
LEARNING EFFICIENT DISAMBIGUATION

KHALIL SIMA’AN

Institute for Logic, Language and Computation (ILLC)

Utrecht Institute for Linguistics (Uil-OTS)

ILLC Dissertation Series 1999-02

institute for logic, language and computation

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-5256090

fax: +31-20-5255101
e-mail: illc@wins.uva.nl

LEARNING EFFICIENT DISAMBIGUATION

LEREN EFFICIËNT TE DESAMBIGUEREN
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de Rector Magnificus, prof. dr. H.O. Voorma
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen
op woensdag 31 maart 1999

des ochtends te 10.30 uur

door

KHALIL SIMA’AN

geboren op 12 september 1964 te Haifa

Promotoren: Prof. ir. S. P. J. Landsbergen, Universiteit Utrecht
Prof. dr. ir. R. J. H. Scha, Universiteit van Amsterdam

This work was partially funded by the Netherlands Organization for Scientific Research
(NWO) and the Foundation for Language Technology (STT, Utrecht University). It was
facilitated by support from the Institute for Logic, Language and Computation (ILLC)
and from the Utrecht Institute of Linguistics (Uil-OTS).

Learning efficient disambiguation / Khalil Sima’an.
Thesis, Utrecht University - With summary in Dutch
ISBN 90-73446-88-0
Subject headings: natural language processing/machine learning/probabilistic parsing.

Cover design by Yael Seggev
c

�
by Khalil Sima’an.

to my parents,

Mariam and Butros Sima’an

v

Contents

Preface xi

1 Introduction 1
1.1 A brief summary . 1
1.2 Ambiguity and performance models . 2

1.2.1 Competence and performance models 3
1.2.2 Overgeneration and undergeneration 4
1.2.3 The probabilistic-linguistic approach 6
1.2.4 The corpus-based approach . 6

1.3 Ambiguity and Data Oriented Parsing 8
1.4 Efficiency problems of performance models 9
1.5 Problem statement, hypotheses and contributions 10

1.5.1 Problem statement . 10
1.5.2 Fundamental hypotheses . 12
1.5.3 Contributions . 13

1.6 Thesis overview . 14

2 Background 15
2.1 Introduction . 15
2.2 Stochastic grammars . 17

2.2.1 Stochastic Finite State Machines and word-graphs 17
2.2.2 Stochastic Context Free Grammars (SCFGs) 18
2.2.3 Stochastic Tree-Substitution Grammars (STSGs) 21
2.2.4 Ambiguity . 23

2.3 Data Oriented Parsing: Overview . 23
2.3.1 Data Oriented Parsing . 24
2.3.2 Tree-banks . 25
2.3.3 Bod’s instantiation . 25
2.3.4 The DOP framework . 28

vii

2.4 Elements of Machine Learning . 29
2.4.1 Learning . 29
2.4.2 Inductive learning . 31
2.4.3 Explanation-Based Learning . 33

2.5 Thesis goals and overview . 37

3 Complexity of Probabilistic Disambiguation 41
3.1 Motivation . 42
3.2 Tractability and NP-completeness . 43
3.3 Problems in probabilistic disambiguation 46

3.3.1 The optimization problems . 47
3.3.2 The corresponding decision problems 48

3.4 NP-completeness proofs . 49
3.4.1 A guide to the reductions . 50
3.4.2 3SAT to MPPWG and MPS simultaneously 50
3.4.3 NP-completeness of MPP . 55
3.4.4 NP-completeness of MPS-SCFG 56

3.5 Conclusions and open questions . 56

4 Specialization by Ambiguity Reduction 59
4.1 Introduction . 59
4.2 Analysis of other work . 62

4.2.1 CLE-EBL: Rayner and Samuelsson 62
4.2.2 Samuelsson’s entropy thresholds 64
4.2.3 LTAG-EBL: Srinivas and Joshi 65
4.2.4 HPSG-EBL: Neumann . 66
4.2.5 Analysis . 67

4.3 Ambiguity Reduction Specialization . 69
4.3.1 The ARS framework . 69
4.3.2 Parsing under ARS . 73
4.3.3 Specializing DOP with ARS . 73
4.3.4 Summary . 74

4.4 An instance ARS algorithmic scheme 75
4.4.1 A sequential covering EBL scheme 75
4.4.2 Completing composed ambiguity sets 83
4.4.3 A novel parsing algorithm . 86
4.4.4 Specializing DOP . 89

4.5 Measures of ambiguity and size . 91
4.5.1 Entropy minimization algorithm 92
4.5.2 Reduction Factor algorithm . 99

4.6 Summary and open questions . 101

viii

5 Efficient algorithms for DOP 103
5.1 Motivation . 104

5.1.1 What should we maximize ? . 104
5.1.2 Accurate + efficient � viable . 105
5.1.3 Efficient algorithms . 106

5.2 Overview of related work . 107
5.3 Background: CKY and Viterbi for SCFGs 109

5.3.1 CFG parsing with CKY . 109
5.3.2 Computing MPP/MPD for SCFGs 112
5.3.3 Direct application to DOP STSGs 113

5.4 An optimized algorithm for DOP . 114
5.4.1 A two-phase parser . 114
5.4.2 CNF approximation . 115
5.4.3 STSG-derivations recognition 117
5.4.4 Computing the MPD . 121
5.4.5 Optimization: approaching linearity in STSG size 126
5.4.6 Extension for disambiguating word-graphs 129

5.5 Useful heuristics for a smaller STSG . 131
5.6 Conclusion . 133

6 Implementation and empirical testing 135
6.1 Implementation details . 136

6.1.1 ARS learning algorithms . 136
6.1.2 Implementation detail of the parsers 139

6.2 Empirical evaluation: preface . 140
6.2.1 Goals, expectations and limitations 140
6.2.2 The systems that are compared 141
6.2.3 Evaluation measures . 142

6.3 Experiments on OVIS tree-bank . 147
6.3.1 Early experiments: January 1997 149
6.3.2 Recent experiments on OVIS . 150
6.3.3 Experiments using full annotation on utterances 151
6.3.4 Experiments using syntax-annotation on utterances 160
6.3.5 Experiments using full annotation on word-graphs 161
6.3.6 More frequent input processed faster 163
6.3.7 OVIS: summary of results and conclusions 165

6.4 Experiments on SRI-ATIS tree-bank . 166
6.4.1 Necessary preparations . 166
6.4.2 Experiments on T-SRI-ATIS . 168
6.4.3 ATIS: summary of results and conclusions 171

6.5 Concluding remarks . 172

7 General conclusions 183

ix

Bibliography 187

Samenvatting 197

Curriculum Vitae 203

x

Preface

Late in an evening in November 1993, I received a bizarre phone-call concerning a re-
search position in a project on parsing natural language. I was told that the project is
about resolving ambiguity, that it is for two years only (stressing that a PhD is not the
goal) and that it pays better than being a PhD-student (an “immoral” approach :-)). It
sounded like adventure because I had already met Remko Scha a couple of times the year
before, when I was writing my Master’s thesis on ambiguity. During one of these times
I asked Remko “how do you people in natural language processing get rid of ambigu-
ity from a natural language grammar”, Remko answered tersely “we are not interested
in making natural language grammars unambiguous”. As a computer scientist I was puz-
zled; I felt that Computer Science is a “safer” place to be than those “ambiguous linguistic
environments”. In an interview for the job I also met Rens Bod and Steven Krauwer, who
was the intended project leader. The week before the interview I had read the papers on
DOP. Because I was told that there were no polynomial-time parsing algorithms for DOP,
I sat down and designed such an algorithm. During the interview I explained some of the
details of the algorithm, Remko and Steven were interested in seeing this written down
first, Rens was surprised and did not believe it was possible. Despite of that, I was hired
to develop a parser for DOP in a two year project called CLASK. Meanwhile, Remko and
his group were involved in a national project (“OVIS”) of the Netherlands organization
for Scientific Research (NWO). The results of CLASK constituted my “visa” for joining
“OVIS” for one year. After that, Remko and I decided that it is time to concentrate on
writing a thesis; NWO and the Foundation for Language and Speech (STT) decided to
support this proposal.

This thesis exists thanks to various project proposals submitted together with Remko
Scha. Without the support of Remko Scha (ILLC), Steven Krauwer (STT), Jan Lands-
bergen (OTS) and Alice Dijkstra (NWO), this thesis would have remained virtual. Our
proposals would not have become projects without additional support from Loe Boves,
Martin Everaart, Gertjan van Noord, Eric Reuland, and the STT-board.

I am grateful to my promoters for the involvement and the supervision. They listened,
discussed, read, commented and corrected always with so much patience. I am especially
indebted to Christer Samuelsson and Remko Bonnema who read and commented on ear-
lier versions of all chapters; in particular, Christer detected and suggested corrections to a
serious error in the original paper that led to chapter 3. I thank also Ameen Abu-Hanna,

xi

Yaser Yacoob and Yoad Winter for reading and commenting on earlier versions. Apart
from the aforementioned people, this thesis benefited from discussions with Erik Aarts,
Rens Bod, Boris Cormons, Walter Daelemans, Antal van Den Bosch, Aravind K. Joshi,
Ron Kaplan, Mark-Jan Nederhof, Renee Pohlmann, B. Srinivas, Jorn Veenstra and Ja-
coob Zavrel. And I thank the dissertation-committee members for their effort: Walter
Daelemans, Jan van Eijck, Michael Moortgat, Anton Nijholt and Christer Samuelsson.

I am grateful to Remko Bonnema for allowing me to use the software tools that he de-
veloped beside and around my parser. I thank both the Priority Programme of the Nether-
lands organization for Scientific Research (NWO) and the Alfa Informatica at the Univer-
sity of Amsterdam for providing the word-graphs, the OVIS tree-bank and the hardware
for conducting the experiments. I thank SRI-Cambridge (UK), especially David Carter,
Steve Pullman and Manny Rayner, for supplying the ATIS tree-bank for the experiments.
I thank the support-team of STT and OTS: Brigitte Burger, Leslie Dijkstra, Sibylla Nijhof,
Annette Nijstad and Margriet Paalvast. And I am grateful to Yael Seggev for designing
the cover of this thesis.

Although this thesis was due about half a year ago, its existence now might still come
somewhat as a surprise. Shortly after I officially started preparing for writing it, about
eighteen months ago, I was hit by health troubles. During these hard times, when it
seemed that there was only one possible outcome for any dice I would cast ����� I was sur-
rounded by so many caring, supportive and loving people. Among these people I would
like to name here my friends Áadel, Ameen, Jan, Jelena, Louis, Neeltje, Patricia, Saeed,
Sjoerd, Sophie, Wessel, Yael, Yaser and Yoad. I re-mention Ameen (intentionally !) who
supported me in all ways from the first moment I arrived in Amsterdam about ten years
ago (after “ruining” my soul - in a joint complicity together with Yaser - on the beach
of Haifa for so many years). I also mention the dear families Rhebergen and van-Nee
for so much care and support: Marian, Peter, Marije, Snoopy (Miaao), 2 � Didi, Tineke,
Theo, Sitske,

���
and Mw. van Nee-van Lonkhuÿzen. Marian and Peter are acknowl-

edged despite of reminding me so often that I am merely a “gastarbeider” and asking me
to empty my pockets from stones every time I enter their house (this is called “Dutch hos-
pitality” ;-)). I thank also Hanna and Sumayya Abu-Hanna for the long lasting friendship
and support.

If I was able to write this thesis, it is due to the time that my parents, Mariam and
Butros, spent on educating me when I was a child. It was a hostile environment around
them, an environment that denied from them their youth, beloved ones, home, roots and
belongings. Still they were able to put me on the track that lead to this thesis ����� this thesis
is actually theirs. My brothers Camil and Nabil, and my sister Camilia have always been
so loving, supportive and caring. They are the dearest. I wish we could be more often
together. Camil is acknowledged again for “revenging” from Peter on behalf of myself.

Finally, the amoora Didi. She evokes the waves that keep the waters that surround me
so fresh. During the cold and dark times I found the warmest shelter within her smiles
and tears. She showed me far places where only some travelers go, and as it seems now,
she intends to show me new places where especially anthropologists would want to go �����
ADIOS !

xii

Chapter 1

Introduction

1.1 A brief summary

Many contemporary performance models of natural language parsing resolve ambigu-
ity by acquiring probabilistic grammars from tree-banks that represent language use in
limited domains. Among these performance models, the Data Oriented Parsing (DOP)
model represents a memory-based approach to language modeling. The DOP model casts
a whole tree-bank, which is assumed to represent the language experience of an adult in
some domain, into a probabilistic grammar called Stochastic Tree-Substitution Grammar
(STSG).

A remarkable fact about contemporary performance models is their entrenched inef-
ficiency. Despite of their ability to learn from tree-banks, these models do not account
for two appealing properties of human language processing: firstly, that more frequent ut-
terances are processed more efficiently, and secondly, that utterances in specific contexts,
typical for limited domains of language use, are usually less ambiguous than they are in
general contexts. This thesis defends the proposition that the absence of mechanisms that
represent these and similar properties is a major source for the inefficiency of performance
models. Besides this source of inefficiency of performance models in general, the DOP
model in particular suffers from other inveterate sources of inefficiency: the huge STSGs
that it acquires and the complexity of disambiguation by means of STSGs.

This thesis studies solutions to the inefficiency of performance models in general and
the DOP model in particular. The principal idea for removing these sources of inefficiency
is to incorporate “efficiency properties” of human behavior in limited domains of language
use, such as the properties stated above, into existing performance models. Efficiency
properties can be observed through the statistical biases of the linguistic phenomena that
are found in tree-banks that represent limited domains of human language use. These
properties can be incorporated into a performance model through the combination of two
methods of learning from a domain-specific tree-bank: an off-line method that constrains
the recognition-power and the ambiguity of the linguistic annotation of the tree-bank such
that it specializes it for the domain, and an on-line performance model that acquires less

1

2 Chapter 1. Introduction

ambiguous and more efficient probabilistic grammars from that less redundant tree-bank.
With this idea as departure point, this thesis studies both on-line and off-line learning of
ambiguity resolution in the context of the DOP model. To this end

� it presents a framework for specializing performance models, especially the DOP
model, and broad-coverage grammars to limited domains by ambiguity reduction.
Ambiguity-reduction specialization takes place off-line by using a tree-bank that is
representative of a limited domain of language use.

� it presents deterministic polynomial-time algorithms for parsing and disambigua-
tion under the DOP model for various tasks such as sentence disambiguation and
word-graph (speech-recognizer’s output) disambiguation. Crucially, these algo-
rithms have time complexity linear in STSG size. It is noteworthy that prior to the
first publication of these algorithms, parsing and disambiguation under the DOP
model took place solely by means of inefficient non-deterministic exponential-time
algorithms.

� it provides proofs that some actual problems of probabilistic disambiguation under
Stochastic Context-Free Grammars and Stochastic Tree-Substitution Grammars are
NP-Complete. The most remarkable among these problems is the problem of com-
puting the most probable sentence from a word-graph under a Stochastic Context-
Free Grammar (SCFG).

� it reports on an extensive empirical study of the DOP model and the specializa-
tion algorithms on two independent domains that feature two languages and two
different tasks.

The rest of this chapter presents a brief general introduction to this thesis. Section 1.2
caters especially to readers who are not familiar with the relevant developments and de-
bates in the field of Computational Linguistics in general and in Corpus-based Linguistics
in particular. It pinpoints the present research in the general direction of Computational
Linguistics by describing the course of arguments that lead to the evolution of what cur-
rently are known as performance models of language. Keywords in this section are: lin-
guistic grammars, parsing, competence models, ambiguity, overgeneration, probabilistic
grammars, corpus-based models, learning and performance models. Section 1.3 provides
a short introduction to Data Oriented Parsing. Section 1.4 discusses shortly the principal
subject of this thesis: efficiency of performance models. Section 1.5 states the problems
that this thesis deals with, the hypotheses that it defends, and its contributions. Finally
section 1.6 provides an overview of the other chapters.

1.2 Ambiguity and performance models

Humans interact in speech and in writing and they are usually able to understand the mes-
sages that they exchange. The main problem that keeps the researchers busy in the field of

1.2. Ambiguity and performance models 3

Natural Language Processing (NLP) is how to model this linguistic capacity. Besides the
“elevated” scientific interest and curiosity, the research in NLP is also driven and often
even financed by “humble” economical interest. Needless to say, it is very attractive to
automate tasks in which language plays a central role, e.g. systems that you can command
through speech, systems that can have a dialogue with humans in order to provide them
with information and services (e.g. time-table information and ticket reservation), systems
that translate the European Commission’s lengthy reports simultaneously into fifteen or
more languages. In fact, some impoverished systems have already found their way to
the market, speech-recognition systems that understand some words and even sentences.
However, it is not an exaggeration to say that the field of NLP is a baby that has just
discovered that it can stand up.

A major assumption that underlies the research in NLP is that human languages share
a common internal structure. This assumption is essential for NLP because it implies that
it is possible to capture the many and diverse languages in one single model: the model
of human languages. What this model should look like and what methods it should be
based on is still a subject of debate in NLP research. However, most NLP researchers
agree on the need for a divide-and-conquer modeling strategy: the model of understand-
ing a spoken/written message is divided into a sequence of modules, each dealing with a
subtask of linguistic understanding. Examples of these modules are speech-recognition
(constructing words from speech signals), morphological analysis (exposing the struc-
ture of words), part-of-speech tagging (categorizing words), syntactic analysis (exposing
the structure of sentences) and semantic analysis (assigning meanings to sentences). By
dividing the complex task into smaller subtasks (with suitable interfaces between the cor-
responding modules), NLP researchers hope that it will be “easier” to understand and
model each of the subtasks separately.

In this thesis we are mostly interested in syntactic analysis, also called parsing. Syn-
tactic analysis is concerned with discovering the internal structures of sentences in order
to facilitate the construction of representations of their meaning. The syntax of a sentence
is a kind of skeleton that supports its “semantic flesh”. Usually, syntactic analysis is not a
goal in itself but rather a kind of fore-play which prepares for semantic analysis.

1.2.1 Competence and performance models

In the past four decades of computational linguistic research, the major concern has been
to develop models that characterize what sentences are grammatical and how the mean-
ings of these sentences are constructed from basic units; these basic units can be seen as
the bits and pieces of the syntactic skeleton and the corresponding muscles of the seman-
tic flesh. In this, computational linguistics describes a language as a set of sentences, a
set of analyses and a correspondence between these two sets. Usually, this triple is de-
scribed by a grammar that shows how sentences are constructed from smaller phrases,
e.g. verb-phrases and noun-phrases, that are in turn constructed from yet smaller phrases
or words. A grammar, thus, allows decomposing or parsing a sentence into its basic units;
the process of parsing a sentence using a grammar results in analyses (we also say that

4 Chapter 1. Introduction

the grammar - or a parser that is based on it - assigns analyses to the sentence). Com-
putational linguistics aims at developing the types of grammars that seem most suited for
describing natural languages. For this difficult task, the computational linguists had to
make an inevitable assumption as to what kind of language use interests them: computa-
tional linguists assume that the subject matter of their studies is “idealized” language. The
computational linguists refer to the grammars that they develop as competence models of
language (Chomsky, 1965), as opposed to performance models of language, i.e. models
of “non-idealized” linguistic behavior of humans.

1.2.2 Overgeneration and undergeneration

The focus of computational linguistics on developing grammatical descriptions resulted
in lack of attention for modeling the input-output behavior of the human linguistic system.
In applications that involve natural language, grammar engineers try in the first place to
develop grammars that bridge the gap between these grammatical descriptions and actual
language use. Despite of the immense efforts, these grammars suffer from many problems
among which two are most severe: overgeneration and undergeneration. Overgeneration,
also known

�

as ambiguity, is the phenomenon that a grammar tends to assign too many
analyses to a sentence, most of which are not perceived by humans. Undergeneration,
on the other hand, is the phenomenon that a grammar does not assign to a sentence the
analyses that are perceived by humans (often the grammar does not assign any analyses
at all). In this thesis we will focus on the problem of overgeneration. Next we provide
two examples of overgeneration. The first exemplifies this problem in natural language
and explains why linguistic grammars do not aim at solving it. And the second example
exemplifies why this problem is so severe in linguistic grammars.

1.1. EXAMPLE. Consider the sentence “John found Mary a nice woman”. It has two
different interpretations: John considered Mary to be a nice woman or John found a nice
woman for Mary. Most people perceive only one interpretation (often the first). Never-
theless, it is essential that a grammar of English be able to analyze this sentence both
ways. Only within enough context and with access to knowledge resources beyond lan-
guage (world-knowledge), the choice of the right analysis might become clear. Therefore,
linguistic competence grammars do not try to select the correct analysis but assign (at
least) both analyses to the sentence.

�

Some linguists use the term overgeneration differently from the term ambiguity. This is because these
linguists view a language as a predefined and fixed set of utterances. When the grammar recognizes se-
quences of words that are not in the language, the grammar overgenerates; when the grammar assigns to
an utterance more than one analysis, the grammar is ambiguous. Thus, in this line of reasoning a gram-
mar can be ambiguous but not overgenerating. In our experience-based approach, we view a language as
a probability distribution determined by experience rather than being an a priori fixed set. Moreover, we
view parsing as assigning a single analysis to every sentence. In our view, an ambiguous grammar, that
does not offer any means to discriminate between the various analyses that it assigns to the same sentence,
is an overgenerating grammar. And because we do not believe in clear-cut grammaticality judgments but in
a continuum of “grammaticality levels”, overgeneration coincides with ambiguity.

1.2. Ambiguity and performance models 5

V

eats

fork

N

a

DET

P

with

P

with N

meat

NP

S

NP VP

V

eats

N

Max

NP

N

S

NP VP

N

Max

VP PP

NPNP

N

PP

NP

pizza

pizza

Figure 1.1: Syntactic analyses

Linguistic grammars assign to the preceding example sentence many other analyses
beside these two. Most analyses are not perceived by humans and are a byproduct of the
complex grammar rules. An empirical study of this problem (Martin et al., 1987) shows
that actual linguistic grammars assign hundreds but even thousands of analyses to the very
same sentence. The following example shows how this can happen.

1.2. EXAMPLE. Consider the two sentences “Max eats pizza with a fork” and “Max eats
pizza with meat”. The meanings of both sentences are clear to the reader and the correct
syntactic analyses of both sentences are found in figure 1.1. A competence grammar of
English should contain the correct analysis for each of the two sentences. However, this
means that such a grammar assigns to each of these sentences at least two analyses: the
correct analysis and another analysis that is derived by combining rules that originate
from the analysis of the other sentence.

A grammar that undergenerates or overgenerates is not very useful in practice. A
system based on such a grammar tends to be brittle and inaccurate. Sentences that are
assigned no analyses by the grammar are not understood by the system, and sentences
that are assigned too many analyses confuse the system. Therefore, for building a system
that involves a serious linguistic task, a grammar engineer must find a way to weed out the
wrong analyses from the grammar but keep the correct ones in it. This is important be-
cause if the wrong analysis is assigned to a sentence it might result in the wrong meaning.
Consider what happens if Max eats the fork and the pizza; this is exactly what happens if
the analysis at the right-side of figure 1.1 is properly adjusted and assigned to the sentence
at the left-side of that figure.

It is by no means easy to get rid of overgeneration and undergeneration from a gram-
mar for a serious portion of a natural language. Firstly, it is very hard for a human to keep
track of the complex interactions between the many rules of a grammar. And secondly,
hacking the grammar to get rid of overgeneration usually results in extreme undergenera-

6 Chapter 1. Introduction

tion (and vice versa). As a matter of fact, there are no serious natural language grammars
out there that do not suffer from overgeneration as well as undergeneration.

1.2.3 The probabilistic-linguistic approach

A decade and a half ago a different approach to the problem of ambiguity in linguistic
grammars revived due to its success in speech-recognition: the probabilistic approach.
The slogan of this approach is: allow linguistic grammars to overgenerate but resolve the
ambiguities by assigning probabilities to the different analyses of a sentence. Assigning
probabilities to the analyses of a sentence enables selecting one analysis: the analysis with
the highest probability. In fact, according to the probabilistic approach it is possible to as-
sign probabilities that minimize the chance of committing errors in selecting an analysis

�

.
Typically, assigning probabilities to the analyses is achieved by attaching probabilities
to the rules of the linguistic grammar, resulting in probabilistic or stochastic linguistic
grammars e.g. (Fujisaki, 1984; Fujisaki et al., 1989; Jelinek et al., 1990; Resnik, 1992;
Schabes, 1992; Schabes and Waters, 1993)

In one view on the probabilistic approach, the probabilities assigned to a linguistic
grammar are considered means for approximating phenomena that the grammar is not
aimed at modeling, e.g. broad-context (discourse) dependencies and world-knowledge.
The probabilities, thus, constitute averages of many variables that influence the choice of
the correct analysis of a sentence. Although this view is valid, it might not do the proba-
bilistic approach full justice. Many researchers believe that the probabilistic approach to
language has psychological relevance. A relevant psychological observation here is that
humans tend to register frequencies and differences between frequencies. Since proba-
bilistic models employ relative frequencies to estimate probabilities, they can be seen as
implementing this observation. In any case, since we are here less interested in psycho-
logical studies, we will refrain from discussing them and we refer the interested reader to
the discussions provided in (Scha, 1990; Scha, 1992; Bod, 1995a) and the references that
they cite.

1.2.4 The corpus-based approach

Although the probabilistic approach offers linguistic grammars a way out of the ambigu-
ity maze, it does not offer a solution to the problem of developing performance models
of language. Linguistic grammars model idealized language use. Extending them with
probabilities does not make them suitable for modeling linguistic input-output behavior
of humans. Many constructions will be missing from the linguistic grammar and have to

�

A probabilistic model can minimize the chance of committing error to the extent that it is true to the
task at hand (see (Mitchell, 1997) on Bayesian modeling). If for example the probabilistic grammar is
very shallow, e.g. sentences are assigned only the sentential-category without any internal structure, it can
minimize the error in assigning a sentential-category to a sequence of words. The lower bound on the
error-rate depends on how important are the hierarchical linguistic structures to the task at hand. A good
example of this scenario are the n-gram models of part-of-speech tagging that seem to have a lower-bound
on error-rate (roughly 3-5%).

1.2. Ambiguity and performance models 7

be engineered by humans. Moreover, there is a related fundamental question with regard
to whether probabilities should be attached to linguistic competence grammar rules in the
first place. Generally speaking, probabilities are more meaningful when they are attached
to dependencies and relations that are more significant for the task they are employed for.
In language modeling, often relations between words, between phrasal-categories and,
for some sentences, even between whole constituents are most significant in determining
the correct analyses of sentences. Therefore, attaching probabilities to the rules of a lin-
guistic competence grammar is equivalent to attaching them only to a small portion of the
linguistic relations that are significant to syntactic and semantic analysis.

A major shift in developing performance models took place less than a decade ago.
It can be characterized as a shift from a top-down approach to a bottom-up approach to
modeling. Rather than considering the linguistically developed competence models as
central to performance models, the bottom-up approach puts collections of real-world
data, corpora, at the center of its activity. With the corpus of data at the center, this ap-
proach, the corpus-based approach, aims at acquiring or learning from the data a suitable
performance model. Crucially, the data is collected in such a way that it is representative
of language use in some domain. The data may be annotated with linguistic information,
or it may be “raw”. If the data are annotated, the annotation is usually based on linguistic
knowledge. This offers a kind of “back-door” where linguistic knowledge enters a per-
formance model. Learning from annotated data is analogous to tutoring (supervising) a
novice in some task by showing him examples and their solutions. If the data are “raw”,
this is similar to learning from scratch without the help of a supervisor (i.e. unsupervised
learning).

By acquiring performance models from corpora, the corpus-based approach offers the
hope that the acquired performance models will be better suited for processing new sim-
ilar data. Another attractive feature, market-wise, of automatic learning of performance
models is the independence from manual labor, which is not always available and not
always consistent.

Currently, there are different corpus-based methods in linguistics. Some of these
methods have been successful in acquiring useful performance models for some (rel-
atively simple) linguistic tasks, e.g. part-of-speech tagging of free text (PoSTagging).
Examples

�

of successful corpus-based methods for PoSTagging are Hidden Markov Mod-
els (HMMs) (Bahl and Mercer, 1976; Church, 1988), Transformation-Based Error Driven
Learning (Brill, 1994; Brill, 1993), Instance-Based Learning (Daelemans et al., 1996) and
Maximum-Entropy Modeling (Ratnaparkhi, 1996). There are a few more linguistic tasks
for which the corpus-based approach currently offers suitable solutions, e.g. morpholog-
ical analysis, phonological analysis, chunking or recognition of noun-phrases. However,
in general, these tasks constitute the less complex subtasks of sentence processing. For

�

There are also linguists that acquire their grammars and models from corpora manually, e.g. the Con-
straint Grammar (CG) approach (Karlsson et al., 1995). This can be considered a linguistically-oriented
corpus-based approach to acquiring linguistic models. Currently, the CG approach outperforms purely sta-
tistical methods in the task of PoSTagging (Samuelsson and Voitilainen, 1997). See (Samuelsson, 1998) for
a discussion of the role of linguistics in statistical learning, and for a summary of the CG approach, where
it (sensibly) meets and where it differs from other corpus-based approaches.

8 Chapter 1. Introduction

the more complex tasks, e.g. syntactic and semantic analysis, none of the contemporary
corpus-based approaches can claim similar success yet.

Most contemporary corpus-based methods of syntactic analysis are probabilistic, e.g.
(Pereira and Schabes, 1992; Magerman, 1994; Bod, 1995a; Charniak, 1996; Collins,
1996; Collins, 1997; Ratnaparkhi, 1997; Srinivas, 1997; Goodman, 1998); they acquire
both their grammars and the probabilities of the grammars from tree-banks, i.e. corpora
that contain syntactically analyzed sentences. Some of these approaches achieve a pars-
ing accuracy that constitutes an improvement even on well-developed linguistic grammars
and parsers (Magerman, 1994). Nevertheless, none of these young methods has demon-
strated yet that it is the most suitable for applications of natural language disambiguation.
In this situation, the field of Computational Linguistics has become an arena where young
methods compete to prove their vitality and strength. Computational Linguistics has be-
come a multidisciplinary field where tools from many fields, e.g. Linguistics, Logic,
Probability Theory, Information Theory, Computer Science and Machine Learning, are
imported, sharpened and customized for linguistic processing.

1.3 Ambiguity and Data Oriented Parsing

Data Oriented Parsing (DOP) (Scha, 1990; Scha, 1992) is a performance model of lan-
guage that is based on the observation that adults tend to process linguistic input on the
basis of their memory of past linguistic experience. The linguistic experience of an adult
is represented by a tree-bank of analyzed sentences. To process new input, DOP relies
on some psychological observations that boil down to the statement that “frequencies of
analyses that are perceived in the past influence the choice of the analysis of the current
input” (see (Scha, 1990; Scha, 1992; Bod, 1995a)). Thus, DOP does not only memorize
the past analyses but also their frequencies. To analyze a new sentence DOP exploits
similarities between the sentence at hand and all sentences that occurred in the past. The
frequencies of past analyses allow a quantification of the notion of similarity in DOP.

DOP processes a new sentence by first recalling all relevant subanalyses of analyses
from the tree-bank. The notion of a subanalysis is taken here in the broadest sense: any
part of an analysis that does not violate the atomicity of grammar rules that constitute
that analysis. Then these subanalyses are assembled, in the same fashion as grammar
rules, into analyses for the current sentence. The process of assembling the subanalyses
is governed by their relative frequencies in the tree-bank. In this process, the relative
frequencies are treated as probabilities and Probability Theory is brought into action for
computing probabilities of assembled subanalyses and analyses. The most suitable anal-
ysis for the current sentence is selected from among the many assembled analyses as the
one with the largest probability.

A first implementation of this model is worked out in (Bod, 1995a). Bod implements
Scha’s DOP model as a probabilistic grammar that is projected from a tree-bank. Cru-
cially, as Scha prescribes, this probabilistic grammar consists of all subanalyses of the
analyses in the tree-bank together with their relative frequencies. And in conformity with
earlier work on generative probabilistic grammars, the relative frequencies of subanalyses

1.4. Efficiency problems of performance models 9

are conditioned on their root-node category.

The fact that DOP employs a memory of past experience relates DOP to a Machine
Learning tradition with many names (and subtle differences): Memory-Based Learn-
ing, Analogy-Based Reasoning, Instance-Based Learning and Similarity-Based Learning
(see (Stanfill and Waltz, 1986; Aha et al., 1991; Aamodt and Plaza, 1994; Daelemans,
1995)). At least as interesting, however, is the fact that DOP extends the Memory-Based
approach in two important ways: the analysis of new input does not rely on a flat represen-
tation of the past-analyses but on a hierarchical - possibly recursive - linguistic structure
of the analyses, and the analogy function is a probability function

�

(with the relative fre-
quency as interpretation of the notion of probability).

1.4 Efficiency problems of performance models

A remarkable fact about current performance models of natural language parsing, corpus-
based or not, is their entrenched inefficiency of processing. Since performance models
are meant for real-world language use, their natural habitat is the world of applications.
In general, the application of any performance model to real tasks is governed by vari-
ous limitations on space, time and data. Models that do not provide efficient solutions
that fit into the available space and time are impractical and will not scale up to larger
applications. And methods that require huge amounts of data are economically crippled.
Efficiency is indeed an important factor in applying natural language parsing models in
practice.

One of the most inefficient performance models of language is the DOP model. Due
to its enormous probabilistic grammars, the DOP model suffers from extremely high time
and space costs. Despite of the fact that corpus-based performance models such as DOP
learn accurate disambiguation from tree-banks, none of them accounts for efficiency as-
pects of human language processing. Efficiency in human behavior in general and in
linguistic behavior in particular, is a hallmark of intelligence. Models that resort to ex-
haustive search of a huge space of possibilities usually miss crucial aspects of the observ-
able behavior of the human linguistic system.

Currently, many applications that involve natural language are aimed at limited lan-
guage use. The language use in these applications is limited to an extent that is deter-
mined by system design (e.g. restricted dialogue) and/or by the domain of application,
e.g. travel-information and ticket-reservation systems, or computer-manual translators.
Upon studying existing performance models of natural language, one finds that the actual
time and space consumptions of these models depend solely on characteristic measures of
the probabilistic grammar and the individual input utterances, e.g. utterance length, gram-
mar size and ambiguity; the time and space consumptions of these models are not affected
by biases that are typical for limited domains of language use. In fact, it is clear that cur-

�

DOP acquires its probabilities using Maximum-Likelihood Estimation (MLE), which is a restricted
form of Bayesian-Learning (see section 2.4.2).

10 Chapter 1. Introduction

rent performance models have overlooked some attractive efficiency properties that are
attributed to the linguistic behavior of humans, especially in relation to limited domains
of language use. Language use in limited domains shows much less variation than lan-
guage use in less limited domains (Winograd and Flores, 1986; Samuelsson, 1994a), and
humans tend to process frequent input more efficiently (Scha, 1990). These are properties
of human behavior on samples (i.e. representative collections) of utterances and analyses
in limited domains, rather than on individual utterances. Performance models currently
do not exploit such properties to improve their efficiency.

Earlier work has acknowledged the importance of some efficiency properties of sam-
ples of utterances and analyses in limited domains. In (Rayner, 1988; Samuelsson and
Rayner, 1991; Samuelsson, 1994b; Neumann, 1994; Srinivas, 1997) such properties
are exploited in order to improve the efficiency of parsing by broad-coverage linguis-
tic grammars that can be considered competence models of natural language. Except for
(Samuelsson, 1994b), these efforts exploit efficiency properties by precompiling exam-
ples using a pure form of Explanation-Based Learning (EBL) (DeJong, 1981; DeJong and
Mooney, 1986; Mitchell et al., 1986; van Harmelen and Bundy, 1988) (see section 2.4.3).
Samuelsson (Samuelsson, 1994b) was the first to observe that these are properties of
samples (rather than individual analyses) and can be exploited for extending EBL with
statistical reasoning. Encouraged and inspired by these efforts, this thesis addresses effi-
ciency problems of performance models in general and the DOP model in particular by
focusing on efficiency properties of language use in limited domains.

1.5 Problem statement, hypotheses and contributions

This section states the problems that this thesis addresses, sketches the solutions that it
provides and summarizes its contributions.

1.5.1 Problem statement

This thesis focuses on efficiency aspects and complexity problems of contemporary per-
formance models in general and the DOP model in particular. It studies and provides
solutions for two related problems. The first problem concerns acquiring and applying
these performance models under actual limitations on the available data, space and time.
This problem is most urgent in the DOP model and its various instantiations (Bod, 1992;
Bod, 1995b; Charniak, 1996; Sekine and Grishman, 1995; Bonnema et al., 1997; Bod
et al., 1996b). And the second problem is the independence of the actual time and space
complexities of disambiguation algorithms under current performance models from the
domain of language use. This is a consequence of the fact that current performance mod-
els do not exploit general efficiency properties of language use in limited domains. Next,
each of these problems is elaborated.

Problem 1: A base-line research agenda for any performance model of parsing and
disambiguation consists of two elements: algorithms that are efficient enough to enable

1.5. Problem statement, hypotheses and contributions 11

reliable empirical experimentation, and a thorough understanding of the computational
complexity of problems of parsing and disambiguation. The DOP model suffers from the
lack of both. Next we elaborate on each of these two subjects.

Algorithms: The lack of efficient algorithms for DOP and similar models can be at-
tributed to two different time and space complexity issues:

Exponential-time: The DOP disambiguation algorithms developed prior to this
work

�

(Monte-Carlo parsing (Bod, 1993a)) are non-deterministic exponential
time

�

. Due to their inefficiency, these methods prevented reliable empirical ex-
perimentation (based on the cross-validation technique) with the DOP model
in the past (Goodman, 1998). In real-world applications, parsing and disam-
biguation cannot be based on these methods because they do not scale up to
actual applications.

Grammar size: The DOP model employs very large probabilistic grammars.
Therefore, two problems arise in acquiring and employing them in practice.
Firstly, from a certain point on, the size of a probabilistic grammar becomes
a major factor in determining the efficiency of disambiguation. For the actual
DOP probabilistic grammars this is indeed the main factor that determines
their actual time- and space-consumption. And secondly, the larger the proba-
bilistic grammar, the more probability parameters it has. The more parameters
a model has, the more data is necessary for acquiring good relative frequen-
cies as estimates of these parameters. This is the problem of data-sparseness.
Essentially this boils down to the economical observation that constructing
large enough tree-banks is expensive.

Complexity: Prior to this work
�

there existed no studies of the computational time- and
space-complexities of actual problems of disambiguation under the DOP model and
similar probabilistic models.

Problem 2: An important observation about limited domains is that humans tend to ex-
press themselves in the same way most of the time (Winograd and Flores, 1986; Samuels-
son, 1994a). The direct implication of this observation is that in such domains humans
tend to employ only part of their linguistic capacity. Existing performance models that are
acquired from tree-banks, annotated in terms of broad-coverage (i.e. domain independent)
grammars, are not equipped to account for this. Therefore, parsing and disambiguation
algorithms for these models have time and space consumptions that are independent of
the properties of samples of sentences and analyses from these limited domains.

Two of these properties are of interest here. Firstly, the frequencies of utterances in
limited domains usually constitute a non-uniform distribution; in this respect, humans

�

The first versions of the present work were published in 1994 (Sima’an et al., 1994).
�

Although Bod (Bod, 1995a) claims that his algorithm is non-deterministic polynomial-time, (Good-
man, 1998) shows that Monte-Carlo parsing is exponential-time.

�

The first publication of our complexity results is (Sima’an, 1996).

12 Chapter 1. Introduction

are able to anticipate on more frequent input in limited domains in order to process it
more efficiently (Scha, 1990). And secondly, based on the observations of (Winograd
and Flores, 1986), domain specific language use is usually less ambiguous than it is in
domain-independent competence models and performance models that are based on them.

The observation of (Winograd and Flores, 1986) constitutes the main motivation be-
hind the various efforts at acquiring linguistic competence grammars that are specialized
for limited domains (Rayner, 1988; Samuelsson and Rayner, 1991; Samuelsson, 1994b;
Srinivas, 1997; Neumann, 1994). The task that these efforts address

�

is how to special-
ize linguistic broad-coverage grammars (rather than full performance models that use
probabilistic grammars) to specific domains. Their main goal is to acquire a specialized
grammar with a limited but sufficient coverage (i.e. sentence recognition power). How-
ever, for current performance models this does not directly address two important issues.
Firstly, that domain specific language use is usually much less ambiguous than the gen-
eral case. And secondly, that current performance models are probabilistic corpus-based
rather than pure linguistic.

1.5.2 Fundamental hypotheses

The main hypothesis of this thesis is that more frequent input in limited domains can be
processed more efficiently if language use in limited domains is modeled as unambigu-
ously as possible. This is stated here as a requirement on performance models that are
acquired from tree-banks:

domain specific language should be modeled as unambiguously as possible
by a specialized performance model.

Within an Information Theoretic interpretation of this requirement, the property that more
frequent input is usually processed more efficiently becomes a derivative; in order to
model domain specific language use as unambiguously as possible, frequency must play
a central role. When frequent input is modeled as unambiguously as possible, it is usually
processed faster and it requires less space.

By addressing the second problem, the first problem is also addressed partially, es-
pecially the grammar-size issue. When a probabilistic grammar is broad-coverage, it
includes many probabilistic relations that are highly improbable in the domain. By spe-
cializing the probabilistic grammar to the domain and removing ambiguities that are not
domain specific, many of these relations are also removed from the probabilistic grammar.
This results in smaller probabilistic grammars.

Based on this hypothesis, this thesis defends the idea that the main solution to these
problems lies in employing two complementary and interdependent systems for ambigu-
ity resolution in natural language parsing and disambiguation:

�

Some of these efforts employed probabilistic disambiguation after parsing (spanning the parse-space).
However, their specialization methods concentrated only on the parsing part of the system.

1.5. Problem statement, hypotheses and contributions 13

1. An off-line partial-disambiguation system based on grammar specialization
through ambiguity reduction. This system is acquired through the automatic learn-
ing of a less ambiguous grammar from a tree-bank representing a specific domain.

2. An on-line full-disambiguation system represented by the DOP model.

These two manners of disambiguation are complementary: on-line disambiguation is ap-
plied only where it is impossible to disambiguate off-line without causing undergenera-
tion. And, crucially, they are interdependent since a specialized less ambiguous gram-
mar, acquired off-line, can serve for specialized re-annotation of the tree-bank; a DOP
model that is obtained from this specialized tree-bank is called a specialized DOP (SDOP)
model.

1.5.3 Contributions

This thesis develops a new off-line disambiguation framework for the specialization of
performance models and broad-coverage grammars, dubbed the Ambiguity-Reduction
Specialization (ARS) framework. Based on the fundamental hypothesis stated above, the
framework focuses specialization on how to reduce ambiguity without loss of accuracy
and coverage; it formally casts the task of specialization as a constrained-optimization
learning problem based on Information Theoretic formulae. The ARS framework pro-
vides general guidelines for specializing the DOP model and other probabilistic models.
It is implemented in algorithms for acquiring specialized grammars from tree-banks, al-
gorithms for acquiring SDOP models, and novel parsing and disambiguation algorithms
that combine the specialized grammar with the original grammar and the SDOP model
with the original DOP model.

For on-line disambiguation, this thesis contributes efficient deterministic polynomial-
time and space algorithms. Important for the DOP model is that these algorithms have
time- and space-complexities that are linear in grammar-size, and that they are equipped
with effective heuristics that control the size of DOP grammars. These algorithms con-
stitute a considerable improvement in time- and space-consumption (a reduction of two
orders of magnitude) on earlier non-deterministic algorithms. Besides these algorithms,
the thesis provides a study of the computational complexity of probabilistic disambigua-
tion under the DOP model and some related probabilistic grammars. The study contains
proofs that some of these problems belong to the class of NP-Complete problems, i.e.
they are intractable (as long as the NP-Complete problems are considered intractable).

The algorithms that the thesis contributes are implemented as computer programs in
two systems: the Data-Oriented Parsing and Disambiguation System (DOPDIS) and the
Data-Oriented Ambiguity Reduction System (DOARS). Using these systems, the the-
sis also contributes an empirical study of the various algorithms on two independent
domains

�

and on two related tasks (sentence-understanding and speech-understanding).
�

The Dutch railway time-table inquiry domain (OVIS) and the American (DARPA) air travel inquiry
domain (ATIS).

14 Chapter 1. Introduction

It is noteworthy that these experiments are currently among the first and certainly the
most extensive that test the DOP model on large tree-banks using cross-validation testing.

1.6 Thesis overview

The structure of this thesis reflects the shift in the focus of my personal interest from
developing and optimizing parsing algorithms to developing algorithms that learn how to
parse efficiently in order to cope with problems that are considered not feasible in current
performance models of natural language. Next I describe briefly what each chapter is
about.

Chapter 2 provides the reader with the terminology, notation and background that is
necessary to the following chapters. It also provides a more elaborate overview of
this thesis in the light of that background knowledge. The chapter mainly contains
a brief description of probabilistic grammars, the DOP model, and some relevant
paradigms of Machine Learning (Bayesian Learning and Explanation-Based Learn-
ing).

Chapter 3 presents proofs that some actual problems of probabilistic disambiguation un-
der models that are similar to the DOP model are NP-Complete. Among these
problems: computing the most-probable parse for a sentence (or a word-graph)
under Stochastic Tree-Substitution Grammars (STSGs), and computing the most-
probable sentence from a word-graph under Stochastic Context-Free Grammars
(and STSGs).

Chapter 4 presents the Ambiguity Reduction Specialization (ARS) framework and al-
gorithms that are based on it for specializing DOP and broad-coverage grammars.
It also presents parsing and disambiguation algorithms that benefit from specializa-
tion. Some of these algorithms are general and apply to broad-coverage grammars,
but others are specific to the DOP model.

Chapter 5 presents efficient parsing and disambiguation algorithms for DOP. Apart from
parsing and disambiguation of sentences, these algorithms are also adapted for pars-
ing and disambiguation of speech-recognizer output in the form of word-graphs (or
word-lattices). These algorithms underly the DOPDIS system.

Chapter 6 presents the implementation details of the current learning, parsing and dis-
ambiguation algorithms of chapter 4 and exhibits an empirical study of the DOP
model and the Specialized DOP models on two domains that represent two lan-
guages (Dutch and English) and two tasks (sentence-understanding and speech-
understanding).

Chapter 7 discusses the results and contributions of this thesis.

Chapter 2

Background

This chapter provides the background knowledge for the rest of this thesis. It supports the
formal foundations of the other chapters through supplying the main necessary definitions
and notation. It also provides background knowledge concerning two main pillars on
which this thesis rests: the Data Oriented Parsing (DOP) model and Machine Learning
paradigms.

2.1 Introduction

The study of computational models of learning from past experience, Machine Learning,
is currently a vibrant field of research. It brings together many disciplines from many
different corners of the scientific world. Its subjects are as diverse as the skills in which
humans exhibit learning and improvement on the basis of experience, e.g. games such as
chess, expertise such as medical diagnosis or car-reparation, vision and linguistic capaci-
ties such as speaking, writing and reading.

In its short history, Machine Learning presented various theoretical accounts, re-
ferred to as paradigms, of various ways of learning from past experience, e.g. Inductive
Learning, Analytical Learning and Memory-Based Learning. These paradigms are con-
sidered the abstractions of most, if not all, computational models that can be developed for
modeling the many skills in which learning takes place. They abstract away from all the
skill-specifics and constitute the subject-matter of theoretical and empirical studies con-
cerning the capabilities and limitations of the kinds of learning they represent. The results
of these theoretical studies are, then, immediately applicable to all specific computational
models that fall under these paradigms.

In the field of natural language processing, the subject of computational language
learning is currently gaining serious momentum. Although the current picture of human
natural language learning is still a patternless collection of scattered ideas, some of these
ideas, when cast into computational models, can be significant for language technology,
where the specific application-requirements and the importance of empirical results de-
limit the range of the viable models. One such recent idea on human natural language

15

16 Chapter 2. Background

disambiguation is the Data Oriented Parsing (DOP) model (Scha, 1990).
Data Oriented Parsing is a so called performance model of natural language pro-

cessing, as opposed to so called linguistic theories and models of language competence.
Roughly speaking, the latter theories and models are concerned mainly with questions of
coverage and adequacy of general representations, e.g. grammars, of “idealized” human
language use. In contrast, performance models are concerned mainly with the question of
how to simulate non-idealized human language use. One of the most persistent problems
in language modeling that is tackled more explicitly by performance models than compe-
tence models is the problem of ambiguity. In language interpretation, it is often very hard
to distinguish the most adequate interpretation of an utterance due to the dependency of
that interpretation on various extra-linguistic factors such as world-knowledge. Currently,
the most popular approach to constructing performance models that tackle the ambiguity
problem is through enhancing natural language grammars (not necessarily competence
grammars) probabilistically. In the probabilistic corpus-based approach, a natural lan-
guage is modeled as a triangle that consists of a set of utterances, a set of analyses and a
stochastic correspondence between members of these two sets. In general, this stochas-
tic correspondence is achieved through spanning a probability distribution over the set of
analyses and another related distribution over the set of utterances. The probability distri-
butions are not defined directly on pairs of sentences and analyses, rather they are defined
through assigning probabilities to the production units (e.g. rules) of a natural language
grammar. What grammar to use and how to enhance it probabilistically are currently
central themes in computational linguistics research. In any event, when a probabilistic
model is prompted to analyze an utterance, the model responds by emitting the most prob-
able analysis that corresponds to that utterance according to its distribution

�

. This most
probable analysis is considered the best bet the model can make on what the most suitable
analysis should be.

Machine Learning paradigms, Data Oriented Parsing and probabilistic grammars play
a central role in this thesis. This chapter provides the reader with the main part of the nec-
essary background knowledge on these subjects. It is of course impossible to define every
basic term and notion that is borrowed from another field which is encountered during the
discussion. Therefore, the discussion in this chapter, and the rest of the thesis, assumes
that the reader is familiar with the most basic notions common in Computer Science (e.g.
in graph theory, formal language theory, automata theory, parsing technology, complexity
theory), Probability Theory, Information Theory, Machine Learning and Linguistics. For
textbooks and references on some of these subjects the reader is advised to consult (Shan-
non and Weaver, 1949; Aho and Ullman, 1972; Lewis and Papadimitriou, 1981; Garey
and Johnson, 1981; Papoulis, 1990; Young and Bloothooft, 1997; Mitchell, 1997). For
an excellent introduction to current probabilistic computational linguistics, the reader is
referred to (Krenn and Samuelsson, 1997).

This chapter is organized as follows. Section 2.2 lists some definitions and notation

�

In some cases, the utterance is either not in the set of utterances of the model or it does not have any
corresponding analysis at all. In these cases the model simply emits the symbol of failure.

2.2. Stochastic grammars 17

on grammars common to the subsequent sections and chapters. Section 2.3 provides an
overview of the DOP framework. Section 2.4 briefly discusses Machine Learning and
provides short introductions to Bayesian Learning, Explanation-Based Learning and the
notion of Entropy. And finally, section 2.5 states the goals of this thesis, in the light of the
background knowledge that the preceding sections provide.

2.2 Stochastic grammars

In this section, we review briefly some of the formal devices that underly the probabilistic
models that the other chapters assume, namely Stochastic Finite State Machines (SFSMs),
Stochastic Context-Free Grammars (SCFGs) and Stochastic Tree-Substitution Grammars
(STSGs). Needless to say, the list of definitions here is not meant to be exhaustive; only
the main notions and terminology are listed in order to facilitate a more accurate and
concrete discussion. Other basic common notions might be used in the sequel even though
they do not appear in this list.

Global assumption: For convenience, throughout this work we assume that all involved
grammars are proper and � -free.

String notation: A string (or sequence) of symbols �����������	�
��� , where ���� are natural
numbers, is denoted in the sequel as � �� .

2.2.1 Stochastic Finite State Machines and word-graphs

Finite State Machines (FSMs) also called Finite State Automata (FSAs) are formal de-
vices that generate Regular languages. Other equivalents for FSMs are Regular Expres-
sions, and Right/Left Linear Context-Free Grammars.

Finite State Machine (FSM): An FSM is a quintuple ������������������� � , where � is a finite
set of symbols called the alphabet, � is a finite set of states, �"!#� is the start-state,
�$!%� is the target or final state

�

, and � is the finite set of transitions, i.e tuples&�')(� '+* �
�-, where
')(� '+* !#� and �.!/� .

Stochastic FSM (SFSM): An SFSM is a six-tuple �������������0���
���
1 � that extends the
FSM ������������������� � with the probability function 132)�54 �768� (:9 , such that;=< !/� : >?0@�A8B CD@�E 1F�

& < �
GH�
�I,
�KJ (.
�

It is possible to have FSMs with sets of final states. However, for every FSM with a set of final states
there is an equivalent FSM with a single final state, i.e. both accept the same language - both even have,
up-to a homomorphism, the same set of derivations.

18 Chapter 2. Background

Word-graph: In the context of speech recognition, the output of a speech recognizer
�

is
an SFSM referred to with the more casual term word-graph or word-lattice. There-
fore, in the sequel, we will use the terms SFSMs and word-graphs as synonyms.

Path: In an FSM �������������0���
� � , a sequence
& ' � � ' � �
� � , �������	� &�' ��� � � ' � �0� � , of transi-

tions from � is called a path. Such a path may also be indicated by means of the
shorter notation

' � ' � ����� ' � �4 � � � .

Derivation: A path
& ' � � ' � �
� � , � &�' � � ' � �0� � , �������	� &�' ��� � � ' � �0� � , � where

' � J � and' � J � , is called a derivation of � � � .

String accepted by FSM: A string � � � !#� � is
�

said to be accepted by the FSM
�7� ���������0����� � iff there is a derivation

& ��� ' � �
� � , � &�' � � ' � �
� � , ������� & ' ��� � ��� �
� � ,
where

; (� ��
�5(
,
' � !#� and

; (� ��

, � � ! � .

Language accepted by an FSM: The language accepted by an FSM is the set of all
strings from � � that the FSM accepts.

Path probability: The probability of the path
&�' � � ' � �
� � , �:����� � & ' ��� � � ' � �
� � , is defined

by � ���� � 1 � &�' � � � � ' � �
� � ,0� . This also defines the probability of a derivation since it
is a special case of a path.

Probability of a string: The probability of a string under an SFSM is the sum of the
probabilities of all its derivations in that SFSM.

Language accepted by an SFSM: The language accepted by ������������������� ��1 � is a set
of pairs

&������������ ��� �! �"$#�"%�'&��(��) , such that
�����*���+�

is in the language of
�7� ���������0����� � and � �$ �"$#�",�-&��(��) is the probability of

�����������
.

2.2.2 Stochastic Context Free Grammars (SCFGs)

CFG: A Context-Free Grammar (CFG) is a quadruple (.,/ , .+0 , � , 1), where .�/ is the
finite set of non-terminals, .*0 is the finite set of terminals, � !2.,/ is the start non-
terminal and 1 is the finite set of production rules (or simply rules), which are
pairs

�

from .*/ � . � , where the symbol . denotes .%/435.+0 . A rule
&76 �98K, !:1 is

written
6 4 8 ,

6
is called the left hand side (lhs) and 8 the right hand side (rhs)

of the rule.
�

Often the word-graphs output by a speech-recognizer do not fully abide by the formal definition of
an SFSM that is given here because, for example, the probabilities on the transitions that emerge from the
same state might not sum up to one (due to e.g. pre-pruning of the word-graph). In this work we abstract
away from such small inconveniences and assume that the word-graphs output by a speech-recognizer are
SFSMs. In the sequel, whenever these differences become important we supply a special treatment of
word-graphs output by speech-recognizers.

�<;>=
denotes the union of all

;@?
, ACB:D . ;4E denotes the set F<G�H�I ;@= .

�

We are not interested in G production-rules in this work, so we assume that G , the empty string, is not
on the right hand side of any rule.

2.2. Stochastic grammars 19

SCFG: An SCFG
�

is a quintuple (.�/ , .+0 , � , 1 , P), where (.�/ , .+0 , � , 1) is a CFG and
132-1 4.��68� (9 is a probability function such that for all � ! . / :����� /�� � @	� 1F�
� 4 8K��J (.

Notation for SCFGs: We employ capital letters such as
6 ��� �� ��� ��� to denote non-

terminal symbols and small letters such as � �������+�0� to denote terminal symbols.
Greek letters such as 8 ��� ��� ��� denote strings of symbols that can be either terminals
or non-terminals (i.e. from . �). Adding numerical subscripts to a symbol results
in another symbol of the same type.

Leftmost derivation step: A leftmost
�

derivation step (lmd-step) of a CFG
(.�/ , .$0 , � , 1) is a triple

� & � 6 ������8���� 6 4 8K, such that
6 4 8 !:1 ,

� !2.+0 � , 8 ! . � and � ! . � . The triple
& � 6 ������8���� 6 4 8 , is denoted by

� 6 ��� �
�� 4 ��8�� .

Partial-derivation: A (leftmost) partial-derivation is a sequence of zero or more lmd
steps 8 � ?��� 4 8 �

?��� 4 8 � ����� ?
�� 4 8 � , where

 � 6 . A shortcut notation that ob-

scures the lmd steps and the rules involved in partial-derivations of CFGs is em-
bodied by the symbols

�4 /
�4 that denote respectively zero or more/one or more

derivation steps.

Derivation: A (leftmost) derivation of a CFG is a partial-derivation that starts with the
start symbol � and terminates with a string consisting of only terminal symbols (i.e.
no lmd steps are possible any more).

Subsentential-form: A subsentential-form is a string of symbols 8 ! . � achievable in
a partial-derivation ����� �4 8 �4 ����� .

Sentential-form: Every subsentential-form in a derivation is called a sentential-form.

Partial-parse: A partial-parse is an abstraction of a partial-derivation obtained by ob-
scuring the rule identities of that partial-derivation. The partial-parse is said to be
generated by the partial-derivation it is obtained from.

Note that in CFGs it is possible to reconstruct the partial-derivation from the partial-
parse. Therefore, the notions of a partial-parse and a partial-derivation are equivalent in
CFGs.

Parse: A parse is a partial-parse obtained from a derivation.
�

Also known as Probabilistic CFG (PCFG).
�

In CFGs it does not matter whether one assumes leftmost, rightmost or any other order of derivation
steps when defining a partial-derivation or derivation. The choice for leftmost order is convenient for some
parsing techniques.

�

Usually an lmd step is defined as a pair where the rule identity is obscured. However, in this work we
deal also with Tree-Substitution Grammars (TSGs). For TSGs it is necessary to specify the rule identity
in derivation steps. In order to keep the discussion homogeneous, it is more convenient to make the rule
identity explicit also in CFG lmd derivation steps.

20 Chapter 2. Background

Partial-parse tree: A convenient representation of a partial-derivation / partial-parse of
a CFG is achieved by employing the well known representation from graph theory:
a tree. Because the tree representation of a partial-parse is a popular one, often a
partial-parse is called partial parse-tree or shortly partial-tree.

Additional Terminology: In a partial-parse tree � , the node which no other node points
to is called the root of � , or shortly G������ ����� . And the nodes from which no edges emerge
are called the leaves of the partial-parse tree. The last subsentential-form in a partial-
derivation (i.e. the ordered sequence of symbols that label the leaves) is called the frontier
of the partial-derivation and of the partial-parse tree that is generated by that partial-
derivation. A node

6
that has an edge emerging from it that points to another node � is

called the parent of � ; � is called a child of
6

.

Parse tree: As a special case of a partial-parse tree, a parse-tree (shortly parse or tree)
is the tree representation of a parse/derivation in CFGs.

Substitution-site: A substitution-site is a leaf node of a partial-parse that is labeled by
a non-terminal.

Substitution: In some cases it is convenient to employ a definition of the notion of
a derivation which involves the term-rewriting operation of substituting partial-
parses for substitution-sites of other partial-parses. A leftmost substitution of
partial-parse � * in another partial-parse � (is defined only when the root of � *
is labeled with the same non-terminal symbol � as the leftmost substitution-site in
the frontier of � (. When this operation is defined, a new partial-parse is obtained,
denoted as � (�� � * , by replacing substitution-site � with partial-parse � * .

Sentence and string-language: The frontier of a derivation/parse/parse-tree in a CFG
is called a sentence of that CFG (generated by that derivation). The set of all
sentences of a CFG is called its string-language.

Tree-language: The set of all parse-trees generated by derivations of a CFG is called
the tree-language of that CFG.

Probability of a partial-derivation: The probability of a partial-derivation G � �
G � ����� G � ,
 �.(
, of a given SCFG is defined by � ���� � 1 � G:� � .

Probability of a subsentential-form: The probability of a subsentential-form under a
given SCFG is the sum of the probabilities of all partial-derivations for which it is
the frontier.

Probability of a sentence: As a special case of the preceding definition, the probability
of a sentence under a given SCFG is the sum of the probabilities of all derivations
that generate it.

2.2. Stochastic grammars 21

2.2.3 Stochastic Tree-Substitution Grammars (STSGs)

Stochastic Tree-Substitution Grammars (STSGs) may be viewed as generalizations of
SCFGs where the rules have internal structures, i.e. are partial-trees. Therefore, the
terminology and the definitions of term-rewriting notions in STSGs correspond to a large
extent to those in SCFGs. However, some of the STSGs notions differ radically from
those in SCFGs. To define STSGs and their relevant term-rewriting notions, let be given
a CFG �.J (.��/ , .��0 , ��� , 1��):
TSG: A TSG based on � is a quadruple (.,/ , .$0 , � , �), where .�/�� . �/ , .+0�� . �0 , �"! .*/

and � is a finite set of partial-parse trees of � over the symbols in .%0,35.*/ . Each
element of � is called an elementary-tree.

