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“Don’t be in such a hurry to believe next time — I'll
tell you why — If you set to work to believe every-
thing, you will tire out the muscles of your mind, and
then you’ll be so weak you won’t be able to believe
the simplest true things. Only last week a friend of
mine set to believe Jack-the-giant-killer. He managed
to do it, but he was so exhausted by it that when I
told him it was raining (which was true) he couldn’t
believe it, but rushed out into the street without his
hat or umbrella, the consequence of which was his
hair got seriously damp, and one curl didn’t recover
its right shape for nearly two days.”

(Letter from Lewis Carroll to Mary Macdonald,
1864.)
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Chapter 1

Introduction

The problem of belief revision has been extensively studied during the last twenty
years. Given an agent with a set of (ascribed) beliefs, how should he change
his beliefs when confronted with new information? This is the most general
formulation of the problem of belief revision. An agent may be a human being,
a computer program or any kind of system to which one can ascribe beliefs and
from which one would expect rational reactions.

This is a multidisciplinary problem, with applications to several areas. We
can give some examples of belief revision as it appears in:

e Daily life: I believed it was always raining in Amsterdam. One morning |
woke up in Amsterdam and the sun was shining. I believed that on that
day the weather was fine, contradicting my previous belief. I had to give
up my belief that it always rained there.

e Databases: In the database containing data about the customers of a book-
store, there is an entry for John Smith, with his date of birth being 20/2/67.
I get then a new order, where John Smith’s date of birth is 20/2/76. I can-
not add another date of birth and John’s date of birth cannot have changed
with time. I have to decide what to do. Keep the old data? Substitute it
by the new? Or is it another John Smith after all, who should be added to
the database?

e Robotics: A mobile robot has a map of the environment where it is supposed
to move. On the map, there is nothing in front of it, so it should be able to
move straight. But then its sensors indicate the presence of a big object in
front of the robot. Should it doubt its sensors and continue trying to move
straight? Or should it believe its sensors and doubt the map?

e Diagnosis: I believe that if I put an article at the right position on a properly
working copying machine, I get copies of the article. Suppose I put an article
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at the right position, but all I get are blank pages. Should I give up my
belief that I chose the right position? Or should I give up the belief that
the copying machine is working properly?

Belief revision has been extensively studied in philosophy for extremely ide-
alized agents. The agents considered are infinite beings, without any limitation
of memory, time, or deductive ability. However, adapting these solutions to less
idealized agents is far from trivial. In order to solve the problems cited above in
a way which can be used by real agents, one has to consider that any realizable
agent is a finite being and that calculations take time [Che86]. We need a theory
which takes these characteristics — finiteness, memory and time limitations —
into account.

Departing from the standard logical model for belief revision, the main goal of
the present work is to find a theory that can be applied to more realistic agents.
We stress here that our purpose is not to find a computational implementation
of existing theories, but to elaborate a theory for less idealized agents.

In a recent paper, Chopra and Parikh [CP99] presented some desiderata for
a belief revision formalism which we also see as our goals: distinction between
explicit and implicit beliefs, no trivialization in the presence of inconsistencies,
computational tractability, and minimal change.

The main achievements of our work are:

1. Formalization of a richer notion of belief state, based on the informal works
of Harman and Cherniak (Chapter 4).

2. Generalization of standard results found in the literature, allowing for the
use of more general logics (Chapter 5). This part is joint work with Sven
Ove Hansson.

3. Design of a psychologically motivated, computationally efficient method for
focussing on the relevant part of a belief state (Chapter 6).

4. Application of the developed framework to the problem of model-based
diagnosis and use of the computational tools from model-based diagnosis
for implementing belief revision operators (Chapter 7).

1.1 Organization of the Thesis

In the next chapter, we present an overview of some theories about resource-
bounded agents. Although being very informal, these theories contain ideas which
we will formalize in the following chapters.

In Chapter 3, we will present an overview of the main line of research in belief
revision. We start by introducing the AGM paradigm and then present some
variations on it that have been proposed in the literature.
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In Chapter 4, we introduce our formal framework. We describe the belief state
of a resource-bounded agent and operations that can be applied to it. We also
show how our framework relates to the AGM paradigm and to Harman’s informal
proposal. Our framework classifies beliefs according to their status: whether they
are explicitly believed or not, whether they are active or not and whether they
are fully accepted or only provisional. All the operations affect the set of active
beliefs. This set contains the beliefs which are available at a certain time and it
changes according to the goals of the agent.

In Chapters 5 and 6, we turn to the problem of deciding which beliefs should
become active for a belief change operation. Chapter 5 presents a logical solution,
making use of the notion of local inference. We offer axiomatizations and repre-
sentation results for generalizations of several belief change operations found in
the literature.

In Chapter 6 we use extra-logical information in order to select which part
of the belief state should become active. We present a computationally efficient
method of retrieving the relevant part of an agent’s beliefs and show how this
method can be combined with the logical results obtained in Chapter 5.

In Chapter 7, we present an application of the formal framework developed
in the preceding chapters. We show how to use extra-logical information present
in the system descriptions used for model-based diagnosis in order to focus on
a small relevant portion of the system. We also show how an algorithm used
for finding minimal diagnoses can be adapted for implementing belief revision
operators.

Finally, in Chapter 8 we present some conclusions and point toward future
work.

Some of the results presented here have appeared somewhere else. Parts of
Chapter 4 were published as [Was97] and [Was99b]. A preliminary version of
Chapter 5 was presented as [HW98|. Most of Chapter 6 appeared as [Was98] and
[Was99a].

1.2 Notation and Preliminaries

We consider L to be a propositional language closed under the usual truth-
functional connectives —, V, A, —, <>, and containing a constant L denoting
falsum. We will use Greek lowercase letters («a, 3,7, ¢, %, ...) to denote formu-
las of the language L. Sets of formulas will be denoted by uppercase letters
(A,B,K, X,Y,...). Propositional letters of L are denoted by lowercase letters
(a,b,p,q,r,...).

We call any total function taking sets of formulas to sets of formulas an infer-
ence operation. A Tarskian consequence operator is an inference operator C' that
satisfies monotony (A C B = C(A) C C(B)), inclusion (A C C(A)) and idem-
potency or iteration (C(C(A)) = C(A)). An example is the classical consequence
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operator C'n, defined by Cn(A) = {a|A F a}, where |- is the classical consequence
relation for propositional logic. For simplicity, unless explicitly mentioned oth-
erwise, we will work on the rest of this thesis with this classical consequence

operator.



Chapter 2

Resource-Bounded Agents

In this chapter we will present some of the theories found in the literature that deal
with the problem of bounded rationality. Instead of considering perfect reasoners
as most theories based on logic do, the theories presented in this chapter try to
analyze the effect of limited resources on the process of reasoning. These theories
give some theoretical standards that we can use as a basis for a formalism, but
they do not provide any sort of formal framework. In Chapter 4, we will present a
formalization of several ideas from the informal theories described in this chapter.

We present theories by Harman [Har86|, Cherniak [Che86], Levi [Lev91], and
Russell and Wefald [RW91]. Of these, only Russell and Wefald show interest in
implementing artificial agents. Harman and Cherniak are mainly concerned with
human reasoning, although both make use of examples of artificial agents and
AT literature. Levi, although mostly writing about idealized reasoning, presents
some ideas about how a real agent deals with the problem of changing his belief
state.

It is important to note that what we are looking for is not a limited imple-
mentation of a theory for ideal reasoning, but rather a theory for reasoners with
limited resources, such as humans, computers, robots. As an example, consider
the assumption very often made that the agent’s beliefs are closed under logical
rules. This leads not only to a problem from the computational point of view but
there is also the question of why an agent would want to waste resources deriving
all irrelevant consequences of his beliefs. The theories presented in this chapter
are a step toward a more adequate account of how limited reasoners change their
beliefs. Under certain assumptions (unlimited memory, time, logical ability) a
theory for limited reasoners becomes a theory for perfect reasoners.

A theory about reasoning can be normative or descriptive. A normative the-
ory prescribes the way an agent should reason, while a descriptive theory explains
how the agent really reasons. The theories summarized here are basically nor-
mative, but the term is applied in a sense which is different from most works
on epistemology since they prescribe how agents should reason given that their
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resources are limited.

2.1 Change in View

In this section we will present a summary of Harman’s theory for belief change.
The section is based on [Har86].

In his book, Harman tries to identify principles of reasoning, which, he claims,
have nothing to do with principles of logic. Principles of logic, or deduction, do
not show how one should change one’s beliefs or intentions, so they cannot be
taken as rules of reasoning. As an example, suppose someone believes p and
p — q. It is not always the case that one must accept g, one may decide to give
up p or p — q instead. Harman presents the following example of this fact:

Example 1: “Mary believes that if she looks in the cupboard, she
will see a box of Cheerios. She comes to believe that she is looking
in the cupboard and that she does not see a box of Cheerios. At this
point, Mary’s beliefs are jointly inconsistent and therefore tmply any
proposition whatsoever. This does not authorize Mary to infer any
proposition whatsoever. Nor does Mary infer whatever she might wish
to infer. Instead, she abandons her first belief, concluding that it is
false after all.

Furthermore, even before Mary fails to find any Cheerios in the cup-
board, it would be silly for her to clutter her mind with vast numbers
of useless logical implications of her beliefs, such as either she will have
Cheerios for breakfast or the moon is made of green cheese.” ([Har86],
pages 5-6)

Harman claims that there are two phases of reasoning to be distinguished:
reflection (think about beliefs, plans, desires and various possibilities) and revision
(actual changes), which may or may not follow reflection.

According to Harman, his theory is both normative and descriptive in a sense,
since he observes how people reason in order to say how they should reason. The
theory could be seen as a descriptive theory, but involving a certain amount of
idealization.

His main concern is with human reasoning and not artificial intelligence. He
bases his theory on intuitions and practical experience. The problem with the
intuitions is that they tend to disregard limitations in time, memory or logical
ability. What intuitively seems to be wrong may be classified as correct reasoning
when one takes these limitations into account.

Harman assumes that there is a limit for the “storage capacity” of the beliefs,
there are limits on the capacity of retrieval and it takes time and resources to
add new beliefs to one’s beliefs. This presupposes that some of one’s beliefs are
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somehow explicitly represented in one’s mind. The idea that beliefs are explicitly
represented is quite controversial for natural agents (see for example the discussion
about connectionist versus symbolic representation in [Bil98]). But for artificial
agents it is clear that an explicit representation of beliefs exists. Not all of one’s
beliefs are explicitly stored; this would imply that one can only hold a finite
amount of beliefs. Some beliefs are implicit in other beliefs. A belief being
implicit does not mean that it is logically inferable from others. As an example of
implicit belief that does not follow logically from others, Harman cites an example
due to Dennett: one’s implicit belief that elephants do not wear pajamas in the
wild.

Besides the distinction between explicit and implicit beliefs, Harman intro-
duces two other distinctions: beliefs can be unconscious or conscious and they
can be occurrent or dispositional. A belief is unconscious if one is not aware of
it and cannot easily become aware, otherwise it is available for consciousness. A
believe is occurrent if it is somehow operative in guiding what one is doing or
currently before one’s consciousness, otherwise it is dispositional. All implicit
beliefs are dispositional, but not all explicit beliefs are occurrent, only some of
them are being used at a certain time.

Harman claims that one’s beliefs are not always consistent. Sometimes one
may realize that one has inconsistent beliefs but may not know how to “repair”
it. Or one may lack time or logical ability to fix the inconsistency. In this case it
may be rational to keep the inconsistency and avoid using it for inferences.

Harman does not consider (explicit) degrees of beliefs, but considers beliefs as
an “all-or-nothing matter”.

He distinguishes two different theories about belief dependencies and what
could cause a belief to be given up or incorporated. The first, called coherence
theory, claims that an agent does not keep track of all the belief dependencies.
One does not have to remember the origin of one’s beliefs, they are accepted as
long as they are coherent with the rest of the agent’s beliefs and as long as there
is no evidence against them. On the other hand, according to the foundations
theory, something can be believed as long as there is a valid justification associated
to it. Justifications can only appeal to explicit beliefs. A justification must be
acyclic and finite, which implies that there must be a set of “basic beliefs”, beliefs
that do not need any justification or are intrinsically justified.

Harman claims that foundations theory is closer to people’s intuitions on what
should be done, while coherence is closer to what people really do. In this sense,
foundations theory could be seen as a normative theory while coherence theory
would be a descriptive one. Harman cites psychological experiments that show
that people do not keep track of all justifications for their beliefs. Foundations
theory claims then that people should give up most of their beliefs, which sounds
absurd. Keeping track of all dependencies of one’s beliefs would clutter one’s
mind with unnecessary matters leaving no space for more important ones. For
very idealized agents, foundations theory could be used as a normative theory
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indicating how to change one’s beliefs. But for finite beings, Harman chooses the
coherence theory as the norm.

The following example, extracted from [Har86] and based on psychological
experiments shows that real agents do not keep all the dependencies between
their beliefs:

Example 2: “Consider Karen, who has taken an aptitude test and
has just been told her results show she has a considerable aptitude
for science and music but little aptitude for history and philosophy.
This news does not correlate perfectly with her previous grades. She
had previously done well not only in physics, for which her aptitude
scores are reported to be high, but also in history, for which her apti-
tude scores are reported to be low. Furthermore, she had previously
done poorly not only in philosophy, for which her aptitude scores are
reported to be low, but also in music, for which her aptitude scores
are reported to be high.

After carefully thinking over these discrepancies, Karen concludes that
her reported aptitude scores accurately reflect and are explained by
her actual aptitudes; so she has an aptitude for science and music and
no aptitude for history and philosophy; therefore her history course
must have been an easy one, and also she did not work hard enough
in the music course. She decides to take another music course and not
to take any more history.

Some days later she is informed that the report about her aptitude
scores was incorrect! The scores reported were those of someone else
whose name was confused with hers. Unfortunately, her own scores
have now been lost. How should Karen revise her views, given this
new information?” ([Har86], pages 33-34)

Foundations and coherence theories give completely different answers to this
question. Although when asked most people think Karen should give up the
beliefs based on the result of the test (like for example that her history course
was an easy one), psychological experiments show that people in fact tend to keep
these beliefs. This is due to the fact that limited reasoners usually lack the means
for keeping track of all justifications for their beliefs.

Since Harman commits himself to coherence theory, he accepts that one should
continue believing something as long as there is no evidence against it. But this
applies only to what an agent fully believes. Harman distinguishes between fully
accepted beliefs and working hypotheses. A working hypothesis can become a
fully accepted belief if there is enough evidence for it and if it survives one’s best
attempts to refute it. A fully accepted belief may become a working hypothesis
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if there is evidence against it. Full acceptance ends inquiry — one should only
fully accept a working hypothesis if one is convinced that further inquiry will not
be worthwhile; inquiry will not, for example, reveal evidence against the working
hypothesis which has not been investigated. Inquiry may be reopened later, if
sufficiently strong evidence against a fully accepted belief appears. In this case,
the fully accepted belief becomes a working hypothesis.

One reason why people tend to quickly transform working hypotheses into
fully accepted beliefs is that keeping something as a working hypothesis means
keeping track of dependencies, of how and where it was used in reasoning. Since
people have limited storage capacity, inquiry must be limited and not everything
can be seen as working hypotheses. The same argument against the foundations
theory applies here.

The two competing goals of revision are: (i) to improve the coherence in one’s
beliefs and (ii) to change one’s beliefs as little as possible. Harman proposes
a very simplistic way of measuring changes: add the number of new (explicit)
beliefs acquired to the number of old (explicit) beliefs given up. Certain beliefs
may be accepted only for a moment, as intermediate steps of an argument. Once
the conclusion has been reached, according to the coherence theory there is no
more need to remember all steps that justified its acceptance. But by the simple
measure given above, these momentary beliefs would be always counted twice,
when accepted and when given up. Harman proposes not to include forgetting
in the measure and maybe give less weight to momentary beliefs. But he argues
that there is a good reason to try to minimize even short-term changes: they also
consume resources and shorter arguments are always easier to handle than longer
ones.

Harman states some principles that should be valid for any resource-bounded
agent [Har86]:

1. Clutter Avoidance: “One should not clutter one’s mind with trivialities”
(page 12). This principles goes against trying to infer all consequences from
one’s beliefs. If the agent believes that p, he should not waste his resources
inferring that p A p, pV ¢, etc.

2. Recognized Implication Principle: “One has a reason to believe P if one
recognizes that P is implied by one’s view” (page 18). The agent may not
be able to perform all logical inferences, but when he performs an inference
and believes in the premises, he should accept the consequent. If the agent
believes p and p — ¢ and he infers ¢, then he should believe gq.

3. Recognized Inconsistency Principle: “One has a reason to avoid believing
things one recognizes to be inconsistent” (page 18). Since the agent may fail
to perform some inferences, he may fail to realize that some of his beliefs
are inconsistent. But once he realizes the inconsistency, the agent must try
to avoid using it.
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4. Principle of Positive Undermining: “One should stop believing P whenever
one positively believes one’s reasons for believing P are no good” (page 39).
If the agent gets evidence against some of his beliefs (P) and he accepts
the evidence, then he should stop (fully) believing P. Harman (page 44)
presents as an example for this principle the story of William, who believes
he has seen Connie, but later he finds out that she has an identical twin
sister. His reasons for believing that he has seen Connie are no good.

5. Principle of Conservatism: “One is justified in continuing fully to accept
something in the absence of a special reason not to” (page 46). This is
a counterpart of the previous principle. One should only stop believing
something if there is some evidence against it. If there is no such evidence,
the agent should keep his beliefs.

6. Interest Condition: “One is to add a new proposition P to one’s beliefs only
if one is interested in whether P is true (and it is otherwise reasonable for
one to believe P)” (page 55). The agent should not try to infer all kinds of
things in which he is not interested. Harman defines some kinds of interest
that determine what the agent should add to his beliefs: the interest in
not being inconsistent, interest in the immediate environment, interest in
facilitating reasoning (if the agent believes that knowing a would help him
to obtain something he desires, he will be interested in «).

7. Get Back Principle: “One should not give up a belief one can easily (and
rationally) get right back” (page 58). For instance, if the agent believes
that his beliefs are inconsistent, he cannot solve the problem by just giving
up this belief, since it can be immediately recovered.

In Chapter 4, we will develop a formal framework based on Harman'’s ideas.
We distinguish between different kinds of beliefs, following Harman’s distinction
between explicit vs. implicit beliefs, accepted beliefs vs. working hypotheses, and
occurrent vs. dispositional beliefs. In Section 4.4, we will interpret the principles
above according to our framework.

2.2 Minimal Rationality

In this section we will present a summary of Cherniak’s theory of minimal ratio-
nality [Che86].

Cherniak presented a theory for “minimal agents”, i.e., agents that have the
minimal abilities that are required for them to be called rational. His point of
departure is the claim that any realizable agent is a finite object. Such finite
“creatures” have limits in their cognitive resources, such as time, memory and
deductive ability. His main hypothesis is that the definition of rationality which
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is universally assumed in philosophy is so idealized that it does not apply in any
interesting way to human beings.

Cherniak defines a hierarchy of rationality concepts [Che86], on top of which
appear ideal agents, with belief states that are deductively closed. Agents that
are not able to perform any inference appear on the lowest level of the hierarchy.
These last agents cannot be called rational. According to Cherniak, any rational
agent (limited reasoners included) must satisfy at least the minimal general ratio-
nality condition: “If agent X has a particular belief-desire set, X would undertake
some, but not necessarily all, of those actions that are apparently appropriate”
(page 9). From this condition Cherniak derives the minimal inference condition:
“X would make some, but not necessarily all, of the sound inferences from the
belief set that are apparently appropriate” (page 10).

Cherniak defends that rational agents should use some heuristics to decide
which inferences are worth making. No finite agent is able to calculate the de-
ductive closure of his own beliefs, unless his logic is trivial and does not allow for
interesting deductions. And even if he were able to find all consequences of his
beliefs, he should not waste resources calculating useless logical consequences of
his beliefs. According to Cherniak:

“Each inquiry, deductive or otherwise, has costs; the heuristic imbecile
would squander its limited cognitive resources on such valueless infer-
ences and would therefore be paralyzed for appropriate inferences.
Thus, for creatures with limited resources (such as time pressures),
heuristic imbecility by itself entails complete logical incompetence.”

(page 11)

Cherniak tries to find an appropriate “threshold of minimal rationality” above
which some seeming irrationalities could be explained by the limitations of the
agent.

Another claim in the book is that not everything is considered at the same
time. He distinguishes between beliefs that are “activated” or under consideration
and beliefs that are inactive. An easy inference may be more difficult if not all
the premises are activated. The subset of activated beliefs is subject to stricter
rules of rationality. Cherniak defends that it is perfectly rational not to make all
of the sound inferences one could possibly do.

Cherniak proposes that inferences are ordered according to their feasibility.
But this order is not fixed; it varies from one agent to the other and also from
one agent to the same agent at another instant.

Cherniak argues for adoption of a model of memory which is more psycholog-
ically adequate than the one commonly used in epistemology. Drawing on ideas
of cognitive psychology, he claims that a belief state consists of two parts: a long-
term memory and a short-term one. The long-term memory has no practical
limitation in terms of size, but beliefs that are inactive (not in the short-term
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memory) cannot be used for reasoning. All reasoning is done in the short-term
memory, which has a strict size limitation. In order to select which beliefs from
the long-term memory have to become active and be copied into short-term mem-
ory, one needs a very efficient retrieval procedure. It is not feasible to examine all
the beliefs in the long-term memory, at least not if there is any time constraint.
To allow for efficient retrieval, long-term memory must be organized in “compart-
ments” according to some relevance criteria. These criteria vary from one agent
to the other. Beliefs are in the same compartment if they tend to be retrieved
(“remembered”, activated) at the same time. This explains why some inconsis-
tencies are not immediately recognized, and why some “obvious” inferences are
not made. Only beliefs that are active can be used as premises for an inference. In
order to retrieve the relevant subset of the long-term memory, Cherniak defends
what he calls “limited search”:

“... the required strategy must be better than chance, but need not,
of course, be perfect; the latter would require prescience. Searches
can be expected to fail frequently in either possible way: beliefs that
turn out not to be currently relevant may be checked, and beliefs that
turn out to be useful may be skipped.” (page 65)

Thus, the fact that the search will not be perfect is the price to pay for quick
retrieval.

“We can now appreciate both the costs and the benefits of this strat-
egy; prima facie, the resulting behavior can be characterized as depar-
tures from rationality, but on the assumption that exhaustive memory
search is not feasible, such memory organization is advisable overall,
in the long run, despite its costs.” (page 67)

Cherniak attacks the commonly accepted idea that any agent must reason
according to some sound and complete logic. He cites results obtained in com-
putational complexity theory as important measures of feasibility of deductive
procedures. He says that heuristics which would be considered as formally in-
correct are perfectly rational, since “they are a means of avoiding computational
paralysis while still doing better than guessing”. He points that a distinction must
be made between theoretical adequacy of a system and what he calls “practical
adequacy”. Moreover, formally incorrect deductive procedures may be sound for
the range of the agent’s needs.

According to Cherniak, an agent is not expected to check all facts that could
undermine an assertion, but at least some of the relevant possibilities should be
considered. The procedure of eliminating counter-possibilities is limited due to
the resource-boundedness.

Like Harman, Cherniak is looking for a normative theory for limited agents,
which must be different from theories for ideal agents, since one cannot expect
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agents to reason in a way that is impossible for their architectures. Asin Harman,
several concepts are introduced (active/inactive beliefs, feasible inferences, com-
partments), but no formalization is given. The framework presented in Chapter
4 gives a formal interpretation for these concepts.

2.3 Do the Right Thing

In the book of Russell and Wefald [RW91], an agent is defined as a “system that
senses its environment and acts upon it”. The theory concerns mainly artificial
agents. The authors complain that most approaches to artificial intelligence con-
sider only the quality of the outcome of a process and not the process itself. They
defend an approach that allows meta-reasoning in order to decide the best way
to achieve the best result which is possible given the resource limitations. An
agent can be viewed in different ways — as a function mapping its inputs into
its actions, as a program implementing this mapping or as the behavior of such
a program.

They say that the problem in artificial intelligence is not to find better im-
plementations for formal models, but to design formal models that are adequate,
that take into account computational limitations. The problem is thus the lack
of a theoretical basis for artificial intelligence.

One should not expect to create a computer program that always chooses
immediately the best moves in any possible chess position. There is a necessary
trade-off between optimality and speed that should be accounted for by theories
of intelligent agents. They define bounded optimality as “doing as well as possible
given what resources one has”. They look for a theory for a limited rational agent.
Such a limited agent will not always take the same decisions as the ideal agent,
but will do so when its internal operations are so fast that they can be ignored.

The authors refer to Herbert Simon’s work in the area of economics as showing
that perfect deliberative rationality was not adequate as a theoretical basis for
economics, where computational constraints and actual human behavior should
be taken into account (cf. Chapters 7 and 8 of [Sim82]). The authors argue
that a system should take the decision that would give “the highest return in the
shortest time”. They claim that most decisions taken by humans would be seen
as irrational given the standard criteria for rationality.

2.4 Doxastic Performance

In this section we will present some remarks by Levi on non-ideal agents. Al-
though the theory he presents in [Lev91| is a normative theory for idealized
agents, he makes clear that what the theory predicts is what an agent should
try to approximate, even if most agents will fail in matching the prediction.
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According to the Peircean belief-doubt model® that Levi follows, at any instant
an agent must have a clear distinction between what is conjecture and what is
settled. Of course, this distinction can change with time.

In [Lev9l], Levi distinguishes dozastic commitments from dozastic perfor-
mance. He gives the following example in order to illustrate the difference (page

6):

Example 3: At time ¢, X fully believes that Albany is north of New
York and that being north of is a transitive relation.

At time t5, X comes to believe fully, in addition to what he believes
fully at ¢,, that Montreal is north of Albany.

At time t3, X comes to believe fully that Montreal is north of New
York.

According to Levi, the change that occurs between t; and ¢, is a change
of doxastic commitment while between t5 and t3 there is a change of doxastic
performance. At t5, the agent is already committed to believing that Montreal is
north of New York, since this follows from his beliefs at this instant, but only at #3
the agent recognizes this commitment and fulfills it. Only at this instant does his
doxastic performance “catch up” with his doxastic commitments. The distinction
between doxastic performance and doxastic commitments corresponds roughly to
the distinction between the agent’s psychological state and the ideal epistemic
state represented by belief sets in AGM theory, as will be seen in Chapter 3.

An agent may fail to live up to his commitments, as long as he has a good
excuse. As good excuses, Levi cites failure of memory, emotional distress, lack
of mathematical and logical training, lack of access to encyclopedias, computing
facilities, and other methods of repairing the agent’s disabilities.

Levi (like the AGM theory explained in Chapter 3) is concerned with changes
in the doxastic commitments of an agent. The doxastic commitments of an agent
are logically closed. However, for Levi an agent is “no ideally situated, rational
angel”. An agent may fail to recognize some of the consequences of his doxastic
commitments, a performance mistake.

An agent can undertake a doxastic commitment even though he is certain that
his performance will not fulfill the commitments. The agent’s duty is actually
“to fulfill the commitments insofar as his computational abilities, memory, and
emotional state permit and insofar as various technologies can be deployed at a
reasonable cost” ([Lev9l], page 38).

For Levi, his theory, as well as others based on belief-desire models, are in-
tended to be normative or prescriptive and not explanatory or descriptive. He

1In [Pei77], Peirce claims that beliefs are like habits, in that they persist in the absence of
doubt. Doubt is more like an “irritation” that one tries to get rid of by means of inquiry. One
cannot obtain full knowledge, but should pursue inquiry until one gets an opinion which one
believes to be true.
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claims that an agent should change his performance in order to fulfill his doxastic
commitments and reach doxastic equilibrium. The agent is obliged to pursue this
equilibrium unless the changes needed are not feasible or too expensive. Levi does
not clarify which changes are feasible and how one measures the costs related to
changes in performance.

An agent can fall into two types of inconsistencies: (i) The doxastic perfor-
mance may be inconsistent, and can thus be solved by “logical therapy”. (ii) The
doxastic commitment may be inconsistent, which can only be solved by contrac-
tion.

Levi claims that all demands on doxastic rationality that he defends must be
seen as demands on doxastic commitment and not on doxastic performance. Hu-
man beings cannot satisfy the rationality demands for ideal agents (for instance,
having a deductively closed set of beliefs) applied to performance.

Levi distinguishes two sorts of expansion: deliberate and routine expansion.
Routine expansion is immediate and usually triggered by new information from
the outside world. Deliberate expansion is inferential, where inferential includes
inductive and abductive inferences. Both can lead to inconsistency, but if the
agent is living up to his doxastic commitments, deliberate expansion will not.
Routine expansion leads very often to an inconsistent state, which is later con-
tracted to restore consistency.

Levi disagrees with Gérdenfors’ view (in [Gar88]) that expansion into incon-
sistency is never legitimate and that the only admissible expansions are those in
which the new piece of information is consistent with the previous beliefs. Levi
argues for the common process of acquiring new information, expanding into in-
consistency and then doubting both the new information and the previous beliefs.
He uses the following example to illustrate this process:

Example 4: “Suppose I am walking on 72nd Street and Columbus
Avenue and see someone who is a dead ringer for Victor Dudman. [ am
sure that Dudman is safely ensconced in Sydney, New South Wales.
But my initial confidence in my eyesight and in Dudman’s appearance
is reflected in a commitment to add the doxastic proposition that
Dudman is on 72nd and Columbus to my state of full belief. I have
expanded into inconsistency.

()

in the confrontation with the Dudman look-alike, I would look
again. This would make little sense if I took for granted the deliver-
ances of my first observation or if I remained convinced that Dudman
is in Sydney. Looking again reveals that I have contracted by question-
ing part of my initial background assumptions as well as the testimony
of my senses.” (page 76)
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Contraction that arises from the need to restore consistency after an expansion
is a common operation.

2.5 Doing the Right Revision?

In this section we will describe the agent we will be talking about in the rest of
this thesis. We are only concerned with belief change, and not with other kinds
of reasoning. From the works presented in this chapter, only Harman deals with
the particular problem of belief revision for non-ideal agents, which explains why
his theory is more extensively discussed than the others. What we want is an
agent that can decide what to do with incoming information. Because of resource
limitations, the agent will not be able to always take the decision which would be
expected from an ideal reasoner. But the right decision for a resource-bounded
agent should be as close to the ideal as possible, as described in [RW91].

We will consider agents to be either natural or artificial beings with limits
in memory and logical abilities. Following Harman, some of the agent’s beliefs
will be considered to be explicitly represented. The number of explicit beliefs
is finite, but large enough so that there is no practical limit, as assumed by
Cherniak for long-term memory. Agents may not be able to perform all kinds of
inferences. Each agent will have an associated inference operation which gives all
the inferences he can make in one step. The set of implicit beliefs (the doxastic
commitments of the agent) is given by the closure of the explicit beliefs under
the agent’s inference function, i.e., by repeatedly applying the agent’s inference
operator until a fixed point is reached.

All reasoning happens inside a small part of the belief state, which we will
call active beliefs. The active beliefs are roughly equivalent to what Harman
calls occurrent beliefs and Cherniak calls short-term memory. In the set of active
beliefs, besides the explicit beliefs which are in use, there are also conjectures
(Levi), or working hypotheses (Harman), in which the agent does not yet fully
believe, but which he is considering for acceptance.

The explicit beliefs (active and inactive parts) are organized like a web, where
links denote some kind of relevance. The beliefs are thus grouped in “chunks”
or “compartments”, and beliefs in the same compartments tend to be activated
together. Since the set of explicit beliefs may be very big, an efficient method
for retrieving beliefs that will be activated is needed. In Chapter 5 we present a
retrieval method based on logic. In Chapter 6, a more efficient model of retrieval
is presented. This method does not guarantee that all relevant beliefs will be
retrieved, but it is based on “quick and dirty” heuristics as defended by Cherniak.
It allows the agent to do as well as he can, using what Russell and Wefald call an
interruptible anytime method, which means the longer you let it run, the better
the result it gives.

There is no consistency requirement. Like Levi, we allow for routine expansion
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into inconsistency. All new beliefs have to survive inquiry before being fully
accepted.

In the next chapter, we will present the AGM theory for belief revision, which
deals with the problem of belief change for ideal agents.

In Chapter 4, a formal framework for resource-bounded belief change based
on some of the concepts introduced in this chapter. We will introduce basic
operations that can be used as building blocks for more complex operations.
This allows us to see the whole process of belief change instead of only the final
outcome. Although the framework that we will present is general enough to
account for changes in the agent’s inference operation, we will not deal with this
in the present work.

What we will present in Chapters 4, 5, and 6 is not another informal theory
about limited reasoners, but a formalization of some ideas about the behavior of
resource-bounded agents concerning revision. Some of the ideas formalized were
(informally) proposed in the literature and were presented in this chapter.

It is important to remark that this is not the first attempt to formalize
resource-bounded reasoning. Some other approaches will be discussed in Chapter
6. We will not discuss so-called resource logics [Gab96], since their motivation is
quite different from ours: the resources that they limit are the number of times
one can use the premises and when one can use the inference rules.

Although we are interested in eventually having a theory for resource-bounded
belief change which can be efficiently implemented, in this thesis we will not
analyze the computational complexity of the inference operators used. We will
not examine any quantitative approach nor discuss the decision processes involved
in belief change.






Chapter 3

The AGM Paradigm

In this chapter we are going to briefly present the by now standard model for belief
revision. For a more detailed exposition, the reader is referred to [G&ar88],[GRI5]
or [Han99b]. This model became known as AGM due to the initials of the authors
of the seminal paper [AGMS85|, Carlos Alchourrén, Peter Gardenfors, and David
Makinson. We will first present the original AGM framework. Later in this
chapter we will present some of its extensions that are relevant for our work.
For the sake of simplicity, we present the results for the classical consequence
operator C'n, although the original AGM results were proved for slightly more
general consequence operators.?

The original AGM framework is a theory about how highly idealized rational
agents should revise their beliefs when receiving new information. The agents
are idealized in that they have unlimited memory and ability of inference. They
are able to immediately close a set under deductive inference and to keep a belief
set that is usually infinite. Beliefs are represented by formulas of a propositional
language and the logic underlying the agents’ reasoning is classical.

In the AGM model, belief states are represented by theories (possibly together
with some selection mechanism), that is, sets of formulas K such that Cn(K) =
K. These theories are called belief sets. There is only one inconsistent belief set,
the set of all formulas of L, and this is sometimes represented by K .

Classical AGM theory can be seen as modeling only the changes that occur
in belief sets due to new information about a static world (i.e, the world does
not change, only the information that the agent has about it grows, cf. [KM92]).
It does not model all changes of an agent’s epistemic state, but only those that
affect the belief set.

In AGM theory, there are three operations that can be performed on belief

! The consequence operator C used in [AGM85] is supposed to satisfy the following conditions:
(i) X € C(X); (ii) C(X) = C(C(X)); (iii) C(X) C C(Y) if X CYj (iv) On(X) C C(X); (v) If
a € C(X), then for some finite X' C X, a € C(X'); and (vi) @ € C(X U {f1 V B2}) whenever
a € C(XU{4}) and a € C(X U {B2}).

19
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sets: contraction, expansion and revision. Contraction consists of giving up (at
least) as many beliefs as it is needed so that the new belief set does not imply
(and so, does not contain) a specified sentence. Expansion consists of adding
new information to the belief set. If the old and the new information are not
logically compatible, then the new belief state after expansion will be inconsistent.
Revision is consistent incorporation of new information, i.e., if the input sentence
is consistent, then the new belief set will be consistent (even if the old belief set
was not). If necessary, consistency is obtained by deleting parts of the original
belief set.

3.1 Postulates

Of the three AGM operations, only expansion is characterized in a unique way.
When a belief set K is expanded with a proposition ¢, the resulting set K + ¢
is obtained by simply adding the new belief to the old belief set and taking the
logical consequences of the resulting set:

K + ¢ = Cn(K U{g}).

The name expansion is justified by the fact that K C K + ¢.

Contraction and revision operations are not directly defined, but constrained
by a set of rationality postulates.? For the contraction of a belief set K in relation
to a sentence ¢ (denoted K — ¢), six basic postulates are given [AGMS85] (F is
the consequence relation associated with Cn):

(K-1) K — ¢ is a belief set (closure)

(K-2) K — ¢ C K (inclusion)

(K-3) If ¢ ¢ K, then K — ¢ = K (vacuity)

(K-4) If not - ¢, then ¢ ¢ K — ¢ (success)

(K-5) K C (K — ¢) + ¢ (recovery)

(K-6) If - ¢ <> ¢, then K — ¢ = K — 1 (equivalence)

These postulates are supposed to capture the intuition behind the operation
of giving up a belief in a rational way. Postulate (K-1) says that the result
of contracting a belief set by a formula should again be a belief set. The next
postulate assures that in an operation of contraction no new formulas are added
to the initial belief set. If the formula to be contracted is not an element of
the initial belief set, then by (K-3) nothing changes. Postulate (K-4) says that
unless the sentence to be contracted is logically valid (and hence, an element
of every theory), it is not an element of the resulting belief set. The recovery

2Qriginally, expansion was also defined by means of a set of postulates, but it can be com-
pletely determined by the postulates.
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postulate (K-5) is the most controversial one [Mak87]. It says that a contraction
should be recoverable, that is, that the original belief set should be recovered by
expanding by the formula that was contracted. The last postulate assures that
contraction by logically equivalent sentences produces the same output.

Besides these six basic postulates, there are two additional ones:

(K-T) K—pNK -9 CK—(pA9)
(K-8) If o g K — oA, then K —pAYp C K — ¢

Postulate (K-7) assures that beliefs that are both in K — ¢ and in K — ¢
must be in K — (¢ A ). If, when contracting by ¢ A 9 one has to give up ¢,
then by postulate (K-8), any belief deleted when removing ¢ will also be deleted
when removing ¢ A 9.

