can be projected from a DOP1-model whose corpus
of sentence-analyses consists only of tree t1.
6 Note that the trees t1 and t3 are both elements of the set of (elementary) trees R of G and of
the tree language generated by G.
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equal to the sum of the probabilities of its two derivations, which is equal to 1/3 +
1/3⋅1/3 = 4/9.

If G' is strongly stochastically equivalent with G, then it should assign the
probabilities 4/9 and 1/3 to the trees represented by t1 and t3 respectively. The tree
t3 is exhaustively generated by production (2); thus the probability of this
production should be equal to 1/3: p(S→a) = 1/3. The tree t1 is exhaustively
generated by applying productions (1) and (2); thus the product of the
probabilities of these productions should be equal to 4/9: p(S→Sb) ⋅ p(S→a) =

4/9. By substitution we get p(S→Sb) ⋅ 1/3 = 4/9, which implies that p(S→Sb) =
4/3. This means that the probability of production (1) should be larger than 1,
which is not allowed. Thus, G' cannot be made strongly stochastically equivalent
with G.

The (proof of) proposition 6 is an important result since it shows that STSGs are
not only stronger than SCFGs because there are STSGs for which there is no
strongly equivalent SCFG, but that STSGs are really stochastically stronger, also
with respect to SCFGs that might be strongly equivalent to STSGs. It makes also
clear why STSGs are stronger: SCFGs cannot attach a probability to a structure
larger than one rewrite rule, while STSGs can.

3.4 Other Stochastic Grammars

In this section, we informally compare STSG with two other stochastic language
models: Stochastic History-Based Grammar and Stochastic Tree-Adjoining
Grammar. These grammars have been proposed as alternatives to SCFG to
overcome the stochastic context-insensitiveness of SCFG.

3.4.1 Stochastic History-Based Grammar (SHBG)

Stochastic History-Based Grammars (SHBG7) are developed in (Black et al.,
1993; Black, Garside & Leech, 1993), though introduced earlier in (Smith, 1973).
In SHBG, the probability of applying a rewrite rule in a leftmost derivation is

7 My abbreviation.
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made conditional on the rules that were used before in that derivation. In (Black et
al., 1993), it is said that SHBG provides "a very rich if not the richest model of
context ever attempted in a probabilistic parsing model". However, the limitation
to a leftmost derivation for conditionalizing the probability of a rule means that
still not all possible stochastic dependences are captured.

Let us illustrate this with the sentence The emaciated man starved, of which an
analysis is given in figure 3.3. The numbers in the figure refer to the order of
applications of the rules in a leftmost derivation of this sentence.

The								emaciated        man         starved

Det A N V

Nbar VP

NP

S 1

2

3

4

5 6

7

8

figure 3.3

Suppose that there is a strong stochastic dependence between the words
emaciated and starved, appearing in sentences like the one above, and that these
words are largely independent of the words surrounding them (in this case The
and man). An adequate stochastic grammar should be able to account for this
specific dependence between emaciated and starved. It turns out that SHBG is not
able to do so. In order to show this, let us explain with somewhat more detail the
probabilistic background of SHBG. Suppose that the probability of rule 1 in
figure 3.3 (i.e. S → NP VP) is given by p(1). Since in SHGB the rule probability
is made conditional on the former rules in the leftmost derivation, the conditional
probability of rule 2 is given by p(2|1). The conditional probability of rule 3 is
given by p(3|2,1) and so forth. The probability of the whole analysis is equal to
the product of the conditional probabilities of the rules: p(1) ⋅ p(2|1) ⋅ p(3|2,1) ⋅ ...⋅
p(8|7,6,5,4,3,2,1).
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While SHBG can thus capture a dependence between all lexical items The,
emaciated, man and starved together, there is no way to account for the specific
dependence between emaciated and starved, without the and man. What would be
needed are conditional rule probabilities like p(8|7,5,4,2,1) where the probability
of rule 8 is made conditional on all former rules except 6 and 3. SHBG does not
account for such probabilities, due to the restriction to a leftmost derivation for
conditionalizing the probabilities of rewrite rules. Even if a so-called "finite
Markov history" is used, SHBG can only describe the relations between items
like starved and man, emaciated and man, or emaciated, man and starved, but not
between emaciated and starved alone, since man is produced after emaciated and
before starved in a leftmost derivation. Moreover, any restriction to another
canonical derivation (rightmost, leftcorner etc.) would yield analogous limitations.

In STSG, on the other hand, the dependence between emaciated and starved can
be captured by an elementary tree in which emaciated and starved are the only
lexical items, and where the and man are left out, as is shown in figure 3.4.

      								emaciated                        starved

Det A N V

Nbar VP

NP

S

figure 3.4

This artificial example exemplifies a dependence which is strongly semantic in
nature. An example which expresses a dependence of a more (semi-)idiomatic
nature, is illustrated by the following sentence from the Air Travel Information
System (ATIS) corpus (Hemphill et al., 1990): Show me flights from Dallas to
Atlanta. The NP-construction flights from X to Y is almost idiomatic in the ATIS
domain and occurs extremely frequently. It may be clear that, analogous to the
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previous example, SHBG can describe the dependences between all the words of
such an NP, but it cannot attach a probability to the NP-construction where Dallas
and Atlanta are left out. This is a serious shortcoming, since for the ambiguity
resolution of a sentence which contains an NP like flights from X to Y, it is
necessary to describe this NP as one statistical unit. STSG, on the other hand, can
easily describe this NP as a statistical unit by taking the probability of this
construction in the ATIS corpus.

3.4.2 Stochastic Tree-Adjoining Grammar (STAG)

Although STAG (Resnik, 1992; Schabes, 1992) is not a stochastic enrichment of
a context-free grammar, but of a tree-adjoining grammar (Joshi, 1987) which
belongs to the class of mildy context-sensitive grammars (Joshi et al., 1991), it is
interesting to deal with STAG because of its similarity with STSG. An STAG
assigns a probability to each elementary (initial or auxiliary) tree that corresponds
to the probability that this elementary tree is combined by substitution or
adjunction with another elementary tree. If we leave out the adjunction operation,
STAG is formally equivalent with STSG. Thus, it looks as if STAG captures at
least the stochastic dependences that can be captured by STSG. However, if we
look at current instantiations of STAG, we find two serious shortcomings:

(1) Since STAG is linguistically motivated by tree-adjoining grammar (TAG),
there are constraints on the form and use of elementary trees. For instance,
modifiers are usually represented by separate auxiliary trees, which means that in
analyzing the sentence The emaciated man starved, the modifier emaciated is
inserted in the NP the man by means of adjunction. Linguistically this may be
elegant, but statistically the dependence between emaciated and starved is lost,
since they are not allowed to appear in one elementary tree.

(2) In current implementations of STAG, only the probability of a derivation is
accounted for (cf. Resnik, 1992; Schabes, 1992), and not the probability of a
resulting tree or of an interpretation. This is statistically inadequate, since, like in
STSG, the probability of a derivation is different from the probability of a tree in
STAG.

Thus, current instantiations of STAG seem still to be based on the assumption
that the statistical dependences coincide with the linguistic dependences of the
underlying competence model. In order to create an adequate performance model

44

based on TAG, it is not enough to attach probabilities to the competence units of
this model. Instead, competence and performance need to be carefully
distinguished, where the performance units must be taken as arbitrarily large trees
from a corpus of analyzed language utterances.

3.5 Open problems

There are still many problems to be solved regarding the relations between
stochastic grammars. So far, we have only designed the contours of a Formal
Stochastic Language Theory which allowed us to formally compare STSG with
SCFG. We believe that the following open problems need also to be treated
within such a theory (whose solutions fall beyond the scope of this thesis).

* Does there exist a stochastic enrichment of CFG which is stochastically
stronger than STSG? We haven't found one yet.

* Is there a stochastic hierarchy within the class of stochastic enrichments of
CFGs, where SCFG is at the bottom, STSG at the top, and SHBG somewhere in
between?

* If the former question can be answered positively, are there similar stochastic
hierarchies in the other classes of the Chomsky hierarchy?
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Chapter 4

Computational Aspects of DOP1:
Parsing and Disambiguation

In order to deal with the problem of computing the most probable parse tree of a
sentence in DOP1 or STSG, we distinguish between parsing and disambiguation.
By parsing we mean the creation of a parse forest for an input sentence. By
disambiguation we mean the selection of the most probable parse1 from the
forest. The creation of a parse forest is seen as an intermediate step for computing
the most probable parse.

4.1 Parsing

From the way STSG combines elementary trees by means of substitution, it
follows that an input sentence can be parsed by the same algorithms as (S)CFGs.
Every elementary tree t  is used as a context-free rewrite rule:

1 Note that there can be more than one most probable parse for an input sentence; however, for
non-trivial corpora, an input sentence tends to get exactly one most probable parse. In the
following, we will assume that the most probable parse is unique.
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root(t) → yield(t). Given a cubic time context-free parsing algorithm, an input
sentence of length n can be parsed in n3 time.

Most cubic time parsers make use of a chart or well-formed substring table. A
chart parser takes as input a set of context-free rewrite rules and a sentence and
produces as output a chart of labeled phrases. A labeled phrase is a sequence of
words labeled with a category symbol which denotes the syntactic category of that
phrase. A chart-like parse forest can be obtained by including pointers from a
category to the other categories which caused it to be placed in the chart.
Algorithms that accomplish this can be found in (Younger, 1967; Earley, 1970;
Kay, 1980; Winograd, 1983; Jelinek et al., 1990; Schabes, 1991).

In order to obtain a chart-like forest for a sentence parsed by STSG, we need to
label the phrases not only with the syntactic categories of that phrase but with the
full elementary trees t that correspond to the use of their derived rules root(t) →
yield(t). Note that in a chart-like forest generated by an STSG, different
derivations that generate a same tree do not collapse. We will therefore talk about
a derivation forest generated by an STSG (cf. Sima'an et al., 1994).

The following formal example illustrates what a derivation forest of a sentence
may look like for STSG. In the example, we leave out the probabilities of the
elementary trees, that are needed only in the disambiguation process (section 4.2).
The visual representation comes from (Kay, 1980): every entry (i,j) in the chart is
indicated by an edge and spans the words between the i -th and the j-th position of
a sentence. Every edge is labeled with the elementary trees that denote the
underlying phrase.

The example STSG consists of the following elementary trees:

a B
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B c

a b

B

b c d
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a b
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C

d

figure 4.1
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For the input string abcd, the following derivation forest is obtained:

a b c d0 1 2 3 4

d

C

A

S

C

d

A

S

C

B c

B

a b

a B

A

A

B c

a b

a B

A

S

C

b c

B

b c

figure 4.2

Note that different derivations in the forest generate the same tree. By
exhaustively unpacking the forest, the following trees are obtained:
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figure 4.3

Thus, every tree is represented twice in the forest by different derivations (with
possibly different probabilities). We may ask whether we can pack the forest by
collapsing spurious derivations, summing up their probabilities. Unfortunately,
no efficient procedure is known that accomplishes this (remember that there can
be exponentially many derivations for one tree).

4.2 Disambiguation

Cubic time parsing does not guarantee cubic time disambiguation, as a sentence
may have exponentially many parses and any such parse may have exponentially
many derivations. Therefore, in order to find the most probable parse of a
sentence, it is not efficient to compare the probabilities of the parses by
exhaustively unpacking the chart. Even for determining the probability of one
parse, it is not efficient to add the probabilities of all derivations of that parse.

4.2.1 Viterbi optimization is not applicable to finding the most probable
parse

There exists a heuristic optimization algorithm, known as Viterbi optimization,
which selects on the basis of an SCFG the most probable derivation of a sentence
in cubic time (Viterbi, 1967; Fujisaki et al., 1989; Jelinek et al., 1990). In STSG,
however, the most probable derivation does not necessarily generate the most
probable parse, as the probability of a parse is defined as the sum of the
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probabilities of all its derivations. Thus, there is an important question as to
whether we can adapt the Viterbi algorithm for finding the most probable parse.

To understand the difficulty of the problem, we look in more detail at the Viterbi
algorithm. The basic idea of the Viterbi algorithm is the pruning of low
probability subderivations in a bottom-up fashion. Two different subderivations
of the same part of the sentence and whose resulting subparses have the same
root can both be developed (if at all) to derivations of the whole sentence in the
same ways. Therefore, if one of these two subderivations has a lower probability,
then it can be eliminated. This is illustrated by a formal example in figure 4.4.
Suppose that during bottom-up parsing of the string abcd the following two
subderivations d1 and d2 have been generated for the substring abc. (Actually
represented are their resulting subparses.)

B

a b c d

A

a b c d

B

A

d1 d2

figure 4.4

If the probability of d1 is higher than the probability of d2, we can eliminate d2 if
we are only interested in finding the most probable derivation of abcd. But if we
are interested in finding the most probable parse of abcd (generated by STSG),
we are not allowed to eliminate d2. This can be seen by the following. Suppose
that we have the additional elementary tree given in figure 4.5.
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figure 4.5

This elementary tree may be developed to the same tree that can be developed by
d2, but not to the tree that can be developed by d1. And since the probability of a
parse tree is equal to the sum of the probabilities of all its derivations, it is still
possible that d2 contributes to the generation of the most probable parse.
Therefore we are not allowed to eliminate d2.

This counter-example does not prove that there is no heuristic optimization that
allows polynomial time selection of the most probable parse. But it makes clear
that a "select-best" search, as accomplished by Viterbi, is not adequate for finding
the most probable parse in STSG. Recent research (Sima'an et al., 1994) has
shown that there exists an optimization technique for finding the most probable
parse in STSG, but that this technique still takes exponential time. So far, it is
unknown whether the problem of finding the most probable parse in a
deterministic way is inherently exponential or not. One may of course ask how
often the most probable derivation yields in fact the same parse as the
computation of the most probable parse. Experiments on the ATIS corpus (see
chapter 5) show that this happens only in about 68% of the cases. Moreover,
predictions based on the most probable parse are much more accurate than
predictions based on the parse generated by the most probable derivation.

4.2.2 Estimating the most probable parse by Monte Carlo search

We will leave it as an open question whether the most probable parse can be
deterministically derived in polynomial time. Here we will pursue an alternative
approach and ask whether there exists a polynomial time approximation
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procedure that estimates the most probable parse with an error that can be made
arbitrarily small.