CFG underlying TSG: The CFG (.%/ , .$0 , � , 1) is called the CFG underlying a TSG
(.�/ , .$0 , � , �) iff the set 1 contains all and only those rules involved in the
elementary-trees in � .

Substitution-site: Recall that a substitution-site is a leaf node of a partial-parse tree
labeled by a non-terminal; this carries over to elementary-trees of course.

STSG: An STSG is a five tuple (.,/ , .$0 , � , � , 1-�) which extends the TSG
(.�/ , .$0 , � , �) with a function 1-� ; 1 � assigns to every � !	� a value
6 � 1-� � ��� � (

such that
; � !2.�/ :

��
 @�+B�?����
���
�� �!/ 1-� �����KJ (.
Leftmost TSG derivation step: Let be given � !�� such that its root node is labeled

6
and its frontier is equal to the string 8 . A leftmost TSG derivation step (or deriva-
tion step) of a TSG (.%/ , .$0 , � , �) is a triple

& � 6 ������8 ��� ��, such that � !2.*0 � ,
8 ! . � and � ! . � . As before, the triple

& � 6 ������8 ��� ��, is written as
� 6 �

� 4 ��8�� .
TSG Partial-derivation: As in CFGs, a (leftmost) TSG partial-derivation (or simply

partial-derivation) is a sequence of zero or more lmd steps

6
 �� 4 8 �

 �� 4 8 � �����

 �� 4 8 �

where

 � 6 . A short cut notation that obscures the lmd steps and the elementary-

trees involved in partial-derivations of TSGs is embodied by the symbols
�4 /

�4 that
denote respec. zero or more/one or more derivation steps. Note that the ordered
sequence of elementary-trees involved in a (leftmost) partial-derivation of a TSG
uniquely determines the partial-derivation. Therefore, a partial-derivation of a
TSG will often be represented by the ordered sequence of elementary-trees involved
in it.

TSG Derivation: As in CFGs, a (leftmost) TSG derivation (or shortly derivation) of a
TSG is a partial-derivation that starts with the start symbol � and terminates with a
string consisting of only terminal symbols, i.e. no lmd steps are possible any more.

22 Chapter 2. Background

Unfolded TSG partial-derivation: The unfolded TSG derivation step which corresponds
to the TSG derivation step 8

� 4 � is the leftmost partial-derivation which gener-
ates � in the CFG underlying the TSG. An unfolded TSG partial-derivation (also
unfolded partial-derivation) is obtained from a TSG partial-derivation by replac-
ing every TSG derivation step by the corresponding unfolded TSG derivation step

�

.

Unfolded TSG derivation: An unfolded TSG derivation is the unfolded
partial-derivation of a TSG derivation.

Subsentential-form: A subsentential-form is a string of symbols 8 ! . � achievable in
an unfolded TSG partial-derivation ����� �4 8 �4 ����� .

Sentential-form: Every subsentential-form in an unfolded TSG derivation is called a
sentential-form.

TSG partial-parse: A TSG partial-parse (also partial-parse) is an abstraction of an un-
folded TSG partial-derivation obtained by obscuring the rule identities. The TSG
partial-parse is said to be generated by the (unfolded) TSG partial-derivation it is
obtained from. Crucially, it is not always possible to reconstruct a TSG partial-
derivation from a given TSG partial-parse, since there can be many TSG partial-
derivations (involving different elementary-trees) that generate that TSG partial-
parse.

TSG parse: A TSG parse (also parse) is a TSG partial-parse obtained from an unfolded
TSG derivation. Note that there can be more than one TSG derivation that generates
the same TSG parse.

TSG partial-parse tree: Just as for CFGs, a convenient representation of a TSG partial-
parse is achieved by employing the tree representation from graph theory. As be-
fore we will employ the terms TSG partial-parse, TSG partial-parse tree and TSG
partial-tree as synonyms. The terms root and frontier of a TSG partial-parse tree
are defined exactly as for CFGs.

Substitution: As in the case of CFGs, a TSG partial-derivation can be seen also in
terms of the operation of substituting elementary-trees in other TSG partial-trees.
Therefore, a leftmost TSG partial-derivation involving the ordered sequence of
elementary-trees � � �������	� � � can be written in terms of substitution as
� ������� � �

� � � � � ����� � � � � or simply � �
� � �

� ����� � � � .
TSG parse tree: As a special case of a TSG partial-parse tree, a TSG parse-tree (shortly

parse or tree) is the tree representation of a TSG parse.

Sentence and string-language: The frontier of a TSG derivation/parse of some TSG is
called a sentence of that TSG (that is said to be generated by that TSG derivation).
The set of all sentences of a TSG is called its string-language.

�

Note that an unfolded TSG partial-derivation is a partial-parse of the CFG underlying the TSG.

2.3. Data Oriented Parsing: Overview 23

Tree-language: The set of all TSG parse-trees generated by the derivations of a TSG is
called the tree-language of that TSG.

Probability of a TSG partial-derivation: The probability of a TSG partial-derivation
� � � � � �����	� � � ,
 �.(, of a given STSG, is defined to be equal to � ���� � 1-� � � � � .

Probability of a TSG parse: The probability of a TSG parse is equal to the sum of the
probabilities of all TSG derivations that generate it.

Probability of a sentence: The probability of a sentence is equal to the sum of the prob-
abilities of all TSG derivations that generate it.

For formal studies on TSGs and the related formalism Tree-Adjoining Grammars
(TAGs), the reader is referred to TAG literature e.g. (Joshi, 1985; Joshi and Schabes,
1991; Schabes, 1992; Schabes and Waters, 1993). And for a comparison between the
stochastic weak/strong generative power of STSGs and SCFGs, the reader is referred
to (Bod, 1995a).

2.2.4 Ambiguity

Ambiguous grammar: A grammar (e.g. CFG, TSG, SCFG, STSG) is called ambiguous
iff there is a sentence in its string-language that has more than one parse.

Inherently ambiguous language: A language � (i.e. set of strings) is called inherently
ambiguous with respect to some class of formal grammars iff there exists no unam-
biguous instance grammar in that class that has a string-language which is equal
to � .

The terminology and definitions given above form the common basis for the subse-
quent sections and chapters. Other definitions and terminology on SCFGs and SFSMs
will be introduced whenever necessary.

2.3 Data Oriented Parsing: Overview

Informally, the intuitive notion of ambiguity in natural language can be described as the
inability to discriminate between various analyses of an utterance due to the lack of es-
sential sources of information, e.g. discourse and domain of language use. The ambiguity
of a natural language grammar goes beyond the intuitive ambiguity of a natural language
since the grammar usually assigns extra analyses, not perceived by a human, to some ut-
terances of the language. This “extra” ambiguity, which is due to the imperfection of the
grammar, is referred to as “redundancy”,

It is widely recognized that the intuitive ambiguity of natural language can be resolved
only by access to so called “extra-linguistic” resources that surpass the power of existing
formal grammars. Grammar imperfection (i.e. redundancy), in contrast, is usually con-
sidered the result of an unfortunate choice of grammar-type or an incompetent grammar

24 Chapter 2. Background

engineering effort; both “misfortunes” that lead to redundancy seem to suggest that the
problem is solvable by smarter grammar writing. Currently, however, an opposition to
this view is developing within the natural language processing community, which be-
lieves it to be a genuine problem that cannot be eliminated by better and smarter grammar
engineering, since it is virtually impossible to engineer a non-overgenerating grammar
(for a serious portion of a language) without introducing undergeneration. Compared to
the “curse” of substantial undergeneration, reasonable overgeneration can be considered
a “blessing”.

In any event, the view that it is necessary to involve extra-linguistic resources for
resolving ambiguity prevails in the community. One available resource, which enables
ambiguity resolution, is statistics over a large representative sample from the language.
This is exactly the motivation behind statistical enrichments of grammatical descriptions
in their various forms. Data Oriented Parsing (DOP) is one such statistical enrichment
of linguistic descriptions, which poses critical questions on how to collect and how to
employ the statistics obtained from a language sample. As we shall see below, DOP
introduces its own manner of enriching linguistic descriptions with statistics. Rather than
simply enriching a predefined competence grammar, DOP adopts a stochastic memory-
based approach to specifying a language and defines an ordering on the analyses that are
assigned to every sentence in that language.

2.3.1 Data Oriented Parsing

Data Oriented Parsing (DOP), introduced by Scha in (Scha, 1990), is a model aimed at
performance phenomena of language, in particular at the problem of ambiguity in lan-
guage use. In (Scha, 1990), Scha describes the DOP model as follows (page 14):

The human language-interpretation-process has a strong preference for
recognizing sentences, sentence-parts and patterns that occurred before. More
frequently occurring structures and interpretations are preferred to not or
rarely perceived alternatives. All lexical elements, syntactic structures and
“constructions” that the language user ever encountered, and their frequency
of occurrence, can influence the processing of new input. Thus, the database
necessary for a realistic performance model is much larger than the gram-
mars that we are used to. The language experience of an adult language user
consists of a large number of utterances. And each utterance is composed
of a large number of constructions; not only the whole sentence, and all its
constituents, but also all patterns which we can extract from it by introducing
“free variables” for lexical elements or complex constituents.

Scha also instantiates this abstract model with an example employing the substitution op-
eration on what he calls “patterns”, and suggests to construct this model in analogy to
existing “simple” statistical models. Bod (Bod, 1992) is the first to work out a formaliza-
tion of an instance of Scha’s detailed description in a computational model. Therefore, the
DOP model is strongly associated with Bod’s formalization to the extent that the latter has

2.3. Data Oriented Parsing: Overview 25

become a synonym for Scha’s DOP model. In this thesis, merely for convenience, every
reference to the DOP model is a reference to Bod’s formalization, unless stated otherwise.

2.3.2 Tree-banks

As the description of DOP suggests, it is necessary to have a tree-bank simulating “the
language experience of an adult language user”. Clearly, it is impractical to wait for the
construction of tree-banks of general language use that represent the experience of an
adult language user. Therefore, it seems most expedient to employ a tree-bank limited to
a specific domain of language use.

Preceding work involving tree-banks does not define the notion of a tree-bank. Al-
though it is almost always clear what the notion “tree-bank” involves, it seems appropriate
to define this notion explicitly here. The definition here is general in the sense that it can
be instantiated to any kind of a linguistic theory which employs a formal grammar.

Tree-bank: A tree-bank annotated under some formal grammar � is a pair
& � � 6 , where6

is called the analyses-sample. We will refer to the formal grammar � in the tree-
bank pair

& ��� 6 , with the more common term
� �

“annotation scheme”. An analyses-
sample is a sample of correct analyses (assigned by an oracle). Each analysis is
associated with a sentence. The analysis of a sentence must be a member of the set
of analyses which the formal grammar � can assign to the sentence.

In conformity with its use in the community, in the sequel the term tree-bank may also be
used to refer in particular to the analyses-sample of the tree-bank at hand.

2.3.3 Bod’s instantiation

Given a tree-bank annotated under a CFG (i.e. every analysis in the analyses-sample is
a parse-tree of that CFG) Bod’s DOP model obtains a probabilistic grammar from this
tree-bank by extracting so called subtrees from the tree-bank trees by cutting them in all
possible ways, as described by Scha, and assigning relative frequencies to them in a way
similar to other existing stochastic models, e.g. SCFGs (Jelinek et al., 1990; Fujisaki
et al., 1989). The following constitutes a restatement of Bod’s instantiation, with some
additions in order to suit the discussion in this thesis.

Subtree: A subtree � � of some tree � is a connected subgraph of � that fulfills 1) every
node � in � � corresponds to a node in � , denoted
 �
� � , labeled with the same
symbol, 2) for every non-leaf node � in � � , the ordered sequence of symbols that
label its children is identical to the ordered sequence of symbols that label the
children of
 �
� � .

���
In the practice of annotating tree-banks, the term annotation scheme often refers to a set of linguistic

guidelines rather than a strict formal grammar. This set of guidelines leaves much freedom to the annotator
to fill in the gaps and even improve the annotation scheme itself during the annotation process. In the
terminology we are using here, the term annotation scheme may refer to the sum of the set of formal
linguistic guidelines and the formalized part of the linguistic knowledge of the annotator that is involved in
the annotation process.

26 Chapter 2. Background

Subtree of tree-bank: Each subtree of a tree in the given tree-bank is also called a sub-
tree of that tree-bank or simply subtree.

CFG underlying tree-bank: The CFG (.,/ , .$0 , � , 1) is called the CFG underlying the
tree-bank

���
iff .%/ and .$0 are respectively the sets of non-terminals and terminals

that label the nodes of the trees in
���

, � is the non-terminal that labels the roots
of the trees in

���
, and 1 contains all the rules that participate in the (derivations

of the) trees in the tree-bank.

Note that the CFG underlying the tree-bank generates a language that is partial to that of
the annotation scheme CFG, since its productions are only those that are used for annotat-
ing the trees of the tree-bank. The annotation scheme CFG might have other productions
that have not been used for annotating the tree-bank at hand; this can be due to the fact
that the tree-bank represents only a small portion of a limited domain of language use that
the annotation CFG represents.

A subtree of a tree-bank is thus simply a partial-parse, which is related to (i.e. is part
of) one or more trees of that tree-bank. The notion of a subtree of a tree-bank formalizes
Scha’s notion of a “construction” or a “pattern”. Often in the sequel, we loosely use the
term subtree and the term partial-tree as synonyms; this does not entail any confusion
due to the clear contexts where these terms are used and the minor difference between the
notions which they denote.

Let be given a tree-bank
��� J & � � � 6 , and let � J (.�/ , .$0 , � , 1) be the CFG un-

derlying it:

UTSG of a tree-bank: The TSG (.%/ , .$0 , � , �), where � is equal to the set of all subtrees
of the trees of

���
, is called the Union TSG (UTSG) of

���
.

DOP STSG: The DOP model projects from
���

an STSG (.,/ , .$0 , � , � , 1 �) such that
the TSG (.�/ , .+0 , � , �) is the UTSG of

���
and

; � !	� 2 1 � ����� J
� G���� ������	� @� � ? ���
�� � � � ? ���
���
�� � G���� ��
 �

where
� G����8��
 � denotes the frequency (occurrence-count) of
 in the analyses-

sample
6

. Note that in this definition the probabilities of the elementary-trees
that have roots labeled with the same non-terminal sum-up to one; they are also
proportional to their occurrence-count in the analyses-sample.

2.1. EXAMPLE. Figure 2.1 shows the “classical” example (due to Bod) of the DOP pro-
jection mechanism on a toy tree-bank of two trees. The tree-bank trees, at the left hand
side of the figure, have only one single non-terminal � and two terminals � and � . The
resulting set of elementary-trees, at the right side of the figure, has three members � � , � �

and � � . Each of the elementary-trees � � (and � �� occurs only once in the tree-bank trees,
while � � * occurs twice (once as a tree and once as a result of cutting � (); the total number
of occurrences of elementary-trees with a root labeled � is 4, leading to the probabilities
shown in the figure.

2.3. Data Oriented Parsing: Overview 27

S
a

t2

S

bS
a

t1

Projection
mechanism

DOP’s

b

S

S

0.25
et3

S

a

et2
0.50

a

S

S b

et1
0.25

Figure 2.1: An example: STSG projection in DOP

Clearly, the notions of partial-derivation, derivation, partial-parse, parse and their prob-
abilities are thereby defined under a DOP STSG as they are defined under STSGs in
general.

A parse generated for a sentence: A parse is said to be generated by an STSG for a
given sentence if the frontier of that parse is equal to the given sentence.

Therefore, an alternative definition of the probability of a sentence, which makes the issue
of ambiguity more obvious, is:

Sentence probability: The probability of a given sentence is the sum of the probabilities
of all parses that the STSG can generate for it.

A few observations concerning DOP are important to mention here. In contrast to SCFGs,
in STSGs there can be various partial-derivations that generate the same partial-parse.
This “redundancy” is an essential component of the DOP model (Scha, 1990); each
derivation represents an informal process of combining some patterns that originate from
different sentence-analyses that have been encountered in the past (and have been stored
in memory). The probability of a derivation is in essence a kind of weight based on
the frequencies of patterns obtained from all sentences encountered in the past. And the
probability of a parse reflects the weighted sum of the weights of all such processes (rep-
resenting derivations) that result in that parse.

2.2. EXAMPLE. Figure 2.2 exhibits two derivations of the sentence “a b” based on the
DOP model projected in example 2.1. The two derivations result in the same parse-tree
with different probabilities.

As in all stochastic grammars, in DOP the goal of parsing and disambiguation is to select
a “distinguished entity”, e.g. a prefered parse, by optimizing some probabilistic function
that is stated in terms of the probability which DOP assigns to that entity. For example,

28 Chapter 2. Background

a

S

S b

0.25
et1

b

S

S

0.25
et3

S

a

et2
0.50 S

bS
a

S

bS
a

=

=
0.25

0.125

Figure 2.2: Two derivations for the same parse

in parsing and disambiguating an input sentence, the goal of DOP can be to compute the
Most Probable Parse (MPP) that the STSG can generate for it. Other tasks concern com-
puting the Most Probable Derivation (MPD) and the probability of an input sentence.

In his description, Scha suggests to employ a “matching process”, for parsing and
probabilistic disambiguation, which is biased towards larger and more frequently occur-
ring subtrees; he suggests to achieve this effect as follows ((Scha, 1990), page 15): “Sta-
tistically speaking, this effect can be achieved in an elegant implicit manner by searching
in the corpus “at random” for matching constructions”. The matching process, which
Scha describes, betrays his wish to employ a randomized stochastic memory-based pro-
cess for parsing. An instantiation of this idea is the algorithm of Monte Carlo Pars-
ing (Bod, 1993a) for computing the MPP and the MPD of an input sentence; these
Monte Carlo algorithms are non-deterministic exponential-time (Goodman, 1998). In
principle, these algorithms can achieve good approximations of the MPP and the MPD.
However, in practice, they turn out to be extremely time-consuming to the degree that they
can be considered of theoretical interest only. Substantially more efficient algorithms are
presented in chapter 5 of this thesis. And a proof that, among others, the problem of
computing the MPP is NP-Complete is provided in chapter 3.

2.3.4 The DOP framework

As mentioned earlier, Bod’s instantiation is only one of many possible instantiations of
Scha’s description of the DOP model. A DOP framework, which restates Scha’s de-
scription, is provided in Bod’s dissertation (Bod, 1995a). An improved version of this
framework is provided in (Bod and Scha, 1996). The latter version states, in most general
terms, that a DOP model is obtained by indicating the following components:

1. a definition of a formal representation for utterance-analyses (e.g. parses of a CFG),

2.4. Elements of Machine Learning 29

2. a definition of the fragments of the utterance-analyses that may be used as units in
constructing an analysis of a new utterance (e.g. subtrees of parses),

3. a definition of the operations that may be used in combining fragments (e.g. substi-
tution of partial-trees in other partial-trees),

4. a definition of the way in which the probability of an analysis of a new utterance is
computed on basis of the occurrence-frequencies of the fragments in the corpus.

The DOP framework does not commit itself to any specific linguistic theory or formal
language, nor to any grammatical framework; it can be instantiated under any choice of
a formal representation and under any choice of a linguistic theory. Since Scha’s intro-
duction of the DOP model (Scha, 1990), there have been various other instantiations of
it, some involving CFG-based annotations with different constraints on the probabilistic
grammar learned from the tree-bank (Sekine and Grishman, 1995; Sima’an, 1995; Char-
niak, 1996; Goodman, 1996; Sima’an, 1997a; Tugwell, 1995; Goodman, 1998), some
involving a semantic extension of PSGs (Van den Berg et al., 1994; Bonnema, 1996;
Bod et al., 1996a; Bonnema et al., 1997), and others committed to the Lexical Functional
Grammar (LFG) linguistic theory (Bod et al., 1996b; Bod and Kaplan, 1998).

2.4 Elements of Machine Learning

This section describes, in short, both Bayesian learning and Explanation-Based Learning
(EBL) (also called analytical learning). In order to introduce the necessary terminology,
this section starts with a brief informal description of the general setting for machine
learning (for a good introduction on the subject, we refer the reader to (Mitchell, 1997)).
Subsequently, it describes, in most general terms, the paradigm of Bayesian learning and
discusses the Information Theoretic measure of entropy. Finally, it discusses EBL by
contrasting it to the better known paradigm of inductive learning.

2.4.1 Learning

The notion of a learning algorithm is defined, informally, in (Mitchell, 1997) as an algo-
rithm which improves the performance of a system, according to some measure, through
experience.

Concept learning: In general, learning involves acquiring general concepts from spe-
cific training examples that represent experience. Humans continuously learn concepts
such as “bird” from examples seen in the past. A concept can be represented as a func-
tion

�
from some domain � to some range . For example, the concept “bird” is a

function from any object (in some predefined set of objects) to a Boolean value stating
TRUE if the object is indeed a bird and FALSE otherwise. A linguistic example: the
concept “a word sequence accepted by some formal grammar of the English language” is

30 Chapter 2. Background

a function from sequences of English words to a Boolean value. Similarly, there can be
concepts such as “propositional phrase (PP)” or “verb phrase (VP)” etc. �����

Instances and classes: For a concept
� 2 � 4 , each member of � is called an in-

stance and each member of is called a class (or a classification). Usually, an instance
is represented as a tuple of attribute-value pairs (or feature-value pairs); the tuple of at-
tributes is called the instance-scheme. Note that the choice of an instance-scheme to
represent some concept immidiately delimits the domain of that concept. For example,
the concept “rainy-day” tells whether a certain day is rainy or not. Instances (i.e. days) of
the concept “rainy-day”, can be represented as quadruples of values for the four attributes
in the instance-scheme

&
month, temperature, cloudiness, humidity , . The concept “rainy-

day” is a function that maps such instances, each representing a day, into one of the two
classes of a day: either TRUE (i.e. rainy) or FALSE (i.e. not-rainy).

Hypotheses-space: A hypotheses-space is a pair of sets
& ���� , , where � is the set of

instances and is the set of classes. For a learning algorithm, a hypotheses-space defines
both the domain and the range of all functions “eligible” for that learning algorithm (i.e.
all functions from � into). Each function in the hypotheses-space is called a hypothesis.

Training instances: The training instances or training examples for some concept con-
stitute a finite multi-set of instances; this multi-set represents the experience of the system
with identifying instances of that concept. The training instances serve as examples of the
space of instances that the system may expect in the future. Training instances can be
either (a priori) classified or not classified depending on the type of learning, respectively
supervised or unsupervised learning. In this work we only deal with supervised learning
(from positive examples); therefore, the training instances are pairs

& 0��� , !#� � .

Learning as search: In general, it is convenient to view learning as search in a space
of functions delimited by the hypotheses-space. The goal of learning is to hypothesize
or estimate some unknown concept, called the target-concept. For hypothesizing on the
target-concept, the learner conducts a search through the hypotheses-space. The search
is directed in part by training instances (or training examples) that are provided to the
learner, and in part by some inductive bias (prior knowledge) that might be used for
limiting the domain of the hypotheses-space (e.g. only linear functions) or for directing
the search algorithm. An estimate of the target-concept is found during the search as
a hypothesis that satisfies both the training-instances and the inductive bias. In most
learning paradigms, the inductive bias is essential for successful generalization over the
training instances; without inductive bias there is no way to learn a hypothesis that is able
to classify unseen instances in a rational manner.

2.4. Elements of Machine Learning 31

2.4.2 Inductive learning

Many well known Machine Learning algorithms belong to the paradigm of inductive
learning; Decision-Tree learning, Neural Network learning and Bayesian learning are
the most prominent examples of inductive learning. The aim of inductive learning is to
generalize a set of previously classified instances (i.e. training instances) of a certain con-
cept into a hypothesis on that concept. In search terminology, inductive learning seeks a
hypothesis that fits the training instances and generalizes them according to some prior
knowledge of the domain (inductive bias). In most cases, inductive learning is employed
to estimate a target concept that is not fully defined beforehand. More accurately, often,
the only known description of the target concept is a partial description, given extension-
ally as the set of training instances together with some intuitive inductive bias (which is
believed to lead to the target-concept). Thus, inductive learning relies only on the induc-
tive bias (i.e. prior knowledge) for generalizing over the training material; this makes the
inductive bias a crucial factor in inductive learning. inductive learning can be expressed
within various frameworks that aim at providing a way of combining and expressing the
inductive bias and the training data. One such framework, which is of importance here, is
Bayesian Learning.

Bayesian Learning

Bayesian learning assumes a probabilistic approach to inductive learning. In Bayesian
learning, the learner searches for the most probable hypothesis given the data. In other
words, the search, in the hypotheses space, is for the hypothesis � which maximizes the
term 1F������� � , where � denotes the training data and 1 ������� � denotes the conditional
probability of � given � . Since it is hard to compute the probability of the hypothesis
given the data directly, it is more attractive to use Bayes rule for optimization. This
results in the standard equation of Bayesian Learning

� �

:

� G��
	��
��H1 ���� � � J � G��
	��
�� 1F������� ��1F��� �
1F��� �

1F������� � , called posterior probability, is the probability of a hypothesis given the data.
1F�������D� , called likelihood, is the probability of the data given the hypothesis. And 1F��� � ,
called the prior (of �), and 1F��� � are the prior probabilities of respectively the hypothesis
and the data. Note that Bayesian learning sees the probability 1F������� � as a combination
of how much a hypothesis is consistent with the data and how probable it is prior to
seeing the data. A common simplification of the above optimization term is achieved by
removing the constant 1F��� � , resulting in � G��
	��
��H1 ������� �KJ � G��
	��
��H1 ������� ��1F��� � .

Note that 1 ���D� represents our prior knowledge of the hypotheses space, i.e. this is
the distribution over the hypotheses-space which is assumed to be known beforehand,
i.e. independently of the data. In fact 1 ���D� is exactly the place which Bayesian learning

� �

The notation ��������������� �!��" or �#���$�$�%���&� �!��" denotes “that � for which � �!�&" is maximal”. Similarly
there is �������%' A(�$� �)��" which denotes “that � for which � �!�&" is minimal”.

32 Chapter 2. Background

reserves for the inductive bias. In practice, often the prior is implicitly embedded in
the learning algorithm by assuming a certain search order or some preference beyond
likelihood e.g. smallest maximum likelihood hypothesis. In other cases 1F��� � is assumed
to have no preference, i.e. a uniform distribution over the hypotheses, leading to the
Maximum Likelihood (ML) formula: � G��
	��
 �H1 ������� � � � G�� 	��
���1F������� � .
Minimum description length

Bayesian learning has its own interpretation of the Minimum Description Length (MDL)
principle (Rissanen, 1983). In MDL, the goal of learning is to find the hypothesis � �����
that minimizes the sum of its length together with the length of the data given that hy-
pothesis; this is equal to saying that the sum of the length of the “irregularities” in the
data (i.e. data not covered by � �����) together with the length of � ����� is the minimum
over the hypotheses-space. Crucial in MDL, however, is that the length of an entity must
be obtained using an optimal coding scheme. Many practical MDL algorithms measure
the length of entity

�
using Shannon’s (Shannon and Weaver, 1949) optimal code length

(i.e. optimal expected message length), which is equal to
� < � � � 1F� � � (see next the defini-

tion of entropy). This interpretation of the MDL principle can be stated by the following
equation

� ����� J � G��
	
 � � < � � � �71 ��� �0� � < � � � �71 ������� ��� J � G��
	
 � � < � � � ��1F��� ��1F������� �0�
It is easy to see that this is equivalent to: � ����� J � G��
	��
��H1F��� � 1 ������� � . Thus, the

MDL principle is, in fact, interpretable as learning the hypothesis which maximizes the
posterior probability of the hypothesis given the training data 1F����� � � .

For an excellent introduction to Bayesian learning we recommend the chapter in
(Mitchell, 1997). For examples of applications of Bayesian learning and Maximum Like-
lihood learning we refer the reader to (Krenn and Samuelsson, 1997).

Entropy

Having mentioned Shannon’s optimal expected message length, it is time to explain the
term entropy as well, since we will need it in the sequel. Suppose we have a source

�
(or

random variable), which is capable of emitting any of the words in the alphabet
�

� �����
� �

under a probability distribution 1 . If we are to encode the next word emitted by
�

, using
binary code, what is the expected number of bits which we should reserve for this code ?

If 1 is uniformly distributed then we have to reserve exactly
< ��� � �
 � bits, or equally� < � � � � �� � , for encoding the next word. A uniform distribution expresses our worst case

scenario concerning predicting the next word which
�

will emit. And the fact that we
need as many as

� < ��� � � �� � bits expresses that.
However, 1 is not necessarily uniformly distributed. Thus, 1 might be “easier than

uniform”, i.e. it might be easier to predict the next word of
�

. In that case, we should be
able to reserve less bits for the next word. Now let 1K� , for all , denote 1F� � � � . According
to a proof by (Shannon and Weaver, 1949), if we reserve exactly

� < � � � ��1 � � bits for
� � ,

2.4. Elements of Machine Learning 33

then this will constitute a generalization of the uniform case. This is called the optimal
code length (Shannon and Weaver, 1949).

The expectation value (or mean), denoted ��� 9 , of the optimal code length for the next
word, which

�
will emit, is given by the equation

��� � < � �=��1 � 9 J � > � 1 �
< � � �71 � � �

Exactly this value is called the entropy of source (or random variable)
�

and is usually
denoted by ��� � � . Entropy can be seen as a measure of how hard it is to predict the
next word which source

�
will emit. A high entropy value simply implies very hard

predictions, i.e. many possible words or a spread out distribution with little preference.
Entropy can also be seen as a measure of the uncertainty we have by not knowing the next
word

�
will emit. Alternatively, it can be seen as the measure of the information on

�

which we gain by knowing the next word it will emit.

2.4.3 Explanation-Based Learning

In contrast to other learning paradigms, in Explanation-Based Learning (EBL), the learner
has access to a so called background-theory

� �

, in addition to the set of training instances.
The background-theory consists of knowledge (e.g. rules, facts, assertions) about the
target concept (and possibly other concepts); in many cases the background-theory is
in fact an oracle that is able to explain “how it arrives at the classification of a given
instance”.

During the learning (or training) phase, the background-theory provides EBL with a
class for each training instance as well as an explanation of how it arrived at that class.
An explanation is (often) a proof tree or a derivation-sequence; it shows explicitly all
derivation-steps, involving assertions and rules from the background-theory, that lead to
the class of the instance at hand. For example, a CFG can be seen as a set of assertions,
asserting that sequences on the right hand side of a rule are of the type on the left hand
side of that rule. A derivation of some sequence of words in some CFG, explains how that
CFG proves that this sequence of words is a sentence (i.e. class non-terminal �). A set of
training instances is, for example, a tree-bank annotated under that CFG.

The goal of EBL is to learn a hypothesis which, on the one hand, generalizes over the
training instances, and on the other hand has partial coverage compared to the background
theory. Therefore, the target concept which EBL aims at, is always in the hypotheses
space of the learner, since the background theory delimits that space. The main learning
problem for EBL is that this space contains many hypotheses that generalize over the
training instances. Therefore, EBL searches for a target concept that also satisfies some
requirements that make it a more efficient (or more operational) general representation of
the training instances than the background theory.

� �

A considerable portion of the Machine Learning literature employs the term “domain-theory” rather
than the term “background-theory”. In the context of this thesis, we prefer the latter due to the different
interpretation of the term “domain” in computational linguistics. A better term might be “task-theory” but
this is also confusing due to the various possible interpretations of the term “task”.

34 Chapter 2. Background

Thus, in contrast to inductive learning, the goal of EBL is to generalize the set of
examples in the light of the background-theory, rather than to find a generalization from
“scratch” in the light of some inductive-bias. Since the background-theory at hand is
assumed to be a good theory of the concept, there is no risk of assuming inaccurate in-
ductive bias (as is the case in inductive learning). In fact, the contrast between the two
paradigms becomes clearer if one looks at the result of learning from the point of view of
the background-theory; from this point of view, the result of EBL is a specialization of
the given background-theory to the given set of training examples, usually representing
some specific domain of application of that background-theory. The goal of EBL with
this specialization is to deal more efficiently with future examples, that are similar in their
features and distribution to the given set of training instances of the target concept. Thus,
the background-theory serves as part of EBL’s prior knowledge of the target concept and
the goal is to infer a hypothesis on the target concept that provides a more specialized
description of the training instances than the background-theory does. Figure 2.3 depicts
the two points of view on EBL’s kind of learning i.e. 1) as generalization in the light of a
background-theory, and 2) as specialization of a background-theory to a given domain

� �

.
A most vivid summary of the difference between inductive learning and EBL is given

in (Mitchell, 1997) page 334:“Purely inductive learning methods formulate general hy-
potheses by finding empirical regularities over the training examples. Purely analytical
methods use prior knowledge to derive general hypotheses deductively”.

For specializing the background-theory, EBL resorts to analyzing the given explana-
tions of the training instances. This analysis involves the extraction of the set of features
(from the instance-representation which is a tuple of features) that is essential and suf-
ficient for classifying each instance. For example, if the instance of a day contains fea-
tures that do not influence the concept Rainy-day (e.g. year), then EBL’s conclusion is
to “exclude” (i.e. mask) these features for this target concept. Besides this specializa-
tion step, EBL generalizes over the values that the features may take by computing for
each explanation (proof tree) the weakest conditions under which the proof still holds.
In other words, EBL transforms an explanation of many derivation-steps into a complex
rule (also called macro-rule) which has the form: generalized-instance implies target-
concept. The generalized-instance is the most general form of the instance, according to
the background-theory, for which the explanation (proof) still holds.

Since EBL does not aim at learning a hypothesis in the absence of one, but rather
to improve the performance of an existing background-theory, one often tends to under-
estimate EBL’s contribution. But consider for example the game of chess, which has a
perfectly defined background-theory which consists of all rules of the game. It is clear
that good chess players do not try all possibilities in their heads before they make a move.
Instead, they develop some expertise through experience under the full awareness of the

� �

EBL in fact assumes that there is a theory for the given domain, which is more specialized than and
consistent with the background-theory. One could refer to this theory, a theory specialized for the domain
at hand, with the term “domain-theory”. EBL’s goal in learning is then to learn this “domain-theory” given
a finite set of examples from the domain, that are analyzed by the background-theory. To avoid confusion
around terminology, we refrain from using the term domain-theory here.

2.4. Elements of Machine Learning 35

� �� �� �� �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

����
���� ��		

�� ��

�������������������� ��������
����

������������
��������

����

��

Background-theory

EBL’s theory for domain X
Training instance with analysis

Background-theory for domain X Generalization

Specialization

Legend:

Figure 2.3: Two views of EBL: generalization and specialization

rules of the game. These good players seem to develop a more specialized and opera-
tional “theory” of chess that enables them to arrive faster at better results. EBL seems
to provide part of the computational explanation of phenomena such as human learning
from explanations for specialization and improving efficiency. Here it is worthwhile em-
phasizing that the term “efficiency” does not necessarily mean speed-up. Efficiency can
mean an improvement in any aspect of a system’s performance such as time, space or
overgeneration. There are no limitations in EBL that prevent employing it for improving
any desired performance measure.

Finally, the EBL paradigm makes two major assumptions (Mitchell, 1997): 1) the
background-theory is correct (i.e. “sound”) and complete (i.e. has full coverage) with
respect to the instance space and the target-concept at hand, 2) The training material does
not contain any errors or inconsistencies. In cases where the background-theory is not
perfect (i.e. incorrect and incomplete), Mitchell (Mitchell, 1997) suggests to combine
EBL with inductive learning.

EBL: specification

The specification of the general scheme for an EBL algorithm consists of four precondi-
tions and one postcondition. The preconditions are defined as follows:

36 Chapter 2. Background

Background theory: A description language for the task at hand together with rules,
assertions and facts about the task. For instance, in natural language parsing, the
description languages used in the background-theories are usually grammars e.g.
CFGs. Facts about the task are provided by a human annotator who is responsible
for providing the right non-ambiguous descriptions.

Training examples: A history of explicit explanations that are given by the background-
theory to example instances of the concept being learned. In parsing, for example,
this is a tree-bank annotated under a CFG, i.e. a derivation or a parse-tree constitutes
an explanation for why a sequence of words is a sentence in the language of the
(background theory) CFG.

Target concept: A formal description, in terms of the alphabet of the background-theory,
of the domain and the range of the function that is to-be-learned (this also defines
the instance-scheme). For instance, when given a tree-bank annotated under a CFG
� = (.*/ , .+0 , � , 1), a target concept can be the notion of “constituency”; this con-
cept is defined by . � as domain and by .%/ 3�� ��� ��� as range, where NOT denotes
sequences that are not constituents. As an example, the instance-scheme could be
in the form: XP(
 � �����
��), 	 � (

, expressing a CFG rule
� 1.4
 � �����
�� (not

necessarily a member in 1).

Operationality criterion: A requirement on the form of the target concept (i.e. its do-
main and range), in order to render the learned hypothesis “operational” with re-
spect to some measure. In parsing, this can be a formal requirement on any CFG
rule that can be learned. For example, one could set an operationality criterion that
limits the length of the right hand side of CFG rules, in order to limit the size of
the CFG that is learned. Or, one could demand that the CFG rule be Right-Linear
if one intends to parse using an FSM.

The postcondition is:

Postcondition: To find a generalization of the instances of the target concept given in
the training-examples, that satisfies the operationality criterion and the background
theory. In our example on parsing, the generalization consists of CFG rules (or
subtrees of the tree-bank trees, if one maintains also an internal structure for these
rules) that satisfy the operationality criteria.

The operationality criteria represent in fact extra bias in order to render the learned
knowledge, i.e. the target concept, operational. These are requirements on the form of
the target-concept, which may originate in part from the background-theory and in part
from knowledge of the “machinery”, which will be employed for exploiting the learned
target-concept. For example, if one is planning to run the learned knowledge on a Finite-
State Machine (FSM) then it is worth considering an operationality criterion stating that
the target-concept must be a regular expression.

2.5. Thesis goals and overview 37

EBL: short literature overview

Historically speaking, EBL (DeJong, 1981; DeJong and Mooney, 1986; Mitchell et al.,
1986) is the name of a unifying framework for various methods that learn from explana-
tions of examples of a certain concept using a background-theory. In most existing litera-
ture, the main goal of EBL is faster recognition of concepts than the background-theory;
EBL learns “shortcuts” in computation (called macro-operators or “chunks”), or direc-
tives for changing the thread of computation. EBL stores the learned macro-operators
in the form of partial-explanations to previously seen input instances, in order to apply
them in the future to “similar” input instances (in EBL, also “similarity” is assumed to be
provided by the background-theory). However, as mentioned above, Speedup Learning is
in fact only one area where EBL can be applied.

Past experience in Machine Learning cast doubt on the feasibility of improving per-
formance by using EBL (Minton, 1990). In his paper, Minton explains that EBL does
not guarantee better performance, since the cost of applying the learned knowledge might
outweigh the gain since EBL has no mechanism for measuring the utility of the learned
knowledge. For this reason, Minton discusses a formula for computing the utility of
knowledge during learning. Generally speaking, this formula is not part of EBL; it is
an extension to the EBL scheme by e.g. statistical inference over large sets of training
examples.

For an overview of the literature on EBL the reader is referred to chapter 4 of (Shavlik
and Dietterich, 1990) and chapter 11 of (Mitchell, 1997). For a formal framework and
discussion of Speedup Learning the reader is referred to (Tadepalli and Natarajan, 1996).
For a study of the relation between EBL and partial-evaluation the reader is referred to
(van Harmelen and Bundy, 1988).

2.5 Thesis goals and overview

The focus of this thesis is on the ambiguity problem in natural languages and their gram-
mars. The primary goal is to present efficient solutions for the problem of ambiguity
resolution in natural language parsing. The starting point for this study is that the solu-
tions must be algorithmic and general, do not necessitate human intervention except for
supplying the input, and are amenable to empirical assessment. The main vehicles that
carry the present solutions are Machine Learning and Probability Theory.

As in various preceding work, the task of natural language parsing is conceptually
divided in two modules: 1) the parser which is the module that generates the linguistic
analyses that are associated with the input (i.e. the parse-space), and 2) the disambigua-
tor which is the module that selects one preferred analysis from among the many that the
parser generates. The parser is based on a grammar, e.g. a CFG or a TSG (not neces-
sarily a competence grammar). The disambiguator is based on a probabilistic enrichment
of the relations (e.g. subsentential-forms, partial-derivations, partial-trees) that can be
expressed by the grammar of the parser. We refer to this probabilistic enrichment with
the term probabilistic model. Despite of this conceptual devision of labour between both

38 Chapter 2. Background

modules, it is easy to see that the parser also involves “disambiguation” because the gram-
mar that underlies it already delimits the parse-space of the input even before probabilistic
disambiguation starts. Therefore, the grammar itself constitutes another location where
ambiguity resolution can take place.

For acquiring (or training) both the grammar and the probabilistic model, this work
adopts the Corpus-Based view that it is most expedient to employ an unambiguously and
correctly annotated (i.e. by a human) sample of real-life data as training material, i.e. a
tree-bank. This offers the possibility that the resulting parser and disambiguator will an-
swer to similar distributions as the sample that was used for training, which is considered
representative of some domain of language use.

This thesis concentrates on the inefficiency aspect of existing performance models of
ambiguity resolution. The thesis defends the hypothesis that the task of ambiguity resolu-
tion in parsing limited domains of language use can be implemented more efficiently and
more accurately by integrating two complementary and interdependent disambiguation
methods:

1. Through the automatic learning of a less ambiguous grammar from a tree-bank
representing a specific domain. The main goal here is to cash in on the measur-
able biases in that domain (which are properties of human language processing in
limited domains). We refer to this as off-line partial-disambiguation or grammar
specialization through ambiguity reduction.

2. Through utilizing a probabilistic model that imposes a complete ordering on the
space of analyses and allows the selection of a most probable analysis. This can
be called on-line full-disambiguation. The DOP model is the most suitable can-
didate for this task since it generalizes over most existing probabilistic models of
disambiguation.

These two manners of disambiguation are complementary: on-line disambiguation is ap-
plied only where it is impossible to disambiguate off-line without causing undergenera-
tion. And they are interdependent since a less ambiguous grammar, acquired off-line, can
serve as the linguistic annotation scheme for the tree-bank from which the probabilistic
model is obtained.

Although on-line full disambiguation seems sufficient for ambiguity resolution, there
are reasons to believe that off-line partial disambiguation by grammar specialization is an
essential element of disambiguation:

� None of the existing probabilistic models has the property that frequently occurring
and more grammatical input is processed faster. This is the main property ac-
counted for by specialization by ambiguity reduction, i.e. off-line disambiguation
as implemented in this thesis.

� A grammar that extremely overgenerates on some domain forms a bottleneck for
any probabilistic model which is obtained from a tree-bank representing that do-
main and annotated under that grammar. Such an overgenerating grammar imposes

2.5. Thesis goals and overview 39

an extreme strain on the probabilistic model: applying probabilistic computations
that are based on a large table of probabilities to a large parse-space implies a very
inefficient parser. This situation is most evident when parsing word-graphs output
by a speech-recognizer using a DOP STSG as probabilistic model.

� When a performance model such as DOP employs a tree-bank that has an extremely
overgenerating underlying grammar, it acquires a probabilistic grammar that has
a large number of statistical parameters. It is common wisdom in probabilistic
modeling that the larger the number of parameters, the more data are necessary for
estimating them from relative frequencies. Therefore, large probabilistic grammars
are more prone to sparse-data effects than smaller ones. Extreme overgeneration is
a source of data-sparseness in probabilistic models.

Specialization by ambiguity-reduction provides solutions to these problems and combines
very well with probabilistic models such as DOP.

The order of the subsequent chapters reflects the course of events that led to the shift
in my subject of interest from parsing-algorithms to the more general subject of learning
how to parse efficiently. After proving that some problems of probabilistic disambiguation
are intractable (chapter 3) I arrived at the conclusion that it is necessary to develop non-
traditional methods for improving the efficiency of parsing (chapter 4) and to combine
them together with optimized (relatively) traditional methods (chapter 5). Next I elaborate
on the contents of these chapters.

Chapters 3 and 5: The choice for DOP for the task of on-line disambiguation implies
a time- and space-bottleneck, because it employs huge probabilistic STSGs and involves
complex computations. Chapters 3 and 5 study the computational aspects of disambigua-
tion under the DOP model. Chapter 5 presents efficient parsing and disambiguation al-
gorithms that provide useful solutions to some of the problems of disambiguation under
DOP. The chapter presents optimized deterministic polynomial-time algorithms for com-
puting the MPD (and the total probability) of a tree, a sentence, an FSM (word-graph
without probabilities) and an SFSM (a word-graph as output by speech-recognizers).
Moreover, it also suggests effective heuristics for the application of DOP, and exhibits
extensive experiments with the DOP model on various domains and for various applica-
tions. These algorithms and heuristics have been fully implemented in the Data Oriented
Parsing and DISambiguation

� �

environment (DOPDIS) (Sima’an, 1995).
In contrast to chapter 5, chapter 3 brings the (often negatively interpreted) news that

some disambiguation problems under DOP are (currently and most probably in the fu-
ture) not solvable in deterministic polynomial-time. It supplies a study of the compu-
tational complexity of (on-line) probabilistic disambiguation, under SCFGs and STSGs.
It provides proofs that the following problems are NP-Complete: the problem of com-
puting the MPP of a sentence or a word-graph under STSGs, the problem of computing

� �

DOPDIS currently serves as the kernel of the Speech-Understanding Environment of the Probabilistic
Natural Language Processing (Scha et al., 1996) in the OVIS system, developed in the Priority Programme
Language and Speech Technology of the Netherlands Organization for Scientific Research (NWO).

40 Chapter 2. Background

the Most Probable Sentence (MPS) of a word-graph under STSGs and SCFGs. These
proofs imply that it is highly unlikely that efficient deterministic polynomial-time solu-
tions can be found. This redirects the research on finding solutions to these problems in
non-conventional ways, e.g. off-line disambiguation as presented in chapter 4.

Chapter 4: For off-line disambiguation, chapter 4 presents a brand new view on the
subject of grammar specialization, embodied by the Ambiguity Reduction Specialization
(ARS) framework. Rather than learn a grammar that has shorter derivations, as preced-
ing work on grammar specialization expresses its goals, the ARS framework suggests to
learn a less ambiguous grammar without jeopardizing coverage. Chapter 4 presents the
ARS framework and derives from it two learning algorithms for grammar specialization.
Grammar specialization under ARS improves the efficiency of parsing and disambigua-
tion, especially on more frequent and longer input.

An interesting aspect of ARS is that it relates the following issues on parsing and dis-
ambiguation to each other: efficiency, partial-parsing, partial-disambiguation, and gram-
mar and DOP specialization to specific domains. Grammar specialization in ARS is equal
to reducing ambiguity only where possible (i.e. partial-disambiguation). The specialized-
grammar in ARS is always partial to the original grammar (partial-parsing). Projecting a
DOP STSG from the specialized tree-bank results in a specialized DOP model. Chapter 4
elaborates each of these issues.

A novel property of ARS is that it learns partial-parsers that can be combined with
a full parser in a complementary manner; the full parser is engaged in the parsing pro-
cesses only where and when necessary. The partial-parser can be implemented in various
ways among which the most natural is a Cascade of Finite State Transducers. Chapter 4
discusses these issues of partial-parsing and full-parsing in detail.

Chapter 6: The ARS learning and parsing algorithms are implemented in the Domain
Ambiguity Reduction Specialization (DOARS) system. Chapter 6 discusses implementa-
tion issues of DOARS and exhibits an empirical study of the ARS algorithms on various
domains. DOARS is evaluated on its own and in combination with DOPDIS on sentence
and word-graph disambiguation.

Chapter 7: Chapter 7 summarizes and discusses the general conclusions of this thesis.

Each of the subsequent chapters relies to some extent on the definitions and back-
ground information discussed in the present chapter. Nevertheless, to avoid a large back-
ground chapter, each chapter contains its own necessary definitions and background infor-
mation. Therefore, reading the subsequent chapters can take place in any desired order.

Chapter 3

Complexity of Probabilistic Disambiguation

Probabilistic disambiguation, represented by the DOP model, constitutes one of the two
methods of disambiguation that this thesis combines. A major question in applying prob-
abilistic models is whether it is possible and how to transform optimization problems of
probabilistic disambiguation to efficient algorithms ? The departure point in answering
this question lies in classifying these problems according to the time-complexities of their
solutions. A problem that does not have solutions of some desirable time-complexity,
constitutes a source of inconvenience and demands special treatment.

The present chapter provides a proof that some of the common problems of proba-
bilistic disambiguation, under DOP and similar models, belong to a class of problems for
which we do not know whether we can devise deterministic polynomial-time algorithms.
In fact, there is substantial evidence that the problems that belong to this class, the NP-
complete class, do not have such algorithms. For NP-complete problems, the only known
deterministic algorithms have exponential-time complexity. This is, to say the least, in-
convenient since exponential-time algorithms imply a serious limitation on the kinds and
sizes of applications for which probabilistic models can be applied.

For obvious reasons, the problems considered in this chapter are stated in a form
that generalizes over the case of the DOP model. All these problems involve some
form of probabilistic disambiguation under SCFG-based models (Jelinek et al., 1990;
Black et al., 1993; Charniak, 1996) or STSG-based models (Sekine and Grishman, 1995;
Bod, 1995a). Moreover, the results of the present proofs apply also to TAG-based mod-
els (Schabes, 1992; Schabes and Waters, 1993; Resnik, 1992) and the proofs themselves
have been adapted to prove that other similar problems of disambiguation are also NP-
complete (Goodman, 1998). The applications that face these hard disambiguation prob-
lems range from applications that involve parsing and interpretation of text to applications
that involve speech-understanding and information retrieval.

41

42 Chapter 3. Complexity of Probabilistic Disambiguation

3.1 Motivation

As mentioned earlier, an important facility of probabilistic disambiguation is that it en-
ables the selection of a single analysis of the input. Parsing and disambiguation of some
input, e.g. under the DOP model, can take place by maximizing the probability of some
entity (in short “maximization-entity”). Chapter 5 exhibits efficient deterministic algo-
rithms for some problems of disambiguation under DOP. Among these problems, there
are the problems of computing the Most Probable Derivation (MPD) and computing the
probability of an input tree/sentence/word-graph. These algorithms serve as useful dis-
ambiguation tools for various tasks and in various applications. However, there are many
other applications for which the DOP model prescribes to compute other entities. For
example, under current DOP, the disambiguation of sentences can (theoretically speak-
ing) better take place by computing the Most Probable Parse (MPP). Another example is
syntactic disambiguation in speech-understanding applications where the Most Probable
Sentence (MPS) of a word-graph, produced by the speech-recognizer, is the desired entity.

In the present chapter we consider the problems of computing the MPP or the MPS
for input sentences or word-graphs under STSGs in general. We provide proofs that these
problems are NP-complete. This means that, as far as we know, there are no deterministic
polynomial-time algorithms for computing these entities in an exact manner. For this rea-
son, NP-complete problems are treated in practice as intractable problems. Surprisingly,
the “intractability” of the problem of computing the MPS of a word-graph carries over to
models that are based on SCFGs.

This work is not only driven by mathematical interest but also by the desire to develop
efficient algorithms for these problems. As mentioned above, such algorithms can be use-
ful for various applications that demand disambiguation facilities, e.g. speech-recognition
and information retrieval. The proofs in this chapter serve us in various ways. They save
us from investing time in searching for deterministic polynomial-time algorithms that do
not exist. They provide an explanation for the source of complexity, an insight that can
be useful in developing models that avoid the same intractability problems. They place
our specific problems in a general class of problems, the NP-complete class, which has
the property that if one of its members ever becomes solvable, due to unforseen research
developments, in deterministic polynomial-time, all of its members will be solvable in de-
terministic polynomial-time and the algorithms will be directly available. And they form
a license to redirect the research for solutions towards non-standard methods, discussed
in the conclusions of this chapter.

The structure of this chapter is as follows. Section 3.2 provides a short overview of the
theory of intractability, its notions, and its terminology. Section 3.3 states more formally
the problems that this chapter deals with. Section 3.4 provides the proofs for each of the
problems. Finally, section 3.5 discusses the conclusions of this study and the questions
encountered that are still open.

3.2. Tractability and NP-completeness 43

3.2 Tractability and NP-completeness

This section provides a short overview of the notions of tractability and NP-completeness.
The present discussion is not aimed at providing the reader with a complete account of
the theory of NP-completeness. Rather, the aim is to provide the basic terminology and
the references to the relevant literature. Readers that are interested in the details and
formalizations of tractability and NP-completeness are referred to any of the existing text
books on this subject e.g. (Garey and Johnson, 1981; Hopcroft and Ullman, 1979; Lewis
and Papadimitriou, 1981; Davis and Weyuker, 1983; Barton et al., 1987).

The present discussion is formal only where that is necessary. It employs the terminol-
ogy which is common in text books on the subject e.g. (Garey and Johnson, 1981). For a
formalization of this terminology and a discussion of the limitations of this formalization,
the reader is referred to chapters 1 and 2 of (Garey and Johnson, 1981).

Decision problems: The point of focus of this section is the notion of a tractable de-
cision problem. Informally speaking, a problem is a pair: a generic instance, stating the
formal devices and components involved in the problem, and a question asked in terms
of the generic instance. A decision problem is a problem where the question can have
only one of two possible answers: Yes or No. For example, the well known 3SAT (3-
satisfiability) problem

�

is stated as follows:

INSTANCE: A Boolean formula in 3-conjunctive normal form (3CNF) over the vari-
ables � � �������	��� � . We denote this generic instance of 3SAT with the name INS.
Moreover, we denote the formula of INS by the generic form:

� � � ��� �
� ��� �

� � ��� � � � ��� �
� ��� �

� � ��� ������� � � � �	� � � �
� � � � �
where 	 � (and

� � � is a literal
�

over ��� � ������� ��� � � , for all
(� � 	 and all(� � � . This formula will also be denoted � � � �"������� �� , where �

represents � � � �	� � � �
� � � � � , for all
(� � 	 .

QUESTION: Is the formula in INS satisfiable ? i.e. is there an assignment of values true
or false to the Boolean variables � � �������:�� � such that the given formula is true ?

Decision problems are particularly convenient for complexity studies mainly because
of the natural correspondence between them and the formal object called “language” (usu-
ally languages and questions in terms of set-membership are the formal forms of decision
problems). The size or length of an instance of a decision problem is the main variable
in any measure of the time-complexity of the algorithmic solutions to the problem (in
case these exist). Roughly speaking, this length is measured with respect to some rea-
sonable encoding (deterministic polynomial-time computable) from each instance of the
decision problem to a string in the corresponding language. In order not to complicate

�

The 3SAT problem is a restriction of the more general satisfiability problem SAT which is the first
problem proven to be NP-complete (known as Cook’s theorem).

�

A literal is a Boolean variable (e.g. ���), or the negation of a Boolean variable (e.g. ���).

44 Chapter 3. Complexity of Probabilistic Disambiguation

the discussion more than necessary, we follow common practice, as explained in (Garey
and Johnson, 1981), and assume measures of length that are more “natural” to the deci-
sion problem at hand (knowing that it is at most a polynomial-time cost to transform an
instance to a string in the language corresponding to the decision problem). For 3SAT, for
example, the length of an instance is 	�� ��	 � (��� * 	 , i.e. the number of symbols in
the formula is linear in the number of conjuncts 	 .

Tractable problems and class P: While Computability Theory deals with the ques-
tion whether a given problem has an algorithmic solution or not, the theory of NP-
completeness deals, roughly speaking, with the question whether the problem has a gen-
eral solution that is computationaly attainable in practice. In other words:

Is there a (deterministic) algorithmic solution, which computes the answer
to every instance of the problem and for every input to that instance, of
length

 � (
, in a number of computation steps that is proportional to a

“cheap” function in

?

The problem with defining the term “cheap” lies in finding a borderline between those
functions that can be considered expensive and those that can be considered cheap. A
first borderline that has been drawn by a widely accepted thesis (Cook-Karp) is between
polynomials and exponentials. Problems for which there is a deterministic polynomial-
time solution are called tractable. Other problems for which there are only deterministic
exponential-time solutions are called intractable.

The main motivation behind the Cook-Karp descrimination between polynomials and
exponentials is the difference in rate of growth between these two families. Generally
speaking, exponentials tend to grow much faster than polynomials. Strong support for
the Cook-Karp thesis came from practice: most practically feasible (“naturally occur-
ing”) problems (in computer science and natural language processing) have deterministic
polynomial-time solutions where the polynomial is of low degree

�

. Only very few prob-
lems with exponential-time solutions are feasible in practice; usually these problems have
a small expected input length. Moreover, the overwhelming majority of problems that
are not solvable in deterministic polynomial-time turn out to be not feasible in practice.
For further discussions on the stability of this thesis (also in the face of massively parallel
computers) the reader is reffered to the text books listed above, especially (Garey and
Johnson, 1981; Barton et al., 1987).

Class P and class NP-hard: As stated above, according to the Cook-Karp thesis, a
decision problem (i.e. every one of its instances) that has a deterministic polynomial-
time solution in the length of its input is considered tractable. All other decision prob-
lems are considered intractable. The tractable decision problems, i.e. those that have a
polynomial-time deterministic algorithmic solution (a so called Deterministic Turing Ma-
chine (DTM)), are referred to with the term class P problems. All other problems, that

�

In a polynomial A�� , � is known as the degree.

3.2. Tractability and NP-completeness 45

are intractable, are referred to with the term NP-hard problems (see below for the reason
for this terminology).

Class NP: Interestingly, there exist problems that are solvable in polynomial-time pro-
vided that the algorithmic solution has access to an oracle, which is able to guess the
right computation-steps without extra cost (a so called Non-deterministic Turing Ma-
chine (NDTM)). Note that every problem in class P is found among these so called
Non-deterministic Polynomial-time solvable problems, also called class NP problems (i.e.
P � NP). The question is, of course, are there more problems in class NP than in class P ?
This is where we enter the gray zone in the theory of NP-completeness: nobody yet knows
the answer to this question. Most computer scientists suspect, however, that P �J NP.

NP-complete problems: Strong evidence to the hypothesis P �J NP is embodied by the
discovery of many practical and theoretical problems that are known to be in class NP
but for which nobody yet knows how to devise deterministic polynomial-time solutions;
these problems are in class NP but are not known to be in class P. In fact, if P �J NP is true
then these problems are indeed NP-hard (and also in NP). This set of problems is called
the class of NP-complete problems. Thus, NP-complete problems are those that lie in the
difference between class P and class NP, if indeed P �J NP is true.

Now, the term NP-hard can be explained as denoting those problems that are at least
as hard as any problem that is in NP (the formal definition of this relies on the notion
of deterministic polynomial-time reducibility, which we discuss below). And the NP-
complete problems are the hardest among all problems that are in NP.

Proving NP-completeness: To prove that a given problem � is NP-hard, it is sufficient
to show that another problem that is known to be NP-complete is polynomial-time re-
ducible to � . This is done by providing a polynomial-time reduction (i.e. function) from
the NP-complete problem to problem � . Such a reduction shows how every instance of
the NP-complete problem can be transformed into an instance of problem � . Naturally,
the reduction must be answer-preserving, i.e. for every instance of the NP-complete prob-
lem and for every possible input, the instance answers Yes to that input iff the � -instance
(resulting from the reduction) also does answer Yes to the transformed-form of that input.
Note that the reducibility relation between problems is a transitive relation.

Thus, once we lay our hands on one NP-complete problem, we can prove other prob-
lems to be NP-hard. Fortunately, a problem that has been proven to be NP-complete is
the 3SAT problem stated above. Therefore 3SAT can serve us in proving other problems
to be NP-hard. In addition, proving that a problem is NP-hard and that it is also in NP,
proves it to be NP-complete.

The NP-complete “club”: Note that all NP-complete problem are polynomial-time re-
ducible to each other. This makes the NP-complete problems an interesting class of prob-
lems: either all of them can be solved in deterministic polynomial-time or none will ever

46 Chapter 3. Complexity of Probabilistic Disambiguation

be. Discovering one NP-complete problem that has a deterministic polynomial-time so-
lution also implies that P = NP.

Currently there are very many problems that are known to be NP-complete, but none
has been solvable in deterministic polynomial-time yet. The efforts put into the study of
these problems in order to solve them in deterministic polynomial-time have been im-
mense but without success. This is the main evidence strengthening the hypothesis that
P �J NP and that NP-complete problems are also intractable. In the current situation, where
we don’t know how to (and whether we can) solve NP-complete problems in determin-
istic polynomial-time, we are left with a fact: all current solutions to these problems (in
general) are not feasible, i.e. these problems are “practically intractable”. This might
change in the future, but such change seems highly unlikely to happen soon. In any event,
the main motivation behind proving that a new problem is NP-complete lies in saving
the time spent on searching for a deterministic polynomial-time solution that most likely
does not exist. Of course, proving a problem to be NP-complete does not imply that the
problem should be put on the shelf. Rather, it really provides a motivation to redirect the
effort towards other kinds of feasible approximations to that problem.

Optimization problems and NP-completeness: In this work the focus is on optimiza-
tion problems rather than decision problems. In general, it is possible to derive from ev-
ery optimization problem a decision problem that is (at most) as hard as the optimization
problem (Garey and Johnson, 1981). Therefore, it is possible to prove NP-completeness
of optimization problems through proving the NP-completeness of the decision prob-
lems derived from them. To derive a suitable decision problem from a given maximiza-
tion/minimization problem, the QUESTION part of the maximization/minimization prob-
lem is stated differently: rather than asking for the maximum/minimum, the question asks
whether there is a value that is larger/smaller than some lower/upper bound that is sup-
plied as an additional parameter to the problem. For example, the problem of computing
the maximum probability of a sentence of the intersection between an SCFG and an FSM,
is transformed to the problem of deciding whether the intersection between an SCFG and
an FSM contains a sentence of probability that is at least equal to � , where 6 � �

�.(
is

an extra input to the decision problem that serves as a “threshold”.