For the operation of revision, i.e., adding a new belief to a belief set in such
a way that the resulting belief set is consistent if the new belief is consistent, the
following postulates are presented [Gar88]3:

(K*1) K * ¢ is a belief set (closure)

(K*2) ¢ € K * ¢ (success)

(K*3) K x ¢ C K + ¢ (inclusion)

(K*4) If ¢ ¢ K, then K + ¢ C K * ¢ (preservation)
(K*5) K x ¢ = L if and only if - —¢ (consistency)
(K*6) If - ¢ <> 9, then K x ¢ = K * 9 (equivalence)

Note that the same name is given to different, but related principles. This is
common practice in the literature and we will maintain the usual names in this
thesis. Postulate (K*1) says that the result of revising a belief set by a formula
should be a belief set. Postulate (K*2) says that the formula by which a belief
set is revised must be an element of the revised belief set. The next postulate
assures that no information other than the input of the revision (together with its
consequences) is added. If the new formula is consistent with the belief set, pos-
tulate (K*4), together with (K*3) imply that nothing is given up, i.e., revision
in this case equals expansion. Postulate (K*5) says that, unless the input for-
mula is inconsistent, the revised belief set is consistent. Finally, postulate (K*6)
says that revising a belief set by logically equivalent formulas should produce the
same output.

Two extra postulates deal with revision by conjunctions:

(K*7) Kx(pAyY) C(K*xp)+1
(K*8) If ¢ ¢ K * ¢, then (K x )+ C K *x (@ A1)

3The postulates were already presented in [AGMS85], but in a slightly different formulation.
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Contraction and revision can be defined in terms of each other via the Harper
or the Levi identities [Gar88]. Revising with a belief ¢ corresponds to contracting
by the negation of ¢ and then expanding with ¢:

Kxp=(K—-p)+¢ (Levi identity)

The thus defined operator x will be called the revision operator associated with the
contraction operator —. Analogously, the following identity defines a contraction
operator associated with a revision operator:

K-—p=(Kx—-p)NK (Harper identity)

3.1.1. THEOREM. [Gdr88] If — is a contraction function satisfying (K-1)-(K-4)
and (K-6), then its associated revision function satisfies (K*1)-(K*6).

Note that the recovery postulate is not needed. Contraction operators that
satisfy (K-1)-(K-4) and (K-6) but not (K-5) have been called withdrawal op-
erators [Mak87].

3.1.2. THEOREM. [AGMS85] If — is a contraction function satisfying (K-1)-(K-
4) and (K-6), then (a) if (K-5) and (K-7) are satisfied, the associated revision
function satisfies (K*7) and (b) if (K-8) is satisfied, the associated revision
function satisfies (K*8).

3.1.3. THEOREM. [Gdr88] If = is a revision function satisfying (K*1)-(K*6),
then the associated contraction function satisfies (K-1)-(K-6).

3.1.4. THEOREM. [Gdr88] If = is a revision function satisfying (K*1)-(K*6),
then (a) if (K*T7) is satisfied, the associated contraction function satisfies (K-7)
and (b) if (K*8) is satisfied, the associated contraction function satisfies (K-8).

3.2 Constructions

The postulates above do not determine unique contraction or revision operators
for a belief set, but only restrict the set of possible such operators. In [AGM85]
a particular construction is presented that, given a belief set and an input belief,
returns the result of contracting (or revising) the given set by the input.

This construction makes use of the concept of a remainder set, the set of
maximal subsets of a given set not implying a given sentence. Formally:

“Corrected version in [Fer99].



3.2. Constructions 23

3.2.1. DEFINITION. [AM82] Let X be a set of formulas and « a formula. The
remainder set X L a of X and a is defined as follows. For anysetY,Y € X La
if and only if:

e YCX
o Y Ha
e ForallY' such thatY CY'C X, Y'F a.

3.2.2. OBSERVATION. [AGM85] If K is closed under logical deduction, then so
are the elements of K 1 c.

It is assumed that there is some way of picking out the best (in some sense)
elements of a remainder set. This is formalized by means of a selection function:

3.2.3. DEFINITION. [AGM85] A selection function for X is a function y such
that:

e If X La#0,thenl#~v(X La)C X L a.
e Otherwise, v(X L a) = {X}.

A contraction is obtained by taking the intersection of the best subsets of K
that do not imply a:

3.2.4. DEFINITION. [AGMS85] For any sentence «, the operation of partial meet
contraction over a belief set K determined by the selection function v is given
by:

K— a=NvK Ll a)

Partial meet revision is obtained from partial meet contraction and expansion
by means of the Levi identity:

3.2.5. DEFINITION. Let K be a belief set and v a selection function. For any
sentence «, the operation of partial meet revision over K determined by v is
given by:

K+, a=Cn(Ny(K L a)u{a})

In their paper [AGMS85], Alchourrén, Girdenfors and Makinson show that
partial meet constructions bear a very special relation to the contraction and
revision postulates. They prove the following representation results:

3.2.6. THEOREM. [AGMS85] Let — be a function which, given a formula «, takes
a belief set K into a new belief set K — a. For every theory K, — is a partial

meet contraction operation over K if and only if — satisfies the basic postulates
((K-1)-(K-6) ) for contraction.
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3.2.7. DEFINITION. [AGMS85] A selection function vy for K is said to be transi-
tively relational over K if and only if there is a transitive relation < over 2%
such that the following identity holds:

YK La)={XeK LaX <X foral X' e K 1 a}.

3.2.8. DEFINITION. [AGM85] A partial meet function — is transitively rela-
tional if and only if it can be determined by some transitively relational selection
function.

3.2.9. THEOREM. [AGMS85] Let K be a theory and — a partial meet contraction
function over K. Then — is transitively relational if and only if — satisfies (K-7)
and (K-8).

As special cases of the partial meet construction, there are two other construc-
tions that had already been studied in the literature, maxichoice contractions and
full meet contractions. In a maxichoice contraction, the selection function =y se-
lects one single element of K L «, in case this set is not empty. In [AGMS85], it
is shown that maxichoice contractions satisfy the following postulate:

(K-F)If e Kand B¢ K —a, then f 5 a€ K — « (fullness)

In [AGMS85] it is actually shown that (K-F) together with the basic postulates
for contraction exactly characterize maxichoice contractions.
The following results show the undesirable effects of maxichoice operations:

3.2.10. LEMMA. [AM82] Ifa € K and K —« is defined by means of a mazichoice
contraction operation, then for any formula B, either aV B € K —a or aV - €
K —a.

3.2.11. COROLLARY. [AMS82] If a revision operation is defined from a mazichoice
contraction by means of the Levi identity, then, for any « such that ~a € K, K *x«
will be mazximal, i.e., for every formula 3, either 8 € K x a or =3 € K x «.

Suppose I believe p (that Buenos Aires is the capital of Brazil) and have no
idea about ¢ (that the King of France is bald). Finding out that —p is the case
and revising my belief set using a revision based on maxichoice contraction means
that I will make a decision as to g or —gq.

In full meet contraction, the whole set K | « (if not empty) is selected. Note
that full meet contraction is the only one of these three operations that does not
require extra-logical information, since no real choice is needed.

In [AGMS85], it is shown that full meet contractions are exactly characterized
by the basic postulates together with the following postulate:

(K-I) For all @ and 3, K — (aAf) = (K —a)N (K — ) (intersection condition)

The following results show that full meet contraction deletes beliefs that in-
tuitively should be preserved:
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3.2.12. LEMMA. [AM82] If o« € K and K — « is defined by means of a full meet
contraction operation, then € K — « if and only if f € K and B € Cn(—«).

3.2.13. COROLLARY. [AMS82] If a revision operation is defined from full meet
contraction by means of the Levi identity, then, for any a such that ~a € K,

K xa=Cn(a).

Suppose I believe that p (Buenos Aires is the capital of Brazil) and that q
(there is no King of France). When I learn —p and revise my belief set using a
revision operation based on full meet contraction, I give up the belief that there
is no King of France.

Another way to construct a contraction operation is based on the notion of
epistemic entrenchment. A sentence « is less entrenched than sentence 3 in belief
set K if it is easier to give up « than to give up B. According to Gardenfors,
when a belief set K is contracted or revised, the sentences which are given up are
the ones with the lowest entrenchment in K [G&r88]. This claim is criticized by
Rott in [Rot99]. Rott shows that according to the new input, a sentence which
does not have the lowest entrenchment may be given up (cf. example 5).

Given a belief set K, Gardenfors proposed five postulates that an epistemic
entrenchment order should satisfy (o < g should be read as “g is at least as
entrenched as «a in K”):

(EE1) For any «, 8 and «, if @ < 3 and 8 < v, then a < «v. (transitivity)
(EE2) For any « and 3, if at 3, then a < 3. (dominance)

(EE3) For all ¢ and fin K, a < a A or B < aA f. (conjunctiveness)
(EE4) When K # L, a ¢ K if and only if a < g for all 8. (minimality)
(EE5) If 8 < « for all 8, then F «. (mazimality)

The following two conditions from [GM88| show how to determine an epistemic
entrenchment ordering given a contraction operator and vice versa:

(C)a<pifandonlyifag K — (aAB)or - aApg.
(C-) B e K—aifand only if 8 € K and either « < aV 8 or F «.
The conditions are used in the following theorems, which show that epistemic

entrenchment orderings obtained with condition (C<) and contraction operations
obtained via condition (C—) satisfy the desired properties:

3.2.14. THEOREM. [GM88] If an ordering < satisfies (EE1)-(EES5), then the
contraction function determined by (C—) satisfies (K-1)-(K-8) as well as con-
dition (C<).

3.2.15. THEOREM. [GM88] If a contraction operator — satisfies (K-1)-(K-8),
then the ordering < that is determined by (C<) satisfies (EE1)-(EE5) as well
as condition (C—).
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Example 5:[Rot99] Let K = Cn({-p,q}) and let ¢ < 9 if and
only if every formula of {1,—p A ¢,—p,p — ¢, T} which implies ¢
also implies 9. The ordering < satisfies (EE1)-(EE5). Using (C—)
to define a contraction operation — and letting * be its associated
revision operator, we see that although ¢ is strictly more entrenched
than ¢ - —p, g€ K x—pand ¢ - —-p &€ K x —p.

3.3 Shortcomings

As we have seen, the AGM theory provides a very elegant framework in which
to talk about belief revision. However, it presents some problems if what we are
looking for is a realistic approach, one that could eventually be implemented.
Besides the fact already mentioned that the agents modeled are highly idealized,
there are some more concrete facts restricting the application of the theory.

e Using belief sets to represent belief states means that we in general have to
deal with infinite sets, which are obviously not adequate for computational
implementations.

e Since belief sets are closed under logical consequence, there exists only one
inconsistent belief set, that contains the whole language. This means that
whenever new information is added to the belief set, consistency has to be
checked with regard to the whole belief set, to avoid the risk of losing all
the information. This is a very expensive requirement.

o All the AGM operations (and the representation of belief sets) make exten-
sive use of the consequence operation. This makes the change operations,
from the computational point of view, extremely expensive.

e The partial meet constructions make use of extra-logical information, in
the form of a selection function that selects the “best” elements of a set.
The AGM paradigm does not say how such information can be obtained
for a revised belief set, i.e., how to model iterated belief revision. Several
models for iterated belief change have been proposed extending or revising

the AGM theory ([Bou96, DP97, AB99]).

e In revision, incoming information always has higher priority than previ-
ous beliefs. But once a belief has been incorporated into the belief set, it
immediately loses its special status.

Why are these ideal agents interesting for us? Studying their behavior gives
us an aim and a way to evaluate more realistic theories. The AGM paradigm
tells us what is to be expected from perfect reasoners. Given this ideal case, we
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should try to do as well as we can to match this behavior. This includes using
heuristics in order to compensate for limited resources [RW91].

In the next section we will present some of the alternatives suggested in the
literature in order to maintain the elegance of AGM theory but addressing some
problems not addressed by it.

3.4 Alternatives and Refinements

In this section we present some work that was developed to deal with the problems
of the AGM theory and which will be used in the next chapters.

3.4.1 Belief Bases

The use of logically closed sets to represent beliefs has received many criticisms,
specially from authors concerned with the computability of the theory of belief
change. Besides the fact that belief sets are too large to be represented, they
make no distinction between basic beliefs and those which were inferred from
them. Nebel [Neb90] proposed that instead of always considering a belief set as a
whole, one should consider a belief base, a finite set containing the central beliefs,
and take its logical closure when necessary.
Consider the following example:

Example 6: An agent receives the information that p is the case.
Since this is consistent with his previous beliefs, he decides to expand
his belief set with p. Since belief sets are logically closed, for every
formula « of the language, the agent’s belief set K after the expansion
with p contains p V a. Let ¢ be such that p does not bring any new
information about ¢ and such that neither ¢ nor —q are in the belief
set, i.e., the agent is ignorant about ¢q. Suppose now that the agent
learns that actually —p holds. Since neither p V g nor pV —¢q imply p,
one of these beliefs may be retained in the revision of K by —p. And
then, since —p and either p V q or p V —q are in the new belief set,
either the agent comes to believe that ¢ holds or he comes to believe
that —g holds!

This inference seems to be unjustified because, intuitively, the belief
that pV q is a merely derived belief and has no independent standing.
It is in the belief set only because p is. When p is given up, p V q
should be as well. This problem can be solved with the use of belief
bases instead of belief sets.

However, the term “belief base” has been used by two different communities
with different meanings. Most authors interested in implementing AGM belief
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revision [Neb90, Wil94, Dix94] use belief bases to represent the belief set of an
agent. A belief base in these approaches is a finite axiomatization of the theory
(belief set) representing the agent’s commitments. The fact that a formula of the
belief set is an element of the belief base does not substantively distinguish it
from other formulas that are not part of the belief base but follow logically from
it. There are just two possibilities for a formula: either it follows from the belief
base, and so the agent is committed to it, or it does not. Authors following this
approach usually try to avoid redundancies in the belief base. In databases, for
example, this may be a desirable property, since it makes alterations of the data
easier. On the other hand, adding new information becomes much more complex,
since one has to check for redundancies.

One example of this line of research is the implementation of AGM-style op-
erators given in [Dix94]. In this implementation, a finite set of beliefs is kept as a
base for the real set of the agent’s beliefs that is given by the closure of the finite
representation. In order to minimize the space used, a belief is deleted from the
base if it follows from other beliefs. The base is then a minimal set that gener-
ates the beliefs of the agent. The same belief set can be generated by different
belief bases and in the implementation, the choice between these bases does not
reflect any intuitive notion of which beliefs are basic and which are not; except
for efficiency considerations, there is no reason for choosing one base rather than
another. Moreover, always keeping an inclusion-minimal base which can generate
the belief set can cause beliefs to be recomputed every time that they are accessed,
which, even though saving space in the belief base, leads to unnecessary waste
of computing efforts. Another problem of keeping always a minimal base is that
inconsistencies are not allowed: since all beliefs derived from others are deleted, if
an inconsistency is present, then everything else is deleted. (This agrees with the
use of logically closed sets: if there is any inconsistency, all information is lost.)

The approach that we follow in this work is in line with another use of the
term “belief base”, defended for example by [Fuh91, Rot96, Han99b]. According
to this line, a belief base is a set of formulas representing those beliefs of an agent
that have independent standing. Beliefs that follow from the ones in the belief
base but are not part of it have a different status, being merely derived beliefs.
As an example, consider the bookstore database containing John Smith’s date
of birth, as introduced in the beginning of Chapter 1. This can be considered
an explicit belief, while John’s age would be a merely derived belief. The set of
formulas to which the agent is committed, is formed by taking the logical closure
of the agent’s belief base. The distinction between the belief base and its logical
closure is similar to the distinction between explicit and implicit beliefs found in
the literature. However, the way this distinction is made varies a lot from author
to author. The paper by Fagin and Halpern [FH88|, for example, presents three
different logics for representing beliefs, including a Logic of General Awareness
where the set of an agent’s implicit beliefs is logically closed, while the explicit
beliefs are those elements of this set which the agent is aware of. Harman [Har86]
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uses the terms in a different way: he calls explicit those beliefs which are somehow
explicitly represented and implicit those beliefs which can be inferred from the
explicit ones, not necessarily by logical means.

While in the first notion of belief base the stress is on keeping a non-redundant
base, and thus requiring a non-trivial operation of expansion, in the second notion
what matters is the justification of an agent for believing the formulas of the base.
In this case, adding new information to the belief base via expansion is a trivial
operation. The complexity arises when one has to give up beliefs (contraction)
or use the beliefs for reasoning, since they may well be inconsistent.?

Nebel [Neb98] calls the revisions in the first approach base revision schemes
and those in the second base-generated revisions. The result of a base revision
scheme does not need to be a belief base, it may be a belief set. In the case
of base-generated revisions, the construction of the revision operators is applied
on a belief base and gives as a result another belief base. Gardenfors and Rott
[GR95] call this categorical matching. This is an important condition for iterating
revision operators.

Note that the different meanings attached to the term “belief base” do not
give rise to different extensions of the term: both communities use subsets of the
belief sets which generate the complete belief set by logical closure. The difference
is in the reasons for choosing one particular subset rather than another. While
one community attaches special epistemic status to the beliefs in the belief base,
the other does not and is only concerned with the minimality of the base.

Both notions of belief bases have substantial advantages in terms of com-
putability [Neb98|, and their increased expressive power as compared to belief
sets can be used to represent important features of actual belief systems [Han92a].
On the other hand, belief sets have important advantages in terms of simplicity.

One of the most important difference between belief sets and belief bases is
that the latter allow for a simple and direct representation of the fact that there
can be different inconsistent belief states. Consider, for instance, the following
two belief bases:

Bl = {p7 -P,4q1, 92,493, 44, q5}
B2 = {p7 P, 7'q1, 792, 743, 44, _'q5}

These are distinct belief bases. We can suppose ¢; but not —¢; to be endorsed
according to Bi, whereas the opposite holds for B;. However, on the belief set
level these distinctions are lost since Cn(B;) = Cn(B;) = L. More generally
speaking, belief bases but not belief sets allow us to distinguish between different
inconsistency-containing belief states.

°In [Rot96], two ways of using belief bases are distinguished. Either the belief base is a finite
axiomatization of a belief set, which can be obtained by applying Cn on the base (the horizontal
perspective), or the belief base is an arbitrary set of formulas, possibly inconsistent, and the
commitments of the agent are obtained by applying a more sophisticated inference operator on
the base (the vertical perspective). Our approach is closer to the vertical perspective.
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In what follows, we will present several constructions for belief base change
operations together with their axiomatizations. Unlike AGM operations, which
were first studied through rationality postulates, these operations on bases were
first defined by the constructions and only then axioms characterizing them were
found.

Base expansion is simply set union. Given a belief base B and a formula «,
B+ a = BU{a}. We will use the same symbol for expansions of belief sets and
belief bases and its meaning will be clear from the context.

An operator of partial meet base contraction is obtained by applying the same
construction as the one seen in Definition 3.2.4 to a belief base, instead of a belief
set:

3.4.1. DEFINITION. [AGM85, Han91] The partial meet base contraction op-
erator on B based on a selection function 7y is the operator 47 such that for all
sentences o:

B—,a=Nv(BLla).

Hansson has given the following axiomatic characterization of partial meet
base contraction:

3.4.2. THEOREM. [Han92b] An operator — is an operator of partial meet base
contraction on B if and only if:

o Ifa g Cn(D), then a € Cn(B—a) (success)
e B—a C B (inclusion)

e If 3 € B\ (B—a), then there is some B' such that B—a C B' C B,
a ¢ Cn(B') and a € Cn(B'U{B}) (relevance)

e [f for all subsets B' of B, a € Cn(B') if and only if B € Cn(B'), then
B-—a = B-f (uniformity)

In Chapter 5, we will present a generalization of the representation results
mentioned in this section, where instead of the classical consequence operation
Cn an arbitrary inference operation is used. For each of the theorems we show
which are the properties of the inference operation that have to be assumed.
Proofs for these generals results can be found in Appendix C.

The classic AGM operation of revision (first developed for belief sets) can be
reduced to contraction by —« followed by expansion by o [AGMS85]. In [Han92b]
this was called “internal revision” and an alternative procedure for belief bases,
“external revision” was proposed. It consists in first expanding the belief base
by « and after that contracting by —a. External revision cannot be meaningfully
applicable to belief sets since, if a belief set that contains —« is expanded by «,
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then the outcome will be equal to the whole language, so that all distinctions are
lost.®

In an operation of internal partial meet revision by «, the belief base is first
partial meet contracted by —«a and then expanded by «:

3.4.3. DEFINITION. [AGM85, Han92b] The internal partial meet base revi-
sion of B based on a selection function vy is the operator . such that for all
sentences o

B ¥, a=Nvy(BLl-a)U{a}
The following theorem characterizes this operation:

3.4.4. THEOREM. [Han92b]
An operator F is an operator of internal partial meet revision of B if and only

if:
o If ~a & Cn(0), then ~a & Cn(B F a) (non-contradiction)
e BF aC BU{a} (inclusion)

e If B € B\ B F «a, then there is some B' such that BF o C B' C BU {a},
—a & Cn(B') but ~a € Cn(BU{pB}) (relevance)

e a € BF « (success)

e [f for all B' C B, —a € Cn(B') if and only if = € Cn(B'), then BN (B F
a) = BN (B Ff) (uniformity)

In an operation of external partial meet revision by «, the belief base is first
expanded with o and then partial meet contraction by —«a takes place:

3.4.5. DEFINITION. [Han92b] The external partial meet revision on B de-
termined by a selection function vy is the operator x, such that for all sentences
a:

B, a=Ny(BU{a})La)
The following theorem characterizes this operation:

3.4.6. THEOREM. An operator *+ is an operator of external partial meet revision
on B if and only if:

o If ma & Cn(0), then ~a & Cn(B + «) (non-contradiction)

6This could be avoided by allowing different selection mechanisms that do not depend ex-
clusively on the present belief set, but also store somehow its history, so that the inconsistent

set would be contracted in different ways depending on the previous belief set and input that
led to it.
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e B+ a C BU{a} (inclusion)

e If 8 € B\ B+ «, then there is some B’ such that B+ a C B' C BU{a}
such that —a ¢ Cn(B') and ~a € Cn(B' U {B}) (relevance)

e o € B+« (success)

e [fa and B are elements of B and it holds for all B' C B that —a € Cn(B') if
and only if =8 € Cn(B'), then BN(B+a) = BN(B+) (weak uniformity)

e B+ a+a=B=£a (pre-ezpansion)

The following result shows that usually internal and external revision do not
coincide:

3.4.7. OBSERVATION. [Han92b] 1. Uniformity does not hold in general for ex-
ternal partial meet revision.
2. Pre-expansion does not hold in general for internal partial meet revision.

The following example extracted from [Han99b| shows that internal and ex-
ternal revision may give different results’:

Example 7: Let B={p — r,p — —r}.

(a) internal revision: B1L—-p = {{p — r}, {p — —r}}, hence,
for y1(BL—p) = {{p — r}}, we have BF,, p = {p — r,p}.

(b) external revision: B +pl—p = {{p — r,p},{p — —r,p}}, hence,
for vo(B + pL—p) = {{p — —r,p}}, we have B+, p = {p = —r,p}.

The operations of external and internal revision model two different kinds
of belief change. It is not always clear which operation is more adequate for
formalizing one particular example. Levi (as will be discussed in Section 2.4) de-
fends expansion into inconsistency followed by contraction, i.e., external revision
[Lev9l| as a natural operation. Hansson offers the following examples to show
that sometimes one kind of operation is to be preferred over the other [Han99b]:

Example 8: A man has died in a remote place in which only two
other persons, Adam and Bob, were present. Initially, the public
prosecutor believes that neither Adam nor Bob has killed him. Thus
her belief base contains —a and —b. For simplicity, we may assume

"Hansson uses here global selection functions, which take as arguments a belief base and
a formula. In this example, the two selection functions are clearly not based “on the same
ordering”. It would be interesting to find out conditions on global selection functions so that
internal and external revision coincide.
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that her belief base is {—a,—b}. Suppose now that she receives the
information that the man has been murdered (a Vv b) and that Adam
has previously been convicted of murder several times (c). She revises
her beliefs with ((a V b) A ¢). Her new belief base after the revision
is {—b, (a V b) A c}. If instead of Adam, Bob had been convicted of
murder (d), the new belief base would have been {—a, (a V b) A d}.
(page 208)

This example cannot be modeled as internal partial meet revision, since
{—a,-b}L(=((a Vb)Ac)) = {—a,—b}L(=((a Vb) Ad)), and thus, it is impos-
sible to decide for giving up —a or —b according to the extra evidence c or d. In
external belief revision the information is added before the contraction and can
play a role in the selection process.

Example 9: I believe that Brian is a Catholic priest (a). I also
believe that if Brian is married, then he is not a catholic priest (b —
—a). If I find out that Brian is married (b), then I give up my belief
that he is a priest in order to accommodate the new information.
But suppose I had already expanded my belief base with the new
information before noticing it was inconsistent. Then it may be the
case that after revision I still believe that Brian is a priest but I gave
up the belief that if he is married then he is not a priest. (page 207)

In this case, external belief revision cannot be used, since it satisfies pre-
expansion and the fact that b already was in the belief base cannot make any
difference.

The main difference seems to be, as noted by Hansson, whether the new piece
of information is immediately accepted or not. In cases where the agent is sure
about accepting it, external revision seems more adequate. If the agent has to
think about it, then internal revision takes place.

Hansson [Han94] introduced another construction for contraction operators,
called kernel contraction, which is a generalization of the operation of safe con-
traction defined by Alchourrén and Makinson in [AM85]. The idea behind kernel
contraction is that, if we remove from the belief base B at least one element of
each a-kernel (minimal subset of B that implies &), then we obtain a belief base
that does not imply « [Han94]. To perform these removals of elements, we use
an incision function, i.e., a function that selects at least one sentence from each
kernel.

3.4.8. DEFINITION. [Han94] The kernel operation 1L is the operation such that
for every set B of formulas and every formula o, X € B 1L « if and only if:

1. XCB
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2. a € Cn(X)
3. forallY, if Y C X then a ¢ Cn(Y)

The elements of B 1l « are called a-kernels.

3.4.9. DEFINITION. [Han94] An incision function for B is any function o such
that for any formula o:

1. o(B 1L a) CU(B 1l «a), and
2. If0#X € Bl a, then X No(B 1L ) # 0.

3.4.10. DEFINITION. [Han94] Let o be an incision function. The kernel con-
traction on B determined by o is the operation —, such that for all sentences
a:

B—,a=B\o(B 1. a)

An axiomatic characterization of kernel contraction was obtained in [Han94]:

3.4.11. THEOREM. The operator — is an operation of kernel contraction on B
determined by some incision function if and only if:

e Ifa ¢ Cn(D), then a & Cn(B—a) (success)
e B—a C B (inclusion)

e If B € B\ B—a, then there is some B' C B such that a ¢ Cn(B') and
a € Cn(B'U{B}) (core-retainment)

o [f for all subsets B' of B, a € Cn(B') if and only if B € Cn(B'), then
B—a = B-f (uniformity)

From Theorems 3.4.2 and 3.4.11, since relevance implies core-retainment, it
follows immediately that every base partial meet contraction operation can be
defined as a kernel operation. The converse, however, does not hold:

3.4.12. OBSERVATION. 1. If — is a partial meet contraction operator, then it is
a kernel contraction operator.

2. It does not hold in general that if — is a kernel contraction operator, then
it is a partial meet contraction operator.

Proof: 1. Follows directly from Theorems 3.4.2 and 3.4.11.

2. To see that not all kernel contraction operators can be defined as partial
meet contraction operators, consider the following example: Let B = {p, q,pVq —
r}. We have that BLr = {{p,q},{pV q — r}}, and thus, there are only three
possible values for y(BLr): {{p, q}}, that would give B—,r = {p,q}; {{pV ¢ —
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r}}, that would give B—,r = {pV ¢ — r}, and {{p, ¢}, {pV q¢ — r}}, that would
give B—,r = (). On the other hand, since B 1L r = {{p,pvq — r},{q,pVq — 7}},
we may have o(B 1.7) ={q,pV ¢ — r}, and so B—,r = {p}.
O
Internal and external revisions can also be obtained by combining expansion
and kernel contraction. In Section 5.2.3, we give formal definitions and axiomatic
characterizations of internal and external kernel revision in a more general form.
Even though the use of belief bases presents already the advantage that belief
states are finitely represented and thus, more amenable to computational treat-
ment, as we have seen, the operations of belief change defined for belief bases
still make use of the operation of logical closure.® Kernel operations are more
efficient than partial meet operations, since they look for minimal subsets instead

of maximal, but they still rely on checking derivability for several subsets of the
belief base.

3.4.2 Non-Prioritized Belief Revision

As we have seen, one of the shortcomings of AGM theory is that incoming in-
formation always has the highest priority. Some formalisms for non-prioritized
belief-revision ([Han97b, Han99a|) have been developed in which this is not the
case, i.e., incoming information may be rejected. In this section we will briefly
summarize some of these approaches.

The operation of AGM revision is applied only after the agent decided to
accept the new piece of information. Since the agent is a perfect reasoner, if he
chooses to reject the new piece of information, then nothing has to be done to
the belief set. According to [Lev91l], Gardenfors (in [G&r88|) never addresses the
question of why an agent is justified in adding a certain proposition to his belief
set.?

Following this line of thought, the simplest idea for an operator of non-
prioritized belief revision is to divide it in two parts: first analyze the input to
check whether it is acceptable or not and then, in case it is acceptable, perform
AGM revision. This is the idea behind screened revision [Mak97].

In Galliers’ proposal for a theory of autonomous belief revision [Gal92|, the
agents can decide whether to accept the information or not. Galliers defines the
result of a revision operation on a belief base as a set of belief bases, including
the original (non-revised) belief base, ordered according to some criteria. The

8 Alternative approaches based on epistemic entrenchments (E-bases [Rot91]; “ensconce-
ments” [Wil94]) rely on a well behaved pre-order of the beliefs in the base to construct op-
erations of belief change. This pre-order has to satisfy some logical constraints, as we have
seen in the end of Chapter 3. Given the pre-order, the operations become less complex, but
constructing and maintaining this pre-order can be computationally very costly.

9Gaérdenfors avoids the question by identifying the input with the requirement that it should
be accepted ([G&r88], page 49).
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maximal (according to these criteria) set is then preferred.

Two additional operations of change on belief bases were introduced in [Han91]
and [Han97al: consolidation and semi-revision. Consolidation consists in making
an inconsistent belief base consistent. Semi-revision is an operation that may,
depending on the input sentence, either accept or reject new information.

Consolidation can be modeled as contraction by falsum. Therefore, the two
contraction operators introduced in the previous section provide us with two
consolidation operators.

The idea behind kernel consolidation is that, if we remove from the belief base
at least one element of each inconsistent kernel (inclusion-minimal subset of the
base that implies 1), then we obtain a consistent belief base.

3.4.13. DEFINITION. [Han97a] Let o be an incision function. Then the kernel
consolidation operation for B determined by o is the operation !, such that:

Bl, =B\ o(B 1 1).

3.4.14. THEOREM. [Han97a] An operation ! is an operation of kernel consolida-
tion for B if and only if:

e | & Cn(B!) (consistency)
e B! C B (inclusion)

e Ifa € B\ (B!), then there is some X such that X C B, 1 ¢ Cn(X) and
1L € Cn(X U{a}) (core-retainment)

Consolidation can also be constructed from partial meet contraction.

3.4.15. DEFINITION. [Han91] The partial meet consolidation operator for

B based on a selection function vy is the operator !, such that:
B!, =N~vy(BLly)

3.4.16. THEOREM. [Han91] An operation ! is an operation of partial meet con-
solidation on B based on some selection function if and only if:

o L ¢ Cn(B!) (consistency)
e B! C B (inclusion)

e Ifa € B\ (B!), then there is some X such that Bl C X C B, 1 ¢ Cn(X)
and L € Cn(X U{a}) (relevance)

Semi-revision differs from revision in being non-prioritized, i.e., the incoming
information may be either accepted or rejected. In analogy to AGM revision, that
can be defined in terms of contraction and expansion, semi-revision can be defined
in terms of consolidation and expansion via the following identity [Han97a):
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Bla = (B + q)!

Hence, semi-revision consists of two steps: first the belief a is added to the base,
and then the resulting base is consolidated. The two consolidation operators
introduced above give rise to two semi-revision operators.

As an example, consider the following situation:

Example 10: Suppose I arrive at my friend Paul’s house for a visit
and see that the lights are on (gq). I believe that when the lights are
on, Paul is at home (¢ — p). Suppose now that I ring the bell and
nobody answers. I may conclude that Paul is not at home (—p). I have
expanded into an inconsistent belief base. I must give up some belief
in order to regain consistency. Since I trust my senses, I give up the
belief that ¢ — p. The whole process is an operation of semi-revision.

3.4.17. DEFINITION. [Han97a] The kernel semi-revision of B based on an
wmncision function o is the operator 7, such that for all sentences a:

Blya=(BU{a})\o((BU{a}) 1L 1)

3.4.18. THEOREM. [Han97a] An operator? is an operator of kernel semi-revision
if and only if for all sets B of sentences:

e | ¢ Cn(B?a) (consistency)

B?a C BU{a} (inclusion)

If B € B\ B?a, then there is some B' C BU{a} such that L ¢ Cn(B') and
1€ Cn(B'"U{B}) (core-retainment)

(B + a)?a = B?a (pre-expansion)

If a, 8 € B, then B?a = B?f (internal exchange)

Recall the example of Paul being not at home and the lights being on. We
can model it by kernel semi-revision as follows:

Example 10 (continued): My initial belief base is B = {q,q — p}.
I come to believe that Paul is not at home: B+ —p = {q,q — p, —p}.
I have to give up one of the beliefs in B 1L+ = {{q,q — p,—p}}. I
choose to give up o(B 1L 1) = {q¢ — p}. My resulting belief base is
B?-p=B\o(B 1 1) = {q, p}.

Semi-revision can also be obtained from partial meet consolidation:
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3.4.19. DEFINITION. [Han97a] The partial meet semi-revision of B based on
a selection function vy is the operator 7, such that for all sentences a:

B = Nv((BU{a})L1)

3.4.20. THEOREM. [Han97a] An operator ? is an operator of partial meet semi-
revision if and only if for all sets B of sentences:

o | ¢ Cn(B?a) (consistency)

B?a C BU{a} (inclusion)

If B € B\ B?a, then there is some B’ such that Bl C B' C B U {a},
L ¢ Cn(B') and L € Cn(B'U{B}) (relevance)

(B + a)?a = B?a (pre-expansion)

If a, 8 € B, then Bta = B?f (internal exchange)

The following example illustrates the fact that kernel and partial meet semi-
revision do not always coincide:

Example 11: Consider the following belief base: B = {p,q¢,pV ¢ —
r}. To semi-revise it by —r, we have to expand B with —r and then
consolidate the resulting belief base. Using partial meet consolidation,

since (B+-r)Li={{p,q,pVqg—r},{p,q¢,—r},{pVqg—r,—r}}, we
get one of the following results (depending on the selection function
used): {p,q,pVq—= r}{p.q,>r},{pvg—=r,-r}{p,q},{pveg—
r},{—r}, or the empty set. On the other hand, using kernel consolida-
tion, since (B+-r) L1 ={{p,pVvq—r,—r},{q,pVqg— r,—r}}, we
may have an incision function that chooses to give up p and pVq — r,
so that we have {q, -7} as the result of the semi-revision.

In the next chapter we will present our framework for belief change. Our
approach is also non-prioritized, but it departs more from the standard AGM
theory than the discussed alternative approaches do, since it drops the assumption
of ideally rational agents.



Chapter 4
Resource-bounded Belief Change

In this chapter we propose a formal framework to reason about belief revision for
non-ideal agents. The framework takes into account limitations of memory and
deductive abilities.

For the sake of clarity, we start with a simplified model, which accounts for
introspective agents, i.e., agents that can immediately recognize all their beliefs.
We will introduce a structure to represent an agent’s belief state that distin-
guishes different types of beliefs according to whether or not they are explicitly
represented, whether they are currently active and whether they are fully ac-
cepted or provisional. We also define a set of basic operations that change the
status of beliefs and show how these operations can be used to model agents with
different capacities. The basic operations can be combined to form more complex
operations. This is illustrated by showing how to define AGM-style operations
using belief states equipped with the basic operations. We discuss how Harman’s
principles can be interpreted in our framework.

We then present the full model, which introduces the distinction between
beliefs the agent is aware of and those he is not. We augment the set of basic
operations to deal with this new distinction.

Proofs for all Lemmas and Propositions can be found in Appendix B.

4.1 Belief States

In this section we present our model for belief states. We start by introducing
some distinctions between different kinds of beliefs. The example below motivates
the distinctions. Consider the following situation:

Example 12: Mary is going out, and her mother tells her that
she should take an umbrella. Besides beliefs about other subjects,
she holds the belief that if she is going to be outside for a long time,

39
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then she should take the umbrella. She also believes that she will be
outside the whole day. If her mother had not mentioned the umbrella,
she would not have thought of it. Upon it being brought to her notice,
she concludes she should indeed take the umbrella.

Harman [Har86] proposes that some of the agent’s beliefs are explicitly repre-
sented. His definition of implicit beliefs is rather vague. Beliefs that can be easily
inferred from explicit ones according to classical logic belong to this category,
but not all implicit beliefs need to be so derivable. For Harman, when someone
explicitly believes in P, he may implicitly believe that he is justified in believing
P. An agent may hold also implicit beliefs like the one that elephants do not
wear pajamas in the wild mentioned in Section 2.1.

We will not restrict ourselves to a particular notion of inference but rather
consider an inference function Inf that will depend on the agent being modeled.!
Harman’s argument that there are more implicit beliefs than those which logically
follow from the explicit ones is based on his assumption that the logic in question
is classical. Intuitively, the notion of inference we would like to use is neither
strictly weaker nor strictly stronger than classical logic, but incomparable. Our
inference function Inf is general enough to allow for inferences that would not be
derivable using classical logic. A possible assumption about Inf is that inclusion
holds, i.e., that for any X, X C Inf(X). We want Inf to give us the inferences
the agent can make in one step, i.e., by one application of some rule that the
agent knows. Thus we do not want Inf to be idempotent.