We have seen that a "select-best" search, as accomplished by Viterbi, can be used
for finding the most probable derivation in STSG but not for finding the most
probable parse. If we apply instead of a select-best search, a "select-random"
search, we can generate a random derivation - provided that the random choices
are based on the actual probabilities of the subderivations. By iteratively
generating a large number of random derivations we can estimate the most
probable parse as the parse which results most often from these random
derivations (since the probability of a parse is the probability that any of its
derivations occurs). The most probable parse can be estimated as accurately as
desired by making the number of random samples as large as desired. According
to the Law of Large Numbers, the most often generated parse converges to the
most probable parse. Methods that estimate the probability of an event by taking
random samples are known as Monte Carlo methods (Meyer, 1956; Hammersley
& Handscomb, 1964).2

The selection of a random derivation can be accomplished in a bottom-up fashion
analogous to Viterbi. Instead of selecting the most probable subderivation at each
node-sharing in the chart, a random subderivation is selected at each node-sharing
(that is, a subderivation that has n times as large a probability as another
subderivation should also have n times as large a chance to be chosen as this other
subderivation). Once arrived at the S-node, the random derivation of the whole
sentence can be retrieved by tracing back the choices made at each node-sharing.
It trivially follows that the sample probability of a derivation is equal to the
probability of that derivation, since the probability of sampling a sequence of
subderivations that make up a derivation is equal to the product of the
probabilities of sampling the subderivations. We may of course postpone
sampling until the S-node, such that we sample directly from the distribution of
all S-derivations. But this would take exponential time, since there may be
exponentially many derivations for the whole sentence. By sampling bottom-up at
every node where ambiguity appears, the maximum number of different
subderivations at each node-sharing is bounded to a constant (the total number of

2 Note that Monte Carlo estimation of the most probable parse is more reliable than the
estimation of the most probable parse by generating the n most probable derivations by Viterbi,
since it might be that the most probable parse is exclusively generated by many low probability
derivations. The Monte Carlo method is guaranteed to converge to the most probable parse.
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rules of that node), and therefore the time complexity of generating a random
derivation of an input sentence is equal to the time complexity of finding the most
probable derivation, O(n3). This is exemplified by the following algorithm.

Algorithm 4.1: Sampling a random derivation from a derivation forest

Given a derivation forest, of a sentence of n words, consisting of labeled entries
(i,j) that span the words between the i-th and the j-th position of the sentence.
Every entry is labeled with linked elementary trees, together with their
probabilities, that constitute subderivations of the underlying subsentence.
Sampling a derivation from the chart consists of choosing at every labeled entry
(bottom-up, breadth-first)3 at random a subderivation of each root-node:

for k := 1 to n do
     for i  := 0 to n-k do

for chart-entry (i,i+k) do
     for each root-node X do

select at random a subderivation of root-node X
eliminate the other subderivations

Let { (e1, p1) , (e2, p2) , ... , (en, pn) } be a probability distribution of events e1,
e2, ..., en; an event ei  is said to be randomly selected iff its chance of being
selected is equal to pi. In order to allow for "simple sampling" (Cochran, 1963),
where every event has equal chance of being selected, one must convert a
probability distribution into a sample space for which holds that the frequency of
occurrence r i of each event ei is a positive integer equal to n⋅pi, where n is the size
of the sample space.

We now have an algorithm that selects a random derivation from a derivation
forest. Converting this derivation into a parse tree gives a first estimation for the
most probable parse. Since one random sample is not a reliable estimate, we need
to sample a large number of random derivations and select the parse which results
most often from these random derivations. However, we want to have an exact

3 The heuristics of sampling bottom-up, breadth-first can be changed into any other order, such
as top-down, depth-first.
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criterion for deciding at what number of samples N the most frequently generated
parse is a reliable estimate for the most probable parse.

First, we need to have sufficiently small standard errors in the relative frequencies
of the parses. We therefore demand that the number of samples N be made
sufficiently large in order to make the standard errors sufficiently small (usually
0.05 in sampling experiments). The variance of a parse i with probability pi is
equal to pi (1 - pi)/N. Since 0 < pi ≤ 1, the variance is always smaller or equal to
1/(4N). Thus, for a standard error σ (which is the square-root of the variance)

holds that σ ≤ 1/(2√Ν). This allows us to calculate a lower bound for Ν given an

upper bound for σ , by N ≥ 1/(4σ2). For instance, in order to obtain a standard
error of 0.05, N must be at least 100.

A small standard error in the relative frequency of the estimated most probable
parse does not guarantee that we have a reliable estimate for the actual most
probable parse. For instance, there may be different parses in the top of the
sampling distribution that are almost equally likely. We are thus interested in the
probability that the most frequently generated parse is not equal to the
most probable parse. The upper bound for this probability is given by

 ∑i≠0 (1 - (√p0 - √pi)2)N, where p0 is the probability of the most probable parse

and where pi are the probabilities of the different parses i; N is the number of
Monte Carlo iterations.4 We will call this upper bound probability the most
probable parse error, or simply mpp error. We cannot derive beforehand a lower
bound for N as we did for the standard error, but we can estimate the mpp error
by replacing pi by the observed relative frequencies of the parses. Secondly we
want to make the mpp error sufficiently small, for instance 0.05, by increasing N.
This is not possible if the most probable parse is not unique, and N must be large
if there is an i  with pi near to p0.

Notice that it is not enough to have a small mpp error. We also need sufficiently
small standard errors for the estimated parse probabilities. This is exemplified by
the following algorithm. (We might also estimate the most probable derivation by
random sampling; however the most probable derivation can be more effectively
generated by Viterbi.)

4 I am most grateful to Chris Klaassen for pointing out this formula to me. The formula is
generalizable to the problem of estimating the most frequent type in a population by means of
sequential sampling (cf. Hammersley & Handscomb, 1964; Deming, 1966).
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Algorithm 4.2: Estimation of the most probable parse (mpp)

Given a derivation forest of a sentence, and thresholds for the standard error and
the mpp error:

repeat until the standard error and the mpp error are smaller than a threshold
sample a random derivation from the derivation forest (algorithm 4.1)
store the parse generated by the sampled derivation
mpp := parse with maximal frequency
calculate the standard error of the mpp and the mpp error

There is an important question as to how long the estimation of the most probable
parse may take. Is there a tractable upper bound on the number of samples N that
have to be taken before the standard error and the mpp error are sufficiently
small? The answer is yes: from the expressions for the standard error and the
mpp error given above, it follows that the worst error in the mpp is quadratic in
time cost. Therefore, the worst case time complexity of achieving an error ε is

O(ε-2). In practice, this means that in order to reduce ε by a factor of k, the
number of samples N needs to be increased k2-fold.

What is the worst case time complexity of parsing and disambiguation together?
That is, given an STSG and an input sentence, what is the maximal time cost of
finding the most probable parse of a sentence? If we use a chart parser, the
creation of a derivation forest for a sentence of n words takes O(n3) time. Taking
also into account the size G of an STSG (defined as the sum of the lengths of the
yields of all its elementary trees), a derivation forest can be created in O(Gn3)
time (cf. Graham, Harrison & Ruzzo, 1980). The time complexity of
disambiguation is both proportional to the cost of sampling a derivation, i.e. n3,

and to the cost of achieving a maximal error by means of iteration, which is ε-2.

This means that the time complexity of disambiguation is given by O(n3ε-2). The
total time complexity of parsing and disambiguation is equal to O(Gn3) +

O(n3ε-2) = O((G+ε-2)n3). Thus, there exists a tractable procedure that estimates
the most probable parse of an input sentence. This procedure is linear in the
grammar size, quadratic in the error probability, and cubic in the sentence length.
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Questions concerning the actual time performance of parsing and disambiguation
will be dealt with when we discuss the experiments in chapter 5.

Notice that although Monte Carlo disambiguation can estimate the most probable
parse of a sentence in polynomial time, it is not in the class of polynomial time
decidable algorithms P. The Monte Carlo algorithm cannot decide in polynomial
time what is the most probable parse; it can only make the error probability of the
estimated most probable parse arbitrarily small. As such, the Monte Carlo
algorithm is a probabilistic algorithm belonging to the class of Bounded error
Probabilistic Polynomial time (BPP) algorithms (cf. Balcazar et al., 1985). BPP-
problems are usually characterized as follows: it may take exponential time to
solve them exactly, but there exists an iterative estimation algorithm with an error
that becomes arbitrarily small in polynomial time.

We hypothesize that Monte Carlo disambiguation is also relevant for other
stochastic language models. It turns out that all stochastic extensions of CFGs that
are richer than SCFG need exponential time algorithms for finding a most
probable parse tree (cf. Carroll & Briscoe, 1992; Black et al., 1993; Magerman &
Weir, 1992; Schabes & Waters, 1993). To our knowledge, it has never been
studied whether there exist BPP-algorithms for these models. Alhough it is
beyond the scope of our research, we conjecture that there exists a Monte Carlo
disambiguation algorithm for stochastic tree-adjoining grammar.

4.2.3 Psychological relevance of Monte Carlo disambiguation

It is unlikely that people disambiguate sentences by sampling derivations, keeping
track of the error probability of the most frequently resulting parse. Nevertheless,
we believe there are certain properties of Monte Carlo disambiguation that are of
psychological interest. The following lists some of them.

1. Although conceptually Monte Carlo disambiguation uses the total space of
possible analyses, it tends to sample only the most likely ones. Very unlikely
analyses may only be sampled after considerable time, and it is not guaranteed
that all analyses are found in finite time. This matches with experiments on
human sentence perception where implausible analyses are only perceived with
great difficulty after considerable time, and often implausible analyses are not
perceived at all (Nicol & Pickering, 1993).
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2. Monte Carlo disambiguation does not necessarily give the same results for
different sequences of samples, especially if different analyses in the top of the
sampling distribution are almost equally likely. In the case there is more than one
most probable analysis, Monte Carlo does not converge to one analysis but keeps
alternating, however large the number of samples is made. In experiments with
human sentence perception, it has often been shown that different analyses can be
perceived for one sentence (e.g. MacDonald et al., 1994). And in case these
analyses are equally plausible, e.g. due to a lack of disambiguation information,
people may perceive so-called fluctuation effects.

3. Monte Carlo disambiguation can be made parallel in a very straightforward
way: N samples can be computed by N processing units, where equal outputs are
reinforced. The more processing units are employed, the better the estimation.
However, since the number of processing units is finite, there is never absolute
confidence. In the field of neurobiology and cognitive science, the parallel nature
of human information processing is widely recognized.
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Chapter 5  

Experimental Aspects of DOP1:
Disambiguating Part-of-Speech Strings

In this chapter, we test the merits of DOP1 as a performance model for syntactic
disambiguation. We report on a number of experiments with an implementation
of DOP1 that parses and disambiguates part-of-speech strings from the ATIS
corpus. As motivated in chapter 1 (section 3), we will limit ourselves to testing
whether the most probable parse is a good estimate for the perceived parse
according to the corpus, using the blind testing method together with an exact
match accuracy metric. In the next chapter, we go into the problem of parsing and
disambiguating word strings.

5.1 The test environment

To test DOP1, we used a manually corrected version of the Air Travel
Information System (ATIS) corpus (Hemphill et al., 1990) annotated in the
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Pennsylvania Treebank (Marcus et al., 1993). This corpus is of interest since it is
often used by the ARPA community to evaluate their grammars and speech
systems (cf. (D)ARPA Proceedings 1989-1994). Moreover, the ATIS corpus is
very suitable for our experiments, since it only contains questions and imperatives
without discourse structure. The following figure shows a random tree from the
corpus annotations (for the annotation guidelines see Santorini, 1990, 1991).

((SBARQ
  (WHNP WDT/What

  NNS/flights)
  (SQ  VBP/do
       (NP PP/you)
       (VP VB/have

   (PP (PP IN/from
     (NP NP/San NP/Francisco))

       (PP TO/to
     (NP NP/Dallas))))))

?)

figure 5.1

The 750 trees from the ATIS corpus were stripped of their words in order to
achieve a set of parse trees of part-of-speech sequences. The part-of-speech tags
were then marked in order to distinguish them from syntactic categories that bear
the same name. For figure 5.1 this yields the following parse tree for the p-o-s
string "WDT NNS VBP PP VB IN NP NP TO NP".

 (SBARQ
  (WHNP @WDT

  @NNS)
  (SQ  @VBP
       (NP @PP)
       (VP @VB

   (PP (PP @IN
     (NP @NP @NP))

       (PP @TO
     (NP @NP))))))

figure 5.2
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We used the "blind testing method", as described in chapter 1, dividing the corpus
at random into a 90% training set and a 10% test set. The 675 trees from the
training set were converted into subtrees together with their substitution
probabilities, yielding roughly 4⋅105 different subtrees. The 75 part-of-speech
sequences from the test set served as input sentences that were parsed and
disambiguated using the subtrees from the training set. As motivated in chapter 1,
we use the notion of parse accuracy as our accuracy metric, defined as the
percentage of the test strings for which the most probable parse is identical to the
parse in the test set.

5.2 Accuracy as a function of subtree depth and
sample size

It is one of the most essential features of DOP1, that arbitrarily large subtrees are
taken into consideration to estimate the probability of a parse. In order to test the
usefulness of this feature, we performed different experiments constraining the
depth of the subtrees. The depth of a tree is defined as the length of its longest
path. The following table shows the results of seven experiments for different
maximum depths of the training set subtrees1. The parse accuracy is rounded off
to the nearest integer. The CPU time refers to the average CPU time per string
employed by a Spark 2.

depth of parse CPU time
subtrees accuracy (hours)

 1 52 % .04 h
≤2 87 % .21 h
≤3 92 % .72 h
≤4 93 % 1.6 h
≤5 93 % 1.9 h
≤6 95 % 2.2 h

unbounded 96 % 3.5 h

table 5.1

1 Notice that if the depth of subtrees is constrained, their relative frequencies and thus their
substitution-probabilities change.
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The table shows a dramatic increase in parse accuracy when enlarging the
maximum depth of the subtrees from 1 to 2. (Note that for depth one, DOP1 is
equivalent to a stochastic context-free grammar.) The accuracy keeps increasing,
at a slower rate, when the depth is enlarged further. The highest accuracy is
obtained by using all subtrees from the training set: 72 out of the 75 sentences
from the test set are parsed and disambiguated correctly. Thus,  the accuracy
increases if larger subtrees are used, though the CPU time increases considerably
as well.

It may be relevant to mention that the parse coverage was 99%. This means that
for 99% of the test strings the perceived parse was in the derivation forest
generated by the system. As we have already mentioned in chapter 1, the main
task of a performance model is not the generation of all possible parses, but the
selection of the perceived parse from the possible parses. Above results show that
the most probable parse is a very good prediction for the perceived parse.

It is also interesting to see how the parse accuracy depends on the sample size. In
the following figure, parse accuracy is plotted against the first 100 randomly
generated derivations, for four different maximum depths: 1, 2, 3 and
unconstrained.
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figure 5.3. Parse accuracy against sample size N for different subtree-depths
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5.3 Does the most probable derivation generate the
most probable parse?

Another very important feature of DOP1 is that the probability of a tree is
computed as the sum of the probabilities of all different ways of deriving that tree.
Although the most probable parse tree of a sentence is not necessarily generated
by the most probable derivation of that sentence, there is a question as to how
often these two coincide. In order to study this, we also calculated the parse
accuracy from the trees generated by the most probable derivations. The
following table shows the parse accuracy based on the most probable derivation
against the parse accuracy based on the most probable parse, for the 75 test set
strings from the ATIS corpus, using different maximum depths for the corpus
subtrees.

