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Part | Introduction

What is the rational use of theory and experiment in the process of scientific
discovery, in theory and in practice? In this thesis | address this problem in
three parts. | start with a genera introduction (part 1). Then | discuss three
different theoretical models of the process of scientific discovery (part I1). |
finish this thesis with a discussion of a case study and model of discovery in
the practice of neur opharmacology (part I11).

In this first part | provide an introduction and overview of this thesis. | start
with a specification of the problem (Chapter 1). Then as an introduction to
part two | discuss some issues and views in the study of scientific rationality
(Chapter 2). | finish this part with an introduction and overview of discovery
in neur ophar macology (Chapter 3).






Chapter 1

Problem

1.1 Introduction

In this chapter | introduce the research problems about rationality in the process of
scientific discovery that | faced in the years during my Ph.D. project and that are ad-
dressed in thisthesis. To understand these subjects | studied different disciplines such
as philosophy of science, cognitive psychology and artificial intelligence. An impor-
tant problem for those disciplines is to understand what it means to be rational in the
use and development of knowledge about the world.

It turns out that it is difficult to understand how we use common sense knowledge
in everyday problems. | imagined that it would be less difficult to understand how
scientific knowledge is used and developed. Common sense knowledge is ailmost by
definition implicit, and therefore hard to understand. So, my idea was. why not con-
centrate on analyzing rationality in knowledge development that is supposed to be
explicit, i.e. science?

So, | investigated different theories about rationality in discovery and the practice
of discovery in neuropharmacology as a case study. This thesis presents the results of
that investigation. | had to learn that while the product of scientific discovery is made
explicit, the process of reasoning in the practice of discovery is often as implicit as
common sense reasoning. So, | set myself the task to make it explicit, to understand
rationality in discovery.

1.2 Goal

The specific goal of this thesis is to understand rationality in scientific discovery.
Discovery is the act or process of making something known. Some scientific discov-
eries are made by accident, as aresult of serendipity. But a goal of science isto make
new discoveries by making use of theories and experiments to make things known.
Theories are elaborate hypothetical assumptions, and experiments involve making
specific observations of, and interventions in, natural phenomena. So, the method of
scientific discovery is to make something known about the world with the use of the-
ory and experiment.



4 Chapter 1. Problem

To describe and undrstand the rationality in the processof scientific discovery |
delve into the question d how ads in that processare suggested by reason. If an ad
is suggested by reason then there ae aguments for doing something in that particular
way, to adhieve aparticular goal. In sum, to understand rationality in scientific dis-
covery | neal to ask what it meansto rationally use theory and experiment in the pro-
cessof discovery in science

1.3 Problem

To uncerstand rationality in scientific discovery | analyzed dfferent theories abou
the rational use of theory and experiment in science, and the pradice of drug reseach
for Parkinson's disease & a cae study. An answer to the foll owing spedfic problem
IS pursued:

Problem What is the rational use of theory and experiment in the processof scien-
tific discovery, in theory and in the pradice of drug reseach for Parkinson's disease?

An answer to this problem shoud provide an answer to the following spedfic ques-
tions abou empiricd sciencein general and neuropharmaaology in particular:

Question 1 What is the structure of a scientific theory? Generaly this question
treds properties of scientific laws, theories and concepts. | will pursue this question
in general and particularly for the dopamine theory of Parkinson's disease and related
biologicd theories and concepts.

Question 2  What is the process of scientific reassoning? Traditionally, this ques-
tion is abou inference in the explanation and prediction o phenomena. | will also
tred reasoning in the formation and revision d hypotheses.

Question 3  What is the route between theory and experiment? This question is
relevant for understanding discovery in empiricd science in general and dug re-
seach in particular. Not only do | investigate how the results of experiments influ-
ence theory, bu aso how theory and knowvn (drug) interventions dired the sugges-
tionfor experiments.

1.4 Method
To pusue the problem of thisthesis | undertook the foll owing tasks:

* A survey of contributions to the study of scientific rationality (Chapter 2)

* A conceptua study of models of discovery in science a proposed in studies of
logic, cognition and computation (Chapters 4, 5, §
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* A review of the literature on the brain dopamine theory of Parkinson's disease
(Chapter 7).

* A case study of the pradice of experimental drug and lrain research at the Phar-
macgy Department of the Groningen University (Chapter 8)

* Modedling the dopamine theory and the studied pradice of discovery (Chapter 9)

Summarizing the results of the cae study of neuropharmaaol ogy (Chapter 3)

1.5 Background

The structure of theories and pocesss of scientific reasoning are investigated na-
matively in logic and artificial intelligence, and descriptively in cognitive psychal-
ogy. In studies of logic scientific reasoning is mainly explicaed as valid deduction d
consequences. Studies of both artificial intelligence and cognitive psychology under-
stand the processof scientific discovery as akind d human problem solving. In that
view it is held that human beings can solve scientific problems becaise they can
(lean to) manipulate symbadls.

The work of Newell and Simon (1972 sees the processof problem solving essen-
tidly as a seach process based onthe manipulation d symbals. They defend the
ideathat for a problem it is posgble to define aspaceof possble solutions that can
be seached. This sach is dore by heuristic rules that, given the problem (the start
condtion), test whether the solution (goa condition) is being approaded, and adjust
the seach accordingly.

In bah artificia intelligence and cognitive psychalogy this processis investigated
and modeled computationally. In arder to doso it is necessary that the structure of the
problem and the required knowledge is made explicit in a symbadlic representation.
Based onthat representation, heuristic search rules must be ale to effedively test if
the goal state is being approached and if it is rational to pusue aparticular diredion
of seach.

John Anderson (1993 propacsed a unified theory of leaning and problem solving
to explain rationa behavior. This theory contains assumptions abou the nature of
explicit symbalic processes of reasoning, together with assumptions abou implicit
statistica processes of leaning.

In ancther discipling, that of madine leaning, ore gproac takes effedive
leaning as saching the shortest computer program that can describe and predict
patternsin olservations (Li & Vitanyi, 1999.

In the third pert of thisthesis | shall i nvestigate how the rationa use of theory and
experiment in drug reseach can be seen in terms of the role atheory playsin dred-
ing the search for an experimental drug intervention. A theory can be seen as a @n-
straint in the seach spaceof conceptually possble interventions. The main goa of
drug reseach is to find an intervention that satisfies given condtions best. Testing a
theoreticdly suggested intervention experimentally can either lead to a new drug or a
new theory.
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To compare theories about discovery, as set out in Part |1, to scientific practice |
will analyze the structure of problems in neuropharmacology in Part 111, modeling the
process of reasoning in rational search tasks with different kinds of goals.

The discussed models of problems in neuropharmacology will be based on the
work of Benjamin Kuipers, Peter Karp, Theo Kuipers and Rein Vos. Benjamin
Kuipers (1994) investigated how to represent qualitative knowledge about dynamical
systems as qualitative differential equations, and how to reason with them correctly.
Peter Karp (1992) made a computational analysis of the structure of molecular bio-
logical knowledge and the process of hypothesis formation in biological research.
Theo Kuipers (2000) investigates logical structures and heuristic patterns in scientific
research and Rein Vos (1991) investigates the logic of development in drug research.
They explicated the development of drugs theoretically as a systematic attempt to
bring together the properties of available materials and wishes for functional proper-
ties. In discussing neuropharmacology | will describe how biological theory can be
used to infer those desired properties, to infer the best intervention.

1.6 Overview

This section gives a short overview of the subjects and problems that are discussed
and the particular questions that are answered in the other chapters of thisthesis.

Part | Introduction

The general problem of this thesis is: what is the rational use of theory and experi-
ment in the process of scientific discovery, in theory and in practice? Part | discusses:
issues in the study of rationality (Chapter 2), as an introduction to Part II; and my
case study of neuropharmacology (Chapter 3), as an introduction to Part I11.

Chapter 2 Rationality

This chapter provides an introduction to the discussion of discovery in Part 1l of this
thesis. In that part | delve into ideas from cognitive psychology to look at issues
about rationality in science that are traditionally part of the problems of the philoso-
phy of science. The particular question that is answered in this chapter is. how can
cognitive psychology contribute to the discussion about the rationality of science in
the philosophy of science?

| argue that ideas from cognitive psychology in general can make a sensible con-
tribution to debates about the rationality of science in philosophy. I make this point
clear by explicating some relations between assumptions in cognitive psychology and
issues in the philosophy of science.

Chapter 3 Neuropharmacology

This chapter is an introduction to my case study of neuropharmacology in Part Il of
this thesis. The particular question that is answered is. what is the rational use of the-
ory and experiment in neuropharmacol ogy?

This question is answered more extensively in Part I11. | argue how the rational use
of neurophysiological models can be modeled as goal directed reasoning about
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qualitative differential equations. To understand reasoning in neuropharmacology |
distinguish inference to the best intervention from inference to the best explanation. |
further briefly discuss how qualitative reasoning about neurophysiological models as
part of a computer supported discovery system could aid in using, understanding, and
testing models about large biological systems.

Part || Discovery

The specific problem of Part Il (Discovery) is: what is the rational use of theory and
experiment in the process of scientific discovery, in theory? This part discusses mod-
els of scientific discovery according to studies of: logic (Chapter 4); cognition
(Chapter 5); and computation (Chapter 6).

Chapter 4 Logic

What is rationality in discovery, according to the study of logic? Traditional philoso-
phers of science are usualy interested in what scientific discovery ought to be, and
how reasoning in that process can be valid or justified. | discuss how rationality in
discovery is logically understood as valid reasoning, part of acircular process of ob-
serving, describing, explaining, predicting and intervening in natural phenomena. The
particular questions that are answered in this chapter are: what is a scientific theory
and what is scientific reasoning, according to the study of logic?

To address these questions | discuss an illustrative example of an explanation that
contains a series of inferences that can be marked as fallacies from the viewpoint of
logic. Yet, | argue that these inferences are common in science and part of abductive
inference as defined by C.S. Peirce. | further make a categorical distinction between
semantic abduction and material abduction. | argue how material abduction, together
with other types of inductive inference, constitutes a part of semantic abduction. |
conclude by answering the three specific questions (from section 1.3) of this thesis,
from alogical point of view.

Chapter 5 Cognition

What is rationality in discovery, according to the psychologica study of cognition? In
cognitive psychology, rationality in scientific discovery is being studied as an inter-
esting cognitive phenomenon, to be studied empiricaly. ACT-R is the name of a uni-
fied computational theory of cognition that aims to explain the data from studies of
cognition. The particular question that is answered in this chapter is. how to under-
stand and model scientific discovery with ACT-R?

| show and argue how the ACT-R model can learn by analogy the processes of
two other cognitive models of discovery, called BACON and Pl. | further discuss the
nature of theory and method in the different cognitive models, and the difference
between the logical and psychological views on explanation and prediction. | discuss
how human performance on the Wason card selection task (an often performed psy-
chological experiment where subjects test a hypothesis) seems irrational from alogi-
cal point of view. | propose a statistical model that can demonstrate the opposite. |
conclude by answering the three specific questions of this thesis, according to the
psychological study of cognition.
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Chapter 6 Computation

Both the logicd and the agnitive models of scientific discovery | discussd in the
former chapters include a ondtion to prefer simple explanations. Y et these models
do nd show why it is rational to prefer smplicity. In Chapter 5 | discussed how the
ACT-R model of cognition prefers smplicity as a cmnsequence of a mechanism that
prefers high probability. In this chapter | investigate the relation between probability
and simplicity in the computational description, explanation and prediction d em-
piricd data. The particular questions that are answered in this chapter are: how can
simplicity most generaly be defined and why shoud a simpler theory be prefered
above amore mmplex one?

| discusshow the Minimum Description Length principle subsumes other defini-
tions of simplicity and hav the simplicity of a hypothesis can be related to the prob-
ability of its predictions. | conclude by answering the three spedfic questions of this
thesis, acarding to the study of computation.

Part 111 Neurophar macology

The spedfic problem of Part Ill is: what is the rational use of theory and experiment
in the processof scientific discovery, in pradice? This part discusses and models my
case study of drug reseach for Parkinson's disease, i.e. | investigate: how Parkin-
son's disease and the dfed of known drugs are explained by the dopamine theory
(Chapter 7); the use of theory and experiments in a pradice (Chapter 8); and a com-
putational model of both the dopamine theory and the studied pradice of discovery
(Chapter 9)

Chapter 7 Theory

How are theory and experiments used in the pradice of drug reseach for Parkinson's
disease? To be ale to addressthis problem | first survey the literature on the dope-
mine theory of Parkinson's disease. The particular question that is answered in this
chapter is: how are Parkinson's disease and the dfed of known drugs explained by
theory?

| first provide ageneral introduction to Parkinson's disease. | then go into the ba-
sics of the dopaminergic nerve cél and the basal ganglia, which is the neural struc-
ture in the brain that partly controls voluntary movement, and hav a defed in it
causes Parkinsonian symptoms. | end this survey with a short overview and explana-
tion d aseledion d therapeutic drug interventions for Parkinson's disease.

Chapter 8 Practice

How are theory and experiment used in the pradice of drug reseach for Parkinson's
disease? In this chapter | report on my interviews with reseachers at the Pharmacy
Department of the Groningen University. These interviews where partly condicted
while witnesgng their work in the laboratory.

Severa tedhniques are being used to search for new drugs and explore the adivity
of the basal ganglia. The particular questions that are answered in this chapter in-
clude: how are new drugs investigated and hav are experiments being used to ex-
plore and test both new drugs and assumptions abou the mecdhanisms of the brain?
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Chapter 9 Discovery

In this final chapter | am to explicae rationality in the processof discovery in neuro-
pharmaalogy by describing bath the theory and the studied pradice, using the @n-
cepts from my theoreticd discusson d discovery in Part 1l. The particular question
that is answered in this chapter is: what is rationality in discovery in the cae of neu-
ropharmaalogy? First | discussthe use of models to describe theories abou dynami-
cd systems. Next | describe the structure of the dopamine theory of Parkinson's dis-
ease based onthose models. By analyzing the reports abou the pradice of neuro-
pharmaamlogy | explicae anumber of different routes between theory and experi-
ment. | continue with a discusson d computational models of reasoning and dscov-
ery in biology. | conclude this chapter by summarizing my answers to the three spe-
cific questions of this thesis in the cae of neuropharmaalogy. | then conclude this
thesis by arguing that an answer to these questions can contribute to understanding
rationality in dscovery, as well as contribute to the process of scientific discovery
itself.






Chapter 2

Rationality

2.1 Introduction

What is the rational use of theory and experiment in scientific discovery, in theory?
In pusuing an answer to this problem in this thesis | use ideas from cognitive psy-
chaogy to look at isaues abou the rationality of science that are traditionally part of
the problems of the philosophy of science As an introduction to that approad | will
argue in this chapter how ideas from cogniti ve psychology can make asensible @n-
tribution to debates abou rationality in phlosophy of science | will make this point
clea by explicaing some relations between assumptions in cogniti ve psychology and
isaues in the philosophy of science Hence, the particular question in this chapter is:
how can cognitive psychaogy contribute to the discusson abou the rationality of
sciencein the philosophy of science? As an introduction to this chapter | first want to
tell aparable @ou an intriguing family.

Prelude

This tale begins in the seventeenth century, in the days of the first grea adievements
of an ambitious yourg child of Mother Philosophy. In his time this aspiring infant
developed a succesdul new style of understanding the world by tampering with it. He
and hisfamily becane known as Experimental Phil osophy.

Eventually he left the skirts of proud Mother Phil osophy as an independent ado-
lescent named Science He set out to find answers to millennia old questions of the
Phil osophy family in away that proved succesul: with the method d empirica ex-
periment and with the ad of therigidity of his other parent, Father Mathematics. Sci-
ence had an dder brother who was fascinated by his yourger brother’s doings. When
Science left Mother Philosophy his older brother stayed safely with his mother. To-
day the family of this ©oniscdled: Philosophy of Science

At the end d the nineteenth century Mother Philosophy gave birth to a startling
bright son from Father Mathematics. He was nurtured and raised by his brothers
Philosophy of Mind and Philosophy of Language. With a few growing pains it
readed maturity very quickly. The caee of this sonlooked redly promising. He be-
got the name Modern Logic. The Philosophy of Science family was very impressed
by the cagaaty of this new sibling. Espedally Positivism, arelatively yourng member
of the Philosophy of Sciencefamily, was deli ghted.

11
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At a cetain moment in the beginning of the twentieth century, Positivism with the
aid of Modern Logic dedared it was time to completely bregk with ore of Mother
Phil osophy’ s traditions. He thought that his admired brother Science had proved that
the ideas of Mother Phil osophy that where not empiricd were irrelevant for answer-
ing Sciences questions. All questions worth considering shoud be questions only
Science ould answer. And al theories of Science shoud be cetain. Positivism
would try to adchieve this through the interpretation d the language of Science with
the todls of his brilli ant young brother Modern Logic. No wonder, he becane known
as Logicd Positivism.

First this off spring of Phil osophy of Sciencewas warmly welcomed and embraced
by old brother Science It looked as if he opened upthe possbility that the adivities
of Science would finaly provide cetainty, withou being bathered by the problems
and questions of Mother Phil osophy that could na be solved empiricdly. Determined
Logicd Positivism would give Science atotally empiricd and mathematicd guide-
line andjustificationfor hisadions, in the true spirit of Science himself.

Y et the daims of Logicd Positivism did na last very long withou readion d his
brothers. Rationalism, ancther smart protégé of Philosophy of Science showed, also
with the help of his brother Modern Logic, that Logicd Positivism’s method d justi-
ficdion d the adions of Science was logicdly incorred and he replaced it with an
aternative. With this other method d Modern Logic as his dandard he enforced the
clams of the family of Redism, anather son o Philosophy of Science Logicd Posi-
tivism felt defeaed and eventuall y retreaed from histoo ogimistic idess.

Meawhile, Science himself did na leave it with that. He took the discusson to
his own damain to study the problems further. Science set out to empiricaly investi-
gate his own adiviti es and successes, those of that day and thase of the glorious past.
By empiricdly studying their own behavior, a member of the family of Science So-
cial Science, examined how the Sciences had adually behaved and tried to find ou
why they had doreit in that way.

An astonishing conclusion seamed that a fully rational justificaion and explana-
tion d Scienc€s adion and success ®emed na paossble. It appeaed that beliefs of
the members of the Science family were not rationally determined bu socialy. It
seamed to have nothing to dowith truth, the hallmark of Mother Phil osophy as well
as that of old Science But, ironicdly enowgh, the truth o that conclusion implied
that that conclusion could na be justified as true g@ther. This was horey for the taste
of abladk sheg of the Philosophy of Science family: Relativism. According to him
truth was impasshble to achieve by Phil osophy as well as by Science

But the nobe dildren of Philosophy of Science soonremvered from the goparent
blow dedt to them by this relativistic conclusion. They put forward competing theo-
ries of rational justificaion d the adivity of Science andtried to live up to Science's
empiricd standards.

Redism refined hisideas and, with the help of Modern Logic, delivered arational
judtificaion o the data of Social Science interpreted as geps toward the truth.
Pragmatism, ancther member of the Philosophy of Science family, sought a way in
the midde. He put forward a justification d the behavior of Science & rational, with
not truth bu just the solving of problems as his goal.

Looking in perspedive to the quarrel among the Philosophy of Science family
abou the caee of their succesgul brother Sciencewe seeso far the following: Logi-
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cd Positivism tried to provide ajustificaion d the results of Science s adivities with
the help o the formal language of Modern Logic, in which the Science family could
represent their theories rigidly. Redism agitated against this by reeding Logicd
Positivism’s ideas abou method and justification and pu forward another method
and way of justification, based also onModern Logic, in its place With the help of
an empiricd investigation d Science, Relativism readed to Redism by showing that
Sciencedid na and rever had aded acording to Redism’s rational method tased on
Modern Logic. From this it would follow that the doings of Science ould na be ex-
plained rationally in this way. Redism refined his rational theory of justificaion
showing that it could fit in with Science€s empiricd data. Next to that, Pragmatism
developed ancther justificaion d Scienceés deals by charaderizing rationality as
pradicd problem solving insteal of looking for truth.

In the meantime, before Social Science studied the behavior of the members of his
family as a group, dher members of the Science family had na relinquished their
atention to the subjeds of behavior and rationality. Illuminated by the views of
Logicd Positivism, Behaviorism, a pretentious newborn of Science, studied behavior
acording to Positivism’s methods and tried to keep rationality out of his theories.
But Behaviorism disappeaed to the bad stage shortly after the rationali stic defea of
Logicd Positivism. In his place cane Cognitive Psychoogy, a new protégé of Sci-
ence, who set out to explain behavior as a result of rationality. He did this with the
help o new developments of Modern Logic and with the use of empiricd methodks.
This ambitious child of Modern Logic and Science gave rise to a new style of thought
for Phil osophy of Mind. His family got the name Cogniti ve Science

Until fairly recently the development of the family of Cognitive Scienceis looked
at by Philosophy of Science & mainly ancther Scienceto be wnsidered true, relative,
pradicd or just nonsense acording to some style of justification. Y et, Cognitive Sci-
ence had the anbition o explaining the whale nation o belief and reasoning by his
empiricd examination d thought, rationdlity, the brain and kehavior. Among other
studies he did so by the exploration o Sciences presumed mental processes during
the processof discovery. He got predous help from Uncle Techndogy together with
the ideas of the daughters and sons of node Modern Logic and Science Computer
Science Today Cognitive Science is suppated with its work by a grea part of the
Sciencefamily.

| now come dose to the mora of this introductory story. When we return to the
entanglements of the Philosophy of Science family we naticed that at one paint the
relation between today’ s Science and Phil osophy of Scienceturned around.Scientific
results justified the daims of a Philosophy of Science instead df, in the traditional
way, the other way around.

So, | ask: why shoudn’'t Cognitive Science ®ntribute to Phil osophy of Science's
family discusgons abou rationality, redity and truth just as well as Socia Science
does? For the family of Science & well as for the family of Philosophy of Scienceit
is probably insightful and productive if both dredions are explored, passbly to re-
sult in a better relationship of understanding between the families...
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Overview

In this chapter | discusshow ideas from cognitive psychology could be relevant in the
domain of philosophy of science and where they would clash. After that | look the
other way around, showing that cognitive psychology addresses topics relevant for
phil osophy of sciencethat are usually not addressed in the mainstream.

In Sedion 2.21 sketch some main issues in the philosophy of science, briefly re-
heasing the ideas of severa philosophers who made influential contributions to the
field: Carnap, Popper, Kuhn, Lakatos, Laudan and Hadking, followed, in Sedion 2.3
by Jerry Foda’s thesis about the language of thowght, a paradigmatic theory in cog-
nitive science

Then, in Sedion 2.41 will consider the gpropriatenessand pashility of a antri-
bution from the viewpoaint of Foda’s cognitive psychology to the issues of rational
justification, theory development, representation and the explanation d behavior. |
will argue that if Foda’sthesisis acceted, norelevant form of relativism is tenable.
His thesis provides a rich framework for considering theories abou reasoning in a
scientific context.

Following that, in Sedion 2.5,1 shall argue that cognitive psychology can domore
than that. It also makes posshble atheory abou discovery and it shows arelation with
discovery as problem solving and the justification d theories. As a result of that, |
will argue that the framework of cognitive psychalogy is rich enough to provide an
adequate explanation d the development of scientific theories. In Sedion 2.61 con-
clude this chapter with an evaluation d this chapter’s claim, that accepting a theory
abou scienceis accegting atheory abou the mind and viceversa.

2.2 Philosophy

There ae many ways to look at sciencefrom a philosophicad stance There ae proba-
bly just as many ways to describe existing philosophes of science For that reason, as
aqguidelinefor this edion| use theideas of some of the important contributors to the
field that is cdled phlosophy of science | follow four genera isaues in the work of
these philosophers: theories abou the justification d theories; the development of
theories; what theories represent; and finally the acual pradiceof scientists. Thisline
of description probably does nat do complete justice to the initial intentions of these
philosophers but is gill useful for a short overview in the light of the goal of this
chapter.

Carnap

After the sudden flourishing of theories in logic & the end d the last century, ph-
losophy of science became focused ontheories abou language. Fast developmentsin
logic provided forma languages with the am to interpret propositions non
ambiguously. If it would be posgble to interpret al theories of sciencein a formal
language then the meaning of those theories would be reduced to the relation d the
formal language and the world. This assumption gaveriselogicd paositivism.
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The main question becane: what shoud o does language represent? Ruddf Car-
nap (Carnap, 1967 defended the following idea al that a scientific theory shoud
represent were terms and propasitions whereof the truth could be @nfirmed in red-
ity. The meaning of a propasition shoud beitsway of verification.

Theory development shoud be aprocess of putting theories forward and con-
firming them. When uriversal statements were mnstantly confirmed they were justi-
fied by induction: justification d the genera by the spedal. All scientific questions
shoud be aswered in this way to have atyy meaning at al. Questions which could
only have axswers that could na be confirmed shoud be dispelled from the domain
of science Theoreticd terms of theories dioud be translatable into olservational
terms to be dlowed in a scientific theory. Causes, unolservable entities, untestable
hypotheses were dl considered to belong to metaphysics and shoud have no dacein
adecent phil osophy of science

Popper

A philosopher who agitated most strongly against the logicd pasitivism of Ruddf
Carnap was Karl Popper. In his famous book ‘The Logic of Scientific Discovery’
(Popper, 1959, first puldished as ‘Logic der Forschung’' in 1939, he reated with a
logicd critique ayainst Carnap’s ideas abou representation, theory development and
judtificaiion. He agued that confirmation as justificaion d universal statements is
not tenable. A theory could be cnfirmed many times and still be false. For a theory
to have any value it shoud be possbleto refute it deductively.

Popper defended this notion as a way to demarcae true science from pseudo-
science a rationd criterion d demarcaion. The more sorts of experiment a theory
allows to test it with, the more enpiricd content it has. The more falsifying tests it
survives the moreit is corrobarated. A theory can never be acceted as true but only
be foundfalse & one accets arefuting singular statement or otherwise be highly cor-
robarated as one has come to accept many singular statements that support it.

The method d doing science shoud be to pu theories forward and then to try to
falsify them. When atheory isfalsified it shoud na be repaired with ad hac hypothe-
ses. Only in this way, which becane known as criticd rationalism, could science
producejustified knowledge @ou the world.

Just as the logicd positivists, Popper thowght that the discovery of theories was
not a matter of logic. For understanding the logic of scienceit did na matter how a
theory or law was discovered. That shoud be the concern of psychology. It did matter
whether a theory could be tested and evaluated. That was purely a matter of logic,
certainly not of psychology.

Theonly logic to dscovery isthat it can be vaidly discovered that atheory isfalse
if aprediction d that theory isfoundto be false. So Popper’s book could just as well
been titled ‘ The Logic of Scientific Evaluation' because & far as Popper is concerned
in hisbook,thereisnologic of scientific discovery.

Kuhn

Thomas Kuhn looks at science from ancther perspedive (Kuhn 1970Q. Instead of
thinking abou what scientific theories shoud look like and hav they shoud be de-
veloped, he empiricdly and hstoricaly investigated what the adua pradice of Sci-
encedid looklike and had looked like.
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What becane dea to Kuhn was that scientists do nd throw away their theories
when they encourter a refuting counterinstance. They stick to them as long as poss-
ble. He naticed that science knows periods of normal science, in which pwzzles are
solved within the borders of a theoreticd paradigm, next to periods of revolution.
During a revolution the old theoreticd paradigm is substituted by a new paradigm
with dfferent theoreticd presumptions.

These historicd and sociologicd fads looked nahing like Popper’s gory abou
the rational criticism of falsification. Most theories are born refuted and revertheless
function as the theoreticd assumptions within paradigms. And when a new paradigm
isacceted it looks asif thereis norational groundfor it that has anything to dowith
the truth of the theories in the paradigms. So, red scientific pradice seemed nahing
like arational affair in Popper’'s ®nse.

Acoording to this fad it was argued that the meaning of the terms of a theory
changed radicdly even if the same names were used in the new paradigm. That made
‘truth’ relative to a paradigm, what implied that there is no pogressin science but
merely successon. For, howv can a paradigm say anything truthfully abou the world
when it isamatter of timefor it to be reeded and succealed by aradicaly new one?

So in sum, from empiricd reseach in sociology and hstoricd analysis of scien-
tific development it follows that if ‘truth’ is regarded as afeaure of atheory whichis
not falsified, and * scientific rationality’ amourts to rejeding a theory as ©onas afal-
sificaion accurs, then science has nothing to dowith truth and scientific pradice has
nothing to dowith rationality. It was thought that beliefs are socially determined, na
rationally, dependent on scientists’ authority and social influences.

L akatos

Imre Lakatos was grongly oppased to thisirrational and relativistic picture of science
(Lakatos, 1978. He built on Popper’s ideas trying to show that they could be made
consistent with the empiricd data of the historicd and social studies. He ducidated
the adivity of science not as the projed of trying to refute one theory but as investi-
gating empiricd phenomenawithin the theoreticd frame of areseach program.

A reseach program consists of a theoreticd core which is proteded by a belt of
auxili ary hypotheses. When a seemingly refuting instanceis encourtered an auxili ary
hypothesis shoud be remnsidered, nd the theoreticd hard core of the reseach pro-
gram. So in thisway it can be explained why a theory does nat get abandored after
falsificaion: one diverts the falsification to a protedive auxiliary hypothesis. A
revolutionis explained as a change in the theoreticd hard core.

What makes Lakatos reseach programs redly different from Kuhnis paradigms
is that there is a rational way of determining when to give up ona particular theory.
Lakatos evaluates progresson in theory development on the basis of the increase of
empiricd content. The enpiricd content of atheory contains the possble models of a
domain that are excluded by that theory: the higher the wntent, the more tests are
posshble to refute the theory. When a theory stops incorporating new fads, the pro-
gram can be @nsidered as degenerating. It then can be &andored for any theory that
does succeal in explaining thase fads. So with thisacmurt it is possble to defend a
nation o truth next to arational justification d scientific theories and pradice
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Laudan

In contrast to Lakatos' redism and reseach programs gands Larry Laudan’s prag-
matism and ndion d reseach traditions (Laudan, 1978. A relevant difference with
Lakatos' reseach programs is that, na the empiricd content but a research tradi-
tion' s ability to solve problemsis central for the tradition's progress

A theory is not considered as good at solving problems when it is progressve but
the other way around it is progressve when it is good at solving problems. Those
problems range from logicd inconsistencies and empiricd problems to conceptual
differences in the worldviews of scientists.

The rational choice between two theoriesin thisway is for the theory which solves
most problems. A nation d truth is nat considered as relevant to judge scientific ac-
tivity as rational. In this way scientific theories, and espedally terms abou non
observable antities within them, do nd have to say anything abou redity at al to be
successul.

Hacking

lan Hadking takes a diff erent approach in the debate éou truth (Hadcking, 1983. He
emphasizes the relevance of the pradice of experimentsin science He agues that the
phil osophy of scienceistoo much concerned with theory.

He accets the redity of some theoreticd entities but withou accepting that a the-
ory that explains a phenomenon must be true. Y ou could establish the eistence of,
for example, eledrons by doing intervening experiments, which result shoud be seen
apart from the question whether the theory you test abou eledrons says anything true
abou redity. But from arationali st viewpaint you can seethe aility of intervention
as just a disguised form of rational justificaion: accet a theoreticd entity when it
explains phenomena during intervening experiments.

Summary

Y ou could frame the &owve theories abou science a consisting of an ognion abou:
the behavior of scientists, their organization and their ads of adhering to or working
on the basis of some scientific theory; what atheory represents, in ather words its re-
lation with redity; how atheory develops; and finaly, how atheory is justified. So |
can give the foll owing summary.

In Carnap’s view, a theory abou scienceis first of al atheory abou representa-
tion. All possble theories of science shoud exist of terms which refer to the observ-
able world. Theories that are repeaedly confirmed are justified by induction. For
Popper nat al terms of a theory have to be observational. A theory that explains a
phenomenonmust be falsifiable through an experimental result that is implied by the
theory. You can justify atheory rationaly if it is not (yet) falsified. Kuhn stresses the
presence of paradigms and revolutionary changes in science, implying that a theory
never represents anything truthfully abou the world that can be defended by Popper’s
criticd rationalism. Lakatos tries to save truth by seang theory development as re-
seach programs with an inviolable theoreticd core that is proteded by a belt of aux-
iliary hypotheses. A reseach program can rationally be éandored when it stops ex-
plaining new fads while another reseach program can. Laudan’s reseach traditions
are oonsidered progressve when they solve many and rew problems, which is their
goa and nd the pursuit of truth. Finally, Hading sees the truth of theories as a ques-
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tion aher then that of the existence of theoreticd entities, the latter can be estab-
lished by explaining phenomena during intervening experiments by their most likely
cause.