3.3 Problems in probabilistic disambiguation

To start, the generic devices that are involved in the problems, which this chapter deals
with, are SCFGs, STSGs and word-graphs (SFSMs and FSMs). For word-graphs (SFSMs
and FSMs), it is more convenient to consider a special case, which we refer to with the
term “sequential word-graphs”, defined as follows:

Sequential word-graph (SWG): A sequential word-graph over the alphabet � is
� � � ����� � � � , where � ���%� , for all

(�� � 	 . We denote a sequential
word-graph with � � if �-� J � , for all

(� � 	 .

3.3. Problems in probabilistic disambiguation 47

Note that this defines a sequential word-graph in terms of cartesian products of sets of the
labels on the transitions (every � � is such a set); transforming this notation into an FSM is
rather easy to do (� is the set of transitions where the set of states is simply �+68�:����� � 	 � (�
and all transitions are between states and � (, state 6 is the start state and state 	 � (is
the final state). In the sequel, we refer to an SWG with the more general term word-graph.
This need not entail any confusion, this chapter refers to SWGs only, and any statement
in the proofs that applies to SWGs automatically applies to word-graphs in general.

3.3.1 The optimization problems

Now it is time to state the optimization problems that this study concerns. Subsequently,
these problems are transformed into suitable decision problems that will be proven to be
NP-complete in section 3.4.

The first problem which we discuss concerns computing the Most Probable Parse of
an input sentence under an STSG. This problem was put forward in (Bod, 1993a) and was
discussed later on in (Sima’an et al., 1994; Bod, 1995b; Sima’an, 1997b). These earlier ef-
forts tried to supply algorithmic solutions to the problem: none of the solutions turned out
to be deterministic polynomial-time. Then came the proof of NP-completeness (Sima’an,
1996), which forms the basis for the proof given in this chapter. The problem MPP is
stated as follows:

Problem MPP:

INSTANCE: An STSG � and a sentence � �� .

QUESTION: What is the MPP of sentence � �� under STSG � ?

The role of the MPP in the world of applications is rather clear: in order to derive the
semantics of an input sentence, most Natural Language Processing systems (and the lin-
guistic theories they are based on) assume that one needs a syntactic representation of
that sentence. Under some linguistic theories, the syntactic representation is a parse-tree.
DOP and many other probabilistic models select the MPP as the parse that most probably
reflects the right syntactic structure of the input sentence. Applications in which problem
MPP is encountered include many systems for parsing and interpretation of text.

A related problem is the problem of computing the MPP for an input word-graph,
rather than a sentence, under an STSG:

Problem MPPWG:

INSTANCE: An STSG � and a sequential word-graph ��� � .

QUESTION: What is the MPP of ��� � under
�

STSG � ?
�

A parse generated for a word-graph by some grammar is a parse generated by the grammar for a
sentence that is accepted by the word-graph. We also say that a given sentence is in a word-graph iff it is a
member in the language of that word-graph (i.e. accepted by the word-graph) (see chapter 2).

48 Chapter 3. Complexity of Probabilistic Disambiguation

Applications of this problem are similar to the applications of problem MPP. In these
applications, the input sentence is not a priori known and the parser must select the most
probable of the set of parses of all sentences which the word-graph accepts. By selecting
the MPP, the parser selects a sentence of the word-graph also. Typical applications lie in
Speech Understanding, morphological analysis, but also in parsing sequences of words
after PoS-tagging by a tagger that provides at least one (rather than exactly one) PoS-tag
per word (packed in a word-graph).

The third problem is the following:

Problem MPS:

INSTANCE: An STSG � and a sequential word-graph ��� � .

QUESTION: What is the Most Probable Sentence (MPS) in ��� � under STSG
� ?

This problem has applications that are similar to problem MPPWG. In Speech Under-
standing it is often argued that the language model should select the MPS rather than the
MPP of the input word-graph. Selecting the MPS, however, does not entail the selec-
tion of a syntactic structure for the sentence, a necessity for interpretation of the spoken
utterance.

And finally:

Problem MPS-SCFG:

INSTANCE: An SCFG � and a sequential word-graph ��� � .

QUESTION: What is the MPS in ��� � under SCFG � ?

This problem is equal to a special case of problem MPS: an SCFG is equal to an STSG in
which the maximum depth of subtrees is limited to 1 (see section 5.5). Applications that
face this problem are similar to those that face problem MPS described above.

3.3.2 The corresponding decision problems

The decision problems that correspond to problems MPP, MPPWG, MPS and MPS-
SCFG are given the same names:

Decision problem MPP:

INSTANCE: An STSG � , a sentence � �� and a real number 6�� �
�.(

.

QUESTION: Does STSG � generate for sentence � �� a parse for which it assigns
a probability greater or equal to � ?

Decision problem MPPWG:

INSTANCE: An STSG � , a sequential word-graph ��� � and a real number
6�� �

�.(
.

3.4. NP-completeness proofs 49

QUESTION: Does STSG � generate for ��� � a parse for which it assigns a
probability greater or equal to � ?

Decision problem MPS:

INSTANCE: An STSG � , a sequential word-graph ��� � and a real number
6�� �

�.(
.

QUESTION: Does ��� � accept a sentence for which STSG � assigns a proba-
bility greater or equal to � ?

Decision problem MPS-SCFG:

INSTANCE: An SCFG � , a sequential word-graph � � � and a real number
6�� �

�.(
.

QUESTION: Does ��� � accept a sentence for which SCFG � assigns a proba-
bility greater or equal to � ?

In the sequel we refer to the real value � in these decision problems with the terms “thresh-
old” and “lower bound”.

3.4 NP-completeness proofs

As section 3.2 explains, for proving the NP-completeness of some problem it is necessary
to prove that the problem is NP-hard and is a member of class NP. For proving NP-
hardness, it is necessary to exhibit a suitable reduction from every instance of 3SAT to
every instance of the problem at hand. This is what we do next for each of the decision
problems listed in the preceding section. To this end, we restate the generic instance INS
of 3SAT here:

INSTANCE: A Boolean formula in 3-conjunctive normal form (3CNF) over the vari-
ables � � �������:�� � :

� � � ��� �
� ��� �

� � ��� � � � ��� �
� ��� �

� � ��� ������� � � � �	� � � �
� � � � �
where 	 � (and

� � � is a literal over ��� � �������:��� � � , for all
(� � 	 and all(� � � . This formula is also denoted � � � � ����� � �� , where � represents

� � � ��� � � �
� � � � � , for all
(� � 	 .

QUESTION: Is the formula in INS satisfiable ?

3.1. PROPOSITION. Decision problems MPP, MPPWG, MPS and MPS-SCFG are NP-
complete.

50 Chapter 3. Complexity of Probabilistic Disambiguation

u1 u2 u3

1C

T

u2 u3

2C

T

u1

T

u2

T

u2u1 u3

1C

u1 u3

2C

u1 u2

2C

T

u3u1 u2

T

u3

1C

T

u3

1/2

F

u3

1/2

F

u3

T

u3

1/21/2

T

u2

1/2

F

u2

1/2

F

u2

T

u2

1/21/2

T

u1

1/2

F

u1

1/2

T

u1

F

u1

1/2 1/2

T

u1 u2 u3

T

u1 u2 u3

1C

F

u1 u2 u3

2C

F

u1 u2 u3

2C

F

u2u1 u3

1C

T

u2u1 u3

2C

T

u2u1 u3

1C

F

u2u1 u3

2C

TT

u3

F

u3

F

u3 u1 u2 u3

2C

u1 u2

1C

u1 u2

1C

u1 u2

2C

2C

1/3

1/3 1/3

1/3 1/3

1/3

1C

SS

SS

S S

C
1

S

2/13 2/13

2/132/13

2/13 2/13

1/13

Figure 3.1: The elementary-trees for the example 3SAT instance

3.4.1 A guide to the reductions

The reductions in the next section are structured as follows. The first reduction is con-
ducted from 3SAT to MPPWG and from 3SAT to MPS simultaneously, i.e. the same
reduction serves proving both problems to be NP-hard. Then the reductions from 3SAT to
MPP and from 3SAT to MPS-SCFG are obtained from the preceding reduction by some
minor changes.

3.4.2 3SAT to MPPWG and MPS simultaneously

In the following, a reduction is devised which proves that both MPPWG and MPS are
NP-hard. For convenience, the discussion concentrates on problem MPPWG, but also
explains why the same reduction is suitable also for MPS.

The reduction from the 3SAT instance INS to an MPPWG instance must construct an
STSG, a word-graph and a threshold value in deterministic polynomial-time. Moreover,
the answers to the MPPWG instance must correspond exactly to the answers to INS. The

3.4. NP-completeness proofs 51

presentation of the reduction shall be accompanied by an example of the following 3SAT
instance (Barton et al., 1987):

� � �	� � ��� � � ��� � � ��� � ��� � � ���
where � � , � � and � � are Boolean variables.

Note that a 3SAT instance is satisfiable iff at least one of the literals in each conjunct
is assigned the value true. Implicit in this, but crucial, the different occurrences of the
literals of the same variable must be assigned values consistently. These two observations
constitute the basis of the reduction. The reduction must capture these two “satisfiability-
requirements” of INS in the problem-instances that it constructs. For example, for MP-
PWG, we will construct an STSG and a WG. The WG will be � � J � � ��� ����� , where
�	 is the number of literals in the formula of INS. The STSG will be constructed such
that it has two kinds of derivations for every path in WG that constitutes a solution for
INS (if there is such a solution): one kind of derivations takes care of the consistent as-
signment of truth values, and the other takes care of assigning the value true for exactly
one literal in every conjunct. The derivations will have such probabilities that will enable
us to know whether a path in WG is a solution for INS by inspecting the probability of
that path; the probability of a path in WG will tell us whether the STSG derives that path
by enough derivations of each kind in order for that path to be a solution for INS.

The reduction:

The reduction constructs an STSG and a word-graph. The STSG has start-symbol labeled
� , two terminals represented by T and F , non-terminals which include (beside �) all �� ,
for

(�
	 � 	 , and both literals of each Boolean variable of the formula of INS. The
set of elementary-trees and probability function and the word-graph are constructed as
follows:

1. The reduction constructs for each Boolean variable � � , (� �

, two elementary-

trees that correspond to assigning the values true and false to � � consistently through
the whole formula. Each of these elementary-trees has root � , with children �� ,(� 	 � 	 , in the same order as they appear in the formula of INS; subse-
quently the children of �� are the non-terminals that correspond to its three dis-
juncts

� � � ,
� � � and

� � � . And finally, the assignment of true (false) to � � is modeled
by creating a child terminal T (resp. F) to each non-terminal � � and F (resp. T) to
each � � . The two elementary-trees for � � , of our example, are shown in the top left
corner of figure 3.1.

2. The reduction constructs three elementary-trees for each conjunct �� . The three
elementary-trees for conjunct �� have the same internal structure: root �� , with
three children that correspond to the disjuncts

� � � ,
� � � and

� � � . In each of these
elementary-trees exactly one of the disjuncts has as a child the terminal T ; in each
of them this is a different one. Each of these elementary-trees corresponds to the
conjunct where one of the three possible literals is assigned the value T . For the
elementary-trees of our example see the top right corner of figure 3.1.

52 Chapter 3. Complexity of Probabilistic Disambiguation

3. The reduction constructs for each of the literals of each variable � � two elementary-
trees where the literal is assigned in one case T and in the other F . Figure 3.1 shows
these elementary-trees for variable � � in the bottom left corner.

4. The reduction constructs one elementary-tree that has root � with children �� ,(� 	 � 	 , in the same order as these appear in the formula of INS (see the
bottom right corner of figure 3.1).

5. The reduction assigns probabilities to the elementary-trees that were constructed
by the preceding steps. The probabilities of the elementary-trees that have the same
root non-terminal must sum up to

(
. The probability of an elementary-tree with

root � that was constructed in step 1 of this reduction is a value �=� , (� �

,

where � � is the only variable of which the literals in the elementary-tree at hand are
lexicalized (i.e. have terminal children). Let

 � denote the number of occurrences
of both literals of variable �D� in the formula of INS. Then � � = � � �

� � ��� , for some
real � that has to fulfill some conditions which will be derived next. The probability
of the tree rooted with � and constructed at step 4 of this reduction must then be
� � J � (�.* � ���� � � � 9 . The probability of the elementary-trees of root � (step 2) is
� �

� � , and of root � � or � � (step 3) is � �

� � . For our example some suitable probabilities
are shown in figure 3.1.

Let � denote a threshold probability that shall be derived below. The MPPWG (MPS)
instance produced by this reduction is:

INSTANCE: The STSG produced by the above reduction (probabilities are derived be-
low), the word-graph � � J � � � � � ��� , and a probability value � (also derived
below).

QUESTION: Does this STSG generate for the word-graph � � J � � � � � ��� a parse
(resp. a sentence) for which it assigns a probability greater than or equal to � ?

Deriving the probabilities and the threshold: The parses generated by the constructed
STSG differ only in the sentences on their frontiers. Therefore, if a sentence is generated
by this STSG then it has exactly one parse. This justifies the choice to reduce 3SAT to
MPPWG and MPS simultaneously.

By inspecting the STSG resulting from the reduction, one can recognize two types of
derivations in this STSG:

1. The first type corresponds to substituting for a substitution-site (i.e literal) of any
of the

*�

elementary-trees constructed in step 1 of the reduction. This type of

derivation corresponds to assigning values to all literals of some variable � � in a
consistent manner. For all

(� ��

the probability of a derivation of this type is

� � �
(
* � � � � ��� J � �

(
* � � �

3.4. NP-completeness proofs 53

2. The second type of derivation corresponds to substituting the elementary-trees that
 � as root in �#4 � �������� , and subsequently substituting in the substitution-
sites that correspond to literals. This type of derivation corresponds to assigning
to at least one literal in each conjunct the value true. The probability of any such
derivation is

� � �
(
* � � � �

(
 �
� J � (�"* �

�
> ��� �

�
(
* � ��� 9 �

(
* � � � �

(
 �
�

Now we derive both the threshold � and the parameter � . Any parse (or sentence) that
fulfills both the “consistency of assignment” requirements and the requirement that each
conjunct has at least one literal with child T , must be generated by

derivations of the

first type and at least one derivation of the second type. Note that a parse can never be
generated by more than

derivations of the first type. Thus the threshold � must be set

at:

� J

� �
(
* � � � � � (�"* �

�
> ��� �
�
(
* � ��� 9 �

(
* � � � �

(
 �
�

However, � must fulfill some requirements for our reduction to be acceptable:

1. For all i: 6 � � � � (. This means that for
(:� �

: 6 � � � �

� � � � � (
, and

6 � � � � (. However, the last requirement on � � implies that

6.� *
�
�
>��� �
�
(
* � ��� � (�

which is a stronger requirement than the other

requirements. This requirement
can also be stated as follows: 6 � � � �

� � �� � � � �� � � � .
2. Since we want to be able to know whether a parse is generated by a second type

derivation only by looking at the probability of the parse, the probability of a second
type derivation must be distinguishable from first type derivations. Moreover, if a
parse is generated by more than one derivation of the second type, we do not want
the sum of the probabilities of these derivations to be mistaken for one (or more)
first type derivation(s). For any parse, there are at most � second type derivations
(e.g. the sentence T �����T). Therefore we require that:

 � � (� * �
�
>��� �

�
(
* � ��� 9 �

(
* � � � �

(
 �
� � � �

(
* � � �

Which is equal to demanding that: � � �

� � �� � � � �� � � � � � �� ��� .

3. For the resulting STSG to be a probabilistic model, the “probabilities” of parses and
sentences must be in the interval �768� (:9 . This is taken care of by demanding that the
sum of the probabilities of elementary-trees that have the same root non-terminal is
1, and by the definition of the derivation’s probability, the parse’s probability, and
the sentence’s probability.

54 Chapter 3. Complexity of Probabilistic Disambiguation

Existence of � : There exists a � that fulfills all these requirements because the lower
bound

�

� � �� � � � �� � � � � � �� � � is always larger than zero and is strictly smaller than the upper

bound
�

� � �� � � � �� � � � .

Polynomiality of the reduction: This reduction is deterministic polynomial-time in 	
and

(note that

 � �	 always). It constructs not more than
*�

�
(
�� 	 � �

elementary-
trees, each consisting of at most � 	 �

(
nodes. And the computation of the probabilities

and the threshold is also conducted in deterministic polynomial-time.

The reduction preserves answers: The proof that this reduction preserves answers
concerns the two possible answers Yes and No:

Yes: If INS’s answer is Yes then there is an assignment to the variables that is consis-
tent and where each conjunct has at least one literal assigned true. Any possible
assignment is represented by one sentence in � � . A sentence which corresponds
to a “successful” assignment must be generated by

derivations of the first type

and at least one derivation of the second type; this is because the sentence � � �
�

fulfills

consistency requirements (one per Boolean variable) and has at least one
T as � � � � � , � � � � � or � � � � � , for all 6 � 	 � 	 . Both this sentence and its
corresponding parse have probability

� � . Thus MPPWG and MPS also answer
Yes.

No: If INS’s answer is No, then all possible assignments are either not consistent or
result in at least one conjunct with three false disjuncts, or both. The sentences
(parses) that correspond to non-consistent assignments each have a probability that
cannot result in a Yes answer. This is the case because such sentences have fewer
than

derivations of the first type, and the derivations of the second type can never

compensate for that (the requirements on � take care of this). For the sentences
(parses) that correspond to consistent assignments, there is at least some 6 � 	 �
	 such that � � � � � , � � � � � and � � � � � are all F . These sentences do not have second
type derivations. Thus, there is no sentence (parse) that has a probability that can
result in a Yes answer; the answer of MPPWG and MPS is NO �

To summarize, we have deterministic polynomial-time reductions, that preserve answers,
from 3SAT to MPPWG and from 3SAT to MPS. We conclude that MPPWG and MPS
are both NP-hard problems. Now we prove NP-completeness in order to show that these
problems are deterministic polynomial-time solvable iff P = NP.

NP-completeness of MPS and MPPWG

Now we show that MPPWG and MPS are in NP. A problem is in NP if it is decidable by a
non-deterministic Turing Machine in polynomial-time. In general, however, it is possible
to be less formal than this. It is sufficient to exhibit a suitable non-deterministic algorithm,
which does the following: it proposes some entity as a solution (e.g. a parse for MPPWG

3.4. NP-completeness proofs 55

and a sentence for MPS), and then computes an answer (Yes/NO) to the question of the
decision problem, on this entity, in deterministic polynomial-time (cf. (Garey and John-
son, 1981; Barton et al., 1987)). The non-deterministic part lies in guessing or proposing
an entity as a solution.

For MPPWG, a possible algorithm proposes a parse, from the set of all parses which
the STSG � assigns to � � , and computes its probability in deterministic polynomial-
time, using the algorithms of chapter 5, and verifies whether this probability is larger or
equal to the threshold � . Similarly, an algorithm for MPS proposes a sentence, from those
accepted by the word-graph, and computes its probability in polynomial-time, using the
algorithms in chapter 5, and then verifies whether this probability is larger or equal to the
threshold � . In total, both algorithms are non-deterministic polynomial-time, a thing that
proves that MPPWG and MPS are both in class NP.

In summary, now we proved that decision problems MPPWG and MPS are both NP-
hard and in NP, therefore both are NP-complete problems. Therefore, the corresponding
optimization problems MPPWG and MPS are NP-hard.

3.4.3 NP-completeness of MPP

The NP-completeness of MPP can be easily deduced from the proof in section 3.4.2.
The proof of NP-hardness of MPP is based on a reduction from 3SAT to MPP obtained
from the preceding reduction by minor changes. The main idea now is to construct a
sentence and a threshold, and to adapt the STSG in such a way, that the sentence has many
parses, each corresponding to some possible assignment of truth values to the literals
of the 3SAT instance. As in the preceding reduction, the STSG will have at most two
kinds of derivations and suitable probabilities; again the probabilities of the two kinds of
derivations enable inspecting whether a parse is generated by enough derivations that it
corresponds to an assignment that satisfies the 3SAT instance, i.e. a consistent assignment
that assigns the value true to at least one literal in every conjunct.

The preceding reduction is adapted as follows. In the reduction, the terminals of the
constructed STSG are now fresh new symbols � � � , (� � 	 and

(� � � ,
instead of T and F ; the symbols T and F become non-terminals in the STSG of the
present reduction. Then, some of the elementary-trees and some of the probabilities,
constructed by the preceding reduction, are adapted as follows (any entity not mentioned
below remains the same):

1. In each elementary-tree, constructed in step 1 or step 2 of the preceding reduction
(with root node labeled either � or ��), the leaf node labeled T /F , which is the
child of the � th child (a literal) of �� , now has a child labeled ����� .

2. Instead of each of the elementary-trees with a root labeled with a literal (i.e. ��� or
� �), constructed in step 3 of the preceding reduction, there are now �	 elementary-
trees, each corresponding to adding a terminal-child � � � , (� � 	 and(� � � , under the (previously leaf) node labeled T /F .

56 Chapter 3. Complexity of Probabilistic Disambiguation

3. The probability of an elementary-tree rooted by a literal (adapted in the preceding
step) is now

�

� � .

4. The probabilities of elementary-trees rooted with � do not change.

5. The probabilities of the elementary-trees that has a root labeled � are adapted from
the previous reduction by substituting for every � �

� � the value
�

� � .

6. The threshold � and the requirements on � are also updated accordingly, and then
derived as done in the preceding reduction.

7. The sentence, which the reduction constructs, is � � � ����� � � � .

8. And the decision problem’s question is whether there is a parse generated by the
newly constructed STSG for sentence � � � ����� � � � , that has probability larger than
or equal to � ?

The proofs that this reduction is polynomial-time and answer-preserving are very similar
to that in section 3.4.2. It is easy also to prove that MPP is in class NP (very much
similarly to MPPWG). Therefore, the decision problem MPP is NP-complete.

3.4.4 NP-completeness of MPS-SCFG

The decision problem MPS is NP-complete also under SCFG, i.e. MPS-SCFG is NP-
complete. The proof is easily deducible from the proof concerning MPS for STSGs. The
reduction is a simple adaptation of the reduction for MPS. Every elementary-tree of the
MPS reduction is now simplified by “masking” its internal structure, thereby obtaining
simple CFG productions. Crucially, each elementary-tree results in one unique CFG pro-
duction. The probabilities are kept the same and also the threshold. The word-graph is
also the same word-graph as in the reduction of MPS. The present decision-problem’s
question is: does the thus created SCFG generate a sentence with probability

� � ,
accepted by the word-graph � � J � � � � � ��� .

Note that for each derivation, which is possible in the STSG of problem MPS there
is one corresponding unique derivation in the SCFG of problem MPS-SCFG. Moreover,
there are no extra derivations. Of course, each derivation in the SCFG of problem MPS-
SCFG generates a different parse. But that does not affect the probability of a sentence at
all: it remains the sum of the probabilities of all derivations that generate it in the SCFG.
The rest of the proof follows directly from section 3.4.2. Therefore, computing the MPS
of a word-graph for SCFGs is also NP-complete.

3.5 Conclusions and open questions

We conclude that optimization problems MPP, MPPWG and MPS are NP-complete.
This implies that computing the maximization entities involved in these problems (respec-
tively MPP of a sentence, MPP of a word-graph and MPS of a word-graph) under STSG-

3.5. Conclusions and open questions 57

and STAG-based models is (as far as we know) not possible in deterministic polynomial-
time; examples of such models are respectively (Sekine and Grishman, 1995; Bod, 1995a)
and (Schabes, 1992; Schabes and Waters, 1993; Resnik, 1992). In addition, we conclude
that problem MPS-SCFG is also NP-complete; note that MPS-SCFG concerns SCFGs,
i.e. the “shallowest” of all STSGs. This is, to say the least, a serious inconvenience for
applying probabilistic models to Speech-Understanding and other similar applications. In
particular, the models that compute probabilities in the same manner as DOP does, clearly
suffer from this inconvenience, e.g. SCFG-based models (Jelinek et al., 1990; Black et al.,
1993; Charniak, 1996), STSG-based models (Sekine and Grishman, 1995; Bod, 1995a),
and TAG-based models (Schabes, 1992; Schabes and Waters, 1993; Resnik, 1992).

The proof in this chapter helps to understand why these problems are so hard to solve
efficiently. The fact that computing the MPS of a word-graph under SCFGs is also NP-
complete implies that the complexity of these problems is not due to the kind of grammar
underlying the models. Rather, the main source of NP-completeness is the following
common structure of these problems:

Each of these problems searches for an entity that maximizes the sum of the
probabilities of processes that are defined in terms of that entity.

For example, in problem MPS-SCFG, one searches for the sentence, which maximizes
the sum of the probabilities of the derivations that generate that sentence; to achieve this,
it is necessary to maintain for every sentence, of the (potentially) exponentially many
sentences accepted by the word-graph, its own space of derivations and probability. In
contrast, this is not the case, for example, in the problem of computing the MPD under
STSGs for a sentence or even a word-graph, or in the problem of computing the MPP
under SCFGs for a sentence or a word-graph. In the latter problems there is one unique
derivation for each entity that the problems seeks to find.

The proof in this paper is not merely a theoretical issue. It is true that an exponential
algorithm can be a useful solution in practice, especially if the exponential formula is not
much worse than a low degree polynomial for realistic sentence lengths. However, for
parse-space generation, for example, under natural language grammars (e.g. CFGs), the
common exponentials are much worse than any low degree polynomial; in (Martin et al.,
1987), the authors conduct a study on two corpora and conclude that the number of parses
for a sentence, under a realistic grammar, can be described by the Catalan series and in
some cases by the Fibonnachi series. The authors conclude:

����� , many of these series grow quickly; it may be impossible to enumerate
these numbers beyond the first few values. �����

A further complication in the case of DOP STSGs is the huge size of the grammar.
For example, the exponential � � � � � and the polynomial � � �
 �

are comparable for

 �

�
but already at

 J (H*
the polynomial is some 94 times faster. If the grammar size is

small and the actual comparison is between execution-time of respectively 0.1 seconds
and 0.001 seconds for actual sentence length, then polynomiality might be of no prac-
tical importance. But when the grammar size is large and the comparison is between

58 Chapter 3. Complexity of Probabilistic Disambiguation

60 seconds and 5640 seconds for a sentence of length 12 then things become different.
For larger grammars and for longer sentences the difference can acquire “the width of
a crater”. While the polynomial gives hope to be a practical solution in the near future,
the exponential does not really warrant hopeful expectations since future applications will
become larger and more complex.

Of course, by proving these problems to be NP-complete we did not solve them yet.
The proof, however, implies that for efficient solutions to these problems it is necessary
to resort to non-standard and non-conventional methods, as:

� to model observable efficiency properties of the human linguistic system. This can
be done by employing learning methods prior to probabilistic parsing in order to re-
duce the actual complexity encountered in practice in a way that enables sufficiently
efficient computation most of the time, e.g. Ambiguity Reduction Specialization as
presented in chapter 4,

� to approximate the DOP model by allowing more suitable assumptions, and by
inferring such STSGs in which the MPP can be approximated by entities that have
deterministic polynomial-time solutions, e.g. MPD,

� to approximate the search space delimited by an instance of any of these prob-
lems through “smart” sampling to improve on the brute-force Monte-Carlo algo-
rithm (Bod, 1993a; Bod, 1995a).

These solutions, especially the first, might offer these problems a way out of the trap of
intractability. However, it is also necessary to incorporate other crucial disambiguation
sources (based on e.g. semantics, discourse-information and other world-knowledge) that
are missing in the existing performance models.

Chapter 4

Specialization by Ambiguity Reduction

This chapter addresses the task of specializing general purpose grammars, called Broad-
Coverage Grammars (BCGs), and DOP STSGs to limited domains. It presents a new
framework for grammar specialization, called the Ambiguity Reduction Specialization
(ARS) framework, and two different algorithms that instantiate it.

The present chapter is organized as follows. Section 4.1 discusses the motivation
behind this work. Section 4.2 provides an analysis of other contemporary work on BCG
specialization and motivates the need for a new approach. Section 4.3 presents the ARS
framework and sketches, in most general terms, its application to BCG-specialization,
DOP-specialization and parsing. Sections 4.4 and 4.5 instantiate the ARS framework
into two different ARS algorithms and discuss the related subjects of specializing DOP
and related parsing algorithms in the light of these ARS algorithms. Finally, section 4.6
summarizes the results of this chapter and lists the unanswered questions of this study.

4.1 Introduction

The development of linguistic grammars is a major strand of research in linguistics. Al-
though most linguistic research concerns itself with specific isolated competence phenom-
ena of language, still the developed grammars make explicit the major variables and fac-
tors that play a role in understanding language utterances. In some cases, these grammars
are adapted and combined together into a so called Broad-Coverage Grammar (BCG).
Prominent examples of such BCGs are the XTAG grammar (Doran et al., 1994), the CLE
grammar (Alshawi, 1992) and the CG system (Karlsson et al., 1995).

At the other end of the spectrum of linguistic research, one finds efforts to exploit
existing knowledge of linguistic grammars in order to annotate large corpora. Often,
these efforts involve much creativity in filling the gaps in linguistic grammars. These
efforts result in real-life linguistic grammars, so called “annotation schemes”. In most
cases these annotation schemes are broad-coverage, as their BCG counterparts, in the
sense that they do not encapsulate domain specifics.

59

60 Chapter 4. Specialization by Ambiguity Reduction

In computational and empirical linguistics, the principle subject of study is the ambi-
guity problem. In this line of research, the exploitation of BCGs and broad-coverage
annotation schemes (in the sequel loosely BCGs) for constructing tree-banks enables
the extraction of performance models of language that attach probabilities to grammat-
ical relations (whether elementary relations such as CFG rules or complex ones such as
partial-trees). These probabilities enable the resolution of ambiguities by selecting a most
probable analysis according to the probabilistic model.

The feasibility and usefulness of BCGs is of major interest to linguists as well as
language-industry. The task of specializing these BCGs to specific domains is the next
step in the enterprise of exploiting linguistic knowledge for tasks that involve language.
Usually, a BCG recognizes sentences or generates analyses that are not plausible in a
given domain. The specialization of a BCG to a given domain amounts to reducing its
redundancy (i.e. overgeneration) with respect to that domain; this often involves restrict-
ing its descriptive power to fit only utterances that are from that domain. The gain from
specialization of BCGs is in improving time and space consumption, and in the case of
probabilistic models, which are based on these linguistic grammars, in minimizing the
effects of data-sparseness.

Research on automatic grammar specialization has been initiated by Rayner (Rayner,
1988) who incorporates manually extracted domain specifics into an EBL (Explanation-
Based Learning) algorithm. Other attempts at automatic BCG specialization using EBL
followed Rayner’s with success (Samuelsson, 1994b; Rayner and Carter, 1996; Srinivas,
1997; Neumann, 1994). These works, without exception, concentrated on the speed-
up of the classical form of parsing, i.e. parse-space generation

�

. But current linguistic
parsing involves more than mere parse-space generation. It also involves probabilistic
disambiguation using models that rely on extensive tables of probabilities of linguistic
relations. This is exactly the case for the DOP model, where probabilistic disambiguation
is by far the main source for time and space consumption.

This chapter presents a new framework for the automatic specialization of linguistic
grammars. This framework, called the Ambiguity Reduction Specialization (ARS) frame-
work, construes grammar specialization as learning the smallest least ambiguous grammar
which assigns to every constituent which it recognizes a parse-space which contains all
its “correct structures”; roughly speaking, a structure is correct for some constituent in a
given domain if it is partial to a correct structure of some sentence from that domain. The
latter property of the ARS framework enables a novel way of integrating the specialized
grammar and the BCG.

The idea behind grammar specialization through ambiguity reduction is to exploit the
statistics of a given tree-bank in order to cash in on the specifics of the domain which it
represents. The resulting specialized grammar should be able to quickly span a smaller
(but sufficient) parse-space than the original grammar. Since typical grammars span the
parse-space of a sentence with little cost (time and space), relative to the cost of proba-

�

The assignment of a set of parses (the parse-space) to an input utterance using a grammar.

4.1. Introduction 61

bilistic disambiguation
�

, the cost of applying the expensive probabilistic disambiguation
module is smaller when using the specialized grammar. The net effect of specialization
on the total parsing process can be large: both time and space costs are reduced.

As mentioned above, in many performance models of language, e.g. (Bod, 1995a;
Charniak, 1996; Sekine and Grishman, 1995), the relationship between the two modules,
the grammar and the disambiguator, is strong: the grammar provides the basis for the
stochastic relations present in the disambiguator. By specializing a BCG through am-
biguity reduction, we obtain a new, less ambiguous, grammatical description, which, in
turn, may serve as the basis for new, smaller, probabilistic models; these models are ob-
tained by reannotating the tree-bank using the specialized grammar. Therefore, successful
specialization should result in a new space of probabilistic relations and new probability
distributions, which are good approximations of the originals. The specialized probabilis-
tic models should be smaller yet (practically) as powerful as the original.

Theoretically speaking, a very attractive property of ARS specialization, which is
missing in Bod’s DOP model (Bod, 1995a), is that more frequent input in a given do-
main is represented in the specialized DOP model as un-ambiguously as possible in that
domain. For the DOP model, specialization implies that the speed-up on more frequent
input is larger than on rare input. This brings in a property described by Scha (Scha, 1990;
Scha, 1992) (page 16) as follows:

We expect that, in the present processing model, the most plausible sen-
tences can be analyzed with little effort, and that the analysis of rare and less
grammatical sentences takes significantly more processing time.

Note that grammaticality in the DOP model is strongly associated with frequency in the
training tree-bank, and that the only interpretation of the term “plausible sentence” in
DOP is through probability. We will refer to this desirable property with the name the
Frequency-Complexity Correlation Property (FCCP).

In essence, grammar specialization techniques share a common goal with techniques
for dynamic pruning of the parse space (Rayner and Carter, 1996; Goodman, 1998). How-
ever, while pruning is a useful technique, it is by no means a substitute for good special-
ization methods. The problem with pruning is the main concept of pruning itself: to prune
some of the partial-analyses, it is necessary to generate them in the first place. Apart from
the fact that generating analyses and then pruning them is time-consuming (the more
analyses to prune the larger the time-cost), pruning does not provide a solution for the
problem of grammar redundancy. Nevertheless, in practice pruning techniques can com-
plement off-line specialization methods as (Rayner and Carter, 1996) show. We maintain
this view and also argue that the theoretical study of how to specialize a theory to specific
domains is in itself very interesting, let alone the fact that it is rewarding on the practical
side.

�

In DOP models this is often some 1% of the total cost of parsing and disambiguation - see chapter 5.

62 Chapter 4. Specialization by Ambiguity Reduction

Throughout this chapter, we employ the Machine Learning terminology defined in
section 2.4. Since the EBL paradigm is a central player in this chapter, we briefly restate
it here: to construct an EBL algorithm it is necessary to have a background-theory, a
set of training-examples, a definition of the target-concept and a definition of the oper-
ationality criterion. The product of an EBL algorithm is a function that generalizes the
instances of the target-concept that are found in the training-examples, and that satisfies
the operationality criterion and the background-theory.

4.2 Analysis of other work

As mentioned earlier, grammar specialization using EBL was introduced to natural lan-
guage parsing by Rayner (Rayner, 1988). In Rayner’s work and joint work together with
Samuelsson, e.g. (Rayner and Samuelsson, 1990; Samuelsson and Rayner, 1991), and
other work on combining grammar specialization with pruning techniques (Rayner and
Carter, 1996), the operationality criterion for an EBL algorithm is specified manually
based on intuitions and knowledge of the domain at hand. The first attempt to automat-
ically compute the operationality criterion in grammar specialization is due to Samuels-
son (Samuelsson, 1994a; Samuelsson, 1994b), who uses the measure of entropy for this
purpose, thereby extending EBL with inductive learning by collecting statistics over large
sets of explanations. A more conventional application of EBL is found in (Srinivas and
Joshi, 1995), where Lexicalized Tree-Adjoining Grammar (LTAG) (Joshi, 1985) is used
as the background-theory. And an effort that involves different methods of generalization
is due to Neumann (Neumann, 1994) who combines manually specified operationality
criteria on syntax (in line with (Samuelsson and Rayner, 1991)) with generalizations im-
plied by Head-driven Phrase-Structure Grammar (HPSG) as the background-theory (in
line with (Srinivas and Joshi, 1995)).

In this section, we review the different efforts on BCG specialization and provide a
short analysis of their goals, features, capabilities and shortcomings. The discussion starts
with a short overview of each method, listing the EBL elements that constitute it, followed
by a joint analysis of these methods.

4.2.1 CLE-EBL: Rayner and Samuelsson

The CLE-EBL (Rayner, 1988; Rayner and Samuelsson, 1990; Samuelsson and Rayner,
1991; Rayner and Carter, 1996) referres to various grammar specialization schemes that
share a common basis. We try here to describe the common parts of these schemes.

In CLE-EBL, the goal of specialization is to trade-off coverage for speed in parsing.
To achieve this, the training tree-bank trees are “cut” into partial-trees and then employed
for parsing new input. In this, CLE-EBL assumes that in some contexts, some non-
terminals, i.e. constituent-types, are much less generating than other types, and hence
can be considered internal to the latter. If a constituent-type generates extremely little
compared to others, its impact on coverage should be very small.

4.2. Analysis of other work 63

The domain of application for CLE-EBL is the ATIS domain (Hemphill et al., 1990).
The training tree-bank for EBL consists of a manually corrected output

�

of the SRI Core
Language Engine (CLE) (Alshawi, 1992). In many cases, the annotations of the training
tree-bank are based on unification grammars that employ feature-structures. The target-
concept is a constituent-category represented by various non-terminals of the grammar
(including a special category for lexicon entries). The operationality criteria are manually
specified. The CLE-EBL learning scheme is based on the general Prolog generalizer spec-
ified in e.g. (van Harmelen and Bundy, 1988). However, CLE-EBL extends this scheme
in two ways that later became common use in most work on grammar specialization:

1. There can be multiple levels of target-concepts, i.e. the target-concepts form a hi-
erarchy. This means that the operationality criteria refer to labeled-nodes at various
levels in the parse trees. This is contrast to earlier work on EBL that employed
operationality criteria that refer to target-concepts at the same level.

2. The learnt rules are indexed in special “data-bases” that enable fast recognition and
retrieval of the learnt rules.

The operationality criteria in the CLE-EBL are schemes for identifying nodes in a train-
ing tree that should constitute the lhs and the rhs symbols of a learnt macro-rule. Each
of the operationality criteria consists of three parts: a grammar category that serves a
target-concept and as the lhs of the learnt rule, other grammar categories that serve as
the rhs of the learnt rule, and conditions on when to learn such a rule. For example,
one operationality criterion that was used in this work marks as operational all NPs, PPs
and lexical categories that are in a partial-tree that has a root labeled S when S is spec-
ified as the target-concept. This criterion results in learning rules that have S at their
lhs and sequences consisting of symbols that are either NPs, PPs or lexical categories
at their rhs. The various CLE-EBL operationality criteria are specified in a hierarchy of
target-concepts such that the categories that are operational under some target-concept are
specified lower in the hierarchy than that target-concept.

The literature on CLE-EBL contains various extensions to the general approach briefly
described here. One such extension for instance allows discriminating between recursive
and non-recursive categories (e.g. NPs) in defining operationality criteria. For example,
non-recursive NPs, PPs and lexical categories are operational when the target-concept is
a recursive NP.

It is worth noting that currently the CLE-EBL is the most extensively tested and widely
applied grammar specialization method. Its success has inspired the other grammar spe-
cialization methods that followed later including the present work.

�

In early work the CLE-EBL did not employ corrected training tree-banks, probably due to their absence
at those times. It resorted to more complex ways for directing the EBL generalizer in obtaining a suitable
training parse-tree. See (Samuelsson and Rayner, 1991).

64 Chapter 4. Specialization by Ambiguity Reduction

4.2.2 Samuelsson’s entropy thresholds

Samuelsson (Samuelsson, 1994b; Samuelsson, 1994a) is the first to explore a fully data-
driven function for inducing the operationality criteria. His method employs exactly the
same setting as in the CLE-EBL: the ATIS is the domain of application and the CLE
is the BCG. The target-concept is also the concept of constituency. However, the main
assumption here is more refined than that of the CLE-EBL: there are constituent-types for
which a rule application

�

is, in some contexts (e.g. preceding partial-derivation), quite
easy to predict. These “easy-to-predict” constituent types (in the corresponding contexts)
are considered internal to the other types.

Samuelsson’s scheme can be summarized as follows:

1. Compile the training trees into a decision-tree called AND-OR tree, which repre-
sents them compactly. To do so, first represent every training tree by an “explicit
tree” that shows at every node not only the lhs of the rule that is applied but the rule
itself. Then store these explicit trees in the AND-OR tree one at a time.

The AND-OR tree has a special root node. An OR-node corresponds to some gram-
mar rules that have the same lhs symbol. And an AND node corresponds to the rhs
�

� �����
� � of a grammar rule

6 4 �
� �����

� � . We describe the construction of the
AND-OR tree recursively. Let

6 � � denote the current AND-OR tree and let be
given an explicit-tree G � < �I4 '

� � � ����� ' � � � , where G � < � is a grammar rule and each'
� �
� is a subtree of the explicit tree

�

. To store this explicit tree in
6 � � , we first

deal with G � < � : if there is an arc emerging from the root of
6 � � and is labeled

G � < � then we follow it to arrive at an AND-node that is labeled with the rhs of G � < � ;
otherwise, we add a new arc labeled G � < � that leads to an AND-node labeled by the
rhs of G � < � . In any event, for the � � symbol

� 1�� in the rhs of G � < � an arc emerges
(either already existing or newly added) from this AND-node and leads to an OR-
node � � � labeled by

� 1 � ; the arc is labeled by the number of that symbol in the
rhs of G � < � . Subsequently we deal with each of

'
� � � recusively from the OR-node

 � � � . The recursion terminates if
'
� �	� is a lexical rule

6 4 � �+G � in which case
a special rule identifier

< �
 is used and is added under the OR-node.

2. Define at every OR-node in the AND-OR tree a probability function as follows. At
an OR-node � for symbol

�
, the probability function assigns to every arc emerg-

ing from that OR-node and that is labeled by a rule
� 4 � , a probability value

conditioned on the OR-node � . This probability is computed as the ratio between
the frequency of

� 4 � and the frequency of the nodes labeled
�

that correspond
to OR-node � in the training tree-bank explicit trees.

3. Compute the complexity (as measured by the entropy) of the choice at each OR-
nodes. The hardest points of choice (largest complexity) in the tree are marked as
cut points. In practice, a threshold on the entropy is set according to the desired

�

A single derivation step starting from that constituent type.
�

We assume the tree-bank trees have the same root label � .

4.2. Analysis of other work 65

coverage such that all nodes that exceed that threshold are considered operational
i.e. are cut nodes.

4. Then cut up the tree-bank trees by matching each of them against the AND-OR
tree, thereby resulting in the specialized grammar.

In (Samuelsson, 1994b; Samuelsson, 1994a) this scheme
�

is extended by an iterative
mechanism: after each iteration, the set of OR-nodes is partitioned into equivalence
classes each corresponding to the non-terminal symbol of the OR-node and some local
context in the AND-OR tree. The entropies of the OR-nodes are recomputed: the entropy
of an OR-node is now the sum of the entropies of all OR-nodes that are together with it
in the same equivalence class. And then the procedure is repeated. The iteration stops
when the change in the set of cut-nodes is not significant any more (according to a pre-
defined measure) (for detail, see the discussion on finding the cutnodes in (Samuelsson,
1994b)). This iterative training procedure is not guaranteed to stop, i.e. it does not always
arrive at a preferred set of cut nodes (Samuelsson, 1994b). In (Samuelsson, 1994b), this
entropy scheme is further augmented with manually specified limitations on the training
algorithm, in order to achieve better results.

It is worth noting that Samuelsson’s EBL is, strictly speaking, not pure EBL; it in-
volves inductive learning by collecting statistics over large sets of explanations. As we
shall see in the next section, this extension is inevitable if one is to employ data-driven
learning in the absence of background-theories that supply the operationality criteria and
the generalization power. But more importantly, it is inevitable because it addresses sta-
tistical properties of samples: properties that are not addressed by linguistic theories.

4.2.3 LTAG-EBL: Srinivas and Joshi

The application of EBL in the context of the LTAG theory is probably the most according-
to-recipe EBL algorithm. It relies totally on the strong background-theory, which it as-
sumes, i.e. LTAG theory; the generalizations it achieves and also the indexing scheme are
directly taken from the LTAG representation. The target-concept here is the notion of a
sentence rather than the more general concept of a constituent-type. The explanations are
provided by LTAG (manually selected) as LTAG-derivations to sentences in the training
tree-bank.

LTAG incorporates natural language syntax into the lexicon. Each combination of a
word and a specific syntactic environment it might appear in is represented by a struc-
ture, called elementary-tree, which makes explicit its necessary and sufficient arguments.
To account for long-distance behaviour, LTAG “factors” out recursion, i.e. adjuncts and
modifiers, from the representation of other kinds of words. It then allows recursive trees,
representing these modifiers and adjuncts, to “adjoin” in prespecified points in the ele-
mentary trees. The LTAG theory is implemented in a system which allows also for mor-

�

Other probability distributions and definitions of how to calculate the entropy of an OR-node are de-
fined and tested in (Samuelsson, 1994b).

66 Chapter 4. Specialization by Ambiguity Reduction

phological representations, rather than only phrase-structure representations. For more on
LTAG and its properties see (Srinivas, 1997).

LTAG-EBL exploits these properties of LTAG as follows. Firstly, for every tree in
the training-set, its LTAG-derivation is generalized by un-instantiating the morphological
descriptions, i.e. features, as well as the specific words that it incorporates. Secondly, ev-
ery generalized derivation is stored indexed by the sequence of PoSTags which forms its
frontier. Then each of these sequences of PoSTags is generalized by representing the re-
cursion, due to modifiers and adjuncts, into a regular expression, i.e. an FSM. With every
FSM there is a set of associated generalized parse-trees, i.e. it is a Finite State Transducer
(FST). For parsing a new input sentence, firstly its PoSTag sequence is obtained from a
part-of-speech tagger, then it is processed by the FSTs to obtain generalized parses. These
generalized parses are then instantiated by the features of the current sentence to result in
full-parses.

4.2.4 HPSG-EBL: Neumann

The background-theory in (Neumann, 1994) is HPSG and the domain is Appointment-
Scheduling. The operationality criteria are of two types and are both manually speci-
fied: 1) syntactic criteria in the spirit of (Samuelsson and Rayner, 1991), and 2) feature-
structure uninstantiation criteria in the spirit of (Srinivas and Joshi, 1995).

In (Neumann, 1994), the tree-bank is assumed to contain HPSG-trees: each tree is
a combination of a syntactic CFG-backbone-tree (shortly bare-tree) and a feature struc-
ture (with the correspondences between the nodes in the bare-tree and the features in the
feature structure). The learning process is not complicated and can be summerized (with
some minor simplifications) as follows:

1. The CFG-backbone-trees (shortly bare-trees) of the training HPSG-trees are cut
into partial-trees at some manually predefined syntactic categories,

2. The feature structures associated with every tree are then “taken apart” such that
with every bare partial-tree (resulting from the preceding step) the right feature
structure remains associated,

3. The features in the fearture structures of a partial-tree that correspond to substitution
sites at the frontier of the bare partial-tree are uninstantiated by introducing suitable
variables instead of their values.

4. The resulting partial-trees are stored in a discrimination-tree indexed by the feature
structures that correspond to the terminals on their frontiers. Note that partial-trees
that have no terminals on their frontiers are not indexed and are not used during the
phase of applying the learned knowledge to new input.

During the application phase, the words of the input sentence receive the corresponding
feature structure entries in the lexicon (after morphological analysis) and the resulting
sequence is used as the index of the input sentence. For every part of the sentence the

4.2. Analysis of other work 67

discrimination-tree is tarversed to retrieve the associated partial-trees. Subsequently, the
feature structures of the retrieved partial-trees are instantiated by (and unified with) the
values found in the lexicon-entries of the words. The retrieved and instantiated partial-
trees are stored in a Earley-type chart. However, rather than employing the Earley-parser,
Neumann employs a deterministic Earely-type parser that prefers larger retrieved partial-
trees to smaller ones; the algorithm neither backtracks nor computes the whole parse-
space of the input sentence. He also describes a way to combine the specialized parser
obtained by EBL with the original HPSG parser such that the retrieved partial-trees are
completed by the HPSG-parser. However, this manner of combining the two parsers is
based on a best-first search heuristic, i.e. it is not based on a quality of the specialization
algorithm that enables complementary roles for the two parsers.

4.2.5 Analysis

From the overview given above we see that there are currently three types of EBL from
tree-banks: 1) manually specified generalization rules based on knowledge of the specific
domain, 2) manually specified generalization rules that are theory specific, and 3) auto-
matically inferred generalization rules using statistics. Strictly speaking, the third type is
in fact a combination of EBL together with inductive learning.

The following points are common to the work described above:
� Either the result of parsing is still ambiguous or additional intuitive heuristics (e.g.

prefer largest partial-trees) are employed to disambiguate it. Thus, all these works
conceptually divide the parsing system into a parser which generates the possible
tree-space for the input, and a disambiguator which selects the preferred tree (in
these works the disambiguator is embodied by the heuristics).

� Speed-up of parse-space generation is the goal of learning.

� None of these methods takes the cost of full probabilistic disambiguation into ac-
count during learning.

� None of these methods is able to integrate the specialized grammar, a partial-parser,
with the original BCG parser in a manner in which the failure of the partial-parser
does not always imply full recomputation of the parse-space for the input sentence.
If the partial-parser fails to parse some input, the BCG parser always has to do the
whole job from scratch, accumulating the processing times of the two parsers.

In addition to these common features, each of the four efforts has its own specific strengths
and weaknesses. The specific strengths and weaknesses of LTAG-EBL are:

Strengths: Relies on a strong linguistic theory that offers elegant generalization capabil-
ities. Features a simple and fast learning algorithm.

Weaknesses: It is specific to the LTAG theory and the XTAG system. And currently it
is limited to learning on the sentential level only; therefore, the coverage of the
resulting specialized grammars is usually too limited.

68 Chapter 4. Specialization by Ambiguity Reduction

For CLE-EBL the situation is the following:

Strengths: It features a fast learning algorithm. Relies on a strong linguistic theory. The
learning algorithms and operationality criteria are well-tested and are (claimed to
be) general.

Weaknesses: It is based on manual specification which depends on the intuitions of lin-
guists. It does not provide a direct

�

mechanism to control tree-language coverage,
where “tree-language coverage” is, roughly speaking, a measure of coverage of a
parser related to well known recall measure; this measure indicates the expected
percentage of sentences for which the parser is able to assign a parse-space that
contains the correct analysis (rather than any analysis). We define the term “tree-
language coverage” more precisely in the next section but for now it is sufficient
to say that the CLE-EBL does not provide a mechanism that guarantees (to any
desired extent) covering the correct partial-trees that a constituent might be associ-
ated with, in the domain. Note that if a category is not operational in some contexts,
other categories, that depend on it, may not be able to produce some of the parses
that are necessary for the coverage of some sentence. As a consequence, this sen-
tence would get a non-empty parse-space that does not contain the right parse.

Neumann’s HPSG-EBL has the following strengths and weaknesses:

Strengths: Relies on a strong linguistic theory HPSG. Features a simple and fast learning
algorithm. Combines various generalization capabilities inspired by the other three
approaches.

Weaknesses: It is based on manual specification which depends on good knowledge of
the domain and on the intuitions of linguists. It does not offer a direct mechanism
for controlling the tree-language coverage of the learnt partial-parser.

As for the novel entropy-thresholds EBL (Samuelsson, 1994b):

Strengths: Generally applicable due to automatic estimation of the operationality criteria
by means of information theoretic measures that rely on statistics over large bodies
of training-explanations. Allows control of the desired balance between coverage
and efficiency.

Weaknesses: It does not offer a direct mechanism for controlling the tree-language cov-
erage of the learnt partial-parser.

�

A mechanism is indirect in the sense that it is based on the paradigm of “generate and test”, i.e. learn
it, test it, accept it or else discard and loop again. In an indirect mechanism, to discover whether a newly
introduced operationality criterion conserves the tree-language coverage, it is necessary to test its effect on
data after learning and decide only after learning whether to employ it or to repeat the learning again. A
direct mechanism is built into the training algorithm and provides a guarantee that the results of learning
will be satisfying (under suitable conditions on the kind of training tree-bank).

4.3. Ambiguity Reduction Specialization 69

To summarize, none of the above mentioned learning methods takes into account the
cost of full disambiguation during learning. The speed up which these methods have
addressed, is in fact partial (or complementary in the best case) to the speed up we aim
at, namely the speed-up of the sum of parsing and disambiguation. Moreover, most of the
above mentioned methods do not have a (direct) mechanism to control the tree-language
coverage on real-life data, and this should be a major concern for grammar specialization
algorithms.

In the next section we present a new framework for grammar-specialization, which
specifically deals with these two shortcomings. In this framework, the goal of learning is
a small less ambiguous grammar, which provides a special mechanism for controlling the
tree-language coverage. The new framework benefits from some of the insights of pre-
ceding work. In particular it shares with Samuelsson’s method two major insights: 1) in
order to capture efficiency properties of human processing in limited domains it is nec-
essary to combine EBL with statistical knowledge, and 2) specialization is most fruitful
when it reduces the ambiguity of the grammar. However, the present framework differs
from Samuelsson’s framework in major issues, especially the way it views specialization.
In Samuelsson’s framework, the task of specialization is stated as a problem of off-line
filtering/pruning by thresholds; in contrast, the present framework states specialization as
a constrained-optimization problem.

4.3 Ambiguity Reduction Specialization

This section presents a theoretical framework for specializing BCGs by reducing their
ambiguity, called the Ambiguity Reduction Specialization (ARS) framework. The ARS
framework states the necessary and sufficient requirements for successful BCG specializa-
tion algorithms. Actual specialization algorithms that operationalize the ARS framework
are presented in sections 4.4 and 4.5.

In addition to presenting the ARS framework, this section also discusses how to ex-
ploit the specialization result under the ARS framework on two fronts: parsing (i.e. parse-
space generation) and probabilistic disambiguation under DOP.

4.3.1 The ARS framework

As mentioned in chapter 2, learning can be seen as search in a space of hypotheses, using
inductive bias (training-data and prior knowledge) as a guide in the search. Let us consider
the elements of learning as search that underly the ARS framework.

The departure point of the ARS framework is that an ARS learning algorithm must
have access to training material. As training material we assume a manually annotated
and corrected tree-bank, which represents a specific domain

�

. We also assume that the
BCG is represented by the grammar underlying the tree-bank, thereby limiting our knowl-
edge of the background-theory only to what the tree-bank contains.

�

Note that we assume that the tree-bank contains only the correct structures.

70 Chapter 4. Specialization by Ambiguity Reduction

Two notions are central to the ARS framework: tree-language coverage and ambigu-
ity. We will now define the notion of tree-language coverage with respect to a domain
of language-use. This definition can be operationalized only by approximation: tree-
language coverage is measured on samples (e.g. tree-banks) representing the domain of
language-use. Theoretically speaking, in the limit when the tree-bank is a good sample
of the domain, the approximation approaches this theoretical measure of tree-language
coverage

�

.

Domain: A domain of language use � is a bag (or multi-set) of pairs
& ' � ��, , where � is a

parse-tree assigned to sentence
'

by some annotation scheme (formal grammar) � .

Correct structure: A partial-tree � � is correct for a string of symbols
' � under domain

� iff
' � is identical to � � ’s yield and �

&�' � ��, !�� such that � � is a subtree of � .
Tree-language coverage on a constituent: The tree-language coverage of a grammar

� on a constituent with respect to some domain � , is measured as the ratio
between the correct structures which � assigns to and the total number of correct
structures associated with in domain � .

Grammar’s tree-language coverage: The Tree-Language Coverage (TLC) of a gram-
mar � with respect to a given domain � is the expectation value of the tree-
language coverages of � on each of the constituents which it recognizes in � .
The expectation value is computed on a tree-bank representing (i.e. a sample from)
domain � .

The tree-language coverage of a grammar is a measure that is strongly related to another
measures used in the community: recall. The tree-language coverage of a grammar can
be seen as “subtree-recall” on constituents.

In the ARS framework, the concept-definition is identical to the grammar type of
the annotation scheme underlying the training tree-bank. The target-concept is called
a specialized grammar; this is a grammar that is partial

� �
with respect to the grammar

underlying the training tree-bank.

Requirements and biases

The specialized grammar is identified by an ARS learning algorithm as the grammar that
satisfies the following requirements:

1. Tree-language coverage: The specialized grammar must provide a satisfying tree-
language coverage for each constituent it recognizes. In other words, the learn-
ing algorithm must provide a mechanism for favoring grammars with a satisfying
tree-language coverage.

�

Note that the term “tree-language coverage” is completely different from the more common term “cov-
erage”. While the latter usually implies that a sentence be assigned any structure, the former implies that it
is assigned a set containing all correct structures for that sentence.

���
A grammar � D is called partial with respect to another grammar ��� if the string-language (tree-

language) of � D is partial to the string-language (tree-language) of ��� .

4.3. Ambiguity Reduction Specialization 71

2. Ambiguity reduction: The specialized grammar must be as unambiguous as possible,
taking the other constraints into consideration.

3. Compactness: The specialized grammar must be as small as possible, taking the other
constraints into consideration.

4. Recognition power: The specialized grammar must recognize as many of the sen-
tences in the domain as possible, taking the other constraints into consideration.

Besides these requirements, the algorithm may embody some further biases:

1. Any desired application and/or domain dependent biases.

2. A general objective and task-independent learning-bias.

The first requirement is, on the one hand, the most straightforward, and, on the other, the
most tricky. The problem lies in the definition of tree-language coverage of a constituent.
As we saw in the analysis of preceding work on BCG-specialization, often there is no
guarantee that a grammar encapsulates (with high probability) all correct structures that
might be associated with a constituent in the given domain. This requirement states ex-
actly that the specialized grammar should provide sufficient tree-language coverage i.e. if
the specialized grammar recognizes a constituent, it also provides (with high probability)
all its correct structures. Note that if a grammar has a satisfying tree-language coverage,
by the virtue of the compositionality property of grammars, it is able to guarantee, to some
extent, satisfying tree-language coverage on full sentences

� �

.
The second requirement states that the specialized grammar be minimally redundant,

within the borders delimited by the other constraints. As we shall see later on, it is pos-
sible to employ various frameworks to define a measure of redundancy, e.g. entropy,
probability. The source for ambiguity reduction is domain-specific bias exploited by the
learning algorithm. Crucial in this respect:

Measuring ambiguity: We measure ambiguity on a given training tree-bank which con-
stitutes a sample of a certain domain. Theoretically, in the limit, when the tree-bank
is infinitely large, the ambiguity of the grammar on that tree-bank is a realistic es-
timation of the ambiguity of the grammar on the given domain.

The third requirement excludes the situation where the the specialized grammar is so
large that the cost of parse-space generation cancels the gain from ambiguity reduction.
The predicate “smallest” grammar refers to some measure of the size of a grammar, which
should be specified by the learning algorithm. We exemplify this in the next sections.

The fourth requirement (besides the third requiremnt) guarantees that ARS learning
generalizes over the training tree-bank. Without this requirement, grammar specialization

� �

Of course, there are the famous troublesome idiomatic structures, idiomatic with respect to the grammar
at hand, that do not abide by the compositionality assumption. The discussion in the next sections suggests
a solution for this problem.

72 Chapter 4. Specialization by Ambiguity Reduction

might result in learning the whole tree-bank as a specialized grammar, a clear case of
overfitting.

Since grammar specialization often has an application-dependent character, the ARS
framework states that beyond these three requirements, the designer may add own biases
based on prior knowledge of the domain and the application. For example, one such bias
could be a requirement on the form of the grammar rules, limiting the grammars to those
that can be represented by some kind of machines e.g. FSMs, LR-parsers.

Note that the four requirements stated above do not make the ARS-framework a
complete prescription for grammar-specialization. They only state the safety require-
ments for successful specialization. For implementing the ARS-framework into learning
algorithms, it is necessary to specify a learning paradigm, e.g. Bayesian Learning or
Minimum-Description Length (MDL), which provides the objective principles of learn-
ing, independent of the task of grammar-specialization. In the ARS-framework, this is
incorporated in the task-independent learning-bias which enables generalization over the
training-data by selecting a preferred paradigm. The preferred paradigm enables com-
bining the other biases into full-fledged learning algorithms. For example, if we choose
Bayesian Learning, the likelihood of the data as well as the prior probability provide
places for expressing the other biases that are specified by the ARS requirements. We ex-
emplify this in the next section, where we present various ARS specialization algorithms.

Hypotheses-space

Having stated the training material, the target-concept and the inductive bias, which guide
learning, the next step is to identify explicitly the search space (or hypothesis space) for an
ARS algorithm: a space of grammars. In the general case, there are no limitations on the
choice of this space. However, since the goal of ARS, in this thesis, is the specialization
of tree-bank annotations

� �

, by Explanation-Based Learning, the space of grammars is
determined by the expressive power of the BCG underlying the tree-bank. Currently,
tree-bank annotations are limited to Phrase Structure Grammars (PSGs), i.e. have a CFG
backbone. Therefore, the grammar space of the ARS framework is currently (a subset
of) the Tree-Substitution Grammar (TSG) space of the tree-bank; a TSG is in the TSG-
space of a tree-bank iff each of its elementary-trees is a subtree of trees in that tree-bank.
This constraint on the learning space is another major reason, besides using a tree-bank,
to qualify this learning framework as involving EBL. In contrast, we could allow some
inductive generalization over the number of modifications in a constituent, analogous to
LTAG-EBL (Srinivas and Joshi, 1995), extending the learning space beyond the TSG-
space, and thus beyond the capabilities of pure EBL.