1 52% 52%

≤2 47% 87%

≤3 49% 92%

≤4 57% 93%

≤5 60% 93%

≤6 65% 95%

unbounded 65% 96%

depth of

subtrees

corpus-

parse accuracy

most probable
derivation

most probable
parse

Table 5.2. Parse accuracy based on most probable derivation and most probable
parse

The table shows that the two parse accuracies are equal if the depth of the subtrees
is constrained to 1. This is not surprising, as for depth 1, DOP1 is equivalent with
SCFG where every parse is generated by exactly one derivation. What is
remarkable, is, that the parse accuracy based on the most probable derivation
decreases if the depth of the subtrees is enlarged to 2. If the depth is enlarged
further, the accuracy increases again. The highest accuracy by using most

62

probable derivations is obtained by using all subtrees from the corpus (65%), but
remains far behind the highest parse accuracy based on the most probable parse
(96%). From this table we conclude that predictions based on the most probable
parse are much more accurate than predictions based on the parse generated by
the most probable derivation. In other words, if we want to predict the appropriate
analysis of a string, we should not maximize the probability of the process of
achieving that analysis but the probability of the result of that process.

5.4 The significance of once-occurring subtrees

There is an important question as to whether we need all subtrees for accurately
predicting the perceived parse of a string, or whether it is possible to eliminate
subtrees on statistical grounds, by throwing away very infrequent ones. In order
to study this question, we start with a test result. Consider the test sentence
"Arrange the flight code of the flight from Denver to Dallas
Worth in descending order", whose perceived parse according to the test set
is:

 (S (NP *)
    (VP VB/Arrange
        (NP (NP DT/the NN/flight NN/code)
            (PP IN/of
                (NP (NP DT/the NN/flight)
                    (PP (PP IN/from
                            (NP NP/Denver))
                        (PP TO/to
                            (NP NP/Dallas NP/Worth))))))
        (PP IN/in
            (NP (VP VBG/descending)
               NN/order))))

figure 5.4

The corresponding p-o-s sequence of this sentence is the test string "VB DT NN
NN IN DT NN IN NP TO NP NP IN VBG NN". At subtree-depth ≤ 2, the
following most probable parse was estimated for this string (where for reasons of
readability the words are added to the p-o-s tags):
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 (S (NP *)
    (VP VB/Arrange
        (NP (NP DT/the NN/flight NN/code)
            (PP IN/of
                (NP (NP DT/the NN/flight)
                    (PP (PP IN/from
                            (NP NP/Denver))
                        (PP TO/to
                            (NP NP/Dallas NP/Worth)))
           (PP IN/in
             (NP (VP VBG/descending)
                    NN/order)))))))

figure 5.5

In this parse tree, we see that the prepositional phrase "in descending order"
is incorrectly attached to the NP "the flight" instead of to the verb "arrange".
This wrong attachment may be explained by the high relative frequencies of the
following subtrees of depth 2 (that appear in structures of sentences like "Show

me the transportation from SFO to downtown San Francisco in

August ", where the PP "in August" is attached to the NP "the
transportation", and not to the verb "show").

NP NP NP NP
         PP    PP PP
         PP IN PP
            NP    PP IN

NP

figure 5.6

Only if the maximum depth was enlarged to 4, subtrees like the following could
be used, which led to the estimation of the perceived parse tree.

    VP VB
       NP NP

    PP
       PP IN
          NP VP VBG
             NN

figure 5.7
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It is interesting to note that this subtree occurs only once in the training set.
Nevertheless, it induces the correct disambiguation of the test string. This seems
to contradict the fact that probabilities based on sparse data are not reliable. Since
many large subtrees are once-occurring events (hapaxes), there seems to be a
preference in DOP1 for an occurrence-based approach if enough context is
provided: large subtrees, even if they occur once, tend to contribute to the
generation of the perceived parse, since they provide much contextual
information. Although these subtrees have very low substitution-probabilities,
they tend to induce the most probable parse because fewer subtrees are needed to
construct a parse.

Additional experiments seemed to confirm this hypothesis. Throwing away all
hapaxes yielded an accuracy of 92%, which is a decrease of 4%. Distinguishing
between small and large hapaxes, showed that the accuracy was not affected by
eliminating the hapaxes of depth 1 (however, as an advantage, the convergence
seemed to get slightly faster). Eliminating hapaxes larger than depth 1, decreased
the accuracy. The following table shows the parse accuracy after eliminating once-
occurring subtrees of different maximum depths.

1 96%
≤2 95%
≤3 95%
≤4 93%
≤5 92%
≤6 92%

unbounded 92%

accuracy
depth of
hapaxes

parse

Table 5.3. Parse accuracy after eliminating once-occurring subtrees

5.5 Parse accuracy as a function of corpus-size

Given the high parse accuracy achieved by the experiments, we are tempted to
conclude that the ATIS corpus is a relatively large corpus for its small domain,
where almost all relevant constructions occur. It is interesting to know how the
accuracy depends on the size of the corpus. For studying this question, we
performed a set of experiments with different training set sizes. Starting with a
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training set of only 50 trees (randomly chosen from the initial training set of 675
trees), we increased its size with intervals of 50. As our test set, we took the same
75 p-o-s sequences as used in the previous experiments. In the next figure, the
parse accuracy is plotted against the training set size.
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figure 5.8. Parse accuracy against training set size

The figure shows that for a training set of 450 trees, the parse accuracy reaches
already 88%. After this, the accuracy grows more slowly, but is still growing at
training set size 675. Thus, we might expect an even higher accuracy if we had a
larger corpus for this domain.

5.6 Uniting training set and test set. Does it matter?

Our last experiment with p-o-s strings is concerned with the dichotomy of
training set and test set. In the tradition of statistical testing, it is considered of
utmost importance to keep test set and training set apart. However, as a curious
observation, it has been noted that the accuracy of a stochastic parser is not very
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much affected if the test set is included in the training set. A disappointing
observation, since one would expect a sentence to have a very strong preference
for getting the same analysis as the analysis of its literal occurrence in the training
set. If this does not happen, the underlying stochastic model is almost certainly
inadequate for a linguistic performance model.

Although we are well aware of the fact that serious experimenting cannot be
accomplished without testing an unseen sample of the domain, we are interested
in the performance of DOP1 if test set and training set interfere, because (1), we
believe that it is cognitively interesting to see how a sentence which has been
experienced before, is analyzed, and (2), because we want to know to what extent
the depth of the subtrees affects accuracy if the test set is in the training set.

Therefore we accomplished additional experiments by using the whole ATIS
corpus (750 trees) as the training set, while the test set consisted of the same 75 p-
o-s strings as in our previous experiments. The following table shows the results
of these experiments, where the parse accuracy is given for different maximum
depths of the corpus subtrees.

1
≤2
≤3
≤4
≤5
≤6

unbounded

accuracy
depth of parse
subtrees

59%
97%
100%
100%
100%
100%
100%

Table 5.4. Parse accuracy against subtree-depth if the test set is in training set

The table shows a relatively low accuracy for depth 1 (59%), which is however
larger than when the test set was not in the training set (52%)2 . If the context is
enlarged just a little bit (from depth=1 to depth≤2), there is a very strong
preference for the parse tree as it is found in the training set, resulting in an
enormous increase in accuracy. If the depth of the subtrees is enlarged any

2 Remember that for subtree-depth 1, DOP1 is equivalent to an SCFG.
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further, the parse results match for the full 100%. Thus, the model DOP1 clearly
satisfies statement (2) in chapter 1 saying that people prefer analyses that have
been experienced before.
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Chapter 6

A First Extension of DOP1 that Copes with
Unknown Words: DOP2

So far, we have shown the adequacy of DOP1 in disambiguating part-of-speech
strings. An adequate performance model of natural language should actually be
able to predict the perceived analysis of word strings. However, word strings
derived from a test set often contain words that are unknown in the training set.
Since DOP1 only uses subtrees that are literally found in the training set, it cannot
adequately parse or disambiguate sentences with unknown words. In this chapter,
we start with an investigation of what is involved in extending DOP1 in order to
parse sentences that possibly contain unknown words.

There is a basic question as to whether it makes sense to try to parse unknown
words with only lexico-syntactic information. It is evident that for understanding
an unknown word, semantic information is indispensable. However, for the
much simpler problem of predicting the syntactic analysis of a sentence with an
unknown word, it may be that lexico-syntactic information suffices. Moreover,
we want to know how far we can get with only using lexico-syntactic information
from a language corpus.
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6.1 The model DOP2

As a first possible solution to the problem of unknown words we consider the
model DOP2, which is a very simple extension of DOP1: substitute all lexical
categories for an unknown word, and estimate the most probable parse of the
"sentence" by means of DOP1. The selected parse of an input sentence is then
defined as the attachment of the unknown words to their corresponding lexical
categories in the estimated most probable parse. Thus, unknown words are
assigned a lexical category such that their "surrounding" partial parse has
maximal probability. We shall refer to this method as the partial parse method.

The partial parse method has been used in previous systems that deal with
unknown words. A very similar method was applied as early as 1979 in a
deterministic parsing system by (Carbonell, 1979), who called it the project and
integrate method. With the renewed interest in stochastic grammars, several
stochastic parsers have adopted the partial parse method in order to obtain some
kind of robustness in dealing with unexpected input (e.g. Magerman & Marcus,
1991a, 1991b; Magerman & Weir, 1992;  Black et al., 1993).

For its simplicity, the partial parse method may seem attractive. However, it is not
founded on a statistical basis, and it therefore remains unclear what its justification
is. For instance, the method does not provide probabilities for the selected parse
of a sentence, but only for the partial parse without the unknown words.
Formally, the probability of a selected parse (containing at least one unknown
word) is equal to zero. This implies that we cannot estimate the probability of a
sentence with this method. It is nevertheless interesting to study where and why
the partial parse method can solve unknown words and where and why it cannot.
We will see that the outcome of this study leads to a better insight of the
properties of unknown words and trigger the development of a better model.

6.2 Formal and computational aspects of DOP2

The backbone of DOP2, which is DOP1, can be formally described by STSG
(see chapter 3). However, the attachment of an unknown word to its
corresponding lexical category in the most probable partial parse is not described

70

by a stochastic process. Therefore, the generation of a selected parse of a sentence
cannot be accomplished by an STSG or any other stochastic grammar. This
means that DOP2 cannot be articulated within Formal Stochastic Language
Theory, giving it a decisively hybrid character.

As to the computational aspects of DOP2, we can basically employ the same
parsing and disambiguation algorithms as developed for DOP1 (see chapter 4).
We only need to establish the unknown words of an input sentence beforehand
and substitute them by all lexical categories. After estimating the most probable
parse, the unknown words are attached to their corresponding lexical categories.
Remember that for input sentences without unknown words, DOP2 is formally
and computationally equivalent to DOP1.

6.3 Experiments with word strings from ATIS

In our experiments with DOP2, we were interested in testing whether the selected
parse is a good estimate for the perceived parse. In doing so, we used the same
division of the ATIS corpus as in chapter 5 into a training set of 675 trees and a
test set of 75 trees, but now the trees were not stripped of their words. As before,
we used the notion of parse accuracy to indicate the percentage of the test
sentences for which the selected parse is identical to the parse in the test set.

The 75 test sentences contained 33 words that were unknown in the training set.
This corresponded to 26 test sentences with one or more unknown words and 49
sentences with only known words. In order to study the effect of subtree-depth on
the parse accuracy, we performed similar experiments as with part-of-speech
strings, constraining the maximum depths of the training set subtrees. For time-
cost reasons, no experiments were performed with subtrees larger than depth 3.
The following table gives the results of these experiments. We represented for
each subtree-depth respectively the parse accuracy of the 26 test sentences that
contained at least one unknown word, the parse accuracy of the 49 test sentences
without unknown words, and finally, the parse accuracy of all 75 test sentences
together.
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depth of parse accuracy parse accuracy parse accuracy
corpus- sentences with sentences with for all  
subtrees unknown words only known words sentences

1      15%      39% 31%
≤2      35%      69% 57%
≤3      42%      73% 63%

Table 6.1. Parse accuracy for word strings from the ATIS corpus

We notice that the parse accuracy improves if the maximum depth of the corpus
subtrees is enlarged (as is the case with part-of-speech parsing). The increase in
accuracy from maximum depth 1 to 2, is even more dramatic than for p-o-s
parsing. Focusing on the sentences with unknown words, we see that at subtree-
depth ≤ 3 only 42% are parsed correctly. However, if plain DOP1 were used, the
accuracy would have been 0% for these sentences.

If we look at the sentences with only known words (where DOP2 is equivalent to
DOP1), we see that the maximum parse accuracy of 73% is considerably higher
than for sentences with unknown words. However, it remains far behind the 92%
parse accuracy of DOP1 for part-of-speech strings (for the same subtree-depth).
Word parsing is obviously a much more difficult task than part-of-speech
parsing, even if all words are known.

6.4 Evaluation: what goes wrong?

The experimental results suggest the need for a careful evaluation of both the test
sentences with unknown words and the test sentences with only known words.
We will evaluate the results for subtree-depth ≤ 3, since it is here that highest
accuracy is achieved in our experiments.

6.4.1 Test sentences with unknown words

To start with the good news, we show some results of sentences with unknown
words that were parsed and disambiguated appropriately by DOP2. The unknown
words in the sentences are printed bold.
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(
 (SQ (VP VBP/Are)
     (NP EX/there)
     (NP DT/any NNS/layovers )
     (PP IN/on

  (NP NN/flight CD/670
      (PP IN/from

   (NP NP/Dallas))
      (PP TO/to

   (NP NP/Boston)))))
?)

Figure 6.1. Selected parse for the sentence "Are there any layovers on

flight 670 from Dallas to Boston?"

(
 (SBAR
  (WHNP WDT/What

 (NP NN/keyword ))
  (SQ  VBP/do

(NP PP/I)
(VP VB/use
    (NP T)
    (S (NP *)
       TO/to
       (VP VB/initiate

    (NP DT/a NN/purchase
        (PP IN/of

      (NP NNS/tickets))))))))
?)

Figure 6.2. Selected parse for the sentence "What keyword do I use to

initiate a purchase of tickets?"

(
 (S  VB/Please
     (S  (NP *)

 (VP VB/make
     (NP NNS/reservations

 (PP IN/for
     (NP CD/three))
 (PP IN/on
     (NP (NP NP/American NN/flight)

   (NP NN/number CD/203 )))))))
.)

Figure 6.3. Selected parse for the sentence "Please make reservations for

three on American flight number 203."
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The results in figures 6.1 through 6.3 seem to indicate that the context of subtrees
with depth ≤ 3 can suffice to predict the lexical categories for the unknown words
and their appropriate parses.