What all philosophersin this tradition have in commonis that they do nd attempt
afurther clarification d the role of processes of the mind d persons invalved in sci-
ence Popper regjeds psychologism, yet aform of psychoogism that is based on y-
chaogicd behaviorism. Kuhn embraces a psychoogy that implies multi-rationality
but does not explain haw it does . Lakatos argues abou why and when psychology
could or shoud na interfere with the explanation d science, but he judges rationality
irrelevant for it. For Laudan, scienceis problem solving. But he does nat tell how that
process comes abou. Hadcking also daes not addressthe role of the mind in science
(at least, nat in the literature | reviewed).

In the following sedion | will explicate ageneral idea dou cogniti ve psychology
of Jerry Foda’s. It provides aframework for explaining and empiricdly investigating
rationality in cognitive process In Sedions 2.4 and 2.5, the relevance of such a
framework for the @bove ideas about sciencewill be discussed.

2.3 Psychology

In this sdion | describe the general frame of assumptions Foda’s about cognitive
psychoogy which is representative of the symbadlic goproades in cognitive science
Fodar is a phil osopher who contemplated that fundamental assumptions of cognitive
psychalogy. In chapter 5 | will discusswork of the psychdogist John Anderson, who
amsto provide explanations for empiricd datafrom psychoogicd experiments.

One oould charaderize the program of cognitive psychology as looking for an ex-
planation d intentional human behavior. The program grew out of the failure of be-
haviorism to explain the total scope of behavior, humans as well as animals, as a
function d the environment. Cognitive psychoogy postulated again beliefs and de-
sires in the organism in arder to explain behavior that was judged intentional. The
nations of logic and computation becane reagnized as a new way to acarately
study language and thought. The mind d human beings was to be understood as a
symbad manipulation system that governed all aspeds that had made humans ra-
tional. Empiricd data ébout complex behavior, thought and language could al be ex-
plained as the result of a processof symbalic computation that somehow shoud take
placewithin the brain. .

What is now generally assumed in the program of cognitive science, is that cogni-
tive processes of higher organisms shoud be seen as computational. Cognitive (or, as
it is also cdled: computational) psychoogy made it possble to study language and
the processes of thought with mathematicd preasion.

First of all, cognitive psychology is areseach program to explain intentional be-
havior. Behavior patterns are explained as direded to a cetain goal, governed by
propasitional attitudes: beliefs and desires. An adionis caused by adesire to read a
goal together with a belief of the organism that the goal could be reated by produc-
ing that adion, the relation between attitudes and adion keing rationa and inten-
tional. One thought of these relations as being matched by unconscious computa-
tional relations between symbalsin the mind/brain.
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In this light the process of reasoning could be looked upon —and empiricdly
studied —as a processof problem solving: seaching through a spaceof posshble so-
lutions. It turned ou that this ach processcould be succesSully analyzed as a se-
ries of computational operations on the organism’s beliefs, resulting in a process of
acceting and rejeding diff erent beliefs.

Fodor

In 1975,Jerry Foda’s book‘ The Language of Thowght’ (Fodar, 1979 marked a ba-
sisfor the research program of cognitive psychoogy. The main ideawas that the pro-
cesses of the mind shoud be seen as computational processes. However, computation
presuppases a representational system. A controversial thesis of Foda claimed that
every human being is born with a representational system that is basicdly the same
for every human being. This g/stem shoud be seen as a descriptive language. Within
this representational system computational operations preserve properties of beliefs
such as truth and reference

Foda pu forward three enpiricad arguments to suppat this clam. The first
pointed ou that there is a semantic paralel between thoughts and sentences. The
meaning of words can be compared with the meaning of mental concepts and sen-
tences can be compared with thoughts. The second argument stressed the syntadic
paralel between language and thought. Thoughts as well as sntences are productive
and systematic. There ae indefinitely many and complex types of possble sentences
based ona lexicon and a syntax. The same hadlts for thought with a conceptual lexi-
con and mental rules.

The third and most important argument is the processng argument. Foda argued
that the leaning of concepts is only concevable @ a processof inductive extrapola
tion: the formation and confirmation d hypotheses. So the learner must have arepre-
sentational system that is capable of expressng the hypaothesis before leaning. And
once oncepts are leaned the representational system is needed to consider and judge
posshiliti es when it comes to arational choice Fodar further argues that perception
isonly possbleif several hypotheses are mnsidered to identify what is ®en, because
recognition d objeds in the world is underdetermined by the raw data receved by
the senses.

These aguments led Foda to the antroversial conclusion that the only concev-
able way of learning and wsing language was by aready having some representational
system or knowing some language: the language of thought. By further analysis of
linguistic and psychologicd data, Foda tried to show that the language of thought is
at least asrich as any natural language. That implied that seemingly all basic concepts
are hardwired in the brain. During youth we would lean to translate them into a al-
turally induced natural language. So, hy studying language and its use empiricdly, we
could find ou the structure and operations of the language of thought.

Summary

To summarize Foda’s thesis: a part of human behavior is considered as intentional.
Cogniti ve psychology provides an explanation d intentional behavior as governed by
propasitional attitudes, i.e. beliefs and desires. Part of the beliefs are readed by the
processof reasoning. Reasoning is explained as a cmputational processin a repre-
sentational system. All human beings are born with the same basic representational
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system: the language of thought. Leaning is a process of forming hypotheses and
confirmation within that representational system. Rationality in thinking and kehav-
ior can be seen as problem solving: a heuristicdly guided search through a spaceof
paossible solutions.

Today, in cognitive science, Foda’s overall thesis is criticized as well as cher-
ished. While knowing that Foda’s ideas are open to and undr criticism that | have
not mentioned, | still think that they show that theories in cognitive science have im-
plicaions for theories in the philosophy of science In the succealing sedion | will
show that the framework of cognitive psychadogy isrich enough to incorporate issues
of philosophy of science as st out in sedion 2.2.In sedion 2.5, will argue that the
framework is even richer.

2.4 Interaction

In sedion 2.2,| interpreted the theories of some important phil osophers of science &
being primarily concerned with justification d scientific theories and adivities. In
later discussons in phlosophy of science the adual pradice and kehavior of scien-
tists is considered as well. It is ciologicdly and hstoricaly studied what theories
were acceted and developed and for what reasons. This empiricd work resulted in
data that were not consistent with the ealier logicd notions of rationality.

Later philosophers tried to show how theories abou rationality could still be @n-
sistent with sociologicd and hstoricd data. As a ansequence, they put forward dif-
ferent ideas abou how science develops and what the resulting theories represent, if
they represent anything at all, andif or how they shoud bejustified.

Many philosophers of science who take science & a rational business take psy-
chalogy as incompetent to say anything abou it. Psychologicdly explanations of be-
havior shoud have nothing to say abou how to do science rationally. But cognitive
psychaology not only all ows rationality as an explanation d behavior, it aso explicitly
studiesiit. It even has the potential to explain naions of rationdity that are normally
considered the concern of modern logic.

Yet, it could be agued that what philosophy of science shoud contemplate dou
is how to reason acwording to modern logic, na how people adually reason. How-
ever, since Kuhn philosophy of science cana leare out science s pradice withou
inviting the agument that philosophy of science, in that case, has nothing to dowith
red science

In this ®dion | will explore how or if cognitive psychaogy, as st out in Sedion
2.3, clashes with the theories of Carnap, Popper, Lakatos, Laudan and Hading as st
out in Sedion 2.2.1 will try to show that cognitive psychology can be aworthy oppo-
nent in isaues of philosophy of science

Carnap

Foda’s cognitive psychology is maybe dosest to the logicd pasitivism of Carnap,
but at the same time totally different. Foda’s internal basic representational system
shares many of its logicd properties with Carnap’s ided formal language, with the
main dfferencethat the latter is an artificial logicd language and the former is sup-
posed to be aphenomenonthat can be enpiricdly investigated.
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Thejustificaion d the propasitions of scientific theories by confirmation seansto
resemble the non-demonstrative leaning process of concepts in Foda’s representa-
tional framework. Computational steps and their results in a gnitive processdo nd
need a metaphysics for their explanation, just as the logicd implications of scientific
theories in Carnap’s doctrine do nd need such an explanation. And if, in an interna
representational system, concepts are leaned by hypothesis formation and confirma-
tion, then the justification d them is induction, which was enouwgh for the logicd
positivists.

Ancther important difference is that logicd positivism did na take into acourt
adual scientific pradice It is indifferent to any explanations of the behavior and
pradice of scientists; these were, in that time, governed by behaviorism. Thus oneis
led to the biggest difference the terms in Carnap’s language had to be purely obser-
vational, whil e the terms of the language of thought are theoreticd. They provide an
explanation for certain olservable @mgnitive phenomena: language and intelli gent be-
havior. But if Foda’s thesis abou cognitive psychology is assumed then a form of
logicd pasitivism could be compatible with it, because an internal basic representa-
tional system implies the posshility of an ided forma language that can provide
certainty within it.

Popper

Being compatible with a part of logicd paositivism does nat, for cognitive psychal-
ogy, imply being totally incompatible with the aiticd rationalism of Popper. The re-
alization that induction dees not guarantee dsolute cetainty is a logicd truth that
can bejustified in the frame of cognitive psychalogy.

To start with, there is a diff erence between the learning of a natural language and
the judtificalion d scientific hypatheses within a language. Concepts are akind o
theories abou what to exped about instances of that concept. But concepts in netural
language ae nat leaned that strictly. Natural language is full of ‘falsified concepts
that are entertained anyway. For example, a penguin is a falsificaion d the cncept
bird in English, becaise you exped a bird to fly. But doing science is ancther proc-
ess it can be seen as griving to justified knawvledge within the conceptua frame of a
language.

Again, first you reed a language to state your hypotheses in, before you can test
them. Popper argues that one shoud accept only singular statements, which falsify or
corrobaate ahypathesis, bu this can orly be passble within an already known lan-
guage frame. The goal of developing logicdly justified hypotheses can only be justi-
fied within the logic of alanguage, and so within the language of thouwght. Becaise
logic is a charaderistic of the language of thought. What can be said of a scienceis
that it develops its own language that tries to be a logicdly corred as possble, bu
again, orly within a shared mental framework.

The thing that isin conflict with Popper’sideasis that the language of thought in-
troduces the paosshility for a true logic of discovery. The operations of justification
by corrobaration and falsificaion can be seen as general operations in a process of
problem solving. Finding a theory or law that governs the acceted empiricd singular
statements abou a phenomenon can be explained as lving a problem within the
frame of alanguage.
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It still | eares room for sudden insights. But because they have to be justified
within the terms of the (scientific) language, sudden insights can be seen as suddenly
finding a solution within that linguistic frame. In studies of in cognitive psychaogy it
isfound ou that the processof finding a solution to a problem is not a mere process
of trial and error. It can be seen as a heuristicdly guided seach through passble so-
lutions.

Y et, while many scientific discoveries occur within a frame work of a given sci-
entific language, many revolutionary discoveries are acompanied by a dhange in the
conceptual framework of a scientific language. Thiswill only clash with Foda’s the-
sisif one accets that every basic term in the language of thought is also a basic term
in the frame of a scientific language. However one @uld argue that one shoud un-
derstand the basic terms, that acwording to Foda are nealed to explain the whole
process of leaning a language, are present on a different level of abstradion. In a
similar case, the psychdogist David Marr argued that we need to assume that the
projedion d cylinder forms on perceptual data is hard wired in the brain to under-
stand the processof objed recgnition (Marr, 1982.

Kuhn

One can summarize Kuhri s view of science and his readion to Popper by stating that
there can be nologic but only psychoogy of discovery. But it isincorred to conclude
that therefore scienceis nat rational or can na be understood as arational enterprise.
With Foda’s thesis about cognitive psychology one can provide an explanation o
rationality in science

Entertaining the concept of the language of thought implies a ommon logicd ba-
sisfor al posgble paradigms of science becaise theory development and justification
is dore by human beings who share a @mmon hasic conceptual system. Thus, sup-
ported by empirica data of cognitive psychaogy, the accetance of the language of
thought makes incommensurabilit y and the impli ed relativism unjustified concepts.

Kuhnis dill right in rejeding an ealy form of falsificaionism for explaining sci-
ence, bu wrong in regjeding the posshility of a justified form of rationality by just
asserting that it is a matter of psychoogy, becaise then he dealy underestimates the
read of cognitive psychology. It explains the behavior of individuals as well as their
behavior in the context of a paradigm withou resorting to socia forces only. Of
course, it still remains apoint of discusson whether it provides a proper explanation.

L akatos

As an heir of Popper, Lakatos shares his objedions against psychoogy, bu again,
also withou reaognizing that rationality can be justified within cognitive psychology.
So his refinement of Popper’s falsificationism, by allowing an irrefutable theoreticd
core and letting auxiliary hypotheses take dl the refuting blows, can be compre-
hended in a cognitive psychalogicd framejust as well.

What is incompatible with this frame, is that Lakatos refinement might allow
changing proteding hypotheses forever. But, if the core asumption d a reseach
program is incorred in resped to the world and the language of thought, changing
auxili ary hypotheses would eventually turn ou to be empiricdly unjustified or would
otherwise lead to a change in the relation ketween the language of thought and the
scientific language in which the theory is put.



2.4. Interaction 23

The oorredness of a theoreticd core can result in ummasking presuppcsed hy-
potheses. But if proteding hypotheses would be cntinuowsly changed to save the
core then all hypatheses eventually lose their meaning (and thus the possbility of
comprehension within the language they are put in is lost as well), becaise they lose
their initia relation with the language of thought. Withou that relation the theory
would nad make any sense for anyone knowing theinitial scientific language.

Laudan

Asfor the cmparison with Laudan’s ideas, cogniti ve psycho ogy incorporates an ex-
planation d the notion and wsefulness of problem solving in science It entertains
these & a basic feaure of human cognition that can be rationally guided.

An explanation d why one theory solves sme problems better than anather can
be that, given a scientific language, the one is more truth-like then the other: it is a
better posgble solution then the other within the space of al possble solutions,
within a leaned instantiation o the representational frame of the language of
thought.

S0, successes or progresson with problem solving can be explained by presup-
posing a agnitive processthat is, for having success governed by truth in a repre-
sentational system.

Hacking

When we see Hadking as accepting only parts of theories, their theoreticd terms
when they can be manipulated duing experiments, we seethat thisis again a point of
view that can be incorporated in a psychaogicd frame, as al other philosophes re-
viewed so far. One just has to regard the posshility of intervention as a form of ra
tional justification d the reference of terms within a language. From there to, how
language relates to the language of thought, it is the same story as above.

Summary

| put forward Table 2.1 as a synogsis of the stances regarding issues in the phil osophy
of sciencewith Foda as a participant. | regard the diff erent phil osophers as having a
philosophicd and/or empiricd theory abou science @nsisting of: a theory abou the
scientific pradice or behavior of scientists; a theory abou what theories represent; a
theory abou when and haw theories develop; and finally a theory why scientific
theories are justified ar accepted.

Pradice Representation  Development Justification
Carnap |- Empiricism Confirmation Induction
Popper |- Redism Corrobaration No falsification
Kuhn Paradigms Relativism Normal/revolution Puzze solving
Lakatos | Reseach program Redism Progresson Empiricd content
Laudan |Reseach tradition Pragmatism Progresson Problem solving
Hading |- Entity redism - Intervention
Foda Prop. attitudes Internal redism  Confirmation Problem solving

Table 2.1: Different views on science
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Carnap and Popper did na consider scientific pradice because they mainly pur-
sued a normative philosophy of science Kuhnintroduced paradigms into the picture
and showed how the ideas and kehavior of scientists depends sociologicdly on the
scientific paradigm they work in and on.Lakatos adjusted Kuhn' s paradigms and ex-
plicaed the organization d scientists aroundthe theoreticd core of a reseach pro-
gram. What a scientist accepts depends on the program he is working in. Laudan
further extended reseach programs to reseach traditions and included, among other
things, the conceptual world view of scientists that also determined their adherence
and work in a cetain tradition. Hadking spe&ks abou scientific pradice but he does
not pretend to explain it. If we regard Foda then we shoud na look orly at a socio-
logicd level: we can also explain the behavior of the individual scientists on a psy-
chaogicd level, interms of their propasitional attitudes.

What scientists do, shoud do, @ can dois dependent on what their theories repre-
sent. Carnap and Popper bath thought that theories represent the world with the main
difference that Carnap’s logicd positivism, also caled empirism, only alowed theo-
ries that represented, a could be redescribed to represent, things that can be ob-
served. Popper’ s redism had lessproblems with theories representing unolservables.
The relativism of Kuhn on the other hand dces not regard theoreticd terms or even
observational terms as representing anything in the world, becaise when a theory is
developed further the meaning of its terms change & well. Lakatos is as much a red-
ist as Popper was. Laudan, on the other hand, regards theories as useful but does nat
allow representation. Hadking does allow the redity of ‘theoreticd’ entities if it can
be shown that they cause something in experiments. Concerning representation, Fo-
dor allows aredism that is justified with the internal representational system of the
language of thought. The terms of theories represent the world in resped to human
perception, the language of thought and the particular language ascientist employs.
The language of thought thesis incorporates the ideathat perceptionis theory laden, it
deds with underdetermination and undrmines incommensurabilit y.

A further important philosophicd problem is the question when, hov and if sci-
ence develops. According to Carnap we have leaned something abou the world if a
new hypothesisis confirmed. Popper spe&ks of the mrrobaation d hypothesis which
stood upto criticd tests. In bah views progresson is the result. But when Kuhn
looked at history he only saw normal science and revolutionary legs between in-
commensurable paradigms in the development of science Lakatos, however, expli-
cded that when a reseach program develops the empiricd content of the theories
shoud increase. For Laudan there is just progresson when a tradition daes not run
into ursolvable problems. As far as | know, Hading did na propose his own theory
abou how science develops. For Fodar, a person leans truths abou the world, as
well as a natural language, when hypotheses are awnfirmed in hisinternal representa-
tional system.

The last philosophicd problem taken into acourt concerns the justificaion o
scientific theories. Carnap justifies confirmed hypotheses by induction. But Popper is
only willing to pusue atheory when it is not falsified. For Kuhn a theory is dill
worthy if puzzles can be solved with it during a period d normal science Lakatos
admits theories as long as the reseach program keeps on increasing its empiricd
content and daes not degenerate. For Laudan problem solving is the goal of science,
not truth. Hading justifies the accetance of theoreticd entities when we can explain
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the result of our intervention with nature in terms of them. And finally, Foda’s cog-
niti ve psychology admits the accetance of theories partly by induction bu mostly by
problem solving. The descriptive and explanatory nature of the language of thought
does however alow a normative bent: human problem solving can be analyzed and
improved.

This diontried to show that issues and reseach problems of cognitive psychal-
ogy can be mnsidered as part of the problems and isaues of the philosophy of sci-
ence The ideas abou the isaues clash, bu in the same way as the theories within
philosophy of science dash with ead aher. In the next sedion | will regard hov
phil osophy of science can fall within the frame of cognitive psychology insteal of the
other way around.

2.5 Integration

Up till now, | argued for a placefor cognitive psychoogy within the philosophy of
science But you can also look at isaues of philosophy of science & constituting a part
of the isaues of cognitive psychalogy.

Aswe saw in Sedion 2.3,Foda’s cognitive psychaogy is concerned with the ex-
planation d intentional behavior and cognitive processs that result into language
and rationality. Thisis acammpanied by an explanation d understanding and compre-
hension d symbad's and the world. Consequently, within the frame of cognitive psy-
chaogy, scientific theories, as al other symbals, shoud be processed by a person’'s
mindto have any meaning. Their referenceis determined by the person's representa
tiona system. That makes truth a feaure of the gnitive processes of the mind.
Hence, cognitive psychology can in fad be seen as a scientific epistemol ogy.

Theories in the phil osophy of science in that way, can be interpreted as theories
about cognitive processes within a representational system that can be empiricdly
investigated within the frame of cognitive psychology. The study of the relations
between theories on dfferent levels of explanation would be astudy of the processes
of thought within the mind and d the mind s representational system. In this way,
epistemology can be seen as a science dou how human beings know the world, and
can lean to know it better. The foundation d knowledge would na lie exclusively in
perception d the world, neither would it lie in language, it would lie in hov human
beings can know abou and ad in the world on the basis of their representational
system: it would lie in the language of thought.

The framework of cognitive psychoogy is even richer than its capability to ex-
plain theory justification, it can explain theory discovery as well. It gives the poss-
bility to study justificaion and dscovery within the same framework. One way of
doing so is understanding discovery as the result of an heuristicdly guided seach
through a spaceof possble solutions of a given problem. That problem could, for
instance, be: what formulas explain the given empiricd data. Investigating the proc-
essof discovery would then be investigating how scientists lean heuristics that can
find solutions for a problem in a given representational system. In that way it can be
sea that justificationis also an operation in the processof seach onthe level of dis-
covery and nd just ajudgement after discovery.
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It isnat the cae that cognitive psychology does nat allow “the spark of brilli ance”
or any other nation that is related with serendipitous discovery and credivity. There
can be more ways of finding a solution in a spaceof possble solutions than ony
through a methoddogicd seach that is heuristicaly guided. But the hypothesis of
the language of thought implies that: if a solution to a problem can be found seren-
dipitously in agiven finite problem spacethen it can also be found ty method.

Finally, the program of cognitive psychology was originally set up to explain indi-
vidual behavior of human beings, so it may allow us to give an adequate reconstruc-
tion d the behavior and ideas of scientists. It is very likely to med the dhallenge to
justify historicd and social data, regardlesswhether the goal of a scientist is power or
truth.

Foda’s thesis in cognitive psychology provides a theoreticd frame for processes
of cognition that can explain fedures of language, thought, and kehavior. Those pro-
CessEs are seen as computations in an internal basic representational system. From
this viewpoaint, theory discovery, development, and justificaion rext as well as in-
tentional behavior of scientists are dl governed by computational processs in arep-
resentational system which can be empiricdly investigated. So, cognitive psychology
implies a stance within the philosophy of science becaise the assumptions of the
phil osophy of science ae apart of the asumptions of cognitive psychology.

Hence we can consider issues of the philosophy of science @ part of the isaues
and reseach problems of cognitive psychology. Theories of science ca be inter-
preted as theories about certain cognitive processes and their desired results. In the
next sedion | will close this chapter with a genera conclusion.

2.6 Conclusion

Shoud someone accet the theories of a science becaise he accets the ideas of a
philosophy of sciencethat justify that science? Or shoud ore accet a phil osophy of
sciencebecaise it isjustified by the sciencethat is acceted?

| tried to make dea in this chapter that, if you accet some ideain the phil osophy
of science, you implicitly accept some psychology or philosophy of mind, and if you
accept some psychology or philosophy of mind you also accet some philosophy of
science They are both abou human knawvledge and reasoning. If you state how a
theory can be justified, you presuppacse how a human being can represent theories as
well as where they are @ou. If you state how human beings can have knowledge,
and haw it influences their behavior, you presuppase how human beings can justify
their knowledge. For making this claim, | used the assumptions abou cognitive psy-
chaogy by Foda and related them to isaues in the phil osophies of Carnap, Popper,
Kuhn, Lakatos, Laudan and Hadking, showing that Foda and these phil osophers of
science share anumber of isaues and assumptions.

What isimportant for this claim is that it does not matter whether you accept Fo-
dor’ s cognitive psychology or nat, it holds for every scientific theory abou language,
thought, behavior, and the brain. If you do nd accet a nonphysicd theory of psy-
chaogy, bu only consider neuro(physio)logicd information grocessng, you still pre-
suppase some acourt of justificaion d theories. But if you regard the processs of
the mind and lrain as computational then you shoud see ascientific theory as a
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computational redpe in arepresentational system, i.e. asakind d computer program.
Looking to theories from that perspedive opens up a whole world of new ways to
study and undrstand science with the ad o theories about representation, computa-
tion, leaning, rationdlity and kehavior within cognitive science

Asa onclusion, | will repea the daim | argued for in this chapter: cognitive sci-
encein general can make sensible cntributions to debates, ideas and developments
in the phil osophy of science because acceting a theory abou scienceis accegting a
theory abou the mind/brain and vice versa, philosophcdly as well as sientificdly.
How psychology can contribute to the debate éou the rationality of science is a
main topic of therest of thisthesis.

Postlude

Philosophy of Science redized what his young nephew Cognitive Science had in
stock. Now they bath had to convince their own families abou their combined po-
tential. The best way to adiieve that was getting to work together and let it be
shown...






Chapter 3

Neur ophar macology

3.1 Introduction

What is the rational use of theory and experiment in drug research for Parkinson's
disease? In this Chapter | discussthis problem from a bird’s eye perspedive, provid-
ing an introduction to the more detail ed analysis of discovery in neuropharmaaol ogy
in Part Il of thisthesis.

The gproadch o this thesisis that the best way to understand the processof dis-
covery in empiricd scienceisto seeit at work. Thisopinionis endarsed by both psy-
chadogists, studying how people adually make discoveries in scientific pradice (e.g.
Dunbar, 1995, and computer scientists, who want to make programs that aid discov-
ery, nomatter how people adually make discoveries (e.g. Valdés-pérez, 1998.

| took a similar approad, in condwcting my case study of drug reseach for Park-
inson's disease & the Groningen University Center for Pharmagy. It turned ou that
fundamental reseach into the biologicd medanisms of the brain and rew drug ex-
periments go hand in hand in the seach for new drugs. Theories and models of bio-
chemicd and reurophysiologicd mecdhanisms guide the seach for a new drug and
drug treament, and rewly designed highly seledive drugs are used to empiricdly test
those models and further explore those medianismsin the laboratories.

This chapter globally surveys my analysis of the reasoning involved in using theo-
reticd diagram models in neurophermacaiticd reseach. These describe relations
between variables of a biologicd system. The use of such dagram models has sme
limitations in pradice, due to their complexity. A forma way to uncerstand these
models is to represent a model as a quditative differential equation. An explicaion
of the reasoning task can help to understand the seach for drugs led by suggestions
originating from such models, and pcsbly aid that task by computationa tedh-
niques.

The next sedion kriefly describes the field of neuropharmaclogy and the cae of
Parkinson's disease. In sedion 3.3,1 will compare the reasoning in the seach for an
explanation with reasoning in the seach of adrug treament. In sedion 3.41 outline a
method d making predictions from knowledge in neurobiology by using qualitative
differential equations. Sedion 3.5 dfines and dscusses the processof rational drug
discovery. This chapter ends with some general conclusions.

29
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3.2 Description

In this sdion | globally describe the field of neuropharmaalogy. One am of drug
reseach in neuropharmaawlogy is to find a way to intervene in neurophysiologicd
and reurochemica processes such that pathologicd properties or symptoms are sup-
presed, a desired properties are induced, (Vos 1991). Those unwanted properties
are determined and dscovered in numerous ways. The history of pharmamlogy and
medicine is rich with serendipitous cases where apatient with a particular disease
comes into contad with a ompoundthat enhances his condtion, hence providing a
clue @ou the disease medhanism. A systematic study involves comparison d prop-
erties of pathologicd processes of patients with thase of control subjeds. In some
cases, such asin Parkinson's disease, a caise of disease symptoms can be traced badk
to different concentrations of a single neurotransmitter compound.

Neural disorders have their origin in shiftsin delicate balances of neurochemicds,
which can be caised by e.g. cdl damage or degeneration. The plasticity of the brain
is large enough to restore imbalances, e.g. by increasing the sensitivity for a particu-
lar neurotransmitter. But when it fail s, e.g. when a substanceis depleted aimost com-
pletely asin the cae of Parkinson's disease, a severe neurologicd disorder results.

The am of atherapeutic strategy isto find a design chemicds that seledively in-
fluence neurotransmisgon. The goal is to restore balances by administering those
chemicds, to nudye derailed processes badk onthe trak. Thiskind d reseach has a
top-down and bdtom-up strategy. In the latter case, ore tries to dscover and uncbr-
stand structures and processes in the brain by influencing them seledively, and seang
what happens. Thisis dore both locdly and globally. How does a new drug influence
locd neurologicd processes, and hav does it influence behavior? In the top-down
case, ore uses al knowledge available dou the pathology of a disease to discover
new therapeutic targets, leading to a so-cdled drug lead. Thisis a description d the
functional properties a potential drug shoud have to influencethat target. In pradice,
top-down and bdtom-up go often hand-in-hand.

Using knowledge to buld models of neurochemicd structures and processes to
guide drug reseach is dubled rational drug design. Computational models of com-
plex receptor structures are made to infer what chemicds might interaa with them.
Yet, in contrast to such rationa methods, currently a very successul strategy is to
generate chemicds massvely and to test them in vitro ontheir potency for influenc-
ing receptors. This drategy will end upwith anice set of chemicds to influence the
biologicd madinery in a highly seledive way. On the other hand, it is not aways
obvious how to employ thase chemicd tods optimally. For example, it may turn ou
that a particular combination d drugs is neaded to properly influence severa meda
nisms involved in adisease. This can be discovered by first rationally understanding
those medhanisms.

Hence, fundamental reseach into the workings of the mecdhanisms of the brain is
also pusued in neuropharmaaclogy. One research too employed is building models
of neurochemicd and reurophysiologicd processes that aim to fit data aquired by
lab-studies on animal models. This is condicted in the Pharmacy Department of the
Groningen University by employing eledrophysiologicd methods and microdialysis
to tradkk nerve signals.
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A nerve propagates a signa by conducting an eledric pulse cdled an adion po-
tential. This sgnal initi ates the release of transmitter chemicds at the terminals of the
cdl, that affed receptors of neaby nerve cdls that may further propagate asignal.
Pladng an eledrode in the brain can monitor the dedricd adivity. The release of
transmitter is measurable by means of a microdialysis probe. This probe can also be
used to relesse chemicds locdly and measure the dfed in vivo. At the Pharmacy
Department of the Groningen University the function d neurophysiologicd pathways
is gudied by using these two techniques.

Spedfic studies of the functional relation between several variables together con-
tribute to understanding the function o a brain area or cdl groups cdled nulei. To
describe these neural circuits, bax and arrow models are drawn showing positive and
negative influence relations (Timmerman, 1992. These models are further tested for
their corrednessand wsed to explain and predict the functioning of the system. Newly
developed drug compounds play a bodstrap role in this research: they are used to re-
vise and refine the model and experiments conducted, while on its turn the model is
used to understand their effed. A drug that works very seledively for one particular
type of pathway can be used to further explore the function o that pathway. The a-
quired data may then serve to refine the model, so that the dfeds of the new drug can
be explained and predicted.

A group d subcorticd nuclei cdled the basal ganglia ae studied in Groningen
(Timmerman et al., 1999. These nuclei play an important role in the antrol of vol-
untary behavior. In the cae of Parkinson's disease apart of them, cdled the substan-
tia nigra pars compacta (SNC), decgs due to an unknavn cause. The SNC is a sup-
plier of an important neurotransmitter cdled dopamine, which is postulated to serve a
moduating function. It is thought to maintain a delicate balance in influencing sig-
nals from the crtex. To understand this balance aschematic model is used to repre-
sent neural adivity in the basal gangliain Parkinson's disease, seeFigure 3.1.

Figure 3.1 presents a schematic representation d neura adivity in the basal gan-
gliain Parkinson's disease, as postulated in studies by Timmerman (1992, p. 18 An
arrow in the diagram is a neural pathway, consisting of a bunde of individual nerve
cdls. A box isanucleus, or clustering of nerve cdls. Increased inhibitioninduced by
receptors ensitive to the transmitter GABA of the external segment of the globus
pallidus (GPe) leas e.g. to disinhibition d the subthalamic nucleus (STN). In turn,
this provides increased excitatory drive to the internal segment of the globus palli dus
(GPi) and substantia nigra reticulata (SNR), therefore lealing to increased thalamic
inhibition. This is reinforced by reduced inhibitory inpu to the SNR/GPi. These €-
feds are postulated to result in a strong inhibition o brainstem neurons. D1 and D2
are two dfferent types of receptors, postulated to read excitatory and inhibitory, re-
spedively, to dogmine (DA). (This model is explained in more detail in part IIl)

In the model dopamine has a dua function. It enforces the dired path from the
striatum to the SNR/GPi while it inhibits the indired path, via the GPe and STN.
This balance maintains an inhibition o both the brainstem and the thalamus. Y et
when dopamine is nealy depleted, the balance becomes disrupted, resulting in a
strong increase of the adivation d an area cdled the SNR/GPi, seeFigure 3.1. This
hyper-adivation causes drong inhibition d brainstem neurons and is correlated with
some of the magjor symptoms of Parkinson's disease.
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Figure 3.1: Diagram model of the basal ganglia

Most of the traditional reseach onParkinson's disease is focused onrestoring levels
of dopamine. This compoundcanna be administered as a drug that can be swall owed
because it does nat passthe so-cdled bood-brain barrier. Yet it was discovered that
L-dopa, which metabadlizes in the brain to do@mine, can passthis barrier. Adminis-
tering doses of L-dopa regularly is to date the most successul therapy to ded with
Parkinson symptoms.