� �

Recall that in ARS we assume that the relevant features of a background-theory are explicitly repre-
sented in the tree-bank, i.e. the tree-bank annotation is our background-theory.

4.3. Ambiguity Reduction Specialization 73

4.3.2 Parsing under ARS

Before we specify and implement the ARS framework into actual algorithms, let us first
sketch how we shall use the properties of the specialized partial-grammar resulting from
learning. Two aspects of this grammar provide a unique possibility for a novel method of
parsing, which integrates the specialized grammar and the BCG in a natural way. Firstly,
as the first requirement states, if this grammar spans a non-empty space for a domain’s
constituent, this space is (with high probability) complete in the sense that it contains
all correct partial-trees that can be associated with the constituent in this domain. And
secondly, the parse-space of a constituent, according to this grammar, is smaller than or
equal to the space spanned by the BCG for the same constituent.

The integration of the specialized grammar and the original BCG results in a contin-
uous two phase parser. The specialized grammar is allowed to parse all constituents of
the input string resulting in a parse-space for every such constituent, including the input
string as a whole. As the first property guarantees, a non-empty parse-space must be
complete in the sense described above. Thus, for constituents that receive a non-empty
space, the BCG-parser need not do anything. For the other possible constituents we can
employ the BCG-parser to span the parse-space. This results in a complementary role
for the BCG-parser with regard to the role of the specialized parser (as partial-parser): the
BCG-parser recognizes constituents with empty space (according to the specialized gram-
mar) and integrates the results of the specialized parser together with its own results into
a parse-space for the whole input string. And by the second property of the specialized
grammar, the integrated parser overgenerates as little as possible

� �

. We elaborate more on
this integrated parsing algorithm in the sequel.

4.3.3 Specializing DOP with ARS

Beyond BCG specialization, ARS provides a way to specialize probabilistic models such
as DOP. To achieve this, one should consider the partial-trees of the specialized grammar
as atomic units. This can be achieved by identifying these partial-trees in the trees of the
tree-bank and marking them as atomic units; then DOP is allowed to cut the tree-bank in
any way which does not violate the atomicity of these partial-trees. The resulting DOP
models should be smaller than the original one and have less wide coverage.

However, due to the possibility of complementing the specialized grammar with the
BCG grammar, it is possible to complement the specialized DOP model with the original
DOP model. This is achieved by parsing the input with the integrated parser. In case the
whole parse-space is determined solely by the specialized grammar then it is sufficient
to employ the specialized DOP model for disambiguation

� �

. In all other cases, where
� �

The integrated parser achieves its worst-case overgeneration when the grammar underlying the training
tree-bank is ideally tuned for the domain. In that case, the integrated parser overgenerates as the grammar
underlying the tree-bank.

� �

Note that the parse-space which the specialized DOP model can evaluate probabilistically is exactly
equivalent to the parse-space spanned by the specialized grammar. This is simply because each elementary-
tree of a specialized DOP STSG is either an elementary-tree of the specialized grammar or is constructed

74 Chapter 4. Specialization by Ambiguity Reduction

the BCG grammar complements the space, one employs the original DOP model for
disambiguation. Note that even in this last case the cost of disambiguation is smaller than
when using only the DOP model. This is simply because the parse-space is expected to
be smaller due to employing the specialized parser.

An interesting question in specializing DOP models concerns the faithfulness of the
probabilistic distributions of the specialized models. The answer to this question, in the
ARS framework, is a combination of two major properties of specialized grammars and
specialized DOP models:

� The probabilistic subtrees of specialized DOP models are combinations of
specialized-grammar rules (i.e. partial-trees).

� Each recognizable constituent has a complete parse-space in the sense discussed in
the first requirements of ARS.

Due to the first property, a specialized DOP model should be able to evaluate probabilis-
tically all structures in the parse-space of any constituent, which the specialized parser
is able to recognize. And due to the second property, it is clear that ARS discards only
incorrect structures of constituents. Since the inference of probabilities of specialized
DOP models is exactly the same as that for the original DOP models, the “specialized”
distributions should be satisfying approximations to the original ones.

To see this, we note that ARS specialization of DOP models does not introduce a new
rule for redistributing the probabilities of a discarded incorrect structure; therefore, the
probability of a discarded structure is redistributed among the remaining structures, that
fall into the same distribution, proportionally to the original probabilities. Moreover, the
impact of this redistribution on the remaining distributions is limited due to a property of
DOP: incorrect structures receive much lower probability relative to correct ones.

4.3.4 Summary

The ARS framework for BCG specialization:

� provides a means for controlling the tree-language coverage,

� learns a grammar as small and as unambiguous as possible,

� enables combining the specialized grammar together with the BCG into a novel
parsing algorithm, which provides high coverage,

� and specializes DOP and similar stochastic models.

In the rest of this chapter we present various computational learning and parsing algo-
rithms that implement the ARS-framework and operationalize the ideas presented above.
Chapter 6 exhibits experimental results to support this theoretical discussion of grammar
specialization under the ARS.

of a combination of elementary-trees of the specialized grammar.

4.4. An instance ARS algorithmic scheme 75

4.4 An instance ARS algorithmic scheme

The various ARS algorithms presented in the next sections are all based on inductive
extensions to EBL. They all share a common learning strategy, a common choice of target-
concept, training-data and background-theory. The only aspect where these algorithms
differ is the inductive learning technique, which defines the measure of ambiguity and the
operationality criteria. This section presents the algorithmic scheme that encompasses
exactly the common aspects of these algorithms, where the measures of ambiguity and
size are left unspecified. The scheme is derived from the ARS framework through the
adoption of various assumptions and approximations, which our presentation here aims
at exposing. In addition to this scheme, this section presents a novel parsing algorithm
and a novel method for specializing DOP, thereby instantiating our preceding theoretical
discussion on parsing and DOP-specialization under the ARS framework.

4.4.1 A sequential covering EBL scheme

A precondition to the present scheme is access to an adequate tree-bank representative of
a given domain, both in the statistical and in the linguistic sense. As explained earlier,
in this it already assumes access to a background-theory represented by the annotation
scheme of the tree-bank at hand.

The target concept of this scheme is a formalization of the concept of constituency
where the notion of a Sub-Sentential Form (SSF) (defined in chapter 2) plays a major
role:

SSF: Any ordered sequence of terminal and non-terminal symbols, which is the frontier
of a subtree of a tree in the tree-bank is called an SSF of that tree-bank. The set of
all SSFs of a tree-bank � � is denoted �����20�� .

The term SSF is derived from the better known term “sentential-form”: any ordered
sequence of symbols, which results from a finite set of derivation steps starting from the
start symbol of a grammar (not necessarily leading to a sequence of terminals). Thus, a
sentential-form is a sequence which forms the frontier of some partial-tree with as its root
the start symbol of the grammar.

Subtree associated with an SSF: If an SSF
'H' �

constitutes the frontier of a subtree � �
of a tree in the tree-bank, � � is called a subtree (or partial-tree) associated with

'H' �
.

Note that there can be many subtrees associated with the same SSF. Therefore the follow-
ing definition.

Ambiguity set of an SSF: The ambiguity set of
'H' �

over a tree-bank is the set of all sub-
trees associated with

'H' �
in that tree-bank. The ambiguity set of

'H' �
over tree-bank

� � is denoted as � � 'H' � 9 9 0�� . When the tree-bank can be unambiguously determined
from the context we may omit the subscript � � . The set of the ambiguity-sets of all
SSFs in � � � 0�� is denoted

6 �%0�� .

76 Chapter 4. Specialization by Ambiguity Reduction

Target concept: The target concept of the present learning algorithmic scheme is a func-
tion

�
: �34 �

, where the domain � is a subset of the set ��� � 0 � and the range
�

is a subset of the set
6 �%0 � that contains the ambiguity-sets of all SSFs in � . The

function
�

assigns to every SSF
'+' � ! � its ambiguity-set � � 'H' � 9 9 ! �

.

Generalization of the target-concept: This definition of the target concept does not
take into account that under some linguistic theories different SSFs are considered vari-
ations of the same entity; for example in LTAG, two SSFs that are equivalent up to a
different number of the same kind of adjunctions are variations of the same entity. Under
such linguistic theories, the training tree-bank’s set of SSFs is partitioned into equivalence
classes according to some notion of linguistic equivalence between SSFs. For these lin-
guistic theories, the definition of the target concept is a straightforward generalization of
the definition stated above to equivalence classes of SSFs. For clarity of the presentation
here we will restrict the discussion to a target concept which is based on individual SSFs.
We will return back to this point during the discussion of the implementation detail.

4.1. EXAMPLE. In figure 4.1, three example trees are shown. Examples of SSFs are
the sequences (1 � 1 1 � 1), � � G ��	 � 1 � � � 1 � and (1 � 1), taken from the top-
most tree in the figure. The first of these two SSFs is also a sentential-form, since it is
derived from the start non-terminal of the grammar. Some example SSFs in the mid-
dle tree are (1 � 1), (.$1 � 1 � � � 1), (1 � 1 � � � 1), (1�� � .�� 1 � � � 1)
and (1�� � . 1 � 1 � � � 1). The last two are also sentential-forms. The sequence
� 1 � � � 1 , for example, is not an SSF. In this toy tree-bank, each SSF has only one
subtree associated with it. The ambiguity sets of these SSFs are, therefore, singletons.

An example ambiguity set which contains two partial-trees is seen in the classical
linguistic example: I saw the man with the telescope. This sequence of
words is an SSF with which we can associate two structures:

S(I VP(VP(saw NP(the man)) PP(with the telescope)))
S(I VP(saw NP(NP(the man) PP(with the telescope))))

that correspond to two different ways of attachment for (with the telescope), i.e.
verb phrase vs. noun phrase attachment.

Having defined the target-concept, we now turn to deriving the learning algorithm.
For this we need the following definitions:

Constituency Probability: The Constituency-Probability of a sequence of symbols
' � ,

denoted 1 0���� ' �)� , over a given tree-bank � � , is the probability of
' � being a

subsentential-form in the tree-bank; it is equal to the ratio between the number
of times

' � is a subsentential-form (denoted � G������ B 0 ��� ' �)�) to the total number of
times it appears in the tree-bank (denoted � G�����0�� � ' �)�). When the tree-bank is

known we may omit the subscript � � from the notation: 1F� ' � � �
	��J ? 	���� ��� � � ? 	�� ��� � � . The
value of 1F� ' �)� is undefined if � G���� � ' �)� J 6 in the training tree-bank.

4.4. An instance ARS algorithmic scheme 77

vertrekken
to_depart

wil
want

Nijmegen

MPMP

from
uit

P NP

S

PER

ik

S
VP

INFP
PER

ik
I

VP
INFP

I
INFP

V

MP

MP MP

NPP NP P

van naar UtrechtAmsterdam
from to

MP

MP MP

NPP NP P

van naar UtrechtAmsterdam
from to

om
at

P

uur
o’clock

N
vertrekken
to_depart

wil
want

NUM

two
twee

MP

NP

S

PER

ik

S
VP

INFP
PER

ik
I

VP
INFP

I
INFP

V

Figure 4.1: A toy example tree-bank

The constituency probability of a sequence of symbols
�

is the probability that
�

is
an SSF. Beside this constituency probability we also define:

Ambiguity-Set Distribution (ASD): This is a discrete probability function
6 � � ��� � over

the ambiguity-set of an SSF
'H' �

. Each structure � in this ambiguity-set has prob-
ability

6 � � ��� � ����� equal to the ratio of the frequency of the structure � in the tree-
bank (denoted � G���� �����) to the total frequency of

'H' �
as an SSF in the tree-bank, i.e.6 � � ��� � ����� �
	��J ? 	�� �
�� ? 	���� ����� � � . The value of

6 � � ��� � � ��� is undefined if � G ��� �K� 'H' � � J 6 .
Note that the ASD distribution assumes that a structure associated with

'
, given that

'
is

an SSF, is a random variable. Let
' � G � � � � '+' � � denote this random variable. The ASD

of
'H' �

describes the various probabilities
6 � � ��� � � ' � G � � � � 'H' � � J ��� for every � in its

78 Chapter 4. Specialization by Ambiguity Reduction

ambiguity set. Moreover, the value 1F� ssf � � 6 � � ��� � � ��� , for any � in the ambiguity set
of
'H' �

, denotes the total probability of assigning � as a structure to
'H' �

prior to knowing
whether it is an SSF or not; it combines the two decisions 1) whether

'H' �
is an SSF and

2) what structure to assign to
'H' �

given that it is an SSF.
In the light of the definitions above, it is worth pausing shortly at this point and con-

sidering the ARS framework’s requirement concerning tree-language coverage (first bias-
rule). It turns out that this requirement can be implemented as follows, under the impor-
tant assumption that we have access to an infinitely large tree-bank (i.e. in the limit):

If the specialized grammar can recognize a certain SSF in the domain, it must
be able to generate its ambiguity set.

Since the limit case is only a theoretical situation, we have to use a good approximation,
i.e. a sufficiently large tree-bank. If the tree-bank is not sufficiently large, we should be
able to decide whether a given SSF has a “sufficiently complete” ambiguity set in that
tree-bank or not. We will delay the discussion of this problem until section 4.4.1 and
assume, for the time being, that we are able to decide which SSFs in the tree-bank have
a sufficiently complete ambiguity set. Given this and assuming an EBL-based learning
algorithm, the first requirements specification of the present algorithmic scheme can be
stated as follows:

To cut the tree-bank trees in such a way that the obtained set of partial-trees is
the union of only sufficiently complete ambiguity sets of SSFs. Moreover,
this set of partial-trees is both the smallest and least ambiguous among
those that fulfill the condition.

Needless to say, the currently vague requirement “smallest and least ambiguous” still
needs to be specified and quantified. As mentioned above, the present algorithmic scheme
encapsulates only the commonalities of the various ARS algorithms, which we present.
Since these algorithms differ exactly in the measures of ambiguity and grammar size (and
the ways of weighing them against each other), the specification of this requirement is left
to the discussions in the next sections.

The search strategy: sequential-covering

An exhaustive search for the way of cutting the tree-bank trees which fulfills the require-
ments stated above, is virtually impossible due to time and space limitations. Therefore,
we need to limit the search in order to find good approximations. Our choice here is for
the so called Sequential Covering search strategy (Mitchell, 1997). Sequential covering
is an iterative strategy which can be summarized as follows: learn some rules, remove
the data they cover and iterate this process. Hence the name Sequential Covering (SC)
scheme. Due to its stepwise reductive nature, the SC strategy of learning reduces the
space of hypotheses (i.e. grammars in our case) drastically after each iteration, thereby
facilitating faster learning from larger bodies of data. Needless to say, the SC strategy is
a greedy approach that might be suboptimal in comparison to exhaustive search.

4.4. An instance ARS algorithmic scheme 79

The SC strategy is incorporated in the present algorithmic scheme in such a way that
at each iteration the tree-bank trees are reduced in a bottom-up fashion only. Of course,
there are many other reduction strategies which might be as good. But our choice here for
a bottom-up fashion has to do with the way we wish to integrate the resulting specialized
grammar and the initial Broad-Coverage Grammar. This will become clearer when we
discuss the parsing algorithm in section 4.4.3. In essence, the present algorithmic scheme
learns in iterations until the tree-bank is empty. At each iteration, the following actions
are taken:

1. A set of SSFs, each with a sufficiently complete ambiguity set, is learned. The SSFs
which are considered at the current iteration are only those that are on the frontiers
of the tree-bank partial-trees (i.e. we proceed in a bottom-up fashion). Moreover,
the union set of the ambiguity sets of the learned SSFs must be the smallest and
least ambiguous possible.

2. All instances of the partial-trees in the ambiguity-sets of learned SSFs are removed
from the current tree-bank partial-trees, resulting in the tree-bank of the next itera-
tion. The removal of the instances of the partial-trees takes place only bottom-up,
i.e. the iterations “nibble” on the tree-bank trees from their lower parts upwards.

4.2. EXAMPLE. We assume only in this example that the SSFs that our algorithm is al-
lowed to learn do not contain terminals (this assumption is not inherent to the algorithm).
Consider again the trees in figure 4.1. These trees are cut-up into the partial-trees, de-
limited with dotted-lines, by the present SC EBL learning algorithm. In the top-most
tree, there is only one SSF that reduces the whole tree, namely (1 � 1 1 � 1), which
corresponds to “from Amsterdam to Utrecht”. Therefore, this tree was entirely reduced
after one iteration of the algorithm. In the middle tree, there are two SSFs, (1 � 1) and
(1 � � . � 1 � � � 1). The first of these two was learned in the first iteration, resulting
in reducing its associated subtree. And the second was learned in the second iteration. A
similar situation holds for the tree at the bottom of the figure.

The operationality criterion

At this point we make another convenience assumption: each SSF competes only with a
limited number of other SSFs on a place in the learned grammar. This limits the number
of combinations of SSFs, since if an SSF is determined to be more suitable than any of its
competitors, it will be part of the learned grammar. A suitable definition of a competitor
seems the following:

Competitors of an SSF: In tree-bank � � ,
'H' �

� is called a competitor of
'H' �

if and only
if there is a tree � in � � such that there are

' � � ! � � 'H' � �

9 9
and

' � ! � � 'H' � 9 9 which
are subtrees of � and

' � � is a subtree of
' � . The set of competitors of SSF over a

tree-bank contains all competitors of SSF in that tree-bank.

Note that the relation “competitor” is asymmetric. The motivation behind this definition
is that if we choose to limit the free competition between SSFs on a place in the learned

80 Chapter 4. Specialization by Ambiguity Reduction

grammar, we should take care that this competition does not harm the coverage of the
learned grammar too much. This definition can be used by the learning algorithm to
guarantee that an SSF is learned only if it “beats” all SSFs in the tree-bank that are either
subsequences of it or of which it is a subsequence. And this means that either an SSF
is represented as a whole (either on its own or as a subsequence of another SSF), or
subsequences of it are represented.

Since the algorithm learns from a given tree in the tree-bank, in a bottom-up fash-
ion, it considers the SSFs on the frontier of that tree and the competitors of these SSFs
in the whole tree-bank. For every such SSF, we have to decide, on the basis of global
information from the whole tree-bank, on whether to learn it or not. An SSF is learned
from a given tree, if and only if it has a sufficiently complete ambiguity set and is the
“best choice” among all its competitors. The predicate “best choice” must be defined and
quantified to facilitate the choice of the “smallest and least ambiguous” grammar possi-
ble. This amounts to localizing these measures to individual SSFs rather than applying it
to a whole grammar. Instead of choosing the smallest and least ambiguous grammar, we
now choose the grammar which is the union of the smallest and least ambiguous ambi-
guity sets of SSFs, where the comparison is only between an SSF and its competitors, as
defined above.

Summary: To summarize, the present algorithmic scheme assumes:

� a macro-rules EBL-algorithm extended with inductive learning, i.e. the goal is to
cut the tree-bank trees into a set of macro-rules that forms the specialized-grammar,

� an (iterative) sequential covering strategy of learning, i.e. the specialized-grammar
is the union of a finite sequence of macro-rule sets, each in its turn being the union
of ambiguity sets of the SSFs learned at a certain iteration. Let � � denote the
specialized grammar, a counter of iterations and � a counter of SSFs learned at the
same iteration, then:

� � J �

�
�

� � � 'H' � � B � 9 9 �
In other words, � � is the union of ambiguity-sets of SSFs that are learned from the
tree-bank

� �

,

� the space of SSFs in the tree-bank is divided into (not necessarily mutually exclu-
sive) sets of competitors,

� each set of competitors contributes its best choices of SSFs to the learned grammar;
the best choices are determined on each tree in the tree-bank individually, using
measures of size and ambiguity of SSFs, which will be defined in the sequel.

� �

In fact, � � can be partitioned into (mutually-exclusive) equivalence classes (the ambiguity sets), each
associated with a different SSF.

4.4. An instance ARS algorithmic scheme 81

We will refer to the grammar resulting from this learning process, i.e. the specialized-
grammar, also as the partial-grammar; this grammar is partial with respect to the original
BCG. And we will refer to the learned SSFs, i.e. the SSFs that underly the specialized-
grammar, with the term specialized-grammar SSFs.

0. 2 J 6 ;
Repeat

1. Compute ����� � ,
2.
; 'H' � !������ � compute

the frequencies that are necessary for � (
'+' �

), and
the ��	 � � � � �HG ' � � 'H' � � ,

3.
; 'H' � !������ � : . � � < � � 'H' � ��2 J � G � � iff'H' �

has a sufficiently complete ambiguity-set in
��� � , and; 'H' � * ! ��	 � � � � �+G ' � � 'H' � � : � (

'+' �
)
� � (

'H' � *
),

4.
; � ! ��� � ,;

node address � in � :
N is marked as cut node iff
. �� � < � ��� �
� ��� is true and; �
 �J � in � : . � � < � �7� (Nx) � 4 � (N) �! Competitors(� (Nx))

5. 2 J � (��
6.

��� � := (
��� � � � after reducing all partial-trees under marked nodes);

until ((
��� � J J
) or (

��� �=J J ��� � � �));

Figure 4.2: An implementation of the present algorithmic scheme

Operationalizing the algorithmic scheme

Figure 4.2 contains a functional specification of the present algorithmic scheme. The
specification in figure 4.2 assumes the following notation and definitions:

� � denotes a unique address for each node of a tree � in the tree-bank.

�
��� � denotes the tree-bank obtained after iterations;

� � � thus denotes the initial
tree-bank.

� � (�) denotes the sequence of leaf nodes dominated by � .

� ��	 � � � � �HG ' � � '+' � � denotes the set of all competitors of
'H' �

in tree-bank
��� � .

82 Chapter 4. Specialization by Ambiguity Reduction

� �����F� denotes the set of all SSFs in tree-bank
��� � .

� � () denotes the combined measure of ambiguity and grammar size:

� : SSFs 4 1 assigns a larger (real) value to SSFs that result in less
ambiguous and smaller grammars.

In section 4.5, function � () will be defined in various ways, according to different
choices of the inductive learning paradigms and measures of ambiguity and grammar
size.

In the specification, the goal is to mark the cut nodes in the tree-bank trees; the cut
nodes in the tree-bank trees denote the borders of the partial-trees associated with the
learned SSFs. By cutting

� �

the trees of the tree-bank at the cut nodes we obtain a set of
subtrees of the tree-bank trees. This set is the union of the Ambiguity-Sets of the learned
SSFs.

Cut node marking implements the present algorithmic scheme in one of the many
possible (and equivalent) ways. A node with address � is marked in tree � of the tree-
bank iff 1) its frontier SSF (� � � �) has a larger � () value than all its competitors in the
tree-bank and 2) for every other node �
 in � , if the frontier of �
 in � has a larger � ()
value than all its competitors � (N) is not one of them. This is equal to traversing the tree
� by a depth-first traversal from the root downwards and stopping the in-depth traversal at
those nodes that have a . �� � < � frontier SSF.

Sufficient completeness

The question whether an SSF has a sufficiently complete ambiguity-set can be stated as
follows. Given an SSF

'H' �
of a training tree-bank � � , what is the probability that the

ambiguity-set of
'H' �

over � � is not complete ?, or equivalently: what is the probability
that a new sentence of the domain (i.e. not in � �) has a parse � in which

'+' �
is the

frontier of a subtree
' � of � such that

' � is not in the ambiguity-set of
'H' �

over � � ?. It
is not hard to see that the latter question can be reduced to the older well-known research
question: does the CFG underlying the training tree-bank generate for a sufficient portion
of the domain sentences the right parse-trees ?.

In general, all methods that employ tree-banks for learning assume that the training
tree-bank is sufficient in the sense that it is a sample of the domain it represents, i.e. the
distributions in the tree-bank are good approximations. In many cases this is an incor-
rect assumption, and probabilistic methods try to compensate for this by using smoothing
or reestimations methods that improve the distributions obtained from the tree-banks e.g.
Good-Turing (Good, 1953), Back-Off (Katz, 1987) and Successive Abstraction (Samuels-
son, 1996).

� �

Cutting a tree at the marked nodes is simple: duplicate every cut node in the tree by making it a pair of
nodes (labeled exactly as the original node) such that one of the two nodes is connected to the parent node
and the other to the children nodes of the original node. The duplicate nodes are not connected and thus the
resulting graph is not connected. The subgraphs are subtrees of the original tree.

4.4. An instance ARS algorithmic scheme 83

The question that we deal with can be solved by the same methods that are used
to reestimate the probabilities of subtrees of the tree-bank trees e.g. (Good, 1953; Bod,
1995a). These methods “reserve” some probability-mass for subtrees that did not occur
in the tree-bank and adjust the probabilities of the subtrees that did occur in the tree-bank
to allow for this. Suppose now that this method is applied to a DOP model obtained
from the training tree-bank. Now we have the original DOP model, denoted � and the
reestimated DOP model, denoted � . In any DOP model, the probability of the ambiguity-
set � � 'H' � 9 9 is the sum of the probabilities of all partial-derivations that generate any of the
subtrees in � � 'H' � 9 9 . Denote the probability of the ambiguity-set of

'H' �
with respect to

model
� ! � � � � � with 1�� � � � '+' � 9 9 � . Then 1�� � � � 'H' � 9 9 � � 1�� � � � 'H' � 9 9 � is an estimate of

the probability that a subtree is missing from the ambiguity-set of
'H' �

.
Clearly, this procedure can be very expensive if it is applied to every SSF in the train-

ing tree-bank. The number of SSFs in a tree-bank is as large as the number of DOP
subtrees; for the tree-banks we are dealing with, the space which is necessary for comput-
ing these subtrees exceeds a few Giga-bytes. And the number of SSFs runs in the millions.
This costs a huge amount of time to compute if it is possible to do so at all. Therefore,
in the sequel I will assume that the training tree-banks are sufficiently large such that all
SSFs have sufficiently complete ambiguity-sets. However, the issue of how to estimate
the sufficient completeness of SSFs in a practical way remains an open question for future
research.

4.4.2 Completing composed ambiguity sets

Let us now consider the important question whether the above instantiation of the ARS
framework fulfills the ARS requirement concerning a satisfying tree-language coverage.
This requirement states that if the specialized grammar is able to recognize a certain
constituent, it is able to generate its ambiguity set. To consider this requirement in the
light of the present learning algorithm, we may distinguish between two cases in applying
the learned grammar to recognizing constituents:

i. a constituent is recognized in (among others) a derivation that consists of a single
derivation-step.

ii. a constituent is recognized only by derivations that are compositions of at least two
derivation-steps (denoted composed derivations).

Let us now consider whether the requirement concerning the tree-language coverage is
fulfilled in both case:

1. For the first case, since the ambiguity sets, that constitute the specialized-grammar,
are all assumed sufficiently complete by the learning algorithm, the requirement is
immediately fulfilled.

2. Assume we are given a constituent � 'H' � of the second type. We note that � 'H' � is
recognized by a composition of at least two SSFs from the specialized-grammar.

84 Chapter 4. Specialization by Ambiguity Reduction

The composition of these SSFs is governed by the composition of subtrees from
their ambiguity sets; composition here is limited to the substitution of one tree in
another. The result of composing subtrees from the ambiguity sets of SSFs from
the specialized-grammar is a composed partial-tree, which has � 'H' � as its frontier.
The set of composed partial-trees that can be constructed in this way is called the
composed ambiguity set

� �

of � 'H' � .

For this type of constituents it is not immediately clear that the requirement of a
satisfying tree-language coverage is fulfilled. The issue here is on the one hand, the
ability of a grammar to represent language in a compositional manner, and on the
other hand, the compositional nature of language use in the given domain. As usual
in language modeling, it is reasonable to assume that this subrequirement is ful-
filled to a large extent but not quite the whole way. This is because a problem might
arise with the so called idiomatic and semi-idiomatic constructions, which are not
compositional. In general, these constructions are much less frequent than the com-
positional constructions of language, but they are still not negligible. Thus, to some
small extent, the above algorithmic scheme, as is, fails to fulfill the requirement.

To tackle the problem caused by constituents of the second type, we complement our
learning algorithm with another simple algorithm, which aims at completing the com-
posed ambiguity sets by a second round of learning from the tree-bank.

An algorithm for completing ambiguity sets

The only source of information we can employ for completing the composed ambiguity
sets using an automatic algorithm, is the training tree-bank and the markings of the cut
nodes provided by the specialization algorithm. The goal here is to detect structures which
are missing from ambiguity sets of composed specialized-grammar SSFs.

In essence, the algorithm for completing the ambiguity sets consists of the following
steps:

1. It simply scans the tree-bank output by the specialization algorithm (cut nodes are
marked). It collects all possible SSFs on the frontiers of trees in the tree-bank, and
maintains for every SSF a set of pairs. Each pair in the set for

'H' �
points to a node

in a tree in the tree-bank, which is the root of a subtree that has
'H' �

at its frontier.
A pair

& � � G 	 � � ��� , consists of the unique address of the node, � , and a truth-value
� � G 	 � � , stating whether the node is marked or not.

2. For every SSF on the frontier of a tree in the domain:

(a) The SSF is marked incomplete iff its set of pairs (i.e. nodes) contains un-
marked as well as marked nodes. Marked nodes indicate that the SSF can be
constructed from one or more of the SSFs, which were learned by the special-
ization algorithm. And unmarked nodes, in contrast, indicate subtrees which

� �

Under the given specialized grammar and in the domain.

4.4. An instance ARS algorithmic scheme 85

should be associated with that SSF but which have not been learned by the
specialization algorithm.

(b) The subtrees associated with an incomplete SSF which have unmarked root
nodes are extracted and kept aside.

3. The specialized grammar now consists of the ambiguity sets learned by the spe-
cialization algorithm complemented by all extracted subtrees learned in the present
algorithm.

ty1 ty2

ty3

tx1 tx2

tx3

tx4

ssf

ssfy2ssfy1

ssfy3

Ny

ssf

ssfx2ssfx1

ssfx3

Nx

Figure 4.3: A compositional SSF

4.3. EXAMPLE. Figure 4.3 shows two trees from a tree-bank. The “bullets” � indicate
cut nodes marked by the specialization algorithm. In the right tree, the SSF

'H' �
is a

combination of three SSFs (
'H' ��� (

,
'+' ��� *

and
'H' ���); the associated subtree in this case

is
� �

� � � � � (� � � * . In contrast, in the left tree
'H' �

was not learned at all. Furthermore,'H' �
 , the SSF which enables recognizing
'H' �

in a compositional way (using
'+' �
 (and'H' �
 *), has not been learned either. The subtree associated with

'+' �
in the lhs tree

is �
 � �
 (�� �
 * . The ambiguity set of
'H' �

misses the latter subtree. Therefore, during
parsing a sentence similar to that of the lhs tree, the specialized grammar might be unable
to construct the lhs tree. In many cases the specialized grammar might contain many other
partial-trees so that it might be able construct other wrong trees for that sentence. To
avoid this situation, the partial-tree under node �
 should be in the specialized grammar.
This is achieved by the algorithm for completing the ambiguity sets, which is applied in
this case to

'H' �
; since node �
 is unmarked but node � � is marked, then the partial-tree

�
 � �
 (�� �
 * , with �
 as root, is added to the specialized grammar.

Notice that the algorithm considers only SSFs that are on the frontiers of trees (i.e. those
that are constituents) in the tree-bank. This is because the aim here is to learn idiomatic

� �

As usual � denotes left most substitution.

86 Chapter 4. Specialization by Ambiguity Reduction

structures that were missed by the original learning algorithm. And intuitively, idiomatic
constructions can be expected to involve the lowest levels of the trees most (if not all) of
the time.

4.4.3 A novel parsing algorithm

As described in section 4.3.2, the parsing algorithm under the ARS scheme integrates
the specialized grammar and the BCG in a two phase parser. Below we instantiate this
parsing algorithm for the SC EBL-scheme described above. But let us first consider the
types of specialized grammars which result from the present learning algorithm.

The specialized grammar

There are three ways to view the specialized grammar: as a Tree-Substitution Grammar
(TSG) or as a Cascade of Finite State Transducers (CFSTs):

TSG: Consider the ambiguity-sets of the SSFs that are learned from a given tree-bank,
with our scheme. The union of these sets is a CFG with rules that are partial-trees,
i.e. a TSG. The start-symbol, the set of non-terminal symbols and the set of terminal
symbols of this TSG are exactly those of the BCG underlying the tree-bank.

CFSTs: The TSG implementation masks the iterative process in which the SSFs were
learned and results in a (possibly) recursive grammar. An alternative is to keep the
sets of SSFs, and their ambiguity sets, for each iteration apart. For each iteration,
the set of SSFs and their ambiguity sets learned at this iteration are considered as a
set of Finite State Transducers (FSTs); each SSF is a regular expression (i.e. FSM)
which, upon recognition, emits its ambiguity set. When parsing a given input, the
set of FSTs of iteration is applied only to the output of iteration � (, for all
 �.(. The set of FSTs learned at iteration

(
is applied to the given input sentence

or word-graph.

Union-FST: An FST can be obtained by taking the union of the FSTs that are constructed
in the CFST implementation. This Union-FST can be applied in a feed-back con-
struction to an input sentence. The feed-back iterations stop when the last output is
equivalent to the last input.

There are two major differences between the TSG and the CFST:

1. Due to the finite number of iterations, the CFSTs implementation does not allow
unlimited recursion.

2. Due to the requirement that the set of FSTs of each iteration be applied only when
its turn comes, the CFST implementation imposes a further constraint on the sub-
stitution of partial-trees. In a TSG, it is sufficient that the root of one partial-tree
� be labeled with the same non-terminal symbol as a substitution-site in another
partial-tree �
 , in order for the substitution of � in �
 to take place. In the CFST,

4.4. An instance ARS algorithmic scheme 87

� and �
 must fulfill an extra requirement: � and �
 must be in the ambiguity sets
learned, respectively, at iteration and � � , where � � (.

These differences imply that both the language and the tree-language of the CFSTs im-
plementation maybe proper subsets of those of the TSG implementation. In fact, both
the string-language and tree-language of the CFST are finite (since the number of itera-
tions and the ambiguity sets are also finite). Nevertheless, because of its close fit with
the process of learning, the CFSTs implementation might provide a better tree-language
coverage than the TSG. Similar differences exist between the Union-FST implementation
and the TSG and CFST implementation.

Because of the substantial additional effort that might be involved in implementing
the CFSTs implementation and the Union-FST, we pursue only the TSG implementation
in this thesis.

Integrating the two parsers

As mentioned before, the present parsing algorithm integrates the TSG specialized parser
(denoted by the term partial-parser) with the original BCG parser in a pipeline construc-
tion; the input sentence is fed to the partial-parser and the result is then fed to a con-
strained BCG-based parser. For implementing the partial-parser we employ the CKY
parsing algorithm (Younger, 1967) extended and optimized for TSGs as described in de-
tail in chapter 5 of this thesis

� �

. And for combining it with the BCG-parser we employ a
novel constrained version of the CKY algorithm described next.

In the CKY algorithm
� �

, an input sentence � � ������� � of length

is considered as a
sequence of

�
(

different states
� �

; a state before the first word, a state after the last
word and a state between every two consecutive words (see figure 4.5). These states are
numbered 6 �����
 . Now, for every combination of two states in this sequence �� � , a
parse-table (or so called well-formed substrings table or chart) contains an entry � �� � 9 ;
entry � �� � 9 holds all nodes, representing roots of structures spanned between states and
� , i.e. for the word sequence ��� � � �����0��� . A node labeled with the start symbol of the
grammar in entry � 68�
 9 implies a parse of the whole input sentence.

The integration of the partial-parser with the BCG-parser employs a single CKY
parse-table. The integrated parser uses this parse-table as follows (figure 4.4 provides
a specification):

1. The partial-parser is employed first in order to recognize as much as it can from
the input. The structures built by the partial-parser, are placed in the table. These
structures are combinations of partial-trees of the TSG, i.e. combinations of partial-
trees from ambiguity-sets of the SSFs which were acquired during the learning
phase.

� �

For accuracy we may note that the algorithm as described in chapter 5 assumes STSGs; it is trivial that
it can be used for TSGs also.

� �
The reader interested in the details of the CKY algorithm is advised to read section 5.3. In particular,

figure 5.1 provides a specification of the CKY algorithm for CFGs.
� �

I use the same terminology as that of word-graphs in order to keep the discussion as general as possible.

88 Chapter 4. Specialization by Ambiguity Reduction

/* G���� � 0���� �7G � denotes the predicate: G is a root of */
/* a partial-tree of the specialized grammar (a TSG). */
/* CKY Parser � (sentence, i, j) denotes the CKY parser, */
/* instantiated for grammar � (either a BCG CFG or a */
/* specialized TSG), applied to entry � 0��� 9 of input sentence

' �
 ���
 � � . */

1.
; (�
	 ��

and
; 6 � � �
� 	 �

CKY Parser 0���� (� � �����0� � , i, i+k);
2.
; (�
	 ��

and
; 6 � � �
� 	 �

if (G 4 8 � ! � ��
 � 	 9 and G ����� 0���� � G)���
then ��	 �

< � ��� �7��
 � 	 ��J � G � � ;
3.
; (�
	 ��

and
; 6 � � �
� 	 �

if (Complete(i,i+k) == false)
then CKY Parser � ��� (� � �����0� � , i, i+k);

Figure 4.4: Integrated parsing algorithm

2. Every entry � 0� � 9 , which contains a node corresponding to the root of a partial-tree
of the partial-parser’s TSG, is marked as “complete”; indicated by the proposition
 ��	 �

< � ��� � 0� � � in figure 4.4. Note that this is justified by the tree-language cover-
age property of the partial-parser.

3. All and only those entries that are not marked complete are reparsed by the BCG-
based CKY parser. This involves building structures for these entries using the
CKY algorithm, i.e. by:

i. exploiting the structures in entries marked as complete,

ii. building new structures from scratch when there are no such structures,

iii. and combining all these structures together as the CKY algorithm dictates.

Figure 4.5 depicts this process using a hypothetical example. The figure shows only parses
of the whole string but other partial-parses might be in the chart as well.

Complexity of the integrated parser:

The time complexity of this parsing algorithm is still equal to that of an ordinary CKY for
TSGs, i.e. � � 6
 � � , where

6
denotes the total number of nodes in the elementary-trees

of the TSG and

denotes the length of the input sentence. The space complexity of the
algorithm is also equal to that of the CKY for TSGs, i.e. for recognition this is � � 6
 � �
and for parse-forest generation this is � � 6 �
 � � .

4.4. An instance ARS algorithmic scheme 89

i

60 1 2 3 4 5w1 w2 w3 w4 w5 w6
[4,5][1,2][0,1] [2,4]

[2,5]

[1,5]

[1,4]

[i,j]

Constituent recognized by partial-parser

Constituent recognized by BCG

State i of input string

Legend:

Wi

a node

an entry
with two nodes

word i Complete[i,j] after partial-parser

Figure 4.5: A simplistic sketch of combined parsing

The main gain from combining the partial-parser together with the BCG-based parser
is in the fact that on the one hand the partial-parser is able to provide a satisfying tree-
language coverage of the sentence portions that it is able to recognize, and on the other
hand, it spans a smaller parse-space for these portions. The integrated parser’s output is
therefore less ambiguous than the BCG-based parser (in the limit) without loss of tree-
language coverage.

4.4.4 Specializing DOP

As mentioned in the preceding chapter, we assume that a parser consists of two mod-
ules, a parse-space generator (the parser) and a probabilistic parse-space evaluator (the
disambiguator). Chapter 5 describes a two phase DOP STSG parsing and disambiguation
algorithm based on this assumption: the parsing phase employs the CFG underlying the
STSG to span the parse-space of the input, and the disambiguation phase applies the DOP
STSG’s probability computations on this phase.

90 Chapter 4. Specialization by Ambiguity Reduction

Integrating the partial-parser and the DOP STSG

The integrated parser described in the preceding section allows integrating the specialized
grammar and the CFG underlying the DOP STSG during the parsing phase. In this con-
struction, henceforth referred to as the partial-parser+DOP STSG (abbreviated shortly
by ParDOP), the role of the partial-parser is simply to limit the parse-space prior to the
disambiguation phase. The result is that the parse-space generation produces smaller
parse-spaces; the disambiguation phase, i.e. the DOP STSG, does not change.

Acquiring Specialized DOP STSGs (model SDOP)

Apart from the specialized grammar, the learning algorithm results in marking cut nodes
in the tree-bank trees. These cut nodes are used for acquiring the Specialized DOP
(SDOP) STSG from the tree-bank. The idea here is that the specialized grammar’s partial-
trees are atomic units, i.e. rules, and thus their internal nodes should not be used for ac-
quiring the SDOP STSG. Given a tree-bank in which the specialization algorithm marked
the cut nodes, acquiring the SDOP STSG is done as follows: in the tree-bank trees, only
nodes that are marked as cut nodes qualify for the extraction of subtrees (which become
the SDOP STSG’s elementary-trees). In other words:

a subtree
' � is extracted from a tree-bank tree � iff 1) its root node corresponds

to a marked node of � , and 2) its leaf nodes correspond either to marked
nodes or to terminal nodes of � .

The Specialized DOP (SDOP) STSG is simply the STSG that has a set of elementary-trees
that contains all subtrees extracted only from nodes marked as cut nodes in the tree-bank.
Note that every elementary-tree of the SDOP STSG is a combination of partial-trees of
the specialized grammar

� �

. Specialized DOP STSGs are much smaller but (at least) as
accurate as the STSG’s obtained according to the original DOP model (Bod, 1995a).

Integrating the SDOP with Par+DOP (model ISDOP)

In the same manner as the specialized grammar is integrated with the BCG, the Par+DOP
model is integrated together with the SDOP in a complementary manner; the partial-parser
(based on the specialized grammar) forms the basis for the integration. The integration
has the following modules:

Par+DOP: the partial-parser (specialized grammar) is integrated with the CFG under-
lying the (original) DOP STSG for the parsing phase; the disambiguation phase
simply applies the DOP STSG to the parse-space resulting from the parsing phase.

SDOP: the Specialized DOP STSG acquired as described above.
� �

Of course not all combinations of the partial-trees of the specialized grammar are in the SDOP STSG.
Only those combinations that actually occur in the tree-bank are there.

4.5. Measures of ambiguity and size 91

The integration of these modules, called Integrated Specialized DOP (ISDOP), operates
as follows:

1. Parse the input sentence with the partial-parser. This results in a CKY table con-
taining a parse-space.

2. Mark entries in the table with ��	 �
< � ��� � � as explained in section 4.4.3.

3. If ��	 �
< � ��� �768�
 � is true then apply the SDOP STSG for disambiguation of the

parse-space (see chapter 5 for the details of this). Else apply the CFG underlying the
(original) DOP STSG for completing the parse-space as described in section 4.4.3,
and then apply the DOP STSG for disambiguation of the resulting parse-space.

Figure 4.6 depicts the ISDOP construction, where the parse-space generated by the partial-
parser is denoted P1, and the parse-space P1 complemented by the CFG underlying the
DOP STSG is denoted P2. The following properties of this integration make it attractive:

� The integration does not result in wasted parsing time since the partial-parser’s work
is not lost in any case: in case the parse-space contains parses of the whole input
sentence, the parse-space is used as is, and in the other case it is complemented by
the CFG underlying the DOP STSG.

� The DOP STSG is applied only when it is sure that the input sentence is not in
the language of the SDOP. This implies that the large DOP models (in general)
are applied to input sentences that deviate in unexpected ways from the training
tree-bank sentences.

� The tradition in acquiring DOP STSG by limiting the maximum depth
� �

of subtrees
is exploited in acquiring SDOPs to improve the accuracy of the acquired SDOP
STSG. In acquiring SDOP STSGs, only marked nodes are counted in calculating
the depth of subtrees. This results in a smaller number of subtrees that are much
deeper than DOP STSG’s subtrees. This captures many probabilistic relations that
cannot be captured by limited depth DOP STSGs.

4.5 Measures of ambiguity and size

In this section we discuss a two different measures of the ambiguity and the size of an SSF,
that instantiate the function � of the ARS specialization algorithm of section 4.4. The
first instantiation is the based on Information Theoretic measures; it is theoretically the
better instantiation. And the second one is based on straightforward heuristic measures
of length and ambiguity that are less expensive to compute; this is the practically more
attractive instantiation.

� �

Section 5.5 describes this and other heuristics in detail. The depth of a partial-tree is the length of the
longest path from the root to a leaf node of the partial-tree. The length of a path is equal to one less than
the number of nodes on that path.

92 Chapter 4. Specialization by Ambiguity Reduction

...

...
...

...

sentence
P1

Complete ?

no

P1

CFG
underlying

DOP STSG

Parser

yes

P1

parse

P2

Disambiguator
DOP STSG

STSGSDOP
Disambiguator

Is parse-spacePartial
Parser

Constrained

Figure 4.6: Integrating SDOP with DOP on basis of the partial-parser

4.5.1 Entropy minimization algorithm

In this section we derive an algorithm which mirrors the assumptions made by the spe-
cialization algorithm presented in section 4.4, and employs entropy as a measure for am-
biguity. This derivation introduces new assumptions necessary for arriving at a computa-
tionally attractive formula.

The goal of the specialization algorithm is to learn a specialized grammar, which is
on the one hand satisfactorily small, and on the other hand satisfactorily less ambiguous
than the BCG. This can be implemented in a constrained optimization algorithm, which
tries to minimize ambiguity while satisfying the requirements on size. To express this
optimization algorithm, we observe that the ambiguity of a sentence with respect to a
given grammar can be seen as uncertainty about what structure should the grammar as-
sign to that sentence. The measure of entropy, introduced to grammar specialization by
Samuelsson (Samuelsson, 1994b), is strongly associated with the concept of uncertainty.
Therefore, it is a candidate for measuring the ambiguity of a sentence with respect to a
given grammar. However, for computing the entropy of a sentence with respect to a given
grammar, we need first to extend that grammar with probabilities that are computed from
relative frequencies collected from a tree-bank.

Assume for the time being that we know how to assign suitable probabilities to gram-
mars in order to measure ambiguity by entropy; we will come back to this issue a bit later.
Let �HG denote the tree-bank sentences � � ������� / , and let � � denote the tree-bank trees

4.5. Measures of ambiguity and size 93

� � ����� � / . The constrained optimization problem can be stated as follows
� �

:� � � = � G��
	
 ��� �
 �+G�� � �
� : ��� � � ��� (4.1)

where � �
 �+G�� � � expresses the entropy of the sentences of the tree-bank given that gram-
mar, � � � � expresses the size of grammar � , and

�
is an upper-bound on the sizes of the

grammars considered in the optimization. This optimization algorithm expresses the wish
to find the least ambiguous grammar of which the size is less than

�
.

Optimization algorithm 4.1 concerns measures of ambiguity and size of grammars,
while the function � is based on measures of SSFs. To see how this algorithm can be
fitted to SSFs, we concentrate our derivation first only on ��� �HG � � � and come back later
to ��� � � and how to determine

�
.

Derivation for ���
 �+G�� � � : Next we will derive a sequential-covering algorithm that
approximates algorithm 4.1. To start, we note the assumption of independence between
the sentences of the tree-bank:

���
 �HG � � �KJ
/
>��� �

� � � ��� � � �
The next assumption concerns restricting the search space to the TSG-space of the tree-
bank. Since the CFG underlying the tree-bank is in that space and forms a good starting
point, we may as well express this in our algorithm as the wish to improve on it, i.e.
search for a less ambiguous grammar. However, we need the stochastic version of that
CFG which enables measuring the ambiguity of an SSF. This is the version which assigns
a probability to every rule conditioned on the right-hand side of that rule (rather than the
left hand side as in SCFGs, since we intend to measure the ambiguity of SSFs, which are
constructed from the right-hand sides of rules). This stochastic CFG is denoted CFGS in
order to stress the conditioning of its probabilities on the right hand sides of rules. Thus,
the entropy optimization formula in algorithm 4.1 is approximated as:

� G��
	
 �(0����
/
> ��� �
� ����� ��� ����� � � � ��� � � � � � ���0� (4.2)

Note that the term ����� � � ��� ��� is a constant that does not affect the optimization. How-
ever, in the next derivation of a greedy approximation of this optimization algorithm, the
term ��� � � � � � ��� is going to become essential for expressing a more attractive approx-
imation. We state it here already only for convenience.

Let
 denote the number of iterations of the Sequential Covering EBL specialization
algorithm. Our next assumption is that each STSG in the search space is the union of
ambiguity-sets of SSFs. For simplicity we also assume that the algorithm learns only

� �

Note the close resemblance of this optimization problem and the Bayesian interpretation of the
Minimum-Description Length (MDL) Principle. See section 4.5.1 on this issue further.

94 Chapter 4. Specialization by Ambiguity Reduction

a single SSF at each iteration. This assumption about the learned STSG ����� � can be
expressed by ���I� �.J�� ��� � � � � � 'H' � � 9 9 and denoted by

� � ����� ��� .
Assume that � � � and �+G � denote respectively the original tree-bank and the corre-

sponding corpus of sentential-forms. After iteration � , for all
(� � �
 , the algorithm

learns
'H' � � and its ambiguity set � � 'H' � � 9 9 , and reduces (bottom-up) the current tree-bank

partial-trees � � � � � and sentential-forms �+G�� � � to result in respectively � ��� and �HG�� .
Let �HG�� � �

� �HG�� denote the difference between the sentential-forms before iteration �
and those in the situation after it, i.e. the part reduced by learning

'H' � � . Analogous to
this, let � � � � �

� � � � denote the difference between the partial-trees before iteration �
and those in the situation after it, i.e. the part reduced by learning � � '+' � � 9 9 .

Assume independence between
'H' � � and the other sentential-forms in �+G	� , and be-

tween � � 'H' � � 9 9 and the other partial-trees in � ��� , for all � . Due to this assumption we can
write, for all � :

; � 2 ��� �HG�� � � � � � J ��� �HG��&� � ��� � �
 �+G�� � �
� �HG��&� � �

Taking all iterations into consideration and knowing that � � � and �HG � are empty, we
can translate the sequential covering nature of our algorithm into entropy notation:

���
 �HG � � � � J
�
>��� �

� �
 �+G�� � �
� �+G�� � � �

By writing �HG�� � �
� �HG�� as � �HG:� , and assuming independence between

'H' � � and
'H' � �

and between � � 'H' � � 9 9 and � � 'H' � � 9 9 , for all 6 � ���� �
 , we can write for the STSG � � ,
which our algorithm learns:

� �
 �+G � � � � � J
�
>� � �

����� �HG � � � 'H' � � 9 �

where � 'H' � � 9 denotes an STSG rather than a mere set of partial-trees
� �

. By incorporating
� �

This defines only the set of elementary-trees of the STSG. Its start-symbol, set of non-terminals and
terminals are those of the CFG underlying the tree-bank.

� �

The STSG � 	
	 � ��� has:
 as start symbol a newly introduced non-terminal � � � ,
 as set of elementary-trees it assumes the union of

– the set � ����� 	
	 � ����� " , where � is a unique renaming of each symbol in a partial-tree in ��� 	�	�� ����� ,
except for the frontier symbols,

– a new set of rules, each of the form � � ����� , where � is the (renamed) root of some partial-
tree in � ����� 	�	�� � ��� " , as set of non-terminals, � � � together with all symbols of the partial-trees in � ����� 	�	 � � ��� " except for

those in the sequence 	�	 � � (i.e. the common frontier of the partial-trees),
 and as set of terminals all symbols in 	�	 � � .

4.5. Measures of ambiguity and size 95

the latter facts into optimization algorithm 4.2, we obtain:

� �.J � G��
	
 �(0������
�
>� � �

����� �+G ��� � 'H' � � 9 � � ����� �HG	� � ��� � � (4.3)

To simplify even further, we incorporate a greedy search strategy, i.e. minimize during
each iteration rather than on the total sum of all iterations.

� �.J
�

�

� � �
� G��
	
 � ��� ����� ����� �+G	� � � 'H' � � 9 � � ����� �HG	� � ��� � � (4.4)

Note that here the term ����� �HG:� � ��� ��� is not a constant but an important factor
in this greedy optimization. Without it, the greedy optimization would result in extreme
overfitting: by learning at each iteration a minimum entropy SSF, entropy equal to zero,
the algorithm learns a tree of the tree-bank. And since this is not what we want from this
greedy strategy, a good way to prevent this is to improve on the CFGS underlying the
tree-bank as expressed by formula 4.4.

To summarize, the derivation arrives at optimization algorithm 4.4, which represents
our specialization algorithm. Now we still need to explain how to compute the term
��� �HG�� � �

� �+G��&� � � � � , for
� � � ! � � � ��� � '+' � � 9 � . And that is exactly what we

do next.

Recall that �HG�� � �
� �+G�� denotes the part of �HG�� � � which was reduced by learn-

ing
'+' � � , i.e. by reducing all occurrences of the partial-trees in � � 'H' � � 9 9). If we assume

independence between all these occurrences then:

��� �HG�� � �
� �HG�� � � � � �KJ � G ��� � � 'H' � �	� � ��� '+' � � � � � � �

Let
'H' �

be the string � � ������� � and let � �����I� � be the conditional entropy ��� � � � � � .
Now consider the general case of an ����� � � � � � and denote with � /��� � a partial-tree
� with

'H' �
as frontier and � as root label, where � is derivable within

� � �
. Then we

can write:
� ����� � 'H' � � J > 0 � �����-� � /��� � � (4.5)

This is to say that the entropy of the SSF according to grammar
� � �

is the sum of
the entropies of the trees assigned to it by

� � �
.

For grammar � '+' � � 9 , the computation of this entropy is direct:

� � ��� ����� � 'H' � �	��J >
 @ ��� ��� ������� � � ��� ����� ����� (4.6)

where the definition of entropy is the common definition:

� ����� �
	 � J � 1������ ��	 � ������ 1 �����-��	 �

96 Chapter 4. Specialization by Ambiguity Reduction

and where we employ the definition
� �

:

1 � ��� ����� � ��� J � G ���8� ���
� G���� � '+' � � � (4.7)

For other grammars than � 'H' � � 9 , in particular ��� � , we develop a different computa-
tion. It can be assumed without loss of generality that we are dealing only with Chomsky
Normal Form (CNF) STSGs. We can write the term in equation 4.5 in a recursive manner
employing the elementary-trees (i.e. rules) of the STSG

� � �
. In CNF there are too

cases:

Binary: elementary-trees with two non-terminals on the rhs. Denote such an elementary-
tree with � �

� 4 � � ��� , where � is a unique label for each elementary-tree of
� � �

and � , � � and ��� are non-terminals of
� � �

. Then:

� �����I� 'H' � � J >� B � B � B
�

� �����-� � � � �)�7� � �����0���	� �����7��� � � �����0� � �0���

or in other words:

� �����-� 'H' � � J >� B � B � B
�

� �����I�
� �)�7� � �����0���	�����
� �����-� �����7��� � � �����0� � � � � � � � � ��������� �0���
� �����-� � �

� 4 � � ��� � ��� � ��� � � ������� � � � �)�7� � �����0���	�0�
As usual in these cases, we assume independence between the two spaces of partial-
trees under � � and ��� , and limited dependence of � �

� 4 � �	��� on them two, i.e.
only on their roots. This way we arrive at the point of recursion in our computation:

� �����-� 'H' � � � >� B � B � B
�

� �����-� � �
� 4 � �	��� � � � ��� ���

� ����� �
� �)� � � �����0���	�0���
� ����� �
�����7��� � � ����� � � �0� (4.8)

Terminal: elementary-trees with a single terminal symbol on their rhs:

� ����� �
� �
� 4 �
 � J � �����I�
� �

� 4 �
 � �
 ��� � �����-�7�
 �
And since �
 is given, its entropy is zero and we arrive at:

� ����� �
� �
� 4 �
 � J � �����-�
� �

� 4 �
 � �
 � (4.9)

� �

Note that this is equal to
� ���	�
����$����"������ � 	�	 � � " .

4.5. Measures of ambiguity and size 97

The above recursive computation of � ����� � 'H' � � , expressed in equations 4.8 and 4.9,
takes place on the parse-space of

'H' �
spanned by

� � �
.

The probabilities involved in computing these entropies are defined as follows:

1 ����� �
� �
� 4 � � ��� � � � ��� � J � G ���8�
� �

� 4 � � ��� �
� G ���8�
� � ��� �

1 �����-�
� �
� 4 �
 � �
 � J � G ���8�
� �

� 4 �
 �
� G ���8�7�
 � (4.10)

where � G���� denotes the frequency in the given tree-bank.

Now that we know how to compute the entropy of an SSF and we are aware of the
assumptions made by our specialization algorithm, we need to deal with the question of
how to measure size of grammars. This is our next derivation.

Computing ��� � � : A suitable measure of the size of a grammar might be the optimal
expected description length according to Shannon (see chapter 2). This measure is inde-
pendent of any coding-scheme and provides an independent estimate of the size of the
grammar.

The grammars � dealt with in our algorithm are all STSGs of the training tree-bank.
Moreover, in the sequential covering scheme, the algorithm learns ambiguity sets of SSFs
rather than single trees, thereby constraining the space to the STSGs denoted �K��� � � .

Grammar size: The size of a grammar ����� � � is the sum of the lengths of each of the
ambiguity-sets that constitute it.

Let ��� � � 'H' � � 9 9 � denote the length of the ambiguity set of
'H' � � , the SSF learned at iteration �

of the algorithm. Then: ��� ����� � � � J �
�
��� � � � � � 'H' � � 9 9 � , where �K��� � � J �

�
� � � � � 'H' � � 9 9 .

The quantity ��� � � 'H' � � 9 9 � is defined as the sum of the lengths of all partial-trees in � � 'H' � � 9 9 ,
i.e. ��� � � 'H' � � 9 9 � J ��
 @ ��� ��� ��� ��� < ����� , where

< � ��� J � ����� 1 ����� and 1F� ��� is the probability of �
among all possible partial-trees of the tree-bank, or alternatively:

��� � � 'H' � � 9 9 � J � < � �81F� � � '+' � � 9 9 �
1F� � � '+' � � 9 9 � J � G ��� � � 'H' � �	�� ��� � @ � � ?�� � G���� � � '+' � � (4.11)

Note here that we employ Shannon’s optimal code length for defining � .

Combining ambiguity and size: The combination of the results of the above deriva-
tions leads to the constrained optimization:

��� �� � � = �
�
��� � � G��
	��
 � ��� ����� ����� �+G	� � � � ��� � ����� �HG � � � 'H' � � 9 �

��� � � � � � (4.12)

98 Chapter 4. Specialization by Ambiguity Reduction

where the length ��� � � ��J �
�
� � �

� ��� � 1F� � � 'H' � � 9 9 � , the entropy � is defined in equa-
tions 4.9, 4.8 and 4.6 using the probabilities defined in equations 4.11, 4.10, and 4.7,
and
�

is an a priori set upper-bound on the size of the learned grammar.
The upper-bound

�
is still on the size of the whole grammar. Since our algorithm

learns in a sequential covering iterative manner, it would be more convenient to express
the size-constraint locally on the size of

'H' � � rather than on the whole grammar. There-
fore, we assume a sequence

� � of upper-bounds on the sizes of SSFs, each for an iteration
of the algorithm:��� �� � � = �

�
��� � � G��
	��
 � ��� ����� ����� �+G	� � � � ��� � ����� �HG � � � 'H' � � 9 �

; � :
� � � � 1 � � � 'H' � � 9 9 � ��� � (4.13)

The question now is how to determine
� � in a sensible manner. One way to do so

is to make an informed estimate of the average size of � � 'H' � � 9 9 by inspecting the training
tree-bank. This involves determining two values: the number � � � 'H' � � 9 9 � of partial-trees in
� � 'H' � � 9 9 and their average probability

6 1 � in the training tree-bank. For example, we could
say that, on average, the partial-trees should be expected to be as probable as

6 1���J (��
and that � � � 'H' � � 9 9 � J * , thereby setting

� ��J �I* � � � � 6 � 6 (.
Entropy-Minimization and MDL

In this subsection we clarify the relationship between the Entropy-Minimization algo-
rithm and the Minimum Description Length (MDL) principle, and highlight some of the
approximations that it embodies. This is done in the following list of issues.

� Consider again algorithm 4.1 and its approximation algorithm 4.13. Both algo-
rithms can be expressed slightly differently in a less constrained form as follows:

� � = � G��
	
 ��� �
 �+G�� � � � � ��� � � � � � (4.14)

��� �� � � = �
�
� � � � G��
	
 � ��� ����� � ����� �HG � � � 'H' � � 9 � �

� ��� �HG	��� � � ���] +
� � ��� � 1F� � � 'H' � � 9 9 � � � � 9 (4.15)

This shows much similarity to the Bayesian interpretation of the Minimum De-
scription Length (MDL) (Rissanen, 1983) principle. By removing

�
and
� � from

the sum, we obtain an algorithm which tries to minimize the sum of the size and the
ambiguity measures. This is a very interesting and theoretically attractive algorithm
which has one single disadvantage: it has to scan the whole space of grammars
rather than a constrained space.

� The derivation of the Entropy-Minimization algorithm can be expressed in the ter-
minology of the Bayesian Learning paradigm, i.e. with the Bayes formula as a
starting point. The Bayesian derivation is parallel to the present derivation and does
not add any news. Therefore, we do not work it out here.

4.5. Measures of ambiguity and size 99

� An interesting aspect of optimization algorithm 4.13 is that it enhances the search
by improving on the � � � underlying the tree-bank. Consider the optimization
algorithm which searches the whole space:��� �� � � = �

�
� � � � G��
	
 � ��� ����� ����� �HG � � � 'H' � � 9 �

; � :
� ����� 1F� � � '+' � � 9 9 � ��� � (4.16)

It might seem that algorithm 4.13 is in fact algorithm 4.16 but involving an extra
“constant” ����� �HG � � ��� � � . However, this is not the case since � �+G�� de-
pends on

'H' � � . This implies a major difference between these, essentially similar,
algorithms: the first profits from a better search start point, which enables it to ar-
rive faster at a better result (it is better equipped to avoid some of the local minima,
which algorithm 4.16 might fall into).