Let us now consider the bad news, and look at some sentences with unknown
words for which the selected parse did not match with the test set parse. The
unknown words are given bold again.

(  (S
   (NP PP/I)
   (VP VBP/need
       (NP NN/information
           (PP IN/on
               (NP (NP NNS/airlines)

(PP IN/servicing
                       (NP NP/Boston))
                   (S (NP *)
                      (VP VBG/flying
                          (PP IN/from
                             (NP NP/Dallas)))))))))
   .)

Figure 6.4. Incorrect selected parse for the sentence "I need information on

airlines servicing Boston flying from Dallas."

( (S
   (NP PP/I)
   (VP VBP/need
       (NP NN/information
           (PP IN/on
               (NP (NP NNS/airlines)
                   (S (NP *)
                      (VP (VP VBG/servicing
                              (NP NP/Boston))
                          (VP VBG/flying
                              (PP IN/from
                                 (NP NP/Dallas))))))))))
   .)

Figure 6.5. Test set parse of the sentence "I need information on airlines

servicing Boston flying from Dallas."
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In the selected parse, resulting from DOP2, the unknown word "servicing" is
incorrectly tagged as a preposition (IN), and consequently attached to a
prepositional phrase (PP). This may be explained by the very frequent occurrences
in the ATIS corpus of prepositional phrases like figure 6.6 and noun phrases like
figure 6.7 (both subtrees of depth 3), that led to a most probable partial parse
resulting in the selected parse of figure 6.4.

PP IN
   NP NP/Boston

Figure 6.6

                NP NP NNS/airlines
                      PP IN
                            NP NP

Figure 6.7

What happened, is, that "airlines servicing Boston" was interpreted as
something like "airlines from Boston". It would be interesting if the incorrect
tagging of "servicing" could be interpreted as the preposition "to", which is
distributionally and semantically very similar to "servicing". Unfortunately this
is not possible, since the Penn Treebank provides the tag "TO" for the preposition
"to", and the tag "IN" for all other prepositions. However, the assignment of a PP
to the constituent "servicing Boston" is semantically correct. The only reason
for not annotating "servicing Boston" as a PP, is the connection of
"servicing" with the verb "service"; but in order to recognize this in the
parsing process we would need morphological annotation or analysis. In the
ATIS corpus, "servicing" is tagged as a VBG (verb gerund) and is attached to a
VP (figure 6.5).

Another test sentence which was incorrectly parsed is the following:
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(
 (SBARQ
   (WHNP WDT/Which

   (PP IN/of
       (NP DT/these

     NN/aircraft NNS/types)))
   (S (NP T)
      (VP VBZ/carries

   (NP DT/the  
NN/fewest

       NN/number)
       (PP IN/of

    (NP NNS/passengers))))))
   ?)

Figure 6.8. Incorrect selected parse for "Which of these aircraft types

carries the fewest number of passengers?"

In this parse, the unknown word "fewest" is incorrectly tagged as a noun (NN).
This may be explained by the very frequent occurrences in ATIS of NPs yielding
"the flight number", which forces "fewest" to be interpreted as a noun. In the
parse according to the ATIS corpus, "fewest" is tagged as a JJS (superlative)
and constitutes an adjectival phrase:

(  
 (SBARQ
   (WHNP WDT/Which

   (PP IN/of
       (NP DT/these

     NN/aircraft NNS/types)))
   (S (NP T)
      (VP VBZ/carries

   (NP DT/the
       (ADJP JJS/fewest )
       NN/number
       (PP IN/of

    (NP NNS/passengers))))))
    ?)

Figure 6.9. Test set parse for "Which of these aircraft types carries

the fewest number of passengers?"

The following incorrectly parsed test sentence gives a hint of the kind of biases
that occur with the partial parse method.
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(
 (SBARQ (WHNP WDT/What

       (NP NN/movies ))
  (SQ  (NP T)
       VBP/are

(VP VBN/scheduled )
       (PP IN/for

     (NP DT/these NNS/flights))))
   ?)

Figure 6.10. Incorrect selected parse for "What movies are scheduled for

these flights?"

The only error in this parse is the part-of-speech assignment of the unknown
word "movies". This word is tagged as an NN (noun singular), while it should
have been tagged as an NNS (noun plural). The explanation for this may be that
in WHNP-subtrees in the ATIS corpus the word "what" is more likely to be
followed by a singular noun than by a plural noun. This tagging error leads,
however, to a disagreement in number between the subject "movies", tagged as a
singular noun, and the verb "are", tagged as a plural verb (VBP). This number-
disagreement is striking since there is a large SBARQ-subtree (of depth 3) in the
training set that maintains the number-agreement (between a plural subject and the
plural verb "are" - see figure 6.11). Given the preference in DOP1 for parses that
can (also) be contructed by largest possible subtrees (see chapter 2, section 2), one
would expect the right tagging of "movies". But instead of employing this large
SBARQ-subtree, DOP2 employed a smaller WHNP-subtree for parsing and
disambiguating the sentence. Evidently, the WHNP-subtree occurs so much
more frequently with respect to the SBARQ-subtree, that the most probable
partial parse was generated if the WHNP-subtree was used (to which the word
"movies" was attached for yielding the selected parse).

 (SBARQ (WHNP WDT/What
        (NP NNS))
  (SQ  (NP T)
       VBP/are
       VP
       PP))

Figure 6.11. SBARQ-subtree from the training set
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Something similar seems to have happened in the parsing of the sentence "What
are the amenities?", where the unknown word "amenities" is incorrectly
tagged as a singular noun leading once again to a number-disagreement with the
verb "are" (figure 6.12).

( (SBARQ (WHNP WP/What)
         (SQ (NP T)
             (VP VBP/are

           (NP DT/the NN/amenities
  ?)

))))

Figure 6.12. Incorrect selected parse for "What are the amenities?"

Notice that DOP1 usually tends to satisfy number agreement (even if this
agreement is not explicitly coded by means of feature structures in the
annotations) because of the preference for parses that can be constructed by larger
subtrees. It seems now, that this property cannot be guaranteed by the abberated
statistics emerging from DOP2.

6.4.2 Test sentences with only known words: the problem of "unknown-
category words"

If we look at the selected parses for the test sentences with only known words, we
discover an even more striking result: for several of these sentences no parse
could be generated at all, not because a word was unknown, but because a word
required a lexical category which it didn't have in the training set. We will call
these words "unknown-category words".

To illustrate this, consider the following three test sentences with unknown-
category words, of which the first two sentences could not be parsed at all, while
the third was parsed inappropriately (the unknown-category words are printed
bold):
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Return to first inquiry.

Where is the stop for USAir flight number 37 from Philadelphia

to San Fransisco?

How much does flight number 83 cost one-way?

In the first sentence, the word "return" is in the training set only known as a
noun (NN), whereas its lexical category in this sentence is a verb (VB). In the
second sentence, the word "stop" is only known as a verb (VB) in the training set,
while its required category is NN. In the third sentence, the verb "cost" was only
known as a noun in the training set, while it should have been a verb.1

Nevertheless, this last sentence could be parsed, though it led to the following
nonsensical most probable parse:

(
 (SBARQ
   (WHADVP WRB/How

     RB/much)
   (SQ VBZ/does
       (NP (NP NN/flight NN/number)

     (NP CD/83 NN/cost )
       (ADJP JJ/one-way))
 ?)

Figure 6.13. Incorrect selected parse for "How much does flight number 83

cost one-way?"

Its parse according to the ATIS corpus is:

1 One might argue that these problems with unknown-category words are due to the tiny size of
the ATIS corpus. However, no corpus of any size will ever contain all possible uses of all
possible words. Even the extension with a dictionary does not solve the problem. There will be
domain-specific words and word senses, abbreviations, proper nouns etc. that are not found in
a dictionary. It remains therefore important to know how to deal with unknown words and
unknown-category words in a statistically adequate way. The use of the tiny ATIS should just
be seen as illustrative for any larger corpus.
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(
 (SBARQ
  (WHADVP WRB/How

  RB/much)
  (SQ VBZ/does
      (NP (NP NN/flight NN/number)

  CD/83)
      (VP VB/cost )
      (ADJP JJ/one-way)))
?)

Figure 6.14. Test set parse for "How much does flight number 83 cost

one-way?"

Notice that richer, morphological annotations would not be of any help here: the
words "return", " stop" and "cost" do not have a morphological structure on
the basis of which their possible lexical categories can be predicted.

These examples show that we are not only uncertain about the categories of
unknown words but also about the categories of known words. We might
propose that therefore all words should be treated as unknown, such that all
words can in principle have any lexical category. However, it is easy to show that
DOP2 would give completely erroneous results: if we substitute all words by all
lexical categories, every sentence of the same length will get the same most
probable parse. And if we treat only the open-class words as unknown, we will
get this kind of bias for those parts of the sentences that consist of only open-class
words.

We may wonder whether it is possible to do better than the partial parse approach.
This will be the topic of the next chapter.
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Chapter 7

A Corpus as a Sample of a Larger
Population: Coping with Unknown
Subtrees (DOP3-4-5)

In the previous chapter, we have seen that the partial parse method, employed by
DOP2, yields poor predictions for the perceived parse of a sentence with
unknown words. For sentences with unknown-category words, the method even
appeared to be completely inadequate. DOP2 contained a bias towards using
smaller subtrees, which stands in contrast with the preference for parses
constructed by largest possible subtrees of DOP1.

A reason for these shortcomings may be the statistical inadequacy of DOP2: it
does not allow for the computation of the probability of a parse containing one or
more unknown words. As such, the statement in chapter 1, saying that a
comprehender tends to perceive the most probable analysis of a new input, is not
satisfied by DOP2. In this chapter, we study what is involved in creating an
extension of DOP1 which allows for the computation of probabilities of parses
containing unknown (-category) words. In order to create such an extension, we
need a method that estimates the probabilities of unknown subtrees.
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7.1 The problem of unknown subtrees

By an unknown subtree we mean a subtree which occurs in the test set but not in
the training set. In this thesis, we will restrict ourselves to subtrees whose
unknownness depends only on unknown terminals. We assume that there are no
unknown subtrees that depend on an unknown syntactic structure. Thus, if there
is an unknown subtree in the test set, then there is a subtree in the training set
which differs from the unknown subtree only in some of its terminals.

Generally posed, this assumption is wrong, although for the ATIS corpus it is not
a bad assumption. The high parse accuracy of 96% for part-of-speech strings
seems to indicate that almost all syntactic constructions of the ATIS domain are
present in the training set. Moreover, the restriction to unknown subtrees
containing only unknown terminals may be abolished (although this leads to an
impractical space of possible subtrees).

Even with the current restriction, the problem is far from trivial. Questions
coming up are:

1. How can we derive unknown subtrees?

2. How can we estimate the probabilities of unknown subtrees?

As to the first question, we are not able to generate the space of unknown subtrees
in advance, as we do not know the unknown terminals in advance. But since we
assume that all syntactic structures have been seen, we can derive the unknown
subtrees that are needed for parsing a certain input sentence, by allowing the
unknown words and unknown-category words of the sentence to mismatch with
the lexical terminals of the training set subtrees. The result of a mismatch between
a subtree and one or more unknown (-category) words is a subtree in which the
terminals are replaced by the words with which it mismatched. In other words,
the subtree-terminals are treated as if they are wildcards. As a result, we may get
subtrees in the derivation forest of the sentence that do not occur in the training
set.
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The mismatch-method has one bottleneck: the unknown words and unknown-
category words of a sentence need to be known before parsing can start. It is easy
to establish the unknown words of a sentence, but it is unclear how to establish the
unknown-category words. Since every word is a potential unknown-category
word (even closed-class words, if a small corpus is used), we ideally need to treat
all words of a sentence as possible unknown-category words. Thus, any subtree-
terminal is allowed to mismatch with any word of the input sentence. (Later on
we will deal with the practical, computational problems that emerge from this
approach.)

How can we estimate the probability of a subtree which appears as a result of the
mismatch-method in the derivation forest, but not in the training set? It is evident
that we cannot assume, as we did in DOP1, that the space of training set subtrees
represents the total population of subtrees, since this would lead to a zero
probability for any unknown subtree. We therefore drop this assumption, and
treat the space of subtrees as a sample of a larger population. We believe that such
an approach is also reasonable from a psychological point of view (cf. sections
7.3 and 7.6). An unknown subtree which has a zero probability in the sample
may have a non-zero probability in the total population. Moreover, also known
subtrees may have sample probabilities that differ from their population
probabilities. The problem is how to estimate the population probability of a
subtree on the basis of the observed sample. Much work in statistics is concerned
with the fitting of particular distributions to sample data, with or without
motivating why these distributions might be expected to be suitable. A method
which is largely independent of the distributions of population probabilities is the
so-called Good-Turing method (Good, 1953), which is often used in population
biology for estimating the population parameters of species. It only assumes that
the sample is obtained at random from the total population. We will propose this
method for estimating the population probabilities of unknown subtrees, as well
as of known subtrees.

Although Good-Turing is very often used in the field of speech recognition and
part-of-speech tagging, it is new in the field of natural language parsing. We will
therefore shortly describe the method in the following section (which heavily
relies on (Church & Gale, 1991)), after which we will deal with its application to
the estimation of the population probabilities of subtrees.
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7.2 Good-Turing: estimating the population
probabilities of (un)seen types

The Good-Turing method, suggested by A. M. Turing in a 1941 personal
communication to I. J. Good (Good, 1953), estimates the expected population
probability of a type by adjusting its observed sample frequency. We will refer to
r  as the observed frequency of a type, and to r*  as the adjusted frequency of r . In
order to estimate r* , Good-Turing uses an additional notion, represented by Nr,
which is defined as the number of types which occur r  times in an observed
sample. Thus, Nr  can be seen as the frequency of frequency r . The entire
distribution {N1, N2, N3, ...} is available in addition to the different rs. The Good-
Turing estimator uses this extra information for computing the adjusted frequency
r*  as

r*  =  (r+1)
N

N

r+1

r

Notice that the adjusted frequencies satisfy

 ∑ Nr r* / N   =   1

The expected population probability of a type is estimated by r*/N , where N is the
number of observed types. For a more elaborate treatment of Good-Turing, the
reader is referred to (Good, 1953). A very instructive paper on the method is
found in (Nadas, 1985), who presents three different statistical ways to obtain
Turing's formula.

Good-Turing obtains good estimates for r*/N  if Nr is large. We will see that for
our applications, Nr tends to be large for small frequencies r , while on the other
hand, if Nr is small, r  is usually large and needs not to be adjusted.1

For the adjustment of the frequencies of unseen types, where r  = 0, r*  is equal to
N1/N0, where N0 is the number of types that we have not seen. N0 is equal to the
difference between the total number of types and the number of observed types.