Y et administering L-dopa dso causes dopamine levelsin ather parts of the body to
increase. This higher concentration d dopamine in the blood causes nausea & a side
effed due to stimulation d dopamine-recetors elsewhere in the body. And after
threeto five yeas of use the therapeutic efed weas off drasticdly. Further reseach
investigates the use of highly seledive dopamine receptor agonists, compounds that
interad only with particular dopamine receptors. The dopamine receptors on the di-
red route from the striatum to the SNR/GPi were discovered to be mainly of another
type (D1) than that of the indired route (D2) via the GPe. Both recetors can be
stimulated by dopamine, but with dfferent effeds. D1-receptor stimulation with do-
pamine has an excitating effed on a cdl, while stimulation o the D2-recetor with
dopamine inhibites the cdl. Clinicd studies are conducted to investigate the thera-
peutic efeds of using different compounds that differ in seledivity to bah the D1
and D2-receptor. These studies show that using only a seledive D1-agonist, a cm-
poundthat stimulates D1 bu not D2-receptors, is not successul.
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The model in Figure 3.1 is used to understand the effect of selective compounds.
However, in the literature opinions about these kinds of models are rather diverse.
Some people use them to understand and theorize about physiological phenomena
extensively, while others are wary of using them because they are too simple, not re-
specting the subtlety of the data, and therefore not realistic. In a recent article in the
movement disorder literatureit is said:

"On the one hand, efficient models have to be simple, but simple models can
provide only part of the reality and are thus bound to be wrong (for example,
current basal ganglia model) ... On the other hand, an elaborated model that
would embody all the complexities of a given redlity ... is doomed to be
useless’ (Parent and Cicchetti, 1998)

The practical problem of the diagram model is that it is informally represented. Its
consequences are inferred by tracking the boxes and arrows. The general basal gan-
gliamodel is aready fairly elaborate. A more redlistic picture would have to be sub-
stantially larger, including more transmitters, peptides, small interactions and feed-
back loops. Including these would cloud the overview, drowning it in the complexity
of al the consequences of the model.

The following sections generally describe a part of the reasoning involved with
such models, introducing the use of qualitative differential equations to represent
them. These allow for systematic and computational exploration of their conse-
guences and have the potential to aid with both the understanding and the testing of
the models, but also to explore them for new drug lead suggestions. But first we will
look at the kind of reasoning that isinvolved.

3.3 Explanation

In the literature on scientific discovery, alot of attention is paid to understanding and
explicating the process of explaining surprising or anomalous observations. The gen-
eration of potential explanations is often dubbed abduction after the work of C. S.
Peirce, whereas their evaluation is known as inference to the best explanation. The
starting point in those analyses is in most cases a new phenomenon or observation
that comes as a surprise, because it cannot be explained by current knowledge, or be-
cause a contradictory outcome was predicted. From then on, new explanations are
sought, evaluated, and incorporated in the known theories and background (Th.
Kuipers, 1999). How an anomalous or surprising observation comes about is often
the result of casua observation, serendipity, or devised laboratory experiments that
aim to test explanations on their correctness.

In pharmacol ogy, the research aims have a strong pragmatic component. The goal
in rational drug design research is to understand a particular biological structure or
mechanism and to use this knowledge to devise chemicals to influence it. A research
problem aiming at a new drug treatment for a particular disease starts with phenom-
ena or symptoms that do occur but that we do not want to happen, or with properties
or symptoms that do not occur, but that we do want to see. Now the goal isto find a
drug inducible condition that causes the wanted properties to occur and the unwanted
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symptoms to disappea. Superficialy this reasoning task does not differ in structure
from abduction and inference to the best explanation. Only the status of the initia
condtion and the observation is different. In the explanation task, the observation to
be explained occurs, needing an as yet unknown initial condtion a theory to explain
it. In the other case, the wanted property does not occur, needing an as yet absent ini-
tia condtionthat can causeit to occur.

The seach invalved is gructuraly similar to that of abduction and inferenceto the
best explanation, bu it has adifferent goal. Instead o finding asimple explanation o
an observed effed, the task is to infer a simple (drug) intervention that causes a de-
sired effed. So we @uld cdl this reasoning task: inference to the best intervention.
Note that this task differs from diagnostic reasoning. Inferring what causes a disease
symptom is not the same & to infer how to remedy it. That may often be & smple &
removing the foundcause, e.g. by killi ng a germ. But, as the cae of Parkinson's dis-
ease shows, that isnot always possble.

3.4 Prediction

To uncerstand inference to the best intervention based on the schematic diagrams
abou the dynamics of the brain we eamploy the formalisms of qualitative reasoning to
deduce predictions from those diagrams (cf. B. Kuipers, 1994. In quelitative rea-
soning reseach, the structure of a dynamicd system is described by a quditative dif-
ferentia equation (QDE), that defines the relations between the variables of the sys-
tem. The exad nature of arelation may not be known, asis the cae in many investi-
gated relations in the model in Figure 3.1. Yet it may be known what the sign of the
relation is. It may be known that a function describing the relation between two o
more variables, that change in time, belongs to the dassof monaonicaly increasing
(M™), or deaeasing (M") functions.

Furthermore, any variable can be ascribed a qualitative landmark value such as
high, low, or normal, and a diredion d change over time: increasing, steady, or de-
creasing. Severa variables can influence one other variables such that the differen-
tials of al variables together determine the resulting value. There is a cdculus de-
fined to determine these values. For example, if the value of variable p; is a differen-
tial function ower time of p, plus ps and the function belongs to the dassof mono-
tonicdly increasing functions, then the value of p; will i ncrease if both p, and ps in-
crease, bu remains unknown if p, increases and p; deaeases. The lak of knowledge
in the last caseis a necessary consequence of the qualitative and incomplete darader
of aQDE.

A qualitative state of a system described by a QDE is an attribution d variable
values to al variables of the system, consistent with the cnstraints in the QDE.
Given a QDE and a set of known initial variable values, a set of al consistent system
states can be deduced, together with their posgble transitions. When a cdculated
value is unknawn, al possble states are included in the set. This st is complete, but
Isproved to be nat aways corred since spurious gates may be included as well .
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d/dt f(SNC) - M* | M* (— d/dt a(L-DOPA, striatum)
Py
d/dt a(dopamine, striatum)
M* M ——  f(striatum) M* M~
d/dt f(stri aIum-|D1—to—S¢N R/IGPi) d/dt f(stiri atum—|D2—to—lee)
M* M*
d/dt a(GABAT SNR/GPi) « M* d/dt f%Gpe)
|

M~ M~

d/dt f(SNR/GPi) M* d/dt a(glutamate, SNR/GPi)

Figure 3.2 QDE fragment of the basal ganglia

Figure 3.2 dsplays a QDE fragment including a part of the basal ganglia model in
Figure 1, and the metabalism of dopamine. It relates variables such as the firing rate
(f) of nuclei and reura pathways, and amourts (a) of neurotransmittersin nuclei. For
example, the increase of the firing rate of the SNC causes an increase in the anourt
of dopamine in the striatum, whil e this latter increase caises a deaease in adivation
of the neural pathway that signals to the GPe, etc.

3.5 Intervention

In medicd pradice adisease is charaderized by a profile, which is a set of charac-
teristics with certain qualitative values. Given a profile, it is a goal in neuropharma-
cology to discover a drug lead, which is a set of wished-for functional drug charac-
teristics (Vos, 199). This each can be based on gulitative knowledge if the pro-
filesinclude comparative values of variables of anormal and a pathdogicd state of a
system. Thisisthe cae when values of variables are known to be higher or lower in a
pathologicd condtion, compared to controls.

The search god isto find thase variables by which ore can intervene in the profile
in such a way that the pathoogicd values of the variables associated with a disease
are reversed. The goal set is defined to consist of the variables of the disease profile
with an inverted dredion d change, i.e. if avariable value is lower in the pathologi-
cd profile, it isincluded in the goal to increase that variable value. We can nowv de-
finethe ided goa of this sach task: find a minimal set of variables sich that a ma-
nipulation d the variable values propagates a change in dredion d the values of the
variablesin the goal set.
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However, there may nat exist a set of variable influences that causes al desired
changes of values of the goal set. So we have to moderate our goal to find that set of
variables for which an influence causes the largest number of desired goal variable
values, while minimally affeding the other variables of the system. This intuition can
be explicaed by an approximation criterion analogous to a aiterion wed in expli-
cding design research and truth-approximation, (T. Kuipers, 1999 Van den Bosch,
1997, 1998seepart III).

The defined task can nav be caried ou as a seach in a solution spaceof con-
ceptually possble interventions. We start with a QDE model and knawvn initial val-
ues of its variables. A goal of desired variable values is st. Reasoning badkward
from the goal values one can explore possble manipulations of the variables. The
approximation criterion is used to measure the difference between the goa vaues
and the values caused by a particular manipulation, implementing a means-end analy-
Sis.

In Parkinson's disease, the goal set includes a lower adivation frequency of the
SNR/GPi than in the pathdlogicd case, cf. Figure 3.1 A seach through passble ma-
nipulations will nat only find an increase of the anourt of L-dopain the striatum. It
will aso find that a deaease of the firing rate of the indired pathway between the
striatum and the GPe results in a deaease of the firing rate of the SNR/GPi. Admin-
istering a seledive D2 agonist can cause such adeaease, with alessr effed on aher
dopaminergic pathways than doamine.

This reconstruction tell s us nothing new abou what to doabout Parkinson's dis-
ease. Y et by making the knowledge and reasoning explicit (by describing it formally)
it is possble to increase the complexity of the basal ganglia model withou rendering
such a model uselessin the manner that was argued in the movement disorder litera-
ture. Via a omputer program as a modeling tod it is gill possble to keep tradk of,
and further investigate, al the mnsequences of such amodel.

However, because of the incompletenessof the data, numerous and passbly spu-
rious suggestions will be made. So, drug lead suggestions can best be seen as propos-
als for experiments. A manipulation derived from current knowledge is an excdlent
basis for a new experiment design serving both a pradicd and epistemic goal: testing
amanipulation for its therapeutic gppropriatenessand testing the models used to de-
rive the manipulation for their corredness

If alarge enowgh damain o datais included, it also has the benefit of conreding
results, in the way the ARROWSMITH program does, based ontext anaysis of titles
in the MEDLINE-abstrad database (Swanson and Smalheiser, 1997.
ARROWSMITH discovers the missng link between literature that describes rela
tions between subjeds, compounds or functions A and B and literature that did the
same for B and C, but in ignorance of ead ather. In this way the relation between
magnesium deficiency and migraine was discovered, via deven intermediate dfeds
linking them together. In principle, inferenceto the best intervention can dothe same,
given qualitative models of resultsin MEDLINE. Initiatives to colled resultsin biol-
ogy in quelitative formalisms on a grand scde ae drealy undertaken; see for in-
stance the EcoCyc and MetaCyc projeds onthe web by Karp and Riley (1993.
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3.6 Conclusion

The rational use of neurophysiologica models can be modeled as goal directed rea-
soning about qualitative differential equations. Applying effective search techniques
to such models could potentially aid drug lead discovery for complex biological sys-
tems with a large set of variables and constraints. However, thisis a claim only war-
ranted by theoretical considerations. Whether novel results can thus be produced il
has to be seen, because there are problems as well. When a large-scale QDE modd is
compiled it can be severely inconsistent because the empirical results are not aways
mutually consistent. Y et by using the best intervention suggestions to devise new ex-
periments, qualitative reasoning about neurophysiological models as part of a com-
puter supported discovery system could still aid in using, understanding and testing
models about larger biological systems.

This aso concludes the introduction part of this thesis. Part 1l will go further into
rationality in discovery in more detail, while Part 11l will, in detail, further address
discovery in neuropharmacol ogy.






Part Il Discovery

What is the rational use of theory and experiment in the process of scientific
discovery, in theory? In this part | discuss three different approaches to the
study of the rational use of theory and experiment in the process of scientific
discovery. | start with a discussion of the study of logic (Chapter 4). Then |
discuss an account that stems from the psychological study of cognition
(Chapter 5). | finish this part with the discussion of a model of discovery that
is grounded in the study of computation (Chapter 6).
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Chapter 4

Logic

4.1 Introduction

In this thesis we set the general problem: what is rationality in scientific discovery?
This question receives attention from several academic disciplines. Traditional phi-
losophers of science are usually interested in what scientific discovery ought to be,
and how reasoning in that process can be valid or justified. Empirical scientists are
usually more interested in describing rationality in scientific discovery as a social or
psychological phenomenon, to be studied empirically.

In this chapter we will address a normative approach that stems from studies in
logic. In the next chapter we will address a psychological theory about the rationality
of reasoning and problem solving. This part will end with a chapter on a general
computational model of discovery. In discussing all models | will look for answers to
the specific questions from section 1.3, i.e. those about: (1) the structure of a theory,
(2) the process of scientific reasoning and (3) the route between theory and experi-
ment.

In this chapter we start with a discussion of logic, the traditional study of valid
reasoning. The question is: what is the rational use of theory and experiment in the
process of scientific discovery, as proposed in the study of logic? We start by asking:
what is a scientific theory and what is scientific reasoning?

To address these questions | discuss an illustrated example of explanation. In an
episode of the life and times of cartoon character Calvin and his tiger Hobbes he
watches a sunset with his father, see Figure 4.1. His father explains the setting of the
sun to Calvin. Now, why would we not accept his explanation as scientific? Is this
because his hypothesisis not scientific? Is this because his reasoning is not valid? Let
us look at the validity of hisinferences from the perspective of logical argumentation
theory, and reconstruct his reasoning.

41
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WHY DOES

IT'S BECAUSE HOT AIR RISES. [ IN THE EVENING g

THE SUN'S HOT N THE MIDDLE

OF THE DAY, SO 1T RISES
HIGH \N THE SKY.

WHY DOES | SOLAR WIND.

THEN, IT QOIS
DOWN AND SETS,

(0

o
LOR

Figure 4.1 Calvin and Hobbes © 1988Bill Watterson. Reprinted by permisson o
Universal PressSyndicae. All rights reserved.

4.2 Deduction

Cavin's question is: why does the sun set? This question asks for an explanation d
his observation. He wants to know what causes the sun to set. If Calvin accets only
alogicdly valid answer, he can only accept as explanation a deduction d his obser-
vation from what is known. Let us examine hisinferences one & atime aad comment
ontheir validity.

In modern logic the validity of an inference is independent of the truth of the
premises. Yet when an inference kind is valid the conclusion is true when the prem-
ises are true. To represent kinds of inference schemes in the discusgon | will use a
two o three letter abbreviation (TLA) that is italicized if it represents a logicdly
valid inference In an inference scheme | will mark a propasition with a star (*) to
indicae that we do nd know whether that propasitionistrue.

Calvin's father manages to infer his answer in several possbly implicit steps. First
he presuppcses two propasitional premises as initial assumptions which Calvin
shoud accet off- hand, withou further argumentation:

Py Hot air rises Hot(air) O Rises(air)
P, In the middle of the day the sunis hat Hot(sun)

Presumably he further assumes that the ar is hot, and that the sun causes it:
P; If the sunis hot then the ar is hot Hot(sun) [0 Hot(air)

These premises em unproblematic. Based onthem he can validly infer by modus
ponens (MP) that the ar is hat:

P, In the middle of the day the sunis hat Hot(sun)
P; If the sunis hot then the ar is hot Hot(sun) [0 Hot(air)

MP
P4 In the midd e of the day the ar is hat. Hot(air)
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By transitivity (TRN) he can infer validly that if the sunishot the ar rises:

P, Hot air rises Hot(air) O Rises(air)
P; If the sunis hat then the ar is hot Hot(sun) [0 Hot(air)

TRN
Ps If the sunis haot then the ar rises. Hot(sun) [0 Rises(air)

From the premises he then infers in two steps why the sunrises. To be explained first
is the observation:

Ps In the middle of the day the sunrises Rises(sun)

This $houd be a @nclusion from our premises and valid intermediate cnclusions.
For thefirst step threediff erent inferences are passhble. Thefirst could be:

Ps If the sunis hot then the ar rises. Hot(sun) [0 Rises(air)
GEN

P; If the sunis hat, anything rises * for al x Hot(sun) [0 Rises(x) *

Logicdly this is a falagy, a hasty generaization (GEN) cdled a secundum quid.
Sedang one type of objed with a property does not imply that all have the same prop-
erty. So this inferenceisinvalid. However, we can na say that, logicdly, his conclu-
sionisfase ather. The inferred propasition could well be true, bu its truth dces not
follow deductively from the truth of the premise.

Alternatively, Calvin's father could have assumed that the sun is part of the ar
and a property of air is also aproperty of the sun. Sincehat air rises, ahot sunrises as
well:

P, Hot air rises Hot(air) O Rises(air)
Ps The sunis part of the ar sun part of air

DVS
Po If the ar ishat the sunrises* Hot(air) O Rises(sun) *

This is known as a fallacy of division (DVS), where aproperty of the whaole is also
ascribed to a part. All the parts together could well not have the same property as the
whale (e.g. the parts are light, bu the whdle is heary). Yet again, it is also passble
that the whole does have the same property as the parts, and vice versa (e.g. the
whaleislight, therefore eab part islight).

A third possble interpretation d the explanation d Calvin’'s father is a causal ar-
gumentation (CAU):

P, In the midd e of the day the ar is hat. Hot(air)
Ps In the middle of the day the sunrises Rises(sun)

CAU
Pg If the ar ishat the sunrises* Hot(air) O Rises(sun) *
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In this case a case-effed relation is inferred from the mere observation that two
events take placetogether. The ar is hat and the sunrises, henceif air is hat the sun
will rise. Thisis again alogicd fallacy. The causal relation could just as well be the
other way around, @ not existent. The occurrence of events one dter another could
just aswell be anincident. Thisfallacy is cdled post hoc ergo propter hoc.

We now saw threeways to infer Py in afirst step. To explain Ps, the rising of the
sun, ke further infersin the second step:

Po If the ar ishat the sunrises* Hot(air) O Rises(sun) *
P, In the midd e of the day the ar is hat. Hot(air)

AA
Ps In the middl e of the day the sunrises * Rises(sun) *

In this inference the seaond gemise dfirms the antecadent (AA) of the first premise.
Thisinferenceis cdled modus ponens. It isavalid inferencethat guarantees the truth
of the cnclusionif the premises are both true. But in this case the anclusion may be
false because the first premise may nat be true. So Ps foll ows validly from P, and Py,
but not from our initial premises P; to P4, becaise Py does nat follow from them.

But Calvin's question was why the sun sets. To explain this, his father first im-
pliesin athird step that when the sunisnat rising the ar isalso na hat.

Py If the ar ishot the sunrises* Hot(air) O Rises(sun) *
P10 In the evening the sun sets. not Rises(sun)

DC
P11 In the evening the ar codsdown. * not Hot(air) *

The seaond pemise denies the cnsequent (DC) of the first. This inferenceis cdled
modus tollens. Just like in an affirmation d the antecedent, the mnclusion d the in-
ferenceistrueif the premises are true. We caana say that for the first premise, so the
conclusion may naot be true.

To conclude the explanation his father further treas a possbly sufficient condtion
as a necessry condtion. From the assumption that the sun rises when the ar is hat
he infers that when it isnat hat, the sun aso daes nat rise, thereby Denying the Ante-
cedent (DA) of the first premise. This is also cdled an inverted modus tollens. This
inferenceis invalid. Hence, the conclusion may be false even when the premises are
al true.

Py If the ar ishot the sunrises* Hot(air) O Rises(sun) *
P11 In the evening the ar codls down. not Hot(air)

DA
P1o In the evening the sun sets * not Rises(sun) *

Asauming he translates not hot air (P11) with cod air (P13) and anat rising sun (Pig)
with a setting sun (P14), he rephrases this conclusion (invaidly) in the statement with
P13 and Py, as premises: if the ar cods down the sun sets (P;2), which given that the
air coolswould validly imply that the sun setsif the statement were true:
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P12 If the ar cods down the sun sets * Cods(air) [0 Sets(sun) *
P13 In the evening the ar coadls down. Codg(air)

AA
P14 In the evening the sun sets * Sets(sun) *

We can aso interpret his whoe explanation in yet another way. He muld have &
sumed that the premise: if the sunrises the ar is hat, stated that the rising sun is a
necessary condtion for hot air and hence infer that if the sun sets the ar cods, via
contrapaosition. But then he Affirms the Consequent (AC) of this propasition, also
cdled an inverted modus ponens, to infer that if the ar cods, the sun sets:

P15 If the sun setsthe ar coos down * Sets(sun) [0 Cods(air) *
P13 In the evening the ar cools down Codg(air)

AC
P14 In the evening the sun sets * Sets(sun) *

By no grea surprise this is invalid since the antecedent is nat a necessary condtion
but a sufficient condtion. In that case when the consequent of the first premise is
known to be true the antecadent could be true, bu could passbly be false just as
well.

What can we conclude from this? Today, Calvin's father’s explanation is gathered
to bewrong. But is this because his hypaothesis is unscientific, or becaise many of his
inferences are fallades? If we look at the beginning of modern science, three cetu-
ries ago, then what would we exped?

Thelnquisition

In the seventeenth century Galil eo Galil e defended the Copernican heliocentric the-
ory. This theory put the sun at the center of the solar system, and explained that the
sun sets becaise the eath turns on it own axis and revolves aroundthe sun. It also
explained the phases of Venus that Galil eo first observed with his slf made tele-
scope.

Venus waxes and wanes as viewed from the eath, similar to the moon's phases.
When Venusis full, we caana seeit because the sunisin the way. As Venus wanes
from the full phase, it also gets bigger because it is approaching us. When it is closest
to us, we caina seeit because no light is refleded towards us. This could be ex-
plained if it was assumed that both Venus and the Earth rotate aoundthe sun. If you
put the eath in the center then you could only explain it when you assumed Venus to
rotate aoundthe sunwhile Venus and the sun bdh rotate aoundthe eath.

In 1616Galil eo was formally warned by the dhurch to stop this defense. The rea-
son for this censure was not that the daim was considered wrong, or that teading so
undermined the Church. Rather, it was claimed that Galil eo’s proaof for the theory
was not logicdly valid. Galil eo’s main argument depended onthe fad that the theory
explained why the planet Venus $iows phases. Yet, he muld nd prove this deduc-
tively. The agument ran as foll ows:
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If the planetary system is heli ocentric, then Venus will show phases.
Venus hows phases.

Hence, the planetary system is heli ocentric

So the agument was based onan affirmation o the amnsequent, afallacy well known
by the Aristotelian clergy. While Venus does indeed show phases, the planetary sys-
tem being heliocentric may nat be the only condtion undr which that is true. The
clergy pointed ou the flaw and Galileo was ordered na to pu forth this idea &
proved.

Pope Urban VIII, who just as Galil eo was a member of the Academy of Lynxes, a
scientific society formed in 1603,informally lifted these ordersin 1633.Thereis evi-
dence that the Pope gave Galil eo the oppatunity to neutrally compare the heliocen-
tric theory with the geocentric system of Ptolemy, and come up with a deductive
proaf.

But in the book e then wrote he patronized the Pope, who was gredly off ended.
Asaresult Galil eo was acaused o disobeying the order of 1616to stop his defense of
the Copernican system. Even though Galil eo could produce aletter that showed he
was merely warned instead of ordered, he was threaened by the Inquisition, shown
the “instruments’ (of torture), and sentenced to house arest for the rest of his life.
Hence, it was disobeying orders to stop wsing afalacy that got him convicted by the
Inquisition, and nd committing heresy, since technicdly the Copernican system was
never dedared hereticd (Gingerich, 1992. However, today science accpts Galileo’s
explanation. But isthis because hisreasoning is sientific?

4.3 Induction

A typicd scientific explanation can never deductively follow from what we dready
know or have observed, becaise most scientific hypatheses include assumptions and
predictions abou future or other not observed situations. It is logicdly always poss-
ble that thase situations will be diff erent.

In his defense of the Copernican system Galil eo nat only needed to defend a sci-
entific theory, bu also a manner of reasoning. Galil eo employed an inductive infer-
ence The mnclusion d an inductive inference can contain more or other information
than its premises, henceit is not deductively valid. Deductive inference preserves the
truth of its premises 9 as to encompassits conclusion, while an inductive inference
expands beyondthem.

However, scientific reasoning is not void of deductive reasoning. Logicians con-
sider a sound explanation to be adeductive @mnclusion from a number of true hy-
potheses. The problem with scientific hypaotheses is that you can never know for sure
whether they are true. The phil osopher Karl Popper stressed that what you validly can
know abou a hypaothesisisthat it isfalse. If ahypothesis claimsthat all particulars of
atype have aproperty, then only one particular of the type withou that property will
validly imply that the hypaothesisisincorred.

At the beginning of this century, the philosopher Charles Sanders Peirce coined
the term ‘abductive inference to dstinguish Galil eo’s inference from other kinds of
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inductive inference like generali zation (GEN). With generali zation you infer that if a
number of particulars of atype have aproperty, then all particulars of that type have
that property. So for example:

The fad that a number of particulars of type A have property C is observed;

Hence thereisareasonto susped that all A have property C

Acoording to Peirce the function d abduction is ampliative, to introduce new
ideas. A hypaothesis suggested by abduction shoud contain predictions about other
properties or other types of particulars aswell. In his later work Peirce (1958, 5.188
put forward the foll owing often quded definition o abductive inference

“The surprising fad, C, is observed;
But if A weretrue, C would be amatter of course.

Hence thereisareasonto susped that A istrue.”

Abductive inferenceis adually part and parcd of everyday common sense reasoning.
But it seams that it can lead to the wildest of explanations, as Calvin can attest. But
even thowgh his father commits enowgh deductive fallades to experience more of the
“instruments” then just their sight, had he lived three caturies ago, his explanationis
not problematic just because of its inductive nature. Both Galil eo and Calvin’s father
seam to follow the same inference But then what makes Galil eo’s inference differ
from that of Calvin’sfather’s?

4.4 Abduction

How does Peirce s definition d abduction compare to ather kinds of inductive infer-
ences? Let us take a ¢oser look at Peircée s inference scheme and ou examples. We
will addressthe simil arities and dfferences. The examples are summarized in Table
4.1.The properties Hot and Rises are ebreviated to H and R respedively.

Inference | Premise 1 Premise 2 Conclusion
(Observed C) (If A wheretrue C follows, if) (A)

GEN H(sun) O R(air) O Ox H(sun)O R(x) *

DVS H(air) O R(air) sun part of air H(air) 0 R(sun) *

CAU R(sun) H(air) H(air) 0 R(sun) *

AA H(air) H(air) O R(sun) * R(sun) *

DC Not R(sun) H(air) O R(sun) * Not H(air) *

DA Not H(air) H(air) O R(sun) * Not R(sun) *

AC Cods(air) Sets(sun) 0 Cods(air) * Sets(sun) *

AC Phases(Venus)  Center(sun)0 Phases(Venus) Center(sun) *

Table 4.1 Summary of examples of the discussed inferencetypes
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For an inferenceto fit Peirce s definition d abduction, Premise 1 shoud follow as
amatter of course if Premise 2 and the Conclusion are both assumed to be true. If we
compare the example inferences with this definition we natice that generaization
(GEN), division (DVS) and causality (CAU) fit the definition well. If the cnclusion
and Premise 2 aretrue, then premise 1 is aso true. If a generalizationis true, then the
truth of a particular foll ows as a matter of course. In the division example Premise 1
foll ows based onpremise 2 and the assumptionin the conclusion that the property of
awhae is aso a property of its parts. If the caisal implicaion in a mnclusion and
premise 2 would be true, premise 1 would follow by modus ponens. In sum, the in-
ferences GEN, CMP and CAU can be seen as gedal kinds of abduction, acording
to Peirce s definition.

The next two typesin Table 4.1 do nafit the definition. Not remarkably these ae
the deductively valid inferences affirmation d the antecadent (AA) and denia of the
consequent (DC). These will of course nat fit a definition d an abductive inference
In abduction the mnclusion is an explanation, in deduction the premises are. How-
ever, in the example Calvin's father used these inference kinds incorredly, becaise
he wrongly assumed the premises were true, to conclude the truth of the conclusion.
Denia of the antecadent (DA) fits the definition well. The implicaion in Premise 2:
if H(air) then R(sun) islogicdly equivaent to: if not R(sun) then na H(air). Not sur-
prisingly the dfirmation d the mnsequence (AC) most resembles the definition o
abduction. The observed faa C affirms the mnsequent of A O C, where A is the
conclusion. Both the explanation d the sun set and the phases of Venus foll ow that
inference

However, there is an important diff erence between the two. Premise 2, the impli-
caionif A then C, istruein the cae of Galil eo but uncertain in the cae of Calvin's
father. The implications are adually of a different nature. One is itself a hypothesis
and the other alogica consequence The former consists of a so cdled material im-
plicaion and the latter of alogicd or semantic implicaion. Let us take a ¢oser look
at the nature of implicaionanditsrolein Peirce s definition.

Implications

A material implication is a @ndtiona statement that conreds two independent
statements. These statements may be ather true or false depending on aher cond-
tions. The material implicaion asserts that when the antecalent is true, the nse-
quent will also be true. Because of this property of the condtional statement it is ar-
gued that the material implication can represent a causal relation ketween two events
described by the antecadent and the ansequent. However, the truth of the condtional
statement can alrealy be settled by the status of only one of its constituents. The ma-
terial implicationis by definition already true when the anteceadent is false or the mn-
sequent istrue. Let uslook at Table 4.2to follow this.

Antecedent | Consequent | A _. C

True True True
False False True
False True True
True False False

Table 4.2 Truth table of the material implicaion
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In Table 4.21 summarize dl possble truth value combinations of a material implica-
tion. The material implicaion is false only if the antecadent is true and the nse-
quent is false. The statement "if the ar cods down the sun sets" is auch a statement.
It states that it will nat happen that the sun daes not set while the ar does cool down
(row 4). It still alows for the posshility that the sun sets even though the ar does nat
cod down (row 3).

Now let uslook at Galil eo’s datement. If the planetary system is heliocentric, then
Venus will show phases. Thisimplicaion dffersin nature. The antecedent statement
logicdly implies the mnsequent statement, and many others. For instanceit will also
imply under what condtions the sun will set. When you say that the antecadent is
true, you say that all its consequences are true, by implicaion. Formally we say that
all models that make the propasitions true that make up the atecedent of a semantic
implication, will aso make the mnsequent true. The models of the antecedent con-
stitute asubset of the models of the mnsequent. As a notation we will , following tra-
dition, e A [ C for semantic implicaion,and A - C will denate materia implica-
tion. For the language of predicae logic it has been proved that if C is smanticdly
implied by A, it can also be deduced from A, written as A |- C, and viceversa.

Anocther important diff erence between material and semantic implicaionis sown
by the set of the inferences that ead allows. Given that C is true, it can be inferred
that A —» Cistrue, bu you canna infer the truth of A. Yet given that C is true, it
cannot be inferred that A |E C istrue, bu you can say that A is confirmed. However,
thisisonly the caeif A EC istrue. Even if youassumethat A - Cistrue, bu A
Cisnat, then C does not confirm A. If it is known that A |F C is true, you can (non
deductively) infer the truth of A if all its consequences are @nfirmed.

Let us return to the definition d abduction. Apparently Peirce meant "if A were
true then C would be amatter of course” to be asemantic implicaion. Abduction
based on a semantic implicaion will introduce ahypothesis that may have many
other implications. Hence the use of the term abduction: it forces alien statements
into the explanation.

A generaized material implicaion, such as Oxy(A(X) — C(y)), may aso entail
new predictions, but they are usualy abou the same properties, A and C, and the
same kind d objeds, al x andy such that A(X) - C(y). The antecalent of a semantic
implication, such as A | C may entail predictions abou different properties and do-
jedsaswell.

Galil eo’s inference was based on a semantic implicaion and Calvin's father as-
sumed a material implicaion. But are @ductions based on material implications un-
scientific? If that where so then we @uld na use laws to explain phenomena. The
material implicaion "if the @amosphere presaure drops the ar will coo down" could
then na be used to explain why the weaher cods down. Even Galil eo’s explanation
of the phases of Venus would run into troubde. His hypathesis entail s many material
impli cations as possble mnsequences, e.g. (using abbreviations):

C: {positioni of the sunand Earth - phasej of Venus}
A: {Center(sun)} EC: {positioni of the sunand Earth - phase|j of Venus}

A: { Center(sun) *}
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To explain a particular phase of Venus an abduction could infer a particular position
of planets. That would not necessarily need a semantic implication to be scientifically
acceptable. A law could be formulated that relates the position of the sun and Earth to
the phases of Venus, that could explain a particular phase on the basis of a particular
position:

{C: phasei of Venus}
{A: position x of the sun and Earth - C: phasey of Venus}

{A: position j of the sun and Earth *}

In many scientific areas not much more is known than material laws. So it may be
desirable for Peirce to infer arich logica hypothesis, but a material implication is not
unscientific by its nature.