4.5.2 Reduction Factor algorithm

Among the measures of the ambiguity of an SSF
'H' �

one clearly can identify the Con-
stituency Probability (i.e. 1 � '+' � �) measure; it expresses the probability that

'+' �
is a

constituent. The earliest and simplest algorithm within the ARS framework, presented
in (Sima’an, 1997d; Sima’an, 1997c), relies on this simple measure of ambiguity. The
function � is defined in this algorithm as follows:

if (1F� 'H' � � � �) then � � 'H' � � � 	��J$6 ;
else � � 'H' � � J � � � � 'H' � � ;

where � � � is called the Global Reduction Factor, a measure of size of the grammar,
which will be defined below, and � is a probability threshold chosen prior to training

� �

.
This definition simply says that we prefer SSFs which are SSFs in at least � � (6)6 %
of their occurrences in the training tree-bank. This way, during parsing an input, if the
specialized grammar recognizes an SSF, the chance that it is not an SSF is less than

(� � .
The measure � � � � '+' � � expresses the amount by which an

'H' �
is able to reduce

the tree-bank if it is learned by the specialization algorithm. We employ this measure to
express our preference for reducing the tree-bank trees the fastest way, thereby expressing
a wish for a smaller grammar. When a subtree associated with an SSF in a tree in the tree-
bank is reduced to its root, we obtain a partial-tree which has a frontier shorter than the
original’s tree frontier by the length of the SSF minus one. This is exactly the Reduction
Factor (

� �) of the SSF:

Reduction Factor:
� � � '+' � � �
	��J � 'H' � � � (

Since an SSF is reduced simultaneously in all places where it appears in the whole tree-
bank, in fact it reduces the tree-bank by the amount equal to its Global Reduction Factor:

� �

In some of the implementations, the threshold � is allowed to vary during iterations of the specialization
algorithm; starting from the value D�� � , � will be reduced by a fixed amount whenever the algorithm does
not learn new SSFs any more, until the value of � reaches a lower bound � set beforehand.

100 Chapter 4. Specialization by Ambiguity Reduction

Global RF: � � � � 'H' � � �
	��J � �F� 'H' � � � � G���� � � '+' � �
A reminder: � G ��� � � 'H' � � expresses the frequency of the sequence

'H' �
as an SSF in the

tree-bank, i.e. the sum of the frequencies of all subtrees associated with
'H' �

.

Discussion: In words, this algorithm learns the smallest grammar of which the SSFs are
not more ambiguous than a predefined measure. The definition of � does not take into
account the Ambiguity-Set Distribution of an SSF (defined in section 4.4). This means
that the measure of ambiguity in � is not optimal. Moreover, weighing the two measures
of ambiguity and size of an SSF in � is not possible. Nevertheless, as the experiments
in the next section exhibit, it is an effective, simple and conceptually clear algorithm.

A back-off approximation of GRF

The function � ��� is context-free in the sense that its value does not depend on the
context of its parameter; for any sequence of symbols � : � ��� � � 6 iff 1 ����� � � .
Often however, due to data-sparseness, the context-free requirement that 1F� ��� � � is
too rigid. Therefore, the implementation of the GRF-based learning algorithm employs
a back-off technique on local context in the computation of the value of � � ��� . Here
the local context is limited to two grammar symbols to the left and two to the right of the
sequence � .

Let the operator “ � ” denote the infix concatenation operator on sequences of symbols.
To redefine � , we introduce the following definitions:

� Let 40�� � ��� denote the set of all pairs (contexts)
&

� � � , , where � and
� are

each a sequence of two grammar symbols, with which sequence � is encountered
in tree-bank � � .

� Let � � ��� � denote the set of pairs
& � � � � � , , where 6 � � �

and& � � � � � , is obtained from a context
&

� � � , ! 0�� ����� by replacing ex-
actly symbols in � � � by the wild-card symbol � . Note that � � � ��� is the
singleton set � & ��� ����� , � and that � � � ��� is in fact 0���� ��� .
If �.J & � � � � � , is obtained from

� J & � � � , by replacing symbols with
wild-cards, � is called a generalization of

�
and

�
is called an instance of � . Two

contexts are called unrelated iff they are neither generalizations nor instances of
one another. A context (is called more general than context * iff (contains
more wild-cards than * .

� Let . �� � < � � � ����� � � denote the proposition that is true iff the frequency of
&

� �
� � � , exceeds the threshold

�
and 1F� � ����� � � � � , where 1F� � ����� � �

is the Constituency Probability of the sequence of symbols � �+� � � .

� � ��� . ����� is the set of Most General Unrelated Viable Contexts of a sequence
of symbols � , defined by

&
� � � , ! � ��� . F� �����
	

4.6. Summary and open questions 101

1. there is some 6 � � �
such that

&
� � � , ! � � � ��� ,

2. . � � < � � � ����� � � is true,

3.
; &

� (� � (, ! � ��� . ����� : if � �J � (or
� �J � (then

&
� � � ,

and
&

� (� � (, are unrelated, and

4. for every and every
&

� (� � (, ! � � � ��� , if . �� � < � � � (����� � (� is true
then

&
� (� � (, is an instance of or identical to

&
� � � , .

� Let ��� � � ����� � � denote the following generalization of the original � ����� ,
where

&
� � � , ! � � � ��� for some 6 � � �

:

if (. � � < � � � ����� � � == false) then ���+� � ����� � � J 6 ;
else ��� � � ����� � � J � � �F� � �H�#� � � ;

Note that if
&

� � � , ! � � ��� � for � 6 , then the frequencies of
&

� �+�#� � ,
are the sums of the corresponding frequencies of the instances of

&
� � � , in the

set � � ����� .
Now we redefine the function � by: � ������J ��� � � B � ��� @ � �	��
 � � � � ��� � � ����� � � .
This redefinition sums over the GRF values of all unrelated most general contexts of the
sequence � . Note that in the case � ��� . ����� J � & ��� � ��� , � the value of this context-
sensitive function � ��� � is equal to that of the original M � ��� . And in case

&
��� � ��� , is not

. �� � < � then the new definition of � (S) backs-off to the set � ��� . F� ��� of unrelated
most general contexts of � that are viable.

4.6 Summary and open questions

In this chapter I presented a new framework for specializing broad-coverage grammars
(BCG) and DOP-probabilistic-grammars to specific domains represented by tree-banks.
The framework, Ambiguity Reduction Specialization (ARS), specifies the requirements
that specialization algorithms must satisfy in order to guarantee any degree of success in
learning specialized grammars. Of these requirements two are central: 1) a specialized
grammar must be able to span all structures expected to be associated with any constituent
it is able to recognize, and 2) the specialized grammar must be less ambiguous than the
BCG it specializes and must have a size which does not cancel the gain from its ambiguity
reduction. I also provided an analysis of preceding work on specialization and concluded
that these efforts are less suitable for specializing probabilistic performance models. I also
presented two new learning algorithms based on the ARS framework, namely the Global-
Reduction Factor (GRF) algorithm and Entropy Minimization algorithm. In addition, I
discussed how to integrate the learned specialized grammar and the original BCG into a
novel parsing algorithm.

In this chapter I also encountered problems and questions for which no solutions are
provided in this thesis. These problems might constitute the subject of future work on the
present framework:

102 Chapter 4. Specialization by Ambiguity Reduction

� An interesting aspect of the present learning and parsing algorithms is that a domain-
language is partially modelled by a finite set of SSFs and their ambiguity-sets. It is
evident that in practice the present learning algorithms face a problem: due to the
huge number of different lexical entries (i.e. words) it is hard to imagine them as
part of SSFs. Thus, generally speaking SSFs will not contain words of the language.
Moreover, a complication that all learning methods face is that no tree-bank what-
soever contains all the lexical entries that are probable in the domain. Thus, the use
of a lexicon in some way or another is inevitable. Here we envision that the pres-
ence of a lexicon provides information that might enable local-disambiguation of
the ambiguity sets of SSFs. Methods for learning this kind of local-disambiguation
in the presence of a lexicon provide, not only theoretically but also in practice, a
way to lexicalize the ARS framework. A related issue is the issue of learning from
richer descriptions that contain e.g.

� In this work we assume that the tree-bank contains analyses of sentences. These
analyses can be syntactic but also more elaborate descriptions involving e.g. seman-
tic formulae or feature-structures. For feature structures in particular, the ambiguity-
sets of the learned grammar would consist of partial-analyses that also contain par-
tially instantiated feature-structures learnt from the tree-bank. The issue of how
to uninstantiate feature-structures during learning has been exemplified by earlier
work on grammar specialization e.g. (Neumann, 1994; Srinivas, 1997).

� As discussed in section 4.4.3, the specialized grammar can be implemented as a
Cascade of Finite State Transducers (CFSTs). There have been many earlier at-
tempts at parsing using CFSTs (Ejerhed and Church, 1983; Ejerhed, 1988; Kosken-
niemi, 1990; Abney, 1991; Hindle, 1994), all specifying the transducers manually.
The CFSTs implementation of a specialized grammar represents a finite language.
This language can be extended by generalizing over the SSFs of the CFST with a
Kleene-star, as in the work of (Srinivas and Joshi, 1995). This generalizes over the
BCG. Open questions in this regard are:

– What is the expected coverage and accuracy of a CFSTs implementation com-
pared to the current TSG implementation ?

– How does post-learning inductive generalization over the learned SSFs im-
prove coverage and accuracy ? How does pre-learning inductive generaliza-
tion of the tree-bank annotations (i.e. the BCG) enable acquiring generalized
SSFs automatically, and how does this affect coverage and accuracy compared
to an TSG implementation ?

� Given an SSF
'H' �

of a tree-bank � � representing some domain
�

, what is the
probability that a new sentence of domain

�
(i.e. not in � �) is assigned a parse �

in which
'H' �

is the frontier of a subtree
' � of � such that

' � is not in the ambiguity-set
of
'H' �

over � � ?.

Chapter 5

Efficient algorithms for DOP

Since its birth in (Scha, 1990), Data Oriented Parsing was considered by many as an
unattainable goal; interesting but only as a theoretical account of probabilistic disam-
biguation. For many it was unthinkable that parsing natural language could take place on
basis of such huge probabilistic grammars. Bod was the first to run experiments (Bod,
1993b; Bod, 1995a) on the small Penn-Tree-bank ATIS (total of 750 trees). Bod’s exper-
iments raised conflicting feelings: the reported accuracy results were “good enough” to
warrant the effort of looking into the model, but the fact that parsing one sentence took
on average 3.5 hours seemed to support the argument that DOP is not feasible. In the
absence of more efficient alternatives, Bod conducted these experiments using a Monte-
Carlo algorithm (Bod, 1993a), an approximation based on iterative random sampling, on
Sun Sparc 2 machines

�

. In retrospect, Bod can be credited for one thing: “daring to look
the beast in the eyes with so much patience”.

Nevertheless, daring as they were, Bod’s limited and unstable experiments exhibit
only the theoretical possibility of the Data Oriented Parsing approach. They demonstrate
neither its feasibility nor its usefulness for real-life applications. In the world of appli-
cations, the natural habitat for performance models such as DOP, there are various other
requirements besides correct modeling. Efficiency is one major requirement: given the
current limitations on space and time, what is the scope of applicability (e.g. language-
domains, input-size, kind of application) of a given method ?

For DOP to be viable in the applications-world, it is necessary to have the algorith-
mic means that facilitate more efficient disambiguation. These algorithmic means can
be expected to go through various stages of development before they can achieve their
full potential. In this process of development, both the algorithms and the model are ex-
pected to evolve: while the algorithms become more efficient, often they also reshape
their models through acquiring new insights into these models.

This chapter thus considers the question of how to disambiguate under DOP in an
efficient manner. It provides efficient algorithmic solutions to some problems of disam-

�

On the machines that are currently available (e.g. SGI Indigo2) the average 3.5 hours per sentence
would be reduced to about 20 minutes per sentence.

103

104 Chapter 5. Efficient algorithms for DOP

biguation under DOP; typical to all these solutions is that they are, unlike Monte-Carlo
parsing, deterministic polynomial-time and space. The present algorithms are “pure” so-
lutions, in the sense that they do not incorporate any assumptions or approximations that
do not originate from the DOP model. To improve the behavior of these algorithms in
practice, this chapter also presents approximations and heuristics that proved very effec-
tive and useful in empirical studies of the DOP model. Some of these heuristics and
approximations moderately reshape the DOP model.

5.1 Motivation

An important facility of probabilistic disambiguation is that it enables the selection of
a single analysis of the input. Parsing and disambiguation of an input under the DOP
model can take place by means of maximization of the probability of some entity (in
short “maximization-entity”), e.g. for input sentences DOP could be made to select the
Most Probable Parse (MPP), Most Probable Derivation (MPD) etc.. A central question in
research on DOP has become the question: what entity should one maximize ?

5.1.1 What should we maximize ?

In his presentation of the DOP model, Bod (Bod, 1995a) singles out the MPP as the best
choice for disambiguation under the DOP model when parsing input sentences. Accord-
ing to Bod, the MPP is, at least theoretically, superior to the MPD. This statement is
supported by some empirical results on the small Penn-TreeBank ATIS domain (750 trees
in total) (Bod, 1995a; Bod and Scha, 1996).

The choice of the MPP, rather than the MPD, as maximization-entity is unique among
existing probabilistic parsing models. Apparently this is due to the major role that SCFGs
always played in these models: in SCFGs, there is no such difference between the MPD
and the MPP (since every derivation generates exactly one unique parse-tree). Theoreti-
cally speaking, the MPP is superior to the MPD in the sense that it reduces the probability
of commiting errors. However, as we prove in chapter 3, the problem of computing the
MPP under STSGs is an NP-Complete problem. And, as we argue below, the exist-
ing non-deterministic algorithms (particularly Monte-Carlo parsing (Bod, 1995a)) do not
constitute practical solutions to this problem. The crucial question that rises here is: is it
always necessary to maximize the theoretically most accurate entity ? In other words, are
there situations when parsing sentences where maximizing another entity than the MPP,
e.g. the MPD, is sufficient ?

To answer this question we note first that in any situation the desired maximization
entity should commit as little errors as possible. Generally speaking, error-rates are mea-
sured with respect to subsequent interpretation of an analysis; eventually, the interpreta-
tion module is the one that determines how fine-grained an analysis should be. And in its
turn, the amount of information contained in an analysis determines the kind of measure
of error-rate (e.g. exact-match, labeled bracketing precision). In its turn, the measure of
error determines the maximization entity that might be sufficient for the situation at hand.

5.1. Motivation 105

Clearly, in parsing sentences, whatever interpretation module we employ after parsing,
the MPP remains the one that minimizes the chance of errors. But there might be another
entity that achieves as good (or comparable) results when the measure of error is less
stringent than exact-tree match.

As a concrete example, consider the task of (non-labeled) bracketing sentences. In
such a task, one aims at minimizing the errors in assigning a bracketing to the input sen-
tence. To this end, it is sufficient to maximize an entity that minimizes the chance of
committing a wrong bracket. Although the MPP achieves this goal perfectly, a less com-
plex maximization entity achieves it equally well. This argument is the main motivation
behind this and other work on developing efficient algorithms for DOP (Goodman, 1996;
Goodman, 1998).

5.1.2 Accurate + efficient � viable

Bod’s Monte-Carlo algorithm computes only approximations of the Most Probable Deriva-
tion (MPD) and the Most Probable Parse (MPP) of an input sentence. For achieving
good approximations, it is necessary to apply the sampling procedure iteratively; a qual-
ity of Monte-Carlo is that the result approaches the MPP/MPD as the number of itera-
tions becomes larger. Bod claims that Monte-Carlo approximation is non-deterministic
polynomial-time (Bod, 1995a); the polynomial is cubic in sentence length and square in
error-rate. However, Goodman (Goodman, 1998) argues

�

that the error-rate in the time-
complexity of the Monte-Carlo algorithm is actually not a constant but rather a function
of sentence length; this implies that Monte-Carlo parsing has in fact exponential time-
complexity. Chapter 3 supplies a proof that the problem of computing the MPP for an
input sentence under DOP is indeed NP-Complete, making the Monte-Carlo algorithm
one of the few “brute-force” possibilities available.

The fact that the Monte-Carlo algorithm obtains good approximations only when the
number of iterations is relatively large, makes it more of a prototyping-tool rather than
a practical alternative. Future developments in multi-processor parallel computing and
high-speed computing might change this but only to a limited extent. Given the fact
that there will always be larger applications and larger domains, it will always remain
necessary to develop alternative efficient algorithms that constitute good solutions. As far
as we can see, the presence of constraints on space and time is an invariant in the evolution
of computer programs. Thus, if we wish to apply DOP within the given time and space
limitations rather than wait for a miracle to happen, we are obliged to develop efficient
algorithms for as accurate as possible disambiguation under DOP. Of course, we are also
obliged to remain aware of the ultimate accuracy of the original DOP model and strive
for improving the efficiency of the algorithmic means for achieving it.

�

Although the argument in (Goodman, 1998) does not constitute a full proof, it is sound and convincing.
Goodman also constructed an efficient implementation of the Monte Carlo algorithm. For the small ATIS
tree-bank (Hemphill et al., 1990) with 770 trees, Goodman shows that this implementation runs (although
exponential-time) as fast as his polynomial-time DOP parser (see below). Although this is a remarkable
achievement, it is clear that this does not necessarily scale up to larger tree-banks and longer sentences.

106 Chapter 5. Efficient algorithms for DOP

5.1.3 Efficient algorithms

The goal of the present chapter is to present efficient and accurate algorithms for disam-
biguation under large STSGs. We present:

� algorithms for computing the MPD under STSGs of an input 1) parse-tree, 2) sen-
tence, 3) FSM and 4) SFSM (i.e. word-graph - see chapter 2).

� algorithms for computing the probability under STSGs of an input 1) parse-tree,
2) sentence, 3) FSM and 4) SFSM.

These algorithms are based on the same general algorithmic scheme. Common to the
present algorithms and other algorithms developed earlier within the Tree-Adjoining
Grammar (TAG) framework (see section 5.2) is that they are all based on extensions
of parsing and recognition algorithms that originally stem from the CFG tradition. The
present algorithms differ from the algorithms developed in the TAG framework in that
they are two-phase (rather than single phase) algorithms. They are most suitable for large
DOP STSGs: their superiority is enhanced as the ratio between the size of the DOP STSG
and the size of the CFG underlying it becomes larger, a typical situation in natural lan-
guage DOP STSGs.

In short, the present algorithms have two phases. The first phase spans a good approx-
imation of the parse-space of the input; this approximation is spanned by parsing under
a simplified CFG that is an approximation of the CFG underlying the DOP STSG. The
second phase computes the maximization entity (and the probabilities) on the parse-space
that was spanned in the first phase. Crucially, the parse-space spanned in the first phase
constitutes a substantial limitation of the space that the DOP STSG would have to explore
when parsing from scratch. Moreover, in a typical DOP STSG, the CFG employed in the
first phase is very small relative to the large DOP STSG. Therefore, the costs of the first
phase in space and time are negligible relative to the second phase, and the second phase
is computed in linear time-complexity in grammar-size with as little “failing” derivations
as possible

�

. The sum of the time/space costs of the two phases constitutes a substantial
improvement on the alternative one-phase algorithms.

The present algorithms compute the exact values rather than approximations as Monte-
Carlo does. Moreover, except for the algorithm for computing the MPD for an input
sentence, none of these algorithms have been developed before within the Monte-Carlo
framework. In fact, for some of the above listed entities, it is highly questionable whether
the Monte-Carlo algorithm can be adjusted to provide good approximations in reason-
able computation-times (e.g. computing the probability of a parse-tree, a sentence or a
word-graph).

�

A common problem in parsing algorithms are actions taken by the algorithm that eventually do not
lead to parses of the whole input but only to parses of part of the input. These are often seen as failing
derivations that cost time. Serious effort has been put into reducing the failing derivations in CFG parsing
as the next section explains.

5.2. Overview of related work 107

An essential quality of the present algorithms, is that they have time-complexity lin-
ear in STSG size and cubic in input length. Crucially, linearity in STSG size is achieved
without sacrificing memory-use, a typical situation in all other alternative algorithms that
could be used for parsing DOP, e.g. (Younger, 1967; Earley, 1970; Schabes and Joshi,
1988; Schabes and Waters, 1993). In section 5.3 I explain why in the case of DOP STSGs
the Cocke-Kasami-Younger (CKY) algorithm (Younger, 1967; Aho and Ullman, 1972)
does not succeed in providing a good compromise between time and space needs for
achieving time-complexity linear in STSG size. The same argument carries over to the
other alternative algorithms that are listed above.

This chapter is structured as follows. Section 5.2 lists references to and discusses re-
lated work on parsing and disambiguation under tree-grammars. Section 5.3 mainly pro-
vides the background to the rest of this chapter: it discusses CKY parsing under CFGs and
the Viterbi optimization for computing the MPD/MPP of input sentences under SCFGs. It
also argues that the CKY algorithm and the Viterbi for CFGs are not suitable for parsing
the huge DOP STSGs. Section 5.4 presents deterministic polynomial-time algorithms and
optimizations thereof. Section 5.5 presents useful heuristics for improving the time- and
space-consumption of DOP models. And finally section 5.6 summarizes the conclusions
of this chapter.

5.2 Overview of related work

Historically speaking, parsing Tree-Grammars has been developed mainly within the
TAG framework. Most work has concentrated on the recognition problem under TAGs
e.g. (Vijay-Shanker and Joshi, 1985), (Vijay-Shanker, 1987), (Vijay-Shanker and Weir,
1993). To a much smaller extent, some work concentrated on probabilistic disambigua-
tion and probabilistic training of some restricted versions of STAGs, e.g. (Schabes and
Waters, 1993).

The algorithm presented in (Schabes and Waters, 1993) can be used to compute the
MPD of an input sentence under STSGs. Similarly, existing SCFG algorithms based on
CFG parsing algorithms (Fujisaki et al., 1989; Jelinek et al., 1990) can be extended to
compute the MPD for an input sentence under STSGs, as the next section explains. How-
ever, as I argue in that section, none of these algorithms can achieve time-complexity
linear in STSG size without resulting in huge memory-use. Moreover, since none of these
algorithms is really tailored for the huge DOP STSGs, none of them suitably exploits the
properties that are typical to these STSGs.

Recently, Goodman (Goodman, 1996; Goodman, 1998) presented a new DOP pro-
jection mechanism: rather than projecting a DOP STSG from the tree-bank, Goodman
projects from the tree-bank an equivalent SCFG. The projected SCFG is equivalent to the
DOP STSG of that tree-bank in the sense that both generate the same parse-space

�

and
�

Actually, up to node renaming, there is a homomorphism between the trees of the two grammars.

108 Chapter 5. Efficient algorithms for DOP

the same parse-probabilities. However, the derivation-spaces of the STSG and the SCFG
differ essentially. The SCFG implementation of DOP (or DOP SCFG) does not have the
notion of a subtree and thus prohibits the computation of such entities that depend on sub-
trees e.g. the MPD (of the STSG). Moreover, as we proved in chapter 3, computing the
MPP of a sentence as DOP prescribed is NP-hard under STSGs; switching to Goodman’s
SCFGs, of course, does not change this. However, the SCFG implementation enables fast
parsing and computation of other maximization entities of an input sentence under the
SCFG implementation of DOP.

Besides the SCFG projection mechanism, (Goodman, 1996; Goodman, 1998) presents
efficient algorithms for computing new maximization entities under the DOP SCFG and
studies the plausibility of Bod’s empirical results. The main maximization entity in that
work concerns the so-called General Labeled Recall Parse (GLRP); the GLRP is the
parse-tree which maximizes the expectation value of the Labeled Recall rate

�

. Good-
man shows that on the small ATIS, the GLRP achieves exactly the same accuracy as the
MPP of the DOP STSG (which is equal to the MPP of the DOP SCFG).

A nice property of Goodman’s SCFG instantiation of DOP is that it employs the whole
training tree-bank as is for parsing; this is equal (in the sense mentioned above) to the
DOP STSG as defined in chapter 2. This nice quality is also the bottleneck of Goodman’s
implementation

�

. Goodman does not offer a way to limit the grammar’s subtrees; this is
an essential property for obtaining DOP models under larger tree-banks and for avoiding
sparse-data effects. An attempt

�

at limiting the depth and the number of substitution-sites
(see section 5.5) of subtrees in Goodman’s SCFG, immediately results in large SCFGs
(hundreds of thousands of different rules). As section 5.3 explains, such large SCFGs
currently form a serious problem for parsers.

Although Goodman’s algorithms provide efficient solutions to some problems of dis-
ambiguation under DOP, Goodman’s solutions are only suitable for DOP models that are
represented as SCFGs. In this chapter, I provide efficient solutions to other disambigua-
tion problems under STSGs in general, and in particular under DOP STSGs.

�

A labeled constituent is a triple �!'�� ��� ��� , where � � � are the words covered by the constituent and
�

is the label of that constituent. Let be given a parse-tree � selected by a parser for an input sentence and
also the correct parse-tree �	� (i.e. the ultimate goal of the parser) for that sentence. The Labeled Recall
rate is the ratio between the number of correct labeled constituents in � and the total number of nodes in
�	� . Roughly speaking, Goodman’s algorithm computes for every labeled constituent in the chart of the
input sentence a “weight”; the weight of a given labeled constituent is the ratio between the product of its
Inside and Outside probabilities and the total probability of the input sentence. Subsequently, Goodman’s
algorithm computes the GLRP as that candidate parse (of the input sentence) which has the maximum sum
of “weights” of all its labeled constituents.

�

Goodman’s SCFG has approximately
 � � ��� rules, where � is the number of trees in the tree-bank
and � is the average number of words per sentence. For a relatively small tree-bank of 10000 trees, on
average 6 words per sentence, the SCFG has 480000 rules (about half a million).

�

In personal communication, Goodman has shown that there are such possibilities but that the number of
rules of the SCFG remains very large. Limiting the substitution-sites is in fact only a theoretical possibility
rather than a practical one.

5.3. Background: CKY and Viterbi for SCFGs 109

5.3 Background: CKY and Viterbi for SCFGs

In this section I discuss the classical CKY algorithm for (deterministic) polynomial-time
parsing of CFGs. I argue that direct use of this algorithm for parsing DOP STSGs is
impractical because it does not successfully compromise the two conflicting requirements
of extensive memory-needs and high computation costs. The direct application of the
CKY algorithm for DOP is therefore only a theoretical possibility.

5.3.1 CFG parsing with CKY

For the definition and notation of CFGs the reader is referred to chapter 2. Some extra
definitions and assumptions are necessary here:

CNF: To simplify the presentation of CKY we assume CFGs in Chomsky Normal Form
(CNF); a CFG is said to be in CNF iff each of its rules is in one of two possible
forms: the binary form

6 4 � or the terminal form
6 4 � .

Sizes: � � � denotes the cardinality of a given set
�

. � 8 � denotes the number of symbols
in string 8 . And � � � denotes the size of a CFG � =(.,/ , .$0 , � , 1), not necessarily
in CNF, where by definition: � � �= � � �

� @	� � 8 � � (.
Finitely ambiguous: Throughout this work we assume that the CFGs we deal with are

finitely ambiguous i.e. the CFG derives any finite string it can recognize only in a
finite number of different left-most derivations

�

.

Items: In parsing theory, an item is a CFG rule with a dot inserted somewhere in its
right-hand side, e.g.

6 4 8 � � where
6 4 8�� ! 1 . Items

6 4 8 � are called final.
Roughly speaking, in general, the dot in the item is a marker, which identifies the
stage of a derivation beginning from the rule underlying the item: 8 is the part
already recognized and � is the part that still has to be recognized. In the following
characterization of the CKY algorithm we show exactly what the dot marks.

The CKY algorithm (Younger, 1967) is one of the earliest and simplest algorithms for
polynomial-time recognition of arbitrary Context-Free Languages (CFLs). CKY employs
a data-structure, called well-formed substrings table, with entries � �� � 9 for all 6 � �� � �

, where

is the number of terminals in the input sentence. An entry is a store of items
that are introduced during the parsing process. Let � � ������� � denote the input sentence,
and let � � J � . The invariant of CKY is to maintain the following condition for every
entry � 0��� 9 in the table at all times:

6 4 8 � ��! � 0��� 9 iff 6 4 8 � �4"� �� � holds in the CFG at hand.

This condition implicitly explains the notation of an item; CKY recognizes the input
sentence iff there is an item ��4 8 � in entry � 68�
 9 .

�

This is equivalent to saying that the CFG does not allow cycles, e.g.
� =� �

.

110 Chapter 5. Efficient algorithms for DOP

Init: ; 6�� ��

; 6 4 � � !1

add
6 4 � � � to � �5(�
 9; � 4 � � ! � �5(�
 9 and

; 6 4 � 3! 1
add

6 4 � � to � � (�
 9
Deduce: ; 6 � ��

; �� � ��

; �� 	 ��� and

; 6 4 � � ! � 0�0 � 	 9
if � 4 8 � ! � � 	 � � 9
then add

6 4 � � � o � 0� � 9; � 4 � � ! � 0� � 9 and
; 6 4 � !1

add
6 4 � � to � 0� � 9

Figure 5.1: CKY algorithm for CFGs in CNF

A specification
�

of the CKY algorithm is given in figure 5.1. For more information
on the CKY and on how to implement it efficiently, the reader is referred to (Aho and
Ullman, 1972; Graham et al., 1980). As figure 5.1 shows, the CKY recognition algorithm
has time-complexity proportional to � � � �
 �

. However, to achieve time-complexity linear
in grammar size � � � it is necessary to be able to decide on the membership condition
“whether � 4 8 � ! � � 	 � � 9 ” in � � (� . This is easily achieveable using very efficient
implementations of entries as arrays. Note that such an array, however, has to be of size
� .*/ � in order to allow this. Good hashing functions approximate this behaviour using
smaller arrays or lists.

The recognition algorithm is in itself not very useful since it does not offer an efficient
way for retrieving parse-trees for the input sentence. For this reason, the algorithm is
usually extended at the Deduce phase as follows: when adding item

�
to entry � �� � 9 , a

set of “pointers”, referred to as
6 � � � � � � � � ��� B � B � , is attached to item

�
(see illustration in

figure 5.2). Each pointer in
6 ��� � � � � � � ��� B � B � points to one or more items, in this or other

entries, that resulted in adding
�

to � 0� � 9 during the Deduce phase of the algorithm. Note
that a final binary item

6 4 � � is added to � �� � 9 by pairs of items
6 4 � � .! � 0�
 � 	 9

and 4 � � ! � � 	 ��� 9 ; therefore,
6 � � � � � � � � � ' of final binary items are always pairs

of pointers. For simplicity we refer to
6 � � � � � � � � ��� B � B � as the

6 ��� � � � � set of
�
. The

CKY table together with the
6 � � � � � � sets is called a parse-forest, a compact and nice

representation of the parse-space (set of all parse-trees) of the input sentence. A depth-
first traversal of the pointers, starting at any item ��4 8 � ! � 68�
D9 , leads to retrieving parses
for the input sentence.

�

This specification is rather inefficient. It does not optimize the order of steps of the CKY parser.

5.3. Background: CKY and Viterbi for SCFGs 111

AddedBSet

A->B*C
[i,k1]

C-> α∗
[k1,j] A->B*C

[i,k2]

C-> α∗
A->B*C

[i,k3]

C-> α∗
[k3,j] A->B*C

[i,k4]

C-> α∗
[k4,j]

A -> B C *
[i, j]

n0 i jk1 k2 k3 k4

[k2,j]

Figure 5.2: Illustration of a possible implementation of a parse-forest

A complication, which occurs in implementing a CKY that constructs a parse-forest
in time linear in � � � is exactly in maintaining the

6 � � � � � � sets of binary items. For the
item

6 4 � � ! � �� � 9 , there are usually many items 4 � � ! � 	 � � 9 , for each -� 	 � �
and any � , that resulted in adding it to the table. Moreover, usually there are many items
 4 � � in every entry � 	 � � 9 that result in adding

6 4 � � into � 0� � 9 . For achieving time-
complexity linear in grammar size it is necessary to maintain for every non-terminal
and for every � 	 � � 9 , �� 	 � � , a set of all items 4 � � , for any � value, in a special set,
which we denote with �
 � < �
 � 	 � � � . Again, this can be achieved only if we implement
every entry � 	 � � 9 as an array of length � .,/ � . At array-entry , of table entry � 0��� 9 , we
gather together all items 4 � � . Even good hashing-functions can lead to sacrificing
linearity in grammar-size just because a “bucket” (in the hash-table) containing 4 � �

might also contain other items � 4 � � , making the construction of the
6 � � � � � � sets,

during Deduce, go deep into these buckets in order to filter them. This can lead, in the
worst case, to time-complexity � � � � �
 �

.

The space-complexity of the CKY parser for CFGs is � � � � � � �
 � � (this includes the
� � � � � �
 � � recognition and for every item in the recognition chart there can be at most
� � � � � �
 � pairs of items in its

6 � � � � � � list). Usually, very efficient storage methods
such as bit-vectors can be used to implement table entries and items, in order to minimize
the actual memory-consumption for large � � � values. However, these methods have a
hidden overhead (retrieval time-costs) that might defeat their utility in many cases.

For general CFGs, the CKY algorithm has some known disadvantages:

112 Chapter 5. Efficient algorithms for DOP

� For many grammars, the transformation of the CFG into CNF results in expanding
the grammar dramatically. In some cases, the size of the CNF grammar is square
the size of the original grammar � � � (Graham et al., 1980). This sets the algorithm
back at time-complexity proportional to � � � �

. (Graham et al., 1980) offers solutions
for this but in practice, as I argue below, these solutions cannot avoid this problem
for very large CFGs.

� The characterization of the CKY algorithm given above means that an item
6 4 8 �

is added to � �� � 9 regardless of whether it participates in a derivation of the string
� �� � �� � �� , for any 6 � 	 � �� � � < ��

. Consequently, many of the items added
to the table are “useless” since they do not contribute to derivations of the whole
input sentence. The run-time and memory costs, which these “useless” items imply,
can be reduced to a certain degree with simple optimization methods discussed also
in (Graham et al., 1980).

Next I argue that, in practice, for real-life DOP STSGs, the above two disadvantages
imply either very slow speeds or very huge memory costs or both.

5.3.2 Computing MPP/MPD for SCFGs

An algorithm for the computation of the Most Probable Parse (MPP) (and at the same time
the Most Probable Derivation - MPD) based on CKY for SCFGs is presented in (Fujisaki
et al., 1989; Jelinek et al., 1990). The computation does not alter the time or space
complexity of the CKY. It is based on the Viterbi (Viterbi, 1967) observation that two
partial-derivations, starting from the same root non-terminal � and ending in the same
portion � �� of the input sentence, can be extended to derivations of the whole sentence
exactly in the same ways. Therefore, if the one partial-derivation has a lower probability
than the other, it can be discarded.

Be given an SCFG (.%/ , .+0 , � , 1 , P) and an input sentence � � � . Let � �
D1F�7 ��� 	/�
0��� �
denote the probability of the MPP (MPD) starting from an item ��� 	 ! � 0��� 9 . Figure 5.3
shows the specification of an extension of the CKY algorithm for computing � �
D1 for
every item in the CKY table. The operator

�����
computes the maximum of a set of reals.

The probability of the MPP of the input sentence � � � is then found as
����� � � �
D1F� � 4 8 � ��6 �
 � �H� 4 8 � ! � 68�
D9 � .

Note that in SCFGs a derivation and the parse it generates have exactly the same
probability simply because every parse can be generated by one single derivation. The
algorithm described above can be used for computing the probability of the input sentence
by replacing every

�����
operator with the

�
operator. For computing the MPP (MPD) of

an input sentence, the algorithm of figure 5.3 should be extended with a storage that keeps
track of all entities that result in the maximum value in every

�����
term (i.e. replace every

�����
by � G��
	��
).

5.3. Background: CKY and Viterbi for SCFGs 113

� �
D1F� 6 4 � � �
 �5(�0 � J 1F� 6 4 � �
� �
D1F� 6 4 � � � 0� � � J ������� � � �
D1 � �34 � � �00� � � � � 4 � � ! � �� � 9 �
� �
D1F� 6 4 � � �+0� � ��J 1F� 6 4 � � �

����� ��� ��� � � � �
D1F� 6 4 � � �00� 	 � �
������� � � �
D1F�
 4 � � � 	 � � � � .4 � � ! � 	 � � 9 � �

Figure 5.3: The MPD algorithm for CFGs in CNF

5.3.3 Direct application to DOP STSGs

An STSG (.�/ , .+0 , � , � , 1-�) can be seen as a SCFG, where each elementary-tree � is
considered a production rule “root(t) 4 frontier(t)”. A problem can arise if two internally
different elementary-trees result in the same CFG production rule. To avoid this every
elementary-tree receives a unique address and the address is attached to the rule. So if the
number of elementary-trees in the STSG at hand is denoted by � � � , the size of the rule set
of the corresponding CFG is also � � � . Also let � 6 � denote the number of internal nodes
of all elementary-trees of the STSG. In practice, for real-life DOP STSGs, the number of
elementary-trees runs in the hundreds of thousands (these figures are obtained on limited
domain tree-banks such as the OVIS (Scha et al., 1996) and the ATIS (Hemphill et al.,
1990)). For future tree-banks and applications, these numbers are expected to grow. In
any case, let us consider what happens when applying the CKY directly for such huge
CFGs that are obtained from DOP STSGs:

� The CFG is not in CNF. As explained earlier, a transformation to CNF expands the
number of rules and non-terminals by the size of that CFG. The size of the CFG,
defined above, is the sum of the lengths of its productions. For this CFG this is
equal to � � � � ��� � G � < � � � , where ��� � G � < � � � is the average length of a rule of the CFG.
For linguistic annotations, � � � � � � � G � < � � � is of the same order of magnitude as the
total number of nodes in the DOP STSG’s elementary-trees, denoted by � 6 � . In
the CKY, to achieve time complexity proportional to linear in � 6 � , each entry of
the algorithm must be represented as an array of length � 6 � , as the number of non-
terminals of the CNF CFG is also in the order of magnitude of � 6 � . In the current
limited domain applications the number � 6 � runs also in the hundreds of thousands.
Clearly, maintaining such huge entries implies such memory-needs that are beyond
those that are currently available, especially if the application involves large tables
for long input sentences or word-graphs (e.g. with up to 70 states). Therefore,
linearity of the CKY in � 6 � , the STSG size, has to be sacrificed and we fall back to
� 6 � �

worst case complexity. A second issue in CNF transformation is that it may
even result in squaring the size of the STSG (Graham et al., 1980), a thing that also
sets us back at the � � � 6 � � �
 � � time-complexity.

114 Chapter 5. Efficient algorithms for DOP

� The second problem is the huge number of failing derivations in such a large gram-
mar. As explained in the preceding section, this implies extra work that leads to
useless nodes, useless partial-derivations and useless partial-parses. Of course this
is inevitable in CFG parsing but it is important to minimize its effects. Methods
that use lookahead variables and rely on knowledge of the grammar can reduce this
a bit. But for such a large STSG, this remains a serious burdon that begs for an
alternative solution.

This argues against direct application of the CKY parser for real-life DOP STSGs. In
section 5.4 I introduce an algorithm that exploits the CKY algorithm but avoids these
problems. The idea is to first parse with a very small grammar which approximates the
STSGs parse-space. And subsequently to apply the large STSG on this parse-space in
order to conclude the parsing process with the parse-forest of the STSG.

5.4 An optimized algorithm for DOP

This section presents an alternative to the direct application of the CKY
algorithm (Younger, 1967) for parsing DOP STSGs. Among the advantages of this al-
ternative is that this algorithm achieves an almost linear time-complexity in STSG-size
with substantially less memory costs than the CKY algorithm.

The structure of this section is as follows. Subsection 5.4.1 provides an introduction
and some necessary definitions. Subsection 5.4.2 describes a simple approximation of
the CNF transformation. Subsection 5.4.3 discusses the algorithm for recognizing STSG
derivations of an input sentence, which constitutes the basis for the present optimiza-
tion algorithm. Subsection 5.4.4 presents the algorithm for computing the MPD of an
input sentence and explains how with minimal changes it can be adapted for comput-
ing sentence probability and the MPD of an input parse-tree. Subsection 5.4.5 presents
the optimization that leads to linear time-complexity in grammar-size. And finally, sub-
section 5.4.6 presents an extension of this optimized algorithm for disambiguation of
word-graphs.

5.4.1 A two-phase parser

The algorithm is based on the idea that it is possible to span a good approximation of
the parse-forest of an STSG using a relatively small grammar. The exact computation of
the STSG’s parse-forest takes place on this approximated parse-forest rather than from
scratch. This results in reducing the number of useless derivations and the storage costs
substantially. Subsequently, a simple optimization, based on a nice property of sets of
paths of STSGs and CFGs, brings the time complexity of the two-phase algorithm back
to linear in STSG size, without extra storage costs.

The small grammar of the first phase is an approximation of the CNF of the CFG un-
derlying the given STSG (shortly original CFG). Rather than transforming the elementary-
trees of the STSG into CNF in the usual manner, the transformation is simplified such that

5.4. An optimized algorithm for DOP 115

the tree- and string sets of the CNF CFG, underlying the CNF STSG resulting from the
transformation, are supersets of those of the original CFG. This simplified transformation
has an advantage over the regular CNF transformation: the size of the resulting CNF CFG
is guaranteed to be of the same order of magnitude as that of the original CFG

� �
. Crucially,

transforming the STSG elementary-trees to CNF, in the simplified way, does not change
its (weak and strong) generative power. A suitable correspondence between the CNF CFG
rules and the CNF STSG elementary-trees’ nodes allows applying the second phase of the
parsing algorithm in an efficient manner.

Below we need the following definitions:

String language: The string-language of a CFG, SCFG, TSG or STSG � , denoted � � � � ,
is the set of all strings of terminals that it can generate.

Tree language: The tree-language of a CFG, SCFG, TSG or STSG � , denoted
� � � � , is

the set of all parse-trees that it can generate for all strings in its string-language.

Moreover, the following property of STSGs plays a central role in our discussion:

The string/tree language of an STSG is always a subset of the string/tree
language of the CFG underlying it.

Furthermore, for the rest of this section we assume that we are given a finitely ambiguous
and � -free STSG � �
 �

� , and that the CFG underlying � �
 �
� , denoted � � � � , is also finitely

ambiguous and � -free.

5.4.2 CNF approximation

The CNF transformation discussed here is a simple approximation of the well-known
CNF transformation of CFGs. Although often the “traditional” CNF transformation can
also be applied to the CFG underlying the STSG without introducing too many rules, I
prefer here the following approximation.

The transformation is applied to the elementary-trees of the STSG � �
 �
� . Two obser-

vations underly this Approximated CNF (ACNF):

� Every elementary-tree of the STSG is an atomic unit. Every parser must treat the
elementary trees as such, in one way or another, in order to compute the parse-forest
of the STSG.

� Based on the first observation, it does not matter in what way we transform the
internal structure of an elementary-tree into CNF, provided that we take care that
its atomicity is preserved. In the present parsing algorithm, the second phase takes
care of the atomicity of elementary-trees.

���
Recall that the regular CNF transformation might expand the number of non-terminals and rules dras-

tically. We discuss this in detail below.

116 Chapter 5. Efficient algorithms for DOP

B
1

B
2

B
m

A
B

1
B

2

B
mB

m-1

A
A’

A’

Figure 5.4: An approximation of the CNF transformation

Given these two observations, the ACNF transformation starts by assigning to every
elementary-tree of the STSG a unique address from a domain � . During the ACNF trans-
formation, every elementary-tree retains its address. The ACNF transformation has the
following steps:

� Transform the elementary-trees of � �
 �
� to elementary-trees containing no unary

productions.

� Transform the elementary-trees, resulting from the preceding transformation, to a
form where every node, in every elementary-tree, has either children that are all
non-terminals or has one single terminal child.

� Transform every resulting elementary-tree to CNF by traversing it from its root
to its leaves in a breadth-first traversal. Under every node in the elementary-tree,
encountered during the traversal, there is now a production rule; if the production
rule is not in CNF then it must be a rule

6 4 � � ������� � , where 	 � *
and all ���

is a non-terminal. Transform this rule into a right linear (or left linear) structure by
introducing exactly 	 � *

nodes labelled with the same fresh symbol
6 � . Figure 5.4

depicts this step.

The tree- and string-sets of the resulting CNF CFG are supersets of the respective sets
of the CNF STSG. In fact, the ACNF transformation results in a CNF CFG that behaves
in two different ways: internal to elementary-trees as a right-linear grammar (a regular
grammar) and external to elementary-trees as a CFG.

It is important here to restate two simple facts, mentioned above, and sketch their
proof informally:

5.1. PROPOSITION. The ACNF transformation results in a CNF STSG with the same
string language as the original STSG � �
 �

� . Moreover, up to a simple reverse trans-
formation, the tree language of the CNF STSG is equal to that of � �
 �

� .

Proof 5.1: The transformation alters only the internal structure of elementary-trees, i.e.
it does not alter the root node or the leaf nodes and their labels. Exactly the same
derivations, substition sequences of elementary-trees together with their unique ad-
dresses, are still possible in the CNF STSG as the original STSG. Thus the string

5.4. An optimized algorithm for DOP 117

language of the CNF STSG is the same as that of the original STSG. A simple
reverse-transformation gives back the same tree language also. Text books on pars-
ing exhibit for the first two transformations reverse transformations, e.g. (Aho and
Ullman, 1972). For the third step, a reverse transformation simply removes every
node labeled with

6 � , where
6

is a non-terminal of the STSG and uses the unique
addresses in order to retrieve the original structures �

5.2. PROPOSITION. The string/tree language of the CFG underlying the STSG � �
 �
� , i.e.

� �
� � , is a subset of (respectively) the string/tree language of the CNF CFG (underlying

the CNF STSG resulting from the approximate CNF transformation).

Proof 5.2: It can be eaily observed that every derivation of � �
� � is still possible in the

ACNF CFG resulting from the transformation. However, the ACNF CFG might
have extra non-terminals introduced during the transformation. This introduces
new derivations for (possibly) other strings and other trees �

As mentioned earlier, the string/tree language of an STSG is always a subset of (respec-
tively) the string/tree language of the CFG underlying it. Together with the above two
facts this means that the tree/string language of the original STSG is respectively a subset
of the tree/string language of the CNF CFG.

The ACNF transformation introduces new rules. The number of the newly introduced
rules is at most equal to the sum of the lengths of the right hand sides of the rules of the
CFG underlying the STSG, i.e. � � � � � � �&� � . The number of non-terminals has grown but
it is at most double that of the CFG � � � � . In this way, we have a small CNF grammar
of the same order of magnitude as the original CFG � � � � . For linguistic CFGs, the right
hand sides of rules are much shorter than the lengths of frontiers of elementary-trees of
DOP STSGs. And besides, some of the newly introduced rules have more chance to be
identical than in transforming the STSG into CNF, implying even a smaller grammar.
Most importantly, the ACNF transformation, even in the worst-case, does not result in
squaring the size of the CFG. All in all, this approximation of the CNF results in a small
grammar that can be parsed very fast using the CKY.

The transformation results also in a CNF STSG that has new nodes in its elementary-
trees. As explained above, the number of the new nodes is in the worst case equal to the
length of the frontiers of the elementary-trees, i.e. � � � 6 � � , where � 6 � is the total number
of nodes in the elementary-trees of the STSG. This doubles the number of nodes in the
worst-case, but the CNF approximation introduces only � � � � � � �&� � new non-terminals (as
opposed to � � � 6 � � in the usual CNF transformation, as explained earlier).

5.4.3 STSG-derivations recognition

Be given an STSG � �
 �
� J (.�/ , .$0 , � , � , 1-�) in CNF (the transformation to CNF is as

described above). The input sentence is denoted � �� , where � � J � . The present algorithm
has the structure:

118 Chapter 5. Efficient algorithms for DOP

Phase 1. Apply the CKY algorithm using the (CNF) CFG underlying � �
 �
� , denoted

� �
� � , resulting in a parse-forest of the input sentence. As mentioned above, this

parse-forest is a superset of the parse-forest which � �
 �
� spans for the same sen-

tence.

Phase 2. Apply an algorithm, described below, for computing the parse-forest of � �
 �
�

from the approximate parse-forest of the previous phase, and compute the MPD on
this parse-forest.

Often, I will refer to the first phase with the general term “parsing phase” and to the second
phase with the term “disambiguation-phase”. Both terms do not reflect the exact task of
each phase. They only reflect the main task of each phase: (approximating) parse-forest
generation in the first, and computation of the MPD, i.e. the selection of one preferred
tree from the exact parse-forest, in the second.

Below I discuss the second phase, which fulfils three requirements: preserve atom-
icity of � �
 �

� ’s elementary-trees, preserve the uniqueness of every elementary-tree, and
recognize exactly � �
 �

� ’s parse-forest and derivations for the input sentence from the CFG
parse-forest. But first I discuss the issue of how to recognize a derivation of � �
 �

� when
given a parse-forest of � � � � . The issue of recognizing an STSG derivation is central in
the MPD-computation algorithm. But first the following definitions.

Node address: This is a unique address from some domain � assigned to a non-leaf node
in an elementary-tree of � �
 �

� .

Every non-leaf node in every elementary-tree of � �
 �
� is assigned such a unique node-

address from � . It is useful if the addresses of the nodes of an elementary-tree enable fast
checking of the parent-child (and the number of the child if counting from left to right)
and sisterhood relations between nodes in an elementary-tree.

Decorated tree: A tree in which every non-leaf node is decorated with exactly one ad-
dress, from the STSG elementary-trees’ node addresses, is called a decorated tree.
The collection of node addresses in a decorated tree is called the decoration of that
tree.

Derivation-tree: Every derivation of the STSG can be characterized by a unique deco-
ration of the tree it generates; in this decoration every node in the tree is decorated
with the unique address of the corresponding node of an elementary-tree. We refer
to this decorated tree with the term derivation-tree.

Note that not every decorated tree is a derivation-tree since some decorations do not cor-
respond to STSG derivations. We observe that a simple algorithm can be used for recog-
nizing whether a decorated tree is a derivation-tree of � �
 �

� or not. To this end, we need
to define the viability property, a main element of this algorithm and the algorithm for
computing the MPD.

5.4. An optimized algorithm for DOP 119

c’

c

Nj

N

X
node

jth child of X

Xch
node

T1

T2 CC

N1

N

N j
Nk

N

N j

N
N

N1 k

j

C’

C’

Figure 5.5: (Top) decorated tree, (bottom) the viability property

Viability property: Let
�

be a node in a decorated-tree, labeled � and decorated with
address � , and let

� �#� be its � th child-node, labeled � � and decorated with address
� � , � ! � (� * � . We say that the viability property holds for nodes

�
and

� �#� if one
of the following two holds (see figure 5.5):

Parenthood: There is some elementary-tree, in � �
 �
� , for which � and � � corre-

spond to two of its non-leaf nodes that are related (respectively) as parent and
its � th child. Moreover the node corresponding to � / � � in that elementary-tree
is labeled respectively with � / �-� .

Substitution: There is some elementary-tree, in � �
 �
� , for which the address � cor-

responds to one of its nodes that is labeled � and that has a leaf child-node
labeled with a non-terminal �-� , i.e. a substitution-site. And there is some
elementary-tree, in � �
 �

� , for which the address � � corresponds to its root node
that is labeled �I� .

The algorithm for recognizing whether a decorated tree is a derivation-tree of � �
 �
� is

shown is figure 5.6; we will refer to it with the name algorithm 5.6.
The following propositions express the role which the viability property plays in rec-

ognizing derivation-trees.

5.3. PROPOSITION. If a decorated tree contains a node that does not fulfill the viability
property, the decorated tree is not a derivation-tree of the STSG at hand.

5.4. PROPOSITION. Algorithm 5.6 recognizes a decorated tree iff it is a derivation-tree
of the STSG at hand.

120 Chapter 5. Efficient algorithms for DOP

Root: Check whether the root of the tree is labeled � and is decorated with an address
which corresponds to the root of an elementary-tree. If not then goto Fail below.

Iterate: For every node in the decorated tree, that is not a leaf node, do:
1) let that node be the current node,
2) for the current node

�
, labeled � and decorated with address � , and its � th

child-node
� �#� , labeled �I� and decorated with address � � , �#! � (� * � , check that

the viability property holds for
�

and
� ��� , otherwise goto Fail.

Accept: return accept and exit.

Fail: return reject and exit.

Figure 5.6: Algorithm 5.6: Recognizing a derivation-tree

The proofs of these two propositions are simple to construct and will be skipped here.
As a result to the propositions above, if given a parse-forest, spanned by the STSG

� �
 �
� for some input sentence, it is possible to determine the set of all derivation-trees of

the sentence by applying the above algorithm to the parse-forest. However, applying this
algorithm blindly would result in exponential time-complexity. It is necessary to apply it
in an efficient manner. Moreover, instead of applying the recognition of the derivation-
trees of a sentence to � �
 �

� ’s parse-forest, we may apply it to the CFG’s parse-forest; this
determines the derivation-trees of the sentence according to the STSG � �
 �

� and, as a
side effect, this delimits � �
 �

� ’s parse-forest for the sentence, since trees without � �
 �
� ’s

derivation-trees are not trees of � �
 �
� .

To obtain a (deterministic) polynomial-time algorithm for the recognition of the set of
derivation-trees of an input sentence, we employ a new compact structure, in analogy to
a parse-forest, called a derivation-forest of the sentence. To this end, define:

Rule occurrence: Let rule
� !1 be found under a non-leaf node with address � of some

elementary-tree. The address � is called an occurrence of
�

in that elementary-tree.
An occurrence of an item

6 4 8 � � is an occurrence of the rule
6 4 8 � .

Occurrence set: The occurrence set, denoted � � � � , of rule
� !1 is the set of all oc-

currences of
�

in all elementary-trees of � �
 �
� .

Item’s occurrences set: Let
6 4 8 � � ! � 0� � 9 . The occurrences set of this item is defined

as � � 6 4 8 � ������ � � = � � 6 4 8�� � .
Given the CFG parse-forest and the CKY table of the input sentence, built by the CKY
algorithm, a decoration of the items in the table enables recognizing the derivation-forest
of that sentence. We maintain with every item its occurrence set. The derivation-forest
is constructed on top of the CFG parse-forest, also in a bottom-up fashion by applying

5.4. An optimized algorithm for DOP 121

an algorithm for recognizing derivation-trees to the occurrence sets of the items that are
connected together in the parse-forest by the

6 � � � � � � relation described in the previ-
ous section. Similar to our presentation of the Viterbi CKY, we do not show exactly
how to construct the derivation-forest, instead we show how to compute the MPD of
the input sentence. The construction of the derivation-forest extends the MPD algorithm
described below only by associating sets of pointers between occurrences of items. Re-
call that if an item � results in adding another item

6
to entry � 0� � 9 , during Deduce

of CKY, then � ! 6 ��� � � � � � � � � B � B � , where this expresses a pointer from
6

to � .
Similarly, a set is associated with every occurrence, � , of

6
, denoted . � �� < � � � � � ��B � .If � ! 6 ��� � � � � � � � � B � B � and � is an occurrence of � , then �#! . � �� < � � � � � ��B � iff a

predicate . �� � < ��� �
�H����� � � , defined below, is true; except for final binary items, � is al-
ways equal to 1. For final binary items, the value � ! � (� * � allows testing the predicate
. �� � < ��� �
�H����� � � for the left (“first child”) or right (“second child”) items in the pairs of
items in

6 � � � � � � of the final binary item. The predicate . �� � < ��� tests the viability
property defined earlier for the algorithm 5.6 for recognizing derivation-trees.

5.4.4 Computing the MPD

For computing the MPD of an input sentence under � �
 �
� , it is useful to precompile the

� �
 �
� into a form that makes the viability property explicit. To this end, infer the following

predicates and functions from � �
 �
� J (.*/ , .$0 , � , � , 1 �):

1. 1 � G �
 ��� �
�H� � � �K� � denotes the proposition “ � and � � are the addresses of a parent
and its � -th child in an elementary-tree in � ”.

2.
� ��� ��� � �:� denotes the proposition “ � is the address of the root node of an elementary-
tree in � ”.

3. ��G�� � � � � �:� denotes the function that returns � !�� such that � is the address of some
node in � .

4. � � �	�K ����� �
�H� � � denotes the proposition “child nr. � of the node with address � , in
some elementary-tree, is a substitution-site”.

122 Chapter 5. Efficient algorithms for DOP

Then infer the eight-tuple (.,/ , .$0 , � , 1 , � , . � � < ��� , 1 , 1 �), from � �
 �
� , where:

� (.*/ , .$0 , � , 1) is the CFG underlying (.%/ , .$0 , � , � , 1 �),

�
; � !:1 : � � � � = � � � � is the address of an occurrence of

� � �
� . �� � < ��� �
�H� ���H� � � = 1 � G��
 ��� �
�H������� � � or � � � �	�K ����� �
�H� � � and

� ������� �
� �:� � ,
� = � � � � � � � ! 1 � ,

� 1 : � 4.� � � � (� * � � 4 � 6 � � (:9 ,
For �+��� � ! � and � ! � (� * � :
1F�
� �:�
� �7� � � =

��� �� 1-� � ��G�� � �
� � �:��� [� J * and . � � < ��� � �+��� ��� � � and

� ��� ��� � �:�]
1 [. �� � < ��� �
�H��� � � � � and (� J (or not

� ��� ��� � �:�)]
0 [otherwise],

� 1 � : � 4 � 6 � � (:9 ,
for �I! � :

1 � � �:� =

� 1-� � ��G�� � � � �����0� [
� ��� ��� � �:�]

1 [not
� ������� �
� �]

The predicate . �� � < ��� � � formalizes the viability property. For a decorated tree, in
which � decorates a node

�
, the term 1F�
� � denotes the probability of � as a function of the

address � � of the � th child of
�

(counting children is always from left to right).This defi-
nition enables writing the algorithm as a recursive function. 1 expresses the probabilities
in terms of the “probabilities” of the rules of the CFG underlying � �
 �

� ; the probability of
a rule of the CFG underlying � �
 �

� is a function of its particular occurrence, i.e. address,
in the elementary-trees set of � �
 �

� .
Let

������� ? 	�� � � � 6 ��
 � denote the maximum of the set � 6 ��
 � / 1 G � � ��
 � � . The algo-
rithm for computing the MPD of a sentence � � � is shown in figure 5.7, also referred to
as algorithm 5.7. It computes the MPD of the input sentence on the parse-forest, which
was constructed in the first phase by the CKY of the CFG � � � � . The function 1 � � � � � �� �
computes the probability of the MPD of the sentence � �� , where � � J � . The function
1 � 2 � � � � � � � � � 68�
D9 � � 6 �
 9 4 � 68� (9 computes recursively the probability of
the most probable among the “partial-derivations”

� �

, that start with address � and generate
a partial-tree for � �� .

Note that for SCFGs, i.e. when the elementary-trees of � �
 �
� have no internal nodes,

the algorithm in figure 5.7 computes the MPD exactly as algorithm 5.3. This becomes
more obvious if one notices that the probability function 1 � �:� always computes to 1-� � ���
or
(
, due to the fact that the elementary-trees have no internal nodes at all. For the general

case of STSGs, a proposition and its proof, following the next definitions, take care of the
� �

Below we define formally the probability of a partial derivation-tree, a more suitable term, in this
context, than partial-derivation.

5.4. An optimized algorithm for DOP 123

1 � � � �7� �� ��J ������� ������� [0, n]	 ��
� � ����������� ���
and ��������� � 	 �

1 � �
�H� � 4 8 � ��68�
 �

1 � �
�H�
 ��� 	/�
0� � � J � ��� � ��� 	"! #

6 4 � � � � � 2 1 �F�
� �	� where j = i+1 �
6 4 � � 2 $ %�& '����� � � � �

� � @)(� � � �+* B � B � � 1F�
� �:� � (� (� � 1 � �
� (��� 4 8 � �
�� � ���
6 4 � � 2 ����� � � ��� ��1 � � �+� 6 4 � � �
�� 	 � �$ %�& '����� � � � �

� � @)(� � � �+* B � B � � 1 � �:� �
� * � * � � 1 � � � * �� 4 8 � � 	 ��� �

Figure 5.7: Algorithm 5.7 for computing the MPD of a sentence � ��

correctness of the present algorithm.

Partial derivation-tree: A partial derivation-tree of an STSG is a partial-tree, resulting
from a partial-derivation of the CFG underlying that STSG, in which each node is
decorated with a node-address such that the viability property still holds for each
of the nodes.

A partial derivation-tree consists of, on the one hand, a sequence of elementary-tree sub-
stitutions, and on the other hand, other “pieces” of elementary-trees. A piece is a dec-
orated subtree, of an elementary-tree, that either contains the root or some leaf-nodes
of that elementary-tree but not both. The elementary-trees and the pieces in the partial
derivation-tree are combined with substitution under the STSG’s viability property, i.e.
substitution is allowed only of a node that has the address of a root of an elementary-tree
on a node that originally was a substitution-site in an elementary-tree.

We will say that an elementary-tree fully participates in a partial derivation-tree �F� iff
the addresses of all its nodes decorate nodes in � � . And we will say that an elementary-
tree partially participates in a partial derivation-tree �F� iff the addresses of some of its
nodes do not decorate a node in �F� , but the addresses of the other nodes do decorate
nodes in �F� .

Sub-derivation: For every partial derivation-tree there is exactly one corresponding se-
quence of substitutions, of both the elementary-trees that fully and those that par-
tially participate in that partial derivation-tree; this sequence is denoted with the
term the sub-derivation corresponding to the partial derivation-tree.

In particular, a derivation of the STSG is a sub-derivation 1) that starts with an elementary-
tree with a root node labeled � , 2) that has leaf nodes labeled with terminals and 3) in

124 Chapter 5. Efficient algorithms for DOP

which every elementary-tree fully participates.