1 This phenomenon is formalized by Zipf's Law, which states that frequency is roughly
proportional to inverse rank (Zipf, 1935).
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Thus, in order to calculate the adjusted frequency of an unseen type, one needs to
know the total number of types in the population. We will see that for our
applications, we can calculate the total number of types by knowing the
vocabulary size; this marks a great difference with applications of Good-Turing in
for instance population biology, where inferences about the population size are
needed.

Notice that Good-Turing does not differentiate among the types that have not been
seen: the adjusted frequencies of all unseen types are identical. In the following,
we will first use plain Good-Turing, after which we will consider some other
methods.

7.3 Using Good-Turing to adjust the frequencies of
subtrees

The use of the Good-Turing method in natural language technology is not new. It
is commonly applied in speech recognition and part-of-speech tagging for
adjusting the frequencies of (un)seen word sequences (e.g. Jelinek, 1985; Katz,
1987; Church & Gale, 1991). In stochastic parsing, Good-Turing has to our
knowledge never been tried out. Designers of stochastic parsers seem to have
given up on the problem of creating a statistically adequate theory concerning
parsing unknown events. Stochastic parsing systems mostly apply (1) a partial
parse method (e.g. Magerman & Marcus, 1991a, 1991b; Magerman & Weir,
1992); or (2) a closed lexicon (e.g. Black, Garside & Leech, 1993; Fujisaki et al.,
1989); or (3) a two step approach where first the words are tagged by a stochastic
tagger, after which the tags are parsed by a stochastic parser. The latter approach
has lately become increasingly popular (e.g. Pereira & Schabes, 1992; Schabes,
1993; Weischedel et al., 1993; Briscoe, 1994; Magerman, 1995). However, the
tagger used in this two step approach commonly uses Good-Turing for the
frequency adjustment of (un)seen n-grams. Why not then directly applying
Good-Turing to the structural units of a stochastic grammar? This lack of interest
in using Good-Turing may be due to the fact that most stochastic grammars are
still being constructed within the grammar-building community. In this
community, it is generally assumed that grammars need to be as succinct as
possible. The existence of unobserved rules is unacceptable from such a
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(competence) point of view.2 But from a performance point of view, it is very
well acceptable that not all statistical units (in our case, subtrees) have been seen;
therefore we will put forward the Good-Turing estimator as a statistically and
cognitively adequate extension of DOP1.

How can Good-Turing be used for adjusting the frequencies of known and
unknown subtrees? It may be evident that it is too rough to apply Good-Turing to
all subtrees together. We must distinguish between subtrees of different roots,
since in DOP, the spaces of subtrees of a certain root constitute different
distributions, for each of which the substitution-probabilities sum up to one.
Therefore, Good-Turing is applied to each subtree-class separately, that is, to the
S-subtrees, NP-subtrees, VP-subtrees, N-subtrees, V-subtrees, DT-subtrees, etc.
As in the previous chapter, we will take only the subtrees upto depth three.

In order to clarify this, we show in table 7.1 the adjusted frequencies for the class
of the 118348 NP-subtrees. The first column of the table shows the observed
frequencies of NP-subtrees from zero to six. The second column shows Nr, the
number of NP-subtrees that had those frequencies in the training set (the
estimation of N0 is a special case and will be dealt with shortly). The third column
shows the adjusted frequencies as calculated by the Good-Turing formula. For
instance, for r  = 2, Nr = 9057 and Nr+1 = 4161, thus r*  = (r+1) Nr+ 1 / Nr  =
(2+1) 4161/9057 = 1.37. Note that the adjusted frequencies are of the same order
as the raw frequencies.

r Nr r*

0 1100000000 0.000055
1 60416 0.30
2 9057 1.37
3 4161 1.86
4 1944 1.99
5 773 3.74
6 482 4.37

Table 7.1. Adjusted frequencies for NP-subtrees

2 Although the opposite opinion may be heard as well (e.g. Sampson, 1987).

86

The calculations for r  = 0 rest on an estimation of N0, the number of NP-subtrees
that have not been seen. N0 is equal to the difference between the total number of
distinct NP-subtrees and the number of distinct NP-subtrees seen. Thus, we must
estimate the total number of possible NP-subtrees. To make such an estimation
feasible, we use the following assumptions:

* No subtree is larger than depth 3. This was already assumed.

* The unknownness of unseen subtrees only depends on the terminals. Also this
was assumed before. It implies that all unlexicalized NP-subtrees (i.e. all NP-
subtrees without words) are known.

* The size of the vocabulary is known. This is common practice in corpus
linguistics, where the estimations are usually restricted to the domain under study.
For instance, for the estimation of the population of bigrams the number of
distinct unigrams is usually assumed to be known (Church & Gale, 1991). In our
case, we know that the whole ATIS corpus contains 1508 distinct words.3 (If we
did not restrict ourselves to the ATIS domain, we should have assumed a lexicon
size of, say, 100.000 words.)

Our calculation of (1) the total number of distinct NP-subtrees and (2) N0 can
now be accomplished as follows:

(1) The total number of NP-subtrees (that can be the result of the mismatch-
method) is calculated by attaching in all possible ways 1508 dummies to the tags
of the unlexicalized NP-subtrees from the training set. This yields a number of
1.10259 x 109 distinct subtrees. To this number, the number of distinct
unlexicalized NP-subtrees must be added (12429), yielding 1.10260 x 109 types
for the total number of distinct NP-subtrees.

(2) The number of unseen types N0 is the difference between the total number of
distinct NP-subtrees and the observed number of distinct NP-subtrees,
∑r>0 Nr, which is 1.10260 x 109  -  77479  =  1.10253  x 109.

3 Remember that this does not mean that we know the word types in the corpus, we only know
their number.
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Notice that N0 is approximately equivalent to the total number of NP-subtrees,
which means that hardly any of the possible NP-subtrees have been seen.
Coming back to our adjustment of the frequency of unseen NP-subtrees, this can
now be calculated by Good-Turing as N1/N0  = 60416/1.1x109 = 0.000055. Thus,
the Good-Turing method assigns a probability to unseen NP-subtrees, as if we
had seen each of them 0.000055 times instead of zero times. In order to
compensate for moving 1.1x109 NP-subtrees from 0 to 0.000055, the larger
frequencies must be adjusted downwards (see table 7.1). In section 7.8, we will
study another, easier estimation method for the frequencies of unseen subtrees,
which can, however, not be motivated from a statistical perspective.

7.4 The model DOP3

We are now able to give the specifications of DOP3 in terms of our performance
model as defined in chapter 1. That is, we instantiate the parameters of the DOP-
framework (sentence-analyses, sub-analyses, combination-operations,
combination-probabilities):

(1) sentence-analyses

syntactically labeled phrase structure trees

(2) sub-analyses

subtrees

(3) combination-operations

leftmost substitution

(4) combination-probabilities

the probability of substituting a certain subtree on a node of
another subtree: this is estimated by the adjusted (relative)
frequency of a subtree according to Good-Turing
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Notice the resemblance of DOP3 with DOP1. What is different in DOP3 is (1)
the much larger space of subtrees, which is extended to subtrees in which one or
more terminals are treated as wildcards, and (2) the frequencies of the subtrees,
that are now adjusted by the Good-Turing estimator. The probability definitions
of a derivation, parse and string in DOP3 are the same as in DOP1. That is, the
probability of a derivation is equal to the product of the substitution-probabilities
of its subtrees, the probability of a parse tree is equal to the sum of the
probabilities of its derivations, and the probability of a string is equal to the sum
of the probabilities of its parses.

7.5 Formal and computational aspects of DOP3

It might seem that DOP3 is, like DOP1, formally equivalent to STSG: the
subtrees of DOP3 are the elementary trees of an STSG and the combination-
probabilities of DOP3 are the probabilities of the elementary trees of an STSG.
However, in the traditional notion of "grammar", all structural units (in our case
subtrees) need to be defined beforehand. In DOP3, it is impossible to know all
subtrees beforehand, since they are only derived during the parsing process by the
mismatch-method. Thus, Formal (Stochastic) Language Theory may be
appropriate for comparing the formal properties of grammars, it is inadequate for
articulating "grammars" that need to deal with unexpected input.

Although DOP3 is not formally equivalent to STSG, this is only due to the rigid
definition of the mathematical notion of grammar, where the set of terminals and
elementary trees are assumed to be known. In computational practice, we can
very easily extend the parsing algorithms designed for STSG to DOP3, by
allowing the terminals of subtrees to mismatch with the words of the input
sentence. After assigning the adjusted probabilities to the subtrees in the resulting
derivation forest, the most probable parse can be estimated by the Monte Carlo
algorithms 4.1 and 4.2.

We will not deal here with the practical feasibility of treating all words as
unknown (-category) words. Theoretically, the worst case time cost of parsing
and disambiguating a sentence in DOP3 is the same as in DOP1, that is, cubic in
the sentence length, quadratic in the error and linear in the corpus size. In section
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7.7, we will restrict for practical reasons the mismatches to unknown words and
"potential" unknown-category words.

7.6 Cognitive aspects of DOP3

Before we go into the experimental behavior of DOP3, we derive some properties
of DOP3 that may be of cognitive/linguistic interest.

Preference for parses containing a minimal number of mismatches

The fact that DOP3 assigns very low frequencies to unknown subtrees (that
consequently get even lower substitution-probabilities), implies that a most
probable parse tends to contain a minimal number of unknown subtrees. Thus, if
a parse can be generated by few (or even zero) unknown subtrees, it tends to get a
higher probability than a parse which is generated by using many unknown
subtrees. This implies that there is a preference for parses constructed by a
minimal number of mismatches between subtree terminals and input words. We
paraphrase this as: In DOP3 there is a preference for parses constructed by
generalizing over a minimal number of words.

As an example, consider the ATIS test sentence "Return to first inquiry". In
chapter 6 (section 4), we have seen that this sentence could not be parsed by
DOP2 due to the unknown-category word return which is in the training set only
known as a noun. In DOP3, this sentence can be parsed if "return" mismatches
with a subtree-terminal tagged as a verb. However, this sentence can also be
parsed if "first" mismatches with a noun (such that "Return to first" is analyzed
as an NP) and "inquiry" mismatches with a verb. The latter case would yield a
parse which can be generated by derivations containing more unknown subtrees
than in the first case, which consequently tends to lead to a lower probability.

Preference for mismatches with open-class words

Another property of DOP3 is that parses that generalize over open-class words
are preferred to parses that generalize over closed-class words. This can be seen
as follows. Closed classes (such as prepositions) normally contain considerably
fewer words than open classes (such as nouns). This means that a subtree rooted
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with a closed-class category tends to have a higher substitution-probability than a
subtree rooted with an open class category, since the substitution-probability of a
subtree is calculated as the frequency of that subtree divided by the frequency of
all subtrees with the same root. For instance, a P-subtree will tend to have a
higher substitution-probability than an N-subtree. Other things being equal, this
means that a parse tends to get a higher probability if its subtrees do not mismatch
with a closed-class word, but with an open-class word. Although this seems only
to count for subtrees rooted with lexical categories, there is an actual tendency of
DOP3 punishing a mismatch with a closed-class word, since the probability of a
parse depends on all its derivations.

We believe that this property represents an interesting result, as closed-class
words rarely constitute problematic cases in parsing sentences. Note that in
DOP3, it is not impossible to generalize over closed-class words, but it will only
occur if no parse can be found by generalizing over other words.

As an example, consider again the ATIS test sentence "Return to first inquiry".
This sentence can be parsed by mismatching "return" with a V-subtree (i.e. with a
verb). But the sentence can also be parsed if not "return" but if " to" mismatches
with a verb. Both cases imply exactly one mismatch with one V-subtree.
However, the latter case implies a mismatch with a closed-class word, whose P-
subtree has a relatively high substitution-probability. Thus, the mismatch with
"return" tends to be preferred, which yields the generation of the correct parse.

7.7 Experimental aspects of DOP3

Although DOP3 is parsable and disambiguatable in polynomial time, the
treatment of all words as unknown-category words will certainly lead to an
impractically large number of subtrees in the derivation forest. As we have seen,
the set of possible NP-subtrees (of maximal depth three) consists of 109 types,
which is a factor 12000 larger than the set of seen NP-subtrees (8 x 104). It is
therefore evident that we will get impractical processing times in DOP3.

If we still want to perform experiments with DOP3, we need to limit the
mismatches as much as possible. It seems reasonable to allow the mismatches
only for unknown words, and words that we expect to be potential unknown-
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category words. From the ATIS training set we derive that only nouns and verbs
are actually lexically ambiguous. In our experiments, we will therefore limit the
unknown-category words of an input sentence to nouns and verbs. This means
that only the words which are unknown in the training set and the words of the
sentence which are tagged as a noun or a verb in the training set are allowed to
mismatch with subtree-terminals.

Like in our previous experiments, we used the 90%/10% division of the ATIS
corpus into a training set of 675 trees and a test set of 75 trees. In order to
carefully study the experimental merits of DOP3, we distinguished two classes of
test sentences:

  1. test sentences containing both unknown and unknown-category words (26)

  2. test sentences containing only unknown-category words (49)

Note that all 75 test sentences contained at least one potential unknown-category
word (verb or noun). The following table shows the results for subtree-depth ≤ 3,
where parse accuracy refers to the percentage of the test sentences for which the
most probable parse is identical to the parse in the test set.

test sentences parse accuracy

with unknown words and 62% (16 out of 26)
unknown-category words

with only unknown- 94% (46 out of 49)
category words

all test sentences 83% (62 out of 75)

Table 7.2

The table shows that DOP3 has better performance than DOP2 in all respects (cf.
table 6.1, page 76). The parse accuracy for the 26 sentences with unknown and
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unknown-category words is with 62% dramatically higher than the 42% of
DOP2. This corresponds to an increase of 5 correctly parsed sentences. For 3 of
these 5 sentences, this is due to the correct parsing of unknown-category words,
which DOP2 cannot handle anyway. There remain therefore two test sentences
that show the actual merits of DOP3 with respect to unknown words. These are
represented below (where the unknown words are given bold):

What are the amenities?

What movies are scheduled for these flights?

We recall that DOP2 tagged, due to a bias for smaller subtrees, both
"amenities" and "movies" incorrectly as singular nouns (NN), thus loosing the
agreement with the verb "are". DOP3, on the other hand, correctly tagged
"amenities" and "movies" as plural nouns (NNS), thus maintaining the
number agreement with  "are":

( (SBARQ (WHNP WP/What)
         (SQ (NP T)
             (VP VBP/are

          (NP DT/the NNS/amenities ))))
 ?)

Figure 7.1. Most probable parse for "What are the amenities?"

((SBARQ (WHNP WDT/What
       (NP NNS/movies ))
  (SQ  (NP T)
       VBP/are

(VP VBN/scheduled )
       (PP IN/for

     (NP DT/these NNS/flights))))
   ?)