Definitions

The main difference between affirming the consequence of a material implication and
affirming the consequence of a semantic implication is a difference in category. The
former is part of the latter. Let us cal the former kind material abduction and the
latter kind semantic abduction:

C C
Ao C AEC

material abduction —— semantic abduction
A A

To avoid confusion between the two | will adopt the following notation. | will use the
propositionsC, A — C, and A, etc. to talk about statements that a semantic abduction
reasons about. The premises and conclusion of a semantic abduction are sets that
contain these statements. The first will be a set called P, containing a proposition
about the world; the second premise a set H containing the hypothesis statement(s)
that together with background assumptions B implies P. | can now define the differ-
ent kinds of abduction as follows:

Definition 1 Semantic abduction. A semantic abduction is an inference that affirms
the consequent of a semantic implication (ACS). Given the antecedent B [0 H that
semantically implies P, the affirmation of the consequent P infers hypothesis H:

Proposition P
Background B [0 Hypothesis H £ Proposition P

ACS
HypothesisH: {*}

In this scheme the set containing only a star {*} denotes a set of propositions with
unknown truth value. A semantic abduction can encompass different kinds of induc-
tive inferences. Affirming the consequent of a material implication is just one specia
case.
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Definition 2 Material abduction. A material abduction is an inference that affirms
the consequent of a material implicaion (AC), as a speda case of a semantic ebduc-
tion.

Propasition P: { C}
BadgroundB: {A - C} 00 HypathesisH: {A} EP: {C}

ACS: {AC}
HypothesisH: { A*}

The material implication A - C could either be part of the hypothesis or belong to
the established badkground assumptions B which shoud then be part of the antece-
dent of the semantic implicaion. Affirming the consequent of a material implicaion
(AC) isthe typicd example of a semantic ebduction. But the other discussed induc-
tive inferences can be an instance & well, i.e.: denial of the antecadent (DA); divi-
sion, attributing properties of wholes to parts (CMP); inferring causality between co-
occurring events (CAU); and generalization from particulars to groups (GEN); see
Table4.3.

Explanation | Propasition Badground Hypothesis

(ACS) P B H

AC C(y) AX) - Cly) AMX*

DA Not A(x) A(X) — C(y) Not C(y) *

DVS A(p) - C(p)  ppatofw A(p) - C(w) *
CAU C(y) A(X) A(X) - Cy) *
GEN A() - C(i)  A() - Cl) DxAX - CxX)*

Table 4.3 Some examples of explanation as mantic ebduction (ACS):
given B [0 H EP, propasition P affirms the consequent to infer H.

But if inferences with material and semantic implicaions are part and parcd of ab-
ductive reasoning then we do nd have an reason why the hypotheses of Calvin's fa-
ther and Galil eo differ. When is an abductive inference ascientific explanation?

4.5 Formation

There aeinfad two very distinct waysto uncerstand the terms "abductive inference"
and "scientific explanation”. In the first way the term is a verb and in the second way
it isanoun.In the former sense it refers to the processof inferring and explaining. In
the latter sense it refers to the product of that process Abductive inference a defined
by Peirceisfirst of al aprocessof inference Y ouassume two premises, and the mn-
clusion d theinferenceis an explanation that could be @rred.

But how do you knav what spedfic hypothesis to infer? You could logicdly infer
many different possble hypotheses that al would imply a surprising observation.
(Why does the furnacenot work? Is the switch broken? Is the gas pipe fradured? Oh
wait aminute, did | pay my bill ?) And onthe other hand, coming up with oy a sin-
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gle explanation that would nontrivially imply al our observations is no trivial exer-
cise. Peircés abductive inference scheme tells us nothing abou what spedfic hy-
pothesis to infer. He said: "The aductive suggestion comes to us as a flash” (1958,
5.181). His sheme only tells us under what condtion to infer a statement as a hy-
pothesis.

In the 1930 the philosopher Hans Reichenbad (1938 suggested that logicians
shoud ony address the problem of the nature of scientific theories and d their
evaluation. The seach and formation d new theories was taken to be an erratic and
nonrational processthat was not open na relevant for a logica inquiry of knowl-
edge. He suggested a distinction ketween a mntext of discovery and a @mntext of jus-
tificaion in the study of scientific knowledge. This srved as a demarcaion d the
problems relevant for epistemology. The study of the formation and dscovery of hy-
potheses dhoud be aproblem for psychoogy. So acmrding to Reichenbadh's claim,
logic shoud be aleto evaluate ascientific explanation, regardlessof how a hypaothe-
sis was inductively inferred or conceved. A good scientific explanation shoud sat-
isfy certain logicd condtions. One of those we dready encourtered: an explanation
shoud logicdly imply the surprising observation. By its definition we dready are
sure that an abductive @nclusion satisfies that condtion. But both the explanation
given by Gdlil eo and that given by Calvin's father do so. So the question remains:
what other condtions make an explanation scientific?

4.6 Explanation

Phil osophers of science have long thowght abou the nature of a good scientific hy-
pothesis. They set up certain condtions that would mark a valid and pdentially suc-
cesdul explanation. We saw that any proper explanation shoud deduce apropasition
from the explaining assumption. This is, by definition, pssble if H combined with
badgroundassumptions B semanticdly implies P.

The set P may contain particular propasitions, such as the propasition that certain
objeds have cetain properties at a cetain time. It can also contain general proposi-
tions, such as the propasition that al objeds of a cetain kind have acetain property,
or that some objed will have a cetain property at a cetain time. The badkgroundset
B and hypothesis st H may also contain bah particular and general propasitions.
General propasitions in H and B can imply ancther general propasition in P. To-
gether with an assumption abou a particular they can imply particular propasitionsin
P. In empiricd sciences explanations are sought for particular or general fads abou
the world that are observed or assumed to be true. We will use the set O to refer to
propasitions abou the world that are regarded to be cetain becaise they are ob-
served, given some aiterion d proper observation.

In phlosophy of science severa condtions for a proper scientific explanation are
proposed (cf. Aliseda-LLera, 1997,Flach, 1995. We will i ntroduce some of them.
There ae both condtions for the explaining hypathesis and for the explained propo-
sition. Given badground assumptions B, propasition P, observations O; hypothesis
H properly explains P if:
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Condtions for the explaining hypothesis H:

HC;. Implicaion: BOHEP

HC,. Consistency: H is compatible with B

HCs. Non-triviality: HEP

HC,. Smplicity: H isminima among theH’s
wereB O H EP

Condtions for apropasition P that needs to be explained:

PC,. Observation: Pisasaimed to betrue
PC,. Novelty: BEP

PCs. Anomaly: BEnaP

PC,. Indifference BEPandBE not P

If PC; and any of the @ndtions PC, to PC4 hdd for a propasition, a hypothesis is
required for which al condtions HC; to HC, hdd. These ae mnsidered to be ided
condtions, propased and defended by diff erent logicians. Let us go through them and
at the same time see whether the heliocentric hypothesis of Galil eo and the hot air
hypothesis of Calvin'sfather satisfy them:

Heli ocentric hypothesis: H: { center(sun)} E{phases(Venus)}
Hot air hypothesis: H: {ar cods - sunsets}

We drealy encountered the first condtion HC;. It dictates that an explanation o P
consists in adeductive inference of P from B and hypothesis H. The phil osopher Carl
Hempel (1965 cdls this hypotheticd-deductive inference. By this condtion an ex-
planation consists of either a denial of the amnsequent of a hypothesis (DCH) or an
affirmation d the antecadent of a hypothesis (AAH):

BadgroundB: { A} BadgroundB: {nat C}
HypothesisH: {A - C} HypothesisH: {A - C}

AAH DCH
Propasition P: { C} Propasition P: {not A}

In thisway if B and H are true then they explain P. If P is true then it confirms H as-
suming B. Both the heliocentric and the hat air hypotheses comply as we saw ealier
in ou discussonin Sedion 4.4.

The second condtion (HC,) dictates that implications of B [1 H shoud na con-
tradict eath ather. That means that in case of contradiction either H or B shoud be
substituted by a different set of propasitions. The implicaion d the hot air hypothe-
Sis appeas consistent with ou other assumptions. However, the Heliocentric hy-
pothesis contradicts the assumptions of Ptolemy, which were part of the badground
knowledge that, in Galil eo’ stime, was assumed to be true. Condtion HC3 is meant to
prevent the use of ad hac hypotheses. It dictates that an olserved propasition shoud
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not solely follow from the hypothesis. It shoud at least depend on some other as-
sumptions that are nat purely hypotheticd. Both hypotheses comply. The fourth con-
dition makes ome requirements abou the wmplexity of the hypaothesis, given some
interpretation d “minimal”. Both hypotheses do nd seam unrecessarily complex.

In the next part of this thesis when we look at scientific pradice we will seethat
usually no employed hypothesis complies with all four condtions. It is usualy ar-
gued that this fad does not mean that those hypotheses are unscientific or that the
condtions are wrong. It is rather argued that the condtions define an ided to be -
proached by science given some justificaion for the condtions.

Now let us turn to the condtions for the explained propasition. Condtion PC,
states the asumption that a hypothesis in empiricd science eplains observations. If
a aonsequence of ahypothesisis not observed, a on some other grounds certain to be
true, then there is nothing to explain. While the four condtions for a hypothesis are
eat o them desirable, condtions PC,, PCz and PC, are digunctive; only one neals
to apply. PC; states that a propasition orly needs an explanation by a hypothesis H if
it isnot implied by what we dready assume. PC; states that the observed propasition
is in contradiction with the implicaions of our ealier assumptions. Or the bad-
groundcould be totally indifferent abou it, as dated by PC,.

The phases of Venus were ared anomaly (PCs;) for the assumption o Ptolemy. So
by these @mndtions it required an explanation, which was properly provided by the
heliocentric hypathesis. Yet, together with the assumption that the eath evolves
aroundits axis, therising of the sunis already explained by that hypothesis. It did na
need another explanation. But logicdly there ae dways more explanations possble.
So again, what makes the former a better explanation than the latter?

4.7 Prediction

Karl Popper contended that an explanation is no scientific explanation if it canna be
tested. He maintained that, before anything else, scientific reasoning is the systematic
seach for errorsin ou assumptions. Peirce also argued that therefore aproper expla-
nation shoud at least predict propasitions that are ather novel, anomalous, or indif-
ferent with resped to current (theoreticd) assumptions. It shoud predict a P that sat-
isfies condtions PC,, PCs, or PCy4, bu nat PC;. Many wrong hypatheses may explain
given olservations, bu true hypotheses will aways corredly predict a new undb-
served fad.

Logicdly aprediction d a propasition can be considered to be the same & an ex-
planation, it shoud deductively follow from the hypothesis and badkgroundassump-
tions. But just asin the cae of the definition d abduction we can make adistinction
between affirming the antecedent of a material implicaion (AAH) or of a semantic
implication (AAS). The former can again be part of the latter:

Definition 3  Semantic prediction. A semantic predictionis an inferencethat affirms
the antecadent of a semantic implicaion (AAS). Given the axtecaent B [J H that
semanticdly implies P, the dfirmation d the antecalent infers prediction P. Affirm-
ing the anteceadent of an hypotheticd materia implicaion (AAH) is the prototypicd
example:
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Background B: { A}
HypothesisH: {A - C}
B: {A} O H:{A - C} EP: {C}

AAS: {AAH}
Proposition P: { C}

We can consider the affirmation of the antecedent of a semantic implication as the
general definition of prediction. Affirming the antecedent of a hypothetica material
implication (AAH) is the prototypical AAS that provides the best bait for catching
the truth value of an hypotheses by testing its prediction in the pond of nature. It is
the ace of hypothesis testing. But others can be possible as well. A complete typol ogy
would be:

AAH: affirming the antecedent of a hypothesis
DCH: denying the consequent of a hypothesis
DAH: denying the antecedent of a hypothesis
ACH: affirming the consequent of a hypothesis

HAA: hypothetically affirming the antecedent of a background assumption
HDC: hypothetically denying the consequent of a background assumption
HDA: hypothetically denying the antecedent of a background assumption
HAC: hypothetically affirming the consequent of a background assumption

The value of a prediction for a hypothesis can be measured by the information we
gain if we find out that the prediction comes true. We can call this its strength. In
case of AAH a background assumption affirms the antecedent of a hypothetical im-
plication. One infers the strongest prediction, its truth value either confirms or refutes
ahypothesis. It is also possible to hypothetically affirm the antecedent of a hypothesis
in the background assumptions (HAA). This is weaker because if the prediction P is
observed it will not inform you about the truth of the hypothesis. But if not P istrue it
will refute the hypothesis, see Table 4.4 for al types.

Prediction | Background Hypothesis Prediction If Pistrue If Pisfase
(AAS) B H P thenHis? thenHis?
AAH A A - C C Confirmed  Refuted
ACH C A - C A* Confirmed  Confirmed
DCH Not C A - C Not A Confirmed! Refuted
DAH Not A A - C Not C * Confirmed! Confirmed
HAA A-C A C ? Refuted
HAC A - C C A* Confirmed  ?

HDC A - C Not C Not A ? Refuted
HDA A - C Not A Not C * Confirmed  ?

Table 4.4: Types of prediction (AAS) of different strength: Given B O H P, back-
ground B affirms the antecedent of hypothesis H to infer prediction P.
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So the route from theory to experiment is determined logicdly by an informative pre-
diction that can be tested. The strongest test, the one that provides the most informa-
tion, is always preferable. But there can be pragmatic problems to test it. The first
problem is whether it is possble to observe the predicted property of a phenomenon.
If nat, the predictionis uselessas an empiricd test for the hypothesis. Most effort in
the defense of the heliocentric hypothesis for Galil eo was put in constructing a strong
enouwgh telescope to olserve the predicted phases of Venus.

Some predictions date aposshility that will not naturally occur. But can you cre-
ate an intervention such that the initial condtions for the passhility are forced? This
is not always posshle. The latest techndogy often makes observations and interven-
tions posgble that lay beyond ou read or sight withou it. This makes techndogy an
epistemologicd fador. Other predictions can easily be observed bu will never occur
acording to the hypothesis. If they do nd, how will you knawv they never will ? Here
lies the main problem of the hat air hypothess.

Py If the ar ishot the sunrises* Hot(air) O Rises(sun) *

This hypathesislogicdly impliesthat either:

P16 The ar cods and the sun sets Cods(air) & Sets(sun)
P17 The ar ishot and the sunrises Hot(air) & Rises(sun)
P1g The ar codsandthe sunrises Cods(air) & Rises(sun)

Thisis consistent with al our observations. But it also implies that it will never be so
that the antecalent istrue andthe consequent isfalse, i.e.:

P1o The ar is hot and the sun sets Hot(air) & Sets(sun)

Thisisitsonly test oppatunity, that is unobserved so far. So, the only way to test the
hypothesis is to crede asituation where the ar is kept hot by an intervention, and
wait for the sun nd to set. But how can we do that? The hypaothesisis testable in the-
ory, bu not in pradice But does that makeit an urscientific hypothesis?

4.8 Comparison

Acoording to Theo Kuipers (Kuipers 2000 the question abou the rationdlity of sci-
entific reasoning is not only what it means to have agood scientific explanation, bu
also what it takes to have abetter one. In this approadh it is evaluated how one expla-
nation compares to ancther. The best hypothesis would imply al true propasitions
abou a domain. But adknowledging that this is the ided goal, the value of an hy-
pothesis is measured by how far it might be avay from that goal in comparison with
another hypothesis. A hypathesis that includes more true propasitions then a mm-
petitor and hes less counterexamples might be doser to the truth. This intuition is
formalized in arule of success Thisinferenceruleis not deductive in nature, bu ab-
ductive. If the more successul theory would be doser to the truth that would explain
why it is more succesdul. In this light Calvin's father’s explanation is not so much
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unscientific, bu just not as good as Galil eo’s, because next to explaining the phases
of Venus, it aso explains other phenomena such as gellar parallax. Yet there ae
more andtions formulated that charaderize agood scientific explanation. In Chap-
ter 6 | discusshow one of them, the simpli city of a theory, is related to the probability
of its predictions.

4.9 Conclusion

In this chapter | asked the general question: what is the rational use of theory and ex-
periment in the process of scientific discovery, as proposed in the study of logic?
More spedficdly | looked at logicd prescriptions for scientific theories and scientific
reasoning. To addressthese topics | discussed an ill ustrated example that contains a
series of inferences that are marked as fallades from the viewpaint of logic and ar-
gumentation. Yet | argued that these inferences are common in science and part of
abductive inference & defined by C.S. Peirce | further made a céegory distinction
between semantic abduction and material abduction. | argued that the latter, as well
as other types of inductive inference, constitute aspedal type of the former under this
definition.

| first discussed the validity of deduction, induction, and more spedficaly abduc-
tionin scientific reasoning. Scientific reasoning includes inferences abou hypotheses
of which we do nd or canna know whether they are true. What logic tell s us most
importantly is what a valid inference looks like. It defines under what condtions we
can safely accept the aonclusion d an argument. In the cae of deduction we know
that the conclusion is true when the premises are true. In the cae of abduction a ex-
planation we can know that the premises are true, bu we have no guaranteefor the
conclusion. What valid reasoning can dois chedk whether the mnclusion d an infer-
ence satisfies certain condtions. For explanation it can chedk whether a hypathesisis
e.g. succesgul, nontrivia or consistent. But these ae ided condtions that still do
not determine its truth. Yet they may be functional for establishing its smilarity to
the truth. | argued that prediction is nat just deduction. A good pediction with the
aim to test a hypothesis houd satisfy other condtions as well.

In sum, what is rationdity in scientific discovery? According to logic scientific
discovery is a process of observing, describing, explaining, predicting and interven-
ing in natural phenomena. A phenomenonis empiricdly discovered by observing it
in the world. An explanation d that phenomenon may predict the existence of other
phenomena that could be observed o creded by a spedfic intervention in an experi-
ment to test that prediction. As an answer the spedfic questions of this thesis from
Sedion 1.3,we may not that acording to studiesin logic the foll owing halds:

Question 1 What is the structure of a scientific theory? Theories are logicdly repre-
sented as a set of hypotheticd propasitions H that together with propasitions de-
scribing badkgroundassumptions B semanticdly imply the propasitional fads P they
explain,i.e. BOHFEP.

Question 2 What is the processof scientific reasoning? The processof reasoning is
different for the explanation and prediction d fads, seeTable 4.5.
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Problem Premise Background Inference  Conclusion Properties

Explanation | P B Abduction  H: {*} BOH:{*} EP
H isminimal

Prediction |H B Deduction  P: {*} BOHEP:{*}
Pisinformative

Table 4.5: Short overview of the inference types discussed in this chapter

Explanation of a phenomenon involves the abduction of a simple hypothesis from
which the properties of an observed instance of that phenomenon can de deduced.
Induction, as conceived as the generalization from the property of one instance of a
category to all instances, is in this sense a specia kind of abduction. Prediction in-
volves the deduction of informative consequences from a given hypothesis.

Question 3 What is the route between theory and experiment? The route between
theory and experiment typically involves six steps (explanation follows):

1. Observation of a phenomenon P: observe pm and p,

2. Description of P: P. {A(pm) - C(pn)}

3. Explanation of p by a new hypothesis: BOH: {*} EP

4. Prediction by ahypothesis: BUOHEP: {A(p) - C(p) *}
5. Intervention in an experiment: create A(p))

6. Observation in an experiment: observep

An observation of a phenomenon p in step 1. consists in observing natural objects
such as e.g. pm and pn. The description of p in step 2. consist in categorizing the
properties of the phenomenon, e.g. in A and C, and making a statement about those
properties, eg. A — C. After finding an explanation, in step 3., that implies that
statement, a prediction could be deduced in step 4. This prediction can include that if
an object p; has property A, then object p; will have property C. In step 5. the situa-
tion A(p;) can be forced by an intervening experiment. The last step, observing the
consequence of the intervention, closes the circle by being of the same kind as the
first step. The experimenta discovery of the truth value of the prediction either re-
futes or confirms the hypothesis (or a background assumption). A more advanced
logical approach can evaluate an hypothesis by comparing its success with that of
competing hypotheses.

In the next chapter | will discuss rationality in the process of scientific discovery
in terms of the study of cognition. In this approach rationality can be understood as
part of learning to solve problems heuristically.

* * * *
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Cognition

5.1 Introduction

In cognitive science, rationality in scientific discovery itself is being studied as an
interesting cognitive phenomenon. One popuar view is taking scientific discovery as
just aform of human problem solving (Langley et a. 1987. One of the most success-
ful theories about human problem solving is developed by JohnR. Anderson (Ander-
son 1993,Anderson & Lebiere 1998. It is cdled ACT-R, meaning Adaptive Control
of Thowght — Rational. The ACT-R theory deds with the aognitive medanisms of
leaning and rational behavior. It aims to explain howv people make an assumption a
take a1 adion to observe or change something in the world, in such a way that the
probability to achieve aspedfic goal is high and the st of time to achieveit islow.
ACT-R is implemented in a computer program to test the performance of speafic
models of problem solving strategies.

The general question d this chapter is. what is rationdlity in scientific discovery,
acording to the psychologicd study of cognition? As a general model of human
cognitive aoiliti es, ACT-R shoud aso be &leto mode spedfic cognitive processes
involved in scientific problem solving. In this chapter | investigate how it could do
that. The particular question that is answered in this chapter is. how can ore under-
stand and model scientific discovery with ACT-R?

I will first, in sedion 5.2,introduce adistinction ketween primary and secondary
epistemology. Analogously to these types | make adistinction between primary (or
native) and seandary (or aqquired) processes of cognition. | will use this distinction
to discusshow beliefs, goals and seach methods are aeded, seleded and evauated
acording to the ACT-R theory in sedion 5.3to 5.5.In sedion 5.6,] discusshow sci-
entific discovery, as modeled in Simon and Langley’s BACON.1 (Langley et a 1987
and Thagard’'s Pl (Thagard 1988 can bah be modeled in ACT-R as smilar forms of
abductive inference | demonstrate and dscuss how ACT-R’s primary medanisms
nicdy subsume PI's hypothesis evaluation pgocess Then, | discuss BACON.1's
seach methods and hav they can be leaned by analogy from examples. In sedion
5.7 | discussthe nature of theory and method in the different models. 5.8 dscusses
the difference between the logicd and psychalogicd views on explanation and pre-
diction. | end this chapter in sedion 5.9with a discusson and general conclusion,
answering the spedfic questions from section 1.3.

59
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5.2 Primary and secondary

The daim that phil osophy of science ca learn something from cognitive psychology
is endarsed by the philosopher Alvin Goldman. He agues that epistemology, the
study of justified belief, shoud take explicit acaount of empiricd studies of cognitive
processes (Goldman 1986. Among the many fadors that influence the forming of
belief he distinguishes basic cognitive processes from aajuired belief forming meth-
ods.

The first caegory, basic processes, include processs of perception, memory, at-
tention, concept formation, groblem solving, leaning and reasoning. Goldman argues
that these natural or native processes are suitable objeds for normative epistemic
evaluation, and comprise the domain of primary epistemology. Secondary epistemol-
ogy comprises the normative evaluation o aaquired belief forming methods like d-
gorithms, techniques or procedures. A method can either be ageneral, topic neutral,
or atask spedfic procedure for arriving at beli efs.

In forming a belief, basic processes and methods are intrinsicdly intertwined.
When someone nedds to solve aproblem and several methods are avail able, the basic
processes determine which method is applied, and aso which new methods are ae-
ated or added. So evauating a resulting new belief depends on the reliability of both
the basic processes and the speafic goplied method.

So in short, primary epistemology is concerned with the evaluation d basic, i.e.
native or natural, cogniti ve processs, and seandary epistemology is concerned with
the corrednessof aaquired belief forming methods. To explain hov such processes
and methods are explicaed in the ACT-R theory, | will first use Goldman's distinc-
tion to dfferentiate between two general types of cognition, i.e. primary and secon-
dary cognition.

By primary cognition | mean netive or basic cognitive processes and structures,
whereas by secondary cognition | mean aaquired cognitive processes and structures.
In this way we can also dstinguish aaquired structures, like beliefs and goals, from
basic structures, li ke the memory adivation values used by basic or primary cognitive
procesesin ACT-R.

5.3 Declarationsand procedures

Anderson's ACT-R explains human (problem solving) behavior as the result of ad-
ing acarding to two types of knowledge: dedarative and procedural knowledge (An-
derson 1993. Dedarative knowledge mnsists of dedarations of beliefs and goals,
and resides in a person’'s dedarative memory. Procedural knowledge consists of pro-
cedures that can creae and modify a persons beli efs and goals. It contains our cogni-
tive skill s, or our know how. In ACT-R dedarative knowledge is represented as a
colledion d memory structures caled chunks. A chunkis an abstrad representation
of abelief or goa structure. Its basic dements consists of a list with slots and slot
values. For example:
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(Johannes_Kepl er

I SA per son

BORN "27 Decenber 1571"

PROFESSI ON schol ar

ACHI EVED "di scovery |l aws of planetary notion"
FEARED- MOST "invasion by the Turks"

ETC cel)

The1 sA (‘isa) dot value represents the type of the diunk,and can be seen as a @n-
cept type name. Every concept type has the same slot-names, or concept attributes.
Soin ou example, apersonis omething with adate of birth, aprofesson, etc. A slot
value can initsturn also be achunk.In this way dedarative knowledge is gructured
in anetwork of memory chunks. In ou example:

(schol ar
| SA pr of essi on
ACTIVITY research
ETC ca)

Procedural knowledge, or know how, is represented by production rules, or produc-
tionsfor short. Such arule ansists of a set of condtions and adions. The @ndtions,
or left hand side (LHS), of a production can match with memory chunks which sat-
isfy given constraints. When a matching succeels, certain adions can be performed
which are spedfied in the adion, a right hand side (RHS), of a production. For ex-
ample:

( SUBTRACT
=goal >
| SAsubtract
VAR1L =X
VAR2 =y
ANSVER nil

=addi ti on-f act >
| SAaddition-fact

ADDEND1 =y
ADDEND2 =z
SUM=x
==>
=goal >
ANSVER =z)

This production uses dedarative knowledge of an addition fad to find the answer for
asubtradion problem. A string with an ‘=" sign is a variable that is boundto a value
by matching a chunk. The LHS, before the arow, matches against any goal of which
no answer is known and afad (an addition fad in the example) that satisfies the val-
ues =x and =y of the goal dots. In the RHS, after the arow, the found \alue =z of the
additionfad is added to the ANSWER Slot of the subtrad goal.

In summary, this is what ACT-R poses that human problem solving is al abou:
matching productions (skill s) to memory chunks (beliefs and desires). We can say
that the chunks and productions themselves, constitute secondary cognition. A mem-
ory chunkis an aqquired structure, a productionis an aqquired process However, the
proceses that ACT-R redly is abou are the (native) mecdhanisms abou how and
what memory chunks and productions are used in problem solving.
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In human problem solving often several (possbly mutualy inconsistent) belief
chunks can match a production’s LHS. And for a given problem goal more than ore
production may apply. The ways the cognitive mechanism efficiently evaluate dter-
native dhunks and productions constitute the main aspeds of primary cognition.

5.4 Structuresand processes

In Table 5.1, 1 summarize the main cognitive medianisms acording to the ACT-R
theory, explicding their primary processes and structures. In the processof problem
solving, (secndary) knowledge, containing of chunks and productions, is creaed,
seleded and evaluated by (primary) leaning mechanisms. (This edion dscusses the

ACT-R architedure upto version 3, pimarily based onAnderson (1993.)

Cognitive mechanisms Primary processes Primary structures

Creation of chunks by:

Concept-formation (Spedfying churk types) (Basic types?)

Perception Spedfying (new) churks (Constraints?)

Productions (RHS) Spedfying RHS churks -

Selection of chunks by:

Productions (LHS) Matching LHS churks -

Goal focus Goal stadk control -

Activation Preferring high Aj=Bj+SWjSj Value Aj
Base-level adivation Computing & leaning Bj Value Bj
Saliencestrength of j to Computing & leaning Sjj Vaue §jj
Association d i with | Computing Wj Value W

Evaluation of chunks by:

Activation Preferring highest Aj Value Aj

Creation of productions by:

Analogy Generalizing example dhurks Spedal dots

Selection of productions by:

Goal focus Matching LHS to goal focus -

Churks Matching LHS to churks -

Matching time (latency) Preferring low Tp = Sie™ (Aj+Sp) ValueTp
LHS churks adivation Computing & leaning Aj Value Aj
Strength of production Computing & leaning Sp Vaue Sp

Eval. of productions by:

Expeded gain PreferringhighvalueE=PG-C VaueE

Probability of success Computing P=qr VaueP
Prob. d intended effed Computing & leaning q Vaueq
Prob. d suc. after firing Computing & leaningr Vauer

Value of the goal Spedfying value G VaueG
Cost of production ComputingC=a+b VaueC
Cost of firing production Computing & leaning a Vaduea
Cost of adions after firing Computing & leaning b Vaueb

Table 5.1 Primary aspeds of ACT-R’s cognitive mecdhanisms
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Table 5.1 summarizes the primary aspeds of ACT-R’s cognitive medanisms (ver-
sion 2.0. In the first column | list different kinds of primary cognitive mechanisms.
These essentialy control the aeaion, modification, seledion and evaluation o sec-
ondary cognitive structures (memory chunks) and processes (productions). The pri-
mary cognitive mechanisms consist of primary processes (column 2), guided by, and
modifying primary structures (column 3). | will discussthem briefly in the foll owing
subsections.

Creation

In the ACT-R theory, memory is ordered by types of memory chunks. A concept like
‘person’ in the example aowe, is suppcsed to have agiven template of attributes.
Every instantiation d a cncept shares the same atribute slot names, bu differsin
their values. If you want to add something to memory, a cncept type is necessary.
But how do concepts come @ou in ACT-R?

In any cognitive aedion a modificaion pocesswe can make adistinction be-
tween the processthat adually makes the aedion a modificaion and that what is
creged o modified. In conredionist theories of cognition we often seethat both are
the same, that the concept credion pocess ‘deddes on the concept types ‘on the
run’. In ACT-R there is no primary process pedfied that creaes types, and the the-
ory is slent abou what types there shoud be. The modeler has to define them up
front. Chunktypes can dso nd be aeded o changed by leaned prodictions, while
chunk type instantiations can. So it is nat clea whether we can consider concept
types as primary or sewndary structures, and if there ae aty basic constraints, or
even basic or native types (like Jerry Fodar suggests).

The processof perception can add rew chunks to memory. Again we can say that
in ACT-R the process of adding them is a primary process Yet how perception is
constrained by concept types, or guided by problem solving is not defined in ACT-R,
but in the perceptual/motor extension d the theory ACT-R/PM. | will nat go into this
extension here (seeAnderson & Lebiere 1998.

Finally productions can add and modify memory chunks. That is what ACT-R is
(mostly) al abou, how and which productions modify and add chunks to memory.
Once a tiunkis added it will never be deleted. Its worst fate is never to be recdled.
How, and what chunks are recdl ed is governed by processes of chunk seledion. Pro-
ductions themselves, as representations of leaned skills, can orly be aeaed and
added by a primary process of analogy. To conred adions to condtions, ACT-R
starts out with a dedaration d a problem example and its lution. When ancther
problem of the same type is encountered, analogy will generalize asolution strategy
from the known example. How that processworksis discussed in the next sedion.

Selection

In a process of problem solving the seledion d relevant chunks and productions is
constrained in several ways. The main guiding mecdhanism of problem solving in
ACT-R is goal focus. Goal focusis akind d painter to a dhunk saying, “this chunk
represents the goal | want to achieve”, which in ACT-R means “that is the chunka
production shodd match with”. ACT-R does nat say how goal focus is initialy
spedfied. How a person is motivated to desire the acomplishment of a goal, how-
ever, is determined rationally in ACT-R. After setting the first goal, severa primary
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and secndary processes influence how to adhieve that particular goa by spedfying
and focusing on subgoals. The adion, a right hand side (RHS) of a production can
shift focus to ancther goal, which is implemented by a push of a new goal on stack.
When a production hes achieved the new goal, it can pop it from the stad, thereby
changing focus to the next goal below it on the stac.

When aninitial goal is st, ACT-R first seleds a set of patential productions that can
match with it. For a production to match, the given goal must be the first part of the
production's condtion a left hand side (LHS). An LHS usualy contains other
chunks which shodd match as well, given spedfied constraints, and reel to be re-
trieved from memory.