Probability of a sub-derivation: The probability 1 � ��� �I� of a sub-derivation �F� is
equal to the product of the probabilities of all elementary-trees that fully partic-
ipate in it. The probability of a partial derivation-tree is equal to the probability of
the corresponding sub-derivation.

Thus, a partial derivation-tree corresponds to some “acceptable” decoration of a partial-
tree’s nodes. The viability property determines the “acceptable” decorations that cor-
responds to actual sub-derivations of the given STSG. The algorithm in figure 5.7, in
short algorithm 5.7, exploits the viability property by assigning zero probability to non-
acceptable decorations and the right probability to the acceptable decorations.

5.5. PROPOSITION.
; ��� 	 ! � 0��� 9 , 6 � ��%� �

, and
; �I! � � ��� 	/�
�� � � , 1 � fulfills

one of two:

� 1 � �
�H�
 ��� 	/�
0� � � , is equal to the maximum probability of all possible partial deriva-
tion trees

� � of � �� , that fulfill

– if ��� 	 J 6 4 8 � then
� � has a root node labeled

6
, decorated with � , and

has children labels that (when concatenated from left to right) form a string
equivalent to 8 ,

– if ��� 	 J 6 4 � � then
� � has a root node labeled � and decorated with � �

such that . �� � < ��� �
�H��� ��� (� is true.

� There are no such partial derivation-trees as in the preceding case and
1 � �
�H�
 ��� 	/�
0� � � is equal to zero.

Proof 5.5: The proof is by induction on
 ,
(C�
 J � � � ����

. It depends partially on
the CKY property that

6 4 8 � � ! � �� � 9 iff 6 4 8�� �4 � �� � .
� J�� 2 Then 8 J � � � � . By the CKY property, in this case there is at most one

possible partial derivation-tree, i.e.
6 4 ��� � � ! 1 with

6
decorated with � .

Therefore, 1 � �
�H� 6 4 � � � � � �00�
 � (� J 1 � � �:� . The proposition holds since
there is only one partial-derivation tree.

� J�� 2 Assume the proposition holds for all
(�
 � 	 , 	 �

.
� J�� ���F2 Let

6 4 8�� � ! � 0��� 9 and �I! � � 6 4 8 ��� . By the CKY property there
is a partial CFG-derivation (or many such derivations)

6 4 8 � �4 � �� � . Now
there are two cases:

8 J � ���/J � : Again by the same CKY property, for every partial CFG-
derivation

6 4 � �4 � � � , there is � 	 � � such that there are two
partial CFG-derivations:

6 4 � �4 � �� and �4 � � � . The proof now
is for every � 	 �%� for which this is true. For the current value of

	
,

let us consider the probabilities of the possible decorations, of the partial

5.4. An optimized algorithm for DOP 125

CFG-derivation of � �� at hand, that have � decorating
6

in
6 4 � � . As

explained above, with every such decoration there are (at least) two dec-
orated partial CFG-derivations for � �� and � � � . By the CKY property and
the inductive assumption three things hold for these pairs of decorations:

a. for all � , for all � ��! � � � 4 �=� , 1 � �
� ����� 4 � � �
�� 	 � is equal either
to zero or to the maximum probability of all partial derivation-trees
of � �� starting at �34 � with � decorated with address �	� .

b. 1 � �
�H� 6 4 � � �00� 	 � is equal either to zero or to the maximum
probability of any partial derivation-tree of � �� starting at � 4 �
with � decorated with address �	� and . � � < ��� �
�H���	��� (� is true.

c. for all � , for all � �I! � �
.4 � � , 1 � � �	�H�� 4 � � � 	 � � � is equal either
to zero or to the maximum probability of any partial derivation of � � �
starting at 4 � with decorated with address � � .

If 1 � �
�H� 6 4 � � �
0� 	 � is zero for the current value of
	

, then
1 � �
�H� 6 4 � � �
0��� � is also zero. By the inductive assumption we con-
clude that there is no partial derivation-tree starting at

6 4 � � and
where

6
is decorated with � , for the current value of

	
. If it is not zero,

we face two cases for all � and for all �	��! � �
 4 � � :
1. . �� � < ��� �
�H��� �+� * � is false: then 1F�
� �:�
� �H� * �KJ 6
2. . �� � < ��� �
�H��� �+� * � is true: 1F�
� �:�
� �H� * � is either 1 � � ��G�� � � � � �:��� or

(
,

depending on whether
� � � ��� �
� � is true or not.

The last case in the switch of algorithm 5.7 (case
6 4 � �) takes the

maximum of all 1 � �:� �
� �+� * � � 1 � �
� �H��34 � � � 	 � � � , for all � and for all
�	� ! � �
 4 �+� . By the inductive assumption and the viability property
and the definition of partial derivation-trees, this is equal either to zero
or to the maximum probability of all partial derivation-trees starting at6 4 � � with address � , for this value of

	
. Again by the inductive as-

sumption, multiplying this with 1 � � �+� 6 4 � � ��
�� 	 � and maximizing
this for all values of

	
proves the proposition for this case.

8 J � ���/J : The proof for this case follows a similar line of argumenta-
tion as the preceding case. �

5.6. PROPOSITION. Algorithm 5.7 computes the MPD of � � � under � �
 �
� .

Proof 5.6: Easy to derive from algorithm 5.7, proposition 5.5 and the unique correspon-
dence between derivation-trees and STSG derivations. �

Complexity: The time complexity of the second phase of the algorithm is � � � � � � �
 � � .
And the time complexity of the first phase is � � � 1 � �
 � � . For DOP STSGs � 1 � , the size of
the CFG underlying the STSG, is usually in the order of

(��
of � � � . Therefore in practice

the algorithm given above behaves as if having time-complexity � � � � � � �
 � � . However,
a simple optimization, discussed below, reduces the time-complexity of the second phase

126 Chapter 5. Efficient algorithms for DOP

to � � � � � �
 � � . Moreover, the algorithm computes the second phase on the result of the
first phase, i.e. a parse-forest that already pruned many of the failing STSG derivations.
This saves space and time that are expected to be much larger than the small overhead of
having a first and a second phase. The net effect is faster computation that uses smaller
space.

Derived algorithms: Algorithm 5.7 can be easily modified to result in other useful al-
gorithms. To compute the probability of the input sentence, as the sum of the probabilities
of all its derivations, exchange

�����
with the operator

�
everywhere in the specification

of the algorithm. For computing the MPD and the probability of a given parse-tree, the
first phase of the algorithm is exchanged for a small algorithm that transforms the parse-
tree into a CKY table with items in the entries; the second phase is applied as is either
with

�����
or with

�
, depending on the algorithm wanted.

Implementation issues: It is important to note that, for clarity of presentation, the spec-
ification given in figure 5.7 is not as efficient as the algorithm can be implemented. For
implementing the second phase of the algorithm, one precompiles the STSG, as explained
above, in order to make the viability property tables explicit. The second phase is applied
on the parse-forest in a bottom-up fashion (rather than top-down recursion as the spec-
ification does) making use of the

6 ��� � � � � sets of the items in the parse-forest of the
first-phase. Moreover, failing sub-derivations, which have probability zero, are discarded
(rather than dragged together with the others all the way).

5.4.5 Optimization: approaching linearity in STSG size

Here we discuss an important optimization of algorithm 5.7, based on the following prop-
erty of STSGs:

Paths: A sequence of nodes, i.e. pairs of labels and addresses, starting at the root node
of a derivation-tree and terminating at a leaf node (labeled with a terminal symbol)
is called a path of the derivation-tree.

Path set: The path set of a derivation-tree is the set of all paths in that derivation-tree.
The path set of a given tree is the union of the path sets of all derivations that
generate the tree under the STSG at hand. Similarly, the path set of a sentence is
the union of all path sets of the derivations that generate it under the STSG at hand.
The path set of the STSG is the union of the path sets of the sentences in its string
language.

Relevant property: The path set of an input sentence under a TSG is a regular language.
This property is known to be true for CFGs (Thatcher, 1971) and can be easily
proved for TSGs.

5.4. An optimized algorithm for DOP 127

This property implies that recognition of the path set, and also the derivations, of an input
sentence under an STSG should be possible in time complexity linear in the number of
possible node-labels and their addresses, i.e. � � � . A simple observation, related to the
viability property, makes this even clearer: in an elementary-tree, a node labeled

6
with

address � can be only in one of the following two configurations:

� � � �	� ����� �
�H� � � is true, i.e. the � th child of � is a substitution-site in the elementary-
tree (i.e. a frontier non-terminal). In this configuration, . �� � < ��� �
�H��� �)� � � is true only
for all ��� such that

� � � ��� �
� � � .
� 1 � G �
 ��� � �+�����)� � � is true for some ��� , i.e. � and ��� are both non-leaf nodes in the

elementary-tree and are respectively the addresses of a parent and its � th child in
that elementary-tree. Only one single � � fulfills this (due to the unique addresses of
nodes in elementary-trees).

Let ��� 	 1 denote any item to the left of the semicolon in algorithm 5.7. And let ��� 	� �
denote any item found in the overbraced term also in algorithm 5.7. The algorithm
checks the viability of every address � ! � �7 ��� 	 1 � with address � � ! � �7 ��� 	� � � .
The above observation says that this is unnecessary since there are only two complemen-
tary configurations in which � and ��� fulfill the viability property. In fact it says even that
� ! � � ��� 	 1 � can be in one of two configurations, and � �"! � �7 ��� 	� � � can also be
in one of two corresponding configurations. This motivates partitioning � �7 ��� 	 1 � and

� �7 ��� 	� � � into:

� � ' � � �	�K ��� � ��� 	 1 � � � J � �I! � � ��� 	 1 � ��� � �	�K ����� �
�H� � � ' � G � � � �
� � ' � < � � ��� 	 1 � � � J � �7 ��� 	 1 � � � � ' � � �	� ��� �7 ��� 	 1���� ���

� ����� ' � � �7 ��� 	� � � J � � � ! � �7 ��� 	� � � � � ������� �
� � � ' � G � � � ��
 ����G
 � � �7 ��� 	� � � J � �7 ��� 	� � � � � ����� ' � � �7 ��� 	� � �

Recall that the viability property states that:

. � � < ��� � �+��� �)� � � is true for � ! � �7 ��� 	 1 � and ��� ! � �7 ��� 	� � � iff ei-
ther [� ! � � ' � � �	�K ��� � ��� 	 1 � � � and ��� ! � � � � ' � � � ��� 	� � �] or [� !
� � ' � < � �7 ��� 	 1 � � � and � � ! �
 ����G
 � � �7 ��� 	� � �].

The above mentioned observation extends it and states that:

For every � ! � � ' � � � �K ��� �7 ��� 	 1 � � � and every ��� ! � � � � ' � � � ��� 	� �D�
holds . � � < ��� � �+��� �)� � � is true. And, for every � ! � � ' � < � � ��� 	 1 � � � ,
there is at most one ���F! �
 ����G
 � � �7 ��� 	� � � such that . � � < ��� � �+�����)� � �
is true.

128 Chapter 5. Efficient algorithms for DOP

For both cases it is possible to conduct the computation for every �#! ��� 	 1 in � � (�
rather than � � � � � � (i.e. � � �7 ��� 	� ��� �). In the first case, compute only once the set� ����� ' � � �7 ��� 	� � � and its maximum probability and pass this to every
��! � � ' � � �	� ��� �7 ��� 	 1���� � . In the second case, an off line precompilation of the place
of the � th child, for � ! � (� * � , of every � ! � � ' � < � � ��� 	 1 � � � in � � � � , for every

�

enables finding it in � � (� ; then the maximum probability of the � th child is passed to �
for computing its maximum probability in � � (� .

More formally, the overbraced expression in figure 5.7 in each of the last two cases of
algorithm 5.7 is rewritten. Let these two expressions be represented by the more general
expression

� � � � B ��� @ (� �
 	 � � � B � B � � 1F�
� �:�
� � � < � � 1 � �
� � �
 ��� 	� � � 	/� � � �
Substitute for this expression the following, where ��� 	/�
 and � are as defined by algo-
rithm 5.7:��������� ��������

�������
	���������������������������! #"%$�&�&('*),+-���.&0/
13254 � B ��� @ � ���
 � � � � �
 	 � � � �)76���� � "������! 98;:<"� #"%=>&?"�������
	������8,:5��$�@A�������! #"%$�&�& '*),+-���.&0/
�B���DCE�

�
	GF>H<���!I�HKJ,LM�������. 98,:A&N'
),�IO�.H<��P����0"%�

�
"%$�&K&

QSRUTWV 13254 ��)X6����
�
"������! 98;:<"� #"%=>&

T�Y�Z.T [W\

Both cases in this specification must be implemented as explained above in order to
achieve linearity in � � � during the second phase of the algorithm. The time complexity of
the algorithm (two phases) is now proportional to � � 1 � � � � � � �
 �

. As mentioned earlier,] �]] (] is very small for DOP STSGs. Therefore, the time complexity actually approaches

� � � � � �
 � � as
] �]] (] approaches zero. For most DOP STSG the actual time complexity

indeed approaches the linear in STSG size. This optimization does not result in any
change in the space complexity, which remains � ��� � � � � � � � � �
 � � .

It is interesting to observe the effect of this optimization in practice. To this end,
I conducted a preliminary experiment

� �

comparing various versions of the algorithm: a
linear version in STSG size, a square version and a version that searches for the child of
each address using Binary-Search on ordered arrays. The results are listed in Table 5.1.
The experiments reported in table 5.1 used the ATIS domain Penn Tree-bank version 0.5
(Penn TreeBank Project, LDC) without modifications. They were carried out, on a Sun
Sparc station 10 with 64 MB RAM, parsing ATIS word-sequences. The three versions
were compared for execution-time by varying STSG sizes on the same test set of 76
sentences, randomly selected. The sizes of the STSGs were varied by varying the allowed
maximum depth of elementary-trees and by projecting only from part of the tree-bank

� �

This experiment was conducted with the first implementation of the MPD algorithm. As most first
implementations, it was also suboptimal due to choice of simple but inefficient data-structures; thus, only
the ratios between the CPU-times of the various versions are of interest here, rather than the absolute CPU-
times listed in the table. It is worth noting that subsequent versions improved the figures for all versions
substantially (see the experiments in chapter 6).

5.4. An optimized algorithm for DOP 129

num. of � ��� � ��� Avg.Sen. Average CPU-secs.
elem. trees Length linear Bin.Search Square

74450 870 436831 9.5 445 993 9143
26612 870 381018 9.5 281 � �
19094 870 240619 9.5 197 � 2458
19854 870 74719 9.5 131 223 346

Table 5.1: Disambiguation times for various STSG sizes

in some other cases (with a maximum of 750 training trees). Average cpu-time includes
parse-forest generation, i.e. both phases. It is clear that there is a substantial difference in
growth of execution-time between the three versions as grammar size grows. Note also
that this experiment exemplifies, to some extent, the ratio between � � � and � 6 � for ATIS
DOP STSGs. These observations hold also for experiments with DOP on other domains,
reported in chapter 6.

5.4.6 Extension for disambiguating word-graphs

The two-phase algorithm for parsing and disambiguating sentences under STSGs can be
easily extended for parsing and disambiguating word-graphs as those produced by speech
recognizers. As mentioned in chapter 2 a word-graph is a Stochastic Finite State Machine
(FSM). For notation and definitions on word-graphs, the reader is referred to chapter 2.

Assumptions: In this work we assume FSMs and SFSMs that contain no cycles, i.e. paths' � ����� ' � �4 � � � , for

 �3(

. Due to the preceding assumption we may assume, with-
out loss of generality, that the set of states � , of SFSM �������������0����� ��1 � , is equal
to the set of numbers �+68� (��������� � � � � (� � such that: 1) each transition

&�')(� 'H* �
�I,
fulfills

')(� 'H* , 2) the start-state � is 6 , and 3) the target state is � � � � �5(� .
Before discussing how to parse and disambiguate word-graphs under DOP STSGs, it is
clarifying to note that a sentence � � � is also a simple word-graph. The CKY algorithm
exploits this by numbering a position between the words ��� and � � � � , for all

(� �

,

by the number . It also numbers the position before the first word by 6 . These are the
states of a word-graph with the transitions

& �%(�
��
��� , , for all
(� ��

. Note that in a
sentence, every transition is from a state to the state � (. In general word-graphs this
is not the case; transitions can be from any state to any state � � .

Parsing an FSM with a CFG is known in the literature as the problem of computing the
intersection of the two machines; studies of algorithms for conducting this intersection are
discussed in e.g. (van Noord, 1995). Below I discuss how to extend the two-phase MPD
computation algorithm under STSGs for word-graphs, i.e. SFSMs. Firstly I discuss how
to extend the CKY parser of the first phase for this task in a similar fashion to preceding

130 Chapter 5. Efficient algorithms for DOP

work. After that, I discuss how to compute the MPD of an SFSM under an STSG, in the
second phase of the present algorithm.

Assume again that we are given the STSG � �
 �
� = (.�/ , .$0 , � , � , 1-�) in CNF, and

let � �
� � = (.*/ , .$0 , � , 1)denote the CFG underlying it. Moreover, let � � denote the

wordgraph �7� ���������0����� ��1 � where �5J �+68�:����� � � , � � (, �3J �H� ��� (� � � � , and
� denotes 6 and � denotes � . For the rest of this section, we assume that � � .%0 holds.

First phase

Recall that when the CKY algorithm parses the sentence � � � under a CFG, it maintains
the following invariant for every entry � �� � 9 in its table:

6 4 8 � ��! � 0� � 9 if and only if (iff)
6 4 8 � �4 � �� � holds in the CFG at hand.

Both parts of the CKY, Deduce and Init, maintain this. In particular, the Deduce part also
relies in its inference on this invariant when combining a partial-derivation of � �� together
with a partial-derivation of � � � into a partial-derivation of � �� .

For a word-graph with a set of states �+68������� � � , � � (, the CKY employs a table
as used for a sentence of length � . The only change in the CKY algorithm is in the Init
part, which now adds the items

6 4 � � � , for all
6 4 � ��! 1 , to entry � �� � 9 if there is

a transition
& 0���)�
�	� , in the word-graph at hand. Figure 5.8 shows the CKY algorithm

extended for word-graphs. One can easily see that this extension of Init still fulfills the
CKY invariant. A useful property of word-graphs is that if there is a path from state
to state

	
and a path from state

	
to state � , then there is a path from state to state � .

Therefore, it is easy to prove that the above modest extension of the CKY is sufficient to
maintain the invariant of the CKY algorithm for parsing word-graphs. The CKY table now
contains a parse-forest consisting of all possible parses of every sequence of transitions,
i.e. all paths, in the input word-graph.

The time-complexity of this extended CKY for word-graphs is a function of the num-
ber of states � . Similar to the original CKY, the time-complexity is � � � 1 � � � � � and the
space-complexity is � � � 1 � � � � � . Note that the number of transitions between any two
states does not affect this time-complexity. The number of transitions does not play a role
in the parsing steps taken by the CKY Deduce and it only introduces an additional contant
of time and space complexity during CKY Init. But even this constant is accounted for
the worst case complexity analysis given above (the � ��� notation).

Second phase

Intersection derivation: An intersection-derivation (or simply i-derivation) of � �
 �
� with

� � is a pair ��� �
 �
��� ��� � � , where � �
 �

� is a � �
 �
� derivation of the sentence � � � ,

and ��� � is a � � derivation of � � � , i.e. ��� � = 68� 	 � �������:� 	 ��� � �4 � � � , where; (� � 	 :
	 � !/� .

Probability of i-derivation: The probability of the i-derivation ��� �
 �
�H� ��� �=� is equal to

the multiplication of the probability of � �
 �
� with the probability of ��� � .

5.5. Useful heuristics for a smaller STSG 131

Init: ; & �� �)�
�I,�! �; 6 4 �.!1
add

6 4 � � to � �� � 9; � 4 � � ! � �� � 9; 6 4 � ! 1
add

6 4 � � to � 0� � 9
Deduce: ; 6 � �� � and

; ���� � �; �� 	 ��� and
; 6 4 � � ! � ��
 � 	 9

if � 4 8 � ! � � 	 � � 9
then add

6 4 � � � o � 0� � 9; � 4 � � ! � 0� � 9 and
; 6 4 � !1

add
6 4 � � to � 0� � 9

Figure 5.8: CKY algorithm for parsing word-graphs under CFGs in CNF

MPiD: The Most Probable i-Derivation (MPiD) of a word-graph � � under the STSG
� �
 �

� is defined as the pair ��� �
 �
��� ��� � � with the maximum probability.

For computing the MPiD of � � under � �
 �
� we note that the second phase of the present

algorithm does not discriminate between a word-graph and a sentence; all it sees is a
parse-forest in a CKY table. Therefore, algorithm 5.7 can be applied for computing the
MPiD of an input word-graph without transition probabilities, i.e. an FSM. For incorpo-
rating the probabilities of the transition of an SFSM word-graph, the algorithm is extended
in a very simple manner: for every item

6 4 � � � in entry � 0� � 9 the term for 1 � is multi-
plied with the transition probability 1 � & 0� �)�0� � ,
� . Figure 5.9 exhibits the specification of
this algorithm. A proof of the correctness of this algorithm is very simple and will be
skipped here.

The algorithm in figure 5.9 can be adapted for computing the total probability of a
given word-graph under the given STSG. This can be achieved by exchanging every

�����

with a
�

.
Similar to the original algorithm, the time-complexity when applying the optimization

(which is still valid) is � � � � � � � � � and the space-complexity is � � � � � � � � � . The total
times-complexity for both phases of the algorithm is � �0� � � � � � � � � � � � � and the space-
complexity is � �0� � � � � � � � � � � � �

5.5 Useful heuristics for a smaller STSG

Our practice has shown that as soon as the domains and the applications take practical
forms, the interesting DOP STSGs acquire non-manageable sizes. In some cases, these

132 Chapter 5. Efficient algorithms for DOP

1 � � � � � �� � J �����"� ������� [0, n]	 �
� � � ����� ��� � �
and ��� ����� � 	 �

1 � � �+��� 4 8 � �K6 �
 �

1 � �
�H�
 ��� 	/�
�� � � J � ��� � ��� 	"! #

6 4 � � � 2 1 � & 0���)�
� � ,
� � 1 � � �:���
6 4 � � 2 $ % & '����� � �����

� � @ (� � � �+* B � B � � 1 � �:� �
� (� (� � 1 � � � (��� 4 8 � �
0� � ���
6 4 � � 2 ����� ��� ��� � 1 � �
�H� 6 4 � � �
0� 	 � �$ % & '����� � �����

� � @ (� � � �+* B � B � � 1F�
� �:�
� * � * � � 1 � �
� * �� 4 8 � � 	 � � �

Figure 5.9: Algorithm for computing the MPiD of word-graph � �

models could not be acquired or executed, even on sizeable machines, due to the huge
number of elementary-trees (typically exceeding a hundered million for small domains).
And in the few cases where they could be acquired and executed, various problems were
encountered: sparse data effects, extremely slow execution-times and extremely small
probabilities. A possible solution is to search for approximations that are manageable.

In analogy to n-gram models, Bod (Bod, 1995a) suggested to infer DOP STSGs with
elementary-trees of some maximal depth (i.e. number of edges in longest path). In many
cases this proved quite useful, e.g. maximum depth four turned out to be a good ap-
proximation in various situations. However, since limiting subtree-depth to small values
(typically depth one or two) simply implies sacrificing accuracy, one ends up employing
“mid-range” values (e.g. four, five or six). For mid-range values the number of subtrees
remains extremely large (depth four already exceeds a couple of million for small do-
mains). Therefore, usually limiting subtree-depth alone is not effective enough(Bonnema
and Scha, 1999). Next I discuss shortly other similar heuristics that are at least as effective
as the upper bound on depth and can be applied in conjunction with it.

An interesting aspect of the MPD in DOP is a general tendency for preferring shorter
derivations involving more probable trees. Shorter derivations imply a smaller number of
substitutions. In general, one can imagine that there is an upper bound on the number of
substitutions in most probable derivations of sentences of a certain domain under some
DOP model.

In practice, this knowledge can be exploited in two different ways. Firstly, during
training, off line, a smaller size DOP STSG can be projected from the tree-bank. This is
operationalized through setting an upper bound on the number of substitution-sites a DOP
STSG’s elementary-tree is allowed to have; for example, a maximum of two substitution-
sites per elementary-tree. This heuristic has been exploited in many experiments and

5.6. Conclusion 133

turned out to reduce the size of the DOP STSG up to two orders of magnitude without
loss of accuracy or coverage e.g. (Sima’an, 1995; Sima’an, 1997a; Bod et al., 1996a; Scha
et al., 1996; Bonnema et al., 1997). And secondly, during the computation of the MPD,
an upper bound on the number of substitutions can be exploited for pruning derivations
exceeding that upper bound. The latter pruning heuristic has not been applied yet in our
system. In any event, the two heuristics are complementary to each other and can be
applied simultaneously.

Other heuristics in the same spirit turned out to be useful: an upper-bound on the
number of terminals per elementary-tree and an upper bound on the number of consecu-
tive terminals per elementary-tree. In total, there are currently four upper bounds in use:
on depth (denoted

�
), on the number of substitution-sites (denoted

), on the number of

terminals (denoted
<
) and on the number of adjacent terminals (denoted �). These up-

per bounds are combined together in conjunction during learning a DOP STSG. In most
experiments reported in this thesis these heuristics are employed in some form or another.

5.6 Conclusion

In this chapter we presented various deterministic polynomial-time algorithms for parsing
and disambiguation under the DOP model. We also presented optimizations of these
algorithms that make them particularly suitable to deal efficiently with the DOP STSGs,
which are typically extremely large; in particular, these algorithms have time-complexity
linear in STSG size at almost no extra memory cost. We also discussed various useful
heuristics for projecting smaller and more feasible DOP STSGs from large tree-banks.

The majority of the algorithms in this chapter were originally presented in (Sima’an
et al., 1994; Sima’an, 1995) and later in an improved version in (Sima’an, 1997a). Prior to
the presentation of these algorithms, preceding work on DOP was unaware of the possibil-
ity of deterministic polynomial-time parsing and disambiguation under STSGs in general
and under DOP in particular.

The present algorithms have been implemented in an environment for training DOP
STSGs and parsing and disambiguation of sentences and word-graphs (i.e. SFSMs),
dubbed the Data Oriented Parsing and Disambiguation System (DOPDIS). Since their
implementation in DOPDIS, the present algorithms have enabled intensive studies of the
behavior of the DOP model, a model that was considered unattainable by many. The
speedup that these algorithms achieve (in comparison to preceding Monte-Carlo (Bod,
1995a)) is in the order of magnitude of hundreds of times (due to the optimized deter-
ministic polynomial nature of the algorithms rather than to any implementation detail).
This has made DOPDIS a very attractive experimentation-tool for other work involving
DOP e.g. (Bonnema, 1996; Bod et al., 1996a; Scha et al., 1996; Bonnema et al., 1997).
Currently, DOPDIS serves as the kernel of the Speech-Understanding Environment of the
Probabilistic Natural Language Processing (Scha et al., 1996) in the OVIS system, that
is being developed in the Priority Programme Language and Speech Technology of the
Netherlands Organization for Scientific Research (NWO).

Chapter 6

Implementation and empirical testing

This chapter discusses the details of the current implementation of the ARS learning and
parsing algorithms (chapter 4) and exhibits an empirical study of its application to spe-
cializing DOP for two domains: the Dutch OVIS domain (train time-table information)
and the American ATIS domain (air-travel information). These domains are represented
respectively by the Amsterdam OVIS tree-bank (syntactic and semantic annotation) and
the SRI-ATIS tree-bank

�

(syntactic annotation).

The experiments on the OVIS domain compare the behavior of various DOP mod-
els and Specialized DOP models that are trained on the OVIS tree-bank. In some of
the experiments the models are trained only on the syntactic annotation of the tree-bank,
and in the other experiments they are trained on the syntactic-semantic annotation. In
each case, the experiments observe the effect of varying some training-parameters of the
models (e.g specialization algorithm, subtree depth, training tree-bank size) on their be-
havior; only one parameter is allowed to vary in each experiment, while the rest of the
parameters are fixed. A similar but less extensive set of experiments compares the models
on the SRI-ATIS tree-bank. To the best of my knowledge, the present experiments are
the most extensive experiments ever that test the DOP model on large tree-banks using
cross-validation testing.

The structure of this chapter is as follows. Section 6.1 discusses the implementation
details of the learning and parsing algorithms. Section 6.2 introduces the goals of the
experiments and their general setting, and the measures that are used for evaluating the
systems. Section 6.3 exhibits experiments on the OVIS domain for parsing word-strings
and word-graphs. Section 6.4 exhibits experiments on the ATIS domain for parsing word-
strings. And finally section 6.5 discusses the achievements and the results of the experi-
ments and summarizes the general conclusions on the applicability and utility of ARS to
specializing DOP for these domains.

�

I am grateful to SRI International Cambridge (UK) for allowing me to conduct experiments on their
tree-bank. The SRI-ATIS tree-bank differs considerably from the ATIS tree-bank of the Penn Treebank
Project.

135

136 Chapter 6. Implementation and empirical testing

6.1 Implementation details

This section discusses the details of the implementations of the parsing and learning al-
gorithms of chapters 4 and 5 as used in the present experiments.

6.1.1 ARS learning algorithms

In order to implement the ARS learning algorithms of the preceding chapter, it is nec-
essary to take into consideration various issues such as data-sparseness, and time- and
memory-costs of learning on existing tree-banks. Next we discuss how these issues are
dealt with in the current implementation.

(6.1.1.A) Data-sparseness effects:

In order to reduce the effects of data-sparseness we incorporate the following solutions
into the implementation:

Sparseness of lexical atoms: Because sequences of actual words (lexical atoms) of the
language often have low frequencies, the current implementation allows learning
only SSFs that are sequences of grammar symbols that are not words of the lan-
guage (i.e. are not terminals). This implies that the sequences of symbols that
the learning algorithm considers consist of either PoSTag-symbols or higher level
phrasal symbols. This is clearly a severe limitation of the current implementation
since lexical information is essential in disambiguation of syntax and semantics.
Without a central role for lexical information in ambiguity reduction specializa-
tion, one can not expect extensive ambiguity reduction to take place. Therefore,
the current implementation of the learning algorithms is severely suboptimal. Note
that this limitation is not so much a theoretical one as a practical choice dictated in
part by data-sparseness and in part by the limited annotations of the available tree-
banks

�

. Some suggestions on how to lexicalize the learning algorithms in practice
(in the light of sparse-data problems) were discussed in section 4.6.

Stop condition: In the theoretical version of the sequential covering scheme, the itera-
tions continue until the tree-bank is totally reduced into the roots of the original
trees. However, since in real tree-banks the SSFs that are closer to the roots of
the trees are much less frequent than SSFs that are closer to the leaves, the last
iterations of the algorithm operate on less frequent SSFs. This implies that the
Constituency Probabilities of the SSFs become poorer and their ambiguity-sets be-
come more prone to incompleteness. By setting a threshold on the frequency of
the sequences of symbols that are considered during learning it is possible to avoid
these problems. Moreover, this threshold can serve as a limit on the size of the
learned grammar. Therefore, a threshold

�
is set on the frequency of SSFs; SSFs

�

These tree-banks do not include a lexicon that describes the words of the language by e.g. feature
structures.

6.1. Implementation details 137

are considered Viable iff they abide by the requirements of the algorithm given in
figure 4.2 and also have a frequency that exceeds the threshold. In general, after
the learning algorithm stops there will remain a tree-bank of partial-trees that is not
represented in the learned grammar. After the last iteration all these partial-trees
are then included in the learned grammar, thereby expanding the learned grammar
to represent the whole tree-bank. For specializing DOP, the root nodes of all trees
of the tree-bank are also marked as cut nodes after the last iteration.

This frequency threshold is supplemented by a “coverage upper-bound” in the spirit
of the one employed in (Samuelsson, 1994a). In this case, however, the coverage
upper-bound is set in a direct manner on the percentage of nodes in the tree-bank
trees that is reduced in all iterations. In other words, as long as the tree-bank con-
tains a percentage of nodes (w.r.t. the original tree-bank) that exceeds a priori se-
lected percentage (one minus the upper-bound) and there are SSFs to learn, the
learning algorithm continues. Not all implementations benefit from this kind of a
coverage upper-bound stop condition. In those implementations and experiments
that did benefit from it, this fact will be mentioned and the value of the coverage
upper-bound will be specified.

(6.1.1.B) Reducing time and memory costs of learning

Off-line learning does not have to meet real-time requirements. However, practical mem-
ory and time limitations on the learning system do exist: computers have physical limita-
tions and our patience is not without limit. To enable acceptable time and memory costs
of learning, the current implementation incorporates the following approximations:

Frequencies: The computation of the frequencies (total frequency and frequency as an
SSF) of a sequence of symbols from the tree-bank trees is a time-consuming task; in
fact, the number of all sequences that can be extracted from the trees of a tree-bank
prohibits exhaustive training on realistic tree-banks. Therefore, we approximate the
frequencies of sequences of symbols in the tree-bank by assuming that sequences
that occur lower (closer to the leaves) in the trees rarely occur again higher (closer
to the root) in the trees. For implementing this in the sequential covering scheme,
the frequency of a sequence of symbols is computed only with respect to the current
iteration. In other words, at each iteration of the algorithm the frequencies are
initiated at zero and the current frequencies are computed by extracting sequences
of symbols from the frontiers of the partial-trees in the current tree-bank.

Length threshold: The length of the sequences of symbols that are considered during
learning can be limited by a predefined threshold without jeopardizing the quality
of the learned grammar; the threshold can be set at a length that is expected to be
larger than most learned SSFs. In most of the present experiments the “magic”
number 8 was selected to be the threshold on the length of sequences of symbols
that are considered during learning.

138 Chapter 6. Implementation and empirical testing

(6.1.1.C) Extensions to the learning algorithms

In some experiments we also employed a different definition of the target-concept:

Equivalence classes for SSFs: A common problem in most tree-banks is repetition of
categories under the same mother node. For example, in the UPenn tree-bank there
is the shallow multi-modifiers construction: consecutive 1 1 s that are the children
of the same node in tree-bank trees constitute sequences of any length one can think
of. Usually this causes the number of grammar rules to explode and prohibits the
recognition of constructions that are mere “number modifications” of each other.
The same problem occurs in noun-phrases consisting of compound nouns. It is
usually felt that these impoverished constructions tend to prohibit successful learn-
ing.

The solution proposed for the present algorithm is a simple and limited one; its only
merit is the fact that it is an approximation to the intuitive ideal solution. It deals
only with cases of consecutive repetitions of single symbols within the borders of
SSFs such as in “ � 1 1 1 �����K1 1 ”. More formally, we redefine the target-concept
of the learning algorithms from individual SSFs to equivalence classes of SSFs. To
this end we define first the notion of a bracketed SSF:

Bracketed SSF: A bracketed SSF is obtained from a partial-tree � by removing the
labels of its non-leaf nodes leaving behind a partial-tree with labels only on
the leaf nodes.

Initial bracketed-SSF: An Initial bracketed-SSF is obtained from a bracketed SSF
by removing all nodes that dominate non-leaf nodes, leaving an ordered non-
connected sequence of partial-trees or individual-nodes.

An initial bracketed SSF is an ordered sequence of bracketed sequences of grammar
symbols. For example, for the partial-tree

' �
 � � � � � � �
 � � � ���
 �0�0� - for a sentence
such as “np ate the banana” - the initial bracketed SSF is

� �F� � �
 � . An ini-

tial bracketed SSF � is represented by an ordered sequence of brackets � � ������� � ,
where � � is the -th element of � (which is either a single symbol or a bracketed
sequence of symbols in �). Thus, the sequence

� � � � �
 � can be represented by

the sequence of brackets �
 �D� � � �:� � �
 � .
Let

� 1F�
� � � represent the function that removes consecutive repetitions of symbols
from a bracket ��� . The equivalence classes of SSFs are obtained by partitioning the
space of bracketed SSFs in the tree-bank by the following relation of one-symbol-
repetition (� � �

):

& � (� ������� (� ��� * � ������� * � , ! � � �
iff

	 J

and for all

(� ��

:

� 1F�
� (� � is identical to
� 1 � � * � � .

Not all implementations and experiments employ this definition. In those experiments
where the implementation is based on this extension, this will be stated explicitly.

6.1. Implementation details 139

6.1.2 Implementation detail of the parsers

The implementation of the various parsing and disambiguation algorithms (i.e. partial-
parser TSG, DOP STSG, SDOP STSG and ISDOP STSG) involved in the experiments is
based on the DOPDIS implementation of chapter 5. Two implementation issues, however,
must be addressed for the present experiments:

Unknown words: For enabling the parsing and disambiguation of sentences containing
words that are unknown to the parser, we employ a simplified version of the Add-
One method (Gale and Church, 1994) as follows:

1. The elementary-tree sets of the specialized TSG (partial-parser), DOP STSG
and the SDOP STSG are extended with a set of elementary-trees

�+1 � � 4 � � � � � � � ��1 � � ' � 1 � ��� � � � � � � � � � � < � � G�� � � � �
 	 �
where the symbol UNKNOWN is a new terminal symbol that is used to denote
every word that is not a terminal of the (S)TSG. A word in the input sentence
that is not a terminal of the (S)TSG is replaced by the terminal UNKNOWN
and then the resulting sentence is parsed.

2. Every elementary-tree POS 4 UNKNOWN receives a probability in the DOP
STSG and the SDOP STSG by the Add-One method as follows: when pro-
jecting the DOP or SDOP STSG from the training tree-bank the frequency of
this elementary-tree is set to be equal to one and the frequencies of all other
elementary-trees obtained from the training tree-bank are set to one more than
their actual frequency. This probability assignment is equivalent to an Add-
One method that assumes that there is exactly one unknown word in the do-
main; this is of course a wrong assumption that results in assigning too small
probabilities to unknown words. The only reason for making this assumption
is the simplicity of its implementation.

In the DOP and SDOP models that allow the computation of semantics, unknown
words do not have semantics and thus do not allow the computation of a semantic
formula for the whole input sentence.

Projection parameters: As explained in section 5.5, to obtain manageable DOP models,
a DOP STSG is projected from the training tree-bank under constraints on the form
of the subtrees that constitute its elementary-trees; these constraints are expressed
as upper-bounds on: the depth (d), the number of substitution-sites (n), the number
of terminals (l) and the number of consecutive terminals (L) of the subtree. In the
experiments reported in this thesis these constraints apply to all subtrees but the
subtrees of depth 1, i.e. subtrees of depth 1 are all allowed to be elementary-trees
of the projected STSG whatever the constraints are.

In the sequel we represent the four upper-bounds by the short notation
���
�� <��

��� .
For example,

� �
 * < � � denotes a DOP STSG obtained from a tree-bank such

140 Chapter 6. Implementation and empirical testing

that every elementary-tree has at most depth 4, and a frontier containing at most
2 substitution-sites and 7 terminals; moreover, the length of any consecutive se-
quence of terminals on the frontier of that elementary-tree is limited to 3 terminals.

The same constraints are used in projecting SDOP models. Note however that for
SDOP models obtaining the subtrees takes place only at the marked nodes; the
elementary-trees of the specialized TSG are atomic units and thus have depth 1.
The elementary-trees of the SDOP model are combinations of the elementary-trees
of the specialized TSG. Their depth is therefore computed such that the atomicity
of the elementary-trees of the specialized TSG is not violated. To highlight this
issues the projection parameters for the SDOP models are shortly represented by
���
�� <�� ��� (note � rather than

�
for depth of a subtree).

Since in the present experiments all projection parameters except for the upper-
bound on the depth will usually be fixed, the DOP STSG obtained under a depth
upper-bound that is equal to an integer will be represented by the short notation
DOP � . A similar notation is used for the SDOP models e.g. SDOP

�

denotes a SDOP
STSG which has elementary-trees of depth equal or less than 2. For ISDOP models
(section 4.4.4), there are two depth upper-bounds for respectively the SDOP model
and the DOP model. Therefore, the notation ISDOP

� � will be used to denote an
ISDOP model that integrates an SDOP � with a DOP� model.

6.2 Empirical evaluation: preface

In sections 6.3 and 6.4 we present experiments both on the OVIS and the ATIS domains.
Before we exhibit the results of the experiments, it is necessary to state the goals of the
experiments and the limitations of the current implementation, and to list the definitions
of the evaluation measures that are used. This section discusses exactly these issues.

6.2.1 Goals, expectations and limitations

The main goal of the experiments in this chapter is to explore the merits and scope of
application of ARS for specializing DOP to certain domains. Essential in this respect is
to observe the influence of the ARS on the tree-language coverage (see chapter 4) of the
specialized grammars in comparison to the original grammars. The experiments should
clearly show that ARS specialization conserves the tree-language coverage. Moreover, the
specialization of DOP models should not result in unexpectedly worse accuracy results
than the original DOP models; in fact, when the amount of training material is sufficient
we expect that the ARS should not result in any worsening of precision at all. And finally,
we expect from specialization a significant improvement in time and space consumption.
Of course, the extent of this improvement strongly depends on the ability of the current
implementation of the learning algorithms to reduce ambiguity.

The ARS algorithm that we test here is the GRF algorithm of section 4.5. Although the

6.2. Empirical evaluation: preface 141

Entropy Minimization algorithm can be expected to be superior to the GRF algorithm
�

,
the GRF algorithm has the advantage of much faster learning. Fast learning enables thor-
ough experimentation with variations of the GRF algorithm on two tree-banks and on
two tasks (sentence and word-graph parsing and disambiguation). Of course, being an
ARS algorithm, and despite of the fact that it might not be optimal, the experiments with
the GRF algorithm must show that it is possible to specialize grammars without loss of
tree-language coverage and with some gain in processing time and space.

The goals of and the expectations from the experiments are of course subject to the
limitations of the available tree-banks, the hardware and the current implementation of
the learning algorithm. For DOP, the available hardware (SGI Indigo2 640 MB RAM)
allows extensive experimentation on tree-banks such as the OVIS (Scha et al., 1996) and
SRI-ATIS (Carter, 1997) tree-banks (respectively 10000 and 13335 annotated utterances).
These two tree-banks represent the kind of domains that have limited diversity in lan-
guage use and are therefore interesting for the task of grammar specialization. In fact,
these domains represent the typical kind of training and test material that was used in ear-
lier studies of Broad-Coverage Grammar (BCG) specialization (Samuelsson and Rayner,
1991; Samuelsson, 1994b; Srinivas and Joshi, 1995; Neumann, 1994). Of course, the
conclusions of any experiments on this kind of limited domains do not generalize to other
kinds of domains.

The main limitation of the current implementation of the ARS learning algorithms is
that they are not lexicalized, i.e. lexicon-entries do not play any role in the learning algo-
rithms. This limitation means that the ambiguity reduction will be less spectacular than
one might wish or expect. Without lexicalization it is very hard to control the combinato-
rial explosion of the number of analyses. As mentioned earlier, this limitation is merely
a byproduct of data-sparseness and limited tree-bank annotations. Other clear limitations
of the current implementations are the sequential covering scheme’s suboptimal search
strategy and the many approximations that are necessary for achieving a system that can
run on the available hardware.

6.2.2 The systems that are compared

To observe the effects of ARS it is necessary to compare the specialized models (result-
ing from ARS training) to the original (or base-line) models. Preceding work on BCG
specialization compares the specialized grammars (result of EBL training) to base-line
systems that are based on full-fledged BCGs e.g. the CLE system in (Samuelsson and
Rayner, 1991; Samuelsson, 1994b) and the XTAG system in (Srinivas and Joshi, 1995).
Since in our case we are interested mainly in the specialization of DOP models and the
effects of specialization on the total process of parsing and disambiguation (and since we
have no access to any BCG-based system), the comparison in this work will be mainly
between the specialized DOP models and the original DOP models. More specifically,
in the present experiments the comparison is between three parsing and disambiguation

�

The Entropy Minimization algorithm is expected to result in less ambiguous, faster and smaller spe-
cialized grammars and SDOP models.

142 Chapter 6. Implementation and empirical testing

models: DOP, SDOP and ISDOP. The DOP model serves as the base-line model and the
SDOP and ISDOP models are the results of the ARS training.

In addition to this comparison, we also observe whether (and to what extent) ARS
training conserves the tree-language coverage; this is achieved by comparing the special-
ized grammar (a TSG) directly to the CFG that underlies the tree-bank (as the base-line
parser). Note that usually the grammar that underlies a tree-bank is much smaller than
any BCG and is based on an annotation scheme that is manually tailored to a certain extent
for the domain. This implies that when comparing the specialized grammar to the CFG
underlying a tree-bank, the net gain (e.g. speed-up) from specialization can be expected
to be less spectacular than when comparing it against a real BCG.

In evaluating the results of specialization it is necessary to take care that the systems
that are being compared do not feature extra optimizations that are not related to the spe-
cialization. Therefore, in the present comparison all compared systems are based on the
same parsing and disambiguation implementations that are described in chapter 5. The
effects of the optimizations of chapter 5 are therefore included in the results of all systems.
Thus, any speed-up that is observed is entirely due to the specialization using ARS

�

. The
net speed-up which results from both ARS and the other optimizations that this thesis
presents is therefore much larger than the speed-up observed in the present experiments

�

.

It is important here to note that none of the parsing and disambiguation systems in-
volved in the present experiments employ any preprocessing tools e.g. Part-of-Speech
Taggers. Generally speaking, the form of the input to these systems is a word-graph
(an SFSM as defined in chapter 2) of actual words of the language; of course, a simple
sequence of words (i.e. a sentence) is a special case of a word-graph.

The output of each of DOP STSG, SDOP STSG and ISDOP STSG is the parse gen-
erated by the Most Probable Derivation (MPD) (or MPiD in the case of an actual SFSM
as chapter 5 explains) which the STSG assigns to the input. Along with the parse, when
the training material contains semantic information, the output also contains semantic in-
formation. When testing the tree-language coverage of a TSG or the CFG underlying the
tree-bank, the test will consist of checking whether the parse-space which the TSG/CFG
assigns to the input contains the right parse-tree (as found in the tree-bank) or not.

6.2.3 Evaluation measures

In an experiment, a system is trained on one portion of the available tree-bank, the
training-set, and then tested on another portion, the test-set. The partitioning into train/test

�

In most preceding work on grammar specialization, the reported speed-up is the result of two or
more factors that include EBL training. In fact, usually the larger portion of speed-up is due to parser-
optimizations and heuristics - e.g. best-first - that are not related to EBL.

�

In fact, the speed-up which the optimization of chapter 5 achieves is much larger than that achieved
by ARS. This speed-up depends on the size of the DOP model. For the OVIS and SRI-ATIS domains, this
speed-up can vary between 10-100 times. When the comparison is against the Monte-Carlo algorithm (Bod,
1993a), the speed-up is even larger - in some cases it is approximately 500 times.

6.2. Empirical evaluation: preface 143

sets is achieved by a random generator. Some experiments are conducted on various
independent partitions into train/test sets and the means and standard deviations of the
measurements on the various partitions are calculated and compared. For the task of an-
alyzing (i.e. parsing and disambiguating) sentences, the test-set is considered a sequence
of pairs

& ' �
 ���
 � �)� ��� ' � -� � G ' �H, , where the
' �
 ���
 � � is fed as input to the system that is

being evaluated and the ��� ' � -� � G ' � is considered the correct parse for that sentence (i.e.
the gold-standard). And for the task of analyzing word-graphs, the test-set is considered
a sequence of triples

&�' �
 ���
 � �)�
� �+G � - � G�� � � � ��� ' � -� � G ' �H, , where the � �HG � - � G�� � � is the
input to the system, the

' �
 ���
 � � is the correct sequence of words and the ��� ' � -� � G ' � is
the correct parse for the sentence

�

.
The output of a parsing and disambiguation system for an input (sentence or word-

graph) is a parse-tree which we refer to here with the term the output-parse. To compare
the various systems, various measurements are done on the output of each system. The
measurements on the output of a system (parsing and disambiguation) are conducted at
two points: 1) after parsing but before disambiguation referred to with “parser quality
measures”, and 2) after parsing and disambiguation referred to with “overall-system mea-
sures”. The measurements after the parsing stage (the spanning of a parse-space for the
input) enable the evaluation of the string-language and the tree-language of the parser.
And the measurements after the disambiguation stage enable the evaluation of the system
as a whole. Together, the two kinds of measures enable also the evaluation of the quality
of the disambiguator (i.e. the quality of the probability distributions).

Some notation is necessary for the definition of the evaluation criteria:

� The size of the test-set � � ��� , denoted � � � ��� � , is the number of trees in � � ��� .

� A non-terminal node-label in a parse-tree is a pair
&�' �
 ���
 ��� ' � 	��
 � � � , where' �
 ���
 � is a syntactic category and

' � 	��
 � �� � is a semantic category. If the tree-
bank does not have any semantic categories then every non-terminal node-label
is a scalar

' �
 ���
 � ; the scalar
' �
 ���
 � can be viewed as equivalent to a pair&�' �
 ���
 � ��� � � � , where � � � � is a nil semantic category.

� For any tree � : � G �
 � ��G8� ��� denotes the sentence (ordered sequence of terminals)
on the frontier of � , � � � �
 � �I� denotes the tree resulting from � after removing all
terminal nodes, � �
 ���
 � ��� denotes the tree resulting from � � � �
 � ��� after substi-
tuting instead of every node-label

& ' �
 ���
 � � ' � 	��
 � �� � , the pair&�' �
 ���
 � ��� � � � , , � � 	��
 � �� � �I� denotes the tree resulting from � � � �
 � ��� after
substituting instead of every node-label

& ' �
 ���
 � � ' � 	��
 � �� � , the pair& � 	 � � � ' � 	��
 � � � , where � 	 � � is a nil syntactic category.

� For every natural number

 � � � � �K� � : � � and � � denote respectively the

th input

sentence/word-graph and the

th test-parse (the correct parse for
� �) in � � ��� ,

and � � denotes the output-parse for input
� � (output by the system that is being

�

Note that here we do not demand that the word-graph necessarily contain the correct sentence. This
takes into consideration the realistic possibility that the word-graph that is output by a speech-recognizer
does not contain the correct utterance.

144 Chapter 6. Implementation and empirical testing

evaluated). The nil-tree � � � is output by the system whenever the system fails to
compute a tree for the input. � � � does not contain any nodes at all.

� For every tree � (not equal to � � �): the terminals of � are enumerated from left
to right by consecutive natural numbers starting from one. For every non-terminal
node in � : if the node has label � and covers a (non-empty) sequence of terminals
enumerated 0������� �D� then that node is represented by the triple

& � �
 �/(� � , referred
to as a labeled-bracket; the pair

& �5(� � , is called the non-labeled bracket of node& � �
 � (� � , . We use � � � G � ��� to denote the set of labeled-brackets that correspond
to the non-terminal nodes of tree � , and � �
 � � � G � �I� to denote the set of non-
labeled brackets that correspond to the non-terminal nodes of � . The tree � can be
represented as a pair

& � G �
 � ��G8� ����� � � � G � �I��, . The nil-tree � � � is represented
by the pair

& �:� 	 , .
� For any two entities A and B of the same type

�

:

� �F� 6 ��� � J
� (

if
6 J J � ,

6 otherwise.

Assuming that the system that is being evaluated consists of a parser and a disambigua-
tor, the evaluation measures can be divided into two sections: parser quality measures
and overall-system measures. The overall-system measures can be divided into three sec-
tions: exact-match measures, bracketing measures and other measures. For computing
the overall-system measures we employ the evaluation-environment � G � � � * � �HG 	 (Bon-
nema, 1998).

Next we list the definitions of the measures. In these definitions,
� � ranges over(� � � � � ��� � , where � � ��� is the test-set:

1. Parser quality measures:

Recognized is the percentage of test-set sentences/word-graphs that is assigned a
parse by the system. This measures the coverage of the string-language of the
parser.

TLC or Tree-Language Coverage, is the percentage of test-set sentences/word-
graphs for which the test-parse is found in the parse-space that the parser
assigns to the input. This measures the coverage of the tree-language of the
parser and the quality of the correspondence between the string-language and
tree-language of the parser.

2. Exact match measures:
�

The meaning of the symbol “==” depends on the type of A and B. For entities of the type trees
�������

denotes the proposition that A is identical to B. For
�

and
�

that are (or compute to) integers,
�������

denotes simply integer equivalence.

6.2. Empirical evaluation: preface 145

Exact match is equal to the percentage
� � � E � � � B 0 � �] 0 � ��0]�� � 	 � � � � ��� 	�� , Note the term Recog-

nized in the formula, i.e. only the inputs that are assigned a tree that is not
equal to � � � are counted in this term.

Sem. exact match or semantic exact match, is equal to

� � � � ��� � 	��
 � � � ��������� � 	��
 � � � �D�7�0�
� � � ��� � � � � � ���
 �� � �

Syn. exact match or syntactic exact match, is equal to

� � � � ��� �
 ���
 � ��� ����� �
 ���
 � � � �0�
� � � ��� � � � � � ���
 �� � �

3. Bracketing measures: PARSEVAL (Black et al., 1991) measures.

Labeled syntactic: Let � �
 � � �-� denote the set � � � � G � � 	 � � ��� �
 ���
 � �-� �0� and
� �
 � � �D� denote the set � � � � G�� � 	 � � � � �
 ���
 � �=����� :
Syn. LBR or Syntactic Labeled Bracketing Recall;

� � � � �
 � � ��� � � �
 � � �D���� � � � �
 � � � � �
Syn. LBP or Syntactic Labeled Bracketing Precision,

� � � � �
 � � ��� � � �
 � � �D���� � � � �
 � � ��� �
Labeled semantic: Let � � 	 � � �I� denote the set � � � � G � � 	 � � ��� � 	��
 � � � �I���0�

and � � 	 � � � � denote the set � � � � G�� � 	 � � � � � 	��
 � �� � �=� �0� :
Sem. LBR or Semantic Labeled Bracketing Recall,

� � � � � 	 � � ��� � � � 	 � � �D� �� � � � � 	 � � � ���
Sem. LBP or Semantic Labeled Bracketing Precision,

� � � � � 	 � � ��� � � � 	 � � �D� �� � � � � 	 � � ��� �
Non-labeled: Bracketing measures on non-labeled trees:

BR or Non-Labeled Bracketing Recall,

� � � � �
 � � � G8� ���7� � � �
 � � � G � � ��� �� � � � �
 � � � G8� �D�7���

146 Chapter 6. Implementation and empirical testing

BP or Non-Labeled Bracketing Precision,
� � � � �
 � � � G8� ���7� � � �
 � � � G � � ��� �� � � � �
 � � � G8� ��� � �

Crossing-measures: Two non-labeled brackets
& � ��� , and

& 	 � < , are called crossing
iff � � 	 � � � < or

	 � � � < � � . For every two sets of non-labeled brack-
ets � and . , G � '+' � � �9. � denotes the subset of brackets from � that cross
with a least one bracket in . .

NCB recall or Non-Crossing Brackets Recall,
� � � � �
 � � � G8� ��� ��� � � G � 'H' �
� �
 � � � G � ��� �	��� �
 � � � G � � � �0���� � � � �
 � � � G8� �D�7���

NCB Precision or Non-Crossing Brackets Precision,
� � � � �
 � � � G8� ��� ��� � � G � 'H' �
� �
 � � � G � ��� �	��� �
 � � � G � � � �0���� � � � �
 � � � G8� ��� � �

0-Crossing or percentage of Zero-Crossing sentences,
� � � �F��68�� G � 'H' � �����0�D� ���
� � � ��� � � � � � � �
 � � �

Input characteristics: Some empirical information on the test-set:

#of sens/WGs or number of sentences/Word-Graphs in test-set � � ��� , i.e.
� � � ��� � . This measure is necessary since in some experiments the re-
sults are reported only for some portion of the test-set. For example when
parsing sentences the reported results are only for sentences that contain
at least two words. And when parsing word-graphs, in some tables the
reported results concern only word-graphs that contain the correct sen-
tence.

Sen. Length or average Sentence Length, is the mean length of the sentences
in the test-set � � ��� .

#states in WGs or the average number of states in the word-graphs in � � ��� .

#trans in WGs or the average number of transitions in the word-graphs in
� � ��� .

CPU (secs.) is the Average CPU-time that the parsing and disambiguation system
consumes in order to process the input in test-set � � ��� . The CPU-time
is reported in seconds and is the time consumed by the CPU as reported
by the UNIX system on an Indigo2 machine (one R10000 2.5 processor,
640MB RAM, IRIX64 6.2).

In many experiments we report the mean and standard deviation of every measure com-
puted from the results of multiple partitions of the tree-bank into test/train sets. In those

6.3. Experiments on OVIS tree-bank 147

Annotation #grammar symbols #grammar rules
Annotation non-terminals terminals lexical non-lexical

Syntax+semantics 433 816 1014 1708
Syntax 43 816 921 433

Table 6.1: The OVIS tree-bank in numbers

cases, the standard deviation figure is reported between brackets to the right of the mean,
i.e. 		� �
 (

' � �). For convenience, all percentage figures in the tables are truncated at two
digits after the decimal point; then the rightmost digit (e.g. 2 in 67.62%) was rounded to
the closest of the three digits 0, 5 or 10 (the latter implies incrementing the neighboring
digit). The standard deviations as well as all other figures that are not percentages (e.g.
CPU-times) are not rounded in this manner.

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
nt

ag
e

of
 s

en
te

nc
es

Number of words

Figure 6.1: OVIS tree-bank: percentage of sentences as a function of the number of words
per sentence

6.3 Experiments on OVIS tree-bank

The Amsterdam OVIS tree-bank
�

contains 10000 syntactic and semantic trees. Each of
the trees is the syntactic and semantic analysis of a transcribed user utterance. The user
utterances are typically answers to questions asked by the system in a dialogue that has

�

OpenbaarVervoer Informatie Systeem (OVIS) stands for Public Transport Information System.

148 Chapter 6. Implementation and empirical testing

the goal of filling the slots in a predefined form that represents a travel plan. The slots in
the form typically specify travel information e.g. a travel destination, point of departure,
day and time of departure or arrival. But also other kinds of information pertaining to the
state of the dialogue, e.g. denial of earlier specified values.

For detailed information concerning the syntactic and semantic annotation scheme
of the OVIS tree-bank we refer the reader to (Scha et al., 1996). Here we describe
the tree-bank only briefly. The syntactic annotation of the OVIS tree-bank, although
phrase-structure, does not completely conform to any existing linguistic theory. It does
not contain traces of movements or cyclic constructions and there is no partitioning of
the non-terminal symbols into PoSTags and higher level phrasal symbols. The seman-
tic annotation decorates the syntactic one at the nodes of the trees. It is based on the
update-formalism (Veldhuijzen van Zanten, 1996), which is a typed language specific
for the OVIS domain. The semantic expression associated with an OVIS utterance is an
update-expression from the update-formalism; the update-expression has a type in that
formalism. In the OVIS tree-bank, the nodes of the syntactic trees are annotated with
semantic types. If the correct semantic expression of a node in a tree in the tree-bank can
be computed from the semantics of its daughter nodes in the update-formalism, the node
is decorated with the type of that semantic expression. Following the philosophy of DOP
on semantics (see (Scha, 1990; Van den Berg et al., 1994; Bonnema et al., 1997)), if the
correct semantic-expression of a node in a tree cannot be computed compositionally, then
the node is directly decorated with the type of the correct semantic expression; if there is
no semantic expression (in the formalism) that expresses an intuitively plausible meaning
for the constituent dominated by the node, the node is left unannotated semantically.

Apart from the decoration of the nodes with semantic types, a rewrite system is as-
sociated with the trees in the tree-bank. In this rewrite-system, a “ground” expression
from the update-formalism is associated with every terminal (word of the language). And
a function is associated with every pair

& G � < �)� � � � �H, in the tree-bank, where � � � � is the
type decorating the node which constitutes the left-hand side of G � < � , which is a syntac-
tic rule in a tree in the tree-bank. The function associated with the rule under a node in
the tree-bank enables computing the semantic expression of the node from the semantic-
expressions of its daughter nodes.

Currently, the semantic and syntactic annotations are treated by the DOP model as one
annotation in which the labels of the nodes in the trees are a juxtaposition of the syntactic
and semantic labels. This means that the DOP models that are projected from a syntacti-
cally and semantically annotated tree-bank are also STSGs. Although this results in many
more non-terminal symbols (and thus also DOP model parameters), (Bonnema, 1996;
Bod et al., 1996a) show that the resulting syntactic+semantic DOP models are better than
the mere syntactic DOP models. Here, we follow this practice of combining semantics
with syntax into one simple formalism.

It is worth noting that a large portion of the OVIS tree-bank was annotated semi-
automatically using the DOPDIS system (described in chapter 5). The annotation was
conducted in cycles of training DOPDIS on the existing annotated material and then using

6.3. Experiments on OVIS tree-bank 149

it for semi-automatically annotating new material.
Along with the OVIS tree-bank, there is also an OVIS corpus of the actually spoken

utterances and word-graphs that were hypothesized by a speech-recognizer for these spo-
ken utterances. A spoken utterance and a word-graph in the corpus are associated with a
transcribed utterance and its analysis in the tree-bank.
Table 6.1 (page 147) and figure 6.1 (page 147) summarize the OVIS tree-bank character-
istic numbers and show the graphs of percentage of sentences to number of words. The
average sentence length for all sentences is 3.43 words. However, the results that we re-
port are only for sentences that contain at least two words; the numbers of those sentences
is 6797 and their average length is 4.57 words.