Following Harman, we will assume that there are beliefs that are explicitly
represented, from which others may be inferred. We will identify the set of the
agent’s implicit beliefs with the set of beliefs that can be inferred from the ex-
plicit beliefs, in accordance with the agent’s abilities. The distinction between
explicit and implicit beliefs is roughly analogous to that between Levi’s doxastic
performance and doxastic commitments [Lev91] presented in Section 2.4, with
the difference that an agent’s doxastic commitment is closed under classical logic
while for us the set of implicit beliefs is closed under the agent’s own logic. The
set of explicit beliefs can be seen as a belief base in the second sense discussed in
section 3.4.1, i.e., it contains those beliefs with independent standing.

Since we are dealing with resource-bounded agents, it does not make sense
to state that an agent can infer everything that logically follows from his beliefs.
How much one can infer depends highly on the available resources, like time and
memory.

Let E be the set of the agent’s explicit beliefs, and I the set of his implicit
beliefs. The set I is given by I= Inf*(E) = U,,>¢ Inf"(E), where Inf is a function
that returns the set of formulas that the agent is able to infer from a given set
of formulas in one step, and Inf°(X) = X. The set I represents the set of beliefs

IThe agent may be allowed to revise his inference function, but we will not deal with this
complication in this work.
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the agent would be able to infer from E if he were given unlimited time. Note
that Inf*(Inf(X)) =Inf*(X) by definition. The operation Inf* satisfies inclusion

even if Inf does not.

As we have seen in Section 2.2, Cherniak defines a hierarchy of rationality
concepts [Che86], on top of which appear ideal agents, with belief states that are
deductively closed. On the lowest level of the hierarchy appear agents that are
not able to perform any inference. These agents cannot be called rational. In
general, resource-bounded agents lie somewhere in the middle of the hierarchy.
Cherniak claims that a resource-bounded agent would not be called rational if
he tried to make all possible inferences from his beliefs, since this would exhaust
his resources without being useful (this is analogous to Harman’s Principle of
Clutter Avoidance). Cherniak also notes that inference does not necessarily mean
the same thing for all agents: not all agents accept the laws of logic and different
agents have different limitations. He speaks of feasible inferences. Our framework
is general enough to represent agents at the bottom of the hierarchy, by taking the
agent’s inference function to be the identity function, i.e., Inf(X) = X. Perfect
reasoners can be captured by taking Inf to be Cn.

Another claim that appears in [Che86] is that only a small part of an agent’s
beliefs can be activated or thought of at a given time. This relies on the distinction
between long-term and short-term memory. We will call the information that is
currently available for use active beliefs. These may be information that still
has to be checked, such as recently acquired beliefs, intermediate conclusions in
an argument, beliefs related to the current topic, etc. Some elements of the set
of active beliefs might not yet be really believed (at least not completely), they
still might have to be checked. Every piece of information has first to become
active in order to become accepted, rejected or revised. Not all of one’s beliefs
are active at the same time, as the size of the set of beliefs that can be active is
often restricted.

Our belief states consist of two (usually overlapping) sets, the set of explicit
beliefs (E) and the set of active beliefs (A), plus an inference function that deter-
mines the set of implicit beliefs (I=Inf*(E)). In Figure 4.1 we see a representation
of an agent’s belief state. All changes in belief states take place in the set of active
beliefs, possibly affecting the set of explicit beliefs as well.2

How do beliefs become active? There are many possible ways in which a
belief can be activated. A belief may be active because it was recently acquired,
because it is relevant to the current line of reasoning or because it has just been
inferred. Usually beliefs are activated due to new input. Two different methods
for activating the beliefs which are relevant for a certain input are described in
Chapters 5 and 6.

2How the operations of belief change affect the set of explicit beliefs can be seen in Definition
4.2.1.
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Figure 4.1: Structure of an agent’s beliefs

At this point it may be useful to return to our small example to illustrate the
difference between explicit and active beliefs.

Mary'’s belief that if she is going to be outside for a long time, then she should
take the umbrella is part of her explicit beliefs and so is her belief that she will
be outside the whole day. These beliefs only become active when her mother
mentions the umbrella. When Mary thinks of it, she infers that she should take
the umbrella. This example shows an argument against representing belief states
as logically closed sets. Mary did not hold the belief that she should take the
umbrella until the time at which the inference was made. It also shows that
not all beliefs are active at the same time. Using Levi’s term in a loose sense,
Mary’s performance catches up with her commitments only after the inference is
made. Before performing the inference, Mary’s implicit beliefs already contained
the belief that she should take the umbrella. This belief was also active, since
Mary had heard it from her mother, but it was not yet explicit, since Mary was
not yet sure whether she would accept it.

Any new belief, either coming from the “outside” (new input) or from the “in-
side” (inference), has to survive inquiry before being incorporated into the current
beliefs. Since we allow for both inconsistent beliefs and agents which are not ideal
reasoners, an inference may well be unsound. That is why inferences should be
at first only provisionally accepted. The depth of the inquiry is determined by
the agent and his interest in the subject. Harman defines some kinds of cognitive
goals that usually guide inquiry [Har86]: the interest in not being inconsistent,
interest in the immediate environment, interest in facilitating reasoning (if the
agent believes that knowing whether « is true or not would help him to obtain
something he desires, he will be interested in «). For instance, consider the fol-
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lowing example: if an agent hears that it is raining outside and he intends to go
out, before going out with a raincoat and umbrella, he will probably first have a
look through the window in order to be sure. But if he has no intention of going
out, he might simply accept the information that it is raining and go on reading
his newspaper. The agent behaves more skeptically with respect to propositions
that have a direct implication to his intentions and plans or about information
that comes from unreliable sources.

Harman distinguishes fully accepted beliefs from what he calls working hy-
potheses, the former being those working hypotheses that managed to survive
inquiry. We will call working hypotheses provisional beliefs. In a sense, they
are not real beliefs, as they are still under investigation, the agent has not yet
decided whether to accept them or not. In our framework, the provisional beliefs
are roughly the active beliefs that have not yet been accepted, i.e., the beliefs
in A\E. After we introduce the formal framework we will be able to formalize
exactly the set of provisional beliefs. This agrees with Levi’s claim [Lev91] that
an agent should distinguish in his doxastic state between beliefs which are settled
and conjectures.

An interesting question is how a provisional belief can be granted membership
in the set of accepted beliefs. This is an important part of our framework which
has not yet been developed. One suggestion to answer this question is presented
in Appendix A.

Back to our example:

Example 12 (continued): Let p stand for “Mary should take an
umbrella” and ¢ for “Mary will be outside for a long time”. Before
talking to her mother, Mary’s explicit beliefs contain, among others,
the beliefs ¢ and ¢ — p. The implicit beliefs contain, among others, p.
The set of active beliefs is empty (actually it would probably contain
some remains of other reasoning, but this is not relevant for this argu-
ment). When the mother says that Mary should take an umbrella, p
becomes a provisional active, but not explicit, belief. Mary does not
necessarily believe everything her mother says immediately, so that
she has to think about it. This is as if she were asking herself whether
she should take the umbrella. The beliefs ¢ and ¢ — p become active,
since they are relevant for deciding whether to accept p. When Mary
eventually decides to accept p, this belief is made explicit and the set
of active beliefs may get new elements according to new input.

At this point it may be useful to introduce another small example to illustrate
the difference between explicit and active beliefs.

Example 13: Consider a PROLOG program. What we call explicit
beliefs is the program itself, that is, the facts and rules that are ex-
plicitly given. The inference function is the immediate consequence
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operator, that gives what can be derived after one application of res-
olution, and the set of implicit beliefs is the fix-point of this operator.
The active beliefs depend on the queries made.

For the program:

- q, T.

n K OO

we have:
- Explicit beliefs: {p :- q, r; q; r :- s; s}
- Implicit beliefs: {p :- q, r; q; r :- s; s}U{r; p}

For the query r, the set of active beliefs is first only the query, then
{r;r: —s}, then {r;r : —s; s}, that is, the set contains open queries as
well as the clauses of the program that are used to solve them. Note
that the three sets of explicit, implicit and active beliefs are different
from each other.

Intuitively it seems that implicit beliefs can also be active. In one way or
other, all of an agent’s active beliefs have to be explicitly represented, even if
only temporarily. But they do not need to be represented in the same way as
the explicit beliefs are. Recall the example of a PROLOG program (Example
13). The explicit beliefs are the facts and rules that constitute the program. The
implicit beliefs are those facts that can be inferred from the program, while the
active beliefs are the queries (A\I) together with those facts and rules which have
been either derived (ANI) or used (ANE) at a certain point.

A belief state ¥ can be represented by (E, Inf, A), where E is the set of the
agent’s explicit beliefs, Inf is the agents inference function and A is the set of
the agent’s active beliefs.

Our view of the structure of an agent’s beliefs (Figure 4.1) differs from the
ones found in the literature, like [FH88| that start from the set of implicit beliefs
and eliminate formulas to get to the set of the explicit beliefs, and [Har86] that
considers that implicit beliefs can be derived from the explicit ones in a different
way than by inference.

We drop the common requirement that the agent’s explicit (and implicit)
beliefs have to be consistent ([G&r88]), since we believe that agents can have
inconsistent beliefs without believing everything (we can keep some beliefs that
we even know to be inconsistent).

Even though for most applications the inference function of an agent does
not vary, our framework allows for agents that learn new inference rules. If an
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agent’s knowledge is described by first order formulas and the inference function is
application of Modus Ponens, the agent may learn that the rule of generalization
is valid, which will immediately change his set of implicit beliefs.

As a consequence of the introduction of these distinctions between different
kinds of belief, we can represent more kinds of epistemic attitudes than the tradi-
tional AGM theory. In the AGM model, an agent may have one of three different
epistemic attitudes concerning a sentence « (K represents the agent’s belief state):

(i) « is accepted (o € K)
(i) « is rejected (—a € K)
(iii) o is undetermined (o ¢ K and —a ¢ K)

Our model allows for a more refined description of an agent’s epistemic atti-

tudes ((E, Inf, A) is the agent’s belief state and I stands for Inf*(E)):

(i) a is accepted (a € E);

(i) « is rejected (—a € E);

(iii) « is neither accepted nor rejected but follows from the agent’s beliefs
(a € I\ E);

(iv) « is neither accepted nor rejected but can be refuted by the agent
(ma € I\ E);

(v) « is under consideration (& € A\ T or ~a € A\ I); or

(vi) none of the above, i.e., the agent is completely ignorant about .

Orilia has independently developed a framework for belief revision which also
distinguishes active and provisional beliefs (these last are called candidate beliefs
in his paper) [Ori99]. His interest is mainly avoiding the logical paradoxes such
as the Liar Paradox.

4.2 Basic Operations

In this section we define operations for changing belief states as defined in section
4.1.

Traditionally, revision is seen as a sequence of a contraction and an expan-
sion. Hansson [Han92b] has shown that revision can also be defined by expansion
followed by contraction. But this is not a decomposition into simpler steps, since
contraction is (computationally) as complicated as revision. We want to decom-
pose revision and contraction into simple operations that show what happens
with an agent’s belief state in each step, instead of only analyzing the initial and
final states.

Beliefs that are active can be forgotten, or stored as explicit (but inactive)
beliefs. Since the set of active beliefs is assumed to be very limited in size,
there must be a mechanism that, in cases of overflow, selects which beliefs will
be discarded or stored. It may be interesting to have the active beliefs ordered
by interest, so that things with very low interest will be forgotten first. This
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ordering could also incorporate recency, beliefs that were recently recalled are
more interesting than those that were not used lately.

The first operation we define is similar to AGM expansion in the sense that
it consists of simply adding new information to a set without checking for con-
sistency. But the operation takes the limited size of the set into account.®> When
trying to add something to a set that is already at its maximum size, some ele-
ments of the set have to be given up. This can be seen as a kind of “forgetting”.

If X is a set with maximum capacity m and « is an element we want to add
to X, then:

X | Xu{a} if | X[ <m
XU {a} = { X'U{a}, where X' C Xand | X'| <m otherwise

Note that this operation reduces to a simple union as long as the set is not
“full”. Since the size m of the set is given as a parameter, the operation is
more accurately denoted as U),. When the set is already at its maximum size,
something has to be discarded. There must be a selection mechanism to choose
which elements are going to be discarded. If the set X is ordered (for example
by the last time the beliefs were recalled), we can stipulate that the minimal
elements of the set are the first to be dismissed, i.e., we want to ensure that if an
element is dismissed, then there is no other element which is retained that is less
than the dismissed one in the order:

Vylye X\ X' —» Jz(z € X' Nz <y)).

Even under the assumption that a total order is given, the operation U* as
defined above is not completely determined. Usually we would like it to preserve
as much as possible from the old beliefs, but there are situations where it might
be desirable to delete more than what is strictly necessary. One example is an
artificial agent that may “clean” its working memory (the set of active beliefs)
upon receiving information about an unrelated topic.

We define now six operations that can be applied to belief states in order to
change the status of beliefs.

In our structure, even though the set E has a limited size, we assume that
this size is big enough to be disregarded. The important restriction problem is
the size of the set A. Elements dismissed from A that do not belong to E or 1
simply disappear, are forgotten. The elements of ANI that are dismissed from A
remain in E or L

4.2.1. DEFINITION. (basic operations) Let (E, Inf, A) be a belief state and «
a formula. We define the following operations on (E, Inf, A) (we will omit the
second argument Inf since the operations defined do not affect it):

3When we talk about the size of a set of formulas, we mean something like its complexity.
The sets {p,q} and {p A q} should have the same size. We could, for example, count the
occurrence of atoms.
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1. Observation (o,): adds an external input to the set of active beliefs.

(E,A) o, a = (E,AU*{a})

2. Retrieval (o,): retrieves an explicit belief into the set of active beliefs.

[ (BAU {a}), facE
(B, A) o o = { (E, A) otherwise

3. Acceptance (o,): makes an active belief explicit.*

Eu{a}l,A\{a}), ifae A
(B, A)0q 0 = { éE, A){ot}hemu\is{e )

4. Inference (o;): infers something from active beliefs.

_ | (B AU {a}), f a e Inf(A)
(B, A)oi o= { (E, A) otherwise

5. Doubting (o4): a belief that was accepted is questioned, becoming provisional.

_[ (B\{a}A) ifacANE
(B,A)oqa = { (E, A) otherwise

6. Rejection (o.): rejects an active belief.

(E,A\{a}), fac A
(B,A)o.a= { (E, A) otherwise

The operations defined above describe how beliefs are incorporated into the
structure representing an agent’s beliefs and how they move from one set to the
other within the structure. Elimination of beliefs may happen as a side effect of
the expansion operation U*, being thus an “unconscious” operation. However,
depending on the kind of agent being modeled, it may be useful to have an
operation to perform “conscious” forgetting, for example for robots. Such an
operation can easily be modeled by combining the operations of doubting and
rejection.

The six operations defined above can be combined to model more complex
operations. As an example of such a composition, consider what happens when
an agent gets new information via observation. The belief will first come into the
set of active beliefs through the operation o, and then the agent may accept it
(04)- Another example is the operation of conscious forgetting mentioned above.

In what follows, we will use the six operations defined also as operations that
take a belief state and a finite enumerated set of formulas and return a belief
state, i.e., if X is a belief state and X = {x1, X2, ---, Xn} 18 a set of formulas, then

4 Acceptance could also be defined without deleting the accepted belief from A, which seems
to be more intuitive for human agents. The choice made here reflects our interest in artificial
agents.
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Y os X = X 07 X1 07 X2 07 ... 07 Xn, Where o, is one of the six basic operations
04,0, Oq, O;, 04 Or O,. Since the basic operations make use of U*, beliefs may
be deleted due to overflow, and different enumerations of the same set may yield
different outcomes. In the rest of this chapter, when no particular enumeration
is mentioned, the result is valid for all enumerations of the set considered.

It is not difficult to see that the set of operations o,, o,, o,, o4, and o, is
complete with respect to all possible changes that a belief state may undergo,
ie.

4.2.2. PROPOSITION. Given two belief states Y1 = (FEy, A1) and Yo = (Es, As),
there is a sequence of basic operations that takes ¥ into X».

It is interesting to note that in this simplified model, observing or inferring
a formula o have the same effect, i.e., (E,Inf,A) o, a« = (E,Inf, AU*{a}) =
(E,Inf,A) o; a, provided that o € Inf(E). However, observation depends on the
outside world and a formula may be available for inference without being available
for observation. In Section 4.5, where we introduce the full model, we will be able
to differentiate between observing a formula that can be inferred and one that
cannot.

If we want to use the model described above to model an ideal agent, we can
simulate AGM operations. This is presented in the next section.

4.3 Embedding AGM Theory

In this section, we show how the operations of expansion and contraction in the
AGM sense can be seen as a special case of applications of the operations defined
in section 4.2, when the storage space is unlimited and the number of operations
performed may be infinite.

We will concentrate on expansion and contraction, since AGM-revision can
be defined in terms of the other two operations.

A belief set is a set K such that Cn(K) = K. There is no distinction between
implicit and explicit beliefs or active and inactive beliefs.

To see how this can be embedded in our structure, we first observe that a
belief set in the AGM theory corresponds to a belief state where the sets I and
E are the same, the sets E and A have no size limit, and Inf is C'n. Thus, we
define a map function f from belief sets into belief states:

f(K) = (K,Cn,0)

Since the sets considered in this section do not have any size limit, the op-
eration U* becomes equivalent to the simple set union operation and the basic
operations can be easily extended to the form ¥ o, X, where X is a (possibly
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infinite) set of sentences and o, is one of the six basic operations o,,0,, 0,4, 0;, o4
or o,.

4.3.1. DEFINITION. Let ¥ = (X,Cn,0) be a belief state. The logical closure of
> is given by:
Cl(¥) =% 0, Cn(X)\ X 0, Cn(X)\ X.

It follows directly that if X = C'n(X), then (X, Cn,0) = CI({X, Cn,0)).

Since there is no size limit on the set of active beliefs, it is easy to see that:

4.3.2. LEMMA. Let ¥ = (K,Cn,0) be a belief state.
Then CI(X) = (Cn(K), Cn, 0).

Given a belief set K, the AGM-expansion of K with « is defined by:
K+ a=Cn(KU{a})

4.3.3. DEFINITION. The ezpansion of a belief state ¥ = (K, Cn, D) by « is given

by:
Y+a = Cl(X o, ao, a)

We have then that by mapping the resulting belief set after an AGM expansion
into a belief state, we get the same result as predicted by our theory (see Figure
4.2):

+
K K+a
f f
i
f(K) f(K+a)

Figure 4.2: Commuting diagram

4.3.4. LEMMA. f(K)+a = f(K + )

4.3.5. DEFINITION. Let v be a selection function for K. The partial meet con-
traction of a belief state ¥ = (K,Cn, () by « is given by:
Z;vazX]o,,AodAocA,
where A = K \ (Nv(KLa)).
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4.3.6. LEMMA. If —, is the AGM partial meet contraction operator based on v,
then f(K)—,{a} = f(K —, o).

Since the revision of a belief set can be defined by combining contraction and
expansion according to the Levi identity, we are able to conclude the following:

4.3.7. PROPOSITION. The standard AGM theory of belief revision can be embed-
ded in the framework of belief states equipped with the operations presented in
Definition 4.2.1.

In order to obtain a contraction operation that satisfies the AGM postulates,
the operation of rejection has to be repeated until enough sentences have been
removed so that « is not a consequence of the first argument of the resulting
belief state. Such a definition, as the one in [G&r88], is only appropriate for ideal
agents.

As we have seen, it is possible to use our framework to define operations for
belief change in the tradition of the AGM theory. But the operations of expansion
(+) and contraction (—) defined will usually involve an infinite number of basic
operations. If we want to define versions of these operations for non-ideal agents,
we have to restrict the use of the set of active beliefs.

Instead of removing from the belief state all the beliefs that imply the belief
being contracted, a contraction operation for a non-ideal agent should remove only
those beliefs that are active and imply the contracted one. This would prevent the
agent from immediately reinferring a belief that was given up, satisfying Harman’s
Get Back Principle (cf. Section 2.1). On the other hand, this would not prevent
the agent from later on (when the active beliefs change) reinferring a belief that
was given up. In Chapter 5, we present such a contraction operation.

In the case of Karen’s aptitude test discussed in Section 2.1, suppose she was
already thinking of something else when she got to know that the results were
wrong. When she hears the news some of her beliefs become active, like the belief
that she has indeed aptitude for science and music. Since this belief depended on
the belief that the results of the test were correct, Karen will give it up when she
finds out that it is not justified anymore. The set of active beliefs behaves then
according to the foundations theory. But there were other beliefs that originally
depended on the result of the test, like the belief that she did not work hard
enough in music. Since this belief is not active anymore it will be maintained.
The set of explicit (and inactive) beliefs behaves more according to the coherence
theory, but it can contain inconsistent beliefs. It seems intuitive that if Karen is
asked why she thinks she did not work hard enough she will reconstruct some kind
of justification, maybe different from the original one. She may find out that she
dedicated much more time to history than it was necessary, leaving music aside.

The main point is that the operations of contraction and revision are restricted
to the (small) set of active beliefs, which makes them feasible. There is also no
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consistency checking involving all of an agent’s beliefs, only the active beliefs are
kept consistent.

The most important problem to be solved is how to select which information
should be in the set of active beliefs. Recently acquired information should be
active, as well as open queries, but also relevant information should be retrieved
from the set of explicit beliefs to be used in the reasoning process. In Chapter 5,
one way of retrieving relevant information is presented that considers a formula
to be relevant if it helps to prove or refute something under consideration. In the
system RABIT [Gar93], a method of marker passing is used to determine which
of the explicit beliefs should be retrieved and become active. This is the starting
point for the method presented in Chapter 6.

4.4 Harman’s Principles

In this section we give an interpretation for the principles in [Har86] that were
presented in Section 2.1 and consider how well the current proposal can be inte-
grated with Harman’s theory. Let (E, Inf, A) be a belief state.

1. Clutter Avoidance: This principle has as its main implication that the agent
should not try to close his beliefs under logical implication, since not all
consequences of the agent’s explicit beliefs are useful. Clutter Avoidance
does not apply to the set of implicit beliefs, that represents what the agent
could (but not necessarily wants to) infer. Usually, E # Inf(E).

2. Recognized Implication Principle: The agent can only recognize an impli-
cation if the premises are accepted and active. Moreover, in order to be
accepted, an inference also has to be feasible, i.e., it has to be obtained by

a small number of applications of Inf. The agent has reasons to accept a
new inferred belief « if & € Inf(A N E).

3. Recognized Inconsistency Principle: The agent is only aware of inconsisten-
cies in his set of active beliefs. If an inconsistency is found, i.e., if the set
of active beliefs becomes inconsistent, then there is a reason to correct it.
The set E \ A may be inconsistent, but this will not affect the reasoning.

4. Principle of Positive Undermining: An accepted belief can move to the
set of provisional beliefs and go through inquiry again if there is evidence
against it. Our theory does not say anything about what should count as
evidence for or against a belief. We can imagine that a consistent set of
accepted beliefs implying « could be seen as evidence for a, but there is
more to evidence than this. To describe this, belief states would probably
have to be enriched with a structure reflecting justifications. This is left for
further work.
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5. Principle of Conservatism: When changing his beliefs, the agent should per-
form only the necessary changes. Beliefs that are irrelevant for the change
the agent is performing should remain untouched. Changes always involve
elements of the set of active beliefs (which may also be elements of the set
of implicit beliefs). The only exception is in the case where the capacity of
the agent’s memory is already exhausted and some beliefs have to be given
up (forgotten).

6. Interest Condition: Here our theory does not have much to say. This prin-
ciple implies that an agent’s reasoning should be goal-oriented, i.e., that the
agent should not make arbitrary inferences but instead pursue a goal. His
interest should guide which inferences are worth making.

7. Get Back Principle: The agent should not give up a belief that can be
reinferred from his active beliefs. This means that when giving up a belief
a, enough beliefs have to be given up so that ¢ Inf(A). But it may be
the case that a € Inf(E).

Harman’s Recognized Implication Principle touches a problem that is not
addressed in this simplified model. An agent may receive information that is
implied by his beliefs and fail to notice it. After some time, the agent eventually
realizes that the new piece of information was already implicitly believed. At
this point we can say that the agent recognized the implication. In this simplified
model we cannot distinguish between a piece of information that is active (because
it has just been observed) and happens to follow from the agent’s explicit belief,
without the agent realizing it, and those beliefs that the agent recognizes as being
implied by his explicit beliefs. Consider what happens immediately after Mary’s
mother saying that she should take an umbrella (Example 12). This becomes
part of Mary’s active (provisional) beliefs and it follows from her explicit beliefs.
But only after some reasoning does Mary recognize the fact that the new piece
of information was already an implicit belief. In the next section we will present
the full model of belief states and show that it accounts for this distinction.

4.5 Refining the Model

As we have seen at the end of last section, a provisional belief may already be
believed (explicitly or implicitly) without the agent noticing it. We would like to
further refine the set A to mirror the difference between beliefs that the agent
is “aware” of believing (in the sense that he believes that he believes them) and
beliefs that he is not aware of.

As can be seen in Figure 4.3, the set of provisional beliefs (prov) includes be-
liefs that were not previously believed as well as beliefs that are already (implicitly
or explicitly) believed but of which the agent is not aware.
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Figure 4.3: The provisional beliefs

The set W (see Figure 4.4) is a subset of A and contains those beliefs that the
agent is aware of. Beliefs in ENW are explicit and the agent is aware that they
are explicitly believed. Analogously, the agent is aware that he implicitly holds
the beliefs in INW. And the beliefs in W\I are those which the agent is aware
that they are only provisional beliefs, i.e., the agent knows that these beliefs do
not follow from his explicit beliefs. To illustrate the difference between the sets
INW and ENW, recall once more the PROLOG program (Example 13). After
the query p, at a certain point r will be in INW, since it was inferred and is
available for use. But it will not be in ENW, since it is not part of the program.

When Mary hears that she should take an umbrella, this becomes a provisional
belief and was already part of Mary’s implicit beliefs. This new belief becomes
part of (IN A)\ W, i.e, it goes to region 5 in Figure 4.5. After some reasoning,
Mary becomes aware that she was already committed to the belief that she should
take the umbrella, and the belief moves to region 6 (INW).

A belief state ¥ can be completely determined by the following parameters:

e The set E of explicit fully accepted beliefs;

e The inference function Inf, that takes as argument a set of beliefs and
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Figure 4.4: The active beliefs

gives as result the set of beliefs that can be inferred by the agent from the
argument set in one step;

e The set A of active beliefs; and

e The set W of active beliefs that the agent is aware of (W must be a subset
of A).

From now on, we will refer to a belief state as ¥ = (E, Inf, A, W).

The set of implicit beliefs is given by I=Inf*(E), the set of explicit active
beliefs of which the agent is aware is given by Eu=ENW, the set of implicit
active beliefs of which the agent is aware is given by I;;=INW, and the set of
provisional beliefs is given by A \ Iy.

In Figure 4.5, we see the different regions of an agent’s belief state. The set E
of explicit beliefs is given by the union of regions 2, 3, and 4; the set I of implicit
beliefs is the union of regions 1, 2, 3, 4, 5, and 6; the set A of active beliefs is
given by regions 3, 4, 5, 6, 7, and 8; the set of beliefs the agent is aware of (W) is
the union of regions 4, 6, and 8; the set Ey, of explicit beliefs of which the agent
is aware is given by region 4 and the provisional beliefs are given by the regions
3,5, 7 and 8.

We can now define a new set of basic operations for belief states (the numbers
refer to the regions in Figure 4.5):
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Figure 4.5: Numbered regions

4.5.1. DEFINITION. The following operations apply to a belief state (E, A, W)
(as in definition 4.2.1, we omit the argument Inf, since it is not affected by the
operations):

1. Observation (o,) — The agent receives new information from “outside”, ei-
ther via observation or communication. The new information goes first to
the set prov of provisional beliefs. It may already be an explicit belief, going
then to region 3, an implicit belief, going to region 5 or something that was
not previously believed, in which case it goes to region 7.

(E, A, W)o,a=(E, A", W),
where A’ = AU*{a} and
W' = WnA'.
2. Retrieval (o,) — An explicit belief that is inactive becomes active. It moves
from region 2 to 4.

(E,A",W'), ifa € E
(E, A, W) otherwise

where A = AU*{a} and
W' = (Wu{a})n A"

(E,A,W)ora:{

3. Acceptance (o,) — An active belief that was in regions 3, 5, 6, 7 or 8 is fully
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accepted and moves into E (region 2).°
(B, A", W'), ifa € A

(E, A, W)o,a= { (E, A, W) otherwise

where E' = EU*{a},
A" = A\{a}, and
W' = W\{a}.

4. Recognition (o,) — A belief that was in provNE (region 3) is discovered to
be already explicitly believed and moves into Ey (region 4), a belief that was
in provNI (region 5) is seen to be already implicitly believed and moves into
Iy (region 6) or a belief that was in prov\(IUW) (region 7) is recognized
as provisional and moves into W\I (region 8).

(B,A,W'), ifa € A
(E, A, W) otherwise

where W' = WU*{a}.

(E,A,W)oga:{

5. Inference (o;) — The new information is inferred from the active beliefs, that
is, it comes from the set Inf (A ) and goes to Ly (region 6).
(E,A",W'), if a € Inf(A)
(E, A, W) otherwise
where A" = AU*{a} and
W' = (Wu{a})n A"

(E,A,W)oia:{

6. Doubting (explicit) (oq4,) — A belief that was fully accepted is questioned,
moving from region 4 to region 8.
(E', A, W), ifa € Ey

(E, A, W)o, a= { (E, A, W) otherwise
where E' = E\{a}.

7. Doubting (implicit) (o4,) — A belief that was recognized as implicit is ques-
tioned, moving from region 6 to region 5.

(B, A, W), ifac W

(E, A, W) otherwise

where W' = (W\{a}).

8. Rejection (o.) — A belief that was in prov (regions 3, 5, 7 or 8) is not
accepted because it did not survive inquiry and is dismissed.

(E, A\ {o}, W\ {a}), facA
(E, A, W) otherwise

(E, A, W)o, a= {

(E,A,W)ona:{

5As in Definition 4.2.1, acceptance could also be defined without deleting the accepted belief
from A.
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The operation of implicit doubting (o4,) may at first appear to be irrational.
After all, the doubted belief continues to follow from the explicit beliefs, even if
a rejection operation follows the doubting. But the following example shows that
the operation is appropriate for resource-bounded agents:

Example 14: Suppose an agent recognizes that a follows from his
explicit beliefs, i.e., &« €I4. Much later, the « is still there, but the
agent cannot recall its derivation, since he does not have enough time
to search all of his explicit beliefs to see which ones imply a. So he
doubts a and rejects it. From his point of view, he does not believe
« anymore, but « is still in 1.

4.5.2. OBSERVATION. Let ¥ = (E, A, W) be a belief state and WCA.. Let (E/,
A’, W'Y be the result of applying one of the basic operations to . Then W'CA'.

Proof: Trivial given the conditions for the application of the operations. O

We will call active belief change those revisions that the agent performs con-
sciously, in the sense that the changes are all related to the set of active beliefs.
A belief cannot move from region 1 to region 2 in Figure 4.5 without ever being
active.

The eight operations are sufficient (but not necessary) to describe any active
belief change given our structure. Actually, seven of these eight operations are
sufficient, since an inference (o;) can be simulated by an observation (o,) followed
by recognition (o,). But note that in opposition to the simplified model, the result
of observation and inference is not the same. An inferred sentence goes directly
into Iy, while an observed sentence must be first recognized as an implicit belief
in order to enter Iy .

The proposition below shows that the set of operations o,, o,, 04, 04, 4., 04;,
and o, is complete with respect to all the changes that a belief state may undergo:

4.5.3. PROPOSITION. Given any two belief states ¥y = (Ey, Ay, W1) and Ys =
(Es, Ag, W5), there is a sequence of basic operations that takes ¥y into 3.

We can show that for a certain kind of agent, the full model and the simplified
one coincide:

4.5.4. PROPOSITION. The stmplified model can be embedded in the refined one
under the assumption that the agent is introspective, i.e., that W=A.

The introspection assumption involves a great deal of idealization for human
beings but in some cases it may be reasonable for artificial agents. Consider for
instance a small database with not too much inferential power and an efficient
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search mechanism. Such an artificial agent can recognize explicit and implicit
beliefs so fast that it does not make sense to distinguish A from W.

Let f’ be a function mapping simplified belief states into refined belief states
such that:

f'((E,A)) = (E, A, A).
Using the mapping f’ together with f defined in Section 4.3 gives us an embedding
of the AGM framework into the refined model.

Let h be the composition of f and f’, that is, h(X) = f'(f(X)) = (X, Cn, 0, D)
for every set of formulas X.

Let ¥ = (K, Cn, (0, 0) and let the closure of X be given by CI({X,Cn, 0, D))
Y o; Cn(X)\ X o, Cn(X) \ X. It is not difficult to see that CI({X,Cn,0,0))
(Cn(X),Cn,0,0)). Let X+a = Cl(X 0, a0, a0, ).

4.5.5. LEMMA. h(K)+a = h(K + a).

We can define the partial meet contraction of a belief state ¥ = (K, Cn, 0, 0)
as X—,a =Y o, Aoy Ao, A, where A = K \ (Ny(K_La)) and v is a selection
function.

4.5.6. LEMMA. h(K)—,a = h(K —, «).

In Chapter 5 we will see how belief base revision operators can be embedded
into our framework.

We can look once more to Mary’s example to see that it can be formalized in
the full model.

Example 12 (continued): Let p stand for “Mary should take an
umbrella” and ¢ for “Mary will be outside for a long time”. Before
talking to her mother, Mary’s explicit beliefs contain, among others,
the beliefs ¢ and ¢ — p. The implicit beliefs contain, among others,
p. When the mother says that Mary should take an umbrella, p goes
to region 5 in Figure 4.5 via an operation of observation. Next, ¢ and
q — p are retrieved into the set of active beliefs and Mary recognizes
that p was already an implicit belief. The formula p moves then to
region 6.

The need to distinguish Iy, and Ey from INA and ENA arises in modeling
both natural and artificial agents. However, the distinction between Iy and Eyp
seems to be less motivated for natural agents. It seems unnatural that someone
sees that a formula follows from his beliefs, accepts it, but decides not to store the
information. One example may be a logician trying to prove a theorem. During
the process, the logician finds out many formulas that follow from the initial
assumptions and may believe they are valid, but he may also see that they are
not relevant for the proof and not write them down to remember.

In the next two chapters we turn to the problem of how to decide how beliefs
become active.



Chapter 5

Local Change

In this chapter we are going to deal with one of the problems left open in the
framework presented in Chapter 4, namely how to decide which beliefs should
be retrieved into the set of active beliefs. We define the relevant beliefs for an
operation of belief change and define local inference operators that only consider
the relevant part of a belief base. This operator is used to define local versions of
the operations for belief change. Representation theorems are given for the local
operators. At the end of this chapter we will show how the local operators can
be embedded in the framework presented in Chapter 4.

We will use the terms “belief bases” and “set of explicit beliefs” indiscrim-
inately. The local inference operators do not correspond exactly to the agent’s
inference function Inf introduced in Chapter 4. Application of one of the local
inference operators on the belief base does not have as a result the whole set
of the agent’s implicit beliefs, but only the relevant part of it. The use of the
local operators will become clear after the formalization has been illustrated in
Sections 5.1 and 5.2. In Section 5.1.2, we will make the connection between the
local inference operators and the agent’s inference function Inf.

We will consider the five base operations described in section 3.4.1: expansion,
contraction, revision, consolidation, and semi-revision. One of these five opera-
tions, namely expansion, cannot easily be restricted to a part of the belief base.
To expand a belief base B by a sentence o means to perform the simple operation
B + a = BU {a}. There is no way to restrict this addition of a to only a part
of B, unless we introduce an extra-logical division of B into compartments. As
will be seen below, so much can be achieved with the division of B that can be
derived from logic alone that we do not wish at this stage to add this further
complication.

The other four operations can, however, readily be localized as follows:

1. Local Contraction: A belief is removed from a certain part of the belief
base. I may, for instance, give up my belief that dinosaurs died out due to
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a cosmic collision, without thinking about the consequences of this change
for my beliefs about non-paleontological matters.

. Local Consolidation: Inconsistencies are removed from some part of the

belief base. The rest of the agent’s beliefs may well be inconsistent. For
instance, I can make my beliefs about biological evolution consistent, while
retaining global inconsistency between biological and religious beliefs.

. Local Revision: A new belief is added to the belief base in such a way that

a certain part of the resulting base is made (kept) consistent. If I see, for
example, that it is a sunny day in Amsterdam, then this contradicts my
belief that it is always raining in Holland, and leads to revision. This can
be done without checking whether my beliefs about Brazilian politics are
consistent with the new belief.

. Local Semi-revision: A new belief is either accepted or rejected, in such a

way that a certain part of the resulting belief base is made (kept) consistent.
If T hear that it is snowing in Rio de Janeiro, then this contradicts my beliefs
about the climate there. I may either accept or reject this new information.
In both cases, my beliefs about Latin grammar (and most other subjects)
will be unaffected by the operation.

Informal examples like the following elaboration of Example 10 motivate our

search for plausible constructions of local operators:

Example 15: When at home I hear on the radio that my friend Carol
has been murdered yesterday night and that there were no traces of
doors or windows having been forced. I talked to her yesterday on the
phone and she was at home with her flat-mates Ann and Bill. I know
that no one else, except for Ann, Bill and Carol had the keys to their
apartment. I conclude that Ann or Bill must have done it. But I have
known Ann for quite some time and cannot believe that she would be
able to murder anyone. I believe that she did not do it. For similar
reasons, I believe that Bill did not do it. This is clearly inconsistent
with my belief that one of them did it. So I decide to visit my friend
Paul to ask what he thinks. In front of his place I see the lights are
on. I know that if the lights are on, then Paul is home. I get out
of the car and Paul’s neighbor, who understands that I come to visit
Paul tells me that he is not home. This is all very confusing, but I
am sure of one thing: I do not believe I am asleep!