ACT-R also models latency, which is the time it takes to match a production to
memory and perform the adion. How long that takes depends on the adivation d the
chunks neaded. The latencies in the model shoud refled the latencies in readion
time of subjeds, measured in psychologicd experiments.

Activationis abasic property of every chunk.A chunks adivation valueisthe re-
sult of its prior base level adivation dus the contribution d chunks that are part of
the aurrent goal context. This value increases with use. A primary leaning process
increases the asciation between two chunks every time they are both needed to
solve aproblem. According to Anderson, a chunk's adivation denotes its posterior
(logarithmic) odds that it will be neaded in a given context, and the learning process
is suppcsed to give the best estimate of that chance When a chunkis not used its ac-
tivation decays logarithmicdly. When it drops below a cetain threshald, it can no
longer be retrieved in the aurrent context. Another context might however contain the
right cues to boast the adivation above the threshald again, re-enabling retrieval.
Next to chunk adivation, a production’s drength also controls production seledion.
A production's grength increases after use, and is leaned acordingly. Again its
strength denatesiits (logarithmic) odds of being needed.

So in sum, when focusis st to a goal, primary processes in ACT-R start to seled
productions that can match with it. A set of alternatives is gradually seleded, de-
pending on the adivation d chunks in the productions' LHS, and the strength of the
productions.

Evaluation

When several chunks can match a production’s LHS, the dhunks with the highest ac-
tivation will be used. However, that is nat the cae for productions. Next to the time
it takes to retrieve relevant productions, other primary evaluation processes contrib-
ute to determine what production will determine the next action.

During seledion, pdential productions are evaluated simultaneously by a primary
process of rational analysis. This process diagnases whether a given production is
worth it to be fired. In order to doso it takes three etimations into acourt: the prob-
ability the production will be successul (P = gr); the value of the goal that is desired
(G); and the st of firing that production (C = a + b). A production’s probability of
successis a product of the probability of its intended effed (q) and the probability of
adhieving the goal after having achieved intended effort (r). The st of a production
is the result of adding the ast of the wgnitive dfort to fire the production (a) with
the ast of adions nealed to read the goa after firing the production (b).
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For example, if your goal isto lessen your thirst, and you are in front of a coffee
madhine, a production may be evaluated that urges to throw a @in in the macdine to
get a aup d coffee Now g isthe estimation that the machine will i ndeed return a aup,
andr isthe dhancethat only one aup will quench your thirst. The quantity a denotes
the dfort of putting in a win, while b stands for the dfort of emptying the aup. The
quantities g and a can be estimated by repeaed applicaions of the production. For
example, if the machineis old and failed a number of timesin the past, g will be low.

The quantities b and r are more difficult to estimate becaise they may refer to yet
unknowvn adions. Anderson's lution is to base their estimates on hav much the
state adieved by the production dffers from the desired goal. If the adion d putting
ina win falsto provide you with a cffeg it islesslikely that you will quench your
thirst (r’) and more dfort will be needed to get adrink (b’). Andin general the more
effort already spent, the lesslikely you will achieve your goal at all, so the lower the
probability (r’).

The production with the highest estimated gain E (= PG-C) of the seleded pro-
ductionsis generaly preferred. In this way when the value of agoal or the probability
of its successis high, the st of a production days a lessimportant role. When you
know the mffeemadine often fails and is stuated onancther floor of the building,
the st of walking to it may not be worth ore’'s while. But when you are redly
thirsty the ast loses out to the value of the goal. The best production rule given its
PG-C isnot dways sleded, bu it has the highest chance of being fired.

When a production finaly fires, its RHS or adion side will be exeauted, changing
beliefs or goals, or initiating hand an eye movement, like looking for the dit on the
coffeemadhine and puting a @in in it. After firing, a new (sub)goal may be set by
the produwction a from the goa stac, and the process of seleding, evaluating and
firing a production starts al over. ACT-R stops when the initial goa is achieved and
popped from the goal stadk.

5.5 BACON and PI

In this fdion | discusstwo computational models of scientific discovery, and hav
the structures and processes of these models can be modeled in ACT-R. Typicd sci-
entific problems are seaching and evaluating descriptions and explanations for inter-
esting observations. Herbert Simon and Paul Thagard propcsed dff erent explanations
abou how scientists (could) solve those tasks. They both modeled their theory in
computer programs, respedively cdled BACON and PI.

The first of the BACON programs models the seach for simple quantitative laws
that describe the numericd data of observations, like Kepler's third law of planetary
motion and Boyle's gas law. Pl seaches and evaluates quditative explanations, like
the explanation d the propagation d soundfrom its being awave.

In PI, new hypotheses are seached and evaluated through a primary process of
abduction and inferenceto the best explanation (IBE). In this dion | will argue that
abductionis better thought of as a secondary acquired processin ACT-R, generali zed
from examples by analogy, while IBE is subsumed by ACT-R’s primary processes. |
will further demonstrate that the heuristic search method for laws as implemented in
BACON.1 can dso be leaned from examples.
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Simple abduction in PI

Paul Thagard’s theory of cognitive inductive processes, modeled in Pl (processes of
induction), includes sveral forms of abduction. | will consider its smplest form.
Abduction, as discussed in Chapter 4, is aform of inductive inference. It isinductive
in the sense that the truth of the cnclusion d the @ductive inference does not follow
from the truth o the premises. As dated in Chapter 4, Peirce defined abduction as
follows:

(Py) “The surprising fad, C, is observed;
(P2) But if A weretrue, C would be amatter of course.

©) Hence thereisareasonto susped that A istrue.”

In Peirce s original definition the seledion and evaluation d explanation A is al part
and parcd of the same inference. But usually not only the truth of A would make C a
matter of course. Say B could also lea to the truth of C. So clealy Peirce€ s defini-
tionis not enough for an inferenceto the best explanation. Thagard made a ¢ea dis-
tinction between the inference of posgble explanations for surprising fads, and their
evaluation. Peirceé s origina definition o abduwctionis a dea form of inferring from
P, a passhle explanation for P;. But before jumping to conclusion C, other known
premises like P, shoud be considered first.

Thagard defined a separate processto evaluate the resulting set of passble expla-
nations, and cdled that processinference to the best explanation (IBE). Thagard de-
fined IBE as an inference to a known explanation which explains the highest number
of other known fads, neading the lowest number of auxiliary hypotheses as badk-
ground assumptions. An explanation's value can be cdculated by subtrading the
number of auxiliary hypotheses from the number of explained fads. In that way,
adding an explained fad ad hoc by an auxili ary hypathesis makes no dfference for
an explanation’ s value.

In PI, abduction and IBE are modeled as a processof problem solving. An expla-
nation problem is represented by a basic memory structure, including the slot START
containing context fads, and the slot GoaL, containing the explananda, the fads to be
explained. Theories are represented as (secndary) processes cdled rules, with slots
CONDI TI ON, which contain premises and ACTI ON, containing conclusions. When a
problem is st, a primary processof spreading adivation adivates rules linked to the
problem slots. Only adive rules are used to infer possble explanations for the slot
value of GoAL. IBE deddes which explanation is the most favorable. For example, we
have threepossble explanations of an olservation E, represented in threerules. Acti-
vation from E adivates the rules, which generate passhble explanations by abduction.
IBE seleds the best as a conclusion d solving the explanation problem, see Table
5.2.

In P, rules, problems and concepts al have basic structure types. Among the basic
glots are ACTI VATI ON, STRENGTH, and OLD- MATCHES. The processes of adivation, ab-
duction and IBE are dl primary. Only instances of concepts, rules and poblems are
sendary. IBE in Pl is a process pedally used for making evaluations of abduc-
tions, which only occur during explanation problems.
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Explanation | Structure Process  Example
EXPLANATT ON
Premise START F (isknown to be true)
GOAL E (isto be explained)
Background RULE- 1 CONDI TI ON H1 ACTION E
RULE- 2 CONDI TI ON H2 H3 ACTION E
RULE- 3 CONDI TI ON H4 ACTION E F
Inference Activation (E activatesrules1to 3)
Abduction H1, H2&H3, H4 (possible explanations)
IBE H4 (explains the most facts with the least
auxiliary hypotheses)
Conclusion H4 (isthe best explanation)

Table 5.2: Explanation as modeled in the Pl program

Pl Abduction » |BE
Selection
Problem (PI) » Activate: rules/concepts (PI); » Match: rules (Pl);
Goal (ACT-R) productions/chunks (ACT-R) productions (ACT-R)
Evaluation
Fire best: rule (PI);
production (ACT-R)
no
Try analogy a——————— Problem solved?
(Pl & ACT-R)

yes

Store solution (PI)
Next goal (ACT-R)

Figure 5.1: Problem solvingin Pl and ACT-R
Problem solving in ACT-R is similar to that of Pl (see Figure 5.1), but with a few

important differences. In both Pl and ACT-R memory structures match with rules,
which can add to memory and influence problem solving control. Y et productions in
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ACT-R are of adifferent type than PI’s rules. They represent a skill, and nd an ex-
planatory relation. And, more important for modeling explanation, ACT-R ladks a
primary abduction medanism. Because of the nature of the ACT-R theory such a
primary medhanism is not appropriate. Productions in ACT-R are steps of pradiced
problem solving, generalized from example problem solutions by analogy (Pl can
also employ analogy to suggest rules, bu | will nat go into that here). So if a cgni-
tive model in ACT-R neals to employ abduction in problem solving, then the éduc-
tioninferencerule hasto be leaned first. Andthat turns out to be no problem at all.

L earning abduction by example - part 1

The ACT-R theory assumes that part of the processof solving a particular problem, is
trying to recdl an example of aproblem that was lved ealier and hed agoa similar
to the arrent problem. When such an example problem is retrieved from memory,
the structure of that example problem, and the solution d that example problem, is
mapped to the arrent problem. When the solution d the example problem can be
used to solve the aurrent problem, a production rule is propased, as a generali zation
of a strategy for solving problems that share the particular goal. It is currently as-
sumed that all procedural skill s, represented by production rules, are leaned by this
processof generalization from dedarative examples.

The discusson and models in this ®dion are based onthe analogy medanism of
ACT-R, release 3.0. The detalls of implementing the medanism of analogy have
been changed in the 4.0 version that was introduced after | wrote this chapter.
Leaning by examplesin ACT-R is gudied extensively by Niels Taagen (1999.

In this subsedion | model an example of Paul Thagard's from his (Thagard 1988.
He tell s about his encournter with a group d outrageously dressed persons at the ar-
port. He wonders why theses people ae dressed up that way. Maybe they are rock
musicians, he thinks, becaise rock musicians usually dressoutrageously. ACT-R has
to know only this example to generate, by analogy, a production that can make simi-
lar abductive inferences in the future.

As asimilar explanation problem | use another example from (Thagard 1989. In
this smple historicd example the goa is to explain why sound popagates. It is
known that waves propagate, so maybe soundis a wave. | started ou with the fol-
lowing memory chunks:

( Exanpl e- Probl em

I SA expl anati on- probl em

GQOAL Dr essed- Qut r ageousl y)
(Exanpl e-Rul e

I SA pi-rule

CONDI Tl ON Rock- Musi ci an

ACTI ON Dr essed- Qut r ageousl y)
(Exanpl e- Sol uti on

I SA expl anation-sol ution

EXPLANATI ON Rock- Musi ci an)

( Exanpl e- Dependency

I SA dependency

GOAL Exanpl e- Probl em
SUBGQOALS Exanpl e- Sol uti on
CONSTRAI NTS (Exanpl e-rul e))
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(Problem1
I SA expl anati on- probl em
START sound
GQOAL Pr opagat es)
(Rule-1
I SA pi-rule
CONDI Tl ON wave
ACTI ON Pr opagat es)

The example-dependency chunk isused (In AC-R 3.0) to represent the link between a
problem chunk and the chunk that represents the solution to that problem. The con-
straint slot is used to represent that additional chunks that where involved in solving
the problem.

The slot values Rock- Musi ci an, Dr essed- out r ageousl y, Pr opagat es, and Wave
are also added as memory chunks of type concept . This chunk type aso has a slot
I NSTANCES, which isfilled with Sound for concept Pr opagat es. The goal focusis set
on Pr obl em 1, which represents the problem to explain why sound propagates.

When ACT-R is started it first tries to match the goal Probl em 1 with available
productions. After failing to do so (there are none defined) ACT-R searches for an
analogous problem and finds Exanpl e- Probl em The specia dependency chunk is
used to find its solution. ACT-R uses the Exanpl e- Rul e to map the solution to the
problem, and uses it to make a new production. It then tests whether the new produc-
tion will match the focused goal. Only if that succeeds will the new production be
added to production memory. In my example ACT-R produces the following produc-
tion:

( EXPLANATI ON- PROBLEM PRODUCTI ONO
=Exanpl e- Pr obl em Vari abl e>

I SA expl anati on- probl em

GQOAL =dr essed- out r ageousl y-vari abl e
=Exanpl e- Rul e- Vari abl e>

| SA rule

CONDI Tl ON =r ock- nusi ci an-vari abl e

ACTI ON =dr essed- out r ageousl y-vari abl e

==>

=Exanpl e- Sol uti on-Vari abl e>

I SA expl anation-sol ution

EXPLANATI ON =r ock- nusi ci an-vari abl e

I f ocus-on! =Exanpl e- Sol uti on-Vari abl e)

The first condition chunk matches with Pr obl em 1 and the second with Rul e- 1.
As aresult the production creates a solution and changes focus of attention to it. This
rule now serves as a secondary simple abduction process, generating hypothetical ex-
planations, given explanation problems and rules that may explain it. The resulting
explanation for the exampleis:

(**Exanpl e- Sol uti on-Vari abl e$1>
I SA expl anation-sol ution
EXPLANATI ON Wave)

This example has only one rule to abduce from. Usually severa rules can be used to
generate an explanation. Thagard employed IBE in Pl to evaluate possible explana-
tions before jumping to a best conclusion.
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It can be agued that the general ideaof Thagard's IBE is subsumed by ACT-R’s
primary, proceses that subsymbadlicdly seled and dedde which chunks and produc-
tions to match. Thagard's IBE favors the hypothesis that explains most known fads
with the least number of auxili ary hypotheses. So there is a mnstraint on explanatory
successand hypothesis smplicity. The simplicity constraint is met by ACT-R'’s pri-
mary process of latency, which is related to the probabili stic evaluation whether a
chunk is relevant in a particular context. A more complex rule will contain more
chunks in the condtion, which will take longer to match. So more simple hypotheses
will be considered first. Yet a very successul rule will have ahigher adivation ke-
cause it is associated with more adive fads in memory. So the cnstraint on ex-
planatory success is met by the processof preferring high adivation.

One muld compare the dfed of the adivation o chunks as aresult of their prob-
abili stic association with ather chunks in ACT-R, with the dfed of the adivation o
propasitions as a result of their explanatory relation with aher propasitions in
ECHO, Thagard's refined explanation evaluation model (Thagard, 1993.

Yet, several other fadors, such as the production's expeded gain (PG-C) value,
play arole in the final dedsionto fire arule. Hence ACT-R might not aways come
to similar conclusions as Pl. Whether ACT-R’s conclusions are more plausible is an-
other question altogether, belonging to primary epistemology. However, becaise of
the fad that ACT-R is a more sophisticaed model of primary cognition than Pl is,
ACT-R islikelier to make aductive inferences that are doser to adual human prob-
lem solving. Whether that is relevant for epistemology is discussed in sedion 5.8.

Heuristic search as abduction in BACON

The BACON models (Langley et al, 1987 constitute aset of productions that try to
find algebraic laws that describe given numericd observations. Severa versions of
BACON were originally implemented as a set of productions in the problem solving
architedure PRISM, an dd cousin of ACT-R (they bath have ACTE as an ancestor).
Hence it was relatively easy to model BACON.1 in ACT-R. Yet, a distinguishing
clam of the ACT-R theory is that productions are not leaned passvely by e.g. read-
ing, bu by analogy during problem solving, by doing. Therefore | tried to model
leaning BACON's main productions by analogy. Doing so made gparent that in fad
BACON's heuristic seach method makes use of abdctive inferencein away similar
to PI’s method.

The first of the BACON series saches for simple dgebraic laws, which are dl of

the form XKyl=axMyn+p, It tries to find appropriate values for k, I, m, n, a and b
given a set of different observed values for X and Y. Laws that fit this template ae,
for example, Kepler's third law of planetary motion D3P2=k, Boyle's gas law PV=Cc,
Galil ei’s law of accéeration D/T2=g, and Ohm’s law IL=-r+v.

BACON.1's ach starts out with two olservational terms X and Y, together with
a set of values. For example, X is(1 24 andY is(1 0,5 0,2%, meaning that when X
iIS1Y is1,etc. The next step is to combine two terms as a product or a ratio and
evaluate the resulting set of values, e.g. X*Y is(1 1 1). When the values of aterm are
foundto be constant, alaw is inferred. In the example X*Y=c. The same happens
when two terms are related linealy. If the new term does nat turn ou to have n-
stant values, or to be linealy related with ather terms, then it can be used to make a
next new term by combining it with the other avail able terms, e.g. (X*Y)*Y.
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The BACON productions do nd produce new terms at randam, bu heuristically.
A heuristic method das not guaranteethat a solution will be found, b often a solu-
tion can be foundwithou evaluating every possble solution by brute force seach.
BACON.1's heuristic term generation is implemented in productions cdled Incress-
ing and Deaeasing. These productions determine what new term to consider as a
posshle law. Given that the asolute values of two terms both increase Increasing
suggests to consider their ratio as a new term. Deaeasing suggests to consider the
product of two term when the @solute values of one terms deaease whil e the &so-
lute values of the other increase.

These productions, together with the main productions that implement the seach
processare listed in Table 5.3. The seach processitself is depicted in Figure 5.2, and
summarized in Table 5.4. As an example, | listed the terms used and defined in the
process of finding Kepler's third law of planetary motion in Table 5.5, kased on
Borelli’s observations of the moonrs of Jupiter that were discovered by Galil eo.

Production Condtions (LHS) Actions (RHS)
Find-Laws Goal = describe data New goa = find-laws
Law not already defined?

Increasing Goal = find-laws New goa = consider-ratio
Term-1 increasing values?
Term-2 increasing values?

Deaeasing Goal = find-laws New goa = consider-product
Term-1 increasing values?
Term-2 deaeasing values?

Constant Goal = find-laws New goa = define-new-law
Term constant values?
Linea Goal = find-laws New goa = define-new-law

Term values linea related?

Define-Ratio- | Goal = consider-ratio/product  New goal = define-new-term
or-Product

Term not arealy defined?
Table 5.3 Overview of the main productions of BACON.1

ACT-R can lean the productions Increasing and Deaeasing from given examples.
The examples | used constituted algebraic rules that can be used abductively by ACT-
R’s processof analogy. For example it is true for the function X/Y=c, that if the &-
solute values of X increase, the ésolute values of Y increase & well. On the other
hand it is true for the function X*Y =c, that if the &solute values of X increase, the
absolute values of Y deaease (seeFigure 5.3).
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define-new-law

consider-product

Find-Laws
Y

find-laws

Linear Constant
P

define-new-law

Increasing
Decreasing
consider-ratio

Define-Ratio-
or-Product

define-new-term

Figure 5.2 BACON.1's ach for alaw with constant or linealy related values

Description | Structure Process Example
Premise X 149
Y 1827
Goal Describe X andY
Badground Production-1 Find-Laws
Production-2 Increasing
Production-3 Deaeasing
Production-4 Constant
Production-5 Linea
Production-6 Define-Ratio-or-Product
Inference Repeaed matching
of productionrules
Conclusion |Law XY X3y?=1

Table 5.4 Inferring adescriptionin BACON.1
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Y| Y
T XIY=c l X*Y=c
—> X —> X
Example used for Increasing Example used for Decreasing

Figure 5.3 Example functions used for creaing the main BACON productions

The other way does not always hold. For example, when bah values of an X and Y
increase, the relation may just as well be an exporential function. HenceBACON.1's
productions adualy infer by abductionthat X and Y are related as a product or ratio.
Increasing employs adually the foll owing abductive inference

The dsolute valuesof X andY both increase (C)
But if X/Y = c(A) then the asolute values of X andY would increase (C)

Hencethereis areasonto susped that X/Y =c (A)

If the inferred new term is not evaluated to be alaw, like e.g. D/P in the Kepler ex-
ample, then values of the term can be treded as part of the badkgroundin a new ab-
ductive inference The same compasitional processis used in Pl, seefor example Ta-
ble5.6.

Explanation | Structure Process Example
Premi PROBLEM
remise START A (isknown to betrue)
GOAL C (isto be explained)
Badground RULE- 1 CONDI TION B ACTION C
RULE- 2 CONDI TI ON A ACTI ON B
Inference Activation (Cadivates RULE- 1)

Abduction B (posshble explanation)
Activation (B adivates RULE- 2)
Abduction A (posshble explanation)
IBE A

Conclusion | EXPLANATI ON A (isthe best explanation)
Table 5.6: Example of compositional abductionin Pl



74 Chapter 5. Cognition

L earning abduction by example - part 2

To lean ACT-R BACON's heuristics | provide the functions of Figure 5.2. as lu-
tions to a BACON seach problem. The example for Deaeasing was given as fol-

lows:

(X1>

| SA term

PATTERN I ncreasi ng

EXP Exanpl e- Experi ment)
(Y1l>

| SA term

PATTERN Decr easi ng

EXP Exanpl e- Experi ment)
( Exanpl e- Probl enll>

I SA find-|aws

EXP Exanpl e- Exp

ACHI EVED- BY Consi der 1)
( Exanpl e- Sol uti onl>

I SA consi der

oP Pr oduct

TERM 1 X1

TERM 2 Y1

CONSTRAI NTS (Decreasi ng I ncreasing))
(X1*Y1>

I SA term

VALUES nil

oP Pr oduct

TERM 2 Y1

TERM 1 X1

PATTERN Const ant)

When the product of X andY is constant, the values of X increase whil e the values of
Y deaease. So if you want to find a law for the terms of an experiment Example-
Exp, which are X1 and Y1, then by abduction BACON shoud consider their product.
The production Consider-Ratio-or-Product would then define the term X1*Y1. To
trigger ACT-R’s analogy medhanism | set the foll owing problem:

(Pressure>

I SA term

PATTERN I ncreasi ng

EXP Boyl e- Exp)
(Vol une>

| SA term

PATTERN Decr easi ng

EXP Boyl e- Exp)
(**Boyl e>

I SA find-laws

ACHI EVED- BY nil

EXP Boyl e- Exp)

By analogy with Exanpl e- Probl em 1, using chunk exanpl e- experi ment to map
the solution to the problem, ACT-R composes a new production to solve the Boyle
problem:
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( FI ND- LAWS- PRODUCTI ON1
=Exanpl e- Pr obl em Vari abl e>

I SA find-1laws
EXP =exanpl e- exp-vari abl e
=Y1- Vari abl e>
| SA term
EXP =exanpl e- exp-vari abl e
PATTERN decreasi ng
=X1- Vari abl e>
| SA term
EXP =exanpl e- exp-vari abl e
PATTERN i ncreasi ng
==>
=Exanpl e- Sol uti on- Vari abl e>
| SA consi der
oP pr oduct
TERM 1 =X1-Vari abl e
TERM 2 =Y1- Vari abl e

I f ocus-on! =Exanpl e- Sol uti on-Vari abl e)

(** Exanpl e- Sol uti on$1>

| SA consi der
oP pr oduct
TERM 2 Vol une
TERM 1 Pressure)

The analogy mechanism of ACT-R (3.0) would overgenerali ze the example problem
withou further constraints. The resulting production would match any two terms and
consider their product. Y et with constraints, the inferred rule is functionaly equiva-
lent with BACON's origina Deaeasing production, and can hence be employed to
find more complex laws.

In sum, the computer programs BACON and Pl model cognitive mecdanisms of
scientists that work on particular scientific problems. In this sdion | argued and
showed how those same mechanisms can be learned and explained, by modeling that
leaning processin the unified cognitive theory ACT-R. Yet between the different
cognitive achitedures there remains a difference in approach to understanding the
nature of scientific theory and reasoning. Thisistreaed in the next sedion.

5.6 Theory and method

In this edion| go further into the spedfic questions abou the structure of theory and
process of reasoning as implied by the different cognitive models BACON, PI, and
ACT-R. Thagard's model Pl maintains a procedural explanation d the nature of a
theory. In the logicd approad a theory is a set of atomic and condtional propasi-
tions, acompanied by a set of relatively independent inference rules that are used to
infer valid consequences from them.

In Thagard' s model atheory consists of rules and concepts that more or lessrepre-
sent condtional propasitions and predicates, respedively. Which inference rule to
apply to determine aconsequence of atheory is arbitrary in logic, bu controlled by a
medhanism of spreading adivationin Pl. Superficialy, this difference only has con-
sequences in the performance of the processof generating an explanation a predic-
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tion. In principle the same mnsequences could be inferred from the different repre-
sentations of atheory in bah the aognitive and the logicd model.

Even in the process of inferring an explanation the main dfference between the
cognitive model Pl and the logicd model lies in their performance and the spedfic
extra condtions. Thagard seleds the best explanation onthe equally dedsive aiteria
of explanatory breah and simplicity, while the logic gpproach pus the priority on
explanatory breah and consistency.

One important difference is that PI maintains different theories smultaneously,
basing the use of any of the rules in prediction a explanation onits siccessin solv-
ing problems ealier. This allows PI's predictions to be inconsistent due to the firing
of competing rules.

The nature of the heuristic rules of BACON differ in type from thase of Pl. The
BACON heuristics represent a very spedfic kind d abduction. PI’s primary abduc-
tive mecdhanism reasons from all kinds of condtional assumptions represented in the
Pl rules. The BACON heuristics incorporate an abductive suggestion based ona @n-
ditional propasition, e.g. the propasition that if the quatient of two variables is con-
stant, then the values increase together. Any term proposed by those heuristics
(INCREASING/DECREASING) is tested onthe avail able data terms by other heu-
ristic rules (LINEAR/CONSTANT) that propose it as alaw or ignore it if it does nat
fit the data.

The BACON production rules implement a particular heuristic method, and nd a
part of atheory asin Pl. The rule representation d either atheory or heuristic is sub-
tle. For the predictive nature of a theory it is not important whether you represent a
theory as a set of condtional statements or as a set of productionrules, as long as the
spedfic production rules, or the condtional statement together with general inference
rules produce or define the same @nsequences.

It ispossble to understand atheory both dedaratively and procedurally in ACT-R.
The structure of atheory can start out as a dedaration in memory chunks. What con-
sequences will follow from it depend onthe production rules that can make an infer-
ence dou it. It is pasgble to represent both the aioms of a theory and general infer-
ence rules dedaratively, and a method to infer deductive ansequences from them
can be represented by a set of productions.

| summarize the different uses of the rule concept in explanation models in Table
5.6. Rules can be mnsidered to be seandary processs in all the agnitive models.
But in PI they are part of theory, while in BACON.1 they are part of method. In
ACT-R a production can be understood as both part of theory and/or heuristic
method.

In ACT-R a production, seen as an inference procedure, takes as premises a goal
and an assumption, and produces a new goal as conclusion. This goa can be ather to
make anew assumption, to olserve or to intervene within something in the world. If
the premise of a spedfic production includes dedarative assumptions of concept
types A and A - C andthe goal isto produce avalid consequence, then the produc-
tion represents the gpli cation d modus ponensiif its new goal isto assume C.
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Explanation | Logic Pl BACON.1 ACT-R
Badground
Structures |B: {A - C} (if X/Y=ctheninc) Chunk (ruleA C)
Processes (If AthenC) (If incthenratio)  (If (rule A C)goa C
Rule =the- Rule =method then A) Rule =
ory method & theory
Premise P. {C} (STARTC) (god) (X ...) (Y...) (goa C)
Inference  |Abduwction Activation  Rule matching Credion (Analogy)
Condtions Abduction Seledion (Activation)
IBE Evauation (PG-C)
Conclusion |H*: {A} (EXPL.A) (X"Y™M=¢) (A)

Table 5.6: Different uses of the rule concept in explanation

But how to understand the generation d spedfic explanations? As we saw in the
ealier sedions, in ACT-R this question is not so much abou what productions can
find an explanation, bu how productions that can find explanations are aeded and
evaluated themselves. This is a processin ACT-R that starts with an example of a
spedfic explanation and a similar example solution to ancther problem. The example
is mapped to the new problem, resulting in new productions. These productions can
becwme ather applicable to very spedfic cases or very genera cases, for which the
inferred explanation hes a very high or low probability of being corred. By solving
many explanation and prediction poblems, use ad experience will determine their
success The resulting productions can be associated with the typology of strong and
wed heuristics, seeTable 5.7.

The term heuristic comes from the Greek heuriskein meaning “to discover”. (Heu-
riskein is also at the origin of eureka, derived from Archimedes reputed exclama-
tion, heurika (for “I have found'), uttered when he had dscovered a method for de-
termining the purity of gold by taking a bath) In artificial intelligenceit is generally
used to describe aprocessof leaning by trying. It is often contrasted by the term al-
gorithm, which is a derivation d the name of the Arab mathematician, Al-
Khowarizmi (x825AD). Both an agorithm and a heuristic ae procedures for solving
aproblem.

The main dfference between them is that an agorithm is meant to effedively
solve aparticular type of problem, often at high cost in time depending on the com-
plexity of the problem. A heuristic is a tradeoff between time and ogimality, it may
solve aproblem, usualy at lower cost in time, bu then it may not provide the best
solution. Ancther difference is that the effedivity of an algorithmic procedure can
usually be established analyticdly by mathematicd proof, while the dfed of a heu-
ristic procedure is often established empiricdly, by experience of use.
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Productions High cost Low cost (efficient)

High probability Strong heuristic

(effedive) Spedfic method'theory

Low probability We& heuristic
General method'theory

Table5.7: Typaogy of productionsin the light of expeded gain (E = PG - C)

The heuristic procedure in ACT-R differs from the static heuristic procedure in
BACON in such away that the estimation d the ast and chance of successof a ce-
tain production (the estimated gain PG — C) is constantly evaluated and adjusted. So
if we want to explain the processof discovering a theory or law it is nat enough to
point to a set of heuristics as the cause of that discovery. The heuristics are usualy
part of the product of that discovery. For Kepler to discover his law he first had to
discover that he awuld compare Borélli’s data with a particular kind o example func-
tions.

Now if we understand the nature of atheory as being partly procedural we can also
better understand hawv to see Kuhn's picture of science & a pradice that reasons on
the basis of paradigms as ared examples. In namal science aset of succesful ex-
amples of explanations leals to a strong heuristic that can succesgully solve highly
spedfic problems within a domain. At a given time these heuristics, that incorporate
part of the theory of that domain, may not be &le to hande novel problems. A revo-
lution is nealed to start off a different approach, where only weak heuristics may be
of some help. More spedfic and stronger heuristics will be leaned orce some suc-
cessis booked.

S0, to understand atheory and wse it rationaly isto learn a skill of a spedfic prac-
tice Youcan tell alay person that E=mc?, bu without a general skill i n mathematics
and a spedfic skill of how to apply those variables to a domain of phenomena, that
personwill not be aleto predict or explain spedfic fads with that statement.

In Kepler's and Galil eo’s time science had become successul by applying simple
and general mathematicd functions to empiricd phenomena en testing the predic-
tions of those functions in experiments. But the pradice of empiricd science ®nsist
of the use of many, highly spedfic, constantly adjusted rules to explain and predict
phenomena. A refledion d thaose rules can be dedaratively represented and commu-
nicaed, that is what this thesis is al abou. Their use caina be leaned atherwise
then by taking part in that pradice But is the way scientists adually use method and
theory a aiterion for what is rational, from an epistemologicd point of view?

5.7 Descriptive and normative

| argued how the ACT-R theory can provide an explanation d the rational behavior
of scientists. But what does that tell us abou what is rational? It is argued in episte-
mology that explaining the beli efs and methods of scientists by pointing to the cogni-
tive processthat credes and evaluates them is not sufficient for epistemicdly justi-
fying those beli efs and methodks.
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People, scientists not excluded, make mistakes in their reasoning, as psychalogicd
experiments prove. It shoud be the role of epistemology to pant out thase arors, so
that human reasoning can improve. So let us look at the rationality of human predic-
tion and explanation.

Prediction

Human performancein logica reasoning has been a much studied subjed in cogni-
tive psychology (Anderson, 1995. In experiments by e.g. (Marcus & Rips, 1977
subjeds were asked to evaluate the @rredness of hypotheticd syllogisms, repre-
sented as relatively neutral arguments such as:

If the ball rollsleft, the lamp will switch on.
The ball rollsleft
Therefore, the lamp will switch on.