6.3.1 Early experiments: January 1997

In earlier work (Sima’an, 1997e; Sima’an, 1997c; Sima’an, 1997d) we reported experi-
ments testing an early version of the GRF algorithm (section 4.5) on portions of the OVIS
and the ATIS (Hemphill et al., 1990) domains. Apart from the difference in the tree-banks
involved, these experiments differ from the present experiment in some essential aspects
that can be summarized as follows:

Competitors definition: Rather than defining the set of competitors of an SSF to contain
the competitors from all trees of the tree-bank, in this early implementation the set
of competitors of an SSF contained only the competitors from the same tree as the
SSF. This implies that an SSF may have a different set of competitors in a different
tree of the tree-bank. As a consequence, an SSF might be learned only from some of
the tree-bank trees that contain it, thereby jeopardizing the tree-language coverage
ARS requirement.

Local context effects: An SSF was learned only in those contexts in which its GRF ex-
ceeded its competitors in the same contexts. Since the context was not used during
parsing, this also contributed to jeopardizing the tree-language coverage ARS re-
quirement.

No Ambiguity-Sets Completion: The learning algorithms did not employ any mecha-
nism for completing the ambiguity-sets as explained in section 4.4.2.

Specialized DOP: In these early experiments, the result of the learning algorithm was a
tree-bank of trees containing marked nodes; some trees that did not fully reduce dur-
ing learning contain unmarked nodes that are not dominated by any marked nodes.
Rather than marking the roots of these trees (as done in the present algorithms) all
these unmarked nodes were simply also marked as cut nodes. Therefore the result-
ing SDOP models differ from the current SDOP models in that the projection of
subtrees took place also at these nodes.

The following observations were made on basis of these early experiments:

150 Chapter 6. Implementation and empirical testing

� In parsing OVIS and ATIS sentences the specialized TSG lost some tree-language
coverage when compared to the CFG underlying the tree-bank. However, this loss
of tree-language coverage hardly affected the accuracy results of SDOP as com-
pared to DOP (Sima’an, 1997c; Sima’an, 1997d).

� In parsing OVIS word-graphs the SDOP models exhibited hardly any loss of preci-
sion or recall but enabled an average speed-up of 10 times in comparison with the
original DOP models. The speed-up was larger on larger word-graphs. However,
in these experiments many (about 36%) word-graphs did not contain the right sen-
tence (since the speech-recognizer was still in its early training stages). This meant
that on these word-graphs both DOP as well as SDOP scored zero recall and zero
precision. Since these word-graphs were typically the hardest, neither SDOP nor
DOP had the chance to improve on the other. See (Sima’an, 1997e) for the details
of these extensive experiments on parsing and disambiguation of word-graphs that
are output by a speech-recognizer.

The conclusion of these early experiments was clear: the speed-up that was achieved is
substantial and the SDOP models had coverage or accuracy that were comparable to the
DOP models. However, the loss of tree-language coverage in the specialized TSG was
alarming and needed a remedy. After inspecting the implementation detail of the systems
it turned out that the main reason for the loss of tree-language coverage is simply that the
implementation did not try to conserve the tree-language coverage in the first place; the
dependency of the definition of the competitors of an SSFs on the current parse-tree and
the dependency of the GRF function on local context implied that the same SSF could be
learned in one context but not learned in many others. This clearly undermines the tree-
language coverage of the specialized grammar since it makes our assumption concerning
the completeness of the ambiguity-sets not justified.

6.3.2 Recent experiments on OVIS

Theoretically speaking, the new versions of the ARS learning algorithms (as discussed in
chapter 4) are equipped with better mechanisms that enable conserving the tree-language
coverage (as explained in sections 4.4.1 and 4.4.2). In the rest of this section we exhibit
a new series of experiments that tests the GRF algorithm of chapter 4, implemented as
explained in section 6.1, on the OVIS domain. The present experiments are partitioned
into three subseries: 1) a subseries that trains the models on full-annotation (syntactic-
semantic) and tests them on utterances, 2) a subseries that trains the models on syntactic
annotation only and tests them on utterances, and 3) a subseries that trains the models on
full-annotation and tests them on word-graphs.

The present experiments observe the effect of various training parameters on the re-
sults of training the DOP / SDOP / ISDOP models. These training parameters are:
the training tree-bank size, the upper-bound on the depth of elementary-trees that the
DOP/SDOP/ISDOP STSGs contain, and the definition of the target-concept (either as

6.3. Experiments on OVIS tree-bank 151

an individual SSF or a generalization of it into equivalence classes as specified in sec-
tion 6.1). Other experiments test for the mean and standard deviations of each of the three
models on different random partitions of the tree-bank into independent test and training
sets.

Some of the training parameters were fixed in all experiments that are reported in the
rest of this section: the upper-bound on the length of learned SSFs was set to 8 gram-
mar symbols, the threshold on the frequency of sequences of symbols was set on 5, the
threshold on the Constituency Probability of SSFs was set on 0.95, all DOP/SDOP/ISDOP
STSG were projected under the projection parameters n2l7L3 (see section 6.1.2).

Since in the OVIS domain many of the utterances (approx. 33%) consist of only one
word (e.g. “yes” or “no”), the figures reported below compare the results of the parsers
and disambiguators only on utterances that contain at least two words. This avoids trivial
input that might diminish the differences between the results of the various systems.

� 6
� �

� 6

���

� 6

���

(6 6

(* � � � � � � (6 ()((H*

% Recognized

Training-tree-bank size in
(6 �

units

���	� �

��� ���	� �

�

�
� � ���	� �

�

�

�
�

�

Figure 6.2: %Recognized sentences as a function of tree-bank size

6.3.3 Experiments using full annotation on utterances

In this section the experiments were conducted on the OVIS tree-bank with its full anno-
tation (syntactic and semantic). Four sets of experiments were conducted. In each set of
experiments the value of one training parameter is varied and the rest of the parameters
are fixed.

A. Varying training-set size

In this set of experiments the 10000 trees of the OVIS tree-bank were initially split into
a tree-bank of 9000 trees (tree-bank B9000) and another tree-bank of 1000 trees (tree-

152 Chapter 6. Implementation and empirical testing

� �

� 6

���

� 6

���

(6 6

(* � � � � � � (6

% Exact
Match

Training-tree-bank size in
(6 �

units

���	� �

�� ���	� �

�

�
� �

 ���	� �

�

�

� � �

Figure 6.3: Exact match as a function of tree-bank size

bank A) using a random generator. The 1000 trees of tree-bank A were set aside to
be used as the test-set in the experiments. From tree-bank B9000 (9000 trees) another
four smaller tree-banks of sizes 6000, 4000 and 2000 trees (denoted respectively tree-
banks B6000, B4000 and B2000) were obtained by a random generator taking care that
B2000 � B4000 � B6000 � B9000.

In four independent experiments, each of tree-banks B2000 through B9000 was used
as training material for projecting a DOP model and for ARS training and then projecting
the SDOP and ISDOP models. Then the resulting DOP, SDOP and ISDOP models (twelve
in total) were run independently on the 1000 sentences of tree-bank A. The results of
parsing and disambiguation for each parser were matched against the trees in tree-bank A.

The upper-bound on subtree-depth of the models was set on: DOP
�

and SDOP
�

(i.e.
for DOP models the upper-bound was set on 4 and for SDOP models on 2). These upper-
bounds were chosen for the following reasons: for DOP models depth 4 exhibited the best
accuracy results for DOP models and for SDOP models depth 2 gave the smallest models
that had comparable accuracy results (although not the best results the SDOP model can
achieve as we will see in subsequent sections).

Table 6.2 (page 174) shows the sizes of the specialized TSG (i.e. partial-parser)
and the DOP STSG and SDOP STSG models; the table shows the number of learned
elementary-trees and also the size of the TSG (measured as the total number of internal
nodes of the elementary-trees of the TSG). The number of elementary-trees of the special-
ized TSG is 1355 at B9000 but the rate of growth of this TSG is decreasing as the training
tree-bank sizes increases (adding 3000 trees to B6000 results in an increase of 1.24 times,
while adding 2000 trees to B4000 and B2000 results in an increase of 1.30 and 1.54 re-
spectively). A similar growth-rate can be seen for the number of internal nodes figures.

6.3. Experiments on OVIS tree-bank 153

6 � * �
6 � � 6
6 � � �
(
� 6 6
(
�
* �
(
�
� 6
(
� � �
*
� 6 6
*
�
* �
*
�
� 6
*
� � �
 � 6 6

(* � � � � � � (6 ()((H*

sec.

Training-tree-bank size in
(6 �

units

���	� �

 ���	� �

�
� �

�
�

�� ���	� �

�

�
� �

�
�

Figure 6.4: CPU-time as a function of tree-bank size

For the CFG underlying the training tree-bank the number of rules was: 788 (B2000),
1093 (B4000), 1368 (B6000) and 1687 (B9000).

Crucial here is to note the sizes of the SDOP STSGs against the DOP STSGs: at
B9000 the size of the SDOP STSG is only 17% of that of the corresponding DOP STSG.
This is more than 5.7 times reduction in memory consumption.

The Tree-Language Coverage (TLC) of the specialized TSG is exactly equal to that of
the CFG underlying the training tree-bank at all tree-bank sizes. The ambiguity (measured
as the number of active nodes in the parse-space) of the specialized TSG is smaller than
that of the CFG underlying the tree-bank: approx. 1.2 times at B2000 and 1.6 times at
B9000. The modesty of these ambiguity reduction figures is the result of the suboptimality
of the non-lexicalized GRF algorithm when equipped with a sequential-covering scheme.

Table 6.2 (page 174) exhibits and compares the results of the twelve parsers on various
measures. A general observation can be made here: while the ISDOP models recognize
(almost) as many sentences as the DOP models do, SDOP models recognize less. How-
ever, the gap between the models narrows down from 9% to 3% as the tree-bank size in-
creases. In contrast to recognition power results, exact-match results show that the SDOP
models score better results all the way. The ISDOP models score exact-match results that
increasingly improve but remain slightly behind the DOP results (approx. 0.5-0.8%). A
similar observation applies to the (labeled) bracketing recall and precision results. This
(slight) loss of accuracy in ISDOP models is not due to loss of tree-language coverage
as the table shows. This implies that it is due to a slight degradation in the quality of
the probability distributions of the SDOP STSGs as the training tree-bank size increases.
Thus, the SDOP models’ accuracy improvement is mainly due to their limited recognition
power rather than an improved disambiguation power. This observation is particularly

154 Chapter 6. Implementation and empirical testing

subject to the reservation that the present experiments are conducted on one particular
partitioning to training/test material. Mean and standard deviation results on five different
and independent partitions are discussed below and can be considered more stable.

Concerning the speed of processing, the SDOP and ISDOP models are faster than the
DOP models at all times: the speed-up increases from approx. 2-2.5 times at B2000 to
approx. 4 times at B9000.

Some of the results are exposed in a graphical manner in figures 6.3, 6.2 and 6.4 that
show respectively the change in exact-match, Recognized and CPU-time as a function of
tree-bank size.

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

le
m

en
ta

ry
-t

re
es

Subtree depth upper bound

DOP
SDOP

Figure 6.5: Number of elementary-trees as a function of subtree depth

B. Varying subtree depth upper-bound

In general, deeper elementary-trees can be expected to capture more dependencies than
shallower elementary-trees. This is a central quality of DOP models. It is interesting here
to observe the effect of varying subtree depth on the three models that are being compared.
To this end, in a set of experiments, one random partition of the OVIS tree-bank into a
test-set of 1000 trees and a training-set of 9000 was used to test the effect of allowing the
projection of deeper elementary-trees in DOP STSGs, SDOP STSGs and ISDOP models.
The subtree depth for DOP, SDOP and ISDOP is defined as discussed in section 6.1.2.

The training-set was used to project DOP, SDOP and ISDOP models. DOP STSGs
were projected with upper-bounds on subtree depth equal to 1, 3, 4, and 5. Note that

6.3. Experiments on OVIS tree-bank 155

83.4
84.0
84.6
85.2
85.8
86.4
87.0
87.6
88.2
88.8
89.4
90.0
90.6
91.2
91.8
92.4
93.0

1 2 3 4 5

%
 E

x.
M

at
ch

Subtree depth upper bound

DOP
ISDOP
SDOP

Figure 6.6: Exact match as a function of subtree depth

when the upper-bound is equal to 1, this results in a DOP STSG that is in fact a SCFG
(a maximum-likelihood probability assignment to the CFG underlying the training tree-
bank). For SDOP STSGs the upper-bounds on subtree depth were equal to 1, 2, 3 and 5.
The ISDOP models were constructed from four different combinations of these SDOP
and DOP models (ISDOP

�

� , ISDOP
�

� , ISDOP
�

� and ISDOP
�

�).
Figure 6.5 shows the growth of number of elementary-trees as a function of depth

upper-bound for DOP as well as SDOP models. Although SDOP models are larger at
lower values for the depth upper-bound, the meaning of that value is different for the
two models. The most important fact is that the SDOP models stabilize already at depth
upper-bound value 6, whereas the DOP models are still growing even at depth upper-
bound value 10 ! Moreover, the size of the largest SDOP model is less than half the
largest DOP model.

Each of the twelve systems, trained only on the training-set, was run on the sentences
of the test-set (1000 sentences). The resulting parse-trees were then compared to the
correct test-set trees. Table 6.6 (page 176) shows the results of these systems. The number
of sentences that consist of at least two words was 687 sentences and the reported results
concern those sentences only. Note that the recognition power is not affected by the depth
upper-bound in any of the systems. This is because all systems allowed all subtrees of
depth 1 to be elementary-trees. The tree-language coverage for all twelve systems on
the test-set was the same: 88.8%; this implies that specialization did not result in any
loss of tree-language coverage. Again the ambiguity reduction for the SDOP models in
comparison with the DOP models was modest: approx. 1.5 times.

Figures 6.6, 6.7 and 6.8 summarize graphically the three most important measures:

156 Chapter 6. Implementation and empirical testing

90.0
90.6
91.2
91.8
92.4
93.0
93.6
94.2
94.8
95.4
96.0
96.6
97.2
97.8

1 2 3 4 5

%
 S

yn
. E

M

Subtree depth upper bound

DOP
ISDOP
SDOP

Figure 6.7: Syntactic exact match as a function of subtree depth

exact-match, syntactic exact-match and CPU-time. In general, all models exhibit an in-
crease of exact-match accuracy as depth increases with the exception of a slight degra-
dation at DOP

�

, SDOP
�

and ISDOP
�

� . The degradation that SDOP and ISDOP models
exhibit is larger than the degradation of the DOP model. An explanation of the degrada-
tion in the DOP model might be that including larger subtrees implies many more subtrees
and sparse-data effects. However, the degradation in the SDOP and ISDOP models im-
plies another possible factor since the number of elementary-trees in these models is much
smaller and is comparable to smaller DOP models. It seems that all models tend to assign
too much of the probability mass to extremely large elementary-trees. This explains the
sharper degradation in SDOP and ISDOP models: SDOP models do not include as many
small elementary-trees as DOP models and thus tend to assign a larger probability mass to
extremely large elementary-trees. This is an interesting observation that seems to explain
our earlier observation of a slight degradation of the probability distributions of SDOP
models as compared to the DOP models.

Also worth noting here is that while the ISDOP models have a recognition power that
is comparable to the DOP models, their exact-match accuracy figures improve on those of
the DOP models. The best ISDOP models (ISDOP

�

�) are slightly more accurate than the
best DOP models (DOP

�

). Given the results of DOP
�

and SDOP
�

, we conclude that the
combination ISDOP

�

� should be even more accurate. The SDOP models again improve
in accuracy on the DOP and ISDOP models at the small cost of 2.7% loss of recognition
power.

Apart from the exact match figures, bracketing accuracy figures in general tend to be
better for the DOP models than for the the ISDOP and SDOP models (even when the

6.3. Experiments on OVIS tree-bank 157

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

4.25

4.75

5.25

1 2 3 4 5

S
ec

.

Subtree depth upper bound

DOP
ISDOP
SDOP

Figure 6.8: CPU-time as a function of subtree depth

latter have better exact match figures). Bracketing results tend to be a better indicator of
the robustness of the accuracy of a system than exact match results. In the light of the
improvement in exact match results, the bracketing results might suggest that the SDOP
models’ are slightly more overfitted than the DOP models.

A very interesting aspect of the effect of subtree depth on the models can be seen
graphically in figures 6.6 and 6.7: the SDOP and ISDOP models already start with much
higher accuracy figures at a subtree depth upper-bound that is equal to 1. This means that
much smaller and much faster models already achieve an accuracy comparable to deeper
DOP models. For example, ISDOP

�

� already achieves syntactic exact-match 94.20% while
DOP

�

(a SCFG) remains far behind with 90.50%; note that the CPU times of both remain
of the same order of magnitude though (0.16 and 0.11 seconds respectively). In fact
ISDOP

�

� has syntactic exact match that is comparable to DOP
�

(although the exact-match
figures do differ) while being approx. 4.8 times faster. And ISDOP

�

� is already much
better than DOP

�

and DOP
�

while being 3.5 and 6.3 times faster respectively. The CPU
graph in figure 6.8 seems to indicate that increasing the subtree-depth upper-bound for
the ISDOP and SDOP models does not increase CPU-time as fast as for the DOP models.
In fact, ISDOP

�

� already covers most possible subtrees that can be projected from the
training-set and thus has CPU-time consumption that is close to the maximum for ISDOP
models. This is certainly not the case for DOP models since there are a lot more subtrees
that can be projected for larger values of the depth upper-bound; in fact the number of
DOP subtrees and the size of DOP STSG increases rapidly as subtree depth increases

�

�

DOP models of depths larger than 5 tend to consume huge diskspace; Currently, the diskspace that is
available to us is very limited. To avoid problems in the file-system we decided not to train or run such huge

158 Chapter 6. Implementation and empirical testing

���
� �

���
� �

� �

��

 �
� �

���
D ���

D � � � � � �
 � D �

�	� "

 ����	����������������� � ������� "

���	� �

 ���	� �

�� ���	� �

�

Figure 6.9: % Processed sentences as a function of a CPU-time threshold

We conclude from these experiments that ISDOP and SDOP models achieve as good
accuracy results as DOP models but ISDOP and SDOP models achieve these results much
faster and at much smaller grammar-size. All models show a tendency towards suffering
from sparse-data problems. Due to an awkward bias in the DOP model towards preferring
large elementary-trees to frequent ones (only recently discovered (Bonnema and Scha,
1999)), the probability distributions of the ISDOP and SDOP models tend to get worse
than the DOP models as the subtree-depth upper-bound increases.

C. Varying train/test partitions: means and stds

The experiments in this section report the means and standard-deviations (stds) of the
parsing and disambiguation results of each system (DOP, SDOP and ISDOP) on five
independent partitions of the OVIS tree-bank into training-set (9000 trees) and test-set
(1000 trees). For every partition, the three systems were trained only on the training-set
and then tested on the test-set. Each of DOP and SDOP was trained with two different
upper-bounds on subtree-depth and the ISDOP system combined the DOP and SDOP
systems; the resulting systems are DOP

�

, SDOP
�

, ISDOP
�

� , DOP
�

, SDOP
�

and ISDOP
�

�

for every partition (i.e. thirty different parsing and disambiguation systems).
After training on each of the five training-sets independently, the specialized TSGs

consisted of a mean number of elementary-trees of 1380.20 with std 29.39. These num-
bers do not include the lexicon (i.e. rules that assign to every word a PoSTag).

Table 6.7 (page 177) lists the means and stds for each of the six systems. At this point

models.

6.3. Experiments on OVIS tree-bank 159

it is interesting to conduct two comparisons. Firstly, compare the CPU-time and memory-
usage for systems that exhibit comparable recognition power and accuracy results (i.e.
DOP

�

, SDOP
�

and ISDOP
�

�). And secondly, compare the accuracy results of the fastest
systems (e.g. DOP

�

, SDOP
�

and ISDOP
�

�).
In the first comparison, we see that the means of exact-match for ISDOP

�

� and for
SDOP

�

are respectively approx. 0.10% and 1.95% better than those for DOP
�

. This comes
relatively cheap since the cost in recognition-power is only 0.40% for ISDOP and 3.80%
for SDOP. The mean speed-up is 3.65 times for SDOP and about 3.45 times for ISDOP.
The other accuracy results (recall and precision) show again that the specialized systems
have slightly less robust accuracy figures. The explanation given earlier holds here also
(all systems have exactly the same tree-language coverage results): the probability dis-
tributions of the specialized systems are slightly worse than those of the DOP systems.
The standard deviations confirm this observation: the specialized systems are slightly less
“stable” than the DOP systems.

In the second comparison, concerning the fastest systems, we see that the three sys-
tems have CPU-times that can be considered comparable since they are so small; DOP

�

is only about 1.2 and 1.4 times faster than SDOP
�

and ISDOP
�

respectively. However,
both specialized systems achieve better exact match results (1.5% more for ISDOP

�

and
3.45% more for SDOP

�

) at a small cost of recognition power (0.40% and 3.80% respec-
tively). Similarly, the other accuracy results concerning, syntactic match and semantic
match exhibit similar improvements for the specialized systems; this is not fully true for
the (labeled) bracketing precision and recall, however.

Figure 6.9 shows the percentage of sentences that each system processes as a func-
tion to a time-threshold. About 99.00% of the sentences is processed within 3.55 secs
by SDOP

�

, 4.08 secs by ISDOP
�

� and 14.65 secs by DOP
�

. Similarly, about 90% is pro-
cessed within 1.40, 1.45, 5.46 seconds respectively. Let

�
denote a time-threshold in

seconds. For
� J (SDOP processes 81.40%, ISDOP processes 80.70% and DOP pro-

cesses 72.90%. For
� J *

the figures are 95.80%, 95.40% and 79.60% respectively.
Clearly, the SDOP and ISDOP systems are much faster than the DOP systems.

D. Equivalence class as target-concept

In this set of experiments we used the same five partitions as in the experiments concern-
ing varying the train/test partitions earlier in this section. We employ here also almost
the same parameters and thresholds. The only difference lies in the definition of the
target-concept: rather than using the notion of an SSF as target concept, here we use the
SSF equivalence-class definition of subsection (6.1.1.C). For convenience, we refer to
the simple target-concept experiments with the SSF-based experiments and to the present
experiments with the EqC-based experiments.

After training it turned out that “packing” together those SSFs that differ only in rep-
etition of categories results in learning much less elementary-trees in the specialized TSG
(on the five partitions a mean of 642.80 with std 8.53). This is about half the number
of elementary-trees learned by the algorithm with the SSF-based definition; there are
less elementary-trees of depth one (i.e. CFG rules) (about 71%) and also fewer deep

160 Chapter 6. Implementation and empirical testing

elementary-trees (about 28%). The reason for having many less deep elementary-trees is
that the number of training tree-bank trees that did reduce totally by the iterations of the
learning algorithm is much larger than in the SSF-based experiments. Another reason for
having many less elementary-trees is that shorter SSFs that had smaller GRF value than
longer competitors in the SSF-based experiment, now join together with longer SSFs into
the same equivalence class and thus are able more often to have a larger GRF value than
their competitors; this results in learning shallower elementary-trees that occur very often.

The results of the EqC-based experiments with ISDOP
�

� , SDOP
�

are listed in table 6.9
(page 179) and should be compared to those of table 6.7 (page 177). The results of the
EqC-based definition of a target-concept show a clear deterioration of accuracy in com-
parison with the SSF-based experiments. Despite of this, the EqC-based SDOP model
(shortly SDOP � � �) has higher bracketing recall results. Moreover, both the ISDOP � � �
and SDOP � � � models are faster than those of the SSF-based experiments (about 1.2
times) and than the DOP

�

model (about 4.4 times). This might be due to learning a
smaller specialized TSG.

From the table we also can see that the tree-language coverage remained exactly equal
to that of the DOP models and to that of the specialized models that are based on the
simple definition. This implies that the deterioration of the accuracy results is again due
to inferior probability distributions. One possible clarification for this is that the partition
into equivalence classes of SSFs as done here is either too simplistic or the whole idea
of partitioning the set of SSFs into equivalence classes is a bad one. It is not possible to
determine this on the basis of the present experiments. Another plausible clarification is
that the awkward bias found in DOP STSGs (Bonnema and Scha, 1999), is magnified in
SDOP and ISDOP.

6.3.4 Experiments using syntax-annotation on utterances

In this series of experiments, the OVIS tree-bank was stripped of the semantic annotation
leaving syntactic trees only. The experiments are divided into subseries of experiments
reported in the following subsections.

A. Varying subtree-depth upper-bound

In this experiment we employed the same partition into train/test and the same training
parameters as in the corresponding experiment on full annotation (experiment B in sec-
tion 6.3.3). Table 6.5 (page 175) lists the sizes of the specialized TSG and the sizes of the
SDOP and DOP STSGs as a function to the upper-bound on depth of subtrees (limited
by depth 4). The specialized TSG trained on syntax has only 133 elementary-trees more
than the syntactic DOP

�

(i.e. SCFG) but these elementary-trees are divided into only 240
(non-lexical) depth one elementary-trees and 290 deeper elementary-trees. Although the
sizes of SDOP models seem larger than those of the DOP models for the same value of the
depth upper-bound, one must keep in mind that the same value has a different meaning in
the two cases as explained earlier. And as we have seen in table 6.5 (page 154), the SDOP

6.3. Experiments on OVIS tree-bank 161

models reach much faster a much smaller maximum size than the DOP models. The same
applied in this case also.

The results of this experiment are listed in table 6.8 (page 178). Similar to earlier ex-
periments, we see that the syntactic exact match for SDOP

�

and ISDOP
�

are 3.20% better
than the DOP

�

model while being slightly slower and slightly larger. But, in contrast to
the earlier experiments, the best DOP model (depth 4) is about 0.40% better than the best
ISDOP model (depth 3). Generally, however, both DOP models as well as SDOP and IS-
DOP improve as the depth upper-bound is increased. An exception to this is the increase
from value 3 to value 4 for SDOP and ISDOP; the explanation for this is clearly a worse
probability distribution due to having many large elementary-trees.

It is very hard to compare the models here since their accuracy results are not directly
comparable: for example ISDOP

�

� ’s syntactic exact-match falls between DOP
�

(1.20%
better) and DOP

�

(1.80% worse). But it is safe to state, however, that the specialization
effort here is less successful than it is on the OVIS tree-bank with full annotation.

B. Varying train/test partitions: means and stds

The same five partitions into train/test sets as in section 6.3.3 (subsection C) and the same
training parameters are employed in an experiment on syntax only. We also compare the
DOP

�

against SDOP
�

and ISDOP
�

� as in the earlier experiment.
In clear contrast to the similar experiment on full annotation, the DOP model has

higher syntactic exact-match than ISDOP (1.50%) and than SDOP (1.05%). However,
the specialized models are about 6-7 times faster. The differences between the bracketing
accuracy results for the models are much smaller. The exact-match measure is more
stringent than the bracketing measures and exposes a possible weakness in the specialized
models compared to the DOP models. However, the speed of the specialized models
might be attractive in application where bracketing accuracy is a sufficient criterion on
the output.

Mainly due to increase in recognition power of all three models (between 98.30% and
99.70%) compared to the full annotation experiment (between 91.40% and 95.25%), the
syntactic exact-match for the syntax-based systems is much less than that of the systems
that are based on full annotation. Clearly the semantic annotation reduces both the recog-
nition power and the CPU-time of the learned systems. Specialization seems to profit
from this more than the regular DOP models. A possible reason for this is that the seman-
tic annotation results in discriminating between SSFs that should be considered different
in any case. Another possible reason is that the probability distributions of the specialized
models that are trained on the full annotation suffer less badly than those trained only on
syntax. The real reasons for this situation are still not totally clear and this needs further
investigation.

6.3.5 Experiments using full annotation on word-graphs

The five partitions into training/test sets of the experiment of section 6.3.2.C are used here
also for an experiment on parsing and disambiguation of the word-graphs that correspond

162 Chapter 6. Implementation and empirical testing

to the utterances in the test-sets. Of course, every training-set (test-set) is used for training
(resp. testing) independently from the other partitions.

The result of parsing and disambiguation of a word-graph is an output parse-tree that
is compared to the test-parse on various measures including a test for equality of the
utterances on the frontiers both trees. The selection of the output parse-tree is based on
the Most Probable Intersection Derivation (MPiD) as defined in section 5.4.6. In short,
an i-derivation (intersection derivation) is a combination of an STSG derivation and an
SFSM derivation for the same sentence (that must be in the intersection of the string-
languages of both machines); the probability of an i-derivation is the multiplication of the
probability

� �
of the STSG derivation with the probability of the SFSM derivation. The

MPiD, for a given STSG and a given SFSM, is the most probable of all i-derivations of
any sentence that is in the intersection between the string-language of the SFSM and the
string-language of the STSG. The parsing and disambiguation algorithms that compute
the MPiD are described in detail in section 5.4.6.

We employ the same training parameters as the experiment of section 6.3.2.C. Ta-
ble 6.11 (page 180) and table 6.12 (page 181) exhibit the mean and std results of six
systems each trained and tested on the five partitions into train/test sets. The results for
each system are reported once on all word-graphs and once only on those word-graphs
that contain (i.e. accept) the correct utterance.

The exact-match results of ISDOP
�

� and SDOP
�

, table 6.11 (page 180), are slightly
better than those of DOP

�

; the recognition power of the three systems is comparable
though. The main difference between the systems is in CPU-time: the specialized sys-
tems are about four times faster (and consume half the space). As the experiments of
section 6.3.2.C show, except for exact-match, in general, the other accuracy measures of
DOP

�

are slightly better that those of ISDOP
�

� ; SDOP
�

has lower recognition power and
recall results, but improved precision results, in comparison with the other two systems.

Table 6.12 (page 181) exhibits the results of DOP
�

, SDOP
�

and ISDOP
�

� . The spe-
cialized systems SDOP

�

and ISDOP
�

� are clearly better than DOP
�

(i.e. SCFG) in all
accuracy measures, while their CPU-times do not differ much. It is clear that specializing
the SCFG is most rewarding. Compared to the “deeper” systems (DOP

�

, ISDOP
�

� and
SDOP

�

), however, all three have inferior accuracy results; their CPU-times figures are
much smaller though.

���
The input word-graphs have probabilities that are obtained from the speech-recognizers likelihood by

a normalization heuristic due to Bonnema (Bonnema, 1998). The only rationale behind this heuristic is, in
fact, that it combines better with the DOP probabilities than raw speech-recognizer likelihoods. The issue
of “scaling” the likelihoods of the speech-recognizer in a well-founded way is still under study. In any case,
Bonnema’s heuristic divides the likelihood of every transition of length � time-units by a normalization
factor that is computed from the word-graph. The normalization factor is the likelihood of a time-unit in
any transition in the word-graph to the power � . The likelihood of a time-unit in a transition of length A is
the n-th root of the likelihood of the transition.

6.3. Experiments on OVIS tree-bank 163

0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50
1.65
1.80
1.95
2.10
2.25
2.40
2.55
2.70
2.85
3.00
3.15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

se
cs

-1*log(prob)

DOP
SDOP

Figure 6.10: CPU-time as a function of input probability (input length 4 words)

6.3.6 More frequent input processed faster

The goal in this subsection is to observe the CPU-time of both DOP and ISDOP as a
function of the relative frequency of the input. Ideally, for observing whether a system
processes more frequent input faster, the only parameter that should be allowed to change
is the frequency of the input; neither the grammar nor the input should change. This
implies that it is necessary to conduct an experiment on two different tree-banks that
share the same underlying grammar and contain exactly the same utterances but differ
only as to the frequencies of the utterances and the other linguistic phenomena. Since
this experiment is very hard to arrange in order for the results to be meaningful, we will
compare here the CPU-times of the systems on utterances of different frequencies from
the same tree-bank. This means that other factors than frequency may interfere in the
results, e.g. the “degree of ambiguity” of an utterance and its length. We try to minimize
the effect of such factors.

Here we compare the efficiency-behavior of DOP
�

model to that of ISDOP
�

� model.
Both systems are borrowed from the experiments reported in subsection 6.3.3.B. Since
the specialization algorithm is not lexicalized, actual words should not play a role in
the comparison. Therefore, both systems were adapted to parse and evaluate PoSTag
sequences rather than word-sequences. Moreover, a suitable test-set is extracted from the
original test-set: it consists of the correct sentential PoSTag sequences that are associated
with the word-sequences of the original test-set.

As expected, it is hard to estimate the relative frequencies of sentential PoSTag se-

164 Chapter 6. Implementation and empirical testing

0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

se
cs

-1*log(prob)

DOP
SDOP

Figure 6.11: CPU-time as a function of input probability (input length 6 words)

quences due to data sparseness. Luckily, we are not interested directly in the relative
frequencies of sentential PoSTag sequences but in the shape of the probability distribu-
tion that they constitute over the various sentential PoSTag sequences. A reasonable ap-
proximation of the shape of this distribution is DOP’s probability distribution over these
sequences. After all, DOP’s probability distribution over these sequences is derived from
their relative frequencies. However, DOP’s probabilities depend to a certain extent on
the length of the input. To avoid this effect, we decided to conduct comparisons only on
inputs of the same length.

In figures 6.10 and 6.11 we plot the CPU-time as a function of the
� < � �=� � G � � � , where

� G � � is the DOP
�

probability of the test PoSTag sequence. In figure 6.10 we plot this for
sentence length 4 (164 events) and in figure 6.11 for sentence length 6 (62 events). We
selected these two plots because they are representative of the various other possible plots
for other sentence lengths. It is clear that the ISDOP

�

� is much faster than DOP
�

(while
they are comparable in precision and coverage as subsubsections 6.3.3.B and 6.3.3.C
show). However, generally speaking SDOP

�

� processes more probable input slightly faster
than it processes less probable input

� �

, while DOP
�

seems to behave in an unpredictable
manner in this respect. The slight fluctuations in the SDOP

�

� plot may be attributed to two
factors. Firstly, these are often input sequences that are parsed and disambiguated by the
Par+DOP model because they are not in the string-language of the SDOP model. And
secondly, these sequences may constitute more ambiguous input. In any case, this modest

� �

Note that because the x-axis is �
��� � ��� � ��� " , the points at the left-side of the x-axis represent higher

probability values than points at the right-side.

6.3. Experiments on OVIS tree-bank 165

experiment clearly shows that the behavior of the specialized model with respect to the
frequency of the input is much more attractive than that of the original DOP model.

6.3.7 OVIS: summary of results and conclusions

To summarize the experiments on parsing and disambiguation of OVIS sentences and
word-graphs:

� On full annotation, specialization results in at least equally accurate systems that
are significantly smaller and faster than DOP systems. However, the specialized
systems seem to have slightly more overfitted probability distributions than the DOP
systems. A hypothesis on why this overfitting takes place in the specialized systems
is that these systems are based on STSGs that consist of many larger subtrees and
fewer smaller subtrees; the larger subtrees seem to claim too much of the probability
mass (because there are fewer smaller subtrees than in the DOP models). This is
due to a strange bias in the DOP model (which carries over to SDOP models).

� Both DOP and the specialized models tend to improve as the size of the training-set
increases.

� The specialized models achieve better accuracy results than DOP models when the
subtree depth is limited to shallow subtrees. In general, as subtree-depth upper-
bound increases, all systems improve and become almost as accurate. However,
from a certain value for the depth upper-bound, the systems start to suffer from
sparse-data problems or/and overfitting.

� In particular, specializing DOP
�

(i.e. an � � �) results in specialized systems
SDOP

�

and ISDOP
�

� that are equally fast but that have much improved accuracy
figures.

� Extending the definition of the target-concept to equivalence classes of SSFs results
in accuracy results that are slightly inferior to those of the DOP model and the
specialized models that are based on the original definition. The speed-up, however,
improves slightly.

� On the syntactic OVIS tree-bank specialization results in worse exact-match than
the DOP models. Bracketing measures, however, are comparable to the DOP mod-
els. The specialized models are also much faster. The ISDOP

�

� and SDOP
�

models
improve in all measures on the DOP

�

model (i.e. SCFG).

� In general, more frequent input is parsed and disambiguated faster by the special-
ized models, whereas DOP tends to show unpredictable behavior in this respect.

We conclude here that specializing DOP by the current implementation of the GRF al-
gorithm to the OVIS domain did not jeopardize the tree-language coverage (but it also
reduced the ambiguity only by a limited amount due to the fact that it is not lexicalized).

166 Chapter 6. Implementation and empirical testing

The specialized DOP models are faster, smaller and as accurate as (if not better than)
the regular DOP models. In particular, two specializations are most successful. Firstly,
the specialization of the SCFG (i.e. DOP

�

) is quite successful: the specialized model is
almost as fast but improves the accuracy results significantly. And secondly, the special-
ization of the deepest DOP models results in much smaller and faster but equally accurate
models.

6.4 Experiments on SRI-ATIS tree-bank

In this section we report experiments on syntactically annotated utterances from the SRI
International ATIS tree-bank. The utterances of the tree-bank originate from the ATIS (Air
Travel Inquiry System; (Hemphill et al., 1990)) domain. For the present experiments, we
have access to 13335 utterances that are annotated syntactically (we refer to this tree-bank
here as the SRI-ATIS tree-bank). The annotation scheme originates from the linguistic
grammar that underlies the Core Language Engine (CLE) system (Alshawi, 1992). The
annotation process is described in (Carter, 1997), it is a semi-automatic process with a
human in the annotation loop; the CLE system, supplemented with various features, is
used for suggesting analyses for the utterances that are being annotated. Among these
features, there is a preference mechanism that can be trained on the annotated part of the
material and enables partial disambiguation of the space of analyses. Another feature is a
set of heuristics that enable rapid manual selection of the correct analysis by employing a
compact and smart representation of the analyses.

The rest of this section is structured as follows. Subsection 6.4.1 discusses the detail of
preparations that are necessary for conducting the experiments. Subsection 6.4.2 reports
a set of experiments testing DOP and the specialized models on the ATIS tree-bank. And
subsection 6.4.3 summarizes the results of the experiments on the ATIS domain.

6.4.1 Necessary preparations

To conduct the present experiments on the SRI-ATIS tree-bank two issues had to be ad-
dressed. Firstly, the tree-bank has an underlying grammar that is cyclic. And secondly,
the tree-bank contains traces of movements, i.e. epsilons. Since the DOPDIS system can
not deal with any of those, we had to devise solutions. The tree-bank is transformed by a
simple algorithm into a tree-bank that has an acyclic underlying grammar. And the DOP
projection mechanism is adapted to allow epsilon traces in elementary-trees but the ep-
silons are always internal to other elementary-trees. This section describes in detail both
solutions.

Removing cycles

Since our parsers and disambiguators assume acyclic grammars , some measures had to
be taken in order to remove the cycles from the grammar that underlies the SRI-ATIS tree-
bank. We decided to apply a series of simple transformations to the trees of the tree-bank

6.4. Experiments on SRI-ATIS tree-bank 167

(rather than directly to the grammar underlying the tree-bank). The transformations are
applied in turn to every tree of the tree-bank. The transformations that we developed do
not change the tree-bank trees too much; a guideline was that only minimal changes that
can be justified linguistically or that are really necessary should be used. We employed
three transformation that were applied in a pipeline to every tree in the tree-bank. The
transformations, in their order of application are:

Bamboo-trees: If the tree � in the tree-bank has a partial-tree � � that involves only unary
productions (often referred to with the term “Bamboo” partial-trees), all nodes in
� � are removed except for the bottom and the top nodes that are now connected
directly. This reduces the number of cycles effectively. The intuition behind this is
that the many internal nodes in a Bamboo partial-tree, if necessary at all, should be
really internal and not visible

� �

. They should not serve as substitution sites or as
left-hand sides of grammar rules. The choice of removing the internal nodes was
the simplest sensible solution.

NP in VP: If the tree � has an internal node labeled NP (noun-phrase) that derives only a
VP (verb-phrase), the VP is renamed into an INFVP, i.e. infinitive VP. This avoids
the common cycle . 1 � 4 � 1 � 4 . 1 . The intuition here is that all these VPs
are in fact infinitive VPs rather than usual VPs.

Clear cycles: If in tree � there is a node �
 labeled
� 1 that governs a partial-tree that

has an internal node � � labeled also
� 1 and if all branches along the path between

�
 and ��� result only in empty-strings (�), then the whole partial-tree between �

and ��� is removed and � � becomes a direct child of the node that was parent of
�
 (exactly in the same place instead of �
). Virtually all such

� 1 s in the SRI-
ATIS tree-bank are in fact VPs. Again the intuition is that the removed partial-tree
between the

� 1 s should be also considered internal. This transformation removes
only a small part of traces of movement in the tree-bank, many others remain in
tact.

The resulting tree-bank has an underlying grammar that is acyclic. As we shall see, the
coverage and the tree-language coverage of that grammar remains very high. In the se-
quel, the name “T-SRI-ATIS tree-bank” refers to the tree-bank obtained from the original
SRI-ATIS tree-bank after these transformations.

Table 6.4 (page 175) summarizes some of the characteristic numbers of the T-SRI-
ATIS tree-bank. The mean sentence length is approx. 8.2 words and the number of trees
is 13335 trees.

� �

Of course, by removing these internal nodes we loose the internal structure of Bamboo-trees. For
conserving the internal structure of a Bamboo-tree, one could represent its internal nodes by a single node
labeled by a new non-terminal, constructed by juxtaposing the labels of the internal nodes in some order
(e.g. lowest node to highest node in the tree).

168 Chapter 6. Implementation and empirical testing

Training and parsing in the presence of epsilons

Let the term empty-frontier partial-tree refer to a partial-tree that has a frontier that con-
sists of a sequence of epsilons only (i.e. no other symbols). The DOPDIS system does
not allow epsilon rules or empty-frontier elementary-trees because we think that such
creatures should not be left on their own in the first place. In our view, for projecting
STSGs, all empty-frontier partial-trees in the tree-bank should be treated as internal to
other partial-trees that subsume them in the tree-bank trees. To achieve this effect, it is
necessary to adapt the DOP (and SDOP) projection mechanism. The new mechanism
projects all subtrees of the tree-bank trees except for the empty-frontier subtrees (i.e. the
mechanism weeds out the empty-frontier subtrees). Crucial here is that all empty-frontier
partial-trees in the tree-bank trees are now internal to the elementary-trees of the STSG.
We stress this fact again: the resulting STSG generates also the empty-frontier partial-
trees but always as part of other partial-trees that are not empty-frontier. For calculating
the depth of a subtree, the mechanism assigns depth zero to empty-frontier partial-trees.
The probabilities of the subtrees are calculated as usual from the relative frequencies of
the non-empty-frontier subtrees only.

6.4.2 Experiments on T-SRI-ATIS

This section exhibits the first series of experiments that we conducted on the T-SRI-ATIS
tree-bank. It is important to stress here that the present experiments differ completely
from earlier experiments (Bod, 1995a; Goodman, 1998; Sima’an, 1995) with DOP on the
ATIS tree-bank of the Penn Treebank Project; the latter tree-bank contains only approx.
750 trees (vs. 13335 trees in the SRI-ATIS) that exhibit much less variation of linguistic
phenomena than the SRI-ATIS tree-bank. Moreover, the two tree-banks are annotated
differently.

The specialization algorithm that is used here is the GRF algorithm implemented as
described in section 6.1 with the equivalence classes of SSFs as the target concept. Some
of the training parameters were fixed in all experiments that are reported in the rest of this
subsection: the upper-bound on the length of learned SSFs was set to 8 grammar symbols,
the threshold on the frequency of sequences of symbols was set on 10, the threshold on
the Constituency Probability of SSFs was set on 0.87, and all DOP/SDOP/ISDOP STSGs
were projected under the parameters n2l4L3 (as explained in section 6.1.2) unless stated
otherwise.

A. Varying subtree depth

A training-set of 12335 trees and a test-set of 1000 trees were obtained by partitioning the
T-SRI-ATIS tree-bank randomly. Both DOP and SDOP models with various depth upper-
bound values were trained on the training-set and tested on the test-set. It is noteworthy
that the present experiments are extremely time-consuming: for upper-bound values larger
than three, the models become huge and very slow, e.g. it takes more than 10 days for
DOP

�

to parse and disambiguate the test-set (1000 sentences).

6.4. Experiments on SRI-ATIS tree-bank 169

13000
26000
39000
52000
65000
78000
91000

104000
117000
130000
143000
156000
169000
182000
195000
208000
221000
234000
247000
260000
273000
286000
299000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

le
m

en
ta

ry
-t

re
es

Subtree depth upper bound

DOP
SDOP

Figure 6.12: T-SRI-ATIS: Number of subtrees to depth upper-bound

Figure 6.12 exhibits the number of elementary-trees as a function of subtree-depth
upper-bound for the models DOP and SDOP (under the projection parameters n2l4L3).
The size of the SDOP models becomes smaller than the DOP models only from subtree-
depth upper-bound equal to four. The DOP model without any upper-bound on depth,
i.e. the UTSG of the tree-bank, consists of twice as many elementary-trees as the cor-
responding SDOP model; this means that the SDOP model results in approx. 40-50%
reduction of memory-use. However, both models are extremely large and, currently, this
reduction does not result in useful speed-up. However, reducing the number of subtrees
can be instrumental in dealing with sparse-data effects.

Table 6.13 (page 182) shows the results for depth upper-bound values smaller than
four. A striking figure is that the percentage of recognized sentences of the SDOP is
exactly equal to that of the DOP model. This means that the ISDOP models are equal
to the SDOP models in this case. After studying the specialized tree-bank trees it turned
out that after reducing a big portion of the tree-bank trees, the learning algorithm went on
learning grammar rules until it reduced most of the trees totally. This happened because
the stop condition of the algorithm relies on a frequency threshold that is very hard to set
at suitable values. A better stop-condition would be to set an upper-bound on how much
of the tree-bank should be covered by the training algorithm, e.g. check that the ratio
between the number of nodes that remained after this iteration and the number of nodes
in the original tree-bank trees does not drop under a certain a priori set minimum value.

The SDOP system turned out to have a parse-space that is on average about 1.2 times
smaller than the DOP systems (i.e. we compare the parse-space of the Specialized TSG
and the CFG underlying the training tree-bank). Clearly, this is a very small reduction

170 Chapter 6. Implementation and empirical testing

in ambiguity. This is a bit surprising because one expects more reduction of ambiguity
on the longer ATIS sentences than on the shorter OVIS sentences. This “surprise” is
exactly a consequence of the severe practical limitations of the current implementation.
In any case, although these SDOP models have a string-language and tree-language that
are comparable to the DOP models, it remains interesting here to observe how these SDOP
models compare to the DOP models, i.e. whether they conserve tree-language coverage,
have good probability distributions and constitute any improvement on the DOP models.

As table 6.13 (page 182) shows, the shallow SDOP models (subtree depth limited to
three) are still larger and therefore also slower than their DOP counterparts. The � � � 1 �

and the DOP
�

models are the fastest in their families and the least accurate. However,
SDOP

�

already improves on DOP
�

by some 4.78% syntactic exact match. The differ-
ences in exact match between the SDOP and DOP models become smaller but are still
substantial. The SDOP models are also some 4 times slower for SDOP

�

and about 2.5
times for SDOP

�

. It is very interesting that by specializing the DOP model (the one that
consists of all tree-bank subtrees without any depth upper-bound) we obtained a series
of limited-depth SDOP models that are more accurate but also slower. In fact the SDOP
models fit exactly in between the DOP models in matters of accuracy and CPU-time:
SDOP � fits between DOP � and DOP � � �

. Given that the size of the SDOP model becomes
smaller than the DOP model only from depth upper-bound value four, we also expect
speed-up to be observed only at those values. This means that this speed-up is currently
not really useful.

B. Varying training/test partitions: means and stds

Four independent partitions into test (1000 trees each) and training sets (12335 trees each)
were used here for training and testing the DOP and the SDOP models. The training
parameters remain the same as in the preceding subsection (A). The means and the stds
are exhibited in table 6.14 (page 182). The same situation as earlier occurs here also. The
SDOP models and the DOP models are not directly comparable; the SDOP models fit in
between the DOP models, where SDOP � fits in between DOP � and DOP � � �

. The SDOP
models are more accurate but slower than the DOP models.

Discussion

It is on the one hand disappointing that specialization by the GRF did not result in use-
ful speed-up. On the other hand, three facts must be kept in mind. Firstly, the results
show that the specialized models form an alternative to the DOP models since they fit in
between the DOP models; especially SDOP

�

offers a more attractive PCFG model than
the DOP

�

model. Secondly, this experiment has shown that on the ATIS tree-bank the
GRF algorithm results in speed-up only at very large DOP models that are impractical.
And thirdly, and most importantly, the seriously suboptimal current implementation (GRF
algorithm without lexicalization) did not result in ambiguity reduction. It turns out that
without significant ambiguity-reduction, the GRF learning algorithm does not provide

6.4. Experiments on SRI-ATIS tree-bank 171

useful speed-up. It does reduce the number of subtrees significantly, however, a thing that
can help avoid sparse-data effects.

The question at this point is why does the speed-up come only at large depth values
(four or deeper), while in the OVIS case the speed-up was already at SDOP

�

. First of all,
the fact that the SDOP models have the same string-language and tree-language as the
DOP models already gives a clue. Contrary to the OVIS case, here the learning algorithm
went on learning (43 iterations) until it reduced many of the tree-bank trees totally. From
a certain iteration on (20th-22nd), the algorithm learned only CFG rules. The stop condi-
tion, a frequency lower-bound for SSFs, is too weak to control such behavior. Clearly, it
is necessary to employ a stronger stop condition with direct monitoring of the coverage
of the learned grammar. Secondly, the ATIS trees are larger than the OVIS trees and there
is more variation. In the OVIS case, many trees were learned as is in one iteration. This
means that these trees did not have cut nodes except their root nodes (and the PoSTag
level nodes); and this implies that there are many less subtrees in the SDOP models than
the DOP models already at small depth upper-bounds. The language use in OVIS is con-
strained by a dialogue protocol, a thing that makes it much simpler than the language use
in the ATIS domain. Thirdly, the SDOP

�

in OVIS achieves the same accuracy results as
the DOP

�

, whereas in the ATIS case, although SDOP
�

improves on DOP
�

in accuracy, it
still does not compare to deeper DOP models. Clearly, subtree depth is a more impor-
tant factor in accurate parsing of the ATIS domain than it is in parsing the OVIS domain.
In OVIS, DOP

�

achieves syntactic exact match that is only 4% less than the best model
� � 1 �

; in ATIS, the difference is about 35% ! It is very hard to bridge such a gap by the
shallower SDOP models.

6.4.3 ATIS: summary of results and conclusions

The results of the ATIS experiments can be summarized as follows:

� The SDOP model that implements the idea of the DOP model as containing all sub-
trees of the tree-bank is substantially smaller than the original DOP model. When
using a subtree depth upper-bound the SDOP models become smaller only from
value 3. And the SDOP models can be faster than their DOP counterparts only
from that value.

� The SDOP models have recognition power that is equal to the DOP models. The
accuracy is also comparable.

� The series of SDOP models with the various depth upper-bound values constitutes
a series of models that are hard to compare to their DOP counterparts. In fact the
SDOP and DOP models can be merged into one series of models since � � � 1 � fits
in between DOP � and DOP � � �

in matter of accuracy and speed.

� The model SDOP
�

is an SCFG that achieves much better accuracy than the DOP
�

model at some limited cost of time and space.

172 Chapter 6. Implementation and empirical testing

In conclusion, the ATIS experiments have exposed a weakness in the current implemen-
tation of the specialization algorithm: it does not reduce ambiguity substantially to allow
speed-up. However, the fact that the SDOP models have accuracy results that improve on
their DOP counterparts implies that the specialized models have good probability distri-
butions and tree-language coverage. It might be very attractive to set the parameters at
such values that the SDOP models have less recognition power than the DOP models: this
might mean some speed-up. However, we believe that restricting the string-language can
be better done by ambiguity-reduction, i.e. restriction of the tree-language.

6.5 Concluding remarks

In this chapter we discussed the details of a first implementation of the specialization
algorithms of chapter 4. This implementation is severely limited due to the currently
available hardware. It employs the GRF measure, is not lexicalized and embodies many
approximations that were dictated by the need to implement a system that runs within
acceptable time and space limits.

The chapter presented also an extensive experiments on the OVIS and ATIS domains.
We experimented with approx. 150 DOP and SDOP systems, each trained on 10000-
12335 trees and tested on 1000 sentences or word-graphs. The experiments reported
in this chapter are the first that train and test the DOP model on such large tree-banks
extensively using the cross-validation method. It is very hard to compare the results
of the DOP models or the SDOP models to other corpus-based models because (to the
best of our knowledge) there are no such systems that report experiments on these two
tree-banks

� �

. But the chapter presents the classical comparison between DOP and the
Maximum-Likelihood SCFG (DOP model of depth-one subtrees) underlying the training
tree-bank (or so called the “tree-bank grammar” (Charniak, 1996)). The DOP and SDOP
models (of subtree depth upper-bound larger than one) clearly improve on the SCFG mod-
els in both domains. In the ATIS domain, the improvement is drastic (about 35% extra
tree exact match improvement). In any case, the exact-match figures of the DOP models
on these two differently annotated tree-banks (for two different languages and domains)
exhibit the potential of DOP as a model of natural language disambiguation.

The experiments also show that the specialized DOP models (SDOP and ISDOP) are
in general as accurate as the DOP models and have a comparable tree-language coverage.
Due to the severely suboptimal current implementation, the ambiguity-reduction is small
(1.2-1.6 times) and much less than one might expect.

On the OVIS domain, the SDOP and ISDOP models are as accurate as but smaller and
faster than the DOP models. The experiments on parsing and disambiguation of utterances
and word-graphs from that domain show clearly that the SDOP models are more attractive
than the DOP models. In contrast to the DOP models, the SDOP and ISDOP models have
the property that the processing times for more frequent input are smaller.

� �

Most other work uses larger benchmarks, e.g. UPenn’s Wall Street Journal, which are still too large to
use for serious DOP experiments given the available hardware.

6.5. Concluding remarks 173

On the ATIS domain, the experiments show that the SDOP models constitute a dif-
ferent sequence of models than the DOP models. While the DOP model with a given
subtree-depth upper-bound has accuracy results that is smaller than the SDOP model with
the same value of subtree-depth upper-bound, the DOP model has smaller processing
times. Therefore, it is very hard to directly compare the two kinds of models and it is
even harder to conclude sharply that the one is better or faster than the other. Worth men-
tioning, however, is that the SDOP model that contains all subtrees of the tree-bank is
much smaller than its DOP counterpart.

It is appropriate here to stress that both the SDOP and the DOP systems are based on
the same optimized parsing and disambiguation algorithms of chapter 5. Therefore, the
speed-up that the optimizations and heuristics of chapter 5 provide is already included in
the CPU-times and the sizes of both the DOP and the SDOP models. However, it is safe
to say that these optimizations and heuristics have often been a major factor in making
the experiments not only considerably more efficient but also feasible at all

� �

.
Clearly, the conclusions from the present experiments remain limited to the domains

that were used. It is very hard to generalize these conclusions to other domains. Moreover,
due to the severely suboptimal current implementation, the original question pertaining to
the utility of the ARS specialization algorithms in offline ambiguity-reduction is here only
partially answered. The answer to this question depends on whether the theoretical ideas
of chapter 4 can be implemented in an algorithm that does not embody strong assumptions
but remains tractable.

Future work in this direction should address the limitations of the current implemen-
tation. A future implementation can be better off if it adopts the entropy-minimization
formulae, does not employ the simple sequential covering scheme but a more refined
one, and exploits lexical information to reduce ambiguity. A possible track of research
here is to use lexical information both during learning and parsing. During learning
the lexical information can be incorporated in the measures of ambiguity of SSFs (or
equivalence classes of SSFs). Moreover, when the lexical infomation is represented in
feature-structures, an instantiated feature-structure is associated with every subtree in the
ambiguity-set of an SSF that is learned from the tree-bank. During parsing, instead of
constructing all the instantiated feature-structures of a learned SSF by unification and in-
heritance, the feature-structures in the ambiguity set of that SSF are simply checked on
whether they fit with the lexical input or not. This is expected to play a major role in
speed-up of parsing since it enables the immidiate pruning of ambiguity-sets. On an-
other track, it might be worth the effort to develop fast methods for partial-parsing the
specialized grammar based on some clever indexing schemes or on the Cascade of Finite
State Transducers discussed shortly in chapter 4. Such ideas have proved to be essential
in earlier applications of EBL for specializing grammars (Samuelsson and Rayner, 1991;
Samuelsson, 1994b; Srinivas and Joshi, 1995; Neumann, 1994).

� �

For example, in most cases, we could not project DOP models of some subtree-depth upper-bound three
or more if we did not limit the number of substitution-sites to two per subtree. And in many other cases, it
was clear that without the optimization of the parsing algorithm to time-complexity linear is grammar size,
running a 5-fold cross-validation DOP experiment could consume many more weeks.