This illustrates the fact that inconsistencies are local, that is, the
fact that I have inconsistent beliefs does not cause me to believe in
everything.
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I have expanded my belief base with the information given by the
neighbor and reached a local inconsistency. I am interested now in
whether Paul is at home or not. For a moment, I forget about the
murder and think of the reasons that I have to believe that Paul is at
home and that he is not. In order to eliminate the local inconsistency,
I have to give up at least one of the beliefs. Suppose I ring the bell
and Paul answers the door. Then I reject the neighbor’s information
that Paul is not home. On the other hand, suppose that he does not
answer the door. Since I see the lights on, I give up my previous belief
that if the lights are on then he is at home. Perhaps he has forgotten
the lights on when he left the house. In both cases, I eliminated the
local inconsistency with respect to whether or not Paul is at home, but
I still have inconsistent beliefs about the crime. This is an example
of local consolidation.

The whole operation, that is, adding the information given by the
neighbor and then locally consolidating the beliefs illustrates the op-
eration of local semi-revision.

Our first task is to identify the compartments of a belief base in terms of which
local change can be defined. This will be done in Section 5.1. In Section 5.2 we
define local operations of belief change. In Section 5.3 we compare our approach
to some others in the literature. Some concluding remarks are offered in Section
5.5. All formal proofs are deferred to Appendix C.

5.1 Defining Compartments and Local Inference

In Section 5.1.1 we define the notion of compartments that is used in Section
5.1.2 for constructing a local inference operation. Local inference operations are
restricted to relevant compartments of a belief base. The idea of using compart-
ments to isolate inconsistencies is not new, see for example [Ja$69, Lew82].

5.1.1 Defining Compartments

Compartments of belief bases can be seen as representations of compartments of
minds or databases. There are two major ways to introduce them. First, they
may be introduced as an addition to the logic, so that one and the same belief
base can be divided into compartments in different ways.! Secondly, they may
be derived from the logic. The second method is the more economical, requiring
no extra entities, and should be tried out first. We are going to use it here.

The concept we will use is that of the compartment “around” a sentence or set
of sentences. Intuitively, the compartment in a belief base B around a sentence

1This approach was studied by Parikh in [Par96].
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« is the subset of B that is relevant to a. Since one and the same sentence (3
may be relevant to both a; and as, compartments thus defined will typically be
overlapping.

We will assume that the compartment of B around a set of sentences is the
subset of B which is relevant to at least one of these sentences, so we can define
the compartment around a set A to be the union of the compartments around
each of the sentences of A. Hence, letting ¢(A, B) denote the A-compartment of
B:

(1) C(A: B) = UaEA c(oz, B)

It follows from (1) that ¢(@, B) = @ for all B. Furthermore, due to (1), we
can content ourselves with defining ¢ for single sentences. Note that (1) involves
a severe idealization. It may be the case that for some formulas «, 8 and 7, « is
not relevant for 3 or for v, but is relevant for the set {3,v}. An example due to
Dubois (cited in [Her97]) lets a be “I take a bath”, 8 be “I use a hair-dryer” and
v be “I die”. Most of the time we will be interested in the compartment around
a single sentence, usually the input sentence that triggered an operation of belief
change, so we do not have to worry too much about this idealization.

We are only interested in compartments around contingent expressions, since

intuitively, no formula should be relevant for tautologies or contradictions. For
these, we define:

(2) ¢(a, B) = 0 if a € Cn(D) or ~a € Cn(0).

Since compartments are based on the underlying logic, they will depend on
the inference operator. A useful tool in the definition of logical compartments is
that of a kernel [Han94]. We give a straightforward generalization of Definition
3.4.8 in order to base kernels on an arbitrary inference operator. Given a sentence
« and an inference operator C, the set X of sentences is an a-kernel if and only
if it is a minimal set C-implying a. The kernel operator Ll ¢, based on C), is the
operator that, given a belief base B and a sentence «, selects all a-kernels that
are subsets of B. Hence:

5.1.1. DEFINITION. Let C' be an inference operation on L. Then the kernel op-
eration 1L ¢ s the operation such that for all subsets B of L and elements a of

L, X € B 1L ca if and only if:
1. XCB
2. € C(X)
3. forallY, if Y C X then a ¢ C(Y)

The elements of B 1L ca are called a-kernels.
The symbol 11 (without subscript) denotes the kernel operation associated with
Cn, the classical consequence operator on L.
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5.1.2. OBSERVATION. Let C' be an inference operation on the language L and
1L ¢ its associated kernel operation. If C satisfies compactness, then B 1L ca # ()
for all B C L and all « € C(B).

Note that compactness is sufficient for this property. Monotony is not needed.
If B is finite, which is typically the case for belief bases, then even compactness
is not required.

5.1.3. OBSERVATION. 1. If B C B', then for every formula o, (B 1 ca) C
(B, AL Coz).

2. If C satisfies compactness, then B 1L ca = B 1L ¢f if and only if for all
subsets B' of B, a € C(B') iff g € C(B').

3. XeBlcaifandonly if X C B and X € X 1l ¢«
In what follows, we will focus on compartmentalization functions that are

based on the classical consequence operation (Cn). A first attempt to define the
compartment for a in B is:

(3) c1(e, B) = U(B L «), for contingent c.

This definition is unsatisfactory since inconsistent kernels will be included,

e.g. ei({p}, {p, ¢, ~q}) = {p, ¢, ~q}, since {q, ~q} € {p, ¢, ~q} 1L p. This problem
can be solved by leaving out inconsistent kernels:?

(4) c2(e, B) =U((B L) \ (B 1L 1))

But this is insufficient, since negations are relevant.®> We would like to have,
for example: c({q},{p,p — —¢,7,7 — s,s}) = {p,p — —q}. This leads to a
modification:

(5) es(a, B) =U((B LLa)U (B 1L =a) \ (B AL 1))

Note that the compartments so defined may well be inconsistent.
We now have a definition of ¢(a, B) for arbitrary sentences .. Combining (1),
(2), and (5) we obtain our final definition:

2This has the perhaps somewhat counterintuitive consequence that c(p,{p A —p}) =
c(p,{L}) = 0. Unless we adopt a syntax dependent approach (like the one in Chapter 6),
we will have to live with that.

3[01s97], page 7: “The belief that —q can plausibly be held to be relevant to the justification
of the belief that ¢. If this is true and if ¢ and —q are both in the system, then these two beliefs
must belong to the same belief module.”
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5.1.4. DEFINITION. The function c is the compartmentalization function based
on Cn if and only if, for all A, B C L:
c(A, B) = Ugea ¢(a, B),

| 0 if ae Cn(D) or o € Cn(0)
where c(a, B) = { U(((B LLa) U (B AL —a)) \ (B 1L 1)) otherwise.

5.1.5. OBSERVATION.
(1) For all sets A and B of sentences, c(A, B) = ¢(A, c(A, B)).
(2) If AC A" and B C B', then ¢(A,B) C ¢(A", B').

Formally, the definition of compartment could be extended to deal with com-
partmentalization functions based on an arbitrary inference operation C, by
adding the subscript C' to the kernel operator. In the next section we will use the
compartmentalization based on Cn to obtain local versions of arbitrary inference
operators. One could also generalize the definitions we give in order to localize
C with compartments based on C itself. It is not clear which properties such a
compartmentalization would have. In the rest of this chapter we will only deal
with compartments based on the classical consequence operator Cn.

5.1.2 Defining Local Inference

Using the definition of logical compartments presented above, we can define local
inference as the inference relation that considers only the relevant part of the
belief set. In other words, we can use logical compartments as defined above to
derive, given a (global) consequence operator, a local inference operator for each
logical compartment.

5.1.6. DEFINITION. Let C be an inference operation on L and let c be the com-
partmentalization function derived from the classical consequence operation Cn.
Then for any set A, the A-localization of C' s the inference operation Cy such
that for all sets B of sentences: Ca(B) = C(c(A, B)).

A set B is called A-locally C-consistent if and only if 1 & C4(B).

If A={a}, i.e., A is a singleton, we will write C, for C{ay.

In this chapter, we will use a particular notion of inference to represent the
agent’s reasoning. In the framework introduced in Chapter 4, we considered a
generic inference operator Inf. The set of the agent’s implicit beliefs was given
by Inf*(E), where E represented the set of the agent’s explicit beliefs (his belief
base). In this chapter, the set of the agent’s implicit beliefs is given by Inf*(B),
where a €Inf*(B) if and only if & € Cn,(B). It follows from this that the
agent can consistently reason about some subjects even if his belief base contains
inconsistent beliefs about some other subject.
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Example 15 revisited: Let p stand for the proposition “Paul is at
home”, q for “The lights are on”, a for “Ann is the murderer”, b for
“Bill is the murderer”, and r for “I am asleep” and let Cn be the
classical consequence operator.

My belief base B after talking to Paul’s neighbor contains: {¢,q —
p,p,aV b,—a,—b,—r}. T am interested in whether Paul is at home,
that is, the relevant beliefs are c¢(p, B) = {¢,q — p, —~p}. Even though
this set is inconsistent we have that r ¢ Cn.(B) = Cn(c(r, B)) =

Cn({-r}).

In the example, we see that the agent can consistently reason about r without
having to notice that his beliefs about p are inconsistent.
From Definition 5.1.6 it follows that:

5.1.7. OBSERVATION. Let C be an inference operation that satisfies monotony,
compactness, and inclusion (X C C(X)). Then:

1. B€Cu(B) iff B € C-a(B)
2. If B 1s C'-consistent, then:

e ifa€ A, then a € Cy(B) iff « € C(B)
e Cp(B) =C(B)

3. a € Cr(B) iff « € CL(B) iff a € C(D)
4. If all elements of B are contingent, then Cr(B) = C(B)
5. Ca(B) C C(B).
5.1.8. OBSERVATION. The elements of B 1L ¢, a0 are subsets of ¢(A, B).

5.1.9. OBSERVATION. For all sets B of sentences it holds that (Ca)a(B) =
C4(B).

A number of authors [Gab85, Mak89, Lin91| have studied the formal properties
of inference operations. The following is a list of properties found in the literature.
An inference operation C satisfies:

Monotony if and only if B C D implies C(B) C C(D);

Compactness if and only if for all @ € C(B) there is some finite D C B such
that o € C(D);
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Idempotency (iteration) if and only if C(C(B)) = C(B);
Weak iteration if and only if C(C(B)) C C(B);
Inclusion if and only if B C C(B);

Embedded inclusion if and only if C(B) C C(C(B));
Supraclassicality if and only if Cn(B) C C(B);

Deduction property if and only if whenever ¢ € C(B U {p}), then p — ¢q €
C(B);

Reductio ad absurdum if and only if whenever 1+ € C(B U {—p}), then p €
¢(B);

Falsity if and only if for all p, p € C({L});

Consistency preservation if and only if 1 ¢ Cn(B) implies + ¢ C(B);
Cumulativity if and only if B C D C C(B) implies C(D) = C(B):
Distributivity if and only if C(B) N C(D) C C(Cn(B) N Cn(D));
Explosiveness if and only if for all « and 3, 8 € C({«, —a});

Weak Explosiveness if and only if whenever 1 € C(B), then for all sentences

a, a € C(B);

Non-contravention if and only if, for all «, if —a« € C(B U {a}), then —a €
C(B); and

a-local non-contravention if and only if, if ~a € C(BU{a}), then —a € C(B).

The following are some of the properties the local inference operator C4 has.

5.1.10. THEOREM. Let C4 be the A-localization of an inference operation C.
Then:

1. If C satisfies monotony, then C,4 satisfies monotony.
2. If C satisfies monotony and compactness, then C4 satisfies compactness.

3. If C satisfies monotony, compactness, and weak iteration, then Cy satisfies
weak iteration.

4. If C satisfies monotony, compactness, weak iteration, and inclusion, then
C'4 satisfies idempotency (iteration) and cumulativity.
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5. If C satisfies monotony and consistency preservation, then so does Cy4.
6. If C satisfies weak explosiveness, than so does Cy.
7. If C satisfies monotony and inclusion, then C 4 satisfies embedded inclusion.

8. If C satisfies monotony, compactness, weak explosiveness, and non-contra-
vention, then C4 satisfies a-local non-contravention for all o € A.

5.1.11. THEOREM. For each of the following properties there is some set of sen-
tences A such that Cny, the A-localization of the classical truth functional con-
sequence operator Cn, does not satisfy the property: inclusion, supraclassicality,
deduction property, reductio ad absurdum, falsity, distributivity, explosiveness,
and non-contravention.

Note that since Cp, = C' when applied on contingent sets, we cannot gain
any new structural properties by localizing an inference operator. Usually some
properties are lost in the localization.

The classical consequence operator Cn satisfies inclusion, idempotency and
monotony. Nonmonotonic logics leave out monotony, resource logics [Gab96]
leave out idempotency. Our framework leaves out inclusion. Inclusion and supr-
aclassicality are clearly not wanted, since the purpose of the operator C'y is to
ignore irrelevant data.

That explosiveness does not hold agrees with the intuition that some inconsis-
tencies are “less harmful” than others. If an inconsistency is completely irrelevant
to the current reasoning, then it should not trivialize the belief state, causing the
agent to believe every sentence in the language. On the other hand, if the incon-
sistency turns out to be relevant, that is, if given a belief base B and a set A of
sentences it is the case that L € C4(B), then the relation C4 becomes “locally”
explosive, giving an indication that something has to be repaired.

5.2 The Generalized Belief Revision Operators

In this section we present some generalized types of belief revision operators that
can be obtained using the notion of local inference. It turns out that for this
purpose, we do not need the full set of properties of the local inference operator
introduced above. The results to be presented here are much more general, since
they only make use of some of the properties shown to hold for our local inference
operator.

All definitions and results in this section refer to a generic inference operator
C that may or may not be obtainable as a localization of some other inference
operator. Most of the results to be presented in this section are generalizations
of results that have been obtained previously for the special case when C' is a
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Tarskian consequence operator that satisfies the standard properties of supra-
classicality, compactness and the deduction property.

Makinson [Mak87] has already remarked that for AGM partial meet contrac-
tion, only the recovery postulate requires the logic to be supraclassical. The other
five basic postulates hold for partial meet contraction on the assumption that the
logic is compact.

5.2.1 Contraction

An operation of contraction based on an inference operator C' is an operation
that, given a set B of sentences and a sentence «, returns a subset of B that
does not imply a according to C, except in the limiting case when a € C((). We
are going to consider two types of contraction operators, kernel contraction and
partial meet contraction.

The idea behind kernel contraction is that, if we remove from the belief base
B at least one element of each a-kernel (minimal subset of B that implies «),
then we obtain a belief base that does not imply « [Han94|. To perform these
removals of elements, we use a generalization of the definition of incision function
(Definition 3.4.9), i.e., a function that selects at least one sentence from each
kernel:

5.2.1. DEFINITION. Let C be an inference operator. An incision function for
B s any function o such that for any formula o:

1. o(B 1L ca) CU(B 1 ca), and
2. If0 # X € B 1L ca, then X No(B 1L ca) # 0.

The following definition is a generalization of the definition given in [Han94]:

5.2.2. DEFINITION. Let C be an inference operation on L and o an incision
function. The kernel contraction on B determined by C and o is the operation
—c,o such that for all sentences a:

B—c,a=B\o(B 1 ca)

An axiomatic characterization of kernel contraction was obtained in [Han94|
for a conventional, Tarskian, supraclassical, and compact consequence operator.
Surprisingly enough, essentially the same characterization can be obtained with
an inference operator that is only required to satisfy monotony and compactness.

5.2.3. THEOREM. Let C be an inference operation satisfying monotony and com-
pactness. Then — is an operation of kernel contraction on B determined by C
and some incision function if and only if for all sentences a:

o Ifadg C(D), then a ¢ C(B—a) (success)
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e B—a C B (inclusion)

e If B € B\ B—a, then there is some B' C B such that « ¢ C(B') and
a € C(B'"U{B}) (core-retainment)

e If for all subsets B' of B, a € C(B') if and only if 8 € C(B'), then B—a =
B—3 (uniformity)

In partial meet contraction [AGMS85], the starting-point is the set of maximal
subsets not implying the sentence to be contracted. A selection function (Defini-
tion 3.2.3) is used to choose some of these maximal sets, and their intersection is
taken as the outcome of the operation.

A remainder operator | ¢ returns for each set B of sentences and each sentence
a the maximal subsets of B that do not imply a according to C. We generalize
Definition 3.2.1, due to [AMS82] as follows:

5.2.4. DEFINITION. Let C be an inference operation on L. The remainder op-

eration Lo s the operation such that for all subsets B and elements o of L,
X € Blca if and only if:

1. X C B,
2. a g C(X), and

3. a€C(Y) for all Y such that X CY C B.
We also generalize Definition 3.2.3:

5.2.5. DEFINITION. Let C be an inference operation on L. A C-selection func-
tion for X is a function v such that:

e If X1lca#0, then ) # (X Loca) C X 1ca.
e Otherwise, y(X Lca) = {X}.

If it 1s clear from the context which inference operation is used, we will refer to -y
sitmply as a selection function.

5.2.6. OBSERVATION. [AMB82/(Upper bound property) Let C satlisfy monotony
and compactness. If X C B and o ¢ C(X), then there is some X' such that
X g X' € BJ_Ca.

5.2.7. DEFINITION. [AGM85] The partial meet base contraction operator on B
based on an inference operator C' and a selection function 7y is the operator icﬁ

such that for all sentences a:
B—c,a=N7v(Blca).
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The axiomatic characterization of partial meet contraction for a conventional
consequence operator obtained in [Han92b] turns out to be generalizable to the
same general category of inference operations that was referred to in Theorem
5.2.3.

5.2.8. THEOREM. Let C satisfy monotony and compactness. Then — is an op-
erator of partial meet contraction on B based on C' if and only if for all sentences
a:

If a & C(D), then a & C(B—a) (success)

B—a C B (inclusion)

If B € B\ (B—a), then there is some B' such that B—a C B' C B,
a ¢ C(B') and o € C(B"U{B}) (relevance)

If for all subsets B' of B, a € C(B') if and only if B € C(B'), then B—a =
B-=f (uniformity)

As in Observation 3.4.12, it is easy to see that all partial meet contractions
can be defined as kernel contractions, but the converse does not hold.

5.2.2 Consolidation

By an operation of consolidation based on the inference operation C, we mean an
operation that, given a set of formulas B, returns a subset of B that is consistent
according to C. Consolidation can be modeled as a contraction by falsum. The
two contraction operators introduced in the previous section provide us with two
consolidation operators.

The idea behind kernel consolidation is that, if we remove from the belief base
at least one element of each inconsistent kernel (inclusion-minimal subset of the
base that implies 1), then we obtain a consistent belief base.

5.2.9. DEFINITION. [Han97a] Let C be an inference operation on the language
L and o an incision function. Then the kernel consolidation operation for B
determined by C' and o is the operation !¢, such that:

B!C,a = B\O’(B _J_LcJ_).

The following characterization is a generalization of the result obtained in
[Han97a]:

5.2.10. THEOREM. Let C be an inference operation satisfying monotony, com-
pactness, and 1 ¢ C(0). An operation ! is an operation of kernel consolidation
for B determined by C and some incision function if and only if:

e | ¢ C(B!) (consistency)
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e B! C B (inclusion)

e If a € B\ (B!), then there is some X such that X C B, 1 ¢ C(X) and
L€ C(X U{a}) (core-retainment)

Consolidation can also be constructed from partial meet contraction.

5.2.11. DEFINITION. [Han91] The partial meet consolidation operator for B
based on an inference operator C and a selection function vy is the operator !¢
such that:

B!C,'y = ﬂ’Y(BJ_cd_)
The following theorem is a generalization of a theorem reported in [Han91]:

5.2.12. THEOREM. Let C satisfy monotony, compactness, and 1 ¢ C(0). An
operation ! is an operation of partial meet consolidation based on C and some
selection function if and only if for all sets B of sentences:

e 1 & C(B!) (consistency)
e B! C B (inclusion)

e Ifa € B\ (B!), then there is some X such that Bl C X C B, 1 ¢ C(X)
and 1 € C(X U{a}) (relevance)

5.2.3 External and Internal Revision

Revision can be obtained by combining expansion with either kernel or partial
meet contraction to obtain either internal or external revision. This leaves us
with four options.

An operation of internal kernel revision by a sentence a consists of first using
kernel contraction to contract the belief base by —«a in order to make room for
the new piece of information and then expanding by «. Formally:

5.2.13. DEFINITION. The internal kernel revision on B based on an inference
operator C and an incision function o is the operator F¢, such that for all
sentences o:

B Fc,a=(B\o(B 1l ca))U{a}
The following theorem characterizes this operation:

5.2.14. THEOREM. Let C satisfy monotony and compactness. An operator F is
an operator of internal kernel revision based on an inference operator C' if and
only if, for all sets B of sentences and all sentences o such that C satisfies a-local
non-contravention:
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o If ~a ¢ C(D), then ~a & C(B F ) (non-contradiction)
e BFaC BU{a} (inclusion)

e If B € B\ B F «a, then there is some B' C B such that ~a ¢ C(B') and
- € C(B'U{B}) (core-retainment)

e o € BF « (success)

e Ifforall B'C B, ~a € C(B') if and only if =3 € C(B'), then BN(BFa) =
BN (BFpB) (uniformity)

In an operation of internal partial meet revision by «, the belief base is first
partial meet contracted by —a and then expanded by a:

5.2.15. DEFINITION. [Han92b] The internal partial meet revision of B based on
an inference operator C and a selection function vy is the operator F¢, such that
for all sentences a:

B Fc,ya=Ny(Blcna)u{a}
The following theorem characterizes this operation:

5.2.16. THEOREM. [Han92b] Let C be an inference operator satisfying monotony
and compactness. An operator F is an operator of internal partial meet revision
based on C' if and only if, for all sets B of sentences and all sentences o such
that C satisfies a-local non-contravention:

If —a & C(0), then ~a & C(B F ) (non-contradiction)

B F o C BU{a} (inclusion)

If B € B\ B ¥F «, then there is some B’ such that BF o« C B' C BU{a},
—a ¢ C(B') but ~a € C(BU{B}) (relevance)

a € B F a (success)

If for all B' C B, —~a € C(B') if and only if =8 € C(B'), then BN(BFa) =
Bn (B FB) (uniformity)

In an operation of external kernel revision by «, the belief base is first ex-
panded with a and then kernel contraction by —« takes place:

5.2.17. DEFINITION. The ezternal kernel revision of B based on an inference
operator C and an incision function o is the operator ¢, such that for all
sentences o

B+tc,a=(BU{a})\o((BU{a}) 1L c—a)
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The following theorem characterizes this operation:

5.2.18. THEOREM. Let C be an inference operator satisfying monotony and com-
pactness. An operator + s an operator of external kernel revision based on an
inference operator C' if and only if, for all sets B of sentences and all sentences
a such that C' satisfies a-local non-contravention:

o If na & C(0), then ~a ¢ C(B £ a) (non-contradiction)

B+ «a C BU{a} (inclusion)

If B € B\ B+ a, then there is some B' C B U {a} such that ~a ¢ C(B')
and —~a € C(B'U{B}) (core-retainment)

a € B £ « (success)

If  and B are elements of B and it holds for all B' C B that ~a € C(B') if
and only if - € C(B'), then BN(B+a) = BN(B+p) (weak uniformity)

e B+ a+a= B+« (pre-expansion)

In an operation of external partial meet revision by «, the belief base is first
expanded with o and then partial meet contraction by —a takes place:

5.2.19. DEFINITION. [Han92b] The external partial meet revision of B based on
an inference operator C and a selection function vy is the operator ¢, such that

for all sentences a:
B+tc,a=Nv((BU{a})Llca).

The following theorem characterizes this operation:

5.2.20. THEOREM. Let C be an inference operator satisfying monotony and com-
pactness. An operator + is an operator of external partial meet revision based on
an inference operator C if and only if, for all sets B of sentences and sentences
a such that C satisfies a-local non-contravention:

If —a & C(0), then ~a & C(B + ) (non-contradiction)

B+« C BU{a} (inclusion)

If B € B\ B+ «, then there is some B' such that B+« C B' C BU {a}
such that —a ¢ C(B') and ~a € C(B'U{B}) (relevance)

a € B+ « (success)

If a and B are elements of B and it holds for all B' C B that ~a € C(B') if
and only if - € C(B'), then BN(B+a) = BN(Bxp) (weak uniformity)

B+ a+ a= B+ a (pre-ezpansion)
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5.2.4 Semi-Revision

Semi-revision consists of two steps: first the belief « is added to the base, and then
the resulting base is consolidated. The two consolidation operators introduced
above give rise to two semi-revision operators.

5.2.21. DEFINITION. [Han97a] The kernel semi-revision of B based on an infer-
ence operator C' and an incision function o is the operator ¢, such that for all
sentences o:

Blcea = (BU{a})\o((BU{a}) lLc1)
The following theorem is a generalization of a result reported in [Han97a]:

5.2.22. THEOREM. Let C' be an inference operation satisfying monotony, com-
pactness, and L ¢ C(0). An operator 7 is an operator of kernel semi-revision
based on C' if and only if for all sets B of sentences and sentences «:

e | & C(B?a) (consistency)
e B?a C BU{a} (inclusion)

e If 3 € B\ B?a, then there is some B' C BU{«a} such that L ¢ C(B') and
1€ C(B'"U{B}) (core-retainment)

e (B+ a)?a = B?a (pre-ezpansion)
e Ifa, € B, then Bla = B?j (internal exchange)

5.2.23. DEFINITION. [Han97a] The partial meet semi-revision of B based on an
inference operator C' and a selection function vy is the operator ?¢, such that for
all sentences a:

Blcaa = N7((BU{a})Lel)
The following theorem generalizes the characterization given in [Han97a]:

5.2.24. THEOREM. Let C' be an inference operation satisfying monotony, com-
pactness, and 1 & C(0). An operator ? is an operator of partial meet semi-revision
based on C' if and only if for all sets B of sentences and sentences «:

e | ¢ C(B?a) (consistency)

B?a C BU{a} (inclusion)

If B € B\ B?a, then there is some B' such that B« C B' C B U {a},
L ¢ C(B') and L € C(B'U{p}) (relevance)

(B + a)?a = B?a (pre-expansion)

If a, B € B, then B?a = B?f (internal exchange)
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5.2.5 Levi and Harper Identities

One of the hallmarks of the AGM theory is the close connection that holds be-
tween revision and contraction operators through the Levi and Harper identities.
The way we have defined contraction and internal revision, the Levi identity
holds both for kernel and partial meet operations, i.e. for the former we have
B Fc, a = (B—c,ma) U {a} and for the latter B F¢, a = (B—¢,a) U{a}.
The Harper identity can also be shown to hold, under fairly weak conditions:

5.2.25. THEOREM. Let —¢ satisfy the inclusion and core-retainment postulates
for contraction, and let xc be the internal revision operator based on —¢ via the
Levi identity. Let C' satisfy —a-local non-contravention. Then:

B—ca = BN (Bx—a) (the Harper identity)

In [Han97al, it was shown that consolidation and semi-revision based on classical
consequence are tied together by properties that are in a way analogous to the
Levi and Harper identity:

A?a = (A + a)l. (the ! =7 identity)
Al = U{A%a|a € A}. (the ? —! identity)

It can be seen directly from the definitions that these properties also hold for
consolidation and semi-revision based on the more general inference operators
discussed in this chapter, both for kernel operations (with C' and o held constant)
and for partial meet operations (with C' and + held constant).

5.2.6 Local Operators

The axiomatic characterizations obtained for the generalized belief revision oper-
ators apply to any inference operator satisfying monotony and compactness (con-
traction), monotony, compactness and 1 ¢ C(0) (consolidation and semi-revision)
or monotony, compactness and a-local non-contravention (external and internal
revision). From Theorem 5.1.10 it follows that the A-localization of the classical
consequence operator Cn, Cn 4, satisfies monotony, compactness and 1 ¢ C(0).
Moreover, for a € A it also satisfies a-local non-contravention. This means that,
in order to obtain characterizations of the local operations aimed at in the be-
ginning of this chapter, all we need to do is to substitute the generic inference
operator C' by Cn 4. In the case of the revision operations, extra care should be
taken that in a revision by «, we must have & € A. When the A-compartment of
B is empty, the local contraction and local consolidation operations leave B un-
changed, while local internal /external revision and local semi-revision all coincide
with expansion.

The following results show that local operations give the desired result, in the
sense that they do not at all affect the beliefs outside the relevant compartment:
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5.2.26. PROPOSITION. Let B and A be sets of formulas and, let C4 be a local

inference operator. If —¢, is a partial meet base contraction on B based on Cy,
then for every a it holds that B\ ¢(A, B) C B—¢, .

5.2.27. PROPOSITION. Let B and A be sets of formulas and, let C4 be a local

inference operator. If —¢, is a kernel contraction on B based on C,, then for
every « it holds that B\ ¢(A, B) C B—¢,q.

We now go back once more to our example to illustrate the effects of an
operation of local consolidation.

Example 15 re-revisited: Before talking to Paul’s neighbor, my
belief base B contained: {¢,q — p,a V b,—a,—b, —r}. The neighbor
says that Paul is not home, so I locally semi-revise my belief base by
—p. This means first adding —p set-theoretically to B and then locally
consolidating. Let B’ be the belief base that replaces B after the
expansion, that is, B’ = BU{-p}. We have ¢(p, B') = {q,q9 — p, —p}
and B'Llon, 1 = {{g = p,q} U X,{q — p,~p} U X, {q,p} U X},
where X = {a Vb, —a, b, —r}. Local partial meet consolidation gives
us then, with the selection function y(B'Len, 1) = {{¢g = p,q,aV
b,—a,—b,—r}}, B" = {q = p,q,aV b,—a,—b,—r} = B, that is, the
new information is rejected. (With another selection function the
information would be accepted).

5.3 Related Work

Although the idea of local change seems to have no precedents in the belief revision
theory, our proposal for local inference is closely related to at least three other
segments of the logical literature: (1) studies of compartments and frames of
mind, (2) paraconsistent logic, and (3) relevance logic.

5.3.1 Compartments and Frames of Mind

The idea of isolating inconsistencies by means of compartments has been studied
by several authors.

Jaskowski [Ja$69] introduced his discursive logics as a way of formalizing “what
some participant of a discourse is committed to”. If participant z asserts a and
participant y asserts 3, then « and (8 are true in his logics, but not a A 3, since
there may be no participant in the discourse who is committed to both assertions
«a and (. Assertions associated to different participants of the discourse cannot
be combined.

Lewis [Lew82] also defended the idea of fragments that cannot be combined,
but the different (possibly overlapping) fragments were parts of one agent’s beliefs.
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Fagin and Halpern [FH88| formalized a similar idea. In their Logic of Local
Reasoning, an agent may have several “frames of mind”. An agent believes « if
she believes a in some frame of mind. This idea is formalized via an extended
Kripke structure, where instead of one accessibility relation between worlds, there
is a relation C between worlds and sets of worlds. If C(s) = {71, ...,T,,}, then an
agent in state s sometimes takes the set of worlds 7T} as possible, sometimes 75,
etc.

Benferhat et al. [BDP97] use yet another approach to isolate inconsistencies,
which is very similar to the approach known in Al as WIDTIO (When In Doubt
Throw It Out) [Win90]. They define a free (or sound) inference operator that
disregards all formulas belonging to a minimal inconsistent subset. So, B F ... a
if and only if Free(B) F «, where Free(B) is the result of deleting every minimal
inconsistent subset from B.

Tennant [Ten84], elaborating on an idea from [Smi59|, presented the idea of
perfect validity, which is closely related to our idea of local inference. A sequent
in a Gentzen system is a structure X : Y where X and Y are sets of sentences of a
language L. A sequent X' :Y” is a subsequent of X : Y if and only if X’ C X and
Y’ C Y. If, in addition, X' C X or Y’ C Y, then X' : Y’ is a proper subsequent of
X :Y. A sequent X :Y is valid if and only if in every model where all elements
of X hold, at least one element of Y holds. A sequent is said to be perfectly
valid if and only if it is valid and has no valid proper subsequent. If X : Y is
perfectly valid and Y # 0, then we have: (i) X is consistent, otherwise X : ()
would be a valid subsequent of X :Y; (ii) if Y = {a}, then X € L 1l o\ L Il 1.
We can then translate our notion of local inference in terms of perfect validity:
B € Cn,(B) if and only if there are perfectly valid sequents X; : Yy, ..., X,, : ¥,
such that each X; C B, either Y; = {a} or ¥; = {—a}, and # € Cn(U X;). More
generally, 8 € Cn,(B) if and only if there are perfectly valid sequents X; : Y7,
oy Xy 1 Y, such that each X; C B, either Y; = {a} or ¥; = {—a} for some a € A,
and g € Cn(UX;).

5.3.2 Paraconsistent Logic

A logic is said to be paraconsistent if its consequence relation is not explosive,
i.e., if there are formulas a and 3 such that 8 ¢ C({a, —a}). Technically, when
a logic has more than one inference operation (as is the case here, since for every
set A there is an associated inference operation Cj,), all of them have to be non-
explosive for the logic to be called paraconsistent [PRN89]. If we take A to be the
whole language, C4 is explosive, so the logic of local reasoning cannot be called
paraconsistent in this sense. Nevertheless, it contains paraconsistent fragments,
and we believe it can capture some of the intuitions that have been the driving
forces behind the development of paraconsistent logic.

In [RS95], an approach is taken where the logic under which belief sets are
closed is paraconsistent. The motivation is very close to ours, namely to make it
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possible to work with inconsistent beliefs without trivializing belief states. These
authors use first degree entailment, a modification of (propositional) classical logic
where each formula can have as its truth value any subset of {true, false}. A
formula « is entailed by a set of formulas X if and only if any valuation that
assigns to every element of X either {true} or {true, false}, also assigns to «
either {true} or {true, false}.

5.3.3 Relevance Logic

One of the main characteristics of Relevance Logic [Dun86] is that from {a, -V
B} one cannot always derive 3. Depending on which set we use to limit the
compartments, we can obtain the same property. We have, for example, ¢ &
CP({p: -p \ q})

There are in the literature several attempts to define the concepts of rele-
vance and dependence. [Lug96] classifies approaches to relevant inference into
two groups: those which impose conditions on the contents of implied formulas
and those which impose conditions on the deduction of the implied formulas. In
the first group she mentions Parry, whose inferences are valid only if no new vari-
ables are introduced into the consequent, Anderson and Belnap, who impose that
the antecedent and the consequent share variables, and Epstein who associates
themes to the formulas and imposes conditions on the themes of the antecedent
and the consequent. In the second group she includes approaches requiring that
the antecedent be used in an “essential way” in the derivation of the consequent.
Among these she mentions Myhill and again Anderson and Belnap.

The way our relevant compartments are defined, through kernel sets, is related
to the second approach, that is, we consider relevant to a formula « the formulas
that appear in a minimal derivation of « or its negation.

Lang and Marquis [LM98] present several complexity results for different no-
tions of dependency found in the literature.

In [dCH96], Farifias del Cerro and Herzig introduce a set of nine postulates
that any dependence relation should satisfy, and they also show how a contraction
operation satisfying the Gardenfors postulates can be obtained from a dependence
relation. Given a dependence relation ~», where a ~» 3 should be read as “G
depends on «”, they define a contraction operation for belief sets as follows:

(Def —) v € K—a if and only if either -~ or 7~ v and a % v

They show that, given a dependence relation ~» satisfying their set of postu-
lates, the contraction operation defined by (Def —) satisfies the eight Gérdenfors
postulates for contraction. Although their motivation for studying dependency
is very similar to our interest in relevance, namely isolate the part of the belief
state that has to be examined for a belief change operation, the results obtained
by Farinas del Cerro and Herzig are very different from ours. The fact that they
use belief sets shows already that they are not looking for realistic models.
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5.4 Embedding Local Change

In this section, we show how to model local contraction, in the framework defined
in Chapter 4. All the other local operations can also be defined using (non-local)
expansion and local contraction. For the sake of clarity, we concentrate on the
simplified model (Sections 4.1 and 4.2).

Locally contracting a belief base B by a with respect to a set of formulas A
consists in giving up enough beliefs from B such that the part of the new base
that is relevant for A does not imply «. Intuitively, the set A should contain the
formula «, but the formalization is general enough to allow for the use of any set
of formulas. The set A should be seen as a context or topic of reasoning.

Two different constructions for local contraction were presented above, to-
gether with sets of postulates that characterize them. We will now show how
local partial meet contraction can be decomposed into applications of the basic
operations presented in Definition 4.2.1. The idea can be easily extended to the
other construction (local kernel contraction) as well as to the other local opera-
tions.

In an operation of partial meet contraction a selection function is used to select
some of the remainders. The elements of the belief base that are not contained in
all of the selected remainders are given up. In local partial meet contraction, the
operation is restricted to a compartment of the belief base. If we want to contract
a belief base B by the formula a with respect to a set of formulas A, the beliefs
to be discarded are those in the A-compartment of B that are not contained in
all the selected a-remainders of B.

5.4.1. DEFINITION. We define the retain set of B given o and A as:
py(B,a, A) = Ny(B Lg, a), where 7 is a selection function.
The discard set of B given o and A is defined by:
6,(B,a, A) = c¢(A, B) \Nv(B L¢, o), where v is a selection function.

5.4.2. DEFINITION. Let v be a selection function. The local partial meet contrac-
tion operator on B with respect to A is the operator — 4 such that for all sentences
o

B—sa=B\6,(B,a,A).!

The operation of local partial meet contraction leaves the irrelevant part of
the belief base (B \ ¢(A, B)) untouched.

Let f be a function from belief bases into belief states such that for all bases
B, f(B) = (B,Cn,0). We will now define an operation of local partial meet
contraction on belief states that are in the image of f, i.e., belief states of the

form (B, Cn, 0).