It was asked if a mnclusionis aways, sometimes, or never corred. It was shown that
in 100 rcent of the caes subjeds have no problems with judging the wnclusion o
modus ponens (affirming the antecalent) to be dways corred, bu that in orly some
80 percent of the caes aubjeds judged the conclusion d denia of the antecadent and
affirming the cnsequent to be merely sometimes corred. Still worse, in only 60 per-
cent of the caes ubjeds thought that modus tollens (denying the consequent) is al-
ways corred. This performance was initially explained by the assumption that sub-
jeds interpret “if A then C as a bicondtiona instead of a @ndtiona statement.
Subjeds were thought to understand the antecadent to be anecessary condtion for
the ansequent, explaining why in some caes it was thought that the @wnclusion o
denia of the atecadent or affirming the consequent is always corred. However, this
does not explain the poa performance on judging the validity of modus tollens.

It is remarkable to seethat the inferencethat is the hallmark of valid reasoning in
science acording to Popper is © often migudged in common sense reasoning. It also
testifies to the unpopuarity of Popper’s method d falsificaion as noted by Kuhnand
many others. But it would be too swift a anclusion to mark the disregard of modus
tollens in the pradice of bath common sense and scientific reasoning as irrational. It
bewmes more dea if this pradice is ®en as based on a probability assessment. |
will demonstrate this by discussng another much studied task, cdled the Wason se-
ledion task.

Understanding the performance of subjeds onthe selediontask is relevant for un-
derstanding how scientists evaluate potential hypothesis in the process of scientific
discovery. This task is argued to demonstrate the fail ure of applying modus tollens.
However, | will argue how this task shows how subjeds make aperfedly rationa
probabili stic aseessment.

In the seledion task subjeds are shown four cards with the foll owing symbadls:

E K 4 /

They are told that every card contains anumber on ore side and a letter onthe other.
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Thetask isto test the validity of the following rule for these four cards:
If thereis a vowel on one side, then there is an even number on the other side.

Subjeds were asked to turn over only those cads that need to be turned ower to test
the rule. On average (Anderson, 1995 89 percent chaose to turn the E, affirming the
antecedent of the rule. Logicdly thisis an informative dhoice becaise the outcome of
the experiment either falsifies or confirms the rule. However, 62 percent chose to
also turn ower the 4, affirming the consequent. Logicdly this provides no information
because the outcome @nfirmsthe rule ather way. The same goes for turning over the
K denying the antecadent, which was dore by 16 percent. Only 25 percent chose to
turn the 7, denying the consequent, which logicdly aso can confirm or refute the
rule.

Oaksford and Chater (1996 argued that what subjeds do is make a toice of the
most informative cads in a statisticd sense. They presuppcsed a probabili stic model
of therule A - C, seeTable 5.8. It provides the probahiliti es for the four possble
states of the world where A and C are ather true or false. Given this probabili stic
model for therule A — C andanull rule, i.e. arule which daes not have ay prob-
abili stic contingency between A and C, the interpretation o the condtional prob-
abiliti esof A and C can be cdculated, seeTable 5.9, see &so Table 4.4 gediction.

Given the probabili stic interpretation bdh the AA and DC predictions are prob-
able, while AC and DA are less probable. Yet subjeds prefer AC much more than
DC. To explain this, Oaksford an Chater argued that a cad would be informative if
the expedation d its outcome would dffer from the expedation based onanull rule
that assumes no relation between the antecalent and the a@nsequent. However, in
their model they nedal to set the condtional probability of the consequent C, given the
antecadent A and viceversato be 40% instead of a neutral 50% to explain the prefer-
enceorder of subjeds.

Antecadent A | ConsequentC | A . C A - C nul A - C* nul*
True True True .40 .16 .50 .25
False True True .20 24 23 .25
False False True .30 24 .18 .25
True False Fase .10 .36 .09 .25

Table5.8 Thelogicd, andtwo passble probabili stic modelsof A — C and nul

| think that there ae three problems with the explanation o Oaksford and Chater.
First, the particular probability distribution o the ndtiona statement is not prop-
erly defended. Secondy, a proper 50/50 nul rule defeds their ordering. Thirdly and
most importantly, the probability of a rule's prediction daes nat refled the rule’'s
probabilit y given the outcome of the experiment.

It may well be passble that for subjeds the probability of arule A — C depends
on the sssumed model of the rule, na on the probability of arule’s prediction. In this
interpretation the value of an experiment is the diff erence between the probabiliti es
of arule given the passhble outcomes of that experiment. Given thisinterpretation the
second problem beames obsolete by addressng the first problem.
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What is a proper model for a general condtional statement? One @uld argue that
the preference of subjedsin the cad selediontask adually refleds an average model
for a cndtiona rule. If we redistribute the preferences of subjed over 1002 and
take that as avalue estimate, then we @mme to an average model that is approximated
in Table 5.8 for rule A — C *. In this estimate subjeds tend to regard the arerage
probability of arule slightly higher when orly C is observed (.23), compared to when
A nor Cisobserved (.18), seeTable 5.9 b.It can be aumed that these numbers at
best refled a base rate probability that is different and adjusted for every particular
condtional assumptionthat is maintained in memory.

B H P p(PB&H) p(PB & null) Difference Subj. pref.

a

AAH | A A.C C 80 40 40 89% E

ACH |cC A-C A 67 40 27 62% 4

DCH [NotC A -C NotA .75 60 15 25% 7

DAH |NotA A _C NotC .60 60 .00 16% K

b. p(PB & nul*)

AAH | A A_C* C 84 50 34 8% (47%)

ACH |cC A_C* A 68 50 18 62% (32%)

DCH [NotC A _-C* NotA .67 50 17 25% (13%)

DAH |NotA A _cC* NotC .56 50 .06 16% (8%)
(100%)

C. P(HB&P) p(H|B & —P)

AAH | A A_.C* C 50 (C) .09 (R) 41 7%

ACH |cC A_C* A 50 (C) .23 (O) 27(-14)  32%(-15)

DCH |NotC A _.C* NotA .18(C) .09 (R) 09(-18)  13%(-19)

DAH |[NotA A _C* NotC 23(C) .18 (C) 05(-04) 8% (-5)

d.

HAA |A_C* A C 68 (?) 33 (R) 35

HAC |A_.cC* C A 84 (C) 44 (2 40

HDC |A . C* NotC  NotA .56 (?) 16 (R) 40

HDA |A - C* NotA  NotC 67 (C) .32 (?) 35

Table 5.9 Different kinds and models of probabili stic prediction

So given the &ove model the value of AA is the highest becaise that model as-
sumes the rule is the most probable if A and C are true (.50) and the least probable if
A istrue and Cisfase (.09). The value for DA is the lowest because ather outcome
says abou the same (.18.23) abou the probability of the rule, given the model. The
reason that AC is more preferable than DC is that the difference between the out-
comes for the former experiment is much higher (.50 - 23) than that of the second
(.18 — .09. The outcome of DC may logicdly be dle to either defea or confirm the
rule given the logicd model of the rule, but with a probabili stic model either outcome
of aDC experiment will result in alow probability.

To make the comparison with the logicd model complete | also listed the kind d
predictions where the rule is assumed and the atecadent or consequent is hypotheti-
cdly affirmed o denied. A probabili stic interpretation nov provides an assessnent
where the logicd approach could na give an answer abou the probability of the hy-
pothesis, seeTable 5.9d.
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From this viewpoint subjeds predictions and experiments do nd sean to be dl
that irrational, as long as hypatheses are interpreted to be more or less probable in-
stead o just true or false. In a game like situation, where the rules are strict and
given, it isrational to follow the logica model of arule. But in an empiricd situation
where rules are not known to be true and amost al rules have exceptions ading on a
probabili stic assessment is more rational. Y et Popper would probably argue that the
question remains how probability assgnments to hypotheses can be rational. This
questionwill be aldressed in the Chapter 6.

5.8 Explanation and evaluation

Acoording to Langley et al (1987, p.47 in dscovering a hypothesis “rationality for a
scientist consists in using the best heuristics avail able for narrowing the seach dovn
to manageable propations. A normative theory of credivity and scientific discovery
is concerned with this kind d rationality.” So instead of focusang on the validity or
probability of hypotheses found ly heuristics, they emphasize the dficiency part of
rationality. They assume you knav what you are looking for. For Bedhtel (1988 to
normatively evaluate aheuristic is to identify its failure. He asumes you knav when
a heuristic falls. But how to knowv what you are looking for and hav to know you
falled tofindit?

In epistemology it is a much debated question whether the identificaion d the
failure or successof assumptions is an anayticd or empiricd matter. This holds for
bath theoreticd and methoddogicd assumptions. In a psychologicd explanation o
scientific pradicethe identification d epistemic successor failure seems foremost an
empiricd matter. Productions and chunks are aeded and evaluated by their success
in use, whether they are part of theory or of method. But the successof productions
can ony be measured by given condtions for success And testing if a proposed so-
lution satisfies those awndtionsis an anayticd matter.

Acoording to logic the best theory shoud be: consistent, internally and with re-
sped to badkground knavledge; complete and corred with resped to the phenomena
it explains, nontrivial; informative, and it shoud be simple. So dfferent methods are
suggested that prefer theories with regard to their competitors by their consistency,
corredness and completeness nontriviality, empiricd content, and simplicity. Dif-
ferent phil osophers prefer one cndtion above ancther on the basis of different ar-
guments.

Scientists usually also entertain ather preferences such as analogy, beauty or sym-
metry in atheory. Finding a theory that satisfies thase condtions means siccess But
the most important condtion d any theory is that it shoud remain succesdul in the
future. So the questions with resped to the probability part of the rationality of rea-
soning are: 1. which condtions are mnductive to empiricd success 2. why are they
condctive to success and 3. hav to pursue them?

First there shoudd be made adistinction between condtions that are part of the
main goal of science, and those that may be condictive to it. | gather that condtions
such as:
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C,. Corredness C,. Consistency Cs. Completeness

are part of the main goal of science This is what we want to achieve: a theory that
has no anomalies, covers the domain, and is nat trivial by all owing everything. These
condtions are nat condictive to empiricd success they define it. But how to pusue
them? The satisfadion d the first two condtions can never be validly established in
an empiricd domain. The future can always bring a situation that is not allowed or
included in the theory. The best we can dois to analyticdly ched for interna con-
sistency and to chedk for corredness and completenesswith resped to all available
observations. However: in principle, infinitely many theories can be entertained that
satisfy al three ondtions; in pradice however, it is hard to find even ore theory
that comes close to that goal.

Scientists buil d theories incrementall y, constantly propasing and revising hypothe-
ses, often within the conceptual boundxries of a reseach program. The question is
whether it isrational to pusue @rrednessand completenessby preferring to pusue
only a proposal that is closest to the goal. At any given time that goal seems clea.
Thereis a set of current observations and the problem is to find that theory that cov-
ers most of them.

So, isit rational to entertain and pusue a onsistent theory that explains most data
and hes the fewest number of courterexamples? By definition that theory is closest to
the goal of science, assuming that all other possble theories are known to be worse.
Yet in pradice we do nd know the merits of all possble other theories snce we do
not know them all. It may turn ou that amending a theory that was further from the
goa proves more succesgul than working on the best one available. Given a @n-
ceptual spaceof all passble theories and a set of al observations, the theory that best
satisfies the goal at any moment of development may be stuck in a so-cdled locd
maximum. Pursuing predictions and revisions of atheory that is further from the goal
may reved a better approximation. In cognitive psychology and Al the first approac
is know as hill -climbing. Going straight for the top may bring you to the top d the
hill, but may missthe mourtain. A scientist that chocses to stay with a succes<ul
theory that ladks progresson is as rational as a dhicken that gets guck in a fence
when running toward the @rn in view, na able to badk upto go aroundthe open gate
doa.

In pradiceit does not always work that way. Scientists do nd only pursue orred-
ness completenessand consistency. They also entertain condtions sich ase.g.:

C,4. Simplicity Cs. Analogy Cs. Symmetry

In logic these condtions are meta-epistemicd, they do nd inform us abou the truth
of atheory. However, in scientific pradice these condtions often prevail above or-
reaness completenessand consistency. (We will see a example of thisin the cae
study in the next part of the thesis.)

Thagard incorporated these cndtions in his theory of explanatory coherence
which meant to explain scientists preferences. The program ECHO implements a
model of aneural network that can evaluate how close atheory isto all condtions, as
compared with a competitor (Thagard, 1992. Y et this theory failsto explain why it is
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sometimes rational to prefer condtions C4-Cg above C;-Cz. How can these aond-
tions, or methods based onthem be @wnductive to the empiricd successof atheory?

A naturalistic way out to this question is to explain why scientists have cetain
preferences by bringing in evolution, bdh hiologicdly and socialy. Primary mecha-
nismsin ou brain have preferences for certain assumptions and methods given expe-
rience. Survival depends on being able to make methoddogicd dedsions and re-
trieve memories of experiences that are relevant to the aurrent situation a problem.
An organism that is not able to make dedsions or assumptions siccesdully is less
likely to survive. In the development of our spedes nature favors particular primary
cognitive mechanisms in the faceof lions and gathering food in the development of
science nature favors particular theories, methods and scientists, in the faceof peas
andtrying to get tenured pasiti ons.

To return to Goldman'’s distinction (Sedion 5.2: we have gone through an expo-
sition d some (semndary) methods and theories and howv they are generated and
evaluated by some (primary) mechanisms of the brain duing scientific discovery. |
argued how these medhanisms tell us something abou rationality. They inform us
what rationality is, for a scientist.

However, these primary mecdhanisms gill do nd inform us why it is epistemicdly
rational to maintain certain theories and methoddogies. These mechanisms prefer a
theory or method if it proves siccesdul in solving problems, in reading certain
goals, satisfying certain condtions. But why are some ndtions more rational to
pursue than athers, why are they more successul? A naturalistic stance would be
happy with just the observation that certain condtions, methods, hypotheses and
theories are more successul than athers, as an inductively assumed fad of the world.
Y et, in the next chapter | will pursue an explanation o one of thase fads, why one of
those @nditions, simplicity, is condictive to attaining the goal of science

Epistemologists reason to study reasonis to be ale to improve it. In this chapter
we have mme to understand reasoning as a processof inferring conclusions that sat-
isfy certain condtions, given a cetain problem. So to understand and evauate the
reasoning in a spedfic discovery processnormatively it isfirst of all important to un-
derstand the detail s of a spedfic problem, i.e.:

e starting situation

* badkgroundassumptions
* processto read the goal
e goa properties

* endresults

In pradice nore of the @dowe stay constant in the process The starting situation
changes, new badkground assumptions and concepts are added o withdrawn, end
results are different from the goal, the goa condtions sift, and rew methods to
read the goa are introduced. All under influence of primary cognitive mechanisms
and social interadion. How this processgoes abou in the pradice of neuropharma-
cology will be discussed in the next part of thisthesis.
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5.9 Conclusion

The particular question d this chapter was. how to understand and model scientific
discovery, in ACT-R? | will answer this question by going through the axswers for
the speafic questions of thisthesis from Sedion 1.3

Question1  What is the structure of a scientific theory? In ACT-R theories can be
understood as a olledion d statements containing laws, examples and solutions to
ealier explanation and pediction poblems, represented dedaratively in memory
chunks, and spedfic and genera procedures, represented in production rules.
Chunks, represented as sts of slots and values of a cetain type, are asumed to be
the results of perception and solutions to solved problems. Production rules are repre-
sented as condtionadion pairs. given agoa and an assumption chunka new goal is
set which can lea to either a new asumption a doing a particular observation a
intervention in the world. Productions can be part of both theory and method.

Question 2 What is the processof scientific reasoning? The processof scientific
reasoning in ACT-R contains of learning heuristic problem solving skill sin seaching
and eva uating explanations and predictions of phenomena, seeTable 5.10.

Problem Start Badkground  Process Goa Goal properties
Explanation | Goal = explain H’ explainsP Credion H* H* explains P
observationP  Prodwtions  Seledion Analogy
Evauation Probability
Prediction |Goal =predict H’ predictsP Credion P* H explains P*
hypothesis H Productions  Seledion Anaogy
Evauation Probability

Table5.10Q Short overview of reasoning problems discussed in this chapter

The processof both explanation and prediction starts with a goal chunktogether with
examples and productions in memory in the badkground.A solution to the problem is
either seleded from memory by productions or creaed based uponexamples by
analogy, and evaluated probabili sticdly.

Question 3  What is the route between theory and experiment? The assumed route
between theory and experiment walked by a scientist starts with a goal and assump-
tions in memory that determine new assumptions and adions, based onleaned pro-
ductions. Failure to achieve agoa deaeases the potential to recdl an assumption and
the dhancethat the used productions will be employed in the future.

This can explain haw scientists go through the ided six steps introduced in the last
chapter. In a scientific study of scientists doing their work you would get the foll ow-
ing scheme, where lowercase p denotes a phenomenonand uppercase P a propasition
abou that phenomenorn
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1. Observe phenomenon p seepn,...,pn (@divities of scientist x at work)
2. Describe p: P - Py (problem solving behavior)
P1: { X observes phenomenonp: X sees pm}
P1 - Py {x describesp: Py, - Pr}
P, - Ps: {x explainsp: x findsB 0 H* Py —» Py}
P; —» Pa {x predictsp: x findsB O H EP* - Pj*}
P, - Ps: {x intervenes p: x credes P*}
Ps — Ps: {X observesp: x sees Pj*}
3. Explanp BOH* EPy, - Py
H*: { ACT-R cognitive mechanisms} E Py, - P,
4. Predictp: BOHEPR* - B*
B: {spedfic chunks and productions of BACON}
P*: {x describesp: P, :{D =101, 4,9} - P, {P=0, 8, 27}
P* _ Py*: {x explainsp: x findsH: {D*P*= ¢} EP; - Py}
Intervenein p: crede pi*
Observe p: observe p* ?

o o

In this way a step in the processof scientific problem solving is described as a cond-
tional statement. In step 1.the adivities of a scientist are observed as a phenomenon.
In step 2.these adivities are described. One can olserve ascientist making observa-
tions (P,) and describing them (P,). Logicdly one can describe the link between those
adivities by a condtional statement (P, —» P,). The antecalent of the condtional
statement represents the start situation, the consequent represents a goal situation. In
step 2. d describing the adivities of a scientist, ore can further describe how a sci-
entist explains (Ps) predicts (P,) intervenes in (Ps) and again observes (Ps) a phe-
nomenon. In step 3. of our cognitive reseach of scientific adivities an hypothesis is
seached to explain the processof those scientific adivities, in this example aognitive
models in the ACT-R architedure ae proposed. In step 4. we make aprediction
abou how our scientist under study can find alaw (Ps*) that can imply data that de-
scribes a phenomenon (P.*). This prediction can be tested in step 5.and 6.

It can be atask for cognitive psychology to explain and predict how scientists
seach for a solution d scientific problems. For naturalistic epistemology it is the
task to find an intervention in step 5. such that scientists can olserve, describe, ex-
plain, predict and intervene the phenomenathey are interested in more dfedively and
efficiently, and to explain why they do so. Why some explanations might be more
eff edive than athers will be the topic of the next chapter.

* * % * *



Chapter 6

Computation

6.1 Introduction

In the last two chapters we saw that both the logicd and the aognitive models of sci-
entific discovery include a ondtionto prefer smple or minimal explanations. None
of the models further suggest why it isrational to prefer simplicity. | argued how the
ACT-R model of cognition implicitly prefers smplicity as a @nsequence of a
medchanism that prefers high probability in section 5.6(page 67).

In this chapter | investigate the relation between probability and simplicity in the
computational description, explanation and prediction d empiricd data. | discussthe
use of Kolmogorov complexity and Bayes theorem in Solomondf’s inductive
method to explicae ageneral concept of simplicity that is used for a distribution o
probabiliti es of posgble hypotheses. This makes it posgble to understand how the
seach for simple, i.e,, short, descriptions of empiricd data leads to the discovery of
patterns in the data, and hence more probable predictions. | show how the simplicity
bias of Langley’s BACON.2 and Thagard's Pl is subsumed by Rissanen’s Minimum
Description Length principle, which is a computable gpproximation d Solomondf' s
uncomputable inductive method. A more lengthy discusson, including severa other
approadhes to simplicity, can be foundin (van den Bosch 1994.

In this chapter | pursue an answer to two particular questions. 1) How can sim-
plicity most generaly be defined? 2) Why shoud we prefer a smpler theory to a
more complex one? | discuss smplicity definitions that stem from reseach in cogni-
tive science and machine leaning. In thase gproaches smplicity plays an important
role in the process of scientific discovery, as implemented in Langley and Simon's
computer model BACON, in inference to the best explanation, as implemented in
Thagard’s computer model PI, and in the probability of predictions, as explicated by
Solomondf.

Langley and Simon claim that the BACON programs sach for smple consistent
laws withou making explicit what is meant by ‘simple’ laws and why we shoud pu-
sue simplicity (Langley et al 1987). Thagard propaosed an explicit definition d sim-
plicity and employs it in his model PI, withou providing a satisfying reason for it
(Thagard 1988. However, Solomondf propased an explicaion d induction which
makes use of a @wncept that can be used to understand simplicity and to provide a
satisfying justificaion for its preference

87
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Acoording to Solomondf we shoud trust the theory yielding implicaions that can
be generated by the shortest computer program that can generate adescription o our
known olservational data. It is argued that a shorter computer program provides
more probable predictions because it uses more patterns from that data. It is proved
that this smplicity measure is reasonably independent of the mmputer language that
is used. However, this measure has one drawbadk, it is uncomputable. Yet it is
clamed that computable goproaches to induction in machine leaning constitute -
proximations of Solomondf’ s method (Li and Vitanyi 1994).

In this chapter | demonstrate how Solomond’ s approach can elegantly be used to
make auniversal prior probability distribution for Bayes theorem. First it is 1own
that Rissanen’s Minimum Description Length principle (MDL) can be derived from
Solomondf’s approach. And from thereon | show that simplicity in Langley’'s
BACON.2, and simplicity in Thagard’'s Pl are nicdy subsumed by MDL. | conclude
this chapter by answering the three spedfic questions of this thesis, acording to the
study of computational description.

6.2 Turing machines

In 1964an article by Solomondf was pubished that contained a propacsal for a gen-
era theory of induction. The objedive was the extrapdation d along sequence of
symbals by finding the probability that a sequenceis followed by one of a number of
given symbadls. It was Solomondf’ s conviction that all forms of induction could be
expressed in this form.

He agued that any method d extrapadation can oy work if the sequenceis very
long and that all the information for an extrapadationis in the sequence Solomondf
proposed a genera solution that involved Bayes' theorem. This theorem requires that
a prior probability of a hypothesis is known to determine the posterior probability
making use of the known data. Solomondf’' s lution is to provide for a universal
distribution d prior probabiliti es, making use of aformal definition d computation.

It is widely believed that the nation d computation is fundamentally cgptured by
the operation d a Turing madine, an idedized conceptual macdine introduced by
the mathematician Alan Turing. A Turing madine is thowght of as consisting of a
long tape and a finite aitomaton which controls a ‘heal’ that can real, delete and
print symbadls on the tape. To compute the value of a functiony = f(x), write apro-
gram for f(x) on the tape, together with a symbalic representation d x and start the
Turing madiine. The program is completed when the Turing-madine halts and the
value of y isleft onthe tape & output. Turing proved that there is a universal Turing-
madhine that can compute every function that can be computed by any Turing ma-
chine. The famous Church-Turing thesis claims that every function that can be com-
puted, can be computed by a Turing madine.

What Solomondf did wasto correlate dl possble sequences of symbals with pro-
grams for auniversal Turing machine that has a program as inpu and the sequence &
output. He asdgned a high prior probability to a sequencethat can be cmputed with
short and/or numerous programs. Sequences that nead long programs and can only be
compared by few programs, recave alow prior probability. For Solomondf the va-
lidity of giving sequences caculated by a shorter program a higher prior probability
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is suggested by a conceptual interpretation d Ockham'’s razor. But it is justified be-
cause ashorter program utili zes more patterns in the sequence to make the program
shorter. So, if we trust the data @ being representative of things to come, then the
shorter program provides the more probable predictions.

If we, e.g., have asequencethat has x as aprefix and x =1234123412341234123,
then we could write aprogram that describes x as doaoa123,where d is a definition
of 1234asa. If we want to predict the following letter we can entertain the hypothe-
sis Hy: daoaaa, or still shorter Hy: d5a. Ancther option is Hy: d4a1231. The first
hypothesis predicts a 4 and the second a 1. Both hypotheses are compatible with the
known data Xx. Now Solomondf argues that the prediction d H; is more probable
becaise it requires a shorter program to generate a ontinuation d x than H, (Solo-
mondf 1964, p.10.

That a sequence with many programs gets a high prior probability is siggested by
the ideathat if an occurrence has many possble caises, then it is more likely. The
principle of indifferenceis integrated by attributing sequences that are generated by
programs of the same length the same prior probabilit y.

Unfortunately this approach has as an important problem. It is not determinable
whether a given program is the shortest program that computes a sequence. If that
were determinable then there would exist a Turing macdine that could determine for
every posshble program whether it would generate agiven sequence However, most
of the possble Turing madine programs will never halt. Due to this halting problem
we caina know for every program whether the program computes a given sequence.
But before | go into that problem | want to make Solomondf’s theory more spedfic
by first discussng Kolmogorov complexity and its applicationin probability theory.

6.3 Kolmogorov complexity

The Kolmogorov complexity of a sequence or string is adually a measure of ran-
domnessor, when inverted, the regularity of the patternsin that string. We can use a
Turing machine to measure that regularity with the length of the shortest program for
that Turing machine that has the sequence & output. We can cdl such a program a
description d the sequence This description is relative to the Turing madine that
has the description as inpu.

So when we have asequence x and a description grogram p and a Turing madine
T we can define the descriptional complexity of x, relativeto T as follows (cf. Li and
P.M.B. Vitényi 1993, pp.352

Definition 1 Descriptional complexity. The descriptional complexity Cr of x, rela-
tiveto Turing macdhine T is defined by:

Cr(x) =min{ I(p): pU{0,1}*, T(p) =x }
or Cr(x) = o if nosuch pexists.

We onsider T to be aTuring madine that takes as input program a binary string of
zeros and ores, so the program is an element of the set {0,1}*, which isthe set of all
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finite binary strings. We use binary strings because everything that can be decoded,
like e.qg., scientific data, can be @ded by a string of zeros and ores. The length o the
program, I(p), is the number of zeros and ores. So the definition takes as the com-
plexity of a string x the length of the program p that consists of the least number of
bits and that will generate x when given to T. If no such program exists then the
complexity is considered to beinfinite.

When x is afinite string then there is always a program that will describe it. Just
take aprogram that will merely print the number literaly. This program will be larger
than the string. However, if x is infinite and nofinite program exists, then x is un-
computable by definition.

This complexity measure is relative to but surprisingly largely independent of the
Turing machine in question, aslong as it is auniversal Turing machine. There eists
a universal Turing macine that computes the same or a lower complexity than the
complexity computed by any other Turing machine plus sme cnstant dependent on
that other Turing macdhine. For instance, when | have astring and two programs in
different computer languages that compute that string, the difference in length be-
tween those programs canna be more than a @mnstant, independent of the string. This
clam is cdl ed the invariance theorem (cf. Li and Vitanyi 1993, pp.3538

In the literature Kolmogorov complexity K(x) is defined as a variant of descrip-
tional complexity C(x), which makes use of a dightly different kind d Turing ma-
chines. In the definition d descriptional complexity a Turing macdine was used with
ore infinite tape that can move in two diredions and that starts with an input program
on it and helts with a string on the tape a output. For the definition d Kolmogorov
complexity a prefix madcine is used. This kind o Turing madine uses three tapes,
an inpu tape and an ouput tape which bah move in only one diredion, and a work-
ing tape that moves in two dredions. The prefix Turing madine reads program p
from the inpu tape, and writes gring x onthe output tape.

Kolmogorov complexity will render a similar measure of complexity as descrip-
tional complexity, where C(x) and K(x) differ by at most 2 log K(x). This difference
is important, because of its use in Bayes formula. (Withou it the sum of the prob-
abiliti es of all posgble hypatheses will not converge to ore.) The invariance theorem
for K(x) is smilar to that of C(x). Now how can this measure be useful in extrapo-
lating a sequence? First we will take abrief look at how Bayes' formula requires a
prior probabilit y.

6.4 Bayesian inference

We will start with a hypothesis pacethat consists of a munable set of hypotheses
which are mutually exclusive, i.e., only one can be right, and exhaustive, i.e., a least
ore is right. Each hypothesis must have an asociated prior probability P(H,) such
that the sum of the probabiliti es of al hypothesesis one. If we want the probability of
ahypothesis H,, given some known data D then we can compute that probabilit y with
Bayes formula

P(H, |D) = P(D [Hn) P(Hn) / P(D)
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where P(D) = >, P(D |H,)P(Hy). This formula determines the a posteriori probability
P(Hn | D) of ahypothesis given the data, i.e., the probability of H, modified from the
prior probability P(H,) after seang the data D. The condtional probability P(D |Hy)
of seang D when H, istrueis forced by H,, i.e.,, P(D |H,) = 1 if H, can generate D,
and P(D |Hy) = 0if H, isinconsistent with D. So when we consider only hypotheses
that are consistent with the data the prior probability becomes crucial. Because for all
H, where P(D |Hy) = 1 the paosterior probability of H, will become:

P(Hn [D) = P(Hy) / (D)

Now let us ssewhat happens when we gply Bayes formulato an example of Solo-
mondf’s inductive inference In this example we only consider a discrete sample
space i.e, the set of al finite binary sequences{0,1}*.

What we want to dois, given afinite prefix of a sequence asggn probabiliti es to
posshble cntinuation d that sequence What we do is, given the known data, make a
probability distribution o all hypotheses that are mnsistent with the data. So if we
have asequencex of hits, we want to knowv what is the probability that x is continued
by y. So in Bayes formula

P(xy [x) = P(x |xy)P(xy) / P(x)
We can take P(x | xy) = 1 nomatter what we take for y, so we can say that:
P(xy [x) = P(xy) / P(x)

Henceif we want to determine the probability that sequence x is continued by y we
only neeal the prior probability distribution for P(xy). Solomondf’s approacd is in-
genious because he first identifies x with the computer programs that can generate a
continuation d x by a string y. In this way the apriori most probable continuationy
can be determined in two ways: y is the next element that is predicted, i.e., generated,
by the smallest Turing macdine program that can generate x; or the string y is pre-
dicted that is generated by most of the programs that can generate x.

So we can define the prior probability of a hypathesis in two dfferent ways. We
can give the shortest program the highest prior probability and define the probability
of xy as:

Pecey) 1= 27

i.e., the length of the shortest program that computes xy as the negative power of two
(Li and Vitanyi 1990, pp.215 Or we can define Py ) as the sum of 2'® for every
program p (so na only the shortest) that generates Xy on a reference universal prefix
madhine (Li and Vitanyi 1993, pp.35F% The latter is known as the Solomondf-Levin

distribution. Both have the quality that the sum of prior probabiliti es is equal to or
lessthan org, i.e,,

ZX PK(X) < 1 and ZX PU(X) < 1
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However, it can be shown that if there ae many ‘long’ programs that generate x and
predict the same y, then a smaller program must exist that does the same. And it is
proved that both prior probability measures coincide up to an independent fixed mul-
tiplicdive constant (Li and Vitanyi 1993, pp.35Y.

So we can take the Kolmogorov complexity of a sequence a the widest possble
notion d shortnessof description d that sequence And if we interpret shortness of
description, cefined by Kolmogorov complexity, as a measure for parsimony, then
the Solomondf-Levin dstribution presents aformal representation o the cnceptual
variant of Ockham'’ s razor, sincethe predictions of asimple, i.e., short, description
aphenomenonare more probable than the predictions of amore mmplex, i.e., longer,
description.

6.5 Description length

While both the Kolmogorov and Solomondf-Levin measure ae not computable,
there ae ommputable gproximations of them. It is demonstrated that several inde-
pendently developed inductive methods adually yield computable gproximations of
Solomondf’ s method. | will first demonstrate this for Rissanen’s minimum descrip-
tion principle (MDL), cf. Li and Vitanyi (1993.

Rissanen made an effort to develop an inductive method that could be used in
pradice Inspired by the ideas of Solomondf he eventually propaosed the minimum
description length principle. This principle states that the best theory given some data
is the one which minimizes the sum of the length of the binary encoded theory plus
the length of the data, encoded with the help o the theory. The spaceof possble
theories does not have to consist of al possble Turing machine programs, bu can
just as well be restricted to pdynomials, finite aitomata, Boolean formulas, or any
other pradicd classof computable functions.