Figure 7.2. Most probable parse for "What movies are scheduled for these

flights?"

It is fascinating to try to understand why DOP3 assigns the correct tag to
"amenities", and "movies" and the appropriate parses to the whole sentences.
Although it is practically impossible to evaluate all the derivations leading to these
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parses, we observe that the preference for parses that can (also) be contructed by
largest possible subtrees (containing agreement), which was lost in DOP2, has
been recovered in DOP3.

Nevertheless, there are still 10 sentences with unknown words that are parsed
incorrectly by DOP3. It is worth mentioning that for 8 of these sentences DOP3
generated exactly the same incorrect parses as DOP2 did, for instance:

(  (S
   (NP PP/I)
   (VP VBP/need
       (NP NN/information
           (PP IN/on
               (NP (NP NNS/airlines)

(PP IN/servicing
                       (NP NP/Boston))
                   (S (NP *)
                      (VP VBG/flying
                          (PP IN/from
                             (NP NP/Dallas)))))))))
   .)

Figure 7.3. Incorrect most probable parse for the sentence "I need

information on airlines servicing Boston flying from Dallas."

(
 (SBARQ
   (WHNP WDT/Which

   (PP IN/of
       (NP DT/these

     NN/aircraft NNS/types)))
   (S (NP T)
      (VP VBZ/carries

   (NP DT/the  
NN/fewest

       NN/number)
       (PP IN/of

    (NP NNS/passengers))))))
   ?)

Figure 7.4. Incorrect most probable parse for "Which of these aircraft

types carries the fewest number of passengers?"
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We conjecture that these sentences can only be parsed correctly if richer
morphological annotations are available. In the absence of morphological
structure in the ATIS corpus, we shall enrich DOP3 in section 7.9 with an
external dictionary.

As to the sentences with only unknown-category words, the improvement of
DOP3 with respect to DOP2 is most dramatical: the accuracy increased from
73% to 94%, which is in terms of error reduction, a decrease from 28% to 6%!
However, the comparison with DOP2 may not be fair, as DOP2 cannot deal with
unknown-category words at all. What the parse results of DOP3 do indicate is,
that, for sentences without unknown words, the parse accuracy for word strings is
of the same order as the parse accuracy for p-o-s strings (which was 92% at
maximum depth 3; see chapter 5).

7.8 Using Add-One instead of Good-Turing: DOP4

There is an intriguing question as to whether the succes of DOP3 depends on the
sophisticated Good-Turing estimator, or only on the assignment of very low
probabilities to unknown subtrees. Despite the nice statistical justification of
Good-Turing, we want to know whether we can achieve the same results if we
simply assign a probability to unknown subtrees which is lower than the
probabilities of known subtrees. A method which accomplishes this is the so-
called Add-One method. Although this method has no statistical foundation, it is
often used in engineering practice.

According to (Gale & Church, 1994), the first mention of this kind of method is
to be found in (Johnson, 1932), who suggests adding some constant k to the
frequency r  of each type and renormalizing appropriately in order to satisfy ∑p =
1. That is, the adjusted frequency, r* , is r+k times a renormalization factor, N/(N+
kS), where S is the number of types. We may call this method the Add-k method.
The Add-One method is a special case proposed by (Jeffreys, 1948), where k = 1.
It is defined by r*  = (r+1)N/(N+S). In the field of language technology, this
method is common engineering practice; it has been used in adjusting the
frequencies of trigrams in a part-of-speech tagger (e.g. Church, 1988), and in
adjusting the mutual information for solving PP-attachment ambiguities (Hindle
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& Rooth, 1993). We will call the modification of DOP3 where the frequencies of
the subtrees are adjusted by the Add-One method (or any Add-k method) DOP4.

It is a comfortable property of DOP4 that we do not need to change anything in
our parsing and disambiguation algorithms used by DOP3. The only difference is
that we adjust the substitution-probabilities of the subtrees in the derivation forest
by adding one to the observed frequencies. The most probable parse is estimated
by the Monte Carlo algorithms 4.1 and 4.2.

For the experiments, we used exactly the same test-environment as DOP3,
assuming that only nouns and verbs can be unknown-category words. The
following table compares the results of DOP3 with DOP4.

test sentences    parse accuracy

DOP3 (Good-Turing) DOP4(Add-One)

with unknown words and 62% (16 out of 26) 54% (14 out of 26)
unknown-category words

with only unknown- 94% (46 out of 49) 84% (41 out of 49)
category words

all test sentences 83% (62 out of 75) 73% (55 out of 75)

Table 7.3

Before going into the test results, we should mention that we are not completely
confident about above results: the convergence by Monte Carlo was extremely
slow: even at 4000 randomly sampled parses, the mpp error was not sufficiently
small. This may be explained by the fact that in the Add-One method, the
difference in frequency between known and unknown subtrees is not sufficiently
large, such that many more samples are necessary in order to let emerge the most
probable parse from the other parses. For time cost reasons, we stopped sampling
at 4000.

Table 7.3 suggests that DOP4 has lower accuracy than DOP3 (although it
outperforms DOP2). It is disappointing that for the sentences with unknown
words, the two problematic sentences which were the flagship of DOP3, were
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parsed incorrectly by DOP4, i.e. "What are the amenities?" and " What
movies are scheduled for these flights?". Evidently, the problem of
adjusting the frequencies of unknown subtrees is not as easy as one may think at
first hand.

Above results, together with the slow convergence, suggest that it may be
necessary to assign frequencies to unknown subtrees much lower than one, as is
also accomplished by Good-Turing. This means that we apply the Add-k method
instead of Add-One. We tried out a number of experiments with different values
for k, where for k ≤ 0.01 the convergence by Monte Carlo was relatively fast (at
1500 iterations). The results are given in the following table.

test sentences    parse accuracy

DOP3 (Good-Turing)

with unknown words and 62% (16 out of 26) 54% (14 out of 26)
unknown-category words

with only unknown- 94% (46 out of 49)
category words

all test sentences 83% (62 out of 75)

DOP4(Add-0.01)

94% (46 out of 49)

80% (60 out of 75)

Table 7.4

The table indicates that for the test sentences with only unknown-category words
the Add-k method works as well as Good-Turing. However, for the test
sentences with also unknown words, DOP4 obtains again the wrong most
probable parses for the sentences "What are the amenities?" and " What
movies are scheduled for these flights?". In DOP4, there seems to be
an unwanted bias towards smaller subtrees like in DOP2, while we want to have
a preference for parses constructed by largest possible subtrees, like in DOP3 and
DOP1.

A problem with the Add-k method may be that it does not differentiate between
unknown subtrees of different roots. In all subtree classes, the frequencies of
unknown subtrees are adjusted by the same constant k (after which they are
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renormalized appropriately). Good-Turing, on the other hand, assigns to
unknown subtrees of different roots different frequencies. Although we may try
to adapt the Add-k method in the direction of the Good-Turing method, we
believe that this would be too much an ad hoc approach and leave the Add-k
method for what it is. We hope to have shown that, even if DOP3 uses relatively
crude estimations, it is not easy to find a simpler method which obtains the same
results.

7.9 Enriching DOP3 with a dictionary: DOP5

An engineering method which may further improve the accuracy of DOP3 does
probably not lie in a more reliable frequency estimation of unknown subtrees, but
in the use of an external dictionary. In the absence of morphological annotations
in ATIS, a dictionary can provide the possible lexical categories of both known
and unknown words of an input sentence. For instance, the word "servicing" in
figure 7.3 will not be considered anymore as unknown and will be assigned with
a VBG (verb gerund) and an NN (singular noun), but not with a PP (preposition),
which means that the incorrect parse in figure 7.3 cannot be generated anymore.

Unfortunately, the ATIS corpus contains several abbreviations and proper nouns
that are not found in a dictionary, and which therefore still need to be treated as
unknown by means of DOP3. In the following, we will refer to the extension of
DOP3 with an external dictionary as DOP5. DOP5 puts all lexical categories (p-
o-s tags) of the sentence words, as found in a dictionary, in the chart. Secondly,
the sentence is parsed by DOP3, provided that subtree-terminals are only allowed
to mismatch with the words that were not found in the dictionary.

In our experiments, we used Longman Dictionary (Longman, 1988) to assign
lexical categories to the words of the test sentences. The lexical categories used in
Longman are not equal to the lexical categories used in the ATIS corpus, and
needed to be converted. From the 26 sentences with unknown words, 22 could be
fully provided with lexical categories. The following table shows the results of
DOP5 compared with those of DOP3.
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test sentences    parse accuracy

with unknown words and 62% (16 out of 26)
unknown-category words

with only unknown- 94% (46 out of 49)
category words

all test sentences 83% (62 out of 75)

94% (46 out of 49)

DOP3 DOP5

88% (23 out of 26)

92% (69 out of 75)

Table 7.5

The table shows that there is a dramatical increase in parse accuracy from 62% to
88% for sentences with unknown words, while the accuracy for sentences with
only unknown-category words remains the same (94%). The total parse accuracy
of DOP5 reaches 92%.

We must keep in mind that DOP5 is a hybrid model, where frequencies of
subtrees are combined with a dictionary look-up. What we actually need is a
much larger and richer annotated corpus. However, we hope to have shown that it
is possible to extend DOP1 in a statistically and cognitively adequate way by
DOP3, which can parse and disambiguate word strings that contain unknown (-
category) words, and which exemplifies the preferable properties of a
psychologically plausible model of language performance. If DOP3 is extended
by a dictionary, as a surrogate for better corpus annotations, we get a parsing
system which can very accurately predict the perceived parse of an input sentence.
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Chapter 8

Further Extensions of DOP:
Semantics, Discourse, Recency

So far, we have only dealt with the syntactic dimension of language performance,
resulting into the implemented systems DOP1 through DOP5. However, no
syntactically analyzed corpus can ever stand for a person's past language
experience. In this chapter, we investigate what is involved in extending our
approach to the problem of semantic interpretation. It must be stressed that this
chapter is of informal nature: no system has been implemented, but at the same
time no semantically analyzed corpora exist that would allow such a system. At
the end of this chapter, we will shortly go into the influence of discourse structure
and recency on the probability of analyses.

8.1 Incorporating semantic interpretation1

In this section, we consider the problem of computing the semantic interpretation
of an input sentence that should be considered the most probable one on the basis

1 The text of this section was partly published in (van den Berg, Bod & Scha, 1994). The
author thanks his co-authors for their permission of reproducing it here.
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of the frequencies of the interpretations of earlier sentences in a corpus. (We leave
aside yet the influence of world knowledge and discourse context on the
probability of interpretations.) A performance model for semantic interpretation
may be developed after the performance models for syntactic analysis, employing
a corpus of sentences with annotations that contain semantic as well as syntactic
information. The rest of this section explores this idea. It is divided into two parts.
In subsection 8.1.1 we assume that every node in the syntactic constituent
structure is annotated with a logical formula expressing its meaning, and that this
meaning is derived compositionally from the meanings of its subconstituents. In
subsection 8.1.2, we investigate the consequences of dropping this assumption.

8.1.1 Assuming surface compositionality

If we are prepared to assume strict surface compositionality in the semantic
annotation of the corpus trees, the performance-based approach to the parsing
problem generalizes in a straightforward way to the problem of computing
semantic interpretations. By surface compositionality we mean that the way in
which the semantics of a surface constituent X correlates with the semantics of the
sub-constituents of X can be explicitly indicated: the meaning of X can be
specified by a logical expression which contains the meaning representations of
the immediate sub-constituents of X as sub-expressions. If this situation
consistently applies, we can annotate the corpus trees by (1) specifying for every
terminal node a logical formula representing its meaning, and (2) specifying for
every non-terminal node a formula schema which indicates how its meaning
representation may be put together out of the formulas assigned to its daughter
nodes. (In the examples below, these schemata use the variable d1 to indicate the
meaning of the leftmost daughter constituent, d2 to indicate the meaning of the
second daughter constituent, etc.)

Consider a corpus consisting of two very simple sentences, which is annotated in
this way, in the following figure. (As logical formulas we use expressions of a
standard extensional type theory.)

101

Det: λXλY∀x(X(x)→Y(x)) N: woman

NP: d1(d2)

S: d1(d2)

VP: sing

every woman

sings Det: λXλY∃x(X(x)∧Y(x)) N: man

NP: d1(d2)

S: d1(d2)

mana

whistles

VP: whistle

figure 8.1. Imaginary corpus of two trees with syntactic and semantic labels

As in the purely syntactic version of DOP (cf. chapter 2), we now want to
compute the probability of an analysis by considering all the different ways in
which it can be generated by combining subtrees from the corpus. We can do this
in virtually the same way. The only novelty is a slight modification in the process
by which a corpus tree is decomposed into subtrees, and a corresponding
modification in the composition operation which combines subtrees. If we extract
a subtree out of a tree, we replace the semantics of the new leaf node with a
unification variable of the same type. Correspondingly, when the composition
operation substitutes a subtree at this node, this unification variable is unified with
the semantic formula on the substituting tree. (It is required that the semantic type
of this formula matches the semantic type of the unification variable.)

A simple example will make this clear. As before, we may try to analyze a
sentence like "a woman whistles" by combining subtrees from the corpus.
Consider the annotated corpus sentence "a man whistles" from this point of view.
One of the relevant decompositions is the following one:

Det: λXλY∃x(X(x)∧Y(x)) N: man

NP: d1(d2)

S: d1(d2)

mana

whistles

VP: whistle

=
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Det: λXλY∃x(X(x)∧Y(x)) N: U

NP: d1(d2)

S: d1(d2)

a

whistles

VP: whistle

N: man

man

°

figure 8.2. Decomposing a tree into subtrees with unification variables

We see that by decomposing the tree into two subtrees, the semantics at the
breakpoint-node N: man is replaced by a variable. Now we can generate an
analysis for the sentence "a woman whistles" in the following way.

Det: λXλY∃x(X(x)∧Y(x)) N: U

NP: d1(d2)

S: d1(d2)

a

whistles

VP: whistle

° =N: woman

woman

Det: λXλY∃x(X(x)∧Y(x)) 

NP: d1(d2)

S: d1(d2)

a

whistles

VP: whistle

N: woman

woman

figure 8.3. Generating an analysis for "A woman whistles".

If we would be happy to work with corpora with complete and compositional
semantic annotations, we could leave it at that. However, the possibility of
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annotating large corpora of actually occurring text in this way may be called into
question. And it seems that our approach might still work under somewhat less
restricted conditions. It is worthwhile, therefore, to explore what happens when
we loosen our assumptions about the nature of the semantic annotations.

As a first step, we consider the case where the semantics of the corpus trees and
the input sentences is in fact compositional, but where we are using an annotation
system which does not explicitly presuppose and exploit this. We go through the
same simple example, but assuming a different annotation regime. Thus, consider
again a corpus consisting of the same sentences as in figure 8.1, but now with the
following annotation: every constituent carries a label that consists of a syntactic
category and a logical formula representing the meaning of the constituent.