4Since by Proposition 5.2.26 the only beliefs discarded in a local partial meet contraction of
B by a are elements of ¢(A, B), we can use 6,(B, a, A) as defined.
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5.4.3. DEFINITION. Let ¢ be a compartmentalization function and 7y a selection

function. The local partial meet contraction of a belief state ¥ = (B, Cn, () by «

with respect to A is given by:
Y—aa=Xo,c¢(A,B)og0,(B,a,A)o.6,(B,a,A)o, py(B,, A)

This operation consist of retrieving the relevant compartment and deleting
the beliefs contained in the discard set. The operation of doubting removes the
discard set from the set of explicit beliefs, while the operation of rejection removes
the discard set from the set of active beliefs. The operation of acceptance moves
the retain set into the set of explicit beliefs. Since these were already part of the
set of explicit beliefs, if there is no interest in deleting these beliefs from the set
of active beliefs (cf. footnote 4 in Definition 4.2.1), this step may be skipped.

The operation of local partial meet contraction of belief states has the same
effect on the set of explicit beliefs as the operation defined in 5.4.2, i.e.:

5.4.4. LEMMA. If A and B are sets of formulas, a 1s a formula and there is no
mazimum size for any set involved, then f(B —4 ) = f(B) —4 .

Since all other local operations can be obtained from applications of local
contraction and expansion, we have that:

5.4.5. PROPOSITION. The theory of Local Change can be embedded in the frame-
work of belief states with the basic operations.

We will now show how the basic operations can be combined to form an
operation of local semi-revision and apply it to an example.

The operation of local partial meet semi-revision can be defined as a compo-
sition of expansion and local partial meet consolidation (contraction by falsum):

5.4.6. DEFINITION. Let ¢ be a compartmentalization function and v a selection
function. The local partial meet semi-revision of a belief state ¥ = (B, Cn, () by
« n relation to A is given by:

Y40 =Y o, a0, c(A,B)ogb,(BU{a}, 1, A)o.0,(BU{a}, L, A)o, py(BU
{a}, 1, A)

We return to the example about Mary discussed in Chapter 4 in order to
illustrate this operation.

Example 12 (continued): Suppose Mary believes that she will be
outside for a long time (g), that if she stays outside for a long time,
then she should take an umbrella (¢ — p), that the moon is not made
of green cheese (—a), that she loves John (b), and that Buenos Aires
is the capital of Brazil (¢). Her belief base is B = {q,q — p, —a, b, c}.
Her belief state is given initially by: By = (B,Cn,0). When her
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mother says that she should take the umbrella (p), the new belief state
is given by: 81 = Byo,p = (B, Cn,{p}). Then the relevant beliefs are
retrieved from the base: f; = f10.{q,q¢ = p} = (B,Cn,{p, q,q9 — p}).
Since the set of active beliefs is consistent, nothing has to be given up
(note that the rest of B could still contain inconsistencies) and the
result of locally consolidating gives the same belief state (83 = [s).
The active beliefs are now accepted: By = (3 o, {p,q,9 — p} =
(BU{p},Cn,0).

Of course the interesting case occurs when Mary’s previous beliefs
are inconsistent with what her mother says. Suppose she also be-
lieved that she did not have to take an umbrella, i.e., the initial
belief base was B' = {-p,q,q — p,a,b,c} and the initial belief
state ), = (B',Cn,0). We get g = 5, o, p = (B',Cn,{p}) and
By = Pror{-w,¢,¢ = p} = (B,Cn,{p,p,q,q = p}). Now we have
that A, the set of active beliefs, is inconsistent. For local partial meet
consolidation we get: A L 1 = {{q,9 — p,p},{—-p,9 — p},{q, pn}}
Suppose we have that v(A L 1) = {{q,9 — p,p}}. Then the only
belief given up is —p and the new belief state is 85 = 35 04 "p o, —p =
(B'\{-p},Cn,{q,q9 — p,p}) and finally we have 8; = f30,{p, ¢, ¢ —
p} = {(B'\ {-p}) U {p},Cn, 0).

In the framework presented in Chapter 4, the problem of deciding which beliefs
should be accepted was left open. In the particular case of a partial-meet semi-
revision, Definition 5.4.6 shows which sentences are accepted, depending on the
selection function «y used.

5.5 Conclusions

In this chapter we have defined a consequence operation that considers only the
relevant parts of a belief base and shown that this consequence operation can
be used to define local versions of the operations of contraction, consolidation,
revision, and semi-revision.

These local operations can be axiomatized with plausible postulates. Fur-
thermore, they give the desired result when applied to examples of the type that
motivated our work and that cannot be treated satisfactorily in the AGM model.

The construction of compartments shows which of the explicit beliefs of an
agent should be retrieved into the set of active beliefs in order to perform an
operation of belief change. However, the construction makes use of kernels and
is highly inefficient from the computational point of view. It is not difficult
to see that the operations of local change, although intuitively more adequate,
are computationally as hard as the original belief change operations. In the
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next chapter we will propose a more efficient method for isolating the relevant
compartment.



Chapter 6

Structured Bases

In this chapter we show how the extra structure of belief bases can be used for
implementing local change as defined in Chapter 5.

As we have seen, some of the constructions for operations of belief change for
belief bases make use of remainders or kernels, i.e., they check subsets of the belief
base in order to find maximal subsets not implying a given formula or minimal
subsets implying it. Exploring all subsets of a reasonably sized belief base is a
very expensive operation. One way to attack the problem is to try to reduce
the size of the set to be explored. Intuitively, not all of an agent’s beliefs are
relevant for deciding what to do with new information. There should be a way
of isolating the subset of a belief base that contains the relevant beliefs for an
operation of belief change. In Chapter 5, this approach was explored. A notion
of compartment was presented for retrieving the relevant part of a belief base and
then local operations of belief change were defined which act only on the relevant
part of the beliefs. The problem is that the way the compartments were defined
used the notion of minimal subsets of the base implying some formula, that is,
finding a compartment was as expensive as performing a traditional operation
of belief change. However, the representation results obtained in Chapter 5 for
the local versions of the belief change operations are very general and do not
depend on the particular way the compartment is defined, but only on properties
of the local inference operation obtained, namely, monotony, compactness, and
local non-contravention. The compartment construction in Definition 5.1.4 can
be seen as an example, as one way of constructing a compartment such that
the localization of the consequence operator to the compartment satisfies the
requirements. If we find another way of retrieving the relevant beliefs from a base
such that the associated local inference operation also satisfies the requirements,
the results in Chapter 5 go through.

In this chapter we present more efficient ways of retrieving the relevant part
of a belief base. The retrieved set can then be “plugged” into the constructions of
local operations. Even though the local operations also rely on finding minimal or

83
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maximal subsets implying or not implying certain formulas, the set to be explored
is reduced to a manageable size.

In Section 6.1, a computer system is presented which has a very efficient
mechanism for retrieving relevant beliefs from a belief base with extra structure.
The ideas of the system inspired some considerations on more general ways of
structuring belief bases and on formalizing the notion of retrieving the most
relevant beliefs for a certain input. These considerations are presented in Section
6.2. In Section 6.3, some examples of relatedness relations are presented which
can be used for structuring the belief base. Computational aspects are examined
in section 6.4. In Section 6.5, we compare our approach to the one due to Chopra
et al. [CGP99].

We will use the terms “belief base” and “database” indiscriminately to refer
to a set of formulas of L.

6.1 RABIT

In this section we briefly discuss the system RABIT (Reasoning About Beliefs
In Time). For details, the reader is referred to [Gar93, GED96].

RABIT is intended to simulate commonsense reasoning in an efficient, psycho-
logically based way. The system consists of four modules, each one representing
a different sort of memory: LTM (Long-Term Memory), STM (Short-Term Mem-
ory), ITM (Intermediate-Term Memory) and RTM (Relevant-Term Memory).
The idea is that all the information (the beliefs) is stored in the LTM component,
but the reasoning is performed inside a small subset of the beliefs in LTM, the
STM. This reasoning is based on the step-logic formalism [DP86]. The I'TM com-
ponent stores the history of the reasoning process and the RT'M works as a kind
of context, storing the relevant concepts (in RABIT, any symbol in the language,
like predicate names and constants, represents a concept). The idea of working
on a small subset of the belief base is psychologically as well as computationally
motivated.

RABIT has a very efficient algorithm for retrieving information from the LTM
which is relevant for a certain input. The LTM is organized as a bipartite graph
where the nodes are either formulas or concepts. Each formula is linked to all
the concepts that occur in it. So (example from [GED96]), the formula pen-
guin(tweety) is linked to the nodes penguin and tweety. If one wants to retrieve
every formula that mentions Tweety, one only needs to take all nodes adjacent
to the concept tweety in the graph.

A method of marker-passing is used for determining which formulas of the
LTM go to STM. The system selects the relevant concepts to start with (for
example, the concepts occurring in a new belief acquired) and “spreads” the
activation through the edges of the graph. The activation level decreases every
time it passes a new edge. Every belief with an activation level above a certain
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threshold is copied into the STM. By regulating the different parameters, like the
initial activation, the decrease function and the threshold of activation, one can
keep the STM small.

The LTM may contain contradictions, that are only solved when they become
evident in the STM. Beliefs in the LTM as well as in the STM have their source
attached. When a contradiction arises in the STM, a precedence order of the
sources determines which belief should be given up from the STM. But nothing
is deleted from the LTM. This means that a contradiction may be retrieved over
and over again due to the same input. In a more recent version of RABIT, there
is an “adaptive behavior” that increases the distance between the formula that
“lost” in the contradiction solving procedure and any node, so that it becomes
less and less likely that the contradiction will be retrieved again.

The RABIT architecture is intuitively very appealing, but there are some
aspects of it that prevent it from being useful for our purposes:

1. The retrieval mechanism is very efficient, but after the relevant part of the
LTM has been retrieved, the system starts performing all possible inferences
from the beliefs in the STM, i.e., the system is not goal-directed.

2. The LTM only grows, new beliefs are added, but nothing is deleted. Besides
the fact that this presents obvious disadvantages from the computational
point of view, it does not seem very intuitive that an agent, after concluding
that a belief is false, continues to hold it for the same reasons. The belief
could certainly be reinferred by another line of reasoning but we do not
want a system that always follows the same line of reasoning (doomed to
failure).!

3. The way in which the LTM is organized is purely syntactical. There are
no links between concepts, for example. If we know that Paul is a lecturer,
that a lecturer is a member of staff and that members of staff are people,
there is no “short path” between beliefs about people in general and beliefs
about Paul.

The aspects above show that the reasoning part of RABIT is not adequate for
our purposes. Nevertheless, the architecture of the program is going to serve as a
basis for the rest of this chapter. RABIT’s architecture is based on cognitive mod-
els of memory and the fact that these models use the notions of small short-term
memory and relevance links between beliefs provides an independent motivation
for our model of a rational agent’s belief state. In the next two sections, we will
explore and generalize those aspects of the RABIT architecture that will allow
us to construct more efficient operations for belief change.

!In some proposals for belief revision [Rya92, Rot96, CGP99], beliefs are never deleted
and new beliefs are simply appended to a list without any consistency check. But in these
approaches, in contrast to RABIT, the beliefs are ordered according to priority which is used
by the inference mechanism in order to avoid inconsistencies.
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6.2 Structuring the Belief Base

As we have seen, if we have an efficient method of retrieving relevant beliefs
from a belief base, such that the inference relation obtained by localizing an
inference operator C' is monotonic and compact, we can use it together with the
representation results in Chapter 5 and get efficient, well defined operations of
belief change.

In this section we show how to use extra structure of belief bases in order to
make the retrieval of the relevant beliefs more efficient.

We begin by assuming that a relatedness relation between formulas of the
language is given, with the following intended meaning:

R(p, ) if and only if ¢ and 4 are directly related.

For the moment we leave open what we mean by “directly related”. It may
have a psychological interpretation given by statements or concepts that individ-
uals associate, a semantic interpretation such as ¢ and 9 are assertions about the
same (or related) topic, an interpretation in terms of causal connections, etc. In
Section 6.3 we give some examples of relatedness relations.

Some intuitively desirable properties of R are?:

1. reflexivity — R(¢, ¢);

2. symmetry — R(p,9) & R(¢, ¢);
3. negation invariance — R(p, —¢p).

Transitivity is not desirable for two reasons: first, we want to be able to model
agents with limited resources, who may be unable to calculate the transitive
closure of the relatedness function. Second, we want to be able to talk about
degrees of relatedness.

Given a relatedness relation, we can represent a belief base as a (possibly dis-
connected) graph where each node is a formula and there is an edge between ¢
and ¢ if and only if R(¢, ). This graph representation gives us immediately a
notion of degree of relatedness: the shorter the path between two formulas of the
base, the more related they are. Another notion made clear is that of connect-
edness: the connected components partition the graph into unrelated “topics” or
“subjects”. Sentences in the same connected component are somehow related,
even if far apart. Formally:

6.2.1. DEFINITION. Let B be a belief base and R be a relation between formulas.
An R-path between two formulas ¢ and v in a belief base B is a sequence P =
(©0, 1, -, ©n) of formulas such that:

1. o=y and ¢, =9

2We will see later in this chapter that even these properties are not necessary.
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2. {QOl, ---,Son—l} g B
3. R((pi,goi+1), 0<2<n.

If it 1s clear from the context to which relation we refer, we will talk simply
about a path i B.

We represent the fact that P is a path between ¢ and i by ¢ L .
The length of a path P = (@o, 1, ..., 0n) is L (P)=n

Note that the extremities of a path in B are not necessarily elements of B.
This is due to the fact that we may want to check whether some sentence outside
the belief base is related to elements of the belief base.

6.2.2. DEFINITION. Let B be a belief base and R a relation between formulas of
the language. We say that two formulas ¢ and ¢ are related in B by R if and

only if there 1s an R-path P in B such that ¢ L .

Given two formulas ¢ and 1 and a belief base B, we can use the length of the
shortest path between them in B as the degree of unrelatedness of the formulas.
If the formulas are not related in B, the degree of unrelatedness is set to infinity.
Formulas with a shorter path between them in B are more closely related in B.

6.2.3. DEFINITION. Let B be a belief base, R a relation between formulas of the
language and ¢ and ¥ formulas. The degree of unrelatedness of ¢ and ¢ in
B is given by:

0 if o= and p € B
u(p,¥) = ¢ min{l(P)|y Loy, Pin B} if ¢, 1 related in Bby R, ¢ #
00 otherwise

6.2.4. OBSERVATION. I[f the relation R is symmelric, then the unrelatedness de-
gree u restricted to connected components of B is a distance function in the sense
that: (i) uw(z,y) > 0; (it) u(z,y) = 0 iff z = y; (ii)u(z,y) = u(y,z); and (iv)
u(z,y) < ul(z,z) +u(z,y).

In Figure 6.1 we see an example of a belief base structured by a relation R

defined by:
R(p, ) if and only if ¢ and 1 share (at least) one atom.

This is just an example of a relatedness relation. This relation is clearly too
simplistic to capture a cognitive notion of relevance. Nevertheless, it has some
interesting properties which make it a good starting point for studying relevance.
The intuitive interpretation of R (¢, ) is: “Given a formula ¢, consider every

formula 1 in which we believe and that involves at least on topic mentioned in
2

Q.
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\\_qu PAQq s—1

Figure 6.1: Structured belief base

The edges in the figure represent the relation R between the elements of the
belief base. The graph representing the structured base has two disconnected
components. The formulas p A ¢ and r — s are not related in B. The formula
g N\ r is related to all formulas in the belief base, since it is possible to find a
path between it and all formulas in the base. Remember that the initial and final
nodes of the path do not have to be elements of the base. This means that if one
adds the formula g A r to the base, all the other elements become related to each
other in B. This can be interpreted in the following way: the two disconnected
components of the original base represent beliefs about unrelated subjects. As
soon as one introduces a belief mentioning the subjects of both components, all
beliefs in the two components become related to each other. There is an implicit
assumption here that if one chooses to add a belief p A ¢ instead of two beliefs p
and ¢, then there is some relation between p and q.

We now show, given the structure of a belief base, how to retrieve the set of
formulas relevant for a given formula «:

6.2.5. DEFINITION. The set of formulas of B which are relevant for a with
degree i is given by:

Ai(a, B) = {p € Blu(a, ) =i} fori >0
6.2.6. DEFINITION. The set of formulas of B which are relevant for o up to
degree n is given by:

Asn(aa B) = UOSiSn Ai(aa B) fOT‘ n Z 0

We say that A<“(o, B) = U;so A’(e, B) is the set of relevant formulas for

Since the extremities of paths in B do not have to be elements of B, we can
retrieve the subset of B containing the formulas which are relevant for a even
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when a € B. Adding « to B would only mean that o would also be retrieved,
le.

6.2.7. OBSERVATION. For a ¢ B, it holds that:
As"(a, BU{a}) \ {a} = AS"(a, B).

Proof: For 1 < i < n, we have that A'(a, BU{a})\ {a} = A%(c, B) and that
a & Al(a, B). Since a ¢ B, A%(a, BU{a})\ {a} = {a} \ {a} =0 = A%, B).
a

v
0
o
€ a X N n
@ L J
P 5
A )
K o 1

Figure 6.2: Degrees of relevance

In Figure 6.2, we see an example of a structured belief base B = {«, 3, 7, 9,
e, n, 0,1, K, A, p, v, 0, p, o, b, ¢, x}. The dotted circles represent different
levels of relevance for a. We have:

A%, B) = {a}

Al(e, B) = {8, x, 6, ¢}

A%(a, B) = {71, 1,0, 5, A, 1, ¢}

A3(a, B) = {v,o0,m,0,p,0}

A=“(a, B) = A%, B) U A'(a, B) U A%*(a, B) U A*(a, B) = B

In Section 5.1 we presented a notion of compartment around a sentence. In
Definition 5.1.4 the a-compartment of a belief base B was defined as the set
of formulas of B that contribute to proving either a or its negation. These
were the formulas of B that were relevant for an operation of belief change. As
we mentioned before, for the representation results obtained in Chapter 5 the
particular construction of the compartments does not matter, only the properties
of the inference relation obtained is significant. We now show some properties of
the inference operation obtained using A<" instead of ¢ (Definition 5.1.4) as a
compartmentalization function.
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6.2.8. PROPOSITION. Let B be a finite belief base and o a formula. For every
natural number n and any inference operator C, if C' is monotonic and compact,
then the local inference operations defined as C"(B) = C(AS"(a, B)) are mono-
tonic and compact. Moreover, if 1 & C(0), then L ¢ C™(0) and if C satisfies non-
contravention, then C? satisfies a-local non-contravention (if ~a € C*(BU{a}),

then —~a € C2(B)).

Proof: Since all sets considered are finite, compactness follows trivially. For
monotony, let B and D be sets of formulas such that B C D. Let g € C?(B),
ie., 3 € C(AS"(a, B)). It is easy to see that AS"(a, B) C AS"(a, D). Hence,
since C' is monotonic, 8 € C(A*"(«, D)), i.e., B € C"(D).

Suppose that 1 € C”(0). Then 1 € C(AS"(a, D)) = C(0). Hence, if L & C(0),
then + ¢ CZ(0). For a-local non-contravention, let —a € C%(B U {a}). This
means that -« € C(AS"(a, BU {a})). If @ € B, then it follows trivially that
-a € C"(B). Let a ¢ B. By the non-contravention of C, ~a € C(AS"(a, BU
{a}) \ {a}). Since by Observation 6.2.7 A<"(a, BU {a}) \ {a} = A="(a, B),
—a € Cn(AS"(a, B)) and hence, ~a € C"(B). O

We are mostly interested in finite belief bases, but if we want to consider
infinite bases, it suffices to define C7, as:

C(B) = C(A="(a, B)) if B is finite
a7/ ) {¢|¢ € C2(B') for some finite B’ C B}  otherwise

The proposition above implies that for any n, AS" can be used as a com-
partmentalization function to define local operations characterized by the results
presented in Chapter 5. In the case of an ideal agent, an agent with no limits in
its capacity of retrieval, all of the agent’s relevant beliefs are retrieved, i.e., AS
is used as a compartmentalization function. Otherwise, we can limit the size of
the set retrieved by the choice of n.

It is not difficult to see that we can depart from any relation R to obtain a local
inference operator satisfying the relevant properties. For the proof of Proposition
6.2.8, no properties of R were used, we only needed conditions on the initial
inference operator C. This gives us a very general framework. Depending on the
application, one can use the most appropriate notion of relatedness and still obtain
a local inference operator satisfying the properties needed for the representation
results given in Chapter 5.

6.3 Where Does the Structure Come from?

In the previous section we assumed that a relation of relatedness between elements
of the language was given. In this section we will present some ways in which
such a relation may be derived.
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6.3.1 The Syntactic Approach

Rodrigues [Rod97] claims that asking for a primitive relation between proposi-
tional variables or a primitive subject matter assignment may be too strong a
requirement. He proposes instead to use directly the relation introduced in the
text preceding Figure 6.1, i.e.:

R(p, ) if and only if ¢ and v share an atom

He shows that this is actually the smallest relation satisfying the conditions
given in [Eps90] for a relatedness relation.?

Epstein [Eps90] takes the topic or subject matter of a proposition as a prim-
itive and says that two propositions are related if they share a subject matter.
He considers a set of topics S and supposes that each propositional variable has
a non-empty set of topics associated with it. The set of topics associated with
a formula is simply the union of the sets of topics associated with each variable
appearing in it. Epstein shows that one can also take a relatedness relation R as
a primitive and derive a topic assignment from it by taking the subject matter of
a formula ¢ to be s(¢) = {{p, ¥}|R(p,v¢)}. Clearly, if we take R to be defined
as Rs(p,v) if and only if s(¢) N s(¢) is non-empty, then we have Ry, = R.

Another way of deriving the relatedness structure from the given data is to
consider the knowledge base as a whole and create a graph that has as nodes
formulas and atoms. Each formula is then linked to the atoms that occur in it.
This is simmilar to the approach followed by the RABIT system. The derived
structure is that of a (possibly disconnected) bipartite graph. Atoms can be
related to each other only via some formula in the database that contains them.
In the same way, formulas are only related to other formulas via some atom they
share. This has the advantage that it is very easy to insert a new formula in
the graph, one only has to link it to the atoms it contains. On the other hand,
since there is no link between atoms, even if the atoms p and ¢ are intuitively
directly related, the formulas p and g will only be related if there is any formula in
the belief base containing both. One could use tricks, like adding some formula
related(p,q) to the belief base if the agent believes that p and ¢ are related or
adding a tautology like (p V —p) V (¢ V —q) to the belief base in order to relate p
and q.

Epstein’s and RABIT’s approaches have the property that the relatedness
relation is defined on the whole language and is independent of the particular
belief base. This means that adding beliefs to the structure consists of adding
the input formula « to the set of nodes and adding an edge between « and

3 According to [Eps90], any relatedness relation R should satisfy:
Rl - R(cp )
R(p, ) iff R(—p,¢)
R3 R(p, ) iff R(¢, ¢)
R4 - R(wn — ) iff R(p,7) or R(p,v)
R5 — R(p,y A o) iff R(p,y = ¢).
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every node [ such that R(«, 3). Deleting a belief « from the structure consists
of removing « from the set of nodes and removing all the edges leaving from
it. After adding or deleting a belief, the result is another structured base. The
relation R does not have to be recalculated.

6.3.2 The Database Approach

In many real applications, there is a part of the database dedicated to the defi-
nition of concepts (sometimes called the T-Box) which can be used to generate a
relatedness relation.

Let B be a database and A be the subset of B where all the definitions are
made. We can say that atoms appearing in the same formula of A are related.
We can say that two formulas ¢ and 1 are related if they share an atom or if
there are atoms p in ¢ and ¢ in ¥ such that p and q are related. Formally:

6.3.1. DEFINITION. Let A be a set of formulas. We define a relation R4 on
atoms by:

Ra(p,q) if and only if either p = q or p and q occur in the same formula of
A.

The relation R4 can be extended to a relation on the language:

6.3.2. DEFINITION. Let R4 be a relation on formulas defined as:

Ra(p, ) iff there are atoms p in ¢ and q in 1 such that Ra(p,q).

It is easy to see that R, is symmetric and reflexive and that for every ¢,
Ralp, ~p).

The transitive closure of the relation R 4 gives an equivalence relation that de-
termines a partition of the belief base. Each member of the partition is completely
independent from the others with respect to the definitions in A.

We can also use the whole belief base B for deriving the relatedness relation,
that is, we can have A = B.

Note that if A = () the relation R4 is the same as in the syntactic approach,
i.e., Ry(p, ) if and only if ¢ and ¢ share an atom.

6.3.3 The Logical Approach

We can define a relatedness relation R that captures a notion closer to the logical
compartments in Chapter 5 as:

R(p, ) if and only if there is a set A C B such that AU {¢} I/ L and either
AWy and AU{p}FvYor At/ =p and AU {p}F -9

or:
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R(p, ) if and only if ¢ € c(v, B)

where ¢ is a compartmentalization function as in Definition 5.1.4.

Note that this relation is not symmetric. The definitions of path, unrelatedness
degree and relevant set of formulas (A%) in section 6.2 can be maintained. The
obvious problem of this approach is that it may be very hard to find the related
pairs, but if the relation is given, this problem is avoided. If the language is finite,
one way in which the relation can be given is as follows: All sets of formulas can be
listed.* For each pair of formulas ¢ and %, one can select all sets where ¢ occurs,
check whether they imply ¥ or =1 and if so, check their subsets to see whether
they also imply 9 or —¢). If not, then R(¢, ). This is of course very costly, but
if the same language is going to be used several times, one can pre-compute this
relation and use it for all belief bases.

6.3.4 The Hybrid Approach

A fourth alternative is to combine the database or the syntactic approach with the
logical one. If the database is such that it contains several (small) independent
modules, this can be a good strategy. One can first apply the first notion of
relatedness and find a partition of the database. Then one only has to consider the
partition members related to the input formula and look for the relevant formulas
inside them using the logic formulation of compartments given in Chapter 5. It
can be shown that the compartment obtained is the same one that would be
obtained checking the whole set.

Let B be a belief base and let R be the relatedness relation introduced in
Figure 6.1, i.e.: R(p,9) if and only if ¢ and 9 share an atom. Since R is
reflexive and symmetric, its transitive closure defines a partition of the elements
of B. Let {By, B, ..., B,} be the elements of the partition. We say that a set B;
is related to a formula « (represented by R(«, B;)) if and only if R(«, ) for some
B € B;. We denote by P, the set of elements of the partition that are related to
a, ie., P, ={B;|R(«a, B;)}.

6.3.3. THEOREM. Let B be a belief base, a be a contingent formula and c be the
compartmentalization function as in Definition 5.1.4.Then c¢(a, B) = c¢(a,U P,).

Proof: From UP, C B and Observation 5.1.5 it follows that c(a,U P.) C
¢(a, B). For the other side of the inclusion, let 5 € ¢(a, B). This means that there
is X C B such that 8 € X, X is consistent, inclusion minimal and « € Cn(X)
or o € Cn(X). Suppose by contradiction that X ¢ |P,. Then, there is
v € X such that for all B; € P,, v ¢ B;. From this it follows that « is not
related to v, i.e., there is no R path from « to 7. Since X is consistent it follows

that @ € Cn(X \ {7}) or ma € Cn(X \ {v}), contradicting the minimality of

4Actually, one only has to consider one representative of each equivalence class.
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X. Hence, g € X C UP, and from part 2 of Observation 5.1.5 it follows that
c(a, B) C ¢(a,U Py). O

Example 16: Let B = {p,q,p — ¢,s,tVv,s = v,w Az, —
z,zVw} and let ¢ be a compartmentalization function as in Definition
5.1.4. The compartment around p V w is given by c(p V w,B) =
{p,w A z}. The set B can be clearly divided into three unrelated
components: By = {p,q,p — q}, Bo = {s,tVv,s — v} and By =
{wAz,z — 2,2V w}. The formula p VvV w is only related to two of
these components, namely B; and Bs. We can then disregard B; and
calculate the compartment by: ¢(p V w,B) = ¢(pV w,B; U B;) =

{p,w A z}.

6.4 Computational Aspects

In this section we discuss the complexity of the operation described for retrieving
the set of relevant beliefs from a base.

Let us first briefly discuss the notion of an anytime algorithm. An anytime
algorithm is one that whenever it is interrupted, it has built an approximate so-
lution for a problem, and the longer it runs, the better the approximation gets.
There are two kinds of anytime algorithms [RW91]. Interruptible anytime algo-
rithms can be interrupted unexpectedly and they still return an approximation
with accurateness which is a function of the time they run. Contract anytime
algorithms must be given the available amount of time in advance. If they are
interrupted before the expected time, they may not yield any interesting result.

The good thing about the method for retrieving the relevant beliefs is that
it is an interruptible anytime method, that is, whenever it is interrupted, it has
retrieved the most relevant beliefs, and the longer it runs, the closer it gets to
retrieving all the relevant beliefs (the maximal connected subgraph). This is a
very desirable property for modeling agents that may not have enough time or
memory to find all the related beliefs. In the ideal case, if there is no resource
limitation, the method succeeds in retrieving a maximal connected subgraph.

Below we present a sketch of an algorithm that takes as input a formula «
and a belief base and returns the set of formulas of the base that are relevant for
«. The algorithm can be stopped at any time, always returning the set of most
relevant beliefs for a. The algorithm is a modification of the algorithm BF'S for
breadth first search in [CLR90].

The belief base is represented by a vector of formulas, each one with a list of
pointers to the adjacent nodes in the graph. The nodes adjacent to a formula « are
given by Adjacent(c). The complexity of the construction of the list of adjacent
nodes depends on the relatedness relation used. For the relation used in Figure
6.1, where two formulas are related if and only if they share an atom, we can use
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extra, invisible nodes corresponding to the atoms of the language. Every formula
added to the belief base is linked to all atoms appearing in it. Constructing the
list has complexity O(m x n), where m is the number of occurrences of atoms in
the formulas involved (the “size” of the belief base) and n is the number of atoms
in the language. If the atoms are organized in some kind of lexicographical order,
this complexity becomes O(m X logn).

Retrieve(a,B,Relevant):
1. If o € B, then mark(«)
2. A'(a, B) := Adjacent(c)
3. 1 := 1; stop := false
4. While not stop do
4.1. For all 8 € A'(a, B), mark(3)
4.2.i:=i+1; AY(a,B) =0
4.3 For all 8 € A" Y(«, B),
Ai(a, B) := A¥(a, B) U {p €Adjacent(f) s.t. not marked(y)}
4.4 If A'(a, B) = 0, then stop := true
5. Relevant := {# € B s.t. marked(f)}

At each step, the algorithm looks at the set retrieved at the previous step
and gets all the adjacent nodes that have not been visited yet. When all nodes
of a connected component have been visited, it halts. Depending on how the
information is encoded, the algorithm runs in linear time with respect to the
number of formulas of the belief base.

After retrieving the relevant beliefs, traditional belief change constructions
can be applied to it, provided the set is small enough (one can stop the algorithm
once the relevant set gets bigger than a certain limit).

In a large database, or in more realistic agents, the whole belief base may
be connected, i.e., it may be impossible to isolate a small connected component.
In such cases, one can think about more sophisticated notions of connectedness,
such as finding connected “chunks” in the graph and preferring edges internal to
a chunk over the others (see, for example, [vD97]).

6.5 Related Work

In [CGP99|, Chopra et al. developed a method for belief revision based on re-
stricted inference. Instead of belief bases, they work with belief sequences, a set
with a linear order. The order is a temporal one, i.e., a < f if and only if g is
more recent than a.

They use the notion of the language of a formula [Par96] in order to define a
relevance relation:

6.5.1. DEFINITION. [Par96] Let Var(f3) be the set of propositional variables that
occur in 3. The language L, of a 1s the smallest set of propositional variables
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used to express a, i.e., L, = Var(f), where b a <> 3 and for every ' such that
~a e, |Var(@)] < [Var(8)).

Parikh has shown that for every formula « there is a unique language L,
[Par96]. Intuitively, the language L, captures the notion of “what « is about”,
the topic of a.

6.5.2. DEFINITION. [CGP99] Two formulas o and [ are directly relevant for
each other if L, N Lg # 0. Let o be a belief sequence. Two formulas o and [ are
k-relevant with relation to o if and only if there are formulas @y, @1, ..., Pr 0
o such that:

1. po=«a and pr = f

2. Fori1=0,....k—1, ¢; and p;y1 are directly relevant.
The relatedness relation is basically the same as that used in Figure 6.1.

6.5.3. DEFINITION. [CGP99] Given a belief sequence o = (f1, B, ...0n), where
v < J iff Bi < B, and a formula a, a new order for o can be defined as follows:

Bi <& Bj if and only if:

1. There is some r such that (3; is r-relevant to o and B; is not r-relevant to
a, or

2. B; and B; are equally relevant to o but 5 < 1.

The new relation <, orders the formulas in ¢ according to their relevance to
«. When two formulas are equally relevant to «, the most recent one has priority.
This order is used to define a local inference operator.

6.5.4. DEFINITION. [CGP99] Let o be a belief sequence and v a formula. Let
01, ...0, be the formulas of o ordered according to <.

Let k be any natural number. The inference operator Cy is defined as:

v € Cx(o) if and only if v € Cn(T' (o, k,)), where I'(o, k,v) is constructed as

follows:
=g _ .
ritl { I". if 20;11 € Cn(I") or if §;4; is not k-relevant to o
u{di1} otherwise
[(o,k,v)=T".

The revision operation defined in [CGP99] consists of simply concatenating
the new formula to the sequence. The new formula is appended at the end of the
current belief sequence, receiving maximal priority. Possible conflicts are solved
by the inference operator C}, respecting the temporal and the relevance orderings.
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A similar idea was studied by Ryan in [Rya92]. But in his work, Ryan considers
only the temporal ordering and does not take relevance into consideration.

This revision method is in line with what Rott calls the “vertical perspective”
[Rot96]. The belief sequence may contain inconsistencies and it may not bear
any special relationship to the actual beliefs of an agent. The beliefs to which
the agent is committed are given by the application of a non-classical inference
operation to the belief sequence.

Revision of belief sequences manages to avoid several of the drawbacks of
AGM revision discussed at the end of Chapter 3. Belief states are represented
by finite sequences of formulas, instead of logically closed theories. One can have
different inconsistent belief sequences, i.e, the presence of inconsistency does not
lead to a trivial belief state in which the agent believes every formula of the lan-
guage. The construction of a revised sequence is trivial and can be iterated with
no extra machinery. Revision of belief sequences is prioritized, in that incoming
information is always accepted with the highest priority. But unlike AGM re-
vision, the new piece of information does not lose its high priority immediately
after being accepted.

How does the revision of belief sequences compare to our framework for local
change of structured bases, defined in this and the preceding chapters?

The first problem one encounters is that it is not clear how one could define
operations of belief change for belief sequences other than expansion and revision.
An operation of contraction of belief sequences is not at all trivial. Rott proposes
the use of “phantom beliefs” which work as constraints on what can be accepted
[Rot96]. To contract a sentence «, one adds a phantom —a with the highest
priority. This phantom blocks the derivation of «, but cannot be used in positive
derivations, i.e., 7« is not inferred from it.

Moreover, the notion of “compartments” and “local inference” (I' and Cy)
given by Definition 6.5.4 cannot be used for local change, since C} is non-mono-
tonic (this is proven as Proposition 2 in [CGP99]). Why is it so? Because new
beliefs added may overwrite old ones, so that if o was implied by a sequence
which is concatenated with —«, then « is not implied by the new sequence. It is
not clear which logical properties the revision of belief sequences has.

One alternative would be to forget the condition that —d; 1 € Cn(f‘i) in the
definition of I' (Definition 6.5.4). This means that the final I' could be incon-
sistent. A prioritized consolidation (using recency in the selection mechanism)
could be used to get rid of the inconsistency.

The method given in [CGP99] has the advantage that revising a belief sequence
consists in simply concatenating the new belief. Moreover, it keeps the whole
history of the changes. But answering queries about the beliefs is more difficult.
For applications in which the agent being modeled only receives new information
and never contracts its beliefs, it may present an adequate formalization.

From the computational point of view, it presents the problem that the rel-
evance ordering has to be recalculated for every new input. Remember that in
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our framework, a structured belief base is built representing the relationship be-
tween all formulas. When a new formula is added, one only needs to add links
between the new formula and the ones related to it. But in the case of belief
sequences, even if no formula is added, for every query one needs to calculate the
whole relevance structure. There is also a test for consistency in each step of the
construction of I'.

Combining the two methods could be very fruitful. If we add to belief se-
quences links representing relevance such as those in the structured bases, cal-
culating the relevance order for some input becomes much easier. Studying the
properties of a combined framework is left for future work.

6.6 Conclusion

In this chapter we have examined a more efficient way of retrieving the relevant
beliefs from a belief base, so that the local operations presented in Chapter 5
remain well characterized. This was achieved by means of adding extra structure
to belief bases.

It is possible to ignore differences in the syntactical form of formulas, although
we do not do it here, by assuming (i) a logical approach: when we say “p occurs
in ¢” we actually mean “for all ¢ such that F ¢ <> 4, p occurs in ¥”5; or (ii)
a computational approach: the formulas are all represented in some canonical
(normal) form, and equivalent formulas have equal representation.

In the next chapter we are going to apply the ideas for local change using
structured bases to the domain of model-based diagnosis. We will show how to
obtain diagnoses of a model without examining the whole model. We will also
show that some algorithms developed for model-based diagnosis can be used to
implement belief change.

5This corresponds to “p € L,” in the notation of Definition 6.5.1.



Chapter 7

Local Diagnosis

In this chapter we are going to present an application of the theory developed in
the preceding chapters. We will investigate the problem of finding diagnoses in
faulty systems.

Diagnosis is a very active area within the artificial intelligence community. The
problem of diagnosis consists in, given an observation of an abnormal behavior,
finding the components of the system that may have caused the abnormality
[Rei87].

In the area known as model-based diagnosis [HCdK92|, a model of the device
to be diagnosed is given in some formal language. In this chapter, we will con-
centrate on model-based diagnosis methods that work by trying to restore the
consistency of the system description and the observations.

We will show how a diagnosis problem can be translated into an operation
of kernel semi-revision. Kernel semi-revision consists in adding new information
to a database and restoring consistency if necessary. To restore consistency, the
expanded database is contracted by L. We will use the operation of kernel con-
solidation, introduced in [Han97a] and presented in Section 5.2.2.