To derive Rissanen’s principle | first neal to introduce adefinition d the cmom-
plexity of a string gven some extra information, which is known as conditional
Kolmogorov complexity:

Definition 2 Conditional Kolmogorov complexity. The cndtional Kolmogorov

complexity K of x, relative to some universal prefix Turing madine T(p, y) with
program p and additional informationy is defined by:

Kr(x |y) =min{ I(p) : p O {0,1}*, T(p,y) =x}
Or K1(x |y) = o if such p deesnat exist.
This definition subsumes the definition d (uncondtional) Kolmogorov complexity
when we take y to be anpty. Now, Rissanen’'s principle can elegantly be derived

from Solomondf’s method.We start with Bayes' theorem:

P(H |D) = P(D |H) P(H) / P(D)
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The hypothesis H can be any computable description d some given data D. Our goal
isto find an H that will maximize P(H | D). Now first we take the negative logarithm
of al probabiliti es in Bayes equation. The negative logarithm is taken because prob-
abiliti es are smaller or equal to ore and we want to ensure positive quantities. This
resultsin:

—log P(H |D) =—log P(D |H) —log P(H) + log P(D)

When we @nsider P(D) to be a onstant then maximizing P(H | D) is equivalent to
minimizing its negative logarithm. Therefore we shoud minimize:

—log P(D |H) —log P(H)

This will result in the Minimum Description Length principle if we onsider that the
probability of H is approximated by the probability for the shortest program for H,
i.e,

P(H) =2~

Therefore the negative logarithm of the probability of H is exadly matched by the
length of the shortest program for H, i.e., the Kolmogorov complexity K(H). The
same goes for P(D |H) and hencewe shoud minimize:

K(D [H) + K(H)

Thisamourntsto MDL principle, i.e., minimizing the description a program length of
the data, given the hypothesis, plus the description length of the hypaothesis (Li and
Vitanyi 1990, pp.218 To make this principle pradicd al that remains is formulat-
ing a spaceof computable hypotheses that together have aprior probability smaller or
equal to ore, and seaching this gace é&edively. It has been shown in severa appli-
cdionsthat this approad is an effedive way of leaning (Li & Vitanyi 1993, p.371

6.6 Cognitive models

Let us look at the simplicity bias of BACON.2 (BACON.2 is not representative for
the other BACON programs. | discussthe simplicity bias of the other BACON's in
(van den Bosch, 1994. BACON.2 will always construct the simplest consistent law
in its range of seach. The methodit usesis cdled the differencing method. With this
method BACON.2 is able to find pdynomial and exporential (poynomial) laws that
summarize given numeral data (Langley et al. 1987%. One could define the simpli city
bias of BACON.2 asfollows:

Definition 3 Smplicity biasin BACON.2 The simplicity of a paynomia deaeases
with the increase of the polynomial’s highest power. A variable power is gathered to
be asmpler paynomial than apoynomial with a high constant degree
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Langley et al. give no epistemicd reason for preferring simplicity. However, after
discussng simplicity in Thagard's Pl | will argue that the simplicity bias of
BACON.2, as defined abowe, isjustified.

Thagard's acount of the simplicity of a hypothesis does not depend onthe sim-
plicity of the hypothesisitself, but on the number of auxili ary hypotheses that the hy-
pothesis neals to explain a given number of fads (Thagard, 1988. In PI, Thagard's
cognitive model of scientific problem solving, discovery and evaluation are dosely
related. Simplicity plays an important role in bah.

Pl defines two hypotheses to be @m-hypotheses if they were formed together for an
explanation by abduction. From the number of co-hypotheses and the number of fads
explained by a hypaothesis its smplicity is cdculated acaording to the following defi-
nition:

Definition 4 Smplicity in Pl. The simplicity of hypothesis H, with the number of ¢
co-hypotheses and with the number of f fads explained by H, iscdculated in Pl as

simplicity(H) = (f —c)/f, or zeroif f< c.

To determine the best explanation Pl considers bath consilience (i.e., explanatory
success or in Pl; number of fads explained) and smplicity. Thisis no dfficult ded-
sion if in ore of the dimensions the value of one of the explanations is superior to
that of the others while the values in the other dimension are more or lessequal. If
both explanations explain the same number of fads but one is sSmpler than the other,
or if they are both equally smple, bu one explains more fads than the other, then
there is no dfficult choice But when e.g., the first theory explains most fads while
the seaond s the simplest, that conflict seems to make the choice more difficult. In
that case Pl computes a value for bath hypatheses acarding to the foll owing defini-
tion:

Definition 5 Explanatory value in Pl. The eplanatory value of hypothesis H for
IBE iscdculated in Pl as

value(H) = simplicity(H) x consilience(H).

In this way Pl can pick out explanations that do nd explain as much as their com-
petitors but have ahigher simplicity or explain more important fads. It also renders
ad hoc hypotheses uselessbecause if we ald an extra hypothesis for every explana-
tion then the simplicity of that theory will deaease & the same rate & its consili ence
increases.

One feaure of IBE in PI is that its valuation formula amits of a much simpler
definition which easily follows from the definitions of simplicity and the value of a
hypothesis as given above.

Theorem1 For IBE the explanatory value of a hypothesis H, with the number of ¢
co-hypotheses and f fads explained, can be cdculated in Pl as

valug(H) =f—c, or zeroif f<c.
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Thagard does nat satisfadorily argue why we shoud prefer this kind o simple hy-
potheses. In its defense he only demonstrates that several famous <ientists used it.
But he did na show that simplicity promotes the goals of inferenceto the best expla-
nation, like truth, explanation and prediction.

6.7 Computable approximation

I will now compare Rissanen’s minimum description length principle (MDL) with
BACON.2, and with inference to the best explanation (IBE) as implemented by Tha-
gard in PI. For BACON.2 Rissanen’s principle suggests an improvement because in
the cae of noisy data, BACON.2 would probably come up with a paynomial aslong
as that data, while it could construct a much simpler one when it employs and en-
codes deviations from the polynomial aswell.

An important difference between Rissanen’s principle and BACON is that the
former requires to seach the whae problem space while the latter searches it heu-
risticdly. But BACON's sach is guided by the same patterns that eventually will be
described by alaw. However, a heuristic seach, like BACON's, can be aded by Ris-
sanen’s principle. Actually BACON does sach for a minimal description, bu it
does not try to minimize it, i.e., if BACON finds a description, it halts, and will nat
seach for a shorter one.

BACON.2 determines the shortest polynomial that can describe agiven sequence
No Turing machine can be @nstructed that neels a shorter description for a more
complex paynomial. It can be demonstrated that a paynomia formula with an ex-
porential term has a shorter description than a palynomia formula withou an expo-
nential term that describes the same sequence BACON.2' s method aways finds the
simplest paynomial that exadly fits the data. So | will make the foll owing claim:

Claim1l The padynomia constructed by BACON.2 with the differencing method,
based ona given sequence x is the polynomial with the shortest description that ex-
adly describes x, if x can be described at all with apaynomial.

The validity of this claim can be derived from the diff erencing method. Every prefer-
ence of BACON.2 between two pdynomials that are compatible with the datais in
agreanent with the minimum description length principle. However, MDL can seri-
ously improve BACON.2 by including a valuation d a description d the sequence,
given a passhble paynomial. A shorter description d the sequence may result when
deviations from a possble paynomial are enxcoded as well.

In Thagard's explicaion d inference to the best explanation in PI, the simplicity
of a hypothesis is determined by the number of additional assuumptions or co-
hypotheses that the hypothesis needs for its explanations. Rissanen's MDL ac®urts
for the importance of auxili ary hypotheses as well. MDL requires that we minimize
the sum of the description d an explaining hypotheses K(H) and the description o
the datawith the ad of the hypothesis K(D |H).
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If an hypothesis can explain something right away the description d the data is
minimal, whil e if the hypathesis requires additi onal assumptions, then the description
of the data will be longer. So, Thagard's smplicity satisfies at least one of the re-
quirements of MDL. Hence | want to make the following clam and argue for its
plausibility.

Claim1l Ina caeof equal consilience the explanation that will be seleded by IBE
in Pl will provide ashorter description d the fads, given the explanation, a at least
no longer description with resped to the avail able dternatives.

This claim foll ows easily from the theorem stating that PI’ s IBE values hypotheses by
subtrading the number of co-hypotheses ¢ from the number of f explained fads, i.e.,
f minus c. Two hypaotheses that are of equal consilience eplain the same number of
fads, in which case the hypaothesis with the least number of co-hypotheses is pre-
ferred. Hence asuming that every such extra asumption is of abou equal length,
the smpler hypothesis will provide ashorter description d the fads given the hy-
pothesis. However, if bath have the same number of co-hypatheses, then Pl can na
make a toice, because both will provide adescription d reasonably similar length.

6.8 Best hypothesis

One guestion may now come to mind: will the Solomondf approad yield a unique
preference when several simple hypotheses are mmpatible with the data? It seems
possble that more than ore theory or program, consistent with given data, can be of
the same length. So in that case we caina make adedsion kased ona simplicity
consideration, kecause dl aternatives are of equal smplicity.

To answer that criticism we first have to dstinguish between the next symbd vy
that is predicted given a sequence x and the different programs p that can generate a
prediction. Our goa can be a orred predictiony, given x, or a @rred explanation o
X. In the cae that we want a @rred prediction, if two programs are of the same
length it may turn ou that both predict something else. However, Solomondf’s
method suppies two ways to solve this dilemma.

The first is the universal Solomondf-Levin distribution with which probabiliti es
can be asdgned to dfferent continuations of a sequence A given prediction y nat
only recaves a higher probability if it is predicted by a short program, bu also if nu-
merous programs make the same prediction. So if there is more than ore shortest
program, the prediction d the program that predicts the same & numerous other
longer programsis preferred.

The seamond way out of the dilemmais in the situation when the given amourt of
data x is very long. It can be proved that in the limit al reasonable short programs
will converge to the same prediction, so you can pick any of them. This feaure of the
Solomondf approadh is nice for pradicd and computable goproximations. Because
you can make reasonably good pedictions with a given short program that may not
be the shortest one.

However, if you value the best explanation of a given amourt of observations,
then you will not be satisfied by a grab bag of possble hypatheses that may not even
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make the same predictions. Scientists that want to understand the world usually look
for one best explanation. In this situation a case could be made for the simplest hy-
pothesis as the best explanation. But with such an am the Solomonoff approach
seems troublesome. Because you can never know whether a given short program that
computes x is also the shortest program possible. Because the only effective way to
do soisto test al possible Turing machines one by one to see if they generate x. But
any of those possible Turing machines may never halt and there is no way to find out
whether it ever will. You may put a limit to the time you allow the machine to run
before you test the following one. But a shorter program can always be just one sec-
ond further away.

The philosopher Ernst Mach once made the claim that the best thing that science
could do is to make predictions about phenomena, without explaining the success of
such predictions by the (ontological) assumptions of the possible hypotheses. How-
ever, the best explanation, and hence possibly the simplest program, can be seen as
the ultimate goal of science. And a nice property of the present kind of simplicity is
that we can measure our progress. We may not have an effective, i.e., computable,
method to establish whether a hypothesis is the simplest but given a large amount of
data we can establish the relative simplicity of any two hypotheses that yield the data.

6.9 Conclusion

| will try to state my conclusion in one sentence, but nevertheless it is probably not
the shortest description of that conclusion: in scientific discovery it is rational to pre-
fer those hypotheses, that, given discovered alternative hypotheses, amount to the
shortest computational description of known data, because they provide more prob-
able predictions. This approach to learning and discovery generalizes the rational
pretension of the logical and cognitive models of discovery that prefer minimal or
simple explanations. So to answer the specific questions of this thesis, we have:

Question 1 What is the structure of a scientific theory? In the computational ap-
proach a theory consists of a universal Turing machine, together with a program for
that machine. The datathat is explained by the theory is the result of a description of
that datathat can be generated by a particular program that can make predictions. So,
a string P describing data and predictions is the output of a computation of a com-
puter TM and program H, i.e. TM(H) = P. Both the logical and the cognitive models
can be subsumed within this general scheme.

Question 2 What is the process of scientific reasoning? The process of reasoning
in machine learning is summarized in Table 6.1. A string P describes given data of a
phenomenon p, given a way of representation. The task of explanation is to find a
short program H* that can generate that string, given a computer T. This task is un-
computable, in the sense that there is no algorithm that can guarantee to find that
program. Yet it can be approximated heuristically. The shortest program has the
highest a priori probability. Given a Turing machine TM, a program H and earlier
data P a prediction P* and posterior probability can be computed.
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Problem | Start Badkground  Process Goal Goal properties
Explanation |StringP  TM Approximation H* TM(H*) =P
Prior probability

Prediction ProgramH TM, String P Computation P* TM(H, P) =P*
Posterior probahility

Table 6.1 Short overview of inferences discussed in this chapter

Question 3  What is the route between theory and experiment? The theoreticd
route between theory and experiment can in this approach also be summarized in six
steps. (For comparison, | added the logicd version d this processbetween bradets)

1. Observe phenomenon g pm,-.., Pn

2. Describep: (Pm — Pn)
Pm, n: = string

3. Explainp (H* EPy - Py)
TM(H*) =P n

4. Predictp: (HEPR* - B¥)
TM(H, P*) = P*

5. Intervenep: do p*

6. Observe p: seep*?

In step 1.a phenomenonis observed. This phenomenonis described by a string that
represents the observation, given a manner of representation. An hypothesis H* is
seached in step 3.in the form of a short program for a Turing machine, such that the
program can generate the string and passhble continuations of that string. Based on
the given manner of representation, the program for H* and the string representing
the observed data, the Turing machine can make aprediction by generating a wn-
tinuation d the string, in step 4. Based on pediction an intervention and olservation
close the drcle. The observation d new data does not necesstate anew hypothesis as
long as the description d the new data plus the old hypothesis is dill the shortest
avail able description. New data do change the aposteriori probability of predictions.

In the next part of this thesis | will analyze ascientific pradice to find ou how
that pradice mmpares with the epistemologicd theories addressed in this part.

* * * *



Part 1l Neuropharmacology

What is the rational use of theory and experiment in the processof scientific
discovery, in pradice? In this part | discussa cae study and model of the ra-
tional use of theory and experiment in the pradice of drug reseach for Park-
inson's disease, as introduced in Chapter 3, in more detail . First | survey how
the dfeds of drugs for Parkinson's disesse ae explained by the dopamine
theory (Chapter 7). Then | report on the use of theory and experiment in
practice (Chapter 8). | finish this thesis by discussng amodel of both the do-
pamine theory and the studied pradice of discovery (Chapter 9).
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Chapter 7

Theory

7.1 Introduction

A short description d atheory and a pradicein neuropharmaalogy, was introduced
in Chapter 3 o this thesis. This third part provides a more detailed description and
analysis of that same theory and pradice of discovery.

The spedfic question for this part is: How are theory and experiments used in the
pradice of drug reseach for Parkinson's disease? To answer this question | will first
survey the literature on the dopamine theory of Parkinson's disease in more detail .
The particular question d this chapter is: how are Parkinson's disease and the dfed
of known drugs explained by theory?

Parkinson's disease is believed to be mainly caused by a deficiency of dopamine.
Dopamine is a neurotransmitter, a chemicd mesenger between nerve cdls in the
mammalian brain. In this chapter | explore how dopamine is exadly related to Park-
inson's disease, and hav theory abou that relationis used to understand the function
of drug interventions for Parkinson's disease. Before discussng pharmaceuticd in-
terventions | will first discussthe dopaminergic cdl and the basal ganglia in some
detail to uncerstand the rationale of these treaments.

In sedion 7.21 start with a general introduction to Parkinson's disease. | go into
the basics of the dopaminergic nerve cdl in sedion 7.3.Then, in sedion 7.4,1 go into
the basal ganglia, the neural circuitry that partly controls voluntary movement, and
how a defed in it causes parkinsonian symptoms. | end this survey of Parkinson's
disease literature with a short overview of a seledion d therapeutic drug interven-
tionsin sedion 7.5.

7.2 Parkinson’s disease

People with Parkinson's Disease suffer from a motor behavior impairment, usualy at
an dder age. The primary symptoms include: muscular rigidity, resting tremor, diffi-
culty with movement initi ation (bradykinesia), slownessof voluntary movement, dif-
ficulty with balance, and dfficulty with walking. This disease was named after the
English MD. James Parkinson, who in 1817was the first person to describe these
symptoms as ‘the shaking palsy’. (Bernstein, 1995 Wichmann & Del.ong, 1993
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Dopamine deficiency

More than a century later, ore believes that the caise of the disease is a dopamine
deficiency in the basal ganglia of the brain. Dopamine (DA) is a neurotransmitter, a
chemicd messenger in the nervous g/stem, seeFigure 7.1. In Parkinson's disease the
neural cdls which produce dopamine, the dopaminergic cdls, deteriorate. When
these neurons gart to dsappea, the normal rate of dopamine production deaeases. It
was discovered that when the degeneration d dopaminergic cdls is more than 70
80%, Parkinson's gymptoms dart to appea. Next to Parkinson's disease’s primary
symptoms mentioned abowve, a patient may also start to suffer from secondary symp-
toms which include: depresson, senility, postural deformity, and dfficulty in speek-

ing.
NH,

HO

HO

Figure 7.1 Structure diagram of dopamine

Diagnosiswith L-dopa
It isdifficult to dagnose Parkinson's disease in an ealy stage. The ealiest symptoms
may be non-spedfic, such as weakness tiredness and fatigue. So the disease may be
unrecognized for some time. Today there ae no conclusive tests for Parkinson's dis-
ease, yet there ae several methods for evaluating its possible presence

A first diagnaosis is based onan evaluation d the presence and severity of the pri-
mary symptoms. If this test is sgnificant, atrial test of anti parkinsonian drugs may
be used to further diagnose the presence of Parkinson's disease. This test is usually
performed with L-dopa. L-dopa is a preaursor in the biosynthesis of dopamine in
nerve cdls, and causes the remaining dopaminergic cdls to increase the production
of dopamine. If the patient fail s to benefit from L-dopa, the diagnosis of Parkinson's
disease is questionable.

Par kinsonism

Computed tomography (CT) or magnetic resonanceimaging (MRI) scans of the brain
may be helpful in ruling out other diseases whase symptoms resemble Parkinson's
disease. These diseases may include other neurologicd disorders leading to parkinso-
nian symptoms. Such symptoms can be caised by a brain tumor, repeaed heal
trauma, or prolonged use of certain drugs. Such a condtion is referred to as Parkin-
son's g/ndrome, or atypicd Parkinson's. These kinds of parkinsonisms shoud nd be
confused with Parkinson's disease proper.

MPTP model

The cause of Parkinson'sdiseaseis gill unknowvn. Thereis one known vira infedion
that damages the extra pyramidal nervous g/stem and causes Parkinson's disease in-
diredly. However, the majority of sufferers were yourg people with dfferent symp-
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toms than we usually seein Parkinson's disease. Most of these caes resulted from an
epidemic in the 1920s. More recently it was discovered that several young people
who developed parkinsonian symptoms had used an ill egal synthetic drug that was
contaminated with the ompoundMPTP. It was found ou that this compoundis me-
tabalized in the brain to a toxin that damages the extra pyramidal nervous g/stem,
causing a rapid decgy of dopaminergic cdls. Consequently it was hypothesized that
Parkinson's disease is caused by an environmental toxic agent like MPTP. Yet, no
toxin that has this effed other than MPTP is foundin Parkinson petients. MPTP is
now used in animal studiesto understand haw it causes these symptoms, which might
lead to a better understanding of Parkinson's disease.

7.3 Dopaminergic cells

Reseach on Parkinson's disease focuses on the function d dopamine. This neuro-
transmitter is g/nthesized in the presynaptic terminal of a dopaminergic nerve cél by
severa metabalic pathways (see Figure 7.2 and Cooper, Bloom & Roth, 1996, pp.
293-351). First tyrosinein the cdl is converted to L-dopa with the help of the enzyme
tyrosine hydroxylase (TH). L-dopain turn is converted into do@mine by the enzyme
aromatic anino add decaboxylase (AAD C). The synthesized doamine moleaulesin
the presynaptic termina are then taken up ly synaptic vesicles. After the dopamineis
released from the vesicles into the synaptic deft, the remaining moleaules are taken
badk into the synaptic terminal by transporters in the membrane. There they are
transported bad into vesicles or broken dovn to DOPAC by the enzyme moncamine
amine oxidase type B (MAO-B) (Vermeulen, 1999.

tyrosine

TH

synaptic terminal
L-DOPA

* AADC

dopamine (DA)
DOPAC

fMAO-B
vesicle
€3

active zone @ /_\_l:l
DA

synaptic gap DA

( I DA :
K receptor

Figure 7.2 Prototypic dopaminergic terminal with cycle of synthesis, storage, release
and removal of dopamine.
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The signa to open or close ion-pumps is not determined by the dhemicd properties
of atransmitter alone. The same transmitter chemicd, e.g. dopamine, can bah inhibit
and excite other neurons, depending on the properties of the receptor it stimulates.
Stimulated neurotransmitter receptors influence the membrane potential of a neuron
diredly or indiredly by various different mechanisms. There ae ion channels with
speda receptor aress that diredly bind with a transmitter. When boundto a trans-
mitter these channels undergo a dhange that opens the dhannel immediately. The sec-
ondtype of receptors gate ion channels indiredly with a seaond messenger system. A
transmitter boundto such a receptor causes in severa steps the release of regulatory
proteins within the cdl membrane, that ad on afamily of ion channels.

7.4 Basal ganglia

Post mortem examinations of patients with Parkinson's disease reveded that parts of
their brain were pathologicdly changed. This led to the believe that this part, cdled
the basal ganglia, plays an important role in controlli ng voluntary movement. It was
shown that signals from the @rtex are led through the basal ganglia, to the thalamus,
which influences motor control centersin the brain. (Coté & Crutcher, 199)

Extrapyramidal system

The basal ganglia becane known as a comporent of the so-cdled extrapyramidal
motor system, which was first presumed to operate independently of the pyramidal or
corticospinal system. However, today it is known that both systems are intercon-
neded, and cooperate. Furthermore, other parts of the brain are shown to play a part
in vduntary behavior as well, and the basal ganglia dso have arole in cognitive
functioning.

The basal ganglia themselves are a onglomeration d five distinguishable inter-
conreded nuclel. They are cdled the:

e globus pdllidus, internal (GPi) and external segment (GPe)
» subthalamic nucleus (STN)

e substantianigra, pars compada (SNC) andreticdata (SNR)
e striatum, consisting of caudate nucleus and putamen

From the cortex there is a dired and an indired signa pathway through this con-
glomeration, maintained by circuits that use different neurotransmitters, such as
GABA, glutamate, enkaphalin and substance P. There is a delicate balance between
these two pathways that is partly maintained by dopamine release from the substantia
nigra to the striatum. Dopamine release inhibits the indired pathway by stimulating
dopamine D2-receptors, and excites the dired pathway by stimulating the dopamine
D1-receptor (seeFigure 7.3A, Timmerman 1991,Vermeulen, 1999. The thicknessof
the arows represents the strength of the signal. In the case of Parkinson's disease the
indireded path islessinhibited, so becomes gronger. The dired path will | adk ampli-
ficaion and will become wedker.
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Figure 7.3 Mgor neura pathwaysin namal and Parkinsonian basal ganglia

Substantia nigra

In postmortem studies it was discovered that the substantia nigra (meaning "black
substance’), had lost its pigment in Parkinson petients. Subsequent studies showed
that dopamine levels in the striatum were drasticdly reduced. Because the basal gan-
glia contains most of the dopaminergic neurons of the brain, these observations aug-
gested that the dopaminergic pathway between the striatum and substantia nigra is
degenerated in Parkinson's disease patients. It was theorized that the depletion o do-
pamine disbalances the dired and indired pathways from the striatum, which causes
the thalamus to be overstimulated. As a result the frontal cortex is less adivated,
which would contribute to the Parkinsonian symptoms (seeFigure 3B).

7.5 Drug treatments

L -dopa

Given the observations in the basal gangliain the ealy1960s Birkmayer and Horny-
kiewics reasoned that it would passbly help Parkinson petients if the level of dopa-
mine was restored to namal levels. It is nat passble to administer dopamine itself as
adrug becaise it will nat passthe blood-brain barrier between the blood vessls and
neurons. However, L-dopa, the preaursor in the synthesis of dopamine will . So they
reasoned they could boast the dopamine production upto higher levels by providing
the few remaining hedthy dopaminergic neurons with large anourts of extra L-dopa.
(Cété & Crutcher, 1991 Vermeulen, 1994
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Thefirst tests led to a succesgul initia remisson d the symptoms. Y et this posi-
tive dfed was courtered by serious sde dfeds sich as nauseg vomiting, blood
presaure changes, and collapse. This could be explained by the fad that the enzyme
AAD C, which converts L-dopa to dopamine, is also present in the liver, kidney and
many other places in the body. So whil e the dopamine levels in the striatum becane
more normal, the extra dopamine production dsturbed chemicd balances elsewhere
in the body.

AADC inhibition

After further studies it was demonstrated that the dfed of the L-dopa treament was
enhanced when the dose of L-dopa is increased more gradually. So the focus of re-
seach becane the reduction d the side dfeds. In the ealy 1970s the first AADC
inhibitors that could na passthe blood-brain barrier were introduced. This made it
posshble to increase dopamine levels in the brain only, becaise the mnversion d the
extra L-dopain the peripheral organs could be inhibited seledively.

MAO-B inhibition
Another way to increase dopamine levelsisto block the enzyme MAO-B that is con-
verting dopamine to DOPAC. It is demonstrated by studies that the administration o
MAO-B inhibitors dows down the progresson d Parkinson's disease, and increases
the life expectancy.

It is argued that this dow down can also be eplained by the hypothesis that
Parkinson's disease is caused by atoxin similar to MPTP. It was siown that MPTP
needs to be mnverted to MPP+ by the enzyme MAO-B to have its destructive dfed.
So if some toxin like MPTP causes the cdl deah in the basal ganglia of Parkinson's
disease patients, the inhibition & MAO-B would slow down this process

Yet it is aso argued that the positive dfed of MAO-B inhibition can be (solely)
attributed to the dfed that it inhibits the bre&k down of dopamine, and hence in-
creases the dopamine level.

L -dopa treatment only symptomatic

While L-dopa is the best avail able remedy to ease the lives of Parkinson petients, it is
not even nea a aure. Treament that aims to increase dopamine levels turns out not to
stop the further deterioration d dopaminergic cdls, and hence does not work well in
the long term. Long-term use of L-dopa frequently results in fading of the therapeutic
effed and the development of serious sde-effeds, such as further motor impairment
and psychiatric compli cations. Furthermore, whil e the ladk of dopamine caises most
of the Parkinson symptoms, Parkinson's disease patients also suffer a loss of
noradrenergic and serotonergic neurons, which contributes to the disease a well.

Dopamine receptor agonists

To bypassthe problem of the side dfeds of L-dopa treament, reseach was initi ated
to synthesize mmpounds that would dredly ad on the dopamine receptors. These
compound, cdled recetor agonists, would take over the role of dopamine, so no
administration o L-dopa would be needed. And hence the side dfeds induced by
large anounts of L-dopawould be cuntered.
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To dete this ided has not yet been readied. While long-term treament with the
avail able dopamine receptor agonists results in lessdyskinesias, the therapeutic efed
is lessthan that of L-dopa. And increasing the dose only leads to ather serious sde
effeds auch as psychatic readions. Better effeds result from a cmbination o alow
doses of L-dopawith an agonist.

There ae dso athers reason for reseach into dogamine receptor agonists. It has
also been pu forward that long term treament with L-dopa accéerates the degenera-
tion d dopaminergic cdls. This could be caised by the enhanced generation d toxic
free OH-radicds through dopmine auto-oxidation (Vermeulen, 1994. The higher
the anount of dopamine in the cel through extra L-dopa, or MAO-B inhibition, the
higher the risk of toxication. If this clam istrue, it is preferable to use receptor ago-
nists.

Furthermore, synthetic agonists have the alvantage that they can be made highly
seledive for a particular receptor. There ae now five known types of dopamine re-
ceptors, and further knowledge of how they are integrated in neura circuits that
regulate motor behavior may result in an agonist with less (but also dfferent) side
effeds.

7.6 Conclusion

In this chapter | asked: How are theory and experiments used in drug reseach for
Parkinson's disease, acording to the literature? Theories abou the neurophysiology
and bochemistry of the brain are used to explain the pathdogy of Parkinson's dis-
ease, and the function d known drug interventions. In neurophermaamlogy theory
serves to guide the search for new and ketter drugs. In this chapter | surveyed the do-
pamine theory of Parkinson's disease, and haw theories abou dopamine's metabo-
lism and function imply suggestions for treament. In the next chapter | survey part of
apracticeof reseach onParkinson's disease.






Chapter 8

Practice

8.1 Introduction

How are theory and experiments used in the pradice of drug reseach onParkinson's
disease? Several tedhniques are being used to seach for new drugs and explore the
adivity of the basal ganglia. In this chapter | report on hav new drugs are investi-
gated and hav experiments are being used to explore and test new drugs and the
mechanisms of the brain at the Pharmacy Department of the Groningen University.

For my case-study | interviewed reseachers Dr. B. Westerink and Dr. W. Tim-
merman. In the following sedions | will report ontheir views and experimental work.
Sedion 8.2 pesents an overview of my interview with Dr. B. Westerink. Sedions 8.3
to 8.5report my more extensive interviews with Dr. W. Timmerman which | partly
condicted while witnessng her work in the laboratory.

The numbered paragraphs in these sedions are translations of a seledion d the
verbatim respornses to my questions, which were reviewed and approved by the inter-
viewees. They aim to present an olgedive picture of the reseachers views on their
work. Off course, all errors of translation and interpretation remain my resporsibility.
The next chapter of this thesis will present a detailed analysis of the pradice that is
portrayed in this chapter. The paragraphs are numbered for ease of reference

8.2 Investigating new drugs

Dr. B. Westerink is a senior reseacher, condwcting his work at the Pharmacy De-
partment of the Groningen University. The following text reports his views in re-
sporse to my questions abou drug discovery in the context of drug reseach for
Parkinson in general, and more spedficdly at his department. The interview was
conducted in Decenber 1996.

1 Drug experiments can serve to investigate how and why a drug has a particular
effed, whereas that effed is often dscovered by acadent. In 1960the mechanism
of neurotransmisson kecane better understood. In 1965it was discovered that al-
ready known kinds of compound had a neurotransmitter function. Carlson ds
covered that in Parkinson's disease dopamine was deficient.

109
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2 By an acddenta observation it was discovered that chlorpromazine, while it
was being administered for a diff erent reason, improves shizophrenia. By focused
experiments on rats it turned ou that that this drug had an effed on the anount of
dopamine. The hypothesis was proposed that chlorpromazine blocks the dope-
mine-receotor, which would cause the brain to compensate by increasing the syn-
thesis of dopamine. This hypathesisis accepted today.

3  Often youseethat an effed of adrug is discovered by acddent, by a secondary
observation. This will then initiate further reseach to understand the spedfic
function d adrug. Later it was discovered that chlorpromazine caises parkinson-
ism as a side dfed. This suggested a relation between DA and Parkinson's dis-
ease. This hypothesis [as discussed in the former chapter] is aresult of further ex-
perimental investigations. This hypaothesis pointed to rational strategies for therapy
and nowe drug design.

4  One diredion that is explored in Groningen is the development of seledive
DA-agonists. These ae chemicd variants of the structure of dopamine. Those
variants are experimentally tested in vivo (on live animals) and in vitro (on sam-
ples of tisuue in atest tube) for their biologicd adivity onarecetor. Asareadion
to an agonist a receptor can make Cyclic-AMP. The @mncentration can be meas-
ured and compared with the concentration that is released after contad with do-
pamine.

NH> NH2

HO HO

HO Dopamine (DA) HO ADTN

Figure 8.1 The chemicd structure of dopamine anditsvariant ADTN

5 In 1977avariant of DA was concaved by Prof. Horn (former professor at the
Groningen University), cdled ADTN (Figure 8.1). This dructure was the basis for
further variants that were experimentally tested onfour criteria:

The adivity onthe DA-receptor

Lipophili city, the adility to crossthe blood/brain barrier
Metabolism, its decompasition by enzymes

Seledivity, its affinity for D, and D, receptors

PN PE

6  Suggestions for variants are based onexperience and fingerspitzengefuihl. It is
hard to exadly predict what areceptor and enzymes will dowith a cmmpound.Y et
the design d an antagonist is smewhat less difficult because it only has to db-
struct areceptor, while an agonist hasto fit and adivate the receptor, like akey.

7  The NH,-group d the best variant of ADTN was extended with two propyi-
groups. This increased its lipophlicity so dramaticdly that it could even be al-
ministered by a band-aid on the skin. Removing a hydroxyl-group deaeased its
metaboli sm.
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8 The eperimental seach also evolves the other way around. When a new re-
ceptor is discovered, its genetic expresson can be used to clone it. These dones
are then used by pharmacauticd companies to test al their creaed compounds for
adivity on that receptor. If one of the often more than 100.000compounds is
foundto be adiveit can be the basis for anew drug lead.