Det: λXλY∀x(X(x)→Y(x)) N: woman

VP: sing

every woman

sings Det: λXλY∃x(X(x)∧Y(x)) N: man

mana

whistles

VP: whistleNP: λY∀x(woman(x)→Y(x))

S: ∀x(woman(x)→sing(x))

NP: λY∃x(man(x)∧Y(x)) 

S: ∃x(man(x)∧whistle(x)) 

figure 8.4. Imaginary corpus of two trees with syntactic and semantic labels.

Again, we want to compute the probability of an analysis by considering all the
different ways in which it can be generated by combining subtrees from the
corpus. But decomposing the corpus trees into subtrees is a bit more complex
now. This is due to the fact that possible dependencies between the semantic
annotations of different nodes are not explicitly indicated now, while they may be
strongly suggested by the fact that the formulas on these nodes contain the same
descriptive constants.

To deal with this issue, the decomposition process by which subtrees are derived
from the initial corpus of trees, may now be further refined as follows. If we
extract a subtree out of a tree, we replace the semantics of the new leaf node with
a unification variable (of the same type), and introduce this unification variable at
every place where the semantics of this subtree appears in the labels of its
governing nodes. The same example discussed before may serve to illustrate this.
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Again, we try to analyze the sentence "a woman whistles" by combining subtrees
from the corpus. Consider the annotated corpus sentence "a man whistles". One
of the relevant decompositions is the following:

=

Det: λXλY∃x(X(x)∧Y(x)) N: man

mana

whistles

VP: whistleNP: λY∃x(man(x)∧Y(x)) 

S: ∃x(man(x)∧whistle(x)) 

N: man

man

°

Det: λXλY∃x(X(x)∧Y(x)) N: U

a

whistles

VP: whistleNP: λY∃x(U(x)∧Y(x)) 

S: ∃x(U(x)∧whistle(x)) 

figure 8.5. Decomposing a tree into subtrees with unification variables

We see that by decomposing the tree into two subtrees, the semantics at the
breakpoint-node N: man is abstracted out of this label and out of the meanings of
its governing constituents by replacing it with a variable. If we want to compose
these two subtrees again, we need to enrich our composition operation with a
unification mechanism: the meaning of the substituted subtree is unified with the
variable in the label on which this subtree was substituted, and with the
corresponding variables in the governing labels. Having this new combination
operation and our abstraction mechanism, we can generate an analysis for the
sentence "a woman whistles" in the following way.
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°

Det: λXλY∃x(X(x)∧Y(x)) N: U

a

whistles

VP: whistleNP: λY∃x(U(x)∧Y(x)) 

S: ∃x(U(x)∧whistle(x)) N: woman

woman

=

   

Det: λXλY∃x(X(x)∧Y(x)) 

a

whistles

VP: whistle

N: woman

woman

NP: λY∃x(woman(x)∧Y(x)) 

S: ∃x(woman(x)∧whistle(x)) 

figure 8.6. Generating an analysis for "a woman whistles" with abstraction and
unification

Of course, this example was unrealistically simple. It may often happen that the
logical expression representing the meaning of a constituent is not literally present
in the meaning representations of the larger constituents that contain it. In such
cases the meaning of a subtree cannot be abstracted directly out of the formulas
on its governing nodes. However, if we in fact assume surface compositionality,
the class of expressions equivalent to the formula on a certain governing node,
will always contain expressions in which the semantics of a subordinate
constituent does literally (and non-trivially) appear. Let us consider the following
tree again:

Det: λXλY∃x(X(x)∧Y(x)) N: man

mana

whistles

VP: whistleNP: λY∃x(man(x)∧Y(x)) 

S: ∃x(man(x)∧whistle(x)) 

figure 8.7.
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We note that the representation of the meaning of the NP "a man", which is
λY∃x(man(x)∧Y(x)), is not literally present in the logical expression at the S node,

which is ∃x(man(x)∧whistle(x)). However, in the class of expressions equivalent

to ∃x(man(x)∧whistle(x), there is the expression λY∃x(man(x)∧Y(x)) (whistle) out

of which the expression λY∃x(man(x)∧Y(x)) can be directly abstracted, yielding
U(whistle). Assuming an algorithm for computing equivalent expressions, we
may thus be able to decompose the above tree into the following subtrees:

whistles

VP: whistle Det: λXλY∃x(X(x)∧Y(x)) N: man

mana

NP: λY∃x(man(x)∧Y(x)) °

NP: U

S: U(whistle)

figure 8.8. Decomposing the tree in figure 8.7 into two subtrees by using
equivalence relations

And we can now parse the sentence "every woman whistles"  by combining the
following subtrees from the corpus.

whistles

VP: whistle

°

NP: U

S: U(whistle)

Det: λXλY∀x(X(x)→Y(x)) N: woman

every woman

NP: λY∀x(woman(x)→Y(x)) =

Det: λXλY∀x(X(x)→Y(x)) N: woman

every woman

NP: λY∀x(woman(x)→Y(x))

whistles

S: ∀x(woman(x)→whistle(x))

VP: whistle

figure 8.9. Parsing the sentence "every woman whistles"
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It is perhaps trivial to note that, analogous to DOP1, a tree can be decomposed
also into more than two subtrees, as is illustrated in figure 8.10 (we leave the
generation of the total space of subtrees to the reader).

=

Det: λXλY∃x(X(x)∧Y(x)) N: man

mana

whistles

VP: whistleNP: λY∃x(man(x)∧Y(x)) 

S: ∃x(man(x)∧whistle(x)) 

VP: W

S: U(W)

NP: U

°

N: man

man

NP: V(man)

Det: V

Det: λXλY∃x(X(x)∧Y(x)) 

a

°

whistles

VP: whistle°

figure 8.10. A tree can be decomposed into several subtrees

We have thus seen that it is not impossible to work with a corpus that is annotated
in a way which downplays surface compositionality in that constituents are
labelled with fully instantiated semantic representations, rather than with
definitions that refer to the semantics of their sub-constituents. We have also seen
that there may be a certain cost: this approach may give rise to substantial
amounts of equivalence calculations on complex lambda-expressions.

In passing we also mention another problem that did not occur in our initial,
explicitly compositional, approach. When we label nodes with full semantic
representations, there is no explicit information about how these representations
were built up (or should be imagined to have been built up). Therefore, when a
subtree is extracted out and the corresponding semantic abstraction takes place, it
is not always uniquely defined which parts of a formula must be replaced by the
unification variable. A simple example is the sentence "Every man loves a man".
If one of the occurrences of "man" is abstracted out, it is not formally defined
what replacements must be made in the formula at the sentence-node. Whether
this kind of problem is statistically significant is not clear, however. (Every
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sentence-analysis process involves many different trees from the corpus, and
most of these will not give rise to such confusions.)

Acknowledging these disadvantages, we nevertheless remain interested in the idea
of annotating the nodes of the trees with full semantic representations rather than
with compositional definitions. One reason is that we are ultimately pessimistic
about the feasibility of that kind of annotation for large corpora of actual text.
Another reason is, that full-representation-annotation is more easily compatible
with the idea of partial annotations.

8.1.2 Not assuming surface compositionality: partial annotations

We now explore some situations where an initial, intuitively assigned annotation
may be expected to be incomplete. One such situation is the phenomenon of non-
standard quantifier scope. We illustrate this phenomenon with a well-known
example sentence.

Suppose that the sentence "Every man loves a woman" occurs in a (larger) corpus
with the following annotation (which in the context in which it was uttered was
for some reason the most appropriate one for interpreting the utterance). The
annotation gives the semantics of subconstituents only in so far as a meaning that
can be locally established can also be straightforwardly recognized in the
semantics of the total utterance.

every man

NP: λQ∀x(man(x)→Q(x))

N: man

VP

a

V: loves

loves

woman

N: woman

NP: λQ∃y(woman(y)∧Q(y))Det: λPλQ∀x(P(x)→Q(x)) 

Det: λPλQ∃y(P(y)∧Q(y)) 

S: ∃y(woman(y) ∧ ∀x(man(x)→love(y)(x)))

figure 8.11. Partial annotation for the sentence "Every man loves a woman"
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The semantics of the whole utterance is known, as well as the semantics of the
NPs every man and a woman. Also the interpretation of the verb loves is
straightforward, but the semantics of the VP loves a woman is left unspecified,
since the semantics that one would intuitively assign to this phrase does not occur
as a sub-expression of the semantics of the complete utterance. Nevertheless, we
do not want to exclude that subtrees headed by this VP node are employed as
structural/semantic units in the parsing process. When, for this reason, the
meaning of this VP is needed anyway, it can be arrived at by lambda-abstracting
out the contribution of the VP's sister node from the semantics of the mother
node.

To arrive at the meaning of the VP loves a woman, the system must abstract out
the meaning of the NP every man, i.e. λQ∀x(man(x)→Q(x)), from the meaning

of the whole sentence, i.e. ∃y(woman(y) ∧ ∀x(man(x)→love(y)(x))). To make this
possible, the meaning of the whole sentence must first be paraphrased as
∃y(woman(y) ∧  λQ∀x(man(x)→Q(x)) (love(y))). Then, the NP-semantics

λQ∀x(man(x)→Q(x)) can be λ-abstracted straightforwardly out of the sentence-

semantics, yielding λP∃y(woman(y) ∧ P(love(y))).

Clearly, this treatment is reminiscent of the type-lifting rules of "Flexible
Montague Grammar" (Hendriks, 1993). But since we are not writing a grammar
but designing a performance model that works off semantically annotated trees,
our treatment is a kind of mirror-image of the Flexible Montague Grammar
approach. In our system, we start with the semantics of the full sentence, however
complex or non-standard it may be. Like Flexible Montague Grammar, we then
exploit the power of the lambda-calculus to enforce a compositional construction
of that sentence semantics.

We expect that it is not realistic to assume that corpora are completely annotated.
Partial annotations seem more appropriate because of phenomena like non-
standard scope orders (like the example above), idioms, and discontinuous
constituents. In a partially annotated corpus,  meanings of nodes are not
necessarily specified. For a sentence to count as analyzed and understood, what
needs to be stored is (1) its syntactic structure and (2) its meaning.
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Therefore, the only semantic feature on the tree that is necessarily specified is the
one at the top; the meanings of sub-constituents may or may not be specified. But
subtrees will only be useful for the semantic analysis of new input utterances, to
the extent that they are either explicitly specified or formally derivable. The
meaning of a constituent is derivable either by simple composition of the
meanings of its subordinate constituents, or by abstracting out the contribution(s)
of its sister node(s) in the semantics of its mother node.

An extreme case of a partial annotation may be provided by certain idioms. If we
are given the sentence "John kicked the bucket" and are aware that this means that
John died, we have the following structure in figure 8.12 with semantic
annotation die(john). If we add to this the knowledge that John is annotated with
john, we can derive a meaning for the VP, but not further down. Thus, the
analysis as it may occur in the corpus is:

John

NP: john

S: die(john)

VP: die

Det

the

V

kicked

bucket

N

NP

figure 8.12. Partial annotation for the sentence "John kicked the bucket"

This effectively means that semantically, but not syntactically, the whole idiomatic
phrase kicked the bucket is treated as one word.

Another phenomenon that may give rise to partial annotations is provided by
certain kinds of discontinuous constituency. Consider the following annotation of
the sentence "De Kerstman tuigde de kerstboom op"  (i.e. "Santa Claus decorated
the X-mas tree").
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Vde Kerstman

tuigde de kerstboom op

S: decorate(Santa Claus, X-mas tree)

NP: X-mas tree P

NP: Santa Claus VP:  λx decorate(x,X-mas tree)

figure 8.13. Partial annotation for the sentence "de Kerstman tuigde de kerstboom
op"

Again, the semantics at a node is specified only in so far as a meaning that can be
locally established can also be straightforwardly recognized in the semantics of
the total utterance. Thus, besides the meaning of the whole utterance, only the
meanings of the NPs de Kerstman and de kerstboom and the meaning of the VP
tuigde de kerstboom op are specified. The separate meanings of tuigde and op can
neither be established locally, nor can they be arrived at by abstraction. However,
the meaning of tuigde and op together can be established by decomposing the VP
tuigde de kerstboom op into subtrees, i.e. by abstracting out the NP de kerstboom:

V

tuigde de kerstboom op

NP: X-mas tree P

VP:  λx decorate(x,X-mas tree) =

V

tuigde op

NP: U P

VP:  λx decorate(x,U) °

de kerstboom

NP: X-mas tree

figure 8.14. Deriving structure and semantics for the discontinuous constituent
"tuigde op"
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Thus, the discontinuous constituent tuigde op can be used as a productive
structural unit, also if it is separated by an NP.

In this semantic extension of DOP, any subtree can function as a productive unit,
even if its semantics is not yet completely specified, provided its semantics can be
calculated in the end by employing the principle of compositionality in one of two
ways: (1) the meaning is constructed by simple composition of the constituents or
(2) the meaning arrived at by abstracting out the contribution(s) of the sister
node(s) from the semantics of the node directly governing it.

8.1.3    Summary: a performance model for semantic interpretation

By way of summary, we give the specifications of a performance model for
semantic interpretation which we may call DOP6. This means that we instantiate
the parameters of the DOP framework (sentence-analyses, sub-analyses,
combination-operations, combination-probabilities):

(1) sentence-analyses

partially semantically annotated phrase structure trees with
specified top-node semantics

(2) sub-analyses

subtrees

(3) combination-operations

substitution/unification

(4) combination-probabilities

the probability of substituting/unifying a certain subtree on
another subtree: this is estimated by the ratio between the
frequency of a subtree and the total frequency of subtrees
with the same root-category.
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The probability definitions of a derivation and parse in DOP6 are the same as in
DOP1 and DOP3. That is, the probability of a derivation is equal to the product of
the  combination probabilities of its subtrees, and the probability of a parse tree is
equal to the sum of the probabilities of its derivations. What is new in DOP6, is
the probability of an interpretation of a string. An interpretation of a string is a
formula which is logically equivalent to the semantic annotation of the top node of
an analysis of this string. The probability of a string s with an interpretation I is
the sum of the probabilities of the parse trees of string s with a top node annotated
with a formula equivalent to I.

8.2 Future extensions: discourse and recency

In the prerequisites of our performance model in chapter 1, we assumed that the
recency of previous language experiences does not influence the perceived
analysis of a sentence. For the ATIS corpus, this assumption may be close to
true, as this corpus merely contains distinct questions and imperatives without
discourse structure. A sentence like "Show me the flights from Boston to New
York early in the morning", can be properly disambiguated by only taking into
account the frequencies of previous sub-analyses.