Then we will show how to use information about the structure of the device
being examined in order to obtain more efficient methods of diagnosis. For this,
we will use the operation of local kernel semi-revision, presented in Chapter 5, that
considers only the relevant part of the database. In Chapter 6, we have presented
a simple method for extracting the relevant part of a structured database, which
will be used in this chapter.

Beyond just reducing the diagnosis problem to a problem of belief revision,
the present chapter aims at opening a cross-fertilization process between two com-
munities. Researchers working on belief revision rely on very elegant and precise
logical formalisms, but are very far from implementing a realistic belief revisioner.
On the other hand, researchers working in the field of diagnosis have very pow-
erful tools to prune the computational complexity of the problem, allowing them
to deal with real-world situations. But several applications lack a clear formal-
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ization. By showing that, at least at a high level, the problems are equivalent, we
claim that techniques developed by the model-based diagnosis community could
be used for implementing belief revision and that the formal framework presented
in Chapters 5 and 6 can be used for focussing on the relevant part of a system
for diagnosis.

We will show how the traditional algorithm for consistency-based diagnosis
given by Reiter can be used for implementing (local) consolidation.

In [Win95], Winslett suggests the use of belief revision techniques for mod-
eling diagnosis, but without analyzing the similarities between the constructions
proposed in both fields. She only shows how a particular problem of diagnosis
can be formalized as a belief revision problem.

7.1 Reiter Diagnosis

In this section we introduce the standard method for calculating consistency-
based diagnosis, due to Reiter [Rei87]. Although Reiter’s framework is based on
first-order logic, most of the problems studied in the literature do not make use of
full first-order logic and can be easily represented in a propositional language. For
the sake of simplicity, we will adapt the definitions given in [Rei87] to only mention
formulas in the propositional language L that we have used in the preceding
chapters.

7.1.1 Basic Definitions

The systems to be diagnosed will be described by a set of propositional formulas.
For each component X of the system, we use a propositional variable of the form
okX to indicate whether the component is working as it should. If there is no
evidence that the system is not working, we can assume that variables of the form
ok X are true.

7.1.1. DEFINITION. A system is a pair (SD,ASS), where:
1. SD, the system description, is a finite set of formulas of L and

2. ASS, the set of assumables, is a finite set of propositional variables of the
form ok X.

An observation is a formula of L. We will sometimes represent a system by
(SD,ASS,0BS), where OBS is an observation for the system (SD,ASS).

The need for a diagnosis arises when an abnormal behavior is observed, i.e.,
when SDUASSUOBS is inconsistent. A diagnosis is a minimal set of assumables
that must be negated in order to restore consistency.
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7.1.2. DEFINITION. A diagnosis for (SD,ASS,0BS) is a minimal set A CASS
such that:
SD U OBS U ASS\A U {—-0kX|okX € A} is consistent.

A diagnosis for a system does not always exist:

7.1.3. PROPOSITION. [Rei87] A diagnosis exists for (SD,ASS,OBS) if and only
if SDUOBS is consistent.

Definition 7.1.2 can be simplified as follows:

7.1.4. PROPOSITION. [Rei87] The set A CASS is a diagnosis for (SD,ASS,OBS)
if and only if A is a minimal set such that SD U OBS U (ASS\A) is consistent.

Reiter’s definition of diagnosis is closely related to formalizations of non-
monotonic reasoning such as circumsription [McC80], which tries to minimize
abnormality assumptions, or inferences based on expectations [GM94|, which try
to maximize the use of normality assumptions. In [Poo89|, Poole shows how Re-
iter diagnoses can be translated into a framework originaly designed to deal with
default reasoning.

7.1.2 Computing Diagnoses

In this section we will present Reiter’s construction for finding diagnoses. Reiter’s
method for computing diagnosis makes use of the concepts of conflict sets and
hitting sets. A conflict set is a set of assumables that cannot be all true given the
observation:

7.1.5. DEFINITION. [Rei87] A conflict set for (SD,ASS,0BS) is a set Conf
= {0kX1,0kXs,...,0kX, } CASS such that SD U OBS U Conf is inconsistent.

From Proposition 7.1.4 and Definition 7.1.5 it follows that A CASS is a di-
agnosis for (SD,ASS,0BS) if and only if A is a minimal set such that ASS\A is
not a conflict set for (SD,ASS,0BS).

A hitting set for a collection of sets is a set that intersects all sets of the
collection:

7.1.6. DEFINITION. [Rei87] Let C be a collection of sets. A hitting set for C is
a set H C Ugee S such that for every S € C, HN S is nonempty. A hitting set
for C is minimal if and only if no proper subset of it s a hitting set for C.

The following theorem presents a constructive approach for finding diagnoses:

7.1.7. THEOREM. [Rei87] A CASS is a diagnosis for (SD,ASS,OBS) if and
only if A is a minimal hitting set for the collection of minimal conflict sets for

(SD,ASS,0BS).
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Figure 7.1: Circuit

Example 17: Consider the circuit in Figure 7.1. The system descrip-
tion of this circuit is given by (SD,ASS), where:

ASS = {0k X, okY, ok Z}

SD= {(AANB)AokX — D,—~(ANA B)AokX — =D,
CNokY — —FE,-C NokY — F,
(DVE)ANokZ — F,~(DV E) A okZ — —F}

Suppose we have OBS=—CA—F'. This observation is inconsistent with
SD U ASS. There is only one minimal conflict set for (SD,ASS,0BS):
{okY,0kZ}. There are three possible hitting sets: {okY },{okZ}, and
{okY,0kZ}. Reiter considers only minimal hitting sets as diagnoses,
that is, either Y or Z is not working well.

7.2 Diagnosis via Kernel Semi-Revision

The definitions of the last section bear a striking resemblance to those of the
operation of kernel semi-revision presented in Section 3.4.2.

Recall that kernel operations are based on two concepts: kernels and incision
functions. The kernels are the minimal subsets of a belief base implying some sen-
tence, while the incision functions are used to decide which elements of the kernels
should be given up. Let (SD,ASS,0BS) be a system. The belief base that we are
going to semi-revise corresponds to SDUASS and the input sentence is OBS. The
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conflict sets are the assumables in the inconsistent kernels of SDUASSU{OBS}.
So, if B=SDUASS, the conflict sets are given by {XNASS|X € (B+OBS) 1 1}.
Incision functions correspond loosely to hitting sets, the minimal hitting sets be-
ing the values of minimal incisions that return only assumables. Note that there
is a difference in the status of formulas in SD and those in ASS: formulas in
ASS represent expectations and are more easily retracted than those in SD (cf.
Definition 7.2.1).

We can model the diagnosis problem as a kernel semi-revision by the obser-
vation. Semi-revision can be divided in two steps. First the observation is added
to the system description together with the assumables. In case the observation
is consistent with the system description together with the assumables, no for-
mula has to be given up. Otherwise, we take the inconsistent kernels and use an
incision function to choose which elements of the kernels should be given up.

In the case of diagnosis, we do not wish to give up sentences belonging to the
system description or the observation. We prefer to give up the formulas of the
form ok X, where X is a component of the system. Moreover, we are interested in
minimal diagnosis, so the incision should be minimal. For this, we use a special
variant of incision function. We modify Definition 3.4.9 so that incisions are
minimal and elements of a given set A are prefered over the others:

7.2.1. DEFINITION. Given a set A, an A-minimal incision function is any
function o4 from sets of sets of formulas into sets of formulas such that for any
set S of sets of formulas:

1. 04(S) CUS,

2. If0# X €S, then X Noa(S)#0,

3. If forall X € S, X NA#D, then 04(S) C A, and
4. 04(S) is a minimal set satisfying 1,2, and 3.

If we take A to be the set of assumables, we obtain an incision function that
prefers to select formulas of the form 0ok X over the others.

We can show that for (SD,ASS,OBS), whenever a diagnosis exists, an ASS-

minimal incision function will select only elements of ASS:

7.2.2. PROPOSITION. Let (SD,ASS,0BS) be a system with an observation and
oass an ASS-minimal incision function. If a diagnosis exists, then o455((SD U

ASSU OBS) 1L 1) CASS.

Proof: A diagnosis exists if and only if SD is consistent with OBS (Propo-
sition 7.1.3). Hence, every inconsistent kernel of SDUASSUOBS must contain
an element of ASS. From Definition 7.2.1, it follows that o45s((SD U ASS U
OBS) 1L 1) CASS. O
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7.2.3. LEMMA. The assumables that occur in an inconsistent kernel of the set
SDUASSUOBS form a conflict set for (SD,ASS,0BS) and all minimal conflict
sets can be obtained in this way, 1.e.:

(i) For every X € (SDUASSUOBS) 1L 1, XNASS is a conflict set, and

(ii) For every minimal conflict set Y, there is some X € (SDUASSUOBS) 1L 1
such that XNASS=Y .

Proof: (i) Let X € (SDUASSUOBS) 1L 1. Then, X C (XNASS)USDUOBS.
Since X is inconsistent, so is (XNASS)USDUOBS, hence XNASS is a conflict set.

(ii) Let Y be a minimal conflict set. Then YUSDUOBS is inconsistent and
since Y € ASS, there is some X € (SDUASSUOBS) L 1 such that XNASSC Y.
Suppose by contradiction that there is some formula « such that a € Y but
a ¢ XNASS. Since XNASS is a conflict set for (SD,ASS,0BS), this contradicts
the minimality of Y. Hence, XNASS=Y. |

Note that not every inconsistent kernel determines a minimal conflict set,
since for conflict sets only the elements of ASS matter, i.e., there may be two
inconsistent kernels X; and X5 such that X;NASS is a proper subset of XsNASS.

Recall that given an incision function o, the semi-revision of a set B by a
formula « was given by B?,a = (B + «a) \ o((B + «) 1L 1). A diagnosis is
given by the elements of ASS that are given up in a kernel semi-revision by the
observation.

7.2.4. PROPOSITION. Let S=(SD,ASS,OBS) be a system and o455 an ASS-min-
1mal incison function.
(SD UASS)\((SD UASS)?,,ss OBS) = 0ass((SD UASS UOBS) 1L 1) is a di-

agnosis.

Proof: We have to prove that given a system for which there is a diagnosis
and an observation, it holds that:

1. If d is a diagnosis according to Definition 7.1.2, then there is an ASS-minimal
incision function o455 such that d= 0455((SD UASS UOBS) 1L 1).

2. If o455 is an ASS-minimal incision function, then
O'Ags((SD UASS UOBS) AL J_)

is a diagnosis according to Definition 7.1.2.

1. Let 0455((SDUASSUOBS) 1L 1)= d. We have to show that o4ss is an
ASS-minimal incision function for the relevant domain, i.e., we must show that
it satisfies the four conditions of Definition 7.2.1.

(i) d € U((SDUASSUOBS) 1L 1): If d is a diagnosis according to Defini-
tion 7.1.2, then d is a minimal hitting set for the set of all minimal conflicts of
(SD,ASS,0BS). From part (ii) of Lemma 7.2.3 we know that for every minimal
conflict set Y, there is X € (SDUASSUOBS) L 1 such that XNASS=Y.
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(i) If 0 # X € (SDUASSUOBS) 1L 1, then X Nd # 0: From part (i) of
Lemma 7.2.3, we know that XNASS is a conflict set. Since d is a hitting set,
Xnd#0.

(iii) If d ZASS, then for some X € (SDUASSUOBS) L 1, XNASS= 0: Since
d is a diagnosis, d CASS and the condition is trivialy satisfied.

(iv) d is a minimal subset satisfying (i),(ii),(iii): Since d is a diagnosis accord-
ing to Definition 7.1.2, d is a minimal hitting set.

2. From part (ii) of Lemma 7.2.3, we have that all minimal conflict sets are
elements of the set {XNASS|X € (SDUASSUOBS) L 1}. We have to show that
an ASS-minimal incision function for the inconsistent kernels determines a min-
imal hitting set for all minimal conflicts. From Definition 7.2.1 and Proposition
7.2.2 it follows that 0455((SDUASSUOBS) L 1) is a hitting set for the set of
minimal conflicts of (SD,ASS,0OBS). That it is also a minimal hitting set follows
directly from Definition 7.2.1. (Since the non-minimal conflict sets contained in
{XNASS|X € (SDUASSUOBS) L 1} are supersets of some minimal conflict set
and all minimal conflict sets are considered, an ASS-minimal incision function
will give the same result as if only minimal conflict sets were considered). O

Going back to the circuit in Figure 7.1, we see that SD U ASSU OBS is incon-
sistent. This means that SD U ASSU OBS has to be consolidated. There is only
one inconsistent kernel:

(SDUASSUOBS) 1L+ ={{-CAokY — E,(DV E) AN okZ — F,okY,okZ,
-C' A —|F}}

We have two possibilities for ASS-minimal incision functions:
o1 = {okY} and o9 = {0kZ}
This means that either Y or Z are not working well.

7.3 Using System Structure

Suppose that instead of the circuit depicted in Figure 7.1, we have the circuit in
Figure 7.2. Suppose also that we get the same observation, i.e., OBS= -C A = F.
Intuitively, only a small part of the circuit (roughly the sub-circuit at figure 7.1)
has to be considered in order to arrive to a diagnosis.

In Chapter 5, we have extended the definition of kernel semi-revision to an
operation that considers only the relevant part of a database, local kernel semi-
revision. In Chapter 6, we have shown how to use structure present in a database
in order to find compartments and implement local kernel contraction more effi-
ciently. The key idea of the method described is to use a relation of relatedness
between formulas of the belief base. In some applications, as we will see, such a
relation is given with the problem. In the case of the circuit shown in Figure 7.2,
there is a very natural dependence relation. The output of each of the components
depends on the input and on whether the component is working well.
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G13

Figure 7.2: Larger circuit

The only observation we have is “C'A—F'. Since this observation is inconsistent
with the system description together with the assumption that all components
are working well, there must be some faulty component. Moreover, the faulty
component must be in the path between C and F' (of course, there may be other
faulty components, but we are only searching for the abnormality that explains
the observation). We only need to consider the descriptions of components y and
z in order to find the diagnosis.

In the next section we will show how to use the framework of Chapter 6 in
order to find diagnoses without having to check the entire system description for
consistency.

7.4 Local Kernel Diagnosis

As we have seen, diagnosis problems fit very well in the framework for local change
that we proposed in the preceding chapters. Besides the fact that the traditional
method for finding diagnosis based on the notion of consistency is almost identical
to the construction of kernel semi-revision, in most diagnosis problems there is a
very natural notion of relatedness that can be used to structure the belief base
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so that the search for diagnoses becomes more efficient.
In this section we formalize the example in Figure 7.2 in order to show how
to derive a concrete relatedness relation from the given database.

Gl G2 G3 G6 G7 G8

G4 G5
okwl (i)kwi ok\¢/v4 ikwé
\ / okw3
/
A B C G9 G10
N okiie
okx i
N/
D E Gl1

\0k< /ok(zv?

okw8

l

G13

Figure 7.3: Relatedness relation between atoms

We will use a relatedness relation between atoms, as illustrated in Figure 7.3.
The relation is not symmetric. We can easily adapt the definitions presented in
Chapter 6 to deal with a directed graph.

The basic algorithm is as follows: we start from the propositional variables
that occur in the observation and spread the activation in the graph, following
the direction of the arcs. The spreading finishes either when the end of the paths
are reached or when we run out of resources (time or memory). This is done by
the algorithm Retrieve below, an adaptation of the algorithm given in Section
6.4.

Retrieve(OBS,ASS,Relevant):

. For all p € Var(OBS), mark(p)

. A1(OBS) := Adjacent(Var(OBS))
. Relevant := Var(OBS)NASS

1 := 1; stop := false

. While not stop do
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5.1. For all p € A*(OBS), mark(p)
If p €ASS, then Relevant := Relevant U{p}
5.2. 1 :=i+1; A*(OBS)=0
5.3 For all p € A™"1(OBS),
A'(OBS) := A*(OBS) U{q €Adjacent(p) s.t. not marked(q)}
5.4 If A*(OBS)= 0, then stop := true

After we have retrieved the relevant assumables, the relevant compartment is
taken to be the observation together with all formulas in SDUASS which mention
the relevant assumables.

Compartment(OBS,SD,ASS,Comp):

1. Retrieve(OBS,ASS,Relevant)

2. Comp=0BS

3. For all p €Relevant, Comp:= CompU{a eSDUASS|p €Var(a)}.

As we have seen in Section 6.4, the algorithm for Retrieve is an anytime
algorithm. The algorithm for Compartment is not, at least in principle. But if
one keeps the order in which the relevant atoms are retrieved and uses them in
this order in line 3 of algorithm Compartment, one can be sure that the description
of the most relevant components will be retrieved first.

For the circuit in Figure 7.2, we have:

SD={(AA B) AokX — D, -(AAB) ANokX — —D,

C AokY — —E, -C AokY — E,

(DVE)ANokZ — F,~(DV E)AokZ — —F,

G1 A okW1 — —=A, ~G1 A okW1 — A,

(G2V G3) N okW?2 — B, =(G2V G3) A okW2 — —B,
(GANGH) NokW3 — C, ~(G4ANG5) ANokW3 — —C,

G6 N okW4 — =G9, ~G6 N okW4 — G9,

(G7NG8) N okW'5 — G10, =(G7 A G8) A okW5 — —G10,
(G9V G10) A kW6 — G11, =(G9 vV G10) A 0kW 6 — —G11,
G11 A okW'T — G12, =G11 A okW'T — ~G12,

(F A G12) A okW8 — G13, —=(F A G12) A kW8 — —G13}

ASS ={okX, okY,okZ, okW1,0kW 2, 0kW 3, 0kW4, okW5, okW6,
ok W7, 0kW8)

If we apply the algorithm Retrieve(—~C A—F,ASS Relevant) on the graph de-
picted in Figure 7.3, we get Relevant={okY 0kZ,0kW8}. For Compartment(OBS,
SD, ASS, Comp) we get Comp={-C A =F,C A okY — —FE,-C A okY —
E,(DVE)ANokZ — F,~(DV E)ANokZ — —F,(F ANG12) AokW8 — G13,—~(F A
G12) A okW8 — —G13, okY, ok Z, okW 8}.

The diagnosis can be searched using only the formulas in Comp. Note that
the component w8 was not really relevant for the diagnosis but, nevertheless, we
have reduced the set to be semi-revised.
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This is a very general method for focusing on a small part of the system
description. One can add to it some domain specific heuristics to improve its ef-
ficiency. The system IDEA [SC97], used by FIAT repair centers works on depen-
dence graphs that show graphically the relation between the several components
of a device.

7.5 Computing Kernel Operations

In this section we will show how Reiter’s algorithm for computing diagnosis can
be adapted and used for belief revision.

7.5.1 Reiter’s Algorithm

The algorithm given in [Rei87] computes all minimal hitting sets for an arbitrary
collection of sets. We will use it later for finding the incision functions used in
kernel constructions. We present here the version corrected by [GSW89).

The algorithm generates a directed acyclic graph (DAG) with nodes labeled
by sets and arcs labeled by elements of the set. The idea is that for each node
labeled by a set S, the arcs leaving from it are labeled by the elements of S. Let
H (n) denote the set formed by the labels of the path going from the root to node
n. Node n has to be labeled by a set S such that SN H(n) = 0. If no such set
can be found, the node is labeled by @. The idea is that every path finishing at
a node labeled by @ is a hitting set, since it intersects all possible labels for the
nodes.

The algorithm tries to generate as few new node labels as possible. This is
due to the fact that for diagnosis (and for belief revision as well), the collection of
sets F' which can be used as node labels will be given only implicitly. Calculating
one element of F' involves a call to a theorem prover to find a conflict set (in the
case of diagnosis; a kernel in the case of belief revision) and is therefore a very
expensive operation.

The algorithm minimizes the number of calls to the theorem prover by pruning
the graph while it is being built. When a new node has to be labeled, the
algorithm tries to re-use existing labels first. If a node label S is a superset of
another label S’, then it can be “closed”, it does not have to be considered any
longer, since any hitting set for F' will be a hitting set for F'\ {S}.

Let F' be a family of sets.

1. Choose one set to label the root node (level 0).

2. For each node n at level 7 do:

2.a. If n is labeled by a set S, then for every s € S create an arc departing
from n with label s.

2.b. Set H(n) to be the set of arc labels on the path from the root to node n.
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2.c. If there is some node n’ such that H(n') = H(n) U {s}, then let the s-arc
of n point to n'.

2.d. Else, if there is a node n’ labeled by @ such that H(n') C (H(n) U {s})
then close the s-arc (i.e., do not compute a label or successors for this node).

2.e. Else, if there is some node n’ labeled by S’ such that S'N(H (n)U{s}) = 0,
then let the s-arc of n point to a new node labeled by S’.

2.f. Otherwise, let the s-arc point to a new node m and let m be labeled by
the first element S’ of F' such that S’ N H(m) = 0. If no such set exists, then
label m by Q.

2.g. If there is some node n' labeled by a set S; such that S’ C Si, then
relabel node n’ by S’ and remove all arcs departing from n’ which were labeled
by elements of S"\ 5.

3. Repeat step 2 for level ¢ + 1.

The algorithm expands the graph breadth first. Each level is processed by
step 2. Steps 2.c and 2.e re-use nodes or labels if possible. Reiter has proven the
following theorem:

7.5.1. THEOREM. [Rei87] Let F be a collection of sets and let D be a graph
returned by the algorithm above. The set {H(n)|n is a node of D labeled by @} is
the collection of minimal hitting sets for F.

The final algorithm for calculating all diagnoses constructs a DAG as above,
except that when it is supposed to generate a new node label, it does so by
calling the theorem prover with a smaller set. Let TP be a function such that
TP(SD,ASS,0BS) returns a conflict set for (SD,ASS,OBS), i.e, a subset S of
ASS such that SDUSUOBS is inconsistent. If no conflict set exists, the func-
tion returns @. When one needs to compute a label for a node n, label n by
TP(SD,ASS\H(n),0BS).

Consider the following example [GSW89]:

Example 18: Let F = {{a,b}, {b,c},{a,c},{b,d}, {b}}. Figure 7.4
shows part of the graph built by the algorithm. The set {a,b} is
chosen to label node 0 and two arcs are created with labels a and b.
Node 1 is labeled by {b, ¢} and node 2 by {a, c} and arcs are created
leaving from node 1 labeled by b and ¢ and leaving from node 2 labeled
by a and c¢. Node 3 receives the label @, since there is no set S € F'
such that SN H(3) = SN {a,b} = 0. Node 4 is labeled by {b,d}.
The arc leaving from node 2 and labeled by a points to node 3, since
H(3) = H(2) U {a} (step 2.c of the algorithm). Node 5 is labeled by
Q, since there is no set S € F such that SN H(5) = SN {b,c} = 0.
Node 6 is closed (step 2.d of the algorithm), since nodes 3 and 5 are
labeled by @ and H(3) C H(6) and H(5) C H(6). When node 7 is
labeled by {b} C {a,b}, the graph is pruned and the root node 0 is
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Figure 7.4: Reiter’s algorithm — 1

relabeled by {b} (step 2.g). The resulting graph is shown in Figure
7.5. The hitting sets are {a, b} and {b, c}.

0:{a,b}
b
2{ac}
a .-
P c
3@ 5@

Figure 7.5: Reiter’s algorithm — 2

7.5.2 An Algorithm for Kernel Semi-Revision

In order to apply the algorithm for kernel operations, one needs to adapt very few
things. Usually, we will not have access to the whole collection of inconsistent
kernels. Using a theorem prover in order to find an inconsistent subset of a belief
base does not guarantee that the set returned is a minimal one. Nevertheless,
even if the set is not minimal, the algorithm returns the collection of values for the
minimal incision functions for all inconsistent subsets of the base. In particular,
the returned values are values for incision functions for the inconsistent kernels.
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Let TP be a function such that TP(B) returns an inconsistent subset of B.
We then build a directed acyclic graph using Reiter’s algorithm. Whenever a new
label for a node n has to be generated, we call TP(B\H(n)).

That the algorithm does what it is expected to do follows directly from the
correctness of Reiter’s algorithm.

Example 19: Consider the belief base B = {—a,-b,a V b,q,q —
p,p}. There are only two inconsistent kernels, {—a,—b,a V b} and
{q,q9 — p, —~p}. However, the theorem prover may find some superset
of these sets. Suppose it finds the collection {{—a, =b, aVb, ¢}, {-b,aV
b,q,q9 — p,—p},{—a,=b,aVb,q,—p},{-a,q,9 = p,-p},{-a,=b,aV
b},{q9,9 — p,—p}}. The algorithm computes the graph shown in
Figure 7.6. From part (1) to part (2) in the figure we see that the
root node is relabeled by {—a,—b,a V b}. From part (2) to part (3),
since the label of node 5, {¢,q — p,—p}, is a proper subset of the
labels of nodes 1, 2 and 3, these nodes are relabeled.

The values for the incision functions are: {—a,q — p}, {—a,q},

{—a,—p}, {b,q = p}, {-b,q}, {—b,p}, {a Vb, qg—p}, {aVb -p}
and {a V b, —p}.

7.5.3 Applying the Algorithm to Local Operations

The algorithm for kernel operations can be easily combined with the algorithm
for finding the relevant compartment presented in Chapter 6. Consider once more
the belief base B = {—a,—b,a V b,q,q — p,—p}. Suppose we are only interested
in solving inconsistencies related to p. If we assume the relatedness relation given
by:
R(«, B) if and only if & and 3 share an atom,

the algorithm Retrieve(p,B,Relevant) given in Section 6.4 returns Relevant={g,
g — p,—p}. We can the apply Reiter’s algorithm in order to find the possible
values for incision functions. It is not difficult to see that the algorithm returns

{4}, {g¢ — p}, and {-p}.

7.6 Related Work

7.6.1 Approximate Diagnosis

In [tTvH96], ten Teije and van Harmelen propose the use of approximations for
calculating diagnosis in an efficient way. They use the approximate entailments
proposed by Schaerf and Cadoli in [SC95]. Approximate entailments have as a
parameter a set S of propositional letters, which are the “relevant” letters. By
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Figure 7.6: Finding incision functions

augmenting the set S, one gets closer to classical entailment. Schaerf and Cadoli
define two kinds of approximate entailment, one which is unsound and complete
(E7) and one which is sound but incomplete (=5).

Approximate entailments are defined using different sorts of truth assign-
ments. A 1-S-assignment makes for all p ¢ S both p and —p false, while a
3-S-assignment makes at least one of the literals p and —p true. For propositional
letters in S, both truth assignments behave classically. A set A 1-S-entails a for-
mula « if and only if every 1-S-assignment that satisfies A also satisfies a. The
definition of 3-S-entailment is analogous.

Schaerf and Cadoli have shown that when S is augmented, the accuracy of
=5 as an approximation of classical entailment improves and the same holds for
#7 as an approximation of £. They also present an incremental algorithm for
calculating =7 and 5 and show that in the worst case, i.e., when one needs
to increase S until the approximate entailment becomes classical, the complexity
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is not higher than the complexity of classical entailment. The algorithm can be
interrupted as soon as one has a satisfactory approximation.

Ten Teije and van Harmelen propose the use of approximate entailment for
diagnosis instead of classical entailment. Varying the set S, one can reduce or
increase the number of diagnoses. The idea is very similar to ours: consider
only the relevant part of the system and augment the part considered until a
satisfactory result is obtained. The main problem, as they point, is to choose
a good initial set S. In [tTvH96] and [tTvH97], they give some strategies for
selecting the set S.

7.6.2 Assumption-Based Truth Maintenance Systems

Assumption-Based Truth Maintenance Systems (ATMS) were developed by De
Kleer [dK86] as a module of a problem solver. This module was supposed to
maintain a structure of atoms and causal links so that queries could be answered
efficiently. An ATMS consists of a background theory (represented as a set of
propositional Horn clauses), assumptions and observations, both represented by
positive literals.

The main mechanism of an ATMS is the labeling of atoms. Each atom,
including 1, is labeled by the set of minimal sets of assumptions which together
with the background theory imply that atom. Using the notation for kernels
introduced in Definition 5.1.1, we have that the label of an atom a is given by
A Ul ¢,a, where A is the set of assumptions, 7" is the background theory and
Cr(X) = C(X UT). The elements of the label of L are called nogoods and are
used to check the consistency of other labels. The nogoods correspond to the
conflict sets in Reiter’s construction (Definition 7.1.5). It would be interesting to
see how the machinery developed for ATMS can be used for implementing kernel
operations and in particular, for calculating the kernels.

7.7 Conclusion

In this chapter we have seen an application of the theory developed in the pre-
ceding chapters to the problem of model-based diagnosis. We have shown how
the problems of belief revision and diagnosis are related and how one can use the
structure of a particular diagnosis problem in order to consider only the relevant
components of a system.

We have also shown how Reiter’s algorithm for diagnosis can be adapted
for implementing belief revision operators. The fact that Reiter’s algorithm can
be used for belief revision bridges the gap between belief revision theory and
implemented systems. Reiter’s algorithm is used in several systems and we expect
that several computational tools developed for diagnosis systems can be adapted
for revision operators.



Chapter 8

Discussion and Future Work

In this thesis, we have presented a theory of belief revision for more realistic
agents, i.e., for all of us who do not have access to infinite memory, an infinite
amount of time to reach conclusions, and perfect logical ability. This includes all
sorts of agents except for the idealized beings which have been studied in most
approaches to belief revision.

We have started by presenting a formal framework that includes a model for
belief states and simple operations for changing belief states. Our model for
belief states distinguishes between different sorts of beliefs, according to whether
they are explicitly or implicitly believed, whether they are currently active and
whether they are fully believed or only provisional. There are in the literature
several proposals which present some of these distinctions, but our proposal differs
from the existing ones in the following aspects:

e Unlike Harman’s [Har86] and Cherniak’s [Che86] informal proposals, we
present a formal framework based on sets, where the relationship between
the different sorts of beliefs is made clear.

e Unlike formal approaches that distinguish between explicit and implicit be-
liefs such as the ones due to Fagin and Halpern [FH88| and Levesque [Lev84],
we do not require the set of explicit beliefs to be consistent nor assume that
the implicit beliefs are the classical consequences of the explicit beliefs.

e As opposed to what is common in Belief Revision, we try to look at belief
change operations step-by-step, breaking them into very simple operations
on belief states.

We have shown that traditional belief revision operations for idealized agents
can be simulated in our framework if we allow for infinite sets and infinite se-
quences of basic operations.

115



116 Chapter 8. Discussion and Future Work

The basic operations that we describe are used as building blocks for con-
structing complex operators. The main idea is that when an agent receives new
information, this information is not immediately fully accepted, but is instead
recorded as a provisional belief. The agent must next decide, in the light of his
previous beliefs, whether this provisional belief should be accepted or not. Our
framework does not say much about how this decision is taken. In Appendix A,
we present an example of one way to implement this decision process. We sug-
gest the use of argumentation theory as presented in [Dun95, Lou98]. Arguments
for and against a certain provisional belief are compared and used for taking a
decision. We use Loui’s framework for resource-bounded argumentation [Lou98|,
in which the agent does not always succeed in taking all arguments into account,
but examines as much as his available resources allow him to.

Another important point in our framework is that the set of active beliefs, i.e.,
the beliefs that are available for reasoning, is very small when compared to the
set of explicit beliefs. This accounts for the intuition that agents cannot think of
everything they know at the same time. An agent is usually focussing on a certain
topic, or subject matter. One of our basic operations takes care of the retrieval
of explicit (but not active) beliefs into the set of active beliefs. But how does the
agent decide which beliefs are relevant for a certain operation of belief change? In
Chapters 5 and 6 we have presented two different solutions to this problem. The
first solution, presented in Chapter 5, uses logic — and only logic — to isolate
the relevant part of the agent’s beliefs. A belief is considered relevant for a given
formula if it contributes to proving or disproving the formula. We define local
operations of belief change that affect only the relevant set retrieved. This method
has several shortcomings: finding the relevant beliefs is computationally as hard
as the traditional belief change operators. Moreover, there is no control over the
size of the retrieved set, i.e., it may happen that the set of relevant beliefs is the
whole set of explicit beliefs. But the method provides us with some interesting
formal results. All the local operations that we have defined are axiomatized,
and the representation results show exactly what is needed for each operation to
maintain its elegant logical properties. Since these axiomatizations do not depend
on the particular notion of relevance we have used, we propose in Chapter 6 a
computationally efficient method for finding relevant beliefs. For this method
we need extra-logical information about the relatedness relation between beliefs.
This information allows for the distinction of different degrees of relevance. We
show that relatedness relations can very often be derived from the given set of
beliefs or from a particular application, such as the one investigated in Chapter
7. Besides the computational advantages, the method described in Chapter 6 is
also very intuitive and is in line with research on cognitive models of memory
[And80].

Chapter 7 presents an application of the theory developed in this thesis to
the area of model-based diagnosis. Diagnoses of circuits are used as concrete
examples and make clear what the abstract theoretical notions actually mean.



117

A relatedness relation in a circuit may be the causal link between the output
and input of a certain component. The method presented in Chapter 6 is used to
focus the diagnosis on the relevant part of the circuit. By making the link between
belief revision and model-based diagnosis, we also claim that some computational
tools developed for diagnosis can be used for implementing belief revision. In
particular, we show how Reiter’s algorithm for consistency-based diagnosis can
be used for implementing kernel semi-revision.
To summarize, the main achievements of the present thesis are:

We have defined more structured belief states and basic operations that
apply to them and showed that under the common assumption of logical
omniscience, belief states together with the basic operations can simulate
the AGM paradigm.

(Joint work with Sven Ove Hansson) We have generalized several of the
representation results found in the literature for more abstract inference
operators. For each belief change operation, we have shown which are the
properties that an inference relation must have so that the axiomatizations
are correct.

(Joint work with Sven Ove Hansson) We have defined a notion of local
inference which considers only the relevant part of a belief base, and we
used this notion to define local versions of existing belief change operations.

We have presented a method for efficiently retrieving the relevant part of a
belief base which can be used together with the local versions of the belief
revision operations.

We have presented diagnosis as a practical application for the local opera-
tions of belief change.

We have shown how algorithms developed for model-based diagnosis can be
adapted to implement belief revision.

There are several directions in which the work presented here can be expanded.
We list below some ideas for future work:

It would be interesting to study more thoroughly the decision process for
accepting provisional beliefs. An idea would be to follow the proposal pre-
sented in Appendix A and investigate existing argumentation systems to see
whether they can be used together with our framework for resource-bounded
revision.

Since the representation results presented in Chapter 5 are very general, it
would be interesting to see whether they can be used together with Schaerf
and Cadoli’s approximate entailment [SC95], giving an anytime method for
approximate belief revision and maintaining the logical axiomatization.
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e The framework presented in Chapter 6 can be used with any notion of
relevance or relatedness. Applying specific notions of relevance proposed in
the literature could make clear whether our framework is in line with the
intuitions behind these proposals.

e Reiter’s algorithm for diagnosis can be further adapted in order to im-
plement other constructions for belief revision operators. In particular, it
would be interesting to check whether the selection mechanism used in par-
tial meet operations can be embedded into the algorithm.



Appendix A

Full Acceptance Via Argumentation

As we have seen, in most approaches to belief revision, incoming information is
given the highest priority, so that if a contradiction arises, some of the previ-
ous beliefs have to be given up. In approaches to non-prioritized belief revision
[Han97b, Han99a), i.e., revision in which the new piece of information does not
have the highest priority, the decision whether to accept new information or not
is usually taken with the help of extra-logical means such as selection functions or
incision functions, but there is no real recipe of how to construct these functions.
In this chapter, we explore a different idea — using argumentation theory for
deciding whether new information is acceptable.

We will use the simplified model of belief states introduced in Section 4.1
together with the operations defined in Section 4.2. In this chapter, we turn to
a question left open by the model in Chapter 4, namely how to decide whether
a provisional belief should be accepted. The model that we will present is very
simplified. The aim of this chapter is only to show that argumentation theory
can be a useful tool to combine with our framework.

According to Dung [Dun95], a formula is believable “if it can be argued suc-
cessfully against attacking arguments”. Dung also says that reasoning about
one’s own beliefs is like performing an internal argument [Dun95]. Our concept
of provisional beliefs is based on Harman’s idea of tentative hypotheses. In order
to be fully accepted, a tentative hypothesis has to survive the best attempts to
refute it [Har86]. In our case, “best attempts” are as good as the agent is capable
given his limitations.

This is reflected in the framework for resource-bounded argumentation given
in [Lou98|. Loui describes a very general framework where there are a number of
parties involved, some of which (the players) are allowed to make locutions, the
others being advocates. Each of the players tries to get the current opinion to be
in his favor by presenting arguments. A vector represents the resources consumed
at each move.

A protocol for disputation has to be defined and depends on the application.
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These are the real “rules of the game”, which determine what is allowed as a
move, who is allowed to make the next move, how the moves affect the current
opinion, and what the conditions for termination are. In [Lou98], some protocols
are presented, which can be chosen according to the intended application.

In the next section we will present the theory of argumentation based on
[Lou98|. In section A.2 we present our proposal for using the theory sketched in
section A.1l to enrich the framework presented in Chapter 4.

A.1 Argumentation

In this section, we introduce the basic concepts of argumentation theory that we
will need in this chapter. This section is based on [Lou98|.

Argumentation has been investigated by researchers in the area of philosophy
and artificial intelligence. Recently, it became clear that argumentation can be
seen as a kind of non-monotonic reasoning. Arguments are not proofs, but some
kind of justification for a claim, usually defeasible. An argumentation process
usually follows some protocol. Once the parties involved in the disputation agree
on the protocol, the outcome of an argumentation process following the protocol
is considered fair.

Disputations are highly non-monotonic. The outcome depends on the par-
ticular way in which the argumentation process took place and if the process
continues, the outcome may change. Nevertheless, the process is fair (provided
the disputants agreed about the protocol) and the outcome is warranted.

An argument is usually a pair formed by a set of formulas and one special
formula, the claim. The set of formulas serves as a justification for the claim.
Arguments are related to each other in several ways. Arguments can interfere
with each other, in case their claims (or subclaims) are inconsistent.

Loui [Lou98| defines a very general framework for argumentation that has to
be “filled in” in order to model particular kinds of disputation.