9 Ancther strategy is using techniques from combinatorial chemistry to creae
thousands of variants of a compoundat the same time and test them by rapid
screening techniques. If adivity is observed the compoundthat caused it is re-
trieved and will be studied to discover its gructure.

10 A computational approach bulds 3D models of receptors. These ae used to
aid the understanding of drug docking medanisms [how a drug interads with a
receptor] by smulating and visualizing that process Such simulations make pre-
dictions possble éou how a protein folds and deforms.

11 If anew drug passes the aiteria of the lab it will then be extensively tested.
This is a processin three phases. The first phase tests for toxicity. It is adminis-
tered to animals and later to vdunteeas. In the second plase the drug is given to
volunteaing patients to test its therapeutic strength. When it passes this barrier it
goes into doube blind testing and will be used in haspital trials. Thisis an expen-
sive process and yet the drug can till make victims, even when it passs al three
stages. Geneticdly heterogeneous human beings are not the same & homogeneous
mice It is always possble that a slight genetic mutation will make a ompound
highly toxic for a particular group. Sometimes rious sde-effeds occur within
isolated groups, e.g. in Finland a in Jewish families.

12 Newly cregded o discovered drugs are dso used to explore biochemicd
medchanisms in the brain, bah in namal aswell as pathologicd condtions. Thisis
another areaof neuropharmaclogy. For Parkinson's disease the basal ganglia ae
of gred interest.

8.3 Exploring the basal ganglia

In Groningen the nuclei cdled the basal ganglia were being studied by Dr. W. Tim-
merman and her students. The following text reports her responses to my questions
abou Parkinson's disease in general, and her experimental work onthe basal ganglia
in perticular. | condwcted these interviews in January and February 1997, and in
September 1998.

In this ®dion Dr. Timmerman talks abou how the basal ganglia ae invalved in
Parkinson's disease, how they are explored experimentaly, and hov knowledge
abou them can be used to trea Parkinson's disease. In Sedion 8.4Dr. Timmerman
talks abou a spedfic experiment that was condwcted duing the interview. Sedion
8.5 reports her thoughts on interpreting data from experiments in general, and the
conclusion d her experiments on the role of dopamine in the basal ganglia in per-
ticular.

13 The basa ganglia present the nuclel in the brain where the neural adivity is
abnamal in Parkinson's disease. When adivity changes in the basal ganglia, all
kinds of adjustments take place Via the substantia nigra information is processed
to ather structures, to the thalamus, and then badk to the pre-motor cortex. But we



112 Chapter 8. Practice

do not know how, precisely. We also do not know exactly how information is
processed from the basal gangliato the periphery.

14 We know that the striatum processes information via a direct and indirect
pathway to the SNR. From the nigra connections go further to the brain stem, and
from there to the spinal cord. This can constitute a direct control of certain mus-
cles. But there are also pathways going back via the thalamus to the cortex. So it is
also possible that for example a change in activity of the corticospina pathway is
necessary for the deviation in behavior and motor control. | think it is a combined
action. It is not just the basal ganglia and neocortex. The thalamus isinvolved, just
like the cerebellum, which in turn also projects to the thalamus and the spinal
cord. If the activity changes in the thalamus and the neocortex by input from the
basal ganglia, then these changes can spread through the brain, making adjust-
ments elsewhere.

15 Much is known about the anatomy of the basal ganglia. It is much more re-
fined than is depicted in the model [see, Figures 3.1 and 7.3]. For example, it now
seems that there are also dopaminergic neurons projecting to the Globus Pallidus
(GP) [see Figure 8.2]. It also seems that the direct pathway has branches to the GP
[see dotted linesin Figure 7.1].

O O
O

Striatum

Figure 8.2: Schematic illustration of the basal gangliaby W. Timmerman

16 These pathways are discovered by means of tracing methods, e.g. by color
coding and mMRNA detection. Even so, it was discovered that the striatum is not a
homogeneous structure. It is now known that it contains limbic patches in a matrix
[see circles in Figure 8.2]. These areas specifically receive information from lim-
bic areas in the cortex. From those patches specific information is processed onto
the dopaminergic cells in the SNC. This is just the anatomy. These patches are
chemically different, but not electrophysiologically.

17  Inmy study of the basal ganglia | specifically ook at postsynaptic processes. |
ignore anything that happens in the dopaminergic cell. | apply dopamine-agonists
locally. In doing so | overrule the dopaminergic cell by activating post synaptic re-
ceptors, the receptors on e.g. the GABA-ergic and cholinergic cells. It is not my
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problem how the endogenous dopamineisreleased by the cdl, or how it originates
from L-dopa or is broken dowvn by MAO-B. Other people look at thase spedfic
processs. That is a reseach preference Of course in the end it all has to fit to-
gether.

18 Anatomicdly you can look at one cdl, ore synapse, and you can identify pro-
jedions and pethways. But for function you can lean from behavioral studies.
These ae often used as a measure for adivity in the striatum. By locd infusion o
GABA-like and do@minergic compounds in a cetain part of the basal ganglia
you can induce prototypicd motor behaviors. By increasing and deaeasing these
compounds in dfferent parts you can develop a mwncept of the role of GABA and
DA onthislevel.

19 If youwant to knav what dopamine does in the brain then you can for instance
give anphetamine, a compoundthat will i nduce the release of dopamine. If you
administer it to a rat, it will show stereotypicd behavior. It is a simple test that
shows that dopamineisrelated to behavior.

20 But the question is: where is this dopaminergic dfed mediated? Dopamine is
not locaed in just one brain area There is the nigro-striatal dopaminergic path-
way, bu there ae dso domminergic pathways that leal to the cortex and the ac-
cumbens. So you can spedficdly injed amphetamine in the rtex, striatum or ac-
cumbens. You will only seethat spedfic stereotypic behavior if you injed am-
phetamine in the striatum. If you apply it in the acaumbens you will mainly seelo-
comotor activity, na stereotypicd but an increase in locomotor behavior.

21 Behavior is a very accessble measure in experimental reseach. You have a
cage, you have arat, and you can start your research. So | start with that. In this
way you can get new ideas abou what a cetain transmitter or pathway doesin the
brain, even thouwgh you are doing very little in the animal. You just look at smple
behavior, isit running, isit stereotypicd or not? You can aso do very complicaed
experiments with learning models, then you explore diff erent pathways.

22 In behaviora experiments you look at the end product of your injedion. An-
other way is to measure the resporse diredly in the brain in spedfic aeas by in-
serting a microdialysis probe into the brain. In that way we can measure the dired
effed of amphetamine, it releases an enormous amourt of dopamine. The epla
nation for that effed is that the vesicles that contain dogmine fuse with the cel
membrane, resulting in the release of dopamine in the synaptic deft.

23 Thereseach that | am doing aims to bridge the gap between ou knowledge
abou the anatomy of the basal ganglia and pharmacology/physiology. From the
anatomy we know that there is a mwnnedion ketween dopaminergic pathways and
the striatum. But what is the dfed of a dopamine transmitter on the striatal cdls?
That is gill not entirely clea. It isan esentia question.

24 In Parkinson's disease dopamine depletes in the striatum. That appeasto be a
major problem. To solve that problem you can administer L-dopa or dopaminergic
agonists. But these turn ou not to be ided therapeutics becaise dter a while side
effeds appea and they gradually locse their therapeutic efed. What you rather
want to know isthe function d dopamine in the striatum. If you have abetter idea
of its function it may be possble to use other, more spedfic compound. So, it is
esentia to knav what dopamine does in the striatum.
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25 Wehave leaned that there ae two main subtypes of dopamine receptors in the
basal ganglia, D1 and D,. So | work with compounds that are spedfic for those
subtypes. But what is the function d those subtypes? In the literature this question
has been asked many times. Shoud we just use a ®mpoundspedfic for D, or one
that ads on bdh types, such as e.g. apomorphine? This compound fas not been
used for awhil e because of its many side dfeds. But it now seemsto be areason-
able dternative.

26 Also L-dopa has D1/D, affinity, smply because it results in more dopamine
that ads on bdh subtypes. It is an orgoing discusson, what isided? Y ou want to
replacedopamine, you canna use dopamine itself, so what do you reed? Do you
need to adivate only one subtype so that you restore function, bu nat induce side
effeds? Is adivation d D, receptors enowgh, a do you red a littl e bit of D; re-
ceptor adivationtoo, and what istheratio?

Sear ching a treatment

27  The problem of al dopamine-agonists is that they aso have side dfedsin the
periphery, in ather places of the body like the heat and veins. Y ou can counterad
that by administering peripheral dopamine antagonists, like domperidome, to-
gether with a dopamine ayonist. That will relieve side dfeds like nauseg bu has
itsown side dfeds.

28 Anather difficulty is that you have to find a proper dose that may differ per
person. Too much DA-stimulation will | ead to an ower-adivation that can induce
e.g. sportaneous dystonias. [Dystonias are movement disorders in which sustained
muscle @ntradions cause twisting and repetitive movements or abnama pos-
tures.] Usually after abou five yeas patients will be increasingly in an off- period.
In an onperiod a patient reads positively to medicine. In an of period the reac-
tions are ather poar or hyper.

29 Intheory you try to maintain a level of dopamine receptor stimulation by ad-
ministering dopamine ayonists. But when you apply a compoundthe sensitivity of
the receptors changes. In Parkinson petients the dopamine receptors become hy-
persensitive & result of the dopamine depletion. By a processof up-regulation the
number of recegotors on cdls increases. This changes, for instance, aso the uptake
of dopamine. There ae dl kinds of medhanisms that ad as on as mething
changes, to compensate for the change.

30 By administering an agonist you try to reestabli sh the situation that was normal
before the degeneration d the dopaminergic cdls. But you do nd know what that
situation was. In the dinicd pradice different doses are tried urtil the patient’s
motor behavior returns to namal. But that dose might not be comparable to the
amount of dopamine that was normally released before the degeneration. When
you start medication the receptors are still hypersensitive. But that will change,
andthe induwced effed will eventually deaease, so the dose shoud be aljusted.

31 There ae methods to establi sh sensitivity. But there ae dso all kinds of com-
pensation mecdhanisms on aher levels than the dopamine system. Changes in do-
pamine induces changes in acaylchdine in the striatum, and also changes in
GABA and glutamate. So, hav to solve that problem, how to chart that system
and haw to restoreit to namal?
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32 The dinicd studies are akind d trial and error. The therapy is thought to be
adequate when the patient responds well. Parkinson petients respond well to do-
paminergic agonists, bu also to chalinergic antagonists. There has been long dis-
cusson abou an explanation for that effed. It is thought that there is a DA-
acdylchdline balancein the striatum. When dopamine increases, aceylchaline de-
crease, and viceversa. That would explain why dopamine ajonists and aceylcho-
line antagonists have asimilar effed.

33 By doing basic experimental work it now appeas that stimulation d D, re-
ceptors on chadlinergic neurons does indeed inhibit the cdl, explaining the balance
But, via D; receptors and via the cortex dopamine can also stimulate aceylcho-
line. So there is a delicate balance between an inhibitory and excitatory effed of
DA on acaylchdine functioning. It can orly be discovered by basic experimental
reseach. How to incorporate such spedfic knowledge into the pradice of treaing
Parkinson's disease is ancther problem.

34  Anather approach isto study the dfed of using NMDA antagonists. NMDA is
a glutamate receptor subtype. Maybe we shoud use such a wwmpoundin combi-
nation with a dopaminergic therapeutic to creae the optimal effed. However, the
problem is that glutamatergic adivation will i nfluence the whae brain. You im-
mediately interad with al kinds of other areas, so that will not be my best bet. Y et
if youwould understand hov glutamate interads with dogamine then you could
judge this better. But given ou current knowledge it is dill along way to go be-
forewe can easly infer what to do.

35 For my ownreseach | want to knowv what the dfeds are of D; and D, receptor
stimulation in a hedthy situation. If you got a goodideaof that, you can look at a
lesioned model to verify if the dfed is the same in the pathologicd situation. Is
the interadion between glutamate and doamine and do@mine receptor subtypes
till tracedle in the same way? If that is not the cae then you must better estab-
lish what kind o compensationisinvolved after adopamine cél | esion.

Using the model

36 At the moment the role of dopamine in the striatum is dill a matter of debate.
We have amodel which claims that there ae excitatory D; receotors on the dired
pathway, being separated from the inhibitory D, receptors onthe indired pathway.
But if you look at the literature, al kinds of gaps emerge in this dory. It is pleas-
antly simple, bu it completely ladks nuance

37 For example, it is dubious whether D; receptors are located orly on the dired
path and D, receotors only on the indired pathway. This clam alone is subjed of
enormous debate. There isagroup d well known anatomists that claim that there
is a division, kesed on studies of rats and monkeys with a dopaminergic cdl-
lesion. A way to discover the presence of receptors in pathways is by looking at
messenger RNA. But with the same methods ancther group claims that D; and D,
receptors are present on bah pathways, with noabsol ute segregation.

38 My own data dso do nd fit the model. The model explains many findings but
also leares alot of questions. But in the literature many authors appea to just trea
the model as given, apparently withou questioning it. This is omething that in-
trigues me. Even though it does nat fit the data well, it has gained enormous
popuarity. Why? | think that it is because the modd fits the way you think that it
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will work. It provides a prediction that you can easily understand. It is ssimple and
it is beautiful to work with. That is why | think so many people just take it for
granted without questioning it.

39 Thereason that it is beautiful is the following. Upon activation of the cortex
you get a glutamate activation in the striatum. Now if glutamate acts in a similar
manner on both the direct and indirect pathway, you get a net reciprocal effect in
the SNR, they counteract each other. The model shows that dopamine acts syner-
gistically with glutamate stimulation via the D1 receptor to increase the amount of
GABA in the SNR, inducing an inhibition of the nigral activity. At the same time
dopamine inhibits the indirect path that would increase nigral activity via the D,
receptors, therefore diminishing the excitation of the nigral cells. So, dopamine let
the activities of both pathways point in the same direction. It stimulates the direct
pathway and inhibits the inhibition viathe indirect pathway. The net result is a de-
crease of activation of the SNR. This is associated with behaviora activation. It
increases the activation of the thalamus and brainstem, which coincides with al
kinds of activity.

40 That iswhy it is beautiful, dopamine is a compound that facilitates activation.
For example, with amphetamine you see stereotypical locomotion activity. You
can understand that behavior using the model that says that an increase of dopa-
mine results in SNR inhibition, which enables behavior activity.

8.4 Testing the model

In this section | report on how Dr. Timmerman used the basal ganglia model to con-
duct her own experiments in the laboratory. Part of the interview was conducted in
the laboratory.

41 The model is subjected to heavy criticism. The first thing | did was to check
whether a change in activity of striatal cells caused a change in the SNR. | infused
glutamate agonists of several receptor subtypes and an immediate decrease of ac-
tivity could be observed in the SNR. That means that apparently the direct route is
stronger than the indirect route, as otherwise activation of the latter pathway
would induce an increase in activity, given the model. So | tried several glutamate
agonists to confirm the model.

42  After that we did a test with a D;-agonist. The result was a very slight de-
crease. Although the effect was very limited, it would be in accordance with the
model. However, application of a D,-agonist induced a gradual but again very mi-
nor increase. If any, it does not fit the model. So is there a real segregation be-
tween the two pathways? The effects are hardly noticeable.

43  But is activation of the D, receptor always stimulating? In vitro studies never
show a stimulation by D receptor activation. If you prepare slices of the striatum
and you apply a D; agonist you will not see a stimulation but an inhibition. That
does not fit the model. So for me it is more like a model you work with, knowing
that thereis alot more nuance to it. Also people that perform those in vitro studies
never talk about this model. It does not fit their data, so why would they accept it.
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44  What we know from other eledrophysiologicd studies is that GABA-ergic
neurons in the striatum are hardly adive, under basal condtions. You can easily
adivate them with glutamate. We assume that dopamine moduates the glutamate-
GABA interadionin the striatum. But if there is very limited adivity in the stria-
tum, a moduator will hardly be dfedive. So | thowght, let’s give adlight adiva
tion d the striatum by glutamate, and then let’s seif we can make the moduating
role of D; and D, agonists more goparent. The literature dso implies that the role
of dopamine depends on the influence of glutamate.

45 My presumption is, D; probably excitates, D, probably inhibits, possbly on
different pathways. Can | confirm this, or canna 1? Well, | canna confirm every-
thing. Under basal condtions, withou adivation by glutamate, you can na spek
of dopamine & a moduator, becaise there is nothing to moduate. That was my
former study. Having finished that, | am now searching for a better start situation.
That means | have to induce adlight glutamatergic adivation locdly in the stria-
tum. | tried that, but it was difficult. You canna have anice ®nstant adivation
because dl kinds of other systems immediately try to compensate the increase in
adivity.

46 What | tried together with a student of mine, is to stimulate & the level of the
cortex with a glutamate ayonist, and look if this adivation is naticeadle in the
SNR. You exped that the adivation d the wrtex will release glutamate in the
striatum, that will consequently result in adivation & GABA-ergic neurons. De-
pending on what pathway is the strongest, this s1oud deaease or increase the a-
tivation d the SNR. So first we want to know which pathway dominates uponac-
tivation, bu only to seach a situation to again test the role of dopamine in the
striatum.

47  After performing these studies it seemed that the cortex is not the best placeto
start the adivation. So nov we try to start with adivating the thalamus. The
thalamus projeds both via the @rtex and dredly on to the striatum. That would
crede agenera adivation in the striatum. We have seen that if you infuse aglu-
tamate agonist in the thalamus, just for ten minutes, then you will see adlight re-
adion.Yet we coould na confirm thisin later studies.

48 The suggestions to change eperimental condtions are based on bdh the
model and ou former experiences. According to the model glutamate with D, re-
ceptor adivation will i ncrease the adivation d the SNR, they amplify ead aher.

49 Thetest we aerunning now [Feb. 26, 1997 isto first infuse aD; agonist into
the striatum. Secondy we will give aglutamatergic stimulation d the striatum to
find ou if D, cooperates with glutamate to induce an increase of GABA and hence
an inhibition d the SNR. We want to find ou if the presence of a D; agonist
makes a diff erence. We have dore this D; agonist infusion threetimes aready. We
have seen somereadion, bu very littl e.

Performing microdialysis

50 Inthelaboratory we use brain dalysis probes. Such probes consists of a small
glasstube with at the battom a semi permeable membrane and at the top two ex-
tensions, an inlet and an oulet. If afluid isinfused viatheinlet, diffusioninto the
surroundng tissue & the tip of the probe occurs. You can infuse @mmpounds in
this way, bu you can aso sample from this area Depending on where the aeaof
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interest is located in the brain, and what the dimensions are of this brain area you
can make longer or shorter dialysis probes.

51  You canimplant the probe in the brain in such away that thetip is at a specific
location. For our experiments we use Wistar rats. You can find a location in its
brain using the atlas of the rat brain. Oursis falling apart because of its extensive
use. The atlas portrays the whole brain from back to front in slices. We want to put
our probe in the striatum. This area is relatively large, and both rats and human
beings have two striata. It is a stretched out area that runs through a large part of
the brain. To put in a probe you look at the coordinates of the map. These are
standardized for a Wistar rat of 300 gram, and you look for particular blood ves-
sels. The bregma at the center on top of the skull is a reference point. All brain
dlices portrayed in the map have a known distance from the bregma. For the stria-
tum you look at the map that is just behind the bregma, the probe should be lo-
cated 3.5 mm to the side, and 7 mm deep.

AP 4.91 mn A/P -5.09 mn
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Figure 8.3: Example slice from therat brain atlas

52  We place an anesthetized rat in a stereotactic apparatus, that clamps its scull
by the ears and at the nose. Using this apparatus you can exactly determine a given
location, using the bregma as a reference. When we find the given location and
drill asmall hole in the scull of the rat. After that we slowly lower a probe inside.
We seal the probe with a screw and some cement. You prepare arat a day in ad-
vance. When we add an electrode, to measure electrical activity, we always do this
just before the actual experiment starts.
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53 Theinlet of the dialysis probe is connected to an infusion pump. Very slowly
an ionic fluid is infused through the brain area, and it leaves the brain via the out-
let tube. The fluid that comes out reflects the compounds that are present in that
location at that moment. That fluid is guided through a system that analyzes a
sample every given time-interval. That system can be set up to measure particular
compounds, such as amino acids, dopamine, noradrenaline, etc. The compounds
are separated in a column from where they are guided to a detector. For example,
for amino acids we use a fluorimeter that registers the degree of fluorescence that
is detected and plots those values against time.

54  Inthe case of our current experiment we have put in two microdialyis probes,
one in the thalamus and one in the striatum. Additionally, in the SNR we place an
electrode, which is an isolated wire with a small uncovered tip. This tip can meas-
ure electric activity outside the cell, it is still to large to measure intracellularly. In
this way we can make an extracellular recording of action potentials. You pick up
those signals from one or two nearby cells. You can determine what kind of cell
you are measuring by looking at characteristics of the action potential. When we
lower the electrode we actually try to find a particular cell type by looking at the
kinds of signals, given descriptions in the literature. The SNR neurons are de-
scribed as being tonically active, displaying a high firing frequency, and exhibiting
anice thin action potential. We have to find the correct type since other cell types
may also be present in the same area. In this experiment it is easy because the
SNR mostly contains the same type of cells.

55  To diagnose the cell signal type we use a computer program that records tem-
plates of signals we are interested in. You record an example of a signal and tell
the program to start looking out for those types. It distills the signals from the
noise. We know that an SNR action-potential lasts about 0.7 milliseconds. Any
signal that takes longer will be ignored. Depending on the location of a cell and its
connections, it displays a particular electrical activity. The activity depends on in-
coming signals from other cells or it can fire spontaneously. In our experiment we
know that the cell fires about 20 to 40 times a second. An extra condition for this
experiment is that the firing frequency remains stable in time. If the activity we
monitor deviates from those conditions we start looking for another cell by mov-
ing the electrode again. To find good cell activity one has to learn; it will take
time, patience and frustration.

56 When al conditions are met we start the experiment. We need a good base
line, a good firing frequency, the activity needs to be tonic, the rat should be well
anesthetized. All conditions should remain stable for half an hour. Then we record
abase line of the activation for ten minutes, and start the fluid infusion. That is al
still part of the preparation. When all goes well up to that point we decide to start
the actual experiment or wait or look for another cell. If everything looks good we
do not touch the rat anymore and start the experiment. The only thing that remains
is to change the syringe from the one containing an isotonic fluid to the one that
contains the isotonic fluid with the drug to be applied and start the drug infusion.
The compound will enter the brain and now all we need to do is see what will

happen.
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57 We have dore atest with a D, agonist. After half an hou stability we started
the infusion. From that moment we knew that the @mmpoundwas inside the rat’s
brain and an effed can appea, and than you gradually see a effed. Most of the
times we hardly saw anything, bu afew times we saw a dlight deaease. So the D,
agonist has little dfed, it hardly deviates from the start condtion, bu you have
the feding that it has a dlight inhibiting effed. Under these condtions ampheta-
mine has a similar slight effed. You also have the feding that it suppresses, bu
only very little. So if any, it seansto work in the same way as a D;-agonist.

58 By trying aD2-agonist we saw that it did something different, it gave agradual
increase of adivity. Therefore D; and D, agonists ®an to ad differently. But the
effeds are hardly naticedle. That is why we induced a situation where the stria-
tum was adivated. If you infuse aglutamate ajonist in the striatum, you see a
immediate and wvery strong effed, that only lasts for a limited amourt of time.
Hence what | then looked for was a relatively low dose to creage amore stable
adivationto use & an adivated condition.

59 When the eperiment is finished we gply a small amount of current on the
eledrode to bun alittl e hde, which will mark the location. Then we saaificethe
rat, and remove its brain. You end upwith a whole series of jars with brains in
them. Then you dan a day when you will slice up all those brains. With the help
of the brain atlas and the marked pasition d the dedrode tip you determine the
exad locaion d your measurements.

8.5 Interpreting the data

In this final sedion | report on my questions to Dr. W. Timmerman abou the inter-
pretation d laboratory datain general, and the puldi shed conclusion abou her inves-
tigationin particular.

60 Sometimes the data you oldain deviates from what you expeded, o the out-
come of one experiment is very different from the rest. In the latter case it is pos-
sible that the probe locaion was wrong. This would give you a reason to remove
these results from your sample. However, if that is not the cae you will have an
anomaly.

61 If | findan anomaly | chedk the experiments just before and after in the same
series to seeif something can be traced from that. Also the experiment has to fed
right. For instance, sometimesasignal is hardly naticedle in the noise, and then it
arealy casts sme doul.

62 But if the template was good, the stability was in order, and you still see ade-
viating resporse, and it was one deviation in e.g. five others, then | just mention it
in the results edion d an article. One rat was an exception for an unknavn rea-
son, so beit. Asan average we dways repeda an experiment five to six times. You
canna base anything on ore observation. Sometimes we follow one experiment,
but often it turns out that it is ill different. Y ou canna pullish anything based on
one experiment.
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63  Anather influence on your data is the anesthetic. For instance, ketamine is an
anesthetic that ads on the glutamate receptor. You do ndo want that. There ae dl
kinds of arguments to use anesthetic. It is less sresful for the animal. You have
more stabil e adivity compared to animals that are avake. But because the striatum
isinvalved in motor behavior you rever can be sure that it does nat influence your
data. You do nd know until you also chedk it with awake animals.

64 Yet ancther fador is that in Parkinson reseach animal models are used that
are lesioned with for instance MPTP [seeSedion 7.3, bu that may nat refled the
entire or predse pathologicd situation. So conclusions abou the model may not
be true for the disease.

65 Anather issue is that many effeds in experiments with systemic dopaminergic
injedions are acribed to the striatum. This is indeal ore of the aea where d-
feds can be mediated. But an effed can also be diredly induced in the acawmbens
or the SNR. Y ou could be wrong by claiming that it was the striatum. DA released
from dendrites can aso be invalved. That is ancther complicaion. So it is not all
that easy to establish the functional role of dopamine.

66 For the manipulations in ou reseach we focused onglutamate and do@mine
interactions. But in the bad of your mind you knaw that there ae dso do@mine-
acdylchdline interadions, and al kinds of peptides, and the influence of GABA-
ergic neurons. So you leave out a gread many to keep a grasp onwhat you are do-
ing. So if you find things that you can na easily understand, there ae many expla-
nations passhble. You knav you canna explain everything by just measuring do-
pamine, glutamate and GABA, there is much moreto it.

This concludes my interviews with Dr. Timmerman abou her work and experiments
up to February 1997.In later tests Dr. Timmerman further experimented with dffer-
ent setups, such as beginning with a glutamate agonist infusion, foll owed with a glu-
tamate agonist infusion in combination with DA-agonist. Abou this work she and
her coworkers pullished the foll owing conclusion:

67 “Toganinsight into therole of striatal dopamine in basal ganglia functioning,
dopaminergic drugs alone, and in combination with the glutamate receptor agonist
kainic add were infused in the latera striatum via amicrodialysis probe, while
single-unit recordings of substantia nigra reticulata neurons were made in chloral
hydrate-anaesthetized rats. Striatal infusion d dopaminergic drugs did na signifi-
cantly affed the firing rate of substantia nigra reticulata neurons, which was re-
lated to the low adivity of striatal cdls under basal conditions, ill ustrated by the
lakk of effed of striatal infusion d TTX on substantia nigra reticulata adivity.
Under glutamate-stimulated condtions, striatal infusion d d-amphetamine poten-
tiated the inhibition o substantia nigra reticulata neurons induced by striatal kai-
nic add. Thus, under stimulated bu not basal condtions, the moduatory role of
dopamine in the striatum could be demonstrated. Dopamine patentiated the in-
hibitory effed of striatal kainic add onthe firing rate of the basal ganglia output
neurons.” (W. Timmerman, F. Westerhof, T. van der Wal and B. Westerink, 1999
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8.6 Conclusion

The spedfic question for this chapter was: how are theory and experiments used in
drug reseach for Parkinson's disease, in pradice? | tried to present an image of a
pradice in neuropharmaclogy by interviewing two scientists abou their spedfic
work in investigating new drugs, exploring the functions of part of the brain, testing a
model of those functions and interpreting the data.

Overdl, neuropharmaalogic reseach can be tharaderized as faching, under-
standing and testing a way to make the charaderistics of a pathologicd systems re-
semble ahedthy situation. Experiments are used to chart both situations, andto try to
bring one situation closer to the other by drug manipulations. In the next chapter |
will analyze the speafic problems addressed in the pradice as described in this
chapter, in detail .



Chapter 9

Discovery

9.1 Introduction

In Chapter 8 | reported on my own epistemological experiment, where | observed and
inquired about a scientific practice, the process of discovery in neuropharmacol ogy.
Chapter 7 reported on a part of the theory that is used and developed in that practice.
In this fina chapter | analyze both the theory and practice, using the concepts from
my theoretical discussion of discovery in Part 1. The particular question that is an-
swered in this chapter is: what is the rationa use of theory and experiment in neuro-
pharmacology? For my description of discovery in neuropharmacology | will pursue
answers to the three specific questions of this thesis, i.e. 1) what is the structure of a
scientific theory?; 2) what is the process of scientific reasoning?; and 3) what is the
route between theory and experiment?

In answering these questions in this chapter | combine the theoretical approaches
of logic as introduced in Chapter 4, and cognitive science, as discussed in Chapter 5.
My main goal is to describe the practice of neuropharmacology. | will use the prob-
lem solving concepts from cognitive psychology to describe steps in the process of
discovery, while | use the concepts of the logical approach to describe the products of
that process. My aim is not to explain the particular directions of the search process
that is described, by extracting and representing implicit knowledge as production
rules. Those rules are dependent on the persona experiences of researchers and
learned in a particular practice, as argued in Sections 5.7 and 5.8.

To analyze the structure of the DA theory | will first, in section 9.2, introduce a
logical approach to represent the structure of theories in general, and dynamical sys-
tems in particular. Then, in section 9.3, | formally represent the theory of the basa
ganglia as a qualitative differential equation, to answer the first question of thisthesis
for the case study. Before going into the second question, the third question is ad-
dressed in section 9.4, where | describe the route between theory and experiment in
the problems faced in the practice of neuropharmacology. In section 9.5 | go into the
process of reasoning in explanation, prediction and design. | will aso discuss how a
description of that process could be applied in that practice. Finaly, in section 9.6 |
end with a general conclusion, discussing the consequences of my observations and
analysis of the case for the theory about discovery as discussed in Part I1.
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9.2 Models

The first question | will addressis, how to understand the structure of the DA theory
of Parkinson's disease. And seaondy, how does it explain the dfea of known trea-
ments. In this sdion | will i ntroduce amodel theoretic goproadc to the structure of
theories.

The structurali st approach in the philosophy of science daraderizes a theory by
its models, concaved as dructures. (Th.A.F. Kuipers, 2000. A structure, in this
context, is usually represented as an ordered set of variables, functions and constants.
A structureis cdled amodel of atheory if the theory, seen as a propasition abou that
structure, istrue.

The oore of a theory consists of a set of models M which is a subset of al con-
ceptually posshle models Mp given the vocabulary of the theory. The diff erence be-
tween Mp and M are dl models that the theory excludes and is cdled the empiricd
content of a theory. It contains all the potential falsifiers of the theory. Given a do-
main D of applicaion d the theory it is assumed that there is a subset of Mp that are
the empiricdly posgble models of that domain. A wea empiricd claim states that all
empiricdly possble models are models of the theory, a strong claim aso aserts that
they are equal.

For my expasition | will charaderize atheory by its vocabulary of variables, the
quantity spaces of thase variables (a quantity spaceof a variable defines the range
and type of values of a variable), and constraints on the values of those variables,
given that they represent together the set of passble models and models of the the-
ory. | will further make adistinction between atheory T, which is basicdly a set of
definitions, and a hypothesis H which is a statement that aserts that the properties of
phenomenain damain D can be dharaderized by the vocabulary V and by the models
of theory T.

Definition 1  Theory. The ordered set [V, Q, Clof variables V, guantity spaces Q

and constraints C represents a theory. The theory determines an ordered set [Mp, M+
that contains the conceptually possble models Mg, given V and Q, and the models of

the theory M+, given the constraintsC on'V.

Definition 2 Hypothesis. The ordered set [V, Q, C, DUrepresents a hypothesis
where atheory is applied to a domain D. The hypothesis determines the ordered set
Mp, M, Mgl that contains the anceptually possble models Mp of a domain D
given passble descriptions by variables V and quantity spaces Q; the models My of
the theory of the domain given constraints C on'V; and the eanpiricdly possble mod-
els Mg of the phenomena of domain D. The hypothesis as<rts that the set of empiri-
cdly possble 