It has been recognized that not only the frequencies, but also the recencies of
previous experiences bias the analysis of a new input (e.g. Kempen, 1994). A
reason for this may be the impact of human memory limitations, but the impact
of discourse structure may be even stronger. Consider the following two
contiguous sentences:

I see a man with a bag
And I see a man with a telescope

It is clear that, due to the phenomenon of parallelism (cf. Prüst, 1992), the
analysis of the first sentence creates a very strong bias in analyzing the second
sentence. A performance model which wants to take this phenomenon into
account, should not only register all previous analyses, but should also order them
in time of occurrence. This implies that an adequate performance model should
update the corpus by every new language experience..
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If we limit ourselves for the moment to local discourse structure, how can we
integrate the notion of recency into the DOP-framework, i.e. into the four-tuple
(sentence-analyses, sub-analyses, combination-operations, combination-
probabilities)? We strongly believe that the notion of recency can and should be
integrated into the statistics of the performance model. That is, recency should be
a function that adjusts the frequencies of occurrence of the analyses in such a way
that the frequencies of more recently perceived analyses are adjusted upwards and
those of less recently perceived analyses are adjusted downwards. The exact
nature of this function is, however, unknown.

There is a further complication due to "global discourse structure" (cf. Scha &
Polanyi, 1988). Consider the following sentences.

I see a man with a bag
Look how old he is!
He must be at least eighty
He hits a dog with a stick

And there I see a man with a telescope

In this piece of discourse, the perceived analysis of the first sentence creates
strong biases in the perception of the fourth sentence, and not so much in the
perception of the sentences in between. Thus, the notion of recency needs to be
integrated within a theory of discourse. How such an integration should be
accomplished falls definitely outside the scope of this thesis.

8.3 Concluding remarks

In this thesis, we have shown how the frequencies of sub-analyses in a corpus of
sentence-analyses can be used for predicting the perceived analysis of a new input
sentence. We have shown the adequacy of the DOP-framework for syntactic
language disambiguation. We developed the basics for an extension towards
semantic interpretation with a note on discourse and recency. We are tempted to
believe that by having a very large and fully analyzed language corpus, the
problem of language performance can finally be solved. However, even then, our
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performance model will still have many limitations, some of which are worth
mentioning here.

(1) We have only dealt with the perception of transcribed acoustic utterances.
How does a performance model relate to the perception of naturally occurring
speech? A first step has been made in (Bod & Scha, 1994), where a statistical
model is presented which integrates sentence disambiguation and sentence
prediction.

(2) Where is the place of language learning to be situated? With a fully analyzed
corpus, only adult language behavior can be simulated. We believe that the
problem of language acquisition is the acquisition of an initial corpus, in which
non-linguistic input and pragmatics should play an important role.

(3) How does our notion of performance model relate to perception in other
media, such as visual and musical perception? In (Bod & Scha, 1993) and (Scha
& Bod, 1993), first steps have been made in investigating what is involved in
extending DOP towards visual perception. A visual corpus can be seen as a
collection of analyzed visual percepts, where a new visual percept can be analyzed
by combining sub-analyses from the corpus. We conjecture that a generalization
of our notion of performance model will finally stand as a general theory for
human perception.
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Samenvatting

Een van de grootste problemen in de hedendaagse (computationele) linguistiek is
de ambiguiteit van natuurlijke taal: zodra een grammatica een non-triviaal gedeelte
van een natuurlijke taal karakteriseert, krijgt vrijwel elke zin van enige lengte zeer
veel verschillende syntactische analyses (en bijbehorende semantische
interpretaties). Dit is problematisch omdat het merendeel van deze interpretaties
door een menselijke taalgebruiker helemaal niet als mogelijk wordt
waargenomen. Een taalgebruiker neemt gewoonlijk niet meer dan een of twee
interpretaties waar. In zekere zin is dit probleem niet verrassend: het is een
onmiddellijk gevolg van het feit dat formele linguistische modellen direct
aansluiten bij Chomsky's notie van een "competence grammatica". Chomsky
heeft altijd nadrukkelijk onderscheid gemaakt tussen de "competence" van een
taalgebruiker en diens "performance". De competence is de taalkennis waarover
de taalgebruiker in principe beschikt; de performance is het psychologische proces
dat die kennis gebruikt voor feitelijke taalproductie en -perceptie. De voorkeuren
die taalgebruikers hebben in het geval van meerduidige interpretaties behoren
typisch tot het domein dat in een Chomskyaanse optiek tot de performance zou
worden gerekend.

Het doel van dit proefschrift is te laten zien hoe een statistische verrijking van een
linguistisch "competence model" de invoer-uitvoer eigenschappen van menselijke
taalwaarneming kan verantwoorden. Het resulterende "performance model" zal in
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staat zijn om uit alle mogelijke interpretaties van een zin de daadwerkelijk
waargenomen interpretatie te kiezen. Dat zo'n performance model statistisch van
aard dient te zijn, laten we zien aan de hand van een aantal resultaten uit de
psycholinguistiek (§1.1). Dit leidt tot de stelling dat een taalgebruiker neigt naar
het waarnemen van de meest waarschijnlijke interpretatie van een invoer-zin op
basis van voorkomens van eerder waargenomen interpretaties. Deze stelling
brengt ons tot de notie van een performance model dat een geanalyseerd
taalcorpus gebruikt voor het berekenen van de meest waarschijnlijke analyse van
een nieuwe invoer-zin  middels combinaties van deel-analyses uit het corpus.

In § 1.3 wordt onze notie van performance model in een breder kader geplaatst,
het zgn. Data-Oriented Parsing (DOP) framework. In dit framework
onderscheiden we vier parameters: (1) definitie van de zinsanalyses in het corpus,
(2) definitie van de deel-analyses, (3) definitie van de combinatie-operaties tussen
deel-analyses, en (4) definitie van de combinatie-kansen van deel-analyses.
Middels dit framework kan een groot aantal performance modellen worden
geinstantieerd. Wij leggen ons de beperking op dat we alleen die parameter-
instellingen kiezen waarvan de resulterende performance modellen ook
daadwerkelijk computationeel kunnen worden getest met beschikbare corpora.

Als test-procedure wordt de zogenaamde "blind testing methode" voorgesteld
(§1.4). Deze methode schrijft voor dat een geanalyseerd taalcorpus "at random"
wordt verdeeld in een zogenaamde training-set en een test-set. Alleen de analyses
van de training-set zinnen mogen worden gebruikt om het systeem te trainen (d.i.
het schatten van de combinatie-kansen van de deel-analyses). De zinnen uit de
test-set worden vervolgens automatisch geanalyseerd ("geparseerd") en
vergeleken met de analyses uit de test-set. De mate waarin de meest
waarschijnlijke analyses overeenkomen met de analyses uit de test-set geeft de
parseer-nauwkeurigheid van het systeem aan.

In het tweede hoofdstuk van dit proefschrift wordt een eerste realisatie van een
performance model binnen het DOP-framework uitgewerkt, die we DOP1
noemen. DOP1 gebruikt "deelbomen" uit het corpus als deel-analyses en
"compositie" als combinatie-operatie tussen deel-analyses. Voor het schatten van
de compositie-kansen van deelbomen wordt gebruik gemaakt van twee
assumpties: (1) de deelbomen zijn statistisch onafhankelijk, en (2) de verzameling
deelbomen representeert de totale populatie van deelbomen. Het belangrijkste
kenmerk van DOP1 is het onderscheid tussen de kans van een derivatie (of
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afleiding) van een zin en de kans van een parseerboom (of analyse) van een zin.
De kans van een derivatie is gelijk aan het product van de compositie-kansen van
de gebruikte deelbomen, terwijl de kans van een parseerboom gelijk is aan de
som van de kansen van de verschillende derivaties die deze boom genereren.

Hoofdstuk 3 introduceert een Formele Talen Theorie van Stochastische
Grammatica's waarbinnen verschillende stochastische taalmodellen kunnen
worden gearticuleerd en vergeleken. We beschrijven DOP1 als een projectie van
een boom-verzameling in een "Stochastic Tree-Substitution Grammar" (STSG),
en vergelijken op formele wijze STSG met de bekende "Stochastic Context-Free
Grammar" (SCFG). Een belangrijk resultaat van deze vergelijking is dat SCFGs
stochastisch zwakker zijn dan STSGs: de verzameling van stochastische boom-
talen gegenereerd door SCFGs is een deelverzameling van de verzameling van
stochastische boom-talen gegenereerd door STSGs. We vergelijken STSG ook
met twee andere stochastische grammatica's die in de literatuur zijn voorgesteld
om de statistische context-ongevoeligheid van SCFGs te boven te komen:
"Stochastic History-Based Grammar" en "Stochastic Tree-Adjoining Grammar".
Het blijkt dat deze stochastische grammatica's niet alle statistische
afhankelijkheden kunnen beschrijven die kunnen worden beschreven door STSG.

In hoofdstuk 4 wordt het probleem van het berekenen van de meest
waarschijnlijke parseerboom van een zin in DOP1 behandeld. We maken
onderscheid tussen parseren en disambigueren, en tonen aan dat het probleem niet
zozeer ligt in de constructie van een zogenaamd "parse-forest" voor een zin, maar
in de selectie van de meest waarschijnlijke parseerboom uit dit forest. We laten
zien dat een Viterbi-optimalisatie niet toepasbaar is voor het vinden van de meest
waarschijnlijke parseerboom. We stellen een iteratieve Monte Carlo procedure
voor die de meest waarschijnlijke analyse kan schatten met een fout die
willekeurig klein kan worden gemaakt in polynomiale tijd. Tenslotte, gaan we in
op enige psychologisch interessante eigenschappen van Monte Carlo
disambiguering.

In hoofdstuk 5 testen we de verdiensten van DOP1 als performance model voor
syntactische disambiguering. Experimenten op part-of-speech sequenties van het
"Air-Travel Information System" (ATIS) corpus resulteren in 96% parseer-
nauwkeurigheid, hetgeen substantieel hoger is dan de parseer-nauwkeurigheid van
andere systemen. Als de grootte van de corpus-deelbomen wordt beperkt, neemt
de parseer-nauwkeurigheid af tot 52% bij een deelboom-diepte van één. Het blijkt
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dat predicties die zijn gebaseerd op de meest waarschijnlijke parseerboom zeer
veel accurater zijn dan predicties gebaseerd op de parseerboom die wordt
gegenereerd door de meest waarschijnlijke derivatie. We testen ook hoeveel de
eliminatie van eenmaal-voorkomende deelbomen de parseer-nauwkeurigheid
beinvloedt, en in welke mate de grootte van de training-set de nauwkeurigheid
beinvloedt. Tenslotte stellen we vast dat DOP1 100% nauwkeurigheid haalt als de
training-set en test-set worden samengevoegd, terwijl SCFG in dat geval slechts
59% nauwkeurigheid haalt.

Hoofdstuk 6 begint met een onderzoek naar wat nodig is om DOP1 uit te breiden
zodanig dat zinnen met onbekende woorden kunnen worden geparseerd. Het
model DOP2 wordt voorgesteld als een zeer eenvoudige extensie van DOP1:
onbekende woorden worden gelabeld met alle lexicale categorieen, waarna DOP1
wordt gebruikt voor het berekenen van de meest waarschijnlijke parseerboom.
Experimenten met DOP2 op woord-sequenties uit het ATIS corpus, laten echter
een teleurstellende parseer-nauwkeurigheid van 63% zien. Een kwalitatieve
evaluatie van de testzinnen met onbekende woorden wijst uit dat DOP2 een
afwijking heeft naar het gebruik van kleinere deelbomen. De evaluatie van
testzinnen met alleen bekende woorden leidt tot de notie van "onbekende-categorie
woord": een meerduidig woord dat in de training-set voorkomt, maar met een
andere categorie dan nodig is om de test-zin met dit woord correct te parseren.
Het blijkt dat DOP2 inadequaat is voor het resolveren van onbekende-categorie
woorden.

De resultaten van hoofdstuk 6 leiden tot het performance model DOP3. Het
belangrijkste inzicht van DOP3 is dat de notie van "onbekende deelboom" de
problemen met zowel onbekende woorden als onbekende-categorie woorden zou
kunnen oplossen. Teneinde met onbekende deelbomen om te kunnen gaan,
beperken we ons tot deelbomen waarvan de onbekendheid afhangt van onbekende
terminale symbolen. Het voornaamste probleem blijkt dan de schatting te zijn van
de frequenties van onbekende deelbomen. Om dit probleem op te lossen, laten we
de assumptie vallen dat alle deelbomen zijn waargenomen, en behandelen we een
corpus als een sample van een grotere populatie. We gebruiken de Good-Turing
methode voor het schatten van de populatie-kansen van zowel onbekende als
bekende deelbomen. Dit leidt tot de definitie van het performance model DOP3.
Experimenten tonen aan dat DOP3 redelijk succesvol zinnen met onbekende (-
categorie) woorden kan parseren en disambigueren: DOP3 behaalt 83% parseer-
nauwkeurigheid bij een deelboom-diepte ≤ 3. Bovendien lijdt DOP3 niet meer
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onder de afwijking in de richting van kleinere deelbomen als in DOP2. De Good-
Turing methode wordt vergeleken met de zgn. Add-k methode, resulterend in
DOP4. Het blijkt dat DOP4 een slechtere parseer-nauwkeurigheid oplevert dan
DOP3. Om de best mogelijke resultaten te verkrijgen, wordt DOP3 uiteindelijk
verrijkt met een extern woordenboek (Longman), hetgeen het hybride model
DOP5 oplevert, dat een nauwkeurigheid bereikt van 92% (voor deelboom-diepte
≤ 3).

Het laatste hoofdstuk onderzoekt wat nodig is om een syntactisch geanalyseerd
taalcorpus uit te breiden met semantische interpretaties. We laten zien dat als we
"oppervlakte-compositionaliteit" aannemen, het syntactische annotatie probleem
kan worden gegeneraliseerd naar het probleem van semantische annotatie. Voor
het analyseren van echte tekst lijken partiele annotaties echter realistischer. We
stellen het performance model DOP6 voor, waarin elke deelboom uit het corpus
kan functioneren als productieve eenheid, ook als de semantiek ervan nog niet
volledig is gespecificeerd, mits de semantiek uiteindelijk kan worden berekend
middels het compositionaliteits-principe op een van de volgende twee manieren:
(1) de betekenis kan worden geconstrueerd middels eenvoudige compositie van
de constituenten of (2) de betekenis kan worden afgeleid middels het abstraheren
van de contributie(s) van de zuster kno(o)p(en) uit de semantiek van de direct
bovenliggende knoop. Het belangrijkste statistische kenmerk van DOP6 is de
waarschijnlijkheid van een interpretatie I van een zin als de som van de kansen
van alle parseerbomen die een top-knoop semantiek hebben die logisch equivalent
is aan I. Tenslotte, als een belofte voor toekomstig onderzoek, behandelen we de
invloed van discourse-structuur en recentheid op de analyse van een invoer-zin.
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