An argumentation process is a sequence of locutions, where each locution is
a triple formed by one party, the argument and the resources consumed. The
participants of the argumentation process do not necessarily have access to the
same information. They may also have different shares of resources at their
disposal. In our case, we will use argumentation processes where only two parties
are involved, pro and con. A variable current.opinion stores the party which is
winning the disputation at a certain point. The parties try to switch the current
opinion in their favor by advancing locutions. Since we are modeling an internal
argumentation process, where a single agent is involved and plays the roles of pro
and con, we can assume that both parties have access to the same information.
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A.2 Using Argumentation for Accepting Beliefs

In this section we present our proposal for using argumentation in order to decide
whether a provisional belief should be accepted or not. In our case, the argu-
mentation is an internal process where a single agent plays the role of pro and
con, analyzing the arguments for and against a given provisional belief. Since we
are dealing with resource-bounded agents, this internal argumentation will not
always succeed in examining all reasons for accepting or rejecting a belief. By
defining a protocol for this process, we have to take care that the outcome can
be considered fair.
There are two ways in which a sentence can become a provisional belief:

1. New information may be acquired by an operation of observation, i.e., come
from the outside world. This new piece of information has to be checked
before being fully accepted. In this case, con tries to argue against it. If
he fails, the provisional belief is accepted, since it has survived the best
attempts to refute it. If con succeeds, the provisional belief is rejected.

2. A sentence that was previously accepted, an explicit belief, may become
provisional if the agent gets evidence against it. In this case, inquiry is
reopened ([Har86]) and pro tries to argue for the sentence. If he fails, the
provisional belief is rejected. If pro succeeds, the provisional belief becomes
fully accepted again.

In the framework presented in Section 4.1, there are two clearly limited re-
sources: the size of the set of active beliefs and the number of basic operations
used in the disputation process. Since in our case a single agent is playing the
roles of pro and con, the set of active beliefs is a shared resource, both pro and
con have access to the whole set.

All the sentences in the arguments presented become active. The elements
of the set of active beliefs are ordered according to the time in which they were
introduced in the argumentation. When the set gets too big, the oldest elements
are “forgotten”. If the discarded elements were explicit beliefs that were retrieved,
they remain in the set of explicit beliefs but become inactive. If they were only
provisional beliefs, then they are irremediably forgotten and dismissed from the
whole structure.

An argument for us will be a sequence of elements of the set of explicit beliefs
which is a derivation for its claim according to a finite (small) number of applica-
tions of inference rules known by the agent. An argument arg of player p (=pro
or con) is counterargued when the other player presents an argument against one
of the elements of arg (its subclaims). An argument arg of player p is defeated
if it is counterargued by arg’ and p does not manage to counterargue arg’ (either
because there are no counterarguments or because the resources are exhausted).
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When an argument is introduced by one of the players, the beliefs that are
part of it are retrieved into the set of active beliefs. When an argument is coun-
terargued, its claim becomes provisional. If an argument is defeated, its claim is
rejected.

The protocol we will be using assumes that the resources are equally divided,
i.e., if player p; has exhausted his share of resources but ps has not, then p, is
still allowed one move. Except for this situation, the players alternate the moves.
No repetition of counterargued (sub-)arguments is allowed.

Suppose a sentence « is observed. The current opinion is set to pro and con
tries to find an argument for —a. If he fails, then « is accepted, otherwise, current
opinion is set to con and pro tries to either counterargue the last argument or
present a new argument for a. If pro fails, then « is rejected. Otherwise, current
opinion is set to pro and con tries to either counterargue the last argument
or present a new argument for —a. The process continues until resources are
exhausted. The player favored by current opinion wins.

A.3 Example

We will now see an example application of the protocol described in Section A.2.

We first have to give some more details about the procedure. The claim to be
verified, a provisional belief, remains active during the whole argumentation. It
cannot be dismissed due to overflow in the set of active beliefs. The set of active
beliefs is ordered by recency, i.e., beliefs that have been used first are the first to
be forgotten in case of overflow. However, if an active belief is reused, it becomes
more recent and changes place in the order. This agrees with cognitive models of
memory, as for example in [And80].

The claim which is being verified and claims of arguments that have been
counterargued cannot be used in new arguments.

The size of the set of active beliefs, one of the limited resources, is given by
the number of atoms occurring in its formulas. Part of the history of the process
is kept in the form of arguments advanced, so that there is no repetition. This
should also be limited in size like the set of active beliefs, but in the example we
will ignore this fact.

We will use the following logic for the example:

1. atoms a, b, c, ..., p standing for “albert comes to the party”, “betty comes to
the party”, “charles comes to the party”, ..., “patrick comes to the party”.

2. formulas z — y standing for “If x comes to the party, then y comes to the
party” ; x — —y standing for “If £ comes to the party, then y does not
come to the party”, etc.

3. inference rules modus ponens (z,z — y = y) and inversion (z — y =
Yy — —|.’E).



A.3. Example 123

Depending on who likes whom and who dislikes whom, we know who is (or is
not) going to come to the party given who is (or is not) coming. Moreover, we
know of some people that are coming (albert, ferry, harold, kate, and oswald).
Our initial set of explicit beliefs is:

E={a,a >bb—c,c—dd—g,f,f—ee——c,~c— —phh—>ii—
4,3 = —e,k,k— 11— m,m—nn— —io00— pp— -l,-l — —b}.

We assume that the maximum size of the set of active beliefs is 20. We want
to know whether ¢van is coming to the party:

e Step 1: con tries to refute 4, presenting an argument for —z. The formulas
in the argument are retrieved from the set of explicit beliefs and stored as
active beliefs. Inference is applied four times in order to get to the claim —
from the argument.

— con presents argument {k,k — [,l - m,m — n,n — —i} for —.

— 9 basic operations: retrieval {k,k — ;I - m,m — n,n — —i};
inference {l,m,n, i}

- A={i,k,k=>1L1Ll—>mmm—nnn— —i i} |A=14
— History: {{k,k = 1,1l > m,m - n,n— —i}}

— current.opinion = con

e Step 2: pro advances an argument against one of the subclaims of the
previous argument. The previous argument is counterargued, but not yet
defeated, since con may counterargue this present argument. The set of
active beliefs grows to its maximum size, 20. The oldest active belief besides
the claim (k) is dismissed to make space for the new activated beliefs.

— pro presents counterargument {o,0 — p,p — —l} against [.
— 5 basic operations: retrieval {o,0 — p,p — —l}; inference {p, -l}.

- A={i,k— Ll > mmm— nnn — —ii00 — p,pp —
=1, =} |A|=20

— History: {{k,k = 1,1l > m,m = n,n— —i},{0,0 = p,p — —l}}
— current.opinion = pro
e Step 3: con counterargues the previous argument. The oldest elements of

the set of active beliefs (except i) are dismissed to make space for the new
beliefs retrieved.

— con presents counterargument {f, f — e,e — —¢,~c — —p} against
p.



124 Appendiz A. Full Acceptance Via Argumentation

— 7 basic operations: retrieval {f, f — e,e — —¢,—¢ — —p}; inference
{e, ¢, —p}.

- A = {i,~i,0,0 = p,p,p — Ll f, f = eee — —¢c,—c,7c —
—p, p}}; [A[=19

— History: {{k,k = 1,1l > m,m = n,n— —i},{0,0 = p,p — ~l},{f,
f—ee— —c,—c— —p}}

— current.opinion = con

e Step 4: pro counterargues the previous argument. Again, some elements
of the set of active beliefs must be dismissed.

— pro presents counterargument {a,a — b,b — ¢} against —c.

— 5 basic operations: retrieval {a,a — b,b — c}; inference {b, c}

- A={i,~l f, f > eee— —c,—c,mc— —p,p,a,a — bbb— cch
|A|=19

— History: {{k,k = 1,1l > m,m = n,n— —i},{0,0 = p,p — -l},{f,
f—ee——c,—c— —p}t,{a,a = bb— c}}

— current.opinion = pro

e Step 5: con’s arguments were defeated, since he cannot counterargue the
previous arguments advanced by pro anymore. con advances a new argu-
ment against . Some of the beliefs used in this argument (f, f — e, e — —j)
are already active so they do not need to be retrieved. They only change
place in the set of active beliefs.

— con presents counterargument {f, f — e,e — —j, —j — —i} against i.

— 6 basic operations: retrieval {j — —e, i — j}; inferences {e — —j, —j,
-7 — 1, —|i}

- A= {Zabab — Cacafaf — eaeaj — e, e — _'.7)_'.7)7’ — ja_'j —
—i,-i}; |A|=19

History: {{k,k — 1,1l &> m,m — n,n — —i},{0,0 = p,p — I}, {f,
f—ee— —c,—c— —ph{a,a > bb—c {f,f > ee—jj—

—i}}

— current.opinion = con

e Step 6: pro cannot counterargue the previous argument, but presents in-
stead a new argument for z. Since con does not have any other counterar-
guments or arguments for —z, pro wins the disputation.

— pro presents argument {h, h — i} for i.
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— 3 basic operations: retrieval {h, h — i}; inference {7}.

- A= {iacafaf — €,€,j — e, e — _'.7)_'.7)7’ — ja_'j — _'ia_'iahah —
i}; |A|=19

— History: {{k,k = I,l > m,m = n,n — —i},{0,0 = p,p — ~l},{f,
f—ee— —c,mc— —p}{a,a = bb—cH{f,f o ee—jj—
—i},{h,h — i}}

— current.opinion = pro

A.4 Discussion

The aim of this chapter was to give a flavor as to how argumentation theory can
be used in order to decide which beliefs should be fully accepted. These ideas
enrich the framework presented in Chapter 4.

The protocol and the example presented are clearly too simple minded to en-
code the real decision process, but they illustrate the internal process of “weigh-
ing” the arguments in favor and against a certain claim that takes place when an
agent is confronted with information about which he is not sure.

In most argumentation systems there is some notion of priority which is used
in two phases: first to help one player to select which argument he is going to
advance among the several possibilities, and then to judge whether the argument
advanced is good enough to defeat the other player’s argument. Another feature
of argumentation systems which we have ignored here is the existence of defeasible
implications.

In our example, we have a set which collects the arguments that have occurred
during the process. Since we are dealing with resource-bounded agents, this set
must also be limited in size. The set is used to avoid repetitions of arguments.
But if an argument was used so early that it has already been forgotten, there is
no way to avoid repetition.

Future work includes examining existing implemented argumentation systems
in order to refine the protocol of the argumentation process. One such system
is presented in [SL92], together with a mathematical treatment of the relations
between arguments.

It would also be interesting to check whether we can have a uniform treatment
of priority, i.e., whether the same notion of priority used to select arguments can
be used for the revision mechanism.






Appendix B

Proofs related to Chapter 4

Proposition 4.2.2: Given any two belief states ¥y = (FEj, A;) and 3y =
(E5, As), there is a sequence of basic operations that takes ¥; into 3.

Proof: Let ¥ = (E1, A;) and ¥y = (Es, As). Since the size of the set of active
beliefs is limited, we have to move the formulas one by one. Let {¢1, ¢, ..., on}

be an enumeration of the elements of E; \ Es and {41, s, ..., ¥, } an enumeration
of the elements of Fy \ F;. We have:
211 O 1 04 P1 Oc P1 Or P2 O P2 Oc P2 Op ... Or Y Od Pn O Pn = (E1 N Ey, Ay).
<E1 N EQ?Al) %o /‘/Jl Oqa 1!}1 %o 1/12 Oqa 1!}2 Op --- O ¢m Oq ¢m = <E2’A1)‘
In the same way, by repeating the operations of rejection (o.) for the elements
of A1\ Ay and then observation (o,) for the elements of A\ A;, we obtain ¥s.
O

Lemma 4.3.4: f(K)+¢p = f(K + )
Proof: f(K)-+e = CL((K, Cn,0)o,00s0) = CL((K, Cn, {0} oup) = CI((KU
{¢},Cn,0)) = (Lemma 4.3.2){Cn(K U {p}),Cn,0) = f(K + ¢) O

Lemma 4.3.6: If —, is the AGM partial meet contraction operator based on
7, then f(K)= {0} = F(K — ¢).

Proof:f(K)—{¢} = (K,Cn,0) o, K\ (Nv(KLa))os K\ (NY(KLa))o. K\
(N¥(K La)) = (K, Cn, K\ (N(K L)) 0a K\ (N7(K La)) 0. K\ (Ny(K La)) =
(((] 'y(KJ_c;), Cn, K\ (NYv(KLa)))o. K\ (NYv(KLa)) = (Nv(KLa),Cn,0) =
f K —v¥) O

Proposition 4.5.3: Given any two belief states 3; = (E;, Ay, W;) and ¥y =
(Eo, Ag, W), there is a sequence of basic operations that takes 3; into 3.

Proof: Since the size of the set of active beliefs is limited, we have to move
the formulas one by one. Let {1, @2, ..., ¢, } be an enumeration of the elements
of Ey \ Es and {41,s, ..., %, } an enumeration of the elements of Ey \ E;. We
have:
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211 0y (01 04, 1 9¢ P1Op P2 04, P2 Oc P2 Op -.... Or ©n Ode Pn Oc Pn = <E1 ﬁE2aAlaX>-
(E1 N B3, A1, X)) 0611 04 b1 06 g 04 P2 0 ... 0 Wy 00, = (E2, A1,Y).

(Eq, A1, Y)Y o, (A1 \ As) 0, (A2 \ A1) = (Ea, Ay, 7).

By Observation 4.5.2, Z C (A,).

<E2,A2,Z> Od; (Z\WQ) Og (WQ\Z) :EQ. O

Proposition 4.5.4: The simplified model can be embedded in the refined
one under the assumption that the agent is introspective, i.e., that W=A..

Proof: Let f’ be a function mapping simplified belief states into refined belief
states such that:

S((E,A)) = (E,A A).

We will show that each of the operations in Definition 4.2.1 can be simulated
by a sequence of operations in Definition 4.5.1, i.e., that f’ maps belief states
modified by basic operations in the simplified model into belief states in the
refined model satisfying W=A..

We will use the same symbols for the operations in Definitions 4.2.1 and
4.5.1, it will be clear from the context whether the operations are the ones of the
simplified or the refined model.

e Observation: f'((E,A) o, a) = f'((E,AU* {a})) =
(E, A U* {a}, A U* {a}).

F/((E, A)) o, 0,0 = (E, A, A) o,a0,a = (E, AU {a}, A) o, = (E, AU*
{a}, AU {a}).
F(% 00 @) = (%) 0 oy

e Retrieval: f'((E,A) o, a) = f'((E,AU* {a})) =
(B, AU {a}, AU {a}).
f'((E,A)) o, a=(E,A, A) o, a = (E, A U* {a}, A U* {a}).
(S0, a) = F() o, a

e Acceptance: f'((E,A) o, a) = f/((EU* {a}, A\ {a})) =
(BU* {a}, A\ {a}. A\ {a})
f'(E,A)) osa=(E,A,A) 0, a = (EU" {a}, A\ {a}, A\ {a}).
F/(5% 00 0) = f(5) 0w .

o Tnference: f'((E, A) o; a) = f/((E, A U {a})) =
(B, AU {a}, AU {a}).
F((B,AY) or = (B, A, A) o; 0 = (B, A U* {a, AU {a}).
fl(Zo;a)=f'(%)o;a.
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e Doubting: f'((E,A)ocqa) = f'((E\ {a},A)) =
(E\ {a}, A A).

f,(<Ea A)) Og, X = <E’ A’ A) Og4, X = <E \ {a}’ A> A)
fl(Eoga)=f'(X) o4 .

o Rejection: //(E, A) o, a) = //((E, A\ {a})) = (B, A\ {a}, A\ {a}).
f’(<E7 A)) Ocx = <E: A, A) O ¥ = <E: A \ {a}7 A \ {a}>
fl(EZo.a)=f(¥)o.a.

a

Lemma 4.5.5: h(K)+a = h(K + ).

Proof: h(K)+a = (K,Cn,0,0)+a = CI(K,Cn,0,0) o, @ 0, a 0, @) =
CI(({K,Cn,{a},0) oy a0, a) = CI(K,Cn,{a}, {a}) csa =

CI((K U {a},Cn,0,8)) = (Cn(K U {a}),Cn,0,0) = h(Cn(K U {a})) =
h(K + o). O

Lemma 4.5.6: h(K)—,a = h(K —, a).

Proof: h(K)—,a = (K,Cn,0,0)—a = (K,Cn,0,0) o, Aoy Ao, A =
(K,Cn,A;A) o4, Ao, A = (K \ A,Cn,A;A) o, A = (Ny(KLa),Cn,0,0) =
MAY(K La) = h(K — a). 0






Appendix C

Proofs related to Chapter 5

Observation 5.1.2: Let C' be an inference operation on the language L and
1L ¢ its associated kernel operation. If C satisfies compactness, then B Il ca # ()
for all B C L and all « € C(B).

Proof: Let compactness be satisfied and o € C'(B). Then there is some finite
subset Z of B such that o € C(Z). Let X be any inclusion-minimal subset of Z
with the property o € C(X). Then X € B 1l ca. a

Observation 5.1.3:
1. If B C B', then for every formula «, (B 1L ¢ca) C (B’ 1L ca).

2. If C satisfies compactness and monotony, then B 1l ca = B 1L ¢f if and
only if for all subsets B’ of B, o € C(B') iftf g € C(B’).

3. XeBll¢gaifand only if X C B and X € X 1l ca.

Proof: (Part 1:) Let X € (B 1L ca). Then X is an inclusion-minimal subset
of B such that o € C(X). Since B C B, X is also an inclusion-minimal subset
of B' such that a € C(X), i.e., X € (B' 1L ca).

(Part 2:) Without loss of generality, suppose that there is some B’ C B
such that « € C(B') and g ¢ C(B'). Then, since C is compact, there is some
B" C B’ such that B” € (B 1L ¢a). It follows from g ¢ C(B’) by the monotony
of C that B8 ¢ C(B") and hence, B” ¢ (B 1L ¢f3). For the other side of the
implication, suppose, without loss of generality, that there is B’ € (B 1 ¢a)
such that B' ¢ (B 1L ¢f3). If B ¢ C(B'), B’ is a subset of B such that o € C(B')
and § ¢ C(B'). Otherwise, if 8 € C(B'), then since B’ ¢ (B 1L ¢f3), B’ is not
minimal and there is B"” C B’ such that 8 € C(B"). But since B’ € (B 1L ca),
a ¢ C(B").

(Part 3:) That X C Band X € X Ul ca imply X € B 1L ca follows directly
from Part 1. For the other direction of the implication, note that from the

131
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definition of Il ¢, X € B 1l ca implies that X C B and that X is an inclusion-
minimal subset of B such that & € C'(X). Then X is an inclusion minimal subset
of X such that a € C(X), i.e., X € X U ca. O

Observation 5.1.5:

(1) For all sets A and B of sentences, ¢(A, B) = ¢(A, ¢(A4, B)).

(2) If AC A" and B C B, then ¢(A, B) C ¢(A', B").

Proof: (1) That ¢(A,c(A, X)) C ¢(A,X) follows directly from Definition
5.1.4. To see that ¢(A, X) C ¢(4,c(A, X)), let @ € ¢(A, X). This means that
there is some § € A and some D C X such that a € D, D is C-consistent, and
either D € X 1l ¢6 or D € X 1l ¢—6. But then we have that D C ¢(A4, X)
and since ¢(A4,X) C X, D € ¢(A,X) 1L cd or D € ¢(A, X) 1L c—6 and hence
a€DCc(A (A X)).

(2) It follows directly from Definition 5.1.4 that it is sufficient to show that,
for any sentence 6, if B C B’ then ¢(6, B) C ¢(d, B'). Let g € ¢(6, B). It follows
from Definition 5.1.4 that there is some X such that g € X, X is C'-consistent,
and either X € B 1l céd or X € B 1l 4. It follows from X € B 1L ¢4 and
B C B’ that X € B’ 1L ¢4, and similarly from X € B 1l ¢~ and B C B’ that
X € B' 1l ¢—d. We can conclude from this that 8 € ¢(d, B'). a

Observation 5.1.7: Let C be an inference operation that satisfies monotony,
compactness, and inclusion (X C C(X)). Then:

1. B € Cy(B) iff B € C_(B)
2. If B is C-consistent, then:

o if « € A, then a € Cy(B) iff o € C(B)
e C5(B)=C(B)

3. a e Cr(B) iffa € C(B) iff « € C(0)

4. If all elements of B are contingent, then Cr(B) = C(B)
5. Ca(B) C C(B).

Proof:

1. Let B € Cu(B). Then 8 € C(c(a, B)) and from Definition 5.1.4 it follows
that 8 € C(c(—a, B)). Hence, 8 € C_,(B).

2. Let 1 ¢ C(B).

o Let a € A If o € C4(B), then a € C(c(A, B)) and since ¢(A, B) C B,
it follows from monotony that o € C(B). For the other side of the
implication, let & € C(B). Then it follows from compactness that
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there is an inclusion-minimal subset X of B such that a € C(X).
Since 1 ¢ C(B), by monotony, 1 ¢ C(X). Hence, X € B 1l ca and
X ¢ Bl ¢y, ie, X C c¢(A,B) and from monotony it follows that
a € C(c(A, B)) = Ca(B).

e From o € Cg(B) = C(c¢(B, B)) it follows by monotony that o €
C(B). For the other side of the implication, let & € C(B). Then
by compactness, there is some inclusion-minimal X C B such that
a € C(X). For every element § of X it holds that § € ¢(d, B) and since
d € X C B, €c(B,B). Hence, X C ¢(B, B) and from monotony it
follows that « € C(¢(B, B)) = Cp(B).

3. That o € C+(B) if and only if & € C(B) follows from part 1. Let o €
C7(B). Then a € C(c(T,B)) and by Definition 5.1.4, a € C(0). In the
same way, if & € C(0), then by Definition 5.1.4, o € C(c(T, B)) = Ct(B).

4. Tt suffices to proof that ¢(L, B) = B. That ¢(L, B) C B follows directly
form the definition of compartments. Let o € B. Since « is contingent, from
Definition 5.1.4 it follows that « € ¢(a, B) and from Part 2 of Observation
5.1.5 it follows that « € ¢(L, B). Hence, B C ¢(L, B).

5. Since ¢(A,B) C B, it follows from the monotony of C' that C4s(B) =
C(c(4, B)) € C(B).

Observation 5.1.8: The elements of B 1l ¢, « are subsets of ¢(A, B).

Proof: Let X € B Il ¢, . Then a € C4(X), that is, o € C(c(A, X)) and for
no proper subset X’ of X it holds that a € C4(X’). From part 1 of Observation
5.1.5, it follows that o € C(c(A, c(A, X))) = Ca(c(A, X)). By part 2 of Obser-
vation 5.1.5, since X C B, ¢(A, X) C ¢(A, B). Suppose, for contradiction, that
X € ¢(A, B). Then, since ¢(A, X) C ¢(A, B), ¢(A, X) must be a proper subset
of X, and since a € C4(c(A4, X)), this contradicts the minimality of X. Hence,

X =¢(A,X) Cc(A, B). O
Observation 5.1.9: For all sets B of sentences it holds that (C4)4(B) =
Ca(B).
Proof: By definition, (Ca)a(B) = Ca(c(A, B)) = C(c(A,c(A, B))) = (Ob-
servation 5.1.5, part 1) C(c(A, B)) = C4(B). O

Theorem 5.1.10: Let be C'4 the A-localization of an inference operation C.
Then:

1. If C satisfies monotony, then C'4 satisfies monotony and Sen.

2. If C satisfies monotony and compactness, then C'4 satisfies compactness.
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3. If C satisfies monotony, compactness, and weak iteration, then C satisfies
weak iteration.

4. If C satisfies monotony, compactness, weak iteration, and inclusion, then
C'4 satisfies idempotency (iteration) and cumulativity.

5. If C satisfies monotony and consistency preservation, then so does Cjy.
6. If C satisfies weak explosiveness, than so does Cly.
7. If C satisfies monotony and inclusion, then C4 satisfies embedded inclusion.

8. If C satisfies monotony, compactness, weak explosiveness, and non-contra-
vention, then C, satisfies a-local non-contravention for all a € A.

Proof: Part 1: Let a € C4(B), i.e., a € C(c(4, B)) and let D be a superset of
B, i.e., B C D. It follows from part 2 of observation 5.1.5 that ¢(A, B) C ¢(A, D).
Hence, since C' is monotonic, a € C(c(4, D)), i.e., a € Ca(D).

Part 2: Let C satisfy monotony and compactness. For compactness, let o €
Ca(B), i.e., « € C(c(A, B)). From the compactness of C it follows that there is
an inclusion-minimal finite set D' C ¢(A, B) C B such that a € C(D’). Since
D' C ¢(A, B) and D' is finite, there is a consistent inclusion-minimal finite set
D C B such that for every ¢ € D' there is a finite set X C D and there is an
element 6 of A such that (i) X 6 or X - =4, and (ii) € € X. By construction,
D' C D and moreover, ¢(A,D) = D. From this and a € C(D’) we conclude,
since C' is compact, that o € C(D) and hence a € C4(D).

Part 3: Let C satisfy monotony and weak iteration. Let a € Cy(Ca(B)) =
C(c(A,C4a(B))). This means that there is a set X C ¢(A,C4(B)) such that
a € C(X). Since ¢(A,C4(B)) C Ca(B), we have X C Cyu(B) = C(c(4, B)).
It follows from the compactness of C' that there is some set Y C ¢(A, B) such
that X C C(Y) and thus, by the monotony and weak iteration of C, a € C(Y).
Hence, a € C4(B) and C4(C4(B)) C C4(B).

Part 4: For idempotency, it suffices to show that C4(B) C Ca(Ca(B)). Let
a € Ca(B) = C(c(A,B)). Then there is a set X C ¢(A4, B) such that a €
C(X). By part 1 of observation 5.1.5, ¢(A, B) = ¢(A,c(A, B)) and from part
2 of observation 5.1.5 together with the inclusion property of C it follows that
c(A,B) C ¢(A,C(c(A,B))) = c¢(A,Ca(B)). Hence, X C c(A,C4(B)) and thus
by the monotony of C, a € C(c(A,Ca(B))) = C4(C4(B)). Cumulativity follows
directly from monotony and idempotency.

Part 5: Monotony follows from part 1. For consistency preservation, let 1. €
C4(B). By definition this means that 1 € C(c(A, B)). Since ¢(A, B) C B and C
satisfies monotony, we have 1 € C(B). Hence, from the consistency preservation

of C, L € Cn(B).
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Part 6: Let C satisfy weak explosiveness and let 1 € C4(B). This means
that L € C(c(4, B)). It follows from the weak explosiveness of C' that for every
sentence a, a € C(c(A, B)) = C4(B).

Part 70 Let C satisfy monotony and inclusion. By Part 1 of Observation
5.1.5, Ca(B) = C(c(A,B)) = C(c(A,c(A,B))). By the inclusion property of
C, ¢(A,B) C C(c(A, B)) and from Part 2 of Observation 5.1.5 it follows that
c(A,c(A,B)) C ¢(A,C(c(A,B))). Hence, by the monotony of C, C4(B) =
C(c(4,c(4, B))) € C(A, C(c(4, B))) = Ca(Ca(B)).

Part 8 Let C satisfy monotony, compactness, weak explosiveness and non-
contravention. Let o € A. If L € C(B), then by weak explosiveness —a € C'(B)
and a-local non-contravention holds trivially. Let 1 ¢ C(B) and —~a € C4(B U
{a}) = C(c(A, BU {a}). Then by the monotony of C, —a € C(B U {a}) and
from the non-contravention of C' it follows that —a € C(B). Since 1L ¢ C(B) and
a € A, it follows from part 2 of Observation 5.1.7 that ~« € C4(B). a

Theorem 5.1.11: For each of the following properties there is some set of
sentences A such that C'ny,, the A-localization of the classical truth functional con-
sequence operator C'n, does not satisfy the property: inclusion, supraclassicality,
deduction property, reductio ad absurdum, falsity, distributivity, explosiveness,
and non-contravention.

Proof: Let p,q,r, and s be logically independent.

1. (Inclusion) Let B = {p, ¢} and A = {p}. Then q & Cna(B) = Cn({p}).

2. (Supraclassicality) Let B = {p}, A = {q}. Then p € Cn(B) but p ¢

3. (Deduction property) Let B = {r,7 — (p — q)} and A = {q}. Then
c¢(A,BU{p}) = BU{p} and hence g € Cnus(B U {p}). But ¢(4, B) = 0,
thus, p = ¢ & Cna(B).

4. (Reductio ad absurdum) Let B = {-p — r,—r} and A = {r}. Then
c(A, BU{-p}) = BU{—p} and hence, L € Cnys(B U {-p}). On the other
hand, ¢(A4, B) = {-r} from which it follows that p & Cn4(B) = Cn({-r}).

5. (Falsity) By definition ¢(A, L) = 0, hence, Cna({L}) = Cn(0).

6. (Distributivity) Let B = {p,p — ¢,q — r}, D = {p,p — s,s — —r}
and A = {r}. Then we have ¢(A, B) = B, ¢(A, D) = D, and therefore, p €
Cna(B)NCnyu(D). On the other hand, Cn(B)NCn(D) = Cn({pA(qVs)}).
Hence, c¢(A4,Cn(Cn(B) N Cn(D))) =0, and p € Cns(Cn(B) N Cn(D)).

7. (Explosiveness) Let B = {p,—p} and A = {q}. Then r & Cns(B) =
Cn(c(q, {p, p})) = Cn(D).
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8. (Non-contravention) Let B = {p — ¢q,p — —q} and A = {q}. Then
-p € Cna(BU{a}) = Cn(BU{a}), but =p € Cna(B) = Cn(0).

|

Theorem 5.2.3: Let C' be an inference operation satisfying monotony and
compactness. Then — is an operation of kernel contraction on B determined by
C and some incision function if and only if for all sentences «:

If o ¢ C(0), then a & C(B—a) (success)

e B—a C B (inclusion)

e If 3 € B\ B—q, then there is some B’ C B such that « ¢ C(B') and
a € C(B'U{B}) (core-retainment)

If for all subsets B’ of B, a € C(B') if and only if 8 € C(B'), then B—a =
B-f (uniformity)

Proof: (i) construction = postulates: Let —¢, be an operation of kernel
contraction defined by an inference operator C' and an incision function o. By
the definition of kernel contraction, éc,,, satisfies inclusion. In order to prove
that success is satisfied, suppose to the contrary that a € C(B;C,(,a) for some «
such that « ¢ C(0). It follows from monotony and compactness that there must
be some X € B 1l ga such that X C B—¢,a. From a ¢ C(0) it follows that
X # 0 and by the definition of o, 0(B 1L ca)NX # 0. Then, by the construction,
X Z B;C’UOL

For core-retainment, let 3 be an element of B\ Bic,,,a. By the construction
of B~¢,a, B € o(B 1 ca). Since o(B 1L ca) C U(B 1L ¢a), there is some
set X € B Il ca such that § € X. By the definition of kernel sets, X C B,
acC(X)and forallY C X, a ¢ C(Y). Let B' be X \ {5}.

For uniformity, suppose that for all subsets B’ of B it holds that « € C(B’)
if and only if 8 € C(B'). Then B 1l cae = B 1l ¢f8 and since o is a function,
o(B 1L ca) = (B L ¢f). By the definition of kernel contraction, it follows that
B;C,aa = B;C,aﬁ-

(i) postulates = construction: Let — be an operation that satisfies inclusion,
success, core-retainment and uniformity and let B be a set of sentences. Let o be
such that for all sentences «, o(B 1L ca) = B\ B—a. We have to show (a) that
— is based on ¢ in the manner of Definition 5.2.2, (b) that o is well-defined, i.e.,
that it is a function for the given domain, and (c) that it is an incision function
for the given domain.

(a) By inclusion and the definition of o we have B—a = B\ (B 1L ¢a).

(b) To see that o is a function, let @ and 8 be such that B 1l ca = B 1L 0.
We have to show that o(B 1L ca) = o(B 1L ¢f). From B 1l ca = B 1l o0 it
follows due to the monotony of C' that for all subsets B’ of B, a € C(B’) if and
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only if 8 € C(B'). By uniformity, B—a = B—f3 and by the definition of ¢ and
inclusion, o(B 1L ca) = o(B 1L ¢f).

(¢) To show that o is an incision function we need to prove that the two
conditions of Definition 5.2.1 are satisfied. To prove the first of them, let z €
o(B 1L ¢a). Then = € B\ B—a and it follows from core-retainment that there is
a set B' C B such that a ¢ C(B') and a € C(B' U {z}). Due to monotony and
compactness, there is a set X C B'U{z} such that X € B 1l ca and z € X. We
can conclude that z € (B 1L ca). For the second condition of Definition 5.2.1,
let 0 # X € B 1l ca and suppose that X No(B 1L ca) = 0. We know from part
(a) that B—a = B\ o(B 1L ¢ca). Since X C B, we can conclude that X C B—a.
Since o € C(X), monotony yields @ € C(B—a). This contradicts success, and
we may conclude that X No(B 1L ca) # 0. a

Theorem 5.2.8: Let C satisfy monotony and compactness. Then — is an
operator of partial meet contraction on B based on C'if and only if for all sentences
o

o If a & C(0), then a ¢ C(B—a) (success)

e B—a C B (inclusion)

e If 3 € B\ (B—a), then there is some B’ such that B—a C B' C B,
a ¢ C(B') and a € C(B'U{f}) (relevance)

e If for all subsets B’ of B, a € C(B') if and only if 3 € C(B'), then B—a =

B-f (uniformity)

Proof: (i) construction = postulates: Let —c_, be a partial meet contraction
operator based on an operation C and a selection function v. We need to show
that it satisfies the four postulates.

Inclusion follows directly from the definition of partial meet contraction.

Success: Let a ¢ C(0). Since C satisfies monotony and compactness, it
follows from the upper bound property (Observation 5.2.6) that Bl ca is non-
empty. Due to Definition 5.2.5, so is y(B_Lca), and due to Definition 5.2.7, there
is at least one set X such that B—c,a C X € y(BL¢a). Since a ¢ C(X) and
C satisfies monotony, we can conclude from B;cﬁa C X that a ¢ C’(B;Cﬁa).

Relevance: Let 3 € B\ (B—c,,). Then, according to Definition 5.2.7, there
is some B’ such that 3 ¢ B’ € y(BLlca). It follows that B—¢,a C B' C B,
a g C(B') and a € C(B'U{B}).

Uniformity: Suppose that for all subsets B’ of B, a € C(B’) if and only if
B € C(B'). It is easy to see that BLca = B1L¢f3. Since 7 is a function, it follows
that y(BLlca) = y(BLlcB) and by the definition of partial meet contraction,
B4C,7a = B;C,'y/@-

(ii) postulates = construction: Let — be an operation that satisfies the four
postulates, and let B be a set of sentences. Let v be a function such that for all
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sentences a: y(BLca) = {X € Blca|B—a C X} (that v is a function for the
given domain follows from uniformity). We have to prove (1) that -y is a selection
function for the given domain in the sense of the Definition 5.2.5 and (2) that
B—a=Nv(Blca).

(1) We can do this by showing that y(B_Lca) is non-empty whenever Bl ca #
(. Suppose Blca # 0. It follows form monotony that a ¢ C(0), hence from
success that @ € C(B—a). It follows from inclusion and the upper bound property
that there is some X such that B—a C X € Bl ca. It follows from our definition
of v that X € y(BLca), so that y(BLca) is non-empty.

(2) To prove that B—a = Nvy(B_Lca), we first observe that by the definition
of v, B—a C Nvy(BLca). It remains to be shown that Ny(Blca) C B—a. In
order to do this, we will let 3 ¢ B—a. We have to prove that 3 & Nv(BLca).
Since this is trivial when g € B, we may assume that 8 € B.

From 8 € B\ B—a it follows by relevance that there is some B’ such that
B-a C B'C B,a¢ C(B') and a € C(B'U{A3}). It follows from the upper bound
property that there is some X such that B’ C X € Blca and from monotony
that 8 ¢ X. Then by the definition, X € y(BLlca), from which follows that

B ¢ Ny(BLca). O

Theorem 5.2.10: Let C' be an inference operation satisfying monotony, com-
pactness, and 1 ¢ C(0). An operation ! is an operation of kernel consolidation
for B determined by C and some incision function if and only if:

e L ¢ C(B!) (consistency)
e B! C B (inclusion)

o If @« € B\ (B!), then there is some X such that X C B, 1 ¢ C(X) and
1 € C(X U{a}) (core-retainment)

Proof: (i) construction = postulates: Let !¢, be a kernel consolidation op-
erator based on an operation C' that satisfies the conditions given and an incision
function 0. We need to show that it satisfies the three postulates.

Inclusion follows directly from the definition of kernel consolidation.

Consistency: Suppose to the contrary that L € C(Bl¢,). Then according to
the compactness of C there is some finite subset X of Blg, such that 1 € C(X),
hence there is some inclusion-minimal subset Z of X such that 1 € C(Z), i.e.,
Z € Bl ¢t Dueto L & C(0), Z # 0. Therefore, according to Definitions
5.2.1 and 5.2.9, Z cannot be a subset of Bl¢,. This contradiction shows that
consistency holds.

Core-retainment: Let « € B and a & Blc,. Then o € (B 1L ¢1). According
to Definition 5.2.1, (B 1L ¢1) C U(B 1L ¢1), hence there is some set D such
that « € D € Bl ¢1. Let X = D\ {a}. Then X C B, 1 ¢ C(X) and
1L € C(X U{a}), which shows that core-retainment is satisfied.
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(i) postulates = construction: Let ! be an operation that satisfies the three
postulates of the theorem. We are going to show that ! is a kernel consolidation
based on C and some incision function o. For that purpose, let o be such that:
o(B 1L ¢1) =B\ (B!).

We need to verify (1) that o is an incision function (for the domain covered
by the definition), and (2) that the kernel contraction based on C' and o coincides
with !

(1) Clearly, o is a function. We need to show that it satisfies conditions 1 and
2 of Definition 5.2.1.