174 Chapter 6. Implementation and empirical testing

B2000 B4000
DOP

�

ISDOP
�

� SDOP
�

DOP
�

ISDOP
�

� SDOP
�

Recognized 89.10 88.10 80.15 91.90 91.60 85.00
TLC 77.79 77.79 77.79 83.67 83.67 83.67

Exact match 83.65 82.95 86.05 87.35 86.85 89.80
Syn. ex. match 93.40 93.80 95.80 95.20 95.00 96.70
Sem. ex. match 84.50 84.15 86.95 88.00 87.65 90.15

NCB recall 84.75 82.85 70.60 88.25 87.65 77.45
NCB prec. 99.40 99.50 99.75 99.60 99.60 99.80
0-Crossing 96.85 97.35 98.55 97.30 97.75 98.80
Syn. LBR 83.70 81.70 70.00 87.60 86.90 77.05
Syn. LBP 98.20 98.15 98.90 98.85 98.75 99.25
Sem. LBR 81.50 79.70 68.50 86.05 85.20 75.85
Sem. LBP 95.60 95.75 96.80 97.10 96.85 97.70
CPU (sec.) 0.57 0.25 0.19 0.99 0.33 0.28
Sen. length 4.40 4.45
of sens 680.00

B6000 B9000
DOP

�

ISDOP
�

� SDOP
�

DOP
�

ISDOP
�

� SDOP
�

Recognized 94.10 93.40 88.25 95.15 94.40 91.30
TLC 86.32 86.32 86.32 89.11 89.11 89.11

Exact match 88.75 88.35 90.50 89.50 88.65 90.00
Syn. ex. match 96.10 95.30 96.50 95.50 94.40 95.95
Sem. ex. match 89.20 89.00 90.85 89.95 89.25 90.65

NCB recall 90.70 89.40 81.60 92.15 90.80 86.55
NCB prec. 99.65 99.40 99.65 99.60 99.60 99.80
0-Crossing 98.45 97.30 98.15 97.55 97.35 98.40
Syn. LBR 90.00 88.60 81.10 91.55 90.00 86.05
Syn. LBP 98.90 98.50 99.00 98.95 98.65 99.20
Sem. LBR 88.55 87.20 80.00 90.35 88.55 84.95
Sem. LBP 97.30 96.95 97.65 97.60 97.05 97.95
CPU (sec.) 1.70 0.48 0.43 2.43 0.68 0.65
Sen. length 4.45 4.50
of sens 680.00

Table 6.2: Varying training TB-size: results for sentence length � (

6.5. Concluding remarks 175

Number of elementary-trees Number of internal-nodes
(not including the lexicon) (not including the lexicon)

TB-size Spec. TSG SDOP
�

DOP
�

Spec. TSG SDOP
�

DOP
�

2000 549 4830 20215 2331 24284 108211
4000 842 7725 33822 3288 37805 185041
6000 1091 10174 46227 4069 49028 256908
9000 1355 12824 61425 4883 60798 346479

Table 6.3: Grammar size as a function of tree-bank size

Annotation #grammar symbols #grammar rules
Annotation non-terminals terminals lexical non-lexical

Syntax 32 911 1005 278

Table 6.4: The T-SRI-ATIS tree-bank in numbers

Spec. TSG: 1523 elementary-trees, 2640 internal-nodes

Number of elementary-trees Number of internal-nodes
DOP

�

DOP
�

DOP
�

DOP
�

DOP
�

DOP
�

DOP
�

DOP
�

397 5920 24364 55178 1507 17795 162321 325431
SDOP

�

SDOP
�

SDOP
�

SDOP
�

SDOP
�

SDOP
�

SDOP
�

SDOP
�

530 10464 33301 51817 2421 47545 210533 374373

Table 6.5: Sizes of models to subtree-depth upper-bound (UB) trained on OVIS-syntax

176 Chapter 6. Implementation and empirical testing

Measures DOP
�

DOP
�

DOP
�

DOP
�

Recognized 95.20 95.20 95.20 95.20
Exact match 85.15 88.85 89.15 89.00

Syn. ex. match 90.50 94.35 94.80 94.65
Sem. ex. match 85.95 89.30 89.60 89.45

NCB recall 91.45 92.15 92.20 92.20
NCB prec. 98.90 99.55 99.60 99.60
0-Crossing 94.20 97.55 97.85 97.85
Syn. LBR 90.65 91.50 91.50 91.50
Syn. LBP 98.05 98.80 98.85 98.85
Sem. LBR 88.90 90.00 90.00 90.00
Sem. LBP 96.15 97.15 97.25 97.20
CPU (sec.) 0.11 0.76 2.42 4.35

Measures ISDOP
�

� ISDOP
�

� ISDOP
�

� ISDOP
�

�

Recognized 95.05 95.05 95.05 95.05
Exact match 87.90 89.30 89.45 88.65

Syn. ex. match 94.20 94.50 94.80 94.50
Sem. ex. match 88.65 89.90 90.05 89.30

NCB recall 91.70 91.80 91.80 91.80
NCB prec. 99.40 99.45 99.45 99.50
0-Crossing 96.65 97.10 97.40 97.40
Syn. LBR 91.05 91.05 91.05 91.05
Syn. LBP 98.65 98.65 98.65 98.65
Sem. LBR 89.30 89.45 89.50 89.40
Sem. LBP 96.80 96.90 97.00 96.90
CPU (sec.) 0.16 0.69 2.08 2.85

Measures SDOP
�

SDOP
�

SDOP
�

SDOP
�

Recognized 92.30 92.30 92.30 92.30
Exact match 89.45 90.85 91.00 90.20

Syn. ex. match 95.45 95.75 96.05 95.75
Sem. ex. match 90.05 91.00 91.50 90.70

NCB recall 88.10 88.60 88.10 88.15
NCB prec. 99.60 99.60 99.60 99.65
0-Crossing 97.65 97.80 98.10 98.10
Syn. LBR 87.60 88.10 87.55 87.55
Syn. LBP 99.05 99.05 99.00 98.95
Sem. LBR 86.20 86.80 86.35 86.25
Sem. LBP 97.45 97.60 97.60 97.50
CPU (sec.) 0.13 0.69 2.07 2.92

Table 6.6: Varying subtree-depth upperbound: sentence length � (

6.5. Concluding remarks 177

Measures DOP
�

ISDOP
�

� SDOP
�

Recognized 95.25 (0.99) 94.85 (1.42) 91.45 (0.99)
TLC 89.60 (1.56) 89.60 (1.56) 89.60 (1.56)

Exact match 89.35 (0.56) 89.45 (1.55) 91.30 (1.39)
Syn. ex. match 94.90 (0.79) 94.80 (0.79) 96.30 (0.61)
Sem. ex. match 89.90 (0.30) 90.00 (1.30) 91.50 (1.39)

NCB recall 92.15 (1.51) 91.30 (2.25) 86.75 (1.55)
NCB prec. 99.40 (0.21) 99.35 (0.10) 99.70 (0.05)
0-Crossing 97.10 (0.72) 96.90 (0.41) 98.05 (0.34)
Syn. LBR 91.45 (1.51) 90.60 (2.06) 86.35 (1.43)
Syn. LBP 98.65 (0.29) 98.55 (0.22) 99.25 (0.15)
Sem. LBR 90.05 (1.57) 89.10 (2.03) 85.20 (1.31)
Sem. LBP 97.15 (0.36) 96.90 (0.26) 97.95 (0.26)
CPU (sec.) 2.55 (0.23) 0.74 (0.09) 0.70 (0.03)
of sens 685.75 (8.42)

Sen. length 4.50 (0.03)

Measures DOP
�

ISDOP
�

� SDOP
�

Recognized 95.25 (0.99) 94.75 (1.24) 91.40 (0.86)
TLC 89.60 (1.56) 89.60 (1.56) 89.60 (1.56)

Exact match 86.55 (0.97) 88.05 (1.18) 90.00 (1.17)
Syn. ex. match 91.65 (0.72) 93.75 (0.65) 95.45 (0.50)
Sem. ex. match 87.25 (0.83) 88.70 (0.96) 90.50 (1.16)

NCB recall 91.65 (1.56) 91.10 (1.90) 86.05 (1.41)
NCB prec. 99.00 (0.13) 99.25 (0.17) 99.60 (0.03)
0-Crossing 94.85 (0.65) 96.40 (0.39) 97.75 (0.21)
Syn. LBR 90.85 (1.45) 90.30 (1.75) 85.55 (1.36)
Syn. LBP 98.10 (0.24) 98.40 (0.27) 99.05 (0.12)
Sem. LBR 89.15 (1.51) 88.70 (1.68) 84.30 (1.24)
Sem. LBP 96.30 (0.42) 96.65 (0.29) 97.60 (0.22)
CPU (sec.) 0.12 (0.00) 0.17 (0.01) 0.14 (0.01)
of sens 684.60 (7.73)

Sen. length 4.50 (0.03)

Table 6.7: Means and stds of 5 partitions: sentence length � (

178 Chapter 6. Implementation and empirical testing

Measures DOP
�

DOP
�

DOP
�

DOP
�

Recognized 99.70 99.70 99.70 99.70
TLC 97.40 97.40 97.40 97.40

Syn. ex. match 84.20 89.30 92.30 92.40
NCB recall 97.70 98.20 98.80 98.80
NCB prec. 98.10 98.80 99.30 99.30
0-Crossing 89.60 93.60 95.90 96.30
Syn. LBR 96.00 97.10 98.00 97.90
Syn. LBP 96.50 97.60 98.50 98.30
CPU (sec.) 0.11 0.31 2.57 9.27
of sens 687.00

Sen. length 4.60
Measures ISDOP

�

� ISDOP
�

� ISDOP
�

� ISDOP
�

�

Recognized 99.60 99.60 99.60 99.60
TLC 97.40 97.40 97.40 97.40

Syn. ex. match 87.40 90.50 92.00 91.70
NCB recall 98.10 98.30 98.40 98.50
NCB prec. 98.70 99.00 99.00 99.10
0-Crossing 93.00 94.90 95.60 95.80
Syn. LBR 96.50 97.10 97.50 97.40
Syn. LBP 97.10 97.70 98.10 98.00
CPU (sec.) 0.13 1.26 5.72 9.81
of sens 687.00

Sen. length 4.60

Measures SDOP
�

SDOP
�

SDOP
�

SDOP
�

Recognized 99.10 99.10 99.10 99.10
TLC 97.40 97.40 97.40 97.40

Syn. ex. match 87.50 90.60 92.10 91.80
NCB recall 97.60 97.90 98.00 98.00
NCB prec. 98.70 99.00 99.00 99.00
0-Crossing 92.90 94.90 95.60 95.70
Syn. LBR 96.10 96.70 97.10 97.00
Syn. LBP 97.10 97.80 98.10 98.00
CPU (sec.) 0.13 1.24 5.65 9.77
of sens 687.00

Sen. length 4.60

Table 6.8: Training on OVIS-syntax: results for sentence length � (

6.5. Concluding remarks 179

target concept: equivalence classes SSF
Measures ISDOP

�

� SDOP
�

ISDOP
�

� SDOP
�

Recognized 94.90 (1.17) 91.30 (1.00) 94.90 (1.17) 91.20 (0.87)
TLC 89.60 (1.56) 89.60 (1.56) 89.60 (1.56) 89.60 (1.56)

Exact match 89.00 (1.35) 91.00 (1.25) 89.30 (1.37) 91.30 (1.26)
Syn. ex. match 94.50 (0.48) 96.10 (0.44) 94.80 (0.75) 96.40 (0.53)
Sem. ex. match 89.60 (1.16) 91.40 (1.25) 89.90 (1.11) 91.80 (1.21)

NCB recall 91.50 (1.84) 85.90 (1.41) 91.50 (1.79) 85.70 (1.18)
NCB prec. 99.40 (0.13) 99.70 (0.05) 99.30 (0.18) 99.70 (0.05)
0-Crossing 96.80 (0.40) 98.00 (0.29) 96.90 (0.37) 98.20 (0.25)
Syn. LBR 90.80 (1.72) 85.40 (1.30) 90.80 (1.67) 85.30 (1.08)
Syn. LBP 98.60 (0.17) 99.10 (0.12) 98.60 (0.27) 99.20 (0.13)
Sem. LBR 89.20 (1.70) 84.30 (1.22) 89.20 (1.66) 84.20 (1.04)
Sem. LBP 96.90 (0.20) 97.80 (0.17) 96.90 (0.27) 97.80 (0.19)
CPU (sec.) 0.63 (0.04) 0.58 (0.03) 1.93 (0.12) 2.02 (0.15)
of sens 684.60 (7.73)

Sen. length 4.50 (0.03)

Table 6.9: Experiments with the definition of the target-concept as equivalence classes
of SSFs that are equivalent up to consecutive repetition of symbols. The results are for
sentence length � (

Measures DOP
�

ISDOP
�

� SDOP
�

Recognized 99.60 (0.13) 99.40 (0.15) 98.30 (0.60)
TLC 97.40 (1.73) 97.40 (1.73) 97.40 (1.73)

Syn. ex. match 92.25 (0.69) 90.75 (1.04) 91.20 (0.94)
NCB recall 98.65 (0.33) 98.25 (0.31) 96.70 (0.82)
NCB prec. 99.15 (0.17) 99.00 (0.23) 99.05 (0.24)
0-Crossing 95.85 (0.33) 95.15 (0.77) 95.45 (0.76)
Syn. LBR 97.55 (0.31) 96.95 (0.21) 95.50 (0.77)
Syn. LBP 98.05 (0.25) 97.70 (0.40) 97.85 (0.42)
CPU (sec.) 10.11 (0.87) 1.56 (0.17) 1.47 (0.15)
of sens 684.60 (7.73)

Sen. length 4.60 (0.05)

Table 6.10: Syntactic OVIS: Results for sentence length � (

180 Chapter 6. Implementation and empirical testing

Results on all word-graphs
Measures DOP

�

ISDOP
�

� SDOP
�

Recognized 99.30 (.30) 99.10 (.35) 98.10 (.60)
Exact match 72.60 (.90) 72.70 (1.40) 73.20 (1.55)

Syn. ex. match 80.70 (1.10) 80.80 (1.70) 81.40 (1.90)
Sem. ex. match 75.10 (.50) 75.20 (1.40) 75.70 (1.55)

NCB recall 90.70 (.70) 90.00 (.55) 87.90 (1.10)
NCB prec. 93.30 (.80) 93.10 (.60) 93.60 (.70)
0-Crossing 87.50 (1.00) 87.30 (.90) 87.80 (1.10)
Syn. LBR 80.95 (1.50) 80.20 (1.20) 78.80 (1.10)
Syn. LBP 83.30 (1.80) 82.90 (1.60) 83.90 (1.90)
Sem. LBR 78.90 (1.60) 78.20 (1.40) 76.90 (1.30)
Sem. LBP 81.20 (1.90) 80.90 (1.80) 81.80 (2.10)
CPU (sec.) 33.10 (7.00) 8.60 (2.00) 8.20 (1.30)
of WGs 1000.00 (0)

#states in WGs 8.40 (.10)
#trans in WGs 30.50 (2.00)

Corr. sen. in WG 89.80 (.55)

Results only on word-graphs containing the correct sentence
Measures DOP

�

ISDOP
�

� SDOP
�

Recognized 99.40 (.20) 99.30 (.30) 98.60 (.50)
Exact match 80.80 (.70) 80.90 (1.25) 81.20 (1.30)

Syn. ex. match 87.80 (.80) 87.80 (1.40) 88.20 (1.50)
Sem. ex. match 83.10 (.70) 83.00 (1.30) 83.20 (1.40)

NCB recall 94.50 (.50) 93.90 (.40) 92.50 (1.20)
NCB prec. 96.40 (.70) 96.20 (.75) 96.40 (.70)
0-Crossing 92.85 (.70) 92.70 (.90) 93.00 (1.05)
Syn. LBR 88.70 (1.00) 88.10 (1.00) 86.90 (1.20)
Syn. LBP 90.45 (1.50) 90.30 (1.60) 90.60 (1.60)
Sem. LBR 87.00 (1.10) 86.50 (1.20) 85.30 (1.30)
Sem. LBP 88.75 (1.60) 88.60 (1.80) 88.90 (1.90)
CPU (sec.) 17.40 (3.70) 4.10 (.80) 4.05 (.85)
of WGs 897.80 (5.50)

#states in WGs 7.30 (.10)
#trans in WGs 21.50 (1.10)

Corr. sen. in WG 100.00 (0)

Table 6.11: Results on OVIS wordgraphs: DOP
�

vs. ISDOP
�

� and SDOP
�

6.5. Concluding remarks 181

Results on all word-graphs
Measures DOP

�

ISDOP
�

� SDOP
�

Recognized 99.40 (0.28) 99.10 (0.38) 98.20 (0.58)
Exact match 69.50 (0.95) 70.60 (1.36) 71.10 (1.49)

Syn. ex. match 77.90 (0.64) 79.20 (1.43) 79.70 (1.59)
Sem. ex. match 71.80 (0.71) 73.10 (1.29) 73.60 (1.45)

NCB recall 89.20 (0.64) 89.10 (0.91) 87.00 (1.13)
NCB prec. 92.40 (0.92) 92.60 (0.82) 93.00 (0.78)
0-Crossing 85.10 (0.96) 86.10 (1.12) 86.60 (1.15)
Syn. LBR 78.90 (1.25) 78.90 (1.61) 77.50 (1.46)
Syn. LBP 81.70 (1.78) 82.00 (1.85) 82.80 (1.94)
Sem. LBR 76.50 (1.33) 76.60 (1.66) 75.30 (1.55)
Sem. LBP 79.20 (1.85) 79.60 (1.95) 80.40 (2.06)
CPU (sec.) 1.40 (0.22) 1.57 (0.23) 1.47 (0.20)
of WGs 1000.00 (0.00)

#states in WGs 8.40 (0.11)
#trans in WGs 30.50 (1.96)

Corr. sen. in WG 89.80 (0.55)

Results only on word-graphs containing the correct sentence
Measures DOP

�

ISDOP
�

� SDOP
�

Recognized 99.40 (0.22) 99.30 (0.30) 98.70 (0.48)
Exact match 77.40 (0.77) 78.50 (1.18) 78.80 (1.21)

Syn. ex. match 84.90 (0.36) 86.10 (1.05) 86.40 (1.14)
Sem. ex. match 79.40 (0.82) 80.70 (1.29) 81.00 (1.34)

NCB recall 92.50 (0.68) 92.80 (0.66) 91.30 (1.28)
NCB prec. 95.20 (0.81) 95.50 (0.87) 95.60 (0.81)
0-Crossing 90.30 (0.80) 91.40 (1.05) 91.60 (1.02)
Syn. LBR 86.10 (1.09) 86.40 (1.29) 85.10 (1.54)
Syn. LBP 88.60 (1.49) 89.00 (1.65) 89.20 (1.59)
Sem. LBR 84.00 (1.06) 84.50 (1.44) 83.20 (1.59)
Sem. LBP 86.50 (1.42) 87.00 (1.82) 87.30 (1.78)
CPU (sec.) 0.77 (0.25) 0.82 (0.24) 0.81 (0.24)
of WGs 897.80 (5.54)

#states in WGs 7.30 (0.08)
#trans in WGs 21.50 (1.10)

Corr. sen. in WG 100.00 (0.00)

Table 6.12: Results on OVIS word-graphs: DOP
�

vs. ISDOP
�

� and SDOP
�

182 Chapter 6. Implementation and empirical testing

Measures DOP
�

DOP
�

DOP
�

DOP
�

Recognized 99.90 99.90 99.90 99.90
TLC 99.50 99.50 99.50 99.50

Syn. ex. match 46.00 69.70 79.10 82.70
NCB recall 92.00 96.60 97.50 98.30
NCB prec. 94.20 97.40 97.90 98.40
0-Crossing 62.60 79.20 84.00 87.60
Syn. LBR 88.80 95.40 96.70 97.30
Syn. LBP 90.80 96.20 97.20 97.40
CPU (sec.) 2.49 16.29 146.73 710.58
Measures SDOP

�

SDOP
�

SDOP
�

SDOP
�

Recognized 99.90 99.90 99.90 99.90
TLC 99.50 99.50 99.50 99.50

Syn. ex. match 50.80 71.20 79.80 83.60
NCB recall 93.50 96.60 97.70 98.20
NCB prec. 95.10 97.20 98.00 98.30
0-Crossing 65.90 80.50 84.60 87.30
Syn. LBR 90.60 95.40 96.90 97.30
Syn. LBP 92.10 96.00 97.20 97.40
CPU (sec.) 10.34 55.67 363.68 942.74
of sens 1000.00

Sen. length 8.20

Table 6.13: ATIS experiments: DOP and SDOP models of various depths

Measures DOP
�

DOP
�

SDOP
�

SDOP
�

Recognized 99.97 (0.05) 99.97 (0.05) 99.93 (0.05) 99.93 (0.05)
TLC 99.50 (2.16) 99.50 (2.16) 99.50 (2.16) 99.50 (2.16)

Syn. ex. match 46.50 (1.08) 70.50 (1.46) 50.00 (1.46) 70.80 (0.69)
NCB recall 92.50 (0.31) 96.80 (0.19) 93.50 (0.24) 96.80 (0.19)
NCB prec. 94.50 (0.25) 97.60 (0.16) 95.00 (0.24) 97.50 (0.20)
0-Crossing 63.20 (0.56) 80.50 (1.53) 65.70 (0.56) 80.60 (0.71)
Syn. LBR 89.20 (0.37) 95.60 (0.25) 90.50 (0.38) 95.60 (0.14)
Syn. LBP 91.20 (0.25) 96.40 (0.25) 91.90 (0.42) 96.20 (0.15)
CPU (sec.) 2.48 (0.07) 16.19 (0.34) 10.70 (0.56) 57.89 (3.00)
of sens 1000.00 (0.00)

Sen. length 8.20 (0.04)

Table 6.14: ATIS: Means and STDs

Chapter 7

General conclusions

This thesis concentrated on the efficiency and the complexity of natural language dis-
ambiguation, especially under the Data Oriented Parsing model. On the one hand, it
established that some problems of probabilistic disambiguation belong to classes that are
considered intractable. And on the other hand, it provided various solutions for improv-
ing the efficiency of probabilistic disambiguation. Some of these solutions constitute
optimized extensions of existing parsing and disambiguation algorithms, and others try to
tackle the efficiency problem more fundamentally through specializing the models to lim-
ited domain language use. A central hypothesis that underlies the latter kind of solutions
is that existing performance models can be more efficient if they are made to account
for the property that more frequent input is processed more efficiently. The thesis also
provided an empirical study of instances of these solutions on collections of data that are
associated with some applications. Two questions may be raised at this point. Firstly, in
how far do the solutions that this thesis provides solve the efficiency problem of the DOP
model ? And secondly, in how far do these solutions enable modeling the property that
more frequent input is processed more efficiently ? Next we try to answer both questions.

We note first that the answer to the first question can be conclusive only in the light of
some application that imposes clear time and space requirements. Therefore, it is suitable
to restate that question as a more specific question that can be answered on the basis of
our actual experience in this thesis: did our solutions enable substantially more efficient
disambiguation under the DOP model on the domains employed in this thesis ? Clearly,
the answer to this question may entail general conclusions concerning the present methods
only when the applications being addressed involve similar limited domains.

If we look back at the starting point of this work we can apply the following simple-
minded quantitative reasoning about how far we are now from that point. About five
years ago, before this work started, the average time for processing an ATIS-domain Part-
of-Speech (PoSTag) sequence by a DOP model trained on 700 trees was about 12000
seconds (Bod, 1993a; Bod, 1995a). Three years ago, the optimized algorithms of chap-
ter 5 enabled a net 100-500 times speed-up on the same material (Sima’an, 1995). The
efficiency improvement that these algorithms enable can also be seen in the relatively

183

184 Chapter 7. General conclusions

acceptable time and space results of the DOP model on OVIS domain utterances (sec-
tion 6.3). Obviously, these algorithms have improved the efficiency of the DOP model
substantially and have made it possible to experiment with the DOP model on larger
tree-banks more extensively. However, we cannot conclude that these optimizations have
completely solved the efficiency problem for DOP on all similar domains. The experi-
ments that are reported in section 6.4 expose the magnitude of the efficiency problem of
the DOP model even when using these optimized algorithms. For the DOP models that
are employed in these experiments, trained on 15 times as many trees as the experiments
mentioned above, the average time for processing a sentence by the optimized algorithms
is 100-1000 seconds

�

. Although our optimized algorithms enable a substantial speed-up
when compared to those described in (Bod, 1993a), alas both kinds of algorithms are
currently not yet useful for practical applications in the ATIS domain. Of course, we
can still apply pruning techniques to improve the efficiency of these algorithms, but we
feel that pruning techniques will not solve the problem fundamentally. This clearly in-
dicates that the ultimate goal of making the DOP model efficient enough to be useful in
real-world applications will not be achieved solely by optimizations of traditional parsing
techniques. The question as to what kinds of “non-traditional” techniques should make
this goal attainable is discussed in chapter 4.

The main motivation behind chapter 4 is exactly the efficiency bottleneck that tradi-
tional methods of parsing and disambiguation face when applied to the DOP model. Usu-
ally, the time-complexity and actual processing-times of these methods depend on general
characteristics of the probabilistic grammar and the input sentence, e.g. size, length and
ambiguity. The idea behind ambiguity-reduction specialization (ARS) (chapter 4) is that
it should be possible to make processing time depend on general properties of the dis-
tribution of sentences in some domain of language use, rather than only on properties of
individual sentences. Therefore, the ARS framework aims at learning from a tree-bank
that represents a limited domain, a specialized probabilistic grammar that processes more
frequent input more efficiently than comparable less frequent input. For specializing a
probabilistic grammar, the ARS framework focuses the specialization effort on the ob-
servation that language use in a limited domain is much less ambiguous than it is in less
limited domains. Specialization by ARS, therefore, aims at finding the least ambiguous
grammar (in the Information Theoretic sense) that represents the limited language use in
the domain without resulting in extreme overfitting or loss of precision.

The ARS framework can be implemented in a whole range of possible ways, of which
only one has been tested here: the cheapest one. In our opinion, there are many other
implementations that can improve radically on this one. Despite of the inferiority of
the current implementation, it has been possible to exemplify that the ARS framework
can specialize the DOP model to a domain so that it enables efficiency improvement
without loss of recognition-power or precision of disambiguation. In fact, this is a re-
markable result considering how hard it is to improve efficiency without jeopardizing the
disambiguation-precision of a probabilistic model. Moreover, as we can see from the ex-

�

Note that this concerns processing actual word-sequences which are more ambiguous than PoSTag
sequences.

185

periments on the OVIS domain (chapter 6) the specialized DOP models are usually faster
on more frequent input.

Nevertheless, the experiments of section 6.4 also show that the current implementation
of the ARS is not able to realize the theoretical promise of that framework on every
limited domain of language use. The current implementation reduces ambiguity only to
a small extent and does not always result in DOP models that are efficient enough to be
useful in applications. On the ATIS domain, the current implementation failed to achieve
an efficiency improvement that is comparable to its achievement on the OVIS domain.
We think that this is mainly due to the inferiority of the current implementation. Future
work may be able to show how other implementations can improve the efficiency of DOP
on domains like the ATIS. However, another important factor should be kept in mind:
it is unclear in how far the ATIS and the OVIS tree-banks that we employed for our
experiments can be considered statistical samples from their respective domains. This is
of course a major issue in determining the behavior of the learning algorithms.

In summary, the conclusion of this work has two sides. On the one side, we see
that this thesis offers the DOP model a much better computational position than before.
The efficiency improvement enables more serious experimentation with the model on
larger tree-banks and the study of complexity explains why disambiguation under the
DOP model is so hard. On the other side, it is fair to say that the efficiency problem of
the DOP model is not totally solved by this thesis. It will remain an interesting subject of
research where substantial improvement can be achieved.

Unfortunately, many people consider the efficiency problem as a kind of “gory detail”
research subject. This point of view has its roots in modeling techniques that aim solely at
the correctness of computer systems that model tasks that are conceptually clear. Indeed,
this view is suitable for such computer systems. However, when modeling intelligent
behavior, this point of view is truly mistaken. Efficiency is often considered a hallmark of
intelligent behavior. There are many examples of this fact, but one such example is most
suitable here: the game of Chess. The main difference between an expert and a novice
who knows the rules of the game is mainly the efficiency of the expert that has specialized
himself in Chess through experience. Not modeling the efficiency of the Chess expert in
any way simply means studying the whole space of possibilities, which no intelligent
Chess program does.

We envision that future research in natural language processing will address the effi-
ciency problem more frequently than currently is the case and we hope that the present
study exemplifies the range of interesting research directions pertaining to the efficiency
of performance models. The subject of modeling and exploiting efficiency properties of
human language processing is both interesting and rewarding.

Bibliography

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundational issues, method-
ological variations and system approaches. AI Communications, 7:39–59.

Abney, S. (1991). Parsing By Chunks. In Berwick, R., Abney, S., and Tenny, C.,
editors, Principle-Based Parsing. Kluwer Academic Publishers.

Aha, D. W., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 6:37–66.

Aho, A. and Ullman, J. (1972). The Theory of Parsing, Translation and Compiling,
volume I, II. Prentice-Hall Series in Automatic Computation.

Alshawi, H., editor (1992). Core Language Engine. Boston: MIT Press.

Bahl, L. and Mercer, R. (1976). Part-of-speech assignment by a statistical decision
algorithm. In International Symposium on Information Theory, Ronneby, Sweden.

Barton, G. E., Berwick, R., and Ristad, E. S. (1987). Computational Complexity and
Natural Language. A Bradford Book, The MIT Press.

Black, E., Jelinek, F., Lafferty, J., Magerman, D., Mercer, R., and Roukos, S. (1993).
Towards History-based Grammars: Using Richer Models for Probabilistic Parsing. In
Proceedings ACL’93, Columbus, Ohio.

Black et al., E. (1991). A procedure for quantitatively comparing the syntactic coverage
of english grammars. In Proceedings of the February 1991 DARPA Speech and Natural
Language Workshop.

Bod, R. (1992). A computational model of language performance: Data Oriented
Parsing. In Proceedings COLING’92, Nantes.

Bod, R. (1993a). Monte Carlo Parsing. In Proceedings Third International Workshop
on Parsing Technologies, Tilburg/Durbuy.

187

188 Bibliography

Bod, R. (1993b). Using an Annotated Corpus as a Stochastic Grammar. In Proceedings
EACL’93, Utrecht.

Bod, R. (1995a). Enriching Linguistics with Statistics: Performance models of Natural
Language. PhD thesis, ILLC-dissertation series 1995-14, University of Amsterdam.

Bod, R. (1995b). The Problem of Computing the Most Probable Tree in Data-Oriented
Parsing and Stochastic Tree Grammars. In Proceedings Seventh Conference of The
European Chapter of the ACL, Dublin.

Bod, R., Bonnema, R., and Scha, R. (1996a). A Data Oriented Approach to Seman-
tic Interpretation. In Proceedings Workshop on Corpus-Oriented Semantic Analysis,
ECAI-96, Budapest, Hungary. (cmp-lg/9606024).

Bod, R. and Kaplan, R. (1998). A probabilistic corpus-driven approach for Lexical
Functional Grammar. In Proceedings COLING-ACL’98, Montreal, Canada.

Bod, R., Kaplan, R., Scha, R., and Sima’an, K. (1996b). A Data Oriented approach to
Lexical-Functional Grammar. In Computational Linguistics in the Netherlands 1996.
Eindhoven, The Netherlands.

Bod, R. and Scha, R. (1996). Data-Oriented Language Processing: An Overview.
Research report nr. LP-96-13, ILLC Research reports, University of Amsterdam, Am-
sterdam, The Netherlands.

Bonnema, R. (1996). Data Oriented Semantics. M.A. Thesis, De-
partment of Computational Linguistics, University of Amsterdam, ��� � ��� 2
��� 	�� G ' � < � � � � � � �
 < � G�� 	 	 � � � � � � ' � 	 � ' ��G+ � � � � � � 	 < � .
Bonnema, R. (1998). Probabilistic NLP Software Documentation. A report of the
Probabilistic Natural Language Processing in the NWO priority Programme on Lan-
guage and Speech Technology, Amsterdam.

Bonnema, R., Bod, R., and Scha, R. (1997). A DOP Model for Semantic Interpretation.
In Proceedings of ACL/EACL’97, Madrid, Spain.

Bonnema, R. and Scha, R. (1999). On subtree substitution probability in Data Oriented
Parsing. Submitted to ACL’99.

Brill, E. (1993). Transformation-Based Learning. Phd Thesis , University of Pennsyl-
vania.

Brill, E. (1994). Some advances in transfromation-based part of speech tagging. In
Proceedings of AAAI’94.

Carter, D. (1997). The treebanker: a tool for supervised training of parsed corpora. In
Proceedings of the workshop on Computational Environments for Grammar Develop-
ment and Linguistic Engineering, ACL/EACL’97, Madrid.

Bibliography 189

Charniak, E. (1996). Tree-bank Grammars. In Proceedings AAAI’96, Portland, Ore-
gon.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge (Ma.), The MIT
Press.

Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted
text. In Proceedings of ANLP’88, Austin,Texas.

Collins, M. (1996). A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th Annual Meeting of the ACL, pages 184–191.

Collins, M. (1997). Three generative, lexicalized models for statistical parsing. In
Proceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the
EACL, pages 16–23, Madrid, Spain.

Daelemans, W. (1995). Memory-based lexical acquisition and processing. In Steffens,
P., editor, Springer Lecture Notes in Artificial Intelligence, Springer Lecture Notes in
Artificial Intelligence no.898, pages 85–98. Berlin: Springer-Verlag.

Daelemans, W., Zavrel, J., Berck, P., and Gillis, S. (1996). Mbt: A memory-based part
of speech tagger generator. In Ejerhed, E. and Dagan, I., editors, Proceedings of the
fourth Workshop on Very Large Corpora (ACL SIGDAT), pages 14–27, Copenhagen,
Denmark.

Davis, M. and Weyuker, E. (1983). Computability, Complexity and Languages: Fun-
damentals of Theoretical Computer Science. Series in Computer Science and Applied
Mathematics, Academic Press, INC.

DeJong, G. (1981). Generalizations based on explanations. In Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, pages 67–70.

DeJong, G. and Mooney, R. (1986). Explanation-Based Generalization: A Alternative
View. Machine Learning 1:2, pages 145–176.

Doran, C., Egedi, D., Hockey, B., Srinivas, B., and Zaidel, M. (1994). XTAG System -
A Wide Coverage Grammar for English. In Proceedings of COLING’94, Kyoto, Japan.

Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Communications of
the ACM, pages 94–102.

Ejerhed, E. (1988). Finding clauses in unrestricted text by finitary and stochastic mod-
els. In Proceedings of the 2nd Conference on Applied Natural Language Processing,
pages 410–432, Austin, Texas.

Ejerhed, E. and Church, K. (1983). Finite State Parsing. In Karlsson, F., editor, Pa-
pers from the Scandinavian Conference of Linguistics, pages 410–432. Departement
of General Linguistics, University of Helsinky.

190 Bibliography

Fujisaki, T. (1984). An approach to stochastic parsing. In Proceedings COLING-84.

Fujisaki, T., Jelinek, F., Cocke, J., Black, E., and Nishino, T. (1989). A probabilistic
method for sentence disambiguation. In Proceedings First IWPT, Pittsburgh.

Gale, W. and Church, K. (1994). What is wrong with adding one ? In Oostdijk, N. and
de Haan, P., editors, Corpus-based Research into Language. Rodopi, Amsterdam.

Garey, M. and Johnson, D. (1981). Computers and Intractability. San Fransisco: W.H.
Freeman and Co.

Good, I. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika, 40:237–264.

Goodman, J. (1996). Efficient Algorithms for Parsing the DOP Model. In Proceedings
Empirical Methods in Natural Language Processing, Philadelphia,PA.

Goodman, J. (1998). Parsing Inside-Out. PhD thesis, Departement of Computer Sci-
ence, Harvard University, Cambridge, Massachusetts.

Graham, S., Harrison, M., and Ruzzo, W. (1980). An improved Context-Free recog-
nizer. ACM Transactions on Programming Languages and Systems, Vol. 2, No. 3:415–
462.

Hemphill, C., Godfrey, J., and Doddington, G. (1990). The atis spoken language sys-
tems pilot corpus. In Proceedings of the DARPA Speech and Natural Language Work-
shop, pages 96–101, Hidden Valley, Pa.

Hindle, D. (1994). A parser for text corpora. In Zampolli, A., editor, Computational
Approaches to the Lexicon. Oxford University Press, New York.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Lanaguges, and
Computation. Reading, MA: Addison Wesley.

Jelinek, F., Lafferty, J., and Mercer, R. (1990). Basic Methods of Probabilistic Context
Free Grammars, Technical Report IBM RC 16374 (� 72684). Yorktown Heights.

Joshi, A. (1985). Tree Adjoining Grammars: How much context sensitivity is re-
quired to provide a reasonable structural description. In D. Dowty, I. K. and Zwicky,
A., editors, Natural Language Parsing, pages 206–250, Cambridge, U.K. Cambridge
University Press.

Joshi, A. and Schabes, Y. (1991). Tree-Adjoining Grammars and Lexicalized Gram-
mars. In Nivat, M. and Podelski, A., editors, Tree Automata and Languages. Elsevier
Science Publishers.

Karlsson, F., Voutilainen, A., Heikkila, J., and Anttila, A. e. (1995). Constraint Gram-
mar. A language-independent system for parsing unrestricted text. Mouton de Gruyter.

Bibliography 191

Katz, S. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal
Processing, 35(3).

Koskenniemi, K. (1990). Finite-state parsing and disambiguation. In Proceedings of
COLING’90, pages 229–232.

Krenn, B. and Samuelsson, C. (Version December 1997). The Linguist’s Guide to
Statistics. http://coli.uni-sb.de/ krenn, christer.

Lewis, H. and Papadimitriou, C. (1981). Elements of the Theory of Computation.
Englewood-Cliffs, N.J., Prentice-Hall.

Magerman, D. M. (1994). Statistical Decision-Tree Models for Parsing. In Proceed-
ings of the 33th Annual Meeting of the ACL.

Martin, W., Church, K., and Patil, R. (1987). Preliminary analysis of a Breadth-First
Parsing Algorithm: Theoretical and Experimental Results. In Bolc, L., editor, Natural
Language Parsing Systems, pages 267–328, Berlin. Springer Verlag.

Minton, S. (1990). Quantitative Results Concerning the Utility Problem of
Explanation-Based Learning. Artificial Intelligence, 42:363–392.

Mitchell, T. (1997). Machine Learning. McGraw-Hill Series in Computer Science.

Mitchell, T., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-Based Generaliza-
tion: A Unifying View. Machine Learning 1:1.

Neumann, G. (1994). Application of explanation-based learning for efficient process-
ing of constraint-based grammars. In Proceedings of the

(6

 � IEEE Conference on

Artificial Intelligence for Applications.

Papoulis, A. (1990). Probability and Statistics. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Pereira, F. and Schabes, Y. (1992). Inside-outside reestimation from partially bracketed
corpora. In Proceedings of the 30th Annual Meeting of the ACL, Newark, De.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Ratnaparkhi, A. (1997). Memory-based lexical acquisition and processing. In Pro-
ceedings of Empirical Methods in NLP, EMNLP-2.

Rayner, M. (1988). Applying Explanation-Based Generalization to Natural Language
Processing. In Proceedings International Conference on Fifth Generation Computer
Systems, pages 1267–1274, Kyoto, Japan.

192 Bibliography

Rayner, M. and Carter, D. (1996). Fast Parsing using Pruning and Grammar Speciliza-
tion. In Proceedings ACL-96, Santa Cruz, CA.

Rayner, M. and Samuelsson, C. (1990). Using Explanation-Based Learning to increase
performance in a large NL query system. In Proc. DARPA Speech and Natural Lan-
guage Workshop, pages 251–256. Morgan Kaufmann.

Resnik, P. (1992). Probabilistic Tree-Adjoining Grammar as a Framework for Statisti-
cal Natural Language Processing. In Proceedings COLING’92, Nantes.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum descrip-
tion length. The Annuals of Statistics, 11 (2):416–431.

Samuelsson, C. (1994a). Fast Natural-Language Parsing Using Explanation-Based
Learning. PhD thesis, Swedish Institute of Computer Science Dissertation Series 13,
Stockholm, Sweden.

Samuelsson, C. (1994b). Grammar Specialization Through Entropy Thresholds. In
Proceedings ACL’94, Las Cruces, New Mexico.

Samuelsson, C. (1996). Handling Sparse Data by Successive Abstraction. In Proceed-
ings of the 16th International Conference on Computational Linguistics (COLING’96),
pages 895–900. ICCL.

Samuelsson, C. (1998). Linguistic theory in statistical language learning (invited talk).
In NeMLaP/CoNLL’98, Australia.

Samuelsson, C. and Rayner, M. (1991). Quantitative evaluation of explanation-based
learning as an optimization tool for a large-scale natural language system. In Proceed-
ings of 12th IJCAI, pages 609–615, Sydney.

Samuelsson, C. and Voitilainen, A. (1997). Comparing a Linguistic and a Stochastic
Tagger. In Proceedings of ACL/EACL’97, Madrid, Spain.

Scha, R. (1990). Language Theory and Language Technology; Competence and Per-
formance (in Dutch). In de Kort, Q. and Leerdam, G., editors, Computertoepassingen
in de Neerlandistiek, Almere: LVVN-jaarboek.

Scha, R. (1992). Virtual grammars and creative algorithms. In In Dutch, Gramma/TTT
1(1).

Scha, R., Sima’an, K., Bonnema, R., and Bod, R. (1996). Disambiguation and Inter-
pretation of Wordgraphs using Data Oriented Parsing. Probabilistic Natural Language
Processing in the NWO priority Programme on Language and Speech Technology,
Amsterdam.

Schabes, Y. (1992). Stochastic Lexicalized Tree-Adjoining Grammars. In Proceedings
COLING’92, Nantes.

Bibliography 193

Schabes, Y. and Joshi, A. (1988). An Earley-type parsing algorithm for Tree Adjoining
Grammars. In Proceedings of the 26th Meeting of the ACL (ACL’88), pages 82–93,
Buffalo.

Schabes, Y. and Waters, R. (1993). Stochastic Lexicalized Context-Free Grammar. In
Proceedings Third IWPT, Tilburg/Durbuy.

Sekine, S. and Grishman, R. (1995). A Corpus-based Probabilistic Grammar with
Only Two Non-terminals. In Proceedings Fourth International Workshop on Parsing
Technologies, Prague, Czech Republic.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of communication.
Urbana: University of Illinois Press.

Shavlik, J. and Dietterich, T., editors (1990). Readings in Machine Learning. Morgan
Kaufman, San Mateo, CA.

Sima’an, K. (1995). An optimized algorithm for Data Oriented Parsing. In Proceedings
RANLP’95, Tzigov Chark, Bulgaria.

Sima’an, K. (1996). Computational Complexity of Probabilistic Disambiguation by
means of Tree Grammars. In Proceedings of COLING’96, volume 2, pages 1175–
1180, Copenhagen, Denmark.

Sima’an, K. (1997a). An optimized algorithm for Data Oriented Parsing. In Mitkov,
R. and Nicolov, N., editors, Recent Advances in Natural Language Processing 1995,
volume 136 of Current Issues in Linguistic Theory. John Benjamins, Amsterdam.

Sima’an, K. (1997b). Efficient Disambiguation by means of Stochastic Tree Substi-
tution Grammars. In Jones, D. and Somers, H., editors, New Methods in Language
Processing 1995. UCL Press.

Sima’an, K. (1997c). Explanation-Based Learning of Data Oriented Parsing. In Elli-
son, T. M., editor, Proceedings of the Workshop on Computational Natural Language
Learning (CoNLL), ACL/EACL-97, Madrid, Spain.

Sima’an, K. (1997d). Explanation-Based Learning of Partial-Parsing. In Daelemans,
W., Van den Bosch, A., and Weijters, A., editors, Workshop Notes of the ECML / ML-
net Workshop on Empirical Learning of Natural Language Processing Tasks, Prague,
Czech Republic.

Sima’an, K. (1997e). Learning Efficient Parsing with application to DOP and Speech
Uunderstanding. NWO - Dutch Scientific Research Organization, Priority Programme
for Speech and Language Technology, Amsterdam.

Sima’an, K., Bod, R., Krauwer, S., and Scha, R. (1994). Efficient Disambiguation
by means of Stochastic Tree Substitution Grammars. In Proceedings International
Conference on New Methods in Language Processing. CCL, UMIST, Manchester.

194 Bibliography

Srinivas, B. (1997). Complexity of lexical descriptions and its relevance to partial
parsing. PhD thesis, Computer and Information Science, University of Pennsylvania.

Srinivas, B. and Joshi, A. (1995). Some Novel Applications of Explanation-Based
Learning to Parsing Lexicalized Tree-Adjoining Grammars. In Proceedings ACL-95.

Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning. Communications
of the ACM, 29:1213–1228.

Tadepalli, P. and Natarajan, B. (1996). A formal framework for Speedup Learning
from problems and solutions. Journal of Artificial Intelligence Research, 4:445–475.

Thatcher, J. (1971). Characterizing derivations trees of context free grammars through
a generalization of finite automata theory. Journal of Computer and System Sciences,
5:365–396.

Tugwell, D. (1995). A state-transition grammar for Data-Oriented Parsing. In Pro-
ceedings EACL’95. Dublin, Ireland.

Van den Berg, M., Bod, R., and Scha, R. (1994). A corpus-based approach to se-
mantic interpretation. In Proceedings Ninth Amsterdam Colloquium. Amsterdam, The
Netherlands.

van Harmelen, F. and Bundy, A. (1988). Explanation-Based Generalization = Partial
Evaluation (research note). Artificial Intelligence 36, pages 401–412.

van Noord, G. (1995). The intersection of finite state automata and definite clause
grammars. In Proceedings of ACL-95.

Veldhuijzen van Zanten, G. (1996). Semantics of update expressions. Techni-
cal report 24, NWO Priority Programme Language and Speech Technology, � � ��� 2
����� � � G � < � � � G � � �
 < 2 � * (� .
Vijay-Shanker, K. (1987). A Study of Tree Adjoining Grammars. PhD thesis, Departe-
ment of Computer and Information Science, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A. (1985). Some computational properties of Tree Ad-
joining Grammars. In Proceedings of the 23rd Meeting of the ACL (ACL’85), pages
82–93.

Vijay-Shanker, K. and Weir, D. (1993). Parsing Some Constrained Grammar For-
malisms. Computational Linguistics, 19(4).

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Trans. Information Theory, IT-13:260–269.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognitions. Ablex.

Bibliography 195

Young, S. and Bloothooft, G., editors (1997). Corpus-Based Methods in Language and
Speech Processing. Text, Speech and Language Technology, elsnet. Kluwer Academic
Publishers.

Younger, D. (1967). Recognition and parsing of context-free languages in time

 �

.
Inf.Control, 10(2):189–208.

Samenvatting

Dit proefschrift analyseert de computationele eigenschappen van hedendaagse
performance-modellen van menselijke taalverwerking, zoals Data-Oriented Parsing
(DOP) (Scha, 1990; Scha, 1992; Bod, 1995a). Het constateert enkele belangrijke
beperkingen en tekortkomingen, en doet voorstellen voor verbeterde modellen en al-
gorithmes, gebaseerd op technieken uit Explanation-Based Learning. Experimenten
met implementaties van deze algorithmes leveren bemoedigende resultaten op.

Het is algemeen bekend dat formele grammatica’s van natuurlijke talen zeer ambigu
zijn. Vaak kennen deze grammatica’s zeer veel analyses toe aan een uiting. Het overgrote
deel van deze analyses wordt door een mens echter helemaal niet waargenomen. Desam-
biguëring, het kiezen van die ene analyse die door een mens als meest plausibel wordt
beschouwd, vormt een van de belangrijkste doelstellingen van de huidige performance
modellen van natuurlijke taal parsering. Veel van deze modellen implementeren desam-
biguëring door gebruik te maken van een probabilistische grammatica, die bestaat uit
regels waaraan toepassings-waarschijnlijkheden zijn toegekend. Deze waarschijnlijkhe-
den worden geschat op basis van een geannoteerd corpus (een tree-bank), dat bestaat uit
een grote, representatieve hoeveelheid uitingen die elk voorzien is van een boomstruktuur
die de juiste analyse van de uiting representeert. De toepassings-waarschijnlijkheden van
de regels in een dergelijke probabilistische grammatica maken het mogelijk de verschil-
lende analyses van een uiting te rangschikken op waarschijnlijkheid, zodat de analyse met
de hoogste kans als de meest plausibele analyse uitgekozen kan worden.

Het Data-Oriented Parsing (DOP) model onderscheidt zich van andere performance-
modellen doordat de “probabilistische grammatica” die gebruikt wordt een zeer redundant
karakter heeft. In dit model wordt een tree-bank die iemands taal-ervaring representeert,
in zijn geheel opgeslagen in het geheugen. Vervolgens dient dit geheugen als databank
voor het parseren van nieuwe uitingen door middel van analogie. In de thans bestaande
realisaties van dit model, wordt een nieuwe input-zin geanalyseerd doordat er nagegaan
wordt op welke manieren deze zin gegenereerd had kunnen worden door het combineren
van “partiële analyses” (brokstukken van de bomen in de tree-bank). De voorkomens-
frequenties van de verschillende brokstukken in de databank kunnen dan gebruikt worden

197

198 Samenvatting

om de waarschijnlijkheden van de verschillende mogelijke analyses te berekenen.

Plausibele performance-modellen zijn erg inefficiënt, en dat geldt in sterke mate voor
DOP. Modellen die in zekere mate in staat zijn om input-zinnen suksesvol te desam-
biguëren op basis van de informatie in een tree-bank, lijken wat betreft hun efficiëntie-
eigenschappen helemaal niet op het menselijke taalverwerkings-vermogen. Het is evident
dat efficiëntie in menselijk gedrag in het algemeen en in taalkundig gedrag in het bijzon-
der, een essentieel kenmerk is van intelligentie. Bovendien vormen “echte” applicaties,
waarin efficiëntie altijd belangrijk is, het natuurlijke biotoop van performance-modellen.

Dit proefschrift betreft de computationele complexiteit en de efficiëntie van proba-
bilistische desambiguërings-modellen in het algemeen en van het DOP model in het bij-
zonder. Allereerst presenteren we in een theoretisch georiënteerd hoofdstuk een
complexiteits-analyse van probabilistische desambiguëring binnen het DOP model en
soortgelijke modellen. Deze analyse impliceert dat efficiënte desambiguëring met zulke
modellen niet bereikt zal kunnen worden met behulp van uitsluitend conventionele
optimalisatie-technieken. Daarom wordt in de volgende hoofdstukken een nieuwe aan-
pak van het inefficiëntie-probleem ontwikkeld. Deze aanpak integreert twee verschillende
optimalisatie-methodes: een conventionele en een niet-conventionele. De conventionele
optimalisatie richt zich op het bereiken van efficiënte deterministisch polynomiale-tijd de-
sambiguërings-algorithmes voor DOP. De niet-conventionele optimalisatie, die centraal
staat in het proefschrift, richt zich op het specialiseren van performance modellen voor
domeinen met een specifiek taalgebruik door middel van leren. Beide manieren van aan-
pak worden in dit proefschrift toegepast op het DOP model, en empirisch getoetst op
bestaande, applicatie-gerichte, tree-banks.

De motivaties, methodes, en bijdragen van het proefschrift worden hieronder met be-
trekking tot ieder van deze onderwerpen samengevat.

Computationele complexiteit: De computationele complexiteits-studie gepresenteerd
in hoofdstuk 3, bevat bewijzen dat verschillende problemen van probabilistische desam-
biguëring NP-hard zijn. Dit betekent dat ze niet opgelost kunnen worden m.b.v. deter-
ministische polynomiale-tijd algorithmes. Deze desambiguërings-problemen worden hier
beschouwd voor twee soorten grammatica’s: het soort grammatica’s dat door DOP wordt
gebruikt, genaamd Stochastic Tree-Substitution Grammars (STSG’s), en de “traditionele”
Stochastic Context-Free Grammars (SCFGs). Voor STSG’s wordt van de volgende prob-
lemen bewezen dat ze NP-hard zijn: (1) het berekenen van de meest waarschijnlijke parse
(Most Probable Parse - MPP) van een uiting, (2) het berekenen van de MPP van een
woord-graaf

�

, en (3) het berekenen van de meest waarschijnlijke zin van een woord-graaf.
We bewijzen tevens dat ook voor SCFGs het berekenen van de meest waarschijnlijke zin
van een woord-graaf NP-hard is.

�

Een woord-graaf wordt als output opgeleverd door een spraakherkenner die een gesproken uiting analy-
seert. Het is een Stochastic Finite State Transducer die de verschillende hypotheses van de spraakherkenner
(en hun rangschikking) efficiënt representeert.

Samenvatting 199

Geöptimaliseerde algorithmes: Voorafgaande aan het werk dat in dit proefschrift wordt
gepresenteerd bestonden er slechts inefficiënte non-deterministische exponentiële tijd-
scomplexiteit algorithmes voor het desambiguëren onder DOP (Bod, 1995a). Deze situ-
atie heeft vaak geresulteerd in onbetrouwbare en tijdrovende empirische experimenten. In
dit proefschrift worden de eerste efficiënte deterministisch polynomiale-tijd algorithmes
voor desambiguëren onder het DOP model beschreven (hoofdstuk 5). Deze algorithmes
richten zich op het berekenen van de meest waarschijnlijke derivatie (Most Probable
Derivation - MPD). Een belangrijke bijdrage aan de efficiëntie van desambiguëring onder
DOP wordt geleverd door het beperken van de invloed van de meest vertragende factor:
de grootte van een DOP STSG. Dit wordt bereikt door twee methodes te combineren:
(1) een conventionele optimalisatie van de algorithmes, zodat deze algorithmes een lin-
eaire tijdscomplexiteit in de STSG grootte hebben, en (2) verschillende heuristieken die
een DOP STSG reduceren tot een kleinere doch meer accurate grammatica. Samen resul-
teren deze twee optimalisaties in een versnelling van twee ordes van grootte, vergeleken
met de algorithmes die gebruikt werden voorafgaande aan dit werk. Bovendien, omdat
de grootte van een DOP STSG kleiner is geworden, is het effect van het “sparse-data”
probleem veel kleiner geworden dan oorspronkelijk het geval was.

Specialisatie door middel van ambiguı̈teits-reductie: Centraal in dit proefschrift staat
een niet-conventionele optimalisatie methode die performance modellen specialiseert voor
specifieke domeinen van taalgebruik (hoofdstuk 4). In veel taalverwerkings toepassingen
is het taalgebruik op een of andere manier beperkt. Deze beperkingen worden bepaald
door het systeem-ontwerp (bijvoorbeeld beperkte vrijheid in dialogen) en/of door de
keuze van het domein van de applicatie, bijvoorbeeld openbaar vervoer informatie, ticket
reserverings systemen en computer handleidingen. Een interessante eigenschap van menselijk
taalbegruik in specifieke domeinen is dat het minder breed en minder ambigu is dan het
taalgebruik dat verondersteld wordt door linguistische Broad-Coverage Grammatica’s
(BCGs). Deze eigenschap van menselijk taalgebruik heeft betrekking op hele domeinen,
meer dan op individuele uitingen. Zulke eigenschappen kunnen worden gemeten als
statistische biases in samples van geanalyseerde uitingen uit het domein. Wij menen de
inefficiëntie van de huidige performance-modellen grotendeels te kunnen verklaren uit het
feit dat ze geen rekening houden met zulke statistische biases in beperkte domeinen. Deze
modellen maken gebruik van tree-banks die geannoteerd zijn onder linguistische BCGs,
die juist gericht zijn op niet-beperkt taalgebruik. De desambiguërings-algorithmes die
door de huidige performance-modellen worden gebruikt, hebben daardoor een feitelijk ti-
jdsverbruik dat onafhankelijk is van de eigenschappen van het domein. Het tijdsverbruik
van deze algorithmes is alleen afhankelijk van de eigenschappen van individuele zinnen
(b.v. zinslengte), en van de BCG (b.v. de ambiguiteit van de BCG). In dit proefschrift
wordt een direkt verband gelegd tussen deze situatie en het ontbreken, in de huidige per-
formance modellen, van een aantrekkelijke eigenschap van menselijke taalverwerking:
frequente en minder ambiguë uitingen worden door een mens efficiënter geanalyseerd.
Volgens dit proefschrift kan deze eigenschap verkregen worden door het interpreteren van
de statistische biases in beperkte domeinen binnen een Informatie-Theoretisch raamwerk,

200 Samenvatting

dat performance-modellen specialiseert voor beperkte domeinen.
Het proefschrift presenteert een raamwerk dat deze ideeën implementeert, genaamd

het “Ambiguity-Reduction Specialization (ARS) framework”. Het ARS framework in-
corporeert de bovengenoemde efficiëntie eigenschappen in performance modellen, door
middel van een “off-line” leeralgorithme dat gebruik maakt van een tree-bank. Het doel
van dit leeralgorithme is het beperken van zowel de herkennings-kracht als de ambiguı̈teit
van de linguistische BCG die voor de annotatie van de tree-bank werd gebruikt, zodat
er gespecialiseerd wordt voor het domein. Dit resulteert in een gespecialiseerde gram-
matica, en in een gespecialiseerde tree-bank geannoteerd onder deze grammatica. Deze
nieuwe tree-bank kan dienen voor het verkrijgen van een kleinere en minder ambiguë
probabilistische grammatica onder een bepaald performance-model. In het ARS frame-
work wordt (voor het eerst) deze specialisatie-taak uitgedrukt in termen van beperkte
optimalisatie. De algorithmes voor de uitvoering van deze taak kunnen daardoor gefor-
muleerd worden als leeralgorithmes die gebaseerd zijn op beperkte optimalisatie. Er wor-
den twee verschillende specialisatie-algorithmes gepresenteerd. Het principiëlere algo-
rithme is gebaseerd op de noties van entropie en Shannon’s optimale codelengte, het
practischere algorithme is gebaseerd op intuı̈tive statistische maten. Tevens presenteert
dit proefschrift een nieuw parseer-algorithme dat de gespecialiseerde grammatica en de
oorspronkelijke BCG integreert op een complementaire manier, zodat de parser geen tijd-
verlies lijdt wanneer de gespecialiseerde grammatica faalt in het herkennen van de input.

Empirisch onderzoek: De boven genoemde leer- en parseeralgorithmes zijn
geı̈mplementeerd in computer programma’s, en worden gebruikt in een project van de
Nederlanse organisatie voor Wetenschappelijke Onderzoek (NWO). Het proefschrift rap-
porteert (hoofdstuk 6) uitgebreide empirische experimenten die de boven besproken the-
oretische ideeën testen op twee tree-banks, OpenbaarVervoer Informatie Systeem (OVIS)
en Air Travel Inquiry System (ATIS). Deze tree-banks representeren twee domeinen, twee
talen en twee desambigueertaken: het desambigueren van uitingen en het desambigueren
van woord-grafen in een dialoogsysteem. In deze experimenten wordt het meer practis-
che, maar minder optimale leeralgorithme, toegepast op het specialiseren van het DOP
model voor gelimiteerde domeinen. De experimenten laten zien dat in beide domeinen de
resulterende gespecialiseerde DOP STSG’s (genaamd SDOP STSGs) substantieel kleiner
zijn dan de oorspronkelijke DOP STSG’s. Bovendien, in één van de domeinen (OVIS)
zijn, op beide desambigueertaken, de SDOP STSG’s niet alleen minstens zo accuraat als
de oorspronkelijke DOP STSG’s, maar ook veel efficiënter. In het andere domein (ATIS)
zijn de SDOP STSG’s ook efficiënter dan de oorspronkelijke DOP STSG’s, maar deze
efficiëntie verbetering wordt bereikt slechts voor DOP modellen die onbruikbaar zijn in
de praktijk.

Tevens wordt de hypothese getoetst dat de gepresenteerde specialisatie-methode re-
sulteert in efficiëntere parsering van frequente en minder ambiguë uitingen. Ondanks het
feit dat dit wordt getest in een sub-optimaal experiment op het OVIS domein blijkt dat
deze hypothese ondersteund wordt door de emipirische resultaten. De parseertijd van de
SDOP STSGs is kleiner voor frequente invoer, dit in tegenstelling tot de parseertijd van

Samenvatting 201

DOP STSGs, die duidelijk onafhankelijk is van de frequentie van de invoer.

De conclusie heeft betrekking op beide onderzoeksonderwerpen die aan elkaar wor-
den gerelateerd in dit proefschrift: enerzijds de computationele en efficiëntie-aspecten van
het DOP model, en anderzijds het specialiseren van performance-modellen voor beperkte
domeinen. De studie naar de computationele aspecten van het DOP model levert een
complexiteits-analyse en een efficiënt algorithme op. De empirische resultaten laten
duidelijk zien dat het nieuwe algorithme een aanzienlijke efficiëntie-verbetering oplev-
ert. Deze resultaten maken echter ook duidelijk dat de computationele aspecten en de ef-
ficiëntie van het DOP -model verdere onderzoek vereisen. De studie naar het specialiseren
van performance modellen voor gelimiteerde domeinen heeft nieuwe inzichten omtrent
het modelleren van efficiëntie-eigenschappen van menselijk taalverwerking opgeleverd.
Onze hypothese betreffende de relatie tussen statistische biases en deze eigenschappen
blijkt ondersteund te worden door de empirische resultaten. Het zou echter voorbarig
zijn te concluderen dat de gepresenteerde methode suksesvol toepasbaar is op elk beperkt
domein. De studie in dit proefschrift is immers beperkt gebleven tot sub-optimale im-
plementaties die verschillende approximaties bevatten, als gevolg van beperkingen in de
tot nu toe beschikbare hardware. Het is daarom noodzakelijk om deze studie voort te
zetten in toekomstig onderzoek.

Curriculum Vitae

The author was born in Haifa on the 12th of September 1964. In 1984 he started his
studies in Computer Science at the Technion (Israel Institute of Technology) and obtained
the B.A. degree in 1988. During 1988 and 1989 he worked both as a teacher at high school
and as a software engineer in Haifa. In 1989 he moved to Amsterdam and followed a
course in Dutch language. Between 1990 and 1992 he studied Informatics (formal speci-
fication languages and programming science) at the University of Amsterdam (UvA) and
obtained the M.A. (“doctoraal”) degree cum laude. During the year 1993 he worked as a
research-assistant (formal specification languages for real-time systems) at Delft Univer-
sity of Technology (TUD). From 1994 to 1996 he worked as a researcher (robust parsing)
for the Foundation for Language and Speech (STT) at Utrecht University. During 1996 he
worked as a researcher (learning efficient parsing) in the Priority Programme Language
and Speech Technology (TST) of the Netherlands Organization for Scientific Research
(NWO). And in mid 1997 he received a joint grant from NWO (TST) and STT for writing
the present dissertation.

203

Titles in the ILLC Dissertation Series:

ILLC DS-1993-01: Paul Dekker
Transsentential Meditations; Ups and downs in dynamic semantics

ILLC DS-1993-02: Harry Buhrman
Resource Bounded Reductions

ILLC DS-1993-03: Rineke Verbrugge
Efficient Metamathematics

ILLC DS-1993-04: Maarten de Rijke
Extending Modal Logic

ILLC DS-1993-05: Herman Hendriks
Studied Flexibility

ILLC DS-1993-06: John Tromp
Aspects of Algorithms and Complexity

ILLC DS-1994-01: Harold Schellinx
The Noble Art of Linear Decorating

ILLC DS-1994-02: Jan Willem Cornelis Koorn
Generating Uniform User-Interfaces for Interactive Programming Environments

ILLC DS-1994-03: Nicoline Johanna Drost
Process Theory and Equation Solving

ILLC DS-1994-04: Jan Jaspars
Calculi for Constructive Communication, a Study of the Dynamics of Partial States

ILLC DS-1994-05: Arie van Deursen
Executable Language Definitions, Case Studies and Origin Tracking Techniques

ILLC DS-1994-06: Domenico Zambella
Chapters on Bounded Arithmetic & on Provability Logic

ILLC DS-1994-07: V. Yu. Shavrukov
Adventures in Diagonalizable Algebras

ILLC DS-1994-08: Makoto Kanazawa
Learnable Classes of Categorial Grammars

ILLC DS-1994-09: Wan Fokkink
Clocks, Trees and Stars in Process Theory

ILLC DS-1994-10: Zhisheng Huang
Logics for Agents with Bounded Rationality

ILLC DS-1995-01: Jacob Brunekreef
On Modular Algebraic Protocol Specification

ILLC DS-1995-02: Andreja Prijatelj
Investigating Bounded Contraction

ILLC DS-1995-03: Maarten Marx
Algebraic Relativization and Arrow Logic

ILLC DS-1995-04: Dejuan Wang
Study on the Formal Semantics of Pictures

ILLC DS-1995-05: Frank Tip
Generation of Program Analysis Tools

ILLC DS-1995-06: Jos van Wamel
Verification Techniques for Elementary Data Types and Retransmission Protocols

ILLC DS-1995-07: Sandro Etalle
Transformation and Analysis of (Constraint) Logic Programs

ILLC DS-1995-08: Natasha Kurtonina
Frames and Labels. A Modal Analysis of Categorial Inference

ILLC DS-1995-09: G.J. Veltink
Tools for PSF

ILLC DS-1995-10: Giovanna Cepparello
Studies in Dynamic Logic

ILLC DS-1995-11: W.P.M. Meyer Viol
Instantial Logic. An Investigation into Reasoning with Instances

ILLC DS-1995-12: Szabolcs Mikulás
Taming Logics

ILLC DS-1995-13: Marianne Kalsbeek
Meta-Logics for Logic Programming

ILLC DS-1995-14: Rens Bod
Enriching Linguistics with Statistics: Performance Models of Natural Language

ILLC DS-1995-15: Marten Trautwein
Computational Pitfalls in Tractable Grammatical Formalisms

ILLC DS-1995-16: Sophie Fischer
The Solution Sets of Local Search Problems

ILLC DS-1995-17: Michiel Leezenberg
Contexts of Metaphor

ILLC DS-1995-18: Willem Groeneveld
Logical Investigations into Dynamic Semantics

ILLC DS-1995-19: Erik Aarts
Investigations in Logic, Language and Computation

ILLC DS-1995-20: Natasha Alechina
Modal Quantifiers

ILLC DS-1996-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari
Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg
Some Aspects of the Internal Structure of Discourse: the Dynamics of
Nominal Anaphora

ILLC DS-1996-04: Jeroen Bruggeman
Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer
Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Natas̆a Rakić
Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk
On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera
Seeking Explanations: Abduction in Logic, Philosophy of Science and Artificial Intel-
ligence

ILLC DS-1997-05: Harry Stein
The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-Following
and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet
On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s.

ILLC DS-1998-01: Sebastiaan A. Terwijn
Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart
Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald
The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino
Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation, Interpo-
lation

ILLC DS-1998-05: Mehdi Dastani
Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy
Bisimultations on Planet Kripke

ILLC DS-1999-02: Khalil Simáan
Learning Efficient Disambiguation