For condition 1, we are going to show that o(B 1L c1) C U(B 1L c1). Let
a € o(B 1 ¢1). It follows from core-retainment that there is some X such that
XCB,1¢C(X)and L € C(X U{a}). Let X' be an inclusion-minimal subset
of X such that 1 € C(X'U {a}). According to monotony, since X' C X and
L & C(X) we also have 1 ¢ C(X'). It follows that X' U {a} € B 1l ¢1, hence
o € U(B HiR CJ-)-

For condition 2, let § # X € B 1L ¢1. We need to show that X No(B 1L ¢1)
is non-empty. By consistency, 1L ¢ C(B!). Since 1 € C(X) we may conclude from
the monotony of C' that X ¢ B!, i.e., that there is some € such that ¢ € X and
e ¢ Bl. Since X C B it follows that € € B\ (B!), i.e., ¢ € 0(B 1 ¢1). Thus,
e € X No(B 1L ¢1) which is sufficient to show that condition 2 is satisfied.

(2) It follows from inclusion and our definition (B 1L c1) = B\ (B!) that
B!'=B\o(B 1l ¢1). O

Theorem 5.2.12: Let C satisfy monotony, compactness, and 1 & C(0). An
operation ! is an operation of partial meet consolidation based on C and some
selection function if and only if for all sets B of sentences:

e | ¢ C(B!) (consistency)
e B! C B (inclusion)

e If « € B\ (B!), then there is some X such that Bl C X C B, 1 ¢ C(X)
and L € C(X U{a}) (relevance)

Proof: (i) construction = postulates: Let !¢, be a partial meet consolida-
tion operator based on an operation C' that satisfies the conditions given and a
selection function v. We need to show that it satisfies the three postulates.

Inclusion follows directly from the Definitions 5.2.4 and 5.2.11.

Consistency: Due to 1 ¢ C(0), monotony, compactness, and the upper bound
property, B¢l is non-empty (Observation 5.2.6). Due to Definition 5.2.5, so is
¥(BLcl), and due to Definition 5.2.11, there is some set X such that Blg, C
X € Blcgi. Since 1 ¢ C(X) and C satisfies monotony, we can conclude from
Blc,, C X that 1 ¢ C(Blc,)-
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Relevance: Let oo € B\ (Bl¢,y). Then, according to Definition 5.2.11, there is
some X such that o ¢ X € y(BLc1). It follows that Ble, C X C B, L ¢ C(X)
and L € C(X U{a}).

(ii) postulates = construction: Let ! be an operation that satisfies the three
postulates, and let B be a set of sentences. Let v be a function such that:
v(BLlcyt) = {X € BLlc1|B! C X}. We have to prove (1) that v is a selection
function for the given domain in the sense of Definition 5.2.5 and (2) that B! =
m ’)’(BJ_(jJ_) .

(1) We can do this by showing that v(B_Lc1) is non-empty whenever Blo1
is non-empty. It follows from consistency and inclusion, using the upper bound
property, that there is some X such that B! C X € Blc1. It follows from the
definition of  that X € y(BL¢1), so that y(BLc1) is non-empty.

(2) To prove that B! = N~vy(BLcl), we first observe that by the definition of
v, Bl C Nv(BLlgl). It remains to be shown that Ny(BLc1) C Bl In order to
do this, we will assume that 3 ¢ B! and prove that # ¢ Ny(BLc1). Since this
is trivial whenever 3 ¢ B, only the case when 8 € B\ B! needs to be proved.

From 8 € B\ B! follows by relevance that there is some X such that B! C X C
B, 1 ¢ C(X)and L € C(XU{B}). It follows from the upper bound property that
there is some X' such that X C X' € Bl 1 and from monotony that 5 ¢ X'.
Then by the definition, X’ € v(BL¢1), from which follows that 5 ¢ Ny(BLc1).
O

Theorem 5.2.14: (i) construction = postulates: Let C satisfy monotony and
compactness. An operator F is an operator of internal kernel revision based on
an inference operator C if and only if, for all sets B of sentences and all sentences
« such that C satisfies a-local non-contravention:

o If ~a ¢ C(0), then —a ¢ C(B F «) (non-contradiction)

e BF o C BU{a} (inclusion)

o If 3 € B\ B ¥F «, then there is some B’ C B such that ~a ¢ C(B’) and
- € C(B'"U{f}) (core-retainment)

e a € B F a (success)

e Ifforall B’ C B, ~a € C(B') if and only if =3 € C(B'), then BN(BFa) =

Bn (B F f) (uniformity)

Proof: Let F¢, be an internal kernel revision operator based on an inference
C' and an incision function 0. We have to show that it satisfies the five postulates.

Inclusion and success follow trivially from the construction.

Non-contradiction: Let —a & C(0). Then it follows from the proof of success
for contraction in Theorem 5.2.3 that ~a & C(B\ o(B 1L ¢—«)). From this and
a-local non-contravention follows —a ¢ C(B F¢,, ).
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Core-retainment: If —a € C(0), then B Il ¢c—a =0, B C B F¢, o and the
postulate holds trivially. Otherwise, let # € B\ (B F¢,, ). By the construction
of B F¢, a, there must be X € B 1l ¢c—a such that § € X. Let B' = X \ {#}.
Then —a ¢ C(B') and ~a € C(B' U {S}).

Uniformity: Suppose that for all B C B, —~a € C(B’) if and only if —=f €
C(B'). Then B Il ¢c—a = B 1l ¢—f and it follows that o(BF¢, ) = 0(BFce
—3) and thus BN (B F¢, @) = BN (B F¢, B).

(ii) postulates = construction:

Let = be an operator that satisfies the given conditions. Let B be a set of
sentences and let o be a function such that for every sentence «, o(B 1L c—a) =
B\ (BN (BF«a)). We have to prove that (a) o is a function, (b) o is an incision
function, and (c¢) F = F¢,.

(a) Let @ and 3 be such that B Il c—a = B 1L ¢—f. It follows from monotony
that for all B' C B, ma € C(B') if and only if -8 € C(B'). By uniformity,
BN(BFa)=Bn(BFp). Thus, 0(B 1 c—a) = o(B L ¢—f).

(b) Let 6 € o(B 1L c—). Then, 6 € B\ (BN (BF«a)) = B\ (BF «a). By
core-retainment, there is B’ C B such that ~a ¢ C(B') and —a € C(B' U {6}).
Then there is some inclusion-minimal subset Y of B’ such that —a € C(Y U{d}).
Let X =Y U{é}. It then follows from the non-emptiness of (B 1L c—«) that
—a ¢ C(0) and that no proper subset of X C-implies —«. Hence, § € X €
B 1 ¢c—a and so 6 € U(B L c—a).

Next, let @ # X € B 1l ¢c—a. Then —a ¢ C(0), and —a € C(X). Suppose
that X C B F a. Then it follows from monotony that —a € C(B F «), contrary
to non-contradiction. We may conclude that X ¢ B F a. Then, by inclusion,
X ¢ BN B F a. Hence, there is some § € X such that 6 € B\ (BN B F a) =
o(B 1 ¢—a) and we have X No(B 1L c—a) # 0.

() BFcoa=(B\o(Blcra))u{a} =(B\(B\B7Fa))u{a}=(by
inclusion) (B F o) U {a} = (by success) B F a. O

Theorem 5.2.16: Let C' be an inference operator satisfying monotony and
compactness. An operator F is an operator of internal partial meet revision based
on C' if and only if, for all sets B of sentences and all sentences a such that C
satisfies a-local non-contravention:

o If ~a ¢ C(0), then —~a ¢ C(B F «) (non-contradiction)
e BF o C BU{a} (inclusion)

e If 3 € B\ B F «, then there is some B’ such that BF o C B' C BU {a},
- ¢ C(B') but ma € C(BU{f}) (relevance)

e o € BF a (success)

e Ifforall B' C B, ~a € C(B') if and only if -3 € C(B'), then BN(BFa) =
BN (B F p) (uniformity)
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Proof: (i) construction = postulates:

Let F¢,, be an internal partial meet revision operator based on an inference
C and a selection function v. We have to show that it satisfies the five postulates.

That inclusion and success hold follows directly from the construction of F¢ .

Non-contradiction: There are two cases: (1) BLg—a = (. Then —a € C(0),
so that the postulate holds vacuously. (2) BLg—a # 0. Then v(Blc—a) # 0,
and it follows by monotony that -« ¢ C(Ny(BLlc—a)). It follows by a-local
non-contravention that ~a ¢ C(Nvy(BLlc—a)U {a}) = B F¢, a.

Relevance: Let § € B\ B F¢, . Then f & Ny(BLlg—a), and there is
a set X such that X € y(Blg—a) and 8 ¢ X. Let B' = X U {a}. Then
BF¢,a C B C BU{a}. It follows from -« ¢ C(X), due to non-contravention,
that ~a ¢ C(X U {a}), i.e., na ¢ C(B'). Furthermore, it follows from —a €
C(X U {B}) by monotony that ~a € C(X U {a}U{B}), i.e.,, ma € C(B"U{f}).

Uniformity: Suppose that for all B C B, —a € C(B’) if and only if —=f €
C(B'). Then, Blc—~a = Blg—f and y(BLlc—a) = v(BLc—f), which means
that BN (B F¢ya) = BN (B Fcy P)

(ii) postulates = construction:

Let F be an operator satisfying the postulates above. Let B be a set of
sentences and let v be a function such that for every sentence o, y(Blca) =
{X € Blca|BN(BF—-a) C X}.

We have to show that: (a) v is a function for the given domain, (b) v is a
selection function for the given domain, and (¢) B ¢, a = B F a.

(a) Let a and S be such that BLca = BLlgB. Then, due to monotony,
for all subsets B’ of B, a € C(B') if and only if g € C(B'). By uniformity,
BN (B F —-a)=BnN(B¥F —0) and hence, y(BLca) = y(BLcpf).

(b) Tt follows directly from our definition of + that it satisfies condition 1
of Definition 5.2.5. To see that it satisfies condition 2, let BLca # (. Then
a & C(0). Tt follows from non-contradiction that o ¢ C(B F —«). It follows from
monotony that o ¢ C(B N (B F —«)). Thus, by the upper bound property, there
isan X € Bl casuch that BN(BF—a) C X. By the definition of «y, this means
that v(B_Lca) is nonempty.

(c) By the definition of v and inclusion, B+ o C (BN B F a) U {a} C
Ny (BLlc—a)U{a} = BF¢,a. For the other side of the inclusion, let 5 ¢ BF a.
If 3 ¢ B, then 8 ¢ B F¢, o follows directly. We can assume therefore that
B € B. It follows from relevance that there is some B’ such that B F o C B’ C
Bu{a}, ~a ¢ C(B'), and -« € C(B'U{S}). Since a € B’, it follows by a-local
non-contravention from —«a ¢ C(B') that ~a ¢ C(B'\ {a}). It follows from
Observation 5.2.6 that there is some X € B.lg—a such that (B'\ {a}) C X.
Hence, BN (BF «a) C (B'\ {a}) C X, from which follows that X € v(BLc—«).

It follows from —a € C(B' U {fA}) and non-contravention that -« € C((B’\
{a})U{B}), hence by monotony —a € C(X U{S}). Since —a ¢ C(X), it follows
that 3 ¢ X. Hence, 8 ¢ Ny(BLc—a). It follows that 8 ¢ B F¢ 4 a. O
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Theorem 5.2.18: Let C' be an inference operator satisfying monotony and
compactness. An operator & is an operator of external kernel revision based on
an inference operator C if and only if, for all sets B of sentences and all sentences
« such that C satisfies a-local non-contravention:

o If ~a & C(0), then -« ¢ C(B =+ «) (non-contradiction)

B+ a C BU{a} (inclusion)

If B € B\ B = «, then there is some B’ C B U {a} such that -« ¢ C(B’)
and ~a € C(B'U {B}) (core-retainment)

e a € B+ « (success)

If @ and (3 are elements of B and it holds for all B’ C B that —a € C(B’) if
and only if -3 € C(B’), then BN (B+«a) = BN (B +3) (weak uniformity)

e B+ a+ a= B+ «a (pre-expansion)

Proof:(i) construction = postulates:

Let +¢, be an external kernel revision operator based on an inference C' and
an incision function 0. We have to show that it satisfies the six postulates.

Inclusion and pre-ezpansion follow directly from the construction of £¢.

Non-contradiction: Let —a & C(0). Then it follows from the proof of success
for contraction in Theorem 5.2.3 that —a ¢ C((BU{a})\ o((BU{a}) 1L c—a)),
ie., a ¢ C(B=*c, ).

Core-retainment: Let 8 € B\ B ¢, a. By the construction of +¢,, we
have 8 € o((B U {a}) 1L c—«a). Hence there is some X such that g € X €
(BU{a}) 1L ¢—a). Let B'= X \ {#}. Then B' C BU{a}, ~a ¢ C(B') and
-« € C(B'U{B}).

Success: It follows from a-local non-contravention that for all X € (B U
{a}) 1L cma, a ¢ X. Thus, a ¢ o((BU {a}) I c—a), and hence o € B £¢, a.

Weak-uniformity: Let « and 8 be elements of B such that for all B' C B,
-« € C(B') if and only if - € C(B'). Then B 1l ¢—a = B 1L ¢—f and hence,
o(B 1L ¢—a) = o(B 1 ¢—f). Since o, € B, this implies that B ¢, a =
B +¢, .

(ii) postulates = construction:

Let £+ be an operator that satisfies the given conditions. Let o be such that
for all sets B and all sentences a € B, o(B 1L ¢c—a) = B\ (B £ ). We have to
prove that (a) o is a function for this domain, (b) o is an incision function for
this domain, and (c) + = ¢

(a) Let a and 8 be elements of B such that B Il c—a = B 1l ¢—3. It follows
that for all B’ C B, ~a € C(B') if and only if =3 € C(B'). By weak uniformity,
BN (B+a)=Bn(Bxp). Thus, 0(B 1 c—a) = o(B L ¢—0).
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(b) Let § € o(B 1L ¢c—a). Then, 6 € B\ (B £ «). By core-retainment, there
is some B’ C B such that ~a ¢ C(B') and ~a € C(B' U{é}). Then due to
monotony, there is a set X C B U {6} such that § € X € B 1l ¢—a and so,
o€ U(B ain C_lOé).

Now, let ) # X € B 1l ¢—« for some B 1L ¢—a that is in the domain of o
as defined above. Then —a ¢ C(0). Suppose that X C B + a. Then it follows
from monotony that —a € C(B =+ «), contrary to non-contradiction. Hence,
X ¢ B+ a. Since a € B, inclusion yields B+ a C B, hence B\ (B+a)NX =
o(B 1l ca)nX #0.

(¢c) Btcoa = (BU{a})\ o((BU{a}) IL ma) = (by the definition of o
above) (B+ a)\ ((B+a)\ ((B + a) £ a)) = (by inclusion) (B + a) + a = (by
pre-expansion) B + a. a

Theorem 5.2.20: Let C' be an inference operator satisfying monotony and
compactness. An operator + is an operator of external partial meet revision
based on an inference operator C' if and only if, for all sets B of sentences and
sentences « such that C satisfies a-local non-contravention:

o If ~a ¢ C(0), then —a ¢ C(B £ «) (non-contradiction)
e B+ a C BU{a} (inclusion)

e If 5 € B\ B+ «, then there is some B’ such that B+ o C B' C BU {a}
such that —a & C(B') and —«a € C(B'U {8}) (relevance)

e a € B+ a (success)

e If o and 3 are elements of B and it holds for all B’ C B that ~a € C(B') if
and only if - € C(B'), then BN (B+«a) = BN (B +£ ) (weak uniformity)

¢ B+ a+ a= B+ «a (pre-expansion)

Proof(i) construction = postulates:

Let ¢, be an external partial meet revision operator based on an inference
C and a selection function v. We have to show that it satisfies the six postulates.

Inclusion and pre-expansion follow directly from the construction of +¢ .

Non-contradiction: Let —a ¢ C(0). Then (B U {a})Lc—a # 0. It follows
from Definition 5.2.15 that B £¢, o = Nv((B U {a})Lc—a). It follows from
—a ¢ C(0) that for all X € (BU {a})Llce, ma ¢ C(X), and from monotony
that —a ¢ B +¢, a.

Relevance: Let 8 € B\ B ¢, a. By the construction of +¢, there is some
X € y(BU {a}Lc—a) such that 8 ¢ X. Then B+c,a C X C BU {a},
—a ¢ C(X) and ~a € C(X U {F}).

Success: If BU{a}Lc—a = 0, then success follows directly from the definition.
Otherwise it follows from a-local non-contravention that each element of (B U
{a})Lc—a contains «, and then so does B £¢, a.
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Weak-uniformity: Let a and 8 be elements of B such that for all B C B,
—a € C(B') if and only if = € C(B'). Then Blgc—a = Blc—f and hence,
v(BLlc—a) =y(BLc—f). Since o, 8 € B, this implies that B+¢, a = B+¢, .

(ii) postulates = construction:

Let + be an operator that satisfies the given conditions. Let v be such that for
every set of sentences B if & € B, then y(Blg—a) ={X € Blc—a|B+a C X}.
We have to prove that (a) 7 is a function in the given domain, (b) v is a selection
function in the given domain, and (c) + = +¢,.

(a) Let o and 8 be elements of B such that Blc—a = Blg—f. It follows
from monotony that for all B’ C B, -« € C(B') if and only if =3 € C(B’). By
weak uniformity, BN (B +a) = BN(B+f). By inclusion, B+a C BU{a} =B
and B+ 8 C BU {8} = B. Hence it follows from BN (B +«a) = BN (B + f)
that B + a = B + 3. By the construction of v, y(BLcna) = y(BLc—f).

(b) Let BLc—a # 0. It follows from monotony that -« ¢ C(0). Non-
contradiction yields —~a ¢ C(B £ «). Due to Observation 5.2.6 there is X €
Bl c—a such that B+ o C X. By the definition of v, X € v(BLg—a).

(c) There are two cases to be considered. First case, if (BU {a})Llc-a =0,
then it follows directly from Definition 5.2.19 that B £¢, a = B + a. Inclusion
yields B + a« € B + «, and success yields @ € B + «. It remains to show
that B € B + a. Suppose to the contrary that this is not the case. Then
there is some 3 € B\ B + «, and due to relevance, there is some B’ such that
B+aCB CB+a,~a¢C(B') and ~a € C(B'U{B}). However, it follows
from (B U {a})Lc—a = 0, due to Observation 5.2.6, that —a € C(0), hence by
monotony —«a € C(B'). This contradiction concludes the proof. Second case, if
(BU{a})Lc—a # 0, then, by Definition 5.2.19, B¢, a = Nv((BU{a})Lca)
=X € (BU{a})Lca|(BU{a}) £a C X} = (by pre-ezpansion) N{X €
(Bu{a})Llec—alB+a C X}. It follows set-theoretically that B+ a C B £¢, a.

For the other direction, let 8 € B +¢,, o\ B £ . Then due to pre-ezpansion,
B € BU{a}\ (BU{a})+ a. Due to relevance, there is some B’ such that
(BU{a})ta C B'C Bu{a}, ~a ¢ C(B'), and ~a € C(B'U{3}). Hence, due
to Observation 5.2.6, there is some X € y((BU{a})Lc—a) such that 3 ¢ B’ C X
and so, B € Nv((BU{a})Lcna) =B +¢, a. O

Theorem 5.2.22: Let C' be an inference operation satisfying monotony, com-
pactness, and 1 & C(0). An operator ? is an operator of kernel semi-revision based
on C if and only if for all sets B of sentences and sentences a:

e | ¢ C(B?a) (consistency)
e B?a C BU {a} (inclusion)

e If 5 € B\ B?a, then there is some B’ C B U {a} such that + ¢ C(B') and
1 € C(B"U{B}) (core-retainment)
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e (B + a)?a = B?a (pre-expansion)
e If o, 3 € B, then B?a = B?3 (internal exchange)

Proof: (i) construction = postulates: Let ?¢, be an operator of kernel
semi-revision based on an inference operator C' and an incision function o. It
follows directly from the construction that inclusion, pre-expansion, and internal
exchange are satisfied. Due to monotony, so is consistency. Finally, for core-
retainment, let 3 € B\ B?¢,a. Then by construction § € o((B U {a}) 1 c1).
This means that for some set X € (BU{a}) lLc1, 8 € X. Let B' = X \ {#}.
We have B' C BU{a}, L ¢ C(B') and 1L € C(B'U{f}).

(ii) postulates = construction: Let ? be an operator satisfying the postulates
above and let o be such that for every set of sentences B:

o(B 1L ¢1) = B\ {B|B8 € B?a for some a € B}

We have to show (1) that o is an incision function for the given domain and
(2) that B?a = B?¢ 0.

(1) To show that o is an incision function we have to show that conditions 1
and 2 of Definition 5.2.1 are satisfied. For condition 1, let § € o(B 1L ¢1). Then it
holds for all « € B that § ¢ B?«a hence, § ¢ B74. It follows from core-retainment
that there is some B’ C B such that 1 ¢ C(B') and 1 € C(B'U {é}). It follows
that there is some subset B” of B’ such that B"U{d§} € B 1L ¢1. For condition 2,
let 0 # X € B 1l ¢1. Suppose that X No(B 1L c1) =0. Then X C {3|8 € B?«
for some o € B}. Let a be an element of B such that 1 ¢ C({a}). It follows
by internal exchange that X C B?a. Since 1 € C(X), it follows from monotony
that 1 € C(B?a), contrary to consistency. This contradiction is sufficient to
prove that X No(B 1L ¢1) # 0.

(2) By definition, o((BU{a}) 1 c1) = (BU{a})\{B|8 € BU{a}?e for some
e € Bu{a}} = (BU{a})\ (BU{a})?a (internal exchange) = (BU{a}) \ B?«a
(pre-ezpansion). Hence, B?c,a = (BU{a}) \ o((B U {a}) 1L ¢c1) (Definition
5.2.21) = (BU{a}) \ ((BU{a})\ B?a) = B?«a (inclusion). O

Theorem 5.2.24: Let C' be an inference operation satisfying monotony, com-
pactness, and 1 ¢ C(0). An operator ? is an operator of partial meet semi-revision
based on C' if and only if for all sets B of sentences and sentences «:

e | ¢ C(B?a) (consistency)

B?a C BU {a} (inclusion)

If 5 € B\ B?a, then there is some B’ such that B?7a C B' C B U {a},
1 ¢ C(B") and L € C(B'"U{p}) (relevance)

(B + a)?a = B?a (pre-expansion)

If o, 3 € B, then B?a = B?[3 (internal exchange)
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Proof: (i) construction = postulates: Let 7¢, be a partial meet revision
operator based on an inference operator C' and a selection function . It fol-
lows directly from the construction that inclusion, pre-expansion, and internal
exchange are satisfied. Due to monotony, so is consistency. It remains to show
that ?¢, satisfies relevance. Let 8 € B\ B7¢,a. Then by construction there is
an X € y((BU {a})Lcy) such that 8 ¢ X. Since € B U {a}, it follows that
B?c,a CX CBU{a}, L ¢C(X) and L € C(X U{B}).

(ii) postulates = construction: Let ? be an operator satisfying the postulates
above and let v be defined as follows for every set of sentences B:

vY(BLlet) ={X € BLlc1|B?a C X for some o € A}

We have to show that (1) v is a selection function in the given domain, and
(2) B?a = B?¢,a.

(1) Due to Definition 5.2.5 it is sufficient to show that v(B_Lc1) is non-empty.
It follows from consistency and Observation 5.2.6 that there is some X € BlclL
such that B?a C X. By the construction of v, X € v(BL¢1).

(2) Btoya = N1((BU {0})Les) = NX € (BU{a}LoL|(B + )2 C X
for some 8 € A} = internal exchange {X € (BU{a}LlcL|(B+a)?aC X} =
(pre-exzpansion) N{X € (BU{a}Lc1|B?a C X}. Hence, B?a C B7¢ 0.

To see that B?¢c o C B?a, let 8 ¢ B?a. If B ¢ B + «, it is easy to see that
B & B?¢a. Suppose that 8 € B+ a. From 8 ¢ B?a it follows by pre-expansion
that 8 & (B + a)?a. From 8 € B+ a\ (B + a)?a it follows by relevance and
pre-ezpansion that there is some B’ such that B?a C B' C BU{«a}, L ¢ C(B')
and L € C(B'U{B}). It follows from Observation 5.2.6 that there is some X such
that B' C X € (B + a)LlcL. But then, since B?a C X, X € v((B + a)L¢l).
But since 8 ¢ X, B & (B + «)?¢c o = (by pre-ezpansion) B¢ . O

Theorem 5.2.25: Let —¢ satisfy the inclusion and core-retainment postu-
lates for contraction, and let ¢ be the internal revision operator based on —¢
via the Levi identity. Let C satisfy —a-local non-contravention. Then:

B~-ca = BN (B *—a) (the Harper identity)

Proof: Using the Levi identity, what we have to show is that B—a = BN
((B—a) U {—-a}). The left-to-right inclusion follows directly from the inclusion
postulate. For the right-to-left inclusion, let 8 € BN ((B—a)U{—a}). There are
two cases.

Case i: B € BN (B—a). In this case, 3 € B—a follows directly.

Case ii: f € BN {-a}. Then f = —a and —~a € B. Suppose that ~a ¢
B—a. Tt follows from core-retainment for contraction that there is some B’ C B
such that « ¢ C(B') and a € C(B' U {-a}). This contradicts —a-local non-

contravention, and we can conclude that ~a € B—q, i.e. B € B—a. O

Proposition 5.2.26: Let B and A be sets of formulas and, let C'4 be a local
inference operator. If —¢, is a partial meet base contraction on B based on Cly,
then for every « it holds that B\ ¢(A, B) C B—¢,a.
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Proof: If —¢, is a partial meet base contraction on B based on C 4, then there
exists a selection function v such that B;cAa = N7y(BLlc,). It suffices to show
that for every X € (BLlc,a), B\ c¢(A,B) C X. Let X € (BLlg,c). Then X is
an inclusion-maximal subset of B such that a ¢ C4(X) = C(c(4, X)). Suppose
by contradiction that B\ ¢c(A4,B) € X. Let g € (B\ ¢(A, B)) \ X. By part 2
of Observation 5.1.5, ¢(A, X U {}) C ¢(A, B) and hence, since 3 & c(A, B), we
have 8 & c(A, X U {fB}). From this it follows that c¢(A4, X U {8}) = ¢(4, X) and
a & Ca(X U{B}), contradicting the maximality of X. O

Proposition 5.2.27: Let B and A be sets of formulas and, let C4 be a local
inference operator. If —¢, is a kernel contraction on B based on C}, then for
every « it holds that B\ ¢(A4, B) C B—¢,a.

Proof: If —¢, is a kernel contraction on B based on Cj, then there exists
an incision function o such that B—¢g,a = B\ (B 1L ¢,a). To show that
o(B 1 ¢,a) C c¢(A, B), it suffices to show that for every Y € (B 1L ¢, ), Y C
c¢(A,B). Let Y € (B 1L ¢, ). Then Y is an inclusion-minimal subset of B such
that o € Ca(Y) = C(c(A4,Y)). Since by Part 1 of Observation 5.1.5 ¢(A4,Y) =
c(A,c(A,Y)) and ¢(A,Y) C Y, we have a € C4(c(A4,Y)) = C(c(A, c(A,Y)))
C(c(A,Y)) = C4(Y). From the minimality of Y it follows that c(A,Y) = Y.
Since Y C B, by Part 2 of Observation 5.1.5 it follows that ¢(A4,Y) = Y
c(A, B).

OoiN

Lemma 5.4.4: If A and B are sets of formulas, « is a formula and there is
no maximum size for any set involved, then f(B —4 a) = f(B) —a .

Proof: We can see what happens to each argument of a belief state when it
goes through the operation defined in 5.4.3. The second argument (Cn) does not
change. The first argument is not affected by the retrieval (+,) operation. After
the doubting (+4) operation, we have B\ §,(B, o, A). The rejection operation
does not affect the first argument and the acceptance (+,) operation only adds
to the first argument formulas that were already part of it. The third argument
is empty before the operation. Retrieval adds ¢(A4, B) to it, doubting does not
affect it, rejection deletes 6,(B, o, A) = ¢(A, B) \ Ny(B L¢, a) and acceptance
deletes p(B, o, A) = Ny(B Lg, «). After the operation, the third argument is
empty again.

So, if we apply a local partial meet contraction to f(B) = (B,Cn,0), we
obtain (B \ 6,(B, o, A),Cn,0) = (Uy(BLc,),Cn,0) = f(B —4 ). O
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Samenvatting

De afgelopen twintig jaar wordt Belief Revision uitgebreid bestudeerd. Het prob-
leem waar het bij Belief Revision om gaat komt in het kort hier op neer: Hoe
moet een gegeven agent met een verzameling (toegeschreven) geloven zijn geloven
veranderen als hij nieuwe informatie binnenkrijgt? Met “agent” bedoelen wij een
mens, een computer of een willekeurig systeem waaraan geloven kunnen worden
toegeschreven en waarvan rationele reacties kunnen worden verwacht.

Dit is een multidisciplinair probleem met toepassingen in vele gebieden. Een
paar voorbeelden laten zien hoe belief revision voorkomt in:

e Dagelijks leven: Ik dacht dat het in Amsterdam altijd regende. Op een
ochtend word ik wakker in Amsterdam en het is mooi weer. Ik geloof dat
het mooi weer is, en dat is in strijd met mijn vorige geloven. Ik moet dus
mijn mening herzien en geloof nu niet meer dat het in Amsterdam altijd
regent.

e Gegevensbestand: In een gegevensbestand met data over klanten van een
boekhandel bestaat een entry voor Jan Smit, met geboortedatum 20/2/67.
Ik krijg een nieuwe bestelling binnen waarbij bij de geboortedatum van Jan
Smit 20/2/76 staat. Tk kan geen nieuwe geboortedatum toevoegen aan Jan’s
entry en Jan’s geboortedatum kan ook niet veranderd zijn in de loop van
de tijd. Wat moet ik nu doen? De oude datum bewaren? De oude datum
door de nieuwe vervangen? Of is dit gewoon een andere Jan Smit die ik aan
het gegevensbestand moet toevoegen?

e Robotica: Een mobiele robot heeft een plattegrond van het gebied waar hij
moet, bewegen. Volgens de plattegrond is er niets dat hem in de weg zal
staan wanneer hij rechtdoor gaat. Maar zijn sensoren geven de aanwezigheid
van een groot voorwerp aan dat tegenover hem staat. Moet de robot gaan
twijfelen aan zijn sensoren en trachten rechtdoor te gaan? Of moet hij de
sensoren geloven en aan de plattegrond gaan twijfelen?

157



158 Samenuvatting

e Diagnose: Ik geloof dat, als ik een artikel op de juiste positie op een kopieer-
machine plaats ik een kopie krijg van het artikel. Stel dat ik bij het kopiéren
mijn artikel inderdaad op de juiste positie plaats maar slechts witte bladeren
terugkrijg. Moet ik mijn geloof opgeven dat ik de juiste positie koos? Of
moet ik gaan betwijfelen dat de machine het goed doet?

Tot nu toe werd Belief Revision meestal bestudeerd voor zeer geidealiseerde
agenten. De agenten die daarbij in aanmerking komen zijn oneindige wezens zon-
der beperkingen op hun geheugen, beschikbare tijd en logisch vermogen. Het
is geen triviale kwestie of (en hoe) men deze theorieén kan aanpassen zodat ze
bruikbaar worden voor minder geidealiseerde agenten. Om bovengenoemde prob-
lemen op te kunnen lossen, hebben wij een theorie nodig die rekening houdt met
de eindigheid van een agent en zijn redeneringen.

Uitgaande van de standaard logische modellen voor Belief Revision is het doel
van dit proefschrift een theorie te ontwikkelen die op realistischer agenten kan
worden toegepast. Wij zijn dus niet op zoek naar een computationele implemen-
tatie van bestaande theorieén, maar naar een theorie voor minder geidealizeerde
agenten.

De belangrijkste resultaten van ons werk zijn:

1. Het formaliseren van een ruimer begrip van belief state, gebaseerd op het
informele werk van Harman en Cherniak (Hoofdstuk 4).

2. Generalisatie van standaardresultaten uit de vakliteratuur, die het mogelijk
maakt dat andere logica’s kunnen worden gebruikt (Hoofdstuk 5). Dit is
gezamenlijk werk met Sven Ove Hansson.

3. Het ontwerpen van een methode, die psychologisch gemotiveerd en com-
putationeel efficient is, om op het relevante deel van een belief state te
concentreren (Hoofdstuk 6).

4. Toepassing van het ontwikkelde model op diagnose problemen en het ge-
bruik van computationele tools uit de diagnose literatuur om operatoren
voor Belief Revision te implementeren (Hoofdstuk 7).

We beginnen met het ontwikkelen van een formele theorie die een model is
voor belief states en voor eenvoudige operaties voor het veranderen van belief
states. Ons model van belief states onderscheidt verschillende soorten geloven:
expliciete versus impliciete geloven, geloven die op een bepaald moment actief dan
wel niet actief zijn, en geloven die tijdelijk dan wel volledig geaccepteerd worden.
In de literatuur zijn veel voorstellen gedaan tot het onderscheiden van geloven.
Onze theorie verschilt in enkele opzichten van deze voorstellen:

e Anders dan bij Harman’s en Cherniak’s informele voorstellen hebben wij
een formeel framework ontwikkeld, gebaseerd op verzamelingen, waarbij de
verhouding tussen verschillende soorten geloven duidelijk wordt.
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e In tegenstelling tot de formele benaderingen die onderscheid maken tussen
expliciete en impliciete geloven, zoals die van Fagin en Halpern of van Le-
vesque, eisen wij niet dat de verzameling van expliciete geloven consistent
is of dat de verzameling impliciete geloven de klassieke logische afsluiting is
van de expliciete geloven.

e In tegenstelling tot wat gebruikelijk is bij Belief Revision bouwen wij de op-
eratoren stap voor stap op uit een reeks heel eenvoudige (basis) operatoren
op belief states.

Wij hebben laten zien dat traditionele Belief Revision operatoren voor geide-
aliseerde agenten kunnen worden gemodelleerd in onze theorie, mits wij oneindige
verzamelingen en een oneindige reeks basis operatoren toestaan.

De basis operatoren worden gebruikt als bouwstenen om meer ingewikkelde
operatoren te modelleren. Wanneer een agent nieuwe informatie krijgt, wordt
deze niet meteen volledig geaccepteerd, maar eerst als een tijdelijk geloof be-
waard. De agent moet vervolgens, gegeven zijn vorige geloven, beslissen of hij
deze tijdelijke geloven volledig zal accepteren. Onze theorie laat enigszins open
hoe deze beslissing wordt genomen. In Appendix A laten wij een manier zien
waarop deze beslissingsprocedure kan worden geimplementeerd. Wij stellen voor
om argumentatie theorie bij een dergelijke beslissing te gebruiken. Wij passen
Loui’s model voor resource-bounded argumentatie toe, waarbij de agent rekening
houdt met zoveel mogelijk, maar in het algemeen niet alle, argumenten.

Een ander belangrijk ingrediént in onze model is het feit dat de verzameling
van actieve geloven, d.w.z. de geloven die beschikbaar zijn voor redeneren, heel
klein is in vergelijking met de verzameling expliciete geloven. Dit komt overeen
met de intuitie dat agenten niet over alles tegelijk kunnen denken. Een agent
is meestal maar over één bepaald onderwerp aan het denken. Een van onze ba-
sis operatoren maakt expliciete geloven actief. Maar hoe beslist de agent welke
geloven relevant zijn voor een bepaalde operatie? In Hoofdstukken 5 en 6 geven
we twee verschillende oplossingen voor dit probleem. De eerste oplossing, die
gepresenteerd wordt in Hoofstuk 5, gebruikt logica — en niets dan logica — om
het relevante deel van de geloven van een agent te isoleren. Een geloof wordt als
relevant beschouwd voor een bepaalde formule als het helpt bij het bewijzen van
die formule of zijn negatie. Wij definiéren locale operaties voor Belief Revision
die alleen maar invloed hebben op het relevante deel van de belief state. Deze
methode heeft veel tekortkomingen: het vinden van de relevante geloven is compu-
tationeel net zo moeilijk als de traditionele Belief Revision operatoren. Bovendien
is er geen controle op de grootte van het relevante deel, d.w.z. het kan gebeuren
dat de verzameling van relevante geloven gelijk is aan de verzameling expliciete
geloven. Maar de methode geeft ons wel enkele interessante formele resultaten.
Al de locale operaties die wij hebben gedefinieérd worden geaxiomatiseerd en de
representatie stellingen geven precies aan wat nodig is om de elegante eigenschap-
pen van de operaties te krijgen. Omdat deze axiomatiseringen onafhankelijk zijn
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van het concept relevantie, presenteren wij in Hoofdstuk 6 een computationeel
efficiente methode om de relevante geloven te vinden. Voor deze methode hebben
wij niet-logische informatie nodig die ons zegt hoe de geloven met elkaar gerela-
teerd zijn. Dit leidt tot een notie van graden van relevantie. Wij laten zien dat de
relatie tussen geloven meestal kan worden afgeleid van de gegeven belief state of
van een bepaalde toepassing, zoals die bijvoorbeeld gegeven wordt in Hoofdstuk
7. Behalve de computationele voordelen is de methode die beschreven wordt in
Hoofdstuk 6 ook heel intuitief en sluit goed aan bij onderzoek over cognitieve
modellen van het geheugen.

In Hoofdstuk 7 beschrijven wij een toepassing van de ontwikkelde theorie op
het gebied van diagnose. Diagnose van elektronische circuits wordt gebruikt als
concreet voorbeeld en maakt duidelijk wat de theoretische concepten eigenlijk
betekenen. Relevantie kan hier een causale relatie tussen input en output van een
component van het circuit betekenen. De methode uit Hoofdstuk 6 wordt gebruikt
om de diagnose procedure te beperken tot het relevante deel van een circuit. Door
het expliciet maken van de relatie tussen Belief Revision en Diagnose laten wij
zien dat sommige computationele tools ontwikkeld voor diagnose kunnen worden
gebruikt om Belief Revision te implementeren. In het bijzonder laten we zien hoe
Reiter’s algoritme voor diagnose gebaseerd op consistentie kan worden gebruikt
om kernel semi-revision te implementeren.
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